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ARTICLE

Prediction and control of fracture paths in
disordered architected materials using graph neural
networks
Konstantinos Karapiperis1 & Dennis M. Kochmann 1✉

Architected materials typically rely on regular periodic patterns to achieve improved

mechanical properties such as stiffness or fracture toughness. Here we introduce a class of

irregular cellular materials with engineered topological and geometrical disorder, which

represents a shift from conventional designs. We first develop a graph learning model for

predicting the fracture path in these architected materials. The model employs a graph

convolution for spatial message passing and a gated recurrent unit architecture for temporal

dependence. Once trained on data gleaned from experimentally validated elastoplastic beam

finite element analyses, the learned model produces accurate predictions overcoming the

need for expensive finite element calculations. We finally leverage the trained model in

combination with a downstream optimization scheme to generate optimal architectures that

maximize the crack path length and, hence, the associated fracture energy.
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Predicting the propagation of cracks in cellular and lattice
materials is generally considered a challenging task, espe-
cially in the presence of disorder1. Yet, understanding the

process of crack growth is important in many contexts, such as in
creating new tougher materials or in controlling the propagation
of cracks away from potentially critical structural elements2. In
fact, with the manufacturing-enabled rise of architected materials
made of metals, polymers, and ceramics3–5, the study of their
fracture properties has gained additional attention.

Despite significant theoretical progress, recent studies have
outlined fundamental challenges. Concepts traditionally bor-
rowed from linear elastic fracture mechanics (LEFM), such as the
stress intensity factor and corresponding fracture toughness6,
have been found insufficient to characterize fracture in archi-
tected materials7,8. In the presence of ductility, characterizing the
crack tip field9 presents additional challenges given the extent of
the plastic/process zone and its dependence on the unit cell
topology10,11. Moreover, while most prior works have focused on
periodic cellular materials, little do we know about the influence
of aperiodicity, for example, through the influence of
imperfections12,13, irregularity1,14, and finite size8,15, on fracture
behavior.

Physics-based models of fracture, although predictive, are often
computationally expensive11,16–19, which hinders their applica-
tion in understanding the above effects, let alone exploiting them
in material design and optimization20. On the other hand,
machine learning has proved successful in learning complex
mechanical phenomena21, and it has recently also been applied to
the problem of fracture, predominantly for the purpose of
building predictive surrogate models. For example, recent
studies22,23 predicted fracture paths in brittle materials. Yet, those
were limited to predicting whether or not preexisting cracks
coalescence—a classification task. The latter was augmented by a
prediction of the propagating crack tip position between coa-
lesced cracks in ref. 24. Convolutional neural networks to predict
crack paths were developed in refs. 25,26 and, more recently, have
been combined with long short-term memory (LSTM) archi-
tectures in refs. 18,27,28. Similarly, machine learning methods have
been developed to learn fracture paths in atomistic systems29,30 as
well as to study the influence of defects on the failure of
graphene31 and silica glass32. Note that most of these approaches
depend on convolutions, which are restricted to a Cartesian
representation of the domain of interest, and they do not directly
apply to cellular materials.

Going beyond fracture prediction, a few efforts have been
reported that aimed at engineering the fracture path in materials
by exploiting, e.g., hierarchy33, multiple phases34,35, and grain
boundaries36. In terms of design approaches, genetic algorithms
have been developed for polycrystalline solids37, while greedy
methods have been utilized in the design of pixel-based
materials38. Most studies related to the design of periodic cel-
lular materials have been restricted to heuristic or bioinspired
approaches, e.g., by introducing a regular pattern of topological
alterations2, creating interpenetrating phases35, or by engineering
the strut thickness in honeycombs and creating softer struts
through which the cracks can propagate39. The use of
optimization-based techniques to control the fracture path in
cellular materials or the explicit incorporation of disorder as a
design tool have both remained relatively unexplored.

