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Zusammenfassung

Diese Doktorarbeit besteht aus zwei voneinander unabhängigen Tei-
len.

Im ersten Teil studieren wir die Floer Kohomologie des Dehn
Twists entlang einer Lagrangen Sphäre in einer symplektischen Man-
nigfaltigkeit, welche mit einer antisymplektischen Involution ausge-
stattet ist. Wir betrachten den Dehn Twist als Monodromie in einer
reellen Lefschetz Faserung und zeigen, dass die Involution einen Au-
tomorphismus auf der Floer Kohomologie induziert. Desweiteren
finden wir einen speziellen Fixpunkt von diesem Automorphismus.
Die Beweismethoden basieren auf dem Mak–Wu-Kobordismus und
Floer-theoretischen Überlegungen.

Der zweite Teil beschäftigt sich mit der Lagrange Hofer-Metrik
und Invarianten, welche durch den Barcode von persistenter Floer
Homologie definiert sind. Es ist allgemein bekannt, dass die Längen
der endlichen Intervalle und die Spektralmetrik untere Schranken
der Lagrange Hofer-Metrik sind. Unser Resultat besteht aus einer
umgekehrten Ungleichung: Wir geben eine obere Schranke vom La-
grange Hofer Abstand zwischen Äquatoren im Zylinder durch den
Barcode der persistenten Floer Homologie. Die obere Schranke ist
gegeben durch eine gewichtete Summe von Längen der endlichen In-
tervalle und der Spektralmetrik.
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Abstract

This thesis consists of two independent parts.
In the first part we study Floer cohomology of the Dehn twist

along a real Lagrangian sphere in a symplectic manifold endowed
with an anti-symplectic involution. We view the Dehn twist as a
monodromy map in a real Lefschetz fibration and prove that the in-
volution induces an automorphism in Floer cohomology. Moreover,
we identify a distinguished element that is a fixed point of this auto-
morphism. Our methods of proof are based on Mak–Wu’s cobordism
and Floer-theoretic considerations.

The second part deals with the Lagrangian Hofer distance and
invariants coming from the barcodes of persistent Floer homology.
It is well-known that the lengths of the finite bars and the spectral
distance are lower bounds on the Lagrangian Hofer metric. Our
result consists of a reverse inequality: We provide an upper bound
on the Lagrangian Hofer distance between equators in the cylinder
in terms of the barcode of persistent Floer homology. The bound
consists of a weighted sum of the lengths of the finite bars and the
spectral distance.
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Introduction

This thesis contains work about two topics in the field of symplec-
tic geometry. The basic object of study in symplectic geometry
is a smooth manifold M endowed with a closed non-degenerate 2-
form ω. The pair (M,ω) is called a symplectic manifold. Sym-
plectic manifolds contain an important class of submanifolds: the
Lagrangian submanifolds. These are half-dimensional smooth sub-
manifolds L ⊂M satisfying ω|TL ≡ 0. Diffeomorphisms ϕ : M →M
preserving the symplectic structure are called symplectomorphisms.
Various flavours of Floer theory give rise to algebraic invariants of
these basic objects. In this thesis we work with both, the Floer ho-
mology of symplectomorphisms, as well as the Floer homology of
pairs of Lagrangians.

The main object in the first part is a special isotopy class of sym-
plectomorphisms, called the Dehn twist τ , which can be associated to
any parametrised Lagrangian sphere. In our setting, where (M,ω) is
a real fiber of a real Lefschetz fibration, the monodromy around the
singularity defines a Dehn twist along the vanishing sphere. For this
particular τ , we describe an automorphism on the Floer homology
of τ and identify special fixed points.

In the second part of the thesis we study various metrics on the
space of Lagrangians in cotangent bundles of circles. We establish
a relation between the Lagrangian Hofer metric, the spectral metric
and persistent Lagrangian Floer homology. Persistent Lagrangian
Floer homology is a persistence module associated to any pair of
exact Lagrangians and gives rise to an algebraic object called barcode.
The main result consists of an upper bound on the Lagrangian Hofer
metric in terms of an invariant that can be read off from the barcode.

Subsequently, we elaborate further on the ingredients and main
results of the two subjects.
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1 Floer theory of real Dehn twists

Chapter 1 is an extended version of [Die23b]. We study Floer theory
of the Dehn twist along a real Lagrangian sphere in a symplectic
manifold endowed with a real structure. We prove that there exists a
distinguished element in the Floer group that is a fixed point of the
automorphism induced by the real structure.

1.1 Floer theory Floer theory is a powerful tool in modern sym-
plectic geometry. Under some technical conditions, it gives rise to
algebraic invariants HF∗(ϕ), HF∗(L0, L1) that can be associated to
symplectomorphisms ϕ and pairs of Lagrangians (L0, L1). While
Floer theory can be defined in much more general situations, we
assume that (M,ω) is a closed, symplectically aspherical symplec-
tic manifold (ω|π2(M) ≡ 0 and c1|π2(M) ≡ 0) and the Lagrangian
submanifolds are assumed to be closed and relatively symplectically
aspherical (ω|π2(M,L) ≡ 0). The Floer cohomology groups will be
Z2-graded vectorspaces over the universal Novikov field

Λ =

{︄∑︂
k∈N

akq
ωk | ak ∈ Z2, ωk ∈ R and lim

k→∞
ωk =∞

}︄
.

For transversely intersecting Lagrangians L0 and L1 the chain com-
plex CF∗(L0, L1) underlying HF∗(L0, L1) is generated by the inter-
section points of L0 and L1. The differential comes from counting
pseudo-holomorphic strips with boundary on L0 and L1 connecting
two intersection points. HF∗(ϕ) can be viewed as a special case of
Lagrangian Floer cohomology via

HF∗(ϕ) = HF∗(Γid,Γϕ),

where Γid and Γϕ are the graphs of id and ϕ in

M ×M− := (M ×M,ω ⊕−ω).

2



1.2 Dehn twist Let ι : Sn ≈−−→ S ⊂ M be an embedding whose
image in M is a Lagrangian sphere S. The pair (S, ι) is called a
parametrised Lagrangian sphere, which often is abbreviated by S.
To any such parametrised Lagrangian sphere S, one can associate a
symplectomorphism τS on M , that is constructed as follows. Choose
a tubular neighbourhood N of S and identify it with the cotangent
bundle T ∗Sn of Sn. Using geodesic flow one defines an automorphism
on T ∗Sn, which is compactly supported and equals the antipodal
map on Sn. We can then transport it back into N and extend it via
the identity to M . This procedure can be done in such a way that
the resulting automorphism is a symplectomorphism. It is called the
Dehn twist τS along S.

There is an alternative viewpoint for the Dehn twist in the context
of Lefschetz fibrations. A Lefschetz fibration is a singular fibration
π : E −→ C for a symplectic manifold (E,ΩE), where all of the
critical points are ordinary double points locally modelled by

π : Cn+1 −→ C,
(z1, . . . , zn+1) ↦−→ z21 + · · ·+ z2n+1.

The symplectic structure ΩE on E defines a parallel transport along
paths contained in the set of regular values of π. Fix a smooth
fiber M of π. Then for any critical point p, consider a small sphere
ϵSn ⊂ Cn+1 (ϵ > 0 small enough) from the local model near p.
Move this sphere by parallel transport along a regular path to M .
The result is a Lagrangian sphere S ⊂ M endowed with a canoni-
cal parametrisation. S is called the vanishing sphere associated to
the critical point p. The Picard-Lefschetz theorem ([Sei08a, Section
(16c)]) states that the parallel transport along a closed loop that cir-
cles once around the critical value π(p) (and around no other critical
value) is symplectically isotopic to the Dehn twist along the vanishing
sphere S.

The Dehn twist has its origin in the study of mapping class groups
of surfaces and has been used in singularity theory. Its importance
in symplectic geometry was initialized by the work of Seidel [Sei97a]:
He proved that, in some cases, the square of the Dehn twist is a sym-
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plectomorphism which is smoothly isotopic, but not symplectically
isotopic to the identity. The invariant that allowed him to prove this
result is the Floer cohomology group HF∗(τS). In order to study this
group, Seidel established a long exact sequence of Floer cohomology
groups [Sei03]. The most general version is due to Mak–Wu ([MW18,
Theorem 6.4]) and relates Lagrangian Floer cohomology groups of
certain pairs of Lagrangians in the product manifold M ×M−. The
long exact sequence reads

· · · → HFk(K,S×S) −→ HFk(K,∆) −→
−→ HFk(K,Γτ−1

S
) −→ HFk+1(K,S × S)→ . . .

for any admissible Lagrangian submanifold K ⊂ M × M−. This
long exact sequence is based on the cobordism theory studied by
Biran–Cornea [BC13, BC14, BC17] applied to a surgery cobordism
constructed by Mak–Wu. The middle map in the long exact sequence
is characterized by an element

A ∈ HF0(∆,Γτ−1
S

) ∼= HF0(τ−1
S ).

1.3 Real structures A real structure on a symplectic manifold
(M,ω) is an anti-symplectic involution c : M −→ M . This means
that c is a diffeomorphism satisfying c∗ω = −ω and c2 = id. We
are interested into real structures that preserve a Lagrangian sphere
S ⊂M .

This situation arises naturally in the context of real Lefschetz
fibrations. A real Lefschetz fibration is a Lefschetz fibration π : E →
C, where the total space E is endowed with an anti-symplectic in-
volution cE : E −→ E. Assume that cE covers complex conjugation
cC on C and the unique critical point has value π(p) = 0. If M is
the smooth fiber at 1, then cE induces a real structure c on M . In
this case c(S) = S for the vanishing sphere S. Examples of real
Lefschetz fibrations can be obtained by real algebraic methods: In
[BC17, Section 6.5] the authors explain how to construct real Lef-
schetz fibrations out of Lefschetz pencils arising in real algebraic
geometry.
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In [Sal10], Salepci shows that the monodromy in a real Lefschetz
fibration is a composition of two anti-symplectic involutions and one
of them is c itself. Using the monodromy viewpoint on the Dehn
twist, it therefore follows that the Dehn twist is the composition of
two anti-symplectic involutions, i.e.

τS = c ◦ c̃,

for another anti-symplectic involution c̃ onM . An equivalent formu-
lation is

cτSc = τ−1
S .

This fact is crucial for the proof of the main result.

1.4 Main result The main result Theorem A establishes an au-
tomorphism on Floer cohomology induced by c and states that the
element A ∈ HF∗(τ−1

S ), that occurs in the Mak–Wu long exact se-
quence, is a fixed point of it.

Theorem A (Theorem 1.1.1). Let (M,ω) be a closed symplectically
aspherical symplectic manifold that arises as a real fiber in a real
Lefschetz fibration as explained above. Let c : M −→ M be the in-
duced real structure on M and S ⊂M the vanishing sphere. Then c
induces an automorphism

c∗ : HF
∗(τ−1

S ) −→ HF∗(τ−1
S )

and it satisfies c∗(A) = A.

In some examples this fixed-point property for A enables us to
compute A. Due to the importance of A for Seidel’s long exact
sequence, this gives new insights into HF∗(τ).

The main idea of the proof is to show that the Mak–Wu cobor-
dism is preserved under a symmetry coming from the real structure.
This can be shown by an explicit calculation and the theorem then
follows from algebraic properties of Floer theory.
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2 Lagrangian Hofer metric and barcodes

Chapter 2 is an extended version of [Die23a]. We study the relation
between the Lagrangian Hofer metric and invariants coming from
persistent Lagrangian Floer homology. The main result concerns La-
grangians in the cotangent bundle of a circle. As a tool in this two-
dimensional setting, we use combinatorial Floer homology for curves
on surfaces.

2.1 Lagrangian Hofer metric Any compactly supported Hamil-
tonian function

H : R×M −→ R

induces an isotopy of symplectomorphisms as follows: Denote by
Ht := H(t,−) the time-t Hamiltonian and let {XH

t }t∈R be the family
of vector fields on M defined by the equation

ω
(︁
XH

t (x), v
)︁
= −dHt(v),

for all v ∈ TxM . The Hamiltonian flow
{︁
ψH
t

}︁
t∈R is uniquely defined

via ⎧⎨⎩
d
dtψ

H
t (x) = XH

t

(︁
ψH
t (x)

)︁
,

ψH
0 = id.

The maps ψH
1 (or equivalently all ψH

t ’s) are called Hamiltonian dif-
feomorphisms. The set Ham(M,ω) of Hamiltonian diffeomorphisms
is a subgroup of the group of diffeomorphisms on M . In 1990, Hofer
[Hof90] introduced a bi-invariant Finsler metric on Ham(M). It is
defined by infimizing the oscillation norm of all Hamiltonians that
generate a Hamiltonian flow connecting two Hamiltonian diffeomor-
phisms:

dH(φ,ψ) = inf

{︃∫︂ 1

0
max
x∈M

Ht(x)− min
x∈M

Ht(x) dt
⃓⃓⃓
φψH

1 = ψ

}︃
.

It is a deep result that dH defines a non-degenerate metric: This was
first proven by Hofer in [Hof90] for M = R2n, later generalised to a

6



wide class of symplectic manifolds by Polterovich [Pol93], and finally
proved in full generality by Lalonde-McDuff [LM95].

Hofer’s distance is conjectured to be unbounded. While this is not
proven in full generality, there have been several developments over
the years. We mention two of them: McDuff [McD10] showed that
Ham(M) has infinite diameter under a certain condition on spectral
invariants, Usher [Ush13] proved the same under the condition that
there exists a non-constant autonomous Hamiltonian, whose con-
tractible closed Hamiltonian orbits are all constant. Usher’s work is
based on the boundary depth, which is a special invariant that we
will encounter later as the length of the longest bar in a barcode. For
a detailed survey on these developments, we refer to [Ush13]. A nice
survey on various topics in Hofer’s geometry can be found in [Pol01].

In [Che00], Chekanov introduced a Lagrangian version of the
Hofer metric. Let L and L′ be closed connected Lagrangian submani-
folds of M that are Hamiltonian isotopic. The Lagrangian Hofer
distance between L and L′ is defined by

dH(L,L′) = inf
{︁
dH(id, φ)

⃓⃓
φ(L) = L′}︁ .

Chekanov proved that this is a non-degenerate metric for geomet-
rically bounded symplectic manifolds. Very little is known about
Lagrangian Hofer geometry compared to ordinary Hofer geometry.
The Lagrangian Hofer distance is not always unbounded. For ex-
ample, the Lagrangian Hofer distance on the space of Lagrangians
Hamiltonian isotopic to a fixed circle in R2 is bounded by the area en-
closed by the circle [Ush13]. On the other hand, Khanevsky [Kha09]
showed that Hofer’s distance is unbounded on equators in the disc
and the cylinder. Other cases with unbounded Lagrangian Hofer
metric have been studied in [Lec08, Zap13] (weakly exact cases) and
[Ush13] (some products with T 2). It is an open question, whether
the Lagrangian Hofer distance on equators of S2 is unbounded or not
[MS95, Problem 32].

2.2 Persistent Floer homology A major tool in many of the
previously mentioned results are spectral invariants. They have been
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introduced by Viterbo [Vit92] on R2n via generating functions, and
later have been defined through Hamiltonian Floer homology on all
closed manifolds [Sch00, Oh05]. The Lagrangian spectral invariants
have been introduced by Leclercq [Lec08] in the weakly exact case
and Leclercq–Zapolsky [LZ18] in the monotone case. (Lagrangian)
spectral invariants give rise to the (Lagrangian) spectral metric de-
fined as the difference between the highest and the lowest spectral
invariants. The Lagrangian spectral metric is shown to be non-
degenerate in [LZ18]. All these invariants can be seen through the
eyes of persistence theory. We will adopt this view for the rest of the
thesis and proceed with an introduction of persistence theory before
coming back to spectral invariants.

The technique of persistence modules has its origin in topological
data science [CZ05] and recently it has been applied successfully
to symplectic geometry. We refer to [PRSZ20] for a survey. In a
nutshell, filtered Floer theory gives rise to a persistence module. The
Structure Theorem from persistence theory associates to it a multiset
of intervals, called a barcode. The barcode contains many interesting
invariants that behave continuously with respect to the Hofer metric.
This continuity property is a consequence of the Isometry Theorem
from persistence theory. Figure 1 below exemplifies these ideas in
the case of Lagrangian Floer theory.

(L,L′)
Floer

Theory

Persistence
Floer

Homology

Structure

Theorem
B(L,L′)

Figure 1: Persistence Floer Theory Pipeline

The barcode recovers many of the previously mentioned invari-
ants: Spectral invariants are the endpoints of the infinite bars, the
spectral metric γ(L,L′) is exactly the largest distance between two
infinite bars, and the boundary depth β(L,L′) is the length of the
largest finite bar. Due to the isometry property, it holds ([PS16,
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KS21])

β(L,L′) ≤ γ(L,L′) ≤ dH(L,L′). (1)

What makes persistence theory powerful, is that the barcode con-
tains much more information in an accessible way. For example, it
gives rise to an invariant called multiplicity sensitive spread which
was used in [PS16] to give a lower bound to Hofer’s distance to pow-
ers. In [She22a], Shelukhin used the information of all the finite
bars to prove the Hofer-Zehnder conjecture on the existence of con-
tractible fixed points. The finite bars will play an important role in
this thesis. Apart from [She22a] and this thesis, the author is not
aware of any other work that uses the finite bars in the barcode in a
substantial way.

2.3 Filtered combinatorial Floer homology The main result
will apply to Lagrangians in the cotangent bundle of a circle. In this
two-dimensional case it is suitable to work with combinatorial Floer
homology. This is a purely combinatorial description of Floer ho-
mology developed by de Silva–Robbin–Salamon [dSRS14]. Instead
of counting pseudo-holomorphic strips to define the differential of
CF(L,L′), one can simply work with smooth immersions of half-
discs, called smooth lunes, or more combinatorially with combinato-
rial lunes. If L and L′ are exact Lagrangians then the chain complex
CF(L,L′) admits a function A : L∩L′ −→ R on the set of generators
of CF(L,L′) such that

A(q)−A(p) = Area(u),

whenever there exists a smooth lune u from q to p. This relation
determines A uniquely up to a shift and therefore fits nicely into the
combinatorial framework. The function A defines a filtration of the
chain complex CF(L,L′) by the subcomplexes CF≤α(L,L′) generated
by those intersection points p with A(p) ≤ α. Applying homology to
the resulting filtered chain complex results in a persistence module
HF≤•(L,L′).

9



2.3 Main result Consider Σ := T ∗S1 with its standard sym-
plectic structure and let L and L′ be two transversely intersecting
Lagrangians that are Hamiltonian isotopic to the zero-section. Note
that the number of intersection points between L and L′ is even, i.e.
#(L ∩ L′) = 2n for some n ≥ 1. The barcode B(L,L′) associated to
the persistence Floer module HF≤•(L,L′) contains exactly 2 infinite
bars and n − 1 finite bars. The spectral metric γ(L,L′) is precisely
the difference between the endpoints of the two infinite bars. We
denote by

β1(L,L
′) ≥ β2(L,L′) ≥ · · · ≥ βn−1(L,L

′)

the lengths of the finite bars. We are now ready to state the main
theorem of the second part of the thesis: Theorem B establishes an
upper bound on the Lagrangian Hofer metric in terms of invariants
coming the barcode.

Theorem B (Theorem 2.1.1 and Corollary 2.1.2).

dH(L,L′) ≤
n−1∑︂
j=1

2jβj(L,L
′) + γ(L,L′) ≤ 2nγ(L,L′).

The second inequality follows from (1). The proof of the first in-
equality makes use of Khanevsky’s procedure to delete a leaf [Kha09].
This is the core of his proof of the following upper bound on the La-
grangian Hofer metric:

dH(L,L′) ≤ kn+ c (2)

for some constants c and k (independent of L,L′). The wording
deletion of a leaf refers to a certain Hamiltonian diffeomorphism
φ that removes two intersection points p, q from L′ ∩ L that are
connected by a smallest lune (which corresponds to a leaf in a certain
tree). That is,

φ(L′) ∩ L =
(︁
L′ ∩ L

)︁
\{p, q}.

Using a sequence of such φ’s, at each time removing two intersec-
tion points and controlling carefully the Hofer energy of each φ,

10



Khanevsky arrives at the linear bound (2) in the number of intersec-
tion points.

For us deletion of a leaf is also key to prove Theorem B. It allows
us to apply induction on the number of intersection points. The main
difficulty in the proof is to choose the correct leaf, so that we can
keep control over the changes in the barcodes. It turns out that the
smallest bar corresponds to a smallest lune. This is the correct leaf
to delete.
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Chapter 1

Floer theory of real Dehn twists

1.1 Introduction and main result

Let (M,ω) be a closed symplectic manifold and S ⊂M a Lagrangian

sphere with a parametrisation ι : Sn ≈−−→ S. Associated to (S, ι) there
exists a distinguished symplectic isotopy class represented by the
Dehn twist. The Dehn twist τS is a symplectomorphism compactly
supported in a neighbourhood of S. Seidel proved that the square
of the Dehn twist, in some cases, is not symplectically, but only
smoothly isotopic to the identity [Sei97a], [Sei08b]. To prove this
result, Seidel established a Floer homology exact sequence

· · · → (HF∗(S,N)⊗HF∗(Q,S))k →HFk(Q,N)→
→ HFk(Q, τs(N))→ . . .

(1.1)

for admissible Lagrangian submanifoldsQ andN inM [Sei03],[Sei08a].
There is a distinguished element A ∈ HF∗(τ−1

S ) that characterises the
map HFk(Q,N)→ HF k(Q, τS(N)) that occurs in the sequence.

Due to the relevance of the above exact sequence it is thus natural
to investigate properties of the element A. The goal of this paper
is to study the element A in the situation, where there exists an
anti-symplectic involution that preserves S.

Throughout the whole exposition (M,ω) is a closed symplecti-
cally aspherical symplectic manifold, i.e. ω|π2(M) ≡ 0 and for the
first Chern class c1|π2(M) = 0. Unless otherwise explicitely stated,
all involved Lagrangian submanifolds are assumed to be closed, ori-
ented and relatively symplectically aspherical, i.e. ω|π2(M,L) ≡ 0).
Floer cohomology groups are Z2-graded with coefficients in the uni-
versal Novikov field over Z2. More details about these assumptions
are given in section 1.4.1.
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Assume (M,ω) is a real fiber of a real Lefschetz fibration π : E →
C with one critical point and vanishing sphere S ⊂ M . See Defi-
nitions 1.2.3 and 1.2.5 for the notion of a real Lefschetz fibration.
Consider the anti-symplectic involution c : M −→ M induced from
the real structure on E. Our main result is

Theorem 1.1.1. c induces an automorphism

c∗ : HF
∗(τ−1

S ) −→ HF∗(τ−1
S )

and it satisfies c∗(A) = A.

