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Abstract
Safety filters provide modular techniques to augment potentially unsafe control inputs (e.g. from
learning-based controllers or humans) with safety guarantees in the form of constraint satisfaction.
In this paper, we present an improved model predictive safety filter (MPSF) formulation, which
incorporates system level synthesis techniques in the design. The resulting SL-MPSF scheme en-
sures safety for linear systems subject to bounded disturbances in an enlarged safe set. It requires
less severe and frequent modifications of potentially unsafe control inputs compared to existing
MPSF formulations to certify safety. In addition, we propose an explicit variant of the SL-MPSF
formulation, which maintains scalability, and reduces the required online computational effort - the
main drawback of the MPSF. The benefits of the proposed system level safety filter formulations
compared to state-of-the-art MPSF formulations are demonstrated using a numerical example.
Keywords: Safety Filter, Safety certification, Model Predictive Control, System Level Synthesis

1. Introduction

Learning-based controllers have demonstrated high performance for control of uncertain systems
in complex environments, see, e.g. Hwangbo et al. (2019); Ibarz et al. (2021); Mnih et al. (2015)
and references therein. However, their potential can still not be fully exploited in many industrial
applications due to the lack of safety guarantees i.e., in terms of constraint satisfaction.

Safety filters are modular techniques that can be combined with any controller and modify/filter
a potentially unsafe input as little as needed while ensuring that the state remains in some safe set.
Methods based on Hamilton-Jacobi reachability analysis Gillula and Tomlin (2012); Fisac et al.
(2019) provide a general approach for computing safe sets. However, their practical applicabil-
ity is often limited due to scalability issues associated with solving nonlinear partial differential
equations. Control barrier functions (CBFs) provide a popular alternative to define safe sets Ames
et al. (2019), but their design commonly requires system-specific intuition related to the choice of
the control Lyapunov function. Model predictive safety filters (MPSFs) Wabersich and Zeilinger
(2018a, 2021) provide a flexible way to implicitly define a safe set and a safety filter as the solution
to an optimisation problem, at the cost of increased online computational effort.

* This work has been supported by the European Space Agency under OSIP 4000133352, the Swiss Space Center, and
the Swiss National Science Foundation under NCCR Automation (grant agreement 51NF40 180545).

© 2023 A.P. Leeman, J. Köhler, S. Bennani & M.N. Zeilinger.



PREDICTIVE SAFETY FILTER USING SYSTEM LEVEL SYNTHESIS

Overall, these three main approaches used to define safety filters offer different trade-offs be-
tween offline design complexity, online computational demand, and conservativeness in the design.
Conservativeness is reflected by the safe set size and the amount of control intervention. Maximising
the size of the safe set increases the operational range of the system and enables, e.g. more extensive
(safe) exploration particularly in the learning setting. In addition, safety filter interventions affect
the performance of the learning-based (or the human) controller, such as stability Dai et al. (2021),
operational cost, or tracking error. This paper presents an MPSF approach that reduces conservative-
ness compared with existing MPSF by increasing the size of the safe set, and reducing the required
safety filter interventions, and thereby enables higher performance for problems with larger model
uncertainty.

The main concept of the MPSF is based on model predictive control (MPC): a safe backup
trajectory is predicted, ensuring the system could be steered to a safe (invariant) set, while mini-
mally modifying the potentially unsafe input uL. The safe set and safe backup strategy in MPSF
schemes are thereby characterised by the solution to an optimisation problem. A key challenge is
the computation of safe backup trajectories in the presence of disturbances and model uncertainties,
which are particularly relevant in the learning setting. The first MPSF was presented in Waber-
sich and Zeilinger (2018a), and exploits the linear robust MPC (RMPC) from Mayne et al. (2005).
This formulation was later extended to distributed systems Muntwiler et al. (2020), parametric un-
certainties Didier et al. (2021), nonlinear systems Wabersich and Zeilinger (2021), and stochastic
noise Wabersich et al. (2022). Notably, all of these MPSF formulations use an offline fixed auxiliary
tube-controller to mitigate the effect of disturbances/uncertainties. While the tube-controller allows
for a scalable and efficient offline design, this simplification can result in overly cautious MPSF
schemes, limiting their practical performance.

