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Abstract

This thesis examines the formation, growth, and resilience of large-scale dis-
tribution systems. We investigate the interactions among manufacturers, dis-
tributors, and consumers, and show how these interactions shape the growth
and resilience of these systems.

Our study begins with an empirical analysis, where we reconstruct the com-
plete distribution networks of opioids in the United States using data from
nearly half a billion shipping records. We then examine the main topolo-
gical properties of these networks and analyze their stability over a nine-year
period. Surprisingly, we find that despite the increasing demand for opioids,
the main topological properties of the distribution networks remain stable.

To investigate how distribution systems form and evolve, we develop an evolu-
tionary network growth model that simulates strategic link formation between
firms. Testing the model against the empirical data, we show that two mech-
anisms are essential for the emergence of the observed networks: central-
ization and multi-sourcing. While centralization enhances efficiency, multi-
sourcing fosters local resilience to shocks. Next, we discuss firm growth dy-
namics and examine how previous economic theories can be applied to the
supply chain domain.

Finally, we analyze system resilience to possible disruptions. We model the
propagation of supply shocks at the firm-level and discuss various system re-
sponses to mitigate them. Our focus is on the role of supply substitution as a
quick strategy that we show can effectively reduce the shock impact. Our re-
search offers a valuable tool for managers and policymakers, enabling them
to devise effective mitigation strategies that can be implemented after disrup-
tions occur.

Through a rigorous approach that combines both empirical analysis and data-
driven modeling, we are able to unveil the underlying mechanisms that gov-
ern these systems. Our results contribute to both network science and supply
chain management. In our attempt to bridge the gap between the two fields,
we provide new methodologies based on high-resolution data to study the dy-
namics of large-scale distribution networks.
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Riassunto

Questa tesi esamina la formazione, la crescita e la resilienza dei sistemi di
distribuzione su larga scala. Investigando le interazioni tra produttori, distri-
butori e consumatori, analizziamo come tali interazioni plasmino la crescita e
la resilienza di questi sistemi.

Iniziamo la tesi con un’analisi empirica sul sistema di distribuzione di farmaci
contenti oppioidi, negli Stati Uniti. Riconstruiamo questo sistema basando-
ci su circa 500,000,000 records di spedizioni, e ne esaminiamo le principali
proprieta topologiche in un periodo di nove anni. Scopriamo che nonostan-
te laumento della domanda di oppioidi, le principali proprieta topologiche di
questi sistemi rimangono stabili.

Per capire come tali sistemi si formano ed evolvono, sviluppiamo un modello
analitico che simula la formazione strategica di alleanze tra le imprese nei si-
stemi di distribuzione. Dimostriamo che esistono due meccanismi principali
alla base della formazione dei sistemi osservati: il meccanismo di centraliz-
zazione e quello di multi-sourcing. Il primo migliora Uefficienza di tali siste-
mi, mentre il secondo la loro resilienza a possibili shocks. Discutiamo poi la
crescita delle imprese e l'applicazione di alcune teorie economiche al settore
delle reti di approvvigionamento.

Infine, analizziamo la resilienza di questi sistemi. Sviluppiamo un modello
analitico che descrive come carenze di beni possono propagarsi da un’'azien-
da ad un’altra, e analizziamo possibili strategie di risposta a tale evento. In
particolare, esploriamo il ruolo di sostituzione di beni come risposta rapida a
tale shock e dimostriamo che tale riposta e’ in grado di mitigare l'impatto del-
lo shock. Forniamo quindi un nuovo strumento per aiutare manager e politici
a definire strategie di mitigazione di possibili carenze di beni.

Grazie ad un approccio rigoroso che combina analisi empirica e modellizza-
zione basata sui dati, siamo in grado di delineare i meccanismi che governano
le dinamiche principali di tali sistemi. | nostri risultati contribuiscono sia alla
scienza delle reti che alla gestione della supply chain. Nel nostro tentativo di
colmare il divario tra i due campi, forniamo nuove metodologie basate su dati
ad alta risoluzione per studiare i sistemi di distribuzione su larga scala.

viii



Chapter 1

Introduction

“The essence of strategy is choosing what not to do.”

M.E. Porter

1.1 Overview

As humans rely on each other’s capabilities to achieve goals and deliver pro-
jects, so do firms. Within a supply chain, firms depend on each other’s cap-
abilities to produce and deliver goods to end consumers (Brintrup and Led-
woch, 2018). This is accomplished through the well-known outsourcing prac-
tice, in which production and distribution responsibilities are shared among
firms (Schoenherr, 2010).

Over the past two decades, outsourcing has emerged as a popular business
paradigm for several companies in response to the growing market competition.
Firms gained various benefits by collaborating as part of a supply chain rather
than in isolation. They could reduce costs through lower inventory buffers and
economizing the supply base while maintaining high profits (Altiparmak et al.,
2009; Mizgier et al., 2013). In addition, outsourcing the distribution process

1



1.1. Overview 2

has facilitated efficient deliveries and shorter lead times, ultimately improving
customer service performance (Martinez-Olvera et al., 2015).

The emergence of highly interconnected supply chains has resulted in far-
reaching transformations, impacting not only business operations but also na-
tional economies, international trade, and society. Most supply chains are not
confined to the border of a single country but span the globe, with various
stages of production and distribution taking place in different regions. This
global context has significantly altered international trade, promoting eco-
nomic growth in low-income countries (Gereffi, 2014). As Gereffi (2019) noted
the global dimension of trade is not a new phenomenon, but the speed and
scale of these interactions are.

Besides firms and countries, the good functioning of a supply chain directly
affects a third actor: the end consumer. People’s lives rely on several sup-
ply chains to access goods and services. Disruptions to these systems can
adversely impact people’s well-being and, in some cases, even threaten their
lives (Schueller et al., 2022). Examples of critical supply chains include those
providing essential goods such as food and medicines. The recent Covid-
19 pandemic is a major example. Production shutdowns due to quarantine
policies generated significant shortages of food and medical equipment, thus
harming millions of lives. Before the Covid-19 pandemic, various incidents
such as natural disasters, for instance, the earthquake that hit Japan in 2011,
and labour issues, such as the fire at Toyota’s supplier in 1997, have affected
supply chains and, in turn, entire populations.

All these events have raised awareness of the fragility of today’s supply
chains (Diem et al., 2022; Reisch et al., 2022). They look unprepared to
address modern challenges, including the ongoing climate crisis and future
pandemics. As Professor J. Byrnes stated, “many supply chains are perfectly
suited to the needs that the business had 20 years ago”. However, whether
they suit today’s needs is still unclear. Many questions have been raised. How
do supply chain structures evolve? To what extent can they bear or amplify
local shocks? What policies can be implemented to enhance their resilience to
disruptions? This thesis aims to explore possible answers to these questions.
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1.2 Emergence of a systemic perspective

1.2.1 Questioning the linear perspective

Most prior supply chain research has assumed a linear structure, where a
“chain” connects a focal manufacturer to its upstream suppliers and down-
stream distributors. However, modern supply chains are far more complex.
Firms often establish connections with multiple suppliers and distributors, who
in turn are connected to other firms. This results in the emergence of large-
scale inter-firm networks, overlooked by this linear perspective. A schematic
representation of a supply network is shown in Fig. 1.1. The linear perspective
approach considers only the single “chain” of firms connected by the red links
in the representation, thus overlooking the whole network.

According to Brintrup and Ledwoch (2018), there are two reasons why this
linear perspective is still vastly used. The first reason is the lack of data.
Many analyses are restricted to the data companies provide, if they provide.
Firms tend to keep their partnership information private; therefore, the data
available for analysis are usually limited in scale. This is because they fear that
disclosing such information may weaken their bargaining power and benefit
their competitors.

The second reason is what we can call an “emotional attachment” to estab-
lished techniques. In the engineering supply chain domain, there are well-
established tools for optimizing goods flow concerning some firm-level vari-
ables, e.g., costs or delivery times. For computational reasons, these models
hardly deal with large-scale analysis. Further, they are not designed to incor-
porate network effects.

We argue that complexity science can provide the appropriate tools to move
beyond the oversimplified linear perspective in favour of a more realistic and
large-scale one.
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Figure 1.1: Schematic representation of a supply network. A single supply chain,
consisting of one supplier, one manufacturer and two distributors, is highlighted by
the red links in the figure.

1.2.2 Supply chains as complex systems

In this thesis, we use the tools from complex networks to study supply chains.
Following the pioneer work of Choi et al. (2001), we view supply chains as
complex systems: they emerge spontaneously from the interactions of a large
set of entities and are not controlled by a single one. A complex network, then,
is a specific formal representation of a complex system.

Scholars have used this representation to successfully study the structure and
the dynamics of several economic systems, e.g., financial systems (Battiston
et al., 2012b), global trades (Burkholz and Schweitzer, 2019), and inter-firms
collaboration networks (Tomasello et al., 2014). We argue that also supply
chains can be universally abstracted to networks, where links represent supply
relations and nodes represent firms (i.e., suppliers, manufacturers, distribut-
ors) and consumers. We identify four key factors that allow us to qualify such
systems as complex systems. These are listed below. Note that throughout
the thesis, we mainly use the term “supply networks” to refer to supply chains.
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Self-organized systems. Supply networks are not designed by a single com-
pany but emerge spontaneously. Firms can select their direct suppliers and
distributors, but they have limited control over indirectly related firms, i.e.,
those that are connected to their suppliers and distributors. These indirect
connections are still very important for firms because they can influence their
performance and risk exposure.

Heterogeneity of economic actors. The economic actors that are part of a
supply network are very diverse, as are the tasks they perform. We identify
four economic actors: suppliers, producers, distributors and consumers. The
inherent diversity of these actors fosters the formation of supply links. Man-
ufacturers connect to suppliers because they need raw materials for their pro-
duction inputs; distributors connect to producers because they need finished
goods for delivery; and consumers connect to distributors to access goods and
services. Then, these connections enable supply networks to function.

Product heterogeneity. Several products are supplied using interconnected
and even overlapping supply chains. Depending on the given product, the
same firm may contribute differently to the overall production and distribu-
tion process. Let’s consider the example presented by Brintrup and Ledwoch
(2018): the production chain of a car. A given supplier produces both fabrics
for car seats and assembled seats. This supplier sells the seats to one manufac-
turer and only the fabrics to a second manufacturer, which has not outsourced
seat production. Any disruptions at this supplier may affect the two manu-
facturers differently. A similar situation may occur on the distribution side of
a supply chain. A given distributor may sell cars directly to consumers and,
for other vehicles, outsource this to retail distributors. Product heterogen-
eity adds further complexity, leading to more complex structures than simple
chains.

High dynamism. Supply networks are intrinsically dynamic (Wycisk et al.,
2008). Their structure constantly changes as firms adjust their business op-
erations. New firms may enter the market while others exit. Supply links

may also form or terminate, and some firms may introduce or withdraw



1.2. Emergence of a systemic perspective 6

products (Wycisk et al., 2008). Moreover, supply networks may display non-
linear behavior (Choi et al., 2001). Local shocks may propagate through the
supply links even with amplification mechanisms (Carvalho et al., 2021). Dy-
namic models from complexity science can serve as a foundation for analyzing
such phenomena.

1.2.3 The need for large-scale empirical analyses

Over the past two decades, several works have been published to support the
view of supply chains as complex systems and to encourage the use of network-
based tools (Brintrup et al., 2015; Hearnshaw and Wilson, 2013; Pathak et al.,
2007; Perera et al., 2017a; Wycisk et al., 2008). Although the importance
of this emergent perspective has been vastly acknowledged, few works have
adopted it in practice. Complexity science is still in its infancy in the supply
chain domain compared to other fields, e.g., social science, political science,
biology, or ecology.

The progress of complexity science in the field of supply chains has been
hindered by a lack of comprehensive data. Currently, there there is a lack
of not only large-scale data, but also fine-grained data capturing, for instance,
temporal interactions between firms. As a result of limited data availability,
previous research has been constrained to case study analyses of a small num-
ber of firms or static network approaches (Brintrup et al., 2015; Dong et al.,
2020; Kim et al., 2011; Perera et al., 2017a; Potter and Wilhelm, 2020).

To deepen our understanding of how these networks form, function on a daily
basis, and respond to shocks, more empirical insights and dynamic models
tested on large-scale data are needed. In response to this need, this thesis
contributes to the field by providing novel empirical analysis on a large-scale
distribution system, as detailed in the following Section.
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1.3 Contribution of the thesis

1.3.1 The opioid distribution system

This thesis examines a prominent example of a large-scale distribution system.
We study, for the first time, the US distribution system of opioid drugs, which
serves over 200,000 pharmacies, hospitals, and practitioners nationwide and
connects over 1,500 firms, i.e., opioid manufacturers and distributors. To our
knowledge, this is the largest distribution system analyzed to date. Based on
approximately 500,000,000 shipping records, we empirically reconstruct and
characterize the distribution system of various opioids over a nine-year period.

Unlike most previous research, our study does not focus on the supply chain
of a single company. Instead, we examine the interconnected supply chains of
numerous firms within a single, very wide nation. Through this comprehensive
and systemic approach, our research makes a unique empirical contribution to
the field of supply chain management.

In addition to empirical results, this thesis presents a theoretical framework for
the analysis and modeling of large-scale distribution systems. The extensive
available data allow for comprehensive and rigorous testing of our models. It
is worth noting that our goal is to use the opioid distribution system as a
test bed for our analysis. As we do not want to limit our contribution to the
pharmaceutical industry, we strive to formulate general hypotheses that go
beyond the narrow opioid market.

1.3.2 Thesis structure

The thesis comprises 10 Chapters. The current Chapter introduces the thesis
by explaining the underlying motivations and providing an overview of the
theoretical background. Then, the thesis is structured in three Parts according
to three different research lines: (i) empirical analysis, (ii) dynamic models to
explain network formation and growth, (iii) and dynamic models to assess

network resilience.
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Part I: large-scale empirical analysis. The first Part of the thesis provides
an in-depth characterization of the system under study. We first describe the
data used to reconstruct the opioid distribution networks in Chapter 2. In
Chapter 3, we present a topological characterization of those networks and
discuss their evolution over a nine-year period. Next, in Chapter 4, we recon-
struct and characterize the daily flow of drugs moving through the distribution
networks; and we discuss possible methods for identifying prominent distrib-
utors where the flow is concentrated.

Part lI: formation, evolution, and growth. Real-world distribution networks
are large, self-organized, and heterogeneous in both types of economic actors
and the type of material flow moving through the network. As a result, a
highly complex structure emerges. Part II of this thesis poses the question:
How do these complex structures originate, evolve, and grow?

We begin to address this question in Chapter 5. Here we develop a network
growth model to explain the formation of such systems from a topological per-
spective. We aim to design link-formation rules that can explain the emergence
of the observed structures. In Chapter 6, we use statistical tools to evaluate
the growth of firms operating within the opioid distribution networks. Finally,
in Chapter 7, we extend the model presented in Chapter 5 to describe how
distribution networks can grow both in size (i.e., by increasing the number of
links and nodes) and volume (i.e., by increasing the quantity shipped).

The models developed are calibrated and validated against the empirical data.
It is worth noting that our goal is not to predict the system properties ac-
curately. Instead, our goal is to understand the few but sufficient principles
that govern the growth of these networks and, thus, their constituent firms.
In doing so, we strive towards parsimonious models with few interpretable
parameters that can be tuned and calibrated against firm-level data.

Part Ill: cascade dynamics and network responses. Cost-reduction
strategies and just-in-time delivery principles have led to highly functional
distribution networks. To what extent are their structures also resilient to
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Chapter 2
Chapter 3* Chapter 4* * Part |: Empirical Analysis
‘1’ Part [l:Models, Growth
Chapter 5
\L Chapter 8 Part Il Models, Cascades
Chapter 6 )
Chapte<A Chapter 9
Chapter 10

Figure 1.2: Roadmap for reading.

disruptions? How do supply shocks propagate on these networks? Also, what
are the possible response strategies, and how can we model them?

These questions are addressed in Chapter 8 and Chapter 9. Specifically, in
Chapter 8, we develop an Agent Based Model (Schweitzer, 2022a) to study
how local supply shocks may propagate through the network and impact other
firms not directly affected by the shock. Next, in Chapter 9, we investigate
to what extend supply substitution policies can alleviates potential shortages

and enhance system resilience.

In contrast to Part II, the focus of this part is not on validating the models
using the data. Rather, the data are utilized to inform the models developed.
Our objective is to incorporate various features of the real-world systems into
the models to begin with the most realistic representation. Subsequently,
through “what-if” scenarios, we simulate the proposed mitigation strategies
and examine their efficacy.

Roadmap for reading. Fig. 1.2 shows different paths the reader can take
when approaching this thesis. We recommend starting from Chapter 2, where
we describe the data used throughout the thesis. Then, the thesis develops
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along two main streams: network growth (Part II) and network resilience
(Part IIT). We identify two separate reading paths because we provide different
methodologies to tackle the two topics.

Path (1), shown in red on the left-hand side of the Figure, begins with
Chapter 3, which provides a comprehensive characterization of the empirical
system. The insights gained from this analysis can provide a foundation for
understanding the growth model presented in the subsequent Chapter 5. It is
recommended to continue reading Chapter 6, where we explore firm growth in
distribution systems. The knowledge gained in both Chapter 5 and Chapter 6
is then necessary to understand Chapter 7.

Path (2), in blue on the right-hand side of the Figure, starts with Chapter 4.
This Chapter reconstructs the empirical trajectories of drug packages moving
through the opioid distribution system. These trajectory data serve as input of
the model developed in Chapter 9. We recommend that the reader proceeds to
Chapter 9 after reading Chapter 8, as the latter introduces the mathematical
formalism required to understand the analysis presented in Chapter 9. There-
fore, both Chapter 4 and Chapter 8 are prerequisites for reading Chapter 9.

Following either of the two paths depicted, the reader can eventually reach
Chapter 10. In this Chapter, we summarize the main findings, draw conclu-
sions from the three research streams, and outline possible directions for future
research.



Part |

Distribution networks:
an empirical analysis

“Without data you’re just another person with an opinion.”
W. E. Deming

11



Chapter 2

Data and network
reconstruction

Summary

This Chapter presents an overview of the ARCOS dataset, which contains
approximately 500 million records of opioid drug shipments in the United
States. These records span a period of nine years, from 2006 to 2014, and
have a daily resolution. The dataset is a central component of all Chapters
in this thesis and has not been thoroughly studied by the scientific com-
munity. Therefore, we provide a detailed description of the data’s source,
composition, and our procedure for reconstructing distribution networks
from shipment records. Finally, we explore the local topological proper-
ties of the reconstructed networks using network motifs.

This Chapter has been written specifically for this thesis.

12
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2.1 The ARCOS dataset

On the data origin. Starting from 1997, the US Drug Enforcement Admin-
istration (DEA) has introduced a data collection software for keeping track
of all the shipments of opioids across the country*. The software utilized to
collect the shipping records is called ARCOS, an acronym for “Automation of
Reports and Consolidated Orders System”. The system has been in place for
many years, and it has collected billions of shipping records. For several years,
these data were kept confidential. Only in 2019, the Federal Court ordered
the DEA to release the data to the public.

The Court decision was the final stage of a protracted lawsuit between a set of
drug companies and a civil union comprising 2,000 cities, towns and counties.
The companies were accused of overselling the drugs for their economic in-
terest. In the course of the litigation, the civil union gained the support from
the owners of two leading US newspapers, namely “The Washington Post”
and the “Charleston Gazette-Mail”, which played an essential role in the data

release.

The shipments recorded between 2006 and 2014 have been made public and
are now available on two platforms: the GitHub page of the Washington
Post (Washington Post Investigative, 2019) and the website of the SLCG con-
sulting group (SLCG, 2019)f. While the Washington Post published only a
subset of the data (i.e., shipments of Hydrocodone and Oxycodone drugs), the
SLCG made the complete raw data available on its website and provided a
preprocessed version of the data. In this thesis we analyze the preprocessed
version of the data downloaded from the SLCG website (SLCG, 2019). To the
best of our knowledge, this project is the first work to utilize these data for
scientific purposes.

*For completeness, it tracks not only opioids but all “controlled substances”. These are
drugs, or other substances, controlled by the government since they may cause addiction, e.g.,
opioids, stimulants, depressants, hallucinogens, and anabolic steroids. However, only the
shipping transactions of opioids have been made publicly available. Hence, in the following,
we will always refer to the opioid data.

fThe SLCG was responsible for checking data anomalies during the opioid litigation.
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A complete dataset. The ARCOS dataset comprises 499,534,836 shipping
transactions recorded between 2006 and 2014. The dataset is complete, mean-
ing it stores all national, yet legal, shipments confined to the US borders.
Specifically, all the 50 US states, six US territories (i.e., district of Columbia,
Puerto Rico, Guam, US Virgin Islands, American Samoa, Northern Mariana
Islands), and four service lands (i.e., Armed Forces-Americas, Armed Forces-
EMEA, Armed Forces-Pacific, and the Palau Republic) are considered.

Shipments involve about 300,000 economic actors: manufacturers (610), dis-
tributors (1,318) and actors who only receive packages (299,344), including
for instance hospitals, pharmacies and doctors. According to the DEA regula-
tions?, all opioid manufacturers and distributors must report their shipments
periodically, about once a year, via the ARCOS software. They must specify sev-
eral details, including the shipping locations, times, and product type. Thus,
the data collected boast a very high resolution concerning three main aspects:
(i) the economic actors; (ii) the products shipped; (iii) and the shipping dates.
We illustrate these three aspects below.

Actors. Fach actor is identified by a unique alphanumeric code called dea-
number, which is assigned by the DEA during registration. In addition to
the dea-number, the data also contain the names, locations, and business
types (e.g., manufacturers, distributors) of the companies involved. It is worth
noting that the dea-number is assigned to a specific business location rather
than the entire company. Thus, multiple business locations, even if they belong
to the same company, are assigned to different dea-numbers.

Drug products. 18,677 different products are reported in the dataset. Each
product is uniquely identified through a National Drug Code (ndc). This code
usually appears on the package tag, as illustrated by Fig. 2.1. The ndcis an 11
digits number which comprises three segments encoding three different pieces
of information: (i) the first five digits indicate the manufacturer or labeller; (ii)
the second four digits indicate the drug type, i.e., its formulation, the active

¥More precisely, the “Controlled Substances Act of 1970 (§ 827)” created the requirement
for the drug manufacturers and distributors to report their transactions to the Attorney
General. Then the Attorney General delegated this authority to the DEA.
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Labeler  Drug Package

NDC: 59011 - 0440 - 10

Figure 2.1: TIllustrative picture of a drug product uniquely identified by a National
Drug Code (ndc), 11 digits long. The first five digits encode the manufacturer (la-
beller); the second four digits encode the active ingredient, strength, and formulation
(drug); the last two digits encode the package size (package). The code 59011-440-10
identifies Oxycodone tablets in 40 mg (segment 440) that are produced by the la-
beller Purdue Pharma (segment 59011) and packed in boxes of 100 tablets (segment
10). Credits: the photo of the drug package has been taken from an online article
published by the journal The Guardian. Photograph: George Frey/Reuters.

ingredient, and strength; (iii) the last two digits indicate the package size, e.g.,
package of 100 tablets, package of 50 tablets.

Each product contains only one active ingredient or basic opioid, e.g., Fentanyl,
Hydrocodone, or Oxycodone. There are fourteen different basic opioids in the
dataset. The complete list is given in Table 2.1, along with the total number
of shipping transactions and the units sold to consumers between 2006 and
2014.

We notice that two big players dominate the opioid market: Hydrocodone and
Oxycodone. Jointly, their number of transactions encompasses more than 60%
of the total. We obtain a similar result if we look at the number of units sold.
We see that the total number of transactions of Oxycodone and Hydrocodone
drugs is (at least) one order of magnitude bigger than the one associated with
the other basic opioids.

The observed predominance of the two opioids is also reflected in the number
of products. In Fig. 2.2, the total number of products (y-axis) per basic opioid
(x-axis) is shown. We see that there are almost 6,000 products containing
Hydrocodone and almost 3,000 products containing Oxycodone. The former
corresponds to 32% of all the products, the latter to 15%. From Fig. 2.2, we
also note a relatively large number of Fentanyl-based products (2,638), compar-
able to those containing Oxycodone. In contrast, we find a much lower number
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Basic opioid Transactions Units sold Transactions (%) Units sold(%)
HYDROCODONE 174,285,342 4.153850e+10 0.3943 0.46115
OXYCODONE 105,477,472 1.557179e+10 0.2386 0.17287
FENTANYL 42,868,242  7.003753e+09 0.0969 0.07775
MORPHINE 39,066,352  1.213574e+10 0.0883 0.13473
BUPRENORPHINE 24,063,069  4.330039e+09 0.0544 0.04807
CODEINE 14,539,286  1.621039e+-09 0.0328 0.01799
HYDROMORPHONE 14,466,475  4.812868e+-09 0.0327 0.05343
METHADONE 14,069,036  8.150097e+-08 0.0318 0.00904
OXYMORPHONE 5,013,407  1.318083e+09 0.0113 0.01463
MEPERIDINE 4,138,042  1.621182e+08 0.0093 0.00180
TAPENTADOL 2,901,272 3.388228e+-08 0.0065 0.00376
DIHYDROCODEINE 752,273 4.141162e+08 0.0017 0.00459
OPIUM, POWDERED 297,356  6.878540e+06 0.0006 0.00007
LEVORPHANOL 63,414  5.518305e+06 0.0001 0.00006

Table 2.1: List of the fourteen basic opioids in the data, along with the number of
shipping transactions and units sold to consumers. Absolute and percentage values
are displayed. Opioids are sorted according to the number of transactions. The top
two are highlighted in red.

6000 -
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# of products

o1
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Figure 2.2: Number of products (y-axis) per basic opioid (x-axis).

of shipping transactions for Fentanyl than for Oxycodone (see Table 2.1). The
high potency of Fentanyl may explain this observation. Fentanyl is 100 times
stronger than Morphine. Presumably, it cannot be prescribed regularly; there-
fore, it is shipped with much less frequency (i.e., fewer transactions).

Finally, as we observe a predominance of very few basic opioids in the market,
we also observe a predominance of very few products. For Hydrocodone, only
60 products, corresponding to the 12% of products, appear in 80% of the ship-
ments. Similarly, for Oxycodone, we find that only 60 products, corresponding
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Figure 2.3: Number of new products (blue line) and products withdrawn from the
market (red line) per year.

to 5% of products, appear in 83% of the shipments. The full list of products is
reported in Table A.2 in Appendix A. These preliminary observations already
reveal that the opioid market is organized so that very few players, in terms
of products and basic opioids, dominate the shipments.

Shipping dates. The dataset covers nine years, from 2006 to 2014. Shipping
dates are reported with a daily resolution, i.e., in the day-month-year format$.
During the observation period, a quite pronounced turnover of drugs is ob-
served. In Fig. 2.3, we show the number of new products entering the market
every year (blue line) and the number of products exiting the market every
year (red line)¥. We define as new products those that appear in the data,
for the first time, in 2008 or later (i.e., no transactions recorded in the first
two years). Similarly, we define as withdrawn products those that appear in
the data, for the last time, in 2012 or earlier (transactions not recorded in the
last two years). We find that approximately 1,000 products enter the market
annually (= 5% of products). A slightly decreasing trend is observed between
2008 and 2014. In contrast, an increasing trend characterizes the number of

$Note that the dates when orders are placed or packages delivered are not reported in
the data and may differ from the shipping dates.

9For these statistics, we do not distinguish between products with different packaging
(i-e., by the last two ndc digits) but only with different compositions (i.e., by the first nine
ndc digits).
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products withdrawn from the market. The number of products that exit the
market increases from about 300 in 2006 to about 1,000 in 2012.

The observed turnover may be due to various factors, such as the introduction
of experimental drugs (on the market for short periods), or the effect of gov-
ernment interventions to reduce opioid prescriptions by favouring the use of
others (with different compositions). This market dynamism may impact the
structure of the underlying distribution systems. For example, the entry of a
new drug may induce changes in the network structures. We investigate this
aspect in Section 2.3 of the current Chapter.

Preprocessing. The data used for this thesis was obtained from the SLCG
website (SLCG, 2019). The dataset is about 977 GB in size, which is too large
to handle without proper management. To overcome this, we stored the data
in a PostgreSQL database on our local server.

We used the preprocessed version of the data provided by SLCG, which had
already been checked for anomalies during the opioid litigation. We did not
encounter any additional anomalies during our analysis. Furthermore, we as-
sumed that there were no missing records since all shipments are required by
law to be reported.

When we analyzed the import and export transactions, we discovered that they
accounted for only about 0.01% of the total records. This finding indicates that
the opioid manufacturing and distribution system is a closed system, thereby

eliminating concerns about missing information.

We divided the actors into three distinct groups: (i) manufacturers, (ii) dis-
tributors, and (iii) end consumers. The end consumer category includes all
actors who are not distributors or manufacturers and who receive drugs, such
as hospitals, clinics, practitioners, and pharmacies. Although they do not con-
sume the drugs directly, we use the term “end consumers” since they represent
the final destination of the distribution process. The data include 54 different
business activities. The are reported in Table A.1.

Finally, we convert these shipping data into distribution networks. Given the
importance of this step in our analysis, it is crucial to carefully consider the
theoretical assumptions and simplifications involved, as they can significantly
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impact the reconstructed distribution networks the and subsequent analyses.
We provide a detailed description of the data processing steps in the following
Section.

2.2 Reconstructing distribution networks

2.2.1 From shipping transactions to networks

Throughout this thesis, we adopt a complex network approach and abstract
distribution systems as networks. Although constructing a network represent-
ation of these systems may seem straightforward, it is not when the starting
point is a large and multifaceted dataset. Given a set of shipping transactions,
multiple representations of the same system can be constructed depending
on how these transactions are aggregated and preprocessed. As Butts (2009)
noted, a network representation is a theoretical act. As such, it always in-
volves assumptions and simplifications that need to be made explicit (Peel
et al., 2022). This Subsection aims to explain the procedure we follow when
converting the available data into networks and the limitations associated with
such a network representation.

In our network representation, nodes represent firms, i.e., manufacturers and
distributors, and links represent supply relations. We assume that a supply
relation is established between two firms whenever at least one shipment has
been observed. Specifically, we always consider an annual time-window to
determine the existence of a supply link. Links are directed according to the
direction of the shipments, from sender to receiver.

Note that we are interested in the distribution process that ensures that goods
are moved from producers to consumers. We are not interested in the so-called
“reverse distribution” process occurring in the opposite direction: expired or
damaged products are returned back to manufacturers or destroyed. There-
fore, we make two choices. First, we exclude distributors that are in charge of
destroying packages. These are labelled as “reverse distributors” in the data,
according to the bus actl. Second, we exclude back shipments. Given two

[ Further, note that all the records are labelled by a code defying the transaction type,
e.g., sale, return, package destroy. We exclude shipping transactions of destroyed or returned
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firms, A and B, it is possible to observe shipments in both directions, i.e.,
from A to B and from B to A. To correctly identify the directionality of the
supply link, the shipping volumes are compared, and a link is created in the
direction of the larger shipment**.

Since the dataset contains thousands of different products, millions of distribu-
tion networks could be constructed based on the products (or combinations of
products) considered. In this thesis, we always consider distribution networks
of multiple products. Specifically, we deal with two classes of distribution
networks: what we call (i) single-manufacturer distribution networks and (ii)
single-opioid distribution networks. The distribution networks of class (i) are
reconstructed by aggregating transactions of products belonging to the same
manufacturer. These products share the same label code, the first five digits of
the nde. The distribution networks of class (ii) are reconstructed by aggregat-
ing transactions of products containing the same basic opioid (even produced
by different manufacturers).

Depending on the focus of the Chapter, we deal with one of the two classes.
Specifically, in most Chapters, i.e., Chapter 3, Chapter 6, Chapter 8 and
Chapter 9, we use the networks of class (ii), as we are interested in the
large-scale analyses of nationwide distribution networks. In Chapter 7 and
Chapter 5, instead, we use the networks of class (i) as we aim at modelling
the formation of distribution systems with a single root, namely a single man-
ufacturer.

