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Abstract

Data are often complex in the sense that they feature dependence between in-
dividual observations, unobserved variables, or highly non-linear and interaction
e�ects. For such complex data, we propose algorithms to estimate functionals
of interest, like causal treatment e�ects, linear e�ects, and conditional distri-
butions. Our first set of methods uses ideas from double machine learning to
estimate and make inference for causal treatment e�ects from observational
network data and linear parameters from repeated measurements data and
data featuring hidden variables in the presence of high- or infinite-dimensional
nuisance components. Our last method is a Random Forest-based algorithm to
estimate multivariate conditional distributions.
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Zusammenfassung

Daten sind oft komplex in dem Sinne, dass sie Abhängigkeiten zwischen
den einzelnen Beobachtungen, unbeobachtete Variablen, oder hochgradig nicht-
lineare Terme und Interaktionse�ekte aufweisen. Für solch komplexe Daten
präsentieren wir Algorithmen, um Funktionale von Interesse wie kausale Be-
handlungse�ekte, lineare E�ekte und bedingte Verteilungen zu schätzen. Unsere
erste Reihe von Methoden verwendet Ideen des doppelten maschinellen Ler-
nens, um kausale Behandlungse�ekte aus beobachteten Netzwerkdaten und
lineare Parameter aus wiederholten Messdaten und Daten mit nicht observierten
Variablen in Gegenwart von hoch- oder unendlich-dimensionalen Störkompo-
nenten zu schätzen. Unsere letzte Methode ist ein Random Forest-basierter
Algorithmus zur Schätzung multivariater bedingter Verteilungen.
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1 | Introduction
Data is constantly being collected—be it for example in health care, in educa-
tion, or in customer behavior analyses. Such data may come from empirical
observations instead of carefully designed randomized experiments, from re-
peatedly observing the same subjects over time, or from simply collecting
data without having an analysis goal in mind. Moreover, machine learning
algorithms can be key to unlocking the value of such data that feature highly
non-linear and interaction terms. However, statistical inference is oftentimes not
well understood in these settings. We present methods to estimate and make
inference for target functionals of interest from such complex data building on
the machine learning tools double machine learning (Chernozhukov et al., 2018)
and Distributional Random Forests (∆evid et al., 2022).

Double machine learning is a tool to estimate and make inference on a
low-dimensional parameter ◊0 in the presence of high- or infinite-dimensional
nuisance components ÷0 that satisfy some moment conditions

1
N

Nÿ

i=1
E[Â(Si, ◊0, ÷0)] = 0,

where N denotes the number of experimental units and Â is a suitable function
on the data Si of the experimental units. Double machine learning uses
sample splitting to estimate all nuisance parameters on one part of the data
and cross-fitting to build an estimator of ◊0 on the other part of the data
by plugging in the nuisance parameter estimates from the first step into the
estimating equation. More precisely, the data is partitioned into K many
sets I1, I2, . . . , IK of approximately equal size. For each k œ {1, 2, . . . , K},
the nuisance components ÷0 are estimated on the complement of Ik using an
arbitrary machine learning algorithm and plugged into the estimating equation
for ◊0. Then, the data from Ik is used to build an estimator ◊̂Ik of ◊0 using
this estimating equation. The final estimator of ◊0 averages over the ◊̂Ik , and it
converges at the parametric rate, N≠1/2, and follows a Gaussian distribution
asymptotically, provided Â is Neyman orthogonal and the machine learning
errors decay fast enough. Typically, these errors decay at the rate oP (N≠1/4) if
the problem is su�ciently smooth or sparse. Neyman orthogonality requires
that the Gateaux derivative of Â vanishes at the true ◊0 and ÷0, which makes
Â insensitive to inserting biased machine learning estimators of ÷0. The
algorithm is called “double” machine learning because ÷0 consists of at least
two objects, which means that machine learning algorithms are applied at
least twice. Nonparametric components can also be estimated without sample
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splitting (Mammen and van de Geer, 1997), but complex machine learners do
not satisfy the entropy conditions these results require (Chernozhukov et al.,
2018). Consequently, sample splitting is essential.

This base double machine learning algorithm assumes that unit-level data,
Si, is independent and identically distributed. However, this may not be
satisfied in practice. In Chapter 2, we estimate and make inference for a
causal treatment e�ect for observational network data, where experimental
units may interact. For example, the vaccination (treatment) of a person not
only influences this person’s health status (outcome), but can also protect the
health status of other people the person is interacting with. Ignoring such
interactions may yield biased estimators and invalid inference and contributes
to the replication crisis. Nevertheless, practitioners often use data analysis
methods that cannot account for such interactions. Our algorithm uses a
network, which is an undirected graph on the units, to account for unit-level
interactions. We show that the resulting treatment e�ect estimator is still
interpretable in our framework. Our approach uses sample splitting and cross
fitting to estimate all nuisance components with machine learning. Compared
to existing treatment e�ect estimators for such a setting, our estimator is easy
to implement and asymptotically converges to a Gaussian distribution at the
parametric N≠1/2-rate.

In Chapter 3, we consider repeated measurements data collected on the same
units like for instance in a longitudinal trial, which violates the independent and
identically distributed assumption. Partially linear mixed-e�ects models (Zeger
and Diggle, 1994; Pinheiro and Bates, 2000) are a powerful tool to cope with
such repeated measurements data, but traditional approaches use splines or
kernels in combination with parametric estimation to infer the linear coe�cient
(fixed e�ects). We propose a machine learning-based approach to obtain
a semiparametrically e�cient estimator of the fixed e�ects in the presence
of complex interaction structures, nonsmooth terms, and high-dimensional
variables.

In Chapter 4, we consider estimating linear e�ects from data featuring
endogeneity; that is, the data feature unobserved variables that correlate the
error of the response with the covariates used to explain the response. Although
the datapoints are independent across units in this setting, endogeneity leads
to unfavorable dependence within individual unit-level data. Two-stage least
squares (Theil, 1953a; Basmann, 1957) is a popular tool to cope with endogeneity.
Chernozhukov et al. (2018) used their double machine learning framework to
do two-stage least squares in partially linear endogenous models to estimate
and make inference for the linear model parameter. However, two-stage least
squares is known to often produce overly wide confidence intervals in practice.
We present a regularization scheme similar to k-class estimators (Theil, 1961)
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for linear models that trades o� some bias with a reduction in variance, leading
to more precise results empirically. Extensive simulation studies complement
our theoretical developments on the asymptotic behavior of our estimator.

In Chapter 5, we present our last analysis tool for complex data. We develop
uncertainty assessments and confidence intervals with Distributional Random
Forests (∆evid et al., 2022), which is a Random Forest-based (Breiman, 2001)
algorithm using Hilbert space embeddings to estimate complex multivariate
conditional distributions in a nonparametric way. Furthermore, we discuss two
lines of applications of our asymptotic theory: comparing whole distributions
of a treatment and a control group to formally identify and test di�erences
between them that may not be captured by the mean alone and estimating
functionals of the conditional distribution such as conditional average treatment
e�ects, conditional quantiles, and conditional correlations.

The remaining chapters of this thesis consist of a previously published article
or a preprint, up to minor modifications:

Chapter 2: C. Emmenegger, M.-L. Spohn, T. Elmer, and P. Bühlmann.
Treatment e�ect estimation from observational network data using aug-
mented inverse probability weighting and machine learning, 2022. Preprint
arXiv:2206.14591

Chapter 3: C. Emmenegger and P. Bühlmann. Plugin machine learning for
partially linear mixed-e�ects models with repeated measurements, 2021a.
Preprint arXiv:2108.13657

Chapter 4: C. Emmenegger and P. Bühlmann. Regularizing double machine
learning in partially linear endogenous models. Electronic Journal of
Statistics, 15(2):6461–6543, 2021

Chapter 5: J. Näf, C. Emmenegger, P. Bühlmann, and N. Meinshausen. Infer-
ence for the distributional random forest, 2023. Preprint on arXiv:2302.05761

Chapter 6 at the end of this thesis presents the R-package dmlalg (Emmeneg-
ger, 2021) that implements the methodology presented in Chapter 3 and 4.
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2 | Treatment E�ect Estimation from
Observational Network Data Us-
ing Augmented Inverse Probabil-
ity Weighting and Machine Learn-
ing

Joint work with

Meta-Lina Spohn, Timon Elmer, and Peter Bühlmann

This chapter is based on the manuscript

C. Emmenegger, M.-L. Spohn, T. Elmer, and P. Bühlmann.
Treatment effect estimation from observational net-
work data using augmented inverse probability weighting
and machine learning, 2022. Preprint arXiv:2206.14591

Abstract
Causal inference methods for treatment e�ect estimation usually assume

independent experimental units. However, this assumption is often ques-
tionable because experimental units may interact. We develop augmented
inverse probability weighting (AIPW) for estimation and inference of causal
treatment e�ects on dependent observational data. Our framework covers
very general cases of spillover e�ects induced by units interacting in networks.
We use plugin machine learning to estimate infinite-dimensional nuisance
components leading to a consistent treatment e�ect estimator that converges
at the parametric rate and asymptotically follows a Gaussian distribution.
We apply our AIPW method to the Swiss StudentLife Study data to investi-
gate the e�ect of hours spent studying on exam performance accounting for
the students’ social network.

2.1 | Introduction
Classical causal inference from observational data usually assumes that the
experimental units are independent. This assumption is also part of the popular
stable unit treatment value assumption (SUTVA) (Rubin, 1980). However,
independence is often not conceivable in practice due to interactions among
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units, and so-called spillover e�ects may occur. For example, participants
in a clinical trial on an infectious disease may interact, and the vaccination
(treatment) of a person not only influences this person’s health status (out-
come), but can also protect the health status of other people the person is
interacting with (Perez-Heydrich et al., 2014; Sävje et al., 2021). Alternatively,
in a housing mobility experiment, a random selection of residents receive infor-
mation to assist their relocation, but such additional information might also
influence the behavior of people with whom the recipients communicate (Sobel,
2006). Other studies where dependencies come from spillover e�ects include
reducing students’ depressive symptoms (Vanderweele et al., 2013), teaching
methods in education (Hong and Raudenbush, 2008), school-based deworming
programs (Miguel and Kremer, 2003; Aiken et al., 2015), and fMRI imaging for
motor inhibition (Luo et al., 2012).

Causal inference in the presence of spillover e�ects is an enormous challenge.
We no longer have N independent observed realizations to learn relevant prop-
erties of the underlying data generating mechanism. Instead, we only observe
a single draw of N dependent units from the data generating mechanism. In
the presence of spillover e�ects, standard algorithms fail to separate correlation
from causation, and spurious associations due to network dependence contribute
to the replication crisis (Lee and Ogburn, 2021). Falsely relying on assump-
tions like SUTVA may yield biased causal e�ect estimators and invalid causal
inference; see for instance Sobel (2006), Perez-Heydrich et al. (2014), Ogburn
and VanderWeele (2017), Ogburn et al. (2022), Eckles and Bakshy (2021), and
Lee and Ogburn (2021). New tailored methods are required to guarantee valid
causal inference from observational data with spillover e�ects. However, there is
no established general methodological framework for the latter task, and at least
two reasons are associated with this. First, there are numerous natural notions
of causal e�ects, most of them being contrasts of low-dimensional summaries of
the counterfactual treatment distributions. Second, additional assumptions are
required to describe and control for di�erent spillover e�ects.

In this paper, the causal e�ect of interest and target of inference is the so-
called expected average treatment e�ect (EATE) (Sävje et al., 2021). The EATE
measures how, on average, the outcome of a unit is causally a�ected by its own
treatment in the presence of spillover e�ects from other units. For a dichotomous
treatment Wi œ {0, 1} and an outcome Yi for units i = 1, 2, . . . , N , the EATE
is given by

◊0
N

= 1
N

Nÿ

i=1
E

C

Y do(Wi=1)
i ≠ Y do(Wi=0)

i

D

,

where we use the do-notation of Pearl (1995), and the expectation is with respect
to all random components, whose distributions are given by the data generating
mechanism in (4.3) below. This notation makes explicit that, given a unit i, we
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consider the causal e�ect of the treatment Wi to be the (unobservable) expected
di�erence in outcomes Yi when the treatment is assigned to unit i versus
when the treatment is retained from unit i. The unit-specific spillover e�ects
are not explicitly visible in the EATE because we take the expectation over
them. In the infectious disease example given above, the EATE measures the
expected di�erence in health status when an individual receives the vaccination
versus when it does not, marginalizing over individual-specific covariates and
spillover e�ects of the other study participants. This corresponds to the medical
e�ect of the vaccine in a person’s body, which reflects the direct e�ect of the
treatment (Sävje et al., 2021). Other authors considering the EATE or the
similar average direct e�ect (ADE) (Hudgens and Halloran, 2008) include
VanderWeele and Tchetgen Tchetgen (2011), Sofrygin and van der Laan (2017),
Sävje et al. (2021), Hu et al. (2022), and Li and Wager (2022). If spillover
e�ects are absent, the EATE matches the expected value of the usual average
treatment e�ect (Splawa-Neyman et al., 1990; Rubin, 1974).

We consider the following types of spillover e�ects: causal e�ects of other
units’ treatments on a given unit’s outcome, called interference (Sobel, 2006;
Hudgens and Halloran, 2008), and causal e�ects of other units’ covariates and
confounders on a given unit’s treatment or its outcome1. To characterize these
spillover e�ects, we assume a known undirected network among the N units, in
which the N nodes represent the units and the edges represent some kind of
interaction or relationship of the respective units such as friendship, geographical
closeness, or shared department in a company. We then use features that are
arbitrary functions of this network and the treatment and covariate vectors of
the whole population (Manski, 1993; Chin, 2019). The features are assumed
to capture all pathways through which spillover e�ects take place and are
specified by the user. For example, Cai et al. (2015) and Leung (2020) model
the purchase of a weather insurance (outcome) of farmers in rural China as
a function of attending a training session (treatment) and the proportion of
friends (feature on direct neighbors in network) who attend the session.

We consider a structural equation model (SEM) to specify the data generating
mechanism. Such an SEM approach is also used by van der Laan (2014), Ogburn
et al. (2022), Sofrygin and van der Laan (2017), and Spohn et al. (2023). For
simplicity, we consider continuous outcomes in this exposition. Please see
Section 2.2.1 for more details. The unit-level observations for i = 1, 2, . . . , N

1
Another notion of spillover e�ects is frequently used in the social sciences; please see

Section 2.B in the appendix for a discussion.
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come from sequentially evaluating the structural equations

Ci Ω ÁCi

Wi Ω Bernoulli
1
h0(Ci, Zi)

2

Yi Ω Wig0
1(Ci, Xi) + (1 ≠ Wi)g0

0(Ci, Xi) + ÁYi

for independent and identically distributed ÁCi
and independent and identically

distributed and centered ÁYi
that are also independent of the ÁCi

’s. For each
unit i, we observe the binary treatment Wi œ {0, 1}, a vector of observed
confounders Ci, and an outcome Yi. The features Zi (functions of other units’
covariates) and Xi (functions of other units’ covariates and treatments) denote
the spillover e�ects unit i receives from other units; see Section 2.2.1 for their
construction. The functions g0

1 and g0
0, which govern the outcome model, and

the propensity function h0 may be highly complex and nonsmooth and include
interactions and high-dimensional variables.

We follow an augmented inverse probability weighting (AIPW) (Robins
et al., 1995) approach to estimate the EATE ◊0

N
in the context of this model.

Inverse probability weighting (IPW) (Rosenbaum, 1987) is used to estimate
treatment e�ects under SUTVA. Under SUTVA, the AIPW approach has
reduced variability and improved e�ciency compared to IPW. In our setting, we
do not restrict to SUTVA due to the non-iid nature of the data, and we estimate
g0

1, g0
0 and h0 with arbitrary machine learning algorithms and plug them into

our AIPW estimand identifying ◊0
N

. If the treatment is randomized, we do not
have to estimate the propensity function h0 and set it to the randomization
probability instead. The estimators of g0

0, g0
1, and h0 may be biased, especially

if regularization methods are used, like for instance with Lasso (Tibshirani,
1996). However, this bias is absorbed by the estimating equation for ◊0

N
because

it is Neyman orthogonal (Chernozhukov et al., 2018). We use the ideas of
sample splitting with cross-fitting introduced in the double machine learning
framework originally proposed for independent and identically distributed data
by Chernozhukov et al. (2018). Our estimator of the EATE converges at the
parametric rate, N≠1/2, and asymptotically follows a Gaussian distribution.
This allows us to construct confidence intervals and p-values.

2.1.1 | Our Contribution and Comparison to Literature
Our contribution is five-fold. First, we extend the allowed complexity of the
model. We do not require observations from multiple independent groups
of units, a randomized treatment, or any sort of parameterization; we refer
to Ogburn et al. (2022) for an overview of such “standard” approaches. Second,
we present a nonparametric, machine-learning-based approach to estimate the
EATE from observational network data that enables performing inference,
including confidence intervals and p-values. Third, the limiting asymptotic

8



Gaussian distribution and optimal 1/
Ô

N convergence rate of the EATE estima-
tor are achieved even if the spillover e�ects are not limited to neighboring units
in the network and the number of ties of a unit may diverge asymptotically.
Fourth, our algorithm is easy to understand and implement. Fifth, we analyze
the Swiss StudentLife Study data (Stadtfeld et al., 2019; Vörös et al., 2021)
and estimate the e�ect of studying time on the grade point average of fresh-
men students after their first-year examinations at one of the world’s leading
universities.

In contrast, the current literature on non- and semiparametric estimation
of causal e�ects from observational network data consider the following. Liu
et al. (2019) propose a parametric and doubly robust estimator of a variety of
causal e�ects under the assumption of observing multiple independent groups
of units. Tchetgen Tchetgen et al. (2021) develop a network version of the
g-formula (Robins, 1986) and perform outcome regression, assuming that the
data can be represented as a chain graph, which is a graphical model that is
generally incompatible with our SEM approach (Lauritzen and Richardson,
2002). Tchetgen Tchetgen et al. (2021), van der Laan (2014), Ogburn et al.
(2022), and Sofrygin and van der Laan (2017) also develop asymptotic Gaussian
theory for causal e�ect estimation on arbitrary networks. The latter three
works consider semiparametric estimation and use targeted maximum likelihood
(TMLE) methodology (van der Laan and Rubin, 2006; van der Laan and Rose,
2011, 2018). van der Laan (2014) and Ogburn et al. (2022) primarily consider
global e�ects such as the global average treatment e�ect (GATE) that contrasts
the hypothetical intervention of treating all units in the population versus
treating no unit of the population. Sofrygin and van der Laan (2017) mention
a possible extension to estimate direct e�ects as we do, but all their results
are for global e�ects such as the GATE. Furthermore, the TMLE framework
requires density estimation, which can be awkward in practice, and the theory
assumes some kind of a bounded entropy integral, which typically rules out
many modern machine learning methods. Our algorithm is easy to understand
and implement, and the user may choose any machine learning algorithm they
like. Finally, to achieve the 1/

Ô
N convergence rate, Sofrygin and van der Laan

(2017) uniformly limit the number of neighbors of each unit in the network, and
spillover e�ects are limited to direct neighbors. With our algorithm, the number
of interactions of a unit may increase with the sample size, and interactions
may be beyond direct network neighbors. Spohn et al. (2023) consider a similar
setting as we do, but they focus on graphical identification of causal e�ects,
and their outcome equation is entirely linear.

In randomized experiments, Sävje et al. (2021) establish that the Horvitz-
Thompson estimator (Horvitz and Thompson, 1952) and the Hájek estima-
tor (Hájek, 1971) of the EATE, which were initially designed for no-interference
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settings, remain consistent under interference. However, their convergence rate
depends on the degree of interference. In randomized experiments, Li and Wager
(2022) recover the parametric convergence rate of these estimators and provide
a central limit theorem. They consider arbitrary networks, but interference is
only due to the average of treated neighbors. Their Horvitz-Thompson and the
Hájek estimator do not account for observed confounding.

2.1.2 | Additional Literature
Spillover e�ects can be of various forms. We consider interference and spillover
e�ects from covariates. Another widespread spillover e�ect is contagion where
the outcome of a unit potentially a�ects the outcome of other units (Ugander
et al., 2013; Eckles et al., 2017). In certain cases, contagion can be expressed as
a sum of interference e�ects (Chin, 2019).

A review of causal inference under interference can be found in Halloran
and Hudgens (2016). Sävje et al. (2021) give a comprehensive overview of
the development of the network interference literature. Many approaches
consider disjoint independent groups and arbitrary interference within groups,
an assumption called partial interference (Sobel, 2006). Recent publications on
observational data from networks use the potential outcomes framework; see
for example Forastiere et al. (2021), Toulis et al. (2021), and Wang (2021).

Also other works consider an SEM framework as we do to model dependent
data in the context of networks; see for instance Shalizi and Thomas (2011);
Ogburn and VanderWeele (2014, 2017); Taylor and Eckles (2018); Egami and
Tchetgen Tchetgen (2021). The corresponding causal directed acyclic graph
(DAG) of the data generating mechanism contains the variables of all units,
and the observed data are one or multiple observations from such graphs.
However, such graphs are highly complex, which may limit the practicality of
these approaches. Moreover, if the data is modeled as one realization from the
network, statistical inference based on asymptotics may not be possible; see for
example Tchetgen Tchetgen et al. (2021). Spohn et al. (2023) and Zhang et al.
(2022) study graphical identification of e�ects with DAGs that are less complex.

Ogburn et al. (2022) and Hoshino (2021) also consider unobserved confound-
ing. If the network is not accurately specified, not recorded edges in the network
introduce unobserved confounding. We assume a known network.

Outline of the Paper. Section 2.2 presents the model assumptions, charac-
terizes the treatment e�ect of interest, outlines the procedures for the point
estimation of the EATE and estimation of its variance, and establishes asymp-
totic results. Section 2.3 demonstrates our methodological and theoretical
developments in a simulation study and on empirical data. We investigate the
e�ect of hours spent studying on exam performance in the Swiss StudentLife
Study taking into account the e�ect of social ties.
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2.2 | Model Formulation and our Network AIPW Es-
timator

2.2.1 | Model Formulation

We consider N units for which we observe a binary treatment Wi œ {0, 1},
a univariate outcome Yi, and a possibly multivariate vector of observed con-
founders Ci that may causally a�ect Wi and Yi. The outcome Yi may be
dichotomous or continuous, and the confounders Ci may consist of discrete
and continuous components. If the outcomes are continuous, the unit-level
observations i = 1, 2, . . . , N are realizations from sequentially evaluating the
structural equations

Ci Ω ÁCi

Wi Ω Bernoulli
1
h0(Ci, Zi)

2

Yi Ω Wig0
1(Ci, Xi) + (1 ≠ Wi)g0

0(Ci, Xi) + ÁYi

(2.1)

for independent and identically distributed ÁCi
and independent and identically

distributed and centered ÁYi
that are also independent of the ÁCi

’s, and where the
spillover features Zi (functions of other units’ confounders) and Xi (functions
of other units’ confounders and treatments) are defined below. For dichotomous
responses, we consider for each unit i the structural equations

Ci Ω ÁCi

Wi Ω Bernoulli
1
h0(Ci, Zi)

2

Yi Ω Bernoulli
1
Wig0

1(Ci, Xi) + (1 ≠ Wi)g0
0(Ci, Xi)

2 (2.2)

for independent and identically distributed ÁCi
. Both sets of structural equations,

(2.1) and (2.2), can be represented with additive errors as

Ci Ω ÁCi

Wi Ω h0(Ci, Zi) + ÁWi

Yi Ω Wig0
1(Ci, Xi) + (1 ≠ Wi)g0

0(Ci, Xi) + ÁYi

(2.3)

for some error terms ÁWi
and ÁYi

that are independent across units and satisfy
E[ÁWi

|Ci, Zi] = 0 and E[ÁYi
|Wi, Ci, Xi] = 0 within units. We will make use

of this latter representation. Particularly, the confounders Ci and spillover
e�ects Xi may a�ect the outcome Yi of unit i di�erently depending on its own
treatment, captured by potentially di�erent g0

1 and g0
0. The features Xi and Zi

capture spillover e�ects across units along the paths of the underlying known
network G = (V, E) and render the unit-level data dependent. The vertex
set V of G consists of the N units, and the edge set E consists of pairwise,
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undirected edges. The feature Xi is given by the vector

Xi =
A

f 1
x

1
{(Wj, Cj)}jœ[N ]\{i}, G

2
, . . . , f r

x

1
{(Wj, Cj)}jœ[N ]\{i}, G

2B

of fixed dimension r, where [N ] denotes the set {1, 2, . . . , N}. Each function
f l

x
: R(N≠1)◊(N≠1)◊N◊N

2 æ R for l œ [r] is a function of the treatment and
confounder vector of units other than i and the network G. Each such function
is specified by the user and describes a 1-dimensional spillover e�ect that unit
i receives from other units’ confounders and treatments. The feature Zi is
defined analogously as the vector

Zi =
A

f 1
z

1
{Cj}jœ[N ]\{i}, G

2
, . . . , f t

z

1
{Cj}jœ[N ]\{i}, G

2B

of fixed dimension t, where each f l

z
: R(N≠1)◊N◊N

2 æ R for l œ [t] is a function
of the confounder vector of units other than i and the network G. Each
such function is specified by the user and describes a 1-dimensional spillover
e�ect that the treatment assignment Wi of unit i receives from other units’
confounders. Such an approach was initially proposed by Chin (2019). The
functions f l

x
, l œ [r] and f l

z
, l œ [t] are shared by all units and are of fixed

dimension. Thus, they help to reduce the dimension and complexity arising from
a potentially growing number of influencing units because they map spillover
e�ects to vectors of fixed dimensions. The dependencies captured by the X-
and Z-features are reciprocal for two connected units in the undirected network
G: if there is an edge between two units i and j, then unit i receives spillover
e�ects from Wj and/or Cj, and unit j receives spillover e�ects from Wi and/or
Ci. Example 2.2.1 illustrates the construction of an X-feature that accounts
for treatment spillover from neighbors and neighbors of neighbors. However,
also more complex e�ects additionally accounting for covariate spillovers are
possible. As the number of units N increases, the number of connections of
each unit may increase (or decrease) as well. Consequently, a unit may receive
spillover e�ects from more (or less) other units as N increases.

We denote the direct causes of Wi by pa(Wi), the parents of Wi. Analogously,
we denote the parents of Yi by pa(Yi); please see for instance Lauritzen (1996).
We assume that pa(Wi) consists of Ci and the variables used to compute the
spillover feature Zi and that pa(Yi) consists of Wi, Ci, and the variables used
to compute the spillover feature Xi.

Example 2.2.1. Consider the network in Figure 2.1 where gray nodes
receive the treatment and white ones do not. We choose r = 2 many
X-features and discard any influence of Cj in Xi, that is, we consider the
case f l

x

1
{(Wj, Cj)}jœ[N ]\{i}, G

2
= f l

x

1
{(Wj)}jœ[N ]\{i}, G

2
for l = 1, 2. Given
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1 2 3 4

5 6 7 8 9

Figure 2.1: A network on nine units where the node label represents

the number of a unit. Gray nodes receive the treatment, corresponding

to Wi = 1, and white ones do not, corresponding to Wi = 0.

a unit i, we choose the first feature in Xi as the average number of treated
neighbors of unit i and the second feature as the average number of the
treated neighbors of neighbors of i. Let us consider unit i = 6 in Figure 2.1.
Its neighbors are the units 2, 5, and 7, and its neighbors of neighbors are
the units 1 and 3 (neighbors of unit 2) and unit 8 (neighbor of unit 7),
where we exclude i = 6 from its second degree neighborhood by definition.
Therefore, we have X6 = (1/3, 2/3) because one out of three neighbors
is treated and two out of three neighbors of neighbors are treated. The
whole 9 ◊ 2 dimensional X-feature matrix is obtained by applying the same
computations to all other units i.

2.2.2 | Treatment E�ect and Identification
Let us recall the treatment e�ect of interest, the expected average treatment
e�ect (EATE) (Sävje et al., 2021),

◊0
N

= 1
N

Nÿ

i=1
E

C

Y do(Wi=1)
i ≠ Y do(Wi=0)

i

D

,

and let us denote the unit-level direct e�ect for i œ [N ] by

◊0
i

= E
C

Y do(Wi=1)
i ≠ Y do(Wi=0)

i

D

= E
Ë
g0

1(Ci, Xi) ≠ g0
0(Ci, Xi)

È
,

where the second equality comes from inserting the model (4.3). The unit-level
direct e�ect measures how the outcome Yi of unit i is causally a�ected by its
own treatment assignment Wi in the presence of spillover e�ects from other
units. Consequently, the EATE is given by

◊0
N

= 1
N

Nÿ

i=1
E

Ë
g0

1(Ci, Xi) ≠ g0
0(Ci, Xi)

È
= 1

N

Nÿ

i=1
◊0

i
, (2.4)

which is the average of the N unit-specific direct e�ects. Estimating g0
1 and g0

0 by
regression machine learning algorithms and plugging them into (2.4) would not
result in a parametric convergence rate and an asymptotic Gaussian distribution
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of our estimator. To obtain asymptotic normality with convergence at the
parametric rate, we add a centered correction term to g0

1(Ci, Xi) ≠ g0
0(Ci, Xi),

which yields the estimating equation

Ï(Si, ÷) = g1(Ci, Xi) ≠ g0(Ci, Xi) + Wi

h(Ci,Zi)
1
Yi ≠ g1(Ci, Xi)

2

≠ 1≠Wi

1≠h(Ci,Zi)
1
Yi ≠ g0(Ci, Xi)

2 (2.5)

for ◊0
N

, where the unit-level data

Si = (Wi, Ci, Xi, Zi, Yi) (2.6)

concatenates the variables observed for unit i, and ÷ = (g1, g0, h) concatenates
general nuisance functions g1, g0, and h. The true nuisance functions ÷0 =
(g0

1, g0
0, h0) are not of statistical interest to us, but have to be estimated to

build an estimator for ◊0
N

. The following lemma identifies the EATE, where Ï
is evaluated at Si and ÷0.

Lemma 2.2.2. Let i œ [N ]. It holds that E[Ï(Si, ÷0)] = ◊0
i
, and we can

consequently identify the EATE (2.4) by

◊0
N

= 1
N

Nÿ

i=1
E

Ë
Ï(Si, ÷0)

È
. (2.7)

Based on this lemma, we will present our estimator of ◊0
N

in Section 2.2.4.
We will estimate g0

1, g0
0, and the propensity function h0 using any regression

machine learning algorithms that are allowed to be biased. However, the two cor-
rection terms Wi/h(Ci, Zi)(Yi ≠g1(Ci, Xi)) and (1≠Wi)/(1≠h(Ci, Zi))(Yi ≠
g0(Ci, Xi)) make Ï Neyman orthogonal and thus insensitive to inserting poten-
tially biased machine learning estimators. Neyman orthogonality is an essential
tool to obtain the 1/

Ô
N convergence rate of the treatment e�ect estimator;

please see Section 2.2.4 for further details.
Scharfstein and Robins (1999) and Bang and Robins (2005) consider a

similar function Ï for causal e�ect estimation and inference under the SUTVA
assumption, and their function is based on the influence function for the mean
for missing data from Robins and Rotnitzky (1995). Moreover, it is also used
to compute the AIPW estimator under SUTVA, and our estimating equation Ï
defined in (2.5) coincides with the one of the AIPW approach under SUTVA if
we omit the X- and Z-spillover features. In this case, we can reformulate Ï as

Ï(Si, ÷0)
= WiYi

e(Ci) ≠ (1≠Wi)Yi

(1≠e(Ci))

≠ Wi≠e(Ci)
e(Ci)(1≠e(Ci))

A

(1 ≠ e(Ci)) E[Yi|Wi = 1, Ci] + e(Ci) E[Yi|Wi = 0, Ci]
B

,
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(a) Causal DAG

1 2 3 4

(b) Network G

1 2

3 4

(c) Dependency graph GD

Figure 2.2: A network G on four units in 2.2b, where the spillover

e�ects come from the treatments of the direct neighbors, which results

in a distance-two dependence, which is displayed in the corresponding

dependency graph GD in 2.2c. The underlying causal DAG is displayed

in 2.2a, where arrows due to X-spillover e�ects are gray.

where e(Ci) = E[Wi|Ci] = h0(Ci) denotes the propensity score, E[Yi|Wi =
1, Ci] = g0

1(Ci, Xi), and E[Yi|Wi = 0, Ci] = g0
0(Ci, Xi). This equivalence

remains true if the true nuisance functions are replaced by their estimators.

2.2.3 | Dependency Graph
So far, we characterized spillover e�ects and resulting dependencies among
the units by a network. If an edge connects two units, the units may be
dependent. However, the absence of an edge in the network does not necessarily
imply independence of the respective units. Subsequently, we present a second
graph where the presence of an edge represents dependence and its absence
independence. Our theoretical results will be established based on this so-called
dependency graph (Sävje et al., 2021). Example 2.2.4 illustrates the concept.

Definition 2.2.3 (Dependency graph on Si, i œ [N ]). (Sävje et al., 2021).
The dependency graph GD = (V, ED) on the unit-level data Si, i œ [N ]
defined in (2.6) is an undirected graph on the node set V of the network
G = (V, E) with potentially larger edge set ED than E. An undirected
edge {i, j} between two nodes i and j from V belongs to ED if at least one
of the following two conditions holds: 1) there exists an m œ [N ] \ {i, j}
such that Wm and/or Cm are present in both Xi and Xj or are present in
both Zi and Zj; 2) Wi is present in Xj, or Ci is present in Xj or in Zj.
That is, units i and j receive spillover e�ects from at least one common
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confounding unit, or they receive spillover e�ects from each other.

Example 2.2.4. Consider the chain-shaped network G in Figure 2.2b. We
consider a 1-dimensional X-spillover e�ect as the fraction of treated direct
neighbors in the network G and no Z-spillover. The resulting dependency
graph GD is displayed in Figure 2.2c. In GD, unit 2 shares an edge with
units 1 and 3 because these units are neighbors of 2 in the network. Unit 2
also shares an edge with 4 in GD because it shares its neighbor 3 with unit
4. Figure 2.2a displays the causal DAG on all units corresponding to this
model, including confounders C. Due to the definition of the X-spillover
e�ect, we have X1 = W2 and X4 = W3. Consequently, using graphical
criteria (Lauritzen, 1996; Pearl, 1998, 2009, 2010; PerkoviÊ et al., 2018),
we infer that the unit-level data S1 = (W1, C1, X1, Y1) is independent of
S4 = (W4, C4, X4, Y4).

2.2.4 | Estimation Procedure and Asymptotics
Subsequently, we describe our estimation procedure and its asymptotic prop-
erties. We use sample splitting and cross-fitting to estimate the EATE ◊0

N

identified by Equation (2.7) as follows. We randomly partition [N ] into K Ø 2
sets of approximately equal size that we call I1, . . . , IK . We split the unit-level
data according to this partition into the sets SIk

= {Si}iœIk
, k œ [K]. For

each k œ [K], we perform the following steps. First, we estimate the nuisance
functions g0

1, g0
0, and h0 on the complement set of SIk

, which we define as

SI
c

k
= {Sj}jœ[N ] \

1
SIk

fi {Sm | ÷i œ Ik : (i, m) œ ED}
2
, (2.8)

where ED denotes the edge set of the dependency graph GD. Particularly, SI
c

k

consists of unit-level data Sj from units j that do not share an edge with any
unit i œ Ik in the dependency graph. Consequently, the set SI

c

k
contains all

Sj’s that are independent of the data in SIk
. To estimate g0

1, we select the Si’s
from SI

c

k
whose Wi equals 1 and regress the corresponding outcomes Yi on the

confounders Ci and the features Xi, which yields the estimator ĝ
I

c

k

1 . Similarly,
to estimate g0

0, we select the Si’s from SI
c

k
whose Wi equals 0 and perform an

analogous regression, which yields the estimator ĝ
I

c

k

0 . To estimate h0, we use
the whole set SI

c

k
and regress Wi on the confounders Ci and the features Zi,

which yields the estimator ĥI
c

k . These regressions may be carried out with any
machine learning algorithm. We concatenate these nuisance function estimators
into the nuisance parameter estimator ÷̂I

c

k = (ĝI
c

k

1 , ĝ
I

c

k

0 , ĥI
c

k) and plug it into Ï
that is defined in (2.5). We then evaluate the so-obtained function Ï(·, ÷̂I

c

k) on
the data SIk

, which yields the terms Ï(Si, ÷̂I
c

k) for i œ Ik. That is, we evaluate
Ï(·, ÷̂I

c

k) on unit-level data Si that is independent of the data that was used to

16



estimate the nuisance parameter ÷̂I
c

k . Finally, we estimate the EATE by the
cross-fitting estimator

◊̂ = 1
K

Kÿ

k=1

Q

ca
1

|Ik|
ÿ

iœIk

Ï(Si, ÷̂I
c

k)
R

db (2.9)

that averages over all K folds. The estimator ◊̂ converges at the parametric
rate, N≠1/2, and follows a Gaussian distribution asymptotically with limiting
variance ‡2

Œ as stated in Theorem 2.2.5 below.
The partition I1, . . . , IK is random. To alleviate the e�ect of this randomness,

the whole procedure is repeated a number of B times, and the median of the
individual point estimators over the B repetitions is our final estimator of ◊0

N
.

The asymptotic results for this median estimator remain the same as for ◊̂;
see Chernozhukov et al. (2018). For each repetition b œ [B], we compute a point
estimator ◊̂b, a variance estimator ‡̂2

Œ,b
(for details please see the next Section

2.2.5), and a p-value pb for the two-sided test H0 : ◊0
N

= 0 versus HA : ◊0
N

”= 0.
The B many p-values p1, . . . , pB from the individual repetitions are aggregated
according to

p0
aggr = 2 medianbœ[B](pb).

This aggregation scheme yields a valid overall p-value for the same two-sided
test (Meinshausen et al., 2009). The corresponding confidence interval is
constructed as

CI(◊̂) = {◊ œ R | p◊

aggr of H0 : ◊0
N

= ◊ vs. HA : ◊0
N

”= ◊ satisfies p◊

aggr > –},
(2.10)

where typically – = 0.05. This set contains all values ◊ for which the null
hypothesis H0 : ◊0

N
= ◊ cannot be rejected at level – against the two-sided

alternative HA : ◊0
N

”= ◊.
Next, we describe how CI(◊̂) can easily be computed. Due to the asymp-

totic result of Theorem 2.2.5, the aggregated p-value p◊

aggr for ◊ œ R can be
represented as

p◊

aggr = 4 medianbœ[B]
1
1 ≠ �(

Ô
N ‡̂≠1

Œ,b
|◊̂b ≠ ◊|)

2
,

where � denotes the cumulative distribution function of a standard Gaussian
random variable. Consequently, we have

p◊

aggr > – … �≠1(1 ≠ –/4) > medianbœ[B](
Ô

N ‡̂≠1
Œ,b

|◊̂b ≠ ◊|),

which can be solved for feasible values of ◊ using root search. A full description
of our method is presented in Algorithm 3 in the next Section 2.2.5 after the

17



description of the variance estimator ‡̂Œ,b.
We now present our main theorem that we mentioned in the construction of

confidence intervals above:

Theorem 2.2.5 (Asymptotic distribution of ◊̂). Assume Assumption 3.B.2,
2.A.2, 2.A.3 and 3.B.4 stated in the appendix in Section 3.B. Then, the
estimator ◊̂ of the EATE ◊0

N
given in (2.9) converges at the parametric

rate, N≠1/2, and asymptotically follows a Gaussian distribution, namely
Ô

N(◊̂ ≠ ◊0
N

) dæ N (0, ‡2
Œ), (2.11)

where ‡Œ is characterized in Assumption 2.A.3. The convergence in (2.11)
is in fact uniformly over the law P of the observations.

Please see Section 2.E in the appendix for a proof of Theorem 2.2.5. The
asymptotic variance ‡2

Œ in Theorem 2.2.5 can be consistently estimated; see
Theorem 2.2.6 in the next Section 2.2.5.

Subsequently, we describe the implications of the assumptions made in
Theorem 2.2.5. Assumption 2.A.3 ensures that ‡2

Œ exists. Assumption 3.B.2
and 3.B.4 specify regularity conditions and required convergence rates of the
machine learning estimators. The machine learning errors need to satisfy the
product relationship

Îh0(Ci, Zi) ≠ ĥI
c

k(Ci, Zi)ÎP,2 ·
Q

aÎg0
1(Ci, Xi) ≠ ĝ

I
c

k

1 (Ci, Xi)ÎP,2

+Îg0
0(Ci, Xi) ≠ ĝ

I
c

k

0 (Ci, Xi)ÎP,2 + Îh0(Ci, Zi) ≠ ĥI
c

k(Ci, Zi)ÎP,2

R

b π N≠ 1
2 .

This bound requires that only products of the machine learner’s errors but not
the individual ones need to vanish at a rate smaller than N≠1/2. In particular,
the individual error terms may vanish at a rate smaller than N≠1/4. This is
achieved by many machine learning methods; see for instance Chernozhukov
et al. (2018): ¸1-penalized and related methods in a variety of sparse models
(Bickel et al., 2009; Bühlmann and van de Geer, 2011; Belloni et al., 2011;
Belloni and Chernozhukov, 2011; Belloni et al., 2012; Belloni and Chernozhukov,
2013), forward selection in sparse models (Kozbur, 2020), L2-boosting in sparse
linear models (Luo and Spindler, 2016), a class of regression trees and random
forests (Wager and Walther, 2016), and neural networks (Chen and White,
1999).

We note that the so-called Neyman orthogonality of Ï makes it insensitive
to inserting potentially biased machine learning estimators of the nuisance
parameters; please see Lemma 2.E.1 in the appendix. A function is Neyman
orthogonal if its Gateaux derivative, which is a directional derivative, vanishes
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at the true ÷0. In particular, Neyman orthogonality is a first-order property.
The product relationship of the machine learning estimating errors described
above is used to bound second-order terms.

Our proof of Theorem 2.2.5 uses techniques presented by Chernozhukov et al.
(2018) and a version of Stein’s method (Stein, 1972) that bounds the error of
the normal approximation of a sum of random variables that exhibit a certain
dependency structure. We use Theorem 3.6 from Ross (2011) that is defined on
the dependency graph of network data where the dependency structure among
the units should not be too dense. This is captured by Assumption 2.A.2 that
restricts the maximal degree dmax in the dependency graph GD on the unit-level
data Si, i œ [N ] to dmax = o(N1/4). That is, dmax may grow at a slower rate
than N1/4, which allows us to consider increasingly complex networks as the
sample size increases.

2.2.5 | Consistent Variance Estimator

Under the assumptions of Theorem 2.2.5 and additional ones stated in Theo-
rem 2.2.6 below, the asymptotic variance ‡2

Œ in Theorem 2.2.5 can be estimated
consistently. The challenge is that the unit-level direct e�ects ◊0

i
for i œ [N ],

given in (2.2.2), are not all equal. This is because the unit-level data points Si

are typically not identically distributed. The di�erence in distributions originate
from the X- and Z- features that generally depend on a varying number of
other units. If two unit-level data points Si and Sj have the same distribution,
then their unit-level treatment e�ects ◊0

i
and ◊0

j
coincide. If enough of these

unit-level treatment e�ects coincide, we can use the corresponding unit-level
data to estimate them. Subsequently, we describe this procedure.

We partition [N ] into sets Ad for d Ø 0 such that all unit-level data points
Si for i œ Ad have the same distribution. Provided that the sets Ad are large
enough, we can consistently estimate the corresponding ◊0

d
for d Ø 0 by

◊̂d = 1
|Ad|

ÿ

iœAd

Ï(Si, ÷̂I
c

k(i)), (2.12)

where k(i) denotes the index in [K] such that i œ Ik(i). The convergence rate
of these estimators is at least N≠1/4; see Lemma 2.F.2 in Section 2.F in the
appendix. To achieve this rate, we require that the sets Ad contain at least of
order N3/4 many indices; see Assumption 2.A.5 in Section 3.B in the appendix.
The parametric convergence rate cannot be achieved in general because Ad

is of smaller size than N , but the corresponding units may have the maximal
dmax many ties in the network.

Subsequently, we characterize a situation in which the index d corresponds to
the degree in the dependency graph GD. This is the case if two unit-level data
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points Si and Sj have the same distribution if and only if the units i and j have
the same degree in GD. We assume, given a unit i and some m œ [N ] \ {i},
that 1) if Cm is part of Zi, then Cm is also part of Xi and vice versa; and 2) if
Wm is part of Xi, then Cm is part of Xi and Zi and vice versa. Consequently,
if two units i ”= j have the same degree in the dependency graph, then their
X- and their Z-features are computed using the same number of random
variables. Hence, Xi and Xj as well as Zi and Zj are identically distributed,
and therefore Si and Sj have the same distribution. Thus, the sets Ad form
partition of the units according to their degree in the dependency graph, that
is, Ad = {i œ [N ] : d(i) = d} for d Ø 0, where d(i) denotes the degree of i in
the dependency graph. There are dmax + 1 = o(N1/4) many such sets, and each
of them is required to be of size at least of order N3/4 in Lemma 2.F.2. This is
feasible because there are N units in total. Provided that the machine learning
estimators of the nuisance functions converge at a rate faster than N1/4 as
specified by Assumption 2.A.6 in the appendix, we have the following consistent
estimator of the asymptotic variance given in Theorem 2.2.6. Algorithm 3
summarizes the whole procedure of point estimation and inference for the EATE
where the variance is estimated as given in Theorem 2.2.6. Nevertheless, this
estimation scheme can be extended to general sets Ad.

Theorem 2.2.6. Denote by GD = (V, ED) the dependency graph on Si,
i œ [N ]. For a unit i œ [N ], denote by d(i) its degree in GD and by k(i) the
number in [K] such that Si œ Ik(i). In addition to the assumptions made
in Theorem 2.2.5, also assume that Assumption 2.A.5 and 2.A.6 stated in
Section 3.B in the appendix hold. Based on Ï defined in (2.5), we define
the score function Â(Si, ◊, ÷) = Ï(Si, ÷) ≠ ◊ for some general ◊ œ R and the
nuisance function triple ÷ = (g1, g0, h). Then,

1
N

Nÿ

i=1
Â2(Si, ◊̂d(i), ÷̂I

c

k(i)) + 2
N

ÿ

{i,j}œED

Â(Si, ◊̂d(i), ÷̂I
c

k(i))Â(Sj, ◊̂d(j), ÷̂I
c

k(j))

is a consistent estimator of the asymptotic variance ‡2
Œ in Theorem 2.2.5.

2.3 | Empirical Validation
We demonstrate our method in a simulation study and on a real-world dataset.
In the simulation study, we validate the performance of our method on di�erent
network structures and compare it to two popular treatment e�ect estimators.
Afterwards, we investigate the e�ect of studying time on exam performance in
the Swiss StudentLife Study (Stadtfeld et al., 2019; Vörös et al., 2021) taking
into account the e�ect of social ties.
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Algorithm 1: Estimating the EATE from observational data on net-
works with spillover e�ects using plugin machine learning
Input : N unit-level observations Si = (Wi, Ci, Xi, Zi, Yi) from the

model (4.3), network G, feature functions f l

x
, l œ [r] and f l

z
,

l œ [t], corresponding dependency graph GD, natural number
K, natural number B, significance level – œ [0, 1], machine
learning algorithms.

Output : Estimator of the EATE ◊0
N

and a valid p-value and confidence
interval for the two-sided test H0 : ◊0

N
= 0 vs. HA : ◊0

N
”= 0.

1 for b œ [B] do
2 Randomly split the index set [N ] into K sets I1, . . . , IK of

approximately equal size.
3 for k œ [K] do
4 Compute nuisance function estimators ĝ

I
c

k

1 , ĝ
I

c

k

0 , and ĥI
c

k with
machine learning algorithm and data from SI

c

k
.

5 end
6 Compute point estimator of ◊0

N
according to (2.9), and call it ◊̂b.

7 For degrees d Ø 0 in GD, compute treatment e�ects ◊̂d according
to (2.12), and call them ◊̂d,b.

8 Estimate asymptotic variance of ◊̂b according to Theorem 2.2.6 using
◊̂d,b, and call it ‡̂2

Œ,b
.

9 Compute p-value pb for the two-sided test H0 : ◊0
N

= 0 vs.
HA : ◊0

N
”= 0 using ◊̂b, ‡̂2

Œ,b
, and asymptotic Gaussian

approximation.
10 end
11 Compute ◊̂ = mediansœ[B](◊̂b).
12 Compute aggregated p-value p0

aggr = 2 medianbœ[B] pb.
13 Compute confidence interval according to (2.10), call it CI(◊̂).
14 Return ◊̂, p0

aggr, CI(◊̂).

2.3.1 | Simulation Study

We compare the performance of our method to two popular alternative schemes
with respect to bias of the point estimator and coverage and length of respective
two-sided confidence intervals: the Hájek estimator and an IPW estimator. We
first describe the two competitors and afterwards detail the simulation setting
and present the results.

The Hájek estimator (denoted by “Hajek” in Figure 3.3.2) without incor-

21



(a) Erd�s–Rényi network (b) Watts–Strogatz network

Figure 2.3: Di�erent network structures on N = 200 units: Erd�s–

Rényi network where two nodes are connected with probability 6/N
in 2.3a (every node is connected to 6 other nodes in expectation); Watts–

Strogatz network with a rewiring probability of 0.05, a 1-dimensional

ring-shaped starting lattice where each node is connected to 4 neighbors

on both sides (that is, every node is connected to 8 other nodes), no

loops, and no multiple edges in 2.3b. The graphs are generated using

the R-package igraph (Csardi and Nepusz, 2006).

poration of confounders (Hájek, 1971) equals

1
N

Nÿ

i=1

Q

a WiYi

1
N

q
N
j=1 Wi

+ (1 ≠ Wi)Yi

1
N

q
N
j=1(1 ≠ Wi)

R

b.

The parametric convergence rate and asymptotic Gaussian distribution are pre-
served under X-spillover e�ects that equal the fraction of treated neighbors in a
randomized experiment (Li and Wager, 2022). The IPW estimator (Rosen-
baum, 1987) has been developed under SUTVA and uses observed confounding
by creating a “pseudo population” in which the treatment is independent of
the confounders (Hirano et al., 2003). We compute it using sample splitting
and cross-fitting according to

1
K

Kÿ

k=1

1
|Ik|

ÿ

iœIk

A
WiYi

êI
c

k(Ci)
≠ (1 ≠ Wi)Yi

1 ≠ êI
c

k(Ci)

B

,

where êI
c

k is the fitted propensity score obtained by regressing Wi on Ci on the
data in i œ SI

c

k
. In our simulation, êI

c

k coincides with ĥI
c

k because we consider
no Z-features. We denote this estimator by “IPW” in Figure 3.3.2

We investigate two network structures: Erd�s–Rényi networks (Erd�s and

22



0.00

0.25

0.50

0.75

1.00

25
00

50
00

75
00

10
00

0

N

Coverage

0.1

1.0

10.0

2.
75

3.
00

3.
25

3.
50

3.
75

4.
00

log(N)

Log median CI length

25
00

50
00

75
00

10
00

0

0
2
4
6

−0.10

−0.05

0.00

N

Median bias

Method
netAIPW

Hajek

IPW

Network growth
const

N ^ (1 / 9)

Er
do

s−
R

en
yi

 

0.00

0.25

0.50

0.75

1.00

25
00

50
00

75
00

10
00

0

N

Coverage

0.1

1.0

10.0

2.
75

3.
00

3.
25

3.
50

3.
75

4.
00

log(N)

Log median CI length

25
00

50
00

75
00

10
00

0

0
2
4
6

−0.06

−0.04

−0.02

0.00

0.02

0.04

N

Median bias

Method
netAIPW

Hajek

IPW

Network growth
const

N ^ (1 / 9)W
at

ts
−S

tro
ga

tz
 

Figure 2.4: Coverage (fraction of times the true, and in general un-

known, ◊0
N

was inside the confidence interval) and log median length of

two-sided 95% confidence intervals for ◊0
N

and median bias over 1000

simulation runs for Erd�s–Rényi and Watts–Strogatz networks of di�er-

ent complexities (Erd�s–Rényi: expected degree 3 and 3N1/9
for “const”

and “Nˆ(1/9)”, respectively; Watts–Strogatz: before rewiring, nodes

have degree 4 and 4N1/9
for “const” and “Nˆ(1/9)”, respectively, and

the rewiring probability is 0.05). We compare the performance of our

method, netAIPW, with the Hájek and an IPW estimator, indicated

by color. The variance of the competitors are empirical variances over

the 1000 repetitions, whereas we computed confidence intervals for

netAIPW according to (2.10). The shaded regions in the coverage plot

represent 95% confidence bands with respect to the 1000 simulation

runs, and the dots in this panel are jittered (using width = 0.02 and

height = 0.01).

Rényi, 1959) and Watts–Strogatz networks (Watts and Strogatz, 1998). Erd�s–
Rényi networks randomly form edges between units with a fixed probability
and are a simple example of a random mathematical network model. These
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networks play an important role as a standard against which to compare more
complicated models. Watts–Strogatz networks, also called small-world networks,
share two properties with many networks in the real world: a small average
shortest path length and a large clustering coe�cient. To construct such a
network, the vertices are first arranged in a regular fashion and linked to a fixed
number of their neighbors. Then, some randomly chosen edges are rewired
with a constant rewiring probability. A representative of each network type is
provided in Figure 2.3. For each of these two network types, we consider one
case where the dependency in the network does not increase with N (denoted
by “const” in Figure 3.3.2) and one where it increases with N (denoted by
Nˆ(1/9) in Figure 3.3.2).

The specific unit-level structural equations (4.3) we consider in this simulation
study are specified in Section 2.C in the appendix. The functions g0

1 and g0
0

are step functions, and h0 is a sigmoid function. We use the same model for
all network types and complexities. We use a 1-dimensional X-feature but no
Z-features. The feature Xi of unit i equals the average of the symmetrized
confounders of its direct neighbors in G, denoted by –(i) (not containing i
itself):

Xi = 1
|–(i)|

ÿ

jœ–(i)
(1Wj=1 ≠ 1Wj=0)Cj,

if –(i) is non-empty, and 0 else.

For the sample sizes N = 625, 1250, 2500, 5000, 10 000, we perform 1000
simulation runs redrawing the data according to the SEM, consider B = 20
and K = 10 in Algorithm 3, and estimate the nuisance functions by random
forests consisting of 500 trees with a minimal node size of 5 and other default
parameters using the R-package ranger (Wright and Ziegler, 2017). Our results
for the Erd�s–Rényi and Watts–Strogatz networks are displayed in Figure 3.3.2.
Two di�erent panels are used to display the results for di�erent ranges of the
bias of the methods. For all network types and complexities, we observe the
following. The IPW estimator incurs a substantial bias. On the one hand, this
IPW estimator does not account for network spillover. On the other hand, even
under SUTVA, it is not Neyman orthogonal, which means we are not allowed
to plug in machine learning estimators of nuisance functions, and it is known to
have a poor finite-sample performance due to estimated propensity scores êI

c

k

that may be close to 0 or 1. The Hájek estimator incurs some bias because it
does not adjust for observed confounding and assumes a randomized treatment
instead. The bias of our method (denoted by “netAIPW” in Figure 3.3.2)
decreases as the sample size increases. As the dependency graph becomes more
complex, our method requires more observations to achieve a small bias because
the data sets SI

c

k
in (2.8), which are used to estimate the nuisance functions,
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are smaller in denser networks. In terms of coverage, the two competitors
perform poorly, whereas our method guarantees coverage. The overcoverage of
our method can be attributed to the conservative aggregation scheme of the
p-values (Meinshausen et al., 2009).

2.3.2 | Empirical Analysis: Swiss StudentLife Study Data

Subsequently, we estimate the causal e�ect of study time on academic success of
university students with our newly developed estimator. We quantify this causal
e�ect by the EATE that averages the di�erence in expected grade point average
(GPA) of the final exam had a student studied much versus little, partialling
out social network e�ects. Among the factors that determine academic success
are person-specific traits, such as smartness (Chamorro-Premuzic and Furnham,
2008), willingness to work hard (Los and Schweinle, 2019), and the socioeconomic
background (Heckman, 2006). Other factors are tied to the social embedding of
a person (Stadtfeld et al., 2019). The Swiss StudentLife Study data (Stadtfeld
et al., 2019; Vörös et al., 2021) was collected to study the impact of various
factors on academic achievement. It consists of observations from freshmen
undergraduate students pursuing a degree in the natural sciences at a Swiss
university. Instead of a university entrance test, these students had to pass
a demanding examination after one year of studying. At several timepoints
throughout this year, the students were asked to fill out questionnaires about
their student life, social network, and well-being. The data consists of three
cohorts of students. Cohort 1 was observed in 2016 and cohorts 2 and 3 in 2017.
Importantly, for all three cohorts, the data contains friendship information
among the students. We build the corresponding undirected network by drawing
an edge between two students if at least one of them mentioned the other one as
being a friend. We believe that spillover e�ects arise due to students interacting
in this network, and thus we have to control for them when estimating the
EATE described above. Figure 2.5 displays the resulting network consisting of
the three cohorts.

The GPA (Yi) constitutes our response variable and represents the average
grade of seven to nine exams, depending on study programs. It ranges from
1 to 6, with passing grades of 4 or higher. The average GPA in the data we
used was 4.266 with a standard deviation of 0.872. The remaining variables
were measured five to six months before the exam period and correspond to
wave four of the Swiss StudentLife Study data. The self-reported number
of hours spent studying per week during the semester (Wi) constitutes the
treatment variable. It was dichotomized into studying many (Wi = 1) and
few (Wi = 0) hours. We considered a setting where Wi = 1 corresponds to
studying at least 8 hours per week, which is the 20% quantile, and one where
Wi = 1 corresponds to studying at least 20 hours per week, which is the 80%
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quantile. We consider spillover e�ects from the friends of a student, which are
a student’s direct neighbors in the friendship network. We consider Z-spillover
e�ects that account for the e�ect of befriended students’ study motivation and
stress variables on a student’s treatment. We do not consider spillover e�ects
on the outcome GPA (no X-features). The Zi-spillover variable of a student
i is a vector of length 6, where each entry corresponds to the average of the
following six variables across the friends of the student: (a) study motivation,
measured with the learning objectives subscale of the SELLMO-ST2 (Spinath
et al., 2002), (b) work avoidance, measured with the work avoidance subscale
of the students version of the SELLMO-ST2, (c) the average of ten perceived
stress items (Cohen and Williamson, 1988), (d, e) two items specifically on
exam related stress, and (f) whether one was perceived as clever by at least
one other student. In addition to these network e�ects, we control on the unit
level (Ci) for the just mentioned variables observed on an individual unit as
well as the cohort number, gender, having Swiss nationality, speaking German,
and the financial situation. From all the data of the three cohorts combined,
we only considered individuals for whom all the mentioned variables, that is,
treatment, outcome, covariates, and Z-spillover variables, are observed. We did
not perform missing value imputation. The final sample consisted of N = 526
individuals: 113 from cohort 1, 119 from cohort 2, and 294 from cohort 3. In
our algorithm, we used S = 1000 sample splits with K = 10 groups each and
random forests consisting of 5000 trees to learn g0

0, g0
1, and h0 whose leaf size

was initially determined by 5-fold cross-validation.
We estimated the EATE for di�erent cuto�s in Wi of studying at least 8 and

20 hours per week, corresponding to the 20% and 80% quantiles, respectively.
Table 2.1a displays our estimated EATE with Wi = 1 representing a weekly
studying time of at least 8 hours. Our EATE estimator is positive and significant.
On average, students received a 0.362 points higher GPA had they studied at
least 8 hours per week compared to studying less. Consequently, a significantly
higher GPA can be achieved by studying more. If we apply the same procedure
but exclude the Z-spillover covariates (no spillover), the EATE estimator was
higher and also significant. However, the higher e�ect estimator may be due to
spurious association due to network spillover e�ects, highlighting the importance
of controlling for such e�ects when estimating EATEs. Table 2.1b displays
our results with Wi = 1 representing a weekly studying time of at least 20
hours. Our EATE estimator is positive but not significant anymore. Hence,
our results suggest that the GPA is not significantly higher had a student
studied at least 20 hours per week compared to studying less. Without spillover,

2
This is a scale to assess learning and achievement motivation, and the subscale consists

of eight items measured on a five-point Likert-scale from 1 (“completely disagree”) to

5 (“completely agree”).
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(a) Cohort 1 (b) Cohort 2

(c) Cohort 3

Figure 2.5: Friendship networks per cohort with black dots representing

Wi = 1 and a weekly studying time of at least 8 hours, white for Wi = 0

and a weekly studying time of less than 8 hours, and a bigger node size

represents a higher GPA.
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Spillover EATE 95% CI for ◊0
N

yes 0.362 [0.283, 0.442]
no 0.451 [0.364, 0.528]

(a) Wi = 1 if studied at least 8 hours per

week (20% quantile).

Spillover EATE 95% CI for ◊0
N

yes 0.078 [≠0.096, 0.252]
no 0.163 [0.011, 0.311]

(b) Wi = 1 if studied at least 20 hours

per week (80% quantile).

Table 2.1: EATE and 95% confidence intervals for ◊0
N

for di�erent

settings with di�erent control groups, namely studying less than 8 (a)

or less than 20 (b) hours per week.

the treatment e�ect is significant. However, it is conceivable that spurious
association due to network e�ects lead to this potentially biased result. Overall,
the model including spillover e�ects seems more realistic than the one excluding
them. Finally, when interpreting the results, it is important to recall that study
time captures the learning time during the semester. There is an additional
eight-week lecture-free preparation period, and our study time does not reflect
this preparation time. Consequently, our results only describe the EATE of
study time during the semester on GPA.

2.4 | Conclusion
Causal inference from observational data usually assumes independent units.
However, having independent observations is often questionable, and so-called
spillover e�ects among units are common in practice. Our aim was to develop
point estimation and asymptotic inference for the expected average treatment
e�ect (EATE) on observational network data. We would like to point out the
hardness of this problem: we consider treatment e�ect estimation on data with
increasing dependence among units, where the data generating mechanism can
be highly nonlinear and include confounders. We use an augmented inverse
probability weighting (AIPW) principle and account for spillover e�ects that
we capture by features, which are functions of the known network and the
treatment and covariate vectors.

Other authors who consider such a framework either uniformly limit the num-
ber of edges in the network, estimate densities, assume a semiparametric model,
cannot incorporate observed confounding variables, assume the network consists
of disconnected components, or limit interference to the direct neighbors in the
network. Our AIPW machine learning approach overcomes these limitations.
Units may interact beyond their direct neighborhoods, interactions may become
increasingly complex as the sample size increases, and we consider arbitrary
networks. We employ double machine learning techniques (Chernozhukov et al.,
2018) to estimate the nuisance components of our model by arbitrary machine
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learning algorithms. Although we employ machine learning algorithms, our
EATE estimator converges at the 1/

Ô
N -rate and asymptotically follows a

Gaussian distribution, which allows us to perform inference.
In a simulation study, we demonstrated that commonly employed methods for

treatment e�ect estimation su�er from the presence of spillover e�ects, whereas
our method could account for the complex dependence structures in the data so
that the bias vanished with increasing sample size and coverage was guaranteed.
In the Swiss StudentLife Study, we investigated the EATE of study time on the
grade point average of university examinations, accounting for spillover e�ects
due to friendship relations. Omitting this spillover may lead to biased results
due to spurious association.

In the present work, we focused on estimating the EATE. Other e�ects may
be estimated in a similar manner, like for instance the global average treatment
e�ect (GATE) where all units are jointly intervened on. Such an e�ect can
compare giving the treatment to all units versus giving it to none. We develop
an estimator of the GATE in Section 2.G in the appendix.
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Appendix
2.A | Assumptions and Additional Definitions
We consider the following notation. We denote by [N ] the set {1, 2, . . . , N}.
We add the probability law as a subscript to the probability operator P and
the expectation operator E whenever we want to emphasize the corresponding
dependence. We denote the Lp(P )-norm by Î·ÎP,p and the Euclidean or
operator norm by |·|, depending on the context. We implicitly assume that given
expectations and conditional expectations exist. We denote by dæ convergence
in distribution. The symbol ‹‹ denotes independence of random variables.

We observe N units according to the structural equations (4.3) that are
connected by an underlying network. For each unit i œ [N ], we concatenate
Si = (Wi, Ci, Xi, Zi, Yi) that are relevant for unit i. For notational simplicity,
we abbreviate Di = (Ci, Xi) and Ui = (Ci, Zi) for i œ [N ].

Let the number of sample splits K Ø 2 be a fixed integer independent of
N . We assume that N Ø K holds. Consider a partition I1, . . . , IK of [N ].
We assume that all sets I1, . . . , IK are of equal cardinality n. We make this
assumption for the sake of notational simplicity, but our results hold without it.

Let {”N}NØK and {�N}NØK be two sequences of non-negative numbers that
converge to 0 as N æ Œ. Let {PN}NØ1 be a sequence of sets of probability
distributions P of the N units. We make the following additional sets of
assumptions.

The following Assumption 3.B.2 recalls that we use the model (4.3) and
specifies regularity assumptions on the involved random variables. Assump-
tion 3.B.2.2 and 3.B.2.6 ensure that the random variables are integrable enough.
Assumption 3.B.2.4 ensures that the true underlying function h0 of the treat-
ment assignment model is bounded away from 0 and 1, which allows us to
divide by h0 and 1 ≠ h0.

Assumptions 2.A.1. Let p Ø 4. For all N , all i œ [N ], all P œ PN , and
all k œ [K], we have the following.

2.A.1.1 The structural equations (4.3) hold, where the treatment Wi œ {0, 1}
is binary.

2.A.1.2 There is a finite real constant C1 independent of P satisfying ÎWiÎP,p+
ÎCiÎP,p + ÎXiÎP,p + ÎZiÎP,p + ÎYiÎP,p Æ C1.

2.A.1.3 There is a finite real constant C2 independent of P such that we have
ÎYiÎP,Œ + Îg0

1(Di)ÎP,Œ + Îg0
0(Di)ÎP,Œ + Îh0(Ui)ÎP,Œ Æ C2.
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2.A.1.4 There is a finite real constant C3 independent of P such that P (C3 Æ
h0(Ui) Æ 1 ≠ C3) = 1 holds.

2.A.1.5 There is a finite real constant C4 such that we have |◊0
i
| Æ C4.

The following assumption limits the growth rate of the maximal degree of a
node in the dependency graph.

Assumptions 2.A.2. The maximal degree dmax of a node in the depen-
dency graph satisfies dmax = o(N1/4). That is, dmax is allowed to grow at a
slower rate than N1/4 as N æ Œ.

The following assumption allows us to characterize the asymptotic variance
in Theorm 2.2.6 as the limit of the population variance on the N units.

Assumptions 2.A.3. There is a finite real constant ‡2
Œ > 0 such that for

all P œ PN , we have

lim
NæŒ

Var
Q

a 1Ô
N

Nÿ

i=1
Â(Si, ◊0

i
, ÷0)

R

b = ‡2
Œ.

The following Assumption 3.B.4 characterizes the realization set of the
nuisance functions and the N≠1/2 convergence rate of products of the machine
learning errors from estimating the nuisance functions g0

1, g0
0, and h0.

Assumptions 2.A.4. Consider the p Ø 4 from Assumption 3.B.2. For
all N Ø K and all P œ PN , consider a nuisance function realization set
T such that the following conditions hold.

2.A.4.1 The set T consists of P -integrable functions ÷ = (g1, g0, h) whose pth
moment exists and whose Î·ÎP,Œ-norm is uniformly bounded, and T
contains ÷0 = (g0

1, g0
0, h0). Furthermore, there is a finite real constant

C5 such that for all i œ [N ] and all elements ÷ = (g0, g1, h) œ T , we
have

Îh0(Wi) ≠ h(Wi)ÎP,2 ·
1
Îg0

1(Di) ≠ g1(Di)ÎP,2 + Îg0
0(Di) ≠ g0(Di)ÎP,2

+Îh0(Wi) ≠ h(Wi)ÎP,2
2

Æ ”NN≠ 1
2 .

2.A.4.2 Assumption 3.B.2.4 also holds with h0 replaced by h.

2.A.4.3 Let Ÿ be the largest real number such that for all i œ [N ] and all
÷ œ T , we have

Îh0(Wi) ≠ h(Wi)ÎP,2 + Îg0
1(Di) ≠ g1(Di)ÎP,2 + Îg0

0(Di) ≠ g0(Di)ÎP,2
.

Ô
”NN≠Ÿ.
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That is, Ÿ represents the slowest convergence rate of our machine
learners. Then, there is a finite real constant C6 exists such that
dmaxN≠2Ÿ Æ C6 holds, where dmax denotes the maximal degree of the
dependency graph.

2.A.4.4 For all k œ [K], the nuisance parameter estimate ÷̂I
c

k = ÷̂I
c

k(SI
c

k
)

belongs to the nuisance function realization set T with P -probability
no less than 1 ≠ �N .

The following two assumptions, Assumption 2.A.5 and 2.A.6, are only required
to establish that our estimator of the asymptotic variance is consistent. They
are not required to establish the asymptotic Gaussian distribution of our plugin
machine learning estimator.

Assumption 2.A.5 characterizes the order of the minimal size of the sets Ad

for d Ø 0. These sets are required to contain a su�cient number of units such
that the degree-specific treatment e�ects ◊0

d
for d Ø 0 can be estimated at a

fast enough rate. These estimators are required to give a consistent estimator
of the asymptotic variance ‡2

Œ.

Assumptions 2.A.5. For d Ø 0, the order of |Ad| is at least N3/4, denoted
by �(N3/4) according to the Bachmann–Landau notation (Lattimore and
Szepesvári, 2020).

Assumption 2.A.6 specifies that all individual machine learning estimators of
the nuisance functions converge at a rate faster than N≠1/4.

Assumptions 2.A.6. The slowest convergence rate Ÿ in Assumption 3.B.4.3
satisfies Ÿ Ø 1/4.

2.B | Network E�ects in the Social Sciences
We consider models related to the term spillover e�ects. However, another
notion of spillover e�ects has prevailed within the social science networks
literature, namely social influence e�ects. In this appendix, we describe social
influence e�ects and how their modeling di�ers from our approach. Whereas
spillover e�ects represent new covariates on the unit-level that are built from
variables of other units along network paths, social influence e�ects mostly
concern e�ects that a specific variable Aj of neighboring units has on Ai of the
ith unit. In the statistics literature, this is called contagion (Ugander et al.,
2013; Eckles et al., 2017). In the social sciences, there are two important models
to investigate social influence / contagion processes: the autologistic actor
attribute model (ALAAM; Robins et al. (2001); Daraganova and Robins (2012))
and the stochastic actor-oriented model (SAOM; Snijders (2005); Snijders et al.
(2010); Steglich et al. (2010)). Both models aim at estimating the degree to
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which a variable Ai of a focal individual is associated with the values of its
neighbors’ values of A. Whereas ALAAMs only considers cross-sectional data,
SAOMs additionally allow estimating longitudinal social influence e�ects.

In contrast, the spillover features that we consider summarize variables from
neighboring units. They represent a new variable that is used for the treatment
or outcome regression models. For example, in our empirical analysis, we
consider the spillover e�ect of study motivation of unit i’s neighbors on the
learning hours of unit i. We do not consider spillover from the learning hours
of unit i’s neighbors on unit i’s own learning hours (i.e. social influence /
contagion). Instead, we model such associations of the individual units’ learning
hours by constructing features from other variables and units that act as
observed confounders. Moreover, we are not interested in estimating the e�ect
as such of, say, other units’ study motivation on the learning hours of unit i.
However, this is possible with ALAAMs and SAOMs. We are not interested
in estimating spillover as such, but we consider spillover as a tool to control
for spurious associations due to the network structure to estimate treatment
e�ects.

2.C | Structural Equation Model for Simulation

For each unit i œ [N ], we sample independent and identically distributed
confounders Ci ≥ Unif(0, 1) from the uniform distribution. The treatment
assignments Wi are drawn from a Bernoulli distribution with success probability
pi = sigmoid(Ci ≠ 0.25), where sigmoid(x) = 1/(1 + e≠x) for x œ R denotes
the sigmoid function. Let –(i) denote the neighbors of unit i in the network
(without i itself). Then, we let the feature Xi denote the shifted average number
of neighbors assigned to treatment weighted by their confounder, namely

Xi = 1
|–(i)|

ÿ

jœ–(i)
(1Wj=1 ≠ 1Wj=0)Cj

if –(i) is non-empty, and 0 else. For real numbers x and c, we consider the
functions

g0
1(x, c) = 1.51xØ0.5,x<0.7 + 41xØ0.7 + 2.51x<0.5

and

g0
0(x, c) = 0.51xØ0.4,cØ0.2 ≠ 0.751xØ0.4,c<0.2 + 0.251x<0.4,cØ0.2 ≠ 0.51x<0.4,c<0.2.

We consider error terms ÁYi
≥ Unif(≠

Ô
0.12/2,

Ô
0.12/2) that are independent

and identically distributed, and we consider the outcomes Yi = Wig0
1(Ci, Xi) +

(1 ≠ Wi)g0
0(Ci, Xi) + ÁYi

.
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2.D | Supplementary Lemmata
In this section, we prove two results on conditional independence relationships
of the variables from our model. We argue for the directed acyclic graph (DAG)
of our model (4.3) and use graphical criteria (Lauritzen, 1996; Pearl, 1998, 2009,
2010; Peters et al., 2017; PerkoviÊ et al., 2018; Maathuis et al., 2019).

Lemma 2.D.1. Let i œ [N ], and let Cj ”œ pa(Yi). Then, we have Yi ‹‹
Cj| pa(Yi).

Proof of Lemma 2.D.1. The parents of Yi are a valid adjustment set (Pearl,
2009). Because Yi has no descendants, the claim follows.

Lemma 2.D.2. Let i œ [N ], and let Cj ”œ pa(Wi). Then, we have Wi ‹‹
Cj| pa(Wi). Furthermore, for j ”= i, we have Wi ‹‹ Wj| pa(Wi).

Proof of Lemma 2.D.2. The parents of Wi are a valid adjustment set (Pearl,
2009). The treatment variable Wi has no descendants apart from responses Y ,
which are colliders on any path from Wi to Cj or Wj, and thus the empty set
blocks these paths. Consequently, the two claims follow.

2.E | Proof of Theorem 2.2.5
Proof of Lemma 2.2.2. Let i œ [N ]. We have

E[Â(Si, ◊0
i
, ÷0)] = E

S

U Wi

h0(Ui)
1
Yi ≠ g0

1(Di)
2

T

V ≠ E

S

U 1 ≠ Wi

1 ≠ h0(Ui)
1
Yi ≠ g0

0(Di)
2

T

V.

We have
E

C
Wi

h0(Ui)
1
Yi ≠ g0

1(Di)
2D

= E
C

Wi

h0(Ui)
1
E[Yi| pa(Yi) fi pa(Wi)] ≠ g0

1(Di)
2D

= E
C

1
h0(Ui) E[WiYi ≠ Wig0

1(Di)| pa(Yi)]
D

= E
C

Wi

h0(Ui) E[ÁYi
| pa(Yi)]

D

= 0

(2.13)

due to Lemma 2.D.1 and because E[ÁYi
| pa(Yi)] = 0 holds by assumption.

Analogous computations for E[(1 ≠ Wi)/(1 ≠ h0(Ui))(Yi ≠ g0
0(Di))] conclude

the proof.

The following lemma shows that the score function Ï is Neyman orthogonal
in the sense that its Gateaux derivative vanishes (Chernozhukov et al., 2018).
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Lemma 2.E.1 (Neyman orthogonality). Assume the assumptions of Theo-
rem 2.2.5 hold. Let ÷ œ T , and let i œ [N ]. Then, we have

ˆ

ˆr

-----
r=0

E
Ë
Ï

1
Si, ÷0 + r(÷ ≠ ÷0)

2È
= 0.