Contribution In this paper, we propose a novel MPSF formulation focused on a robust design for
linear systems, that addresses the main limitation of the fixed tube-controller, and hence significantly
mitigates the conservativeness of existing MPSF schemes. To achieve this, we combine MPSF with
system level synthesis (SLS) Anderson et al. (2019) to create a safety filter that ensures safety with
reduced control interventions. In particular, SLS enables optimisation over affine feedback policies
in RMPC Chen et al. (2021); Sieber et al. (2022), compare also disturbance feedback MPC Goulart
et al. (2006) (Section 3.1). As a result, the proposed system level MPSF (SL-MPSF) overcomes
the limitation of the fixed tube-controller in existing MSPF schemes, and ensures a larger safe set,
and lower control intervention at the cost of increased computational complexity. The proposed
flexible SL-MPSF hence simultaneously optimises the safe backup trajectory and tube-controller
(Section 3.2). Notably, the presented SL-MPSF formulation uses a general terminal set to ensure
recursive feasibility and does not require the finite-impulse-response constraint from Sieber et al.
(2022), which constitutes an alternative RMPC formulation based on SLS.

The second contribution is an explicit safety filter that leverages the flexibility of SLS to design
an explicit safe set and an explicit backup control law offline (Section 4). The resulting scheme
is more conservative than SL-MPSF but requires no online optimisation. The explicit safe set is
constructed by imposing the disturbance reachable set to safely return to the safe set within the
prediction horizon. The safe set is defined using a simple shape and is hence easy to implement and
scalable. Similar methods are used in Parsi et al. (2022) and (Sieber et al., 2022, Section 4.2) to
compute feedback policies and disturbance reachable sets offline, however, they still require online
optimisation to ensure robust constraint satisfaction.
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Both safety filters proposed in this paper offer a different trade-off between conservativeness,
scalability, offline design complexity and online computation demand compared with available tech-
niques and thereby enlarge the scope of this promising safety approach. The benefits of both meth-
ods are illustrated by comparing them against state-of-the-art safety filters using a numerical exam-
ple (Section 5).

Notation The set of non-negative integers is given by N≥0. For a vector x ∈ Rn, we denote the p-
norm with p ∈ {1, 2,∞} by ∥x∥p. The infinity-norm ball is given by Bn∞ := {w ∈ Rn|∥w∥∞ ≤ 1}.
For two setsW1 andW2, the Minkowski sum is defined asW1⊕W2 := {w1+w2| w1 ∈ W1, w2 ∈
W2}. We also defineWk as the Cartesian product ofW with itself k times, i.e.,Wk =W×· · ·×W
(k times). The identity matrix is denoted by In ∈ Rn×n and the dimensions are omitted if they can
be inferred from the context. Let 0p,q ∈ Rp×q and 0n ∈ Rn be respectively a matrix and a vector
of zeros. We denote stacked vectors by (a, b) = [a⊤ b⊤]⊤. The block diagonal matrix consisting of
matrices A1, . . . , AT is denoted by A = diag(A1, . . . , AT ). Let LN,p×q denote the set of all block
lower-triangular matrices with the following structure

M =


M0,0 0p,q . . . 0p,q
M1,1 M1,0 . . . 0p,q

...
...

. . .
...

MN,N MN,N−1 . . . MN,0

 ,

where M i,j ∈ Rp×q. We denote the kth block row of M as Mk := [Mk,k . . . Mk,0, 0p,q(N−1−k)].

