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Abstract

A key to a sustainable chemical industry is the design of the industry’s products and
processes. Therefore, chemical products and processes need to be developed with
sustainability metrics as objectives. However, integrating sustainability metrics into
the design methods is not trivial, as the environmental impacts of chemical products
and processes are affected over multiple orders of magnitude: The influences range
from the system level, where environmental impacts become apparent, via the technical
applications and physical properties, down to the molecule structure at the molecular
level. As a result, the design of molecules, experiments, and processes for sustainability
is a challenge at multiple levels. To overcome this challenge, targeted solution methods
need to be developed that combine environmental assessment, application modelling,
and property prediction. In this thesis, the computer-aided design methods for
molecules, experiments, and processes are therefore advanced beyond pure technical
feasibility by extending the modelling at the system, application, properties, and
molecular level.

At the system level, computer-aided molecular and process design is integrated
with predictive life cycle assessment to allow minimising environmental impacts as
optimisation objective. At the application level, detailed modelling of entire process
flowsheets is enabled by including the majority of unit operations and heat integration
in the design framework. The integrated framework is demonstrated to minimise the
life cycle environmental impacts of solvents in chemical processes. At the property level,
the design of experiments is accomplished that maximises the accuracy of predictions
on process performance and environmental impacts. Physical property measurements
for parametrisation and validation are tailored to their application in molecular and
process design using c-optimal experimental design. Finally, at the molecular level, the
design scope is extended from processing chemicals towards chemical products since the
chemical products represent a major degree of freedom in the design of a sustainable
industry. The methods for the integrated design of processing chemicals and processes
are extended towards the targeted model-based design of chemical products, forming
a starting point for the integrated life cycle design of products and processes in the
chemical industry.






Kurzfassung

Ein Schliissel fiir eine nachhaltige Chemieindustrie liegt in der Entwicklung nach-
haltiger Produkte und Prozesse. Daher miissen insbesondere chemische Produkte
und Prozesse unter Beriicksichtigung von Nachhaltigkeitsmetriken entwickelt werden.
Die Integration von Nachhaltigkeitsmetriken in die Entwicklungsmethoden ist jedoch
schwierig, da die Umweltauswirkungen chemischer Produkte und Prozesse iiber viele
Groflenordnungen beeinflusst werden: Die Einfliisse reichen von der Systemebene, auf
der die Umweltauswirkungen sichtbar werden, iiber die technischen Prozesse und
physikalischen Eigenschaften bis hinunter zur Molekiilstruktur auf der Molekularebene.
Der Entwurf von Molekiilen, Experimenten und Prozessen unter Beriicksichtigung
der Nachhaltigkeit ist daher eine Herausforderung auf all diesen Ebenen. Um diese
Herausforderung zu bewéltigen, miissen zielgerichtete Losungsmethoden entwickelt
werden, die Umweltbewertung, Anwendungsmodellierung und Eigenschaftsvorhersage
integrieren. In dieser Arbeit werden deshalb computergestiitzte Methoden fiir die
Entwicklung von Molekiilen, Experimenten und Prozessen vorgestellt, die iiber die rein
technische Machbarkeit hinausgehen. Hierzu wird die Modellierung auf der System-,
Anwendungs-, Eigenschafts- und Molekiilebene erweitert.

Auf der Systemebene wird das computergestiitzte Molekiil- und Prozessdesign mit
einer Methode zur pradiktiven Okobilanz kombiniert, um als Optimierungsziel die
Minimierung von Umweltwirkungen zu erméglichen. Auf der Anwendungsebene wird
die detaillierte Modellierung ganzer ProzessflieBbilder erreicht, indem die gebrauch-
lichsten verfahrenstechnischen Grundoperationen einschliefllich der Warmeintegration
eingebunden werden. Die integrierte Methode wird fiir die Minimierung der Umwelt-
auswirkungen von Losungsmitteln in chemischen Prozessen demonstriert. Auf der
Eigenschaftsebene wird die Planung von Versuchen zur Vorhersage der Prozessleis-
tung und Umweltauswirkungen présentiert. Messungen physikalischer Eigenschaften
fiir Parametrisierung und Validierung werden auf ihre Anwendung im Molekiil- und
Prozessdesign mit Hilfe der c-optimalen Versuchsplanung zugeschnitten. Auf der mo-
lekularen Ebene wird schlieflich der Gestaltungsraum von Prozesschemikalien auf
chemische Produkte erweitert, da die chemischen Produkte selber einen grofien Frei-
heitsgrad bei der Entwicklung einer nachhaltigen Industrie darstellen. Die Methoden
fiir das integrierte Design von Prozesschemikalien und Prozessen werden auf die gezielte
modellbasierte Entwicklung von chemischen Produkten ausgeweitet und bilden so einen
Ausgangspunkt fiir das integrierte Lebenszyklusdesign von Produkten und Prozessen
in der chemischen Industrie.
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CHAPTER 1

Introduction

The chemical industry is today one of the largest manufacturing industries and is
continuously growing. From 2000 to 2017, chemical production almost doubled to 2.3
billion tonnes (United Nations Environment Programme [UNEP], 2019). According to
forecasts, sales will further double by 2030 (UNEP, 2019). Today’s chemical industry
is also a major consumer of fossil fuels and significantly contributes to environmental
pollution, climate change, and resource consumption (UNEP, 2019). Consequently,
environmental impacts also continue to grow as the production volume of chemicals
increases. For example, the chemical industry’s oil consumption for energy and raw
material supply is projected to account for one-third of the global oil production by
2030 and one-half by 2050 (International Energy Agency [IEA], 2018, 2021). As a
result, the direct CO5 emissions of the chemical industry will increase by 20 % until
2030 and by 30% until 2050. Besides CO, emissions, the chemical industry will
increasingly cause additional burdens for the environment, e.g. by air pollution or
water consumption (IEA, 2018).

To reduce its environmental impact, the chemical industry needs to move towards
sustainable operations. A key to sustainability is the underlying structure of the
chemical industry, i.e. which products are manufactured with which processes (Bakshi,
2019; Grossmann and Harjunkoski, 2019; Martin and Adams II, 2019; Pistikopoulos
et al., 2021). Therefore, the methods for product and process design play a particularly
critical role for sustainable chemicals and processes. However, present design methods
frequently approximate performance and environmental impacts by characteristic
properties instead of performing integrated assessments (Gertig et al., 2020b; Adjiman
et al., 2021). As a result, the simplified representation of design goals as objectives
leads to suboptimal designs. Without precise design targets, the computer-aided design
of products and processes is inefficient, leading to unnecessary resource consumption
and waste, higher hazards and environmental impacts, as well as avoidable costs

(Bakshi, 2019).

Setting tailored metrics as design objectives is a challenging task as the design of
products and processes spans multiple orders of magnitude, from the molecules via the
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physical properties and applications to the assessment of economic and environmental
impacts (cf. Fig 1.1; Zhou et al., 2019a; Adjiman et al., 2021). Consequently, advancing
the design methodology needs to address the requirements at the levels of molecules,
properties, applications, and system, as well as the links between them. These links
are formed by property prediction and measurement, energy and mass balances,
and assessment models. The design of sustainable products and processes thus also
includes the prediction and experimental measurement of physico-chemical properties,
application modelling, and environmental assessment.

To aid the transformation of the chemical industry, the established design methods
need to be advanced to enable targeted designs beyond purely technical function
(Zimmerman et al., 2020). For a chemical industry with sustainable products and
processes, the design objectives need to be formulated in terms of sustainability metrics,
e.g. environmental impacts determined through life cycle assessment (ISO 14040, 2006).
In this thesis, the computer-aided design of molecules, experiments, and processes
is advanced to design sustainable chemical products and processes tailored to the
corresponding applications. For this purpose, the design of molecules, experiments,
and processes with respect to environmental assessment is enabled at each level, and
the methods are refined towards tailor-made design.

energy & mass
balancing .

PROPERTIES

prediction,
measurement

Figure 1.1: The scales relevant to the design of a sustainable chemical industry and
methods to link the individual levels: The design space spans from molecules
at the smallest scale to environmental impacts at the largest scale.



Structure of this thesis

This thesis is structured in seven chapters: Chapter 2 provides an overview of the
state of the art in the computer-aided design of molecules, experiments, and processes.
Building on the basic relationships between molecules, properties, and applications,
design opportunities are highlighted, and current design methods are described. Based
on the literature review, current challenges and limitations of the state-of-the-art
methods are identified, and the scientific contribution of this work is outlined.

In Chapter 3, a Computer-Aided Molecular and Process Design (CAMPD) framework
is proposed that allows for minimising of environmental impacts. The CAMPD
framework integrates Life Cycle Assessment (LCA) of solvents from cradle to grave as
a holistic environmental design objective.

Chapter 4 expands the process design scope in CAMPD. The CAMPD framework
is extended to include models for the most common unit operations in chemical
engineering and process optimisation for minimum utility demand. As a result, the
method yields optimal combinations of solvents and process settings considering heat
integration.

In Chapter 5, tailored design of experiments is investigated that considers the
application of property parameter estimation: c-optimal experimental design (c-OED).
c-OED designs experiments that minimise the uncertainties of a process model leading
to the most accurate process simulations.

In Chapter 6, the focus in the design of molecules is shifted from processing chemicals,
e.g. solvents, to chemical products, e.g. fuels for internal combustion engines. An
optimisation-based method is developed to design fuels for spark-ignition engines that
includes a model predicting engine efficiency as objective function.

Finally, Chapter 7 summarises this thesis and draws conclusions on the results of
the individual chapters. Based on the knowledge gained in this thesis, future research
perspectives are outlined.






CHAPTER 2

The state of the art in designing
molecules, experiments, and processes

In this chapter, the state of the art in computer-aided design of molecules, experiments,
and processes is reviewed, and current challenges and limitations are highlighted. The
chapter starts with an introduction to designing molecules, experiments, and processes
(Section 2.1). Section 2.2 reviews current environmental objectives and constraints in
CAMPD. In Section 2.3, the current process design scope and the modelling resolution
of chemical processes in molecular design are discussed. Section 2.4 describes the state
of the art in designing experiments for chemical engineering problems. Section 2.5
reviews the application of CAMD to product design problems, in which the focus
is shifted from processing chemicals to chemical end products. Finally, Section 2.6
summarises the literature review and outlines the contributions of this thesis.

Major parts of this chapter are reproduced by permission of Elsevier, John Wiley & Sons, Inc., and
the American Chemical Society from:

Fleitmann, L.; Kleinekorte, J.; Leonhard, K. and Bardow, A. (2021). COSMO-susCAMPD: Sustain-
able Solvents from Combining Computer-Aided Molecular and Process Design with Predictive
Life Cycle Assessment. Chemical Engineering Science, 245, 116836.

Fleitmann, L.; Gertig, C.; Scheffczyk, J.; Schilling, J.; Leonhard, K. and Bardow, A. (2023). From
molecules to heat-integrated processes: Computer-aided design of solvents and processes using
quantum chemistry. Chemie Ingenieur Technik, 95(3), 368-380.
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2.1 Introduction to designing molecules, experiments, and
processes

The design of molecules, experiments, and processes for a sustainable chemical industry
is a challenging task since the design problem spans multiple orders of magnitude
(Zhou et al., 2019a; Adjiman et al., 2021): From the system level, where environmental
impacts become apparent, via the application and property level down to the molecular
level (Figure 2.1). The multi-scale approach is required as the micro scale strongly
influences the macro scale: The molecules employed in a technical application, e.g.
a chemical process, determine the physico-chemical and thermodynamic properties.
Following the physico-chemical and thermodynamic laws, these properties describe the
performance of the technical application. The macro-scale effects of the application
finally determine the environmental impacts.

The description of macro-scale effects caused by micro-scale decisions is key to
the multi-scale design and corresponds to the so-called analysis or direct problem
(Figure 2.1). Solutions to analysis or direct problems are usually predictive models
connecting adjacent levels. In the design of molecules, experiments, and processes, these
connections are established by predictive property, application, and assessment models:
To link the molecular and the property level, physico-chemical and thermodynamic
properties are estimated given a molecular structure. For this purpose, various property
prediction methods have been developed for pure components and mixtures, e.g. using
group contribution (GC; Gani, 2019), quantum chemistry (Gertig et al., 2020b), or
machine learning-based methods (Zhou et al., 2019a, 2021). Given property data,
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Figure 2.1: Multi-scale design from the molecular to the system level.
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property and application level are linked by application models, e.g. a chemical process
model such as a flowsheet model. Finally, the system level can be reached by an
assessment model of economics (e.g. net present value), resources (e.g. exergy analysis),
or environmental impacts (e.g. LCA).

Inverting the analysis leads to the so-called inverse or design problem: Given a
macro-scale objective, the inverse problem is to determine the micro-scale decisions
that lead to the desired macro-scale effects by formulating an optimisation problem.
To formulate and solve the design problem, the fundamental cause-effect relationships
between the objective and the degrees of freedom need to be known as inputs, i.e.
the direct problems connecting adjacent levels have been solved before and resulted
in predictive models describing the effect of the micro-scale decisions on the macro-
scale objective. Using the predictive models, the design problem is formulated as an
optimisation problem and solved with an appropriate solution strategy, e.g. based on
generate-and-test, metaheuristic or deterministic optimisation algorithms (Sun et al.,
2020; Pistikopoulos et al., 2021).

Depending on the problem scope, the design problem formulation spans one or
more levels and includes one or more predictive models. In the literature, various
design problems have been studied: For example, molecular design problems cover the
molecular and properties level with design objective reaching the applications level
(Papadopoulos et al., 2018); experimental design mainly focuses on the properties
level (Franceschini and Macchietto, 2008); and process synthesis and design frequently
address application and system level (Chen and Grossmann, 2017). In this thesis,
the design of molecules, experiments, and processes is investigated by methods of
computer-aided molecular and process design, and experimental design.

Methods for Computer-Aided Molecular Design (CAMD) optimise the molecular
structure of candidate molecules, frequently by focussing on finding molecules with
characteristic thermodynamic properties that are heuristically related to superior
performance in an application (Gertig et al., 2020b; Adjiman et al., 2021). In these
methods, the design is carried out at the property level. More advanced CAMD
methods assess the molecules at the application level by integrating a process model
to define a proper objective function and constraints relevant to the application. If the
design of molecules is integrated with process design at the application level, integrated
Computer-Aided Molecular and Process Design (CAMPD) problems are formed, i.e.
process settings are simultaneously optimised with the molecular structure. CAMPD
allows for the targeted exploration of vast molecular design spaces and corresponding
optimal processes without experimentation and is thus increasingly investigated in
literature (Papadopoulos et al., 2018; Chai et al., 2022).
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The most commonly designed molecules in CAMPD are processing chemicals such as
solvents and working fluids for application in energy and chemical conversion processes.
Examples for CAMPD of processing chemicals are the design of working fluids for
Organic Rankine Cycles (Schilling et al., 2017; White et al., 2018) or solvents for
separation problems, e.g. liquid-liquid extraction or COs absorption, including the
design of non-classical components such as ionic liquids (Zhou et al., 2020; Chai et al.,
2022). CAMPD has also been successfully applied to optimise reactions through the
design of reaction solvents (Liu et al., 2019a; Gertig et al., 2020a) and even catalysts
(Gertig et al., 2021).

Besides processing chemicals, the design of chemical products is recognized as a
key part of chemical engineering (Adjiman et al., 2021), since the molecular structure
of a product determines its properties and functionalities (Gani, 2004). Computer-
aided product design (CAPD) is a collective term for designing components for
various applications and ranges from small molecules over solids and nanoparticles to
pharmaceuticals and formulated products (Uhlemann et al., 2019). The design of some
chemical end products, e.g. fuels, is closely related to CAMD for processing chemicals
(Gani and Zhang, 2020; Zhang et al., 2020a). However, in contrast to CAMD for
processing chemicals, a challenge in CAPD is the prediction of properties describing
the application, frequently going far beyond thermodynamic properties (Ng et al.,
2015b; Zhang et al., 2016). Moreover, application models in CAPD that solve the
direct problem between properties and application are frequently rare, while the effects
of processing chemicals in process models can usually be well described using existing
chemical engineering knowledge.

Experimental design complements CAMPD/CAPD and process and product de-
velopment since an experimental design does not optimise the chemical process or
product but rather its description. For the design of chemical products and processes,
physical properties are crucial for model parametrisation and validation (Mitsos et al.,
2018). In particular, thermodynamic properties, e.g. describing phase behaviour,
largely influence predicted performance in application (Mathias, 2016). Therefore,
high-quality property data are required for accurate results. The need for high-quality
property data has led to the development of model-based Optimal Experimental De-
sign (OED; Atkinson et al., 2006; Franceschini and Macchietto, 2008). State-of-the-art
OED identifies optimal experimental settings with respect to parameter accuracy
by analysing the uncertainty propagation from experimental measures to estimated
property parameters through a predefined model of the experiment. OED has already
been applied for the estimation of important thermodynamic properties in the chemical
industry, such as reaction kinetics (Forte et al., 2017; Walz et al., 2018), phase equilibria
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(Dechambre et al., 2014b; Duarte et al., 2021), diffusion coefficients (Wolff et al., 2016),
or adsorption isotherms (Walz et al., 2018).

Based on these general concepts for the design of molecules, experiments, and
processes, the individual design methods are detailed in the following Sections 2.2-2.5,
and the state of the art in modelling and design at each level is investigated.

2.2 System level: Computer-aided molecular and process

design for environmental sustainability

To date, CAMPD methods have mainly focused on economics and technical process
performance for assessing candidate molecules and processes at the system level (Zhou
et al., 2020; Gertig et al., 2020a). However, the design of sustainable chemical processes
needs a more holistic objective with an environmental dimension (Brown et al., 1987).
Both economics and environmental impacts of many chemical processes depend strongly
on the employed molecules (Clarke et al., 2018; Jimenez-Gonzalez, 2019; Zhou et al.,
2020). Therefore, not only process performance and economics but also environmental
impacts need to be optimised (Zimmerman et al., 2020). To capture environmental
impacts at the system level, CAMPD needs to integrate environmental assessment
(Zhou et al., 2020; Gertig et al., 2020a; Adjiman et al., 2021).

A few CAMPD methods already integrated environmental assessment, i.e. the
assessment of environmental impact potentials or hazards. Many of these approaches
are based on metrics and guidelines for green molecules (Soh and Eckelman, 2016). In
particular, indicators for Environmental, Health, and Safety hazards (EHS; Adu et al.,
2008) have been successfully integrated in CAMPD problems. For example, systematic
screening approaches evaluate candidates based on environmental databases and
Quantitative Structure-Activity Relationship (QSAR) toolboxes (McBride et al., 2018;
Linke et al., 2020; Song et al., 2020). If CAMPD problems are formulated and solved
as a mathematical optimisation problem, solution algorithms require an automated,
integrated evaluation of EHS criteria. For this purpose, predictive models are frequently
employed, e.g. GC models fitted to experimental data (Papadopoulos et al., 2010;
Schilling et al., 2017; Ten et al., 2017; Ooi et al., 2018; Jonuzaj et al., 2019; Ten et al.,
2020, 2021). These approaches have in common that they evaluate environmental
impact potentials from the molecular properties of the candidate molecules.

However, environmental assessment has to go beyond the environmental impact
potential of the molecules, which is a molecular property, such as the global warming
potential (Hellweg et al., 2004). For a holistic assessment, CAMPD needs to consider
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the environmental impacts of the full life cycle of a molecule, including emissions caused
during production, use and disposal (Jimenez-Gonzalez, 2019; Chemmangattuvalappil,
2020). A broadly accepted method for the holistic environmental assessment is Life
Cycle Assessment (LCA). LCA is an ISO-normed method (ISO 14040, 2006) considering
emissions of all life cycle stages from cradle to grave of a substance. As a consequence
of the holistic analysis, LCA helps to avoid problem shifting between life cycle stages
or environmental impacts. However, a cradle-to-grave LCA generally requires much
information on a substance, i.e. detailed mass and energy balances of all flows from and
to the environment during production, use and disposal (Hellweg and Mila i Canals,
2014).

In CAMPD, available data on candidate molecules is usually minimal, in particular
on in silico designed molecules. For economic objectives, CAMPD methods have
already been equipped with predictive tools to close data gaps: Predictive thermody-
namic models estimate thermodynamic properties so that process simulation can be
performed for economic assessment. Likewise, CAMPD needs to integrate predictive
LCA approaches for environmental assessment. Similarly to the prediction of ther-
modynamic properties from thermodynamic models, the environmental impacts of
candidate molecules need to be predicted given their molecular structure (Kleinekorte
et al., 2020).

In literature, predictive LCA has been approached by two main routes: (1) the
prediction of Life Cycle Inventory (LCI) and (2) the direct prediction of the Life Cycle
Impact Assessment (LCIA). The LCI is the basis for life cycle impact assessment
and provides the bill of materials of the life cycle. To yield ultimately environmental
impacts, the LCI needs to be multiplied by characterisation factors (Hauschild and
Huijbregts, 2015). LCI is frequently predicted from estimates for energy and mass flow
from generic flowsheets (Righi et al., 2018; Parvatker and Eckelman, 2020). In contrast,
the direct prediction of the LCIA has been investigated by multi-linear regression
(Calvo-Serrano et al., 2018; Calvo-Serrano and Guillén-Gosalbez, 2018) and artificial
neural networks (Wernet et al., 2008, 2009; Song et al., 2017; Kleinekorte et al., 2019;
Karka et al., 2022).

Recently, predictive LCA has successfully been combined with molecular design for
the first time: Papadopoulos et al. (2020) formulated an integrated CAMD problem
including predictive LCA and predictive EHS scores. For the predictive LCA, the
authors use the ANN-based FineChem model (Wernet et al., 2009) to estimate the
specific impacts of solvent production per kilogram solvent. For the predictive EHS
scores, Papadopoulos et al. (2020) employ group contribution and molecular similarity
approaches. By combining these prediction approaches into one integrated multi-
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objective CAMD problem, desired solvent properties are optimised simultaneously with
environmental impact scores, e.g. maximising specific solvent density and minimising
specific environmental impact on Climate Change and EHS scores.

A similar approach was proposed by Baxevanidis et al. (2021). The authors developed
a group contribution-based LCA model and integrated the GC-LCA model into a
CAMD formulation. The CAMD problem was solved considering the cradle-to-gate
environmental impacts of the solvents to design solvents for liquid-liquid extraction
based on performance indicators.

However, the current approaches limit the LCA scope to a so-called cradle-to-gate
system boundary, considering only emissions caused during the solvent production per
kilogram solvent. The amount of solvent required by the process cannot be considered
in these approaches, although the amount of solvent varies substantially depending
on the solvent’s performance in the process. Moreover, the process corresponds to
the use phase of the solvent life cycle, and the solvent properties directly impact the
process performance and the emissions of the use phase. Finally, the emissions from
solvent disposal depend on the solvent loss during the use phase. Thus, a cradle-to-gate
assessment does not capture the full environmental impacts of the candidate solvents.
To avoid problem shifting between life cycle stages, CAMPD needs to consider all
solvent-related emissions within a cradle-to-grave system boundary.

2.3 Application level: Process design scope in integrated
molecular and process design

Accurate environmental assessment of each candidate molecule at the system level
requires appropriate modelling and design at the application level to provide life
cycle inventory. Therefore, systematic process design is required in CAMPD for
maximum performance and minimum environmental impact. For systematic process
design, various optimisation-based methods have been developed in process systems
engineering (Pistikopoulos et al., 2021). A chemical process involves various units and
auxiliaries to transform raw materials into products. Today, process design therefore
includes the optimisation of process settings and unit operations as well as heat recovery
and utility systems (Smith, 2005) and the selection of molecules as auxiliaries such as
solvents or working fluids (Gertig et al., 2020b; Zhou et al., 2020; Adjiman et al., 2021;
Chai et al., 2022).

Traditionally, process design follows a sequential approach from the reactor to
separation and recycle systems and the heat exchanger network (Douglas, 1985).