Proof of Lemma 2.E.1. Let r œ (0, 1), let i œ [N ], and let ÷ œ T . Then, we
have

ˆ

ˆr
E

Ë
Ï

1
Si, ÷0 + r(÷ ≠ ÷0)

2È

= ˆ

ˆr
E

C

g0
1(Di) ≠ g0

0(Di) + r
1
g1(Di) ≠ g0(Di) ≠ g0

1(Di) + g0
0(Di)

2

+ Wi

h0(Ui)+r

1
h(Ui)≠h0(Ui)

2
A

Yi ≠ g0
1(Di) ≠ r

1
g1(Di) ≠ g0

1(Di)
2B

≠ 1≠Wi

1≠h0(Ui)≠r

1
h(Ui)≠h0(Ui)

2
A

Yi ≠ g0
0(Di) ≠ r

1
g0(Di) ≠ g0

0(Di)
2BD

= E
C1

g1(Di) ≠ g0(Di)
2

≠
1
g0

1(Di) ≠ g0
0(Di)

2

+ Wi1
h0(Ui)+r

1
h(Ui)≠h0(Ui)

222

A

≠
1
g1(Di) ≠ g0

1(Di)
2

·
1
h0(Ui) + r(h(Ui) ≠ h0(Ui))

2

≠
1
Yi ≠ g0

1(Di) ≠ r(g1(Di) ≠ g0
1(Di))

21
h(Ui) ≠ h0(Ui)

2B

≠ 1≠Wi1
1≠h0(Ui)≠r

1
h(Ui)≠h0(Ui)

222

A

≠
1
g0(Di) ≠ g0

0(Di)
2

·
1
1 ≠ h0(Ui) ≠ r(h(Ui) ≠ h0(Ui))

2

+
1
Yi ≠ g0

0(Di) ≠ r(g0(Di) ≠ g0
0(Di))

21
h(Ui) ≠ h0(Ui)

2BD

.

(2.14)
We evaluate this expression at r = 0 and obtain

ˆ

ˆr

-----
r=0

E
Ë
Ï

1
Si, ÷0 + r(÷ ≠ ÷0)

2È

= E
C1

g1(Di) ≠ g0(Di)
2

≠
1
g0

1(Di) ≠ g0
0(Di)

2

≠
A

1 + ÁWi

h0(Ui)

B1
g1(Di) ≠ g0

1(Di)
2

≠ Wi

(h0(Ui))2

1
Yi ≠ g0

1(Di)
21

h(Ui) ≠ h0(Ui)
2

+
A

1 ≠ ÁWi

1≠h0(Ui)

B1
g0(Di) ≠ g0

0(Di)
2

≠ 1≠Wi

(1≠h0(Ui))2

1
Yi ≠ g0

0(Di)
21

h(Ui) ≠ h0(Ui)
2D

= 0
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due to (2.13) and because

E
C

ÁWi

h0(Ui)
1
g1(Di) ≠ g0

1(Di)
2D

= E
C1

E[Wi| pa(Wi) fi pa(Yi)] ≠ h0(Ui)
2 1

h0(Ui)
1
g1(Di) ≠ g0

1(Di)
2D

= E
C

E[Wi ≠ h0(Ui)| pa(Wi)] 1
h0(Ui)

1
g1(Di) ≠ g0

1(Di)
2D

= E
C

E[ÁWi
| pa(Wi)] 1

h0(Ui)
1
g1(Di) ≠ g0

1(Di)
2D

= 0

holds due to Lemma 2.D.2 and because we assumed E[ÁWi
| pa(Wi)] = 0, and

similarly for E[ÁWi
/(1 ≠ h0(Ui))(g0(Di) ≠ g0

0(Di))].

The following lemma bounds the second directional derivative of the score
function. Its proof uses that products of the errors of the machine learners are
of a smaller order than N≠1/2.

Lemma 2.E.2 (Product property). Assume the assumptions of Theo-
rem 2.2.5 hold. Let r œ (0, 1), let ÷ œ T , and let i œ [N ]. Then, we
have ------

ˆ2

ˆr2 E
Ë
Ï

1
Si, ÷0 + r(÷ ≠ ÷0)

2È
------
. ”NN≠ 1

2 .

Proof of Lemma 2.E.2. We use the first directional derivative we derived
in (2.14) to compute the second directional derivative

ˆ
2

ˆr2 E
Ë
Ï

1
Si, ÷0 + r(÷ ≠ ÷0)

2È

= 2 E
C

Wi1
h0(Ui)+r(h(Ui)≠h0(Ui))

24

A1
g1(Di) ≠ g0

1(Di)
21

h0(Ui) + r(h(Ui) ≠ h0(Ui))
2

+
1
Yi ≠ g0

1(Di) ≠ r(g1(Di) ≠ g0
1(Di))

21
h(Ui) ≠ h0(Ui)

2B

·
A

h0(Ui) + r
1
h(Ui) ≠ h0(Ui)

2B1
h(Ui) ≠ h0(Ui)

2D

+2 E
C

1≠Wi1
1≠h0(Ui)≠r(h(Ui)≠h0(Ui))

24

A1
g0(Di) ≠ g0

0(Di)
2

·
1
1 ≠ h0(Ui) ≠ r(h(Ui) ≠ h0(Ui))

2

≠
1
Yi ≠ g0

0(Di) ≠ r(g0(Di) ≠ g0
0(Di))

21
h(Ui) ≠ h0(Ui)

2B

·
A

1 ≠ h0(Ui) ≠ r
1
h(Ui) ≠ h0(Ui)

2B1
h(Ui) ≠ h0(Ui)

2D

.

Due to Hölder’s inequality and Assumption 3.B.2.1, 3.B.2.6, 3.B.2.4, and 3.B.4.1,
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we have
------

ˆ
2

ˆr2 E
Ë
Ï

1
Si, ÷0 + r(÷ ≠ ÷0)

2È
------

.
1
Îg1(Di) ≠ g0

1(Di)ÎP,2 + Îh(Ui) ≠ h0(Ui)ÎP,2
2
Îh(Ui) ≠ h0(Ui)ÎP,2

+
1
Îg0(Di) ≠ g0

0(Di)ÎP,2 + Îh(Ui) ≠ h0(Ui)ÎP,2
2
Îh(Ui) ≠ h0(Ui)ÎP,2.

Due to Assumption 3.B.4.1, both summands above are bounded by ”NN≠1/2,
and hence we conclude the proof.

The following lemma describes how we apply Stein’s method (Chin, 2018)
to obtain the asymptotic Gaussian distribution of our estimator although the
data is highly dependent.

Lemma 2.E.3 (Asymptotic distribution with Stein’s method). Assume the
assumptions of Theorem 2.2.5 hold. Denote by

‡2
N

= Var
Q

a 1Ô
N

Nÿ

i=1
Â(Si, ◊0

i
, ÷0)

R

b.

Observe that by Assumption 2.A.3, we have limNæŒ ‡2
N

= ‡2
Œ > 0. Then,

we have
‡≠1

N
· 1Ô

N

Nÿ

i=1
Â(Si, ◊0

i
, ÷0) dæ N (0, 1).

Proof of Lemma 2.E.3. According to Lemma 2.2.2, we have E[Â(Si, ◊0
i
, ÷0)] =

0. According to Assumption 3.B.2, the fourth moment of Â(Si, ◊0
i
, ÷0) exists

for all i œ [N ] and is uniformly bounded over i œ [N ]. Recall that we
denote by dmax the maximal degree in the dependency graph on Si, i œ [N ].
Due to Chin (2018, Lemma 1), we can thus bound the Wasserstein distance of
‡≠1

N
· 1Ô

N

qN

i=1 Â(Si, ◊0
i
, ÷0) to N (0, 1) as follows: there exist finite real constants

c1 and c2 such that we have

dW

Q

a‡≠1
N

· 1Ô
N

qN

i=1 Â(Si, ◊0
i
, ÷0)

R

b

Æ c1 · d
3/2
max
‡

2
N

·
ı̂ıÙq

N
i=1 E

C1 1Ô
N

Â(Si, ◊0
i , ÷0)

24
D

+c2 · d
2
max
‡

3
N

· qN

i=1 E
C--- 1Ô

N
Â(Si, ◊0

i
, ÷0)

---
3

D

= c1 · d
3/2
max· 1Ô

N

‡
2
N

·
Ú

1
N

q
N
i=1 E[Â4(Si, ◊0

i , ÷0)]

+c2 · d
2
max· 1Ô

N

‡
3/2
N

· 1
N

qN

i=1 E
Ë
|Â(Si, ◊0

i
, ÷0)|3

È
.

(2.15)

By assumption, we have dmax = o(N1/4). Thus, we have d3/2
max · 1Ô

N
=
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o(N≠1/8) and d2
max · 1Ô

N
= o(1). Because the terms E[Â4(Si, ◊0

i
, ÷0)] and

E
Ë
|Â(Si, ◊0

i
, ÷0)|3

È
are uniformly bounded over all i œ [N ] and because ‡N æ

‡Œ as N æ Œ according to Assumption 2.A.3, the Wasserstein distance
in (2.15) is of order o(1). Consequently, we infer the statement of the lemma.

Lemma 2.E.4 (Vanishing covariance due to sparse dependency graph). As-
sume the assumptions of Theorem 2.2.5 hold. Let k œ [K], and recall that
n = |Ik| holds. Then, we have
------

1Ô
n

ÿ

iœIk

1
Ï(Si, ÷̂I

c

k)≠E[Ï(Si, ÷̂I
c

k)|SI
c

k
]
2
≠ 1Ô

n

ÿ

iœIk

1
Ï(Si, ÷0)≠E[Ï(Si, ÷0)]

2
------
= oP (1).

Proof of Lemma 2.E.4. Let k œ [K]. We have

E
C-----

1Ô
n

q
iœIk

1
Ï(Si, ÷̂I

c

k) ≠ E[Ï(Si, ÷̂I
c

k)|SI
c

k
]
2

≠ 1Ô
n

q
iœIk

1
Ï(Si, ÷0) ≠ E[Ï(Si, ÷0)]

2-----

2-----SI
c

k

D

= 1
n

q
iœIk

E
Ë1

Ï(Si, ÷̂I
c

k) ≠ Ï(Si, ÷0)
22---SI

c

k

È
≠ 1

n

q
iœIk

E[Ï(Si, ÷̂I
c

k) ≠ Ï(Si, ÷0)|SI
c

k
]2

+ 1
n

q
i,jœIk,i ”=j E

Ë1
Ï(Si, ÷̂I

c

k) ≠ Ï(Si, ÷0)
21

Ï(Sj, ÷̂I
c

k) ≠ Ï(Sj, ÷0)
2---SI

c

k

È

≠ 1
n

q
i,jœIk,i ”=j E[Ï(Si, ÷̂I

c

k) ≠ Ï(Si, ÷0)|SI
c

k
] E[Ï(Sj, ÷̂I

c

k) ≠ Ï(Sj, ÷0)|SI
c

k
].

(2.16)
Let i œ [N ]. The nuisance parameter estimator ÷̂I

c

k belongs to T with
P -probability at least 1 ≠ �N by Assumption 3.B.4.2. Therefore, with P -
probability at least 1 ≠ �N = 1 ≠ o(1), we have

Ú
E

Ë1
Ï(Si, ÷̂I

c

k) ≠ Ï(Si, ÷0)
22---SI

c

k

È

Æ sup÷œT

..... ≠ g0
1(Di) + g1(Di) + g0

0(Di) ≠ g0(Di) + Wi

h0(Ui)ÁYi

≠ Wi

h(Ui)
1
g0

1(Di) ≠ g1(Di) + ÁYi

2
≠ 1≠Wi

1≠h0(Ui)ÁYi

+ 1≠Wi

1≠h(Ui)
1
g0

0(Di) ≠ g0(Di) + ÁYi

2.....
P,2

Æ sup÷œT Îg0
1(Di) ≠ g1(Di)ÎP,2 + sup÷œT Îg0

0(Di) ≠ g0(Di)ÎP,2
+ sup÷œT

...h(Ui)≠h
0(Ui)

h0(Ui)h(Ui) WiÁYi

...
P,2 + sup÷œT

... Wi

h(Ui)
1
g0

1(Di) ≠ g1(Di)
2...

P,2
+ sup÷œT

... h
0(Ui)≠h(Ui)

(1≠h0(Ui))(1≠h(Ui))(1 ≠ Wi)ÁYi

...
P,2

+ sup÷œT
... 1≠Wi

1≠h(Ui)
1
g0

0(Di) ≠ g0(Di)
2...

P,2.

Assumption 3.B.2.1, 3.B.2.6, 3.B.2.4, and 2.A.4.2 bound the three terms
ÎWiÁYi

/(h0(Ui)h(Ui))ÎP,Œ, ÎWi/h(Ui)ÎP,Œ, Î(1 ≠ Wi)ÁYi
/((1 ≠ h0(Ui))(1 ≠

h(Ui)))ÎP,Œ, and Î(1 ≠ Wi)/(1 ≠ h(Ui))ÎP,Œ. Assumption 3.B.4.3 speci-
fies that the error terms Îh0(Wi) ≠ h(Wi)ÎP,2, Îg0

1(Di) ≠ g1(Di)ÎP,2, and
Îg0

0(Di) ≠ g0(Di)ÎP,2 are upper bounded by
Ô

”NN≠Ÿ. Due to Hölder’s in-
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equality, we infer
Ú

E
Ë1

Ï(Si, ÷̂I
c

k) ≠ Ï(Si, ÷0)
22---SI

c

k

È
.

Ò
”NN≠Ÿ (2.17)

with P -probability at least 1 ≠ �N .
Subsequently, we bound the summands in (2.16). Due to (2.17), we have

1
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22---SI
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. ”NN≠2Ÿ

with P -probability at least 1 ≠ �N . Observe that we have
1
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q
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Ë1
Ï(Si, ÷̂I

c
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21

Ï(Sj, ÷̂I
c
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2---SI

c

k

È

≠ 1
n

q
i,jœIk,i ”=j E[Ï(Si, ÷̂I

c

k) ≠ Ï(Si, ÷0)|SI
c

k
] E[Ï(Sj, ÷̂I

c

k) ≠ Ï(Sj, ÷0)|SI
c

k
]

= 1
n

q
i,jœIk,i ”=j Cov

1
Ï(Si, ÷̂I

c

k) ≠ Ï(Si, ÷0), Ï(Sj, ÷̂I
c

k) ≠ Ï(Sj, ÷0)
---SI

c

k

2

= 1
n

q
i,jœIk,{i,j}œED
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k) ≠ Ï(Si, ÷0), Ï(Sj, ÷̂I
c

k) ≠ Ï(Sj, ÷0)
---SI

c

k

2
,

where ED denotes the edge set of the dependency graph, because the Si with
i œ Ik are independent of data in SI

c

k
and because, given SI

c

k
, Ï(Si÷̂I

c

k)≠Ï(Si, ÷0)
and Ï(Sj, ÷̂I

c

k) ≠ Ï(Sj, ÷0) are uncorrelated if there is no edge between i and j
in the dependency graph. In the dependency graph, each node has a maximal
degree of dmax. Thus, there are at most 1/2 · N · dmax many edges in ED. With
P -probability at least 1 ≠ �N , the term

Cov
1
Ï(Si, ÷̂I

c

k) ≠ Ï(Si, ÷0), Ï(Sj, ÷̂I
c

k) ≠ Ï(Sj, ÷0)
---SI

c

k

2

can be bounded by ”NN≠2Ÿ up to constants for all i and j due to (2.17).
Therefore, with P -probability at least 1 ≠ �N , we have

1
n

q
i,jœIk,i ”=j E

Ë1
Ï(Si, ÷̂I

c

k) ≠ Ï(Si, ÷0)
21

Ï(Sj, ÷̂I
c

k) ≠ Ï(Sj, ÷0)
2---SI

c

k

È

≠ 1
n

q
i,jœIk,i ”=j E[Ï(Si, ÷̂I

c

k) ≠ Ï(Si, ÷0)|SI
c

k
] E[Ï(Sj, ÷̂I

c

k) ≠ Ï(Sj, ÷0)|SI
c

k
]

. ”NdmaxN≠2Ÿ

. ”N ,

where the last bound holds due to Assumption 3.B.4.3. Consequently, we have

E
C-----

1Ô
n

q
iœIk

1
Ï(Si, ÷̂I

c

k) ≠ E[Ï(Si, ÷̂I
c

k)|SI
c

k
]
2

≠ 1Ô
n

q
iœIk

1
Ï(Si, ÷0) ≠ E[Ï(Si, ÷0)]

2-----

2-----SI
c

k

D

. ”N

with P -probability at least 1 ≠ �N , and we infer the statement of the lemma
due to Chernozhukov et al. (2018, Lemma 6.1).
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Lemma 2.E.5 (Taylor expansion). Assume the assumptions of Theo-
rem 2.2.5 hold. Let k œ [K]. We have

------

1Ô
n

ÿ

iœIk

1
E[Ï(Si, ÷̂I

c

k)|SI
c

k
] ≠ E[Ï(Si, ÷0)]

2
------
= oP (1)

Proof of Lemma 2.E.5. Let k œ [K]. For r œ [0, 1], let us define the function

fk(r) = 1
n

ÿ

iœIk

1
E[Ï(Si, ÷0 + r(÷̂I

c

k ≠ ÷0))|SI
c

k
] ≠ E[Ï(Si, ÷0)].

We have

E
C-----

1Ô
n

q
iœIk

1
E[Ï(Si, ÷̂I

c

k)|SI
c

k
] ≠ E[Ï(Si, ÷0)]

2-----

-----SI
c

k

D

=
-----

1Ô
n

q
iœIk

1
E[Ï(Si, ÷̂I

c

k)|SI
c

k
] ≠ E[Ï(Si, ÷0)]

2-----

=
Ô

n|fk(1)|.

We apply a Taylor expansion to fk(1) at 0 and obtain

fk(1) = fk(0) + f Õ
k
(0) + 1

2f ÕÕ
k
(r̃)

for some r̃ œ (0, 1). Thus, we have

E
C-----

1Ô
n

q
iœIk

1
E[Ï(Si, ÷̂I

c

k)|SI
c

k
] ≠ E[Ï(Si, ÷0)]

2-----

-----SI
c

k

D

Æ
Ô

n
A

|fk(0)| + |f Õ
k
(0)| + suprœ(0,1)

1
2|f ÕÕ

k
(r)|

B

.

Due to the definition of fk, we have fk(0) = 0. Due to Neyman orthogonality
that we established in Lemma 2.E.1, we have f Õ

k
(0) = 0. Due to the product

property that we established in Lemma 2.E.2, we have suprœ(0,1)
1
2|f ÕÕ

k
(r)| .

”NN≠1/2 with P -probability at least 1 ≠ �N because ÷̂I
c

k belongs to T with
P -probability at least 1 ≠ �N . Consequently, we have

E
C-----

1Ô
n

ÿ

iœIk

1
E[Ï(Si, ÷̂I

c

k)|SI
c

k
] ≠ E[Ï(Si, ÷0)]

2-----

-----SI
c

k

D

. ”N

with P -probability at least 1 ≠ �N . We infer the statement of the lemma due
to Chernozhukov et al. (2018, Lemma 6.1).
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Proof of Theorem 2.2.5. We have
Ô

N(◊̂ ≠ ◊0
N

)
=

Ô
N · 1

nK

qK

k=1
q

iœIk
Â(Si, ◊0

i
, ÷̂I

c

k)
= 1Ô

K

qK

k=1
1Ô
n

q
iœIk

1
Â(Si, ◊0

i
, ÷̂I

c

k) ≠ Â(Si, ◊0
i
, ÷0)

2
+ 1Ô

N

qN

i=1 Â(Si, ◊0
i
, ÷0)

because the disjoint sets Ik are of equal size n, so that we have N = nK. Let
k œ [K]. We have

-----
1Ô
n

q
iœIk

1
Â(Si, ◊0

i
, ÷̂I

c

k) ≠ Â(Si, ◊0
i
, ÷0)

2-----

Æ
-----

1Ô
n

q
iœIk

1
Â(Si, ◊0

i
, ÷̂I

c

k) ≠ E[Â(Si, ◊0
i
, ÷̂I

c

k)|SI
c

k
]
2

≠ 1Ô
n

q
iœIk

1
Â(Si, ◊0

i
, ÷0) ≠ E[Â(Si, ◊0

i
, ÷0)]

2-----

+
-----

1Ô
n

q
iœIk

1
E[Â(Si, ◊0

i
, ÷̂I

c

k)|SI
c

k
] ≠ E[Â(Si, ◊0

i
, ÷0)]

2-----

= oP (1)

due to Hölder’s inequality and Lemma 2.E.4 and 2.E.5. Because K is a constant
independent of N , we have

1Ô
K

Kÿ

k=1

1Ô
n

ÿ

iœIk

1
Â(Si, ◊0

i
, ÷̂I

c

k) ≠ Â(Si, ◊0
i
, ÷0)

2
= oP (1).

Due to Lemma 2.E.3, we have 1Ô
N ·‡N

qN

i=1 Â(Si, ◊0
i
, ÷0) dæ N (0, 1) as N æ Œ.

We have ‡N æ ‡Œ as N æ Œ due to Assumption 2.A.3. Therefore, we have

1Ô
N

Nÿ

i=1
Â(Si, ◊0

i
, ÷0) = 1Ô

N · ‡N

Nÿ

i=1
Â(Si, ◊0

i
, ÷0) · ‡N

dæ N (0, ‡2
Œ)

as N æ Œ. Consequently, we have
Ô

N (◊̂ ≠ ◊0
N

) dæ N (0, ‡2
Œ) as claimed.

2.F | Proof of Theorem 2.2.6
Lemma 2.F.1. Assume the assumptions of Theorem 2.2.6 hold. Let
i œ [N ]. There exists a finite real constant C7 independent of i such that
ÎÂ(Si, ◊0

d(i), ÷0)ÎP,4 Æ C7 holds. Consequently, for i, j, m, r œ [N ], we can
also bound the following terms by finite uniform constants:

• ÎÂ(Si, ◊0
d(i), ÷0)ÎP,2

• Var
1
Ï(Si, ÷0)

2

• Var
1
Â2(Si, ◊0

d(i), ÷0)
2

• Cov
1
Ï(Si, ÷0), Ï(Sj, ÷0)

2
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• Var
1
Â(Si, ◊0

d(i), ÷0)Â(Sj, ◊0
d(j), ÷0)

2

• Cov
1
Â(Si, ◊0

d(i), ÷0)Â(Sj, ◊0
d(j), ÷0), Â(Sm, ◊0

d(m), ÷0)Â(Sr, ◊0
d(r), ÷0)

2

Moreover, we have Ï2(Si, ÷0) = OP (1) and Â2(Si, ◊0
d(i), ÷̂I

c

k(i)) = OP (1).

Proof of Lemma 2.F.1. We have

ÎÂ(Si, ◊0
d(i), ÷0)ÎP,4

Æ Îg0
1(Di)ÎP,4 + Îg0

0(Di)ÎP,4 +
.....

Wi

h0(Ui)

.....
P,4

ÎYi ≠ g0
1(Di)ÎP,Œ

+
.....

1≠Wi

1≠h0(Ui)

.....
P,4

ÎYi ≠ g0
0(Di)ÎP,Œ + |◊0

d(i)|.
(2.18)

All individual summands in the above decomposition are bounded by a finite
real constant independent of i due to Assumption 3.B.2. Therefore, there exists
a finite real constant C7 independent of i such that ÎÂ(Si, ◊0

i
, ÷0)ÎP,4 Æ C7

holds.
The other terms in the statement of the present lemma are bounded as well by

finite real constants independent of i, j, m, r œ [N ] due to Hölder’s inequality.
Moreover, we have Â2(Si, ÷0) = OP (1) because ÎÂ2(Si, ÷0)ÎP,2 is bounded

by a constant that is independent of i.
Furthermore, with P -probability at least 1 ≠ �N , we have

E
Ë
Â2(Si, ◊0

d(i), ÷̂I
c

k(i))
---SI

c

k(i)

È
Æ sup

÷œT
E

Ë
Â2(Si, ◊0

d(i), ÷)
È

= sup
÷œT

ÎÂ(Si, ◊0
d(i), ÷)Î2

P,2.

The term ÎÂ(Si, ◊0
d(i), ÷)Î2

P,2 is bounded by a real constant that is independent
of i and ÷ because the derivation in (2.18) also holds with ÷0 replaced by ÷ œ T
due to Assumption 3.B.4.

Lemma 2.F.2 (Convergence rate of unit-level e�ect estimators). Assume
the assumptions of Theorem 2.2.6 hold. Let d Ø 0, and assume that
all assumptions of Section 3.B in the appendix hold. Then, we have
◊̂d ≠ ◊0

d
= oP (N≠1/4), where ◊̂d is as in (2.12).

Proof of Lemma 2.F.2. Let d Ø 0. Due to the definition of ◊̂d given in (2.12)
and Lemma 2.2.2, we have

N
1
4 (◊̂d ≠ ◊0

d
)

= N
1
4

|Ad|
q

iœAd

1
Ï(Si, ÷̂I

c

k(i)) ≠ E[Ï(Si, ÷0)]
2

= N
1
4

|Ad|
q

iœAd

1
Ï(Si, ÷̂I

c

k(i)) ≠ Ï(Si, ÷0)
2

+ N
1
4

|Ad|
q

iœAd

1
Ï(Si, ÷0) ≠ E[Ï(Si, ÷0)]

2
.

(2.19)
Subsequently, we show that the two sets of summands in (2.19) are of order
oP (1). We start with the first set of summands. Let i œ Ad. With P -probability
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at least 1 ≠ �N , we have
Ú

E
Ë1

Ï(Si, ÷̂I
c

k(i)) ≠ Ï(Si, ÷0)
22---SI

c

k

È
.

Ò
”NN≠Ÿ

due to Equation (2.17). Hence, we have |Ï(Si, ÷̂I
c

k(i))≠Ï(Si, ÷0)| = OP (
Ô

”NN≠Ÿ)
due to Chernozhukov et al. (2018, Lemma 6.1). Consequently, we have

N
1
4

|Ad|
ÿ

iœAd

|Ï(Si, ÷̂I
c

k(i)) ≠ Ï(Si, ÷0)| = OP (
Ò

”NN
1
4≠Ÿ) = oP (1)

because we have Ÿ Ø 1/4 by Assumption 2.A.6. Next, we show that the second
set of summands in (2.19) is of order oP (1). Let Á > 0. We have

P
A-----

N
1
4

|Ad|
q

iœAd

1
Ï(Si, ÷0) ≠ E[Ï(Si, ÷0)]

2-----

2
> Á2

B

Æ N
1
2

Á2|Ad|2

A
q

iœAd
Var(Ï(Si, ÷0)) + q

i,jœAd,i ”=j Cov
1
Ï(Si, ÷0), Ï(Si, ÷0)

2B

= N
1
2

Á2|Ad|2 (|Ad| + 2|ED fl A2
d
|)O(1)

because Var(Ï(Si, ÷0)) and Cov(Ï(Si, ÷0), Ï(Si, ÷0)) are bounded by constants
uniformly over i due to Lemma 2.F.1, and because Cov(Ï(Si, ÷0), Ï(Si, ÷0))
does not equal 0 only if {i, j} œ ED fl A2

d
, where ED denotes the edge set of

the dependency graph. There are |Ad| many nodes in Ad, and each node has
a maximal degree of dmax. Thus, we have |ED fl A2

d
| Æ 1/2|Ad|dmax. Due

to dmax = o(N1/4) and |Ad| = �(N3/4), which hold according to Assump-
tion 2.A.2 and 2.A.5, we obtain

N
1
2

Á2|Ad|2
(|Ad| + 2|E fl A2

d
|)O(1) = o(1).

Consequently, we also have
------

N
1
4

|Ad|
ÿ

iœAd

1
Ï(Si, ÷0) ≠ E[Ï(Si, ÷0)]

2
------
= oP (1).

Lemma 2.F.3 (Consistent variance estimator part I). Assume the assump-
tions of Theorem 2.2.6 hold. We have

------

1
N

Nÿ

i=1

1
Â2(Si, ◊̂d(i), ÷̂I

c

k(i)) ≠ E[Â2(Si, ◊0
d(i), ÷0)]

2
------
= oP (1).
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Proof of Lemma 2.F.3. We have

1
N

qN

i=1
1
Â2(Si, ◊̂d(i), ÷̂I

c

k(i)) ≠ E[Â2(Si, ◊0
d(i), ÷0)]

2

= 1
N

qN

i=1
1
Â2(Si, ◊̂d(i), ÷̂I

c

k(i)) ≠ Â2(Si, ◊̂d(i), ÷0)
2

+ 1
N

qN

i=1
1
Â2(Si, ◊̂d(i), ÷0) ≠ Â2(Si, ◊0

d(i), ÷0)
2

+ 1
N

qN

i=1
1
Â2(Si, ◊0

d(i), ÷0) ≠ E[Â2(Si, ◊0
d(i), ÷0)]

2
.

(2.20)

We bound the three sets of summands in (2.20) individually. The first set of
summands can be expressed as

1
N

qN

i=1
1
Â2(Si, ◊̂d(i), ÷̂I

c

k(i)) ≠ Â2(Si, ◊̂d(i), ÷0)
2

= 1
N

qN

i=1
1
Ï2(Si, ÷̂I

c

k(i)) ≠ Ï2(Si, ÷0)
2

≠ 2
N

qN

i=1 ◊̂d(i)
1
Ï(Si, ÷̂I

c

k(i)) ≠ Ï(Si, ÷0)
2
.

We have ------

1
N

Nÿ

i=1

1
Ï2(Si, ÷̂I

c

k(i)) ≠ Ï2(Si, ÷0)
2

------
= oP (1) (2.21)

because the function R – x ‘æ x2 œ R is continuous and due to Equation (2.17).
Indeed, let Á > 0. Because the function R – x ‘æ x2 œ R is continuous, there
exists ” > 0 such that if |Ï(Si, ÷̂I

c

k(i))≠Ï(Si, ÷0)| < ”, then also |Ï2(Si, ÷̂I
c

k(i))≠
Ï2(Si, ÷0)| < Á. Consequently, we have

P
1
|Ï2(Si, ÷̂I

c

k(i)) ≠ Ï2(Si, ÷0)| > Á
---SI

c

k(i)

2

Æ P
1
|Ï(Si, ÷̂I

c

k(i)) ≠ Ï(Si, ÷0)| > ”
---SI

c

k(i)

2

Æ 1
”

sup÷œT ÎÏ(Si, ÷) ≠ Ï(Si, ÷0)ÎP,1

with P -probability at least 1 ≠ �N , and we infer (2.21) due to (2.17). The
estimator ◊̂d(i) is a consistent estimator of ◊0

d(i) due to Lemma 2.F.2, and ◊0
d(i)

is bounded independent of i due to Assumption 3.B.2.5. Moreover, we have
|Ï(Si, ÷̂I

c

k(i)) ≠ Ï(Si, ÷0)| = oP (1) due to (2.17) and Chernozhukov et al. (2018,
Lemma 6.1). Consequently, we have

------

2
N

Nÿ

i=1
◊̂d(i)

1
Ï(Si, ÷̂I

c

k(i)) ≠ Ï(Si, ÷0)
2

------
= oP (1)

due to Hölder’s inequality. Hence, the first set of summands in (2.20) is of order
oP (1). The second set of summand in (2.20) can be decomposed as

1
N

qN

i=1
1
Â2(Si, ◊̂d(i), ÷0) ≠ Â2(Si, ◊0

d(i), ÷0)
2

= 1
N

qN

i=1(◊̂2
d(i) ≠ (◊0

d(i))2) ≠ 2
N

qN

i=1(◊̂d(i) ≠ ◊0
d(i))Ï(Si, ÷0).

We have | 1
N

qN

i=1(◊̂2
d(i) ≠ (◊0

d(i))2)| = oP (1) due to Lemma 2.F.2. Lemma 2.F.1
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bounds Ï2(Si, ÷0) in probability. Due to Hölder’s inequality, we obtain
------

2
N

Nÿ

i=1
(◊̂d(i) ≠ ◊0

d(i))Ï(Si, ÷0)
------
= oP (1).

Consequently, the second set of summands in (2.20) is of order oP (1). Last, we
bound the third set of summands in (2.20). Let Á > 0. We have

P
A-----

1
N

qN

i=1
1
Â2(Si, ◊0

d(i), ÷0) ≠ E[Â2(Si, ◊0
d(i), ÷0)]

2-----

2
> Á2

B

Æ 1
Á2N2

A
qN

i=1 Var
1
Â2(Si, ◊0

d(i), ÷0)
2

+ q
i,jœ[N ],{i,j}œED

Cov
1
Â2(Si, ◊0

d(i), ÷0), Â2(Sj, ◊0
d(j), ÷0)

2B

Æ 1
Á2N2 (NO(1) + NdmaxO(1))

= o(1)

because Var(Â2(Si, ◊0
d(i), ÷0)) and Cov(Â2(Si, ◊0

d(i), ÷0), Â2(Sj, ◊0
d(j), ÷0)) are

bounded uniformly over i and j by Lemma 2.F.1, because we have that
Cov(Â2(Si, ◊0

d(i), ÷0), Â2(Sj, ◊0
d(j), ÷0)) does not vanish only if {i, j} œ ED,

and because dmax = o(N1/4) by Assumption 2.A.2. Consequently, also the
third set of summands in (2.20) is of order oP (1), and we have established the
statement of the present lemma.

Lemma 2.F.4 (Consistent variance estimator part II). Assume the assump-
tions of Theorem 2.2.6 hold. Denote by ED the edge set of the dependency
graph. We have

------
1
N

q
i,jœ[N ],{i,j}œED

1
Â(Si, ◊̂d(i), ÷̂I

c

k(i))Â(Sj, ◊̂d(j), ÷̂I
c

k(j))

≠ E[Â(Si, ◊0
d(i), ÷0)Â(Sj, ◊0

d(j), ÷0)]
2

------
= oP (1).

Proof of Lemma 2.F.4. We have the decomposition

1
N

q
i,jœ[N ],{i,j}œED

1
Â(Si, ◊̂d(i), ÷̂I

c

k(i))Â(Sj, ◊̂d(j), ÷̂I
c

k(j))
≠ E[Â(Si, ◊0

d(i), ÷0)Â(Sj, ◊0
d(j), ÷0)]

2

= 2
N

q
{i,j}œED

1
Â(Si, ◊̂d(i), ÷̂I

c

k(i))Â(Sj, ◊̂d(j), ÷̂I
c

k(j))
≠Â(Si, ◊0

d(i), ÷̂I
c

k(i))Â(Sj, ◊0
d(j), ÷̂I

c

k(j))
2

+ 2
N

q
{i,j}œED

1
Â(Si, ◊0

d(i), ÷̂I
c

k(i))Â(Sj, ◊0
d(j), ÷̂I

c

k(j))
≠Â(Si, ◊0

d(i), ÷0)Â(Sj, ◊0
d(j), ÷0)

2

+ 2
N

q
{i,j}œED

1
Â(Si, ◊0

d(i), ÷0)Â(Sj, ◊0
d(j), ÷0)

≠ E[Â(Si, ◊0
d(i), ÷0)Â(Sj, ◊0

d(j), ÷0)]
2
.

(2.22)
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Subsequently, we bound the three sets of summands in (2.22) individually. We
start by bounding the first set of summands. We have

1
N

q
{i,j}œED

1
Â(Si, ◊̂d(i), ÷̂I

c

k(i))Â(Sj, ◊̂d(j), ÷̂I
c

k(j))
≠Â(Si, ◊0

d(i), ÷̂I
c

k(i))Â(Sj, ◊0
d(j), ÷̂I

c

k(j))
2

= 2
N

q
{i,j}œED

(◊0
d(i) ≠ ◊̂d(i))Â(Sj, ◊0

d(j), ÷̂I
c

k(j))
+ 1

N

q
{i,j}œED

(◊0
d(i) ≠ ◊̂d(i))(◊0

d(j) ≠ ◊̂d(j)).

We have
------

1
N

q
{i,j}œED

(◊0
d(i) ≠ ◊̂d(i))Â(Sj, ◊0

d(j), ÷̂I
c

k(j))
------

Æ
Ú

1
N

q
{i,j}œED

(◊0
d(i) ≠ ◊̂d(i))2

Ú
1
N

q
{i,j}œED

Â(Sj, ◊0
d(j), ÷̂I

c

k(j))
= 1

N
|ED|oP (N≠1/4)

= dmaxoP (N≠1/4)
= oP (1)

due to Hölder’s inequality, Lemma 2.F.2, Lemma 2.F.1, and Assumption 2.A.2.
Moreover, we have

------

1
N

ÿ

{i,j}œED

(◊0
d(i) ≠ ◊̂d(i))(◊0

d(j) ≠ ◊̂d(j))
------
= 1

N
|ED|oP (N≠1/2) = oP (1)

due to Hölder’s inequality, Lemma 2.F.2, and Assumption 2.A.2. Consequently,
the first set of summands in (2.22) is of order oP (1). We proceed to bound the
second set of summands in (2.22). Let {i, j} œ ED. Due to the construction
of SIk(i) and SI

c

k(i)
, we have Si = (Wi, Ci, Xi, Zi, Yi) œ SIk(i), and none of Wi,

Ci, Yi, or the variables used to compute Xi belong to SI
c

k(i)
. Moreover, the

variables Wi, Ci, Yi, and the variables used to compute Xi also cannot belong
to SI

c

k(j)
as otherwise we would have Si ‹‹ Sj, and consequently {i, j} ”œ ED.

Therefore, we have

E
Ë
|Â(Si, ◊0

d(i), ÷̂I
c

k(i))Â(Sj, ◊0
d(j), ÷̂I

c

k(j))
≠Â(Si, ◊0

d(i), ÷0)Â(Sj, ◊0
d(j), ÷0)|

---SI
c

k(i)
, SI

c

k(j)

È

Æ sup÷1,÷2œT E
Ë
|Â(Si, ◊0

d(i), ÷1)Â(Sj, ◊0
d(j), ÷2) ≠ Â(Si, ◊0

d(i), ÷0)Â(Sj, ◊0
d(j), ÷0)|

È

Æ sup÷1œT ÎÏ(Si, ÷1) ≠ Ï(Si, ÷0)ÎP,2ÎÂ(Sj, ◊0
d(j), ÷0)ÎP,2

+ sup÷2œT ÎÂ(Si, ◊0
d(i), ÷0)ÎP,2ÎÏ(Sj, ÷2) ≠ Ï(Sj, ÷0)ÎP,2

+ sup÷1,÷2œT ÎÏ(Si, ÷1) ≠ Ï(Si, ÷0)ÎP,2ÎÏ(Sj, ÷2) ≠ Ï(Sj, ÷0)ÎP,2

with P -probability at least 1 ≠ �N due to Hölder’s inequality. Because all
terms above are uniformly bounded due to Lemma 2.F.1, we infer that the
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second set of summands in (2.22) is of order oP (1) due to Chernozhukov et al.
(2018, Lemma 6.1). Finally, we bound the third set of summands in (2.22). Let
Á > 0. We have

P
A-----

1
N

q
{i,j}œED

1
Â(Si, ◊0

d(i), ÷0)Â(Sj, ◊0
d(j), ÷0)

≠ E[Â(Si, ◊0
d(i), ÷0)Â(Sj, ◊0

d(j), ÷0)]
2-----

2
> Á2

B

Æ 1
Á2N2

A
q

{i,j}œED
Var

1
Â(Si, ◊0

d(i), ÷0)Â(Si, ◊0
d(j), ÷0)

2

+ q
{i,j},{m,r}œED,unequal Cov

1
Â(Si, ◊0

d(i), ÷0)Â(Si, ◊0
d(j), ÷0),

Â(Si, ◊0
d(m), ÷0)Â(Si, ◊0

d(r), ÷0)
2B

.

(2.23)

Due to Lemma 2.F.1, the variance and covariance terms in (2.23) are uniformly
bounded by constants. Furthermore, the covariance terms do only not vanish
if Si depends on Sm or Sr, or if Sj depends on Sm or Sr. In order to better
describe these dependency relationships, we build a graph on the edge set of the
dependency graph. We consider the graph GÕ = (V Õ, E Õ) with V Õ = ED and
such that an edge {{i, j}, {m, r}} œ E Õ if and only if at lease one of {i, m},
{i, r}, {j, m}, {j, r} belongs to ED. Consequently, {{i, j}, {m, r}} œ E Õ if
and only if (Si, Sj) ”‹‹ (Sm, Sr), in which case the covariance term in (2.23)
corresponding to {i, j} and {m, r} does not vanish. Furthermore, we have
|E Õ| = 1/2|ED|dÕ

max, where dÕ
max denotes the maximal degree of a node in GÕ.

We have dÕ
max Æ 2dmax. Consequently, we have

P
A-----

1
N

q
{i,j}œED

1
Â(Si, ◊0

d(i), ÷0)Â(Sj, ◊0
d(j), ÷0)

≠ E[Â(Si, ◊0
d(i), ÷0)Â(Sj, ◊0

d(j), ÷0)]
2-----

2
> Á2

B

Æ 1
Á2N2 (|ED| + |E Õ|)O(1)

= 1
Á2N2 (Ndmax + Nd2

max)O(1)
= 1

Á2N
(o(N1/4) + o(N1/2))O(1)

= o(1)

due to Assumption 2.A.2. Therefore, we have established the statement of
the present lemma because we have verified that all three sets of summands
in (2.22) are of order oP (1).

Proof of Theorem 2.2.6. The proof follows from Lemma 2.F.3 and 2.F.4.

2.G | Extension to Estimate Global E�ects
So far, we focused on the EATE, which is a direct e�ect. We intervened on
each individual unit and left the treatment assignments of the other units as

48



they were.
Subsequently, we consider another type of treatment e�ect where we assess

the e�ect of a single intervention that intervenes on all subjects simultaneously.
Instead of the EATE in (2.4), we subsequently consider the global average
treatment e�ect (GATE) with respect to the binary vector fi œ {0, 1}N of
treatment assignments

›0
N

(fi) = 1
N

Nÿ

i=1
E

C

Y do(W =fi)
i ≠ Y do(W =1≠fi)

i

D

, (2.24)

where W = (W1, . . . , WN ) denotes the complete vector of treatment assign-
ments of all units. In practice, the most common choice is where all components
of fi equal 1. That is, the treatment e�ect comes from comparing the situation
where all units are assigned to the treatment versus where no-one gets the
treatment.

We use the same definition for Si, i œ [N ] as before and denote the dependency
graph on Si, i œ [N ] by GD = (V, ED). Furthermore, we let –(i) = {j œ
[N ] : {i, j} œ ED} fi {i} for i œ [N ] denote the nodes that share an edge with
i in the dependency graph together with i itself. For some real number › œ R
and a nuisance function triple ÷ = (g1, g0, h), consider the score function

Â(Si, ◊, ›) = g1(Ci, Xi) ≠ g0(Ci, Xi) +
A

r
jœ–(i)

Wj

h(Cj ,Zj)

B1
Yi ≠ g1(Ci, Xi)

2

≠
A

r
jœ–(i)

1≠Wj

1≠h(Cj ,Zj)

B1
Yi ≠ g0(Ci, Xi)

2
≠ ›.

(2.25)
In contrast to the score that we used for the EATE, this score includes

additional factors Wj

h(Cj ,Zj) and 1≠Wj

1≠h(Cj ,Zj) for units j that share an edge with
i in the dependency graph. With the GATE, when we globally intervene
on all treatment assignments at the same time, this also influences the Xi

that are present in g1 and g0. In the score (2.25), the “correction terms”
(r

jœ–(i)
Wj

h(Cj ,Zj))(Yi ≠ g1(Ci, Xi)) and (r
jœ–(i)

1≠Wj

1≠h(Cj ,Zj))(Yi ≠ g0(Ci, Xi)) are
only active if i and the units from which it receives spillover e�ects have the
same observed treatment assignment.

Let us denote by

›0
i

= E
C

Y do(W =fi)
i ≠ Y do(W =1≠fi)

i

D

= E
Ë
g0

1(Ci, Xfi

i
) ≠ g0

0(Ci, X1≠fi

i
)
È

the ith contribution in (2.24). Here,

Xfi

i
=

A

f 1
x

1
{(fij, Cj)}jœ[N ]\{i}, G

2
, . . . , f r

x

1
{(fij, Cj)}jœ[N ]\{i}, G

2B
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denotes the feature vector where Wj is replaced by fij, and

X1≠fi

i
=

A

f 1
x

1
{(1 ≠ fij, Cj)}jœ[N ]\{i}, G

2
, . . . , f r

x

1
{(1 ≠ fij, Cj)}jœ[N ]\{i}, G

2B

denotes the feature vector where Wj is replaced by 1≠fij. The features Zfi

i
and

Z1≠fi

i are defined analogously. Similarly to Lemma 2.2.2, it can be shown that
E[Â(Si, ›0

i
, ÷0)] = 0 holds, which lets us identify the global treatment e�ect ›0

N

by
›0

N
= 1

N

Nÿ

i=1
E[Ï(Si, ÷0)],

where

Ï(Si, ÷) = g1(Ci, Xi) ≠ g0(Ci, Xi) +
A

r
jœ–(i)

Wj

h(Cj ,Zj)

B1
Yi ≠ g1(Ci, Xi)

2

≠
A

r
jœ–(i)

1≠Wj

1≠h(Cj ,Zj)

B1
Yi ≠ g0(Ci, Xi)

2
.

To estimate ›0
N

, we apply the same procedure as for the ATE. The only
di�erence is that when we evaluate the machine learning estimates, we do
not use the observed treatment assignments, but instead insert the respective
components of fi and 1≠fi. However, we insert the actually observed treatment
assignments in the product terms r

jœ–(i)
Wj

h(Cj ,Zj) and r
jœ–(i)

1≠Wj

1≠h(Cj ,Zj) . This
gives the estimator ›̂. Analogously to Theorem 2.2.5 for the EATE, also the
GATE with respect to fi converges at the parametric rate and follows a Gaussian
distribution asymptotically.

Theorem 2.G.1 (Asymptotic distribution of ›̂). Assume Assumption 3.B.2
(with ◊ replaced by ›), 2.A.2, and 3.B.4 in the appendix in Section 3.B
hold. Furthermore, assume that there exists a finite real constant L such
that |–(i)| Æ L holds for all i œ [N ].

Then, the estimator ›̂ of the GATE with respect to fi œ {0, 1}N , ›0
N

,
satisfies Ô

N(›̂ ≠ ›0
N

) dæ N (0, ‡Œ),

where ‡Œ is characterized in Assumption 2.A.3 with the Â in (2.25). The
convergence in (2.G.1) is in fact uniformly over the law P of the observa-
tions.

This theorem requires that the number of spillover e�ects a unit receives
is bounded. Theorem 2.2.5 that establishes the parametric convergence rate
and asymptotic Gaussian distribution of the EATE estimator did not require
such an assumption. The reason is that h0(Ci, Zi) represents the conditional
expectation of Wi given Ci and Zi and consequently a probability taking
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values in the interval (0, 1). If we allowed |–(i)| to grow with N , the products
r

jœ–(i)
Wj

h(Cj ,Zj) and r
jœ–(i)

1≠Wj

1≠h(Cj ,Zj) would diverge.
To estimate ‡2

Œ in Theorem 2.G.1, we can apply the procedure described
in Section 2.2.5, where we replace Â, Ï, and the point estimators by the
respective new quantities. Also an analogon of Theorem 2.2.6 holds, but where
we assume the setting of Theorem 2.G.1 holds and that |Ad| æ Œ as N æ Œ
for all d Ø 0. In particular, we do not require Assumption 2.A.5 and 2.A.6
formulated in the appendix in Section 3.B. Furthermore, to prove consistency
of the variance estimator, it is su�cient to establish that the degree-specific
causal e�ect estimators ›̂d, which are defined analogously to ◊̂d, are consistent.
In particular, they are not required to converge at a particular rate.

Also van der Laan (2014), Sofrygin and van der Laan (2017), and Ogburn
et al. (2022) consider semiparametric estimation of the GATE using TMLE.
They also require a uniform bound of the number of spillover e�ects a unit
receives to achieve the parametric convergence rate of their estimator. However,
their methods cannot take into account spillover e�ects from more distant
neighbors in the network than direct ones.
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3 | Plugin Machine Learning for Par-
tially Linear Mixed-E�ects Mod-
els with Repeated
Measurements

Joint work with

Peter Bühlmann

This chapter is based on the manuscript

C. Emmenegger and P. Bühlmann. Plugin machine learn-
ing for partially linear mixed-effects models with re-
peated measurements, 2021a. Preprint arXiv:2108.13657

Abstract
Traditionally, spline or kernel approaches in combination with parametric

estimation are used to infer the linear coe�cient (fixed e�ects) in a partially
linear mixed-e�ects model for repeated measurements. Using machine learning
algorithms allows us to incorporate complex interaction structures, nonsmooth
terms, and high-dimensional variables. The linear variables and the response
are adjusted nonparametrically for the nonlinear variables, and these adjusted
variables satisfy a linear mixed-e�ects model in which the linear coe�cient
can be estimated with standard linear mixed-e�ects methods. We prove that
the estimated fixed e�ects coe�cient converges at the parametric rate, is
asymptotically Gaussian distributed, and semiparametrically e�cient. Two
simulation studies demonstrate that our method outperforms a penalized
regression spline approach in terms of coverage. We also illustrate our
proposed approach on a longitudinal dataset with HIV-infected individuals.
Software code for our method is available in the R-package dmlalg.

3.1 | Introduction
Repeated measurements data consists of observations from several experimental
units, subjects, or groups under di�erent conditions. This grouping or clus-
tering of the individual responses into experimental units typically introduces
dependencies: the di�erent units are assumed to be independent, but there may
be heterogeneity across units and correlation within units.
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Mixed-e�ects models provide a powerful and flexible tool to analyze grouped
data by incorporating fixed and random e�ects. Fixed e�ects are associated
with the entire population, and random e�ects are associated with individual
groups and model the heterogeneity across them and the dependence structure
within them (Pinheiro and Bates, 2000). Linear mixed-e�ects models (Laird
and Ware, 1982; Pinheiro and Bates, 2000; Verbeke and Molenberghs, 2000;
Demidenko, 2004) impose a linear relationship between all covariates and the
response. Partially linear mixed-e�ects models (Zeger and Diggle, 1994) extend
the linear ones.

We consider the partially linear mixed-e�ects model

Yi = Xi—0 + g(Wi) + Zibi + Ái (3.1)

for groups i œ {1, . . . , N}. There are ni observations per group i. The
unobserved random variable bi, called random e�ect, introduces correlation
within its group i because all ni observations within this group share bi. We
make the assumption generally made that both the random e�ect bi and
the error term Ái follow a Gaussian distribution (Pinheiro and Bates, 2000).
The matrices Zi assigning the random e�ects to group-level observations are
fixed. The linear covariables Xi and the nonparametric and potentially high-
dimensional covariables Wi are observed and random, and they may have
dependent columns. Furthermore, the nonparametric covariables may contain
nonlinear transformations and interaction terms of the linear ones. Please see
Assumption 3.2.1 in Section 3.2 for further details.

Our aim is to estimate and make inference for the so-called fixed e�ect —0
in (3.1) in the presence of a highly complex g using general machine learning
algorithms. The parametric component —0 provides a simple summary of the co-
variate e�ects that are of main scientific interest. The nonparametric component
g enhances model flexibility because time trends and further covariates with
possibly nonlinear and interaction e�ects can be modeled nonparametrically.

Repeated measurements, or longitudinal, data is omnipresent in empirical
research. For example, assume we want to study the e�ect of a treatment over
time. Observing the same subjects repeatedly presents three main advantages
over having cross-sectional data. First, subjects can serve as their own controls.
Second, the between-subject variability is explicitly modeled and can be excluded
from the experimental error. This yields more e�cient estimators of the relevant
model parameters. Third, data can be collected more reliably (Davis, 2002;
Fitzmaurice et al., 2011).

Various approaches have been considered in the literature to estimate the
nonparametric component g in (3.1): kernel methods (Hart and Wehrly, 1986;
Zeger and Diggle, 1994; Taavoni and Arashi, 2021b; Chen and Cao, 2017),

54



backfitting (Zeger and Diggle, 1994; Taavoni and Arashi, 2021b), spline meth-
ods (Rice and Silverman, 1991; Zhang, 2004; Guoyou and Zhongyi, 2007, 2009;
Li and Zhu, 2010; Kim et al., 2017; Aniley et al., 2019), and local linear
regression (Taavoni and Arashi, 2021b; Liang, 2009).

Our aim is to make inference for —0 in the presence of potentially highly
complex e�ects of Wi on Xi and Yi. First, we adjust Xi and Yi for Wi by
regressing Wi out of them using machine learning algorithms. These machine
learning algorithms may yield biased results, especially if regularization methods
are used, like for instance with the lasso (Tibshirani, 1996). Second, we fit a
linear mixed-e�ects model to these regression residuals to estimate —0. Our
estimator of —0 converges at the optimal 1/

Ô
N rate, follows a Gaussian

distribution asymptotically, and is semiparametrically e�cient.
We adapt double machine learning techniques of Chernozhukov et al. (2018)

to estimate —0 using general machine learning algorithms. To the best of our
knowledge, this is the first work to allow the nonparametric nuisance components
of a partially linear mixed-e�ects model to be estimated with arbitrary machine
learners like random forests (Breiman, 2001) or the lasso (Tibshirani, 1996;
Bühlmann and van de Geer, 2011). In contrast to the setting and proofs
of Chernozhukov et al. (2018), we have dependent data and need to incorporate
this accordingly. Chernozhukov et al. (2018) introduce double machine learning
and develop estimation of the low-dimensional linear regression parameter
vector in a partially linear model. Their estimator converges at the parametric
rate and is asymptotically Gaussian due to Neyman orthogonality and sample
splitting with cross-fitting. We would like to remark that nonparametric
nuisance components can be estimated without sample splitting and cross-
fitting if the underlying function class satisfies some entropy conditions; see for
instance Mammen and van de Geer (1997). However, these conditions limit the
complexity of the function class, and machine learning algorithms usually do
not satisfy them. Particularly, these conditions fail to hold if the dimension
of the nonparametric variables increases with the sample size (Chernozhukov
et al., 2018). We show that the desirable properties of double machine learning
also hold in the context of partially linear mixed-e�ects models: such a further
development of plug-in machine learning methods is nontrivial and practically
highly relevant.

3.1.1 | Additional Literature
Expositions and overviews of mixed-e�ects modeling techniques can be found
in Pinheiro (1994); Davidian and Giltinan (1995); Vonesh and Chinchilli (1997);
Pinheiro and Bates (2000); Davidian and Giltinan (2003).

Zhang et al. (1998) consider partially linear mixed-e�ects models and estimate
the nonparametric component with natural cubic splines. They treat the
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smoothing parameter as an extra variance component that is jointly estimated
with the other variance components of the model. Masci et al. (2019) consider
partially linear mixed-e�ects models for unsupervised classification with discrete
random e�ects. Schelldorfer et al. (2011) consider high-dimensional linear
mixed-e�ects models where the number of fixed e�ects coe�cients may be much
larger than the overall sample size. To estimate and make inference for the
first, say, d components of the linear coe�cient in such a high-dimensional
mixed-e�ects model, our approach may consider the remaining components as
an additive contribution Wi—0,≠(1:d) in the model and may adjust for them
using the lasso (Tibshirani, 1996). Debiased fixed e�ects estimators in high-
dimensional linear mixed e�ects models are studied by Li et al. (2021) and Bradic
et al. (2020). Taavoni and Arashi (2021a) employ a regularization approach
in generalized partially linear mixed-e�ects models using regression splines to
approximate the nonparametric component. Wood and Scheipl (2020) use
penalized regression splines where the penalized components are treated as
random e�ects.

The unobserved random variables in the partially linear mixed-e�ects model
in (3.1) are assumed to follow a Gaussian distribution. Taavoni et al. (2021)
introduce multivariate t partially linear mixed-e�ects models for longitudinal
data. They consider t-distributed random e�ects to account for outliers in
the data. Fahrmeir and Kneib (2011, Chapter 4) relax the assumption of
Gaussian random e�ects in generalized linear mixed models. They consider
nonparametric Dirichlet processes and Dirichlet process mixture priors for the
random e�ects. Ohinata (2012, Chapter 3) consider partially linear mixed-
e�ects models and make no distributional assumptions for the random terms,
and the nonparametric component is estimated with kernel methods. Lu (2016)
consider a partially linear mixed-e�ects model that is nonparametric in time
and that features asymmetrically distributed errors and missing data.

Furthermore, methods have been developed to analyze repeated measure-
ments data that are robust to outliers. Guoyou and Zhongyi (2008) consider
robust estimating equations and estimate the nonparametric component with a
regression spline. Tang et al. (2015) consider median-based regression meth-
ods in a partially linear model with longitudinal data to account for highly
skewed responses. Lin et al. (2018) present an estimation technique in partially
linear models for longitudinal data that is doubly robust in the sense that it
simultaneously accounts for missing responses and mismeasured covariates.

It is prespecified in the partially linear mixed-e�ects model (3.1) which co-
variates are modeled with random e�ects. Simultaneous variable selection for
fixed e�ects variables and random e�ects has been developed by Bondell et al.
(2010); Ibrahim et al. (2011). They use penalized likelihood approaches. Li and
Zhu (2010) use a nonparametric test to test the existence of random e�ects in
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partially linear mixed-e�ects models. Zhang and Xue (2020) propose a variable
selection procedure for the linear covariates of a generalized partially linear
model with longitudinal data.

Outline of the Paper. Section 3.2 presents our plug-in machine learning
estimator of the linear coe�cient in a partially linear mixed-e�ects model.
Section 3.3 presents our numerical results. Proofs and technical assumptions
are presented in the appendix.

Notation. We denote by [N ] the set {1, 2, . . . , N}. We add the probability
law P as a subscript to the probability operator P and the expectation operator
E whenever we want to emphasize the corresponding dependence. We denote
the Lp(P ) norm for p Ø 1 by Î·ÎP,p and the Euclidean or operator norm by Î·Î,
depending on the context. We implicitly assume that given expectations and
conditional expectations exist. We denote by Læ convergence in distribution.
The symbol ‹‹ denotes independence of random variables. We denote by 1n the
n ◊ n identity matrix and omit the subscript n if we do not want to emphasize
the dimension. We denote the d-variate Gaussian distribution by Nd.

3.2 | Model Formulation and the Plug-in Machine
Learning Estimator

We consider repeated measurements data that is grouped according to experi-
mental units or subjects. This grouping structure introduces dependency in the
data. The individual experimental units or groups are assumed to be indepen-
dent, but there may be some between-group heterogeneity and within-group
correlation. We consider the partially linear mixed-e�ects model

Yi = Xi—0 + g(Wi) + Zibi + Ái, i œ [N ] (3.2)

for groups i as in (3.1) to model the between-group heterogeneity and within-
group correlation with random e�ects. We have ni observations per group
that are concatenated row-wise into Yi œ Rni, Xi œ Rni◊d, and Wi œ Rni◊v.
The nonparametric variables may be high-dimensional, but d is fixed. Both
Xi and Wi are random. The Xi and Wi belonging to the same group i
may be dependent. For groups i ”= j, we assume Xi ‹‹ Xj, Wi ‹‹ Wj,
and Xi ‹‹ Wj. Moreover, we assume that all within-unit observations of
the linear and nonlinear covariates, namely ((Xi)t,·, (Wi)t,·) for all i œ [N ]
and all t œ [ni], are independent and identically distributed. We assume that
Zi œ Rni◊q is fixed. The random variable bi œ Rq denotes a group-specific
vector of random regression coe�cients that is assumed to follow a Gaussian
distribution. The dimension q of the random e�ects model is fixed. Also the
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error terms are assumed to follow a Gaussian distribution as is commonly done
in a mixed-e�ects models framework (Pinheiro and Bates, 2000). All groups i
share the common linear coe�cient —0 and the potentially complex function
g : Rv æ R. The function g is applied row-wise to Wi, denoted by g(Wi).

We denote the total number of observations by NT := qN

i=1 ni. We assume
that the numbers ni of within-group observations are uniformly upper bounded
by nmax < Œ. Asymptotically, the number of groups, N , goes to infinity.

Our distributional and independency assumptions are summarized as follows:

Assumptions 3.2.1. Consider the partially linear mixed-e�ects model (3.2).
We assume that there is some ‡0 > 0 and some symmetric positive definite
matrix �0 œ Rq◊q such that the following conditions hold.

3.2.1.1 The random e�ects b1, . . . , bN are independent and identically dis-
tributed Nq(0, �0).

3.2.1.2 The error terms Á1, . . . , ÁN are independent and follow a Gaussian
distribution, Ái ≥ Nni

(0, ‡2
01ni

) for i œ [N ], with the common variance
component ‡2

0.

3.2.1.3 The variables b1, . . . , bN , Á1, . . . , ÁN are independent.

3.2.1.4 For all i, j œ [N ], i ”= j, we have (bi, Ái) ‹‹ (Wi, Xi) and (bi, Ái) ‹‹
(Wj, Xj).

3.2.1.5 For all i œ [N ] and all t œ [ni], we have that ((Xi)t,·, (Wi)t,·) are
independent and identically distributed.

We would like to remark that the distribution of the error terms Ái in
Assumption 3.2.1.2 can be generalized to Ái ≥ Nni

(0, ‡2
0�i(⁄)), where �i(⁄) œ

Rni◊ni is a symmetric positive definite matrix parametrized by some finite-
dimensional parameter vector ⁄ that all groups have in common. For the sake
of notational simplicity, we restrict ourselves to Assumption 3.2.1.2.

Moreover, we may consider stochastic random e�ects matrices Zi. Alter-
natively, the nonparametric variables Wi may be part of the random e�ects
matrix. In this case, we consider the random e�ects matrix ÊZi = ’(Zi, Wi)
for some known function ’ in (3.2) instead of Zi. Please see Section 3.D in
the appendix for further details. For simplicity, we restrict ourselves to fixed
random e�ects matrices Zi that are disjoint from Wi.

The unknown parameters in our model are —0, �0, and ‡0. Our aim is to
estimate —0 and make inference for it. Although the variance parameters �0
and ‡0 need to be estimated consistently to construct an estimator of —0, it is
not our goal to perform inference for them.
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3.2.1 | The Plug-in Machine Learning Estimator

Subsequently, we describe our plug-in machine learning estimator of —0 in (3.2).
To motivate our procedure, we first consider the population version with the
residual terms

RXi
:= Xi ≠ E[Xi|Wi] and RYi

:= Yi ≠ E[Yi|Wi] for i œ [N ]

that adjust Xi and Yi for Wi. On this adjusted level, we have the linear
mixed-e�ects model

RYi
= RXi

—0 + Zibi + Ái, i œ [N ] (3.3)

due to (3.2) and Assumption 3.2.1.4. In particular, the adjusted and grouped
responses in this model are independent in the sense that we have RYi

‹‹ RYj

for i ”= j. The strategy now is to first estimate the residuals with machine
learning algorithms and then use linear mixed model techniques to infer —0.
This is done with sample splitting and cross-fitting, and the details are described
next.

Let us define �0 := ‡≠2
0 �0 and V0,i := (Zi�0ZT

i
+ 1ni

) so that we have

(RYi
|Wi, Xi) ≥ Nni

1
RXi

—0, ‡2
0V0,i

2
. (3.4)

We assume that there exist functions m0
X

: Rv æ Rd and m0
Y

: Rv æ R that
we can apply row-wise to Wi to have E[Xi|Wi] = m0

X
(Wi) and E[Yi|Wi] =

m0
Y

(Wi), which is conceivable due to Assumption 3.2.1.5. In particular, m0
X

and m0
Y

do not depend on the grouping index i. Let ÷0 := (m0
X

, m0
Y

) denote
the true unknown nuisance parameter. Let us denote by ◊0 := (—0, ‡2

0, �0)
the complete true unknown parameter vector and by ◊ := (—, ‡2, �) and
Vi := Zi�ZT

i
+ 1ni

respective general parameters. The log-likelihood of group
i is given by

¸i

1
◊, ÷02

= ≠ni

2 log(2fi) ≠ ni

2 log(‡2) ≠ 1
2 log

1
det(Vi)

2

≠ 1
2‡2 (RYi

≠ RXi
—)T V≠1

i (RYi
≠ RXi

—) ≠ log
1
p(Wi, Xi)

2
,

(3.5)
where p(Wi, Xi) denotes the joint density of Wi and Xi. We assume that
p(Wi, Xi) does not depend on ◊. The true nuisance parameter ÷0 in the
log-likelihood (3.5) is unknown and estimated with machine learning algorithms
(see below). Denote by ÷ := (mX , mY ) some general nuisance parameter. The
terms that adjust Xi and Yi for Wi with this general nuisance parameter are
given by Xi ≠ mX(Wi) and Yi ≠ mY (Wi). Up to additive constants that do
not depend on ◊ and ÷, we thus consider maximum likelihood estimation with
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the likelihood

¸i(◊, ÷) = ≠ni

2 log(‡2) ≠ 1
2 log

1
det(Vi)

2

≠ 1
2‡2

A

Yi ≠ mY (Wi) ≠
1
Xi ≠ mX(Wi)

2
—

B
T

V≠1
i

·
A

Yi ≠ mY (Wi) ≠
1
Xi ≠ mX(Wi)

2
—

B

,

which is a function of both the finite-dimensional parameter ◊ and the infinite-
dimensional nuisance parameter ÷.

Our estimator of —0 is constructed as follows adapting double machine
learning techniques. We estimate ÷0 with machine learning algorithms and plug
these estimators into the estimating equations for ◊0, equation (3.6) below, to
obtain an estimator for —0. This procedure is done with sample splitting and
cross-fitting as explained next.

Consider repeated measurements from N experimental units, subjects, or
groups as in (3.2). Denote by Si := (Wi, Xi, Zi, Yi) the observations of group
i. First, we split the group indices [N ] into K Ø 2 disjoint sets I1, . . . , IK of
approximately equal size in the sense that the number of unit-level observations
belonging to each set are asymptotically of the same order. The number of
observations per unit may di�er, but is assumed to be uniformly bounded. That
is, we avoid too unbalanced settings. Please see Section 3.B in the appendix for
further details.

For each k œ [K], we estimate the conditional expectations m0
X

(W ) and
m0

Y
(W ) with data from Ic

k
. We call the resulting estimators m̂

I
c

k

X
and m̂

I
c

k

Y
,

respectively. Then, the adjustments „RIk

Xi
:= Xi ≠ m̂

I
c

k

X
(Wi), and „RIk

Yi
:=

Yi ≠ m̂
I

c

k

Y
(Wi) for i œ Ik are evaluated on Ik, the complement of Ic

k
. Let

÷̂I
c

k := (m̂I
c

k

X
, m̂

I
c

k

Y
) denote the estimated nuisance parameter. Consider the

score function Â(Si; ◊, ÷) := Ò◊¸i(◊, ÷), where Ò◊ denotes the gradient with
respect to ◊ interpreted as a vector. On each set Ik, we consider an estimator
◊̂k = (—̂k, ‡̂2

k
, �̂k) of ◊0 that, approximately, in the sense of Assumption 3.B.3.3

in the appendix, solves

1
nT,k

ÿ

iœIk

Â
1
Si; ◊̂k, ÷̂I

c

k

2
= 1

nT,k

ÿ

iœIk

Ò◊¸i(◊, ÷) != 0, (3.6)

where nT,k := q
iœIk

ni denotes the total number of observations from experi-
mental units that belong to the set Ik. These K estimators ◊̂k for k œ [K] are
assembled to form the final cross-fitting estimator

—̂ := 1
K

Kÿ

k=1
—̂k (3.7)
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of —0. We remark that one can simply use linear mixed model computation and
software to compute —̂k based on the estimated residuals „RIk . The estimator —̂
fundamentally depends on the particular sample split. To alleviate this e�ect,
the overall procedure may be repeated S times (Chernozhukov et al., 2018).
The S point estimators are aggregated by the median, and an additional term
accounting for the random splits is added to the variance estimator of —̂; please
see Algorithm 2 that presents the complete procedure.

Algorithm 2: Plug-in machine learning for partially linear mixed-
e�ects models with repeated measurements.
Input : N grouped observations {Si = (Wi, Xi, Zi, Yi)}iœ[N ] from

model (3.2) satisfying Assumption 3.2.1, a natural number K,
a natural number S.

Output : An estimator of —0 in (3.2) together with its estimated
asymptotic variance.

1 for s œ [S] do
2 Split the grouped observation index set [N ] into K sets I1, . . . , IK of

approximately equal size.
3 for k œ K do
4 Compute the conditional expectation estimators m̂

I
c

k

X
and m̂

I
c

k

Y

with some machine learning algorithm and data from Ic

k
.

5 Evaluate the adjustments „RIk

Xi
= Xi ≠ m̂

I
c

k

X
(Wi) and

„RIk

Yi
= Yi ≠ m̂

I
c

k

Y
(Wi) for i œ Ik.

6 Compute ◊̂k,s = (—̂k,s, ‡̂2
k,s

, �̂k,s) using, for instance, linear mixed
model techniques.

7 end
8 Compute —̂s = 1

K

qK

k=1 —̂k,s as an approximate solution to (3.6).
9 Compute an estimate T̂0,s of the asymptotic variance-covariance

matrix T0 in Theorem 3.2.2.
10 end
11 Compute —̂ = mediansœ[S](—̂s).
12 Estimate T0 by T̂0 = mediansœ[S](T̂0,s + (—̂ ≠ —̂s)(—̂ ≠ —̂s)T ).
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3.2.2 | Theoretical Properties of the Plug-in Machine Learning
Estimator

The estimator —̂ as in (3.7) converges at the parametric rate, is asymptotically
Gaussian distributed, and semiparametrically e�cient.

Theorem 3.2.2. Consider grouped observations {Si = (Wi, Xi, Yi)}iœ[N ]
from the partially linear mixed-e�ects model (3.2) that satisfy Assump-
tion 3.2.1 such that p(Wi, Xi) does not depend on ◊. Let NT := qN

i=1 ni

denote the total number of unit-level observations. Furthermore, suppose
the assumptions in Section 3.B in the appendix hold, and consider the
symmetric positive-definite matrix T0 given in Assumption 3.B.2.8 in the
appendix. Then, —̂ as in (3.7) concentrates in a 1/

Ô
NT neighborhood of

—0, is centered Gaussian, namely
Ô

NT T
1
2

0 (—̂ ≠ —0) Læ Nd(0,1d) (N æ Œ), (3.8)

and semiparametrically e�cient. The convergence in (3.8) is in fact
uniformly over the law P of {Si = (Wi, Xi, Yi)}iœ[N ].

Please see Section 3.C.4 in the appendix for a proof of Theorem 3.2.2. Our
proof builds on Chernozhukov et al. (2018), but we have to take into account
the correlation within units that is introduced by the random e�ects.

The inverse asymptotic variance-covariance matrix T0 can be consistently
estimated; see Lemma 3.C.18 in the appendix. Semiparametric e�ciency follows
from Lin and Carroll (2001, Section 5).

The assumptions in Section 3.B of the appendix specify regularity conditions
and required convergence rates of the machine learning estimators. The machine
learning errors need to satisfy the product relationship

Îm0
X

(W ) ≠ m̂
I

c

k

X
(W )ÎP,2

1
Îm0

Y
(W ) ≠ m̂

I
c

k

Y
(W )ÎP,2 + Îm0

X
(W ) ≠ m̂

I
c

k

X
(W )ÎP,2

2

π N≠ 1
2 .

This bound requires that only the products of the machine learning estima-
tion errors Îm0

X
(W ) ≠ m̂

I
c

k

X
(W )ÎP,2 and Îm0

Y
(W ) ≠ m̂

I
c

k

Y
(W )ÎP,2 but not the

individual ones need to vanish at a rate smaller than N≠1/2. In particular,
the individual estimation errors may vanish at the rate smaller than N≠1/4.
This is achieved by many machine learning methods (cf. Chernozhukov et al.
(2018)): ¸1-penalized and related methods in a variety of sparse models (Bickel
et al., 2009; Bühlmann and van de Geer, 2011; Belloni et al., 2011; Belloni and
Chernozhukov, 2011; Belloni et al., 2012; Belloni and Chernozhukov, 2013),
forward selection in sparse models (Kozbur, 2020), L2-boosting in sparse linear
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models (Luo and Spindler, 2016), a class of regression trees and random forests
(Wager and Walther, 2016), and neural networks (Chen and White, 1999).

We note that so-called Neyman orthogonality makes score functions insensitive
to inserting potentially biased machine learning estimators of the nuisance
parameters. A score function is Neyman orthogonal if its Gateaux derivative
vanishes at the true ◊0 and the true ÷0. In particular, Neyman orthogonality
is a first-order property. The product relationship of the machine learning
estimating errors described above is used to bound second-order terms. We
refer to Section 3.C.4 in the appendix for more details.

3.3 | Numerical Experiments
Subsequently, we apply our plug-in machine learning method to an empirical
and a pseudorandom dataset and in a simulation study. Our implementation is
available in the R-package dmlalg (Emmenegger, 2021).

3.3.1 | Empirical Analysis: CD4 Cell Count Data
First, we apply our method to longitudinal CD4 cell counts data collected from
human immunodeficiency virus (HIV) seroconverters. This data has previously
been analyzed by Zeger and Diggle (1994) and is available in the R-package
jmcm (Pan and Pan, 2017) as aids. It contains 2376 observations of CD4
cell counts measured on 369 subjects. The data was collected during a period
ranging from 3 years before to 6 years after seroconversion. The number of
observations per subject ranges from 1 to 12, but for most subjects, 4 to 10
observations are available. Please see Zeger and Diggle (1994) for more details
on this dataset.

Apart from time, five other covariates are measured: the age at seroconversion
in years (age), the smoking status measured by the number of cigarette packs
consumed per day (smoking), a binary variable indicating drug use (drugs),
the number of sex partners (sex), and the depression status measured on the
Center for Epidemiologic Studies Depression (CESD) scale (cesd), where higher
CESD values indicate the presence of more depression symptoms.

We incorporate a random intercept per person. Furthermore, we consider
a square-root transformation of the CD4 cell counts to reduce the skewness
of this variable as proposed by Zeger and Diggle (1994). The CD4 counts are
our response. The covariates that are of scientific interest are considered as
X ’s, and the remaining covariates are considered as W ’s in the partially linear
mixed-e�ects model (3.2). The e�ect of time is modeled nonparametrically, but
there are several options to model the other covariates. Other models than
partially linear mixed-e�ects model have also been considered in the literature to
analyze this dataset. For instance, Fan and Zhang (2000) consider a functional
linear model where the linear coe�cients are a function of the time.
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age smoking drugs sex cesd

W = (time)
0.004

(0.027)

0.752

(0.123)

0.704

(0.360)

0.001

(0.043)

≠0.042

(0.015)

W =

(time, age, sex)
-

0.620

(0.126)

0.602

(0.335)
-

≠0.047

(0.015)

Zeger and

Diggle (1994)

0.037

(0.18)

0.27

(0.15)

0.37

(0.31)

0.10

(0.038)

≠0.058

(0.015)

Taavoni and

Arashi (2021b)

1.5 ·
10

≠17

(3.5 ·
10

≠17
)

0.152

(0.208)

0.130

(0.071)

0.0184

(0.0039)

≠0.0141

(0.0061)

Wang et al.

(2005)

0.010

(0.033)

0.549

(0.144)

0.584

(0.331)

0.080

(0.038)

≠0.045

(0.013)

Guoyou and

Zhongyi (2008)

0.006

(0.038)

0.538

(0.136)

0.637

(0.350)

0.066

(0.040)

≠0.042

(0.015)

Table 3.3.1: Estimates of the linear coe�cient and its standard deviation

in parentheses with our method for nonparametrically adjusting for time

(first row) and for time, age, and sex (second row). The remaining rows

display the results from Zeger and Diggle (1994, Section 5), Taavoni

and Arashi (2021b, Table 1, “Kernel”), Wang et al. (2005, Table 2,

“Semiparametric e�cient scenario I”), and Guoyou and Zhongyi (2008,

Table 5, “Robust”), respectively.

