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A B S T R A C T

Fully Homomorphic Encryption (FHE) enables arbitrary computations to
be performed over encrypted data, eliminating the need to decrypt the data
and expose it to potential risk while in use. FHE promises to significantly
broaden the range of applications that can be secured with End-to-End
encryption. In the last decade, FHE has undergone several breakthroughs
and advancements that led to a leap in performance improvements, en-
abling a variety of applications and a first wave of real-world deployments.
However, the complexity of developing an efficient FHE application still
hinders deploying FHE in practice and at scale.

FHE presents unique challenges in development and deployment, which are
moving to the foreground as FHE is transitioning from theory to practice.
Secure computation techniques such as FHE are inherently interleaved with
application logic, as they introduce both theoretical (e.g., data indepen-
dence) and practical (e.g., cost model) paradigm changes. Programs need
to be translated to the unique programming model of FHE, taking into
account the security, expressiveness, and performance characteristics of the
underlying schemes. Beyond performance, which has been the focus of the
community for most of the last decade, and the challenges of development,
practical deployments introduce further challenges that have so far received
scant attention. Specifically, we need to carefully question to what extent
the traditional threat models used in FHE (e.g., semi-honest servers and
IND-CPA security) are sufficient for real-world deployments. In order to
widen the set of scenarios in which FHE can be deployed effectively, we
must define stronger notions of security and develop new constructions to
achieve them efficiently.

This dissertation presents three contributions toward useable FHE: First,
we study, categorize, and distill the challenges of FHE development, identi-
fying key characteristics that define FHE’s unique programming paradigm.
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Second, we introduce HECO, a Fully Homomorphic Encryption compiler
that translates high-level programs to optimized FHE implementations,
enabling non-experts to develop secure and efficient FHE applications.
Finally, we present verifiable FHE, a new notion of maliciously secure
integrity-preserving FHE that addresses the challenges arising from the
mismatch between the traditional threat models used in FHE and real-world
deployment scenarios.
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Z U S A M M E N FA S S U N G

Fully Homomorphic Encryption (FHE) ermöglicht die Durchführung be-
liebiger Berechnungen über verschlüsselten Daten und beseitigt die Not-
wendigkeit, die Daten zu entschlüsseln und sie während der Verwendung
potenziellen Risiken auszusetzen. FHE hat das Potenzial, die Arten von
Anwendungen, die mit Ende-zu-Ende-Verschlüsselung geschützt werden
kann, signifikant zu erweitern. Im letzten Jahrzehnt haben verschiede-
ne Durchbrüche und Fortschritte in der FHE Forschung zu erheblichen
Leistungsverbesserungen geführt und eine Vielzahl von Anwendungen
sowie eine erste Welle von praktischen Einsätzen ermöglicht. Trotz dieser
Fortschritte hindert die Komplexität der Entwicklung von effizienten FHE-
Anwendungen weiterhin den praktischen Einsatz von FHE im grösseren
Massstab.

Die Entwicklung und Implementierung von FHE bringt spezielle Her-
ausforderungen mit sich, die mit dem Wechsel von der Theorie zur Praxis
immer stärker in den Vordergrund treten. Methoden für verschlüsselte
Berechnungen wie FHE sind untrennbar mit der Anwendungslogik ver-
bunden, da sowohl theoretische Aspekte (wie z. B. Datenunabhängigkeit)
als auch praktische Aspekte (wie z. B. Kostenmodelle) paradigmatische
Veränderungen mit sich bringen. Programme müssen in das spezifische
Programmiermodell von FHE übersetzt werden, wobei die Sicherheits-,
Ausdrucks- und Leistungsmerkmale der zugrunde liegenden Schemata
zu berücksichtigen sind. Neben der Leistungsverbesserung – die bis jetzt
den Schwerpunkt der FHE Forschung bildete – und den Herausforderun-
gen der Entwicklung, stehen bei praktischen Einsätzen weitere Aspekte
im Fokus, die bisher nur wenig Beachtung gefunden haben. Insbesondere
bedarf es einer sorgfältigen Überprüfung, inwiefern die traditionellen Be-
drohungsmodelle, die bei FHE verwendet werden (z. B. semi-honest Server
und IND-CPA-Sicherheit), für reale Einsätze ausreichend sind. Um den
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praktischen Einsatz von FHE auf ein breiteres Spektrum von Anwendungs-
szenarien auszuweiten, benötigen wir stärkere Sicherheitsdefinitionen und
neue Konstruktionen, die diese effizient realisieren können.

Die vorliegende Dissertation präsentiert drei Beiträge zur praxistaugli-
chen Verwendung von FHE: Zunächst studieren, konkretisieren, und kate-
gorisieren wir die Herausforderungen, die sich in der FHE-Entwicklung
ergeben. Dabei identifizieren wir die wesentlichen Merkmale, die das ein-
zigartige Programmierparadigma von FHE definieren. Zweitens stellen wir
HECO vor, einen FHE Compiler, der high-level Programme in optimierte
FHE-Implementierungen übersetzt und es auch Laien ermöglicht, sichere
und effiziente FHE-Anwendungen zu entwickeln. Schliesslich führen wir ve-
rifiable FHE ein, eine neue Definition für integritätswahrende verschlüsselte
Berechnungen, dass auf die Herausforderungen, die sich aus den Unter-
schieden zwischen den traditionell verwendeten Bedrohungsmodellen und
praktischen Einsatzszenarien für FHE ergeben, ausgelegt ist.
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1
I N T R O D U C T I O N

In recent years, a series of high-profile incidents [44, 152] have brought
the issue of security and privacy to the forefront of public consciousness,
leading to the introduction of privacy regulations and a raised standard for
industry best practices. This has led to the near-ubiquitous adoption of en-
cryption at rest and during transit across industry. However, data generally
still has to be decrypted before being used, requiring service providers to
maintain and manage the associated decryption keys. While in use, the de-
crypted data is again at risk of compromise, potentially undermining other
protections. The desire to address this issue has led to a surge in demand for
secure and confidential computing solutions that protect data while in use.
In addition to hardware-based confidential computing enclaves, a variety of
cryptographic techniques for secure computation have emerged. These in-
clude secure Multi-Party Computation (MPC) and Zero-Knowledge Proofs
(ZKP), which are both seeing increasing real-world deployment. While these
techniques provide powerful primitives that address a variety of important
settings, they are not an ideal fit for the standard client-server applications
that make up the vast majority of (cloud) applications today. For example,
clients in this context frequently do not have the communication bandwidth
required to run interactive MPC protocols. More recently, these techniques
have been joined by Fully Homomorphic Encryption (FHE), which allows a
third-party server to perform computations on encrypted data without the
need for interaction with the client. As FHE provides a more natural match
for many cloud-based settings, interest in FHE has accelerated in recent
years. Gartner projects [73] that “by 2025, at least 20% of companies will
have a budget for projects that include fully homomorphic encryption."

FHE is a key technological enabler for secure computation by allowing
arbitrary computations to be performed over encrypted data, eliminating
the need to decrypt the data and expose it to potential risk while in use.
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2 introduction

While first proposed in the 1970s [151], FHE was long considered impossible
or impractical. In 2009, breakthrough work from Gentry proposed the
first feasible FHE scheme [91], and a first implementation was presented
the following year [92]. In the following decade, FHE evolved from a
theoretical concept to reality. Thanks to advances in the underlying theory,
general hardware improvements, and more efficient implementations, it
has become increasingly practical. For example, times for a multiplication
between ciphertexts dropped from 30 minutes to less than 20 milliseconds.
While this is still around seven orders of magnitude slower than an IMUL

instruction on a modern CPU, it is sufficient to make many applications
practical. These advances have enabled a variety of applications covering
a wide range of domains [56, 76, 108, 110, 128, 130, 145]. These include
mobile applications, where FHE has been used to encrypt the back end
of a privacy-preserving fitness app [135], while continuing to provide a
real-time experience. In the medical domain, FHE has been used to enable
privacy-preserving genome analysis applications over large datasets [115].
More generally, FHE has been used to solve various well-known problems
like Private Set Intersection (PSI) [40], outperforming previous solutions
by 2× in running time. In the domain of machine learning, FHE has
been used for tasks ranging from linear and logistic regression [114] to
Encrypted Neural Network inference [71]. The latter can be used to run
privacy-preserving ML-as-a-Service applications, for example, for private
phishing email detection [57]. Beyond academic work, FHE is increasingly
seeing deployment in real-world applications, such as in Microsoft Edge’s
password monitor [112]. With upcoming hardware accelerators for FHE
promising further speedup [70, 153], FHE will soon be competitive for an
even wider set of applications.

While FHE has proven its potential to enable new levels of privacy and se-
curity for sensitive information, realizing this potential in practice currently
remains difficult. This is because both the development and deployment of
FHE applications present unique challenges. As FHE is transitioning from
theory to practice, these issues are rapidly moving to the foreground. FHE
introduces issues beyond the inherent challenges of deploying cryptography



1.1 thesis contributions 3

in practice, such as implementation correctness, side-channel resistance,
and key management. This is because traditional cryptography (e.g., secure
communication and storage) can frequently be integrated into the transport
and storage layer of systems. This essentially hides most of their complex-
ity from applications and enables the simultaneous deployment of such
techniques across a variety of applications. Secure computation techniques
such as FHE, on the other hand, are inherently interleaved with applica-
tion logic, as they introduce both theoretical (e.g., data independence) and
practical (e.g., cost model) paradigm changes. This process must consider
each application individually and requires a deep understanding of the
application and the theory and ‘folklore’ of FHE. Currently, only a small
handful of experts have the necessary experience to transform complex
applications into efficient state-of-the-art FHE solutions. In order to realize
the potential of FHE, we must democratize it by taming this complexity
through the development of tools and abstractions. Beyond performance,
which has been the focus of the community for most of the last decade,
and the challenges of development, practical deployments introduce further
challenges that have so far received scant attention. Specifically, we need
to carefully question to what extent the traditional threat models used in
FHE (e.g., semi-honest servers and IND-CPA security) are sufficient for
real-world deployments. In order to widen the set of scenarios in which
FHE can be deployed effectively, we must define stronger notions of security
and develop new constructions to achieve them efficiently.

1.1 thesis contributions

This work aims to unlock the potential of FHE for non-expert developers,
democratizing access to FHE and making it accessible to a wider audience.
We are the first to consider FHE usability holistically, addressing both the
development and deployment aspects of FHE. Our work is the first to study,
categorize and distill the challenges of FHE development, bringing them to
the attention of a wider audience beyond the core FHE community. Based
on these insights, we present a set of tools and abstractions that hide the un-



4 introduction

derlying complexity of working with FHE, enabling non-experts to develop
secure and efficient FHE applications. We demonstrate that useability does
not have to come at the expense of performance by introducing a series
of novel optimizations that map traditional high-level programs to FHE’s
unique programming paradigm. Finally, we address some of the challenges
that arise from the mismatch between the traditional threat models used
in FHE and real-world deployment scenarios. More concretely, we present
three key contributions, which we discuss below.

Part I: FHE Application Development (Chapter 3)

Despite recent breakthroughs in FHE practicality, building secure and ef-
ficient FHE-based applications remains a challenging task. This is largely
attributed to the differences between traditional programming paradigms
and FHE’s computation model. Working with FHE also introduces signifi-
cant engineering challenges. Different schemes offer varying performance
tradeoffs, and optimal choices are heavily application-dependent. To ad-
dress some of the engineering challenges in this space, we have seen a surge
of work on tools that aim to improve accessibility and reduce barriers to
entry in this field [6, 14, 16, 34, 48, 65, 66, 71, 72]. However, we currently
lack a comprehensive overview of the current state of FHE development.
While it is clear that both significant advances have been made and many
challenges remain open, there is no systematic understanding of the remain-
ing engineering challenges that need to be addressed to help broaden FHE
adoption. Therefore, this part of the thesis aims to fill in this knowledge gap
by studying and surveying the current state-of-the-art of FHE tools. More
concretely, this survey has two objectives: First, to assist developers looking
to develop FHE-based applications in selecting a suitable approach and,
second, to provide the community with valuable insights on both successes
and remaining issues in this space.

Towards this goal, we conduct an extensive survey of existing tools and
highlight their features and characteristics. Subsequently, we consider these
tools in practice by experimentally evaluating them across a range of case
study applications, contrasting usability, expressiveness, and performance.
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In our experimental evaluation, we consider a selection of tools in more
detail and provide an in-depth analysis of their usability and expressiveness
in practice. We implement and benchmark three case-study applications
that represent different domains of FHE-based computation. Our bench-
marks allow us to study not only the overall performance of FHE for these
applications across tools but also the relative strengths of different tools
compared to each other. We provide an online repository1 that includes
Docker images for all the tools we evaluate, our automated benchmarking
framework, and the example applications.

Part II: End-to-End Compilation for FHE (Chapter 4)

Today, performance is no longer the major barrier to the adoption of FHE.
Instead, it is the complexity of effectively translating applications to FHE
that currently limits deploying FHE in practice and at scale. Several FHE
compilers have emerged recently to ease FHE development. However, none
of these answer how to automatically transform imperative programs to
secure and efficient FHE implementations. This is a fundamental issue that
needs to be addressed before we can realistically expect broader use of FHE.
Automating these transformations is challenging because the restrictive set
of operations in FHE and their non-intuitive performance characteristics re-
quire programs to be drastically transformed to achieve efficiency. Moreover,
existing tools are monolithic and focus on individual optimizations and,
as a result, fail to fully address the needs of end-to-end FHE development.
In order to overcome these limitations, we need to fundamentally rethink
the architecture of FHE compilers and develop novel optimizations that abstract
away the complexity FHE and address the limitations of existing tools. In
this part of the thesis, we present HECO, a new multi-stage optimizing FHE
compiler. Our architecture provides, for the first time, a true end-to-end
toolchain for FHE development. In addition, we propose novel transfor-
mations and optimizations that map imperative programs to the unique
programming model of FHE.

1 https://github.com/MarbleHE/SoK

https://github.com/MarbleHE/SoK
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Based on the progression of abstraction levels that expert developers
naturally consider when designing FHE applications, we identified four
phases of converting an application to an efficient FHE implementation:
program transformation, circuit optimization, cryptographic optimization, and
target optimization. Compilers need to be able to accommodate a wide vari-
ety of optimizations across all levels of abstraction and we propose a set
of Intermediate Representations (IRs) based on the requirements of each
phase that allow us to naturally and efficiently express optimizations at
these different levels. We realize these IRs using the MLIR compiler frame-
work [118] which provides a standardized way to define and operate on
domain-specific IRs. In our design, we take a broader view of FHE devel-
opment, extending the scope of optimizations beyond the cryptographic
challenges on which existing tools focus. Experts spend significant time
considering how to best express an application in the FHE paradigm, only
considering the other aspects once the program is efficiently expressible
using native FHE operations. HECO supports the automatic transformation
of high-level programs to FHE’s unique programming paradigm, allowing
developers to express their algorithms conveniently in the standard im-
perative paradigm. In our evaluation, we show that HECO can match the
performance of expert implementations, providing up to 3500x speedup
over naive implementations. We open-source HECO and we hope that it
will help to advance the FHE development ecosystem.

Part III: Verifiable Fully Homomorphic Encryption (Chapter 5)

The same malleability that enables homomorphic computations also raises
integrity issues, which have so far been mostly overlooked. Specifically, the
FHE research community has historically made extensive use of the as-
sumption that the server running an FHE application would be honest-but-
curious, rather than actively malicious. This assumption may be reasonable
in some deployment scenarios, but the necessity to trust the server to this
extent limits the scope of application scenarios. In addition, even otherwise
trusted parties can be compromised by malicious third parties, exposing
this attack surface. A violation of the semi-honest assumption threatens
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not only correctness but also confidentiality: a class of attacks known as
key-recovery attacks exploits the interactive nature of real-world deployments
to construct (partial) decryption oracles, and practical key-recovery attacks
have been developed for all major FHE schemes [37, 43, 167]. Therefore,
there is an urgent need to strengthen FHE to maintain strong guarantees in
the context of these attacks. While there has been work that aims to address
this gap, these have remained isolated efforts considering only aspects of
the overall problem and fail to fully address the needs and characteristics
of modern FHE schemes and applications. This work is the first to consider
FHE integrity in the context of real-world FHE deployment settings This
part of the thesis aims to both highlight the dangers arising from the gap
between existing notions and real-world scenarios, and to propose efficient
instantiations of a new robust notion for FHE integrity that effectively
addresses these challenges.

We are the first to compare and analyze the different existing approaches
to FHE integrity. We show how these approaches fall short when consider-
ing how FHE is used in practice, highlighting the mismatch between the
setting assumed in the existing integrity literature and the settings used for
the vast majority of FHE applications. Finally, we show how this mismatch
enables attacks on both correctness and confidentiality, even in the presence
of existing integrity mechanisms. We define a new notion of integrity for
FHE that captures real-world FHE deployment settings, addressing the
issues we identified in our analysis. Existing notions are usually a com-
plex combination of existing integrity notions and ad-hoc confidentiality
properties, interleaving FHE and integrity aspects. In contrast, we present
a natural clean-slate notion of verifiable FHE that composes the standard
notion of FHE with modular integrity properties. This allows our notion to
be adapted to the wide variety of FHE deployment settings we observe in
practice. We show how to generically construct our notion from a standard
FHE scheme, commitments, and Zero-Knowledge Proofs (ZKPs). and then
instantiate our notion of using a variety of different state-of-the-art ZKP
systems. In the process, we highlight a series of fundamental challenges in
bringing together FHE and ZKP systems. We investigate several approaches
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to bridge this gap, evaluate our instantiations on a variety of different
workloads and compare them to a hardware-attestation–based approach
(FHE-in-TEE) as a point of comparison. We show that verifiable FHE can
be practical but also highlight the need for future work on ZKP systems
specifically designed for the unique characteristics of FHE.

1.2 publications

The material in this thesis is based on the following publications:

• (Chapter 3) Alexander Viand, Patrick Jattke, Anwar Hithnawi, SoK:
Fully Homomorphic Encryption Compilers, In 2021 IEEE Symposium
on Security and Privacy, SP 2021. [161].

• (Chapter 4) Alexander Viand, Patrick Jattke, Miro Haller, Anwar
Hithnawi, HECO: Fully Homomorphic Encryption Compile, In 32nd
USENIX Security Symposium (USENIX Security 23) [4]

• (Chapter 5) Alexander Viand*, Christian Knabenhans*, Anwar Hith-
nawi, Verifiable Fully Homomorphic Encryption, In Arxiv arXiv:2023.07041
[cs.CR], Under Submission. [162]

Any errors in this dissertation are, of course, mine alone. During the
course of my doctoral studies I also co-authored the following publications
below, in addition to a number of smaller works [106, 132, 137, 163].

• Lukas Burkhalter, Anwar Hithnawi, Alexander Viand, Hossein Shafagh,
Sylvia Ratnasamy, TimeCrypt: Encrypted Data Stream Processing at
Scale with Cryptographic Access Control, In 17th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2020. [27]

• Lukas Burkhalter*, Nicolas Küchler*, Alexander Viand, Hossein Shafagh,
and Anwar Hithnawi, Zeph: Cryptographic Enforcement of End-to-
End Data Privacy, In 15th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2021. [28]

* Equal contribution.
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• Hidde Lycklama*, Lukas Burkhalter*, Alexander Viand, Nicolas Küch-
ler, Anwar Hithnawi, RoFL: Attestable Robustness for Secure Feder-
ated Learning, In 2023 IEEE Symposium on Security and Privacy, SP
2023 [131]

• Nicolas Küchler, Emanuel Opel, Hidde Lycklama, Alexander Viand,
Anwar Hithnawi, Cohere: Privacy Management in Large Scale Sys-
tems, In Arxiv arXiv:2023.08517 [cs.CR], Under Submission. [116]

1.3 software artefacts

We make the code for each work in this thesis available as open source.

• (Chapter 3)

– https://github.com/MarbleHE/SoK

• (Chapter 4)

– https://github.com/MarbleHE/HECO

• (Chapter 5)

– https://github.com/MarbleHE/ringSNARK

– https://github.com/MarbleHE/FHE-in-TEE

– https://github.com/MarbleHE/ZKP-FHE

https://github.com/MarbleHE/SoK
https://github.com/MarbleHE/HECO
https://github.com/MarbleHE/ringSNARK
https://github.com/MarbleHE/FHE-in-TEE
https://github.com/MarbleHE/ZKP-FHE




2
P R E L I M I N A R I E S

In this chapter, we provide an overview of relevant concepts, focusing on
high-level descriptions and referring to the relevant literature for formal
definitions.

2.1 fully homomorphic encryption

A homomorphic encryption scheme is a (most frequently public-key) encryp-
tion scheme where there exists a homomorphism between operations on
the plaintext and operations on the ciphertext:

Dec(Enc(x + y)) = Dec(Enc(x)⊕ Enc(y))

where + and ⊕ are operations over the plaintext and ciphertext space,
respectively. A fully homomorphic encryption scheme is one that is homo-
morphic in regards to both addition and multiplication. We refer to [90]
for a formal definition, including several constraints that apply to exclude
trivial constructions.

Addition and multiplication allow us to compute any polynomial func-
tion over the encrypted data but many frequently-used functions like com-
parisons or sorting are non-polynomial, i.e., cannot (easily) be expressed
as polynomial functions. However, multiplication and addition in Z2 can
be used to emulate AND- and XOR-gates, respectively. Together with memory,
this can emulate arbitrary computations [155].

Foundations of practical FHE. Modern FHE schemes date back to 2009

when Gentry presented the first feasible FHE construction [90]. While
the original scheme had impractically large constant overheads, follow-up
work improved upon the scheme, enabling a first implementation [92].
All modern schemes follow the general approach laid out by Gentry’s

11



12 preliminaries

first scheme: In these schemes, public keys are values that cancel out to
zero when combined with the secret key sk. Encryption multiplies the
public key pk with a random number a and adds the message m. For
two ciphertexts xi = pk ∗ ai + mi, their addition x0 + x1 = m0 + m1 + pk ∗
(a0 + a1) trivially decrypts to m0 + m1. Multiplications are generally more
complex and are handled differently by different schemes. For a secure
system, some noise e must be added to public keys and ciphertexts. As
long as e is sufficiently small, m + e′ can be rounded to the correct value;
applying the secret key then recovers m. During homomorphic operations,
the noise in the ciphertext grows. While this effect is negligible during
additions, multiplying two ciphertexts introduces significantly more noise.
This limits computations to a (parameter-dependent) number of consecutive
multiplications (multiplicative depth) before decryption fails. This limitation
can be circumvented using bootstrapping, which resets the noise level of
a ciphertext to a fixed lower level by homomorphically evaluating the
decryption circuit with an encrypted secret key as input. However, the
decryption circuit needs to be sufficiently low-depth to allow at least one
additional multiplication before needing to bootstrap again.

Second Generation Schemes. While the first generation of FHE presented a
significant academic breakthrough, it was too inefficient (e.g., around 30 min
needed to compute a single homomorphic multiplication) to truly enable
practical applications of FHE. In response, a second generation of schemes
like the Brakerski-Gentry-Vaikuntanathan (BGV) [22] and Brakerski/Fan-
Vercauteren (BFV) [23, 78] schemes evolved. In order to overcome the
performance penalties of bootstrapping, they introduced the concept of lev-
eled homomorphic encryption. Here, the parameters are chosen sufficiently
large to evaluate the entire computation without bootstrapping. While there
is a cut-off point after which bootstrapping is more efficient, this is unlikely
to be reached by most programs. In addition, they introduced support for
Single Instruction, Multiple Data (SIMD)-style batching. This exploits the
fact that the plaintext space is a ring of polynomials with many coefficients.
Using the Chinese Remainder Theorem [107], this can be reinterpreted as
many different independent slots and many different messages (usually



2.1 fully homomorphic encryption 13

213–216) can be packed into a single ciphertext. Automorphisms additionally
enable homomorphically executable rotations between slots [103].

The Cheon-Kim-Kim-Song (CKKS) scheme [47] introduces a further opti-
mization, considering homomorphic encryption for approximate numbers.
While it follows a very similar construction to BGV, it is formally speaking
not an FHE scheme since the result is only approximately the same as the
equivalent plaintext operation, which can introduce subtle issues in practice.
However, this relaxation has led to an extremely efficient scheme. CKKS
is designed primarily for computations with fixed-point numbers, i.e., a
number x is represented as m = ⌊x ∗∆⌉ for scale ∆, usually a large integer.
CKKS introduces a homomorphic rounding operation to reduce the scale
homomorphically, avoiding overflow issues.

Third Generation Schemes. More recently, a third generation of FHE
schemes, based on the Gentry-Sahai-Waters (GSW) scheme [94], has emerged.
These schemes mostly abandon batching and leveled HE and instead focus
on fast bootstrapping. For example, implementations of the Chillotti-Gama-
Georgieva-Izabachene (CGGI1) scheme [50, 51] can perform bootstrapping
in less than 0.1 seconds, while bootstrapping for BFV or BGV usually takes
several minutes even in efficient implementations. While initially limited
to binary settings, recent follow-up work [56] extends this to arithmetic
circuits. However, fast bootstrapping is incompatible with batching, intro-
ducing a trade-off between latency and throughput when compared to
second-generation schemes.

Security. Modern FHE schemes rely on post-quantum hardness assump-
tions, widely believed to be secure for the foreseeable future. The commu-
nity has developed estimates of their concrete hardness [3] and parameter
choices for several FHE schemes have been standardized [2]. Nevertheless,
some attention must be paid to security when using FHE. For example,
FHE does not provide integrity by default, i.e., a server might perform a
different calculation than requested or none at all. There exist techniques
to address that, ranging from zero-knowledge-proofs to hardware attesta-

1 The CGGI scheme is more commonly known as TFHE, however we refer to it by the author
initials in order to avoid confusion with the TFHE library.
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tion [25]. Additionally, FHE does not provide by default circuit privacy, i.e., a
client might be able to learn information about the applied circuit. Different
techniques, varying in practicality and protection level, can be used to
address this [19, 20, 75]. Finally, issues can appear when using approximate
homomorphic encryption (e.g., CKKS), with attacks that can recover the
secret key from the noise embedded in ciphertext decryptions [124]. Recent
work has shown how adding differentially private noise can mitigate these
attacks [125], but some concerns remain.

FHE and MPC. Finally, we briefly consider FHE in the wider context of se-
cure MPC. While FHE could be used to realize many 2-party MPC protocols,
it does not by default offer circuit privacy, i.e., does not hide the function be-
ing computed. Where desired, this is usually addressed in practice via noise
flooding [90], i.e., adding large noise to the final result before returning it to
the client. FHE can also be extended to multi-party or multi-key settings.
In multi-party FHE, different entities generate a public key and shares of
a secret key [139]. In multi-key FHE, each entity independently generates
their secret and public key [39]. There are also hybrid schemes that combine
FHE and MPC [111] or different FHE schemes [18]. We only consider the
two-party FHE-only client-server setting, but many of the concepts transfer
directly to the other settings.

2.2 fully homomorphic encryption schemes

In this section, we briefly outline important FHE schemes. We focus primar-
ily on aspects relevant to FHE application developers, i.e., plaintext spaces,
encodings, and aspects that impact performance.

2.2.1 CGGI

The Chillotti-Gama-Georgieva-Izabachene scheme [50, 51] is part of a
third generation of FHE schemes based on the Gentry-Sahai-Waters (GSW)
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scheme [94]. More commonly known as TFHE, we refer to it here by the
author initials in order to avoid confusion with the TFHE library.

In CGGI, the plaintext and ciphertext space T is a group of polynomials
(modulo some irreducible polynomial) of degree up to n − 1 over the
torus T = R/Z (i.e., the real numbers mod 1). The message space is
generally chosen so that the computation emulates binary circuits and
homomorphic addition becomes XOR and multiplication becomes AND.
Since T is not a ring, it supports addition but has no native multiplication
operation. However, multiplications are defined between GSW ciphertexts
and ciphertexts in T. This is used to perform multiplications and non-
linear operations over ciphertexts in T during the bootstrapping process,
by encrypting the bootstrapping key as a GSW ciphertext. Multiplications
between ciphertexts in T are realized as one specific type of such a non-
linear transformation applied during bootstrapping. In this gate-bootstrapped
version of the scheme, every non-linear gate therefore inherently includes
bootstrapping.

Chillotti et al. also show how to construct a MUX gate that selects between
two ciphertexts in T dependent on a GSW ciphertext and introduce efficient
designs for Look-Up-Tables (LUTs). Finally, they show how to use weighted
Finite Automata to emulate binary multiplication [53]. However, these
techniques are not implemented in the Fast Fully Homomorphic Encryption
Library over the Torus (TFHE) library.

2.2.2 BFV

The Brakerski/Fan-Vercauteren scheme is a second-generation scheme. Fan
and Vercauteren [78] ported a scheme by Brakerski [21] to the ring-LWE
domain and improved its performance. In BFV, the plaintext space Rt is a
ring of polynomials (modulo some irreducible polynomial) of degree up
to n− 1 with coefficients in Zt. Note that for t = 2, we are in the binary
circuit setting. Messages m ∈ Zt can be encoded into this plaintext space
as a constant polynomial f (x) = m. However, this is inefficient as only
one of n coefficients is utilized. Simply encoding messages into additional
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coefficients raises issues when performing computations: while polynomial
additions work coefficient-wise, multiplications combine different coeffi-
cients in undesired ways. Instead, one can achieve SIMD-style batching via
the Chinese Remainder Theorem [107]. By choosing n = Πk

i=0ni , a degree-n
polynomial can be reinterpreted as the multiplication of k lower-degree
polynomials. Using this technique, k messages can be packed into a sin-
gle plaintext, where k ≫ 1000 in practice, while maintaining meaningful
semantics. Automorphisms additionally enable homomorphic rotations of
the elements [103].

The ciphertexts, meanwhile, are made up of at elements from Rq, which
has the same structure as Rp, but with a different coefficient modulus q.
Each ciphertexts consists of at least two elements, i.e., c = [c0, c1]. These
polynomials ci can themselves be interpreted as coefficients of a polyno-
mial C(X). Homomorphic addition and multiplication between ciphertexts
correspond to addition and multiplication between the C(X)’s, respectively.
As a consequence, the result of a multiplication is a quadratic polynomial,
i.e., a ciphertext with three elements c = [c0, c1, c2]. During further mul-
tiplications the noise term would first become squared, then cubed, etc.
growing excessively. Therefore, BFV and similar schemes introduce a relin-
earization procedure to transform ciphertexts back to linear form. We omit a
description of bootstrapping and instead note that BFV is more commonly
used in leveled mode where the parameters are chosen sufficiently large to
complete the computation without bootstrapping.

Using the Chinese Remainder Theorem (CRT), it is possible to encode a
vector of n integers into a single polynomial, with addition and multipli-
cation acting slot-wise (SIMD). Since the polynomial degree n is usually
between 213 and 216 for security, it can significantly reduce ciphertext expan-
sion and computation cost. BFV also supports rotation operations over such
batched ciphertexts, which cyclically rotate the vector’s elements. Finally,
BFV includes a variety of noise-management (or ciphertext maintenance)
operations, which do not change the encrypted message but can reduce
noise growth during computations.



2.2 fully homomorphic encryption schemes 17

2.2.3 CKKS

The Cheon-Kim-Kim-Song scheme [47], also known as Homomorphic En-
cryption for Arithmetic of Approximate Numbers (HEAAN), focuses on
homomorphic encryption for approximate numbers. Formally speaking it is
not an FHE scheme since it only fulfills the requirements approximately, i.e.,
Dec(Enc(x + y)) ≈ Dec(Enc(x)⊕ Enc(y)), for some operations + and ⊕.
While this slight relaxation has led to an extremely efficient scheme, some
care must be taken when using approximate FHE schemes [46, 124]. CKKS
is designed primarily for computations with fixed point numbers, i.e., a
number x is represented as m = ⌊x ∗∆⌉ for scale ∆, usually a large integer.
While any integer-based scheme can be used for fixed-point computations,
they quickly run into overflow issues. CKKS addresses this by introducing
a homomorphic rounding operation that reduces the scale of a product
back to the original scale ∆.

In CKKS, the logical message space is Cn, i.e., vectors over the complex
numbers, although most applications use only the real part. The plaintext
space R is a ring of polynomials (modulo some irreducible polynomial) of
degree up to n− 1 with coefficients in Z. Given a scaling factor ∆ ∈ R, we
represent m ∈ R as m′ = ⌊∆m⌉ ∈ Z. For brevity, we skip a description of
the encoding of such representations into a plaintext polynomial and simply
note that the encoding introduces small additional approximation errors.
During encryption, noise is intentionally introduced, but this noise overlaps
with the least significant bits of the plaintext. Therefore, the approximation
error and noise are treated as one, and rather than suddenly losing the
message when the noise reaches a threshold, we gradually lose accuracy.

Like in BFV, ciphertexts in CKKS are arrays of elements ci ∈ Rq and
multiplications require relinearization. However, different to BFV, the noise
e grows quadratically with each subsequent multiplication. After ℓ multi-
plications, it has grown to e2ℓ and a modulus q ≈ e2ℓ would be required to
decrypt the resulting ciphertext correctly. Instead, one can scale the cipher-
text down by a factor ω, i.e., go from Rq to Rq/ω . This is known as rescaling
and is similar to the modulus switching operation in the Brakerski-Gentry-
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Vaikuntanathan (BGV) scheme [22] but rescaling also affects the plaintext.
Using rescaling, a modulus of size (ℓ+ 1)ωe suffices to evaluate ℓ subse-
quent multiplications. During this operation, the plaintext encrypted in the
ciphertext is also effectively rescaled to ∆′ = ⌊∆/ω⌉. Choosing q = Πk

i=0qi

where qi are roughly equally sized primes improves both performance [45]
and, by setting ω = qi, ensures a (nearly) constant scale throughout the
computation.

2.2.4 Other Schemes

We introduced the most commonly implemented and used schemes above.
In the following, we briefly highlight additional schemes in the FHE domain.
BFV and CKKS are part of a larger family that also includes the Brakerski-
Gentry-Vaikuntanathan (BGV) scheme [22] and a variety of predecessor
schemes. We skipped an introduction to BGV as it offers similar features to
BFV while the latter usually outperforms it in practice [61]. For CGGI, there
is also a leveled version of the scheme [50], however, we focused on the
gate-bootstrapping version that is currently available in implementations
of the scheme. There are also hybrid schemes that combine FHE and
MPC [111] or even different FHE schemes [18], offering transformations
between ciphertexts in different schemes. These can be used by experts to
build highly efficient, special-purpose protocols [115] but are out of scope
for this work.

Finally, FHE can be extended to multi-party or multi-key settings. In
multi-party FHE, different entities participate an interactive MPC proto-
col to generate a public key and shares of a secret key. Encryption and
computation remain unmodified, but decryption requires running another
MPC protocol [139]. In multi-key FHE, each entity independently generates
their secret and public key. Homomorphic computation between ciphertexts
encrypted under different keys is possible but slower, and the resulting
ciphertext can be decrypted only with access to both secret keys [39]. In the
following, we will consider only the two-party client-server setting.
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F H E A P P L I C AT I O N D E V E L O P M E N T

Though there has been a surge of works on FHE tools and accessibility [6,
14, 16, 34, 48, 65, 66, 71, 72], we currently lack a comprehensive overview of
the current state of FHE development. While it is clear that both significant
advances have been made and many challenges remain open, there is no
systematic understanding of the remaining engineering challenges that
need to be addressed to help broaden FHE adoption. Therefore, we aim to
fill in this knowledge gap by studying and surveying the current state-of-
the-art of FHE tools. More concretely, this survey has two objectives: First,
to assist developers looking to develop FHE-based applications in selecting
a suitable approach and, second, to provide the community with valuable
insights on both successes and remaining issues in this space. Towards
this goal, we conduct an extensive survey of existing tools and highlight
their features and characteristics. Subsequently, we consider these tools in
practice by experimentally evaluating them across a range of case study
applications, contrasting usability, expressiveness, and performance. In our
experimental evaluation, we consider a selection of tools in more detail and
provide an in-depth analysis of their usability and expressiveness in practice.
We implement and benchmark three case-study applications that represent
different domains of FHE-based computation. Our benchmarks allow us to
study not only the overall performance of FHE for these applications across
tools but also the relative strengths of different tools compared to each
other. We conclude this chapter with a discussion of the current state of FHE
and FHE tools. We discuss applications for which FHE is likely practical
today and show gaps between state-of-the-art results and what non-expert
users can realistically implement. Based on the insights gained through our
study, we highlight successes in the FHE tool space and identify gaps that
remain to be addressed. Finally, we discuss a possible road map for the
next generation of FHE tools.

