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die Unterstützung und den roten Faden auf den letzten Metern!
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Abstract

A key to a sustainable chemical industry is the design of the industry’s products and

processes. Therefore, chemical products and processes need to be developed with

sustainability metrics as objectives. However, integrating sustainability metrics into

the design methods is not trivial, as the environmental impacts of chemical products

and processes are affected over multiple orders of magnitude: The influences range

from the system level, where environmental impacts become apparent, via the technical

applications and physical properties, down to the molecule structure at the molecular

level. As a result, the design of molecules, experiments, and processes for sustainability

is a challenge at multiple levels. To overcome this challenge, targeted solution methods

need to be developed that combine environmental assessment, application modelling,

and property prediction. In this thesis, the computer-aided design methods for

molecules, experiments, and processes are therefore advanced beyond pure technical

feasibility by extending the modelling at the system, application, properties, and

molecular level.

At the system level, computer-aided molecular and process design is integrated

with predictive life cycle assessment to allow minimising environmental impacts as

optimisation objective. At the application level, detailed modelling of entire process

flowsheets is enabled by including the majority of unit operations and heat integration

in the design framework. The integrated framework is demonstrated to minimise the

life cycle environmental impacts of solvents in chemical processes. At the property level,

the design of experiments is accomplished that maximises the accuracy of predictions

on process performance and environmental impacts. Physical property measurements

for parametrisation and validation are tailored to their application in molecular and

process design using c-optimal experimental design. Finally, at the molecular level, the

design scope is extended from processing chemicals towards chemical products since the

chemical products represent a major degree of freedom in the design of a sustainable

industry. The methods for the integrated design of processing chemicals and processes

are extended towards the targeted model-based design of chemical products, forming

a starting point for the integrated life cycle design of products and processes in the

chemical industry.
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Kurzfassung

Ein Schlüssel für eine nachhaltige Chemieindustrie liegt in der Entwicklung nach-

haltiger Produkte und Prozesse. Daher müssen insbesondere chemische Produkte

und Prozesse unter Berücksichtigung von Nachhaltigkeitsmetriken entwickelt werden.

Die Integration von Nachhaltigkeitsmetriken in die Entwicklungsmethoden ist jedoch

schwierig, da die Umweltauswirkungen chemischer Produkte und Prozesse über viele

Größenordnungen beeinflusst werden: Die Einflüsse reichen von der Systemebene, auf

der die Umweltauswirkungen sichtbar werden, über die technischen Prozesse und

physikalischen Eigenschaften bis hinunter zur Molekülstruktur auf der Molekularebene.

Der Entwurf von Molekülen, Experimenten und Prozessen unter Berücksichtigung

der Nachhaltigkeit ist daher eine Herausforderung auf all diesen Ebenen. Um diese

Herausforderung zu bewältigen, müssen zielgerichtete Lösungsmethoden entwickelt

werden, die Umweltbewertung, Anwendungsmodellierung und Eigenschaftsvorhersage

integrieren. In dieser Arbeit werden deshalb computergestützte Methoden für die

Entwicklung von Molekülen, Experimenten und Prozessen vorgestellt, die über die rein

technische Machbarkeit hinausgehen. Hierzu wird die Modellierung auf der System-,

Anwendungs-, Eigenschafts- und Molekülebene erweitert.

Auf der Systemebene wird das computergestützte Molekül- und Prozessdesign mit

einer Methode zur prädiktiven Ökobilanz kombiniert, um als Optimierungsziel die

Minimierung von Umweltwirkungen zu ermöglichen. Auf der Anwendungsebene wird

die detaillierte Modellierung ganzer Prozessfließbilder erreicht, indem die gebräuch-

lichsten verfahrenstechnischen Grundoperationen einschließlich der Wärmeintegration

eingebunden werden. Die integrierte Methode wird für die Minimierung der Umwelt-

auswirkungen von Lösungsmitteln in chemischen Prozessen demonstriert. Auf der

Eigenschaftsebene wird die Planung von Versuchen zur Vorhersage der Prozessleis-

tung und Umweltauswirkungen präsentiert. Messungen physikalischer Eigenschaften

für Parametrisierung und Validierung werden auf ihre Anwendung im Molekül- und

Prozessdesign mit Hilfe der c-optimalen Versuchsplanung zugeschnitten. Auf der mo-

lekularen Ebene wird schließlich der Gestaltungsraum von Prozesschemikalien auf

chemische Produkte erweitert, da die chemischen Produkte selber einen großen Frei-

heitsgrad bei der Entwicklung einer nachhaltigen Industrie darstellen. Die Methoden

für das integrierte Design von Prozesschemikalien und Prozessen werden auf die gezielte

modellbasierte Entwicklung von chemischen Produkten ausgeweitet und bilden so einen

Ausgangspunkt für das integrierte Lebenszyklusdesign von Produkten und Prozessen

in der chemischen Industrie.
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Chapter 1

Introduction

The chemical industry is today one of the largest manufacturing industries and is

continuously growing. From 2000 to 2017, chemical production almost doubled to 2.3

billion tonnes (United Nations Environment Programme [UNEP], 2019). According to

forecasts, sales will further double by 2030 (UNEP, 2019). Today’s chemical industry

is also a major consumer of fossil fuels and significantly contributes to environmental

pollution, climate change, and resource consumption (UNEP, 2019). Consequently,

environmental impacts also continue to grow as the production volume of chemicals

increases. For example, the chemical industry’s oil consumption for energy and raw

material supply is projected to account for one-third of the global oil production by

2030 and one-half by 2050 (International Energy Agency [IEA], 2018, 2021). As a

result, the direct CO2 emissions of the chemical industry will increase by 20 % until

2030 and by 30 % until 2050. Besides CO2 emissions, the chemical industry will

increasingly cause additional burdens for the environment, e.g. by air pollution or

water consumption (IEA, 2018).

To reduce its environmental impact, the chemical industry needs to move towards

sustainable operations. A key to sustainability is the underlying structure of the

chemical industry, i.e. which products are manufactured with which processes (Bakshi,

2019; Grossmann and Harjunkoski, 2019; Mart́ın and Adams II, 2019; Pistikopoulos

et al., 2021). Therefore, the methods for product and process design play a particularly

critical role for sustainable chemicals and processes. However, present design methods

frequently approximate performance and environmental impacts by characteristic

properties instead of performing integrated assessments (Gertig et al., 2020b; Adjiman

et al., 2021). As a result, the simplified representation of design goals as objectives

leads to suboptimal designs. Without precise design targets, the computer-aided design

of products and processes is inefficient, leading to unnecessary resource consumption

and waste, higher hazards and environmental impacts, as well as avoidable costs

(Bakshi, 2019).

Setting tailored metrics as design objectives is a challenging task as the design of

products and processes spans multiple orders of magnitude, from the molecules via the
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Chapter 1 Introduction

physical properties and applications to the assessment of economic and environmental

impacts (cf. Fig 1.1; Zhou et al., 2019a; Adjiman et al., 2021). Consequently, advancing

the design methodology needs to address the requirements at the levels of molecules,

properties, applications, and system, as well as the links between them. These links

are formed by property prediction and measurement, energy and mass balances,

and assessment models. The design of sustainable products and processes thus also

includes the prediction and experimental measurement of physico-chemical properties,

application modelling, and environmental assessment.

To aid the transformation of the chemical industry, the established design methods

need to be advanced to enable targeted designs beyond purely technical function

(Zimmerman et al., 2020). For a chemical industry with sustainable products and

processes, the design objectives need to be formulated in terms of sustainability metrics,

e.g. environmental impacts determined through life cycle assessment (ISO 14040, 2006).

In this thesis, the computer-aided design of molecules, experiments, and processes

is advanced to design sustainable chemical products and processes tailored to the

corresponding applications. For this purpose, the design of molecules, experiments,

and processes with respect to environmental assessment is enabled at each level, and

the methods are refined towards tailor-made design.

SYSTEM

predic�on,

measurement

assessment

energy & mass 

balancing

Figure 1.1: The scales relevant to the design of a sustainable chemical industry and
methods to link the individual levels: The design space spans from molecules
at the smallest scale to environmental impacts at the largest scale.
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Structure of this thesis

This thesis is structured in seven chapters: Chapter 2 provides an overview of the

state of the art in the computer-aided design of molecules, experiments, and processes.

Building on the basic relationships between molecules, properties, and applications,

design opportunities are highlighted, and current design methods are described. Based

on the literature review, current challenges and limitations of the state-of-the-art

methods are identified, and the scientific contribution of this work is outlined.

In Chapter 3, a Computer-Aided Molecular and Process Design (CAMPD) framework

is proposed that allows for minimising of environmental impacts. The CAMPD

framework integrates Life Cycle Assessment (LCA) of solvents from cradle to grave as

a holistic environmental design objective.

Chapter 4 expands the process design scope in CAMPD. The CAMPD framework

is extended to include models for the most common unit operations in chemical

engineering and process optimisation for minimum utility demand. As a result, the

method yields optimal combinations of solvents and process settings considering heat

integration.

In Chapter 5, tailored design of experiments is investigated that considers the

application of property parameter estimation: c-optimal experimental design (c-OED).

c-OED designs experiments that minimise the uncertainties of a process model leading

to the most accurate process simulations.

In Chapter 6, the focus in the design of molecules is shifted from processing chemicals,

e.g. solvents, to chemical products, e.g. fuels for internal combustion engines. An

optimisation-based method is developed to design fuels for spark-ignition engines that

includes a model predicting engine efficiency as objective function.

Finally, Chapter 7 summarises this thesis and draws conclusions on the results of

the individual chapters. Based on the knowledge gained in this thesis, future research

perspectives are outlined.
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Chapter 2

The state of the art in designing

molecules, experiments, and processes

In this chapter, the state of the art in computer-aided design of molecules, experiments,

and processes is reviewed, and current challenges and limitations are highlighted. The

chapter starts with an introduction to designing molecules, experiments, and processes

(Section 2.1). Section 2.2 reviews current environmental objectives and constraints in

CAMPD. In Section 2.3, the current process design scope and the modelling resolution

of chemical processes in molecular design are discussed. Section 2.4 describes the state

of the art in designing experiments for chemical engineering problems. Section 2.5

reviews the application of CAMD to product design problems, in which the focus

is shifted from processing chemicals to chemical end products. Finally, Section 2.6

summarises the literature review and outlines the contributions of this thesis.

Major parts of this chapter are reproduced by permission of Elsevier, John Wiley & Sons, Inc., and

the American Chemical Society from:

Fleitmann, L.; Kleinekorte, J.; Leonhard, K. and Bardow, A. (2021). COSMO-susCAMPD: Sustain-

able Solvents from Combining Computer-Aided Molecular and Process Design with Predictive

Life Cycle Assessment. Chemical Engineering Science, 245, 116836.

Fleitmann, L.; Gertig, C.; Scheffczyk, J.; Schilling, J.; Leonhard, K. and Bardow, A. (2023). From

molecules to heat-integrated processes: Computer-aided design of solvents and processes using

quantum chemistry. Chemie Ingenieur Technik, 95(3), 368–380.

Fleitmann, L.; Pyschik, J.; Wolff, L.; Schilling, J. and Bardow, A. (2022). Optimal experimental

design of physical property measurements for optimal chemical process simulations. Fluid Phase

Equilibria, 557, 113420.

Fleitmann, L.; Ackermann, P.; Schilling, J.; Kleinekorte, J.; Rittig, J.G.; vom Lehn, F.; Schweidtmann,

A.M.; Pitsch, H.; Leonhard, K.; Mitsos, A.; Bardow, A. and Dahmen, M. (2023). Molecular design

of spark-ignition fuels for maximum engine efficiency by combining predictive thermodynamics

and machine learning. Energy & Fuels, 37(3), 2213–2229.

The author of this thesis contributed to the literature research and wrote the first draft of the papers

as the principal author. The conceptualisation of the methods was jointly developed in discussion

with the co-authors. More details on the methods are provided in later chapters of this thesis.
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Chapter 2 The state of the art in designing molecules, experiments, and processes

2.1 Introduction to designing molecules, experiments, and

processes

The design of molecules, experiments, and processes for a sustainable chemical industry

is a challenging task since the design problem spans multiple orders of magnitude

(Zhou et al., 2019a; Adjiman et al., 2021): From the system level, where environmental

impacts become apparent, via the application and property level down to the molecular

level (Figure 2.1). The multi-scale approach is required as the micro scale strongly

influences the macro scale: The molecules employed in a technical application, e.g.

a chemical process, determine the physico-chemical and thermodynamic properties.

Following the physico-chemical and thermodynamic laws, these properties describe the

performance of the technical application. The macro-scale effects of the application

finally determine the environmental impacts.

The description of macro-scale effects caused by micro-scale decisions is key to

the multi-scale design and corresponds to the so-called analysis or direct problem

(Figure 2.1). Solutions to analysis or direct problems are usually predictive models

connecting adjacent levels. In the design of molecules, experiments, and processes, these

connections are established by predictive property, application, and assessment models:

To link the molecular and the property level, physico-chemical and thermodynamic

properties are estimated given a molecular structure. For this purpose, various property

prediction methods have been developed for pure components and mixtures, e.g. using

group contribution (GC; Gani, 2019), quantum chemistry (Gertig et al., 2020b), or

machine learning-based methods (Zhou et al., 2019a, 2021). Given property data,

Design 
(inverse problem)

Analysis
(direct problem)

macro scale

micro scale

SYSTEM

APPLICATIONS

PROPERTIES

MOLECULES

Figure 2.1: Multi-scale design from the molecular to the system level.
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property and application level are linked by application models, e.g. a chemical process

model such as a flowsheet model. Finally, the system level can be reached by an

assessment model of economics (e.g. net present value), resources (e.g. exergy analysis),

or environmental impacts (e.g. LCA).

Inverting the analysis leads to the so-called inverse or design problem: Given a

macro-scale objective, the inverse problem is to determine the micro-scale decisions

that lead to the desired macro-scale effects by formulating an optimisation problem.

To formulate and solve the design problem, the fundamental cause-effect relationships

between the objective and the degrees of freedom need to be known as inputs, i.e.

the direct problems connecting adjacent levels have been solved before and resulted

in predictive models describing the effect of the micro-scale decisions on the macro-

scale objective. Using the predictive models, the design problem is formulated as an

optimisation problem and solved with an appropriate solution strategy, e.g. based on

generate-and-test, metaheuristic or deterministic optimisation algorithms (Sun et al.,

2020; Pistikopoulos et al., 2021).

Depending on the problem scope, the design problem formulation spans one or

more levels and includes one or more predictive models. In the literature, various

design problems have been studied: For example, molecular design problems cover the

molecular and properties level with design objective reaching the applications level

(Papadopoulos et al., 2018); experimental design mainly focuses on the properties

level (Franceschini and Macchietto, 2008); and process synthesis and design frequently

address application and system level (Chen and Grossmann, 2017). In this thesis,

the design of molecules, experiments, and processes is investigated by methods of

computer-aided molecular and process design, and experimental design.

Methods for Computer-Aided Molecular Design (CAMD) optimise the molecular

structure of candidate molecules, frequently by focussing on finding molecules with

characteristic thermodynamic properties that are heuristically related to superior

performance in an application (Gertig et al., 2020b; Adjiman et al., 2021). In these

methods, the design is carried out at the property level. More advanced CAMD

methods assess the molecules at the application level by integrating a process model

to define a proper objective function and constraints relevant to the application. If the

design of molecules is integrated with process design at the application level, integrated

Computer-Aided Molecular and Process Design (CAMPD) problems are formed, i.e.

process settings are simultaneously optimised with the molecular structure. CAMPD

allows for the targeted exploration of vast molecular design spaces and corresponding

optimal processes without experimentation and is thus increasingly investigated in

literature (Papadopoulos et al., 2018; Chai et al., 2022).
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The most commonly designed molecules in CAMPD are processing chemicals such as

solvents and working fluids for application in energy and chemical conversion processes.

Examples for CAMPD of processing chemicals are the design of working fluids for

Organic Rankine Cycles (Schilling et al., 2017; White et al., 2018) or solvents for

separation problems, e.g. liquid-liquid extraction or CO2 absorption, including the

design of non-classical components such as ionic liquids (Zhou et al., 2020; Chai et al.,

2022). CAMPD has also been successfully applied to optimise reactions through the

design of reaction solvents (Liu et al., 2019a; Gertig et al., 2020a) and even catalysts

(Gertig et al., 2021).

Besides processing chemicals, the design of chemical products is recognized as a

key part of chemical engineering (Adjiman et al., 2021), since the molecular structure

of a product determines its properties and functionalities (Gani, 2004). Computer-

aided product design (CAPD) is a collective term for designing components for

various applications and ranges from small molecules over solids and nanoparticles to

pharmaceuticals and formulated products (Uhlemann et al., 2019). The design of some

chemical end products, e.g. fuels, is closely related to CAMD for processing chemicals

(Gani and Zhang, 2020; Zhang et al., 2020a). However, in contrast to CAMD for

processing chemicals, a challenge in CAPD is the prediction of properties describing

the application, frequently going far beyond thermodynamic properties (Ng et al.,

2015b; Zhang et al., 2016). Moreover, application models in CAPD that solve the

direct problem between properties and application are frequently rare, while the effects

of processing chemicals in process models can usually be well described using existing

chemical engineering knowledge.

Experimental design complements CAMPD/CAPD and process and product de-

velopment since an experimental design does not optimise the chemical process or

product but rather its description. For the design of chemical products and processes,

physical properties are crucial for model parametrisation and validation (Mitsos et al.,

2018). In particular, thermodynamic properties, e.g. describing phase behaviour,

largely influence predicted performance in application (Mathias, 2016). Therefore,

high-quality property data are required for accurate results. The need for high-quality

property data has led to the development of model-based Optimal Experimental De-

sign (OED; Atkinson et al., 2006; Franceschini and Macchietto, 2008). State-of-the-art

OED identifies optimal experimental settings with respect to parameter accuracy

by analysing the uncertainty propagation from experimental measures to estimated

property parameters through a predefined model of the experiment. OED has already

been applied for the estimation of important thermodynamic properties in the chemical

industry, such as reaction kinetics (Forte et al., 2017; Walz et al., 2018), phase equilibria
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(Dechambre et al., 2014b; Duarte et al., 2021), diffusion coefficients (Wolff et al., 2016),

or adsorption isotherms (Walz et al., 2018).

Based on these general concepts for the design of molecules, experiments, and

processes, the individual design methods are detailed in the following Sections 2.2-2.5,

and the state of the art in modelling and design at each level is investigated.

2.2 System level: Computer-aided molecular and process

design for environmental sustainability

To date, CAMPD methods have mainly focused on economics and technical process

performance for assessing candidate molecules and processes at the system level (Zhou

et al., 2020; Gertig et al., 2020a). However, the design of sustainable chemical processes

needs a more holistic objective with an environmental dimension (Brown et al., 1987).

Both economics and environmental impacts of many chemical processes depend strongly

on the employed molecules (Clarke et al., 2018; Jimenez-Gonzalez, 2019; Zhou et al.,

2020). Therefore, not only process performance and economics but also environmental

impacts need to be optimised (Zimmerman et al., 2020). To capture environmental

impacts at the system level, CAMPD needs to integrate environmental assessment

(Zhou et al., 2020; Gertig et al., 2020a; Adjiman et al., 2021).

A few CAMPD methods already integrated environmental assessment, i.e. the

assessment of environmental impact potentials or hazards. Many of these approaches

are based on metrics and guidelines for green molecules (Soh and Eckelman, 2016). In

particular, indicators for Environmental, Health, and Safety hazards (EHS; Adu et al.,

2008) have been successfully integrated in CAMPD problems. For example, systematic

screening approaches evaluate candidates based on environmental databases and

Quantitative Structure-Activity Relationship (QSAR) toolboxes (McBride et al., 2018;

Linke et al., 2020; Song et al., 2020). If CAMPD problems are formulated and solved

as a mathematical optimisation problem, solution algorithms require an automated,

integrated evaluation of EHS criteria. For this purpose, predictive models are frequently

employed, e.g. GC models fitted to experimental data (Papadopoulos et al., 2010;

Schilling et al., 2017; Ten et al., 2017; Ooi et al., 2018; Jonuzaj et al., 2019; Ten et al.,

2020, 2021). These approaches have in common that they evaluate environmental

impact potentials from the molecular properties of the candidate molecules.

However, environmental assessment has to go beyond the environmental impact

potential of the molecules, which is a molecular property, such as the global warming

potential (Hellweg et al., 2004). For a holistic assessment, CAMPD needs to consider
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the environmental impacts of the full life cycle of a molecule, including emissions caused

during production, use and disposal (Jimenez-Gonzalez, 2019; Chemmangattuvalappil,

2020). A broadly accepted method for the holistic environmental assessment is Life

Cycle Assessment (LCA). LCA is an ISO-normed method (ISO 14040, 2006) considering

emissions of all life cycle stages from cradle to grave of a substance. As a consequence

of the holistic analysis, LCA helps to avoid problem shifting between life cycle stages

or environmental impacts. However, a cradle-to-grave LCA generally requires much

information on a substance, i.e. detailed mass and energy balances of all flows from and

to the environment during production, use and disposal (Hellweg and Milà i Canals,

2014).

In CAMPD, available data on candidate molecules is usually minimal, in particular

on in silico designed molecules. For economic objectives, CAMPD methods have

already been equipped with predictive tools to close data gaps: Predictive thermody-

namic models estimate thermodynamic properties so that process simulation can be

performed for economic assessment. Likewise, CAMPD needs to integrate predictive

LCA approaches for environmental assessment. Similarly to the prediction of ther-

modynamic properties from thermodynamic models, the environmental impacts of

candidate molecules need to be predicted given their molecular structure (Kleinekorte

et al., 2020).

In literature, predictive LCA has been approached by two main routes: (1) the

prediction of Life Cycle Inventory (LCI) and (2) the direct prediction of the Life Cycle

Impact Assessment (LCIA). The LCI is the basis for life cycle impact assessment

and provides the bill of materials of the life cycle. To yield ultimately environmental

impacts, the LCI needs to be multiplied by characterisation factors (Hauschild and

Huijbregts, 2015). LCI is frequently predicted from estimates for energy and mass flow

from generic flowsheets (Righi et al., 2018; Parvatker and Eckelman, 2020). In contrast,

the direct prediction of the LCIA has been investigated by multi-linear regression

(Calvo-Serrano et al., 2018; Calvo-Serrano and Guillén-Gosálbez, 2018) and artificial

neural networks (Wernet et al., 2008, 2009; Song et al., 2017; Kleinekorte et al., 2019;

Karka et al., 2022).

Recently, predictive LCA has successfully been combined with molecular design for

the first time: Papadopoulos et al. (2020) formulated an integrated CAMD problem

including predictive LCA and predictive EHS scores. For the predictive LCA, the

authors use the ANN-based FineChem model (Wernet et al., 2009) to estimate the

specific impacts of solvent production per kilogram solvent. For the predictive EHS

scores, Papadopoulos et al. (2020) employ group contribution and molecular similarity

approaches. By combining these prediction approaches into one integrated multi-
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objective CAMD problem, desired solvent properties are optimised simultaneously with

environmental impact scores, e.g. maximising specific solvent density and minimising

specific environmental impact on Climate Change and EHS scores.

A similar approach was proposed by Baxevanidis et al. (2021). The authors developed

a group contribution-based LCA model and integrated the GC-LCA model into a

CAMD formulation. The CAMD problem was solved considering the cradle-to-gate

environmental impacts of the solvents to design solvents for liquid-liquid extraction

based on performance indicators.

However, the current approaches limit the LCA scope to a so-called cradle-to-gate

system boundary, considering only emissions caused during the solvent production per

kilogram solvent. The amount of solvent required by the process cannot be considered

in these approaches, although the amount of solvent varies substantially depending

on the solvent’s performance in the process. Moreover, the process corresponds to

the use phase of the solvent life cycle, and the solvent properties directly impact the

process performance and the emissions of the use phase. Finally, the emissions from

solvent disposal depend on the solvent loss during the use phase. Thus, a cradle-to-gate

assessment does not capture the full environmental impacts of the candidate solvents.

To avoid problem shifting between life cycle stages, CAMPD needs to consider all

solvent-related emissions within a cradle-to-grave system boundary.

2.3 Application level: Process design scope in integrated

molecular and process design

Accurate environmental assessment of each candidate molecule at the system level

requires appropriate modelling and design at the application level to provide life

cycle inventory. Therefore, systematic process design is required in CAMPD for

maximum performance and minimum environmental impact. For systematic process

design, various optimisation-based methods have been developed in process systems

engineering (Pistikopoulos et al., 2021). A chemical process involves various units and

auxiliaries to transform raw materials into products. Today, process design therefore

includes the optimisation of process settings and unit operations as well as heat recovery

and utility systems (Smith, 2005) and the selection of molecules as auxiliaries such as

solvents or working fluids (Gertig et al., 2020b; Zhou et al., 2020; Adjiman et al., 2021;

Chai et al., 2022).

Traditionally, process design follows a sequential approach from the reactor to

separation and recycle systems and the heat exchanger network (Douglas, 1985).

11
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However, this sequential approach does not account for the considerable interactions

between the entire process system and each unit or the heat recovery subsystem.

Moreover, the selection of auxiliaries is not considered as an explicit step in the design

approach. Since the optimal process system performance cannot always be achieved by

separately optimising the process subsystems and auxiliaries, advanced design methods

integrate the individual design steps, e.g. by mathematical optimisation (Chen and

Grossmann, 2017). However, current methods focus on either (1) energy and mass

integration or (2) molecule selection.

1. Energy and mass integration: Several solutions are presented to combine process

optimisation with the design of the heat recovery network (Kong et al., 2016; Elsido

et al., 2017, 2019; Dong et al., 2020; Ryu et al., 2020; Kruber et al., 2021). These

methods simultaneously design the (reaction-) separation process and heat exchange

by solving large superstructure optimisation problems. Superstructure problems

usually contain non-convexities and many discrete degrees of freedom to model the

process synthesis decisions and are thus challenging to solve (Chen and Grossmann,

2017). Therefore, the solution methods often require tailored solution algorithms

for computational efficiency. Recently, Liesche et al. (2019) and Schack et al. (2020)

presented the superstructure-based process synthesis method FluxMax that avoids

non-linearities in the optimisation problem by discretising the thermodynamic state

space before optimisation. Thereby, the non-linear process synthesis problem is reduced

to a linear flux optimisation of elementary process functions on the thermodynamic

grid. While these methods master the complexity of energy and mass integration, they

are not capable of simultaneously optimising the employed molecules as auxiliaries as

well. Process design approaches considering heat integration usually assume a fixed

selection of molecules or a small preselected set to avoid the problem complexity due

to the large molecular design space (Adjiman et al., 2021).

2. Molecule selection: Aside from process settings and heat integration, the

performance of chemical and energy conversion processes is also substantially impacted

by molecules used as auxiliaries, in particular solvents (Chemmangattuvalappil, 2020;

Zhou et al., 2020). Solvents influence process conditions and optimal settings of unit

operations and thus even heat integration and utility consumption. Consequently,

process and solvent cannot be optimised independently, but their design needs to

be integrated to for successful process design(Gertig et al., 2020b; Adjiman et al.,

2021; Chai et al., 2022; cf. Section 2.1). However, similar to integrated energy and

mass integration problems, CAMPD problems are highly non-linear and challenging

to solve, since CAMPD problems usually consider non-ideal thermodynamics and

contain integer decision on the molecular structure (Samudra and Sahinidis, 2013;
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Papadopoulos et al., 2018). Therefore, CAMPD methods commonly simplify either

the process design scope or the molecular design space accessible by the employed

predictive thermodynamic models.

Many CAMPD methods approximate the solvent influence on the process using

simplified performance indicators such as partition coefficients or relative volatilities

(Austin et al., 2017; Scheffczyk et al., 2017b; Ooi et al., 2019; Zhou et al., 2019b;

Papadopoulos et al., 2020). Other CAMPD methods assess only single process units or

flowsheet subsystems (Austin et al., 2017; Jonuzaj and Adjiman, 2017; Jonuzaj et al.,

2018; Scheffczyk et al., 2018; Gertig et al., 2020a; Zhang et al., 2020a; Fleitmann et al.,

2021a; Watson et al., 2021). However, limiting the process modelling to simplified

performance indicators, single-unit operations, or small subsystems of the process

flowsheet does not capture all flowsheet-inherent trade-offs. Simplifying the process

design scope can thus lead to suboptimal solvent selection for the final optimised

overall process flowsheet (Gertig et al., 2020b; Chai et al., 2022). Even more, the

influence of heat recovery has been neglected in CAMPD (Adjiman et al., 2021).

CAMPD methods modelling the entire process flowsheet typically simplify the

molecular design scope by simplifying property prediction (Zhou et al., 2017; Zhang

et al., 2021a) or limiting the molecular design space to specific molecular groups

(Pereira et al., 2011; Burger et al., 2015; Gopinath et al., 2016; Schilling et al., 2017;

White et al., 2017, 2018; van Kleef et al., 2019; Schilling et al., 2020; Keßler et al.,

2021). These CAMPD methods rely on one or more GC methods for predicting the

thermodynamic properties of candidate molecules. GC methods have been shown

to accurately predict various thermodynamic and environmental properties (Marrero

and Gani, 2001; Hukkerikar et al., 2012b). However, group parameters are usually

parametrised from experimental data and are not available for all kinds of molecules,

in particular for higher-order groups (Gani, 2019). Moreover, several GC methods are

usually employed to cover all thermodynamic properties required for process design,

e.g. for ideal-gas heat capacities, activity coefficients or enthalpies of vaporisation.

However, combining several GC methods and parameter sets can lead to inconsistent

predictions and contradictions (Gani, 2019). Thus, CAMPD preferentially requires

consistent property prediction that does not limit the molecular design space, e.g.

based on quantum chemistry (Gertig et al., 2020b).

In conclusion, systematic process design in CAMPD needs to extend beyond simpli-

fying process models and neglecting heat recovery to model the entire process flowsheet

with heat integration, while building on reliable thermodynamic data from a large

molecular design space. However, because of the CAMPD problem complexity, models
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for thermodynamic property prediction and process design need to be carefully selected

to balance details, scope, and computational effort.

2.4 Property level: Model-based design of experiments

In product and process design, property data needed for validation and parametrisation

still relies mostly on experimentation (Kontogeorgis et al., 2021). However, experiments

consume time and large amounts of materials causing high costs and environmental

impacts for estimating parameters in property models. Therefore, experimental

effort should be minimised by selecting only the experiments that provide the most

information and thus lead to the most accurate simulation. These optimal experiments

can be designed by Optimal Experimental Design (OED).

Generally, two approaches for OED can be distinguished: (1) statistical OED

(Franceschini and Macchietto, 2008) and (2) bounded-error OED (Pronzato and Walter,

1990). Statistical OED minimises the parameter variances considering a statistical

error distribution (Walz et al., 2018). In contrast, bounded-error OED minimises

the feasible parameter set consistent with the measurement uncertainty given by

upper and lower bounds on the errors (Walz et al., 2018). As a result, bounded-error

OED requires fewer assumptions on errors than statistical OED but instead needs to

solve a challenging bilevel optimisation problem. For many experiments in chemical

engineering problems, the measurement uncertainty is known (Dong et al., 2005) and

justifies the use of statistical OED. Thus, the focus of this work is on the more popular

statistical OED.

In statistical OED, the objective function is usually a scalar measure of the parameter

variances representing parameter uncertainty (Franceschini and Macchietto, 2008). Sev-

eral well-known objective functions have been developed to determine the experimental

designs leading to the most accurate parameters (Franceschini and Macchietto, 2008),

e.g. minimising the average uncertainty of all parameters (A-optimality); minimising

the uncertainty of the most uncertain parameter (E-optimality); or minimising a

generalised variance of the parameters (D-optimality).

However, in chemical engineering, the primary purpose of experiments is rarely to

gain knowledge of parameters themselves. Instead, chemical engineers seek to gain

thermodynamic insights, predict phase behaviours or simulate a process, etc. Thus,

the experimental design needs to reflect the model application (Gevers and Ljung,

1986). Recently, OED methods have focused on incorporating the purpose of parameter

estimation. Dechambre et al. (2014b) employed G-optimal experimental design that
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minimises the expected variance in the model predictions of the experiments instead

of uncertainties in property parameters. In particular, Dechambre et al. (2014b)

minimised the predicted variance of phase compositions calculated from a liquid-liquid

equilibrium model instead of the property parameters used in the activity coefficient

model.

Similarly, for process simulations, the impact of the property parameters on the

simulation results is usually more important than the uncertainty of the property

parameters. If the governing phenomena of the chemical system are known, and a

thermodynamic model capable of describing these phenomena is selected, the purpose of

experimentation is to increase accuracy of the simulation through (re-)parametrisation.

However, an experimental design for the most accurate property parameters does not

ensure the lowest uncertainty in process simulation. Thus, the property parameter use

in a process model needs to be considered within the optimal experimental design.

For this purpose, Asprion et al. (2019) recently presented OED for experiments in a

plant or mini plant using a flowsheet simulator. In their work, the optimal experimental

design considers property parameter use by employing the process model already for

the parameter estimation. The authors show that their method improves model

discrimination and parameter estimation. However, the method requires expensive

and time-consuming plant experiments instead of small lab-scale experiments.

For lab-scale experiments and bounded-error OED, Walz and coworkers accounted

for property parameter use in process simulation and design (Walz et al., 2018, 2019).

The authors successfully show how to reduce experimental effort without changing

the reliability of the process model results. However, their method requires solving

a challenging bi- or trilevel optimisation problem and is currently limited to small

process models.

For statistical OED and lab-scale experiments, a first approach was published by

Recker et al. (2013). The authors considered the sensitivities of the process to the

property parameters by heuristically scaling the A-optimality criterion and successfully

optimised the experimental design to estimate reaction kinetics for a reaction-separation

process. A similar approach was proposed by Lucia and Paulen (2014) for robust non-

linear model predictive control. Using the sensitivities of the optimal robust economic

objective value to parametric uncertainty, the authors scaled a modified E-criterion.

Kaiser and Engell (2020) and Kaiser et al. (2021) linked OED for parameter estimation

with superstructure optimisation of early process design stages (Kaiser and Engell,

2020; Kaiser et al., 2021). For this purpose, the authors perform global sensitivity

analysis of optimisation results towards the uncertain parameters using heuristically
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scaled D-optimality (Kaiser and Engell, 2020) and heuristically scaled A-optimality

(Kaiser et al., 2021).

However, even though these heuristic approaches provide a breakthrough by combin-

ing OED and process simulation, heuristic designs likely differ from optimal designs

with full consideration of the process (Fleitmann et al., 2021b). Instead, full considera-

tion of process information requires uncertainties of property parameters to propagate

through the process model, and the uncertainties of the process model results should

be used as the OED objective.

In pioneering work, the van Impe group integrated experimental design and non-linear

model predictive control (Houska et al., 2015; Telen et al., 2016, 2017). The authors

mathematically derived an economic process objective function for experimental design

by weighted A-optimality. They defined the OED objective as the minimisation of

the expected optimality gap of the parametric optimal control problem via second-

order derivatives of the Lagrange function (Houska et al., 2015). The approach was

demonstrated successfully to tailor experimental designs for estimating reaction rate

constants to control problems of bioreactors.

Similarly, for the most accurate chemical process simulations, the OED objective

needs to be defined in terms of process uncertainties to capture the property parameter

use in the process simulation. The idea of optimising the uncertainty of a simulation

output as the objective for OED can be formulated as the so-called c-optimal experi-

mental design (c-OED; Atkinson et al., 2006). In general, c-OED minimises a linear

combination of model parameter variances as the optimisation objective (Atkinson

et al., 2006). A linear combination of model parameters corresponds to the linear

variance propagation of these parameters through a model if the weights of the linear

combination are the first-order derivatives of the model with respect to the model

parameters. Therefore, c-OED can reflect the property parameter use in a chemical

process simulation directly in the objective, e.g. the impact of NRTL-parameters on

the total process energy demand.

Interestingly, c-optimality is mathematically a special case of weighted A-optimality

(Fedorov and Leonov, 2014). Thus, c-OED is connected to the modified A-optimal

criterion from Houska et al. (2015). In contrast to Houska et al. (2015), c-OED weights

parameter uncertainties by first-order derivatives instead of scaling the OED problem

by second-order derivatives of the Lagrange function of an optimisation problem.

Therefore, c-OED is suitable for chemical process simulations, while the method from

Houska et al. (2015) is tailored to equation-based optimisation problems and requires

the Lagrange function of the optimisation problem.
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To date, c-optimality has only been applied for the optimal experimental design of

clinical trials for dose-finding in the area of toxicology studying (Holland-Letz, 2017;

Holland-Letz et al., 2018; Holland-Letz and Kopp-Schneider, 2018) or the description

of viral dynamics and pharmacokinetics (Han and Chaloner, 2003) but not in chemical

engineering for process flowsheet simulation. However, in particular for physical

properties for process flowsheet simulations, experiments for parameter estimation

serve a purpose beyond the pure parameter knowledge, which needs to be reflected by

the OED objective. Thus, future OED in chemical engineering needs to consider the

accuracy of performance evaluation and environmental assessment at the application

and system level as objectives.

