
ETH Library

Deciphering the U.S.Diplomatic
Documents with NLP and Graph
Data Science

Master Thesis

Author(s):
Özsoy, Gökberk

Publication date:
2023

Permanent link:
https://doi.org/10.3929/ethz-b-000615495

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000615495
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Deciphering the U.S. Diplomatic
Documents with NLP and Graph Data

Science
Master’s Thesis

Gökberk Özsoy
goezsoy@ethz.ch

Swiss Data Science Center
ETH Zürich

Supervisors:
Dr. Luis Salamanca

Prof. Dr. Fernando Perez-Cruz

June 4, 2023

Abstract

Any corpus of historical records is beyond a simple collection of documents, as it
implicitly hosts a vivid network of connections between entities mentioned within.
In this thesis, we introduce a paradigm for processing large archives as a whole,
which enables to uncover all their value. Main pillar of this paradigm is parsing
and storing the corpus as a knowledge graph. This data representation is not only
flexible, light-weight and exhaustive, but also reachable by a broad community
from domain experts to data-driven scientists. In response, it will nurture a
new set of domain-specific questions, which will be answered by computational
approaches powered by natural language processing, and graph algorithms. We
apply our methodology to the FRUS corpus (records of U.S. diplomatic cables) to
demonstrate how it facilitates the understanding of complex fields of diplomacy,
foreign relations, and politics. As a result, an extensive knowledge graph is built,
enabling explorations unattainable using solely the text transcripts, which further
boosts the value of the corpus. Throughout this thesis, we provide broad analysis
on this knowledge graph to prove the potential of our paradigm.

i

Contents

Abstract i

1 Introduction 1

2 Previous Work 4

2.1 Natural Language Processing . 4

2.2 Knowledge Graphs . 7

2.2.1 Entity & Relation Extraction 7

2.2.2 Entity Linking . 7

2.2.3 Link Prediction . 8

2.2.4 Knowledge Graph Embeddings 8

2.2.5 Centrality Algorithms . 9

2.3 Political Science . 9

2.3.1 Political Science & NLP 10

2.3.2 Political Knowledge Graphs 10

3 Methodology 12

3.1 Knowledge Graph Construction 12

3.1.1 Parsing & Base Graph Population 12

3.1.2 Enrichment . 18

3.2 Knowledge Graph Applications 20

3.2.1 Dynamic Entity Embeddings 20

3.2.2 Knowledge Graph Augmentation 22

3.2.3 Role and Person Importance Scores 24

4 Statistics & Evaluation 25

4.1 Statistics of Knowledge Graph . 25

4.2 Methods Evaluation . 29

ii

Contents iii

4.2.1 Person Unification Performance 29

4.2.2 Person Wikification Performance 29

4.3 Implementation Details . 30

5 Discussion 32

5.1 Basic Analysis . 32

5.2 Redaction Analysis . 35

5.3 Analysis on Dynamic Entity Embeddings 37

5.4 Analysis on Knowledge Graph Augmentation 37

5.5 Analysis on Role and Person Importance Scores 39

6 Conclusion 41

Bibliography 43

A Appendix A-1

Chapter 1

Introduction

The Foreign Relations of United States (FRUS) [1] series is a historical record
collection that reflects major U.S. foreign policy decisions and diplomatic activ-
ities from 1861 to 1988. It is produced by the Department of State’s Office of
the Historian, and consists of 543 volumes over 127 years. Each of these volumes
contain documents from presidential libraries, Departments of State and Defense,
National Security Council, Central Intelligence Agency, Agency for International
Development, and foreign affairs agencies.

The publishing principle states that documents that are selected for declassi-
fication must totally cover the policy targets of the U.S. in that period of history.
Hence, there will be no alteration, deletion, or concealment in the case of defect
or weakness. In this way, FRUS can be seen as an accurate, historically correct,
reliable, and complete entering point to the recent world history, but from a U.S.
point of view.

Many of the volumes include person and term (e.g. abbreviations of in-
stitutions and political terms) annotations. Each annotated person or term is
complemented with a description at the beginning of the volume. In addition,
most of the documents have sender, receiver, and city metadata. Thus, FRUS
corpus is far beyond than a monotonous concatenation of documents.

Knowledge graphs (KGs), also known as semantic networks, have emerged as an
abstraction for representing real-world entities and relationships between them
in a machine-readable format.

A KG is a directed labeled graph which has four main components: node
(entity), edge (relationship), attribute (property), and label. A node can be any-
thing (i.e. objects, concepts, or events), an edge describes a connection between
a source node and a target node with a particular direction. It must have a type
to classify what kind of relation exists between the two. An attribute further
stores information about a node or an edge. Labels group nodes into sets where
all nodes in a set share a common identity. We embody these concepts in the
example below (in Neo4j Cypher notation [2]):

1

1. Introduction 2

(p1:Person {name: ’Richard Nixon’, born: 1913})
(p2:Person {name: ’Jimmy Carter’, born: 1924})
(r:Role {name: ’president of the U.S.A’})
(p1)-[:WORKED_AS {started:1969, ended:1974}]->(r)
(p2)-[:WORKED_AS {started:1977, ended:1981}]->(r)

where p1, p2, r are nodes, WORKED_AS is edge, Person, Role are labels, and name,
born, started, ended are attributes.

KGs usually integrate several sources that host data in different formats.
Through domain expertise and specific needs, a schema (abstract construction
plan) is defined, and extractions of entities and relationships from different sources
are outlined accordingly. To give an example, in this work, we first decide a
schema with a focus on political science needs, then integrate two sources, FRUS
corpus and Wikidata [3], into one KG, after some steps of processing suitable to
the schema.

Wikidata is one of the general-purpose open-world KGs. Notable others are
as DBpedia [4], Freebase [5], and Google KG. Among all, Wikidata acts as a
structured version of the generic knowledge served in Wikipedia. It focuses on
items which represent any kind of topic, concept or object. Each item has a
label, a description and a number of aliases. Items are uniquely identified with
a Q followed by a number. Statements hold various information about an item
(subject) and consist of a property and a value (object item). Properties are
identified with a P followed by a number. Let us give an example:

Richard Nixon (Q9588) is an item.
Jimmy Carter (Q23685) is an item.
President of the United States (Q11696) is an item.
position held (P39) is a property.
Q9588 - P39 - Q11696 is a statement, where Q11696 is the value.
Q23685 - P39 - Q11696 is another statement.

Apart from general-purpose KGs, using KGs in specific domains, such as
retail, entertainment, healthcare, finance, politics, and education, is of great im-
portance to better capture the complexity of these domains, henceforth enabling
a more complete and insightful investigation [6][7].

FRUS corpus is invaluable to historians, but dealing with such a large corpus
end-to-end is beyond human capability. Furthermore, it does not include generic
information about an annotated person’s gender, education, citizenship, role, and
occupation, or a country’s region and cities. Assuming we would have this ex-
tra piece of information, it is still hard to integrate all these seamlessly for an
historian or a political scientist to benefit from.

Here, we advocate that KGs can facilitate the understanding of complex re-
lations between different actors in FRUS corpus. For this, we propose a pipeline

1. Introduction 3

that is generic enough to be applied to other text corpora in different fields.
For constructing this pipeline, we do parsing and enrichment. Former includes
parsing documents, and doing the required data preprocessing to ensure the con-
sistency. Here, parsing returns document’s metadata such as sender, receiver,
city and text. Latter may include NLP methods that helps extracting additional
entities from texts. In our case, these have been topic modeling, named entity
recognition, redaction extraction, and sentiment analysis.

The result is a comprehensive and consistent KG that will allow historians
to reach information easily, formulate their hypothesis, and provide necessary
answers. One can use it at different levels: from simple exploration to advanced
graph machine learning methods. For us, potential research directions include
how political actors change their political positions, how the perception of the
U.S. towards specific topics shifts over time, and which countries, roles, per-
sons, topics or institutions were popular in certain periods, among others. In this
work, we showcase these and other interesting applications possible with our KG.

In summary, our main contributions are:

• To the best of our knowledge, we propose the first domain-specific KG
of U.S. diplomatic relations, integrated with a text corpus, that enables
dynamic analysis of entities for a substantial 127 years.

• We present a paradigm to encode similar corpus or archival records in the
form of a KG, whenever entity-relation notions might be of interest for
further capturing the contained phenomena. This enables to easily harness
NLP methods to further process the related documents, and complement
the graph.

• We adapted graph algorithms for obtaining dynamic entity embeddings,
estimating role and person importance scores, and finding missing relation-
ships in the KG.

• We analyze several important events in the world history from a data science
perspective using our KG.

The rest of this report is structured as follows: Section 2 provides a literature
review on NLP, KGs, and political science. Section 3 explains in detail how we
constructed the KG, and the idea behind each graph algorithm for analyzing
the FRUS corpus. Section 4 evaluates parts of the pipeline qualitatively and
quantitatively. Section 5 discusses the results from the point of view of their
value for an historical analysis of the data. Section 6 concludes with a discussion
of the method, its limitations, future avenues and possibilities.1

1Source code is available at https://github.com/gozsoy/decipher-frus.

https://github.com/gozsoy/decipher-frus

Chapter 2

Previous Work

2.1 Natural Language Processing

Natural language processing (NLP) is an interdisciplinary subfield of linguistics
and computer science that develops algorithms which can understand, interpret
and generate human language.

To understand the field’s current progress, it is enough to observe how quickly
human baselines were surpassed by NLP models in rigorous benchmarks, such as
SuperGLUE [8]. It includes tasks such as word sense disambiguation, co-reference
resolution, natural language inference, and question answering.

In this thesis, we will use a diverse set of NLP tools, from basic string al-
gorithms to complex Transformer-based architectures, for extracting additional
valuable information, and interpreting the historical facts and events reported in
FRUS corpus.

String Algorithms. String distance metrics measure differences between two
string sequences. Levenshtein distance is the minimum number of single character
edits (i.e. insertion, deletion, substitution) necessary to change one string to
other. Damerau-Levensthein distance includes all edit operations of Levenshtein
distance, plus it allows transposition (i.e. swap) of two adjacent characters. If s1
= cs eth, and s2 = c teh, Levenshtein distance becomes 3 (delete, delete, insert),
while Damerau-Levensthein distance becomes 2 (delete, swap).

Jaro similarity is another string distance metric, computed as following:

simj =

(
0, m=0
1
3(

m
|s1| +

m
|s2| +

m�t
m), otherwise

where m is the number of matching characters, t is number of transpositions,
and |si| is length of string si. Here, two characters from s1 and s2 are considered
matching if they are the same, and not far apart from each other bmax(|s1|,|s2|)

2 c�1
characters. Jaro-Winkler similarity favors strings in the magnitude of the length

4

2. Previous Work 5

they match from the beginning.

simw = simj + lp(1� simj)

where simj is Jaro similarity, l is length of the common prefix up to max of 4
characters, and p is scaling. If s1 = cs eth, and s2 = c teh, Jaro similarity is 0.87,
and Jaro-Winkler similarity is 0.89, if p is 0.1.

Another set of algorithms relevant to this thesis are methods to compute
textual richness (a.k.a. lexical richness, vocabulary diversity) [9]. They measure
the range and diversity of the vocabulary deployed in a string.