2. Preliminaries

We consider a linear system

x(t+ 1) = Ax(t) +Bu(t) +Bww(t), t ∈ N≥0, (1)

with state x(t) ∈ Rn, control input u(t) ∈ Rm and unknown disturbance w(t) ∈ BwW ⊂ Rn, at
discrete time instances t ∈ N≥0. For simplicity of exposition, we consider a box W := Bn∞, and
assume that Bw is an invertible square matrix, compare also Remark 3 below. The system is safe if
it satisfies the following state and input constraints

x(t) ∈ X := {x| Ax,jx ≤ bx,j , j = 1, . . . , nx}, u(t) ∈ U := {u| Au,ju ≤ bu,j , j = 1, . . . , nu},

for all t ∈ N≥0, with Ax,j ∈ Rn, bx,j > 0, Au,j ∈ Rn, bu,j > 0. We assume that U is compact.
In this paper, we provide a safety filter and safe set, which enable a safety certificate for arbitrary
control signals uL(t) ∈ Rm.

Definition 1 A set S ⊆ X and a control law uS(x(t), uL(t), t), with uS : Rn × Rm × N≥0 7→ U
are called a safe set and a safety filter, respectively, if the application of the safety filter u = uS in
(1), ensures robust constraint satisfaction, i.e., x(t) ∈ X ∀t ≥ t̄ ∀w(t) ∈ Bn∞, if x(t̄) ∈ S.

We search for a safety filter uS and a corresponding safe set S ⊆ X , such that state and input
constraints satisfaction can be guaranteed for all future time steps and for all disturbances. While
safety is the primary objective, the safety filter should also interfere as little as possible, i.e., when-
ever possible the safety filter should yield uS = uL. The main benefit of a modular safety filter
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PREDICTIVE SAFETY FILTER USING SYSTEM LEVEL SYNTHESIS

according to Definition 1 is that it can certify any potentially unsafe control input uL, including the
important case of learning-based controllers or humans.

In the nominal case (i.e., without disturbance w(t)), the MPSF formulation proposed in Waber-
sich and Zeilinger (2018a) consists in solving the following optimisation problem at each time step

min
z,v
∥v0 − uL(t)∥22 s.t. zk+1 = Azk +Bvk, x(t) = z0, k = 0, . . . , N − 1, (2a)

zk ∈ X , vk ∈ U , zN ∈ Xf , k = 0, . . . , N − 1, (2b)

where zk,vk denote the nominal state and input, respectively, and Xf ⊆ X ⊆ Rn is a positively
invariant set as commonly required in MPC, see e.g. Kouvaritakis and Cannon (2016). In order to
reduce the effects of model uncertainties, MPSFs Wabersich and Zeilinger (2018a, 2021) employ
robust MPC techniques based on a so-called tube-controller, i.e., u(t) = v(t) + K(x(t) − z(t)),
where K is fixed offline. In the following, we develop a robust counterpart of (2) based on SLS
(Section 3.1), where we not only optimise the (nominal) backup trajectory z and v, but also a tube-
controller and disturbance reachable set for the error between the uncertain and nominal system.
The resulting feedback policy guarantees robust constraint satisfaction and reduces conservativeness
compared to other MPSFs (Section 3.2). While offering a flexible approach, the required online
optimisation can be computationally demanding. To address this limitation, we introduce an explicit
system level safety filter (Section 4), which removes most of the offline computational complexity.
Notably, both methods ensure robust constraint satisfaction.

3. System Level Model Predictive Safety Filter

In the following, we first present the parametrisation of the disturbance reachable sets under affine
tube-controllers, before introducing the SL-MPSF formulation.

3.1. Parameterisation of affine controllers

The employed parameterisation of affine feedback policies for LTI systems relies on SLS tech-
niques Goulart et al. (2006); Anderson et al. (2019). We define the prediction state xk ∈ Rn and
input uk ∈ Rm for system (1) as

xk+1 = Axk +Buk +Bwwk, k = 0, . . . , N − 1, (3)

where N ∈ N≥1 is the prediction horizon and wk ∈ Bn∞ = W . We define the error (deviation)
between the uncertain and nominal system states and inputs (2a) with ∆xk := xk−zk and ∆uk :=
uk − vk. In the following, we consider initial conditions of the form ∆x0 ∈ X0 := PinitBn∞, with
Pinit ∈ Rn×n. This general initial set formulation will become essential for the explicit safe set
(Section 4), while the online optimisation-based SL-MPSF (Section 3.2) only considers the special
case of fixed initial conditions with Pinit = 0n,n and ∆x0 = 0n. We can write the error dynamics
compactly as