Finally, we want to clarify how consumers are abstracted in our network rep-
resentation. We first notice that the total number of consumers is 299,344.
Instead, the total number of firms (distributors plus manufacturers) is 1,928,
namely two orders of magnitude smaller. This represents both a computational
and conceptual challenge for our network analysis. Using a network abstrac-
tion where all consumers are represented as single nodes would completely
mask firms’ behavior and only highlight the consumers’ behavior.

packages and only consider transactions labelled by code “S” (i.e., almost 90% of the total
number of transactions). This indicates an action of “sale, disposition, or transfer”.

**This is done when one of the two shipments occurs with a much lower frequency.
Therefore, it is clear that one follows the direction of the distribution and the other represents
a back shipment.
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To solve this challenge, we use representative consumers. A representative
consumer is obtained from aggregating the whole set of consumers to whom a
distributor ships. Moreover, we are mainly interested in firms’ rather than
consumers’ behaviors. Therefore, consumers will not be part of our net-
work abstraction throughout the thesis. The sole exception are Chapter 5
and Chapter 7. In these Chapters, we investigate microscopic mechanisms
to explain the evolution of the network topology and the goods flow. As we
want to reproduce the flow that reaches consumers, we model representative

consumers as nodes of the network.

2.2.2 Network motifs in directed tree-like structures

This Subsection presents a preliminary characterization of the distribution net-
works reconstructed from the ARCOS by analyzing their local topological prop-
erties. Specifically, we analyze small subgraphs of these networks often called
network motifs (Milo et al., 2002). These are recurring relational patterns
between small groups of nodes, e.g., two nodes (dyadic motifs) or three nodes
(triadic motifs). Network scientists have vastly studied motifs as they have
been found to carry meaningful information on the functions of the underlying
systems. They have been used, for example, to classify regulatory mechanisms
in transcription regulation networks (Alon, 2007), or identify early-warning
signals of the topological collapse of the Dutch inter-bank network (Squartini
et al., 2013).

Clearly, we do not expect that all the previously studied subgraphs that have
been meaningful for other networks would also be meaningful in the context
of distribution networks. We expect to observe patterns in the data that are
consistent with a hierarchical tree structure, in which a manufacturer node
serves as the root and is connected to child nodes (distributors) along the
tree. Such structures are commonly found in distribution systems as they
facilitate efficient deliveries and reduce costs (Perera et al., 2017a). Direct
loops or bidirectional connections, on the other hand, are unlikely to occur
frequently. These patterns indicate backward shipments or shipments going in
circles, which suggests inefficient distribution processes.
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Figure 2.4: Box plots displaying the frequencies of the dyadic and triadic motifs.
The sample comprises the distribution networks of 100 opioid producers in the US.

Yet, the question of the most frequent subgraphs in real-world distribution
networks remains. To answer this question, we reconstruct the distribution
networks of 100 (the largest) opioid producers. For each network, we count
the number of dyadic and triadic motifs. In Fig. 2.4, we display the normalized
count, i.e. frequency, of the dyadic and triadic motifs. The box plot shows the
mean and variance of the motif frequencies obtained in our sample.

By construction, motifs representing bidirectional relations have zero fre-
quency. On the contrary, all motifs with unidirectional links and not rep-
resenting cycles are indeed observed. These are the four triadic motifs M1,
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M2, M4 and M5 and the unidirectional link M14. The most observed triad is
M1, followed by M2, M4 and M5. M1 represents a single firm that ships to two
other firms. The more branched the network, the less frequent this pattern
is. Think of a single long chain of distributors. In this case, M1 is absent.
Conversely, the more centralized the network (i.e., a single distributor that
ships to all others), the more frequent this pattern is. The very high frequency
of these motifs suggests high centralization of the network.

M2 represents a path of length two in the network. M4 represents a firm
receiving goods from two different partners. M5 has a similar interpretation
but with a redundancy: the two partners are themselves connected. The
configurations expressed by M4 and M5 are not possible in a perfect tree. By
definition, nodes in a tree can have only one parent.

This preliminary investigation already provides us with two main insights.
First, distribution networks exhibit structural patterns (i.e, M4 and MS5)
that distinguish them from perfect trees. Second, the pattern expressed by
M1 (centralization) is predominant. We will return to these two insights in
Chapter 5, while developing the mechanisms that drive the network formation.

2.3 Local topological changes under product introduction

New products and topological changes. In Section 2.1, we noted that the
opioid market is quite dynamic: about 1,000 products enter the market each
year. In this Section, we want to test the extent to which changes in market
conditions due to a new product introduction can affect distribution networks
and induce significant changes in their topologies.

According to Pero et al. (2010), introducing a new product can prompt manu-
facturers and distributors to reconfigure their business relations, thus, causing
structural changes in the underlying distribution network (Caridi et al., 2012;
Zimmermann et al., 2016). To test whether this phenomenon is actually ob-
served in real-world networks, we reconstruct the distribution networks of the
opioid producers that introduced a new drug between 2006 and 2014. Next,
we use network motifs to capture topological properties of these networks and
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apply the Differences-in-Difference (DiD) statistical technique to detect causal
effects.

Difference-in-Differences. DiD is a statistical technique used to estimate
the causal effect of a given event, or treatment, on some outcome vari-
able (Gertler et al., 2016). The statistical sample is split into two sub-samples:
(i) the treatment sample, that is, the set of entities that do experience the
event; (ii) the control sample, that is, the set of entities that do not experience
the event.

DiD has been widely used in economics and the social sciences to estimate,
for example, the effect of an economic policy or the passage of a law. In these
fields, it is difficult to arrange experiments that control for differences between
control and treatment samples, such as randomized control trials (RCTs)T. A
DiD approach is a valid alternative to RCT to enable statistical control. It
corrects for differences between treatment and control groups by comparing
the trends of the outcomes rather than the outcomes directly. In other words,
it measures the changes in outcomes over time (before and after the event)
between the treatment and control samples.

Testing the impact of new product introduction. To assess the effect of the
product introduction, we start constructing two data samples: (i) the treated
sample (ii) and the control sample. The treated sample comprises distribution
networks of the manufacturers that did introduce one new product between
2006 and 2014. The control sample comprises distribution networks of the
manufacturers that did not introduce any new product between 2006 and 2014.
For (i), we do expect local topological changes. For (ii), we do not expect local
topological changes.

TTRCT is a setting experiment used to control factors that differ across control and
treatment groups. Individuals that join an experiment differ from one another, and these
differences can influence study outcomes. One way to control for that is to set up an RCT
experiment where individuals are randomly allocated among control and treatment groups.
RCTs are used in clinical trials to test the effect of a drug or, in general, a medical treatment.
If we think instead of a road repair program, operated at the district level, it is less feasible
to set up RCT. One can not randomly assign a road repair program to districts, as they
have the faculty to decide whether they want to enrol or not enrol in the program.
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Note that to produce meaningful statistics, we ensure that: products intro-
duced remain on the market for at least two years after their first appearance
(in this way, we exclude any trial products that we do not expect to have sig-
nificant effects on existing business relations); a minimum size (i.e., 20 nodes)
characterizes the networks analyzed. The data composition is the following:
the treatment sample includes 18 distribution networks; the control sample
comprises 28 distribution networks. Among these 28 networks, 7 networks
experience the introduction of the new product in 2009, another 7 networks in
2010, and the remaining 4 networks in 2012.

Next, we use network motifs to capture local properties of the empirical net-
works. Specifically, we examine the motifs M1, M2, M4, M5, and M14, dis-
cussed in Section 2.2.2, and run a DiD model for each of them. The outcome
variable is the motif count. Significant increases, or decreases, in this outcome
would signal (local) structural changes due to the product introduction. The
following equation expresses the model:

Yigt = ay 4 ¢g + BDgt + 0 Xig + €t (2.1)

In Eq. (2.1), Y;4 is the outcome variable (motif count); the subscript ¢ labels
the distribution network (unit of analysis); g indicates whether the network
is either in the control sample or in the treatment sample; and ¢ indicates
whether the network is considered either before or after the event. Further, oy
is the time fixed effect, ¢4 is the sample fixed effect, 5 is the treatment effect,
Xigt captures network-level control variables and €, is the error term.

For each treated network i, we consider four observations: two observations at
the two years before the event (new drug introduction) and two observations
after it. Similarly, for each control network i, we consider four observations,
two before the year of the event, and two after it. Specifically, the control
sample is used repeatedly for each year of the event. According to the standard
DiD model, both time and fixed effects are dummy variables. Hence, ay = 0
if ¢ is the time before the product introduction, and a; = 1 if ¢ is the time
after it. Similarly, ¢, = 0 if g is the control sample, and ¢, = 1 if the g is
the treatment sample. Dy is also a dummy variable that equals one when
the network is both (i) in the treatment sample and (ii) evaluated after the
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Motif 1 Motif 2 Motif 4 Motif 5 Motif 14
Treated 0.27 —0.69"" —0.44 0.00 0.01
(0.20) (0.22) (0.28) (0.19) (0.04)
After —0.25 —0.69""*  —0.90""*  —0.56"" —0.13**
(0.19) (0.20) (0.26) (0.17) (0.04)
DiD 0.10 0.83* 0.79° 0.48 0.10
(0.31) (0.33) (0.43) (0.29) (0.07)
Year 2010 —-0.18 —0.05 0.19 —0.08 —0.01
(0.15) (0.16) (0.21) (0.14) (0.03)
Year 2012 —0.55"" —0.56"" —0.35 —0.52*" —0.14**
(0.19) (0.21) (0.27) (0.18) (0.04)
Size(log) 2,37 1.62"* 107" 1.80"*  1.21%*
(0.11) (0.12) (0.15) (0.10) (0.02)
R? 0.77 0.58 0.29 0.68 0.95
Adj. R? 0.76 0.56 0.27 0.67 0.95
Num. obs. 155 155 155 155 155

***p < 0.001; **p < 0.01; *p < 0.05; p < 0.1

Table 2.2: Results from the OLS regression to estimate the causal effect of the new
product introduction. The model specifications are expressed by Eq. (2.1). The
motifs’ count is the outcome variable.

product introduction. Dy is zero otherwise. The coefficient 3 quantifies the
treatment effect according to the following equation:

B — ( <Y>control . <Y>control) _

before after

( <Y>treated _ <Y>treated)

before after (2.2)
We include two control variables in our analysis: (i) the year in which the new
product is introduced, (ii) and the size of the network, namely the number of
distributors (plus the manufacturer). Yet, we do not expect a linear relation-
ship between the motif counts and the network sizes. Therefore, we consider
a log transformation of both variables in Eq. (2.1).

We report the results from the OLS regression in Table 2.2. Each column
shows the results obtained for a given motif. We remind the reader that the
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DiD coefficient (5 in Eq. (2.1)) quantifies the treatment effect. The obtained
value is highlighted in Table 2.2.

We see that for all five motifs, the DiD coefficients are positive. This means
that the new product introduction causes an overall increase in the number of
motifs. Yet, the effect is significant only for motif M2 and slightly significant
for motifs M4 and M5. Specifically, we observe a quite high increase in the
count of M2, that is, a 129% increase (i.e., 100 x [60'83 — 1]) This suggests
that the number of paths of length two is increased or the length of the existing
paths is increased.

The increase in the M2 count is significant and higher than that of the other
motifs. It is worth noting that this is not due to a simple increase in the number
of links, as no significant increase is observed in the M14 count (representing
direct links).

Finally, we confirm our expectation of the non-linear relation between network
size and motifs’ count. Looking at the last row of the Table, we see that a
1% increase in the network size produces a 2.37% increase in the number
of M1, a 1.86% increase in the number of M2, and a 1.80% increase in the
number of M5. The motifs’ count and the network size are correlated non-
linearly by construction. Nevertheless, it is still interesting to comment on the
differences between the regression coefficients obtained for the different motifs.
In particular, we see that the correlation is stronger in the case of M1 than for
the other motifs. This indicates that larger networks favor the centralization
patter (expressed by M1), compared to the other patterns, as it becomes much
more abundant with the increasing of the network size.

It is safe to say that the obtained results are conditioned to the reliability of the
model presented. This is characterized by a few, albeit important, limitations.
We discuss them in the next paragraph.

Limitations of the analysis. The DiD model relays on two main assumptions:
(i) the so-called parallel trend assumption; (ii) and the independency of the
data records.

(i) According to the first assumption, the outcomes of both samples should
display parallel trends in the absence of the treatment. DiD controls for dif-
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ferences between the treatment and control samples that do not change over
time. It does not control for those differences that do change over time. A
good practice to check the validity of this assumption is to compare the two
samples’ trends before the event. For lack of data, we can not proper compare
the two trends. Before 2009 (the first year of the event in our analysis), we
can only compare the trend made up of three data points (i.e., 2006, 2007, and
2008) which we argue is not statistically meaningful.

(ii) The records in our regression analysis are likely to be correlated. Al-
though most manufacturers work independently, their distribution networks
may not be independent. Some networks may overlap as distributors ship
products sent by different manufacturers. These correlations may bias the res-
ults. Single-manufacturer distribution networks are intrinsically connected. It
is not possible to decouple them. All regression-based analyses would have this
limitation as the distribution networks of different manufacturers may overlap
through shared distributors. To account for this, a network-based null model
could be considered in future studies, where firms’ interdependencies are taken
into account and single networks are evaluated independently. However, due
to time constraints, we leave this exploration for future research.

2.4 Discussion

This Chapter provided a detailed description of the data used throughout
this thesis. With half a billion shipping records, these data represent a
unique source of empirical information into large-scale distribution systems
and present exciting opportunities for future research.

We have explained the preprocessing steps required to transform these data
into networks to be used for our analysis in later Chapters of this thesis. We
also provided an overview of the local properties of the reconstructed networks
by analyzing network motifs. Our findings suggested a tree-like topology,
but we also identified variations from this structure. A more comprehensive
characterization of the observed network structures is presented in the next
Chapter.



Chapter 3

Opioid distribution networks:
structure and evolution

Summary

This Chapter presents a comprehensive empirical analysis of the opioid
distribution networks in the United States. We examine the trend of opioid
consumption and identify two opioids, Oxycodone and Hydrocodone, with
substantial growth in demand from 2006 to 2014. Thus, we reconstruct
their distribution networks; we evaluate the main structural properties
of these networks; and trace their evolution over nine years. We find
that, albeit the demand for opioids increased, the distribution networks
did not expand. Interestingly, the topological properties of the Oxycodone
distribution network remained largely unchanged, while the distribution
network of Hydrocodone decreased in size. Upon further investigation,
we conclude that the observed shrinking was likely due to cost-reduction
strategies, rather than the network response to the increased demand.

This Chapter has been written specifically for this thesis. AA contributed to the design
of the research questions, performed data processing and data analysis, and interpreted the
results.

29
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3.1 Introduction

The US opioid market has experienced substantial growth since the late 1990s,
with the number of opioid prescriptions nearly tripling during this time. How
did the distribution system evolve during this period?

Drawing on the ARCOS dataset, we reconstruct the distribution networks of
different opioids in the United States. We assess their primary structural fea-
tures and examine their stability over a nine-year period, spanning from 2006
to 2014. Our objective is to assess any structural shifts within the distribution
system during a period of market expansion.

3.2 The opioid consumption

On the opioid crisis. Over the past two decades, there has been a signific-
ant surge in opioid prescriptions in the United States (Dasgupta et al., 2018;
DeWeerdt, 2019; Guy Jr et al., 2017). The number of prescriptions nearly
tripled between 1991 and 2013, soaring from 76 million to approximately 207
million (Volkow, 2014). This surge in prescriptions has been accompanied by a
rise in opioid-related abuses and overdose deaths, commonly referred to as the
“opioid crisis” (Conrad, 2017; Eisenstein, 2019). Multiple factors have con-
tributed to this crisis, including the inappropriate use of opioids, inadequate
understanding of their adverse effects, and aggressive marketing strategies em-
ployed by certain opioid manufacturers®.

Nowadays, opioid abuse is a serious problem for the healthcare system of
the United States as well as for its social and economic welfare. For this
reason, some US governments have implemented new regulations to tighten
prescription requirements (Jones et al., 2019). For instance, Florida introduced
the “pill mill” law in September 2011, which declined opioid prescriptions
by 1.4% after one year (Jones et al., 2019). This corresponds to a monthly

*In 2007, the pharmaceutical company Purdue Pharma was found guilty of making false
claims about the low addictive power of its product. Similarly, in 2019, Insys Therapeutics
pleaded guilty to inciting doctors to prescribe opioids for its financial interests (Dyer, 2016;
Emanuel and Thomas, 2019; Whalen, 2018).
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Figure 3.1: Consumption trend for the fourteen opioids in the ARCOS. The amount
of consumption is reported in millions of grams.

reduction of about half a million pills. Moreover, thanks to the new regulation,
in 2012, Florida reported a 50% reduction in deaths from opioid overdose.

Clearly, studying the opioid crisis by embracing all its aspects (social, economic
and health) presents significant challenges that are beyond this thesis’s scope.
Instead, the focus of this thesis is on the structural properties of the opioid
distribution system and its potential changes due to the consumption shifts.

Oxycodone and Hydrocodone: major players of the opioid market. To ana-
lyze opioid consumption, we rely on the ARCOS dataset. We proxy annual
consumption as the total amount (in grams) of opioids shipped to consumers

in a given year.

In Fig. 3.1 we report the trend in consumption for each basic opioid. We
notice two big players: Oxycodone and Hydrocodone. In 2006, Hydrocodone
consumption was about 30 times higher than most other basic opioids, while
Oxycodone consumption was almost 40 times higher. The two opioids show a
similar consumption trend: since 2006, it follows a sharp increase that peaks in
2010 for Oxycodone, and in 2012, for Hydrocodone, which declines afterwards.
These findings are in agreement with recent studies that, analyzing a different
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Figure 3.2: Percentage variation of opioid consumption (red line), number of con-
sumers (blue line), and number of counties supplied (violet line). On the left: Hy-
drocodone. On the right: Oxycodone.

dataset, observed a slight decline in opioid consumption after 2010 (Guy Jr
et al., 2017; Jayawardana et al., 2021).

For other basic opioids, however, we find very different trends. For example, we
find (i) a downward trend that began as early as 2006 for Codeine, Morphine,
and Fentanyl; (ii) an upward trend for Buprenorphine and Oxymorphone; and
(iii) a new opioid, Tapentadol, that entered the market in 2009.

In the following, we focus our analysis on the two highest-selling opioids, Oxy-
codone and Hydrocodone, which display comparable consumption patterns.
We defer the investigation of other basic opioids to future studies.

Geography of the opioid markets. The Hydrocodone and Oxycodone mar-
kets experienced substantial growth after 2006. Have the markets also ex-
panded geographically? In other words, has the number of geographic areas
supplied increased? We analyze the number of counties supplied every year.
In Fig. 3.2, we report its variation from 2006 (violet line). For comparison,
we also show the variation in the number of consumers (blue line) and the
variation in consumption (red line).

Despite the substantial increase in consumption, we see that the number of
counties supplied remains approximately the same each year. Our results sug-
gest that both opioid markets did not expand geographically. Further, we see
that the number of consumers shows a slight variation (about 10%), positive
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Figure 3.3: Percentage variation of Oxycodone and Hydrocodone consumption across
states between 2006 and 2014.

for Oxycodone and negative for Hydrocodone. This highlights some differ-
ences between the evolution of the two markets. After 2006, Oxycodone is
still in a growth phase, as indicated by the increase in consumption and in the
number of consumers. Hydrocodone, instead, is growing in terms of volumes
sold (consumption) but decreasing in terms of the number of consumers. One
possible explanation of these diverging observations is that, as early as 2006,
government measures were taken to reduce the consumption of Hydrocodone,
that mainly affected the number of consumers.

To further investigate this point, we analyze the variation in consumption
across states. Since states behaved very differently in the measures taken to
tackle the crisis, we expect these differences to be reflected in their consump-
tion (Jones et al., 2019). In Fig. 3.3, we show the geographical heatmap of
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consumption variation, between 2006 and 2014, for Oxycodone (lower side)
and Hydrocodone (upper side). The bar plots report the percentage variation
per state.

As expected, we observe considerable differences across states. Examining
Oxycodone consumption, we find a more than 90% increase in Idaho and many
southeastern states such as Alabama, Mississippi, and Georgia, and a minor
increase (about 10%), for example, in Ohio and Missouri. In addition, we note
that Florida is the only state where we observe a decrease in consumption.
Unlike Oxycodone, the Hydrocodone consumption drops in many states, i.e.,
Washington DC, New York, Florida, Delaware, Maryland, Rhode Island, and
Nevada. Our results suggest that regulations to limit opioid prescriptions
in these states have been effective. Nevertheless, positive variations are still
observed in many states, e.g., South Caroline, North Dakota, and Michigan.

Direct and indirect distribution. Opioids, like any other product, can be sup-
plied either through direct distribution, i.e., manufacturers ship directly to con-
sumers, or through indirect distribution, i.e., manufacturers use distribution
networks to ship to consumers. We find that more than 99% of opioid supply
is through indirect distribution, thus confirming the critical role of distribu-
tion networks in meeting demand and coping with its variations (see Fig. B.1
in Appendix B) . In the next Section we analyze the extent to which these
changes in demand actually affected the structure of the opioid distribution
system.

3.3 Network characterization

In Section 3.2, we showed that the consumption of Oxycodone and Hydro-
codone drugs experienced significant growth before 2010, followed by a slight
decline. This raises the question of how distribution networks evolve in re-
sponse to such changes in demand. To address this question, we reconstruct
the distribution networks of Oxycodone and Hydrocodone drugs using data
from the ARCOS. We characterize them by evaluating various network fea-
tures, including network size, density, and nodes’ heterogeneity, and discuss
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whether these features change over time. The findings are organized into three
Subsections: (i) network size and density, (ii) firm heterogeneity, and (iii) firm
position.

3.3.1 Network size and density

We start our analysis by monitoring the network size, i.e., the number of
links and the number of nodes, and the network density. As discussed in
Subsection 2.2.1, in our network representation nodes represent firms, i.e.,
manufacturers and distributors, and links represent supply relations. The
latter are directed according to the direction of the shipments, from senders
to receivers. The network density, D, is determined as the number of existing
links divided by the number of possible links in a directed network, which
can be expressed as D = m7 where L is the number of links and N the
number of nodes.

In Fig. 3.4, we show the evolution of N, L for the Oxycodone and Hydrocodone
distribution networks. And in Table 3.1, we report the network density in
the nine-year period. From Fig. 3.4, we see that the size of the Oxycodone
distribution network is relatively stable over the years. We observe a small
decrease in the number of links (about 10%) and a slight increase (about 5%) in
the number of nodes between 2006 and 2014. A different pattern characterizes
the Hydrocodone distribution network. Despite the increase in Hydrocodone
demand, the underlying distribution network shrinks in size: we find an almost
20% nodes’ decrease and more than 30% links’ decrease.

These findings suggest that despite the growth in consumption between 2006
and 2014, both networks did not expand significantly during this period. This
result can be better visualized in Fig. 3.4 (bottom plots), where we plot the
variation in opioid consumption (red line), as well as the variation in the
number of links (violet line) and the number of nodes (blue line). Variations
are calculated by comparing the given year to the first year of observation. We
observe that while the consumption variation is always positive with respect to
the first observation year, the variation of the network size is always negative
or slightly around zero.
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Figure 3.4: Top: evolution of the number of nodes (blue line) and links (red line)
of the Hydrocodone (left) and Oxycodone (right) distribution networks. Bottom:
percentage variation in the number of nodes (blue line), number of links (violet line),
and consumption (red line) for the two networks. Variations are measured with
respect to the first year of observation.

Density ‘2006 2007 2008 2009 2010 2011 2012 2013 2014

Hydrocodone | 0.014 0.014 0.013 0.011 0.012 0.012 0.012 0.012 0.014
Oxycodone 0.021  0.021 0.019 0.021 0.020 0.017 0.018 0.018 0.016

Table 3.1: Density of the Oxycodone and Hydrocodone distribution networks in the
nine-year observation period.

Finally, monitoring network density, we find that both the Hydrocodone and
Oxycodone networks exhibit consistently low-density values across all years,
with average values of D=0.013 for Hydrocodone and D=0.019 for Oxycodone.
These low-density values suggest that only a small portion of all possible supply
relationships are observed. For the Hydrocodone network, only 1.3% of the
supply relationships are observed, while for the Oxycodone network, only 1.9%
of the supply relationships are observed. These results are consistent across
the years, as we find that the annual density variations are quite small, with
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an average of 0.3% for Hydrocodone and 9% for Oxycodone. This finding is
in line with prior research that has identified low densities in other empirical
supply networks (Brintrup et al., 2015; Kim et al., 2011; Wiedmer and Griffis,
2021). Having fewer connections in supply networks can promote efficiency
and reduce costs.

3.3.2 Firm heterogeneity

In this Section, we forward our empirical investigation and analyze the degree
distributions of the networks under study. In network science, the term “de-
gree” typically refers to the number of links that a node has. In the context of
a supply network, where nodes represent firms, these firms can establish busi-
ness relationships with two types of partners: (i) source partners who supply
goods to them and (ii) target partners to whom they ship goods (i.e., clients).
Therefore, we differentiate between in-degree, which denotes the number of
source partners a firm has, and out-degree, which represents the number of
target partners a firm has.

In Fig. 3.5, we show the in-degree and out-degree distributions for the Oxy-
codone and Hydrocodone networks. We evaluate them in three reference years:
the first year (2006), the last year (2014) and the “peak” year. The peak year
refers to the year in which the highest sales were recorded, i.e., 2010 for Oxy-
codone and 2011 for Hydrocodone. Note that we plot the complementary
cumulative distribution function (CCDF) as it is more stable on the tails. The
statistical properties of such distributions are reported in Table 3.2.

We find that the out-degrees exhibit very broad distributions. Specifically,
the out-degree values for Oxycodone vary from 0 to 121, while those for Hy-
drocodone range from 0 to 1957, The positive skewness of the distributions
implies the existence of right tails. The high kurtosis further indicates that
these tails are remarkably pronounced, meaning that a few nodes act as “hubs”
with many links, while many nodes have only a few links. The presence of hubs
and the observed heterogeneity among nodes is common in economic networks.

Degree distributions with heavy-tailed behavior are also characteristic of sev-

It should be noted that nodes with d°%t = 0 represent firms that do not ship to other
firms but rather they ship directly to consumers.
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Figure 3.5: In-degree and out-degree distributions for the distribution network of
Oxycodone and Hydrocodone in three years: the first year of observation (2006), the
last year (2014), and the peak year (2010 for Oxycodone and 2011 for Hydrocodone).

eral other real-world networks, including financial networks (Boginski et al.,
2005), the world trade network (Li et al., 2003), and supply networks (Perera
et al., 2017b)

In contrast to the out-degree distributions, the in-degree distributions exhibit
narrower ranges. For instance, the maximum value is 31 for Oxycodone’s
distribution network and 45 for Hydrocodone’s. Additionally, unlike the out-
degree distributions, the in-degree distributions do not show heavy tails, as
evidenced by the negative or small kurtosis values. Hence, in the networks
under study, firms are very heterogenous in the number of target partners and
much more homogeneous in the number of source partners.



3.3. Network characterization 39

Oxycodone Hydrocodone
P(dout) | 2006 Peak Year 2014 | 2006 Peak 2014
Mean 8.519 9.024 7.305 | 10.519 7.586 8.586
Std 23.802 21.702 20.777 | 25.791 21.451 25.228
Skewness 4.293 3.502 4.043 | 4.167 4.697  4.576
Kurtosis | 18.420 12.005 15.700 | 19.483 25.021 22.237
P(din) 2006 Peak Year 2014 | 2006 Peak 2014
Mean 8.519 9.024 7.305 | 10.519 7.586 8.586
Std 8.295 10.518 8.436 | 14.509 9.534 11.486
Skewness 0.712 1.022 1.039 | 2.017 1.787 1.627
Kurtosis -0.788 -0.371  -0.368 | 3.786 2.549 1.325

Table 3.2: Mean value, standard deviation, third and fourth moment of the out-
degree and in-degree distributions for the Oxycodone and Hydrocodone distribution
networks.

Oxycodone Hydrocodone

din | D(KS) p-value | D(KS) p-value
2006 VS Peak 0.089 0.151 ‘ 0.074 0.086

2006 VS 2014 0.118 0.021 | 0.073 0.097
dout ‘ D(KS) p-value ‘ D(KS) p-value

2006 VS Peak 0.065 0.494 | 0.109 0.002
2006 VS 2014 0.079 0.252 | 0.098 0.008

Table 3.3: Distances, D(KS), and p—values obtained form the KS-test that compares
the out and in-degree distributions: (i) in the first year and in the peak year; (ii)
and in the last year and in the peak year.

From a visual inspection, the statistical properties discussed so far look stable
and robust across the years. We perform a Kolmogorov-Smirnov test (KS-
test) to verify their robustness better. We report the distances and the p-
values obtained from the test in Table 3.3. For the distribution network of
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Oxycodone, we do not find any significant difference (for both the out and in-
degree), suggesting that the structural properties of the network do not change
significantly across the years. In the case of Hydrocodone, we find a similar
result for the in-degree distribution. The out-degrees distribution, instead,
significantly changes.

The distribution network of Hydrocodone has also experienced a great loss of
nodes and links over the years, which may explain the significant differences
in the out-degree distribution. This motivates us to investigate the part of the
network that is shrinking. For this, we analyze the subset of nodes leaving the
network and the subset of links disappearing over the years.

Small nodes leave the network. We determine the set of nodes leaving the
network as the union of the sets of nodes disappearing every year (from 2006
to 2013). This definition makes our analysis independent of the specific year
of observation. We compare this set of nodes with the nodes obtained from
a random removal model. Precisely, in the random setting, we first remove n
nodes uniformly at random from the empirical network, where n is the number
of nodes that disappeared in the empirical one. Then, as in the empirical case,
we collect the union of nodes randomly removed every year.

In Fig. 3.6, we show the CCDF of the in and out-degrees for the set of nodes
leaving the network in the empirical case (blue dots) and in the random case
(red dots). For comparison, we also plot the degree-distributions of the stable
nodes (black dots), namely nodes that do not leave the network from one year
to the next. As expected, under a random removal process, nodes leaving
the network have a very similar degree distribution to those not leaving. Red
and black curves overlap. Instead, we notice that the blue line (empirical
case) diverges from the red line (random case) already for small values of both
in-degree and out-degree.

Performing a KS-test, we confirm that the nodes leaving the network have sig-
nificantly smaller degrees (both in and out-degrees) than expected at random,
given the network topology. The distances and the p-values obtained from the
test are reported in Table 3.4.
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Figure 3.6: Top: in-degree (left plot) and out-degree distributions (right plot) of the
nodes leaving the network in the empirical case (blue dots) and under the random
model (red dots). Bottom: distribution of weights of links that disappear (blue dots)
and that remain in the network (black dots).

‘ D(KS) ‘ p-value
dm 0.357 | 1.057e-42
devt 0.231 | 4.096e-18

Table 3.4: Results from the KS-test evaluating the similarity between the degree
distributions of nodes leaving the network in the empirical case and in the random
model.

Low-weight links disappear. In Subsection 3.3.1, we observed that number
of links in the Hydrocodone distribution network reduces by 30% between 2006
and 2014. These links are of two types: (i) links connecting one or two nodes
leaving the network; and (ii) links connecting two stable nodes. While the first
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type of disappearing links can be explained by the nodes leaving the network
(see paragraph above), the second type can not. To understand this second
type, we investigate their properties.

First, we look at the degree of the nodes that lost a link. By this, we aim
to check whether the disappearing links are correlated to the degree of nodes.
We find that this is not the case as the degree distribution of nodes losing a
link is compatible with a random model. Results are reported in Fig. B.2 and
Table B.1 in Appendix B.

Second, we consider an intrinsic property of the links, i.e., their weights. In
Fig. 3.6, we show the cumulative distribution function of the weights of links
disappearing (blue dots) and links stable on the network (black dots).

We find that about 70% of the links disappearing have low weight (lower
than 100 grams), whereas only 40% of the stable links have such low weight.
This result suggests that firms shipping low volumes are likely to cut their
supply links in the following year. One possible explanation is that cost-saving
strategies have been adopted, favoring higher shipping volumes and disfavoring

lower ones.