2.5 Molecular level: Molecular design as product design

Apart from processes and processing chemicals, chemical end products are also fre-

quently a degree of freedom in product and process development at the molecular

level. Similar to the design of processing chemicals, the molecular structure of chemical

end products can be tailored in silico by CAMD as a special case of Computer-Aided

Product Design (CAPD; Gani and Zhang, 2020; Zhang et al., 2020a).

Today, various product design frameworks exist that can identify molecules with

desired product properties, e.g. the OptCAMD (Liu et al., 2019b) or ProCAPD

frameworks (Kalakul et al., 2018; Chai et al., 2021). In particular, the ProCAPD

framework aims to consider not only properties related to technical performance but

also related to environmental hazards, quality, or cost via various submodules (Chai

et al., 2021). By multi-objective optimisation, environmental hazards can also be

considered explicitly besides technical performance (Jonuzaj et al., 2019). For example,

Jonuzaj et al. (2019) designed the active ingredient and the solvent for an adhesive

product by optimising simultaneously for minimum toxicity and maximum solubility

of the active ingredient in a solvent.

However, these CAPD methods mainly rely on assessing the candidates’ physico-

chemical properties rather than evaluating the product’s performance in application

using a model of the application (Gani, 2004; Gani and Ng, 2015; Zhang et al., 2016,

2020a). Frequently, the objective function is a weighted sum of target properties.

These target properties are determined by experts translating the product needs into

physico-chemical properties (Zhang et al., 2020a), or the target properties are assumed

from an existing product, e.g. that needs to be replaced (Zhang et al., 2016; Jhamb

et al., 2019). Thus, the design procedure usually involves three separated steps: target
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properties definition, model-based design, and experimental verification (Kontogeorgis

et al., 2019). In this design procedure, the actual product’s performance in application

beyond target properties is only evaluated during experimental verification. However,

as CAMD for processing chemicals, CAPD ideally requires a model of the application

as objective function that accurately reflects the product use to assess a candidate

product’s performance.

A challenge for an application-level objective function is the availability of application-

specific properties beyond thermodynamics (Ng et al., 2015b; Zhang et al., 2016),

which requires tailored property prediction. Tailored property prediction has recently

gained momentum through the availability of advanced Machine Learning (ML) models,

e.g. deep learning by artificial neural networks or Bayesian regression using Gaussian

process regression (Zhou et al., 2019a, 2021). These ML-based models allow for accurate

modelling of phenomena previously inaccessible through rigorous modelling (Alshehri

et al., 2020). Therefore, products can be optimised in silico for applications such as

cosmetics or fragrances. Zhang et al. (2018b) and Ooi et al. (2022) demonstrated

fragrance design using an ML-based model maximising odour attributes of molecules

such as odour character or pleasantness. Similarly, Zhang et al. (2019) and Zhang

et al. (2021b) designed food products and cosmetics, respectively, by maximising the

sensorial rating of the products predicted from an ML-based model. These approaches

highlight the opportunities available with extended, ML-based property prediction

and demonstrate an important step towards CAPD optimising an application model

rather than molecular properties.

CAMPD has already shown the potential of integrating molecular design with

property prediction and mechanistic process application modelling. Similarly, CAPD

should now exploit ML-based property prediction to use in mechanistic application

models for targeted product design that directly addresses product application.

2.6 Contributions of this thesis

The literature review reveals that the state of the art in designing molecules, experi-

ments, and processes lacks a systematic integration of sustainability assessment and

targeting towards applications. To drive the design of molecules, experiments, and

processes towards sustainable chemical products and processes, the design methodology

requires the following advances on the four levels:

1. System level:

Integrating a life cycle environmental objective into CAMPD.
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2. Application level:

Expanding the process design scope to modelling and optimising of process

flowsheets including heat integration in CAMPD.

3. Property level:

Extending integrated property prediction in CAMPD and tailoring experiments

for process-level and environmental objectives.

4. Molecular level:

Designing products maximising an application-level objective function.

This thesis advances the design of molecules, experiments, and processes by inte-

grating new methods and models, and by linking the levels from the molecular to the

system level (Figure 2.2). Therefore, the main contributions of this thesis are the

following:

CAMPD with a life cycle environmental objective

At the system level, environmental assessment has to overcome the limitations

of merely considering environmental impact potentials and cradle-to-gate system

boundaries (cf. Section 2.2). However, current CAMPD methods, e.g. for solvent

design, only consider emissions caused during solvent production per kilogram solvent

and neglect emissions from the use phase and solvent disposal. Therefore, in Chapter 3,

SYSTEM

Figure 2.2: Visualisation of the contributions of this thesis. The numbers at the end
of each arrow represent the chapters in which the corresponding design is
described.

19



Chapter 2 The state of the art in designing molecules, experiments, and processes

a CAMPD framework for solvent design is presented that considers cradle-to-grave LCA

including production, use, and disposal: COSMO-susCAMPD. COSMO-susCAMPD

overcomes the limitations of previous CAMPD approaches by predicting the specific

cradle-to-gate impacts of solvent production using an artificial neural network and

by exploiting process data from the process model as Life Cycle Inventory (LCI) for

solvent use and disposal.

CAMPD framework from molecules to heat recovery systems

At the application level, comprehensive modelling and optimisation of the appli-

cation’s degrees of freedom are required within CAMPD (cf. Section 2.3). However,

current CAMPD methods either simplify process representation using performance

indicators or flowsheet subsystems or simplify the molecular design scope. Therefore,

in Chapter 4, an extended COSMO-(sus)CAMPD method is presented that moves

beyond simplified flowsheet subsystems while still building on reliable thermodynamic

data from a large molecular design space. Process design in CAMPD is extended to

incorporate modelling and optimisation of entire process flowsheets, including the most

common unit operations as well as the heat recovery and utility system.

Property prediction using quantum chemistry and machine learning

Formulating environmental objectives at the system level and expanding the scope

of modelling at the application level requires additional property data of candidate

molecules and applications. This property data needs to be provided within the

design algorithms by predictive and automated methods using molecular descriptors.

However, application-specific property prediction beyond thermodynamics is rarely

integrated into CAMPD and CAPD methods. Moreover, currently used methods for

thermodynamic properties are usually limited to specific groups of molecules, limiting

the molecular design scope. Therefore, in Chapters 3, 4 and 6, various methods for

property prediction are integrated into the molecular design algorithms for candidate

assessment: automated quantum chemistry and thermochemistry calculations for

thermodynamic properties, as well as machine learning-based models for environmental

impacts and hazards, combustion properties, and synthesisability prediction.

Experimental design for process-level and environmental objectives

For parameter estimation and validation in process and product design, experimenta-

tion focuses today mainly on general parameter accuracy at the property level and not

on the use of the parameters (cf. Section 2.4). Current methods for experimental design

used in chemical engineering rarely reflect the purpose of experimentation beyond

pure parameter knowledge. However, for physical properties for process flowsheet
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simulations, the OED objective needs to be defined in terms of process uncertainties

to achieve accurate chemical process simulations. Therefore, Chapter 5 demonstrates

OED of physical property measurements that considers the subsequent parameter use in

simulation and assessment at the application and system level: c-optimal experimental

design (c-OED).

Fuel design for maximum engine efficiency

At the molecular level, the progress in CAMPD can be adapted to advance the

computer-aided design of products (cf. Section 2.5). In particular, the most recent

improvements in CAMPD can be transferred to the tailored design of products: CAPD

should use a model of the application as objective function that accurately reflects the

product use. However, current methods in CAPD design for surrogate measures of a

candidate product’s performance such as favourable molecular properties. Therefore,

Chapter 6 demonstrates CAPD evaluating the product’s performance in application

through the design of fuels for maximum engine efficiency. The developed optimisation-

based fuel design algorithm employs an empirical model of spark-ignition engine

efficiency as objective function to explicitly design for maximum engine efficiency.

In summary, this thesis advances the design of molecules, experiments, and processes

towards designing for sustainability and tailoring for applications. The presented

methods allow formulating integrated optimisation problems and solving complex

multi-scale problems with application- and system-level objectives. Thereby, this thesis

contributes to designing a sustainable chemical industry.

21





Chapter 3

Combining computer-aided molecular

and process design with predictive life

cycle assessment

To minimise environmental impacts, CAMPD needs to include an environmental

assessment method that closes the gap between the application and the system level

and quantifies the environmental impacts. For this purpose, this chapter proposes a

CAMPD framework that integrates LCA of solvents from cradle to grave: COSMO-

susCAMPD. The framework builds on the COSMO-CAMPD method for predictive

design of solvents using COSMO-RS and pinch-based process models (Scheffczyk

et al., 2018). Cradle-to-grave LCA is enabled by combining predictive LCA from

cradle-to-gate using an artificial neural network with gate-to-grave Life Cycle Inventory

data from the process models.

The methodology of the COSMO-susCAMPD framework is described in Section 3.1.

The details of the framework and the set-up of the artificial neural network for

predictive LCA are explained, and the accuracy of the predictive LCA is discussed.

The framework is applied to design solvents in a hybrid extraction-distillation process

in Section 3.2. Results of the optimisation are presented, and the advantages of the

integrated design are discussed. Finally, conclusions for the design of sustainable

solvents and processes are drawn in Section 3.3.

Major parts of this chapter are reproduced by permission of Elsevier from:

Fleitmann, L.; Kleinekorte, J.; Leonhard, K. and Bardow, A. (2021). COSMO-susCAMPD: Sustain-

able Solvents from Combining Computer-Aided Molecular and Process Design with Predictive

Life Cycle Assessment. Chemical Engineering Science, 245, 116836.

The author of this thesis integrated the cradle-to-gate predictive life cycle assessment into the solvent

design method and wrote the first draft as the principal author. The author investigated, validated

and visualised the results of the molecular design. The conceptualisation and methodology were

jointly developed in discussion with the co-authors.
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Chapter 3 Combining CAMPD with predictive LCA

3.1 COSMO-susCAMPD: A framework for the design of

sustainable solvents and processes

The design of optimal solvents for maximal process performance and minimal environ-

mental impacts requires the combination of two methods: (1) Integrated molecular

and process design (CAMPD) and (2) predictive cradle-to-grave life cycle assessment

(LCA).

1. CAMPD methods usually combine three steps (Papadopoulos et al., 2018):

a) First, candidate molecules are generated by an algorithm, e.g. by a combi-

nation of functional groups or molecular fragments. The algorithm needs

to be able to change the molecular structures systematically to explore a

given design space, while structural feasibility is ensured for all candidates.

b) Secondly, for each candidate molecule, thermodynamic properties are pre-

dicted using predictive thermodynamic models. Thermodynamic proper-

ties are required to bridge the order of magnitude between the candidate

molecules and the process, e.g. by prediction of activity coefficients or

vapour pressures.

c) Finally, the candidate molecules are evaluated by an objective. The objec-

tive function quantifies the fit of the candidate molecules to the process

application, e.g. by a particular thermodynamic property, a process variable

or an economic metric.

2. A method for predictive LCA of candidate molecules requires the assessment

of all stages of a molecule’s life cycle: the production, the use phase and the

disposal. In literature, predictive methods for particular life cycle stages have

been proposed:

a) The environmental impacts from the production can be estimated by molec-

ular structure models that use molecular descriptors to predict the cradle-

to-gate LCIA, e.g. using multi-linear regression (Calvo-Serrano et al., 2018)

or ANN (Song et al., 2017).

b) The use phase of a molecule can be modelled by generalised flowsheets

estimating, e.g. the gate-to-gate energy demand of processes (Jiménez-

González et al., 2000; Parvatker and Eckelman, 2020). Afterwards, this

LCI is translated into LCIA by multiplying the energy demand with the

corresponding characterisation factors.
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c) Predictive LCA approaches dealing with the disposal of molecules have not

been published so far. However, proxies from LCI databases for generic

wastewater treatment or waste incineration can be used (Canals et al.,

2011).

Methods for predictive LCA of each life cycle stage are combined with a CAMPD

method in the proposed COSMO-susCAMPD framework (Figure 3.1) to yield a

fully predictive framework with cradle-to-grave environmental assessment. COSMO-

susCAMPD is introduced in the following Section 3.1.1.

Process model
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Process performance
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Figure 3.1: COSMO-susCAMPD: Fully automated framework to design environmen-
tally beneficial solvents by combining COSMO-CAMPD with predictive
LCA.
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3.1.1 Implementation of the COSMO-susCAMPD framework

The COSMO-susCAMPD framework expands COSMO-CAMPD by a predictive LCA

method as follows:

1. The basis for COSMO-susCAMPD is the COSMO-CAMPD method initially

developed to design solvents for optimum process performance and economic

objectives (Scheffczyk et al., 2018). The CAMPD method involves three steps in

each iteration of the optimisation procedure:

a) Generation of a molecular structure: The generation of candidate solvents

is part of the molecular optimisation using the genetic algorithm LEA3D

(Douguet et al., 2005). LEA3D builds molecules from 3D-molecular frag-

ments. The fragments are specified in the initialisation of the algorithm

via a fragment library. The fragment library is created by the users to

reflect their preferences. The algorithm starts by randomly combining

fragments for the first generation of molecules. After these molecules have

been evaluated by the constraints and the objective function (Steps 1b and

1c), LEA3D alters the population of molecules for each following generation

using genetic operations on the candidate molecules, i.e. crossover and mu-

tation. Thereby, LEA3D explores the vast molecular design space towards

an objective function. After a predefined number of generations is reached,

the molecular optimisation stops.

Already during the generation of the molecular structures, LEA3D ensures

the chemical feasibility of the molecules, e.g. all candidate molecules fulfil

the octet rule. Moreover, the 3D structure of the candidate molecules allows

evaluating constraints on the molecular size or functional groups. If such

constraints exist, undesirable candidate molecules can already be discarded

before the time-consuming computational steps.

b) Prediction of thermodynamic properties: For each candidate solvent of each

generation, thermodynamic properties are obtained using the predictive

thermodynamic model COSMO-RS (Klamt et al., 2010). COSMO-RS

uses surface charge interactions from quantum chemical Density Functional

Theory (DFT; Kohn and Sham, 1965). By applying statistical thermo-

dynamics to the interactions between the surface charges, COSMO-RS

can then predict many thermodynamic properties of pure components and

mixtures, such as activity coefficients, Liquid-Liquid Equilibria (LLE) or

vapour pressures with low computational effort.
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3.1 A framework for the design of sustainable solvents and processes

In COSMO-susCAMPD, COSMO-RS is used on the TZVP-MF level of

theory for each molecule, i.e. full geometry optimisation and determination

of the screening charge density (σ-surface) using the DFT functional BP86

and a TZVP basis set performed on a semiempirical conformer generation

(Klamt et al., 2010). TZVP-MF exhibits a good balance between compu-

tational cost and accuracy for application in CAMPD (Scheffczyk et al.,

2017b). The optimised geometries and σ-surfaces are computed in parallel

for pure components based on the 3D-molecular structure and are stored in

a local database for reuse. Thus, the time-consuming DFT calculations are

only performed once for each candidate solvent.

The thermodynamic properties are used to evaluate constraints, e.g. the

existence of LLE or an appropriate boiling point. These constraints on

thermodynamic properties can reduce the search space and help to identify

feasible solvents. In addition, in COSMO-susCAMPD, the thermodynamic

properties serve as an input for the ANN to predict cradle-to-gate impacts.

c) Process model evaluation: For each candidate solvent of each generation

that fulfils property constraints, a process flowsheet is evaluated. The pro-

cess is modelled using pinch-based process models for each unit operation

(Bausa et al., 1998; Redepenning et al., 2017). Pinch-based process models

are reduced-order models that provide an accurate and efficient calculation

of process units assuming minimum thermodynamic driving force. By this

assumption, computationally demanding tray-by-tray calculations can be

omitted, but no simplifications of thermodynamic modelling are required.

In literature, it has been shown that the pinch-based process models agree

well with results from rigorous tray-by-tray models for operation near the

thermodynamic minimum (Scheffczyk et al., 2018; Redepenning et al., 2017).

As a result, the pinch-based process models yield a maximum achievable

process performance for each solvent considering full equilibrium thermody-

namics. Due to the computational efficiency of the process evaluation, the

process flowsheet can be optimised for each solvent.

In COSMO-susCAMPD, the process model not only evaluates process perfor-

mance but also provides process data as LCI of the use phase for gate-to-gate

LCIA.
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2. To enable an environmental objective in COSMO-susCAMPD, a predictive LCA

is added for every candidate solvent to COSMO-CAMPD. For this purpose, the

life cycle of the candidate solvents is divided into three stages (Figure 3.2): (a)

solvent production (cradle-to-gate), (b) solvent use in the process (gate-to-gate)

and (c) solvent disposal (gate-to-grave).

a) Solvent production: The environmental impacts from solvent production

(cradle-to-gate system boundary) are estimated using an ANN. As shown

by Wernet et al. (2008), ANNs outperform other regression methods such

as multi-linear regression in LCA applications. The ANN uses molecular

and thermodynamic solvent properties as input as already proposed in the

literature (Song et al., 2017; Calvo-Serrano and Guillén-Gosálbez, 2018;

Papadopoulos et al., 2020). In particular, thermodynamic properties of the

candidate solvents from COSMO-RS are included. Properties calculated

from COSMO-RS have already been proven to be suitable molecular de-

scriptors by Calvo-Serrano et al. (2018). In COSMO-susCAMPD, molecular

descriptors from COSMO-RS provide the additional advantage that a con-

sistent set of descriptors is used for both the LCA and the techno-economic

assessment. More details on the training and set-up of ANN are given in

Section 3.1.2.

b) Solvent use: Impacts related to the solvent use in the process (gate-to-gate

system boundary) are calculated from the Life Cycle Inventories provided by

the process model. Process evaluation solves the mass and energy balances

Figure 3.2: Life cycle stages of a solvent and frequently used system boundaries in
environmental assessment. In COSMO-susCAMPD, cradle-to-grave system
boundaries are enabled by combining an artificial neural network with
pinch-based and aggregated process models.
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providing all required LCI information for LCIA. In particular, the minimum

amount of solvent used in the process is determined accurately by the pinch-

based process models. Knowledge of the amount of solvent used allows

for a comparison of candidate solvents in process-specific objectives rather

than a specific comparison per kilogram of solvent. The LCIA is performed

by multiplying the LCI with specific environmental impacts from LCA

databases or the ANN prediction. For example, the process heat demand is

converted into emissions using the specific impact for natural gas combustion

per megajoule heat obtained from the GaBi database (Thinkstep AG, 2017).

Additional emissions, such as fugitive emissions, are not considered.

c) Solvent disposal: For the disposal of solvents (gate-to-grave system bound-

ary), aggregated process models are known in the literature. Here, the

solvent disposal is modelled by LCIA for wastewater treatment based on

the mass of wastewater including solvent contamination. The literature

model yields a specific impact per kilogram of wastewater (Ruiz, 2019). The

gate-to-grave LCIA is completed by multiplying the specific impact with

the flow rate of wastewater. Both the flow rate and the contamination of

wastewater with the solvent result from the process model evaluation.

By combining COSMO-CAMPD and predictive LCA as described, COSMO-susCAMPD

yields a fully automated and predictive framework for solvent design. As an objective

for the design, process performance, environmental impacts from cradle-to-grave as

well as combined objective functions are possible. Alternatively, the predictive LCA

can serve as a constraint. More details on used soft- and hardware can be found in

Appendix A.1.

3.1.2 Set-up and accuracy of the predictive LCA method

The predictive LCA method uses an Artificial Neural Network (ANN) as a regression

model, which is trained on known environmental impacts of solvents from databases

or literature. After training, the ANN is capable of predicting environmental impacts

for candidate solvents similar to the solvents from the training data. Here, consistent

cradle-to-gate LCA data from the GaBi Database (Thinkstep AG, 2017) on 73 solvents

is used for training purpose. While the data set is small, it is important to use

consistent, high-quality data and to avoid data based on generic heuristics. Thus,

the present data set is the largest high-quality data set available to the author. To

facilitate the set-up of the ANN, an automated framework is used in four steps (Figure

3.3), as already outlined by Kleinekorte et al. (2019):

29



Chapter 3 Combining CAMPD with predictive LCA
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Figure 3.3: Flow diagram for the automated set-up of the artificial neural network.

1. First, suitable features for the ANN are selected from various molecular descrip-

tors using linear stepwise regression as a feature selection method (Draper and

Smith, 1998; Lindsey and Sheather, 2010). For all molecules in the training

data, various molecular descriptors are calculated as prospective features, e.g.

information on the molecular structure, such as the number of carbon or oxygen

atoms, or thermodynamic properties from COSMO-RS, such as the normal

boiling point. The molecular descriptors which show the highest correlation

with the environmental impacts are selected as features (see Appendix A.2 for

details).

2. Secondly, the training data is split into three sets to allow for training, validation

and testing of the ANN (Goodfellow et al., 2016). At first, a test set is separated

from the training data for the final accuracy evaluation of the ANN. The test

set contains approximately 10 % of the training data and is not used within the
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3.1 A framework for the design of sustainable solvents and processes

training or validation of the ANN to obtain a final accuracy value on unseen

data. Extreme points at the edge of the data set are not selected for the test

set due to the low extrapolation capability of the ANN beyond the training set.

Afterwards, the remaining training data is split ten times into a validation (10 %
of the remaining training data) and a training set (90 % of the remaining training

data) to increase the generalisability of the final architecture.

All sets are chosen so that the statistical distribution of the test, training and

validation sets are similar (Goodfellow et al., 2016). Therefore, various test,

training and validation sets are randomly generated first. For each random set,

the Kullback-Leibler divergence is calculated based on the features as a measure

of statistical distribution for data sets (Kullback and Leibler, 1951). A low

Kulback-Leibler divergence indicates similar and uniform statistical distribution

between the data sets, which is a requirement for the training and application

of ANN. Therefore, the test set with the lowest Kullback-Leibler divergence is

chosen for the final accuracy evaluation. For training and validation sets, the

ten splits with the lowest Kulback-Leibler divergence are chosen for the training

of the ANN.

3. Thirdly, the hyperparameters of the ANN, e.g. the number of layers or the

number of neurons per layer, are selected. Setting the hyperparameters is not

trivial and has a considerable influence on the accuracy of the ANN. Therefore,

a genetic algorithm (GA) (The MathWorks Inc., 2018a) is used to find optimal

hyperparameters. The objective of the GA is the minimisation of the average

root-mean-square error (RMSE) of the ANN predictions on the validation sets:

min
10∑

i=1

RMSEval
i

n
(3.1)

For each instance of the GA, 10 ANNs are trained with the same hyperparam-

eters using the 10 training sets. Afterwards, each ANN is used to predict the

corresponding validation set, and the RMSE of the prediction is calculated. By

averaging the RMSE over the 10 sets, extreme prediction errors due to the small

set sizes are flattened and bootstrapping and accuracy evaluation are enabled

(Carney et al., 1999).

To avoid local optima due to the statistical optimisation, 100 runs of the GA are

performed from random starting points by varying the initial hyperparameters.

4. Finally, the ANN is trained with the optimised architecture on the combined

training and validation set to perform an accuracy evaluation by predicting the
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Chapter 3 Combining CAMPD with predictive LCA

test set. The test set has neither been used to train the ANN nor optimise the

hyperparameters. Therefore, the ANN predicts the unseen test set with similar

accuracy as the molecules designed within the COSMO-susCAMPD framework.

After applying the described set-up, one trained ANN is obtained with optimal

hyperparameters and an estimation of its accuracy for one impact category. The ANN

can directly be integrated to predict cradle-to-gate impacts for candidate solvents.

In the following, the accuracy of the ANN predictions is investigated, and COSMO-

susCAMPD is subsequently applied to a case study. Using the described framework,

one ANN is set up for each of the 17 midpoint impact categories from the ReCiPe

method (Goedkoop et al., 2009). In the main text, only the two LCA impact categories

are discussed, for which the most reliable LCIA methods are available: Climate Change

(CC) and Ozone Depletion (OD) (European Commission-Joint Research Centre, 2011).

Details on all 17 impact categories can be found in Appendix A.3. The accuracy of

predictions is measured with the coefficient of determination (R2) and the normalised

RMSE (nRMSE).

The coefficient of determination R2 indicates the trend-capturing correlation between

the ANN predictions and the database values (Alexander et al., 2015). The nRMSE

indicates how much the predictions deviate on average from the database values (Otto

et al., 2018). The normalised RMSE, which is normalised by the range of the database

values, is reported to make all impact categories comparable.

Currently, the availability of LCA data on solvents is limited for the training of an

ANN. Our training data contains only 73 solvents, a comparably small number for

machine learning approaches (Alwosheel et al., 2018). Therefore, the accuracy of the

ANN predictions is currently limited (c.f. Table 3.1). On average, the ANN achieves

an already acceptable nRMSE of 10 %, but the average R2 is low with a value of only

0.43. The low R2 can be explained by the small training data set: If very few data

points are used, the R2 value is highly sensitive. Due to the small set sizes, inaccurate

predictions for a few solvents decrease the R2 already significantly despite otherwise

acceptable predictions. Therefore, it is important to focus not only on the R2 but

also consider the (n)RMSE. For Ozone Depletion, for example, the nRMSE of the

validation and of the test set match very well, indicating acceptable predictions despite

substantial differences in the R2. In particular, the predictions deviate significantly

from the database values for areas of sparse training data. In these areas, a high

variance between the 10 ANN predictions and generally large deviations from the

database values can be observed, indicating high sensitivity on the training set due to

limited data. For example, for the impact on Climate Change (CC), the predictions

deviate from the database values by up to 5 kg CO2-eq. kg−1
chem. for solvents in the
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3.1 A framework for the design of sustainable solvents and processes

sparse data region greater than 6 kg CO2-eq. kg−1
chem. (see Figure 3.4 A). Therefore,

some solvents with extreme impacts on CC at the edges of the training data are

currently predicted inaccurately and need future improvement. Similarly, the ANN

yields a few physically not meaningful results, i.e. negative values for some impact

categories, which are removed when applying the ANN in COSMO-susCAMPD.

However, an already acceptable accuracy of prediction is achieved for most solvents

and, in particular, in ranges with sufficient data (Figure 3.4). Generally, the predictions

meet the database values with acceptable confidence except for a few strong outliers

in sparse regions. The accuracy is comparable to the state-of-the-art in literature: For

example, the estimation of CC had a coefficient of determination R2 of 0.41 in work by

Wernet et al. (2009) or a coefficient of determination R2 of 0.48 in work by Song et al.

(2017). Future improvement in accuracy is expected with more data available. For the

design of solvents, ultimately, the uncertainty of the final cradle-to-grave environmental

impact is most relevant. Therefore, the propagation of the uncertainty caused by the

ANN prediction to the cradle-to-grave impact is investigated in Section 3.2.2.

Table 3.1: Prediction accuracy of the artificial neural network for the impact categories
Climate Change and Ozone Depletion, as well as an average of all 17
regarded impact categories in terms of coefficient of determination (R2) and
normalised root-mean-square error (nRMSE).

Data set
Climate Change Ozone Depletion

Average of
all impact categories

R2 nRMSE R2 nRMSE R2 nRMSE

Training set 0.44 17% 0.81 8% 0.57 12%

Validation set 0.56 14% 0.76 16% 0.56 14%

Test set 0.51 9% 0.08 15% 0.43 10%
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Figure 3.4: Accuracy of the ANN predictions for the LCA impact categories Climate
Change (CC) and Ozone Depletion (OD). The confidence interval is calcu-
lated from the standard deviation of the predictions on the test set.
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3.2 Case study and results: Design of benign solvents for

the hybrid extraction-distillation of γ-valerolactone

To demonstrate the application of COSMO-susCAMPD, the hybrid extraction-distillation

of γ-valerolactone (GVL) is investigated, as proposed by Murat Sen et al. (2012). Re-

cently, GVL has attracted attention as a bio-derived platform chemical, a green solvent

or a renewable fuel (Zhang, 2016). A promising pathway to GVL is the produc-

tion from lignocellulosic biomass and purification from aqueous solution using hybrid

extraction-distillation. As an extraction solvent, n-butyl acetate has been suggested

in the literature (Murat Sen et al., 2012). Therefore, n-butyl acetate serves as a

benchmark for the solvent design with COSMO-susCAMPD.

3.2.1 Problem specification

As a case study, the process of GVL purification consists of an extraction column, a

distillation column and a decanter (Figure 3.5). A mixture of GVL and water containing

5 mol-% GVL is fed to the extraction column, where the solvent extracts the GVL

entirely into the extract stream. The resulting extract is split in the distillation

column into pure GVL at the bottom and a water-solvent stream at the top of the

distillation column. The water-solvent stream is recycled to the extraction column. If

the water-solvent stream splits into two liquid phases, the aqueous phase is separated

from the organic phase in a decanter, and only the organic phase is fed back into the

extraction column. Both the raffinate and the aqueous phase from the decanter, if

present, are sent to wastewater treatment.

Candidate solvents are considered for property prediction and process evaluation if

they are expected to be stable within the extraction process based on their functional

groups and if they are smaller than 13 non-hydrogen atoms. The process specifications

further constrain suitable candidate solvents based on their physical properties: Suitable

candidate solvents must have a liquid-liquid equilibrium with water. Furthermore, the

candidate solvents must not exceed the boiling point for GVL to allow for separation

of GVL at the bottom of the distillation column. For simple distillation, candidate

solvents also must not form an azeotrope with GVL. The constraints on the molecular

properties are evaluated for each candidate solvent in each generation of the genetic

algorithm with the thermodynamic properties predicted by COSMO-RS (Step 1b

of the COSMO-susCAMPD framework). Candidate solvents that do not fulfil these

requirements are discarded and not considered suitable candidate solvent for subsequent

process optimisation and environmental assessment.
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Figure 3.5: Flowsheet and contributions to environmental impacts of the hybrid
extraction-distillation process for γ-valerolactone purification. The ex-
traction column temperature TExtr is the process design degree of freedom
in this case study.

For each suitable candidate solvent, the process settings, i.e. the temperature of the

extraction, are optimised to obtain the minimum energy demand for distillation (Step

1c). For the environmental assessment (Step 2), three types of emissions are considered:

The emissions from solvent production due to solvent make-up, the emissions from

solvent use due to energy consumption in the distillation reboiler, and the emissions

from solvent disposal in wastewater treatment. For each candidate solvent, the cradle-

to-gate impacts of all 17 LCA impact categories are predicted using the ANNs (Step

2a), and the full cradle-to-grave LCA is conducted by exploiting the LCI from the

process evaluation for use phase (Step 2b) and solvent disposal (Step 2c). All emissions

are calculated for the functional unit of 1 kmol of GVL produced in this process.

In total, four optimisation runs of the genetic algorithm LEA3D are performed to

find an optimal solvent for the GVL purification. For molecular design, all functional

groups are included that were in the training set of the ANN, e.g. alkane-, benzene-,

amine-, sulfone- keto- or hydroxyl-fragments (see Appendix A.4 for details). Thus,

all molecules that are designed should be predictable by the ANN without forcing

the ANN to extrapolate. For all optimisation runs, the objective is to minimise the
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cradle-to-grave impact on Climate Change (CCcradle-to-grave) by summing the impacts

on Climate Change of the three life cycle stages of this process: solvent production

(CCProduction), solvent use in the process (CCProcess) and solvent disposal (CCDisposal):

min CCcradle-to-grave = CCProduction + CCProcess + CCDisposal (3.2)

The impact on Climate Change of the process (CCProcess) is linearly proportional

to the energy demand. The energy demand in the distillation column captures the

operating cost of the process. Thus, economically attractive solvents have a low impact

from the use phase. Therefore, the optimisation of the cradle-to-grave impact on

Climate Change yields solvents with a balanced contribution from all life cycle phases

and low operational cost. If desired, multi-objective optimisation could be employed

to optimise cost and impact on Climate Change explicitly.

3.2.2 Results and discussion

In total, the optimisation generates more than 1600 unique solvents, which are evaluated

in the 4 design runs in about 5 days (121 hours). From all candidate solvents, 703

solvents fulfil the property constraints and are suitable for the process. Therefore, a

ranking of 703 solvents according to their cradle-to-grave impact on Climate Change

is obtained as a result (Figure 3.6).

The solvent with the highest reduction in the impact on Climate Change is 2,3,3,5-

tetramethyl-hexane, with a cradle-to-grave impact on Climate Change of about 4.4

kg CO2-eq. kmol−1
GVL. Compared to the benchmark n-butyl acetate (Murat Sen et al.,

2012), 2,3,3,5-tetramethylhexane reduces the impact on Climate Change by about

68 %. More generally, 291 of the 703 candidate solvents have a lower impact on

Climate Change than the benchmark, and 169 solvents outperform the benchmark in

terms of Climate Change and process energy demand Qreb. COSMO-susCAMPD thus

designs successfully many suitable alternatives. For the top 15 candidates, very similar

solvents are found: The top 15 solvents are all alkanes and alkenes, most of which are

highly branched and therefore not yet commercially available. The highest-ranking

commercially available bulk chemical is n-octane on rank 8. N-octane reduces the

impact on Climate Change by about 67.5 % compared to the benchmark solvent, which

is very close to the impact reduction of the optimal solvent.

To challenge the use of the cradle-to-grave impact as an objective function, the

cradle-to-grave impact on Climate Change is compared with the gate-to-gate impact

from process energy demand during solvent use. The impact on Climate Change from
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process energy depends linearly on the process energy demand Qreb (black line in

Figure 3.6) and thus represents the result of an economic optimisation for minimum

process energy demand as typically used in CAMPD. Intuitively, one might expect

that energy demand in the use phase captures the cradle-to-grave impact on Climate

Change already well. However, in this case study, the cradle-to-grave impact of 187

candidate solvents deviates by more than 50 % from the impact of process energy

(Figure 3.6). The deviation from the impact caused by the process energy is due to

the production and disposal of the candidate solvents. This deviation highlights the

importance of the cradle-to-grave system boundary. Still, for this case study, the

top 15 solvents with the lowest impact on Climate Change equal the top 15 solvents

with the lowest process energy demand Qreb. For these solvents, the process requires

60.6 - 62.4 MJ kmol−1
GVL energy for distillation, corresponding to a reduction of about

46 - 48 % compared to the benchmark n-butyl acetate.

102 103 104

Q
reb

/ MJ kmol
GVL
-1

101

102

103

C
lim

at
e

C
ha

ng
e

(c
ra

dl
e-

to
-g

ra
ve

)
/k

g
C

O
2
-e

q.
km

ol
G

V
L

-1

benchmark n-butyl acetate

im
pact 

of p
roce

ss
 energy

Figure 3.6: Cradle-to-grave impacts on Climate Change (CC) of all solvents designed
versus corresponding process energy demand Qreb. Each blue circle repre-
sents one candidate solvent. The black line is the impact resulting from
the process energy demand; the red lines represents the impact on Climate
Change and process energy demand of the benchmark solvent n-butyl
acetate.
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Moreover, the importance of the cradle-to-grave system boundary is shown by

comparison to the ranking by cradle-to-gate LCA: A cradle-to-gate LCA based on the

specific impacts of solvent production yields a very different ranking (Figure 3.7 A).

The solvent with the lowest cradle-to-gate impact on Climate Change per kilogram

solvent is divinyl ether with about 2.1 kg CO2-eq. kg−1
solvent. However, divinyl ether has

a cradle-to-grave impact on Climate Change of about 7.3 kg CO2-eq. kmol−1
GVL ranking

only 75th in cradle-to-grave impact. 2,3,3,5-tetramethyl-hexane, the solvent with the

lowest cradle-to-grave impact, ranks only 139th with a higher cradle-to-gate impact on

Climate Change of about 2.5 kg CO2-eq. kg−1
solvent. Therefore, concentrating only on

the specific cradle-to-gate LCA of the solvent production proves to be a misleading

objective. Specific assessment of molecular properties is not sufficient. Instead, the

amount of solvent used in the process needs to be considered for solvent selection with

an environmental objective. In particular, the specific cradle-to-gate impacts are quite

similar for all solvents (x-axis of Figure 3.7 A) in this case study. In contrast, the

cradle-to-grave impact spans multiple orders of magnitude (y-axis of Figure 3.7 A)

yielding a more selective objective.

The differences in the ranking between cradle-to-gate and cradle-to-grave LCA can

be explained by the neglect of the solvent use phase: For solvents with a high cradle-

to-grave impact, a high amount of solvent is lost in the wastewater stream (Table 3.2).

A high solvent loss to wastewater causes a high make-up demand to run the process in

steady-state. Therefore, a high amount of solvent needs to be produced for make-up,

causing high absolute impacts from solvent production regarding the functional unit

of 1 kmol GVL. Conversely, a low impact of solvent production is only achieved with a

small make-up demand of solvent, in particular as the specific cradle-to-gate impacts

are within the same order of magnitude for all candidate solvents.