We consider two partially linear mixed-e�ects models for this dataset. First,
we incorporate all covariates except time linearly. Most approaches in the
literature employing a partially linear mixed-e�ects model for this data that
model time nonparametrically report that sex and cesd are significant and that
either smoking or drugs is significant as well; see for instance Zeger and Diggle
(1994); Taavoni and Arashi (2021b); Wang et al. (2005). Guoyou and Zhongyi
(2008) develop a robust estimation method for longitudinal data and estimate
nonlinear e�ects from time with regression splines. With the CD4 dataset, they
find that smoking and cesd are significant.

We apply our method with K = 2 sample splits, S = 100 repetitions of
splitting the data, and learn the conditional expectations with random forests
that consist of 500 trees whose minimal node size is 5. Like Guoyou and Zhongyi
(2008), we conclude that smoking and cesd are significant; please see the first
row of Table 4.5.1 for a more precise account of our findings. Apart from sex,
our point estimators are larger or of about the same size in absolute value
as what Guoyou and Zhongyi (2008) obtain. However, apart from age, the
standard deviations are slightly larger with our method. This can be expected
because random forests are more complex than the regression splines Guoyou
and Zhongyi (2008) employ.

We consider a second estimation approach where we model the variables time,
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age, and sex nonparametrically and allow them to interact. It is conceivable
that these variables are not (causally) influenced by smoking, drugs, and cesd
and that they are therefore exogenous. The variables smoking, drugs, and cesd
are modeled linearly, and they are considered as treatment variables. Some
direct causal e�ect interpretations are possible if one is willing to assume, for
instance, that the nonparametric adjustment variables are causal parents of
the linear variables or the response. However, we do not pursue this line of
thought further. We estimate the conditional expectations given the three
nonparametric variables time, age, and sex again with random forests that
consist of 500 trees whose minimal node size is 5 and use K = 2 and S = 100
in Algorithm 2. We again find that smoking and cesd are significant; please see
the second row of Table 4.5.1. This cannot be expected a priori because this
second model incorporates more complex adjustments, which can lead to less
significant variables.

3.3.2 | Pseudorandom Simulation Study: CD4 Cell Count Data

Subsequently, we consider the CD4 cell count data from the previous subsection
and perform a pseudorandom simulation study. The variables smoking, drugs,
and cesd are modeled linearly and the variables time, age, and sex nonparamet-
rically. We condition on these six variables in our simulation. That is, they are
the same in all repetitions. The function g in (3.2) is chosen as a regression
tree that we built beforehand. We let —0 = (0.62, 0.6, ≠0.05)T , where the first
component corresponds to smoking, the second one to drugs, and the last one
to cesd, consider a standard deviation of the random intercept per subject of
4.36, and a standard deviation of the error term of 4.35. These are the point
estimates of the respective quantities obtained in the previous subsection.

Our fitting procedure uses random forests consisting of 500 trees whose
minimal node size is 5 to estimate the conditional expectations, and we use
K = 2 and S = 10 in Algorithm 2. We perform 5000 simulation runs. We
compare the performance of our method with that of the spline-based function
gamm4 from the package gamm4 (Wood and Scheipl, 2020) for the statistical
software R (R Core Team, 2019). This method represents the nonlinear part
of the model by smooth additive functions and estimates them by penalized
regression splines. The penalized components are treated as random e�ects and
the unpenalized components as fixed e�ects.

The results are displayed in Figure 3.3.1. With our method, mmdml, the
two-sided confidence intervals for —0 are of about the same length but achieve
a coverage that is closer to the nominal 95% confidence level than with gamm4.
The gamm4 method largely undercovers the packs component of —0, which can
be explained by the incorporated bias.
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Figure 3.3.1: Coverage and length of two-sided confidence intervals

at significance level 5% and bias for our method, mmdml, and gamm4.

In the coverage plot, solid dots represent point estimators, and circles

represent 95% confidence bands with respect to the 5000 simulation

runs. The confidence interval length and bias are displayed with box

plots without outliers.

3.3.3 | Simulation Study
Finally, we carry out a simulation study with a partially linear mixed-e�ects
model with q = 3 random e�ects and where —0 is 1-dimensional. Every subject
has their own random intercept term and a nested random e�ect with two levels.
Thus, the random e�ects structure is more complex than in the previous two
subsections because these models only used a random intercept. We compare
three data generating mechanisms: one where the function g is nonsmooth
and the number of observations per group is balanced, one where the function
g is smooth and the number of observations per group is balanced, and one
where the function g is nonsmooth and the number of observations per group
is unbalanced; please see Section 3.A in the appendix for more details.

We estimate the nonparametric nuisance components, that is, the conditional
expectations, with random forests consisting of 500 trees whose minimal node
size is 5. Furthermore, we use K = 2 and S = 10 in Algorithm 2. We perform
1000 simulation runs and consider di�erent numbers of groups N . As in the
previous subsection, we compare the performance of our method with gamm4.

The results are displayed in Figure 3.3.2. Our method, mmdml, highly
outperforms gamm4 in terms of coverage for nonsmooth g because the coverage
of gamm4 equals 0 due to its substantial bias. Our method overcovers slightly
due to the correction factor that results from the S repetitions. However, this
correction factor is highly recommended in practice. With smooth g, gamm4 is
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Figure 3.3.2: Coverage and median length of two-sided confidence

intervals for —0 at significance level 5% (true —0 = 0.5) and median bias

for three data generating scenarios for our method, mmdml, and gamm4.

The shaded regions in the coverage plot represent 95% confidence bands

with respect to the 1000 simulation runs. The dots in the coverage and

bias plot are jittered, but neither are their interconnecting lines nor

their confidence bands.

closer to the nominal coverage and has shorter confidence intervals than our
method. Because the underlying model is smooth and additive, a spline-based
estimator is better suited. In all scenarios, our method outputs longer confidence
intervals than gamm4 because we use random forests; consistent with theory,
the di�erence in absolute value decreases though when N increases.

3.4 | Conclusion
Our aim was to develop inference for the linear coe�cient —0 of a partially
linear mixed-e�ects model that includes a linear term and potentially complex
nonparametric terms. Such models can be used to describe heterogeneous and
correlated data that feature some grouping structure, which may result from
taking repeated measurements. Traditionally, spline or kernel approaches are
used to cope with the nonparametric part of such a model. We presented a plug-
in machine learning scheme that adapts double machine learning techniques
of Chernozhukov et al. (2018) to estimate any nonparametric components with
arbitrary machine learning algorithms. This allowed us to consider complex
nonparametric components with interaction structures and high-dimensional
variables.

Our proposed method is as follows. First, the nonparametric variables are
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regressed out from the response and the linear variables. This step adjusts the
response and the linear variables for the nonparametric variables and may be
performed with any machine learning algorithm. The adjusted variables satisfy
a linear mixed-e�ects model, where the linear coe�cient —0 can be estimated
with standard linear mixed-e�ects techniques. We showed that the estimator of
—0 asymptotically follows a Gaussian distribution, converges at the parametric
rate, and is semiparametrically e�cient. This asymptotic result allows us to
perform inference for —0.

Empirical experiments demonstrated the performance of our proposed method.
We conducted an empirical and pseudorandom data analysis and a simulation
study. The simulation study and the pseudorandom experiment confirmed the
e�ectiveness of our method in terms of coverage, length of confidence intervals,
and estimation bias compared to a penalized regression spline approach relying
on additive models. In the empirical experiment, we analyzed longitudinal CD4
cell counts data collected from HIV-infected individuals. In the literature, most
methods only incorporate the time component nonparametrically to analyze this
dataset. Because we estimate nonparametric components with machine learning
algorithms, we can allow several variables to enter the model nonlinearly, and
we can allow these variables to interact.

The R-package dmlalg (Emmenegger, 2021) provides an implementation of
our method.

Acknowledgements
This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 786461). We would like to thank Michael Law for
constructive comments.

68



Appendix

3.A | Data Generating Mechanism for Simulation Study

Let n = 15. For all scenarios except the unbalanced one, we sample the number
of observations for each experimental unit from {n ≠ 3, n ≠ 2, . . . , n + 2, n + 3}
with equal probability. For the unbalanced scenario, we sample the number of
observations for each experimental unit from {1, 2, . . . , 2n ≠ 2, 2n ≠ 1} with
equal probability. We consider 3-dimensional nonparametric variables. For
w = (w1, w2, w3) œ R3, consider the real-valued functions

h(w)
:= ≠3 · 1w3>01w1>0 + 2 · 1w3>01w1Æ0 ≠ 1w3Æ01w3Æ≠1 ≠ 2 · 1w3Æ01w3>≠11w2>0

≠3 · 1w3Æ01w3>≠11w2Æ01w1>0.75 + 1w3Æ01w3>≠11w2Æ01w1Æ0.75

and

g(w)
:= 1w1>01w2>01w3>1 ≠ 1.5 · 1w1>01w2>01w3Æ1

≠2.7 · 1w1>01w2Æ01w2Æ≠0.51w1>11w3>1.25
≠0.5 · 1w1>01w2Æ1w2Æ≠0.51w1>11w3Æ1.25 + 3.2 · 1w1>01w2Æ01w2Æ≠0.51w1Æ1
+0.75 · 1w1>01w2Æ01w2>≠0.5 + 3 · 1w1Æ01w3>01w2Æ≠11w1Æ≠1.3
+1.5 · 1w1Æ01w3>01w2Æ≠11w1>≠1.3 ≠ 2.3 · 1w1Æ01w3>01w2>≠1
+2.8 · 1w1Æ01w3Æ01w3Æ≠0.75 + 2 · 1w1Æ01w3Æ01w3>≠0.751w1Æ≠0.5
≠1.75 · 1w1Æ01w3Æ01w3>≠0.751w1>≠0.5

In the case of nonsmooth g, we consider g(w) := 0.25 · (1.3 · w1)2.

For the nonparametric covariable, we consider the following data generating
mechanism. The matrix Wi œ Rni◊3 contains the ni observations of the ith
experimental unit in its rows. We draw these ni rows of Wi independently.
That is, (Wi)k,· ≥ N3(0,1) for i œ [N ] and k œ [ni] with (Wi)k,· ‹‹ (Wi)l,·,
k ”= l,k, l œ [ni] and Wi ‹‹ Wj, i ”= j, i, j œ [N ].

The linear covariable Xi is modeled with Xi = h(Wi) + ÁXi
, where its error

term ÁXi
≥ Nni

(0,1) for i œ [N ] and ÁXi
‹‹ ÁXj

for i ”= j, i, j œ [N ].

For —0 = 0.5 and ‡0 = 1, the model of the response Yi is Yi = Xi—0 +
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g(Wi) + Zibi + Ái with

Zi =

Q

ccccccccccccccccccca

1 0 1
1 0 1
... ... ...
1 0 1
0 1 1
0 1 1
... ... ...
0 1 1

R

dddddddddddddddddddb

œ Rni◊3, bi =

Q

ccca

b1
1

b1
2

b2

R

dddb ≥ N3(0, diag(1.52, 1.82, 1.82)),

Ái ≥ Nni
(0, ‡2

01) for i œ [N ], and bi ‹‹ bj, bi ‹‹ (Ái, Áj), and Ái ‹‹ Áj for
i ”= j, i, j œ [N ], where the first column of Zi consists of Â0.5niÊ entries of 1’s
and Á0.5niË entries of 0’s and correspondingly for the second column of Zi.

3.B | Assumptions and Additional Definitions
Recall the partially linear mixed-e�ects model

Yi = Xi—0 + g(Wi) + Zibi + Ái, i œ [N ]

for groups i œ [N ] as in (3.2). We consider N grouped observations {Si =
(Wi, Xi, Zi, Yi)}iœ[N ] from this model that satisfy Assumption 3.2.1. In each
group i œ [N ], we observe ni observations. We assume that these numbers
are uniformly bounded by nmax < Œ, that is, ni Æ nmax for all i œ [N ]. We
denote the total number of observations of all groups by NT := qN

i=1 ni.
Let the number of sample splits K Ø 2 be a fixed integer independent of N .

We assume that N Ø K holds. Consider a partition I1, . . . , IK of [N ]. For
k œ [K], we denote by nT,k := q

iœIk
ni the total number of observations of

all groups i belonging to Ik µ [N ]. The sets I1, . . . , IK are assumed to be of
approximately equal size in the sense that KnT,k = NT + o(1) holds for all
k œ [K] as N æ Œ, which implies NT

nT,k

= O(1). Moreover, we assume that
|Ik|
nT,k

= O(1) holds for all k œ [K].
For k œ [K], denote by SI

c

k
:= {Si}iœI

c

k
the grouped observations from Ic

k
.

We denote the nuisance parameter estimator that is estimated with data from
Ic

k
by ÷̂I

c

k = ÷̂I
c

k(SI
c

k
).

Definition 3.B.1. For k œ [K], ◊ œ �, and ÷ œ T , where � and T are
defined in Assumptions 3.B.3 and 3.B.4, respectively, we introduce the
notation

EnT,k
[Â(S; ◊, ÷)] := 1

nT,k

ÿ

iœIk

Â(Si; ◊, ÷).

70



Let {”N}NØK and {�N}NØK be two sequences of non-negative numbers
that converge to 0 as N æ Œ, where ”2

N
Ø N≠ 1

2 holds. We assume that
|Ik|≠

1
2+ 1

p log(|Ik|) . ”N holds for all k œ [K], where p is specified in Assump-
tion 3.B.2. Let {PN}NØ1 be a sequence of sets of probability distributions P of
the N grouped observations {Si = (Wi, Xi, Yi)}iœ[N ]. We make the following
additional assumptions.

Assumptions 3.B.2. Let p Ø 8. For all N , all i œ [N ], all P œ PN , and
all k œ [K], we have the following.

3.B.2.1 At the true ◊0 and the true ÷0, the data {Si = (Wi, Xi, Zi, Yi)}iœ[N ]
satisfies the identifiability condition

EP

Ë
EnT,k

[Â(S; ◊0, ÷0)]
È

= 0.

3.B.2.2 There exists a finite real constant C1 satisfying ÎXiÎP,p+ÎYiÎP,p Æ C1
for all i œ [N ].

3.B.2.3 The matrices Zi assigning the random e�ects inside a group are fixed
and bounded. In particular, there exists a finite real constant C2
satisfying ÎZiÎ Æ C2 for all i œ [N ].

3.B.2.4 In absolute value, the smallest and largest singular values of the
Jacobian matrix

J0 := ˆ◊ EP

C

EnT,k

Ë
Â(S; ◊, ÷0)

ÈD-----
◊=◊0

are bounded away from 0 by c1 > 0 and are bounded away from +Œ
by c2 < Œ.

3.B.2.5 For all ◊ œ �, we have the identification condition

min{ÎJ0(◊ ≠ ◊0)Î, c1} Æ 2
..... EP

C

EnT,k

Ë
Â(S; ◊, ÷0)

ÈD......

3.B.2.6 The matrix EP [RT

Xi
(Zi�0Zi + ‡2

01ni
)≠1RXi

] œ Rd◊d exists and is in-
vertible for all i œ [N ]. We assume that the same holds if ◊0 and
÷0 are replaced by ◊ œ � and ÷ œ T , respectively, with � as in
Assumption 3.B.3 and T as in Assumption 3.B.4.

3.B.2.7 The symmetric matrix EP [RT

Xi
(Zi�0Zi + ‡2

01ni
)≠1RXi

] œ Rd◊d has
singular values that are uniformly bounded away from 0 by cmin > 0
for all i œ [N ].
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3.B.2.8 There exists a symmetric positive-definite matrix T0 œ Rd◊d satisfying

T N := 1
NT

Nÿ

i=1
EP

Ë
RT

Xi
V≠1

0,i
RXi

È
= T0 + o(1).

Assumption 3.B.2.1 ensures that —0 is identifiable by our estimation method.
Assumption 3.B.2.2 ensures that enough moments of Xi and Yi exist. Assump-
tion 3.B.2.4 and 3.B.2.5 are required to prove that ◊0 is consistently estimated
in Lemma 3.C.7. The proof of this lemma uses a Taylor expansion. Assump-
tion 3.B.2.6, 3.B.2.7, and 3.B.2.8 are required to make statements about the
asymptotic variance-covariance matrix in the proof of Theorem 3.2.2.

The following Assumption 3.B.3 characterizes the set � to which ◊0 be-
longs and from which estimators of ◊0 are not too far away in the sense of
Assumption 3.B.3.3.

Assumptions 3.B.3. Consider the set

� :=
Ó
◊ = (—, �, ‡2) œ Rd ◊ Rq◊q ◊ R : � œ Rq◊q symmetric positive definite,

‡ > 0
Ô

of parameters. We make the following assumptions on � and ◊̂k for
k œ [K].

3.B.3.1 The set � is bounded and contains ◊0 and a ball of radius maxNØ1 ”N

around ◊0.

3.B.3.2 There exists a finite real constant C3 such that we have Î(Zi�ZT

i
+

1ni
)≠1Î Æ C3 for all i œ [N ] and all � belonging to �.

3.B.3.3 For all k œ [K], the estimator ◊̂k belongs to � and satisfies the
approximate solution property

... EnT,k

Ë
Â

1
S; ◊̂k, ÷̂I

c

k

2È... Æ inf
◊œ�

... EnT,k

Ë
Â

1
S; ◊, ÷̂I

c

k

2È... + eN

with the nuisance parameter estimator ÷̂I
c

k = ÷̂I
c

k(SI
c

k
), where {eN}NØK

is a sequence of non-negative numbers satisfying eN . ”2
N

.

The following Assumption 3.B.4 mainly characterizes the N≠1/2 product con-
vergence rate of the machine learners that estimate the conditional expectations,
which are nuisance functions.

Assumptions 3.B.4. Consider the p Ø 8 from Assumption 3.B.2. For
all N Ø K and all P œ PN , consider a nuisance function realization set
T such that the following conditions hold.
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3.B.4.1 The set T consists of P -integrable functions ÷ = (mX , mY ) whose
pth moment exists, and it contains ÷0. Furthermore, there exists a
finite real constant C4 such that

Î÷0 ≠ ÷ÎP,p Æ C4, Î÷0 ≠ ÷ÎP,2 Æ ”8
N

,
Îm0

X
(W ) ≠ mX(W )ÎP,2

·
1
Îm0

Y
(W ) ≠ mY (W )ÎP,2 + Îm0

X
(W ) ≠ mX(W )ÎP,2

2
Æ ”NN≠ 1

2

hold for all elements ÷ of T .

3.B.4.2 For all k œ [K], the nuisance parameter estimate ÷̂I
c

k = ÷̂I
c

k(SI
c

k
)

satisfies

Î÷0 ≠ ÷̂I
c

kÎP,p Æ C4, Î÷0 ≠ ÷̂I
c

kÎP,2 Æ ”8
N

,

Îm0
X

(W ) ≠ m̂
I

c

k

X
(W )ÎP,2

·
1
Îm0

Y
(W ) ≠ m̂

I
c

k

Y
(W )ÎP,2 + Îm0

X
(W ) ≠ m̂

I
c

k

X
(W )ÎP,2

2
Æ ”NN≠ 1

2

with P -probability no less than 1 ≠ �N . Denote by EN the event that
÷̂I

c

k = ÷̂I
c

k(SI
c

k
), k œ [K] belong to T , and assume this event holds with

P -probability at least 1 ≠ �N .

3.B.4.3 For all k œ [K], the parameter estimator ◊̂k is P -integrable and its
pth moment exists.

We suppose all assumptions presented in Section 3.B of the appendix hold
throughout the remainder of the appendix.

3.C | Proof of Theorem 3.2.2
3.C.1 | Supplementary Lemmata
Lemma 3.C.1. (Emmenegger and Bühlmann, 2021, Lemma G.7) Let
u Ø 1. Consider a t-dimensional random variable A and an s-dimensional
random variable B. Denote the joint law of A and B by P . Then, we have

ÎA ≠ EP [A|B]ÎP,u Æ 2ÎAÎP,u.

Lemma 3.C.2. (Emmenegger and Bühlmann, 2021, Lemma G.10) Con-
sider a t1-dimensional random variable A1, a t2-dimensional random vari-
able A2, and an s-dimensional random variable B. Denote the joint law
of A1, A2, and B by P . Then, we have

... EP

Ë
(A1 ≠ EP [A1|B])AT

2
È...

2 Æ ÎA1Î2
P,2ÎA2Î2

P,2.
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The following lemma, proved in Chernozhukov et al. (2018, Lemma 6.1)
and Emmenegger and Bühlmann (2021, Lemma G.12), states that conditional
convergence in probability implies unconditional convergence in probability.

Lemma 3.C.3. (Chernozhukov et al. (2018, Lemma 6.1); Emmeneg-
ger and Bühlmann (2021, Lemma G.12)) Let {An}nØ1 and {Bn}nØ1 be
sequences of random vectors, and let u Ø 1. Consider a deterministic
sequence {Án}nØ1 with Án æ 0 as n æ Œ such that E[ÎAnÎu|Bn] Æ Áu

n
holds.

Then, we have ÎAnÎ = OP (Án) unconditionally, meaning that that for any
sequence {¸n}nØ1 with ¸n æ Œ as n æ Œ, we have P (ÎAnÎ > ¸nÁn) æ 0.

3.C.2 | Representation of the Score Function Â

Lemma 3.C.4. Let i œ [N ], ◊ œ �, and ÷ œ T . Denote by Vi := Zi�ZT

i
+

1ni
. Furthermore, denote by Â— the coordinates of Â that correspond to —,

that is, Â—(Si; ◊, ÷) = Ò—¸i(◊, ÷). We have

Â—(Si; ◊, ÷) = 1
‡2

1
Xi ≠mX(Wi)

2
T V≠1

i

A

Yi ≠mY (Wi)≠
1
Xi ≠mX(Wi)

2
—

B

.

Proof. The statement follows from the definition of Â.

Lemma 3.C.5. Let i œ [N ], ◊ œ �, and ÷ œ T . Denote by Vi := Zi�ZT

i
+

1ni
. Furthermore, denote by Â‡2 the coordinates of Â that correspond to

‡2, that is, Â‡2(Si; ◊, ÷) = Ò‡2¸i(◊, ÷). We have

Â‡2(Si; ◊, ÷) = ≠ ni

2‡2 + 1
2(‡2)2

A

Yi ≠ mY (Wi) ≠
1
Xi ≠ mX(Wi)

2
—

B
T

V≠1
i

·
A

Yi ≠ mY (Wi) ≠
1
Xi ≠ mX(Wi)

2
—

B

.

Proof. The statement follows from the definition of Â.

Lemma 3.C.6. Let i œ [N ], ◊ œ �, ÷ œ T . Denote by Vi := Zi�ZT

i
+1ni

.
Furthermore, let indices Ÿ, ÿ œ [q], and denote by Â�Ÿ,ÿ

the coordinates of
Â that correspond to �Ÿ,ÿ, that is, Â�Ÿ,ÿ

(Si; ◊, ÷) = Ò�Ÿ,ÿ
¸i(◊, ÷). We have

Â�Ÿ,ÿ
(Si; ◊, ÷)

= ≠1
2

qni

t,u=1(V≠1
i )t,u(Zi)t,Ÿ(ZT

i
)ÿ,u

+ 1
2‡2

qni

t,u=1

A

Yi ≠ mY (Wi) ≠
1
Xi ≠ mX(Wi)

2
—

B

t

·
A

Yi ≠ mY (Wi) ≠
1
Xi ≠ mX(Wi)

2
—

B

u

1
V≠1

i (Zi)·,Ÿ(ZT

i
)ÿ,·V≠1

i

2

t,u
.
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Proof. Let a vector x œ Rni. We have

ˆ

ˆ�Ÿ,ÿ

A

xT
1
Zi�ZT

i
+ 1ni

2≠1
x

B

= qni

t,u=1
ˆ

ˆ(Zi�ZT

i
+1ni

)≠1
t,u

A

xT
1
Zi�ZT

i
+ 1ni

2≠1
x

B

· ˆ(Zi�ZT

i
+1ni

)≠1
t,u

ˆ�Ÿ,ÿ

.

For some nonrandom matrix D œ Rni◊ni, we have

ˆ

ˆDt,u

xT Dx = ˆ

ˆDt,u

niÿ

r,s=1
xrDr,sxs = xtxu.

Furthermore, we have

ˆ

ˆ�Ÿ,ÿ

1
Zi�ZT

i
+1ni

2≠1 = ≠
1
Zi�ZT

i
+1ni

2≠1
Q

a ˆ

ˆ�Ÿ,ÿ

1
Zi�ZT

i
+1ni

2
R

b
1
Zi�ZT

i
+1ni

2≠1

by Petersen and Pedersen (2012, Equation (59)), and we have
Q

a ˆ

ˆ�Ÿ,ÿ

1
Zi�ZT

i
+ 1ni

2
R

b

t,u

= ˆ

ˆ�Ÿ,ÿ

niÿ

r,s=1
(Zi)t,r�r,s(ZT

i
)s,u = (Zi)t,Ÿ(ZT

i
)ÿ,u,

and consequently

ˆ

ˆ�Ÿ,ÿ

1
Zi�ZT

i
+ 1ni

2
= (Zi)·,Ÿ(ZT

i
)ÿ,·,

which leads to

ˆ

ˆ�Ÿ,ÿ

1
Zi�ZT

i
+ 1ni

2≠1 = ≠
1
Zi�ZT

i
+ 1ni

2≠1(Zi)·,Ÿ(ZT

i
)ÿ,·

1
Zi�ZT

i
+ 1ni

2≠1
.

Therefore, we have

ˆ

ˆ�Ÿ,ÿ

A

xT
1
Zi�ZT

i
+ 1ni

2≠1
x

B

= ≠ qni

t,u=1 xtxu ·
A1

Zi�ZT

i
+ 1ni

2≠1(Zi)·,Ÿ(ZT

i
)ÿ,·

1
Zi�ZT

i
+ 1ni

2≠1
B

t,u

.

(3.9)

Moreover, we have

ˆ

ˆ�Ÿ,ÿ

log
A

det
1
Zi�ZT

i
+ 1ni

2B

=
niÿ

t,u=1

ˆ

ˆ(Zi�ZT
i + 1ni

)t,u

log
A

det
1
Zi�ZT

i
+ 1ni

2B

· ˆ(Zi�ZT

i
+ 1ni

)t,u

ˆ�Ÿ,ÿ
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=
niÿ

t,u=1

A1
Zi�ZT

i
+ 1ni

2≠1
B

t,u

(Zi)t,Ÿ(ZT

i
)ÿ,u (3.10)

by Petersen and Pedersen (2012, Equation (57)). We replace x in (3.9) by
Yi ≠ mY (Wi) ≠

1
Xi ≠ mX(Wi)

2
— and combine (3.9) and (3.10) to conclude

the proof.

3.C.3 | Consistency

This section establishes that all ◊̂k, k œ [K] are consistent. In particular, this
implies that ◊̂ is consistent.

Let P œ PN .

Lemma 3.C.7. Let k œ [K]. We have Î◊̂k ≠ ◊0Î Æ ”2
N

with P -probability
1 ≠ o(1).

Proof of Lemma 3.C.7. We have

EP

C

EnT,k

Ë
Â

1
S; ◊̂k, ÷02ÈD

= EP

C

EnT,k

Ë
Â

1
S; ◊̂k, ÷02È

≠ EnT,k

Ë
Â

1
S; ◊̂k, ÷̂I

c

k

2ÈD

+ EP

C

EnT,k

Ë
Â

1
S; ◊̂k, ÷̂I

c

k

2ÈD

≠ EnT,k

Ë
Â

1
S; ◊̂k, ÷̂I

c

k

2È
+ EnT,k

Ë
Â

1
S; ◊̂k, ÷̂I

c

k

2È
.

(3.11)
Due to the approximate solution property in Assumption 3.B.3.3, the identifi-
ability condition in Assumption 3.B.2.1, and the triangle inequality, we have

... EnT,k

Ë
Â

1
S; ◊̂k, ÷̂I

c

k

2È...

Æ
... EnT,k

Ë
Â

1
S; ◊0, ÷̂I

c

k

2È... + eN

Æ
..... EnT,k

Ë
Â

1
S; ◊0, ÷̂I

c

k

2È
≠ EP

C

EnT,k

Ë
Â

1
S; ◊0, ÷̂I

c

k

2ÈD.....

+
..... EP

C

EnT,k

Ë
Â

1
S; ◊0, ÷̂I

c

k

2ÈD

≠ EP

C

EnT,k

Ë
Â

1
S; ◊0, ÷02ÈD..... + eN .

(3.12)
Let us introduce

I1 := sup
◊œ�,

÷œT

..... EP

C

EnT,k

Ë
Â(S; ◊, ÷)

ÈD

≠ EP

C

EnT,k

Ë
Â

1
S; ◊, ÷02ÈD..... (3.13)

and

I2 := sup
◊œ�

..... EnT,k

Ë
Â

1
S; ◊, ÷̂I

c

k

2È
≠ EP

C

EnT,k

Ë
Â

1
S; ◊, ÷̂I

c

k

2ÈD...... (3.14)
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Due to (3.11) and (3.12), we infer, with P -probability 1 ≠ o(1),
..... EP

C

EnT,k

Ë
Â

1
S; ◊̂k, ÷02ÈD..... Æ eN + 2I1 + 2I2

because the event EN that ÷̂I
c

k belongs to T holds with P -probability 1 ≠ o(1)
by Assumption 3.B.4.2. By Lemma 3.C.8, we have I1 . ”2

N
. By Lemma 3.C.10,

we have I2 . N≠ 1
2 with P -probability 1≠o(1). Recall that we have ”2

N
Ø N≠ 1

2

and eN . ”2
N

. With P -probability 1 ≠ o(1), we therefore have

min{ÎJ0(◊̂k ≠ ◊0)Î, c1} Æ 2
..... EP

C

EnT,k

Ë
Â(S; ◊̂k, ÷0)

ÈD..... . ”2
N

due to Assumption 3.B.2.5. We infer our claim because the singular values of
J0 are bounded away from 0 by Assumption 3.B.2.4.
Lemma 3.C.8. Consider

I1 = sup
◊œ�,

÷œT

..... EP

C

EnT,k

Ë
Â(S; ◊, ÷)

ÈD

≠ EP

C

EnT,k

Ë
Â

1
S; ◊, ÷02ÈD.....

as in (3.13). We have I1 . ”2
N

.
Proof. Let indices i œ [N ] and Ÿ, ÿ œ [q], let ◊ œ �, and let ÷ œ T . Further-
more, let Â—(Si; ◊, ÷) := Ò—¸i(◊, ÷), let Â‡2(Si; ◊, ÷) := Ò‡2¸i(◊, ÷), and let
Â�Ÿ,ÿ

(Si; ◊, ÷) := Ò�Ÿ,ÿ
¸i(◊, ÷). Denote by Vi := Zi�ZT

i
+ 1ni

. We have

Â—(Si; ◊, ÷) ≠ Â—

1
Si; ◊, ÷02

= 1
‡2

1
Xi ≠ m0

X
(Wi)

2
T V≠1

i

A

m0
Y

(Wi) ≠ mY (Wi) ≠
1
m0

X
(Wi) ≠ mX(Wi)

2
—

B

+ 1
‡2

1
m0

X
(Wi) ≠ mX(Wi)

2
T V≠1

i

A

Yi ≠ m0
Y

(Wi) ≠
1
Xi ≠ m0

X
(Wi)

2
—

B

+ 1
‡2

1
m0

X
(Wi) ≠ mX(Wi)

2
T V≠1

i

·
A

m0
Y

(Wi) ≠ mY (Wi) ≠
1
m0

X
(Wi) ≠ mX(Wi)

2
—

B

,

(3.15)
we have

Â‡2(Si; ◊, ÷) ≠ Â‡2
1
Si; ◊, ÷02

=2 · 1
2(‡2)2

A

Yi ≠ m0
Y

(Wi) ≠
1
Xi ≠ m0

X
(Wi)

2
—

B
T

V≠1
i

·
A

m0
Y

(Wi) ≠ mY (Wi) ≠
1
m0

X
(Wi) ≠ mX(Wi)

2
—

B

+ 1
2(‡2)2

A

m0
Y

(Wi) ≠ mY (Wi) ≠
1
m0

X
(Wi) ≠ mX(Wi)

2
—

B
T

V≠1
i
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·
A

m0
Y

(Wi) ≠ mY (Wi) ≠
1
m0

X
(Wi) ≠ mX(Wi)

2
—

B

, (3.16)

and we have

Â�Ÿ,ÿ
(Si; ◊, ÷) ≠ Â�Ÿ,ÿ

1
Si; ◊, ÷02

= 1
2‡2

qni

t,u=1
1
V≠1

i (Zi)·,Ÿ(ZT

i
)ÿ,·V≠1

i

2

t,u

·
Q

a
A

m0
Y

(Wi) ≠ mY (Wi) ≠
1
m0

X
(Wi) ≠ mX(Wi)

2
—

B

t

·
A

Yi ≠ m0
Y

(Wi) ≠
1
Xi ≠ m0

X
(Wi)

2
—

B

u

+
A

Yi ≠ m0
Y

(Wi) ≠
1
Xi ≠ m0

X
(Wi)

2
—

B

t

·
A

m0
Y

(Wi) ≠ mY (Wi) ≠
1
m0

X
(Wi) ≠ mX(Wi)

2
—

B

u

+
A

m0
Y

(Wi) ≠ mY (Wi) ≠
1
m0

X
(Wi) ≠ mX(Wi)

2
—

B

t

·
A

m0
Y

(Wi) ≠ mY (Wi) ≠
1
m0

X
(Wi) ≠ mX(Wi)

2
—

B

u

R

b.

(3.17)
Up to constants depending on the diameter of �, the L1-norms of all terms (3.15)–
(3.17) are bounded by ”N due to Hölder’s inequality because we have ni Æ nmax,
ÎXi ≠ m0

X
(Wi)ÎP,2 Æ ÎXiÎP,2 by Lemma 3.C.2 and similarly for Yi, ÎXiÎP,2

and ÎYiÎP,2 are bounded by Assumption 3.B.2.2 and Hölder’s inequality, Zi

is bounded by Assumption 3.B.2.3, V≠1
i = (Zi�ZT

i
+ 1ni

)≠1 is bounded by
Assumption 3.B.3.2, Î÷0 ≠ ÷ÎP,2 Æ ”8

N
Æ ”2

N
holds by Assumption 3.B.4.1 for

N large enough, and � is bounded by Assumption 3.B.3.1. Therefore, we infer
the claim.

Lemma 3.C.9. Let ÷ œ T , and consider the function class defined by
F÷ := {Âj(·; ◊, ÷) : j œ [d + 1 + q2], ◊ œ �}. Let i œ [N ] and ◊1, ◊2 œ �.
Then, there exists a function h œ L2 such that for all f◊1, f◊2 œ F÷, we have

|f◊1(·) ≠ f◊2(·)| Æ h(·)Î◊1 ≠ ◊2Î.

Proof. Let i œ [N ], and consider the grouped observations Si of group i.
Independently of i, the number of observations ni from this group is bounded
by nmax < Œ.

Let ÷ = (mX , mY ) œ T , and let ◊1, ◊2 œ �. Denote by Vi,1 := Zi�1ZT

i
+1ni

,
and denote by Vi,2 := Zi�2ZT

i
+ 1ni

. Moreover, denote by RXi,÷
:= Xi ≠

mX(Wi) and by RYi,÷
:= Yi ≠ mY (Wi). Furthermore, consider indices

Ÿ, ÿ œ [q], and let Â—(Si; ◊, ÷) := Ò—¸i(◊, ÷), let Â‡2(Si; ◊, ÷) := Ò‡2¸i(◊, ÷),
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and let Â�Ÿ,ÿ
(Si; ◊, ÷) := Ò�Ÿ,ÿ

¸i(◊, ÷). Observe that

V≠1
i,1 ≠ V≠1

i,2 = V≠1
i,1

1
Vi,2 ≠ Vi,1

2
V≠1

i,2 (3.18)

and
1
‡2

1
≠ 1

‡2
2

=
1
‡2

1
2≠11

‡2
2 ≠ ‡2

1
21

‡2
2

2≠1 (3.19)

hold. Thus, we have

Â—(Si; ◊1, ÷) ≠ Â—

1
Si; ◊2, ÷

2

=
A

1
‡

2
1

≠ 1
‡

2
2

B

RT

Xi,÷
V≠1

i,1
1
RYi,÷

≠ RT

Xi,÷
—1

2
+ 1

‡
2
2
RT

Xi,÷
V≠1

i,1
1
Vi,2 ≠ Vi,1

2
V≠1

i,2 RYi,÷

≠ 1
‡

2
2
RT

Xi,÷

A

V≠1
i,1 RXi,÷

(—1 ≠ —2) + V≠1
i,1

1
Vi,2 ≠ Vi,1

2
V≠1

i,2 RXi,÷
—2

B

,

and

Â‡2(Si; ◊1, ÷) ≠ Â‡2
1
Si; ◊2, ÷

2

= ni

2

A
1
‡

2
2

≠ 1
‡

2
1

B

+ 1
2(‡2

1)2

1
RYi,÷

≠ RXi,÷
—1

2
T V≠1

i,1
1
Vi,2 ≠ Vi,1

2
V≠1

i,2
1
RYi,÷

≠ RXi,÷
—1

2

+1
2

A
1
‡

2
1

≠ 1
‡

2
2

B1
RYi,÷

≠ RXi,÷
—1

2
T V≠1

i,2
1
RYi,÷

≠ RXi,÷
—1

2

+ 2
2(‡2

2)2

1
RYi,÷

≠ RXi,÷
—2

2
V≠1

i,2 RXi,÷
(—2 ≠ —1)

+ 1
2(‡2

2)2 (—2 ≠ —1)T RT

Xi,÷
V≠1

i,2 RXi,÷
(—2 ≠ —1),

and

Â�Ÿ,ÿ
(Si; ◊1, ÷) ≠ Â�Ÿ,ÿ

1
Si; ◊2, ÷

2

= ≠1
2

qni

t,u=1

A

V≠1
i,1

1
Vi,2 ≠ Vi,1

2
V≠1

i,2

B

t,u

(Zi)t,Ÿ(ZT

i
)ÿ,u

+1
2

qni

t,u=1

A
1
‡

2
1

1
RYi,÷

≠ RXi,÷
—1

2

t

·
1
RYi,÷

≠ RXi,÷
—1

2

u

1
V≠1

i,1 (Zi)·,Ÿ(ZT

i
)ÿ,·V≠1

i,1
2

t,u

≠ 1
‡

2
2

1
RYi,÷

≠ RXi,÷
—2

2

t

1
RYi,÷

≠ RXi,÷
—2

2

u

1
V≠1

i,2 (Zi)·,Ÿ(ZT

i
)ÿ,·V≠1

i,2
2

t,u

B

,

where for t, u œ [ni], we have

1
‡

2
1

1
RYi,÷

≠ RXi,÷
—1

2

t

1
RYi,÷

≠ RXi,÷
—1

2

u

1
V≠1

i,1 (Zi)·,Ÿ(ZT

i
)ÿ,·V≠1

i,1
2

t,u

=
A

1
‡

2
1

≠ 1
‡

2
2

B1
RYi,÷

≠ RXi,÷
—1

2

t

1
RYi,÷

≠ RXi,÷
—1

2

u

1
V≠1

i,1 (Zi)·,Ÿ(ZT

i
)ÿ,·V≠1

i,1
2

t,u

+ 1
‡

2
2

1
RYi,÷

≠ RXi,÷
—1

2

t

1
RYi,÷

≠ RXi,÷
—1

2

u

1
V≠1

i,1 (Zi)·,Ÿ(ZT

i
)ÿ,·V≠1

i,1
2

t,u
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and
1
RYi,÷

≠ RXi,÷
—1

2

t

1
RYi,÷

≠ RXi,÷
—1

2

u

1
V≠1

i,1 (Zi)·,Ÿ(ZT

i
)ÿ,·V≠1

i,1
2

t,u

≠
1
RYi,÷

≠ RXi,÷
—2

2

t

1
RYi,÷

≠ RXi,÷
—2

2

u

1
V≠1

i,2 (Zi)·,Ÿ(ZT

i
)ÿ,·V≠1

i,2
2

t,u

=
1
RYi,÷

≠ RXi,÷
—2

2

t

1
RYi,÷

≠ RXi,÷
—2

2

u

·
A1

V≠1
i,1 ≠ V≠1

i,2
2

t,·(Zi)·,Ÿ
1
V≠1

i,1 ≠ V≠1
i,2

2

u,·(Zi)·,ÿ

+
1
V≠1

i,1 ≠ V≠1
i,2

2

t,·(Zi)·,Ÿ
1
V≠1

i,2
2

u,·(Zi)·,ÿ

+
1
V≠1

i,2
2

t,·(Zi)·,Ÿ
1
V≠1

i,1 ≠ V≠1
i,2

2

u,·(Zi)·,ÿ

B

+
A1

RXi,÷
(—2 ≠ —1)

2

t

1
RYi,÷

≠ RXi,÷
—2

2

u

+
1
RYi,÷

≠ RXi,÷
—2

2

t

1
RXi,÷

(—2 ≠ —1)
2

u

+
1
RXi,÷

(—2 ≠ —1)
2

t

1
RXi,÷

(—2 ≠ —1)
2

u

B1
V≠1

i,1
2

t,·(Zi)·,Ÿ
1
V≠1

i,1
2

u,·(Zi)·,ÿ.

Due to (3.18), the terms V≠1
i,1 ≠ V≠1

i,2 can be represented in terms of Vi,2 ≠ Vi,1.
Due to (3.19), the terms (‡2

1)≠1 ≠ (‡2
2)≠1 can be represented in terms of ‡2

2 ≠‡2
1.

Recall that ni Æ nmax, ÎXi ≠ m0
X

(Wi)ÎP,2 Æ ÎXiÎP,2 by Lemma 3.C.2 and
similarly for Yi, ÎXiÎP,2 and ÎYiÎP,2 are bounded by Assumption 3.B.2.2 and
Hölder’s inequality, Zi is bounded by Assumption 3.B.2.3, V≠1

i,1 = (Zi�1ZT

i
+

1ni
)≠1 and V≠1

i,2 = (Zi�2ZT

i
+1ni

)≠1 are bounded by Assumption 3.B.3.2, mX

and mY are square integrable by Assumption 3.B.4.1, and � is bounded by
Assumption 3.B.3.1. Therefore, we infer the claim.

Lemma 3.C.10. Consider

I2 = sup
◊œ�

..... EnT,k

Ë
Â

1
S; ◊, ÷̂I

c

k

2È
≠ EP

C

EnT,k

Ë
Â

1
S; ◊, ÷̂I

c

k

2ÈD.....

as in (3.14). We have I2 . N≠ 1
2 with P -probability 1 ≠ o(1).

Proof. The proof of the statement follows from Lemma 3.C.11.

A version of the following lemma with not only independent but also identically
distributed random variables is presented in Chernozhukov et al. (2018, Lemma
6.2) and in Chernozhukov et al. (2014, Theorem 5.1, Corollary 5.1). However,
as we subsequently show, their results can be generalized to only requiring
independence.

Lemma 3.C.11. (Maximal Inequality: Chernozhukov et al. (2018, Lemma
6.2); Chernozhukov et al. (2014, Theorem 5.1, Corollary 5.1)) Let ÷ œ T ,
and consider the function class F÷ := {Âj(·; ◊, ÷) : j œ [d + 1 + q2], ◊ œ
�}. Suppose that F÷ Ø supfœF÷

|f | is a measurable envelope for F÷ with
ÎF÷ÎP,p < Œ. Let k œ [K], and let M := maxiœIk

F÷(Si). Let · 2 > 0 be
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a positive constant satisfying supfœF÷
ÎfÎ2

P,2 Æ · 2 Æ ÎF÷Î2
P,2 < Œ, where

we write ÎÏÎ2
P,2 = 1

|Ik|
q

iœIk
EP [Ï2(Si)] for functions Ï. Suppose there exist

constants a Ø e and v Ø 1 such that for all 0 < Á Æ 1,

log sup
Q

N(ÁÎF÷ÎQ,2, F÷, Î·ÎQ,2) Æ v log(a/Á) (3.20)

holds, where Q runs over the class {|Ik|≠1 q
iœIk

Qi : Qi a probability measure}
of measures. Consider the empirical process

GP,Ik
[Â(S)] := 1

Ò
|Ik|

ÿ

iœIk

1
Â(Si) ≠ EP [Â(Si)]

2
.

Then, we have

EP [ÎGP,Ik
ÎF÷

] Æ C ·
Q

a
Ú

v· 2 log
1
aÎF÷ÎP,2·≠1

2
+ vÎMÎP,2Ò

|Ik|
log

1
aÎF÷ÎP,2·

≠12
R

b,

(3.21)
where C is an absolute constant. Moreover, for every t Ø 1, with probability
> 1 ≠ t≠p

2 , we have

ÎGP,Ik
ÎF÷

Æ (1 + –) EP [ÎGP,Ik
ÎF÷

]
+C(p)

A

(· + |Ik|≠ 1
2 ÎMÎP,p)

Ô
t + –≠1|Ik|≠ 1

2 ÎMÎP,2t
B (3.22)

for all – > 0, where C(p) > 0 is a constant depending only on p. In
particular, setting a Ø |Ik| and t = log(|Ik|), with probability > 1 ≠ c ·
(log(|Ik|))≠1 for some constant c, we have

ÎGP,Ik
ÎF÷

Æ C(p, c)
Q

a·
Ú

v log
1
aÎF÷ÎP,2·≠1

2
+ vÎMÎP,2Ò

|Ik|
log

1
aÎF÷ÎP,2·

≠12
R

b,

where ÎMÎP,p Æ |Ik|
1
p ÎF÷ÎP,p and C(p, c) > 0 is a constant depending only

on p and c.

Proof. Observe that an envelope F÷ as described in the lemma exists due to
Lemma 3.C.9. Consequently, statement (3.20) holds with a = diam(�) due
to van der Vaart (1998, Example 19.7) and due to Lemma 3.C.9. Liu et al.
(2021) proceed similarly to establish a similar claim. The proof of Chernozhukov
et al. (2014, Corollary 5.1) can be adapted to verify statement (3.21), and the
proof of Chernozhukov et al. (2014, Theorem 5.1) can be adapted to show
statement (3.22). Adaptations are required because these two results are stated
for independent and identically distributed data. Our grouped data {Si}iœ[N ]
is groupwise independent, but not identically distributed because a di�erent
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number of observations may be available for the di�erent groups i œ [N ].
Subsequently, we describe these adaptations.

The proof of Chernozhukov et al. (2014, Theorem 5.1) is based on Boucheron
et al. (2005, Theorem 12). The latter result is an inequality for functions
of independent random variables and does not require identically distributed
variables. Thus, statement (3.22) is established in our setting.

Also the proof of Chernozhukov et al. (2014, Theorem 5.2) only requires
independent but not necessarily identically distributed random variables. Hence,
the Corollary 5.1 of Theorem 5.2 in Chernozhukov et al. (2014) remains to hold
in our setting, and thus statement (3.21) is established as well.

3.C.4 | Asymptotic Distribution of the Fixed-E�ects Estimator

Proof of Theorem 3.2.2. Fix a sequence {PN}NØ1 of probability measures
such that PN œ PN for all N Ø 1. Because this sequence is chosen arbitrarily, it
su�ces to show that (3.8) holds along {PN}NØ1 to infer that it holds uniformly
over P œ PN .

Recall the notations „RIk

Xi
= Xi ≠ m̂

I
c

k

X
(Wi) and „RIk

Yi
= Yi ≠ m̂

I
c

k

Y
(Wi) for

i œ [N ]. Observe that the estimator —̂ in (3.7) can alternatively be represented
by

—̂ = 1
K

Kÿ

k=1

Q

a arg min
—

1
nT,k

ÿ

iœIk

1 „RIk

Yi
≠ „RIk

Xi
—

2
T V̂≠1

i,k

1 „RIk

Yi
≠ „RIk

Xi
—

2
R

b

for V̂i,k := Zi�̂kZT

i
+ 1ni

because the Gaussian likelihood decouples. In
particular, —̂ has a generalized least squares representation. Observe furthermore
that we have
Ô

NT (—̂ ≠ —0)

= 1
K

qK

k=1

A
1

nT,k

q
iœIk

(„RIk

Xi
)T V̂≠1

i,k

„RIk

Xi

B≠1 Ô
NT

nT,k

q
iœIk

(„RIk

Xi
)T V̂≠1

i,k

1 „RIk

Yi
≠ „RIk

Xi
—0

2
.

(3.23)
Let k œ [K]. We have

Ô
NT

nT,k

q
iœIk

(„RIk

Xi
)T V̂≠1

i,k

1 „RIk

Yi
≠ „RIk

Xi
—0

2

=
Ô

NT

nT,k

q
iœIk

(„RIk

Xi
)T V≠1

i,0
1 „RIk

Yi
≠ „RIk

Xi
—0

2

+
Ô

NT

nT,k

q
iœIk

(„RIk

Xi
)T

1
V̂≠1

i,k
≠ V≠1

i,0
21 „RIk

Yi
≠ „RIk

Xi
—0

2
.

(3.24)

We analyze the two terms in the above decomposition (3.24) individually. We
start with the second term. For i œ [N ], ÷ œ T , and � from �, define the
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function

Ï(Si; �, ÷)
:=

1
Xi ≠ mX(Wi)

2
T (Zi�ZT

i
+ 1ni

)≠1
A

Yi ≠ mY (Wi) ≠
1
Xi ≠ mX(Wi)

2
—0

B

.

(3.25)
We have

Ô
NT

nT,k

q
iœIk

(„RIk

Xi
)T

1
V̂≠1

i,k
≠ V≠1

i,0
21 „RIk

Yi
≠ „RIk

Xi
—0

2

=
Ô

NT EnT,k

Ë
Ï(S; �̂k, ÷̂I

c

k) ≠ Ï(S; �0, ÷̂I
c

k)
È

=
Ô

NT EnT,k

Ë
Ï(S; �̂k, ÷̂I

c

k) ≠ Ï(S; �0, ÷0)
È

≠
Ô

NT EnT,k

Ë
Ï(S; �0, ÷̂I

c

k) ≠ Ï(S; �0, ÷0)
È
.

(3.26)

Next, we analyze the two terms in (3.26). The second term is of order
...
Ô

NT EnT,k

Ë
Ï(S; �0, ÷̂I

c

k) ≠ Ï(S; �0, ÷0)
È... = oPN

(1) (3.27)

by Lemma 3.C.12. The first term in (3.26) is bounded by
...
Ô

NT EnT,k

Ë
Ï(S; �̂k, ÷̂I

c

k) ≠ Ï(S; �0, ÷0)
È...

Æ supÎ�≠�0ÎÆ”N

...
Ô

NT EnT,k

Ë
Ï(S; �, ÷̂I

c

k) ≠ Ï(S; �0, ÷0)
È....

with PN -probability 1≠o(1) due to Lemma 3.C.7 because we have ”2
N

Æ ”N for
N large enough. Let � be from � with Î� ≠ �0Î Æ ”N . With PN -probability
1 ≠ o(1), we have

Ô
NT EnT,k

Ë
Ï(S; �, ÷̂I

c

k) ≠ Ï(S; �0, ÷0)
È
. ”N (3.28)

by Lemma 3.C.15. Consequently, the second term in (3.24) is of order oPN
(1)

due to (3.26), (3.27), and (3.28). Subsequently, we analyze the first term
in (3.24). By Lemma 3.C.12, we have
Ô

NT

nT,k

ÿ

iœIk

(„RIk

Xi
)T V≠1

i,0
1 „RIk

Yi
≠„RIk

Xi
—0

2
=

Ô
NT

nT,k

ÿ

iœIk

RT

Xi
V≠1

i,0
1
RYi

≠RXi
—0

2
+oPN

(1).

Denote by

TN,i := EPN

S

URT

Xi
V≠1

i,0
1
RYi

≠ RXi
—0

2A

RT

Xi
V≠1

i,0
1
RYi

≠ RXi
—0

2B
T

T

V.

We have
TN,i = EPN

Ë
RT

Xi
V≠1

i,0 RXi

È
(3.29)

due to Assumption 3.2.1.4. Furthermore, recall T N = 1
NT

qN

i=1 TN,i from
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Assumption 3.B.2.8. Due to Assumption 3.B.2.7, the singular values of the
matrices TN,i, i œ [N ] are uniformly bounded away from 0 by cmin > 0. Thus,
the smallest eigenvalue ‹2

N
of T N satisfies

‹2
N

Ø 1
NT

Nÿ

i=1
⁄min

A

TN,i

B

Ø 1
nmax

cmin > 0 (3.30)

because we have NT Æ Nnmax with nmax < Œ. Next, we verify the Lindeberg
condition. Due to the Cauchy-Schwarz inequality, Markov’s inequality, Hölder’s
inequality, and (3.30), we have

1
NT ‹

2
N

qN

i=1 EPN

S

U
...RT

Xi
V≠1

i,0
1
RYi

≠ RXi
—0

2...
2
1Ó...RT

Xi
V≠1

i,0 (RYi
≠RXi

—0)
...

2
ØÁNT ‹

2
N

Ô

T

V

Æ 1
NT ‹

2
N

qN

i=1
...RT

Xi
V≠1

i,0
1
RYi

≠ RXi
—0

2...
2
PN ,4

·
Ú

PN

1...RT
Xi

V≠1
i,0 (RYi

≠ RXi
—0)

...
2 Ø ÁNT ‹2

N

2

Æ 1
NT ‹

2
N

qN

i=1
...RT

Xi
V≠1

i,0
1
RYi

≠ RXi
—0

2...
2
PN ,4

...RT

Xi
V≠1

i,0
1
RYi

≠ RXi
—0

2...
PN ,2

·
Ú

1
ÁNT ‹

2
N

Æ 1
NT ‹

2
N

qN

i=1
...RT

Xi
V≠1

i,0
1
RYi

≠ RXi
—0

2...
3
PN ,4

Ú
1

ÁNT ‹
2
N

.
Ú

1
ÁNT

NæŒ≠æ 0

for Á > 0 by Assumptions 3.B.2.2, 3.B.3.1, 3.B.3.2, and Lemma 3.C.1. Conse-
quently, we have

(T N )≠ 1
2

1Ô
NT

Nÿ

i=1
RT

Xi
V≠1

i,0
1
RYi

≠ RXi
—0

2 Læ Nd(0,1)

by Hansen (2017, Theorem 6.9.2). Thus, we infer

(T N )≠ 1
2
Ô

NT
1
K

qK

k=1
1

nT,k

q
iœIk

RT

Xi
V≠1

i,0
1
RYi

≠ RXi
—0

2

= (T N )≠ 1
2 1Ô

NT

qN

i=1 RT

Xi
V≠1

i,0
1
RYi

≠ RXi
—0

2
+ oPN

(1)

due to nT,k = NT

K
= o(1).

Finally, the term 1
nT,k

q
iœIk

(„RIk

Xi
)T V̂≠1

i,k

„RIk

Xi
in (3.23) equals T0 + oPN

(1) due
to Lemma 3.C.18. Therefore, we have

Ô
NT T

1
2

0 (—̂≠—0) = (T N )≠ 1
2

1Ô
NT

Nÿ

i=1
RT

Xi
V≠1

i,0
1
RYi

≠RXi
—0

2
+oPN

(1) Læ Nd(0,1).

Lemma 3.C.12. Let k œ [K]. For i œ [N ] and ÷ œ T , consider the
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function

Ï(Si; �0, ÷)
=

1
Xi ≠ mX(Wi)

2
T (Zi�0ZT

i
+ 1ni

)≠1
A

Yi ≠ mY (Wi) ≠
1
Xi ≠ mX(Wi)

2
—0

B

as in (3.25), but where we consider �0 instead of general � from �. We
have

......

Ô
NT

nT,k

ÿ

iœIk

Ï(Si; �0, ÷̂I
c

k) ≠
Ô

NT

nT,k

ÿ

iœIk

Ï(Si; �0, ÷0)
......

= OP (”N ).

Proof of Lemma 3.C.12. A similar proof that is modified from Chernozhukov
et al. (2018) is presented in Emmenegger and Bühlmann (2021, Lemma G.16).
For notational simplicity, we omit the argument �0 in Ï and write Ï(Si; ÷)
instead of Ï(Si; �0, ÷). By the triangle inequality, we have

.....

Ô
NT

nT,k

q
iœIk

Ï(Si; ÷̂I
c

k) ≠
Ô

NT

nT,k

q
iœIk

Ï(Si; ÷0)
.....

=
.....

Ô
NT

nT,k

q
iœIk

1
Ï(Si; ÷̂I

c

k) ≠ s
Ï(si; ÷̂I

c

k) dP (si)
2

≠
Ô

NT

nT,k

q
iœIk

1
Ï(Si; ÷0) ≠ s

Ï(si; ÷0) dP (si)
2

+
Ô

NT
1

nT,k

q
iœIk

s 1
Ï(si; ÷̂I

c

k) ≠ Ï(si; ÷0)
2

dP (si)
.....

Æ I1 +
Ô

NT I2,

where I1 := ÎMÎ for

M :=
Ô

NT

nT,k

q
iœIk

Q

aÏ(Si; ÷̂I
c

k) ≠ s
Ï(si; ÷̂I

c

k) dP (si)
R

b≠
Ô

NT

nT,k

q
iœIk

Q

aÏ(Si; ÷0) ≠ s
Ï(si; ÷0) dP (si)

R

b,

and where

I2 :=
......

1
nT,k

ÿ

iœIk

⁄ 1
Ï(si; ÷̂I

c

k) ≠ Ï(si; ÷0)
2

dP (si)
......
.

Subsequently, we bound the two terms I1 and I2 individually. First, we bound
I1. Because the dimensions d of —0 and q of the random e�ects model are fixed,
it is su�cient to bound one entry of the d-dimensional column vector M . Let
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t œ [d]. On the event EN that holds with P -probability 1 ≠ o(1), we have

EP

Ë
ÎMtÎ2---SI

c

k

È

= NT

n
2
T,k

q
iœIk

EP

Ë
|Ït(Si; ÷̂I

c

k) ≠ Ït(Si; ÷0)|2
---SI

c

k

È

+ NT

n
2
T,k

q
i,jœIk,i ”=j EP

Ë1
Ït(Si; ÷̂I

c

k) ≠ Ït(Si; ÷0)
2

·
1
Ït(Sj; ÷̂I

c

k) ≠ Ït(Sj; ÷0)
2---SI

c

k

È

≠2NT

n
2
T,k

q
iœIk

EP

Ë
Ït(Si; ÷̂I

c

k) ≠ Ït(Si; ÷0)
---SI

c

k

È

· q
jœIk
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Ë
Ït(Sj; ÷̂I

c

k) ≠ Ït(Sj; ÷0)
---SI

c

k

È

+ NT

n
2
T,k

q
iœIk

EP

Ë
Ït(Si; ÷̂I

c

k) ≠ Ït(Si; ÷0)
---SI

c

k

È2

+ NT

n
2
T,k

q
i,jœIk,i ”=j EP

Ë
Ït(Si; ÷̂I

c

k) ≠ Ït(Si; ÷0)
---SI

c

k

È

· EP

Ë
Ït(Sj; ÷̂I

c

k) ≠ Ït(Sj; ÷0)
---SI

c

k

È

Æ NT

n
2
T,k

q
iœIk

EP

Ë
|Ït(Si; ÷̂I

c

k) ≠ Ït(Si; ÷0)|2
---SI

c

k

È

Æ sup÷œT
NT

n
2
T,k

q
iœIk

EP

Ë
ÎÏ(Si; ÷) ≠ Ï(Si; ÷0)Î2È

(3.31)

because Si and Sj are independent for i ”= j. Due to Lemma 3.C.13, we have
EP [I2

1 |SI
c

k
] . ”4

N
Æ ”2 for N large enough because NT

nT,k

is of order O(1) by
assumption. Thus, we infer I1 = OP (”N ) by Lemma 4.I.12. Subsequently, we
bound I2. Let i œ Ik. For r œ [0, 1], we introduce the function

fk(r) := 1
nT,k

ÿ

iœIk

A

EP

Ë
Ï

1
Si; ÷0 + r(÷̂I

c

k ≠ ÷0)
2---SI

c

k

È
≠ EP [Ï(Si; ÷0)]

B

.

Observe that I2 = Îfk(1)Î holds. We apply a Taylor expansion to this function
and obtain

fk(1) = fk(0) + f Õ
k
(0) + 1

2f ÕÕ
k
(r̃)

for some r̃ œ (0, 1). We have

fk(0) = 1
nT,k

ÿ

iœIk

A

EP

Ë
Ï(Si; ÷0)

---SI
c

k

È
≠ EP [Ï(Si; ÷0)]

B

= 0.

Furthermore, the score Ï satisfies the Neyman orthogonality property f Õ
k
(0) = 0

on the event EN that holds with P -probability 1 ≠ o(1) because we have for all
i œ Ik and ÷ œ T that

ˆ

ˆr

-----
r=0

EP

Ë
Ï

1
Si; ÷0 + r(÷ ≠ ÷0)

2È

= ˆ

ˆr

-----
r=0

EP

S

U
A

Xi ≠ m0
X

(Wi) ≠ r
1
mX(Wi) ≠ m0

X
(Wi)

2B
T

(Zi�0ZT

i
+ 1ni

)≠1
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·
Q

aYi ≠ m0
Y

(Wi) ≠ r
1
mY (Wi) ≠ m0

Y
(Wi)

2

≠
A

Xi ≠ m0
X

(Wi) ≠ r
1
mX(Wi) ≠ m0

X
(Wi)

2B

—0

R

b

T

V

= EP

C

≠
1
mX(Wi) ≠ m0

X
(Wi)

2
T (Zi�0ZT

i
+ 1ni

)≠1

·
A

Yi ≠ m0
Y

(Wi) ≠
1
Xi ≠ m0

X
(Wi)

2
—0

B

≠
1
Xi ≠ m0

X
(Wi)

2
(Zi�0ZT

i
+ 1ni

)≠1

·
A

mY (Wi) ≠ m0
Y

(Wi) ≠
1
mX(Wi) ≠ m0

X
(Wi)

2
—0

BD

=0 (3.32)

holds because we can apply the tower property to condition on Wi inside
the above expectations, and because m0

X
and m0

Y
are the true conditional

expectations. Moreover, we have

ˆ
2

ˆr2 EP

Ë
Ï

1
Si; ÷0 + r(÷ ≠ ÷0)

2È

= 2 EP

S

U
1
mX(Wi) ≠ m0

X
(Wi)

2
T (Zi�0ZT

i
+ 1ni

)≠1

·
A

mY (Wi) ≠ m0
Y

(Wi) ≠
1
mX(Wi) ≠ m0

X
(Wi)

2
—0

BT

V

for all i œ Ik. On the event EN that holds with P -probability 1 ≠ o(1), we have

Îf ÕÕ
k
(r̃)Î Æ sup

rœ(0,1)
Îf ÕÕ

k
(r)Î . ”NN≠ 1

2

by Lemma 3.C.14. Therefore, we conclude
.....

Ô
NT

nT,k

ÿ

iœIk

Ï(Si; ÷̂I
c

k) ≠
Ô

NT

nT,k

ÿ

iœIk

Ï(Si; ÷0)
..... Æ I1 +

Ô
NT I2 = OP (”N ).

Lemma 3.C.13. We have

sup
÷œT

1
nT,k

ÿ

iœIk

EP

Ë
ÎÏ(Si; �0, ÷) ≠ Ï(Si; �0, ÷0)Î2È

. ”4
N

.

Proof of Lemma 3.C.13. A similar proof that is modified from Chernozhukov
et al. (2018) is presented in Emmenegger and Bühlmann (2021, Lemma G.15,
Lemma G.16). For notational simplicity, we omit the argument �0 in Ï and
write Ï(Si; ÷) instead of Ï(Si; �0, ÷). Recall the notation V0,i = Zi�0ZT

i
+1ni
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for i œ [N ]. Because we have supiœ[N ]ÎV≠1
0,i Î Æ C3 by Assumption 3.B.3.2, we

have
1

nT,k

ÿ

iœIk

EP

Ë...Ï(Si; ÷) ≠ Ï(Si; ÷0)
...
È
. ”8

N
(3.33)

by the triangle inequality, Hölder’s inequality, and because we have for all
i œ Ik that ni Æ nmax, ÎXi ≠ m0

X
(Wi)ÎP,2 Æ ÎXiÎP,2 by Lemma 3.C.2 and

similarly for Yi, ÎXiÎP,2 and ÎYiÎP,2 are bounded by Assumption 3.B.2.2 and
Hölder’s inequality, (Zi�0ZT

i
+ 1ni

)≠1 is bounded by Assumption 3.B.3.2, and
Î÷0 ≠ ÷ÎP,2 Æ ”8

N
holds by Assumption 3.B.4.1.

Furthermore, we have

EP

Ë
ÎÏ(Si; ÷) ≠ Ï(Si; ÷0)Î2È

Æ EP [ÎÏ(Si; ÷) ≠ Ï(Si; ÷0)Î]
+ EP

Ë
ÎÏ(Si; ÷) ≠ Ï(Si; ÷0)Î21ÎÏ(Si;÷)≠Ï(Si;÷0)ÎØ1

È
,

(3.34)

and we have

EP

Ë
ÎÏ(Si; ÷) ≠ Ï(Si; ÷0)Î21ÎÏ(Si;÷)≠Ï(Si;÷0)ÎØ1

È

Æ
...Ï(Si; ÷) ≠ Ï(Si; ÷0)

...
2
P,4

Ò
P (ÎÏ(Si; ÷) ≠ Ï(Si; ÷0)Î Ø 1) (3.35)

by Hölder’s inequality. Observe that the term
...Ï(Si; ÷) ≠ Ï(Si; ÷0)

...
2
P,4 (3.36)

is upper bounded by the triangle inequality, Hölder’s inequality, because we have
ni Æ nmax, ÎXi ≠ m0

X
(Wi)ÎP,p . ÎXiÎP,p by Lemma 3.C.1 and similarly for

Yi, ÎXiÎP,p and ÎYiÎP,p are bounded by Assumption 3.B.2.2, (Zi�0ZT

i
+1ni

)≠1

is bounded by Assumption 3.B.3.2, and Î÷0 ≠ ÷ÎP,p is upper bounded by
Assumption 3.B.4.1. By Markov’s inequality, we furthermore have

P (ÎÏ(Si; ÷) ≠ Ï(Si; ÷0)Î Ø 1) Æ EP [ÎÏ(Si; ÷) ≠ Ï(Si; ÷0)Î] Æ ”8
N

(3.37)

due to (3.33). Therefore, we have

sup
÷œT

1
nT,k

ÿ

iœIk

EP

Ë
ÎÏ(Si; ÷) ≠ Ï(Si; ÷0)Î2È

. ”8
N

+ ”4
N
. ”4

N

for N large enough due to (3.33)–(4.29).
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Lemma 3.C.14. Let ÷ œ T , and let i œ [N ]. We have

EP

S

U
1
mX(Wi) ≠ m0

X
(Wi)

2
T V≠1

0,i

·
A

mY (Wi) ≠ m0
Y

(Wi) ≠
1
mX(Wi) ≠ m0

X
(Wi)

2
—0

BT

V . ”NN≠ 1
2 .

Proof of Lemma 3.C.14. The claim follows by applying Hölder’s inequality
and the Cauchy-Schwarz inequality because supiœ[N ]ÎV≠1

0,i Î is upper bounded
by Assumption 3.B.3.2, � is bounded, and

ÎmX(Wi) ≠ m0
X

(Wi)ÎP,2
·
1
ÎmY (Wi) ≠ m0

Y
(Wi)ÎP,2 + ÎmX(Wi) ≠ m0

X
(Wi)ÎP,2

2
Æ ”NN≠ 1

2

holds by Assumption 3.B.4.1.

Lemma 3.C.15. Let � from � with Î◊ ≠ ◊0Î Æ ”2
N

. With P -probability
1 ≠ o(1), we have

Ô
NT EnT,k

Ë
Ï(S; �, ÷̂I

c

k) ≠ Ï(S; �0, ÷0)
È
. ”N .

Proof of Lemma 3.C.15. Observe that we have
Ô

NT EnT,k

Ë
Ï(S; �, ÷̂I

c

k) ≠ Ï(S; �0, ÷0)
È

=
Ú

NT

nT,k

Ú
|Ik|
nT,k

GP,Ik

Ë
Ï(S; �, ÷̂I

c

k) ≠ Ï(S; �0, ÷0)
È

+
Ô

NT EP

Ë
EnT,k

[Ï(S; �, ÷̂I
c

k) ≠ Ï(S; �0, ÷0)]
---SI

c

k

È
,

where the second summand is bounded by ”N due to Lemma 3.C.17, and where
we recall the empirical process notation

GP,Ik
[Ï(S)] = 1

Ò
|Ik|

ÿ

iœIk

A

Ï(Si) ≠
⁄

Ï(si) dP (si)
B

for some function Ï. Consider the function class

F2 :=
Ó
Ïj(·; �, ÷̂I

c

k) ≠ Ïj(·; �0, ÷0) : j œ [d], Î� ≠ �0Î Æ ”2
N

Ô
.

We have
Ú

NT

nT,k

Ú
|Ik|
nT,k

= O(1) by assumption. Therefore, it su�ces to bound

ÎGP,Ik
ÎF2 = sup

fœF2
|GP,Ik

[f ]|.

To bound this term, we apply Lemma 3.C.11 conditional on SI
c

k
to the empirical

process {GP,Ik
[f ] : f œ F2} with the envelope F2 := F

÷̂
I
c

k
+ F÷0 and · = CrÕ

N,k
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for a su�ciently large constant C, where rÕ
N,k

is defined by

rÕ
N,k

:= sup
÷œT ,

Î�≠�0ÎÆ”
2
N

.....
1

|Ik|
ÿ

iœIk

Ï(Si; �, ÷) ≠ Ï(Si; �0, ÷0)
.....
P,2

(3.38)

and satisfies supfœF2ÎfÎP,2 . rÕ
N,k

with P -probability 1 ≠ o(1). The estimated
nuisance parameter ÷̂I

c

k can be treated as fixed if we condition on SI
c

k
. Thus,

with P -probability 1 ≠ o(1), we have

sup
fœF2

|GP,Ik
[f ]| . rÕ

N,k

ı̂ııÙlog
A 1

rÕ
N,k

B

+ |Ik|≠
1
2+ 1

p log(|Ik|) (3.39)

because ÎF2ÎP,p = ÎF
÷̂

I
c

k
+ F÷0ÎP,p is finite by the triangle inequality and

Lemma 3.C.9, because F2 µ F
÷̂

I
c

k
≠ F÷0, and because the uniform covering

entropy satisfies

log supQ N
1
ÁÎF

÷̂
I
c

k
+ F÷0ÎQ,2, F

÷̂
I
c

k
≠ F÷0, Î·ÎQ,2

2

Æ log supQ N
1

Á

2ÎF
÷̂

I
c

k
ÎQ,2, F

÷̂
I
c

k
, Î·ÎQ,2

2
+ log supQ N

1
Á

2ÎF÷0ÎQ,2, F÷0, Î·ÎQ,2
2

Æ 2v log
A

2a

‘

B

for all 0 < Á Æ 1 due to Andrews (1986, Proof of Theorem 3) as presented
in Chernozhukov et al. (2018). We have rÕ

N,k
Æ C”2

N
for some constant C

due to Lemma 3.C.16. For N large enough, we have rÕ
N,k

< 1. The function
– : (0, 1) – x ‘æ x

Ò
log(x≠1) œ R is non-negative, increasing for x small

enough, and satisfies limxæ0+ x
Ò

log(x≠1) = 0. Thus, we have –(rÕ
N,k

) = o(1)
and –(rÕ

N,k
) Æ –(C”2

N
) for N large enough. Moreover, we have –(x) .Ô

x for x œ (0, 1), so that we infer –(rÕ
N,k

) . ”N . Because we assumed
|Ik|≠

1
2+ 1

p log(|Ik|) . ”N , we have ÎGP,Ik
ÎF2 . ”N with P -probability 1 ≠ o(1)

as claimed due to (3.39).

Lemma 3.C.16. Let k œ K. Recall

rÕ
N,k

= sup
÷œT ,

Î�≠�0ÎÆ”
2
N

.....
1

|Ik|
ÿ

iœIk

Ï(Si; �, ÷) ≠ Ï(Si; �0, ÷0)
.....
P,2

from (3.38). We have rÕ
N,k

. ”2
N

.

Proof of Lemma 3.C.16. Let ÷ œ T , � from � with Î� ≠ �0Î Æ ”2
N

, and
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i œ [N ]. We have

Ï(Si; �, ÷) ≠ Ï(Si, �0, ÷0)
= Ï(Si; �, ÷) ≠ Ï(Si; �, ÷0) + Ï(Si; �, ÷0) ≠ Ï(Si; �0, ÷0).

Let t œ [d]. We have

ÎEnT,k
[Ït(S; �, ÷) ≠ Ït(S; �, ÷0)]Î2

P,2
= 1

n
2
T,k

q
iœIk

EP

Ë
(Ït(Si; �, ÷) ≠ Ït(Si; �0, ÷0))2È

+ 1
n

2
T,k

q
i,jœIk,i ”=j EP

Ë
Ït(Si; �, ÷) ≠ Ït(Si; �0, ÷0)

È

· EP

Ë
Ït(Sj; �, ÷) ≠ Ït(Sj; �0, ÷0)

È

. ”4
N

due to Si ‹‹ Sj for i ”= j and similar arguments as presented in the proof of
Lemma 3.C.13. Furthermore, we have

ÎEnT,k
[Ï(Si; �, ÷0) ≠ Ï(Si; �0, ÷0)]ÎP,2 . ”2

N

due to the Cauchy-Schwarz inequality, Î� ≠ �0Î Æ ”2
N

, because we have
ni Æ nmax, ÎXi ≠ m0

X
(Wi)ÎP,4 . ÎXiÎP,4 by Lemma 3.C.1 and similarly for

Yi, ÎXiÎP,4 and ÎYiÎP,4 are bounded by Assumption 3.B.2.2 and Hölder’s
inequality, Zi is bounded by Assumption 3.B.2.3, V≠1

i = (Zi�ZT

i
+ 1ni

)≠1 is
bounded by Assumption 3.B.3.2, Î÷0 ≠÷ÎP,p Æ C4 holds by Assumption 3.B.4.1
for N large enough, and � is bounded by Assumption 3.B.3.1. Consequently,
we have rÕ

N,k
. ”2

N
due to the triangle inequality.

Lemma 3.C.17. Let k œ [K]. For � belonging to �, with P -probability
1 ≠ o(1), we have

...
Ô

NT EP

Ë
EnT,k

[Ï(S; �, ÷̂I
c

k) ≠ Ï(S; �0, ÷0)]
---SI

c

k

È... . ”N .

Proof of Lemma 3.C.17. With P -probability 1≠o(1), the machine learning es-
timator ÷̂I

c

k belongs to the nuisance realization set T due to Assumption 3.B.4.2.
Thus, it su�ces to show that the claim holds uniformly over ÷ œ T . Consider
÷ œ T and � belonging to �. For r œ [0, 1], consider the function

fk(r) := EP

Ë
Ï

1
Si; �0 + r(� ≠ �0), ÷0 + r(÷̂I

c

k ≠ ÷0)
2---SI

c

k

È
≠ EP [Ï(Si; �0, ÷0)].

We apply a Taylor expansion to this function and obtain
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fk(0) + f Õ
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(0) + 1

2f ÕÕ
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(r̃)

2
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for some r̃ œ (0, 1). We have fk(0) = 0. Next, we verify the Neyman
orthogonality property f Õ

k
(0) = 0 and the second-order condition f ÕÕ

k
(r) .