∆x = ZA∆x+ ZB∆u+ Eδ, (4)

with ∆x = (∆x0, . . . ,∆xN ), ∆u = (∆u0, . . . ,∆uN ), w := (w0, . . . ,wN−1), δ := (∆x0,w) ∈
X0 ×WN , A := diag(A, . . . , A, 0n,n), B := diag(B, . . . , B, 0n,m), E := diag(I, Bw, . . . , Bw) ∈
LN,n×n, and the block downshift operator Z ∈ LN,n×n, i.e., a matrix with identity matrices along
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its first block sub-diagonal and zeros elsewhere. We introduce the causal linear feedback controller
∆u = K∆x, with K ∈ LN,m×n, i.e.,

u = v +K(x− z), (5)

yielding uk = vk +
∑k

j=0K
k,j(xk−j − zk−j). Using this feedback, we can write the closed-loop

error dynamics as[
x
u

]
−
[
z
v

]
=

[
∆x
∆u

]
=

[
Z(A+ BK)∆x+ Eδ

K∆x

]
=:

[
Φx

Φu

]
δ =:

[
Φx,0 Φx,w

Φu,0 Φu,w

] [
∆x0

w

]
,

(6)
where Φx ∈ LN,n×n, Φu ∈ LN,m×n. The matrices Φx and Φu are called the system responses from
the disturbances to the closed-loop error state and input, respectively. The following proposition
shows that the closed-loop responses under arbitrary affine feedbacks lie on a linear subspace.

Proposition 2 (Chen et al., 2021, adapted from Theorem 1) Consider some disturbance sequence
δ ∈ X0 ×WN .

a) Any trajectory ∆x, ∆u satisfying the dynamics (4), (5) also satisfy (6) with some Φx ∈
LN,n×n, Φu ∈ LN,m×n lying on the subspace

[I − ZA −ZB]
[
Φx

Φu

]
= E . (7)

b) Let Φx and Φu be arbitrary matrices satisfying (7). Then the corresponding ∆x and ∆u
computed with (6) also satisfy (4), (5) with K = ΦuΦ

−1
x ∈ LN,m×n.

Remark 3 We consider square matrices Bw, Pinit to provide a simple exposition1. However, the
results can be directly extended to more general disturbances and initial condition sets of the form
w(k) ∈ Bnw

∞ , X0 = P0Bn0
∞ , compare, e.g. Herold et al. (2022).

For any nominal trajectory z, v satisfying (2a), and any error feedback ∆u = K∆x with Φx,Φu

satisfying (7), the disturbance reachable sets of system (6) are given exactly by

xk ∈ Rx(zk,Φ
k
x) := {zk} ⊕ Φk

x,0X0 ⊕ Φk
x,wBNn

∞ ,

uk ∈ Ru(vk,Φ
k
u) := {vk} ⊕ Φk

u,0X0 ⊕ Φk
u,wBNn

∞ .
(8)

Hence, state and input constraint satisfaction can be robustly ensured by constraining the dis-
turbance reachable sets to lie within the respective constraint sets, i.e., Rx(zk,Φ

k
x) ⊆ X and

Ru(vk,Φ
k
u) ⊆ U for all k = 0, . . . , N − 1.

Proposition 4 There exists an affine feedback law of the form (5) such that for any δ ∈ X0×WN ,

xk ∈ X := {x|Ax,jx ≤ bx,j , j = 1, . . . , nx},uk ∈ U := {u|Au,ju ≤ bu,j , j = 1, . . . , nu}, (9)

with xk and uk satisfying (1), if and only if there exist matrices Φx and Φu and a nominal trajectory
z, v satisfying (7), (2a), and, for k = 0, . . . N − 1, jx = 1, . . . , nx, ju = 1, . . . , nu:

Ax,jxzk + ∥Ax,jxΦ
k
x,0Pinit∥1 + ∥Ax,jxΦ

k
x,w∥1 ≤ bx,jx ,

Au,juvk + ∥Au,juΦ
k
u,0Pinit∥1 + ∥Au,juΦ

k
u,w∥1 ≤ bu,ju .