If the solvent loss is small, the use phase impact due to process energy dominates the

cradle-to-grave LCA. Furthermore, a low solvent loss reduces uncertainty propagation

of the ANN predictions. As a result, the uncertainties of the cradle-to-grave impact

decrease (Table 3.2). Therefore, accurate LCI of the use phase and thus accurate

process modelling and precise property data are crucial. As an indicator of the

accuracy, the predicted solubilities of solvent in water from COSMO-RS are compared

with experimental data from the literature. The solubilities of the solvents in water

are crucial for the LCA because they determine the solvent loss and make-up and,

consequently, the environmental impact of the solvent production. For the benchmark

n-butyl acetate, solubilities of 6.7 - 8.3 g/l at 25 ◦C have been determined experimentally

(Yalkowsky and He, 2003) compared to 6.1 g/l from the COSMO-RS predictions. For n-

octane, COSMO-RS predicts a solubility at 25 ◦C of 3 mg/l compared to 0.4 - 0.9 mg/l
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Figure 3.7: (A) Cradle-to-grave impact on Climate Change per kmol GVL versus
specific impact from solvent production (cradle-to-gate system boundary)
per kilogram solvent. (B) Cradle-to-grave impact on Climate Change
versus mole fraction of solvent in the wastewater stream.
The red square indicates the solvent with the lowest cradle-to-gate impact
on Climate Change, the yellow diamond the solvent with the lowest cradle-
to-grave impact on Climate Change, and the green triangle the solvent
with the lowest solvent loss to wastewater.
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experimentally (Yalkowsky and He, 2003). Considering the broad range of solubilities

over multiple orders of magnitude, the experimental measures are both in good

agreement with the COSMO-RS prediction. Thus, in conclusion, COSMO-RS can be

used for property prediction to generate accurate LCI for this process, even for the

challenging hydrocarbon-water interactions (Klamt, 2003).

Still, the solvent loss alone is also not sufficient as an objective for molecular design

(Figure 3.7 B). The solvent with the lowest solvent loss, 2,4-dimethyl-nonane, ranks

only 600th in process energy demand Qreb and 524th in cradle-to-grave impact on

Climate Change. The advantageous low solvent loss does not guarantee a low cradle-

to-grave impact on CC, as low solvent loss and low energy demand for separation

do not correlate. The high energy demand in distillation outweighs the favourable

low solvent loss and make-up. Therefore, top solvents balance solvent loss as well as

specific production impact and process energy demand. To include all these relevant

factors, the cradle-to-grave LCA is required as objective function.

Besides the impact on Climate Change, the other 16 ReCiPe midpoint impact

categories (Goedkoop et al., 2009) are evaluated as well for every candidate solvent in

COSMO-susCAMPD. Generally, solvents ranked well in the impact on Climate Change

and process energy demand show also a balanced performance in most of the other

impact categories. For example, the top solvent in cradle-to-grave impact on Climate

Change is also among the top 10 solvents in 15 of the other 16 impact categories. As

for the impact on Climate Change, the low solvent loss in the process combined with

low energy demand in separation yields a low cradle-to-grave LCA impact.

For this case study, only the impact category Ozone Depletion (OD) differs from

the trend of all other impact categories (Figure 3.8). For Ozone Depletion, a strong

trade-off between the cradle-to-grave impact on Ozone Depletion and the process

energy demand for most solvents can be identified. As a result, the solvent ranking

differs substantially for Ozone Depletion. For example, 5 of the top 10 solvents in

Ozone Depletion occupy ranks 400 and higher in Climate Change or ranks 500 and

higher in process energy demand. The change in ranking for Ozone Depletion is due

to the fact that the impacts due to solvent production and solvent loss dominate

the impact on Ozone Depletion. This outcome is reasonable since process energy is

supplied as heat from natural gas combustion with no substantial impact on Ozone

Depletion. Thus, the presented method also captures the variable weighting of and

trade-offs between the life cycle stages depending on the impact category considered.
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3.3 Conclusion

In this chapter, a framework for the design of solvents and processes with an envi-

ronmental objective is presented: COSMO-susCAMPD. The COSMO-susCAMPD

framework extends state-of-the-art Computer-Aided Molecular and Process Design

(CAMPD) by integrating predictive Life Cycle Assessment (LCA) with a cradle-to-

grave system boundary. Cradle-to-grave LCA is achieved by the combination of (1) an

Artificial Neural Network (ANN) predicting cradle-to-gate impacts with (2) process

optimisation using pinch-based process models providing life cycle inventory for solvent

use and disposal. Both the ANN and the process models use molecular and thermody-

namic properties calculated from the predictive thermodynamic model COSMO-RS.

Therefore, the assessment of environmental impacts and process performance is based

on one consistent set of descriptors. For simultaneous molecular and process design, the
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Chapter 3 Combining CAMPD with predictive LCA

predictive LCA and the process optimisation are combined with the genetic algorithm

LEA3D, which optimises 3D-molecular structures based on the results from LCA and

process optimisation.

As an application for COSMO-susCAMPD, the purification of the bio-based platform

chemical γ-valerolactone from aqueous solution by hybrid extraction-distillation is

investigated. The process is optimised for minimum environmental impact by exploiting

the degrees of freedom from molecular and process design. As a result, promising

candidate solvents are identified from a vast design space outperforming the literature

benchmark n-butyl acetate by reducing the impact on Climate Change by about 68 %.

The candidate solvents identified exhibit both a high process performance, i.e. a

low process energy demand, as well as a low cradle-to-grave environmental impact in

various ReCiPe midpoint impact categories.

The results show that a cradle-to-grave assessment at the system level is necessary

for the design of environmentally beneficial solvents. Simplified objectives, such as

cradle-to-gate LCA or solely economic evaluation, lead to suboptimal solutions. Only

the cradle-to-grave LCA balances conflicting molecular properties for an optimal result.

The COSMO-susCAMPD framework now provides a method for CAMPD based on

process evaluation and environmental assessment using LCA. The results of COSMO-

susCAMPD serve as an input for further validation by refined process simulations, life

cycle assessment and experiments. In particular, the LCA could be refined to include

other emissions, such as fugitive emissions of the process (Smith et al., 2017). Further

work is required to extend the LCA data for training the ANN. Currently, training

data for the ANN is rare, leading to limited accuracy of the ANN predictions. An

improvement in the prediction quality of the ANN is expected if more consistent LCA

data on solvents is available. Importantly, any additional training data needs to be

obtained from process data by consistent allocation and with consistent background

data. However, for the given case study, the prediction of accurate process data

outweighs the influence of inaccuracies of the ANN.

In conclusion, the presented COSMO-susCAMPD framework extends the environ-

mental assessment of state-of-the-art molecular design by predictive cradle-to-grave life

cycle assessment. Thus, the COSMO-susCAMPD framework enables the computer-

aided design of sustainable solvents and processes by evaluating environmental impacts

at the system level. In the next chapter, the COSMO-susCAMPD framework is ad-

vanced by comprehensive process modelling at the application level including additional

unit operations to apply the framework to reaction-separation processes beyond hybrid

extraction-distillation.
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Chapter 4

Computer-aided design of solvents and

processes using quantum chemistry

Chapter 3 shows the importance of considering the full life cycle of solvents for

CAMPD with environmental objective at the system level. This chapter focuses on

a comprehensive consideration of the application level in CAMPD. Comprehensive

modelling and design of the application level are achieved by increasing the process

design scope and the resolution of chemical process modelling. For this purpose, the

computer-aided molecular design of solvents is integrated with the design of heat-

integrated processes to consider the interactions between molecular properties and

process performance for minimum utility demand or minimum environmental impact.

The method is based on the COSMO-(sus)CAMPD method for the integrated design

of molecules and processes using COSMO-RS described in the previous Chapter 3.

To explain and demonstrate the extended COSMO-(sus)CAMPD method, this

chapter is structured as follows: In Section 4.1, the integrated CAMPD problem

is formulated as an optimisation problem, and the solution algorithm is explained.

The integrated models and the methods used are described in detail. In Section

4.2, the extended COSMO-(sus)CAMPD method is applied to two case studies: A

hybrid extraction-distillation process (Section 4.2.1) and an integrated carbon capture

and utilisation process (Section 4.2.2). The extended COSMO-(sus)CAMPD method

is compared with the state of the art, and the new capabilities of the method are

highlighted before conclusions are drawn in Section 4.3.

Major parts of this chapter are reproduced by permission of John Wiley & Sons, Inc., from:

Fleitmann, L.; Gertig, C.; Scheffczyk, J.; Schilling, J.; Leonhard, K. and Bardow, A. (2023). From

molecules to heat-integrated processes: Computer-aided design of solvents and processes using

quantum chemistry. Chemie Ingenieur Technik, 95(3), 368–380.

The author of this thesis contributed to the methodology and the implementation of the CAMPD

framework. The author investigated, validated and visualised the results of the molecular and process

design and wrote the first draft as the principal author. The conceptualisation and methodology were

jointly developed in discussion with the co-authors.
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Chapter 4 Computer-aided design of solvents and processes using quantum chemistry

4.1 COSMO-(sus)CAMPD for heat-integrated processes

The extended COSMO-(sus)CAMPD method integrates molecular and process design

using quantum chemistry-based property prediction and pinch-based process models for

unit operations and heat integration. The method can be formulated as an optimisation

problem for maximum process performance:

min
x,y

f(x, y, χ, ψ, θ) Objective function

s.t. χ = j(y, ψ) Heat integration model

ψ = h(y, θ) Process model

θ = g(x, y) Model for predicting thermodynamic properties

0 = m(x) Representation of molecules

k1(x) ≤ 0 Molecular constraints

k2(θ) ≤ 0 Thermodynamic constraints

k3(y, θ) ≤ 0 Process constraints

x ∈ X Molecular structure

y ∈ Y Process variables

(4.1)

In this optimisation problem, the molecular structure x and the process variables y are

optimised for a process design objective function f(x, y, χ, ψ, θ), e.g. the environmental

impacts measured by an LCA impact category, resource consumption measured by

the exergy demand, or the operating cost of the process. The objective function

f may depend on the molecular structure x, process variables y, targets for heat

integration χ, process model results ψ, and thermodynamic properties θ. To calculate

the objective, models for heat integration, process, thermodynamic properties, and

molecular structure are integrated:

• The heat integration model j(y, ψ) calculates maximum feasible heat integration

and corresponding minimum demands of utilities χ based on the process variables

y (e.g. optimised temperatures in unit operations), and process model results ψ

from the process model h (e.g. heat and mass flows).

• The process model h(y, θ) combines individual models of unit operations and

depends on process variables y (e.g. temperature or pressure settings in unit

operations) and thermodynamic properties θ (e.g. activity coefficients, heat

capacities or enthalpies of vaporisation).
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4.1 COSMO-(sus)CAMPD for heat-integrated processes

• The predictive thermodynamic models g(x, y) calculate thermodynamic proper-

ties for process model evaluation depending on the molecular structure x and

process variables y.

• The molecular structure model m(x) represents the candidate molecules using

3D-fragments and ensures chemical feasibility, e.g. the octet rule.

The individual models are combined in one method for molecular and process

design (Figure 4.1). The optimisation of the integrated design problem is subject to

constraints at the molecular level k1(x) (e.g. the maximum number of non-hydrogen

atoms), thermodynamic constraints k2(θ) (e.g. a minimum boiling point of the solvent),

and process constraints k3(y, θ) (e.g. limits on process variables). The constraints

k1, k2 and k3 tighten the optimisation problem and thus increase the computational

efficiency of the algorithm.

Solution algorithm: Property prediction using quantum chemistry and process

optimisation are integrated into a molecular design algorithm (Douguet et al., 2005) re-

sulting in an evolutionary optimisation procedure of four steps per iteration (Figure 4.1):

(1) generation of candidate solvents, (2) prediction of thermodynamic properties, (3)

process optimisation and (4) ranking of candidate solvents.

1. Generation of candidate solvents: As the first step of each iteration, candidate

solvents are generated using the genetic algorithm LEA3D (Douguet et al., 2005),

as described in Section 3.1.1. The genetic algorithm forms the outer loop of

the optimisation procedure and runs property prediction (Step 2) and process

optimisation (Step 3) for each candidate solvent (Figure 4.1). LEA3D optimises

the molecular structure based on the results of process optimisation for each

solvent of each generation, i.e. optimum process settings y∗, optimum process

model results ψ∗, and optimum heat integration χ∗:

min
x

f(x, y∗, χ∗, ψ∗, θ)

s.t. χ∗ = j(y∗, ψ∗)
ψ∗ = h(y∗, θ)
θ = g(x, y∗)
0 = m(x)
k1(x) ≤ 0
k2(θ) ≤ 0
x ∈ X

(4.2)
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Chapter 4 Computer-aided design of solvents and processes using quantum chemistry

At any time, the candidate solvents from LEA3D satisfy chemical feasibility ex-

pressed through the equality constraints m(x). LEA3D also checks the molecular

constraints k1(x) for every candidate solvent. Candidate solvents violating the

molecular constraints are discarded from further evaluation.

2. Prediction of thermodynamic properties: For each candidate solvent, thermody-

namic properties θ are predicted based on quantum chemistry. Evaluating a

process for operating cost or thermodynamic performance requires equilibrium

and thermochemical properties. For this purpose, two quantum chemistry-based

methods are employed: COSMO-RS (Klamt et al., 2010) for equilibrium proper-

ties (Paragraph 2a) and automated thermochemistry calculations for ideal gas

properties (Paragraph 2b).

a) COSMO-RS predicts equilibrium properties of pure components and mix-

tures, allowing to compute liquid phase properties as well as transitions

between gas and liquid phase, e.g. activity or Henry coefficients or enthalpies

of vaporisation (cf. Section 3.1.1). Based on the thermodynamic equilib-

rium properties, property constraints k2(θ) on thermodynamic requirements

are evaluated, e.g. limits for boiling points or the existence of azeotropes

(Skiborowski et al., 2016). Candidates are only further considered for ther-

mochemical calculations and process optimisation if they are considered

thermodynamically suitable by fulfilling these constraints.

b) Thermochemistry is used to calculate ideal gas properties, i.e. ideal gas heat

capacities. Based on the pre-optimised geometries from BP86/TZVP calcu-

lations, the molecular geometries are optimised, and vibrational frequencies

are computed using the DFT functional B3LYP (Becke, 1993; Stephens

et al., 1994) with TZVP basis set assuming the rigid rotor harmonic oscilla-

tor (RRHO) approximation (Atkins and Friedman, 2011). B3LYP is more

accurate than BP86 for geometry optimisation and vibrational frequencies

and known for a good balance between computational cost and accuracy

(Zheng et al., 2009; Gottschalk et al., 2018). Based on the optimised geome-

tries and the vibrational frequencies, frequency analysis is performed using

the TAMkin package (Ghysels et al., 2010) to yield the thermochemical

properties.

Details on the software used for the quantum chemistry calculations and a brief

comparison of the property prediction accuracy with experimental data can be

found in Appendix B.1 and Appendix B.2.
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4.1 COSMO-(sus)CAMPD for heat-integrated processes

3. Process optimisation: With the thermodynamic properties from Step 2, the entire

process flowsheet is modelled using pinch-based process models for individual

process units (Paragraph 3a) and the transhipment model for heat integration

(Paragraph 3b). The used models are computationally efficient and converge

more robustly than rigorous models. Therefore, the process degrees of freedom,

e.g. operating temperatures or pressures, considering subsequent heat integration

can be optimised for each candidate solvent.

The process optimisation problem for each solvent is thus a subproblem of

Problem 4.1 optimising the process settings y with fixed molecular structure x′

and corresponding fixed thermodynamic properties θ′:

min
y

f(x′, y, χ, ψ, θ′)

s.t. χ = j(y, ψ)
ψ = h(y, θ′)
k3(y, θ′) ≤ 0
y ∈ Y

(4.3)

Process optimisation yields optimum process settings y∗ for each solvent resulting

in optimum process model results ψ∗ and optimum heat integration χ∗, which

are used by LEA3D to optimise the molecular degrees of freedom x (see Step 1

and Problem 4.2).

a) Process units are modelled using equilibrium- and pinch-based process

models. Pinch-based process models are available for the most common

separation unit operations: absorption (Redepenning et al., 2017), extrac-

tion (Redepenning et al., 2017), and distillation (Bausa et al., 1998). An

equilibrium-based multiphase reactor from Scheffczyk et al. (2017a) is avail-

able using the homotopy continuation algorithm by Bausa and Marquardt

(2000) for phase equilibrium calculations. These equilibrium- and pinch-

based process models allow modelling of entire process flowsheets for many

processes.

The pinch-based process models are well suited for CAMPD since they

consider non-ideal thermodynamics without simplifications to heuristic

performance indicators (see Appendix B.3 for a brief comparison to rigorous

process models). Nevertheless, the calculation of process units is efficient

and robust, e.g. by avoiding tray-to-tray calculations. Instead, pinch-

based process models calculate the minimum operating point of a column

by assuming vanishing thermodynamic driving forces. This assumption
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Chapter 4 Computer-aided design of solvents and processes using quantum chemistry

corresponds to columns with an infinite number of trays. Thus, in the

context of balancing operating and investment expenditures, the results of

the pinch-based models represent the limiting case of minimal operating

expenditures without considering investment cost. CAMPD using pinch-

based process models is suited to optimise thermodynamic quantities, e.g.

exergy loss, energy and solvent demand, or operating cost, e.g. cost of

utility consumption.

b) Heat integration is performed by pinch analysis using the transhipment

model of Papoulias and Grossmann (1983). The transhipment model yields

the maximum heat integration of a thermodynamically optimal heat recovery

network. Similar to the pinch-based process models for the unit operations,

no investment costs for the heat recovery network but targets for minimum

utility consumption are calculated based on heat and mass flows. Using the

transhipment model allows formulating the heat integration problem model

as a linear program and solving it computationally efficiently. Thus, in

combination with the pinch-based process models, maximum heat-integrated

process performance is evaluated for each solvent based on a process-level

objective function.

During process optimisation, process models and heat integration are solved

iteratively for each candidate solvent. Based on the gradient of the predefined

objective function, the process degrees of freedom are optimised using a numerical

optimisation method from multiple starting points (see Appendix B.1 for details).

4. Ranking of molecules and next generation: Based on each candidate’s optimised

process performance, the candidate solvents are scored and ranked according

to the predefined objective function. The objective function value is used as

a fitness score for the genetic algorithm, which applies genetic operations to

generate a new set of molecules (Step 1).

The four steps of the method are repeated until a predefined number of generations is

met or a desired improvement is achieved, and the algorithm terminates. The result is a

ranked list of molecules and corresponding optimal process settings that can be further

refined by additional design criteria and validation. In this chapter, all candidate

solvents of the ranked list are checked for commercial availability or synthesisability.

Commercial availability is verified by searching online databases. If a candidate solvent

is not commercially available, we check synthesisability using a retrosynthesis method

based on the attention-based molecular transformer model (Schwaller et al., 2019, 2020).

A candidate solvent is considered synthesisable if at most three subsequent reactions

are required to form the candidate solvent from commercially available reactants with

a confidence of the retrosynthesis algorithm greater than 50 %.
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4.2 Case studies

The extended COSMO-(sus)CAMPD method is applied to two case studies: (1) a

hybrid extraction-distillation process for the purification of γ-valerolactone and (2)

an Integrated Carbon Capture and Utilisation (ICCU) process to produce carbon

monoxide. The case studies demonstrate the capabilities of COSMO-(sus)CAMPD for

integrated design of solvents and heat-integrated processes. In particular, the results

from COSMO-(sus)CAMPD with extended property prediction using thermochemistry

and heat integration are compared to state-of-the-art methods.

In addition to the environmental assessment, an analysis of process exergy demand

can yield additional information on minimum required work and overall efficiency of

the process. Therefore, the design for minimum environmental impact in this chapter

is complemented by an analysis of process exergy demand in Appendix B.5.

4.2.1 Hybrid extraction-distillation of γ-valerolactone

As a first case study, the hybrid extraction-distillation of γ-valerolactone (GVL) is

investigated, as introduced in Section 3.2. The objective of the integrated solvent and

process design is to minimise the cradle-to-grave environmental impact on Climate

Change (CCtot
c2grave) of the solvent after heat integration by choosing an optimal solvent

with the corresponding optimal process settings. In contrast to Section 3.2, the process

modelling considers the reboiler and condenser duties in the distillation column, as

well as the sensible heats for heating and cooling of various flows (Figure 4.2). In

this case study, the degrees of freedom of the process are the extraction and decanter

temperatures TExtr and TDec and the pressure in the distillation column pDist. Heat

is supplied by low-pressure (3 bar) and high-pressure (70 bar) steam at 410 K and

558.15 K, and cooling is provided by cooling water at 283 K. The heat recovery

approach temperature (HRAT) is assumed to be 10 K. More details on the process

specifications can also be found in Appendix B.6.

For the LEA3D algorithm, the 3D molecular fragment library is limited to fragments

containing carbon, hydrogen, and oxygen to design potentially green and bio-based

solvents (for details on the molecular fragments, see Appendix B.7.1).

In total, COSMO-(sus)CAMPD designs 715 unique candidate solvents in approxi-

mately 3.5 days. Of the 715 candidates solvents, 348 candidate solvents fulfil the prop-

erty constraints and are feasible as solvents for the process. 40 candidate solvents are

neither commercially available nor predicted to be synthesisable as revealed by database

search and retrosynthesis and are thus discarded after the design. The solvent with
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4.2 Case studies

Figure 4.2: Flowsheet and degrees of freedom for the hybrid extraction-distillation of
γ-valerolactone with process degrees of freedom highlighted for the process
units.

minimal CCtot
c2grave is 6-methyl-1,3-heptadiene (cf. Table 4.1). 6-methyl-1,3-heptadiene

yields CCtot
c2grave = 6.00 kg CO2-eq. kmol−1

GVL for the hybrid extraction-distillation

process corresponding to a reduction of 56 % compared to the benchmark n-butyl

acetate with CCtot
c2grave = 13.8 kg CO2-eq. kmol−1

GVL. The highest-ranking candidate

solvent that is commercially available is 4,6-dimethyl-1-heptene on rank 2. The impact

on Climate Change resulting from using 4,6-dimethyl-1-heptene as a solvent is approx-

imately the same as for 6-methyl-1,3-heptadiene, totalling CCtot
c2grave = 6.01 kg CO2-eq.

kmol−1
GVL. Besides the top 2 solvents, the method designs 140 additional candidate

solvents with a lower impact on Climate Change than n-butyl acetate highlighting the

systematic generation of promising alternatives. Of the top 50 candidates solvents,

42 candidate solvents contain the vinyl group or the furan group, which are thus

identified as promising by the method. However, since molecules with vinyl groups

tend to polymerise (Tobita, 2000) and furanic compounds are suspected to be toxic

and carcinogenic (Bakhiya and Appel, 2010; Moro et al., 2012), these candidates

need further assessment. The most promising candidate solvent without a vinyl or

furan group is 2,3,3,5-tetramethyl-hexane with an impact on Climate Change of 7.5 kg
CO2-eq. kmol−1

GVL, corresponding to a reduction by 45 % compared to n-butyl acetate.

2,3,3,5-tetramethyl-hexane has already been identified as a promising candidate solvent

in Chapter 3.

Solvents for hybrid extraction-distillation processes are commonly selected using

heuristic selection rules (Gertig et al., 2020b; Adjiman et al., 2021; Chai et al., 2022).
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Thus, the solvents identified using the impact on Climate Change of the process as a

selection criterion are compared to solvents identified using standard selection rules

from the literature. Commonly, heuristic selection rules for an extraction solvent

focus only on the solvent’s performance in the extraction column (Gertig et al., 2020b;

Chai et al., 2022), e.g. the minimum solvent demand for extraction (Smin). From this

analysis, Smin moderately correlates with CCtot
c2grave (Pearson’s Correlation Coefficient

ρ = 0.53, Figure 4.3). Thus, the heuristic can be confirmed that promising extraction

solvents usually exhibit a low solvent demand for extraction. However, this correlation

does not apply among the high-ranking solvents. For example, the correlation between

Smin and CCtot
c2grave is weak for the top 100 ranking solvents (Pearson’s Correlation

Coefficient ρ = 0.04), and the solvent with the lowest solvent demand for extraction

ranks only 186nd in impact on Climate Change (Table 4.1). Therefore, the minimum

solvent demand is not sufficient as an objective to yield a low impact on Climate

Change. The entire process needs to be considered for selecting an optimal extraction

solvent.

The hybrid extraction-distillation process was already analysed in Section 3.2.2 using

only the distillation reboiler energy demand to model the use phase environmental

impact (CCreb
c2grave). Since the thermochemical estimation of heat capacities was not

included for each candidate solvent, COSMO-(sus)CAMPD as presented in Chapter 3

did not consider sensible heat and heat integration. However, ranking the solvents

designed for minimum heat-integrated impact on Climate Change by CCreb
c2grave as

used in Chapter 3 reveals only minor changes in solvent selection: The rankings are

very similar, as indicated by a Spearman’s rank correlation coefficient of ρrank = 0.99.
Although heat integration reduces the emissions of the total process energy demand

on average by 30 %, heat integration and comprehensive modelling, including sensible

heats, have a negligible effect on solvent design for the considered process flowsheet

(Figure 4.3). The reboiler duty, already calculated in Chapter 3, represents the main

energy demand of the process before and after heat integration since it cannot be

heat integrated with this process. Therefore, designing solvents considering only the

reboiler duty is sufficient for the process in this case study.

However, neglecting the sensible heat by using only the reboiler energy demand

underestimates the heat-integrated impact on Climate Change on average by 19 %. In

particular, the reboiler energy demand is underestimated on average by 21 % because

the additional heat demand from the temperature increase within the distillation

column is not considered. Thus, accurate quantitative results require comprehensive

process modelling including sensible heat and heat integration.
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Figure 4.3: Comparison of the impact on Climate Change of the heat-integrated process
(CCtot

c2grave) with the impact on Climate Change neglecting sensible heat
and considering only the reboiler energy demand (CCreb

c2grave). The colour
code indicates the heuristic selection criterion of minimum solvent demand
for extraction (Smin).

4.2.2 Integrated carbon capture and utilisation for the production of

carbon monoxide

Integrating carbon capture and utilisation (ICCU) into one process can yield efficient

process concepts to capture and utilise carbon dioxide (CO2) as a feedstock for the

chemical industry (Jens et al., 2019). A promising CCU concept is the conversion of

CO2 with hydrogen (H2) from fluctuating renewable energy to produce carbon monoxide

(CO) via a storage molecule that compensates for the fluctuations in electricity supply

as a liquid energy carrier (Behr et al., 2004; Supronowicz et al., 2015; Jens et al.,

2016). In previous studies by Jens et al. (2016) and Scheffczyk et al. (2017a), the most

efficient process was achieved using dimethylformamide (DMF) as a storage molecule.
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4.2 Case studies

DMF is produced in the synthesis reaction from CO2, H2 and dimethylamine (DMA,

Reaction 1) and subsequently reacted to form CO and dimethylamine in the reforming

step (Reaction 2):

Reaction 1: CO2 + H2 + DMA −−→ DMF + H2O
Reaction 2: DMF −−→ CO + DMA

Overall: CO2 + H2 −−→ CO + H2O

So far, the described process has been investigated as a Carbon Capture and

Utilisation (CCU) process with captured CO2 as a pure feedstock for utilisation. The

potential of integrating the carbon capture from a CO2 point source, e.g. CO2-rich

natural gas, by physical absorption has not yet been evaluated for this ICCU process.

An ICCU process omits the energy-intensive CO2 desorption step from the solvent

by converting the CO2 to a valuable product directly within the solvent (Jens et al.,

2016). However, instead, the final product needs to be separated from the solvent.

As a result, process performance and environmental impact of this ICCU process

are substantially impacted by solvent and process design, as unit operations for

physical absorption, reaction, and distillation are included in the process flowsheet

and influenced by the employed solvent (Figure 4.4). Therefore, the optimal solvent

needs to balance various properties: (1) high absorption capacity and selectivity, (2)

shift of the reaction equilibrium and phase split with water to allow catalyst recovery,

as well as (3) low energy demand for heating, cooling, and separation in distillation.

The process design is tailored for each candidate solvent by optimising the reactor

pressure pRx, the pressures in the distillation columns pDist1 and pDist2 and the molar

flow of water to the reactor ṅH2O to ensure phase separation. The CAMPD optimisation

objective is minimising the cradle-to-grave environmental impact on Climate Change

CCtot
c2grave of the solvent employed in the heat-integrated process. As the CO2 point

source, CO2-rich natural gas with 30 mol-% CO2 and 70 mol-% methane is assumed

(Jens et al., 2019). Due to the multifunctionality of the ICCU process, producing

purified methane and carbon monoxide, the functional unit (FU) of the process is

defined as 2.33 kmol s−1 methane and 1 kmol s−1 carbon monoxide (cf. Appendix B.4).

The optimised ICCU process is compared with an optimised separated CCU process

from the literature, going forward called the benchmark process. The CCU process

uses the solvent 3,5-dimethylpiperidine (Jens et al., 2016). For separated carbon

capture, conventional chemical absorption using monoethanolamine is assumed (Lee

et al., 2016). As a second benchmark, the sum of impacts of conventional methane

and carbon monoxide production is considered, going forward called the conventional

production of the FU. More details on the LCA, including system boundary and
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Figure 4.4: Flowsheet for the integrated carbon capture and utilisation process pro-
ducing carbon monoxide via the liquid energy carrier dimethylformamide.
Dimethylformamide is produced in the synthesis reaction, stored, and
reformed to carbon monoxide in the reforming step.

functional unit of the investigated ICCU process and the benchmark process, are

available in Appendix B.4.

In contrast to the first case study (Section 4.2.1), in this design, halogens, sulphur,

and tertiary amines are allowed as building blocks for the LEA3D algorithm (see

Appendix B.7.2). These groups are expected to be inert. The choice of amines is

limited to tertiary amines, which are not reactive during dry CO2 capture (Vaidya

and Kenig, 2007; Behrens et al., 2017), as considered here. However, tertiary amines

can catalyse the formation of bicarbonates from CO2 in the presence of water (Vaidya

and Kenig, 2007; Behrens et al., 2017). The effect of bicarbonate formation on CO2

capture due to water impurities in the solvent or feed streams is subject to refined

evaluation and not considered in the present study. Fragments with non-aromatic

carbon double bonds are removed, as these would be hydrogenated in the reactor.

Thus, other reactions than Reactions 1 and 2 are not assumed to occur.

Since the training of the ANN in Section 3.1.2 did not include all of these building

blocks in the training data, e.g. halogens, the solvent-specific ANN prediction is

replaced by a constant value of 3 kg CO2-eq. kg−1
solvent. A value of 3 kg CO2-eq. kg−1

solvent
corresponds approximately to the average of the ANN predictions from the case study

in Section 3.2.

58



4.2 Case studies

Similar to the first case study (Section 4.2.1), heat that is not provided by heat

integration is supplied by external utilities. Here, low-pressure steam (3 bar) at 410 K
and furnace heat at 750 K is assumed, as well as cooling water at 283 K and refrigeration

at 233 K. The heat recovery approach temperature (HRAT) equals 10 K. More details

on the process specifications can also be found in Appendix B.6.2.

The COSMO-(sus)CAMPD method generates 1162 unique candidate solvents in

approximately 9.5 days. Of these candidate solvents, 390 solvents are feasible for the

ICCU process, and 330 candidate solvents are additionally commercially available

or synthesisable as determined by database search or retrosynthesis. As the optimal

solvent, the method discovers 2-dimethylamino-ethanethiol, also known as captamine,

with an impact on Climate Change of CCtot
c2grave = 0.30 kg CO2-eq. kg−1

FU. Thus, the

optimal solvent for the ICCU process reduces the impact on Climate Change by 64 %
compared to the benchmark separated CCU process with an impact on Climate Change

for this case study of CCtot
c2grave = 0.84 kg CO2-eq. kg−1

FU (Figure 4.5).

Since captamine is a hydrolysis product of a chemical warfare agent (Glasco and Bell,

2021), its use might be prohibited. The second best commercially available solvent

is 4-bromo-dimethylbutan-1-amine, ranking second with CCtot
c2grave = 0.32 kg CO2-eq.

kg−1
FU, which is 6 % higher than for the optimal solvent captamine. In total, the method

designs 204 candidate solvents with a lower CCtot
c2grave than the benchmark process that

are commercially available or synthesisable. Therefore, with an optimal combination

of process and solvent, the ICCU process concept is an efficient alternative to the

separated process and advantageous in terms of Climate Change. However, the ICCU

process concept alone is not a guarantee for a lower environmental impact in general

but requires careful and integrated solvent and process design as a key design decision:

About 40 % of all evaluated solvents cause a higher CCtot
c2grave for the ICCU process

than the benchmark separated process, which is in line with the conclusion by Jens

et al. (2019) for the feed specifications of the ICCU process.

In the considered scenario, the impact on Climate Change of conventional production

equals CCtot
c2grave = 0.52 kg CO2-eq. kg−1

FU and is thus lower than the impact of the

benchmark separated CCU process. Thus, the CCU process is not environmentally

beneficial in terms of Climate Change to conventional production, emphasising the

challenge of finding CCU processes mitigating climate change. For the ICCU process,

41 candidate solvents yield a lower impact on Climate Change than the conventional

production. Therefore, with an optimal combination of process and solvent, Climate

Change mitigation seems possible with the ICCU process but are subject to further,

more detailed investigation.
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To challenge the integrated design for minimum CCtot
c2grave, the solvent design based

on the heat-integrated impact on Climate Change is compared to solvent rankings

considering process subsystems only, i.e. unit operations. Generally, a higher absorption

selectivity of the solvent for CO2 leads to a higher yield in the reactor and thus to a

lower impact on Climate Change (cf. Figure 4.5). This trade-off is confirmed by a

Pearson correlation coefficient between the absorption selectivity and the impact on

Climate Change of ρ = −0.65. Similarly, a high equilibrium yield of dimethylformamide

in the organic reactor outlet leads to a low impact on Climate Change (ρ = −0.62).
Importantly, equilibrium conversion does not correlate with impact on Climate Change

(ρ = −0.12) since only the product concentration in the organic phase at the reactor

outlet impacts the separation effort. However, product concentration is not only

determined by the equilibrium conversion but also by the phase equilibrium.

Despite the correlation, choosing absorption selectivity or equilibrium yield as the

design objective lead to suboptimal solvent selection: The solvent with the highest

absorption selectivity is 2-phenylethanol (triangle in Figure 4.5) and the solvent with

the highest equilibrium yield is thiooxalane (diamond in Figure 4.5). 2-phenylethanol

and thiooxalane only rank 44th and 73rd in CCtot
c2grave with impacts 74 % and 90 %

higher than the optimal solvent captamine (Table 4.2). Therefore, considering targets

for single unit operations is not sufficient to select the optimal solvent for the overall

process. Only an objective function based on the entire process successfully captures

all process-relevant trade-offs within the molecular properties.

Heat integration strongly affects the environmental impact on Climate Change of the

process for every solvent. On average, heat integration reduces the impact on Climate

Change by 49 % compared to the impact on Climate Change before heat integration,

with a maximum of 70 % for the top solvent captamine (Figure 4.6). Therefore, a

quantitative estimation of the impact on Climate Change of the process requires the

consideration of heat integration within the integrated design of process and solvent.

Heat integration also influences solvent ranking since the solvent properties impact

the amount of heat that can be integrated. However, considering the impact on Climate

Change without heat integration (CCtot,woHI
c2grave ) still enables differentiation between high-

and low-ranking solvents. The correlation coefficient between solvent ranking with

and without heat integration is ρrank = 0.92. Remarkably, for this case study, the gate-

to-gate impact on Climate Change from distillation only (CCreb
g2g) is a good estimator

for CCtot
c2grave (ρ = 0.66). In distillation, the candidate solvents exhibit substantial

differences in energy demand and thus impact on Climate Change. Thus, ranking

according to distillation effort is effective, although the impact of distillation accounts

for only 21 % of the total process impact on Climate Change without heat integration

on average.
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Figure 4.5: Results of the integrated molecular and process design of the heat-integrated
ICCU process: Each circle represents a molecular candidate with its cor-
responding optimised process. The candidate with the lowest impact on
Climate Change is additionally marked with a square, the candidate with
the highest selectivity of absorption is additionally marked with a triangle,
and the candidate with the highest equilibrium yield is additionally marked
with a diamond. The dashed and the dashed-dotted line represent the
impact on Climate Change of the benchmark process and conventional
production, respectively.

In contrast to the low impact on the overall ranking, the heat integration potential

significantly impacts solvent ranking among the top solvents. For example, when heat

integration is not considered, only 31 candidates of the top 50 candidate solvents

continue to be included in the revised top 50 candidate list. The correlation coefficient

between solvent ranking with and without consideration of heat integration among

the top 50 solvents is only ρrank = 0.38, indicating a weak correlation between the

two rankings. Similarly, the rank correlation coefficient between CCtot
c2grave and CCreb

g2g
reduces to ρ = −0.18 for the top 50 candidate solvents.
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When heat integration is considered in the design, the optimal solvent can successfully

exploit increasing pressure in the distillation columns to 2.7 bar and 4.1 bar for optimal

heat integration. Thus, for this solvent, the impact on Climate Change decreases by

70 % from 1.00 kg CO2-eq. kg−1
FU to 0.30 kg CO2-eq. kg−1

FU. In contrast, the optimal

solvent without heat integration saves only 38 % of the impact on Climate Change by

heat integration. As a result, the impact on Climate Change after heat integration

is 57 % higher than for the optimal solvent. Therefore, identifying the top solvents

requires comprehensive modelling and consideration of heat integration besides a sound

cradle-to-grave environmental objective.
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Figure 4.6: Environmental impact on Climate Change depending on process design
scope: Considering process optimisation with heat integration (CCtot

c2grave)
compared to a process optimisation without considering heat integration
potential (CCtot,woHI

c2grave ) and consideration of the reboiler energy demand
only (CCreb

g2g). All results include feedstock and electricity emissions and
only differ in process design scope.
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4.3 Conclusion

This chapter presents the COSMO-(sus)CAMPD method for computer-aided, inte-

grated molecular and process design for heat-integrated chemical processes. Similar

to the original COSMO-(sus)CAMPD method (Chapter 3), the method is based on

a genetic algorithm that optimises molecules evaluated by property prediction and

process optimisation. For all candidate solvents, properties used in process optimisa-

tion are predicted by quantum chemistry. Quantum chemistry allows the calculation

of thermodynamic properties from a large molecular design space independent from

the availability of parametrised functional groups. For computationally efficient and

accurate process design, pinch-based process models are used for extraction, absorption

and distillation columns, and multiphase reaction. In addition, heat integration is

considered for each candidate solvent within the process optimisation. Therefore, pro-

cess modelling and optimisation overcome the limitations of state-of-the-art simplified

process performance indicators often used in CAMPD.