”NN≠ 1
2 uniformly over r œ (0, 1), which will conclude the proof. We have
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(3.40)

where we apply the tower property to condition on Wi inside the above
expectation, Assumption 3.2.1.4, and that m0

X
and m0

Y
are the true conditional

expectations. Thus, we have f Õ
k
(0) = 0. Furthermore, we have
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where we apply the tower property to condition on Wi inside the above
expectation, Assumption 3.2.1.4, and that m0

X
and m0

Y
are the true conditional

expectations. All the above summands are bounded by ”NN≠ 1
2 in the L1-norm

due to Hölder’s inequality and Assumptions 3.B.2.2, 3.B.3.1, 3.B.3.2, and 3.B.4.1
because for Ai := mX(Wi)≠m0

X
(Wi) œ Rni◊d, Bi := mY (Wi)≠m0

Y
(Wi)≠

Ai—0 œ Rni, and a nonrandom matrix Di œ Rni◊ni with bounded entries, we
have for j œ [d] that
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holds due to the triangle inequality and Hölder’s inequality. Because we have
ni Æ nmax uniformly over i œ [N ], we infer our claim due to
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Proof of Lemma 3.C.18. Let us introduce the score function
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(3.41)
The last summand EnT,k

[›(S; �0, ÷0)≠EP [›(S; �0, ÷0)]] in (3.41) is of size oP (1)
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due to Markov’s inequality and Assumptions 3.B.2.2, 3.B.3.2, and 3.B.4.1. The
second summand EnT,k

[›(S; �0, ÷̂I
c

k) ≠ ›(S; �0, ÷0)] in (3.41) is of size oP (1) due
to similar arguments as presented in Lemma 3.C.12. This lemma is stated for
a slightly di�erent score function that involves —0, but the proof of this lemma
does not depend on —0. It can be shown that the same arguments are also valid
for the score ›. The first summand EnT,k

Ë
›(S; �̂k, ÷̂I

c

k) ≠ ›(S; �0, ÷̂I
c
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È

in (3.41)
is of order oP (1). To prove this last claim, recall that Î◊̂k ≠ ◊0Î Æ ”N holds
with P -probability 1 ≠ o(1) due to Lemma 3.C.7 and because we have ”2
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(3.42)
The first summand in the decomposition (3.42) is of order oP (1) because we
have for all i œ [N ] that
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holds due to the Cauchy-Schwarz inequality, Hölder’s inequality, and Assump-
tion 3.B.3.2. We have ÎXi≠m0

X
(Wi)ÎP,2 Æ ÎXiÎP,2 < Œ due to Lemma 3.C.2

and Assumption 3.B.2.2. The other summands in (3.42) are of smaller order
than the first summand in (3.42) due to Assumption 3.B.4.1 and similar com-
putations. Therefore, we have
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due to Assumption 3.B.2.8.

3.D | Stochastic Random E�ects Matrices
We considered fixed random e�ects matrices Zi in our model (3.2). However, it
is also possible to consider stochastic random e�ects matrices Zi and to include
the nonparametric variables Wi into the random e�ects matrices. In this case,
we consider the composite random e�ects matrices ÊZi = ’(Zi, Wi) for some
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known function ’ instead of Zi in the partially linear mixed-e�ects model (3.2).
That is, we replace the model (3.2) by the model

Yi = Xi—0 + g(Wi) + ÊZibi + Ái, i œ [N ] (3.43)

with ÊZi = ’(Zi, Wi) and Zi random. We require groupwise independence
Zi ‹‹ Zj for i ”= j of the random e�ects matrices.

If Zi is random, one needs to also condition on it in (3.4), and we need to
assume that the density p(Wi, Xi, Zi) does not depend on ◊. Furthermore, Zi

needs to be such that the Neyman orthogonality properties (3.32) and (3.40)
and Equation (3.29) still hold. For instance, these equations remain valid if
Assumption 3.2.1.4 is replaced by (bi, Ái) ‹‹ (Wi, Xi)|Zi and EP [bi|Zi] = 0
and EP [Ái|Zi] = 0 for all i œ [N ].

Furthermore, the composite random e�ects matrices ÊZi need to satisfy
additional regularity conditions. The Assumptions 3.B.2.3 and 3.B.3.2 need
to be adapted as follows. The first option is to adapt Assumption 3.B.2.3 to:
there exists a finite real constant C Õ

2 such that ÎÊZiÎP,Œ Æ C Õ
2 holds for all

i œ [N ], where Î·ÎP,Œ denotes the LŒ(P )-norm. Then, Assumption 3.B.3.2
needs to be adapted to: there exists a finite real constant C Õ

3 such that we have
Î(ÊZi�ÊZT

i
+ 1ni

)≠1ÎP,Œ Æ C Õ
3. for all i œ [N ] and all � belonging to �.

The Assumptions 3.B.4.1 and 3.B.4.2 formulate the product relationship
of the machine learning estimators’ convergence rates in terms of the L2(P )-
norm. The second option is to consider Lt(P )-norms with t Ø 4 > 2 in these
assumptions instead. Then, it is possible to constrain the Lp(P )-norms of
ÊZi and (ÊZi�ÊZT

i
+ 1ni

)≠1 in Assumptions 3.B.2.3 and 3.B.3.2 instead of their
LŒ(P )-norm. However, the order p, which is specified in Assumption 3.B.2,
needs to be increased to p Ø 29 to allow us to bound the terms in the respective
proofs by Hölder’s inequality.
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4 | Regularizing Double Machine Learn-
ing in Partially Linear Endogenous
Models

Joint work with

Peter Bühlmann

This chapter is based on the manuscript

C. Emmenegger and P. Bühlmann. Regularizing double
machine learning in partially linear endogenous models.
Electronic Journal of Statistics, 15(2):6461–6543, 2021

Abstract
The linear coe�cient in a partially linear model with confounding vari-

ables can be estimated using double machine learning (DML). However, this
DML estimator has a two-stage least squares (TSLS) interpretation and
may produce overly wide confidence intervals. To address this issue, we
propose a regularization and selection scheme, regsDML, which leads to
narrower confidence intervals. It selects either the TSLS DML estimator or
a regularization-only estimator depending on whose estimated variance is
smaller. The regularization-only estimator is tailored to have a low mean
squared error. The regsDML estimator is fully data driven. The regsDML
estimator converges at the parametric rate, is asymptotically Gaussian dis-
tributed, and asymptotically equivalent to the TSLS DML estimator, but
regsDML exhibits substantially better finite sample properties. The regsDML
estimator uses the idea of k-class estimators, and we show how DML and
k-class estimation can be combined to estimate the linear coe�cient in a
partially linear endogenous model. Empirical examples demonstrate our
methodological and theoretical developments. Software code for our regsDML
method is available in the R-package dmlalg.

4.1 | Introduction
Partially linear models (PLMs) combine the flexibility of nonparametric ap-
proaches with ease of interpretation of linear models. Allowing for nonparametric
terms makes the estimation procedure robust to some model misspecifications.
A plaguing issue is potential endogeneity. For instance, if a treatment is not
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randomly assigned in a clinical study, subjects receiving di�erent treatments dif-
fer in other ways than only the treatment (Okui et al., 2012). Another situation
where an explanatory variable is correlated with the error term occurs if the ex-
planatory variable is determined simultaneously with the response (Wooldridge,
2013). In such situations, employing estimation methods that do not account
for endogeneity can lead to biased estimators (Fuller, 1987).

Let us consider the PLM

Y = XT —0 + gY (W ) + hY (H) + ÁY . (4.1)

The covariates X and W and the response Y are observed whereas the variable
H is not observed and acts as a potential confounder. It can cause endogeneity
in the model when it is correlated with X , W , and Y . The variable ÁY denotes
a random error. An overview of PLMs is presented in Härdle et al. (2000).
Semiparametric methods are summarized in Ruppert et al. (2003) and Härdle
et al. (2004), for instance.

Chernozhukov et al. (2018) introduce double machine learning (DML) to
estimate the linear coe�cient —0 in a model similar to (4.1). The central ingre-
dients are Neyman orthogonality and sample splitting with cross-fitting. They
allow estimates of so-called nuisance terms to be plugged into the estimating
equation of —0. The resulting estimator converges at the parametric rate N≠ 1

2 ,
with N denoting the sample size, and is asymptotically Gaussian.

A common approach to cope with endogeneity uses instrumental variables
(IVs). Consider a random variable A that typically satisfies the assumptions of
a conditional instrument (Pearl, 2009). The DML procedure first adjusts A, X ,
and Y for W by regressing out W of them. Then the residual Y ≠ E[Y |W ] is
regressed on X ≠ E[X|W ] using the instrument A ≠ E[A|W ]. The population
parameter is identified by

—0 =
E

Ë
(A ≠ E[A|W ])(Y ≠ E[Y |W ])

È

E
Ë
(A ≠ E[A|W ])(X ≠ E[X|W ])

È (4.2)

if both A and X are 1-dimensional. The restriction to the 1-dimensional case
is only for simplicity at this point. Below, we consider multivariate A and
X . In practice, we insert potentially biased machine learning (ML) estimates
of the nuisance parameters E[A|W ], E[X|W ], and E[Y |W ] into this equation
for —0. Estimates of these nuisance parameters are typically biased if their
complexity is regularized. Neyman orthogonal scores and sample splitting allow
circumventing empirical process conditions to justify inserting ML estimators
of nuisance parameters into estimating equations (Bickel, 1982; Chernozhukov
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et al., 2018).

Equation (4.2) has a two-stage least squares (TSLS) interpretation (Theil,
1953a,b; Basmann, 1957; Bowden and Turkington, 1985; Angrist et al., 1996;
Anderson, 2005). As mentioned above, the residual term Y ≠ E[Y |W ] is
regressed on X ≠ E[X|W ] using the instrument A ≠ E[A|W ]. In entirely linear
models, the following findings have been reported about TSLS and related
procedures. The TSLS estimator has been observed to be highly variable,
leading to overly wide confidence intervals. For instance, although ordinary
least squares (OLS) is biased in the presence of endogeneity, it has been observed
to be less variable (Wagner, 1958; Nagar, 1960; Summers, 1965; Cragg, 1967;
Lloyd, 1975). The issue with large or nonexisting variance of TSLS (the order of
existing moments of TSLS depends on the degree of overidentification (Mariano,
1972, 1982, 2003)) is also coupled with the strength of the instrument (Bound
et al., 1995; Staiger and Stock, 1997; Stock et al., 2002; Crown et al., 2011;
Andrews et al., 2019). Reducing the variability is sometimes possible by using
k-class estimators (Theil, 1961; Hill et al., 2011; Rothenhäusler et al., 2021;
Jakobsen and Peters, 2020).

The k-class estimators have been developed for entirely linear models. The
TSLS estimator is a k-class estimator with a fixed value of k = 1, and (Anderson
et al., 1986) recommend to not use fixed k-class estimators. Three particularly
well-established k-class estimators are the limited information maximum likeli-
hood (LIML) estimator (Anderson and Rubin, 1949; Amemiya, 1985) and the
Fuller(1) and Fuller(4) estimators (Fuller, 1977). They have been developed
for entirely linear models to overcome some deficiencies of TSLS. If many in-
struments are present, LIML experiences some optimality properties (Anderson
et al., 2010). Furthermore, the normal approximation for the finite sample
estimator may be suboptimal for TSLS but useful for LIML (Anderson and
Sawa, 1979; Anderson et al., 1982; Anderson, 1983). However, LIML has no
moments Mariano (1982); Phillips (1984, 1985); Hillier and Skeels (1993). The
Fuller estimators overcome this problem. Having no moments can lead to poor
squared error performance, especially in weak instrument situations (Hahn et al.,
2004). On the other hand, the Fuller(1) estimator is approximately unbiased
and Fuller(4) has particularly low mean squared error (MSE) (Fuller, 1977).
Takeuchi and Morimune (1985) give further asymptotic optimality results of
the Fuller estimators.

We propose a regularization-selection DML method using the idea of k-class
estimators. We call our method regsDML. It is tailored to reduce variance
and hence improve the MSE of the estimator of —0. Nevertheless, regsDML
converges at the parametric rate, and its coverage of confidence intervals for
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the linear coe�cient —0 remains valid. Empirical simulations demonstrate that
regsDML typically leads to shorter confidence intervals than LIML, Fuller(1),
and Fuller(4), while it still attains the nominal coverage level.

4.1.1 | Our Contribution
Our contribution is twofold. First, we build on the work of Chernozhukov et al.
(2018) to estimate —0 in the endogenous PLM (4.1) with multidimensional A
and X such that its estimator —̂ converges at the parametric rate, N≠ 1

2 , and
is asymptotically Gaussian. In contrast to Chernozhukov et al. (2018), we
formulate the underlying model as a structural equation model (SEM) and
allow A and X to be multidimensional. We directly specify an identifiability
condition of —0 instead of giving additional conditional moment restrictions.
The SEM may be overidentified in the sense that the dimension of A can
exceed the dimension of X . Overidentification can lead to more e�cient
estimators (Amemiya, 1974; Berndt et al., 1974; Hansen, 1985) and more robust
estimators (Pearl, 2004). Considering SEMs and an identifiability condition
allows us to apply DML to more general situations than in Chernozhukov et al.
(2018).

Second, we propose a DML method that employs regularization and selec-
tion. This method is called regsDML, and we develop it in Section 4.4. It
reduces the potentially excessive estimated standard deviation of DML because
it selects either the TSLS DML estimator or a regularization-only estimator
called regDML depending on whose estimated variance is smaller. The under-
lying idea of the regularization-only estimator regDML is similar to k-class
estimation (Theil, 1961) and anchor regression (Rothenhäusler et al., 2021;
Bühlmann, 2020). Both k-class estimation and anchor regression are designed
for linear models and may require choosing a regularization parameter. Our
approach is designed for PLMs, and the regularization parameter is data driven.
Recently, Jakobsen and Peters (2020) have proposed a related strategy for
linear (structural equation) models; whereas they rely on testing for choosing
the amount of regularization, we tailor our approach to reduce the MSE such
that the coverage of confidence intervals for —0 remains valid. The regsDML
estimator converges at the parametric rate and is asymptotically Gaussian. In
this sense, and in contrast to Jakobsen and Peters (2020), regsDML focuses
on statistical inference beyond point estimation with coverage guarantees not
only in linear models but also in potentially complex partially linear ones. The
regsDML estimator is asymptotically equivalent to the TSLS-type DML esti-
mator, but regsDML may exhibit substantially better finite sample properties.
Furthermore, our developments show how DML and k-class estimation can be
combined to estimate the linear coe�cient in an endogenous PLM.

Our approach allows flexible model specification. We only require that X
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(ÁA, ÁH , ÁX , ÁY ) ≥ N4(0,1)
W ≥ fi · Unif([≠1, 1])
A Ω 3 · tanh(2W ) + ÁA

H Ω 2 · sin(W ) + ÁH

X Ω ≠|A| ≠ 2 · tanh(W ) ≠ H + ÁX

Y Ω X + 0.5W 2 ≠ 3 · cos(0.25fiH) + ÁY

H

A X Y

W

Figure 4.1.1: An SEM and its associated causal graph.

enters linearly in (4.1) and that the other terms are additive. In particular, the
form of the e�ect of W on A or of A on W is not constrained. This is partly
similar to TSLS, which is robust to model misspecifications in its first stage
because it does not rely on a correct specification of the instrument e�ect on
the covariate (Bang and Robins, 2005). The detailed assumptions on how the
variables A, X , W , H , and Y interact are given in Section 4.2: the variable A
needs to satisfy an assumption similar to that for a conditional instrument, but
there is some flexibility.

We consider a motivating example to illustrate some of the points mentioned
above. Figure 4.1.1 gives the SEM we generate data from and its associated
causal graph (Lauritzen, 1996; Pearl, 1998, 2009, 2010; Peters et al., 2017;
Maathuis et al., 2019). By convention, we omit error variables in a causal graph
if they are mutually independent (Pearl, 2009). The variable A is similar to a
conditional instrument given W .

We simulate M = 1000 datasets each for a range of sample sizes N . The
nuisance parameters E[A|W ], E[X|W ], and E[Y |W ] are estimated with additive
cubic B-splines with

Ï
N

1
5

Ì
+ 2 degrees of freedom. The simulation results are

displayed in Figure 4.1.2. This figure displays the coverage, power, and relative
length of the 95% confidence intervals for —0 using “standard” DML (red)
and the newly proposed methods regDML (blue) and regsDML (green). The
regDML method is a version of regsDML with regularization only but no
selection. If the blue curve is not visible in Figure 4.1.2, it coincides with the
green curve. The dashed lines in the coverage and power plots indicate 95%
confidence regions with respect to uncertainties in the M simulation runs.

The regsDML method succeeds in producing much narrower confidence
intervals than DML although it maintains good coverage. The power of regsDML
is close to 1 for all considered sample sizes. For small sample sizes, regsDML
leads to confidence intervals whose length is around 10% ≠ 20% the length of
DML’s. As the sample size increases, regsDML starts to resemble the behavior
of the DML estimator but continues to produce substantially shorter confidence
intervals. Thus, the regularization-selection regsDML (and also its version with
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Figure 4.1.2: The results come from M = 1000 simulation runs each

from the SEM in Figure 4.1.1 for a range of sample sizes N and with

K = 2 and S = 100 in Algorithm 3. The nuisance functions are

estimated with additive splines. The figure displays the coverage of

two-sided confidence intervals for —0, power for two-sided testing of the

hypothesis H0 : —0 = 0, and scaled lengths of two-sided confidence

intervals of DML (red), regDML (blue), and regsDML (green), where

all results are at level 95%. At each N , the lengths of the confidence

intervals are scaled with the median length from DML. The shaded

regions in the coverage and power plots represent 95% confidence bands

with respect to the M simulation runs. The blue and green lines are

indistinguishable in the left panel.

regularization only) is a highly e�ective method to increase the power and
sharpness of statistical inference whereas keeping the type I error and coverage
under control.

Simulation results with —0 = 0 in the SEM of Figure 4.1.2 are presented in
Figure 4.D.1 in Section 4.D in the appendix. Further numerical results are
given in Section 4.5.

4.1.2 | Additional Literature
PLMs have received considerable interest. Härdle et al. (2000) present an
overview of estimation methods in purely exogenous PLMs, and many refer-
ences are given there. The remaining part of this paragraph refers to literature
investigating endogenous PLMs. Ai and Chen (2003) consider semiparametric
estimation with a sieve estimator. Ma and Carroll (2006) introduce a para-
metric model for the latent variable. Yao (2012) considers a heteroskedastic
error term and a partialling-out scheme (Robinson, 1988; Speckman, 1988).
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Florens et al. (2012) propose to solve an ill-posed integral equation. Su and
Zhang (2016) investigate a partially linear dynamic panel data model with
fixed e�ects and lagged variables and consider sieve IV estimators as well as an
approach with solving integral equations. Horowitz (2011) compares inference
and other properties of nonparametric and parametric estimation if instruments
are employed.

Combining Neyman orthogonality and sample splitting (with cross-fitting)
allows a diverse range of estimators and machine learning algorithms to be
used to estimate nuisance parameters. This procedure has alternatively been
considered in Newey and McFadden (1994), van der Laan and Robins (2003),
and Chernozhukov et al. (2018). DML methods have been applied in various
situations. Chen et al. (2021) consider instrumental variables quantile regression.
Liu et al. (2021) apply DML in logistic partially linear models. Colangelo and
Lee (2020) employ doubly debiased machine learning methods to a fully non-
parametric equation of the response with a continuous treatment. Knaus (2020)
presents an overview of DML methods in unconfounded models. Farbmacher
et al. (2020) decompose the causal e�ect of a binary treatment by a mediation
analysis and estimate it by DML. Lewis and Syrgkanis (2020) extend DML to
estimate dynamic e�ects of treatments. Chiang et al. (2021) apply DML under
multiway clustered sampling environments. Cui and Tchetgen Tchetgen (2020)
propose a technique to reduce the bias of DML estimators.

Nonparametric components can be estimated without sample splitting and
cross-fitting if the underlying function class satisfies some entropy conditions; see
for instance Mammen and van de Geer (1997). Alternatively, Chen et al. (2016)
partial out the nonparametric component using a kernel method and employ
the generalized method of moments principle (Hansen, 1982). The mentioned
entropy regularity conditions limit the complexity of the function class, and ML
algorithms do usually not satisfy them. Particularly, these conditions fail to
hold if the dimension of the nonparametric variables increases with the sample
size (Chernozhukov et al., 2018).

Double robustness and orthogonality arguments have also been considered in
the following works. Okui et al. (2012) consider doubly robust estimation of
the parametric part. Their estimator is consistent if either the model for the
e�ect of the measured confounders on the outcome or the model of the e�ect
of the measured confounders on the instrument is correctly specified. Smucler
et al. (2019) consider doubly robust estimation of scalar parameters where the
nuisance functions are ¸1-constrained. Targeted minimum loss based estimators
and G-estimators also feature an orthogonality property; an overview is given
in DiazOrdaz et al. (2019).
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The literature presented in this subsection is related to but rather distinct
from our work with the only exception of Chernozhukov et al. (2018). The
di�erence to this latter contribution is highlighted in Section 4.2 and Section 4.A
in the appendix.

Outline of the Paper. Sections 4.2 and 4.3 describe the DML estimator. The
former section introduces an identifiability condition, and the latter investigates
asymptotic properties. Section 4.4 introduces the regularized regularization-
selection estimator regDML and its regularization-only version regDML and
investigates their asymptotic properties. Section 4.5 presents numerical exper-
iments and an empirical real data example. Section 4.6 concludes our work.
Proofs and additional definitions and material are given in the appendix.

Notation. We denote by [N ] the set {1, 2, . . . , N}. We add the probability
law as a subscript to the probability operator P and the expectation operator E
whenever we want to emphasize the corresponding dependence. We denote the
Lp(P ) norm by Î·ÎP,p and the Euclidean or operator norm by Î·Î, depending
on the context. We implicitly assume that given expectations and conditional
expectations exist. We denote by dæ convergence in distribution. Furthermore,
we denote by 1d◊d œ Rd◊d the d ◊ d identity matrix and write 1 if we do not
want to underline its dimension.

4.2 | An Identifiability Condition and the DML Esti-
mator

Before we introduce regsDML in Section 4.4, we present our TSLS-type DML
estimator of —0 because we require it to formulate regsDML. The DML estimator
estimates the linear coe�cient in an endogenous and potentially overidentified
PLM where A and X may be multidimensional. Our work builds on Cher-
nozhukov et al. (2018), but they only consider univariate A and X and restrict
conditional moments to identify the linear coe�cient. We impose an uncondi-
tional moment restriction below. However, our results recover theirs if A and X
are univariate and the additional conditional moment restrictions are satisfied.

Our PLM is cast as an SEM. The SEM specifies the generating mechanism
of the random variables A, W , H , X , and Y of dimensions q, v, r, d, and 1,
respectively. The structural equation of the response is given by

Y Ω XT —0 + gY (W ) + hY (H) + ÁY (4.3)

as in (4.1), where —0 œ Rd is a fixed unknown parameter vector, and where
the functions gY and hY are unknown. The variable H is hidden and causes
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endogeneity. The variable ÁY denotes an unobserved error term. The model
is potentially overidentified in the sense that the dimension of A may exceed
the dimension of X . Observe that A does not directly a�ect the response Y in
the sense that it does not appear on the right hand side of (4.3). The model is
required to satisfy an identifiability condition as in (4.5) below.

Econometric models are often presented as a system of simultaneous structural
equations. Full information models consider all equations at once, and limited
information models only consider equations of interest (Anderson, 1983).

4.2.1 | Identifiability Condition
An identifiability condition is required to identify —0 in (4.3). We define the
residual terms

RA := A≠E[A|W ], RX := X≠E[X|W ], and RY := Y ≠E[Y |W ] (4.4)

that adjust A, X , and Y for W . Our DML estimator of —0 is obtained by
performing TSLS of RY on RX using the instrument RA. This scheme requires
the unconditional moment condition

E
Ë
RA(RY ≠ RT

X
—0)

È
= 0 (4.5)

to identify —0 in (4.3). For instance, this condition is satisfied if A is independent
of both H and ÁY given W or if A is independent of H , ÁY , and W . The
identifiability condition (4.5) is strictly weaker than the conditional moment
conditions introduced in Chernozhukov et al. (2018); see Section 4.A in the
appendix that presents an example where our identifiability condition holds but
the conditional moment conditions do not. The subsequent theorem asserts
identifiability of —0.

Theorem 4.2.1. Let the dimensions q = dim(A) and d = dim(X), and
assume q Ø d. Assume furthermore that the matrices E[RXRT

A
] and

E[RART

A
] are of full rank, and assume the identifiability condition (4.5).

We then have

—0 =
A

E
Ë
RXRT

A

È
E

Ë
RART

A

È≠1
E

Ë
RART

X

ÈB≠1
E

Ë
RXRT

A

È
E

Ë
RART

A

È≠1
E[RARY ].

Theorem 4.2.1 precludes underidentification. The full rank condition of the
matrix EP [RXRT

A
] expresses that the correlation between X and A is strong

enough after regressing out W . This is a typical TSLS assumption (Theil,
1953a,b; Basmann, 1957; Bowden and Turkington, 1985; Angrist et al., 1996;
Anderson, 2005). The rank assumptions in Theorem 4.2.1 in particular require
that A, X , and Y are not deterministic functions of W .
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The instrument A instead of RA can alternatively identify —0 in Theorem 4.2.1.
However, this procedure leads to a suboptimal convergence rate of the resulting
estimator; see Section 4.3.1.

The identifiability condition (4.5) is central to Theorem 4.2.1. Section 4.G
in the appendix presents examples illustrating SEMs where the identifiability
condition holds and where it fails to hold.

4.2.2 | Alternative Interpretations of —0

We present two alternative interpretations of —0 apart from performing TSLS
of RY on RX using the instrument RA. The second representation will be
used to formulate our regularization schemes in Section 4.4. To formulate these
alternative representations, we introduce the linear projection operator PRA

on
RA that maps a random variable Z to its projection

PRA
Z := E

Ë
ZRT

A

È
E

Ë
RART

A

È≠1
RA.

By Theorem 4.2.1, the population parameter —0 solves the TSLS moment
equation

0 = E
Ë
RXRT

A

È
E

Ë
RART

A

È≠1
E

Ë
RA(RY ≠ RT

X
—0)

È
.

This motivates a generalized method of moments interpretation of —0 because
we have

—0 = arg min
—œRd

E[Â(S; —, ÷0)] E
Ë
RART

A

È≠1
E

Ë
ÂT (S; —, ÷0)

È

for Â(S; —, ÷0) = RA(RY ≠RT

X
—), where ÷0 = (E[A|W ], E[X|W ], E[Y |W ]) de-

notes the nuisance parameter and S = (A, W, X, Y ) denotes the concatenation
of the observable variables.

This leads to the second interpretation of —0. The coe�cient —0 minimizes
the squared projection of the residual RY ≠ RT

X
— on RA, namely

—0 = arg min
—œRd

E
C1

PRA
(RY ≠ RT

X
—)

22
D

. (4.6)

We employ the representation of —0 in (4.6) to formulate our regularization
schemes in Section 4.4.

4.3 | Formulation of the DML Estimator and its Asymp-
totic Properties

In this section, we describe how to estimate —0 using the TSLS-type DML
scheme, and we describe the asymptotic properties of this estimator.
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Consider N iid realizations {Si = (Ai, Xi, Wi, Yi)}iœ[N ] of S = (A, X, W, Y )
from the SEM in (4.3). We concatenate the observations of A row-wise to form
an (N ◊ q)-dimensional matrix A. Analogously, we construct the matrices
X œ RN◊d and W œ RN◊v and the vector Y œ RN containing the respective
observations.

We construct a DML estimator of —0 as follows. First, we split the data into
K Ø 2 disjoint sets I1, . . . , IK . For simplicity, we assume that these sets are
of equal cardinality n = N

K
. In practice, their cardinality might di�er due to

rounding issues.
For each k œ [K], we estimate the conditional expectations m0

A
(W ) :=

E[A|W ], m0
X

(W ) := E[X|W ], and m0
Y

(W ) := E[Y |W ], which act as nuisance
parameters, with data from Ic

k
. We call the resulting estimators m̂

I
c

k

A
, m̂

I
c

k

X
, and

m̂
I

c

k

Y
, respectively. Then, the adjusted residual terms „RIk

A,i
:= Ai ≠ m̂

I
c

k

A
(Wi),

„RIk

X,i
:= Xi ≠ m̂

I
c

k

X
(Wi), and „RIk

Y,i
:= Yi ≠ m̂

I
c

k

Y
(Wi) for i œ Ik are evaluated on

Ik, the complement of Ic

k
. We concatenate them row-wise to form the matrices

„R
Ik

A œ Rn◊q and „R
Ik

X œ Rn◊d and the vector „R
Ik

Y œ Rn.
These K iterates are assembled to form the DML estimator

—̂ :=
Q

a 1
K

Kÿ

k=1

1 „R
Ik

X

2
T � ‚R

I
k

A

„R
Ik

X

R

b
≠1 1

K

Kÿ

k=1

1 „R
Ik

X

2
T � ‚R

I
k

A

„R
Ik

Y (4.7)

of —0, where
� ‚R

I
k

A
:= „R

Ik

A

A1 „R
Ik

A

2
T „R

Ik

A

B≠11 „R
Ik

A

2
T (4.8)

denotes the orthogonal projection matrix onto the space spanned by the columns
of „R

Ik

A.
To obtain —̂ in (4.7), the individual matrices are first averaged before the

final matrix is inverted. It is also possible to compute K individual TSLS
estimators on the K iterates individually and average these. Both schemes are
asymptotically equivalent. Chernozhukov et al. (2018) call these two schemes
DML2 and DML1, respectively, where DML2 is as in (4.7). The DML1 version
of the coe�cient estimator is given in the appendix in Section 4.B.1. The
advantage of DML2 over DML1 is that it enhances stability properties of the
estimator. To ensure stability of the DML1 estimator, every individual matrix
that is inverted needs to be well conditioned. Stability of the DML2 estimator
is ensured if the average of these matrices is well conditioned.

The K sample splits are random. To reduce the e�ect of this randomness,
we repeat the overall procedure S times and assemble the results as suggested
in Chernozhukov et al. (2018). This procedure is described in Algorithm 3 in
Section 4.4.2 below.
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The following theorem establishes that —̂ converges at the parametric rate
and is asymptotically Gaussian.

Theorem 4.3.1. Consider model (4.3). Suppose that Assumption 4.I.5 in
the appendix in Section 4.I holds and consider Â given in Definition 4.I.1
in the appendix in Section 4.I. Then —̂ as in (4.7) concentrates in a 1Ô

N

neighborhood of —0. It is approximately linear and centered Gaussian,
namely

Ô
N‡≠1(—̂ ≠ —0) = 1Ô

N

Nÿ

i=1
Â(Si; —0, ÷0) + oP (1) dæ N (0,1d◊d) (N æ Œ),

uniformly over the law P of S = (A, W, X, Y ), and where the variance-
covariance matrix ‡2 is given by ‡2 = J0J̃0JT

0 for the matrices J̃0 and J0
given in Definition 4.I.1 in the appendix.

A similar result to Theorem 4.3.1 is presented by Chernozhukov et al. (2018).
However, their result requires univariate A and X , and it imposes conditional
moment restrictions instead of the identifiability condition (4.5); see also Sec-
tion 4.A in the appendix that presents an example where our identifiability
condition holds but the conditional moment conditions do not. If A and X are
univariate and the respective conditional moment conditions hold, our result
coincides with Chernozhukov et al. (2018).

Theorem 4.3.1 also holds for the DML1 version of —̂ defined in the appendix
in Section 4.B.1. Assumption 4.I.5 specifies regularity conditions and the
convergence rate of the machine learners estimating the conditional expectations.
The machine learners are required to satisfy the product relations

Îm0
A
(W ) ≠ m̂

I
c

k

A
(W )Î2

P,2 π N≠ 1
2 ,

Îm0
A
(W ) ≠ m̂

I
c

k

A
(W )ÎP,2

·
1
Îm0

Y
(W ) ≠ m̂

I
c

k

Y
(W )ÎP,2 + Îm0

X
(W ) ≠ m̂

I
c

k

X
(W )ÎP,2

2
π N≠ 1

2

(4.9)

for k œ [K], which allows us to employ a broad range of ML estimators.
For instance, these convergence rates are satisfied by ¸1-penalized and related
methods in a variety of sparse, high-dimensional linear models (Candes and
Tao, 2007; Bickel et al., 2009; Bühlmann and van de Geer, 2011; Belloni and
Chernozhukov, 2013), forward selection in sparse linear models (Kozbur, 2020),
high-dimensional additive models (Meier et al., 2009; Koltchinskii and Yuan,
2010; Yuan and Zhou, 2016), or regression trees and random forests (Wager
and Walther, 2016; Athey et al., 2019). Please see Chernozhukov et al. (2018)
for additional references. In particular, the rate condition (4.9) is satisfied if
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the individual ML estimators converge at rate N≠ 1
4 . Therefore, the individual

ML estimators are not required to converge at rate N≠ 1
2 .

The asymptotic variance ‡2 can be consistently estimated by replacing the
true —0 by —̂ or its DML1 version. The nuisance functions are estimated on
subsampled datasets, and the estimator of ‡2 is obtained by cross-fitting. The
formal definition, the consistency result, and its proof are given in Definition 4.I.1
and in Theorem 4.I.21 in the appendix in Section 4.I.

For fixed P , the asymptotic variance-covariance matrix ‡2 is the same as
if the conditional expectations m0

A
(W ), m0

X
(W ), and m0

Y
(W ) and hence RA,

RX , and RY were known.
Theorem 4.3.1 holds uniformly over laws P . This uniformity guarantees

some robustness of the asymptotic statement (Chernozhukov et al., 2018).
The dimension v of the covariate W may grow as the sample size increases.
Thus, high-dimensional methods can be considered to estimate the conditional
expectations E[A|W ], E[X|W ], and E[Y |W ].

The estimator —̂ solves the moment equations

0 = 1
K

Kÿ

k=1

Q

a 1
n

ÿ

iœIk

„RIk

X,i

1 „RIk

A,i

2
T

A 1
n

ÿ

iœIk

„RIk

A,i

1 „RIk

A,i

2
T

B≠1 1
n

ÿ

iœIk

Â(Si; —̂, ÷̂I
c

k)
R

b,

where the score function Â is given by

Â(S; —, ÷) :=
1
A ≠ mA(W )

2A

Y ≠ mY (W ) ≠
1
X ≠ mX(W )

2
T
—

B

(4.10)

for ÷ = (mA, mX , mY ), and where the estimated nuisance parameter is given
by ÷̂I

c

k = (m̂I
c

k

A
, m̂

I
c

k

X
, m̂

I
c

k

Y
). Observe that Â(S; —0, ÷0) with ÷0 = (m0

A
, m0

X
, m0

Y
)

coincides with the term whose expectation is constrained to equal 0 in the
identifiability condition (4.5). The crucial step to prove asymptotic normality
of

Ô
N(—̂ ≠ —0) is to analyze the asymptotic behavior of 1Ô

n

q
iœIk

Â(Si; —̂, ÷̂I
c

k)
for k œ [K].

Apart from the identifiability condition, the first fundamental requirement to
analyze these terms is the ML convergence rates in (4.9). Second, we employ
sample splitting and cross-fitting. Sample splitting ensures that the data used
to estimate the nuisance parameters and the data on which these estimators are
evaluated are independent. Cross-fitting enables us to regain full e�ciency. The
third requirement is that the underlying score function Â in (4.10) is Neyman
orthogonal, which we explain next.

Neyman orthogonality ensures that Â is insensitive to small changes in
the nuisance parameter ÷ at the true unknown linear coe�cient —0 and the
true unknown nuisance parameter ÷0. This makes estimation of —0 robust to
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inserting biased ML estimators of the nuisance parameter in the estimation
equation. The following definition formally introduces this concept.

Definition 4.3.2. (Chernozhukov et al., 2018, Definition 2.1). A score
Â = Â(S; —, ÷) is Neyman orthogonal at (—0, ÷0) if the pathwise derivative
map

ˆ

ˆr
EP

Ë
Â

1
S; —0, ÷0 + r(÷ ≠ ÷0)

2È

exists for all r œ [0, 1) and nuisance parameters ÷ and vanishes at r = 0.

Definition 4.3.2 does not entirely coincide with Chernozhukov et al. (2018,
Definition 2.1) because the latter also includes an identifiability condition. We
directly assume the identifiability condition (4.5).

The subsequent proposition states that the score function Â in (4.10) is
indeed Neyman orthogonal.

Proposition 4.3.3. The score Â given in Equation (4.10) is Neyman
orthogonal.

We would like to remark that Neyman orthogonality of Â neither depends on
the distribution of S nor on the value of the coe�cients —0 and ÷0. In addition
to being Neyman orthogonal, Â is linear in — in the sense that we have

Â(S; —, ÷) = Âb(S; ÷) ≠ Âa(S; ÷)— (4.11)

for
Âb(S; ÷) :=

1
A ≠ mA(W )

21
Y ≠ mY (W )

2

and
Âa(S; ÷) :=

1
A ≠ mA(W )

21
X ≠ mX(W )

2
T
.

This linearity property is also employed in the proof of Theorem 4.3.1.

4.3.1 | Suboptimal Estimation Procedure
In general, we cannot employ A as an instrument instead of RA in our TSLS-
type DML estimation procedure. For simplicity, we assume K = 2 in this
subsection and consider disjoint index sets I and Ic of size n = N

2 . The term

1Ô
n

ÿ

iœI

Ai

1 „RI

Y,i
≠ ( „RI

X,i
)T —0

2
(4.12)

can diverge as N æ Œ because m̂I
c

X
and m̂I

c

Y
can be biased estimators of m0

X

and m0
Y

. This in particular happens if the functions m0
X

and m0
Y

are high-
dimensional and need to be estimated by regularization techniques; see Cher-
nozhukov et al. (2018). Even if sample splitting is employed, the term (4.12) is
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Figure 4.3.1: Histograms of
—̂≠—0
‰Var(—̂) , where

‰
Var(—̂) denotes the empirically

observed variance of —̂ with respect to the simulation runs, using A as

an instrument in the left plot and using RA as an instrument in the

right plot. The orange curves represent the density of N (0, 1). The

results come from 5000 simulation runs of sample size 5000 each from

the SEM in the appendix in Section 4.C with K = 2. The conditional

expectations are estimated with random forests consisting of 500 trees

that have a minimal node size of 5.

asymptotically not well behaved because the underlying score function

Ï(S; —, ÷) := A
A

Y ≠ mY (W ) ≠
1
X ≠ mX(W )

2
T
—

B

is not Neyman orthogonal. The issue is illustrated in Figure 4.3.1. The
SEM used to generate the data is similar to the nonconfounded model used
in Chernozhukov et al. (2018, Figure 1). The centered and rescaled term —̂≠—0

‰Var(—̂)
using A as an instrument is biased whereas it is not if the instrument RA is
used. Here, ‰Var(—̂) denotes the empirically observed variance of —̂ with respect
to the performed simulation runs.

4.4 | Regularizing the DML Estimator: regDML and
regsDML

We introduce a regularized estimator, regsDML, whose estimated standard
deviation is typically smaller and never worse than the one of the TSLS-type
DML estimator described above. Supporting theory and simulations illus-
trate that the associated confidence intervals nevertheless reach valid and good
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coverage. The regsDML estimator selects either the DML estimator or its
regularization-only version regDML, depending on which of the two estimators
has a smaller estimated standard deviation.

Subsequently, we first introduce the regularization-only method regDML.
The regDML estimator is obtained by regularizing DML and choosing a data-
dependent regularization parameter. Before we describe the choice of the
regularization parameter, we introduce the regularization scheme for fixed
regularization parameters.

Given a regularization parameter “ Ø 0, the population coe�cient b“ of the
regularization scheme optimizes an objective function similar to the one used
in k-class regression (Theil, 1961) or anchor regression (Rothenhäusler et al.,
2021; Bühlmann, 2020). We established the representation

—0 = arg min
—œRd

E
C1

PRA
(RY ≠ RT

X
—)

22
D

of —0 in (4.6). For a regularization parameter “ Ø 0, we consider the regularized
objective function and corresponding population coe�cient

b“ := arg min
—œRd

E
C1

(Id ≠PRA
)(RY ≠ RT

X
—)

22
D

+ “ E
C1

PRA
(RY ≠ RT

X
—)

22
D

.

(4.13)
This regularized objective is form-wise analogous to the objective function
employed in anchor regression. The anchor regression estimator has been
reformulated as a k-class estimator by Jakobsen and Peters (2020) for a linear
model.

If “ = 1, ordinary least squares regression of RY on RX is performed. If
“ = 0, we are partialling out or adjusting for the variable RA. If “ = Œ, we
perform TSLS regression of RY on RX using the instrument RA. In this case,
b“ coincides with —0. The coe�cient b“ interpolates between the OLS coe�cient
b“=1 and the TSLS coe�cient —0 for general choices of “ > 1. For “ > 1,
there is a one to one correspondence between b“ and the k-class estimator
(based on RA, RX , and RY ) with regularization parameter Ÿ = “≠1

“
œ (0, 1);

see Jakobsen and Peters (2020).

4.4.1 | Estimation and Asymptotic Normality

In this section, we describe how to estimate b“ in (4.13) for fixed “ Ø 0 using
a DML scheme, and we describe the asymptotic properties of this estimator.
We consider the residual matrices „R

Ik

A œ Rn◊q and „R
Ik

X œ Rn◊d and the vector
„R

Ik

Y œ Rn introduced in Section 4.3 that adjust the data with respect to the
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nonparametric variables. The estimator of b“ is given by

b̂“ := arg min
bœRd

1
K

Kÿ

k=1

Q

a
.....

1
1≠� ‚R

I
k

A

21 „R
Ik

Y ≠
1 „R

Ik

X

2
T
b

2.....

2

2
+“

.....� ‚R
I
k

A
(„R

Ik

Y ≠(„R
Ik

X)T b)
.....

2

2

R

b,

where � ‚R
I
k

A
is as in (4.8). This estimator can be expressed in closed form by

b̂“ =
Q

a 1
K

Kÿ

k=1

1 „R
Ik

ÊX
2

T „R
Ik

ÊX

R

b
≠1 1

K

Kÿ

k=1

1 „R
Ik

ÊX
2

T „R
Ik

ÂY , (4.14)

where

„R
Ik

ÊX :=
A

1 + (Ô“ ≠ 1)� ‚R
I
k

A

B
„R

Ik

X and „R
Ik

ÂY :=
A

1 + (Ô“ ≠ 1)� ‚R
I
k

A

B
„R

Ik

Y .

(4.15)
The computation of b̂“ is similar to an OLS scheme where „R

Ik

ÂY is regressed
on „R

Ik

ÊX . To obtain b̂“, individual matrices are first averaged before the final
matrix is inverted. It is also possible to directly carry out the K OLS re-
gressions of „R

Ik

ÂY on „R
Ik

ÊX and average the resulting parameters. Both schemes
are asymptotically equivalent. We call the two schemes DML2 and DML1,
respectively. This is analogous to Chernozhukov et al. (2018) as already men-
tioned in Section 4.3. The DML1 version is presented in the appendix in
Section 4.B.2. As mentioned in Section 4.3, the advantage of DML2 over DML1
is that it enhances stability properties of the coe�cient estimator because the
average of matrices needs to be well conditioned but not every individual matrix.

Theorem 4.4.1. Let “ Ø 0. Suppose that Assumption 4.I.5 in the appendix
in Section 4.I (same as in Theorem 4.3.1) except 4.I.5.1 holds, and consider
the quantities ‡2(“) and Â introduced in Definition 4.J.1 in the appendix
in Section 4.J. The estimator b̂“ concentrates in a 1Ô

N
neighborhood of b“.

It is approximately linear and centered Gaussian, namely

Ô
N‡≠1(“)(b̂“≠b“) = 1Ô

N

Nÿ

i=1
Â(Si; b“, ÷0)+oP (1) dæ N (0,1d◊d) (N æ Œ),

uniformly over laws P of S = (A, W, X, Y ).

Theorem 4.4.1 also holds for the DML1 version of b̂“ defined in the appendix
in Section 4.B.2. The influence function is denoted by Â in both Theorems 4.3.1
and 4.4.1 but is defined di�erently. Assumption 4.I.5 specifies regularity con-
ditions and the convergence rate of the machine learners of the conditional
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expectations. The machine learners are required to satisfy the product relations

Îm0
A
(W ) ≠ m̂

I
c

k

A
(W )Î2

P,2 π N≠ 1
2 ,
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k

X
(W )ÎP,2

·
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Y
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X
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for k œ [K]. The main di�erence to Theorem 4.3.1 and quantity of interest is
the asymptotic variance ‡2(“). It can be consistently estimated with either
b̂“ or its DML1 version as illustrated in Theorem 4.J.3 in the appendix in
Section 4.J. Typically, for “ < Œ, the asymptotic variance ‡2(“) is smaller
than ‡2 in Theorem 3.1. Such a variance gain comes at the price of bias because
b̂“ estimates b“ and not the true parameter —0.

The proof of Theorem 4.4.1 uses Neyman orthogonality of the underlying
score function. Recall that Neyman orthogonality neither depends on the
distribution of S nor on the value of the coe�cients —0 and ÷0 as discussed in
Section 4.3.

For fixed “ > 1, Theorem 4.4.1 furthermore implies that the k-class estimator
corresponding to b̂“ converges at the parametric rate and follows a Gaussian
distribution asymptotically.

4.4.2 | Estimating the Regularization Parameter “

For simplicity, we assume d = 1 in this subsection. The results can be extended
to d > 1.

Subsequently, we introduce a data-driven method to choose the regularization
parameter “ in practice. This scheme first optimizes the estimated asymptotic
MSE of b̂“. The estimated regularization for the parameter “ leads to an esti-
mate of —0 that asymptotically has the same MSE behavior as the TSLS-type
estimator —̂ in (4.7) but may exhibit substantially better finite sample properties.

We consider the estimated regularization parameter

“̂ := arg min
“Ø0

1
N

‡̂2(“) + |b̂“ ≠ —̂|2. (4.16)

It optimizes an estimate of the asymptotic MSE of b̂“: the term ‡̂2(“) is
the consistent estimator of ‡2(“) described in Theorem 4.J.3 in the appendix
in Section 4.J, and the term |b̂“ ≠ —̂|2 is a plug-in estimator of the squared
population bias |b“ ≠—0|2. The estimated regularization parameter “̂ is random
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because it depends on the data.

First, we investigate the bias of the population parameter b“N for a nonran-
dom sequence of regularization parameters {“N}NØ1 as N æ Œ. Afterwards,
we propose a modified estimator of the regularization parameter whose cor-
responding parameter estimate is denoted by regDML, and we introduce the
regularization-selection estimator regsDML. Finally, we and analyze the asymp-
totic properties of regDML and regsDML.

Let us consider a deterministic sequence {“N}NØ1 of regularization parame-
ters. By Proposition 4.4.2 below, the (scaled) population bias

Ô
N |b“N ≠ —0|

vanishes as N æ Œ if “N is of larger order than
Ô

N .

Proposition 4.4.2. Suppose that 4.I.5.1, 4.I.5.3, and 4.I.5.4 of Assump-
tion 4.I.5 in the appendix in Section 4.I hold (subset of the assumptions
in Theorem 4.3.1). Assume {“N}NØ1 is sequence of non-negative real
numbers. Then we have

Ô
N |b“N ≠ —0| æ

Y
____]

____[

0, if “N ∫
Ô

N

C, if “N ≥
Ô

N

Œ, if “N π
Ô

N

as N æ Œ for some non-negative finite real number C.

Theorem 4.4.3 below shows that the estimated regularization parameter “̂ is
of equal or larger stochastic order than

Ô
N . If it were not, choosing “ = Œ

in (4.16), and hence selecting the TSLS-type estimator —̂, would lead to a
smaller estimated asymptotic MSE.

Theorem 4.4.3. Let “N = o(
Ô

N), and suppose that Assumption 4.I.5 in
the appendix in Section 4.I holds (same as in Theorem 4.3.1). We then
have

lim
NæŒ

P
1
‡̂2(“N ) + N(b̂“N ≠ —̂)2 Æ ‡̂22

= 0.

If “̂ is multiplied by a deterministic scalar aN that diverges to +Œ at
an arbitrarily slow rate as N æ Œ, the modified regularization parameter
“̂Õ := aN “̂ is of stochastic order larger than

Ô
N . By default, we choose

aN = log(
Ô

N ). Proposition 4.4.2 is formulated for deterministic regularization
parameters, but the deterministic statements can be replaced by probabilistic
ones. Proposition 4.4.2 then implies that the population bias term |b“̂

Õ ≠
—0| vanishes at rate oP (N≠ 1

2 ). Thus, the two quantities
Ô

N(b̂“̂
Õ ≠ b“̂

Õ) andÔ
N(b̂“̂

Õ ≠ —0) are asymptotically equivalent due to Theorem 4.4.4 below, and
we have Ô

N(b̂“̂
Õ ≠ —0) ¥ N

1
0, ‡2(“̂Õ)

2
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whenever N is su�ciently large (note that asymptotically as N æ Œ, the
right-hand side has the same limit as described in Theorem 4.4.4).

We call b̂“̂
Õ the regDML (regularized DML) estimator. The regularization-

selection estimator b̂“̂
Õ selects between DML and regDML based on whose

variance estimate is smaller. The “s” in regsDML stands for selection.

Theorem 4.4.4. Suppose that Assumption 4.I.5 in the appendix in Sec-
tion 4.I holds (same as in Theorem 4.3.1). Let {aj}jØ1 be a sequence of
deterministic, non-negative real numbers that diverges to Œ as N æ Œ.
Furthermore, consider “̂Õ = aN “̂ as above. Then, we have

Ô
N ‡̂≠1(“̂Õ)(b̂“̂

Õ ≠ b“̂
Õ) =

Ô
N‡≠1(—̂ ≠ —0) + oP (1)

uniformly over laws P of S = (A, W, X, Y ), where ‡̂(·) ist the estimator
from Theorem 4.J.3 in the appendix, which consistently estimates ‡(·)
from 4.4.1.

Particularly, b̂“̂
Õ and —̂ are asymptotically equivalent. But b̂“̂

Õ may exhibit
substantially better finite sample properties as we demonstrate in the subsequent
section. Because b̂“̂

Õ and —̂ are asymptotically equivalent, the same result also
holds for the selection estimator regsDML.

The proof of Theorem 4.4.4 does not depend on the precise construction
of “̂Õ and only uses that the random regularization parameter is of stochastic
order larger than

Ô
N . Thus, Theorem 4.4.4 remains valid if the regularization

parameter comes from k-class estimaton and is of the required stochastic order.
The same stochastic order is also required to show that k-class estimators are
asymptotically Gaussian (Nagar, 1959; Mariano, 2003).

The K sample splits are random. To reduce the e�ect of this randomness,
we repeat the overall procedure S times and assemble the results as suggested
in Chernozhukov et al. (2018). The assembled parameter estimate is given
by the median of the individual parameter estimates; see Steps 9 and 10 of
Algorithm 3. The assembled variance estimate is given by adding a correction
term to the individual variances and subsequently taking the median of these
corrected terms. The correction term measures the variability due to sample
spitting across s œ [S].

It is possible that the assembled variance of regDML is larger than the assem-
bled variance of DML. In such a case, we do not use the regDML estimator and
select the DML estimator instead to ensure that the final estimator of —0 does
not experience a larger estimated variance than DML. This is the regsDML
scheme. A summary of this procedure is given in Algorithm 3.
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Algorithm 3: regsDML in a PLM with confounding variables.
Input : N iid realizations from the SEM (4.3), a natural number S , a

regularization parameter grid {“i}iœ[M ] for some natural
number M , a non-negative diverging sequence {an}nØ1.

Output : An estimator of —0 in (4.3) together with its estimated
asymptotic variance.

1 for s œ [S] do
2 Compute —̂s = —̂ and ‡̂2

s
= ‡̂2.

3 Compute b̂“i

s
= b̂“i and ‡̂2

s
(“i) = ‡̂2(“i) for i œ [M ].

4 Choose “̂s = arg min“œ{“i}iœ[M ]

1 1
N

‡̂2
s
(“) + |b̂“

s
≠ —̂s|2

2
and let

“̂Õ
s

= aN “̂s.
5 Compute b̂“̂

Õ
s

s
= b̂“̂

Õ
s and ‡̂2

s
(“̂Õ

s
) = ‡̂2(“̂Õ

s
).

6 end
7 Compute —̂med = mediansœ[S](—̂s).
8 Compute b̂med

reg = mediansœ[S](b̂“̂
Õ
s

s
).

9 Compute ‡̂2,med = mediansœ[S]
1
‡̂2

s
+ (—̂s ≠ —̂med)22

.
10 Compute ‡̂2,med

reg = mediansœ[S]
1
‡̂2

s
(“̂Õ

s
) + (b̂“̂

Õ
s

s
≠ b̂med

reg )22
.

11 if ‡̂2,med
reg < ‡̂2,med then

12 Take the parameter estimate b̂med
reg together with its associated

estimated asymptotic variance 1
N

‡̂2,med
reg .

13 else
14 Take the parameter estimate —̂med together with its associated

estimated asymptotic variance 1
N

‡̂2,med.
15 end

4.5 | Numerical Experiments
This section illustrates the performance of the DML, regDML, and regsDML
estimators in a simulation study and for an empirical dataset. Our implemen-
tation is available in the R-package dmlalg (Emmenegger, 2021). We employ
the DML2 method and K = 2 and S = 100 in Algorithm 3. Furthermore, we
compare our estimation schemes with the following three k-class estimators:
LIML, Fuller(1), and Fuller(4). On each of the K sample splits, we compute
the regularization parameter of the respective k-class estimation procedure and
average them. Then, we compute the corresponding “-value and proceed as for
the other regularized estimators according to Algorithm 3.

The first example in Section 4.5.1 considers an overidentified model in which
the dimension of A is larger than the dimension of X . The conditional expec-
tations acting as nuisance parameters are estimated with random forests. The
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(ÁA1, ÁA2,ÁW1, ÁW2, ÁH , ÁX , ÁY ) ≥ N7(0,1)
A1 Ω 1{ÁA1Æ0}
A2 Ω ≠4A1 + ÁA2

W1 Ω 2A2 + ÁW1

W2 Ω ÁW2

H Ω 21{sin(fiW1)·tanh(W2)Ø0} + ÁH

X Ω 1.5A1 ≠ 0.5A2 + tanh(H)
≠21{W1Ø0}1{W2Æ0} + ÁX

Y Ω X + 1{W2Æ0} + sin(fiH) + ÁY

H

A1

X Y

A2

W1 W2

Figure 4.5.1: An SEM and its associated causal graph.

second example in Section 4.5.2 considers justidentified real-world data. The
conditional expectations are also estimated with random forests.

An example where the conditional expectations are estimated with splines is
given in Section 4.1.1. Additional empirical results are provided in the appendix
in Sections 4.D, 4.E, and 4.F. The latter section considers examples where DML,
regDML, and regsDML do not work well in finite sample situations: we follow
the NCP (No Cherry Picking) guideline (Bühlmann and van de Geer, 2018) to
possibly enhance further insights into the finite sample behavior. Section 4.E in
the appendix presents examples where the link A æ X is weak and examples
illustrating the bias-variance tradeo� of the respective estimated quantities as
a function of “.

4.5.1 | Simulation Example with Random Forests
We generate data from the SEM in Figure 4.5.1. This SEM satisfies the identifi-
ability condition (4.5) because A1 and A2 are independent of H given W1 and
W2; a proof is given in the appendix in Section 4.K. The model is overidentified
because the dimension of A = (A1, A2) is larger than the dimension of X .
The variable A1 directly influences A2 that in turn directly a�ects W1. Both
W1 and W2 directly influence H . Both A1 and A2 directly influence X . The
variable A1 is a source node.

We simulate M = 1000 datasets each from the SEM in Figure 4.5.1 for a
range of sample sizes. For every dataset, we compute a parameter estimate and
an associated confidence interval with DML, regDML, and regsDML. We choose
K = 2 and S = 100 in Algorithm 3 and estimate the conditional expectations
with random forests consisting of 500 trees that have a minimal node size of 5.

Figure 4.5.2 illustrates our findings. It gives the coverage, power, and relative
length of the 95% confidence intervals for a range of sample sizes N of the three
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methods. The blue and green curves correspond to regDML and regsDML,
respectively. If the blue curve is not visible in Figure 4.5.2, it coincides with
the green one. The two regularization methods perform similarly because
regularization can considerably improve DML. The red curves correspond to
DML. If the red curves are not visible, they coincide with LIML, whose results
are displayed in orange. The Fuller(1) and Fuller(4) estimators correspond to
purple and cyan, respectively.

The top left plot in Figure 4.5.2 displays the coverages as interconnected
dots. The dashed lines represent 95% confidence regions of the coverages.
These confidence regions are computed with respect to uncertainties in the M
simulation runs. No coverage region falls below the nominal 95% level that is
marked by the gray line.

The bottom eft plot in Figure 4.5.2 shows that the power of DML, LIML,
and Fuller(1) is lower for small sample sizes and increases gradually. The
power of the other regularization methods remains approximately 1. The
dashed lines represent 95% confidence regions that are computed with respect
to uncertainties in the M simulation runs.

The right plot in Figure 4.5.2 displays boxplots of the scaled lengths of
the confidence intervals. For each N , the confidence interval lengths of all
methods are divided by the median confidence interval lengths of DML. The
length of the regsDML confidence intervals is around 50% ≠ 80% the length
of DML’s. Nevertheless, the coverage of regsDML remains around 95%. The
LIML, Fuller(1), and Fuller(4) confidence intervals are considerably longer than
regsDML’s. Although the confidence intervals of regsDML are the shortest of
all considered methods, its coverage remains valid.

Simulation results with —0 = 0 in the SEM in Figure 4.5.1 are presented in
Figure 4.D.2 in the appendix in Section 4.D.

4.5.2 | Real Data Example
We apply the DML and regsDML methods to a real dataset. We estimate
the linear e�ect —0 of institutions on economic performance following the work
of Acemoglu et al. (2001) and Chernozhukov et al. (2018). Countries with better
institutions achieve a greater level of income per capita, and wealthy economies
can a�ord better institutions. This may cause simultaneity. To overcome
it, mortality rates of the first European settlers in colonies are considered as
a source of exogenous variation in institutions. For further details, we refer
to Acemoglu et al. (2001) and Chernozhukov et al. (2018). The data is available
in the R-package hdm (Chernozhukov et al., 2016) and is called AJR. In our
notation, the response Y is the GDP, the covariate X the average protection
against expropriation risk, the variable A the logarithm of settler mortality, and
the covariate W consists of the latitude, the squared latitude, and the binary
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Figure 4.5.2: The results come from M = 1000 simulation runs each

from the SEM in Figure 4.5.1 for a range of sample sizes N and with K =

2 and S = 100 in Algorithm 3. The nuisance functions are estimated

with random forests. The figure displays the coverage of two-sided

confidence intervals for —0, power for two-sided testing of the hypothesis

H0 : —0 = 0, and scaled lengths of two-sided confidence intervals of

DML (red), regDML (blue), regsDML (green), LIML (orange), Fuller(1)

(purple), and Fuller(4) (cyan), where all results are at level 95%. At

each N , the lengths of the confidence intervals are scaled with the

median length from DML. The shaded regions in the coverage and the

power plots represent 95% confidence bands with respect to the M
simulation runs. The blue and green lines as well as the red and orange

ones are indistinguishable in the left panel.
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Estimate of —0 Standard error Confidence interval for —0

DML 0.739 0.459 [≠0.161, 1.639]
regsDML 0.688 0.229 [0.239, 1.136]

Table 4.5.1: Coe�cient estimate, its standard error, and a confidence

interval with regsDML and DML on the AJR dataset, where K = 2

and S = 100 in Algorithm 3, and where the conditional expectations

are estimated with random forests consisting of 1000 trees that have a

minimal node size of 5.

factors Africa, Asia, North America, and South America. That is, we adjust
nonparametrically for the latitude and geographic information.

We choose K = 2 and S = 100 in Algorithm 3 and compute the conditional
expectations with random forests with 1000 trees that have a minimal node size
of 5. The estimation results are displayed in Table 4.5.1. This table gives the
estimated linear coe�cient, its standard deviation, and a confidence interval for
—0 for DML and regsDML. The coe�cient estimate of DML is not significant
because the respective confidence interval includes 0. The regsDML estimate is
significant because it has a smaller standard deviation than the DML estimate.
Note that the coe�cient estimate of regsDML falls within the DML confidence
interval.

The AJR dataset has also been analyzed in Chernozhukov et al. (2018). They
also estimate conditional expectations with random forests consisting of 1000
trees that have a minimal node size of 5 but implicitly assume an additional
homoscedasticity condition for the errors RY ≠ RT

X
—0; see Chernozhukov et al.

(2017). Such a homoscedastic error assumption is questionable though. Their
procedure leads to a smaller estimate of the standard deviation of DML than
what we obtain.

4.6 | Conclusion
We extended and regularized double machine learning (DML) in potentially
overidentified partially linear models (PLMs) with hidden variables. Our goal
was to estimate the linear coe�cient —0 of the PLM. Hidden variables confound
the observables, which can cause endogeneity. For instance, a clinical study
may experience an endogeneity issue if a treatment is not randomly assigned
and subjects receiving di�erent treatments di�er in other ways than the treat-
ment (Okui et al., 2012). In such situations, employing estimation methods
that do not account for endogeneity lead to biased estimators (Fuller, 1987).
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Our contribution was twofold. First, we formulated the PLM as a struc-
tural equation model (SEM) and imposed an identifiability condition on it to
recover the population parameter —0. We estimated —0 using DML similarly
to Chernozhukov et al. (2018). However, our setting is more general than the
one considered in Chernozhukov et al. (2018) because we allow the predictors
to be multivariate, and we impose a moment condition instead of restricting
conditional moments. The DML estimation procedure allows biased estimators
of additional nuisance functions to be plugged into the estimating equation of —0.
The resulting estimator of —0 is asymptotically Gaussian and converges at the
parametric rate of N≠ 1

2 . However, DML has a two-stage least squares (TSLS)
interpretation and may therefore lead to overly wide confidence intervals.

Second, we proposed a regularization-only DML scheme, regDML, and a
regularization-selection DML scheme, regsDML. The latter has shorter confi-
dence intervals by construction because it selects between DML and regDML
depending on whose estimated standard deviation is smaller. Although regsDML
and plain DML are asymptotically equivalent, regsDML leads to drastically
shorter confidence intervals for finite sample sizes. Nevertheless, coverage
guarantees for —0 remain. The regDML estimator is similar to k-class estima-
tion (Theil, 1961) and anchor regression (Rothenhäusler et al., 2021; Bühlmann,
2020; Jakobsen and Peters, 2020) but allows potentially complex partially linear
models and chooses a data-driven regularization parameter.

Empirical examples demonstrated our methodological and theoretical devel-
opments. The results showed that regsDML is a highly e�ective method to
increase the power and sharpness of statistical inference. The DML estimator
has a TSLS interpretation. Therefore, if the confounding is strong, the DML
estimator leads to overly wide confidence intervals and can be substantially
biased. In such a case, regsDML drastically reduces the width of the confi-
dence intervals but may inherit additional bias from DML. This e�ect can be
particularly pronounced for small sample sizes. Section 4.F in the appendix
presents examples with strong and reduced confounding and demonstrates the
coverage behavior of DML and regsDML. Section 4.E in the appendix analyzes
the performance of our methods if the strength of the link A æ X varies, and
investigates the bias-variance tradeo� of the respective estimated quantities for
di�erent values of the regularization parameter.

Although a wide range of machine learners can be employed to estimate
the nuisance functions, we observed that additive splines can estimate more
precise results than random forests if the underlying structure is additive in
good approximation. This e�ect is particularly pronounced if the sample size is
small. If such a finding is to be expected, it may be worthwhile to use structured
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models rather than “general” machine learning algorithms, especially with small
or moderate sample size. Our regsDML methodology can be used with the
implementation that is available in the R-package dmlalg (Emmenegger, 2021).

Acknowledgements
We thank Matthias Lö�er for constructive comments.

This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 786461).

123



124



Appendix
4.A | An Example where the Identifiability Condi-

tion (4.5) holds, but Conditional Moment Re-
quirements do not

This section presents an SEM where our identifiability condition (4.5) holds,
but where the conditional moment requirements of Chernozhukov et al. (2018)
do not.

We assume the model

Y Ω XT —0 + gY (W ) + hY (H) + ÁY

given in (4.3) and the identifiability condition EP [RA(RY ≠ RT

X
—0)] = 0 given

in (4.5). Chernozhukov et al. (2018) assume the model

Y = XT —0 + gY (W ) + U, A = gA(W ) + V (4.17)

for unknown functions gY and gA and impose the conditional moment restric-
tions

E[U |A, W ] = 0 and E[V |W ] = 0 (4.18)

on the error terms. Their model is implicitly assumed to be justidentified: the
dimensions of A and X are implicitly assumed to be equal.

Model (4.17) and the conditional moment restrictions (4.18) imply the iden-
tifiability condition (4.5) due to

E
Ë
RA(RY ≠RT

X
—0)

È
= E

Ë1
A≠gA(W )

2
U

È
= E

Ë1
A≠gA(W )

2
E[U |A, W ]

È
= 0.

However, the reverse direction does not hold. A counterexample is presented
in Figure 4.A.1 where W directly a�ects H . This SEM satisfies the identifiability
condition (4.5) because A is independent of H conditional on W , but it does
not satisfy E[U |W, A] = 0 because we have

E[U |A, W ] = E[H + ÁY |A, W ] = E[H|W ] = E[W + ÁH |W ] = W

due to A ‹‹ H|W and (ÁY , ÁH) ‹‹ (W, A). We have A ‹‹ H|W because
all paths from A to H are blocked by W . The path A æ X Ω H is
blocked by the empty set because X is a collider on this path. The path
A æ X æ Y Ω H is blocked by the empty set because Y is a collider on
this path. The path A æ X æ Y Ω W æ H is blocked by W . The paths

125



A æ X æ W æ Y Ω H and A æ X æ W æ H are also blocked by W .

(ÁA, ÁW , ÁH , ÁX , ÁY ) ≥ N5(0,1)
A Ω ÁA

W Ω ÁW

H Ω W + ÁH

X Ω A + W + H + ÁX

Y Ω X + W + H + ÁY

H

A X Y

W

Figure 4.A.1: An SEM and its associated causal graph.

4.B | DML1 Estimators
The DML1 estimators are less preferred than the DML2 estimators we proposed
to use in the main text, but for completeness we provide the definitions in this
section.

4.B.1 | DML1 Estimator of —0

The DML1 estimator of —0 is given by

—̂DML1 := 1
K

Kÿ

k=1
—̂Ik,

where
—̂Ik :=

A1 „R
Ik

X

2
T � ‚R

I
k

A

„R
Ik

X

B≠11 „R
Ik

X

2
T � ‚R

I
k

A

„R
Ik

Y , (4.19)

and where we recall the projection matrix � ‚R
I
k

A
= „R

Ik

A

1
(„R

Ik

A)T „R
Ik

A

2≠1(„R
Ik

A)T

defined in (4.8). The estimator —̂Ik is the TSLS estimator of „R
Ik

Y on „R
Ik

X using
the instrument „R

Ik

A.

4.B.2 | DML1 estimator of b“

The DML1 estimator of b“ is given by

b̂“,DML1 := 1
K

Kÿ

k=1
b̂“

k
, (4.20)
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where

b̂“

k
:= arg min

bœRd

Q

a
.....

1
1≠ � ‚R

I
k

A

21 „R
Ik

Y ≠
1 „R

Ik

X

2
T
b

2.....

2

2
+ “

.....� ‚R
I
k

A

1 „R
Ik

Y ≠
1 „R

Ik

X

2
T
b

2.....

2

2

R

b.

This estimator can be expressed in closed form by

b̂“

k
=

A1 „R
Ik

ÊX
2

T „R
Ik

ÊX

B≠11 „R
Ik

ÊX
2

T „R
Ik

ÂY ,

where we recall the notation

„R
Ik

ÊX =
A

1 + (Ô“ ≠ 1)� ‚R
I
k

A

B
„R

Ik

X and „R
Ik

ÂY =
A

1 + (Ô“ ≠ 1)� ‚R
I
k

A

B
„R

Ik

Y

as in (4.15). The computation of b̂“

k
is an OLS scheme where „R

Ik

ÂY is regressed
on „R

Ik

ÊX .

4.C | SEM of Figure 4.3.1
The data from the simulation displayed in Figure 4.3.1 come from the following
SEM. Let the dimension of W be v = 20. Let R be the upper triangular matrix
of the Cholesky decomposition of the Toeplitz matrix whose first row is given
by (1, 0.7, 0.72, . . . , 0.719). The SEM we consider is given by

(ÁA, ÁW , ÁH , ÁX , ÁY ) ≥ N24(0,1)
H Ω ÁH

W Ω ÁW R

A Ω e
W1

1+eW1 + W2 + W3 + ÁA

X Ω 2A + W1 + 0.25 · e
W3

1+eW3 + H + ÁX

Y Ω X + e
W1

1+eW1 + 0.25W3 + H + ÁY .

4.D | Additional Numerical Results
If we say in this section that the nuisance parameters are estimated with additive
splines, they are estimated with additive cubic B-splines with

Ï
N

1
5

Ì
+ 2 degrees

of freedom, where N denotes the sample size of the data.
If we say in this section that the nuisance parameters are estimated with

random forests, they are estimated with random forests consisting of 500 trees
that have a minimal node size of 5.

Figure 4.D.1 and 4.D.2 illustrate the simulation results with —0 = 0 of the
examples presented in Figure 4.1.2 and 4.5.2 in Sections 4.1.1 and 4.5.1, respec-
tively. The coverage and length of the scaled confidence intervals are similar
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to the results obtained for —0 ”= 0. Instead of the power as in Figure 4.1.2
and 4.5.2, Figure 4.D.1 and 4.D.2 illustrate the type I error.

In Figure 4.D.1, DML achieves a type I error of 0 or close to 0 over all sample
sizes considered. The regsDML method achieves a type I error that is closer to
the gray line indicating the 5% level. The dashed lines represent 95% confidence
regions. The type I error of regsDML is higher than the type I error of DML
because the regsDML confidence intervals are considerably shorter than the
DML ones. The right plot in Figure 4.D.1 indicates that the lengths of the
confidence intervals of regsDML is around 10% ≠ 30% the length of DML’s.
Although regsDML greatly reduces the confidence interval length, the type
I error confidence bands include the 5% level or are below it. This means
that although regsDML is a regularized version of DML, it does not incur an
overlarge bias.

In Figure 4.D.2, the type I errors of both DML and regsDML are similar.
The 95% confidence regions of both estimators include the 5% level or are
below it. The 95% confidence regions of the levels are represented by dashed
lines. These confidence regions of both DML and regsDML contain the 5% level
or are below it. The right plot in Figure 4.D.2 illustrates that the regsDML
confidence intervals are around 50% ≠ 80% the length of DML’s. Nevertheless,
its type I error does not exceed the 95% level.

4.E | Weak A æ X and Bias-Variance Tradeo�
First, we analyze the behavior of our methods for varying strength of A on X .
For N = 200, we consider the coverage and length of the confidence intervals for
varying strength from A to X for the same settings as in Figure 4.1.2 and 4.5.2.

Figure 4.E.1 illustrates the results for data from the SEM from Figure 4.1.2.
We vary the strength of the direct link A æ X and denote it by – in Fig-
ure 4.E.1. Figure 4.E.2 illustrates the results for data from the SEM from
Figure 4.5.2. We leave the link A2 æ X as it is and only vary the strength
of the direct link A1 æ X , which we denote by – in Figure 4.E.2. In both
Figure 4.E.1 and 4.E.2, the coverage remains high for all considered methods.
If – becomes larger, the confidence intervals become shorter, which leads to
a coverage that is closer to the nominal 95% level, especially in Figure 4.E.2.
The regsDML method yields the shortest confidence intervals in both figures.

Second, we analyze the bias-variance tradeo� of the respective estimated
quantities of the regularized methods. We again choose the sample size N = 200
and consider the same settings as in Figure 4.1.2 and 4.5.2. The results are
summarized in Figure 4.E.3 and 4.E.4 that display the estimated MSE, estimated
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Figure 4.D.1: The results come from M = 1000 simulation runs each

from the SEM in Figure 4.1.1 with —0 = 0 for a range of sample

sizes N and with K = 2 and S = 100 in Algorithm 3. The nuisance

functions are estimated with additive splines. The figure displays the

coverage of two-sided confidence intervals for —0, type I error for two-

sided testing of the hypothesis H0 : —0 = 0, and scaled lengths of

two-sided confidence intervals of DML (red), regDML (blue), regsDML

(green), LIML (orange), Fuller(1) (purple), and Fuller(4) (cyan), where

all results are at level 95%. At each sample size N , the lengths of the

confidence intervals are scaled with the median length from DML. The

shaded regions in the coverage and the type I error plots represent 95%

confidence bands with respect to the M simulation runs. The blue and

green lines as well as the red and orange ones are indistinguishable in

the left panel.
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Figure 4.D.2: The results come from M = 1000 simulation runs from

the SEM in Figure 4.5.1 with —0 = 0 for a range of sample sizes N
and with K = 2 and S = 100 in Algorithm 3. The nuisance functions

are estimated with random forests. The figure displays the coverage

of two-sided confidence intervals for —0, type I error for two-sided

testing of the hypothesis H0 : —0 = 0, and scaled lengths of two-sided

confidence intervals of DML (red), regDML (blue), regsDML (green),

LIML (orange), Fuller(1) (purple), and Fuller(4) (cyan), where all

results are at level 95%. At each sample size N , the lengths of the

confidence intervals are scaled with the median length from DML. The

shaded regions in the coverage and the type I error plots represent 95%

confidence bands with respect to the M simulation runs. The blue and

green lines as well as the red and orange ones are indistinguishable in

the left panel.
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Figure 4.E.1: Same setting as in Figure 4.1.2, but with N = 200 only.

The strength of the direct link A æ X varies and is denoted by –.
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Figure 4.E.2: Same setting as in Figure 4.5.2, but with N = 200 only.

The strength of the direct link A1 æ X varies and is denoted by –.

variance, and estimated squared bias as used in Equation (4.16). The MSE
in both figures is mainly driven by the variance, and regsDML achieves a
considerable variance reduction compared to the TSLS-type DML estimator.

4.F | Confounding and its Mitigation
If we say in this section that the nuisance parameters are estimated with additive
splines, they are estimated with additive cubic B-splines with

Ï
N

1
5

Ì
+ 2 degrees

of freedom, where N denotes the sample size of the data.
If we say in this section that the nuisance parameters are estimated with

random forests, they are estimated with random forests consisting of 500 trees
that have a minimal node size of 5.

We consider models where the DML and the regsDML methods do not work
well in terms of coverage of —0. We present possible explanations of these
failures and illustrate model changes to overcome them. The first model in
Section 4.F.1 features a strong confounding e�ect H æ X , the second model
in Section 4.F.2 features an e�ect with noise in W æ H , and the third model
in Section 4.F.3 features an e�ect with noise in H æ W .

4.F.1 | Strong Confounding E�ect H æ X

If the hidden variable H is strongly confounded with X , the resulting TSLS-
type DML estimator can be substantially biased depending on the choice of
functions in the model. If the estimated variances are not large enough, the
coverage of the resulting confidence intervals for —0 can be too low. This issue
is illustrated in Figure 4.F.2.