In this work, we develop a graph neural network-based sur-
rogate model to predict the propagation of cracks in cellular
materials. The model works by learning a mapping between the
local geometry/topology near the crack tip and the incremental
crack advance. We demonstrate this methodology on Voronoi
architectures ranging from near-perfectly ordered to highly dis-
ordered. A comprehensive dataset of these architectures is

generated by sampling from a carefully constructed statistical
ensemble. We develop and validate—using simple tests of 3D-
printed specimens—a reduced-order elastoplastic beam model,
which serves as the basis for creating a large dataset of mode-I
fracture simulations. The latter is used to train a machine learning
model whose architecture combines graph convolutions and
gated recurrent units. Once its prediction accuracy is established,
the machine-learned model is leveraged in a downstream opti-
mization task to maximize the length of the fracture path and the
associated fracture energy.

Results
Disordered cellular solids. Toward a versatile albeit simple
design of disorder cellular solids, we focus on Voronoi tessella-
tions in 2D, i.e., on truss networks generated by partitioning space
into cells, each surrounding a nucleus. Such tessellations are
prevalent in nature (Fig. 1a). The cells’ edges define sets of points
that are equidistant to the two closest nuclei (Fig. 1b). To extend
the classical construction of Voronoi networks (see, e.g., ref. 40)
into a more powerful and descriptive approach, we consider a
statistical ensemble of those networks with a controllable range of
geometrical and topological disorder. We define the topological
disorder H1 as the variance of the local coordination number Z
(number of neighbors of a Voronoi cell), i.e., H1= 〈Z2〉− 〈Z〉2.
An interpretation is given in Fig. 1b, which shows cells colored
according to their coordination number as well as their statistical
distribution in the whole domain. Similarly, we define the geo-
metrical disorder H2 as the variance of the internuclei distance,
i.e., H2 ¼ hr2iji � hriji2, where i, j denote neighboring nuclei
(Fig. 1b). We associate H1,H2= 0 with a regular hexagonal
honeycomb. Note that this is a design choice; we could alter-
natively consider, e.g., a perfect square tessellation. Choosing
increasing values of H1,H2 leads to increasingly disordered
designs. As outlined in “Methods”, we proceed to generate a
statistical ensemble, sampling from which results in a dataset of
roughly 50,000 architectures, each comprised of N= 162 nuclei
and ranging from perfectly ordered (H1,H2→ 0) to highly dis-
ordered (H1,H2 > 1). The histogram of the corresponding topo-
logical and geometrical disorder in the dataset is shown in Fig. 1c,
illustrating the number of realizations sampled for each combi-
nation. Note that due to the interplay of topological and geo-
metrical disorder, one cannot populate the entire H1-H2 space.
Instead, for a given H2, a certain maximum value of H1 can be
accommodated. This notion is reflected in the inadmissible region
shown in Fig. 1c.

Mechanical properties. We consider the canonical mode-I frac-
ture problem7,29,41, as shown in Fig. 2a, which involves a sample
loaded vertically in tension. This is the simplest setting that abides
by the ASTM standards42 and is used here to reveal the physics of
the fracture process. A notch is placed at the left side of a rec-
tangular sample (amounting to 25% of its width) by removing
any intersecting struts. To minimize boundary effects, we keep
one layer of cells around the exterior boundary at their regular
positions (effectively reducing the disorder to zero in this thin
zone). The upper and lower boundaries are displaced vertically at
a constant rate, leading to the opening of the crack.

Simulations of such systems typically either rely on fully
resolved finite element (FEM) calculations39, which results in
prohibitive computational costs for producing a sufficiently large
dataset for learning, or simple strut failure criteria based on
maximum pointwise stress or strain35, which may result in an
oversimplification of the mechanics. To mitigate these issues, we
develop an accurate albeit efficient reduced-order corotational
beam model that captures the essential underlying mechanics.
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The base material is described by a 1D model featuring rate-
dependent damage and plastic hardening. The model is calibrated
and validated against tensile experiments of samples that are
additively manufactured out of a mixture of acrylic photopolymer
and thermoplastic elastomer using a Connex polyjet printer
(Fig. 2c). The details of the material model can be found in
“Methods”, while its calibration and validation is presented in
Supplementary Note 2.

