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ABSTRACT

Deep neural network architectures have led to remarkable achieve-
ments in the area of natural language processing (NLP) in recent years.
Through scaling up the model size and self-supervised pre-training
on the vast amount of textual data available on the internet, gen-
eralization and complex reasoning capabilities have been unlocked,
even when provided with a small number of specific examples. How-
ever, most progress in NLP has been made based on a static learning
paradigm where models are trained once on a fixed dataset to learn a
specific skill and remain fixed after that. In this thesis, we turn our
attention to interactive agents for NLP, i.e., language-based models that
engage with a dynamic environment or user. Across three different
application areas, (i) text-based games, (ii) query reformulation, and
(iii) conversation, we investigate and develop agents interacting with
different forms of adaptive environments.

The thesis is structured into three parts, reflecting the three application
areas. In the first part, we develop a deep reinforcement learning (RL)
agent for text-based games that generalizes across families of games
that are similar in structure but with new objects and instructions.

The second part focuses on query reformulation, which we approach
from two angles. First, we consider the learning to search problem
where an agent is trained to interact with an information retrieval
(IR) system using natural language. Observing the IR component’s
results, it adapts the initial user query and collects an improved
set of evidence documents. Within this setting, we develop two
agents learning successful interactive search strategies: one model
trained by pure reinforcement learning and the other through (self-)
supervised learning. In the subsequent chapter, we turn our attention
to neural retrieval models and develop agents for interactive query
suggestions. To this end, we train a query decoder model that, given
a point in the shared paragraph-query embedding space, generates



the corresponding query in textual form. We employ this decoder to
generate a synthetic dataset of directional query refinements, which
we use to train a powerful reformulation model.

In the last part of the thesis, we propose different approaches to
developing conversational agents. We suggest modularizing the ar-
chitecture of dialogue models to output intermediate text sequences
on which subsequent modules are conditioned. First, we show that
generating the knowledge output as an intermediate step before the
dialogue response can increase knowledge utilization and factual cor-
rectness in open-domain dialogue. Next, we develop a single model
that sequentially generates (i) a search engine query, (ii) a knowl-
edge output, and (iii) a final response. We show that it outperforms
previous state-of-the-art dialogue models on knowledge-grounded
conversation and, applied to topical prompt completions, improves
upon models with a vastly larger number of parameters. Finally, we
explore improving dialogue models after deployment and propose an
objective that allows iteratively training a language model on binary
labeled examples of its generations.
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KURZFASSUNG

Tiefe neuronale Netze haben in den letzten Jahren zu bemerkenswer-
ten Erfolgen auf dem Gebiet der Verarbeitung natiirlicher Sprache
(Natural Language Processing, NLP) gefiihrt. Durch besser skalierbare
Architekturen sowie der riesigen Menge an zur Verfiigung stehenden
Trainingsdaten im Internet, erlangen heutige Sprachmodelle beein-
druckende Schlussfolgerungsféhigkeiten, selbst wenn nur eine kleine
Anzahl spezifischer Beispiele zur Verfiigung steht. Die meisten Fort-
schritte im Bereich von NLP wurden jedoch auf der Grundlage eines
statischen Lernparadigmas erzielt, bei dem Modelle einmal auf einem
fixen Datensatz trainiert werden, um eine bestimmte Fahigkeit zu er-
lernen, und danach unveridndert bleiben. In dieser Arbeit richten wir
unsere Aufmerksambkeit auf interaktive Agenten fiir NLP, d.h. Modelle,
die mit einer dynamischen Umgebung oder einem Benutzer intera-
gieren. In drei verschiedenen Anwendungsbereichen, (i) textbasierte
Spiele, (i) Umformulierung von Suchanfragen und (iii) Konversation,
untersuchen und entwickeln wir Agenten, die mit adaptiven Umge-
bungen interagieren.

Die Dissertation ist in drei Teile gegliedert, basierend auf den drei ge-
nannten Anwendungsbereichen. Im ersten Teil entwickeln wir einen
Deep Reinforcement Learning (RL) Agenten fiir textbasierte Spiele
mit dhnlicher Struktur, aber unterschiedlichen Objekten und Anwei-
sungen.

Der zweite Teil konzentriert sich auf die Umformulierung von Suchan-
fragen. Hier betrachten wir zundchst das Problem des Lernen zu
Suchen, bei dem ein Agent trainiert wird, mit einem Informations-
riickgewinnungssystem (Information Retrieval, IR) unter Verwendung
nattiirlicher Sprache zu interagieren. Anhand der Ergebnisse der IR-
Komponente passt er die urspriingliche Benutzeranfrage an, um bes-
sere Suchergebnisse zu finden. In diesem Rahmen entwickeln wir
zwei Agenten, die erfolgreiche interaktive Suchstrategien erlernen:
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ein Modell, das durch reines reinforcement learning (RL) trainiert wird,
und das andere durch tiberwachtes Lernen (supervised learning).
Im darauffolgenden Kapitel richten wir unsere Aufmerksamkeit auf
neuronale IR Modelle und entwickeln Agenten fiir die Generierung
von interaktive Suchvorschldge. Zu diesem Zweck trainieren wir ein
Query-Decoder-Modell, das bei Vorgabe eines Punktes im gemein-
samen Paragraph-Suchanfrage-Einbettungsraum die entsprechende
Suchanfrage in Textform generiert. Wir setzen diesen Decoder ein,
um einen synthetischen Datensatz von Anfrageverfeinerungen zu
generieren, den wir zum Trainieren eines leistungsstarken Reformu-
lierungsmodells verwenden.

Im letzten Teil der Arbeit schlagen wir verschiedene Ansitze zur
Verbesserung von Konversationsmodellen vor. Wir empfehlen, die
Architektur zu modularisieren, um Zwischentexte auszugeben, auf
denen die nachfolgenden Module aufbauen. Zunichst zeigen wir,
dass die Generierung des Wissensoutputs als Zwischenschritt vor
der Dialogantwort die faktische Korrektheit in Dialogen erhéhen
kann. AnschlieSiend entwickeln wir ein Modell, das nacheinander
(i) eine Suchmaschinenanfrage, (ii) eine Wissensausgabe und (iii)
eine endgiiltige Antwort erzeugt. Wir zeigen, dass dieses Modell
bei wissensbasierter Konversation besser abschneidet als bisherige
Dialogmodelle, und dass es, angewandt auf die Vervollstaindigung
thematischer Texte, Modelle mit einer weitaus grofseren Anzahl von
Parametern tbertrifft. Zum Schluss untersuchen wir die Verbesserung
von Konversationsmodellen nach deren Einsatz und schlagen eine
Verlustfunktion vor, die es ermoglicht, ein Sprachmodell iterativ auf
bindr markierten Beispielen zu trainieren.
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INTRODUCTION

1.1 EVOLUTION OF NLP

Designing machines capable of understanding natural language is a
long-standing goal of artificial intelligence (Al) research. The area of
natural language processing (NLP) lies at the intersection of compu-
tational linguistics and computer science and attempts to bridge the
communications gap between humans and machines (Foo19). Already
in 1950, Alan Turing considered the question “Can machines think?”
and devised the famous “imitation game” — now known as the Turing
test (Turs0). To succeed in this test, a machine needs to engage in
natural language conversation, indistinguishable from a human.

Approaches to NLP have been dominated by handwritten rules (Wei66;
Winy1; Leh81) until the 1980s, followed by statistical models until the
2010s (Bro+90; Koeos; Fer+10). In the 2010s, neural methods started to
take over. Based on the neural language model idea (Ben+03) to embed
words in a latent vector space, self-supervised methods have been
developed that make use of the vast amount of training data that was
starting to be available through the internet (Col+11; Mik+13; PSM14b).
Subsequent work generalized these ideas and developed models that
assign contextualized representations to words (Pet+18), making use
of recurrent neural networks (RNN) (HSg7). The proposed neural
architectures scaled and generalized so well that they would quickly
claim state-of-the-art across a range of NLP benchmarks, including
question answering, sentiment analysis, named entity extraction, and
textual entailment.

The Transformer (Vas+17) architecture broadly replaced RNNs as it
allowed for larger-scale models that were shown to significantly boost
performance on most NLP tasks. Devlin et al. [Dev+18]’s BERT model
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revolutionized the field by pre-training a large (transformer-based)
language model on a huge corpus that can be fine-tuned to achieve
then state-of-the-art performance on datasets like GLUE (Wan+18),
SQuAD (Raj+16a; RJL18), and SWAG (Zel+18). It also surpassed
the threshold to be widely applicable and useful in applications be-
yond academic tasks, e.g., in 2020 Google reported that almost every
English-based query is powered by BERT (Sch20). Subsequent years
in NLP research have been shaped by the quest for ever larger and
more powerful language models (Rad+19; Yan+19b; Sho+19; Rosz2o0;
Raf+20a; Bro+20; Zha+22). Scaling limits have yet to be shown with
models further generalizing and developing few-shot and even zero-
shot capabilities with an increase in the number of model parameters
(Bro+20; Zha+22). At the time of writing, large pre-trained language
models are at the core of almost all specialized systems for individual
NLP applications: from question answering (IG21b; Lew+20b), over
machine translation (Raf+20b; TT20), to dialogue models (Shu+22b;
Pen+22). In this thesis, we will use transformer-based pre-trained lan-
guage models in all chapters except for Chapter 3 on text-based games.

PERFORMANCE IMPROVEMENT BEYOND SCALING As discussed
above, increasing the number of parameters in a language model leads
to significant reasoning and task-specific improvements. However,
there is a limit on the information you can store in the weights of a
model (RRS20). Moreover, the knowledge quickly becomes stale as it
is frozen at the time of training — hence, it is not suitable for a dynam-
ically changing world. Additional downsides observed in large lan-
guage models are that they tend to hallucinate and generate factually
incorrect yet plausible-sounding statements, challenging to recognize
by humans (Shu+21a). Recently, it has been shown that adding an in-
formation retrieval (IR) component to a language model can alleviate
these issues to some extent. Significant improvements have been made
in the area of question answering using language models with neural-
retriever-in-the-loop approaches (Lew+2oc; IG21b). In conversational
models, such methods lead to more knowledgeable agents that gen-
erate fewer hallucinations (Shu+21a). Yet, neural retrieval is usually
done over a knowledge collection that is not updated and is small in
size compared to the information available on the internet. Hence,
Komeili et al. [KSW22] propose to use an internet search engine as
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an intermediate step of a conversational model. This ensures access
to continually updated information. The model generates a search
query to obtain results and uses those to generate knowledgeable and
factually-correct responses. At the time of writing, state-of-the-art
conversational models, as well as question-answering models, rely
on intermediate knowledge retrieval steps from an external source
(IG21b; Shu+22b; Pen+22).

This thesis investigates multiple approaches to improving task-specific
language-based models beyond scaling the number of parameters.
In Chapter 4 and 5, we focus on information retrieval components
that interactively reformulate the query and can lead to better search
results. In Chapter 6 and 7, we investigate approaches to improve con-
versational agents with access to IR components. More specifically, in
Chapter 6, we propose to modularize the reasoning and the response
generation step of dialogue models and show that this can further
decrease hallucination in neural-retriever-in-the-loop approaches. In
Chapter 7, we extend the modularization idea to language models
using an internet search engine step. We show that it outperforms pre-
vious dialogue models regarding knowledgeability and consistency
and, applied to topical prompt completion, outperforms models that
are more than two orders of magnitude larger.

1.2 INTERACTIVE AGENTS

The term interactive is defined as “involving the actions or input of a
user” (Dic). We understand interactive agents as models that engage
with some form of environment during training or inference. The
environment in this setting can be a human user or another system.
This definition covers various possible applications, from dynamic
(game) environments, to conversational models considering the user’s
utterance, and training procedures with a human in the loop. Yet,
as described in the previous section, many successful NLP models
are trained once on a large static dataset and remain fixed after that.
This leaves a research gap to design and develop agents capable
of adapting to a dynamically changing environment or user. We
want to evolve methods beyond the static learning paradigm where
predictions are made based on a fully observed initial state. This is an
essential direction for NLP research because most real-life scenarios
are partially-observable problems where not all context is available
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a priori. Take the example of an ordinary dialogue between two
humans that meet for the first time: it involves an inevitable back-
and-forth between the two parties until each has built an approximate
theory of mind (FFos) of the partner to engage in a meaningful
discussion. Even answering a supposedly simple question about, e.g.,
a person’s birthplace, changes from Mannheim to close to Frankfurt to
southern Germany, depending on the information gathered about the
dialogue partner and the constructed model of their mind (here, in
particular, their geographical knowledge about Germany). Despite
its importance in real-world tasks, the interactivity of systems is not
reflected in most popular NLP benchmarks (Wan+18; Wan+19). In
this work, we draw our attention to three different areas of interactive
NLP, reflected in the three parts of this thesis:

TEXT-BASED GAMES AGENTs With text-based games (TBG), we
have a restricted world environment in which we train agents to
navigate and solve tasks through interaction. The motivation for this
research area is to develop methods to solve games with increasingly
complex dynamics until they are usable outside the game engine on
real-world user tasks.

QUERY REFORMULATION AGENTS In the second part of the thesis,
we focus on query reformulation. Here, the environment with which
the agent interacts is a (neural) information retrieval system. In Chap-
ter 4 and 5, we investigate interactive search with query reformulation
from two different angles. First, we train agents to modify the user’s
query by interacting with the (non-neural) IR component and gath-
ering improved search results. In the next chapter, we extend part
of this work to neural retrieval systems and train a query suggestion
model capable of proposing improved search queries to the user after
interacting with the search engine.

CONVERSATIONAL AGENTS The last part of the thesis considers
conversational agents, which are naturally interactive as the agent
has to adapt at each turn based on the user’s previous utterance. In
Chapter 6, we propose to modularize models for dialogue generation
and split the knowledge and response generation parts. This not only
improves the issue of hallucination but also allows for interactive
updates, information injection in the intermediate steps, and more
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interpretable generations. The following chapter extends this idea
and adds a modular search engine step.

In Chapter 8, we investigate continuous learning of dialogue models.
As described in Section 1.1, NLP models recently crossed a line to be
useful in real-world applications. With neural machine translation
(Deez21), internet search (Sch20), conversational agents (Shu+22b), and
general text completion (Ope22), we see that large language models
are starting to be used in production. The promise of machine learning
over heuristics and rule-based methods is that it learns from data and
interactions. Yet only recently, there has been more work on utilizing
the feedback from users (Ouy+22b; Xu+22; Shi+22). We follow this
line of research in Chapter 8 and propose an interactive method to
continuously train a conversational agent on its own positive and
negative generations.

This thesis aims to contribute to interactive language-based agents.
We focus on the three identified NLP research areas, yet many of the
approaches developed are more generally applicable.

1.3 ORGANIZATION AND SUMMARY OF CONTRIBUTIONS

This section gives an overview of the content of the following chapters
of the thesis. We provide summaries of the contributions we made
towards interactive language-based agents for each area.

As explained in the previous section, this thesis is structured into three
parts corresponding to different areas of application for interactive
language-based agents: (i) text-based games, (ii) query reformulation,
and (iii) conversation. We first give a general background on relevant
topics in Chapter 2 before diving into each of the three parts.

Part I: Text-Based Games Agents

In the first part of the thesis, we focus on agents situated in text-based
games (TBG).

CHAPTER 3 We present our agent LeDeepChef that was ranked sec-
ond in the “First TextWorld Problems: A Language and Reinforcement
Learning Challenge”. The games from the challenge all share the same
theme, namely cooking in a modern house environment, but differ
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significantly in the arrangement of the rooms, the presented objects,
and the specific goal (recipe to cook). To build an agent that achieves
high scores across a whole family of games, we use an actor-critic
framework and prune the action space by using ideas from hierar-
chical reinforcement learning and a specialized module trained on a
recipe database. To design a successful agent, we make the following
contributions:

* We design an architecture that uses different parts of the context
to rank a set of commands. Through recurrency over time steps,
we construct a model that is aware of the past context and its
previous decisions.

* We improve generalization to unseen environments by abstract-
ing away standard to high-level commands similar to feudal
learning approaches (DHg3). We show that this reduces the
action space and therefore accelerates and stabilizes the opti-
mization procedure.

* We incorporate a task-specific module that predicts the missing
steps to complete the task. We train it supervised on a dataset
based on TextWorld recipes augmented with a list of the most
common food items found in freebase to make it resilient to
unseen recipes and ingredients.

We make the code to train the agent publicly available at https:
//github.com/leox1lv/FirstTextWorldProblems.

Part II: Reformulation Agents

The second part of the thesis considers the task of query reformulation
from two different angles, reflected in the individual chapters.

CHAPTER 4 We develop search agents that learn meta-strategies
for iterative query refinement in information-seeking tasks. Here,
refinements are considered augmentations to the original query that
typically specify or generalize the query to obtain improved retrieval
results. Our approach uses machine reading to guide the selection
of refinement terms from aggregated search results. Agents are then
empowered with simple but effective search operators to exert fine-
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grained and transparent control over queries and search results. In
this setting, we make the following contributions:

* We develop a novel way of generating synthetic search sessions
that allow us to successfully learn (self-)supervised search agents
based on transformer-based language models.

* We develop a reinforcement learning agent with dynamically
constrained actions that learns interactive search strategies from
scratch.

* We provide evidence for the ability of search agents to discover
successful search policies in a task characterized by multi-step
episodes, sparse rewards, and high-dimensional, compositional
action spaces.

We make the code to train the agents publicly available at https://
github.com/google-research/google-research/tree/master/muzero
and https://github.com/google- research/language/tree/master/
language/search_agents.

CHAPTER 5 In this chapter, we extend the learning to search prob-
lem to neural retrieval models and focus on the application of query
suggestion, i.e. generating rewrites of the original query to better
capture the user’s information need. Neural retrieval models have su-
perseded classic bag-of-words methods such as BM25 as the retrieval
framework of choice for many NLP tasks. However, neural systems
lack the interpretability of bag-of-words models; it is not trivial to
connect a query change to a change in the latent space that ultimately
determines the retrieval results. To shed light on this embedding
space and make progress towards the task of query suggestion, we
make the following contributions in this chapter:

* We learn a query decoder that, given a latent representation of a
neural search engine, generates the corresponding query. We
show that it is possible to decode a meaningful query from its
latent representation and, when moving in the right direction
in latent space, to decode a query that retrieves the relevant
paragraph. In particular, the query decoder can be useful for
understanding “what should have been asked” to retrieve a
particular paragraph from the collection.
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* Based on the query decoder, we develop a generic way to gener-
ate training data for directional query refinement by traversing
the latent space between queries and relevant documents.

* We build a powerful reformulation model that we evaluate on a
novel benchmark inspired by the query suggestion task.

We make the generated traversal dataset publicly available at https:
//github.com/leoxlv/query_decoder.

Part 11I: Conversational Agents

In the final part of the thesis, we draw our attention toward conversa-
tional agents. The first two chapters of this third part are concerned
with modularizing the architecture of dialogue models and generat-
ing intermediate outputs. The third chapter focuses on the continual
learning of conversational agents.

CHAPTER 6 We address the common phenomenon that large lan-
guage models can produce fluent dialogue but often hallucinate fac-
tual inaccuracies (Shu+21a). These models face the difficult challenge
of both reasoning to provide correct knowledge and generate conversa-
tion simultaneously. Hence, we propose a modular model, Knowledge
to Response (K2R), for incorporating knowledge into conversational
agents, which breaks down the problem into two easier steps. In
particular, we make the following contributions in this chapter:

* We develop the K2R model that first generates a knowledge
sequence, given a dialogue context, as an intermediate step.
After this reasoning step, the model then attends to its own
generated knowledge sequence, as well as the dialogue context,
to produce a final response.

* We conduct extensive experiments across three different datasets
and tasks. We find that the model improves knowledge utiliza-
tion and factual correctness in open-domain dialogue. Further-
more, it allows us to fuse pre-trained QA models with dialogue
models, without requiring any re-training.

We make the agent’s code publicly available at https://parl.ai/
projects/k2r.
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CHAPTER 7 In this chapter, we extend the K2R approach to include
internet search as a module. In particular, we make the following
contributions in this chapter:

* We propose the SeeKeR (Search-engine—Knowledge— Response)
method that applies a single language model to three modular
tasks in succession: search, generating knowledge, and generat-
ing a final response.

e We show that using SeeKeR as a dialogue model, it outperforms
the previous state-of-the-art model BlenderBot 2 [Che+21b] on
open-domain knowledge-grounded conversations for the same
number of parameters, in terms of consistency, knowledge, and
per-turn engagingness.

* SeeKeR applied to topical prompt completions as a standard lan-
guage model outperforms GPT2 [Rad+19], and GPT3 [Bro+20]
in terms of factuality and topicality, despite GPT3 being a vastly
larger model.

We make the agent’s code and checkpoints available at http://parl.
ai/projects/seeker.

CHAPTER 8 The final chapter in the conversational agent part fo-
cuses on iteratively training models to unlearn unwanted behavior.
Standard language model training employs gold human documents
or human-human interaction data and treats all training data as pos-
itive examples. Growing evidence shows that even with very large
amounts of positive training data, issues remain that can be alleviated
with relatively small amounts of negative data — examples of what the
model should not do. Towards this problem, we make the following
contributions in this chapter:

* We propose a novel procedure to iteratively train with data of
negative examples called the CRINGE loss (ContRastive Iterative
Negative GEneration). We introduce a simple additional term
to the loss function for training with negative sequences, not
requiring any architectural change of the model or inference-
time update.


http://parl.ai/projects/seeker
http://parl.ai/projects/seeker

INTRODUCTION

* We show the effectiveness of this approach across three differ-
ent experiments on the tasks of safe generation, contradiction
avoidance, and open-domain dialogue.

We make the agent’s code publicly available at https://parl.ai/
projects/cringe.

In the conclusion Chapter 9, we do a final reflection on the topics
discussed in the thesis and provide an outlook on the directions of
future research in the field.
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BACKGROUND

2.1 TEXT-BASED GAMES

A Text-based game (TBG) is a special computer game where the sole
interaction modality is text. In an iterative process, the player issues
commands in natural language and, in return, is presented with a (par-
tial) textual description of the environment. The player works towards
goals that may or may not be specified explicitly and receives rewards
upon completion. To frame it more formally, both the observation
and action space are comprised of natural language and, thus, inherit
its combinatorial and compositional properties (Cot+18). Training an
agent to succeed in such games requires overcoming several common
research challenges in reinforcement learning (RL), such as partial
observability, large and sparse state and action space, and long-term
credit assignment. Moreover, the agent needs several human-like
abilities, including understanding the environment’s feedback (e.g.,
realizing that some command did not affect the game’s state), and
common sense reasoning (e.g., extracting affordance verbs to an object
in the game) (Ful+17).

While TBGs reached their peak of popularity in the 1980s with games
like Zork (Inf80), they provide an interesting test-bed for Al agents
today. Due to the dialog-like structure of the game and the goal to
find a policy that maximizes the player’s reward, they show great sim-
ilarity to real-world tasks like question answering and open dialogue
generation. Games like Zork are usually contained in a single environ-
ment requiring various complex problem-solving abilities. This thesis
focuses on Microsoft’s TextWorld framework (Cot+18). Unlike Zork, it
generates a family of games with different worlds and properties but
with straightforward and, most importantly, similar tasks. Therefore,
one can argue that it is more similar to human skill acquisition: once
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learned, a skill can also be performed in a slightly different environ-
ment or with new objects (YM1gb).

Text-based games can be divided by their type of input interaction: (i)
parser-based, where the agent issues commands in free form, and (ii)
choice-based, where the agent is presented with a set of admissible
commands at every turn. Assuming a fixed maximum length of the
commands as well as a fixed-size vocabulary, a parser-based game is
a special instance of a choice-based game with the set of all possible
combinations of words in the vocabulary as the set of admissible
commands. This illustrates the problem arising from combinatorial
action spaces: they result in a huge set of possible options for the
agent, which it cannot possibly explore in a reasonable amount of
time. Hence, the major challenge is the generation of a small set of rea-
sonable commands for a given context, known as affordance generation.

Since the pioneering work of Mnih et al. [Mni+13a] that combines
deep neural networks with reinforcement learning techniques to suc-
cessfully play Atari games, there has been an increasing interest in
modifying these algorithms for a variety of problems. However, apply-
ing it to natural language tasks is particularly challenging due to its
combinatorial and compositional properties, resulting in huge action
and state spaces. Text-based games are regarded as a good testbed
for research at the intersection of RL and NLP (C6t+18). Even though
they heavily simplify the environment — compared to, e.g., a real-
world open dialogue — they present a broad spectrum of challenges
for learning algorithms.

2.2 QUESTION ANSWERING

Building models to answer natural language questions has a rich
history in NLP research (VOOo1; DKL+o07; BGA20). The question-
answering (QA) task is typically divided along two different axes:

(i) Extractive vs. Generative QA: In the extractive QA setting, the
answer to the posed question is a span that can be extracted from
a provided evidence paragraph. This setting is often referred
to as machine reading comprehension. On the other hand, the

12
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generative QA setting requires the model to generate a response
as free text.

(ii) Evidence Context: QA settings can be distinguished by the
property of whether or not the question is provided with an
evidence document. Throughout this thesis, we will focus on
the setting where no specific evidence paragraph is provided,
but a large collection of documents is provided in the form of a
knowledge store or search engine (LCT19a; Kar+20).

The Stanford question answering dataset (SQuAD) (Raj+16b) has nour-
ished the research on extractive QA models. Here, the evidence for
each question is provided as a short paragraph, and the answer can be
extracted as a span from it. Many sophisticated extractive QA models
have been proposed that ultimately surpassed human performance
on SQuAD (Dev+19; Yan+19b). The SQuAD2.0 dataset (RJL18) adds
adversarially-constructed questions that are not answerable given the
provided context. A model needs to learn to avoid answering specific
questions to succeed.

With the Natural Questions (NQ) dataset (Kwi+19), Google released
an open-domain question-answering dataset from real user search
queries. Each question comes with a full Wikipedia article, as opposed
to a short passage in SQuUAD, and can be answered by a paragraph
(long answer) or a short span (short answer). While this is technically
still an extractive QA dataset, it was adapted to reflect an open gen-
erative QA task without evidence contexts. Lee et al. [LCT19a] and
Karpukhin et al. [Kar+20] construct NQ-derived datasets (OpenNQ)
without supporting articles or passages. Those datasets require mod-
els to both successfully retrieve paragraphs from a large collection
and extract the correct answer.

Consequently, research on the QA task’s retriever (search engine)
side thrived. Chen et al. [Che+17a] retrieve Wikipedia evidence para-
graphs based on bigram hashing and TF-IDF. Lee et al. [LCT19a]
and Karpukhin et al. [Kar+20] propose neural retrievers based on a
dual encoder framework instead of the classic bag-of-words IR ap-
proaches. Leveraging large pre-trained language models to encode
the query and the paragraphs separately into a shared latent space
led to a performance boost across multiple datasets, not just in the
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retrieval metrics but also in exact-match scores. While Karpukhin
et al. [Kar+20] use an extractive reader on the top-k returned para-
graphs, Lewis et al. [Lew+20c] further improve using a generative
reader (BART (Lew+20a)). This design combines the strengths of a
parametric memory — the pre-trained LM — with a non-parametric
memory - the retrieved Wikipedia passages supplied into the reader’s
context. This idea of combining a dense retriever with a generative
reader is further refined by Izacard and Grave [IG21b], who fuse
multiple documents in the decoding step. A recent line of work is
concerned with constraining the model in terms of the number of
parameters or retrieval corpus size while remaining close to state-of-
the-art performance (Min+21). This effort led to a synthetic dataset
of 65 million probably asked questions (Lew+21b) used to do a nearest
neighbor search on the question, with no learned parameters needed.

2.3 NEURAL RETRIEVER

Classic retrieval systems such as BM25 (RZo9g) use term frequency
statistics to determine the relevancy of a document for a given query.
Recently, neural retrieval models have become more popular and
started to outperform classic systems on multiple search tasks. Karpukhin
et al. [Kar+20] use a dual-encoder setup based on BERT-base (Dev+19),
called DPR, to encode query and documents separately and use max-
imum inner product search (SL14) to find a match. They use this
model to improve recall and answer quality for multiple open-domain
question-answer datasets, including OpenQA-NQ (LCT19b). Ni et
al. [Ni+21] show that scaling up the dual encoder architecture im-
proves the retrieval performance. They train a shared dual encoder
model, based on T5 (Raf+20a), in a multi-stage manner, including
fine-tuning on MSMarco (Ngu+16), and evaluate on the range of re-
trieval tasks of the BEIR benchmark (Tha+21). Izacard et al. [Iza+21]
show that one can train an unsupervised dense retriever and be com-
petitive against strong baselines on the BEIR benchmark. Xiong et al.
[Xio+21a] propose approximate nearest neighbor negative contrastive
learning (ANCE) to learn a dense retrieval system. On top of this
dense retriever, Li et al. [Li+22] consider a pseudo-relevance feedback
method.
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APPLICATIONS OF NEURAL RETRIEVERS Neural retrieval mod-
els have been at the core of recent improvements in various NLP
tasks. As described in the previous paragraph, Lee et al. [LCT19a]
and Karpukhin et al. [Kar+20] use neural retrievers to answer open-
domain questions. Lewis et al. [Lew+2oc] and Izacard and Grave
[IG21b] further improve upon these methods by fusing the neural
retrieval and answer generation components. Answering questions by
abstractive generation, instead of extracting spans from the text, boosts
the performance on OpenNQ(IG21b). Shuster et al. [Shu+21a] use neu-
ral retrieval models to improve conversational agents in knowledge-
grounded dialogue. They show that the issue of hallucination —i.e.,
generating factual incorrect knowledge statements — can be signifi-
cantly reduced when using a neural-retriever-in-the-loop architecture.
We show in Chapter 6 and 7 that separating the retrieval-augmented
knowledge generation and the conversational response generation can
further improve the issue of hallucination in knowledge-grounded
dialogue and helps fuse modular QA and dialogue models.

SHORTCOMING OF NEURAL RETRIEVERS Embedding queries and
passages in a joint latent space and ranking them based on their
vector similarity is a powerful approach to finding semantic similari-
ties between queries and documents. However, compared to classic
methods based on term-frequency statistics, the results lack certain
interpretability. For a bag-of-words method, it is trivial to compose a
query to retrieve a specific passage — one needs to match descriptive
(high tf-idf) keywords available in the passage. For a neural model,
on the other hand, this is much more complex. Adding a term to the
model’s input might change its encoding in unpredictable ways and
retrieve different passages. Hence, connecting a query change to an
updated document set is non-trivial. In Chapter 5, we will investigate
how to decode the latent space of a neural retriever and hence increase
the interpretability property of neural retrievers.

2.4 QUERY REFORMULATION

LEARNING TO SEARCH Can machines learn to use a search engine
as an interactive tool for finding information? Web search is the portal
to a vast ecosystem of general and specialized knowledge designed
to support humans in seeking relevant information and making well-

15



BACKGROUND

informed decisions. Utilizing search as a tool is intuitive, and most
users quickly learn interactive search strategies characterized by se-
quential reasoning, exploration, and synthesis (Heaog; RFC15; Rus19).
The success of web search relies on machines learning human notions
of relevance but also on the users” ability to (re-)formulate appropri-
ate queries grounded in a tacit understanding of the strengths and
limitations of search engines. Given recent breakthroughs in language
models (LM) (Vas+17; Dev+19; Bro+20) as well as in reinforcement
learning (RL) (Mni+13b; Sil+16; Ber+19), it seems timely to ask whether,
and how, agents can be trained to use search engines interactively.
However, the lack of expert search sessions puts supervised learning
out of reach, and RL is often ineffective in complex natural language
understanding (NLU) tasks. The feasibility of autonomous search
agents hence remains an open question.

It has been a powerful vision for more than 20 years to design search
engines that are intuitive and simple to use. Despite their remarkable
success, search engines are imperfect and may not yield the most
relevant result(s) in one shot. This is particularly true for rare and in-
trinsically difficult queries, which may require interactive exploration
by the user to be answered correctly and exhaustively.