The regsDML estimator mimics the bias behavior of DML because the DML
estimator is used as a replacement of —0 in the MSE objective function that
defines the estimated regularization parameter of regDML in (4.16). The
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Figure 4.E.3: Estimated MSE, estimated variance, and estimated

squared bias as used in Equation (4.16) for the same setting as in

Figure 4.1.2, but with N = 200 only. The black solid line displays

the median of the respective quantity over the considered range of

“-values for b̂“
. The yellow area marks the observed 25% and 75%

quantiles. All methods incorporate an additional variance adjustment

from the S repetitions according to Algorithm 3. Boxplots illustrate the

performance of the TSLS and the regularized methods. The position of

the boxplots is not linked to the “-values on the x-axis.
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Figure 4.E.4: Estimated MSE, estimated variance, and estimated

squared bias as used in Equation (4.16) for the same setting as in

Figure 4.5.2, but with N = 200 only. The black solid line displays

the median of the respective quantity over the considered range of

“-values for b̂“
. The yellow area marks the observed 25% and 75%

quantiles. All methods incorporate an additional variance adjustment

from the S repetitions according to Algorithm 3. Boxplots illustrate the

performance of the TSLS and the regularized methods. The position of

the boxplots is not linked to the “-values on the x-axis.
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(ÁA, ÁW , ÁH , ÁX , ÁY ) ≥ N5(0,1)
A Ω ÁA

W Ω ÁW

H Ω ÁH

X Ω A + W + ‰H + 0.25ÁX

Y Ω —0X + W + H + 0.25ÁY

H

A X Y

W

Figure 4.F.1: An SEM and its associated causal graph.

confidence intervals of regsDML are shorter than the DML ones, but both are
computed with a similarly biased coe�cient estimate of —0. Therefore, the
coverage of the confidence intervals of regsDML is even worse than the one of
DML.

The coverages of both DML and regsDML are considerably improved if the
confounding strength is reduced; see Figure 4.F.3.

4.F.2 | Noise in W æ H

The variable W may have a direct e�ect on H . If this link is strong enough with
respect to the additional noise ÁH of H , it is possible to obtain some information
of H by observing W . This can reduce the overall level of confounding present
depending on the choice of functions in the model.

Simulation results where W explains only part of the variation in H are
presented in Figure 4.F.5. The confidence intervals of both DML and regsDML
do not attain a 95% coverage for small sample sizes N . The situation can be
considerably improved by reducing the variation of H that is not explained by
W ; see Figure 4.F.6.

4.F.3 | Noise in H æ W

The variable H may have a direct e�ect on W . If this link is strong enough
with respect to the additional noise ÁW of W , it is possible to obtain some
information of H by observing W similarly to Section 4.F.2. The results again
depend on the choice of functions in the model.

Figure 4.F.8 presents simulation results where H explains only little variation
of W compared with ÁW . The confidence intervals of regsDML do not attain a
95% coverage for small sample sizes N because the estimator inherits additional
bias from DML. The situation can be improved by reducing the variation of W
that is not explained by H ; see Figure 4.F.9.
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Figure 4.F.2: The results come from M = 1000 simulation runs from

the SEM in Figure 4.F.1 with ‰ = 15 and —0 = 0 for a range of sample

sizes N and with K = 2 and S = 100 in Algorithm 3. The nuisance

functions are estimated with additive splines. The figure displays the

coverage of two-sided confidence intervals for —0, type I error for two-

sided testing of the hypothesis H0 : —0 = 0, and scaled lengths of

two-sided confidence intervals of DML (red), regDML (blue), regsDML

(green), LIML (orange), Fuller(1) (purple), and Fuller(4) (cyan), where

all results are at level 95%. At each sample size N , the lengths of the

confidence intervals are scaled with the median length from DML. The

shaded regions in the coverage and the type I error plots represent 95%

confidence bands with respect to the M simulation runs. The blue and

green lines are indistinguishable in the left panel.
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Figure 4.F.3: The results come from M = 1000 simulation runs from

the SEM in Figure 4.F.1 with ‰ = 1 and —0 = 0 for a range of sample

sizes N and with K = 2 and S = 100 in Algorithm 3. The nuisance

functions are estimated with additive splines. The figure displays the

coverage of two-sided confidence intervals for —0, type I error for two-

sided testing of the hypothesis H0 : —0 = 0, and scaled lengths of

two-sided confidence intervals of DML (red), regDML (blue), regsDML

(green), LIML (orange), Fuller(1) (purple), and Fuller(4) (cyan), where

all results are at level 95%. At each sample size N , the lengths of the

confidence intervals are scaled with the median length from DML. The

shaded regions in the coverage and the type I error plots represent 95%

confidence bands with respect to the M simulation runs. The blue and

green lines are indistinguishable in the left panel.

(ÁA, ÁW , ÁH , ÁX , ÁY ) ≥ N5(0,1)
A Ω ÁA

W Ω ÁW

H Ω W + ŸÁH

X Ω 0.5A + 3 tanh(2W ) + 1.5H
+0.25ÁX

Y Ω —0X ≠ tanh(W ) + H + 0.25ÁY

H

A X Y

W

Figure 4.F.4: An SEM and its associated causal graph.

135



0.2

0.4

0.6

0.8

1.0

Coverage

50 10
0

20
0

35
0

50
0

10
00

30
00

50
00

N

0.2

0.4

0.6

0.8

Type I error

50 10
0

20
0

35
0

50
0

10
00

30
00

50
00

N

50 10
0

20
0

35
0

50
0

10
00

30
00

50
00

Length of scaled confidence intervals

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.5

2.0

2.5

3.0

N

DML
regDML
regsDML
LIML
Fuller(1)
Fuller(4)

Figure 4.F.5: The results come from M = 1000 simulation runs from

the SEM in Figure 4.F.4 with Ÿ = 2 and —0 = 0 for a range of sample

sizes N and with K = 2 and S = 100 in Algorithm 3. The nuisance

functions are estimated with additive splines. The figure displays the

coverage of two-sided confidence intervals for —0, type I error for two-

sided testing of the hypothesis H0 : —0 = 0, and scaled lengths of

two-sided confidence intervals of DML (red), regDML (blue), regsDML

(green), LIML (orange), Fuller(1) (purple), and Fuller(4) (cyan), where

all results are at level 95%. At each sample size N , the lengths of the

confidence intervals are scaled with the median length from DML. The

shaded regions in the coverage and the type I error plots represent 95%

confidence bands with respect to the M simulation runs. The blue and

green lines are indistinguishable in the left panel.
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Figure 4.F.6: The results come from M = 1000 simulation runs from

the SEM in Figure 4.F.4 with Ÿ = 0.25 and —0 = 0 for a range of sample

sizes N and with K = 2 and S = 100 in Algorithm 3. The figure

displays the coverage of two-sided confidence intervals for —0, type I

error for two-sided testing of the hypothesis H0 : —0 = 0, and scaled

lengths of two-sided confidence intervals of DML (red), regDML (blue),

regsDML (green), LIML (orange), Fuller(1) (purple), and Fuller(4)

(cyan), where all results are at level 95%, and where the nuisance

functions are estimated with additive splines. At each sample size N ,

the lengths of the confidence intervals are scaled with the median length

from DML. The shaded regions in the coverage and the type I error

plots represent 95% confidence bands with respect to the M simulation

runs. The blue and green lines are indistinguishable in the left panel.

(ÁH , ÁW , ÁA, ÁX , ÁY ) ≥ N5(0,1)
H Ω ÁH

W Ω 2H + ŸÁW

A Ω e≠0.5W + 0.5ÁA

X Ω ≠A ≠ 0.1W 3 ≠ 0.2W 2 + 0.4W
+ 7

1+e≠4H + 0.25ÁX

Y Ω —0X + 0.5W + 0.5H + ÁY

H

A X Y

W

Figure 4.F.7: An SEM and its associated causal graph.
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Figure 4.F.8: The results come from M = 1000 simulation runs from

the SEM in Figure 4.F.7 with Ÿ = 1 and —0 = 0 for a range of sample

sizes N and with K = 2 and S = 100 in Algorithm 3. The nuisance

functions are estimated with additive splines. The figure displays the

coverage of two-sided confidence intervals for —0, type I error for two-

sided testing of the hypothesis H0 : —0 = 0, and scaled lengths of

two-sided confidence intervals of DML (red), regDML (blue), regsDML

(green), LIML (orange), Fuller(1) (purple), and Fuller(4) (cyan), where

all results are at level 95%. At each sample size N , the lengths of the

confidence intervals are scaled with the median length from DML. The

shaded regions in the coverage and the type I error plots represent 95%

confidence bands with respect to the M simulation runs. The blue and

green lines are indistinguishable in the left panel.
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Figure 4.F.9: The results come from M = 1000 simulation runs from

the SEM in Figure 4.F.7 with Ÿ = 0.25 and —0 = 0 for a range of sample

sizes N and with K = 2 and S = 100 in Algorithm 3. The nuisance

functions are estimated with additive splines. The figure displays the

coverage of two-sided confidence intervals for —0, type I error for two-

sided testing of the hypothesis H0 : —0 = 0, and scaled lengths of

two-sided confidence intervals of DML (red), regDML (blue), regsDML

(green), LIML (orange), Fuller(1) (purple), and Fuller(4) (cyan), where

all results are at level 95%. At each sample size N , the lengths of the

confidence intervals are scaled with the median length from DML. The

shaded regions in the coverage and the type I error plots represent 95%

confidence bands with respect to the M simulation runs. The blue and

green lines are indistinguishable in the left panel.
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ÁA, ÁW , ÁH , ÁX , ÁY

A Ω ÁA

W Ω aW (A) + ÁW

H Ω gH(W ) + ÁH

X Ω aX(A) + hX(H) + ÁX

Y Ω —0X + gY (W ) + hY (H) + ÁY

H

A X Y

W

Figure 4.G.1: An SEM satisfying the identifiability condition (4.5) and

its associated causal graph as in Example 4.G.1.

4.G | Examples where the identifiability condition (4.5)
does and does not hold

The following examples illustrate SEMs where the identifiability condition (4.5)
holds and where it fails to hold. We argue using causal graphs; see Lauritzen
(1996); Pearl (1998, 2009, 2010); Peters et al. (2017); Maathuis et al. (2019).
By convention, we omit error variables in a causal graph if they are assumed to
be mutually independent (Pearl, 2009).

Example 4.G.1. Consider the SEM of the 1-dimensional variables A,
W , H, X, and Y and its associated causal graph given in Figure 4.G.1,
where —0 is a fixed unknown parameter, and where aW , aX, gY , gH, hX,
and hY are some appropriate functions. The variable A directly influences
W , and W directly influences the hidden variable H. The variable A is
independent of H given W because every path from A to H is blocked by
W ; a proof is given in the appendix in Section 4.H.

Proof of Example 4.G.1. The path A æ X Ω H is blocked by the empty
set because X is a collider on this path. The paths A æ · · · æ Y Ω H are
blocked by the empty set because Y is a collider on these paths. The path
A æ W æ H is blocked by W .

The variable A is exogenous in Example 4.G.1. In general, this is no require-
ment; see Example 4.G.2.

Example 4.G.2. Consider the SEM of the 1-dimensional variables H, W ,
A, X, and Y and its associated causal graph given in Figure 4.G.2, where
—0 is a fixed unknown parameter, and where aX , gA, gX , gY , hX , hW , and
hY are some appropriate functions. The variable A is not a source node.
The hidden variable H directly influences W , and W directly influences A.
The variable A is independent of H given W because every path from A to
H is blocked by W ; a proof is given in the appendix in Section 4.H.
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ÁH , ÁW , ÁA, ÁX , ÁY

H Ω ÁH

W Ω hW (H) + ÁW

A Ω gA(W ) + ÁA

X Ω aX(A) + gX(W ) + hX(H) + ÁX

Y Ω —0X + gY (W ) + hY (H) + ÁY

H

A X Y

W

Figure 4.G.2: An SEM satisfying the identifiability condition (4.5) and

its associated causal graph as in Example 4.G.2.

(ÁH , ÁA, ÁW , ÁX , ÁY ) ≥ N5(0,1)
H Ω ÁH

A Ω ÁA

W Ω A + H + ÁW

X Ω A + W + H + ÁX

Y Ω —0X + W + H + ÁY

H

A X Y

W

Figure 4.G.3: An SEM not satisfying the identifiability condition (4.5)

together with its associated causal graph as in Example 4.G.3

Proof of Example 4.G.2. The path A æ X Ω H is blocked by the empty
set because X is a collider on this path. The paths A æ X æ · · · æ Y Ω H
are blocked by the empty set because Y is a collider on these paths. The
paths A Ω W æ Y Ω X Ω H , A Ω W Ω H , and A æ X Ω W Ω H
are blocked by W . The path A Ω W æ Y Ω H is blocked by W or
alternatively by the empty set because Y is a collider on this path. The path
A Ω W æ X Ω H is blocked by W or alternatively by the empty set because
X is a collider on this path.

Identifiability of —0 is not guaranteed if A and H are independent. An
illustration is given in Example 4.G.3. Considering the instrument A instead
of RA in Theorem 4.2.1 cannot solve the issue. In such a situation, stronger
structural assumptions are required.

Example 4.G.3. Consider the SEM of the 1-dimensional variables H, A,
W , X, and Y and its associated causal graph given in Figure 4.G.3, where
—0 is a fixed unknown parameter. Although A and H are independent, the
identifiability condition (4.5) does not hold; a proof is given in the appendix
in Section 4.H.

Proof of Example 4.G.3. The two random variables A and H are independent
because the path A æ W Ω H is not blocked by W . Indeed, W is a collider
on this path.
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All random variables are 1-dimensional. Therefore, the representation of —0
in Theorem 4.2.1 is equivalent to the identifiability condition

E[RA(RY ≠ RX—0)] = 0

in Equation (4.5). However, the identifiability condition does not hold in the
present situation. We have

E[RA(RY ≠ RX—0)]
= E[RA

1
H + ÁY ≠ E[H + ÁY |W ]

2È

= E
Ë
RA

1
H ≠ E[H|W ]

2È

because ÁY is independent of A and W and centered. By the tower property
for conditional expectations, we have

E[RA(RY ≠ RX—0)] = E
Ë
AH ≠ A E[H|W ]

È
.

Because A and H are independent and centered, we have E[AH ] = 0. Moreover,
we have H ≥ N (0, 1), W ≥ N (0, 3), and (W |H = h) ≥ N (h, 2). The
conditional distribution of H|W = w can be obtained by applying Bayes’
theorem and is given by N (1

3w, 2
3). Hence, we have E[H|W ] = 1

3W and

E
Ë
A E[H|W ]

È
= 1

3 E[AW ] = 1
3 E

Ë
A2È

= 1
3 ”= 0

because A is independent of H and ÁW . Therefore, we have E[RA(RY ≠
RX—0)] ”= 0 and —0 cannot be represented as in Theorem 4.2.1.

4.H | Proofs of Section 4.2

Proof of Theorem 4.2.1. To prove the theorem, we need to verify

—0 =
A

E
Ë
RXRT

A

È
E

Ë
RART

A

È≠1
E

Ë
RART

X

ÈB≠1
E

Ë
RXRT

A

È
E

Ë
RART

A

È≠1
E[RARY ].

This statement is equivalent to

0 = E
Ë
RXRT

A

È
E

Ë
RART

A

È≠1
E

Ë
RA

1
RY ≠ RT

X
—0)

È
.

This last statement holds because E[RA(RY ≠ RT

X
—0)] equals 0 due to the

identifiability condition (4.5).
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4.I | Proofs of Section 4.3
We denote by Î·Î either the Euclidean norm for a vector or the operator norm
for a matrix.

Proof of Proposition 4.3.3. We have

ˆ

ˆr

-----
r=0

EP

Ë
Â

1
S; —0, ÷0 + r(÷ ≠ ÷0)

2È

= ˆ

ˆr

-----
r=0

EP

S

U
A

A ≠ m0
A
(W ) ≠ r

1
mA(W ) ≠ m0

A
(W )

2B

·
Q

aY ≠ m0
Y

(W ) ≠ r
1
mY (W ) ≠ m0

Y
(W )

2

≠
A

X ≠ m0
X

(W ) ≠ r
1
mX(W ) ≠ m0

X
(W )

2B
T

—0

R

b

T

V

= EP

C

≠
1
mA(W ) ≠ m0

A
(W )

2A

Y ≠ m0
Y

(W ) ≠
1
X ≠ m0

X
(W )

2
T
—0

B

+
1
A ≠ m0

A
(W )

2A

≠
1
mY (W ) ≠ m0

Y
(W )

2

+
1
mX(W ) ≠ m0

X
(W )

2
T
—0

BD

.

Subsequently, we show that both terms

EP

C1
mA(W ) ≠ m0

A
(W )

2A

Y ≠ m0
Y

(W ) ≠
1
X ≠ m0

X
(W )

2
T
—0

BD

(4.21)

and

EP

C1
A ≠ m0

A
(W )

2A

≠
1
mY (W ) ≠ m0

Y
(W )

2
+

1
mX(W ) ≠ m0

X
(W )

2
T
—0

BD

(4.22)
are equal to 0. We first consider the term (4.21). Recall the notations m0

Y
(W ) =

EP [Y |W ] and m0
X

(W ) = EP [X|W ]. We have

EP

C1
mA(W ) ≠ m0

A
(W )

2A

Y ≠ m0
Y

(W ) ≠
1
X ≠ m0

X
(W )

2
T
—0

BD

= EP

C1
mA(W ) ≠ m0

A
(W )

2
EP

Ë
Y ≠ EP [Y |W ] ≠ (X ≠ EP [X|W ])T —0

---W
ÈD

= 0.

Next, we verify that the term given in (4.22) vanishes. Recall the notation
m0

A
(W ) = EP [A|W ]. We have

EP

C1
A ≠ m0

A
(W )

2A

≠
1
mY (W ) ≠ m0

Y
(W )

2
+

1
mX(W ) ≠ m0

X
(W )

2
T
—0

BD
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= EP

C

EP

Ë
A ≠ E[A|W ]

---W
È

·
A

≠
1
mY (W ) ≠ m0

Y
(W )

2
+

1
mX(W ) ≠ m0

X
(W )

2
T
—0

BD

=0.

Because both terms (4.21) and (4.22) vanish, we conclude

ˆ

ˆr

-----
r=0

EP

Ë
Â

1
S; —0, ÷0 + r(÷ ≠ ÷0)

2È
= 0.

Definition 4.I.1. Consider a set T of nuisance functions. For S =
(A, X, W, Y ), an element ÷ = (mA, mX , mY ) œ T , and — œ Rd, we introduce
the score functions

ÊÂ(S, —, ÷) :=
1
X ≠ mX(W )

2A

Y ≠ mY (W ) ≠
1
X ≠ mX(W )

2
T
—

B

, (4.23)

and
Â1(S, ÷) :=

1
X ≠ mX(W )

21
A ≠ mA(W )

2
T
,

Â2(S, ÷) :=
1
A ≠ mA(W )

21
A ≠ mA(W )

2
T
,

Â3(S, ÷) :=
1
X ≠ mX(W )

21
X ≠ mX(W )

2
T
.

Furthermore, let the matrices

D1 := EP [Â3(S; ÷0)],
D2 := EP [Â1(S; ÷0)] EP [Â2(S; ÷0)]≠1 EP

Ë
ÂT

1 (S; ÷0)
È
,

D3 := EP [Â1(S; ÷0)] EP [Â2(S; ÷0)]≠1,
D5 := EP [Â2(S; ÷0)]≠1 EP [Â(S; b“, ÷0)],
J0 := D≠1

2 D3,
J̃0 := EP

Ë
Â(S; —0, ÷0)ÂT (S; —0, ÷0)

È
= E

Ë
RART

A
(RY ≠ RT

X
—0)2È

,
J ÕÕ

0 := EP [RART

A
],

J Õ
0 := EP

Ë
RX(RA)T

È
(J ÕÕ

0 )≠1 EP

Ë
RA(RX)T

È

and the variance-covariance matrix ‡2 := J0J̃0JT

0 . Moreover, let the score
function

Â(·; —0, ÷0) := ‡≠1J̃0
≠ 1

2 Â(·; —0, ÷0).

Definition 4.I.2. Let “ Ø 0. Consider a realization set T of nuisance
functions. Define the statistical rates

r4
N

:= max
S=(U,V,W,Z)œ{A,X,Y }2◊{W}◊{A,X,Y },

b
0œ{b

“
,—0,0}

sup
÷œT

EP [ÎÂ(S; b0, ÷) ≠ Â(S; b0, ÷0)Î],
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⁄N := max
Ïœ{Â, ÂÂ,Â2},

b
0œ{b

“
,—0,0}

sup
rœ(0,1),÷œT

...ˆ2
r
EP

Ë
Ï

1
S; b0, ÷0 + r(÷ ≠ ÷0)

2È...,

where we interpret Â2
1
S; b0, ÷0 + r(÷ ≠ ÷0)

2
as Â2

1
S; ÷0 + r(÷ ≠ ÷0)

2
in the

definition of ⁄N .

Remark 4.I.3. We would like to remark that the respective definition
of the statistical rate rN given in Chernozhukov et al. (2018) involves
the L2-norm of Â(S; b0, ÷) ≠ Â(S; b0, ÷0) instead of its L1-norm. However,
it is essential to employ the L1-norm to ensure that Assumption 4.I.5.5
can constrain the L2-norm of the estimation errors incurred by the ML
estimators of the nuisance parameters. Thus, we do not have to constrain
their higher order errors to employ Hölder’s inequality in Lemma 4.I.16.

Definition 4.I.4. Let the nonrandom numbers

flN := rN + N
1
2 ⁄N and fl̃N := Nmax

Ó
4
p
≠1,≠ 1

2

Ô

+ rN .

If not stated otherwise, we assume the following Assumption 4.I.5 in all the
results presented in the appendix.

Assumptions 4.I.5. Let “ Ø 0. Let K Ø 2 be a fixed integer independent
of N . We assume that N Ø K holds. Let {”N}NØK and {�N}NØK be
two sequences of positive numbers that converge to zero, where ”

1
4
N

Ø N≠ 1
2

holds. Let {PN}NØ1 be a sequence of sets of probability distributions P of
the quadruple S = (A, W, X, Y ).

Let p > 4. For all N , for all P œ PN , consider a nuisance function
realization sets T such that the following conditions hold:

4.I.5.1 We have an SEM given by (4.3) that satisfies the identifiability con-
diton (4.5).

4.I.5.2 There exists a finite real constant C1 satisfying ÎAÎP,p + ÎXÎP,p +
ÎY ÎP,p Æ C1.

4.I.5.3 The matrix EP [RXRT

A
] œ Rd◊q has full rank d. This in particular

requires q Ø d. The matrices D1 œ Rd◊d and J ÕÕ
0 œ Rq◊q are invertible.

Furthermore, the smallest and largest singular values of the symmetric
matrices J ÕÕ

0 and J Õ
0 are bounded away from 0 by c1 > 0 and are

bounded away from +Œ by c2 < Œ.

4.I.5.4 The symmetric matrices J̃0, D1 + (“ ≠ 1)D2, and D4 are invertible,
where D4 is introduced in Definition 4.J.1 in the appendix in Sec-
tion 4.J. The smallest and largest singular values of these matrices
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are bounded away from 0 by c3 and are bounded away from +Œ by
c4.

4.I.5.5 The set T consists of P -integrable functions ÷ = (mA, mX , mY )
whose pth moment exists and it contains ÷0. There exists a finite
real constant C2 such that

Î÷0 ≠ ÷ÎP,p Æ C2, Î÷0 ≠ ÷ÎP,2 Æ ”N ,
Îm0

A
(W ) ≠ mA(W )Î2

P,2 Æ ”NN≠ 1
2 ,

Îm0
X

(W ) ≠ mX(W )ÎP,2
·
1
Îm0

Y
(W ) ≠ mY (W )ÎP,2 + Îm0

X
(W ) ≠ mX(W )ÎP,2

2
Æ ”NN≠ 1

2 ,
Îm0

A
(W ) ≠ mA(W )ÎP,2

·
1
Îm0

Y
(W ) ≠ mY (W )ÎP,2 + Îm0

X
(W ) ≠ mX(W )ÎP,2

2
Æ ”NN≠ 1

2

hold for all elements ÷ of T . Given a partition I1, . . . , IK of [N ] where
each Ik is of size n = N

K
, for all k œ [K], the nuisance parameter

estimate ÷̂I
c

k = ÷̂I
c

k({Si}iœI
c

k
) satisfies

Î÷0 ≠ ÷̂I
c

kÎP,p Æ C2, Î÷0 ≠ ÷̂I
c

kÎP,2 Æ ”N ,

Îm0
A
(W ) ≠ m̂

I
c

k

A
(W )Î2

P,2 Æ ”NN≠ 1
2 ,

Îm0
X

(W ) ≠ m̂
I

c

k

X
(W )ÎP,2

·
1
Îm0

Y
(W ) ≠ m̂

I
c

k

Y
(W )ÎP,2 + Îm0

X
(W ) ≠ m̂

I
c

k

X
(W )ÎP,2

2
Æ ”NN≠ 1

2 ,

Îm0
A
(W ) ≠ m̂

I
c

k

A
(W )ÎP,2

·
1
Îm0

Y
(W ) ≠ m̂

I
c

k

Y
(W )ÎP,2 + Îm0

X
(W ) ≠ m̂

I
c

k

X
(W )ÎP,2

2
Æ ”NN≠ 1

2

with P -probability no less than 1 ≠ �N . Denote by EN the event that
÷̂I

c

k = ÷̂I
c

k({Si}iœI
c

k
) belongs to T and assume that this event holds

with P -probability no less than 1 ≠ �N .

For instance, invertibility of the square matrices EP [RART

A
] and J̃0 is satisfied

if ÁY is independent of both A and W and has a strictly positive variance.

Remark 4.I.6. It is possible to drop some of the assumptions in As-
sumption 4.I.5 if we are interested in proving the results about DML only.
The full assumption is required to prove the results about both DML and
regDML.

We assume Assumption 4.I.5 throughout.

Lemma 4.I.7. Let u Ø 1. Consider a t-dimensional random variable Z.
Denote the joint law of Z and W by P . Then we have

ÎZ ≠ EP [Z|W ]ÎP,u Æ 2ÎZÎP,u.
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Proof of Lemma 4.I.7. Because the Euclidean norm to the uth power is convex
for u Ø 1, we have

ÎEP [Z|W ]Îu

P,u
= EP

Ë
ÎEP [Z|W ]Îu

È
Æ EP

Ë
EP [ÎZÎu|W ]

È
= EP [ÎZÎu] = ÎZÎu

P,u

by Jensen’s inequality. We hence have

ÎZ ≠ EP [Z|W ]ÎP,u Æ ÎZÎP,u + ÎEP [Z|W ]ÎP,u Æ 2ÎZÎP,u

by the triangle inequality.

Lemma 4.I.8. Consider a t-dimensional random variable Z. Denote the
joint law of Z and W by P . Then we have

... EP

Ë
ZZT ≠ EP [Z|W ] EP [ZT |W ]

È... Æ 2ÎZÎ2
P,2.

Proof of Lemma 4.I.8. Because the Euclidean norm is convex, we have
... EP

Ë
ZZT ≠ EP [Z|W ] EP [ZT |W ]

È... Æ EP

Ë
ÎZZT Î + ÎEP [Z|W ] EP [ZT |W ]Î

È

Æ EP

Ë
ÎZÎ2 + ÎEP [Z|W ]Î2È

by Jensen’s inequality, the triangle inequality and the Cauchy–Schwarz inequal-
ity. Because the squared Euclidean norm is convex, we have

ÎEP [Z|W ]Î2 Æ EP

Ë
ÎZÎ2---W

È

by Jensen’s inequality. Therefore, we have
... EP

Ë
ZZT ≠ EP [Z|W ] EP [ZT |W ]

È... Æ EP

Ë
ÎZÎ2 + ÎEP [Z|W ]Î2È

Æ EP

Ë
ÎZÎ2 + EP [ÎZÎ2|W ]

È

= 2ÎZÎ2
P,2.

Lemma 4.I.9. Consider a t1-dimensional random variable Z1 and a t2-
dimensional random variable Z2. Denote the joint law of Z1, Z2, and W
by P . Then we have

... EP

Ë
(Z1 ≠ EP [Z1|W ])(Z2 ≠ EP [Z2|W ])T

È...
2 Æ ÎZ1Î2

P,2ÎZ2Î2
P,2.

Proof of Lemma 4.I.9. By the Cauchy–Schwarz inequality, we have
... EP

Ë
(Z1 ≠ EP [Z1|W ])(Z2 ≠ EP [Z2|W ])T

È...
2

Æ EP

Ë
Î(Z1 ≠ EP [Z1|W ])Î2È

EP

Ë
Î(Z2 ≠ EP [Z2|W ])Î2È

.
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Because the conditional expectation minimizes the mean squared error (Durrett,
1996, Theorem 5.1.8), we have

EP

Ë
Î(Z1 ≠ EP [Z1|W ])Î2È

Æ ÎZ1Î2
P,2

and
EP

Ë
Î(Z2 ≠ EP [Z2|W ])Î2È

Æ ÎZ2Î2
P,2.

In total, we thus have
... EP

Ë
(Z1 ≠ EP [Z1|W ])(Z2 ≠ EP [Z2|W ])T

È...
2 Æ ÎZ1Î2

P,2ÎZ2Î2
P,2.

Lemma 4.I.10. Consider a t1-dimensional random variable Z1 and a
t2-dimensional random variable Z2. Denote the joint law of Z1, Z2, and
W by P . Then we have

... EP

Ë
(Z1 ≠ EP [Z1|W ])ZT

2
È...

2 Æ ÎZ1Î2
P,2ÎZ2Î2

P,2.

Proof of Lemma 4.I.10. By the Cauchy–Schwarz inequality, we have
... EP

Ë
(Z1 ≠ EP [Z1|W ])ZT

2
È...

2 Æ EP

Ë
ÎZ1 ≠ EP [Z1|W ]Î2È

EP

Ë
ÎZ2Î2È

.

Because the conditional expectation minimizes the mean squared error (Durrett,
1996, Theorem 5.1.8), we have

EP

Ë
ÎZ1 ≠ EP [Z1|W ]Î2È

Æ EP

Ë
ÎZ1Î2È

= ÎZ1Î2
P,2.

Consequently,
... EP

Ë
(Z1 ≠ EP [Z1|W ])ZT

2
È...

2 Æ ÎZ1Î2
P,2ÎZ2Î2

P,2

holds.

Lemma 4.I.11. Let a, b œ R be two numbers. We have

(a + b)2 Æ 2a2 + 2b2. (4.24)

Proof of Lemma 4.I.11. The true statement 0 Æ (a≠b)2 is equivalent to (4.24).

The following lemma proved in Chernozhukov et al. (2018) states that
conditional convergence in probability implies unconditional convergence in
probability.
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Lemma 4.I.12. (Based on Chernozhukov et al. (2018, Lemma 6.1).)
Let {Xt}tØ1 and {Yt}tØ1 be sequences of random vectors and let u Ø 1.
Consider a deterministic sequence {Át}tØ1 with Át æ 0 as t æ Œ such that
we have E[ÎXtÎu|Yt] Æ Áu

t
. Then we have ÎXtÎ = OP (Át) unconditionally,

meaning that that for any sequence {¸t}tØ1 with ¸t æ Œ as t æ Œ we
have P (ÎXtÎ > ¸tÁt) æ 0.
Proof of Lemma 4.I.12. We have

P (ÎXtÎ > ¸tÁt) = E[P (ÎXtÎ > ¸tÁt|Yt)] Æ E
Ë
E[ÎXtÎu|Yt]

È

¸u
t Áu

t

Æ 1
¸u

t

æ 0 (t æ Œ)

by Markov’s inequality.
Lemma 4.I.13. There exists a finite real constant C3 satisfying Î—0Î Æ
C3.
Proof of Lemma 4.I.13. Recall the matrices J Õ

0 and J ÕÕ
0 in Definition 4.I.1. We

have
Î—0Î Æ

...(J Õ
0)≠1...

... EP

Ë
A(RX)T

È...
...(J ÕÕ

0 )≠1...
... EP

Ë
ARY

È...

Æ 1
c

2
2
ÎXÎP,2ÎY ÎP,2ÎAÎ2

P,2

by submultiplicativity, Assumption 4.I.5.3, and Lemma 4.I.10. We hence infer

Î—0Î Æ 1
c2

2
C4

1

by Assumption 4.I.5.2.
Lemma 4.I.14. Let “ Ø 0. There exists a finite real constant C4 satisfying
Îb“Î Æ C4.
Proof of Lemma 4.I.14. We have

Îb“Î Æ
.....

A

EP

Ë
RXRT

X

È
+ (“ ≠ 1) EP

Ë
RXRT

A

È
EP

Ë
RART

A

È≠1
EP

Ë
RART

X

ÈB≠1.....

·
..... EP [RXRY ] + (“ ≠ 1) EP

Ë
RXRT

A

È
EP

Ë
RART

A

È≠1
EP [RARY ]

.....

by submultiplicativity. By Assumption 4.I.5.4, the largest singular value of the
matrix

D1 +(“ ≠1)D2 = EP

Ë
RXRT

X

È
+(“ ≠1) EP

Ë
RXRT

A

È
EP

Ë
RART

A

È≠1
EP

Ë
RART

X

È

is upper bounded by 0 < c4 < Œ. Thus, we have

Îb“Î Æ 1
c4

A

ÎEP [RXRY ]Î+|“≠1|
... EP

Ë
RXRT

A

È...

..... EP

Ë
RART

A

È≠1
.....

... EP

Ë
RART

Y

È...

B
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by the triangle inequality and submultiplicativity. By Assumption 4.I.5.3, the
largest singular value of EP [RART

A
] is upper bounded by 0 < c2 < Œ. By

Lemma 4.I.9 and Assumption 4.I.5.2, we have
... EP

Ë
RXRY

È... Æ ÎXÎP,2ÎY ÎP,2 Æ C2
1 ,... EP

Ë
RXRT

A

È... Æ ÎXÎP,2ÎAÎP,2 Æ C2
1 ,... EP

Ë
RART

Y

È... Æ ÎAÎP,2ÎY ÎP,2 Æ C2
1 .

In total, we hence have

Îb“Î Æ 1
c4

Q

aC2
1 + |“ ≠ 1|C

4
1

c2

R

b.

Lemma 4.I.15. Let “ Ø 0 The statistical rates rN and ⁄N introduced in
Definition 4.I.2 satisfy r4

N
. ”N and ⁄N . ”NÔ

N
.

Proof of Lemma 4.I.15. This proof is modified from Chernozhukov et al.
(2018). First, verify the bound on rN . Let S = (U, V, W, Z) œ {A, X, Y }2 ◊
{W} ◊ {A, X, Y }, let ÷ = (mU , mV , mZ) œ T , and let b0 œ {b“, —0, 0}. We
have

Â(S; b0, ÷) ≠ Â(S; b0, ÷0)

=
1
U ≠ mU (W )

2A

Z ≠ mZ(W ) ≠
1
V ≠ mV (W )

2
T
b0

B
T

≠
1
U ≠ m0

U
(W )

2A

Z ≠ m0
Z

(W ) ≠
1
V ≠ m0

V
(W )

2
T
b0

B
T

=
1
U ≠ m0

U
(W )

2A

m0
Z

(W ) ≠ mZ(W ) ≠
1
m0

V
(W ) ≠ mV (W )

2
T
b0

B
T

+
1
m0

U
(W ) ≠ mU (W )

2A

Z ≠ m0
Z

(W ) ≠
1
V ≠ m0

V
(W )

2
T
b0

B
T

+
1
m0

U
(W ) ≠ mU (W )

2A

m0
Z

(W ) ≠ mZ(W ) ≠
1
m0

V
(W ) ≠ mV (W )

2
T
b0

B
T

.

By the triangle inequality and Hölder’s inequality, we have

EP [ÎÂ(S; b0, ÷) ≠ Â(S; b0, ÷0)Î]
= ÎÂ(S; b0, ÷) ≠ Â(S; b0, ÷0)ÎP,1

Æ ÎU ≠ m0
U

(W )ÎP,2

.....m
0
Z

(W ) ≠ mZ(W ) ≠
1
m0

V
(W ) ≠ mV (W )

2
T
b0

.....
P,2

+Îm0
U

(W ) ≠ mU (W )ÎP,2

.....Z ≠ m0
Z

(W ) ≠
1
V ≠ m0

V
(W )

2
T
b0

.....
P,2

+Îm0
U

(W ) ≠ mU (W )ÎP,2

·
.....m

0
Z

(W ) ≠ mZ(W ) ≠
1
m0

V
(W ) ≠ mV (W )

2
T
b0

.....
P,2

.
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Observe that ÎU ≠ m0
U

(W )ÎP,2 Æ 2ÎUÎP,2, and ÎV ≠ m0
V

(W )ÎP,2 Æ 2ÎV ÎP,2,
and ÎZ ≠m0

Z
(W )ÎP,2 Æ 2ÎZÎP,2 hold by Lemma 4.I.7. We have Î÷≠÷0ÎP,2 Æ

”N by Assumption 4.I.5.5. Therefore, we obtain the upper bound

EP [ÎÂ(S; b0, ÷) ≠ Â(S; b0, ÷0)Î]
Æ 4 max{1, Îb0Î}(ÎUÎP,2 + ÎV ÎP,2 + ÎZÎP,2)”N + 2 max{1, Îb0Î}”2

N

. ”N

by the triangle inequality, Lemma 4.I.13, Lemma 4.I.14, and Assumptions 4.I.5.2
and 4.I.5.5. Because this upper bound is independent of ÷, we obtain our claimed
bound on r4

N
.

Subsequently, we verify the bound on ⁄N . Consider S = (A, X, W, Y ),
denote by U either A or X , denote by Z either A or Y , and let Ï œ {Â, ÊÂ, Â2},
where we interpret Â2(S; b, ÷) = Â2(S; ÷). We have

ˆ2
r
EP

Ë
Â

1
S; b0, ÷0 + r(÷ ≠ ÷0)

2È

= 2 EP

S

U
1
mU (W ) ≠ m0

U
(W )

2

·
A

mZ(W ) ≠ m0
Z

(W ) ≠
1
mX(W ) ≠ m0

X
(W )

2
T
b0

B
T

T

V.

Due to the Cauchy–Schwarz inequality, we infer
...ˆ2

r
EP

Ë
Â

1
S; b0, ÷0 + r(÷ ≠ ÷0)

2È...

Æ 2ÎmU (W ) ≠ m0
U

(W )ÎP,2
·
1
ÎmZ(W ) ≠ m0

Z
(W )ÎP,2 + ÎmX(W ) ≠ m0

X
(W )ÎP,2Îb0Î

2

Æ 2 max{1, Îb0Î}ÎmU (W ) ≠ m0
U

(W )ÎP,2
·
1
ÎmZ(W ) ≠ m0

Z
(W )ÎP,2 + ÎmX(W ) ≠ m0

X
(W )ÎP,2

2

. ”NN≠ 1
2

by Lemma 4.I.13, Lemma 4.I.14, and Assumption 4.I.5.5. Consequently, we
obtain our claimed bound on ⁄N .

Lemma 4.I.16. Let “ Ø 0. Let k œ [K]. Let furthermore Ï œ {Â, ÊÂ, Â2}
and b0 œ {b“, —0, 0}. We have

......

1Ô
n

ÿ

iœIk

Ï(Si; b0, ÷̂I
c

k) ≠ 1Ô
n

ÿ

iœIk

Ï(Si; b0, ÷0)
......

= OP (flN ),

where flN = rN + N
1
2 ⁄N is as in Definition 4.I.4 and satisfies flN . ”

1
4
N

,
and where we interpret Â2(S; b, ÷) = Â2(S; ÷).

Proof of Lemma 4.I.16. This proof is modified from Chernozhukov et al.
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(2018). By the triangle inequality, we have
.....

1Ô
n

q
iœIk

Ï(Si; b0, ÷̂I
c

k) ≠ 1Ô
n

q
iœIk

Ï(Si; b0, ÷0)
.....

=
.....

1Ô
n

q
iœIk

1
Ï(Si; b0, ÷̂I

c

k) ≠ s
Ï(s; b0, ÷̂I

c

k)dP (s)
2

≠ 1Ô
n

q
iœIk

1
Ï(Si; b0, ÷0) ≠ s

Ï(s; b0, ÷0)dP (s)
2

+
Ô

n
s 1

Ï(s; b0, ÷̂I
c

k) ≠ Ï(s; b0, ÷0)
2
dP (s)

.....

Æ I1 +
Ô

nI2,

where I1 := ÎMÎ for

M := 1Ô
n

q
iœIk

Q

aÏ(Si; b0, ÷̂I
c

k) ≠ s
Ï(s; b0, ÷̂I

c

k)dP (s)
R

b

≠ 1Ô
n

q
iœIk

Q

aÏ(Si; b0, ÷0) ≠ s
Ï(s; b0, ÷0)dP (s)

R

b,

and where
I2 :=

......

⁄ 1
Ï(s; b0, ÷̂I

c

k) ≠ Ï(s; b0, ÷0)
2
dP (s)

......
.

We bound the two terms I1 and I2 individually. First, we bound I1. Because
the dimensions d and q are fixed, it is su�cient to bound one entry of the
matrix M . Let l index the rows of M and let t index the columns of M (we
interpret vectors as matrices with one column). On the event EN the that holds
with P -probability 1 ≠ �N , we have

EP

Ë
ÎMl,tÎ2---{Si}iœI

c

k

È

= 1
n

q
iœIk

EP

Ë
|Ïl,t(Si; b0, ÷̂I

c

k) ≠ Ïl,t(Si; b0, ÷0)|2
---{Si}iœI

c

k

È

+ 1
n

q
i,jœIk,i ”=j EP

Ë1
Ïl,t(Si; b0, ÷̂I

c

k) ≠ Ïl,t(Si; b0, ÷0)
2

·
1
Ïl,t(Sj; b0, ÷̂I

c

k) ≠ Ïl,t(Sj; b0, ÷0)
2---{Si}iœI

c

k

È

≠2 q
iœIk

EP

Ë
Ïl,t(Si; b0, ÷̂I

c

k) ≠ Ïl,t(Si; b0, ÷0)
---{Si}iœI

c

k

È

· EP

Ë
Ïl,t(S; b0, ÷̂I

c

k) ≠ Ïl,t(S; b0, ÷0)
---{Si}iœI

c

k

È

+n
--- EP

Ë
Ïl,t(S; b0, ÷̂I

c

k) ≠ Ïl,t(S; b0, ÷0)
---{Si}iœI

c

k

È---
2

= EP

Ë
|Ïl,t(S; b0, ÷̂I

c

k) ≠ Ïl,t(S; b0, ÷0)|2
---{Si}iœI

c

k

È

+
1

n(n≠1)
n

≠ 2n + n
2--- EP

Ë
Ïl,t(S; b0, ÷̂I

c

k) ≠ Ïl,t(S; b0, ÷0)
---{Si}iœI

c

k

È---
2

Æ sup÷œT EP

Ë
ÎÏ(S; b0, ÷) ≠ Ï(S; b0, ÷0)Î2È

.
(4.25)

Furthermore, for ÷ œ T , we have

EP

Ë
ÎÏ(S; b0, ÷) ≠ Ï(S; b0, ÷0)Î2È

Æ EP [ÎÏ(S; b0, ÷) ≠ Ï(S; b0, ÷0)Î]
+ EP

Ë
ÎÏ(S; b0, ÷) ≠ Ï(S; b0, ÷0)Î21ÎÏ(S;b0,÷)≠Ï(S;b0,÷0)ÎØ1

È (4.26)
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and we have

EP

Ë
ÎÏ(S; b0, ÷) ≠ Ï(S; b0, ÷0)Î21ÎÏ(S;b0,÷)≠Ï(S;b0,÷0)ÎØ1

È

Æ
Ú

EP

Ë
ÎÏ(S; b0, ÷) ≠ Ï(S; b0, ÷0)Î4

ÈÒ
P (ÎÏ(S; b0, ÷) ≠ Ï(S; b0, ÷0)Î Ø 1)

(4.27)
by Hölder’s inequality. Observe that the term

Ú
EP

Ë
ÎÏ(S; b0, ÷) ≠ Ï(S; b0, ÷0)Î4

È
(4.28)

is upper bounded by Assumption 4.I.5.5, Lemma 4.I.13 and Lemma 4.I.14. By
Markov’s inequality, we have

P (ÎÏ(S; b0, ÷) ≠ Ï(S; b0, ÷0)Î Ø 1) Æ EP [ÎÏ(S; b0, ÷) ≠ Ï(S; b0, ÷0)Î] Æ r4
N

.
(4.29)

Therefore, we have EP [I2
1 |{Si}iœI

c

k
] . r2

N
due to (4.25)–(4.29). The statistical

rate rN satisfies rN . ”
1
4
N

by Lemma 4.I.15. Thus, we infer I1 = OP (rN ) by
Lemma 4.I.12. Subsequently, we bound I2. For r œ [0, 1], we introduce the
function

fk(r) := EP

Ë
Ï

1
S; b0, ÷0 + r(÷̂I

c

k ≠ ÷0)
2---{Si}iœI

c

k

È
≠ EP [Ï(S; b0, ÷0)].

Observe that I2 = Îfk(1)Î holds. We apply a Taylor expansion to this function
and obtain

fk(1) = fk(0) + f Õ
k
(0) + 1

2f ÕÕ
k
(r̃)

for some r̃ œ (0, 1). We have

fk(0) = EP

Ë
Ï(S; b0, ÷0)

---{Si}iœI
c

k

È
≠ EP [Ï(S; b0, ÷0)] = 0.

Furthermore, the score Ï satisfies the Neyman orthogonality property f Õ
k
(0) = 0.

The proof of this claim is analogous to the proof of Proposition 4.3.3 because
the proof of Proposition 4.3.3 does neither depend on the underlying model of
the random variables nor on the value of —. Furthermore, we have

f ÕÕ
k
(r)

=2 E

S

U
1
mU (W ) ≠ m0

U
(W )

2A

mZ(W ) ≠ m0
Z

(W ) ≠
1
mX(W ) ≠ m0

X
(W )

2
T
b0

B
T

T

V

for U œ {A, X} and Z œ {A, Y }. On the event EN that holds with P -
probability 1 ≠ �N , we have

Îf ÕÕ
k
(r̃)Î Æ sup

rœ(0,1)
Îf ÕÕ

k
(r)Î . ⁄N .
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We thus infer
......

1Ô
n

ÿ

iœIk

Ï(Si; b0, ÷̂I
c

k)≠ 1Ô
n

ÿ

iœIk

Ï(Si; b0, ÷0)
......

Æ I1+
Ô

nI2 = OP (rN+N
1
2 ⁄N ).

Because rN . ”
1
4
N

and ⁄N . ”NÔ
N

hold by Lemma 4.I.15 and because {”N}NØK

converges to 0 by Assumption 4.I.5, we furthermore have

flN = rN + N
1
2 ⁄N . ”

1
4
N

.

Lemma 4.I.17. Let k œ [K]. Let furthermore U, V œ {A, X} and S =
(U, V, W, Y ). Let Ï œ {Â1, Â2, Â3}. We have

1
n

ÿ

iœIk

Ï(Si; ÷̂I
c

k) = EP [Ï(S; ÷0)] + OP

1
N≠ 1

2 (1 + flN )
2
.

Proof of Lemma 4.I.17. Consider the decomposition
1
n

q
iœIk

Ï(Si; ÷̂I
c

k) ≠ EP [Ï(S; ÷0)]
= 1

n

q
iœIk

1
Ï(Si; ÷̂I

c

k) ≠ Ï(Si; ÷0)
2

+ 1
n

q
iœIk

1
Ï(Si; ÷0) ≠ EP [Ï(S; ÷0)]

2

The term 1
n

q
iœIk

1
Ï(Si; ÷̂I

c

k)≠Ï(Si; ÷0)
2

is of order OP (N≠ 1
2 flN ) by Lemma 4.I.16.

The term 1
n

q
iœIk

1
Ï(Si; ÷0)≠EP [Ï(S; ÷0)]

2
is of order OP (N≠ 1

2 ) by the Lindeberg–
Feller CLT and the Cramer–Wold device. Thus, we deduce the statement.

Definition 4.I.18. We denote by AIk the row-wise concatenation of the
observations Ai for i œ Ik. We denote similarly by XIk, W Ik, Y Ik,
AI

c

k, XI
c

k, W I
c

k, and Y I
c

k the row-wise concatenations of the respective
observations.

Proof of Theorem 4.3.1. This proof is based on Chernozhukov et al. (2018).
We show the stronger statement

Ô
N‡≠1(—̂≠—0) = 1Ô

N

Nÿ

i=1
Â(Si; —0, ÷0)+OP (flN ) dæ N (0,1d◊d) (N æ Œ),

(4.30)
where —̂ denotes the DML1 estimator —̂DML1 or the DML2 estimator —̂DML2,
and where the rate flN is specified in Definition 4.I.4, and we show that this
statement holds uniformly over laws P . We first consider —̂DML2. It su�ces to
show that (4.30) holds uniformly over P œ PN . Fix a sequence {PN}NØ1 such
that PN œ PN for all N Ø 1. Because this sequence is chosen arbitrarily, it
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su�ces to show
Ô

N‡≠1(—̂DML2≠—0) = 1Ô
N

Nÿ

i=1
Â(Si; —0, ÷0)+OPN

(flN ) dæ N (0,1d◊d) (N æ Œ).

We have

—̂DML2 =
A

1
K

qK

k=1
1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
T � ‚R

I
k

A

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2B≠1

· 1
K

qK

k=1
1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
T � ‚R

I
k

A

1
Y Ik ≠ m̂

I
c

k

Y
(W Ik)

2

=
Q

a 1
K

qK

k=1
1
n

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
T

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2

·
A

1
n

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T (AIk ≠ m̂

I
c

k

A
(W Ik)

B≠1

· 1
n

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
R

b
≠1

· 1
K

qK

k=1
1
n

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
T

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2

·
A

1
n

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2B≠1

· 1
n

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

1
Y Ik ≠ m̂

I
c

k

Y
(W Ik)

2

(4.31)
by (4.7). By Lemma 4.I.17, we have

1
n

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
T

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2

= EPN

C1
X ≠ m0

X
(W )

21
A ≠ m0

A
(W )

2
T

D

+ OPN

1
N≠ 1

2 (1 + flN )
2 (4.32)

and

1
n

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2

= EPN

C1
A ≠ m0

A
(W )

21
A ≠ m0

A
(W )

2
T

D

+ OPN

1
N≠ 1

2 (1 + flN )
2
.

(4.33)

Recall the matrix J0 introduced in Definition 4.I.1. By Weyl’s inequality and
Slutsky’s theorem, combining Equations (4.31)–(4.33) gives

Ô
N(—̂DML2 ≠ —0)

=
Q

a
A

EPN

C1
X ≠ m0

X
(W )

21
A ≠ m0

A
(W )

2
T

D

· EPN

C1
A ≠ m0

A
(W )

21
A ≠ m0

A
(W )

2
T

D≠1

· EPN

C1
A ≠ m0

A
(W )

21
X ≠ m0

X
(W )

2
T

DB≠1
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· EPN

C1
X ≠ m0

X
(W )

21
A ≠ m0

A
(W )

2
T

D

· EPN

C1
A ≠ m0

A
(W )

21
A ≠ m0

A
(W )

2
T

D≠1

+ OPN

1
N≠ 1

2 (1 + flN )
2

R

b

· 1Ô
K

Kÿ
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1Ô
n
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AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

1
Y Ik ≠ m̂

I
c

k

Y
(W Ik)

2

≠
1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
—0

B

=
1
J0 + OPN

1
N≠ 1

2 (1 + flN )
22

· 1Ô
K

Kÿ

k=1

1Ô
n

Q

a
1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

·
A

Y Ik ≠ m̂
I

c

k

Y
(W Ik) ≠

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
—0

BR

b (4.34)

because K is a constant independent of N and because N = nK holds. Recall
the linear score Â in (4.11). We have

Ô
N(—̂DML2 ≠—0) =

A

J0 +OPN

1
N≠ 1

2 (1+flN )
2B 1Ô

K

Kÿ

k=1

1Ô
n

ÿ

iœIk

Â(Si; —0, ÷̂I
c

k).

(4.35)
Let k œ [K]. By Lemma 4.I.16, we have

1Ô
n

ÿ

iœIk

Â(Si; —0, ÷̂I
c

k) = 1Ô
n

ÿ

iœIk

Â(Si; —0, ÷0) + OPN
(flN ). (4.36)

We combine (4.35) and (4.36) to obtain
Ô

N(—̂DML2 ≠ —0)
=

A

J0 + OPN

1
N≠ 1

2 (1 + flN )
2B

1Ô
K

qK

k=1
1Ô
n

q
iœIk

Â(Si; —0, ÷̂I
c

k)

=
A

J0 + OPN

1
N≠ 1

2 (1 + flN )
2B

1Ô
K

qK

k=1

A
1Ô
n

q
iœIk

Â(Si; —0, ÷0) + OPN
(flN )

B

.

Recall that we have N = nK, that K is a constant independent of N , that the
sets Ik for k œ [K] form a partition of [N ], that flN . ”

1
4
N

by Lemma 4.I.16,
and that ”N converges to 0 as N æ Œ and that ”

1
4
N

Ø N≠ 1
2 holds by Assump-
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tion 4.I.5. Thus, we have
Ô

N(—̂DML2 ≠ —0)
=

A

J0 + OPN

1
N≠ 1

2 (1 + flN )
2B

1Ô
K

qK

k=1

A
1Ô
n

q
iœIk

Â(Si; —0, ÷0) + OPN
(flN )

B

=
A

J0 + OPN

1
N≠ 1

2 (1 + flN )
2B

1Ô
N

qN

i=1
1
Â(Si; —0, ÷0) + OPN

(flN )
2

= J0 · 1Ô
N

qN

i=1 Â(Si; —0, ÷0) + OPN
(flN ).

We have EP [Â(S; —0, ÷0)] = 0 due to the identifiability condition (4.5). There-
fore, we conclude the proof concerning the DML2 method due to the Lindeberg–
Feller CLT and the Cramer–Wold device.

Subsequently, we consider the DML1 method. It su�ces to show that (4.30)
holds uniformly over P œ PN . Fix a sequence {PN}NØ1 such that PN œ PN

for all N Ø 1. Because this sequence is chosen arbitrarily, it su�ces to show

Ô
N‡≠1(—̂DML1≠—0) = 1Ô

N

Nÿ

i=1
Â(Si; —0, ÷0)+OPN

(flN ) dæ N (0,1d◊d) (N æ Œ).

We have
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k

X
(W Ik)

2B≠1

·
1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
T � ‚R

I
k

A

1
Y Ik ≠ m̂

I
c

k

Y
(W Ik)

2

=
Q

a 1
n

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
T

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2

·
A

1
n

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2B≠1

· 1
n

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
R

b
≠1

· 1
n

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
T

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2

·
A

1
n

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2B≠1

· 1
n

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

1
Y Ik ≠ m̂

I
c

k

Y
(W Ik)

2

(4.37)

by (4.19). Due to Weyl’s inequality and Slutsky’s theorem, (4.32), (4.33),
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and (4.37), we obtain
Ô

N(—̂DML1 ≠ —0)

=
Q

a
A

EPN

C1
X ≠ m0

X
(W )

21
A ≠ m0

A
(W )

2
T

D

· EPN

C1
A ≠ m0

A
(W )

21
A ≠ m0

A
(W )

2
T

D≠1

· EPN

C1
A ≠ m0

A
(W )

21
X ≠ m0

X
(W )

2
T

DB≠1

· EPN

C1
X ≠ m0

X
(W )

21
A ≠ m0

A
(W )

2
T

D

· EPN

C1
A ≠ m0

A
(W )

21
A ≠ m0

A
(W )

2
T

D≠1

+OPN

1
N≠ 1

2 (1 + flN )
2

R

b

· 1Ô
K

qK

k=1

A
1Ô
n

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

1
Y Ik ≠ m̂

I
c

k

Y
(W Ik)

2

≠ 1Ô
n

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
—0

B

=
A

J0 + OPN

1
N≠ 1

2 (1 + flN )
2B

· 1Ô
K

qK

k=1

Q

a 1Ô
n

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

·
A

Y Ik ≠ m̂
I

c

k

Y
(W Ik) ≠

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
—0

BR

b.

(4.38)
Observe that the expression for

Ô
N(—̂DML1 ≠ —0) given in (4.38) coincides

with the expression for
Ô

N(—̂DML2 ≠ —0) given in (4.34). Thus, the asymp-
totic analysis of

Ô
N(—̂DML1 ≠ —0) coincides with the asymptotic analysis ofÔ

N(—̂DML2 ≠ —0) presented above.

Lemma 4.I.19. Let “ Ø 0. Let p > 4 be the p from Assumption 4.I.5, let
b0 œ {—0, b“, 0}, and let S = (U, V, Z) œ {A, X, Y }2 ◊ {W} ◊ {A, X, Y }.
There exists a finite real constant C5 satisfying

sup
÷œT

EP

C

ÎÂ(S; b0, ÷)Î
p

2

D 2
p

Æ C5.

Proof of Lemma 4.I.19. Let ÷ = (mU , mV , mZ) œ T . By Hölder’s inequality
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and the triangle inequality, we have

EP

C

ÎÂ(S; b0, ÷)Îp

2

D 2
p

= Î(U ≠ mU (W ))
1
Z ≠ mZ(W ) ≠ (V ≠ mV (W ))T b02

Î
P,

2
p

Æ
1
ÎU ≠ m0

U
(W )ÎP,p + Îm0

U
(W ) ≠ mU (W )ÎP,p

2

·
1
ÎZ ≠ m0

Z
(W )ÎP,p + Î(V ≠ m0

V
(W ))T b0ÎP,p

+Îm0
Z

(W ) ≠ mZ(W )ÎP,p + Î(m0
V

(W ) ≠ mV (W ))T b0ÎP,p

2
.
(4.39)

By the Cauchy–Schwarz inequality, we have
.....

1
V ≠m0

V
(W )

2
T
b0

.....
P,p

Æ EP

Ë
ÎV ≠m0

V
(W )ÎpÎb0Îp

È 1
p = Îb0ÎÎV ≠m0

V
(W )ÎP,p

(4.40)
and analogously

.....

1
m0

V
(W ) ≠ mV (W )

2
T
b0

.....
P,p

Æ Îb0ÎÎm0
V

(W ) ≠ mV (W )ÎP,p. (4.41)

Hence, we infer

EP

C

ÎÂ(S; b0, ÷)Î
p

2

D 2
p

Æ (ÎUÎP,p + C2)(ÎZÎP,p + ÎV ÎP,p + 2C2) max{1, Îb0Î}
(4.42)

by (4.39), (4.40), (4.41), Lemma 4.I.7, and Assumption 4.I.5.5. By Lemma 4.I.13,
there exists a finite real constant C3 that satisfies Î—0Î Æ C3. By Lemma 4.I.14,
there exists a finite real constant C4 that satisfies Îb“Î Æ C4. These two bounds
lead to Îb0Î Æ max{C3, C4}. By Assumption 4.I.5.2, we have

max{ÎUÎP,p, ÎV ÎP,p, ÎZÎP,p} Æ ÎUÎP,p + ÎV ÎP,p + ÎZÎP,p Æ 3C1.

Due to (4.42), we therefore have

EP

C

ÎÂ(S; b0, ÷)Î
p

2

D 2
p

Æ (3C1 + C2)(6C1 + 2C2) max{1, C3, C4}.

Lemma 4.I.20. Let “ Ø 0, and let p be as in Assumption 4.I.5. Let the
indices k œ [K] and (j, l, t, r) œ [L1] ◊ [L2] ◊ [L3] ◊ [L4], where L1, L2,
L3, and L4 are natural numbers representing the intended dimensions.
Let b̂ œ {—̂DML1, —̂DML2, b̂“,DML1, b̂“,DML2} and consider the corresponding
true unknown underlying parameter vector b0 œ {—0, b“}. Consider the
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corresponding score function combinations

Â̂A(·) œ {ÊÂj(·; b̂, ÷̂I
c

k), Âj(·; b̂, ÷̂I
c

k), (Â1(·; ÷̂I
c

k))j,l, (Â2(·; ÷̂I
c

k))j,l},
Â̂A

full(·) œ {ÊÂ(·; b̂, ÷̂I
c

k), Â(·; b̂, ÷̂I
c

k), Â1(·; ÷̂I
c

k), Â2(·; ÷̂I
c

k)},

Â̂B(·) œ {ÊÂt(·; b̂, ÷̂I
c

k), Ât(·; b̂, ÷̂I
c

k), (Â1(·; ÷̂I
c

k))t,r, (Â2(·; ÷̂I
c

k))t,r},
Â̂B

full(·) œ {ÊÂ(·; b̂, ÷̂I
c

k), Â(·; b̂, ÷̂I
c

k), Â1(·; ÷̂I
c

k), Â2(·; ÷̂I
c

k)},

and their respective nonestimated quantity

ÂA(·) œ {ÊÂj(·; b0, ÷0), Âj(·; b0, ÷0), (Â1(·; ÷0))j,l, (Â2(·; ÷0))j,l},
ÂA

full(·) œ {ÊÂ(·; b0, ÷0), Â(·; b0, ÷0), Â1(·; ÷0), Â2(·; ÷0)},
ÂB(·) œ {ÊÂt(·; b0, ÷0), Ât(·; b0, ÷0), (Â1(·; ÷0))t,r, (Â2(·; ÷0))t,r},

ÂB

full(·) œ {ÊÂ(·; b0, ÷0), Â(·; b0, ÷0), Â1(·; ÷0), Â2(·; ÷0)}.

Then we have

Ik :=
------

1
n

ÿ

iœIk

Â̂A(Si)Â̂B(Si) ≠ EP

Ë
ÂA(S)ÂB(S)

È
------
= OP (fl̃N ),

where fl̃N = Nmax
Ó

4
p
≠1,≠ 1

2

Ô

+ rN is as in Definition 4.I.4.

Proof of Lemma 4.I.20. This proof is modified from Chernozhukov et al.
(2018). By the triangle inequality, we have

Ik Æ Ik,A + Ik,B,

where
Ik,A :=

------

1
n

ÿ

iœIk

Â̂A(Si)Â̂B(Si) ≠ 1
n

ÿ

iœIk

ÂA(Si)ÂB(Si)
------

and
Ik,B :=

------

1
n

ÿ

iœIk

ÂA(Si)ÂB(Si) ≠ EP

Ë
ÂA(S)ÂB(S)

È
------
.

Subsequently, we bound the two terms Ik,A and Ik,B individually. First, we
bound Ik,B. We consider the case p Æ 8. The von Bahr–Esseen inequality
I (DasGupta, 2008, p. 650) states that for 1 Æ u Æ 2 and for independent,
real-valued, and mean 0 variables Z1, . . . , Zn, we have

E

S

U

------

nÿ

i=1
Zi

------

u
T

V Æ
A

2 ≠ 1
n

B
nÿ

i=1
E[|Xi|u].

The individual summands ÂA(Si)ÂB(Si) ≠ EP [ÂA(S)ÂB(S)] for i œ Ik are
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independent and have mean 0. Therefore,

EP

C

I
p

4
k,B

D

=
1 1

n

2p

4 EP

S

U
-----

q
iœIk

1
ÂA(Si)ÂB(Si) ≠ EP

Ë
ÂA(S)ÂB(S)

È2-----

p

4
T

V

Æ
1 1

n

2≠1+p

4
A

2 ≠ 1
n

B
1
n

q
iœIk

EP

C---ÂA(Si)ÂB(Si) ≠ EP

Ë
ÂA(S)ÂB(S)

È---
p

4
D

=
1 1

n

2≠1+p

4
A

2 ≠ 1
n

B

EP

C---ÂA(S)ÂB(S) ≠ EP

Ë
ÂA(S)ÂB(S)

È---
p

4
D

follows due to the von Bahr–Esseen inequality I because 1 < p

4 Æ 2 holds. By
Hölder’s inequality, we have

A

EP

C---ÂA(S)
---

p

4
---ÂB(S)

---
p

4
DBp

4
Æ EP

C---ÂA(S)
---

p

2
D 2

p

EP

C---ÂB(S; b“, ÷0)
---

p

2
D 2

p

Æ
...ÂA

full(S)
...
P,

p

2

...ÂB

full(S)
...
P,

p

2
.

All the terms ÎÂ(S; b0, ÷0)ÎP,
p

2
, ÎÊÂ(S; b0, ÷0)ÎP,

p

2
, ÎÂ1(S; ÷)ÎP,

p

2
, and ÎÂ2(S; ÷)ÎP,

p

2
are upper bounded by the finite real constant C5 by Lemma 4.I.19. Thus, we
have Ik,B = OP (N p

4≠1) by Lemma 4.I.12 because we have

EP

C---ÂA(S)ÂB(S) ≠ EP

Ë
ÂA(S)ÂB(S)

È---
p

4
D 4

p

= ÎÂA(S)ÂB(S) ≠ EP

Ë
ÂA(S)ÂB(S)

È
ÎP,

p

4
Æ ÎÂA(S)ÂB(S)ÎP,

p

4
+ EP

Ë
|ÂA(S)ÂB(S)|

È

Æ 2ÎÂA(S)ÂB(S)ÎP,
p

4

by the triangle inequality, Hölder’s inequality, and due to p

4 > 1.

Next, consider the case p > 8. Observe that

EP

S

U
A

1
n

q
iœIk

ÂA(Si)ÂB(Si)
B2T

V

= 1
n

EP

C1
ÂA(S)

221
ÂB(S)

22
D

+ n(n≠1)
n2 EP

Ë
ÂA(S)ÂB(S)

È2

holds because the data sample is iid. Thus, we infer

EP [I2
k,B

] = EP

S

U
A

1
n

q
iœIk

ÂA(Si)ÂB(Si)
B2T

V + EP

Ë
ÂA(S)ÂB(S)

È2

≠2 EP

C
1
n

q
iœIk

ÂA(Si)ÂB(Si)
D

EP [ÂA(S)ÂB(S)]
Æ 1

n
EP

Ë
(ÂA(S))2(ÂB(S))2È

.
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By the Cauchy–Schwarz inequality, we have

1
n

EP

C1
ÂA(S))2(ÂB(S)

22
D

Æ 1
n

ı̂ıÙEP

C1
ÂA(S)

24
D

EP

C1
ÂB(S)

24
D

Æ 1
n

...ÂA

full(S)
...
2
P,4

...ÂB

full(S)
...
2
P,4.

All the terms ÎÂ(S; b0, ÷0)ÎP,4 ÎÊÂ(S; b0, ÷0)ÎP,4, ÎÂ1(S; ÷)ÎP,4, and ÎÂ2(S; ÷)ÎP,4
are upper bounded by C5 by Lemma 4.I.19. Thus, we have

EP [I2
k,B

] Æ 1
n

...ÂA

full(S)
...
2
P,4

...ÂB

full(S)
...
2
P,4 Æ 1

n
(4C5)4.

We hence infer Ik,B = OP (N≠ 1
2 ) by Lemma 4.I.12.

Second, we bound the term Ik,A. For any real numbers a1, a2, b1, and
b2 such that real numbers c and d exist that satisfy max{|b1|, |b2|} Æ c and
max{|a1 ≠ b1|, |a2 ≠ b2|} Æ d, we have |a1a2 ≠ b1b2| Æ 2d(c + d). Indeed, we
have

|a1a2 ≠ b1b2| Æ |a1 ≠ b1| · |a2 ≠ b2| + |b1| · |a2 ≠ b2| + |a1 ≠ b1| · |b2|
Æ d2 + cd + dc
Æ 2d(c + d)

by the triangle inequality.

We apply this observation together with the triangle inequality and the
Cauchy–Schwarz inequality to obtain

Ik,A Æ 1
n

q
iœIk

---Â̂A(Si)Â̂B(Si) ≠ ÂA(Si)ÂB(Si)
---

Æ 2
n

q
iœIk

max
Ó---Â̂A(Si) ≠ ÂA(Si)

---,
---Â̂B(Si) ≠ ÂB(Si)

---
Ô

·
A

max
Ó---ÂA(Si)

---,
---ÂB(Si)

---
Ô

+ max
Ó---Â̂A(Si) ≠ ÂA(Si)

---,
---Â̂B(Si) ≠ ÂB(Si)

---
ÔB

Æ 2
A

1
n

q
iœIk

max
I---Â̂A(Si) ≠ ÂA(Si)

---
2
,

---Â̂B(Si) ≠ ÂB(Si)
---
2

JB 1
2

·
A

1
n

q
iœIk

1
max

Ó---ÂA(Si)
---,

---ÂB(Si)
---
Ô

+ max
Ó---Â̂A(Si) ≠ ÂA(Si)

---,
---Â̂B(Si) ≠ ÂB(Si)

---
Ô22

B 1
2
.

By the triangle inequality, we hence have

I2
k,A

Æ 4RN,k

Q

a 1
n

q
iœIk

A...ÂA

full(Si)
...
2 +

...ÂB

full(Si)
...
2

B

+ RN,k

R

b (4.43)
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by Lemma 4.I.11, where

RN,k := 1
n

ÿ

iœIk

A...Â̂A

full(Si) ≠ ÂA

full(Si)
...
2 +

...Â̂B

full(Si) ≠ ÂB

full(Si)
...
2

B

.

Note that we have
1
n

ÿ

iœIk

A...ÂA

full(Si)
...
2 +

...ÂB

full(Si)
...
2

B

= OP (1)

by Markov’s inequality because the terms ÎÂ(S; b0, ÷0)ÎP,4 ÎÊÂ(S; b0, ÷0)ÎP,4,
ÎÂ1(S; ÷)ÎP,4, and ÎÂ2(S; ÷)ÎP,4 are upper bounded by C5 by Lemma 4.I.19.
Thus, it su�ces to bound the term RN,k. To do this, we need to bound the
four terms

1
n

ÿ

iœIk

ÎÂ(Si; b̂, ÷̂I
c

k) ≠ Â(Si; b0, ÷0)Î2, (4.44)

1
n

ÿ

iœIk

ÎÊÂ(Si; b̂, ÷̂I
c

k) ≠ ÊÂ(Si; b0, ÷0)Î2, (4.45)

1
n

ÿ

iœIk

ÎÂ1(Si; ÷̂I
c

k) ≠ Â1(Si; ÷0)Î2, (4.46)

1
n

ÿ

iœIk

ÎÂ2(Si; ÷̂I
c

k) ≠ Â2(Si; ÷0)Î2. (4.47)

First, we bound the two terms (4.44) and (4.45) simultaneously. Consider the
random variable U œ {A, X} and the quadruple S = (U, X, W, Y ). Because
the score Â is linear in —, these two terms are upper bounded by

1
n

q
iœIk

Î≠Âa(Si; ÷̂I
c

k)(b̂ ≠ b0) + Â(Si; b0, ÷̂I
c

k) ≠ Â(Si; b0, ÷0)Î2

Æ 2
n

q
iœIk

ÎÂa(Si; ÷̂I
c

k)(b̂ ≠ b0)Î2 + 2
n

q
iœIk

ÎÂ(Si; b0, ÷̂I
c

k) ≠ Â(Si; b0, ÷0)Î2

(4.48)
due to the triangle inequality and Lemma 4.I.11. Subsequently, we verify that

1
n

ÿ

iœIk

ÎÂa(Si; ÷̂I
c

k)Î2 = OP (1)

holds. Indeed, we have
1
n

q
iœIk

ÎÂa(Si; ÷̂I
c

k)Î2

= 1
n

q
iœIk

.....

1
Ui ≠ m̂

I
c

k

U
(Wi)

21
Xi ≠ m̂

I
c

k

X
(Wi)

2
T

.....

2

Æ
Ú

1
n

q
iœIk

ÎUi ≠ m̂
I

c

k

U
(Wi)Î4

Ú
1
n

q
iœIk

ÎXi ≠ m̂
I

c

k

X
(Wi)Î4

(4.49)
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by the Cauchy–Schwarz inequality. We have
Q

a 1
n

ÿ

iœIk

ÎUi ≠ m0
U

(Wi)Î4
R

b

1
4

= OP (1) (4.50)

by Markov’s inequality because EP [ÎU ≠ m0
U

(W )Î4] is upper bounded by
Lemma 4.I.7 and Assumption 4.I.5.2. On the event EN that holds with P -
probability 1 ≠ �N , we have

EP

S

U 1
n

q
iœIk

Î÷0(Wi) ≠ ÷̂I
c

k(Wi)Î4
-----{Si}iœI

c

k

T

V

= EP

Ë
Î÷0(W ) ≠ ÷̂I

c

k(W )Î4|{Si}iœI
c

k

È

Æ C4
2

(4.51)

by Assumption 4.I.5.5. We hence have 1
n

q
iœIk

Î÷0(Wi) ≠ ÷̂I
c

k(Wi)Î = OP (1) by
Lemma 4.I.12. Let us denote by Î·ÎPI

k
,p the Lp-norm with the empirical measure

on the data indexed by Ik. On the event EN that holds with P -probability
1 ≠ �N , we have

1
n

q
iœIk

ÎUi ≠ m̂
I

c

k

U
(Wi)Î4

= ÎU ≠ m̂
I

c

k

U
(W )Î4

PI
k
,4

Æ
1
ÎU ≠ m0

U
(W )ÎPI

k
,4 + Îm0

U
(W ) ≠ m̂

I
c

k

U
(W )ÎPI

k
,4

24

Æ
1
ÎU ≠ m0

U
(W )ÎPI

k
,4 + Î÷0(W ) ≠ ÷̂I

c

k(W )ÎPI
k
,4

24

= OP (1)

(4.52)

by the triangle inequality, (4.50), and (4.51). Analogous arguments lead to

1
n

ÿ

iœIk

ÎXi ≠ m̂
I

c

k

X
(Wi)Î4 = OP (1). (4.53)

We combine (4.49), (4.52), and (4.53) to obtain

1
n

ÿ

iœIk

ÎÂa(Si; ÷̂I
c

k)Î2 = OP (1). (4.54)

Because Îb̂ ≠ b0Î2 = OP (N≠1) holds by Theorem 4.3.1 and Theorem 4.4.1, we
can bound the first summand in (4.48) by

1
n

ÿ

iœIk

ÎÂa(Si; ÷̂I
c

k)(b̂ ≠ b0)Î2 = OP (1)OP (N≠1) = OP (N≠1) (4.55)

due to the Cauchy–Schwarz inequality and (4.54). On the event EN that holds
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with P -probability 1 ≠ �N , the conditional expectation given {Si}iœI
c

k
of the

second summand in (4.48) is equal to

EP

C
2
n

q
iœIk

ÎÂ(Si; b0, ÷̂I
c

k) ≠ Â(Si; b0, ÷0)Î2
-----{Si}iœI

c

k

D

= 2 EP

Ë
ÎÂ(S; b0, ÷̂I

c

k) ≠ Â(S; b0, ÷0)Î2---{Si}iœI
c

k

È

Æ 2 sup÷œT EP

Ë
ÎÂ(S; b0, ÷) ≠ Â(S; b0, ÷0)Î2È

. r2
N

due to arguments that are analogous to (4.25)–(4.29) presented in the proof of
Lemma 4.I.16. Because the event EN holds with P -probability 1≠�N = 1≠o(1),
we infer
1
n

ÿ

iœIk

ÎÂa(Si; ÷̂I
c

k)(b̂ ≠ b0) + Â(Si; b0, ÷̂I
c

k) ≠ Â(Si; b0, ÷0)Î2 = OP (N≠1 + r2
N

)

by Lemma 4.I.12. Next, we bound the two terms given in (4.46) and (4.47).
We first consider the term given in (4.46). On the event EN , we have

EP

C
1
n

q
iœIk

ÎÂ1(Si; ÷̂I
c

k) ≠ Â1(Si; ÷0)Î2
-----{Si}iœI

c

k

D

= EP

Ë
ÎÂ1(S; ÷̂I

c

k) ≠ Â1(S; ÷0)Î2---{Si}iœI
c

k

È

Æ sup÷œT EP

Ë
ÎÂ1(S; ÷) ≠ Â1(S; ÷0)Î2È

. r2
N

due to arguments that are analogous to (4.25)–(4.29) presented in the proof of
Lemma 4.I.16. Because the event EN holds with probability 1 ≠ �N = 1 ≠ o(1),
we infer

1
n

ÿ

iœIk

ÎÂ1(Si; ÷̂I
c

k) ≠ Â1(Si; ÷0)Î2 = OP (r2
N

)

by Lemma 4.I.12. On the event EN , the conditional expectation given {Si}iœI
c

k

of the term (4.47) is given by

EP

C
1
n

q
iœIk

ÎÂ2(Si; ÷̂I
c

k) ≠ Â2(Si; ÷0)Î2
-----{Si}iœI

c

k

D

= EP

Ë
ÎÂ2(S; ÷̂I

c

k) ≠ Â2(S; ÷0)Î2---{Si}iœI
c

k

È

Æ sup÷œT EP

Ë
ÎÂ2(S; ÷) ≠ Â2(S; ÷0)Î2È

. r2
N

due to arguments that are analogous to (4.25)–(4.29) presented in the proof of
Lemma 4.I.16. Because the event EN holds with probability 1 ≠ �N = 1 ≠ o(1),
we infer

1
n

ÿ

iœIk

ÎÂ2(Si; ÷̂I
c

k) ≠ Â2(Si; ÷0)Î2 = OP (r2
N

)
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by Lemma 4.I.12. Therefore, we have Ik,A = OP (N≠ 1
2 + rN ) by (4.43). In

total, we thus have

Ik = OP

A

Nmax
Ó

4
p
≠1,≠ 1

2

ÔB

+ OP

1
N≠ 1

2 + rN

2
= OP

A

Nmax
Ó

4
p
≠1,≠ 1

2

Ô

+ rN

B

.