11
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However, this sequential approach does not account for the considerable interactions
between the entire process system and each unit or the heat recovery subsystem.
Moreover, the selection of auxiliaries is not considered as an explicit step in the design
approach. Since the optimal process system performance cannot always be achieved by
separately optimising the process subsystems and auxiliaries, advanced design methods
integrate the individual design steps, e.g. by mathematical optimisation (Chen and
Grossmann, 2017). However, current methods focus on either (1) energy and mass
integration or (2) molecule selection.

1. Energy and mass integration: Several solutions are presented to combine process
optimisation with the design of the heat recovery network (Kong et al., 2016; Elsido
et al., 2017, 2019; Dong et al., 2020; Ryu et al., 2020; Kruber et al., 2021). These
methods simultaneously design the (reaction-) separation process and heat exchange
by solving large superstructure optimisation problems. Superstructure problems
usually contain non-convexities and many discrete degrees of freedom to model the
process synthesis decisions and are thus challenging to solve (Chen and Grossmann,
2017). Therefore, the solution methods often require tailored solution algorithms
for computational efficiency. Recently, Liesche et al. (2019) and Schack et al. (2020)
presented the superstructure-based process synthesis method FluxMax that avoids
non-linearities in the optimisation problem by discretising the thermodynamic state
space before optimisation. Thereby, the non-linear process synthesis problem is reduced
to a linear flux optimisation of elementary process functions on the thermodynamic
grid. While these methods master the complexity of energy and mass integration, they
are not capable of simultaneously optimising the employed molecules as auxiliaries as
well. Process design approaches considering heat integration usually assume a fixed
selection of molecules or a small preselected set to avoid the problem complexity due
to the large molecular design space (Adjiman et al., 2021).

2. Molecule selection: Aside from process settings and heat integration, the
performance of chemical and energy conversion processes is also substantially impacted
by molecules used as auxiliaries, in particular solvents (Chemmangattuvalappil, 2020;
Zhou et al., 2020). Solvents influence process conditions and optimal settings of unit
operations and thus even heat integration and utility consumption. Consequently,
process and solvent cannot be optimised independently, but their design needs to
be integrated to for successful process design(Gertig et al., 2020b; Adjiman et al.,
2021; Chai et al., 2022; cf. Section 2.1). However, similar to integrated energy and
mass integration problems, CAMPD problems are highly non-linear and challenging
to solve, since CAMPD problems usually consider non-ideal thermodynamics and
contain integer decision on the molecular structure (Samudra and Sahinidis, 2013;
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Papadopoulos et al., 2018). Therefore, CAMPD methods commonly simplify either
the process design scope or the molecular design space accessible by the employed
predictive thermodynamic models.

Many CAMPD methods approximate the solvent influence on the process using
simplified performance indicators such as partition coefficients or relative volatilities
(Austin et al., 2017; Scheffczyk et al., 2017b; Ooi et al., 2019; Zhou et al., 2019b;
Papadopoulos et al., 2020). Other CAMPD methods assess only single process units or
flowsheet subsystems (Austin et al., 2017; Jonuzaj and Adjiman, 2017; Jonuzaj et al.,
2018; Scheffczyk et al., 2018; Gertig et al., 2020a; Zhang et al., 2020a; Fleitmann et al.,
2021a; Watson et al., 2021). However, limiting the process modelling to simplified
performance indicators, single-unit operations, or small subsystems of the process
flowsheet does not capture all flowsheet-inherent trade-offs. Simplifying the process
design scope can thus lead to suboptimal solvent selection for the final optimised
overall process flowsheet (Gertig et al., 2020b; Chai et al., 2022). Even more, the
influence of heat recovery has been neglected in CAMPD (Adjiman et al., 2021).

CAMPD methods modelling the entire process flowsheet typically simplify the
molecular design scope by simplifying property prediction (Zhou et al., 2017; Zhang
et al., 2021a) or limiting the molecular design space to specific molecular groups
(Pereira et al., 2011; Burger et al., 2015; Gopinath et al., 2016; Schilling et al., 2017;
White et al., 2017, 2018; van Kleef et al., 2019; Schilling et al., 2020; Kefller et al.,
2021). These CAMPD methods rely on one or more GC methods for predicting the
thermodynamic properties of candidate molecules. GC methods have been shown
to accurately predict various thermodynamic and environmental properties (Marrero
and Gani, 2001; Hukkerikar et al., 2012b). However, group parameters are usually
parametrised from experimental data and are not available for all kinds of molecules,
in particular for higher-order groups (Gani, 2019). Moreover, several GC methods are
usually employed to cover all thermodynamic properties required for process design,
e.g. for ideal-gas heat capacities, activity coefficients or enthalpies of vaporisation.
However, combining several GC methods and parameter sets can lead to inconsistent
predictions and contradictions (Gani, 2019). Thus, CAMPD preferentially requires
consistent property prediction that does not limit the molecular design space, e.g.
based on quantum chemistry (Gertig et al., 2020b).

In conclusion, systematic process design in CAMPD needs to extend beyond simpli-
fying process models and neglecting heat recovery to model the entire process flowsheet
with heat integration, while building on reliable thermodynamic data from a large
molecular design space. However, because of the CAMPD problem complexity, models
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for thermodynamic property prediction and process design need to be carefully selected
to balance details, scope, and computational effort.

2.4 Property level: Model-based design of experiments

In product and process design, property data needed for validation and parametrisation
still relies mostly on experimentation (Kontogeorgis et al., 2021). However, experiments
consume time and large amounts of materials causing high costs and environmental
impacts for estimating parameters in property models. Therefore, experimental
effort should be minimised by selecting only the experiments that provide the most
information and thus lead to the most accurate simulation. These optimal experiments
can be designed by Optimal Experimental Design (OED).

Generally, two approaches for OED can be distinguished: (1) statistical OED
(Franceschini and Macchietto, 2008) and (2) bounded-error OED (Pronzato and Walter,
1990). Statistical OED minimises the parameter variances considering a statistical
error distribution (Walz et al., 2018). In contrast, bounded-error OED minimises
the feasible parameter set consistent with the measurement uncertainty given by
upper and lower bounds on the errors (Walz et al., 2018). As a result, bounded-error
OED requires fewer assumptions on errors than statistical OED but instead needs to
solve a challenging bilevel optimisation problem. For many experiments in chemical
engineering problems, the measurement uncertainty is known (Dong et al., 2005) and
justifies the use of statistical OED. Thus, the focus of this work is on the more popular
statistical OED.

In statistical OED, the objective function is usually a scalar measure of the parameter
variances representing parameter uncertainty (Franceschini and Macchietto, 2008). Sev-
eral well-known objective functions have been developed to determine the experimental
designs leading to the most accurate parameters (Franceschini and Macchietto, 2008),
e.g. minimising the average uncertainty of all parameters (A-optimality); minimising
the uncertainty of the most uncertain parameter (E-optimality); or minimising a
generalised variance of the parameters (D-optimality).

However, in chemical engineering, the primary purpose of experiments is rarely to
gain knowledge of parameters themselves. Instead, chemical engineers seek to gain
thermodynamic insights, predict phase behaviours or simulate a process, etc. Thus,
the experimental design needs to reflect the model application (Gevers and Ljung,
1986). Recently, OED methods have focused on incorporating the purpose of parameter
estimation. Dechambre et al. (2014b) employed G-optimal experimental design that
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minimises the expected variance in the model predictions of the experiments instead
of uncertainties in property parameters. In particular, Dechambre et al. (2014b)
minimised the predicted variance of phase compositions calculated from a liquid-liquid
equilibrium model instead of the property parameters used in the activity coefficient
model.

Similarly, for process simulations, the impact of the property parameters on the
simulation results is usually more important than the uncertainty of the property
parameters. If the governing phenomena of the chemical system are known, and a
thermodynamic model capable of describing these phenomena is selected, the purpose of
experimentation is to increase accuracy of the simulation through (re-)parametrisation.
However, an experimental design for the most accurate property parameters does not
ensure the lowest uncertainty in process simulation. Thus, the property parameter use
in a process model needs to be considered within the optimal experimental design.

For this purpose, Asprion et al. (2019) recently presented OED for experiments in a
plant or mini plant using a flowsheet simulator. In their work, the optimal experimental
design considers property parameter use by employing the process model already for
the parameter estimation. The authors show that their method improves model
discrimination and parameter estimation. However, the method requires expensive
and time-consuming plant experiments instead of small lab-scale experiments.

For lab-scale experiments and bounded-error OED, Walz and coworkers accounted
for property parameter use in process simulation and design (Walz et al., 2018, 2019).
The authors successfully show how to reduce experimental effort without changing
the reliability of the process model results. However, their method requires solving
a challenging bi- or trilevel optimisation problem and is currently limited to small
process models.

For statistical OED and lab-scale experiments, a first approach was published by
Recker et al. (2013). The authors considered the sensitivities of the process to the
property parameters by heuristically scaling the A-optimality criterion and successfully
optimised the experimental design to estimate reaction kinetics for a reaction-separation
process. A similar approach was proposed by Lucia and Paulen (2014) for robust non-
linear model predictive control. Using the sensitivities of the optimal robust economic
objective value to parametric uncertainty, the authors scaled a modified E-criterion.
Kaiser and Engell (2020) and Kaiser et al. (2021) linked OED for parameter estimation
with superstructure optimisation of early process design stages (Kaiser and Engell,
2020; Kaiser et al., 2021). For this purpose, the authors perform global sensitivity
analysis of optimisation results towards the uncertain parameters using heuristically
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scaled D-optimality (Kaiser and Engell, 2020) and heuristically scaled A-optimality
(Kaiser et al., 2021).

However, even though these heuristic approaches provide a breakthrough by combin-
ing OED and process simulation, heuristic designs likely differ from optimal designs
with full consideration of the process (Fleitmann et al., 2021b). Instead, full considera-
tion of process information requires uncertainties of property parameters to propagate
through the process model, and the uncertainties of the process model results should
be used as the OED objective.

In pioneering work, the van Impe group integrated experimental design and non-linear
model predictive control (Houska et al., 2015; Telen et al., 2016, 2017). The authors
mathematically derived an economic process objective function for experimental design
by weighted A-optimality. They defined the OED objective as the minimisation of
the expected optimality gap of the parametric optimal control problem via second-
order derivatives of the Lagrange function (Houska et al., 2015). The approach was
demonstrated successfully to tailor experimental designs for estimating reaction rate
constants to control problems of bioreactors.

Similarly, for the most accurate chemical process simulations, the OED objective
needs to be defined in terms of process uncertainties to capture the property parameter
use in the process simulation. The idea of optimising the uncertainty of a simulation
output as the objective for OED can be formulated as the so-called c-optimal experi-
mental design (c-OED; Atkinson et al., 2006). In general, c-OED minimises a linear
combination of model parameter variances as the optimisation objective (Atkinson
et al., 2006). A linear combination of model parameters corresponds to the linear
variance propagation of these parameters through a model if the weights of the linear
combination are the first-order derivatives of the model with respect to the model
parameters. Therefore, c-OED can reflect the property parameter use in a chemical
process simulation directly in the objective, e.g. the impact of NRTL-parameters on
the total process energy demand.

Interestingly, c-optimality is mathematically a special case of weighted A-optimality
(Fedorov and Leonov, 2014). Thus, c-OED is connected to the modified A-optimal
criterion from Houska et al. (2015). In contrast to Houska et al. (2015), c-OED weights
parameter uncertainties by first-order derivatives instead of scaling the OED problem
by second-order derivatives of the Lagrange function of an optimisation problem.
Therefore, c-OED is suitable for chemical process simulations, while the method from
Houska et al. (2015) is tailored to equation-based optimisation problems and requires
the Lagrange function of the optimisation problem.

16



2.5 Molecular level: Molecular design as product design

To date, c-optimality has only been applied for the optimal experimental design of
clinical trials for dose-finding in the area of toxicology studying (Holland-Letz, 2017;
Holland-Letz et al., 2018; Holland-Letz and Kopp-Schneider, 2018) or the description
of viral dynamics and pharmacokinetics (Han and Chaloner, 2003) but not in chemical
engineering for process flowsheet simulation. However, in particular for physical
properties for process flowsheet simulations, experiments for parameter estimation
serve a purpose beyond the pure parameter knowledge, which needs to be reflected by
the OED objective. Thus, future OED in chemical engineering needs to consider the
accuracy of performance evaluation and environmental assessment at the application
and system level as objectives.

2.5 Molecular level: Molecular design as product design

Apart from processes and processing chemicals, chemical end products are also fre-
quently a degree of freedom in product and process development at the molecular
level. Similar to the design of processing chemicals, the molecular structure of chemical
end products can be tailored in silico by CAMD as a special case of Computer-Aided
Product Design (CAPD; Gani and Zhang, 2020; Zhang et al., 2020a).

Today, various product design frameworks exist that can identify molecules with
desired product properties, e.g. the OptCAMD (Liu et al., 2019b) or ProCAPD
frameworks (Kalakul et al., 2018; Chai et al., 2021). In particular, the ProCAPD
framework aims to consider not only properties related to technical performance but
also related to environmental hazards, quality, or cost via various submodules (Chai
et al., 2021). By multi-objective optimisation, environmental hazards can also be
considered explicitly besides technical performance (Jonuzaj et al., 2019). For example,
Jonuzaj et al. (2019) designed the active ingredient and the solvent for an adhesive
product by optimising simultaneously for minimum toxicity and maximum solubility
of the active ingredient in a solvent.

However, these CAPD methods mainly rely on assessing the candidates’ physico-
chemical properties rather than evaluating the product’s performance in application
using a model of the application (Gani, 2004; Gani and Ng, 2015; Zhang et al., 2016,
2020a). Frequently, the objective function is a weighted sum of target properties.
These target properties are determined by experts translating the product needs into
physico-chemical properties (Zhang et al., 2020a), or the target properties are assumed
from an existing product, e.g. that needs to be replaced (Zhang et al., 2016; Jhamb
et al., 2019). Thus, the design procedure usually involves three separated steps: target
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properties definition, model-based design, and experimental verification (Kontogeorgis
et al., 2019). In this design procedure, the actual product’s performance in application
beyond target properties is only evaluated during experimental verification. However,
as CAMD for processing chemicals, CAPD ideally requires a model of the application
as objective function that accurately reflects the product use to assess a candidate
product’s performance.

A challenge for an application-level objective function is the availability of application-
specific properties beyond thermodynamics (Ng et al., 2015b; Zhang et al., 2016),
which requires tailored property prediction. Tailored property prediction has recently
gained momentum through the availability of advanced Machine Learning (ML) models,
e.g. deep learning by artificial neural networks or Bayesian regression using Gaussian
process regression (Zhou et al., 2019a, 2021). These ML-based models allow for accurate
modelling of phenomena previously inaccessible through rigorous modelling (Alshehri
et al., 2020). Therefore, products can be optimised in silico for applications such as
cosmetics or fragrances. Zhang et al. (2018b) and Ooi et al. (2022) demonstrated
fragrance design using an ML-based model maximising odour attributes of molecules
such as odour character or pleasantness. Similarly, Zhang et al. (2019) and Zhang
et al. (2021b) designed food products and cosmetics, respectively, by maximising the
sensorial rating of the products predicted from an ML-based model. These approaches
highlight the opportunities available with extended, ML-based property prediction
and demonstrate an important step towards CAPD optimising an application model
rather than molecular properties.

CAMPD has already shown the potential of integrating molecular design with
property prediction and mechanistic process application modelling. Similarly, CAPD
should now exploit ML-based property prediction to use in mechanistic application
models for targeted product design that directly addresses product application.

2.6 Contributions of this thesis

The literature review reveals that the state of the art in designing molecules, experi-
ments, and processes lacks a systematic integration of sustainability assessment and
targeting towards applications. To drive the design of molecules, experiments, and
processes towards sustainable chemical products and processes, the design methodology
requires the following advances on the four levels:

1. System level:
Integrating a life cycle environmental objective into CAMPD.
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2. Application level:
Expanding the process design scope to modelling and optimising of process
flowsheets including heat integration in CAMPD.

3. Property level:
Extending integrated property prediction in CAMPD and tailoring experiments
for process-level and environmental objectives.

4. Molecular level:
Designing products maximising an application-level objective function.

This thesis advances the design of molecules, experiments, and processes by inte-
grating new methods and models, and by linking the levels from the molecular to the
system level (Figure 2.2). Therefore, the main contributions of this thesis are the
following:

CAMPD with a life cycle environmental objective

At the system level, environmental assessment has to overcome the limitations
of merely considering environmental impact potentials and cradle-to-gate system
boundaries (cf. Section 2.2). However, current CAMPD methods, e.g. for solvent
design, only consider emissions caused during solvent production per kilogram solvent
and neglect emissions from the use phase and solvent disposal. Therefore, in Chapter 3,

o © o

Life Cycle Assessment

Figure 2.2: Visualisation of the contributions of this thesis. The numbers at the end
of each arrow represent the chapters in which the corresponding design is
described.
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a CAMPD framework for solvent design is presented that considers cradle-to-grave LCA
including production, use, and disposal: COSMO-susCAMPD. COSMO-susCAMPD
overcomes the limitations of previous CAMPD approaches by predicting the specific
cradle-to-gate impacts of solvent production using an artificial neural network and
by exploiting process data from the process model as Life Cycle Inventory (LCI) for
solvent use and disposal.

CAMPD framework from molecules to heat recovery systems

At the application level, comprehensive modelling and optimisation of the appli-
cation’s degrees of freedom are required within CAMPD (cf. Section 2.3). However,
current CAMPD methods either simplify process representation using performance
indicators or flowsheet subsystems or simplify the molecular design scope. Therefore,
in Chapter 4, an extended COSMO-(sus)CAMPD method is presented that moves
beyond simplified flowsheet subsystems while still building on reliable thermodynamic
data from a large molecular design space. Process design in CAMPD is extended to
incorporate modelling and optimisation of entire process flowsheets, including the most
common unit operations as well as the heat recovery and utility system.

Property prediction using quantum chemistry and machine learning

Formulating environmental objectives at the system level and expanding the scope
of modelling at the application level requires additional property data of candidate
molecules and applications. This property data needs to be provided within the
design algorithms by predictive and automated methods using molecular descriptors.
However, application-specific property prediction beyond thermodynamics is rarely
integrated into CAMPD and CAPD methods. Moreover, currently used methods for
thermodynamic properties are usually limited to specific groups of molecules, limiting
the molecular design scope. Therefore, in Chapters 3, 4 and 6, various methods for
property prediction are integrated into the molecular design algorithms for candidate
assessment: automated quantum chemistry and thermochemistry calculations for
thermodynamic properties, as well as machine learning-based models for environmental
impacts and hazards, combustion properties, and synthesisability prediction.

Experimental design for process-level and environmental objectives

For parameter estimation and validation in process and product design, experimenta-
tion focuses today mainly on general parameter accuracy at the property level and not
on the use of the parameters (cf. Section 2.4). Current methods for experimental design
used in chemical engineering rarely reflect the purpose of experimentation beyond
pure parameter knowledge. However, for physical properties for process flowsheet
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simulations, the OED objective needs to be defined in terms of process uncertainties
to achieve accurate chemical process simulations. Therefore, Chapter 5 demonstrates
OED of physical property measurements that considers the subsequent parameter use in
simulation and assessment at the application and system level: c-optimal experimental
design (c-OED).

Fuel design for maximum engine efficiency

At the molecular level, the progress in CAMPD can be adapted to advance the
computer-aided design of products (cf. Section 2.5). In particular, the most recent
improvements in CAMPD can be transferred to the tailored design of products: CAPD
should use a model of the application as objective function that accurately reflects the
product use. However, current methods in CAPD design for surrogate measures of a
candidate product’s performance such as favourable molecular properties. Therefore,
Chapter 6 demonstrates CAPD evaluating the product’s performance in application
through the design of fuels for maximum engine efficiency. The developed optimisation-
based fuel design algorithm employs an empirical model of spark-ignition engine
efficiency as objective function to explicitly design for maximum engine efficiency.

In summary, this thesis advances the design of molecules, experiments, and processes
towards designing for sustainability and tailoring for applications. The presented
methods allow formulating integrated optimisation problems and solving complex
multi-scale problems with application- and system-level objectives. Thereby, this thesis
contributes to designing a sustainable chemical industry.
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CHAPTER 3

Combining computer-aided molecular
and process design with predictive life
cycle assessment

To minimise environmental impacts, CAMPD needs to include an environmental
assessment method that closes the gap between the application and the system level
and quantifies the environmental impacts. For this purpose, this chapter proposes a
CAMPD framework that integrates LCA of solvents from cradle to grave: COSMO-
susCAMPD. The framework builds on the COSMO-CAMPD method for predictive
design of solvents using COSMO-RS and pinch-based process models (Scheffczyk
et al., 2018). Cradle-to-grave LCA is enabled by combining predictive LCA from
cradle-to-gate using an artificial neural network with gate-to-grave Life Cycle Inventory
data from the process models.

The methodology of the COSMO-susCAMPD framework is described in Section 3.1.
The details of the framework and the set-up of the artificial neural network for
predictive LCA are explained, and the accuracy of the predictive LCA is discussed.
The framework is applied to design solvents in a hybrid extraction-distillation process
in Section 3.2. Results of the optimisation are presented, and the advantages of the
integrated design are discussed. Finally, conclusions for the design of sustainable
solvents and processes are drawn in Section 3.3.

Major parts of this chapter are reproduced by permission of Elsevier from:

Fleitmann, L.; Kleinekorte, J.; Leonhard, K. and Bardow, A. (2021). COSMO-susCAMPD: Sustain-
able Solvents from Combining Computer-Aided Molecular and Process Design with Predictive
Life Cycle Assessment. Chemical Engineering Science, 245, 116836.

The author of this thesis integrated the cradle-to-gate predictive life cycle assessment into the solvent
design method and wrote the first draft as the principal author. The author investigated, validated
and visualised the results of the molecular design. The conceptualisation and methodology were
jointly developed in discussion with the co-authors.
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Chapter 3 Combining CAMPD with predictive LCA

3.1 COSMO-susCAMPD: A framework for the design of

sustainable solvents and processes

The design of optimal solvents for maximal process performance and minimal environ-

mental impacts requires the combination of two methods: (1) Integrated molecular

and process design (CAMPD) and (2) predictive cradle-to-grave life cycle assessment

(LCA).
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a)

a)

b)

1. CAMPD methods usually combine three steps (Papadopoulos et al., 2018):

First, candidate molecules are generated by an algorithm, e.g. by a combi-
nation of functional groups or molecular fragments. The algorithm needs
to be able to change the molecular structures systematically to explore a
given design space, while structural feasibility is ensured for all candidates.

Secondly, for each candidate molecule, thermodynamic properties are pre-
dicted using predictive thermodynamic models. Thermodynamic proper-
ties are required to bridge the order of magnitude between the candidate
molecules and the process, e.g. by prediction of activity coefficients or
vapour pressures.

Finally, the candidate molecules are evaluated by an objective. The objec-
tive function quantifies the fit of the candidate molecules to the process
application, e.g. by a particular thermodynamic property, a process variable
or an economic metric.

2. A method for predictive LCA of candidate molecules requires the assessment
of all stages of a molecule’s life cycle: the production, the use phase and the
disposal. In literature, predictive methods for particular life cycle stages have
been proposed:

The environmental impacts from the production can be estimated by molec-
ular structure models that use molecular descriptors to predict the cradle-
to-gate LCIA, e.g. using multi-linear regression (Calvo-Serrano et al., 2018)
or ANN (Song et al., 2017).

The use phase of a molecule can be modelled by generalised flowsheets
estimating, e.g. the gate-to-gate energy demand of processes (Jiménez-
Gonzdlez et al., 2000; Parvatker and Eckelman, 2020). Afterwards, this
LCI is translated into LCIA by multiplying the energy demand with the
corresponding characterisation factors.



3.1 A framework for the design of sustainable solvents and processes

c¢) Predictive LCA approaches dealing with the disposal of molecules have not
been published so far. However, proxies from LCI databases for generic

wastewater treatment or waste incineration can be used (Canals et al.,
2011).