(10)

1. For more general disturbance and initial condition sets, Proposition 2 requires E to be right-invertible, see e.g. Herold
et al. (2022).
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Proof As per Proposition 2, the state and input trajectory satisfy (6). Hence, for each k =
0, . . . , N − 1, j = 1, . . . , nx, we have

max
w∈WN

∆x0∈X0

Ax,jxk
(6)
= Ax,jzk + max

∆x0∈X0

Ax,jΦ
k
x,0∆x0 + max

w∈WN
Ax,jΦ

k
x,ww

= Ax,jzk + ∥Ax,jΦ
k
x,0Pinit∥1 + ∥Ax,jΦ

k
x,w∥1 ≤ bx,j ,

(11)

where the second equality is given by the definition of the 1-norm. The same derivation applies to
the input constraints.

As standard in MPC, we ensure recursive feasibility by using a suitable terminal set Kouvaritakis
and Cannon (2016).

Assumption 1 There exists a terminal set Xf := {x ∈ Rn|Afx ≤ bf} and a terminal feedback
Kf ∈ Rm×n such that (A+BKf)Xf ⊕BwW ⊆ Xf and (Xf ×KfXf) ⊆ (X × U).

3.2. System level predictive safety filter

In this section, we present the SL-MPSF using the parameterisation in Section 3.1. In particular, at
each time step t, for a given control input uL(t) and a measured state x(t), the SL-MPSF is defined
via the following optimisation problem:

min
Φ,z,v

∥v0 − uL(t)∥22, (12a)

s.t. [I − ZA −ZB]
[
Φx

Φu

]
= E , x(t) = z0, (12b)

zk+1 = Azk +Bvk, k = 0, . . . , N − 1, (12c)

Ax,jzk + ∥Ax,jΦ
k
x,w∥1 ≤ bx,j , j = 1, . . . , nx, k = 0, . . . , N − 1, (12d)

Au,jvk + ∥Au,jΦ
k
u,w∥1 ≤ bu,j , j = 1, . . . , nu, k = 0, . . . , N − 1, (12e)

Af,jzN + ∥Af,jΦ
N
x,w∥1 ≤ bf,j , j = 1, . . . , nf . (12f)

The constraints (12d), (12e), and (12f) follow from Proposition 4, where we consider the special
case Pinit = 0n,n with x(t) = x0 = z0. The terminal set constraint (12f) ensures (robust) recur-
sive feasibility. The constraint (12b) parameterises the tube-controller according to Proposition 2.
The constraint (12c) defines the nominal dynamics used to compute a safe backup trajectory. The
cost (12a) is chosen such that the applied input uL(t) is modified as little as necessary, i.e., the
solution of (12) is uL(t) = v⋆

0 whenever feasible. Problem (12) is a quadratic program (QP) and
can hence be solved efficiently. We denote a minimiser of Problem (12) by v⋆(x(t), uL(t)). In the
closed-loop, we apply the first element of the optimal input sequence, i.e., the safety filter control
law is given by

uS(x(t), uL(t), t) = v⋆
0(x(t), uL(t)). (13)

We denote the set of feasible states x(t) for Problem (12) by XN ⊆ X .

Theorem 5 Let Assumption 1 hold. Then, the set XN is a safe set according to Definition 1 for
system (1) with the safety filter (13).