3.3.3 Firms’ positions

As the final step in our empirical investigation, we examine the topological
position of firms within the supply network. In previous research, scholars
have used the term tier to identify the position of a specific firm along the
supply chain (Schwartz and Vo8, 2007; Wiedmer and Griffis, 2021). The tier
defines the distance of a firm from the focal manufacturer, and it has been
applied to both upstream firms, such as suppliers (Brintrup et al., 2015; Perera
et al., 2017a), and downstream firms, such as distributors (Jiang and Prater,
2002; Lan et al., 2018). For example, a 1-tier supplier is the supplier directly
connected to the manufacturer upstream, whereas a 1-tier distributor, e.g.,
a wholesaler, is the distributor to which the manufacturer directly ships its
goods downstream.

In contrast to previous studies, our available data does not provide information
on the tier of firms. We are only able to differentiate between manufacturers
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and distributors. In the absence of additional information, we assume that all
manufacturers are focal firms and assign them to tier 0. Precisely, given two
nodes ¢ and j, the the shortest path is defined as the length of the shortest
sequence of nodes connecting ¢ to j. Hence, we determine the tier, ¢;, of the
node j, as the shortest path connecting any manufacturer ¢ to j, i.e.:

tj = min  {len (p;—;)} (3.1)

ie{mhmg,.‘.}

where p;_,; indicates a path connecting i to j.

It is important to highlight that tier values may not be uniquely assigned,
particularly in large-scale supply networks. A firm may have multiple tier
values depending on the focal manufacturer considered or the product being
shipped. The measure defined in Eq. (3.1) does not consider this variability and
assumes that the nearest producer determines the tier of a firm. To address
this limitation, we enhance our empirical investigation on firm positions in
Chapter 4, where we improve Eq. (3.1) to account for all products shipped
along all the empirical distribution paths.

Fig. 3.7, top row, displays the number of nodes per tier for the Oxycodone
and Hydrocodone distribution network in 2006, in the peak years, and 2014.
Fig. 3.7, bottom row, shows the correlation between the nodes’ tier and their
out-degree. First, we notice that there are only three tiers of distributors, and
most distributors are located in tier 1 or tier 2. This suggests that the observed
distribution networks are very short. By construction, in tier 0, producers are
placed. They correspond to 10% of the total number of firms.

Furthermore, we observe that nodes with higher out-degrees tend to be closer
to the focal firms and are typically positioned in tier 1. However, within
this tier, we also identify many nodes with lower out-degree, indicating that
manufacturers may distribute their products to both wholesalers (i.e., nodes
with high out-degree) and retailers (i.e., nodes with low out-degree). In tiers
2 and 3, on the other hand, we mostly find small nodes with low out-degree,
which likely represent individual retailers.

Finally, we note that the number of firms per tier varies little across the years.
We observe only a slight increase in the number of manufacturers and a small
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Figure 3.7: Top: number of nodes per tier in the first year, the last year, and the
peak year, that is 2010 for Oxycodone and 2011 for Hydrocodone. Bottom: violin
plot of out-degrees of nodes positioned at different tiers.

decrease in the number of distributors at tier 2 in Oxycodone’s distribution
network. Similarly, we see a small decline in the number of distributors in
Hydrocodone’s network, which occurs uniformly in both tier 1 and tier 2. The
number of manufacturers remains stable.

3.4 Discussion

In this Chapter, we reconstructed the opioid distribution networks of the US
from a collection of shipping records. We analyzed their structural properties
and traced their evolution over nine years, from 2006 to 2014. Specifically, we
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focused on the distribution networks of two top-selling opioids, i.e., Oxycodone
and Hydrocodone.

We found that the consumption of the two opioids shows similar trends: it
increased from 2006 to 2010 (or 2011 for Hydrocodone) and decreased slightly
afterwards. However, the underlying distribution networks showed different
structural evolutions.

Despite significant changes in the Oxycodone demand, its distribution network
did not show significant changes from 2006 to 2014. We observed a slight
increase in the number of firms (about 5%) and a small decrease in the number
of supply links (about 10%). Next, we analyzed the out-degree and in-degree
distributions and checked for similarity across years. We found no significant
changes. Therefore, our results suggested that the topology of this distribution
network did not experience significant reconfigurations in the face of shifts in
demand.

In contrast, the distribution network of Hydrocodone showed a rather pro-
nounced decline in the number of firms and supply links. Despite the growth
in consumption between 2006 and 2010, the distribution network has shrunk
in size. However, the further investigation suggested that the part of the net-
work that shrunk is associated with small nodes (low out-degree) and weak
links (i.e., low weight). One possible interpretation of this result is that, over
the observed period, firms adopted cost-saving strategies that reduced the
number of low-weight links in favour of high-weight links. Also, the changes
observed (from 2006 to 2010) are unlikely to result from the enactment of
new regulations limiting opioid prescribing for additional two reasons: (i) we
still observe a growth in demand between 2006 and 2011; and (ii) most of the
regulations have only been adopted since 2010.

Finally, this Chapter brings empirical insights to the supply chain domain.
Summarizing our results, we found that large-scale distribution networks are
characterized by: (i) very low density; (ii) high firm heterogeneity in the num-
ber of clients; (iii) firms’ tendency to rely on more than one source partner;
and (iv) short length. Based on previous literature, we classified firms into
tiers and evaluated the resulting structure. However, applying the theoretical
concept of “tiers” to real, large-scale distribution networks was not straightfor-
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ward. Due to several focal firms, distributors may be assigned to different tiers
depending on the product shipped. Therefore, the number of tiers cannot be
uniquely assigned. In this Chapter, we analyzed firm position using a simple
measure based on the shortest path concept, which captures only topological
information. In Chapter 4, we improve our investigation on the number of tiers
used in a large-scale distribution process. In the latter Chapter, we extract
the flow of products with a resolution at the level of individual packages and
use this information to assign the tier to distributors.



Chapter 4

Extracting trajectories of
goods from shipping records

Summary

In this Chapter, we move away from studying network evolution and in-
stead analyze the small-scale dynamics on the network. Our focus is on
reconstructing the daily distribution paths of individual packages as they
move from production to consumption, which we refer to as trajector-
ies. We reconstruct a large dataset of almost 40 billion trajectories us-
ing opioid shipping records. These trajectory data provide us with unique
empirical insights into the distribution dynamic of goods within a nation-
wide distribution system. Moreover, we demonstrate how these data can
be used to identify central distributors where the flow of packages is con-
centrated.

AA wrote this Chapter specifically for this thesis. Results are based on A. Amico, L.
Verginer, F. Schweitzer “Reconstructing distribution paths from shipping records”, Working
Paper. AA contributed to designing the research question and writing the code. AA per-
formed the data analysis and interpreted the results.
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4.1 Introduction

The previous Chapter investigated the main topological properties of the
opioid distribution networks using a static network approach. The temporal
information in the data was aggregated to construct yearly network snapshots.
Thus, we investigated the network dynamic across years and discarded the dy-
namic within the single years.

Within a given year, distribution networks are intrinsically dynamic, as man-
ufacturers and distributors interact daily to provide goods to numerous con-
sumers. At a short time-scale (i.e., days), goods move from manufacturers to
consumers through the network. To capture this daily flow, this Chapter goes
beyond a static network perspective and considers the interactions of firms
that occur on a daily basis. Starting from a set of shipping records in the AR-
C0s, we aim to reconstruct the complete trace of a single drug package moving
from producer to consumer. As we do this, we aim at keeping track of the
time sequence of all the dispatches in the data.

The Chapter is structured as follows. In Section 4.2, we discuss the limited
applicability of existing techniques for extracting sequential data, i.e., distri-
bution paths, in the context of distribution systems and propose a data-mining
approach to overcome these limitations. In Section 4.3, we present large-scale
descriptive statistics of these paths extracted, and in Section 4.4, we show
how these data can be used to identify prominent distributors where the flow
is concentrated. In Section 4.5, we close the Chapter by discussing the key
findings.

4.2 A domain-driven approach

4.2.1 From shipments to trajectories

Supply chain data often lack comprehensive information, providing only lim-
ited details. Typically, the data available only reveal direct supply relations
of firms while failing to capture the entire path of a good from its origin to its
destination. Reconstructing complete distribution paths, starting from dyadic
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data, is a challenging task that requires careful consideration. This issue is
also known as the “transitivity problem” (Wichmann et al., 2018).

The problem can be illustrated with the following example: suppose we have
dyadic data that establish a supply relationship between firm C' and firm D,
denoted as C' — D. Additionally, we have information that firm A supplies
to firm C, and firm B supplies to firm C. Can we conclude that both firm A
and firm B supply to firm D? In other words, can we identify two distinct
distribution paths, one from A to C to D and another from B to C to D?
Unfortunately, this is not possible to infer directly, as we lack the ordered
sequence of shipments between these firms.

Here, we address the question of reconstructing such paths from the available
data in the ARCOS. In contrast to existing supply chain data, the ARCOS
offers a significantly higher temporal resolution, with shipments recorded on
a daily basis. Leveraging this temporal information, we can reconstruct the
complete sequence of shipments required to move a package from its source to
its destination.

In this thesis, we use the term trajectories to identify these distribution paths*.
We define a trajectory as the sequence of actors that goods travel through
from their origin to their destination. In the next Sections, we will present our
proposed method for reconstructing these trajectories. Before doing so, it’s
important to note the limitations of previous techniques.

4.2.2 Limitations of temporal network techniques

As previously stated, data with a daily resolution are highly uncommon in the
context of supply networks. Therefore, there is a lack of established techniques
for analyzing temporal data within this domain. Yet, the question of how to
extract sequential data from time-stamped data is a general one that scholars
in various fields of applied network science have addressed. For example,
researchers have tackled this problem to extract information flow in e-mail

*Note that we prefer the term trajectory to the term “path”, widely used in network
science. The term trajectory better conveys the idea of a finite quantity moving from
a starting point to an ending point, as a package does when it moves from producer to
consumer.
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communication networks (Iribarren and Moro, 2009), to retrieve regulatory
sequences in biological networks (Ko and Brandizzi, 2020), or to reconstruct
mobility patterns of scientists (Vaccario et al., 2020).

A prevalent approach involves using temporal networks (Holme, 2015; Lam-
biotte et al., 2019; Peixoto and Rosvall, 2017). A temporal network Gy =
(V,Er) can be defined as a set of nodes v € V and links e € Ep, where
nodes interact only at a given time, ¢. Thus, the interaction between two
nodes, v; and vs, is represented by a time-stamped link, e = (vy, v, t), with ¢
representing the time of the interaction. Scholars have developed methods to
leverage these network representations and extract causal paths of interactions
while respecting their underlying chronological order (Lambiotte et al., 2019;
Scholtes et al., 2016, 2014).

Here we argue that these techniques are not directly applicable to distribution
systems. Paths extracted using temporal networks would represent an oversim-
plified version of the underlying distribution process. The authors Mattsson
and Takes (2021) made a similar criticism while studying other real-world
processes, i.e., money flow in financial networks and ball passages in foot-
ball games. We list below the main limitations temporal network techniques
exhibit when applied to distribution systems.

Conservation quantity not ensured. In principle, multiple time-respecting
paths exist on a distribution network, but only a subset is also quantity-
respecting (as packages cannot multiply themselves). Consider the simple
situation where two manufacturers, m; and ms, send one package each to a
common distributor d at time ¢. At the time ¢ + 1, the distributor d sends
one package to pharmacy p; and one package to pharmacy ps. Thus there are
a total of four time-respecting paths, namely m; — d — p1, m1 — d — pa,
mgo — d — p; and mo — d — ps. However, only two can be observed as
only two are also quantity-respecting (manufacturers originally sent only two
packages).

Stocks not modelled. An additional complication to the point discussed
above is that packages may be held in stock for some time and queued one after
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the other. Then, they are shipped out according to some given stock-managing
rules. This complication would not be captured by temporal network models,
which do not account for the storage capacity of nodes.

Critical selection of an optimal time-window. The extraction of causal paths
in temporal networks is usually based on the following assumption: given
the interaction between node vy and node vy at time ¢y, and the interaction
between node vy and node vs at time to (with t3 > t1), there exists a causal
path v; — vy — vg, if the time interval t5 — ¢t; < §, where § is a given time-
window. Choosing the optimal time-window for a given system is a well-known
challenge in itself (Caceres and Berger-Wolf, 2013), and quite problematic to
address in our data. Opioid drugs are very diverse in terms of demand and
shelf life. Some may move from manufacturers to consumers within a few days
because of, for example, their high demand, while others may remain in storage
longer. Thus, the optimal time-window selection would be product-specific,
adding further complexity to the method.

4.2.3 Extraction method and boundary specification

Method principles. We aim to extract a set of trajectories from time-stamped
shipping data. To this aim, we propose a data-mining algorithm that takes as
input a set of shipping records and provides as output the observed trajectories.

The shipping records are processed in a time-respecting order. Next, we assign
stocks to every firm, used to store the products received. Stocks are managed
according to the first-in-first-out heuristic and updated based on the quantity
recorded in shipping data. Note that we do not model the quantity to be
shipped or received by a given firm. We take this information from the data
while processing the shipping records.

Since we process the shipping records in a time-respecting order, we ensure
that firms do not ship goods unless they have previously received them (volume
constraint). This principle is valid for all firms labelled as distributors in the
data. If, instead, firms are labelled as manufacturers, then we account for
the possibility that such firms can produce new quantities, that is, they ship
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products without previously receiving them. Again, we do not model the
quantity produced by such manufacturers. This quantity is determined by the
one recorded in the shipping data.

Finally, some rare cases can occur where some distributors appear in a given
shipping record for the first time as a sender and not as a receiver. This hap-
pens because the previous shipments, where such distributors received those
quantities, are not recorded in our data as before 2006, i.e., the first year of
observation. Our algorithm adds the quantity to the distributors’ stocks in
these cases, assuming a previous shipment.

Input: shipping records. Let us consider a dataset D collecting S shipping
records. We represent the record, p;, of a given shipment i, as a six-tuple:
pi = (84,7i,bs,,br,, ti,qi). In the tuple, s; is the sender, r; is the receiver, t;
is the shipping date, and ¢; is the amount shipped (e.g., number of product
units). Finally, bs, and b, represent the business activities of the sender and
receiver, respectively. We distinguish between manufacturers (m), distributors
(d), and consumers (¢). Each element of the tuple is passed as input to the
algorithm.

The algorithm. The extraction algorithm starts with an empty set of tra-
jectories P := (). We assign an empty stock, o, := ), to each firm in the data.
Then, for each shipping record, p;, the algorithm performs the steps described
below.

1 Sender activity. The sender, s;, gets access to its stock, os,.

A Case: 0,5, > ¢;. The sender has enough quantity in its stock. Thus,
it ships the package j and the trajectory is updated. Hence, we
perform the following steps:

1 ¢, units are taken out from the stock o;,.
2 The trajectory of the package j is updated:

» a) if j does not have previous shipments, the trajectory is

: (el 1._ 1._ T._ ).
created, i.e., p; = (sj =8, =y, b =, g = qi),



4.2. A domain-driven approach 53

» D) if j has k previous shipments, the trajectory is extended.
The tuple (sl’;"'l = 57;,1"‘;?"'1 = Ti,tf"'l =t;, ¢t = qi) is
appended to the existing trajectory p; = (s;,7;,¢;,4;),
where each element has length k.

3 The sender s; updates its stock: o5, = 05, — ¢;-

B Case: 05, < g;. The sender does not have enough units in stock.
Therefore, it produces ¢; units. After production, o,, = ¢; and
steps [1], [2] and [3] of Case [A] are performed.

2 Receiver activity. The receiver, r;, gets access to its stock and adds
the quantity received, o, = o, + ¢;.

3 Trajectory extraction. If p; is the last record of D, namely ¢ = S,
the algorithm performs its final step, hence, extracting the complete set
of trajectories stored. We do not extract all the trajectories stored, but
only those that satisfy some boundary conditions. In particular, we want
to ensure that these trajectories begin on the production side and end
on the consumption side. Therefore, we use the business activities, b,
and b,,, to identify the start and the end of the trajectory. For every
trajectory the first shipping record has bs, = m and the last one has

by, =c, ie.

pistart = {(S’i7 r’i) bsi ) b’!'q; ) ti7 ql) |bél - m} (41)
Picna = {(5i7 T, qu ) qu‘, s i Qi) |b7“z - C} (42)

By this, we only select those trajectories that start in a manufacturer
and end in a consumer. Finally, the nodes traversed n; are obtained as
the union s; Ur; and added to the tuple p;.

Stock-managing policy: FIFO. In our analysis, we assume that firms within
the opioid distribution system adhere to a first-in-first-out (FIFO) stock man-
agement policy. Under this policy, the first units to arrive are also the first to
be sold. This approach minimizes the impact on the product’s shelf-life and,
therefore, it is commonly utilized in the supply chains of perishable goods,
such as medicine (Harahap et al., 2022; Vujanac et al., 2016; Yadav et al.,
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2021). Hence, our algorithm considers that firms arrange their inventory by
queuing the units of products received. Every time, a newly acquired unit is
added to the end of the queue. When fulfilling orders, the units at the front
of the queue (i.e., the first to arrive) are dispatched first.

Output: trajectories of goods. The output of the algorithm is a set of tra-
jectories P. A single trajectory belonging to the set P is represented as a
five-tuple: p; = (sj,7;,n;,t;,q;), where j is the index of the package. Then,

. (el &2 AV
s; is the sequence of the senders, s; = (sj,sj, . 7sj), r; is the sequence
: — (1 2 AV .
of the receivers, 7; = (rj,75,...,7;); m; is the sequence of the nodes tra-

versed by the package j; and t; denotes the sequence of the shipping dates,

t; = (t5,13,... ,th).

Note that a single trajectory in our analysis corresponds to the distribution of
a single drug package. However, in reality, goods are shipped by manufactur-
ers in big batches and often repackaged as they move along the supply chain to
reach consumers. As a result, the number of units in each batch shipped at dif-
ferent distribution stages may vary depending on the firm’s practices. In fact,
firms typically rely on “economic order quantity” models to determine the op-
timal amount of goods to procure to meet demand while minimizing inventory
management costs (Berlec et al., 2014; Huang and Wu, 2016). Our approach
enables us to monitor the package’s status by reporting the number of units
in each batch shipped. These are captured by the vector q; = (qjl-7 q]z7 . ,qg-)
where qé- is the number of units shipped at step [ of the distribution process.

Finally, note that the extracted trajectories are time-respecting. Hence, the
condition ¢¥ < t?“ for all k, with 1 < k < [, is always verified.

4.3 Descriptive data analysis

We use the set of shipping records in the ARCOS dataset as input for the ex-
traction algorithm proposed above. Thus, applying the algorithm, we extract



4.3. Descriptive data analysis 55

nearly 40 billion trajectories’. These track the daily flow of individual pack-
ages moving from producers to consumers over a nine-year period (2006- 2014).
In this Section, we perform extensive descriptive statistics to present the data
obtained.

Number of trajectories. We start our empirical characterization by looking
at the number of trajectories per product. The ndc-number identifies a single
product in our data (see Chapter 2). More than 15,000 products reach con-
sumers between 2006 to 2014. These products are very different from each
other. Some products are used only for experimental trials and are shipped
in small quantities; others are established products that are shipped in large
quantities and reach thousands of consumers.

Since products differ in demand, we expect to observe differences in the num-
ber of trajectories extracted per product. In Fig. 4.1, we show the correlation
between the number of trajectories per product (y-axis) and the product de-
mand (x-axis). Demand is measured as the total volume (in product units)
shipped to consumers within the observation period. Each orange dot marks
a single product. Note that, by construction, the total number of trajectories
can only be lower (or equal) than the total demand. The sharp diagonal cut
in the plot marks this. Indeed, it is only possible to ship a minimum of one
product unit along a single trajectory.

We see that the demand varies by six orders of magnitude across products. For
some products, billions of units are sold, and for others, less than one hundred.
Remarkably, we find that less than 5% of the products have extremely high
demand, i.e., more than one million units sold. As expected, this pattern is
reflected in the number of trajectories extracted. Only a few products are
associated with many trajectories: we count about one million trajectories for
only 101 products ( less than 1% of the products). On the contrary, many
products (1,519) are shipped only once. The correlation between the demand
for a product and the number of trajectories observed is also evident from the

tIn the ARcos data products are identified via the ndc-number. Therefore, we prelim-
inary process the data to group the shipping records by ndc-number . Next, we apply the
extraction method to the shipping data of each product separately.
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Figure 4.1: Total number of trajectories (x-axis) and product demand (y-axis). De-
mand is measured as the total volume sold (in product units) to consumers between
2006 and 2014. Products are sorted by demand (from lowest to highest).

scatter plot in Fig. 4.1. The Pearson correlation coefficient of 0.67 confirms
this correlation.

The considerable differences in demand indicate that some products are com-
mercial (i.e., sold in substantial quantities to consumers) while others are not.
Non-commercial products may be subject to different distribution processes;
for example, they are sold to specific consumers within a well-defined limited
period. To reduce the noise, we decide to focus on commercial products only.
Thus, in the rest of our analysis we consider only products with a total demand
of at least 1,000 units.

Trajectory frequency and concentration of flow. A given sequence of nodes
(e.g., m — d; = da — ¢) can be used several times to distribute goods. In
other words, multiple packages can follow the same trajectory over nine years.
We want to answer the questions: are some trajectories used more frequently
than others? How is the total flow distributed among them?

We define the frequency f,, of a trajectory p as the number of times the traject-
ory is observed within the observation period. Thus, f, represents the number
of packages shipped through p. In Fig. 4.2, we show the probability distribu-
tion of f, for a set of trajectories traversed by packages containing the same
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Figure 4.2: Probability distribution of trajectory frequency f, for the single product
analysis (left plot), and the multiple-product analysis (right plot).

product (left plot) and different products (right plot)*. We notice that the
two probability distributions are strongly skewed. This observation indicates
a rather high heterogeneity in the number of packages shipped per trajectory,
suggesting a concentration of flow along some of them. In the single-product
analysis, we find that more than 70% of the total flow passes through only
10% of the trajectories. In the multiple-product analysis, we find that about
70% of the total flow passes through only 8% of the trajectories.

Our results indicate large differences in the amount of goods passing through
the observed trajectories and suggest a concentration of flow along a few tra-
jectories. Various reasons, such as the presence of active consumers or pre-
dominant producers, can explain this result. Also, it may be due to consumer
preferences toward specific producers or distributors.

Trajectory length: number of distributor tiers. We investigate the number
of tiers of distributors involved in the shipping of a single product. As dis-
cussed in Chapter 3, the number of tiers indicates the number of sequential

distributors connecting manufacturer to consumer.

fFor the single-product analysis, we select one of the products with the highest demand.
It has the ndc equal to 00406-0357-05 and 10,646,008 trajectories extracted. For the multiple-
product analysis, we select the top 200 products containing Oxycodone. For these, we
extracted a total of 94,145,723 trajectories. Note that the top 200 products already cover
99% of all the transactions.
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Let’s consider the sequence of senders s; of the package j. The number of
tiers is expressed by the cardinality of the set s; minus one. Note that the
cardinality of s; would account for all senders including the first one, namely
the manufacturer. As we want to measure the number of distributors, we use
the minus one to exclude the manufacturer from the count. Thus, we compute
the number of tiers (), traversed by a product u by averaging over all its

packages, i.e.:
g

1
(0 = TJn Z Op, (4.3)
j=1
where J* is the total number of packages containing product p. In Fig. 4.4 (a)
we show (), per product (orange solid line). The orange-filled region displays
the variance of the sample.

Note that nearly half of the products in the data (i.e., 2,913 out of 6,087) are
shipped through a direct distribution process. This means that manufacturers
ship directly to consumers without the intervention of any distributor. Because
we are interested in the indirect distribution processes, we restrict our analysis
to the subset of products with (f), > 0, meaning that at least one tier of
distributors is used.

For these products, we observe relatively short trajectories. Most products
(56%) traverse only two tiers of distributors. And, at most, we observe three
tiers of distributors for all products (97%).

In Fig. 4.3, we show the probability distribution of the number of tiers, namely
how often a given number of tiers is used to ship packages of a single product
(left plot) and multiple products (right plot). In the single-product analysis,
we select four products with very different demands. In the multiple-product
analysis, we select the 200 top products containing Oxycodone.

From the left plot in Fig 4.3, we see that for the two products with the lowest
demand (dmd=10% and dmd=10%), trajectories are very short. The probab-
ility distributions show a peak for #=2, which means that mainly two tiers
of distributors are observed. For the two products with the highest demand
(dmd=10° and dmd=10°), the peak shifts slightly from =2 (two tiers) to =3
(three tiers). However, trajectories with two tiers of distributors are still quite
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Figure 4.3: Probability distributions of the number of sequential distributors (i.e.,
number of tiers) traversed by packages containing the same product (left plot) and
different products (right plot).

frequent. They correspond to 30% of the trajectories. Therefore, the difference
between low-demand and high-demand products is minimal, and the traject-
ories are still very short in both cases. A similar result is obtained even when
products are aggregated. In the right plot of Fig. 4.3, we find the same pat-
tern: the probability distribution peaks at §=2 and has a maximum at §=3.
The number of trajectories with #=4 is negligible. In conclusion, our analysis
shows that many products pass through rather few tiers of distributors.

Geodesic length: travel distance. Opioids may, in principle, travel long dis-
tances before reaching end consumers. How far do they travel? To get this
empirical insight, we define the travel distance d,, of the package j along the
trajectory p;, as the total geodesic distance’S travelled by j while moving from
the manufacturer to the consumer, i.e.:

l
dp, = > d(sh,r¥) (4.4)
k=1

?,Tf) indicates the geodesic distance between the sender and the

receiver at step k of the distribution process. The sum runs over all the steps

where d(s

between the first sender (the manufacturer) and the last receiver (the con-

$The geodesic distances are computed through the python package GEOPY.
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sumer). Next, we obtain the travel distance (d),, of a product u, by averaging
over all packages containing pu, i.e., :

(d), = % > dy, (4.5)
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Figure 4.4: The orange line shows the average number of tiers (a), travel distance (b)
and transit time (c) per product (x-axis). The orange-filled regions show the sample
variance.

In Fig. 4.4 (b) we show (d), per product. The orange-filled region displays
the variance of the sample. On average, most products (73%) travel more
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than 1000 km, and half of the products travel more than 2000 km. This result
confirms our expectation that the distribution process under analysis operates
nationwide, as rather large distances separate consumers from manufacturers

through distributors.

Trajectory duration: transit time and time in stock. We now characterize
the temporal aspect of the extracted trajectories and examine two features:
(i) the transit time of the packages and (ii) their time in stock. Specifically,
we define the time in transit Tp, of the package j along the trajectory pj,
as the time elapsing between the first and last shipment, i.e., T}, = té — t}.
Next, we define the time in stock 7, of the package j at the stock of the &'
sender, as the time elapsing between the current and the previous shipment,

; ko k=1 _ Lk
Le., 7). = tj tj.

Before discussing the results, we want to clarify some aspects of the above
measures. First, note that we cannot measure the time spent by packages at
manufacturers’ stocks because we do not have data on production times. As a
result, below, we will only consider distributors’ stocks. Also, in the absence
of data on transportation times, we assume them to be zero. In other words,
we assume that deliveries from one stock to another occur within one working
day. We leave it to future studies to see how data on travel distances can be
collected and merged with current data. Finally, we would like to clarify that
our definition of stock time differs from the standard definition of “lead time”.
The latter indicates the time between the start and completion of a process. In
the distribution process, the start is when the order is placed, while completion
is when the delivery is made. Therefore, it measures the time between an order
and a delivery. We cannot measure the lead times because we do not have data
on the orders. In contrast, the time in stock defined above measures only the
time spent in stock regardless of when orders are placed.

In Fig. 4.4 (c), we show the average time in transit (7},,), per product. We
find that nearly all products (92% of the products) have been in transit for
less than a year. This confirms our expectation that distribution processes
occur at short time scales, typically one year. Also, it is consistent with the
observation that opioids (like many other drugs) are perishable products and,
hence, are characterized by short shelf life. Only 5% of the products have much
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Figure 4.5: Probability distribution of time in stock of packages that traverse: two
tiers of distributors (a), and three tiers of distributors (b). The colors specify the
kM tier the distributor belongs to.

longer transit times than one year: they range from 500 to 2,000 days (about
five years). These products may have very low demand or large fluctuations

in demand.

Next, we investigate the tier at which packages spend more time. In other
words, given the sequence of distributors traversed, where do they stay longer?
In Fig. 4.5 we plot the cumulative distribution of times in stock for packages
that pass through two tiers of distributors (a), and three tiers of distributors
(b). Note that the cumulative function, P(x < 7), measures the probability
that a given package remains in stock for less (or equal) than a given time z.

First, we see that about 80% of the packages remain in stock for up to 40
days. This is true for all stocks, regardless of the total number of tiers along
the trajectory and the tier the distributor belongs to. In addition, we observe
that in the case of trajectories with lengths two (Fig.4.5 a), the two curves
almost overlap, suggesting that the times in stock for the first and second-tier
distributors are quite similar. In contrast, for longer trajectories (Fig.4.5 b),
we observe that the first-tier distributor has longer times in stock than the
second and third-tier distributors, as the red curve always remains below the
other two.
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Figure 4.6: Tier zero indicates the producer, tier one the first distributor, and so on.
The height of the bars indicates the amount shipped by each actor at a given tier.
Color distinguishes trajectories of different lengths.

Quantity shipped. The average number of units of a particular product
shipped per tier is depicted in Fig. 4.6. We can observe a significant reduction
in volume from tier 0, which represents the manufacturer, to tier 1, which
refers to the first-tier distributor, as depicted in Fig. 4.6. In this diagram, we
can see that the initial shipment of 30,000 units from the manufacturer under-
goes a process of repackaging by the first distributor, resulting in smaller units
that are eventually delivered to consumers in even smaller packages. This em-
pirical finding provides strong evidence supporting the utilization of economic
order quantity models by firms (Huang and Wu, 2016). According to saving-
cost strategies, manufacturers typically ship large batches of products, which
are subsequently reshaped and distributed by intermediaries. It is noteworthy
that the number of units shipped is reduced by more than 60% as products
pass from the manufacturer to the subsequent distributors. This consistent
reduction in volume holds true for trajectories of varying lengths, indicating
the robustness of this result.
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4.4 Ranking nodes according to the empirical flow

In the Section above, we generated a high-resolution dataset tracking the em-
pirical flow of goods from manufacturers to consumers, through distributors.
In this Section, we show how these trajectories can be used to rank nodes
based on the flow they handle.

Node ranking techniques are particularly valuable for supply chain managers
because they help them identify the most prominent firms where the flow is
concentrated (Craighead et al., 2007; Mizgier et al., 2013). In this way, they
can make more informed decisions about how to allocate resources to mitigate
possible disruptions. The techniques so far proposed in the literature are
usually based on a static network approach: the network topology is used to
inform the ranking algorithm. The actual flow of goods is discarded. The static
approach is usually justified in the absence of more descriptive and granular
data, i.e., sequential or temporal data.

Because we have sequential and high-resolution data (i.e., the set of extracted
trajectories), we can move beyond the static network approach. Our goal is to
revise established ranking measures to incorporate empirical flow and, thus,
assess the error we make if we use only topological information. In particular,
we focus on one of the most established measures for performing node ranking;:
Freeman’s betweenness centrality (Freeman, 1977; Scholtes et al., 2016). This
has been used by various scholars in the supply chain domain (Mizgier et al.,
2013).

Given a network, G(N, E), comprising N nodes and F links, the (unnor-
malized) betweenness centrality of a node v is simply calculated as the total
number of shortest paths passing through node v, i.e.,:

BCM(w) = Y |pli.jiv) (4.6)
1FvFE]

where p(i, j;v) denotes the set of shortest paths passing through node v, and
connecting every pairs i-j. According to Eq (4.6), the more shortest paths
pass through a given node, the more flow it controls.
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The flow is not directly measured in Eq (4.6). It is inferred from the network
structure. We revise Eq (4.6) to include the actual flow. This is expressed in
the form of trajectories, as defined in Section 4.2.3. Given a set of observed
trajectories S, the revised centrality measure is written as:

BC* (v)= Y ]s(m;v)’ (4.7)
vie{m}
Vie{c}
i#v]
where s(i, j; v) denotes the set of trajectories that start from a manufacturer ¢,
ie, i € {m}, end in a consumer j, i.e., j € {c}, and pass through distributor
v. According to Eq (4.7), the more trajectories pass through a node, the more
flow it handles.