Remark 1.1.2. c∗ : HF
∗(τ−1

S ) −→ HF∗(τ−1
S ) is an involution of a

vector space over a field with characteristic 2. Any such map has
a fixed point because (c∗ − id)2 = 0, hence ker(c∗ − id) ̸= 0. The
relevance of the second part of Theorem 1.1.1 is therefore not merely
the existence of a fixed point. It should rather be understood as a
special property of the element A.

It turns out that Theorem 1.1.1 is a special case of a more gen-
eral result. Let (M,ω) be a symplectic manifold (not necessarily

a real fiber of a real Lefschetz fibration) and ι : Sn ≈−−→ S ⊂ M a
parametrised Lagrangian sphere. Consider the reflection

r(x1, x2, . . . , xn+1) = (−x1, x2, . . . , xn+1)

on the standard unit sphere Sn ⊂ Rn+1. Let g : M −→ M be an
anti-symplectic map satisfying

g(S) = S,

ι∗g := ι−1gι is either diffeotopic to idSn or to r.
(⋆)

The assumption on the mapping class of ι∗g is automatically satisfied
when M has dimension 2, 4 or 6.

Theorem 1.1.3. g induces an automorphism

g∗ : HF
∗(τ−1

S ) −→ HF∗(τ−1
S )

and it satisfies g∗(A) = A

The anti-symplectic involution c considered in Theorem 1.1.1 sat-
isfies assumption (⋆). We prove this in Lemma 1.2.6. In particular,
Theorem 1.1.1 follows from Theorem 1.1.3.
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1.1.1 Outline of the proof. We outline the proof of Theorem
1.1.3. The following Proposition is inspired from [Sal10] in the case
of real Lefschetz fibrations. She proves that the monodromy splits
into a product of two anti-symplectic involutions. It follows that
the monodromy is conjugate to its inverse via the anti-symplectic
involution. An analogous property is true for any anti-symplectic
map satisfying (⋆):

Proposition 1.1.4. Let g : M −→ M be an anti-symplectic map
satisfying (⋆). Then gτSg

−1 is Hamiltonian isotopic to τ−1
S . In fact,

there exists a Hamiltonian isotopy {ψt}t∈[0,1] such that g′ := gψ1 is

an anti-symplectic map satisfying g′τS(g
′)−1 = τ−1

S for some repre-
sentant τS of the Dehn twist.

Floer-theoretic considerations and Proposition 1.1.4 yield a ho-
momorphism

g∗ : HF
∗(τ−1

S ) −→ HF∗(gτSg
−1) ∼= HF∗(τ−1

S ). (1.2)

This is the automorphism on HF∗(τ−1
S ) induced by g as stated in the

first part of Theorem 1.1.3.

To show that g∗(A) = A, the second part of Proposition 1.1.4
allows us to assume that gτSg

−1 = τ−1
S . The rest of the proof is

based on the framework of Biran–Cornea [BC13], [BC14], [BC17]
and Mak–Wu [MW18] about Lagrangian cobordisms.

Let M− be the symplectic manifold (M,−ω). We denote by
Γϕ ⊂ M ×M− the graph of ϕ for a symplectomorphism ϕ on M .
This is a Lagrangian submanifold of M ×M−. For ϕ = id it is the
diagonal and we write ∆ := Γid. Mak–Wu construct a Lagrangian
cobordism VMW ⊂M ×M− × C that has three ends: S × S,∆ and
Γτ−1

S
. By general results on Lagrangian cobordisms due to Biran–

Cornea this cobordism induces an exact triangle in DFuk(M×M−):

15



S × S

∆

Γτ−1
S

[1]

The associated long exact sequence is

· · · → HFk(K,S × S)→ HFk(K,∆)→
→ HFk(K,Γτ−1

S
)→ HFk+1(K,S × S)→ . . . ,

(1.3)

where K is an admissible Lagrangian submanifold in M ×M−. For
the special case K = Q × N , this sequence reduces to Seidel’s long
exact sequence (1.1). The middle map in sequence (1.3) can be un-
derstood as µ2(αVMW

,−) for an element αVMW
∈ HF0(∆,Γτ−1

S
). The

previously mentioned element A ∈ HF0(τ−1
S ) corresponds to αVMW

under the isomorphism

HF0(∆,Γτ−1
S

) ∼= HF0(τ−1
S ). (1.4)

Consider the symplectomorphism

Φg : M ×M− −→M ×M−,

(x, y) ↦−→ (g(y), g(x)).

The property gτSg
−1 = τ−1

S implies that Φg preserves Γτ−1
S

. In fact,

Φg preserves all the ends of the cobordism VMW . The cobordism˜︁VMW := (Φg × id) (VMW ) has therefore the same ends as VMW . The
element α˜︁VMW

∈ HF0(∆,Γτ−1
S

) associated to ˜︁VMW is related to αVMW

via

α˜︁VMW
= Φg

∗(αVMW
),

where Φg
∗ is the automorphism

Φg
∗ : HF

∗(∆,Γτ−1
S

) −→ HF∗(Φg(∆),Φg(Γτ−1
S

)) = HF∗(∆,Γτ−1
S

)
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induced by Φg. This automorphism corresponds to the map g∗ on
HF∗(τ−1

S ), in the sense that the following diagram commutes

HF∗(τ−1
S )

g∗ →→

∼=
↓↓

HF∗(τ−1
S )

∼=
↓↓

HF∗(∆,Γτ−1
S

)
Φg

∗ →→ HF∗(∆,Γτ−1
S

).

(1.5)

A major step in the proof is the following

Theorem 1.1.5. There exists a Hamiltonian isotopy {ψt}t∈[0,1] such
that the anti-symplectic map g′ = gψ1 satisfies(︂

Φg′ × id
)︂
(VMW ) = VMW .

After replacing g by g′ from Theorem 1.1.5 we get

αVMW
= α˜︁VMW

= Φg
∗(αVMW

).

Hence g∗(A) = A by commutativity of diagram (1.5). This shows
how Theorem 1.1.5 implies Theorem 1.1.1.

Remark 1.1.6. (i) The assumption that (M,ω) is symplectically
aspherical is used at two places: First, it guarantees that the
group HF∗(gτSg

−1) can be canonically identified with HF∗(τ−1
S )

in (1.2), independently of a choice of a Hamiltonian isotopy
from gτSg

−1 to τ−1
S . Secondly, it holds that g∗ = g′∗, when-

ever g′ = gψ1 for a Hamiltonian isotopy {ψt}. We explain this
further in sections 1.4.2 and 1.4.3.

(ii) The assumption that M is closed is important for our argu-
ments: The version of Floer cohomology we use only works
for compactly supported symplectomorphisms. In general how-
ever, the monodromy in a Lefschetz fibration with non-compact
fibers, if it exists, is not compactly supported. We expect that
the results generalise to a non-compact framework, when work-
ing with an appropriate version of Floer theory.
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(iii) If g(S) = S for an anti-symplectic map g, we have a Hamilto-
nian isotopy

g ◦ τ(S,ι) ◦ g−1 ≃ τ−1
(S,g◦ι).

However, it is unknown how the Dehn twist depends on the
parametrisation of the sphere. Only if ι∗g is in the mapping
class of an isometry, it is known that the Dehn twist associated
to g ◦ ι is Hamiltonian isotopic to the Dehn twist associated
to ι [Sei97a, Remark 3.1]. This explains why we impose the
condition (⋆) on the mapping class of ι∗g.

(iv) The second map in the long exact sequence (1.1) is

µ2(aN ,−) : HFk(Q,N)→ HFk(Q, τS(N))

for some element aN ∈ HF0(N, τS(N)). This element is related
to A ∈ HF∗(τ−1

S ) as follows. There is an operation

∗ : HF∗(τ−1
S )⊗HF∗(N,N)→ HF∗(N, τS(N)).

If eN ∈ HF 0(N,N) denotes the unit, we have A ∗ eN = aN .
Assume the setting of Theorem 1.1.1. The fixed point property
c∗(A) = A then implies

γ(aN ) = ac(N), (1.6)

where γ is the isomorphism

HF∗(N, τS(N)) ∼= HF∗(cτS(N), c(N)) ∼= HF∗(c(N), τS(c(N)).

(The first isomorphism is induced by c and the second isomor-
phism is induced by τS .) The construction of aN is explained in
[Sei08a, Sections 17a-17c]. aN comes from counting the num-
ber of holomorphic sections of a Lefschetz fibration with moving
boundary condition coming from moving N via parallel trans-
port. The invariance property (1.6) can be proven directly in
Seidel’s framework applied to real Lefschetz fibrations, by ob-
serving that the holomorphic sections for boundary conditions
coming from N and c(N) are in bijection.
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1.1.2 Organization of chapter 1. The rest of this chapter is
organised as follows. In section 1.2 we recall the definition of a Dehn
twist and its interpretation as a monodromy in a Lefschetz fibration.
We define real Lefschetz fibrations and explain why Theorem 1.1.1
is a special case of Theorem 1.1.3. Section 1.3 contains a proof of
Proposition 1.1.4. In section 1.4 we collect prerequisites from Floer
theory. In particular, we explain the automorphism (1.2) related to
conjugation invariance, the isomorphism (1.4) between Lagrangian
and absolute Floer cohomology and the diagram (1.5). In section
1.5 we recall Biran–Cornea’s Lagrangian cobordism framework and
how cobordisms induce cone decompositions. The construction of
the Mak–Wu cobordism is reviewed in section 1.6. In section 1.7
we prove Theorem 1.1.5 about the symmetry of the Mak–Wu cobor-
dism. Section 1.8 discusses some two dimensional examples. The
appendix contains some algebraic background on Fukaya categories
that is relevant for Biran–Cornea’s cobordism theory.

1.2 Dehn twist and Lefschetz fibrations

There are two points of view for the Dehn twist. One way is to first
define a model Dehn twist in T ∗Sn and then glue it into a Weinstein
neighbourhood of S. This point of view is useful for the Mak–Wu
framework because their flow surgery can easily be compared to this
version of the Dehn twist.

The other point of view occurs in the framework of Lefschetz
fibrations. Given a Lefschetz fibration with one critical point and
vanishing sphere S, the monodromy around the singularity turns
out to be the Dehn twist along S. This setting can be enhanced
with real structures, allowing to apply Salepic’s results [Sal10] on
monodromies in real Lefschetz fibrations to the Dehn twist. This
motivates Proposition 1.1.4, which plays an important role for the
proof of Theorem 1.1.1.

In this section we review both, the model Dehn twist, as well
as the monodromy viewpoint on Dehn twists. This is due to Seidel
[Sei97a, Sei03].
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1.2.1 The Dehn twist glued from a local model. Let (M,ω)
be a closed symplectic manifold of dimension 2n, n ≥ 1. Let S ⊂M
be a Lagrangian sphere together with an embedding ι : Sn −→M of
the n-dimensional standard sphere Sn ⊂ Rn+1 with image ι(Sn) = S.
We refer to (S, ι) as a parametrised Lagrangian sphere.1 The Dehn
twist τ(S,ι) will be associated to (S, ι). Usually we only write τS and
omit ι from the notation. However, as we explain further below, it
is sometimes important to keep track of ι.

We now recall the construction of the Dehn twist τS along S,
following closely the exposition in [MW18].

Definition 1.2.1. Let ϵ > 0. A Dehn twist profile function is a
smooth function

νDehn
ϵ : R≥0 −→ R

satisfying⎧⎪⎨⎪⎩
νDehn
ϵ (r) = π − r for 0 ≤ r << ϵ,

0 < νDehn
ϵ (r) < π and strictly decreasing for 0 < r < ϵ,

νDehn
ϵ (r) = 0 for r ≥ ϵ.

Consider the canonical Riemannian metric on Sn and the canon-
ical isomorphism T∗S

n ∼= T ∗Sn. Denote by ∥ξ∥ the norm of the
tangent vector identified with ξ ∈ T ∗S. Let

T ∗
r S

n = {ξ ∈ T ∗Sn | ∥ξ∥ < r}

be the open subset of T ∗Sn consisting of cotangent vectors of norm
strictly less than r. We endow T ∗Sn with the symplectic structure
given by dp ∧ dq in local coordinates (q, p), q ∈ Sn, p ∈ TqSn.

Let V ⊂ M be a Weinstein neighbourhood of S together with a
symplectic embedding

φ : V −→ T ∗Sn

that identifies S ⊂ V with the zero-section Sn ⊂ T ∗Sn via ι−1 and
φ(V ) = T ∗

ϵ S
n for some ϵ > 0.

1Seidel uses the word “framed sphere” for this situation in [Sei08a].
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Consider the function

µ : T ∗Sn −→ R,
ξ ↦−→ ∥ξ∥.

While µ is not smooth on the zero-section Sn, it does have a well-
defined Hamiltonian flow

ψµ
t : (T ∗Sn) \Sn −→ (T ∗Sn) \Sn.

Definition 1.2.2. The model Dehn twist on T ∗Sn is defined by

τSn : T ∗Sn −→ T ∗Sn,

ξ ↦−→

{︄
ψµ
νDehn
ϵ (µ(ξ))

(ξ) for ξ /∈ Sn,

−q for ξ = q ∈ Sn.

The Dehn twist in M along S is then given by copying the model
Dehn twist into M via the Weinstein embedding φ:

τS =

{︄
φ−1 ◦ τSn ◦ φ on V ,

id on M\V .

The resulting diffeomorphism τS is a symplectomorphism and its
support is contained in V . Figure 1.1 illustrates the Dehn twist in
dimension 2.

The precise map depends on the Dehn twist profile function
νDehn
ϵ and on the Weinstein neighbourhood (V, φ) of (S, ι). However,
different choices of νDehn

ϵ and (V, φ) lead to Hamiltonian isotopic
symplectomorphisms [Sei03],[Sei97a, Proposition 2.3]. The depen-
dence on the parametrisation ι is unknown. It is only known that
if σ ∈ Diff(Sn) is diffeotopic to an isometry on Sn, then τ(S,ι◦σ) is
Hamiltonian isotopic to τ(S,ι). Since the mapping class group of Sn

is trivial for n = 1, 2 and 3, the Hamiltonian isotopy class of τS is
independent of ι in dimensions 2, 4 and 6 [Sei08a, Remarks 16.1 and
16.6].
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τS1(F )

0S1

F

S

F

τS(F )

V

Figure 1.1: The model Dehn twist τS1 on the left and its gluing into
a Weinstein neighbourhood V of the Lagrangian sphere
S in a genus 2 surface.

1.2.2 Lefschetz fibrations. For a detailed treatment of Lefschetz
fibrations we refer the reader to [Sei08a, BC17, Kea14]. We adopt
the definition of a Lefschetz fibration used in [BC17]. Let n ≥ 1.

Definition 1.2.3. A Lefschetz fibration with base C consists of

• a 2n + 2−dimensional symplectic manifold (E,ΩE) without
boundary endowed with a compatible almost complex struc-
ture JE ,

• a proper (JE , i)-holomorphic map π : E −→ C,

such that

(i) π has only finitely many critical points and all critical values
are distinct,

(ii) all the critical points of π are ordinary double points: for
every critical point p ∈ E, there exist JE-holomorphic coor-
dinates (z1, . . . , zn+1) in a neighbourhood Up of p such that
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π(z1, . . . , zn+1) = π(p) + z21 + · · ·+ z2n+1 holds on Up. (In par-
ticular, JE is integrable on Up.)

For p ∈ C we denote by Ep := π−1({p}) the fiber above p. Every
regular fiber of π is a closed 2n-dimensional symplectic manifold
whose symplectic form is induced from ΩE . We call the critical
points p1, . . . , pl and the corresponding critical values s1, . . . , sl. The
restricted map

π : E\{p1, . . . , pl} −→ C\{s1, . . . , sl}

is a (locally trivial) symplectic fibration. For background material
on symplectic fibrations we refer the reader to [MS95, Section 6]. ΩE

determines a connection as follows. Let x ∈ E. Denote by Vx the
vertical subspace ker dπx ⊂ TxM . The connection is then given by
the horizontal subspaces

Horx = {ξ ∈ TxE | ∀η ∈ Vertx : ΩE(ξ, η) = 0}.

Let z0 ∈ C\{s1, . . . , sl} be any regular value. We identify the fiber
Ez0 with a symplectic manifold (M,ω). For any smooth path

λ : [0, 1] −→ C\{s1, . . . , sl}

with λ(0) = λ(1) = z0, let hλ : M −→ M be the monodromy map
coming from parallel transport along λ. Then hλ is a symplectomor-
phism of M .

Consider a smooth path γ : [0, 1] −→ C starting at a critical value
γ(0) = si, ending at γ(1) = z0 and satisfying γ(t) ∈ C\{s1, . . . , sl} for
t ̸= 0. To simplify notation, assume that pi = 0 and γ(t) = t for small
enough t. Consider local holomorphic coordinates (z1, . . . , zn+1) near
pi as in the definition. Then for small enough t,

S(t) := {(x1, . . . , xn+1) | xi ∈ R, x21 + · · ·+ x2n+1 = t}

is a n-dimensional sphere contained in the neighbourhood Upi of pi.
Applying parallel transport to S(t0) for small enough t0 ̸= 0 we
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obtain a family S(t) ⊂ Eγ(t). S(1) ⊂ M is called the vanishing
sphere associated to γ and

Tγ :=
⋃︂

t∈[0,1]

S(t)

the Lefschetz thimble of pi along γ. S(1) is a Lagrangian sphere in
(M,ω) and Tγ is a Lagrangian disc in (E,ΩE). Moreover, S(1) comes
with a canonical parametrisation, obtained from parallel transport
of the standard sphere S(t0) to S(1).

1.2.3 The Dehn twist as a monodromy. Suppose (M,ω) is
the fiber of a Lefschetz fibration π : E −→ C as in the previous
section. Let γ be as above a path connecting si to z0 and S ⊂ M
the associated vanishing cycle. Suppose λ is a loop with base point
z0 that goes once around si and around no other critical value. The
situation is shown in Figure 1.2. Consider the monodromy hλ.

z0s1

s2

γ

λ

Figure 1.2: The base of the fibration and paths γ and λ.

Theorem 1.2.4 (Symplectic Picard-Lefschetz Theorem [Sei08a, Sec-
tion (16c)]). The symplectomorphism hλ is symplectically isotopic to
the Dehn twist τS.

Conversely, any Dehn twist can be realized as a monodromy in a
Lefschetz fibration [Sei97a, Section 19],[Sei08a, Section (16e)]. More
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precisely, given a symplectic manifold (M,ω) and a parametrised La-
grangian sphere S ⊂M , there exists a Lefschetz fibration π : E −→ C
satisfying the following properties:

• M = E1.

• There is exactly one critical point p ∈ E and π(p) = 0.

• The vanishing sphere associated to γ(t) = t is S ⊂M .

• The monodromy along λ(t) = e2πit is symplectically isotopic
to τS .

We refer the reader to [Sei03, Proposition 1.11] for a full proof of
this. We include here an outline of the construction following closely
[Sei03].

We first construct a model Lefschetz fibration π0 : E0
ϵ −→ C

whose smooth fiber is T ∗
ϵ S

n. Equip Cn+1 with the standard sym-
plectic form Ω0 and standard complex structure J0. We use the
models

Sn = {(x1, . . . , xn+1) ∈ Rn+1 | x21 + · · ·+ x2n+1 = 1} ⊂ Cn+1

and
T ∗Sn = {(u, v) ∈ Sn × Rn+1 | ⟨u, v⟩ = 0}.

Consider the holomorphic map

Q : Cn+1 −→ C,
(z1, . . . , zn+1) ↦−→ z21 + · · ·+ z2n+1.

The only critical point of Q is 0 ∈ Cn+1 and it has critical value 0.
Clearly, conditions (i) and (ii) in Definition 1.2.3 are satisfied. The
smooth fibers are symplectomorphic to T ∗Sn. For example, the fiber
of z0 = 1 can be identified with T ∗Sn via the symplectomorphism

Φ1 : Q
−1({1}) −→ T ∗Sn

z ↦−→
(︃

re(z)

∥re(z)∥
,− im(z)∥re(z)∥

)︃
.

(1.7)
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In particular, the smooth fibers are not compact and therefore Q
is not proper. However, parallel transport is still well-defined and
everything from the last section applies.

Consider the path γ(t) = t from the critical value 0 to the base
point 1. Consider the family of Lagrangian spheres

S(t) =
√
tSn = {(

√
tz1, . . . ,

√
tzn+1) | z ∈ Sn ⊂ Rn+1} ⊂ Q−1({t})

for t ∈ [0, 1]. These are the vanishing cycles forQ. The corresponding
Lefschetz thimble is

Tγ =
⋃︂
t>0

S(t) ∪ {0}.

Let λ be the path λ(t) = e2πit that parametrises the unit circle.
Consider the monodromy hλ along λ. Then

Φ1 ◦ hλ ◦ Φ−1
1 : T ∗Sn −→ T ∗Sn

is given by

(u, v) ↦−→

{︄
ψµ
ν(∥v∥)(u, v) for v ̸= 0,

−u for v = 0,

where ν is a function similar to νDehn
ϵ except that ν is not compactly

supported but only satisfies limr→∞ ν(r) = 0.
By changing the symplectic structure Ω0 and the complex struc-

ture J0 on Cn+1 one can arrange that the monodromy becomes a
model Dehn twist supported in T ∗

ϵ S
n. By restricting the resulting

fibration to

E0
ϵ :=

{︃
z ∈ Cn+1

⃓⃓⃓ |z|4 − |Q(z)|2

4
< ϵ2

}︃
we get a Lefschetz fibration π0 : E0

ϵ −→ C, whose fiber is T ∗
ϵ S

n. The
map π0 is still not proper, but it is trivial at infinity: There exist
neighbourhoods W∞ ⊂ E0

ϵ of ∂E0
ϵ and T∞ ⊂ T ∗

ϵ S
n of ∂T ∗

ϵ S
n such

that there is a trivialisation

Φ: W∞ −→ C× T∞.
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As a next step we use the model fibration E0
ϵ to construct the

Lefschetz fibration π : E −→ C satisfying all the properties in the

above list. Take a Weinstein neighbourhood φ : V
∼=−−→ T ∗

ϵ S
n of S.

We set V∞ := φ−1(W∞) ⊂ V . Define

E := E0
ϵ ∪∼ (C×M\(V \V∞)) ,

where ∼ identifies w ∈W∞ ⊂ E0
ϵ with (z, x) ∈ C×V∞ ⊂M\(V \V∞)

via w = Φ−1(z, φ(x)). π is defined by π0 on E0
ϵ and πC on the trivial

part. Similarly ΩE and JE are obtained by pulling back ΩE0
ϵ
and

JE0
ϵ
from E0

ϵ and the standard structure from the trivial part.

1.2.4 Real Lefschetz fibrations. A real structure on a symplec-
tic manifold (M,ω) is an anti-symplectic involution c : M −→M .