19
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3.1 challenges of developing fhe applications

The intricacy of the underlying schemes still limits developing FHE-based
applications predominantly to experts. Each scheme presents a new set of
configurations and performance tradeoffs, and achieving state-of-the-art
results requires a high familiarity with the underlying schemes. In addi-
tion, FHE imposes a fundamentally different programming paradigm, not
only because of the need for data-independent programs but also because
efficient solutions frequently require complex vectorization approaches.

Throughout the last decade, a significant amount of folklore knowledge
around optimization methods and best practices has been built up in the
FHE community. However, these techniques and insights are often scattered
across the literature or only referred to in passing. As a result, there is a
vast gap between state-of-the-art performance results and what non-experts
can achieve themselves.

In this section, we provide an overview of the key engineering challenges
that developers face today. The community is starting to identify these
accessibility issues as a major roadblock to the broader adoption of FHE.
Recent works are trying to address these challenges by proposing higher-
level interfaces, better abstractions, and automated optimizations. There
will most likely always be specific applications that impose additional
challenges requiring expert input. However, improved tools can benefit a
variety of common application patterns and help ease the path to FHE for
many applications.

3.1.1 Parameter Selection

Selecting secure and efficient instantiations of the underlying cryptographic
problems is hard for most encryption schemes. In standard public-key
cryptography, we circumvent this by standardizing particular instantiations,
e.g., selecting certain elliptic curves, to avoid security issues arising when
the underlying hardness assumptions do not hold for poor choices.
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FHE introduces the additional challenge of computation-specific param-
eters. More complex computations require larger plain- and ciphertext
moduli to avoid overflow or noise issues. However, as these parameters
increase, the Learning With Errors (LWE) problem that security is based on
for most schemes becomes easier, and the dimension of the problem space
(i.e., polynomial degree) must be increased to compensate. As a result, we
cannot standardize a single set of secure parameter choices. Instead, the
standardization effort [2] aims to provide a conservative estimate of the
security of different combinations of moduli and dimensions. However,
since this does not address efficiency, parameter selection remains an issue
in developing FHE-based applications.

The time to evaluate homomorphic operations, for a given polynomial
degree n, is roughly proportional to the ciphertext space modulus q, and a
smaller q also gives higher security. Therefore, we want to select the smallest
q that still correctly decrypts the computation result. However, effectively
computing this minimal q remains an open challenge. While formal analyses
of the ciphertext noise growth exist for a variety of schemes, these worse-
case analyses are frequently too conservative, giving parameters many
times larger than the experimentally determined optimum [61]. Also, the
plaintext space modulus t required to avoid overflows depends on the
size of the actual inputs, which likely come from a smaller subset of Zt in
practice. Here, again, worst-case analyses lead to impractically conservative
parameters. Instead, the community’s accepted method is to incrementally
decrease q until the computation (on some representative input values)
fails to decrypt correctly, then choosing the previous q plus some “safety
margin" determined by experience.

3.1.2 Encoding

With encryption schemes like AES or protocols like TLS, developers do not
generally have to consider the plaintext spaces of the underlying encryp-
tion schemes. As long as a message can be serialized into a binary string,
only padding concerns arise. However, in FHE, the semantics of the plain-



22 fhe application development

text space determine the effect of the homomorphic computations. These
semantics, however, frequently do not match the intended application se-
mantics exactly. While this is already a concern in traditional programming,
with floating-point accuracy errors or integer overflows, FHE introduces a
significantly stronger deviation from the ‘ideal’ computation model.

For example, while we generally consider Zt as the message space for
most schemes, most support additional, more complex spaces. For example,
BGV supports Galois Fields GF(2d) which can be used to efficiently realize
AES-FHE transciphering, i.e., converting a standard AES ciphertext to an
FHE ciphertext given an encryption of the AES key [93].

Conceptually, binary plaintext spaces (i.e., Z2) are the easiest to work
with since the semantics of homomorphic computations directly correspond
to binary circuits. However, working directly with binary circuits is compli-
cated as even trivial functions like addition and multiplication of bit-wise
encoded integers require complex algorithms (e.g., Sklansky or Kogge-
Stone adders) to implement arithmetic operations efficiently. Therefore, the
conceptual ease-of-use is negated by a significant engineering overhead for
even simple algorithms.

While using advanced encoding schemes will most likely remain predom-
inantly an expert technique, existing FHE tools have already shown that
they can be employed automatically to some extent. For example, nGraph-
HE [14] also uses the imaginary part of the CKKS message space when no
ciphertext multiplications are required, roughly doubling throughput.

3.1.3 Data-Independent Computation

Virtually all standard programming paradigms rely on some form of data-
dependent execution branching. Traditional iterative programming relies
heavily on if/else statements and loops, and even functional programming
requires data-dependent branching to terminate recursion.

FHE computations, on the other hand, are by definition data-independent,
or they would violate the privacy guarantees. Therefore, FHE computations
are frequently conceptualized as circuits, i.e., gates (or operations) connected
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by wires, where the execution follows the same steps, no matter what
values the input has. While it is possible to emulate, e.g., if/else branches
by calculating the result for both branches and performing a multiplexing
selection afterward, this requires evaluating both branches. Simulating
(bounded) dynamic-length loops could be achieved by following a similar
approach; however, this quickly becomes infeasible in practice.

In addition, many schemes offer the best performance when using integer
plaintext spaces (t ≫ 2). These arithmetic circuits are limited to comput-
ing polynomial functions. However, many applications, including neural-
network inference, can be approximated very well. Therefore, a significant
part of developing an FHE-based solution is to consider first whether there
exists a polynomial approximation for the task to be performed. Some-
times, this even requires completely switching the approach, e.g., standard
algorithms for genomic sequence analysis are not suitable for polynomial
approximation, but alternative approaches exist that can be expressed much
more easily [119].

3.1.4 SIMD Batching

One of the major breakthroughs in achieving practical performance in
FHE-based solution was the introduction of batching or packing in second-
generation schemes, i.e., allowing one to pack many different messages
into a single ciphertext. The resulting SIMD parallelism can trivially be
used to improve throughput by packing many different inputs into a single
computation run.

However, many FHE applications are limited in their practicality by
latency, i.e., non-amortized runtime. State-of-the-art FHE-based solutions
virtually always apply batching inside a computation, even on a single
instance of the input. Exploiting SIMD batching to reduce latency requires
novel programming paradigms and algorithms that do not have equivalents
outside FHE. For example, matrix-vector-products can be expressed more
efficiently if we encode each of the matrix diagonals into a SIMD vector [100],
rather than row- or column-wise.
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SIMD batching is, for those schemes that support it, potentially the most
important optimization technique, as the large size of the vectors can lead
to runtime improvements of many orders of magnitude. However, it is also
one of the more complex techniques, requiring a deep understanding of
both the application and the performance-tradeoffs of the FHE scheme in
question. While some domains, such as machine learning, are inherently
heavily vectorized and can therefore be automatically transformed into
SIMD-friendly forms, this remains an open problem for more general
applications.

3.1.5 Ciphertext Maintenance

Different schemes use a variety of solutions to manage the growth of the
ciphertext noise during homomorphic computations. However, virtually all
schemes feature some form of ciphertext maintenance operations. These are
operations like relinearization, mod-switching/rescaling or bootstrapping
that must be called explicitly by the developer in order to manage the noise
growth optimally. For example, while one might be tempted to apply relin-
earization immediately after each multiplication, doing so is suboptimal.
This is most obvious for the last multiplication in a computation: with
no further multiplications following, the benefit of reducing future noise
growth is lost. Similar issues appear when considering when to rescale in
the CKKS scheme.

Bootstrapping is frequently not efficient when a leveled approach can
be used. However, there are some applications for which it is the more
suitable approach. In general, there is a continuum of choices between the
minimal parameters that allow only a single operation before bootstrapping
is needed and the (potentially infeasibly large) parameters required to
execute the entire computation without bootstrapping.

One of the major advantages of the CGGI scheme is that it inherently
relies on bootstrapping to realize each operation. Therefore, it removes the
developer’s burden to consider parameters and bootstrapping. However,
it is worth noting that a leveled version of the scheme is, in fact, faster
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for certain applications, once again demonstrating a trade-off between
simplicity and performance.

While a variety of tools have included automatic ciphertext mainte-
nance [34, 66, 163], these were usually naive heuristics that did not improve
performance. Developing efficient strategies is difficult because there are
usually multiple degrees of freedom. For example, for the rescaling oper-
ations in CKKS one needs to consider both what scale to rescale to and
where to insert the operations. Recently, however, there have been increasing
efforts to automate this process [71].

3.2 survey of fhe frameworks

3.2.1 Methodology

We split our analysis of the FHE tool space into two parts. First, we present
an extensive survey of existing tools and highlight their features and char-
acteristics. Second, we consider these tools in practice by experimentally
evaluating them across a range of case study applications, contrasting
usability, expressiveness, and performance. We combine our quantitative
performance analysis with a qualitative assessment, describing the chal-
lenges of developing applications in the different tools.

The secure computation ecosystem includes many different types of
tools. On the low-level side, there are math libraries that simplify building
implementations of FHE schemes, e.g., by efficiently implementing tech-
niques useful for general lattice cryptography. Then, there are FHE libraries
that implement specific schemes and offer slightly higher-level APIs, e.g.,
keygen, encode, encrypt, add, mult. Finally, there are compilers that abstract
aspects like parameter selection, encryption and decryption by offering a
higher-level language that developers can use to specify their computation.

In our survey, we consider FHE libraries and compilers. While some of
the underlying math libraries provide implementations of FHE schemes
as examples [65], we consider only tools that natively offer an API for
FHE operations. Throughout the last decade, there has been significant
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development in schemes and implementations, with some being discarded
or replaced for security or efficiency reasons. We only consider tools based
on schemes that are currently still considered viable candidates (i.e., BFV,
BGV, CKKS, or GSW-based constructions) and consider only the latest
version of each tool, including “spiritual successors" where they exist. We
also consider only unique implementations, i.e., we do not list wrappers or
ports of existing tools. FHE techniques are used internally in several MPC
protocols, and there are a variety of tools that specifically target hybrid
protocols combining FHE and MPC [111]. However, for this survey, we
consider only tools that support using purely FHE, requiring no interaction
during the computation itself.

We focus on three design aspects: (i) settings and configurations, e.g.,
which input languages or schemes a tool supports; (ii) features and op-
timizations, e.g., support for batching or automated parameter selection;
(iii) accessibility, e.g., documentation and examples.

In our experimental evaluation, we consider a selection of tools in more
detail. Through using the tools to implement different case study applica-
tions, we can provide an in-depth analysis of their usability and expressive-
ness in practice. In addition, our benchmarks allow us to study not only
the overall performance of FHE for these applications but also the relative
strengths of different tools compared to each other. We select three appli-
cations that represent different domains of FHE-based computation. Our
first application is a risk score calculation that requires comparisons and,
therefore, binary circuit emulation. Second, we consider a statistical χ2-test,
in a formulation that simplifies it to polynomial functions over integers.
Finally, we consider machine learning, specifically neural network inference,
for a range of network architectures. We evaluate these applications across
the different tools and report on usability, expressiveness, and performance.

3.2.2 FHE Tooling Ecosystem

Without tool support, realizing FHE-based computations by implement-
ing the required mathematical operations directly or using an arbitrary-
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Figure 3.1: Overview of the FHE tool space.

precision arithmetic library is complex, requiring considerable expertise in
both cryptography and high-performance numerical computation. There-
fore, FHE libraries like the Simple Encrypted Arithmetic Library (SEAL) [156]
or TFHE [51] implement the underlying cryptographic operations and ex-
pose a higher-level API. In addition to key generation, encryption, and
decryption, these APIs also expose at least homomorphic addition and
multiplication.

In practice, however, library APIs often include dozens of additional
functionalities for ciphertext maintenance and manipulation. Since schemes
vary in features, these APIs differ significantly not just in their implementa-
tion but also conceptually. Efforts are being made to standardize APIs for
FHE schemes [2] and, simultaneously, there are first steps towards inter-
operability via wrappers around existing libraries [8]. However, achieving
competitive performance frequently still requires working with libraries
directly.

While FHE libraries make the process of writing FHE-based applications
substantially more efficient, they still require significant expertise and un-
derstanding of the underlying scheme since they remain relatively low-level
cryptographic libraries. Therefore, recent years have seen the development
of higher-level tools, frequently known as FHE compilers, that aim to trans-
late standard programs into FHE-based implementations. These tools focus
on making FHE accessible to non-experts by improving usability and in-
creasingly offering advanced optimizations previously accessible only to
experts. Compilers generally rely on FHE libraries to realize the actual
en-/decryption and homomorphic computation. FHE libraries, in turn,
frequently employ existing libraries for fast numerical computations, paral-
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lelization, or other non-FHE-specific features. Figure 3.1 depicts different
FHE tools and where they fit into this dependency hierarchy.
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Name Input Lang.
Supported Schemes Features Accessibility Last Major

UpdateBFV CKKS GSW Bootstrapp. Levels Code Ex. Doc.

concrete ([55]) Rust # #   #  G#  11/2020

FHEW ([74]) C++ # #   #  # # 05/2017

FV-NFLlib ([67]) C++  # # #   G# # 07/2016

HEAAN ([47]) C++ #  #    G# # 09/2018

HElib ([100]) C++   #      12/2020

lattigo ([139]) Go   # #    # 12/2020

PALISADE ([149]) C++         04/2020

SEAL ([156]) C++, .NET   # #     08/2020

TFHE ([51]) C++ # #   #    05/2017

cuFHE ([99]) C++, Python # #   #  G# # 08/2018

nuFHE ([143]) C++, Python # #   #    07/2019

Table 3.1: Overview of existing FHE CPU-targeting (top) and GPU-targeting (bottom) libraries. Note that similar schemes are
summarized into categories, e.g., BFV/BGV as BFV and CGGI/TFHE/FHEW as GSW.
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3.2.3 FHE Libraries

FHE libraries implement the underlying cryptographic operations of an
FHE scheme and expose a higher-level API. They minimally provide key
generation, encryption, decryption, homomorphic addition, and multiplica-
tion interfaces. In practice, however, library APIs often include dozens of
additional functionalities for ciphertext maintenance and manipulation.

Using these libraries generally requires a deep understanding of the un-
derlying scheme and its supported operations. While many libraries include
powerful advanced features that can significantly improve performance,
developers must employ them manually while ensuring correctness and
efficiency.

In Table 3.1, we present an overview of FHE libraries and list supported
languages, schemes, features, and accessibility aspects. We group schemes
into families of related schemes for conciseness and consider support for
bootstrapping and leveled-FHE. For accessibility, we consider whether an
implementation (Code) is available, whether examples (Ex.) describe usage
( ) or usage can be inferred from, e.g., tests (G#), and whether or not API
documentation (Doc.) is available. Finally, we give a rough indication of
age and activity by giving the date of the last release or major update.

Due to space constraints, we present only a small subset in more detail.
We start by discussing HElib, SEAL, and Palisade, which appear to be the
most active and widely supported libraries. We also discuss TFHE here
since it is used by some of the compilers we evaluate. Finally, we discuss
performance differences and briefly discuss the remaining libraries.

3.2.4 HElib

The Homomorphic Encryption Library (HElib), presented in 2013 by Halevi
and Shoup, was the first FHE library [100]. The library is implemented in
C++ and uses the NTL library [157] for the underlying mathematical oper-
ations. While it initially only implemented the BGV scheme, more recent
releases of this library also support the CKKS scheme. The library offers
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leveled FHE operations and, for BFV, also supports bootstrapping [101].
The source code is available under the Apache License v2.0, and includes
extensive examples. In addition to the standard documentation, several
reports describing the design and algorithms of HElib [100, 101, 103] are
available.

3.2.5 PALISADE

PALISADE, first released in 2014, is developed primarily by NJIT and
Duality Technologies [149]. It is implemented in C++ and optionally uses
the NTL library [157] to accelerate underlying mathematical operations.
PALISADE supports a wide range of schemes, including BFV, BGV, CKKS,
and CGGI. In addition, it supports multi-party extensions of certain schemes
and other cryptographic primitives like proxy re-encryption and digital
signatures. The library offers both leveled and bootstrapped operations,
where supported by the scheme. PALISADE’s source code is available under
a BSD 2-clause license and includes examples and documentation.

3.2.6 SEAL

The Simple Encrypted Arithmetic Library (SEAL), first released in 2015,
is developed by Microsoft Research [156]. It is implemented in C++, with
an official wrapper for .NET languages (e.g., C#). SEAL is thread-safe and
heavily multi-threaded itself. It implements the BFV and CKKS schemes,
with a majority of the API being common to both. SEAL offers leveled
FHE operations and does not implement bootstrapping for either scheme.
Earlier versions of SEAL included automated parameter selection based
on estimating the noise growth [148]. Since the estimated parameters were
frequently non-competitive, this feature was removed. However, SEAL still
ensures that the chosen parameters offer 128-bit security. The source code
is available under an MIT license, is well documented, and includes a wide
range of examples for both schemes. In addition, there are several demo
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applications (e.g., AsureRun [135]) that demonstrate more complex use
cases.

3.2.7 TFHE

The Fast Fully Homomorphic Encryption Library over the Torus (TFHE)
was proposed in 2016 by Chillotti et al. [51] and can be considered the
successor of the FHEW library [74]. It is implemented in C++ and supports
a variety of different libraries for underlying FFT operations. TFHE is
based on the CGGI scheme and offers gate-by-gate bootstrapping with
significantly reduced bootstrapping times, resulting in times of less than
0.1 s compared to 6 min for bootstrapping in the HElib library. TFHE
implements a variety of logic gates like OR, NOR, MUX that are generally
implemented more efficiently than naive constructions from XOR and AND
would be. However, the library provides no assistance with building more
complex logic circuits like efficient comparators and adders. TFHE’s source
code is available under the Apache License v2.0 and includes examples and
documentation.

3.2.8 Other Libraries

In addition to the libraries we discussed above, we considered a large
variety of other libraries [47, 55, 67, 74, 138]. We also conducted a series
of microbenchmarks to compare how different implementations of the
same scheme perform. However, due to space considerations we refer
to our accompanying online repository for details. Finally, GPU-based
libraries like cuFHE [99] and nuFHE [143] can offer significant speedups,
improving the already fast TFHE bootstrapping times by around two orders
of magnitude. However, as GPUs remain considerably more expensive and
less common in enterprise datacenters, these speedups must be considered
in context.
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Name
Input
Lang.

Schemes Ptxt.
Space

Features & Optimizations Accessbility

BFV CKKS GSW SIMD Params. Ctxt. Mnt. × Depth Code Ex. Doc.

Alchemy ([66]) Haskell  # # Arithm. G# G# G# #  G# #
Cingulata ([34]) C++  # G# Binary #  G#    #
E3 ([49]) C++  #  Both G# # G# #    
EVA ([71]) Python #  # Arithm.    #   #
Marble ([163]) C++  # # Both G# G# G# #   #
Ramparts ([6]) Julia  # # Arithm. #  G#  # – –

CHET ([72]) C++ #  # Arithm. G#  G# # # – –
nGraph-HE ([14]) Python   # Arithm.  # G#     
SEALion ([160]) Python  # # Arithm. G#  G# # #  #

Table 3.2: Overview of existing general-purpose FHE compilers (top) and those specializing on machine learning (bottom).
Note that similar schemes are summarized into families, e.g., BFV/BGV as BFV and CGGI/TFHE/FHEW as GSW.
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FHEW
HEAAN

HElib
PA

LISA
DE

SE
AL
TFHE

Alchemy # # # # # #
Cingulata # # # # #  
E3  #  #   
EVA # # # #  #
Marble # #  #  #
Ramparts # # #  # #

CHET #  # #  #
nGraph-HE# # # #  #
SEALion # # # #  #

Table 3.3: Use of existing FHE libraries by FHE compilers. Note that Alchemy

implements BGV internally using the Λ◦λ lattice cryptography library,
and Cingulata also includes a custom implementation of BFV.

3.2.9 FHE Compilers

This section provides an overview of existing FHE compilers, i.e., tools
that provide a high-level abstraction to develop FHE-based applications, so
developers do not have to deal directly with homomorphic operations on
ciphertexts. These tools generally manage key setup, encryption, decryp-
tion, and ciphertexts maintenance operations in the background. The term
compiler is used loosely in the context of FHE, as some function more like
interpreters or libraries to link against.

In Table 3.2, we provide an overview of the various FHE compilers and
their properties. FHE compilers can roughly be divided into generic tools
for general purpose use and tools that target specific applications. In the lat-
ter category, we see compilers targeted at building Machine Learning (ML)
applications. In addition to supported schemes, which we again group
for conciseness, we also consider the plaintext spaces supported by the
tool. Even when the underlying scheme and implementation support differ-
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ent plaintext spaces, compilers generally only target binary or arithmetic
plaintext spaces.

We consider a wide range of features and generally differentiate between
three states indicating full support ( ), partial support (G#), or no support
(#). For SIMD-Batching (SIMD), we differentiate between tools that merely
enable batching and those that actively assist in working with vectorized
data. Similarly, we differentiate between manual, partially assisted, and
fully automated parameter selection (Params.). While all tools include some
form of automated ciphertext maintenance operations (Ctxt. Mnt.), we
segment tools into those that use naive heuristics and those using more
advanced strategies. Additionally, we note whether or not tools try to
reduce the multiplicative depth (× Depth) of the circuits they generate. For
accessibility, we consider the same metrics as for libraries, i.e., whether
an implementation (Code) is available, whether examples (Ex.) describe
usage, and whether or not API documentation (Doc.) is available. Similarly,
we again give a rough indication of age and activity by giving the date of
the last release or major update. Where no source code is available to us,
we have to omit these metrics (“–"). Finally, Table 3.3 associates compilers
with the libraries they use. Here we can see SEAL being targeted by a
significantly larger number of compilers than any other library. In the
following, we introduce each compiler in more detail.

3.2.10 Alchemy

A Language and Compiler for Homomorphic Encryption Made easY
(Alchemy) was proposed by Crockett et al. in 2017 [64]. Input programs
are specified in a special Domain-Specific Language (DSL) implemented
in Haskell and executed as arithmetic circuits using a custom BGV imple-
mentation using the Λ◦λ lattice crypto library [65]. While it supports SIMD
batching, it does not offer an encoding/decoding API, making it difficult
to use. Alchemy automatically selects suitable parameters by statically
tracking the upper bound of the ciphertext error but requires user-supplied
modulus candidates. However, this approach, based on type-level arith-
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metic, leads to excessively long compilation times and makes Alchemy

impractical for complex programs. While open-source, the minimal exam-
ples are insufficient to allow non-Haskell-experts to use the library, and it
is therefore excluded from our experimental evaluation.

3.2.11 Cingulata

Cingulata (previously Armadillo) was proposed in 2015 by Carpov et al. [34].
The compiler takes C++ code as input and generates a corresponding
Boolean circuit. Cingulata implements the BFV scheme directly, using the
Flint and Sage libraries for operations on polynomials. We refer to this
built-in BFV implementation as CinguBFV. Cingulata also supports the
CGGI scheme via the TFHE library, but advanced optimizations are not
supported in this mode. Recent versions include CinguParam [105], which
automatically determines parameters for BFV. Cingulata inserts relineariza-
tion operations naively but tries to reduce the circuit’s multiplicative depth
using the circuit optimization tool ABC [136], which was originally designed
for hardware synthesis. However, follow-up work has introduced novel
FHE-specific depth-reduction heuristics [7, 33, 122]. Cingulata’s source code
is available under the CeCILL license and includes many examples.

3.2.12 Encrypt-Everything-Everywhere

The Encrypt-Everything-Everywhere (E3) framework was proposed by
Chielle et al. [49] in 2018. E3 uses C++ as its input language and sup-
ports both arithmetic and boolean circuits in BFV, BGV, and CGGI. E3

supports SIMD operations but does not expose rotation operations, severely
limiting the expressiveness. Users must provide parameters as part of the
configuration, and ciphertext maintenance operations are inserted naively. It
uses the Synopsys Design Compiler, a proprietary tool for hardware design,
to try to reduce the circuit’s multiplicative depth. Internally, it supports a
variety of libraries, including TFHE, FHEW, HElib, and SEAL. E3’s source
code is available online and includes both examples and documentation.
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3.2.13 EVA & CHET

The Encrypted Vector Arithmetics Language and Compiler (EVA) was pre-
sented by Dathathri et al. [71] in 2019. It introduces a novel input language
explicitly designed for vector arithmetic and targets arithmetic circuits in
CKKS using the SEAL library. It is inherently batched and focuses on au-
tomating parameter selection and ciphertext maintenance. The program is
converted into a term graph, and during multiple passes, graph rewriting
rules transform it, e.g., by inserting relinearization and rescaling operations
at the optimal locations. However, EVA does not consider depth-reducing
transformations. While EVA can be used for any (vectorized) application,
the focus is primarily on neural network inference. Towards this end, EVA
includes and subsumes prior work in the form of the Compiler and Run-
time for Homomorphic Evaluation of Tensor Programs (CHET) [72], which
focuses on optimizing matrix-vector operations. EVA and its examples are
available under the MIT license. CHET, however, is not.

3.2.14 Marble

Marble, presented by Viand et al. in 2018 [163] offers a high-level interface
for FHE in C++ by overloading built-in operators. For arithmetic circuits,
it targets BFV via the SEAL library, and for binary circuits, BGV as im-
plemented in the HElib library. Marble exposes a batched version of the
API, allowing relatively efficient implementation, but it requires that the
developer provides a suitably vectorized program. However, Marble pro-
vides only rudimentary parameter selection, inserts ciphertext maintenance
operations naively, and does not apply any program optimizations. While a
version of Marble is available online, the available code supports only bi-
nary circuits. Since Marble targets an outdated version of HElib and focuses
on usability over optimizations, we do not include it in our experimental
evaluation.
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3.2.15 Ramparts

Ramparts was proposed in 2019 by Archer et al. [6]. It uses Julia, a lan-
guage for interactive scientific computing, as its input language, and targets
arithmetic circuits in BFV using the PALISADE library. Ramparts does
not support batching, but includes noise-growth-estimation based parame-
ter selection. Ciphertext maintenance operations are inserted naively, but
a symbolic simulator simplifies the circuit by applying sub-expression
elimination, constant folding, and partial evaluation (e.g., loop unrolling,
function inlining). Ramparts is not publicly available. Therefore, we were
unable to include it in our experimental evaluation. However, Rampart’s
evaluation compares it against Cingulata and a baseline using PALISADE
directly. The evaluation showed significant performance benefits compared
to Cingulata; however, in exchange, Ramparts is limited to programs that
can be expressed as polynomial functions and the symbolic evaluation
approach significantly increases compilation times.

3.2.16 nGraph-HE

The nGraph-HE framework, proposed by Boemer et al. [16] in 2019, is based
on Intel’s nGraph ML compiler [69] and translates standard TensorFlow
computations into arithmetic circuits in BFV or CKKS using the SEAL
library. It enables inference on pre-trained models over encrypted inputs,
applying FHE-specific optimizations (e.g., constant folding, SIMD-packing,
and graph-level optimizations such as lazy rescaling and depth-aware
encoding), and run-time optimizations (e.g., bypassing special plaintext
values). However, it inserts rescaling operations naively and requires the
user to define the parameters. In subsequent work [14], nGraph-HE was
extended to support non-polynomial activation functions. However, these
are computed in an interactive protocol with the client, which introduces
significant latency and is out of scope for our study. nGraph-HE is available
under the Apache License v2.0 and includes examples and documentation.
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3.2.17 SEALion

The framework SEALion, proposed by Van Elsloo [160] in 2019, exposes
a custom Python API for specifying ML models, which are trained us-
ing TensorFlow. SEALion then enables inference over encrypted data us-
ing arithmetic circuits in BFV using the SEAL library. SEALion supports
batching to increase inference throughput by performing inference over
multiple data simultaneously but does not consider non-trivial batching
optimizations. Further, it features automatic parameter selection using a
heuristic search algorithm to find an optimal parameter set. However, it
inserts ciphertext maintenance operations naively and does not consider
depth-reducing optimizations. SEALion is not currently publicly available;
however, the authors shared their implementation with us, and the code
includes well-commented examples.

3.3 evaluation

In the following, we present our experimental evaluation, where we investi-
gate FHE compilers in more detail. We use these tools to implement and
benchmark selected case study applications. This allows us to provide an
in-depth analysis of their usability and expressiveness in practice, and to
compare the performance characteristics of current FHE compilers.

Since there are no standardized benchmarks for FHE, comparing perfor-
mance across tools is generally difficult without implementing a task in
a variety of tools. Motivated by that, we selected three applications that
represent different domains of FHE-based computation. Each is designed to
showcase complex issues arising when working with FHE, yet also remain
simple and easy to reproduce across tools. First, we present a risk score
calculation that requires comparisons and, therefore, binary circuit emula-
tion. While simple, this represents a class of heavily branched programs
that is common in traditional programming but hard to express in FHE.
Second, we consider a statistical χ2-test, in a formulation that simplifies
it to polynomial functions over integers. This represents a variety of in-
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teresting analysis methods that are ill-suited to FHE by default but can
be reformulated or approximated to allow efficient implementations. We
focus only on the core computation, however in practical deployments, this
would probably be preceded by a homomorphic aggregation over user data.
Finally, we consider machine learning, specifically neural network inference
for a range of network architectures. We evaluate a range of increasingly
complex models and show how commonly used architectures are adapted
for FHE.

In our evaluation, we consider three dimensions: usability, expressiveness,
and performance. We start by describing each application in detail, then
report on the process of implementing these applications in the different
tools, highlighting strengths and challenges. Where required, we describe
adjustments made to the applications due to limits in expressiveness. Finally,
we present our benchmarking results and highlight the impact of specific
techniques or optimizations.

3.3.1 Applications

Cardio. The cardio risk factor assessment (cardio) application computes
a score representing a patient’s risk of cardiac disease. The application
takes metrics such as age, gender, weight, drinking habits and smoking
behavior where some are integer-valued and others boolean flags as input.
As illustrated in Listing 3.1, the computation consists of a series of simple
rules over the inputs that use comparisons and boolean operators. The
algorithm is derived from an implementation in [32]. Due to its reliance
on comparison operations, the program requires emulation using binary
circuits.
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1 +1 if man && age > 50 years

2 +1 if woman && age > 60 years

3 +1 if smoking

4 +1 if diabetic

5 +1 if high blood pressure

6 +1 if HDL cholesterol < 40

7 +1 if weight > height -90

8 +1 if daily physical activity < 30

9 +1 if man && alcohol cons. > 3 glasses/day

10 +1 if !man && alcohol cons. > 2 glasses/day

Listing 3.1: The Cardio application.

We encode the inputs as 8 bit numbers and encrypt them at the client-side.
The server receives the encrypted data, computes the risk score, and returns
the encrypted score back to the client. While the inputs are obviously
sensitive information, the cardio risk assessment algorithm is public and
could easily be calculated client-side. However, it is easy to imagine other
applications where a service provider might not want to share the algorithm
with a client. For example, similar algorithms are still widely used for risk
assessment or fraud detection, and knowledge of the criteria considered
makes it easier to circumvent these checks. For simplicity, we omit the noise
flooding required to provide (practical) circuit privacy in our example.

Chi-Squared Test. χ2 or chi-squared tests are common statistical tests. For
our application, we specifically consider Pearson’s Goodness-of-Fit test as
it can be used to test for deviation from the Hardy-Weinberg equilibrium
in Genome-Wide Association Studies (GWAS).

We split the computation into a polynomial part on the server and a final
set of divisions on the client, as proposed by Lauter et al. [119]. First, the
server receives the encrypted genotype counts N0, N1, N2, then it computes
α = (4N0N2 − N2

1 )
2, β1 = 2(2N0 + N1)

2, β2 = (2N0 + N1)(2N2 + N1), β3 =

2(2N2 + N1)
2 and returns the encrypted results to the client. Decrypting

these, the client can compute the test statistic as X2 = α
2N ( 1

β1
+ 1

β2
1
β3
). This

transformation introduces some slight leakage of intermediate values but
in return enables an application that would otherwise be infeasible. A more
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realistic deployment scenario would most likely first see the server calcu-
late the genotype counts over an encrypted genomic database. While this
application is comparatively simple, it is nevertheless practically relevant
as seen by its application to genomic studies. Additionally, its simplicity
allows us to focus more clearly on the overheads introduced by each tool.

NN Inference. The neural-network inference application demonstrates
FHE’s capabilities for privacy-preserving machine learning. Specifically, we
consider inference (or prediction) on a simple image recognition task, i.e.,
recognizing handwritten digits from the MNIST dataset [121]. MNIST is a
common benchmark in machine learning applications and can be solved
effectively by many techniques. In MNIST, individual inputs are 28× 28

pixel images containing a single handwritten digit. First, the network is
trained over a large number of plaintext images. Later, a client submits an
encrypted input and the model owner returns the encrypted prediction. This
guarantees the privacy of the input and gives strong practical protections
for the privacy of the model. When only the model parameters, but not
the general architecture, need to be protected, formal circuit privacy is not
required.

3.3.2 Implementation Considerations

In this section, we explain our selection of tools for each application and
briefly discuss implementation challenges we faced. A more detailed docu-
mentation of our implementations and design choices is available in our
online repository1.

Cardio. The cardio risk factor assessment requires computing several com-
parisons between integers, which are hard to approximate polynomially
and therefore require binary circuit emulation. As a baseline, we imple-
mented the programs manually in SEAL and TFHE. Since EVA targets
CKKS, which is less well suited to binary emulation, we do not consider it

1 https://github.com/MarbleHE/SoK.

https://github.com/MarbleHE/SoK
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here. The Cingulata and E3 compilers, on the other hand, support binary
plaintext spaces natively.

In SEAL and TFHE, we needed to manually implement binary adders
and comparators. This is significantly easier in TFHE, where multiplica-
tive depth is not a concern and a simple ripple-carry-adder is sufficient.
Therefore, our optimized TFHE implementation merely improves the final
summation of risk factors by using a tree of adders. While our naive SEAL
implementation also uses a ripple-carry-adh.kjulder, we also implemented
an optimized version where we implemented a Sklansky-adder, which
trades off additional operations for lower depth. In the optimized version,
we also made heavy use of in-place and plaintext-ciphertext versions of
the homomorphic operations, simplified expressions as much as possible,
and manually determined optimal parameters. Finally, we implemented
an optimized batched variant, which required significant changes to the
computation structure, i.e., transforming all ten conditions into the form
a && b < c by introducing dummy values and operations.

Cingulata makes the implementation significantly more straight-forward
as it contains built-in circuits for common operations such as addition, mul-
tiplication, and comparisons. Therefore, the program is virtually identical
to its plaintext counterpart. However, the compilation process is complex,
and the interactions between the compiler and runtime system are not
well documented. This made it hard to integrate the different mult-depth
reduction techniques available, and it required significant amounts of trial-
and-error to determine, e.g., how Cingulata differentiates between secret
and plaintext inputs in the circuits it generates.

E3 offers a similar and even arguably more powerful API than Cingulata.
For example, it supports both binary and arithmetic plaintext spaces and
can switch ciphertexts between them. In a similar vein, very few changes
were needed to re-target our SEAL (BFV) implementation to TFHE (CGGI).
However, an initial lack of documentation and very long compile times
made developing and debugging applications difficult. While E3 features
some support for batching, this is quite limited. Specifically, it does not
include rotation operations that are essential to fully express the program’s
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batched version. Therefore, the E3 batched version remains somewhat
incomplete.