The two measures differ for a major aspect: the standard definition of between-
ness centrality accounts for all possible (shortest) paths given the network
topology, whereas the revised centrality measure directly accounts for the em-
pirical flow.

Note that while the standard betweenness centrality is based on the transitive
assumption, the revised one is not. According to the transitivity assumption,
the presence of two paths, namely one from vy and v, i..e, v, vy, ..., vk, and
the other from vy and vy, i.e., vg, Vg+1,...,v; implies that a path connecting
vg to v; necessarily exists (Scholtes et al., 2016).

On the contrary, the centrality measure introduced in Eq. (4.7) does not in-
clude such an assumption as it builds on the observed flow. The trajectories
extracted are by construction time-respecting and quantity-respecting (see Sec-
tion 4.2.3).

We question the validity of a transitivity assumption and investigate to what
extent the two centrality measures produce different rankings. As a test case
for our analysis, we consider the opioid distribution network, reconstructed
from the ARCOS data¥. For every node v in this network, we compute (i) the
standard centrality BC?(v) and the revised centrality BC*(v). To assess the

YAll drugs containing Oxycodone have been considered for the current study.
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Year | Kendall-Tau (p—value) Pearson (p—value)
2006 0.74 (1.88e-47) 0.58 (1.83e-17)
2007 0.66 (3.45¢-36) 0.63 (1.60e-19)
2008 0.66 (8.62e-36) 0.51 (3.79¢-12)
2009 0.70 (2.13e-40) 0.59 (1.75¢-16)
2010 0.66 (1.74e-35) 0.59 (7.30e-17)
2011 0.69 (7.89e-37) 0.64 (1.20e-19)
2012 0.71 (3.18¢-38) 0.60 (4.88¢-16)
2013 0.67 (7.54e-35) 0.60 (9.28e-17)
2014 0.75 (5.22e-43) 0.67 (1.50e-21)

Table 4.1: Pearson coefficients and the Kendall-Tau rank correlation coefficients,
along with the corresponding p-values, which resulted from comparing the static
centrality ranking with the one that incorporates the observed flow. As a test case
for the comparison, we use the distribution network of Oxycodone drugs.

similarity between the paired values (BC?(v), BC*(v)) (for every v in the net-
work), we measure their correlation using the Pearson correlation coefficient.

Besides the absolute centralities’ values, we are also interested in the pure
ranking, namely the sequence of nodes ranked from the most central (highest
flow controlled) to the lowest one (lowest flow controlled). Indeed the two
rankings may be similar, even if the actual centrality values differ. To compare
the two rankings, we use the Kendall-Tau rank correlation coefficient.

In Table 4.1, we report the Pearson coefficients and the Kendall-Tau rank
correlation coefficients (with the corresponding p-value) obtained for every
yearly network snapshot from 2006 to 2014. As the first observation, we notice
that all the values obtained are distant from 1. They range between 0.51
and 0.75, suggesting that the two measures produce results that are indeed
correlated yet quite different.

Further, we see that the Kendall-Tau correlation coefficients are higher than
the corresponding Pearson coefficients. This means that the error we commit
if we use a static approach (i.e., only using information from the network
topology) is smaller if we want to assess the relative centralities, namely the
ranking, rather than absolute centralities.
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Figure 4.7: The y-axis shows the Pearson (in blue) and Kendall-tau coefficients (in
dark violet) resulting from comparing the static centrality ranking with the one
that incorporates the observed flow. The test has been performed on 200 different
networks. They differ in the number of products shipped through them. The x-
axis shows the number of products shipped by every network. This is a progressive
number from 1 to 200.

Ultimately, the Pearson and the Kendall-Tau rank correlation coefficients do
not change much over the years. Specifically, the Pearson coefficient varies
from a minimum of 0.51 to a maximum of 0.67; the Kendall-Tau coefficient
varies from a minimum of 0.66 to a maximum of 0.75, suggesting that the dif-
ferences between the two approaches are stable within the observation period.

We advance our investigation and perform the same analysis on multiple dis-
tribution networks, which differ by products shipped. We start considering
the distribution network of a single product. Then, we progressively add one
product. We stop at 200 products. With these 200 products we already cover
99% of all transactions of Oxycodone drugs. For each product added, a differ-
ent network is constructed. Thus, we compute the centrality values for each
of these 200 networks and measure the Pearson and Kendall-tau coeflicients.

In Fig. 4.7, we show the results from the test (y-axis) as a function of the num-
ber of products examined (x-axis). The similarity between the two measures is
very high when considering only a few products. It is almost 1, precisely 0.99,
for the Pearson test and 0.8 for Kendall-Tau. This means that for a network
of a single product, the error we commit using only information about the
network topology is low.
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However, the approximation of a static network approach becomes less accur-
ate if we consider larger distribution networks with more products shipped.
We see that the correlation decrease as we increase the number of products.
Then it stabilizes at =~ 0.65 for Kendall-Tau and = 0.5 for Pearson.

The previous findings suggest that a static approach can be inadequate for
assessing prominent nodes in distribution networks. Albeit it can be accurate
for simpler network realizations, where only a few products are considered,
it starts to lose accuracy as soon as we enlarge the scale of investigation.
The simple test conducted in this Section shows that ranking measures based
only on topological information should be taken with caution, as the error
committed may not be negligible.

4.5 Discussion

In summary, this Chapter presented a novel method for extracting trajectories
of goods from shipping records. Unlike existing data-mining techniques, the
proposed method respects system-specific constraints (e.g., time and volume).

Applying the method to the ARCOS data, we extracted nearly 40 billion tra-
jectories. These track the daily flow of individual packages from production to
consumption through the distribution network. Next, we performed compre-
hensive statistics to present to data. By this, we delineated the key properties
of the flow observed. First, we found a quite pronounced concentration of flow
along a few trajectories. About 70% of the flow pass through a few traject-
ories(less than 10%). Then, we noticed that while the travel distances are
quite long for most packages (at least 1000 km), the topological length of the
trajectories is relatively small. 60% of the products traverse only two tiers
of distributors before reaching the end consumers. Almost all products are
shipped through only three tiers, at most. Further, we confirmed two expect-
ations. We observed a quite short time scale for the distribution process: 97%
of the products remain in the distribution system for less than one year. And
we observed fragmentation of volumes, namely, packages are reshaped along
their pathways from producers to consumers.
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Besides the empirical insights gained from this analysis, this Chapter’s main
contribution is to have generated a rich data with a unique high resolution,
i.e., the trajectory data. These data can be used to inform models operating
on short-time scales. For instance, we showed how to use these data to revise
standard measures for node rankings. Then, in Chapter 9, we incorporate
these data into the cascade model proposed in order to capture readjustment
of day-to-day flow under substitution policies.



Part I

Formation, evolution,
and growth

“It is in the character of growth that we should learn from both pleasant
and unpleasant experiences.”
N. Mandela
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Chapter 5

Modeling network formation
and evolution

Summary

In this Chapter, we develop a network growth model to explain the form-
ation and evolution of distribution networks. Taking a firm’s perspect-
ive, we consider two driving mechanisms for the emergence of the ob-
served structures: centralization and multi-sourcing. The former indic-
ates firms’ preference to link to central firms in the network. The latter
indicates firms’ preferences to link to more than one source partner. We
calibrate and validate the model against various statistical properties of a
real-world distribution system. Our results reveal a good match between
model predictions and real-world observations. Thus they suggest that
the two mechanisms proposed, albeit simple, are sufficient to reproduce
the observed topologies.

AA wrote this Chapter specifically for this thesis. Results are based on A. Amico,
G. Vaccario, F. Schweitzer “Formation and evolution of large-scale distribution networks”,
Working Paper. AA contributed to designing the research question and deriving the model
principles. AA wrote the code, performed the simulations, and interpreted the results.
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5.1 Introduction

Manufacturers and distributors organize themselves into hierarchical struc-
tures to efficiently distribute goods to end consumers (Kito et al., 2014). In
this Chapter, we pose the question: how do these types of structures form and
evolve?

In our view, distribution networks emerge spontaneously from the interaction
and cooperation of several firms. Previous studies, instead, have viewed dis-
tribution networks as entirely designed by a focal manufacturer (Wang et al.,
2018). These studies typically assume that a single manufacturer is responsible
for determining the structure of its distribution network and have developed
methods to help manufacturers design optimal distributor locations such that
total costs are minimized.

This idea of a focal manufacturer controlling the whole supply network has
provided an appealing vision for managers, yet poorly suited to real-world
systems (Choi et al., 2001). Focal manufacturers can usually choose their
direct suppliers and distributors. However, they have limited control over
whom their direct distributors ship to (Brintrup and Ledwoch, 2018). This
“eco-systemic” view, where firms are self-sufficient and autonomously join the
network, is novel in the supply-chain domain and little discussed in the current
literature.

Building on this reasoning, we propose an evolutionary growth model to de-
scribe the network formation of distribution systems. We explain the form-
ation of such systems as the outcome of an evolutionary process rather than
an accurate design strategy carried out by a single manufacturer. We aim to
derive simple yet sufficient interaction rules at the micro-level, allowing us to
reproduce real-world features at the macro-level. To validate our model, we
use opioid distribution networks reconstructed from the ARCOS data.

The Chapter is organized as follows. We start introducing the network growth
model: we derive the underlying interaction rules in Subsection 5.2.2 and cla-
rify the role of the model parameters in Subsection 5.2.3. Next, we validate
the model against real-world data using a two-steps procedure: we first fit the
model to the data and, hence, obtain the optimal values for the parameters
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in Subsection 5.3.1; we then test the goodness of the model in reproducing
the main properties of real-world networks, including out and in-degree dis-
tributions, path length distributions in Subsection 5.3.2. Despite the model’s
simplicity, we find a good match between model prediction and real-world ob-
servations. Yet, simplicity comes with some model limitations discussed in
Section 5.4 along with the Chapter summary.

5.2 Model

5.2.1 Two driving mechanisms

Centralization. The term “network centralization” is commonly used in the
supply chain domain to describe the degree to which a supply network is or-
ganized around a single firm (Schmitt et al., 2015; Treiblmaier, 2018). A highly
centralized network exhibits a star structure, where a central firm is connected
to all others while the others have no connections. On the other hand, the
lowest level of centralization occurs when all firms have an equal number of
connections. Various studies have explored the concept of centralization in
supply networks, emphasizing its implications for network performance (Kim
et al., 2015, 2011). Highly centralized supply networks have the benefit, for
example, of increasing controllability in production planning. However, the
drawback of such networks is a potential lack of system responsiveness, as
firms in different tiers may not have direct contact with each other (Choi and
Hong, 2002).

Scholars have empirically investigated the level of centralization of several
supply networks. For example, some studies have examined the textile sup-
ply network in Prato, Tuscany (Paniccia, 1998) and automotive supply net-
works (Choi and Hong, 2002; Clark et al., 1987). Additionally, centralization
has been studied in industries such as chemical, electrical, cargo, electronic,
and aircraft (Perera et al., 2017b). These investigations have revealed a range
of network centralization levels, with some networks exhibiting high centraliz-
ation (Paniccia, 1998), while others display lower levels (Perera et al., 2017b).
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In our study, we examine “centralization” as a key mechanism in the formation
of distribution networks. In our work, we refer to centralization as the firms’
tendency to connect to the most central firm in the network, i.e., the one with
the most connections. If this tendency is strong, a star-like network structure
emerges. Conversely, a low level of centralization will result in a more branched
structure. A schematic representation of a high, medium and low centralized
structure is shown in Fig. 5.1 (top row). The red node in the Figure is the
central company, e.g., the focal manufacturer.

* S

High centralization Low centralization
Low multi-sourcing High multi-sourcing

Figure 5.1: Schematic representation of network structures with high, medium and
low centralization (top row); and with low, medium and high level of multi-sourcing
(bottom row).

Multi-sourcing. Firms typically source products from multiple independent
partners, resulting in numerous incoming connections (Burke et al., 2004). The
two primary sourcing strategies are multiple-sourcing, which involves having
multiple source partners, and single-sourcing, which consists in having only
one source partner (Inderst, 2008).

Single-sourcing can strengthen business relationships and foster cooperation,
leading to efficient deliveries and successful “just-in-time” inventory strategies.
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However, it is not always the optimal choice as it increases firms’ exposure to
the risk of supply interruption. To mitigate this risk, firms may implement
multi-sourcing. A schematic representation of the network structure with low,
medium and high multi-sourcing is shown in Fig. 5.1 (bottom row). The red
links represent connections with additional source partner, which are created
when multi-sourcing is implemented.

We propose that multi-sourcing, which represents firms’ preferences to connect
with multiple source partners, is the second key driver for network formation.

In the following Subsection, we formalize the two key mechanisms of network
formation, i.e., centralization and multi-sourcing. Our work builds on the
network growth model developed by Klemm et al. (2005). Based on simple
interaction rules, the model well captures the emergence of tree networks*.
If all firms in the network implement single-sourcing, a perfect tree structure
emerges (see discussion on motifs in tree-like networks in Subsection 2.2.2). As
this is not always the case in reality, we use the model proposed by Klemm et al.
(2005) as a starting point, and we extend it to capture structural deviations
from trees consistent with real-world observations.

5.2.2 Deriving the interaction rules

Let’s consider a distribution system comprising a single manufacturer, mul-
tiple distributors and consumers. We describe this system as a directed net-
work where links represent supply relations and nodes represent firms and
consumers. As this Chapter focuses on the network topology, we are not so
much interested in the amount shipped, i.e., link weight. The latter is the
object of study of the next Chapter.

Given a direct link, ¢ — 7, we define the node ¢, the node from which the link
departs, as source and the node j, the node in which the link ends, as target.
Further, by d9"* we denote the out-degree of i, that is, the number of outgoing
links, and by di* we denote its in-degree, that is, the number of incoming links.

*Specifically, the model proposed by Klemm et al. (2005) was introduced to explain
the formation of computer directories’ trees. Nevertheless, it provides a general approach
to describe the emergence of tree networks. The model was further investigated by Geipel
et al. (2009) who derived an analytical solution for the parameters’ calibration.
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More explicitly, " represents the number of distribution channels ¢ handles,

whereas di™ represents the number of source nodes i relays on.

Initially, at t = 1, there are two nodes: the root, representing the manufacturer,
and a child node, representing the distributor. These are connected through a
direct link from root to child. At every time ¢, a new link is created between
two nodes, a source node and a target node. Thus at time ¢ the number of
links is E(t) =t.

The source node i is selected among the existing nodes with a probability p;(¢),

given by:

dgut(t) 1

L 1—¢s)——— 1
2 - ) (5.1)

pi(t) = qs

The first term describes a preferential attachment mechanism, where the prob-
ability of becoming a source node is proportionate to the number of outgoing
links the node has. Note that according to a preferential attachment mech-
anism the normalization of the first term would be the sum of all nodes’ out-
degree, i.e., > . d?"!(t). Yet, we know that the sum of nodes’ out-degrees in
directed networks equals the total number of links E(t). Since E(t) = t, we
can simply write ¢ as normalization factor.

Supported by empirical evidences, we consider a fully outsourced distribution
process. This means that the manufacturer outsources its distribution activit-
ies to a single direct distributor (e.g., its warehouse) which then, in turn, links
to other distributors. Hence, we have p; = 0 for the root i, meaning that the
manufacturer has zero probability of establishing new links in addition to the
one it has at time ¢ = 1. Given this setting, we need to assume that the first
distributor has out-degree different from zero, i.e., d?**(¢t) = 1. Otherwise for
t =1 and ¢; = 1 we have p; = 0 for the only existing nodes, i.e., the manufac-
turer and the first distributor. Note that this assumption does not change the
normalization factor in Eq. (5.1). Indeed we have that the sum of out-degrees
increases by one as the distributor node acquires a new link at time ¢ = 1,
but it also decreases by one as the manufacturer’s out-degree is not included
in the sum. Hence, the normalization factor is still ¢.

The second term describes the situation where all existing nodes have the
same probability of being selected as source node. The minus one in the
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normalization factor account for the fact that the manufacturer is excluded
from the candidate nodes to be selected as source.

Now we come to the interpretation of both terms. The first term describes a
preferential allocation of business opportunities, based on the “rich-get-richer”
dynamic. The more central a firm is the more likely it grows. Note that by
the term central we refer to the number of (outgoing) connections the node
has.

The second term represents a random allocation of business opportunities. The
chance for a firm to be selected as source and enlarge its business (by increasing
the number of distribution channels), is subjected to random factors. These
include, for instance, the stochasticity of demand, possible changes of mar-
ket conditions (the entrance of new products), or possible changes of environ-
mental conditions (e.g., the entrance of newcomer firms). Using the parameter
¢s to interpolate between the two terms, we can tune the level of centralization.
When ¢, = 1, the first term is predominant, and we have high centralization.
When ¢, ~ 0, the second term is predominant, and we have low centralization.

Clearly, the mechanisms just proposed do not embrace all possible strategies
for source selection. For instance, the geographical proximity of the distrib-
utor may play a role in selecting it as source partner, as well as its loyalty or
efficiency in delivery. Including all these factors individually would add unne-
cessary complexity to the model, and limits its empirical validation when data,
e.g., on shipping times or travel routes, are not available. Most importantly,
a detailed description of all possible partner selection mechanisms is beyond
the scope of this study. Our goal is to determine the set of simple and suf-
ficient mechanisms, at micro-level, that allow to reproduce the main network
properties observed at the macro-level.

Once the source node i is selected, the target node j is chosen. While i is
always one of the existing nodes in the network, j can be either a newcomer
node, or an existing node. Specifically, at a rate « j is a newcomer, and at a
rate 1 — « j is an existing node. In the latter case the target is selected among
the existing nodes with a probability p;, given by:

dovt(t 1
) +(1

pi(t) = th (1- Qt)m (5.2)
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p; is the probability for an existing node j to establish a link with an new
source node in the network. Hence, the first term in Eq. (5.2) describes a
preferential attachment mechanism, where the probability of a node to attach
to a new source node is proportionate to the number of outgoing links the
node has. As for the first term of Eq. (5.1), the normalization of the first term
of Eq. (5.1) would be ¢. Nevertheless, differently from the source selection
mechanism not all nodes in the network are eligible as targets. Non-eligible
targets are nodes already connected to the source i and the source itself. In
other words, we do not allow for the formation of self-loops, meaning links
of nodes with themselves, and multi-edges, meaning links between the same
source and target node. This choice implies that p;(t)=0 for j=i or je nb?”t.
The correcting factor n;(t) in the denominator is used to exclude the non-
eligible targets from the normalization, i.e., n;(t) = do"* + 1.

The second term describes the situation where all existing nodes have the same
probability of linking to an additional source node. For the normalization term
we account for all nodes in the network, yet excluding the non-eligible targets,
by means of the factor n;(t), and the single manufacturer, by means of the

minus one.

The mechanism expressed by Eq. (5.2) is the firm tendency to implement multi-
sourcing. The current literature lacks a clear understanding on the factors
driving firms to decide for multi-sourcing, rather than for single-sourcing. In
absence of empirical insights, we propose two factors. The first factor is the
“size” of the firm, evaluated on the number of distribution channels it handles.
The bigger the firm is, the more likely it is to implement multi-sourcing, as
expressed by the first term in Eq. (5.2). The second is a random factor: every
firm are equally likely to implement multi-sourcing.

In addition to firms’ size and random effects, there may be other factors that
drive strategic sourcing decisions. For example, products that are highly de-
manded and classified as essential goods may lead firms to implement multi-
sourcing to ensure a reliable supply. Although our work does not capture these
additional dimension, it is essential to explore it in future studies.

The parameter g; is used to interpolate between the two factors. Fitting the
value of ¢; to real-data, we can better understand to what extent multi-sourcing



5.2. Model 79

is actually preferred by big firms. We better clarify the role of the parameter
¢+, along with the role of o and ¢, in the next Subsection.

5.2.3 Synthetic case

The model proposed is characterized by three global parameters: ¢s, g;, and a.
To clarify their role we discuss a few explanatory networks obtained through
model simulations.

We start by elucidating the role of gs. Thus, keeping fix o and ¢;, we tune g
to generate three different network realizations. Specifically, we set a=1, and
¢:=0, and consider the following g5 values: ¢s=1, ¢;=0.8, and ¢;=0.4. The
resulting topologies are depicted in Fig. 5.2. Note that for the sake of clarity
we show networks comprising a small set of nodes and links.
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Figure5.2: Synthetic networks generated through model simulations with a=1, ¢:=0
and: ¢s=1 (figure a); ¢s=0.7 (figure b), ¢,=0.3 (figure ¢). Nodes’ size is proportionate
to their out-degree. The red node is the root representing the manufacturer. Orange
nodes represent distributors and consumers (leaves).

We see that by setting q;=1, we obtain a star network where a single node,
in the centre, is connected to all the others which, in turn, are not connected
among themselves. By decreasing the value of g5 from 1 to 0.7 and further
down to 0.3 we increase network branching while reducing the star-like shape.
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(a) (b)

Figure 5.3: Synthetic networks generated through model simulations with ¢,=0.5
and: a=1, ¢:=0 (figure a); «=0.6, ¢:=0.8 (figure b). Nodes’ size is proportionate
to their in-degree. The red node is the root representing the manufacturer. Orange
nodes represent distributors and consumers (leaves).

Thus, from a mere topological perspective, ¢, controls for the network branch-
ing and the departure from a star-like shape. We see that high ¢, values signal
high centralization of the underlying distribution system, whereas low g5 signal
low centralization.

Next, we clarify the role of a and ¢;. For this, we fix g5 and vary both ¢; and
a. In Fig. 5.3, we depict two networks generated through the model with the
following parameters: (a) a=1 and ¢;=0; (b) and «=0.7 and ¢;=0.8. ¢ is kept
fix to a medium value, i.e., ¢;=0.6. The size of the nodes is proportionate to
their in-degree.

We see that for a=1 we obtain a perfect tree. All nodes in the tree have only
one parent node. On the contrary, for a#1 we see a departure from the tree
structure. A few nodes have multiple parents. « is an indicator of the number
of times a multi-sourcing strategy is implemented. The higher the a the less
multi-sourcing strategies are implemented. While tuning «, one controls for
the number of times this strategy is implementing, tuning ¢;, one increases (or
decreases) the correlation between nodes’ preference towards multi-sourcing
and their out-degrees. Fig. 5.3 shows the case of ¢;=0.8, i.e., high correlation.
Note that nodes’ size is proportionate their in-degrees. In this case we notice
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that nodes with high out-degree also have high in-degree (i.e., multiple source
nodes).

To briefly recap, the model introduced describes the link formation in distribu-
tion networks as driven by two main mechanisms: the firms’ preference to link
to central firms (centralization); and firms’ tendency of increasing its number
of suppliers (multi-sourcing)®. The former is controlled by the parameter ¢,
whereas the latter by the parameters o and g;.

5.3 Model validation

In this Section, we validate the model against the real-world data. The val-
idation procedure consists of two steps: (i) first we fit the model to the data
to find the optimal parameters, namely the parameters for which we obtain
the best fit; (ii) then feeding the model with the optimal parameters, we test
it against stylized properties of a real-word distribution network. The first
step is explained in Subsection 5.3.1, whereas the second step is explained in
Subsection 5.3.2.

5.3.1 Optimal parameters’ estimation

We start by fixing the network measures we can directly compute from the
data. These are: (i) the number of nodes N; (ii) the number of links F; (iii)
the entry rate a.

The entry rate is computed analytically. From Subsection 5.2.2, we know
that the number of links evolves as F(t)=t; and the number of nodes grows,
on average, as N(t)= a x t + 1¥. We can substitute the time ¢ with E(t)
in the latter equation and replace the number of edges N(t), and links E(t)

TNote that, by construction, the two mechanisms are not independent.

fNote that the term 41 accounts for the manufacturer node. Further, note that the
expression for the evolution of N is always valid except for one case: very low « values.
In this case, to avoid forming multiple links between the source and target, one should
consider the entrance of additional newcomer nodes. Nevertheless, very low a values are
not interesting for our study as they imply very high network density. High density is rarely
detected in real-world distribution networks and tree-like networks. These are intrinsically
sparse networks. Therefore, N(t) = o x t + 1 is always valid for our case of interest.
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with corresponding empirical values N and E. Thus, we obtain the following
expression for the entry rate:

o=—- (5.3)

Differently from «, the parameters ¢s; and ¢; can not be calibrated analytically.
Therefore, we adopt a Monte Carlo approach. We perform extensive computer
simulations to explore the entire bi-dimensional space of the parameters and
assess the best fit. Specifically, we consider values of g5 and ¢; ranging from
0.1 to 0.9, with an interval of 0.02. For each pair (gs,¢:), we run the model
and assign a “fitting score”. The optimal parameters are the ones for which we
obtain the highest fitting score. Thus, we perform a total of 1,600 computer
simulations. We stop every simulation when the synthetic network reaches the
same number of links as the empirical one. We define 7 as the time at which

every simulation ends.

We discard extreme values (i.e., 0.1 < ¢5 and ¢ > 0.9; 0.1 < ¢; and ¢; > 0.9)
as we do not expect them to be optimal for the networks analyzed. Low g
values produce branched networks characterized by long distribution paths
from manufacturers to consumers. On the contrary, high g5 values generate
star-like networks with short distribution paths, i.e., only one-step length.
Further, high ¢; values lead to networks where only a few nodes have an in-
degree different from one. On the contrary, low ¢; values produce networks
where almost all nodes have in-degree different from one. As we know from the
empirical insights gathered in Chapter 4 and Chapter 3, all the four situations
mentioned above do not characterize our data sample. Hence, the choice of
the parameters’ range.

We follow the approach proposed by Tomasello et al. (2014) to construct the
fitting score. We start by considering a few macroscopic network features or
observables 2 (e.g., the average out-degree). For each (2, we measure the
distance, ¢, between the empirical feature and the synthetic one, as expressed
by:

Do — (g5, qt)

N (5.4)

6((]57 Qt) =
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Manufacturer ‘ dea-number N a qs qt Fit Score
MALLINCKRODT | RMO0231821 719 0.62 0.64 0.56 0.75
WATSON LAB RW0288933 634 0.63 0.64 0.28 0.59
BOEHRINGER RR0112514 443 0.52 0.68 0.54 0.37
TEVA PHARM RL0146274 428 0.87 0.78 0.84 0.41
NOVARTIS PD0038667 355 0.64 0.62 0.24 0.58
ACTAVIS RA0306490 314 0.86 0.82 0.90 0.17

Table 5.1: Name, dea-number of the top six opioid manufacturers, as well as the
number of nodes in the distribution networks reconstructed, the optimal parameters
(a0, gs, G¢), and the fitting score.

where the subscript e stands for empirical, and the subscript s stands for
synthetic, or simulated.

If § in Eq. (5.4) is smaller than a relative error €, we argue that the network
generated by the model is close enough to the empirical oneS. To translate
this boolean measure, i.e., close or not close, into a score, for each parameter’s
combination, we generate 100 synthetic networks. The frequency at which the
condition (gs, q;) < € is met defines our fitting score.

By this, the fitting score is normalized between zero (none of the 100 networks
meets the condition) and one (all the 100 networks meet the condition). Simply
put, a fitting score close to one means a very good match between the model
predictions and data, whereas a fitting score close to zero means a very bad
match. The parameters with the highest fitting score are defined as optimal.

In our study, we select the following observables: the first and second moments
of the distribution of out-degrees and in-degree distribution and average path
length. We then consider a 5% relative error (¢ = 0.05) on the first moments
and a 25% relative error on the second moments (¢ = 0.25). We select the
such that they incorporate the less, albeit sufficient, information to reproduce
real-world features. Indeed, besides the most straightforward choice of first
moments, we need to include also second moments as the first moments alone

are little informative about highly-skewed distributions.

$Note that if multiple observables are analyzed, the condition needs to be fulfilled under
all the Q evaluated.
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We fit the model on six different real-world distribution networks, reconstruc-
ted from the ARCOs data. We follow the network reconstruction method de-
scribed in Section 2.2.19. The root node of each of the six networks represents
a top opioid producer. In Table 5.1, we report the obtained values for the
optimal ¢s; and ¢; as well as the corresponding fitting score, the producer’s
names and the total number of nodes in the network. To further illustrate the
fitting procedure, in Fig. 5.4, we display the bi-dimensional parameter space
for a single distribution network. The largest network is selected as a case ex-
ample. We use both a 3-dimensional color map (left plot) and a 2-dimensional
color map (right plot) to show the fitting scores for each pair (gs,¢:) in the
parameter space. The scores follow the color schema on the right-hand side of
the Figure.
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Figure 5.4: Parameter space illustrated via a 3-dimensional (left plot) and a 2-
dimensional color map (right plot). The fitting score for each pair (gs,g:) in the
parameter space is visualized through the color schema on the right-hand side.

From Fig.5.4, we see that the parameters with the highest scores are confined
to a clear “optimal” region (colored in dark orange). We notice that this
optimal region is very narrow along the g5 dimension, and broader along the
q: dimension, suggesting the ¢; have more suboptimal values than gs. The
optimal combination of values (represented by the peak in the 3-dimensional

9For the current analysis, we consider all drugs containing Oxycodone as a basic opioid.
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color map) has coordinates: ¢; = 0.64 and ¢; = 0.56. These values are also
reported in Table 5.1, together with the optimal values obtained for the other
networks.

From the Table 5.1, we see that all the distribution networks examined exhibit
high ¢ values, ranging from 0.62 to 0.82. This suggests that centralization is
predominant to the random mechanism: firms are more likely to connect to
central firms than pick them randomly. As a result, the observed structures
are very much star-like.

Next, we see that all a values are quite different from 1, signalling that the
observed topologies have a clear departure from perfect tree structures. Also,
it confirms our expectation: firms decide for strategic multi-sourcing, yet at
a lower frequency than single-sourcing. Note that « does not quantify the
proportion of firms implementing one strategy rather than the other. It instead
indicates the frequency at which a single-source strategy has been adopted.
And in turn, it indicates the frequency (1 — «) at which a multi-sourcing
strategy has been pursued even, for instance, by the same firm multiple times.

While we obtain similar values of g5 and a across the six networks examined,
the ¢; values are more diverse. For two networks, we find that firm size, defined
by its out-degree, is a predominant factor in identifying a firm’s tendency
towards multi-sourcing (¢: > 0.8). The opposite is true in the other two
networks (q; < 0.2). For the remaining two networks, firm size is comparable to
the random factor (¢; =~ 0.5). For the latter two cases, our results suggest that
firm size is not a driving factor for multi-sourcing and that other factors could
be relevant. These include, for instance, the reliability of existing suppliers,
or their efficiency in terms of time-delivery, or even their risk exposure. What
factors are the most relevant ones is still an open question that future studies
can explore.

5.3.2 Statistical validation

In this Subsection, we perform the second step of our validation procedure.
Feeding the model with the optimal «, g5, and ¢;, obtained in Subsection 5.3.1,
we generate 200 network realizations to compare against the empirical network.
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Figure 5.5: Probability distribution of out-degrees (a) in-degrees (b), path lengths
from root to any node (c), and from root to leave nodes (d). The blue color indicates
real-world data, whereas the red one indicates simulated data (mean and error bars
from 200 runs).

The comparison is performed by evaluating the following network properties:
(i) distribution of in-degrees, d®; (ii) distribution of out-degrees, d°%*; (iii)
distribution of shortest paths from the root to any node in the network, [;
distribution of shortest paths from the root to only leave nodes in the network

l.. Leave nodes to represent end consumers.

In Fig. 5.5 we show the results obtained for a single distribution network, the
largest one. We mark in blue the real-world data and in red the simulated one.
Specifically, we report the median (red square) and the error bar computed at
each bin for the simulated data. Note that the error bar is not obtained as the
standard deviation of the data. Since the normality of the sample at each bin
is not guaranteed, we discard 5% of the most extreme values and compute the
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upper (and lower) limit of the error bars from the minimum (and maximum)
value of the remaining 95% of data.