Type Token Ratio =
t

w
, Corrected Type Token Ratio =

tp
2w

where t is unique token count, w is total token count. Latter is introduced to
mitigate effects of very long texts.

Named Entity Recognition. Named Entity Recognition (NER) deals with
labeling sequences of words in a text which are the names of persons, organiza-
tions, countries, nationalities, companies, geographical locations, events, dates,
monetary values, measurements, numerals etc. Reformulated as a machine learn-
ing task, conditional random fields [10], and more recently BERT-based methods
[11] reach state-of-the-art in datasets such as CoNLL 2003 [12]. NER is especially
useful for our work since person and institution annotations in some volumes are
missing in FRUS corpus, hence it could be used to extract these further for a
more complete KG.

Topic Modeling. Topic modeling is commonly used for automatically explor-
ing latent topics and themes within a text corpus. Topic modeling algorithms
are unsupervised, and the resulting topics are actually groups of words, which
need further interpretation by humans (i.e. naming a topic, or reducing the topic
count).

Latent Dirichlet Allocation (LDA) [13] is a generative model that represents
documents as mixtures of topics, and topics as mixtures of words. It processes
each document in a bag-of-words format, ignoring the word order, and learns the
LDA parameters (per document topics distributions, and per topic word distri-
butions) by word co-occurrence statistics. Optimization is done via Bayesian in-
ference. A major drawback of LDA is that it cannot capture word and document
semantics. Dynamic LDA [14] captures the evolution of topics in a temporally
organized text corpus (i.e. documents with dates) with the following modifica-
tion: In LDA, the parameters of both Dirichlet distributions which are used as
priors for choosing topic proportions per document, and word proportions per
topic are single, hence static. In Dynamic LDA, they are modelled as random

2. Previous Work 6

variables depending on their previous values. This enables understanding how
topics may gain or lose importance, and how these topics can be characterized
by different words over time.

A semantically more powerful model is BERTopic [15], which leverages Sec-
tion 2.1 Sentence Transformers for topic identification. It starts by obtaining
document embeddings using S-BERT, then aggregates these with a density-based
clustering algorithm (e.g. HDBSCAN). Finally, it concatenates all documents for
each cluster to create one big document and computing TF-IDF scores to identify
most critical and unique words for each cluster. The resulting topics are more
interpretable than LDA because of the semantical embedding process. However,
it is not as mathematically grounded as LDA. A dynamic version exists as well
with added components to above pipeline.

Sentiment Analysis. Sentiment analysis identifies the emotional tone in text.
It is already a huge field in NLP, with lots of different variants and applications.
Specifically for this project, we focus on target based sentiment analysis, which
aims to identify a fine-grained sentiment towards a specific entity in a given text.
For example, in "The pancakes were delicious, but service was slow.", it should
find a positive sentiment towards pancakes and negative towards service. In
Sentihood dataset [16], each location (urban neighborhood) mentioned in a text
has sentiment labels. Authors treat the problem as sentence pair classification
task with BERT [17]. In addition to the original sentence, they use an auxiliary
sentence appended to it such as What do you think of <target>? as input to
BERT, where the label is <target>’s label from dataset. This solution is only
partial, and does not fit to most of the real-world corpora, including ours.

Emotionmeter [18] finds a text’s emotionality score. First, the authors train
word embeddings on a political corpus. Then, using a list of affection and cog-
nition words, they compute similarity of a given text’s average word embedding
to that of affection and cognition words. Finally, emotionality is defined as the
ratio of its affection score to cognition score. Even though using average word
vectors for such a delicate task might not capture subtleties, it is a noteworthy,
creative and unsupervised perspective to sentiment analysis.

Sentence Transformers. A Transformer [19] is a revolutionary deep learning
model which introduced self-attention mechanism and parallel token processing,
allowing efficient handling of long-range dependencies in text. BERT [20] is a
Transformer based model that is pre-trained on two tasks: predicting missing
words in a sentence, and predicting if the second sentence is the continuation of
the first. This way, it learns to capture contextual information of text, and excels
in tasks such as text classification, and question answering.

Sentence Transformers (S-BERT) [21] is the product of a supervised con-
trastive learning schema that aims to map semantically similar sentences closer

2. Previous Work 7

in the embedding space. Given a text pair, both texts are passed through a
BERT independently, then cosine similarity is computed between the resulting
embeddings where the label is -1 for dissimilar pair, and 1 for similar. This type
of BERT is dubbed as bi-encoder, in contrast to cross-encoder as in classical
BERT setting where it encodes both sequences in one pass. In addition, it is
siamese because the model weights are the same when encoding two different in-
puts. S-BERT produces more meaningful embeddings, at the sentence level, than
BERT, thanks to its training regime, and is useful for semantic textual similarity,
semantic search, paraphrase mining, information retrieval, and clustering.

2.2 Knowledge Graphs

This section presents several highly active research areas [22] relevant to this
thesis in the intersection of KGs and NLP.

2.2.1 Entity & Relation Extraction

An important step of constructing KGs is extracting semantic relationships be-
tween entities from raw text. In earlier attempts, the task is solved via a two-
stage pipeline, where the first stage is named entity recognition, and the second
is relation type classification between recognized entities [23].

An end-to-end solution, REBEL [24] frames the problem as seq2seq task hence
uses Encoder-Decoder Transformer architecture, where the input is a raw sen-
tence, and the outputs are triplets present in that sentence. They are generated
in the same order as in the sentence, and special tokens are used for annotation
of head, tail entities, and their corresponding relation for each triplet. They use
a dataset compiled from Wikipedia abstracts with the most common 200 relation
types retained, which is more diverse than other available datasets.

In FRUS corpus, document metadata as well as in-text annotations naturally
creates relations by the file structure. On the other hand, semantic relations (the
focus of this section) is harder to obtain. FRUS corpus is abstract, and complex.
Information is present mostly in dialogue format, and full of hidden mentions to
historical facts and events. Let alone if 200 relation types from REBEL would be
enough to map historical phenomena, it may not even be possible to define what
has discussed in the triplet format (e.g. See the sentence Vietnamese people have
faith in their rulers. Which are the entities, and relations?).

2.2.2 Entity Linking

Entity linking (disambiguation) is the task of matching each entity mention in
a given input text with the entries available in a knowledge base. It is called

2. Previous Work 8

Wikification if the knowledge base is Wikidata [3].

In BLINK [25], authors devise a scalable zero-shot two-stage pipeline. At first,
they use two pretrained BERTs, one for embedding Wikipedia entry descriptions,
and the other for embedding the input sentence. The dot products between
sentence’s CLS token and those of Wikipedia entries are computed, and top
ones are regarded as candidates. In the second stage, the sentence and each
candidate is concatenated, and fed into a pretrained BERT for cross-encoding.
The maximum score candidate is then the corresponding Wikipedia entry.

ExtEnD [26] reformulates the problem as span extraction task similar to ques-
tion answering using BERT. Input sentence containing entity mention is concate-
nated with titles of Wikipedia entries, and is fed to a Transformer. The output
is the start and end tokens which indicates predicted Wikipedia entry.

2.2.3 Link Prediction

Link prediction (a.k.a Knowledge Graph Augmentation) is the task of predicting
missing or potential relations between entities in a KG. Even state-of-the-art
KGs suffer from incompleteness. For instance, it has been reported that over
70% of person entities have no known place of birth, and over 99% have no
known ethnicity in FreeBase [27].

A common approach to this problem is obtaining entity embeddings using
one of the embedding techniques, some of which are mentioned in Section 2.2.4.
Later, an entity pair is featurized using an aggregation function such as Hadamard
product, or L2-distance between pair’s embeddings. The same entity pair is
labeled as adjacent or not depending on whether they are connected or not in
the KG. A binary classifier learns how to map connectivity patterns embedded
in features to labels. Finally, the trained model can be used to predict new
relationships between entities that are not already connected.

2.2.4 Knowledge Graph Embeddings

KG embeddings are used to create dense vector representations of entities (and
sometimes relations) to be used in downstream tasks. These embeddings give
information about entities’ similarities and network structure.

Node2vec [28]. Node2vec for graphs is simply what Word2vec is for text.
The notion of co-occurrence in a window is done by random walks. Given a
starting node, we select a neighbor of it randomly, and move to this node, then
repeat the same process for a pre-defined number of steps. A combination of
breadth-first and depth-first search provides local and global perspective from
graph structure, respectively. The resulting node chains (i.e. sentences) is used

2. Previous Work 9

to train embeddings which maximizes their likelihood, combined with negative
sampling. This algorithm works in homogeneous graphs, and does not produce
edge embeddings.

TransE [29]. TransE is an algorithm for learning both entity and relation em-
beddings from multi-relational graphs. Given a triplet (h, l, t) where h is source
entity, t is target entity and l is relation between them, it learns embeddings
to ensure h + l ⇡ t. The training objective is triplet loss where the euclidean
distance d(h+l, t) is minimized against the distance of a corrupted non-existing
triplet.

FastRP [30]. FastRP (Fast Random Projections), claims to be 4000 times
faster than Node2vec, by using very sparse random projections. Starting with
random node embeddings, it iteratively averages over neighboring nodes. At the
end, a node’s embedding is decided by a radius of neighborhood depending on the
iteration count. This optimization free method makes it scalable. Like Node2vec,
it does not produce edge embeddings.

Suitable inputs to machine learning models, these embeddings are widely used
in different fields, from fake news detection [31] to collaborative filtering [32].

2.2.5 Centrality Algorithms

Centrality algorithms find a particular entity’s importance (in terms of numerical
score) in the KG. Each version defines its own perception of importance, hence
suitable for different applications.

Degree centrality is the count of incoming or outgoing (or both) edges. Close-
ness centrality is the inverse of farness, where farness is the sum of distances
from a particular node to all other nodes. Distance is computed as shortest path
between two nodes. Betweenness centrality is how many times a node occurs
on the shortest path between two other nodes. Eigenvector centrality computes
the score of a node as a function of scores of its neighbors. Hence, a high score
means the node itself is connected with many important nodes. The scores are
initialized to a default value and they are computed iteratively until convergence.
PageRank centrality [33] is a variant of eigenvector centrality.

2.3 Political Science

The graph-based FRUS corpus presented in the current thesis will facilitate re-
search in political science. In this field, scientists commonly use off-the-shelf NLP

2. Previous Work 10

methods to analyze text, aiming at capturing political patterns. However, KG
use is rather rare, but pioneering works have proved its potential. In this section,
we will explore these two directions in more detail.

2.3.1 Political Science & NLP

U.S. Congressional Record spans from 1858 to 1994 and includes 6 million speeches
uttered by the congress members. It is a huge dataset, and authors use it to ana-
lyze emotionality change over time depending on political party, gender, era, etc.
[18] using their emotionmeter explained in Section 2.1 Sentiment Analysis.

State Department records from years 1973-1979 transmitted to and from Iran
is used to conclude that officials in Iran had actually reported on the protests
leading to Islamic Revolution, but D.C. officials could not comprehend the sever-
ity of the situation. The authors use basic traffic statistics, and dictionary based
sentiment analysis to obtain the reported results [34].