The method is applied to two case studies of (1) hybrid extraction-distillation

and (2) integrated carbon capture and utilisation. In both case studies, promising

candidate solvents are designed that are commercially available or synthesisable

and reduce the environmental impact on Climate Change by up to 56 % and 64 %,

compared to literature benchmark processes, respectively. Furthermore, the case

studies reveal mutual dependencies of optimal solvents and processes. For optimal

process performance, CAMPD requires a process-level objective that captures overall

process performance, e.g. the total heat-integrated cradle-to-grave environmental

impact. Separate consideration of individual unit operations or performance targets

of process subsystems is insufficient to design optimal solvents for the entire process,

as evident by low correlation coefficients between the objective function values of the

heuristics and the entire process.

The case studies show that heat integration significantly impacts quantitative

estimates of, e.g. environmental impact on Climate Change. Heat integration reduces

the impact on Climate Change in the case studies on average by 19 % and 49 %. Due to

the large savings that can be achieved by heat integration depending on the candidate

solvent, comprehensive modelling considering heat integration is crucial for selecting

solvents for large process flowsheets with various unit operations. For the considered

case studies, an accurate ranking of promising candidate solvents cannot be achieved

by simplified process representations. However, minimising the main process energy

drivers also provides a suitable selection criterion for generating promising candidates

that should then be analysed in subsequent detailed investigations.
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4.3 Conclusion

The main focus of this chapter was the comprehensive application modelling and

its impact on molecular design in chemical processes. To exploit the degrees of

freedom in process design resulting from comprehensive modelling, heat integration

and process optimisation are included for each candidate solvent using established

methods. However, recently, advanced optimisation frameworks for simultaneous

design of process and heat integration have been developed, e.g. by Kong et al. (2016)

and Liesche et al. (2019). Future work in CAMPD should build on these frameworks

to include heat exchanger network design and process structure optimisation, or to

improve solution quality to global optima, provided that heat integration and process

optimisation are crucial for the considered processes.

The predictive methods still contain uncertainties that propagate through the

presented CAMPD method. Therefore, valuable future work could quantify uncertainty

in detail and explore potential improvements for CAMPD. e.g. from experimental

data. The experiments required in this context can and should ideally be tailored to

the process under consideration for minimum experimental effort. Thus, the tailored

design of experiments for accuracy increase of application- and system-level simulations

is presented in the next chapter.
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Chapter 5

Optimal experimental design of physical

property measurements for optimal

chemical process simulations

Validating predictions as well as training and parametrising models in CAMPD requires

experiments that are optimally tailored to the purpose of experimentation. With regard

to CAMPD with environmental objective, optimal experiments maximise the accuracy

of predictions on process performance and environmental impacts. Therefore, in this

chapter, optimal experimental design (OED) of physical property measurements is

investigated that results in the most accurate chemical flowsheet simulations: c-optimal

experimental design (c-OED). c-OED links decisions at the property level with the

modelling at the application and the assessment at the system level.

In Section 5.1, the fundamentals and the implementation of c-OED for chemical en-

gineering problems are described. The benefit of c-OED is demonstrated in Section 5.2

for three case studies of equilibrium- and rate-based extraction and hybrid extraction-

distillation processes. c-OED is used to design liquid-liquid equilibrium (LLE) and

diffusion experiments minimising the uncertainty of thermodynamic, economic or

environmental performance metrics of the solvent-based processes. The c-optimal

experimental design is compared with the state-of-the-art OED in chemical engineering

for parameter accuracy and conventionally used experimental designs without OED.

The results from OED theory are challenged by a Monte Carlo analysis of the designed

experiments (Section 5.3). The limits of c-OED for highly non-linear process models

are investigated before this chapter is concluded in Section 5.4.

Major parts of this chapter are reproduced by permission of Elsevier from:

Fleitmann, L.; Pyschik, J.; Wolff, L.; Schilling, J. and Bardow, A. (2022). Optimal experimental

design of physical property measurements for optimal chemical process simulations. Fluid Phase

Equilibria, 557, 113420.

The author of this thesis contributed to the methodology and the implementation of the research

topic. The author investigated, validated and visualised the results of the experimental design and

wrote the first draft as the principal author. The conceptualisation was jointly developed in discussion

with the co-authors.
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Chapter 5 Optimal experimental design for optimal chemical process simulations

5.1 Optimal experimental design using the c-optimality

criterion

In this section, the state-of-the-art theory and fundamentals of OED are briefly

explained with a focus on c-OED, which is adapted to the estimation of thermodynamic

properties for chemical process simulations. First, the c-optimal objective function

is derived (Section 5.1.1). Subsequently, solution approaches to OED problems are

explained (Section 5.1.2). In Section 5.1.3, quality measurement criteria are introduced

to compare and validate the results in Section 5.2.

5.1.1 Derivation of the c-optimal objective function

In general, the goal of statistical OED is to minimise parameter uncertainty (cf.

Section 2.4). For this purpose, the objective is defined as a measure of the variance-

covariance matrix of parameters Vθ. The parameter variance-covariance matrix Vθ can

be approximated by the product of the Fisher-Information-Matrix F (θ̂, ξ) and the

number of experiments Nexp (Bard, 1974):

Vθ ≈
[
Nexp F

(
θ̂, ξ

)]−1
(5.1)

The Fisher-Information-Matrix F (θ̂, ξ) depends on the chosen experimental design ξ

and an initial parameter guess θ̂ if the model is not linear in the parameters (Bard,

1974). For example, for OED of phase equilibria measurements to parametrise the

NRTL-model (Renon and Prausnitz, 1968), an initial set of NRTL-parameters has to

be provided.

As the parameter variance-covariance matrix Vθ is proportional to the inverse of

F (θ̂, ξ), OED usually focuses on optimising the Fisher-Information-Matrix F (θ̂, ξ) by

selecting an optimal design ξ∗ that contains the distribution of experiments independent

from the total number of experiments Nexp.

Every experimental design ξ is represented by a design vector ofN distinct experimen-

tal settings zi , e.g. temperature and pressure of each experiment, and corresponding

N normalised weights vi, which indicate the share of the total experimental effort

(Fedorov and Leonov, 2014):

ξ =
{

z1 z2 · · · zN

v1 v2 · · · vN

}
with

N∑
i=1

vi = 1 (5.2)
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5.1 Optimal experimental design using the c-optimality criterion

The number of distinct experimental settings N is usually not known a priori and a

result of OED besides the specification of the experimental settings.

The Fisher-Information-Matrix F (θ̂, ξ) is calculated from the underlying model of

the experiment g(z,ω,θ) (Bard, 1974). The model g(z,ω,θ) describes the experiments

by relating the parameters θ for given experimental settings z to the experimental

measurement results ω . For flowsheet simulation of chemical processes, for example,

the model g(z,ω,θ) describes the experiments to measure liquid-liquid equilibria or

diffusion coefficients. The experiments are characterised by experimental settings z

given as input from the experimental design ξ, e.g. temperatures and concentrations.

The experimental measurements ω are, for example, measured phase compositions.

The Fisher-Information-Matrix F (θ̂, ξ) for a given experimental design ξ is calculated

by multiplying the variance-covariance matrix of the experimental measurements Vω

by the model sensitivity to experimental measurements Ai and the model sensitivity

to parameters Bi for each distinct experimental setting i of the experimental design ξ

(Bard, 1974):

F
(
θ̂, ξ

)
=

N∑
i=1

vi BT
i (Ai Vω AT

i )−1 Bi + Σ−1
0 (5.3)

with the local model sensitivity to experimental measurements: Ai = ∂g

∂ω

∣∣∣∣∣
ωi,θ̂

and the local model sensitivity to parameters: Bi = ∂g

∂θ

∣∣∣∣∣
ωi,θ̂

The variance-covariance matrix of the experimental measurements Vω is a key

input parameter, which needs to be specified a priori from uncertainty measurements,

highlighting the need for uncertainty reporting as part of good reporting practice for

property measurements (Bazyleva et al., 2021). Already available information on the

parameter variance-covariance matrix, e.g. from previously performed experiments

or the literature, can be included for the design of further experiments in the Fisher-

Information-Matrix F
(
θ̂, ξ

)
through Σ0 since F

(
θ̂, ξ

)
is additive (Fedorov and

Leonov, 2014). In this work, no previously performed experiments or predictions are

assumed; thus, Σ−1
0 is not further considered.

To account for the parameter use, the c-optimal design objective is to minimise a

linear combination of the parameter variances, which is calculated by the product of a

vector c(θ̂) and the inverse of the Fisher-Information-Matrix
[
F (θ̂, ξ)

]−1
(Atkinson
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Chapter 5 Optimal experimental design for optimal chemical process simulations

et al., 2006). The c-optimal experimental design ξ∗
c is the solution to this optimisation

problem:

ξ∗
c = arg min

ξ
c(θ̂)T

[
F (θ̂, ξ)

]−1
c(θ̂) (5.4)

For considering the property parameter use in a process simulation, c(θ̂) should reflect

the linearised variance propagation of the property parameter uncertainties through

the process model. Therefore, the first-order sensitivities of a scalar simulation output

to property parameters are chosen as weights of the linear combination. Thereby,

the property parameters are weighted by their impact on the process model, e.g. the

sensitivity of total process energy demand with respect to NRTL-parameters. The

variance of a simulation output is thus obtained as c-OED objective. The vector c(θ̂)
is calculated from the sensitivities of a scalar result ψ (θ,y) of the process model h to

property parameters θ:

c(θ̂) = ∂ψ (θ,y)
∂θ

∣∣∣∣∣
θ̂,ŷ

(5.5)

As both the model sensitivities for the Fisher-Information-Matrix F (θ̂, ξ) and the

process model sensitivities for the vector c(θ̂) are calculated for given initial param-

eters θ̂, the resulting optimal experimental design is locally optimal for the given

initial parameters θ̂. The vector c(θ̂) can also depend on further parameters, e.g.

specifications of the process model y, resulting in an additional dependence of the

optimal experimental design on these parameters. These additional specifications, such

as operation settings, must be known a priori, e.g. from experience, known operation

of similar systems or process design.

In contrast to c-OED, state-of-the-art OED criteria do not consider the process

sensitivity to the property parameters expressed by c(θ̂). For example, the commonly

used D-optimal experimental design yields the most accurate parameters using only

the Fisher-Information-Matrix. A D-optimal experimental design ξ∗
D minimises the

uncertainty of all parameters by maximising the determinant of the Fisher-Information-

Matrix (Bard, 1974):

ξ∗
D = arg max

ξ
log

[
det

(
F
(
θ̂, ξ

))]
(5.6)

Generally, statistical OED as presented here requires several assumptions on the model

and the errors that have been summarised, e.g. in Bard (1974) or Dechambre et al.

(2014b): (1) The model parameters θ need to be identifiable, and the true values for
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5.1 Optimal experimental design using the c-optimality criterion

the measurements need to lead to the true parameter values, i.e. no model bias is

assumed. (2) No errors are assumed in the independent variables, i.e. the experimental

settings z, and no systematic errors are assumed in the measured variables ω. (3)

Errors in different experiments are independent of each other and normally distributed

with the same covariance matrix Vω.

Importantly, the thermodynamic model g and the experimental measurements ω

need to be carefully selected since multiple options exist for the model and the measured

quantities. For example, van Ness and coworkers showed that isobaric vapour-liquid

equilibrium (VLE) measurements usually lead to large uncertainties and model errors

in contrast to isotherm VLE experiments (van Ness, 1995; Gmehling and Kleiber,

2014). Isobaric VLEs rely on vapour pressure equations used as input. If inadequately

parametrised, this input can cause a model bias in the temperature dependence of

the vapour pressure. The intrinsic model bias then leads to incorrect parameters –

independent of the experimental design.

5.1.2 Solving OED problems

The computation of the OED objectives requires sensitivities. The model sensitivities

of the thermodynamic model to experimental measurements and property parameters

as well as the sensitivities of the process model to property parameters are calculated

by first-order numerical differentiation using central differences. To ensure stable

numerical differentiations, a parameter study was performed. The step size was chosen

to 1 × 10−7 for the calculation of the Fisher-Information-Matrix using complex-step

differentiation (Squire and Trapp, 1998) and to 1 × 10−4 for the sensitivities of the

process model.

To solve optimal experimental design problems, several general-purpose algorithms

have been proposed in the literature (Garćıa-Ródenas et al., 2020). In this work, the

general algorithm for computing optimal designs with monotonic convergence by Yu

(2010) is used.

The algorithm yields optimal experimental designs with a continuous distribution of

experimental effort, also called continuous designs (Atkinson et al., 2006). A continuous

design quantifies which share of the total experimental effort should be spent on which

measurements. Continuous designs suit as targets for experiments in the laboratory,

as these designs specify only relative experimental effort for an infinite number of

experiments. In practice, only a limited number of experiments can be performed.

Therefore, implementable experimental designs for the laboratory, so-called exact

designs, can be calculated for a predefined number of experiments, e.g. by rounding the
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Chapter 5 Optimal experimental design for optimal chemical process simulations

continuous designs (Atkinson et al., 2006). However, as rounding does not guarantee

close approximation of continuous designs (Atkinson et al., 2006), various algorithms

for the calculation of exact designs have been developed, e.g. non-sequential algorithms

(Wynn, 1972) or exchange methods (Nguyen and Miller, 1992). In the validation

section of this chapter, a non-sequential algorithm by Wynn (1972) is used for exact

optimal designs due to its simple implementation (Section 5.3). Exact designs can also

be calculated considering previous experiments or literature data (cf. Equation 5.3), as

frequently required in practice. The exact design then yields the optimal subsequent

experiments, as demonstrated by Duarte et al. (2021).

5.1.3 Comparison of experimental designs

Experimental designs can be compared by OED-efficiencies, which measure the ef-

fectiveness of an experimental design ξ compared to an optimal design ξ∗. In this

work, the focus lies on c-efficiency as a measure of process simulation accuracy and

D-efficiency as a measure of parameter accuracy. The efficiencies are defined based on

the c-optimal design ξ∗
c or D-optimal design ξ∗

D as (Atkinson et al., 2006):

– c-efficiency: ζc(ξ) = c(θ̂)T F (θ̂, ξ∗
c)−1c(θ̂)

c(θ̂)T F (θ̂, ξ)−1c(θ̂)

– D-efficiency: ζD(ξ) =
 det

(
F
(
θ̂, ξ

))
det

(
F
(
θ̂, ξ∗

D

))


1
nparameter

with nparameter for the number of estimated model parameters. The efficiencies are

valuable metrics since they allow to determine the number of experiments to achieve a

particular accuracy. The inverse of the c- or D-efficiency describes how many additional

experiments are required for the same accuracy compared to the optimal design of the

respective criterion. For example, a design with a c-efficiency ζc = 0.25 needs 4 times

as many experiments for the same process simulation accuracy as a c-optimal design.

5.2 Application of c-OED for extraction and hybrid

extraction-distillation processes

The c-OED is applied by computing continuous c-optimal experimental designs for

liquid-liquid equilibrium and diffusion experiments for two process models of solvent-

based processes as an example:
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5.2 Application of c-OED for extraction and hybrid extraction-distillation processes

1. Pinch-based process models for extraction and distillation (Bausa et al., 1998;

Redepenning et al., 2017)

2. Countercurrent rate-based extraction model with the HTU-NTU method for

sizing (Chilton and Colburn, 1935; Sattler and Feindt, 1995)

In all case studies, the thermodynamic model for liquid-liquid equilibrium measurements

is taken from Dechambre et al. (2014b) and uses the NRTL activity coefficient model

(Renon and Prausnitz, 1968). For the HTU-NTU sizing of the extraction column,

diffusion coefficients are additionally required and assumed to be measured using a

closed cell with fixed geometries as the experimental setup (Wolff et al., 2016).

In this chapter, c-OED is exemplified for the ternary system water-acetone-toluene

in both case studies. The study is limited to ternary systems for ease of interpretation

and visualisation. However, the method of c-OED is not limited to ternary systems

but is applicable for multi-component systems with more than three components.

The chemical system water-acetone-toluene is a model system of great interest in

research and industry since it is applicable for studying various processes such as

extraction and distillation (Enders et al., 2007). The components represent a variety

of chemical interactions: Water and toluene are almost completely immiscible since

water is a highly polar molecule, whereas toluene is highly unpolar. Acetone is mildly

polar and, thus, soluble in both water and toluene. Toluene is consequently a suitable

solvent for the extraction of acetone from water since only acetone is attracted to the

extract toluene phase leading to a selective separation. Therefore, the system is well

suited to study the estimation of binary interaction parameters for extraction and

hybrid extraction-distillation processes.

The continuous c-optimal experimental designs are compared as targets for maximum

experimental efficiency with state-of-the-art OED for maximum parameter precision

(D-optimal experimental design) and a conventional experimental design without OED,

which equally distributes the experimental effort over the design space. Numerical

details on the experimental designs and the initial property parameters for each design

can be found in Appendix C.1 and C.2.

5.2.1 OED for estimating isothermal NRTL-τ -parameters for a

pinch-based extraction model

As the first case study, the extraction of acetone from aqueous solution is investigated at

25 ◦C using toluene as a solvent. The extraction column is modelled using a pinch-based

process model, taking NRTL-parameters as input (Redepenning et al., 2017). Pinch-

based process models assume infinite columns operating at vanishing thermodynamic
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Chapter 5 Optimal experimental design for optimal chemical process simulations

driving force but consider the full non-ideal thermodynamics. Therefore, the model

yields the minimum solvent demand Smin required for this separation. The minimum

solvent demand characterises the extraction process as the performance metric ψ for

the selection of an extraction solvent (cf. Section 4.2.1).

The aim is to determine the minimum solvent demand Smin for extraction as

accurately as possible. For this purpose, OED is used to decide which LLE experiments

should be performed to estimate the six NRTL-τ -parameters for the binary interactions.

LLE experiments are typically performed by equilibrating a liquid mixture with known

overall composition and miscibility gap in an equilibrium cell. After equilibration,

samples are drawn from each liquid phase and the molar composition of each phase is

measured. Today, mixing, equilibration, sample drawing and measuring are preferably

integrated into an automated set-up (Kuzmanović et al., 2003; Dechambre et al., 2014a;

Thien et al., 2020).

For simplicity, it is assumed that LLE experiments are performed with the overall

composition of the components that corresponds to the centre of the tie lines. The

overall compositions of all experiments lie on a line running from the centre of the

miscibility gap of the binary subsystem to the critical point (cf. Figure 5.1A). Each

position on this line is labelled by the scalar quantity α defined linearly from the

beginning in the binary subsystem (α = 0) to the end at the critical point (α = 1),
which thus defines each experiment exactly (Dechambre et al., 2014b). As a result,

the three-dimensional representation of the overall composition of the experiment is

exactly described by the parameter α, without simplifying the problem. Measurements

are challenging close to the critical point. In addition, the NRTL model is known to

describe the phase equilibrium poorly close to the critical point, leading to model bias.

To ensure experimental feasibility and applicability of the NRTL-model, α is limited

to a maximum of 0.9. Since ternary mixtures are investigated in this work, two molar

fractions are measured for each experiment and each liquid phase (cf. thermodynamic

model of LLE experiments by Dechambre et al. (2014b)). For each measurement, the

same constant absolute standard deviation in measured mole fractions σw = 0.005 is

assumed (cf. Section 5.3).

The c-optimal experimental design selects three distinct locations for measurements

(Figure 5.1B): About 80 % of the experimental effort is placed near the operating range

of the extraction column at α = 0.22. However, no experiments are performed in the

actual operating range of the extraction column. Instead, 20 % of the experimental effort

is placed in the high-curvature region of the binodal curve at α > 0.65, in particular,

6 % at the design space boundary at α = 0.9. Thus, the c-optimal experimental

design provides another argument to support the previous conclusions that the process

operation settings should not be mimicked or copied for physical property experiments

(van Ness, 1995).
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Figure 5.1: Experimental designs for LLE experiments for the extraction process: (A)
Location of LLE experiments. (B) Share of experimental effort. Part A of
the figure also shows the scalar quantity α, which characterises the centre
of the tie lines and the total composition of an experiment.
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The D-optimal experimental design similarly focuses on three distinct locations for

measurements. However, in contrast to the c-optimal design, 65 % of the experiments

are placed in the high-curvature region of the binodal curve, as already discovered

by Dechambre et al. (2014b). In the high-curvature region of the binodal curve, the

phase equilibrium model is highly sensitive to the property parameters. Thus, placing

experiments in the high-curvature region leads to low uncertainty in the parameter

estimation. However, the c-efficiency of the D-optimal design is only ζD
c = 0.36 (Table

5.1). Consequently, about three times more D-optimal than c-optimal experiments are

required to achieve the same accuracy in the process simulation.

For an equidistantly distributed conventional experimental design, three experimental

settings are specified since the c- and D-optimal designs yielded three distinct settings.

The experimental effort is equally distributed across all experiments. The conventional

design yields a low c-efficiency of only ζcon
c = 0.10 despite placing experimental effort

within the operating range of the extraction column in the solvent-carrier binary

subsystem. As a result, the conventional design requires about ten times more

experiments for the same process simulation accuracy as the c-optimal design. Thus,

the c-optimal experimental design promises to significantly reduce experimental effort.

In terms of parameter precision, the c-optimal design scores a D-efficiency of ζc
D =

0.44. In contrast, the conventional design yields a D-efficiency of ζcon
D = 0.56 and,

thus, returns more accurate parameter values than the c-optimal design. The low

D-efficiency of the c-optimal design illustrates the varying influence of each property

parameter on simulation accuracy. For the extraction process, not all parameters of

the thermodynamic model are equally important. For example, the binary interactions

between solvent and solute as well as carrier and solute are of major importance.

However, the simulation results are much less sensitive to the solvent-carrier interaction

parameters, although low miscibility between solvent and carrier resulting from the

solvent-carrier interactions is key to the extraction process. Nevertheless, highly

accurate estimation of the solvent-carrier interaction is not required for accurate process

simulations since small inaccuracies in the solvent-carrier interaction parameters still

lead to low miscibility between solvent and carrier. Therefore, spending additional

experimental effort on increasing the parameter precision of these less important

parameters for the simulation reduces c-efficiency. Instead, the experimental effort is

more efficiently spent on experiments targeting the more influential property parameters

of the simulation. For example, near the operating range of the extraction column,

the thermodynamic model of the LLE experiments is most sensitive to solvent-solute

interaction, while the sensitivity to solvent-carrier interactions is low. Therefore, the

c-optimal design places the majority of the experimental effort on the experimental

settings near the operating range. However, exclusive focus on the property parameters
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5.2 Application of c-OED for extraction and hybrid extraction-distillation processes

most important for the chemical process simulation neglects the accuracy increase

resulting from experiments for overall high parameter precision. Therefore, the c-

optimal design also includes experiments for overall parameter accuracy, such as

experiments in the high-curvature region of the binodal curve at α = 0.9.

Table 5.1: c- and D-efficiencies ζc and ζD of the c-optimal ξ∗
c , D-optimal ξ∗

D, and
equidistantly distributed conventional ξcon experimental designs for the
estimation of isothermal NRTL-τ -parameters and use in the pinch-based
extraction process model.

Design ξ c-efficiency ζc D-efficiency ζD

c-optimal ξ∗
c 1 0.44

D-optimal ξ∗
D 0.36 1

conventional ξcon 0.10 0.56

5.2.2 OED for estimating isothermal NRTL-τ - and diffusion

parameters for a countercurrent rate-based extraction column

with HTU-NTU sizing

In the second case study, the same extraction of acetone from aqueous solution is

considered. However, in contrast to Case Study 1 (Section 5.2.1), a countercurrent

rate-based extraction model with HTU-NTU sizing based on the PhD thesis by Wolff

(2021) is used instead of a pinch-based process model. The countercurrent extraction

column assumes mass transfer of the solute only, following two-film theory with a

constant mass transfer coefficient and thermodynamic equilibrium at the interface.

In contrast to the pinch-based process models, sizing using the HTU-NTU method

(Chilton and Colburn, 1935; Sattler and Feindt, 1995) and costing (Biegler et al., 1997)

are included (see Appendix C.2.4 for detailed equations). Therefore, the final model

result is the total annualised cost, which should be determined as accurately as possible

using c-OED.

Consequently, the model needs both isothermal NRTL-τ - and diffusion parameters

as property data. Therefore, the OED is extended to the selection of experiments for

several thermodynamic properties. The optimal experimental design not only yields

which LLE and diffusion experiments to perform but also balances the experimental

effort between LLE and diffusion experiments. Thus, the design vector of experiments ξ

includes the scalar measure α of LLE experiments and additionally the effort on

experiments for the diffusion coefficients of acetone in water DW and acetone in

toluene DT.
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The diffusion experiments are assumed to be performed in a closed diffusion cell

filled with equal volumes of two substances. The diffusion coefficients are derived from

concentration measurements using Fick’s second law. Here, measurements are assumed

at one position δ in the closed cell and at one dimensionless measurement time given

by the Fourier number Fo (Wolff et al., 2016). Therefore, the OED methodology

determines the optimal Fourier number Fo∗ and the optimal measurement position δ∗.

For the calculations, a standard deviation of σw = 0.5 % is assumed in measuring the

phase compositions in the LLE experiments and the concentrations in the diffusion

experiments.

For the LLE experiments, c-optimal design selects the same three measurements with

the same relative distribution of experimental effort among the LLE experiments as the

OED for the pinch-based process model for extraction in Section 5.2.1 (cf. Figure 5.1).

Therefore, the dominating interactions for describing the minimum solvent demand

using the pinch-based process model are also most important for the countercurrent

rate-based extraction model. The selection of the same experimental settings is

reasonable since both process models use the same thermodynamic model describing

the liquid-liquid equilibrium as a basis for the solvent demand and cost calculations.

Therefore, a precise description of the extraction process is a prerequisite for accurate

cost calculation. Naturally, the D-optimal design equals the D-optimal design in

Section 5.2.1 if focusing only on the LLE experiments since the same thermodynamic

model describing the experiments is considered.

The diffusion experiments have the same optimal design using either c- or D-OED:

The most accurate estimation of diffusion coefficients is achieved at a Fourier number

Fo∗ = 0.1 and the measurement position δ∗ = 0, i.e. at the wall of the closed diffusion

cell. Moreover, the experimental effort is equally distributed between the diffusion

coefficients of acetone in water DW and acetone in toluene DT for both designs (cf.

Figure 5.2).

However, the designs differ strongly in the distribution of experimental effort between

LLE and diffusion experiments: The c-optimal design focuses 96 % of the total experi-

mental effort on LLE experiments and only 4 % on diffusion experiments. Therefore,

the property parameters describing the phase behaviour are 24 times more important

for accurate process simulation and costing than the parameters describing the diffusion.

In contrast, the D-optimal design places 25 % of the experimental effort on diffusion

experiments and yields a c-efficiency ζD
c = 0.46 (Table 5.2). Compared to D-optimal

design in Case Study 1, the c-efficiency of the D-optimal design improves since the

D-optimal design selects the same optimal diffusion experiments as the c-optimal design.
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Figure 5.2: Experimental designs of LLE and diffusion experiments for the extraction
model using the HTU-NTU method.

The process simulation accuracy of the D-optimal experimental design increases more

from the optimal diffusion experiments than from the D-optimal LLE experiments

that are suboptimal in terms of process model accuracy. Still, the D-optimal design

doubles the experimental effort compared to the c-optimal design.

In terms of parameter accuracy, the limited experimental effort on diffusion ex-

periments in the c-optimal design results in low expected accuracy of the diffusion

coefficient estimation. As a result, the D-efficiency of the c-optimal design is only

ζc
D = 0.39.
For the conventional experimental design, 60 % of the experimental effort is manually

allocated to three equally weighted and distributed LLE experiments as in Section

5.2.1. The remaining 40 % of the experimental effort is equally distributed between

the two diffusion experiments. The optimal settings with Fo∗ = 0.1 and δ∗ = 0 are

assumed to be selected for each diffusion experiment in the conventional design, as

these settings have been disclosed in previous work (Wolff et al., 2016). As a result,

the conventional design yields c- and D-efficiencies of ζcon
c = 0.11 and ζcon

D = 0.62.
Similarly to Case Study 1, the conventional design has a substantially lower c-efficiency
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than the D-optimal design but a comparable D-efficiency to the c-optimal design. Both

the c- and D-efficiencies of the conventional design increase by 10 % compared to Case

Study 1. Similar to the D-optimal design, the conventional design benefits from the

optimal diffusion experiments, which increases both the overall accuracy of parameter

estimation and process simulation results.

Table 5.2: c- and D-efficiencies ζc and ζD of the c-optimal ξ∗
c , D-optimal ξ∗

D, and
equidistantly distributed conventional ξcon experimental designs estimation
of isothermal NRTL-τ -and diffusion parameters and use in the countercur-
rent rate-based extraction process model.

Design ξ c-efficiency ζc D-efficiency ζD

c-optimal ξ∗
c 1 0.39

D-optimal ξ∗
D 0.46 1

conventional ξcon 0.11 0.62

5.2.3 OED for estimating temperature-dependent

NRTL-τ -parameters for a hybrid extraction-distillation process

As the third case study, the extraction process previously investigated in Section 5.2.1

and Section 5.2.2 is extended by a distillation column. First, acetone is extracted

from the aqueous solution using toluene before acetone is separated from the extract

using distillation. Both the extraction and distillation columns are modelled using a

pinch-based process model (Bausa et al., 1998; Redepenning et al., 2017). For this case

study, the key performance metric ψ is the cradle-to-grave environmental impact on

Climate Change (CC) of the process that should be estimated as accurately as possible.

The environmental impact is calculated from the three life cycle stages for the solvent

toluene as described in Chapter 3. A c-optimal experimental design that minimises

only the uncertainty of the reboiler energy demand of the distillation column Qmin is

additionally provided with corresponding OED efficiencies in Appendix C.4.

Two isothermal and two temperature-dependent NRTL-τ -parameters are estimated

for each binary interaction pair because of the temperature profile in the distillation

column. Therefore, in this case study, c-OED is used to determine at which tem-

peratures and concentrations LLE experiments should be performed to calculate the

environmental impact on Climate Change as accurately as possible. For the demon-

stration of the c-OED, the designed experiments are limited to LLE experiments. In

practice, however, the NRTL parameters should be estimated through liquid-liquid

-and vapour-liquid equilibrium experiments for higher accuracy (Forte et al., 2020). As
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in Section 5.2.1, the design space is limited to concentrations corresponding to α < 0.9
to ensure experimental feasibility and applicability of the NRTL-model, and now also

consider a temperature range of 10–80 ◦C.

The experimental designs consist of a non-trivial combination of nine experimental

settings for the c-optimal and eight for the D-optimal design across the entire design

space (Figure 5.3). Both the c- and D-optimal experimental designs mainly focus

on the boundaries of the design space but avoid experiments at and near the binary

subsystem of solvent and carrier with α < 0.3 (Figure 5.3). At the boundaries, where

the temperature is high or near the critical point at high α, the thermodynamic model

is particularly sensitive to the property parameters reducing parameter uncertainty

more than in the centre of the design space. The binary subsystem is avoided for

all temperatures since both isothermal and temperature-dependent parameters are

more accurately estimated in the high-curvature region of the binodal curve (cf.

Section 5.2.1).

Color: Experimental designs
c-optimal
D-optimal
conventional

Size: Share of exp. effort / %
1
2
5
10

20

50

Figure 5.3: Experimental designs of LLE experiments for the hybrid extraction-
distillation process. The size of the circles corresponds to the share of the
experimental effort. The grey box indicates the design space.
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The c-optimal design favours experiments at lower α than the D-optimal design

as already discovered in the isothermal case study (Section 5.2.1), e.g. the total

experimental effort spent in the c-optimal design for α < 0.6 equals 56 %. At low

α, the binary interactions between solvent and solute as well as carrier and solute

can be more accurately determined, which is crucial for a high process simulation

accuracy. In contrast, the D-optimal design places only 27 % of the total experimental

effort on measurements with α < 0.6. Similarly to the estimation of isothermal NRTL-

parameters, experiments at higher α are important for higher parameter precision.

To capture the temperature dependency accurately, the c-optimal design places a

large share of the experimental effort on experiments with higher temperatures: 73 % of

the total experimental effort is spent for temperatures higher than 60 ◦C. The focus on

higher temperatures in the c-optimal design can be explained by the temperature glide

from the condenser (Tcond = 74 ◦C) to the reboiler (Treb = 110 ◦C) in the distillation

column. For an accurate description of distillation and corresponding environmental

impacts, capturing the temperature dependence of the NRTL parameters is important,

and at higher temperatures, the temperature-dependent parameters are more sensitive

to the measurements.

The D-optimal design only allocates 43 % of the experimental effort for temperatures

higher than 60 ◦C to balance the estimation of isothermal and temperature-dependent

NRTL-parameters resulting in a c-efficiency of ζD
c = 0.63 (Table 5.3). Compared to

the D-optimal design for isothermal NRTL-parameters in Section 5.2.1, the c-efficiency

of the D-optimal design increases by 75 %. Therefore, for the hybrid extraction-

distillation process, parameter precision is generally more important for accurate

process simulation than for the extraction only. As a result, parameter precision as

measured by the D-efficiency also increases to ζc
D = 0.65 for the c-optimal design by

about 48 % compared to the c-optimal design for isothermal NRTL-parameters.

For the conventional design, equally distributed experimental effort on eight experi-

mental settings across the design space is assumed (Figure 5.3). As in the first case

study (Section 5.2.1), the optimal experimental designs significantly outperform the

conventional design in both process simulation and parameter accuracy (ζcon
c = 0.32

and ζcon
D = 0.55, Table 5.3) emphasising the benefits of OED. In particular, the

c-optimal experimental design is predicted to reduce experimental effort by 68 % com-

pared to the conventional design for the same process simulation accuracy. Therefore,

manually distributing the experimental effort across a large design space is particularly

inefficient for subsequent use of the property parameters in a process simulation.
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Table 5.3: c- and D-efficiencies ζc and ζD of the c-optimal ξ∗
c , D-optimal ξ∗

D, and
equidistantly distributed conventional ξcon experimental designs for the
estimation of temperature-dependent NRTL-τ -parameters and use in the
pinch-based hybrid extraction-distillation process model.

Design ξ c-efficiency ζc D-efficiency ζD

c-optimal ξ∗
c 1 0.65

D-optimal ξ∗
D 0.63 1

conventional ξcon 0.32 0.55

5.3 Discussion: Uncertainties resulting from the

experimental designs

In this section, the predictions from OED theory are challenged by Monte Carlo

analysis for the pinch-based process models of extraction and hybrid extraction-

distillation since these two case studies exhibit the minimum and maximum difference

in c-efficiencies reported in this chapter. In c-OED theory, the standard deviation

of the process simulation result is predicted assuming linear variance propagation.

However, process models are usually highly non-linear. Therefore, assuming linear

variance propagation from experiments through parameter estimation and process

model only approximates the actual variance propagation. Here, the uncertainty from

linear variance propagation in c-OED is compared with propagation from uncertain

experimental measurements using a Monte Carlo approach. For this purpose, LLE

experiments are simulated by calculating phase compositions using the initial property

parameters (see Appendix C.2) and adding normally distributed noise to account

for measurement errors. Afterwards, property parameters are estimated from the

simulated experiments and run the process simulation using the estimated parameters

to obtain the actual process model uncertainty. In detail, the following five-step

procedure is applied (Figure 5.4):

1. Design optimal experiments: First, exact c- and D-optimal designs are calculated

for a predefined number of experiments using a non-sequential algorithm (Wynn,

1972). Since the resulting exact designs depend on the initialisation of the

algorithm, the algorithm is run repeatedly from random starting points to aim

for a globally optimal solution. Additionally, a conventional design is created,

which equidistantly distributes the same number of experiments across the design

space.

83



Chapter 5 Optimal experimental design for optimal chemical process simulations

2. Simulate experiments: From the initial property parameters and the thermody-

namic model of the LLE experiments, the phase compositions are calculated

that result from the experimental designs of Step 1. For this purpose, it is

assumed that the initial property parameters lead to the true phase compositions.

Subsequently, measurement errors are added to the true phase compositions

by sampling from a Gauss distribution with a mean of zero and a standard

deviation corresponding to typical uncertainty for phase compositions in LLE

measurements published in the literature. The typical standard deviation for

measuring molar fractions σw ranges between 0.001 (Nagata, 1984, 1987) and

0.005 (Dechambre et al., 2014a; Thien et al., 2017, 2020), depending on the

measurement method. In this work, a standard deviation σw = 0.005 is chosen,

as higher uncertainties are more challenging for the experimental design method-

ology because of the assumption of locally optimal designs. For comparison,

Monte Carlo analyses were also performed for σw = 0.001 and σw = 0.01, which
can be found in Appendix C.3.