We see that the model reproduces the typical heavy tail behavior of the empir-
ical distribution of out-degrees (plot a). It also leads to right-skewed distribu-
tions of in-degrees similar to the one observed (plot b). To properly test these
observations and assess the statistical similarity between the empirical distri-
bution and each distribution in the synthetic sample, we perform a KS-test.
Considering a p-value of 0.001, we obtain compatibility between real-world
data and simulations in 86% of the cases for the out-degree distribution and
in 95% of the cases for the in-degree distribution.

Next, we analyze the distribution of path lengths from root to any node (plot
c) and the distribution of path lengths from root to leaves (plot d). Note
that in both figures, distance zero means the distance of the root node (i.e.,
the manufacturer) from itself. We see that the model can reproduce the very
peaked shape of the two distributions. As most empirical data points fall
within the respective error bars, we can confirm a good match between real-
world and simulated data.

Further, note that the peak registered at [ = 3 and at [, = 3 suggests very
short-depth networks, as most of the leave nodes (and nodes in general) are at
a distance 3 from the manufacturer. This confirms our findings discussed in
Chapter 4 where we empirically reconstructed the distribution paths and high-
lighted the short topological distances connecting manufacturers to consumers
along these paths.

Although we can overall confirm that that model well predicts the main to-
pological features of an empirical distribution network, we still observe a few
mismatches. First, we see a few deviations of the model prediction from the
real-world data in correspondence of medium in-degree values, i.e., 5 < dn < 8.
The empirical distribution exhibits a slightly more complex behavior than a
simple power law. The simple preferential mechanism based on nodes’ out-
degrees seems to not capture this additional complexity.

Second, we notice a small mismatch in the distribution of path lengths from
root to leaves (plot d). Specifically, in correspondence of I. = 3, the model
underestimates the number of paths and overestimates it in correspondence of
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l. = 5. Asour major assumption is that consumers and distributors obey to the
same attachment rules, a slight discrepancy in the distance of consumers from
the root is observed. Improvement of the model should consider incorporating
node heterogeneity in the interaction rules. We leave to future studies this
investigation.

5.4 Discussion

In the present Chapter, we introduced a network growth model to explain the
formation of large-scale distribution networks. Taking a firm’s perspective, we
proposed two mechanisms to explain the emergence of the observed structures:
centralization and multi-sourcing. Centralization expresses firms’ preferences
in linking with central firms, whereas multi-sourcing represents firms’ tendency
to acquire additional suppliers or source nodes. The first strategy provides
cost-saving advantages and improves operational efficiency, whereas the second
strategy enhances resilience by guaranteeing alternate sources in case of a single
supplier’s failure.

The proposed mechanisms can be tuned using three model parameters: ¢s, g,
and «. Parameter ¢, controls for network centralization, while ¢; and « control
for multi-sourcing. We tested the model using the opioid distribution networks
reconstructed from the ARCOS. Optimal parameters were identified using a
Monte Carlo approach, revealing that the networks exhibit high centralization,
frequent multi-sourcing, and a clear departure from perfect tree structures.

Next, we statistically validated the model and found a good match between
model predictions and real-world observations. Specifically, we could repro-
duce the distinctive shapes of out and in-degree and path length distributions.
Although the model already captures the main features of an empirical net-
work, one could improve it on various fronts. Firstly, the model assumes
identical linking strategies for consumers and firms. More realistic linking
rules for consumers can be considered in future works at the cost of increased
model complexity.

Secondly, the manufacturer’s probability of linking to other distributors is
assumed to be zero. The assumption is based on observations from the ARCOS
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dataset. However, the model can be adapted to allow for different probabilities
or calibrated to other real-world data.

Thirdly, the model disregards link weights, i.e., the amount of goods passing
through each link. Yet, the evolution of link weights may influence topological
growth and vice-versa. An extension of the model, presented in Chapter 7,
addresses this limitation by exploring the growth of distribution systems as
weighted networks.

Finally, the proposed model is applicable to distribution networks of various
industrial sectors. The centralization and multi-sourcing strategies considered
are widely discussed in the literature in industries as varied as automotive,
electronic, and chemical industries (Inderst, 2008; Perera et al., 2017b). There-
fore, we expect these principles to be relevant driving mechanisms for other
networks as well. However, it remains an open question to what extent the
proposed model can replicate the stylized facts of different distribution net-
works and whether additional mechanisms need to be incorporated. Further
research in this direction is encouraged.



Chapter 6

Firms’ growth and their
determinants

Summary

This Chapter aims to empirically analyze the growth rates of firms oper-
ating within the opioid distribution network. We provide a brief overview
of existing theories on firm growth and evaluate their relevance within the
supply chain domain. Next, we explore the potential factors that influence
the growth of opioid manufacturers and distributors and assess their ef-
fects through regression analysis.

This Chapter has been written specifically for this thesis. AA contributed to the design
of the research question, performed the data analysis and interpreted the results.

90



6.1. Introduction 91

6.1 Introduction

For many years, scholars have investigated the growth of business firms, draw-
ing from the seminal work of Gibrat (1931). Gibrat’s law of proportionate ef-
fect simply states that firm growth rates are independent of their sizes. When
expressed in logarithmic form, these rates follow a Gaussian distribution.

Although extremely simplistic, Gibrat’s law has become a good benchmark for
comparing real-world observations. Scholars have used a variety of data to test
the validity of this law including, for example, the Italian manufacturing firm
data (Bottazzi and Secchi, 2006), the US pharmaceutical companies data (Fu
et al., 2005), and the Dutch manufacturing firms data (Zhou and de Wit,
2009). They found that the distribution of growth rates is “tent-shaped” and
better described by a Laplacian distribution rather than a Gaussian one (as
hypothesized by Gibrat). Interestingly, a similar tent-shape also characterizes
the distribution of growth rates of other economic actors as diverse as countries
and cities (Bottazzi et al., 2011; Bottazzi and Secchi, 2006), becoming a stylized
fact for economic growth processes.

In this Chapter, we empirically investigate the growth rates of the US opioid
manufacturing and distribution firms. Our goal is to test the validity of the
traditional theories against these novel data. Specifically, we start by testing
the previously proposed functional forms, i.e., the Gaussian and Laplacian
(Section 6.2). Next, we perform an econometric analysis on the determinants
of growth rates (Section 6.3). Conclusions from the analysis are drawn in
Section 6.4.

6.2 Growth rates and their functional form

As a first step to evaluating growth rates, we need to define the firm size and
how we can measure it. Previously, scholars have proposed various measures
as indicators of firm size, including their number of employees, total sales, and
total assets (Bottazzi and Secchi, 2003; Coad, 2007; Zhou and de Wit, 2009).
Also, physical measures of output have been used, e.g., tons of goods produced,
when firms under study were manufacturers producing the same type of good.
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From the ARCOS dataset, we do not have information on the total sales of
firms, nor on their assets or number of employees, but we do have information
about the amount of goods they ship. Assuming that the quantity shipped by
a firm, 4, is indicative of its sales, we proxy its size, s;, as its total ship-out,
Went e

5, = Wt (6.1)

The total ship-out in Eq. (6.1) is measured in grams and represents the aggreg-
ate amount of basic opioids shipped, regardless of the specific drug product. A
manufacturer can produce multiple drug products with varying sales that may
offset each other or add up. Our goal is not to measure the sales of individual
products but to determine a firm’s overall annual sales in a specific opioid mar-
ket, such as the Hydrocodone one. Therefore, we use the total grams shipped
as a proxy for the product sale and sum them across all the packages shipped
by the firm.

Moreover, sales of products from different opioid markets may also influence
each other. For instance, an increase in the sales of Oxycodone products
may lead to a decrease in sales of Hydrocodone products. To better assess
firms’ total sales, one should aggregate the sales from products containing even
different basic opioids. However, using grams shipped as a proxy for sales,
in this case, would be unreliable. Opioids have varying potencies, resulting
in different grams per product. Hence, a separate measure should be used
when aggregating products belonging to various opioid markets. For instance,
a possible approach would be to convert all grams to morphine equivalents
and use that measure as a proxy for sales. As this analysis requires further
investigation, it is left to future work.

Thus, following previous works, we determine the growth rate of firm ¢ as the
logarithm of its 1-year size variation, i.e.,

i(y) = log | —=—— 6.2
where y indicates the year under study. Note that the standard definition of
gi, as expressed by Eq. (6.2), assumes zero dependencies among firm growth
rates. This assumption does not hold in distribution networks. Distributors
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Figure 6.1: Empirical growth rates, g, of manufacturers (a) and distributors (b) in
the opioid distribution network. The star symbols indicate the empirical distribution
of growth rates. The dashed line indicates the Laplacian fit. We binned the data for
visualization purposes only and fitted the theoretical distribution to the non-binned
data.

can increase their shipments only if they, in turn, have received enough goods.
In the current Chapter, we assume firm growth rates to be independent. In
the next Chapter, we revise this critical assumption and propose a network
growth model to account for the inter-firm dependencies.

Based on Eq. (6.2), we compute the annual growth rates of the opioid man-
ufacturers and distributors from the year 2006 to the year 2014. Fig. 6.1
displays the distribution of growth rates of manufacturers (a) and distributors
(b). Note that both plots have been obtained by pooling the growth rates of
the nine observation years and considering all the shipments of a single opioid,
i.e., Hydrocodone. The star symbols indicate the empirical values, whereas
the dashed line indicates the Laplacian fit against the data.

The fit is based on the maximum likelihood estimation of the theoretical para-
meters. We report in Table 6.1 the location parameter, y and the scale para-
meter, b, estimated from the fit, as well as the goodness of the fit, i.e., the
log-likelihood.
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Manufacturer growth rates

© \ b | Log-likelihood | D (KS) | p-value

Gauss 0.13 (0.08) | 2.34 (0.05) -2026 0.15 2.2e-16

Laplace | 0.05 (0.03) | 1.36 (0.04) -1789 0.09 7.1e-08
Distributor growth rates

‘ n ‘ b | Log-likelihood | D (KS) | p-value

Gauss -0.01 (0.02) | 1.23 (0.02) -4643 0.20 2.2e-16

Laplace | 0.03 (0.01) | 0.62 (0.01) -3759 0.11 2.2e-16

Table 6.1: On the right: Optimal parameter values (pu and b) resulted from the
Gaussian and Laplacian fit the empirical growth rates. On the left: distances and p-
values from the KS-test compare the similarity between the theoretical and empirical
distributions.

From a visual inspection, we see that the empirical values do not align with the
theoretical ones. This is true for both data on manufacturers and distributors,
albeit it is particularly evident in the case of distributors. The statistical test
(KS-test) confirms this observation. Table 6.1 shows the distances and the
p-values obtained from the KS-test. Given the low p-values (<< 0.01), we
reject the hypothesis of similarity between the empirical distribution and the
Laplacian one for both manufacturers and distributors data. In Table 6.1,
we also show the results from comparing the empirical distribution with a
Gaussian one fitted to the data. As for the Laplacian distribution, we reject the
hypothesis of similarity between the empirical and the theoretical distribution.
We obtain even worse results with the Gaussian fit than the Laplacian fit.

We conclude that the functional forms previously proposed in the literature
(Laplacian and Gaussian) are not valid for the growth rates observed in our
data. We see from Fig. 6.1 that the major mismatch between the empirical
growth rates and those predicted by the Laplacian model is on the tails of the
probability distribution. The empirical distribution shows fatter tails than
those predicted by the model. Correlations between growth rates may be
at the origin of such fat tails (Bottazzi et al., 2001). As mentioned above,
the outflows of firms in distribution networks are tightly coupled, possibly
explaining the large values of growth rates observed. However, identifying the
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correct functional form of the observed growth rate distribution is beyond this
study’s scope and is left for future research.

6.3 Assessment of the determining factors

6.3.1 An econometric approach

This Section investigates the determinants of growth rates of firms in distri-
bution networks. We consider firm-specific characteristics such as age, size,
and the number of partners. Further, we also consider the firm position in the
network. Specifically, the tier the firm belongs to, defined in Chapter 3 and
expressed by Eq. (3.1), identifies its position.

We take an econometric approach and use a multivariate model in which the
dependent variable is the firm growth rate, and the independent variables are
the determinants. In addition, we include control variables to ensure that the
model does not capture variations due to external factors, such as a general
increase in shipments in a given year. Then, we perform an ordinary least
squares (OLS) regression to assess the statistical significance of the selected
independent variables and the sign of their correlation with the growth rates.
The independent and the control variables are explained in detail below.

Age and size. The role of age and size as determinants of firm growth has
been vastly investigated in previous studies (Becchetti and Trovato, 2002; Wyn-
arczyk and Watson, 2005; Zhou and de Wit, 2009). Younger firms show higher
growth rates. Smaller firms are more likely to grow since they have to achieve
a minimum size efficiency (Zhou and de Wit, 2009). Building on previous stud-
ies, we include these factors as independent variables in our analysis. Firm size
is measured according to Eq. (7.1). The age, a;,, is given by the number of
years since the first appearance of the firm: a; , = y—y; where y; is the year of
the first appearance of 7 in the data. Note that we only have nine observation
years (from 2006 and 2014). Therefore, the range of age values thus obtained
is rather narrow. Section 6.3.2 discusses how this data limitation impacts our
results.
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Number of partners. Based on previous studies, we test the hypothesis that
the number of partners plays a role in firm growth (Wynarczyk and Watson,
2005). In light of these studies, we expect that the higher the number of
partners a firm has, the higher its growth rate. In particular, we consider
separately the number of source partners, i.e., partners from whom the firm
receives goods, and the number of target partners, i.e., partners to whom the
firm ships (i.e., clients). Note that clients include both end consumers and
other firms in the network.

Tier. To our knowledge, no previous empirical studies have shown how a
firm’s position in a distribution network can impact its growth rate. In this
study, we aim to test this hypothesis and determine the sign of the effect
using a regression model. The effect can be either positive or negative, with a
positive effect meaning that growth rates increase moving downstream and a
negative effect meaning that growth rates decrease moving downstream. For
instance, a positive effect may arise given that firms positioned downstream,
i.e., retailers, tend to have smaller sizes than those positioned upstream, e.g.,
wholesales. And it has been observed that small firms have higher growth rates
than big ones (Zhou and de Wit, 2009). Conversely, a negative effect may occur
in the presence of demand changes. In this case, last-tier distributors may be
subjected to lower demand fluctuations, given their proximity to consumers,
and hence to lower growth rates than first-tier distributors. We will incorporate
the tier value as a determinant of firm growth in the regression model to assess
which effect is more prevalent.

Controls: year, state. In Chapter 3, we discussed the evolution of the opioid
demand across years and US states. We observed considerable changes in
the opioid demand over the years. Further, we also highlighted considerable
differences across states. These variations and differences can be reflected in
the amount shipped by the firms in the network. We do not want to capture
such variations with our model. We rather want to explain the growth rates of
firms independently of their specific location or the specific year of observation.
Therefore, we use two control variables: one for the year and one for the state
where the firm is located. Moreover, our proxy of firm age depends strictly on



6.3. Assessment of the determining factors

97

Model A Model A Model B
Manufacturers Distributors Distributors
(Intercept) 2.70 (0.49)™"" 0.08 (0.37) 0.58 (0.38)
age 0.09 (0.09) —0.06 (0.03)" —0.06 (0.03)"
log(size) —0.23 (0.02)""* —0.07 (0.01)"*" —0.10 (0.01)**"
N clients 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
N sources 0.01 (0.00)***  0.01 (0.00)*"
tier 1 —0.33 (0.06)*"
tier 2 —1.09 (0.31)***
tier 3 —1.05 (0.66)

Controls: year, state

R? 0.17
Num. obs. 730

***p < 0.001; **p < 0.01; *p < 0.05

0.09
2776

0.10
2776

Table 6.2: Results from the OLS regressions. The coefficients with p-values smaller
than 0.01 are reported in bold character.

the year it is calculated. Trivially, in 2007 all firms may have an age of zero or
one (i.e., their first year is 2006). Therefore, we include the interaction effect
between a; , and y.

6.3.2 Results from the OLS regression

To build our panel dataset, we consider all shipments of a single opioid. As
a case example, we use Hydrocodone. The unit of analysis is the growth rate
of a single firm. A single firm appears in the panel dataset (at maximum) 8
times, i.e., once per year. Thus, we analyze two models: Model A employs the
following independent variables: age, size, number of source and target part-
ners; Model B employs the same variables of Model A plus the tier. As in the
Subsection above, we evaluate the growth rates of manufacturers and distrib-
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utors separately. In Table 6.2, we show the results from the OLS regressions.

We start discussing the results obtained from the Model A and Model B run
on the growth rates of distributors. We find that the factor age has a negative
coefficient in both Model A and Model B. This confirms our expectation that
younger distributors are more likely to have higher growth rates. However,
the effect is not strong (p-value < 0.05). As mentioned above, the validity of
our proxy of firm age is limited by the lack of data. We found a very skewed
distribution of age values, where old distributors (i.e., the ones appearing over
the whole observation period) are the majority and few of them have younger
ages (< 9 years). Therefore, the low significance of the age may depend on
the small range of values obtained from the data.

As expected, we find that the size of a distributor is significantly and negatively
correlated with its growth rate: small distributors are more likely to exhibit
higher growth rates. Further, we found that the number of source partners of a
distributor has a positive and significant effect on its growth rate. Particularly,
having one more source partner produces a 10% increase in its annual ship-out.

In contrast, we note that the number of clients does not play an important
role. Some distributors, particularly those at the last tiers, ship to many con-
sumers (about a thousand). Other distributors ship to other distributors in
the network (about a dozen). We argue that our linear model does not cap-
ture these large differences in the number of clients, making the independent
variable not significant. Further studies could test this argument by including,
for example, an interaction effect between tier and number of clients or by
considering a possible re-scaling of the variable.

Furthermore, we observe that the tier variable exhibits a significant negative
correlation with firm growth rates. This finding implies that growth rates tend
to decrease as we move downstream in the network. Specifically, second-tier
distributors have lower growth rates than first-tier distributors, and third-tier
distributors have lower growth rates than second-tier distributors. As we dis-
cussed in Chapter 3, Hydrocodone consumption increased during the period of
observation. Our results suggest that the observed demand changes mostly af-
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fected the first-tier and second-tier distributors, leading them to exhibit higher
growth rates compared to the final tiers.

The results from the analysis conducted on the growth rates of the manu-
facturers reveal that most determinants considered, i.e., age and number of
target partners, are not significant in explaining growth rates. We observe a
significant effect only for the size. This, as expected, is negatively correlated
to manufacturer growth. The non-significance of the other variables is related
to data issues. Most manufacturers appear in the data from the beginning
of our observation period. Therefore, they are few diversified in age, making
our proxy of age unsuitable for this model. Further, similarly to distributors,
manufacturers are very diversified in the number of clients. Some manufactur-
ers ship directly to consumers, thus having a much higher number of clients
than others that ship via distributors. For the latter, the number of clients is
almost two orders smaller than the former. As for distributors, we argue that
our linear model does not capture these big differences, making this variable
not significant.

6.4 Discussion

In this Chapter, we empirically investigated the growth rates of firms in a
distribution network. For this aim, we used the ARCOS dataset and analyzed
the size and the growth rate of opioid manufacturing and distribution firms
in the US. Our goal was to test previous theories against these novel data
to deepen our understanding of firm growth in the context of distribution
networks.

We found that the stylized fact of a Laplacian shape for the growth rate
distribution does not hold for the firms in our data. We argued that the
discrepancy between the theoretical prediction and the empirical observation
lies in the tails of the growth rate distribution. These may arise from the
strong correlations between the growth rates of firms in distribution networks.

Next, we forwarded our analysis and defined possible determinants of firm
growth rates. Building on previous studies, we considered the firm age, size,

and number of partners as predictors in our model. In addition, we considered
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the firm position, as expressed by the tier the firm belongs to. We assessed
their statistical significance with an OLS regression.

Our results revealed that the distributors that are: (i) smaller in size, (i)
younger, (iii) and with more source partners are more likely to exhibit higher
growth rates. These results aligned with our expectations and previous findings
obtained on other firm data (Zhou and de Wit, 2009). In addition, we found
that first-tier distributors are more likely to have higher growth rates than
second-tier distributors, and second-tier distributors exhibit higher growth
rates than third-tier distributors. On the contrary, we did not find any signi-
ficant effect for the age and number of clients in the manufacturers’ data. The
latter result may depend on the method we used to compute manufacturer
ages and the considerable differences in the number of clients manufacturers
ship to.

It is fair to say that the validity of the above results is limited by the low
predictive power of our model: R? = 0.1. Several reasons may explain this
observation. First, the OLS regression may not be well suited to investigate
growth determinants within this context. The linear model may not capture
the big differences in the growth rates of firms in our data. Choosing a type
of regression that is not linear can be the object of future studies.

Further, we could not include other import determinants of firm growth due to
data limitations. For example, the financial capital of a firm and its marketing
or management strategy could be relevant to predict growth rates improving
the actual model.

Finally, our model has a central critical assumption: the independency of
the data records. In other words, we assumed that firm growth rates in the
distribution network are independent. However, they are not. Distributors can
increase their ship-out only if their source partners have done the same. These
correlations would limit any regression-type analysis. To properly overcome
this limitation and better investigate firm growth in distribution networks, we
propose a network-based approach in the next Chapter.



Chapter 7

Modeling network growth:
topology and goods flow

Summary

This Chapter expands on exploring the factors influencing network and
firm growth. Building on the analysis presented in Chapter 5, we introduce
a network growth model that accounts for the co-evolution of network to-
pology and goods flow. Considering inter-firm dependencies, we over-
come the limitations of the regression analysis presented in Chapter 6.
Specifically, our model employs a proportionate growth to explain the
evolution of flows, which is subject to demand fluctuations and upstream
fluctuations due to supply availability. To test and validate our model, we
apply it to the opioid distribution system. Our findings suggest that up-
stream fluctuations significantly impact growth dynamics and are crucial
for reproducing the observed patterns of firm growth.

This Chapter has been written specifically for this thesis. Results are based on A.
Amico, G. Vaccario, F. Schweitzer “The growth of business firms in distribution networks”,
Working Paper. AA contributed to designing the research question and deriving the inter-
action rules. AA wrote the code, performed the simulations, and interpreted the results.
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7.1 Introduction

In Chapter 5, we proposed a growth model to describe the formation of distri-
bution systems. Validating the model against real-world data, we gained new
insights into the complex architecture of such systems and the mechanisms
driving their evolution. Nevertheless, our understanding was limited to the
topological aspect of this evolutionary process, namely how new firms enter
the network and how new links are formed between them. Distribution net-
works grow both in size by increasing the number of firms and links, and in
volume, by increasing the amount of goods flowing through each link.

To comprehensively understand the mechanisms driving the growth of distri-
bution networks, this Chapter aims to derive the microscopic rules describing
the evolution of goods’ flows. Specifically, we want to explain how firms’ in-
flows and outflows evolve over the years and how the topological inter-firm
dependencies affect such process. In accounting for these dependencies, we
overcome the limitations of the econometric approach presented in Chapter 6.

The Chapter is structured as follows. We start by evaluating the statistical
properties of the goods flows in an empirical system (Section 7.2). Guided
by the empirical insights, we derive the microscopic rules for the evolution of
goods flow (Section 7.3). Next, we propose an analytic approach to calibrate
the model against real-world data (Section 7.3.2). Feeding the model with the
optimal parameters obtained from the calibration, we test the model against
various stylized facts of the empirical system, e.g., growth rate distribution and
growth rate volatility (Section 7.4). We close the Chapter by summarizing the
main findings and outlining the limitations of the present study (Section 7.5).

7.2 Empirical evidences

As a case study, we analyze the distribution network of the top-selling opioid
manufacturer (Mallinckrodt), reconstructed from the ARCOS data. By this, we
use the same data of the analysis carried out in Chapter 5, as well as the same
procedure to reconstruct the network. Nodes represent firms and consumers,
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and links represent supply relations observed in a given year. Every link has

a weight, w, to account for the annual amount shipped, measured in grams.

In Fig. 7.1, we show the probability distribution of link weights in the year
2008 (blue circles) along with the log-normal fit performed on the data (red
dashed line). For the fit, we use the method proposed by Clauset et al. (2009),
which performs better on probability distributions that have heavy tails*.

The distribution exhibits a rather pronounced heavy tailed character, indic-
ative of a great heterogeneity in link weights. Large weights (about a million
grams) characterize very few links, while most links have small weights (about
a thousand grams). The observed heterogeneity should be traced back to the
different roles firms play in a distribution network. The largest weights rep-
resent the outflows of large distributors, e.g., warehouse distributors. Smaller
weights, instead, represent the outflows of smaller distributors, e.g., retail dis-
tributors. Furthermore, we see that a log-normal functional form describes our
data well. Log-normal distributions may originate from generative processes
based on proportional growth dynamics (Schweitzer, 2020). This empirical
hint will be used in the formulation of the model in the Section 7.3.

Next, we study the growth rates of firms. As explained in Chapter 6, we de-
termine the growth rate g; of firm 7 as the logarithm of its 1-year size variation,
expressed by Eq. (6.2). Moreover, we proxy firm size s; by its total ship-out
(see Chapter 6). Thus, we have:

si(y) = > wi(y) (7.1)

JE€nb;

where nb; identifies the set of neighbors to whom ¢ ships, w;; indicates the
amount shipped through each of them, and y is the year of analysis.

As the ARCOS dataset spans over nine years, i.e., from 2006 to 2014, we could
potentially compute the annual growth rates at eight different years. Then
we could study the probability distribution of the pooled values to have a

*Due to their large fluctuations on the tails, power-law distributions are difficult to detect
by standard least-squared methods. The method proposed by Clauset et al. (2009) combines
a maximum-likelihood approach and a KS-based fitting method, which is more robust on
the tails. The method is available within the python package called “power-law” (Alstott
et al., 2014).
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Figure 7.1: Left side: probability distribution of link weights in the year 2008 (blue
circles), and log-normal fit (red dashed line). Right side: probability distribution of
growth rates, pooling the years 2007, 2008, and 2009, and Laplacian fit (blue dashed
line).

‘ KS-test p-values

P(g) ‘ 2007 2008 2009  Pool

2007 | 1.000 0.961 0.163 0.893
2008 1.000 0.169 0.892
2009 1.000 0.458

Table 7.1: p-values obtained from the KS-test that compare the statistical similarity
of P(g) in different years. Not all the years of observation appear in this Table, but
only the ones for which a p-values > 0.01 has been obtained.

more comprehensive statistic. However, we find that only some growth rates
computed at different years are statistically compatible, according to the KS
statistics. Therefore, we restrict our analyses to those years we find a statistical
agreement. These are the years 2007, 2008, and 2009. The results from the
KS-test on these years are reported in Table 7.1.

In Fig. 7.1, we show the empirical distribution of growth rates together with
the Laplacian fit performed on the data (dashed line). This distribution ex-
hibits a symmetric exponential character that, plotted in log-log, appears as
a “tent-shape”. This result is similar to the one of Chapter 5, obtained under
aggregation of multiple products manufactured by different companies. Sim-
ilar to what we found in Chapter 5, the Laplacian functional form does not
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characterize our data. Despite a quite good visual agreement between data
(circles) and fit (dashed line), the KS-test returns a p-value of 2.91 x 10794
Hence, we reject the null hypothesis of statistical similarity between the real
data and the theoretical predictions.

As in Chapter 6, we can explain this result by noticing that the major mismatch
between the two distributions occurs on the tails. The empirical tails are
“fatter” than the ones predicted by the Laplacian model. Pronounced tails
may result from dependencies between the growth of firms (Bottazzi et al.,
2011). We keep in mind this empirical insight, which, together with the log-
normality of link weights, forms the basis for the formulation of our model.

7.3 Model

7.3.1 Demand and supply fluctuations

We consider a distribution network comprising N nodes, i.e., a single manu-
facturer, multiple distributors and multiple consumers. These are connected
through direct links used to ship goods. Links have weights to characterize
the amount of goods shipped. We denote with W the total outflow of node
i and W™ its total inflow, i.e.:

Wt = 3wty W = S wjl) 72)

jEnbout j€nbiy,

where nbg, is the set of neighbors to whom i ships, and nb;, is the set of
neighbors from whom i receives. The differences AW;(t) = WUt (t) — Wi (t)
are captured by the inventory.

At time zero, one manufacturer and one distributor populate the distribution
network. Over time, the network evolves: new nodes enter the network, and
new links are created. This process follows the rules for link formation derived
in Section 5.2.2 and expressed by Eq. (5.1) and Eq. (5.2).

While the topology is evolving, outflows and inflows change. In our model,
nodes have no control over their inflows, only over their outflows. Specifically,
we make two assumptions: (i) nodes ship-out proportionate to their last ship-
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ments; (ii) nodes ship-out conditioned to their supply availability. Specifically,
nodes experiencing shortages, i.e., AW; < 0, reduce their ship-out; nodes ex-
periencing surplus, i.e., AW; > 0, increase their ship-out. We name the latter
condition as the upstream constraint.

Translating the above principles into equations, we write the link weights dy-
namic as:

(7.3)

wi(t+1) k%ee AW;(t) <0
Wij (t) k;ef AWz(t) >0

where w;; is the outflow of ¢ towards j, k; > 1 is a rescaling factor, and ¢ is
a random Gaussian noise with finite mean and variance, € ~ N(u,02). The
dynamic expressed by Eq. (7.3) combines two processes.

On the one hand, outflows grow according to a stochastic proportionate dy-
namic, where the stochastic term captures demand fluctuations. This builds
on the traditional law of proportionate effect, introduced by Gibrat in 1931 (Fu
et al., 2005; Riccaboni and Schiavo, 2010; Schweitzer, 2020). Note that, given
a variable w, the original expression of the law has the form:

w(t+1) = w(t)n(t) (7.4)

where 7 is the stochastic growth factor. We choose 1 to be the exponent
of a Gaussian noise, i.e., n = e°. By this, we ensure that positive values
are obtained for the outflows. Moreover, the proportionate growth dynamic
implies that the quantity under study is log-normally distributed. This is in
line to what we observe for the link weighs in our data (Fig. 7.1).

On the other hand, outflows are subject to the upstream constraint whose
effect is controlled by the sign of AW; and whose strength is controlled by the
rescaling factor k;. This accounts for dependencies between firms: firm growths
are constrained by a given finite quantity, i.e., the total supply (Amaral et al.,
1998; Bottazzi et al., 2011). Note that, in principle, k; is firm-dependent, as
it relates to the firm internal organization. It may also be time-dependent:
product life-cycle leads firms to experience periodic phases of growth or reces-
sion. To keep our model simple, we assume k; to be homogenous across firms
and constant over time, k; = k.
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Finally, we consider a logistic growth for the production dynamic at the man-

ufacturer, i.e.,: ot 1) - [1 . (1 - (2}(;))] Q) (7.5)

where Q(t) is the production at time ¢, r is the growth parameter, and K is the
production limiting value. In other words, according to Eq. (7.5), we assume
that the production grows exponentially at a rate r, saturating afterwards at
the limiting value K. While it is clear that a logistic dynamic can not capture
various realistic aspects of production growth (e.g. possible fluctuations), it is
also worth noticing the main advantage: its simplicity allows us to determine
the model parameters analytically.

7.3.2 Parameter calibration: an analytic solution

Mean and variance of demand fluctuations. The model introduced above is
characterized by two free parameters: p and o. Here we derive an analytic
solution to estimate their values.

Let’s consider the case k = 1. The growth dynamic in Eq. (7.3) reduces to the
simple proportionate growth as:

w(t+1) = w(t)e’ (7.6)

The stochastic process expressed by Eq. (7.6) is a geometric Brownian mo-
tion with a close-form solution. Specifically, the solution w(t) is log-normally
distributed with a finite mean given by:

o2
E (w(r)) = w(0)e+ )7 (7.7)
and a finite variance given by:
Var (w(7)) = w(0)2e?™ (602T - 1) (7.8)

where 7 is the final time, assuming that the initial time is zero.