UK Government Web Archive [35] holds UK central government information
published on web from 1996 to the present day. Researchers develop a method
for efficient semantic search in this archive [36]. They first extract named entities
within each text, then train document embeddings via doc2vec [37] which enables
searching on entities, or fetching similar documents for a topic.

In an another work in the same direction, document embeddings is used to
capture dynamic shift of political actors through time [38]. In their formulation,
all documents produced by a party for a specific time bin are concatenated into
one, so the document embedding can be treated as political party embedding.
In this way, they could compare ideology shifts reflected by party embeddings,
and also by comparing to keywords such as abortion, or immigration. They use
congressional records for US, UK, and Canada.

Lastly, a Greek parliamentary corpus is presented which spans from 1989 to
2020 which consists of 1 million speeches with speaker metadata. The authors
use this corpus for analyzing word use change in Greek language though it is a
short span and a specific domain [39].

2.3.2 Political Knowledge Graphs

An early effort for political KGs is BBC Politics Ontology [40]. It is an ontology
particularly designed for local government and elections with UK Local, and
European Elections in May 2014.

POLARE [41] concerns with producing a KG about political agents in Brazil.
A major data source is House of Deputies and Senate, but crowd sourced con-
tributions have been made, although laborious and not scalable. They focus on

2. Previous Work 11

persons, organizations and their connections, but also capture legislative aspects
and electoral processes.

On another work, authors compile a fusion KG obtained from heterogeneous
sources including official sources about Australian Parliament members, Aus-
tralian Twitter’s users tweeting on politics, and related metadata, WordNet, and
Politics domain ontology [42]. They use the final KG for producing KG em-
beddings to show persons with similar political ideologies place closer in the
embedding space.

Moreover, tailor made task specific political KGs exist as well. For example,
authors extract belligerents table from each info box of Wikipedia articles on
conflict. Then, they create a friend-enemy graph, obtain node embeddings and
try to classify if a particular pair of entity is enemy or friend [43].

Political perspective detection is the task of obtaining political leaning of a
text piece (e.g. leftist, rightist). In this direction, authors craft a domain-specific
political KG to be used as an external source base [44]. For this, they select a
set of political actors from past decade U.S. politics, then use their Wikipedia
pages and simple relations (homeland, party, etc.) as base graph. They support
it with expert views from two think-tanks, that provide information about which
political actor supports/opposes others. This input is precious, and highly useful
as it provides hidden patterns beyond facts, yet it is not scalable especially for a
corpus like ours.

At this point, our difference is that we have a rich and interesting set of
intelligence documents on a long span. This allows us to analyze how entities in
our KG change their positions over time. In other words, our KG is dynamic in
contrast to first 3 works being static. In addition, we aim our paradigm to be
fully automatic with minimal manual work, general, extensive, and sourced by
public datasets, in contrast to last 2 works.

Chapter 3

Methodology

This thesis has two main parts: KG construction, and its analysis using both
basic KG probing and more advanced graph algorithms. Former describes the
conversion of FRUS corpus into a structured knowledge base supported by Wiki-
data, and latter shows how to gain insights about historical actors automatically
and in scale using constructed KG. Sections and subsections are matched with
corresponding files in codebase, which is further explained in Section 4.3.

3.1 Knowledge Graph Construction

In this section, we start by exploring the XML structure of FRUS files, and how
to parse it appropriately. We then explain our algorithms for person and term
unification and wikification. In the second part, we elaborate KG enrichment,
which consists of named entity recognition, redaction extraction, topic modeling,
and target based sentiment analysis.

3.1.1 Parsing & Base Graph Population

XML Structure Discovery

FRUS corpus is publicly available in digital format1. Each of its XML files repre-
sents a single volume, and they have been prepared according to Text Encoding
Initiative (TEI) P5 guidelines. The developers also explain project-specific en-
coding guidelines and conformance requirements in a schema2. In FRUS, volumes
are simply the concatenation of all documents on a particular topic for a certain
president’s term. A document is the declassified historical record itself.

At this point, we need to understand this schema, parse it appropriately, and
estimate importance of XML tags and attributes on the scale if they can add
knowledge to our graph. XML is an inherently hierarchical data format, and the

1
https://github.com/HistoryAtState/frus

2
https://github.com/HistoryAtState/frus/blob/master/schema/frus.odd

12

https://github.com/HistoryAtState/frus
https://github.com/HistoryAtState/frus/blob/master/schema/frus.odd

3. Methodology 13

<?xml version="1.0" encoding="UTF-8"?>
<TEI xml:id="frus1969-76v30"

<teiHeader>...
</teiHeader>
<text>

<front>...
</front>
<body>

<div type="compilation" xml:id="comp1">
<div type="document" xml:id="d1">

document metadata, title, free text
</div>
other documents...

</div>
</body>
<back>...
</back>

</text>
</TEI>

Figure 3.1: XML hierarchy of FRUS volumes

best way to represent it as a tree. For parsing, we use Python’s standard library
ElementTree XML API3. We visualize the common hierarchy of files in FRUS
in Figure 3.1. Note that small variations occur from this structure across files.
Please refer to one of the volumes for further insight.

<teiHeader> has <fileDesc>, <encodingDesc>, <revisionDesc> children
tags, which hold metadata information about the current volume, paper to dig-
ital layouts and style definitions, and revision history, respectively. Metadata
information include series name, sub-series name, volume number, volume name,
publication information.

<front> has <preface>, <table-of-contents>, <sources>, <terms>, and
<persons> children tags. Among them, <terms> and <persons> have particular
importance, because they hold annotation id, name, and description information.
Persons and terms in <div type="document"> are tagged with these ids, which
we can easily parse and extract. An item from <persons> is depicted in Figure
3.2.

<body> holds the documents, which are our focus. From now on, we refer
to <div type="document"> as document tag. For document tag’s subtype at-
tribute, FRUS has two options: ’historical-document’ or ’editorial-note’. Latter

3
https://docs.python.org/3/library/xml.etree.elementtree.html

https://docs.python.org/3/library/xml.etree.elementtree.html

3. Methodology 14

<item>
<hi rend="strong">
<persName xml:id="p_AC8">Albert, Carl</persName>,</hi>
Democratic Congressman from Oklohama
</item>

Figure 3.2: An exemplary person annotation in FRUS

is not historical, but editor’s notes explaining particular events in the course
of a particular era. Document tag’s children tag variety (42 different tags) is
the highest across all XML structure. We investigated each tag, and its con-
tents to understand which stores important information about the document.
<list>, <p> hold free text, <head> holds the title of document, chapter or com-
pilation, <persName>, <gloss> hold person and term ids, respectively, whose
annotation information is given in <front>. <placeName> is the city the doc-
ument was sent from. <signed> holds the signed person’s name. These are
the tags we will use in KG construction. The tags we do not utilize in this
thesis but might be useful in future iterations are: <note> holds footnotes,
<ref> cross references to other documents, <table>, <row>, <cell> represent
table occurring in free text. The following are the tags which do not hold
useful information, and mostly about style and layout: <pb>, <hi>, <seg>,
<idno>, <lb>, <pageline>, <attachment>, <opener>, <date> (already exists as
attribute in <div type="document"> tag), <label>, <item>, <quote>, <salute>,
<affiliation>, <postscript>, <closer>.

Basic Extraction

Given the exploratory nature of the analysis currently intended of the FRUS vol-
umes, and with the light of an abstract construction plan in our mind, we parse
the files. For each file, we iterate over its document tags and extract the follow-
ing fields: document id, document subtype (i.e. historical-document or editorial-
note), date, year, presidential era, title, source (i.e. where the document is stored
physically), persons who sent the document, persons who received the document,
persons mentioned in the document, terms mentioned in the document, city where
the document was sent from, institutions who sent the document, institutions who
received the document, free text (i.e. the body of the document).

1. Document id is the concatenation of volume number and xml:id attribute
of document tag, such as frus1969-76v30_d1.

2. Document subtype is subtype attribute of document tag.

3. Date and year are obtained from doc-dateTime-max attribute of document
tag.

3. Methodology 15

4. Era is obtained automatically by comparing the document’s date with pres-
idential term dates. Presidential term dates are obtained from Wikipedia4.

5. Title is obtained from extracting text residing inside the <head> child of
document tag.

6. Source is obtained from the first <note> child of document tag which has
source attribute. This is in accordance with FRUS guidelines.

7. City is obtained by finding <placeName> child, if exists, and extracting text
inside of it.

8. <persName> child of document tag has the the following attributes: corresp
with values of person identifiers, type with values of from or to. Persons
who sent the document are annotated with type="from", and persons who
received the document are annotated with type="to". Persons mentioned
within the document do not have type attribute. All annotations have
corresp attribute.

9. <gloss> child of document tag has target attribute with values of from,
to, or term ids. Here, from and to hold free text indicating the document’s
sender and receiver institution, such as Embassy in Ankara or White House.
When target’s value is term id, it refers to term annotation at that point.
Thus, <gloss> has dual duty.

10. Only <p>, and <list> children of document tag contain free text. If we
extract these from footnotes (i.e. <note>) and concatenate their contents,
we obtain the document’s free text.

All these efforts lead us to the KG structure shown in box A of Figure 3.3.

Person Unification

Unification, record linkage, or entity resolution, is the process of finding same
real-world entity with different names across volumes. For example, the Amer-
ican president Richard Nixon is referred to as "Richard M. Nixon", "Richard
Milhouse Nixon", "Richard Nixon", and "Nixon Richard" throughout FRUS.
This is without considering possible typos that might exist in the text. Besides,
as FRUS editors confirm, identifiers are useful only for single-volume purposes,
so we cannot understand automatically that these names refer to same person.
To solve this issue, we implement an iterative algorithm for unification:

1. We extract persons from every volume which has <persons> tag within
<front>. Each person has a name, volume-specific identifier (id), and a
description (mostly about that person’s role in that volume or in general).

4
https://en.wikipedia.org/wiki/List_of_presidents_of_the_United_States

https://en.wikipedia.org/wiki/List_of_presidents_of_the_United_States

3. Methodology 16

2. We reduce exactly matched names (i.e. all exact "Richard Nixon"s) and
concatenate their ids and descriptions.

3. We reduce names with exactly same words but different combinations (i.e.
"Richard Nixon" and "Nixon Richard") and concatenate their ids and de-
scriptions. We do this by splitting each name by whitespace, and concate-
nating its words according to alphabetical order. We call this order unified
name. For example, "Richard Nixon"s unified name is "Nixon Richard".
This and previous steps cannot generate false positives, because they are
deterministic.

4. The last step considers reducing near-duplicate names and obvious mis-
spellings. We define misspelling between a name pair if its Damerau-
Levensthein distance is at most 1. We define a name pair near-duplicate if it
has at least two common words, plus either Damerau-Levensthein distance
is at most 5 or Jaro similarity is at least 0.9. These distance conditions are
subjective, and the cutoff values could be treated as hyperparameters. We
think these values are conservative to dampen potential increase in false
positive rate. To give examples, a name pair merged via misspelling condi-
tion is "Abdelaziz Bouteflika" and "Abdelaziz Bouteflicka". A name pair
merged via near-duplicacy is "Muhsin al- Aini", "Muhsin al-Ayni (Aini)".