6
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Proof Suppose Problem (12) is feasible for some state x(t) ∈ XN . Then, for any uL(t) ∈ Rm and
any w(t) ∈ W , one can show that Problem (12) is feasible for x(t+1). Hence, the feasible setXN is
robust positive invariant (RPI), i.e., x(t+1) = Ax(t)+Bv⋆

0(x(t), uL(t))+w(t) ∈ XN . Following
standard MPC arguments, this can be shown by constructing a feasible candidate solution that shifts
the previously optimal solution and appends the terminal control law Kf from Assumption 1. In
fact, this proof can be found in Goulart et al. (2006), where the result was shown based on the
equivalent disturbance feedback formulation (cf. (Sieber et al., 2021, Theorem 2)). Notably, this
recursive feasibility property is completely independent of the considered cost function and hence
the input uL(t).

Compared to standard RMPC formulations Mayne et al. (2005); Chisci et al. (2001), the proposed
SL-MPSF formulation (12) reduces the conservativeness by optimising over affine feedbacks and
using a tight reachability analysis (Proposition 4). As a result, the SL-MPSF scheme is less con-
servative than state-of-the-art MPSF schemes, e.g. Wabersich and Zeilinger (2018a). As online
optimisation can be computationally expensive, the next section introduces an alternative approach
to synthesise a safe set and safety filter, which only requires the solution to a single LP offline. This
drastically reduces the online computation complexity, albeit at the expense of potentially more
frequent and stronger control interventions of the safety filter.

4. Explicit system level safe set

The safety filter described in Section 3 requires the solution of a QP at each time step. To eliminate
the need for an embedded QP-solver, we present an explicit safe set that can be generated through
the solution of a single LP, solved offline. The optimisation problem solved offline relies on the
parameterisation introduced in Section 3.1, and hence is comparable to Problem (12).

The key idea is that we maximise the size of the set of initial conditions Se, such that the system
is guaranteed to return to that same set Se within a given number of time steps, while always satis-
fying the constraints. Consequently, besides the constraint satisfaction given by Propositions 2, 4,
this is realised by adding the following two constraints

x0 ∈ Se, Rx(zN ,ΦN
x ) ⊆ Se. (14)

Previous approaches to design an (explicit) safe sets (cf., e.g. Wabersich and Zeilinger (2018b)), are
based on a (robust) positively invariant set and offline controller design.In contrast, using system
level disturbance reachable sets, the proposed safe set does not require any controller tuning and
satisfies a weaker periodic invariance condition Gondhalekar and Jones (2011), and hence allows
us to optimise over a simple shape of the safe set, e.g. unit infinity-norm balls. In the following,
we consider for simplicity the safe set Se := {z0} ⊕ αBn∞, with α > 0, but hyperboxes, i.e.,
Se = {z0} ⊕ diag(α)Bn∞, diag(α) ∈ Rn×n with α ∈ Rn could be considered directly. Note
that Inequalities (10) in Proposition 4 have a non-convex bilinearity if we optimise over the matrix
Pinit. Hence, we use the change of variables Φ̃k,k

x := Φk,k
x Pinit, and Φ̃k,k

u := Φk,k
u Pinit in (10)

for lossless convexification. Due to the change of variables, the matrix E in (7) is replaced by
Ẽ(α) := diag(αI, Bw, . . . , Bw) ∈ LN,n×n.

7
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The following optimisation problem yields the proposed explicit safe set with an explicit safe
backup control law:

min
Φ,z,v,α

− α, s.t. [I − ZA −ZB]
[
Φx

Φu

]
= Ẽ(α), (15a)

(12b), (12d), (12e), (15b)

|In,j(zN − z0)|+ ∥In,jΦN
x ∥1 ≤ α, j = 1, . . . , n, (15c)

where In,j is the jth row of In. The constraints (15b) and (15c) are similar from Problem (12f).
We denote the optimal solution of the optimisation problem (15) as Φ⋆, z⋆, v⋆ and α⋆. The explicit
safe set is given by S⋆e := {z⋆0} ⊕ α⋆Bn∞ and K⋆ = (Φ⋆

x)
−1Φ⋆

u characterises a safe affine backup
controller, similar to (5)2. The objective function of (15) maximises the volume of the safe set. The
parameterisation of the controller yields the constraints (15a) as per Proposition 2. Note that the
nominal trajectory (z,v) could also be chosen as zeros in (15), however, especially for asymmetrical
constraints, this may introduce conservativeness. The constraints (15c) guarantee that the system
will robustly return to the safe set within N time steps under the safe backup controller (cf. (14)).
The constraints (15b) guarantee robust constraint satisfaction for any realisation of the disturbance
and for any initial conditions given by (14). Algorithm 1 ensures safety by verifying that the learned-
input uL(t) keeps the system within the safe set S⋆e , which is computed using (15), before applying
it. We note that the condition (16) is a set containment condition, evaluated by only a few arithmetic