Definition 1.2.5. A real Lefschetz fibration is a Lefschetz fibration
π : E −→ C together with an anti-symplectic involution cE : E −→ E
on the total space E that covers complex conjugation cC : C −→ C.
By this we mean that the diagram

E
cE →→

π
↓↓

E

π
↓↓

C cC →→ C

(1.8)

commutes. cE is called a real structure on the Lefschetz fibration E.

Real Lefschetz fibrations have been studied by [Sal10, Sal12] in
the smooth category. In the symplectic context they appeared in
[BC17]. Real Lefschetz fibrations occur naturally in the context of
real algebraic surfaces in complex projective space. We refer the
reader to [BC17, Section 6] for examples of real Lefschetz fibrations.

Assume that p ∈ E is the unique critical point of π and π(p) = 0.
Let M = E1 be the fiber over 1 and let S ⊂ M be the vanishing
sphere associated to the path γ(t) = t. We prove that Theorem 1.1.1
is a special case of Theorem 1.1.3.
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Lemma 1.2.6. The real structure c = cE |M satisfies c(S) = S and
ι∗c is diffeotopic to idSn or to r, where ι is the canonical framing of
the vanishing sphere S. In other words, c satisfies (⋆).

Proof. First we note that cE commutes with parallel transport: For
a smooth curve γ : [0, 1]→ C\{0} we denote by γ = cC◦γ its complex
conjugation. We claim that

cE ◦ Pγ = Pγ ◦ cE .

Indeed, let v ∈ Eγ(0). Consider the parallel lift v(t) ∈ Eγ(t) of γ
starting with v(0) = v. Since DcE(Hv(t)) = HcE(v(t) we see that
w(t) := cE(v(t)) is the parallel lift of γ starting at cE(v). Therefore

cE ◦ Pγ(v) = cE(v(1)) = w(1) = Pγ(cE(v)),

which proves the claim. Hence c(S) = S follows from cE(0) = 0.
For the second part, note that it is enough to consider the model
Q : Cn+1 −→ C. In that case, S = Sn ⊂ Cn+1 is a standard sphere.
Note that cE restricted to the thimble Tγ = Bn+1(0) is a smooth
extension of the sphere c|Sn to the ball. Moreover, since parallel
transport commutes with cE , it is a linear extension, in the sense
that

cE(x) = c

(︃
x

∥x∥

)︃
∥x∥,

for x ∈ Rn+1 ⊂ Cn+1. It follows that cE |Rn+1 is an orthogonal linear
transformation and hence c|Sn is an isometry. In particular, c|Sn is
diffeotopic to idSn or to r.

The following result is due to [Sal10] in the smooth category.
Here we adapt it to the symplectic framework.

Lemma 1.2.7. Let τ : M −→M be the monodromy along the bound-
ary loop γ(t) = e2πit, t ∈ [0, 1]. τ splits into a product of two anti-
symplectic involutions on M . More concretely, τ = c ◦ c− for c =
cE |M and another anti-symplectic involution c− : M −→M . In par-
ticular, cτc = τ−1.
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Proof. Denote by
Pγ(s);t : Eγ(s) → Eγ(s+t)

the parallel transport for time t along γ starting at γ(s). As we have
seen in the proof of Lemma 1.2.6, parallel transport commutes with
c. Therefore, (︂

P1; 1
2

)︂−1
◦ cE = cE ◦ P−1; 1

2
.

It follows

τ = P−1; 1
2
◦ P1; 1

2
= cE ◦ (P1; 1

2
)−1 ◦ cE ◦ P1; 1

2
= c ◦ c−,

where c = cE |M and c− = (P1; 1
2
)−1 ◦ cE ◦ P1; 1

2
.

1.3 Anti-symplectic maps preserving a
Lagrangian sphere

In this section we study anti-symplectic maps g : M −→M that pre-
serve a Lagrangian sphere S ⊂M . The goal is to prove Proposition
1.1.4. We first study the local behavior of g near S.

Any diffeomorphism σ : Sn −→ Sn induces an anti-symplectic
map

T ∗σ : T ∗Sn −→ T ∗Sn

(u, v) ↦−→ (σ(u),−Dσu(v)) .

In fact, (T ∗σ)∗θ = −θ for the canonical 1-form θ on T ∗Sn. The
following result shows that any anti-symplectic map on M that pre-
serves S can be modelled in a Weinstein neighbourhood of S by a
map of the form T ∗σ.

Proposition 1.3.1. Let ι : Sn −→ M be a parametrisation of a
Lagrangian sphere S = ι(Sn). Let g : M −→M be an anti-symplectic
map satisfying g(S) = S. Then for any Weinstein neighbourhood
V ⊂M of S with an embedding

φ : V
∼=−−→ T ∗

ϵ S
n ⊂ T ∗Sn,
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extending ι, there exists a Hamiltonian isotopy ψt : M −→ M sup-
ported in V with ψ0 = id such that g′ := g ◦ψ1 satisfies the following
property: There exists 0 < δ < ϵ such that

(a) g′
(︁
φ−1 (TδS

n)
)︁
⊆ V . In particular, g′ induces a map

g′T : T ∗
δ S

n −→ T ∗
ϵ S

n

defined via g′T := φ ◦ g′ ◦ φ−1.

(b) g′T is equal to T ∗(ι∗g) on T ∗
δ S

n.

To prove this result we first consider the model T ∗Sn endowed
with an anti-symplectic map g preserving the zero-section: g(Sn) =
Sn. The following result is a model version of Proposition 1.3.1.

Proposition 1.3.2. Let g : T ∗Sn −→ T ∗Sn be an anti-symplectic
map restricting to σ : Sn −→ Sn. Then for every η2 > 0 there exists
0 < η1 < η2 and a Hamiltonian isotopy

ψH
t : T ∗Sn −→ T ∗Sn

with suppH ⊂ T ∗
η2S

n such that

gψH
1 = T ∗σ on T ∗

η1S
n.

Proof. Consider the symplectomorphism ψ := g−1 ◦ T ∗σ. Write in
local coordinates ψ(q, p) = (u(q, p), v(q, p)) with u(q, p) ∈ Sn and
v(q, p) ∈ Tu(q,p)S

n. Since g = T ∗σ on Sn, we have u(q, 0) = q.
Consider the following isotopy of symplectomorphisms ψt : T

∗Sn −→
T ∗Sn between ψ0 = id and ψ1 = ψ:

ψt(q, p) =

{︄
(u(q, tp), v(q,tp)t ) t ̸= 0,

(u(q, 0), (∂pv(q, 0))p) t = 0.

We show that ψ0 = id. Write Dψ(q,0) in local coordinates

Dψ(q,0) =

(︃
id ∂qv(q, 0)

∂pu(q, 0) ∂pv(q, 0)

)︃
.

30



Using that Dψ(q,0) is a symplectic matrix, we get

∂pv(q, 0) = id.

In particular, ψ0(q, p) = (q, p) as claimed. Moreover, ψt is a Hamilto-
nian isotopy: For n ≥ 2 this is automatic. For n = 1 it follows from
ψt(S

1) = S1 [MS95, Theorem 10.2.5, Exercise 10.2.6]. Finally cut off
the Hamiltonian so that the resulting Hamiltonian H has support in
T ∗
η2S

n. Then ψH
1 = ψ = g−1 ◦ T ∗σ on T ∗

η1S
n for η1 small enough. In

particular, gψH
1 = T ∗σ on T ∗

η1S
n.

This model case leads to a proof of Proposition 1.3.1.

Proof of Proposition 1.3.1. Let φ : V
∼=−−→ T ∗

ϵ S
n be a Weinstein em-

bedding extending ι. Choose a number 0 < η2 < ϵ such that
g
(︁
φ−1 (Tη2S

n)
)︁
⊆ V . Then g induces a map gT : T ∗

η2S
n −→ T ∗

ϵ S
n

defined via gT := φ ◦ g ◦ φ−1. By Proposition 1.3.2 there exists
a Hamiltonian isotopy ψH

t : T ∗Sn −→ T ∗Sn with compact support
contained in T ∗

η2S
n such that

gTψ
H
1 = T ∗(ι∗g) on T ∗

η1S
n

for η1 small enough. (Note that the proof of Proposition 1.3.2 carries
over to gT even though it’s only defined on T ∗

η2S
n.) Take δ = η1

and let ψK
t be the Hamiltonian isotopy on M obtained by extending

φ−1 ◦ ψH
t ◦ φ on V by the identity to all of M . Put g′ = gψK

1 . Then
g′T = gTψ

H
1 and Proposition 1.3.1 is satisfied.

Recall the assumption (⋆) for Theorem 1.1.3 about the mapping
class of the restriction of g to Sn. We only allow two mapping classes:
the identity idSn and the reflection r : Sn −→ Sn given by

r(x1, x2, . . . , xn+1) = (−x1, x2, . . . , xn+1).

Proposition 1.1.4 states that then gτSg
−1 = τ−1

S . Before turning to
a proof of this we need the following observation.
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Lemma 1.3.3. Let σ0, σ1 : S
n −→ Sn be two diffeotopic smooth

maps. Then there exists a Hamiltonian isotopy ψH
t on T ∗Sn −→

T ∗Sn such that
(T ∗σ0) ◦ ψH

1 = T ∗σ2.

Proof. Let σt be a diffeotopy between σ0 and σ1. Consider the
smooth isotopy T ∗σt of anti-symplectic maps. We claim that the
symplectic isotopy

ψt := (T ∗σ0)
−1 ◦ (T ∗σt)

is Hamiltonian. Clearly ψ∗
t θ = θ. Let Xt be the symplectic vector

field generated by the flow ψt. Then the Hamiltonian Ht = θ(Xt)
generates ψt [MS95, Proposition 9.3.1].

We are now ready for a proof of Proposition 1.1.4.

Proof of Proposition 1.1.4. First consider the model T ∗Sn endowed
with the anti-symplectic involution c = T ∗σ for σ = idSn or σ = r.
We show that

cτSnc = τ−1
Sn

for a model Dehn twist τSn . Let ξ ∈ T ∗
xS

n. Then ∥c(ξ)∥ = ∥ξ∥.
Moreover, if γ is the geodesic in Sn with

γ(0) = x and γ′(0) = ξ

then γ := σ ◦ γ is a geodesic satisfying

γ(0) = σ(x) and γ′(0) = Dσx(ξ) = −c(ξ).

Therefore,

cψµ
t (ξ) = c(γ′(t)) = −Dσ(γ′(t))

= −γ′(t)

= −ψµ
t (−c(ξ)) = (ψµ

t )
−1

(c(ξ)).

We conclude

cψµ
νϵ(∥ξ∥)(ξ) =

(︂
ψµ
νϵ(∥c(ξ)∥)

)︂−1
c(ξ)
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and therefore cτSn = τ−1
Sn c. This settles the model case.

Now let M,S and g be as in the statement. Choose a Weinstein
neighbourhood (V, φ) as before. Let ψt be a Hamiltonian isotopy
as in Proposition 1.3.1. By Lemma 1.3.3 and assumption (⋆) we can
change the Hamiltonian isotopy so that g′ = g◦ψ1 satisfies g

′
T = c on

T ∗
δ S

n for δ > 0 small enough and c as in the above model case. Let
τS be the Dehn twist obtained from a model Dehn twist supported in
T ∗
δ S

n via the Weinstein neighbourhood (V, φ). Then on φ−1(T ∗
δ S

n)
we have

g′τS(g
′)−1 = φ−1g′T τSn(g′T )

−1φ = φ−1cτSncφ = φ−1τ−1
Sn φ = τ−1

S .

On M\φ−1(T ∗
δ S

n), we have τS = τ−1
S = id and hence

g′τS(g
′)−1 = τ−1

S

holds everywhere. This proves the second part of Proposition 1.1.4.
The first part follows from the second part.

1.4 Floer cohomology

In this section we explain the Floer cohomology machinery we are
using. After outlining the construction, we collect the main proper-
ties of Floer cohomology that are relevant in the proof of Theorems
1.1.1 and 1.1.3.

1.4.1 Setting. We assume that M is symplectically aspherical,
that is

ω|π2(M) ≡ 0 and c1|π2(M) ≡ 0.

Moreover, we assume that all involved Lagrangian submanifolds are
relatively symplectically aspherical, that is

ω|π2(M,L) ≡ 0

for a Lagrangian L ⊂ M . In particular, S ⊂ M is relatively sym-
plectically aspherical. This is automatic if M is symplectically as-
pherical, unless S has dimension 1. In the latter case, the condition
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is equivalent to S being a non-contractible circle. In this situation,
Floer cohomology HF∗(f) for a symplectomorphism f ∈ Symp(M),
and Lagrangian Floer cohomology HF∗(L,K) for Lagrangians L,K
as above can be defined over the universal Novikov field

Λ =

{︃∑︂
akq

ωk

⃓⃓⃓⃓
|ak ∈ Z2, ωk ∈ R, lim

k→∞
ωk =∞

}︃
.

HF∗(f) and HF∗(L,K) are Z2-graded, whenever L and K are ori-
ented. We outline the definitions of these groups in the next sections.

1.4.2 Floer cohomology for symplectomorphisms. We brief-
ly collect the basic ideas and notation for Floer cohomology of a
symplectomorphism following [DS94]. For more detailed expositions,
we refer the reader to [DS94] for the monotone case, and to [Sei97b]
and [Lee05] for W+-symplectic manifolds.

Let (M,ω) be a closed symplectically aspherical symplectic man-
ifold. Let f ∈ Symp(M) be a symplectomorphism. We first need to
choose a Hamiltonian perturbation, namely a family of Hamiltonian
functions {Hs : M −→ R}s∈R. It should be f -periodic, in the sense
that

Hs = Hs+1 ◦ f.
Roughly speaking, Floer cohomology of f is Morse cohomology on
the twisted loop space

Ωf := {x ∈ C∞(R,M) | x(s+ 1) = f(x(s))}

with the closed 1-form

λH(x)(ξ) =

∫︂ 1

0
ω
(︁
ẋ(s)−XH

s (x(s)), ξ(s)
)︁
ds.

Here, XH
s denotes the Hamiltonian vector field of Hs. We write

Pf (H) for the set of x ∈ Ωf satisfying ẋ(s) = XH
s (x(s)). For a generic

choice of H, Pf (H) is a finite set. The vector space underlying the
Floer complex is the Λ-vector space generated by Pf (H):

CF∗(f ;H) =
⨁︂

x∈Pf (H)

Λx.
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CF∗(f ;H) is Z/2-graded as follows. A generator x ∈ Pf (H)
corresponds to a fixed point x(0) of fH := (ψH

1 )−1f . The degree
deg(x) ∈ Z/2 of x is related to the index of x(0) by

(−1)deg(x) = sign
(︁
det
(︁
id− (DfH)x(0)

)︁)︁
.

To define the differential on CF∗(f ;H), we need to choose a fam-
ily of almost complex structures J = {Js}s∈R on M , compatible
with ω and f -periodic, meaning that Js = f∗(Js+1). One considers
finite-energy solutions

u : R× R −→M, (s, t) ↦−→ u(s, t)

of Floer’s equation

∂u

∂t
+ Js(u)

(︃
∂u

∂s
−XH

s (u)

)︃
= 0,

which are f -periodic in s, u(s + 1, t) = f(u(s, t)), and satisfy the
asymptotic conditions

lim
t→−∞

u(s, t) = x(s) and lim
t→∞

u(s, t) = y(s)

for some Hamiltonian chords x, y ∈ Ωf . Consider the moduli space
M(x, y;J , H) of all such solutions u. For regular (J , H), the moduli
space is a smooth manifold. R acts on the one-dimensional compo-
nentM1(x, y;J , H) by translation, and the quotient set

ˆ︂M1(x, y;J , H) =M1(x, y;J , H)/R

is discrete.
The Floer differential ∂ : CF∗(f ;J , H) −→ CF∗(f ;J , H) is de-

fined by

∂(y) =
∑︂

x∈Pf (H)

∑︂
u∈ˆ︂M1(x,y;J ,H)

qw(u)x.

The homology of the chain complex CF∗(f) is called the Floer coho-
mology of f with Floer data (J , H) and denoted by HF∗(f ;J , H).

35



There are graded continuation maps for different choices of Floer
data: Suppose (J , H) and (J ′, H ′) are regular Floer data as above.
Choose a family (Js,t, Hs,t) that satisfies the periodicity assumptions

Hs,t = Hs+1,t ◦ f and Js,t = f∗(Js+1,t)

and interpolates between (Js, Hs) and (J ′
s, H

′
s), i.e.

Hs,t = H ′
s, Js,t = J ′

t for t near −∞,
Hs,t = Hs, Js,t = Jt for t near ∞.

We denote byM(x, y; Js,t, Hs,t) the moduli space of solutions to the
1-parametric Floer equation

∂u

∂t
+ Js,t(u)

(︃
∂u

∂s
−XH

s,t(u)

)︃
= 0

that are f -periodic in s and tend to x and y as t→ ±∞. For generic
choice of (Js,t, Hs,t) the moduli space is a manifold and its zero-
dimensional component M0(x, y; Js,t, Hs,t) is discrete. The chain-
level continuation map is the chain map

CJs,t,Hs,t : CF
∗(f ;J , H) −→ CF∗(f,J ′, H ′)

y ↦−→
∑︂

x∈Pf (H′)

∑︂
u∈M0(x,y;Js,t,Hs,t)

qω(u)x.

The map induced in cohomology is independent of the homotopy
(Js,t, Hs,t). This allows us to identify the two Floer cohomology
groups HF∗(f ;J , H) and HF∗(f ;J ′, H ′) and simply write HF∗(f)
for the cohomology group of f .

Suppose f and f ′ are related by a Hamiltonian isotopy. Choose
a Hamiltonian isotopy ht = ψH

t such that f ′ = ψH
1 f . This isotopy

induces an isomorphism

Φf,f ′

h : HF∗(f) −→ HF∗(f ′). (1.9)

In general, this map might depend on the Hamiltonian isotopy. How-
ever, when (M,ω) is symplectically aspherical, the isomorphism is
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independent of h: Consider first the case of Hamiltonian Floer ho-
mology. Let ht := ψH

t be a Hamiltonian loop, i.e. h0 = h1 = id.
Consider the induced automorphism Φh : HF

∗(id) −→ HF∗(id). In
[Sei97b], Seidel constructed a group homomorphism

q : π1(Ham(M,ω)) −→ QH×(M,ω).

QH×(M,ω) acts on HF∗(id) via the quantum cup product ∗. There-
fore, q determines an action of π1(Ham(M,ω)) on HF∗(id). Seidel
shows that

Φh(a) = q(h) ∗ a.

When (M,ω) is symplectically aspherical, we have a ring isomor-
phism QH(M,ω) ∼= H∗(M ; Λ) and QH×(M,ω) = Λ×. In [Sch00],
Schwarz proves that q is in fact trivial in symplectically aspherical
manifolds. In particular it follows that Φh = id on HF∗(id) [Sch00,
Section 3].

To transport this result to HF∗(f), we use that HF∗(f) is a module
over HF∗(id). We denote this module action by

∗ : HF∗(id)⊗HF∗(f) −→ HF∗(f)

Then

Φf,f
h (a ∗ x) = Φh(a) ∗ x,

for any a ∈ HF∗(id) and x ∈ HF∗(f) [Sei97b, Proposition 6.3],
[Sei08b, Section (2a)]. In particular, it follows from Φh = id that

also Φf,f
h = id.

The independence of the isomorphism (1.9) follows from the case
of a loop and the property

Φf,f ′′

h·h′ = Φf ′,f ′′

h ◦ Φf,f ′

h

for any two Hamiltonian isotopies h and h′. Here, h · h′ denotes the
concatenation of the paths h(t) and h′(t) ◦ h1 in Ham(M,ω).

37



1.4.3 Conjugation invariance. Let f be a symplectomorphism
on X and g be an anti-symplectic diffeomorphism on X. We will
make substantial use of the following fact, which is an anti-symplectic
version of the well-known conjugation invariance of Floer cohomology
(see e.g. [Sei08b, section 3]).

Proposition 1.4.1. There exists a canonical graded isomorphism

g∗ : HF
∗(f−1)→ HF∗(gfg−1).

We apply this result to f = τS in the situation where gτSg
−1 is

Hamiltonian isotopic to τ−1
S . We then get an automorphism

g∗ : HF
∗(τ−1

S ) −→ HF∗(gτSg
−1) ∼= HF∗(τ−1

S ).

This is induced by the chain-level map

CF(τ−1
S ;Hs) −→ CF(gτSg

−1;H1−s ◦ g−1)

sending a generator x to g(x), concatenated with the canonical iso-
morphism

HF(gτSg
−1;H1−s ◦ g−1) ∼= HF(τ−1

S ;Hs).

As we explained above, this isomorphism does not depend on a choice
of Hamiltonian isotopy between τ−1

S and gτSg
−1.

Remark 1.4.2. If g′ = ψH
1 g then g∗ = g′∗. To see this, consider the

following diagram:

HF(τ−1
S ;Hs)

HF(gτSg
−1;H1−s ◦ g−1)

HF(τ−1
S ;Hs)

HF(ψH
1 gτSg

−1(ψH
1 )−1;H1−s ◦ g−1 ◦ (ψH

1 )−1)

g∗ ∼=

g′∗

(ψH
1 )∗

∼=
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The left triangle is commutative on the chain level. The right triangle
commutes because all the Seidel elements are the identity, as we
explained in the last section. This allows us in the proof of g∗(A) = A
to replace g by any g′ which is Hamiltonian isotopic to g.

We outline a proof for the statement on conjugation by an anti-
symplectic map.

Proof of Proposition 1.4.1. Let (J , H) be a Floer datum for f−1.
Consider the Hamiltonian function

Ks := H1−s ◦ g−1

and the almost complex structure

J ′
s := −(g−1)∗J1−s.

The Hamiltonian vector field associated to Ks and its flow are given
by

XK
t (x) = −Dg

(︁
XH

1−t(g
−1(x))

)︁
,

ψK
t (x) = gψH

1−t(ψ
H
1 )−1g−1(x).

It follows that (J ′,K) is an admissible Floer datum for gfg−1. More-
over, the bijection

Pf−1(H) −→ Pgfg−1(K)

x(t) ↦−→ x̃(t) := g(x(1− t))

extends to a Λ-linear isomorphism

g∗ : CF
∗(f−1;J , H) −→ CF∗(gfg−1;J ′,K). (1.10)

There is also a bijection between the moduli spaces

M1(x, y;J , H) −→M1(x̃, ỹ;J ′,K)

u(s, t) ↦−→ v(s, t) = g(u(1− s, t)).
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Therefore, g∗ in (1.10) is an isomorphism of chain complexes. More-
over, the degree is preserved because

det
(︁
Id−D((ψK

1 )−1gfg−1)x̃(0)
)︁
= det

(︁
Id−D(gψH

1 fg
−1)g(x(1))

)︁
= det

(︁
Id−D(ψH

1 f)f−1(x(0))

)︁
= det

(︁
Id−D(fψH

1 )x(0)
)︁

= det
(︁
Id−D((ψH

1 )−1f−1)x(0)
)︁
.