At the end, we have a unified name, name list (i.e. different names reduced
into corresponding unified name), identifier list, and description list per person.
In Section 3.1.1 Person Wikification, we will match each person with their Wiki-
data entries, if exist, and further do some record linkage on found entries.

Person Wikification

In our work, we use entity linking for matching persons with their corresponding
Wikidata entries, if exist. Our entity linking method differs from the works
mentioned in Section 2.2.2, because we already know the entity category (e.g. Q5
for persons), hence we do not need any textual context surrounding the entity,
nor a scoring mechanism among candidate Wikidata entries.

Wikidata is queried using SPARQL. Given a person processed in Section 3.1.1
Person Unification, for each of that person’s names in its name list, we search
if a Wikidata entity exists (i.e. ?entity P31(is_instance) Q5(human)). See
Figure A.1 for corresponding SPARQL query. For some common names, mul-
tiple matches occur, along with the person we are looking for. In this case, we
use Sentence Transformers (S-BERT) for comparing Wikidata person descrip-
tion against FRUS person description. First, we compute the average S-BERT
embeddding of the person’s FRUS descriptions. We use averaging because we ob-
serve that same person tends to have slightly different FRUS descriptions across
volumes depending on the annotator’s explanation. Later, we obtain S-BERT

3. Methodology 17

embeddings for each candidate Wikidata entry description. These descriptions
tend to be short sentences about that person especially featuring role or occupa-
tion. Finally, we select the Wikidata entry whose embedding has highest cosine
similarity with average FRUS embedding. Having linked persons with Wikidata,
we reduce persons who are not unified during person unification but have the
same Wikidata entries.

We can further fetch information from Wikidata for the persons who have
Wikidata entry. With appropriate SPARQL queries, we extract gender, reli-
gion, school, occupation, positions held (i.e. role), citizenship, and political party
membership. Refer to Figure A.2 for an exemplary SPARQL query for political
party membership. Among them, position held, citizenship, and party member-
ship include start and end dates, which we obtain as well. This is in line with
the dynamic nature of our KG, where nodes and relationships have timestamps
when available. In addition, we fetch country information for political party and
school. Wikidata itself is not complete, therefore will not be ours. In Section
5, we report completeness statistics, and develop a solution for augmenting our
KG.

Term Unification

We extract terms from every volume which has <terms> tag within <front>.
Each term has a name, abbreviation, and volume-specific identifier. A term’s
scope is broad: it can be an institution (e.g. NATO), a common idiom (e.g. FY
for fiscal year), a location (i.e. CV for Central Vietnam), and more. Similar
to person unification, we reduce exactly matched names and concatenate their
ids and abbreviations. Second, we reduce names with exactly same words but
different combinations and concatenate their ids and abbreviations. The last step
considers reducing obvious misspellings. We define misspelling between a name
pair if its Damerau-Levensthein distance is at most 2. This is subjective, and it
could be treated as hyperparameter.

At the end, we have a name, abbreviation list, id list per term. Here, a term
mentioned in a document is a clue about its content. Hence, terms can be used
as annotated keywords. We admit that term wikification is very challenging, as
we do not know which entity to search for unlike in person wikification. Then,
scope becomes whole Wikidata, and search based on just title matching returns
many unrelated entries, requiring laborious post processing. Assumed this could
be done, it is questionable if we should seek for a Wikidata entry for some terms
such as alternating current (AA), oiler(vessel)(AO), or important question(IQ).
For all the aforementioned reasons, we do not do term wikification.

3. Methodology 18

City-Country Matching

In Section 3.1.1 Basic Extraction, we extracted source city for each document,
available in free text. In this section, we aim to process free text, and match
each city with its country, which would contribute another level of depth to our
KG. In contrast to Section 3.1.1 Person Wikification, we do not know which en-
tity in Wikidata to look for. Source city within <placeName> can be city, state,
sub-country, specific area, or country itself, depending on the elaboration of doc-
ument’s reporting person. On the other hand, we cannot blindly query Wikidata
for name match because of the overwhelming quantity of towns, and villages
there. For example, there are many "Naples" in U.S., beyond the city in Italy in
general search. Same happens with Chinese village, or Spanish-Latin American
place names. For this, we designed a solution that is hugely automatized, but
still requires manual check. This check is optional, and leads highly successful
match, but can be time-consuming depending on aimed accuracy.

First, we split free text by comma. The second string (extension) usually is
a general place name, while the first one is specific (i.e. Moscow, Russia). Then,
we use a trusted city, sub-country, country database [45] [46] to match if the
extension is either subcountry or country. If no extension exists, we search for
the string itself as well. The purpose of this step is quickly matching strings that
are supposed to be place names. Here, we observe that source cities mentioned
in FRUS are usually important cities (e.g. capitals, big cities, war-time focal
points), hence likely to appear in the mentioned database. At the end, several
candidate countries might occur that needs to be resolved manually.

Second, for names with no city-country match in the first step, we query
Wikidata with tight conditions: match occurs if place is capital city Q5119, or big
city Q1549591. See Figure A.3 for the SPARQL query for searching if given city
is capital. At the end of this step, manual check is done to detect any mismatches
due to querying. We implemented code in a way that this and previous checks
can be done at the same time.

Finally, we search for Wikidata entries of countries found in this process via
?country P31(is_instance) Q6256(country). With this, we can easily do
country-wise analysis, and complement the KG with rich statistics. Note that
we have not linked cities to their Wikidata entries as we have not deemed this
necessary.

3.1.2 Enrichment

Named Entity Recognition

In FRUS corpus, only persons and institutions are annotated. However, nation-
ality, country, organization or events mentioned in document may provide clues

3. Methodology 19

about content, and topic. We extract named entities with Spacy’s NER [47]. We
exclude date, time, quantity, ordinal, cardinal, money, and percent values. As
some volumes do not have person and term annotations, NER can be used to
extract these as well in future iterations.

Redaction Extraction

Omitted text that remains classified after declassification review is called redac-
tion. In FRUS, redactions are in the format of italic string in between bracketed
insertions within the document’s text. For example [<hi type="italic"> 1
line not declassified. <\hi>]. The amount of redacted material has been
noted by indicating number of lines or pages of source text. Redactions are im-
portant as they tend to hide most critical intelligence actions such as person,
decision, money amount, or place name.

For each <hi type="italic"> child of document tag whose text has "not
declassified" sequence in between <hi> tags, we obtain that text. This is a semi-
structured text, so not unified, but we want to obtain both redaction amount and
type for better analysis. We say semi-structured because editors usually report
redaction type within a small set of nouns such as line, paragraph, subparagraph,
name etc. Plus, redaction text is usually duplicated with same information such
as "5 lines (1/2 paragraphs) not declassified".

Considering these, we first compute type frequencies across all redactions
using Spacy’s POS tagger and count nouns. Type ‘line’ has the overwhelming
majority. Then, if duplication occurs, we only proceed with most frequent type.
For example, we reduce above example to "5 lines not declassified". Finally,
we detect numerical expression which quantifies redaction type, with spacy’s
like_num function, and come up with a particular redaction’s amount and type
information separately, ready for analysis.

Topic Modeling

Topic modeling provide general view of semantic landscape, show most frequent
topics, and interconnect documents across different years. We use both LDA
and BERTopic in FRUS. For BERTopic, we use two flavors: one with original
documents, another with named entities removed from the documents. Latter is
considered because, in the former case, most important words to describe topics
are usually geographical places, or important person names. By removing named
entities we intend to obtain general topics agnostic to specific events. Topic
count is 50 for LDA, whereas BERTopic has a higher limit (250), which enables
to reveal more fine-grained details. In any case, we provide all 3 models in our
KG. The flexibility is in that researchers can generate case-specific topics, and
use our modular approach to add and analyse these via the KG.

3. Methodology 20

Target Based Sentiment Analysis

In Section 2.1 Sentiment Analysis, we explain the difficulty of this problem and
the lack of robust solutions. Here, we provide a solution [48] to enrich our KG
even more. The polarity score (i.e. positive/negative) of a particular entity in a
document is computed as the average polarity scores of adjectives occurring in
the sentences that entity is present in. Adjectives are detected by Spacy, and
word sentiment scores are obtained from textblob [49]. It is important to remark
that this approach is error-prone, and should be interpreted cautiously. Still, in
average, i.e. not at the level of individual instances, these results should capture
interesting semantic trends. Lastly, we note that this method gives U.S. biased
entity sentiment estimates, as the reporters are U.S. officials.

Expanded Schema

We have added various features to our KG since we have introduced it first
in Section 3.1.1 Basic Extraction. These are person wikification, city-country
matching, and enrichments. The expanded version of our KG is shown in part
B of Figure 3.3. This schema does not show node attributes such as document
length, lexical richness, person name, or topic details. For a complete list, please
refer to frus_conversion.py in codebase.

3.2 Knowledge Graph Applications

We now have a huge graph-based dataset that hide many interesting patterns
within its connections. In this section, we put forward several applications pow-
ered by node embeddings, centrality algorithms, and link prediction to uncover
these patterns.

3.2.1 Dynamic Entity Embeddings

Word2vec’s "A word is known by the company it keeps." philosophy marked a new
era in NLP. Here, following the same idea, we propose dynamic (i.e. temporal)
entity embeddings which allow historians to practice comparative history in scale.

Countries adjust their foreign policy in the course of history due to war, col-
laboration, economic interests, etc. Therefore, entities in FRUS are in constant
movement, and this is reflected through documents. We think that an entity’s
shift can be obtained by reviewing most frequent entities it co-occur within dif-
ferent time slices. In other words, we say that frequently co-occurring entities are
contextually similar. This alone can give clues about the content and reason of
that entity’s presence. Furthermore, combined with the enrichment options we

3. Methodology 21

Figure 3.3: Base (A) and Expanded (B) Schema of our Knowledge Graph

provide, it enables full historical view instantly for any entity. Here, an entity
can be person, institution, or one obtained from named entity recognition. Our
pipeline is as follows:

1. We use named entities recognized in Section 3.1.2 Named Entity Recog-
nition, and put a threshold on corpus-wide count to exclude infrequent
entities.

2. We bin entities using the year of the documents they are mentioned in. Bin
size can be adjusted. We use 4 years windows (e.g. Angola 62-66).

3. We created a relation (NEIGHBOR) in our KG between each co-occuring
entity pair within a document. We set the relation weight to 1 for newly
connected entities, and increase it by 1 for existing connections (that have
already been connected in another document). We illustrate this process
in Figure 3.4. This way, relation weight represents how frequently a pair

3. Methodology 22

Figure 3.4: Conversion of document-entity mentions into homogeneous entity
co-occurance graph

co-occurs for a certain time period.

4. Using this homogeneous entity graph, we apply node embedding methods
(Section 2.2.4), namely FastRP and Node2vec, to obtain dynamic entity
embeddings.

After these steps, we can start analysis. For example, we can obtain which entities
are the most similar over time using cosine similarity between entity embeddings.
We will further discuss this in Section 5.