Algorithm 1: Explicit system level safety filter
Compute S⋆e , K⋆, z⋆, and v⋆ using Problem (15), Initialise x(0) ∈ S⋆e
for t = 0, 1, 2, . . . do

if
uL(t) ∈ U ∧ {Ax(t) +BuL(t)} ⊕BwW ⊆ S⋆e (16)

then
Apply uSe(t) = uL(t), j ← 0

else
Apply

uSe(t) = v⋆
j +

j∑
i=0

K⋆j,i(x(t− i : t)− z⋆i ), j ← modulo(j + 1, N) (17)

end
end

operations thanks to the simple shape of the set S⋆e .

Theorem 6 The control law resulting from Algorithm 1 is a safety filter and the set S⋆e is the corre-
sponding safe set according to Definition 1.

Proof First, if the input uL(t) is safe, i.e., uL(t) ∈ U ∧ {Ax(t) + BuL(t)} ⊕ BwW ⊆ S⋆e , then,
the state is guaranteed to stay within the set S⋆e , by definition, and hence within the state constraints.
Hence, the safe backup controller can always be applied subsequently to the application of a learned
input.

2. The constraint (15c) guarantees that α⋆ > 0 for Bw invertible and hence Ẽ(α) is invertible.
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We now look at the case of a (potentially) unsafe input uL(t). We denote the last time that the
safety condition in (16) was fulfilled by t̄ ∈ N≥0. The safe backup controller constructed in (15) is
a direct application of Propositions 2 and 4. Hence, starting at x(t̄) ∈ S⋆e , it results that by applying
the affine feedback (17) for N time steps to the system (1), the constraints

x(t̄+ k) ∈ X , u(t̄+ k) ∈ U , k = 0, . . . , N − 1,

are robustly satisfied for any realisation of δ ∈ X0 × WN , i.e., for any x(t̄) ∈ α⋆Bn∞ and any
sequence (w(t̄), . . . , w(t̄+N − 1)) ∈ WN . Along the same lines, the constraint (15c) guarantees
that the system returns to the safe set within N time steps, i.e., x(t̄ + N) ∈ S⋆e . Hence the same
backup controller is still feasible by re-setting t̄ = t.

It results that the backup controller associated to the safe set S⋆e is explicitly described by (17),
and Algorithm 1 implements the associated safety filter as per Definition 1.

Remark 7 Based on the solution of (15), we could also construct an explicit robust control invari-
ant (RCI) set C⋆ as

C⋆ := Conv

(
N−1⋃
k=0

{z⋆k} ⊕ Φ⋆k
x BNn

∞

)
, (18)

where Conv denotes the convex hull. The set C⋆ defines a safe set as per Definition 1. Similar to
CBFs Cheng et al. (2019), the safety filter is implicitly defined by solving the following QP

min
u∈U
∥u− uL(t)∥22, s.t. Ax(t) +Bu+Bww ∈ C⋆ ∀w ∈ Bn∞. (19a)