In the case of quasi-regular networks (H2 < 0.5), we observe
oscillatory fracture patterns (e.g., Fig. 2a - I/II), verifying similar
observations in earlier studies14, with cracks propagating
continuously from the crack tip. As disorder increases, cracks
may, in some cases, appear a few cells away from the crack tip
and later coalesce, indicating a form of crack bridging1, while, in
other cases, smaller cracks disconnected from the main crack may
form. The force-displacement curves in Fig. 2a reveal that some

Fig. 1 Design space of disordered cellular materials. a Examples of a regular and an irregular cellular architecture in nature. Left: bee honeycomb (Source:
Ante Hamersmit, CC0 License), right: dragonfly wing (Source: Pixabay, CC0 License). b I: Perfectly regular honeycomb. II: Interpretation of geometrical
disorder in terms of the distribution of internuclei distances. III: Interpretation of topological disorder in terms of the distribution of local coordination
numbers (number of cell neighbors). c Frequency histogram in disorder space for our full dataset.

Fig. 2 Fracture mechanics of disordered cellular materials. a Force-displacement curves and corresponding fracture patterns, resulting from simulations
of three specimens, using the elastoplastic beam finite element model and different levels of disorder: I) perfectly regular, II) low disorder, III) high disorder.
b Fracture energy vs. crack length (number of broken edges). c Experimental setup for validation, using an unnotched irregular 3D-printed specimen.
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degree of disorder may be beneficial for obtaining higher fracture
energy Gf ¼

R uf
0 FðuÞdu (i.e., the area under the curve), where u

and F denote the boundary displacement and net force,
respectively. Interestingly, the data from ref. 1 also hint at the
possibility of a beneficial effect of moderate disorder, but the
authors did not investigate this in detail. Figure 2b plots Gf for all
networks in the dataset. As reported in prior studies of other
materials (e.g., ref. 43), we find that the value of Gf correlates with
the length of the crack path (i.e., the number of broken edges).
This is expected since most of the absorbed energy is derived
from the release of elastic energy previously stored in beams that
will eventually fracture. Several other mechanisms, including the
accumulation of damage and plasticity in beams that will
eventually not reach the point of fracture, are also at play but
do not significantly affect the value of Gf.

Machine learning model. For each of the simulated samples, we
save the updated graph connectivity every time a beam is broken,
ignoring any isolated broken beams away from the crack path.
This results in a sequence of as many graphs as the number of
(non-isolated) broken edges. This set of sequences of graphs
constitutes our training data. As shown in Fig. 3, the machine
learning model takes as input the current configuration at step t
(i.e., t broken edges), along with a hidden state encapsulating the
history from previous steps. It outputs a fracture probability for
all intact beams (network edges), along with a new hidden state.
At any given time, the crack path is simply the set of edges that
represent the difference in connectivity between the original
graph (t= 0) and the current graph (t). The model features three
fundamental components. The spatial component (Fig. 3a)
accounts for the effect of the neighborhood of a crack tip on the
stress concentration/redistribution and, hence, the crack advance.
It is implemented as a custom message-passing graph
convolution44. The temporal component (Fig. 3b) incorporates
any pertinent history effects of the process and is furnished by a
gated recurrent unit45. Finally, the inner-product decoder
(Fig. 3c) is the mathematical machinery used to translate the

previous components into a probability of edge breaking. We
briefly discuss each of the components in the following, yet a
more detailed formulation can be found in Supplementary
Note 3.