Methods for predictive LCA of each life cycle stage are combined with a CAMPD
method in the proposed COSMO-susCAMPD framework (Figure 3.1) to yield a
fully predictive framework with cradle-to-grave environmental assessment. COSMO-
susCAMPD is introduced in the following Section 3.1.1.
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Figure 3.1: COSMO-susCAMPD: Fully automated framework to design environmen-

tally beneficial solvents by combining COSMO-CAMPD with predictive
LCA.
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3.1.1 Implementation of the COSMO-susCAMPD framework

The COSMO-susCAMPD framework expands COSMO-CAMPD by a predictive LCA
method as follows:

26

1. The basis for COSMO-susCAMPD is the COSMO-CAMPD method initially
developed to design solvents for optimum process performance and economic
objectives (Scheffczyk et al., 2018). The CAMPD method involves three steps in
each iteration of the optimisation procedure:

2)

Generation of a molecular structure: The generation of candidate solvents

is part of the molecular optimisation using the genetic algorithm LEA3D
(Douguet et al., 2005). LEA3D builds molecules from 3D-molecular frag-
ments. The fragments are specified in the initialisation of the algorithm
via a fragment library. The fragment library is created by the users to
reflect their preferences. The algorithm starts by randomly combining
fragments for the first generation of molecules. After these molecules have
been evaluated by the constraints and the objective function (Steps 1b and
lc), LEA3D alters the population of molecules for each following generation
using genetic operations on the candidate molecules, i.e. crossover and mu-
tation. Thereby, LEA3D explores the vast molecular design space towards
an objective function. After a predefined number of generations is reached,
the molecular optimisation stops.

Already during the generation of the molecular structures, LEA3D ensures
the chemical feasibility of the molecules, e.g. all candidate molecules fulfil
the octet rule. Moreover, the 3D structure of the candidate molecules allows
evaluating constraints on the molecular size or functional groups. If such
constraints exist, undesirable candidate molecules can already be discarded
before the time-consuming computational steps.

Prediction of thermodynamic properties: For each candidate solvent of each

generation, thermodynamic properties are obtained using the predictive
thermodynamic model COSMO-RS (Klamt et al., 2010). COSMO-RS
uses surface charge interactions from quantum chemical Density Functional
Theory (DFT; Kohn and Sham, 1965). By applying statistical thermo-
dynamics to the interactions between the surface charges, COSMO-RS
can then predict many thermodynamic properties of pure components and
mixtures, such as activity coefficients, Liquid-Liquid Equilibria (LLE) or
vapour pressures with low computational effort.
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In COSMO-susCAMPD, COSMO-RS is used on the TZVP-MF level of
theory for each molecule, i.e. full geometry optimisation and determination
of the screening charge density (o-surface) using the DFT functional BP86
and a TZVP basis set performed on a semiempirical conformer generation
(Klamt et al., 2010). TZVP-MF exhibits a good balance between compu-
tational cost and accuracy for application in CAMPD (Scheffczyk et al.,
2017b). The optimised geometries and o-surfaces are computed in parallel
for pure components based on the 3D-molecular structure and are stored in
a local database for reuse. Thus, the time-consuming DFT calculations are
only performed once for each candidate solvent.

The thermodynamic properties are used to evaluate constraints, e.g. the
existence of LLE or an appropriate boiling point. These constraints on
thermodynamic properties can reduce the search space and help to identify
feasible solvents. In addition, in COSMO-susCAMPD, the thermodynamic
properties serve as an input for the ANN to predict cradle-to-gate impacts.

c) Process model evaluation: For each candidate solvent of each generation
that fulfils property constraints, a process flowsheet is evaluated. The pro-
cess is modelled using pinch-based process models for each unit operation
(Bausa et al., 1998; Redepenning et al., 2017). Pinch-based process models
are reduced-order models that provide an accurate and efficient calculation
of process units assuming minimum thermodynamic driving force. By this
assumption, computationally demanding tray-by-tray calculations can be
omitted, but no simplifications of thermodynamic modelling are required.
In literature, it has been shown that the pinch-based process models agree
well with results from rigorous tray-by-tray models for operation near the
thermodynamic minimum (Scheffczyk et al., 2018; Redepenning et al., 2017).
As a result, the pinch-based process models yield a maximum achievable
process performance for each solvent considering full equilibrium thermody-
namics. Due to the computational efficiency of the process evaluation, the
process flowsheet can be optimised for each solvent.

In COSMO-susCAMPD, the process model not only evaluates process perfor-
mance but also provides process data as LCI of the use phase for gate-to-gate
LCIA.
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2. To enable an environmental objective in COSMO-susCAMPD, a predictive LCA
is added for every candidate solvent to COSMO-CAMPD. For this purpose, the
life cycle of the candidate solvents is divided into three stages (Figure 3.2): (a)

solvent production (cradle-to-gate), (b) solvent use in the process (gate-to-gate)
and (c) solvent disposal (gate-to-grave).

2)

Solvent production: The environmental impacts from solvent production

(cradle-to-gate system boundary) are estimated using an ANN. As shown
by Wernet et al. (2008), ANNs outperform other regression methods such
as multi-linear regression in LCA applications. The ANN uses molecular
and thermodynamic solvent properties as input as already proposed in the
literature (Song et al., 2017; Calvo-Serrano and Guillén-Gosélbez, 2018;
Papadopoulos et al., 2020). In particular, thermodynamic properties of the
candidate solvents from COSMO-RS are included. Properties calculated
from COSMO-RS have already been proven to be suitable molecular de-
scriptors by Calvo-Serrano et al. (2018). In COSMO-susCAMPD, molecular
descriptors from COSMO-RS provide the additional advantage that a con-
sistent set of descriptors is used for both the LCA and the techno-economic
assessment. More details on the training and set-up of ANN are given in
Section 3.1.2.

Solvent use: Impacts related to the solvent use in the process (gate-to-gate
system boundary) are calculated from the Life Cycle Inventories provided by
the process model. Process evaluation solves the mass and energy balances
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Figure 3.2: Life cycle stages of a solvent and frequently used system boundaries in
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environmental assessment. In COSMO-susCAMPD, cradle-to-grave system
boundaries are enabled by combining an artificial neural network with
pinch-based and aggregated process models.
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providing all required LCI information for LCIA. In particular, the minimum
amount of solvent used in the process is determined accurately by the pinch-
based process models. Knowledge of the amount of solvent used allows
for a comparison of candidate solvents in process-specific objectives rather
than a specific comparison per kilogram of solvent. The LCIA is performed
by multiplying the LCI with specific environmental impacts from LCA
databases or the ANN prediction. For example, the process heat demand is
converted into emissions using the specific impact for natural gas combustion
per megajoule heat obtained from the GaBi database (Thinkstep AG, 2017).
Additional emissions, such as fugitive emissions, are not considered.

c¢) Solvent disposal: For the disposal of solvents (gate-to-grave system bound-

ary), aggregated process models are known in the literature. Here, the
solvent disposal is modelled by LCIA for wastewater treatment based on
the mass of wastewater including solvent contamination. The literature
model yields a specific impact per kilogram of wastewater (Ruiz, 2019). The
gate-to-grave LCIA is completed by multiplying the specific impact with
the flow rate of wastewater. Both the flow rate and the contamination of
wastewater with the solvent result from the process model evaluation.

By combining COSMO-CAMPD and predictive LCA as described, COSMO-susCAMPD
yields a fully automated and predictive framework for solvent design. As an objective
for the design, process performance, environmental impacts from cradle-to-grave as
well as combined objective functions are possible. Alternatively, the predictive LCA
can serve as a constraint. More details on used soft- and hardware can be found in

Appendix A.1.

3.1.2 Set-up and accuracy of the predictive LCA method

The predictive LCA method uses an Artificial Neural Network (ANN) as a regression
model, which is trained on known environmental impacts of solvents from databases
or literature. After training, the ANN is capable of predicting environmental impacts
for candidate solvents similar to the solvents from the training data. Here, consistent
cradle-to-gate LCA data from the GaBi Database (Thinkstep AG, 2017) on 73 solvents
is used for training purpose. While the data set is small, it is important to use
consistent, high-quality data and to avoid data based on generic heuristics. Thus,
the present data set is the largest high-quality data set available to the author. To
facilitate the set-up of the ANN, an automated framework is used in four steps (Figure
3.3), as already outlined by Kleinekorte et al. (2019):
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Figure 3.3: Flow diagram for the automated set-up of the artificial neural network.
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1. First, suitable features for the ANN are selected from various molecular descrip-

tors using linear stepwise regression as a feature selection method (Draper and
Smith, 1998; Lindsey and Sheather, 2010). For all molecules in the training
data, various molecular descriptors are calculated as prospective features, e.g.
information on the molecular structure, such as the number of carbon or oxygen
atoms, or thermodynamic properties from COSMO-RS, such as the normal
boiling point. The molecular descriptors which show the highest correlation
with the environmental impacts are selected as features (see Appendix A.2 for
details).

. Secondly, the training data is split into three sets to allow for training, validation

and testing of the ANN (Goodfellow et al., 2016). At first, a test set is separated
from the training data for the final accuracy evaluation of the ANN. The test
set contains approximately 10 % of the training data and is not used within the
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training or validation of the ANN to obtain a final accuracy value on unseen
data. Extreme points at the edge of the data set are not selected for the test
set due to the low extrapolation capability of the ANN beyond the training set.
Afterwards, the remaining training data is split ten times into a validation (10 %
of the remaining training data) and a training set (90 % of the remaining training
data) to increase the generalisability of the final architecture.

All sets are chosen so that the statistical distribution of the test, training and
validation sets are similar (Goodfellow et al., 2016). Therefore, various test,
training and validation sets are randomly generated first. For each random set,
the Kullback-Leibler divergence is calculated based on the features as a measure
of statistical distribution for data sets (Kullback and Leibler, 1951). A low
Kulback-Leibler divergence indicates similar and uniform statistical distribution
between the data sets, which is a requirement for the training and application
of ANN. Therefore, the test set with the lowest Kullback-Leibler divergence is
chosen for the final accuracy evaluation. For training and validation sets, the
ten splits with the lowest Kulback-Leibler divergence are chosen for the training

of the ANN.

. Thirdly, the hyperparameters of the ANN, e.g. the number of layers or the
number of neurons per layer, are selected. Setting the hyperparameters is not
trivial and has a considerable influence on the accuracy of the ANN. Therefore,
a genetic algorithm (GA) (The MathWorks Inc., 2018a) is used to find optimal
hyperparameters. The objective of the GA is the minimisation of the average
root-mean-square error (RMSE) of the ANN predictions on the validation sets:

10 M EYal
min » | RMSES (3.1)
i=1 n

For each instance of the GA, 10 ANNs are trained with the same hyperparam-
eters using the 10 training sets. Afterwards, each ANN is used to predict the
corresponding validation set, and the RMSE of the prediction is calculated. By
averaging the RMSE over the 10 sets, extreme prediction errors due to the small
set sizes are flattened and bootstrapping and accuracy evaluation are enabled
(Carney et al., 1999).

To avoid local optima due to the statistical optimisation, 100 runs of the GA are
performed from random starting points by varying the initial hyperparameters.

. Finally, the ANN is trained with the optimised architecture on the combined
training and validation set to perform an accuracy evaluation by predicting the
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test set. The test set has neither been used to train the ANN nor optimise the
hyperparameters. Therefore, the ANN predicts the unseen test set with similar
accuracy as the molecules designed within the COSMO-susCAMPD framework.

After applying the described set-up, one trained ANN is obtained with optimal
hyperparameters and an estimation of its accuracy for one impact category. The ANN
can directly be integrated to predict cradle-to-gate impacts for candidate solvents.

In the following, the accuracy of the ANN predictions is investigated, and COSMO-
susCAMPD is subsequently applied to a case study. Using the described framework,
one ANN is set up for each of the 17 midpoint impact categories from the ReCiPe
method (Goedkoop et al., 2009). In the main text, only the two LCA impact categories
are discussed, for which the most reliable LCTA methods are available: Climate Change
(CC) and Ozone Depletion (OD) (European Commission-Joint Research Centre, 2011).
Details on all 17 impact categories can be found in Appendix A.3. The accuracy of

predictions is measured with the coefficient of determination (R?) and the normalised
RMSE (nRMSE).

The coefficient of determination R? indicates the trend-capturing correlation between
the ANN predictions and the database values (Alexander et al., 2015). The nRMSE
indicates how much the predictions deviate on average from the database values (Otto
et al., 2018). The normalised RMSE, which is normalised by the range of the database
values, is reported to make all impact categories comparable.

Currently, the availability of LCA data on solvents is limited for the training of an
ANN. Our training data contains only 73 solvents, a comparably small number for
machine learning approaches (Alwosheel et al., 2018). Therefore, the accuracy of the
ANN predictions is currently limited (c.f. Table 3.1). On average, the ANN achieves
an already acceptable nRMSE of 10 %, but the average R? is low with a value of only
0.43. The low R? can be explained by the small training data set: If very few data
points are used, the R? value is highly sensitive. Due to the small set sizes, inaccurate
predictions for a few solvents decrease the R? already significantly despite otherwise
acceptable predictions. Therefore, it is important to focus not only on the R* but
also consider the (n)RMSE. For Ozone Depletion, for example, the nRMSE of the
validation and of the test set match very well, indicating acceptable predictions despite
substantial differences in the R?. In particular, the predictions deviate significantly
from the database values for areas of sparse training data. In these areas, a high
variance between the 10 ANN predictions and generally large deviations from the
database values can be observed, indicating high sensitivity on the training set due to
limited data. For example, for the impact on Climate Change (CC), the predictions
deviate from the database values by up to 5 kg COy-eq. kgL for solvents in the
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sparse data region greater than 6 kg COs-eq. kgl (see Figure 3.4 A). Therefore,
some solvents with extreme impacts on CC at the edges of the training data are
currently predicted inaccurately and need future improvement. Similarly, the ANN
yields a few physically not meaningful results, i.e. negative values for some impact
categories, which are removed when applying the ANN in COSMO-susCAMPD.

However, an already acceptable accuracy of prediction is achieved for most solvents
and, in particular, in ranges with sufficient data (Figure 3.4). Generally, the predictions
meet the database values with acceptable confidence except for a few strong outliers
in sparse regions. The accuracy is comparable to the state-of-the-art in literature: For
example, the estimation of CC had a coefficient of determination R? of 0.41 in work by
Wernet et al. (2009) or a coefficient of determination R? of 0.48 in work by Song et al.
(2017). Future improvement in accuracy is expected with more data available. For the
design of solvents, ultimately, the uncertainty of the final cradle-to-grave environmental
impact is most relevant. Therefore, the propagation of the uncertainty caused by the
ANN prediction to the cradle-to-grave impact is investigated in Section 3.2.2.

Table 3.1: Prediction accuracy of the artificial neural network for the impact categories
Climate Change and Ozone Depletion, as well as an average of all 17
regarded impact categories in terms of coefficient of determination (R2) and
normalised root-mean-square error (nRMSE).

Climate Change Ozone Depletion . Average of .
Data set all impact categories
R> nRMSE R* nRMSE R’ nRMSE
Training set 0.44 17% 0.81 8% 0.57 12%
Validation set  0.56 14% 0.76 16% 0.56 14%
Test set 0.51 9% 0.08 15% 0.43 10%
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Figure 3.4: Accuracy of the ANN predictions for the LCA impact categories Climate
Change (CC) and Ozone Depletion (OD). The confidence interval is calcu-
lated from the standard deviation of the predictions on the test set.
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3.2 Case study and results: Design of benign solvents for
the hybrid extraction-distillation of ~-valerolactone

To demonstrate the application of COSMO-susCAMPD, the hybrid extraction-distillation
of v-valerolactone (GVL) is investigated, as proposed by Murat Sen et al. (2012). Re-
cently, GVL has attracted attention as a bio-derived platform chemical, a green solvent
or a renewable fuel (Zhang, 2016). A promising pathway to GVL is the produc-
tion from lignocellulosic biomass and purification from aqueous solution using hybrid
extraction-distillation. As an extraction solvent, n-butyl acetate has been suggested
in the literature (Murat Sen et al., 2012). Therefore, n-butyl acetate serves as a

benchmark for the solvent design with COSMO-susCAMPD.

3.2.1 Problem specification

As a case study, the process of GVL purification consists of an extraction column, a
distillation column and a decanter (Figure 3.5). A mixture of GVL and water containing
5 mol-% GVL is fed to the extraction column, where the solvent extracts the GVL
entirely into the extract stream. The resulting extract is split in the distillation
column into pure GVL at the bottom and a water-solvent stream at the top of the
distillation column. The water-solvent stream is recycled to the extraction column. If
the water-solvent stream splits into two liquid phases, the aqueous phase is separated
from the organic phase in a decanter, and only the organic phase is fed back into the
extraction column. Both the raffinate and the aqueous phase from the decanter, if
present, are sent to wastewater treatment.

Candidate solvents are considered for property prediction and process evaluation if
they are expected to be stable within the extraction process based on their functional
groups and if they are smaller than 13 non-hydrogen atoms. The process specifications
further constrain suitable candidate solvents based on their physical properties: Suitable
candidate solvents must have a liquid-liquid equilibrium with water. Furthermore, the
candidate solvents must not exceed the boiling point for GVL to allow for separation
of GVL at the bottom of the distillation column. For simple distillation, candidate
solvents also must not form an azeotrope with GVL. The constraints on the molecular
properties are evaluated for each candidate solvent in each generation of the genetic
algorithm with the thermodynamic properties predicted by COSMO-RS (Step 1b
of the COSMO-susCAMPD framework). Candidate solvents that do not fulfil these
requirements are discarded and not considered suitable candidate solvent for subsequent
process optimisation and environmental assessment.
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Figure 3.5: Flowsheet and contributions to environmental impacts of the hybrid
extraction-distillation process for vy-valerolactone purification. The ex-
traction column temperature Tgy, is the process design degree of freedom
in this case study.

For each suitable candidate solvent, the process settings, i.e. the temperature of the
extraction, are optimised to obtain the minimum energy demand for distillation (Step
lc). For the environmental assessment (Step 2), three types of emissions are considered:
The emissions from solvent production due to solvent make-up, the emissions from
solvent use due to energy consumption in the distillation reboiler, and the emissions
from solvent disposal in wastewater treatment. For each candidate solvent, the cradle-
to-gate impacts of all 17 LCA impact categories are predicted using the ANNs (Step
2a), and the full cradle-to-grave LCA is conducted by exploiting the LCI from the
process evaluation for use phase (Step 2b) and solvent disposal (Step 2c). All emissions
are calculated for the functional unit of 1 kmol of GVL produced in this process.

In total, four optimisation runs of the genetic algorithm LEA3D are performed to
find an optimal solvent for the GVL purification. For molecular design, all functional
groups are included that were in the training set of the ANN, e.g. alkane-, benzene-,
amine-, sulfone- keto- or hydroxyl-fragments (see Appendix A.4 for details). Thus,
all molecules that are designed should be predictable by the ANN without forcing
the ANN to extrapolate. For all optimisation runs, the objective is to minimise the

36



3.2 Case study: Benign solvents for the hybrid extraction-distillation of y-valerolactone

cradle-to-grave impact on Climate Change (CCeradie-to-grave) by summing the impacts
on Climate Change of the three life cycle stages of this process: solvent production
(CCproduction ), solvent use in the process (CCpyocess) and solvent disposal (CCpisposal):

min CCcradle—to—grave - CCProduction + CCProcess + CCDisposal (32)

The impact on Climate Change of the process (CCprocess) is linearly proportional
to the energy demand. The energy demand in the distillation column captures the
operating cost of the process. Thus, economically attractive solvents have a low impact
from the use phase. Therefore, the optimisation of the cradle-to-grave impact on
Climate Change yields solvents with a balanced contribution from all life cycle phases
and low operational cost. If desired, multi-objective optimisation could be employed
to optimise cost and impact on Climate Change explicitly.

3.2.2 Results and discussion

In total, the optimisation generates more than 1600 unique solvents, which are evaluated
in the 4 design runs in about 5 days (121 hours). From all candidate solvents, 703
solvents fulfil the property constraints and are suitable for the process. Therefore, a
ranking of 703 solvents according to their cradle-to-grave impact on Climate Change
is obtained as a result (Figure 3.6).

The solvent with the highest reduction in the impact on Climate Change is 2,3,3,5-
tetramethyl-hexane, with a cradle-to-grave impact on Climate Change of about 4.4
kg COs-eq. kmol(_;%,L. Compared to the benchmark n-butyl acetate (Murat Sen et al.,
2012), 2,3,3,5-tetramethylhexane reduces the impact on Climate Change by about
68 %. More generally, 291 of the 703 candidate solvents have a lower impact on
Climate Change than the benchmark, and 169 solvents outperform the benchmark in
terms of Climate Change and process energy demand Q. COSMO-susCAMPD thus
designs successfully many suitable alternatives. For the top 15 candidates, very similar
solvents are found: The top 15 solvents are all alkanes and alkenes, most of which are
highly branched and therefore not yet commercially available. The highest-ranking
commercially available bulk chemical is n-octane on rank 8. N-octane reduces the
impact on Climate Change by about 67.5 % compared to the benchmark solvent, which
is very close to the impact reduction of the optimal solvent.

To challenge the use of the cradle-to-grave impact as an objective function, the
cradle-to-grave impact on Climate Change is compared with the gate-to-gate impact
from process energy demand during solvent use. The impact on Climate Change from

37



Chapter 3 Combining CAMPD with predictive LCA

process energy depends linearly on the process energy demand ., (black line in
Figure 3.6) and thus represents the result of an economic optimisation for minimum
process energy demand as typically used in CAMPD. Intuitively, one might expect
that energy demand in the use phase captures the cradle-to-grave impact on Climate
Change already well. However, in this case study, the cradle-to-grave impact of 187
candidate solvents deviates by more than 50 % from the impact of process energy
(Figure 3.6). The deviation from the impact caused by the process energy is due to
the production and disposal of the candidate solvents. This deviation highlights the
importance of the cradle-to-grave system boundary. Still, for this case study, the
top 15 solvents with the lowest impact on Climate Change equal the top 15 solvents
with the lowest process energy demand Q... For these solvents, the process requires
60.6 - 62.4 MJ kmolgy,, energy for distillation, corresponding to a reduction of about
46 - 48 % compared to the benchmark n-butyl acetate.

GVL

-1

-
o
w

-
o
N

benchmark n-butyl acetate ]

-
o

102 103 10*

-1
Qreb / MJ kmoIGVL

Climate Change (cradle-to-grave) / kg COz-eq. kmol

Figure 3.6: Cradle-to-grave impacts on Climate Change (CC) of all solvents designed
versus corresponding process energy demand ()..,. Each blue circle repre-
sents one candidate solvent. The black line is the impact resulting from
the process energy demand; the red lines represents the impact on Climate
Change and process energy demand of the benchmark solvent n-butyl
acetate.
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Moreover, the importance of the cradle-to-grave system boundary is shown by
comparison to the ranking by cradle-to-gate LCA: A cradle-to-gate LCA based on the
specific impacts of solvent production yields a very different ranking (Figure 3.7 A).
The solvent with the lowest cradle-to-gate impact on Climate Change per kilogram
solvent is divinyl ether with about 2.1 kg COy-eq. kg |, However, divinyl ether has
a cradle-to-grave impact on Climate Change of about 7.3 kg CO,-eq. kmolé{,L ranking
only 75" in cradle-to-grave impact. 2,3,3,5-tetramethyl-hexane, the solvent with the
lowest cradle-to-grave impact, ranks only 139*" with a higher cradle-to-gate impact on
Climate Change of about 2.5 kg CO,-eq. kg |..... Therefore, concentrating only on
the specific cradle-to-gate LCA of the solvent production proves to be a misleading
objective. Specific assessment of molecular properties is not sufficient. Instead, the
amount of solvent used in the process needs to be considered for solvent selection with
an environmental objective. In particular, the specific cradle-to-gate impacts are quite
similar for all solvents (x-axis of Figure 3.7 A) in this case study. In contrast, the
cradle-to-grave impact spans multiple orders of magnitude (y-axis of Figure 3.7 A)
yielding a more selective objective.