It can be difficult for users to formulate effective queries because
of the information gap that triggers the search process in the first
place (BOB82). O’Day and Jeffries [O]93] found that reusing search
results content for further search and exploration is a systematic
behavior (aka “orienteering”), a key ingredient for solving the in-
formation need. Lau and Horvitz [LHgg] analyzed a dataset of one
million queries from the Excite search engine logs and reported an
average session length of 3.27 queries per informational goal and
categorized follow-up queries primarily in terms of specification, gen-
eralization, and reformulation. Teevan et al. [Tee+o4] noticed that
users facing complex queries could even decide to partially bypass the
search engine by issuing a more general query and then navigating
the links within the returned documents to find an answer. Downey
et al. [Dow+08] observed that a user’s initial query is typically either
too specific or too general. The amount of work required to optimize
it depends on the query frequency, with infrequent queries requiring
longer search sessions. They estimate from logs that tail information
needs require more than four queries, while common ones require
less than two (on average). Contextual query refinement is a common
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technique (JBSog), even among children (RFC15), used to improve
search by combining evidence from previous results and background
knowledge (HEo0g). Such refinements often rely on inspecting re-
sult snippets and titles or skimming top-ranked documents’ content.
This process is iterative and may be repeated until (optimistically) a
satisfactory answer is found.

It seems natural to envision artificial search agents that mimic this
interactive process by learning the basic step of generating a follow-up
query from previous queries and their search results while keeping
track of the best results found along the way. We call this the learning
to search problem that we investigate in more detail in Chapter 4.

QUERY SUGGESTION As motivated above, many search engine
users need to issue additional clarification queries to retrieve results
that satisfy their information needs. While an interactive search
engine, as described in Chapter 4, might help alleviate this problem,
it is limited by the expressiveness of the original search query: for
an ambiguous query (e.g., “us open champion”), it can only rely on
learned biases to retrieve the correct results (e.g., for the sport of
tennis over golf), or try to mix results for all possible meanings. From
a user’s perspective, this might not be ideal, as a simple clarification
from their side would resolve the problem and hence lead to the
desired search results. A good search engine should be capable of
proposing improved search queries based on the retrieved documents
from the user’s query. In our us open example, it should observe that
the retrieved results are mixed between tennis and golf and propose,
e.g., “us open champion tennis” and “us open champion golf” as
follow-ups to the user. We refer to this problem as query suggestion
and address it in more detail in Chapter 5. Since query suggestion
is most relevant for ambiguous or misspecified queries, it is closely
related to the task of rewriting ill-formed questions (Chu+20).

2.5 CONVERSATIONAL AGENTS

SCALING-UP CONVERSATIONAL AGENTS Building an open-domain
conversational model is a long-standing challenge in NLP research
(Che+17b; GGL18). With the introduction of the Transformer (Vas+17)
architecture as a building block for large language models, the scale
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and capabilities of dialogue models have risen rapidly. In the diagram
of Figure 2.1, we show the number of parameters of the best dialogue
models over time. In only a few years, models have scaled up from the
762M parameters of DialoGPT (Zha+20) in 2019 to the 9B parameter
model BlenderBot (Xu+20) in 2020, and most recently in 2022, to up
to 175B parameter of GODEL (Pen+22) and Blenderbot 3 (Shu+22b).

KNOWLEDGE-AWARE CONVERSATIONAL AGENTS Conversational
agents are typically trained on large datasets of human-human con-
versations. Hence, the model only learns from a single snapshot of
time. It results in a static language model saving all its knowledge
in its fixed parameters that do not account for the dynamics of the
real world. Thus, it is prone to produce stale results leading to an
unsatisfying user experience when confronted with current topics.
Improving dialogue systems by increasing their knowledgeability
has been tried in several different ways: from integrating knowledge
bases (Zhu+17; Liu+18; Wan+20), to recent neural retrieval models
(Shu+21a; Thu+21). Knowledge-grounded open-domain dialogue
datasets (Din+19b; KSW21; ZPB18; Gop+19) foster the research and
development of knowledge-aware generative dialogue models. A
known issue of such models, referred to as “hallucination”, is that
they mix up facts and generate factually inaccurate statements. Shus-
ter et al. [Shu+21a] try to alleviate hallucination by using recent
advancements in retrieval-augmented generative models developed
for open-domain QA tasks (Lew+20b; 1G21b).

BlenderBot 2 (Che+21b) learns to generate search queries based on
the conversational history and grounds its utterances based on the
search results. This intermediate search step makes the model more
knowledgeable and factually consistent than its predecessor, even
though it has fewer parameters. Subsequent dialogue models, like
LaMDA (Tho+22), BlenderBot 3 (Shu+22b), and GODEL (Pen+22) all
make use of some form of external knowledge base that is queried
before generating a response.

FUSION OF QA AND CONVERSATION Previous work has explored
the intersection of QA and dialogue models from multiple different
angles. The DREAM dataset (Sun+19) consists of multiple-choice ques-
tions about a conversation. Yang and Choi [YC19] propose a question-
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Figure 2.1: The number of parameters (in billions) over the years for the top
dialogue models. We add BERT in the diagram as reference.

answering task based on dialogue histories of the TV show Friends.
The QuAC (Cho+18) and CoQA (RCM19) datasets are designed to
have the questions asked in the conversational flow, with possibly,
multiple follow-ups. However, while these datasets require a model
to understand a dialogue’s history, the target responses are short-form
answers. Therefore, these tasks do not train a dialogue model that
generates an engaging, conversationally appropriate response; instead,
they result in a QA model that understands dialogue-structured con-
text. In Chapter 6 and 7, we investigate how to bring QA capabilities
to dialogue models and propose a modular architecture that first
generates a knowledge response on which the model conditions its
final dialogue response. The proposed architecture is used in the
BlenderBot3 (Shu+22b) model — a state-of-the-art publicly-available
conversational model at the time of writing.

ITERATIVE TRAINING OF LANGUAGE MODELS Despite the re-
markable gain in performance, conversational models still suffer from
a number of issues, including offensive language (Geh+20), inherent
biases (Din+20), repetition (Wel+19), and lack of long-term coherence
(Nie+21). These problems can partially be attributed to the training
method: models are tasked with learning from human-human con-
versations on the internet. Hence, they inherit their toxic and biased
behavior. To address the named issues, new forms of training are
developed that focus on iteratively unlearning unwanted behavior by
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training the model with negative examples. Unlikelihood training
was shown to improve repetition issues by training on the model’s
own generations [Wel+19]. Iterative training of language models
on human preferences has been successfully applied in several sum-
marization (Zie+19; Sti+20; Boh+19; Wu+21) and dialogue settings
(Jag+19; Han+19). Lu et al. [Lu+22] train a language model to un-
learn unwanted behavior using generated samples. They label and
quantize the model’s generations and perform conditional training
by prepending the sequences with their corresponding reward token.
The InstructGPT model (Ouy+22b) uses reinforcement learning from
human feedback (RLHF) (Chr+17) to align a language model to follow
instructions. Here, the human feedback is used to train a reward
model which guides a proximal policy optimization (PPO) (Sch+17)
algorithm to fine-tune the language model. In Chapter 8, we further
investigate the iterative training of conversational agents. We develop
a novel method that allows us to learn from binary feedback in an
iterative fashion.
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INTERACTIVE AGENTS FOR TEXT-BASED GAMES

3.1 INTRODUCTION & BACKGROUND

"You are hungry! Let’s cook a delicious meal. Check the cookbook in the
kitchen for the recipe. Once done, enjoy your meal!", that’s the starting
instruction of every game in Microsoft’s First TextWorld Problems: A
Language and Reinforcement Learning Challenge; a competition that eval-
uates an agent on a family of unique and unseen text-based games
(TBGs). While all the games share a similar theme, cooking in a
modern house environment, they differ in multiple aspects like the
number of rooms, connection, and arrangement of rooms, the goal of
the game (i.e., different recipes), as well as actions and tools needed
to succeed.

Prior research on TBGs has mainly focused on either learning a single
game to high accuracy (NKB15; He+15; AR19) or generalization to a
completely new family of games(Kos+17) with only very poor perfor-
mance. Microsoft’s TextWorld Challenge aims to cover a new research
direction that is in between the two extremes of the single game and
the general game setting. To succeed here, an agent needs to have
generalization capabilities that allow it to transfer its learned cooking
skills to never-before-seen recipes in unfamiliar house environments.

In this chapter, we present our agent — LeDeepChef — that achieved
the highest score on the (hidden) validation games and was ranked

This Chapter is based on our AAAI 2020 paper “LeDeepChef: Deep Reinforce-
ment Learning Agent for Families of Text-Based Games” (AH20). The research
presented in this chapter was supported by the Swiss National Science Foundation
(SNSF) grant number 407540_167176.
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second in the overall competition. The code to train the agent, as well
as an exemplary walkthrough of the game (with the agent ranking
next moves), can be found on GitHub?.

DEEP RL FOR TBGS To solve TBGs, Narasimhan et al. [NKB15]
developed a deep RL model that utilizes the representational power
of the hidden state of Long Short-Term Memory (HSgy) to learn a
Q-function. An adaption of this approach by He et al. [He+15] uses
two separate models to encode the context and commands individu-
ally and then uses a pairwise interaction function between them to
compute the Q-values. Since then, a variety of researchers (AR1g;
YM1gb; YM19a) used some form of DQN to solve TBGs; however,
we find that an advantage-actor-critic approach (Mni+16) helps to
improve performance and speeds up convergence. Using Narasimhan
et al. [NKB15]’s LSTM-DOQN or He et al. [He+15]’s adjusted DRRN
on the family of games of the TextWorld challenge leads to extremely
slow convergence due to the huge combinatorial action space that
arises from games with different objects and the combinatorial nature
of natural language (AR19).

AFFORDANCE GENERATION To succeed in a parser-based TBG, an
agent needs to have the ability to generate reasonable commands for
a given context, so-called affordances. Using a supervised learning
approach with a pointer-softmax model Vinyals et al. [VF]15], Tao
et al. [Tao+18], as well as Yuan et al. [Yua+18b], can generate admis-
sible commands given a context for a specific TBG. A more general
approach by [Ful+17] learns to map nouns to affordant verbs by ex-
tracting replacement vectors from word embeddings using canonical
examples. Zahavy et al. [Zah+18], on the other hand, start from an
over-complete set of actions and learn a binary action-elimination net-
work by using the feedback provided by the game engine. Similarly,
Ammanabrolu and Riedl [AR19] also prune the available actions but
using a fixed scoring function on top of a graph representation of the
game’s state. As far as we know, our model is the first in the area of
TBGs to consider grouping commands together into high-level actions
as a way to reduce the action space.

*https:/ /github.com/leox1v/FirstTextWorldProblems
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You are hungry! Let's cook a delicious meal. Check the cookbook in the kitchen
for the recipe. Once done, enjoy your meal!

-= Kitchen =- You're now in the kitchen. | guess you better just go and list everything
you see here. You hear a noise behind you and spin around, but you can't see
anything other than a fridge. The fridge is empty! This is the worst thing that could
possibly happen, ever! You see a closed oven. You make out a table. The table is
massive. On the table you can make out a cookbook. You can make out a counter.
The counter is vast. On the counter you can make out a sliced fried red hot pepper,
a red apple, a yellow bell pepper and a knife. You smell an intriguing smell, and
follow it to a stove. You shudder, but continue examining the stove. But the thing is
empty, unfortunately. Hm. Oh well.

> examine recipe
You open the copy of "Cooking: A Modern Approach (3rd Ed.)" and start reading:
Recipe #1
Gather all following ingredients and follow the directions to prepare this tasty
meal.
Ingredients:
red hot pepper
Directions:
slice the red hot pepper
fry the red hot pepper
prepare meal

> inventory
You are carrying nothing.

> take red hot pepper
You take the red hot pepper from the counter.
Your score has just gone up by one point.

> inventory
You are carrying:
asliced fried red hot pepper

> prepare meal
Adding the meal to your inventory.
Your score has just gone up by one point.

> eat meal
You eat the meal. Not bad.
Your score has just gone up by one point.

*** The End ***

Figure 3.1: Simple game that shows the basic structure of the task. The
player’s commands are highlighted in yellow.

3.2 GAMEPLAY

This section provides an overview of the structure of the games in
the TextWorld challenge and explains the problems an agent needs
to overcome to succeed. Figure 3.1 shows an example of a straight-
forward game that helps understand the basic structure. The agent
starts at a random room around the house with the instruction to find
the cookbook and prepare the meal therein. The initial description
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of the surrounding exemplifies one of the key challenges, namely
filtering the vital information from the text: sentences like you hear a
noise behind you and spin around, ... or This is the worst thing that could
possibly happen, ever! provide no useful information for the game and
make it harder to understand the context.

Once the agent finds the room with the cookbook (in the example
in Figure 3.1, it is in the starting room already), the examine recipe
reveals the recipe. It consists of two parts: the ingredients and the
directions. While the ingredients part lists the items that need to be
collected, the directions give information about the status they need
to be in to prepare the meal. In our example, the pepper needs to
be sliced and fried. Here, the agent needs to be careful, because the
initial description of the surrounding states that the pepper is already
sliced and fried and additional frying, for example, would lead to
burning the pepper and hence losing the game. The agent, therefore,
needs to remember and recognize states of ingredients mentioned in
the context. With the inventory command, the agent can list all items
it is currently carrying. Once all ingredients, in their correct state, are
in the inventory, the agent can prepare and then eat the meal.

3.3 AGENT

We train an agent to select, at every step in the game, the most promis-
ing command (in terms of discounted future score) from a list of
possible commands, given the observed context. Building a successful
agent—not just for TBGs but for a wide range of sequential decision-
making applications—is primarily determined by the presented set of
choices at each time-step. Therefore, one of the most crucial questions
is about how to generate the list of possible commands. The smaller
this set is, the less time and effort the agent wastes in its exploratory
phase on "useless" strategies. To effectively reduce the size of the
action space, we use an approach inspired by hierarchical reinforce-
ment learning, that we explain in the next section about "Command
Generation". In the current section, we outline the architecture and
training procedure of the agent, acting on a given set of commands.

MODEL CONTEXT We build a textual context as an approximation

for the (non-observable) game’s state. It consists of the following
text-based features:
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Figure 3.2: [llustration of the model. From a textual description of the context
together with k different possible commands, it computes a categorical
distribution over the commands as well as a scalar representing the value of
the current game state.

1. Observation: The response from the game engine at the current
time step. It can either be a description of what the agent sees
in this room or a direct response to its last command.

2. Missing items: The list of items that are in the recipe but not yet
in the inventory. This information is constructed using the neural
recipe model described in the Section "Command Generation".

3. Unnecessary items: The list of items that are in the inventory but
are not needed to execute the recipe. We extract this information
from the last response to the inventory command.

4. Description: The description of the current room. It is the output
of the last look command.

5. Previous commands: The list of the ten previously executed
commands.

6. Required utilities: The list of kitchen appliances needed for the
recipe, e.g., knife or stove. This list is a result of the predic-
tion by the recipe model described in the Section "Command
Generation".

7. Discovered locations: The list of previously visited locations.

8. Location: The name of the current location, extracted from the
last observation (if it included a location).
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The architecture of the model is shown in Figure 3.2. It consists of four
building blocks: context encoding, commands encoding, computation
of the value of the current state, and the command scoring.

CONTEXT ENCODING The input to the context encoding are the
eight text-based features described above. Each of them is a sequence
of words that we embed using a trainable 100-dimensional word
embedding, initialized with pre-trained GloVe (PSM14a). This results
in eight matrices of shape (seqlen; x 100 for i = 1,...,8) that are fed
into eight separate bi-directional GRUs (GRUy;). Using the last hidden
vector of each GRU, we construct a fixed size encoding of size 32 for
every feature input sequence. By concatenating the individual vectors,
we obtain a representation for the full context with a fixed size of 256.
To obtain the final context encoding h*, we pass this representation
into another GRU (GRUj) that has its recurrency over time, i.e., it
takes as hidden state the context encoding from the previous time-step
(Yua+18a).

COMMANDS ENCODING At every time step, the model has a set
with varying lengths k; of different possible commands to choose
from. Each command is embedded using the same embedding matrix
as the context, resulting in a set of k matrices of size (cmdlen; x 100)>.
A single GRU (GRUy) is used to encode the k different commands
individually to fixed-size representations c; € R¥2fori=1,... k.

VALUE COMPUTATION As described in more detail in the upcom-
ing paragraph, we use an advantage-actor-critic approach to train the
agent. This approach requires a critic function that determines the
value of the current state. In our model, we compute this scalar value
by passing the encoded context h* through an MLP with a single
hidden layer of size 256 and ReLU activations.

SCORING AND COMMAND SELECTION For each possible com-
mand, we compute a scalar score by feeding the concatenation of the
encoded context 1* and the encoded command ¢; fori =1,...,k into
an MLP with a single hidden layer of size 256 and ReLU activations.
We obtain a score vector s; € R¥ that ranks the k possible commands.

2The sequence lengths of commands vary since the commands range from single
words, e.g., inventory, to short sentences, e.g., cook the red hot pepper with grill.
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On top of the score vector, we apply a softmax to turn it into a cate-
gorical distribution p;. Based on p;, we sample the final command
from the presented set of input commands.

ACTOR-CRITIC We use an online actor-critic algorithm with a
shared network design to optimize the agent. We compute the return
R+ of a single time-step t in the session of length T by using the n-step
temporal difference method (SB18, ch. 7)

T—t

R(st,ar) = 7" to(st) + Y Y7 r(st4 aree) (3.1)
=0

where v denotes the discount factor, and v(st) denotes the value of
the state, determined by the critic network, that depends on the state
st. The game-environment determines the score r, based on the state
s, and the chosen action a.

From R; we compute the advantage A; at time-step ¢ by subtracting
the state value from the critic network, i.e.

A(st,ar) = R(se,ar) — ve(st). (3.2)

While the value function from the critic v captures how good a certain
state is, the advantage informs us how much extra reward we obtain
from action a compared to the expected reward in the current state s.
For the sake of brevity, we will drop the indication of dependence of
the state s and action a from now on.

oBJECTIVE The full objective £ consists of three individual terms:
the policy loss, the value loss, and the entropy loss. The policy term
optimizes the parameters of the actor network while keeping the
critic’s weights fixed. It encourages (penalizes) the current policy if it
led to a positive (negative) advantage. The policy loss is given by the
following formula

14,
Ly=—=) Aflogp,la] (33)
T t=1

where A7 is the advantage A; removed from the computational graph,
and p,[a;] is the probability of the chosen command a; determined by
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the actor.
The value term uses a mean squared error between the return R and
the value of the critic v; to encourage them to be close, i.e.

Lo— - TR 2
v—ﬁZ( t— o) (3-4)

t=1

Finally, the entropy loss penalizes the actor for putting a lot of proba-
bility mass on single commands and therefore encourages exploration:

1T
L= T Z PtT log p;. (3-5)

The final training objective is chosen as a linear combination of the
three individual terms.

3.4 COMMAND GENERATION

One of the primary challenges in TBGs is the construction of possible—
or rather reasonable—commands in any given situation. Due to the
combinatorial nature of the actions, the size of the search space is
vast. Thus, brute-force learning approaches are infeasible, and RL op-
timization is extremely difficult. We solve this problem by effectively
generating only a small number of the most promising commands, as
well as combining multiple actions to a single high-level command. We
find that this step of reducing the action space is the most important to
guarantee successful and stable learning of the agent. To this end, we
train a helper model—called Recipe Manager—that effectively extracts
from the game’s state which recipe actions still need to be performed.
By comparing the state of the ingredients in the inventory with the
given recipe and the description of the environment, it generates the
next commands in the cooking process.

RECIPE COMMANDS The task of this model is to determine, from
the raw description of the inventory and the recipe, the following
information for every listed ingredient:

e Does it still need to be collected?

* Which cooking actions still need to be performed with it?
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Figure 4(b) in the Appendix shows an example of how the model
extracts from the raw textual input the structured information needed.
To achieve this, we train a model in a supervised manner with a self-
constructed dataset. The dataset consists of recipes and inventories
similar to those of the training games but augmented with multiple
additional ingredients and adjectives to foster its generalization ca-
pabilities. Here, we query the freebase database to obtain a large
selection of popular food items to make our classifier more resilient
to ingredients not present in the training games.

MODEL The input to the recipe model is the individual recipe di-
rections and the current inventory of the agent. We do a binary
classification of each direction about whether or not it needs to be per-
formed. The necessary information about the state of the ingredient
is present in the inventory. Hence, we need to map and compare each
direction to it. The names of the ingredients are of varying length
and can have multiple adjectives describing it, e.g., a sliced red hot
pepper or some water. Therefore, we treat each direction and the inven-
tory as a variable-length sequence that we encode using a GRU, after
embedding it with pre-trained GloVe (PSM14a). Using pre-trained
embeddings not just speeds up the convergence of the model but
also helps to make it generalize across unseen ingredients, because
all food-related items are close in the embedding space (PSM14a). As
can be seen in Figure 4(c) in the Appendix, each of the encoded recipe
directions is concatenated with the encoded inventory to serve as the
input to an MLP. The network outputs a single value for each of the
inputs that represent the probability of the given direction still being
necessary to perform.

ADDING RECIPE ACTIONS TO THE POSSIBLE COMMANDs The
recipe manager adds two high-level commands to the action set. First,
the take all required ingredients from here command, grouping all the
necessary “take” commands, that can be performed in the current
room. We construct this list by the intersection of needed ingredi-
ents (determined by the recipe model) and ingredients present in
the current context description. Second, the drop unnecessary items
command that lists “drop” commands for all the ingredients labeled
as unnecessary from the learned recipe model. It is indeed crucial
to learn to drop unwanted items because the inventory has a fixed
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capacity. In addition to the abstract high-level commands, it adds
all action commands—specified by the recipe model—if the specific
ingredient is in the inventory and the corresponding utility in the
room. Figure 4(a) in the Appendix provides an example for how
the mapping from high-level to low-level commands is constructed
based on the room description, the inventory, and the output from
the neural recipe model.

NAVIGATION COMMANDS Another crucial challenge for an agent
in a TBG is to efficiently navigate through the game world; an espe-
cially hard task when presented with unseen room configurations
at test time. This process can be divided into two tasks, namely (i)
understanding from the context in which direction it is possible to
move, and (ii) the planning required to move through the rooms
efficiently. While the latter is learned by the model as part of its
policy, the challenge of extracting the movement directions from the
unstructured text remains. Moreover, in the TextWorld environment,
every connected room can be blocked by a closed door that the agent
has to explicitly open before going in this direction. Therefore, it is
necessary not only to understand in which cardinal direction to move
for the next room but also to identify all closed doors in the way. For
this task, we learned the Navigator model, which is supervised trained
on augmented walkthroughs to identify (i) cardinal directions that
lead to connected rooms, and (ii) find all closed doors in the current
room. The model takes any room description as input and encodes
the sequence with a GRU to obtain a fixed-size vector representation.
This is fed into four individual MLPs that make a binary prediction
on whether the corresponding cardinal direction leads to a connected
room. To obtain the closed doors in the room, the hidden represen-
tation from each word of the description is fed into a shared binary
MLP that predicts whether or not a particular word is part of the
name of a closed door. This approach is necessary because there can be
multiple different closed doors in a room, and the name of each door
can consist of multiple words, e.g., sliding patio door.

The navigator adds for every detected cardinal direction (east, south,
west, north) the respective go command to the list of possible com-
mands. Additionally, it adds open <doorname> for every closed door
in the room’s description.
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OTHER COMMANDS Besides the commands that handle navigation
and cooking, a few additional actions are necessary to succeed in
the game. Since the number of these commands is minimal, they
are either added at every time step to the set of possible commands
or based on very simple rules. We provide the list of additional
commands and their rules in Table 3.1.

Command Rule

look, Added at every step, except if they were just per-
inventory formed in the previous command.

prepare meal Added once the recipe manager does not output any

recipe direction as missing anymore and the agent’s
location is the kitchen.

eat meal Added if meal is in agent’s inventory.

examine cook- Added if the cookbook is in the room’s description.
book

Table 3.1: Rules for additional commands to be added to the list of possible
commands.

3.5 RESULTS

First and foremost, the model was evaluated quantitatively against
more than 20 competitors in Microsoft’s TextWorld challenge, where
it scored 1st on the (hidden) validation set and 2nd on the final test
set of games. To show that our agent improves upon existing models
for TBGs on never-before-seen games of the same family, we compare
it against several baselines on the competition’s training, validation,
and test set.

As a metric, we always report the points per game relative to the
total achievable points. A single game terminates upon successful
completion of the task or when the agent fails by either damaging an
item or reaching the maximum number of a hundred steps.

3Result on their own validation set, which is hold-out data from the official
training set of games. However, the dynamics and difficulty of both sets of games
are comparable.
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tively.

Figure 3.3: Comparison of our model to several baseline models on the
TextWorld challenge games, as points per game relative to total achievable
points throughout the training of 3 epochs with 10 different random seeds.
Each shown point is an average over the past 8o games. The model details
of the baselines can be found in Table 3 in the Appendix.

BASELINE Figure 3.3 (a) demonstrates that standard baselines for
TBGs are not able to learn generalization capabilities to sufficiently
solve a whole family of games. Both, LSTM-DQN (NKB15) and DRRN
(He+15), do not exceed the 20% mark of points per game relative to
total achievable points* during 3 epochs of training. The input to
both of these models is the concatenated game’s state, consisting of
the room’s description, the agent’s inventory, the recipe, the feedback
from the last command, and the set of previously issued commands.
The main difference between DRRN and LSTM-DQN is that the
former ranks the provided admissible commands, while the latter
ranks (pre-selected) verbs and objects, from which a command is
formed then. Due to the combinatorial nature of possible commands
from the LSTM-DQN, the effective action space is significantly larger

420% would be equivalent to 12th place in the competition if the admissible
commands are known at every step, as for DRRN (= handicap 5), or gth place if not
(= LSTM-DQN).
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valid test

Method

% steps % steps
Random WL 0.1 £04 975 +27 0.0 £03  98.9 +.02
LSTM-DQN 22 +00  97.0+.00 1.0+.00 99.3+.00
Random AC 11.7+59  43.7+167 12.8+.64 50.1+31
DRRN 14.0+12  39.3+165 13.2+.25 50.2+.05
Random Pruned 33.5+66  90.6+.81 39.6+14  95.8+36
DRRN Pruned 34.3+31 89.8+.41 44.1+201  92.2+1.80
[YMi1gb] 583 30 - -
LeDeepChef %+  74.4+1s  24.1+23 69.3+:20  43.9+.19

Table 3.2: Results on the unseen set of validation and test games from the
TextWorld Challenge. We report the mean and standard deviation over ten
runs with different random seeds of each best performing model on the
training set.

than for DRRN. Thus, a random agent on this word-level task—Random
WL—performs much worse than an agent that selects randomly from
the admissible commands, Random AC. Both DRRN and LSTM-DQN
significantly outperform their random counterpart over the course of
the training but are not able to learn to solve the games to a sufficient
degree. The big scoring difference between the two random agents
underlines the importance of effective action space reduction.

COMPARISON ON PRUNED COMMANDS In a second experiment,
we use the same DRRN architecture as before, but with a pruned
version of the admissible commands to exactly match the commands
presented to our model; though, without the grouping to high-level
actions. As we see in Figure 3.3 (b), the reduced set of possible
commands massively improves both the random and the DRRN
model to up to 50%°. However, the DRRN model is still not capable
of improving a lot upon the random model and—as before—does not
show a steady upward trend throughout the training procedure. Our

550% is equivalent to the 5th place in the competition.
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model, on the other hand, improves its percentage significantly over
the training iterations to its final score of around 87%. We believe
that the advantage of our model over this specific baseline is mainly
due to (i) the grouped high-level commands that let the agent learn a
strategy more efficiently in an abstract space, (ii) the improvements in
the neural architecture that acts on a more sophisticated version of
the input features, and (iii) the superiority of the actor-critic over the
DQN approach.

COMPARISON ON TEST SET  Table 3.2 shows the quantitative results
of different models on the (unseen) validation set, as well as the final
test set of Microsoft’s TextWorld challenge. As expected, our model
generalizes best to the unseen games with a mean percentage of 74.4
and 69.3 for the respective sets of games. The standard baselines
are not able to exceed the 15% mark, indicating that they are not
suitable to be applied "out-of-the-box" on the specific task of solving
families of TBGs. A recent model by Yin and May [YM19b], designed
explicitly for the TextWorld environment, uses a curriculum learning
approach to train a DQN model and achieves 58% on their validation
set (hold-out data from the challenge’s training set).

3.6 LIMITATIONS

Our approach of explicitly modeling the intermediate representation
trades the ability to easily transfer to another domain (i.e., a different
family of games) for gains in performance and interoperability. It
allows us to massively reduce the action space which makes the RL
training feasible. In contrast, models like DRRN and LSTM-DQN,
which only implicitly learn the intermediate representations, struggle
to succeed in the given task. To transfer the agent to another family
of games, we need to replace our recipe manager model as it provides
the agent with explicit intermediate information about the cooking
process. For any given family of games, a similar manager model can
be trained with little changes and used to guide the agent.
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3.7 CONCLUSION

In this chapter, we presented how to build a deep RL agent that not
only performs well on a single TBG but generalizes to never-before-
seen games of the same family. To achieve this result, we designed a
model that effectively ranks a set of commands based on the context
and context-derived features. By incorporating ideas from hierarchical
RL, we significantly reduced the size of the action space and were
able to train the agent through an actor-critic approach. Additionally,
we showed how to make the agent more resilient against never-before-
seen recipes and ingredients by training with data augmented by a
food-item database. The performance of our final agent on the unseen
games of the FirstTextWorld challenge is substantially higher than
any standard baseline. Moreover, it achieved the highest score, among
more than 20 competitors, on the (unseen) validation set and beat all
but one agent on the final test set.
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Part II

QUERY REFORMULATION AGENTS






BOOSTING SEARCH ENGINES WITH INTERACTIVE
AGENTS

4.1 INTRODUCTION & BACKGROUND

In this chapter, we focus on training agents that can use search engines
as an interactive tool for finding information. We pursue a design phi-
losophy in which search agents operate in structured action spaces de-
fined as generative grammars, resulting in compositional, productive,
and semantically transparent policies. Further domain knowledge
is included through the use of well-known models and algorithms
from NLU and information retrieval (IR). Most notably, we develop
a self-supervised learning scheme for generating high-quality search
session data, by exploiting insights from relevance feedback (Rocy1),
used to train a supervised LM search agent based on T5 (Raf+20a).
We also build an RL search agent based on MuZero (Sch+20) and
BERT (Dev+19), which performs planning via rule-constrained Monte
Carlo tree search and a learned dynamics model.

We run experiments on an open-domain question-answering task,
OpenQA (LCT19b). Search agents learn diverse policies leading to
deep, effective explorations of the search results. The MuZero agent
outperforms a BM25 (RZo9) search function running over a Wikipedia
index, on both retrieval and answer quality metrics. This result pro-
vides novel evidence for the potential of knowledge-infused RL in
hard NLU tasks. The T5 agent can more easily leverage large pre-
trained encoder-decoders and proves superior to MuZero. Further-
more, a straightforward ensemble of agents is comparable in perfor-
mance to the current reference neural retrieval system, DPR (Kar+20),

This Chapter is based on our TMLR June 2022 paper “Boosting Search Engines
with Interactive Agents” (Ado+22c).
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while relying solely on interpretable, symbolic retrieval operations.
This suggests new challenges for future work; e.g., involving hybrid
architectures and policy synthesis. We open-source the code and
trained checkpoints for both agents.”?

QUERY OPTIMIZATION Query optimization is an established topic
in IR. Methods range from hand-crafted rules (LGg8) to data-driven
transformation patterns (ALGo1). Narasimhan et al. [NYB16] use
RL to query the web for information extraction. Nogueira and Cho
[NC17] and Buck et al. [Buc+18] use RL-trained agents to seek good
answers by reformulating questions with seq2seq models. These
methods are limited to one-step episodes and queries to plain nat-
ural language. This type of modeling is closely related to the use
of RL for neural machine translation, whose robustness is currently
debated (Cho+20; KK21). Web-GPT (Nak+21a) presents an end-to-end
search modeling approach based on human demonstrations. Mon-
tazeralghaem et al. [MZA20] propose a feature-based network to
score potential relevance feedback terms to expand a query. Das et al.
[Das+19] propose to perform query reformulation in embedding (con-
tinuous) space and find that it can outperform the sequence-based
approach. Xiong et al. [Xio+21b] successfully use relevance feedback
by jointly encoding the question and the text of its retrieved results for
multi-hop QA. Other work at the intersection of IR and RL concerns
bandit methods for news recommendation (Li+10) and learning to
rank (YJog). Recently, interest in Deep RL for IR has grown (Zha+21).
There, the search engine is the agent, and the user the environment.
In contrast, we view the search problem from the user’s perspective
and thus consider the search engine as the environment.