Our model assumes that each time a new link is created Once created, the
link remains in the network for 7 — ¢t time steps, where ¢ is the time when
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the link is created, and 7 is when the simulation ends. Therefore, considering
t' = 7 — t the time of the link weight evolution, we obtain the mean value of
the link weights by averaging over all times, i.e., :

(Wi = = 3 w(t) (7.9)

T
t'=0

Next, we approximate the variable w(t') in Eq. (7.9) to its expected value,
ie, w(t') ~ E(w(t')). Thus, we substitute the expression of E (w(t')) from
Eq. (7.7) into Eq. (7.9) and obtain the following expression for the mean value
of the link weights:

1 T w T o2\,
{w(7))sim = R (w(t) = 70 Y el (7.10)
t'=0 t’=0

The right term in Eq. (7.10) is a geometric series. Substituting its closed form
into Eq. (7.10), we arrive to the the final expression of the first moment (the

mean value):
22 T+1
wo (1_6(M+2) +)

e (e

(7.11)

Following the same approach, we derive the expression for the second moment
(w*(7))sim and we have:

2pu+o?)T+1
ug (1)

T (1 elute) (7.12)

<w2 (T)>sim ~

The coupled Eq. (7.11) and Eq. (7.12) can be solved numerically after fixing the
first and the second moments to their empirical values: (w(7))sim = (W)emp;
and (w?(7))sim = (W?)emp. By this, we obtain the optimal values for the
parameters u ad o. These are: = 0.011, and o = 0.049 for the network in
the year 2008.
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Parameters of the production dynamic. The production dynamic in
Eq. (7.5) is characterized by two parameters: K, the limiting production value,
and r, the growth rate. We set K to the maximum value observed in the data,
ie.:

K= H{I;I}X[Q )] (7.13)

where {y} is the set of years under analysis, and 2 (y) is the empirical pro-
duction. Hence, we obtain: K = € (2009) ~ 60 million grams.

Then, we determine the production growth rate r by imposing that the sim-
ulated production reaches the empirical value within the period of the sim-
ulations, 7. Given the logistic dynamic, the simulated production at time 7
is:

K
1+ KS_IOQO e—TT

Q1) = (7.14)
Thus, enforcing the condition Q(7) = Q(y), and inverting (7.14), we obtain

the expression for r, i.e.,:

ol e

where )y is the initial production. We obtain » = 0.013.

Simulation time shift. The proposed model does not ensure a direct match
between simulation time steps and empirical times. One time step of the
simulation is the time needed for one link to be created, and it does not
correspond to one year (empirical time). As we are interested in reproducing
the annual growth rate, we need to determine the simulation time shift, v,
corresponding to the one-year shift. We determine v such that the simulated
production at time 7 — v matches the empirical one at the y — 1 : Q(7 —v) =
Q(y — 1). By this, we are fixing the production to its empirical value in both
the year y and the y — 1. We obtain v = 49.
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Figure 7.2: Distance (y-axis) between the empirical distribution of growth rates and
the one obtained from computer simulations for different k values (x-axis) and as-
sessed using the KS-test. k € [1,4] with an interval of 0.25.

7.4 Model validation

7.4.1 Role of the upstream constraint

In this Section, we aim to test the model against the real-world data. To this
aim, we feed the model with the optimal parameter values. The parameters
gs, ¢+, and « (that control for the topological growth) are calibrated according
to the procedure discussed in Section 5.3; the values of the parameters p, o, r
and K are obtained from the analytic solutions derived in the Section above.

Then, to determine the optimal k& (upstream constraint), we consider a set of
k values, ranging from 1 to 4, with an interval of 0.25. We run the model for
each k value and measure the distance between the empirical distribution of
growth rates and one obtained through computer simulations. The optimal k
is the one that minimizes such distance. The statistical distances are evaluated
through the KS-test and reported in Fig. 7.2. From the Figure, we see that a
set of k values, ranging from 1.25 to roughly 2, could potentially suit the data.
We select the minimum observed: k°P' = 1.50.

In Fig. 7.3, we show the distribution of growth rates obtained from the model
simulations (red diamonds) with £ = 1 , that means without upstream con-
straint, in the left plot; and with k¥ = k°P', that means with the optimal
upstream constraint, in the right plot. The blue circles indicate the empirical
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Model mean std skewness kurtosis KS p-value
Emp 0.05 1.41 0.20 10.28

Sim k=k°P* 0.18 0.88 2.00 19.03 0.11 0.77 x 107°
Sim k=1 0.57 0.21 0.14 0.34 0.59 < 10710

Table 7.2: On the left side: mean, standard deviation, skewness, and kurtosis of three
distributions of growth rates: empirical (first row), simulated with k = k°** (second
row); simulated with £ = 1 (third row). On the right side: distances and p-values
obtained from the KS-test between empirical distribution and simulated ones.

distribution. For a better comparison, in Table 7.2, we report their statistical
properties (i.e, mean, standard deviation, skewness, and kurtosis).

We see that the model with k=k°P!' can reproduce the characteristic tent-
shape of the empirical distribution together with its broad variance (as
indicated by the standard deviation) and pronounced tails (as noted in the
kurtosis value). Instead, the model with k=1 does not perform well: it
produces a narrower distribution with low variance and no tails. This finding
suggests that fluctuations generated by the upstream constraint are needed
to reproduce the broadness and the tails of the observed distribution.
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Figure 7.3: Empirical (blue circles) and simulated (red diamonds) distribution of
growth rates. Left side: results from the model fed with k=1, i.e., no upstream
constraint. Right side: results from the model fed with k =k°P*=1.50, namely with
the upstream constraint at its optimal value.
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Albeit we observe a good match between real-world and simulated data with
k=k°P', we need to reject the hypothesis of statistical similarity of the two
distributions. The KS-test returns a p-value ~ 10~5. This result may origin-
ate from the mismatch between the quite asymmetric character of the simu-
lated distribution (skewness=2) and the very symmetric empirical one (skew-
ness=0.2). The higher and positive value of the skewness of the simulated
distribution indicates that the model leans towards positive values, underes-
timating the number of negative growth rates. This may due to the fact that,
in our model, we are considering only the new entry of firms and the formation
of new links. We are not accounting for the opposite process, i.e., the exit of
firms or cutting links, which may cause negative growth rates. In this thesis,
we don’t have time to explore the combination of the entry and exit process.
We leave this exploration to future studies.

7.4.2 Volatility of growth rates

Since we used the empirical growth rates to calibrate and validate the model,
we perform additional tests to evaluate the model performance. To this end,
we consider the volatility of firm growth rates. In line with previous stud-
ies (Calvino et al., 2018), we measure volatility as the standard deviation of
growth rates, og.

In Fig. 7.5, we plot o (y-axis) as a function of firm size (x-axis). We investigate
the correlation between these two quantities in both real data (left plot) and
simulated data (right plot). From the empirical data (left plot), we see that
growth rate volatility and firm size are linked by a negative relationship. This
implies that the smaller the firm, the more volatile its growth is. To put
it simply, small distributors experience greater fluctuations in their growth
than large ones. This finding is in agreement with previous studies conducted
on manufacturing firms (Calvino et al., 2018; Riccaboni and Schiavo, 2010;
Sutton, 2002), where a similar volatility-size relation has been found. It is also
in agreement with the regression analysis conducted in Chapter 6.

From the visual inspection of the simulated data, we notice that the model
can reproduce such negative relation. To better quantify the match between
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Figure 7.4: Growth rate as function of firm size for empirical data (left plot) and
simulated data (right plot). The dashed line indicates the linear fit as expressed by
Eq. (7.16) and performed via an ordinary least squares method.

simulated and real-world data, we fit the data points assuming a power-law
functional form (linear in log-log scale), i.e.:

log(oy) = o+ Blog(s) (7.16)

Using an ordinary least squares method, we fit the model expressed by
Eq. (7.16) and estimate the slope of the curve 8. We obtain f=-0.42 for
the real-world data and f=—0.12 for simulated ones.

The obtained values indicate that the model is good at reproducing the neg-
ative nature of the observed volatility-size relation. But it has limitations in
reproducing its strength. The model predicts a less strong relation between
size and growth volatility. Specifically, we notice that the model predicts less
volatile growth rates for small firms (log(s) < 6) and more volatile growth
rates for big firms (log(s) > 12). In other words, the model does not capture
the full heterogeneity of the data. The observed mismatch could be related
to the choice of a homogeneous value for the model parameter k. Since this
parameter controls the strength of the fluctuations in the outflows, the choice
of a heterogeneous k could produce more diverse growth volatility. The testing
of this hypothesis is left to future studies.

As the last step in our validation procedure, we analyze the relationship
between the volatility of growth rates and the firm’s position in the network. In
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Figure 7.5: Growth rate of firms as a function of their tier in empirical data (blue
dots) and synthetic data (red dots). The error bar in each box indicates the standard
deviation of the sample representing the growth rate volatility of each tier.

particular, we consider the tier the firm belongs to. As expressed by Eq. (3.1),
tier is measured as the length of the shortest path connecting the manufacturer
to the distributor.

In Fig. 7.5, we use a scatter plot to show firm growth rates (y-axis) as function
of their tier (x-axis). In addition, we use box blots to highlight the spread of
the sample and mark its standard deviation o, (volatility per tier) through
the error bar. We have two side-by-side box plots: the blue color indicates
real-world data, the red color indicates the simulated data.

We find that volatility increases with the tier as indicated by the increase of
the amplitude of the error bars. Specifically, third-tier distributors exhibits an
higher spread than second-tier and first-tier distributors. In short, downstream
distributors experience more volatile growths than upstream ones. Interest-
ingly, these findings are obtained in real-world data (blue dots) and simulated
data (red dots), suggesting a good performance of the model in reproducing
the empirical feature under study.

It’s worth commenting on a few mismatches that we still observe. The model
underestimates the spread of data points at tier 3 and overestimates the spread
of data points at tier 2. As a result, the model predicts a smaller difference
in volatility of firms at tier 2 and 3, producing growth rates more uniform



7.5. Discussion 115

across samples. As mentioned above, the model does not capture the full
heterogeneity of the data. In addition, the model predicts a higher number of
level firms than is actually observed. This is actually a mismatch related to
topological growth, which we have already commented on in the Chapter 5.
In the next Section, we outline directions for future improvements.

7.5 Discussion

In summary, this Chapter extended the network growth model presented in
Chapter 5 to account for the growth of firms’ inflows and outflows. Our goal
was to delineate a few, albeit sufficient, principles to describe such process and
test their validity against real-world data.

Driven by empirical evidence, such as the log-normality of firm outflows and
the tent-shaped distribution of their growth rates, we proposed a proportionate
growth dynamic to describe the evolution of goods flows. Specifically, the
proposed dynamic comprises two main ingredients: (i) a stochastic growth
motivated by the demand stochasticity and (ii) an upstream constraint inspired
by the reasoning that a limited amount of resources is available and can be
distributed. Both ingredients generate fluctuations in the firm outflows, thus
affecting their growth.

We found that the main contribution to extreme values of the growth rates
comes from the upstream constraint. The fluctuations originating upstream
rather than downstream (i.e., from the demand) may produce a high jump
in firm growth. Using the ARCOS dataset, we tested the predictive quality of
the model against several features of an empirical distribution system. These
include the distribution of firm growth rates, their volatility, and their relation
with firm size and firm tier. The validation revealed that the model reproduces
the analyzed features. However, it has two main limitations.

First, we had to reject the hypothesis of similarity between the empirical distri-
bution of growth rates and the one obtained from the simulations. We argued
that this mismatch originated on the left tails of the distribution, i.e., on the
negative values of the growth rates. The model predicts less extreme negat-
ive values than the ones observed. Indeed, we explained that the model only
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accounts for the entry process of firms and links. It does not account for the
opposite process, namely the exit of the firms or the link deletions. For time
constraints, we leave this investigation to future studies.

Second, our analysis of the volatility of growth rates revealed that the model
underestimates the differences between firms characterized by different sizes
and positions in the network. We pointed out that this mismatch could be due
to a (too) simplistic choice of the model parameter k and could be improved by
incorporating further heterogeneity. For instance, a non-symmetric character
of k could be considered, producing more substantial fluctuations in case of
shortages compared to the surplus phase. Future studies could consider the
above research directions to advance our understanding of business growth.
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Cascade dynamics and
network responses

“Everything should be made as simple as possible, but not simpler.”
A. FEinstein
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Chapter 8

Upstream and downstream
shock propagation

Summary

This Chapter explores the cascade effects produced by localized supply-
side shocks in distribution networks. We propose a cascade model that
considers a bidirectional proportion of the shock, with firms rationing
their shipment downstream and increasing orders upstream. Using the
empirical distribution network of opioids as a test case, the results high-
light the nontrivial dependencies among opioid producers due to up-
stream propagation. Under the assumption of perfect substitution, these
dependencies can help mitigate supply shortages. However, in the long
run, indirect losses occur due to faster depletion of other producers’ in-
ventories, adding to the direct losses.

This Chapter has been written specifically for this thesis. AA contributed to the de-
velopment of the research question. AA designed the model principles, wrote the code and
interpreted the results.
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8.1 Introduction

This Chapter investigates the amplification of local disruptions in supply net-
works. The term disruption usually refers to an unexpected event, or shock,
that interrupts the normal flow of goods (Craighead et al., 2007). These shocks
may have various origins, including, for instance, natural disasters (e.g., hur-
ricanes, earthquakes, floods), socioeconomic factors, labour issues, or terrorist
attacks (Bode and Wagner, 2015; Li and Zobel, 2020). An initial shock may
directly damage only a few firms in a supply network. Yet, it may have ripple
effects and indirectly damage several other firms (Craighead et al., 2007; Zhao
et al., 2010). In other words, the shock’s impact can be amplified due to
the interconnectedness of the economic activities in the network (Carvalho
et al., 2021). Various terminologies have been used in the academic literat-
ure to identify this amplification effect: disruption propagation (Scheibe and
Blackhurst, 2018); ripple effect (Dolgui et al., 2018); risk diffusion (Basole and
Bellamy, 2014); and cascading failures (Hearnshaw and Wilson, 2013). In the
following, we use the term “cascade”.

Recently, cascades have gained attention from academics and practitioners in
the supply chain domain. A series of real events has shown that (even small)
localized shocks can have devastating consequences also for firms not directly
affected by the shock, e.g., lower revenues, delivery delays, loss of market
share and reputation (Craighead et al., 2007; Dolgui et al., 2018; Scheibe and
Blackhurst, 2018).

Examples are the earthquake in Japan in 2011 and the hurricane Katrina
in 2005, which disrupted the performance of several supply networks causing
significant economic losses (Acemoglu et al., 2015; Jabbarzadeh et al., 2016).
Besides disruptions due to natural hazards, accidents related to single firms
can be mentioned. For example, in 2000, a fire accident hit one supplier of
the telecommunications company Ericsson. The local accident brought about
400 million dollars in loss to the company as it could not rely on alternative
suppliers (Latour, 2001). A similar situation occurred at Toyota when a fire hit
its brake valve supplier in 1997. This caused a two-week shutdown of several
Toyota plants and a loss of 195 million dollars (Tomlin, 2006).
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The recent COVID-19 pandemic adds to a long list of events that have strained
several supply networks over the past two decades, highlighting their fragility.
Above all, the pandemic has shown that disruptions harm not only companies
but also people directly (Diem et al., 2022). Many nations suffered shortages of
primary supplies (e.g., food and medical equipment) due to quarantine policies,
which profoundly affected the well-being of millions of people.

While the vulnerability of supply networks to cascade effects is widely re-
cognized, there remains a lack of investigation into the actual propagation
dynamics within real-world systems. Moreover, existing studies have focused
primarily on small-scale networks involving a single focal firm.

This Chapter addresses this gap by providing a model for the inter-firm
propagation of supply shocks in large-scale distribution systems. Our object-
ive is to discuss this process in a general context, drawing insights from the
specific case study of the opioid distribution system. Through this analysis,
we aim to evaluate and discuss the dependencies among firms that arise from
cascade effects and to assess the possible indirect losses generated.

We describe the model principles and introduce the mathematical formalism
in Section 8.2. Next, we use a stress-test approach and quantify the cascading
impact for the Oxycodone distribution network in Section 8.3. In Section 8.4,
we conclude the Chapter by outlining the limitations of the model and direc-
tions for possible improvements.

8.2 Modeling cascades in distribution systems

8.2.1 Related works

Cascade processes have been widely studied in the field of network science with
applications to various economic networks, including financial networks (El-
liott et al., 2014), food trade networks (Burkholz and Schweitzer, 2019), and
international trade networks (Kali and Reyes, 2010). After the 2008 financial
crisis, scholars began to develop cascade models to explain how systemic fail-
ure can be generated by even small, localized shocks (Battiston et al., 2012a,b;
Lorenz et al., 2009; Roukny et al., 2013). These models usually consider only
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one propagation direction. Instead, in supply networks, shocks may propagate
downstream, from suppliers to consumers, and upstream, from consumers to
suppliers (Diem et al., 2022; Inoue and Todo, 2019). The downstream propaga-
tion would affect the shipments’ dynamic, whereas the upstream propagation
would affect the orders’ dynamic. The two dynamics, in principle, follow
different rules. Therefore, the previously proposed models are not directly
applicable.

General equilibrium models have been developed to study shock propagation
in production networks (Carvalho et al., 2021). They describe how the output
of one production unit affects the output of another production unit in the
network. Since firms in distribution networks only ship finished goods, these
models do not suit our case. In addition, they neglect inventories. Inventories
are an essential tool for distributors to mitigate shortages.

A common approach in the supply chain field to model shock propagation is
the system thinking/dynamics approach (Ghadge et al., 2022; Ivanov, 2017;
Sterman, 2010). This approach considers a limited number of “representative”
agents, such as a single manufacturer, first-tier and second-tier suppliers, a
distribution center, and a retailer. Then, feedback effects between these agents
are evaluated using diagramming tools, such as causal loop diagrams and stock-
flow diagrams (Dolgui et al., 2018). In contrast, agent-based models (ABM)
emphasize interactions between agents as well as their ethereogenity (Ding
et al., 2018). As we want to capture the impact of the observed network
structure (how firms are connected via supply links) on the cascade dynamics,
we employ an ABM approach. This is described in the next Section.

8.2.2 Model: underlying principles

We consider the situation in which a shocked manufacturer reduces its ship-
ments to its distributors, who, in case of insufficient inventories, must shrink
their shipments too. This triggers a cascade of supply shortages which may
lead to unmet consumer demand. While this cascade is happening from up-
stream to downstream, a second dynamic happens from downstream to up-
stream: distributors with insufficient inventories increase their orders to manu-
facturers. Receiving more orders, these manufacturers may bring to exhaustion
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their inventories and need to shrink their shippings too, thus triggering another
cascade moving from upstream to downstream. A schematic representation of
the proposed process is drawn in Fig. 8.1.

To model cascading effects in distribution systems and account for the role
of inventories, we draw on previous ABM models that incorporate inventory
dynamics (Hallegatte, 2014). The model proposed by Hallegatte has been
used to analyze the cascade effect and the economic impact of major shocks
resulting from, e.g., the Japanese earthquake (Inoue and Todo, 2019) and the
hurricane Katrina (Hallegatte, 2008). However, unlike the work presented in
(Hallegatte, 2008; Inoue and Todo, 2019), we do not consider the production
side of the supply network, but only the distribution side. This results in
significant differences in cascading dynamics.
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Figure 8.1: Schematic representation of the upstream and downstream shock
propagation in a distribution network. The bars on the side of the nodes represent
indicative stock levels. Entirely blue bars represent inventories that are at their tar-
get level. Blue-red bars represent inventories that are affected by shortages. Entirely
red bars represent empty inventors. Firms experiencing shortages (i.e., affected by
the shock) are colored in red, as well as the links through which the shock propag-
ates. The illustrative example considers two manufacturers, A and B, and three
distributors, C, D and E, in the network. At a given time t*, a shock hits the
inventory of manufacturer A. A supply shortage propagates downstream (red line),
affecting distributor C. As a result, distributor C' increases its orders and triggers
an upstream propagation (red line). This upstream propagation leads the inventory
of B to a faster depletion, thus generating a second cascade that moves downstream
to consumers.
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While firms in production networks receive intermediate goods as inputs, firms
in distribution networks only receive finished goods. Therefore, in production
networks, firms experiencing a shortage tend to reduce orders to their suppliers,
as they do not require additional supplies if their production is interrupted or
slowed down. In distribution networks, however, firms facing a shortage tend
to increase orders to their suppliers (manufacturers and distributors upstream)
to replenish their stocks. As a result, our work extends previous studies by
incorporating an upstream propagation mechanism specifically suited to dis-
tribution systems.

8.2.3 Model: system dynamics

Consider a distribution system composed of N firms, i.e., manufacturers and
distributors. We represent it as a network, where nodes indicate firms connec-
ted through directed links used to ship goods. The direction of the links follows
the direction of the shipments. Each link has a weight indicating the volume
shipped at a given time t. The weighted links are represented as elements of
the shipping matrix W. The shipping vector w captures shipments from firms
to consumers. For instance, the element W;; indicates the amount shipped by
firm ¢ to firm j, whereas the element w; indicates the amount shipped by firm
1 to consumers.

Every firm ¢ holds an inventory or stock, s;, where goods can be stored. This
is updated according to its total ship-out, W, and ship-in, W™, as below:

si(t) =si(t— 1)+ W™t — 1) — [WP" (t — 1) + wi(t — 1)] (8.1)

Distributors use inventories to store goods received from manufacturers or up-
stream distributors, whereas manufacturers use inventories to store their own
production. We assume that the production phase takes place on a much lar-
ger time-scale than the distribution phase. Specifically, we consider a daily
time-scale for the distribution dynamics and an annual time-scale for the pro-
duction dynamics. As a result, over the one-year analysis period, production
is fixed. Instead, shipments and inventories are updated at each time of the
simulation.
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Following the principles outlined in the ARIO-inventory model, firms place
orders to (i) meet demand and (ii) avoid empty inventories by keeping them
at a constant target level, s, or safety buffer. Safety buffers are used to better
manage supply shortages and sudden fluctuations in demand and reduce lead
times (products are already in stock).

Translating the above principles into an equation, we describe the order placed
by firm i as:

0 (t) = di (t—1) + % [s7 — si(t)] (8.2)

where d; is the demand faced by ¢ and s; is its inventory level. The first
term represents the orders needed to meet the received demand, whereas the
second represents the orders needed to make the inventory converge towards its
target level. The parameter 7 indicates how quickly the firm wants to restore
its inventories. To keep our model simple, we consider 7 homogenous across
firms and constant over time. In our study, we set it equal to one working
week, i.e., 7 = 5 days.

The total demand d; in Eq. (8.2) takes into account two terms: demand re-
ceived from (i) consumers and (ii) demand from other firms. Following Hal-
legatte (2014), we model the two terms separately. We define ¢ as the vector
capturing consumer demand and O as the order matrix capturing orders placed
by other firms. For example, the element c¢; indicates the demand that firm ¢
receives from consumers, while the element O;; indicates the demand that firm
1 receives from firm j. In other words, Oj; indicates the order placed by firm
j towards firm i. Hence, the total demand faced by 7 is equal to the following:

dl(t) = Z Oji(t) +c; (83)

Note that ¢; has no time dependence. We assume constant daily demand
to avoid adding further complexity to the model. Future studies may explore
more realistic settings for demand dynamics. The elements of the order matrix,
O, in Eq. (8.3) are given as:

0i5(t) = 0i(1) T3 (8.4)
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where the transition matrix 7' captures firms’ preferences towards their neigh-
bors. Specifically, the element T;; expresses the proportion of goods ¢ orders
to j. More explicitly, it is the number of units ¢ orders from j normalized by
the total number of units 7 orders to all its upstream neighbors.

In the absence of shortages, firms meet their demand and ship the requested
quantity. Therefore, at each time ¢, shipments are equal to the orders placed
at the previous time, that is:

W(t)=0T(t—1) (8.5)

where O is the transpose of the order matrix O. Similarly, at each time ¢,
shipments to consumers are equal to the orders placed by them, that is:

wt)=ct—1)=c (8.6)

where w and c¢ are two vectors whose length is equal to the number of firms in
the network.

8.2.4 Model: system response to shocks

Supply-side shock. Suppose, now, that an external shock hits the distri-
bution network at day ¢*, and the manufacturer i is directly damaged. As
discussed in the Introduction, the types of shocks affecting real-world supply
networks are manifold, including natural hazards, human-made attacks, or in-
ternal labor issues. Modeling the direct damage of each type of shock can be
challenging and goes beyond this thesis’s scope. Since we are interested in the
indirect damages due to the cascade, we make a simple assumption about the
size of the direct shock. Specifically, we simulate a o percentage reduction in
the manufacturer’s inventory as:

sit=t") = (1 - 0)si(t — 1) (8.7)

where o is the size of the shock and s; denotes the manufacturer’s invent-
ory level (used to store its production). Note that no recovery of production
is allowed. We argue that this would require a longer period than the one
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considered. However, the generality of the proposed model allows for improve-
ments in this direction if necessary. Since production cannot be increased, the
shock triggers a supply shortage that propagates downstream and, in turn,
upstream through the network.

Downstream propagation: rationing scheme. When shortages occur, stocks
may not be sufficient to meet demand, and firms ship what is left in their
inventories. In other words, they try to meet demand as much as possible.
Thus, the actual total ship-out of a firm ¢, at any given time, is limited by:

Q2°(t) = min{s; (t),d; (t — 1)} (8.8)

where the term Q2" includes shipments directed towards firms and consumers,
ie.,

Q0 () = WP (1) 4+ (1) (59)

When stocks are lower than demand, firms ration their shipments. Rationing
is done in proportion to orders received. The rationing scheme first involves
the division of shipments between consumers and firms as:

; >_; 05i(t — 1)
?Ct — Qact C; . pllt,act _ quct J 1
S =W gy W =TT (810
and then between firms, as:
Wiy (1) = weneeet () el — 1) (8.11)

> 05t —1)

Note that the case Q2 (t) = d;(t—1) and W "% () = >, Oji(t—1) represents
the situation when no shortage is observed. In this case, Eq (8.11) reduces to
Eq. (8.5) that expresses the system dynamics in a no-shock scenario.

Upstream propagation: increase of orders. When shortages occur, firms
with insufficient inventories ration their shipping downstream and increase

orders upstream. Firms increase orders according to the dynamics expressed
by Eq. (8.2) and Eq. (8.4).
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Assuming that firms keep their original preferences towards their neighbors,
the transition matrix in Eq. (8.2) is given by:
__04(0)
T, = 04,00 (8.12)
This assumption is valid as long as one wants to evaluate the “short-term” ef-
fects of the cascade, that is, within a given year. In the long run, the network
can adapt to cope with the shortage by reconfiguring itself. Firms may estab-
lish new relationships or modify their preferences with existing partners. Ad-
ditionally, manufacturers can invest in new production to recover from shocks.
As our model focuses on an annual time-frame, it does not consider the above
mentioned aspects. The only immediate response mechanism for firms is to
request substitute products from their source partners. The study of other
possible mechanisms is left for future research.

8.2.5 Measuring the cascade impact

In our analysis, we evaluate the impact of the cascade by considering two as-
pects. On the one hand, we assess the effects of the cascade on manufacturers
not directly harmed by the shock. On the other hand, we assess the total sup-
ply that can not be distributed, producing unmet demand among consumers.
Besides this, one might be interested in assessing the costs that shortages im-
pose on distributors. As they adjust operations to replenish inventories and
mitigate shortages, they may face costs due to business changes. We are not
interested in this aspect in the current Chapter. We will propose a measure
for this in Chapter 9.

Because of the upstream propagation of the cascade, manufacturers not dir-
ectly affected by the shock may also be harmed. In particular, they may exper-
ience an increase in orders from distributors, which leads to a faster depletion
of their inventories. This, in turn, can cause management issues as production
schedules need to be adjusted. To track this indirect impact, at each step of
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the simulation, we measure the reduction in manufacturers’ inventories, 6(t),
in a shock scenario compared to a no-shock one, i.e. :

8;(t) = 5(t) — 5:(t) (8.13)

where the subscript ¢ indicates the manufacturer not directly shocked, s; is its
inventory level in a shock scenario, and s; is its inventory level in a no-shock
one.

In addition, we estimate the “indirect” supply loss produced by the cascade.
By indirect loss, we mean the total amount of supply that could not be dis-
tributed because of the indirect damage. Thus, we are not interested in the
loss generated directly by the shock. Instead, we are interested in the loss
resulting from the shock propagation. To this end, we define the change in
supply, A, as the difference between the supply distributed when the system
suffers the shock and when it does not, i.e.,:

A= Y (W -wee) (8.14)
ie{ml,rtn,... }
i#£7
where the sum runs over all the manufacturers in the network, except for the
one directly shocked, i.

Positive A values indicate that the supply shortage has been compensated
through substitution. Manufacturers ship more than they used to in a no-
shock scenario because the goods they produce are used to offset the shortage.
On the other hand, negative A values signal that the upstream propagation
has triggered additional shortages. Manufacturers ship less than they used to
in a no-shock scenario because they run out of stock sooner. In the latter case,
the indirect supply loss arises, which adds to the direct one.

Thus, we determine the indirect supply loss,\, as the total negative supply

variation observed, i.e.:

t

OB INGIFLISNG) (8.15)

t/=t*
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Figure 8.2: Inventory dynamics for manufacturer A, distributor C, and manufacturer
B. The network and the shock scenario are explained in Fig. 8.1. The shock hits the
manufacturer A, propagates downstream, affecting the distributor C, and upstream,
affecting the manufacturer B. In the plots on the right-hand side, the blue lines
indicate the inventory dynamic in a shock scenario and the black lines in a no-shock
scenario. The dashed red lines mark when the manufacturer A goes into stock-out
in the shock scenario.

where O [-] denotes the Heaviside function, and ¢ is the time of the simulation.

8.3 Results

8.3.1 Illustrative example for system dynamics

Before discussing the real-world application, we first illustrate our approach
using a small synthetic network. We use the network depicted in Fig. 8.1 as an
example case and run the model in the absence and the presence of the shock.

For simplicity, we consider target stocks and manufacturers’ productions to be
homogenous across distributors and manufacturers, respectively. Specifically,
we set 54(0) = sp(0) = 50 units and s7 =5 for the three distributors. Then,
consumers order one unit at a constant rate, and the distributor C' orders
from the two manufacturers in equal proportions. Fig. 8.2 shows the inventory
dynamics in the absence and presence of the shock.
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As governed by Eq. (8.2), distributors increase their orders to meet the demand
and replenish their inventories. The replenishment speed is controlled by the
parameter 7 and represented by the positive slope of the curve in Fig. 8.2. The
smaller the 7, the faster the inventories get back to their target levels and the
steeper the slope is. In the absence of external shocks, distributors replenish
their inventories already in a few time steps, as 7 = 5. Thus, the inventories
are stable to their target values, and the system reaches its “equilibrium”: the
amount shipped equals the amount demanded.

Let us now consider the following shock scenario. At the time ¢t* = 6, a shock
hits the manufacturer A, leading to a 90% reduction of its stocks. This pro-
duces a supply shortage downstream, affecting distributor C and further down
distributors D and F, and finally, consumers. Thus, distributor C increases its
orders to manufacturer B, triggering the upstream propagation of the shock.
As depicted in Fig. 8.2, manufacturer B is harmed as it depletes its stock faster
than in a no-shock scenario.

Hence, the external shock that directly affects manufacturer A also affects
manufacturer B indirectly due to the upstream propagation. In other words,
the two manufacturers are interdependent due to the cascade effects.

8.3.2 Firms’ dependencies under cascade effects

We now turn our attention to a real-world application. We use the nationwide
distribution network of opioids as a test-bed for our analysis*. We adopt a
stress-test approach: we start from an observed network and model its distor-
tion due to a simulated shock.

Within this approach, we want to start with a realistic representation of the
empirical system. Therefore, we incorporate as much empirical information
as possible into the model. These include (i) the supply dependencies among
distributors or manufacturers in the network; (ii) the consumer demand; (iii)
the distributors’ target stocks; and the (iv) annual productions.

*The drugs that contain Oxycodone as a basic opioid are used for this analysis.
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First, we reconstruct the empirical distribution network following the proced-
ure described in Subsection 2.2.1. In this network, nodes represent firms, and
links represent supply relations observed in a given year.

Next, we initialize the consumer demand, expressed by the vector ¢, to its
empirical value. Note that we do not have data about demand. We only have
data about shipments. Therefore, we reconstruct the daily demand from the
observed daily shipments. Specifically, the demand is obtained by averaging
daily shipments over the year. In other words, it is assumed that firms have
met demand in a given year and that consumers have received the quant-
ity ordered. The same reasoning applies to the orders placed by the firms.
Therefore, we initialize the elements in the order matrix to the corresponding
empirical values. Then, from Eq. (8.4), we reconstruct the transition matrix,
T, expressing the distributors’ preferences towards their neighbors.