3. Estimate property parameters: From the simulated experiments, the property

parameters are estimated by fitting the thermodynamic model of the LLE

experiments. For this purpose, the MATLAB solver lsqcurvefit (The MathWorks

Inc., 2019) is used, considering 10 starting points for each fit to aim for a globally

optimal solution. The direct use of global optimisation methods as proposed by

Mitsos et al. (2009) would be a promising extension for future work.

4. Calculate process simulation: The estimated property parameters are used as

input for the process simulation to obtain the actual propagation of the estimated

property parameters on the process simulation result.

5. Calculate uncertainty of process simulation: Steps 2-4 are repeated until 1000

process simulation results are obtained for each experimental design. From

the 1000 simulation results, the root-mean-square error (RMSE) is calculated

between the simulation results of the estimated parameters from the Monte Carlo

analysis and the simulation result of initial parameters for each design. The

RMSE of the Monte Carlo samples is compared to the expected uncertainty from

linear error propagation given by the standard deviation of OED theory. Both

the RMSE and the standard deviation are normalised by the actual value of the

process simulation result to allow for relative comparisons.
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Figure 5.4: Procedure to determine the uncertainties of the process simulation results
for each experimental design.

5.3.1 Accuracy of the extraction process simulation

The accuracy of the extraction process simulation depending on the experimental design

is investigated by estimating the six isothermal NRTL-τ -Parameters of the ternary

system for 5, 7, 10, 15 and 20 LLE experiments as an example. The uncertainty of the

process simulation is measured by computing the relative RMSE of the minimum solvent

demand resulting from the pinch-based process model. Generally, the uncertainty

of the process simulation results is low, with a relative RMSE of 2–6 % (Figure 5.5).

Therefore, a small number of experiments, e.g. 5 to 10, is already sufficient for an

accurate description of the extraction process.

The predictions from linear variance propagation using the c-optimal objective func-

tion (hatched bars) and Monte Carlo analysis (full bars) agree well for each design. The

c-optimal objective function successfully predicts qualitatively and quantitatively the

uncertainties of the simulation results: For the investigated numbers of experiments, the

c-optimal design yields the lowest uncertainty in the Monte Carlo analysis as predicted,

followed by the conventional and the D-optimal design. For each experimental design,

the relative RMSE decreases monotonically with an increasing number of experiments,

as expected from OED theory (cf. Equation 5.1). Thus, for the simulation of the

extraction process, Monte Carlo analysis confirms the benefits promised by c-OED

theory on simulation accuracy.

Notably, the exact conventional designs with 5–20 experiments yield c-efficiencies

between 0.43 and 0.46 and thus, exceed the c-efficiencies of the continuous conventional

designs with only three distinct experimental settings (cf. Section 5.2.1). Therefore,

the exact conventional designs outperform the exact D-optimal designs in simulation

accuracy for this example. The differences in c-efficiency compared to Section 5.2.1

result from the differences between continuous and exact conventional designs and are

correctly reflected by the c-optimal objective function.
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Figure 5.5: Uncertainties of the solvent demand in the extraction process for c-optimal,
D-optimal, and equidistantly distributed conventional experimental designs.
The full bars are the relative RMSE from the Monte Carlo sampling; the
hatched bars are the expected relative standard deviation from OED theory.

5.3.2 Accuracy of the hybrid extraction-distillation process simulation

For the hybrid extraction-distillation process, the six isothermal and six temperature-

dependent NRTL-τ -parameters of the ternary system are estimated by performing 20,

25, 30, 40 or 50 experiments. More experiments are chosen than for the extraction

process to capture the temperature dependence with additional parameters. The

uncertainty of the process model is measured by the relative RMSE of the cradle-to-

grave environmental impact on Climate Change (CC) resulting from the process.

The relative RMSE of the simulation result range between 12–19 % for the Monte

Carlo analysis (full bars, Figure 5.6) and are thus about one order of magnitude higher

for the hybrid extraction-distillation with temperature-dependent NRTL-parameters

compared to the extraction with isothermal NRTL-parameter. Qualitatively, the

results from the Monte Carlo analysis agree with the ranking obtained from OED

theory: The c-optimal design provides the lowest uncertainty in process simulation

results, followed by the D-optimal and the conventional design. However, the results

from the Monte Carlo analysis deviate quantitatively from OED theory: For the
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investigated c-optimal designs, the OED theory underestimates the actual uncertainty

of process simulation results by up to 50 % of the predicted uncertainty. In contrast,

for the investigated conventional designs, the OED theory overestimates the actual

uncertainty of the process simulation results by up to 58 % of the actual uncertainty.

The predictions for the D-optimal designs match well with the Monte Carlo analysis

for 20 and 25 experiments. For 30, 40 and 50 experiments, however, the accuracy for

the D-optimal designs is increasingly overestimated by up to 27 % of the predicted

uncertainty. The results indicate that the assumption of linear error propagation

is limited. The improvements predicted by linear variance propagation for c-OED

cannot always be achieved. However, c-OED still proves to provide the most accurate

simulation results.

In contrast to the c-optimal design, the relative RMSE of the D-optimal design

from the Monte Carlo sampling is not always underestimated by OED theory. For

fewer experiments, i.e. 20 experiments, the uncertainty in the Monte Carlo analysis

resulting from the D-optimal design is predicted by OED theory. Therefore, the
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Figure 5.6: Uncertainties of the environmental impact on Climate Change in the hybrid
extraction-distillation process for c-optimal, D-optimal, and equidistantly
distributed conventional experimental designs. The full bars are the relative
RMSE from the Monte Carlo sampling; the hatched bars are the expected
relative standard deviation from OED theory.

87



Chapter 5 Optimal experimental design for optimal chemical process simulations

accuracy improvement of the c-optimal design decreases compared to the D-optimal

design and eventually disappears for the hybrid extraction-distillation process if only a

minimum number of experiments is performed (cf. analysis in Appendix C.3.4). Thus,

for a small number of experiments, an improvement in simulation accuracy cannot be

guaranteed by c-OED.

For these experiments, the accuracy increase in the process simulation through

c-OED is counterbalanced by the impact of inaccurate property parameters. The

property parameter accuracy of c-OED is lower since overall parameter precision is not

the goal of c-OED. Thus, the parameters from c-optimal experiments are more prone

to measurement uncertainties and more strongly affected by inaccurate measurements

for a small number of experiments.

However, if the number of experiments is increased beyond the minimal number,

c-optimal design outperforms the D-optimal and conventional designs. The c-optimal

design monotonically decreases simulation uncertainty, which is not guaranteed for

the D-optimal and conventional designs. For higher uncertainties in mole fraction

measurements, e.g. σw = 0.01, the same qualitative trend can be observed (see analysis

in Appendix C.3.4).

In conclusion, the property parameters should be tailored for use in a process

simulation, but the overall parameter accuracy cannot always be ignored to obtain

accurate and robust simulation results. Since the parameters estimated from c-OED

are tailored to a specific process, these parameters are not optimal for every purpose.

If the parameters are not only used for process simulation but also for, e.g. gaining

thermodynamic insights, the OED objective needs to be adapted.

A single OED optimality criterion rarely leads to optimal parameters for all purposes

since the individual OED objectives conflict with each other. For the hybrid extraction-

distillation process, e.g. c- and D-efficiency form a well-defined Pareto frontier (Figure

5.7). Neither c-efficiency nor D-efficiency of an optimal multi-objective design can be

improved without deteriorating the efficiency of the other objective. Therefore, a multi-

objective design needs a carefully balanced optimality criterion. However, the Pareto

frontier shows good trade-off solutions: c-efficiency for accurate process simulations can

be substantially increased with small losses to the D-efficiency representing parameter

accuracy. E.g. a trade-off point minimising the distance to the utopia point (ζuto
D =

ζuto
c = 1) retains a D-efficiency of ζto

D = 0.90 while increasing c-efficiency from ζD
c = 0.6

to ζto
c = 0.91. The study of such trade-offs could be a valuable use of the introduced

c-efficiency concept.
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Figure 5.7: Pareto frontier between c- and D-efficiency for parameter estimation of the
hybrid extraction-distillation process. The orange circle marks the trade-off
solution with minimum distance from the utopia point (ζuto

D = ζuto
c = 1).

In future work, the parameter precision of the c-optimal design can further be

considered towards more robust designs for parameter estimation, e.g. by compound

design (Fedorov and Leonov, 2014) such as combined c- and D-optimal design (Atkinson

and Bogacka, 2002), or by introducing a minimum D-efficiency as a constraint within

the optimisation (Holland-Letz et al., 2018; Holland-Letz and Kopp-Schneider, 2018).

Methods from the area of robust experimental design can also be explored to strengthen

the c-optimal design for reliable improvement of simulation accuracy, e.g. by considering

the most inaccurate process simulation as objective for OED (Rojas et al., 2007).

5.4 Conclusion

In this chapter, c-optimal experimental design (c-OED) was introduced as a method

of optimal experimental design for chemical engineering problems. c-OED minimises

the uncertainty of the process simulation result instead of parameter precision as

the design objective. Thus, c-OED considers the application of estimated property

parameters in a process simulation already during the design of experiments and

links the experiments at the property level with the application and system level. To

estimate the uncertainty of the process simulation results, c-OED uses linear variance

propagation from uncertain property parameters through the process model.
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c-OED is demonstrated for estimating isothermal and temperature-dependent NRTL-

parameters from liquid-liquid equilibrium experiments for an extraction column and a

hybrid extraction-distillation process modelled by pinch-based process models. The

LLE experiments are designed to minimise the uncertainty of the main thermody-

namic and environmental performance measures: the minimum solvent demand of the

extraction and the minimum environmental impact on Climate Change of the hybrid

extraction-distillation process. Moreover, for a rate-based extraction column sized by

the HTU-NTU method, liquid-liquid equilibrium and closed-cell diffusion experiments

are simultaneously designed to minimise the uncertainty of the total annualised cost

of the extraction column.

The application of c-OED for chemical processes shows that considering the sen-

sitivity of the process within OED highly impacts the selection of experiments for

property parameter estimation. c-OED yields non-trivial experimental designs that

outperform state-of-the-art OED in accuracy of process simulation results. The c-

optimal experiments focus on the accurate estimation of parameters most relevant for

accurate process simulations. The prioritisation of experiments for specific parameters

is particularly evident in the simultaneous design of LLE and diffusion experiments:

The major experimental effort of the c-optimal design for the rate-based extraction

column is spent on LLE instead of diffusion experiments.

Compared to state-of-the-art OED, c-OED reduces the experimental effort by up to

64 % for the same accuracy in the case studies. Conventionally designed experiments

without using OED would increase the experimental effort compared to c-OED by up

to a factor of 10, highlighting the need for (c)-OED.

The predictions on accuracy from c-OED theory are examined by Monte Carlo

Analysis to challenge the linear approximation of variance propagation. Generally, the

OED predictions agree well with the results from Monte Carlo Analysis, and thus,

the assumption of linear variance propagation is a good approximation of the actual

variance propagation. In the case studies, process simulation accuracy significantly

increases through c-OED. The uncertainty of process model results decreases by 30–

40 % for an extraction process and by 2–20 % for a hybrid extraction-distillation process

compared to conventional experimental designs and state-of-the-art OED that does not

consider the process. Therefore, c-OED increases accuracy even for highly non-linear

process models and is thus successfully shown to tailor experiments for thermodynamic

properties to process simulations.

For future work, the focus should be directed to strengthening the robustness of

the c-optimal design, e.g. by compound design (Fedorov and Leonov, 2014). The

predictions from c-OED theory can fail due to overall inaccurate property parameters
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if too few experiments are considered. The c-optimal experimental designs increase

the accuracy of process simulations at the expense of other OED efficiencies, e.g.

D-efficiency for parameter accuracy. However, efficient trade-off solutions can be

identified balancing process simulation and parameter accuracy. Balanced compound

or multi-objective designs allow identifying such trade-off solutions.

Considering multiple operating points of the process simulation instead of only one

operating point, e.g. by L- or Dk-optimality (Atkinson et al., 2006; Holland-Letz and

Kopp-Schneider, 2018), could extend the accuracy increase by c-OED for a broader

simulation range of the process model. For an extension from process simulation to

process optimisation and design, the sensitivities of the optimal process variables to

the uncertain property parameters need to be considered. For example, the first-order

derivatives of optimised process simulation outputs with respect to property parameters

could be integrated into c-OED. Ultimately, this approach would formally transform

the idea of c-OED into the method of weighted A-optimality presented by Houska

et al. (2015).

Moreover, in practice, the initial parameter guesses rarely match the optimal pa-

rameters. Thus, an iterative procedure is usually required (Mukkula et al., 2021) that

involves not only OED but also parameter fitting, validation and consistency tests.

Therefore, future work should investigate the influence of initial property parameters

on the benefits of c-optimal design.

In the broader context of CAMPD, c-OED can provide an efficient way to generate

experimental data for validation and accuracy increase, which is discussed in more

detail in Chapter 7.
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Chapter 6

Molecular design of spark-ignition fuels

for maximum engine efficiency

Molecules are not only key for a sustainable chemical industry due to their influence

on process design as processing chemicals but also as chemical products. In contrast

to the computer-aided design of processing chemicals, computer-aided product design

(CAPD) is still usually performed by screening the physico-chemical properties of

candidate products for property targets instead of directly assessing a performance

metric of the application. To demonstrate targeted model-based design of chemical

products through a model of the application, this chapter presents a method for the

design of fuels for spark-ignition engines that incorporates an empirical model of engine

efficiency as the objective function.

The chapter begins with a brief introduction to state-of-the-art fuel design as a

special case of product design (Section 6.1). In Section 6.2, the details of the fuel

design method are explained. The models and methods are outlined for the prediction

of properties describing combustion (Section 6.2.1), thermodynamics (Section 6.2.2),

and environmental impacts and synthesisability (Section 6.2.3). The merit function

calculating the expected engine efficiency increase is described in Section 6.2.4. Section

6.2.5 explains the constraints applied to the fuel design for spark-ignition engines.

In Section 6.3, the fuel design method is applied to the design of pure-component

fuels (Section 6.3.1) and the design of binary blends with ethanol (Section 6.3.2). The

chapter is summarised and concluded with a brief outlook on future research in the

area of fuel design in Section 6.4.

Major parts of this chapter are reproduced by permission of the American Chemical Society from:

Fleitmann, L.; Ackermann, P.; Schilling, J.; Kleinekorte, J.; Rittig, J.G.; vom Lehn, F.; Schweidtmann,

A.M.; Pitsch, H.; Leonhard, K.; Mitsos, A.; Bardow, A. and Dahmen, M. (2023). Molecular design

of spark-ignition fuels for maximum engine efficiency by combining predictive thermodynamics

and machine learning. Energy & Fuels, 37(3), 2213–2229.

The author of this thesis developed the fuel design method and integrated the individual property

prediction methods. The author investigated and validated the design results with respect to the

CAPD methodology. The author wrote the first draft of the paper jointly with PA.
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Chapter 6 Molecular design of spark-ignition fuels for maximum engine efficiency

6.1 Fuel design as a special case of product design

To date, fuels are usually designed for physico-chemical property targets as surrogate

measures rather than the expected engine efficiency itself (König et al., 2020b). Some

studies on fuel design rely on database screenings using experimental data rather

than models for property prediction: McCormick et al. (2017) screened a database of

approximately 500 potential biomass-based blendstocks and blends to identify feasible

gasoline blends. To assess the candidates, experimental data was collected from various

databases for physico-chemical properties, environment, health and safety indicators,

and corrosivity. Similarly, Fioroni et al. (2019) screened a database for potential

diesel blendstocks based on thermodynamic properties and cetane numbers. Using

the database created by Fioroni et al. (2019), Huo et al. (2019) and Huq et al. (2019)

evaluated chemo-catalytic conversion pathways from potential bio-based platform

chemicals to hydrocarbons targeting physico-chemical and combustion properties.

Recently, Kuzhagaliyeva et al. (2022) published a data-driven framework to design

gasoline blends with tailored properties from a database of fuel molecules.

To expand the molecular design space beyond molecules contained in databases,

generate-and-test approaches have been developed. The idea of generate-and-test

CAPD is to create candidate structures first and assess their fuel properties subsequently

by predictive models. Hechinger (2014) employed the structure generator MOLGEN

(Gugisch et al., 2015) and dedicated Quantitative Structure-Property Relation (QSPR)

models to predict physico-chemical properties. The combustion performance was not

included in the screening but was assessed manually a posteriori because of limited

training data (Hechinger et al., 2012). Dahmen and Marquardt (2016) later extended

the generate-and-test approach by a group contribution method for the derived cetane

number (Dahmen and Marquardt, 2015) to include combustion behaviour. The authors

tailored the structure generation to model catalytic refunctionalisation of platform

chemicals derived from lignocellulosic biomass. This approach yields a list of candidate

fuels that meet a range of fuel properties associated with high engine efficiency and

high synthesisability (Dahmen and Marquardt, 2016). Recently, Rittig et al. (2022)

employed generative graph machine learning models to design molecules with maximum

research octane number and octane sensitivity.

Since generate-and-test approaches enumerate candidate fuels, numerous evaluations

of candidate fuels are required. For a more targeted exploration of the molecular design

space, optimisation-based fuel design has been developed based on the general mathe-

matical product design problem by Gani (2004). The optimisation-based approach

was first applied to determine the composition of biofuel blends of pre-selected blend
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6.1 Fuel design as a special case of product design

components respecting fuel standards (Kashinath et al., 2012; Hashim et al., 2017)

and was later extended to arbitrary components using a decomposed optimisation

strategy (Yunus et al., 2014). The integrated design of the molecular structures and

their optimal composition in a blend was finally achieved by formulating and solving

the blend design problem as a mixed integer non-linear programme based on functional

groups as molecular building blocks (Zhang et al., 2018a; Kalakul et al., 2018; Liu

et al., 2019c).

Optimisation-based fuel design has attracted particular attention in combination

with the selection of optimal conversion routes. Marvin et al. (2013) used a rule-based

reaction network generator to generate possible gasoline fuel components and their

production pathways. Based on the reaction network, gasoline blends are optimised

with respect to production process performance constrained by fuel blend properties.

In contrast, Ng et al. (2015a) designed bio-based fuel blends by first optimising the

properties of a blend and subsequently solving a superstructure optimisation problem

for an integrated biorefinery. Dahmen and Marquardt (2017) combined blend design

with mass-based screening of processing pathways using experimental yields to obtain

renewable fuel blends maximising resource efficiency. The method was extended by

early-stage process design using process network flux analysis, allowing the minimisation

of production cost and global warming impact of the designed fuel blend (König et al.,

2020a). Subsequent engine testing of selected blends (Dahmen and Marquardt, 2017;

König et al., 2021) has confirmed the superior engine performance compared to fossil

gasoline (Burkardt et al., 2021; Ackermann et al., 2021).

The studies mentioned above successfully identified promising molecules based on a

list of target properties. However, such a fuel design does not consider the combined

effect that these properties exert on engine performance. To date, no method has been

proposed that explicitly designs fuels for maximum engine efficiency.

To consider engine efficiency as an explicit design objective, an engine model is

required that predicts engine efficiency based on the fuel’s physico-chemical properties.

Recently, two models for spark-ignition (SI) engines were presented in the literature: (1)

a zero-dimensional engine model (Gschwend et al., 2017) and (2) the engine efficiency

merit function (Farrell et al., 2018; Szybist et al., 2021).

The zero-dimensional engine model was developed to calculate a fuel’s maximum

engine efficiency considering knock limitation and has already been coupled with

reaction network analysis to find the optimal upgrading of lignin pyrolysis oil (Gschwend

et al., 2018). Moreover, the model has been applied to a detailed performance evaluation

of fifty pre-selected fuel candidates (Gschwend et al., 2019).
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Chapter 6 Molecular design of spark-ignition fuels for maximum engine efficiency

The engine efficiency merit function is a correlation that predicts the relative

engine efficiency increase compared to a base fuel, i.e. RON95 gasoline, based on fuel

properties, such as research octane number, octane sensitivity, and heat of vaporisation.

vom Lehn et al. (2021b) and Li et al. (2022) have used the merit function to rank

candidate fuels within database screenings. However, the screening studies are limited

to the existing database molecules and cannot discover novel molecular structures.

6.2 Fuel design method

The fuel design method uses molecular optimisation to maximise the predicted achiev-

able engine efficiency increase of a fuel combusted in dedicated spark-ignition engines.

Various constraints are imposed to design efficient and safe fuels. Specifically, thermo-

dynamic and combustion properties are predicted as well as environmental, health,

and safety (EHS) indicators and synthesisability.

For thermodynamic properties, established models from the literature use group

contribution (GC; Gani, 2019) or quantum chemistry-based methods (Gertig et al.,

2020a), e.g. COSMO-RS (Klamt et al., 2010). GC methods have also been applied to

predict EHS indicators of chemicals (Hukkerikar et al., 2012a). Recently, advanced

machine learning-based methods, e.g. deep learning and Bayesian regression, have

progressed rapidly in the field of molecular property prediction (Walters and Barzilay,

2021). Therefore, the fuel design method is based on a hybrid approach for property

prediction: Thermodynamic properties are predicted using quantum chemistry-based

COSMO-RS, and combustion and EHS properties as well as synthesisability are

predicted using machine learning-based models.

Based on the predicted properties, each candidate fuel is evaluated with the engine

efficiency merit function. Both the property prediction and the evaluation of the objec-

tive function and constraints are integrated into a molecular optimisation framework

that is based on COSMO-CAMD (Scheffczyk et al., 2017b; cf. Section 3.1.1).

The fuel design method involves five steps for property prediction and candidate

evaluation in each generation of the genetic optimisation (Figure 6.1):

1. Prediction of combustion properties

2. Prediction of thermodynamic properties

3. Prediction of EHS indicators and synthesisability

4. Objective function evaluation

5. Constraints evaluation
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6.2 Fuel design method

Based on the fitness values of the current generation of molecules, a next generation is

created through the genetic operations crossover and mutation. The method proceeds

to systematically explore the molecular design space until a pre-defined maximum

number of generations is met.

In the following subsections, each step in the fuel design method is briefly explained.

Details on the used soft- and hardware are included in Appendix D.1. Appendix

D.2 contains the molecular fragments, which are specified as building blocks for the

genetic algorithm. In this work, fragments are included to design oxygenated and

non-oxygenated hydrocarbons.

Objective function: engine efficiency Constraints
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Figure 6.1: Fuel design method for maximum engine efficiency considering constraints
on environment, health, and safety hazards, as well as synthesisability.
For molecular optimisation of candidate fuels, property prediction and
performance assessment are integrated into the genetic algorithm LEA3D in
five steps (1-5): prediction of combustion (1) and thermodynamic properties
(2), and environment, health, and safety indicators including synthesisability
(3), evaluation of objective function f (4) and constraints k (5).
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Chapter 6 Molecular design of spark-ignition fuels for maximum engine efficiency

6.2.1 Combustion properties

Combustion properties that substantially influence SI engine efficiency are the Research

and the Motor Octane Numbers (RON and MON) as well as the Laminar Burning

Velocity (LBV) (Szybist et al., 2021). RON and MON are predicted with the Graph

Neural Network (GNN) developed by Schweidtmann et al. (2020) that was trained

by simultaneous, so-called multi-task learning on training data of RON, MON, and

derived cetane number (DCN) of oxygenated and non-oxygenated hydrocarbons. By

multi-task learning, a higher prediction accuracy is achieved compared to the accuracy

of single-task learning of the individual properties. Moreover, the GNN directly uses the

molecular graph as feature and thus eliminates the need for manual feature selection.

The LBV is predicted with a Group Contribution (GC) based Artificial Neural

Network (ANN) by vom Lehn et al. (2021a). Following the idea of group contributions

(Gani, 2019), the GC-based ANN uses the number of structural groups in a molecule

as input features. For this purpose, molecules are divided into the structural groups

originally proposed by Joback and Reid (1987). The LBV not only depends on the

molecular structure but also on combustion parameters, i.e. temperature, pressure,

and the fuel-air equivalence ratio, which are therefore additional inputs to the ANN. As

suggested by Farrell et al. (2018), the LBV is evaluated for a stoichiometric mixture at

ambient pressure and 358 K. It should be noted that these conditions differ from typical

engine conditions. However, as Szybist et al. (2021) point out, LBV measurements at

engine relevant conditions are associated with high uncertainties.

6.2.2 Thermodynamic properties

Thermodynamic properties are predicted with COSMO-RS on TZVP-MF level (Klamt

et al., 2010; cf. Section 3.1.1). For the fuel design, COSMO-RS predicts boiling/bubble

points and enthalpies of vaporisation of pure components and mixtures. Furthermore,

melting points of pure components are available via a random forest-based QSPR

model trained on structural molecular information and the σ-moment descriptors from

COSMO-RS by Loschen and Klamt (2016). For fuel blends, COSMO-RS additionally

calculates liquid-liquid-equilibria to estimate immiscibility and phase segregation.
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6.2 Fuel design method

6.2.3 Environment, health, and safety indicators & synthesisability

In addition to technical performance and technical feasibility, the candidate fuel needs

to be assessed with regard to practical constraints as an optimally designed fuel should

allow for safe handling and minimum hazards to environment and health (Ackermann

et al., 2021). Furthermore, some in-silico designed molecules are challenging or

impossible to synthesise in practice (Gao and Coley, 2020). Therefore, the prediction

of Environment, Health, and Safety (EHS) indicators and synthesisability is included

to design non-hazardous and attainable fuels.

EHS properties: Alshehri et al. (2021) recently presented models for predicting

various EHS indicators of pure components using Group Contribution (GC) based

Gaussian Process Regression (GPR). A similar approach was presented by Li et al.

(2021) for the prediction of sooting tendencies. Similar to Alshehri et al. (2021) and Li

et al. (2021), the following EHS indicators are considered for the fuel design through

GC-based GPR prediction as constraints:

• Autoignition Temperature (AiT; American Society for Testing and Materials,

2000)

• Bioconcentration Factor (BCF; Arnot and Gobas, 2006)

• aqueous toxicity as Lethal Concentration for Fathead Minnow fish (LC50(FM);

Ankley and Villeneuve, 2006)

• oral toxicity as Lethal Dose for rats (LD50; Walum, 1998)

• Permissible Exposure Limit using the OSHA time-weighted average (PELOSHA-TWA;

Spear and Selvin, 1989)

• chemical tendency to form soot expressed through the unified yield sooting index

(uYSI; Das et al., 2018)

For integration in the fuel design method, the models by Alshehri et al. (2021) for

AiT, BCF, LC50(FM), LD50, and PELOSHA-TWA are re-trained using UNIFAC groups

as descriptors and the training and test data from Alshehri et al. (2021). The uYSI

model is developed using the data from McEnally et al. (2017). Noteworthy, the uYSI

does not predict engine-out soot emissions but rather the chemical tendency of a fuel

to form soot. A more practical measure for engine-out soot emissions would be the

Particulate Matter Index (PMI) Aikawa et al. (2010), where the number of double-bond

equivalents as a proxy for the chemical tendency to form soot is divided by the vapour

pressure as a measure for in-cylinder mixture formation quality. However, the different

oxygenate functionalities of alternative fuels are differently effective in reducing soot

formation (Westbrook et al., 2006). Accordingly, comparing different soot indices,
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Chapter 6 Molecular design of spark-ignition fuels for maximum engine efficiency

Leach et al. (2021) found that the correlation between the number of double-bond

equivalents and (u)YSI is stronger for hydrocarbon fuels than for oxygenated fuels.

Unfortunately, no model is available for predicting nano soot number density, which is

becoming more important in regulations (Samaras et al., 2020).

For the set-up and accuracy assessment of the models, the training data for each

model is split into a set for training and testing (Goodfellow et al., 2016). The test set

contains approximately 10 % of the training data and is not used within the training to

assess the accuracy of the model on unseen data. The data is split so that the statistical

distribution of the features in the test and training sets are similar (Goodfellow et al.,

2016). A test set with a statistical distribution similar to the training set represents

the model domain well and thus reflects model performance across the whole domain

rather than just in a particular region. For this purpose, 10000 random splits are

performed and the split with the lowest Kullback-Leibler divergence (Kullback and

Leibler, 1951) is chosen, indicating the most similar and uniform statistical distribution

between the training and test sets.

The models are set up by fragmenting the molecules contained in the training

data into UNIFAC groups using the automated fragmentation tool by Müller (2019).

The kernels for the GPR of each model are selected by employing the automated

kernel-search algorithm developed by Duvenaud et al. (2013), Duvenaud (2014), and

Lloyd et al. (2014).

The models achieve an accuracy comparable to the models in the literature (Hukkerikar

et al., 2012a; Alshehri et al., 2021; see Table 6.1). The accuracy of the predictions

on the test sets measured by the coefficient of determination (R2) equals on average

R2 = 0.73. The corresponding Root-Mean-Square Error normalised by the range of

values (nRMSE) is nRMSE = 8.5 %. Parity plots of predicted and target values of

the test sets visualising prediction accuracy can be found in Appendix D.3.

Synthesisability: By assembling molecular fragments, the LEA3D algorithm gener-

ates molecules that always satisfy chemical feasibility, i.e. the octet rule. However, a

chemically feasible molecule is not necessarily similar to known molecules and may

therefore be technologically challenging to obtain, i.e. hardly synthesisable or only

synthesisable with considerable effort via numerous synthesis steps.

The synthesisability of candidate molecules can be assessed through retrosynthesis

algorithms (Gao and Coley, 2020). Retrosynthesis algorithms generate synthesis routes

for a given product and thus allow an investigation into whether and how a chemical

can be synthesised. Various retrosynthesis models have been developed in the past (Sun

and Sahinidis, 2022). For the fuel design algorithm, the graph exploration algorithm
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6.2 Fuel design method

developed by Schwaller et al. (2020) is employed for retrosynthesis. The algorithm

is based on the molecular transformer, a multi-head attention-based neural network

model for forward synthesis prediction with high accuracy (Schwaller et al., 2019).

In this work, a fuel is considered synthesisable if a maximum of three subsequent

reactions are required from commercially available reactants to the desired fuel. Oth-

erwise, the synthesis route is deemed too costly to be viable. Moreover, the confidence

of the retrosynthesis algorithm in the synthesis route has to be greater than 50 %.

Notably, this definition of synthesisability discards candidate fuels for which efficient

synthesis routes are likely to be currently unknown and thus can be classified as hypo-

thetical or technologically unattainable molecules. This assessment of synthesisability

does not ensure that the synthesisable molecules can be produced in large quantities,

at low cost, or from renewable resources, which should also be a design target for a

novel fuel but cannot yet be predicted.

Table 6.1: Data set sizes NTrain and NTest and prediction accuracies on the test sets
of the EHS indicators using group contribution-based GPR models for the
categories autoignition temperature (AiT), bioconcentration factor (BCF),
aqueous toxicity of fathead minnow fish (LC50(FM)), oral rat toxicity
(LD50), permissible exposure limit (PELOSHA-TWA), and unified yield sooting
index (uYSI). The accuracy is measured by the coefficient of determination
(R2), the root-mean-square error (RMSE), and the root-mean-square error
normalised by the range of values (nRMSE).

EHS indicator NTrain NTest R2
test RMSEtest nRMSEtest

AiT 487 54 0.78 58 K 6.4 %
log (BCF ) 366 41 0.78 0.69 11 %
− log (LC50(FM)) 490 54 0.66 0.75 8.6 %
− log (LD50) 2157 240 0.58 0.40 9.1 %
− log (PELOSHA-TWA) 346 38 0.60 1.1 13 %
uY SI 397 44 0.99 39 2.9 %
average performance - - 0.73 - 8.5 %
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6.2.4 Engine efficiency merit function as objective function

Various fuel properties can have a positive impact on achievable SI engine efficiency,

including RON, MON, ∆hvap, and LBV (Farrell et al., 2018; Szybist et al., 2021).

Alternative fuels can exhibit favourable values in one or more of these properties. To

evaluate the potential of an alternative fuel candidate for use in advanced highly-

boosted SI engines, the impact of these fuel properties on engine efficiency has been

empirically quantified through experimental sensitivity analyses under stoichiometric

boosted combustion conditions, resulting in the so-called engine efficiency merit function

(Farrell et al., 2018; Szybist et al., 2021). The merit function linearly correlates the

fuel properties with the achievable improvement in maximum brake thermal engine

efficiency (η) compared to a reference fuel, e.g. RON95 gasoline. For example, assuming

an engine efficiency of 30 % with RON95 gasoline, a merit value of 16 % leads to an

absolute engine efficiency increase of 4.8 %. Efficiency increases in this range have

already been achieved in single-cylinder research engines (Hoppe et al., 2016b; Burkardt

et al., 2021; Ackermann et al., 2021).

Using the merit function, the expected relative engine efficiency increase of a

candidate fuel is calculated based on RON, MON, ∆hvap, and LBV compared to

RON95 gasoline:

merit

100 % = η − ηref

ηref

= RON −RONref

1.6︸ ︷︷ ︸
octane number

−K · RON −MON − (RONref −MONref)
1.6︸ ︷︷ ︸

octane sensitivity

+ 0.0085 ·

∆hvap

AFR + 1 − ∆hvap,ref

AFRref + 1
1.6︸ ︷︷ ︸

effective octane rating

+

∆hvap

AFR + 1 − ∆hvap,ref

AFRref + 1
15.2︸ ︷︷ ︸

charge cooling

+ LBV − LBVref

5.4︸ ︷︷ ︸
laminar burning velocity

(6.1)

Each term in the merit function reflects an empirically found linear influence on

maximum engine efficiency (Farrell et al., 2018; Szybist et al., 2021): the influence of

octane number, octane sensitivity (defined as RON −MON), effective octane rating,

charge cooling, and laminar burning velocity. The reference values for RON, MON,

and ∆hvap are taken from Leitner et al. (2017) (Table 6.2). Lacking a value for LBV

from Leitner et al. (2017), the LBV of a commercial RON95 measured by Dirrenberger
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et al. (2014) is used as a reference value (Table 6.2). The stoichiometric air-to-fuel

ratio of each candidate fuel is denoted by AFR, and the parameter K is a normalised

value describing the engine’s operating conditions relative to those of the RON and

MON tests, i.e. KRON = 0 and KMON = 1, respectively (Kalghatgi, 2001).

Since the K-value depends on engine operating conditions, selecting a single, repre-

sentative value is difficult. For modern downsized, turbocharged SI engines, the K

parameter is usually negative (Remmert et al., 2014; Kassai et al., 2019; Singh et al.,

2021). Kassai et al. (2019) determined values in a single-cylinder research engine with

a moderate compression ratio of 10.5 between −0.1 and −1.9, with K being the lowest

at high intake pressure and low engine speed. Since this design aims at fuels for engines

with higher compression ratios (e.g. a compression ratio of 16.4 as in a recent work

by Ackermann et al. (2021)), K is pragmatically chosen to K = −1.5. Appendix D.4

contains an example analysis on how the choice of the K-value affects the predicted

efficiency gains.

Table 6.2: Reference values for RON95 gasoline used in the engine efficiency merit
function.

Property Reference value Reference

RONref 96 Leitner et al. (2017)
MONref 85 Leitner et al. (2017)
∆hvap,ref 350 kJ kg−1

air Leitner et al. (2017)
AFRref 14 Leitner et al. (2017)
LBVref 48 cm s−1 Dirrenberger et al. (2014)

6.2.5 Property constraints

The candidate fuels need to meet several thermodynamic, environmental, and practical

requirements that are formulated as design constraints (Table 6.3). The normal

boiling and melting points of the candidate fuels are constrained to ensure that the

fuel is liquid at ambient conditions. Additional constraints on the maximum boiling

point and the maximum enthalpy of vaporisation ensure sufficient volatility and, thus,

proper in-cylinder mixture formation under cold conditions. If the boiling point or the

enthalpy of vaporisation of a candidate fuel is too high, the candidate fuel may not

completely evaporate under cold conditions but dissolves in the engine oil potentially

causing engine failure due to oil dilution (Larsen et al., 2009; Thewes et al., 2011;

Hoppe et al., 2016a). The constraints on boiling and melting points and enthalpy

103



Chapter 6 Molecular design of spark-ignition fuels for maximum engine efficiency

of vaporisation are taken from a previous design study by Dahmen and Marquardt

(2016). Noteworthy, today’s fossil fuel standards use the Reid vapour pressure and

characteristic points on the distillation curve to address cold start issues and neglect

the enthalpy of vaporization (American Society for Testing and Materials, 2021; DIN

German Institute for Standardization, 2017). However, studies on pure alcohol fuels

such as ethanol, 1-butanol, and 2-butanol have linked high enthalpies of vaporization to

higher pollutant formation (Chen and Stone, 2011; Thewes et al., 2012) and excessive oil

dilution (Hoppe et al., 2016a). Further research is needed to better define appropriate

upper limits on boiling point and enthalpy of vaporization in case of pure-component

alternative fuels.