Chi-Squared Test. The Chi-Squared test, at least as re-formulated in our
application, uses only addition and multiplication over integers, making
it ideally suited for integer-based FHE schemes. Nevertheless, we also
consider implementations targeting binary emulation for comparison. We
manually implemented the application in SEAL, targeting the BFV schemes
and an integer plaintext space. In our optimized version, we manually select
optimal parameters, use in-place operations where possible and reuse com-
mon sub-expressions. Our manual implementations in SEAL closely match
the mathematical description as all operations are native operations. Nev-
ertheless, both the naive and the optimized implementation required over
100 lines of code. Our TFHE-based manual implementations additionally
required implementing a binary adder and multiplier to support the compu-
tation, resulting in several hundred lines of code. EVA, in contrast, allowed
us to easily express the same computation in around a dozen lines of code.
While the EVA implementation targets CKKS, the precision is sufficient to
ensure that, when rounding back to integers, the result perfectly matches
the other BFV/integer-based implementations. While Cingulata supports
the BFV scheme, it only supports binary plaintext spaces. Therefore, it
must also emulate integer multiplications using binary circuits. However,
since it hides the complexity of generating efficient circuits from the user,
this matters only for performance, not for usability. Both Cingulata and
E3 can target integer-based BFV and binary CGGI with minimal changes
required. Note that batching this application would be trivial but only
impacts throughput, not latency, and is therefore omitted.

NN-Inference. The MNIST problem is comparatively easy to solve, with
simple approaches easily achieving more than 90% accuracy and even small
neural networks achieving around 95% accuracy. State-of-the-art networks
achieve up to 99.5% test accuracy. However, increasing accuracy quickly
requires exponentially more complex models. In our evaluation, we used
three different model architectures of increasing complexity. First, we used a
simple Multi-Layer Perceptron (MLP) as a baseline, i.e., two fully connected
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layers with a non-linear activation. Next, we consider a more complicated
Convolutional Neural Network (CNN), specifically the Cryptonets architec-
ture [95] designed specifically for FHE, which consists of 5 layers and two
activations. Finally, we also evaluated a LeNet-5-like [120] network, which
is a significantly more complex design and more representative of networks
used to solve challenging tasks in practice. This network consists of 7 layers
and three activations. We use a technique from [72] and learn a degree-two
polynomial approximation of the ReLU activation function during training.

SEALion and nGraph-HE focus exclusively on machine learning infer-
ence, directly using TensorFlow programs or TensorFlow-like programs
as their inputs. While SEALion can currently only express a simple MLP
network, nGraph-HE seems to support the full TensorFlow feature set. Both
make FHE-based development nearly as easy as working with standard
TensorFlow. While EVA does not directly support machine learning tasks,
the CHET tool can be re-targeted to EVA, and we consider an EVA program
for a LeNet-5 model generated by CHET, in addition to a manually imple-
mented MLP. We complemented the comparison between the tools with a
baseline implementation of an MLP in SEAL, using the CKKS scheme and
manually implementing matrix-vector-product optimizations from [111],
which required significant engineering effort.

3.3.3 Effects of Optimizations

This section presents the results of our benchmarks, with a particular
focus on the effect that automation and optimization have on runtime. All
benchmarks run on an AWS instance (m5n.xlarge), equipped with 4 vCPUs
and 16 GB RAM. The reported results are mean values computed over 10

test runs.

Cardio. In Figure 3.2, we report the run time for the cardio risk factor
assessment application in different setups. We see a large span of results,
between less than 5 seconds for the manual optimized implementation
and over three minutes for the slowest tool-generated implementations. E3

seems to introduce significant overheads, even when compared to naive
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implementations targeting the same library. Cingulata’s BFV implemen-
tation (CinguBFV) seems considerably slower than SEAL’s, but we can
still observe the effect of the different depth-reduction approaches, with
multi-start (E) cutting computation time in half. Comparing our manual
implementations, we see both of our TFHE implementations outperforming
the naive and (non-batched) optimized SEAL implementation as expected.
Cingulata’s TFHE implementation actually further outperforms our manu-
ally optimized TFHE implementation, even when our manual program uses
fewer gates. This speedup might be due to better memory management
or due to slightly different TFHE environments. However, by far the best
performance is achieved when using batching in SEAL, even though this
application is inherently binary-based and ten conditions are a relatively
small number to batch in the context of FHE.

Chi-Squared Test. In Figure 3.3, we present the runtimes for the chi-squared
test application, using a logarithmic scale due to the large range of val-
ues. We contrast manually- and tool-generated implementations targeting
SEAL and TFHE and compare this against Cingulata’s implementation
targeting the built-in BFV implementation. The manually optimized SEAL
implementation and EVA-generated implementation outperform the others
by a large margin, requiring less than a second. With 16.46 s, a slowdown
of more than 10×, the E3 program targeting SEAL is significantly slower,
but the overhead compared to the naive solution is negligible. Meanwhile,
Cingulata targeting CinguBFV suffers from both using binary emulation
unnecessarily and a generally slower BFV implementation. Since the pro-
gram already has minimal depth, we omit a discussion of the different
depth-reduction heuristics here. Similarly, our TFHE optimizations seem
to have no positive effect on this simple program, while Cingulata is again
faster per-gate in TFHE, possibly due to configuration differences. Finally,
we note that the TFHE implementation generated by E3 is around 9× slower
than native implementations, which are already non-competitive compared
to integer-based solutions. In combination with the cardio benchmarking
results, this indicates that E3 generates binary adder/multiplier circuits
inefficiently when using binary emulation.
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Figure 3.2: Runtime of the cardio benchmark. We group compiler generated and
manually optimized and naive programs by the FHE implementation
they target. For CinguBFV, we consider circuits using different depth-
optimization approaches (A: baseline, B: ABC, C: Lobster, D: Cingulata,
E: Multi-Start). * indicates batching was used.

SEAL
(Opt./E3/EVA/Naive)

CinguBFV
(Cingulata)

TFHE
(Opt./Cingulata/E3/Naive)

1

10

100

1K

T
im

e
[s

]

Decryption

Computation

Encryption

Key Generation

Figure 3.3: Runtime of the chi-squared test benchmark using a logarithmic scale. We
group compiler generated, optimized and naive programs by the FHE
implementation they target.
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Figure 3.4: Runtime of the neural network inference benchmark, i.e., recognizing
handwritten digits from the MNIST dataset. All implementations tar-
get SEAL. We implement a simple multi-layer-perceptron (MLP). For
nGraph-HE and EVA, we also consider more complex models (Cryp-
toNets, LeNet-5).

NN Inference. We present the evaluation results for the neural-network
inference task in Figure 3.4, reporting latency, i.e., the time to run encrypted
prediction on a single image. Note that SEALion and nGraph-HE use SIMD-
style batching to achieve higher throughput at the same latency. For nGraph-
HE, it was not possible to provide individual sub-timings, as key-generation,
encryption, and decryption are invisible to the application code. We first
compare our manual implementation of an MLP both directly in SEAL and
using EVA against the same network architecture implemented in SEALion
and nGraph-HE, which offer much higher-level interfaces. All models
achieved around 95% accuracy, nearly identical to their plaintext equivalents.
Note that for SEALion, the overall runtime is artificially inflated because the
tool encrypts the input against a range of possible parameter sets instead
of only the targeted one. Taking this into account, we can see that despite
us implementing several optimization techniques from the literature, the
higher-level tools clearly outperform the manual implementation. In the
case of SEALion, this appears to be due to automatic sparsification, which
reduces the network’s size. Finally, we explored more complex models
using nGraph-HE and EVA, using CHET-generated programs for the latter.
The Cryptonets CNN architecture significantly increases accuracy (to 98%)
at a minimal increase in computation cost. However, achieving state-of-the-
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art network performance (99+%) requires a considerably more complex
LeNet-5-like network, which takes around 13 seconds to run using EVA
and more than two minutes using nGraph-HE.

3.4 discussion

In this section, we discuss some key questions in the space of FHE and FHE
tools:

3.4.1 What applications can be developed using FHE today?

While FHE can be practical for a wide variety of applications, there remain
many applications that are not yet feasible using FHE. Applications that
make sense for FHE generally feature a client-server scenario where both
the input data and the algorithm need to be kept private. In addition,
there are practical limits to the complexity of the applications that can
be outsourced. As a very rough heuristic, computations that take more
than a few hundred milliseconds without FHE are unlikely to be practical
once translated into FHE as of today. However, this very much depends on
the application scenario. Generally, online computations where immediate
feedback is expected are more challenging. For example, face recognition
applications at an airport might tolerate a few seconds of delay at most.
On the other hand, offline tasks like computing statistics over the results
of a year-long medical study can be considered practical even if taking
considerable time.

For non-expert users, the range of applications that can be realized in
practice also depends significantly on the available tools. Using libraries
like SEAL, PALISADE, or HElib makes it easy to implement simple compu-
tations that can be expressed as low-degree polynomials (e.g., the modified
χ2 test), and tools like nGraph-HE enable novice users to easily implement
linear ML models, simple statistics, and neural network inference. For more
experienced users, this question becomes increasingly difficult to address in
general terms. The implementation challenges we describe for our case stud-
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ies show that application complexity and FHE implementation complexity
do not necessarily correlate. Finally, some applications require modifications
or extensions of the underlying cryptographic primitives. These include
computations that require switching between different schemes or between
FHE and MPC homomorphically. Many applications can already be solved
practically using these or other novel programming paradigms. Frequently,
success in implementing an efficient FHE-based solution for an application
depends less on the performance of the underlying FHE tools but on how
the application is translated. Exploiting the advantage of SIMD-batching,
e.g., using EVA, requires designing heavily vectorized programs for a set-
ting with significantly more restrictions than, e.g., AVX vector instructions.
In addition, many applications become feasible only after slight modifica-
tions,e.g., using polynomial approximations or rewriting expressions so that
hard-to-compute operations (e.g., square roots) are delayed until the end
to allow them to be performed client-side after decryption. By presenting
these paradigms more clearly and targeting an audience beyond the crypto
community, the set of applications that developers can expect to realize
successfully using FHE will expand significantly.

3.4.2 When to use which of the FHE tools?

Given the choice of different tools that each present slightly different fea-
tures and strengths, selecting the appropriate tool for a given application
can be non-trivial. However, not all tools that can implement a solution are
necessarily suitable choices, as demonstrated in our evaluation. Current
tools generally excel at specific workloads or application domains, and here
we try to provide some recommendations for tools to consider for common
application scenarios.

For generic applications that compute non-polynomial functions or re-
quire binary emulation, there are multiple options with different tradeoffs.
If working primarily with integers, the programmable bootstrapping offered
by the concrete library is an obvious choice. While compilers like Cingulata
(CinguBFV) or E3 are easier to work with, the performance overhead they
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introduce might be unacceptable for many applications. For applications
requiring a true binary plaintext space, Cingulata (TFHE) is most likely the
easiest approach.

For applications that compute (polynomial) statistics over large amounts
of data, we recommend the EVA compiler targeting CKKS for applications
requiring approximate numbers. If working with integers only, we recom-
mend working directly with the SEAL library targeting BFV, since BFV is
less complex to work with and current compilers targeting it introduce
significant slowdowns. The batching offered by these schemes can be a
natural fit when computing aggregate statistics or retrieving information
from encrypted databases.

For applications that involve or use machine learning inference, the
recommended approach depends on the complexity of the used ML model.
Where training a model with polynomial activation functions produces
sufficient accuracy, we recommend using the nGraph-HE compiler targeting
the CKKS scheme. nGraph-HE supports virtually all TensorFlow features,
including the Keras model definition API, making it trivial to port existing
models. In addition, nGraph-HE offers excellent performance that can
easily outperform even a fairly involved manual implementation. Where
deeper/recursive networks or standard activation functions (e.g., ReLU) are
required to achieve the desired accuracy, the programmable bootstrapping
functionality offered by the concrete library makes it the most suitable choice.
However, this will require significantly more engineering effort as there are
currently no higher-level compilers targeting concrete.

3.4.3 Where should FHE tools go from here?

Both FHE compilers and libraries remain complex to use, and there are
obvious low-hanging fruits in terms of usability that include better doc-
umentation and more extensive examples. In addition, there is a general
lack of interoperability, not just technically but also conceptually. For ex-
ample, even libraries implementing the same scheme can offer surprisingly
different APIs. The ongoing standardization efforts are trying to create a
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unified view of the most popular schemes, including standardized APIs for
the most common operations. However, this does not address the various
extension of the API, e.g., optimizations for squaring rather than multi-
plying or performing operations in-place. This would be solved ideally by
introducing a common intermediate representation language that compilers
can target and libraries can implement.

The existing tools have successfully reduced the complexity of working
with complex FHE schemes. There is a large choice of libraries provid-
ing secure and efficient implementations of current schemes. In addition,
compilers have emerged that make it significantly easier to realize compu-
tations efficiently, e.g., by automatically choosing parameters or inserting
ciphertext maintenance operations. However, this still leaves the user with
the significant challenge of translating an application into an appropriate
FHE computation in the first place. For example, tools could automatically
vectorize iteratively written programs or offer suggestions on aspects of the
computation that would be beneficial to extract to the client-side.

Finally, it is worth noting that we have considered only FHE tools in
our analysis and discussion. However, real-world problems are frequently
complex and require a combination of techniques, including FHE, Multi-
Party Computation (MPC), and Zero-Knowledge Proofs (ZKP). In the long
term, the secure computation community could gain tremendously by
considering these problems more holistically and building tools that support
a wider range of techniques.
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Fully Homomorphic Encryption is a nascent field and still actively evolving,
with ongoing research on the cryptography, software implementations, and,
increasingly, on hardware accelerators. As a result, tools must be designed
to accommodate and adapt to to this fast moving field. Existing compilers
(cf. Section 4.4), however, are mostly rigid, monolithic tools with a narrow
focus on individual sub-optimizations. Whereas experts usually transform
applications in ways that accelerate them by orders of magnitude, existing
tools have mostly focused on smaller-scale optimizations that result in small
constant-factor speedups. While these represent important contributions,
they are insufficient to make the kind of qualitative performance difference
that is necessary to achieve practical FHE. In order to overcome these
limitations, we need to fundamentally rethink the architecture of FHE compilers
and develop novel optimizations that abstract away the complexity FHE and
address the limitations of existing tools. In this chapter, we present HECO,
a new multi-stage optimizing FHE compiler. Our architecture provides, for
the first time, a true end-to-end toolchain for FHE development. In addition,
we propose novel transformations and optimizations that map imperative
programs to the unique programming model of FHE.

4.1 end-to-end fhe compiler design

This section first introduces relevant aspects of the FHE programming
paradigm, then provides a system overview of HECO before presenting its
core components, beginning with the overall framework design, followed
by a discussion of our compiler architecture, and finally, gives an overview
of the transformations and optimizations that constitute the compilation
pipeline.

53
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4.1.1 FHE Programming Paradigm

FHE imposes a variety of restrictions on developing programs: some de-
rive from the definition of FHE and its security guarantees, while others
result from scheme restrictions and cost models. For example, FHE’s se-
curity guarantees make it necessarily data-independent, hence preventing
branching based on secret inputs. While some forms of branching can be
emulated, all branches must be evaluated, resulting in a potentially signifi-
cant degradation of performance. In addition, FHE schemes only offer a
limited set of data types and operations, with addition and multiplication as
basic operations. Applied over binary plaintext spaces (Z2), this technically
enables arbitrary computation. However, the best performance is usually
achieved with larger plaintext spaces (e.g., Zt for t ≫ 2). In this setting,
computations are equivalent to arithmetic circuits, which can only compute
polynomial functions. Non-polynomial functions can be approximated, but
this is typically prohibitively inefficient. While recent works have explored
homomorphic conversions between binary and arithmetic settings [18, 129]
and introduced programmable bootstrapping to approximate non-polynomial
functions [56], these approaches are not yet practical enough for widespread
adoption.

As a result, developing FHE applications requires fundamentally rethink-
ing how programs are written. Generally, developers need to rethink their
approach, e.g., using branch-free algorithms well-suited to low-degree poly-
nomial approximations. In addition, the large size of FHE ciphertexts, which
is required for security reasons, is a significant source of both communica-
tion and computation overhead. However, it also presents an opportunity,
as many1 schemes support batching, which allows encrypting many values
into the same ciphertext. This reduces ciphertext expansion and enables
element-wise operations in a Single Instruction, Multiple Data (SIMD) fash-
ion. Data movement in FHE is incredibly restricted, affording no efficient
ways to permute the batched data after encryption, with the exception of
cyclical rotations. As a result, efficient FHE algorithms are usually dras-

1 Specifically, schemes from the Ring-LWE family that B/FV, BGV and CKKS belong to.
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Figure 4.1: Overview of our end-to-end design, showing the compilation flow from
a high-level input program to an efficient FHE kernel running on a target
backend.

tically different from their plaintext equivalents. Adapting to this unique
programming paradigm requires a lot of experience and poses a significant
barrier to entry for non-experts.

4.1.2 System Overview

HECO proposes a multi-staged approach to FHE compilation that encom-
passes: (i) Program Transformations, which restructure high-level programs
to be efficiently expressible using native FHE operations, (ii) Circuit Opti-
mizations, which primarily focuses on changes that reduce noise growth in
the FHE computation, (iii) Cryptographic Optimizations, which instantiate
the underlying scheme as efficiently as possible for the given program, and
(iv) Target Optimizations, which map the computation to the capabilities of
the target. We propose a set of Intermediate Representations (IRs) designed
to provide a suitable abstraction of each stage, allowing us to naturally and
efficiently express optimizations at these different levels. In contrast, exist-
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ing compilers usually abstract FHE computations as circuits2 which does
not allow them to fully express many optimizations at the high-level (pro-
gram transformation) or at the lowest level (target optimization) because
these need to consider aspects such as data-flow or memory management
which have no natural correspondence in a circuit representation. In HECO,
high-level programs are lowered through a series of transformations, using
multiple increasingly lower-level IRs to produce the target kernel. These
kernels can then be targeted and run against various back-end options.
We provide a user-facing Python framework that abstracts away the com-
plexities of this process, supports a Python-embedded Domain Specific
Language for FHE, and provides a unified experience for development,
compilation and execution. We provide an overview of our end-to-end
design in Figure 4.1. In the remainder of this section, we describe HECO’s
components, abstractions, and compilation stages.

4.1.3 HECO Framework

HECO’s framework ties together the front end, compiler, and the various
back ends into a unified development experience. It allows developers to
edit, compile and deploy their applications from a familiar Python envi-
ronment. In order to provide an intuition of the developer experience in
our system, we provide an example of using HECO to compile and run
an FHE program in Listing 1 (Server) and Listing 2 (Client). By wrapping
FHE functions in with blocks, we can operate on them as first-class entities,
making compilation explicit. Our framework provides the necessary infras-
tructure to run programs directly from the front end, allowing developers
to integrate FHE functionality into larger applications easily.

Python-Embedded DSL. HECO uses Python to host its Domain-Specific
Language (DSL), inheriting Python’s syntax and general semantics. We
want to allow developers to write programs in as natural a fashion as
possible, and merely require type annotations to denote inputs that are

2 This is natural since FHE computations are usually modeled mathematically as arithmetic
circuits.
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1 def server(x_enc , y_enc , public_context):
2 p = FrontendProgram ()
3 with CodeContext(p):
4 def euclidean_sq(x: Tensor[8, Secret[int]],
5 y: Tensor[8, Secret[int ]])
6 -> Secret[int]:
7 sum: Secret[int] = 0
8 for i in range(8):
9 d = x[i] - y[i]

10 sum = sum + (d * d)
11 return sum
12

13 # compile FHE code
14 f = p.compile(context=public_context)
15

16 # run FHE code using SEAL
17 r_enc = f(x_enc , y_enc)
18 return r_enc

Listing 1: Example server-side code using HECO.

Secret. In order to facilitate this, HECO supports (statically sized) loops,
access to vector elements, and many other high-level features that do not
have a direct correspondence in FHE. Since our compilation approach
requires a high-level representation of the input program, including these
non-native operations and the control-flow structure, we cannot follow the
approach used by most existing tools. These tend to execute the program
using placeholder objects that record operations performed on them, which
is equivalent if considering FHE programs as circuits but removes most of
the high-level information about the program structure. Instead, we use
Python’s extensive introspection features to parse the input program and
translate the resulting Abstract Syntax Tree (AST) directly to our high-level
IR.

4.1.4 Compiler Infrastructure

The core of HECO is an optimizing compiler that translates and optimizes
programs by lowering them through a series of progressively lower-level
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1 def client(x : Tensor[int], y : Tensor[int]):
2 # Select SEAL backend , scheme and params
3 context = SEAL.BFV.new(poly_mod_degree=2048)
4

5 # encrypt input
6 x_enc = context.encrypt(x)
7 y_enc = context.encrypt(y)
8

9 # send enc input to server
10 r_enc = server(x_enc , y_enc , context.pub())
11 result = context.decrypt(r_enc , context)

Listing 2: Corresponding client-side code, outsourcing the computation of the
(squared) euclidean distance.

Intermediate Representations (IRs). This section describes how we build
upon the MLIR framework to realize HECO’s compiler design.

Multi-Level Intermediate Representations. HECO’s middle end exposes
multiple levels of abstractions to facilitate our multi-stage compilation &
optimization approach. This is realized through a series of Intermediate
Representations (IRs), as seen in Figure 4.2. We leverage the MLIR frame-
work [118], which was designed specifically to facilitate progressive lowering,
introducing additional IRs to reduce the complexity of each lowering step.
MLIR defines a common syntax for IR operations, for example, an addition
might be represented as %2 = artih.addi(%0, %1): (i16, i16) -> i16.
MLIR is strongly typed, however, for conciseness, we will omit the de-
tails of type conversions when discussing transformations. Intermediate
Representations in MLIR are composed of sets of operations known as
dialects. We define a custom dialect for our high-level abstraction of FHE
(heco::fhe) and combine this with built-in dialects for vector operations
(mlir::tensor), plaintext arithmetic (mlir::arithmetic) and basic program
structure (mlir::affine, mlir::func) to realize our High-Level Intermedi-
ate Representation (HIR). In addition, we define dialects for each of the
supported FHE schemes, mirroring their natively supported operations
(heco::bfv, heco::bgv, heco::ckks). MLIR also includes a variety of stan-
dard simplification passes, which can be extended to custom dialects by
defining appropriate interfaces.
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Supporting Different Back-Ends. FHE is actively evolving, and as such,
tools need to be able to adapt to new and improved implementations, both
in software and hardware. This requires a high level of modularity and
flexibility from the compiler. In HECO, we achieve this by using target-
specific dialects, which can be customized and extended as new back ends
are introduced. While traditional library-based implementations targeting
CPUs and GPUs share a common API (conceptually, if not technically),
upcoming FPGA and ASIC accelerators for FHE [70, 81, 88, 154]) feature a
much lower-level interface. These systems are designed to efficiently realize
the required mathematical operations in the modular rings of polynomials
that underly most FHE schemes, and as a result, their Instruction Set
Architectures (ISA) operate on this level. In order to support this, HECO
is designed to be easily extended to match this abstraction level, featuring
MLIR dialects for both bignum polynomial ring operations (heco::poly)
and for the commonly used Residue Number System (RNS) approach using
the Chinese Remainder Theorem (CRT) to split these large datatypes into
hardware-sized elements (heco::rns). In addition to targeting hardware
accelerators, the ability to lower to this level also allows targeting x86

directly via LLVM IR and the LLVM toolchain.

4.1.5 Transformation & Optimization

The transformations and optimizations in HECO are grouped according
to the four stages of compilation we identified, and we present them
accordingly in the following.

Program Transformations. The first phase of compilation focuses on high-
level transformations and optimizations. This includes a wide variety of
general (e.g., constant folding, common sub-expression elimination) and
FHE-specific optimizations that allow developers to write code more natu-
rally by removing the need for menial hand-optimization. Most importantly,
however, it focuses on optimizations that map the input program to FHE’s
unique programming paradigm, such as the automated batching optimiza-
tions, which we present in more detail in Section 4.2. Previous work has
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Figure 4.2: Overview of HECO’s dialects, which define the operations used in the
Intermediate Representations (IRs).

shown that performance differences between the runtimes of well-mapped
and naively-mapped implementations can easily reach several orders of
magnitude [161]. As a result, a significant part of our focus in HECO is on
this level of abstraction, which existing FHE tools generally do not support.

Circuit Optimizations. After mapping to the FHE paradigm, the program
is conceptually equivalent to an arithmetic circuit of native FHE operations.
This is the level of abstraction considered by the vast majority of existing
tools. Optimizations at this stage are mostly concerned with managing the
noise growth in the computation. For example, a variety of optimizations
that try to re-arrange the arithmetic operations to reduce the number of
sequential multiplications have been proposed [6, 7, 33, 34]. However, even
state-of-the-art optimizations in this style are likely to accelerate a program
by only around 2x in practice [161]. We omit a detailed description of these
techniques here as they are not the focus of this work. More importantly, this
level of abstraction is also where we must consider ciphertext maintenance
operations. These do not modify the encrypted messages, but significantly
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affect future noise growth, making them essential for practical FHE. HECO
uses a traditional approach of inserting relinearization operations [78]
between all consecutive multiplications. This is always correct but not
necessarily strictly optimal, and more sophisticated strategies [58, 71, 123]
could offer further improvements. The modularity of our design makes it
a straightforward future work to include these techniques, but since these
have been explored in the past, we do not focus on them in this work.

Cryptographic Optimizations. In the third phase, we consider cryptographic
optimizations focused on instantiating the underlying FHE scheme as ef-
ficiently as possible. When targeting existing FHE libraries, the primary
challenge is parameter selection: identifying the smallest (i.e., most effi-
cient) parameters that still provide sufficient noise capacity to perform the
computation correctly. Different techniques have been proposed to esti-
mate the expected noise growth of an FHE program [60, 62, 107]. These
include theoretical noise analysis, where recent work has achieved tighter
bounds for some schemes [60], but which generally tend to significantly
overestimate noise growth [62], leading to unnecessarily large parameter
choices. As a result, experts primarily still rely on a trial-and-error process
to experimentally determine the point at which noise invalidates the results.
HECO includes basic automatic parameter selection based on a simple
multi-depth heuristic but also allows experts to easily override these sug-
gestions. When targeting hardware directly, rather than through libraries,
further optimization opportunities open up. For example, many ciphertext
maintenance operations can be instantiated in different ways, offering trade-
offs between runtime, memory consumption, and noise behavior. While
libraries tend to implement a general-purpose compromise, compilers can
adaptively choose the most appropriate approach for a given computation.
However, this requires re-expressing the complex underlying logic of FHE
schemes inside the compiler. HECO inherits a powerful system of abstrac-
tions and optimizations for computationally intense mathematics from the
MLIR framework, allowing our system to be easily extended with such
optimizations in the future.
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Target Optimization. Finally, in the fourth phase, we consider target-specific
optimizations. In addition to general code generation optimizations, there
is a significant opportunity for FHE-specific optimizations at this level.
For example, when available, FHE benefits greatly from instruction set
extensions such as AVX512. This concept has already been explored in the
context of libraries [15], and implementing similar techniques in HECO
should be straightforward given our modular design. When targeting
hardware, FHE accelerators impose non-trivial constraints on memory
and register usage, due to complex memory hierarchies. Initial work in
this space has already shown that code generation and scheduling can
have a significant impact on accelerator performance [88, 154]. HECO
supports optimizations at this level through our low-level dialects for the
underlying math, and can easily be extended with target-specific dialects
for the Instruction Set Architectures (ISAs) of upcoming accelerators, e.g.,
those developed by the DARPA DPRIVE program [70].

4.2 automatic simd batching

In this section, we introduce our automated SIMD batching optimization,
which is part of our program transformation stage and maps traditional
imperative programs to the restrictive SIMD-like setting of state-of-the-art
FHE schemes.

4.2.1 SIMD Batching

Effective use of batching is arguably the single most important optimization
for many applications and is omnipresent in most state-of-the-art FHE
results. Due to the large capacity of FHE ciphertexts (usually 213 − 216

slots), applying batching has the potential to drastically reduce ciphertext
expansion overhead and computation time. While batching can be used
to trivially increase throughput, most FHE applications are constrained by
latency. However, employing batching effectively to improve performance
on a single input is non-trivial due to the restrictions imposed by FHE’s
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unusual programming paradigm. Therefore, unlocking the performance
potential of batching currently requires significant expertise and experience
in writing FHE applications. In the following, we present a simple example
that showcases the drastic transformations that can be required to achieve
efficient batching, followed by a brief introduction of a folklore technique
that demonstrates common patterns of FHE batching optimizations.

Example Application – Image Processing. We consider a simple image
processing application (see Listing 3a), which nevertheless features a com-
plex loop nest structure and non-trivial index patterns. Specifically, we
consider a Laplacian Sharpening filter, i.e., a convolution of a (3x3) kernel
over an image, implemented with wrap-around padding. The function is
compatible with efficient arithmetic-circuit based FHE, as it does not use
data-dependent branching and only requires homomorphic addition and
multiplications operations. However, its current form makes use of nested
loops accessing a complex set of indices, which is not very amenable to
efficient batching as there appears to be little opportunity for operations
over entire ciphertexts.

Nevertheless, there exists a significantly more efficient batched design, as
seen in Listing 3b. In the optimized version, the input image is batched into
a single ciphertext, and all homomorphic operations make full use of their
SIMD nature. Instead of iterating the kernel over the image, nine copies of
the image are made and each is rotated so that all elements interacting at a
specific kernel position align at the same index. This is possible, because
the relative offset between different pixels in the kernel remains static,
even though the indices themselves are different for each iteration. The
transformation enables the the runtime of the program to depend on the
(small) kernel size, rather than the image size. As a result, the batched
version is more than an order of magnitude more efficient than a naive
implementation. These types of drastic transformations are common in
state-of-the-art FHE applications and significant experience is required to
develop an intuition for this unusual programming paradigm.

Rotate-and-Sum. In the example above, only interactions between values in
different ciphertexts were required. However, it is also possible to efficiently
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1 def foo(img: Tensor[N, Secret[ f64 ]]):
2 img_out = img.copy()
3 w = [[1, 1, 1], [1, -8, 1], [1, 1, 1]]
4 for x in range(n): # loop over pixels
5 for y in range(n):
6 t = 0
7 for j in range(-1, 2): # apply kernel
8 for i in range(-1, 2):
9 t += w[i+1][j+1] * img[((x+i)*n+(y+j))%N]

10 img_out [(x*n+y)%N] = 2*img[(x*n+y)%N] - t
11 return img_out

(a) Textbook implementation of a simple sharpening filter

1 def foo_batched(img: BatchedSecret[ f64 ]):
2 r0 = img * -8
3 r1 = img << -n-1
4 r2 = img << -n
5 r3 = img << -n+1
6 r4 = img << -1
7 r5 = img << 1
8 r6 = img << n-1
9 r7 = img << n

10 r8 = img << n+1
11 return 2*img -( r0+r1+r2+r3+r4+r5+r6+r7+r8)

(b) Optimized batched solution of the same program

Listing 3: Both of these functions apply a simple sharpening filter to an encrypted
image of size n× n = N, by convolving a 3× 3 kernel (−8 in the center, 1
everywhere else) with the image. The version on the left encrypts each
pixel individually, and follows the textbook version of the algorithm, op-
erating over a vector of N ciphertexts. The version on the right batches all
pixels into a single ciphertext and uses rotations (<<) and SIMD operations
to compute the kernel over the entire image at the same time. Designing
batched implementations requires out-of-the-box thinking in addition to
significant expertise and experience.
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Algorithm 1 Rotate-and-Sum
1: Algorithm SumVectorPowerTwo(x, n)
2: for i← n

2 downto 1 by i← i
2

3: x ← x + Rotate(x, i)
return x

+

rot

+

1
rot

2

t0 = x << 2
t1 = x + t0
t2 = t1 << 1
s = t1 + t2

x

t0

t1

t2

s

Figure 4.3: Illustration of how repeated copying and rotating can be used to compute
the sum of all elements in a ciphertext in a logarithmic, rather than linear,
number of steps.

realize certain operations on the elements of a single ciphertext; we now
describe a common folklore technique used to achieve this: The rotate-and-
sum algorithm allows us to efficiently sum up the elements of a ciphertext,
using O (() log n) rotations (where n is the number of ciphertext slots). The
algorithm proceeds by creating a copy of the current vector, rotating it
and then adding both before repeating the same procedure with a lower
offset (c.f. Algorithm 1). This is visualized in Figure 4.3 for a vector size
of four. While this technique is applicable, the performance benefits are
usually overshadowed by more radical transformations, such as the example
shown above. However, using rotate-and-sum and similar rotation-based
approaches can be worthwhile if it enables other parts of the program to
remain slot-aligned.
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4.2.2 Automatic Batching Approach

Experts generally rely on their experience with the FHE programming
paradigm to transform and optimize programs for batching, posing a high
barrier to entry for non-expert developers. Instead, formal methods to auto-
matically translate traditional imperative programs into efficient batched
FHE solutions are required. We assume the input program computes the
elements from vectors of secret values in a non-SIMD fashion (e.g., List-
ing 3a). Of course, this can be naively realized by encrypting each vector
element into one ciphertext , but this usually does not achieve acceptable
performance due to the high overhead of FHE. The goal of automated
batching is to amortize the cost of each FHE operation by utilizing as many
ciphertext slots as possible for meaningful computation. In the following,
we discuss two potential alternative approaches and their drawbacks before
introducing our approach.

Strawman Approach. Batching each vector in the input program into a
ciphertext will trivially achieve a ‘batched’ solution. However, this raises
the question of how to execute the computations over individual elements
present in the program. Element-wise access (extract and insert) are not
native FHE operations and must instead be emulated, requiring several rota-
tions and ciphertext-plaintext multiplications. For example, Listing 4 shows
how x[i] = x[i] + y[j] can be emulated in the batched setting. How-
ever, this replaces each FHE operation from the naive, vector-of-ciphertexts
approach, with multiple expensive FHE operations. As a result, unless
ciphertext expansion is significantly more important than runtime, this
approach is virtually always ill-advised. Therefore, most existing FHE tools
use the vector-of-ciphertexts approach rather than attempting to perform
batching.

Alternative Approaches. There have been initial attempts at performing
automated batching for FHE using Synthesis-based approaches [63]. While
these can, in theory, achieve the drastic transformations required to ex-
ploit batching, they are not suitable for practical use in real-world code
development, as they do not scale beyond toy-sized program snippets, and
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1 %1= tensor.extract %x[i]
2 %2= tensor.extract %y[j]
3 %3= fhe.add (%1, %2)
4 %4= tensor.insert (%3,%z[i])
5

6

7

8

(a) Input Program

%1= fhe.mul (%x, %m_i)
%2= fhe.rotate (%1, -i)
%3= fhe.mul (%y, %m_j)
%4= fhe.rotate (%3, -j)
%5= fhe.add (%2, %4)
%6= fhe.rotate (%5, i)
%7= fhe.mul (%z, %mn_i)
%8= fhe.add (%6, %7)

(b) Naive Batching

Listing 4: Strawman batching approach for z[i] = x[i] + y[j], showing the
necessary rotations and multiplications with masking vectors: %m_i, %m_j
are zero everywhere except at i or j, respectively; %mn_i is one everywhere
except at i.

even those can take minutes to optimize. Alternatively, one might consider
applying traditional Superword-level Parallelism (SLP) vectorization algo-
rithms [42, 117, 134], as these try to group operations into SIMD instructions.
However, these generally rely on the ability to efficiently scatter/gather
elements into and out of vectors, which is only possible at a high cost in
FHE. While some recent work can reason about the cost of data movement,
it does not consider how data movement introduced at the beginning of the
program might affect later parts of the program [42].