The purpose of the spatial message-passing convolution is to
learn the relation between the topological and geometrical
features encoded in the nodes and edges and the probability of
an intact edge breaking next. Figure 3a shows the details of the
graph convolution employed, which is based on the general
framework of ref. 44. We operate on the dual graph (Voronoi
nuclei represent nodes of the dual graph, and edges between
Voronoi cells correspond to the relevant dual edges46), on which
we define appropriate nodal features vi (cell volume, anisotropy
vector, circularity, coordination number, geometrical order
parameter) and edge features aij (edge orientation, edge length).
We refer to Supplementary Note 3 for a detailed mathematical
definition of each feature. The nodal features are updated by a
message-passing operation as follows: for each node i, we form a
message mij originating from a neighboring node j by passing the
nodes’ features vi, vj, their positions xi, xj, and the edge features aij
through a learnable function, here a fully connected neural
network. This operation is summarized as mij= ϕe(vi, vj, xi, xj,
aij). The messages from the set of neighbors of i, i.e., N ðiÞ are
aggregated through a simple summation mi ¼ ∑j2N ðiÞmij. A
second neural network takes as input this aggregated message as
well as the original node feature vi to produce the new node
feature v0i ¼ ϕvðvi;miÞ for node i. This whole operation
constitutes one convolutional layer and results in updating all
nodal features by accumulating topological and geometrical
information from neighbors one hop away. We find that six
spatial convolutions produce the most accurate results. This
mirrors the idea of a fracture process zone of a similar topological
distance where stress redistribution occurs1. Upon applying these
convolutions, each node i now holds the final nodal features or
embeddings z ¼ fzigi≤N .

Since the fracture process can include history effects due to
damage and plasticity, we also incorporate a temporal aspect

Fig. 3 Architecture of the spatiotemporal graph neural network. a Message-passing convolution, b Gated recurrent Unit, c Inner-product decoder. For
better illustration, only the graph near the crack tip is shown.
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into the model. We introduce a gated recurrent unit (GRU)45,
which is a modern and more efficient version of the long
short-term memory network (LSTM)47, a widely used
recurrent neural network architecture. The underlying idea is
to combine the node embeddings zt derived from the spatial
convolution at a given step t, as described above, with a hidden
embedding ht−1 of the same dimensionality, which is
continuously updated and incorporates the memory of all
previous steps. As shown in Fig. 3b, the GRU incorporates an
update gate ut= σ(Wu[zt, ht−1]+ bu) used to retain useful
information from the node embeddings of the previous step,
and a reset gate rt = σ(Wr[zt, ht−1]+ br) used to forget the
embedding information of the previous step, which is no
longer relevant for future predictions. Note that σ, W, and b
denote the sigmoid activation function, weights, and biases of
these gates, respectively, while h0 is a collection of zero vectors
(embeddings), indicating the absence of memory at the first
step. With the help of a few additional numerical manipula-
tions, the next hidden state ht is computed, as described in
detail in Supplementary Note 3. Overall, the GRU computes
the state at step t through the hidden state at step t− 1 and the
current state at step t. Note that similar ideas of combing
graph convolutions with recurrent architectures have been
recently used in traffic forecasting48.

To compute the likeliest edge to break at step t, we first pass the
current hidden state ht through an inner-product decoder49. This
produces a matrix with components hti � htj . Clearly, only existing
edges are eligible to be broken; hence, we use the current
adjacency matrix as a mask (via element-wise multiplication) to
compute etij ¼ At

ijðhti � htj Þ, where no summation over identical
indices is implied. For the sake of efficiency, we further assume
that the crack advances by breakage of edges adjacent to the cells
of the current path, although, as discussed above, in some
occasions, edges may break up to a couple of cells away and then
coalesce. In these cases, the order in which network edges are
assumed to fracture deviates slightly from the ground truth.
Finally, a softmax layer translates the value etij corresponding to
each edge into a probability of breaking, pðetijÞ. The training of the
model amounts to minimizing the binary cross entropy
L ¼ �1=N∑n

i¼1 p̂
t
ij log½pðetijÞ� þ ð1� p̂tijÞ � log½1� pðetijÞ�, where

p̂tij ¼ 1 for the true edge that breaks at step t and 0 for all other
edges. Additional details regarding hyperparameters, data aug-
mentation, and training parameters are discussed in “Methods”.