Theorem 4.I.21. Suppose Assumption 4.I.5 holds. Introduce the matrix

Ĵk,0 :=
Q

a 1
n

q
iœIk

„RIk

X,i
( „RIk

A,i
)T

A
1
n

q
iœIk

„RIk

A,i
( „RIk

A,i
)T

B≠1
1
n

q
iœIk

„RIk

A,i
( „RIk

X,i
)T

R

b
≠1

· 1
n

q
iœIk

„RIk

X,i
( „RIk

A,i
)T

A
1
n

q
iœIk

„RIk

A,i
( „RIk

A,i
)T

B≠1
.

Let its average over k œ [K] be

Ĵ0 := 1
K

Kÿ

k=1
Ĵk,0.

Define further the estimator

‡̂2 := Ĵ0

A 1
K

Kÿ

k=1

1
n

ÿ

iœIk

Â(Si; —̂, ÷̂I
c

k)ÂT (Si; —̂, ÷̂I
c

k)
B

ĴT

0

of ‡2 from Theorem 4.3.1, where —̂ œ {—̂DML1, —̂DML2}. We then have
‡̂2 = ‡2 +OP (fl̃N ), where fl̃N = Nmax

Ó
4
p
≠1,≠ 1

2

Ô

+rN is as in Definition 4.I.4.

Proof of Theorem 4.I.21. We derived Ĵk,0 = J0 + OP

1
N≠ 1

2 (1 + flN )
2

in the
proof of Theorem 4.3.1. Thus, Ĵ0 = J0 + OP

1
N≠ 1

2 (1 + flN )
2

holds because K
is a fixed number independent of N . To conclude the proof, it su�ces to verify
......

1
n

ÿ

iœIk

Â(Si; —̂, ÷̂I
c

k)ÂT (Si; —̂, ÷̂I
c

k)≠EP

Ë
Â(S; —0, ÷0)ÂT (S; —0, ÷0)

È
......

= OP (fl̃N ).

But this statement holds by Lemma 4.I.20 because the dimensions of A and X
are fixed.
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4.J | Proofs of Section 4.4

Definition 4.J.1. Let “ Ø 0 and recall the scalar flN = rN + N
1
2 ⁄N in

Definition 4.I.4. Introduce the function

Â
Õ(·; b“, ÷0) := ÊÂ(·; b“, ÷0) + (“ ≠ 1)D3Â(·; b“, ÷0)

+(“ ≠ 1)
1
Â1(·; ÷0) ≠ EP [Â1(S; ÷0)]

2
D5

≠(“ ≠ 1)D3
1
Â2(·; ÷0) ≠ EP [Â2(S; ÷0)]

2
D5.

Let
D4 := EP

Ë
Â

Õ(S; b“, ÷0)(ÂÕ(S; b“, ÷0))T
È
,

and let the approximate variance

‡2(“) :=
1
D1 + (“ ≠ 1)D2

2≠1
D4

1
DT

1 + (“ ≠ 1)DT

2
2≠1

.

Moreover, define the influence function

Â(·; b“, ÷0) := ‡≠1(“)
1
D1 + (“ ≠ 1)D2

2≠1
Â

Õ(·; b“, ÷0).

Proof of Theorem 4.4.1. This proof is based on Chernozhukov et al. (2018).
The matrices D1 + (“ ≠ 1)D2 and D4 are invertible by Assumption 4.I.5.4.
Hence, ‡2(“) is invertible.

Subsequently, we show the stronger statement

Ô
N‡≠1(“)(b̂“≠b“) = 1Ô

N

Nÿ

i=1
Â(Si; b“, ÷0)+OP (flN ) dæ N (0,1d◊d) (N æ Œ),

(4.56)
where b̂“ denotes the DML2 estimator b̂“,DML2 or its DML1 variant b̂“,DML1,
and where Â is as in Definition 4.J.1. We first consider b̂“,DML2 and afterwards
b̂“,DML1. Fix a sequence {PN}NØ1 such that PN œ PN for all N Ø 1. Because
this sequence is chosen arbitrarily, it su�ces to show, as N æ Œ,

Ô
N‡≠1(“)(b̂“,DML2 ≠ b“) = 1Ô

N

Nÿ

i=1
Â(Si; b“, ÷0) + OPN

(flN ) dæ N (0,1d◊d).

We have

b̂“,DML2

=
A 1

K

Kÿ

k=1

1 „R
Ik

X

2
T

1
1 + (“ ≠ 1)� ‚R

I
k

A
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X

B≠1 1
K

Kÿ
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Ik

X

2
T

1
1 + (“ ≠ 1)� ‚R

I
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A
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Y

=
Q
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1
K
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Q

a 1
n
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I
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X
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2
T

1
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I
c

k

X
(W Ik)
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+ (“ ≠ 1) · 1
n

1
XIk ≠ m̂

I
c

k

X
(W Ik)
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1
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I
c

k

A
(W Ik)
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·
A 1
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A
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· 1
n

1
AIk ≠ m̂

I
c

k

A
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1
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I
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X
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· 1
K

Kÿ
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A 1
n

1
XIk ≠ m̂

I
c

k

X
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2
T

1
Y Ik ≠ m̂

I
c

k

Y
(W Ik)

2

+ (“ ≠ 1) · 1
n

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
T (AIk ≠ m̂

I
c

k

A
(W Ik)

2

·
A 1

n

1
AIk ≠ m̂

I
c

k

A
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2
T

1
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I
c

k

A
(W Ik)

2B≠1

· 1
n

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2
T

1
Y Ik ≠ m̂

I
c

k

Y
(W Ik)

2B

(4.57)

by (4.14). By Lemma 4.I.17, we have

1
n

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
T

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2

= EPN

C1
X ≠ m0

X
(W )

21
A ≠ m0

A
(W )

2
T

D

+ OPN

1
N≠ 1

2 (1 + flN )
2
,

1
n

1
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I
c

k

A
(W Ik)

2
T

1
AIk ≠ m̂

I
c

k

A
(W Ik)

2

= EPN

C1
A ≠ m0

A
(W )

21
A ≠ m0

A
(W )

2
T

D

+ OPN

1
N≠ 1

2 (1 + flN )
2
,

1
n

1
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I
c
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X
(W Ik)

2
T

1
XIk ≠ m̂

I
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k

X
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2

= EPN

C1
X ≠ m0

X
(W )

21
(X ≠ m0

X
(W )

2
T

D

+ OPN

1
N≠ 1

2 (1 + flN )
2
.

By Weyl’s inequality and Slutsky’s theorem, we hence have
Ô

N(b̂“,DML2 ≠ b“) (4.58)

=
A1

D1 + (“ ≠ 1)D2
2≠1 + OPN

1
N≠ 1

2 (1 + flN )
2B

· 1Ô
K

Kÿ

k=1

1Ô
n

A1
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I
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X
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2
T

·
A
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I

c

k

Y
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1
XIk ≠ m̂

I
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X
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2
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B
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n

1
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I
c

k

X
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2
T

1
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I
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k

A
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·
A 1
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1
AIk ≠ m̂

I
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A
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2
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I
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k

A
(W Ik)
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AIk ≠ m̂

I
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A
(W Ik)

2
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Y Ik ≠ m̂
I

c

k

Y
(W Ik) ≠

1
XIk ≠ m̂

I
c

k

X
(W Ik)

2
b“

BB

=
A1

D1 + (“ ≠ 1)D2
2≠1 + OPN

1
N≠ 1

2 (1 + flN )
2B

· 1Ô
K

Kÿ

k=1

A 1Ô
n

ÿ

iœIk

ÊÂ(Si; b“, ÷̂I
c

k)

+ (“ ≠ 1) · 1Ô
n

ÿ

iœIk

Â1(Si; ÷̂I
c

k) ·
1 1
n

ÿ

iœIk

Â2(Si; ÷̂I
c

k)
2≠1 · 1

n

ÿ

iœIk

Â(Si; b“, ÷̂I
c

k)
B

(4.59)

due to (4.57) because K and “ are constants independent of N and because
N = nK holds. Let k œ [K]. Next, we analyze the individual factors of the
last summand in (4.58). By Lemma 4.I.16, we have

1Ô
n

q
iœIk

Â(Si; b“, ÷̂I
c

k)

= 1Ô
n

q
iœIk

Â(Si; b“, ÷0) +
A

1Ô
n

q
iœIk

Â(Si; b“, ÷̂I
c

k) ≠ 1Ô
n

q
iœIk

Â(Si; b“, ÷0)
B

= 1Ô
n

q
iœIk

Â(Si; b“, ÷0) + OPN
(flN ),

(4.60)
and

1Ô
n

q
iœIk

ÊÂ(Si; b“, ÷̂I
c

k)

= 1Ô
n

q
iœIk

ÊÂ(Si; b“, ÷0) +
A

1Ô
n

q
iœIk

ÊÂ(Si; b“, ÷̂I
c

k) ≠ 1Ô
n

q
iœIk

ÊÂ(Si; b“, ÷0)
B

= 1Ô
n

q
iœIk

ÊÂ(Si; b“, ÷0) + OPN
(flN ),

(4.61)
and

1
n

q
iœIk

Â1(Si; ÷̂I
c

k)
= 1

n

q
iœIk

(Â1(Si; ÷̂I
c

k) ≠ Â1(Si; ÷0)) + 1
n

q
iœIk

(Â1(Si; ÷0) ≠ EPN
[Â1(S; ÷0)])

+ EPN
[Â1(S; ÷0)]

= OPN
(N≠ 1

2 flN ) + 1
n

q
iœIk

(Â1(Si; ÷0) ≠ EPN
[Â1(S; ÷0)]) + EPN

[Â1(S; ÷0)].
(4.62)

We apply a series expansion to obtain
A 1

n

ÿ

iœIk

Â2(Si; ÷̂I
c

k)
B≠1

=
A

EPN
[Â2(S; ÷0)] + 1

n
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1
Â2(Si; ÷̂I

c
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+ 1
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ÿ

iœIk

1
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2.....
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2.....
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[Â2(S; ÷0)]≠1

(4.63)

due to Lemma 4.I.16, the Lindeberg–Feller CLT, the Cramer–Wold device,
because flN . ”

1
4
N

holds by Lemma 4.I.16, and because ”
1
4
N

Ø N≠ 1
2 holds by

Assumption 4.I.5. Thus, the last summand in (4.58) can be expressed as

1Ô
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+ EPN
[Â1(S; ÷0)] EPN

[Â2(S; ÷0)]≠1 1Ô
n

ÿ

iœIk

Â(Si; b“, ÷0)

≠ EPN
[Â1(S; ÷0)] EPN

[Â2(S; ÷0)]≠1 1Ô
n

ÿ

iœIk

1
Â2(Si; ÷0) ≠ EPN

[Â2(S; ÷0)]
2

· EPN
[Â2(S; ÷0)]≠1 EPN

[Â(S; b“, ÷0)] + OPN
(flN ) (4.64)

due to (4.60)–(4.63), the Lindeberg–Feller CLT and the Cramer–Wold device.
We combine (4.58) and (4.64) and obtain
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=
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(4.65)

by the Lindeberg–Feller CLT and the Cramer–Wold device. We conclude our
proof for the DML2 method by the Lindeberg–Feller CLT and the Cramer–Wold
device.

Subsequently, we consider the DML1 method. It su�ces to show that (4.56)
holds uniformly over P œ PN . Fix a sequence {PN}NØ1 such that PN œ PN

for all N Ø 1. Because this sequence is chosen arbitrarily, it su�ces to show,
as N æ Œ,

Ô
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(4.66)

by (4.20). By Slutsky’s theorem and Equation (4.66), we have
Ô
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The last expression above coincides with 4.58. Consequently, the same asymp-
totic analysis conducted for b̂“,DML2 can also be employed in this case.

Lemma 4.J.2. Let “ Ø 0 and let Ï œ {Â, ÊÂ}. We have
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Proof. We consider the case Ï = Â. We decompose
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(4.67)
Subsequently, we analyze the three terms in the above decomposition individu-
ally. We have
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Due to (4.60) that was established in the proof of Theorem 4.4.1, we have
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Due to the Lindeberg–Feller CLT and the Cramer–Wold device, we have
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We combine (4.67) and (4.68)–(4.70) to infer the claim for Ï = Â. The case
Ï = ÊÂ can be analyzed analogously.

Theorem 4.J.3. Suppose Assumption 4.I.5 holds. Recall the score func-
tions introduced in Definition 4.I.1, and let b̂“ œ {b̂“,DML1, b̂“,DML2}. Intro-
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Let furthermore
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Define the estimators
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4 .

We estimate the asymptotic variance covariance matrix ‡2(“) in Theo-
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Proof of Theorem 4.J.3. This proof is based on Chernozhukov et al. (2018).
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Due to (4.71), it su�ces to show
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by the triangle inequality and the results derived so far. Subsequently, we
bound the terms I1, . . . , I16 individually. Because all these terms consist of
norms of matrices of fixed size, it su�ces to bound the individual matrix entries.
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By Lemma 4.I.20, we have
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The term I6 can be bounded analogously to I5. By Lemma 4.I.20, we have
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The term I9 can be bounded analogously to I8. Next, we bound I10. By
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The term I11 can be bounded analogously to I10. Next, we bound I12. By
Lemma 4.I.20, we have
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which implies I12 = OPN
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Next, we bound I13. By Lemma 4.I.20, we have
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The term I14 can be bounded analogously to I13. The term I15 can be
bounded analogously to I12. Last, we bound the term I16. By Lemma 4.I.20,
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Proof of Proposition 4.4.2. The statement of Proposition 4.4.2 can be refor-
mulated as

Ô
N |b“N ≠ —0| æ

Y
____]

____[

0, if “N = �(
Ô

N) and “N ”œ �(
Ô

N)
C, if “N = �(

Ô
N)

Œ, if “N = o(
Ô

N)

using the Bachmann–Landau notation. For instance, the Bachmann–Landau
notation is presented in Lattimore and Szepesvári (2020).

Introduce the matrices

F1 := EP [RXRY ],
F2 := EP

Ë
RXRT

X

È
,
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Ë
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È
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Ë
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Ë
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Ë
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We have
Ô

N |b“N ≠ —0| =
Ô

N
-----

1
F2 + (“N ≠ 1)G2

2≠11
F1 + (“N ≠ 1)G1

2
≠ G≠1

2 G1

-----.

First, we assume that the sequence {“N}NØ1 diverges to +Œ as N æ Œ, so
that “N ≠ 1 is bounded away from 0 for N large enough. By Henderson and
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Searle (1981, Section 3), we have
1
F2 + (“N ≠ 1)G2

2≠1

= 1
“N ≠1G≠1

2 ≠
A

1 + 1
“N ≠1G≠1

2 F2

B≠1
1

“N ≠1G≠1
2 F2

1
“N ≠1G≠1

2 .

Hence, we have
Ô

N |b“N ≠ —0| =
Ô

N

“N ≠1

-----G
≠1
2 F1 ≠

1
1 + 1

“N ≠1G≠1
2 F2

2≠1 1
“N ≠1G≠1

2 F2G≠1
2 F1

≠
1
1 + 1

“N ≠1G≠1
2 F2

2≠1
G≠1

2 F2G≠1
2 G1

-----

and infer our claim because we have

G≠1
2 F1 ≠

1
1 + 1

“N ≠1G≠1
2 F2

2≠1 1
“N ≠1G≠1

2 F2G≠1
2 F1

≠
1
1 + 1

“N ≠1G≠1
2 F2

2≠1
G≠1

2 F2G≠1
2 G1

= O(1).

Next, we assume that the sequence {“N}NØ1 is bounded. We have

|b“N ≠ —0| =
-----

1
F2 + (“N ≠ 1)G2

2≠11
F1 + (“N ≠ 1)G1

2
≠ G≠1

2 G1

----- = O(1),

which concludes the proof.

Proof of Theorem 4.4.3. We show that

P
1
‡̂2(“N ) + N(b̂“N ≠ —̂)2 Æ ‡̂22

Æ P (|�N | Ø CN )

holds for some random variable �N satisfying �N = OP (1) and for some
sequence {CN}NØ1 of non-negative numbers diverging to +Œ as N æ Œ.

For real numbers a and b, observe that we have
Ò

|a|2 + |b|2 Ø 1
2|a| + 1

2|b|

due to
3
4

A

|a|2 + |b|2 ≠ 2
3|a||b|

B

Ø 3
4(|a| ≠ |b|)2 Ø 0.

Thus, we have

P
1
‡̂2(“N ) + N(b̂“N ≠ —̂)2 Æ ‡̂22

= P
AÚ

‡̂2(“N ) + N(b̂“N ≠ —̂)2 Æ ‡̂
B

Æ P
1
‡̂(“N ) +

Ô
N |b̂“N ≠ —̂| Æ 2‡̂

2
.
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By the reverse triangle inequality, we have

|b̂“N ≠ —̂| = |b̂“N ≠ b“N + b“N ≠ —0 + —0 ≠ —̂|
Ø |b“N ≠ —0| ≠ |b̂“N ≠ b“N | ≠ |—0 ≠ —̂|.

Thus, we have

P
1
‡̂2(“N ) + N(b̂“N ≠ —̂)2 Æ 2‡̂22

Æ P
1
‡̂(“N ) +

Ô
N |b“N ≠ —0| ≠

Ô
N |b̂“N ≠ b“N | ≠

Ô
N |—0 ≠ —̂| Æ 2‡̂

2

= P
1Ô

N |b“N ≠ —0| Æ 2‡̂ ≠ ‡̂(“N ) +
Ô

N |b̂“N ≠ b“N | +
Ô

N |—0 ≠ —̂|
2

Æ P
1---‡̂(“N ) ≠ 2‡̂ ≠

Ô
N |b̂“N ≠ b“N | ≠

Ô
N |—0 ≠ —̂|

--- Ø
Ô

N |b“N ≠ —0|
2

Æ P
1
|‡̂(“N ) ≠ 2‡̂ ≠

Ô
N(b̂“N ≠ b“N ) ≠

Ô
N(—0 ≠ —̂)| Ø

Ô
N |b“N ≠ —0|

2

by the reverse triangle inequality. Let us introduce the random variable

�N := ‡̂(“N ) ≠ 2‡̂ ≠
Ô

N(b̂“N ≠ b“N ) ≠
Ô

N(—0 ≠ —̂)

and the deterministic number CN :=
Ô

N |b“N ≠ —0|. By Lemma 4.J.6, we
have �N = OP (1). Let Á > 0, and choose CÁ and NÁ such that for all
N Ø NÁ the statement P (|�N | > CÁ) < Á holds. By Proposition 4.4.2,
CN tends to infinity as N æ Œ due to “N = o(

Ô
N). Hence, there exists

some ÊN = ÊN(CÁ) such that we have CN > CÁ for all N Ø ÊN . This implies
P (|�N | > CN ) Æ P (|�N | > CÁ) for all N Ø ÊN .

Let N := max{NÁ,
ÊN}. For all N Ø N , we therefore have P (|�N | > CN ) <

Á. We conclude limNæŒ P (|�N | > CN ) = 0.

Lemma 4.J.4. Let “N = o(
Ô

N). We have
Ô

N(b̂“N ≠ b“N ) = OP (1).

Proof of Lemma 4.J.4. We already verified D̂1 = D1 + oP (1) and D̂2 =
D2 + oP (1) in the proof of Theorem 4.4.1. Let us assume that “N diverges to
+Œ as N æ Œ. We then have

1
D̂1 + (“N ≠ 1)D̂2

2≠1 = 1
“N ≠1

A
1

“N ≠1D1 + D2 + oP (1) + 1
“N ≠1oP (1)

B≠1

= 1
“N ≠1

AA
1

“N ≠1D1 + D2

B≠1
+ oP (1)

B

=
1
D1 + (“N ≠ 1)D2

2≠1 + oP

1 1
“N ≠1

2
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because 1
“N ≠1 = O(1) holds. Furthermore, we have

Ô
N(b̂“N ≠ b“N )

=
A1

D1 + (“N ≠ 1)D2
2≠1 + oP

1 1
“N ≠1

2B

· 1Ô
K

qK

k=1
1Ô
n

q
iœIk

A
ÊÂ(Si; b“N , ÷̂I

c

k)

+(“N ≠ 1) 1
n

q
iœIk

Â1(Si; ÷̂I
c

k)
A

1
n

q
iœIk

Â2(Si; ÷̂I
c

k)
B≠1

Â(Si; b“N , ÷̂I
c

k)
B

by (4.14). Lemma 4.I.16 states that
......

1Ô
n

ÿ

iœIk

Ï(Si; b0, ÷̂I
c

k) ≠ 1Ô
n

ÿ

iœIk

Ï(Si; b0, ÷0)
......

= OP (flN )

holds for k œ [K], Ï œ {Â, ÊÂ, Â2}, and b0 œ {b“, —0, 0}, and where flN =
rN + N

1
2 ⁄N is as in Definition 4.I.4 and satisfies flN . ”

1
4
N

, and where we
interpret Â2(S; b, ÷) = Â2(S; ÷). This statement remains valid in the present
setting because there exists some finite real constant C such that we have
|b“N | Æ C for N large enough. Hence, we have

Ô
N(b̂“N ≠ b“N )

=
Q

a
A

1
“N ≠1D1 + D2

B≠1
+ oP (1)

R

b

· 1Ô
K

qK

k=1

Q

a 1Ô
n

q
iœIk

A
1

“N ≠1
ÊÂ(Si; b“N , ÷0) + D3Â(Si; b“N , ÷0)

+
1
Â1(Si; ÷0) ≠ EP [Â1(S; ÷0)]

2
D5

≠D3
1
Â2(Si; ÷0) ≠ EP [Â2(S; ÷0)]

2
D5

B

+ oP (1)
R

b

by (4.65). Consider the random variables

ÊXi := 1
“N ≠1

ÊÂ(Si; b“N , ÷0) + D3Â(Si; b“N , ÷0)
+

1
Â1(Si; ÷0) ≠ EP [Â1(S; ÷0)]

2
D5 ≠ D3

1
Â2(Si; ÷0) ≠ EP [Â2(S; ÷0)]

2
D5

for i œ [N ], and Sn := q
iœIk

ÊXi, and Vn := q
iœIk

EP [ ÊX2
i
], where n = N

K
denotes

the size of Ik. The Lyapunov condition is satisfied for ” = 2 > 0 because

1
1 q

iœIk
EP [ ÊX2

i ]
22+”

ÿ

iœIk

EP

Ë
| ÊXi|2+”

È
= 1

(EP [ ÊX2
1 ])2+”

· 1
n1+”

EP

Ë
| ÊX1|2+”

È
æ 0

holds as n æ Œ. Therefore, the Lindeberg–Feller condition is satisfied that
implies Sn

Vn

æ N (0, 1) as n æ Œ.
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The case where the sequence “N is bounded can be analyzed analogously.

Lemma 4.J.5. Let “N = o(
Ô

N). We then have ‡̂2(“N ) = OP (1).

Proof of Lemma 4.J.5. We have

‡̂2(“N ) =
1
D̂1 + (“N ≠ 1)D̂2

2≠1
D̂4

1
D̂T

1 + (“N ≠ 1)D̂T

2
2≠1

.

As verified in the proof of Theorem 4.4.1, we have D̂1 = D1 + oP (1) and
D̂2 = D2+oP (1). We established D̂k

4 = D4+oP (1) in the proof of Theorem 4.J.3
for fixed “. Consequently, the claim follows if the sequence {“N}NØ1 is bounded.
Next, assume that “N diverges to +Œ as N æ Œ. We verified

1
D̂1 + (“N ≠ 1)D̂2

2≠1 =
1
D1 + (“N ≠ 1)D2

2≠1 + oP

A 1
“N ≠ 1

B

in the proof of Lemma 4.J.4. It can be shown that 1
(“N ≠1)2 D̂4 is bounded in

P -probability by adapting the arguments presented in the prof of Theorem 4.J.3
because there exists some finite real constant C such that we have |b“N | Æ C
for N large enough. Therefore,

‡̂2(“N ) =
A

1
“N ≠1D1 + D2 + oP (1)

B≠1
1

(“N ≠1)2 D̂4

A
1

“N ≠1DT

1 + DT

2 + oP (1)
B≠1

is bounded in P -probability.

Lemma 4.J.6. Let “ = o(
Ô

N). We then have

�N := ‡̂(“N ) ≠ 2‡̂ ≠
Ô

N(b̂“N ≠ b“N ) ≠
Ô

N(—0 ≠ —̂) = OP (1).

Proof of Lemma 4.J.6. By Theorem 4.3.1, the term
Ô

N(—0 ≠ —̂) asymptoti-
cally follows a Gaussian distribution and is hence bounded in P -probability. By
Theorem 4.I.21, the term ‡̂2 converges in P -probability. Thus, 2‡̂ is bounded
in P -probability as well. By Lemma 4.J.4, we have

Ô
N(b̂“N ≠ b“N ) = OP (1).

By Lemma 4.J.5, we have ‡̂2(“N ) = OP (1).

Proof of Theorem 4.4.4. The fact the the statement holds uniformly for P œ
PN can be derived using analogous arguments as used to prove Theorem 4.3.1
and 4.4.1. Theorem 4.J.3 in the appendix shows that ‡̂(“) consistently estimates
‡(“) for fixed “. Analogous arguments show that ‡̂(“̂Õ) consistently estimates
‡ from Theorem 4.3.1. Let µ̂ := “̂Õ ≠ 1. We have

Ô
N(b̂“̂

Õ ≠ b“̂
Õ) =

A
1
K

qK

k=1
1 „R

Ik

X

2
T

1 1
µ̂
1 + � ‚R

I
k

A

2 „R
Ik

X

B≠1

· 1
K

qK

k=1
1 „R

Ik

X

2
T

1 1
µ̂
1 + � ‚R

I
k

A

21 „R
Ik

Y ≠ „R
Ik

Xb“̂
Õ2

.
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Due to Theorem 4.4.3, we have 1
µ̂

= 1Ô
N

oP (1). Due to Proposition 4.4.2, whose
statements also hold stochastically for random “, we have b“̂

Õ = —0 + 1Ô
N

oP (1).
Therefore, we have

Ô
N(b̂“̂

Õ ≠ b“̂
Õ)

=
A

1
K

qK

k=1
1 „R

Ik

X

2
T � ‚R

I
k

A

„R
Ik

X

B≠1
1
K

qK

k=1
1 „R

Ik

X

2
T � ‚R

I
k

A

1 „R
Ik

Y ≠ „R
Ik

X—0
2

+ oP (1)
=

Ô
N(—̂ ≠ —0) + oP (1)

due to Slutsky’s theorem and similar arguments as presented in the proofs of
Theorem 4.3.1 and 4.4.1.

4.K | Proof of Section 4.5.1
We argue that A1 and A2 are independent of H conditional on W1 and W2
in the SEM in Figure 4.5.1. First, we consider A1. All paths from A1 to H
through X or Y are blocked by the empty set because either X or Y is a
collider on these paths. The path A1 æ A2 æ W1 æ H is blocked by W1.
Second, we consider A2. All paths from A2 to H through X or Y are blocked
by the empty set because either X or Y is a collider on these paths. The path
A2 æ W1 æ H is blocked by W1.
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5 | Confidence and Uncertainty Assess-
ment for Distributional Random
Forests

Joint work with
Jeffrey Näf, Peter Bühlmann, and Nicolai Meinshausen

This chapter is based on the manuscript
J. Näf, C. Emmenegger, P. Bühlmann, and N. Meinshausen.
Inference for the distributional random forest, 2023.
Preprint on arXiv:2302.05761

Abstract
The Distributional Random Forest (DRF) is a recently introduced Random

Forest algorithm to estimate multivariate conditional distributions. Due to
its general estimation procedure, it can be employed to estimate a wide range
of targets such as conditional average treatment e�ects, conditional quantiles,
and conditional correlations. However, only results about the consistency and
convergence rate of the DRF prediction are available so far. We characterize
the asymptotic distribution of DRF and develop a bootstrap approximation of
it. This allows us to derive inferential tools for quantifying standard errors
and the construction of confidence regions that have asymptotic coverage
guarantees. In simulation studies, we empirically validate the developed
theory for inference of low-dimensional targets and for testing distributional
di�erences between two populations.

5.1 | Introduction
Building on Random Forests (Breiman, 2001), Distributional Random Forests
(DRF) (∆evid et al., 2022) provide nonparametric estimates of the distribu-
tion of a multivariate response, conditional on potentially high-dimensional
covariates. DRF estimates a locally adaptive Hilbert space embedding µ̂n(x)
of a multivariate conditional distribution PY | X=x of a variable of interest
Y = (Y1, Y2, . . . , Yd)T œ Rd given covariates X = (X1, X2, . . . , Xp)T œ Rp.
More precisely, in a reproducing kernel Hilbert space (RKHS) with reproducing
kernel k and associated Hilbert space H, DRF computes the estimator

µ̂n(x) =
nÿ

i=1
ŵi(x)k(Yi, ·) (5.1)
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of the conditional mean embedding (CME) µ(x) = E[k(Y, ·) | X = x] of
PY | X=x. The weights ŵi(x) quantify the relevance of each training data
point xi to predict µ(x), which makes DRF locally adaptive. ∆evid et al.
(2022) established consistency of µ̂n(x) at a fixed test point x. A natural, but
more challenging, question is whether an asymptotic normality result can be
formulated for µ̂n(x). Providing such a result is the aim of the present paper.

We present two main results. First, we show that the appropriately centered
and scaled embedding µ̂n(x), for a fixed test point x, weakly converges to a
limiting Gaussian process. Second, we present a resampling-based approach to
infer properties of the distribution of µ̂n(x). In practice, this resampling-based
approach allows us to simultaneously and computationally e�ciently compute
the DRF prediction and a bootstrap approximation of its distribution.

In addition to our theoretical developments, we present two lines of appli-
cations. First, we use the estimated Hilbert space embedding to formally test
if two conditional distributions coincide or not, and we provide confidence
bands for the so-called (conditional) witness function that can be used to
assess where the two distributions di�er. Second, we make inference for targets
◊(x) = G(PY | X=x) that can be represented by some smooth function G of the
underlying distribution PY | X=x by replacing PY | X=x by its DRF estimate. A
wide range of conditional (multivariate) estimators like the conditional average
treatment e�ect (CATE), conditional quantiles, or conditional correlations can
be obtained in this way. These estimators are mutually consistent, meaning
that estimated conditional covariance matrices are guaranteed to be positive
semi-definite for d < n. In general, this might not be guaranteed if we estimated
the conditional variances and covariances individually.

5.1.1 | Contributions
We develop asymptotic results for uncertainty quantification for the DRF
and apply them in two use cases: testing two distributions for equality and
making inference for target parameters like conditional expectations, the CATE,
conditional quantiles, or conditional correlations.

We present a rigorous analysis of the DRF in an RKHS that does not depend
on a specific target parameter. Consequently, the same DRF can be used to
estimate di�erent targets. Furthermore, the targets may be Rq-valued for q Ø 2,
and confidence ellipsoids in Rq can be constructed. Generalizing the arguments
in Wager and Athey (2017, 2018) to RKHS’s allows us to develop a U-statistics
approximation of the DRF prediction µ̂n(x) in the RKHS. Particularly, we
show that µ̂n(x) for a fixed test point x is asymptotically equivalent to a sum of
independent, but not necessarily identically distributed, random elements in the
Hilbert space H. In combination with a new result on the asymptotic behavior
of the variance of the DRF prediction, this result allows us to establish that
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µ̂n(x), appropriately scaled, converges weakly to a limiting Gaussian process in
the RKHS. This result holds under rather natural assumptions and does not
depend on the estimation target we have in mind.

To cope with the theoretical complexity of our Hilbert space-valued Random
Forest, we use and extend techniques to analyze Generalized Random Forests
(GRF) (Wager and Athey, 2018; Athey et al., 2019), theory for random elements
in Hilbert spaces (Hsing and Eubank, 2015; Chen and White, 1998), and
bootstrap arguments (Praestgaard and Wellner, 1993; Kosorok, 2003; González-
Rodríguez and Colubi, 2017). Our RKHS-valued bootstrap result builds on
arguments from the bootstrap and empirical process literature and those
of Athey et al. (2019). We show that an adaptation of half-sampling can
be used to obtain a random element µ̂S

n
(x) in H, by sampling from the data,

that converges to the same limiting distribution as the original estimate µ̂n(x),
conditional on the data. Consequently, a resampling-based approach can be
used to infer properties of the distribution of the random element µ̂n(x) of H.
In practice, we propose to adapt the DRF algorithm of ∆evid et al. (2022) to
be fitted in “little bags” as motivated in Athey et al. (2019). This allows us to
simultaneously and computationally e�ciently compute the DRF prediction
and a bootstrap approximation of its distribution in the form of µ̂S

n
(x).

Finally, we use our bootstrap results for the DRF to formally test for distri-
butional di�erences between two groups. Park et al. (2021) introduced the idea
to test equality of the distributions of the control and treatment groups of an
experiment, given some covariates. In contrast to estimating the CATE, which
compares the two groups based on their mean, comparing whole distributions al-
lows us to identify di�erences that may not be captured by the mean alone. Our
developments allow us to formally test for conditional distributional di�erences
between the control and the treatment group at a test point x. Although it may
be possible to derive an asymptotic normality result for the usual kernel-based
CME estimator as used in Park et al. (2021), we are not aware of a formal
test for fixed x. Finally, our confidence bands for the conditional witness
function can be interpreted as the Hilbert space-valued generalization of the
work in Wager and Athey (2018); Athey et al. (2019), which derived confidence
intervals for the CATE at a fixed x.

5.1.2 | Previous Work
There is a growing literature on nonparametric estimation of multivariate condi-
tional distributions. These include Conditional Generative Adversarial Neural
Networks (Aggarwal et al., 2019), Conditional Variational Auto-Encoders (Sohn
et al., 2015), Masked Autoregressive Flows (Papamakarios et al., 2017), and
Conditional Mean Embeddings (Song et al., 2009; Muandet et al., 2017; Park
and Muandet, 2020). To the best of our knowledge, none of these methods pro-
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vide mathematical guarantees of uncertainty. Our methodology might be most
closely related to the GRF, which builds on the theory of Causal Forests (Wager
and Athey, 2017). GRF is a locally adaptive method to estimate univariate real-
valued targets defined by local moment conditions using forest-based weights.
It uses a splitting criterion for growing trees that depends on the specific es-
timation target, and the resulting estimator is proven to be consistent and
asymptotically normal at a test point x. In contrast to DRF, a new splitting
criterion needs to be constructed for each new target and the theory presented
in Athey et al. (2019) only provides results for univariate targets. However,
from a theoretical perspective, GRF has exact asymptotic normality guarantees
for more univariate functionals than what the current paper is able to derive
with DRF because some functionals mapping PY | X=x to the desired targets
might not be su�ciently smooth. This is discussed in more detail in Remark
5.3.9. Künzel et al. (2019) introduce the X-learner to estimate the CATE, which
is a meta algorithm that initially estimates the unobserved potential outcomes,
and confidence intervals are obtained via the Bootstrap.

Outline: In the subsequent Section 5.2, we recall relevant definitions and
results concerning RKHS’s, the Landau notation, and we introduce basic
concepts and summarize core ideas of the DRF. Afterwards, Section 5.3 presents
our formal assumptions and main results. Section 5.4 and 5.5 discuss our two
applications: inference for the conditional distributional treatment e�ect and
general multivariate real-valued parameters. Finally, Section 5.6 demonstrates
empirical validation of our theoretical developments, and Section 5.7 concludes
with a brief discussion of our results.

5.2 | Background
In this section, we introduce notation and present key results from ∆evid et al.
(2022) that serve as a basis for our subsequent developments. Throughout, we
assume an underlying probability space (�, A, P) and denote by Mb(Rd) the
space of all bounded signed measures on Rd.

5.2.1 | Reproducing Kernel Hilbert Spaces and Landau Nota-
tion

Let (H, È·, ·ÍH) be the reproducing kernel Hilbert space induced by the positive
definite, bounded, and continuous kernel k : Rd◊Rd æ R; see for instance Hsing
and Eubank (2015, Chapter 2.7) for an exposition of the topic. Crucially,
continuity of k ensures that H is separable (Hsing and Eubank, 2015, Theorem
2.7.5). For a random element › taking values in the (separable) Hilbert space
H with E[Î›ÎH] < Œ, we define its expected value in H by

E[›] =
⁄

�
›dP œ H,
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where the integral is to be understood in a Bochner sense (Hsing and Eubank,
2015, Chapter 3). Because H is separable, this integral is well defined and there
are no measurability issues. If E[Î›Î2

H] < Œ, we define the variance of › œ H
by

Var(›) = E[Î›Î2
H] ≠ ÎE[›]Î2

H.

For a sequence of random elements ›n in H, we denote by ›n

Dæ › convergence
in distribution. That is, for all bounded and continuous functions F : H æ R,
we have E[F (›n)] æ E[F (›)] as n æ Œ. By separability, every random element
› with values in H is tight (Dudley, 2002, Chapter 7.1). That is, for all Á > 0,
there is a compact KÁ µ H such that P(› œ KÁ) Ø 1 ≠ Á. More generally,
uniform tightness of a sequence ›n, n œ N means that for all Á > 0, there is a
compact KÁ µ H such that

inf
n

P(› œ KÁ) Ø 1 ≠ Á.

If for all f œ H the distribution of È›, fÍ on R is N(0, ‡2
f
) for some ‡f > 0,

we write › ≥ N(0, �) with � a self-adjoint Hilbert-Schmidt (HS) operator
satisfying È�f, fÍ = ‡2

f
. In this case, we also write ›n

Dæ N(0, �), if ›n

Dæ ›.
The kernel embedding function � : Mb(Rd) æ H maps any bounded signed

Borel measure Q on Rd to an element �(Q) œ H defined by

�(Q) =
⁄

Rd
k(y, ·)dQ(y) =

⁄

Rd
k(y, ·)dQ+(y) ≠

⁄

Rd
k(y, ·)dQ≠(y),

where the integrals are Bochner integrals. Boundedness of k ensures that �
is indeed defined on all of Mb(Rd). If k is the Gaussian kernel, Î�(Q1) ≠
�(Q2)ÎH = 0 implies Q1 = Q2 for all Q1, Q2 œ Mb(Rd); see for example Simon-
Gabriel et al. (2020, p.2) and Sriperumbudur (2016, Example 3.2). Thus, �
is injective, and the inverse �≠1 : �(Mb(Rd)) æ Mb(Rd) is well defined. In
particular, for Q = ”Y, it holds that �(”Y) = k(Yi, ·), and thus

�(P̂Y | X=x) =
nÿ

i=1
wi(x)�(”Yi

) =
nÿ

i=1
wi(x)k(Yi, ·) = µ̂n(x)

because � is linear.
For two functions f and g from the real numbers into the real numbers with

lim infsæŒ g(s) > 0, we write f (s) = O(g(s)) if

lim sup
sæŒ

|f (s)|
g(s) Æ C

holds for some 0 < C < Œ. If C = 1, we write f (s) - g(s). For a sequence of
random variables Xn : � æ R and an œ (0, +Œ), n œ N, we write Xn = Op(an)
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if
lim

MæŒ
sup

n

P(a≠1
n

|Xn| > M) = 0.

We write Xn = op(an) if a≠1
n

Xn converges in probability to zero. Similarly,
for (S, d) a separable metric space, Xn : (�, A) æ (S, B(S)), n œ N, and
X : (�, A) æ (S, B(S)) measurable, we write Xn

pæ X if d(Xn, X) = op(1).

5.2.2 | Distributional Random Forests
Given an i.i.d. data sample of size n, DRF can be used to estimate a representa-
tion P̂Y | X=x of the conditional distribution PY | X=x of Y = (Y1, Y2, . . . , Yd)T œ
Rd given a realization x of covariates X = (X1, X2, . . . , Xp)T œ Rp by the
weighted sum

P̂Y | X=x =
nÿ

i=1
ŵi(x)”Yi

(5.2)

of Dirac measures ”Yi
. The weights ŵi(x) quantify the relevance of a data

point xi in predicting the target distribution PY | X=x.
To compute the weights ŵi(x), DRF applies a Random Forest algorithm in

the RKHS (H, k). That is, N trees are built, and each tree splits the data
repeatedly with respect to the covariates. Each split is is chosen as to maximize
the Maximum Mean Discrepancy (MMD) statistic (Gretton et al., 2007) across
the child nodes such that the induced distributions in the child nodes are as
di�erent as possible. For example, to split the root node of a tree, two sets of
indices IL and IR are searched for which

......
�

Q

a 1
|IL|

ÿ

iœIL

”Yi

R

b ≠ �
Q

a 1
|IR|

ÿ

iœIR

”Yi

R

b

......

2

H

=
......

1
|IL|

ÿ

iœIL

k(Yi, ·) ≠ 1
|IR|

ÿ

iœIR

k(Yi, ·)
......

2

H
(5.3)

is maximal. This is essentially the traditional CART splitting criterion (Breiman,
2001), but now in the RKHS. Indeed, for d = 1 and the kernel k(x, y) = xy, the
MMD statistic (5.3) simplifies to the CART criterion (∆evid et al., 2022, Section
2.3.1). Thus, the trees are built such that the distribution of the response
variable in the child nodes are as di�erent as possible in the MMD metric.
Intuitively, this should lead to leaves that are as homogeneous as possible such
that the leaf containing x of the kth tree, denoted by Lk(x), approximately
contains a sample from the distribution PY | X=x. For k being the Gaussian
kernel, the embedding � is injective, which allows the MMD statistic to detect
any distributional di�erences for large enough sample sizes. Crucially, this
splitting criterion does not depend on the estimation target like for instance
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the CATE. ∆evid et al. (2022) employed e�cient computation methods of this
MMD statistic to obtain a forest construction with comparable computational
complexity as the original Random Forest algorithm. This is achieved by using
a well-known approximation of the MMD statistic with a specified number of
random features (∆evid et al., 2022, Section 2.3).

Once the trees are grown and leaf nodes determined, the weights wi(x)
can be computed. For each tree k = 1, . . . , N , the leaf node Lk(x) of the
kth tree is the leaf in which x falls. Then, the prediction of µ(x) from each
tree is given by averaging the elements k(Yj, ·) that belong to Lk(x), namely
1/|Lk(x)| q

jœLk(x) k(Yj, ·); that is, the k(Yj, ·)’s belonging to the leaf Lk(x)
of x each get assigned the weight 1/|Lk(x)|. These per-tree predictions are
subsequently averaged to form the forest predictor

µ̂n(x) = 1
N

Nÿ

k=1

Q

ca
1

|Lk(x)|
ÿ

jœLk(x)
k(Yj, ·)

R

db .

Rearranging this double sum such that each Hilbert element is present only
once yields

µ̂n(x) =
nÿ

i=1
ŵi(x)k(Yi, ·)

for suitable weights ŵi(x). From this last expression, we can read o� our
weights ŵi(x) that quantify the importance of the ith data point in predicting
µ(x) = �(PY | X=x). Consequently, this approach allows us to characterize
data-adaptive neighborhoods of data points x whose corresponding conditional
distribution is similar to PY | X=x.

5.3 | Theoretical Development
DRF estimates the embedding µ(x) = �(PY | X=x) = E[k(Y, ·) | X = x] of
the conditional distribution PY | X=x in an RKHS with reproducing kernel k.
In this section, we first state the assumptions on the forest construction and
the data generating process and recall that it consistently estimates µ(x) at
a certain rate (∆evid et al., 2022). Subsequently, we establish convergence
in distribution of the standardized estimator to a limiting Gaussian process.
Lastly, we develop a consistent variance estimation procedure that enables
e�cient empirical computation.

5.3.1 | Forest Construction and Consistency in the RKHS
We require our forest construction to satisfy the following properties that are
similar to Wager and Athey (2018). First, we require that the data used to build
a tree is independent from the data used to populate its leaves for prediction.
To ensure this, we split the subsample used to build a particular tree into two
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halves. The first half is used to construct the tree. Then, the data from the
second half gets assigned to the leaves of the tree according to the covariate
splits that were fitted on the first half. Subsequently, the responses from the
second half of the data, which are now distributed across the leaves, are used to
form the DRF predictions. Second, when a parent node is split into two child
nodes, every feature may be chosen with at least a certain non-zero probability.
Third, the prediction of a tree is not allowed to depend on the order of the
training samples. Fourth, when a parent node of a tree is split into two child
nodes, this split may not be arbitrarily imbalanced. Each child node needs to
contain a certain fraction – of its parent’s data points. Finally, to grow a tree,
the traditional Random Forest algorithm samples training data points with
replacement from the n training points; that is, a bootstrap approach is pursued.
In contrast, we sample a subset without replacement as done by Wager and
Athey (2018); Athey et al. (2019). These assumptions on the forest construction
are summarized as follows:

(F1) (Honesty) The data used for constructing each tree is split into two
halves; the first is used for determining the splits and the second for
populating the leaves and thus for estimating the response.

(F2) (Random-split) At every split point and for all feature dimensions j =
1, . . . , p, the probability that the split occurs along the feature Xj is
bounded from below by fi/p for some fi > 0.

(F3) (Symmetry) The (randomized) output of a tree does not depend on the
ordering of the training samples.

(F4) (–-regularity) After splitting a parent node, each child node contains
at least a fraction – Æ 0.2 of the parent’s training samples. Moreover,
the trees are grown until every leaf contains between Ÿ and 2Ÿ ≠ 1 many
observations for some fixed tuning parameter Ÿ œ N.

(F5) (Data sampling) To grow a tree, a subsample of size sn out of the n
training data points is sampled. We consider sn = n— with

1 > — >

Q

a1 + log((1 ≠ –)≠1)
log(–≠1)

fi

p

R

b
≠1

,

where – is chosen in (F4).

The validity of the above properties are ensured by the forest construction. As
outlined above, the prediction of DRF for a given test point x is an element of
H. If we denote the ith training observation by Zi = (Xi, k(Yi, ·)) œ Rp ◊ H,
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then DRF estimates the embedding of the conditional distribution �(PY | X=x)
by averaging the corresponding estimates across the N trees, namely

�(P̂Y | X=x)) = 1
N

Nÿ

k=1
T (x; Ák, Zk),

where Zk = {Zk1, . . . , Zksn
} is a random subset of {Zi}n

i=1 of size sn (see (F5))
chosen for constructing the kth tree, and Ák is a random variable capturing
the randomness in growing the kth tree such as the choice of the splitting
candidates, and T (x; Ák, Zk) denotes the output of a single tree. The output of
a single tree is given by the average of the terms k(Yi, ·) over all data points
Xi contained in the leaf Lk(x) of the tree constructed from Ák and Zk:

T (x; Ák, {Zk1, . . . , Zksn
}) =

snÿ

j=1

(Xkj
œ Lk(x))

|Lk(x)| k(Ykj
, ·). (5.4)

To develop our theory, we do not consider forests that consist of a user-
specified number N of trees. Instead, we consider N æ Œ, such that the forest
estimator µ̂n(x) is obtained by averaging all possible

1
n

sn

2
many trees, which

equals the number of possible subsets of {Zi}n

i=1 of size sn. This idealized
version of our DRF predictor, which we will denote by µ̂n(x) from now onwards,
is given by

µ̂n(x) =
Q

a n

sn

R

b
≠1

ÿ

i1<i2<···<isn

EÁ

Ë
T (x; Á, {Zi1, . . . , Zisn

})
È
. (5.5)

This is a standard simplification also employed by Wager and Athey (2017,
2018); Athey et al. (2019). ∆evid et al. (2022) established that µ̂n(x) in (5.5)
consistently estimates µ(x) with respect to the RKHS norm at a certain rate.

Theorem 5.3.1 (Theorem 1 in ∆evid et al. (2022)). Assume that the forest
construction satisfies the properties (F1)–(F5). Additionally, assume that
k is a bounded and continuous kernel (this corresponds to Assumption (K1)
and (K2) below) and that we have a random design with X1, . . . , Xn

independent and identically distributed on [0, 1]p with a density bounded
away from 0 and infinity (this corresponds to (D1) below). If the subsample
size sn is of order n— for some 0 < — < 1, the mapping x ‘æ µ(x) œ H is
Lipschitz (this corresponds to (D2) below) and

sup
xœ[0,1]p

E[Îk(Y, ·)Î2
H | X=x] < Œ

(this is a consequence of assumption (D3) below). Then, we have consis-
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tency of µ̂n(x) in (5.5) with respect to the RKHS norm, namely

Îµ̂n(x) ≠ µ(x)ÎH = Op

1
n≠“

2
(5.6)

for any “ Æ 1
2 min

3
1 ≠ —, log((1≠–)≠1)

log(–≠1)
fi

p
· —

4
.

Although this result shows consistency of µ̂n(x) at a certain rate, it does not
establish distributional convergence of the scaled di�erence. Subsequently, we
establish this result.

5.3.2 | Asymptotic Normality in the RKHS
To establish an asymptotic Gaussian process behavior of µ̂n(x) in the Hilbert
space, we first show asymptotic linearity in Theorem 5.3.2. More precisely, we
show that

µ̂n(x) ≠ µ(x) = sn

n

nÿ

i=1
Tn(Zi) + op(‡n)

holds, where Zi = (Xi, k(Yi, ·)) œ Rd ◊ H concatenates the ith covariates and
the embedding of the ith response in the Hilbert space, Tn is some function
depending on n, and ‡n is some standard deviation converging to zero. Denote
by

›n = 1
‡n

(µ̂n(x) ≠ µ(x)) (5.7)

the shifted and scaled DRF estimator whose asymptotic distribution we subse-
quently investigate. To establish that ›n asymptotically converges to a Gaussian
process, two ingredients are required (Hsing and Eubank, 2015, Chapter 7).
First, we require weak convergence to a limiting Gaussian distribution in R of
the univariate marginals È sn

n‡n

qn

i=1 Tn(Zi), fÍ for all f œ H. Second, we require
uniform tightness of the sequence sn

n‡n

qn

i=1 Tn(Zi) for n Ø 1.
We make the following assumptions on the data generating process. Through-

out, we assume all involved expectations exist and are finite.

(D1) The covariates X1, . . . , Xn are independent and identically distributed
on [0, 1]p with a density bounded away from 0 and infinity.

(D2) The mapping x ‘æ µ(x) = E[k(Y, ·) | X=x] œ H is Lipschitz.

(D3) The mapping x ‘æ E[Îk(Y, ·)Î2
H | X=x] is Lipschitz.

(D4) Var(k(Y, ·) | X = x) = E[Îk(Y, ·)Î2
H | X = x] ≠ ÎE[k(Y, ·) | X =

x]Î2
H > 0.
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(D5) E[Îk(Y, ·) ≠ µ(x)Î2+”

H | X = x] Æ M , for some constants ”, M uni-
formly over x œ [0, 1]d.

(D6) For all f œ H, Var(Èk(Y, ·), fÍH | X = x) = Var(f (Y) | X = x) > 0.

(D7) For all f œ H, x ‘æ E[|f (Y)|2 | X = x] is Lipschitz.

Assumption (D1) is a standard assumption when analyzing Random Forests
(Meinshausen, 2006; Wager and Athey, 2017, 2018), and (D2)–(D5) correspond
to natural generalizations of the assumptions in Wager and Athey (2018) to
the RKHS setting. Particularly, Assumption (D2) implies that we have

Îµ(x1) ≠ µ(x2)ÎH Æ LÎx1 ≠ x2Î

for some L > 0. Because Î · ÎH metrizes weak convergence for the Gaussian
kernel, the distributions PY | X=x1 and PY | X=x2 are consequently close in the
weak topology if x1 and x2 are close enough in Rp. Moreover, (D2) implies
that for all f œ H and all x1, x2 œ [0, 1]d, we have

|E[f (Y) | X = x1] ≠ E[f (Y) | X = x2]| = |Èf, µ(x1) ≠ µ(x2)ÍH|
Æ ÎfÎHÎµ(x1) ≠ µ(x2)ÎH

Æ ÎfÎHLÎx1 ≠ x2Î. (5.8)

Consequently, (D2) implies Lipschitz continuity of x ‘æ E[f(Y) | X = x] for
all f œ H. Similarly, (D5) implies that for all f œ H,

E[|f (Y) ≠ E[f (Y) | X = x]|2+” | X = x]
= E[|Èf, k(Y, ·) ≠ µ(x)Í|2+” | X = x]
Æ E[|ÎfÎH · Îk(Y, ·) ≠ µ(x)ÎH|2+” | X = x]
Æ ÎfÎ2+”

H M (5.9)

holds uniformly over x œ [0, 1]d. These two conclusions together with (D6)
and (D7) will allow us to apply results of Wager and Athey (2018) for the
univariate marginal

K
sn

n‡n

nÿ

i=1
Tn(Zi), f

L

= sn

n‡n

nÿ

i=1
ÈTn(Zi), fÍ

to establish the asymptotic normality of these marginals. Finally, (D1) and
(D3) imply that for any x œ [0, 1]d and some x0 œ [0, 1]d,

E[Îk(Y, ·)Î2
H | X=x]
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= E[Îk(Y, ·)Î2
H | X=x] ≠ E[Îk(Y, ·)Î2

H | X=x0] + E[Îk(Y, ·)Î2
H | X=x0]

Æ LÎx ≠ x0Î + E[Îk(Y, ·)Î2
H | X=x0]

Æ 2L
Ô

p + E[Îk(Y, ·)Î2
H | X=x0],

so that

sup
xœ[0,1]p

E[Îk(Y, ·)Î2
H | X=x] < Œ, (5.10)

as required in Theorem 5.3.1 above.
We also make the following assumptions on the kernel k:

(K1) k is bounded.

(K2) (x, y) ‘æ k(x, y) is (jointly) continuous.

(K3) k is integrally strictly positive definite (denoted by s spd), that is

ÎQ1 ≠ Q2ÎH = 0 =∆ Q1 = Q2, for all Q1, Q2 œ Mb(Rd);

see for instance Sriperumbudur (2016); Simon-Gabriel et al. (2020).

The Gaussian kernel satisfies the conditions in (K1)–(K3), for instance.
As outlined above, our first main result shows that ›n in (5.7) is asymptotically

linear, that is, indistinguishable from a sum of independent elements in H as
n æ Œ.

Theorem 5.3.2. Assume conditions (F1)–(F5), (D1)–(D7), (K1), and
(K2) hold. Denote by Zi = (Xi, k(Yi, ·)), i = 1, . . . , n. Then, there exists
a map Tn : [0, 1]p ◊ H æ H such that, with

‡2
n

= s2
n

n
Var(Tn(Z1)), (5.11)

we have ‡n æ 0, Îµ̂n(x) ≠ µ(x)Î = Op(‡n), and

µ̂n(x) ≠ µ(x) = sn

n

nÿ

i=1
Tn(Zi) + op(‡n). (5.12)

Moreover, Tn is given by

Tn(Zi) = E[T (Zn) | Zi] ≠ E[T (Zn)]. (5.13)

Remark 5.3.3. To decrease the bias of the individual trees, the subsample
size sn must not be of too small order compared to n. However, this causes

200



the variance ‡2
n

to go to 0 at a slower rate than
Ô

n, and the precise rate
is given by

C1

Ô
sn

log(sn)d/2Ôn
- ‡n - C2

Ô
snÔ
n

similarly to Wager and Athey (2018). If sn = n— with — as in (F5), this
translates to

C1
1

—d/2 log(n)d/2n(1≠—)/2 - ‡n - C2
1

n(1≠—)/2 .

Due to Theorem 5.3.2, it is enough to show that

sn

n‡n

nÿ

i=1
Tn(Zi) Dæ N(0, �x)

to establish asymptotic normality of ›n. To achieve this, we need to establish
univariate convergence and asymptotic tightness.

For f œ H, consider the univariate marginal sn

n

qn

i=1ÈTn(Zi), fÍ. Due to
Assumption (F1)–(F5) and Lipschitz continuity of x ‘æ Èµ(x), fÍ implied
by (D1) and (5.9), Assumption (D1)–(D7) verify all assumptions of Theorem
3.1 of Wager and Athey (2018). Consequently, there exists a ‡n(f) > 0
converging to zero with n such that

K 1
‡n(f )

Q

asn

n

nÿ

i=1
Tn(Zi)

R

b , f
L

H

Dæ N(0, 1). (5.14)

Unfortunately, the scaling factor ‡n(f ) obtained from Wager and Athey (2018)
depends on f . The challenge is to show that the convergence in (5.14) holds
for any f œ H if ‡n(f ) is replaced by ‡n given in (5.11). To establish this, we
need to refine the characterization of the asymptotic behavior of the variance
of Tn. The following result achieves this.

Theorem 5.3.4. Assume conditions (F1)–(F5), (D1)–(D7), (K1), and
(K2) hold. Then, for all f œ H \ {0}, we have

lim
næŒ

Var(ÈTn(Z1), fÍ)
Var(Tn(Z1))

= Var(Èk(Y, ·), fÍ|X = x)
Var(k(Y, ·)|X = x) = ‡2(f ) > 0. (5.15)

Thus, the variance of the first order approximation of the univariate forest
prediction is of the same order as that of the forest prediction in the Hilbert
space. That the resulting ratio ‡2(f ) is strictly larger than zero is a consequence
of assumption (D6).
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The convergence in (5.14) together with Theorem 5.3.4 establishes
K

sn

n‡n

nÿ

i=1
Tn(Zi), f

L

H

Dæ N(0, ‡2(f )),

that is, weak convergence of the univariate marginals È sn

n‡n

qn

i=1 Tn(Zi), fÍ for
all f œ H. Establishing additionally uniform tightness (Hsing and Eubank,
2015, Chapter 7) yields our second main result, namely the asymptotic Gaussian
process distribution of the DRF prediction.

Theorem 5.3.5. Assume conditions (F1)–(F5), (D1)–(D7), (K1), and
(K2) hold. Then,

1
‡n

(µ̂n(x) ≠ µ(x)) Dæ N(0, �x), (5.16)

where �x is a self-adjoint HS operator satisfying

È�xf, fÍ = Var(Èk(Y, ·), fÍ|X = x)
Var(k(Y, ·)|X = x) > 0 (5.17)

for all f œ H.

The expression of �x is intuitive: if �o

x is the covariance operator of the
random element k(Y, ·) | X = x, then �x equals �o

x standardized by its trace;
see for example Hsing and Eubank (2015, Chapter 7).

We now turn to the question of how to approximate the distribution of µ̂n(x)
itself.

5.3.3 | Approximation of the Sampling Distribution
In this section, we establish an approach to approximate the sampling distri-
bution of ›n based on half-sampling. This can afterwards be used to make
inference for derived point estimators or functionals.

Our half-sampling scheme is motivated by Athey et al. (2019) and is as
follows. For a subset S µ {1, . . . , n} with sn Æ |S|, denote by µ̂S

n
(x) the

version of µ̂n(x) that only uses trees built with data from S . That is, µ̂S
n
(x) is

the counterpart of �H in Athey et al. (2019). In Athey et al. (2019), S was
randomly drawn without replacement such that |S| = n/2. To simplify our
theoretical developments in approximating the whole distribution of µ̂n(x), we
draw S by sampling n i.i.d. random variables Wi ≥ Bernoulli(1/2) and consider
S = {i : Wi = 1}. The cardinality |S| of S randomly fluctuates around n/2,
with |S|/n æ 1/2 almost surely. Because S is chosen at random, the element
µ̂S

n
(x) now has two sources of randomness: one from the data and one from

drawing S . Subsequently, we establish that, if the data are kept fixed and only
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the randomness of the choice of S is considered,

›S
n

= 1
‡n

1
µ̂S

n
(x) ≠ µ̂n(x)

2
(5.18)

converges to the same Gaussian random element as the original process ›n.
This allows us to estimate the whole distribution and characteristic quantities
such as variances from its subsample versions by randomly drawing S.

To establish this result, we build on standard bootstrap arguments as for
instance presented in Kosorok (2008, Chapter 10). Formally, we establish in
Theorem 5.3.6 that

›S
n

= 1
‡n

1
µ̂S

n
(x) ≠ µ̂n(x)

2
D≠æ
W

N(0, �x) (5.19)

holds. The symbol D≠æ
W

denotes so-called conditional convergence in distribution
and is characterized by the condition

sup
hœBL1(H)

---E[h(›S
n
) | Zn] ≠ E[h(›)]

---
pæ 0, (5.20)

where BL1(H) denotes the space of all bounded Lipschitz functions from H
to R with Lipschitz constant bounded by 1. That is, h œ BL1(H) satisfies
supfœH |h(f)| Æ 1 and |h(f1) ≠ h(f2)| Æ Îf1 ≠ f2ÎH for all f1, f2 œ H. This
definition is in particular reasonable if we recall that convergence in distribution
alone, ›n

Dæ ›, is characterized by suphœBL1(H) |E[h(›n)] ≠ E[h(›)]| æ 0; see
for example Dudley (2002, Theorem 11.3.3). Consequently, (5.20) means that,
conditional on the data Zn, ›S

n
converges to › in distribution in probability; see

for example González-Rodríguez and Colubi (2017); Kosorok (2008, Chapter
10). Hence, if condition (5.20) holds, we write (5.19).

Combining arguments from Kosorok (2003); González-Rodríguez and Colubi
(2017) with those from Athey et al. (2019), we show that:

Theorem 5.3.6. Assume conditions (F1)–(F5), (D1)–(D7), (K1), and
(K2) hold. Then, (5.19) holds.

Consequently, for “large” n, the distribution of ›S
n

, given the data, is the same
as that of ›n. To empirically characterize this distribution, we use a similar
approximation trick as in Athey et al. (2019). We grow our forest by (i) drawing
B subsets S1, . . . , SB of {1, . . . , n} as described above, (ii) fitting a DRF with
¸ trees and calculating the prediction µ̂Sb

n
(x) for each b = 1, . . . , B, and (iii)

obtaining the overall prediction µ̂n(x) as the average over (µ̂Sb

n
(x))B

b=1. This
allows us to obtain both an overall DRF prediction and B i.i.d. draws from the
distribution of 1

‡n

1
µ̂S

n
(x) ≠ µ̂n(x)

2
. This can then be used to approximate, for
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instance, the variance of F (µ̂n(x)) for some function F . The following result
establishes consistency of this approach for linear and continuous F : H æ Rq.

Corollary 5.3.7. Assume conditions (F1)–(F5), (D1)–(D7), (K1), and
(K2) hold. Then, for any F : H æ Rq linear and continuous,

E

S

U 1
‡2

n

1
F (µ̂S

n
(x)) ≠ F (µ̂n(x))

2 1
F (µ̂S

n
(x)) ≠ F (µ̂n(x))

2€
------
Zn

T

V pæ F ¶ �x.

(5.21)

This in particular implies the result for F appropriately di�erentiable. Cru-
cially, it is also possible to estimate ‡n itself.

Corollary 5.3.8. Assume conditions (F1)–(F5), (D1)–(D7), (K1), and
(K2) hold. Then,

E[Îµ̂S
n
(x) ≠ µ̂n(x)Î2

H | Zn]
‡2

n

pæ 1. (5.22)

Remark 5.3.9. The class of suitable di�erentiable functions F : H æ Rq

depends on the chosen kernel k. We will focus on the Gaussian kernel.
This has several advantages: the Gaussian kernel meets all assumptions
(K1)–(K3) and metrizes weak convergence. Thus, the convergence in H
in (5.6) can be interpreted as convergence of P̂Y | X=x to PY | X=x in the
weak topology. Moreover, the Gaussian kernel can be computationally e�-
ciently approximated with the techniques in ∆evid et al. (2022). However,
the RKHS induced by the Gaussian kernel is a relatively small space of
functions. For instance, for d = 1, the identity function f(y) = y is not
contained in H for the Gaussian kernel (Minh, 2010, Theorem 3). Thus,
if we desire to estimate the conditional mean of Y with µ̂n(x), asymptotic
normality is not automatically guaranteed by our result. However, because
H is dense in the space of bounded and continuous functions from Rd

to R (Minh, 2010), it is conceivable that the asymptotic normality result
extends to this case. Indeed, our simulation results in Section 5.6 indicate
that approximate normality holds for a wide range of functionals, and
crucially also for functions into Rq for q > 1.

5.4 | Application: Conditional Distributional Treat-
ment E�ect

A frequent measure to assess the e�ectiveness of a binary treatment W given
some covariates X = x is the CATE, E[Y do(W=1) ≠ Y do(W=0) | X = x], where
we use the do-notation of Pearl (1995).
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As in Park et al. (2021), we assume that strong ignorability holds, that
is, (i) unconfoundedness W ‹‹ (Y0, Y1) | X and (ii) overlap 0 < P(W =
1 | X) < 1. In this case, the CATE can be estimated as a di�erence in
estimated conditional expectations at X = x. That is, the expected mean
di�erence between the treatment and control groups among subjects with
properties x is considered. Although the CATE allows us to take treatment
e�ect heterogeneity into account due to conditioning on the covariates X, it
fails to capture distributional di�erences between the treatment and control
groups beyond the mean. The conditional distributional treatment e�ect
(CoDiTE) (Park et al., 2021) alleviates this problem. The idea of CoDiTE
(with the conditional mean embedding) is to not only compare expected values
of the treatment and control groups, but to extend the comparison to more
general aspects of the distributions. To achieve this, a kernel estimator of the
conditional mean embedding, CME, is used (Song et al., 2009, 2013; Park and
Muandet, 2020). For instance, to test whether there are any distributional
di�erences between the treatment and the control groups, CME’s of both groups
are computed and compared. The kernel method of Park et al. (2021) requires
choosing two kernels and does not come with formal hypothesis testing. In
contrast, we can estimate the CME’s of the two groups by two DRF’s in a locally
adaptive way instead of choosing a kernel for the covariate space. Moreover,
we are able to introduce tests and confidence bands at a test point x using the
Gaussian Hilbert space element approximation we derived above.

Let us denote by µ̂n0,0(x) the DRF estimate in the control group (W = 0)
and by µ̂n1,1(x) the estimate in the treatment group (W = 1), and let P0

Y | X=x
and P1

Y | X=x be the associated conditional distributions of the control and
treatment groups at the test point x, respectively. The conditional witness
function (Park et al., 2021)

Rd – y ‘æ µ̂n1,1(x)(y) ≠ µ̂n0,0(x)(y) œ H (5.23)

is a means to capture di�erences between the two conditional distributions
P0

Y | X=x and P1
Y | X=x as a function of the response value y. The true condi-

tional witness function is given by

µ1(x)(y) ≠ µ0(x)(y) = E[k(Y1, y) | X = x] ≠ E[k(Y0, y) | X = x].

Areas of y-values where the conditional witness function is positive or negative
indicate where the conditional density of one group is higher or lower than
the other (Park et al., 2021). If the conditional witness function is non-zero,
there are distributional di�erences between the treatment and the control group.
Such a comparison is especially helpful if the conditional mean estimates in the
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two groups are equal, resulting in a conditional treatment e�ect of 0 on the
mean level.

Our developments in this section are as follows. First, we present a formal test
for assessing whether the conditional response distributions of the treatment
and control groups are equal. Particularly, we develop a test for

H0 : P0
Y | X=x = P1

Y | X=x vs. HA : P0
Y | X=x ”= P1

Y | X=x (5.24)

using the statistic Îµ̂n1,1(x) ≠ µ̂n0,0(x)Î2
H, which equals the norm of the con-

ditional witness function in the Hilbert space. We establish that our test is
asymptotically valid and, given a s spd kernel as in (K3), the power of our test
converges to 1. Second, we provide a simultaneous asymptotic confidence band
for the conditional witness function itself. These two developments involve the
distribution of the squared norm of the Gaussian random element Î›Î2

H, which
is intractable (Gretton et al., 2012). Our half-sampling approach presents a
convenient way to approximate this distribution.

Before we present our results, we introduce some notation. Denote by
n0 the size of the control group and by n1 the size of the treatment group.
For simplicity, we assume that n0/n1 æ 1, but it is possible to relax this
condition. Let (Y0

i
, Xi), i = 1, . . . , n0 and (Y1

i
, Xi), i = 1, . . . , n1 denote

i.i.d. samples from the control and treatment groups, respectively, and let
Zj

nj
= {(k(Yj

1, ·), X1), . . . , (k(Yj

nj
, ·), Xnj

)} for j œ {0, 1} denote the respec-
tive observations with response elements of the Hilbert space H. We denote
the concatenated data from both groups by Zn01 = (Zn0, Zn1), and introduce
the total number of observations n01 = n0 + n1. We assume that the observa-
tions from the treatment and control groups are independent and that strong
ignorability holds as in Park et al. (2021). Furthermore, let ›j ≥ N(0, �j

x) for
j œ {0, 1}, where for all f œ H

È�j

xf, fÍ = Var(Èk(Yj, ·), fÍ|X = x)
Var(k(Yj, ·)|X = x) (5.25)

holds as in Theorem 5.3.5 with the respective variance-covariance operators
from both groups. Finally, let ‡nj ,j

denote the standard deviation as in (5.11)
for the respective groups j œ {0, 1}.

The following result describes the asymptotic distribution of the (suitably
rescaled) test statistic for the testing problem (5.24). Moreover, the result
establishes that the same limiting distribution is obtained if the individual
“subforests” of the DRF are used as a bootstrap sample, as described in Section
5.3.3. This will allow us to approximate the distribution of the test statistic
for testing (5.24) and for formulating a simultaneous confidence band for the
conditional witness function.
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Corollary 5.4.1. Assume conditions (F1)–(F5) and (D1)–(D7) for
both groups, (K1), and (K2) hold, together with strong ignorability. Also
assume that n0, n1 æ Œ with n0/n1 æ 1. Then, for S0, S1 independent,

......

1
‡n1,1

(µ̂S1
n1,1(x) ≠ µ̂n1,1(x)) ≠ 1

‡n0,0
(µ̂S0

n0,0(x) ≠ µ̂n0,0(x))
......

2

H

D≠æ
W

Î›0 ≠ ›1Î2
H

(5.26)

and
......

1
‡n1,1

(µ̂n1,1(x) ≠ µ1(x)) ≠ 1
‡n0,0

(µ̂n0,0(x) ≠ µ0(x))
......

2

H

Dæ Î›0 ≠ ›1Î2
H. (5.27)

Moreover, if the ratio ‡n0,0/‡n1,1 converges to some real number c2(x) that
is bounded away from 0 and Œ as the sample sizes n0, n1 tend to infinity,
we obtain

1
‡2

n1,1

...(µ̂S1
n1,1(x) ≠ µ̂n1,1(x)) ≠ (µ̂S0

n0,0(x) ≠ µ̂n0,0(x))
...
2
H

D≠æ
W

Î›0 ≠ c2(x)›1Î2
H

(5.28)

and
1

‡2
n1,1

Î(µ̂n1,1(x) ≠ µ1(x)) ≠ (µ̂n0,0(x) ≠ µ0(x))Î2
H

Dæ Î›0 ≠ c2(x)›1Î2
H.

(5.29)

The above result assumes convergence of the ratio ‡n0,0/‡n1,1. This condition
is used to obtain a common scaling factor in (5.28) and (5.29). With the
expressions derived in Theorem 5.3.4, it reduces to assuming

Var(E[ 1
N0x

{X2 œ L0(x)} | X1])
Var(E[ 1

N1x
{X2 œ L1(x)} | X1])

æ c(x) > 0. (5.30)

This essentially means that the behavior of the (conditional) variance of the
respective leaf node is asymptotically of the same order in both samples.
Given the assumptions on the forest, together with strong ignorability, this
seems to be a mild condition. The common scaling factor and limiting behavior
in (5.28) and (5.29) allows us to use a bootstrap procedure on the “subforests” to
approximate the distribution of the test statistic to test (5.24). The convergence
in (5.26) and (5.28) should be understood conditional on the joint data Zn01

from both groups.
Subsequently, we describe how Corollary 5.4.1 can be used to formally test the
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hypothesis (5.24). In particular, we explain how to approximate the distribution
of our test statistic ‡≠2

n1,1Îµ̂n0,0(x)≠µ̂n1,1(x)Î2
H under the null hypothesis. Under

the null P0
Y | X=x = P1

Y | X=x, we have µ0(x) = µ1(x). Consequently, (5.29)
describes the asymptotic distribution of the rescaled test statistic, namely

1
‡2

n1,1
Îµ̂n0,0(x) ≠ µ̂n1,1(x)Î2

H
Dæ Î›1 ≠ c2(x)›0Î2

H. (5.31)

Thus, the rescaled test statistic 1
‡

2
n1,1

Îµ̂n0,0(x) ≠ µ̂n1,1(x)Î2
H has the same lim-

iting distribution as its resampling bootstrap version

1
‡2

n1,1

...(µ̂S1
n1,1(x) ≠ µ̂n1,1(x)) ≠ (µ̂S0

n0,0(x) ≠ µ̂n0,0(x))
...
2
H (5.32)

given the data. Moreover, we can (approximately) obtain this distribution by
sampling from S, irrespective of whether P0

Y | X=x = P1
Y | X=x holds. Hence,

the distribution of the rescaled test statistic 1
‡

2
n1,1

Îµ̂n0,0(x) ≠ µ̂n1,1(x)Î2
H under

the null hypothesis can be obtained by sampling from S . Particularly, let cn1,–

be the smallest value obtained from B such draws with B su�ciently large
such that

P

Q

a 1
‡2

n1,1

...(µ̂S1
n1,1(x) ≠ µ̂n1,1(x)) ≠ (µ̂S0

n0,0(x) ≠ µ̂n0,0(x))
...
2
H > cn1,–

------
Zn01

R

b Æ –

(5.33)

holds. That is, cn1,– is the 1≠– quantile of the test statistic simulated under the
null. Next, we establish that the same number cn1,– can be used to formulate a
corresponding test for the test statistic computed on the full data. Define the
test Ï(Zn01) for our testing problem by

Ï(Zn01) =
Y
]

[
1

‡2
n1,1

Îµ̂n0,0(x) ≠ µ̂n1,1(x)Î2
H > cn1,–

Z
^

\ .

The following result establishes that Ï is of level – and that its power converges
to 1.