HECO’s Approach. HECO’s batching transformation starts with the core
idea of the strawman approach, i.e., batching vectors of secrets into cipher-
texts but eliminates the overhead of emulating insert/extract operations
for batching amenable programs. Rather than directly emulating these op-
erations, we instead translate the homomorphic operations in which they
appear as operands. While this still requires inserting rotation operations,
it allows operations with compatible index access patterns to be mapped
to the same emulated code if using an appropriate algorithm. As a result,
a simple built-in simplification pass can eliminate the duplicates. In the
case of well-structured programs, this can completely eliminate emulation
related code. For example, for the program from the previous section (List-
ing 3a), HECO produces exactly the optimized code seen in Listing 3b,
which does not contain any emulation-related code.
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HECO Batching Pipeline. HECO’s batching transformation is composed
of a series of smaller passes, each interleaved with built-in simplification
passes. Before the main batching passes, we first perform a series of prepro-
cessing steps that unroll statically-sized loops, merge sequential associative
binary operations into n-ary group operations, and perform a type conver-
sion from vectors of secrets to BatchedSecrets, which are HECO’s high-level
abstraction of ciphertexts. Following this, the main pass walks through the
program and transforms each operation over secret vector elements into op-
erations over entire vectors. Similar to the strawman approach, this involves
introducing rotations, but our approach does not require multiplications
with masks. Additionally, the way we perform these translations allows us
to ‘chain’ them so that consecutive operations on the same vector elements
do not result in separate emulation code. After the main pass and the asso-
ciated simplification pass, we apply the rotate-and-sum technique where
applicable, which is enabled by both the merging of operations during the
preprocessing phase and the exposure of same-ciphertext operations by the
main pass. In the following, we first outline some key preprocessing steps
before explaining the two main optimization steps.

4.2.3 Preprocessing

In addition to standard simplifications and canonicalization of the IR (i.e.,
bringing operations into a standardized ‘canonical’ form to reduce the
complexity of the IR), we also apply two more specialized transformations.

Merging Arithmetic Operations. During the preprocessing stage, we
combine chained applications of (associative and commutative) binary
operations into larger arithmetic operations with multiple operands (e.g.,
merging x=a+b; y=x+c to y=a+b+c). This removes chains of dependencies
and replaces them with a single operation, making it easier to identify
rotate-and-sum optimization opportunities. In addition, it can also allow
more efficient direct lowerings, such as when performing the product over
n elements: which can be lowered efficiently to a multiplication tree with
depth log n.
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Type Conversion. While tensors can be arbitrarily (re)shaped, all FHE
ciphertexts used in a homomorphic computation must have compatible pa-
rameters, which implies a fixed number of slots. Therefore, we perform type
conversion, converting all vector operations over secret values to operations
over the BatchedSecret type, an abstract representation of ciphertexts. We
convert multi-dimensional tensors to vectors using column-major encoding
and scale up any secret vector operands to the size of the largest (secret)
vector present, padding the plaintext as necessary. This does not impact
the result of the computation, as the existing code will never access these
additional elements.

4.2.4 Automatic SIMD-fication

This pass replaces scalar operations over vector elements (e.g., x[i] + y[j])
with SIMD operations, applying the same operation to each element of
the ciphertext. At its core, the pass is a linear walk over all (arithmetic)
homomorphic operations in the program, as seen in Algorithm 2. For each
operation, we (i) identify in which ciphertext slot the result should be
computed (ii) transform the operands so that they are suitable for such a
SIMD-operation, and (iii) insert extract operations in situations where a
scalar is expected (including uses in later operations that have yet to be
transformed). Note that, by itself, this transformation does not actually
remove any code. However, it will expose common patterns (e.g., such as
those occurring in loops) and cause operations over compatible indices to be
translated to the same SIMD operations. This allows the following clean-up
pass to remove these now-redundant operations, which frequently includes
duplicate arithmetic operations and many or all of the operations inserted
to ensure consistency.

Target Slot Selection. When translating an operation with operands cor-
responding to different vector positions (e.g., x[i]+y[j]), we must bring
the elements of interest into alignment by issuing a rotation for at least
some of the operands. However, there are usually multiple valid solutions
(e.g., rot(x, j-i) vs. rot(y, i-j)), especially for operations with multiple
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Algorithm 2 Batching Pass
1: Algorithm BatchPass(G)
2: V , E ← G
3: foreach op ∈ V ∧ type(op) = fhe.secret:
4: ts← SelectTargetSlot(op,V , E)
5: OperandConversion(op, ts,V , E)
6: foreach v ∈ V ∧ (op, v) ∈ E :
7: u← fhe.extract[v, ts]
8: Replace(v, u,V , E)
9: procedure SelectTargetSlot(op,V , E)

10: foreach v ∈ V ∧ (op, v) ∈ E :
11: switch v:
12: case fhe.insert[_, i]: return i
13: case func.return: return 0
14: foreach v ∈ V ∧ (v, op) ∈ E :
15: switch o:
16: case fhe.extract[_, i]:
17: return i
18: return ⊥
19: procedure OperandConversion(op, ts,V , E)
20: foreach v ∈ V ∧ (v, op) ∈ E ∧ type(v) = fhe.secret:
21: switch v:
22: case fhe.extract(x, i):
23: u← fhe.rotate(x, i− ts)
24: Replace(v, u,V , E)
25: case fhe.ptxt[p]:
26: p′ ← Repeat(p)
27: u← fhe.ptxt(p′)
28: Replace(v, u,V , E)
29: procedure Replace(v, u,V , E)
30: V ← (V \ {v})

⋃
{u}

31: foreach w ∈ V ∧ (v, w) ∈ E :
32: E ← (E \ {(v, w)})

⋃
{(u, w)}

33: foreach w ∈ V ∧ (w, v) ∈ E :
34: E ← (E \ {(w, v)})

⋃
{(w, u)}
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operands, which occur frequently as a result of our preprocessing stage An
obvious approach would be to rotate each operand (e.g., x[i]) so that the
element of interest is moved to slot 0. Then, performing the SIMD operation
over the rotated operands produces the result in the same slot. While this
approach is straightforward and correct, it is unsuitable for an optimizing
compiler, as it does not set the program up for further simplification. For
example, in the case of a loop for i in 0..10: z[i]=x[i]+y[i]), each
iteration would result in a unique operation with distinct operands, each
rotated by different amounts.

Instead, HECO introduces the notion of a target slot, determined by the
further uses of the result. For example, if the result of a computation is
assigned to z[k], we select k as the target slot, eliminating the rotation
required afterward. If no clear target slot can be derived from the uses of
the result, we use one of the operand indices as the target slot, removing
the need to rotate that operand. Selecting the target slot this way reduces
the immediate number of rotation operations created. More importantly, it
reliably maps operations with the same relative index access patterns to the
same set of rotations and SIMD operations, allowing them to be eliminated
by the following simplification pass. Since this approach is based purely
on index access patterns, it works equally well for complex loop nests and
heavily interleaved code.

Operand Conversion. In order to convert a scalar operation to a fully-
batched SIMD operation, all non-batched inputs must be converted, as
described in Algorithm 2 (OperandConversion). Note that, due to the
linear-walk nature of the pass, all previous FHE operations have already
been converted to fully-batched operations. As a result, any operand of type
fhe.secret must be the result of an fhe.extract operation. This invariant
allows us to ‘chain’ batched operations together by replacing the extraction-
based operand with a rotation-based operand. Specifically, an operand
extracted from slot i of vector x, is replaced with a rotation of x by i− ts,
where ts is the target slot determined before.

Ensuring Consistency. We maintain the consistency and correctness of the
program at each step of the optimization. Towards this, we first construct
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the new rotations and batched operations as additions to the program. We
only replace occurrences of the old operation with the optimized version
after we replace uses of the old operation with an extract operation that
extracts the target slot of the new batched result. This ensures that, even if
no further batching opportunities are found, the program remains correct.
Since batched FHE schemes do not support true scalar values, we simply
interpret scalars as ciphertexts where only slot 0 contains valid data. With
this convention, any remaining extractions will eventually be converted to
a rotation by −ts. However, in practice, this is rare as most of the extract

operations we insert will in turn be converted to rotations when the next
homomorphic operation is processed. As a result, these consistency-related
extract operations are frequently eliminated completely at the end of the
batching pass.

4.2.5 Rotate-and-Sum Pass

After the main pass and the associated simplification pass, we apply the
rotate-and-sum technique where applicable. Since this optimization requires
a holistic view of the operation, this would be significant if we did not
merge sequential operations during preprocessing. While we used a sum
over all elements when explaining the technique in the previous section,
the technique can be generalized to any subset with a consistent stride. Ad-
ditionally, it can also be used to compute products rather than sums. When
applied to multiplication, it additionally has the benefit of automatically
reducing the multiplicative depth of the expression as a side-effect.

Note that the pre-processing combination of binary operations into larger
operations must happen before the main pass described above, as that
pass would otherwise insert rotations between the different operations,
making them no longer directly chained. The actual translation to a series
of rotations and native binary operations, meanwhile, has to be performed
after that pass, since it requires the operands to be entire ciphertexts, rather
than scalars. Additionally, the de-duplication simplifications that can take
place after the batching transformation can widen the applicability of this
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transformation by reducing the number of distinct ciphertexts appearing in
the program.

4.3 implementation

We build HECO on top of the open-source MLIR framework [118], which is
rapidly establishing itself as the go-to tool for domain-specific compilers
and opening up the possibility of exchanging ideas and optimizations even
beyond the FHE community. HECO consists of roughly 15k LOC of C++,
with around 2k LOC of Python for the Python front-end. HECO uses the
Microsoft Simple Encrypted Arithmetic Library (SEAL) as its FHE backend.
SEAL, first released in 2015, is an open-source FHE library implemented in
C++ that is thread-safe and heavily multi-threaded itself. SEAL implements
the BFV, BGV and CKKS schemes.

In contrast to existing monolithic compilers, HECO is highly modular
and designed to be flexible and extensible. We decouple optimizations from
front-end logic, allowing for a wide variety of domain-specific front-ends
and the ability to easily replace back-ends to target different FHE libraries or
hardware accelerators as they become available. The toolchain can easily be
adapted to different needs, with certain optimizations enabled or disabled
as required.

4.3.1 Evaluation

HECO is designed to compile high-level programs, written by non-experts
in the standard imperative paradigm, into highly efficient batched FHE
implementations that achieve the same performance as hand-crafted im-
plementations by experts. HECO achieves its usability goals through a
well-integrated Python front-end and by requiring developers to alter their
code only minimally (annotating variables as secret). However, ease-of-use
becomes moot when the performance of the generated code is not com-
petitive. Therefore, we focus our evaluation on the performance of HECO
and the code it generates, trying to answer whether or not automatic op-
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(b) Hamming Distance benchmark memory usage (in MB).

Figure 4.4: Log-log plot of the runtime and memory consumption of the hamming
distance benchmarks for different vector sizes, comparing a naive non-
batched solution with the batched solution generated by our system.

timizations can bring naive code to the same performance level as expert
implementations. In this section, we first show the effect of the batching
optimizations on benchmark workloads designed to demonstrate different
batching patterns, then compared against synthesized optimal batching
patterns, and finally discuss a real-world application example.

4.3.2 Benchmarks

We evaluate HECO in terms of the speedup reduction in memory overhead
gained over non-optimized implementations and the compile time required.

Applications. We demonstrate the speedup achieved by our batching opti-
mization on two applications that are representative of common batching
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(a) Roberts Cross benchmark runtime (in seconds).
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(b) Roberts Cross benchmark memory usage (in MB).

Figure 4.5: Log-log plot of the runtime and memory consumption of the roberts
cross benchmark for different vector sizes, comparing a naive non-
batched solution with the batched solution generated by our system.

opportunities. The roberts cross operator is an edge-detection feature used in
image processing. It approximates the gradient of an image as the square
root of the sum-of-squares of two different convolutions of the image,
which compute the differences between diagonally adjacent pixels. As in
all other kernel-based benchmarks, wrap-around padding is used, which
aligns well with the cyclical rotation paradigm of FHE. In order to enable
a practical FHE evaluation, the final square root is omitted, since it would
be prohibitively expensive to evaluate under encryption. The hamming dis-
tance, meanwhile, computes the edit distance between two vectors, i.e., the
number of positions at which they disagree. Here, we consider two binary
vectors of the same length, a setting in which computing (non-)equality can
be done efficiently using the arithmetic operations available in FHE. Specifi-
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cally, this makes use of the fact that NEQ(a, b) = XOR(a, b) = (a− b)2 for
a, b ∈ {0, 1}.

Baseline. Our baseline is a naive implementation of the application without
taking advantage of batching, as one might expect FHE novices to imple-
ment. In this setting, vectors of secrets are directly translated to vectors of
ciphertexts. While this approach introduces significant ciphertext expansion
and increases the memory required, it is actually preferable in terms of run
time over a solution that batches vector data into ciphertexts, but does not
re-structure the program to be batching-friendly. This is because such a
solution adds the overhead of rotations, masking, etc., to the base runtime
of the non-batched solution.

Environment. All benchmarks are executed on AWS m5n.xlarge instances,
which provide 4 cores and 16 GB of RAM. We used Microsoft SEAL [156]
as the underlying FHE library, targeting its BFV [21, 78] scheme implemen-
tation. All experiments are run using the same parameters, which ensure
at least 128-bit security. We report the run time of the computation itself,
omitting client-side aspects such as key generation or encryption/decryp-
tion. All results are the average of 10 iterations, discarding top and bottom
outliers.

Runtime & Memory Overhead. In Figure 4.5a we show the runtime of
the Roberts Cross benchmark for varying instance sizes, comparing the
non-batched baseline with the batched solution generated by HECO. While
the run time of the naive version increases linearly with the image size, the
batched solution maintains the same performance (until parameters must
be increased to accommodate even larger images). Instead, the run time is
more closely tied to the size of the kernel than to that of the image. This
highlights the dramatic transformations achieved by HECO, fundamentally
changing the structure of the program. As a result of these transformations,
HECO achieves a speedup of 3454x over the non-batched baseline for 64x64

pixel images, demonstrating the extraordinary impact that effective use of
batching can have on FHE applications: while the non-batched solution is
borderline impractical at over two minutes, the batched solution takes only
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Figure 4.6: Runtime of example applications (in seconds), comparing a naive non-
batched baseline, the solution generated by our system (HECO), and an
optimally-batched solution synthesized by the Porcupine tool.

a fraction of a second (0.04 s). The runtime of the generated code in this case
does depend directly on the vector length. However, due to the fold-style
optimization (cf. Section 4.2.5), this dependence is only logarithmic.

In Figure 4.4b we can see that, for realistic problem sizes, the performance
advantage of batching becomes significant, resulting in a speedup of 934x
for 4096-element vectors. We also see that, while the runtime of the batched
solution does increase with the vector length, this is nearly imperceptible
when compared to the non-batched baseline. Finally, in Figure 4.5b/4.4a,
we show the memory overhead of the non-batched baseline and the batched
solution. While FHE introduces a non-negligible baseline overhead due to
the large amount of key- and other context-data that must be maintained,
the reduced number of ciphertexts in the batched solution has a clear impact
on memory usage, increasingly so as the problem sizes increase.

Compile Time. HECO achieves these fundamental transformations effi-
ciently, with compile times that are amenable to interactive development.
This is in contrast to synthesis-based tools, which require more than 10 min-
utes to synthesize a batched solution for the Roberts Cross benchmark even
for toy-sized instances and do not scale to the sizes we consider here at
all [63].

4.3.3 Comparison with Synthesized Solutions

We compare the baseline and HECO to synthesized optimal batching pat-
terns. Synthesis based approaches explore the space of all possible programs,
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constrained by a reference specification describing input-output behavior.
While this tends to be computationally expensive, it has the potential to find
optimal solutions featuring highly non-intuitive optimizations. We use a set
of nine benchmark applications that represent a variety of common code
patterns relevant to batching for our evaluation. These programs range from
having no inter-element dependencies (e.g., Linear Polynomial), to simple
accumulator patterns (e.g., Hamming Distance), and complex dependencies
across a multitude of different vector elements (e.g., Roberts Cross). As
a result, they provide a useful benchmark, especially for batching opti-
mizations. These benchmarks were first proposed in [63], which introduces
Porcupine [63], a synthesis-based compiler for batched FHE. In addition
to a reference specification, it requires a developer-provided sketch of an
initial possible batched approach. Our ‘synthesis’ solutions are based on
pseudo-code made available in an extended version of the paper [63].

Synthesis based tools can require the significant search time to find
solutions, limiting them to toy-sized workloads. For example, Porcupine
requires over 10 minutes to synthesize a program with ten instructions and
will fail to synthesize a solution at all for sufficiently complex programs.
As a result, we consider the following problem sizes here: The synthesized
dot-product code targets 8-element vectors, while those for Hamming
Distance and L2 Distance were provided for 4-element vectors. For the
other applications, we use vectors of length 4096, representing 64x64 pixel
images

As we can see from Figure 4.6, HECO dramatically improves performance
over the non-batched baseline approach. For example, for the Roberts
Cross benchmark, our batched solution is over 3500 times faster than
the non-batched solution, taking less than 0.04 seconds instead of over
2.35 minutes. More importantly, our results are nearly equivalent to the
optimally batched solutions synthesized by Porcupine, especially when
considering the stark contrast between the non-batched and the two batched
solutions. In some cases (e.g., Box Blur), Porcupine has an advantage
because it finds non-intuitive solutions beyond traditional batching patterns.
Interestingly, for some applications (e.g. Hamming Distance) HECO actually
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n 4 16 64 256 1024 4096

rc 0.06 0.07 0.08 0.12 0.30 1.28

hd 0.03 0.04 0.06 0.09 0.25 1.85

Table 4.2: Compile time (in seconds) of the Roberts Cross (rc) and Hamming Dis-
tance (hd) benchmarks for different problem sizes (n).

outperforms Porcupine. This is because Porcupine provides an optimally
batched solution but does not necessarily handle ciphertext management
optimally, inserting unnecessary relinearization operations.

4.3.4 Real-World Application

The previous benchmarks demonstrated HECO’s effectiveness and per-
formance for different and common batching patterns. We now evaluate
an application that more closely resembles the complexity that real-world
settings exhibit. Specifically, we consider an application computing pri-
vate statistics over two databases that might contain duplicate entries. We
use this to demonstrate that HECO can produce efficient FHE code for
non-trivial programs, while also highlighting that there is further room for
optimizations exploiting application semantics.

Application. Privacy regulations frequently prohibit entities from combin-
ing sensitive datesets directly. Instead, they could employ threshold FHE,
which extends FHE with multi-party key generation, to securely compute
on the (encrypted) joint dataset. In this setting, neither party has sole ac-
cess to the secret key, and they must collaborate to decrypt the results of
approved queries. However, in practice their datasets might overlap (e.g.,
agencies at different levels of government collecting similar data), introduc-
ing duplicate items into the joint dataset. Due to the duplicates, analytics
(e.g., counting queries) will return incorrect results. Therefore, we must
first de-duplicate the encrypted databases before executing the analytics.
Since threshold FHE does not affect the server-side execution of the com-
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1 def encryptedPSU(a_id: Tensor[128,8,Secret[int]],
2 a_data: Tensor[128,Secret[int]],
3 b_id: Tensor[128,8,Secret[int]],
4 b_data: Tensor[128,Secret[int ]])
5 -> Secret[int]:
6 sum: Secret[int] = 0
7 for i in range(0, 128):
8 sum = sum + a_data[i]
9 for i in range(0, 128):

10 unique: Secret[int] = 1
11 for j in range(0, 128):
12 # compute a_id[i] /= b_id[j]
13 eq: sf64 = 1
14 for k in range(0, 8):
15 # a xor b == (a-b)^2
16 x = (a_id[i][k] - b_id[j][k])**2
17 nx = 1 - x # not x
18 eq = eq * nx # eq and nx
19 neq = 1 - eq # not eq
20 unique = unique * nequal
21

22 sum = sum + unique * a_data[i]
23 return sum

Listing 5: Computing statistics over duplicated data.

putation, HECO can be used directly to develop such an application. This
first computes the Private Set Union (PSU) of two databases A,B indexed
by unique IDs consistent across both (e.g., a national identifier like the
SSN). For simplicity, we consider databases with one data column and a
simple SUM aggregation. However, the presented approach trivially extends
to larger databases and more complex statistics. Listing 5 shows the appli-
cation expressed using the HECO Python frontend, for a database size of
128 elements and 8-bit identifiers. We split the identifiers into individual
bits, allowing us to compute the equality function even while working with
arithmetic circuits. The program begins by aggregating A’s data and then
proceeds to check each element of B’s database for potential duplicates in
A. In order to compute the equality function, we compute

∧
k ak ⊕ bk, using

the fact that, for inputs a, b ∈ {0, 1}, xor can be computed as (a− b)2, and
directly via multiplication, and not as 1− a. If a duplicate is found, the
element of B is multiplied with unique == 0, i.e., it does not contribute to
the overall statistics.
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Performance & Discussion. We evaluated both a naive baseline and the
HECO-optimized batched implementation using the same setup described
earlier in this section. The naive approach has a run time of several min-
utes (11.3 min) and requires the sending of over 2000 ciphertexts between
the server and the clients. The batched solution produced by our system
requires not only significantly less data to be transmitted (only 4 cipher-
texts), but also runs an order of magnitude faster (57.6 s), confirming the
trend we observed when evaluating on smaller benchmarks. While the
results achieved by HECO are more than practical already, a state-of-the art
hand-written implementation designed for this task can improve this even
further, requiring only 1.4 s. However, arriving at this solution requires a
significant rethinking of the program and an application-specific batching
pattern, which HECO intentionally does not consider to avoid a search
space explosion. Note that synthesis based tools such as Porcupine also
cannot capture these kinds of transformations.

Specifically, instead of batching the identifiers for each database into a
single ciphertext, the expert solution instead creates one ciphertext per bit,
using significantly oversized ciphertexts with 1282 = 214 slots. This enables
the expert solution to batch every possible permutation of the identifier
set into one ciphertext. By applying this to the encryption of set B, while
simply encrypting 128 non-permuted repetitions of set A, the expensive
O (() n2) duplication check can be performed in parallel on all elements
at the same time. Computing the unique flag then uses a rare application
of the rotate-and-multiply pattern. As a trade-off, the equality computation
is no longer batched, but since the number of bits in the identifiers is, by
necessity, at most logarithmic in the number of database elements, this is a
profitable trade-off.

In general, exploiting application-specific packing patterns can unlock
additional performance gains and is a frequently combined with client-
side processing in expert-designed FHE systems. However, the decision on
which client-side processing (e.g., removing outliers, computing permuta-
tions, etc) is sensible is not a well-defined problem that automated solutions
can tackle. At the same time, the performance improvements demonstrated
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by HECO provide a first jump from the regime of prohibitive overheads to
one of practical solutions. While further optimizations are likely frequently
possible, they offer quickly diminishing returns. For example, scaling this
application to real-world sizes (which, incidentally, is more complex with
the expert approach) means that a naive solution might take days to com-
pute while HECO’s solution would complete in a few hours, which is a
reasonable runtime for these kinds of secure statistics.

4.4 related work

In this section, we briefly discuss related work in the domain of FHE
compilation (Section 4.4.1) followed by a discussion of differences to existing
MPC and ZKP compilers (Section 4.4.2).

4.4.1 FHE Compilers

The complexity of implementing FHE operations efficiently led to the
development of dedicated libraries [102, 156] early on. Today, a large number
of libraries [1, 55, 102, 139, 156] provide efficient implementations of state-
of-the-art schemes. These libraries mostly provide comparatively low-level
APIs that allow developers to extract the best possible performance but
require significant expertise to utilize effectively. As a result, a first wave
of FHE tools and compilers emerged that tried to improve the usability of
FHE [34, 48, 71, 161, 163]. These mostly target a circuit-level abstraction and
are focused on circuit optimizations [161].

For example, Microsoft’s EVA [71] offers a user-friendly high-level in-
terface and automatically inserts ciphertext maintenance operations into
the circuit. EVA uses a custom circuit-based IR and requires developers
to manually map their program to the FHE programming paradigm. In
order to ease this process, recent versions [58] include a library of expert-
implemented batched kernels for frequently used patterns, e.g., summing
all elements in a vector. However, this still requires developers to manually
transform an application to the batched paradigm.
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A series of tools including Cingulata [34], E3 [48], SyFER-MLIR [97], and
Google’s Transpiler [96] attempt to translate arbitrary programs without
the usual restrictions of FHE. They achieve this by translating their input
programs into binary circuits, encrypting each input bit individually. How-
ever, programs translated in this way are virtually always too inefficient
to be of practical use because they do not support the type of high-level
transformations that HECO employs to achieve practical efficiency.

Domain-specific compilers [14, 16, 72], e.g., targeting encrypted Machine
Learning applications, rely on a large set of hand-written expert-optimized
kernels for common functionality (mostly linear algebra operations). Since
these tools rely on pre-determined mappings rather than automatically
identifying optimization opportunities, they do not transfer to other do-
mains, such as the general-purpose setting HECO targets. Besides that,
their lack of flexibility prevents their use when developers’ needs are even
slightly misaligned.

The Porcupine compiler [63] is closest to our work in that it also considers
translating imperative programs to FHE’s batching paradigm. However,
their tool has a significantly different focus, using a heavy-weight synthesis
approach that tries to identify optimal solutions that can outperform even
state-of-the-art approaches used by experts. Since it explores a large state
space in the search for an optimal solution, compile times tend to be long
(up to many minutes) and programs can contain at most a handful of
statements before the approach becomes infeasible. Additionally, Porcupine
requires that developers provide a sketch of the structure of the batched
program, making it less suitable for non-expert users.

Finally, we want to highlight that the MLIR framework is rapidly estab-
lishing itself as the gold standard for FHE tooling. Early attempts such
as SyFER-MLIR [97] relied primarily on built-in optimizations, adding
only a few binary-circuit-based FHE-specific rewrite rules. No evaluation is
provided for SyFER-MLIR, but prior work studying similar simple rewrite
rule-based tools [161] leads us to predict that it would produce only rel-
atively minor speedups. More recently, however, a variety of concurrent
work has successfully realized different aspects of the FHE ecosystem using
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MLIR. For example, Zama’s Concrete-ML [153] internally uses an MLIR-
based compiler to translate Machine Learning tasks expressed as Numpy
programs to the TFHE scheme. HECATE [123], meanwhile, improves upon
the rescale-allocation optimizations presented in the EVA compiler [71].
However, where the latter uses a custom Python implementation that does
not provide for interoperability with other tools, HECATE builds upon
common MLIR abstractions. Thanks to the modular nature of MLIR, these
tools could easily be integrated into HECO’s end-to-end toolchain.

4.4.2 MPC & ZKP Compilers

Compilers for both Multi-Party Computation (MPC) and Zero-Knowledge
Proof (ZKP) systems face similar challenges to FHE compilation, such as the
need for data-independent computations and a general tendency towards
trying to achieve small and low-depth circuits. However, in practice we
find these similarities are too superficial to allow techniques from one
domain to be lifted to another. Due to the heavy reliance on selectively
revealing (potentially blinded) data during an MPC computation – a feature
that has no direct correspondence in FHE – many of the optimization
approaches are unlikely to transfer. State-of-the art MPC compilers [29,
104] also frequently make heavy use of hybrid approaches, i.e., switching
between different MPC settings. While there has been significant work on
scheme switching for FHE [18, 129], practical applications remain rare and
few libraries currently support these techniques. As these approaches start
to mature, investigating to what extent scheme-switching optimizations
from the domain of MPC can transfer to FHE will present an interesting
avenue for future work.

Zero-Knowledge Proof Compilers also face the challenge of mapping
complex operations to arithmetic circuits with limited expressiveness. How-
ever, their setting fundamentally differs from that of FHE, as the prover
generally has access to all data in the computation in the clear. This allows
ZKP computations to heavily rely on witness-based computation, which
allows compilers to shift virtually all non-arithmetic operations outside
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the core ZKP computation. Additionally, ZKP compilers mostly use inter-
mediate representations based on Rank-1 Constraint Systems (R1CS) or
other constraint specification systems that are not suitable for expressing
FHE computations. Finally, we note that compiler frameworks trying to
accommodate MPC, ZKP and potentially also FHE are emerging [146].
However, their reliance on a circuit-like IR makes them unsuitable for the
high-level transformations we use in our work.

4.5 discussion

As FHE has emerged into practicality, it has drawn the interest of a sig-
nificantly wider audience bringing new perspectives, requirements and
backgrounds to the area. While traditionally, FHE applications were mostly
developed by the same experts that designed, optimized and implemented
the underlying cryptographic schemes, this will soon no longer be true
beyond the world of cutting-edge academic research. In recent years, a
variety of tools has emerged in an attempt to address the needs of future
non-expert developers. While some domain specific tools have proven to be
very effective [16, 56, 161], most general purpose tools have fallen short of
delivering on the promise of usable FHE. While they simplify the develop-
ment process, they generally produce naive implementations which provide
little real-world benefit due to their significant overhead compared to more
optimal implementations. However, as performance is key for practical
deployment, we believe that usability without sufficient performance is
mostly meaningless.

HECO aims to bridge the gap between usability and performance for
general-purpose workloads. It offers non-expert developers the ability to
express applications in a familiar high-level paradigm without paying the
extreme performance penalty this would usually incur. Beyond optimizing
this high-level transformation, HECO proposes a new end-to-end architec-
ture for FHE compilers based on the distinct stages of FHE optimization
we identify. HECO’s modular architecture is designed to allow it to in-
teroperate with other toolchains and easily integrate future optimization
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techniques. While HECO represents an important step in FHE usability,
many challenges remain to be addressed. For example, HECO considers
RLWE-based schemes offering SIMD operations, but recent developments in
LWE-based fast-bootstrapping schemes makes them an attractive alternative.
Today, these worlds remain mostly separate and use significantly different
paradigms. Future work needs to consider how to unify these, especially in
the context of scheme-switching, i.e., the ability to move between schemes
inside a single application. Finally, upcoming dedicated FHE hardware
accelerators promise to deliver significant performance improvements but
require sophisticated scheduling to unlock their potential. While existing
work on accelerators already incorporates automated scheduling, there are
likely significant further optimization opportunities in considering compila-
tion for these systems from an end-to-end perspective. More generally, we
believe that there is significant potential for interdisciplinary research that
combines techniques from compiler and programming language research
with insights from cryptography.



5
V E R I F I A B L E F U L LY H O M O M O R P H I C E N C RY P T I O N

Computing on encrypted data inherently requires malleable ciphertexts
(e.g., the addition of two ciphertexts is also valid ciphertext). However, this
malleability also raises the issue of integrity, as the server can deviate from
the computation requested by the client. This has obvious implications for
correctness but can also have more severe consequences: a malicious server
can exploit the malleability of FHE to carry out key-recovery attacks [37, 43,
54, 79, 167], undermining the confidentiality of FHE. So far, most work on
FHE schemes and applications has chosen to side-step this issue by making
assumptions on the setting and threat model. However, as FHE is starting
to be deployed to protect critical information, we must move beyond these
assumptions to a threat model that can withstand real-world adversaries.

Historically, the FHE research community has made extensive use of the
assumption that the server running an FHE application would be honest-
but-curious, rather than actively malicious [22, 52, 74, 78]. This assumption
may be reasonable in some deployment scenarios (e.g., when FHE is used
only to ensure regulatory compliance or when dealing with trusted insti-
tutions cooperating on their own data). However, the necessity to trust
the server to this extent is very limiting to the scope of application sce-
narios, since a violation of the assumption threatens not only correctness
but also confidentiality. In addition, even otherwise trusted parties can
be compromised by malicious third parties, exposing this attack surface.
While FHE protects against passive attacks, a malicious or compromised
server taking part in an FHE application can leverage this to undermine
data confidentiality (c.f. Section 5.1.3). In order to remediate these attacks, a
line of research has emerged that constructs more robust FHE schemes that
achieve indistinguishability against chosen ciphertext attacks (IND-CCA1).
These schemes remain secure even in the presence of decryption oracles.
Unfortunately, many of these constructions assume the presence of cryp-
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tographic primitives even stronger than FHE and/or are too inefficient to
implement in practice. A different line of research focuses on achieving
integrity for FHE; guaranteeing a function was correctly executed on the
ciphertext while preserving the confidentiality of inputs. We review and
discuss these approaches, showing that there is a significant gap between
the assumptions made by existing work and the way state-of-the-art FHE
schemes are used in practice.

This chapter presents a taxonomy of existing approaches, highlighting
the gap between their assumed settings and real-world FHE deployments.
Based on these insights, we then define a new notion of integrity for FHE
that captures real-world FHE deployment settings, addressing the issues
we identified in our analysis. We show how to generically construct our
notion from a standard FHE scheme, commitments, and Zero-Knowledge
Proofs (ZKPs). Finally, we instantiate our construction using a range of
state-of-the-art ZKP protocols and propose a series of optimizations to
improve the efficiency of verifiable FHE in practice.

5.1 analysis of fhe integrity constructions

In this section, we aim to answer the question: to what extent do the recent de-
velopments in FHE integrity address the needs of real-world FHE deployments, and
where and why do they fall short? Recently, a number of approaches for FHE
integrity have been proposed, covering a variety of settings and introducing
a plethora of subtly different notions and properties. In this section, we
are the first to holistically analyze FHE integrity across the boundaries of
the different approaches. Towards this, we unify the existing constructions
into a set of general paradigms that form a taxonomy of FHE integrity
approaches. This allows us to consider the strengths and weaknesses of
the proposed notions independently of individual instantiations. We then
show how these notions fall short when considering how FHE is used in
practice, highlighting the mismatch between the setting assumed in the ex-
isting integrity literature and the settings used for the vast majority of FHE
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applications. Finally, we show how this enables attacks on both correctness
and confidentiality even in the presence of these integrity mechanisms.

5.1.1 Taxonomy of FHE Integrity Paradigms

We provide a complete taxonomy of all the literature on FHE integrity that
we are aware of at the time of writing. We analyze them according to the
underlying techniques, grouping them into Message-Authentication-Code–,
Zero-Knowledge-Proof– and Attestation–based approaches. We discuss the
existing constructions at a level of abstraction that allows us to directly
compare them and focus on their suitability for practical FHE deployments.
We provide a summary of our analysis in Table 5.2 on page 93.

Homomorphic Message Authentication Codes. Message Authentication
Codes (MACs) have long been used to ensure integrity for traditional
symmetric-key encryption. A Message Authentication Code (MAC) is a
short unforgeable tag used to verify the authenticity and integrity of a
message. They are generated using a secret MAC key and then sent along
with the corresponding message. Note that verifying a MAC also requires
access to the MAC key. While MACs are usually intentionally non-malleable,
homomorphic MACs allow for some operations similar to homomorphic
encryption. In the context of FHE, special (fully) homomorphic MACs are
required, so that the server can combine valid MACs on the inputs to an
FHE operation to a valid MAC of the output. Existing constructions fall
into three different paradigms based on how they combine the MAC and
the underlying FHE scheme: (i) Encrypt-and-MAC (EaM), (ii) Encrypt-then-
MAC (EtM), and (iii) MAC-then-Encrypt (MtE).

In the Encrypt-and-MAC (EaM) paradigm, the initial MAC and FHE
ciphertext are computed from the same plaintext and are then processed in
parallel (but independently) to produce the output MAC and ciphertext pair.
Since the MAC in EaM is not encrypted under FHE, it must itself provide
strong security, i.e., be semantically secure. In addition, the MAC must
offer the same homomorphic operations as the underlying FHE scheme. Li
et al. construct such an EaM scheme using multilinear maps, assuming a
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generic FHE scheme [126]. While it describes how to support addition and
multiplication operations, it is not clear how this scheme can be extended to
handle the complex ciphertext maintenance operations (e.g, relinearization)
that are necessary for modern FHE schemes to achieve state-of-the-art
efficiency. In general, it is unclear how to expand the expressiveness of
homomorphic MACs while maintaining the strong security guarantees
required for the EaM approach.

The Encrypt-then-MAC (EtM) approach firsts encrypts the plaintext
using FHE and then applies the MAC to the resulting ciphertext. This
removes the need for the MAC to preserve confidentiality, but the MAC
does still need to be homomorphic with respect to operations on ciphertexts
(including ciphertext maintenance operations). Fiore et al. make use of this
paradigm in [82], instantiating their MAC using pairings. In order to enable
this, they needed to introduce a homomorphic hash function to bridge
the gap between FHE ciphertexts and the MACs, i.e., polynomial rings
and pairing groups. In order to achieve efficient verification, they also rely
on amortized closed-form efficient PRFs [12]. However, the combination
of these primitives limits the expressiveness of the resulting construction.
Specifically, it only supports quadratic circuits, i.e., circuits with at most one
multiplication gate. In general, it is unclear whether it is possible to create
MACs that support both arbitrarily deep circuits and complex operations
on the ciphertexts.