3.2.2 Knowledge Graph Augmentation

Our KG is incomplete, as reported in Section 5. Incompleteness comes from two
sources mainly: Wikidata is incomplete to provide religion, school, political party,
etc. for all matched persons, plus our SPARQL query to find person names in
Wikidata looks for an exact name match so misses some persons who have entry,
but with a different denomination.

KG augmentation (i.e. link prediction) deals with this problem. Given that
many Person nodes are not linked to Wikidata, we leverage this technique to
try find as much of the missing information as possible. In FRUS, we have
description for each annotated person, which usually describes role, occupation,
and nationality. High similarity between FRUS descriptions might indicate same
role, occupation, citizenship, party or religion information (nodes), and we use
this as proxy information to perform link prediction. Our pipeline is as follows:

3. Methodology 23

Figure 3.5: Similar FRUS descriptions give clues for identifying potential links.

1. We compute the average S-BERT embedding of each person’s description,
using the results from person unification.

2. We find 10 (hyperparameter) closest persons to each person in terms of
cosine similarity, and create a relation (SIMILAR_DESCP) in our KG between
these.

3. We project our KG depending on the task. For example, if we are going
to predict missing BELIEVED relationships between Person and Religion
nodes, we only include Person, Religion nodes, and BELIEVED, SIMILAR_DESCP
relationships. Please see visualization provided in Figure 3.5.

4. We split BELIEVED relationships in the projected graph into feature set,
training set, and test set.

5. We compute node embeddings by only using nodes connected by BELIEVED
relationships in feature set, and all SIMILAR_DESCP relationships. Embed-
dings blend description similarity, and religion information smoothly.

6. We obtain relationship features of a node pair, which is computed as Hadamard
product between that pair’s previously computed node embeddings.

7. We train logistic regression model on BELIEVED relationships in training
set where positive label means relation exists between a node pair, and
vice versa. This way, the model understands what kind of feature pattern

3. Methodology 24

drives into relation existence. For training, we need negative labels as well
to counterbalance probability distribution, and Neo4j provides these from
pairs which have not connected in projected graph.

8. Finally, we can use the trained model to predict new connections in our
KG (i.e. religion information for persons without Wikidata entries). For a
node pair, we compute Hadamard product between their node embeddings,
then pass it through the model to get the probability of if a relation exists.

Steps 3-8 can be easily operated by Neo4j Link Prediction pipeline [50]. We
report qualitative analysis on performance in Section 5. It is important to stress
out that our solution should be treated more as a support to the job of human
annotators, and mostly valid from the point of view of global results, but not
individual cases. It works in scale so annotating from scratch takes more time
than accepting or rejecting the model’s prediction.

3.2.3 Role and Person Importance Scores

We devise a mechanism to find how central a Person or a Role in history is. We
think that a person attains importance if he/she has been mentioned in diverse
set of documents, so has lots of interconnections with other persons. For this,
we connect persons mentioned within a document with each other in the same
fashion described in Section 3.2.1. We use no relation weights, but it could be
used as well. Finally, we run PageRank centrality algorithm described in Section
2.2.5 to obtain the importance score for each person.

People are temporary, roles are permanent. Hence, obtaining role importance
and comparing in FRUS setting is noteworthy. We obtain role importance scores
similar to person scores. The difference is that we only consider persons with
a connection to a Role node, whose start and end dates exist. Each person’s
Role that was held in the date of a document is connected with other persons’
Roles with the same criteria. Start and end years are valuable to compute this
condition, and dictate that only the true role has significance. Now, we have a
homogeneous graph of Role nodes, and run PageRank centrality algorithm again
to obtain the importance score for each role. Dynamic role importance scores are
also possible using the same binning technique mentioned in Section 3.2.1. We
will argue which persons and roles are important in FRUS in Section 5.

Chapter 4

Statistics & Evaluation

In this section, we provide descriptive statistics about our KG, measure the per-
formances of person unification and wikification, and finally give detailed infor-
mation about our codebase and implementation.

4.1 Statistics of Knowledge Graph

To populate our KG, we use FRUS volumes from 1952 to 1988. We use a subset
to show a proof-of-concept of our entire methodology. Whole FRUS should be
used for a broader historical interpretation, but we advocate this span is sufficient
to showcase the methods and applications intended with this thesis. Thus, all
statistics below show the period ranging from 1952 to 1988.

Table 4.1 shows volume count, annotated volume count, and document counts.
We note that some volumes are missing person and term annotations. Here it is
not severe, but we observe that from 1940 backwards, nearly all volumes lack per-
son annotations. Document count is nearly a quarter of whole FRUS document
count, which ensures performing a broad historical analysis.

FRUS element Count
Volume 238
Volume with person annotation 234
Volume with term annotation 238
Document 88016

Table 4.1: Volume, File, Annotation counts

Figure 4.1 displays volume distribution by presidential era, plus volume count
with missing person annotations. We note that Truman and Reagan periods ex-
tend before 1952, and after 1988, respectively. Similar figure on term annotations
by presidential era is in Table A.5.

Figure 4.2 shows document distribution by presidential era. We see similar
pattern as in Figure 4.1.

25

4. Statistics & Evaluation 26

Figure 4.1: Volumes with person annotations over presidential eras

Figure 4.2: Document count over presidential eras

We described a person unification algorithm in Section 3.1.1 Person Unifi-
cation. In Table 4.2, we show the unique person count after each step of this
algorithm. It approximately merges 72% of the instances into others, unifying
all entries into a more cohere set. Out of this, 60% comes from reducing exactly
matched names. This actually shows that person annotations, after preprocess-
ing, are tidy, and near-unified. A low hanging fruit is searching for names with
exactly same words but different combinations, which reduces further 5%. After

4. Statistics & Evaluation 27

that, depending on how much we tolerate false positives, we can play with near-
duplicate and typo detection hyperparameters to increase or decrease reduction
effect. Here, with conservative hyperparameters, it reduces around 4000 names.
A final step is checking for same Wikidata entries for different names. This step
is meaningful because it finds names such as Nehru, and Indira Gandhi as the
same person.

Person Unification Step Person Count
Step 0: Extract person annotations from volumes 48363
Step 1: Reduce exactly matched names 19352
Step 2: Reduce names with exactly same words but different
combinations

17633

Step 3: Reduce near-duplicate names & obvious misspellings 13317
Step 4: Reduce names with exactly same wikidata entries 13079

Table 4.2: Person unification statistics

We described a term unification algorithm in Section 3.1.1 Term Unification.
In Table 4.3, we show the unique term count after each step of this algorithm.
It approximately merges 74% of terms when done. A huge 72% of this reduction
comes from reducing exactly matched names. As stated before, terms can be
seen as already annotated keywords for understanding the document content.

Term Unification Step Term Count
Step 0: Extract term annotations from volumes 50992
Step 1: Reduce exactly term names 14279
Step 2: Reduce names with exactly same words but different
combinations

14157

Step 3: Reduce obvious misspellings 13034

Table 4.3: Term unification statistics

Person wikification (Section 3.1.1 Person Wikification) is done by searching
all variations of a unified name within Wikidata. We might not find a person in
Wikidata if that person is historically unimportant hence does not have an entry.
This can be seen in Figure 4.3, where top most mentioned persons are linked
to their Wikidata entries with high success. Success gradually diminishes when
we include infrequent persons. This is relieving as we expect most mentioned
persons to be most historically important ones as well. Parallel to this outcome,
we note that out of all the mentions to a person in all documents, 82% have
Wikidata coverage (315805 in 386342), which is underlining the validity of this
method for further historical analysis.

Our KG has many node and relationship types as shown in the schema in
Figure 3.3. In Table 4.4, we present count statistics for each node and relation
type. Total number of node and relation counts show that even a subset of FRUS

4. Statistics & Evaluation 28

Figure 4.3: person mention count vs wikidata match

corpus leads to a huge KG.

Knowledge Graph Node
Type

Node
Count

Document 88016
Presidential Era 26
City 532
Country 311
Term 13034
Person 13079
Role 2652
Occupation 659
Religion 90
School 2237
Political Party 612
Redaction 27468
NamedEntity 4304
4y_DynamicNamedEntity 30335
TopicBertWithEntities 250
TopicBertNoEntities 100
TopicLDANoEntities 50
Total 149116

Knowledge Graph
Relationship Type

Relationship
Count

DURING 88016
FROM 78925
LOCATED_IN 422
SENT_BY 48090
SENT_TO 15320
MENTIONED (Person) 386342
MENTIONED (Term) 276493
ABOUT (3 Topics) 88016*3
BELIEVED 947
WORKED_AS 10357
POSITION_HELD 8590
MEMBER_OF 2872
CITIZEN_OF 5324
EDUCATED_AT 7141
IN (School) 2206
IN (Pol Party) 608
REDACTED 27468
Total 1223041

Table 4.4: Entity and Relationship Counts in our Knowledge Graph

4. Statistics & Evaluation 29

4.2 Methods Evaluation

4.2.1 Person Unification Performance

We measured our pipeline’s unification performance by randomly selecting 423
unified names, and manually labeling these as mismatch or correct. For a person,
given a list of names, it is correct if all names refer to same real person, and
mismatch otherwise. For mismatches, we also count number of different persons
wrongly unified into one person. We also include the mention count per unified
name for investigation.

Correct unification is critical as high error presence might alter the analysis.
In Table 4.5, we present different statistics to assess this. Binary accuracy (i.e. if
all unified names is same person) is 91.2%. From table, we observe that mis-
matches tend to occur for longer lists unified into single name. This is expected
as the names in FRUS tend to include roles such as Major, or General, hence
could not get filtered fully. Please note that mention count is high for mismatches
because wrongly merging names into a single entry increases the mention count.
Overall, we are satisfied by the performance. Given that these validation results
are manually obtained, it is not possible to play with other configurations to find
the optimal result.

List
Length

List
Length

Person
Count

Person
Count

Mention
Count

Mention
Count

Label Count Mean St Dev Mean St Dev Mean St Dev
Mismatch 37 4.70 3.20 3.03 1.71 131.43 243.45
Correct 386 2.79 1.26 1.00 0.00 70.64 203.79

Table 4.5: Person Unification Performance. List length is the count of names
unified into single name. Person Count is actual real person count in a supposed-
to-be unified name. 1 for correct, more than 1 with max of List Length for
mismatch. Mention Count is person mention count for that unified name.

4.2.2 Person Wikification Performance

We measured our pipeline’s wikification performance by randomly selecting 200
names (100 with single Wikidata candidates, 100 with multiple Wikidata candi-
dates), and manually labeling these as mismatch or correct. Correct wikification
is critical as we expand the graph with Wikidata entities such as Role, Religion
or Citizenship, and utilize them in further downstream tasks. Hence, we should
be cautious about introducing errors now, that could further propagate. In Ta-
ble 4.6, we present the performance on persons with single candidate Wikidata
entries. Accuracy is 90%. Statistics about person mention counts tell that our al-
gorithm tends to mismatch entries for less important persons (i.e., which appear

4. Statistics & Evaluation 30

less frequently in the text), which is a desirable result for the sake of consequent
explorations.