The second equality follows from factoring out Dg and Dg−1 and us-
ing multiplicativity of the determinant, the third follows from mul-
tiplying with Df and Df−1 from left and right, the fourth used that
D(fψH

1 )x(0) is symplectic. This clearly implies deg(x̃) = deg(x),
which means that the isomorphism g∗ preserves the degree.

Concatenation of this chain isomorphism with a continuation map

CF∗(gfg−1;J ′,K) −→ CF∗(gfg−1;J , H)

shows Proposition 1.4.1.

1.4.4 Lagrangian Floer cohomology. Let L0, L1 ⊂ M be two
closed relatively symplectically aspherical Lagrangians. Let

H : M × [0, 1] −→ R

be a Hamiltonian function such that ψH
1 (L0) ∩ L1 is a transverse

intersection. Choose also a 1-parametric family of ω-compatible al-
most complex structures J = {Jt}t∈R on M . Let PL0,L1(H) be the
set of paths x ∈ C∞([0, 1],M) such that x(0) ∈ L0, x(1) ∈ L1 and
x(t) = ψH

t (x(0)). The underlying Λ-vectorspace of the Floer complex
CF(L0, L1;J , H) is

CF(L0, L1;J , H) =
⨁︂

x∈PL0,L1
(H)

Λx.

The differential is defined as follows. For x, y ∈ PL0,L1(H) consider
the 0-dimensional moduli spaceM(x, y;J , H) of solutions to Floer’s
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equation ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u
∂t + Js(u)

(︁
∂u
∂s −X

H
s (u)

)︁
= 0,

u(0, t) ∈ L0, u(1, t) ∈ L1,

limt→−∞ u(s, t) = x,

limt→∞ u(s, t) = y,

modulo the R-action by translation. Then for y ∈ PL0,L1(H) the
differential is

∂y =
∑︂

x∈PL0,L1
(H)

∑︂
u∈M(x,y;J ,H)

qω(u)x.

If L0 and L1 are oriented, CF(L0, L1;J , H) is graded as follows.
The degree of x ∈ PL0,L1(H) is defined by

(−1)deg(x) = (−1)
n(n+1)

2 ν(x(1);ψH
1 (L0), L1),

where ν(z;K0,K1) ∈ {±1} denotes the intersection index of K0 and
K1 at z. This number is defined to be +1 if v1, . . . , v2n is a positive
basis for TxM whenever v1, . . . , vn is a positive basis for TzK0 and
vn+1, . . . , v2n is a positive basis for TzK1. See [Sei00, Section 2d] for
the grading, and [RS22] for the intersection index.

1.4.5 Lagrangian Floer cohomology in the product mani-
fold Note that for any symplectomorphism f on a symplectically
aspherical manifold M , the graph Γf is a relatively symplectically
aspherical Lagrangian submanifold in the product M ×M−. Also,
products of relatively symplectically aspherical Lagrangians inM are
relatively symplectically aspherical Lagrangians in M ×M−.

We endow the graph Γf with the following orientation: Given a
positive basis v1, . . . , v2n of TxM , then the basis

(v1, Dfx(v1)), . . . , (v2n, Dfx(v2n))

of Tx∆ ⊂ TxM ⊕ TxM is defined to be positive if (−1)
n(n−1)

2 = 1
and negative otherwise, see [WW10]. Moreover, given an oriented
Lagrangian N , note that f(N) has a canonical orientation.
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Let Q and N be oriented Lagrangians inM . There are the follow-
ing canonical graded isomorphisms between Floer cohomology groups
for Lagrangians in M ×M− and Lagrangians in M :

(i) HF∗(Q×N,Γf−1) ∼= HF∗(Q, f(N))

(ii) HF∗(Q×N,Q′ ×N ′) ∼= HF∗(Q,Q′)⊗HF∗(N ′, N)

Moreover, Floer cohomology of a symplectomorphism f can be viewed
as Lagrangian Floer cohomology of the pair (∆,Γf ). This isomor-
phism is well-known, see for instance [WW10], [MW18] and [LZ18,
section 2.7].

Proposition 1.4.3. There is a canonical graded isomorphism

Ψf : HF(f) −→ HF(∆,Γf ).

Moreover, for any anti-symplectic map g : M −→ M the following
diagram commutes:

HF∗(f−1)
g∗ →→

Ψf−1

↓↓

HF∗(gfg−1)

Ψgfg−1

↓↓
HF∗(∆,Γf−1)

Φg
∗ →→ HF∗(∆,Γgfg−1),

where Φg is the symplectomorphism

Φg : M ×M− −→M ×M−

(x, y) ↦−→ (g(y), g(x)).

As a special case, we recover the commutative diagram (1.5) when
f = τS and gτSg

−1 = τ−1
S .

Proof of Proposition 1.4.3. Choose a Floer datum (J , H) for f as
in Section 1.4.2. The generators of CF(f ;J , H) correspond to fixed
points of (ψH

1 )−1f . For the Lagrangian Floer complex, we choose
the following Floer datum:

Ks(x, y) = −
1

2
H 1−s

2
(x)− 1

2
H s+1

2
(y).
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and

J̃s := J̃
(1)
s ⊕ J̃

(2)
s := J 1−s

2
⊕
(︂
−J s+1

2

)︂
.

Generators of CF(∆,Γf ; ˜︁J ,K) correspond to intersection points be-
tween ∆ and (ψK

1 )−1(Γf ). The flows of H and K are related by

ψK
s (x, y) =

(︂
ψH

1−s
2

(x), ψH
s+1
2

(y)
)︂
.

Consider the bijection

∆ ∩ (ψK
1 )−1(Γf )←→ Fix

(︁
(ψH

1 )−1f
)︁

x̃ = (x, x)←→ x
(1.11)

between the generators of the two Floer complexes. There is a bijec-
tion between the corresponding moduli spaces

M(x̃, ỹ; ˜︁J ,K)←→M(x, y;J , H)

(v1(s, t), v2(s, t))←→ u(s, t) =

{︄
v1(1− 2s,−2t) s ∈ [0, 12 ]

v2(2s− 1,−2t) s ∈ [12 , 1].

Therefore, the bijection (1.11) extends to a chain isomorphism

CF(∆,Γf ; ˜︁J ,K) −→ CF(f ;J , H).

We show that this chain isomorphism preserved the grading. To
simplify notation, assume that H = K = 0. Let (x, x) ∈ ∆ ∩ Γf .
Let BM be a basis of TxM and consider the bases B∆ and BΓf of
T(x,x)∆ and T(x,x)Γf associated to BM . Note that B∆ and BΓf are
either both positive or both negative. Hence ν(x, x) = 1 if and only
if the basis B =

(︁
B∆,BΓf

)︁
is a positive basis of T(x,x)(M ×M−). A

computation shows that

B =

(︃
Id Id
Id Dfx

)︃
B0,
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where B0 =
(︁
(BM , 0), (0,BM )

)︁
. B0 is positively oriented if and only

if n is even. The determinant of the matrix is det(Dfx − Id) =
det(Id−Dfx). Hence,

ν(x, x) = (−1)nsign det(Id−Dfx)

and

(−1)deg(x,x) = (−1)n(−1)
2n(2n+1)

2 ν(x, x)

= (−1)n(−1)
2n(2n+1)

2 (−1)nsign det(Id−Dfx)

= (−1)n(−1)
2n(2n+1)

2 (−1)n(−1)deg(x)

= (−1)deg(x).

This shows that the isomorphism above indeed preserves the grading.
The commutativity of the diagram follows from chain-level commu-
tativity.

1.5 Lagrangian cobordisms

In this section we briefly recall some ingredients from the cobordism
theory developed by Biran–Cornea in the series of papers [BC13,
BC14, BC17]. This is background material which is relevant for the
Mak–Wu long exact sequence, the definition of the element A, as well
as the proof of Theorem 1.1.1.

1.5.1 Definitions. In this section we recall the definition of La-
grangian cobordisms [BC13, BC14, BC17]. Let (M,ω) be a symplec-
tic manifold. Consider the product symplectic manifold (M×R2, ω⊕
ωstd). Here, ωstd = dx∧dy denotes the standard symplectic form on
R2. We denote by π : M ×R2 → R2 the projection to the plane. For
subsets V ⊂M×R2 and Z ⊂ R2, we write V |Z := V ∩π−1(Z) for the
restriction of V over Z. A Lagrangian submanifold V ⊂ M × R2 is
called a Lagrangian cobordism [BC14, Definition 2.2.1] if there exists
R > 0 such that
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(i)

V |(−∞,−R]×R =

k−⋃︂
j=1

Lj × (−∞,−R]× {j}

for some closed Lagrangian submanifolds L1, . . . , Lk− ⊂M ,

(ii)

V |[R,∞)×R =

k+⋃︂
j=1

L′
j × [R,∞)× {j}

for some closed Lagrangian submanifolds L′
1, . . . , L

′
k+
⊂M ,

(iii) V |[−R,R]×R ⊂ R2 ×M is compact.

V is called a Lagrangian cobordism from the Lagrangian family
(L′

j)j=1,...,k+ to the Lagrangian family (Li)i=1,...,k−
, denoted by

(L′
j)j=1,...,k+ ⇝ (Li)i=1,...,k−

.

Denote by E+
R = V |[R,∞)×R the positive cylindrical ends and

similarly by E−
−R = V |(−∞,−R]×R the negative cylindrical ends. We

recall the notion of horizontal isotopy from [BC14, Definition 2.2.3].
A horizontal isotopy with respect to a Lagrangian cobordism V is a
not necessarily compactly supported Hamiltonian isotopy {ψH

t }t∈[0,1]
of M × R2 such that

(i) There exists a real number R′ > R such that for all t ∈ [0, 1],

ψH
t

(︁
E−

−R′
)︁
⊆ E−

−R′ and ψH
t

(︁
E+

R′
)︁
⊆ E+

R′ .

(ii) There exists a constant K > 0 such that for all x ∈ E+
R ∪ E

−
R ,

|dπx(XH
t (x))| < K.

In what follows we work with oriented cobordisms. Suppose
the families (L′

j)j=1,...,k+ and (Li)i=1,...,k−
consist of oriented La-

grangians. Then an oriented cobordism V from the family (L′
j)j=1,...,k+

to the family (Li)i=1,...,k−
is a cobordism V endowed with an orien-

tation that restricts to the given orientations on the ends.
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1.5.2 Lagrangian cobordisms induce cone decompositions.
We recall here how a cobordism gives rise to cone decompositions
of its ends in the derived Fukaya category DFuk(M). For a brief
explanation of DFuk(M) we refer the reader to the Appendix. Since
we work with cohomology, rather than homology, we write here a
cohomological reformulation of Theorem A from [BC14]. We work
with a Z2-grading.

Theorem 1.5.1 (Theorem A in [BC14]). Let V be an oriented cobor-
dism from L to the family (L1[l − 1], L2[l − 2], . . . , Ll). Assume that
all Lagrangians involved (including V ) are relatively symplectically
aspherical. 2 Then there exists a graded quasi-isomorphism

L ∼= Cone (. . .Cone(Cone(L1 → L2)→ L3)→ · · · → Ll)

in the derived Fukaya category DFuk(M).

Here, we denote by L[k], k ∈ Z the Lagrangian L with the same
orientation for even k, and with oppostite orientation for odd k. The
theorem also holds in the context of Z-gradings, see also [MW18,
Theorem 5.2].

A special case occurs when there are only three Lagrangians in-
volved, namely V has one right end, L, and two left ends, L1[1]
and L2 as shown in Figure 1.3. In this situation we get a quasi-

L2

L1[1] L

π(V )

Figure 1.3: A cobordism with three ends.

isomorphism
L ∼= Cone(L1 −→ L2).

2The original statement only assumes monotonicity conditions.
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In other words there is an exact triangle

L1

L2

L
φV

[1]

in DFuk(M). As we explain further in Appendix A.2, the mor-
phism φV can be understood as a µ2-operation with a unique el-
ement αV ∈ HF 0(L2, L). The associated long exact sequence in
cohomology reads

· · · −→ HFk−1(K,L) −→ HFk(K,L1) −→

−→ HFk(K,L2)
µ2(αV ,−)−−−−−−→ HFk(K,L) −→ . . .

The morphism φV ∈ MorDFuk(M)(L2, L) is determined by the
cobordism V and it only depends on the horizontal isotopy type of
V [BC14, Theorem B]. There are various descriptions of φV as sum-
marized in [BC14, Section 4.8]. We recall one possibe view on the
element αV ∈ HF0(L2, L). Consider the Lagrangian γ × L2 colored
in blue in Figure 1.4. Consider the map φV obtained from count-

L2

L1[1] L

L2 π(V )
Q

P

Figure 1.4: Counting holomorphic strips.

ing holomorphic strips with boundary on γ × L2 and V , output in
CF(L2, L2) over P and input in CF(L2, L) overQ. Such strips project
to the area shaded in blue in Figure 1.4. The resulting map is

φV : HF∗(L2, L2) −→ HF∗(L2, L)
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and αV = φV (e), where e ∈ HF 0(L2, L2) is the unit.

Consider a symplectomorphism Φ: M −→M and the cobordism
(Φ× id)(V ) with ends Φ(L1), Φ(L2) and Φ(L). It can be seen from
the above description of αV that α(Φ×id)(V ) = Φ∗(αV ), where

Φ∗ : HF
∗(L2, L) −→ HF∗(Φ(L2),Φ(L))

is the induced map in cohomology. Indeed, strips u occuring in the
count for φV are in 1:1-correspondence with strips v occuring in the
count for φ(Φ×id)(V ) via v = (Φ× id)(u). In particular, if (Φ× id)(V )
and V are horizontally isotopic then Φ∗(αV ) = αV .

Cobordisms with three ends occur in the situation of surgery
[BC13, Section 6]: Let L1 and L2 be two Lagrangians intersecting
transversely in a single point p ∈ L1 ∩ L2. Then there is a surgery
construction yielding a third Lagrangian L1#pL2. Another surgery
construction applied to L1 × R and L2 × iR allows to construct a
cobordism V with the three ends L1, L2 and L1#pL2. The Mak-Wu
cobordism will be obtained from a variant of this construction. It is
explained in detail in the next section.

1.6 Mak-Wu cobordism

We consider a symplectic manifold (M,ω) and a parametrised La-
grangian sphere S ⊂M . Mak-Wu [MW18] constructed a Lagrangian
cobordism VMW in the product manifold M ×M− with three ends:
the product Lagrangian S × S, the diagonal ∆ and the graph Γτ−1

S
.

In this section, we will recall the construction of this cobordism fol-
lowing closely [MW18].

1.6.1 The graph of the Dehn twist. Following the principle
that surgeries provide cobordisms with three ends [BC13, Section 6],
the Mak-Wu cobordism also arises as the trace of a surgery. The
first step therefore is to understand Γτ−1

S
as the result of a surgery

between S×S ⊂M ×M− and the diagonal ∆ ⊂M ×M− along the
clean intersection ∆S := (S × S) ∩∆.
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The surgery construction takes place locally in a Weinstein neigh-
bourhood of S × S. We choose a very specific neighbourhood, so
that we can later compare it to the graph of a model Dehn twist.
Let φ : V −→ T ∗

ϵ S
n be a Weinstein neighbourhood of S as in sec-

tion 1.2.1 that extends the parametrisation of S. Then consider the
symplectic embedding

˜︁φ : V × V −→ T ∗
ϵ S

n ⊕ T ∗
ϵ S

n ⊂ T ∗(Sn × Sn)

(x, y) ↦−→ (φ(x),−φ(y))

that identifies S×S with the zero-section in T ∗(Sn×Sn). Note that

˜︁φ−1(N∗
∆S

) = ∆ ∩ (V × V ),

where

N∗
∆S

:= {α ∈ T ∗(Sn × Sn) | ∀v ∈ ∆S : α(v) = 0} .

We will define a surgery model in T ∗(Sn × Sn) for surgery of the
zero-section and N∗

∆S
along their intersection ∆S . Then we will glue

the surgery model into V × V via φ̃. To define the surgery model,
we need some auxiliary functions similar to the Dehn twist profile
functions.

Definition 1.6.1. A λ-admissible function νλ : R≥0 −→ [0, λ] is a
smooth function satisfying⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

νλ(0) = λ,

ν−1
λ has vanishing derivatives of all orders at λ,

0 < νλ(r) < λ and strictly decreasing for 0 < r < ϵ,

νλ(r) = 0 for r ≥ ϵ.

Let
π2 : T

∗(Sn × Sn) ∼= T ∗Sn ⊕ T ∗Sn → T ∗Sn

be the projection to the second summand. Consider its norm

µπ : T
∗(Sn × Sn) −→ R

ξ ↦−→ ∥π2(ξ)∥.
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This has a well-defined Hamiltonian flow on T ∗(Sn×Sn)\T ∗Sn. Let
λ < π and let ν = νλ be a λ-admissible function. We define the
following flow handle:

Hν =
{︂
ψµπ

ν(µπ(ξ))
(ξ) ∈ T ∗(Sn × Sn)

⃓⃓
ξ ∈ N∗

∆S
\∆S , µπ(ξ) < ϵ

}︂
.

Hν can be glued to a part of S × S and N∗
∆S

, resulting in a smooth
Lagrangian in T ∗(Sn×Sn) that coincides with N∗

∆S
outside of T ∗

ϵ S⊕
T ∗
ϵ S

n. We denote the resulting Lagrangian by

(Sn × Sn)#ν
∆S
N∗

∆S .

This is the model surgery. We finally glue it into V × V via the
embedding ˜︁φ:

(S × S)#ν
∆S

∆ := ˜︁φ−1
(︁
(Sn × Sn)#ν

∆S
N∗

∆S

)︁
∪
(︁
∆\(V × V −)

)︁
.

Mak-Wu [MW18, Lemma 3.4] show that all such surgeries are
Hamiltonian isotopic for different choices of ν. Moreover, the same
construction works for ν = νDehn

ϵ (even though this is not admissi-
ble) and the result is again Hamiltonian isotopic to any of the other
surgeries. For ν = νDehn

ϵ the model surgery coincides with the graph
of the model Dehn twist. It follows that

(S × S)#νDehn
ϵ

∆S
∆ = Γτ−1

S

and so any of the above surgeries is Hamiltonian isotopic to Γτ−1
S

. In

particular, since Γτ−1
S

is relatively symplectically aspherical, so are

the surgeries (S × S)#ν
∆S

∆.

Remark 1.6.2. This version of surgery is a special case of E2-flow
surgery, introduced in [MW18, section 2.3] in more general situations.

1.6.2 The cobordism. The Lagrangian (S × S)#ν
∆S

∆ obtained
from surgery is related to S×S and ∆ via a cobordism. This follows
from a construction called “trace of a surgery”, which is a surgery
construction in one dimension higher. It was first introduced in
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[BC13] for the case of a transverse surgery in a point. As shown
in [MW18], exactly the same construction works for the E2-surgery
along clean intersections. We recall the construction in our special
case.

As before we first construct a local model. We will then glue the
model back into M ×M− × T ∗R via the symplectomorphism

˜︁φ× id : V × V × T ∗R −→ T ∗
ϵ S

n ⊕ T ∗
ϵ S

n ⊕ T ∗R ⊂ T ∗(Sn × Sn × R).

Let ν = νλ be a λ-admissible function, as defined in Definition
1.6.1. This time we will use the flow of the function

µπ̂ : T
∗(Sn × Sn × R) −→ R,

(ξ1, ξ2, p) ↦−→ ∥(ξ2, p)∥ =
√︂
∥ξ2∥2 + p2.

The handle in the model T ∗(Sn × Sn × R) is defined as follows:

ˆ︁Hν =

{︄
ψµπ̂

ν(µπ̂(ξ))
(ξ) ∈ T ∗(Sn × Sn × R)

⃓⃓⃓⃓
⃓ξ ∈ N

∗
∆S×{0}\(∆S × {0})

µπ̂(ξ) < ϵ

}︄
.

This model handle ˆ︁Hν glues to a part of (Sn × Sn ×R)\∂ ˆ︁Hν , which
yields the model surgery trace

(Sn × Sn × R)#∆S×{0}N
∗
∆S×{0}.

Near the boundary of T ∗
ϵ S

n⊕T ∗
ϵ S

n⊕T ∗R it coincides with N∗
∆S×{0}.

Moreover ˜︁φ× id identifies

N∗
∆S×{0} = N∗

∆S
× T ∗

0R

with ∆ × T ∗
0R, where T ∗

0R is the cotangent fiber over 0. Therefore
we can glue the model surgery trace into M ×M− × T ∗R via ˜︁φ× id
by

V := (˜︁φ× id)−1
(︂
(Sn × Sn × R)#∆S×{0}N

∗
∆S×{0}

)︂
∪ (∆× T ∗

0R) .

The result is a Lagrangian submanifold V ⊂ M ×M− × T ∗R. We
identify T ∗R and C via (q, p)↔ q − ip. In particular, the fiber T ∗

0R
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over 0 is identified with the imaginary axis iR. This justifies the
notation

V =: (S × S × R)#∆S×{0} (∆× iR) .

The Lagrangian V satisfies

V ∩ π−1
C (ϵ) = S × S × {ϵ},

V ∩ π−1
C (iϵ) = ∆× {iϵ},

V ∩ π−1
C (0) =

(︁
(S × S)#ν

∆S
∆
)︁
× {0}.

By taking half of V , extending it by a ray of (S × S)#ν
∆S

∆ at 0 and
smoothing it, and bending the ends, as explained in [BC13, Section
6.1], we get a cobordism

˜︁V : (S × S)#ν
∆S

∆⇝ (S × S,∆).

As discussed in section 1.6.1, (S × S)#ν
∆S

∆ is Hamiltonian iso-

topic to Γτ−1
S

. Gluing a corresponding suspension to ˜︁V finally gives

us the claimed cobordism

VMW : Γτ−1
S
⇝ (S × S,∆).

Figure 1.5 illustrates the cobordism VMW .

∆

S × S[1] Γτ−1
S

π(VMW )

Figure 1.5: The Mak-Wu cobordism.

1.6.3 Floer theory. Mak–Wu [MW18] explains how to put Z-
gradings on S × S, ∆, Γτ−1

S
and on VMW such that VMW becomes a

Z-graded cobordism from Γτ−1
S

to (S × S[1],∆). Here, we only use
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Z/2-gradings. Their results immediately descend to the Z2-graded
setting and VMW becomes an oriented cobordism.