Finally, the MAC-then-Encrypt (MtE) paradigm first computes a MAC
over the plaintext and then encrypts the MAC-augmented plaintext under
FHE. This removes the need to support ciphertext maintenance operations,
as these do not affect the encrypted message. Gennaro and Wichs [89]
provided one of the first FHE integrity construction based on this paradigm.
However, the construction is not efficiently verifiable, i.e., verifying the
MAC requires recomputation that is as expensive as computing the original
result. The work proposed potential ways to solve this issue, but did not
instantiate a solution. Catalano and Fiore [35] addressed the verification
efficiency, but in turn their construction is limited to arithmetic circuits of a
bounded depth. More recently, Chatel et al. [36] have generalized these two
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approaches, providing the first FHE integrity scheme that can efficiently
support arbitrary circuits and modern state-of-the-art schemes.

Zero-Knowledge Proofs. A Zero-Knowledge Proof (ZKP) is a protocol that
allows a prover to convince a verifier of the truth of a mathematical statement
without revealing additional information. Non-interactive ZKPs allow the
prover to generate a proof that the verifier can check independently, and
there exist techniques to turn any ZKP non-interactive. In the context of
integrity, ZKPs can be used to show that y = f (x, w) for a given x, y and f
without revealing w.

Zero-Knowledge Proofs are a natural primitive to explore for FHE in-
tegrity constructions. In this approach, the server first computes the FHE
circuit, storing intermediate ciphertext results, and then computes a Suc-
cinct Non-interactive ARgument of Knowledge (SNARK) that asserts that
the server knows an assignment of intermediate values to the circuit so that,
for the given input, the circuit results in the output ciphertext. In theory, any
generic ZKP system could be used to generate this proof. However, a trivial
instantiation would introduce prohibitively large additional overhead in
emulating the complex ring operations used in FHE schemes. Recent work
has therefore focused instead on developing ZKP systems tailored to FHE.

One line of work uses (homomorphic) hashing to bring the size of FHE
ciphertexts down into a range that can be handled more efficiently with
ZKP techniques. This includes the first SNARK for FHE presented by Fiore
et al. [83] and follow-up work by Bois et al. [17]. However, the homomorphic
hashing requirement limits this approach to simple schemes such as the BV
scheme [24] which does not feature the complex ciphertext maintenance
operations that are necessary to achieve the practical efficiency enjoyed by
state-of-the-art FHE schemes. An alternative approach by Ganesh et al. [85]
instead focuses on constructing a generic ZKP system that natively operates
on the rings used in FHE schemes. This drastically improves the efficiency
of proving the ring operations that make up basic homomorphic operations
such as addition and multiplication. However, ciphertext-maintenance oper-
ations generally require either switching between different rings or non-ring
operations such as rounding, which are not supported by the current con-
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struction. While such tailored approaches hold the promise of significant
performance improvements, they cannot currently support efficient modern
state-of-the-art FHE schemes. Therefore, when we consider FHE integrity
in practice in Section 5.3, we will focus on generic ZKP systems and discuss
how to efficiently instantiate it for FHE.

Trusted Execution Environment Attestation. Trusted Execution Environ-
ments (TEEs) are hardware components capable of isolating code running
on them from the rest of the machine. Code running on a TEE cannot be
tampered with by other processes, even the operating system or hypervisor.
TEEs are commercially available in commodity hardware provided by all
major hardware vendors [5, 87, 109]. TEEs are frequently used to provide
confidentiality from either the server operators or other VMs running on the
same hardware, but they can also provide integrity through code attestation,
which generates a certificate that the outputs were generated through a
correct execution of the program.

Trusted Execution Environments (TEEs) such as Intel SGX [109] can be
used to provide confidentiality, but a series of attacks [80, 142] has put their
suitability for this task in question. However, their integrity protections,
i.e., their ability to attest to the program running in the enclave, have so far
mostly resisted practical attacks [140]. Therefore, it is natural to augment
the confidentiality properties of FHE with the integrity protections of TEEs
by running FHE inside an enclave. However, the computational complexity
of FHE and especially the large sizes of ciphertexts and evaluation keys
pose a challenge to TEEs, which are usually more restricted in terms of
memory and available computational power than the underlying untrusted
hardware. More fundamentally, they can only be employed in settings
where the additional trust assumption on the specific hardware vendor
is acceptable. Natarajan et al. [141] present an FEE-in-TEE design and
implementation, that, because of the ability of TEEs to express arbitrary
computations, can easily support modern state-of-the-art FHE schemes
with little to no required modifications.
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Ctxt. Maint. Circuit Srv. Inputs Srv. Privacy Approx. FHE
Adversarial Model

Impl.
Verif.

Oracles
Dec.

Oracles

MtE
[89] ? Any # # # H# # #
[35] ? Any # # #  # #
[36]  Any # # # # #  

EtM [82] # Quadratic # # # # #  

EaM [126] ? Any # # # # # #

ZKP
[83] # Any #  #  # #
[17] # LogspaceUnif   #  # #
[85] H# Any   # # # H#

TEE [141]  Any  #   H# H#

Table 5.2: Characteristics and limitations of existing FHE integrity paradigms and approaches. A ? indicates insufficient details
are given while H# indicates partial support.
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5.1.2 FHE Integrity in Practice

In this section, we consider to what extent the assumptions and guarantees
proposed in the existing FHE integrity literature fulfill the requirements
of real-world FHE deployments. We highlight the differences between the
deployment settings assumed by the existing literature and the needs of
real-world FHE deployments, uncovering significant mismatches. In the
following (Sections 5.1.3 and 5.1.4), we discuss the implications of this
mismatch for correctness and confidentiality.

FHE Deployment Settings. The existing literature on FHE integrity assumes
the outsourced computation setting, where a client provides an encrypted
input x and a function (or circuit) f to the server, which then computes
f (x) homomorphically and returns the encrypted result. While this setting
is the most natural to define FHE in, it is not the only setting or even the
most widespread one. In practice, the server has the ability to both choose
the circuit to compute and to provide additional inputs. This opens up a
variety of important additional use cases that enable a form of two-party
computation. For example, this can be used to offer privacy-preserving
Machine Learning as a Service (MLaaS) where the server has a model that
it wants to make available as a service and the client wants to receive a
homomorphically computed inference on its private input [133, 150, 165].

These real-world deployment scenarios fundamentally change the attack
surface which we need to consider. Public and private server inputs have
significant implications for integrity, with the latter posing more fundamen-
tal challenges. Nevertheless, even public inputs prevent the use of some
integrity approaches, such as MAC-based solutions [35, 36, 82, 89, 126]. This
is inherent in the concept of MACs, which only the client can generate for
fresh messages. On the other hand, TEE- and ZKP-based approaches can
usually support public inputs with straightforward extensions, even though
these are not considered in the existing literature. Since these inputs are
public, they can be transmitted to the client along with the result and proof
(or attestation) of correctness, allowing them to complete the verification.
Private server inputs, on the other hand, are more challenging because
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they raise fundamental questions about the meaning of correctness in their
presence. For example, in the privacy-preserving MLaaS setting, it is not
immediately clear what statements on the correctness of the computation
can be made without revealing the model to the client. This highlights a fun-
damental gap between the application-level correctness that we usually want
to achieve and the circuit-level correctness that existing integrity notions
work on. We discuss this challenge in further detail in Section 5.1.3. More
importantly, and perhaps unexpectedly, the ability to introduce private
inputs opens up a new attack surface and allows a malicious server to un-
dermine the confidentiality of FHE. Intuitively, these issues arise because the
private nature of the inputs allows the server to choose malformed inputs
that ‘poison’ the output in a way that will lead to a decryption failure at
the client, which the server can observe through the client’s reaction. While
TEE- and ZKP-based approaches can technically be extended to support
private inputs, straightforward extensions are ineffectual in preventing such
attacks. We discuss these issues in more detail in Section 5.1.4.

5.1.3 Attacks on Correctness

The ability of the server to provide inputs opens up a new attack surface
since integrity issues can now arise not only from deviations in the compu-
tation but also from malicious inputs. In this setting, the server can produce
‘incorrect’ results even when executing the circuit ‘correctly,’ allowing them
to produce a valid proof of correctness for these ‘incorrect’ results. We
identify two different cases: first, the computation can result in an invalid ci-
phertext that fails to decrypt correctly. Second, the computation can return a
valid ciphertext but nevertheless fail to satisfy application-level expectations.

Invalid Ciphertexts. The noise inherent in FHE ciphertexts grows during
computation and, for all but trivial circuits, must be managed carefully
using ciphertext-maintenance operations. When the server inputs a cipher-
text1 with larger noise than expected, the noise will overflow and garble

1 This attack still works when the server provides a plaintext, since message size also impacts
noise growth.
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the message. As a result, decryption will no longer return the correct re-
sult. Note, however, that this is not necessarily observable by the client: the
decryption will return an essentially random value, but without application-
level constraints, this is indistinguishable from a correct result. Existing
integrity notions do not consider this aspect since they are designed for
the outsourced computation setting, where all inputs are from the client
and can therefore be assumed to be well-formed. As a result, the server can
provide an incorrect result together with a proof of ‘correctness,’ clearly
undermining the idea of integrity. More importantly, this also has severe
implications on confidentiality, which we discuss in Section 5.1.4.

Application-Level Correctness. Using existing integrity notions, a proof of
‘correctness’ only guarantees that the result is the output of the specified
circuit applied to the client’s input and some input provided by the server.
When the server inputs are public, the client can verify that they are well-
formed and meaningful. However, when the inputs are private, which is
necessary for most applications in the two-party setting, this is no longer
possible. This allows the server to affect the correctness of the result on
an application level. For example, consider a Private Information Retrieval
(PIR) application, where a client wants to run a private query against a
database stored on the server. The server could compromise application-
level correctness by censoring individual entries in the database to further
some malicious objective. For example, using existing integrity notions, the
server could hide specific Wikipedia articles or individual transactions from
a blockchain history while still providing a proof of ‘correctness’.

5.1.4 Attacks on Confidentiality (Key Recovery)

In addition to impacting correctness, the mismatch between existing notions
and real-world requirements causes a considerably more serious issue: a
malicious server can exploit the interactive nature of practical FHE deploy-
ments to compromise confidentiality. In fact, using key-recovery attacks, a
server could potentially recover the client’s full secret key. These attacks
fall outside the scope of the semi-honest–server setting assumed by FHE



5.1 analysis of fhe integrity constructions 97

schemes but should be addressed in a setting where the server is not trusted
to execute the computation faithfully, such as that considered by integrity
notions. Existing integrity notions for FHE, however, fail to do so.

Key Recovery Attacks. Intuitively speaking, Key-Recovery Attacks exploit
the fact that the decryption operation combines the ciphertext and the
secret key. While a decryption of a valid ciphertext will only ever output
the encrypted message, a malformed ciphertext can result in (parts of) the
secret key being returned instead. For example, we briefly outline a simple
key recovery attack by Chenal and Tang [43] against the BV scheme [24].
In BV, decryption is defined as Decsk(ct) = [ct0 + ct1 · sk]t, where the inner
operations are performed over Rq (see [24] for details). When decrypting
the special ciphertext ct = (0, 1), one trivially recovers the secret key
Decsk(ct) = [0 + 1 · sk]t = [sk]t = sk (under some assumptions on the
parameters; we refer to [43] for the details). In this simple attack, the client
can easily detect that this ciphertext has been maliciously crafted to be a
(trivial) encryption of the secret key. However, FHE also features encryptions
of the secret key that are indistinguishable from standard ciphertexts. For
example, key-recovery attacks can take advantage of the evaluation keys
provided to the server in most schemes. These are encryptions of (functions
of) keys, which allow the server to perform crucial ciphertext maintenance
operations (e.g., relinearization, key-switching, bootstrapping). If given
access to a decryption oracle, an adversary could decrypt these evaluation
keys and recover the secret key. For example, we present how to exploit the
relinearization key used in the BGV scheme. We recall that BGV [22] uses a
relinearization key rk = (a · sk+ t · e + sk2,−a), which is a valid encryption
of sk2 under sk. Using a decryption oracle, we can recover sk2 and learn
information about sk.

Beyond Decryption Oracles. Full decryption oracles that would allow an
adversary to exploit the straightforward attacks we discussed above are
not commonplace in practice. However, more sophisticated attacks [54]
do not require such strong oracles and instead target decryption failure
oracles. These oracles arise when the server manipulates the result to have
noise overflow, leading to an invalid decryption. When the client detects
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and reacts to this unexpected result (e.g., by requesting a re-run of the
computation or aborting further interactions), this leaks information to the
adversary. Because most FHE application scenarios involve multiple queries
to the server (e.g., MLaaS, PIR, etc), avoiding these oracles is frequently
impossible in practice. Common patterns in FHE applications frequently
allow the server to have full control over the shape of the ciphertext result,
even in the presence of existing integrity notions. For example, consider
f (x, w1, w2) := ⟨x; w1⟩ + w2, which appears when implementing a (biased)
matrix-vector multiplication (this is a common pattern in ML applications).
The adversary can choose w1 = 0 and an arbitrary w2 as inputs, and prove
that f (x, w1, w2) = w2 for any x provided by the client. However, these
attacks usually do not even require full control of the output: because
state-of-the-art FHE applications are heavily optimized for efficiency, they
usually have very limited additional noise capacity, so simply providing any
outsized inputs is likely to cause a noise overflow. Since existing integrity
notions only consider the correct execution of the operations in the circuit,
they do not address this issue. Although some provide what appear to be
strong guarantees of input privacy [17, 83] that one might expect to exclude
such attacks, even these do not prevent such attacks. This is because their
privacy guarantees only hold against a much weaker adversary limited
to verification oracles (i.e., informing the adversary whether an attempted
proof passed verification). However, since decryption (failures) oracles are
essentially impossible to avoid, any system trying to achieve FHE integrity
in the real world must consider them. In the following section, we, therefore,
introduce a new robust notion of FHE integrity that is specifically designed
to accommodate real-world deployment settings and threat models.

5.2 maliciously-secure verifiable fhe

In this section, we define a new notion of integrity for FHE. Specifically, it
captures real-world FHE deployment settings, including those with actively
malicious server inputs. One of the key insights of our notion is that we
consider a stronger and arguably more realistic threat model. Existing
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notions result in an inconsistent view of the server, which is both expected
to deviate from the computation (otherwise, integrity notions would not
be necessary) yet, at the same time, assumes that the server will not use
these deviations to exploit common decryption (failure) oracles that arise
in real-world FHE to undermine confidentiality. This can result in a false
sense of security, leading users of constructions achieving these notions
to believe that they have stronger protections than these notions in fact
offer. Because of this inconsistency, we believe that the natural threat model
beyond the semi-honest server assumption should be an actively malicious
server with full access to a decryption oracle. In addition, we also consider
an unbounded verification oracle in order to give similar strength to the
integrity guarantees. Finally, we discuss how to generically construct a
vFHE scheme from an IND-CPA secure FHE scheme, commitments, and a
compatible ZKP system before studying how to instantiate this construction
efficiently in the next section (Section 5.3).

5.2.1 Defining Maliciously-Secure Verifiable FHE

We present a natural notion of verifiable FHE that cleanly composes FHE
with integrity properties. This is in contrast to existing notions which are
monolithic combinations of existing integrity notions (e.g., MAC unforge-
ability [126] or Verifiable Computation [82]) with ad-hoc confidentiality
properties. As a result, they generally interleave FHE and integrity aspects,
which makes them hard to reason about or extend. We propose a modular
framework that allows us to easily define extensions of the core notion,
enabling us to support a wide range of FHE deployment settings with
varying requirements. We first provide a definition of Fully Homomor-
phic Encryption that is sufficiently detailed to express important details
of real-world deployments of FHE. We then present the core definition
of a maliciously secure verifiable FHE scheme (vFHE) and present the
soundness, completeness, and security properties it must fulfill. Then, we
describe how to extend this notion with privacy for the server inputs, as
well as with input predicates.
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Definition 5.2.1 (FHE)
A Fully Homomorphic Encryption (FHE) scheme for a class of circuits2

F := { f : Mk+l → Mm | k, l, m ∈ N}, is a tuple of PPT algorithms
(KGen,Enc,Eval,Dec):

• KGen(1λ)→ (pk, sk) where λ is the security parameter.

• Enckey(x)→ cx ∈ Ckey ⊆ C for x ∈ M, where key is either sk or pk3

• Evalpk( f , c⃗x, w⃗)→ c⃗y ∈ Cm
out ⊆ Cm for f ∈ F , c⃗x ∈ Ck

in and w⃗ ∈ Ml

• Decsk(cy)→ y ∈ M∪ {⊥}, for cy ∈ C

whereM is the message space4 and C is the ciphertext space (with Cin ⊆ C).
The scheme must satisfy the correctness, (relaxed) compactness, and (IND-CPA)
security properties defined below.

We define both exact and approximate correctness. Informally, a scheme is
correct if any honest computation will decrypt to the expected result. For
approximate correctness, a slight error ε between the decryption and the
expected results is accepted. A scheme that achieves the latter, but not the
former, is said to be an approximate FHE scheme. In the following, we will
use Enckey(x⃗) :=

[
Enckey(x1), . . . ,Enckey(xk)

]
for x⃗ ∈ Mk and Decsk (⃗c) :=

[Decsk(c1), . . . , Decsk(ck)] for c⃗ ∈ Ck for conciseness.

Definition 5.2.2 (Correctness)
A scheme is correct if for all circuits f ∈ F , and for all x⃗ and w⃗ so that their
concatenation #  ‰xw is in the domain of f :

Pr

Decsk(c⃗y) = f ( #  ‰xw)

∣∣∣∣∣∣∣∣
(pk, sk)← KGen(1λ)

c⃗x,← Enckey(x⃗)

c⃗y ← Evalpk( f , c⃗x, w⃗)

 = 1

2 A circuit is a DAG where leaf nodes are labeled as inputs or outputs, and internal nodes
represent operations. We slightly abuse notation in the following and use arrow notation to
describe the sets of possible inputs and outputs for circuits.

3 Note that we can black-box construct a public-key scheme from a secret-key FHE scheme.
4 Modern FHE schemes distinguish between message and plaintext spaces which are frequently,

but not always, isomorphic. If the mapping is non-surjective, not all ciphertexts decrypt to a
valid message, and Dec will return ⊥.
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Definition 5.2.3 (ϵ-Correctness)
A scheme is approximately (or ε-)correct if for all circuits f ∈ F , and for all x⃗
and w⃗ so that their concatenation #  ‰xw is in the domain of f :

Pr

∥Decsk(c⃗y)− f ( #  ‰xw)∥ ≤ ε

∣∣∣∣∣∣∣∣
(pk, sk)← KGen(1λ)

c⃗x,← Enckey(x⃗)

c⃗y ← Evalpk( f , c⃗x, w⃗)

 = 1

where ∥·∥ is a scheme-specific norm, and ε is a scheme-specific upper bound on
the decoding error (which may depend on f , pk, or other quantities of the scheme).

Without the requirement of compactness, a definition of FHE would allow
trivial constructions that simply concatenate the circuit description to the
input ciphertext and perform the evaluation as part of the decryption.
Therefore, we traditionally require the output of Evalpk( f , . . .) to have a size
independent of the size of f (more formally, Dec must be implementable
by a circuit of size polynomial in λ). However, relaxations of this property
are common in practice. For example, leveled FHE is frequently only quasi-
compact, with the size of the keys (and therefore, Dec) dependent on the
depth of the circuit. When considering integrity guarantees, as we will
do next, the need to verify the correctness of a computation requires that
Dec take (a description of) the input ciphertexts used to compute a result.
Therefore, we further relax compactness to allow a dependence on the
number of inputs of f (but not the size of f more generally). Specifically,
we use the notion of compactness w.r.t. circuit complexity by Canetti et al. [31].

Definition 5.2.4 (Compactness [31])
A scheme is compact (w.r.t. circuit size) if there exists a polynomial p so that
the size of the ciphertexts in c⃗y ← Evalpk( f , c⃗x, w⃗) is bounded by p(λ, k, l) for all
f ∈ F , c⃗x ∈ Ck

in, w⃗ ∈ Ml . In particular, p is independent of the size of the circuit.

We restate the traditional IND-CPA security assumption, i.e, a PPT adver-
sary with access to the usual encryption oracle OEnc(x) := Enckey(x). Note
that we do not require an evaluation oracle since Evalpk is public and can be
executed by the adversary directly. For split adversaries A = (A1, . . . ,An),
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we implicitly allow the adversary to retain state between the invocation of
Ai and Ai+1, unless specified otherwise.

Definition 5.2.5 (IND-CPA Security)
A scheme is IND-CPA secure if for any PPT adversary A the advantage

AdvIND-CPA[A](λ) = 2
∣∣∣Pr

[
b = b̂

]
− 1

2

∣∣∣ of the attacker in the following game is
negligible in the security parameter λ:

IND-CPA for FHE

(pk, sk)← KGen(1λ)

(m0, m1)← AOEnc

1 (1λ, pk)

(c∗, τ∗)← Encpk(mb)

b̂← AOEnc
2 (c∗)

Our definition of FHE can express both “true” FHE (where F can contain
arbitrary circuits) and leveled FHE, by limiting F to circuits of depth at
most L. Note that, like most definitions of FHE, ours is not inherently
composable. Specifically, it is possible that Cout ∩ Cin = ∅. For example, in
leveled FHE, we might want to set Cin = Cpk ∪ Csk, i.e., allow only fresh
encryptions as input.

Definition 5.2.6 (Verifiable FHE)
A verifiable Fully Homomorphic Encryption (vFHE) scheme for a class of circuits
F := { f :Mk+l →Mm | k, l, m ∈N} is an FHE scheme for which there exists
a PPT algorithm Verify:

• Verifysk( f , c⃗y)→ {0, 1} for f ∈ F , c⃗y ∈ C

and which satisfies the IND-CCA1 security, completeness, and soundness
properties defined below.

In addition to the encryption oracle OEnc(x) := Enckey(x), the adversary
has access to an unbounded verification and decryption oracle ODec(c) := b
which returns b = ⊥ if ∄ f , c⃗ s.t. c ∈ c⃗∧ Verifysk( f , c⃗) = 0 and b = Decsk(c)
otherwise.
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Definition 5.2.7 (IND-CCA1 Security)
A scheme is IND-CCA1 secure if for any PPT adversary A the advantage

AdvIND-CCA1[A](λ) = 2
∣∣∣Pr

[
b = b̂

]
− 1

2

∣∣∣ of the attacker in the following game is
negligible in the security parameter λ:

IND-CCA1 for vFHE

(pk, sk)← KGen(1λ)

(m0, m1)← AOEnc,ODec

1 (1λ, pk)

(c∗, τ∗)← Encpk(mb)

b̂← AOEnc
2 (c∗)

Definition 5.2.8 (Completeness)
A scheme is complete if for all circuits f ∈ F , and for all x⃗ and w⃗ so that their
concatenation #  ‰xw is in the domain of f :

Pr

Verifysk( f , c⃗y) = 1

∣∣∣∣∣∣∣∣
(pk, sk)← KGen(1λ)

c⃗x ← Enckey(x⃗)

c⃗y ← Evalpk( f , c⃗x, w⃗)

 = 1

Definition 5.2.9 (Soundness)
A scheme is sound if for any PPT adversary A the following probability is
negligible in the security parameter λ:

Pr


Verifysk( f , c⃗y) = 1

∧

∄w⃗ ∈ Mls.t.Decsk(c⃗y) = f ( #  ‰xw)

∣∣∣∣∣∣∣∣∣∣∣

(pk, sk)← KGen(1λ)

x, f ← AOEnc,ODec
1 (pk)

c⃗x ← Enckey(x)

c⃗y ← AOEnc,ODec
2 (c⃗x)


We present our notion with designated verifiability, i.e., some secret key

material might be required to verify a ciphertext. We believe that this is
natural for the FHE setting, where only the secret key holder can decrypt a
ciphertext and therefore has any benefit from verifying it. Note that even
in a threshold FHE or multi-key FHE setting, designated verifiability is
sufficient, since the key holders can extend the MPC protocol they run to
decrypt to also realize verification.
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Our approach allows us to detangle confidentiality and integrity guaran-
tees. In contrast, correctness and completeness (i.e., verifiability) are usually
combined in existing notions. This allows us to reason about constructions
more cleanly and also allows us to easily define extensions of our core
notion. For example, our notion trivially extends to approximate verifiable
FHE, and we are the first to extend integrity notions to this setting. Because
we split correctness and completeness, changing between verifiable FHE
and verifiable approximate FHE has no knock-on-effects on the remainder
of the notion. In the next section, we discuss how to extend our notion to
support private server inputs and input predicates.

5.2.2 Server Input Privacy and Input Predicates

Verifiable FHE as defined in Definition 5.2.6 addresses key-recovery attacks
and ensures that client inputs are protected as expected. However, it does
not address the privacy of server inputs. We therefore provide an extension
of the notion which can be used in settings where formal guarantees
for server privacy are required. Informally speaking, it requires that the
result of an evaluation reveals nothing to the client beyond the output of
the function. Existing work that considers hiding server inputs does not
explicitly state the threat model for this setting. We address this issue and
define an adversary model that considers the client as the adversary. For
example, considering the perspective of the client, the indistinguishability
has to hold even when the adversary has access to the secret key. We
assume that the client generates keys and encrypts honestly, i.e., we assume
a semi-honest client. We could strengthen the threat model at the cost of
requiring proofs of correct key generation and encryption. However, we
believe that this would be prohibitively expensive and not appropriate for
most settings. We note the parallels between this setting and generic 2-party
MPC. However, in MPC, parties usually have equal protection. Here, the
guarantee offered to the client is stronger, since the server never learns the
output of the function and therefore has no information on the client input,
not even that which would be derivable from the function output.
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Definition 5.2.10 (vFHE with Server Input Privacy)
A verifiable FHE scheme with server input privacy for a class of circuits F :=
{ f : Mk+l → Mm | k, l, m ∈ N} is a vFHE scheme that additionally satisfies
the server privacy property defined below.

Definition 5.2.11 (Server Input Privacy)
A scheme offers server input privacy when, for all f ∈ F , the following are
(statistically) indistinguishable5 for all w⃗, w⃗′:

( f ( #  ‰xw),Evalpk( f , c⃗x, w⃗)) ≈ ( f (
#    ‰

xw′),Evalpk( f , c⃗x, w⃗′))

where x := Decsk(c⃗x).

Guarantees about the correct execution of a circuit are usually not suffi-
cient to guarantee desirable application-level properties. Arguably, there
is little difference to the client between a ‘correct’ execution of the circuit
on ‘incorrect’ inputs and an incorrect execution of the circuit. While some
amount of possible deviation is inherent in any 2-party computation, a
rich history of MPC and ZKP applications has shown how to use input
checks to ensure that a computation achieves higher-level properties [77].
For example, in Machine Learning as a Service (MLaaS), a client can run
several validation queries on inputs with known labels to ensure the model
has sufficient accuracy before querying it with real inputs. However, in the
privacy-preserving MLaaS setting, where the model weights are private
to the server, the server could switch out or degrade the model without
the client noticing. This can be solved efficiently by requiring the server
to commit to the model weights before the validation and then ensuring
that the provided model weights match the commitment as part of each
query. Alternatively, the client might want to ensure that the server inputs
lie inside a valid range that is a subset of the possible plaintext space, and,
more generally, we can consider arbitrary predicates on the server inputs
that must hold for the client to accept the result.

We note that one could, in theory, integrate such input checks into the
function f . However, this would require evaluating them under FHE and

5 Note that this must hold even for an adversary with access to sk.
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potentially cause issues when trying to combine this with the notion of
circuit privacy. We define our notion as an extension of vFHE with private
server inputs, as it only really applies in this setting: public inputs are
modeled as part of the circuit and can be trivially checked for consistency
by the client. We model the input checks as a predicate ϕ : w 7→ {0, 1} and
extend the notion as follows:
Definition 5.2.12 (vFHE with Input Predicates)
A verifiable FHE scheme with input predicates ϕ for a class of circuits F := { f :
Mk+l →Mm | k, l, m ∈ N} is a vFHE scheme with server input privacy that
additionally satisfies the input predicates property defined below.

Definition 5.2.13 (Input Predicates)
A scheme satisfies input predicates ϕ :Ml → {0, 1} if for any PPT adversary
A the following probability is negligible in the security parameter λ:

Pr


Verifysk( f , c⃗y) = 1

∧

∄w⃗ ∈ Mls.t.

Decsk(c⃗y) = f ( #  ‰xw) ∧ ϕ(w⃗) = 1

∣∣∣∣∣∣∣∣∣∣∣

(pk, sk)← KGen(1λ)

x, f ← AOEnc,ODec
1 (pk)

c⃗x ← Enckey(x)

c⃗y ← AOEnc,ODec
2 (c⃗x)



5.2.3 Generic Construction

We show how to generically construct a maliciously secure verifiable FHE
scheme (Definition 5.2.6) from a standard FHE scheme and a generic ZKP
system. In order to achieve security in this malicious setting (especially
when considering private server inputs) we need to combine a proof of
circuit correctness (i.e., of correct computation) with well-formedness checks
on the inputs that ensure the result will be safe to decrypt. This requires us
to make the concept of valid decryptions explicit, which will usually have
an application-dependent component. For example, a logit vector returned
by a machine learning model should consist of probabilities that sum to one.
Therefore, we do not hard-code a concept of validity into our construction,
but instead, define it relative to a set of circuits that return valid results
(for a certain range of inputs). In the following, we will assume F to be
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defined so that, for all f ∈ F and all c⃗x and w⃗ so that #  ‰xw is in the image of
f , Decsk(Eval( f , c⃗x, w⃗)) results in such a “valid” decryption.

We build our construction from a standard IND-CPA FHE scheme, which
includes all modern state-of-the-art schemes. While it might initially appear
more attractive to utilize an IND-CCA1 FHE scheme, since our security
notion is similarly defined, this is not ideal. Comparatively few IND-CCA1
FHE schemes are known [31, 127, 164] and the existing schemes are compu-
tationally much more expensive than IND-CPA schemes. This is because
existing IND-CCA1 schemes either already explicitly include integrity pro-
tections [31] or rely on powerful primitives that, in turn, would require
integrity-like protections [127, 164] to realize. As a result, starting our con-
struction with an IND-CCA1 scheme and then adding integrity protections
for circuit correctness would lead to duplicated efforts when instantiating
the construction in practice.

Note that constructing a scheme for the core vFHE definition is compar-
atively straightforward, as this setting only features public server inputs:
for any f (which includes the public inputs) that results in a valid cipher-
text for any freshly encrypted client inputs, we can combine an IND-CPA
secure FHE scheme with a MAC-then-Encrypt scheme such as Chatel et
al. [36] or a generic ZKP of circuit correctness. Therefore, we start with
this construction, and incrementally extend it to achieve the more complex
notions of verifiable FHE, including approximate correctness, server input
privacy, and input predicates. Finally, we discuss concrete instantiations of
these constructions in the following section (Section 5.3).

Building Blocks. In the following, we formally introduce the building
blocks used in our generic construction. We refer to Definition 5.2.1 for a
definition of Fully Homomorphic Encryption.

Definition 5.2.14 (SNARK)
Let R be an efficiently computable binary relation which consists of pairs of the
form (x, w), where x ∈ X is a statement, and w ∈ W is a witness. Let L be the
language associated with the relation R, i.e., L = {x | ∃w.R(x, w) = 1}.
A triple of polynomial time algorithms Π = (Setup,Prove,Verify) is a SNARK
for an NP relation R, if the following properties are satisfied:
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Completeness: For every true statement for the relation R, an honest prover with a
valid witness always convinces the verifier: ∀(x, w) ∈ R :

Pr

[
Verifyvk(x, π) = 1

∣∣∣∣∣ (crs, vk)← Setup(1λ)

π ← Provecrs(x, w)

]
= 1

Knowledge Soundness: For every PPT adversary, there exists a PPT extractor that
gets full access to the adversary’s state (including its random coins and inputs).
Whenever the adversary produces a valid argument, the extractor can compute a
witness with high probability: ∀A∃E :

Pr

[
Verifyvk(x̃, π̃) = 1

∧R(x̃, w′) = 0

∣∣∣∣∣ (crs, vk)← Setup(1λ)

((x̃, π̃); w′)← A|E(crs)

]
= negl(λ)

We stress here that this definition requires a non-black-box extractor, i.e., the
extractor gets full access to the adversary’s state.
Succinctness: For any x and w, the length of the proof is given by |π| = poly(λ) ·
polylog(|x|+ |w|).

Definition 5.2.15 (zk-SNARK)
A zk-SNARK for a relation R is a SNARK for R with the following additional
property:
Zero-Knowledge: There exists a PPT simulator S = (S1,S2) such that S1 outputs
a simulated CRS crs and a trapdoor td; On input crs, x, and td, S2 outputs a
simulated proof π, and for all PPT adversaries A = (A1,A2), such that∣∣∣∣∣∣∣∣Pr


(x, w) ∈ R

∧

A2(π) = 1

∣∣∣∣∣∣∣∣
(crs, vk)← Setup(1λ)

(x, w)← A1(1λ, crs)

π ← Provecrs(x, w)

−

Pr


(x, w) ∈ R

∧

A2(π) = 1

∣∣∣∣∣∣∣∣
(crs′, td)← S1(1λ)

(x, w)← A1(1λ, crs′)

π ← S2(crs
′, td, x)


∣∣∣∣∣∣∣∣ = negl(λ)
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Constructions for vFHE. We begin with a formal description of the con-
struction for our core notion. As described above, the ZKP system could
also be replaced with homomorphic MACs due to the lack of server inputs.

Construction 1 (vFHE from FHE and ZKP)

• Let E = (E .KGen, E .Enc, E .Dec, E .Eval) be an (IND-CPA secure) FHE
scheme for a class of circuits F .

• Let Π = (Π.Setup, Π.Prove, Π.Verify) be a SNARK for the relation

R =
{(

( f , c⃗x, c⃗y), w⃗
)

: c⃗y = E .EvalpkE ( f , c⃗x, w⃗) ∧ w⃗ ∈ W
}

We construct a vFHE scheme (KGen,Enc,Eval,Verify,Dec) for F satisfying
Definition 5.2.6 from these building blocks as follows:

• KGen(1λ)→ ((pkE , pkΠ), (skE , skΠ)),
where (pkE , skE ) = E .KGen(1λ) and (pkΠ, skΠ) = Π.Setup(1λ)

• Enckey(x)→ cx, where cx = E .EnckeyE (x)

• Evalpk( f , c⃗x, w⃗)→ (c⃗y, τ) for c⃗x ∈ Ck
in and Cin = Csk ∪ Cpk

where c⃗ = E .Eval( f , c⃗x, w⃗) and τ = Π.Prove( f , c⃗y, c⃗x, w⃗)

• Verifysk( f , (c⃗y, τ)) = Π.VerifyΠ.sk
(

f , (c⃗y, τ)
)
.

• Decsk((cy, τ))→ y, where y = E .DecskE (cy)

We note that we can construct a scheme with ϵ-correctness following the
same approach if we require E to be an approximate FHE scheme with
IND-CPAD security [125].