Theorem 5.4.2. Assume conditions (F1)–(F5) and (D1)–(D7) for both
groups, (K1)–(K3) hold, together with strong ignorability and (5.30).
Then, as n0, n1 æ Œ such that n0/n1 æ 1,

(i) Ï has a valid type-I error. That is, if P0
Y | X=x = P1

Y | X=x,

lim sup
n0,n1

P

Q

a 1
‡2

n1,1
Îµ̂n0,0(x) ≠ µ̂n1,1(x)Î2

H > cn1,–

R

b Æ –.
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(ii) Ï has power going to 1. That is, if P0
Y | X=x ”= P1

Y | X=x,

lim
n0,n1

P

Q

a 1
‡2

n1,1
Îµ̂n0,0(x) ≠ µ̂n1,1(x)Î2

H > cn1,–

R

b = 1.

In practice, the scaling factor 1/‡2
n1,1 is unknown. In principle, it can be

estimated as elaborated in Corollary 5.3.8. However, we can directly consider the
unscaled resampled statistics (5.32), namely Î(µ̂S1

n1,1(x)≠µ̂n1,1(x))≠(µ̂S0
n0,0(x)≠

µ̂n0,0(x))Î2
H, and identify its 1 ≠ – quantile, which corresponds to ‡2

n1,1cn1,–.
Subsequently, we present a procedure to construct a confidence band for the

conditional witness function y ‘æ µ1(x)(y) ≠ µ0(x)(y) that is valid jointly for
all y-values. Let cn1,– be as in (5.33). We show in the following theorem that
the interval

B(y) = [µ̂n1,1(x)(y) ≠ µ̂n0,0(x)(y) ≠
Ò

cn1,–C‡n1,1,

µ̂n1,1(x)(y) ≠ µ̂n0,0(x)(y) +
Ò

cn1,–C‡n1,1] (5.34)

is a 1 ≠ – confidence band for the conditional witness function, where C =
supy k(y, y). The constant C is finite due to assuming boundedness of the
reproducing kernel in Assumption (K2). That is, B(y) is a confidence band
for the conditional witness function that is valid jointly for all y.

Theorem 5.4.3. Assume conditions (F1)–(F5) and (D1)–(D7) for the
control and the treatment group, and assume that (K1) and (K2) hold
together with strong ignorability and (5.30). Then, for B(y) as in (5.34),
with n0, n1 æ Œ such that n0/n1 æ 1,

lim inf
n0,n1æŒ P (fly{µ1(x)(y) ≠ µ0(x)(y) œ B(y)}) Ø 1 ≠ –. (5.35)

Similarly to above, when performing finite sample calculations and ‡n1,1 is
unknown, we can estimate Ô

cn1,–‡n1,1 using the same resampling procedure as
above. Furthermore, we have C = 1 if we use the Gaussian kernel.

5.4.1 | Computation
Subsequently, we provide details on the computation of the test statistic
Îµ̂n1,1(x) ≠ µ̂n0,0(x)Î2

H for testing equality of the distributions of the con-
trol and the treatment group as well as the confidence band for the conditional
witness function.

Consider the three real-valued kernel matrices K0 = (k(Y0
i
, Y0

j
))i=1,...n0,j=1,...n0

and K1 = (k(Y1
i
, Y1

j
))i=1,...n1,j=1,...n1 and K = (k(Y0

i
, Y1

j
))i=1,...n0,j=1,...,n1. De-

note by ŵ0 œ Rn0 and ŵ1 œ Rn1 the vectors that concatenate the weights
from the DRF predictors for the control and treatment groups, respectively.
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Moreover, for j œ {0, 1}, consider kj = (k(Yj

1, ·), . . . , k(Yj

nj
, ·))€, and denote

by kj(y) = (k(Yj

1, y), . . . , k(Yj

nj
, y))€ for y œ Rd. Then, we have

µ̂n0,0(x) =
n0ÿ

i=1
ŵi,0(x)k(Y0

i
, ·) = ŵ€

0 k0,

µ̂n1,1(x) =
n1ÿ

i=1
ŵi,1(x)k(Y1

i
, ·) = ŵ€

1 k1,

µ̂S0
n0,0(x) =

n0ÿ

i=1
ŵS0

i,0(x)k(Y0
i
, ·) = (ŵS0

0 )€k0,

µ̂S1
n1,1(x) =

n1ÿ

i=1
ŵS1

i,1(x)k(Y1
i
, ·) = (ŵS1

1 )€k1.

Subsequently, we compute cn1,–‡2
n1,1 as the 1 ≠ – quantile of the B many draws

from

Îµ̂S0
n0,0(x) ≠ µ̂n0,0(x) ≠ (µ̂S1

n1,1(x) ≠ µ̂n1,1(x))Î2
H

=(ŵS0
0 ≠ ŵ0)€K0(ŵS0

0 ≠ ŵ0) + (ŵS1
1 ≠ ŵ1)€K1(ŵS1

1 ≠ ŵ1)
≠ 2(ŵS0

0 ≠ ŵ0)€K(ŵS1
1 ≠ ŵ1).

To test the null hypothesis of having an equal distribution in the control
and the treatment group according to (5.24), we first compute the test statistic
Îµ̂n1,1(x) ≠ µ̂n0,0(x)Î2

H according to

Îµ̂n0,0(x) ≠ µ̂n1,1(x)Î2
H = ŵ€

0 K0ŵ0 + ŵ€
1 K1ŵ1 ≠ 2ŵ€

0 Kŵ1. (5.36)

The confidence band for the conditional witness function is then given by

B(y) = [ŵ€
1 k1(y) ≠ ŵ€

0 k0(y) ≠
Ò

cn1,–C, ŵ€
1 k1(y) ≠ ŵ€

0 k0(y) +
Ò

cn1,–C],
(5.37)

where we have C = 1 for the Gaussian kernel.

5.5 | Application: General Real-Valued Parameters
The asymptotic normality result for µ̂n(x) derived in Section 5.3 can also be
applied to make inference for q-dimensional real-valued parameters ◊(x) that
can be expressed as a function G of the underlying conditional distribution
PY | X=x, namely ◊(x) = G(PY | X=x). The DRF predictor estimates the
embedding µ̂n(x) of PY | X=x in the Hilbert space. This embedding can then
be “pulled back” to give an estimator P̂Y | X=x of PY | X=x that can in turn be
used to estimate ◊(x). More precisely, we can represent our estimator ◊̂(x) by
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◊̂(x) = F (µ̂n(x)) for some function F that maps from the Hilbert space into
Rq. For su�ciently smooth F , the asymptotic normality of 1

‡n

(◊̂(x) ≠ ◊(x))
follows from Theorem 5.3.5.

In practice, we estimate ◊(x) by ◊̂(x) = G(P̂Y | X=x), where P̂Y | X=x is the
“pull-back” of the DRF predictor µ̂n(x) as in (5.2). To compute confidence
intervals for the individual components of ◊(x), we first compute subsample
estimators ◊̂Sb(x) = G(P̂Sb

Y | X=x) for b = 1, . . . , B, where P̂Sb

Y | X=x corresponds
to the pullback of the subsample DRF predictor µ̂Sb(x). Then, the empirical
variance ‰Var(◊̂(x)) of ◊̂(x) can be estimated by the variance of the ◊̂Sb(x)
over b = 1, . . . , B, and confidence intervals can be built using the Gaussian
approximation. Alternatively, it is possible to compute confidence intervals
via the approximate sampling distribution. To pursue this approach, one
first computes the 1 ≠ –/2 quantile q̂1≠–/2 and and the –/2 quantile q̂–/2 of
{◊̂Sb(x)≠◊̂(x)}b=1...,B. Component-wise 1≠– confidence intervals for two-sided
testing of ◊(x) = 0 are then given by [◊̂(x) ≠ q̂1≠–/2, ◊̂(x) ≠ q̂–/2].

For multi-dimensional parameters ◊(x), which corresponds to q > 1, one
can compute simultaneous elliptical confidence balls. If we denote the q ◊
q covariance matrix obtained from the sample {◊̂Sb(x) ≠ ◊̂(x)}b=1...,B by
‰Var(◊̂(x)), these consist of all parameters · such that the resulting test statis-
tic || ‰Var(◊̂(x))≠1/2(◊̂(x) ≠ · )||2 is smaller than the 1 ≠ – quantile of a ‰2(q)
distribution with q degrees of freedom. Analogously to above, one may use the
approximate sampling distribution of || ‰Var(◊̂(x))≠1/2(◊̂Sb(x) ≠ ◊̂(x))||2 instead
of the ‰2(q) distribution.

5.6 | Empirical Results
In this section, we demonstrate the performance of our DRF confidence intervals
for the CATE, conditional quantiles, conditional correlations, and conditional
witness functions for simulated data. We consider almost exclusively data
generating mechanisms that have already been considered by ∆evid et al. (2022).
The only adaptation is that we consider U(≠1, 1)p distributed covariates X
instead of U(0, 1)p in Section 5.6.3. In all examples except for the conditional
witness functions, we grow a forest that consists of B = 100 subforests with
¸ = 1000 trees each, and we choose — = 0.9 in assumption (F5). To fit
trees, 10 random features are used for the approximation of the MMD statistic
when splitting the nodes, and the minimal node size is 5. Moreover, we
consider the Gaussian kernel with the median bandwidth heuristic and compute
confidence intervals using the Gaussian approximation. For the conditional
witness functions, we consider forests that consist of B = 200 subforests with ¸ =
1000 trees each and choose — = 0.9 because estimating whole confidence bands
for the conditional witness function is a complicated task. Code of our analysis
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W

X

Y

Figure 5.6.1: Causal graph illustrating the data generating processes

in (5.38) and (5.39).

is available on GitHub (https://github.com/JeffNaef/drfinference).
We demonstrate that DRF performs well for a wide range of estimation

targets ◊(x). The e�ort of the user is minimal because estimating a DRF does
not depend on the actual target(s).

5.6.1 | Conditional Average Treatment E�ect
Subsequently, we perform inference for CATE’s between a control group W = 0
and a treatment group W = 1. We thereby follow the approach used in ∆evid
et al. (2022) and consider W as a part of the response, using DRF to find
the conditional distribution of (Y, W ) | X = x. This agrees with our view of
seeing the (causal) parameter of interest as a function F of the CME µ̂n(x)
and, under strong ignorability, consistency of this approach follows from the
consistency of µ̂n(x). This approach is di�erent from Wager and Athey (2018);
Athey et al. (2019) who consider W as a part of the covariates.

First, we consider a situation where the treatment e�ect is homogeneous but
where Y and W are confounded by X3. We simulate data from

X ≥ Unif(0, 1)5, W | X ≥ Bernoulli
1
0.25(1 + —2,4(X3))

2

Y | (X, W ) ≥ 2(X3 ≠ 0.5) + N (0, 1), (5.38)

where —a,b denotes the density of a beta-distributed random variable with
parameters a and b. We consider the test point x = (0.7, 0.3, 0.5, 0.68, 0.43)T .
Our results and comparisons to GRF obtained over 1000 simulation runs are
displayed in Figure 5.6.2a. The performance of DRF improves as the sample
size increases and it reaches the nominal coverage level. GRF undercovers for
n = 5000. However, GRF outperforms DRF with respect to coverage for small
sample sizes due to its small bias in this example. Moreover, the confidence
intervals of GRF are shorter than the ones with DRF.

Second, we consider a situation where the treatment e�ect is heterogeneous
and where Y and W are confounded. We simulate data from

X ≥ Unif(0, 1)5, W | X ≥ Bernoulli
1
0.25(1 + —2,4(X3))

2

Y | (X, W ) ≥ 2(X3 ≠ 0.5) + (W ≠ 0.2) · ÷(X1)÷(X2) + N (0, 1), (5.39)
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Figure 5.6.2: Estimating the CATE of Y given X = x =

(0.7, 0.3, 0.5, 0.68, 0.43)
T

with data from (5.38) (homogeneous treat-

ment e�ect and observed confounding) in Figure 5.6.2a and with data

from (5.39) (heterogeneous treatment e�ect and observed confounding)

in Figure 5.6.2b for di�erent values of n over 1000 simulation runs. The

plots display the coverage (fraction of times the true, and in general

unknown, CATE was inside the confidence interval) and log median

length of two-sided 95% confidence intervals for the CATE and median

bias over 1000 simulation runs. The shaded regions in the coverage

plots represent 95% confidence bands with respect to the 1000 simu-

lation runs. DRF parameters: B = 100, ¸ = 1000, — = 0.9, consider

10 randomly sampled features to split, minimal node size of 5. GRF

parameters: 50 000 trees, other values are left at their default values.
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where ÷(x) = 1 + (1 + exp ≠20(x ≠ 1/3))≠1 and —a,b denotes the density of
a beta-distributed random variable with parameters a and b. That is, the
treatment e�ect is heterogeneous because di�erent values of X result in a
di�erent treatment e�ect, and confounding via X is present because W also
depends on X. We consider the test point x = (0.7, 0.3, 0.5, 0.68, 0.43)T .
Our results and comparisons to GRF obtained over 1000 simulation runs are
displayed in Figure 5.6.2b. For small sample sizes n, DRF overcovers, but it
gradually reaches the nominal 95% level for larger sample sizes. In contrast,
GRF fails to reach the nominal 95% level for larger sample sizes due to its bias.

When estimating the CATE with the GRF algorithm, a centering step to
center Y and W with respect to X is performed. With DRF, we found that such
an additional centering is not useful. With DRF, we used a total number of 105

trees whereas with GRF, we were not able to use as many due to computational
reasons. Since the drf package (Michel and ∆evid, 2021) used is based on
grf (Tibshirani et al., 2022), this indicates empirically that the target-tailored
splitting criterion of GRF can be computationally considerably more expensive
than the general splitting criterion of DRF.

5.6.2 | Conditional Quantiles

Subsequently, we consider performing inference for conditional quantiles of
PY | X=x. We consider simulated data where the response variable Y experiences
a shift in its mean depending on the value of X1, namely

X ≥ Unif(≠1, 1)5, Y ≥ N
1
0.8 · 1X1>0, 1

2
. (5.40)

The results for estimating three conditional quantiles (10%, 50%, and 90%), a
sample size of n = 5000, and a range of x1-values are displayed in Figure 5.6.3
and 5.6.4. In Figure 5.6.3, the coverage for the di�erent quantiles is close to
the nominal 95% coverage except at and around the value x1 = 0 where the
mean function of Y experiences a discontinuity. Figure 5.6.4 displays the joint
coverage of all three conditional quantiles 10%, 50%, and 90%. The coverage is
again close to the nominal and slightly higher than it for x1-values away from
0. The disturbing e�ect of the discontinuity at x1 = 0 is again visible.

5.6.3 | Conditional Correlation

Conditional copulas allow us to represent conditional multivariate distributions
P(Y Æ y | X = x) = P(Y1 Æ y1, . . . , Yd Æ yd | X = x) in terms of the
marginal distributions P(Yi Æ y | X = x) = FYi | X=x(y) for 1 Æ i Æ d. This
technique is frequently employed in fields such as risk analysis or finance (Cheru-
bini et al., 2004). More precisely, Sklar’s theorem (Sklar, 1959) asserts the
existence of a so-called conditional copula Cx at the test point x, which is a
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CDF on [0, 1]d, satisfying

P(Y Æ y | X = x) = Cx
1
FY1 | X=x(y), . . . , FYd | X=x(y)

2
.

The DRF algorithm may estimate conditional copulas fully nonparametrically
or by estimating the parameters of a certain parametric model. For example, if
the data comes from a conditional Gaussian copula Y | X = x ≥ CGauss

fl(x) , it is
enough to estimate the conditional correlation function fl(x) that characterizes
distributional heterogeneity. This is a di�cult task because distributional
heterogeneity may come from the interdependence of the marginal CDF’s due
to the copula and may not exclusively occur in the marginals. Because the
MMD splitting criterion of DRF is a distributional metric, DRF is able to
detect multivariate distributional changes (Gretton et al., 2007).

Subsequently, we consider the conditional Gaussian copula Y = (Y1, Y2) | X =
x ≥ CGauss

fl(x) with X = (X1, . . . , X5) ≥ U(≠1, 1)5 and the conditional correla-
tion function fl(x) = Cor(Y1, Y2 | X = x) = x1. That is, both Y1 and Y2 follow
a standard Gaussian distribution N (0, 1) marginally, but their conditional corre-
lation is characterized by fl(x) = x1. ∆evid et al. (2022) use a slightly di�erent
data generating mechanism because they consider a uniform distribution of the
covariates with the support [0, 1] instead of [≠1, 1]. We consider [≠1, 1] such
that that the conditional correlation at x1 = 0 does not lie at the boundary
of the considered x1-values because this would artificially introduce boundary
e�ects similar to the conditional quantile estimation above.

We estimate and make inference for fl(x) = x1 for a range of values x1 and
di�erent sample sizes n. Figure 5.6.5 illustrates our results. For a sample size of
n = 5000 (displayed in red), our two-sided DRF confidence intervals achieve the
nominal 95% coverage rate for x1-values that are not too close to either ≠1 or
1. For x1-values, and hence conditional correlation values Cor(Y1, Y2 | X = x),
that are close to either ≠1 or 1, we see some degeneration behavior because
these values imply the special cases that Y1 and Y2 are completely dependent
from each other.

5.6.4 | Witness Function for conditional distributional treat-
ment e�ect

In Section 5.4, we outlined how to test for distributional di�erences between
two treatment groups and how to compute simultaneous confidence bands for
the corresponding conditional witness function. To illustrate the performance
of DRF in this use case, we revisit the two data generating mechanisms (5.38)
and (5.39) that we considered when we analyzed the CATE in Section 5.6.1.
In the first case with data from (5.38), there is no treatment e�ect, and the
treatment (W = 1) and the control (W = 0) groups are equally distributed. In
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color). The plot displays the coverage (fraction of times the true, and

in general unknown, conditional correlation was inside the confidence

interval) and log median length of two-sided 95% confidence intervals

for the conditional correlation and median bias over 1000 simulation

runs. The shaded regions in the coverage plot represent 95% confidence

bands with respect to the 1000 simulation runs. In the coverage plot,

for x1 = ≠1 and x1 = 1, the dots from all three values of n are on top

of each other. DRF parameters: B = 100, ¸ = 1000, — = 0.9, consider

10 randomly sampled features to split, minimal node size of 5.
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tional embeddings at level – = 5% with data of sample size n = 5000
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T
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the second case with data from (5.39), there is a treatment e�ect.
To formally test if the distributions of the treatment and control groups are

di�erent at all, we simulate 1000 data sets of sample size n = 5000 each from
the two data generating mechanisms and compute the test statistic Îµ̂n1,1(x) ≠
µ̂n0,0(x)Î2

H according to (5.36). For each of the 1000 runs, we compute a p-value
for testing the null hypothesis that the two embeddings from the treatment
and control groups are the same against a two-sided alternative using the
approximate bootstrap sample distribution of the test statistic obtained from
the B many subforests. Figure 5.6.6 displays our findings for the data generating
mechanism (5.38) with equal distributions and illustrates that the p-values
are dominated by a Uniform(0, 1) distribution, which is given by the gray line.
Consequently, the p-values seem to be valid. In particular, 3.6% (this number
has a 95% confidence interval of (0.0311, 0.0409)) of them are below the nominal
0.05 level. With the data generating mechanism (5.39), all p-values equal the
smallest possible value, and the null hypothesis is always rejected.

To investigate where the treatment and control distributions di�er, we esti-
mate the whole conditional witness function and compute simultaneous con-
fidence bands according to (5.37). Figure 5.6.7 illustrates our results. With
the data from (5.38) where the treatment and control distributions coincide,
99.8% (95% confidence interval of (0.9968, 0.9992)) of the simultaneous 95%
confidence bands cover the true underlying conditional witness function that
constantly equals 0. Although our method overcovers in this situation, Fig-
ure 5.6.7b illustrates that the power goes to 1 under the alternative because
no simultaneous confidence band contains the constant zero function. In this
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case, the true conditional witness function is covered in 96.5% of the cases (95%
confidence interval of (0.9601, 0.9699)).

These simulations illustrate the practical applicability and usefulness of our
developments of the conditional distributional treatment e�ect in Section 5.4.
This approach allows us to capture di�erences between two distributions that
may not be represented by mean di�erences alone. Moreover, our theoretical
developments can be directly translated into practice and consequently enable
us to perform formal tests that involve test statistics with highly complex and
generally intractable distributions.

5.7 | Conclusion
We developed results about the asymptotic distribution of the Distributional
Random Forest (DRF) (∆evid et al., 2022), which is a forest-based (Breiman,
2001) method to nonparametrically estimate Hilbert space embeddings of
multivariate conditional distributions in a locally adaptive fashion. The general
approach of DRF allows us to estimate a wide range of multivariate targets
from one and the same DRF estimator. Because the DRF prediction is Hilbert
space-valued, we formulated and developed new theory for Random Forests
operating in Hilbert spaces, building on Wager and Athey (2018). In particular,
we explicitly characterized the exact asymptotic behavior of the variance of the
DRF prediction. Moreover, we established a bootstrap-type result that allowed
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us to approximate its distribution in a computationally e�cient way.
We presented two strands of applications: we formally tested two treatment

groups for distributional di�erences and investigated where these di�erences
occur, and we estimated and made inference for low-dimensional parameters
like the conditional average treatment e�ect (CATE), conditional quantiles,
and conditional correlations. The former application is particularly important
to determine di�erences between the treatment and the control group if the
distribution of the two groups are di�erent beyond the mean. To simplify the
application of our theory in this former use case, we fitted two DRF’s, one
for each treatment group, similar to Park et al. (2021). Simulation studies
demonstrated the performance and usefulness of our developed inference results
for the DRF for these two strands of applications.
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Appendix
5.A | Derivations and Proofs
Preliminaries. First, we recall some of the notation and definitions from the
main text. Let (�, A, P) denote the underlying probability space. Throughout,
let (H, È, ·, ÍH) denote the RKHS associated with the kernel k. We assume that
k is bounded and continuous in its two arguments. Boundedness of k ensures
that µ is indeed defined on all of Mb(Rd), and continuity of k : Rd ◊ Rd æ R
ensures that H is separable. Thus, measurability issues can be avoided. Let us
denote by › : (�, A) æ (H, B(H)) a map from � to H. Separability implies
that such a map › is measurable if and only if È›, fÍH is measurable for all
f œ H. Moreover, it can easily be checked that �(P ) is linear on Mb(Rd).
Separability of H and E[Î›ÎH] < Œ mean that the integral

E[›] =
⁄

�
›dP,

is well defined and that
F (E[›]) = E[F (›)],

for any continuous linear function F : H æ R.1 In particular, E[È›, fÍH] =
ÈE[›], fÍH for all f œ H. Moreover, for q Ø 1, denote by

Lq(�, A, H) = {› : (�, F) æ (H, B(H)) measurable, with E[Î›Îq] < Œ]}
Lq(�, A, H) = Set of equivalence classes in Lq(�, A, H)

Var(›) = E[Î› ≠ E[›]Î2
H] = E[Î›Î2

H] ≠ ÎE[›]Î2
H, › œ L2(�, A, H)

Cov(›1, ›2) = E[È›1 ≠ E[›1], ›2 ≠ E[›2]ÍH] = E[È›1, ›2ÍH] ≠ ÈE[›1], E[›2]ÍH,

›1, ›2 œ L2(�, A, H).

Furthermore, it is well-known that (Lq, Î · ÎLq(H)) is a Banach space with

Î›ÎLq(H) = E[Î›Îq

H]1/q.

This allows us to also define conditional expectations. For a sub ‡-algebra
F µ A and an element › œ L1(�, A, H), the conditional expectation E[› | F ]
is the (a.s.) unique element such that
(C1) E[› | F ] : (�, F) æ (H, B(H)) is measurable and E[› | F ] œ L1(�, F , H),
(C2) E[› F ] = E[E[› | F ] F ] for all F œ F ;
see for instance Umegaki and Bharucha-Reid (1970) or Pisier (2016, Chapter

1
Here and below, F (›) is meant to denote F (›(Ê)) for all Ê œ �.
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1). Particularly, condition (C2) implies that E[E[› | F ]] = E[E[› | F ] �] = E[›]
due to � œ F for any ‡-algebra. It can also be shown that F (E[› | F ]) =
E[F (›) | F ] for all linear and continuous F : H æ R and that ÎE[› | F ]ÎH Æ
E[Î›ÎH | F ] (Pisier, 2016, Chapter 1). Moreover, it can be shown that
(C3) For › œ L2(�, A, H), E[› | F ] is the orthogonal projection onto L2(�, F , H);
see (Umegaki and Bharucha-Reid, 1970). Although the conditional expectation
E[› | F ], similarly to real-valued conditional expectations, is only defined a.s.,
we do not explicitly state this in our developments below.

We denote by E[› | X] = E[› | ‡(X)]. The following Proposition shows
that this notion is well defined and establishes further properties of Hilbert
space-valued conditional expectations.
Proposition 5.A.1 (Proposition 6 in ∆evid et al. (2022)). Let (H1, È·, ·Í1)
and (H2, È·, ·Í2) be two separable Hilbert spaces, X, X1, X2 œ L1(�, A, H1),
and ›1, ›2, › œ L1(�, A, H2).2
(C4) There exists a measurable function h : (H1, B(H1)) æ (H2, B(H2))

such that E[› | ‡(X)] = h(X) = E[› | X].
(C5) For ›1 œ L2(�, A, H1) and ›2 œ L2(�, ‡(X), H1), E[È›1, ›2ÍH1 | X] =

ÈE[›1 | X], ›2ÍH1 holds.
(C6) If X2 and (›, X1) are independent, then E[› | X1, X2] = E[› | X1].
(C7) E[E[› | X1, X2] | X1] = E[E[› | X1] | X1, X2] = E[› | X1].

Condition (C4) in particular allows us to consider E[› | ‡(X)] as a function
in X and thus justifies the notation E[› | X] and all the subsequent derivations.
We may also define conditional independence through conditional expectation:
with the notation of Proposition 5.A.1, › and X1 are conditionally independent
given X2 if E[f(›) | X1, X2] = E[f(›) | X1] for all bounded and measurable
f : (H2, B(H2)) æ (R, B(R)); see Constantinou and Dawid (2017, Proposition
2.3). This leads to two further important properties:
Proposition 5.A.2 (Proposition 7 in ∆evid et al. (2022)). Let (H1, È·, ·Í1)
and (H2, È·, ·Í2) be two separable Hilbert spaces, X, X1, X2 œ L1(�, A, H1),
and ›1, ›2, › œ L1(�, A, H2).
(C8) If › and X2 are conditionally independent given X1, then E[› | X1, X2] =

E[› | X1],
(C9) If ›1, ›2 are conditionally independent given X, then E[È›1, ›2Í | X] =

ÈE[›1 | X], E[›2 | X]Í.
For x œ Rp, denote by Px the conditional distribution of Y given X = x on Rd.

For two functions f and g with lim infsæŒ g(s) > 0, we denote f (s) = O(g(s))
if

lim sup
sæŒ

|f (s)|
g(s) Æ C

2
We recall that all equalities technically only hold almost surely.
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for some C > 0. If C = 1, we write f(s) - g(s). For a sequence of random
variables Xn : � æ R and a sequence of real numbers an œ (0, +Œ), n œ N,
we write Xn = Op(an) if

lim
MæŒ

sup
n

P(a≠1
n

|Xn| > M) = 0,

that is, Xn is bounded in probability. We write Xn = op(an) if a≠1
n

Xn

converges to zero in probability. Similarly, for (S, d) a separable metric space,
Xn : (�, A) æ (S, B(S)), n œ N and X : (�, A) æ (S, B(S)) measurable, we
write Xn

pæ X, if d(Xn, X) = op(1).
Finally, let X œ L2(�, A, H1) and › œ L2(�, A, H2), and assume that

A µ � depends on X, A = A(X). Thus, for X fixed to a certain value, A is a
fixed set. If P(A | X) > 0 almost everywhere, we define

E[› | A] = E[› | X, A] = E[› A | X]
P(A | X) œ L2(�, ‡(X), H2).

Then, we have by construction that

E[› A | X] = E[› | X, A] · P(A | X). (5.41)

Let again �(x) = �(Px) be the embedding of the true conditional distribution
into H. It has the following three properties.

Lemma 5.A.3 (Lemma 8 in ∆evid et al. (2022)). It holds that E[�(”Y) | X=x] =
�(Px).

For a more compact notation in the following Lemma, let N = {1, . . . , n},
and let for A µ N and k Æ |A|, let Ck(A) be the set of all subsets of size
k drawn from A without replacement, with C0 = ÿ. The following lemma
presents a U-statistic expansion that we afterwards apply to an individual tree
of our DRF forest.

Lemma 5.A.4 (Lemma 9 in ∆evid et al. (2022)). Let (H1, È·, ·Í1) and
(H2, È·, ·Í2) be two separable Hilbert spaces, and let Z1, . . . , Zn be i.i.d. copies
of a random element Z : (�, A) æ (H1, B(H1)). Write Zn = (Z1, . . . , Zn),
and let T : (Hn

1 , B(Hn

1 )) æ (H2, B(H2)) measurable with E[ÎT (Zn)Î2
H2] < Œ.

If T is symmetric, there exist functions Tj, j = 1, . . . , n, such that

T (Zn) = E[T (Z)] +
nÿ

i=1
T1(Zi) +

ÿ

i1<i2

T2(Zi1, Zi2) + · · · + Tn(Zn), (5.42)
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and it holds that

Var(T (Zn)) =
nÿ

i=1

Q

an

i

R

bVar(Ti(Z1, . . . , Zi)) (5.43)

and
T1(Zi) = E[T (Zn) | Zi] ≠ E[T (Zn)].

Subsequently, we apply this expansion to an individual tree of our DRF predictor.
Let µ̂n(x) be as in (5.5), namely

µ̂n(x) =
Q

a n

sn

R

b
≠1

ÿ

i1<i2<...<isn

EÁ

Ë
T (x, Á; Zi1, . . . , Zisn

)
È
, (5.44)

where the sum is taken over all
1

n

sn

2
possible subsamples Zi1, . . . , Zisn

of
Z1, . . . , Zn and sn æ Œ with n and where

T (x, Á; Z1, . . . , Zsn
) =

snÿ

j=1

(Xj œ L(x))
|L(x)| �(”Yj

).

We introduce the following additional notation similar to Section 5.3. Let Zsn
=

(Z1, . . . , Zsn
) concatenate sn i.i.d. copies of Z, and define for j = 1, . . . , sn

Var(T ) = Var(T (x, Á; Zsn
)),

Var(Tj) = Var(E[T (x, Á; Zsn
) | Z1, . . . , Zj])

We note that, due to i.i.d. sampling, what kind of subset Zi1, . . . , Zisn
we are

considering a�ects neither variance nor expectation. In particular, we might
always take Zsn

. Using composition (5.42) on µ̂n(x) gives

µ̂n(x) = E[T (Zsn
)] +

Q

a n

sn

R

b
≠1AQ

a n ≠ 1
sn ≠ 1

R

b
nÿ

i=1
T1(Zi) +

Q

a n ≠ 2
sn ≠ 2

R

b
ÿ

i1<i2

T2(Zi1, Zi2)

+ . . . +
ÿ

i1<i2<...<isn

Tsn
(Zi1, . . . , Zisn

)
B

. (5.45)

This representation was used in ∆evid et al. (2022) to prove that the variance
of µ̂n(x) can be bounded by the scaled variance of a single tree:

Lemma 5.A.5 (Lemma 10 in ∆evid et al. (2022)). Let µ̂n(x) be as in (5.44),
and assume T (x, Á; Zsn

) satisfies (F3) and Var(T ) < Œ. Then,

Var(µ̂n(x)) Æ s2
n

n
Var(T1) + s2

n

n2Var(T ) (5.46)
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Æ
Q

asn

n
+ s2

n

n2

R

b Var(T ). (5.47)

Subsequently, we derive a first-order approximation of the whole forest and of
an individual tree. In the following, we denote the second element of (5.45) by

µ̃n(x) =
Q

a n

sn

R

b
≠1Q

a n ≠ 1
sn ≠ 1

R

b
nÿ

i=1
T1(Zi) = sn

n

nÿ

i=1
T1(Zi), (5.48)

which is the first order approximation of µn(x) Similarly, applying (5.45) to a
tree T (Zsn

) = EÁ [T (x, Á; Zsn
)], we obtain the expansion

T (Zsn
) = E[T (Zsn

)] +
snÿ

i=1
T1(Zi) +

ÿ

i1<i2

T2(Zi1, Zi2) + . . . Tsn
(Zn).

Consequently, we define

T̃ (Zsn
) =

snÿ

i=1
T1(Zi) =

snÿ

i=1
E[T (Zn) | Xi] ≠ E[T (Zn)]. (5.49)

Contrary to T (Zsn
), T̃ (Zsn

) is a sum of independent random elements on H
and thus much easier to handle. A key argument will thus be to show that
T̃ (Zsn

) approximates T (Zsn
) asymptotically.

Consider the leaf L(x) of the tree T (Zsn
) that contains the test point x. To

emphasize the dependence of such a leaf node on the training data, we will
sometimes write L(x, Zsn

) instead of L(x) in the following.
As in Meinshausen (2006); Wager and Athey (2017), the crucial part of

proving that a Random Forest is consistent is to establish that the diameter of
the leaf L(x, Zsn

) goes to zero in probability. In particular, we need a refined
result from Wager and Athey (2017):

Lemma 5.A.6 (Lemma 2 of Wager and Athey (2018)). Let T be a tree satis-
fying (F2) and (F4) that is trained on data Zsn

= (›1, X1), . . . , (›sn
, Xsn

),
and let L(x, Zsn

) be the leaf of T (x, Á; Zsn
) containing x. Suppose that

assumption (D1) holds for X1, . . . , Xsn
. Then,

P

Q

ccadiam(L(x, Zsn
)) Ø Ô

p
A

sn

2k ≠ 1

B≠0.51 log((1≠–)≠1)
log(–≠1)

fi

p

R

ddb Æ p
A

sn

2k ≠ 1

B≠1/2 log((1≠–)≠1)
log(–≠1)

fi

p

.

(5.50)

Lemma 5.A.7 (Lemma 12 in ∆evid et al. (2022)). Let T (x, Á; Zsn
) be a

tree satisfying (F1) and (F5), and let L(x, Zsn
) be the leaf of T (x, Á; Zsn

)

225



containing x. Then,

E[T (Zsn
)] = E[E[›1 | X1 œ L(x, Zsn

)]] (5.51)

and

Var(T (Zsn
)) Æ sup

xœ[0,1]p
E[Î›1Î2

H | X = x]. (5.52)

Corollary 5.A.8 (Corollary 13 in ∆evid et al. (2022)). In addition to the
conditions of Lemma 5.A.6, assume (D2) and that the trees T (x, Á; Zsn

)
in the forest satisfy (F1) and (F4). Then, we have

ÎE[µ̂n(x)] ≠ µ(x)ÎH = O
Q

cas
≠1/2 log((1≠–)≠1)

log(–≠1)
fi

p

n

R

db (5.53)

and
ÎE[› | X œ L(x, Zsn

)]ÎH
pæ ÎE[› | X = x]ÎH. (5.54)

If moreover (D3) holds, then we have

E[Î›Î2
H | X œ L(x, Zsn

)] pæ E[Î›Î2
H | X = x]. (5.55)

Lemma 5.A.9. Let ›1,n, ›2,n œ L2(�, A, H) for n œ N, and assume that
we have

(I) Var(›1,n) = O(g1(n)) and Var(›2,n) = O(g1(n)),
(II) Var(›1,n ≠ ›2,n) = O(g2(n))

for some functions g1, g2 : N æ N. Then, |Var(›1,n)≠Var(›2,n)| = O(g2(n))+
O(

Ò
g1(n)

Ò
g2(n)).

Proof. It holds that
----
Ò

Var(›1,n) ≠
Ò

Var(›2,n)
---- = |Î›1,n ≠ E[›1,n]ÎL2 ≠ Î›2,n ≠ E[›2,n]ÎL2|
Æ Î›1,n ≠ ›2,n ≠ (E[›1,n] ≠ E[›2,n])ÎL2

=
Ò

Var(›1,n ≠ ›2,n), (5.56)

where we used the reverse triangle inequality in the second step. Thus, we in
particular have

Ò
Var(›1,n) Æ

Ò
Var(›2,n) +

Ò
Var(›1,n ≠ ›2,n) or

Var(›1,n) Æ Var(›2,n) + Var(›1,n ≠ ›2,n) + 2
Ò

Var(›2,n)
Ò

Var(›1,n ≠ ›2,n).

Symmetrically, it holds that

Var(›2,n) Æ Var(›1,n) + Var(›1,n ≠ ›2,n) + 2
Ò

Var(›1,n)
Ò

Var(›1,n ≠ ›2,n)
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so that by assumption Var(›1,n) ≠ Var(›2,n) = O(g2(n)) + O(
Ò

g1(n)
Ò

g2(n)).

Define in the following the number of data points belonging to the same leaf
as x as Nx = |{j : Xj œ L(x)}| and let

Si = {Xi œ L(x)}
Nx

, (5.57)

be the weight associated with each observation i in a tree T (x, Á; Zsn
), such

that
T (x, Á; Zsn

) =
snÿ

i=1
Sik(Yi, ·).

We will make use the following property of the Si:

1 = E

S

U
snÿ

i=1
Si

T

V =
snÿ

i=1
E[Si] = snE[S1]. (5.58)

In particular,

Var(E[S1|X1]) Æ E[E[S1|X1]2] Æ E[E[S1|X1]] = E[S1] = O(s≠1
n

) (5.59)

Lemma 5.A.10 (Lemma 4 of Wager and Athey (2017) slightly adapted).
Suppose X1, X2, . . . are independent and identically distributed on [0, 1]p
with a density f that is bounded away from infinity, and let T (x, Á; Zsn

)
be –-regular (F4). Then, there is a constant Cf,p depending on f and p
such that,

snVar(E[S1|Z1]) %
1
Ÿ

Cf,p

log(sn) (5.60)

When f is uniform over [0, 1]p, the bound holds with Cf,p = 2≠(p+1)(p ≠ 1)!

Let T̃ (Zsn
) be the first order approximation of T (Zsn

) = EÁ[T (x, Á; Zsn
)]

as in (5.49). We now prove that the variance of T̃ (Zsn
) does not decrease to

zero too fast compared to the variance of T (Zsn
), which is a key result that

allows us to meaningfully approximate T (Zsn
) with T̃ (Zsn

). The main result
in (5.62) is called ‹(sn)-incrementality of the tree T (x, Á; Zsn

) in Wager and
Athey (2017, Definition 6). Before we introduce the result, we note that, due
to the orthogonal decomposition in (5.45), we have

Var(T̃ (Zsn
)) = snVar(E[T (Zsn

)|Z1]) Æ Var(T (Zsn
)).

Thus in particular, if Var(T (Zsn
)) < Œ, we also have Var(E[T (Zsn

)|Z1]) =
O(s≠1

n
).
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Theorem 5.A.11. Suppose that the tree T (x, Á; Zsn
) satisfies (F1) and

(F4). Suppose in addition that (D1) ≠ (D4) hold. Then,

Var(E[T (Zsn
)|Z1]) % Var(E[S1|Z1])Var(›|X = x) (5.61)

and

Var(T̃ (Zsn
))

Var(T (Zsn
)) % Cf,p

log(sn)p
, (5.62)

where Cf,p is the constant from Lemma 5.A.10.

Proof. Consider the concatenated data Zsn
= (Z1, . . . , Zsn

). First, assume (5.61)
is true. In this case, we know from Lemma 5.A.10 that

Var(E[T (Zsn
) | Z1]) %

1
Ÿ

‹(sn)
sn

Var(› | X = x),

where ‹(s) = Cf,p

log(s) . By Corollary 5.A.8, it holds that E[Î›Î2
H|X œ L(x, Zsn

)] pæ
E[Î›Î2

H|X = x], so that

Var(›|X œ L(x, Zsn
)) = E[Î›Î2

H|X œ L(x, Zsn
)] ≠ ÎE[›|X œ L(x, Zsn

)]Î2
H

pæ Var(› | X = x).

Thus, using the same argument as in the proof of Theorem 5 in Wager and
Athey (2017), Var(T (Zsn

)) - Var(› | X = x)/k. Consequently, due to i.i.d.
sampling, we have

Var(T̃ (Zsn
))

Var(T (Zsn
)) = snVar(E[T (Zsn

) | Z1])
Var(T (Zsn

)) % ‹(s),

which establishes the result.
Before we verify (5.61), we note that, as we use double-sampling, separate

data is used for prediction (I) and leaf building (Ic). Consequently, Z1 might
fall into the prediction set, 1 œ I, or the leave building set, 1 /œ I. However,
only the former case may contribute to the variance:
Claim: For some Á > 0,

Var(E[T (Zsn
) | Z1]) = Var(E[T (Zsn

) | Z1, 1 œ I]) + O(s≠(1+Á)
n

) (5.63)

Proof: By assumption, we have P(1 œ I | Z1) = P(1 œ I) = 1/2 for each tree.
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Thus, we have

E[T (Zsn
) | Z1] = E[T (Zsn

) {1 œ I} | Z1] + E[T (Zsn
) {1 /œ I} | Z1]

= 1
2E[T (Zsn

) | Z1, {1 œ I}] + 1
2E[T (Zsn

) | Z1, {1 /œ I}],

and consequently

Var(E[T (Zsn
) | Z1])

=1
4Var(E[T (Zsn

) | Z1, {1 œ I}]) + 1
4Var(E[T (Zsn

) | Z1, {1 /œ I}])

+ 1
2Cov(E[T (Zsn

) | Z1, {1 œ I}], E[T (Zsn
) | Z1, {1 /œ I}]).

Next, using analogous arguments as in Wager and Athey (2017, Corollary 6),
we have

Var(E[T (Zsn
) | Z1, {1 /œ I}]) = O

A

s
≠(1+C–

fi

p
)

n

B

with C– = log((1≠–)≠1)
log(–≠1) . Finally, since from above

Var(E[T (Zsn
) | Z1, {1 œ I}]) Æ Var(E[T (Zsn

)|Z1]) = O(s≠1
n

),

it follows that

|Cov(E[T (Zsn
) | Z1, {1 œ I}], E[T (Zsn

) | Z1, {1 /œ I}])|
Æ (Var(E[T (Zsn

) | Z1, {1 œ I}])Var(E[T (Zsn
) | Z1, {1 /œ I}]))1/2

=O(s≠(1+1/2C–
fi

p
)

n ).

Choosing Á = 1/2C–
fi

p
> 0 gives the result. ⇤

Because the tree T satisfies (F1) and (F4) and due to assumption (D1),
we can apply Lemma 5.A.10. Thus, once (5.61) is proven, Lemma 5.A.10 and
(5.63) imply

Var(E[T (Zsn
) | Z1, 1 œ I]) % C

1
sn log(sn),

so that the remainder term in (5.63) is negligible. Consequently, we assume
for the remainder of the proof that 1 œ I and absorb the randomness due to
the data {Zi : i /œ I} for building the leaves into the randomness of the tree.
In addition, we also write sn instead of sn/2 in the tree predictions. That is,
we write T (Zsn

) = qsn

i=1 S Õ
i
›i although T (Zsn

) = q
iœI S Õ

i
›i with |I| = sn/2 is

technically correct. With (5.63) and i.i.d. sampling, this simply amounts to a
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change of constants.
In the remainder of the proof, we verify (5.61). Note that due to honesty, we

have

Var(E[S1 | Z1]) = Var(E[S1 | ›1, X1]) = Var(E[S1 | X1]). (5.64)

Thus, it is enough to prove (5.61) with Var(E[S1 | X1]). To do this, we use a
truncation trick from Wager and Athey (2017). We define

T Õ(Zsn
) = T (Zsn

) {diam(L(x, Zsn
)) Æ s≠w

n
}, (5.65)

S Õ
i

= Si {diam(L(x, Zsn
)) Æ s≠w

n
}, where w = 1

2
fi

p

log ((1 ≠ –)≠1)
log(–≠1) ,

(5.66)

so that T Õ(Zsn
) = qsn

i=1 S Õ
i
›i. Crucially, w is chosen such that

P(diam(L(x, Zsn
)) > s≠w

n
) = O(s≠w

n
) (5.67)

This follows from Lemma 5.A.6, as in Wager and Athey (2017).
Claim: (5.61) holds for T Õ.
Proof:

We start first with a variance lower bound:
Claim:

Var(E[T Õ(Zsn
) | Z1])

=Var(E[T Õ(Zsn
) | X1]) + Var(E[T Õ(Zsn

) | ›1, X1] ≠ E[T Õ(Zsn
) | X1])

ØVar(E[T Õ(Zsn
) | ›1, X1] ≠ E[T Õ(Zsn

) | X1]). (5.68)

Proof: We need to prove the first equality and start with the decomposition

Var(E[T Õ(Zsn
) | Z1])

=Var(E[T Õ(Zsn
) | ›1, X1] ≠ E[T Õ(Zsn

) | X1] + E[T Õ(Zsn
) | X1]).

Consider for A = ‡(‡(X1), ‡(›1)) the space

L2(�, ‡(X1), H) µ L2(�, A, H).

This space is a Hilbert space with the inner product

È›1, ›2ÍL2 = E[È›1, ›2ÍH ].
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Moreover, E[T Õ(Zsn
) | X1] = E[E[T Õ(Zsn

) | A] | X1] is a projection from
E[T Õ(Zsn

)] | A] œ L2(�, A, H) to L2(�, ‡(X1), H). Thus, we have

Cov(E[T Õ(Zsn
) | X1], E[T Õ(Zsn

) | ›1, X1] ≠ E[T Õ(Zsn
) | X1])

=ÈE[T Õ(Zsn
) | X1], E[T Õ(Zsn

) | ›1, X1] ≠ E[T Õ(Zsn
) | X1]ÍL2 = 0.

⇤
Now, by honesty (i) ›i is independent of S Õ

i
conditional on Xi, and more

generally, (ii) ›i is independent of S Õ
j
, j = 1, . . . , n, conditional on Xi. Thus,

using (i), (ii), and the independence of ›1 from ›j, j > 1, we have

E[T Õ(Zsn
) | X1, ›1] = E[S Õ

1›1 | X1, ›1] +
nÿ

i=2
E[S Õ

i
›i | X1, ›1]

= E[S Õ
1 | X1, ›1]E[›1 | X1, ›1] +

nÿ

i=2
E[S Õ

i
›i | X1]

= E[S Õ
1 | X1]›1 +

nÿ

i=2
E[S Õ

i
›i | X1]

Similarly,

E[T Õ(Zsn
) | X1] = E[S Õ

1›1 | X1] +
nÿ

i=2
E[S Õ

i
›i | X1]

= E[S Õ
1 | X1]E[›1 | X1] +

nÿ

i=2
E[S Õ

i
›i | X1]

and consequently

Var(E[T Õ(Zsn
) | X1, ›1] ≠ E[T Õ(Zsn

) | X1]) = Var(E[S Õ
1 | X1](›1 ≠ E[›1 | X1])).

(5.69)

Furthermore, we can refine this statement to:
Claim:

Var(E[S Õ
1 | X1](›1 ≠ E[›1 | X1])) = Var(E[S Õ

1 | X1](›1 ≠ µ(x))) + O(s≠(1+2w)
n

),
(5.70)

where w is defined as in (5.66).
Proof:

We have

Var(E[S Õ
1 | X1](›1 ≠ E[›1 | X1]))

=Var(E[S Õ
1 | X1](›1 ≠ E[›1 | X1] + µ(x) ≠ µ(x)))

=Var(E[S Õ
1 | X1](›1 ≠ µ(x)) ≠ E[S Õ

1 | X1](E[›1 | X1] ≠ µ(x)))
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=Var(E[S Õ
1 | X1](›1 ≠ µ(x))) + Var(E[S Õ

1 | X1](E[›1 | X1] ≠ µ(x)))
≠ Cov(E[S Õ

1 | X1](›1 ≠ µ(x)), E[S Õ
1 | X1](E[›1 | X1] ≠ µ(x))). (5.71)

Because E[S Õ
1 | X1] maps into RØ0, we have

Var(E[S Õ
1 | X1](E[›1 | X1] ≠ µ(x))) Æ E[ÎE[S Õ

1 | X1](E[›1 | X1]) ≠ µ(x))Î2
H]

= E[E[S Õ
1 | X1]2ÎE[›1 | X1] ≠ µ(x)Î2

H]
Æ E[E[S Õ2

1 | X1]C2ÎX1 ≠ xÎ2
Rp]

Æ E[S Õ2
1 ]C2s≠2w

n
, (5.72)

where we used assumption (D2) for the third inequality and where the last
step followed because E[S Õ2

1 | X1] = 0, for ÎX1 ≠ xÎRp > s≠w

n
by definition of

S Õ
1 = S1 {diam(L(x, Zsn

)) Æ s≠w

n
}. Due to similar arguments, we have

|Cov(E[S Õ
1 | X1](›1 ≠ µ(x)), E[S Õ

1 | X1](E[›1 | X1] ≠ µ(x)))|
=|E[ÈE[S Õ

1 | X1](›1 ≠ µ(x)), E[S Õ
1 | X1](E[›1 | X1] ≠ µ(x))Í]

≠ ÈE[E[S Õ
1 | X1](›1 ≠ µ(x))], E[E[S Õ

1 | X1](E[›1 | X1] ≠ µ(x))]Í|
Æ|E[ÈE[S Õ

1 | X1](›1 ≠ µ(x)), E[S Õ
1 | X1](E[›1 | X1] ≠ µ(x))Í]|

+ |ÈE[E[S Õ
1 | X1](›1 ≠ µ(x))], E[E[S Õ

1 | X1](E[›1 | X1] ≠ µ(x))]Í|
=|E[ÈE[S Õ

1 | X1](E[›1 | X1] ≠ µ(x)), E[S Õ
1|X1](E[›1 | X1] ≠ µ(x))Í]|

+ |ÈE[E[S Õ
1 | X1](E[›1 | X1] ≠ µ(x))], E[E[S Õ

1 | X1](E[›1 | X1] ≠ µ(x))]Í|
=E[ÎE[S Õ

1 | X1](E[›1 | X1] ≠ µ(x))Î2
H] + ÎE[E[S Õ

1 | X1](E[›1 | X1] ≠ µ(x))]Î2
H

ÆE[S Õ2
1 ]C2s≠2w

n
+ E[ÎE[S Õ

1|X1](E[›1 | X1] ≠ µ(x))Î2
H]

Æ2E[S Õ2
1 ]C2s≠2w

n
(5.73)

Observe that we have

E[S Õ2
1 ] Æ E[S2

1 ] Æ E[S1] = 1
sn

snÿ

i=1
E[Si] = 1

sn

E

S

U
snÿ

i=1
Si

T

V = 1
sn

,

due to S1 œ [0, 1], E[S1] = . . . = E[Sn] and qs

i=1 Si = 1. Finally, combining
this observation with (5.72) and (5.73) gives (5.70).

⇤
Next, we establish

Claim:

Var(E[S Õ
1|X1](›1 ≠ µ(x))) (5.74)

=Var(E[S Õ
1|X1])Var(›1|X = x) + O(s≠(1+w)

n
) + O(s≠2

n
). (5.75)
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Proof:

We have

Var(E[S Õ
1|X1](›1 ≠ µ(x)))

=E[E[S Õ
1|X1]2Î›1 ≠ µ(x)Î2

H] ≠ E[E[S Õ
1|X1]Î›1 ≠ µ(x)ÎH]2

=E
Ë
E[S Õ

1|X1]2E[Î›1 ≠ µ(x)Î2|X1]
È
≠ E [E[S Õ

1|X1]E[Î›1 ≠ µ(x)ÎH|X1]]2 .
(5.76)

The second term in (5.76) can be bounded by

E [E[S Õ
1|X1]E[Î›1 ≠ µ(x)ÎH|X1])]2

ÆE [E[S Õ
1|X1]E[Î›1ÎH + Îµ(x)ÎH|X1]]2

=E [E[S Õ
1|X1] (E[Î›1ÎH|X1] + Îµ(x)ÎH)]2

ÆE

S

UE[S Õ
1|X1]

Q

a sup
xœ[0,1]p

E[Î›1ÎH|X = x] + Îµ(x)ÎH

R

b

T

V
2

=E [E[S Õ
1|X1]]2

Q

a sup
xœ[0,1]p

E[Î›1ÎH|X = x] + Îµ(x)ÎH

R

b
2

=E[S Õ
1]2

Q

a sup
xœ[0,1]p

E[Î›1ÎH|X = x] + Îµ(x)ÎH

R

b
2

=O(s≠2
n

).

The last step followed because of (5.10), a consequence of (D1) and (D3).
The first term in (5.76) can be bounded by

E
C

E[S Õ
1|X1]2E[Î›1 ≠ µ(x)Î2|X1]

D

=E
C

E[S Õ
1|X1]2

1
E[Î›1 ≠ µ(x)Î2|X1] ≠ E[Î›1 ≠ µ(x)Î2|X = x]

+ E[Î›1 ≠ µ(x)Î2|X = x]
2D

=E
C

E[S Õ
1|X1]2

1
E[Î›1 ≠ µ(x)Î2|X1] ≠ E[Î›1 ≠ µ(x)Î2|X = x]

2 D

+ E[E[S Õ
1|X1]2]Var(›1|X = x). (5.77)

Because S Õ
1 is defined as S Õ

1 = S1 {diam(L(x, Zsn
)) Æ s≠w

n
}, it is zero if

ÎX1 ≠ xÎRp > s≠w

n
. Combining this with Assumption (D2) and (D3) it

follows that
---E

Ë
E[S Õ

1|X1]2(E[Î›1 ≠ µ(x)Î2
H|X1] ≠ E[Î›1 ≠ µ(x)Î2

H | X = x])
È---
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ÆE
Ë
E[S Õ

1|X1]2
---E[Î›1 ≠ µ(x)Î2

H | X1] ≠ E[Î›1 ≠ µ(x)Î2
H | X = x]

---
È

=E
Ë
E[S Õ

1|X1]2
---E[Î›1Î2

H | X1] + Îµ(x)Î2
H

≠ 2ÈE[› | X1], µ(x)ÍH ≠ E[Î›1Î2
H | X = x]

≠ Îµ(x)Î2
H + 2ÈE[› | X = x], µ(x)ÍH

---
È

ÆE
Ë
E[S Õ

1|X1]2
1---E[Î›1Î2

H | X1] ≠ E[Î›1Î2
H | X = x]

---

+ 2
---ÈE[› | X = x] ≠ E[› | X1], µ(x)ÍH

---
2È

ÆE
Ë
E[S Õ

1|X1]2
È
(C1s

≠w

n
+ C2s

≠w

n
)

=O(s≠(1+w)
n

) (5.78)

holds, where we used E [E[S Õ
1|X1]2] = O(s≠1

n
). Finally, due to

E[E[S Õ
1|X1]2] =Var(E[S Õ

1|X1]) + E[E[S Õ
1|X1]]2

=Var(E[S Õ
1|X1]) + E[S Õ

1]2

=Var(E[S Õ
1|X1]) + O(1/s2

n
), (5.79)

we can combine (5.76)-(5.79) to establish our claim (5.74).
⇤

Combining (5.68), (5.69), (5.70), and (5.74), we get that (5.61) holds for T Õ

due to

Var(E[T Õ(Zsn
)|Z1])

ØVar(E[T Õ(Zsn
)|X1, ›1] ≠ E[T Õ(Zsn

)|X1])
=Var(E[S Õ

1|X1](›1 ≠ E[›1|X1]))
=Var(E[S Õ

1|X1](›1 ≠ µ(x))) + O(s≠(1+2w)
n

)
=Var(E[S Õ

1|X1])Var(›1|X = x) + O(s≠(1+w)
n

) + O(s≠2
n

) + O(s≠(1+2w)
n

).
(5.80)

⇤
In the next step we replace S Õ

1 with S1 in the expression above.
Claim:

|Var(E[S Õ
1|X1]) ≠ Var(E[S1|X1])| = O(s≠(1+w/2)

n
). (5.81)

Proof: We have

Var(E[S1|X1] ≠ E[S Õ
1|X1]) = Var(E[S1 ≠ S Õ

1|X1])
= Var(E[S1 {diam(L(x, Zsn

)) > s≠w

n
}|X1])

Æ E[E[S1 {diam(L(x, Zsn
)) > s≠w

n
}|X1]2]
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Æ E[S1 {diam(L(x, Zsn
)) > s≠w

n
}]

= 1
s

sÿ

i=1
E[Si {diam(L(x, Zsn

)) > s≠w

n
}]

= 1
s
E[ {diam(L(x, Zsn

)) > s≠w

n
}

sÿ

i=1
Si]

= 1
s
P(diam(L(x, Zsn

)) > s≠w

n
)

= O(s≠(1+w)
n

) (5.82)

due to qsn

i=1 Si = 1 and where the last step followed due to (5.67). As
Var(E[S1|X1]) = O(s≠1

n
) from (5.59) and analogously Var(E[S Õ

1|X1]) = O(s≠1
n

),
it holds by Lemma 5.A.9 and (5.82) that

|Var(E[S Õ
1|X1]) ≠ Var(E[S1|X1])| = O(s≠(1+w)

n
) + O(s≠((2+w)/2)

n
) = O(s≠(1+w/2)

n
).

⇤
Thus, we have

Var(E[T Õ(Zsn
)|Z1]) Ø Var(E[S1|X1])Var(›1|X = x) + O(s≠(1+Á)

n
), (5.83)

for some Á > 0. Because we have Var(›1|X = x) > 0 by assumption and due
to Var(E[S1|X1]) = Var(E[S1|Z1]) % C(sn log(sn))≠1 by Lemma 5.A.10, we
finally have

lim inf
næŒ

Var(E[T Õ(Zsn
)|Z1])

Var(E[S1|X1])Var(›1|X = x) Ø 1, (5.84)

or (5.61) for T Õ(Zsn
) instead of T (Zsn

).
Now, it also holds that:

Claim:

|Var(E[T (Zsn
)|Z1]) ≠ Var(E[T Õ(Zsn

)|Z1])| = O(s≠(1+w/2)
n

) (5.85)

Proof: First, observe that we have

Var(E[T (Zsn
)|Z1] ≠ E[T Õ(Zsn

)|Z1])
=Var(E[T (Zsn

) {diam(L(x, Zsn
)) > s≠w

n
}|Z1]).

Using composition (5.42) on T ÕÕ(Zsn
) = T (Zsn

) {diam(L(x, Zsn
)) > s≠w

n
},

we have

T ÕÕ(Zsn
) = E[T ÕÕ(Zsn

)] +
snÿ

i=1
T ÕÕ

1 (Zi) +
ÿ

i1<i2

T ÕÕ
2 (Zi1, Zi2) + · · · + T ÕÕ

sn
(Zsn

),
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Var(T ÕÕ(Zsn
)) =

snÿ

i=1

Q

asn

i

R

bVar(T ÕÕ
i

(Z1, . . . , Zi)),

T ÕÕ
1 (Z1) = E[T ÕÕ(Zsn

)|Z1] ≠ E[T ÕÕ(Zsn
)],

and thus

Var(E[T (Zsn
) {diam(L(x, Zsn

)) > s≠w

n
}|Z1])

=Var(T ÕÕ
1 (Z1))

Æ 1
sn

snÿ

i=1

Q

asn

i

R

bVar(T ÕÕ
i

(Z1, . . . , Zi))

= 1
sn

Var(T ÕÕ(Zsn
))

= 1
sn

Var(T (Zsn
) {diam(L(x, Zsn

)) > s≠w

n
}).

Moreover, with analogous arguments as in the proof of Lemma 12 in ∆evid
et al. (2022) it can be shown that,

Var(T (Zsn
) {diam(L(x, Zsn

)) > s≠w

n
})

ÆE

S

WU

......

sÿ

i=1
Si›i

......

2

H
{diam(L(x, Zsn

)) > s≠w

n
}

T

XV

ÆC sup
xœ[0,1]p

E[Î›Î2
H|X = x]P(diam(L(x, Zsn

)) > s≠w

n
)

such that

Var(E[T (Zsn
) {diam(L(x, Zsn

)) > s≠w

n
}|Z1])

Æ
C supxœ[0,1]p E[Î›Î2

H|X = x]
sn

P(diam(L(x, Zsn
)) > s≠w

n
)

=O(s≠(1+w)
n

),

where the last step follows from (5.67) and (5.10). As also Var(E[T (Zsn
)|Z1]) Æ

Var(T (Zsn
))/sn = O(s≠1

n
) and similarly for T Õ, the claim holds by Lemma 5.A.9,

similar to the proof of (5.81) above. ⇤
Summarizing everything, it follows from (5.85), (5.80) and (5.81),

Var(E[T (Zsn
)|Z1])

=Var(E[T Õ(Zsn
)|Z1]) + O(s≠(1+w/2)

n
)

ØVar(E[S Õ
1|X1])Var(›1|X = x) + O(s≠(1+w)

n
) + O(s≠2

n
) + O(s≠(1+2w)

n
)

=Var(E[S1|X1])Var(›1|X = x) + O(s≠(1+w)
n

) + O(s≠2
n

) + O(s≠(1+2w)
n

).
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Because Var(E[S1|X1]) % C(sn log(sn))≠1 by Lemma 5.A.10 and Var(›1|X =
x) > 0 by assumption, this implies that

lim inf
sn

Var(E[T (Z)|Z1])
Var(E[S1|X1])Var(›1|X = x) Ø 1, (5.86)

or Var(E[T (Z)|Z1]) % Var(E[S1|X1])Var(›1|X = x), proving (5.61).

Theorem 5.3.2. Assume conditions (F1)–(F5), (D1)–(D7), (K1), and
(K2) hold. Denote by Zi = (Xi, k(Yi, ·)), i = 1, . . . , n. Then, there exists
a map Tn : [0, 1]p ◊ H æ H such that, with

‡2
n

= s2
n

n
Var(Tn(Z1)), (5.11)

we have ‡n æ 0, Îµ̂n(x) ≠ µ(x)Î = Op(‡n), and

µ̂n(x) ≠ µ(x) = sn

n

nÿ

i=1
Tn(Zi) + op(‡n). (5.12)

Moreover, Tn is given by

Tn(Zi) = E[T (Zn) | Zi] ≠ E[T (Zn)]. (5.13)

Proof. Let µ̃n(x) and T̃ (Zsn
) be as in (5.48) and (5.49), respectively, and

observe that we have

‡2
n

= Var(µ̃(x)) = s2
n

n
Var(T1) = sn

n
snVar(T1) = sn

n
Var(T̃ (Zsn

)) Æ sn

n
Var(T ).

We first prove (5.12) for µ̂n(x) ≠ E[µ̂n(x)].
Claim: (5.12) holds for E[µ̂n(x)] in place of µn(x):

µ̂(x) ≠ E[µ̂(x)] = sn

n

nÿ

i=1
(E[T (Zn) | Zi] ≠ E[T (Zn)]) + op(‡n) (5.87)

Proof: First,
Claim:

1
‡2

n

E[Îµ̂n(x) ≠ µ̃n(x)Î2
H] - sn

n

log(sn)p

Cf,p

æ 0 (5.88)

Proof: Let (sn)j = sn(sn ≠ 1) · · · (sn ≠ (j ≠ 1)) = sn!/(sn ≠ j)! and Var(T̃ ) =
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Var(T̃ (Zsn
)). Then, using the decomposition in (5.45) with

Var(Tj) = Var(Tj(Z1, Z2, . . . , Zj)), j = 1, . . . , sn

that
1
‡2

n

E[Îµ̂(x) ≠ µ̃(x)Î2
H]

= 1
‡2

n

Var
AQ

a n

sn

R

b
≠1AQ

a n ≠ 2
sn ≠ 2

R

b
ÿ

i1<i2

T2(Zi1, Zi2) + · · ·

+
ÿ

i1<i2<...<isn

Tsn
(Zi1, . . . , Zisn

)
BB

= 1
‡2

n

snÿ

i=2

Q

a(sn)i

(n)i

R

b
2 Q

an

i

R

bVar(Ti)

= 1
‡2

n

snÿ

i=2

Q

a(sn)i

(n)i

R

b

Q

asn

i

R

bVar(Ti)

Æ 1
‡2

n

(sn)2
(n)2

snÿ

i=2

Q

asn

i

R

bVar(Ti)

Æs2
n

n2
Var(T )

‡2
n

=sn

n

Var(T )
Var(T̃ )

-sn

n

log(sn)p

Cf,p

,

where we used Theorem 5.A.11 in the last step. Finally, since sn = n— for
— < 1, we infer (sn log(sn)p)/n æ 0. ⇤

Since by construction E[µ̂n(x)] = E[µ̃n(x)], for all Á > 0, we have

P

Q

a
.....

1
‡n

(µ̂(x) ≠ E[µ̂(x)]) ≠ 1
‡n

(µ̃(x) ≠ E[µ̃(x)])
.....

2

H
> Á

R

b

Æ 1
Á2

1
‡2

n

E[Îµ̂(x) ≠ µ̃(x)Î2
H].

Consequently, we have Î 1
‡n

(µ̂(x) ≠ E[µ̂(x)]) ≠ 1
‡n

(µ̃(x) ≠ E[µ̃(x)])ÎH æ 0 in
probability, or equivalently

µ̂(x) ≠ E[µ̂(x)] = µ̃(x) ≠ E[µ̃(x)] + op(‡n).
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Since moreover

µ̃(x) ≠ E[µ̃(x)] = sn

n

nÿ

i=1
T1(Zi) = sn

n

nÿ

i=1
(E[T (Zn) | Zi] ≠ E[T (Zn)]),

we conclude Claim (5.87). ⇤
Due to
1
‡n

Îµ̂n(x) ≠ µ(x)ÎH Æ 1
‡n

Îµ̂n(x) ≠ E[µ̃(x)]ÎH + 1
‡n

ÎE[µ̃(x)] ≠ µ(x)ÎH ,

the result follows if we can show that the second expression in this upper bound
goes to zero

Var(E[T (Zsn
)|Z1]) %

1
Ÿ

Cf,p

sn log(sn)p
Var(›|X = x) > 0,

so that

‡2
n

=s2
n

n
Var(T1)

=s2
n

n
Var(E[T (Zsn

)|Z1])

%s2
n

n

1
Ÿ

Cf,p

sn log(sn)p
Var(›|X = x)

= sn

n log(sn)p
Var(›|X = x) 1

Ÿ
Cf,p.

Thus, using that sn = n—, we have

‡n = �
Q

a
Ô

snÒ
n log(sn)p

R

b = �
Q

ca

Q

a n—

n—p log(n)p

R

b
1/2R

db = �
A1

n—≠1≠Á
21/2

B

for some Á > 0 On the other hand, due to Theorem 5.A.8, we have

ÎE[µ̂(x)]≠µ(x)ÎH = O
Q

cas
≠1/2 log((1≠–)≠1)

log(–≠1)
fi

p

n

R

db = O
A

s
≠1/2C–

fi

p

n

B

= O
3
n≠1/2—C–

fi

p

4
,

which implies

ÎE[µ̂(x)] ≠ µ(x)ÎH
‡n

= O
3
n≠1/2(—C–

fi

p
+—≠1≠Á)

4
= O

3
n≠1/2(—(1+C–

fi

p
)≠1≠Á)

4
.

This goes to zero provided that ≠(—(1 + C–
fi

p
) ≠ 1 ≠ Á) < 0 or — >
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(1 + Á)
3
1 + C–

fi

p

4≠1
, which is satisfied for Á > 0 small enough if

— >

Q

a1 + C–

fi

p

R

b
≠1

.

Taking Tn(Zi) = E[T (Zn) | Zi] ≠ E[T (Zn)] gives the claimed result.

Before being able to prove Theorem 5.3.5 in the main text, we need to refine
the characterization of the asymptotic behavior of the variance of Tn(Zi).

Theorem 5.3.4. Assume conditions (F1)–(F5), (D1)–(D7), (K1), and
(K2) hold. Then, for all f œ H \ {0}, we have

lim
næŒ

Var(ÈTn(Z1), fÍ)
Var(Tn(Z1))

= Var(Èk(Y, ·), fÍ|X = x)
Var(k(Y, ·)|X = x) = ‡2(f ) > 0. (5.15)

Proof. Note that, due to (5.63), we can again “ignore” the double-sampling
and assume to condition on a point Z1 with index in the prediction set I
and use sn instead of sn/2 elements in the tree predictions. First, due to
Tn(Z1) = E[T (Zsn

)|Z1] ≠ E[T (Zsn
)], we infer

Var(ÈTn(Z1), fÍ)
Var(Tn(Z1))

= Var(E[ÈT (Zsn
), fÍ | Z1])

Var(E[T (Zsn
)|Z1])

.

Combining (5.68) with (5.80) in Theorem 5.A.11, we have

Var(E[ÈT Õ(Zsn
), fÍ | Z1])

=Var(E[ÈT Õ(Zsn
), fÍ | X1]) + Var(E[S Õ

1 | X1])Var(È›1, fÍ | X = x) + O(s≠(1+‘)
n

),
Var(E[T Õ(Zsn

)|Z1])
=Var(E[T Õ(Zsn

)|X1]) + Var(E[S Õ
1 | X1])Var(›1 | X = x) + O(s≠(1+‘)

n
) (5.89)

for some ‘ > 0. Let in the following w,sn
= {diam(L(x, Zsn

)) Æ s≠w

n
} such

that S Õ
i

= Si w,sn
. We now show that

Claim:

Var(E[ÈT Õ(Zsn
), fÍ | X1]) = O(s≠(1+‘)

n
)

Var(E[T Õ(Zsn
)|X1]) = O(s≠(1+‘)

n
). (5.90)

Proof: First, due to honesty, we have

E[ÈT Õ(Zsn
), fÍ | X1] = E[S Õ

1 | X1]E[È›1, fÍ | X1] +
snÿ

i=2
E[S Õ

i
È›i, fÍ | X1]
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and

E[T Õ(Zsn
) | X1] = E[S Õ

1 | X1]E[›1 | X1] +
snÿ

i=2
E[S Õ

i
›i | X1].

Subsequently, we consider the variance of the two terms and their covariance
individually. First, we study the variance of the first terms. The variances
satisfy
Claim:

Var(E[S Õ
1|X1]E[›1|X1]) = Var(E[S Õ

1|X1])ÎE[›1|X = x]Î2
H + O(s≠(1+w)

n
)

(5.91)

and

Var(E[S Õ
1|X1]E[È›1, fÍ|X1]) = Var(E[S Õ

1|X1])E[È›1, fÍ|X = x]2 + O(s≠(1+w)
n

).
(5.92)

Proof:
We only show (5.91) because (5.92) follows analogously. We have

Var(E[S Õ
1|X1]E[›1|X1])

=Var(E[S Õ
1|X1](E[›1|X1] ≠ µ(x) + µ(x)))

=Var(E[S Õ
1|X1]µ(x)) + Var(E[S Õ

1|X1](E[›1|X1] ≠ µ(x)))
+ Cov (E[S Õ

1|X1]µ(x), E[S Õ
1|X1](E[›1|X1] ≠ µ(x))) . (5.93)

Because

Var(E[S Õ
1|X1]µ(x)) =E[Î(E[S Õ

1|X1] ≠ E[S Õ
1])µ(x)Î2

H]
=E[(E[S Õ

1|X1] ≠ E[S Õ
1])2]Îµ(x)Î2

H

=Var(E[S Õ
1|X1])Îµ(x)Î2

H,

it follows that

Var(E[S Õ
1|X1]E[›1|X1])

=Var(E[S Õ
1|X1])Îµ(x)Î2

H + Var(E[S Õ
1|X1](E[›1|X1] ≠ µ(x)))

+ Cov (E[S Õ
1|X1]µ(x), E[S Õ

1|X1](E[›1|X1] ≠ µ(x))) .

Because E[S Õ
1|X1] maps into RØ0, we have

Var(E[S Õ
1|X1](E[›1|X1] ≠ µ(x))) Æ E[ÎE[S Õ

1|X1](E[›1|X1]) ≠ µ(x))Î2
H]

= E[E[S Õ
1|X1]2Î(E[›1|X1] ≠ µ(x))Î2

H]
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Æ E[E[S Õ2
1 |X1]C2ÎX1 ≠ xÎ2

Rp]
Æ E[S Õ2

1 ]C2s≠2w

n
,

where the last step followed because E[S Õ2
1 |X1] = 0, for ÎX1 ≠ xÎRp > s≠w

n

by definition of S Õ
1 = S1 {diam(L(x, Zsn

)) Æ s≠w

n
}. Since E[S Õ2

1 ] Æ E[S Õ
1] Æ

E[S1] = O(s≠1
n

) from (5.58), we have

Var(E[S Õ
1|X1](E[›1|X1] ≠ µ(x))) = O(s≠(1+2w)

n
).

Finally, we infer

|Cov (E[S Õ
1|X1]µ(x), E[S Õ

1|X1](E[›1|X1] ≠ µ(x)))|
Æ

Ò
Var(E[S Õ

1|X1]µ(x))
Ò

Var(E[S Õ
1|X1](E[›1|X1] ≠ µ(x)))

=O(s≠(1+w)
n

),

due to

Var(E[S Õ
1|X1]µ(x)) = Var(E[S Õ

1|X1]) · O(1) = O(s≠1
n

), (5.94)

again using (5.59). Thus, our Claim (5.91) holds. ⇤

Before we continue proving the theorem, we note that, due to honesty, we
have

snÿ

i=2
E[S Õ

i
›i | X1] =

snÿ

i=2
E[E[S Õ

i
›i | Xi, X1] | X1]

=
snÿ

i=2
E[E[S Õ

i
| Xi, X1]E[›i | Xi, X1] | X1]

=
snÿ

i=2
E[E[S Õ

i
E[›i | Xi] | Xi, X1] | X1]

=
snÿ

i=2
E[S Õ

i
E[›i | Xi] | X1]. (5.95)

Now, we consider the variance of the sum in (5.95):

Claim:

Var
Q

a
snÿ

i=2
E[S Õ

i
›i | X1]

R

b = Var(E[S Õ
1|X1])ÎE[›1|X = x]Î2

H + O(s≠(1+w)
n

)

(5.96)
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and

Var
Q

a
snÿ

i=2
E[S Õ

i
È›i, fÍ | X1]

R

b = Var(E[S Õ
1|X1])E[È›1, fÍ|X = x]2 + O(s≠(1+w)

n
).

(5.97)

Proof:

First we note that, using the definition of S Õ
i
, it holds that

snÿ

i=1
E[S Õ

i
| X1] = E[

snÿ

i=1
S Õ

i
| X1]

= P
1
diam(L(x, Zsn

)) Æ s≠w

n
| X1

2

= P
1
diam(L(x, Zsn

)) Æ s≠w

n

2
,

where the last step follows from (F1) and the fact that 1 œ I . Thus abbreviating
pn = P (diam(L(x, Zsn

)) Æ s≠w

n
), it follows that

snÿ

i=2
E[S Õ

i
| X1] = pn ≠ E[S Õ

1 | X1]] (5.98)

We only show (5.96), because (5.97) follows analogously. By (5.98) and since
pn is a constant,

Var(E[S Õ
1|X1])Îµ(x)Î2

H = Var((pn ≠ E[S Õ
1|X1])µ(x))

= Var
Q

aµ(x)
snÿ

i=2
E[S Õ

i
| X1]

R

b .