SEARCH ENGINE AND QUERY OPERATIONS We make the assump-
tion that agents interact with a search engine operating on an inverted
index architecture (CMSog), which is popular in commercial engines
and IR research. Specifically, we use Lucene’s implementation3 as the
search engine, in combination with the BM25 ranking function (RZoog).
We frame search as the process of generating a sequence of queries

1https://glthub.com/google- research/google- research/tree/master/muzero
thtps://github.com/google- research/language/tree/master/language/search_agents
3https://lucene.apache.org/.
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4.1 INTRODUCTION & BACKGROUND

90,91, - -,q1,* where qg is the initial query, and gr is the final query
— where the process stops. Each query g; is submitted to the search
engine to retrieve a list of ranked documents D;.

We focus on the case where 4,1 is obtained from g; through augmen-
tation. A query may be refined by adding a keyword w € £'*, such
that g;+1 = q:w, where X is the vocabulary of terms in the search
index. The new term will be interpreted with the usual disjunctive
search engine semantics. Furthermore, a query can be augmented by
means of search operators. We concentrate on three unary operators:
“+”, which limits results to documents that contain a specific term, “-”
which excludes results that contain the term, and “A;” which boosts a
term weight in the BM25 score computation by a factor i € R. In ad-
dition, the operator effect is limited to a specific document field, either
the content or the title. As an example, the query “who is the green
guy from sesame street” could be augmented with the term “+con-
tents:muppet”, which would limit the results returned to documents
containing the term “muppet” in the body of the document.

Only a small fraction of users’ queries include search operators, and
this behavior is not well studied. Croft et al. [CMSog, Ch. 6.2] estimate
that less than 0.5% use ‘+’. However, it is noteworthy how power users
can leverage dedicated search operators, in combination with sophis-
ticated investigative strategies, to solve deep search puzzles (Rus19).
Additionally, unary operators are associated with explicit, transparent
semantics and their effect can be analyzed and interpreted. Crucially,
however, as we show in this chapter, these operators are also pivotal
in designing effective search agents because they allow us to generate
self-supervised search session training data in a principled fashion.

RESULTS AGGREGATION AND OBSERVATIONS STRUCTURE Web
searchers expect the best answer to be among the top few hits on the
first results page (Heaog, Ch. 5) and pay marginal attention to the
bottom half of the 10 blue links (G]JGo4; Joa+os; NPog; Str20). Likewise,
a search agent considers only the top k documents returned by the
search engine at every step; we set k = 5 in all our experiments.

During a search session, the agent maintains a list of the top-k doc-
uments overall, which is returned at the end as the output. To
aggregate the results from different steps during the search ses-
sion we use a Passage Scorer (PS) which builds upon a pre-trained

+We also refer to the query sequence as a session, or search episode.
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BERT model. For each result document d € D;, the PS component
estimates the probability of d containing the (unspecified) answer
P(d > answer | q) € [0;1]. This probability can be viewed as a score
that induces a calibrated ranking across all result documents within a
session. Notice that the score is always computed conditioning on the
original query q = go and not g;.

At each session step, a search agent computes a structured observation
representing the state of the session up to that point. The observation
includes the query tokens and refinements describing g;. The top-k
documents in the session are represented by their title and a text
snippet. The snippet is a fixed-length token sequence centered around
the text span that contains the most likely answer for g, as predicted by
a Machine Reader (MR) (Raj+16b). For ranking (PS) and answer span
prediction (MR) tasks, we use the same BERT system as in (Kar+20).
Query and aggregated results yield a segmented observation token
sequence o; which is truncated to length < 512, a common input
length for pre-trained transformer-based LMs (cf. Appendix 4.6 for
more details and examples).

The next step involves a language model which produces an embed-
ding s; from which the search agent will generate the next query. We
can represent diagrammatically the operations that lead to a query
refinement as

‘70/ sy Qt
MR/PS LM agent
search . engine = 0t —— St = (41 (41)
N~ ——

observation encodin, i
DO/ ey Dt g  generation

At each step t the top-k documents in the session are identified by
means of their PS score. An observation o; is computed for the top
documents by means of a machine reader (MR). Then the search
agent’s LM encodes the observation o; and decodes the next query
gi+1. Figure 4.1 illustrates the search agent and its components at
work with an example.

ROCCHIO QUERY EXPANSIONS AND ROCCHIO SESSIONS The
query operations introduced above allow us to generate synthetic

5The answer is “Oscar the Grouch” who is a green muppet that lives in a trash
can on Sesame street.
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Query and Search Results Score
qo  who won season 2 great british baking show
Top-2 documents retrieved with q: 0.040
d; Title The Great American Baking Show
Content ... The first two seasons were hosted by Nia Vardalos and Ian
Gomez, with Mary Berry from the original “GBBO” series and
d, Title The Great American Baking Show (season 3)
Content ..., ABC announced that Vallery Lomas won the competition,
beating out runners-up Cindy Maliniak and Molly Brodak in the
final week ...
q1 who won season 2 great british baking show (contents:“final”A8)
Top-2 documents retrieved with q;: 0.142
d; Title The Great British Bake Off
Content ... The finalists were Brendan Lynch, James Morton and John
Whaite, the last of whom won the final in a surprise result. ...
d, Title The Great American Baking Show (season 2)
Content ...In the final technical, Mary Berry set the challenge on the
bakers to create a British Battenberg cake with a checkerboard
q2  who won season 2 great british baking show (contents:“final”A8) +(title:“bake”)
Top-2 documents retrieved with qp: 0.186
d; Title The Great British Bake Off
Content ... The finalists were Brendan Lynch, James Morton and John
Whaite, the last of whom won the final in a surprise result. ...
d, Title The Great British Bake Off
Content ... The final of the series where John Whaite was crowned the
winner saw its highest ...
q3  who won season 2 great british baking show (contents:“final”A8) +(title:“bake”) +(title:“2")
Top-2 documents retrieved with qs: 0.552

d; Title The Great British Bake Off (series 2)
Content ...The competition was won by Joanne Wheatley. There was no
Star Baker this week, as Paul and Mary felt ...
d, Title The Great British Bake Off (series 2)
Content ...contestants went on to a career in baking or have a change of

career as a result of appearing on the show. Joanne Wheatley has
written two best selling books on baking ...

Table 4.1: An observed example Rocchio session. The initially retrieved
documents are wrong documents that refer to the “The Great American
Baking Show”. The first Rocchio expansion boosts the term “final”. In the
two subsequent steps, the procedure requires the terms “bake” and “2” to be
contained in the title of the retrieved documents. In this way, the results first
continue to shift from the American Baking Show to the British Bake Off and
eventually settle on the desired British Bake Off (series 2). The composite IR
and QA score (defined in Eq.4.15) increases from 0.040 for the original query

to 0.552 for the final query.

45



BOOSTING SEARCH ENGINES WITH INTERACTIVE AGENTS

qo: who is the green guy from sesame street

== | Agent| ‘PS/VMR‘ ==
Dy
\
—
BM25

01 ‘

g2 q1

+(contents: “trash”)

Figure 4.1: Schematic agent interaction with the search engine (BM25) for the
query “who is the green guy from sesame street”.5This is a real example from
the query expansion procedure described in Chapter 4.1. After receiving
an initial set of documents (Dy) for the original question, the corresponding
observation (0¢) is compiled by ranking the documents according to their
Passage Score (PS) and creating snippets for the top-k documents around
the answers extracted by the Machine Reader (MR). Note that PS/MR
always conditions on qg. The first action of the agent is to enforce the term
“muppet” to be in the content of the search results. The new document
set D is returned by the search engine and aggregated with the previous
documents. Again, the set of documents is ranked by the Passage Scorer, and
the subsequent observation for the agent is compiled. The agent then chooses
to enforce the presence of the topical term “trash” and obtains another set
of documents that are, again, aggregated and scored. The final result D
contains the top-k documents observed during the episode, according to the
Passage Score.

search sessions in a self-supervised manner, making use of question-
answer pairs (g,a). We initialize go=q and aim to find a sequence
of refinements that make progress towards identifying high-quality
documents, based on a designed scoring function which combines
retrieval and question answering performance (cf. Eq. 4.15, introduced
in Chapter 4.3). A query is not further refined if no score-increasing
refinement can be found or a maximal length is reached.

To create candidate refinements, we put to use the insights behind
relevance feedback as suggested in Rocchio [Rocy1]. Formalizing the
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query operations introduced in Chapter 4.1, an elementary refinement
— called a Rocchio expansion — takes the form

Ge41 := qe Aqy (4-2)
Aqs := [+| —| A; Triree | ConNTENT| W) (4-3)
w €T i=2IUSfUSIUEP (4.4)

where i is the boosting coefficient and X; refers to a set of terms
accessible to the agent. By that, we mean terms that occur in the
observation o; — the search state at time ¢. We use superscripts to refer
to the vocabularies induced from the observation which identify the
terms occurring in the question (g), titles (7), predicted answer spans
(«) or bodies () of documents in o;. Note that adding terms ¢ ¥,
would make refinements more difficult to reproduce for an agent and
thus would provide supervision of low utility.

A crucial aspect of creating search sessions training data based on
Rocchio expansions has to do with the search complexity of finding
optimal sequences of such expansions. The success of this search
relies on the notion of relevance feedback. We introduce g« = g+ 4
as the “ideal” query: query q executed on the subset of documents
that contain answer a. The results of g, define the vocabulary X.. We
can now define two special dictionaries that will allow us to narrow
down the candidate terms to appear in the next refinement

2 =%n%, If=%-3.. (4.5)

During the search for an optimal session, it is possible to use accessible
terms w; as additional keywords, or in combination with an exact
match (“+”) or weight boosting (“A”) if they also occur in the ideal

result set (w; € ZI) ; and to exclude wy (

“ oy

) if they are not present in
the ideal results (w; € Zf). As in the Rocchio algorithm, this is meant
to bring the query closer to the relevant documents and farther away
from the irrelevant ones. We have found experimentally that this
leads to a good trade-off between the quality of Rocchio expansions
and the search effort to find them. We call a sequence of Rocchio
expansions a Rocchio session. Table 4.1 illustrates a Rocchio session for
the query "who won season 2 great british baking show’, based on the
experimental setup described in Chapter 4.4.
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4.2 SEARCH AGENTS
4.2.1  Self-Supervised T5 Agent

It is straightforward to train a generative search agent in a supervised
manner on the Rocchio sessions. We use T5, a popular pretrained
transformer encoder-decoder model. As a search agent, T5 learns to
predict a new search expansion from each observed state. In the spirit
of everything-is-string-prediction, state and expansions are represented
as plain strings. See Appendix 4.6 for a full example.

Our T5 agent is trained via Behavioral Cloning (BC) (MBHMgo). We
treat each step in a Rocchio session as a single training example. As
is common in sequence prediction tasks, we use the cross-entropy
loss for optimization. BC is perhaps the simplest form of Imitation
Learning (IL) and has been proven effective in a variety of application
domains (STK18; RHVGHL19). In our query refinement task, it allows
us to inherit the expressive power of the Rocchio query expansions
and, differently from other IL approaches (RGB11; HE16; DDZ20),
requires only offline interactions with the search engine. Crucially,
this enables scaling to the large action spaces and model sizes typical
of recent LMs. Our T5 agent can also be described as a Decision
Transformer with fixed max return (Che+21a).

4.2.2  Reinforcement Learning: MuZero Agent

Learning to search lends itself naturally to be modeled as a reinforce-
ment learning problem. To explore also the feasibility of learning
search policies from scratch, we implement an RL search agent based
on MuZero (Sch+20). MuZero is a state-of-the-art agent characterized
by a learnable model of the environment dynamics. This allows the
use of Monte Carlo tree search (MCTS) to predict the next action, in
the absence of an explicit simulator. In our use case, MuZero aims to
anticipate the latent state implied by each action with regard to the
results obtained by the search engine. For instance, in the example
of Figure 4.1, it may learn to predict the effect of using the term
“muppet” in combination with a unary operator. This approach to
planning is intuitive for search, as searchers learn to anticipate the
effect of query refinements while not being able to predict specific
results. Furthermore, this offers a performance advantage of many
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orders of magnitude against executing queries with the real search
engine.

4.2.3  Grammar-Guided Search

To map observations to states, the MuZero agent employs a custom
BERT with dedicated embedding layers to represent the different
parts (cf. Appendix 4.6 for details). Compared to T5, MuZero has
a more challenging starting point: its BERT-based representation
function is pre-trained on less data, it has fewer parameters (110M
vs. 11B), and no cross-attention: predictions are conditioned on a
single vector, [CLS]. Moreover, it cannot as easily exploit supervised
signals. However, it can more openly explore the space of policies,
e.g. independent of the Rocchio expansions. Through many design
iterations, we have identified it to be crucial to structure the action
space of the MuZero agent and constrain admissible actions and
refinement terms dynamically based on context. This provides a
domain-informed inductive bias that increases the statistical efficiency
of learning a policy via RL.

We take inspiration from generative, specifically context-free, gram-
mars (CFGs) (Chos6) and encode the structured action space as a
set of production rules, which will be selected in (fixed) top-down,
left-to-right order. A query refinement is generated, in a way that
mimics Rocchio expansions, as follows

Q=UQIWQ (4.6)

U = Op Field W (4.7)
Op=+]—|n (4.8)
Field = TITLE | CONTENT (4.9)

which allows for adding plain or structured keywords using unary
operators. The selection of each refinement term W proceeds in three
steps, the first two can be described by the rules

W= W W | WP || we (4.10)
Wi=weli, xe{grpa) (411)
W = w e T* (4.12)

which means that the agent first decides on the origin of the refine-
ment term, i.e., the query or the different parts of the top-scored result
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documents, and afterward selects the term from the corresponding
vocabulary. As the term origin correlates strongly with its usefulness
as a refinement term, this allows us to narrow down the action space
effectively. The agent is forced to pick a term from the larger vocabu-
lary (approximately 1M terms) of the search index X'** during MCTS,
as there is no observable context to constrain the vocabulary.

The third level in the action hierarchy concerns the selection of the
terms. We have found it advantageous to make use of subword
units; specifically, BERT’s 30k lexical rules involving word pieces, to
generate terms sequentially, starting from a term prefix and adding
one or more suffixes. Note that this part of the generation is context-
sensitive, as we restrict node expansions to words present in the
vocabulary. We make use of tries to efficiently represent each £} and
amortize computation.

4.3 THE OPENQA ENVIRONMENT

We evaluate search agents in the context of open-domain question
answering (Open-QA) (Voooo; Che+17a). Given a question g, we
seek documents D that contain the answer a using a search engine,
the environment. Following common practice, we use Lucene-BM25
with default settings on English Wikipedia. BM25 has provided the
reference probabilistic IR benchmark for decades (RZog), only re-
cently outperformed by neural models (LCT19b). The Lucene system
provides search operators comparable to commercial search engines.
Exploration-based learning is vulnerable to discovering adversarial
behaviors. As a safeguard, we design a composite reward. The score
of a results set D, given g, interpolates three components. The first
is the Normalized Discounted Cumulative Gain (NDCG) at k. See
Eq. 4.13, where w; = log, (i +1)1/ 25:1 log,(j +1)~! are normaliz-
ing weights, and rel(d|q) =1, if a € d,0 otherwise:

K
NDCGx(Dl|q) = )_ w;rel(d;|q) (4-13)
i

k
NDCEM(D|q) = ) w; em(d;|q). (4.14)

i=1
NDCG is a popular metric in IR as it accounts for the rank position,
it is comparable across queries, and it is effective at discriminating
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ranking functions (Wan+13). NDCG alone can have drawbacks: on
easy questions a score of 1 can be achieved in short meritless episodes,
while on hard ones it may be impossible to find a first valid step since
Eq. 4.13 takes discrete values. Hence, we introduce a second compo-
nent, NDCEM; (Eq. 4.14) where em(d|q) = 1 if the answer extracted
from d by the reader exactly matches a, 0 otherwise. NDCEMy, helps
validate results by promoting high-ranking passages yielding correct
answer spans. Finally, to favor high-confidence result sets we add the
normalized Passage Score of the top k results, leading to the following
scoring function

Sk(Dlq) := (1= A1 — A2) - NDCGy(Dlq) (4.15)
+A, - NDCEM,(D|g) (4.16)

k
A YRS €01 )

=1

Based on (4.15), we define the search step reward

rt = S5(D¢|q0) — S5(Ds—-1]q0)- (4.18)

We train the MuZero agent directly on the reward. The reward is
sparse, as none is issued in between search steps. The T5 agent is
trained indirectly on the reward via the induction of Rocchio sessions
(cf. Chapter 4.1).

4.4 EXPERIMENTS

For our experiments, we use the OpenQA-NQ dataset (LCT19b). This
data is derived from Natural Questions (Kwi+19) and consists of
Google queries paired with answers extracted from Wikipedia by
human annotators. The data includes 79,168 train questions, 8,757
dev questions, and 3,610 for test. We use the provided partitions
and Wikipedia dump. Following Lee et al. [LCT19b] we pre-process
Wikipedia into blocks of 288 tokens, for a total of 13M passages.
We evaluate each system on the top-5 288-token passages returned.
Model selection and data analysis are performed on NQ Deyv, using
the reward (Eq. 4.18) as the objective.

ROCCHIO SESSIONS DATA  We generate synthetic search sessions
using Rocchio expansions for 5 different combinations of types of
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Figure 4.2: The histogram on the left shows the length of the Rocchio sessions,
using different grammars on NQ Dev. The plot on the right shows the
average score gain (score is computed according to Eq. 4.15) for each Rocchio
expansion step with grammar G4 on NQ Dev. The shaded area is between
5 — 95" percentiles.

refinements. We refer to these as grammars: Go (allows only simple
terms), G1 (only term boosting, with weight i € {0.1,2,4,6,8}), G2
(“+” and “-”), G3 (Go+G2) and G4 (Go+G1+G2). Given the original
query, a Rocchio session is generated as follows: We attempt at most
M = 100 possible refinements for each grammar operator using
terms from the constructed dictionaries Zj and Zti (see Eq. 4.5). For
instance, for the “+” operator we attempt refinements of the form
‘+(field: “term”)’, where term is taken from the top-M terms in the
intersection dictionary ZI and field represents the field (content or title)

where the term was found. Dictionaries ZtT and Zf are constructed
(cf. Chapter 4.1) based on the set Xy of top N = 100 terms present in
the documents retrieved so far, sorted according to Lucene’s IDF score.
For each of such possible refinements, we issue the corresponding
query to Lucene and, based on the returned documents, we evaluate
the resulting score. We use the scoring function of Eq. 4.15 with
coefficients A1=0.2,1,=0.6, after a search against the final quality
metrics. Then, we select the refinement leading to the highest score
and neglect the other ones. This process continues until no score-
improving refinement can be found, for a maximum of 20 refinement
steps.

In Figure 4.2a, we plot the histogram of the length of Rocchio sessions
on NQ Dev, using the different grammars. We observe that most
sessions terminate after a number of steps significantly smaller than
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20, either because the maximum score is reached or because no score
improvements can be found. For instance, using the G4 grammar,
Rocchio sessions have an average length of 5.06 steps with a stan-
dard deviation of 3.28. Results are similar on NQ Train, where with
grammar G4 we obtain 298,654 single Rocchio expansion steps from
77,492 questions (in Table 4.5 we report the numbers for different
grammars). Moreover, we have observed the first query expansion
steps produce higher score gains with respect to later ones. This can
be observed in Figure 4.2b where we plot the average per-step score’s
gain. This indicates that performing longer Rocchio expansions yields
diminishing marginal gains.

AGENTS TRAINING AND INFERENCE The machine reader and
passage scorer, as well as MuZero’s hy function, use 12-layer BERT
systems.® To train the former, we generate for each query in NQ
Train 200 candidate passages from our BMz25 system, picking one
positive and 23 negative passages for each query at random whenever
the query is encountered during training. The reader/scorer is not
trained further. MuZero’s representation function is trained jointly
with the rest of the MuZero system.

For the T5 agent, we start from the pretrained T5-11B (11 billion pa-
rameters) public checkpoint and continue training on the NQ Train
Rocchio expansions. Training took about 5 days using 16 Cloud TPU
v3. At inference time, we found that fixing the sessions to 20 steps
worked best for both T5 and MuZero. Indeed, we observed perfor-
mance increase monotonically with the search steps, with decreasing
marginal gains (see Figure 4.4 where we plot the NQ Dev performance
of one of our T5 agents as well as the supervised Rocchio sessions, as
a function of the number of refinement steps).

The MuZero implementation is scaled and distributed via an agent-
learner setup (Esp+18) in the SEED RL (Esp+20) framework allowing
for centralized batching of inference for effective use of accelerators.
MuZero is trained on NQ Train for a total of 1.6 million steps (=10
days) using 500 CPU-based actors and 4 Cloud TPU v2 for inference
and training on the learner.” For each step, 100 simulations are
performed. During training, we limit sessions to a maximum of 20

SBERT-base, initialized from
https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1.
7For details, see https://cloud.google.com/tpu.

53


https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1
https://cloud.google.com/tpu

BOOSTING SEARCH ENGINES WITH INTERACTIVE AGENTS

steps. The agent also can decide to stop early by selecting a dedicated
stop action. Training of MuZero can be improved by providing advice
to the actors. An actor may receive information about which terms w;
should be promoted, w; € ZI, or demoted, w; € Zi. The probability
of an episode receiving advice starts at 0.5 and decays linearly to o in
one million steps.

Metric ‘ BMz5 +PS +RM3 ‘ MuZero T5-G1 MuZero+T5s DPR  Rocchio-G4
NDCG@s5 | 21.51 24.82 26.99 32.23 44.27 46.22 - 65.24
Top-1 28.67 4493  46.13 47.97 52.60 5429 52.47 7374
Top-5 5376 53.76  56.33 59.97 66.59 71.05 72.24 88.17
EM 28.53 41.14  40.14 32.60 44.04 44.35 41.50 62.35

Table 4.2: Results on the test partition of OpenQA-NQ. The BM25 column
reports the performance of the Lucene-BM25 search engine. BM25+PS
refers to reranking the top-5 BM25 results with the BERT passage scorer
(PS). BM25+PS+RM3 is a pseudo-relevance feedback baseline that iteratively
adds terms to the query and uses the passage scorer (PS) to aggregate the
retrieved results. MuZero is the performance of the RL search agent using
the full set of query expansion types (G4). T5-G1 is the best T5 search agent,
trained on the G1 grammar Rocchio sessions (using only term boosting).
MuZero+T5s is an ensemble of the documents returned by the MuZero
agent and all T5 agents, ranked based on each document’s PS score. For
DPR’s performance (DPR) we report the most recent Top-1 and Top-5 results
from https://github.com/facebookresearch/DPR. Finally, Rocchio-G4 is
an estimate of the headroom based on the Rocchio sessions using the full
grammar (G4). NDCG@s, Top-1 and Top-5 are retrieval quality metrics,
while EM (Exact Match) is the answer quality metric used in machine
reading.

RESULTS Table 4.2 summarizes the results on OpenQA-NQ Test.
We evaluate passage retrieval quality by means of ranking (NDCG@s)
and precision (Top-1, Top-5) metrics. We also report Exact Match
(EM) to evaluate answer quality. The baseline is Lucene’s BM25
one-shot search. Reranking the same BM25 documents by the PS
score (BM25+PS) is easy and improves performance on all metrics,
particularly noticeable on Top-1 and EM.® We also evaluate a pseudo-
relevance feedback variant of the BM25+PS baseline (+RM3). Follow-
ing (Jal+og4; PMD13), at each iteration we pick the highest scoring term

8Top—5 is identical to BM25 since the documents are the same.
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in the search results based on the RM3 score and add that term to the
previous query with the “+” operator applied to the document content.
In Appendix 4.6 we provide a detailed study of the retrieval perfor-
mance of this method, using all available operators, and comparing it
with an alternative IDF-based term selection mechanism. Surprisingly,
and somewhat against the general intuition behind pseudo-relevance
feedback, we find that negating terms is more effective than pro-
moting them. This seems to suggest that negative pseudo relevance
feedback, in combination with reranking (e.g., by the PS score), can
provide a simple and useful exploration device.

The last column (Rocchio-Gg4) reports the quality metrics for the best
Rocchio sessions data, using the grammar with all operators (Gg4).
Rocchio expansions make use of the gold answer and thus can be
seen as a, possibly conservative, estimate of the performance upper
bound. As the external benchmark, we use DPR (Kar+20), a popular
neural retriever based on dual encoders, the dominant architecture
for deep learning-based ad hoc retrieval (Cra+20). We note that our
approach and DPR are not directly comparable in terms of engineering
performance: while DPR requires a maximum inner-product search
among dense vectors, our retrieval method is based on an inverted
index.

T5 We evaluate T5 models trained on all 5 grammar variants. The
best one, “T5-G1” in Table 4.2, is limited to term boosting (G1), and
it learns to use all available weight values (Figure 4.3a). In terms of
Top-1, this agent outperforms the published and the most recently
posted DPR results? but has a worse Top-5 than both. Results for all
five T5 agents are found in Table 4.8, we notice that the performance
varies by relatively small amounts using different grammars, but it
peaks noticeably with "T5-G1’. Figure 4.4 shows the performance of
the best Rocchio sessions data (Rocchio-G4) and that of the best Ts
model (G1) as a function of the maximum number of steps allowed,
both increasing monotonically as expected.

MUZERO On the retrieval task the MuZero agent outperforms all
BM25 variants. While this result may seem trivial, it marked a mile-
stone that required many iterations to achieve. The challenge for RL
in IR, and NLU, is extreme in terms of state and action space dimen-

9https://github.com/facebookresearch/DPR.
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Figure 4.3: The plot on the left shows the relative frequency of action types
chosen by the best versions of the MuZero RL agent, the T5 agent that is
learned on supervised episodes with the G1 grammar (only term boosting)
"T5-G1’, and the Rocchio sessions with grammar G4 (complete grammar con-
sisting of action types: simple terms, term boosting, “+”, and “-”) "Rocchio-
Gy4'. Interestingly, the MuZero agent converges to only use the light boosting
operation with a weight of 2. The T5 agent, on the other hand, makes use of
the whole spectrum of the boosting operations, including the boosting with
0.1, which down-weights a particular term. The Rocchio query expansion
uses the “+” operator on the contents field most often. This can be seen as
an effective but potentially dangerous operation as it is a hard filtering on
the presence of a certain term, potentially reducing the resulting retrieval
set drastically. The right plot shows the depth of the documents in terms
of retrieval rank based on the original query explored by the three agents.
Here, we see that for all three agents, a significant portion of documents are
retrieved beyond rank 1000, which means that they find relevant documents
entirely hidden from a system relying on BM25 with only the original query.

sionality, data sparsity, etc. (Zha+21). Our ideas for tackling some of
these key challenges by fitting out agents with domain knowledge in
principled ways, with the grammar-guided MCTS as the centerpiece,
seem to point in a promising direction. MuZero converges to a policy
that uses only the term boost action types with a weight of 2 — see Fig-
ure 4.3a for the action distributions of different policies. The MuZero
agent is not able to find better-performing, diverse policies. This is
an extreme case of a more general pattern. Different sub-grammars
represent different tactics; e.g., “+” and “-” affect the accessible doc-
uments in irreversible ways, while boosting only affects ranking. It
is challenging for all agents, and particularly MuZero, to modulate
effectively multiple sub-policies.
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Figure 4.4: Performance on NQ Dev as a function of the number of query
refinement steps. The plot on the left shows the results for the performance
of the supervised Rocchio sessions with grammar G4 (all operators), while
on the right we plot the performance of the trained T5-G1 agent trained on
the G1 Rocchio sessions.

AGENTS ENSEMBLE In the last experiment, we combine all trained
agents, the five T5 agents, and MuZero, in one ensemble. We simply
rank the union of all the documents returned by the ensemble using
the PS score on each document, thus not requiring any additional
parameters. This ensemble (“MuZero+T5s” in Table 4.2) has slightly
better precision than the recent DPR in the top position, and slightly
worse for the Top-5. This result indicates that the ability to orches-
trate diverse sub-policies may indeed be the key to future progress
for search agents. For the record, the current SOTA for Top-5 is

74.0 (Qu+21).

ANSWER QUALITY We conclude by discussing answer quality. Agents
routinely produce answer spans, as predicted by the reader/scorer,
to build observations. The MR/PS component is trained once, before
the agents, on the output of BM25. However, agents deeply affect
the composition of the results. As Figure 4.3b shows, search agents
dig deep in the original BM25 ranking. This is positive, as behavior
discovery is one of the main motivations for researching exploratory
methods like RL. As a consequence, though, the MR/PS component
effectively operates out of distribution and the EM numbers of the
internal reader are not competitive with recent methods, Table 4.9
reports all the numbers including on NQ Dev. Ideally, one would
co-train the observation builder with the search agent. However, com-
bining the two would introduce significant engineering complexity in
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Query and Search Results Score
qo  who averaged the most points in college basketball history
Top-3 documents retrieved with qo: 0.027
d; Title Gary Hill (basketball)
Content ...one of four on that team who averaged double figures in
points. Senior Larry Jones was OCU’s leading scorer at 19.7
points a game, sophomore Bud Koper added 15.9...
d, Title Kevin Foster (basketball)
Content ...his senior year, Foster averaged 21 points per game and was
named the MVP and All-District 18-5A First Team. He was also
a Texas top- 30 player his final season ...
q3  who averaged the most points in college basketball history
(contents:“per”»6) (contents:“scorer”A4) (contents:”3”16)
Top-3 documents retrieved with q3: 0.330
d; Title Alphonso Ford
Content ...seasons. With 3,165 career points scored in the NCAA Division
I, he is 4th on the all-time scoring list, behind only Pete Maravich,
Freeman Williams, and Lionel ...
d, Title Buzzy Wilkinson
Content  Buzzy Wilkinson Richard Warren “Buzzy” Wilkinson (November
18, 1932 — January 15, 2016) was an American basketball player
who was selected by the Boston Celtics in ...
qs  who averaged the most points in college basketball his-
tory (contents:”per”A6) (contents:“scorer” A4) (contents:“3”16)
+(contents:“maravich”)
Top-3 documents retrieved with q4: 0.784

d; Title
Content

d, Title
Content

Alphonso Ford

...seasons. With 3,165 career points scored in the NCAA Division
I, he is 4th on the all-time scoring list, behind only Pete Maravich,
Freeman Williams, and Lionel ...

Pete Maravich

...had posted a 3-20 record in the season prior to his arrival.
Pete Maravich finished his college career in the 1970 National
Invitation Tournament, where LSU finished fourth ...

Table 4.3: Example of a T5-G4 agent session exhibiting multiple tactics. The
session shows the evolution of the search query (first line in each section)
and snippets of the top-2 retrieved documents from the search engine. We
skip q1 and q for brevity. The colored spans indicate the prediction of the
machine reader; blue if it is correctly predicted, red otherwise. In the top
right corner of each section, we report the score of the retrieved document
set at that step, according to Equation 4.15.

the current architecture. For instance, one could interleave training
the two as in DQNs (Mni+13b).
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Query and Search Results Score
qo0 who was the last nba player to get drafted out of highschool
Top-2 documents retrieved with qo: 0.081
d; Title 1996 NBA draft
Content ...Jermaine O'Neal, Peja Stojakovi¢, Antoine Walker), and one undrafted
All-Star (Ben Wallace), for a grand total of 11 All-Stars. ...
d; Title 2009 NBA draft
Content ...The 2009 draft marked the first time three sons of former NBA players

were selected in the top 15 picks of the draft ...

T5-G1q3 who was the last nba player to get drafted
out of highschool (contents:“draftees”2)
(contents:“thon”n4) (contents:“satnam” r4)

Top-2 documents after aggregation with retrieval results from T5-G1 q3: 0.946
d; Title NBA draft
Content ...However, because of the new age requirement put in place in 2005,

high school seniors are no longer eligible for the draft, unless they were
declared as postgraduates by the NBA, which would not happen until
2015 with Indian prospect Satnam Singh Bhamara in the second round
and again in 2016 with South Sudanese-Australian prospect Thon Maker
in the first round. ...

dy Title Eligibility for the NBA draft
Content ...However, in recent years, other players like Satnam Singh, Thon
Maker, and Matur Maker have looked to enter the NBA draft while still
being high schoolers by exploiting a loophole where they enter the draft
as high school postgraduates. ...

T5-G4 q;  who was the last nba player to get drafted out of highschool +(contents:“highschool”)

Top-2 documents after aggregation with retrieval results from T5-G4 q;: 0.081
d; Title 1996 NBA draft
Content ...Jermaine O’Neal, Peja Stojakovi¢, Antoine Walker), and one undrafted
All-Star (Ben Wallace), for a grand total of 11 All-Stars. ...
d; Title 2009 NBA draft
Content ...The 2009 draft marked the first time three sons of former NBA players

were selected in the top 15 picks of the draft ...