Finally, we set the target stocks to the empirical buffers recorded at the end
of the year. This holds under the assumption that distributors are left with
the stock buffers they planned®. Inventories are then initialized to their target
levels. Then, we proxy manufacturers’ production as the annual total ship-out.

From the data, we find 56 entities registered as manufacturers. However, since
most of them are small laboratories producing very few product units, we
restrict our analysis to the top 20 manufacturers. In Table 8.1, we report their
name, geographical location, and total production for the year 2008.

We run multiple independent computer simulations to evaluate how an ex-
ternal shock that affects a single manufacturer can indirectly harm other
manufacturers in the network. In each simulation, a single manufacturer is
shocked. Then, the shock propagates through the network according to the
rules discussed in Subsection 8.2.4. We evaluate the shock’s impact on the
other manufacturers (not directly shocked) using the § indicator defined by
Eq. (8.13).

We run a total of 20 independent simulations, one for each shock-affected man-
ufacturer. The severity of the shock is 0=0.99, representing a 99% reduction in

TThere are cases where distributors ship more than they receive in a year. This suggests
that older stocks, i.e., those from previous years, have been used. It also suggests little need
for these distributors to replenish their stocks. Therefore, without further information, we
set a minimum stock target for these distributors.
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Name Short Production City dea-num
MALLINCKRODT MA 16,719,342 HOBART RMO0231821
PURDUE PHARM. PU 5,643,717 WILSON RP0257938
NOVARTIS NO 3,888,791 LINCOLN PD0038667
WATSON LAB. WA 3,697,629 CARMEL RD0118150
ACTAVIS AC 1,179,084 TOTOWA RA0306490
BOEHRINGER. BO 929,319 COLUMBUS RRO112514
SHARP CORP. SH 529,071 ALLENTOWN RS0308317
DSM PHARM. DS 323,072 GREENVILLE RC0240692
VINTAGE PHARM. VI 209,722 HUNTSVILLE RV0359299
BARR LAB. BA 138,079 FOREST RB0234005
GENERICS GE 132,245 CHARLOTTE RG0360115
THE PF LAB. TH 122,349 TOTOWA PT0164587
METRICS ME 113,839 GREENVILLE RMO0282638
RX OF MCKESSON RX 102,618 MEMPHIS RR0276837
AMNEAL PHARM. AM 56,261 BROOKHAVEN  RA0370712
INTERPHARM IN 45,845 BROOKHAVEN  RI0347179
GENUS LIF. GE 17,972 ALLENTOWN RL0287385
MIKART MI 12,213 ATLANTA RM0197497
IMPAX LAB. IM 12,015 PHILADELPHIA RI0259300
JANSSEN JA 10,384 GURABO RJ0255453

Table 8.1: Name, production (product units), city, and dea-number of the top 20
opioid (Oxycodone) producers in 2008.

total production. We stop each simulation after 360-time steps, corresponding
roughly to one year of analysis. It is not informative to study the system later,
because a supply deficit occurs anyhow as annual stocks deplete.

In Fig. 8.3, we show the results from the simulations using chord diagrams.
In these diagrams a colored fragment, or “sector”, placed on the outer part
of the circular layout, represents a manufacturer. Specifically, it represents
the manufacturer that is shocked during the simulation. There are, in total,
20 colored sectors, one per manufacturer (i.e., one per simulation). An arc
between two sectors represents the cascade impact transmitted by a shocked
manufacturer, j, to a second manufacturer, ¢, in the network. The direction of
the arc follows the direction of the cascade: from the shocked manufacturer to
the manufacturer indirectly impacted. The color of the arc matches the color
assigned to the shocked manufacturer. The arc width is proportional to the



8.3. Results 133

cascade impact ;. The numerical values of the cascade impact are reported
on the upper side of each sector.

Note that the diagrams do not display the direct impact of the shock. They
only show the indirect one. The three diagrams display the results obtained
at three different time steps of the simulations: 7" = 90, i.e., roughly 3 months
after the shock; T = 150, i.e., roughly 5 months after the shock; and 7" = 240,
i.e.,roughly 8 months after the shock.

Note also that the 20 manufacturers are not directly connected in the network
via supply links, i.e., W;; =0 Vi,j € {m1,mq,...}. Therefore the dependen-
cies shown in Fig. 8.3 are obtainable only as a result of the model simulations.

Figure 8.3: Chord diagrams showing the dependencies between opioid producers un-
der cascading supply shocks. The three diagrams display the results obtained at
three different time steps of the simulations, i.e., T'= 90, T' = 150, T' = 240.

First we see that, a few manufacturers, when shocked, lead to large cascades.
The arcs departing from manufacturer MA (in orange), from manufacturer
PU (in blue), and from manufacturer NO (in yellow) are much wider than all
the others. From Table 8.1, we see that the three manufacturers dominate the
opioid market, as their annual production is much greater than that of the
others (over 3 million units). Simply put: the biggest producers trigger the
largest cascades.
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Further, we notice that the diagrams appear rather sparse; there are few pre-
dominant connections between pairs of manufacturers. This observation sug-
gests that cascades originating at one manufacturer are mainly transmitted
to a few others. In other words, some manufacturers are much more closely
interdependent than others under cascade effects. In fact, the cascade propag-
ates in a non-linear manner. In our model, the propagation dynamics depend
on two key elements: the network topology and the preferences of distributors
toward their neighbors, as expressed by Eq. (8.4).

Comparing the three diagrams, we observe a few changes in the cascade pattern
over time. For example, the cascade triggered by the shock at the manufacturer
NO (yellow arc) is mainly transmitted to manufacturer DS, at time 7' = 90. At
later times, this pattern changes, as MA is also quite exposed to the cascade.
Similarly, at time T" = 90, both manufacturers SH and TH are exposed to
the shock affecting PU (blue arc). However, at time T = 150, SH became
considerably more exposed than TH. In short, we observe a few variations
of the cascade patterns depending on when the cascade is evaluated. These
variations can be traced back to the stock availability of the manufacturers.
If manufacturers run out of stock, distributors increase orders to alternative
ones, thus redirecting the cascade.

As a final, albeit important, remark we note that the interpretation of cascade
depends strictly on the reader’s perspective. On the one hand, cascades can
harm other firms in the network, not directly damaged by the shock. They
expose other manufacturers to the shock as their inventories are put under
stress and experience a faster depletion. This, in turn, can generate manage-
ment issues because the production schedules need to be adjusted. In the long
run, stock-outs can occur, resulting in multiple disadvantages, including loss
of revenue or customer dissatisfaction. On the other hand, from a systemic
perspective, dependencies among different producers can be used to leverage
additional resources and mitigate supply shortages to consumers. Thus, the
revealed dependencies can be good or bad depending on the point of view.
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Figure 8.4: Evolution of the variation in supply (black solid line) during the sim-
ulation. On the left y-axis we show its absolute value and on the right y-axis we
show its value normalized to the average direct loss. The blue-filled area indicates
the quantity shipped to offset the shortage. The red-filled area indicates the supply
loss due to the cascade.

8.3.3 Indirect loss estimation

In the Subsection above, we have revealed strong dependencies between opioid
producers due to the cascade effects. Here we address the questions: to what
extent do these dependencies help mitigate supply shortages? And to what
extent can they trigger further losses?

To address the question, we simulate a shock (magnitude o = 0.99) hitting the
inventory of the top producer in the network and run the cascade model prosed
above. During the simulation we monitor the supply variation, measured ac-
cording to Eq. (8.14). In Fig. 8.4 we show its evolution (black solid line). We
report its absolute value (left y-axis) and the value normalized to the average
direct loss (right y-axis), i.e., the loss resulting from the 99% reduction in the
top producer’s stock.

We see that during the first part of the simulation, A is positive. This means
that the direct loss is partially mitigated (about 25%) through supply substi-
tution. Manufacturers who are not directly harmed provide substitute goods
to compensate for the shortage. The total amount of substituted goods is
represented by the blue-filled area in Fig. 8.4. Note that not all manufac-
turers contribute to substitutions, but only those connected to the shocked
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manufacturer through the dependencies highlighted by the chord diagrams in
Fig. 8.3.

Interestingly, A goes from positive to negative at a certain point. Some manu-
facturers go into stock-out faster than in a no-shock situation. This causes an
indirect supply loss to consumers. The total indirect loss, A(t=T) in Eq. (8.15),
computed at the end of the simulation®, is represented by the red-filled area
in Fig. 8.4. We see that the indirect loss became comparable to the direct
one, as indicated by the percentage values on the right y-axis. Therefore, if no
other mitigation strategies, e.g., increased production, are adopted during the
period under consideration, indirect losses are generated, adding to the direct

ones.

8.4 Discussion

In summary, our goal was to evaluate the cascade effects produced by localized
shocks in real-world distribution networks. To this aim, we used the nationwide
opioid distribution network as a testbed for our analysis. We do not observe
big supply shocks in this data. Small shocks, instead, are challenging to be
detected due to a lack of information. We only have access to the empirical
shipments, not to the orders placed. Hence, small reductions in supply may
be associated with small supply shortages or small negative fluctuations in
demand. Distinguishing the two causes is a data challenge beyond this thesis’s
scope. In fact, we are interested in those shocks that are large enough to
produce a significant effect on the entire network, not small fluctuations in the
flow.

In the absence of empirical evidence, we proposed a cascade model to de-
scribe shock propagation in distribution networks. Hence, the magnitude of
the shock, its location, and the time of its occurrence are all part of our
modeling assumptions. Building on previous studies (Hallegatte, 2014; Inoue
and Todo, 2019), we considered a bidirectional propagation of the shock: an
upstream propagation that affects the shipping’s dynamic and a downstream
propagation that affects the orders’ dynamic.

T = marks the final time



8.4. Discussion 137

Thus, we use the empirical network as starting point and model its distortion
due to a simulated shock. We assumed that the observed supply relations
are held fixed during the cascade. Consequently, we considered the change in
orders placed and shipments as the only response of the network to the shock.
A possible reconfiguration of the existing links is not allowed.

Our results revealed nontrivial dependencies among producers in the empirical
network due to cascade effects. Under the assumption of perfect substitution,
these dependencies can be leveraged to mitigate supply shortages. However,
in the long run, indirect losses are generated due to the faster depletion of
the inventories of other producers. From a certain point in time, the indirect
losses start adding up to the direct ones. When planning redundancies in the
system, managers and policymakers should consider not only the individual
exposure of firms to possible shocks but also the cascade effects they produce.
Our approach can help to understand where, given the network topology, more
resources could be allocated to mitigate these effects.

Nevertheless, our approach is limited by some critical assumptions we made.
First, our model runs on a daily time-scale where the demand is constant.
Demand seasonality effects may speed up or slow down the cascade and un-
derestimate or overestimate the indirect loss computed at a given time. Further
studies could incorporate more realistic settings for the demand distribution
into the model.

Second, price does not play any role in the proposed model. However, supply
and demand are linked through price. Supply shortages may increase the price
of the goods, reducing their demand. While this is true for most goods on the
market, we argue that price may play a minor role in the case of pharmaceutical
products. In this case, the demand elasticity is small since the demand does not
change much as the price change, because drugs are essential goods. Further,
the prices of opioid drugs are under the control of the government and its
institutions, e.g., the DEA.

Third, the proposed model is valid for evaluating short-term effects. The
network response may differ for long-term effects, i.e., longer than one year).
New business contracts may be formed, and new supply links created. As a
result, a different network topology can be observed. Since we limited our
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analysis to an annual time-window, we believe that this assumption is still
reasonable.

Finally, our model works under the assumption of perfect substitution. Sub-
stitution of goods supplied by different manufacturers implies the willingness
of (i) distributors to change their usual business; (ii) and consumers to accept
substitute products, which in some cases, especially for pharmaceuticals, may
not be an option. More information needs to be incorporated into the model
to relax this assumption. In the next Chapter we will discuss how to address
this problem.



Chapter 9

Flexibility: a pillar of supply
chain resilience

Summary

This Chapter examines how supply substitution can serve as a response
mechanism to supply-side shocks. We refer to the system’s capacity to
adapt to shocks via supply substitution as “flexibility,” which we formal-
ize as a system parameter using higher-order network models. We show
that flexibility can indeed alleviate shortages by reducing the demand de-
ficit. However, it also introduces costs due to flow readjustments after
substitution. As a result of this trade-off, we establish an efficient frontier
that policymakers can use to select the optimal flexibility value, balancing
deficit reduction and system costs.

AA wrote this Chapter specifically for this thesis. It is based on the research findings
presented in A. Amico, L. Verginer, G. Casiraghi, G. Vaccario, F. Schweitzer, “Adapting
to Disruptions: Flexibility as a Pillar of Supply Chain Resilience”, arXiv:2304.05290. AA
contributed to designing the research question, to developing the model, performing the
simulations, and interpreting the results.

139
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9.1 Introduction

In the previous Chapter, we presented a cascade model to describe how supply
shortages may propagate in large-scale distribution networks. Perfect supply
substitution was a central assumption of the proposed model. Specifically,
we assumed that (i) distributors were willing to reroute packages, and (ii)
consumers were willing to accept goods produced by alternative suppliers (i.e.,
manufacturers). In a more realistic setting, this assumption may not hold.
Distributors are interested in making a few changes to their operations to
keep costs low; and consumers have preferences towards their suppliers that
they may maintain during shortages. Also, in some application cases perfect
substitution is limited by suitable conditions, e.g., the absence of allergens
in substitute goods compared to usual ones. Drugs and food fall into this
category.

We define flexibility as the degree of supply substitution the distribution sys-
tem is willing, and capable, to accept during supply shortages. In a fully
flexible system, firms respond to shortages by rerouting substitutable goods.
In a non-flexible one, firms keep their business as usual.

This Chapter investigates the role of flexibility in mitigating disruptions and
enhancing network resilience. Generally, resilience is defined as a system’s abil-
ity to withstand and recover from shocks (Hollnagel et al., 2006; Schweitzer,
2022b; Schweitzer et al., 2021). It combines two fundamental aspects: ro-
bustness against shocks themselves and adaptivity to overcome the states that
result from a shock (Helfgott, 2018).

Proactive and reactive mitigation strategies improve supply network resili-
ence by focusing on robustness and adaptivity, respectively (Aldrighetti et al.,
2021). While proactive approaches build robustness by planning redundancies
in the system (e.g., increasing inventory buffers, devising just-in-case produc-
tion capacity) before the event occurs; reactive approaches aim at adjusting the
operational processes when the shock hits the system. Our study contributes
to the understanding of the latter approaches.

We view flexibility as the primary contributor to the adaptivity of a distri-
bution network. Flexibility represents the ability of the system to adapt to
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the shock by leveraging alternative (substitutable) resources already in the
system. Thus, in the short run, manufacturers are not required to ramp up

production, nor are distributors required to create new distribution channels.

To model flexibility we extend the method presented in the previous Chapter.
Leveraging the higher-order network representation, we model the readjust-
ment of flows after substitution. We formalize system flexibility as a model
parameter, ¢, controlling for the degree of flow readjustment. We use the
opioid distribution network as test bed for our analysis. Tuning ¢, we invest-
igate and discuss the impact of flexibility: (i) on the consumers, measuring
the demand deficit and (ii) on the distribution network, quantifying changes
to its usual operations. We conclude the Chapter with an outlook for future
works.

9.2 Modeling flexibility through higher-order networks

9.2.1 Capturing the empirical flow

Flexibility represents the system’s ability to leverage alternative resources by
readjusting the usual flow observed in day-to-day business operations. In a
data-driven approach, the usual flow corresponds to the empirical flow ob-
served in the system under study (assuming no empirical shock). To model
the empirical flow, we move from a standard network representation to a
higher-order network representation (Scholtes et al., 2016). Let us explain
the difference between the two representations with an illustrative example.

Suppose we have a distribution network comprising five firms: two manufac-
turers, A and B, and three distributors, C', D, and E. These are connected
through direct links used to ship goods. Further, suppose that the empir-
ical flow of goods is provided in the form of trajectory data. As defined in
Chapter 4, a trajectory is a sequence of nodes traversed by goods on their way
from producers to consumers, via distributors. Specifically, we observe two
trajectories: (i) A - C — D; (ii) B —» C — E (Fig. 9.1).

If we now use a standard network representation of our system, four trajectories
would be possible, not two. These are: (i) A - C — D, (ii) A - C — E,
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Figure 9.1: First-order and second-order network representation of a distribution
system comprising two manufacturers, A and B, and three distributors, C, D and
E. The empirical trajectories are two and depicted in blue (left side of the picture).
These are preserved in the second-order representation. In contrast, in the first-order
representation, we obtain two more trajectories, not observed in the data. These are
depicted in red.

(ili) B — C — D, (iv) B — C — E. Based on the transitivity assumption, a
standard network representation accounts for all possible trajectories given the

network topology, thus discarding the constraints acquired from the trajectory
data (Lambiotte et al., 2019).

In contrast, higher-order network representations capture possible constraints
of the data by recording information on previous steps along the trajectories.
This is done by constructing networks where nodes represent trajectories and
links represent connections between these trajectories (Lambiotte et al., 2019;
Scholtes, 2017; Scholtes et al., 2014). Specifically, in a representation of order
k, nodes represent trajectories of length k-1.

In Fig. 9.1, we depict a second-order (k = 2) representation of the schematic
distribution network considered above. In this representation, two firms tra-
versed by an observed trajectory are aggregated in a single second-order node.
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A link between second-order nodes represents a trajectory of length two. For
example, the second-order node v; = (A4, C) is obtained aggregating A and C,
traversed by the trajectory A — C — D. The link between the second-order
nodes v; = (4,C) and vy = (C, D) represents the trajectory A — C — D.
Notice that there is no link between v; = (4,C) and vz = (C, E), as the
trajectory B — C' — FE is not observed in the data.

In short, we showed how higher-order network representations could be lever-
aged to capture empirical flows on networks in a compact form. As we learned
from Chapter 4, most trajectories in the opioid distribution network have
length two: goods move from manufacturers to retailers via warehouses (i.e.,
two tiers of distributors). Thus, we argue that a second-order representation
(k = 2) is already sufficient to capture the empirical flow of the system under
study. We leave to future works the exploration of models having k > 2.

9.2.2 Higher-order representation

Let’s consider a distribution network consisting of N firms, i.e., manufac-
turers and distributors, and a set of observed trajectories of goods P :=
{p1,p2,--.,ps}. Each trajectory is represented as a tuple, ps = (k — j — ),
indicating the sequence of firms used to ship goods, e.g., & = manufacturer,
j = first-tier distributor, and ¢ = second-tier distributor.

The first-order network representation G(!) is defined as a tuple (V(l),é’ (1)).
V(1) is the set of firms, and £ is the set of supply links connecting them.
We define wj(ll) as the shipping frequency associated to the supply link j — i,
with (j,1) € £MW | namely the number of times a shipment occurs.

The second-order network representation G(?) is defined as a tuple (V(z), & (2)).
V() is the set of second-order nodes, representing supply links between two
firms in the underlying first-order network, and £) is the set of second-order
links representing trajectories of length two belonging to the set P of the
observed trajectories. For example, the link e = (v1,v2) between two second-
order nodes v and v, i.e., v1 = (k, j) and vy = (j, 1), represents the trajectory
k — j — i of length two. We define wg?yz as the frequency associated to the
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second-order link. More explicitly, wz(;?vQ is the number of times the trajectory
is observed.

For each second-order link e, we consider a second-order link € in the opposite
direction. While the second-order link e has the direction of the shipments,
the second-order link é follows the direction of the demand, or orders*. For
instance, from the second-order link e = (v1,vs), representing the shipping
trajectory k — j — i, we obtain the second-order link € = (¥, 71 ), representing
the trajectory of the orders i — j — k. Note that also second-order nodes
have a transposed representation, i.e., from v, = (k,j) we obtain 1 = (5, k),
and from vy = (j,7) we obtain ¥s = (i,7). Assuming that, during usual
business, the number of shipments equals the number of orders, we can write
the following equivalence:

w5, = wl,, 9.1)
The same idea applies to the first-order links. For each shipping link j — i, we
consider a link in the direction of the orders, i.e., i — j, with equal frequency,
ie.,:
) = (9:2)
Finally, firms in distribution networks hold inventories, or stocks (see discus-
sion in Chapter 8) to store goods coming from various source partners. In
a second-order representation, stocks have an interesting interpretation. The
stock of a second-order node s,,, with v; = (k,j), indicates the amount of
good shipped by k and put in stock by j. In other words, it represents the
part of the stock, or sub-stock, of j used to store goods coming from supplier
k, ie., skj) = S(jk)- Note the advantage of the second-order representa-
tion: it allows for keeping track of sub-stocks held by firms in the first-order
distribution network. On the contrary, this information was discarded in a
first-order representation, where goods shipped by different source partners
were aggregated in a single stock (see Chapter 8).

*Note that the term “higher-order” does not connect with the dynamic of goods or-
ders or the demand. It is the common term for models capturing flows in complex net-
works. (Scholtes et al., 2016).
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9.2.3 Formalizing flexibility

Second-order transition matrices. When a shock hits a distribution net-
work, and supply substitution is implemented, firms and consumers adapt
their orders towards their suppliers. To model how orders are placed, we use
the second-order transition matrix T2 (Scholtes et al., 2014).

We construct T such that it stores information on the probability that a
given firm places orders to a given supplier via a given intermediary. Form-
ally, it represents the “transition” probability of an order moving between two
second-order nodes, i.e., along a trajectory of length two. For example, the
entry 7

5y With @2 = (i,7) and 91 = (j, k), indicates the probability that
firm ¢ orders goods to firm k, via firm j. In other words, it represents the

transition probability that order moves from firm ¢ to firm k, via firm j, i.e.:
,):P(i—>j—>k:) (9.3)

where i — j — k is the trajectory along which the order moves. We leverage
the structure of this transition matrix to model system response to shocks.
Let us consider two extreme cases.

Zero flexibility: Non-Markovian transition matrix. The system has zero flex-
ibility. It does not implement supply substitution and keeps its business as
usual. More explicitly, consumers keep their preferences towards their suppli-
ers, and distributors keep their usual operations. The observed flow is kept
unchanged.

This translates into constructing a second-order transition matrix that pre-
serves the observed trajectories. We name this transition matrix “Non-
Markovian” since it captures more than one step memory. It captures two
steps memory along a given trajectory. Given the frequencies of orders, w(?,

TIn a second-order formalism, the second-order transition matrix, T(?), stores informa-
tion on the transition probabilities between second-order nodes.
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along the observed trajectories, we determine the entries of the second-order
(2)Non-Mkv

transition matrix, T’ as:
(2)Non-Mk By
on- v o v2,V1
Va,U1 - ,.,(2) (94)
> Wg, 5!

where the sum runs over all second-order nodes .

Recalling that oo = (i,7) and 9, = (j,k), Eq. (9.4) ensures the dependency
between the (probability of) orders placed by i towards j and the (probability
of) orders placed by j towards k, namely P(i — j — k).

Full flexibility: Markovian transition matrix. The system has full flexibil-
ity. It implements supply substitution and adapts to mitigate shortages. This
means that consumers relax their preferences towards suppliers and distribut-
ors adapt their usual operations by rerouting goods on new trajectories.

To capture the orders’ dynamic during substitution, we construct a transition
matrix that stores no information about the usual operations. We define this
transition matrix as the “Markovian” transition matrix, T(MkV a5 it captures
only information from the network topology discarding information about the

empirical flow. Using the frequencies in the first-order network, @), we de-
(2)Mkv

termine the entries of the second-order transition matrix, T’ as:
~(2) ~(1)
@Mkv _ Wi Wik 9.5)
V2,01 ~(2) ~(1) ’
Wiy Wik
o’ K

where the last term indicates the probability that j places an order towards
k. Recalling that oo = (4,7) and 0y = (j,k), Eq. (9.5) assumes that the
(probability of) orders placed by j towards & and the (probability of) orders
placed by i towards j are independent: P(i — j — k) = P(i — j)P(j — k)
(see derivation in C). Specifically, the orders placed by i to the supplier k via
the intermediary j do not depend on ¢ anymore: ¢ has relaxed its preferences
towards k, aligning them to the intermediary j.
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Flexibility as model parameter. The two limit cases described above rep-
resent two extreme, and quite unrealistic, system responses: zero or perfect
supply substitution. To explore the full spectrum of responses lying between
those two extreme cases, we consider the general form for the transition matrix
of the model as:

T(2) (d)) — (1 _ ¢)) T(Q)Non—MkV + ¢T(2)Mkv (96)

where ¢ is a model parameter used to interpolate between two limit cases. We
interpret ¢ as the system flexibility that controls the degree of supply sub-
stitution implemented in response to the shock. Its value ranges from zero
to one. When flexibility equals zero, the transition matrix is reduced to the
Non-Markovian transition matrix, T(?) (¢ = 0) = TNew-Mkv_ \When flexibil-
ity equals one, the transition matrix is reduced to the Markovian transition
matrix, T?) (¢ = 1) = TAMkv,

9.2.4 Anillustrative example

To illustrate our approach, we consider a simple example. We assume that
there are five firms (A, B, C, D, E) and two trajectories observed in a day-to-
day business: (i) A = C — D, with a frequency f =50, and (ii) B—C — FE
with frequency f = 100.

In Fig. 9.2, we draw three representations of this system under three different
responses: ¢ = 0 (left column); ¢ = 0.5 (middle column); and ¢ = 1 (right
column). For all three cases, we show the first-order network representation
(top row), the second-order representation (middle row), and the transition
matrix underlying the system response (bottom row).

For ¢ = 0, the system keeps its usual business. From the the second-order
transition matrix (bottom row, left colum) we see that D only orders goods
from A, via C, and E only order goods from B, via C. Notice that the trans-
ition matrix 7® indicates the probability of placing orders, not shipments.

When the system accepts a medium (¢ = 0.5) degree of supply substitution, D
relaxes its preferences towards A aligning them to the availability of C. From
the transition matrix (bottom row, middle colum) we see that now 33% of the
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Figure 9.2: Three representations of the same distribution network under three
different response strategies governed by (i) zero flexibility, ¢ = 0 (left column), (ii)
medium flexibility ¢ = 0.5 (middle column), (iii) full flexibility ¢ = 1 (right column).
First-order network representation (top row), second-order representation (middle
row), second-order transition matrix (bottom row). The trajectories observed in
a day-to-day business are colored in blue. The trajectories formed as result a of
flexibility are colored in red.

orders placed by D are towards B (versus the 0% during usual business) and
67% of them are towards A. In other words, when flexibility is implemented
D receives goods from both supplier A and B. The proportion of these orders
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is dictated by the proportion of orders placed by C. Hence, on average, it
indicates the availability of goods (from both suppliers) in the stock of C.

Moving from medium substitution to plain substitution (¢ = 1), we see that
67% of orders placed by D are directed towards B (versus the 0% during a
day-to-day business), and 33% are directed towards A (see bottom row, right
column). In this scenario, D switches its preferences in favor of a perfect
alignment with the (proportions of) orders placed by C.

Given the new proportion of orders, existing shipping trajectories are readjus-
ted and new ones are formed. These new shipping trajectories are depicted in
red in Fig. 9.2. For instance, for ¢ = 1, the new trajectory B — C — D is
used more often than the usual one A — C' — D. Notice that our model does
not account for any link rewiring in the distribution network. It only considers
flow readjustment on the existing system.

9.2.5 System dynamics

The principles underlying the system dynamics in the first-order network and
presented in Chapter 8 are still valid in a second-order representation. Dis-
tributors place orders to (i) restore their sub-stocks and (ii) meet demand,
ie. 1

oo (@) = diiy (= 1)+ 2 [5G = s(iy )] ©.7)
where Ogi)j) is the order placed by ¢ towards j and dgl)j) is the demand 7 faces
on the goods received from j. As in the previous Chapter we set 7 = 5,
corresponding to roughly five working days. In Eq. (9.7) s(;|;) represents the
sub-stock of i used to store goods received by j, whereas s T represents the
target level (see Section 8.2.3). Sub-stocks are updated according to the total
ship-out and the total ship-in:

t—1)+WDmE 1) — (WPt — 1)+ w® (¢ —1)| (9.8)

@ (2
(t) = s (G:i) (o) (il)

5(il) (il3)
where wg‘)j) indicates the amount of goods ¢ receives from j and that ships to
consumers.
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W is the shipping matrix in a second-order model. It defines the amount
shipped along trajectories of length two. Specifically, the element W) (i)
indicates the amount of goods shipped by k to ¢ via j, namely the amount
shipped along the trajectory & — j — 4. Similarly, the order matrix in a
second-order model, O®)| defines the amount ordered along trajectories of
length two. Specifically, the element ng?,);')(j,k) indicates the amount of orders
placed by ¢ and directed towards k, via j.

Next, we obtain the orders along a given trajectory ¢ — 7 — k as:
(2) NG (2)
O(i’j)(j,k)(t) = O(i,j)(t)T(i,j)(j,k) (®) (9.9)

where T(?) (¢) is the transition matrix governing the system response, and 0(i,5)
is obtained from Eq. (9.7).

Finally, we make a simple assumption about the direct supply shock. We
consider a o percentage reduction in the inventory level of the shocked man-
ufacturer. Thus, by tuning the parameter ¢ from zero to one we can study
multiple responses to the shock depending on the system flexibility.

9.2.6 Measuring the shock impact

To evaluate the effect of flexibility, we consider two indicators: (i) demand
deficit at consumers and (ii) changes to the usual operations. While the first
indicator informs us about the effectiveness of the substitution policy in mit-
igating shortages among consumers, the second indicator is used to quantify
the impact of the policy on the distribution system.

Specifically, we determine the demand deficit, dd(t), at a given time ¢, as the
percentage of the (cumulative) unfulfilled demand of consumers, i.e.:

> Telt) -
dd(t) = =" e

(9.10)

where v is a second-order node, ¢, is the (constant) daily demand from con-
sumers, and w, (t) is the quantity shipped to consumers at time ¢. Our indicator
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is built assuming that goods demanded are shipped within the next working
day.

The second indicator, v(t), measures the changes to the distribution system
resulting from the readjustment of the usual flow. Hence, we consider the
amount shipped, W((,?]).)(jk), along a given trajectory (of length two) in two
scenario: when supply substitution is implemented, i.e., ¢ # 0, and when it is
not implemented,i.e., ¢ = 0. The difference between those two quantities gives
the number of goods rerouted in case supply substitution is taken in place,
i.e.,:
= (WP (,t) - w6 = 0,1)
V()= — (9-11)
Z W52)(¢ = 17t) - W152)(¢ = 07t)‘

v

where v is a second-order node. Since we are interested in the relative,or
percentage, difference we chose to normalize the absolute difference, in the
numerator, with the maximum possible difference, i.e., for ¢ = 1, in the de-
nominator.

Although we do not directly measure costs in our study, we use Eq. (9.11) as
a proxy for that costs that may arise from increased flexibility. As flexibility
increases, products are likely to flow through more distributors, leading to
higher handling costs. Furthermore, using new distribution paths may result
in additional costs due to labor and increased complexity. Hence, with our
measure, we assess the so-called transportation and transhipment costs as
defined by Aldrighetti et al. (2021). These costs include penalties for not
using optimal transportation routes and the costs associated with utilizing
alternative distributors’ inventories. However, disruptions may also incur other
costs, such as damage costs resulting from damage to machines, buildings, or
inventories (Fattahi and Govindan, 2018; Turnquist and Vugrin, 2013); backlog
costs due to loss of demand (Shukla et al., 2011); or delay penalties for late
deliveries (Elluru et al., 2019). Our model does not capture the latter costs.
Future studies can explore these aspects further.
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9.3 Stress-testing the opioid distribution system

To study to what extent supply substitution helps distribution networks mit-
igate supply shocks, we implement a stress-test approach. We use the opioid
distribution network as the starting point of our simulations and model its
distortion due to the system response to the shock. Specifically, we consider
the distribution network of Oxycodone in 2012.

9.3.1 Model initialization

Because we want to start with the closest representation of the real system,
our model incorporates various empirical information gathered from ARCOS
data. We use these information to: construct an higher-order representation
of the system; initialize stock levels and target stock levels; and determine
consumers’ demand.