Label Count Mean St Dev min 25% 50% 75% max
0 10 28.00 80.88 0 0.25 1.0 6.50 258
1 90 48.38 197.15 0 2.00 5.0 17.25 1796

Table 4.6: Person Wikification Performance Single Candidate Entry. All statistics
except Count is Person Mention Count.

In Table 4.7, we present the performance on persons with multiple candidate
Wikidata entries. As we can observe, the accuracy is 81%, and the statistics
about person mention counts tell that our algorithm tends to mismatch entries
with less important persons, which is positive.

Label Count Mean St Dev min 25% 50% 75% max
0 19 19.11 36.14 0 1.0 2.0 25.5 147
1 81 54.06 165.88 0 2.0 6.0 28.0 1324

Table 4.7: Person Wikification Performance Multiple Candidate Entry. All statis-
tics except Count is Person Mention Count.

In general, almost all mismatches stem from the fact that our algorithm is
deterministic. This means that it still gives a match if the person we are looking
for does not have an entry, but an entry with exact same name exists (frequent for
common names). Further improvements such as using S-BERT for a probabilistic
matcher, enabling to stay silent for these cases, can be implemented in the future.

4.3 Implementation Details

We use Python 3.8.8 for parsing, enrichment and the population of the KG.
We use Neo4j (5.2.0), a native graph database to store and query our KG. Na-
tive graph databases are designed to both store and process data as a graph.
They can navigate fast through long chain of connections without the overhead
of index lookup, or many join operations. For example, Cypher, the querying
language of Neo4J, enables swift and intuitive querying, leveraging the relations.
On contrast, non-native graph databases store nodes and relations as unrelated
entities, which might be stored far apart in memory. That requires another layer
of work to interpret data as graph, and decreases speed and efficiency. To pop-
ulate with all information obtained through parsing and enrichment, stored as
pandas dataframes, a Neo4J KG, we use LOAD CSV function of Cypher [51].
Below, we elaborate which file in codebase correspond to which section in this
report.

4. Statistics & Evaluation 31

1. eda.ipynb file captures Section 3.1.1 XML Structure Discovery.

2. constants.py stores necessary constants used throughout parsing, enrich-
ment, and KG population.

3. document_extraction.py captures Section 3.1.1 Basic Extraction.

4. person_unify.py covers Section 3.1.1 Person Unification, and Section 3.1.1
Person Wikification (only searching for entity).

5. extract_person_extras.py handles Section 3.1.1 Person Wikification (fetch-
ing extra information such as religion, gender, etc of person, if found).

6. term_unify.py covers Section 3.1.1 Term Unification.

7. city_country_extraction.py captures Section 3.1.1 City-Country Match-
ing.

8. redaction_extraction.py is for Section 3.1.2 Redaction Extraction.

9. lda_topic_extraction.py and bert_topic_extraction.py files are for
Section 3.1.2 Topic Modeling.

10. extract_entity_sentiments.py file captures Section 3.1.2 Target Based
Sentiment Analysis.

11. extract_entity_bins.py extracts and bins named entities in texts, that
is first two steps of Section 3.2.1.

12. link_prediction.py finds most similar persons on FRUS descriptions for
each person, that is first two steps of Section 3.2.2.

13. frus_conversion.py stores a conversion plan from csv to Neo4j suitable
to the schema of our KG.

14. cypher_commands.txt is the compilation of different cypher commands to
obtain results for Section 5.2, Section 5.3, Section 5.4 and Section 5.5.

Chapter 5

Discussion

In this section, we aim to spark inspiration on what is possible with FRUS KG.
We approach only from the computational perspective, and skip giving further
comments from the point of view of the history, as that is not the aim of the thesis.
We believe that further systematical and richer analysis can provide extended
political science insights.

5.1 Basic Analysis

The world map in Figure 5.1 shows document distribution by countries. We count
a document from a particular country if the source city the document was sent
from is located in that country. We exclude documents sent from U.S. because
it has huge majority, hampering visualization. We note high activity in Europe,
and moderate activity in Japan, Russia, Middle East, and Caribbean.

Figure 5.1: Document Distribution by Country (excluding U.S.)

By aggregating countries into continents and binning according to presidents,
a clearer picture emerges. In Figure 5.2, we see which continents raised a lot
of attention during different periods. Please note that we exclude documents

32

5. Discussion 33

originating from U.S. itself. Here, we see that President Johnson has many
documents from Asia, which is probably due to Vietnam War, and President
Carter has unusually many documents from Africa, which is probably due to his
stance against white minority rule in South Africa and Rhodesia [52].

Figure 5.2: Document Count by Source Continent over Presidential Eras (ex-
cluding documents originated from U.S)

Another interesting question is if the texts have became longer and more
complex over time. We answer this in Figure 5.3, where we measure complexity
by corrected type token ratio (CTTR), and length by token count. We see that
document length tends to increase over time. CTTR increases with length only
if the word diversity increases even more. Here, the two follows similar patterns,
thus we can conclude that word diversity tends to increase over time as well.

Each period comes with own political affairs. Even though the general topics
(i.e. war, economy) remain the same across time, location and details change. For
this reason, we use two different BERT topic modeling: one with named entities,
and one without them. Former captures details, while the latter captures general
concepts. We can see some examples of this in Table 5.1. All presidents are
busy with military, and political positions, while a close inspection shows that
locations change from Africa, to Russia or Cuba.

5. Discussion 34

Figure 5.3: Average Lexical Richness and Token Count over Years. Lexical rich-
ness measured by corrected type token ratio (CTTR).

President Most Frequent Topic Document
Count

Harry S. Truman 38_mosadeq_oil_compensation_consortium 178
3_intelligence_elections_molotov_support 352

Dwight D. Eisenhower 0_arab_algeria_saudi arabia_jordan 1258
0_military_political_policy_position 2938

John F. Kennedy 3_tshombe_ethiopia_congolese_lumumba 533
0_military_political_policy_position 1667

Lyndon B. Johnson 3_tshombe_ethiopia_congolese_lumumba 622
0_military_political_policy_position 2938

Richard M. Nixon 21_unclear_going_know_haig 495
0_military_political_policy_position 1906

Gerald R. Ford 1_somoza_castro_peru_marcos 221
0_military_political_policy_position 572

Jimmy Carter 1_somoza_castro_peru_marcos 571
0_military_political_policy_position 1255

Ronald Reagan 42_falklands_galtieri_malvinas_secretary haig 345
0_military_political_policy_position 558

Table 5.1: Most frequent topics by presidents. Top row: BERTopic with named
entities. Bottom row: BERTopic without named entities.

5. Discussion 35

5.2 Redaction Analysis

Even though a redacted passage is still classified, the content of its surrounding
text can show which topics are most sensitive for intelligence purposes. Here,
thanks to our enrichment efforts, we can trace both the redaction amount and
type, and entities and topics involved in it. Figure 5.4 shows total redaction
count per years. We observe a sharp drop in count around 1980, but we prefer
to leave its interpretation to historians.

Figure 5.4: Shift in Redaction Count over Years

Figure 5.5 show frequency of redaction types on log scale. Here, line type
has the overwhelming majority, and it is usually accompanied by a numerical
value (e.g. 2 lines). Type text is a general way of indicating a redaction, name
would be an interesting subject of study, as it is likely hiding persons with the
highest attention to U.S. services. Finally, dollaramount type signs which topics
have secret economical aspects.

Now, we aim to provide some exemplary analysis on redactions. Table 5.2
shows the most redacted topics according to BERTopic without entities. Natu-
rally, they focus on military, intelligence, and war. Topic in second row seems to
capture the main terms related to redactions, which can be seen as a validation
of our methodology.

Table 5.3 shows the most redacted topics in terms of economical aspect. In-
telligence officials might not want to reveal amount of money invested for certain
policies, hence leave these fields classified. Entities mentioned in topic names,
and possible events related to them, are likely to explain the reasons for this
behaviour, as most of these topics are related with events occurring in third

5. Discussion 36

Figure 5.5: Redaction Type Frequencies on Log10 Scale. (Numbers on bars
indicate actual type count.)

BERTopic without Entities Document
Count

Redaction
Amount

"0_military_political_policy_position" 847 8076.5
"12_line_text declassified_source text_source" 377 4750.0
"3_intelligence_elections_molotov_support" 163 2130.5
"5_test ban_stockpile_agreement_safeguards" 94 1768.5
"1_ambassador_mr_cyprus_say" 216 1707.0

Table 5.2: Most Redacted Top 5 Bert Topics, measured by sum of redacted lines

countries, affecting their national policies. Please see Figure A.4 for the imple-
mented Cypher query for this analysis.

BERTopic with Entities Document
Count

Redaction
Count

"27_chilean_frei_pdc_dollar declassified" 55 454
"3_tshombe_ethiopia_congolese_lumumba" 39 105
"28_brezhnev_secretary kissinger_let_adm moorer" 10 86
"182_afm_pcp_azevedo_covert action" 14 34
22_dci_usia_community_activities" 8 22

Table 5.3: Most Redacted Top 5 Bert Topics in terms of dollar amount redaction

5. Discussion 37

Figure 5.6: Most Similar 10 Entities to Portugal over Years. Rank shows most
similar to least. Bin shows the year span.

5.3 Analysis on Dynamic Entity Embeddings

We proposed dynamic entity embeddings, aiming at capturing how political en-
tities evolved through time, getting closer or further away, as different historical
and socioeconomic events unfold. If holds, we can naturally monitor important
events from a computational point of view. In Figure 5.6, we present most similar
entities over time to Portugal. Busy with Europe initially, it shifts its attention to
African colonies during early 1950s and 60s, probably due to decolonisation era.
Afterwards, it mostly deals with global issues such as communism, and OPEC.
These comments, although helpful for validating the methodology, cannot go be-
yond, and would require a more profound analysis from a domain expert to fully
unveil their value.

Dynamic entity embedding method aims to find contextually similar entities.
It does not assume any prior knowledge, hence is an unbiased vision of the content
of the FRUS. For example, the results in Figure 5.7, and how they align with
historical events, serve as validation of such methodology. This figure shows the
most similar entities to NATO over time. Although European terms dominate
the top ranks, change in content appears in low ranks such as the presence of
Standing Group in 50-54, and Common Market in 70-74. We present a similar
analysis for Gibraltar in Figure A.6.

5.4 Analysis on Knowledge Graph Augmentation

Our KG is incomplete. In Table 5.4, we report statistics on this issue. Especially,
Religion and School fields are severely sparse. To tackle this problem, we

5. Discussion 38

Figure 5.7: Most Similar 10 Entities to NATO over Years. Rank shows most
similar to least. Bin shows the year span.

propose to augment our KG, especially for the persons with missing Wikidata
entries. We stated before that we use FRUS person descriptions as a proxy,
and these descriptions are mostly about role, occupation, and citizenship of the
person described. In this section, we aim to qualitatively assess if our design is
promising. We report our model’s predictions about missing Person-Citizenship
information in Table 5.5, and missing Person-Role information in Table 5.6. Note
that these examples are the ones our model puts highest probabilities, hence are
most likely correct matches.