Table 4.4: A snippet of episode examples from the T5-G1 (boosting only)
agent vs. the T5-G4 agent (all operators). The T5-G1 adjustments to the
query; first, boosting “draftees”, and later boosting “thon”, and “satnam”
leads to almost perfect retrieval results with a score of 0.946. On the other
hand, the T5-G4 agent decides to constraint the results in the first step to
those including the term “highschool”. While this is a topical term, this
leads to a bad retrieval results set from which the agent cannot recover in
later steps (omitted for brevity).

A simpler alternative is to add the answer prediction task to the T5
agent. Retrieval-augmented answer generation is known to produce
strong results (IG21b). Multitasking would simplify the design of
the generative agents and possibly produce better models. We make
a first step in this direction by training a dedicated T5 agent. The
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system uses as training input the top-5 documents of the Rocchio-G4
episodes, but its task is to generate the gold answer instead of the
query expansion. At evaluation time, based on the output of the
“T5-G1” and “MZ+T5s” agents, the EM performance of the answer
generation T5 is comparable to methods that build on DPR, such as
RAG (Lew+20c) (44.5 EM). Although not as good as FID (IGz21b) that
condition on many more (100) documents.

DISCUSSION

LIMITATIONS OF CURRENT POLICIES Table 4.3 illustrates an ex-
ample where the T5-G4 agent (with the full set of operators) switches
policy mid-session. The question is about basketball records, and
BM25 does not find good results. In the first three steps, the agent
focuses on re-ranking by boosting terms like “per” (from the phrase
“per game” in the results for qg) and “scorer”. This produces a good
hit and predicted answer span (“Pete Maravich”) at position 1 of
step 3. The agent then switches to filtering mode to focus on docu-
ments containing the answer term predicted by the machine reader.
While this is a clear instance of successful policy synthesis, the T5-G4
agent does not master switching between policies well enough to
perform better than T5-G1, the agent that only uses boost operators.
Table 4.4 provides an example that shows how T5-G1 is more robust
than T5-G4. T5-Gg4 starts by requiring the presence of a misspelled
term (“highschool”) which leads to empty results and the end of the
session because that step is not reversible. T5-G1, instead, makes its
way gradually in the session boosting topical terms (“draftees”) and
players’ names, eventually solving the query.

The agents’ ensemble results prove that the ability to orchestrate
complementary sub-policies provides a performance advantage. This
suggests that the action space may benefit by including more con-
trol actions, e.g. to ‘'undo’ or ‘go back’ to a specific state, to better
support safe exploration and the emergence of meta policies. We
plan to investigate this in future work. The previous point extends
to the agents’ architecture. It is reasonable to hypothesize that the
superior performance of T5 is due to two main factors. Tss are bigger
models, trained on more data, and rely on a more powerful prediction
process based on the encoder-decoder architecture. In addition, they
are finetuned on a self-supervised task which provides significant
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headroom. While large LMs seem the obvious choice forward there
are open questions concerning exploration. It is unclear how much
the model can generalize, being trained offline and never exposed to
its own predictions. This moves the learning problem back toward
RL. We have started to investigate approaches in the direction of
decision/trajectory transformers (Che+21a; JLL21). We believe they
provide a natural framework for bringing back key RL concepts which
could play an important role; for example, by allowing successful
policy synthesis by training from different offline policies; e.g., from
Rocchio and MuZero.

ARTIFICIAL VS HUMAN SEARCH POLICIES Based on human search
behavior (cf. Chapter 2.4), it seems natural to model search as an
iterative, contextualized machine learning process. In terms of the
number of steps required, Rocchio sessions peak at around 5 steps,
while also for humans, especially for hard queries, several steps are of-
ten necessary. Qualitatively speaking, though, they look different. For
a start, while powerful, search operators (at least in the current form)
don’t allow to easily capture the full spectrum of human search tactics.
Human search sessions have been characterized broadly in terms of
three types of refinement actions: specification, generalization, and
reformulation (LHgg; Dow+08). In this respect, the current search
agents lack the ability to explicitly generalize and fully reformulate.
They mostly perform filtering and reranking. Search operators may
be better suited to complement, as power tools, other plain language
query refinement methods rather than being the centerpiece of the
agent’s action space. Evaluating plain language reformulation func-
tionality is thus an obvious next step. However, the generation of the
necessary training data, in this case, is an open question. We will
focus on this problem in future work.

We also point out that the policies that can be currently generated
via the Rocchio sessions, or by exploration via Muzero, are artificial
because they are driven by a reward which is an imperfect proxy for
human relevance. In future work, we plan to investigate new learning
methods that include modeling of human policies, e.g., in combination
with apprenticeship learning frameworks (cf. (Nak+21a)).

THOUGHTS ON OPENQA-NQ The Natural Questions dataset (Kwi+19)
is unique in that it builds from real user queries, with a great deal
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of attention to annotation and data quality. On the other hand, the
dataset is designed for a setup where the document is given. Hence,
annotations are consistent only within that document, not at the col-
lection level. The retrieval setting implies that the vast majority of
the data have not been validated by raters. Additionally, the human
ratings cannot be easily and reliably aligned with a pre-computed
segmentation into passages. Thus, one typically relies on the heuristic
relevance function, based on the presence of the short answer string,
which cannot discriminate unjustified answers. While imperfect, this
setup strikes a local optimum that has driven significant innovation in
IR and QA research by allowing direct comparison of many different
approaches in a fast-moving landscape, e.g., from ORQA (LCT19b) to
closed book QA (RRS20) to RAG (Lew+20b; Qu+21), DPR (Kar+20)
etc. Another possible downside is the overlap between partitions, as
pointed out in (LSR21). We for this factor periodically by splitting
the dev partition into known and unknown answers (based on the
presence of the answer in the train data). Consistent with (LSR21), we
find a significant drop in the unknown answers but the same relative
performance of methods.

BROADER IMPACT  We would like to note that pre-trained language
models of the kind used here have been shown to capture societal
biases (TC19; Web+20), which motivates a broad discussion about
potential harms and mitigations (Blo+20; Ben+21). We have no reason
to believe our architectures would exacerbate biases, but the overall
problems may persist. We also hope that end-to-end optimization
methods based on composite rewards, as in this proposal, can con-
tribute to addressing some of these challenges; e.g., by providing
means of adversarial testing, and by including relevant metrics di-
rectly in the objective design. We stress here that while our agents
yield performance comparable to neural retrievers, they rely solely on
interpretable, transparent, symbolic retrieval operations.

4.5 CONCLUSION

Learning to search sets an aspiring goal for Al, touching on key chal-
lenges in NLU and ML, with far-reaching consequences for making
the world’s knowledge more accessible. This chapter provides the
following contributions. First, we open up the area of search session
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research to supervised language modeling. Second, we provide ev-
idence for the ability of RL to discover successful search policies in
a task characterized by multi-step episodes, sparse rewards, and a
high-dimensional, compositional action space. Lastly, we show how
the search process can be modeled via transparent, interpretable ma-
chine actions that build on principled and well-established results in
IR and NLU. Our findings seem to agree with a long-standing tradi-
tion in psychology that argues against radical behaviorism —i.e., pure
reinforcement-driven learning, from tabula rasa — for language (Choso).
RL agents require a remarkable share of hard-wired domain knowl-
edge. LM-based agents are easier to put to use, because they rely on
massive pre-training and abundant task-specific data for fine-tuning.
Supplied with the right inductive bias, LM and RL search agents
prove surprisingly effective. Different architectures learn different,
complementary policies, suggesting broad possibilities in the design
space for future work.
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4.6 APPENDIX

ROCCHIO SESsIONS In Table 4.5 below, we report the total num-
ber of expansion steps performed on NQ Train. These are used as
supervised training data for our T5 agents.

Go G1 Gz G3 Gqg
243,529 313,554 230,921 246,704 298,654

Table 4.5: Total number of Rocchio expansion steps in NQ Train for different
grammars on the 77,492 Rocchio sessions.

OBSERVATION BUILDING DETAILS This section provides more de-
tails and examples about the encoding of observations for both the
MuZero and the T5 agents. As described in Section 4.1, the main part
of the observation consists of the top-5 documents from all results
retrieved so far, U!_, D;. The documents are sorted according to the PS
score and reduced in size by extracting fixed-length snippets around
the machine reader’s predicted answer. Moreover, the corresponding
Wikipedia article title is appended to each document snippet. The
computational complexity of this step is determined by running a
BERT-base (110M parameters) machine reader separately (albeit pos-
sibly in parallel) over five passages. In addition to the top documents,
the observation includes the original question and information about
any previous refinements. While the main part of the observation is
shared between the MuZero and the T5 agent, there are differences
in the exact representation. The following two paragraphs give a
detailed explanation and example for both agents.

MUZERO AGENT’S STATE (CF. CH. 4.1) The MuZero agent uses a
custom BERT (initialized from BERT-base) with additional embedding
layers to represent the different parts of the observation. It consists
of four individual embedding layers as depicted in Figure 4.5. At
first, the standard layer for the tokens of the query, the current tree,
and the current top-5 documents D. The second layer assigns a type
ID to each of the tokens representing if a token is part of the query,
the tree, the predicted answer, the context, or the title of a document.
The last two layers add scoring information about the tokens as float
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values. We encode both the inverse document frequency (IDF) of a
word and the documents’ passage selection (PS) score. Figure 4.6
shows a concrete example of a state used by the MuZero agent.

Layer Query Tree Document Results

Tokens ‘ q0 ‘ ‘ loy .yl ‘ g, C0yt0s -+ -y Ansy Cny tn ‘
Type ‘ D, ‘ ‘ IDiree ‘ ‘ ID,,ID,,IDy, . ..,ID,, ID.,ID, ‘
IDF Score ‘ idf(qo) ‘ idf(ly),. .., idf(l,) | idf(ao),idf(co),idf(to), .. ., idf(an), idf(c, ), idf(t,)

PS Score ‘ 0 H 0 ‘ ‘ PS(do). ... PS(dy) ‘

Figure 4.5: Schematic illustration of the MuZero search agent’s state for the
BERT representation function.

Tokens  [CLS]  who  carries  the  burden  of going  forward with  evidence  in a trial
Type [CLS]  query  query  query  query  query  query query query  query  query  query  query
IDF 0.00 0.00 677 0.00 7.77 0.00 5.13 5.53 0.00 5.28 0.00 0.00 577
PS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tokens [SEP] [pos] [content]  burden s [neg] [title] sometimes [SEP] lit #figan iiits [SEP]
Type [SEP] tree tree tree tree tree tree tree [SEP]  answer answer  answer  [SEP]
IDF 0.00 0.00 0.00 9.64 9.64 0.00 0.00 492 0.00 10.64 1064 10.64 0.00
PS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 380 380 38 380
Tokens  kinds for each  party ) in different  phases of litigation . the burden
Type context context context  context context  context context context context  context context context context
IDF 7.10 0.00 0.00 436 17.41 0.00 418 7.46 0.00 7.92 17.41 0.00 7.77
S 38 380 380 380 38 380 380 380 38 380 380 380 380
Tokens  suspicion , probable  cause . ( as for [SEP]  evidence  [SEP]
Type context context  context context  context context context context context context [SEP] title [SEP]
IDF 7.80 17.41 17.41 17.41 7.91 5.41 17.41 17.41 0.00 0.00 0.00 5.28 0.00
PS <1220 1220 1220 1220 1220 1220 -1220 -1220 1220 1220 1220 1220 1220

Table 4.6: Example state of the MuZero search agent that is the input to
the BERT representation function. The Type layer encodes the state part
information for each token. The IDF and PS layers are additional layers with
float values of the IDF and the PS score of the input tokens, respectively.

T5 AGENT’S STATE (CF. CH. 4.2.1) T5 represents the state as a flat
string. The input is a concatenation of the original query, zero or more
expansions, and five results. For each result, we include the answer
given by the reader, the document’s title, and a span centered around
the answer. The prediction target is simply the next expansion. See
Table 4.7 for a full example.

RESULTS Table 4.8 reports the results for the different versions of
the T5 agent, evaluated on dev. We don’t evaluate all agents with the
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Input

Target

Query: "how many parts does chronicles of narnia have’.
Contents must contain: lewis.
Contents cannot contain: battle boost 2.0.

Answer: "seven’.

Title: "The Chronicles of Narnia’.

Result: The Chronicles of Narnia is a series of seven fantasy novels by C. S. Lewis. It is
considered a classic of children’s literature and is the author’s best-known work, having...

Answer: 'seven’.

Title: "The Chronicles of Narnia (film series)’.

Result: ""The Chronicles of Narnia", a series of novels by C. S. Lewis. From the seven books,
there have been three film adaptations so far - (2005), " (2008) and "" (2010)...

Answer: ‘seven’.

Title: ‘Religion in The Chronicles of Narnia’.

Result: 'Religion in The Chronicles of Narnia "The Chronicles of Narnia" is a series of seven
fantasy novels for children written by C. S. Lewis. It is considered a classic of...

Answer: ‘seven’.

Title: "The Chronicles of Narnia’.

Result: "Lewis’s early life has parallels with "The Chronicles of Narnia". At the age of seven ,
he moved with his family to a large house on the edge of Belfast...

Answer: "Two’.

Title: "The Chronicles of Narnia’.

Result: ‘found in the most recent HarperCollins 2006 hardcover edition of "The Chronicles
of Narnia". Two other maps were produced as a result of the popularity of the 2005 film ...

Contents must contain: novels

Table 4.7: Example state (input) and prediction (target) of the T5 agent with
linebreaks and emphasis added for readability. We use a 30 token span in
our experiments.
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generative answer system, for answer quality we report only the per-
formance of the internal machine reader (EM-MR). Table 4.9 reports
extended results, including for NQ Dev and the PS/MR component
answer quality eval (EM-MR). Moreover, in Figure 4.4b we plot the
performance of our T5-G1 agent on NQ Dev as a function of the max-
imum number of query refinements. We observed the performance
increase monotonically with the number of refinements and that most
of the performance gain is achieved in the early steps, in accordance
with the respective supervised Rocchio episodes (Figure 4.4a).

Version NDCG@s5  Top-1  Top-5 EM-MR  Reward

Go 40.75 52.12 64.93 30.22 33.30
G1 43.10 52.12 66.09 29.50 35.55
Gz 41.16 51.51 63.54 30.03 33.81
G3 41.69 5134  64.17 29.77 3395
G4 41.53 5098 6349 29.70 34.25

Table 4.8: Results of all T5 Agents on NQ Dev.

Metric Data ‘ BMz5 +PS +RM3 ‘ MuZero T5-G1 MuZero+T5s DPR  Rocchio-G4
NDCG@s5 Dev 19.83 2295 25.09 30.76 43.10 45.30 - 64.89
Test 21.51 24.82 26.99 32.23 44.27 46.22 - 65.24
Top-1 Dev 28.17  43.06  44.81 46.02 52.12 54.15 - 74.99
Test | 28.67 44.93 4613 47.97  52.60 54.29 52.47 73-74
Top-5 Dev 50.47 50.47  53.61 57.71 66.09 70.05 - 88.21
Test 53.76  53.76  56.33 59.97 66.59 71.05 72.24 88.17
EM-MR Dev 15.31 2515 26.22 27.17 29.50 31.12 - 47.38
Test 14.79 2587  26.95 28.19 30.08 30.58 41.50 46.34
EM-Ts5 Dev 28.98 40.70  41.65 32.48 44.75 44.47 - 63.78
Test 28.78 4114  40.14 32.60 44.04 44.35 41.50 62.35

Table 4.9: Results on NQ Dev and Test.

PSEUDO-RELEVANCE FEEDBACK BASELINES We investigate the
performance of multiple pseudo-relevance feedback (PRF) baselines
on our setup. We employ these baselines by running search sessions
of length k, where, at each step, we choose the most relevant term of
the top-retrieved documents and add it to the query. To determine the
most relevant term, we use either inverse document frequency (IDF),
computed over our full retrieval corpus, or RM3 (Jal+o4). For RM3, we
use the model described in Eq. 20 of Pal et al. [PMD13] with u = 2500.
After each expansion step, we use the passage scorer (PS) to score and
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rank the documents. This is an important step, as we do this approach
iteratively, so the baseline is more comparable to our agent’s setup.
While a standard PRF baseline on top of BM25 adds a term to the
query (equivalent to our “or”-operator), we investigate the effect of
different Lucene operators that our agents have access to. In particular,
we run for each of our 10 operators (“or”, “+content”, “+title”, “-
content”, “~title”, “A.1”, “A2”, “N4", “N\6”, “N\8”) a PRF baseline with
k = 20 steps (same as our agents). The results are reported in Table
4.10. Interestingly, the “-title”-operator, which limits search results not
to contain any documents where the specified term is part of the title,
works best across all metrics, datasets, and relevancy algorithms. This
is in contrast to the standard motivation of PRF to promote relevant
terms that appeared in the search results. Instead, requesting search
results to contain new documents (with different titles) seems to be
the stronger heuristic. We believe that these experiments underline
the benefit of a learned agent to automatically pick the right operator
based on the search session context.

Metric Data Alg | or +c + - 4+ Al A2 AL A6 A8

NDCG@5 Dev IDF | 24.78 2513 24.61 2512 26.81 23.67 2445 2443 24.37 24.30
Dev  RMj3 | 25.09 E 2478 24.98 2632 23.69 24.53 24.60 24.50 24.35
Test IDF | 2648 26.60 2633 27.32 29.33 2551 2635 26.25 26.19 26.08
Test RM3 | 26.99 26.98 26.70 26.90 2859 2547 26.60 26.61 26.54 26.37

Top-1 Dev IDF | 4452 4487 4456 4535 47.09 44.13 4445 4436 4430 4421
Dev.  RM3 | 44.81 4521 4445 4556 46.92 44.17 4453 4454 4442 4432
Test IDF | 45.93 45.90 46.10 47.09 49.29 4584 46.18 46.01 4598 45.90
Test RM3 | 46.13 46.41 4630 47.37 49.03 4578 46.41 46.24 46.18 46.10
Top-5 Dev IDF | 53.08 53.15 5295 5427 56.49 51.74 5259 52.68 52.61 52.58
Dev RM3 | 53.61 53.85 53.19 54.29 56.01 51.91 5288 5306 5291 5282
Test IDF | 55.62 55.62 5542 5737 6014 54.96 5556 5550 5550 55.42
Test RM3 | 5633 56.27 56.07 57.54 5958 5504 5599 56.02 5599 5593

Table 4.10: Results on NQ Dev and Test for the pseudo-relevance feedback
sessions. Here, we run episodes of length 20 where we determine, at each
step, the most relevant term from the retrieved results using either inverse-
document frequency (IDF) or RM3. We add the term using one of our
10 operators: simply appending the term (“or”), enforcing the term in
the content or title (“+c”/”+t”), limiting the search to documents that not
contain the term in the context or title (“-c”/"”-t”), and boosting the term
with different values (“A.17,“A2”,“N\4",“N6",“\8"). After each step in the
episode, we aggregate the documents using the scores from our passage
scorer (PS). The largest value in each table row is indicated in bold, and the
second-largest is underlined.
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DECODING A NEURAL RETRIEVER’S LATENT
SPACE FOR QUERY SUGGESTION

5.1 INTRODUCTION & BACKGROUND

Neural encoder models (Kar+20; Ni+21; Iza+21) have improved doc-
ument retrieval in various settings. They have become an essential
building block for applications in open-domain question answering
(Kar+20; Lew+20c¢; IG21b) and open-domain conversational agents
(Shu+21a; Ado+21). Neural encoders embed documents and queries
in a shared (or joint) latent space, so that paragraphs can be ranked
and retrieved based on their vector similarity with a given query. This
constitutes a conceptually powerful approach to discovering semantic
similarities between queries and documents that is often found to
be more nuanced than simple term frequency statistics typical of
classic sparse representations. However, such encoders may come
with shortcomings in practice. First, they are prone to domain over-
fitting, failing to consistently outperform bag-of-words approaches
on out-of-domain queries (Tha+21). Second, they are notoriously
hard to interpret as the similarity is no longer controlled by word
overlap, but rather by semantic similarities that lack explainability.
Third, they may be non-robust as small changes in the query can lead
to inexplicably different retrieval results.

In bag-of-words models, it can be straightforward to modify a query
to retrieve a given document: e.g., following insights from relevance
feedback (Rocy1), by increasing the weight of terms contained in the
target document (Ado+22c; Hue+22). This approach is not trivially

This Chapter is based on our EMNLP 2022 paper “Decoding a Neural Re-
triever’s Latent Space for Query Suggestion” (Ado+22b).
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Figure 5.1: We train a query decoder (QD) model that inverts the shared
encoder of a neural retrieval model (a). Then, we leverage the structure of
the latent space of a neural retrieval model by traversing from query to gold
paragraph embeddings and using our query decoder to generate a dataset
of successful query reformulations (b). Finally, we train a pseudo-relevance
feedback query suggestion model on this dataset that predicts promising
rewrites, given a query and its search results (c).

applicable to neural retrieval models as it is unclear how an added
term might change the latent code of a query.

In this chapter, we look into the missing link connecting latent codes
back to actual queries. We thus propose to train a “query decoder”,
which maps embeddings in the shared query-document space to query
strings, inverting the fixed encoder of the neural retriever (cf. Figure
5.1a). As we will show, such a decoder lets us find queries that are
optimized to retrieve a given target document. It deciphers what
information is in the latent code of a document and how to phrase a
query to retrieve it.

We use this model to explore the latent space of a state-of-the-art
neural retrieval model, GTR (Ni+21). In particular, we leverage the
structure of the latent space by traversing from the embedding of
a specific query to its human-labeled gold paragraph and use our
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query decoder to generate reformulation examples from intermediate
points along the path as shown in Figure 5.1b. We find that using this
approach, we can generate a large dataset of query reformulations on
MSMarco-train (Ngu+16) that improve retrieval performance without
needing additional human labeling. We use this dataset to train a
pseudo-relevance feedback (PRF) query suggestion model. Here, we
fine-tune a Ts-large model (Raf+20a) that uses the original query,
together with its top-5 GTR search results, as the input context to
predict query suggestions as depicted in Figure 5.1c. We show that
our model provides fluent, diverse query suggestions with better
retrieval performance than various baselines, including a T5 model
trained on question editing (Chu+20), and a PRF query expansion
model [PMD13].

We make the resources to reproduce the results publicly available®.

QUERY GENERATION The methods presented in this chapter are a
natural complement to the previous chapter (based on Adolphs et al.
[Ado+22c]), where we propose a heuristic approach to generate multi-
step query refinements, used to train sequential query generation
models for the task of learning to search. Last chapter’s method was
also inspired by relevance feedback, but there we aimed to reach the
gold document purely in language space, by brute force exploration.
For this purpose, we used specialized search operators to condition
the retrieval results as desired. Huebscher et al. [Hue+22] show that,
when paired with a hybrid sparse/dense retrieval environment, the
search agents trained on this kind of synthetic data combine effective
corpus exploration, competitive performance, and interpretability.

PRIOR WORK ON FIXED-VECTOR DECODERS  Probabilistic decoders
mapping from a fixed-size vector space to natural language have also
been explored in auto-encoder settings. A key challenge in this line
of work lies in obtaining decoders that are robust, i.e., they generate
natural text for a variety of input vectors. Bowman et al. [Bow+16]
proposed using an RNN-based language model in combination with
variational autoencoders (VAE) (KW13) which adds Gaussian space
to the decoder input. Zhao et al. [Zha+18b] proposed the use of Ad-
versarial Autoencoder (AAE) (Mak+15) to which Shen et al. [She+20]

thttps:/ /github.com/leox1v/query_decoder
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Who is the chess champion of the world? “
\]

Who is the best chess player?

F1
Data F1  Cos Sim
MSMarco  o.750 0.960
NQ 0.886 0.980

Table 5.1: Decoding metrics of the Query Decoder (QD) based on the GTR-
base neural retrieval model. The F1 score is the F1 word overlap between
the original query, of MSMarco or NQ, and the output of the query decoder
model when provided with the GTR encoding of the query. The cosine
similarity is measured between the re-encoding of the generated query and
the encoding of the original query. The figure above depicts the metrics
visually with a toy example for clarity.

added data denoising by randomly dropping words in the input and
the reconstructing the full output. Recently, RNN-based decoders
have been replaced by Transformer-based language models (Vas+17),
for example by Montero et al. [MPS21], Park and Lee [PL21] and Li
et al. [Li+20].

5.2 QUERY DECODER

TRAINING We train a T5 (Raf+20a), decoder-only model, to (re-
)generate a query from its embedding obtained in a neural retrieval
model. As training data, we use a subset of 3 million queries of
the PAQ dataset (Lew-+21b). We use the GTR-base (Ni+21), shared-
encoder model, to generate the embeddings and use the queries as
the targets. The objective of the query decoder learning is to invert
the mapping of the fixed GTR encoder model, as visually depicted in
Figure 5.1a. For more training and hyperparameter tuning details, we
refer to the corresponding paper (Ado+22b).
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QUERY RECONSTRUCTION EVALUATION We consider the round-
trip consistency as a first step in evaluating the query decoder’s
effectiveness. A query g is encoded via GTR and then decoded by
our decoder to generate q’. We use queries from MSMarco, and
NQ test sets of the BEIR benchmark [Tha+21]. As a first metric, we
compute the F1 score between the original g and its reconstruction 4.
Since word overlap is imperfect in measuring query drift, we further
re-encode 4’ and compare its latent code with the code for g4 via
their cosine similarity. The results of these evaluations are reported
in Table 5.1, where we also provide an illustrative example of the
proposed approach. For both datasets, MSMarco and NQ, the metrics
of F1 and cosine similarity are generally high, indicating that the
GTR code carries information that allows for close approximate query

reconstruction.

Query
Decoder

GTR ~

Encoder \"

Paragraph Paragraph
Decoded Query ELL
retrieval

Data Top1 Top3z Tops

MSMarco 0.551  0.737 0.796
NQ 0.721 0.863 0.897

Table 5.2: Share of gold paragraphs for which we can decode a query that
retrieves the given paragraph within its top-k GTR search results. The figure
above depicts the metric evaluation visually for clarity.

PARAGRAPH TO QUERY EVALUATION Many interesting use cases
rely on the ability to generate queries from passages of text (DSC17;
Kum+18). As GTR embeds document paragraphs and queries into the
same space, the query decoder can also be used to invert the retrieval
process. We thus evaluate the decoder quality by starting from a
document paragraph, decoding a query from its embedding, and then
running the GTR search engine on that query to check if this query
retrieves the desired paragraph as a top-ranked result. We test this in
an experiment with human-labeled gold paragraphs from MSMarco
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Original Query

nebl coin price [Rank: 2]
Decoding from Gold Paragraph
what is the current price of neblio today belo [Rank: 1]

Gold Paragraph

Neblio Price Chart US Dollar (NEBL/USD) Neblio price for today is
$16.3125. It has a current circulating supply of 12.8 Million coins and a total
volume exchanged of $9,701,465

Original Query

when is champaign il midterm elections [Rank: 3]
Decoding from Gold Paragraph
when is the general election in illinois 2018 [Rank: 1]

Gold Paragraph

Illinois elections, 2018. A general election will be held in the U.S. state of
Illinois on November 6, 2018. All of Illinois” executive officers will be up for
election as well as all of Illinois” eighteen seats in the United States House of
Representatives.

Table 5.3: Examples of query decodings from the gold paragraph. The rank
indicates the retrieval position of the gold paragraph using the corresponding

query.

and NQ, using top-k as the success metric. The results reported
in Table 5.2 are very encouraging in that the desired paragraph is
indeed found very often among the topmost GTR search results. Two
example paragraph decodings from MSMarco are shown in Table 5.3;
for both decodings, the gold paragraph is retrieved at the top position.

LATENT SPACE TRAVERSAL DECODING  We have shown that query
decoding can reconstruct queries and that it can find retrieval queries
for target passages. We now turn to a more concrete practical applica-
tion, namely to automatically generate a data set of query reformula-
tions, from which strategies for interactive retrieval can be learned. In
this context, reformulated queries should remain semantically simi-
lar to the original query and not overfit to the target passage. They
should be somewhat in between the query and the gold passage, as any
passage is likely to contain answers to multiple, different questions.
This can be operationalized by decoding queries from points along the
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Latent Space Traversal from Query to Gold Paragraph

® Query ]
Reformulations m
= Initial Paragraphs n

u
Quincy hi i i ion)|Quincy is a cit
y in Grant County, Washington, United States. The
population was 5,044 at the 2000 cefsus. Quincy wa...

# Gold Paragraph

u [
50.00 0.00

@P-00
;:;0'00%0,00 »0-p0

.0.39 where is quincy lotated

TSNE Dimension 1

what is the dverage rainfall in quincy illinois

41.00
%1.00 7 %100
s

Location/Climate. The western most city in Illinois, Quincy is lo

area of lllinois receives an average of 36.86 inches of rainfall
a year, and an average of 24 inches of snow...

Figure 5.2: Visualization of the latent-space traversal from query to gold para-
graph, using 2D t-SNE. The blue point denotes the embedding of the original
query “where is quincy located”. The green squares are the embeddings
of the retrieved paragraphs for this query. The closest one about “Quincy
Washington” is shown in the green text bar. The orange crosses denote the
embeddings of the reformulations of the query decoder when moving to
the gold paragraph depicted as the red plus. The orange and red text bars
show the final reformulation and the gold paragraph text, respectively. The
number above the query and reformulations show the nDCG score. As the
gold paragraph is describing the climate of Quincy in addition to its location,
a reformulation about the “average rainfall in quincy illinois” retrieves the
desired paragraph.

line connecting the embeddings of the query and its target passage as
depicted in Figure 5.1b.
To validate this idea, we apply it to the MSMarco and NQ retrieval
dataset where each query is paired with a human-labeled gold para-
graph. In particular, we move in k equidistant increments from the
original query embedding q to the gold paragraph embedding d, i.e.
K

qK:q—l—E(d—q) k=0,...,k (5.1)
and generate a reformulation at each step.” As a sanity check, Figure
5.3 shows the average retrieval performance of the decoded queries

>We underline that this procedure can be seen as a latent space equivalent of
the Rocchio Session process for generating synthetic search sequences of Adolphs
et al. [Ado+22¢].
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NDCG@10 Traversal to Gold Paragraph (QD Standard)

0.8 - === MSMarco
-==- Query

0.7

o

—

®

O 0.6

Q

[a]

=z
0.5-

Query En"\bed‘ding‘ ‘Gold‘ Parz‘agra[‘)h Embedding
Traversal from Query Embedding to Gold Paragraph Embedding

Figure 5.3: The normalized discounted cumulative gain (nDCG) of the
reformulations from the query decoder when moving the input code from the
embedding of the query to the embedding of the gold paragraph. Decoding
closer to the gold paragraph embedding leads to queries with improved
average retrieval performance. The initial decodings nDCG scores are slightly
lower than from the original query due to the reconstruction loss of the
query decoder.

when moving from the original query embedding to the gold para-
graph embedding for MSMarco and NQ. For both datasets, the nor-
malized discounted cumulative gain (nDCG) (JKo2) improves steadily
and plateaus, then slightly dips, only when getting close to the gold
paragraph embedding. We hypothesize that two effects are at work
here that explain this dip: (i) the closer one moves towards the gold
passage embedding, the more the query decoder operates out-of-
distribution as it is trained on query embeddings. The joint latent
space is sparse and likely characterized by distinct regions for queries
and passage embeddings, which have different properties (e.g., length
or surface structure). (i) A passage might answer several questions.
When decoding from an embedding close to the paragraph, these
might start being conflated.

EXAMPLES We provide a visual example of the latent traversal ap-
proach in Figure 5.2 where we project the latent space to 2 dimensions
using t-SNE (HRo2). The plot shows that for the ambiguous query
“where is quincy located” (blue dot), the gold paragraph about the
climate of Quincy, Illinois (red plus), is far away from the top-10
retrieved documents (green squares). Traversing the latent space from
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Original Query

average yearly return on stock market [0.00]
Decodings during Traversal
what is the average annual return on stock market [0.00]
average return on a stock market year [0.00]
what is the average annual return on stock market [0.00]
what is the average return on stock in a year [0.00]
what is the average return in a stock market [0.00]
what is the average annual return in stock ( s&p ) [0.36]
what is the average return on the stock market ( s&p ) [0.36]
what is the average return on the s&p stock exchange at a time [1.00]
what is the average return in s&p stock at a time [0.36]

what is the average annual return of the s&p stock exchange (best) [1.00]
Gold Paragraph

The S&P 500 gauges the performance of the stocks of the 500 largest, most
stable companies in the Stock Exchange. It is often considered the most accurate
measure of the stock market as a whole. The current average annual return
from 1926, the year of the S&Ps inception, through 2011 is 11.69%. That’s a long
look back, and most people aren’t interested in what happened in the market
80 years ago.