Proofs for Construction 1
Correctness: For honestly generated keys, encryptions, and evaluations,
correctness directly follows from the correctness of the underlying FHE
scheme. In the approximate case, ϵ-approximativity follows directly from
the approximate correctness of the FHE scheme.
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Completeness: vFHE completeness follows directly from the completeness of
the underlying ZKP scheme.
Soundness: Given an adversaryA against the soundness of the vFHE scheme,
we construct an adversary B against the knowledge-soundness of Π as
follows: B, on input pkΠ, generates the FHE keys pkE , skE , and runs A with
input pk = (pkE , pkΠ). B answers to A’s queries to the encryption oracle
using pkE . For A’s queries to its decryption oracle, B first relays the proof
element of the query to its own verification oracle; B then answers with the
decryption of A’s ciphertext if the verification passes, and with ⊥ otherwise.
B can thus perfectly simulate the vFHE soundness game for A. A wins if
and only if there is no witness for its output cx = τx, cy, in which case there
cannot exist an extractor for B, and B breaks the knowledge soundness of
Π exactly when A breaks the soundness of the vFHE scheme.
Security: Informally, the addition of a (sound) proof of correct computation
allows us to reduce the IND-CCA1 security of the vFHE scheme to the
IND-CPAD security of the underlying FHE scheme. Formally, for a given
IND-CCA1 adversary A against vFHE, we construct an adversary B against
the knowledge soundness of Π and an IND-CPAD adversary C against E
such that AdvIND-CCA1[A](λ) ≤ AdvKS[B](λ) + AdvIND-CPAD

[C](λ).
Let G0 denote the IND-CCA1 game for vFHE, and let G1 be the same

game with a slightly different decryption oracle, modified as follows: on
receiving a query (cy, τx, τy), the oracle returns ⊥ if Verifysk(cy, τx, τy) = 0.
If the verification passes, the oracle uses the knowledge extractor over A
to retrieve the witness w corresponding to the proof τy; now, instead of
returning a decryption of cy, the oracle computes the expected ciphertext
output ĉy = Evalpk(τx, w), and returns Decsk(ĉy). Due to the correctness and
completeness of E , G0 and G1 are identical up until A issues a decryption
query that is accepted by the verifier, but for which cy ̸= c′y. The probability
of this event is bounded by the advantage of an adversary B against the
knowledge-soundness of Π; we can construct B from any A that is able to
distinguish G0 from G1 as in the proof of soundness above.

We can construct an adversary C against the IND-CPAD security of the
underlying FHE scheme, by utilizing A in a perfect simulation of G1. To
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do so, C generates the Π keying materials, and uses the (encryption and
decryption) oracles from its IND-CPAD game to answer A’s queries in G1.

To conclude, for any IND-CCA1 adversary A, we can either construct a
knowledge-soundness adversary B against Π, or an IND-CPAD adversary
against E . □

Before presenting our generic construction, we recall the definition of
FHE circuit privacy:

Definition 5.2.16 (FHE Circuit Privacy [90])
An FHE scheme E is circuit-private for circuits in FE if, for any key-pair (pk, sk)
output by E .KGen(1λ) any circuit f ∈ FE , and any fixed inputs cx in the image
of E .Enc for inputs x, the following are (statistically) indistinguishable:

E .Encpk( f (x)) ≈ E .Evalpk( f , cx)

Construction 2 (vFHE with Private Server Input)

• Let E = (E .KGen, E .Enc, E .Dec, E .Eval) be an (IND-CPA secure) FHE
scheme for F with (FHE) circuit privacy (see Definition 5.2.16).

• Let Π = (Π.Setup, Π.Prove, Π.Verify) be a zkSNARK for

ZKPPoK
{

w⃗ : cy = E .EvalpkE ( f , c⃗x, w⃗) ∧ w⃗ ∈ W
}

For f ∈ F , we construct a vFHE scheme for F with server input privacy
(KGen,Enc,Eval,Verify,Dec) satisfying Definition 5.2.10 from these building
blocks following the approach of Construction 1.

Proofs for Construction 2
The proofs for Correctness, Completeness, Soundness, and Security are identical
to the corresponding proofs for the core protocol above.
Server Privacy: we need to show that an adversary with access to all keys
does not learn anything about w from (cy, τy) ← Evalpk(cx, w). The zero-
knowledge property of Π ensures that the proof τy hides w, while the circuit
privacy of f ensures that no information about w can be derived from cy.□
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Since we use a generic ZKP system to enforce validity checks on the
server inputs, extending our construction to verifiable FHE with input
predicates is straight-forward:

Construction 3 (vFHE with Input Predicates)

• Let E = (E .KGen, E .Enc, E .Dec, E .Eval) be an IND-CPA secure FHE
scheme with (FHE) circuit privacy (see Definition 5.2.16).

• Let ϕ be a predicate on the inputs.

• Let Π = (Π.Setup, Π.Prove, Π.Verify) be a SNARK for the relation

R =
{(

( f , c⃗x, c⃗y), w⃗
)

: c⃗y = E .EvalpkE ( f , c⃗x, w⃗) ∧ w⃗ ∈ W ∧ ϕ(w⃗) = 1
}

.

We construct a vFHE scheme for F with input predicates
(KGen,Enc,Eval,Verify,Dec) satisfying Definition 5.2.12 from these building
blocks following the approach of Construction 1.

Proofs for Construction 3
Definition 5.2.12 does not introduce a dedicated new property, but instead
slightly modifies correctness, soundness, and completeness so that each also
requires the predicate to hold. The definition of Security remains unchanged
and the proof is identical to the corresponding proofs for Construction 1

above. The other proofs require slight modifications, but remain essentially
the same:
Correctness: As for Construction 1, (approximate) correctness follows directly
from the FHE scheme, as the addition of the predicate ϕ(w) = 1 does not
influence the computation.
Completeness: vFHE completeness follows directly from the completeness of
the underlying ZKP scheme, as the predicate ϕ is incorporated in the proof
system.
Soundness: The proof is nearly identical to the one for Construction 1, with
the relation for Π being augmented by the predicate ϕ. □
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5.3 instantiating verifiable fhe in practice

In this section, we instantiate our notion of maliciously-secure verifiable
FHE using state-of-the-art FHE and ZKP schemes. We highlight a series of
challenges in bringing together modern FHE and ZKP systems, including
the mismatch between the large polynomial rings used in most state-of-the-
art FHE schemes and the integer fields used in the vast majority of ZKP
systems. We investigate several approaches to bridge this gap and introduce
a new optimization for emulating ring arithmetic inside ZKPs.

We consider a wide range of ZKP systems and identify four promising
candidates that are best suited to the characteristics of FHE verification.
In addition, we also discuss how to instantiate our notion with hardware
attestation primitives, introducing an optimization that allows us to accel-
erate FHE-in-TEE by a factor of two over the existing state-of-the-art for
multiplications. We evaluate our ZKP- and TEE-based instantiations for a
variety of different workloads going far beyond the type of circuits that
existing FHE integrity notions can express.

5.3.1 Verifiable FHE via ZKP

In the following, we discuss how to instantiate our construction for verifiable
FHE with private server inputs (c.f. Section 5.2.3).

Bridging FHE and ZKP. The areas of FHE and ZKP have been maturing
mostly independently, and state-of-the-art ZKP systems have primarily
been tailored to applications that share few characteristics with FHE. In ad-
dition, FHE computations are inherently large and complex, making proofs
non-trivial. Most of this complexity arises from the advanced ciphertext
maintenance operations used by state-of-the-art schemes. As a result, previ-
ous work on FHE integrity frequently chose to use simple schemes such as
the BV scheme [24] to avoid this complexity. However, the applicability of
these schemes is limited in practice because of their prohibitive overhead.
We instead choose to target modern state-of-the-art FHE schemes which
offer the performance necessary to realize real-world FHE applications.
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FHE schemes fall into two main families, with the LWE-based FHEW [74]
and TFHE [52] schemes focusing primarily on evaluating binary circuits,
while RLWE-based schemes such as BGV [22], B/FV [21][78] and CKKS [47])
focus on arithmetic circuits. Initially, LWE-based schemes might appear
promising since they use smaller ciphertexts and offer faster computation.
However, efficient implementations of schemes in this family usually make
heavy use of floating-point operations, which would introduce significant
overhead in the ZKP proofs. The RLWE schemes, in turn, feature larger
ciphertexts but also offer a powerful form of data parallelism [158] that
is at the core of most state-of-the-art FHE results. While our construction
can be instantiated with any scheme, we select BGV because it is amenable
to integer-based ZKP and requires the least amount of non-arithmetic
operations to realize its ciphertext-maintenance operations.

The RLWE setting introduces a fundamental mismatch between the ring
based FHE computation and the mostly field based ZKP systems. Specifically,
BGV uses rings of the form Rq := Zq [X] /(XN + 1), i.e., polynomials with
degree up to N (usually N > 213) and coefficients in Zq. Most ZKP systems,
on the other hand, mostly use large prime fields (i.e., Zp where p is usually
a 254-bit prime). Note that multiplying polynomials efficiently requires
converting them into a form that allows element-wise multiplication via
the Number Theoretic Transform (NTT), a discrete analog to the Fast
Fourier Transformation (FFT). As a side effect, this also removes the need
to explicitly compute the reduction modulo (XN + 1). However, we must
still take care to achieve modular reduction with regard to the coefficient
modulus q.

Matching the Coefficient Modulus. Existing work mostly assumes that
it is possible to instantiate the FHE and ZKP schemes so that the ZPK
field modulus p is the same as the FHE coefficient modulus q. While FHE
already needs to support a wide range of ciphertext moduli since this is an
application-dependent parameter, most ZKP systems offer less flexibility.
There is also an inherent tension between the FHE and ZKP parameters
here, since FHE security reduces with larger q (requiring increases in N
to compensate) while many ZKP systems rely on elliptic curves becoming
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more secure as p increases. As a result, while it is possible to instantiate
FHE with a matching coefficient, this results in an unnecessarily inefficient
FHE scheme, especially for smaller circuits. On the other hand, for larger
FHE circuits, q might outgrow the ZKP modulus. More fundamentally,
this approach does not support the modulus switching used by BGV and
other state-of-the-art FHE schemes to manage noise. Both of these issues
can be addressed by using the Chinese Remainder Theorem (CRT) to de-
compose the coefficient modulus q into L moduli q1, . . . , qL, working on
each Residue Number System (RNS) limb independently. This is already fre-
quently used in FHE implementations to improve performance on existing
hardware, as computing ten 60-bit operations is significantly cheaper than
computing one 600-bit operation. However, even with the RNS approach,
matching ZKP and FHE parameters remains difficult and inherently limited
to trivial circuits, as it cannot express more complex ciphertext maintenance
operations.

Emulating the Coefficient Modulus. Removing the need to match FHE and
ZKP parameters allows more efficient instantiations of both, but requires
us to emulate the FHE coefficient modulus inside the ZKP field. This can
be done by explicitly computing the modulus (mod q) after each arithmetic
operation, which is comparatively cheap. However, we also need to prove
the correctness of the result, which requires two expensive range proofs. We
introduce an optimization that reduces the need to perform these expensive
modulus emulations. We observe that, in practice, the ZKP modulus is
frequently significantly larger than the FHE modulus, especially for smaller
circuits. Because modular reduction produces the same result whether
it is applied to the inputs or the outputs of an operation, we can wait
until just before the results could overflow and only compute and prove the
modulo reduction then. Specifically, we can perform ⌊ p

q − 1⌋ (multiplication)
operations in sequence before needing to reduce. For small circuits with
q ∼ 60 bits and a standard field-based ZKP with p ∼ 254 bits, this enables
a 3x reduction in the number of modulo operations.

Without our optimization, there is little difference between the RNS and
non-RNS approaches with respect to the effort required to prove modulus
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gates. This is because the cost of proving a modular reduction is roughly
linear in the bit-width of the modulus. However, with our optimization,
using the RNS approach allows us to reduce the number of modular
reductions even further. Considering an FHE circuit with k arithmetic
operations, a non-RNS, non-optimized implementation requires k modular
reductions of size log q. Our optimization reduces this to roughly q

p ∗ k
modular reductions of size log q. With RNS splitting each element into L
limbs, the size of each gate is reduced to log q

L but, without any optimizations,
the number of modular reductions increases to kL, negating the benefits.
However, with our optimization, we require only qi

p ∗ k ∗ L = q
L ∗

1
p ∗ k ∗ L,

i.e., q
p ∗ k modular reductions of the reduced size. Therefore, with our

optimization, RNS allows us to reduce the cost per modular reduction even
while already reducing their number. For example, with q ∼ 60 bits and p ∼
254 bits as above, an RNS approach splitting q into two qi ∼ 30 bits would
halve the cost again, giving us a total 6x decrease in modular reduction
overhead. As a result, we can construct comparatively efficient ZKP circuits
for a wide range of FHE applications while allowing freedom in FHE and
ZKP parameter selection.

Arithmetization. Given a computation defined as a circuit, different ZKP
systems follow different approaches in translating the correctness of com-
putation into an arithmetic proof system. Since the circuits arising in FHE
integrity follow similar patterns, we can generically select an appropriate
approach independent of the concrete FHE application. We propose to
use R1CS [10], one of the most widespread arithmetization approaches,
which converts circuits into a system of Rank-1 constraints. Basic arith-
metic operations such as additions and multiplications can be realized
directly using a single constraint. However, more complex operations (e.g.,
rounding) require a larger number of constraints. Since the majority of
operations in (NTT-based) FHE are simple arithmetic operations, they can
be efficiently translated to R1CS. While PLONK-like systems [84] extend
R1CS with support for custom gates that can model commonly recurring
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sub-circuits, this is only efficient for low-degree sub-circuits6 In our setting,
the only candidate for such extraction would be the modulo sub-circuit,
but this is not a low-degree circuit. Beyond R1CS, STARKs [9] present an
alternative way to express computations not as circuits but as a series of
data manipulations. The efficiency of STARKs is directly related to the
size of the state space and the complexity of the transition function de-
scribing each step. Since FHE features large ciphertext expansion and a
high-degree modulo function, this makes it a poor candidate for realization
using STARKs. Recent work [166] can also forgo explicit arithmetization
and instead directly express arithmetic circuits. However, this approach
scales poorly with the number of inputs, which is high for FHE circuits due
to the expansion from individual ciphertexts to 2N field elements (where
N ≥ 213). As a result, R1CS currently remains the most appropriate choice
for FHE integrity applications, and we consider only ZKP systems with
efficient support for R1CS arithmetizations.

ZKP Scheme Selection. In recent years, a large variety of efficient ZKP
systems has been proposed, with many seeing widespread use in real-world
deployments. However, when selecting suitable candidates for our instan-
tiation, we need to consider that FHE has slightly different requirements
than, e.g., blockchain applications. For example, due to the large ciphertext
expansion, proof size is less of a concern in FHE, which already introduces
a noticeable communication overhead. Instead, we are mostly concerned
with achieving a good trade-off between prover and verifier time. Note that
we do not require public verifiability and can therefore exploit potentially
more efficient designated verifiability schemes. We select four candidate
approaches that are especially suitable for verifiable FHE:

First, we consider Groth16 [98], which represented a major breakthrough
in practical ZKP research, showing that zkSNARKs can be achieved with
good concrete efficiency. It requires a trusted setup, which presents diffi-
culties in settings where the set of parties is not known in advance, such
as in blockchain applications. However, in verifiable FHE, the client and

6 Very recent work [38] promises to address this issue by improving efficiency for higher-degree
sub-circuits. However, only an incomplete closed-source proof-of-concept implementation
exists at this point.
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server can easily realize this trusted party during a one-time setup via a
2-party maliciously-secure MPC protocol. Follow-up work has introduced
new schemes with different tradeoffs, such as removing the need to re-run
the setup for each circuit. However, this is not relevant to FHE, where
parameters are usually already circuit-specific.

On the other hand, we do evaluate transparent SNARKs that completely
remove the need for such a set-up. Here, we consider Bulletproofs [26] which
is part of a generation of zkSNARKS without trusted setup that brings them
into the same realm of performance as traditional efficient constructions
that require (universal or per-circuit) setup. While most implementations
of Bulletproofs focus on using it for efficient range proofs, for FHE we
also require the ability to support more generic R1CS systems. We also
evaluate Aurora [11], which is part of the same generation and trades off
asymptotically worse prover times and proof sizes for a move to post-
quantum secure assumptions, which matches nicely with the post-quantum
security of FHE schemes.

Finally, we also consider Rinocchio [85] by Ganesh et al., which we briefly
discussed in Section 5.1.1. Rinocchio offers native support for FHE-friendly
rings, potentially giving significant performance benefits over systems that
need to emulate these rings. We extend Rinocchio with a more optimized en-
coding scheme, which we describe in more detail below. However, its expres-
siveness is limited, as Rinocchio only supports arithmetic ring operations,
whereas some FHE operations (e.g., relinearization) use component-wise
rounding operations internally. Additionally, the soundness of Rinocchio
relies on the size of the exceptional set, which for FHE-friendly cyclo-
tomic rings is |A| = q1 ≈ 260, i.e., a single run of Rinocchio provides only
around 60 bits of (computational) soundness. We use a simple soundness
amplification strategy, running three separate instances of the protocol to
achieve stronger soundness guarantees. Overall, Rinocchio is much more
FHE-friendly than previous proof or argument systems, but still struggles
to efficiently represent state-of-the-art FHE optimizations natively. For ex-
ample, it is unclear how to implement a sound check of plaintext inputs
while staying in the efficient NTT representation we use for our evaluation.
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Specifically, we need to bound the size of the plaintext coefficients pre-NTT
and then verify that the post-NTT input is indeed the result of applying the
NTT to this input. However, without the ability to verify the application
of automorphisms, we cannot compute this NTT without assuming some
of the server inputs are given in specific forms. Nevertheless, we include it
because it represents an interesting avenue for future work and promises
significantly improved performance for the circuits it can support. In Sec-
tion 5.3.3, we evaluate our construction when instantiated using these ZKP
schemes and also compare it against a TEE-based instantiation.

Optimizations to the Rinocchio Protocol. In the following, we describe
our optimizations for the Rinocchio protocol by Ganesh et al. [85]. The
original paper introduces two possible encodings for the cyclotomic rings
used by FHE. The first one (dubbed “Regev-style” encoding) encodes each
of the N coefficients in Zq by encrypting it into an element of Zn

Q using
a LWE cryptosystem scheme; the parameters of the encoding scheme are
chosen to ensure that the encodings are k-linearly-homomorphic, where k
is determined by the circuit. The second construction (“Torus encoding”)
uses a variant of the TFHE cryptosystem.

The Regev encoding has an expansion factor of N·n·log2(Q)
N·log2(q)

= n · logq(Q),
as it encodes each of the N coefficients in Zq as an element of Zn

Q. However,
most FHE implementations will not be able to support a plaintext modulus
of the size of q (typically hundreds of bits), and in practice one would
need to encode each of the l CRT components individually, leading to
an expansion factor of l · n · logq(Q). Using this encoding will thus slow
down the prover and verifier significantly, as all encodings, decodings, and
computations over the encoding space will be slow.

The TFHE encoding, on the other hand, requires using floating-point
arithmetic to encode and decode, unlike the FHE scheme used for compu-
tation. Additionally, this encoding does not allow us to use the (potentially
heavily optimized) ring arithmetic libraries provided by the FHE library.

Therefore, we propose a new RLWE Regev-style encoding for Rinocchio,
taking advantage of the batching technique commonly used in FHE. For
many FHE schemes, if the plaintext modulus t satisfies the condition t = 1
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mod 2N, one can use an efficient encryption that packs N plaintext values
(interpreted as an element of Rt) into a single ciphertext in R2

q. For our
encoding, we take an input in Rq as l polynomials in Rq1 , . . . , Rql (this
decomposition is already used natively by the FHE scheme for efficiency
reasons), and encode each of those polynomials as an element in RQ. The
expansion factor in this case is l·log2(Q)

log2(q)
= l · logq(Q), improving on the

Regev encoding by a factor of N ≥ 210. Using this batching technique
imposes the requirement qi = 1 mod 2N on the ciphertext moduli of the
FHE scheme; this condition is already necessary for some schemes (e.g.,
RNS-optimized BGV [113]), and can be easily satisfied for all other schemes.

5.3.2 Verifiable FHE via TEE

In this instantiation, we use hardware attestation rather than cryptographic
proofs to provide the integrity component. We note that, while there has
been a plethora of attacks on TEE-based confidentiality guarantees [80, 140,
142], there have been significantly fewer issues with the attestation-based in-
tegrity guarantees [140]. Natarajan et al. presented the first implementation
of this FHE-in-TEE approach [141] and we extend their work to our notion
with server inputs. In addition, we introduce an optimization that allows
us to efficiently compute subfunctions on untrusted hardware. Since TEEs
can directly attest to the program that they are running, there is no need
for explicit arithmetization. However, programs will frequently require
adjustments to properly interface with the enclave SDK and to remove
unsupported operations and performance bottlenecks. Nevertheless, TEEs
support most FHE schemes more naturally than ZKP systems, including
offering native support for, e.g., rounding or floating-point operations. How-
ever, computations and especially memory operations inside the enclave are
significantly slower than operations in the untrusted domain. We address
this issue partially by introducing a new optimization that accelerates FHE-
in-TEE by a factor of two for batched multiplications. The key insight in our
optimization is that the server can also rely on the guarantees of the enclave
to not leak its inputs to the client. Specifically, it can use lightweight crypto-
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graphic proofs that do not have the zero-knowledge property to prove to the
enclave that computations performed on the untrusted hardware are indeed
correct and can be relied upon by the enclave. This enables our optimiza-
tion which computes computationally expensive batched multiplications
on untrusted hardware and then uses an efficient Schwartz-Zippel-based
proof of correctness to move them back to the trusted domain.

In the following, we describe our optimization for FHE-in-TEE: Executing
any code inside a TEE incurs a slowdown (due to reduced computational
power and memory), especially in the case of FHE computations, which
are typically compute- and memory-intensive. To alleviate this slowdown,
we propose a new method to accelerate FHE computations inside TEEs
by taking advantage of faster (but untrusted) hardware (e.g., a vanilla
untrusted CPU, a CPU with specialized vector instructions repurposed for
FHE [15], a GPU accelerator for FHE [147], or even a dedicated hardware
accelerator).

The key insight to our improvement is that both the TEE and the un-
trusted hardware are on the side of the (malicious) server. Therefore, the
server’s input does not need to be protected from the server, and can be
stored on the server’s own untrusted hardware; the client’s inputs are only
available in their encrypted form, and can thus also be stored outside the
enclave. This insight allows us to devise a protocol for verifiably outsourc-
ing certain FHE operations. In order to do this efficiently, we rely on a
very lightweight, information-theoretic argument of equality, based on the
generalized Schwartz–Zippel lemma over rings:

Theorem 5.3.1 (Generalized Schwartz-Zippel Lemma over Rings [13, 85])
For a ring R, let f : Rn → R be a n-variate non-zero polynomial, let A ⊆ R be a
finite exceptional set, and let deg( f ) denote the total degree of f . Then:

Pr⃗a←An [ f (⃗a) = 0] ≤ deg( f )
|A|

For a given computation, we encode the expected result in one polynomial
( f ), and the actual result computed on untrusted hardware in another
polynomial (g). The trick for efficiency, then, is to compute the compute
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and compare f (a) and g(a) faster than computing the full representation
of g in the first place.

Consider, for example, the tensoring operation, which is the most com-
putationally expensive part of FHE multiplication (for the B/FV, BGV,
and CKKS schemes). In the following, we will interpret a ciphertext ct =
(ct0, . . . , ctk−1) ∈ Rk

q as a polynomial of degree k− 1 over Rq, where cti is
the i-th coefficient.

The tensoring operation takes as input two ciphertexts ct = (ct0, ct1), ct′ =
(ct′0, ct′1) ∈ R2

q, and outputs cout = ct · ct′ = (ct0 · ct′0, ct0 · ct′1 + ct′0 · ct1, ct1 ·
ct′1) ∈ R3

q. Now, evaluating the expected result ct · ct′ at a random point
a ∈ A can be done efficiently as follows:

f (a) := (ct · ct′)(a) = ct(a) · ct′(a) = (ct0 + a · ct1) · (ct′0 + a · ct′1)

Evaluating the untrusted result ctout at this same point can be done by
using Horner’s rule:

g(a) := ct′′(a) = ct′′0 + a · (ct′′1 + a · ct′′2 )

After checking that f (a) = g(a), we know that ct · ct′ = ct′′ with high
probability (for R = Zq1·...·ql [X]/ f [X], we have |A| = q1 ≈ 260, i.e., 60 bits
of soundness). While computing the result has a concrete complexity of
1 R+R, 4 R×R, verifying the result as outlined above only requires 4 A×R,
4 R+R, 1 R×R.

This approach can also be extended as follows to verify k tensoring oper-
ations at the same time. Let f (a1, . . . , ak) := ∑k

i=1(cti · ct′i)(ai) = ∑k
i=1(cti,0 +

ai · cti,1) · (cti,0 + ai · ct′i,1), and define g(a1, . . . , ak) := ∑k
i=1 ct′′i (ai)

= ∑k
i=1(ct′′i,0 + ai · (ct′′i,1 + ai · ct′′i,2)).

Computing k tensoring operations has a concrete complexity of k R+R,
4k R×R, while verifying the result by computing f (⃗a) and g(⃗a) has a com-
plexity of 4k A×R, (6k− 2) R+R, k R ×R . By trading expensive R-R multi-
plications for cheaper R-R additions and A-R multiplications, we are able
to achieve a non-negligible speed-up, which we quantify in the next section.
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We can view our protocol as a much more efficient, non-zero-knowledge
version of Rinocchio; indeed, Rinocchio also uses Theorem 5.3.1, but re-
quires significantly more protocol machinery in order to achieve zero-
knowledge. In addition, Rinocchio offers roughly log2(q1) ≈ 60 bits of
computational soundness (and thus requires a soundness amplification
strategy), while our protocol offers log2(q1) bits of statistical soundness, and
can therefore provide a satisfactory level of security by itself.

We note that this optimization is similar to the Slalom framework by
Tramèr and Boneh [159], which offloads matrix multiplications (over un-
encrypted) values to untrusted hardware by using Freivalds’ algorithm.
Slalom relies on the TEE both for integrity and data confidentiality and
only supports matrix multiplication, whereas our protocol does not require
confidentiality of the data stored on the TEE, and can handle arbitrary
polynomial computations.

5.3.3 Performance Analysis

In this section, we evaluate our ZKP- and TEE-based instantiations across a
range of workloads representing different levels of complexity. We conclude
our analysis with a brief outlook on the future of FHE integrity.

Implementation & Setup. We use the Microsoft SEAL [41] implementation
of the BGV scheme [22], which is a state-of-the-art RNS- and NTT-based
implementation. We express our ZKP circuits using Circom [86] which
translates its custom specification language to R1CS. We rely on a variety of
state-of-the-art ZKP implementations for the backends: we use the arkworks
library [59] to implement Groth16 [98], for Aurora [11] we use the libiop
library by the same authors, and for Bulletproofs [26] we use the Dalek
library [68]. We implement Rinocchio [85] and extend it with an optimized
encoding scheme (cf. Section 5.3.1). We make our implementation available
as open-source8. For the TEE-based approach, we re-implement CHEX-
MIX [141] and extend it with our optimization (cf. Section 5.3.2), targeting

6 We omit setup results when no additional setup is required.
8 https://github.com/MarbleHE/ringSNARK

https://github.com/MarbleHE/ringSNARK
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Intel SGX via the OpenEnclave SDK [144]. We make our FHE-in-TEE frame-
work available as open-source9. We evaluate our implementations on an
AWS c5d.4xlarge instance with 16 vCPUs and 32 GB of RAM. We make
our instantiations and evaluation setup publicly available10.

Workloads. We consider three different circuits, each representing a differ-
ent level of complexity: (i) Our Toy circuit computes a ciphertext-ciphertext
multiplication on two inputs provided by the client, i.e., in the outsourced
computation setting considered by previous work. (ii) The Small circuit
represents a more realistic low-depth two-party computation, computing
x · v + w for an encrypted client input x and private server inputs v and w.
The presence of the server inputs requires input checks to ensure validity
and prevent key-recovery attacks. Their private nature requires perform-
ing and proving noise-flooding as part of the computation. We follow the
approach described in [17], which repeatedly adds encryptions of zero to
increase the noise of the ciphertext without modifying the message. (iii) Fi-
nally, our Medium circuit introduces ciphertext-maintenance operations,
computing ModSwitch

(
(x− w)2) for a client input x and a private server

input w. As in the previous task, this requires proving the validity of the
client input and ensuring server privacy via noise-flooding. In addition,
it requires computing and proving the modulus switching ciphertext op-
eration, going well beyond what prior work on FHE integrity is able to
express.

9 https://github.com/MarbleHE/FHE-in-TEE
10 https://github.com/MarbleHE/ZKP-FHE

https://github.com/MarbleHE/FHE-in-TEE
https://github.com/MarbleHE/ZKP-FHE
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ZKP System
Toy Small Medium

Setup Prover Verifier Setup Prover Verifier Setup Prover Verifier

FHE [No Integrity] 0.003 s 0.002 s 0.001 s 0.807 s 0.011 s 0.009 s 1.053 s 0.014 s 0.010 s
Bulletproofs [26] -6

7569.799 s 552.079 s - 3957.122 s 278.433 s - 8697.741 s 575.792 s
Aurora [11] - 1554.589 s 32.880 s - 3750.477 s 79.323 s - 5028.085 s 106.345 s

Groth16 [98] 198.640 s 195.941 s 0.002 s 479.222 s 472.711 s 0.002 s 642.470 s 633.741 s 0.002 s
Rinocchio [85] 0.485 s 0.320 s 0.096 s 46.700 s 305.000 s 0.153 s 56.90 s 443.000 s 0.181 s

TEE [Section 5.3.2] - 0.154 s - - 1.100 s - - 1.260 s -

Table 5.3: Performance results for different instantiations of verifiable Fully Homomorphic Encryption.
For FHE, Setup = Key Generation, Prover = Homomorphic Computation and Verifier = Encryption/Decryption
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Performance. In Table 5.3 we present the performance results for the dif-
ferent instantiations, compared against a baseline of non-verified FHE.
The FHE parameters for the workload are N = 8192 and log2 q = 137 =

45+ 46+ 46, and the zero-knowledge proofs have between 222 and 224 R1CS
constraints. We observe that the runtimes fall into three different categories:
practical (seconds), acceptable (minutes), and impractical (hours). We note
that verifier times are always either practical or at least acceptable. However,
prover time varies wildly between the different instantiations. For example,
transparent SNARKs (Bulletproofs and Aurora) take several hours to com-
pute the proofs. In addition, they have the slowest verifier times, making
them overall unattractive for FHE verification, especially when considering
that FHE permits a straightforward realization of trusted setups. Groth16

offers the best verification time, being nearly indistinguishable from pure
FHE. At the same time, it offers acceptable prover runtimes in the order
of minutes. This comes at the cost of several minutes of trusted setup, but
that can be amortized over many client queries. Rinocchio11 offers slightly
slower but still very practical client verification but improves significantly
on prover time and especially setup times. However, these performance
gains only apply when instantiating Rinocchio over Zn

q , where the plaintext
input checks cannot be fully expressed. Finally, FHE-in-TEEoffers by far the
most practical performance at the cost of additional trust assumptions and
hardware requirements.

Outlook. Our work shows that, while the cost of robustness is clearly
non-negligible, it is, today, already acceptable for high-value applications
in challenging settings. FHE applications currently mostly focus on settings
where latency is not critical, which allows them to tolerate the additional
overhead more easily. While our constructions and instantiations explored
(and optimized) existing state-of-the-art FHE and ZKP schemes, there are
further opportunities to improve performance through the co-design of
FHE and ZKP schemes. More fundamentally, we need to improve our
understanding of how to construct efficient and expressive ring-native ZKP
systems. Specifically, next-generation FHE-friendly ZKPs should be able to

11 We report only the performance of our optimized version.
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accommodate switching between different rings, as is common in modern
FHE, and be able to express the automorphisms that underly rotation
operations that are essential when using SIMD packing. We believe that the
increasing demand to deploy FHE in challenging real-world environments
will also drive future research on these issues.





6
S U M M A RY

Fully Homomorphic Encryption is reaching an important milestone in prac-
ticality and deployability. Recent cryptographic and algorithmic advances
have enabled a first wave of real-world deployments [112]. These initial
deployments demonstrate the potential of FHE to enable a new generation
of privacy-preserving applications. With upcoming hardware accelerators
promising significant further speedup [30, 70, 153, 154], FHE is poised to
become a key enabler for a wide range of privacy-preserving applications.
However, development techniques and tooling have not kept up with the
rapid advances of FHE. As a result, the development of FHE solutions has
continued to require cryptographic experts and specialized knowledge.

This requirement for highly specialized expertise has limited the practical
deployment of FHE to a small number of research-oriented use cases,
preventing the technology from reaching its full potential in solving real-
world problems. While commercial off-the-shelf solutions (e.g., for privacy-
preserving ML inference) will unlock the benefits of FHE for some use cases,
there remains a long tail of use cases that require custom FHE solutions
to be developed. While experts will continue to play an important role in
developing cutting-edge solutions for highly challenging applications, this
leaves out a vast middle ground of use cases that require solutions beyond
off-the-shelf products yet are comparatively simple enough to not require
novel cryptographic techniques.

Addressing this gap requires the development of tools and resources that
allow non-experts to develop and deploy efficient FHE-based solutions. This
thesis presents a series of steps toward solving this challenge by providing a
set of practical approaches and techniques that can be used by non-experts
to implement FHE-based solutions effectively. More concretely, this thesis
presented the following contributions.

129
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FHE Application Development (Chapter 3). We provided a systematic
understanding of the engineering challenges that need to be addressed to
help broaden FHE adoption. Towards this, we studied and surveyed the
current state-of-the-art of FHE tools to understand which of these challenges
have been addressed and which remain to be solved. We considered these
tools in practice by experimentally evaluating them across a range of case
study applications, contrasting usability, expressiveness, and performance.
For a selection of promising tools, we provided an in-depth analysis of
usability and expressiveness in practice. We implemented and benchmarked
case-study applications that represent different domains of FHE-based
computation and allowed us to study not only the overall performance
of FHE for these applications across tools but also the relative strengths
of different tools compared to each other. Based on the insights gained
through our study, we highlighted successes in the FHE tool space and
identified gaps that remained to be addressed. We identified the unique
programming paradigm of FHE and the lack of tool interoperability as key
challenges preventing wider adoption.

End-to-End Compilation for FHE (Chapter 4). Building upon the gained
understanding, we presented a new end-to-end compiler design that ad-
dresses the shortcomings of current tools and resources. Our architecture
provides, for the first time, a true end-to-end toolchain for FHE develop-
ment. We identified four phases of converting an application to an efficient
FHE implementation and designed a set of Intermediate Representations
(IRs) based on the requirements of each phase that allow us to naturally
and efficiently express optimizations at these different levels. HECO, our
Homomorphic Encryption Compiler, allows non-experts to develop efficient
FHE-based solutions. In order to enable this, we proposed novel transfor-
mations and optimizations that map imperative programs to the unique
programming model of FHE. HECO automatically applies batching, a re-
stricted type of parallelism found in many FHE schemes, which is used
by experts to drastically reduce ciphertext expansion and computational
overhead. In our evaluation, we showed that HECO can match the per-
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formance of expert implementations, providing up to 3500x speedup over
naive non-batched implementations.

Verifiable Fully Homomorphic Encryption (Chapter 5). Finally, we high-
lighted the challenges of deploying FHE-based solutions in real-world
settings. We showed how existing integrity notions fall short, highlight-
ing the mismatch between the setting assumed in the existing integrity
literature and the settings used for the vast majority of FHE applications.
We presented a new notion, verifiable FHE, that addresses the issues we
identified, composing the standard notion of FHE with modular integrity
properties. As a result, our notion easily adapts to a wide variety of FHE
deployment settings. Verifiable FHE can be constructed generically from
FHE and ZKP, and we explored a variety of possible instantiations, com-
paring them to a hardware-attestation–based approach (FHE-in-TEE). We
highlight a series of fundamental challenges in bringing together FHE and
ZKP systems and introduced a new optimization for emulating FHE ring
arithmetic inside field-based ZKPs. We showed that verifiable FHE can be
practical, but also highlighted the need for future work on ZKP systems
specifically designed for the unique characteristics of FHE.

Impact. The research presented in this thesis has brought to light crucial
FHE development issues within the community and has garnered signif-
icant interest. Our work has already influenced the direction of the next
generation of FHE tools which are currently being developed [96]. The
work has also attracted collaborations with industry leaders such as Google
and Intel. In particular, Google has been actively involved in our efforts
to standardize intermediate representations (IRs) across the FHE commu-
nity and is transitioning its toolchain to an MLIR-based one following our
design. Meanwhile, Intel is planning to adopt an MLIR-based toolchain
based on HECO for its upcoming FHE accelerator. In conclusion, this work,
along with concurrent efforts, has made significant progress in addressing
many of the issues we identified in our initial investigation. However, as
we have worked to overcome some of the most critical shortcomings, we
have uncovered new challenges that must be addressed.
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6.1 future work

Despite the progress that has been made toward achieving the vision
of useable FHE, many issues still require attention and further research.
Below, we separate these into three categories, focussing on potential future
directions for FHE tooling, challenges around FHE integrity and verifiable
FHE, and finally, potential future directions in accessible secure computation
beyond the scope of FHE.