Prediction accuracy. Once trained, the model predicts the crack
advance at arbitrary lengths through an incremental approach,
similar to ref. 18. To evaluate the accuracy of the trained model,
we plot the ratio of correctly predicted edges (e.g., edges that were
predicted to break and indeed broke) over the sum of correctly
and incorrectly predicted edges for the entire fracture path
(Fig. 4a). The average accuracy is similar for the training and test
sets (both above 90%), indicating that no overfitting has taken
place. Restricting this calculation to the first t steps (i.e., the first t
broken beams of a fracture path) and repeating it for increasing t
allows us to compute the timewise evolution of the accuracy.
Figure 4b shows the statistics (mean ± std. deviation) of this t-step
accuracy across multiple predictions in the training and test sets.
As expected, the accuracy decreases with increasing steps (i.e.,
increasing the number of broken beams) as it becomes more and
more likely for the prediction to diverge from the correct fracture
path. This represents a limitation of the current model in eval-
uating very long paths, which could be addressed with a more
sophisticated temporal model. The inset of Fig. 6a shows the
accuracy as a function of the geometrical disorder H2, which

highlights that the accuracy decreases as regularity increases. This
is anticipated since, in the limit of perfect honeycombs, fracture
may propagate upward or downward with equal probability due
to symmetry. This is also evident in Fig. 4c, which compares
model predictions and ground truth fracture patterns for samples
randomly drawn from the training and test set at different values
of disorder. For example, in the upper left plot (corresponding to
low disorder), the model predicts a fracture pattern that is a
mirror of the ground truth. As disorder increases, predictions
generally improve. It is finally worth noting that the use of the
softmax layer for the prediction of the next edge to break natu-
rally provides an estimate of the confidence of the model’s pre-
diction. The closer to 1 the value of the evaluated edge after the
softmax layer, the more accurate the individual prediction is for a
given increment.

Speed and memory efficiency. To gauge the performance of the
framework in terms of speed, we measure the prediction time for
1000 different networks, sampled across the entire dataset, and
compute the mean and standard deviation. For the same net-
works, we also calculate the statistics of the computation time of
the highly optimized FEM solver. As shown in Fig. 5, the pro-
posed graph learning framework delivers almost 2 orders of
magnitude faster predictions than FEM. It is worth noting that
this comes with a substantial memory footprint during training,
which stems from expensive neighborhood aggregation
operations50,51. Fortunately, the nature of the problem allows us
to keep the memory consumption constant despite increasing
network size. This is due to the concept of a K-dominant region
around the crack tip1,6, outside of which the stresses decay
rapidly. This implies that the prediction of the next edge to fail
only depends on the subgraph covering a finite region around the
instantaneous crack tip, while the rest of the graph can be
ignored, allowing us to efficiently handle large graphs. If, for 3D
extensions of the framework, that finite subgraph still leads to
substantial memory consumption, then solutions can be sought in
a combination of techniques, including using compressed52 or
historical embeddings53, decoupling neighborhood aggregation
from prediction54,55, adopting subgraph56,57 training, and using
more scalable architectures relying on reversible connections58 or
anisotropic convolutions59. All the above adaptations have the
potential to reduce the framework’s memory footprint.

Optimizing the fracture toughness. We leverage our trained
model toward designing cellular architectures with maximal
fracture toughness. The latter is interpreted here as the fracture
energy, which is widely used in similar studies39,60,61. This
interpretation of toughness overcomes insufficiencies of the
LEFM interpretation and the need to consider lattices where the
region of KI dominance is much larger than the cell size. More-
over, we can take advantage of the observed correlation between
the fracture energy and the length of the crack path (Fig. 2b) and
tackle the proxy problem of maximizing the latter.