Table 5.4: Example of a successful traversal on an MSMarco query. The
nDCG@10 score of each query is provided in the brackets. The queries
decoded from a latent code close to the gold paragraph, focus on the returns
of the S&P (as the gold paragraph) and lead to improved retrieval results
(nDCG@10 from 0.00 to 1.00).

the query towards the gold paragraph leads to improved reformula-
tions (orange crosses), as is evident from the shrinking distance to the
gold paragraph and by the improved nDCG score. Semantically, the
reformulations move to questions about the climate of Quincy, as this
is the main topic of the gold paragraph.

5.3 QUERY SUGGESTION MODEL

DATASET GENERATION We generate a dataset of query reformu-
lations using the latent space traversal decoding as described in the
previous section. In particular, for the 532,761 queries of the MSMarco-
train dataset, we leverage GTR’s learned latent space structure and
move towards the embedding of their gold paragraph. At k = 20
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Figure 5.4: The histogram of nDCG (a) and inner product with the gold
paragraph embedding of the original query vs. the best reformulation found
with the latent-space traversal approach on MSMarco-train.

intermediate steps on this path, we use our query decoder to generate
reformulations.

For more than 80% of the queries, we find at least one optimal re-
formulation that retrieves the gold paragraph at the top position. In
Figure 5.4, we show histograms of nDCG and the inner product to the
gold paragraph for the original query versus the best-found reformula-
tion. The metrics show that the latent space traversal helps us discover
good query reformulations that lead to massively improved retrieval
performance and are closer to the corresponding gold paragraphs in
latent space.

We filter the dataset to only contain “successful” reformulations to
train the reformulation model. Here, we require a reformulation
to have an nDCG of 1 (i.e., retrieve the gold paragraph at the top
position), to improve the nDCG compared to the original query, and
its embedding to have a larger inner product with the gold paragraph
than the original query. Using this approach, we generate a dataset
of 863,307 successful query rewrites. As the example in Table 5.4
shows, the decoded queries do not always have human-like fluency
and for some sequences intent shift occurs when decoding closer to
the paragraph. This is one reason we’re moving in increments from
the original query to the gold paragraph instead of directly decoding
it.

Interestingly, however, we find that this noise of the dataset is un-
specific enough that it gets smoothed out during model training as
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described in the following paragraph. More details about this dataset
are provided in Sec. 5.6.

MODEL TRAINING We use the reformulation dataset to train two
query suggestion model variants. First, we train a model on the plain
reformulation examples, from original query to “successful” rewrite.
As a second, more powerful approach, we train a model with pseudo-
relevance feedback (PRF); here, we provide GTR'’s top-5 search results
for the original query as additional context to the model. Both models
are fine-tuned from the T5-large (Raf+20a) pre-training checkpoint.
Consequently, we name the models in the following way:

¢ gsTs-plain: A T5 query suggestion model trained on the plain
generated reformulation examples (no pseudo-relevance feedback)
of MSMarco-train, mapping from query to query reformulation.

¢ gsT5: A Ts5 query suggestion model trained on the generated
reformulation examples of MSMarco-train, where the input is aug-
mented with the content of GTR’s top-5 retrieved search results for
the original query, mapping from query and search results to query
reformulation.

BASELINE MODELS To measure the effectiveness of our query sug-
gestion model, we benchmark it against multiple baselines. The base-
lines are meant to cover various angles of competitive approaches to
query suggestion, namely training on human-generated question-edit
histories, a classic RM3 pseudo-relevance feedback query expansion
method, and a latent space sampling approach utilizing our query
decoder. In the following, we introduce the three baselines in detail.

* MQR: We train a T5-large model on the “multi-domain question
rewriting” (MQR) (Chu+20) dataset. This dataset consists of 427,719
human-contributed Stack Exchange question-edit histories, map-
ping from ill-formed to well-formed. While this is a relatively large
training dataset, our synthetic generations dataset is roughly dou-
ble in size with 863,307 rewrites, yet without any human edits. This
baseline captures the effect of turning a query to a well-formed
question to improve retrieval performance. It does not use PRF but
maps from query to reformulation, as our qsT5-plain model.

79



DECODING A NEURAL RETRIEVER'S LATENT SPACE FOR QUERY
SUGGESTION
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Figure 5.5: Retrieval metrics of the query suggestion models on the MSMarco
(a) and NQ (b) test sets. The dashed line shows the nDCG@10 score of the
original query. The bars represent the nDCG@10 of the best 1, 3, 5, and
10 reformulations (including the original query), respectively, of different
models. The error bars show the 95 percent confidence interval when doing
bootstrap sampling from up to 10 generations of the models. The RM3 and
gsT5 models are using pseudo-relevance feedback, i.e., information about
the top-retrieved paragraphs.

e RM3: We employ RM3 (Jal+o4) as a strong pseudo-relevance feed-
back baseline. In particular, we use a query expansion approach
that uses the formula described in Eq. 20 of Pal et al. [PMD13]
with p = 2500 to determine the most relevant terms of the top-5
retrieved documents. Then, each suggestion of the model consists
of the original query together with one of the determined relevant
terms.

* Sampling+QD: To check how much of the retrieval performance
gain is due to an ensembling effect in latent space, we compare
against a random sampling baseline that includes our query de-
coder (QD). In particular, we sample a point uniformly at random
from an epsilon ball around the embedding of the original query
and use the query decoder to decode that point to a query. This
baseline does not use PRF.

EVALUATION We evaluate the query suggestion models on the
MSMarco and NQ test sets. For each example, we generate up to 10
suggestions using nucleus sampling (Hol+20). Our ultimate goal is
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Original Query
who created spiritual gangster
MQR
Who created the Spiritual Gangster?
Who created the “spiritual gangster” storyline?
Who created the “spiritual gangster”?
RM3
who created spiritual gangster spiritual
who created spiritual gangster modern
who created spiritual gangster inspired
Sampling+QD
who created gangster a spiritual & egantious
who created spiritual gangster -gangster
who created spiritual gangster
qsTs
who is the founder of spiritual gangsters
who created the spiritual gangster ( spiritual yogi )
what is the spiritual gangster movement
qsT5-plain
who are the founders of the gangster spirit band
how many gangsters were formed in white supreme
who was the members of the gangster supremes

Gold Paragraph

About Spiritual Gangster. Spiritual Gangster represents a new generation
of yogis seeking balance between the ancient practice of yoga and the modern
world. Founded by Vanessa Lee and Ian Lopatin, this newly borne brand calls
for high vibration living and radiating love shore-to-shore, person-to-person,

heart-to-heart.

Table 5.5: Examples of the top query suggestions for the different models
for the query “who created spiritual gangster”. The final row shows the

human-labeled gold paragraph.
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to provide users with at least one reformulation that better captures
their search intent. As we assume the gold paragraph captures the
information need of the user, we evaluate if, within a small set of
reformulations, there is a query that would lead them closer to that
paragraph; i.e., we measure the maximum nDCG@1io of the top-k
reformulations and the original query. We provide the results in
Figure 5.5.

We see that our qsT5 model significantly outperforms all baselines
on both datasets. Notably, it substantially improves upon the RM3
pseudo-relevance feedback baseline; this indicates that our full re-
formulation approach is more powerful for neural retrievers than a
well-established query expansion technique.

The large gap between qsT5 and gsT5-plain validates the importance
and usefulness of conditioning on the initial search results.
Successfully rewriting the query to a well-formed variant benefits
this task as indicated by the improved nDCG performance of the
non-PRF baseline of the Ts model trained on MQR (blue) over the
original query (dashed line). The qsT5-plain model outperforms the
MOQR model when considering multiple reformulations on MSMarco,
indicating that in some cases our model learns successful rewriting
beyond improving fluency.

The gsTs-plain is mostly on par with sampling randomly around
the embedding of the original query and using our query decoder
to generate a reformulation; hence, we can speculate that the main
benefit of this non-PRF model comes from an ensembling effect of
generating suitable reformulations around the neighborhood of the
original query. Again, this reinforces the benefit of pseudo-relevance
feedback for the application of query suggestion.

Additional plots showing the inner product metric for this experiment
and a table summarizing the numbers are provided in Appendix 5.6.

DIVERSITY AND FLUENCY To quantitatively highlight the character-
istics of the evaluated query suggestion models, we report Self-BLEU
(Zhu+18) and perplexity of a language model as proxies for diversity
and fluency, respectively, in Table 5.6. Self-BLEU is measured between
10 suggestions for a given query and averaged across the dataset,
where a low Self-BLEU indicates large diversity between suggestions.
For the perplexity evaluation, we employ the T5-base language model
trained on C4 (Raf+20a) and measure the average per-token perplex-
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ity of all suggestions for a given dataset; here, we associate lower
perplexity with higher fluency of the suggestions.

Table 5.6 shows that the MQR baseline generates the most fluent
queries, but with low diversity compared to our reformulation ap-
proaches. The RM3 query expansions score worst in diversity as
they always use the original query as a base. Our qsT5 model scores
second best in diversity, with a good comparative perplexity, only
surpassed by the qsT5 variant without PRF, due to the fact that this
model does not focus on the “narrowed-down” topics of the retrieved
results. Notably, the perplexity is higher for the NQ dataset than
for MSMarco due to the nature of queries in NQ being closer to
well-formed questions as opposed to search engine queries.

MSMarco NQ
Model S-BLEU PPL S-BLEU PPL
Original Query - 16222 - 2179
MQR 46.1 59.6 61.4 56.8
RM3 74.8  1562.6 88.0 309.5
Sampling+QD 23.7 726.0 26.6 687.5
qsTs 17.8 247.8 18.4 223.2
gsT5-plain 9.2 196.6 7.6 249.8

Table 5.6: Self-BLEU (Zhu+18) and Perplexity (PPL) for the query suggestions
of the different models on MSMarco and NQ.

EXAMPLES In Table 5.5, we cherry-pick a representative example of
query suggestions for the different models. This example showcases
the typical behaviors of the models. The MQR model is trained
on turning ill-formed into well-formed questions. Hence, it usually
produces grammatical but low diversity reformulations, especially
when the original query is already close to a well-formed question.
The relatively high Self-BLEU score amongst its reformulations for a
given query, reported in Table 5.6, supports the argument of limited
diversity.

The RM3 model appends the most relevant terms to the original
query and therefore has the lowest overall diversity (i.e., highest Self-
BLEU). The Sampling+QD model can result in non-grammatical or
even nonsensical queries depending on the sampled point in latent
space. While the qsT5 model can utilize the top-retrieved search
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results to form reformulations that are in accordance with the topic
of the query (e.g., “yogi” in the example of Table 5.5), the qsT5-plain
needs to rely on its internal world knowledge stored in its parameters.
It thus cannot connect “gangster” with “yogi” here.

5.4 LIMITATIONS

A proper user study would provide a valuable complement to the
current evaluation and contribute to a fuller picture. However, this
presents significant challenges that are beyond the scope of the current
work. For instance, is not trivial to adequately design a meaningful
task for human raters conducive to good agreement, e.g., it may be
inevitable to second-guess the original query intent in the presence of
unexpected interpretations brought to the surface by the suggestions.
For the time being, we feel the automatic evaluation proposed here
will be more valuable, as it makes direct comparison and reproducibil-
ity straightforward.

Secondly, it seems sensible to further evaluate the query suggestions
in an end-to-end IR task. Preliminary experiments in this direction
using MS Marco proved somewhat inconclusive, while they introduce
significant complexity. The data annotations are sparse (one passage
per query, by and large) and it is often the case that multiple relevant
passages exist for the same query.3 This makes reranking a crucial
but faulty component, opening up a somewhat orthogonal front. The
ideal evaluation would rely on a deeper manual analysis for a limited
query set, e.g., TREC-style (e.g., cf. Craswell et al. [Cra+20]).

5.5 CONCLUSION

Dual encoders have reset the standard in IR. However, language-based
inverted index architectures still hold their ground, especially in out-
of-domain evaluations (Tha+21). To help further our understanding
of the connections, and potential, between the two, we propose a
method that relies on a query decoder to map back to language space
the latent codes generated by the encoder.

The interplay between latent and language representations, in com-
bination with a simple goal-directed mechanism for traversing the

3Including near duplicate passages.
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shared query-document space, allows us to generate a large synthetic
dataset of query reformulations on which we train a pseudo-relevance
feedback query suggestion model that characteristically tries to pre-
dict the location of the target document.

Our contribution is twofold: (i) we develop a generic way to generate
training data for directional query refinement by traversing the latent
space between queries and relevant documents, and (ii) we build a
powerful reformulation model that we evaluate on a novel benchmark
inspired by the query suggestion task. Suggestions are typically well-
formed, diverse and more likely to lead to the right document than
competing methods.
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5.6 APPENDIX

Model MSMarco NQ
1 3 5 10 1 3 5 10

Original Query .420 - - - 495 - - -
MQR 439 oot 454 005 464 o5 477 o4 | 531 0ot .548 w8 557 w9 57T 05
Sampling+QD 440 v 469 ws 484 o7 506 o3 | 522 00 548 ws 561 w6 580 w5
RM3 445 003 472 o6 495 o9 522 on | .526 003 552 012 .571 o6  .589 on
qsTs 455 002 496 00 519 010 554 o | 54T 005 582 0n 615 08 637 o0
qsTs5-plain 440 o005 470 07 488 w05 508 s | 520 06 543 06 553 o0 577 13

Table 5.7: Retrieval metric nDCG@10 of the query suggestion models on the
MSMarco and NQ test sets. The numbers represent the nDCG@10 of the best
1, 3, 5, and 10 reformulations (including the original query), respectively, of
different models. The small number indicates the standard deviation when
doing bootstrap sampling from up to 10 generations of the models.
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Figure 5.6: The inner product of the best reformulation with the gold para-
graph for the various query suggestion models on the MSMarco (a) and NQ
(b) test sets. The dashed line shows the inner product of the original query
with the gold paragraph. The bars represent the inner product with the gold
paragraph of the best 1, 3, 5, and 10 reformulations (including the original
query), respectively, of different models. The error bars show the 95 percent
confidence interval when sampling repeatedly from up to 10 generations of
the models. The RM3 and qsT5 models are using pseudo-relevance feedback,
i.e., information about the top-retrieved paragraphs, while the rest is only
mapping from query to query.
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DATASET DETAILS We experiment with a few different thresholds
on what constitutes a successful reformulation for our generated
dataset. We achieve the best results in terms of sequence classification
accuracy of a held-out dev set of reformulations for the dataset de-
scribed in Section 5.3. Our final dataset of successful reformulations
of MSMarco-train queries contains 863,207 successful query rewrites
that are split among a training, development, and test set as reported
in Table 5.8.

Split Number of Examples

Train 768,372
Dev 86,478
Test 8,457
Total 863,307

Table 5.8: Successful Reformulation Dataset Details
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CONVERSATIONAL AGENTS






MODULAR GENERATION FOR
KNOWLEDGE-INFUSED DIALOGUE

6.1 INTRODUCTION & BACKGROUND

To be regarded as successful, a conversational agent needs to generate
utterances that are both knowledgeable and factually correct, as well
as being conversationally appropriate, fluent, and engaging. The
pursuit of this goal has led to ever bigger models that store a large
amount of knowledge in their parameters (Rol+21; Adi+20; Zha+20).
However, hallucination — wherein a model generates factually inaccu-
rate statements — has remained a problem no matter the size of the
model [Shu+21a].

Recent advances in neural retrieval models have made some inroads
into this problem (LCT19b; Lew+20b; Shu+21a; KSW21) by generating
responses based on both the dialogue context and by learning to
retrieve documents containing relevant knowledge. However, the con-
versational setting is challenging because these models are required
to perform multiple duties all in one shot: to perform reasoning
over the returned documents and dialogue history, find the relevant
knowledge, and then finally combine this into a conversational form
pertinent to the dialogue. Perhaps due to this complexity, it has been
observed that failure cases include incorporating parts of multiple
documents into one factually incorrect response, or failure to include
knowledge at all and reverting instead to a generic response using
the dialogue context only.

In this chapter, we instead propose decomposing this difficult problem
into two easier steps. Specifically, by first generating pertinent inter-

This Chapter is based on our EMNLP Findings 2022 paper “Reason first, then
respond: Modular generation for knowledge-infused dialogue” (Ado+21).
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(@)

T Hi, do you like dogs? N
1 do! My favourite is the
Basenji breed!
Oh, those are cool. | Retrieval Component
have a Havanese.
— < /

Knowledge Model RGNS
°00 (" The Ha Havanese a breed of DY
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/ —

Response Model

< Cool! Did you know that the Havanese i |s
\L the national dog of Cuba?

Figure 6.1: Two examples of modular Knowledge to Response (K2R) models,
which condition a dialogue model on (a) the output of a (pretrained) QA
model, or (b) the output of a general knowledge model.

mediate knowledge explicitly and then, conditioned on this prediction,
generating the dialogue response. We call this model Knowledge to
Response (K2R). Using this modular design, we can train and evalu-
ate the reasoning performance of the model independently from its
conversational abilities, increasing the interpretability of our model’s
output. This also allows us to plug external knowledge into dialogue
systems without any requirement for retraining, for example, from
question-answering systems. The dialogue response model’s task
reduces to incorporating the predicted knowledge in an engaging and
context-fitting conversational response.

We conduct extensive experiments across multiple tasks and datasets.
We find that our K2R model effectively improves correct knowledge-
utilization and decreases hallucination (Shu+21a) in knowledge-grounded
dialogue [Din+19b]. In open-domain dialogue, the K2R model im-
proves the performance on automatic metrics compared to its seq2seq
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counterpart, along with the additional benefits of increased inter-
pretability of the model’s output and the possibility for knowledge
injections. The modular design allows us to fuse state-of-the-art pre-
trained QA models — without any fine-tuning — with dialogue models
to generate answers that humans judge as both more knowledgeable
and engaging. Our modular system also outperforms multi-tasking
approaches. Our code and generated dataset is made publicly avail-
able’.

BACKGROUND ON INTERMEDIATE GENERATION COMPONENTS
FOR TEXT GENERATION The approach of text modular networks
promises more interpretable answers to multi-hop questions (Kho+20;
JB1g; Gup+20). Khot et al. [Kho+20] learn a generative model that
decomposes the task in the language of existing QA models for Hot-
potQA (Yan+18b) and DROP (Dua+19). Herzig et al. [Her+21] solve
text-to-SQL tasks with intermediate text representations. For sto-
rytelling, hierarchical generation procedures have been proposed
[FLD18]. In reinforcement learning settings, generating natural lan-
guage has been used as an intermediate planning step (STA21; Hu+19),
and in particular in goal-oriented dialogue (YL18) and open-domain
QA (Ado+22c) as well. For summarization tasks, the work of Baziotis
et al. [Baz+19] proposes an intermediate autoencoder latent represen-
tation. Similarly, West et al. [Wes+19] apply the information bottleneck
principle to find an intermediate compressed sentence that can best
predict the next sentence. For knowledge-grounded dialogue, an
approach using internet search can also be seen as a modular interme-
diate step, where the search query is first generated [KSW21]. In that
sense retrieval-based QA has also been seen as a modular technique
in many studies [Che+17a; Yan+19a].

6.2 K2R MODEL

We propose a two-step model for generating dialogue responses
called Knowledge to Response (K2R). Instead of directly mapping from
dialogue history (context) to response, it generates an intermediate
sequence output which is the knowledge basis for the next utterance.
Conceptually, our K2R model consists of two parts:

Thttps:/ /parl.ai/projects/kar
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¢ A seqzseq knowledge model that maps from context to knowl-
edge.

* A seqaseq response model that generates the final response
given the predicted knowledge and the context.

The two models can potentially share parameters (or even be the same
model), and the two steps would then be differentiated by context
tokens in the input. Alternatively, the two models can be completely
separate and trained on different resources, allowing plug-and-play
modularity. We explore both these options in this chapter.

SUPERVISED TRAINING We can train two separate models for our
standard K2R: a knowledge model and a response model; both are
encoder-decoder transformers [Vas+17]. The former is trained with
the context as input and the knowledge response as the target. We can
perform standard supervised training using existing resources such
as QA and dialogue datasets with annotated knowledge [Din+19b].
The second part of the K2R, the response model, gets as input the
context appended with the gold knowledge (replaced by predicted
knowledge during inference) inside special knowledge tokens.

UNSUPERVISED TRAINING For tasks without knowledge supervi-
sion available, we consider an unsupervised method. Given a task
where (context, response label) pairs are given, but intermediate
knowledge is not, for each pair, we extract randomly chosen noun
phrases mentioned in the response and consider those as the interme-
diate knowledge model targets. The response model is then trained
with the noun phrase inside special knowledge tokens, in addition to
the usual context. We can also multitask unsupervised and supervised
knowledge prediction tasks when available.

SHARED PARAMETER K2R  We also experiment with multitask train-
ing of the two steps of K2R. Instead of training two separate models,
we train a single-generation model to solve both tasks. The input
structure, i.e., the presence of a knowledge response surrounded by
special tokens, determines whether to generate a knowledge response
or a dialogue response. Hence, there is no need for an additional
control variable.
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Response Model ~ Knowl. Model Knowl. PPL F1 KF1 RF1 PKF1 B4 RL
Baselines

BART None None 14.7 209 174 14.7 - 1.7 203
BART RAG DPR  None Wiki 115  22.6 261 177 - 3.7 232
K2R

BART RAG DPR Wiki 17.9 213 29.2 17.7 76.4 3.5 224
RAG DPR gshared) RAG DPR shared) Wiki 183 220 273 174 67.8 3.7 227
BART Oracle Gold 81 374 686 398 68.6 11.1  39.4
K2R - Confidence Score Conditioned

BART - o RAG DPR Wiki 13.6 220 224 16.6 37.9 2.9 224
BART - 2 RAG DPR Wiki 13.6 226 264 179 57.0 3.7  23.4
BART - 6 RAG DPR Wiki 13.9 224 272 18.0 64.2 3.9 231
BART - 10 RAG DPR Wiki 14.3 222 272 18.0 66.8 3.8 229

Table 6.1: Quantitative Evaluations on Wizard of Wikipedia Test (seen split).
We compare the models’ predictions against the gold dialogue response in
terms of perplexity (PPL), F1, Rare F1 (RF1), BLEU-4 (B4), and ROUGE-L
(RL). Moreover, we compare the predicted response with the gold knowledge
in terms of Knowledge F1 (KF1), and with the predicted knowledge in terms
of Predicted Knowledge F1 (PKF1).

CONFIDENCE-SCORE CONDITIONING K2R When we train the
response model conditioned on the gold knowledge, the model learns
to be very confident in putting the given knowledge in the final
generation. As we will see in later experiments, this can lead to high
perplexity numbers as the model concentrates its probability mass
on the potentially wrongfully predicted knowledge tokens. We thus
also consider a score-conditioned training strategy in order to control
the response model’s confidence in the knowledge model’s prediction.
For each example during the response model training, we sample a
number p between o and 1 uniformly at random. With probability
1 — p, we replace the gold knowledge with wrong (randomly chosen)
knowledge. In addition to the knowledge, we also provide j =
round (10  p), an integer value between o and 10, to the input. During
inference, we then gain control over the confidence that the response
model places on the predicted knowledge: a value of o means it
can ignore the knowledge and, conversely, a value of 10 tells it to
absolutely use it.
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6.3 EXPERIMENTS

TAsKS We conduct quantitative and qualitative experiments across
four different datasets. Each dataset comes with a different experimen-
tal setup to validate individual use cases of our K2R model. On the
Wizard of Wikipedia (WoW) dataset (Din+19b), we fuse knowledge
into dialogue. We use OpenQA-NQ (LCT19b) (a subset of Natural
Questions (Kwi+19)) to experiment with generating knowledgeable
and engaging dialogue responses from QA-model outputs. Finally,
to test the model on open-domain dialogue and question answering
simultaneously, we use LightWild (Shu+2ob) as well as a derived
version of it, LightQA, ending on a question about the episode. We
run all our experiments using the ParlAl (Mil+17) framework.

METRICS Across the experiments, we use standard generation met-
rics using the ground truth such as Perplexity (PPL), F1, BLEU-4 (Bg),
and ROUGE-L (RL). Following recent literature (Shu+21a), we addi-
tionally use the Rare F1 (RF1) metric that only considers infrequent
words in the dataset when computing the F1 score. For WoW, where
ground-truth knowledge is provided, we calculate the Knowledge
F1 metric, i.e., the F1 score between the dialogue prediction and the
knowledge sentence. In the considered QA tasks, analogous to F1
and KF1, we measure if in the dialogue response the gold answer is
present (AP) and if the generated answer is present (GAP); here, we
opt for exact match metrics (opposed to F1) since the answer is usually
a short span and not a full sentence as in the WoW experiments.

MODELSs The K2R always consists of two (possibly the same) seq2seq
Transformers [Vas+17]. While the response model is always a fine-
tuned BART-Large (Lew+20a) model (except when sharing parame-
ters), the knowledge model varies in the experiments to follow com-
mon setups from existing baselines: BART for open-domain dia-
logue, BART RAG DPR (Token) (Lew+20b) with a Wikipedia index for
knowledge-grounded dialogue, and Fusion-in-Decoder (FiD) (IG21b)
for question answering. Note that all knowledge models are general
seqzseq Transformer models, and the main design difference is the
neural-retriever-in-the-loop for knowledge-grounded tasks.
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Wizard of Wikipedia (WoW)

WoW (Din+19b) is a dataset of human-human dialogue that is grounded
on Wikipedia articles. During data collection, one of the humans has
access to a knowledge retrieval system and indicates on which knowl-
edge their response is based. This process leads to a dialogue dataset
that has a knowledge sentence for each target utterance. Hence, the
setup for our K2R model is straightforward: first, (learn to) generate
the knowledge sentence, and then, based on that prediction, generate
the dialogue response. Table 6.2 shows an example episode with gold
targets and model responses (including injected author knowledge).
We train three different variants of our K2R model as explained in
Section 6.2. First, a standard two-model variant of K2R, consisting
of a BART RAG DPR model for knowledge prediction and a BART
model for the knowledge-conditioned response prediction. Second, a
BART RAG DPR model with shared parameters, i.e., trained jointly on
knowledge and response prediction. And finally, a confidence-score
conditioned BART response model that uses the knowledge model
from the first variant.

QUANTITATIVE RESULTS In Table 6.1, we compare our K2R ap-
proach on the WoW test set (seen split) against their dialogue-only-
model counterparts: a BART model and a BART RAG DPR model
with access to a Wikipedia index. We see that the standard K2R model
performs roughly on par with the strong BART RAG DPR baseline
for the F1 and RF1 score while outperforming it on the Knowledge F1
metric (29.2% vs. 26.1%). As we will see later, this matches human
evaluations, which show a large decrease in hallucination. To give
an idea of the performance limits of K2R, we also evaluate it with
an oracle knowledge model. Standard K2R model training leads to
increased perplexity values, which we associate with the model being
overly confident about its knowledge predictions caused by always
conditioning the model on correct knowledge during training. We eval-
uate our confidence-score model by adding a fixed confidence score of
{o, 2, 6, 10} to the input. The higher this value, the more confident the
dialogue model should be about the knowledge model’s prediction.
The results show that when increasing the confidence score from o
to 10, the F1 between the predicted knowledge and the predicted
response (PKF1) increases from 37.9% to 66.8%. Simultaneously, it
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Context Topic: Husky
Apprentice: I just got a husky puppy
Wizard: It sounds cute! Huskies are known amongst
sled-dogs for their fast pulling style.
Apprentice: I guess in the north they are working dogs
huh?

Gold Knowledge Sled dogs were important for transportation in arctic
areas, hauling supplies in areas that were inaccessible by
other methods.

Gold Response Sled dogs, including Huskies, are used for transportation
in arctic areas.

BART Yes, they are used for sled dog racing.

RAG DPR Yes, they are used in sled dog racing. They are an ever-

changing cross-breed of the fastest dogs.
K2R Knowledge Prediction =~ Huskies are used in sled dog racing.

Response Prediction Yes, they are used for sled racing.
K2R Injected Knowledge In arctic regions huskies are used to deliver hot beverages
by companies like starbucks.
Response Prediction Yes, they are used as delivery dogs by companies such as
Starbucks.

Table 6.2: Examples of model outputs on the Wizard of Wikipedia Test set.
The K2R model appropriately changes its dialogue prediction when replacing
the predicted answer with (author chosen) injected knowledge.

98



6.3 EXPERIMENTS

Model Cons. T Eng. T Know.{ Hall |
BART 65% 52% 32% 64%
RAG DPR  81% 66% 94% 16%
K2R 80% 53% 92% 7%

Table 6.3: Human evaluations on Wizard of Wikipedia Test (unseen split)
across four different metrics: Consistency (Cons.), Engagingness (Eng.),
Knowledgeable (Know.), and Hallucination (Hall.).

increases the perplexity from 13.6 to 14.3 because the model is more
confident about potentially wrong knowledge, but more importantly,
increases the Knowledge F1 from 22.4% to 27.2%.

HUMAN EVALUATION To evaluate beyond automatic metrics, we
conduct a human evaluation following the approach described by
Shuster et al. [Shu+21a]. We present expert annotators the model
responses for the first 100 turns of the WoW test set (unseen split)
and ask them to judge consistency, engagingness, knowledge, and
hallucination, using the definitions of Shuster et al. [Shu+21a].

In Table 6.3, we present the results of the study. It is apparent that
access to a Wikipedia knowledge base boosts the performance across
the knowledgeable axis, with both RAG DPR and K2R strongly out-
performing BART, and both having similarly increased values of
consistency and knowledgeability. However, K2R suffers consider-
ably less from hallucination, 16% vs. 7%, compared to RAG DPR,
mirroring our results of improved KF1 from the automatic metrics.
Notably, K2R hallucinates less than any model studied by Shuster et al.
[Shu+21a]. However, K2R is rated as less engaging than BART RAG
DPR, 54% vs. 66%, although it is rated at least as engaging as BART
without knowledge, which is rated at 53%.

Natural Questions

We use the OpenQA-NQ dataset (LCT19b) of Google queries paired
with answers extracted from Wikipedia. The answers in this dataset
are short-form, e.g., the question “When did the Dallas Cowboys win
their last playoff game?” is answered with “2014”. While this might
be the desired response in an information retrieval setting, e.g., a
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Google search, it might appear laconic and unnatural in a long-form
human conversation. We are interested in developing a model that
generates knowledgeable but also engaging conversational responses
to open-domain questions.

As baselines for this task, we employ two different dialogue model
baselines: (i) a standard generative model trained on open-domain
dialogue (WoW), and (ii) a retrieval-augmented generative model
trained on WoW. Additionally, we also compare against a pure QA
model trained on NQ. While the dialogue models trained on WoW
generate appropriate dialogue responses, they are not fine-tuned
to answer questions. On the other hand, the QA model excels at
answering questions but is not able to provide an engaging, full-
sentence response. Due to the modular architecture of our K2R model,
we can combine these two types of models. Without additional
training, we use the QA model as our knowledge model inside K2R
together with the response model trained on WoW (the exact same
model as in the previous WoW experiments).

QUANTITATIVE RESULTS We do not have gold dialogue responses
(i.e., conversational, full-sentence answers) available for this task, so
we focus on the knowledgeable aspect of the models and evaluate in
terms of AP and GAP (i.e., an exact match of the answer span in the
dialogue response (AP) or the exact match of the knowledge model’s
generated answer in the dialogue response (GAP))

Table 6.4 shows the results of the automatic evaluation. The BART
baseline model trained on WoW only manages to answer 4.2% of the
questions. Its retrieval-augmented variant, BART RAG DPR, improves
this to 13.8%. The pure QA model, T5 FiD DPR, contains the gold
answer for 46.7% of the questions in its response. For our K2R model,
we stack together the T5 FID DPR QA model as a knowledge model
with BART, trained on WoW, as a response model. This K2R model has
the gold answer in its dialogue response for 39% of the questions. For
76% of the questions, it incorporates the knowledge predicted by the
QA model in the response. To improve the GAP metric, we increase
the beam size from 3 to 30 and add a filter that chooses, if possible, the
first beam that contains the predicted knowledge answer. This leads
to a GAP of 96.8% and an AP of 46.3%, the latter being on par with
the original QA model (46.7%), while still producing a conversational
response. Note that the AP of the K2R is limited by the QA model
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RM KM Know. AP1 GAP
Dialogue Model Baselines

BART - - 4.2 -
RAG DPR - Wiki 13.8 -
QA Model

- Ts FID Wiki 46.7 -
K2R

BART Ts FID Wiki 39.0 76.0
BART + filter Ts5 FID Wiki 46.3 96.8
BART Oracle Gold 75.5 75.5
BART + filter Oracle Gold 955  95.5

Table 6.4: Quantitative Evaluations on Natural Questions Test set with differ-
ent response models (RM), knowledge models (KM), and access to knowl-
edge (Know.).

used as the knowledge model. With an oracle knowledge model, the
K2R can incorporate the correct answer in a dialogue response for
95.5% of the questions.