The Future of FHE Compilers

There are a plethora of possible improvements to FHE compilers both in
algorithmic design (optimizations) and in tooling (user experience) improve-
ments. Here, we focus on two more fundamental directions that address
key challenges in the current FHE ecosystem.

Currently, the FHE ecosystem is conceptually split between two mostly
incompatible paradigms. On the one hand, RLWE-based schemes allow
additions and multiplications over (large vectors of) integers. On the other
hand, LWE-based schemes feature comparatively fast bootstrapping and
can use functional bootstrapping to evaluate non-polynomial functions.
Most FHE tools today tie the developer to the use of one of these two
approaches. However, which approach is best to use depends on the target
application specifics. Hence, this necessitates work on compiler designs that
offer common abstractions and allow developers to re-target applications
seamlessly. Future FHE compilers should automate such decisions so that
developers no longer have to consider the underlying approach used for
their applications.

As FHE hardware starts to emerge, they will require new compilation
techniques to fully exploit their potential. Tools should be able to gen-
erate code for a variety of hardware architectures that will likely differ
significantly in the parts of the computation that they optimize. The next
generation of FHE compilers should be able to automatically translate
programs to heterogeneous hardware. In addition, large-scale applications
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will have to be scheduled across compute clusters made of heterogeneous
hardware, ranging from CPUs and GPUs to FPGA-accelerators and custom
co-processors. These challenges need to be addressed with compilation
tools, code generations, and scheduling techniques that abstract all these
issues from developers yet deliver compelling performance.

Practical FHE Integrity

While this work has presented proof-of-concept implementations of ZKP-
based verifiable FHE that shows its feasibility, enabling their practical use
for more complex workloads requires significant further work. While Rinoc-
chio [85] shows the potential of dedicated FHE-friendly Ring-ZKP schemes,
further work is required to achieve practicality. For example, there is a need
to investigate how more complex operations, such as relinearization, which
are key to the performance of RLWE-based FHE schemes, can be realized
efficiently. LWE-based FHE, on the other hand, might be more amenable
to traditional ZKP techniques due to its smaller size. Investigating how
traditional field-based ZKPs perform in this application is an interesting
avenue for future work. However, it is likely that here, too, dedicated ZKP
schemes will be required to achieve practical performance. For example,
schemes optimized to handle complex operations such as boostrapping,
which are essential operation in LWE-based FHE schemes.

In addition, verifiable FHE fundamentally changes the cost model of FHE
computations, as the prover overhead frequently dominates over the FHE
computation itself. This invalidates the heuristics currently used by experts
and tools and can result in non-intuitive approaches significantly outper-
forming traditional wisdom. For example, avoiding relinearization opera-
tions by increasing parameter sizes will result in a significant slowdown
in the FHE computation, but the resulting reduction in ZKP complexity
will likely more than make up for this overhead. As a result, FHE tools that
want to incorporate verifiable FHE need to introduce novel optimizations
targeted at the performance characteristics of the underlying schemes.
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Beyond FHE: Developing & Deploying Advanced Cryptography

Protecting user privacy is an ongoing challenge, and while FHE is a useful
tool for secure computation, it is just one of many techniques that can be
employed. As more secure computation techniques achieve practicality, the
development and deployment of privacy-enhancing technologies (PETs)
will only grow more complex. Future PETs will likely incorporate a va-
riety of techniques, including FHE, Zero-Knowledge Proofs (ZKP), and
Multi-Party Computation (MPC). This further raises the complexity of de-
velopment, both cryptographically and from an engineering point of view.
Currently, complex protocols incorporating multiple secure computation
techniques are virtually always hand-crafted by experts familiar with the
underlying techniques. While compilers for the respective techniques could
help implement each sub-component of the puzzle, such an approach does
not take into account the possible performance tradeoffs that arise when
combining these techniques. In order to address this, we require tools that
can reason and optimize across the boundaries of different schemes and
techniques. This thesis has highlighted the potential of combining crypto-
graphic insights with techniques and tools from the world of Programming
Languages research. While we demonstrated the efficacy of this approach in
the domain of FHE, we believe that this approach holds significant potential
for the accessibility of secure computation in general.



B I B L I O G R A P H Y

[1] Ahmad Al Badawi et al. “OpenFHE: Open-Source Fully Homomor-
phic Encryption Library”. In: Cryptology ePrint Archive. WAHC’22

(2022), 53. doi: 10.1145/3560827.3563379. url: https://doi.org/
10.1145/3560827.3563379.

[2] Martin Albrecht et al. Homomorphic Encryption Security Standard.
Tech. rep. Toronto, Canada: HomomorphicEncryption.org, 2018. url:
https://homomorphicencryption.org.

[3] Martin R Albrecht, Rachel Player, and Sam Scott. “On the Concrete
Hardness of Learning with Errors”. In: Journal of Mathematical Cryp-
tology 9.3 (2015), 169. issn: 1862-2976, 1862-2984. doi: 10.1515/jmc-
2015-0016. url: https://www.degruyter.com/view/j/jmc.2015.9.
issue-3/jmc-2015-0016/jmc-2015-0016.xml.

[4] Anwar Hithnawi Alexander Viand Patrick Jattke. “HECO: Fully
Homomorphic Encryption Compiler”. In: 2023.

[5] AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection
and More. https://www.amd.com/system/files/TechDocs/SEV-SNP-
strengthening-vm-isolation-with-integrity-protection-and-

more.pdf.

[6] David W Archer, José Manuel Calderón Trilla, Jason Dagit, Alex
Malozemoff, Yuriy Polyakov, Kurt Rohloff, and Gerard Ryan. “RAM-
PARTS: A Programmer-Friendly System for Building Homomorphic
Encryption Applications”. In: Proceedings of the 7th ACM Workshop on
Encrypted Computing & Applied Homomorphic Cryptography - WAHC’19.
New York, New York, USA: ACM Press, 2019, 57. isbn: 978-1-4503-
6829-2. doi: 10.1145/3338469.3358945. url: http://dl.acm.org/
citation.cfm?doid=3338469.3358945.

135

https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1145/3560827.3563379
https://homomorphicencryption.org
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://doi.org/10.1145/3338469.3358945
http://dl.acm.org/citation.cfm?doid=3338469.3358945
http://dl.acm.org/citation.cfm?doid=3338469.3358945


136 bibliography

[7] Pascal Aubry, Sergiu Carpov, and Renaud Sirdey. “Faster Homo-
morphic Encryption Is Not Enough: Improved Heuristic for Mul-
tiplicative Depth Minimization of Boolean Circuits”. In: Topics in
Cryptology – CT-RSA 2020. Springer International Publishing, 2020,
345. doi: 10.1007/978-3-030-40186-3\\\_15. url: http://dx.doi.
org/10.1007/978-3-030-40186-3%5C%5F15.

[8] Nick Barlow, Tomas Lazauskas, Oliver Strickson, and Adria Gascon.
“SHEEP: A Homomorphic Encryption Evaluation Platform”. In:
(2019). url: https://github.com/alan-turing-institute/SHEEP.

[9] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
“Scalable, transparent, and post-quantum secure computational in-
tegrity”. In: Cryptology ePrint Archive (2018). url: https://eprint.
iacr.org/2018/046.pdf.

[10] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer,
and Madars Virza. “SNARKs for C: Verifying Program Executions
Succinctly and in Zero Knowledge”. In: Cryptology ePrint Archive
(2013). url: https://eprint.iacr.org/2013/507.pdf.

[11] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas
Spooner, Madars Virza, and Nicholas P Ward. “Aurora: Transparent
Succinct Arguments for R1CS”. In: Advances in Cryptology – EU-
ROCRYPT 2019. Springer International Publishing, 2019, 103. doi:
10.1007/978-3-030-17653-2\_4. url: http://dx.doi.org/10.1007/
978-3-030-17653-2%5C%5F4.

[12] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. “Verifiable
Delegation of Computation over Large Datasets”. In: Advances in
Cryptology – CRYPTO 2011. Springer Berlin Heidelberg, 2011, 111.

[13] Anurag Bishnoi, Pete L Clark, Aditya Potukuchi, and John R Schmitt.
“On Zeros of a Polynomial in a Finite Grid”. In: Comb. Probab. Comput.
27.3 (2018), 310.

[14] Fabian Boemer, Anamaria Costache, Rosario Cammarota, and
Casimir Wierzynski. “nGraph-HE2: A High-Throughput Framework
for Neural Network Inference on Encrypted Data”. In: Proceedings

https://doi.org/10.1007/978-3-030-40186-3\\\_15
http://dx.doi.org/10.1007/978-3-030-40186-3%5C%5F15
http://dx.doi.org/10.1007/978-3-030-40186-3%5C%5F15
https://github.com/alan-turing-institute/SHEEP
https://eprint.iacr.org/2018/046.pdf
https://eprint.iacr.org/2018/046.pdf
https://eprint.iacr.org/2013/507.pdf
https://doi.org/10.1007/978-3-030-17653-2\_4
http://dx.doi.org/10.1007/978-3-030-17653-2%5C%5F4
http://dx.doi.org/10.1007/978-3-030-17653-2%5C%5F4


bibliography 137

of the 7th ACM Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography. WAHC’19. New York, NY, USA: Association
for Computing Machinery, 2019, 45. isbn: 978-1-4503-6829-2. doi:
10.1145/3338469.3358944. url: https://doi.org/10.1145/3338469.
3358944.

[15] Fabian Boemer, Sejun Kim, Gelila Seifu, F D de Souza, Vinodh Gopal,
et al. Intel HEXL (release 1.2). https://github.com/intel/hexl. 2021.
arXiv: 2103.16400 [cs.CR]. url: http://arxiv.org/abs/2103.

16400.

[16] Fabian Boemer, Yixing Lao, Rosario Cammarota, and Casimir
Wierzynski. “nGraph-HE: A Graph Compiler for Deep Learning on
Homomorphically Encrypted Data”. In: Proceedings of the 16th ACM
International Conference on Computing Frontiers. CF ’19. New York, NY,
USA: ACM, 2019, 3. isbn: 978-1-4503-6685-4. doi: 10.1145/3310273.
3323047. url: https://dl.acm.org/doi/10.1145/3310273.3323047.

[17] Alexandre Bois, Ignacio Cascudo, Dario Fiore, and Dongwoo Kim.
“Flexible and Efficient Verifiable Computation on Encrypted Data”.
In: Public-Key Cryptography – PKC 2021. Springer International Pub-
lishing, 2021, 528.

[18] C Boura, N Gama, and M Georgieva. “Chimera: A Unified Frame-
work for B/FV, TFHE and HEAAN Fully Homomorphic Encryption
and Predictions for Deep Learning”. 2018. doi: doi:10.1515/jmc-
2019-0026. url: https://eprint.iacr.org/2018/758.

[19] Florian Bourse, Rafaël Del Pino, Michele Minelli, and Hoeteck Wee.
“FHE Circuit Privacy Almost for Free”. In: Advances in Cryptology –
CRYPTO 2016. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2016, 62. isbn: 978-3-662-53007-8 978-3-662-53008-5. doi:
10.1007/978-3-662-53008-5\\\_3. url: https://link.springer.
com/chapter/10.1007/978-3-662-53008-5%5C%5F3.

[20] Florian Bourse and Malika Izabachène. “Plug-and-play sanitization
for TFHE”. In: Cryptology ePrint Archive (2022).

https://doi.org/10.1145/3338469.3358944
https://doi.org/10.1145/3338469.3358944
https://doi.org/10.1145/3338469.3358944
https://github.com/intel/hexl
https://arxiv.org/abs/2103.16400
http://arxiv.org/abs/2103.16400
http://arxiv.org/abs/2103.16400
https://doi.org/10.1145/3310273.3323047
https://doi.org/10.1145/3310273.3323047
https://dl.acm.org/doi/10.1145/3310273.3323047
https://doi.org/doi:10.1515/jmc-2019-0026
https://doi.org/doi:10.1515/jmc-2019-0026
https://eprint.iacr.org/2018/758
https://doi.org/10.1007/978-3-662-53008-5\\\_3
https://link.springer.com/chapter/10.1007/978-3-662-53008-5%5C%5F3
https://link.springer.com/chapter/10.1007/978-3-662-53008-5%5C%5F3


138 bibliography

[21] Zvika Brakerski. “Fully Homomorphic Encryption without Modu-
lus Switching from Classical GapSVP”. In: Advances in Cryptology –
CRYPTO 2012. Vol. 7417. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, 868. isbn: 978-3-642-32008-8. doi: 10.1007/978-3-642-
32009-5\_50. url: http://dx.doi.org/10.1007/978-3-642-32009-
5%5C%5F50.

[22] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Lev-
eled) Fully Homomorphic Encryption without Bootstrapping”. In:
ACM Trans. Comput. Theory 6.3 (2014), 1. issn: 1942-3454. doi: 10.
1145/2633600. url: http://doi.acm.org/10.1145/2633600.

[23] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient Fully Ho-
momorphic Encryption from (Standard) LWE”. In: 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science. Palm Springs,
CA, USA: IEEE, 2011, 97. isbn: 978-0-7695-4571-4. doi: 10.1109/
FOCS.2011.12.

[24] Zvika Brakerski and Vinod Vaikuntanathan. “Fully Homomorphic
Encryption from Ring-LWE and Security for Key Dependent Mes-
sages”. In: Advances in Cryptology – CRYPTO 2011. Springer Berlin
Heidelberg, 2011, 505. doi: 10.1007/978-3-642-22792-9\\\_29. url:
http://link.springer.com/chapter/10.1007/978-3-642-22792-

9%5C%5F29.

[25] Lars Brenna, Isak Sunde Singh, Håvard Dagenborg Johansen, and
Dag Johansen. “TFHE-rs: A library for safe and secure remote com-
puting using fully homomorphic encryption and trusted execution
environments”. In: Array 13 (2022), 100118. issn: 2590-0056. doi:
10.1016/j.array.2021.100118. url: https://www.sciencedirect.
com/science/article/pii/S2590005621000564.

[26] B Bünz, J Bootle, D Boneh, A Poelstra, P Wuille, and G Maxwell.
“Bulletproofs: Short Proofs for Confidential Transactions and More”.
In: 2018 IEEE Symposium on Security and Privacy (SP). 2018, 315. doi:
10.1109/SP.2018.00020. url: http://dx.doi.org/10.1109/SP.
2018.00020.

https://doi.org/10.1007/978-3-642-32009-5\_50
https://doi.org/10.1007/978-3-642-32009-5\_50
http://dx.doi.org/10.1007/978-3-642-32009-5%5C%5F50
http://dx.doi.org/10.1007/978-3-642-32009-5%5C%5F50
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
http://doi.acm.org/10.1145/2633600
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1007/978-3-642-22792-9\\\_29
http://link.springer.com/chapter/10.1007/978-3-642-22792-9%5C%5F29
http://link.springer.com/chapter/10.1007/978-3-642-22792-9%5C%5F29
https://doi.org/10.1016/j.array.2021.100118
https://www.sciencedirect.com/science/article/pii/S2590005621000564
https://www.sciencedirect.com/science/article/pii/S2590005621000564
https://doi.org/10.1109/SP.2018.00020
http://dx.doi.org/10.1109/SP.2018.00020
http://dx.doi.org/10.1109/SP.2018.00020


bibliography 139

[27] Lukas Burkhalter, Anwar Hithnawi, Alexander Viand, Hossein
Shafagh, and Sylvia Ratnasamy. “TimeCrypt: Encrypted Data
Stream Processing at Scale with Cryptographic Access Control”. In:
USENIX NSDI. 2020.

[28] Lukas Burkhalter, Nicolas Küchler, Alexander Viand, Hossein
Shafagh, and Anwar Hithnawi. “Zeph: Cryptographic Enforcement
of End-to-End Data Privacy”. In: USENIX OSDI. 2021.

[29] Niklas Büscher and Stefan Katzenbeisser. Compilation for Secure Multi-
party Computation. SpringerBriefs in Computer Science. Springer
International Publishing, 2017. doi: 10.1007/978-3-319-67522-0.
url: https://link.springer.com/book/10.1007/978-3-319-67522-
0.

[30] Rosario Cammarota. “Intel HERACLES: Homomorphic Encryption
Revolutionary Accelerator with Correctness for Learning-oriented
End-to-End Solutions”. In: Proceedings of the 2022 on Cloud Computing
Security Workshop. CCSW’22. Los Angeles, CA, USA: Association for
Computing Machinery, 2022, 3. isbn: 9781450398756. doi: 10.1145/
3560810.3565290. url: https://doi.org/10.1145/3560810.3565290.

[31] Ran Canetti, Srinivasan Raghuraman, Silas Richelson, and Vinod
Vaikuntanathan. “Chosen-Ciphertext Secure Fully Homomorphic
Encryption”. In: Public-Key Cryptography – PKC 2017. Springer Berlin
Heidelberg, 2017, 213.

[32] S Carpov, T H Nguyen, R Sirdey, G Constantino, and F Martinelli.
“Practical Privacy-Preserving Medical Diagnosis Using Homomor-
phic Encryption”. In: 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD). 2016, 593. doi: 10.1109/CLOUD.2016.0084. url:
http://dx.doi.org/10.1109/CLOUD.2016.0084.

[33] Sergiu Carpov, Pascal Aubry, and Renaud Sirdey. “A Multi-Start
Heuristic for Multiplicative Depth Minimization of Boolean Circuits”.
In: International Workshop on Combinatorial Algorithms. Springer.
Springer International Publishing, 2017, 275. doi: 10.1007/978-3-

https://doi.org/10.1007/978-3-319-67522-0
https://link.springer.com/book/10.1007/978-3-319-67522-0
https://link.springer.com/book/10.1007/978-3-319-67522-0
https://doi.org/10.1145/3560810.3565290
https://doi.org/10.1145/3560810.3565290
https://doi.org/10.1145/3560810.3565290
https://doi.org/10.1109/CLOUD.2016.0084
http://dx.doi.org/10.1109/CLOUD.2016.0084
https://doi.org/10.1007/978-3-319-78825-8\_23
https://doi.org/10.1007/978-3-319-78825-8\_23
https://doi.org/10.1007/978-3-319-78825-8\_23


140 bibliography

319-78825-8\_23. url: https://link.springer.com/chapter/10.
1007/978-3-319-78825-8%5C%5F23.

[34] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. “Armadillo: A
Compilation Chain for Privacy Preserving Applications”. In: Pro-
ceedings of the 3rd International Workshop on Security in Cloud Com-
puting. SCC ’15. Singapore, Republic of Singapore: ACM, 2015, 13.
isbn: 978-1-4503-3447-1. doi: 10.1145/2732516.2732520. url: http:
//doi.acm.org/10.1145/2732516.2732520.

[35] Dario Catalano and Dario Fiore. “Practical Homomorphic MACs for
Arithmetic Circuits”. In: Advances in Cryptology – EUROCRYPT 2013.
Springer Berlin Heidelberg, 2013, 336.

[36] Sylvain Chatel, Christian Knabenhans, Apostolos Pyrgelis, and Jean-
Pierre Hubaux. “Verifiable Encodings for Secure Homomorphic
Analytics”. In: (2022). arXiv: 2207.14071 [cs.CR].

[37] Bhuvnesh Chaturvedi, Anirban Chakraborty, Ayantika Chatterjee,
and Debdeep Mukhopadhyay. “A Practical Full Key Recovery Attack
on TFHE and FHEW by Inducing Decryption Errors”. In: Cryptology
ePrint Archive (2022).

[38] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. “Hy-
perPlonk: Plonk with Linear-Time Prover and High-Degree Custom
Gates”. In: Cryptology ePrint Archive (2022). url: https://eprint.
iacr.org/2022/1355.pdf.

[39] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient Multi-
Key Homomorphic Encryption with Packed Ciphertexts with Application
to Oblivious Neural Network Inference. Tech. rep. New York, NY, USA,
2019, 395. doi: 10.1145/3319535.3363207. url: https://doi.org/
10.1145/3319535.3363207.

[40] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. “Labeled
PSI from Fully Homomorphic Encryption with Malicious Security”.
In: Cryptology ePrint Archive (2018), 1223. doi: 10.1145/3243734.
3243836. url: https://eprint.iacr.org/2018/787.

https://doi.org/10.1007/978-3-319-78825-8\_23
https://doi.org/10.1007/978-3-319-78825-8\_23
https://doi.org/10.1007/978-3-319-78825-8\_23
https://doi.org/10.1007/978-3-319-78825-8\_23
https://link.springer.com/chapter/10.1007/978-3-319-78825-8%5C%5F23
https://link.springer.com/chapter/10.1007/978-3-319-78825-8%5C%5F23
https://doi.org/10.1145/2732516.2732520
http://doi.acm.org/10.1145/2732516.2732520
http://doi.acm.org/10.1145/2732516.2732520
https://arxiv.org/abs/2207.14071
https://eprint.iacr.org/2022/1355.pdf
https://eprint.iacr.org/2022/1355.pdf
https://doi.org/10.1145/3319535.3363207
https://doi.org/10.1145/3319535.3363207
https://doi.org/10.1145/3319535.3363207
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3243734.3243836
https://eprint.iacr.org/2018/787


bibliography 141

[41] Hao Chen, Kim Laine, and Rachel Player. “Simple Encrypted Arith-
metic Library - SEAL v2.1”. In: Financial Cryptography and Data Secu-
rity. Springer International Publishing, 2017, 3. doi: 10.1007/978-
3-319-70278-0\_1. url: http://dx.doi.org/10.1007/978-3-319-
70278-0%5C%5F1.

[42] Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amaras-
inghe. “VeGen: a vectorizer generator for SIMD and beyond”. In:
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS
’21. Virtual, USA: Association for Computing Machinery, 2021, 902.
isbn: 9781450383172. doi: 10.1145/3445814.3446692. url: https:
//doi.org/10.1145/3445814.3446692.

[43] Massimo Chenal and Qiang Tang. “On Key Recovery Attacks
Against Existing Somewhat Homomorphic Encryption Schemes”.
In: Progress in Cryptology - LATINCRYPT 2014. Springer International
Publishing, 2015, 239.

[44] Long Cheng, Fang Liu, and Danfeng Daphne Yao. “Enterprise Data
Breach: Causes, Challenges, Prevention, and future Directions”. In:
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
7.5 (2017).

[45] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and
Yongsoo Song. “A Full RNS Variant of Approximate Homomorphic
Encryption”. In: Selected Areas in Cryptography – SAC 2018. Springer
International Publishing, 2019, 347. doi: 10.1007/978-3-030-10970-
7\\\_16. url: http://dx.doi.org/10.1007/978-3-030-10970-
7%5C%5F16.

[46] Jung Hee Cheon, Seungwan Hong, and Duhyeong Kim. Remark on
the Security of CKKS Scheme in Practice. Cryptology ePrint Archive,
Report 2020/1581. https://eprint.iacr.org/2020/1581. 2020.

[47] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song.
“Homomorphic Encryption for Arithmetic of Approximate Num-
bers”. In: Advances in Cryptology – ASIACRYPT 2017. Vol. 10624.

https://doi.org/10.1007/978-3-319-70278-0\_1
https://doi.org/10.1007/978-3-319-70278-0\_1
http://dx.doi.org/10.1007/978-3-319-70278-0%5C%5F1
http://dx.doi.org/10.1007/978-3-319-70278-0%5C%5F1
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1007/978-3-030-10970-7\\\_16
https://doi.org/10.1007/978-3-030-10970-7\\\_16
http://dx.doi.org/10.1007/978-3-030-10970-7%5C%5F16
http://dx.doi.org/10.1007/978-3-030-10970-7%5C%5F16
https://eprint.iacr.org/2020/1581


142 bibliography

Cham: Springer International Publishing, 2017, 409. isbn: 978-3-
319-70693-1. doi: 10.1007/978-3-319-70694-8\_15. url: https:
//www.springerprofessional.de/homomorphic- encryption- for-

arithmetic-of-approximate-numbers/15266370.

[48] E Chielle, N G Tsoutsos, O Mazonka, and M Maniatakos. “Encrypt-
Everything-Everywhere: ISA Extensions for Private Computation”.
In: IEEE Transactions on Dependable and Secure Computing (2020),
1. issn: 1941-0018. doi: 10.1109/TDSC.2020.3007066. url: http:
//dx.doi.org/10.1109/TDSC.2020.3007066.

[49] Eduardo Chielle, Oleg Mazonka, Nektarios Georgios Tsoutsos, and
Michail Maniatakos. “E3: A Framework for Compiling C++ Pro-
grams with Encrypted Operands”. In: IACR Cryptology ePrint Archive
2018 (2018), 1013. url: https://eprint.iacr.org/2018/1013.

[50] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. “Faster Packed Homomorphic Operations and Efficient
Circuit Bootstrapping for TFHE”. In: Advances in Cryptology – ASI-
ACRYPT 2017. Springer International Publishing, 2017, 377. doi:
10 . 1007 / 978 - 3 - 319 - 70694 - 8 \ \ \ \ \ _14. url: https : / / link .

springer.com/chapter/10.1007/978-3-319-70694-8%5C%5F14.

[51] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. “TFHE: Fast Fully Homomorphic Encryption Library”. In:
(2016). url: https://tfhe.github.io/tfhe.

[52] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. “TFHE: Fast Fully Homomorphic Encryption Over the
Torus”. In: J. Cryptology 33.1 (2020), 34.

[53] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. “TFHE: Fast Fully Homomorphic Encryption over the
Torus”. In: (2018). url: https://eprint.iacr.org/2018/421.

[54] Ilaria Chillotti, Nicolas Gama, and Louis Goubin. “Attacking FHE-
based applications by software fault injections”. In: Cryptology ePrint
Archive (2016). url: https://eprint.iacr.org/2016/1164.

https://doi.org/10.1007/978-3-319-70694-8\_15
https://www.springerprofessional.de/homomorphic-encryption-for-arithmetic-of-approximate-numbers/15266370
https://www.springerprofessional.de/homomorphic-encryption-for-arithmetic-of-approximate-numbers/15266370
https://www.springerprofessional.de/homomorphic-encryption-for-arithmetic-of-approximate-numbers/15266370
https://doi.org/10.1109/TDSC.2020.3007066
http://dx.doi.org/10.1109/TDSC.2020.3007066
http://dx.doi.org/10.1109/TDSC.2020.3007066
https://eprint.iacr.org/2018/1013
https://doi.org/10.1007/978-3-319-70694-8\\\\\_14
https://link.springer.com/chapter/10.1007/978-3-319-70694-8%5C%5F14
https://link.springer.com/chapter/10.1007/978-3-319-70694-8%5C%5F14
https://tfhe.github.io/tfhe
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2016/1164


bibliography 143

[55] Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila, and
Samuel Tap. “CONCRETE: Concrete operates oN ciphertexts rapidly
by extending TfhE”. In: WAHC 2020 – 8th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography. 2020. url: https:
/ / homomorphicencryption . org / wp - content / uploads / 2020 / 12 /

wahc20%5C%5Fdemo%5C%5Fdamien.pdf.

[56] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable Bootstrap-
ping Enables Efficient Homomorphic Inference of Deep Neural Networks.
Tech. rep. https://ia.cr/2021/091. Zama, 2020.

[57] E. J. Chou, A. Gururajan, K. Laine, N. K. Goel, A. Bertiger, and J. W.
Stokes. “Privacy-Preserving Phishing Web Page Classification via
Fully Homomorphic Encryption”. In: ICASSP 2020 - 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
2020, 2792.

[58] Sangeeta Chowdhary, Wei Dai, Kim Laine, and Olli Saarikivi. “EVA
Improved: Compiler and Extension Library for CKKS”. In: Proceed-
ings of the 9th on Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography. WAHC ’21. Virtual Event, Republic of Korea:
Association for Computing Machinery, 2021, 43. isbn: 9781450386562.
doi: 10.1145/3474366.3486929. url: https://doi.org/10.1145/
3474366.3486929.

[59] arkworks contributors. arkworks zkSNARK ecosystem. 2022. url:
https://arkworks.rs.

[60] Anamaria Costache, Benjamin R Curtis, Erin Hales, Sean Murphy,
Tabitha Ogilvie, and Rachel Player. On the precision loss in approximate
homomorphic encryption. https://eprint.iacr.org/2022/162.pdf.
Accessed: 2022-2-26. url: https://eprint.iacr.org/2022/162.pdf.

[61] Anamaria Costache, Kim Laine, and Rachel Player. “Evaluating the
Effectiveness of Heuristic Worst-Case Noise Analysis in FHE”. In:
(2019). url: https://eprint.iacr.org/2019/493.

https://homomorphicencryption.org/wp-content/uploads/2020/12/wahc20%5C%5Fdemo%5C%5Fdamien.pdf
https://homomorphicencryption.org/wp-content/uploads/2020/12/wahc20%5C%5Fdemo%5C%5Fdamien.pdf
https://homomorphicencryption.org/wp-content/uploads/2020/12/wahc20%5C%5Fdemo%5C%5Fdamien.pdf
https://ia.cr/2021/091
https://doi.org/10.1145/3474366.3486929
https://doi.org/10.1145/3474366.3486929
https://doi.org/10.1145/3474366.3486929
https://arkworks.rs
https://eprint.iacr.org/2022/162.pdf
https://eprint.iacr.org/2022/162.pdf
https://eprint.iacr.org/2019/493


144 bibliography

[62] Anamaria Costache, Kim Laine, and Rachel Player. “Evaluating
the Effectiveness of Heuristic Worst-Case Noise Analysis in FHE”.
In: Computer Security – ESORICS 2020. Springer, 2020, 546. isbn:
978-3-030-59012-3. doi: 10.1007/978- 3- 030- 59013- 0\_27. url:
https://doi.org/10.1007/978-3-030-59013-0%5C%5F27.

[63] Meghan Cowan, Deeksha Dangwal, Armin Alaghi, Caroline Trippel,
Vincent T. Lee, and Brandon Reagen. “Porcupine: A Synthesizing
Compiler for Vectorized Homomorphic Encryption”. In: Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. PLDI 2021. Virtual, Canada: As-
sociation for Computing Machinery, 2021, 375. isbn: 9781450383912.
doi: 10.1145/3453483.3454050. url: https://doi.org/10.1145/
3453483.3454050.

[64] Eric Crockett. “Simply Safe Lattice Cryptography”. PhD thesis. Geor-
gia Institute of Technology, 2017. url: https://smartech.gatech.
edu/handle/1853/58734.

[65] Eric Crockett and Chris Peikert. “Λoλ: Functional Lattice Cryp-
tography”. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM. 2016, 993. url: https:
//dl.acm.org/doi/abs/10.1145/2976749.2978402.

[66] Eric Crockett, Chris Peikert, and Chad Sharp. “ALCHEMY: A Lan-
guage and Compiler for Homomorphic Encryption Made easY”.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM. 2018, 1020.

[67] CryptoExperts. FV-NFLlib. 2016. url: https : / / github . com /

CryptoExperts/FV-NFLlib.

[68] Dalek Cryptography. Rust Bulletproofs Library. Online: https://
github.com/dalek-cryptography/bulletproofs. 2020.

[69] Scott Cyphers, Arjun K Bansal, Anahita Bhiwandiwalla, Jayaram
Bobba, Matthew Brookhart, Avijit Chakraborty, Will Constable,
Christian Convey, Leona Cook, Omar Kanawi, et al. “Intel nGraph:
An Intermediate Representation, Compiler, and Executor for Deep

https://doi.org/10.1007/978-3-030-59013-0\_27
https://doi.org/10.1007/978-3-030-59013-0%5C%5F27
https://doi.org/10.1145/3453483.3454050
https://doi.org/10.1145/3453483.3454050
https://doi.org/10.1145/3453483.3454050
https://smartech.gatech.edu/handle/1853/58734
https://smartech.gatech.edu/handle/1853/58734
https://dl.acm.org/doi/abs/10.1145/2976749.2978402
https://dl.acm.org/doi/abs/10.1145/2976749.2978402
https://github.com/CryptoExperts/FV-NFLlib
https://github.com/CryptoExperts/FV-NFLlib
https://github.com/dalek-cryptography/bulletproofs
https://github.com/dalek-cryptography/bulletproofs


bibliography 145

Learning”. In: arXiv preprint arXiv:1801.08058 (2018). url: https:
//arxiv.org/abs/1801.08058.

[70] DARPA. Data Protection in Virtual Environments (DPRIVE). https://
sam.gov/opp/16c71dadbe814127b475ce309929374b/view. 2020. url:
https://sam.gov/opp/16c71dadbe814127b475ce309929374b/view.

[71] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim
Laine, and Madanlal Musuvathi. “EVA: An Encrypted Vector Arith-
metic Language and Compiler for Efficient Homomorphic Com-
putation”. In: Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation. 2019. url: http:
//arxiv.org/abs/1912.11951.

[72] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin
Lauter, Saeed Maleki, Madanlal Musuvathi, and Todd Mytkow-
icz. “CHET: an optimizing compiler for fully-homomorphic neural-
network inferencing”. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. New
York, NY, USA: ACM, 2019, 142. isbn: 9781450367127. doi: 10.1145/
3314221.3314628. url: https://dl.acm.org/citation.cfm?doid=
3314221.3314628.

[73] Mark Driver. Emerging Technologies: Homomorphic Encryption for Data
Sharing With Privacy. Tech. rep. Gartner, Inc, 2020.

[74] Léo Ducas and Daniele Micciancio. “FHEW: Bootstrapping Ho-
momorphic Encryption in Less Than a Second”. In: Advances in
Cryptology – EUROCRYPT 2015. Springer Berlin Heidelberg, 2015,
617. doi: 10.1007/978-3-662-46800-5\_24. url: http://dx.doi.
org/10.1007/978-3-662-46800-5%5C%5F24.

[75] Léo Ducas and Damien Stehlé. “Sanitization of FHE Ciphertexts”. In:
Advances in Cryptology – EUROCRYPT 2016. Vol. 9665. Lecture notes
in computer science. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, 294. isbn: 978-3-662-49889-7 978-3-662-49890-3. doi: 10.1007/
978-3-662-49890-3\_12. url: https://eprint.iacr.org/2016/164.
pdf.

https://arxiv.org/abs/1801.08058
https://arxiv.org/abs/1801.08058
https://sam.gov/opp/16c71dadbe814127b475ce309929374b/view
https://sam.gov/opp/16c71dadbe814127b475ce309929374b/view
https://sam.gov/opp/16c71dadbe814127b475ce309929374b/view
http://arxiv.org/abs/1912.11951
http://arxiv.org/abs/1912.11951
https://doi.org/10.1145/3314221.3314628
https://doi.org/10.1145/3314221.3314628
https://dl.acm.org/citation.cfm?doid=3314221.3314628
https://dl.acm.org/citation.cfm?doid=3314221.3314628
https://doi.org/10.1007/978-3-662-46800-5\_24
http://dx.doi.org/10.1007/978-3-662-46800-5%5C%5F24
http://dx.doi.org/10.1007/978-3-662-46800-5%5C%5F24
https://doi.org/10.1007/978-3-662-49890-3\_12
https://doi.org/10.1007/978-3-662-49890-3\_12
https://eprint.iacr.org/2016/164.pdf
https://eprint.iacr.org/2016/164.pdf


146 bibliography

[76] Enveil. Enveil Raises $10 Million in Series A Funding. Accessed: 2020-
12-21. 2020. url: https://www.globenewswire.com/news-release/
2020/02/18/1986152/0/en/Enveil-Raises-10-Million-in-Series-

A-Funding.html.

[77] David Evans, Vladimir Kolesnikov, and Mike Rosulek. “A Pragmatic
Introduction to Secure Multi-Party Computation”. In: Foundations
and Trends® in Privacy and Security 2.2-3 (2018), 70. issn: 2474-1558.
doi: 10.1561/3300000019. url: http://dx.doi.org/10.1561/

3300000019.