If M and S ⊂ M are (relatively) symplectically aspherical, then
VMW is a relatively symplectically aspherical Lagrangian in the prod-
uctM×M−×C with relatively symplectically aspherical ends [MW18,
Lemma 6.2, 6.3]. Floer theory for VMW and its ends is therefore well-
defined. We can apply Theorem 1.5.1 and get a long exact sequence
of graded Lagrangian Floer cohomology groups [MW18, Theorem
6.4]:

. . . −−−→ HFk(K,S × S) µ2(B,−)−−−−−→ HFk(K,∆)
µ2(A,−)−−−−−→

µ2(A,−)−−−−−→ HFk(K,Γτ−1)
µ2(C,−)−−−−−→ HFk+1(K,S × S) −−−→ . . .

for any admissible Lagrangian submanifold K ⊂ (M ×M,ω ⊕−ω).
This is precisely the sequence (1.3). As indicated, the maps are given
by µ2 operations with elements A ∈ HF0(∆,Γτ−1), B ∈ HF0(S ×
S,∆) and C ∈ HF1(Γτ−1

S
, S×S). A,B and C are independent of K.

Proposition 1.6.3. If 2c1(M) = 0 in H2(M ;Z) and 2c1(M,S) = 0
in H2(M,S;Z) then A ̸= 0. 3

Proof. Under the condition on the Chern class, everything becomes
Z-graded, see [Sei00]. For K = ∆, the sequence becomes

. . . −−→ HFk(S, S) −−→ HFk(id)
Ψ−−→

Ψ−−→ HFk(∆,Γτ−1) −−→ HFk+1(S, S) −−→ . . . .

Assume by contradiction that A = 0. Then Ψ = 0 and hence we get
Z-graded isomorphisms

H∗(S; Λ) ∼= QH∗(S) ∼= HF∗(S, S) ∼= HF∗(id) ∼= QH∗(M) ∼= H∗(M ; Λ).

This is not possible. We conclude that A ̸= 0.

3The condition 2c1(M,S) = 0 is automatic for n ≥ 2. For n = 1 it is equivalent
to S being a non-contractible circle.
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1.7 Symmetry of the Mak-Wu cobordism

Let g : M −→ M be an anti-symplectic map satisfying (⋆). In
this section, we prove Theorem 1.1.5. It states that g is Hamilto-
nian isotopic to some g′ such that Φg′ × id preserves VMW , where
Φg′(x, y) = (g′(y), g′(x)).

1.7.1 Local Model We first consider the local model. Consider
T ∗Sn together with an anti-symplectic involution c of the form T ∗σ
for σ = idSm or σ = r. Recall from the proof of Proposition 1.1.4
that

∥c(ξ)∥ = ∥ξ∥ (1.12)

and

cψµ
t c = ψµ

−t. (1.13)

Consider the symplectomorphism

Ψ = Φc × id : T ∗Sn × T ∗Sn × T ∗R −→ T ∗Sn × T ∗Sn × T ∗R
(ξ1, ξ2, z) ↦−→ (c(−ξ2),−c(ξ1), z).

We first show that the model surgery cobordism is preserved under
Ψ.

Proposition 1.7.1. Let ν be an admissible function. Then

Ψ
(︁
(Sn × Sn × R)#ν

∆S×{0}N
∗
∆S×{0}

)︁
= (Sn × Sn × R)#ν

∆S×{0}N
∗
∆S×{0}.

Proof. It is enough to show that

Ψ( ˆ︁Hν) = ˆ︁Hν .

Let us first unwrap the definition of ˆ︁Hν . The flow of µπ̂ can be
rewritten in terms of component-wise flows. For this, we introduce
the norm function on T ∗R given by

µR : T ∗R −→ R, µR(q, p) = |p|.
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Recall that µ : T ∗S −→ R is the Hamiltonian function µ(ξ) = ∥ξ∥ we
used earlier to define τS . Then for (ξ1, ξ2, p) ∈ T ∗Sn ⊕ T ∗Sn ⊕ T ∗R
we have

ψµπ̂
t (ξ1, ξ2, p) =

⎛⎝ξ1, ψµ
t∥ξ2∥√
∥ξ2∥2+p2

(ξ2), ψ
µR

t|p|√
∥ξ∥2+p2

(p)

⎞⎠ .

We introduce the following abbreviations:

s(∥ξ∥, |p|) = ν

(︃√︂
∥ξ∥2 + p2

)︃
∥ξ∥√︂
∥ξ∥2 + p2

and

r(∥ξ∥, |p|) = ν

(︃√︂
∥ξ∥2 + p2

)︃
|p|√︂

∥ξ∥2 + p2
.

With this notation ˆ︁Hν is the set{︄(︂
ξ, ψµ

s(∥ξ∥,|p|)(−ξ), ψ
µR

r(∥ξ∥,|p|)(0, p)
)︂ ⃓⃓⃓ ξ ∈ T ∗

ϵ S, p ∈ R,

0 <
√︂
∥ξ∥2 + p2 < ϵ

}︄
.

Let ξ ∈ T ∗S and p ∈ R such that√︂
∥ξ∥2 + p2 < ϵ.

Elements of the handle ˆ︁Hν are of the form

α := (ξ, ψµ
s(∥ξ∥,|p|)(−ξ), (r(∥ξ∥, |p|), p)).

Therefore Φ( ˆ︁Hν) consists of the elements

Φ(α) := (c(−ψµ
s(∥ξ∥|p|)(−ξ)),−c(ξ), (r(∥ξ∥, |p|), p)).

Renaming ζ := c(−ψµ
s(∥ξ∥|p|)(−ξ)) and using (1.12) and (1.13) we

compute

Φ(α) = (ζ,−c(−ψµ
−s(∥c(ζ)∥,|p|)(−c(ζ))), (r(∥c(ζ)∥, |p|), p))

= (ζ, c(ψµ
−s(∥ζ∥,|p|)(c(−ζ))), (r(∥ζ∥, |p|), p))

= (ζ, ψµ
s(∥ζ∥,|p|)(−ζ), (r(∥ζ∥, |p|), p)).
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These are precisely the elements of ˆ︁Hν . Therefore Φ( ˆ︁Hν) = ˆ︁Hν and
the Proposition follows.

Next we turn to the suspension part of the cobordism. Let
(Sn×Sn)#νt

∆S
∆, t ∈ [0, 1] be a Hamiltonian isotopy, where all νt are

admissible, except for ν1 which coincides with νDehn
ϵ . The Hamilto-

nian Kt : T
∗(Sn × Sn) −→ T ∗(Sn × Sn) generating this isotopy can

be chosen to be of the form Kt(ξ1, ξ2) = Kt(∥ξ1∥, ∥ξ2∥), see [MW18,
Lemma 3.6]. Moreover, Kt can be chosen to be zero for t close to 0 or
1. The suspension cobordism associated to this Hamiltonian isotopy
is the cylindrical extension of the Lagrangian

S :=

{︄
(ψK

t (x), t− iKt(ψ
K
t (x))) ∈ T ∗Sn × T ∗Sn × C

⃓⃓⃓⃓
⃓x ∈ Hν0 ,

t ∈ [0, 1]

}︄
.

Proposition 1.7.2. Ψ(S) = S.

Proof. Elements of S can be written as

α =
(︂
ξ, ψµ

νt(∥ξ∥)(−ξ), t− iKt(∥ξ∥, ∥ξ∥)
)︂

for some ξ ∈ T ∗
ϵ S. Elements of the corresponding part of Ψ(S) are

of the form (︂
c(−ψµ

νt(∥ξ∥)(−ξ),−c(ξ), t− iKt(∥ξ∥, ∥ξ∥)
)︂

for ξ ∈ T ∗
ϵ S. As before, we see that these elements are precisely the

elements of S via the transformation ζ = c(−ψµ
νt(∥ξ∥)(−ξ)). Therefore

Ψ(S) = S.

1.7.2 The symmetry of the Mak-Wu cobordism. Let (V, φ)
be a Weinstein neighbourhood of S with φ(V ) = T ∗

ϵ S for some ϵ > 0.
As in the proof of Proposition 1.1.4 let ψt : M −→M be a Hamilto-
nian isotopy such that g′ = gψ1 is an anti-symplectic map satisfying

g′T := φg′φ−1 = T ∗σ on T ∗
δ S

n
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for σ = idSn or σ = r and some δ > 0. Let ν be an admissible
function such that the handle ˆ︁Hν is contained in T ∗

δ S
n⊕T ∗

δ S
n⊕T ∗

δ R.
Moreover, we choose an isotopy νt between ν and ν1 = νDehn

δ , where
all νt are supported in T ∗

δ S
n.

We show that Theorem 1.1.5 is satisfied for the cobordism VMW

constructed from these choices and Φg′ . That is, we show(︂
Φg′ × id

)︂
(VMW ) = VMW .

Proof of Theorem 1.1.5. On the neighbourhood

(φ̃× id)−1(T ∗
δ S

n ⊕ T ∗
δ S

n ⊕ T ∗
δ R)

of the surgery we have

Φg′ × id = (φ̃× id)−1Ψ(φ̃× id),

where Ψ is the symplectomorphism from the previous section asso-
ciated to T ∗σ. Therefore, Proposition 1.7.1 implies that Φg′ × id
preserves

(S × S × R)#∆S×{0} (∆× iR) .
Hence, the surgery part of the cobordism VMW is mapped to itself
under Φg′ × id.

Similarly, Proposition 1.7.2 shows that the suspension part of
VMW is preserved under Φg′ × id. The symmetry of the surgery part
and the symmetry of the suspension part together prove Theorem
1.1.5.

Remark 1.7.3. For any anti-symplectic map g satisfying assump-
tion (⋆) and gτSg

−1 = τ−1
S , it can be shown that (Φg × id) (VMW ) is

almost horizontally isotopic to VMW via a Hamiltonian isotopy Ψt

that preserves the ends S × S and Γid, but acts by a Hamiltonian
loop on the third end Γτ−1

S
. We expect that in the symplectically

aspherical case, it follows

α(Φg×id)(VMW ) = αΨ1(VMW ) = αVMW
,

even though Ψt is not a genuine horizontal isotopy. This provides an
alternative viewpoint on Theorem 1.1.1.
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1.8 Examples.

In [Sei96], Seidel computed Floer cohomology of products of disjoint
Dehn twists on surfaces of genus ≥ 2. As a special case, his result
yields a Z-graded isomorphism

HF∗(τ−1
S ) ∼= H∗(M\S; Λ). (1.14)

Later, Gautschi [Gau03] generalised Seidel’s result to diffeomorphisms
of finite type, still on surfaces. Recently Pedrotti [Ped22] suggested
Z2-graded version of (1.14) for rational, W+-monotone symplectic
manifolds of dimension at least 4. The W+-condition is explained in
Seidel [Sei97b]. It is immediate that symplectically aspherical mani-
folds are W+-monotone.

It turns out that the automorphism c∗ on HF (τ−1
S ) corresponds

to the (topologically induced) map c∗ on singular cohomology. More
precisely, the following diagram commutes:

HF∗(τ−1
S )

∼= →→

c∗
↓↓

H∗(M\S; Λ)

c∗

↓↓
HF∗(τ−1

S )
∼= →→ H∗(M\S; Λ).

(1.15)

Together with Theorem 1.1.1 this allows us to deduce topological
restrictions on the element A ∈ HF∗(τ−1

S ) and sometimes enables us
to compute A. We end this chapter with some concrete examples in
two dimensions.

Example 1.8.1 (Genus 2 surface). Consider the genus 2 surface Σ2.
Take S to be a separating curve, going once around between the two
holes, as in Figure 1.6. Consider the Dehn twist τS along S.

As in [Sei96] we can work over Z2 instead of the Novikov field,
and the Floer cohomology groups are Z-graded.

τS splits into the product of two anti-symplectic involutions: Take
c to be the anti-symplectic involution which is a reflection along S.
It is straight-forward to check that cτSc is Hamiltonian isotopic to
τ−1
S .
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α1 S α2

β1 β2

Figure 1.6: Genus 2 surface with Lagrangian sphere S.

We compute c∗ : HF
∗(τ−1

S ) → HF ∗(τ−1
S ). By the isomorphism

(1.14) we get

HF ∗(τ−1
S ) ∼= H∗(Σ\S;Z2)

∼= H∗(S1 ∨ S1;Z2)⊕H∗(S1 ∨ S1;Z2)
∼= Z2[pt1]⊕ Z2α1 ⊕ Z2β1 ⊕ Z2[pt2]⊕ Z2α2 ⊕ Z2β2.

In degree 0, the matrix representing c∗ on H0(Σ\S;Z2) with respect
to the basis [pt1], [pt2] is (︃

0 1
1 0

)︃
.

It follows from Theorem 1.1.1 that A = [pt1] + [pt2].

Example 1.8.2 (Higher genus surfaces). Similarly, we can consider
any surface Σ of genus g ≥ 2 and a separating circle S in it that
is the fixed point set of a reflection. Then HF 0(τ−1

S ) ∼= Z2 ⊕ Z2,
where each of the two summands corresponds to one of the connected
components of Σ\S. Theorem 1.1.1 implies A = (1, 1).

Example 1.8.3 (Torus). Let S be any non-contractible embedded
circle in the torus T 2. Using the long exact sequence (1.3) applied
to K = ∆ one computes

HF 0(τ−1
S ) ∼= Heven(T 2; Λ)/H0(S; Λ) ∼= H2(T 2; Λ) ∼= Λ.

For any anti-symplectic involution c : T 2 → T 2 satisfying c(S) = S,
it follows that c∗ = id.
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Chapter 2

Lagrangian Hofer metric and
barcodes

2.1 Introduction and main results

Let (M,ω = −dλ) be an exact symplectic manifold. Consider the
group Ham(M) of compactly supported Hamiltonian diffeomorphisms.
Any compactly supported Hamiltonian function H ∈ C∞([0, 1]×M)
generates a Hamiltonian flow {ψH

t }. The Hofer norm of a Hamilto-
nian diffeomorphism φ ∈ Ham(M) is given by

∥φ∥H = inf

{︃∫︂ 1

0
max
x∈M

Ht(x)− min
x∈M

Ht(x) dt
⃓⃓
ψH
1 = φ

}︃
.

Let L and L′ be closed connected Lagrangian submanifolds inM that
are Hamiltonian isotopic. The Lagrangian Hofer distance between L
and L′ is defined by

dH(L,L′) = inf
{︁
∥φ∥H

⃓⃓
φ(L) = L′}︁ .

For transversely intersecting and exact Lagrangians L and L′ we
consider the Floer complex CF(L,L′) over Z2. A choice of primitives
of the exact 1-forms λ|L and λ|L′ gives rise to an action functional A
that induces a filtration on the Floer complex CF(L,L′). Therefore,
the homology group HF(L,L′) of CF(L,L′) becomes a persistence
module HF≤•(L,L′). The barcode B(L,L′) associated with it gives
rise to a number of invariants for the pair (L,L′). One of them is
the Lagrangian spectral metric γ(L,L′), which is the largest distance
between two infinite bars in B(L,L′) [Vit92, KS21]. The boundary
depth β1(L,L

′), studied in [Ush13], is the length of the longest finite
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bar. In this thesis, we also consider the lengths of the other finite
bars. We denote by

β1(L,L
′) ≥ β2(L,L′) ≥ · · · ≥ βk(L,L′)

the lengths of the finite bars ordered by their size. While the barcode
B(L,L′) actually depends on the choice of primitives of λ|L and λ|L′ ,
the numbers γ(L,L′) and βi(L,L

′), i ∈ {1, . . . , k}, are independent
of it. Kislev-Shelukhin [KS21] proved the following inequalities

β1(L,L
′) ≤ γ(L,L′) ≤ dH(L,L′). (2.1)

In this thesis we prove a converse inequality for equators in the
cylinder. From now on, we work in Σ := S1 × (−1, 1). In local
coordinates (q, p), the standard symplectic form on Σ is ω = dq∧dp =
−dλ for λ = pdq. Let L0 = S1 × {0} ⊂ Σ denote the zero-section.
We are interested into the set L(L0) of all Lagrangians L ⊂ Σ which
are Hamiltonian isotopic to L0.

Theorem 2.1.1. Suppose that L,L′ ∈ L(L0) intersect transversely
in 2n points. Then

dH(L,L′) ≤
n−1∑︂
j=1

2jβj(L,L
′) + γ(L,L′).

Using the inequalities (2.1) we get the following bound:

Corollary 2.1.2. For any L,L′ as above,

γ(L,L′) ≤ dH(L,L′) ≤ 2nγ(L,L′).

2.1.1 Relation to previous work. Theorem 2.1.1 was inspired
by the following result of Khanevsky.

Theorem 2.1.3 ([Kha11]1). There exist constants k and c such that
for any transversely intersecting L,L′ ∈ L(L0),

dH(L,L′) ≤ k ·#(L ∩ L′) + c.
1Khanevsky proved this result for a wider class of surfaces and Lagrangians,

not just the cylinder.
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Moreover, Khanevsky proved that Hofer’s distance on L(L0) is un-
bounded [Kha09]. Let L ∈ L(L0) and consider a sequence {Ln} ⊂
L(L0) of Lagrangians, transverse to L, such that dH(L,Ln)

n→∞−−−→∞.
It follows from Khanevsky’s result that #(L ∩ Ln)

n→∞−−−→ ∞. In
contrast to Hofer’s metric dH , the spectral distance γ is bounded
[She22c]. Therefore, Corollary 2.1.2 shows that the number of bars
in B(L,Ln) tends to ∞. This recovers #(L ∩ Ln)

n→∞−−−→ ∞ because
the intersection points are in bijection with the endpoints of the bars
in B(L,Ln).

It is known that γ is C0-continuous [BHS22], and even Haus-
dorff continuous [She22b]. In contrast, dH is not expected to be C0-
continuous. Our result gives the following insight into convergence
in Hofer’s metric.

Corollary 2.1.4. Suppose {Ln}n∈N is a sequence of Lagrangians,
transverse to L, that C0-converges to L. If kn := #(L ∩ Ln) is
bounded, then {Ln} converges to L in the Lagrangian Hofer metric.

2.1.2 Outline of the proof. We explain the strategy to prove
Theorem 2.1.1. Let L,L′ ∈ L(L0) be two transverse Lagrangians
that intersect in 2n points. The action spectrum {A(q)|q ∈ L ∩ L′}
coincides with the endpoints of the bars in B(L,L′). Therefore, the
barcode B(L,L′) consists of n − 1 finite bars and 2 infinite bars.
We prove the Theorem by induction on the number of intersection
points.

Base case: If there are only two intersection points, say q and p,
then Hofer’s distance is equal to the area of one of the Floer strips
connecting q and p. This is also the difference between the action
values of the two infinite bars in B(L,L′), hence dH(L,L′) = γ(L,L′).

Induction Step: Suppose Theorem 2.1.1 holds for Lagrangians
transversely intersecting in 2(n − 1) points. Let L and L′ be as
above intersecting in 2n ≥ 4 many points. We assume that any
two intersection points q ̸= p ∈ L ∩ L′ satisfy A(q) ̸= A(p). In
order to use the induction hypothesis, we construct a Lagrangian L′′

using Khanevsky’s construction for deleting a leaf [Kha09]. A leaf
is a connected component of Σ\(L ∪ L′), which is bounded by one
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connected component of L\(L ∩ L′) and one connected component
of L′\(L ∩ L′). See Figure 2.1 for an illustration and section 2.4 for
more details.

L′

L

Figure 2.1: A pair of equators (L,L′) in the cylinder (the left and
right vertical lines are identified). The 3 leaves are
coloured in red.

In section 2.5 we show the following

Proposition 2.1.5. Let [a, b) be a shortest finite bar in B(L,L′).
Let q̄, p̄ ∈ L ∩ L′ be the intersection points satisfying A(q̄) = b and
A(p̄) = a. Then q̄ and p̄ are connected by a leaf.

This leaf has area A(q̄)−A(p̄) = b− a = βn−1(L,L
′).

We can therefore remove the intersection points q̄ and p̄ using
Khanevsky’s construction for deleting a leaf: For any ϵ > 0 there
exists a Hamiltonian diffeomorphism φ of Hofer norm

∥φ∥H ≤ βn−1(L,L
′) + ϵ

such that L′′ := φ(L′) intersects L transversely and the number of
intersection points is 2(n− 1).

The Floer complexes CF(L,L′) and CF(L,L′′) can be endowed
with action filtrations such that their persistence homologies are
βn−1(L,L′)+ϵ

2 -interleaved. It follows that

|βj(L,L′)− βj(L,L′′)| ≤ βn−1(L,L
′) + ϵ (2.2)
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for all 1 ≤ j ≤ n− 2 and

|γ(L,L′)− γ(L,L′′)| ≤ βn−1(L,L
′) + ϵ. (2.3)

The theorem holds true for (L,L′′) by the induction hypothesis.
We therefore get

dH(L,L′) ≤ dH(L,L′′) + dH(L′′, L′)

≤

⎛⎝n−2∑︂
j=1

2jβj(L,L
′′) + γ(L,L′′)

⎞⎠+
(︁
βn−1(L,L

′) + ϵ
)︁

≤
n−2∑︂
j=1

2j
(︁
βj(L,L

′) + βn−1(L,L
′) + ϵ

)︁
+
(︁
γ(L,L′) + βn−1(L,L

′) + ϵ
)︁
+ βn−1(L,L

′) + ϵ

=
n−2∑︂
j=1

2jβj(L,L
′) + γ(L,L′)

+

⎛⎝⎛⎝n−2∑︂
j=1

2j

⎞⎠+ 2

⎞⎠ (βn−1(L,L
′) + ϵ)

=
n−1∑︂
j=1

2jβj(L,L
′) + γ(L,L′) + 2n−1ϵ,

where we used (2.2), (2.3) in the third inequality. Taking the limit
as ϵ→ 0 finishes the induction step.

Remark 2.1.6. (i) The interleaving between the persistence mod-
ules HF(L,L′) and HF(L,L′′), as well as the inequalities (2.2)
and (2.3) are well-known and hold in wide generality under the
name of stability, see for example [KS21, Ush13]. Instead of
directly applying the general theory to our special case, we in-
clude in section 2.4 a combinatorial proof for equators in the
cylinder.

(ii) The bound in Theorem B is not expected to be tight. The
weights are coming from induction and the bounds (2.2) and
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(2.3). It is possible to get a better control over the change of
the barcode when deleting a leaf. While this attempt does not
yield a better bound in Theorem B we include an explanation
of these ideas in section 2.6.

(iii) The bound in Theorem B can be computed algorithmically. We
elaborate more on this in Remark 2.3.5.

2.1.3 Organization of chapter 2. In section 2.2 we explain fil-
tered combinatorial Floer homology for Lagrangians in the cylinder.
The machinery of persistence modules and barcodes is reviewed in
section 2.3. In section 2.4 we recall Khanevsky’s construction of
deletion of a leaf and analyse its effect on persistent Floer homology
and its barcodes. In particular, we give a combinatorial proof for in-
equalities (2.2) and (2.3). Proposition 2.1.5 is proved in section 2.5.
Section 2.6 establishes a better control of the change in the barcode
when deleting a leaf.