The differences in the ranking between cradle-to-gate and cradle-to-grave LCA can
be explained by the neglect of the solvent use phase: For solvents with a high cradle-
to-grave impact, a high amount of solvent is lost in the wastewater stream (Table 3.2).
A high solvent loss to wastewater causes a high make-up demand to run the process in
steady-state. Therefore, a high amount of solvent needs to be produced for make-up,
causing high absolute impacts from solvent production regarding the functional unit
of 1 kmol GVL. Conversely, a low impact of solvent production is only achieved with a
small make-up demand of solvent, in particular as the specific cradle-to-gate impacts
are within the same order of magnitude for all candidate solvents.

If the solvent loss is small, the use phase impact due to process energy dominates the
cradle-to-grave LCA. Furthermore, a low solvent loss reduces uncertainty propagation
of the ANN predictions. As a result, the uncertainties of the cradle-to-grave impact
decrease (Table 3.2). Therefore, accurate LCI of the use phase and thus accurate
process modelling and precise property data are crucial. As an indicator of the
accuracy, the predicted solubilities of solvent in water from COSMO-RS are compared
with experimental data from the literature. The solubilities of the solvents in water
are crucial for the LCA because they determine the solvent loss and make-up and,
consequently, the environmental impact of the solvent production. For the benchmark
n-butyl acetate, solubilities of 6.7 - 8.3 g/1 at 25 °C have been determined experimentally
(Yalkowsky and He, 2003) compared to 6.1 g/l from the COSMO-RS predictions. For n-
octane, COSMO-RS predicts a solubility at 25 °C of 3 mg/l compared to 0.4 - 0.9 mg/1
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experimentally (Yalkowsky and He, 2003). Considering the broad range of solubilities
over multiple orders of magnitude, the experimental measures are both in good
agreement with the COSMO-RS prediction. Thus, in conclusion, COSMO-RS can be
used for property prediction to generate accurate LCI for this process, even for the
challenging hydrocarbon-water interactions (Klamt, 2003).

Still, the solvent loss alone is also not sufficient as an objective for molecular design
(Figure 3.7 B). The solvent with the lowest solvent loss, 2,4-dimethyl-nonane, ranks
only 600" in process energy demand Q,e, and 524" in cradle-to-grave impact on
Climate Change. The advantageous low solvent loss does not guarantee a low cradle-
to-grave impact on CC, as low solvent loss and low energy demand for separation
do not correlate. The high energy demand in distillation outweighs the favourable
low solvent loss and make-up. Therefore, top solvents balance solvent loss as well as
specific production impact and process energy demand. To include all these relevant
factors, the cradle-to-grave LCA is required as objective function.

Besides the impact on Climate Change, the other 16 ReCiPe midpoint impact
categories (Goedkoop et al., 2009) are evaluated as well for every candidate solvent in
COSMO-susCAMPD. Generally, solvents ranked well in the impact on Climate Change
and process energy demand show also a balanced performance in most of the other
impact categories. For example, the top solvent in cradle-to-grave impact on Climate
Change is also among the top 10 solvents in 15 of the other 16 impact categories. As
for the impact on Climate Change, the low solvent loss in the process combined with
low energy demand in separation yields a low cradle-to-grave LCA impact.

For this case study, only the impact category Ozone Depletion (OD) differs from
the trend of all other impact categories (Figure 3.8). For Ozone Depletion, a strong
trade-off between the cradle-to-grave impact on Ozone Depletion and the process
energy demand for most solvents can be identified. As a result, the solvent ranking
differs substantially for Ozone Depletion. For example, 5 of the top 10 solvents in
Ozone Depletion occupy ranks 400 and higher in Climate Change or ranks 500 and
higher in process energy demand. The change in ranking for Ozone Depletion is due
to the fact that the impacts due to solvent production and solvent loss dominate
the impact on Ozone Depletion. This outcome is reasonable since process energy is
supplied as heat from natural gas combustion with no substantial impact on Ozone
Depletion. Thus, the presented method also captures the variable weighting of and
trade-offs between the life cycle stages depending on the impact category considered.
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Table 3.2: Comparison of the candidate solvents with the lowest cradle-to-grave and the lowest cradle-to-gate impact on Climate
Change, as well as the solvent with the lowest solvent loss and the benchmark solvent. The comparison includes the
absolute values for the cradle-to-grave impact on Climate Change CCeradie-to-grave; the ranking in cradle-to-grave and
cradle-to-gate impact on Climate Change (Rank CC cradle-to-grave and Rank CC cradle-to-gate), the ranking in
process energy demand Qye, (Rank Qyep), as well as the molar fraction of solvent in wastewater (Predicted oy aq)
predicted by COSMO-RS. The absolute values for CCeradie-to-grave also include the 95% confidence interval from the
uncertainty propagation of the ANN.

OOoww&méo-mSEm\ Rank Predicted
Solvent Molecular structure kg COs-eq. WBO_%F cradle-to-grave cradle-to-gate Qreb Tsolv,aq
H,yC
3 H,C, CHs CH,
lowest Climate Change 4.3640.0017 | 139 1 43x10~7
(cradle-to-grave)
HsC CH,

- commercially avail.  we >N 4.40 £ 0.0015 8 97 9 4.7 x 1077
lowest Climate Change He P N0 N, 7.34+14 75 1 27 7.2 % 1074
(cradle-to-gate)

H,C. CH,
lowest solvent loss NONTYTYT 517 4000012 524 281 600 2.8 x 1078
CH,  CH,
benchmark D S T R P 202 247 198 94x 10
(n-butyl acetate) o . . .
(@]
<t



3.3 Conclusion

8L o ]
10 E
2 5 |
il o
g o o}
£ <9@O<9 o) S
: o &
O
(0] oo
< 10710 0090 O%o © L Sichmark n-but acetate 4
~— [a) O ~ y E
1
2 Ny OOO@Q)&@@Q >0 o 99
G 00 O¢g 99 o 9
> Sy 0O
= © »e
Q 107%¢
©
P
ie)
@
® 8
S 14
- 10 3

oD

-1
Qreb / MJ kmoIGVL

Figure 3.8: Cradle-to-grave impacts on Ozone Depletion (OD) of all solvents designed
depending on the corresponding process energy demand @),o,. Each blue
circle represents one candidate solvent. The black line is the impact
resulting from the process energy demand; the red lines stand for the
impact on Ozone Depletion and process energy demand of the benchmark
solvent n-butyl acetate.

3.3 Conclusion

In this chapter, a framework for the design of solvents and processes with an envi-
ronmental objective is presented: COSMO-susCAMPD. The COSMO-susCAMPD
framework extends state-of-the-art Computer-Aided Molecular and Process Design
(CAMPD) by integrating predictive Life Cycle Assessment (LCA) with a cradle-to-
grave system boundary. Cradle-to-grave LCA is achieved by the combination of (1) an
Artificial Neural Network (ANN) predicting cradle-to-gate impacts with (2) process
optimisation using pinch-based process models providing life cycle inventory for solvent
use and disposal. Both the ANN and the process models use molecular and thermody-
namic properties calculated from the predictive thermodynamic model COSMO-RS.
Therefore, the assessment of environmental impacts and process performance is based
on one consistent set of descriptors. For simultaneous molecular and process design, the
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predictive LCA and the process optimisation are combined with the genetic algorithm
LEA3D, which optimises 3D-molecular structures based on the results from LCA and
process optimisation.

As an application for COSMO-susCAMPD, the purification of the bio-based platform
chemical y-valerolactone from aqueous solution by hybrid extraction-distillation is
investigated. The process is optimised for minimum environmental impact by exploiting
the degrees of freedom from molecular and process design. As a result, promising
candidate solvents are identified from a vast design space outperforming the literature
benchmark n-butyl acetate by reducing the impact on Climate Change by about 68 %.
The candidate solvents identified exhibit both a high process performance, i.e. a
low process energy demand, as well as a low cradle-to-grave environmental impact in
various ReCiPe midpoint impact categories.

The results show that a cradle-to-grave assessment at the system level is necessary
for the design of environmentally beneficial solvents. Simplified objectives, such as
cradle-to-gate LCA or solely economic evaluation, lead to suboptimal solutions. Only
the cradle-to-grave LCA balances conflicting molecular properties for an optimal result.

The COSMO-susCAMPD framework now provides a method for CAMPD based on
process evaluation and environmental assessment using LCA. The results of COSMO-
susCAMPD serve as an input for further validation by refined process simulations, life
cycle assessment and experiments. In particular, the LCA could be refined to include
other emissions, such as fugitive emissions of the process (Smith et al., 2017). Further
work is required to extend the LCA data for training the ANN. Currently, training
data for the ANN is rare, leading to limited accuracy of the ANN predictions. An
improvement in the prediction quality of the ANN is expected if more consistent LCA
data on solvents is available. Importantly, any additional training data needs to be
obtained from process data by consistent allocation and with consistent background
data. However, for the given case study, the prediction of accurate process data
outweighs the influence of inaccuracies of the ANN.

In conclusion, the presented COSMO-susCAMPD framework extends the environ-
mental assessment of state-of-the-art molecular design by predictive cradle-to-grave life
cycle assessment. Thus, the COSMO-susCAMPD framework enables the computer-
aided design of sustainable solvents and processes by evaluating environmental impacts
at the system level. In the next chapter, the COSMO-susCAMPD framework is ad-
vanced by comprehensive process modelling at the application level including additional
unit operations to apply the framework to reaction-separation processes beyond hybrid
extraction-distillation.
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CHAPTER 4

Computer-aided design of solvents and
processes using quantum chemistry

Chapter 3 shows the importance of considering the full life cycle of solvents for
CAMPD with environmental objective at the system level. This chapter focuses on
a comprehensive consideration of the application level in CAMPD. Comprehensive
modelling and design of the application level are achieved by increasing the process
design scope and the resolution of chemical process modelling. For this purpose, the
computer-aided molecular design of solvents is integrated with the design of heat-
integrated processes to consider the interactions between molecular properties and
process performance for minimum utility demand or minimum environmental impact.
The method is based on the COSMO-(sus) CAMPD method for the integrated design
of molecules and processes using COSMO-RS described in the previous Chapter 3.

To explain and demonstrate the extended COSMO-(sus)CAMPD method, this
chapter is structured as follows: In Section 4.1, the integrated CAMPD problem
is formulated as an optimisation problem, and the solution algorithm is explained.
The integrated models and the methods used are described in detail. In Section
4.2, the extended COSMO-(sus)CAMPD method is applied to two case studies: A
hybrid extraction-distillation process (Section 4.2.1) and an integrated carbon capture
and utilisation process (Section 4.2.2). The extended COSMO-(sus) CAMPD method
is compared with the state of the art, and the new capabilities of the method are
highlighted before conclusions are drawn in Section 4.3.

Major parts of this chapter are reproduced by permission of John Wiley & Sons, Inc., from:

Fleitmann, L.; Gertig, C.; Scheffczyk, J.; Schilling, J.; Leonhard, K. and Bardow, A. (2023). From
molecules to heat-integrated processes: Computer-aided design of solvents and processes using
quantum chemistry. Chemie Ingenieur Technik, 95(3), 368-380.

The author of this thesis contributed to the methodology and the implementation of the CAMPD
framework. The author investigated, validated and visualised the results of the molecular and process
design and wrote the first draft as the principal author. The conceptualisation and methodology were
jointly developed in discussion with the co-authors.
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Chapter 4 Computer-aided design of solvents and processes using quantum chemistry

4.1 COSMO-(sus)CAMPD for heat-integrated processes

The extended COSMO-(sus) CAMPD method integrates molecular and process design
using quantum chemistry-based property prediction and pinch-based process models for
unit operations and heat integration. The method can be formulated as an optimisation
problem for maximum process performance:

Hxliyn flz,y, x,,0) Objective function

st. x =j(y,¥) Heat integration model
W = h(y,0) Process model
0=g(x,y) Model for predicting thermodynamic properties
0=m(x) Representation of molecules (4.1)
ki(z) <0 Molecular constraints
k2(0) <0 Thermodynamic constraints
ks(y,0) <0 Process constraints
reX Molecular structure
yeyY Process variables

In this optimisation problem, the molecular structure x and the process variables y are
optimised for a process design objective function f(x,y, x, ¥, ), e.g. the environmental
impacts measured by an LCA impact category, resource consumption measured by
the exergy demand, or the operating cost of the process. The objective function
f may depend on the molecular structure x, process variables y, targets for heat
integration y, process model results ¢, and thermodynamic properties 6. To calculate
the objective, models for heat integration, process, thermodynamic properties, and
molecular structure are integrated:

e The heat integration model j(y, 1)) calculates maximum feasible heat integration
and corresponding minimum demands of utilities x based on the process variables
y (e.g. optimised temperatures in unit operations), and process model results 1)
from the process model h (e.g. heat and mass flows).

e The process model h(y, §) combines individual models of unit operations and
depends on process variables y (e.g. temperature or pressure settings in unit
operations) and thermodynamic properties 0 (e.g. activity coefficients,; heat
capacities or enthalpies of vaporisation).
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e The predictive thermodynamic models g(z,y) calculate thermodynamic proper-
ties for process model evaluation depending on the molecular structure z and
process variables y.

e The molecular structure model m(x) represents the candidate molecules using
3D-fragments and ensures chemical feasibility, e.g. the octet rule.

The individual models are combined in one method for molecular and process
design (Figure 4.1). The optimisation of the integrated design problem is subject to
constraints at the molecular level k;(z) (e.g. the maximum number of non-hydrogen
atoms), thermodynamic constraints kz(0) (e.g. a minimum boiling point of the solvent),
and process constraints k3(y,#) (e.g. limits on process variables). The constraints
k1, ko and k3 tighten the optimisation problem and thus increase the computational
efficiency of the algorithm.

Solution algorithm: Property prediction using quantum chemistry and process
optimisation are integrated into a molecular design algorithm (Douguet et al., 2005) re-
sulting in an evolutionary optimisation procedure of four steps per iteration (Figure 4.1):
(1) generation of candidate solvents, (2) prediction of thermodynamic properties, (3)
process optimisation and (4) ranking of candidate solvents.

1. Generation of candidate solvents: As the first step of each iteration, candidate

solvents are generated using the genetic algorithm LEA3D (Douguet et al., 2005),
as described in Section 3.1.1. The genetic algorithm forms the outer loop of
the optimisation procedure and runs property prediction (Step 2) and process
optimisation (Step 3) for each candidate solvent (Figure 4.1). LEA3D optimises
the molecular structure based on the results of process optimisation for each
solvent of each generation, i.e. optimum process settings y*, optimum process
model results ¥*, and optimum heat integration y*:

min f(z,y", x",¢", 0)
st X" =4y 0")
vt = h(y",0)
0=g(z,y") (4.2)
0 =m(x)
ki(z) <0
ks (8) < 0
reX
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At any time, the candidate solvents from LEA3D satisfy chemical feasibility ex-
pressed through the equality constraints m(z). LEA3D also checks the molecular
constraints ki(x) for every candidate solvent. Candidate solvents violating the
molecular constraints are discarded from further evaluation.

. Prediction of thermodynamic properties: For each candidate solvent, thermody-

namic properties 6 are predicted based on quantum chemistry. Evaluating a
process for operating cost or thermodynamic performance requires equilibrium
and thermochemical properties. For this purpose, two quantum chemistry-based
methods are employed: COSMO-RS (Klamt et al., 2010) for equilibrium proper-
ties (Paragraph 2a) and automated thermochemistry calculations for ideal gas
properties (Paragraph 2b).

a) COSMO-RS predicts equilibrium properties of pure components and mix-
tures, allowing to compute liquid phase properties as well as transitions
between gas and liquid phase, e.g. activity or Henry coefficients or enthalpies
of vaporisation (cf. Section 3.1.1). Based on the thermodynamic equilib-
rium properties, property constraints ky(#) on thermodynamic requirements
are evaluated, e.g. limits for boiling points or the existence of azeotropes
(Skiborowski et al., 2016). Candidates are only further considered for ther-
mochemical calculations and process optimisation if they are considered
thermodynamically suitable by fulfilling these constraints.

b) Thermochemistry is used to calculate ideal gas properties, i.e. ideal gas heat
capacities. Based on the pre-optimised geometries from BP86/TZVP calcu-
lations, the molecular geometries are optimised, and vibrational frequencies
are computed using the DFT functional B3LYP (Becke, 1993; Stephens
et al., 1994) with TZVP basis set assuming the rigid rotor harmonic oscilla-
tor (RRHO) approximation (Atkins and Friedman, 2011). B3LYP is more
accurate than BP86 for geometry optimisation and vibrational frequencies
and known for a good balance between computational cost and accuracy
(Zheng et al., 2009; Gottschalk et al., 2018). Based on the optimised geome-
tries and the vibrational frequencies, frequency analysis is performed using
the TAMkin package (Ghysels et al., 2010) to yield the thermochemical
properties.

Details on the software used for the quantum chemistry calculations and a brief
comparison of the property prediction accuracy with experimental data can be
found in Appendix B.1 and Appendix B.2.
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3. Process optimisation: With the thermodynamic properties from Step 2, the entire

process flowsheet is modelled using pinch-based process models for individual
process units (Paragraph 3a) and the transhipment model for heat integration
(Paragraph 3b). The used models are computationally efficient and converge
more robustly than rigorous models. Therefore, the process degrees of freedom,
e.g. operating temperatures or pressures, considering subsequent heat integration
can be optimised for each candidate solvent.

The process optimisation problem for each solvent is thus a subproblem of
Problem 4.1 optimising the process settings y with fixed molecular structure x’
and corresponding fixed thermodynamic properties ¢’

min f@ y, x, 0,0

st x = J(y, )
v =h(y,0) (4.3)
ks(y,0) <0
yeyY

Process optimisation yields optimum process settings y* for each solvent resulting
in optimum process model results ¢* and optimum heat integration y*, which
are used by LEA3D to optimise the molecular degrees of freedom x (see Step 1
and Problem 4.2).

a) Process units are modelled using equilibrium- and pinch-based process
models. Pinch-based process models are available for the most common
separation unit operations: absorption (Redepenning et al., 2017), extrac-
tion (Redepenning et al., 2017), and distillation (Bausa et al., 1998). An
equilibrium-based multiphase reactor from Scheffczyk et al. (2017a) is avail-
able using the homotopy continuation algorithm by Bausa and Marquardt
(2000) for phase equilibrium calculations. These equilibrium- and pinch-
based process models allow modelling of entire process flowsheets for many
processes.

The pinch-based process models are well suited for CAMPD since they
consider non-ideal thermodynamics without simplifications to heuristic
performance indicators (see Appendix B.3 for a brief comparison to rigorous
process models). Nevertheless, the calculation of process units is efficient
and robust, e.g. by avoiding tray-to-tray calculations. Instead, pinch-
based process models calculate the minimum operating point of a column
by assuming vanishing thermodynamic driving forces. This assumption
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corresponds to columns with an infinite number of trays. Thus, in the
context of balancing operating and investment expenditures, the results of
the pinch-based models represent the limiting case of minimal operating
expenditures without considering investment cost. CAMPD using pinch-
based process models is suited to optimise thermodynamic quantities, e.g.
exergy loss, energy and solvent demand, or operating cost, e.g. cost of
utility consumption.

b) Heat integration is performed by pinch analysis using the transhipment
model of Papoulias and Grossmann (1983). The transhipment model yields
the maximum heat integration of a thermodynamically optimal heat recovery
network. Similar to the pinch-based process models for the unit operations,
no investment costs for the heat recovery network but targets for minimum
utility consumption are calculated based on heat and mass flows. Using the
transhipment model allows formulating the heat integration problem model
as a linear program and solving it computationally efficiently. Thus, in
combination with the pinch-based process models, maximum heat-integrated
process performance is evaluated for each solvent based on a process-level
objective function.

During process optimisation, process models and heat integration are solved
iteratively for each candidate solvent. Based on the gradient of the predefined
objective function, the process degrees of freedom are optimised using a numerical
optimisation method from multiple starting points (see Appendix B.1 for details).

4. Ranking of molecules and next generation: Based on each candidate’s optimised

process performance, the candidate solvents are scored and ranked according
to the predefined objective function. The objective function value is used as
a fitness score for the genetic algorithm, which applies genetic operations to
generate a new set of molecules (Step 1).

The four steps of the method are repeated until a predefined number of generations is
met or a desired improvement is achieved, and the algorithm terminates. The result is a
ranked list of molecules and corresponding optimal process settings that can be further
refined by additional design criteria and validation. In this chapter, all candidate
solvents of the ranked list are checked for commercial availability or synthesisability.
Commercial availability is verified by searching online databases. If a candidate solvent
is not commercially available, we check synthesisability using a retrosynthesis method
based on the attention-based molecular transformer model (Schwaller et al., 2019, 2020).
A candidate solvent is considered synthesisable if at most three subsequent reactions
are required to form the candidate solvent from commercially available reactants with
a confidence of the retrosynthesis algorithm greater than 50 %.
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Figure 4.1: COSMO-(sus) CAMPD method for the design of heat-integrated processes
by including thermochemistry from quantum chemistry calculations and
process optimisation including heat integration. The methods used are
given in italics.
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4.2 Case studies

The extended COSMO-(sus)CAMPD method is applied to two case studies: (1) a
hybrid extraction-distillation process for the purification of -valerolactone and (2)
an Integrated Carbon Capture and Utilisation (ICCU) process to produce carbon
monoxide. The case studies demonstrate the capabilities of COSMO-(sus)CAMPD for
integrated design of solvents and heat-integrated processes. In particular, the results
from COSMO-(sus) CAMPD with extended property prediction using thermochemistry
and heat integration are compared to state-of-the-art methods.

In addition to the environmental assessment, an analysis of process exergy demand
can yield additional information on minimum required work and overall efficiency of
the process. Therefore, the design for minimum environmental impact in this chapter
is complemented by an analysis of process exergy demand in Appendix B.5.

4.2.1 Hybrid extraction-distillation of ~y-valerolactone

As a first case study, the hybrid extraction-distillation of y-valerolactone (GVL) is
investigated, as introduced in Section 3.2. The objective of the integrated solvent and
process design is to minimise the cradle-to-grave environmental impact on Climate
Change (CC{S4,a.e) of the solvent after heat integration by choosing an optimal solvent
with the corresponding optimal process settings. In contrast to Section 3.2, the process
modelling considers the reboiler and condenser duties in the distillation column, as
well as the sensible heats for heating and cooling of various flows (Figure 4.2). In
this case study, the degrees of freedom of the process are the extraction and decanter
temperatures Tgy, and Tpe. and the pressure in the distillation column pp;. Heat
is supplied by low-pressure (3bar) and high-pressure (70bar) steam at 410 K and
558.15 K, and cooling is provided by cooling water at 283 K. The heat recovery
approach temperature (HRAT) is assumed to be 10 K. More details on the process
specifications can also be found in Appendix B.6.

For the LEA3D algorithm, the 3D molecular fragment library is limited to fragments
containing carbon, hydrogen, and oxygen to design potentially green and bio-based
solvents (for details on the molecular fragments, see Appendix B.7.1).

In total, COSMO-(sus)CAMPD designs 715 unique candidate solvents in approxi-
mately 3.5 days. Of the 715 candidates solvents, 348 candidate solvents fulfil the prop-
erty constraints and are feasible as solvents for the process. 40 candidate solvents are
neither commercially available nor predicted to be synthesisable as revealed by database
search and retrosynthesis and are thus discarded after the design. The solvent with
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Figure 4.2: Flowsheet and degrees of freedom for the hybrid extraction-distillation of

~v-valerolactone with process degrees of freedom highlighted for the process
units.

minimal CCt  is 6-methyl-1,3-heptadiene (cf. Table 4.1). 6-methyl-1,3-heptadiene

c2grave

yields CClst., . = 6.00kg COs-eq. kmolgy, for the hybrid extraction-distillation
process corresponding to a reduction of 56 % compared to the benchmark n-butyl
acetate with CClst .. = 13.8kg COs-eq. kmolgy. The highest-ranking candidate
solvent that is commercially available is 4,6-dimethyl-1-heptene on rank 2. The impact
on Climate Change resulting from using 4,6-dimethyl-1-heptene as a solvent is approx-
imately the same as for 6-methyl-1,3-heptadiene, totalling CC;,.... = 6.01 kg COz-eq.
kmolgy,. Besides the top 2 solvents, the method designs 140 additional candidate
solvents with a lower impact on Climate Change than n-butyl acetate highlighting the
systematic generation of promising alternatives. Of the top 50 candidates solvents,
42 candidate solvents contain the vinyl group or the furan group, which are thus
identified as promising by the method. However, since molecules with vinyl groups
tend to polymerise (Tobita, 2000) and furanic compounds are suspected to be toxic
and carcinogenic (Bakhiya and Appel, 2010; Moro et al., 2012), these candidates
need further assessment. The most promising candidate solvent without a vinyl or
furan group is 2,3,3,5-tetramethyl-hexane with an impact on Climate Change of 7.5 kg
COs-¢q. kmolé{,L, corresponding to a reduction by 45 % compared to n-butyl acetate.
2,3,3,5-tetramethyl-hexane has already been identified as a promising candidate solvent

in Chapter 3.