The candidate fuels’ EHS indicators are constrained to ensure that the candi-

date fuels are less hazardous than RON95 gasoline with respect to AiT, LC50(FM),
LD50, and PELOSHA-TWA. For BCF, candidate fuels must not be bioaccumulative,

i.e. log(BCF ) < 3.3 according to Arnot and Gobas (2006). The sooting tendency

expressed through the uYSI is not restricted by regulations or policy but should be as

small as possible for clean and efficient combustion (Szybist et al., 2021). A strict upper

bound is difficult to define. In this work, the uYSI value of n-hexane is considered

acceptable and therefore chosen as an upper bound.

Since the EHS indicators are predicted with Gaussian Process Regression (GPR), pre-

dicted values are provided with uncertainty quantification. This prediction uncertainty

is considered in chance constraints to minimise the number of incorrectly discarded fuel

candidates. Candidate fuels are only discarded if a property’s 95 % confidence interval

violates a constraint, i.e. if a constraint’s lower bound lb > Ωmax = Ω + 1.96 · σΩ, or

if a constraint’s upper bound ub < Ωmin = Ω − 1.96 · σΩ, where Ω is the considered

property and σΩ the property’s prediction uncertainty.

6.2.6 Evaluation of mixture properties

For the design of binary blends with ethanol (cf. Section 6.3.2), mixture properties

have to be predicted. Mixture bubble points and mixture enthalpies of vaporisation

are calculated considering full non-ideal thermodynamic behaviour using COSMO-

RS. The prediction of non-ideal behaviour is a particular strength of COSMO-RS.

Pragmatically, the bubble point temperature of the mixture is constrained to the

same value (120 ◦C) as the normal boiling point used in the pure-component design.

Noteworthy, mixtures of components with strongly different evaporation characteristics

may lead to in-cylinder mixture inhomogeneity, potentially causing wall wetting and oil

dilution (Itani et al., 2015; Bardi et al., 2019; Kranz and Kaiser, 2019). Consideration
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Chapter 6 Molecular design of spark-ignition fuels for maximum engine efficiency

of such non-ideal evaporation effects is, however, beyond the scope of this work. With

the given data-driven models, the non-ideal mixture behaviour for the combustion

properties and EHS indicators cannot be predicted. In the absence of more accurate,

non-linear models, these mixture properties are approximated using a linear molar

mixing rule:

Ωblend =
n∑

i=1
xiΩi (6.2)

In this equation, Ωi stands for the predicted pure-component properties, and xi is the

mole fraction of component i in the blend. The mixture property is denoted by Ωblend.

For combustion properties, the linear molar mixing rule approximates non-ideal

behaviour more accurately than, e.g. a linear liquid volume-based mixing rule, in

particular for blends with ethanol (vom Lehn et al., 2021b). For the EHS indicators,

the linear molar mixing rule is in line with previous blend design studies (Yunus

et al., 2014; Zhang et al., 2018a), following the concept of dose addition for toxicity

(LC50(FM), LD50; Altenburger et al., 2003) and exposure hazards (PELOSHA-TWA;

Craig et al., 1999).

6.3 Design of pure fuels and fuel blends for spark-ignition

engines

The fuel design method is applied to design (1) pure-component fuels and (2) blend

components for binary fuel blends with ethanol.

6.3.1 Pure component fuel design

The fuel design method is started twice with 50 generations and 40 candidate molecules

per generation to accommodate for the stochastic nature of the approach. In total, the

method investigates 1033 unique molecules in approximately 3 days and 9 hours in

parallel on 24 computer cores (see Appendix D.1 for details on the hardware). From

these 1033 unique molecules, 22 are candidate fuels that fulfil all constraints (Figure

6.2). 11 candidate fuels outperform the benchmark RON95 gasoline in predicted

engine efficiency (Table 6.4). As the optimal fuel, tert-butyl formate is identified with a

predicted increase in engine efficiency of approximately 7.9 %, followed by ethyl acetate

(3.8 %), isopropyl formate (3.7 %), and vinyl propionate (3.6 %). The remaining

6 candidate fuels increasing engine efficiency achieve only minor improvements in

predicted engine efficiency between 1 % and 3.3 %.
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Figure 6.2: Predicted engine efficiency increase for the pure-component design. The
blue circles represent the model predictions for the 22 candidate fuels. The
orange squares and asterisks are calculated using experimental values for
RON, MON, and ∆hvap. The experimental values of the molecules marked
with asterisks were not used for training of the GNN.

From the 22 identified candidate fuels, 14 candidate fuels have also been considered

in the database screening by vom Lehn et al. (2021b) that relied on experimental

property data. This experimental data is used to re-calculate the engine efficiency

increase and compare the results with the predicted engine efficiency increase. The

mean absolute error (MAE) of the predicted engine efficiency increase is only 2.2 %,

indicating an accurate assessment by the fuel design method (cf. Figure 6.2). However,

12 of these 14 candidate fuels were also included in the training data set of the GNN that

contributes RON and MON values to the engine efficiency assessment (Schweidtmann

et al., 2020), leading to a high prediction accuracy of these candidates. Nevertheless,

the MAE for 3-methyl-2-butanone and isopropyl acetate, which were not included in

the training data set, is comparable with MAE = 2.8 % to the MAE of the training

data (MAEtrain = 2.1 %), indicating generalisability beyond the training data of the

GNN.
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Using the experimental data, 1-butanol (rank 7, meritexp = 6.8 %), 3-methyl-2-

butanone (rank 8, meritexp = 5.1 %), and isopropyl acetate (rank 11, meritexp = 4.6 %)

are highly promising candidate fuels achieving higher engine efficiency according to

the engine efficiency merit function than predicted during the design. Thus, the fuel

design method suggests promising candidate fuels. Still, the final ranking requires

subsequent experimental verification.

In contrast to the present study, vom Lehn et al. (2021b) identified methanol,

methyl formate, and ethanol as the highest-ranking candidate fuels. However, under

the constraints of the present study, methanol and ethanol exceed the maximum

permissible heat of vaporisation with predicted values of 214 kJ kg−1
air (experimental

183 kJ kg−1
air (Majer and Svoboda, 1985)) and 106 kJ kg−1

air (experimental 93 kJ kg−1
air

(Majer and Svoboda, 1985)), respectively. Methyl formate violates the lower bound on

the boiling point with a predicted boiling temperature of 38 ◦C (experimental 32 ◦C
(Majer and Svoboda, 1985)). Formates with longer alkyl chains and higher boiling

points have been identified as promising pure-component fuels in the present study as

well as other esters. In particular, ethyl acetate and isopropyl acetate are suggested

as pure-component fuels by the present study, vom Lehn et al. (2021b), and Dahmen

and Marquardt (2016). Moreover, 3-methyl-2-pentanone and 2-pentanone have been

proposed by Dahmen and Marquardt (2016) as blend candidates with moderate knock

resistance, which is confirmed by the predicted moderate pure-component engine

efficiency increase found in the present study (3.2 % and 2.0 %, respectively). 1-butanol

and its isomers have also been studied in the literature as 1-butanol has similar knock

resistance to RON95 and is known to fulfil the property constraints for an SI fuel

(Dahmen and Marquardt, 2016). The fuel design in this work is thus confirmed by

findings from the literature but also yields additional candidate fuels that have not yet

been investigated.

Influence of property constraints on optimal fuel candidates

In the design of pure-component fuels for SI engines, the tight property constraints

drastically limit the number of candidate molecules, as also discovered by Dahmen and

Marquardt (2016). In the present study, 1011 of 1033 candidates are already discarded

before the engine efficiency evaluation due to constraint violation (Figure 6.3). The

most selective constraint is the constraint on the boiling point, which is also enforced

first: 960 of 1011 excluded candidate fuels violate the constraint, with 929 of 960
candidates exceeding the maximum boiling point. The subsequently applied constraints

on melting point, enthalpy of vaporisation, EHS indicators, and synthesisability discard
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Figure 6.3: Influence of property constraints on the number of candidate fuels in the
pure-component fuel design. The grey numbers in brackets are the total
number of candidate fuels violating the corresponding constraint.

additional 6, 7, 36, and 2 molecules, respectively. The majority of candidate molecules

does not only violate the boiling point constraint but also the melting point, EHS, and

synthesisability constraints(grey numbers in Figure 6.3).

The constraints on boiling point and enthalpy of vaporisation are relaxed to in-

vestigate whether technical advances in engine design could substantially increase

the number of feasible candidate fuels. A relaxation of the constraints on Tboil and

∆hvap by 10 K and 10 kJ kg−1
air compared to the original values (cf. Table 6.3) yields

three additional fuel candidates: propen-2-ol (engine efficiency increase 12 %, ∆hvap

= 69 kJ kg−1
air ), 2-propanol (engine efficiency increase 10 %, ∆hvap = 69 kJ kg−1

air ), and

2-hydroxy-2-methylpropanal (engine efficiency increase 8.5 %, Tboil = 120.2 ◦C). Fur-

ther relaxation of the constraints by 10 K and 10 kJ kg−1
air to 140 ◦C and 80 kJ kg−1

air ,

respectively, additionally yields 1-propanol (engine efficiency increase 12 %, %, ∆hvap

= 72 kJ kg−1
air ).

Moreover, various highly-branched alkenes and alkanes are designed under the

relaxed property constraints, e.g. 3,3,4-trimethyl-1-pentene, 4,4,5-trimethyl-1-hexene,

or 2,3,3,4-tetramethylpentane. The designed highly-branched alkenes and alkanes

are predicted to exhibit high RONs (104 − 110) and high OSs (12-16), leading to

predicted engine efficiency increases between 8.5 % and 11 %. However, high uYSI

values (74 − 84) are predicted for these molecules, which are only considered fuel

candidates by the algorithm as their 95 % confidence intervals reach below the threshold

value of uY SI = 30. Since highly branched alkenes and alkanes are known to cause

soot formation, the actual values of the corresponding candidate fuels are likely in the

area of uY SI = 70 − 80, as also suggested by the online uYSI estimator by St. John

et al. (2022).

111



Chapter 6 Molecular design of spark-ignition fuels for maximum engine efficiency

In conclusion, pure-component fuel design for high-efficiency SI engines is extremely

challenging as it yields only a limited number of candidates. Moreover, relaxations in

property constraints only result in a few additional candidate fuels.

6.3.2 Design of binary blends with ethanol

Unfavourable properties of individual molecules can often be balanced by blending

(Dahmen and Marquardt, 2017; König et al., 2020a, 2021). Therefore, in fuel design,

blending constitutes an additional degree of freedom that can be used to broaden the

number of candidate fuels. In this section, the fuel design method is applied to binary

blends with ethanol.

Ethanol is an established blend component for commercial fuels (Leitner et al., 2017).

It is known for its excellent knock resistance (high RON) and its high enthalpy of

vaporisation that provides charge cooling. Both properties increase engine efficiency

(Shirazi et al., 2020), leading to a predicted engine efficiency increase by the merit

function of 25 %. However, as a pure-component fuel, ethanol is troublesome as its

high enthalpy of vaporisation (cf. Section 6.3.1) can lead to oil dilution under cold

conditions (Larsen et al., 2009; Thewes et al., 2011; Hoppe et al., 2016a). Therefore,

ethanol is a suitable base component for a blend due to its favourable combustion

properties but must be balanced with a tailor-made secondary component.

For the purpose of blend design, both the molecular structure and the molar fraction

of the candidate blend component in a binary blend with ethanol are optimised. The

fuel design method is run twice for 50 generations with 40 candidate molecules per

generation. In total, the method investigates 1310 unique blends in 9 days and 20 hours

in parallel on 24 computer cores (see Appendix D.1 for details on the hardware). Of

these unique blends, 226 fulfil the property constraints and are thus candidate blends

(see Appendix D.5 for details). 184 candidate fuel blends lead to a positive merit

function value indicating an engine efficiency increase compared to RON95 gasoline

(Figure 6.4). Compared to the optimal pure-component fuel tert-butyl formate, 136
blends yield a higher engine efficiency. Therefore, as Figures 6.3 and 6.4 demonstrate,

the design space for fuel blends is much larger than the design space for pure-component

fuels and offers many more possibilities for increasing engine efficiency.

The optimal blend with ethanol is obtained with 3,4-dimethyl-3-propan-2-yl-1-

pentene, a highly-branched alkene. The engine efficiency increase of this optimal blend

is predicted to be 19.5 % (Table 6.6). The majority of the blend is composed of ethanol

(83 mol-%) and only 17 mol-% of 3,4-dimethyl-3-propan-2-yl-1-pentene. The blends

with the second and third highest engine efficiency increases are formed with 22 mol-%

3,3,4-trimethyl-1-pentene, and with 16 mol-% 4,5-dimethyl-4-propan-2-yl-1-hexene,
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Figure 6.4: Predicted engine efficiency increase for the 184 binary blends with ethanol.
The blue circles represent the predictions from the predictive models. The
orange diamonds are the predicted blend RONs.

again highly-branched alkenes. The engine efficiencies are predicted to increase by

approximately 19.3 %.

The top candidates combine a high RON (104 − 107) and a high octane sensitivity

(15 − 16), as this combination is known to enable high engine efficiency in modern

highly-boosted engines (Kassai et al., 2019). Due to these favourable properties, alkenes

are generally high-ranking blend components: 18 of the top 50 candidate blends are

formed with an alkene and 1 with an alkadiene. The positive effect of the vinyl groups

on engine efficiency is known from the literature (vom Lehn et al., 2021b).

The top 3 blend components are not suitable as pure-component fuels, e.g. due

to constraint violations on boiling point, toxicity, or soot formation. Since the top

3 candidates are large alkenes (C8-C11), they have high boiling points of 129 ◦C,
91 ◦C, and 145 ◦C, and high sooting tendencies as evident by predicted uYSI values of

between 75 and 107. Moreover, the components are highly toxic to aqueous organisms

as indicated by a predicted − log(LC50(FM)) = 4.0 − 4.8 and potentially have a low
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exposure limit (predicted − log(PELOSHA-TWA) = 3.3 − 3.5). In a blend with ethanol,

ethanol is predicted to compensate for these properties while the low enthalpies of

vaporisation of the top blend components (18 − 21 kJ kg−1
air ) help to mitigate ethanol’s

high enthalpy of vaporisation.

The top 3 blend components are synthesisable as indicated by retrosynthesis through

1 or 2 reactions from commercially available components. However, they are currently

not commercially available themselves as determined by database searches. The highest-

ranking commercially available component is 3,3-dimethyl-1-pentene on rank 8. An
optimised blend of 26 mol-% 3,3-dimethyl-1-pentene and 74 mol-% ethanol increases en-

gine efficiency by approximately 18.6 % compared to RON95. Similar to the top 3 blend

components, 3,3-dimethyl-1-pentene has a high RON of 105 and an octane sensitivity

of 15. The predicted EHS indicators suggest similar toxicity (− log(LC50(FM)) = 3.8,
− log(LD50) = 1.6) and permissible exposure limit (− log(PELOSHA-TWA) = 3.8), but
lower soot formation (uY SI = 57).
A commercially available alternative to 3,3-dimethyl-1-pentene is 2,2,3-trimethyl-

butanal on rank 12. A blend of 28 mol-% 2,2,3-trimethylbutanal and 72 mol-%

ethanol is predicted to increase engine efficiency by 18 %. Compared to 3,3-dimethyl-

1-pentene, 2,2,3-trimethylbutanal has the advantage of not containing a vinyl group

but instead contains an aldehyde group. However, molecules with vinyl or aldehyde

groups can both age the fuel blend and reduce its stability due to polymerisation

(Pereira and Pasa, 2006) and high reactivity (Baehr et al., 2022). The highest-ranking

commercially available candidate blend component without a vinyl or aldehyde group

is 2,3,4-trimethylpentane on rank 25. A blend of 21 mol-% 2,3,4-trimethylpentane and

79 mol-% ethanol is predicted to increase engine efficiency by 17 %. In comparison

to the top 3 and the high-ranking commercially available blend components, the

predicted EHS indicators of 2,3,4-trimethylpentane suggest safer handling and use with

a higher permissible exposure limit (− log(PELOSHA-TWA) = 1.9) and lower toxicity

(− log(LC50(FM)) = 3.6, − log(LD50) = 1.4). Therefore, 2,3,4-trimethylpentane

could be the most promising commercially available blend component in this design,

highlighting the additional requirements for the practical selection of a promising fuel

besides engine efficiency.

Noteworthy, aromatic molecules are not suggested as promising blend components

although aromatic molecules are known to have high RONs (vom Lehn et al., 2021b)

and today’s RON95 fuel contains up to 35 vol.-% aromatic components (DIN German

Institute for Standardization, 2017). In this blend design, aromatic molecules are

discarded because they fail to meet the melting point constraint and/or violate the

acceptable uYSI value of the mixture when added in an amount that sufficiently

reduces the high enthalpy of vaporization of ethanol.
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Chapter 6 Molecular design of spark-ignition fuels for maximum engine efficiency

Comparison between ranking by RON and by engine efficiency increase

The blend design maximising the merit function of engine efficiency increase (blue

circles, Figure 6.4) is challenged by a blend design maximising an individual blend

property, here, the RON of the blend (orange diamonds, Figure 6.4). In general, the

correlation between the predicted engine efficiency increase of the blend and the RON

of the blend is strong, as evident by a Pearson correlation coefficient of ρ = 0.96. The
strong correlation is not surprising since the RON is a key property determining engine

efficiency with the largest impact on the engine efficiency increase. Consequently,

a blend design maximising RON would be sufficient to identify many high-ranking

candidate blends and could discard low-ranking candidate blends.

However, the correlation becomes weak among the high-ranking candidates in engine

efficiency, e.g. for the highest-ranking 50 candidate blends, the Pearson correlation

coefficient equals only ρ = 0.49. Only 2 of the top 10 blend components in the

RON maximisation are among the top 10 blend components in the engine efficiency

maximisation. 3 of the top 10 blend components in the RON maximization are not

even among the top 50 blend components in the engine efficiency maximization.

The blend component maximising RON is the best pure-component fuel tert-butyl

formate. The pure-component RON of tert-butyl formate (RON = 116) is higher

than the RON of ethanol (RON = 109). Since tert-butyl formate already meets the

property constraints as a pure component, ethanol neither increases the blending RON

nor contributes to fulfilling constraints. Therefore, the “blend” maximising RON does

not contain any ethanol and is equal to pure tert-butyl formate. Apart from tert-butyl

formate, 8 more “blends” do not contain ethanol or reduce the ethanol fraction if

optimised for RON.

Thus, focusing the optimisation on a single characteristic property, e.g. the blending

RON, is insufficient for a ranking which accurately reflects engine efficiency. The most

promising candidate blend components yield not only a high RON of the blend but

also balance octane sensitivity, heat of vaporisation, and laminar burning velocity.

Therefore, CAPD and fuel design should use an application-based objective function

that combines the effects of the individual properties.

Comparison between pure-component and blend results

Of the 226 candidate blend components, 26 fulfil the pure-component constraints. Of

these pure fuel candidates, 10 candidates would yield positive engine efficiency increases

as pure-component fuels and thus are predicted to increase engine efficiency compared
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to RON95 gasoline. Six of these candidates were not discovered in the pure-component

design. Particularly promising are 2,2-dimethylbutyraldehyde, isobutyraldehyde, and

isovaleraldehyde with predicted engine efficiency increases of 6.3 %, 3.9 %, and 3.6 %,

respectively. The additionally identified pure-component candidates indicate that the

pure-component molecular design study is not exhaustive. For a more comprehensive

list of candidates, the method needs to be re-run, e.g. for more generations, or the

general solution strategy needs to be improved.

To compare the predicted engine efficiency increase of the blends to that of the pure

components, the pure-component efficiency increase are calculated for all blend com-

ponents ignoring property constraint violations (Figure 6.5). As evident by a Pearson

correlation coefficient of ρ = 0.69, the pure-component engine efficiency increase is a

good indicator of the engine efficiency of the blend. High-ranking pure-component

fuels usually lead to high-ranking blends; e.g. 18 of the 25 components with the

highest pure efficiency increase are among the top 50 blend components. However, not

all high-ranking blend components necessarily have a high pure-component efficiency

increase: 19 of the top 50 blend components are not among the top 50 pure components.

Thus, the effects of blending go beyond simple weighting of the objective function.

Generally, all candidate fuel blends are predicted to achieve a higher engine efficiency

than the pure blend components if optimisation targets maximum engine efficiency

increase. In particular, even the optimal pure fuel tert-butyl formate benefits from a

binary blend with ethanol: Engine efficiency is predicted to increase from 7.9 % to 16 %
in a blend with 55 mol-% ethanol. The optimal balance of molecular properties also

enables high-ranking blends for molecules with low pure-component efficiency increases.

For example, 4-ethyl-4,5-dimethyl-1-hexene ranks 79th in the pure-component ranking

and improves to rank 17 in a blend with 82 mol-% ethanol through an increase in

predicted engine efficiency from −0.9 % as a pure component to 18 % in the fuel blend.

The increased engine efficiency of the blends compared to the pure-component fuels

is primarily attributed to the favourable combustion properties of ethanol. Ethanol

has the highest predicted engine efficiency increase of the pure components (25 %).

Therefore, only 18 of the 184 blend components with a positive efficiency increase

are blended with ethanol at more than 50 mol-%. The majority of blend components

act as enablers for ethanol since pure ethanol violates the constraint on the heat of

vaporisation. For 179 of the 184 blends, the blend’s heat of vaporisation matches

the constraint limit of 60 kJ kg−1
air,λ=1. Conversely, 144 of the 184 candidate blend

components violate the maximum boiling temperature as pure components but are

feasible in the blend through a reduction of the bubble point by ethanol. Thus,

blending allows for meeting the strict property constraints and significantly enlarges

the molecular design space. To fulfil fuel property constraints for SI engines, blend

design is therefore key.
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Figure 6.5: Parity plot comparing pure-component and blend merit function value of the
candidate fuels. Each circle stands for one blend component. The orange
circles represent blend components that fulfil the property constraints of
the pure-component design as well. The black line indicates equal efficiency
increase as a pure substance and as a blend component. The dashed grey
lines represent the benchmark engine efficiency of RON95.

Comparison between engine efficiency increase and direct CO2 emissions caused as

alternative objective

An optimal renewable fuel should not only lead to high engine efficiency but ultimately

must enable sustainable mobility with low environmental impact, e.g. with low CO2

emissions. Therefore, for each candidate blend, the direct CO2 emissions generated

by driving 100 km are calculated based on the maximum engine efficiency. The

CO2 emissions of the candidate blends are compared to the CO2 emissions of RON95

gasoline, assuming a fuel consumption of RON95 of 7 L/100 km. Furthermore, constant

engine operation is assumed at the optimal operating point achieving maximum engine

efficiency. Although this assumption limits the significance for practical implementation
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6.3 Design of pure fuels and fuel blends for spark-ignition engines

because no full driving cycle is considered, the analysis still provides insight into

whether the maximisation of engine efficiency minimises direct CO2 emissions, which

are additionally influenced by the heating value and the amount of carbon of each fuel.

To calculate the CO2 emissions of the blends (ṁCO2), the thermal engine efficiency

increase of a fuel is assumed to reduced the energy demand for the same engine power

Pengine as with RON95:

ṁCO2 = MCO2

Mblend
·NC,blend · ṁblend

= MCO2

Mblend
·NC,blend · ṁRON95 · LHVRON95

merit

100 % + 1
· 1
LHVblend

(6.3)

In this equation, the mass-based fuel consumption of the candidate blend and

RON95 are denoted by ṁ. The molar mass of the candidate blend and CO2 are

denoted by M , and NC,blend stands for the average number of carbon atoms per

molecule in the blend. The lower heating value of a fuel blend (LHVblend) is calculated

from linear mixing of the pure-component heating values (Equation 6.2). The pure

components’ lower heating values are calculated from the stoichiometric combustion

reaction using standard enthalpies of formation. The gas-phase standard enthalpy

of formation for each candidate fuel is predicted from a GC-based GPR similar to

the EHS hazards (see Section 6.2.3, NTrain = 697, NTest = 78, Accuracy: R2
test = 1.00,

RMSEtest = 16 kJ mol−1, nRMSEtest = 1.5 %). More details and property data used

for RON95 can be found in Appendix D.6.

In total, 177 candidate blends with an increased engine efficiency compared to

RON95 (Figure 6.6) reduce the direct CO2 emissions compared to RON95. The blend

with the lowest CO2 emissions (red upward-pointing triangle in Figure 6.6) contains

19 % 2,3,3,4-tetramethyl-pentane and 81 % ethanol and reduces the exhaust gas CO2

emissions compared to RON95 by 19 % to 12.9 kg CO2 / 100 km. 2,3,3,4-tetramethyl-

pentane also achieves one of the highest engine efficiency increases with 19 %, ranking

fourth in engine efficiency increase. The blend with the highest efficiency increase

(orange downward-pointing triangle in Figure 6.6) also reduces direct CO2 emissions

by approximately 19 % to 13.0 kg CO2 / 100 km and ranks third in CO2 emissions

reduction. Generally, high engine efficiency is closely aligned with lower direct CO2

emissions (ρ = −0.88). However, the energy and carbon content of the fuel also

significantly affect CO2 emissions. Thus, a fuel design maximising engine efficiency is

not sufficient to guarantee minimum direct CO2 emissions.
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Besides the direct exhaust emissions of a vehicle, emissions during the production

of the blend are highly relevant for environmental assessment (Deutz et al., 2018).

Therefore, a meaningful fuel design with an environmental objective must include a

”well-to-wheel” assessment.
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Figure 6.6: Direct CO2 emissions from fuel combustion compared to predicted engine
efficiency increase for each candidate blend. The red upward-pointing
triangle is the candidate blend with the lowest direct CO2 emissions. The
orange downward-pointing triangle is the candidate blend with the highest
predicted engine efficiency increase. The dashed grey lines represent the
benchmark engine efficiency and emissions of RON95.

6.4 Conclusion

This chapter presents a method for the molecular design of fuels for future, dedicated

spark-ignition engines with high compression ratios that uses an empirical model of

engine efficiency as the objective function. The method is based on a genetic algorithm
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for molecular optimisation and integrates the prediction of various properties to evaluate

the feasibility and expected engine efficiency of each candidate fuel. Thermodynamic

properties are calculated using COSMO-RS. Combustion properties are predicted by a

graph neural network and a group contribution-based artificial neural network from

the literature. Constraints on environmental, health, and safety indicators as well as

synthesisability are assessed using Gaussian process regression and a retrosynthesis

method.

The method is applied to design candidate fuels with high spark-ignition engine

efficiency in two case studies: (1) the design of pure-component fuels and (2) the design

of binary blends with ethanol. The application highlights the challenge of finding

suitable pure-component fuels that meet all property constraints. In the design, only 11
of the 1033 investigated molecules fulfil the property constraints and increase predicted

engine efficiency compared to RON95 gasoline. As an optimal pure-component fuel,

tert-butyl formate is identified with a predicted engine efficiency increase of 7.9 %.

The molecular design space is extended by designing a two-component fuel blend

with ethanol. 184 blend components are identified that exceed the engine efficiency of

RON95. 136 of the 184 candidate blends also exceed the predicted engine efficiency of

the best pure-component fuel tert-butyl formate, highlighting the significant potential

of blend design. As optimal blend components, highly-branched alkenes are identified

increasing engine efficiency by up to 19 %. In most cases, the designed blend component

represents the minor constituent of the blend but satisfies the property constraints to

enable the inclusion of a substantial amount of ethanol.

The fuel design method has successfully designed candidate fuels that are known

to increase engine efficiency from experiments in the literature. However, for the less

well-known candidate fuels proposed by the method, the predicted properties need

to be confirmed. Furthermore, experimental engine tests are required to confirm the

predicted efficiency increases.

In future work, the accuracy of the fuel design method should be improved, since

the uncertainties in the predictions are still large for some properties. To increase the

reliability and the significance of the predictions, the prediction uncertainties have

already been considered for constraint evaluation and could be extended to design under

uncertainty. Moreover, accuracy can be improved by integrating additional models

accounting for non-ideal mixture behaviour. The mixture property models except

for COSMO-RS are currently linear molar mixing rules, e.g. for toxicity and RON.

However, toxicity and RON are known to frequently exhibit non-ideal mixing behaviour

(vom Lehn et al., 2021b; Smith et al., 2013). Moreover, for the design of renewable fuels,

e.g. produced from biomass and carbon dioxide, the assessment of synthesisability
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should be adapted to constrain the molecular design space to appropriate processing

pathways. To lower the market-entry barriers of alternative fuels, blending with fossil

gasoline to comply with existing fuel standards could be considered already in the

design phase.

Future work could also extend the design method to a higher number of blend

components or even optimise the number of blend components as a design degree of

freedom, since this work showed the opportunities of blend design for spark-ignition

engine fuels.

Finally, to improve the engine efficiency assessment, a more detailed engine model

is desirable that considers a typical driving cycle instead of a correlation of potential

engine efficiency. Ultimately, the model for fuel assessment should consider not only

the combustion of the fuel but the emissions of the entire life cycle of the fuel aiming

at ”well-to-wheel” optimisation.

The fuel design method presented in this chapter is a special case of CAPD optimising

the product’s performance in application. Therefore, the progress in designing fuels

for maximum engine efficiency and minimum direct CO2 emissions for mobility is an

important demonstration towards the life cycle optimisation of products.
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Chapter 7

Summary, conclusions, and future

perspectives

This thesis investigates the computer-aided design of molecules, experiments, and

processes for a sustainable chemical industry with tailored products and processes.

In this chapter, the thesis is summarised, and conclusions are drawn (Section 7.1).

Perspectives for further research are outlined in Section 7.2.

7.1 Summary and conclusion

The tailored design of sustainable processes and products in the chemical industry is

a key contribution to reducing the industry’s environmental impact. In this thesis,

design methods for molecules, experiments, and processes are developed to incorporate

new design metrics beyond feasibility, technical function, or cost. Present methods

frequently use simplified metrics as objectives resulting in non-optimal and rather

general designs.

The design for minimum environmental impact needs to consider and address

multiple levels: The environmental impacts of chemical products and processes are

influenced from the molecular level via the physical properties and applications to the

environmental impacts at the system level. This thesis advances each level and the

links between the individual levels towards life cycle design.

At the system level, this thesis overcomes the limitations of computer-aided molecular

and process design (CAMPD), which has previously only considered environmental

impact potentials and cradle-to-gate system boundaries. Cradle-to-grave Life Cycle

Assessment (LCA) is integrated with CAMPD of solvents to optimise solvents and

processes for minimum life cycle environmental impacts. The integration is achieved

by combining predictive LCA with the COSMO-CAMPD framework for solvent and

process design, forming the COSMO-susCAMPD framework. The predictive LCA uses

an Artificial Neural Network (ANN) to estimate the cradle-to-gate impacts of candidate
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solvents. COSMO-CAMPD is based on COSMO-RS and pinch-based process models

and, thus, provides gate-to-grave life cycle inventory data from the process models.

Since the ANN is trained on molecular descriptors available in COSMO-CAMPD,

the framework is still fully predictive. As a result, the environmental impacts of the

complete life cycle of candidate solvents can be used as objective for CAMPD. The

COSMO-susCAMPD framework is applied to design solvents in a hybrid extraction-

distillation process. The results highlight the need for cradle-to-grave LCA as objective

function: Heuristics, economics, or cradle-to-gate LCA lead to suboptimal solvent

choices and are outperformed by the COSMO-susCAMPD solutions.

At the application level, the effects of comprehensive process modelling and optimi-

sation on the molecular design are investigated. Computer-aided molecular design of

solvents is extended for the design of heat-integrated processes for minimum utility

demand to consider the interactions between molecular properties and process perfor-

mance. The entire process flowsheet is modelled accurately by pinch-based process

models for the most common unit operations: extraction, distillation, absorption,

multiphase reaction, and heat integration. Process settings are optimised considering

heat integration for each candidate solvent; thus, the solvents are designed based on

their optimised process performance. In two case studies, solvents are designed for

minimum cradle-to-grave environmental impacts in a hybrid extraction-distillation

process and a process for integrated carbon capture and utilisation. In both, designed

solvents outperform literature benchmarks on process- and system-level design objec-

tives. The results confirm existing heuristics for solvent selection but also highlight the

importance of integrating molecular and process design to achieve maximum process

performance and quantitative process- and system-level estimates.

At the property level, the integration of various properties into the COSMO-

CAM(P)D method is demonstrated using a hybrid approach. Thermodynamic proper-

ties of pure components and mixtures are predicted using quantum chemistry-based

models, i.e. COSMO-RS and thermochemistry. Various other molecular properties, i.e.

combustion properties, environmental impacts and hazards, and synthesisability, are

estimated by recent models using deep learning and Bayesian regression. The exten-

sion of property prediction available in CAM(P)D and CAPD is key to substantially

expanding the accessible design objectives, e.g. for minimising environmental impacts.

For validating predictions and collecting experimental data for model training and

parametrisation, experiments are inevitable. Thus, experimentation and the design

of experiments is an important part of product and process design at the property

level. To reduce the experimental effort required for accurate modelling of applications,

c-optimal experimental design (c-OED) is presented. c-OED aims to minimise the
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uncertainty of the simulation results as design objective, which is estimated by linear

uncertainty propagation from uncertain property parameters through the application

model, e.g. a chemical process model or the LCA of a process. c-OED is applied to

design liquid-liquid equilibrium and diffusion experiments minimising the uncertainty

of thermodynamic, economic, and environmental performance metrics of three solvent-

based processes. In all three case studies, the c-optimal design can substantially reduce

the experimental effort for the same simulation accuracy compared to state-of-the-art

OED that neglects the parameter application. The findings are confirmed by a Monte

Carlo analysis of the designed experiments but also discover the limits of c-OED for

highly non-linear process models.

At the molecular level, the design of fuels as chemical products is investigated with

the expertise in designing processing chemicals. Based on the advances in CAMPD

on property prediction and candidate assessment, an optimisation-based fuel design

method is developed incorporating an empirical model of spark-ignition engine efficiency

as objective function. Engine efficiency increase compared to conventional RON95

gasoline is calculated for each candidate fuel as a function of the fuel’s properties.

The method designs pure-component fuels and blend components in a binary blend

with ethanol predicted to substantially exceed the engine efficiency of conventional

RON95 gasoline. The results show that optimising a key property determining engine

efficiency is sufficient to differentiate between high- and low-ranking candidate fuels.

However, accurate ranking is only possible with a targeted application-based objective

function, i.e. an engine model combining the effects of various properties. Thus, the

presented method successfully designs promising candidate fuels for spark-ignition

engines and demonstrates product design based on an application-based objective

function. Similar to CAM(P)D, the results highlight the importance of accurately

formulating the objective function in computer-aided product design (CAPD), which

is key for future life cycle design of chemical products.

In conclusion, the computer-aided design of molecules, experiments, and processes

is advanced in this thesis by systematically integrating sustainability assessment and

targeting towards application. The presented methods successfully link environmental

impacts with molecular, experimental, and process degrees of freedom and enable

application modelling beyond mere technical feasibility. Thus, the methods presented

in this thesis demonstrate possibilities for shaping a sustainable chemical industry.
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7.2 Future perspectives

The integrated design methods presented in this thesis successfully design solvents,

fuels, experiments, and processes. The methods provide a strong basis for further

extensions in the domains of property prediction, solution algorithm, integration of

experimental data, and towards life cycle design.

Accelerating and extending property prediction

Property prediction forms the core of molecular design and determines which applica-

tions can be designed. The molecular design in this thesis uses quantum chemistry and

COSMO-RS for thermodynamic property prediction. The framework also allows for

flexible integration of, e.g. machine learning-based methods to predict properties not

related to thermodynamics. These predictive methods can be extended and improved

for more accurate or faster property prediction.

1. Extended property prediction: In this work, various properties are predicted

for molecular design and assessment. However, the list of predicted properties is

not exhaustive, e.g. transport properties for sizing and costing of equipment are

lacking. Transport properties can be calculated via entropy scaling using the PCP-

SAFT equation of state as demonstrated by Hopp and Gross (2017, 2019) and already

integrated in CAMPD by Schilling et al. (2017, 2020). The prediction of properties

that quantify reactivity and stability of molecules could provide valuable information

for practical and reliable application. Recently, a GC method for inertness prediction

was presented (Liu et al., 2019c). In the future, inertness evaluation could be included

more rigorously through reaction network prediction, e.g. through the Chemtrayzer

model (Döntgen et al., 2015, 2018; Krep et al., 2022). The design of reaction networks

could be a long-term goal.

2. More accurate property prediction: The combination of methods for property

prediction could not only extend the considered properties but also increase the

accuracy of the predictions. Kaminski et al. (2017) demonstrated that combining

PCP-SAFT with COSMO-RS increases prediction accuracy. However, additional

quantum chemistry calculations have to be performed to remain predictive (Kaminski

and Leonhard, 2020). The integration of quantum chemistry-based methods to predict

charged species thermodynamics, e.g. through Cluster Continuum models (Kröger

et al., 2020), can be explored to accurately design charged species in applications such

as battery and electrolyte design. A recent combination of density functional theory

(DFT) and machine learning (ML) based methods showed higher accuracy through a
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neural network-enhanced DFT functional compared to conventional state-of-the-art

functionals (Kirkpatrick et al., 2021).