2.2 Filtered combinatorial Floer homology

In this section we introduce the filtered Floer complex for trans-
versely intersecting Lagrangians in L(L0). We focus on our object of
interest, the cylinder, even though the concepts make sense in much
more generality. We use combinatorial Floer homology for curves
in surfaces as developed by de Silva–Robbin–Salamon. We follow
closely the exposition in [dSRS14]. 2

2.2.1 Lagrangian Floer complex. Let L,L′ ∈ L(L0) such that
L intersects L′ transversely. The Floer complex of the pair (L,L′)
is a chain complex whose underlying Z2-vector space is generated by
the intersection points. More concretely, denoting P = L ∩ L′ we

2The setting in [dSRS14] does not always cover the case of two isotopic curves.
However, the proofs for most of the statements we use in this thesis carry over to
our setting. Whenever not, we indicate a proof.
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define
CF(L,L′) =

⨁︂
p∈P

Z2p.

The differential is obtained from counting the number of so-called
smooth lunes connecting two intersection points. We formalise this
as follows. Let

D := {z ∈ C | Imz ≥ 0, |z| ≤ 1}

be the standard half disc. Let q, p ∈ P . A smooth lune from q to p
is a smooth orientation-preserving immersion u : D −→ Σ satisfying
the boundary conditions

u(D ∩ R) ⊆ L, u(D ∩ S1) ⊆ L′, u(−1) = q, u(1) = p.

Figure 2.2 below shows an example of a smooth lune from q to p.

−1 1
D ∩ R

D ∩ S1

u

p q

L′

L

Figure 2.2: A smooth lune from q to p.

Two smooth lunes u, u′ : D −→ Σ are called equivalent if there
exists an orientation-preserving diffeomorphism φ : D −→ D such
that

φ(1) = 1, φ(−1) = −1 and u′ = u ◦ φ.
Define n(q, p) ∈ Z2 to be the number modulo 2 of equivalence classes
of smooth lunes from q to p. The differential is defined on the gen-
erators q ∈ P by

∂(q) =
∑︂
p∈P

n(q, p)p.
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The linear extension to ∂ : CF(L,L′) −→ CF(L,L′) satisfies ∂2 = 0.
3 Therefore, (CF(L,L′), ∂) is a chain complex.

The following property of smooth lunes will be useful.

Lemma 2.2.1. Let u : D→ Σ be a smooth lune from q to p. Let

q = x0, x1, . . . , xl, xl+1 = p

be the points in P∩u(D∩S1) ordered by their ordering on L′ when fol-
lowing L′ from q towards p along u(D∩S1) (see Figure 2.3). Assume
x1, xl /∈ {q, p}. Then x1 and xl are not contained in u(D ∩ R).

Proof. If not, u is not an immersion at u−1(x1) or u
−1(xl).

p q
x3 x2 x1 xl

L′

L xlx1
q p

L′

L

Figure 2.3: A smooth lune on the left, where x1 and xl do not lie
in u(D ∩ R). The violet area on the right can not be
obtained by a smooth lune.

Remark 2.2.2. [dSRS14, Theorem 6.7] characterises smooth lunes
in terms of their boundary behavior. Here are some consequences.

3The proof in [dSRS14] carries over to this setting. It is based on studying
broken hearts, which are immersed discs with one non-convex corner. A quick
proof can be found in [Abo08, Lemma 2.11].
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In a small enough neighbourhood U of q we may choose coordinates
(x, y) such that L∩U coincides with the x-axis and L′ ∩U coincides
with the y-axis. If a smooth lune u leaves q, u(D) ∩ U lies entirely
either in the first quadrant (x ≥ 0, y ≥ 0) or in the third quadrant
(x ≤ 0, y ≤ 0). Similarly, if a lune u enters p, then locally u(D) lies
either in the second quadrant (x ≤ 0, y ≥ 0) or in the forth quadrant
(x ≥ 0, y ≤ 0). For any q, p ∈ L ∩ L′, there are at most 2 lunes from
q to p. Figure 2.4 shows an example with 2 lunes.

p q

L′

L
p q

L′

L

Figure 2.4: Two lunes from q to p.

2.2.2 Filtration. Any L ∈ L(L0) is exact, meaning that the 1-
form λ|L ∈ Ω1(L) is exact. We call a function

hL : L −→ R

such that dhL = λ|L a marking of L. The marking hL is unique up
to an additive constant because L is connected. The filtration on
CF(L,L′) we introduce below will depend on a choice of markings of
L and L′.

Fix two markings hL and hL′ of L and L′ respectively. Consider
the space of paths from L to L′, namely

ΩL,L′ :=
{︁
γ ∈ C∞([0, 1]) | γ(0) ∈ L, γ(1) ∈ L′}︁ .
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We identify tangent vectors ξ at γ ∈ ΩL,L′ with vector fields ξ(t) ∈
Tγ(t)Σ along γ. We define the action functional A : ΩL,L′ −→ R by

A(γ) = hL(γ(1))− hL′(γ(0))−
∫︂ 1

0
λγ(t)(γ̇(t)) dt.

The exterior derivative of A is

dAγ(ξ) =

∫︂ 1

0
ω(γ̇(t), ξ(t)) dt

for any ξ ∈ TγΩL,L′ . We view P as a subset of ΩL,L′ by viewing
p ∈ P as a constant path. Let q, p ∈ P and let u be a smooth lune
from q to p. It follows ∫︂

D
u∗ω = A(q)−A(p). (2.4)

Remark 2.2.3. Any two neighbouring intersection points are con-
nected by a smooth lune. More precisely, choose an orientation on
L and order the intersection points s1, s2, . . . , s2n according to their
order on L. Then for each 1 ≤ i ≤ 2n, there exists a smooth lune
from si to si+1, or a smooth lune from si+1 to si. (Here, we use
cyclic notation for the indices, i.e. s2n+1 = s1 etc.) We explain these
smooth lunes further in section 2.4.3. It follows that equation (2.4)
determines the action functional on P uniquely up to an additive
constant.

We have
∫︁
D u

∗ω ≥ 0 because u is an orientation-preserving im-
mersion. It follows that

A(q)−A(p) ≥ 0,

whenever there is a smooth lune from q to p. In particular, the
differential lowers filtration:

A(∂q) < A(q).
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Therefore, for any α ∈ R,

CF≤α((L, hL), (L
′, hL′)) :=

⨁︂
p∈P,

A(p)≤α

Z2p

is a subcomplex of CF(L,L′). Moreover, for each α ≤ β there are
inclusions

CF≤α((L, hL), (L
′, hL′)) ⊆ CF≤β((L, hL), (L

′, hL′)).

The collection

CF≤•((L, hL), (L
′, hL′)) =

{︁
CF≤α((L, hL), (L

′, hL′))
}︁
α∈R

is called the filtered Floer complex of the pair ((L, hL), (L
′, hL′)).

2.3 Persistent Floer homology

2.3.1 Persistence modules. For an overview of the theory of
persistent homology and its use in symplectic topology see [PRSZ20].
We follow closely chapters 1 and 2 from [PRSZ20]. 4

Definition 2.3.1. A persistence module over Z2 consists of an R-
indexed family of Z2-vector spaces {Vt}t∈R and linear maps

fs,t : Vs −→ Vt

for any s ≤ t satisfying

(i) ft,t = id for any t ∈ R,

(ii) fs,t ◦ fr,s = fr,t for any r ≤ s ≤ t.
4The definitions here differ slightly from those in [PRSZ20] in the convention

for semicontinuity. Since we consider CF≤α and not CF<α we need to work with
intervals of the form [a, b) and not (a, b].
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Any filtered chain complex gives rise to a persistence module by
applying the homology functor to the subcomplexes and the inclu-
sions. More precisely, let (C, ∂) be a chain complex over Z2 with an
R-indexed filtration given by a family {Cα}α∈R of subcomplexes of C
such that for all α ⊂ β we have Cα ⊆ Cβ. Then we get a persistence
module with vector spaces H(Cα) and the persistence maps

incl∗ : H(C
α) −→ H(Cβ)

for α ≤ β.

Definition 2.3.2. A persistence module V is of finite type if

(i) For any t ∈ R, there exists ϵ > 0 such that fs,t is an isomor-
phism for any s ∈ [t, t+ ϵ).

(ii) There exist t1, . . . , tm ∈ R such that for all t ∈ R\{t1, . . . , tm},
there exists ϵ > 0 such that fs,r is an isomorphism for any
s ≤ r ∈ (t− ϵ, t+ ϵ).

(iii) There exists s− such that Vs = 0 for any s < s−.

Let (C, ∂) be a complex with finite basis E = {q1, . . . , ql}. Sup-
pose we are given a function A : E −→ R. Extend A to C via

A

(︄
l∑︂

i=1

aiqi

)︄
= max{A(qi) | ai ̸= 0}.

Here, A(0) = −∞. If A(∂x) ≤ A(x) for all x ∈ C then A induces a
filtration on C with the subcomplexes

C≤α =
⨁︂

A(qi)≤α

Z2qi.

The filtered complex C is called a filtered complex with a preferred
basis [PRSZ20, Section 6.2]. The resulting persistence module H(C)
is of finite type: (i) is satisfied because the values A(qi) form a dis-
crete set. (ii) is satisfied for ti = A(qi) and (iii) is satisfied for
s− = min{A(q) | q ∈ E}.
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Alternatively, one could define persistence modules through the
language of functors. Let R be the category with objects the points in
R and non-empty morphism spacesMorR(x, y) = {∗} precisely when
x ≤ y. Then a persistence module is a functor from the category R
to the category Vec of Z2-vector spaces. Using this language one
easily defines the category of persistence modules as the category of
functors from R to Vec. In particular there is a notion of morphism
between persistence modules. Using the direct sum construction in
Vec we also get a direct sum of persistence modules.

2.3.2 Barcodes. Isomorphism classes of persistence modules of
finite type can be classified by their barcodes.

Definition 2.3.3. A barcode of finite type B = {Ij}nj=1 is a finite
multiset of intervals Ij of two possible types:

(i) Finite bars: Ij = [aj , bj), where aj < bj are real numbers.

(ii) Infinite bars: Ij = [cj ,∞), where cj is a real number.

The correspondence between barcodes and persistence modules
is based on interval modules. Given an interval [a, b) define the per-
sistence module V [a,b) by

V
[a,b)
t =

{︄
Z2 if t ∈ [a, b),

0 else

with internal maps fs,t : V
[a,b)
s −→ V

[a,b)
t

fs,t =

{︄
id a ≤ s ≤ t < b,

0 else.

V [a,b) is called an interval module. It turns out that any persistence
module is a direct sum of interval modules:

Theorem 2.3.4 (Structure Theorem,[CZ05]). For a persistence mod-
ule V of finite type, there is an isomorphism of persistence modules

V ∼=
⨁︂
I∈B

V I
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for a unique barcode B = B(V ) of finite type.

For a proof of this theorem, we recommend [PRSZ20, Chapter 2]. 5

We now explain one way to compute the barcode of persistent
homology of “Floer-type” chain complexes. We follow [PRSZ20, Sec-
tion 6.2]. Consider again a filtered complex C with a preferred basis.
A basis

F = {e1, . . . , ek, f1, . . . , fk, g1, . . . , gh}

is called Jordan basis for ∂ if

(i) (Orthogonality) For all af ∈ Z2,

A

⎛⎝∑︂
f∈F

aff

⎞⎠ = max {A(f) | af ̸= 0} .

(ii) ∂ei = fi for 1 ≤ i ≤ k.

(iii) ∂gi = 0 for 1 ≤ i ≤ h .

Such a basis always exists ([PRSZ20, Theorem 6.2.1]). The bar-
code can now be read off the action values of the Jordan basis F
[PRSZ20, Theorem 6.2.2]:
B(H(C)) consists of

• the finite bars [A(fi),A(ei)) for i = 1, . . . , k,

• the infinite bars [A(gi),∞) for i = 1, . . . , h.

It follows from the orthogonality condition that A(F ) = A(E).
In particular, the endpoints of the bars are precisely the action values
on the preferred basis E (or equivalently F ). This way of computing
the barcode has first been used in [Bar94] (without the language of
persistence modules) and it has been generalised to more involved
situations in [UZ16]. 6

5There are more general versions for persistence modules not necessarily of
finite type, see [BCB20].

6In [UZ16] a Jordan basis arises from a singular value decomposition of ∂ : C →
ker(∂) for a Floer-type chain complex C.
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2.3.3 Persistent Floer homology and its barcode. In our

case, we consider the filtered complex CF≤•((L, hL), (L
′, hL′)) with

preferred basis P . Spelling it out, the Floer persistence module con-
sists of the Z2-vector spaces{︁
HF≤α((L, hL), (L

′, hL′))
}︁
α∈R =

{︁
H∗
(︁
CF≤α((L, hL), (L

′, hL′))
)︁}︁

α∈R

and the linear maps

iα,β : HF
≤α((L, hL), (L

′, hL′)) −→ HF≤β((L, hL), (L
′, hL′))

induced by inclusion for any α ≤ β. We refer to this persistence
module as

HF≤•((L, hL), (L
′, hL′)).

Applying the Structure Theorem to HF≤•((L, hL), (L
′, hL′)) we

get a barcode which we denote by B((L, hL), (L′, hL′)). We’ve seen
in the previous section that the endpoints of the bars in the barcode
B((L, hL), (L′, hL′)) are exactly the action values onA(P ). Moreover,
the infinite bars correspond to classes in HF(L,L′) ∼= Z2 ⊕ Z2. If L
intersects L′ in 2n points, the barcode B((L, hL), (L′, hL′)) therefore
consists of n− 1 finite bars and two infinite bars.

The barcode depends on hL and hL′ , but different choices of
markings yield the same barcode up to a shift. Therefore, the length
of each bar is independent of the markings. We denote by

β1(L,L
′) ≥ β2(L,L′) ≥ · · · ≥ βn−1(L,L

′)

the lengths of the finite bars. Similarly if [c1,∞), [c2,∞) are the
infinite bars, where c1 ≤ c2, then

γ(L,L′) = c2 − c1

is independent of the markings. The quantity γ(L,L′) is called the
spectral distance between L and L′.

Figure 2.5 shows an example of the barcode associated to a pair
of Lagrangians.
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s1 s2
s3 s4

s5
s6

s7
s8

L′

L

3
2

2

2

2

2

6

2

s1

s2

s3

s4

s5

s6

s7

s8

15

4

2

5

9

6

0

7

(L,L′) CF (L,L′) B(L,L′)

Figure 2.5: A barcode (on the right) associated to two Lagrangians
(on the left). The red numbers indicate the area of the
bounded white regions in the cylinder. The orange num-
bers indicate the action values of the intersection points.

Remark 2.3.5. There is an algorithm to construct a Jordan basis
from any orthogonal basis. In particular, βi(L,L

′) and γ(L,L′) can
be algorithmically computed from the filtered complex CF(L,L′).
The combinatorial characterization of smooth lunes via combinato-
rial lunes in [dSRS14, Theorem 6.7] suggests an algorithm [dSRS14,
Remark 6.11] to compute CF(L,L′). Combining their algorithm with
an algorithm to compute barcodes makes the upper bound in Theo-
rem B computable.

2.3.4 Stability. We follow closely [PRSZ20, Sections 1.3 and 2.2].
The Algebraic Stability Theorem states that the isomorphism in the
Structure Theorem is an isometry with respect to the interleaving
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distance on the set of isomorphism classes of persistence modules
and the bottleneck distance on the set of barcodes. We briefly recall
these distances.

Given a persistence module V and δ > 0 denote by V [δ] the

shifted persistence module with V [δ]t = Vt+δ and f
V [δ]
st = fVs+δ,t+δ.

There is a canonical persistence morphism

ΦV : V −→ V [δ]

given by ΦV (v) = fs,s+δ(v) for v ∈ Vs.

Definition 2.3.6. A δ-interleaving between persistence modules V
and W consists of two persistence morphisms f : V −→ W [δ] and
g : W −→ V [δ] such that

g[δ] ◦ f = Φ2δ
V and f [δ] ◦ g = Φ2δ

W .

The interleaving distance dint(V,W ) is the infimum of δ > 0 such
that there exists a δ-interleaving between V and W .

For the bottleneck distance, we need the notion of matchings of
barcodes.

Definition 2.3.7. A δ-matching of barcodes B and B′ is a bijection
µ : B0 −→ B′0 of subsets B0 ⊆ B and B′0 ⊆ B′ satisfying

(i) B0 contains all bars from B of length > δ,

(ii) B′0 contains all bars from B′ of length > δ,

(iii) If µ([a, b)) = [a′, b′) then |a− a′| ≤ δ and |b− b′| ≤ δ.

The bottleneck distance dbot(B,B′) is the infimum of δ > 0 such that
there exists a δ-matching between B and B′.

Theorem 2.3.8 (Isometry Theorem, [CdSGO16, Les15]).

dint(V,W ) = dbot(B(V ),B(W ).
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For a barcode B denote by β1(B) ≥ β2(B) ≥ . . . the lengths of
the finite bars and let γ(B) be the distance between the highest and
lowest infinite bars. Then

Theorem 2.3.9. For any two barcodes B,B′ of finite type

|βi(B)− βi(B′)| ≤ 2dbot(B,B′)

and
|γ(B)− γ(B′)| ≤ 2dbot(B,B′).

This follows from work of Usher and Zhang and the statement
for the finite bars is the content of [PRSZ20, Theorem 4.2.2]. The
statement for γ is very similar and well-known. We include a proof
here for completeness.

Proof. Let µ : B0 −→ B′0 be a δ-matching. Let

[c1,∞) ⊇ [c2,∞) ⊇ · · · ⊇ [ck,∞)

be the infinite bars of B and

[c′1,∞) ⊇ [c′2,∞) ⊇ · · · ⊇ [c′k,∞)

the infinite bars of B′. Then

γ(B)− γ(B′) = (ck − c1)− (c′k − c′1)
= (ck − c′k) + (c1 − c′1) ≤ 2dbot(B,B′)

where the inequality follows from [PRSZ20, Corollary 4.1.2].

We finally explain how these results apply to geometry. LetM be
an exact symplectic manifold and L,L′ be exact Lagrangians as in the
introduction. Then any Hamiltonian H ∈ C∞([0, 1]×M) induces an
osc(H)

2 -interleaving between HF≤•(L,L′) and HF≤•(L,ψH
1 (L′)), for

well-chosen filtrations [KS21]. Here,

osc(H) =

∫︂ 1

0
max
x∈M

Ht(x)− min
x∈M

Ht(x)dt.
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In particular it follows from the previous results that

|βi(L,L′)− βi(L,φ(L′))| ≤ ∥φ∥

and

|γ(L,L′)− γ(L,φ(L′))| ≤ ∥φ∥.

This shows the inequalities (2.2) and (2.3).

We include a combinatorial construction of the above interleaving
for M = Σ in section 2.4.4.

2.4 Deletion of a leaf

Throughout this section, let L ∈ L(L0) be a Lagrangian that in-
tersects L0 transversely. For simplicity, we will only study the pair
(L0, L) in the remainder of the thesis. This is no restriction, be-
cause Hofer’s distance and persistent Floer homology are invariant
under Hamiltonian isotopies. In this section we study the process of
deletion of a leaf introduced in [Kha09].7 After recalling this con-
struction, we study its effect on persistence Floer homology and its
barcode.

2.4.1 Hamiltonian diffeomorphism. Fix an orientation on L0

and denote by s1, . . . , s2n be the intersection points of L0 ∩ L, such
that the ordering corresponds to their order on L0. We use cyclic
notation for the indices (e.g. s2n+1 = s1). Write [si, sj ] for the
interval on L0 with left end si and right end sj . Khanevsky associates
a graph T (L) to L consisting of two rooted trees, whose vertices carry
weights and whose edges are oriented and ordered. Following closely
[Kha09] we recall this construction.

The graph T (L) consists of

• one vertex for each connected component of Σ\(L0 ∪ L),
7We only consider L0 and Σ = T ∗S1, while Khanevsky’s constructions work

for more general curves and surfaces.
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• each vertex v carries a weight a(v) ∈ (0,∞] equal to the area
of the corresponding region in Σ,

• an edge between v1 and v2, whenever the corresponding regions
have a common boundary along a segment of L0\L,

• an orientation of the edge from the vertex corresponding to the
region in the upper half of Σ to the vertex corresponding to the
region in the lower half of Σ,

• an ordering of the edges, by assigning number j ∈ {1, . . . , 2n}
to the edge that corresponds to the segment [sj , sj+1] on L0.

In what follows, we often do not distinguish between a vertex and
its corresponding component in Σ\(L0 ∪ L). Denote the edge with
number j by ej . Figure 2.6 shows an example of T (L).

L

L0

a0

a1

a3

a4
a2

b0

b1

b2

b3

b4
s1 s2 s3

s4
s5 s6 s7 s8 a0 a1

a3 a4

a2
1 7 3

5
b0 b1 b2 b3 b48 2 4 6

Figure 2.6: A tree associated to a Lagrangian.

The graph T (L) consists of two connected components corre-
sponding to the two regions of Σ\L. For each of these connected
components, the vertex corresponding to the unbounded region is
set to be the root. Thus each connected component is a rooted tree.
A leaf of T (L), if different from the roots, corresponds to a region
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in Σ\(L0 ∪L) that is bounded by one connected component of L0\L
and one connected component of L\L0. It has corners at two neigh-
boured intersection points. In the language of combinatorial Floer
theory, this region corresponds to a minimal smooth lune v : D −→ Σ
for (L0, L), in the sense that there is no smooth lune u : D −→ Σ with
Im(u) ⊊ Im(v). Denote by q̄, p̄ ∈ L0 ∩ L the corners of the smooth
lune v. We call v a leaf from q̄ to p̄ and identify it with the leaf in
the tree. In Figure 2.6 the leafs are the regions with weights a2, a4
and b4.

Remark 2.4.1. Lemma 2.1.5 states that a shortest bar gives rise
to a leaf: If [A(p),A(q)) is a shortest bar in B(L0, L) then q and p
are connected by a leaf. Conversely, if q and p are corners of a leaf
with minimal area among all leaves, then the interval [A(p),A(q)) is
a bar in B(L0, L). However, in general a (non-minimal) leaf does not
correspond to a bar.

The following result is due to Khanevsky:

Proposition 2.4.2 ([Kha09]). Suppose there is leaf v from q̄ to p̄ of
area a(v). Let w be a vertex at distance 2 from v in T (L). Then for
any ϵ > 0 there exists a Hamiltonian diffeomorphism φ ∈ Ham(Σ)
such that ∥φ∥H < a(v) + ϵ and which removes v from the tree by
moving its weight a(v) from v to the vertex w. The support of φ
is contained in a neighbourhood of v and a curve as shown on the
right in Figure 2.7. In particular, L0 ∩ φ(L) = (L0 ∩ L) \{q̄, p̄} and
φ(x) = x for x ∈ (L ∩ L0)\{q̄, p̄}.