Wikidata Field Unique Person
Count

Ratio to Total
Person Count

Total Matches

Gender 5444 41.6% 5444
Religion 891 6.8% 946
Citizenship 4532 34.7% 5305
Occupation 5017 38.4% 10289
Role 3120 23.9% 8545
Political Party 2331 17.8% 2862
School 354 2.7% 7096

Table 5.4: Knowledge Graph Completeness Statistics. Wikidata Field is the
information piece we extract from Wikidata, and use in knowledge graph either
as entity, relation or attribute. Unique Person Count is how many unique person
has the corresponding field. Total Matches is total number of information piece
in knowledge graph as a person might hold multiple information from the same
field (e.g. two Occupations)

5. Discussion 39

Looking at the tables, we observe that our model makes predictions in line
with our assumption, which is that persons with similar FRUS descriptions should
have similar Wikidata information. For example, it consistently predicts military
personnel (which is apparent from person names) as Commandant of the Ma-
rine Corps. These persons might not hold that exact role, but in principle, our
model captures correctly that these persons are likely to have roles from military.
Hereby, we note that we care mostly about generalization ability of our model,
rather than guessing each missing information one by one without error. This
ensures our principle of creating scalable and automatic pipelines, that can be a
support for human annotators. Since we deem the results promising, in further
iterations we plan to include quantitative results as well.

Person Prediction
Gudmundar Gudmundsson J. Iceland
Figueres-Ferrer José Pepe Costa Rica
Gertruda Sekaninova Czechoslovakia
Hermann Jonasson Iceland
Halldór Ásgrímsson Iceland
Mulcahy R. Irish Free State
Gonzalo González Solórzano Costa Rica
Bashev Ivan Bulgaria
Hernán Siles Zuazo Bolivia

Table 5.5: Top 9 Highest Probability Predicted Links between Person-
Citizenship. Through manual validation, all predictions been found correct.

Person Prediction
Figueres-Ferrer José Pepe President of Costa Rica
Mod Peter member of the National Assembly of Hungary
Hont Janos member of the National Assembly of Hungary
Gen. M. Pate Randolph Commandant of the Marine Corps
C. General Lemuel Shepherd Commandant of the Marine Corps
General J. Lieutenant McCaul Verne Commandant of the Marine Corps
Kelley P.X. Commandant of the Marine Corps
General Maleter Pal member of the National Assembly of Hungary
General Greene Jr. M. Wallace Commandant of the Marine Corps

Table 5.6: Top 9 Highest Probability Predicted Links between Person-Role

5.5 Analysis on Role and Person Importance Scores

The algorithm that we propose for computing node importance scores inherently
utilizes overall connectivity of historical actors, as explained in Section 3.2.3.

5. Discussion 40

This notion points out one of the major targets we hope for in this thesis, which
is inspecting FRUS corpus as a whole, beyond individual documents. While
we wait for interesting patterns obtained through the algorithm, we are already
biased towards which roles can be more important. Actually, this might help us
to validate our pipeline. In Table 5.7, we present most prominent 10 roles for
1952-1988 span according to PageRank centrality algorithm. As expected, we
see that the top U.S. officials are on top, because they are senders, receivers, and
decision-makers in the U.S. foreign policy. We believe that the U.S. president
comes after the U.S. Secretary of State because the latter is the focal point of
document traffic.

Rank Role Country PageRank
Importance

1 United States Secretary of State U.S. 16.14
2 President of the United States U.S. 12.99
3 National Security Advisor U.S. 11.50
4 United States Secretary of Defense U.S. 7.61
5 Under Secretary of State for Politi-

cal Affairs
U.S. 7.49

6 General Secretary of the Communist
Party of the Soviet Union

Russia 7.21

7 Assistant Secretary of State for Eu-
ropean and Eurasian Affairs

U.S. 6.59

8 Chairman of the Joint Chiefs of Staff U.S. 6.42
9 Federal Chancellor of Germany Germany 6.14
10 Prime Minister of the United King-

dom
U.K. 6.13

Table 5.7: Top 10 Most Important Roles, and Corresponding Countries in FRUS

Similar to role importance, we can analyse person importance scores. In Table
A.1, we present most prominent 10 persons in FRUS. We expect a correlation
between top roles, and their holders, and results validate this, as the persons who
has been Secretary of State, or President dominate the table. A remarkable point
is that A. Henry Kissinger is at the top because he has held two very important
roles in his career, hence leading to a huge connectivity in FRUS. This observation
could only be possible via this type of computational approaches, harnessing the
full data as a whole through the KG.

Chapter 6

Conclusion

In this work, we propose a new methodology for better handling and analyzing
text corpora that are rich in entity-relation notions, such as the ones in politi-
cal sciences. Main idea of this methodology is to utilize KGs to store free-form
knowledge presented in the text. We craft a schema appropriate to the corpus
and necessary tasks in hand, use various parsing and NLP techniques to extract
these knowledge from documents, and finally convert extracted fields to the ac-
tual nodes and edges of the KG. By using U.S. foreign policy documents, we
demonstrate the validity and extent of each of these steps, and obtain a political
KG at the end. We further use this KG for historical analysis, by employing
varied methods from simple count based statistics to advanced machine learning
algorithms such as node embeddings, link prediction, and centrality methods.
We believe that this computational approach can provide a new perspective in
political sciences, and fields alike.

Limitations. Let us mention some hardships we face during our work, as well
as our work’s downsides. First, we do not utilize whole FRUS corpus from 1861
to 1998. Second, as we have to manually evaluate person unification and wiki-
fication algorithms, we may not find the best set of hyperparameters for these.
In city-country matching, a manual verification of the found matches is required,
although optional, for a more realistic KG, but this is the only part that prevents
a fully automatic pipeline. In this work, we could not quantitatively evaluate the
city-country matching algorithm, NER and link prediction model, although we
provided qualitative evaluation emphasizing their functionality. Furthermore, for
obtaining role and importance scores, we could extend it to be dynamic to allow
evolving importance scores over time for each role and person. In discussion, we
provide results to the extent that they are sufficient for explaining the power of
their corresponding methods. This way, it may be perceived primitive from a
social science perspective. Without doubt, historians would have better ques-
tions that are worthy of analysis, and should use our methods and suggestions
to answer these.

41

6. Conclusion 42

Future Work. In future, we plan to work on improving our paradigm to be
applicable to any corpora seamlessly. For example, our parsing, schema and
extracted fields are specific to FRUS, but a general approach focused on entity-
relation notions that could be automatically extracted by NER and alike would
increase generality. From FRUS point of view, we will use the whole corpus
to obtain a complete KG and better insights. Then, we will add quantitative
evaluations for city-country, NER, and link prediction models, as we did for
person unification and wikification in the current iteration. In addition, for city-
country matching, we might propose an improved and fully automatic algorithm,
such as applying its second step to extensions (second strings) as well instead of
just first strings in the <placeName> tag. Furthermore, we will use NER to find
persons and terms that are not annotated in earlier volumes, as well as richer
analysis using provided Terms and Named Entity sentiments. At the end, we
imagine an ultimate ready-to-use FRUS KG, which can be directly utilized by
historians as a tool.

Bibliography

[1] T. Office of the Historian, “Foreign Relations of the United States,” https:
//history.state.gov/historicaldocuments.

[2] “Introduction to Cypher.” [Online]. Available: https://neo4j.com/docs/
getting-started/cypher-intro/

[3] D. Vrandečić and M. Krötzsch, “Wikidata: A Free Collaborative
Knowledgebase,” Commun. ACM, vol. 57, no. 10, p. 78–85, sep 2014.
[Online]. Available: https://doi.org/10.1145/2629489

[4] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “DB-
pedia: A Nucleus for a Web of Open Data,” in Proceedings of the 6th Inter-
national The Semantic Web and 2nd Asian Conference on Asian Semantic
Web Conference, ser. ISWC’07/ASWC’07. Berlin, Heidelberg: Springer-
Verlag, 2007, p. 722–735.

[5] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase:
A Collaboratively Created Graph Database for Structuring Human
Knowledge,” in Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’08. New York, NY,
USA: Association for Computing Machinery, 2008, p. 1247–1250. [Online].
Available: https://doi.org/10.1145/1376616.1376746

[6] “What is a knowledge graph?” [Online]. Available: https://www.ibm.com/
topics/knowledge-graph

[7] B. Abu-Salih, “Domain-specific knowledge graphs: A survey,” Journal of
Network and Computer Applications, vol. 185, p. 103076, 2021.

[8] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill,
O. Levy, and S. Bowman, “Superglue: A stickier benchmark for general-
purpose language understanding systems,” Advances in neural information
processing systems, vol. 32, 2019.

[9] L. Shen, “LexicalRichness: A small module to compute textual
lexical richness,” 2022. [Online]. Available: https://github.com/LSYS/
lexicalrichness

[10] J. R. Finkel, T. Grenager, and C. D. Manning, “Incorporating non-local
information into information extraction systems by gibbs sampling,” in Pro-
ceedings of the 43rd annual meeting of the association for computational
linguistics (ACL’05), 2005, pp. 363–370.

43

https://history.state.gov/historicaldocuments
https://history.state.gov/historicaldocuments
https://neo4j.com/docs/getting-started/cypher-intro/
https://neo4j.com/docs/getting-started/cypher-intro/
https://doi.org/10.1145/2629489
https://doi.org/10.1145/1376616.1376746
https://www.ibm.com/topics/knowledge-graph
https://www.ibm.com/topics/knowledge-graph
https://github.com/LSYS/lexicalrichness
https://github.com/LSYS/lexicalrichness

Bibliography 44

[11] X. Wang, Y. Jiang, N. Bach, T. Wang, Z. Huang, F. Huang, and K. Tu,
“Automated concatenation of embeddings for structured prediction,” arXiv
preprint arXiv:2010.05006, 2020.

[12] E. F. Sang and F. De Meulder, “Introduction to the Conll-2003 shared
task: Language-independent named entity recognition,” arXiv preprint
cs/0306050, 2003.

[13] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” Jour-
nal of machine Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[14] D. M. Blei and J. D. Lafferty, “Dynamic Topic Models,” in Proceedings of
the 23rd international conference on Machine learning, 2006, pp. 113–120.

[15] M. Grootendorst, “Bertopic: Neural topic modeling with a class-based TF-
IDF procedure,” arXiv preprint arXiv:2203.05794, 2022.

[16] M. Saeidi, G. Bouchard, M. Liakata, and S. Riedel, “SentiHood: Targeted
Aspect Based Sentiment Analysis Dataset for Urban Neighbourhoods,”
CoRR, vol. abs/1610.03771, 2016. [Online]. Available: http://arxiv.org/
abs/1610.03771

[17] C. Sun, L. Huang, and X. Qiu, “Utilizing BERT for Aspect-Based Sentiment
Analysis via Constructing Auxiliary Sentence,” CoRR, vol. abs/1903.09588,
2019. [Online]. Available: http://arxiv.org/abs/1903.09588

[18] G. Gennaro and E. Ash, “Emotion and reason in political language,” The
Economic Journal, vol. 132, no. 643, pp. 1037–1059, 2022.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” CoRR, vol.
abs/1706.03762, 2017. [Online]. Available: http://arxiv.org/abs/1706.03762

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[21] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.