Solvents for hybrid extraction-distillation processes are commonly selected using
heuristic selection rules (Gertig et al., 2020b; Adjiman et al., 2021; Chai et al., 2022).
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Thus, the solvents identified using the impact on Climate Change of the process as a
selection criterion are compared to solvents identified using standard selection rules
from the literature. Commonly, heuristic selection rules for an extraction solvent
focus only on the solvent’s performance in the extraction column (Gertig et al., 2020b;
Chai et al., 2022), e.g. the minimum solvent demand for extraction (Spy,). From this
analysis, Swin moderately correlates with CCy,.,.. (Pearson’s Correlation Coefficient
p = 0.53, Figure 4.3). Thus, the heuristic can be confirmed that promising extraction
solvents usually exhibit a low solvent demand for extraction. However, this correlation
does not apply among the high-ranking solvents. For example, the correlation between
Smin and CCEL ... is weak for the top 100 ranking solvents (Pearson’s Correlation
Coefficient p = 0.04), and the solvent with the lowest solvent demand for extraction
ranks only 186" in impact on Climate Change (Table 4.1). Therefore, the minimum
solvent demand is not sufficient as an objective to yield a low impact on Climate
Change. The entire process needs to be considered for selecting an optimal extraction

solvent.

The hybrid extraction-distillation process was already analysed in Section 3.2.2 using
only the distillation reboiler energy demand to model the use phase environmental

impact (CCI5p.,.)- Since the thermochemical estimation of heat capacities was not

included for each candidate solvent, COSMO-(sus) CAMPD as presented in Chapter 3
did not consider sensible heat and heat integration. However, ranking the solvents

designed for minimum heat-integrated impact on Climate Change by C'C*sP

c2grave as

used in Chapter 3 reveals only minor changes in solvent selection: The rankings are
very similar, as indicated by a Spearman’s rank correlation coefficient of ppan = 0.99.
Although heat integration reduces the emissions of the total process energy demand
on average by 30 %, heat integration and comprehensive modelling, including sensible
heats, have a negligible effect on solvent design for the considered process flowsheet
(Figure 4.3). The reboiler duty, already calculated in Chapter 3, represents the main
energy demand of the process before and after heat integration since it cannot be
heat integrated with this process. Therefore, designing solvents considering only the
reboiler duty is sufficient for the process in this case study.

However, neglecting the sensible heat by using only the reboiler energy demand
underestimates the heat-integrated impact on Climate Change on average by 19 %. In
particular, the reboiler energy demand is underestimated on average by 21 % because
the additional heat demand from the temperature increase within the distillation
column is not considered. Thus, accurate quantitative results require comprehensive
process modelling including sensible heat and heat integration.
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Figure 4.3: Comparison of the impact on Climate Change of the heat-integrated process
(Ccctst o) with the impact on Climate Change neglecting sensible heat
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and considering only the reboiler energy demand (CCZp.,..). The colour

code indicates the heuristic selection criterion of minimum solvent demand
for extraction (Smyin)-

4.2.2 Integrated carbon capture and utilisation for the production of
carbon monoxide

Integrating carbon capture and utilisation (ICCU) into one process can yield efficient
process concepts to capture and utilise carbon dioxide (CO,) as a feedstock for the
chemical industry (Jens et al., 2019). A promising CCU concept is the conversion of
CO4 with hydrogen (Hs) from fluctuating renewable energy to produce carbon monoxide
(CO) via a storage molecule that compensates for the fluctuations in electricity supply
as a liquid energy carrier (Behr et al., 2004; Supronowicz et al., 2015; Jens et al.,
2016). In previous studies by Jens et al. (2016) and Scheffczyk et al. (2017a), the most
efficient process was achieved using dimethylformamide (DMF) as a storage molecule.
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DMEF is produced in the synthesis reaction from CO,, Hy and dimethylamine (DMA,
Reaction 1) and subsequently reacted to form CO and dimethylamine in the reforming
step (Reaction 2):

Reaction 1: CO, +H, + DMA — DMF + H,0
Reaction 2: DMF — CO+ DMA

Overall: CcO,+H, — CO+H,0

So far, the described process has been investigated as a Carbon Capture and
Utilisation (CCU) process with captured COq as a pure feedstock for utilisation. The
potential of integrating the carbon capture from a COq point source, e.g. CO,-rich
natural gas, by physical absorption has not yet been evaluated for this ICCU process.
An ICCU process omits the energy-intensive CO, desorption step from the solvent
by converting the CO, to a valuable product directly within the solvent (Jens et al.,
2016). However, instead, the final product needs to be separated from the solvent.

As a result, process performance and environmental impact of this ICCU process
are substantially impacted by solvent and process design, as unit operations for
physical absorption, reaction, and distillation are included in the process flowsheet
and influenced by the employed solvent (Figure 4.4). Therefore, the optimal solvent
needs to balance various properties: (1) high absorption capacity and selectivity, (2)
shift of the reaction equilibrium and phase split with water to allow catalyst recovery,
as well as (3) low energy demand for heating, cooling, and separation in distillation.

The process design is tailored for each candidate solvent by optimising the reactor
pressure pry, the pressures in the distillation columns ppis1 and ppisto and the molar
flow of water to the reactor ny,o to ensure phase separation. The CAMPD optimisation
objective is minimising the cradle-to-grave environmental impact on Climate Change
CCB4ave Of the solvent employed in the heat-integrated process. As the CO, point
source, COg-rich natural gas with 30 mol-% CO, and 70 mol-% methane is assumed
(Jens et al., 2019). Due to the multifunctionality of the ICCU process, producing
purified methane and carbon monoxide, the functional unit (FU) of the process is

defined as 2.33kmol s~ methane and 1kmols™! carbon monoxide (cf. Appendix B.4).

The optimised ICCU process is compared with an optimised separated CCU process
from the literature, going forward called the benchmark process. The CCU process
uses the solvent 3,5-dimethylpiperidine (Jens et al., 2016). For separated carbon
capture, conventional chemical absorption using monoethanolamine is assumed (Lee
et al., 2016). As a second benchmark, the sum of impacts of conventional methane
and carbon monoxide production is considered, going forward called the conventional
production of the FU. More details on the LCA, including system boundary and
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Figure 4.4: Flowsheet for the integrated carbon capture and utilisation process pro-
ducing carbon monoxide via the liquid energy carrier dimethylformamide.
Dimethylformamide is produced in the synthesis reaction, stored, and
reformed to carbon monoxide in the reforming step.

functional unit of the investigated ICCU process and the benchmark process, are
available in Appendix B.4.

In contrast to the first case study (Section 4.2.1), in this design, halogens, sulphur,
and tertiary amines are allowed as building blocks for the LEA3D algorithm (see
Appendix B.7.2). These groups are expected to be inert. The choice of amines is
limited to tertiary amines, which are not reactive during dry COy capture (Vaidya
and Kenig, 2007; Behrens et al., 2017), as considered here. However, tertiary amines
can catalyse the formation of bicarbonates from COs in the presence of water (Vaidya
and Kenig, 2007; Behrens et al., 2017). The effect of bicarbonate formation on CO,
capture due to water impurities in the solvent or feed streams is subject to refined
evaluation and not considered in the present study. Fragments with non-aromatic
carbon double bonds are removed, as these would be hydrogenated in the reactor.
Thus, other reactions than Reactions 1 and 2 are not assumed to occur.

Since the training of the ANN in Section 3.1.2 did not include all of these building
blocks in the training data, e.g. halogens, the solvent-specific ANN prediction is
replaced by a constant value of 3 kg COs-eq. kgs_cjvent. A value of 3kg COs-eq. kg;s_(jvent
corresponds approximately to the average of the ANN predictions from the case study
in Section 3.2.
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Similar to the first case study (Section 4.2.1), heat that is not provided by heat
integration is supplied by external utilities. Here, low-pressure steam (3 bar) at 410 K
and furnace heat at 750 K is assumed, as well as cooling water at 283 K and refrigeration
at 233 K. The heat recovery approach temperature (HRAT) equals 10 K. More details
on the process specifications can also be found in Appendix B.6.2.

The COSMO-(sus) CAMPD method generates 1162 unique candidate solvents in
approximately 9.5 days. Of these candidate solvents, 390 solvents are feasible for the
ICCU process, and 330 candidate solvents are additionally commercially available
or synthesisable as determined by database search or retrosynthesis. As the optimal
solvent, the method discovers 2-dimethylamino-ethanethiol, also known as captamine,
with an impact on Climate Change of CClst.. . = 0.30kg COs-eq. kggy. Thus, the
optimal solvent for the ICCU process reduces the impact on Climate Change by 64 %
compared to the benchmark separated CCU process with an impact on Climate Change

for this case study of CCSt = 0.84kg COs-eq. kgpy; (Figure 4.5).

c2grave

Since captamine is a hydrolysis product of a chemical warfare agent (Glasco and Bell,
2021), its use might be prohibited. The second best commercially available solvent
is 4-bromo-dimethylbutan-1-amine, ranking second with CCg5; ... = 0.32kg COs-eq.
kgp;, which is 6 % higher than for the optimal solvent captamine. In total, the method

tot
c2grave

designs 204 candidate solvents with a lower C' than the benchmark process that
are commercially available or synthesisable. Therefore, with an optimal combination
of process and solvent, the ICCU process concept is an efficient alternative to the
separated process and advantageous in terms of Climate Change. However, the ICCU
process concept alone is not a guarantee for a lower environmental impact in general
but requires careful and integrated solvent and process design as a key design decision:
About 40 % of all evaluated solvents cause a higher CCg; .., for the ICCU process

than the benchmark separated process, which is in line with the conclusion by Jens
et al. (2019) for the feed specifications of the ICCU process.

In the considered scenario, the impact on Climate Change of conventional production
equals CCSt .. = 0.52kg COs-eq. kggy and is thus lower than the impact of the
benchmark separated CCU process. Thus, the CCU process is not environmentally
beneficial in terms of Climate Change to conventional production, emphasising the
challenge of finding CCU processes mitigating climate change. For the ICCU process,
41 candidate solvents yield a lower impact on Climate Change than the conventional
production. Therefore, with an optimal combination of process and solvent, Climate
Change mitigation seems possible with the ICCU process but are subject to further,

more detailed investigation.
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Chapter 4 Computer-aided design of solvents and processes using quantum chemistry

To challenge the integrated design for minimum CC%; ..., the solvent design based
on the heat-integrated impact on Climate Change is compared to solvent rankings
considering process subsystems only, i.e. unit operations. Generally, a higher absorption
selectivity of the solvent for CO, leads to a higher yield in the reactor and thus to a
lower impact on Climate Change (cf. Figure 4.5). This trade-off is confirmed by a
Pearson correlation coefficient between the absorption selectivity and the impact on
Climate Change of p = —0.65. Similarly, a high equilibrium yield of dimethylformamide
in the organic reactor outlet leads to a low impact on Climate Change (p = —0.62).
Importantly, equilibrium conversion does not correlate with impact on Climate Change
(p = —0.12) since only the product concentration in the organic phase at the reactor
outlet impacts the separation effort. However, product concentration is not only

determined by the equilibrium conversion but also by the phase equilibrium.

Despite the correlation, choosing absorption selectivity or equilibrium yield as the
design objective lead to suboptimal solvent selection: The solvent with the highest
absorption selectivity is 2-phenylethanol (triangle in Figure 4.5) and the solvent with
the highest equilibrium yield is thiooxalane (diamond in Figure 4.5). 2-phenylethanol
and thiooxalane only rank 44" and 73' in CCiS},.. with impacts 74 % and 90 %
higher than the optimal solvent captamine (Table 4.2). Therefore, considering targets
for single unit operations is not sufficient to select the optimal solvent for the overall
process. Only an objective function based on the entire process successfully captures

all process-relevant trade-offs within the molecular properties.

Heat integration strongly affects the environmental impact on Climate Change of the
process for every solvent. On average, heat integration reduces the impact on Climate
Change by 49 % compared to the impact on Climate Change before heat integration,
with a maximum of 70 % for the top solvent captamine (Figure 4.6). Therefore, a
quantitative estimation of the impact on Climate Change of the process requires the
consideration of heat integration within the integrated design of process and solvent.

Heat integration also influences solvent ranking since the solvent properties impact
the amount of heat that can be integrated. However, considering the impact on Climate
Change without heat integration (C’C’;g;:g? I) still enables differentiation between high-
and low-ranking solvents. The correlation coefficient between solvent ranking with
and without heat integration is pran = 0.92. Remarkably, for this case study, the gate-
to-gate impact on Climate Change from distillation only (chgg) is a good estimator
for CCS4ave (p = 0.66). In distillation, the candidate solvents exhibit substantial
differences in energy demand and thus impact on Climate Change. Thus, ranking
according to distillation effort is effective, although the impact of distillation accounts
for only 21 % of the total process impact on Climate Change without heat integration

on average.
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Figure 4.5: Results of the integrated molecular and process design of the heat-integrated
ICCU process: Each circle represents a molecular candidate with its cor-
responding optimised process. The candidate with the lowest impact on
Climate Change is additionally marked with a square, the candidate with
the highest selectivity of absorption is additionally marked with a triangle,
and the candidate with the highest equilibrium yield is additionally marked
with a diamond. The dashed and the dashed-dotted line represent the
impact on Climate Change of the benchmark process and conventional
production, respectively.

In contrast to the low impact on the overall ranking, the heat integration potential
significantly impacts solvent ranking among the top solvents. For example, when heat
integration is not considered, only 31 candidates of the top 50 candidate solvents
continue to be included in the revised top 50 candidate list. The correlation coefficient
between solvent ranking with and without consideration of heat integration among
the top 50 solvents is only pranc = 0.38, indicating a weak correlation between the
two rankings. Similarly, the rank correlation coefficient between CC{S: ... and CC3
reduces to p = —0.18 for the top 50 candidate solvents.
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Table 4.2: Ranking of candidate solvents based on the chosen objective function and impact on Climate Change of the corresponding

process. The impact on Climate Change is given in kg COs-eq. per kg of the functional unit and normalised by the

impact on Climate Change of the solvent with the lowest total heat-integrated impact on Climate Change C

tot,1
c2grave*

The list contains the candidate solvents with the lowest and the second lowest total heat-integrated impact on Climate

Change CCleagravetot; the solvent with the lowest impact on Climate Change without heat integration C MWM_MMW I the

solvent with the highest absorption selectivity and the solvent with the highest reactor equilibrium yield.

Rank

Climate Change C

tot,e

c2grave
Solvent with the ... Molecular structure Climate Change equilibrium  absorption kg COpeq. o
with without yield selectivity — kg™! FU /CCegrave
heat integration heat integration
lowest Climate i
Change CCISt . NN 1 26 148 65 0.30 1
: H,;C. Br
e to YT 2 9 93 71 0.32 1.06
WQSW 1 CHs
lowest Climate | .
Change CClgtot! 18 1 96 21 0.48 1.57
highest reactor ON_—sH
equilibrium yield O\ 44 12 1 17 0.53 1.74
highest absorption N
selectivity O\ 3 53 56 1 0.58 1.90
(9]
Ne)



4.2 Case studies

When heat integration is considered in the design, the optimal solvent can successfully

exploit increasing pressure in the distillation columns to 2.7 bar and 4.1 bar for optimal

heat integration. Thus, for this solvent, the impact on Climate Change decreases by
70 % from 1.00kg COq-eq. kgpt to 0.30kg COg-eq. kgpy. In contrast, the optimal
solvent without heat integration saves only 38 % of the impact on Climate Change by

heat integration. As a result, the impact on Climate Change after heat integration

is 57 % higher than for the optimal solvent. Therefore, identifying the top solvents

requires comprehensive modelling and consideration of heat integration besides a sound
cradle-to-grave environmental objective.
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Figure 4.6: Environmental impact on Climate Change depending on process design

scope: Considering process optimisation with heat integration (CC%y,...)

compared to a process optimisation without considering heat integration
potential (C’Cﬁg;;‘gﬁ? ) and consideration of the reboiler energy demand
only (CC52). All results include feedstock and electricity emissions and
only differ in process design scope.
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4.3 Conclusion

This chapter presents the COSMO-(sus) CAMPD method for computer-aided, inte-
grated molecular and process design for heat-integrated chemical processes. Similar
to the original COSMO-(sus) CAMPD method (Chapter 3), the method is based on
a genetic algorithm that optimises molecules evaluated by property prediction and
process optimisation. For all candidate solvents, properties used in process optimisa-
tion are predicted by quantum chemistry. Quantum chemistry allows the calculation
of thermodynamic properties from a large molecular design space independent from
the availability of parametrised functional groups. For computationally efficient and
accurate process design, pinch-based process models are used for extraction, absorption
and distillation columns, and multiphase reaction. In addition, heat integration is
considered for each candidate solvent within the process optimisation. Therefore, pro-
cess modelling and optimisation overcome the limitations of state-of-the-art simplified
process performance indicators often used in CAMPD.

The method is applied to two case studies of (1) hybrid extraction-distillation
and (2) integrated carbon capture and utilisation. In both case studies, promising
candidate solvents are designed that are commercially available or synthesisable
and reduce the environmental impact on Climate Change by up to 56 % and 64 %,
compared to literature benchmark processes, respectively. Furthermore, the case
studies reveal mutual dependencies of optimal solvents and processes. For optimal
process performance, CAMPD requires a process-level objective that captures overall
process performance, e.g. the total heat-integrated cradle-to-grave environmental
impact. Separate consideration of individual unit operations or performance targets
of process subsystems is insufficient to design optimal solvents for the entire process,
as evident by low correlation coefficients between the objective function values of the
heuristics and the entire process.

The case studies show that heat integration significantly impacts quantitative
estimates of, e.g. environmental impact on Climate Change. Heat integration reduces
the impact on Climate Change in the case studies on average by 19 % and 49 %. Due to
the large savings that can be achieved by heat integration depending on the candidate
solvent, comprehensive modelling considering heat integration is crucial for selecting
solvents for large process flowsheets with various unit operations. For the considered
case studies, an accurate ranking of promising candidate solvents cannot be achieved
by simplified process representations. However, minimising the main process energy
drivers also provides a suitable selection criterion for generating promising candidates
that should then be analysed in subsequent detailed investigations.
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4.3 Conclusion

The main focus of this chapter was the comprehensive application modelling and
its impact on molecular design in chemical processes. To exploit the degrees of
freedom in process design resulting from comprehensive modelling, heat integration
and process optimisation are included for each candidate solvent using established
methods. However, recently, advanced optimisation frameworks for simultaneous
design of process and heat integration have been developed, e.g. by Kong et al. (2016)
and Liesche et al. (2019). Future work in CAMPD should build on these frameworks
to include heat exchanger network design and process structure optimisation, or to
improve solution quality to global optima, provided that heat integration and process
optimisation are crucial for the considered processes.

The predictive methods still contain uncertainties that propagate through the
presented CAMPD method. Therefore, valuable future work could quantify uncertainty
in detail and explore potential improvements for CAMPD. e.g. from experimental
data. The experiments required in this context can and should ideally be tailored to
the process under consideration for minimum experimental effort. Thus, the tailored
design of experiments for accuracy increase of application- and system-level simulations
is presented in the next chapter.
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CHAPTER 5

Optimal experimental design of physical
property measurements for optimal
chemical process simulations

Validating predictions as well as training and parametrising models in CAMPD requires
experiments that are optimally tailored to the purpose of experimentation. With regard
to CAMPD with environmental objective, optimal experiments maximise the accuracy
of predictions on process performance and environmental impacts. Therefore, in this
chapter, optimal experimental design (OED) of physical property measurements is
investigated that results in the most accurate chemical flowsheet simulations: c-optimal
experimental design (c-OED). ¢-OED links decisions at the property level with the
modelling at the application and the assessment at the system level.

In Section 5.1, the fundamentals and the implementation of ¢c-OED for chemical en-
gineering problems are described. The benefit of c-OED is demonstrated in Section 5.2
for three case studies of equilibrium- and rate-based extraction and hybrid extraction-
distillation processes. c-OED is used to design liquid-liquid equilibrium (LLE) and
diffusion experiments minimising the uncertainty of thermodynamic, economic or
environmental performance metrics of the solvent-based processes. The c-optimal
experimental design is compared with the state-of-the-art OED in chemical engineering
for parameter accuracy and conventionally used experimental designs without OED.
The results from OED theory are challenged by a Monte Carlo analysis of the designed
experiments (Section 5.3). The limits of ¢-OED for highly non-linear process models
are investigated before this chapter is concluded in Section 5.4.

Major parts of this chapter are reproduced by permission of Elsevier from:

Fleitmann, L.; Pyschik, J.; Wolff, L.; Schilling, J. and Bardow, A. (2022). Optimal experimental
design of physical property measurements for optimal chemical process simulations. Fluid Phase
Equilibria, 557, 113420.

The author of this thesis contributed to the methodology and the implementation of the research
topic. The author investigated, validated and visualised the results of the experimental design and
wrote the first draft as the principal author. The conceptualisation was jointly developed in discussion
with the co-authors.
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Chapter 5 Optimal experimental design for optimal chemical process simulations

5.1 Optimal experimental design using the c-optimality

criterion

In this section, the state-of-the-art theory and fundamentals of OED are briefly
explained with a focus on ¢-OED, which is adapted to the estimation of thermodynamic
properties for chemical process simulations. First, the c-optimal objective function
is derived (Section 5.1.1). Subsequently, solution approaches to OED problems are
explained (Section 5.1.2). In Section 5.1.3, quality measurement criteria are introduced
to compare and validate the results in Section 5.2.

5.1.1 Derivation of the c-optimal objective function

In general, the goal of statistical OED is to minimise parameter uncertainty (cf.
Section 2.4). For this purpose, the objective is defined as a measure of the variance-
covariance matrix of parameters Vj. The parameter variance-covariance matrix Vj can
be approximated by the product of the Fisher-Information-Matrix F' (é, &) and the
number of experiments Ny, (Bard, 1974):

Vi~ [Noo F (6,6)] (5.1)

The Fisher-Information-Matrix F' (é, &) depends on the chosen experimental design &
and an initial parameter guess 6 if the model is not linear in the parameters (Bard,
1974). For example, for OED of phase equilibria measurements to parametrise the
NRTL-model (Renon and Prausnitz, 1968), an initial set of NRTL-parameters has to
be provided.

As the parameter variance-covariance matrix Vj is proportional to the inverse of
F(6,¢), OED usually focuses on optimising the Fisher-Information-Matrix F(0, &) by
selecting an optimal design &* that contains the distribution of experiments independent
from the total number of experiments Ney.

Every experimental design & is represented by a design vector of N distinct experimen-
tal settings z; , e.g. temperature and pressure of each experiment, and corresponding
N normalised weights v;, which indicate the share of the total experimental effort
(Fedorov and Leonov, 2014):

E _ {Zl Zo vt ZN} with g:vi =1 (52)

U1 V2 -+ UN i=1
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The number of distinct experimental settings /N is usually not known a priori and a
result of OED besides the specification of the experimental settings.