We refer to this Hamiltonian isotopy by deletion of a leaf. Figure
2.7 shows schematically how the deletion of a leaf looks like.

Remark 2.4.3. Khanevsky applied this process only to leaves that
are at distance ≥ 2 from the root, by moving weight to the vertex
that is at distance 2 and closer to the root. This is of no significance
to us. We allow deletion of a leaf different from the root, by moving
its weight to any other leaf at distance two. The construction of φ
works the same.
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L

L0

φ(L)

p̄ q̄
w v

L

L0

φ(L)

Figure 2.7: The procedure of deleting a leaf. The yellow region
sketches the support of φ.

2.4.2 Effect on the Floer complex. We denote the set of inter-
section points of L and L0 by P and abbreviate the Floer complex
by C := CF(L0, L). Suppose we obtain L′ by deleting a leaf from q̄
to p̄ as explained in Proposition 2.4.2 by L′ = φ(L). Then the set
of intersection points of L0 and L′ is P ′ = P\{q̄, p̄} and we denote
the Floer complex of the pair (L0, L

′) by C ′ := CF(L0, L
′). Follow-

ing [dSRS14, Appendix C] the chain complex C ′ can be expressed in
terms of C as follows. Recall that the differentials in C and C ′ are
given by the formulae

∂(q) =
∑︂
p∈P

n(q, p)p, ∂(q) =
∑︂
p′∈P ′

n′(q′, p′)p′

where n(q, p) ∈ Z2 denotes the mod 2 count of smooth lunes for
(L0, L) from q to p and n′(q′, p′) ∈ Z2 denotes the mod 2 count of
smooth lunes for (L0, L

′) from q′ to p′. The following result is proven
in [dSRS14, Chapter 11] for nonisotopic Lagrangians.

Proposition 2.4.4. n′ is related to n via

n′(q′, p′) = n(q′, p′) + n(q′, p̄)n(q̄, p′).
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q′ p̄ q̄ p′ q′ p′

Figure 2.8: A new lune occurs after deletion of the leaf from q̄ to p̄.

Figure 2.8 below illustrates the situation for n(q′, p̄) = n(q̄, p′) = 1.

We show how to deduce Proposition 2.4.4 from the the noniso-
topic case. As a first step, we need the following Lemma.

Lemma 2.4.5. Suppose there are smooth lunes uq′,p̄ from q′ to p̄ and
uq̄,p′ from q̄ to p′. Then uq′,p̄ does not contain p′ in its image and
uq̄,p′ does not contain q′ in its image.

Proof. It follows from Proposition 11.1 and Step 5 in the proof of
Theorem 9.2 in [dSRS14, Proposition 11.1] that there exists a smooth
(L0, L

′)-lune u′ from q′ to p′, whose image contains the images of uq′,p̄
and uq̄,p′ except for small neighbourhoods of p̄ and q̄. But u′ does not
cover q′ and p′ except at the two corners −1 and +1 of D. Therefore,
uq′,p̄ does not contain p′ and uq̄,p′ does not contain q

′.

Proof of Proposition 2.4.4. Fix q′, p′ ∈ P ′. Because q̄ and p̄ are con-
nected by a leaf it follows from Lemma 2.2.1 that there is at most
one smooth lune from q′ to p̄ and at most one smooth lune from p̄ to
q′. Consider the surface Σ0 obtained from Σ by puncturing it in the
first quadrant near q′ and in the second quadrant near p′. Consider
also the surface Σ0 obtained from Σ by puncturing it in the third
quadrant near q′ and in the fourth quadrant near p′. The punctures
make sure that L0 and L are not isotopic in Σ0 and Σ0. In Σ0 and
Σ0, q̄ and p̄ are still connected by a leaf. We can therefore delete it.
Let us denote by n0 and n0 the number of smooth lunes for (L0, L)
in Σ0 and Σ0 and by (n0)′ and n′0 the number of smooth lunes for
(L0, L

′) in Σ0 and Σ0. The formula holds in Σ0 and Σ0. We therefore
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get

(n0)′(q′, p′) = n0(q′, p′) + n0(q′, p̄)n0(q̄, p′), (2.5)

n′0(q
′, p′) = n0(q

′, p′) + n0(q
′, p̄)n0(q̄, p

′). (2.6)

Note that n0(q′, p′) counts exactly the lower lunes leaving q′ and
entering p′. Similarly n0(q

′, p′) counts exactly the upper lunes leaving
q′ and entering p′. Therefore,

n(q′, p′) = n0(q′, p′) + n0(q
′, p′).

An analogous argument for n′ leads to

n′(q′, p′) = (n0)′(q′, p′) + n′0(q
′, p′).

Without loss of generality assume that the leaf from q̄ to p̄ is an
upper leaf. Then

n0(q
′, p̄) = n0(q̄, p

′) = 0.

Adding the equalities (2.5) and (2.6) therefore yields

n′(q′, p′) = n(q′, p′) + n0(q′, p̄)n0(q̄, p′).

It is left to show that

n0(q′, p̄)n0(q̄, p′) = n(q′, p̄)n(q̄, p′). (2.7)

If the right-hand side is 0 then the left-hand side clearly is also 0. If
the right-hand side is 1 then n(q′, p̄) = n(q̄, p′) = 1. It follows from
Lemma 2.4.5 that the smooth lunes uq′,p̄ and uq̄,p′ are also smooth
lunes in Σ0. Hence n0(q′, p̄) = n0(q̄, p′) = 1 and equation (2.7)
follows.

Having established Proposition 2.4.4 in our setting, we can pro-
ceed as in [dSRS14, Appendix C]. There are chain maps

Ψ: C −→ C ′ and Φ: C ′ −→ C
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given by

Ψ(q) =

⎧⎪⎪⎨⎪⎪⎩
q q ̸= q̄, p̄,

0 q = q̄,∑︁
p′∈P ′

n(q̄, p′)p′ q = p̄

and

Φ(q′) = q′ + n(q′, p̄)q̄.

These chain maps are chain homotopy inverses to each other: Ψ◦Φ =
Id and Φ ◦ Ψ − Id = ∂T + T∂ for the chain homotopy T : C → C
given by

T (q) =

{︄
q q = p,

0 q ̸= p.

2.4.3 Effect on the filtration. We first study the change of the
graph T = T (L) to the graph T ′ = T (L′). There are two cases, one
for a leaf above L0 (Case 1) and one for a leaf below L0 (Case 2),
as shown in Figure 2.9. In Case 1, let j ∈ {1, . . . , 2n} be the index
with q̄ = sj and p̄ = sj+1. Similarly in Case 2, let j ∈ {1, . . . , 2n} be
the index with p̄ = sj and q̄ = sj+1. The intersection points of L0

with L′ are s1, . . . , sj−1, sj+2, . . . s2n. For the ordering of the edges
of T (L′) we use the numbering by 1, . . . , j−1, j+2, . . . , 2n. Let k be
the index of the edge adjacent to w that lies on the path from w to
v. By renumbering if needed, we may arrange that j + 2 ≤ k ≤ 2n.
Figure 2.10 illustrates the change of the graphs in Case 1. Case 2 is
analogous with reversed arrows.

Let A : P −→ R be the filtration on C. (As pointed out before,
the filtration is unique up to shift. The shift is not relevant to us.
We therefore ignore this ambiguity.)

Lemma 2.4.6. Up to shift, the filtration on C ′ is given by

A′(sl) =

{︄
A(sl) + a(v)+ϵ

2 j + 2 ≤ l ≤ k
A(sl)− a(v)+ϵ

2 else
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Case 1

sj−1 sj sj+2 sk sk+1

v w

sj+1

H

Case 2

sj−1 sj
sj+1

sj+2 sk sk+1v w

Figure 2.9: Two scenarios for the leaf v.

in Case 1 and by

A′(sl) =

{︄
A(sl)− a(v)+ϵ

2 j + 2 ≤ l ≤ k
A(sl) + a(v)+ϵ

2 else.

in Case 2.

The rest of this section is devoted to a proof of this.

There is always a smooth lune between si and si+1: To see this, we
introduce some notation. Given an edge e in a forrest G consisting
of rooted trees, we denote by v(e) the vertex of the edge that is
further away from the root of its component. The tree Gv is the
subgraph of descendents of the vertex v. Consider now the edge ei
in T = T (L) and the subgraph Tv(ei). The corresponding region in
Σ is an embedded smooth lune ui between si and si+1. If ei points
away from the root, it is a lune from si+1 to si. If ei points towards
the root, it is a lune from si to si+1. For example consider the edge
e1 in Figure 2.6. Then the regions with weights a1, a2, a3, a4 make
up a smooth lune from s2 to s1.

The smooth lune ui has area W (Tv(ei)), where W denotes the
total weight of a weighted tree. From equation (2.4) we deduce the
following formula for the action difference between two neighboured
intersection points:

A(sj+1)−A(sj) = s(ej)W (Tv(ej)), (2.8)
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T (L)

S0
a2
w

a1 a(v)

v

S1

k j

T0
b

b1

b2

T1

T2

j − 1

j + 1

T (L′)

S0

a2 + a(v)
+ϵ a1 − ϵ

S1

k

T0
b− ϵ b1 + b2+ϵ

T1

T2
j − 1

Figure 2.10: Change of trees. The only changes of weights happen at
those vertices, where the weights are recorded in green
and orange.

where the sign is determined as follows:

s(e) =

{︄
1 edge points away from the root

−1 edge points towards the root.

Using this formalism we can now prove Lemma 2.4.6.

Proof of Lemma 2.4.6. By Remark 2.2.3 it is enough to prove that
A′ defined by the formula in Lemma 2.4.6 satisfies (2.8) for T ′. We
consider Case 1. First note that s(el) = s(e′l) for all l ̸= j, j + 1. For
l /∈ {j − 1, j, j + 1, k} we compute

A′(sl+1)−A′(sl) = A(sl+1)−A(sl)
= s(el)W

(︁
Tv(el)

)︁
= s(e′l)W

(︂
T ′
v(el)

)︂
.

For l = j − 1 first note that s(ej−1) = s(ej+1) = s(e′j−1) = 1 and as
it can be seen from Figure 2.10 we have

W
(︂
T ′
v(e′j−1)

)︂
=W

(︂
Tv(ej−1)

)︂
+W

(︂
Tv(ej+1)

)︂
+ ϵ.
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Therefore

A′(sj+2)−A′(sj−1) =

(︃
A(sj+2) +

a(v) + ϵ

2

)︃
−
(︃
A(sj−1)−

a(v) + ϵ

2

)︃
= A(sj)−A(sj−1) +A(sj+2)−A(sj+1) + ϵ

= s(ej−1)W
(︂
Tv(ej−1)

)︂
+ s(ej+1)W

(︂
Tv(ej+1)

)︂
+ ϵ

= s(e′j−1)W
(︂
T ′
v(e′j−1)

)︂
.

Similarly for l = k we see from Figure 2.10 that s(ek) = s(e′k) = 1
and

W
(︂
T ′
v(e′k)

)︂
=W

(︁
Tv(ek)

)︁
− a(v)− ϵ.

Therefore

A′(sk+1)−A′(sk) =

(︃
A(sk+1)−

a(v) + ϵ

2

)︃
−
(︃
A(sk) +

a(v) + ϵ

2

)︃
= s(ek)W

(︁
Tv(ek)

)︁
− a(v)− ϵ

= s(e′k)W
(︂
T ′
v(e′k)

)︂
.

This shows that A′ is an action functional for (L0, L
′). Case 2 works

similarly.

2.4.4 Effect on the barcode. We say that a chain map ψ : D →
E between filtered chain complexes D and E shifts filtration by at
most δ if ψ(D≤α) ⊂ E≤α+δ for all α ∈ R. Let C and C ′ be the Floer
complexes from before endowed with the filtrations A and A′ from
Lemma 2.4.6. The chain maps Φ and Ψ are related to the filtrations
on C and C ′ as follows.

Proposition 2.4.7. The chain maps Φ and Ψ shift action by at most
a(v)+ϵ

2 . The chain homotopy T shifts action by at most a(v) + ϵ.
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It follows that

Φ∗ : HF
≤α(L0, L

′) −→ HF≤α+
a(v)+ϵ

2 (L0, L)

and

Ψ∗ : HF≤α(L0, L) −→ HF≤α+
a(v)+ϵ

2 (L0, L
′)

satisfy

Ψ∗ ◦ Φ∗ : = i′α,α+a(v)+ϵ : HF
≤α(L0, L

′) −→ HF≤α+a(v)+ϵ(L0, L
′)

and

Φ∗ ◦Ψ∗ : = iα,α+a(v)+ϵ : HF
≤α(L0, L) −→ HF≤α+a(v)+ϵ(L0, L).

This is the promised combinatorially constructed a(v)+ϵ
2 -interleaving

claimed in Section 2.3.4. As explained there, the bounds (2.2) and
(2.3) now follow from general persistence theory.

For the proof of Proposition 2.4.7 we need the following

Lemma 2.4.8. Assume Case 1. Then for any q, p ∈ P\{q̄, p̄}

(i) n(q, p̄) = 1 implies q = si for j + 2 ≤ i ≤ k.

(ii) n(q̄, p) = 1 implies p = si for k + 1 ≤ i ≤ j − 1.

Proof. Let q̄ ̸= sl ∈ P be the intersection point that is a neighbour
of p̄ viewed on L. Then j + 1 ≤ l ≤ k. By Lemma 2.2.1 any lune
u entering p̄ from the right must have sl /∈ u(D ∩ R) = [p̄, si]. In
particular, j + 2 ≤ i ≤ l ≤ k. This shows (i). The proof for part (ii)
works similarly.

Proof of Proposition 2.4.7. We only show it for Case 1. The other
case is similar. Let q = si for some i ̸= j, j + 1. Suppose n(q, p) = 1.
Then by part (i) of Lemma 2.4.8 q = si for some j+2 ≤ i ≤ k. Hence
A(q) = A′(q)− a(v)+ϵ

2 by Lemma 2.4.6. Therefore for any q ∈ P
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A(Φq) = A(q − n(q, p)q)

=

{︄
A(q) if n(q, p) = 0

max{A(q),A(q)} if n(q, p) = 1

≤

{︄
A′(q) + a(v)+ϵ

2 if n(q, p) = 0

max{A′(q) + a(v)+ϵ
2 ,A(q) + a(v) + ϵ} if n(q, p) = 1

= A′(q) +
a(v) + ϵ

2
.

This shows that Φ shifts action by at most a(v)+ϵ
2 . Similarly, Ψ shifts

action by at most a(v)+ϵ
2 :

A′(Ψp) = max{A′(p) |n(q, p) = 1}

≤ max

{︃
A(p)− a(v) + ϵ

2

⃓⃓⃓
n(q, p) = 1

}︃
≤ A(q)− a(v) + ϵ

2

= A(p) + a(v) + ϵ

2
,

where the first inequality follows from part (ii) of Lemma 2.4.8 and
Lemma 2.4.6.

The chain homotopy T shifts action by at most a(v) + ϵ.

2.5 The shortest bar

The goal of this section is to show Proposition 2.1.5 that identifies
the shortest bar with the smallest leaf. As in the previous section,
we only consider the pair (L0, L) for L ∈ L(L0). We assume that L0

and L intersect in at least 2n ≥ 4 intersection points. Moreover, the
action values A(q), q ∈ L0 ∩L, are assumed to be distinct. Let [a, b)
be the shortest (finite) bar in B(L0, L) and let q̄, p̄ ∈ L0 ∩ L be the
intersection points satisfying A(q̄) = b and A(p̄) = a. The goal is
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to show that there is a leaf from q̄ to p̄. The proof is based on the
following two lemmas whose proofs will be given shortly after.

Lemma 2.5.1. Let x, y ∈ L0 ∩ L such that n(x, y) = 1. Then
A(x)−A(y) ≥ b− a.

Lemma 2.5.2. Let u : D −→ Σ be a smooth lune for (L0, L). Then
there exists a leaf v : D −→ Σ such that Im(v) ⊆ Im(u).

Let S ⊂ CF(L0, L) be a Jordan basis for ∂ (see the definition
in section 2.3.2). We explain how Proposition 2.1.5 follows from the
previous two lemmas.

Proof of Proposition 2.1.5. As a first step towards the proof, we show
n(q̄, p̄) = 1: Let

e = q̄ +
∑︂

A(q)<A(q̄)

nqq ∈ S

be the basis element with A(e) = b and

f = p̄+
∑︂

A(p)<A(p̄)

mpp ∈ S

be the basis element with A(f) = a. Since ∂e = f , there exists
q′ ∈ L0 ∩ L with A(q′) ≤ A(q̄) = b such that n(q′, p̄) = 1. By
Lemma 2.5.1 it follows that A(q′) = A(q̄). Under the assumption
that all the action values are distinct, we conclude that q̄ = q′, hence
n(q̄, p̄) = n(q′, p̄) = 1. In particular, there exists a unique smooth
lune uq̄,p̄ from q̄ to p̄.

Suppose by contradiction that the smooth lune uq̄,p̄ is not a leaf.
By Lemma 2.5.2, there exists a leaf, say from x to y, whose image is
strictly contained in Im(uq̄,p̄). If n(x, y) = 1, then the inequality

A(x)−A(y) < A(q̄)−A(p̄) = b− a

is a contradiction to Lemma 2.5.1. If n(x, y) = 0, then there are two
smooth lunes from x to y, one of them being a leaf. It follows from
Lemma 2.2.1 that the only possibility for such a situation is when
L0 ∩ L = {x, y}. This is not the case here because there are at least
4 intersection points. We conclude that uq̄,p̄ is a leaf from q̄ to p̄.
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Proof of Lemma 2.5.1. Let x′ ∈ L0 ∩L be a generator of CF (L0, L)
satisfying

A(x′) = min{A(x′′)|n(x′′, y) = 1}.

By minimality of A(x′), ∂x′ is not a boundary in CF<A(x′)(L0, L).
Hence A(x′) is an upper end of a finite bar [ã, b̃). Since n(x, y) = 1
one has b̃ = A(x′) ≤ A(x). Let

e′ := x′ +
∑︂

A(x′′)<A(x′)

lx′′x′′ ∈ S

be the basis element with A(e′) = b̃. Then ∂e′ contains y as a
summand because n(x′, y) = 1, but n(x′′, y) = 0 for all x′′ with
A(x′′) < A(x′). In particular, ã = A(∂e′) ≥ A(y). By minimality of
the bar [a, b) it follows that

b− a ≤ b̃− ã ≤ A(x)−A(y).

Proof of Lemma 2.5.2. Without loss of generality, we may assume
that u is a smooth lune from s1 to sl, 3 ≤ l ≤ 2n with u(D ∩ R) =
[s1, sl]. Intuitively, if there were no leaf contained in Im(u), whenever
some part of the graph T (L) enters the region of the lune, it will
also leave the lune. Entering and leaving happens only on [s1, sl],
along which the two components of the graph alternate. This is not
possible.

To make this argument rigorous, let us assume that Im(u) does
not contain any leaf. We denote by C1 the upper, and by C2 the lower
component of Σ\L. Consider the preimages Rk := u−1(Ck) ⊂ D of
Ck under u for k = 1, 2. See Figure 2.11 for an illustration of these
sets.

Then R1 ∩ R2 = ∅. Let 0 = λ1 ≤ · · · ≤ λl = 1 be the points
on D ∩ R with u(λi) = si. Then [λi, λi+1] ⊂ R1 for odd i and
[λi, λi+1] ⊂ R2 for even i. Moreover, [λ1, λ2] is in the same connected
component of R1 as [λl−1, λl]. We set j1 = l−1. Note that j1 ≥ 3. We
claim that there exists 4 ≤ j2 < j1, such that [λ2, λ3] and [λj2 , λj2+1]
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λ1 λ2

λ3

λ4

λ5

λ6 λ7 λ8

u
s1
s2
s3 s4

s5
s6 s7 s8

L

L0

Figure 2.11: On the right, C1 is the green region and C2 the orange
region. On the left, R1 is coloured in green and R2 in
orange for the upper smooth lune from s1 to s8.

are in the same connected component of R2. If not, consider the
connected component R of [λ2, λ3] in R2. R ∩ ∂D = [λ2, λ3] because
Int(R)∩R1 = ∅. Therefore, u restricts to a diffeomorphism from R to
u(R). ∂R\[λ2, λ3] ⊂ L and hence u(R) is a region in Σ\(L0∪L) that
is bounded by [s2, s3] and part of L. Therefore, u(R) is exactly the
region corresponding to the subtree Tv(ej). But then u(R) contains
a leaf, which contradicts our assumption. We therefore find a j2 as
claimed.

Proceeding like this, we obtain an infinite sequence {jk}k∈N of
natural numbers with

1 < jk < jk−1 < l.

This is impossible. We conclude that u does contain a leaf.

Proposition 2.1.5 was the last missing step in the proof of Theo-
rem 2.1.1 as outlined in section 2.1.2.

The result that the smallest bar corresponds to a smooth lune
generalises to all ”Floer-type” situations. We formalize this state-
ment as follows. Let (C, ∂) be a filtered complex over Z2 with pre-
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ferred basis E = {q1, . . . , ql} as in section 2.3 and differential ∂ de-
termined by numbers n(qi, qj) ∈ Z2 such that

∂(qi) =

l∑︂
j=1

n(qi, qj)qj .

The following properties hold

Proposition 2.5.3. Denote by B := B(H(C)) the barcode of the
homology persistence module of C. Let q, p ∈ E.

(i) If [A(p),A(q)) is a bar in B then there exists q′ ∈ E such that
n(q′, p) = 1 and A(q′) ≤ A(q).

(ii) If n(q, p) = 1 then there exists a bar [a, b) ∈ B such that [a, b) ⊆
[A(p),A(q)).

(iii) Let [a, b) ∈ B be a smallest bar. Then there exist p, q ∈ E such
that a = A(p), b = A(q) and n(q, p) = 1. Moreover,

A(q)−A(p) = min{A(q′)−A(p′) |n(q′, p′) = 1}.

Proof. The proof of (i) is the same as the first part of the proof of
Proposition 2.1.5. Part (ii) follows from the very same argument as
in the proof of Lemma 2.5.1. Part (iii) follows from (i) and (ii): Take
q ∈ E with A(q) = b and p ∈ E with A(p) = a. Then we take q′ ∈ E
from (i), apply (ii) to q′ and p and get

[a′, b′) ⊆ [A(p),A(q′)) ⊆ [a, b)

for a bar [a′, b′). By minimality of [a, b) it follows A(q′) = b, hence
(iii) is satisfied by p and q′.

Remark 2.5.4. Applying part (iii) to Floer complexes allows to
deduce that the smallest bar is realized by a Floer strip. However, one
has to be careful about the question on minimality, as (iii) does not
exclude the existence of smaller strips that occur with multiplicity
two. In the case of the cylinder we studied, we could exclude this
because every smooth lune contains a leaf and leaves never occur
with multiplicity two for n ≥ 2.