[22] P. Schneider, T. Schopf, J. Vladika, M. Galkin, E. Simperl, and F. Matthes,
“A Decade of Knowledge Graphs in Natural Language Processing: A
Survey,” in Proceedings of the 2nd Conference of the Asia-Pacific Chapter
of the Association for Computational Linguistics and the 12th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers).
Online only: Association for Computational Linguistics, Nov. 2022, pp.
601–614. [Online]. Available: https://aclanthology.org/2022.aacl-main.46

http://arxiv.org/abs/1610.03771
http://arxiv.org/abs/1610.03771
http://arxiv.org/abs/1903.09588
http://arxiv.org/abs/1706.03762
https://aclanthology.org/2022.aacl-main.46

Bibliography 45

[23] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao, “Relation Classification
via Convolutional Deep Neural Network,” in Proceedings of COLING 2014,
the 25th International Conference on Computational Linguistics: Technical
Papers. Dublin, Ireland: Dublin City University and Association for
Computational Linguistics, Aug. 2014, pp. 2335–2344. [Online]. Available:
https://aclanthology.org/C14-1220

[24] P.-L. Huguet Cabot and R. Navigli, “REBEL: Relation Extraction by
End-to-end Language Generation,” in Findings of the Association for
Computational Linguistics: EMNLP 2021. Punta Cana, Dominican
Republic: Association for Computational Linguistics, Nov. 2021, pp. 2370–
2381. [Online]. Available: https://aclanthology.org/2021.findings-emnlp.204

[25] M. J. S. R. L. Z. Ledell Wu, Fabio Petroni, “Zero-shot Entity Linking with
Dense Entity Retrieval,” in EMNLP, 2020.

[26] E. Barba, L. Procopio, and R. Navigli, “ExtEnD: Extractive Entity Disam-
biguation,” in Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics. Online and Dublin, Ireland: Association for
Computational Linguistics, May 2022.

[27] R. West, E. Gabrilovich, K. Murphy, S. Sun, R. Gupta, and
D. Lin, “Knowledge Base Completion via Search-Based Question
Answering,” in Proceedings of the 23rd International Conference on
World Wide Web, ser. WWW ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 515–526. [Online]. Available:
https://doi.org/10.1145/2566486.2568032

[28] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for net-
works,” in Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, 2016, pp. 855–864.

[29] S. Dumancic, A. García-Durán, and M. Niepert, “A comparative study of dis-
tributional and symbolic paradigms for relational learning,” arXiv preprint
arXiv:1806.11391, 2018.

[30] H. Chen, S. F. Sultan, Y. Tian, M. Chen, and S. Skiena, “Fast and accurate
network embeddings via very sparse random projection,” in Proceedings of
the 28th ACM international conference on information and knowledge man-
agement, 2019, pp. 399–408.

[31] L. Hu, T. Yang, L. Zhang, W. Zhong, D. Tang, C. Shi, N. Duan, and
M. Zhou, “Compare to the knowledge: Graph neural fake news detection
with external knowledge,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), 2021,
pp. 754–763.

https://aclanthology.org/C14-1220
https://aclanthology.org/2021.findings-emnlp.204
https://doi.org/10.1145/2566486.2568032

Bibliography 46

[32] E. Palumbo, G. Rizzo, R. Troncy, E. Baralis, M. Osella, and E. Ferro,
“Knowledge graph embeddings with node2vec for item recommendation,”
in The Semantic Web: ESWC 2018 Satellite Events: ESWC 2018 Satellite
Events, Heraklion, Crete, Greece, June 3-7, 2018, Revised Selected Papers
15. Springer, 2018, pp. 117–120.

[33] L. Page, S. Brin, R. Motwani, and T. Winograd, “The Pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[34] M. Connelly, R. Hicks, R. Jervis, and A. Spirling, “New evidence and new
methods for analyzing the Iranian revolution as an intelligence failure,” In-
telligence and National Security, vol. 36, no. 6, pp. 781–806, 2021.

[35] T. N. Archives, “The National Archives,” Jul 2022. [Online]. Available:
https://www.nationalarchives.gov.uk/webarchive/

[36] D. Beavan and F. Nanni, “Data Study Group Final Report: The National
Archives, UK: Discovering Topics and Trends in the UK Government Web
Archive,” [""], 2021.

[37] A. M. Dai, C. Olah, and Q. V. Le, “Document embedding with paragraph
vectors,” arXiv preprint arXiv:1507.07998, 2015.

[38] L. Rheault and C. Cochrane, “Word embeddings for the analysis of ideolog-
ical placement in parliamentary corpora,” Political Analysis, vol. 28, no. 1,
pp. 112–133, 2020.

[39] K. Dritsa, A. Thoma, I. Pavlopoulos, and P. Louridas, “A Greek Parliament
Proceedings Dataset for Computational Linguistics and Political Analysis,”
Advances in Neural Information Processing Systems, vol. 35, pp. 28 874–
28 888, 2022.

[40] “Politics Ontology.” [Online]. Available: https://iptc.org/thirdparty/
bbc-ontologies/politics.html

[41] D. Schwabe, C. Laufer, and A. J. G. Busson, “Building Knowledge
Graphs About Political Agents in the Age of Misinformation,” CoRR, vol.
abs/1901.11408, 2019. [Online]. Available: http://arxiv.org/abs/1901.11408

[42] B. Abu-Salih, M. Al-Tawil, I. Aljarah, H. Faris, and P. Wongthongtham,
“Relational Learning Analysis of Social Politics using Knowledge Graph
embedding,” CoRR, vol. abs/2006.01626, 2020. [Online]. Available:
https://arxiv.org/abs/2006.01626

[43] N. Stoehr, L. T. Hennigen, S. Ahbab, R. West, and R. Cotterell, “Classifying
Dyads for Militarized Conflict Analysis,” arXiv preprint arXiv:2109.12860,
2021.

https://www.nationalarchives.gov.uk/webarchive/
https://iptc.org/thirdparty/bbc-ontologies/politics.html
https://iptc.org/thirdparty/bbc-ontologies/politics.html
http://arxiv.org/abs/1901.11408
https://arxiv.org/abs/2006.01626

Bibliography 47

[44] S. Feng, Z. Chen, W. Zhang, Q. Li, Q. Zheng, X. Chang, and M. Luo,
“KGAP: Knowledge Graph Augmented Political Perspective Detection in
News Media,” arXiv preprint arXiv:2108.03861, 2021.

[45] https://github.com/datasets/world-cities.

[46] “GeoNames.” [Online]. Available: www.geonames.org

[47] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd, “spaCy:
Industrial-strength Natural Language Processing in Python,” 2020.

[48] X. Cao and B. Liu, “CS 224N Final Project: Unsupervised Clustering of
People, Places, and Organizations in Wikileaks Cables with NLP cues,”
2011.

[49] https://github.com/sloria/TextBlob.

[50] “Neo4j Link Prediction Pipeline.” [Online]. Available:
https://neo4j.com/docs/graph-data-science/current/machine-learning/
linkprediction-pipelines/link-prediction/

[51] “Importing CSV data into Neo4j.” [Online]. Available: https://neo4j.com/
docs/getting-started/data-import/csv-import/

[52] “Foreign Policy of the Jimmy Carter Administration.” [Online].
Available: https://en.wikipedia.org/wiki/Foreign_policy_of_the_Jimmy_
Carter_administration

https://github.com/datasets/world-cities
www.geonames.org
https://github.com/sloria/TextBlob
https://neo4j.com/docs/graph-data-science/current/machine-learning/linkprediction-pipelines/link-prediction/
https://neo4j.com/docs/graph-data-science/current/machine-learning/linkprediction-pipelines/link-prediction/
https://neo4j.com/docs/getting-started/data-import/csv-import/
https://neo4j.com/docs/getting-started/data-import/csv-import/
https://en.wikipedia.org/wiki/Foreign_policy_of_the_Jimmy_Carter_administration
https://en.wikipedia.org/wiki/Foreign_policy_of_the_Jimmy_Carter_administration

Appendix A

Appendix

SELECT ?item WHERE {
SERVICE wikibase:mwapi {

bd:serviceParam wikibase:endpoint "www.wikidata.org";
wikibase:api "EntitySearch";
mwapi:search \’"""+name+"""\’;
mwapi:language "en".
?item wikibase:apiOutputItem mwapi:item.
?num wikibase:apiOrdinal true.

}
?item wdt:P31 wd:Q5
}

Figure A.1: SPARQL query for searching person with ’name’ in Wikidata

SELECT ?item ?itemLabel ?startyearLabel ?endyearLabel
WHERE {

wd:"""+Q+""" p:P102 ?statement1.
?statement1 ps:P102 ?item.
OPTIONAL{?statement1 pq:P580 ?startyear.}
OPTIONAL{?statement1 pq:P582 ?endyear.}
SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }

}

Figure A.2: SPARQL query for searching a person’s (Q) political party member-
ship and its start and end dates. P102 is member of a political party, P580 is
start year, and P582 is end year.

A-1

Appendix A-2

SELECT ?country ?countryLabel WHERE {
SERVICE wikibase:mwapi {

bd:serviceParam wikibase:endpoint "www.wikidata.org";
wikibase:api "EntitySearch";
mwapi:search \’"""+name+"""\’;
mwapi:language "en".
?city wikibase:apiOutputItem mwapi:item.
?num wikibase:apiOrdinal true.

}
?city wdt:P31 wd:Q5119.
?city wdt:P17 ?country.
SERVICE wikibase:label { bd:serviceParam wikibase:language "en".}
}

Figure A.3: SPARQL query for searching if a city with ’name’ is a capital. If so,
returns its country. Q5119 is capital city, P31 is instance of, P17 is country.

match (d:Document)-[:REDACTED]-(r:Redaction)
where r.type = ’dollaramount’
with d, count(r) as r_count
match (t:BertTopicWithEntities)-[:ABOUT]-(d)
return t.description, count(d) as doc_count, sum(r_count) as tot_count,

sum(r_count)/count(d) as tot_count_per_doc
order by tot_count desc
limit 20

Figure A.4: A Cypher query for answering the following question: "Which topics
have highest count of ’dollar amount’ redaction ?"

Rank Person Roles
Held

PageRank
Importance

1 A. Henry Kissinger 1,3 49.88
2 M. Nixon Richard 2 40.07
3 Cyrus R. Vance 1,3 35.39
4 David Dean 1 32.08
5 Dulles Foster John 1 30.09
6 P. Rogers William 1 25.93
7 Brzezinski Zbigniew 3 24.72
8 D. Dwight Eisenhower 2 24.27
9 Carter Jimmy 2 23.04
10 B. Johnson Lyndon 2 22.62

Table A.1: Top 10 Most Important Roles, and Corresponding Countries in FRUS.
Numbers in Roles Held indicate ranks in Table 5.7.

Appendix A-3

Figure A.5: Volumes with term annotations over presidential eras

Figure A.6: Most Similar 10 Entities to Gibraltar over Years. Rank shows most
similar to least. Bin shows the year span.

Annotation Type Count
Person 2142
Term 3367

Table A.2: Annotated person and terms counts that are not mentioned in any
volumes.

Appendix A-4

Figure A.7: Top 20 Most Frequent Occupations, Religions, and Citizenships in
FRUS