5. Numerical example

In this section, we demonstrate the benefits of the proposed system level safety filters compared
to state-of-the-art MPSF formulations specifically highlighting improvements in the size of the
safe set and the maximum amount of control intervention. We consider the illustrative exam-
ple of controlling a double integrator system which relates to many practical problems, e.g. a
spacecraft in rotation around one of its axis Mammarella et al. (2018). The dynamics are given

by x(t + 1) =

[
1 1
0 1

]
x(t) +

[
0.5
1

]
u(t) +

[
0.3 0
0 0.3

]
w(k), with |u(t)| ≤ 3, ∥x(t)∥∞ ≤ 5,

∥w(t)∥∞ ≤ 1, t ∈ N≥0. Consider the linear feedback Kf computed via LQR design, with Q = I2,
and R = 102. For this system and a prediction horizon of N = 10, we compare the MPSF safe set
SMPSF Wabersich and Zeilinger (2018a), the maximal RPI set Ωmax, the SL-MPSF safe set SSL-MPSF
(Section 3.2), the SL-based explicit safe set Se (Section 4) and the maximum RCI set Ξmax. Al-
though Ξmax is not practically relevant because of its poor scalability, it serves as a basis for com-
parison as it is the maximum theoretically possible safe set. Using the MPT3 toolbox Herceg et al.
(2013), we find approximations of a minimal RPI set Ωmin, maximal RPI set Ωmax, and maximal
positively invariant set Πmax based on the closed-loop dynamics A + BKf . We use the terminal
set Xf = Ωmax for the proposed SL-MPSF. For the MPSF approach, we use Ωmin for constraint
tightening and Πmax as the terminal set (see e.g. Mayne et al. (2005) for further details).

In Figure 1(right), the safe sets for each method are plotted and their size is compared against
the largest possible safe set Ξmax, with larger sets being preferable. The SL-MPSF’s safe set is

9
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nearly maximal and significantly larger than the one associated with the MPSF, demonstrating the
effectiveness of our proposed method. The explicit safe set covers regions not covered by either
Ωmax or SMPSF. However, in general, the maximal RPI set is not contained within the explicit safe
set because of the simple scalar parameterisation of the safe set.

In Figure 1(left-middle), we show the maximum intervention for any input uL(t) ∈ U for each
point in the safe set given by SL-MPSF and MPSF, where lower values are preferable.

SMPSF

Se

SSL!MPSF

+max

X

%max

0

3

6

m
ax

ju
L
!

v
0
j

Figure 1: Comparison of the maximal control intervention for MPSF (left) and SL-MPSF (middle).
Size comparison for safe set from MPSF SMPSF, explicit Se, SL-MPSF SSL-MPSF, maxi-
mal RPI set Ωmax, maximal RCI set Ξmax, and constraint set X (right).

The results highlight that SL-MPSF is not only able to ensure safety for a larger set of states,
but it also requires a less aggressive modification of potentially unsafe inputs. This allows the
learning-based controller to maintain high performance with minimal interference. SL-MPSF is
hence the less conservative filter to explore the state space with minimal control interventions when
the maximal RCI cannot be computed.

Computation times We uniformly sample 104 initial conditions in X . The MPSF solve time
is 4.8ms± 1.8ms, while SL-MPSF solve time is 65.7ms± 20.0ms, i.e., a factor ≈ 10 slower. In
contrast, the evaluation of the explicit safety filter (see Eq. (16)) takes 0.031ms± 0.028ms, i.e., a
factor ≈ 103 faster compared to SL-MPSF. However, this code has not been optimised for speed.3

6. Conclusion

The paper has presented new predictive safety filters formulation based on SLS techniques, to aug-
ment any control policy (including the important case of learning-based controllers) with safety
guarantees. Two distinct safety filters have been proposed leveraging the flexibility of SLS. The first
method extends MPSF by enlarging the safe set through online optimisation over the robustness-
ensuring tube-controller. This approach allows to verify safety for a larger set of states with
less control intervention, thereby reducing the impact on the performance of the potentially un-
safe controller. The second method presents an efficient explicit safety filter formulation that
does not require solving optimisation problems online or tuning a controller offline. We expect
that the proposed approaches can be extended to the nonlinear setting using the tools developped
in Leeman et al. (2023).

3. The code is available online with permanent link https://doi.org/10.3929/ethz-b-000611665. We
use YALMIP Löfberg (2004) and MOSEK ApS (2021) on a Intel® CoreTM i7-8565U CPU @1.80GHz with 16.0GB
of RAM.
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