[78] Junfeng Fan and Frederik Vercauteren. “Somewhat Practical Fully
Homomorphic Encryption”. In: Cryptology ePrint Archive 2012 (2012),
144. url: https://eprint.iacr.org/2012/144.

[79] Prastudy Fauzi, Martha Norberg Hovd, and Håvard Raddum. “On
the IND-CCA1 Security of FHE Schemes”. In: Cryptology ePrint
Archive (2021).

[80] Shufan Fei, Zheng Yan, Wenxiu Ding, and Haomeng Xie. “Security
Vulnerabilities of SGX and Countermeasures: A Survey”. In: ACM
Comput. Surv. 54.6 (2021), 1.

[81] Axel Feldmann, Nikola Samardzic, Aleksandar Krastev, Srini De-
vadas, Ron Dreslinski, Karim Eldefrawy, Nicholas Genise, Christo-
pher Peikert, and Daniel Sanchez. “F1: A Fast and Programmable
Accelerator for Fully Homomorphic Encryption (Extended Version)”.
In: (2021). arXiv: 2109.05371 [cs.CR]. url: http://arxiv.org/abs/
2109.05371.

[82] Dario Fiore, Rosario Gennaro, and Valerio Pastro. “Efficiently Veri-
fiable Computation on Encrypted Data”. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
CCS ’14. Scottsdale, Arizona, USA: Association for Computing Ma-
chinery, 2014, 844.

[83] Dario Fiore, Anca Nitulescu, and David Pointcheval. “Boosting Veri-
fiable Computation on Encrypted Data”. In: Public-Key Cryptography
– PKC 2020. Springer International Publishing, 2020, 124.

https://www.globenewswire.com/news-release/2020/02/18/1986152/0/en/Enveil-Raises-10-Million-in-Series-A-Funding.html
https://www.globenewswire.com/news-release/2020/02/18/1986152/0/en/Enveil-Raises-10-Million-in-Series-A-Funding.html
https://www.globenewswire.com/news-release/2020/02/18/1986152/0/en/Enveil-Raises-10-Million-in-Series-A-Funding.html
https://doi.org/10.1561/3300000019
http://dx.doi.org/10.1561/3300000019
http://dx.doi.org/10.1561/3300000019
https://eprint.iacr.org/2012/144
https://arxiv.org/abs/2109.05371
http://arxiv.org/abs/2109.05371
http://arxiv.org/abs/2109.05371


bibliography 147

[84] Ariel Gabizon, Zachary J Aztec, and Aztec Oana Williamson. PlonK:
Permutations over Lagrange-bases for Oecumenical Noninteractive ar-
guments of Knowledge. https://eprint.iacr.org/2019/953.pdf.
Accessed: 2022-12-2. 2022. url: https://eprint.iacr.org/2019/
953.pdf.

[85] Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. “Rinoc-
chio: SNARKs for Ring Arithmetic”. In: Cryptology ePrint Archive
(2021).

[86] Hermenegildo García Navarro. “Design and implementation of the
Circom 1.0 compiler”. MA thesis. Universidad Complutense de
Madrid, 2020. url: https://eprints.ucm.es/id/eprint/62475/.

[87] Jon Geater. “ARM® TrustZone®”. In: Trusted Computing for Embedded
Systems. Ed. by Bernard Candaele, Dimitrios Soudris, and Iraklis
Anagnostopoulos. Cham: Springer International Publishing, 2015,
35.

[88] Robin Geelen et al. “BASALISC: Flexible Asynchronous Hardware
Accelerator for Fully Homomorphic Encryption”. In: (2022). arXiv:
2205.14017 [cs.CR]. url: http://arxiv.org/abs/2205.14017.

[89] Rosario Gennaro and Daniel Wichs. “Fully Homomorphic Mes-
sage Authenticators”. In: Advances in Cryptology - ASIACRYPT 2013.
Springer Berlin Heidelberg, 2013, 301.

[90] Craig Gentry. “A fully homomorphic encryption scheme”. PhD
thesis. Stanford University, 2009. url: https://crypto.stanford.
edu/craig.

[91] Craig Gentry. “Fully homomorphic encryption using ideal lattices”.
In: Proceedings of the forty-first annual ACM symposium on Theory of
computing. STOC ’09. Bethesda, MD, USA: Association for Com-
puting Machinery, 2009, 169. isbn: 978-1-60558-506-2. doi: 10.1145/
1536414.1536440. url: https://doi.org/10.1145/1536414.1536440.

[92] Craig Gentry and Shai Halevi. “Implementing Gentry’s Fully-
Homomorphic Encryption Scheme”. In: EUROCRYPT. 2011.

https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprints.ucm.es/id/eprint/62475/
https://arxiv.org/abs/2205.14017
http://arxiv.org/abs/2205.14017
https://crypto.stanford.edu/craig
https://crypto.stanford.edu/craig
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440


148 bibliography

[93] Craig Gentry, Shai Halevi, and Nigel P Smart. “Homomorphic
Evaluation of the AES Circuit”. In: Annual Cryptology Conference.
Springer. 2012, 850. url: https://link.springer.com/chapter/10.
1007/978-3-642-32009-5%5C%5F49.

[94] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic
Encryption from Learning with Errors: Conceptually-Simpler,
Asymptotically-Faster, Attribute-Based”. In: Advances in Cryptology
– CRYPTO 2013. Vol. 8042. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2013, 75. isbn: 978-3-642-40040-7. doi: 10.1007/978-3-642-
40041-4\_5.

[95] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. “CryptoNets: Applying Neu-
ral Networks to Encrypted Data with High Throughput and Accu-
racy”. In: Proceedings of The 33rd International Conference on Machine
Learning. Ed. by Maria Florina Balcan and Kilian Q Weinberger.
Vol. 48. Proceedings of Machine Learning Research. New York, New
York, USA: PMLR, 2016, 201. url: http://proceedings.mlr.press/
v48/gilad-bachrach16.html.

[96] Shruthi Gorantala et al. “A General Purpose Transpiler for Fully
Homomorphic Encryption”. In: CoRR abs/2106.07893 (2021). arXiv:
2106.07893. url: https://arxiv.org/abs/2106.07893.

[97] Sanath Govindarajan and William S Moses. “SyFER-MLIR: Inte-
grating Fully Homomorphic Encryption Into the MLIR Compiler
Framework”. In: (2020).

[98] Jens Groth. “On the Size of Pairing-Based Non-interactive Argu-
ments”. In: Advances in Cryptology – EUROCRYPT 2016. Springer
Berlin Heidelberg, 2016, 305.

[99] Vernam Group. cuFHE. 2018. url: https://github.com/vernamlab/
cuFHE.

[100] Shai Halevi and Victor Shoup. “Algorithms in HElib”. In: Advances
in Cryptology – CRYPTO 2014. Ed. by Juan A Garay and Rosario

https://link.springer.com/chapter/10.1007/978-3-642-32009-5%5C%5F49
https://link.springer.com/chapter/10.1007/978-3-642-32009-5%5C%5F49
https://doi.org/10.1007/978-3-642-40041-4\_5
https://doi.org/10.1007/978-3-642-40041-4\_5
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
https://arxiv.org/abs/2106.07893
https://arxiv.org/abs/2106.07893
https://github.com/vernamlab/cuFHE
https://github.com/vernamlab/cuFHE


bibliography 149

Gennaro. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2014, 554. isbn: 978-3-662-44370-5 978-3-662-44371-2. doi:
10.1007/978-3-662-44371-2\_31. url: http://dx.doi.org/10.
1007/978-3-662-44371-2%5C%5F31.

[101] Shai Halevi and Victor Shoup. “Bootstrapping for HElib”. In: Ad-
vances in Cryptology – EUROCRYPT 2015. Ed. by Elisabeth Oswald
and Marc Fischlin. Lecture Notes in Computer Science. Springer.
Springer, Berlin, Heidelberg / Springer, 2015, 641. isbn: 978-3-662-
46799-2 978-3-662-46800-5. doi: 10.1007/978-3-662-46800-5\\\_25.
url: http://link.springer.com/chapter/10.1007/978-3-662-
46800-5%5C%5F25.

[102] Shai Halevi and Victor Shoup. “Design and Implementation of a
Homomorphic-Encryption Library”. In: IBM Research (Manuscript) 6

(2013), 12.

[103] Shai Halevi and Victor Shoup. “Faster Homomorphic Linear Trans-
formations in HElib”. In: Advances in Cryptology – CRYPTO 2018.
Vol. 10991. Cham: Springer International Publishing, 2018, 93. isbn:
978-3-319-96883-4. doi: 10 . 1007 / 978 - 3 - 319 - 96884 - 1 \ _4. url:
https://link.springer.com/chapter/10.1007/978-3-319-96884-

1%5C%5F4.

[104] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve
Zdancewic. “SoK: General Purpose Compilers for Secure Multi-
Party Computation”. In: IEEE Symposium on Security and Privacy
(SP). Los Alamitos, CA, USA: IEEE Computer Society, 2019, 479. doi:
10.1109/SP.2019.00028. url: https://www.computer.org/csdl/
proceedings/sp/2019/6660/00/%20666000a462-abs.html.

[105] Vincent Herbert. “Automatize Parameter Tuning in Ring-Learning-
With-Errors-Based Leveled Homomorphic Cryptosystem Implemen-
tations”. In: (2019). url: https://eprint.iacr.org/2019/1402.

[106] Alberto Ibarrondo and Alexander Viand. “Pyfhel: PYthon For Homo-
morphic Encryption Libraries”. In: Proceedings of the 9th on Workshop
on Encrypted Computing & Applied Homomorphic Cryptography. WAHC

https://doi.org/10.1007/978-3-662-44371-2\_31
http://dx.doi.org/10.1007/978-3-662-44371-2%5C%5F31
http://dx.doi.org/10.1007/978-3-662-44371-2%5C%5F31
https://doi.org/10.1007/978-3-662-46800-5\\\_25
http://link.springer.com/chapter/10.1007/978-3-662-46800-5%5C%5F25
http://link.springer.com/chapter/10.1007/978-3-662-46800-5%5C%5F25
https://doi.org/10.1007/978-3-319-96884-1\_4
https://link.springer.com/chapter/10.1007/978-3-319-96884-1%5C%5F4
https://link.springer.com/chapter/10.1007/978-3-319-96884-1%5C%5F4
https://doi.org/10.1109/SP.2019.00028
https://www.computer.org/csdl/proceedings/sp/2019/6660/00/%20666000a462-abs.html
https://www.computer.org/csdl/proceedings/sp/2019/6660/00/%20666000a462-abs.html
https://eprint.iacr.org/2019/1402


150 bibliography

’21. Virtual Event, Republic of Korea: Association for Computing
Machinery, 2021, 11. isbn: 9781450386562. doi: 10.1145/3474366.
3486923. url: https://doi.org/10.1145/3474366.3486923.

[107] Ilia Iliashenko. “Optimisations of Fully Homomorphic Encryption”.
PhD. Thesis, KU Leuven. PhD thesis. PhD thesis, KU Leuven, 2019.
url: https://www.esat.kuleuven.be/cosic/publications/thesis-
316.pdf.

[108] Inpher. J.P. Morgan leads USD $10 million financing in leading data secu-
rity and machine learning provider, Inpher. Accessed: 2020-12-21. 2018.
url: https://www.prnewswire.com/news- releases/jp- morgan-
leads-usd-10-million-financing-in-leading-data-security-

and-machine-learning-provider-inpher-300743090.html.

[109] Intel® Software Guard Extensions (Intel® SGX). https://www.intel.
com/content/www/us/en/architecture-and-technology/software-

guard-extensions.html. Accessed: 2022-11-2.

[110] Riddhi Jain. Data encryption provider IXUP appoints new CEO & MD
Marcus Gracey. Accessed: 2020-12-21. url: https://itmunch.com/
data-encryption-provider-ixup-appoints-new-ceo-md-marcus-

gracey/.

[111] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-
drakasan. “GAZELLE: A Low Latency Framework for Secure
Neural Network Inference”. In: Proceedings of the 27th USENIX Con-
ference on Security Symposium. SEC’18. Berkeley, CA, USA: USENIX
Association, 2018, 1651. isbn: 978-1-931971-46-1. url: https://www.
usenix.org/conference/usenixsecurity18/presentation/juvekar.

[112] Sreekanth Kannepalli, Kim Laine, and Radames Cruz Moreno. Pass-
word Monitor: Safeguarding passwords in Microsoft Edge. https://
www.microsoft.com/en- us/research/blog/password- monitor-

safeguarding-passwords-in-microsoft-edge/. Accessed: 2021-7-5.
2021. url: https://www.microsoft.com/en- us/research/blog/
password-monitor-safeguarding-passwords-in-microsoft-edge.

https://doi.org/10.1145/3474366.3486923
https://doi.org/10.1145/3474366.3486923
https://doi.org/10.1145/3474366.3486923
https://www.esat.kuleuven.be/cosic/publications/thesis-316.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-316.pdf
https://www.prnewswire.com/news-releases/jp-morgan-leads-usd-10-million-financing-in-leading-data-security-and-machine-learning-provider-inpher-300743090.html
https://www.prnewswire.com/news-releases/jp-morgan-leads-usd-10-million-financing-in-leading-data-security-and-machine-learning-provider-inpher-300743090.html
https://www.prnewswire.com/news-releases/jp-morgan-leads-usd-10-million-financing-in-leading-data-security-and-machine-learning-provider-inpher-300743090.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://itmunch.com/data-encryption-provider-ixup-appoints-new-ceo-md-marcus-gracey/
https://itmunch.com/data-encryption-provider-ixup-appoints-new-ceo-md-marcus-gracey/
https://itmunch.com/data-encryption-provider-ixup-appoints-new-ceo-md-marcus-gracey/
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge


bibliography 151

[113] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. “Revisiting Homo-
morphic Encryption Schemes for Finite Fields”. In: Cryptology ePrint
Archive (2021).

[114] Miran Kim, Yongsoo Song, Baiyu Li, and Daniele Micciancio. Semi-
parallel Logistic Regression for GWAS on Encrypted Data. Tech. rep.
2019, 294. url: https://eprint.iacr.org/2019/294.

[115] Miran Kim et al. “Ultra-Fast Homomorphic Encryption Models
Enable Secure Outsourcing of Genotype Imputation”. 2020. doi:
10.1101/2020.07.02.183459. url: https://www.biorxiv.org/
content/10.1101/%202020.07.02.183459v2.

[116] Nicolas Küchler, Emanuel Opel, Hidde Lycklama, Alexander Viand,
and Anwar Hithnawi. “Cohere: Privacy Management in Large Scale
Systems”. In: (2023). arXiv: 2301.08517 [cs.CR]. url: http://arxiv.
org/abs/2301.08517.

[117] Samuel Larsen and Saman Amarasinghe. “Exploiting superword
level parallelism with multimedia instruction sets”. In: SIGPLAN
Not. 35.5 (2000), 145. issn: 0362-1340. doi: 10.1145/358438.349320.
url: https://doi.org/10.1145/358438.349320.

[118] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas
Vasilache, and Oleksandr Zinenko. “MLIR: A Compiler Infrastruc-
ture for the End of Moore’s Law”. In: (2020). arXiv: 2002.11054
[cs.PL]. url: http://arxiv.org/abs/2002.11054.

[119] Kristin Lauter, Adriana López-Alt, and Michael Naehrig. “Private
Computation on Encrypted Genomic Data”. In: Progress in Cryptology
- LATINCRYPT 2014. Springer International Publishing, 2014, 3. doi:
10.1007/978-3-319-16295-9\_1. url: http://dx.doi.org/10.1007/
978-3-319-16295-9%5C%5F1.

[120] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
“Gradient-Based Learning Applied to Document Recognition”. In:
Proceedings of the IEEE 86.11 (1998), 2278. url: https://ieeexplore.
ieee.org/document/726791.

https://eprint.iacr.org/2019/294
https://doi.org/10.1101/2020.07.02.183459
https://www.biorxiv.org/content/10.1101/%202020.07.02.183459v2
https://www.biorxiv.org/content/10.1101/%202020.07.02.183459v2
https://arxiv.org/abs/2301.08517
http://arxiv.org/abs/2301.08517
http://arxiv.org/abs/2301.08517
https://doi.org/10.1145/358438.349320
https://doi.org/10.1145/358438.349320
https://arxiv.org/abs/2002.11054
https://arxiv.org/abs/2002.11054
http://arxiv.org/abs/2002.11054
https://doi.org/10.1007/978-3-319-16295-9\_1
http://dx.doi.org/10.1007/978-3-319-16295-9%5C%5F1
http://dx.doi.org/10.1007/978-3-319-16295-9%5C%5F1
https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791


152 bibliography

[121] Yann LeCun and Corinna Cortes. “MNIST Handwritten Digit
Database”. In: (2010). url: http://yann.lecun.com/exdb/mnist/.

[122] Dongkwon Lee, Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi. “Op-
timizing Homomorphic Evaluation Circuits by Program Synthesis
and Term Rewriting”. In: Proceedings of the 41st ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. PLDI
2020. New York, NY, USA: Association for Computing Machinery,
2020, 503. isbn: 978-1-4503-7613-6. doi: 10.1145/3385412.3385996.
url: https://doi.org/10.1145/3385412.3385996.

[123] Yongwoo Lee, Seonyeong Heo, Seonyoung Cheon, Shinnung Jeong,
Changsu Kim, Eunkyung Kim, Dongyoon Lee, and Hanjun Kim.
“HECATE: Performance-Aware Scale Optimization for Homomor-
phic Encryption Compiler”. In: 2022 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO). 2022, 193. doi:
10.1109/CGO53902.2022.9741265. url: http://dx.doi.org/10.
1109/CGO53902.2022.9741265.

[124] Baiyu Li and Daniele Micciancio. On the Security of Homomorphic En-
cryption on Approximate Numbers. Cryptology ePrint Archive, Report
2020/1533. https://eprint.iacr.org/2020/1533. 2020.

[125] Baiyu Li, Daniele Micciancio, Mark Schultz, and Jessica Sorrell.
“Securing Approximate Homomorphic Encryption Using Differ-
ential Privacy”. In: Cryptology ePrint Archive (2022). url: https :

//eprint.iacr.org/2022/816.pdf.

[126] Shimin Li, Xin Wang, and Rui Zhang. “Privacy-Preserving Homo-
morphic MACs with Efficient Verification”. In: Web Services – ICWS
2018. Springer International Publishing, 2018, 100.

[127] Zengpeng Li, Steven D Galbraith, and Chunguang Ma. “Preventing
Adaptive Key Recovery Attacks on the GSW Levelled Homomorphic
Encryption Scheme”. In: Provable Security. Springer International
Publishing, 2016, 373.

http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1109/CGO53902.2022.9741265
http://dx.doi.org/10.1109/CGO53902.2022.9741265
http://dx.doi.org/10.1109/CGO53902.2022.9741265
https://eprint.iacr.org/2020/1533
https://eprint.iacr.org/2022/816.pdf
https://eprint.iacr.org/2022/816.pdf


bibliography 153

[128] Mary Loritz. Paris-based Cosmian raises €1.4 for its platform that analy-
ses encrypted data while keeping it private. Accessed: 2020-12-21. url:
https://www.eu-startups.com/2019/03/paris-based-cosmian-

raises-e1-4-for-its-platform-that-analyses-encrypted-data-

while-keeping-it-private/.

[129] Wen-jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter
Qu. “PEGASUS: Bridging Polynomial and Non-polynomial Evalu-
ations in Homomorphic Encryption”. In: 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 2021. doi: 10.1109/sp40001.2021.
00043. url: https://doi.org/10.1109/sp40001.2021.00043.

[130] Ingrid Lunden. “Duality, a security startup co-founded by the creator
of homomorphic encryption, raises $16M”. In: TechCrunch (2019).
url: http://techcrunch.com/2019/10/30/duality-cybersecurity-
16-million/.

[131] Hidde Lycklama, Lukas Burkhalter, Alexander Viand, Nicolas Küch-
ler, and Anwar Hithnawi. “RoFL: Attestable Robustness for Secure
Federated Learning”. In: 2023 IEEE Symposium on Security and Privacy
(SP). 2023.

[132] Hidde Lycklama, Nicolas Küchler, Alexander Viand, Emanuel Opel,
Lukas Burkhalter, and Anwar Hithnawi. “Cryptographic Auditing
for Collaborative Learning”. In: NeurIPS ML Safety Workshop. 2022.
url: https://openreview.net/forum?id=sTrIkf20aTw.

[133] Chiara Marcolla, Victor Sucasas, Marc Manzano, Riccardo Bassoli,
Frank H P Fitzek, and Najwa Aaraj. “Survey on fully homomorphic
encryption, theory and applications”. 2022.

[134] Charith Mendis and Saman Amarasinghe. “goSLP: globally op-
timized superword level parallelism framework”. In: Proc. ACM
Program. Lang. 2.OOPSLA (2018), 1. doi: 10.1145/3276480. url:
https://doi.org/10.1145/3276480.

[135] Microsoft. AsureRun. 2019. url: https://github.com/microsoft/
SEAL-Demo/tree/master/AsureRun.

https://www.eu-startups.com/2019/03/paris-based-cosmian-raises-e1-4-for-its-platform-that-analyses-encrypted-data-while-keeping-it-private/
https://www.eu-startups.com/2019/03/paris-based-cosmian-raises-e1-4-for-its-platform-that-analyses-encrypted-data-while-keeping-it-private/
https://www.eu-startups.com/2019/03/paris-based-cosmian-raises-e1-4-for-its-platform-that-analyses-encrypted-data-while-keeping-it-private/
https://doi.org/10.1109/sp40001.2021.00043
https://doi.org/10.1109/sp40001.2021.00043
https://doi.org/10.1109/sp40001.2021.00043
http://techcrunch.com/2019/10/30/duality-cybersecurity-16-million/
http://techcrunch.com/2019/10/30/duality-cybersecurity-16-million/
https://openreview.net/forum?id=sTrIkf20aTw
https://doi.org/10.1145/3276480
https://doi.org/10.1145/3276480
https://github.com/microsoft/SEAL-Demo/tree/master/AsureRun
https://github.com/microsoft/SEAL-Demo/tree/master/AsureRun


154 bibliography

[136] Alan Mishchenko. “ABC: System for Sequential Logic Synthesis and
Formal Verification”. In: (2018). url: https://github.com/berkeley-
abc/abc.

[137] Travis Morrison, Sarah Scheffler, Bijeeta Pal, and Alexander Viand.
“Private Outsourced Translation for Medical Data”. In: Protecting
Privacy through Homomorphic Encryption. Ed. by Kristin Lauter, Wei
Dai, and Kim Laine. Cham: Springer International Publishing, 2021,
107. isbn: 978-3-030-77287-1. doi: 10.1007/978-3-030-77287-1\_7.
url: https://doi.org/10.1007/978-3-030-77287-1%5C%5F7.

[138] Christian Mouchet, Jean-Philippe Bossuat, and Juan Troncoso-
Pastoriza. Lattigo: A multiparty homomorphic encryption library in Go.
https://homomorphicencryption.org/wp-content/uploads/2020/

12/wahc20_demo_christian.pdf. Accessed: 2022-11-2. 2020. url:
https://homomorphicencryption.org/wp-content/uploads/2020/

12/wahc20%5C%5Fdemo%5C%5Fchristian.pdf.

[139] Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-Pierre
Hubaux. “Multiparty Homomorphic Encryption: From Theory
to Practice”. In: (2020). url: https://eprint.iacr.org/2020/304.

[140] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel
Gruss, and Frank Piessens. “Plundervolt: Software-based Fault Injec-
tion Attacks against Intel SGX”. In: 2020 IEEE Symposium on Security
and Privacy (SP). San Francisco, CA, USA: IEEE, 2020, 1466.

[141] Deepika Natarajan, Andrew Loveless, Wei Dai, and Ronald Dres-
linski. “CHEX-MIX: Combining Homomorphic Encryption with
Trusted Execution Environments for Two-party Oblivious Inference
in the Cloud”. In: Cryptology ePrint Archive (2021).

[142] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson.
“A Survey of Published Attacks on Intel SGX”. In: (2020). arXiv:
2006.13598 [cs.CR].

[143] NuCypher. nufhe. 2019. url: https://github.com/nucypher/nufhe.

[144] Open Enclave SDK. https://github.com/openenclave/openenclave.

https://github.com/berkeley-abc/abc
https://github.com/berkeley-abc/abc
https://doi.org/10.1007/978-3-030-77287-1\_7
https://doi.org/10.1007/978-3-030-77287-1%5C%5F7
https://homomorphicencryption.org/wp-content/uploads/2020/12/wahc20_demo_christian.pdf
https://homomorphicencryption.org/wp-content/uploads/2020/12/wahc20_demo_christian.pdf
https://homomorphicencryption.org/wp-content/uploads/2020/12/wahc20%5C%5Fdemo%5C%5Fchristian.pdf
https://homomorphicencryption.org/wp-content/uploads/2020/12/wahc20%5C%5Fdemo%5C%5Fchristian.pdf
https://eprint.iacr.org/2020/304
https://arxiv.org/abs/2006.13598
https://github.com/nucypher/nufhe
https://github.com/openenclave/openenclave


bibliography 155

[145] Charlie Osborne. IBM launches experimental homomorphic data encryp-
tion environment for the enterprise. Accessed: 2020-12-21. 2020. url:
https://www.zdnet.com/article/ibm- launches- experimental-

homomorphic-data-encryption-environment-for-the-enterprise/.

[146] Alex Ozdemir, Fraser Brown, and Riad S Wahby. “CirC: Compiler
infrastructure for proof systems, software verification, and more”.
In: 2022 IEEE Symposium on Security and Privacy (SP). 2022, 2248. doi:
10.1109/SP46214.2022.9833782. url: http://dx.doi.org/10.1109/
SP46214.2022.9833782.

[147] Ozgun Ozerk, Can Elgezen, Ahmet Can Mert, Erdinc Ozturk, and
Erkay Savas. “Efficient Number Theoretic Transform Implementation
on GPU for Homomorphic Encryption”. In: Cryptology ePrint Archive
(2021).

[148] Rachel Player. “Parameter Selection in Lattice-Based Cryptography”.
PhD thesis. PhD thesis, Royal Holloway, University of London, 2018.
url: https://pure.royalholloway.ac.uk/portal/files/29983580/
2018playerrphd.pdf.

[149] Yuriy Polyakov, Kurt Rohloff, and Gerard W Ryan. PALISADE Lattice
Cryptography Library User Manual (v1.6.0). Tech. rep. 2019, 54. url:
https://palisade-crypto.org/documentation.

[150] Luis Bernardo Pulido-Gaytan, Andrei Tchernykh, Jorge M Cortés-
Mendoza, Mikhail Babenko, and Gleb Radchenko. “A survey on
privacy-preserving machine learning with fully homomorphic en-
cryption”. In: Latin American High Performance Computing Conference.
Springer, 2021, 115.

[151] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. “On Data
Banks and Privacy Homomorphisms”. In: Foundations of secure compu-
tation 4.11 (1978), 169. url: https://people.csail.mit.edu/rivest/
RivestAdlemanDertouzos - OnDataBanksAndPrivacyHomomorphisms .

pdf.

https://www.zdnet.com/article/ibm-launches-experimental-homomorphic-data-encryption-environment-for-the-enterprise/
https://www.zdnet.com/article/ibm-launches-experimental-homomorphic-data-encryption-environment-for-the-enterprise/
https://doi.org/10.1109/SP46214.2022.9833782
http://dx.doi.org/10.1109/SP46214.2022.9833782
http://dx.doi.org/10.1109/SP46214.2022.9833782
https://pure.royalholloway.ac.uk/portal/files/29983580/2018playerrphd.pdf
https://pure.royalholloway.ac.uk/portal/files/29983580/2018playerrphd.pdf
https://palisade-crypto.org/documentation
https://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
https://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
https://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf


156 bibliography

[152] Hamza Saleem and Muhammad Naveed. “SoK: Anatomy of Data
Breaches”. In: Proceedings on Privacy Enhancing Technologies 2020.4
(2020), 153. url: http://isyou.info/jowua/papers/jowua-v10n4-
4.pdf.

[153] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas De-
vadas, Ronald Dreslinski, Christopher Peikert, and Daniel Sanchez.
“F1: A Fast and Programmable Accelerator for Fully Homomorphic
Encryption”. In: MICRO-54: 54th Annual IEEE/ACM International Sym-
posium on Microarchitecture. MICRO ’21. Virtual Event, Greece: Asso-
ciation for Computing Machinery, 2021, 238. isbn: 9781450385572.
doi: 10.1145/3466752.3480070. url: https://doi.org/10.1145/
3466752.3480070.

[154] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan
Manohar, Nicholas Genise, Srinivas Devadas, Karim Eldefrawy,
Chris Peikert, and Daniel Sanchez. “CraterLake: a hardware ac-
celerator for efficient unbounded computation on encrypted data”.
In: ISCA. 2022, 173.

[155] John E. Savage. Models of Computation: Exploring the Power of Comput-
ing. 1st. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1997. isbn: 0-201-89539-0.

[156] “Microsoft SEAL (Release 3.5)”. In: (2020). url: https://github.
com/Microsoft/SEAL.

[157] Victor Shoup et al. “NTL: A Library for Doing Number Theory”. In:
(2016). url: http://www.shoup.net/ntl/.

[158] N P Smart and F Vercauteren. “Fully homomorphic SIMD opera-
tions”. In: Designs, Codes and Cryptography. An International Journal
71.1 (2014), 57. issn: 0925-1022. doi: 10.1007/s10623-012-9720-4.
url: https://doi.org/10.1007/s10623-012-9720-4.

[159] Florian Tramèr and Dan Boneh. “Slalom: Fast, Verifiable and Private
Execution of Neural Networks in Trusted Hardware”. In: (2018).
arXiv: 1806.03287 [stat.ML].

http://isyou.info/jowua/papers/jowua-v10n4-4.pdf
http://isyou.info/jowua/papers/jowua-v10n4-4.pdf
https://doi.org/10.1145/3466752.3480070
https://doi.org/10.1145/3466752.3480070
https://doi.org/10.1145/3466752.3480070
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
http://www.shoup.net/ntl/
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://arxiv.org/abs/1806.03287


bibliography 157

[160] Tim van Elsloo, Giorgio Patrini, and Hamish Ivey-Law. “SEALion:
A Framework for Neural Network Inference on Encrypted Data”. In:
arXiv preprint arXiv:1904.12840 (2019). url: https://arxiv.org/abs/
1904.12840.

[161] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. “SoK: Fully
Homomorphic Encryption Compilers”. In: 2021 IEEE Symposium on
Security and Privacy (SP). 2021, 1092. doi: 10.1109/SP40001.2021.
00068. url: http://dx.doi.org/10.1109/SP40001.2021.00068.

[162] Alexander Viand, Christian Knabenhans, and Anwar Hithnawi. “Ver-
ifiable Fully Homomorphic Encryption”. In: (2023). arXiv: 2301.
07041 [cs.CR]. url: http://arxiv.org/abs/2301.07041.

[163] Alexander Viand and Hossein Shafagh. “Marble: Making Fully Ho-
momorphic Encryption Accessible to All”. In: Proceedings of the 6th
Workshop on Encrypted Computing & Applied Homomorphic Cryptogra-
phy. ACM, 2018, 49. isbn: 978-1-4503-5987-0. doi: 10.1145/3267973.
3267978. url: https://dl.acm.org/citation.cfm?doid=3267973.
3267978.

[164] Biao Wang, Xueqing Wang, and Rui Xue. “CCA1 secure FHE from
PIO, revisited”. In: Cybersecurity 1.1 (2018), 1.

[165] Alexander Wood, Kayvan Najarian, and Delaram Kahrobaei. “Ho-
momorphic Encryption for Machine Learning in Medicine and Bioin-
formatics”. In: ACM Comput. Surv. 53.4 (2020), 1.

[166] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papa-
manthou, and Dawn Song. “Libra: Succinct Zero-Knowledge Proofs
with Optimal Prover Computation”. In: Cryptology ePrint Archive
(2019). url: https://eprint.iacr.org/2019/317.pdf.

[167] Zhenfei Zhang, Thomas Plantard, and Willy Susilo. “Reaction At-
tack on Outsourced Computing with Fully Homomorphic Encryp-
tion Schemes”. In: Information Security and Cryptology - ICISC 2011.
Springer Berlin Heidelberg, 2012, 419.

https://arxiv.org/abs/1904.12840
https://arxiv.org/abs/1904.12840
https://doi.org/10.1109/SP40001.2021.00068
https://doi.org/10.1109/SP40001.2021.00068
http://dx.doi.org/10.1109/SP40001.2021.00068
https://arxiv.org/abs/2301.07041
https://arxiv.org/abs/2301.07041
http://arxiv.org/abs/2301.07041
https://doi.org/10.1145/3267973.3267978
https://doi.org/10.1145/3267973.3267978
https://dl.acm.org/citation.cfm?doid=3267973.3267978
https://dl.acm.org/citation.cfm?doid=3267973.3267978
https://eprint.iacr.org/2019/317.pdf

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Figures

	List of Tables
	List of Tables

	1 Introduction
	1.1 Thesis Contributions
	1.2 Publications
	1.3 Software Artefacts

	2 Preliminaries
	2.1 Fully Homomorphic Encryption
	2.2 Fully Homomorphic Encryption Schemes
	2.2.1 CGGI
	2.2.2 BFV
	2.2.3 CKKS
	2.2.4 Other Schemes


	3 FHE Application Development
	3.1 Challenges of Developing FHE Applications
	3.1.1 Parameter Selection
	3.1.2 Encoding
	3.1.3 Data-Independent Computation
	3.1.4 simd Batching
	3.1.5 Ciphertext Maintenance

	3.2 Survey of FHE Frameworks
	3.2.1 Methodology
	3.2.2 FHE Tooling Ecosystem
	3.2.3 FHE Libraries
	3.2.4 HElib
	3.2.5 PALISADE
	3.2.6 SEAL
	3.2.7 TFHE
	3.2.8 Other Libraries
	3.2.9 FHE Compilers
	3.2.10 Alchemy
	3.2.11 Cingulata
	3.2.12 Encrypt-Everything-Everywhere
	3.2.13 EVA & CHET
	3.2.14 Marble
	3.2.15 Ramparts
	3.2.16 nGraph-HE
	3.2.17 SEALion

	3.3 Evaluation
	3.3.1 Applications
	3.3.2 Implementation Considerations
	3.3.3 Effects of Optimizations

	3.4 Discussion
	3.4.1 What applications can be developed using FHE today?
	3.4.2 When to use which of the FHE tools?
	3.4.3 Where should FHE tools go from here?


	4 End-to-End Compilation for FHE
	4.1 End-to-End FHE Compiler Design
	4.1.1 FHE Programming Paradigm
	4.1.2 System Overview
	4.1.3 HECO Framework
	4.1.4 Compiler Infrastructure
	4.1.5 Transformation & Optimization

	4.2 Automatic SIMD Batching
	4.2.1 SIMD Batching
	4.2.2 Automatic Batching Approach
	4.2.3 Preprocessing
	4.2.4 Automatic SIMD-fication
	4.2.5 Rotate-and-Sum Pass

	4.3 Implementation
	4.3.1 Evaluation
	4.3.2 Benchmarks
	4.3.3 Comparison with Synthesized Solutions
	4.3.4 Real-World Application

	4.4 Related Work
	4.4.1 fhe Compilers
	4.4.2 mpc & zkp Compilers

	4.5 Discussion

	5 Verifiable Fully Homomorphic Encryption
	5.1 Analysis of FHE Integrity Constructions
	5.1.1 Taxonomy of FHE Integrity Paradigms
	5.1.2 FHE Integrity in Practice
	5.1.3 Attacks on Correctness
	5.1.4 Attacks on Confidentiality (Key Recovery)

	5.2 Maliciously-Secure Verifiable FHE
	5.2.1 Defining Maliciously-Secure Verifiable FHE
	5.2.2 Server Input Privacy and Input Predicates
	5.2.3 Generic Construction

	5.3 Instantiating Verifiable FHE in Practice
	5.3.1 Verifiable FHE via ZKP
	5.3.2 Verifiable FHE via TEE
	5.3.3 Performance Analysis


	6 Summary
	6.1 Future Work

	 Bibliography