3. Faster property prediction: While the quantum chemistry-based methods provide

high accuracy and have been developed to account for non-ideal mixture behaviour, e.g.

through COSMO-RS, the underlying DFT calculations are computationally demanding

and represent the main computational cost of the integrated algorithm. Since the DFT

calculations are performed for pure-component properties, e.g. optimised molecular

geometries or screening charge profiles (σ-profiles), future effort should be directed to

increasing the speed of the DFT calculations or even replacing them by, e.g. ML-based

methods. For the generation of σ-profiles, promising ML-based methods have recently

been proposed in the literature (Chen et al., 2021; Liu et al., 2021). Faber et al. (2017)

directly predicted properties of quantum chemistry calculations such as (free) energies,

heat capacities, or dipole moments. However, since ML is not the universal solution

to all problems (Walters and Barzilay, 2021), hybrid approaches should be explored,

e.g. towards combining ML and physical-based models (Zhou et al., 2021; Jirasek and

Hasse, 2021; Sharma and Liu, 2022). Hybrid approaches seem particularly promising

for mixture properties, which are currently rarely predicted or estimated with simple

linear mixing rules.

Accelerating problem solution

The fragment-based genetic algorithm LEA3D (Douguet et al., 2005) forms the basis

of the presented molecular design algorithm and has proven to be very versatile and

applicable for many problems in CAMD and CAPD. The molecular design can easily

be adapted to include extended property prediction and other application models as

objective, particularly, since no derivatives are required.

Genetic algorithms are frequently used in molecular design as stochastic solution

methods (Sun et al., 2020). However, in comparison to other derivative-free optimi-

sation methods, genetic algorithms need a large number of evaluations and do not

provide a termination criterion leading to long solution times and high computational

cost (Sun et al., 2020). In the literature, various other derivative-free optimisation

methods were developed for continuous and mixed-integer problems with high solution

performance (Rios and Sahinidis, 2013; Ploskas and Sahinidis, 2021). Particularly

promising optimisation algorithms optimise a surrogate model of the problem to reduce

function evaluations (Müller, 2016). In CAMPD, fewer function evaluations could

significantly decrease the solution time by reducing the computational demand for

process optimisation and property prediction by quantum chemistry methods.
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The surrogate-based optimisation of molecules and materials has recently been

demonstrated successfully using a continuous representation of molecules (Gómez-

Bombarelli et al., 2018). Within this approach, molecules are optimised directly in

a continuous, so-called latent space before the result is decoded to an interpretable

molecular structure. Since the latent space optimisation is a continuous non-linear

optimisation problem, it is more efficient to solve than the direct optimisation problem

of the 3D molecular structure. Currently, methods frequently focus on individual

molecular properties (Sousa et al., 2021) but could potentially be extended to optimise

state-of-the-art CAMPD models. In particular, the latent space optimisation is

being further developed to consider the integer constraints of molecular structures.

Approaches include modifying the underlying covariance function of the surrogate

model (Garrido-Merchán and Hernández-Lobato, 2020; Häse et al., 2021) or imposing

constraints on the acquisition function (Müller, 2016) or in the latent space (Griffiths

and Hernández-Lobato, 2020).

Moreover, a new solution algorithm could substantially benefit from using a molec-

ular representation that does not depend on 3D-molecular fragments. Recently, the

SELFIES notation for molecules was presented (Krenn et al., 2020) and used for

molecular design in a genetic algorithm (Nigam et al., 2019, 2021). The SELFIES

representation allows for arbitrary string manipulations on SELFIES that still generate

chemically feasible candidates, making the fragment-based representation obsolete.

Combining property prediction with experimental data

The presented framework uses predictive methods for property estimation, i.e. quantum

chemistry and machine learning. These purely predictive methods can be applied

when no experimental data is available. However, the accuracy of property prediction

and modelling can substantially improve by integrating experimental data, e.g. from

optimally designed experiments. Future work could benefit from directly integrating

experimental data into the design framework. Closing the loop from performing

experiments for validation to improving the predictive methods will enhance the

accuracy and reliability of the molecular and process design.

For this purpose, property prediction methods need to be developed that allow

incorporating experimental data. In the literature, the COSMO-UNIFAC method was

proposed (Dong et al., 2018; Zhu et al., 2020). Here, the UNIFAC method, which relies

on parameters fitted to experimental data, is used when available. If no parameters for

the UNIFAC model are known, properties are estimated by COSMO-RS. Any available

experimental data could thus directly be integrated into the molecular design.
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Machine learning models can also easily include new experimental data. Recently,

first models for the prediction of thermodynamic mixture properties, e.g. activity

coefficients at infinite dilution, were developed (Jirasek et al., 2020; Sanchez Medina

et al., 2022). Jirasek et al. (2020) estimated thermodynamic properties using a data-

driven matrix completion method, and Sanchez Medina et al. (2022) successfully

used a Graph Neural Network. Hybrid approaches based on QM and ML could be

promising since QM guarantees a prediction even outside the applicability domain of

the ML model. For example, COSMO-RS could be extended by a correction term

fitted from experimental data. Winter et al. (2022) and Winter et al. (2023) have

successfuly shown how to use COSMO-RS as a basis for the ML model that is refined

with experimental data.

In the future, the experimental data could be provided by automated experiments.

Robotic platforms have been presented for automated experimentation (Steiner et al.,

2019; Coley et al., 2019; Burger et al., 2020). The experiments can be planned using

optimal experimental design, as for example presented in this thesis, possibly in

combination with self-learning algorithms (Schweidtmann et al., 2018; Häse et al.,

2019; Clayton et al., 2020). An integrated workflow that refines property models would

significantly contribute to achieving higher prediction accuracy and validated design.

Designing the life cycle

In this thesis, CAMPD and CAPD are advanced towards the integrated design of

molecules and their applications. For the design of solvents, the life cycle environmental

impacts from cradle to grave are considered by estimating the environmental impacts

of production from the molecular structure and assuming disposal through aggregated

process models, e.g. for wastewater treatment. However, as a consequence of the

aggregated modelling of production and use phase, the design scope besides the

molecular structure is limited to the application, e.g. for solvents to the chemical

process. Ultimately, the design scope should also include models for production and

fate of the chemicals to make life cycle-optimal decisions (Bakshi, 2019). For example,

cross-process life cycle benefits can be achieved by easy re- or upcycling, benign

disposal, or production that does not overachieve the requirements of the application

(Anastas and Zimmerman, 2003; Zimmerman et al., 2020). In particular, this approach

would integrate waste as a resource for further valorisation (Clark, 2017; Zimmerman

et al., 2020).

The idea of designing the entire life cycle has been conceptualised in process systems

engineering as life cycle optimisation (Guillén-Gosálbez et al., 2019; Kleinekorte et al.,
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2020). Zhang et al. (2020b) presented a life cycle design approach by sequentially

optimising each life cycle stage for product development. For the design of fuels and

their production processes, König et al. (2020b, 2021) solved an integrated optimisation

problem considering fuel feasibility requirements and preselected reaction routes for

minimum cost and global warming impact. Thus, promising steps are taken towards

life cycle design that should be combined with the methods presented and used in this

thesis. With the increasing capabilities to predict reaction pathways and to calculate

chemical production processes based on predictive methods, integrated life cycle design

is the next frontier for process and product design in chemical engineering.

The presented ideas for future research aim to increase the reliability, ease of use, and

applicability of the methods for implementation in academic and industrial practice.

Undoubtedly, the methods have not yet matured into automated all-purpose tools for

every problem in chemical engineering. However, besides technical advances, reducing

the environmental impacts of the chemical industry also requires the transformation of

the practitioners’ mindset to inherently aim for sustainability. Now that the appropriate

tools become available, practitioners need to apply these methods embracing life cycle

thinking.
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Appendix A

Supporting information to Chapter 3

A.1 Soft- and hardware

The following software is used for COSMO-susCAMPD:

Calculation Method Software version

Optimised geometry
and σ-surface

DFT BP86 /
TZVP (-MF)

COSMOconf16 (4.1)
(COSMOlogic GmbH & Co. KG, 2017a)
TURBOMOLE® 7.2
(COSMOlogic GmbH & Co. KG, 2017c)

Equilibrium properties BP-TZVP-C30-1701 COSMOtherm17 (C30-1701)
(COSMOlogic GmbH & Co. KG, 2017b)

Numerical optimisation fminbnd MATLAB® R2018b
(The MathWorks Inc., 2018b)

Artificial neural
network

MATLAB® R2018b
(The MathWorks Inc., 2018c)

Training data for the
ANN

GaBi Database 8007 GaBi 10.6.0.110
(Thinkstep AG, 2017)

The COSMO-susCAMPD method was run on an Intel® Xeon® E5-1660v3 worksta-

tion utilising 32 GB RAM and 8 processor cores with 2 threads each in parallel.
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A.2 Molecular descriptors selection for the artificial

neural network

In total, 41 molecular properties are calculated from the molecular structure and

COSMO-RS as descriptors for each solvent molecule. The 7 molecular descriptors that

show the highest correlation with the environmental impacts are selected as features

for the ANN using linear stepwise regression as a feature selection method.

• #Oxygens: Number of oxygen atoms

• #Nitrogens: Number of nitrogen atoms

• #Carbons: Number of carbon atoms

• #Halogens: Number of halogen atoms

• #C=C: Number of carbon-carbon double bonds

• #aromatic Rings: Number of aromatic rings

• #Rings: Number of rings

• MW: Molecular weight

• psat: Saturation pressure at t = 25 ◦C
• ∆hvap: Enthalpy of vaporisation at t = 25 ◦C
• xLLE: Molar fractions of the liquid-liquid-equilibrium between solvent and water

for both the aqueous and organic phase resulting in four descriptors xLLE
aq,water,

xLLE
aq,solvent, x

LLE
org,water, and x

LLE
org,solvent

• log(POW): Logarithm of the partition coefficient of the solvent molecule between

octanol and water

• Tboil: Boiling temperature at p = 1 bar
• ∆hf : Standard enthalpy of formation

• ECOSMO: COSMO-energy

• σ-Descr. i: 8 σ-descriptors of the σ-Profile from COSMO-RS as adapted from

Zhou et al. (2014)

• σ-Mom. i: 7 σ-moments of the σ-Profile from COSMO-RS (Klamt et al., 2010)

• HBacc-Mom. i: 4 hydrogen bond acceptor moments of the σ-Profile from

COSMO-RS (Klamt et al., 2010)

• HBdon-Mom. i: 4 hydrogen bond donor moments of the σ-Profile from COSMO-

RS (Klamt et al., 2010)
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Table A.1: Molecular descriptors selected for the artificial neural network

A
L
O

C
C

ex
cl
.
b
io
.

C
C

in
cl
.
b
io
.

F
D

F
E

F
E
T

H
T

IR M
E

#Oxygens x x x x

#Nitrogens x x x x x

#Carbons

#Halogens x x x x x

#C=C

#arom. Rings x

#Rings

MW

psat x x

∆hvap x x x x x

xLLE
aq,water

xLLE
aq,solvent x x x x

xLLE
org,water x x x

xLLE
org,solvent x

log(POW)

Tboil

∆hf x x

ECOSMO x

σ-Descr. i 2,3 4,7 4,8 3,8 8 6,8 1,4,7

σ-Mom. i 4 4 6 6,7

HBacc-Mom. i 1,2 2,4 1,4 1,4 1,3

HBdon-Mom. i 2
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Table A.2: Molecular descriptors selected for the artificial neural network (continued)

M
E
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M
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D

O
D

P
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F

P
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F

T
A

T
E
T

W
D

#Oxygens x x x

#Nitrogens x x

#Carbons x

#Halogens x x x x

#C=C x

#arom. Rings x x x

#Rings x

MW x

psat x x

∆hvap x x x

xLLE
aq,water

xLLE
aq,solvent x x x x

xLLE
org,water x x x

xLLE
org,solvent x

log(POW)

Tboil x x x

∆hf

ECOSMO x x x

σ-Descr. i 3,4 4,5,6 6,8 8 4,8 3

σ-Mom. i 4 4,7 1 6

HBacc-Mom. i 1 1,4 2

HBdon-Mom. i 3
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A.3 Accuracy of the artificial neural network predictions

for all impact categories

Table A.3: Accuracy of the neural network predictions for all impact categories. The
accuracy is measured by the coefficient of determination (R2) and the
root-mean-square error normalised by the range of values (nRMSE).

Impact category
Training Set Validation Set Test Set
R2 nRMSE R2 nRMSE R2 nRMSE

Agricultural Land Occupation
(ALO)

0.47 14% 0.5 14% 0.46 11%

Climate Change (CC) excl. bio-
genic carbon

0.58 14% 0.51 19% 0.79 7%

Climate Change (CC) incl. bio-
genic carbon

0.44 17% 0.56 14% 0.51 9%

Fossil Depletion (FD) 0.39 17% 0.57 16% 0.18 12%

Freshwater Eutrophication (FE) 0.7 9% 0.62 20% 0.24 5%

Freshwater Ecotoxicity (FET) 0.3 16% 0.48 9% 0.41 9%

Human Toxicity (HT) 0.18 16% 0.38 15% 0.1 13%

Ionising Radiation (IR) 0.35 18% 0.62 10% 0.5 18%

Marine Eutrophication (ME) 0.97 2% 0.64 2% 0.71 2%

Marine Ecotoxicity (MET) 0.8 8% 0.5 15% 0.85 6%

Metal Resource Depletion (MRD) 0.47 9% 0.53 10% 0.33 5%

Ozone Depletion (OD) 0.81 8% 0.76 16% 0.08 15%

Particulate Matter Formation
(PMF)

0.67 11% 0.7 18% 0.62 6%

Photochemical Oxidant Formation
(POF)

0.77 11% 0.36 16% 0.15 15%

Terrestrial Acidification (TA) 0.46 14% 0.59 13% 0.5 12%

Terrestrial Ecotoxicity (TET) 0.85 6% 0.52 9% 0.46 9%

Water Depletion (WD) 0.52 13% 0.76 13% 0.4 13%

average 0.57 12% 0.56 14% 0.43 10%
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Parity plots of predicted versus database value for all impact

categories except for Climate Change and Ozone Depletion

The parity plots for Climate Change and Ozone Depletion are shown in Section 3.1.2

as Figure 3.4 A & B.
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Figure A.1: Parity plot of predicted versus database Agricultural Land Occupation
(ALO)
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Figure A.3: Parity plot of predicted versus database Fossil Depletion (FD)
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Figure A.4: Parity plot of predicted versus database Freshwater Eutrophication (FE)
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Figure A.5: Parity plot of predicted versus database Freshwater Ecotoxicity (FET)
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Figure A.6: Parity plot of predicted versus database Human Toxicity (HT)
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Figure A.7: Parity plot of predicted versus database Ionising Radiation (IR)
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Figure A.8: Parity plot of predicted versus database Marine Eutrophication (ME)
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Figure A.9: Parity plot of predicted versus database Marine Ecotoxicity (MET)
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Figure A.10: Parity plot of predicted versus database Metal Resource Depletion (MRD)
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Figure A.11: Parity plot of predicted versus database Particulate Matter Formation
(PMF)
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Figure A.12: Parity plot of predicted versus database Photochemical Oxidant Forma-
tion (POF)

Figure A.13: Parity plot of predicted versus database Terrestrial Acidification (TA)
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Figure A.14: Parity plot of predicted versus database Terrestrial Ecotoxicity (TET)
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Figure A.15: Parity plot of predicted versus database Water Depletion (WD)
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A.4 Molecular fragment library for the genetic algorithm

LEA3D

The following 3D-molecular fragments have been specified as the molecular fragment

library for the genetic algorithm LEA3D (Douguet et al., 2005). Each “X” marks a

connector of the molecular fragment and can be connected to another “X” from another

molecular fragment to build a new molecular structure. Unconnected connectors “X”

are automatically replaced by hydrogen atoms.

Figure A.16: Molecular fragment library used for the hybrid extraction-distillation of
γ-valerolactone.
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B.1 Soft- and hardware

The following software is used within COSMO-CAMPD:

Calculation Method Software version

Optimised geometry
and σ-surface

DFT BP86 /
TZVP (-MF)

COSMOconf16 (4.1) (COSMOlogic
GmbH & Co. KG, 2017a)
TURBOMOLE® 7.2
(COSMOlogic GmbH & Co. KG, 2017c)

Equilibrium properties BP-TZVP-C30-1701 COSMOtherm17 (C30-1701)
(COSMOlogic GmbH & Co. KG, 2017b)

Optimised geometry
and vibrational freq.

DFT B3LYP /
TZVP RRHO

Gaussian 09.d01
(Frisch et al., 2009)

Thermochemistry TAMKin 1.2.4
(Ghysels et al., 2010)

Numerical optimisation fmincon with
multistart

MATLAB® R2018b
(The MathWorks Inc., 2018b)

All calculations were performed on an Intel® Xeon® E5-1660v3 workstation utilising

32 GB RAM and 8 processor cores with 2 threads each in parallel.
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B.2 Accuracy of predicted enthalpies of vaporisation and

ideal-gas heat capacities for selected molecules

B.2.1 Enthalpy of vaporisation

Experimental enthalpies of vaporisation are taken for 98 molecules from Chickos and

Acree (2003).

Of the 98 considered molecules, 79 (81 %) are within ±10 % of the literature values.

The mean absolute error (MAE) in the enthalpies of vaporisation between the literature

values and the predictions from COSMO-RS is 2.83 kJ mol−1, and the coefficient of

determination equals R2 = 0.93.
The molecule with the largest deviation between predicted and literature enthalpy

of vaporisation is nitric acid, for which the literature value is 38.6 kJ mol−1 and

COSMO-RS predicts 18.5 kJ mol−1, followed by formic acid (lit. 36 kJ mol−1, COSMO-

RS 50.7 kJ mol−1), methanol (lit. 37.4 kJ mol−1, COSMO-RS 49.1 kJ mol−1), and

acetic acid (lit. 43 kJ mol−1, COSMO-RS 53.8 kJ mol−1). Strong polar molecules, e.g.

alcohols or acids, are known to have large uncertainties in the predicted enthalpies of

vaporisation using COSMO-based models (Lin et al., 2004). In the case studies of this

thesis, strong polar molecules such as alcohols and acids are not feasible as solvents due

to their miscibility with water. However, the strong deviations between experimental

and predicted values highlight the need to investigate the predicted properties of

promising solvent candidates including the chosen COSMO-RS parametrization.

The closest predictions are achieved for n-hexane (lit. 31.5 kJ mol−1, COSMO-RS

31.5 kJ mol−1), toluene (lit. 35.7 kJ mol−1, COSMO-RS 35.8 kJ mol−1), and n-butene

(lit. 23.3 kJ mol−1, COSMO-RS 23.1 kJ mol−1).
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B.2 Accuracy of predicted enthalpies of vaporisation and ideal-gas heat capacities

Figure B.1: Comparison of experimental enthalpies of vaporisation with predictions
from COSMO-RS on TZVP-MF level.
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B.2.2 Ideal-gas heat capacities

Experimental ideal-gas heat capacities are taken for 145 molecules from the NIST

Chemistry WebBook (2021).

Of the 145 considered molecules, 140 (97 %) are within ±10 % of the literature

values from the NIST database. The mean absolute error (MAE) in the enthalpies of

vaporisation between the literature values and the predictions from quantum chemistry

is 3.93 J mol−1 K−1, and the coefficient of determination equals R2 = 0.88.
In contrast to the enthalpies of vaporisation, no outliers are identified: The molecule

with the largest deviation between predicted and literature ideal-gas heat capacity

is acetic anhydride, for which the literature value is 100 J mol−1 K−1 and quantum

chemistry predicts 119 J mol−1 K−1K, followed by benzoic acid (lit. 104 J mol−1 K−1,

QM 124 J mol−1 K−1), and diethyl ether (lit. 120 J mol−1 K−1, QM 104 J mol−1 K−1).

Nearly perfect predictions are achieved, e.g. for methylcyclopentane (lit. 110 J mol−1 K−1,

QM 110 J mol−1 K−1), trioxane (lit. 82.4 J mol−1 K−1, QM 82.6 J mol−1 K−1), and ac-

etaldehyde (lit. 55.5 J mol−1 K−1, QM 55.3 J mol−1 K−1).
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Figure B.2: Comparison of experimental ideal-gas heat capacities with predictions
using B3LYP/TZVP with RRHO approximation.
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B.3 Accuracy of the pinch-based process model for

absorption and the multiphase reactor model

B.3.1 Absorption column model

Comparison between minimum solvent demand Smin calculated by the pinch-based

process model (Redepenning et al., 2017) and minimum solvent demand from rigorous

simulations in ASPEN Plus (Srig) using 20 stages. The plot shows the results for 1761

solvents that were successfully completed by both models. Both models use the same

thermodynamic properties calculated by COSMO-RS.

Overall, the solvent demand calculated by the pinch-based process model agrees

well with the results from rigorous simulation in ASPEN Plus, as evident by MAE =
0.14 mol mol−1

Feed and R2 = 0.95.
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Figure B.3: Comparison of minimal solvent demand calculated by the pinch-based
process model with rigorous simulations in ASPEN Plus.
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B.3.2 Multiphase reactor model

Comparison of equilibrium conversion ξSC/rig
eq and dimethylformamide mole fraction

x
SC/rig
DMF of a vapour-liquid-liquid equilibrium reactor calculated by the multiphase reactor

based on the homotopy continuation algorithm (Bausa and Marquardt, 2000) and

simulations in Aspen Plus. The plots show the results for 2652 solvents that were

successfully completed by both models. Both models use the same thermodynamic

properties calculated by COSMO-RS.

The results calculated by the pinch-based process model agree very well with the

results from rigorous simulation in ASPEN Plus, as evident by MAE = 2 × 10−5 and

R2 = 1.00 for the equilibrium conversion and MAE = 6 × 10−6 and R2 = 1.00 for the

product mole fraction in the reactor outlet.

Only for one solvent the solutions differ more significantly, i.e. by 0.01 in equilibrium

conversion and product mole fraction, potentially due to numerics.
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Figure B.4: Comparison of equilibrium conversion ξeq calculated by the vapour-liquid-
liquid equilibrium reactor model used in this work and simulations in
ASPEN Plus.
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Figure B.5: Comparison of product mole fraction xDMF calculated by the vapour-
liquid-liquid equilibrium reactor model used in this work and simulations
in ASPEN Plus.

A comparison between minimum energy demand calculated by the pinch-based

process models and minimum energy demand from rigorous simulations for a hybrid

extraction-distillation process has been presented by Scheffczyk et al. (2018). The

pinch-based process models for extraction and distillation were found to be sufficiently

accurate for solvent design compared to rigorous ASPEN Plus simulations (ρrank =
0.87), and agreed particularly for promising solvents with low energy demand for

hybrid extraction-distillation.
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B.4 System boundaries and considered impacts for the

LCA of the ICCU process

CCU ProcessMEA Absorption
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Figure B.6: System boundaries and considered impacts for the LCA of the ICCU
process and the benchmark CCU process. The grey dashed box represents
the system boundary. The underlined quantities are the functional unit of
the LCA. As the avoided burden for heat, heat from low-pressure steam is
assumed.
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The impacts are considered according to the following references:

Quantity Reference

Feedstocks and material flows
Hydrogen production DE: Hydrogen (steam reforming heavy fuel oil) ts

(Thinkstep AG, 2017)
Methane production DE: Methane (natural gas purification) ts

(Thinkstep AG, 2017)
Natural gas production Drying, natural gas (Emmenegger, 2000)
Solvent production constant value: 3 kg CO2-eq. kg−1

solvent
Wastewater disposal treatment of spent solvent mixture

(Ruiz, 2019)

Energy flows
Electricity Market group for electricity, medium voltage

(ecoinvent, 2019b)
Furnace heat Heavy fuel oil, burned in refinery furnace

(Jungbluth, 2019)
Low-pressure steam DE: Thermal energy from natural gas ts

(Thinkstep AG, 2017)
Refrigeration Market for cooling energy (ecoinvent, 2019a)
Cooling water 0 kg CO2-eq. MJ−1

Conventional production of FU
Carbon monoxide production Carbon monoxide (via synthethic gas) ts

(Thinkstep AG, 2017)
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B.5 Supplementary COSMO-(sus)CAMPD designs for

minimum exergy demand

B.5.1 Hybrid extraction-distillation of γ-valerolactone

For this supplementary design, the objective of the integrated solvent and process

design is to minimise the total exergy demand (Etot) after heat integration by choos-

ing an optimal solvent with the corresponding optimal process settings. Similar to

Section 4.2.1, the degrees of freedom of the process are the extraction and decanter

temperatures TExtr and TDec and the pressure in the distillation column pDist.

Qualitatively, the same conclusions can be drawn for the design for minimum exergy

demand as for the design for minimum environmental impact on Climate Change in

Section 4.2.1 (cf. Figure B.7): The heuristic solvent selection criterion of minimum

solvent demand for extraction Smin correlates well with the total exergy demand of

the process Etot (Pearson’s Correlation Coefficient ρ = 0.92), except for the high-

ranking solvents, e.g., ranking higher than the benchmark n-butyl acetate (Pearson’s

Correlation Coefficient ρ = 0.07). Moreover, designing for minimum heat-integrated

exergy demand yields only minor changes in solvent selection compared to designing

for reboiler exergy demand only (rank correlation coefficient ρrank = 0.98), similar to

the design for minimum environmental impact with and without sensible heat and

heat integration in Section 4.2.1.

Noteworthy, the optimal solvent regarding exergy demand of distillation reboiler only

is also the solvent minimising total environmental impact on Climate Change, ranking

second in total heat-integrated exergy demand (Table B.1). However, the solvent

minimising total heat-integrated exergy demand ranks only 27th in total minimum

environmental impact on Climate Change in Section 4.2.1, highlighting the important

use of a cradle-to-grave environmental objective (cf. Chapter 3).

The optimal solvent with the minimum exergy demand of the heat-integrated process

is 3-vinylfuran. 3-vinylfuran leads to a total exergy demand of 43.7 kJ/mol GVL
for the extraction-distillation process corresponding to a reduction in the exergy

demand by 40 % compared to the benchmark n-butyl acetate with a total exergy

demand of 72.9 kJ/mol GVL. Besides 3-vinylfuran, the method designs 97 additional

candidate solvents with a lower exergy demand than n-butyl acetate highlighting

the systematic generation of promising alternatives with higher efficiency than the

literature benchmark.

156



B.5 Supplementary COSMO-(sus)CAMPD designs for minimum exergy demand

50 100 200 500
Exergy demand  E

reb
 of reboiler energy only / kJ/mol

GVL

50 

100

200

500

T
ot

al
 e

xe
rg

y 
de

m
an

d
  

E
to

t / 
kJ

/m
ol

G
V

L

benchmark:
n-butyl acetate

0.5

1

2

5

M
in

im
um

 s
ol

ve
nt

 d
em

an
d

   
S

m
in

 / 
m

ol
so

lv
en

t/m
ol

G
V

L

Figure B.7: Comparison of the total exergy demand of the heat-integrated process
(Etot) with the exergy demand from reboiler energy neglecting sensible
heat (Ereb). The colour code indicates the heuristic selection criterion of
minimum solvent demand for extraction (Smin).
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B.5 Supplementary COSMO-(sus)CAMPD designs for minimum exergy demand

B.5.2 Integrated carbon capture and utilisation for the production of

carbon monoxide

Similar to the design in Section 4.2.2, the process design is tailored for each candidate

solvent by optimising the reactor pressure pRx, the pressures in the distillation columns

pDist1 and pDist2 and the molar flow of water to the reactor ṅH2O to ensure phase

separation. In contrast to Section 4.2, the optimisation objective is minimising the

overall process exergy demand Etot per mole CO normalised by the Gibbs free energy

of the overall reaction ∆RG
0
CO:

minEtot =

∑
i

Q̇i ·
(
1 − Tu

Ti

)
+ Pcomp

ṅCO · ∆RG0
CO

(B.1)

with Q̇i and Ti representing the heat duties and corresponding temperatures of the

utilities, respectively, and Pcomp representing the power demand for compression of H2

to reactor pressure pRx. The overall reaction is the reverse water gas shift reaction, to-

talling in an overall Gibbs free energy of the reaction of ∆RG
0
CO = 27.72 kJ mol−1(Jens

et al., 2016).

Qualitatively, the same conclusions can be drawn for the design for minimum exergy

demand as for the design for minimum environmental impact on Climate Change in

Section 4.2.2: A higher absorption selectivity of the solvent for CO2 leads to a higher

yield in the reactor and thus to a lower total process exergy demand (ρ = −0.54;
cf. Figure B.8). Similarly, a high equilibrium yield of dimethylformamide in the

organic reactor outlet leads to a low exergy demand (ρ = −0.66). However, selecting
absorption selectivity or equilibrium yield as objective is not sufficient to find the

highest ranking candidate solvents in minimum heat-integrated process exergy demand

(cf. Table B.2), and a design neglecting heat integration does not yield the same

high-ranking candidate solvents as a design considering heat integration for total

process exergy demand. The correlation coefficient between solvent rankings with and

without consideration of heat integration among the top 50 solvents is only ρrank = 0.40,
indicating a weak correlation between the two rankings. However, considering the total

process exergy demand without heat integration still enables differentiation between

high- and low-ranking solvents as evident by a correlation coefficient between solvent

ranking with and without heat integration of ρrank = 0.93 (cf. Figure B.9).

Despite the similar trends for exergy demand and environmental impact on Climate

Change, the solvent minimising exergy demand (5-fluoro-dimethylpentan-1-amine) is
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different from the solvent minimising the heat-integrated environmental impact on Cli-

mate Change (2-dimethylamino-ethanethiol; see Table B.2). 5-fluoro-dimethylpentan-

1-amine ranks only fourth in heat-integrated environmental impact on Climate Change

with an impact 17 % higher than the optimal solvent 2-dimethylamino-ethanethiol.

The different optimal solvents illustrate the effect of a cradle-to-grave environmental

objective compared to an exergy-based assessment, similar to the results of Chapter 3

and Section B.5.1. Thus, choosing an LCA- or exergy-based objective function impacts

solvent selection and needs to be carefully addressed.

The optimal solvent for the ICCU process reduces the exergy demand of the process

by 38 % to 148 kJ/mol CO (= 5.3 ∆RG
0
CO) compared to the benchmark separated CCU

process with an exergy demand for this case study of 238 kJ/mol CO (= 8.6 ∆RG
0
CO).

The solvent minimising the heat-integrated environmental impact on Climate Change

yields an exergy demand of 158 kJ/mol CO (= 5.7 ∆RG
0
CO). Therefore, with an

optimal combination of process and solvent, the ICCU process concept is a more

efficient alternative to the separated process and can be advantageous both in terms

of exergy demand and environmental impact on Climate Change (cf. Section 4.2.2).

However, with a minimum exergy demand of 5.3 ∆RG
0
CO, the studied ICCU process is

very exergy-intensive even for the best process-solvent-combination.
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Figure B.8: Results of the integrated molecular and process design of the heat-
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with its corresponding optimised process. The candidate with the lowest
heat-integrated process exergy demand is marked with a square, the can-
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Figure B.9: Comparison of the total process exergy demand considering process opti-
misation with heat integration (Etot) compared to a process optimisation
without considering heat integration potential (EwoHI

tot ) and the total re-
boiler exergy demand only (Ereb). The black line corresponds to the
equality of exergy demand with and without heat integration, demonstrat-
ing that heat integration is not possible.
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B.6 Specifications of the process models

B.6.1 Hybrid extraction-distillation of γ-valerolactone

Process parameter Value

Temperature of flows entering the sys-
tem

25 ◦C

Temperature of flows leaving the sys-
tem

25 ◦C

Pressure in extraction column 1.013 bar
Feed
- GVL 50 mol s−1

- Water 950 mol s−1

Optimisation bounds
Temperature in the extraction column
and the decanter

[25 ◦C, min (80 ◦C, boiling point of solvent)]

Pressure in the distillation column [1 bar, 2 bar]
Utilities
Hot
- Low pressure steam (3 bar) 410 K
- High pressure steam (70 bar) 558.15 K
Cold
- Cooling water 10 ◦C
Heat Recovery Approach Temperature 10 K
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B.6 Specifications of the process models

B.6.2 Integrated carbon capture and utilisation for the production of

carbon monoxide

Process parameter Value

Absorption column
Feed temperature 10 ◦C
Feed
- methane 2.33 mol s−1

- CO2 1 mol s−1

Solvent make-up temperature −30 ◦C
Pressure 60 bar
Synthesis reactor
Temperature 50 ◦C
∆RG

0 12.55 kJ mol−1

Feed ṅCO2 = ṅH2 = ṅDMA
Bounds for optimisation of pressure [ 1 bar, 200 bar]
Bounds for optimisation of water flow [ 0.5 mol s−1, 5 mol s−1]
Reforming reactor
Conversion 1
Temperature 280 ◦C
Distillation
Bounds for optimisation of pressure [ 1 bar, 5 bar]
Utilities
Hot
- Low pressure steam (3 bar) 410 K
- Furnace 750 K
Cold
- Cooling water 10 ◦C
- Refrigeration −40 ◦C
Heat Recovery Approach Temperature 10 K
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B.7 Molecular fragment libraries for the genetic

algorithm LEA3D

The following 3D-molecular fragments have been specified as the molecular fragment

library for the genetic algorithm LEA3D. Each “X”marks a connector of the molecular

fragment and can be connected to another “X” from another molecular fragment

to build a new molecular structure. Unconnected connectors “X” are automatically

replaced by hydrogen atoms.

B.7.1 Hybrid extraction-distillation of γ-valerolactone

Figure B.10: Molecular fragment library used for the hybrid extraction-distillation case
study.
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B.7 Molecular fragment libraries for the genetic algorithm LEA3D

B.7.2 Integrated carbon capture and utilisation via

dimethylformamide

Figure B.11: Molecular fragment library used for the ICCU process case study.
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Supporting information to Chapter 5

C.1 Distribution of experimental effort for the

experimental designs

Table C.1: Distribution of experimental effort for c-optimal ξ∗
c , D-optimal ξ∗

D and
equidistantly distributed conventional ξcon experimental designs for the
estimation of isothermal NRTL-τ -parameters for the extraction process

Design ξ Distribution

{
αi

νi

}

c-optimal ξ∗
c

{
0.23 0.67 0.90
0.82 0.11 0.06

}

D-optimal ξ∗
D

{
0.34 0.66 0.90
0.23 0.32 0.45

}

conventional ξcon

{
0.0 0.45 0.90
0.33 0.33 0.33

}
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Table C.2: Distribution of experimental effort for c-optimal ξ∗
c , D-optimal ξ∗

D and
equidistantly distributed conventional ξcon experimental designs for the es-
timation of isothermal NRTL-τ - and diffusion parameters for the extraction
process

Design ξ Distribution

(
LLE

{
αi

νi

}
| Diffusion

)

c-optimal ξ∗
c

{
0.23 0.67 0.90 DW DT
0.81 0.10 0.06 0.02 0.02

}

D-optimal ξ∗
D

{
0.34 0.66 0.90 DW DT
0.17 0.24 0.34 0.13 0.13

}

conventional ξcon

{
0.0 0.45 0.90 DW DT
0.20 0.20 0.20 0.20 0.20

}

Table C.3: Distribution of experimental effort for c-optimal ξ∗
c , D-optimal ξ∗

D and
equidistantly distributed conventional ξcon experimental designs for the
estimation of temperature-dependent NRTL-τ -parameters for the hybrid
extraction-distillation process

Design ξ Distribution


Ti

αi

νi


c-optimal ξ∗

c


283.15 283.15 283.15 313.15 318.15 343.15 353.15 353.15 353.15
0.31 0.82 0.90 0.55 0.90 0.90 0.47 0.65 0.90
0.02 0.01 0.07 0.17 0.01 0.14 0.41 0.09 0.10


D-optimal ξ∗

D


283.15 283.15 283.15 313.15 318.15 353.15 353.15 353.15
0.36 0.59 0.90 0.70 0.90 0.36 0.68 0.90
0.07 0.07 0.22 0.07 0.14 0.13 0.11 0.19


conventional ξcon


283.15 283.15 283.15 318.15 318.15 353.15 353.15 353.15
0.00 0.45 0.90 0.30 0.60 0.00 0.45 0.90
0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13


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C.2 Input parameters for the case studies

C.2 Input parameters for the case studies

C.2.1 Initial property parameters for the NRTL model (Renon and

Prausnitz, 1968)

The initial NRTL-parameters for all case studies have been estimated using COSMO-RS

(Klamt et al., 2010) on BP-TZVPD-FINE parametrisation (BP-TZVPD-FINE-C30-

1701) in the implementation COSMOthermX17 by COSMOlogic GmbH & Co. KG,

Leverkusen, Germany.

Isothermal NRTL parameters

α =


0 0.7548 0.5166

0.7548 0 0.1940
0.5166 0.1940 0



τ =


0 0.9287 0.5751

0.8724 0 7.3512
0.0647 5.0405 0



Temperature-dependent NRTL parameters

The α-parameters are assumed to be temperature-independent and have the same

values as for the isothermal case (see above).