The Fisher-Information-Matrix F (é, £) is calculated from the underlying model of
the experiment g(z,w, 8) (Bard, 1974). The model g(z, w, 8) describes the experiments
by relating the parameters @ for given experimental settings z to the experimental
measurement results w . For flowsheet simulation of chemical processes, for example,
the model g(z,w, @) describes the experiments to measure liquid-liquid equilibria or
diffusion coefficients. The experiments are characterised by experimental settings z
given as input from the experimental design £, e.g. temperatures and concentrations.
The experimental measurements w are, for example, measured phase compositions.

The Fisher-Information-Matrix F(é, &) for a given experimental design £ is calculated
by multiplying the variance-covariance matrix of the experimental measurements V,
by the model sensitivity to experimental measurements A; and the model sensitivity
to parameters B; for each distinct experimental setting ¢ of the experimental design &
(Bard, 1974):

N
F(6,¢) =Y v B! (A V,Al)™" B, + 3 (5.3)
i=1
. e . dg
with the local model sensitivity to experimental measurements: A; = E
w ~
wi,e
e d0g
and the local model sensitivity to parameters: B; = 20
wi,é

The variance-covariance matrix of the experimental measurements V,, is a key
input parameter, which needs to be specified a priori from uncertainty measurements,
highlighting the need for uncertainty reporting as part of good reporting practice for
property measurements (Bazyleva et al., 2021). Already available information on the
parameter variance-covariance matrix, e.g. from previously performed experiments
or the literature, can be included for the design of further experiments in the Fisher-
Information-Matrix F (é,g) through 3 since F (é,f) is additive (Fedorov and
Leonov, 2014). In this work, no previously performed experiments or predictions are
assumed; thus, X! is not further considered.

To account for the parameter use, the c-optimal design objective is to minimise a

linear combination of the parameter variances, which is calculated by the product of a
N X ~1

vector ¢(0) and the inverse of the Fisher-Information-Matrix [F(G, S)} (Atkinson
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et al., 2006). The c-optimal experimental design £ is the solution to this optimisation
problem:

>

& = argmin c(0)" [F(6,8)] " e(6) (5.4)

A

For considering the property parameter use in a process simulation, ¢(0) should reflect
the linearised variance propagation of the property parameter uncertainties through
the process model. Therefore, the first-order sensitivities of a scalar simulation output
to property parameters are chosen as weights of the linear combination. Thereby,
the property parameters are weighted by their impact on the process model, e.g. the
sensitivity of total process energy demand with respect to NRTL-parameters. The
variance of a simulation output is thus obtained as c-OED objective. The vector ¢(6)
is calculated from the sensitivities of a scalar result ¢ (6, y) of the process model h to
property parameters 6:
9 (6,y)

c(0) = —a | (5.5)
0.9

As both the model sensitivities for the Fisher-Information-Matrix F' (é, £) and the

A

process model sensitivities for the vector ¢(@) are calculated for given initial param-
eters 0, the resulting optimal experimental design is locally optimal for the given
initial parameters 0. The vector c(é) can also depend on further parameters, e.g.
specifications of the process model y, resulting in an additional dependence of the
optimal experimental design on these parameters. These additional specifications, such
as operation settings, must be known a priori, e.g. from experience, known operation

of similar systems or process design.

In contrast to c-OED, state-of-the-art OED criteria do not consider the process
sensitivity to the property parameters expressed by c(é) For example, the commonly
used D-optimal experimental design yields the most accurate parameters using only
the Fisher-Information-Matrix. A D-optimal experimental design £} minimises the
uncertainty of all parameters by maximising the determinant of the Fisher-Information-

Matrix (Bard, 1974):
&, = argmax log |det (F (0, ¢ (5.6)
5 = g o (F (0.)
Generally, statistical OED as presented here requires several assumptions on the model

and the errors that have been summarised, e.g. in Bard (1974) or Dechambre et al.
(2014b): (1) The model parameters 6 need to be identifiable, and the true values for
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the measurements need to lead to the true parameter values, i.e. no model bias is
assumed. (2) No errors are assumed in the independent variables, i.e. the experimental
settings z, and no systematic errors are assumed in the measured variables w. (3)
Errors in different experiments are independent of each other and normally distributed
with the same covariance matrix V.

Importantly, the thermodynamic model g and the experimental measurements w
need to be carefully selected since multiple options exist for the model and the measured
quantities. For example, van Ness and coworkers showed that isobaric vapour-liquid
equilibrium (VLE) measurements usually lead to large uncertainties and model errors
in contrast to isotherm VLE experiments (van Ness, 1995; Gmehling and Kleiber,
2014). Isobaric VLEs rely on vapour pressure equations used as input. If inadequately
parametrised, this input can cause a model bias in the temperature dependence of
the vapour pressure. The intrinsic model bias then leads to incorrect parameters —
independent of the experimental design.

5.1.2 Solving OED problems

The computation of the OED objectives requires sensitivities. The model sensitivities
of the thermodynamic model to experimental measurements and property parameters
as well as the sensitivities of the process model to property parameters are calculated
by first-order numerical differentiation using central differences. To ensure stable
numerical differentiations, a parameter study was performed. The step size was chosen
to 1 x 1077 for the calculation of the Fisher-Information-Matrix using complex-step
differentiation (Squire and Trapp, 1998) and to 1 x 10~* for the sensitivities of the
process model.

To solve optimal experimental design problems, several general-purpose algorithms
have been proposed in the literature (Garcia-Rédenas et al., 2020). In this work, the
general algorithm for computing optimal designs with monotonic convergence by Yu
(2010) is used.

The algorithm yields optimal experimental designs with a continuous distribution of
experimental effort, also called continuous designs (Atkinson et al., 2006). A continuous
design quantifies which share of the total experimental effort should be spent on which
measurements. Continuous designs suit as targets for experiments in the laboratory,
as these designs specify only relative experimental effort for an infinite number of
experiments. In practice, only a limited number of experiments can be performed.
Therefore, implementable experimental designs for the laboratory, so-called exact
designs, can be calculated for a predefined number of experiments, e.g. by rounding the
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continuous designs (Atkinson et al., 2006). However, as rounding does not guarantee
close approximation of continuous designs (Atkinson et al., 2006), various algorithms
for the calculation of exact designs have been developed, e.g. non-sequential algorithms
(Wynn, 1972) or exchange methods (Nguyen and Miller, 1992). In the validation
section of this chapter, a non-sequential algorithm by Wynn (1972) is used for exact
optimal designs due to its simple implementation (Section 5.3). Exact designs can also
be calculated considering previous experiments or literature data (cf. Equation 5.3), as
frequently required in practice. The exact design then yields the optimal subsequent
experiments, as demonstrated by Duarte et al. (2021).

5.1.3 Comparison of experimental designs

Experimental designs can be compared by OED-efficiencies, which measure the ef-
fectiveness of an experimental design & compared to an optimal design £*. In this
work, the focus lies on c-efficiency as a measure of process simulation accuracy and
D-efficiency as a measure of parameter accuracy. The efficiencies are defined based on
the c-optimal design & or D-optimal design &5y as (Atkinson et al., 2006):
c()"F(6,¢&) "c(6)

— c-efficiency: (.(§) = () F(6.6)1c(f)

1
det (F (é, €)> ] TN parameter
det (F (8,p))

with nparameter for the number of estimated model parameters. The efficiencies are

— D-efficiency: (p(€) = [

valuable metrics since they allow to determine the number of experiments to achieve a
particular accuracy. The inverse of the c- or D-efficiency describes how many additional
experiments are required for the same accuracy compared to the optimal design of the
respective criterion. For example, a design with a c-efficiency (. = 0.25 needs 4 times
as many experiments for the same process simulation accuracy as a c-optimal design.

5.2 Application of c-OED for extraction and hybrid
extraction-distillation processes

The c-OED is applied by computing continuous c-optimal experimental designs for
liquid-liquid equilibrium and diffusion experiments for two process models of solvent-
based processes as an example:
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5.2 Application of c-OED for extraction and hybrid extraction-distillation processes

1. Pinch-based process models for extraction and distillation (Bausa et al., 1998;
Redepenning et al., 2017)

2. Countercurrent rate-based extraction model with the HTU-NTU method for
sizing (Chilton and Colburn, 1935; Sattler and Feindt, 1995)

In all case studies, the thermodynamic model for liquid-liquid equilibrium measurements
is taken from Dechambre et al. (2014b) and uses the NRTL activity coefficient model
(Renon and Prausnitz, 1968). For the HTU-NTU sizing of the extraction column,
diffusion coefficients are additionally required and assumed to be measured using a
closed cell with fixed geometries as the experimental setup (Wolff et al., 2016).

In this chapter, c-OED is exemplified for the ternary system water-acetone-toluene
in both case studies. The study is limited to ternary systems for ease of interpretation
and visualisation. However, the method of c-OED is not limited to ternary systems
but is applicable for multi-component systems with more than three components.

The chemical system water-acetone-toluene is a model system of great interest in
research and industry since it is applicable for studying various processes such as
extraction and distillation (Enders et al., 2007). The components represent a variety
of chemical interactions: Water and toluene are almost completely immiscible since
water is a highly polar molecule, whereas toluene is highly unpolar. Acetone is mildly
polar and, thus, soluble in both water and toluene. Toluene is consequently a suitable
solvent for the extraction of acetone from water since only acetone is attracted to the
extract toluene phase leading to a selective separation. Therefore, the system is well
suited to study the estimation of binary interaction parameters for extraction and
hybrid extraction-distillation processes.

The continuous c-optimal experimental designs are compared as targets for maximum
experimental efficiency with state-of-the-art OED for maximum parameter precision
(D-optimal experimental design) and a conventional experimental design without OED,
which equally distributes the experimental effort over the design space. Numerical
details on the experimental designs and the initial property parameters for each design
can be found in Appendix C.1 and C.2.

5.2.1 OED for estimating isothermal NRTL-7-parameters for a
pinch-based extraction model

As the first case study, the extraction of acetone from aqueous solution is investigated at
25 °C using toluene as a solvent. The extraction column is modelled using a pinch-based
process model, taking NRTL-parameters as input (Redepenning et al., 2017). Pinch-
based process models assume infinite columns operating at vanishing thermodynamic
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driving force but consider the full non-ideal thermodynamics. Therefore, the model
yields the minimum solvent demand S,,;, required for this separation. The minimum
solvent demand characterises the extraction process as the performance metric v for
the selection of an extraction solvent (cf. Section 4.2.1).

The aim is to determine the minimum solvent demand S,;, for extraction as
accurately as possible. For this purpose, OED is used to decide which LLE experiments
should be performed to estimate the six NRTL-7-parameters for the binary interactions.
LLE experiments are typically performed by equilibrating a liquid mixture with known
overall composition and miscibility gap in an equilibrium cell. After equilibration,
samples are drawn from each liquid phase and the molar composition of each phase is
measured. Today, mixing, equilibration, sample drawing and measuring are preferably
integrated into an automated set-up (Kuzmanovié¢ et al., 2003; Dechambre et al., 2014a;
Thien et al., 2020).

For simplicity, it is assumed that LLE experiments are performed with the overall
composition of the components that corresponds to the centre of the tie lines. The
overall compositions of all experiments lie on a line running from the centre of the
miscibility gap of the binary subsystem to the critical point (cf. Figure 5.1A). Each
position on this line is labelled by the scalar quantity « defined linearly from the
beginning in the binary subsystem (a = 0) to the end at the critical point (o = 1),
which thus defines each experiment exactly (Dechambre et al., 2014b). As a result,
the three-dimensional representation of the overall composition of the experiment is
exactly described by the parameter «, without simplifying the problem. Measurements
are challenging close to the critical point. In addition, the NRTL model is known to
describe the phase equilibrium poorly close to the critical point, leading to model bias.
To ensure experimental feasibility and applicability of the NRTL-model, « is limited
to a maximum of 0.9. Since ternary mixtures are investigated in this work, two molar
fractions are measured for each experiment and each liquid phase (cf. thermodynamic
model of LLE experiments by Dechambre et al. (2014b)). For each measurement, the
same constant absolute standard deviation in measured mole fractions o, = 0.005 is
assumed (cf. Section 5.3).

The c-optimal experimental design selects three distinct locations for measurements
(Figure 5.1B): About 80 % of the experimental effort is placed near the operating range
of the extraction column at o = 0.22. However, no experiments are performed in the
actual operating range of the extraction column. Instead, 20 % of the experimental effort
is placed in the high-curvature region of the binodal curve at o > 0.65, in particular,
6% at the design space boundary at o« = 0.9. Thus, the c-optimal experimental
design provides another argument to support the previous conclusions that the process
operation settings should not be mimicked or copied for physical property experiments
(van Ness, 1995).
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of the tie lines and the total composition of an experiment.
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The D-optimal experimental design similarly focuses on three distinct locations for
measurements. However, in contrast to the c-optimal design, 65 % of the experiments
are placed in the high-curvature region of the binodal curve, as already discovered
by Dechambre et al. (2014b). In the high-curvature region of the binodal curve, the
phase equilibrium model is highly sensitive to the property parameters. Thus, placing
experiments in the high-curvature region leads to low uncertainty in the parameter
estimation. However, the c-efficiency of the D-optimal design is only (P = 0.36 (Table
5.1). Consequently, about three times more D-optimal than c-optimal experiments are
required to achieve the same accuracy in the process simulation.

For an equidistantly distributed conventional experimental design, three experimental
settings are specified since the c- and D-optimal designs yielded three distinct settings.
The experimental effort is equally distributed across all experiments. The conventional
design yields a low c-efficiency of only (°" = 0.10 despite placing experimental effort
within the operating range of the extraction column in the solvent-carrier binary
subsystem. As a result, the conventional design requires about ten times more
experiments for the same process simulation accuracy as the c-optimal design. Thus,
the c-optimal experimental design promises to significantly reduce experimental effort.

In terms of parameter precision, the c-optimal design scores a D-efficiency of (f =
0.44. In contrast, the conventional design yields a D-efficiency of (§™ = 0.56 and,
thus, returns more accurate parameter values than the c-optimal design. The low
D-efficiency of the c-optimal design illustrates the varying influence of each property
parameter on simulation accuracy. For the extraction process, not all parameters of
the thermodynamic model are equally important. For example, the binary interactions
between solvent and solute as well as carrier and solute are of major importance.
However, the simulation results are much less sensitive to the solvent-carrier interaction
parameters, although low miscibility between solvent and carrier resulting from the
solvent-carrier interactions is key to the extraction process. Nevertheless, highly
accurate estimation of the solvent-carrier interaction is not required for accurate process
simulations since small inaccuracies in the solvent-carrier interaction parameters still
lead to low miscibility between solvent and carrier. Therefore, spending additional
experimental effort on increasing the parameter precision of these less important
parameters for the simulation reduces c-efficiency. Instead, the experimental effort is
more efficiently spent on experiments targeting the more influential property parameters
of the simulation. For example, near the operating range of the extraction column,
the thermodynamic model of the LLE experiments is most sensitive to solvent-solute
interaction, while the sensitivity to solvent-carrier interactions is low. Therefore, the
c-optimal design places the majority of the experimental effort on the experimental
settings near the operating range. However, exclusive focus on the property parameters
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most important for the chemical process simulation neglects the accuracy increase
resulting from experiments for overall high parameter precision. Therefore, the c-
optimal design also includes experiments for overall parameter accuracy, such as
experiments in the high-curvature region of the binodal curve at o = 0.9.

Table 5.1: ¢- and D-efficiencies (. and (p of the c-optimal &, D-optimal &j), and
equidistantly distributed conventional &.,, experimental designs for the
estimation of isothermal NRTL-7-parameters and use in the pinch-based
extraction process model.

Design & ‘ c-efficiency (. D-efficiency (p

c-optimal & 1 0.44
D-optimal &, 0.36 1
conventional &.opn 0.10 0.56

5.2.2 OED for estimating isothermal NRTL-7- and diffusion
parameters for a countercurrent rate-based extraction column
with HTU-NTU sizing

In the second case study, the same extraction of acetone from aqueous solution is
considered. However, in contrast to Case Study 1 (Section 5.2.1), a countercurrent
rate-based extraction model with HTU-NTU sizing based on the PhD thesis by Wolff
(2021) is used instead of a pinch-based process model. The countercurrent extraction
column assumes mass transfer of the solute only, following two-film theory with a
constant mass transfer coefficient and thermodynamic equilibrium at the interface.
In contrast to the pinch-based process models, sizing using the HTU-NTU method
(Chilton and Colburn, 1935; Sattler and Feindt, 1995) and costing (Biegler et al., 1997)
are included (see Appendix C.2.4 for detailed equations). Therefore, the final model
result is the total annualised cost, which should be determined as accurately as possible
using ¢-OED.

Consequently, the model needs both isothermal NRTL-7- and diffusion parameters
as property data. Therefore, the OED is extended to the selection of experiments for
several thermodynamic properties. The optimal experimental design not only yields
which LLE and diffusion experiments to perform but also balances the experimental
effort between LLE and diffusion experiments. Thus, the design vector of experiments &
includes the scalar measure o of LLE experiments and additionally the effort on
experiments for the diffusion coefficients of acetone in water Dw and acetone in
toluene Dr.
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The diffusion experiments are assumed to be performed in a closed diffusion cell
filled with equal volumes of two substances. The diffusion coefficients are derived from
concentration measurements using Fick’s second law. Here, measurements are assumed
at one position ¢ in the closed cell and at one dimensionless measurement time given
by the Fourier number Fo (Wolff et al., 2016). Therefore, the OED methodology
determines the optimal Fourier number Fo* and the optimal measurement position d*.
For the calculations, a standard deviation of oy, = 0.5 % is assumed in measuring the
phase compositions in the LLE experiments and the concentrations in the diffusion
experiments.

For the LLE experiments, c-optimal design selects the same three measurements with
the same relative distribution of experimental effort among the LLE experiments as the
OED for the pinch-based process model for extraction in Section 5.2.1 (cf. Figure 5.1).
Therefore, the dominating interactions for describing the minimum solvent demand
using the pinch-based process model are also most important for the countercurrent
rate-based extraction model. The selection of the same experimental settings is
reasonable since both process models use the same thermodynamic model describing
the liquid-liquid equilibrium as a basis for the solvent demand and cost calculations.
Therefore, a precise description of the extraction process is a prerequisite for accurate
cost calculation. Naturally, the D-optimal design equals the D-optimal design in
Section 5.2.1 if focusing only on the LLE experiments since the same thermodynamic
model describing the experiments is considered.

The diffusion experiments have the same optimal design using either ¢- or D-OED:
The most accurate estimation of diffusion coefficients is achieved at a Fourier number
Fo* = 0.1 and the measurement position 6* = 0, i.e. at the wall of the closed diffusion
cell. Moreover, the experimental effort is equally distributed between the diffusion
coefficients of acetone in water Dy and acetone in toluene Dt for both designs (cf.
Figure 5.2).

However, the designs differ strongly in the distribution of experimental effort between
LLE and diffusion experiments: The c-optimal design focuses 96 % of the total experi-
mental effort on LLE experiments and only 4 % on diffusion experiments. Therefore,
the property parameters describing the phase behaviour are 24 times more important
for accurate process simulation and costing than the parameters describing the diffusion.
In contrast, the D-optimal design places 25 % of the experimental effort on diffusion
experiments and yields a c-efficiency (P = 0.46 (Table 5.2). Compared to D-optimal
design in Case Study 1, the c-efficiency of the D-optimal design improves since the
D-optimal design selects the same optimal diffusion experiments as the c-optimal design.
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Figure 5.2: Experimental designs of LLE and diffusion experiments for the extraction
model using the HTU-NTU method.

The process simulation accuracy of the D-optimal experimental design increases more
from the optimal diffusion experiments than from the D-optimal LLE experiments
that are suboptimal in terms of process model accuracy. Still, the D-optimal design
doubles the experimental effort compared to the c-optimal design.

In terms of parameter accuracy, the limited experimental effort on diffusion ex-
periments in the c-optimal design results in low expected accuracy of the diffusion
coefficient estimation. As a result, the D-efficiency of the c-optimal design is only

b = 0.39.
D

For the conventional experimental design, 60 % of the experimental effort is manually
allocated to three equally weighted and distributed LLE experiments as in Section
5.2.1. The remaining 40 % of the experimental effort is equally distributed between
the two diffusion experiments. The optimal settings with Fo* = 0.1 and * = 0 are
assumed to be selected for each diffusion experiment in the conventional design, as
these settings have been disclosed in previous work (Wolff et al., 2016). As a result,
the conventional design yields c- and D-efficiencies of ({°" = 0.11 and (5" = 0.62.
Similarly to Case Study 1, the conventional design has a substantially lower c-efficiency
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than the D-optimal design but a comparable D-efficiency to the c-optimal design. Both
the c- and D-efficiencies of the conventional design increase by 10 % compared to Case
Study 1. Similar to the D-optimal design, the conventional design benefits from the
optimal diffusion experiments, which increases both the overall accuracy of parameter
estimation and process simulation results.

Table 5.2: ¢- and D-efficiencies (. and (p of the c-optimal &, D-optimal &f,, and
equidistantly distributed conventional &.., experimental designs estimation
of isothermal NRTL-7-and diffusion parameters and use in the countercur-
rent rate-based extraction process model.

Design & ‘ c-efficiency (. D-efficiency (p

c-optimal & 1 0.39
D-optimal &, 0.46 1
conventional &.opn 0.11 0.62

5.2.3 OED for estimating temperature-dependent
NRTL-7-parameters for a hybrid extraction-distillation process

As the third case study, the extraction process previously investigated in Section 5.2.1
and Section 5.2.2 is extended by a distillation column. First, acetone is extracted
from the aqueous solution using toluene before acetone is separated from the extract
using distillation. Both the extraction and distillation columns are modelled using a
pinch-based process model (Bausa et al., 1998; Redepenning et al., 2017). For this case
study, the key performance metric ¢ is the cradle-to-grave environmental impact on
Climate Change (CC) of the process that should be estimated as accurately as possible.
The environmental impact is calculated from the three life cycle stages for the solvent
toluene as described in Chapter 3. A c-optimal experimental design that minimises
only the uncertainty of the reboiler energy demand of the distillation column @, is
additionally provided with corresponding OED efficiencies in Appendix C.4.

Two isothermal and two temperature-dependent NRTL-7-parameters are estimated
for each binary interaction pair because of the temperature profile in the distillation
column. Therefore, in this case study, c-OED is used to determine at which tem-
peratures and concentrations LLE experiments should be performed to calculate the
environmental impact on Climate Change as accurately as possible. For the demon-
stration of the c-OED, the designed experiments are limited to LLE experiments. In
practice, however, the NRTL parameters should be estimated through liquid-liquid
-and vapour-liquid equilibrium experiments for higher accuracy (Forte et al., 2020). As
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in Section 5.2.1, the design space is limited to concentrations corresponding to a < 0.9
to ensure experimental feasibility and applicability of the NRTL-model, and now also
consider a temperature range of 10-80°C.

The experimental designs consist of a non-trivial combination of nine experimental
settings for the c-optimal and eight for the D-optimal design across the entire design
space (Figure 5.3). Both the ¢- and D-optimal experimental designs mainly focus
on the boundaries of the design space but avoid experiments at and near the binary
subsystem of solvent and carrier with o < 0.3 (Figure 5.3). At the boundaries, where
the temperature is high or near the critical point at high «, the thermodynamic model
is particularly sensitive to the property parameters reducing parameter uncertainty
more than in the centre of the design space. The binary subsystem is avoided for
all temperatures since both isothermal and temperature-dependent parameters are
more accurately estimated in the high-curvature region of the binodal curve (cf.
Section 5.2.1).
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Figure 5.3: Experimental designs of LLE experiments for the hybrid extraction-
distillation process. The size of the circles corresponds to the share of the
experimental effort. The grey box indicates the design space.
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The c-optimal design favours experiments at lower a than the D-optimal design
as already discovered in the isothermal case study (Section 5.2.1), e.g. the total
experimental effort spent in the c-optimal design for o < 0.6 equals 56 %. At low
a, the binary interactions between solvent and solute as well as carrier and solute
can be more accurately determined, which is crucial for a high process simulation
accuracy. In contrast, the D-optimal design places only 27 % of the total experimental
effort on measurements with a < 0.6. Similarly to the estimation of isothermal NRTL-
parameters, experiments at higher a are important for higher parameter precision.