We particularly consider two optimization problems. First, we
focus on discovering specific Voronoi networks (i.e., spatial
arrangements of nuclei) that exhibit the longest fracture paths.
Since we can rapidly evaluate fracture patterns using the trained
model, we opt for a sampling-based optimization. To do so, we
sequentially perturb an initial arrangement of nuclei using a
simple Markov Chain Monte Carlo (MCMC) scheme. A given
perturbation is accepted with a probability that depends on the
effected change of length of the fracture path, as predicted by the
trained model. The algorithm is given in more detail in
“Methods”. We carry out this optimization procedure starting
from 20 initial arrangements and report the best optima. These
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are shown in Fig. 6a in terms of the topological crack length and
the associated fracture energy, evaluated upon the end of
optimization by FEM analysis. The corresponding optimizers
(Voronoi networks) and the fracture patterns are shown in
Fig. 6b. Interestingly, the optimal networks exhibit relatively
diffuse crack patterns, which include crack branching. Finally, we
report the evolution of the predicted crack length and disorder
metrics throughout the optimization process in Fig. 6c and d,
respectively.

Second, ensemble optimization allows us to look for the
generators of the ensemble (λi, see “Methods”) that produce
networks exhibiting, on average maximal crack path lengths and
hence maximal fracture energies. To this end, we adapt the
statistical physics-inspired design engine set forth in ref. 62 to our
problem. The major advantage of this method is that it
incorporates knowledge about the configuration space. We start
with an initial value of the generators and incrementally update
them in an optimal manner. The exact algorithm is detailed in
“Methods”. Figure 7a shows the evolution of the probability
density of the geometrical and topological disorder of the
networks until convergence. Note that the ensemble optimal
networks lie in a region of the disorder space characterized by
higher regularity (lower H1,H2 values) compared to the previous
individually optimized networks. In particular, we find that the

optimal topological disorder approaches zero, i.e., topological
defects, on average, do not increase the fracture energy. Finally,
Fig. 7b shows the evolution of λi, while Fig. 7c shows the average
crack length of the evolving ensemble until convergence. We are
able to achieve a 20% increase in this average length.

Discussion
We have developed a design methodology for irregular archi-
tected cellular materials, which represents a paradigm shift from
conventional periodic designs. By utilizing two effective statistical
metrics that represent topological and geometrical disorders, we
have introduced a new approach for parameterizing the design of
such materials. By moving these statistical descriptors from the
dual to the primal space, the design space can be expanded
beyond Voronoi-based architectures. We have focused on the
challenging task of optimizing their fracture energy, with a wide
range of applications in materials science and engineering,
including the design of tough structural materials and aerospace
components63, biomedical implants64, and electronics65. Our
machine learning framework, which allows for the rapid predic-
tion of crack patterns in these cellular media, leverages their
natural description as graphs and results in a learned mapping
from the space of local topological and geometrical features at the
vicinity of a crack tip to its incremental crack advance. The
trained model relies on a number of assumptions, including
mode-I loading as well as a specific notch configuration and beam
description. However, the framework itself is applicable under a
wider range of conditions (e.g., mode-II loading or Timoshenko
beams) as long as there exists a pronounced notch leading to
stress concentrations. It will be interesting to investigate its
generalization capabilities under these modified assumptions. We
have also shown how the framework can be used for the design of
optimal architectures that maximize fracture energy. Unlike in
prior approaches, disorder in cellular materials is explicitly used
to optimize nonlinear properties beyond the simple engineering
of defects in an otherwise perfectly periodic architecture. Finally,
the framework can prove useful in designing the fracture path,
e.g., steering it away from specific parts of the domain, or it may
be utilized toward optimizing combined mechanical properties
beyond fracture. Overall, this study can pave the way for a new

Fig. 4 Trained graph neural network. a Accuracy histogram for predictions on the training (n= 45,000 samples) and test dataset (n= 5000 samples) for
the entire fracture path. Inset: Average accuracy vs. geometrical disorder. b Evolution of the accuracy of the prediction on the training and test dataset as a
function of the number of steps (i.e., number of broken beams). Error bars represent ±1 standard deviation. c Randomly sampled architectures for a range of
different values of geometrical disorder (upper row: training set, lower row: test set). Ground truth (light filled nuclei—broken primal edges) is compared
with model predictions (dark dual edges).