The τ -parameters are assumed to depend on the temperature according to the

following equation:

τi,j = τ 0
i,j +

τ 1
i,j

T

τ 0 =


0 1.3516 0.5256

3.5090 0 2.7044
−0.4226 −6.9574 0

 , τ 1 =


0 −126.08 14.7637

−786.11 0 1385.4
145.29 3577.2 0


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C.2.2 Specifications for the extraction column using a pinch-based

process model

Process parameter Value

bounds for α [ 0 0.9 ]
std. dev. of phase composition measurements σw 0.005
feed to extraction column
-acetone 0.05 mol s−1

-water 0.95 mol s−1

solvent composition 100 % toluene
extraction temperature 298.15 K
extraction pressure 1 bar

Process model result Value

min. solvent demand Smin 0.4207 molsolvent/molfeed

C.2.3 Specifications for the hybrid extraction-distillation process

using pinch-based process models

Process parameter Value

bounds for α [ 0 0.9 ]
std. dev. of phase composition measurements σw 0.005
feed to extraction column
-acetone 0.05 mol s−1

-water 0.95 mol s−1

solvent composition 100 % toluene
extraction temperature 298.15 K
extraction pressure 1 bar
distillation pressure 1 bar

172



C.2 Input parameters for the case studies

Property parameter Value

Antoine parameter
(

p
mbar = exp

(
A− B

T/K+C

))
-acetone A=15.578, B=2574.5, C=−50.400
-water A=16.836, B=3155.6, C=−73.970
-toluene A=16.172, B=3102.5, C=−52.552

Enthalpy of vaporisation (DIPPR 106 form in J/mol, Tr = T/10 000 K)
-acetone a=36988, b=11.409, c=−475.23, d=12844, e=−99271
-water a=51367, b=−6.8777, c=384.29, d=−104.56, e=−33539
-toluene a=41517, b=7.7975, c=−521.85, d=16049, e=−126581

The vapour pressure and the enthalpy of vaporisation have been estimated using

COSMO-RS (Klamt et al., 2010) on BP-TZVPD-FINE parametrisation (BP-TZVPD-

FINE-C30-1701) in the implementation COSMOthermX17 by COSMOlogic GmbH &

Co. KG, Leverkusen, Germany.

The LCIA model for the wastewater treatment is the same as in Chapter A and

taken from the Ecoinvent database (Ruiz, 2019). The environmental impacts of toluene

are also taken from the Ecoinvent database (Hischier, 2019).

Process model result Value

min. solvent demand Smin 0.4207 molsolvent/molfeed
min. energy demand Qmin 222 kW / molacetone
min. impact on Climate Change CCmin 15.2 g CO2 / molacetone
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C.2.4 Specifications for the countercurrent rate-based extraction

column using the HTU-NTU method for sizing
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ṁ

′′ 1
5k

gs
−

1

S
p
ec
ifi
c
m
as
s
tr
an

sf
er

ar
ea

of
p
ac
k
in
g
a

P
15

0.
92

m
2

m
−

3
S
tr
ig
le

(1
99
4)

V
oi
d
fr
ac
ti
on

ar
ea

of
p
ac
k
in
g
ϵ

0.
97
2

S
tr
ig
le

(1
99
4)

B
ou

n
d
ar
y
la
ye
r
th
ic
k
n
es
s
δ′

1
×

10
−

4
m

D
iff
u
si
on

co
effi

ci
en
t

of
ac
et
on

e
in

w
at
er
D

12
0.

81
×

10
−

9
m

2
s−

1
T
y
n
an

d
C
al
u
s
(1
97
5)

D
iff
u
si
on

co
effi

ci
en
t

of
ac
et
on

e
in

to
lu
en
e
D

23
1.

1
×

10
−

9
m

2
s−

1
B
u
li
ck
a
an

d
P
ro
ch
az
ka

(1
97
6)

R
affi

n
at
e
in
le
t
lo
ad

in
g
X

′′ 2,
in

0.
2

m
ol

ac
et

on
e/

m
ol

w
at

er

R
affi

n
at
e
p
u
ri
fi
ca
ti
on

y
ie
ld
X

′′ 2,
ou

t
0.
05

m
ol

ac
et

on
e/

m
ol

w
at

er

E
x
tr
ac
t
in
le
t
lo
ad

in
g
X

′ 2,
in

0
m

ol
ac

et
on

e/
m

ol
to

lu
en

e

D
en
si
ty

of
ra
ffi
n
at
e
p
h
as
e
ρ

′′
99

7.
05

kg
m

−
3

N
IS
T

C
h
em

is
tr
y
W
eb
B
o
ok

(2
02
1)

D
en
si
ty

of
ex
tr
ac
t
p
h
as
e
ρ

′
86

2.
24

kg
m

−
3

N
IS
T

C
h
em

is
tr
y
W
eb
B
o
ok

(2
02
1)

V
is
co
si
ty

of
ra
ffi
n
at
e
p
h
as
e
µ

′′
0.

00
05

6P
as

N
IS
T

C
h
em

is
tr
y
W
eb
B
o
ok

(2
02
1)

In
te
rf
ac
ia
l
te
n
si
on

σ
I

25
.4

6
×

10
−

7
N

m
−

1
E
n
d
er
s
et

al
.
(2
00
7)

S
af
et
y
fa
ct
or
S

fo
r
C
ra
w
fo
rd
-W

il
ke

co
rr
el
at
io
n

5
S
tr
ig
le

(1
99
4)

174



C.2 Input parameters for the case studies

Cost parameter Value Reference
Plant lifetime Nlife 25 a
Annual operation hours ta 8000 h
Interest rate I 4.18 %
Disposal costs Cdisp 1 $/kg
Material factor Fm 1 Biegler et al. (1997)
Tray spacing factor Fs 1 Biegler et al. (1997)
Tray type factor Ft 0 Biegler et al. (1997)
Pressure factor Fp 1 Biegler et al. (1997)
Base costs C0 1000 $ Biegler et al. (1997)
Reference height of column hK,0 4 ft Biegler et al. (1997)
Reference diameter of column dK,0 3 ft Biegler et al. (1997)
Exponent for column height scaling αh 0.81 Biegler et al. (1997)
Exponent for column diameter scaling αd 1.05 Biegler et al. (1997)
Update factor UF 5.353

Process model result Value

total annualised cost TAC 624 309 USD/year

Rate-based mass transfer model *

The rate-based model of a counter-current extraction process considers a continuous

raffinate phase ” and a dispersed extract phase ’. The extract and raffinate are

assumed to be non-soluble within each other, which is well justified for a system with

a large miscibility gap. Therefore, calculations are based on molar loadings X2 of mol

transition component per mol extract carrier and raffinate carrier, respectively:

X ′′
2 = x′′

2
1 − x′′

2
(C.1)

X ′
2 = x′

2
1 − x′

2
. (C.2)

* This explanation of the rate-based mass transfer model is reproduced in major parts from the PhD

thesis of Ludger W. M. Wolff, RWTH Aachen University, Aachen, Germany, 2021, for transparency

and comprehensibility of the results presented in this thesis.
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The total mole balance of the extraction process reads as

ṅ′′
1(X ′′

2,out −X ′′
2,in) = ṅ′

3(X ′
2,in −X ′

2,out). (C.3)

Here, ṅ′′
1 is the molar flow of the raffinate carrier component, and X ′′

2,out and X
′′
2,in are

the outlet and inlet loadings of the raffinate. ṅ′
3 is the molar flow of the extract carrier

component, and X ′
2,in and X ′

2,out are the inlet and outlet loadings of the extract.

Sizing is performed using the well-known HTU-NTU method (Chilton and Colburn,

1935; Sattler and Feindt, 1995)

hK = V ′′ṅ′′
1

β12aP

(
πd2

K
4

)
︸ ︷︷ ︸

HT U

∫ X′′
2,in

X′′
2,out

dX ′′
2

ln 1+X′′
2

1+X′′
2,Ph︸ ︷︷ ︸

NT U

. (C.4)

Here, V ′′ is the molar volume of the raffinate phase, and β12 is the mass transfer coeffi-

cient. The mass transfer coefficient β12 is assumed to be independent of composition

and follows from the diffusion coefficient D12 and the thickness of the boundary layer

of the raffinate phase, δ′′:

β12 = D12

δ′′ . (C.5)

Typically, the thickness of the boundary layer is often unknown (Taylor and Krishna,

1993). Therefore, the mass transfer coefficient β12 is typically calculated directly from

empirical correlations employing the Sherwood number (Taylor and Krishna, 1993).

Since the impact of multiple thermodynamic properties on the optimal experimental

design is in the focus of this work, the thickness of the boundary layer is assumed to

be known and constant.

To calculate the number of transfer units NTU , the loading X ′′
2,Ph at the interface

is calculated assuming thermodynamic equilibrium at the interface.

A relation between bulk phase loadings and loadings at the interface between raffinate

and extract is obtained via the molar flux Ṅ2 of the transferred component. The

molar flux Ṅ2 of the transferred component can be calculated from the extract or the

raffinate phase via the concentration gradient considering Stefan-correction and has to

be equal. Thus, a relation between bulk phase loadings and loadings at the interface

between raffinate and extract is obtained:

−V ′′β12

V ′β23
=

ln 1+X′
2

1+X′
2,Ph

ln 1+X′′
2

1+X′′
2,Ph

. (C.6)

176



C.2 Input parameters for the case studies

Here,

β23 = D23

δ′′ (C.7)

is the (constant) mass transfer coefficient of acetone in the extract phase.

The column diameter dK is calculated from the maximum volume flows of the

raffinate and extract phase, respectively (Strigle, 1994):

πd2
K

4 =

 ṅ′′
2V

′′(1 + max(X ′′))
u′′︸ ︷︷ ︸

max. volume flow of raffinate

+ ṅ′
3V

′(1 + max(X ′))
u′︸ ︷︷ ︸

max. volume flow of extract

 · S. (C.8)

Here, S = 5 is a safety factor that ensures sufficient distance of the operating point

from flooding (Strigle, 1994).

The maximum volume flows of the raffinate and extract phase depend on the flooding

velocities of the raffinate and extract phase, u′ and u′′. u′ and u′′ are calculated from

the Crawford-Wilke flooding correlation (Strigle, 1994)

ρ′

aPµ′′

(√
u′ +

√
u′′
)2

= f

 µ′′

|ρ′′ − ρ′|

[
σI

ρ′′

]0.2 [
aP

ϵ

]1.5
 . (C.9)

Here, ρ′′ and ρ′ are the densities of the raffinate and extract phase, µ′′ is the viscosity

of the continuous phase (here the raffinate phase), σI is the interfacial tension, and ϵ is

the void faction of the column packing. The function f is taken from a plot given by

Strigle (1994).

Cost estimation model

The total annualised cost TAC result from total annualised operational costs TAOC

and the depreciation of the investment costs, the total updated bare module costs

TUBMC (Biegler et al., 1997):

TAC = TAOC + ccf · TUBMC. (C.10)

The factor ccf is the capital charge factor that determines the depreciation. The total

annualised operational costs TAOC are approximated by the disposal costs for the

extract:

TAOC = (ṅ′
3(1 + max(X ′))) · ta · Cdisp (C.11)
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Here, ta is the annual operational time, and Cdisp are the specific disposal costs. The

total updated bare module costs TUBMC are calculated following the systematic

approach of Guthrie (Biegler et al., 1997):

TUBMC = UF · (BC (MPF +MF − 1)) (C.12)

Optimal experimental design calculation

The aim of c-OED is to determine which diffusion and LLE experiments should be

performed to minimise the variance in the total annual costs TAC. Noteworthy, the

c-optimal design minimises only the uncertainty σ2
T AC in the total annual costs and

not the total annual costs TAC itself. However, for a reasonable operation of the

extraction column, the total annual costs TAC should be low. Therefore, a two-step

optimisation procedure is performed: In the first step, the total annual costs TAC are

minimised. The total annual costs TAC are determined by the physical properties of

the extraction system, i.e. the parameters θ̂, and the extract flow rate ṅ′
3.

In the second optimisation step, the c-optimal design dc,opt for the operation point

with minimum TACmin is determined. Of course, the c-optimal design could be

determined for any other operation point as well.
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C.3 Additional results from the Monte Carlo analysis

C.3.1 Accuracy of the extraction process for σw = 0.001 and

σw = 0.01
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Figure C.1: Uncertainties of the solvent demand in the extraction process for the
c-optimal, D-optimal, and equidistantly distributed conventional exper-
imental designs for a standard deviation in the measurements of mole
fractions of phase equilibrium experiments of σw = 0.001. The full bars
are the relative RMSE from the Monte Carlo sampling; the hatched bars
are the expected relative standard deviation from OED theory.
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Figure C.2: Uncertainties of the solvent demand in the extraction process for the
c-optimal, D-optimal, and equidistantly distributed conventional exper-
imental designs for a standard deviation in the measurements of mole
fractions of phase equilibrium experiments of σw = 0.01. The full bars are
the relative RMSE from the Monte Carlo sampling; the hatched bars are
the expected relative standard deviation from OED theory.
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C.3.2 NRTL-parameter accuracy for the extraction process for

σw = 0.005
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Figure C.3: Parameter accuracy of the c-optimal, D-optimal, and equidistantly dis-
tributed conventional experimental designs for the extraction process for
σw = 0.005. The parameter accuracy is measured using the mean relative
root-mean-square error (RMSE) of the property parameters.
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C.3.3 Accuracy of the hybrid extraction-distillation process for

σw = 0.001 and σw = 0.01
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Figure C.4: Uncertainties of the environmental impact on Climate Change in the
extraction-distillation process for the c-optimal, D-optimal, and equidis-
tantly distributed conventional experimental designs for a standard devia-
tion in the measurements of mole fractions of phase equilibrium experiments
of σw = 0.001. The full bars are the relative RMSE from the Monte Carlo
sampling; the hatched bars are the expected relative standard deviation
from OED theory.
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Figure C.5: Uncertainties of the environmental impact on Climate Change in the
hybrid extraction-distillation process for the c-optimal, D-optimal, and
equidistantly distributed conventional experimental designs for a standard
deviation in the measurements of mole fractions of phase equilibrium
experiments of σw = 0.01. The full bars are the relative RMSE from the
Monte Carlo sampling; the hatched bars are the expected relative standard
deviation from OED theory.
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C.3.4 Influence of the number of experiments for the hybrid

extraction-distillation process for σw = 0.005 and σw = 0.01
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Figure C.6: Effect of number of experiments on the relative RMSE of the c-optimal, D-
optimal, and equidistantly distributed conventional experimental designs
for the hybrid extraction-distillation process for a standard deviation in
the measurements of mole fractions of phase equilibrium experiments of
σw = 0.005.

184



C.3 Additional results from the Monte Carlo analysis
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Figure C.7: Effect of number of experiments on the relative RMSE of the c-optimal, D-
optimal, and equidistantly distributed conventional experimental designs
for the hybrid extraction-distillation process for a standard deviation in
the measurements of mole fractions of phase equilibrium experiments of
σw = 0.01. Compared to a smaller standard deviation in the measurements
of mole fractions of σw = 0.005, the c-optimal design starts to outperform
the D-optimal and conventional design for 40 experiments or more.
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C.3.5 NRTL-parameter accuracy for the hybrid extraction-distillation

process for σw = 0.005
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Figure C.8: Property parameter accuracy of c-optimal, D-optimal, and equidistantly
distributed conventional experimental designs for the hybrid extraction-
distillation process. The parameter accuracy is measured using the mean
relative root-mean-square error (RMSE) of the property parameters. As
expected from theory, the exact D-optimal designs yield the most accurate
parameters for each number of experiments investigated. However, even
for the most accurate parameter estimation in this case study for the D-
optimal design and 30 experiments, the variance in the property parameter
equals a factor of 2.6 on average, with a range between 0.16 and 18.7 for
the individual parameters.
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C.4 Additional optimal experimental design for the hybrid extraction-distillation process

C.4 Additional optimal experimental design for the

hybrid extraction-distillation process

Figure C.9 shows an additional optimal experimental design for estimating temperature-

dependent NRTL-τ -parameters from LLE experiments for the hybrid extraction-

distillation process. In contrast to Section 5.2.3, the objective of this c-OED is to

minimise the uncertainty of the reboiler energy demand of the distillation column Qmin.

Table C.4 contains the corresponding c- and D-efficiencies ζc and ζD of the c-optimal

ξ∗
c , D-optimal ξ∗

D and equidistantly distributed conventional ξcon experimental designs.

Generally, the c-optimal experimental design and the corresponding c- and D-efficiencies

(ζD
c = 0.61 and ζc

D = 0.62) are similar to the minimisation of the uncertainty of the

environmental impact in Section 5.2.3 (ζD
c = 0.63 and ζc

D = 0.65).

Figure C.9: Experimental designs of LLE experiments for the hybrid extraction-
distillation process. The size of the circles corresponds to the share
of the experimental effort. The grey box indicates the design space.
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The minor differences in the c-optimal design are caused by the reduced parameter

requirements of the energy-related objective compared to the LCA objective in Section

5.2.3. In contrast to performing an LCA of the process, describing the energy demand

only does not require an accurate description of the aqueous solvent solubility for

emissions related to solvent disposal and make-up. The reduced parameter requirements

decrease the need for overall accurate parameters and are reflected in a marginally

lower D-efficiency of ζD
c = 0.61 for the energy-related objective function compared to

the LCA objective (ζD
c = 0.63).

Table C.4: c- and D-efficiencies ζc and ζD of the c-optimal ξ∗
c , D-optimal ξ∗

D, and
equidistantly distributed conventional ξcon experimental designs for the
estimation of temperature-dependent NRTL-τ -parameters and use in the
pinch-based hybrid extraction-distillation process model.

Design ξ c-efficiency ζc D-efficiency ζD

c-optimal ξ∗
c 1 0.62

D-optimal ξ∗
D 0.61 1

conventional ξcon 0.24 0.55
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D.1 Soft- and hardware

The following software is used within the fuel design method:

Calculation Method Software version

Optimised geometry
and σ-surface

DFT BP86 /
TZVP (-MF)

COSMOconf16 (4.1)
(COSMOlogic GmbH & Co. KG, 2017a)
TURBOMOLE® 7.2
(COSMOlogic GmbH & Co. KG, 2017c)

Thermodynamic
properties

BP-TZVP-C30-1701 COSMOtherm17 (C30-1701)
(COSMOlogic GmbH & Co. KG, 2017b)

Fuel ignition quality
indicators

GNN Version v0.2
(Schweidtmann et al., 2020)

Laminar burning
velocity

GC-based ANN Version v2
(vom Lehn et al., 2021a)

Synthesisability Molecular
Transformer

Version 12class-tokens-2021-05-14
(Schwaller et al., 2020)

Numerical optimisation fmincon MATLAB® R2018b
(The MathWorks Inc., 2018b)

All calculations were performed on one Intel® HNS2600BPB node of the RWTH

Compute Cluster CLAIX-2018 employing one 24-core Intel® Xeon® Platinum 8160

Processor with 94 GB RAM.

189



Appendix D Supporting information to Chapter 6

D.2 Molecular fragment library for the genetic algorithm

LEA3D

The following 3D-molecular fragments have been specified as the molecular fragment

library for the genetic algorithm LEA3D. Each “X”marks a connector of the molecular

fragment and can be connected to another “X” from another molecular fragment

to build a new molecular structure. Unconnected connectors “X” are automatically

replaced by hydrogen atoms.

Figure D.1: Molecular fragment library used for the pure-component and blend design.
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D.3 Prediction accuracy of environment, health, and safety indicators

D.3 Prediction accuracy of environment, health, and

safety indicators

The environment, health, and safety indicators are estimated using group contribution-

based Gaussian Process Regression (GPR) as proposed by Alshehri et al. (2021). In

contrast to Alshehri et al. (2021), the models are trained using UNIFAC groups as

features. The fragmentation into UNIFAC groups is performed using the automatic

fragmentation algorithm by Müller (2019). For each model, the most accurate kernel

configuration is reported. Here, the following kernels were considered:

Kernel Abbreviation

Linear Lin
Squared-Exponential SE
Rational Quadratic RQ
White Noise WN

The plots below visualise the prediction accuracy of unseen test data excluded during

model training. The training and test data are taken from Alshehri et al. (2021), except

for the unified yield sooting index (uYSI). The uYSI data is taken from McEnally et al.

(2017).
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• Autoignition temperature (AiT; American Society for Testing and Materials,

2000) in Kelvin

Kernel configuration: SE + SE + WN + RQ

Number of data points for training: NTrain = 487
Number of data points for testing: NTest = 54
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Figure D.2: Parity plot of predicted versus experimental autoignition temperature
(AiT) of the test set.
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• Bioconcentration factor (BCF, dimensionless; Arnot and Gobas, 2006) expressed

as log(BCF)
Kernel configuration: SE + SE + SE + SE + WN

Number of data points for training: NTrain = 366
Number of data points for testing: NTest = 41
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Figure D.3: Parity plot of predicted versus experimental bioconcentration factor (BCF)
of the test set.
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• Aqueous toxicity as lethal concentration for fathead minnow fish after 96 h expo-

sure (LC50(FM); Ankley and Villeneuve, 2006) expressed as − log
(

LC50(FM)
mol L−1

)
Kernel configuration: Lin + SE · Lin + WN

Number of data points for training: NTrain = 490
Number of data points for testing: NTest = 54
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Figure D.4: Parity plot of predicted versus experimental aqueous toxicity (LC50(FM))
of the test set.
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• Oral toxicity as lethal dose for rats from oral intake (LD50; Walum, 1998)

expressed as − log
(

LD50

mol kg−1

)
Kernel configuration: SE + SE + SE + SE + WN

Number of data points for training: NTrain = 2157
Number of data points for testing: NTest = 240
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Figure D.5: Parity plot of predicted versus experimental oral toxicity (LD50) of the
test set.
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• Permissible exposure limit (PEL) using the OSHA time-weighted average

(PELOSHA-TWA; Spear and Selvin, 1989) expressed as − log
(

PELOSHA-TWA

mol m−3

)
Kernel configuration: SE + SE + SE + SE + WN

Number of data points for training: NTrain = 346
Number of data points for testing: NTest = 38
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Figure D.6: Parity plot of predicted versus experimental permissible exposure limit
(PELOSHA-TWA) of the test set.
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• Unified Yield Sooting Index (uYSI, dimensionless; Das et al., 2018)

Kernel configuration: RQ · Lin + WN

Number of data points for training: NTrain = 397
Number of data points for testing: NTest = 44
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Figure D.7: Parity plot of predicted versus experimental unified yield sooting index
(uYSI) of the test set.
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• Gas-phase standard enthalpy of formation (∆h0
f,gas) in kJ mol−1

Kernel configuration: Lin + SE · Lin + WN

Number of data points for training: NTrain = 697
Number of data points for testing: NTest = 78
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Figure D.8: Parity plot of predicted versus experimental gas-phase standard enthalpy
of formation (∆h0

f,gas) of the test set.
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D.4 Contribution of fuel properties to expected engine efficiency increase

D.4 Contribution of fuel properties to expected engine

efficiency increase

The predicted engine efficiency increase is attributed to the four considered fuel

properties to varying degrees (Figures D.9 and D.10).

In the pure-component design, RON and ∆hvap contribute positively for all top

10 candidates, while octane sensitivity (OS = RON − MON) always contributes

negatively (Figure D.9). For most candidates, the RON is the strongest contributor.

The first five candidates are esters, for which both low octane sensitivity and low LBV

impact efficiency negatively. For the seventh candidate fuel 1-butanol, ∆hvap has the

biggest impact on efficiency.
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Figure D.9: Contributions of fuel properties to expected engine efficiency increase for
the top 10 pure-component fuels.
RON: Research Octane Number, OS: Octane Sensitivity, ∆hvap: enthalpy
of vaporisation, LBV: Laminar Burning Velocity, Sum: Sum over all four
individual properties

For the binary ethanol blends, all four properties (RON, OS, ∆hvap, and LBV)

positively impact engine efficiency (Figure D.10). The majority of the blends are

composed of ethanol, and ethanol is well known for its high RON, OS, ∆hvap, and LBV.

As the relevance of OS for engine efficiency strongly depends on the K-value, the engine
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efficiency increase is plotted for two choices of the K-value: K = −1.5 and K = −0.5.
Due to the linear contribution of the K-value, the predicted efficiency increase due to

OS is simply divided by three, lowering the total relative efficiency increase of the top

blend from 19.5 % (K = −1.5) to 14.9 % (K = −0.5). Noteworthy, a different choice

for the K-value also changes the ranking. Considering the uncertainty of the K-factor,

the ranking provides recommendations and is not a finalised assessment. To further

prioritise among the vast number of promising blend candidates, expert knowledge

could be utilised, e.g. on the potential for large-scale production.
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Figure D.10: Contributions of fuel properties to expected engine efficiency increase
for the blend design for the top 10 binary blends with ethanol. The
contributions are plotted for two K-values, −1.5 (left bar) and −0.5
(right bar), highlighting the influence of the K-value on the predicted
engine efficiency increase.
RON: Research Octane Number, OS: Octane Sensitivity, ∆hvap: enthalpy
of vaporisation, LBV: Laminar Burning Velocity.

200



D.5 Influence of property constraints on the number of feasible candidate blends

D.5 Influence of property constraints on the number of

feasible candidate blends
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Figure D.11: Influence of property constraints on the number of feasible candidate
blends.

D.6 Calculation and property data for the estimation of

direct CO2 emissions

Starting from Equation 6.1 in Section 6.2.4, the following formulation is used to

calculate the fuel consumption of each fuel blend:

merit

100 % = ηblend

ηRON95
− 1 =

���
1

P engine

ṁblend · LHVblend

���
1

P engine

ṁRON95 · LHVRON95

− 1 (D.1)

⇔ ṁblend = ṁRON95 · LHVRON95
merit

100 % + 1
· 1
LHVblend

(D.2)

For the fuel consumption of RON95 gasoline ṁRON95, V̇RON95 = 7 L/100 km is assumed.

Assuming constant engine operation at the optimal operating point achieving maximum

engine efficiency, as given by the merit value for each candidate blend, the CO2 emissions

for driving 100 km with a candidate blend equal:

ṁCO2 = MCO2 · ṁblend

Mblend
·NC,blend (D.3)
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Appendix D Supporting information to Chapter 6

The average number of carbon atoms per molecule in the blend NC,blend and the LHV

of the blend LHVblend are obtained from:

NC,blend =
2∑

i=1
xi ·Ni and (D.4)

LHVblend =
2∑

i=1
xi · LHVi, (D.5)

where xi is the molar fraction of molecule i in the blend and Ni is the number of

carbon atoms of molecule i.

For the calculation, the following property data is used:

Property Value Reference

lower heating value (LHV) 42.13 kJ kg−1 Leitner et al. (2017)
density (ρ) 737 kg m−3 Leitner et al. (2017)
molar mass (M) 100 kg kmol−1 vom Lehn et al. (2021b)
composition in mass fractions Leitner et al. (2017)

wC 0.8447
wH 0.1327
wO 0.0226
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Mukkula, A. R. G., Mateáš, M., Fikar, M., and Paulen, R. (2021). Robust multi-stage

model-based design of optimal experiments for nonlinear estimation. Computers &

Chemical Engineering, 107499.

Müller, J. (2016). MISO: mixed-integer surrogate optimization framework. Optimization

and Engineering, 17(1):177–203.

Müller, S. (2019). Flexible heuristic algorithm for automatic molecule fragmentation:

application to the UNIFAC group contribution model. Journal of Cheminformatics,

11(1):57.

Murat Sen, S., Henao, C. A., Braden, D. J., Dumesic, J. A., and Maravelias, C. T.

(2012). Catalytic conversion of lignocellulosic biomass to fuels: Process development

and technoeconomic evaluation. Chemical Engineering Science, 67(1):57–67.

Nagata, I. (1984). Liquid-liquid equilibria for four ternary systems containing methanol

and cyclohexane. Fluid Phase Equilibria, 18(1):83–92.

Nagata, I. (1987). Liquid-liquid equilibria for ternary acetonitrile-ethanol-saturated

hydrocarbon and acetonitrile-1-propanol-saturated hydrocarbon mixtures. Ther-

mochimica Acta, 119(2):357–368.

Ng, L. Y., Andiappan, V., Chemmangattuvalappil, N. G., and Ng, D. K. (2015a). A

systematic methodology for optimal mixture design in an integrated biorefinery.

Computers & Chemical Engineering, 81:288–309.

Ng, L. Y., Chong, F. K., and Chemmangattuvalappil, N. G. (2015b). Challenges

and opportunities in computer-aided molecular design. Computers & Chemical

Engineering, 81:115–129.

Nguyen, N.-K. and Miller, A. J. (1992). A review of some exchange algorithms for

constructing discrete D-optimal designs. Computational Statistics & Data Analysis,

14(4):489–498.

225



Bibliography

Nigam, A. K., Friederich, P., Krenn, M., and Aspuru-Guzik, A. (2019). Augmenting

Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space.

arXiv, preprint:arXiv:1909.11655.

Nigam, A. K., Pollice, R., and Aspuru-Guzik, A. (2021). JANUS: Parallel Tempered

Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design.

arXiv, preprint:arXiv:2106.04011.

NIST Chemistry WebBook (2021). Eds. P.J. Linstrom and W.G. Mallard: NIST

Standard Reference Database Number 69, National Institute of Standards and

Technology, Gaithersburg MD, 20899, United States.

Ooi, J., Ng, D. K., and Chemmangattuvalappil, N. G. (2018). Optimal molecular

design towards an environmental friendly solvent recovery process. Computers &

Chemical Engineering, 117:391–409.

Ooi, J., Ng, D. K. S., and Chemmangattuvalappil, N. G. (2019). A Systematic

Molecular Design Framework with the Consideration of Competing Solvent Recovery

Processes. Industrial & Engineering Chemistry Research, 58(29):13210–13226.

Ooi, Y. J., Aung, K. N. G., Chong, J. W., Tan, R. R., Aviso, K. B., and Chemman-

gattuvalappil, N. G. (2022). Design of fragrance molecules using computer-aided

molecular design with machine learning. Computers & Chemical Engineering,

157:107585.

Otto, S. A., Kadin, M., Casini, M., Torres, M. A., and Blenckner, T. (2018). A

quantitative framework for selecting and validating food web indicators. Ecological

Indicators, 84:619–631.

Papadopoulos, A. I., Perdomo, F. A., Tzirakis, F., Shavalieva, G., Tsivintzelis, I.,

Kazepidis, P., Nessi, E., Papadokonstantakis, S., Seferlis, P., Galindo, A., Jackson,

G., and Adjiman, C. S. (2020). Molecular engineering of sustainable phase-change

solvents: From digital design to scaling-up for CO2 capture. Chemical Engineering

Journal, 127624.

Papadopoulos, A. I., Stijepovic, M., and Linke, P. (2010). On the systematic design

and selection of optimal working fluids for Organic Rankine Cycles. Applied Thermal

Engineering, 30(6-7):760–769.

Papadopoulos, A. I., Tsivintzelis, I., Linke, P., and Seferlis, P. (2018). Computer-

Aided Molecular Design: Fundamentals, Methods, and Applications. In Reedijk, J.,

226



Bibliography

editor, Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical

Engineering. Elsevier, Waltham, MA, United States.

Papoulias, S. A. and Grossmann, I. E. (1983). A structural optimization approach in

process synthesis—II: Heat recovery networks. Computers & Chemical Engineering,

7(6):707–721.

Parvatker, A. G. and Eckelman, M. J. (2020). Simulation-Based Estimates of Life Cycle

Inventory Gate-to-Gate Process Energy Use for 151 Organic Chemical Syntheses.

ACS Sustainable Chemistry & Engineering, 8(23):8519–8536.

Pereira, F. E., Keskes, E., Galindo, A., Jackson, G., and Adjiman, C. S. (2011).

Integrated solvent and process design using a SAFT-VR thermodynamic description:

High-pressure separation of carbon dioxide and methane. Computers & Chemical

Engineering, 35(3):474–491.

Pereira, R. and Pasa, V. (2006). Effect of mono-olefins and diolefins on the stability of

automotive gasoline. Fuel, 85(12-13):1860–1865.

Pistikopoulos, E. N., Barbosa-Povoa, A., Lee, J. H., Misener, R., Mitsos, A., Reklaitis,

G. V., Venkatasubramanian, V., You, F., and Gani, R. (2021). Process systems

engineering – The generation next? Computers & Chemical Engineering, 147:107252.

Ploskas, N. and Sahinidis, N. V. (2021). Review and comparison of algorithms

and software for mixed-integer derivative-free optimization. Journal of Global

Optimization, 82:433–462.

Pronzato, L. and Walter, E. (1990). Experiment design for bounded-error models.

Mathematics and Computers in Simulation, 32(5-6):571–584.

Recker, S., Kerimoglu, N., Harwardt, A., Tkacheva, O., and Marquardt, W. (2013). On

the integration of model identification and process optimization. In 23rd European

Symposium on Computer Aided Process Engineering, volume 32 of Computer Aided

Chemical Engineering, pages 1021–1026. Elsevier, Amsterdam, The Netherlands.

Redepenning, C. and Marquardt, W. (2017). Pinch-based shortcut method for the

conceptual design of adiabatic absorption columns. AIChE Journal, 63(4):1213–1225.

Redepenning, C., Recker, S., and Marquardt, W. (2017). Pinch-based shortcut

method for the conceptual design of isothermal extraction columns. AIChE Journal,

63(4):1236–1245.

227



Bibliography

Remmert, S., Campbell, S., Cracknell, R., Schuetze, A., Lewis, A., Giles, K., Akehurst,

S., Turner, J., Popplewell, A., and Patel, R. (2014). Octane Appetite: The Relevance

of a Lower Limit to the MON Specification in a Downsized, Highly Boosted DISI

Engine. SAE International Journal of Fuels and Lubricants, 7(3):743–755.

Renon, H. and Prausnitz, J. M. (1968). Local compositions in thermodynamic excess

functions for liquid mixtures. AIChE Journal, 14(1):135–144.

Righi, S., Baioli, F., Dal Pozzo, A., and Tugnoli, A. (2018). Integrating life cycle

inventory and process design techniques for the early estimate of energy and material

consumption data. Energies, 11(4):970.

Rios, L. M. and Sahinidis, N. V. (2013). Derivative-free optimization: a review

of algorithms and comparison of software implementations. Journal of Global

Optimization, 56(3):1247–1293.

Rittig, J. G., Ritzert, M., Schweidtmann, A. M., Winkler, S., Weber, J. M., Morsch,

P., Heufer, K. A., Grohe, M., Mitsos, A., and Dahmen, M. (2022). Graph machine

learning for design of high–octane fuels. AIChE Journal, e17971.

Rojas, C. R., Welsh, J. S., Goodwin, G. C., and Feuer, A. (2007). Robust optimal

experiment design for system identification. Automatica, 43(6):993–1008.

Ruiz, E. M. (2019). Treatment of spent solvent mixture, hazardous waste incineration:

Europe without Switzerland, Ecoinvent database version 3.6.

Ryu, J., Kong, L., Pastore de Lima, A. E., and Maravelias, C. T. (2020). A generalized

superstructure-based framework for process synthesis. Computers & Chemical

Engineering, 133:106653.

Samaras, Z. C., Andersson, J., Bergmann, A., Hausberger, S., Toumasatos, Z., Ke-

skinen, J., Haisch, C., Kontses, A., Ntziachristos, L. D., Landl, L., Mamakos, A.,

and Bainschab, M. (2020). Measuring Automotive Exhaust Particles Down to 10

nm. SAE International Journal of Advances and Current Practices in Mobility,

3(1):539–550.

Samudra, A. P. and Sahinidis, N. V. (2013). Optimization-based framework for

computer-aided molecular design. AIChE Journal, 59(10):3686–3701.

Sanchez Medina, E. I., Linke, S., Stoll, M., and Sundmacher, K. (2022). Graph neural

networks for the prediction of infinite dilution activity coefficients. Digital Discovery,

1:216–225.

228



Bibliography

Sattler, K. and Feindt, H. J., editors (1995). Thermal Separation Processes: Chapter

01 - Basic Concepts. Wiley-VCH Verlag GmbH, Weinheim, Germany.

Schack, D., Liesche, G., and Sundmacher, K. (2020). The FluxMax approach: Simul-

taneous flux optimization and heat integration by discretization of thermodynamic

state space illustrated on methanol synthesis process. Chemical Engineering Science,

215:115382.

Scheffczyk, J., Fleitmann, L., Schwarz, A., Lampe, M., Bardow, A., and Leonhard,

K. (2017a). COSMO-CAMD: A framework for optimization-based computer-aided

molecular design using COSMO-RS. Chemical Engineering Science, 159:84–92.
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Fleitmann, L., Scheffczyk, J., Schäfer, P., Jens, C., Leonhard, K., and Bardow, A.

(2018). Integrated design of solvents in hybrid reaction-separation processes using

COSMO-RS. Chemical Engineering Transactions, 69:559–564.

Publications indirectly related to this thesis

Articles in peer-reviewed journals

Frumkin, J. A., Fleitmann, L., and Doherty, M. F. (2019). Ultimate Reaction Selectivity

Limits for Intensified Reactor–Separators. Industrial & Engineering Chemistry

Research, 58(15):6042–6048.

Gertig, C., Fleitmann, L., Hemprich, C., Hense, J., Bardow, A., and Leonhard, K.

(2021). CAT-COSMO-CAMPD: Integrated in silico design of catalysts and processes

based on quantum chemistry. Computers & Chemical Engineering, 153:107438.

Gertig, C., Fleitmann, L., Schilling, J., Leonhard, K., and Bardow, A. (2020). Rx–

COSMO–CAMPD: Enhancing Reactions by Integrated Computer–Aided Design of

Solvents and Processes based on Quantum Chemistry. Chemie Ingenieur Technik,

92(10):1489–1500.
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