94



2.6 Towards a better bound

The bound in Theorem 2.1.1 is (at least in some cases) quite weak. In
this section we show an example and discuss possible improvements.
The theory of Wasserstein metrics, together with the precise analysis
of the filtration in section 2.4.3, will enable us to improve the control
over the change of the barcode when deleting a leaf.

s1
s2
s3
s4
s5
s6
s7 s8

L

a0

b0

a1

a2

a3

a4

b4

b3

b2

b1

s1

s2 s8

s3 s7

s4 s6
s5

(L0, L) CF (L0, L) B(L0, L)

Figure 2.12: A linear example for n = 4 with all finite weights of the
same size.

2.6.1 An example. Consider for example a Lagrangian L that
intersects L0 in such a way that the associated graph T (L) consists
of two linear components. See Figures 2.12 and 2.13.

Let a1, . . . , an, b1, . . . , bn be the finite weights as in the pictures.
We assume in the following that n is even.8 The condition for L
being exact is

a1 + a3 + · · ·+ an−1 = b1 + b3 + · · ·+ bn−1.

8This choice is only relevant for a few details in the computation, but not for
the qualitative result.

95



a0 a1 a2 a3 an−1 an1 2n− 1 3 n+ 1

b0 b1 b2 b3 bn−1 bn2n 2 2n− 2 n

Figure 2.13: Linear trees.

The barcode B(L0, L) consists of the bars

[︁
A(sn+1),min {A(sn),A(sn+2)}

)︁
,[︁

max {A(sn),A(sn+2)} ,min {A(sn−1),A(sn+3)}
)︁
,[︁

max {A(sn−1),A(sn+3)} ,min {A(sn−2),A(sn+4)}
)︁
,

. . .[︁
max {A(s3),A(s2n−1)} ,min {A(s2),A(s2n)}

)︁
,[︁

max {A(s2),A(s2n)} ,∞
)︁
,[︁

A(s1),∞
)︁
.

The lengths of the finite bars and the spectral metric are

βn−1(L0, L) = min{an, bn},
βn−2(L0, L) = min{an−1 + an, an−1 + bn, bn−1 + an, bn−1 + bn},
βn−3(L0, L) = min{an−2 + an−1 + an, an−2 + bn−1 + an,

bn−2 + an−1 + bn, bn−2 + bn−1 + bn},
. . .

β1(L0, L) = min{a2 + a3 + · · ·+ an−1 + an,

a2 + b3 + · · ·+ bn−1 + an,

b2 + a3 + · · ·+ an−1 + bn,

b2 + b3 + · · ·+ bn−1 + bn},
γ(L0, L) = min{a1 + a2 + · · ·+ an, b1 + b2 + · · ·+ bn}.
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Deleting repeatedly the smallest leaf one sees

dH(L0, L) ≤ min{an, bn}+min{an−1, bn−1}
+min{an−2 + an, bn−2 + bn}
+min{an−3 + an−1, bn−3 + bn−1}
+ · · ·+min{a2 + a4 + · · ·+ an, b2 + b4 + · · ·+ bn}
+min{a1 + a3 + · · ·+ an−1, b1 + b3 + · · ·+ bn−1}

≤ β1(L0, L) + β2(L0, L) + · · ·+ βn−1(L0, L) + γ(L0, L).

In particular we get a bound that is much smaller than the bound
in Theorem 2.1.1. We don’t know of an example where the upper
bound is actually attained.

2.6.2 Wasserstein distance. One key step in trying to improve
the bound in Theorem 2.1.1 lies in the control of the barcode when
deleting a leaf. Let us denote

ℓ(L,L′) :=

n−1∑︂
j=1

βj(L,L
′) + γ(L,L′).

Suppose L′′ is obtained from L′ by φ ∈ Ham(Σ) as in Proposition
2.4.2. Then equations (2.2) and (2.3) lead to

|ℓ(L,L′)− ℓ(L,L′′)| ≤ n∥φ∥H .

If we had the following much stronger control

|ℓ(L,L′)− ℓ(L,L′′)| ≤ ∥φ∥H . (2.9)

we would get the following much better bound

dH(L,L′) ≤
n−1∑︂
j=1

jβj(L,L
′) + γ(L,L′).

For general L′, L′′ equation (2.9) is certainly wrong. On the other
hand, one might hope that such a statement becomes true for the
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specific case that L′′ is obtained form L′ by deleting the smallest
leaf. We could find the following improvement of equations (2.2) and
(2.3).

Proposition 2.6.1. Consider the pair (L0, L) and suppose L′ is ob-
tained from L by deleting a leaf between sj and sj+1 by moving its
weight to a vertex across the edge ek (see Figure 2.9). Then

|ℓ(L0, L)− ℓ(L0, L
′)| ≤ (|k − j|−1)∥φ∥H ,

where φ ∈ Ham(Σ) is the Hamiltonian diffeomorphism that imple-
ments the deletion of the leaf.

In Proposition 2.6.1 we work with a pair (L0, L), so that the
notation from Figure 2.9 applies. We now prepare for the proof of this
result. In doing this, we consider again a more general pair (L,L′)
of Lagrangians in L(L0). In Proposition 2.6.1 we are interested into
a control of ℓ. ℓ is closely related to the Wasserstein metric dW1 on
barcodes. It is defined as follows. Let B and B′ be two barcodes
of finite type and µ : B0 −→ B′0 be a matching. We measure the
ℓ1-defect of µ by

r(µ) =
∑︂

µ([a,b))=[a′,b′)

(︁
|a− a′|+ |b− b′|

)︁
+

∑︂
[a,b)/∈B0∪B′

0

(b− a)

with the convention that∞−∞ = 0. Then the Wasserstein distance
dW1 between B and B′ is given by

dW1 (B,B′) = inf
µ
r(µ).

The relation of this measurement to ℓ becomes apparent when com-
paring B(L,L′) to a specific barcode Bc which only contains two bars:
[c,∞), [c,∞). For a good choice of c, the Wasserstein distance from
B(L,L′) to Bc is exactly ℓ(L,L′). Moreover,

|ℓ(L,L′)− ℓ(L,L′′)| ≤ dW1
(︁
B(L,L′),B(L,L′′)

)︁
. (2.10)

The proof of Proposition 2.6.1 is based on Wasserstein stability
as studied in [ST20]. As a preparation for the proof, we first collect
some relevant notions and results from their work.
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Let V be a persistence module of finite type. The 1-norm of V is
the sum of the lengths of the bars of B(V ). That is,

∥V ∥ =
∑︂

[a,b)∈B(V )

(b− a).

In particular, it is finite if and only if V has only finite bars. The
1-norm is additive with respect to short exact sequences:

Lemma 2.6.2 ([ST20, Lemma 7.30]). Let 0 → V1 → V2 → V3 → 0
be a short exact sequence of persistence modules. Then

∥V2∥ = ∥V1∥+ ∥V3∥.

The algebraic 1-Wasserstein distance between two persistence
modules V1 and V2 is

dW1 (V1, V2) = inf
(W,g,h)

∥ker g ⊕ coker g ⊕ kerh⊕ cokerh∥,

where the infimum is taken over all diagrams

W V2

V1

h

g

of persistence modules. These triples are called interpolating objects
of V1 and V2. [ST20, Theorem 7.27, 7.28] show that the algebraic
Wasserstein distance coincides with the Wasserstein distance of bar-
codes. Namely,

dW1 (V1, V2) = dW1 (B(V1),B(V2)).

2.6.3 Deletion of a leaf and barcodes. We prove Proposition
2.6.1. The proof is inspired by the proof of Wasserstein stability for
sublevel set filtrations in [ST20, Theorem 7.33].
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Proof of Proposition 2.6.1. Let a(v) be the weight of the leaf we
delete. Then the Hofer norm is ∥φ∥H = a(v) + ϵ for some small
enough ϵ > 0. Since it has no relevance in the proof, we will ignore ϵ.
We assume Case 1 from Figure 2.9 and k ≥ j. We compare the chain
complexes CF(L0, L) with filtration A to CF(L0, L

′) with filtration
A′ given by

A′(sl) =

{︄
A(sl) + a(v) j + 2 ≤ l ≤ k,
A(sl) else.

Note that we choose here an action functional that is shifted by a
constant from Lemma 2.4.6. Consider now the new filtered complex˜︁C := CF(L0, L) with filtration induced by the functional

˜︁A(sl) :=
{︄
max{A(sl),A′(sl)} l ̸= j, j + 1,

A(sj) l = j, j + 1.

This is a filtered chain complex because whenever n(q, p) = 1 then

˜︁A(q)− ˜︁A(p) ≥ A(q)−A(p)− a(v) ≥ 0

by Lemma 2.5.1. Note that the filtered chain complex ( ˜︁C, Ã) won’t
be attained as a Floer complex of two transverse Lagrangians. Intu-
itively it corresponds to the moment, where all the area of the leaf
has been moved, but the two intersection points are still there.

There are filtered chain maps

g : ˜︁C −→ CF(L0, L)

and
h : ˜︁C −→ CF(L0, L

′).

g is just the identity and h is given by

h(sl) =

⎧⎪⎪⎨⎪⎪⎩
sl l ̸= j, j + 1,

0 l = j,∑︁
i ̸=j,j+1

n(sj , si)si l = j + 1.
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We explain why h preserves filtration. Suppose n(sj , si) = 1 for some
i ̸= j + 1. Then by Lemma 2.4.8A′(si) = A(si). Therefore,

A′(h(sj+1)) = max{A′(si) |n(sj , si) = 1}
= max{A(si) |n(sj , si) = 1}

≤ A(sj+1) = ˜︁A(sj+1),

where the last inequality follows from Lemma 2.5.1.
Considering the diagram

H∗( ˜︁C) HF∗(L0, L
′)

HF∗(L0, L)

h∗

g∗

we may view (H∗( ˜︁C), g∗, h∗) as an interpolating object of the per-
sistence modules HF∗(L0, L) and HF∗(L0, L

′). We use it to bound
dW1 (HF(L0, L),HF(L0, L

′)). Consider the long exact sequences

· · · −→ H∗( ˜︁C) g∗−−−→ HF(L0, L) −→ H∗(coker g)
δ−−→ H∗( ˜︁C) −→ . . .

· · · → H∗(kerh)
ι∗−−−→ H∗( ˜︁C) h∗−−−→ HF(L0, L

′) −→ H∗(kerh)→ . . . .

It follows that

coker g∗ ∼= ker δ, cokerh∗ ∼= ker ι∗,

ker g∗ ∼= imδ, kerh∗ ∼= imι∗.

We estimate

∥ker g∗ ⊕ coker g∗ ⊕ kerh∗ ⊕ cokerh∗∥
= ∥im δ ⊕ ker δ ⊕ im ι∗ ⊕ ker ι∗∥
= ∥H∗(coker g)∥+ ∥H∗(kerh)∥
≤ ∥coker g∥+ ∥H∗(kerh)∥

=

2n∑︂
i=1

| ˜︁A(si)−A(si)|+ ˜︁A(sj)− ˜︁A(sj+1)

= (k − (j + 2) + 1))a(v) + a(v)

= (k − j + 1)a(v).
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The 2nd equality follows from applying Lemma 2.6.2 to the short
exact sequences

0 −→ ker δ −→ H∗(coker g)
δ−−→ im δ −→ 0

and
0 −→ ker ι∗ −→ H∗(kerh)

ι∗−−−→ im ι∗ −→ 0.

The inequality follows from Lemma 2.6.2 applied to the short exact
sequence

0 −→ ker p −→ coker i
p−−→ H∗(coker i) −→ 0.

It follows that the algebraic Wasserstein distance between HF(L0, L)
and HF(L0, L

′) is bounded above by (k − j + 1)a(v). Therefore, we
get

dW1 (B(L0, L),B(L0, L
′)) ≤ (k − j − 1)a(v).

Together with equation (2.10) this implies Lemma 2.6.1.
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Chapter A

Auxiliary material

The purpose of the appendix is to briefly explain the algebraic back-
ground that is relevant for the definition of the main character of
Chapter 1 : the element A ∈ HF∗(τ−1). All the material here comes
from Seidel’s book [Sei08a]. We refer the interested reader to it for
a thorough treatment of A∞-categories and Fukaya categories.

A.1 A∞-categories

In this section we collect the definitions of the basic objects in the
theory of A∞-categories. This includes A∞-modules and the Yoneda
embedding. We follow closely the conventions for the A∞-machinery
from [Sei08a, Sections 1 and 2] with two simplifications: we work
over the field Z2 and we only use a Z2-grading. This simplifies the
formulas significantly and is enough for our purpose.

We call a vector space V Z2-graded if it is enhanced with a de-
composition into a direct sum V = V0 ⊕ V1 of vector spaces. Maps
between Z2-graded vector spaces are linear maps that preserve the
grading, meaning that f(V0) ⊆ V ′

0 and f(V1) ⊆ V ′
1 . For an integer n

we denote by V [n] the Z2-vector space with the same underlying vec-
tor space structure but V [n]i = Vi+n for i = 0, 1. That is, V = V [n]
stays unchanged for even n and V [n] has a switched order in the di-
rect sum decomposition. In particular, linear maps f : V → V ′ that
interchange the grading can be viewed as graded maps f : V → V ′[1].

Definition A.1.1. An A∞-category A consists of a set of objects
ObA and Z2-graded vector spaces MorA(L0, L1) for each pair of
objects L0, L1 ∈ ObA together with (graded) composition maps

µdA : MorA(Ld−1, Ld)⊗ · · · ⊗MorA(L0, L1) −→MorA(L0, Ld)[1]
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for d ≥ 1 satisfying the A∞-relations

∑︂
1≤m≤d

0≤n≤d−m

µd−m+1
A

(ad, . . . , an+m+1,

µmA(an+m, . . . , an+1), an, . . . , a1)
= 0.

In particular, µ1A endowes MorA(L0, L1) with a cochain complex
structure. Its cohomology groups H∗(MorA(L0, L1)) are endowed
with an associative product induced by µ2A. The resulting category
with objects ObA and morphism sets H∗ (MorA(L0, L1)) is the co-
homology category H(A). We assume that this category is unital.

There are notions of functors of A∞-categories and natural trans-
formations between functors. For the definitions we refer the reader
to [Sei08a]. We now proceed with the notion of A∞-modules.

Definition A.1.2. An A∞-module M over A consists of Z2-graded
vector spacesM(L) for each object L ∈ ObA together with maps

µdM :M(Ld−1)⊗MorA(Ld−2, Ld−1)⊗· · ·⊗MorA(L0, L1) −→M(L0)

for d ≥ 1 satisfying the relations∑︂
0≤n≤d

µn+1
M

(︂
µd−n
M (b, ad−1, . . . , an+1), an, . . . , a1

)︂
=

∑︂
1≤m≤d−1

0≤n≤d−m−1

µd−m+1
M

(b, ad−1, . . . , an+m+1,

µmA(an+m, . . . , an+1), an, . . . , a1).

There is a A∞-category modA whose objects are A∞-modules
over A and whose morphisms are so-called pre-module homomor-
phisms. A pre-module homomorphism f :M −→ M′ of A-modules
consists of a family of maps

fd :M(Ld−1)⊗MorA(Ld−2, Ld−1)⊗· · ·⊗MorA(L0, L1) −→M′(L0)

for d ≥ 1 satisfying again a certain set of equations. We omit here
the definition of the composition maps that turn modA into an A∞-
module.
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The Yoneda embedding is a specific A∞-functor

Y : A → modA

that takes an object L ∈ ObA to the A-module Y(L) defined by

Y(L)(K) :=MorA(K,L)

for each K ∈ ObA and

µdY(L)(b, ad−1, . . . , a1) := µdA(b, ad−1, . . . , a1)

for ai ∈ MorA(Ki−1,Ki), i ∈ {1, . . . , d − 1} and b ∈ Y(L)(Kd−1) =
MorA(Kd−1, L). There is more data to Y, namely a whole family Yd

of maps. We only say what Y1 is. It is the graded map

Y1 : MorA(L0, L1) −→MormodA(Y(L0),Y(L1))

defined by sending a ∈ MorA(L0, L1) to the pre-module homomor-
phism Y1(a) sending

Y(L0)(Kd−1)⊗MorA(Kd−2,Kd−1)⊗ · · · ⊗MorA(K0,K1)

to Y(L1)(K0) via

(b, ad−1, . . . , a1) ↦−→ µd+1
A (a, b, ad−1, . . . , a1).

By [Sei08a, Section 2g] the Yoneda embedding induces a unital, full
and faithfull embedding

H(Y) : H(A)→ H(modA).

Let f :M → M′ be a A∞-module homomorphism. There is a
well-defined mapping cone for morphisms of A-modules.

Definition A.1.3. The cone of f is the A∞-module

Cone(f)(L) =M(L)[1]⊕M′(L)

with composition maps

µdCone(f)((b, b
′), ad−1, . . . , a1)

=
(︂
µdM(b, ad−1, . . . , a1), µ

d
M′(b′, ad−1, . . . , a1) + fd(b, ad−1, . . . , a1)

)︂
.
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In particular, when we restrict attention to d = 1, Cone(f) is the
usual mapping cone over a chain map f . Therefore, for each object
L there exists a long exact sequence

· · · −→ H∗(M(L))
f∗
−→ H∗(M′(L)) −→
−→ H∗(Cone(f)) −→ H∗(M(L))[1] −→ . . .

A.2 Triangulated categories

The derived cateogoryDA ofA is the category constructed as follows:
Consider the image of Y in modA. We add all cones to our A∞-
category and call it the triangulated completion of the image of Y in
modA. DA is its cohomology category.

The following is an immediate consequence of the properties of
the Yoneda embedding.

Corollary A.2.1. Each f ∈ MorDA(Y(L1),Y(L2)) can be repre-
sented by Y1(α) for some α ∈ MorA(L1, L2). Moreover, [α] ∈
MorH(A)(L1, L2) is uniquely defined.

Proof. First, note that

MorDA(Y(L1),Y(L2)) ∼= H(MormodA(Y(L1),Y(L2))).

For any object K, Y(α) determines the map

Y(L1)(K) ∼=Mor(K,L1)
µ2(α,−)−−−−−→Mor(K,L2) ∼= Y(L2)

The existence and uniqueness of α follow immediately from H(Y)
being full and faithful.

DA is a so-called triangulated category. We briefly recall this
concept. An exact triangle in DA is any diagram

M

M′

M′′

[f ]

[1]
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which is isomorphic to

M

M′

Cone(f)

[f ]

[1]

in DA. It is shown in [Sei08a] that this endowes DA with the struc-
ture of a triangulated category.

Suppose there exists an exact triangle L0 → L1 → L2 in DA for
objects L0, L1 and L2 in A and morphisms in A. Here we identified
A as a subcategory of modA via the Yoneda embedding. Then for
each object K in A there is a long exact sequence of chain complexes

· · · →MorkHA(K,L0) −→MorkHA(K,L1) −→
−→MorkHA(K,L2) −→Mork+1

HA (K,L0)→ . . .

A.3 Fukaya categories

Roughly speaking the Fukaya category Fuk(M) is an A∞-category
whose objects are Lagrangian submanifolds and whose morphism
spaces are Floer complexes. The compositions µd are given by count-
ing pseodo-holomorphic d+1-gons with Lagrangian boundary condi-
tions. We give here a brief outline of the construction in the weakly
exact case, following the exposition in [BC14].

Let (M,ω) be a weakly exact closed symplectic manifold. Let L
be the set of closed, weakly exact Lagrangians in M . The Fukaya
category Fuk(M) has objects ObFuk(M) = L. For any pair (L0, L1)
of Lagrangians in L choose Floer data DL0,L1 = (J , H) such that
L0 ⋔ ψH

1 (L1). Then the morphism space is the cochain complex

MorFuk(M)(L0, L1) = CF∗(L0, L1;J , H).

In particular, µ1 is given by the Floer differential.
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The higher order compositions µd are defined in an analogous
way by counting pseudo-holomorphic d+1-gons as follows. Let Sd+1

be a disc with d+1 punctures ζ0, ζ1, . . . , ζd on the boundary, ordered
in counterclockwise direction. Let Ci be the connected component of
the boundary between ζi, ζi+1 for i = 0, . . . , d. See Figure A.1. For a

ζ0

ζ1

ζ2

ζ3

C0

C1

C2

C3

u

L0

L1

L2L3

γ−

γ+1

γ+2

γ+3

Figure A.1: A 3 + 1 punctured disc on the left and its boundary
conditions on the right.

d+1-tuple (L0, . . . , Ld) ∈ L choose perturbation data DL0,...,Ld(K,J)
consisting of a 1-form K on Sd+1 with values in C∞(M) and a fam-
ily Jz indexed by z ∈ Sd+1. The 1-form K gives rise to a 1-form
YK with values in the set of Hamiltonian vector fields. Consider
γ−, γ+1 , . . . , γ

+
d Hamiltonian chords of HL0,Ld , HL0,L1 , . . . ,HLd−1,Ld

respectively. The polygons that contribute to µd(γ+1 , . . . , γ
+
d ) as a

multiple of γ− are smooth maps

u : Sr+1 −→M

satisfying the equation

Dzu+ Jz(u) ◦Duz ◦ jSr+1 = YK(u) + Jz(u) ◦ YK(u) ◦ jSr+1 ,

where jSr+1 is a complex structure on Sr+1. The polygons should
satisfy the boundary conditions

u(Ci) ⊆ Li
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Moreover, u should tend to γ− at the puncture ζ0 and tend to
γ+1 , . . . , γ

+
d at the punctures ζ1, . . . , ζd respectively. These limits can

be made rigorous through the choice of compatible strip-like ends.
The details are omitted here.

Such polygons u can be collected to a moduli space

M(γ−; γ+1 , . . . , γ
+
d ).

Then µd is defined by

µd(γ+1 , . . . , γ
+
d ) =

∑︂
γ−,u

Tω(u)γ−,

where the sum is over all u ∈M(γ−; γ+1 , . . . , γ
+
d ).

The result of this construction is a whole family of A∞-categories,
indexed by the choice of regular and compatible Floer and pertur-
bation data DL0,...,Ld . They are all quasi-equivalent [Sei08a, Section
10]. In particular, their derived categories are all equivalent. We call
it DFuk(M).

By the generalities on A∞-categories collected in the previous
section, DFuk(M) is a triangulated category. If there is an exact
triangle L0 → L1 → L2 in DFuk(M) for Lagrangians L0, L1, L2 ∈ L
then for any Lagrangian K there is an induced long exact sequence

· · · −→ HFk(K,L0) −→ HFk(K,L1) −→
−→ HFk(K,L2) −→ HFk+1(K,L0) −→ . . .

Moreover, the maps can be understood as µ2-operations with unique
elements a ∈ HF0(L0, L1), b ∈ HF0(L1, L2) and c ∈ HF1(L2, L0).
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