To capture the temperature dependency accurately, the c-optimal design places a
large share of the experimental effort on experiments with higher temperatures: 73 % of
the total experimental effort is spent for temperatures higher than 60 °C. The focus on
higher temperatures in the c-optimal design can be explained by the temperature glide
from the condenser (Tionq = 74°C) to the reboiler (Tye, = 110°C) in the distillation
column. For an accurate description of distillation and corresponding environmental
impacts, capturing the temperature dependence of the NRTL parameters is important,
and at higher temperatures, the temperature-dependent parameters are more sensitive
to the measurements.

The D-optimal design only allocates 43 % of the experimental effort for temperatures
higher than 60 °C to balance the estimation of isothermal and temperature-dependent
NRTL-parameters resulting in a c-efficiency of (P = 0.63 (Table 5.3). Compared to
the D-optimal design for isothermal NRTL-parameters in Section 5.2.1, the c-efficiency
of the D-optimal design increases by 75%. Therefore, for the hybrid extraction-
distillation process, parameter precision is generally more important for accurate
process simulation than for the extraction only. As a result, parameter precision as
measured by the D-efficiency also increases to (f) = 0.65 for the c-optimal design by
about 48 % compared to the c-optimal design for isothermal NRTL-parameters.

For the conventional design, equally distributed experimental effort on eight experi-
mental settings across the design space is assumed (Figure 5.3). As in the first case
study (Section 5.2.1), the optimal experimental designs significantly outperform the
conventional design in both process simulation and parameter accuracy (¢°" = 0.32
and (5" = 0.55, Table 5.3) emphasising the benefits of OED. In particular, the
c-optimal experimental design is predicted to reduce experimental effort by 68 % com-
pared to the conventional design for the same process simulation accuracy. Therefore,
manually distributing the experimental effort across a large design space is particularly
inefficient for subsequent use of the property parameters in a process simulation.
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Table 5.3: c- and D-efficiencies (. and (p of the c-optimal &, D-optimal &f,, and
equidistantly distributed conventional &.,, experimental designs for the
estimation of temperature-dependent NRTL-7-parameters and use in the
pinch-based hybrid extraction-distillation process model.

Design & ‘ c-efficiency (. D-efficiency (p

c-optimal & 1 0.65
D-optimal &j, 0.63 1
conventional &.opn 0.32 0.55

5.3 Discussion: Uncertainties resulting from the

experimental designs

In this section, the predictions from OED theory are challenged by Monte Carlo
analysis for the pinch-based process models of extraction and hybrid extraction-
distillation since these two case studies exhibit the minimum and maximum difference
in c-efficiencies reported in this chapter. In c-OED theory, the standard deviation
of the process simulation result is predicted assuming linear variance propagation.
However, process models are usually highly non-linear. Therefore, assuming linear
variance propagation from experiments through parameter estimation and process
model only approximates the actual variance propagation. Here, the uncertainty from
linear variance propagation in c-OED is compared with propagation from uncertain
experimental measurements using a Monte Carlo approach. For this purpose, LLE
experiments are simulated by calculating phase compositions using the initial property
parameters (see Appendix C.2) and adding normally distributed noise to account
for measurement errors. Afterwards, property parameters are estimated from the
simulated experiments and run the process simulation using the estimated parameters
to obtain the actual process model uncertainty. In detail, the following five-step
procedure is applied (Figure 5.4):

1. Design optimal experiments: First, exact c- and D-optimal designs are calculated

for a predefined number of experiments using a non-sequential algorithm (Wynn,
1972). Since the resulting exact designs depend on the initialisation of the
algorithm, the algorithm is run repeatedly from random starting points to aim
for a globally optimal solution. Additionally, a conventional design is created,
which equidistantly distributes the same number of experiments across the design
space.
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84

2. Simulate experiments: From the initial property parameters and the thermody-

namic model of the LLE experiments, the phase compositions are calculated
that result from the experimental designs of Step 1. For this purpose, it is
assumed that the initial property parameters lead to the true phase compositions.
Subsequently, measurement errors are added to the true phase compositions
by sampling from a Gauss distribution with a mean of zero and a standard
deviation corresponding to typical uncertainty for phase compositions in LLE
measurements published in the literature. The typical standard deviation for
measuring molar fractions oy, ranges between 0.001 (Nagata, 1984, 1987) and
0.005 (Dechambre et al., 2014a; Thien et al., 2017, 2020), depending on the
measurement method. In this work, a standard deviation oy, = 0.005 is chosen,
as higher uncertainties are more challenging for the experimental design method-
ology because of the assumption of locally optimal designs. For comparison,
Monte Carlo analyses were also performed for o, = 0.001 and o, = 0.01, which
can be found in Appendix C.3.

. Estimate property parameters: From the simulated experiments, the property

parameters are estimated by fitting the thermodynamic model of the LLE
experiments. For this purpose, the MATLAB solver Isqcurvefit (The MathWorks
Inc., 2019) is used, considering 10 starting points for each fit to aim for a globally
optimal solution. The direct use of global optimisation methods as proposed by
Mitsos et al. (2009) would be a promising extension for future work.

. Calculate process simulation: The estimated property parameters are used as

input for the process simulation to obtain the actual propagation of the estimated
property parameters on the process simulation result.

. Calculate uncertainty of process simulation: Steps 2-4 are repeated until 1000

process simulation results are obtained for each experimental design. From
the 1000 simulation results, the root-mean-square error (RMSE) is calculated
between the simulation results of the estimated parameters from the Monte Carlo
analysis and the simulation result of initial parameters for each design. The
RMSE of the Monte Carlo samples is compared to the expected uncertainty from
linear error propagation given by the standard deviation of OED theory. Both
the RMSE and the standard deviation are normalised by the actual value of the
process simulation result to allow for relative comparisons.
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Figure 5.4: Procedure to determine the uncertainties of the process simulation results
for each experimental design.

5.3.1 Accuracy of the extraction process simulation

The accuracy of the extraction process simulation depending on the experimental design
is investigated by estimating the six isothermal NRTL-7-Parameters of the ternary
system for 5, 7, 10, 15 and 20 LLE experiments as an example. The uncertainty of the
process simulation is measured by computing the relative RMSE of the minimum solvent
demand resulting from the pinch-based process model. Generally, the uncertainty
of the process simulation results is low, with a relative RMSE of 2-6 % (Figure 5.5).
Therefore, a small number of experiments, e.g. 5 to 10, is already sufficient for an
accurate description of the extraction process.

The predictions from linear variance propagation using the c-optimal objective func-
tion (hatched bars) and Monte Carlo analysis (full bars) agree well for each design. The
c-optimal objective function successfully predicts qualitatively and quantitatively the
uncertainties of the simulation results: For the investigated numbers of experiments, the
c-optimal design yields the lowest uncertainty in the Monte Carlo analysis as predicted,
followed by the conventional and the D-optimal design. For each experimental design,
the relative RMSE decreases monotonically with an increasing number of experiments,
as expected from OED theory (cf. Equation 5.1). Thus, for the simulation of the
extraction process, Monte Carlo analysis confirms the benefits promised by c-OED
theory on simulation accuracy.

Notably, the exact conventional designs with 5-20 experiments yield c-efficiencies
between 0.43 and 0.46 and thus, exceed the c-efficiencies of the continuous conventional
designs with only three distinct experimental settings (cf. Section 5.2.1). Therefore,
the exact conventional designs outperform the exact D-optimal designs in simulation
accuracy for this example. The differences in c-efficiency compared to Section 5.2.1
result from the differences between continuous and exact conventional designs and are
correctly reflected by the c-optimal objective function.
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Figure 5.5: Uncertainties of the solvent demand in the extraction process for c-optimal,
D-optimal, and equidistantly distributed conventional experimental designs.
The full bars are the relative RMSE from the Monte Carlo sampling; the
hatched bars are the expected relative standard deviation from OED theory.

5.3.2 Accuracy of the hybrid extraction-distillation process simulation

For the hybrid extraction-distillation process, the six isothermal and six temperature-
dependent NRTL-7-parameters of the ternary system are estimated by performing 20,
25, 30, 40 or 50 experiments. More experiments are chosen than for the extraction
process to capture the temperature dependence with additional parameters. The
uncertainty of the process model is measured by the relative RMSE of the cradle-to-
grave environmental impact on Climate Change (CC) resulting from the process.

The relative RMSE of the simulation result range between 12-19 % for the Monte
Carlo analysis (full bars, Figure 5.6) and are thus about one order of magnitude higher
for the hybrid extraction-distillation with temperature-dependent NRTL-parameters
compared to the extraction with isothermal NRTL-parameter. Qualitatively, the
results from the Monte Carlo analysis agree with the ranking obtained from OED
theory: The c-optimal design provides the lowest uncertainty in process simulation
results, followed by the D-optimal and the conventional design. However, the results
from the Monte Carlo analysis deviate quantitatively from OED theory: For the
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investigated c-optimal designs, the OED theory underestimates the actual uncertainty
of process simulation results by up to 50 % of the predicted uncertainty. In contrast,
for the investigated conventional designs, the OED theory overestimates the actual
uncertainty of the process simulation results by up to 58 % of the actual uncertainty.
The predictions for the D-optimal designs match well with the Monte Carlo analysis
for 20 and 25 experiments. For 30, 40 and 50 experiments, however, the accuracy for
the D-optimal designs is increasingly overestimated by up to 27 % of the predicted
uncertainty. The results indicate that the assumption of linear error propagation
is limited. The improvements predicted by linear variance propagation for c-OED
cannot always be achieved. However, c-OED still proves to provide the most accurate
simulation results.

In contrast to the c-optimal design, the relative RMSE of the D-optimal design
from the Monte Carlo sampling is not always underestimated by OED theory. For
fewer experiments, i.e. 20 experiments, the uncertainty in the Monte Carlo analysis
resulting from the D-optimal design is predicted by OED theory. Therefore, the
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Figure 5.6: Uncertainties of the environmental impact on Climate Change in the hybrid
extraction-distillation process for c-optimal, D-optimal, and equidistantly
distributed conventional experimental designs. The full bars are the relative
RMSE from the Monte Carlo sampling; the hatched bars are the expected
relative standard deviation from OED theory.
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accuracy improvement of the c-optimal design decreases compared to the D-optimal
design and eventually disappears for the hybrid extraction-distillation process if only a
minimum number of experiments is performed (cf. analysis in Appendix C.3.4). Thus,
for a small number of experiments, an improvement in simulation accuracy cannot be
guaranteed by c-OED.

For these experiments, the accuracy increase in the process simulation through
c¢-OED is counterbalanced by the impact of inaccurate property parameters. The
property parameter accuracy of c-OED is lower since overall parameter precision is not
the goal of c-OED. Thus, the parameters from c-optimal experiments are more prone
to measurement uncertainties and more strongly affected by inaccurate measurements
for a small number of experiments.

However, if the number of experiments is increased beyond the minimal number,
c-optimal design outperforms the D-optimal and conventional designs. The c-optimal
design monotonically decreases simulation uncertainty, which is not guaranteed for
the D-optimal and conventional designs. For higher uncertainties in mole fraction
measurements, e.g. oy, = 0.01, the same qualitative trend can be observed (see analysis

in Appendix C.3.4).

In conclusion, the property parameters should be tailored for use in a process
simulation, but the overall parameter accuracy cannot always be ignored to obtain
accurate and robust simulation results. Since the parameters estimated from c-OED
are tailored to a specific process, these parameters are not optimal for every purpose.
If the parameters are not only used for process simulation but also for, e.g. gaining
thermodynamic insights, the OED objective needs to be adapted.

A single OED optimality criterion rarely leads to optimal parameters for all purposes
since the individual OED objectives conflict with each other. For the hybrid extraction-
distillation process, e.g. c¢- and D-efficiency form a well-defined Pareto frontier (Figure
5.7). Neither c-efficiency nor D-efficiency of an optimal multi-objective design can be
improved without deteriorating the efficiency of the other objective. Therefore, a multi-
objective design needs a carefully balanced optimality criterion. However, the Pareto
frontier shows good trade-off solutions: c-efficiency for accurate process simulations can
be substantially increased with small losses to the D-efficiency representing parameter
accuracy. E.g. a trade-off point minimising the distance to the utopia point (A =
(2% = 1) retains a D-efficiency of (¢ = 0.90 while increasing c-efficiency from ¢ = 0.6
to ¢t° = 0.91. The study of such trade-offs could be a valuable use of the introduced
c-efficiency concept.
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Figure 5.7: Pareto frontier between c- and D-efficiency for parameter estimation of the
hybrid extraction-distillation process. The orange circle marks the trade-off
solution with minimum distance from the utopia point (¢(A° = (™° = 1).

In future work, the parameter precision of the c-optimal design can further be
considered towards more robust designs for parameter estimation, e.g. by compound
design (Fedorov and Leonov, 2014) such as combined c- and D-optimal design (Atkinson
and Bogacka, 2002), or by introducing a minimum D-efficiency as a constraint within
the optimisation (Holland-Letz et al., 2018; Holland-Letz and Kopp-Schneider, 2018).
Methods from the area of robust experimental design can also be explored to strengthen
the c-optimal design for reliable improvement of simulation accuracy, e.g. by considering
the most inaccurate process simulation as objective for OED (Rojas et al., 2007).

5.4 Conclusion

In this chapter, c-optimal experimental design (c-OED) was introduced as a method
of optimal experimental design for chemical engineering problems. ¢-OED minimises
the uncertainty of the process simulation result instead of parameter precision as
the design objective. Thus, c-OED considers the application of estimated property
parameters in a process simulation already during the design of experiments and
links the experiments at the property level with the application and system level. To
estimate the uncertainty of the process simulation results, c-OED uses linear variance
propagation from uncertain property parameters through the process model.
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c¢-OED is demonstrated for estimating isothermal and temperature-dependent NRTL-
parameters from liquid-liquid equilibrium experiments for an extraction column and a
hybrid extraction-distillation process modelled by pinch-based process models. The
LLE experiments are designed to minimise the uncertainty of the main thermody-
namic and environmental performance measures: the minimum solvent demand of the
extraction and the minimum environmental impact on Climate Change of the hybrid
extraction-distillation process. Moreover, for a rate-based extraction column sized by
the HTU-NTU method, liquid-liquid equilibrium and closed-cell diffusion experiments
are simultaneously designed to minimise the uncertainty of the total annualised cost
of the extraction column.

The application of c-OED for chemical processes shows that considering the sen-
sitivity of the process within OED highly impacts the selection of experiments for
property parameter estimation. c-OED yields non-trivial experimental designs that
outperform state-of-the-art OED in accuracy of process simulation results. The c-
optimal experiments focus on the accurate estimation of parameters most relevant for
accurate process simulations. The prioritisation of experiments for specific parameters
is particularly evident in the simultaneous design of LLE and diffusion experiments:
The major experimental effort of the c-optimal design for the rate-based extraction
column is spent on LLE instead of diffusion experiments.

Compared to state-of-the-art OED, ¢-OED reduces the experimental effort by up to
64 % for the same accuracy in the case studies. Conventionally designed experiments
without using OED would increase the experimental effort compared to c-OED by up
to a factor of 10, highlighting the need for (c¢)-OED.

The predictions on accuracy from c-OED theory are examined by Monte Carlo
Analysis to challenge the linear approximation of variance propagation. Generally, the
OED predictions agree well with the results from Monte Carlo Analysis, and thus,
the assumption of linear variance propagation is a good approximation of the actual
variance propagation. In the case studies, process simulation accuracy significantly
increases through c-OED. The uncertainty of process model results decreases by 30—
40 % for an extraction process and by 2-20 % for a hybrid extraction-distillation process
compared to conventional experimental designs and state-of-the-art OED that does not
consider the process. Therefore, c-OED increases accuracy even for highly non-linear
process models and is thus successfully shown to tailor experiments for thermodynamic
properties to process simulations.

For future work, the focus should be directed to strengthening the robustness of
the c-optimal design, e.g. by compound design (Fedorov and Leonov, 2014). The
predictions from ¢-OED theory can fail due to overall inaccurate property parameters
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if too few experiments are considered. The c-optimal experimental designs increase
the accuracy of process simulations at the expense of other OED efficiencies, e.g.
D-efficiency for parameter accuracy. However, efficient trade-off solutions can be
identified balancing process simulation and parameter accuracy. Balanced compound
or multi-objective designs allow identifying such trade-off solutions.

Considering multiple operating points of the process simulation instead of only one
operating point, e.g. by L- or Dy-optimality (Atkinson et al., 2006; Holland-Letz and
Kopp-Schneider, 2018), could extend the accuracy increase by ¢c-OED for a broader
simulation range of the process model. For an extension from process simulation to
process optimisation and design, the sensitivities of the optimal process variables to
the uncertain property parameters need to be considered. For example, the first-order
derivatives of optimised process simulation outputs with respect to property parameters
could be integrated into c-OED. Ultimately, this approach would formally transform
the idea of c-OED into the method of weighted A-optimality presented by Houska
et al. (2015).

Moreover, in practice, the initial parameter guesses rarely match the optimal pa-
rameters. Thus, an iterative procedure is usually required (Mukkula et al., 2021) that
involves not only OED but also parameter fitting, validation and consistency tests.
Therefore, future work should investigate the influence of initial property parameters
on the benefits of c-optimal design.

In the broader context of CAMPD, ¢c-OED can provide an efficient way to generate
experimental data for validation and accuracy increase, which is discussed in more
detail in Chapter 7.
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CHAPTER 6

Molecular design of spark-ignition fuels
for maximum engine efficiency

Molecules are not only key for a sustainable chemical industry due to their influence
on process design as processing chemicals but also as chemical products. In contrast
to the computer-aided design of processing chemicals, computer-aided product design
(CAPD) is still usually performed by screening the physico-chemical properties of
candidate products for property targets instead of directly assessing a performance
metric of the application. To demonstrate targeted model-based design of chemical
products through a model of the application, this chapter presents a method for the
design of fuels for spark-ignition engines that incorporates an empirical model of engine
efficiency as the objective function.

The chapter begins with a brief introduction to state-of-the-art fuel design as a
special case of product design (Section 6.1). In Section 6.2, the details of the fuel
design method are explained. The models and methods are outlined for the prediction
of properties describing combustion (Section 6.2.1), thermodynamics (Section 6.2.2),
and environmental impacts and synthesisability (Section 6.2.3). The merit function
calculating the expected engine efficiency increase is described in Section 6.2.4. Section
6.2.5 explains the constraints applied to the fuel design for spark-ignition engines.
In Section 6.3, the fuel design method is applied to the design of pure-component
fuels (Section 6.3.1) and the design of binary blends with ethanol (Section 6.3.2). The
chapter is summarised and concluded with a brief outlook on future research in the
area of fuel design in Section 6.4.

Major parts of this chapter are reproduced by permission of the American Chemical Society from:

Fleitmann, L.; Ackermann, P.; Schilling, J.; Kleinekorte, J.; Rittig, J.G.; vom Lehn, F.; Schweidtmann,
A.M.; Pitsch, H.; Leonhard, K.; Mitsos, A.; Bardow, A. and Dahmen, M. (2023). Molecular design
of spark-ignition fuels for maximum engine efficiency by combining predictive thermodynamics
and machine learning. Energy € Fuels, 37(3), 2213-2229.

The author of this thesis developed the fuel design method and integrated the individual property
prediction methods. The author investigated and validated the design results with respect to the
CAPD methodology. The author wrote the first draft of the paper jointly with PA.
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Chapter 6 Molecular design of spark-ignition fuels for maximum engine efficiency

6.1 Fuel design as a special case of product design

To date, fuels are usually designed for physico-chemical property targets as surrogate
measures rather than the expected engine efficiency itself (Konig et al., 2020b). Some
studies on fuel design rely on database screenings using experimental data rather
than models for property prediction: McCormick et al. (2017) screened a database of
approximately 500 potential biomass-based blendstocks and blends to identify feasible
gasoline blends. To assess the candidates, experimental data was collected from various
databases for physico-chemical properties, environment, health and safety indicators,
and corrosivity. Similarly, Fioroni et al. (2019) screened a database for potential
diesel blendstocks based on thermodynamic properties and cetane numbers. Using
the database created by Fioroni et al. (2019), Huo et al. (2019) and Huq et al. (2019)
evaluated chemo-catalytic conversion pathways from potential bio-based platform
chemicals to hydrocarbons targeting physico-chemical and combustion properties.
Recently, Kuzhagaliyeva et al. (2022) published a data-driven framework to design
gasoline blends with tailored properties from a database of fuel molecules.

To expand the molecular design space beyond molecules contained in databases,
generate-and-test approaches have been developed. The idea of generate-and-test
CAPD is to create candidate structures first and assess their fuel properties subsequently
by predictive models. Hechinger (2014) employed the structure generator MOLGEN
(Gugisch et al., 2015) and dedicated Quantitative Structure-Property Relation (QSPR)
models to predict physico-chemical properties. The combustion performance was not
included in the screening but was assessed manually a posteriori because of limited
training data (Hechinger et al., 2012). Dahmen and Marquardt (2016) later extended
the generate-and-test approach by a group contribution method for the derived cetane
number (Dahmen and Marquardt, 2015) to include combustion behaviour. The authors
tailored the structure generation to model catalytic refunctionalisation of platform
chemicals derived from lignocellulosic biomass. This approach yields a list of candidate
fuels that meet a range of fuel properties associated with high engine efficiency and
high synthesisability (Dahmen and Marquardt, 2016). Recently, Rittig et al. (2022)
employed generative graph machine learning models to design molecules with maximum
research octane number and octane sensitivity.

Since generate-and-test approaches enumerate candidate fuels, numerous evaluations
of candidate fuels are required. For a more targeted exploration of the molecular design
space, optimisation-based fuel design has been developed based on the general mathe-
matical product design problem by Gani (2004). The optimisation-based approach
was first applied to determine the composition of biofuel blends of pre-selected blend
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components respecting fuel standards (Kashinath et al., 2012; Hashim et al., 2017)
and was later extended to arbitrary components using a decomposed optimisation
strategy (Yunus et al., 2014). The integrated design of the molecular structures and
their optimal composition in a blend was finally achieved by formulating and solving
the blend design problem as a mixed integer non-linear programme based on functional
groups as molecular building blocks (Zhang et al., 2018a; Kalakul et al., 2018; Liu
et al., 2019c¢).

Optimisation-based fuel design has attracted particular attention in combination
with the selection of optimal conversion routes. Marvin et al. (2013) used a rule-based
reaction network generator to generate possible gasoline fuel components and their
production pathways. Based on the reaction network, gasoline blends are optimised
with respect to production process performance constrained by fuel blend properties.
In contrast, Ng et al. (2015a) designed bio-based fuel blends by first optimising the
properties of a blend and subsequently solving a superstructure optimisation problem
for an integrated biorefinery. Dahmen and Marquardt (2017) combined blend design
with mass-based screening of processing pathways using experimental yields to obtain
renewable fuel blends maximising resource efficiency. The method was extended by
early-stage process design using process network flux analysis, allowing the minimisation
of production cost and global warming impact of the designed fuel blend (Konig et al.,
2020a). Subsequent engine testing of selected blends (Dahmen and Marquardt, 2017;
Konig et al., 2021) has confirmed the superior engine performance compared to fossil
gasoline (Burkardt et al., 2021; Ackermann et al., 2021).

The studies mentioned above successfully identified promising molecules based on a
list of target properties. However, such a fuel design does not consider the combined
effect that these properties exert on engine performance. To date, no method has been
proposed that explicitly designs fuels for maximum engine efficiency.

To consider engine efficiency as an explicit design objective, an engine model is
required that predicts engine efficiency based on the fuel’s physico-chemical properties.
Recently, two models for spark-ignition (SI) engines were presented in the literature: (1)
a zero-dimensional engine model (Gschwend et al., 2017) and (2) the engine efficiency
merit function (Farrell et al., 2018; Szybist et al., 2021).