Thus, we need to show that

Var
Q

a
snÿ

i=2
E[S Õ

i
›i | X1]

R

b = Var
Q

aµ(x)
snÿ

i=2
E[S Õ

i
| X1]

R

b + O(s≠(1+w)
n

), (5.99)

which according to Lemma 5.A.9 is implied by

Var
Q

a
snÿ

i=2
E[S Õ

i
›i | X1] ≠ µ(x)

snÿ

i=2
E[S Õ

i
| X1]

R

b = O(s≠(1+2w)
n

), (5.100)

Var
Q

a
snÿ

i=2
E[S Õ

i
›i | X1]

R

b = O(s≠1
n

), (5.101)

and (5.94). Subsequently, we establish (5.100) and (5.101). Now, with (5.95),
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we have

Var
Q

a
snÿ

i=2
E[S Õ

i
›i | X1] ≠ µ(x)

snÿ

i=2
E[S Õ

i
| X1]

R

b

=Var
Q

a
snÿ

i=2
E[S Õ

i
E[›i | Xi] | X1] ≠ E[S Õ

i
µ(x) | X1]

R

b

=Var
Q

a
snÿ

i=2
E[S Õ

i
(E[›i | Xi] ≠ µ(x)) | X1]

R

b

=Var
Q

a
snÿ

i=2
E[S Õ

i
�(Xi) | X1]

R

b , (5.102)

with �(Xi) = E[›i | Xi] ≠ µ(x). Next, we note that for each i, we have

E[S Õ
i
�(Xi) | X1]

=E[S Õ
i
�(Xi) {X1 œ L(x, Zsn

)} | X1] + E[S Õ
i
�(Xi) {X1 /œ L(x, Zsn

)} | X1].

With Nj = j + qsn

i=2 {Xi œ L(x, Zsn
)}, j œ {0, 1}, we have

E[S Õ
i
�(Xi) {X1 œ L(x, Zsn

)} | X1]

=E

S

U {Xi œ L(x, Zsn
)} w,sn

N1
�(Xi) {X1 œ L(x, Zsn

)}
------
X1

T

V

=E

S

U {Xi œ L(x, Zsn
)} w,sn

N1
�(Xi)

------
X1, {X1 œ L(x, Zsn

)}
T

V

· P(X1 œ L(x, Zsn
) | X1)

=E

S

U {Xi œ L(x, Zsn
)} w,sn

N1
�(Xi)

T

V P(X1 œ L(x, Zsn
) | X1),

where the last step follows due to independence of L(x, Zsn
) and X1 by (F1).

Define the element

E1
i

= E

S

U {Xi œ L(x, Zsn
)} w,sn

N1
�(Xi)

T

V .

Because this is nonrandom element of H and P(X1 œ L(x, Zsn
) | X1) does not

depend on the index i œ I, it follows that

Var
Q

a
snÿ

i=2
E[S Õ

i
�(Xi) {X1 œ L(x, Zsn

)} | X1]
R

b

=
......

snÿ

i=2
E1

i

......

2

H
Var(P(X1 œ L(x, Zsn

) | X1))
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Æ
Q

a
snÿ

i=2
ÎE1

i
ÎH

R

b
2
E[E[ {X1 œ L(x, Zsn

)} | X1]2] (5.103)

Due to Jensen’s inequality,

E[E[ {X1 œ L(x, Zsn
)} | X1]2] Æ E[E[ {X1 œ L(x, Zsn

)} | X1]]
= P(X1 œ L(x, Zsn

))
= O(s≠1

n
), (5.104)

where the last step followed because 2Ÿ ≠ 1 Ø E[Nx] = qsn

i=1 E[ {Xi œ
L(x, Zsn

)}] = snP(X1 œ L(x, Zsn
)) by (F4). On the other hand, we have

snÿ

i=2
ÎE1

i
ÎH Æ

snÿ

i=2
E

S

U {Xi œ L(x, Zsn
)} w,sn

N1
Î�(Xi)ÎH

T

V

Æ
snÿ

i=2
E

S

U {Xi œ L(x, Zsn
)} w,sn

N1
C ÎXi ≠ xÎRp

T

V

Æ Cs≠w

n
E

S

U
snÿ

i=2

{Xi œ L(x, Zsn
)} w,sn

N1

T

V

Æ Cs≠w

n
(5.105)

as 0 Æ qsn

i=2 {Xi œ L(x, Zsn
)}/N1 Æ 1. Combining Equations (5.104) and

(5.105) with (5.103) gives

Var
Q

a
snÿ

i=2
E[S Õ

i
�(Xi) {X1 œ L(x, Zsn

)} | X1]
R

b = O(s≠(1+2w)
n

). (5.106)

Similarly, we have

Var
Q

a
snÿ

i=2
E[S Õ

i
�(Xi) {X1 /œ L(x, Zsn

)} | X1]
R

b

=
......

snÿ

i=2
E0

i

......

2

H
Var(P(X1 /œ L(x, Zsn

) | X1)) (5.107)

with

E0
i

= E

S

U {Xi œ L(x, Zsn
)} w,sn

N0
�(Xi)

T

V œ H.

With the same arguments as before, it follows that
......

snÿ

i=2
E0

i

......

2

H
= O(s≠2w

n
).
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Combining this with

Var(P(X1 /œ L(x, Zsn
) | X1)) = Var(1 ≠ P(X1 œ L(x, Zsn

) | X1))
= Var(P(X1 œ L(x, Zsn

) | X1))
Æ E[E[ {X1 œ L(x, Zsn

)} | X1]2]
Æ E[ {X1 œ L(x, Zsn

)}]
= O(s≠1

n
)

results in

Var
Q

a
snÿ

i=2
E[S Õ

i
�(Xi) {X1 /œ L(x, Zsn

)} | X1]
R

b = O(s≠(1+2w)
n

). (5.108)

Consequently, we have
------
Cov

Q

a
snÿ

i=2
E[S Õ

i
�(Xi) {X1 œ L(x, Zsn

)} | X1],
snÿ

i=2
E[S Õ

i
�(Xi) {X1 /œ L(x, Zsn

)} | X1]
R

b

------

Æ
Q

aVar
Q

a
snÿ

i=2
E[S Õ

i
�(Xi) {X1 œ L(x, Zsn

)} | X1]
R

b

· Var
Q

a
snÿ

i=2
E[S Õ

i
�(Xi) {X1 /œ L(x, Zsn

)} | X1]
R

b

R

b
1/2

=O(s≠(1+2w)
n

),

so that (5.100) holds. Finally, using the reverse triangle inequality as in (5.56)
in the proof of Lemma 5.A.9, we obtain

Var
Q

a
snÿ

i=2
E[S Õ

i
›i | X1]

R

b
1/2

= Var(E[S Õ
1|X1]µ(x))1/2 + O(s≠(1/2+w)

n
) = O(s≠1/2

n
),

by (5.100) and (5.94). This shows (5.101) and thus (5.96) in the claim holds
true. ⇤

Finally, we consider the covariance between E[S Õ
1›i | X1] and qsn

i=2 E[S Õ
i
›i | X1].

Claim: For some Á > 0, we have

Cov
Q

a
snÿ

i=2
E[S Õ

i
›i | X1], E[S Õ

1|X1]E[›1|X1]
R

b

= ≠ Var(E[S Õ
1|X1])ÎE[›1|X = x]Î2

H + O(s≠(1+Á)
n

) (5.109)
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and

Cov
Q

a
snÿ

i=2
E[S Õ

i
È›i, fÍ | X1], E[S Õ

1|X1]E[È›1, fÍ|X1]
R

b

= ≠ Var(E[S Õ
1|X1])E[È›1, fÍ|X = x]2 + O(s≠(1+Á)

n
). (5.110)

Proof: Again, we only show (5.109), because (5.110) follows analogously. Us-
ing (5.95), we can subtract and add µ(x) qsn

i=2 E[S Õ
i
|X1] and E[S Õ

1|X1]µ(x) to
obtain

Cov
Q

a
snÿ

i=2
E[S Õ

i
›i | X1], E[S Õ

1|X1]E[›1|X1]
R

b

=Cov
Q

a
snÿ

i=2
E[S Õ

i
E[›i | Xi] | X1], E[S Õ

1|X1]E[›1|X1]
R

b

=Cov
Q

a
snÿ

i=2
E[S Õ

i
�(Xi) | X1] + µ(x)

snÿ

i=2
E[S Õ

i
| X1],

E[S Õ
1�(X1)|X1] + µ(x)E[S Õ

1|X1]
R

b

=Cov
Q

a
snÿ

i=2
E[S Õ

i
�(Xi) | X1], E[S Õ

1�(X1)|X1]
R

b

+ Cov
Q

a
snÿ

i=2
E[S Õ

i
�(Xi) | X1], µ(x)E[S Õ

1|X1]
R

b

+ Cov
Q

aµ(x)
snÿ

i=2
E[S Õ

i
| X1], E[S Õ

1�(X1)|X1]
R

b

+ Cov
Q

aµ(x)
snÿ

i=2
E[S Õ

i
| X1], µ(x)E[S Õ

1|X1]
R

b

=:(I) + (II) + (III) + (IV ),

where again �(Xi) = E[›i | Xi] ≠ µ(x). Since from (5.98),

µ(x)
snÿ

i=2
E[S Õ

i
|X1] = µ(x)(pn ≠ E[S Õ

1|X1]), (5.111)

it holds that

(IV ) = Cov (µ(x)(pn ≠ E[S Õ
1|X1]), µ(x)E[S Õ

1|X1]) = ≠Var(E[S Õ
1|X1])Îµ(x)Î2

H.

Subsequently, we show that the remaining terms are negligible. Due to the
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Cauchy–Schwarz inequality, we have

|(I)| Æ
Q

aVar
Q

a
snÿ

i=2
E[S Õ

i
�(Xi) | X1]

R

b Var(E[S Õ
1�(X1)|X1])

R

b
1/2

.

As proven above (combining (5.100) and (5.102)), Var(qsn

i=2 E[S Õ
i
�(Xi) | X1]) =

O(s≠(1+2w)
n

), and it can be established that

Var(E[S Õ
1�(X1)|X1]) Æ E[E[S Õ

1Î�(X1)ÎH|X1]2] = O(s≠(1+2w)
n

)

holds. Consequently, (I) = O(s≠(1+2w)
n

). Similarly,

|(II)| Æ
Q

aVar
Q

a
snÿ

i=2
E[S Õ

i
�(Xi) | X1]

R

b Var(µ(x)E[S Õ
1|X1])

R

b
1/2

= O(s≠(1+w)
n

),

as Var(E[S Õ
1|X1]) Æ E[(S Õ

1)2] = O(s≠1
n

). Finally,

|(III)| = |Cov (µ(x)(1 ≠ E[S Õ
1�(X1)|X1]), E[S Õ

1�(X1)|X1]) |
= | ≠ Îµ(x)Î2

HVar(E[S Õ
1�(X1)|X1])|

= O(s≠(1+2w)
n

)

as above.
⇤

Combining (5.91), (5.96), and (5.109), we obtain

Var(E[T Õ(Zsn
)|X1])

=2Var(E[S Õ
1|X1])ÎE[›1|X = x]Î2

H ≠ 2Var(E[S Õ
1|X1])ÎE[›1|X = x]Î2

H

+ O(s≠(1+‘)
n

)
=O(s≠(1+‘)

n
)

and analogously

Var(E[ÈT Õ(Zsn
), fÍ | Z1]) = O(s≠(1+‘)

n
),

proving (5.90).
⇤

Recall Var(E[S Õ
1|X1]) ≥ Var(E[S1|X1]) = Var(E[S1|Z1]) = �((sn log(sn))≠1),

by (5.81), (5.64), and Lemma 5.A.10, respectively. This together with Claim
(5.90) and the expansion in (5.89) establishes (5.15).

This leads us to the proof of Theorem 5.3.5 in the main text.
Theorem 5.3.5. Assume conditions (F1)–(F5), (D1)–(D7), (K1), and
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(K2) hold. Then,

1
‡n

(µ̂n(x) ≠ µ(x)) Dæ N(0, �x), (5.16)

where �x is a self-adjoint HS operator satisfying

È�xf, fÍ = Var(Èk(Y, ·), fÍ|X = x)
Var(k(Y, ·)|X = x) > 0 (5.17)

for all f œ H.

Proof. First, by the definition of ‡n, we have

›0
n

:=
nÿ

i=1

sn

n‡n

Tn(Zi) =
nÿ

i=1

Tn(Zi)Ò
nVar(Tn(Z1))

.

Define ‡2
n
(f) = s

2
n

n
Var(ÈTn(Z1), fÍ). Subsequently, we establish univariate

convergence for all f œ H:
Claim: For all f œ H, we have qn

i=1
sn

n‡n(f)ÈTn(Zi), fÍ Dæ N(0, ‡(f )2).
Proof:

Due to linearity, ÈTn(Z1), fÍ is the first order approximation of a tree using
the univariate response f(Yi). Thus, it follows from Assumption (F1)–(F5)
and (D1)–(D7) with the implications (5.8)–(5.10) and the arguments in the
proof of Theorem 8 in Wager and Athey (2017) that

nÿ

i=1

sn

n‡n(f )ÈTn(Zi), fÍ Dæ N(0, 1). (5.112)

From Theorem 5.3.4, we have

‡n(f )
‡n

= Var(ÈTn(Z1), fÍ)
Var(Tn(Z1))

æ ‡2(f ) > 0,

so that due to Slutsky’s theorem,

nÿ

i=1

sn

n‡n

ÈTn(Zi), fÍ = ‡n(f )
‡n

nÿ

i=1

sn

n‡n(f )ÈTn(Zi), fÍ æ N(0, ‡2(f )) (5.113)

with ‡2(f ) > 0. ⇤
Now, we proof uniform tightness:

Claim: (›0
n
)
nœN is uniformly tight.

Proof:
Because H is separable due to our assumptions on the kernel, there exists
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a complete orthogonal basis (ej)jœN of H; see for instance Hsing and Eubank
(2015). Let Pk be the projection operator onto the linear span of the first k
elements of (ej)jœN, Sk = span(e1, . . . , ek). Because Sk is closed and linear,
Pk is well defined. Moreover, for all f œ H, we have Èf ≠ Pk(f), Pk(f)Í = 0.
Furthermore, it can be shown that Pk(f ) = qk

j=1Èf, ejÍej.

We now verify condition (c) of Chen and White (1998, Lemma 3.2), which is
a su�cient condition for tightness:

Claim: lim supn E[Î›0
n

≠ Pk(›0
n
)Î2

H] æ 0, as k æ Œ.

Proof: For any n, k, we have

E[Î›0
n

≠ Pk(›0
n
)Î2

H] = E[Î›0
n
Î2

H] + E[ÎPk(›0
n
)Î2

H] ≠ 2E[È›0
n
, Pk(›0

n
)ÍH].

Furthermore, for all n, we have

E[Î›0
n
Î2

H] = Var(›0
n
) = Var

Q

a
nÿ

i=1

Tn(Zi)Ò
nVar(Tn(Z1))

R

b

= n

nVar(Tn(Z1))
Var(Tn(Z1)) = 1.

Because Pk(›0
n
) is an orthogonal projection, we have

E[È›0
n
, Pk(›0

n
)ÍH] = E[ÎPk(›0

n
)Î2

H].

Thus,

E[Î›0
n

≠ Pk(›0
n
)Î2

H] = 1 ≠ E[ÎPk(›0
n
)Î2

H].

Now for any k, we have

E[ÎPk(›0
n
)Î2

H] =
kÿ

j=1
E[È›0

n
, ejÍ2

H]

= 1
Var(Tn(Z1))

kÿ

j=1
E[ÈTn(Z1), ejÍ2

H]

=
kÿ

j=1

Var(ÈTn(Z1), ejÍH)
Var(Tn(Z1))

æ
kÿ

j=1

Var(Èk(Y, ·), ejÍ|X = x)
Var(k(Y, ·)|X = x) ,

as n æ Œ due to (5.15) and the fact that the sum over k is finite. Additionally,
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due to Hsing and Eubank (2015, Chapter 7), we have

Var(k(Y, ·)|X = x) =
Œÿ

j=1
Var(Èk(Y, ·), ejÍ|X = x).

This means that

lim sup
n

E[Î›0
n

≠ Pk(›0
n
)Î2

H] = 1 ≠ lim inf
n

E[ÎPk(›0
n
)Î2

H]

= 1 ≠
kÿ

j=1

Var(Èk(Y, ·), ejÍ|X = x)
Var(k(Y, ·)|X = x)

æ 0

as k æ Œ. ⇤
Consequently, (›0

n
)
nœN is uniformly tight.

⇤
Univariate convergence together with tightness imply ›0

n

Dæ N (0, �x); see for
example Chen and White (1998, Lemma 3.1/3.2) or Hsing and Eubank (2015,
Chapter 7). Since by Theorem 5.3.2 we have

1
‡n

(µ̂n(x) ≠ µ(x)) = ›0
n

+ op(1),

the result follows.

Before being able to prove Theorem 5.3.6, we need a few preliminary results:
Let in the following Hú be the dual space of H, that is,

Hú = {F : H æ R linear, bounded, and continuous}.

Moreover, let

F = {F œ Hú, ÎFÎHú Æ 1}, (5.114)

where Î · ÎHú is the operator norm on Hú. Additionally, let ¸Œ(F) be the space
of all bounded real-valued functions F æ R.

Due to the Riesz representation theorem, for each F œ Hú there exists
exactly one fF œ H such that F (h) = ÈfF , hÍ for all h œ H. Let us define the
map D : H æ ¸Œ(F) by

D(f )(F ) = F (f ) for F œ F . (5.115)
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Following the notation of empirical process theory, for F œ F , we let

Pk,xF = D(µ(x))(F ) = F (µ(x)) = E[F (k(Y, ·)) | X = x] = E[fF (Y) | X = x].

Thus, Pk,x is the process associated with k(Y, ·) | X = x on H. Similarly, let
us for F œ F denote by P̂k,x ≠ Pk,x the function defined by

(P̂k,x ≠ Pk,x)F = Èµ̂n(x) ≠ µ(x), fF Í.

Moreover, define the Gaussian process GPk,x on ¸Œ(F) by

GPk,x(F ) = D(›)(F ) = F (›) = È›, fF ÍH,

where › ≥ N(0, �x) on H, with �x as in Theorem 5.3.5.
González-Rodríguez and Colubi (2017) show that D is linear and continuous

and that it has a continuous inverse. With this, it follows that:

Corollary 5.A.12. For all n, 1
‡n

(P̂k,x ≠ Pk,x) œ ¸Œ(F) and

1
‡n

(P̂k,x ≠ Pk,x) Dæ GPk,x

in ¸Œ(F).

Proof. González-Rodríguez and Colubi (2017) show that D in (5.115) is a
continuous bounded linear operator satisfying

1
‡n

D(µ̂n(x) ≠ µ(x)) = D
A 1

‡n

(µ̂n(x) ≠ µ(x))
B

Dæ D(›) = GPk,x

due to the continuous mapping theorem. Additionally, by the Riesz representa-
tion theorem,

D(µ̂n(x) ≠ µ(x))(F ) = F (µ̂n(x) ≠ µ(x)) = ÈfF , µ̂n(x) ≠ µ(x)Í
= (P̂k,x ≠ Pk,x)F

for all F œ F , so that D(µ̂n(x) ≠ µ(x)) = P̂k,x ≠ Pk,x.

This result enables us to use empirical process techniques, as we will do in the
proof of Theorem 5.3.6. To prove Theorem 5.3.6, we start with the following
important Lemma, in analogy to Kosorok (2003, Lemma 3):

Lemma 5.A.13. Let Yni, i = 1, . . . , mn, n Ø 1 be a triangular array
of mean zero independent (within rows) random variables. Let Wi, i =
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1, . . . , n be i.i.d random variables, independent of (Yni)n,i
, and with E[Wi] =

0 and Var(Wi) = 1 for all i. Additionally, assume that we have
mnÿ

i=1
Var(Y 2

ni
) æ ‡0 > 0 (5.116)

and
mnÿ

i=1
Y 2

ni

pæ ‡0 > 0 (5.117)

and moreover, for some ” > 0,

lim
næŒ

mnÿ

i=1

E[|Yni|2+”]
1qmn

j=1 Var(Ynj)
21+”/2 = 0. (5.118)

Then, for Yn = {Y1, . . . , Ymn
},

Var
Q

a
mnÿ

i=1
WiYni

------
Yn

R

b = Var
Q

a
mnÿ

i=1
WiYni

------
Yn

R

b pæ ‡0 (5.119)

and

mnÿ

i=1

E[|WiYni|2+” | Yn]
1qmn

j=1 Var(WjYnj | Yn)
21+”/2

pæ 0 (5.120)

as n æ Œ.

Proof. First, by (5.117),

Var
Q

a
mnÿ

i=1
WiYni

------
Yn

R

b =
mnÿ

i=1
Var (Wi | Yn) Y 2

ni
=

mnÿ

i=1
Y 2

ni

pæ ‡0,

which establishes (5.119). Similarly, we have

mnÿ

i=1

E[|WiYni|2+” | Yn]
1qmn

j=1 Var(WjYnj | Yn)
21+”/2 = E[|W1|2+” | Yn]

mnÿ

i=1

|Yni|2+”

1qmn

j=1 Y 2
nj

21+”/2

and

mnÿ

i=1

|Yni|2+”

1qmn

j=1 Y 2
nj

21+”/2 =
mnÿ

i=1

|Yni|2+”

1qmn

j=1 Var(Ynj)
21+”/2

Q

a
qmn

j=1 Var(Ynj)
qmn

j=1 Y 2
nj

R

b
1+”/2

.
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By Assumption (5.116) and (5.117), we have
Q

a
qmn

i=1 Var(Yni)
qmn

j=1 Y 2
ni

R

b
1+”/2

pæ 1,

and, due to Markov’s inequality and (5.118),

P

Q

cca
mnÿ

i=1

|Yni|2+”

1qmn

j=1 Var(Ynj)
21+”/2 > Á

R

ddb Æ 1
Á

mnÿ

i=1

E[|Yni|2+”]
1qmn

j=1 Var(Ynj)
21+”/2 æ 0,

so that

mnÿ

i=1

|Yni|2+”

1qmn

j=1 Var(Ynj)
21+”/2 ·

1qmn

j=1 Var(Ynj)
21+”/2

1qmn

j=1 Y 2
nj

21+”/2 = op(1),

which establishes the result.

Theorem 5.3.6. Assume conditions (F1)–(F5), (D1)–(D7), (K1), and
(K2) hold. Then, (5.19) holds.

Proof. For this proof, we recall the definition of ›n in (5.7). For each subsample
of size sn of the data, we have a tree. For a given S we consider all such trees that
are built using data points from S . Thus, we consider the same “base” random
forest built using all the data and select di�erent trees depending on which
subsample S we consider. Since sn is of smaller order than n, P(|S| Æ sn) æ 0,
as n æ Œ. Thus, by the same arguments as in Athey et al. (2019, Theorem 5)
combined with Theorem 5.3.2, we obtain

µ̂S
n
(x) ≠ µ(x) = sn

|S|
ÿ

iœS
Tn(Zi) + op(‡n) = sn

n

ÿ

iœS

n

|S|Tn(Zi) + op(‡n).

Due to ‡n =
Ò

s2
n
/n · Var(Tn(Z1)), we infer

1
‡n

1
µ̂S

n
(x) ≠ µ(x)

2
= 1Ô

n

ÿ

iœS

n

|S|
Tn(Zi)Ò

Var(Tn(Z1))
+ op(1)

= 1Ô
n

nÿ

i=1

n

|S|Wi

Tn(Zi)Ò
Var(Tn(Z1))

+ op(1),

with (Wi)n

i=1 independent and Wi ≥ Bernoulli(1/2). Thus,

1
‡n

1
µ̂S

n
(x) ≠ µ̂n(x)

2
= 1

‡n

1
µ̂S

n
(x) ≠ µ(x) ≠ (µ̂n(x) ≠ µ(x))

2
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= 1Ô
n

nÿ

i=1

Q

a n

|S|Wi ≠ 1
R

b Tn(Zi)Ò
Var(Tn(Z1))

+ op(1). (5.121)

Recall our abbreviation

›S
n

= 1
‡n

1
µ̂S

n
(x) ≠ µ̂n(x)

2

from (5.18). Subsequently, we first prove the result for a simplified version of
the sum in (5.121) consisting of independent summands. Let in the following

W̃i = 2Wi ≠ 1 (5.122)

and

›W

n
= 1Ô

n

nÿ

i=1
W̃i

Tn(Zi)Ò
Var(Tn(Z1))

. (5.123)

Claim: It holds that
›W

n

D≠æ
W

N(0, �x). (5.124)

Proof:
The proof combines arguments from Kosorok (2003) with arguments made

above and the equivalence of µ̂S
n
(x) ≠ µ̂n(x) and a certain empirical process

as in González-Rodríguez and Colubi (2017). Note that, since the Wi are
i.i.d, Wi ≥ Bernoulli(1/2), E[W̃i] = 0 and Var(W̃i) = 1. First, we prove
unconditional convergence:
Claim: It holds that

›W

n

Dæ N(0, �x). (5.125)

Proof:
We start by verifying uniform tightness of the sequence (›W

n
)n:

Claim: lim supn E[Î›W

n
≠ Pk(›W

n
)Î2

H] æ 0 as k æ Œ.
Proof: For all n, we have

E[Î›W

n
Î2

H]

=Var
Q

a
nÿ

i=1
W̃i

Tn(Zi)Ò
nVar(Tn(Z1))

R

b

=E

S

UVar
Q

a
nÿ

i=1
W̃i

Tn(Zi)Ò
nVar(Tn(Z1))

------
Zn

R

b

T

V + Var
Q

aE

S

U
nÿ

i=1
W̃i

Tn(Zi)Ò
nVar(Tn(Z1))

------
Zn

T

V

R

b .
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For the first term in the above decomposition, we have

E

S

UVar
Q

a
nÿ

i=1
W̃i

Tn(Zi)Ò
nVar(Tn(Z1))

------
Zn

R

b

T

V = E

S

WU

......

Tn(Zi)
Var(Tn(Z1))

......

2T

XV = 1.

And for the second term, we have

Var
Q

aE

S

U
nÿ

i=1
W̃i

Tn(Zi)Ò
nVar(Tn(Z1))

------
Zn

T

V

R

b = Var
Q

aE

S

U
nÿ

i=1
W̃i

------
Zn

T

V Tn(Zi)Ò
nVar(Tn(Z1))

R

b

= 0.

Thus, E[Î›W

n
Î2

H] = 1 = Var(›n). Similarly,

E[ÎPk(›W

n
)Î2

H] =
kÿ

j=1
E[È›W

n
, ejÍ2

H]

=
kÿ

j=1

Var(W̃iÈTn(Z1), ejÍH)
Var(Tn(Z1))

=
kÿ

j=1

Var(ÈTn(Z1), ejÍH)
Var(Tn(Z1))

due to the same variance arguments, so that E[ÎPk(›W

n
)Î2

H] = E[ÎPk(›n)Î2
H]

Thus, the claim follows by exactly the same argument as in the proof of
Theorem 5.3.5. ⇤

We now verify marginal convergence:
Claim: For all f œ H, we have È›W

n
, fÍ Dæ N(0, ‡2(f)), where ‡(f) > 0 is

defined in Theorem 5.3.4.
Proof: We prove convergence using the Lyapunov central limit theorem similarly
to Wager and Athey (2018, Theorem 8). First, with the arguments in the
proof of Theorem 8 in Wager and Athey (2017), it can be shown that, under
Assumption (F1)–(F5) and (D1)–(D7) with the implications (5.8)–(5.10),
that we have

lim
næŒ

nÿ

i=1

E[|ÈTn(Zi), fÍ|2+”]
(nVar(ÈTn(Z1), fÍ))1+”/2 = 0.

By Theorem 5.3.4, consequently also

lim
næŒ

nÿ

i=1

E[|ÈTn(Zi), fÍ|2+”]
(nVar(Tn(Z1)))1+”/2 = 0,

that is, the Lyapunov condition holds for È›n, fÍ. As Var(W̃1Tn(Z1)) = 1 and
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E[|W̃i|2+”] = E[|W̃1|2+”] Æ 1, we have

lim
næŒ

nÿ

i=1

E
5---W̃iÈTn(Zi), fÍ

---
2+”

6

1
nVar(W̃iTn(Z1))

21+”/2 Æ lim
næŒ

nÿ

i=1

E[|ÈTn(Zi), fÍ|2+”]
(nVar(Tn(Z1))))1+”/2 = 0,

so that the Lyapunov condition holds for È›W

n
, fÍ. Finally, by the same argu-

ments,

Var(È›W

n
, fÍ) = Var(ÈTn(Z1), fÍ)

Var(Tn(Z1))
æ ‡(f ),

which shows the claim. ⇤
Uniform tightness and convergence of univariate marginals together im-

ply (5.125). ⇤
Let us consider again the function D defined in (5.115) and the set F = {F œ

Hú : ÎFÎHú Æ 1} defined in (5.114). As mentioned above, D : H æ ¸Œ(F) is
continuous with a continuous inverse, and we consider the non-i.i.d empirical
process

D(›n) = 1Ô
n

nÿ

i=1
D

Q

a Tn(Zi)Ò
Var(Tn(Z1))

R

b

and similarly the multiplier process

D(›W

n
) = 1Ô

n

nÿ

i=1
W̃iD

Q

a Tn(Zi)Ò
Var(Tn(Z1))

R

b .

Using continuity of D, we showed D(›W

n
) Dæ D(›), which in turn is a tight

Gaussian element in ¸Œ(F); see González-Rodríguez and Colubi (2017).
Having shown unconditional convergence, we show conditional convergence

of finite-dimensional marginals of D(›W

n
):

Claim: For all K œ N and (f1, . . . , fK) œ FK ,
1
D(›W

n
)(f1), . . . , D(›W

n
)(fK)

2
D≠æ
W

(D(›)(f1), . . . , D(›)(fK)) . (5.126)

Proof: By the Cramer-Wold device, it su�ces to show
1
D(›W

n
)(f1), . . . , D(›W

n
)(fK)

2
· w D≠æ

W
(D(›)(f1), . . . , D(›)(fK)) · w,

(5.127)

for any w œ RK . This in turn is implied if for all F : ¸Œ(F) æ R linear and
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continuous, it holds that

F (D(›W

n
)) D≠æ

W
F (D(›)) (5.128)

because FK : ¸Œ(F) æ R, FK(D(›)) = (D(›)(f1), . . . , D(›)(fK)) · w is linear
and continuous. Consider a linear and continuous function F : H æ R. Because
F ¶D : H æ R is linear and continuous from H to R, by the Riesz representation
theorem, we have

F (D(›W

n
)) = 1Ô

n

nÿ

i=1
W̃iF ¶ D

Q

a Tn(Zi)Ò
Var(Tn(Z1))

R

b

= 1Ô
n

nÿ

i=1
W̃i

ÈTn(Zi), fF Í
Ò

Var(Tn(Z1))
,

for a unique fF œ H. Combining the arguments to prove the Lyapunov condi-
tions in Wager and Athey (2018, Theorem 8) with Theorem 5.3.4, we see that
conditions (5.116) and (5.118) of Lemma 5.A.13 hold for Yni = ÈTn(Zi),fF ÍÔ

nVar(Tn(Z1))
.

Similarly, Wager and Athey (2018, Lemma 12) implies that (5.117) holds as well
for Yni. Since (W̃i)i is i.i.d. with expectation 0 and variance 1, it follows from
Lemma 5.A.13 that the Lyapunov condition for W̃iYni holds in probability, that
is, (5.119) and (5.120) hold. Thus, we can find for any subsequence a further
subsequence indexed by say l such that Lyapunov condition for q

i W̃Yli given
Zl hold almost surely. Arguing pointwise for fixed Zl implies

sup
hœBL1(H)

---E[h(F (D(›S
l
))) | Zl] ≠ E[h(F (D(›)))]

--- æ 0 a.s.;

see Kosorok (2003). Using an argument by contradiction as in ∆evid et al.
(2022, Lemma 14), this in turn means

sup
hœBL1(H)

---E[h(F (D(›S
l
))) | Zl] ≠ E[h(F (D(›)))]

---
pæ 0,

proving the claim. ⇤
Combining unconditional convergence given in (5.125) and conditional finite-

dimensional convergence given in (5.126) with the arguments in Kosorok (2003,
Theorem 2) then gives

D(›W

n
) D≠æ

W
D(›). (5.129)

Finally, due to continuity of the inverse of D, this implies (5.124).
⇤
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Having shown (5.124), it holds that
Claim:

1Ô
n

nÿ

i=1

Q

a n

|S|Wi ≠ 1
R

b Tn(Zi)Ò
Var(Tn(Z1))

≠ 1Ô
n

nÿ

i=1
(2Wi ≠ 1) Tn(Zi)Ò

Var(Tn(Z1))

=
Q

a n

|S| ≠ 2
R

b 1Ô
n

nÿ

i=1
Wi

Tn(Zi)Ò
Var(Tn(Z1))

pæ0. (5.130)

Proof:
Indeed,

3
n

|S| ≠ 2
4

= op(1), and due to

P

Q

a

......

nÿ

i=1
Wi

Tn(Zi)Ò
nVar(Tn(Z1))

......
> Á

R

b Æ 1
Á2Var

Q

a
nÿ

i=1
Wi

Tn(Zi)Ò
nVar(Tn(Z1))

R

b

= 1
Á2

Var(W1Tn(Z1))
Var(Tn(Z1))

with

Var(W1Tn(Z1))
Var(Tn(Z1))

= 1/4Var(Tn(Z1)) + 1/4Var(Tn(Z1))
Var(Tn(Z1))

= 1
2 < Œ,

we have
......

1Ô
n

nÿ

i=1
Wi

Tn(Zi)Ò
Var(Tn(Z1))

......
= Op(1),

establishing (5.130).
⇤

Thus, we have (5.124), that is, ›W

n

D≠æ
W

N(0, �x). Moreover, we have

1
‡n

1
µ̂S

n
(x) ≠ µ̂n(x)

2
= ›W

n
+ op(1),

by combining (5.121) with (5.130). Let us denote as in the main text ›S
n

=
1

‡n

1
µ̂S

n
(x) ≠ µ̂n(x)

2
, and let Dn be the di�erence

Dn = ›S
n

≠ ›W

n
,

so that ÎDnÎH = op(1). With this, we can finally show that (5.20) holds, that
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is,

sup
hœBL1(H)

---E
Ë
h

1
›S

n

2
| Zn

È
≠ E[h(›)]

---
pæ 0.

Indeed, we have

sup
hœBL1(H)

---E
Ë
h

1
›S

n

2
| Zn

È
≠ E[h(›)]

---

Æ sup
hœBL1(H)

|E
Ë
h

1
›S

n

2
| Zn

È
≠ E[h(›W

n
) | Zn]| + sup

hœBL1(H)
|E[h(›W

n
) | Zn] ≠ E[h(›)]|.

(5.131)

The second term goes to zero in probability by (5.124), and the first term
satisfies

sup
hœBL1(H)

|E
Ë
h

1
›S

n

2
| Zn

È
≠ E[h(›W

n
) | Zn]| Æ sup

hœBL1(H)
E[|h(›S

n
) ≠ h(›W

n
)| | Zn]

Æ E[min(ÎDnÎH, 2) | Zn]

because for all h œ BL1(H), h is Lipschitz with constant bounded by 1, and
|h(f1) ≠ h(f2)| Æ 2 supfœH |h(f )| Æ 2. Moreover, since (min(ÎDnÎH, 2))n is a
bounded sequence, it is uniformly integrable; see Dudley (2002, Chapter 10.3). It
follows by an extension of the Dominated Convergence Theorem for convergence
in probability (Dudley, 2002, Theorem 10.3.6) that min(ÎDnÎH, 2) = op(1),
which implies E[min(ÎDnÎH, 2)] æ 0. Since min(ÎDnÎH, 2) is also nonnegative
and

o(1) = E[min(ÎDnÎH, 2)] = E[E[min(ÎDnÎH, 2) | Zn]],

this implies that E[min(ÎDnÎH, 2) | Zn] pæ 0. This convergence, together with
the above bound, shows that the first part of (5.131) also goes to zero in
probability.

Finally, we show that the variance of finite dimensional marginals can be
estimated consistently:

Corollary 5.3.7. Assume conditions (F1)–(F5), (D1)–(D7), (K1), and
(K2) hold. Then, for any F : H æ Rq linear and continuous,

E

S

U 1
‡2

n

1
F (µ̂S

n
(x)) ≠ F (µ̂n(x))

2 1
F (µ̂S

n
(x)) ≠ F (µ̂n(x))

2€
------
Zn

T

V pæ F ¶ �x.

(5.21)
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Proof. Define

F ¶ �̂n = E

S

U 1
‡2

n

1
F (µ̂S

n
(x)) ≠ F (µ̂n(x))

2 1
F (µ̂S

n
(x)) ≠ F (µ̂n(x))

2€
------
Zn

T

V ,

(5.132)

and note that F ¶ �̂n = E
Ë
F (›S

n
)F (›S

n
)€ | Zn

È
. Similarly, we define

F ¶ �̂o

n
= E

Ë
F (›W

n
)F (›W

n
)€ --- Zn

È
, (5.133)

with ›W

n
defined as in (5.123). We will first show in several steps that:

Claim: For all w œ Rq, we have

w€(F ¶ �̂n)w pæ w€(F ¶ �x)w. (5.134)

Proof:
To proof the claim, we first show:

Claim: For all w œ Rq, we have

w€(F ¶ �̂o

n
)w pæ w€(F ¶ �x)w. (5.135)

Proof: First, note that we may define Fw œ Hú by Fw(f ) = w€F (f ). Particu-
larly, it is linear, and ÎFw(f1) ≠ Fw(f2)Î Æ ÎwÎRqÎF (f1) ≠ F (f2)ÎRq , so that
it is also continuous. Then, we have

w€(F ¶ �̂o

n
)w = E

S

WU

......

1Ô
n

nÿ

i=1
W̃i

Fw ¶ Tn(Zi)Ò
Var(Tn(Z1))

......

2 -------
Zn

T

XV

= 1
n

nÿ

i=1

(Fw ¶ Tn(Zi))2

Var(Tn(Z1))
,

because E[W̃ 2
i
] = 1 and because the cross-terms are of the form

E[W̃iW̃j]
Fw ¶ T 2

n
(Zi) · Fw ¶ T 2

n
(Zj)

Var(Tn(Z1))
= 0.

As already argued in the proof of Theorem 5.3.6, under Assumption (F1)–(F5)
and (D1)–(D7), the arguments in the proof of Lemma 12 in Wager and Athey
(2017) imply that

1
n

nÿ

i=1

(Fw ¶ Tn(Zi))2

Var(Tn(Z1))
= 1

n

nÿ

i=1

Èfw, Tn(Zi)Í2

Var(Tn(Z1))
pæ ‡2(fw)
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for the unique fw œ H given by the Riesz representation theorem. Moreover,
by consistency arguments, we have ‡2(fw) = w€(F ¶ �x)w, proving the claim.
⇤

In the proof of Theorem 5.3.6, we showed ›S
n

= ›W

n
+ op(1). To show

that (5.134) follows from (5.135), we now strengthen this to:
Claim:

E[Î›S
n

≠ ›W

n
Î2

H] = o(1). (5.136)

Proof: We recall the argument in the beginning of Theorem 5.3.6. By con-
struction, we always consider the same forest and just use di�erent trees or
subsamples for each S , namely such that the subset of size sn is included in S .
Since sn is of smaller order than n, P(|S| Æ sn) æ 0, as n æ Œ. Thus, by
the same arguments as in Athey et al. (2019, Theorem 5) combined with the
claim (5.88), we have

E

S

WU

......

1
‡n

Q

a(µ̂S
n
(x) ≠ E[µ̂n(x)]) ≠ sn

n

ÿ

iœS

n

|S|Tn(Zi)
R

b

......

2

H
{|S| > sn}

T

XV æ 0.

Moreover, using that we have

ÎE[µ̂(x)] ≠ µ(x)ÎH
‡n

= o(1),

as shown in the proof of Theorem 5.3.2, this convergence also holds with E[µ̂(x)]
replaced by µ(x), or

E
5...›S

n
≠ ›W

n

...
2
H {|S| > sn}

6
æ 0.

In the case |S| Æ sn, we set
ÿ

iœS

n

|S|Tn(Zi) = µ̂S
n
(x) = 0 œ H

to zero. Then, we have
-----E

5...›S
n

≠ ›W

n

...
2
H

6
≠ E

5...›S
n

≠ ›W

n

...
2
H {|S| > sn}

6 -----

=E
5...›S

n
≠ ›W

n

...
2
H {|S| Æ sn}

6

= Îµ(x)Î2
H

P(|S| Æ sn)
‡2

n

.
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From the proof of Theorem 5.3.5 and the fact that sn = n— with — < 1, it
follows that

‡2
n

= �
Q

a sn

n log(sn)p

R

b = �(n—≠(1+Á))

for Á > 0 arbitrarily small. On the other hand, we can employ a Hoe�ding
bound on P(|S| Æ sn) to obtain

P(|S| Æ sn) = P(|S| ≠ n/2 Æ sn ≠ n/2) Æ Var(|S|)
(sn ≠ n/2)2 = n/4

s2
n

+ n2/4 ≠ snn
,

so that

P(|S| Æ sn) Æ 1
4

1
n/4 + n2—≠1 ≠ n—

= O
A 1

n

B

.

This results in

P(|S| Æ sn)
‡2

n

= O
1
n1+Á≠—≠12

= O
1
nÁ≠—

2
.

Since Á can be chosen arbitrarily small, this converges to 0.

⇤
Having shown (5.136), we have that

w€(F ¶ �̂n)w
=E[w€(F (›W

n
) + F (Dn))(F (›W

n
) + F (Dn))€w | Zn]

=w€(F ¶ �̂o

n
)w + E[w€F (Dn)F (Dn)€w | Zn] + 2E[w€F (›W

n
)F (Dn)€w | Zn],

where Dn = ›S
n

≠ ›W

n
. Note that E[ÎDnÎ2

H] = E[E[ÎDnÎ2
H | Zn]] = o(1) implies

that E[ÎDnÎ2
H | Z ] = op(1); see Durrett (1996, Lemma 2.2.2). Moreover,

E[w€F (Dn)F (Dn)€w | Z ] = E[|w€F (Dn)|2 | Z ]
Æ ÎFwÎ2

HúE[ÎDnÎ2
H | Z ]

= op(1)

by (5.136). Similarly, by Hölder’s inequality,

E[w€F (›W

n
)F (Dn)€w | Zn] Æ E[|w€F (›W

n
)|2 | Zn]1/2 · E[|w€F (Dn)|2 | Zn]1/2

pæ 0.
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Thus,
----w€(F ¶ �̂n)w ≠ w€(F ¶ �̂o

n
)w

----
pæ 0, which shows (5.134).

⇤
Finally, (5.134) implies the result. Indeed, for a matrix A œ Rq◊q, define

the operator vec(A) œ Rq
2 that concatenates the rows of A on top of each

other. This operator is continuous and invertible with a continuous inverse.
Moreover, for any w, we can consider the element w̃ = w¢w€ œ Rq

2 satisfying
w€Aw = w̃€vec(A) such that we have

w̃€vec(F ¶ �̂n) = w€(F ¶ �̂n)w pæ w€(F ¶ �x)w = w̃€vec(F ¶ �x).

Utilizing the Cramer-Wold device and the fact that convergence in distribution
to a constant is equivalent to convergence in probability, this implies that
vec(F ¶ �̂n) pæ vec(F ¶ �x). By continuity of the inverse of the vec operator,
this implies the result.

Corollary 5.3.8. Assume conditions (F1)–(F5), (D1)–(D7), (K1), and
(K2) hold. Then,

E[Îµ̂S
n
(x) ≠ µ̂n(x)Î2

H | Zn]
‡2

n

pæ 1. (5.22)

Proof. First, we have

E[Îµ̂S
n
(x) ≠ µ̂n(x)Î2

H | Zn]
‡2

n

=E
Ë
Î›S

n
≠ ›W

n
Î2

H | Zn

È
+ E

Ë
Î›W

n
Î2

H | Zn

È
+ 2E[È›S

n
≠ ›W

n
, ›W

n
ÍH | Zn],

where we recall

›S
n

= 1
‡n

1
µ̂S

n
(x) ≠ µ̂n(x)

2
,

›W

n
= 1Ô

n

nÿ

i=1
W̃i

Tn(Zi)Ò
Var(Tn(Z1))

.

As we proved in Corollary 5.3.7, as a consequence of (5.136), we have

E
Ë
Î›S

n
≠ ›W

n
Î2

H | Zn

È
= op(1).

Moreover, using Cauchy–Schwarz inequality and Hölder’s inequality, we have

E[|È›S
n

≠ ›W

n
, ›W

n
ÍH|] Æ E[Î›S

n
≠ ›W

n
ÎHÎ›W

n
ÎH]

Æ E[Î›S
n

≠ ›W

n
Î2

H]1/2E[Î›W

n
Î2

H]1/2.
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Recall that we argued E[Î›W

n
Î2

H] = 1, and E[Î›S
n

≠ ›W

n
Î2

H] = o(1) above. This
thus implies E[|È›S

n
≠ ›W

n
, ›W

n
ÍH|] = o(1), which in turn implies

|E[È›S
n

≠ ›W

n
, ›W

n
ÍH | Zn]| Æ E[|È›S

n
≠ ›W

n
, ›W

n
ÍH| | Zn] = op(1).

Thus, it remains to show:

Claim: E
Ë
Î›W

n
Î2

H | Zn

È
pæ 1.

Proof: First, note that

E

S

WU

K

W̃i

Tn(Zi)Ò
Var(Tn(Z1))

, W̃j

Tn(Zj)Ò
Var(Tn(Z1))

L

H

-------
Zn

T

XV

=E[W̃iW̃j]
K

Tn(Zi)Ò
Var(Tn(Z1))

,
Tn(Zj)Ò

Var(Tn(Z1))

L

H
=0.

Consequently,

E
Ë
Î›W

n
Î2

H | Zn

È
= E

S

WU

......

1Ô
n

nÿ

i=1
W̃i

Tn(Zi)Ò
Var(Tn(Z1))

......

2

H

-------
Zn

T

XV

= 1
n

nÿ

i=1
E[W̃ 2

i
| Zn]

......

Tn(Zi)Ò
Var(Tn(Z1))

......

2

H

= 1
nVar(Tn(Z1))

nÿ

i=1
ÎTn(Zi)Î2

H.

Thus, we need to show that
1
n

qn

i=1 ÎTn(Zi)Î2
H

Var(Tn(Z1))
pæ 1.

But due to assumption (D3), this can be shown using the same steps as at the
end of the proof of Lemma 12 in Wager and Athey (2017), with ÎTn(Zi)Î2

H in
place of their T 2

1 (Zi).
⇤

Corollary 5.4.1. Assume conditions (F1)–(F5) and (D1)–(D7) for
both groups, (K1), and (K2) hold, together with strong ignorability. Also
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assume that n0, n1 æ Œ with n0/n1 æ 1. Then, for S0, S1 independent,
......

1
‡n1,1

(µ̂S1
n1,1(x) ≠ µ̂n1,1(x)) ≠ 1

‡n0,0
(µ̂S0

n0,0(x) ≠ µ̂n0,0(x))
......

2

H

D≠æ
W

Î›0 ≠ ›1Î2
H

(5.26)

and
......

1
‡n1,1

(µ̂n1,1(x) ≠ µ1(x)) ≠ 1
‡n0,0

(µ̂n0,0(x) ≠ µ0(x))
......

2

H

Dæ Î›0 ≠ ›1Î2
H. (5.27)

Moreover, if the ratio ‡n0,0/‡n1,1 converges to some real number c2(x) that
is bounded away from 0 and Œ as the sample sizes n0, n1 tend to infinity,
we obtain

1
‡2

n1,1

...(µ̂S1
n1,1(x) ≠ µ̂n1,1(x)) ≠ (µ̂S0

n0,0(x) ≠ µ̂n0,0(x))
...
2
H

D≠æ
W

Î›0 ≠ c2(x)›1Î2
H

(5.28)

and
1

‡2
n1,1

Î(µ̂n1,1(x) ≠ µ1(x)) ≠ (µ̂n0,0(x) ≠ µ0(x))Î2
H

Dæ Î›0 ≠ c2(x)›1Î2
H.

(5.29)

Proof. Using independence of µ̂n1,1(x) and µ̂n0,0(x) for all n0, n1, together
with Theorem 5.3.5, it follows that

1
‡n1,1

(µ̂n1,1(x) ≠ µ1(x)) ≠ 1
‡n0,0

(µ̂n0,0(x) ≠ µ0(x)) Dæ ›1 ≠ ›0. (5.137)

Similarly, due to independence of S0 and S1, the arguments in the proof of
Theorem 5.3.6 can be repeated to obtain

sup
hœBL1(H)

------
E

S

Uh

Q

a 1
‡n1,1

(µ̂S1
n1,1(x) ≠ µ̂n1,1(x)) ≠ 1

‡n0,0
(µ̂S0

n0,0(x) ≠ µ̂n0,0(x))
R

b

------
Zn01

T

V

≠ E[h(›1 ≠ ›0)]
------

pæ 0,

or in other words
1

‡n1,1
(µ̂S1

n1,1(x) ≠ µ̂n1,1(x)) ≠ 1
‡n0,0

(µ̂S0
n0,0(x) ≠ µ̂n0,0(x)) D≠æ

W
›1 ≠ ›0. (5.138)
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Finally, if (5.30) holds, it follows from the arguments in the proof of Theo-
rem 5.3.4 that, ignoring smaller order terms,

‡2
n0,0

‡2
n1,1

=
Var(E[ 1

N0x
{X2 œ L0(x)} | X1])

Var(E[ 1
N1x

{X2 œ L1(x)} | X1])
Var(k(Y0, ·) | X = x)
Var(k(Y1, ·) | X = x)

æ c(x)Var(k(Y0, ·) | X = x)
Var(k(Y1, ·) | X = x) = c2(x)

where c(x) is as in (5.30). It thus follows from Slutsky’s theorem that

1
‡n1,1

(µ̂n1,1(x) ≠ µ1(x)) ≠ 1
‡n1,1

(µ̂n0,0(x) ≠ µ0(x))

= 1
‡n1,1

(µ̂n1,1(x) ≠ µ1(x)) ≠ ‡n0,0
‡n1,1

1
‡n0,0

(µ̂n0,0(x) ≠ µ0(x))

Dæ›1 ≠ c2(x)›0. (5.139)

and similarly

1
‡n1,1

(µ̂S1
n1,1(x) ≠ µ̂n1,1(x)) ≠ 1

‡n1,1
(µ̂S0

n0,0(x) ≠ µ̂n0,0(x)) D≠æ
W

›1 ≠ c2(x)›0.

(5.140)

Since f ‘æ ÎfÎ2
H is continuous, (5.26)–(5.29) follow from (5.137)–(5.140)

combined with the continuous mapping theorem.

Theorem 5.4.2. Assume conditions (F1)–(F5) and (D1)–(D7) for both
groups, (K1)–(K3) hold, together with strong ignorability and (5.30).
Then, as n0, n1 æ Œ such that n0/n1 æ 1,

(i) Ï has a valid type-I error. That is, if P0
Y | X=x = P1

Y | X=x,

lim sup
n0,n1

P

Q

a 1
‡2

n1,1
Îµ̂n0,0(x) ≠ µ̂n1,1(x)Î2

H > cn1,–

R

b Æ –.

(ii) Ï has power going to 1. That is, if P0
Y | X=x ”= P1

Y | X=x,

lim
n0,n1

P

Q

a 1
‡2

n1,1
Îµ̂n0,0(x) ≠ µ̂n1,1(x)Î2

H > cn1,–

R

b = 1.

Proof. To simplify the proof, we assume n0 = n1 = n. Since we assume that
n0/n1 æ 1, this will not impact our asymptotic results. Let in the following
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for j œ {0, 1}
›

Sj

n,j = 1
‡n,1

3
µ̂

Sj

n,j(x) ≠ µ̂n,j(x)
4

,

where we emphasize the fixed 1 in ‡n,1. We first note that by (5.28), the
sequence Î›S1

n,1 ≠ ›S0
n,0Î2

H, n œ N, is uniformly tight, which in turn implies that
there exists a large enough number M– < Œ such that we have

sup
n

P
1
Î›S1

n,1 ≠ ›S0
n,0Î2

H > M–

2
Æ –.

Since for each n, cn,– is the smallest value such that (5.33) holds, we have
cn,– Æ M– < Œ for all n. In particular, supn cn,– Æ M– < Œ, and cn,– is a
bounded sequence in R. This allows us to find a convergent subsequence below.
Second, we note that the distributions of Î›0Î2

H and Î›1Î2
H are dominated by

the Lebesgue measure. Consequently,

z ‘æ P(Î›1 ≠ c2(x)›0Î2
H > z)

is continuous. This in particular means that, if P0
Y | X=x = P1

Y | X=x,

P

Q

a 1
‡2

n,1
Îµ̂n,1(x) ≠ µ̂n,0(x)Î2

H > z

R

b æ P(Î›1 ≠ c2(x)›0Î2
H > z)

for all z Ø 0 by (5.27). We consider an arbitrary subsequence of n, n(¸).
By (5.26), a further subsequence m = n(¸(m)) can be chosen such that

sup
hœBL1(H)

---E[h(Î›S1
m,1 ≠ ›S0

m,0Î2
H) | Z2m] ≠ E[h(Î›1 ≠ c2(x)›0Î2

H)]
--- æ 0 (5.141)

almost surely. Now, we argue pointwise for each realization (z2m)mœN of
(Z2m)mœN such that (5.141) holds. As convergence in distribution implies
convergence of CDF’s at continuity points (Dudley, 2002, Theorem 9.3.6), this
implies that

P
1
Î›S1

n,1 ≠ ›S0
n,0Î2

H > z
--- Z2m

2
æ P(Î›1 ≠ c2(x)›0Î2

H > z)

almost surely for all z Ø 0.

Claim: There exists a further subsequence l = n(¸(m(l))) such that liml cl,– =
c– exists that satisfies

– Ø P
A....›

S1
l,1 ≠ ›S0

l,0

....
2

H
> cl,– | Z2l

B

æ P(Î›1 ≠ c2(x)›0Î2
H > c–) (5.142)
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almost surely. Moreover, if P0
Y | X=x = P1

Y | X=x, we also have

P

Q

a 1
‡2

l,1
Îµ̂l,1(x) ≠ µ̂l,0(x)Î2

H > cl,–

R

b æ P(Î›1 ≠ c2(x)›0Î2
H > c–). (5.143)

Proof: First, since cm,–, m œ N, is a bounded sequence as discussed above, we
can find a convergent subsequence indexed by l such that cl,– æ c–, where
c– œ R might depend on the chosen subsequence. Using Slutsky’s theorem, we
have that

1
‡2

l,1
Îµ̂l,1(x) ≠ µ̂l,0(x)Î2

H ≠ cl,–

Dæ Î›1 ≠ c2(x)›0Î2
H ≠ c–.

Consequently, if P0
Y | X=x = P1

Y | X=x, we have

P

Q

a 1
‡2

l,1
Îµ̂l,1(x) ≠ µ̂l,0(x)Î2

H ≠ cl,– > 0
R

b æ P(Î›1 ≠ c2(x)›0Î2
H ≠ c– > 0).

Similarly, arguing again pointwise for a realization zl, l œ N, and using Slutsky’s
theorem, we have

P
A....›

S1
l,1 ≠ ›S0

l,0

....
2

H
≠ cl,– > 0 | Z2l

B

æ P
3
Î›1 ≠ c2(x)›0Î2

H ≠ c– > 0
4

almost surely. ⇤

We note that c–, and thus the limit P(Î›1≠c2(x)›0Î2
H > c–), might depend on

the chosen subsequence. However, the –-bound in (5.142) holds by construction.
Consequently, it follows from (5.143) that we have

lim
l

P

Q

a 1
‡2

l,1
Îµ̂l,1(x) ≠ µ̂l,0(x)Î2

H > cl,–

R

b = lim
l

P
A....›

S1
l,1 ≠ ›S0

l,0

....
2

H
> cl,– | Zl

B

Æ – (5.144)

almost surely under P0
Y | X=x = P1

Y | X=x.

Thus, we found that for every subsequence, there exists a further subsequence
such that (5.144) holds. Now, assume that for the overall sequence

lim sup
n

P

Q

a 1
‡2

n,1
Îµ̂n,0(x) ≠ µ̂n,1(x)Î2

H > cn,–

R

b > –.
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Then, we can choose a subsequence satisfying

lim
m

P

Q

a 1
‡2

m,1
Îµ̂m,0(x) ≠ µ̂m,1(x)Î2

H > cm,–

R

b > –.

But for this sequence, it is not possible to find a further subsequence l such that

lim̧ P

Q

a 1
‡2

l,1
Îµ̂l,0(x) ≠ µ̂l,1(x)Î2

H > cl,–

R

b Æ –,

a contradiction to (5.144).

On the other hand, since (K3) holds, P0
Y | X=x ”= P1

Y | X=x implies µ1(x) ”=
µ2(x). Moreover, we have

1
‡n,1

(µ̂n1,1(x) ≠ µ̂n0,0(x))

= 1
‡n,1

(µ̂n1,1(x) ≠ µ1(x)) + 1
‡n,1

(µ1(x) ≠ µ0(x)) ≠ ‡n,0
‡n,1

1
‡n,0

(µ̂n0,0(x) ≠ µ0(x)).

Define

›01
n

= 1
‡n,1

(µ̂n1,1(x) ≠ µ1(x)) ≠ ‡n,0
‡n,1

1
‡n,0

(µ̂n0,0(x) ≠ µ0(x))

Next, we have

1
‡2

n,1
Îµ̂n,1(x) ≠ µ̂n,0(x)Î2

H

=Î›01
n

Î2
H + 1

‡2
n,1

Îµ1(x) ≠ µ0(x)Î2
H + 2

K

›01
n

,
1

‡n,1
(µ1(x) ≠ µ0(x))

L

H

ØÎ›01
n

Î2
H + 1

‡2
n,1

Îµ1(x) ≠ µ0(x)Î2
H ≠ 2

------

K

›01
n

,
1

‡n,1
(µ1(x) ≠ µ0(x))

L

H

------

ØÎ›01
n

Î2
H + 1

‡2
n,1

Îµ1(x) ≠ µ0(x)Î2
H ≠ 2Î›01

n
ÎH

1
‡n,1

Îµ1(x) ≠ µ0(x)ÎH.

Due to Î›01
n

Î2
H

Dæ Î›0 ≠ c2(x)›1Î2
H, we infer

Î›01
n

Î2
H = Op(1).

For the remaining terms, we have

1
‡2

n,1
Îµ1(x) ≠ µ0(x)Î2

H ≠ 2Î›01
n

ÎH
1

‡n,1
Îµ1(x) ≠ µ0(x)ÎH
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= 1
‡n,1

Îµ1(x) ≠ µ0(x)ÎH

Q

a 1
‡n,1

Îµ1(x) ≠ µ0(x)ÎH ≠ 2Î›01
n

ÎH

R

b

æŒ,

as Îµ1(x) ≠ µ0(x)ÎH > 0 and ‡n,1 æ 0. But since supn cn,– Æ M–, this
immediately implies that (ii) must hold.

Theorem 5.4.3. Assume conditions (F1)–(F5) and (D1)–(D7) for the
control and the treatment group, and assume that (K1) and (K2) hold
together with strong ignorability and (5.30). Then, for B(y) as in (5.34),
with n0, n1 æ Œ such that n0/n1 æ 1,

lim inf
n0,n1æŒ P (fly{µ1(x)(y) ≠ µ0(x)(y) œ B(y)}) Ø 1 ≠ –. (5.35)

Proof. Due to (K2), the kernel k is bounded. Without loss of generality, we
assume that C = 1 bounds the kernel, so that supy k(y, y) Æ 1. Moreover, we
assume again n0 = n1 = n, which does not a�ect asymptotics.

First, by definition of B(y), we have

P (’y µ1(x)(y) ≠ µ0(x)(y) œ B(y))
=P

1
’y |µ̂n,1(x)(y) ≠ µ̂n,0(x)(y) ≠ (µ1(x)(y) ≠ µ0(x)(y))| Æ Ô

cn,–‡n,1
2

.

The probability of the complementary event is given by

P
1
÷y |µ̂n,1(x)(y) ≠ µ̂n,0(x)(y) ≠ (µ1(x)(y) ≠ µ0(x)(y))| >

Ô
cn,–‡n,1

2

=P
1
÷y |Èµ̂n,1(x) ≠ µ̂n,0(x) ≠ (µ1(x) ≠ µ0(x)), k(y, ·)ÍH| >

Ô
cn,–‡n,1

2

ÆP

Q

a 1
‡n,1

Îµ̂n,1(x) ≠ µ̂n,0(x) ≠ (µ1(x) ≠ µ0(x))ÎH >
Ô

cn,–

R

b

due to Îk(y, ·)Î2
H = k(y, y) Æ 1. By the same arguments as in the proof of

Theorem 5.4.2 together with (5.27), we have

lim sup
n

P

Q

a 1
‡2

n,1
Îµ̂n,1(x) ≠ µ̂n,0(x) ≠ (µ1(x) ≠ µ0(x))Î2

H > cn,–

R

b Æ –,

implying (5.35).
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6 | The R-package dmlalg
The dmlalg package contains implementations of double machine learning
algorithms in R.

6.1 | Installation
The released version of dmlalg can be installed from “The Comprehensive R
Archive Network” (CRAN, https://cran.r-project.org) with the follow-
ing command.

1 install . packages (" dmlalg ")

The package contains two sets of functions, one to estimate and make
inference for linear parameters in a partially linear mixed-e�ects model for
repeated measurements, and another one to estimate and make inference for
linear parameters in a partially linear endogenous model using our regularization
method. Subsequently, we detail these two sets of functions.

6.2 | Partially Linear Mixed-E�ects Models for Re-
peated Measurements

The aim of this first set of functions is to estimate and perform inference for the
linear coe�cient in a partially linear mixed-e�ects model with DML. Machine
learning algorithms allows us to incorporate more complex interaction structures
and high-dimensional variables. This algorithm is described in Emmenegger
and Bühlmann (2021a) and implemented in the function mmdml. This first set
of functions consists of the following:

• mmdml computes the estimate of the linear parameter in a partially linear
mixed-e�ects model using double machine learning methods.

• confint method for objects fitted with mmdml.
• fixef method for objects fitted with mmdml.
• print method for objects fitted with mmdml.
• ranef method for objects fitted with mmdml.
• residuals method for objects fitted with mmdml.
• sigma method for objects fitted with mmdml.
• summary method for objects fitted with mmdml.
• vcov method for objects fitted with mmdml.
• VarCorr method for objects fitted with mmdml.

6.2.1 | Example
This is a basic example which shows you how to solve a common problem:
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1 library ( dmlalg )
2
3 ## generate data

4 RNGkind ("L’Ecuyer -CMRG")
5 set.seed (19)
6 data1 Ω example _data_mmdml(beta0 = 0.2)
7 data2 Ω example _data_mmdml(beta0 = c(0.2 , 0.2))
8
9 ## fit models

10 ## Caveat : Warning messages are displayed because the small number of

11 ## observations results in a singular random effects model

12 fit1 Ω
13 mmdml (w = c("w1", "w2", "w3"), x = "x1", y = "resp", z = c("id", "

cask"),
14 data = data1 , z_ formula = "(1| id) + (1| cask:id)", group = "id",

S = 3)
15 #> Warning in mmdml(w = c("w1", "w2", "w3") , x = "x1", y = "resp", z =

c("id", :

16 #> Warning messages :

17 #> boundary ( singular ) fit: see ? isSingular

18
19 fit2 Ω
20 mmdml (w = c("w1", "w2", "w3"), x = c("x1", "x2"), y = "resp", z = c("

id", "cask"),
21 data = data2 , z_ formula = "(1| id) + (1| cask:id)", group = "id",

S = 3)
22 #> Warning in mmdml(w = c("w1", "w2", "w3") , x = c("x1", "x2") , y = "

resp", :

23 #> Warning messages :

24 #> boundary ( singular ) fit: see ? isSingular

25
26 ## apply methods

27 confint (fit2)
28 #> 2.5% 97.5%

29 #> x1 -0.03415795 0.3480103

30 #> x2 0.15930098 0.3893938

31 fixef(fit2)
32 #> x1 x2

33 #> 0.1569261 0.2743474

34 print(fit2)
35 #> Semiparametric mixed model fit by maximum likelihood [’mmdml ’]

36 #> Random effects :

37 #> Groups Name Std.Dev.

38 #> cask:id ( Intercept ) 1.908e -06

39 #> id ( Intercept ) 1.107e -01

40 #> Residual 2.756e -01

41 #> Number of obs: 46, groups : cask:id , 20; id , 10

42 #> Fixed Effects :

43 #> x1 x2

44 #> 0.1569 0.2743

45 #> optimizer ( nloptwrap ) convergence code: 0 (OK) ; 0 optimizer

warnings ; 1 lme4 warnings

46 ranef(fit2)
47 #> $‘cask:id ‘

48 #> ( Intercept )

49 #> 1:1 -0.0023043914

50 #> 1:10 -0.0050894736

51 #> 1:2 0.0024571669

52 #> 1:3 0.0007708872

53 #> 1:4 -0.0012417525
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54 #> 1:5 0.0029010344

55 #> 1:6 0.0012307712

56 #> 1:7 -0.0028418387

57 #> 1:8 -0.0015618712

58 #> 1:9 -0.0048037635

59 #> 2:1 0.0100768089

60 #> 2:10 -0.0031560819

61 #> 2:2 -0.0033427429

62 #> 2:3 -0.0044928425

63 #> 2:4 -0.0054049237

64 #> 2:5 -0.0021157461

65 #> 2:6 -0.0023122280

66 #> 2:7 0.0038004751

67 #> 2:8 0.0148222090

68 #> 2:9 0.0026385335

69 #>

70 #> $id

71 #> ( Intercept )

72 #> 1 0.100740957

73 #> 10 -0.124434023

74 #> 2 -0.036918731

75 #> 3 -0.030230821

76 #> 4 -0.081051109

77 #> 5 0.018887512

78 #> 6 -0.006711504

79 #> 7 0.025545300

80 #> 8 0.235373382

81 #> 9 -0.020965920

82 residuals (fit2)
83 #> [[1]]

84 #> [1] -0.1311195998 0.5733692328 0.1398125051 -0.0705463911

-0.1196552839

85 #> [6] -0.0354080600 0.6205378654 -0.1057642425 -0.4355021749

-0.0633888854

86 #> [11] 0.0070044016 -0.1777683530 -0.0214893719 0.0052358066

0.1594839987

87 #> [16] -0.2353753755 -0.2216497409 -0.1034882421 0.0175984650

-0.0388497525

88 #> [21] 0.4636325671 -0.2597143034 0.3528825573 -0.4739722035

0.0007039458

89 #> [26] 0.0700307380 -0.1315655000 -0.1617002846 0.2162465843

0.0934414339

90 #> [31] -0.0480554546 -0.1342562672 -0.2349311153 0.4021334289

0.6761796261

91 #> [36] 0.3514207835 -0.0918140917 -0.2144924370 -0.3184478283

-0.2704273590

92 #> [41] -0.1953366308 0.7209607369 -0.1050645053 -0.2895904461

-0.2737160112

93 #> [46] 0.0941353224

94 #>

95 #> [[2]]

96 #> [1] 0.066708484 0.381936532 0.083961541 -0.244607521

-0.116940987

97 #> [6] -0.015024540 0.605540877 0.128223071 -0.186010749

-0.119432458

98 #> [11] -0.101885530 -0.153724682 -0.214346785 -0.126400135

0.090522034

99 #> [16] -0.103818112 -0.170763502 -0.102507199 0.047067741

-0.026325741

100 #> [21] 0.472126666 -0.231575911 0.324749223 -0.423215690

-0.013990681
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101 #> [26] 0.066537726 -0.086954711 -0.025470109 0.227756255

0.224213587

102 #> [31] -0.070700603 0.081484834 -0.226268534 0.615553468

0.723110460

103 #> [36] 0.333538915 -0.076459138 -0.198241935 -0.245660371

-0.366166157

104 #> [41] -0.142947352 0.677671159 -0.047532882 -0.305555800

-0.379445954

105 #> [46] 0.007159723

106 #>

107 #> [[3]]

108 #> [1] 0.09685066 0.34629638 0.09582384 -0.27150981 -0.12653048

-0.02387543

109 #> [7] 0.62488259 0.12730531 -0.19466784 -0.12227940 -0.07635676

-0.16470188

110 #> [13] -0.20223445 -0.11432450 0.13844295 -0.12234863 -0.18662475

-0.09034621

111 #> [19] 0.07330126 -0.02704395 0.51049151 -0.23716208 0.36116367

-0.42669942

112 #> [25] -0.02948530 0.10139429 -0.06858354 -0.03611104 0.19153360

0.21971922

113 #> [31] -0.04085530 0.09453877 -0.20903814 0.60734696 0.69658489

0.33318587

114 #> [37] -0.09082740 -0.21317885 -0.24276713 -0.34992920 -0.09491974

0.68198892

115 #> [43] -0.07291051 -0.24350682 -0.40714805 0.05067157

116 sigma(fit2)
117 #> [1] 0.2756384

118 summary (fit2)
119 #> Semiparametric mixed model fit by maximum likelihood [’mmdml ’]

120 #> Scaled residuals (nr_res = 3):

121 #> Min 1Q Median 3Q Max

122 #> -1.7195 -0.6674 -0.2394 0.3637 2.6234

123 #>

124 #> Random effects :

125 #> Groups Name Variance Std.Dev.

126 #> cask:id ( Intercept ) 3.641e -12 1.908e -06

127 #> id ( Intercept ) 1.226e -02 1.107e -01

128 #> Residual 7.598e -02 2.756e -01

129 #> Number of obs: 46, groups : cask:id , 20; id , 10

130 #>

131 #> Fixed effects :

132 #> Estimate Std. Error z value Pr(>|z|)

133 #> x1 0.15693 0.09749 1.610 0.107

134 #> x2 0.27435 0.05870 4.674 2.96e -06 ***
135 #> ---

136 #> Signif . codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

137 #>

138 #> Correlation of Fixed Effects :

139 #> x1

140 #> x2 -0.029

141 #> optimizer ( nloptwrap ) convergence code: 0 (OK)

142 #> boundary ( singular ) fit: see ? isSingular

143 vcov(fit2)
144 #> 2 x 2 Matrix of class " dpoMatrix "

145 #> x1 x2

146 #> x1 9.505018e -03 -9.208662e -05

147 #> x2 -9.208662e -05 3.445483e -03

148 VarCorr (fit2)
149 #> Groups Name Std.Dev.

150 #> cask:id ( Intercept ) 1.9083e -06
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151 #> id ( Intercept ) 1.1074e -01

152 #> Residual 2.7564e -01

6.3 | Partially linear models with confounding vari-
ables

The aim of this second set of functions it to perform inference for the linear
parameter in partially linear models with confounding variables. The standard
DML estimator of the linear parameter has a two-stage least squares interpreta-
tion, which can lead to a large variance and overwide confidence intervals. We
apply regularization to reduce the variance of the estimator, which produces
narrower confidence intervals that remain approximately valid. Nuisance terms
can be flexibly estimated with machine learning algorithms. This algorithm
is described in Emmenegger and Bühlmann (2021) and implemented in the
function regsdml. This second set of functions consists of the following:

• regsdml computes the estimate of the linear parameter in a partially
linear model with endogenous variables with regularized and standard
double machine learning methods.

• summary method for objects fitted with regsdml.
• confint method for objects fitted with regsdml.
• coef method for objects fitted with regsdml.
• vcov method for objects fitted with regsdml.
• print method for objects fitted with regsdml.

6.3.1 | Example
This is a basic example which shows you how to solve a common problem:

1 library ( dmlalg )
2
3 ## Generate some data:

4 set.seed (19)
5 # true linear parameter

6 beta0 Ω 1
7 n Ω 40
8 # observed confounder

9 w Ω pi * runif(n, -1, 1)
10 # instrument

11 a Ω 3 * tanh (2 * w) + rnorm(n, 0, 1)
12 # unobserved confounder

13 h Ω 2 * sin(w) + rnorm(n, 0, 1)
14 # linear covariate

15 x Ω -1 * abs(a) - h - 2 * tanh(w) + rnorm(n, 0, 1)
16 # response

17 y Ω beta0 * x - 3 * cos(pi * 0.25 * h) + 0.5 * w ^ 2 + rnorm(n, 0, 1)
18
19 ## Estimate the linear coefficient from x to y

20 ## (The parameters are chosen small enough to make estimation fast):

21 ## Caveat : A spline estimator is extrapolated , which raises a warning

message .
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22 ## Extrapolation lies in the nature of our method . To omit the warning

message

23 ## resulting from the spline estimator , another estimator may be used.

24 fit Ω regsdml (a, w, x, y,
25 gamma = exp(seq(-4, 1, length .out = 4)),
26 S = 3,
27 do_ regDML _all_gamma = TRUE ,
28 cond_ method = c(" forest ", # for E[A|W]

29 " spline ", # for E[X|W]

30 " spline "), # for E[Y|W]

31 params = list(list(ntree = 1), NULL , NULL))
32 #> Warning in print _W_E_fun(errors , warningMsgs ):

33 #> Warning messages :

34 #> some ’x’ values beyond boundary knots may cause ill - conditioned

bases

35 ## parm = c(2, 3) prints an additional summary for the 2nd and 3rd

gamma - values

36 summary (fit , parm = c(2, 3),
37 correlation = TRUE ,
38 print _gamma = TRUE)
39 #>

40 #> Coefficients :

41 #> regsDML (2.72e+00) :

42 #> Estimate Std. Error z value Pr(>|z|)

43 #> b1 0.910255 0.1731559 5.256852 1.465421e -07

44 #>

45 #> regDMLall (9.70e -02) :

46 #> Estimate Std. Error z value Pr(>|z|)

47 #> b1 0.7986392 0.1514027 5.274935 1.328031e -07

48 #>

49 #> regDMLall (5.13e -01) :

50 #> Estimate Std. Error z value Pr(>|z|)

51 #> b1 0.846176 0.1651298 5.124308 2.986318e -07

52 #>

53 #>

54 #> Variance - covariance matrices :

55 #> regsDML (2.72e+00) :

56 #> b1

57 #> b1 0.02998297

58 #>

59 #> regDMLall (9.70e -02) :

60 #> b1

61 #> b1 0.02292277

62 #>

63 #> regDMLall (5.13e -01) :

64 #> b1

65 #> b1 0.02726785

66 confint (fit , parm = c(2, 3),
67 print _gamma = TRUE)
68 #>

69 #> Two -sided confidence intervals at level 0.95 :

70 #>

71 #> regsDML (2.72e+00) :

72 #> 2.5 % 97.5 %

73 #> b1 0.5708757 1.249634

74 #>

75 #> regDMLall (9.70e -02) :

76 #> 2.5 % 97.5 %

77 #> b1 0.5018955 1.095383

78 #>

79 #> regDMLall (5.13e -01) :
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80 #> 2.5 % 97.5 %

81 #> b1 0.5225276 1.169824

82 coef(fit) # coefficients

83 #> regsDML

84 #> b1 0.910255

85 vcov(fit) # variance - covariance matrices

86 #>

87 #> Variance - covariance matrices :

88 #> regsDML :

89 #> b1

90 #> b1 0.02998297

91
92 ## Alternatively , provide the data in a single data frame

93 ## (see also caveat above):

94 data Ω data. frame(a = a, w = w, x = x, y = y)
95 fit Ω regsdml (a = "a", w = "w", x = "x", y = "y", data = data ,
96 gamma = exp(seq(-4, 1, length .out = 4)),
97 S = 3)
98 #> Warning in print _W_E_fun(errors , warningMsgs ):

99 #> Warning messages :

100 #> some ’x’ values beyond boundary knots may cause ill - conditioned

bases

101
102 ## With more realistic parameter choices :

103 if ( FALSE) {
104 fit Ω regsdml (a, w, x, y,
105 cond_ method = c(" forest ", # for E[A|W]

106 " spline ", # for E[X|W]

107 " spline ")) # for E[Y|W]

108 summary (fit)
109 confint (fit)
110
111 ## Alternatively , provide the data in a single data frame:

112 ## (see also caveat above):

113 data Ω data. frame(a = a, w = w, x = x, y = y)
114 fit Ω regsdml (a = "a", w = "w", x = "x", y = "y", data = data)
115 }
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