Fig. 5 Speed performance of the framework. Comparison between the
time in seconds for predicting the fracture paths using FEM and the
proposed graph framework (n= 1000 independent experiments).
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class of architected disordered materials, especially upon its
extension to 3D.

Methods
Generation of random architectures. The disordered architectures in this study
have been generated as follows. We consider a statistical ensemble Gn of Voronoi
networks composed of n nuclei. The ensemble is constructed by maximizing the
entropy subject to a normalization constraint and two additional constraints which
serve to control the degree of disorder. This is mathematically stated as

max
P

� ∑
G2Gn

PðGÞ log PðGÞ;

s.t. ∑
G
PðGÞHiðGÞ ¼ ĤiðGÞ; i ¼ 1; 2;

∑
G
PðGÞ ¼ 1;

ð1Þ

where G denotes the Voronoi network or graph, P(G) is the probability of its
occurrence in the ensemble, H1= 〈Z2〉− 〈Z〉2 is a measure of the topological
disorder of a network (i.e., the variance of the local coordination number Z), and
H2 ¼ hr2iji � hriji2 is a measure of its geometrical disorder (i.e., the variance of the
internuclei distance rij). The solution of Eq. (1) gives the well-known Boltzmann
distribution:

PðGÞ ¼ 1
Z exp

�
�∑

i
λiHiðGÞ

�
; ð2Þ

where Z denotes the partition function. In practice, instead of enforcing specific
values of Ĥi directly, we consider a range of corresponding λi, then sample from
the corresponding distributions above using MCMC66, and inspect the resulting Hi.

This construction provides greater control than the typical construction of random
Voronoi lattices based only on the minimum internuclei distance (see, e.g., ref. 40).
Note that sampling one Voronoi network requires 5000–10,000 MCMC iterations,
depending on the λi-values (i.e., the degree of disorder). During each iteration, the
nuclei positions are perturbed, a new Voronoi tesselation is computed, the resulting
“energy” of the system, ∑λiHi, is calculated, and the perturbed positions are
accepted or rejected based on standard MCMC criteria. The entire process takes,
on average, 120s in our unoptimized Python code running on an Intel i7 1.30GHz
processor.

Fracture simulations. We adopt an Euler–Bernoulli corotational formulation for
the beam kinematics in our cellular architectures67. We postulate the existence of
an energy potential Wðε; εpÞ as well as a dissipation potential ϕ�ð_εpÞ, where ε is the
longitudinal strain and εp is the plastic longitudinal strain. Restricting our attention
to slender beams, we adopt a fiber-type formulation68, in which the strain con-
tributions are uncoupled. In order to capture the mechanical behavior seen in
experiments, we adopt the following form for the potentials, based on a plastic
strain driven damage-law (d), a power law-based plastic hardening energy, and a
rate-dependent dissipation potential:

W ¼ 1
2
ð1� dÞEðε� εpÞ2 þ C

κþ 1
jεpjκþ1; ð3Þ

d ¼ 1� expð�sjεpjÞ; ð4Þ

ϕ�ð_εpÞ ¼ σ0j_εpj þ τ0
_ε0

mþ 1

_εp

_ε0

����
����
mþ1

; ð5Þ

depending on Young’s modulus E, hardening parameters C and κ, damage

Fig. 6 Sample optimization. a Fracture energy vs. topological crack path length for the training set (⋅) and two examples of optimal points obtained through
MCMC (⋆) along with b the corresponding optimizers (Voronoi networks). c Evolution of the topological and geometrical disorder for each of the networks
throughout the optimization. d Evolution of the predicted crack length throughout the optimization. The color map indicates optimization steps from
beginning ( ) to end ( ).