The zero-dimensional engine model was developed to calculate a fuel’s maximum
engine efficiency considering knock limitation and has already been coupled with
reaction network analysis to find the optimal upgrading of lignin pyrolysis oil (Gschwend
et al., 2018). Moreover, the model has been applied to a detailed performance evaluation
of fifty pre-selected fuel candidates (Gschwend et al., 2019).
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The engine efficiency merit function is a correlation that predicts the relative
engine efficiency increase compared to a base fuel, i.e. RON95 gasoline, based on fuel
properties, such as research octane number, octane sensitivity, and heat of vaporisation.
vom Lehn et al. (2021b) and Li et al. (2022) have used the merit function to rank
candidate fuels within database screenings. However, the screening studies are limited
to the existing database molecules and cannot discover novel molecular structures.

6.2 Fuel design method

The fuel design method uses molecular optimisation to maximise the predicted achiev-
able engine efficiency increase of a fuel combusted in dedicated spark-ignition engines.
Various constraints are imposed to design efficient and safe fuels. Specifically, thermo-
dynamic and combustion properties are predicted as well as environmental, health,
and safety (EHS) indicators and synthesisability.

For thermodynamic properties, established models from the literature use group
contribution (GC; Gani, 2019) or quantum chemistry-based methods (Gertig et al.,
2020a), e.g. COSMO-RS (Klamt et al., 2010). GC methods have also been applied to
predict EHS indicators of chemicals (Hukkerikar et al., 2012a). Recently, advanced
machine learning-based methods, e.g. deep learning and Bayesian regression, have
progressed rapidly in the field of molecular property prediction (Walters and Barzilay,
2021). Therefore, the fuel design method is based on a hybrid approach for property
prediction: Thermodynamic properties are predicted using quantum chemistry-based
COSMO-RS, and combustion and EHS properties as well as synthesisability are
predicted using machine learning-based models.

Based on the predicted properties, each candidate fuel is evaluated with the engine
efficiency merit function. Both the property prediction and the evaluation of the objec-
tive function and constraints are integrated into a molecular optimisation framework

that is based on COSMO-CAMD (Scheffczyk et al., 2017b; cf. Section 3.1.1).

The fuel design method involves five steps for property prediction and candidate
evaluation in each generation of the genetic optimisation (Figure 6.1):

1. Prediction of combustion properties

2. Prediction of thermodynamic properties

3. Prediction of EHS indicators and synthesisability
4. Objective function evaluation
5

. Constraints evaluation
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6.2 Fuel design method

Based on the fitness values of the current generation of molecules, a next generation is
created through the genetic operations crossover and mutation. The method proceeds
to systematically explore the molecular design space until a pre-defined maximum
number of generations is met.

In the following subsections, each step in the fuel design method is briefly explained.
Details on the used soft- and hardware are included in Appendix D.1. Appendix
D.2 contains the molecular fragments, which are specified as building blocks for the
genetic algorithm. In this work, fragments are included to design oxygenated and
non-oxygenated hydrocarbons.

Start

Generation of molecular structures

LEA3D
@ Combustion @ Thermodynamic @ EHS indicators

by properties properties & synthesisability

c

o ) GC-based . GC-based Molecular

® Graph-NN ANN COSMO-RS GPR Transformer

(]

c Ah Tox

<] vap

é Egm LBV ARy Ty uysi Synth.

Objective function: engine efficiency Constraints
max f(RON, MON, LBV, Ahy,p,) s.t. k(Typoi, Tox, uYSI, Synth.,...) <0

Ranking

of candidate fuels

Figure 6.1: Fuel design method for maximum engine efficiency considering constraints
on environment, health, and safety hazards, as well as synthesisability.
For molecular optimisation of candidate fuels, property prediction and
performance assessment are integrated into the genetic algorithm LEA3D in
five steps (1-5): prediction of combustion (1) and thermodynamic properties
(2), and environment, health, and safety indicators including synthesisability
(3), evaluation of objective function f (4) and constraints k (5).
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6.2.1 Combustion properties

Combustion properties that substantially influence SI engine efficiency are the Research
and the Motor Octane Numbers (RON and MON) as well as the Laminar Burning
Velocity (LBV) (Szybist et al., 2021). RON and MON are predicted with the Graph
Neural Network (GNN) developed by Schweidtmann et al. (2020) that was trained
by simultaneous, so-called multi-task learning on training data of RON, MON, and
derived cetane number (DCN) of oxygenated and non-oxygenated hydrocarbons. By
multi-task learning, a higher prediction accuracy is achieved compared to the accuracy
of single-task learning of the individual properties. Moreover, the GNN directly uses the
molecular graph as feature and thus eliminates the need for manual feature selection.

The LBV is predicted with a Group Contribution (GC) based Artificial Neural
Network (ANN) by vom Lehn et al. (2021a). Following the idea of group contributions
(Gani, 2019), the GC-based ANN uses the number of structural groups in a molecule
as input features. For this purpose, molecules are divided into the structural groups
originally proposed by Joback and Reid (1987). The LBV not only depends on the
molecular structure but also on combustion parameters, i.e. temperature, pressure,
and the fuel-air equivalence ratio, which are therefore additional inputs to the ANN. As
suggested by Farrell et al. (2018), the LBV is evaluated for a stoichiometric mixture at
ambient pressure and 358 K. It should be noted that these conditions differ from typical
engine conditions. However, as Szybist et al. (2021) point out, LBV measurements at
engine relevant conditions are associated with high uncertainties.

6.2.2 Thermodynamic properties

Thermodynamic properties are predicted with COSMO-RS on TZVP-MF level (Klamt
et al., 2010; cf. Section 3.1.1). For the fuel design, COSMO-RS predicts boiling/bubble
points and enthalpies of vaporisation of pure components and mixtures. Furthermore,
melting points of pure components are available via a random forest-based QSPR
model trained on structural molecular information and the o-moment descriptors from
COSMO-RS by Loschen and Klamt (2016). For fuel blends, COSMO-RS additionally
calculates liquid-liquid-equilibria to estimate immiscibility and phase segregation.
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6.2 Fuel design method

6.2.3 Environment, health, and safety indicators & synthesisability

In addition to technical performance and technical feasibility, the candidate fuel needs
to be assessed with regard to practical constraints as an optimally designed fuel should
allow for safe handling and minimum hazards to environment and health (Ackermann
et al., 2021). Furthermore, some in-silico designed molecules are challenging or
impossible to synthesise in practice (Gao and Coley, 2020). Therefore, the prediction
of Environment, Health, and Safety (EHS) indicators and synthesisability is included
to design non-hazardous and attainable fuels.

EHS properties: Alshehri et al. (2021) recently presented models for predicting
various EHS indicators of pure components using Group Contribution (GC) based
Gaussian Process Regression (GPR). A similar approach was presented by Li et al.
(2021) for the prediction of sooting tendencies. Similar to Alshehri et al. (2021) and Li
et al. (2021), the following EHS indicators are considered for the fuel design through
GC-based GPR prediction as constraints:

e Autoignition Temperature (AiT; American Society for Testing and Materials,
2000)

e Bioconcentration Factor (BCF; Arnot and Gobas, 2006)

e aqueous toxicity as Lethal Concentration for Fathead Minnow fish (LCso(FM);
Ankley and Villeneuve, 2006)

e oral toxicity as Lethal Dose for rats (LDso; Walum, 1998)

e Permissible Exposure Limit using the OSHA time-weighted average (PELosna-Twa;
Spear and Selvin, 1989)

e chemical tendency to form soot expressed through the unified yield sooting index
(uYSI; Das et al., 2018)

For integration in the fuel design method, the models by Alshehri et al. (2021) for
AiT, BCF, LC50(FM), LDs5g, and PELosga.Twa are re-trained using UNIFAC groups
as descriptors and the training and test data from Alshehri et al. (2021). The uYSI
model is developed using the data from McEnally et al. (2017). Noteworthy, the uYSI
does not predict engine-out soot emissions but rather the chemical tendency of a fuel
to form soot. A more practical measure for engine-out soot emissions would be the
Particulate Matter Index (PMI) Aikawa et al. (2010), where the number of double-bond
equivalents as a proxy for the chemical tendency to form soot is divided by the vapour
pressure as a measure for in-cylinder mixture formation quality. However, the different
oxygenate functionalities of alternative fuels are differently effective in reducing soot
formation (Westbrook et al., 2006). Accordingly, comparing different soot indices,
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Leach et al. (2021) found that the correlation between the number of double-bond
equivalents and (u)YSI is stronger for hydrocarbon fuels than for oxygenated fuels.
Unfortunately, no model is available for predicting nano soot number density, which is
becoming more important in regulations (Samaras et al., 2020).

For the set-up and accuracy assessment of the models, the training data for each
model is split into a set for training and testing (Goodfellow et al., 2016). The test set
contains approximately 10 % of the training data and is not used within the training to
assess the accuracy of the model on unseen data. The data is split so that the statistical
distribution of the features in the test and training sets are similar (Goodfellow et al.,
2016). A test set with a statistical distribution similar to the training set represents
the model domain well and thus reflects model performance across the whole domain
rather than just in a particular region. For this purpose, 10000 random splits are
performed and the split with the lowest Kullback-Leibler divergence (Kullback and
Leibler, 1951) is chosen, indicating the most similar and uniform statistical distribution
between the training and test sets.

The models are set up by fragmenting the molecules contained in the training
data into UNIFAC groups using the automated fragmentation tool by Miiller (2019).
The kernels for the GPR of each model are selected by employing the automated
kernel-search algorithm developed by Duvenaud et al. (2013), Duvenaud (2014), and
Lloyd et al. (2014).

The models achieve an accuracy comparable to the models in the literature (Hukkerikar
et al., 2012a; Alshehri et al., 2021; see Table 6.1). The accuracy of the predictions
on the test sets measured by the coefficient of determination (R?) equals on average
R? = 0.73. The corresponding Root-Mean-Square Error normalised by the range of
values (nRMSE) is nRMSE = 8.5%. Parity plots of predicted and target values of
the test sets visualising prediction accuracy can be found in Appendix D.3.

Synthesisability: By assembling molecular fragments, the LEA3D algorithm gener-
ates molecules that always satisfy chemical feasibility, i.e. the octet rule. However, a
chemically feasible molecule is not necessarily similar to known molecules and may
therefore be technologically challenging to obtain, i.e. hardly synthesisable or only
synthesisable with considerable effort via numerous synthesis steps.

The synthesisability of candidate molecules can be assessed through retrosynthesis
algorithms (Gao and Coley, 2020). Retrosynthesis algorithms generate synthesis routes
for a given product and thus allow an investigation into whether and how a chemical
can be synthesised. Various retrosynthesis models have been developed in the past (Sun
and Sahinidis, 2022). For the fuel design algorithm, the graph exploration algorithm
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developed by Schwaller et al. (2020) is employed for retrosynthesis. The algorithm
is based on the molecular transformer, a multi-head attention-based neural network
model for forward synthesis prediction with high accuracy (Schwaller et al., 2019).

In this work, a fuel is considered synthesisable if a maximum of three subsequent
reactions are required from commercially available reactants to the desired fuel. Oth-
erwise, the synthesis route is deemed too costly to be viable. Moreover, the confidence
of the retrosynthesis algorithm in the synthesis route has to be greater than 50 %.

Notably, this definition of synthesisability discards candidate fuels for which efficient
synthesis routes are likely to be currently unknown and thus can be classified as hypo-
thetical or technologically unattainable molecules. This assessment of synthesisability
does not ensure that the synthesisable molecules can be produced in large quantities,
at low cost, or from renewable resources, which should also be a design target for a
novel fuel but cannot yet be predicted.

Table 6.1: Data set sizes Nrvin and Nt and prediction accuracies on the test sets
of the EHS indicators using group contribution-based GPR models for the
categories autoignition temperature (AiT'), bioconcentration factor (BCF),
aqueous toxicity of fathead minnow fish (LCjo(FM)), oral rat toxicity
(LDso), permissible exposure limit (PELosga.Twa ), and unified yield sooting
index (uYSI). The accuracy is measured by the coefficient of determination
(R?), the root-mean-square error (RMSE), and the root-mean-square error
normalised by the range of values (nRMSE).

EHS indicator Nevain  Nrest Rz RMSEe; nRMSE;e
AT 487 54 0.78 58 K 6.4 %
log (BCF) 366 41 0.78 0.69 11%
—log (LCso(FM)) 490 54 0.66 0.75 8.6 %
—log (L Dsp) 2157 240  0.58 0.40 9.1 %
—log (PELosua.-twa) 346 38 0.60 1.1 13%
uY ST 397 44 0.99 39 2.9%
average performance - - 0.73 - 8.5%
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6.2.4 Engine efficiency merit function as objective function

Various fuel properties can have a positive impact on achievable SI engine efficiency,
including RON, MON, Ahy,,, and LBV (Farrell et al., 2018; Szybist et al., 2021).
Alternative fuels can exhibit favourable values in one or more of these properties. To
evaluate the potential of an alternative fuel candidate for use in advanced highly-
boosted SI engines, the impact of these fuel properties on engine efficiency has been
empirically quantified through experimental sensitivity analyses under stoichiometric
boosted combustion conditions, resulting in the so-called engine efficiency merit function
(Farrell et al., 2018; Szybist et al., 2021). The merit function linearly correlates the
fuel properties with the achievable improvement in maximum brake thermal engine
efficiency (1) compared to a reference fuel, e.g. RON95 gasoline. For example, assuming
an engine efficiency of 30 % with RON95 gasoline, a merit value of 16 % leads to an
absolute engine efficiency increase of 4.8 %. Efficiency increases in this range have
already been achieved in single-cylinder research engines (Hoppe et al., 2016b; Burkardt
et al., 2021; Ackermann et al., 2021).

Using the merit function, the expected relative engine efficiency increase of a
candidate fuel is calculated based on RON, MON, Ah,,,, and LBV compared to
RON95 gasoline:

merit 1 — et

100% Nyt
_ RON —RONut . RON — MON — (RONyt = MON,o1)
- 1.6 S 1.6
octane number octane sensitivity
Ahvap _ Ahvap,ref Ahvap B Ahvap,ref (6 ) 1)
+0.0085‘AFR—|—1 AFRref+1+AFR+1 AF Rt + 1
1.6 15.2
effective octane rating charge cooling
LBV — LBV

5.4

laminar burning velocity

Each term in the merit function reflects an empirically found linear influence on
maximum engine efficiency (Farrell et al., 2018; Szybist et al., 2021): the influence of
octane number, octane sensitivity (defined as RON — MON), effective octane rating,
charge cooling, and laminar burning velocity. The reference values for RON, MON,
and Ah,,, are taken from Leitner et al. (2017) (Table 6.2). Lacking a value for LBV
from Leitner et al. (2017), the LBV of a commercial RON95 measured by Dirrenberger
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et al. (2014) is used as a reference value (Table 6.2). The stoichiometric air-to-fuel
ratio of each candidate fuel is denoted by AFR, and the parameter K is a normalised
value describing the engine’s operating conditions relative to those of the RON and
MON tests, i.e. Kron =0 and Kyon = 1, respectively (Kalghatgi, 2001).

Since the K-value depends on engine operating conditions, selecting a single, repre-
sentative value is difficult. For modern downsized, turbocharged SI engines, the K
parameter is usually negative (Remmert et al., 2014; Kassai et al., 2019; Singh et al.,
2021). Kassai et al. (2019) determined values in a single-cylinder research engine with
a moderate compression ratio of 10.5 between —0.1 and —1.9, with K being the lowest
at high intake pressure and low engine speed. Since this design aims at fuels for engines
with higher compression ratios (e.g. a compression ratio of 16.4 as in a recent work
by Ackermann et al. (2021)), K is pragmatically chosen to K = —1.5. Appendix D.4
contains an example analysis on how the choice of the K-value affects the predicted
efficiency gains.

Table 6.2: Reference values for RON95 gasoline used in the engine efficiency merit

function.
Property Reference value Reference
RON, ¢ 96 Leitner et al. (2017)
MON, 85 Leitner et al. (2017)
Ahyap ref 350kJ kg! Leitner et al. (2017)
AFR, et 14 Leitner et al. (2017)
LBV, 48 cms™! Dirrenberger et al. (2014)

6.2.5 Property constraints

The candidate fuels need to meet several thermodynamic, environmental, and practical
requirements that are formulated as design constraints (Table 6.3). The normal
boiling and melting points of the candidate fuels are constrained to ensure that the
fuel is liquid at ambient conditions. Additional constraints on the maximum boiling
point and the maximum enthalpy of vaporisation ensure sufficient volatility and, thus,
proper in-cylinder mixture formation under cold conditions. If the boiling point or the
enthalpy of vaporisation of a candidate fuel is too high, the candidate fuel may not
completely evaporate under cold conditions but dissolves in the engine oil potentially
causing engine failure due to oil dilution (Larsen et al., 2009; Thewes et al., 2011;
Hoppe et al., 2016a). The constraints on boiling and melting points and enthalpy
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of vaporisation are taken from a previous design study by Dahmen and Marquardt
(2016). Noteworthy, today’s fossil fuel standards use the Reid vapour pressure and
characteristic points on the distillation curve to address cold start issues and neglect
the enthalpy of vaporization (American Society for Testing and Materials, 2021; DIN
German Institute for Standardization, 2017). However, studies on pure alcohol fuels
such as ethanol, 1-butanol, and 2-butanol have linked high enthalpies of vaporization to
higher pollutant formation (Chen and Stone, 2011; Thewes et al., 2012) and excessive oil
dilution (Hoppe et al., 2016a). Further research is needed to better define appropriate
upper limits on boiling point and enthalpy of vaporization in case of pure-component
alternative fuels.

The candidate fuels’ EHS indicators are constrained to ensure that the candi-
date fuels are less hazardous than RON95 gasoline with respect to AiT, LCso(FM),
LDsy, and PELosua-rwa. For BCF, candidate fuels must not be bioaccumulative,
i.e. log(BCF) < 3.3 according to Arnot and Gobas (2006). The sooting tendency
expressed through the uYSI is not restricted by regulations or policy but should be as
small as possible for clean and efficient combustion (Szybist et al., 2021). A strict upper
bound is difficult to define. In this work, the uYSI value of n-hexane is considered
acceptable and therefore chosen as an upper bound.

Since the EHS indicators are predicted with Gaussian Process Regression (GPR), pre-
dicted values are provided with uncertainty quantification. This prediction uncertainty
is considered in chance constraints to minimise the number of incorrectly discarded fuel
candidates. Candidate fuels are only discarded if a property’s 95 % confidence interval
violates a constraint, i.e. if a constraint’s lower bound b > Q.. = Q2+ 1.96 - 0, or
if a constraint’s upper bound ub < Q1 = 2 — 1.96 - 0o, where 2 is the considered
property and oq the property’s prediction uncertainty:.

6.2.6 Evaluation of mixture properties

For the design of binary blends with ethanol (cf. Section 6.3.2), mixture properties
have to be predicted. Mixture bubble points and mixture enthalpies of vaporisation
are calculated considering full non-ideal thermodynamic behaviour using COSMO-
RS. The prediction of non-ideal behaviour is a particular strength of COSMO-RS.
Pragmatically, the bubble point temperature of the mixture is constrained to the
same value (120°C) as the normal boiling point used in the pure-component design.
Noteworthy, mixtures of components with strongly different evaporation characteristics
may lead to in-cylinder mixture inhomogeneity, potentially causing wall wetting and oil
dilution (Ttani et al., 2015; Bardi et al., 2019; Kranz and Kaiser, 2019). Consideration
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Chapter 6 Molecular design of spark-ignition fuels for maximum engine efficiency

of such non-ideal evaporation effects is, however, beyond the scope of this work. With
the given data-driven models, the non-ideal mixture behaviour for the combustion
properties and EHS indicators cannot be predicted. In the absence of more accurate,
non-linear models, these mixture properties are approximated using a linear molar
mixing rule:
n
Qbtena = »_ ;8 (6.2)
i=1
In this equation, €2; stands for the predicted pure-component properties, and x; is the
mole fraction of component 7 in the blend. The mixture property is denoted by Qpjenq.

For combustion properties, the linear molar mixing rule approximates non-ideal
behaviour more accurately than, e.g. a linear liquid volume-based mixing rule, in
particular for blends with ethanol (vom Lehn et al., 2021b). For the EHS indicators,
the linear molar mixing rule is in line with previous blend design studies (Yunus
et al., 2014; Zhang et al., 2018a), following the concept of dose addition for toxicity
(LC50(FM), LDso; Altenburger et al., 2003) and exposure hazards (PELosua.Twa;
Craig et al., 1999).

6.3 Design of pure fuels and fuel blends for spark-ignition
engines

The fuel design method is applied to design (1) pure-component fuels and (2) blend
components for binary fuel blends with ethanol.

6.3.1 Pure component fuel design

The fuel design method is started twice with 50 generations and 40 candidate molecules
per generation to accommodate for the stochastic nature of the approach. In total, the
method investigates 1033 unique molecules in approximately 3 days and 9 hours in
parallel on 24 computer cores (see Appendix D.1 for details on the hardware). From
these 1033 unique molecules, 22 are candidate fuels that fulfil all constraints (Figure
6.2). 11 candidate fuels outperform the benchmark RON95 gasoline in predicted
engine efficiency (Table 6.4). As the optimal fuel, tert-butyl formate is identified with a
predicted increase in engine efficiency of approximately 7.9 %, followed by ethyl acetate
(3.8%), isopropyl formate (3.7%), and vinyl propionate (3.6%). The remaining
6 candidate fuels increasing engine efficiency achieve only minor improvements in
predicted engine efficiency between 1% and 3.3 %.
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Figure 6.2: Predicted engine efficiency increase for the pure-component design. The
blue circles represent the model predictions for the 22 candidate fuels. The
orange squares and asterisks are calculated using experimental values for
RON, MON, and Ahy,,. The experimental values of the molecules marked
with asterisks were not used for training of the GNN.

From the 22 identified candidate fuels, 14 candidate fuels have also been considered
in the database screening by vom Lehn et al. (2021b) that relied on experimental
property data. This experimental data is used to re-calculate the engine efficiency
increase and compare the results with the predicted engine efficiency increase. The
mean absolute error (MAE) of the predicted engine efficiency increase is only 2.2 %,
indicating an accurate assessment by the fuel design method (cf. Figure 6.2). However,
12 of these 14 candidate fuels were also included in the training data set of the GNN that
contributes RON and MON values to the engine efficiency assessment (Schweidtmann
et al., 2020), leading to a high prediction accuracy of these candidates. Nevertheless,
the MAE for 3-methyl-2-butanone and isopropyl acetate, which were not included in
the training data set, is comparable with M AFE = 2.8 % to the MAE of the training
data (M AFEiin = 2.1 %), indicating generalisability beyond the training data of the
GNN.
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Using the experimental data, 1-butanol (rank 7, merite, = 6.8%), 3-methyl-2-
butanone (rank 8, merite, = 5.1 %), and isopropyl acetate (rank 11, merite, = 4.6 %)
are highly promising candidate fuels achieving higher engine efficiency according to
the engine efficiency merit function than predicted during the design. Thus, the fuel
design method suggests promising candidate fuels. Still, the final ranking requires
subsequent experimental verification.

In contrast to the present study, vom Lehn et al. (2021b) identified methanol,
methyl formate, and ethanol as the highest-ranking candidate fuels. However, under
the constraints of the present study, methanol and ethanol exceed the maximum
permissible heat of vaporisation with predicted values of 214 kJ kg;ii (experimental
183kJ kg,;} (Majer and Svoboda, 1985)) and 106kJ kg, (experimental 93kJ kg,.!
(Majer and Svoboda, 1985)), respectively. Methyl formate violates the lower bound on
the boiling point with a predicted boiling temperature of 38°C (experimental 32°C
(Majer and Svoboda, 1985)). Formates with longer alkyl chains and higher boiling
points have been identified as promising pure-component fuels in the present study as
well as other esters. In particular, ethyl acetate and isopropyl acetate are suggested
as pure-component fuels by the present study, vom Lehn et al. (2021b), and Dahmen
and Marquardt (2016). Moreover, 3-methyl-2-pentanone and 2-pentanone have been
proposed by Dahmen and Marquardt (2016) as blend candidates with moderate knock
resistance, which is confirmed<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>