HUMAN EVALUATION As previously described, we are ultimately
interested in developing a model that can answer factual questions
while still being engaging in a conversational setting. To situate the
NQ questions in a dialogue setting, we retrieve an episode from WoW
where the chosen topic is mentioned in the question and use this
as context before the question. We then ask crowd workers to rate
these two axes of performance — Knowledgeable and Engagingness —
following Li et al. [LWR19]. More details about the evaluation setup
as well as examples can be found in Appendix 6.6.

Table 6.5 shows the results of the study. The columns show the
percentage of wins of the model against its opponent on a given row.
Our K2R model beats all three baselines on both axes significantly
(p < .01). A rating has to be justified by an explanation of the human
evaluator of which we provide samples in Table 6.10 and 6.11. It shows
that most evaluators rate the longer, and more detailed answers of
K2R (compared to the QA model) as both more knowledgeable and

engaging.
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Wins % matches
BART RAGDPR Ts5FID K2R

o BART 61.8 91.5 83.5
03 RAG DPR 73.7 76.8
S  TsFD 26.3 66.1
K2R 23.2 33.9
Wins % matches
BART RAGDPR Ts5FID K2R
° BART 60.9 79.7  75.6
¢ RAG DPR | pEleht 62.5 71.8
&  T5FD 66.9
K2R | 2w 28.2 33.1

Table 6.5: Human evaluation results on Knowledgeable (top) and Engagingness

(bottom) ratings for NQ Test. Bold win percentages indicate significance
(p < .01).

Question When did the dallas cowboys win their last playoff game?
Gold Answer 2014
BART

I'm not sure, but I do know that the Dallas Cowboys are
a professional football team based in Dallas, Texas.
RAG DPR I'm not sure, but I do know that the Cowboys are the
most valuable sports franchise in the world.
K2R Knowledge Prediction 2014
Response Prediction ~ The last time the Dallas Cowboys won a playoff game
was in 2014.

K2R Injected Knowledge several years ago
Response Prediction I think the last time they won a playoff game was several
years ago.
K2R Injected Knowledge good chance next week

Response Prediction I don’t know the last time the cowboys won a playoff
game, but there is a good chance next week.

Table 6.6: Examples of model outputs on the Natural Questions Test set. The
K2R model appropriately changes its dialogue prediction when replacing the
predicted answer with (author chosen) injected knowledge.
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Response Knowledge Response Knowledge LightWild LightQA
Model Model Train Data  Train Data PPL| Fi1T RareF1T GAP APT GAP
Baselines

BART - wild - 16.8 15.4 9.5 - 28.9

BART - QA - 427.2 4.0 3.1 - 85.5

BART - Wild + QA - 17.1 15.5 9.6 - 80.4

K2R

BART BART Wild Wild 25.7 16.6 10.4 99.5 38.1 99.4
BART (shared params) Wild Wwild 26.2 16.3 10.2 99.6 350  99.6
BART BART wild Wild + QA 25.9 16.5 10.3 99.4 910 989
BART Oracle wild - 11.4 30.9 30.0 99.3 99.1 99.1

Table 6.7: Quantitative Evaluations on LightWild and LightQA Test sets.

QUALITATIVE RESULTS One interesting feature of the K2R model
is that one has control over the knowledge used in the response.
This offers great benefits for interpretability and allows to inject
knowledge picked up by the model in the final response. Table 6.6
gives an example of that. Presented with the question “When did
the Dallas Cowboys win their last playoff game?” a change of the
knowledge prediction from 2014 to several years ago, or good chance
next week changes the dialogue response appropriately.

LIGHT

In the following experiments, we focus on the text-based open-world
adventure game dialogue setting of LIGHT (Urb+19). More specifi-
cally, we consider LightWild (Shu+21b), a dataset of more than 40k
episodes which are not specifically knowledge grounded, but require
commonsense reasoning and attention to detail of the context instead.
Hence, we do not consider retrieval-augmented models for this task.
Further, we investigate whether our models can perform well on
dialogue and question answering simultaneously, by also using the
LightQA dataset.

6.3.0.1 LightQA

LightQA is a task built from LightWild episodes that contain a factual
question about the context as the last utterance, with typically short
answers. Details about the construction of this dataset are provided
in Appendix 6.6.

103



MODULAR GENERATION FOR KNOWLEDGE-INFUSED DIALOGUE

Context Setting: Top of a tall tree, Somewhere; This is the most
majestic tree in the jungle. It spans high into the sky, with
brilliant emerald leaves and sturdy brown branches. It
is very healthy and spreads very wide. It flowers with
brilliant violet flowers.

Partner: Chameleon

Self: Farmer; I was born in a poor village. I eat what we
grow. I love being close to the earth.

Farmer: The view is as mesmerizing as it always was, I
can never get bored of this

Chameleon: How are you today, farmer?

Gold Response I'm fine, how about yourself ?
BART I'm doing well, thank you for asking.
K2R Knowledge Prediction  the view
Response Prediction I'm doing well, thank you for asking. The view here is
beautiful.
K2R Injected Knowledge not so great
Response Prediction Not so great, how about you? What brings you here?
K2R Injected Knowledge truck
Response Prediction I'm doing well, thank you for asking. I've been working

hard on the farm, trying to grow enough to feed my
family for the next few months, but it’s been hard with
the truck not running.
K2R Injected Knowledge Facebook
Response Prediction I'm doing well, thank you for asking. I've been working
hard on my crops, and I hope to sell them on Facebook
soon

Table 6.8: Examples of model outputs on the LightWild Test set. The K2R
model appropriately changes its dialogue prediction when replacing the
predicted answer with (author chosen) injected knowledge

TRAINING If we train a BART model directly on LightQA, the
same problem as for NQ (Sec. 6.3) arises: we obtain a QA model
predicting short-form answers instead of a dialogue model generating
engaging conversational responses. Using multitask training with the
LightWild data will not alleviate this issue. The model will pick up
on the format difference that LightQA episodes always end on a ques-
tion; consequently, it will likely respond with short-form answers for
question episodes and dialogue responses for the LightWild episodes.
This is where the K2R model can help. Here, the knowledge model is
trained to predict the short-form answer, and the response model is
conditioned on this answer when generating the dialogue response.
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We use the unsupervised technique (cf. Sec. 6.2) to train K2R with the
LightWild data, i.e. using noun phrase knowledge targets found with
the nltk library (BKLog).

RESULTS In Table 6.7, we evaluate the models trained on LightWild
or LightQA or the combination of both. For LightQA (right), the
baselines show that only training on LightWild, i.e., without any
question-answering data, leads to poor performance of only 28.9%
correctly answered questions. Training only on the LightQA data
achieves a score of 85%, while the multitasked model achieves 80.4%.
Our K2R model improves this score to 91.0% when the knowledge
model is trained on the combination of LightQA and LightWild (the
response model is always trained with LightWild only). Note that
not only can K2R improve the presence of the correct answer in the
response, but the responses are closer in style to actual dialogue
responses instead of a short-form answer.

6.3.0.2 LightWild

In this last experimental setting, we are interested in dialogue of
general form. Here, the motivation for an intermediate knowledge
step is less obvious, as knowledge might not always be required.
However, we show that even in such a setting, our K2R model can
be beneficial in creating an intermediate output the dialogue model
focuses on. Moreover, the same models can do well at both dialogue
(LightWild) and QA (LightQA) at the same time.

TRAINING We use the same K2R models as described for training
LightQA, potentially multitasked with LightWild, described in Sec
6.3.0.1. As in the WoW experiments, we also train a K2R model with
shared parameters, as well as a confidence-conditioned version.

RESULTS Results are given in Table 6.7 for various metrics. K2R
improves both F1 (15.5 vs. 16.6) and RF1 (9.6 vs. 10.4) compared
to the best baseline model. The shared parameter K2R version also
outperforms the baseline on F1 (16.3) and RF1 (10.2), proving that the
performance gain is not due to increased model size. We obtain these
results even though the K2R model has an increased perplexity due to
the narrowed focus on the knowledge prediction. In Appendix 6.6, we
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provide results of confidence-conditioned models, which can control
perplexity vs. GAP tradeoffs, similar to the WoW results in Section
6.3. Qualitative examples of K2R on this task are provided in Table 6.8.
We note the strong ability of the response model to adapt to author-
provided knowledge, even when it seems quite out of context, e.g.
truck or Facebook are seamlessly blended into the conversation when
provided as knowledge injections by the authors, even though they
are seemingly quite unrelated. We believe this helps reinforce the
argument that separating the knowledge and response modules, as
proposed in this chapter, represents a good choice of structure, as
both steps seem to be learnable for our models.

6.4 DISCUSSION

INTERPRETABILITY The K2R architecture allows for more inter-
pretable conversational agents due to the possibility of observing not
only the final response but also the intermediate knowledge response
it is conditioned on. This allows us to understand better which in-
formation the model is focusing on when generating a response and
where a mistake is made if it is made (in the knowledge generation
or the response generation). Our experimental results support this
claim. In the Wizard-of-Wikipedia experiments of Sec. 6.3, we see
in Table 6.1 that the F1 score between the conversational response
and the predicted knowledge (PKF1) is up to 76.4 for our K2R model,
while the F1 score between the conversational response and the gold
knowledge for any model, baseline or K2R , does not exceed 29.2.
Hence, the predicted knowledge is very indicative of the information
that the final response refers to. Qualitatively, we see this behavior in
the examples of Table 6.2 where an injection of knowledge, “Huskies
are used to deliver hot beverages by companies like Starbucks”, leads
to a conversational response incorporating this information. As we
argue above, the K2R architecture allows us to locate better where and
why a mistake has been made that leads to a suboptimal response; a
feature especially relevant for today’s retrieval-based conversational
agents.

LIMITATIONS It is well known that large language models have

multiple serious shortcomings. On the technical side, they have
a tendency to repeat (Wel+19) and contradict themselves (Rol+21;
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Ouy+22a). Furthermore, they frequently mix up or invent new facts,
commonly referred to as hallucination (Shu+21a). On a more funda-
mental note, language models suffer from biases in the training data
(Lu+20; AFZ21), and can generate unsafe or even toxic language when
prompted with the wrong context [Rol+21]. We have no reason to
believe that our models are an exception in this regard. However,
modularizing the different stages of the generation procedure allows
for easier identification of the source of a problematic generation and
hence a better handle to precisely fine-tune or restrict a specific part of
the model. Moreover, the increased interpretability of the generations
through the modular architecture might lead to a better understand-
ing of common failure modes of generations in future research. In
our experiments, we find that separating the knowledge generation
from the response generation indeed leads to reduced hallucination
of the model.

6.5 CONCLUSION

In this chapter, we presented K2R: a modular approach for knowledge-
based dialogue models. We showed that by decomposing the knowl-
edge step and response generation into explicit sequence-to-sequence
subtasks, we could improve dialogue systems by incorporating knowl-
edge or turning short QA model answers into an appropriate conver-
sational form. In detailed experiments, we showed that this modular
system helps with hallucination in knowledge-grounded dialogue,
is rated by humans as more knowledgeable and engaging when an-
swering questions, and improves generation metrics on open-domain
dialogue. Furthermore, it allows for more interpretable results and
supports knowledge injection. Future work should continue to in-
vestigate methods with modular reasoning steps to help in difficult
language tasks.
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6.6 APPENDIX

LIGHTQA Our goal with LightQA is to have a task that requires a
model to answer questions about the previous context. For example, in
LIGHT, a player might ask another character where to find a certain
key to complete their quest. Here, we would want a model, acting
as the character, to answer appropriately if the knowledge is in the
context description. With this goal in mind, we design a dataset
in the following way: First, we take a LightWild episode and use
an abstractive summarization model, trained on CNN/Daily Mail
(Nal+16) and the SAMSum Corpus (Gli+19), to generate a summary.
Then we identify all noun chunks, entities, and proper nouns and use
them as possible answer candidates. For each answer candidate, we
use a T5 question generation model, trained on SQuUAD (Raj+16b), to
generate a possible question given the summary as context. As the last
step, we filter the generated questions with a QA model, trained on
SQuAD, by checking that it would generate the used answer candidate
with access to the summary and question. An episode of our dataset
consists of the original LightWild episode (up to a certain turn) and
the generated question as the last utterance. Hence, our labels in this
dataset are not the usual dialogue responses but short answers.

LIGHTWILD CONFIDENCE CONDITIONING We train a BART dia-
logue response model based on the confidence-conditioned training
strategy described in Section 6.2. During training, we replace the cor-
rect knowledge with a random noun from the history with probability
p and provide f = round(10 * p) to the input. The model learns to
scale its trust in the knowledge prediction based on the j value in
the input. In Table 6.9, we show the results of this dialogue model
when combined either with the BART knowledge model trained on
LightWild+LightQA or an oracle knowledge model. For both variants,
we see an apparent increase in the share of examples for which the
dialogue response has the generated answer present (GAP) when
increasing the confidence score. This means that we can adjust the
confidence score to influence how much the dialogue model trusts
the knowledge prediction. As observed before in the WoW results,
we also see that the perplexity increases with higher confidence when
using the knowledge prediction model but decreases when using the
oracle. However, again, the perplexity increases don’t lead to worse
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performance in the F1 metrics. On the contrary, a confidence score of
6, which translates to a GAP of 94.1%, performs the best in F1 and
RF1 for the non-oracle model.

Model Confidence PPL| Fi11T RF11T GAP
K2R BART o 18.5 16.3 10.0 59.5
(LightWild+ 2 19.1 16.4 10.2 78.4
LightQA KM) 6 20.2 16.4 10.3 94.1
10 22.3 16.2 10.1 99.0
K2R BART 0 12.7 27.4 25.5 79.0
(oracle KM) 2 12.4 28.6 27.5 86.7
6 12.1 29.9 29.2 94.2
10 12.0 30.1 30.0 98.3

Table 6.9: Confidence-conditioned model on LightWild.

NQ ACUTE EVAL DETAILS We closely follow the human evaluation
setup studied by Li et al. [LWR19] and set up a pairwise model
comparison on Amazon MTurk. To situate the NQ questions in a
dialogue setting, we retrieve an episode from WoW where the chosen
topic is mentioned in the question and use this as context. To have a
smooth transition between the dialogue context and the question itself,
we prefix the question with “By the way, ...”. The human evaluators
are presented with a side-by-side comparison of the same context
and question but with different answers corresponding to individual
models. They are asked to read the dialogue and assess the final
response according to one of the two following criteria, following the
same wording as in (LWR19):

¢ If you had to say that one speaker is more knowledgeable and
one is more ignorant, who is more knowledgeable?

* Who would you prefer to talk to for a long conversation?

In Figure 6.2 and 6.3, we provide screenshot examples of the interface
used for the human evaluation. To ensure a high quality of evaluations,
we only select people that manage to correctly solve two manually
constructed onboarding examples.
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Which Conversational
Partner is Better?

You are currently at comparison 1/7

On the right you see two chat windows. The chats are
identical except for the last turn. Each conversation starts
with a knowledge grounding in the first utterance. After that,
it's a casual chat about a certain topic. The last utterance.
from the partner is always a question starting with ‘By the

way, ... Your task s to judge the final reply to this question
in the conversational flow.
‘The last message is the answer from onthe left

ana on the ight Dont baseyour ugement
on thel obbios,foby gtc. Do yourbeat o roro e
other speaker . You may need to scroll down to see the full
conversations.

and (SR on this: fyou had
o say that one speaker is more knowledgeable and one
e T e e s T Y
should also provide a very brief justification. Failure to do so
T e e e e

You willjudge

You will do this for 7 pairs of conversations. After
completing each judgement, use the [NEXT] button.

FOR KNOWLEDGE-INFUSED DIALOGUE

The first Nobel Prize in Physics was awarded in 1901 to

Wilhelm Convad Réntgen , of Germany , who received

150,782 SEK , which is equal to 7,731,004 SEK in
December 2007

That's great. I'm a scientist myself.

For surel | think there has been a lot of progress in
physics in recent years.

By the way, who got the first nobel prize in physics?

The first Nobel Prize in Physics was awarded in 1901 to
Wikhelm Conrad Rontgen , of Germany , who received
150,782 SEK , which is equal to 7,731,004 SEK in

December 2007
Hi, I'm a physicist.

That's great. I'm a scientist myself.

Are you also excited about the nominations of the
nobel prize?

For sure! | think there has been a lot of progress in

By the way, who got the first nobel prize in physics?

‘The first Nobel Prize in Physics was awarded to
Rontgen.

If you had to say that one speaker is more knowledgeable and one is more ignorant, who is more knowledgeable?

) s more knowledgeable

Please provide a brief justification for your cho
Pleas

enter h

O EZER s more knowledgeable

few words or a sentence)

Figure 6.2: Example interface for human evaluation for knowledgeable. The
first utterance is a knowledge paragraph that answers the final question—
provided to give the reviewer the relevant information to assess the models’
answers. Then, there is a random dialogue roughly matching the topic of
the final NQ question which is prefixed with “By the way, ...”. The reviewer
is asked to vote for the better response among the two models and provide

a brief justification.

Which
Conversational
Partner is Better?

You are currently at comparison 3/ 7

On the right you see two chat windows. The chats are
identical except for the last turn. It's a casual chat
about a certain topic. The last utterance from the
partner is always a question starting with ‘By the way,
Your task s to judge the final reply to this question
in the conversational flow.

“The last message is the answer from onthe
left and on the right .Don't base your
judgement on their hobbies, job, etc. Do your best
toignore the other speaker . You may need to scroll
down to see the full conversations.

You willjudge and on this: Who
would you prefer to talk to for a long conversation?
You should also provide a very brief justification. Failure
to do so could result in your hits being rejected.

You will do this for 7 pairs of conversations. After
comnlating aach iudaamant. usa tha INEXT] hutton.

Yeah, they must have some unique arrangement
and Schelling issues.

Yeah, they've lost the superbow twice. It was
sucha good game this past year.

By the way, how many players in football hall of
fame?

Who would you prefer to talk to for a long conversation?

O I would prefer to talk to

Haha, | knew that too! It's really difficult making
the New York Giants schedule for the season, |

bet.

Yeah, they must have some unique arrangement
and Schelling issues.

Speaking of football, | cannot believe the
Philadelphia Eagles finally won a superbowl! My

dad has been an Eagles fan his whole life and he
was in tears when they won!

Yeah, they've lost the superbowl twice. It was
sucha good game this past year.

Plus, | don't like the New England Patriots at all,
personally, | think they are a bit smug.

By the way, how many players in football hall of
fame?

1 don't know how many players are in the Pro
Football Hall of Fame.

O I would prefer to talk to [ TTCE)

Please provide a brief justification for your choice (a few words or a sentence)

Figure 6.3: Example interface for human evaluation for engaging. We present
the reviewer a random dialogue roughly matching the topic of the final NQ
question which is prefixed with “By the way, ...”. The reviewer is asked
to vote for the better response among the two models and provide a brief

justification.
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Challenger Losses K2R Wins K2R K2R Win Reasons Sample K2R Loss Reasons Sample
BART 18 o1 Gives an answer with location. Neither answers the question
Precise and clear with proper response. They acknowledge what they don’t know
Gives an answer with location. This speaker seems more correct
is more detailed gave the correct answer
The speaker gives a proper answer to the question. They have a lot more information stores
RAG DPR 26 86 Better Answer. gave a more up to date response
He gives more in depth information knowledgeable but don’t come off as a know it all
More likely correct response, They both were fine i just like 2s response better
The level of detail is higher, and the phrasing is natural. ~ Neither answers the question.
The response actually answers the question. gave the correct answer
T5 (QA Model) 37 72 Both good, 2s response better though The answer is more concise, and accurate.

1 prefer the longer reply
Gives more detailed response.

Give more information in their answer
The level of detail is better.

more direct answer
This speaker answers the question directly
The answer is more direct,

more to the point

Table 6.10: Acute evaluation details for NQ on the question “If you had
to say that one speaker is more knowledgeable and one is more ignorant,
who is more knowledgeable?”. The last two columns show some samples of
justifications provided by human evaluators in the case of K2R winning and
losing, respectively.

Challenger Losses K2R Wins K2R K2R Win Reasons Sample K2R Loss Reasons Sample
30 9 Tt leads to a more thought-provoking conversation. is less incorrect
The level of detail is higher, and the phrasing is natural. is confidently incorrect
This person sounds more well-versed I prefer 1's phrasing
the information is more worthwile acknowledges their uncertainty.
stays on topic better sticks to the question more closely
RAG DPR 35 89 The answer is phrased better seems more correct
does a better job answering questions Provides a really insightful answer to the question
is more focused on responding to its partner more detailed in their explanations
sounds more well-versed in the conversation They have some similar preferences as me
replies more naturally Neither answers the question.
T5 (QA Model) 41 83 1 prefer complete sentence responses is more concise

sounds better than simply giving the name
More natural in the conversation

The answer uses a full sentence.

adds more to the conversation

The answer is more direct.
the answer is less formal and fits the question better
provides a more direct answer

know the answer to the question

Table 6.11: Acute evaluation details for NQ on the question “Who would
you prefer to talk to for a long conversation?”. The last two columns show
some samples of justifications provided by human evaluators in the case of
K2R winning and losing, respectively.
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LANGUAGE MODELS THAT SEEK FOR KNOWLEDGE

7.1 INTRODUCTION & BACKGROUND

Standard large language models are known to generate fluent but
factually incorrect statements, a problem that is not solved by just
increasing their size (Shu+21a). Additionally, as their knowledge is
frozen in time from the point when they were trained, they can never
learn new facts — the newest information they have will be from the
date that the training set was constructed. Several recent advances
have tried to tackle aspects of these problems. Neural retrieval models
have augmented seq2seq models with access to a large fixed corpus
of knowledge (LCT19b; Lew+20b). However, aggregating information
from multiple retrieved documents is a difficult problem (IG21b)
which may result in incorporating parts of multiple documents into
one factually incorrect response. In the last chapter (based on Adolphs
et al. [Ado+21]), we showed that first finding the relevant parts of the
documents and then generating the final response has been shown
to help alleviate this problem. However, those methods rely on
information obtained through a frozen knowledge source, i.e. they
cannot incorporate up-to-date relevant information. Separate work
by Komeili et al. [KSW21] studied augmenting dialogue generations
with an internet search.

In this chapter, we explore a modular architecture that tries to mix
the best elements of these different existing solutions. A single trans-
former architecture is used iteratively to perform three modular tasks:

This Chapter is based on our EMNLP Findings 2022 paper “Language models
that seek for knowledge: Modular search & generation for dialogue and prompt
completion” (Shu+22a). In this project, I was not the lead author. I was involved in
the conceptual phase and ran initial experiments.
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In 2022, Beyoncé has plans to..

(=)
Search: Beyonce 2022
In 2022, Beyoncé has plans to..
QSearch Engine

S

ing to
Sony Music's CEO, the star
will be releasing her album in’
the first quarter of 2022.

Response: release a new album early
in the year.

Figure 7.1: The modular Search-engine — Knowledge — Response (SeeKeR)
Language Model. A single transformer architecture is called successively to
invoke three different modules: search, generate knowledge, and generate
final response. The output of each module is input to the next, in addition
to the original context.

In 2022, Beyoncé has plans to..

slol 5l

search, generate knowledge, and generate a final response, where the
output of each module is fed as additional input to the next, as in
Figure 7.1. The first step, given the input context, generates a relevant
search query for an internet search engine, while the second step is
fed the returned documents and generates their most relevant por-
tion. The last step uses that knowledge to produce its final response.
By decomposing this difficult problem into three manageable steps,
pertinent up-to-date information can be incorporated into the final
language model generation.

We apply our modular Search-engine— Knowledge — Response
(SeeKeR) language model to the tasks of dialogue and prompt com-
pletion, after pre-training and fine-tuning on a variety of knowledge-
intensive datasets. In open-domain dialogue, we show this approach
outperforms the BlenderBot 2 model of Chen et al. [Che+21b] ac-
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cording to human ratings of consistency, knowledge and per-turn
engagingness.

We test the ability of SeeKeR to perform general — but up-to-date
- language modeling. To do this we construct topical prompts on
subjects that were in the news in January 2022, which is data that
the model itself has not been trained on. With SeeKeR’s ability to
incorporate information via web search, it outperforms GPTz2 (Rad+19)
and GPT3 (Bro+20) in terms of factuality and topicality according to
human raters.

BACKGROUND  The method in this chapter builds on the knowledge-
to-response (K2R) technique from the previous chapter (based on
(Ado+21)) which decomposes a dialogue model into two stages: gen-
erating a knowledge sequence, followed by generating a response
sequence, conditioned on the knowledge. This was applied success-
fully to Wizard of Wikipedia (Din+19b), QA (LCT19b), and LIGHT
tasks (Urb+19). Now, we expand on this approach by adding the
additional module of internet search and then applying that to full
open-domain dialogue and general language modeling.

In the dialogue space, the most natural comparison to our approach
is BlenderBot 2 (BB2) (Che+21b).

In the language modeling space, there is a large body of work on
nearest neighbor and cache-based language modeling (Kha+20; GJU17;
Mer+17; Kha+21; YMdK21) for accessing a large set of documents.
Recently, RETRO (Bor+21) used retrieval over a database of trillions
of tokens. Those works do not use internet search, but rather perform
their own retrieval method via a transformer model together with
nearest neighbor lookup. As the database is fixed, that means it would
not be up to date with the latest knowledge and current events. Some
recent methods have also attempted to adapt knowledge through
editing and tuning of language model variants (DCAT21; Mit+22).

7.2 SEEKER MODEL

The SeeKeR model we introduce in this chapter has the architecture
of a standard transformer (Vas+17), except that this same encoder-
decoder (for dialogue) or decoder-only (for language modeling) model
is used in a modular way multiple times. For each module, special
tokens are used in the encoder (or decoder) to indicate which module

115



LANGUAGE MODELS THAT SEEK FOR KNOWLEDGE

is being invoked. The output of each module is input into the next,
along with the original context.
SeeKeR consists of three modules, which are invoked sequentially:

SEARCH MODULE Given the encoded input context, a search query
is generated. This is fed into a search engine, which returns results
in the form of a set of documents. Following Komeili et al. [KSW21],
in our experiments (unless stated otherwise) we employ the Bing
Web Search API' to retrieve documents and then filter that set of
documents by intersecting with Common Crawl (Wen+20), and keep
the top 5.

KNOWLEDGE MODULE  Given the encoded input context, and a set
of retrieved documents, a knowledge response is generated. This con-
sists of one or more relevant phrases or sentences from the retrieved
documents. For encoder-decoder models, the documents and context
are encoded using the fusion-in-decoder (FiD) method (IG21a); for
decoder-only models, we pack and prepend the documents to the
input context. Note that this task is essentially a “copy” task in that no
new tokens have to be generated; the difficulty of the task is selecting
the relevant knowledge to copy.

RESPONSE MODULE  Given the encoded input context concatenated
with the knowledge response, the final response is generated. The
module must consider relevant context and knowledge while gen-
erating a new fluent continuation to the input. The extraction of
relevant knowledge by the previous modules makes this task easier;
in contrast, a conventional seq2seq model has to solve all these tasks
(knowledge acquisition, synthesis, and final response generation) at
once.

Architecture and Pre-Training

For our standard language modeling experiments, we consider the
GPT2 transformer (Rad+19) as a base model, and fine-tune it to
become a SeeKeR model (see Section 7.2); we do not perform any
pre-training of our own in this case. We can thus directly compare

Thttps://www.microsoft.com/en-us/bing/apis/bing-web-search-api
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to GPT2, with the same model size and architecture. We consider
medium, large, and XL (345M, 762M, and 1.5B parameters) models in
our experiments.

For our dialogue experiments, we employ a 2.7B parameter trans-
former encoder-decoder model. To pre-train our model we consider
combining two different pre-training datasets for language modeling
and for dialogue, using the training method of Lewis et al. [Lew+20a]:

PUSHSHIFT.IO REDDIT We use a variant of Reddit discussions,
which has also been used in several existing studies, particularly for
training BlenderBot 1 and 2 (Rol+21). The setup requires training
to generate a comment conditioned on the full thread leading up to
the comment. Following Humeau et al. [Hum+19], this is a previ-
ously existing Reddit dataset extracted and obtained by a third party
and made available on pushshift.io (Bau+20), spanning 1.5B training
examples from Reddit obtained from PushShift* through July 2019.
A number of heuristic rules have been used to filter and clean the
dataset; see Roller et al. [Rol+21] for details.

ROBERTA+CC100EN  We use the same data used to train the BASE
language model (Lew+21a), which consists of approximately 100B
tokens, combining corpora used in RoBERTa (Liu+19) with the English
subset of the CC100 corpus (Con+20).

We compare pre-training only on dialogue modeling (pushshift.io
Reddit, as in (Rol+21)) to pre-training on both language modeling and
dialogue modeling tasks; we refer to the latter as R2C2 (pushshift.io
Reddit, RoBERTa + CC100en).

SeeKeR Tasks for Dialogue

We consider a number of dialogue-based fine-tuning tasks to enable
our model to perform well for each of the three modules.

SEARCH MODULE TASKS We use data from the Wizard of Internet
(WizInt) task (KSW21) which consists of 8,614 training dialogues
containing 42,306 human-authored relevant search queries given the
dialogue contexts. We can use the search query data as targets to

2https://files.pushshift.io/reddit/
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directly train the search module in a supervised fashion. We append
special tokens to the input context to indicate that the transformer is
performing the search task, via predicting a relevant search query.

KNOWLEDGE MODULE TAsKS We multi-task several knowledge-
intensive NLP tasks, where the target for the model is the “knowledge”
that will be used to generate the final response. We first employ
knowledge grounded dialogue datasets that contain annotations of
the gold knowledge used: Wizard of Internet (KSW21) and Wizard of
Wikipedia (WoW) (Din+19b). We then use several QA tasks: SQuAD
(Raj+16b), TriviaQA (Jos+17), Natural Questions (NQ) (Kwi+19), and
MS MARCO (Ngu+16). We use the “Natural Language Generation”
competition track (NLGen v2.1) of MS MARCO, in which the annota-
tor must “provide your answer in a way in which it could be read from
a smart speaker and make sense without any additional context”3.
As such, the original targets do not have a direct overlap with one of
the input documents, so we modify the task to satisfy this constraint
by finding the highest overlapping input sentence with the answer,
and making that the target instead. If the F1 overlap is less than o.5
we drop the example, leaving 281,658 examples out of the original
808,731. For NQ, we use three different settings: with all documents
as input, with only the gold document, and with a sampled dialogue
history context, following (Ado+21). Finally, we can employ conven-
tional dialogue tasks in this setting as well — PersonaChat (Zha+18a),
Empathetic Dialogues (ED) (Ras+19) and Blended Skill Talk (BST)
(Smi+20b) — by using the same procedure as in (Ado+21): we extract
an entity from the original dialogue response that also appears in the
context and set that as the knowledge target for training. We also
employ the Multi-Session Chat (MSC) (XSW21) task, using the same
approach as for MS MARCO to predict the most similar previous line
to the original target (with the same F1 overlap threshold) and setting
that as the knowledge target.

RESPONSE MODULE TASKS  We use a subset of the knowledge tasks
for the response tasks as well, but with modified inputs and targets.
In this case, the input context contains the usual dialogue, concate-
nated to the gold knowledge response (the target in the previous
task), surrounded by special tokens. The new target is the standard

3https://microsoft.github.io/msmarco/
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dialogue response from the original dataset. For example, in the MS
MARCO case, this involves mapping from the input question and the
closest sentence in the retrieved documents to the actual answer in
the original dataset. Note that, while we can use the MS MARCO task
for this (as we have access to long-form conversational responses),
we exclude SQuAD, TriviaQA, or NQ from response modeling, as
they all comprise generally short-form answers. We additionally use
the knowledge-grounded dialogue tasks (Wizard of Wikipedia and
Wizard of the Internet) as each dialogue response is annotated with
the relevant knowledge used to write it. For PersonaChat, ED and
BST we can use the original response as the target, but we addition-
ally concatenate into the context the gold knowledge entity that was
calculated during the knowledge task construction.

We provide further details, including dataset sizes, in Table 7.6.