Fig. 7 Ensemble optimization. a Evolution of the probability density of topological and geometrical disorder during optimization. b Evolution of the
generators (Lagrange multipliers) controlling the Voronoi networks. c Average crack length vs. iteration number.
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parameter s, and strength parameters σ0, τ0, and m. Additional details about the
model formulation, its calibration and validation against experiments are given in
Supplementary Notes 1 and 2.

Graph neural network model. Our graph neural network depicted in Fig. 3a
includes fully connected edge and node networks, each having three layers and
feature rectified linear units as activation layers. The overall graph network has six
layers, a hidden nodal dimension of 256, and a latent nodal dimension of 32. A
relevant hyperparameter study can be found in Supplementary Note 4. Residual
layers are introduced in the graph network to avoid the known problem of
oversmoothing69. Dropout layers with a dropout probability of 0.4 are used to
avoid overfitting. For the purpose of data augmentation, the domain and the
associated fracture pattern are flipped vertically, effectively doubling the size of the
dataset. During training, we monitor the model performance on the test set,
comprised of 10% of the total data, after each epoch. We employ the ADAM
optimizer70, with a learning rate of 0.00005. We perform early stopping when the
testing accuracy metric stops decreasing for six consecutive epochs to avoid
overfitting. The model is implemented in the open-source library Pytorch-
Geometric71.

Fracture path optimization—sample. We adopt a sequential optimization algo-
rithm furnished by a Markov Chain Monte Carlo approach. The algorithm takes
the following steps: (1) take N nuclei and distribute them either randomly on the
domain or such that they correspond to a desired initial value of topological and
geometrical disorder. (2) Construct the Voronoi graph and compute associated
node/edge features. (3) Evaluate the trained machine learning model to predict the
fracture path length L. (4) Move the nucleus of a randomly chosen Voronoi cell by
a small random displacement. (5) Recompute (locally) the Voronoi tesselation,
update the graph features, and reevaluate the fracture path length L0 . If L0>L,
accept the move. If L0 ≤ L only accept with a probability e�ðL0�LÞ=T , where T is a
temperature-like hyperparameter, otherwise do not move the nucleus. (6) Check
for convergence in the overall improvement of L. (7) Go to step (4).

Fracture path optimization—ensemble. For the ensemble average optimization,
we adopt a statistical physics-inspired optimization scheme. The fundamental idea
is to compute the evolution of the Lagrange multipliers λi toward the direction of
increasing the probability of finding the system in states with above-average values
of a desired average quantity. This quantity here is the length of the crack path,
L(G), given a Voronoi graph G. Following ref. 62, we desire

_PðGjλiÞ ¼ PðGjλiÞ½LðGÞ � hLðGÞi�; ð6Þ
where 〈⋅〉 denotes averaging over the configuration space weighted by Pλi

. This
translates into

_λi ¼ h∂λi logðPÞ∂λj logðPÞi
�1h½LðGÞ � hLðGÞi�∂λj logðPÞi: ð7Þ

Using Eq. (2), the above equation further transforms into

_λi ¼ hHiðGÞHjðGÞi�1hLðGÞHjðGÞi: ð8Þ
Averaging over the configuration space is computed by sampling 2000 config-
urations in parallel. For each, the crack path can be rapidly evaluated using the
trained graph model.

Data availability
The source data for all figures, as well as the data required to train the machine learning
model, are available in the ETH Research Collection (https://doi.org/10.3929/ethz-b-
000608722)72.

Code availability
The code for the machine learning model developed in this study is available from
GitHub (https://github.com/kkarapiperis/gnn-fracture).
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