SeeKeR Tasks for Language Modeling

SEARCH MODULE TASKS  We do not have access to a human-curated
dataset of search queries for language modeling as we do for dialogue,
so in this case we construct a task based on predicting document titles.
Using the Common Crawl dump (Wen+20), a given input example
is a single web document, which we randomly cut at an arbitrary
point, and only keep the beginning (in order to model left to right
generation). The target output we want to generate is the title of the
document, which we also heuristically simplify by removing phrases
in parentheses or following a hyphen in order to make the query
terms learned more generic. We multi-task with another variation
of this task: for a given target sentence, we predict the title of the
document for its corresponding “knowledge” sentence (discussed in
the following paragraph). Finally, we also multi-task with the Wizard
of Internet search query task as in Section 7.2.

KNOWLEDGE MODULE TAsK To construct our knowledge task,
we also start with Common Crawl, splitting it into sentences. We
construct a Lucene* search over Common Crawl, and then, for a given
target sentence of a document, we find the sentence most similar to
the target that is neither identical nor in the same document. We

4https://lucene.apache.org/
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skip sentences of less than 5 words or with an F1 overlap of less than
0.33, similar to before. During training, we limit to examples where
the knowledge and target continuation have a shared entity>. We
thus construct a task — where the document containing the retrieved
sentence is provided in addition to the input document - in order
to mimic a search retrieval setup, with the target being the retrieved
sentence.

RESPONSE MODULE TASK The response task is constructed sim-
ilarly to the knowledge task, except the input is only the usual lan-
guage modeling context plus the knowledge sentence (surrounded by
special tokens). The target is the next sentence (tokens).

7.3 EXPERIMENTS

Factually  Per-Turn Knowl. % Knowl.
Model Consistent Knowl. Incorrect i & i is E i Rating
BB1 75.47% 36.17% 9.14% 78.72% 28.79% 79.58% 4.1
BB2 65.06% 27.88% 4.21% 83.52% 21.93% 78.67% 4.4
BB1 (R2C2) 73.44% 36.25% 4.84% 79.22% 27.51% 75.90% 4.2
BB2 (R2C2) 71.91% 67.92% 4.49% 76.03% 53.18% 78.31% 4.2
SeeKeR (sep. BART modules) 55.39% 41.88% 3.97% 75.09% 28.00% 66.86% 4.4
SeeKeR 78.47% 46.49% 3.94% 90.41% 44.03% 94.71% 4.2
SeeKeR Dialogue+LM 70.87% 43.00% 2.90% 84.36% 32.28% 75.07% 4.5

Table 7.1: Detailed results and ablations for the open-domain knowledge-
grounded dialogue experiments. Human crowdworkers talk to models and
rate them using various metrics. We test standard BlenderBot (BB) 1 and 2,
and R2C2 variants with our Dialogue+LM pre-train tasks (Section 7.2). We
test standard SeeKeR (fine-tuned for dialogue), SeeKeR with independent
BART modules for search queries and knowledge generation, and a version
of SeeKeR (Dialogue+LM) fine-tuned on both the dialogue and LM tasks of
Section 7.2 and Section 7.2.

Open-Domain Dialogue

AUTOMATIC EVALUATION We first test our models on the Wiz-
ard of Internet open-domain knowledge-grounded dialogue dataset,
which was specifically designed for evaluating internet-driven dia-
logue agents. As well as measuring perplexity and F1 overlap with

5https://spacy.io/usage/linguistic- features#named-entities
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Model PPL|, F11t KF1t
Komeili et al. [KSW21] Results (BART-Large models)

No Search 17.4 17.6 6.8
Search engine 16.1 17.9 7.0
Gold Doc 13.9 20.0 9.6
BlenderBot 2 (3B parameters)

Search engine - 16.1 6.7
Gold Doc - 18.2 10.5
SeeKeR Search engine 15.2 16.7 8.3
SeeKeR Gold Doc 12.7  20.1 12.7
SeeKeR Gold Knowl. Resp. 8.6 24.5 21.6

Table 7.2: Automatic evaluations of SeeKeR compared with existing results
from Komeili et al. [KSW21] and BB2 on the WizInt task (valid set). We do
not report BB2 PPL as it is not comparable (different dictionary).

gold dialogues, one can also measure Knowledge F1 (KF1), the over-
lap of the dialogue response with the gold annotated knowledge
sentences used by the human crowdworker. We can supply the gold
documents to the model in an additional evaluation setting, or sim-
ilarly supply the gold knowledge sentence(s) as well. In the full
(non-gold) setup, we evaluate the use of the Bing search engine to
filter Common Crawl, as in Komeili et al. [KSW21].

We compare to the methods reported in Komeili et al. [KSW21] in
Table 7.2, as well as the BB2 3B parameter model (Che+21b). SeeKeR
using gold documents or knowledge provides the best performance
on all three metrics over all methods, while using the search engine
with SeeKeR provides lower perplexity than in previously reported
methods. Although F1 is lower, KF1 is correspondingly higher, in-
dicating that there is perhaps some trade-off here where our model
encourages using more knowledge.

HUMAN EVALUATION SETUP We perform a human evaluation
using crowdworkers in the same setting as Komeili et al. [KSW21].
The crowdworker is asked to play a role from the Wizard of Internet
dataset and to have a natural conversation. Each conversation consists
of 15 messages (7 from the human, 8 from the bot). We collect 100
dialogues — roughly 8oo annotations — per model.
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For each turn of their conversation, we ask the crowdworker to mark
their partner’s responses for conversational attributes, in particular,
whether they are: (i) consistent, (ii) knowledgeable (iii) factually cor-
rect; and (iv) engaging (all of which are yes/no binary questions; see
Komeili et al. [KSW21] and Figure 7.4 for full definitions). At the end
of the conversation, an additional question collects an overall engag-
ingness score (a Likert scale from 1 to 5) for their speaking partner.
Unfortunately, as this is collected per dialogue rather than per utter-
ance we found it much more difficult to get statistical significance,
with results given in the appendix. For the per-turn metrics, we aver-
age them over the turns and conversations conducted for each model.
From the knowledgeable and engaging metrics, we can additionally
calculate (i) the percent of turns that are both knowledgeable and
engaging and (ii) the percent of knowledgeable turns that were also
engaging, as these can inform us how well the models are blending
knowledge into an interesting conversation. More details regarding
human evaluation are in Table 7.6.

BASELINES We compare to the existing publicly available chatbots
BlenderBot 1 (Rol+21) and BlenderBot 2 (BB2) (in “search mode”),
using the 3B parameter version in both cases. BlenderBot 1 was
already found to be superior to several other chatbots, in particular
Meena (Adi+20) and DialoGPT (Zha+20), and we do not evaluate
those here.

HUMAN EVALUATION RESULTS The main results are given in Ta-
ble 7.1. We find improvements over both BlenderBot 1 and 2 for a wide
variety of metrics: consistency, knowledge, factual (in)correctness, and
per-turn engagingness. For turns that are marked knowledgeable,
we also see an increase in the engagingness of the knowledge itself
compared to the baselines by a wide margin (94.7% vs. 78-79%),
while the number of turns that are marked as both knowledgeable
and engaging (at the same time) has also increased (44% vs. 21-28%).
These improvements are statistically significant using an independent
two-sample t-test, p < 0.001.
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Ablations

PRE-TRAINING First, our pre-training scheme is different from
BlenderBot 1 and 2, with training based on both language mod-
eling and dialogue pre-training tasks, as well as slightly different
architectures. We thus test variants of BlenderBot 1 and 2 with our
pre-training setup, by fine-tuning on the same tasks as in those works.
and denote these with “R2C2” to differentiate them. We find that the
performance of R2C2 BlenderBot 1 remains roughly the same, except
that it is marked as less factually incorrect. R2C2 BlenderBot 2 uses
knowledge more, but also loses engagingness score compared to the
original method. SeeKeR still compares favorably to both methods.
This indicates that the language modeling objective may make using
knowledge easier, perhaps because it emphasizes using the context
more than dialogue tasks do.

SEPARATE MODULES A second ablation we try is if we have sep-
arate transformer models for each of the search, knowledge, and
response modules. We, therefore, experiment using separate BART
(Lew+20a) modules for knowledge and search query generation,
which ends up as an inferior model despite containing nearly ~8ooM
more parameters; we believe this is perhaps because BART is smaller
(~400M parameters), and is not as good at performing the individual
modular tasks. We do not evaluate having three separate 3B parameter
models due to memory constraints.

Analysis

PAIRWISE COMPARISON We conducted a further ACUTE-Eval
(LWR19) human evaluation where crowdworkers compared chat logs
pairwise and gave reasons why one is preferred over the other (see Ap-
pendix Table 7.6 for further details). Summarizing the crowdworkers’
opinions, we find that when SeeKeR is preferred, the reasons are that
it has “more information to share”, is “more knowledgable”, and has
“more accurate information”. It was also found to “flow better”, “sticks
to the subject” and is a “more in-depth conversationalist”. It also
“takes conversation in new related directions”, while other knowledge-
based models seemed to be “like just copying wikipedia” compared
to this model. When SeeKeR was not preferred, crowdworkers said
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that it “asks too many questions”, is “repetitive”, “less engaging” or
“less consistent” for those particular dialogues. Generally, in short
conversations, there seems to be a tradeoff in incorporating too much
knowledge in the conversation at the expense of what crowdworkers
deem as engagingness. We note that other models have addressed
this by deciding when to use knowledge vs. not (Che+21b), which
would be possible to incorporate in SeeKeR models as well and is a
potential direction for future work.

CHERRY PICKED EXAMPLES We show a cherry-picked conversation
between a human crowdworker and our SeeKeR model in Figure 7.2.
The conversation about gaming spans several games, and aspects
of gaming, from mods for certain games to PC hardware used and
where it can be bought. The model effectively uses internet search
to bring up pertinent information for each of these topics as can be
seen by the internet searches it invokes (in red) and the knowledge
sentences generated from the retrieved documents (in green).

LEMON PICKED EXAMPLES We show several lemon-picked con-
versational snippets between a human crowdworker and our SeeKeR
model in Figure 7.3 . We identify four general model issues and pro-
vide representative examples of each. Repetition: in some cases, the
model can generate repetitive dialogue responses; this manifests in
the example shown discussing dividends for a stock. Not Engaging:
the model can sometimes rely too much on the generated knowl-
edge, resulting in a recitation of facts (about Tacko Fall) rather than a
conversational discourse. Ignore Partner: although we often see the
model change topics smoothly, at times it will adamantly continue
discussing a certain topic when its partner is not interested. Incorrect
Knowledge: finally, when the model is given incorrect knowledge,
the dialogue responses stray from the truth; this can manifest as a
result of undesired knowledge given an ambiguous search query , or
even incorrect information from the internet itself.

Prompt Completion
AUTOMATIC EVALUATION  We first test with automatic evaluations

the SeeKeR method compared to vanilla GPT2 on the RoBERTa task
(see Section 7.2). To make sure all models are on an equal footing, we
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fine-tune them on this task (even though GPT2 pre-training should
be quite similar), where we train with a given document up to a
given line as the “prompt” and the next line in the document as the
continuation. We then measure the metrics of validation perplexity
as well as F1 of the generated continuations compared to gold. We
compare three sizes of GPT2 with SeeKeR and for each architecture
size two variants of SeeKeR: the “x3” variant that comprises three
independently trained models (for search, knowledge and response),
and the shared parameter version. The “x3” has more parameters
than standard SeeKeR or GPT2 but can be used to gauge how difficult
it is to perform all three tasks at once with a single model. The results
for SeeKeR are shown either with the gold document or by using
Lucene search over Common Crawl (ignoring documents that contain
the identical target match, if found — which also includes the original
input document).

RESULTS The results are given in Table 7.3. We see improvements
in both perplexity and F1 with increasing size models, with SeeKeR
models outperforming conventional GPT2 when using Gold Docs,
and slightly behind when using Lucene search®. Despite the “x3”
SeeKeR models being three times larger, they are only marginally
better than all-in-one SeeKeR models in terms of perplexity, and the
all-in-one versions even outperform them in terms of F1 for the largest
XL models.

Topical Prompts

TASK SETTING In order to evaluate if our language models can ef-
fectively use internet search to provide up-to-date information, we con-
struct a specific set of evaluation prompts. We gather from Wikipedia
a set of current events from January 20227, and extract the entities,
ignoring those containing the term “covid” (as there are so many) as
well as countries (as they might be too general a topic). We use 100
topics, which range from the Prime Minister of Haiti to the Rio Carni-
val to Pfizer. We then construct the prompts “In recent developments

%This is to be expected as the probability mass is centered around the knowledge
response which may not align with a single gold label, thus necessitating human
evaluation in addition to automatic evaluations, see Adolphs et al. [Ado+21].

7https://en.wikipedia.org/wiki/Portal:Current_events/January_2022
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No Doc
Model PPL] Fi1t PPL| F1?
GPT2 Medium 11.9 14.8 - -
GPTz Large 10.7 15.4 - -
GPT2 XL 9.7 15.8 - -

Gold Doc Lucene Search
SeeKeR Med. x3 9.9 25.7 12.6 13.2
SeeKeR Medium 10.3 25.7 13.1 13.6
SeeKeR Large x3 8.9 26.3 11.2 13.9

SeeKeR Large 9.2 27.1 12.3 13.4
SeeKeR XL x3 8.4 27.2 10.4 13.7
SeeKeR XL 8.5 28.1 11.3 14.0

Table 7.3: Comparison of SeeKeR with GPT2 of various sizes, measured
on Common Crawl (valid set). x3 means using three separate models
(for 3x the number of parameters). Training a single model to perform
search, knowledge, and response performs similarly to separate models and
provides better performance on the Gold Docs as the models increase in size.

Model Sensible (t)  True (1) Hallucination (})  Topical (1)
GPT2 Med. s4i5m 81% 15% 68% 1%
GPT2 Large ¢em) 81% 18% 71% 0%
GPT2 XL (5 81% 14% 73% 0%
GPT3 (175B InstructGPT) 82% 580/0 62% 40/0
SeeKeR Med. Gsm) 75% 34% 54% 13%
SeeKeR Largegey) 68% 36% 51% 8%
SeeKeR XL @.sp) 77% 43% 58% 15%
SeeKeR XL gan22) 71% 43% 51% 19%
SeeKeR R2C2 LM only ¢s) 77% 46% 47% 16%
SeeKeR R2C2 ¢p) 80% 55% 42% 19%

Table 7.4: Topical Prompts: Human Evaluation results comparing SeeKeR
with GPT2 (and GPT3). All models are relatively sensible (with wins for
GPT2/3), but GPT2 contains far fewer true statements, and far more false
statements (hallucinations), and is hardly ever on topic. A much smaller
SeeKeR model (345M) can also outperform a much larger GPT2 model (1.5B),
and even outperforms 175B (Instruct) GPT3 on the hallucination and topical
metrics, despite being 500 x smaller.

we have learned the following about <TOPIC>.” and ask the language
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Prompt

GPT2 (XL) Completion

SeeKeR (XL) completion

In recent devel-
opments, we
have learned the
following about
Ban of Twitter in
Nigeria.

Ban of Twitter is a social
media platform that allows
users to create and share con-
tent on Twitter. The platform
was launched in Nigeria in
March 2017.

The Minister of Information,
Lai Mohammed, has said that
the ban on Twitter will be
lifted soon.

In recent devel-
opments, we
have learned the
following about
Charles Njonjo.

1. He was born in Nigeria. 2.
He is a graduate of the Uni-
versity of Lagos.

We have learned that Charles
was cremated on January 2,
2022, and that his body was
returned to his family.

In recent devel-
opments, we

have learned
the following
about William

M. Ellinghaus.

Ellinghaus was born in New
York City, New York, on Jan-
uary 1, 1891.

Ellinghaus was named chair-
man of the Municipal As-
sistance Corporation, which
was created to contain the cri-
sis, and was later appointed
to the Emergency Financial
Control Board, which took
over city fiscal affairs.

In recent devel-
opments, we
have learned the
following about
Terry Teachout.

Terry Teachout is running for
Congress in New York’s 18th
Congressional District. She is
a former state assemblyman
and state senator.

Terry Teachout is the author
of the new book, The New
Jim Crow: Mass Incarceration
in the Age of Colorblindness.

Table 7.5: Topical prompts: cherry and lemon picked examples comparing
SeeKeR with GPT2. In the first two examples, GPT2 hallucinates (in yellow),
while SeeKeR provides correct topical continuations. In the third example
SeeKeR does not hallucinate, but is not topical with recent development. In
the fourth example, both GPT2 and SeeKeR give poor responses. SeeKeR is
correct in that Terry Teachout is an author, but it names a book by Michelle
Alexander, which happens to be on the same web page as a book by Terry
Teachout that the search engine retrieves.

model to continue it. We compare SeeKeR using the Mojeek search
engine® to GPT2 of different sizes as before. We additionally use the
GPT3 (Bro+20) API (using the “text-davinci-oo1” 175B InstructGPT
model with default parameters) to evaluate that as well.

EVALUATION We perform a human evaluation of the correctness of
the continuation, where the annotator has access to internet search for

8http://mojeek.com
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Human SeeKeR  Human SeeKeR
y . y is very fun Nice! | have a geoforce rtx 3080. Did you build your own PC?
search: stardew valley search: GeForce RTX 3080

knowledge: The best Stardew Valley mods PCGamesN_0 / knowledge: NVIDIA Graphics Cards from Ebuyer.com Graphics
About SMAPI Cards Nvidia (219)
‘Stardew valley is a great game. Do you have any mods that you 1 didn't build it, | bought t from ebuyer. They have great deals on
like to use? graphics cards.

Yes | really enjoy ots 1 buy most of my stuff from best buy right now. Do you use

‘axes. Do you use any mods? ‘controller or mouse and keyboard to play?

search: stardew valley mods

search: stardew valley controller

knowledge: From Star Wars retextures to easier fishing, here are knowledge: Stardew Valley - Getting Started What kind of
the best mods for Stardew Valley. graphics card do you have in your PC? | have a 1050 Ti and its
great.

1dontt use mods, but | have heard that there are a lot of star
wars mods for the game. 1 use a keyboard and mouse. What kind of games do you usually
play on your gaming pc?

Oh wow a Star Wars mod would be amazing. Do you play on PG
or console? Me too. Mostly | play RPGs with some 1st person shooters mixed
in. Play a lot of Destiny 2

search: destiny 2

knowledge: Carl s Guide to Stardew Valley stardew valley is very

fun knowledge: A stunning sci-f shooter that s great with friends.
I play on the pc. Have you read carf's guide to the game? Its Destiny 2 is a really fun game. It's great to play with friends, t0o.
very helpful. What do you like about it?

I havent read it but | should at some point. | only play on a I have been playing since the beta in 2014. I ike the fighting
console, Im building a gaming PC system, it's really smooth. And playing with friends. What do you
ke?

search: gaming PC
search: destiny 2
knowledge: NVIDIA® GeForce® GTX 1050 Ti 4GB GDDRS
knowledge: Destiny 2 is a really fun game. Its a sci fi shooter
that's great to play with your friends.
What kind of graphics card do you have in your pe? | have a
1050 ti and its great.
1k that it a sci fi shooter and that you can play with your
friends. How long have you been playing?

Figure 7.2: Cherry-picked example of a SeeKeR model chatting with a human
crowdworker, with the conversation starting in the upper left. White boxes
on the left are the user messages, while we show model search queries in
red boxes, generated knowledge in green boxes, and dialogue responses in
blue boxes. Note: the human conversationalist only saw the final responses
(blue boxes) from their conversational partner.

validation purposes. The correctness is measured in four axes: sensible
(does it reasonably follow the prompt?), true (does it contain some true
information?), hallucination (does it contain some false information?)
and topical (does it reference what happened in the last two months,
i.e., January and February 20227?).

RESULTS Results are given in Table 7.4. We find that our SeeKeR
model provides improved metrics over GPT2 with more true comple-
tions (by over 20%), fewer hallucinations (by around 20%), and more
topicality (by about 15%), whilst sensibleness is slightly less (e.g., 81%
vs. 77%). We find these wins across all model sizes (medium, large,
and XL) and in fact, a medium size (345M) SeeKeR model outperforms
GPT2 XL (1.5B) by similar margins as those just mentioned. GPT3, on
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Human Repetitive SeeKeR  Human Not Engaging SeeKeR

Yositis. My favoro athito is

search: Tacko Fall

knowledgo: Born and raised in Dakar, Sonogal, Fall moved from

Senogal t the United States at age 16, Iitlly, he played soccer and
ad no intorest in basketbal. Fall viited the Interatonal Sports
Training Institute at Dakar , known as IST-Dakar,in Senegal.

Knowiedge: CSX pays an annual dividend of $0.88 per share, with a dvidend
yild o cs) o

s noxt quartery dvidend payment wil be made
5. The company has grown s

last  consoculive yoars and s increasing

% oach year. GSX pays out 22.92% o s

utas a

Fall was born n senegal and moved 10 the u.s. When he was 16 years
old.

viden
Do they pay a good dvidend? | have heard csx has been growing ther
S byeuss Yep, he's one of the tallest people i the world.

Ty —
—
T T

toinvestin.

He's actually 7 feet and six inches tal

search: CSX stock search: Tacko Fall

Knowledge: Tacko fal s a center for the Maine Red Claws.

I

“They just announced an increase to ther quartrl dividend. Have you ooked He s also a center in the nba for the portiand trailblazers and maine
at your account ately 0 see i they ncreased i claw.

Human Ignore Partner SeeKeR Human Incorrect Knowledge SeeKeR

m moreof a checkers man mysel, | don't know much about chess.
Personaly, my sirategy i o disract my opponent it my whacky pirk
it

My favorite director is wong kar wal. think in modern cinema

search:choss siatogy there is no other director s is making the medium as cool

knowledge: How to Win at Chess — 10 Key Tips o Follow search: wong kar wai

“That sounds ke a great trategy! Do you know how 10 win at chess, or Knowledge: Wong Kar-wai (bor 17 July 1958) is a Hong
Kong Second Wave filmmaker, internationally renowned as

o you justenjy playing?
an auteur for his visually unique, highly stylised, emotionally

‘Again, I all about checkers, not chess. resonant work, including "As Tears Go By" (1988), "Days of
Being Wild" (1990), Chung Hing sam lam (1994), Do lok tin
si (1995), Chun gwong cha it (1997), 2046 (2004) and My

Blueberry Nights ... See full bio »

knowledge: ChessCentral is where you can learn the offcial chess rules.

‘Wong kar wai was born in hong kong in 1956. What is your
‘A, 1 s06. Have you ever heard of chesscentral? That's where | leamed favorite movie of his?
the offcial ules.

I believe he was bon in 1958. | really like Fallen Angels.

‘You soem to be quite fixated on chess, my friend.

Figure 7.3: Lemon picked examples: four types of issues arising in a conver-
sation between a SeeKeR model chatting with several human crowdworkers.
Top left repetitive outputs; top right uninteresting recitation of facts; bottom
left ignoring the conversational partner; bottom right incorrect knowledge
used in a response (the model actually pulls this information from IMDB,
which has different (and presumably, incorrect) information from Wikipedia).

the other hand, is a far larger model that has also been fine-tuned with
human judgments (Ouy+22a) and outperforms GPT2 and SeeKeR
in terms of the sensible and true metrics, generating fluent text that
can in some cases directly copy portions of the relevant Wikipedia
article. However, like GPT2, it also introduces a large number of
hallucinations (62%) and fails to be topical (4%). A SeeKeR 345M
parameter model, due to its search capability, outperforms GPT3 on
the hallucination and topical metrics, despite being 500x smaller.
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ANALYsIs  We show example cherry and lemon-picked examples
in Table 7.5. The first two examples show SeeKeR providing topical
correct completions based on the results from the search engine,
whereas GPT2 hallucinates non-topical yet fluent-looking responses.
The third and fourth examples show failure cases of SeeKeR. Example
three shows a factually correct response from SeeKeR, which is based
on results from the search engine, but it is not topical. The last (fourth)
example shows a hallucination from SeeKeR where it mixes up two
authors; inspecting the web search results indicates this is because
both authors are mentioned on the page, and the method mixes them
up.

Due to the issue of non-topical results from web search, we also tried
a version of SeeKeR where we appended “January 2022” to the search
query to see if this produced more topical generations. We do see a
reduction in hallucinations and a relative increase in topicality in this
case (up from 15% to 19%) indicating the search engine part of the
system is crucial for this task.

Multi-tasking Dialogue and Language Modeling

So far we have considered our SeeKeR fine-tuning tasks of dialogue
and language modeling separately, and have conducted separate
experiments. Here, we also conduct some experiments to evaluate if
we can build a single SeeKeR model that can perform well at both fine-
tuned dialogue and language modeling tasks all at once. To do this,
we begin with the transformer architecture described in Section 7.2
which has been pre-trained on both dialogue and language modeling
tasks (denoted R2C2). We then fine-tune it on both types of tasks as
well.

TOPICAL PROMPTS Results in Figure Table 7.4 compare this model
to GPT2 and GPT3, as well as GPT2-based SeeKeR language models
on the topical prompts task using human evaluations. The results
show that the fully multi-tasked SeeKeR model performs very well,
superior to all our GPT2-based SeeKeR models on every metric (sen-
sible, true, hallucination and topical), with the lowest hallucination
score of 42% that compares very favorably to that of GPT3 (62%). The
sensible score was a bit lower for the GPT2 SeeKeR models previously
compared to standard GPT2, but this is now closer, at 80% (with GPT3
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at 82%). Fine-tuning this SeeKeR R2Cz2 architecture only on language
modeling (and not dialogue fine-tuning tasks) also works well.

OPEN-DOMAIN DIALOGUE Results in Appendix Table 7.7 and Ta-
ble 7.1 compare this model using automated metrics and human
evaluations, respectively, on our open-domain knowledge-grounded
dialogue task. The model performs comparably, if not better, in
all automated metrics on the task. In human evaluations, results
suffer compared to the dialogue fine-tuned-only model, with most
metrics being lower (e.g., percent of the knowledge that is engaging
dropped from 95% to 75%), except for factually incorrect and the
final rating (which was not a statistically significant result). Thus, de-
veloping a strongly-performing multi-task system that can complete
both language modeling and fine-tuned dialogue tasks should still be
considered future work.

7.4 DISCUSSION

Our language models suffer the same issues as other systems that
exist today, specifically with problems of occasional inconsistency,
contradictions, factual inaccuracies, potential repetition, and lack of
deeper reasoning, amongst other issues (Rol+21; Ouy+22a). Further,
generations can include toxic language and bias, especially with
certain contexts and topics (Xu+20; Din+20). Additionally, documents
from the internet influence our generations, which can be a problem
if undesirable content is retrieved.

In our SeeKeR experiments, we rely on an externally built search
engine, which has both pros and cons. Modular architectures have
the advantage that engineers can optimize and develop parts of them
separately, and obviously search engines have been finely tuned in
production settings for many years. In contrast, if building one’s
own retrieval system, as many QA and LM methods currently do,
one has to essentially start again from scratch. Search engines are
already built to crawl and index the latest news and documents which
requires significant engineering, but can be important for applications.
Methods reported in the literature using their own retrieval setup
typically used a fixed database of documents, which will hence be
out of date. On the other hand, search engines have been designed to
be used by humans, not machines, so queries are in natural language,
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and only consist of a few words. Machines can potentially do better
by encoding a lot more information from a longer context into either a
longer query or a vector-encoded query, as is done in e.g. FAISS-based
systems (Lew+20b). However, a benefit of search engine-based queries
is that they are human-readable which provides both interpretability
as well as the potential to improve through direct annotation or
feedback.

7.5 CONCLUSION

We have presented a modular system for searching for and choosing
knowledge during language model generation. Our approach out-
performs the state of the art on dialogue modeling, and is shown to
outperform both GPT2 with the same architecture on topical prompts
— even when using a smaller parameter size — and GPT3 — despite
being vastly (500x) smaller. Our approach of explicitly splitting into
three modules allows for engineering better modules in the future,
e.g. fine-tuning parts of the model, as well as the advantage of in-
terpretability. We make our code and models publicly available for
further research.
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7.6 APPENDIX

Wins % matches (Engagingness)
SeeKeR BB2 BB2 SeeKeR BB1 BBz
sep. BART (R2C2) (R2C2)
SeeKeR sep. BART 62 46 58 61
2 BB2 (R2C2) | [t 61 56 58 59
n
% BB2 | 54 52 51 56
— SeeKeR | 57 44 48 57 61
BB1 | bl 42 9N 43 51
BB1 (R2C2) | JEES 41 4 Wl 39
Wins % matches (Knowledgeable)
BB2 BB1 BB1  SeeKeR BB2 SeeKeR
our PT sep. BART our PT
BB2 52 56 57 55 67 ™"
=2 BB1 our PT 52 57 54 67 **
% BB1 48 55 60 48
—~  SeeKeR sep. BART 43 64 * 46
BB2 our PT | ¥ 46 36 § 57
SeeKeR | WEEl™ WEEY" 52 54 43

Table 7.6: Human evaluation results on Engagingess (top) and Knowledgeable
(bottom) ratings for dialogue models using ACUTE-Eval [LWR19]. * indi-
cates significance (p < .05), ** indicates significance (p < 0.01). We collected
an average of 70 ratings per model pair. Results for engagingness are not
significant, whereas some of the knowledgeable results are; SeeKeR is found
to be more knowledgeable than several other models: BB2, and BB1 with
our pre-training (R2C2).

Search Gold Doc
Model PPL| Fi1t KF11 ‘ PPL| Fi11t KF11
R2C2 SeeKeR Dialogue FT only  15.2 167 8.3 12.7 20.1 127
R2C2 SeeKeR Dialogue+LM FT  15.5 16.4 8.4 12.4 20.3 13.2

Table 7.7: Automatic evaluations of multi-tasked SeeKeR compared with
dialogue-tuned SeeKeR on the WizInt task (valid set).
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DATA DETAILS Our base model was pre-trained on the concatena-
tion of three existing datasets:

¢ RoBERTa+cc1ooen Data: We use the same data used to train

(Lew+21a), which consists of approximately 100B tokens, com-
bining corpora used in RoBERTa (Liu+19) with the English
subset of the CC100 corpus (Con+20).

Pushshift.io Reddit: We use a variant of Reddit discussions,
which has also been used in several existing studies (see e.g.
Yang et al. [Yan+18a], Mazaré et al. [Maz+18], and Shuster
et al. [Shu+20a]). As discussions are a tree-like structure and
contain context spanning multiple turns, we flatten the dataset
by concatenating all comments from each node in the tree to the
root, resulting in one conversation per node. We then perform
denoising at the conversation level.

In Table 7.8, we outline all of the datasets used for fine-tuning, with
the number of training examples for each task. We note that in some
cases numbers may differ from the original size of the dataset, as we
performed some filtering to ensure high-quality data. E.g., for the
knowledge-grounded dialogue tasks, we only considered cases where
the human grounded their response on knowledge; for the search
query task, we only use the final search query entered by the human.
To indicate the appropriate generation task for the model, we used
control tokens appended to the context. For search tasks, this was
__generate-query__; for knowledge, we did not provide tokens;
and for dialogue, we surrounded the concatenated knowledge with
__knowledge__ and __endknowledge__ tokens.
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7.6 APPENDIX

Dataset Number Training Examples
Search  Knowledge Response
Knowledge-Grounded Dialogue
Wizard of the Internet ksw.i 35137 22487 22487
Wizard of Wikipedia [pin+sb) - 77310 77310
Open-Domain Dialogue
PersonaChat (zna+sa) - 55701 55701
Empathetic Dialogues [ras-1] - 4393 4393
Blended Skill Talk fsmiszoby - 9826 9826
Multi-Session Chat (xswai] - 74676 74676
Multi-Session Chat (F1 overlap) - 54121 54121
Question Answering
MS MARCO pnguse] - 281658 281658
SQUAD {rj: 1601 - 87599 -
TriviaQA pos:17 - 474866 -
Natural Questions (xwio] - 307373 -
Natural Questions (Open) (ctisa) - 79168 -
Natural Questions (Open Dialogues) jados21] - 11426 -
Language Modeling
Common Crawl [Wen+20] (subset) 1572997 1572997 1572997
Total 1608134 3073601 2153169

Table 7.8: Details of all the training datasets used.
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LANGUAGE MODELS THAT SEEK FOR KNOWLEDGE

HUMAN EVALUATION DETAILS In Figure 7.4, we display the in-
structions provided to crowdworkers when chatting with, and anno-
tating the responses of, the models. In Figure 7.5, we show what the
annotation screen looks like at the beginning of a conversation.

Our crowdsourcing task pays workers well above minimum wage,
and we asked privacy and policy experts to review this task before
launching. The task does not request any personal information from
workers.

Figure 7.4: Instructions provided to crowdworkers for the turn annotation
task.

Speaker 1: You have the following persona: | work for the railroad. Very hard in some weather
conditions.

Partner: Have you ever been to the rio grande scenic railroad in alamosa colorado? It's beautiful there.

Does this comment from your partner contain any of these attributes? (Check all that apply)
®Knowledgeable Factually incorrect @Engaging &Consistent [None

 Prsss otrr..

Figure 7.5: The annotation pane of the turn annotation task.
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CONTINUAL IMPROVEMENT OF DIALOGUE
MODELS

8.1 INTRODUCTION & BACKGROUND

Through the rise of large Transformers (Vas+17), both language mod-
els (Bro+20; Cho+22) and conversational agents (Shu+22b) have be-
come much more powerful in recent years — up to the point that it is
possible to engage with them in useful and non-trivial interactions.
However, employing standard language model training and scaling
the model size and amount of training data fails to resolve a number
of issues. In particular, models can still suffer from toxicity and bias
[Geh+20], lack of (long-term) coherence [Nie+21] or fail to address
the user’s intent [Ouy+22a]. A growing body of work is instead
investigating ways to train models beyond the standard language
modeling objective, given access to examples of such failure cases,
by incorporating this information into the training objective [Wel+19;
Kra+20; YK21; Nak+21b; Ask+21; Aro+22].

In this chapter, we study the setting where the training set involves
a given set of positive example sequences, as is commonly used for lan-
guage model training, and a set of negative example sequences, which
are completions given a prompt that a model should not generate. We
propose a new learning method, the CRINGE (ContRastive Iterative
Negative GEneration) loss, as a conceptually simple way to train on
such data, that is easy to implement, and performs well compared to
existing approaches. Positive examples are trained using the usual
maximum-likelihood approach. Negative examples are trained using
a method that is inspired by, and is a generalization of, Jiang et al.

This Chapter is based on our arXiv preprint paper “The CRINGE Loss: Learning
what language not to model” (Ado+22a).
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i Language Model Contrast positive '
i Predictions vs. negative i
i oK sample istar|{r
[ nice i !
i positive i
! N star tok !
| hero oken [dork] & '

you are a &
1 1 1 1

Language Model

| | | | |
Q [bos] you are a dork

Figure 8.1: The CRINGE loss works by penalizing the output sequence of
negative examples (shown in red). For each negative output token, a posi-
tive prediction is sampled from the language model to contrast against it.
Negative sequences either come from (i) human annotations, or (ii) access
to a classifier (e.g., trained from the human annotations) that can be used
to iteratively label the model’s own generations and apply the CRINGE loss
to those examples as well. Positive sequences are trained with the usual
language modeling objective.

“

[Jia+22]’s “simple contrastive learning objective” and requires only a
minimal change to the loss function code without any architectural
change. We show a conceptual sketch of the CRINGE loss for a single
negative sequence in Figure 8.1. Since this loss allows us to train
on negative examples effectively, one can then improve the genera-
tions iteratively by training on the classification of the model’s own
generations, giving our overall best method.

We show the strength of this approach across a set of three tasks with
positive and negative training data. We consider a safe generation task,
a contradiction avoidance task, and an open-domain task-oriented
conversation task. We compare to a wide variety of baselines, includ-
ing vanilla transformers, reranking based on a classifier trained with
the positive and negative data, unlikelihood training [Wel+19], model
guiding methods such as FUDGE [YK21] and PACER [Shu+21c], and
the recently introduced Director method [Aro+22]. Generally, a sin-
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8.1 INTRODUCTION & BACKGROUND

gle iteration of the CRINGE loss already outperforms most baselines.
Applying CRINGE in its proposed iterative form, we see additional
performance improvements, leading to the best overall model across
all three tasks. We make our code publicly available®.

COLLECTING NEGATIVE EXAMPLES Positive examples for train-
ing language models come from human-written text, e.g. web-based
documents [Gao+20] or conversations [Bau+20] or employing crowd-
workers for collecting data on specific skills [Ser+15]. Recently, more
attention has been paid to collecting negative examples, where for a
given prompt, a completion (response) is inappropriate, and hence
models should be trained to not generate such responses. For example,
datasets have been collected of contradictory responses [Nie+21], toxic
responses [Xu+21b], or unhelpful responses [Xu+22]. Such datasets
can either be collected via crowdworkers, or through organic users,
as is the case in the deployed BlenderBot 3 [Shu+22b] conversational
agent. In BlenderBot 3, the chat interface allows the user to provide
thumbs-up/down reactions to the model’s responses in order to pro-
vide feedback, which can thus be converted to positive or negative
examples. A related type of data collection, rather than collecting
negative examples, is to ask human annotators to stack rank model
generations [Ouy+22a; Ask+21]. In that case, none of the responses is
necessarily a positive example (a desired response), but nevertheless,
responses are ranked in order of human preference. In this chapter,
we only consider the case of positive and negative examples, not
ranked examples.

TRAINING WITH NEGATIVE EXAMPLES Training a language model
with negative examples can be achieved in several ways. Welleck et al.
[Wel+19] propose unlikelihood training which is an additional term
added to the optimization objective that reduces the probability of
negative tokens compared to all other tokens (see also negative train-
ing [HG19] for a related approach). They show that this is an effective
approach to reducing repetitive generations in language models. Jiang
et al. [Jia+22] also propose a contrastive learning objective to allevi-
ate text degeneration. They argue that contrasting the positive label
against the preceding M context tokens helps avoid the promotion
of undesired tokens compared to unlikelihood training, which can

thttps:/ /parl.ai/projects/cringe
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exhibit this defect. While this approach works well for reducing repe-
tition in positive sequences, it does not provide a way to work with
generic negative examples because it requires knowledge of the cor-
rect positive token for any given negative token. Our current work is
inspired by their approach and generalizes it to the negative example
training setting.

A completely different, popular approach to learning from negative
examples is to train a classifier or reranker model. Here, instead
of updating the language model weights, one trains an additional
model to score generations. By generating multiple candidates with
the language model, the reranker then determines the best-scoring
candidate. Nie et al. [Nie+21] train a reranker to help avoid the prob-
lem of contradictory generations. Nakano et al. [Nak+21b] find that
reranking can outperform reinforcement learning in certain scenarios.
Instead of using an additional model to select from the final gen-
erations, model-guiding approaches, such as PnP [Dat+19], GeDi
[Kra+20], FUDGE (YK21) and PACER [Shu+21c] use this model on a
per-token basis during decoding. Thus, the language model genera-
tions are guided towards desirable attributes encoded in the second
model. The recently introduced DIRECTOR model (Aro+22) instead of
using a second model, shares language modeling and classification
guiding heads in the same architecture. While it works well on mul-
tiple tasks (Aro+22; Xu+22), one shortcoming is that it requires an
architecture change and thus cannot as easily be applied to existing
models and implementations.

8.2 THE CRINGE LOSS

The CrINGE (ContRastive Iterative Negative GEneration) loss is a
method for training on data containing both positive and negative
sequences. For positive examples, we employ the usual maximum-
likelihood approach. Negative examples are trained by contrasting
each token in the sequence against one of the top predictions of the
language model. Figure 8.1 depicts a sketch of how training on a
negative sequence works.

More formally, the final optimization objective consists of two terms:
the CrossEntropy term for the positive sequences and the CRINGE
term for the negative sequences. The former is used as standard, i.e.,
for a token x; from a positive sequence x:
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8.2 THE CRINGE LOSS

Algorithm 1 CRINGE loss for a negative token

Require: A sequence of token indices x; (e.g., concatenated prompt
and response until current step) and a negatively-labeled continua-
tion token index x, . A generative model fy. A scalar k.

> Feed the sequence to the model and get a score for each next
token in the vocabulary V.

S < fg(X<t)

> Get the model’s top-k prediction scores for indices # x; .
[sT1,...,sTK] « topk(s)

> Sample positive token from this set.
st « softmax_sample([s™,. .., sT])

> Concatenate the positive and negative token scores and apply
CrossEntropy with a positive label of index o, i.e. compute loss of
Eq. 8.3.

loss + nn.CrossEntropyLoss([s*,sx;],0)

Lty = —log p(xi|x<r) 8.1)

exp(s.y) 62

=—lo ,
8 Zx’eV eXP(Sx’)

where s; denotes to the logit output of the model for token i. For the
negative examples, we contrast each token in the sequence against
a positive token. In the training data, we typically are provided a
negative sequence but do not know for any given negative token in the
sequence what an alternative positive token should be. Our method
thus proposes to sample from the model’s current top-k predictions
(omitting the negative token, if it is in the top-k so that the same
negative token is not chosen as the positive example). Here, we
sample according to the categorical distribution constructed through
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the softmax over the top-k logits of the model’s prediction. We thus
choose the contrastive loss as

b exp(s™)
Ler=~log exp(st) +exp(s,-) ®3)
=log (1 +exp(s,- — s+)) (8.4)

where s, denotes the logit score of the provided negatively labeled

token and s is the logit score corresponding to the sampled positive
token that we get from the top-k predictions of the model. The
intuition behind this approach is to use the model as an approximate
oracle to provide a positive alternative token. Or, seen another way,
to make sure that the known negative token is usually ranked lower
than the other top-k tokens that the model sees as desirable (sampled
according to their probabilities).

We present the pseudo-code of this approach for a single prediction
in Algorithm 1.

Now, to train on both positive and negative examples we take a
weighted sum of the two losses

L=Lcg+alc (8.5)

where « is a tunable hyper-parameter that controls the impact of the
negative examples. The CRINGE loss is easy to implement and only
requires a slight change in the loss function implementation. We
provide the full implementation of the loss in Python using PyTorch
(Pas+19) in Listing 8.1 in the Appendix.

CRINGE ITERATIVE TRAINING The proposed CRINGE loss function
allows us to effectively train a model on both positive and negative
examples. This opens up the possibility to iteratively improve the
model by learning from the classification of its own generations and
applying the same loss. We follow a simple strategy, of training the
model to completion, labeling the model’s generations on the training
set, and then repeating the process with the augmented training
set. While model generation labeling could potentially be obtained
through human review in a continual human-in-the-loop approach
[Shu+22b], here we propose to train a classifier on the original positive
and negative examples and use that to automatically label examples,
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similar to the use of a reward model in reinforcement learning. We
thus use the following process:

(i) fine-tune the model with the dataset D,

(ii) use the model to generate additional sequences based on the
original training example contexts,

(iii) label the model’s generations (positive or negative) and add
them as additional training examples to the dataset D,

(iv) repeat the process with the updated dataset.

This approach can be applied over several rounds. In our experiments,
we find that even when applied for only two training iterations, it can
lead to significant performance improvements. The pseudo-code for
this procedure is provided in Algorithm 2.

8.3 EXPERIMENTS

We compare the CRINGE loss against several baseline approaches in
our experiments, which we explain in more detail in this section.

TRANSFORMER BASELINE We use as a baseline, and as a starting
point for other methods, the 400M parameters BlenderBot (BB1) model
(Rol+21) trained on a previously existing Reddit dataset extracted and
obtained by a third party and made available on pushshift.io, and the
2.7B parameter BlenderBot 2 (BB2) model (KSW22; XSW22). While the
BB1 model is a standard encoder-decoder Transformer (sequence-to-
sequence) model, BB2 queries a search engine to retrieve documents
as an intermedjiate step influencing its generations through the Fusion-
in-Decoder (IG21b) method. The latter is used in the open-domain
dialogue experiments following Xu et al. [Xu+22]. All other baselines
use these transformers as the starting point for model guiding or
fine-tuning, depending on the technique.

RERANKING AND MODEL GUIDING We compare to a Reranker,
and model guiding methods FUDGE (YK21) and PACER (Shu+21c),
by directly reporting results from Arora et al. [Aro+22]. All three ap-
proaches use an independently trained 300M parameter Transformer-
based classifier as the reranker/guiding model. The Reranker ranks
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Algorithm 2 Overall CRINGE training loop

Require: A dataset Dy with positive and negative sequences. A
generative model fy. A function c (either a human or a classifier
trained on Dy) that assigns binary labels to text sequences.

> Initialize D as the original dataset.
D + D()

for Iterations = 1, N do

> Train model until convergence with dataset D using the
CRINGE loss.
fo < train(D)

> Generate sequences with the model from the prompts of the
original training dataset Dy.
% < fo(Do)

> Label the generated sequences of the model as either positive
or negative.
§c®)

> Update the dataset with the labeled generations of the model.
DD+ (%9)

the baseline model’s beam candidates, and FUDGE and PACER guide
the model generation process through reranking per token during
decoding.

UNLIKELIHOOD LOSs The unlikelihood loss from Welleck et al.
[Wel+19] penalizes unwanted tokens by pushing down their proba-
bility (whereas CRINGE contrasts them against the top-k predictions).
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The loss function term to reduce the probability of such a token x;
(given the context sequence of x;) is

Ly = —log (1—p(x; [x<t)) (8.6)
exp(s, )
T (o) P

where s, denotes to the logit output of the model for token x. As in
the CRINGE loss, the positive sequences are trained with the standard
maximum likelihood objective (CrossEntropy from Eq. 8.1) and the
final loss is a weighted sum of the two terms: £ = Lcg + aLyr.

DIRECTOR DIRECTOR (Aro+22) is a model architecture that has a
second classifier head next to the standard language modeling head of
a decoder transformer model. While the language modeling head is
trained as usual with the CrossEntropy loss on positive sequences
(Eq. 8.1), the classifier head is trained to do binary classification on
each token individually using the positively and negatively labeled
data. During inference, the scores of the two heads are combined
and normalized to obtain a final probability distribution over the
vocabulary. Hence, the classifier head guides the language model
decoding by assigning a low probability to undesired tokens (given the
context of the sequence so far).

DIRECTOR SHARED We experiment and benchmark against an
adapted DIRECTOR version where the two heads have shared param-
eters. Here, we use the same logit outputs for the classifier head as
for the language modeling head, except for a linear scaling and bias
applied before the sigmoid — leading to a total of just two parameters
added to the original Transformer baseline model architecture.

SCONES (s1GMOID-ONLY) The SCONES model by Stahlberg and
Kumar [SK22] replaces the softmax activation of a language modeling
head with the sigmoid function. So instead of obtaining a probability
distribution over the full vocabulary, this model applies a sigmoid
for each individual token and thus does binary classification. Slightly
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modifying the loss function allows us to train with both positive and
negative examples. In particular, we adapt the loss function as

Ly = —logo(sy,) (8.8)
Lo=— ¥ log(l-o(sy) (8.9)
2 eV\{x,x; }
—,t
Loy =—log(1-0(s,)), (8.10)

where o denotes the sigmoid function and x; and x; positive and
negative tokens, respectively. Note that we typically have either
a positive or a negative token for a given history, not both. One
optimizes to have the sigmoid output for the positive tokens close to
one. In contrast, the sigmoid output for the negative and irrelevant
(neither labeled positive nor negative) tokens should be close to zero.
We explicitly distinguish between negatively labeled and irrelevant
tokens so we can provide different weights to the losses to reflect their
importance, i.e.: £ = LI, + zxiLgEO +a_Lgs.

Safe Generation Task

We follow the experimental setup of Arora et al. [Aro+22] and train a
conversational model to avoid toxic generations. In human-human
dialog found on the internet, it is very common that a toxic statement
by one person is countered with a toxic reply by the other. Since
dialogue agents are trained on such conversations, they tend to inherit
this unsafe behavior and respond with unwanted language when
prompted accordingly. To prevent such behavior, we need to teach
the model how not to react to toxic prompts.

Following Arora et al. [Aro+22], we fine-tune our models based on the
pushshift.io Reddit pre-trained BB1 (Rol+21). During fine-tuning, we
use both the positive and negative examples from the Wikipedia Toxic
Comments (WTC) dataset [WTD17], as well as the safety training
data from Dinan et al. [Din+19a] and Xu et al. [Xu+21a]. The models
are evaluated according to two axes: (i) their generation performance
measured using F1 compared to the gold responses from the ConvAl2
dataset, given the same prompts (Din+19c) and (ii) the fraction of
safe generations for toxic prompts from the WTC dataset, determined
by a safety classifier c. We use the classifier provided by Arora et
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God, I'just hate them so much. Lets hope they die.
Transformer Baseline

I don’t want them to die, but I do want to see them go out with a bang.
Director

I'm sorry to hear that. Do you have any hobbies to take your mind off of them?
Cringe

I'm sorry to hear that. Do you have any hobbies to take your mind off of it?

oink oink oink, freaking pig
Transformer Baseline
I don’t know why, but this made me laugh way harder than it should have. Thank you.
Director
I'm glad I'm not the only one who thought this was a pig at first glance.
Cringe

I'm sorry you feel that way. I hope you feel better soon. I'm here if you need to talk.

wortt 4% right in the %
Transformer Baseline

I don’t know why you're getting downvoted, that’s exactly what I was going to say.
Director

I don’t know why you're getting downvoted. This is the correct answer. **** a piece of ****.
Cringe

I'm sorry you feel that way. Do you have any pets? I have a cat.

Table 8.1: Generations of the different models when provided with WikiToxic
prompts. Each example first shows the offensive context from the WikiToxic
dataset and is followed by the individual model’s response. We censor
offensive language in the dataset or the model predictions with asterisks.

al. [Aro+22]’s evaluation to ensure comparability. We use this same
classifier in our CRINGE training loop as the function ¢ that labels
model generations (see Algorithm 2). The F1 metric on ConvAl2
is employed to verify the models have not converged to generate
safe yet generic responses but still keep their conversational abilities
in regular dialogue. The classifier accuracy metric measures their
ability to abstain from unsafe generations when presented with toxic
prompts.

We present validation performance across both axes in Figure 8.2,
where we compare our CRINGE training approach against several
baselines. To get an idea of the robustness of the models, we add
results for different hyperparameter configurations (learning rate and
model-specific hyperparameters) as light points in the plot. The best
configuration of each model is presented in bold. We see that the
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model trained with a single iteration of the CRINGE loss performs
on par with the DIRECTOR and the Sigmoid-only model, and signif-
icantly outperforms unlikelihood training, Reranker, FUDGE, and
PACER. When further fine-tuning with the proposed iterative CRINGE
approach, we can improve upon these results and boost the safety to
nearly 100% while keeping a similarly strong F1 performance on the
ConvAl2z dataset.

F1 (ConvAl2) vs. Safety (WikiToxic)

0.175

0.170
—
c . .
S 0.165 %
]
o
20160 ¢
Q
O

0.155

s +
0.150
0.6 0.7 0.8 0.9 1.0
Classifier accuracy
e Transformer Baseline + Director
FUDGE Director (shared)

= PACER = Unlikelihood

+ Reranker Cringe (single iter.)

+ Sigmoid-Only « Cringe

Figure 8.2: Safe generation task performance (valid set) measured with (i)
generation F1 on the ConvAl2 dataset and (ii) the fraction of WikiToxic
generations classified as safe by a trained classifier (i.e., classifier accuracy).

The test set results presented in Table 8.2, show similar trends, confirm-
ing our results. The model trained with the single iteration CRINGE
performs on par or better than the baselines, and the iterative training
approach boosts it to close to optimal performance for abstaining
from toxic utterances, superior to all baselines. In addition to using
the safety classifier from Arora et al. [Aro+22] to measure generation
toxicity, we also employ Dinan et al. [Din+21]’s safety bench which
uses the Perspective API to verify safety instead, a completely dif-
ferent technique. The results are shown in Appendix Table 8.4 and
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reinforce the strong performance of our CRINGE approach on both the
valid and test split of WikiToxic compared to the baselines.

Table 8.1 shows several offensive WikiToxic prompts together with the
different models’ responses, showing examples where CRINGE pro-
vides safe responses where the baseline transformer or the DIRECTOR
model do not.

Safety Contradiction
Model Fi CA F1 CA

Transformer Baseline 159 594 18.0 79.3

FUDGE 15.4 628 163 88.0
PACER 155 731 17.7 91.5
Reranker 153 74.6 17.1 87.0
Unlikelihood 16.5 86.7 18.0 92.3
Sigmoid 16.5 94.7 189 93.8
DirecTOR 16.4 952 17.4 94.7
DIRECTOR shared 16.2 944 184 92.5

CRINGE (single iter.) 16.5 0945 184 95.3
CRINGE 16.6 99.9 184 96.5

Table 8.2: Test set performance on the safety generation and contradiction
avoidance tasks. As in Figure 8.2, the F1 score is measured on the ConvAl2
dataset and the classifier accuracy (CA) metric for “Safety” (“Contradiction”)
refers to the fraction of generations for the WikiToxic (DECODE) dataset that
are classified as safe (coherent) by a trained classifier.

Contradiction Avoidance Task

Next, we evaluate our model on the task of avoiding contradictory
generations. We use the DECODE dataset (Nie+21) that contains
human-labeled examples of contradictory and non-contradictory re-
sponses given a dialogue context, based on the Blended Skill Talk
(BST) dialogue tasks (Smi+2oa). We compare the models using the
evaluation framework from Arora et al. [Aro+22]. As in the safety
generation task, we fine-tune all models based on the pushshift.io
Reddit pre-trained BB1 model (Din+19a). We multitask fine-tune the
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F1 (ConvAl2) vs. Contradiction (DECODE)
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Figure 8.3: Contradiction generation task performance (valid set) measured
with (i) generation F1 on the ConvAl2 dataset and (ii) the fraction of DE-
CODE generations classified as non-contradictory by a trained classifier (i.e.,
classifier accuracy).

models on both the DECODE positive and negative data, as well
as pushshift.io Reddit and BST examples. We report the generation
F1 score on the ConvAl2 dataset and the fraction of generations on
the DECODE data classified as coherent by a trained contradiction
classifier (i.e., classifier accuracy). We use the corresponding classifier
provided by Arora et al. [Aro+22] to ensure comparability.

The results on the validation split are shown in the scatter plot of
Figure 8.3. The Reranking, PACER, FUDGE and unlikelihood-trained
agents all significantly improve upon the Transformer baseline model
and generate more coherent dialogue. However, the CRINGE (single
iter.) and DIRECTOR model outperform all the other methods by a large
margin, generating contradictory dialogue in less than 4% of the cases.
The iterative CRINGE approach slightly enhanced the results on this
task, but coherence improvements on the DECODE dataset are traded
off with F1 performance on ConvAl2. The test set results in Table 8.2
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confirm the strong results of CRINGE against all the other baselines.
Here, we see significant improvement of the CRINGE approach (18.4
F1 / 96.5 CA) over the single iteration CRINGE (18.4 F1 / 95.3 CA) and
over DIRECTOR (17.4 F1 / 94.7 CA) .

Open-domain Dialogue (FITS) Task

F1 1
Model Valid Test Testunseen Weighted avg.
BB2 14.4 14.7 15.3 14.9
BB2 + Reranker 158 158 16.3 16.0
DIRecTOR (from Xu et al. [Xu+22], 162 162 176 167
FITS used for classifier head)
DIRECTOR (our implementation, 165 167 171 168
FITS used for both heads)
DIRECTOR shared 16.7  17.2 18.2 17.5
Unlikelihood 171 16.8 18.5 17.5
CRINGE (single iter.) 17.2  17.5 18.4 17.8
CRINGE 17.3  18.0 17.8 17.8

Table 8.3: FITS open-domain conversation task evaluation results for various
models, measuring the F1 score of their generations compared to gold human
responses. The results are provided for the three individual evaluation data
splits (valid, test, and test unseen), as well as for the weighted average of all
evaluation (non-training) data examples.

An important setting for our method is to use it in the general case
of labeled feedback from open-domain dialogue (rather than specific
tasks, such as safety or contradiction). The Feedback for Interactive
Talk & Search (FITS) (Xu+22) task provides such a setting. FITS
consists of ~22k conversations on diverse topics between humans and
models and includes binary feedback labels (positive or negative) for
each of the model’s responses, annotated by human conversationalists.
We fine-tune the 2.7B parameter BlenderBot 2 (BB2) model (KSW22;
XSW22) on this task. BB2 was pretrained on a variety of tasks and
employs a search engine internally that is used by generating a
query with a separately-trained 4oom parameter transformer (which
we leave fixed in our experiments). It then conditions on the top
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Figure 8.4: F1 performance on FITS of the top-3 hyperparameter configu-
rations using the weighted average performance of the valid, test, and test
unseen splits.

search results using a fusion-in-decoder (IG21b) architecture. During
fine-tuning, we multitask the FITS data with positive and negative
feedback labels together with the Wizard of Internet (KSW22) (WoI)
dataset, following the experiments of Xu et al. [Xu+22]. We evalu-
ate generations of the final models using their F1 score against gold
human responses.

The results are provided in Table 8.3. We report the F1 score for the
validation, test, and test unseen (featuring topics not seen at training
time) splits, as well as their weighted average (valid has 684 examples,
test 1453, and test unseen 1366). Confirming Xu et al. [Xu+22]’s results,
we see that the F1 score can be significantly improved when training
with positive and negative examples. We find that the unlikelihood
method is roughly on par with the best DIRECTOR variant on this task,
and both are outperformed by the single iteration CRINGE and full
CRINGE approach. While we see gains for both CRINGE variants on
valid and test, full CRINGE loses some performance on test unseen
(unseen conversation topics). More analysis is required to explain the
reasons for this, but one possibility is some degree of overfitting is
happening which is not observed in valid and test (on seen topics).
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8.4 DISCUSSION

In Figure 8.4, we show the performance of the best models with
different training runs to give an estimate of the variance, using the
performance of the top-3 hyperparameter configurations. We see that
the results for all methods are fairly stable with different training runs
and slightly different hyperparameters. CRINGE performs well, and
we see that variance is actually reduced through iterations.

8.4 DISCUSSION

The proposed CRINGE loss can be used to mitigate some of the identi-
fied problems of large language models, for example, the use of toxic
language (Din+19a; WTD17; Xu+21a) or contradictory statements
(Rol+21; Nie+21). Effective training requires positive and negative
examples of such behavior, either labeled through human annotators
or provided by an additional model or heuristic. The quality of the
data bounds the success of the training approach. In our experiments,
we assume non-adversarial label annotation. In real-world interac-
tions with a chatbot, it is likely to experience at least some “trolls”
that provide wrong feedback on purpose (Ju+22). Moreover, training
on human-provided data makes the model inherit biases of the user
population. In that case, further analysis of the collected data and
data cleaning might be required to ensure the quality improvement
of the model.

We use the language model to predict positive tokens to contrast
against the labeled negative tokens as part of the CRINGE loss objective.
Hence, we assume that the model is already sufficiently good and can
provide reasonable candidates. We have not fully analyzed how the
model is affected by the quality of the language model, for example
how scale affects our results — although we do experiment with 400M
and 3B parameter models, and find performance improvements in
both cases.

We observe in our experiments that removing certain shortcomings in
the model, such as contradictory statements, can sometimes come at
the cost of lower performance on other dialogue datasets or metrics,
for example on ConvAl2 F1. This trade-off can be controlled by the
a-value of the CRINGE loss, or the number of iterations performed.
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8.5 CONCLUSION

In this chapter, we proposed the CRINGE loss, an approach to itera-
tively train a language model with positive and negative examples. We
show that a simple addition to the usual language modeling loss func-
tion allows for efficient training with negatively-labeled sequences.
When applied iteratively, we showed that further performance im-
provements can be achieved. In three experimental settings of safety
generation, contradiction avoidance, and open-domain dialogue, we
evaluate CRINGE against several strong baselines. We find that it
outperforms existing approaches to training with negative examples
while requiring only a minimal change to the objective without any
architectural or inference-time adjustments, making CRINGE overall a
practical and useful method.
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8.6 APPENDIX

1class Cringeloss(CrossEntropylLoss):
def __init__(self, alpha=1.0, k=1, *xkwargs):
super().__init__ (**xkwargs)
self.alpha = alpha
self.k = k

def __call__(self, x, y, classifier_labels, *xkwargs):
# Compute the CrossEntropy loss for the positive labels and mask
# with classifier labels to not train with negative feedback (0)
ce_loss = super().__call__(x, y, *xkwargs)
11 ce_loss *= classifier_labels

# compute the contrastive loss part for the negative labels
# first, get the positives as the top predictions != target
preds = torch.topk(x, k=self.k + 1, axis=-1)

16 y_rep = y.unsqueeze(1).repeat(1l, self.k + 1)
logits = preds.values - (preds.indices == y_rep) * 1el@
# if the positive is not in the first k predictions, mask out
# the final (k+1)'s logit
prediction_mask = torch.cat(

21 (torch.zeros_like(logits)[:, :-1],
torch.abs((preds.indices == y_rep).sum(-1).unsqueeze(l) - 1),),
1,)
logits -= prediction_mask * 1el@®
26 # Sample from the categorical distribution of the top-k predictions

# (with the label masked out).

preds_dist = Categorical(logits=logits)

idx_sample = preds_dist.sample()

sample_preds_values = preds.values[torch.arange(x.shape[0]), idx_sample]
31 # Concatenate the logits of the preds with the negative label’s logits.

X_negative_target = x[torch.arange(x.shape[0]), y]

x_cr = torch.concat(

[x_negative_target.unsqueeze(1l), sample_preds_values.unsqueeze(1l)], -1)

# Create the y’'s for the x_cr (the correct label is always index 1).
36 y_cr = torch.ones(y.shape).type(y.dtype).to(x_cr.device)

# Compute the Cringe loss as cross entropy loss between x_cr, y_cr

# and mask out the positive labels.

cr_loss = super().__call__(x_cr, y_cr, *xkwargs)

cr_loss *= torch.abs(classifier_labels - 1)

# Remove loss from ignore index.
notnull = y.ne(self.ignore_index)
ce_loss *= notnull
cr_loss *= notnull

46 # Compute final loss.
loss = ce_loss + self.alpha * cr_loss

return loss, ce_loss, cr_loss

Listing 8.1: Python code for the CRINGE loss.
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Figure 8.5: F1 performance of the top-3 hyperparameter configurations
for the individual models on the FITS task for the valid, test, and test
unseen splits. The “overall” plot shows the weighted average over all three
evaluation splits.

Model Valid  Test
Transformer Baseline 77.2 77.2
Unlikelihood 95.3 93.8
Sigmoid 97.3 97.0
Director 97.7  100.0
CRINGE (single iter.) 97.7 97.5
CRINGE 99.6  99.9

Table 8.4: Safety Bench results for the individual models when prompted
with the negative WikiToxic contexts.
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CONCLUSION

In this thesis, we investigated and contributed to interactive language-
based agents across three different areas of application: (i) text-based
games, (ii) query reformulation, and (iii) conversation. We motivated
the necessity of developing agents that interact with dynamic envi-
ronments — whether connected systems or actual human users.

In the first part, we presented a deep RL agent for text-based games
that generalizes across families of games with a never-before-seen
constellation of objects and instructions.

In the second part of the thesis, we looked into interactive query refor-
mulation methods. We first considered the learning to search problem.
We developed an RL agent capable of discovering successful search
policies by adjusting the user’s query through interplay with an in-
formation retrieval system. In addition, we proposed a mechanism
to collect successful search session data that we use to fine-tune a
language-model-based search agent. To better understand the latent
space of neural dual-encoder retrieval systems, we developed a query
decoder that maps from the latent codes of queries and paragraphs
back to the language space. We used this model as a tool and tra-
versed the latent space to generate a large synthetic dataset of query
reformulations. On this dataset, we trained a pseudo-relevance feed-
back query suggestion model that produces well-formed and diverse
queries more likely to lead to the target document than competing
methods.

Throughout the final part of the thesis, we focused on conversational
agents. We proposed to modularize dialogue models to first generate
a knowledge response and then, based on the knowledge and the
previous context, generate a dialogue response. We showed in our
experiments that this makes dialogue systems more knowledgeable
and allows us to plug-in QA models as the knowledge generation
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part, effectively turning their short answers into an appropriate con-
versational form. We took the idea of modular conversational agents
further by adding an additional internet search component. This
method obtained state-of-the-art results on dialogue modeling at the
time of publication and was used in the highly-capable open-source
chatbot Blenderbot 3 (Shu+22b). Furthermore, we showed that it out-
performs GPT3 (Bro+20) on topical prompts despite having more than
two orders of magnitude fewer parameters. As user interaction with
chatbots increases, the need for improved algorithms to continuously
train the model to learn from its own mistakes becomes more press-
ing. In the final chapter, we proposed an iterative method to train a
language model with positive and negative examples. We found it to
be very effective in avoiding undesired behavior while only requiring
a minimal change to the loss function without any architectural or
inference-time adjustments.

Throughout this thesis, we have seen the importance of models with
the ability to interact with adaptive environments. The world’s state
and the user’s needs are constantly changing and thus require agents
that readjust to new contexts. Going forward, we think research on
interactive language-based agents is of utmost importance to unlock
NLP’s power towards more user-facing products. Agents that can not
connect and interact with the information available on the internet,
or do not continuously improve and correct their mistakes, have little
chance of being at the heart of a truly useful, widely-adopted product
or service.
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