Higher-order representation. As discussed in Chapter 4, our trajectory data
comprise roughly two billion trajectories. We restrict our analysis to the tra-
jectories of drugs containing Oxycodone and observed in a given year (2012).
Given the set P := {p1,ps,...,ps} of empirical trajectories, we compute their
frequencies, in the selected year. Based on these frequencies, we create the
second-order transition matrices according to Eq. 9.5 and Eq. 9.4% and build
the second-order network representation of the empirical system. In Fig. 9.3,
we show the second-order representation of the Oxycodone distribution sys-
tem for different flexibility values. In this representation, nodes represent links
between two firms. Blue links represent observed trajectories of length two.
Red links represent trajectories that are not observed, yet they are possible
given the network topology. We see that by increasing flexibility, from ¢=0 to
¢=1, we obtain new trajectories, depicted in red, that can be used to source
and distribute goods.

fFor this computation we use the pathpy tool available in python (Scholtes and pathpy
contributors, 2019).
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Figure 9.3: Second-order representation of the Oxycodone distribution system in
2012. In this representation, a node represents a supply link between two firms, and
an edge represents a trajectory of length two. Blue edges indicate trajectories that
were empirically observed. Red edges indicate trajectories that were not observed,
yet possible, given the network topology. Increasing the value of the parameter ¢
in this representation, from ¢=0 to ¢=1, increases the probability that these red
trajectories become available for the distribution system.

Target and inital stocks. The target stock defines the amount of goods dis-
tributors plan as a safety buffer. Safety buffers are not recorded in the data.
Assuming that all distributors met their planning within the observation year,
y, we obtain target stocks as the buffer they remain with at the end of the
year. From the yearly ship-in, W/*(y), and the yearly ship-out to other firms,
Weut(y), and to consumers, w;(y), we compute the buffer of distributor i as:

s; = WP(y) — W (y) — wily)] (9.12)

Note that, in some cases, the ship-out is bigger than the ship-in. This suggests
that: (i) their inventories were not empty at the beginning of the given year, or
(ii) they did not plan a target (safety) stock. For these firms, we set a minimum
buffer equal to one. Since our model runs on the second-order representation,
we determine the stocks in such representation. Respecting the proportion of
volumes observed in the data, we compute the target sub-stock of ¢ containing
goods shipped by j as:

Wiy

All stocks are initialized to their target values at the beginning of the simula-
tion.
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Daily Demand. Assuming that firms perfectly met demand within the obser-
vation year, we determine the constant daily demand faced by firm 7 as:

o wi(y)
“ = 365

(9.14)

where w; (y) indicates the total ship-out of ¢ directed towards consumers. As for
the stock level, the second-order representation of ¢; is obtained by respecting
the proportion of volume observed, i.e.:

Wii(y)

Clilj) = Ci X =7~ 9.15
e 2 Wii(y) (919)
J

where c(;|;) indicates the demand i receives from consumers on goods coming
from j.

9.3.2 Tracing the efficient frontier

In our stress-test approach, we start from the opioid distribution network and
run the cascade model on its second-order representation. As a supply-side
shock, we consider a 30% reduction in global production, meaning that all
manufacturers’ stocks are affected by a reduction of 30%.

We remind the reader that the system response is, then, captured by the
second-order transition matrix, 7°(?) (), as function of the parameter ¢. There-
fore, we vary ¢ to investigate the role of flexibility as system response strategy.
Specifically, we consider values of ¢ ranging from 0 to 1, with and interval of
0.01, i.e, ¢ € [0, 1]. Hence, we run in total 100 independent simulations, one for
each ¢ value, which indicates 100 possible system responses to shocks induced
by a different degree of system flexibility each.

In Fig. 9.4 we show and the demand deficit dd (a), the system change v (b) as
a function of the system flexibility, ¢. Both indicators are evaluated after 45
times-steps (i.e., roughly one month and a half) from the time the shock hits
the network.

From plot (a), we observe an initial decrease of dd for increasing ¢ values, sug-
gesting that flexibility effectively reduces consumer deficit. In other words, the
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Figure 9.4: Change to the system (figure a) and demand deficit (figure b) as a
function of system flexibility, ¢. The efficient frontier (figure c¢) is drawn from a
collection of 100 points, representing a ¢ value each. Low values are on the bottom-
right, high values on the upper-right.

more the network adapts by rerouting goods leveraging additional, yet substi-
tutable, sources, the less the impact on consumers. Interestingly, we see that
dd increases again after reaching a minimum, in correspondence of ¢ = 0.88.
This finding indicates that while low or medium values of flexibility help re-
duce the deficit at consumers, high values of flexibility do not move the system
towards a further reduction of demand deficit. A possible explanation is that
a flexible system, leveraging alternative sources, may deplete the inventories of
both distributors and manufacturers faster, which can not be used to mitigate
the deficit further.

In short, we show that flexibility, up to some point, helps mitigate the deficit at
consumers. Yet, what is the cost flexibility brings to the distribution system?

As discussed above, we evaluate those costs by measuring changes to the usual
operations. As we show in Fig. 9.4 (b), the changes to the system increase with
¢. As expected, the more the system adapts, the more goods are rerouted, and
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the more changes to the usual business are observed. Further, we find that the
increasing trend is not linear. Specifically, we see that changes to the usual
business are kept low, i.e., less than 10%, up to a given value of flexibility, i.e.,
¢ ~ 0.25. For ¢>0.25 the changes increase almost exponentially with ¢. As we
argued for the demand deficit, this non-linear behavior can be due to a faster
stock depletion in case of high flexibility. Depleted stocks may produce major
rerouting of goods, translating into pronounced changes to the usual business
as observed for high ¢ values. This hypothesis would enrich the interpretation
of our results. However, we leave this investigation to further studies.

To combine the observations made so far, we study the role of flexibility in
the dd — 7 space, as reported in Fig 9.4 (c). Every point (dd, ) in this space
represents the system state reached with a given degree of flexibility ¢. The
collection of points for various ¢ values defines the shape of the observed curve.
As before, both dd and y are evaluated after t = 45 time steps from the moment
of the shock. In Fig. 9.4 (c) low ¢ values are located on the bottom-right side
of the curve, whereas high ¢ values are located on the upper-right side. Hence,
tuning ¢ from low to high values corresponds to advance from bottom-right
to bottom-left on the curve and further up from up-left to up-right.

Given the hyperbola shape of this curve, we determine two sets of points: an
efficient set located on the lower side of the curve and defined by 0 < ¢ <
0.88; and inefficient set located on the upper side of the curve and defined by
0.88 < ¢ < 1. The efficient set is colored in blue, while the inefficient one is
colored in red.

Within the efficient set, increasing flexibility allows to reduce demand deficit
from 7% (¢ = 0) to 5.5% (¢ = 0.88). Still, this benefit to consumers comes with
costs to the distribution system, which needs to change its usual operations
of = 60%. Hence, within this set of ¢ values, we observe a trade-off between
reducing demand deficit and keeping costs low for distributors. The decision
on the optimal ¢ value is left to a policymaker. The latter should balance
the interests of the distributors in keeping low changes to their usual business
with the general interest of governments and consumers in keeping the supply
deficit low.
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Within the inefficient set, instead, flexibility is not effective anymore. Interest-
ingly, increasing flexibility further (more than ¢ = 0.88) generates big changes
to the distribution system, which are not balanced by a further reduction in
demand deficit. Indeed we see that high values of flexibility (located on the
upper side of the curve) lead the system to have the same demand deficit as
lower values of flexibility (located on the lower side of the curve), but with
fewer changes to the usual operations.

The curve just discussed can be used by a policymaker to assess the degree
of supply substitution needed while balancing two objectives: (i) keep costs
low for distributors, (ii) keep deficit low for consumers. By borrowing the
terminology from the field of finance, we use the term efficient frontier to
define the observed curve. The Modern Portfolio Theory (MPT) shows a
trade-off between portfolio risk and return. The term frontier identifies the
optimal portfolio set that represents the best possible combination of expected
return and investment risk (Fabozzi et al., 2002; Mangram, 2013). We stress
here that the analogy between MPT and our work only lies in the existence of
a trade-off between two objectives, and we do not want to highlight additional

similarities.

Finally, we further investigate the role of flexibility by studying the efficient
frontier for multiple time horizons. In Fig. 9.5, we draw three frontiers (right
plot) and three curves of deficit (left plot), one for each time-horizon con-
sidered: t =40, t =50, and ¢ = 60. In other words, each frontier indicates the
system state, concerning demand deficit and operation changes, as observed
after 40, 50, and 60 time steps by the time the shock hits the network.

We observe a reduction in deficit for all three horizons and a consequent trade-
off: increasing flexibility reduces dd while increasing . Hence, for a given
demand deficit that can be mitigated through flexibility, there is always an
associated cost that the system needs to bear. More interestingly, the value
of flexibility that minimizes the deficit, ¢* (corresponding to the red point in
Fig. 9.5), decreases over time. This implies that the inefficient set depends
on the time horizon selected. Indeed, we see that the bending of the upper
side of the frontier is more pronounced as the time-horizon increases. As time

passes, more points move to the inefficient set (located on the upper side),



9.4. Discussion 158

8.
| [ Xon
001 *¢ =088
71 < 75
— S *
&2 S 501
+— 61 <
5 &)
= 254
2 5
(2]
s ' ' ' . & ol t=2 t =150 t =60
0.00 0.25 0.50 0.75 1.00 1 050 -1 050 -1 -05 0
Flexibility, ¢ A Deficit (%)

Figure 9.5: Demand deficit (left plot) and efficient frontier (right plot) as obtained
after 40, 50, and 60-time steps since the simulated shock hits the distribution network.
The red point indicates the flexibility value that leads to the minimum deficit. The
star symbol indicates a given flexibility value that moves from the efficient to the
inefficient set.

where the demand deficit is not further reduced. Indeed, the figure shows
that the star symbol, corresponding to ¢ = 0.88, moves from the efficient set
to the inefficient one over the three-time horizons considered. As the time
horizon indicates the duration of the shortage, we find that as the duration
is longer, fewer flexibility values are efficient. Thus, as time goes on, choices
about optimal flexibility are limited to a few values.

9.4 Discussion

In summary, we investigated the role of supply substitution as a system re-
sponse to supply-side shocks. Within a short period, supply substitution is a
quick and low-cost strategy against shortages. Communicating substitutable
goods to consumers and distributors can rapidly reduce the shock’s impact
without carrying additional costs or times due, for instance, to a topological
reconfiguration of the network. Indeed, we do not consider new link creation or
rewiring but only redistribution of flows. Further, this policy does not demand
that manufacturers ramp up production in a short period. By not requiring the
production of new supplies, the policy takes advantage of the supply already
available in the system. More generally, the proposed policy leverages existing
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resources such as goods, business relations, and infrastructure, making them
immediately available after a supply shock.

Yet, supply substitution implies (i) the willingness of distributors to reroute
goods; and (ii) the willingness of consumers to accept them. We named this
tendency flexibility. Using higher-order network models, we formalized flex-
ibility as a single model parameter and investigated its impact on consumers
and distributors.

We discussed the existence of two competitive objectives: (i) the government
prefers to have a minimum deficit for consumers during shortages; (ii) distrib-
utors prefer to keep low changes to their operations to reduce costs. Using the
opioid distribution network as a testbed, we quantified the trade-off between
those two objectives.

We showed that increasing flexibility alleviates the deficit at consumers while
generating changes, thus costs, to the distribution operations. The observed
trade-off implies the existence of an efficient frontier traced in the space of
demand deficit and changes to system operations. Interestingly, we identified
two sets of flexibility values: an efficient set for low and medium flexibility val-
ues; and an inefficient set for high flexibility values. Within this inefficient set,
big changes in the system operations are not balanced by a further reduction
in demand deficit. Flexibility reduces demand deficit. Yet, too high flexibility
produces no further benefit.

The optimal ¢ selection is left to a policymaker since it depends on the prac-
tical implications (context-specific) that deficit and costs have for consumers
and distributors, respectively. As we have characterized the frontier region
along which a policymaker can select the optimal ¢, we have also revealed the
existence of a region where a policymaker should not select the ¢ since there
is no optimal value.

In short, the main contribution of our study is to have characterized the effi-
cient frontier along which a policymaker can balance the reduction in demand
deficit against the increasing costs associated with flexibility. Our approach is
versatile and applicable to a wide range of products, extending beyond phar-
maceuticals. The only condition is that these products are substitutable and
have partially overlapping distribution systems.
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Besides this main contribution, the methodological contribution of our work
needs to be mentioned. We proposed a novel method to study supply sub-
stitution as a quick response strategy of distribution networks toward supply
shocks. Going beyond the standard network approach, we exploit the powerful
abstraction of higher-order network models to capture flow readjustments of
substitutable goods.

The proposed model incorporates several characteristics of an empirical dis-
tribution network (i.e., the goods’ flow, network topology, inventories levels,
and demand from consumers) while being parsimonious in the number of para-
meters. These characteristics make it well-suited for both future theoretical
investigations and further empirical applications.This is particularly important
since there are several aspects that our research has left open.

As we characterized the efficient frontier following the implementation of sup-
ply substitution, we did not investigate under which conditions this frontier
is observed. Flexibility is likely to generate changes to the system operations
under various circumstances. Instead, the behavior of demand deficit as a
function of flexibility is not as trivial and calls for deeper investigations. Fu-
ture studies can take multiple directions to enrich and extend the presented
findings. First, we know that flexibility is linked to the number and the size
of buffers (i.e., sub-stocks) distributors have and that they leverage during
supply shortages. In our model, these buffers strictly depend on the (i) tar-
get stock levels and the (ii) topological dependencies between distributors and
manufacturers. We took both this information from the data. Studying, even
theoretically, how a change in one of these two aspects leads to change in the
observed findings would enrich the presented work.

Second, we made a simple assumption about consumer demand: constant
in time. Fluctuations of demand may speed up (or slow down) the cascading
shortages, shifting up (or down) the flexibility values along the frontier. Hence,
it may also affect the curve’s shape at a given time horizon. Future research
can investigate this point further.

Third, we mentioned that higher-order models could be generalized to any
given order k, but then we focused only on the inclusions of the trajectories
of length two. This choice makes sense for our application case since short-
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length trajectories are used to ship goods from manufacturers to consumers in
the opioid distribution network. However, it is up to further investigations on
how the presence of (even very few) longer trajectories influences the presented
results.



Chapter 10

Summary and Conclusions

10.1 Overview

In this thesis, we studied the formation, growth and resilience of large-scale
distribution networks. Adopting a complex system perspective, we abstracted
each constituent element (i.e., manufacturers, distributors, and consumers)
and studied their interactions at the micro-level.

We set the goal to understand, on the one hand, the interaction rules driving
link formation and firm growth and, on the other hand, the interaction mech-
anisms that enhance network resilience. For this aim, we developed a set of
agent-based models to describe such interaction mechanisms at the micro-level
and test the network properties at the macro-level. To test the effectiveness of
our proposed models, we used a large-scale and real-world distribution system
as a case study. Specifically, we examined the opioid distribution system that
serves over 200,000 consumers and encompasses more than 1,000 firms.

Below, we summarize our main findings. These unfold along three lines: purely
empirical, model-driven on network growth, and model-driven on network re-
silience. Next, we discuss our contributions to different scientific fields, from
supply chains to network science. Finally, we provide an outlook on future
research.

162
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10.2 Summary in perspective

Empirical characterization: network evolution. In Chapter 3, we started
our empirical investigation by analyzing the main structural properties of the
nationwide distribution networks of two top-sold opioids, i.e., Oxycodone and
Hydrocodone. According to our findings, these networks are characterized by
(i) low density; (ii) firm heterogeneity in the number of distribution channels
they operate; (iii) firms’ tendency to link to more than one source partner; (iv)
short depth, i.e., a maximum of three tiers of distributors. The properties (i),
(ii), and (iv) can be explained as the result of cost-saving strategies and lean
practices: the number of links is set close to the minimum; a few hub distrib-
utors handle most of the distribution channels; topological distances between
manufacturers and consumers are kept short using a few tiers of distributors.
Instead, property (iii) relates to system resilience: firms rely on multiple source
partners to reduce their risk exposure to link failures.

We found these properties to be robust across the years. Interestingly, despite
the substantial growth of opioid consumption between 2006 and 2011, the
two distribution networks did not expand. Specifically, we did not detect any
significant change in the topology of the distribution network of Oxycodone.
Instead, we observed a shrinking in the size of the distribution network of
Hydrocodone. Our further investigation revealed that the observed shrinking
was due to the exit of small firms (i.e., low-degree firms) and the disappearance
of weak links (i.e., low-weight links). Therefore, we interpreted the observed
topological change as the system’s adoption of cost-saving policies rather than
the system response to demand growth.

Emprical characterization: goods’ flow. In Chapter 4, we shift the perspect-
ive from a macroscopic time-aggregated perspective to a microscopic time-
respecting one. From daily shipping records, we extracted more than 40 billion
trajectories, tracking the flow of individual packages of opioids from produc-
tion to consumption. We presented a novel data-mining technique that mimics
a real-world distribution process and ensures domain-specific constraints (e.g.,
conservation of distributed quantity and compliance with shipping times).
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This allowed us to investigate the system at a novel (high) resolution, never
explored before.

Our main results revealed that the flow of goods is very heterogeneously dis-
tributed among the various distribution pathways connecting producers to con-
sumers. Very few pathways are used ten thousand times, while many others
are used only a few times. The observed concentration of flow along specific
paths may be due to various reasons, e.g., the presence of very active con-
sumers, their preferences for a particular producer, the dominance of a few
large producers, and the existence of more efficient distribution chains.

Moreover, this analysis, conducted at the micro-level, allowed us to confirm
the results obtained from a macroscopic topological analysis (in Chapter 3).
In particular, we confirmed that only a few tiers of distributors operate in
the distribution process. Opioids travel several thousand kilometres before
reaching consumers. The opioid distribution networks span an entire nation.
Nevertheless, the topological length of the observed trajectories is relatively
short.

Centralization and multi-sorcing: driving mechanisms for network forma-
tion. Inspired by the empirical insights gained in Chapter 3, we developed
a network growth model to explain the emergence of large-scale distribution
networks in Chapter 5. Unlike previous works, we adopted a “eco-systemic”
perspective. We viewed the distribution network as the outcome of an evolu-
tionary process rather than the result of a careful design strategy of a single
manufacturer.

Taking a firm’s perspective, we proposed two mechanisms to explain the emer-
gence of an observed structure: centralization and multi-sourcing. Centraliz-
ation expresses firms’ preferences in linking with central distributors, whereas
multi-sourcing represents firms’ tendency to acquire additional source partners.
The first strategy increases efficiency. The second one fosters local resilience
to supply shocks.

We tested the model against the distribution networks of six opioid producers.
We took a two-step validation procedure. First, through computer simulations,
we identified the optimal set of parameters that generate the closest networks
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to the empirical ones. Also, the fine-tuning of the parameters allowed us to gain
empirical insights into the network structure and firms’ strategies. Specific-
ally, we found that the observed networks exhibit predominant centralization
and frequent multi-sourcing. With a frequency of about 80%, firms connect to
central distributors. Moreover, with a frequency of about 30%, firms imple-
ment multi-sourcing. Further, given the parameters obtained, such networks’
topologies are star-like and exhibit a clear departure from perfect trees.

Next, we forwarded the validation procedure and tested the extent to which the
model can reproduce a set of network properties of an empirical distribution
network. By feeding the model with optimal parameters, we could reproduce
the distinctive shapes of out and in-degree and path length distributions. The
good match between model predictions and real-world observations sugges-
ted that the mechanisms proposed, despite their simplicity, were effective in
reproducing the observed topology.

The role of the upstream constraint in firm growth. The network growth
model of Chapter 5 was extended in Chapter 7 to account for the evolution of
goods flow. Driven by empirical evidence (i.e., the log-normality of the distri-
bution of outflows), we proposed a proportionate growth dynamic to describe
the evolution of goods flow. Further, to explain the observed fluctuations of
firms’ growth rates, we proposed two factors: stochastic demand and upstream
constraint. The first factor considers fluctuations due to the randomness of de-
mand, i.e., downstream fluctuations. The second factor considers fluctuations
due to supply availability, i.e., upstream fluctuations. Our results revealed
that the second factor is necessary to reproduce the observed growth rates,
especially the most extreme values. In short, upstream fluctuations have a
predominant effect on firm growth.

Shock propagation and upstream effects. In Part III of this thesis, we shif-
ted the focus from network growth to network resilience. In particular, we
studied the propagation of supply shocks in large-scale distribution systems.
As with network growth, we found that upstream effects also play an essential

role in cascading dynamics.
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In Chapter 8, we presented a cascade model that accounts for a bidirectional
propagation of the shock: upstream and downstream. In the downstream
propagation, distributors and manufacturers ration their shipments generating
supply shortages. In the upstream propagation, distributors increase orders
to mitigate shortages and meet the demand. We use the distribution network
of Oxycodone as a test-bad for our analysis. Specifically, we implemented a
stress-test approach: we started from the empirical network and modelled its
distortion due to the shock propagation.

Our results uncovered non-trivial dependencies between producers under cas-
cading shortages. Due to this upstream propagation, manufacturers not dir-
ectly shocked may be harmed. They may deplete their stock earlier to offset
shortages.

In addition, we noted that shortages harm not only firms but also consumers.
We estimated the impact on consumers due to the cascade effects. If, at an
early stage, stocks of alternative suppliers are leveraged to mitigate shortages
(under the assumption of perfect substitution). From a certain point onward,
alternative producers may run out of supplies, and indirect losses may be
generated, adding to the direct ones.

The role of supply substitution in mitigating shortages. In Chapter 9, we
explored the role of supply substitution as the system response to supply-side
shocks. In the immediate aftermath of a shock, asking manufacturers to ramp
up production may be neither feasible nor sufficient. Instead, communicat-
ing substitutable goods to consumers and distributors can quickly reduce the
impact of the shock. Moreover, it does not entail additional costs due, for
instance, to a topological reconfiguration of the network.

We introduced the term flexibility to indicate the degree of supply substitution
the system is willing and capable of accepting. It identifies (i) the tendency
of distributors to reroute packages after substitution; and (ii) the tendency of
consumers to accept substitute goods.

Leverage the powerful abstraction of higher-order network models we captured
flow readjustments after substitution and formalized flexibility as a model
parameter. Tuning flexibility, we investigated the effect of various degrees of
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supply substitution. The nationwide distribution network of Oxycodone drugs
has been used as a test-bed for our analysis.

We showed that increasing flexibility alleviates the deficit among consumers.
However, it also brings changes to usual operations that, in turn, may carry
additional costs. We found that flexibility mitigates demand deficit up to a
given value. High flexibility produces no further benefit.

Our analysis has highlighted the existence of a trade-off between shortage
mitigation and costs after substitution and provided a novel tool that can help
managers and policymakers better delineate mitigation strategies.

From local to global resilience. We want to point out to the reader that the
effectiveness of supply-substitution policies in mitigating shortages depends
closely on the topology of the network and its local properties. In Parts I
and II of this thesis, we highlighted the tendency of firms to implement multi-
sourcing. Firms create “redundant” connections with multiple source partners
to reduce their exposure to disruptions of single links. Hence, this strategy
increases network resilience at the local level. In Part III, it was found that
it also promotes resilience at the global level. Supply substitution is not an
option if all firms rely on one source partner. Only because firms have access to
supplies from multiple sources, the system can leverage alternative distribution
paths and mitigate shortages through substitution.

10.3 Scientific contribution

Supply chain domain. The main contribution of our work falls within the
supply chain domain. Abandoning the traditional focal firm perspective, we
have provided new methodologies for studying large-scale supply networks,
in general, and distribution networks, in particular. The proposed models
apply to large-scale dynamics and, at the same time, are grounded in detailed
firm-level data.

Enhancing supply chain resilience is one of the biggest challenges of today’s
economies and a top priority for several governments. In Part III of this
thesis, we approached this demanding task. First, we proposed a firm-level
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shock propagation model tailored to distribution networks. In this regard,
we extended previous models limited to production networks. We highlighted
the differences between shock propagation on the production side of a supply
network and its distribution side. Next, we proposed supply substitution as a
rapid response strategy to shortages. We provided a novel methodology (based
on higher-order network techniques) to simulate it on a real-world network.
Finally, we quantified the pros and cons this strategy carries.

In addition to network resilience, much of this thesis has been devoted to
understanding the mechanisms underlying emerging network structures and
firm growth. On the one hand, we have provided a simple methodology for
generating network topologies similar to those observed. On the other, we
have generalized traditional theories of firm growth to transfer them to the
supply chain domain.

Network science. Network science is still in its infancy regarding supply
chain applications. Our contribution to this field is to provide a new area of ap-
plication on which old theories have been tested, and standard tools have been
extended. For example, in Chapter 5, we extended previous network growth
models to account for system-specific characteristics. Similarly, the cascade
model proposed in Chapter 8 can be seen as an extension of threshold models
previously used to study shock propagation in economic networks, e.g., in food
trade networks (Burkholz and Schweitzer, 2019) or financial networks (Lorenz
et al., 2009). Ultimately, in Chapter 9, we exploited the framework of higher-
order models, recently developed by network scientists, to describe more com-
plex system responses to shocks.

Data mining and Data Science. One of the goals of these fields is to develop
methods and algorithms to handle large-scale datasets and extract meaning-
ful information from them. In addition, much attention has been paid to
methods aimed at extracting sequential information (e.g., items flow) from
time-stamped data. The method presented in Chapter 4 had the same object-
ive: extracting goods flow from time-stamped shipping records. The method
was built explicitly for distribution networks. However, it could inspire other
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fields of application as long as the application concerns the flow of an item
that is conserved in quantity.

Generalizability. In this thesis, we proposed modeling approaches that are
not limited to the pharmaceutical industry. Specifically, the growth model
we presented is rooted in general principles that encompass multi-sourcing,
centralization, and the availability of supplies. These principles hold true
across various industries, as they are derived from previous studies that have
examined firm behavior and growth in sectors as diverse as automotive, chem-
ical, and electronics.

Similarly, the cascade model we proposed has broad applicability. Shortages
of goods are experienced across all industrial sectors. The approach proposed
to mitigate such shortage can apply to various products, such as food, gas and
electronics. The only requirement is that such products can be substituted
and rely on even partially overlapping distribution systems.

Therefore, although our proposed models have been validated against a specific
distribution system, we argue that our modeling framework is general enough
to remain valid, with minor extensions, in other industrial sectors or geographic
contexts. We encourage future research in this direction.

10.4 Outlook

Like any research project, the one presented in this thesis is not without its
limitations. Nevertheless, limitations are opportunities to advance research.
We outline below the main shortcomings of our work to better delineate future
research directions.

Network formation. As part of model validation, we explored the entire two-
dimensional parameter space to obtain the optimal values of g; and ¢;. To this
end, we had to perform several time-consuming computer simulations. In the
future, we could provide an analytical solution for the model parameters. The
model is simple enough to support this investigation. In addition, Geipel
et al. (2009) have already presented an analytical solution for the parameters
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of a tree growth model. Based on their approach, the derivation of the para-
meter ¢s; should be straightforward. More challenging may be the derivation
of ¢;. However, it is worth exploring this direction since an analytical solution
provides an undoubted advantage in terms of time gain.

From a conceptual point of view, the first possible extension would be to
incorporate node heterogeneity into the model. For simplicity, we treated
distributors and consumers in the same way: they all obey the same rules of
interaction. This also leads to a small discrepancy between model prediction
and real-world observation, discussed in Chapter 5. In the future, labels could
be provided to nodes to distinguish between manufacturers, distributors, and
consumers. Thus, linking rules could be designed to be consistent with node
labelling, at the price of requiring more parameters.

In addition, the model could be further extended by allowing the entry of new
manufacturers. From a broader perspective, one might be interested in rep-
licating the topology of distribution networks of multiple manufacturers (e.g.,
operating in the same industry) rather than of a single manufacturer. Then,
labelling nodes and designing different interaction rules might be required.

Firm growth. The study regarding firm growth is the one that left us with
the most open questions. We had to reject the hypothesis of similarity between
the empirical distribution of business growth rates and that obtained from the
proposed model. Below we list several options for improving the model in the
future.

First and foremost, an exit process for firms should be designed in addition
to the entry process currently in the model. The primary mismatch between
the model predictions and observations concerns the negative values of growth
rates. The model predicts fewer negative values than those observed. There-
fore, exit dynamics would not only describe a more realistic firm’s behavior but
could also produce more negative growth rates, thus reducing the discrepancy
between simulated and real-world data.

Second, we could consider heterogeneous values of the upstream constraint,
k, and make it firm-dependent. In other words, distributors could act differ-
ently in the case of shortage or surplus. This would produce more diverse
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growth rates and reduce the observed differences between model predictions
and observations. However, correctly defining the type of heterogeneity to be
included is a challenging task. Information on the factors driving distribut-
ors’ strategies during shortages or surpluses is needed. Usually, these data are
private. Therefore, careful model design may be required, supported by exist-
ing theories. Alternatively, a data-driven approach could be taken: one could
propose various distributions of k£ values and find the one that best fits the
data, which leads to a minor mismatch between model predictions and data.

Finally, an attractive research direction to explore in the future is the investiga-
tion of how network topology affects growth rates. Previous work has studied
firm growth, assuming that interactions between firms are negligible. Yet,
firms’ growth can be correlated due to competition. In distribution networks,
firms’ growth is correlated due to competition and collaboration. Investigat-
ing how these firms’ dependencies affect their growth rates could advance the
traditional studies of firm growth in a new direction. Does a less centralized
structure lead to more extreme values of growth rates? Do perfect tree struc-
tures produce more homogenous values? Our modeling framework already
provides a possible way to start addressing these questions. In future studies,
we could vary the parameters g, (centralization) and « and ¢; (multi-sourcing)
to study their influence on firm growth.

Cascades. Some critical assumptions of the proposed cascade model could
be revised and improved in future studies. The timing of the shock, its severity
and its location are part of our modeling assumptions. Defining more realistic
shock scenarios is quite a challenging task. It requires the joint effort of sev-
eral research areas. In addition, it requires detailed information about the
system, such as the company’s exposure to natural hazards or occupational
accidents. Future research should address this task to better design models
with immediate practical implications.

A second central assumption is constant daily demand. Model extensions
should consider a more realistic time dependence for consumer demand. To
this end, data from ARCOS are a good starting point to find inspiration on the
type of demand seasonality to include.
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In the short run, it is reasonable to assume that supply relations are fixed.
This may not be true in the long run: new supply links may be created, and
others may be destroyed. Therefore, future work could extend the current
model to account for the long-term effects of the cascade.

Flexibility. This research direction is promising to continue. We provided
a new tool to study the impact of supply substitution policies with import-
ant practical implications. We showed the existence of a trade-off (between
demand deficit reduction and cost after substitution) that a policymaker is
confronted with when defining mitigation strategies. We expressed this trade-
off through what we called an efficient frontier. We believe that of particular
importance is to investigate the conditions under which this frontier is ob-
served.

The first step to deepener our understanding is to perform synthetic tests.
In the analysis presented in this thesis, the information about stock buffers
and topological dependencies between firms is taken from the data. Instead,
one could test different distributions of stock levels or network topologies to
understand to what extent they give rise to similar frontier curves.

Next, the assumption we made in the simple cascade model is also present in
this analysis: consumer demand is constant in time. Fluctuations of demand
may speed up (or slow down) the cascading shortages, shifting up (or down)
the flexibility values along the frontier. Hence, it may also affect the curve’s
shape at a given time horizon. Future research can investigate this point
further.

We have pioneered an approach that improves system resilience by leveraging
the resources already in place, such as infrastructure, business relations, and
goods, making them immediately available without the need of building new
ones. By striking a careful balance between flexibility-promoting policies and
cost considerations, supply chains can enhance their resilience to disruptions
and effectively adapt to them.



Bibliography

Acemoglu, D.; Ozdaglar, A.; Tahbaz-Salehi, A. (2015). Systemic risk
and stability in financial networks. American Economic Review 105(2),
564-608.

Aldrighetti, R.; Battini, D.; Ivanov, D.; Zennaro, I. (2021). Costs of
resilience and disruptions in supply chain network design models: a re-
view and future research directions. International Journal of Production
FEconomics 235, 108103.

Alon, U. (2007). Network motifs: theory and experimental approaches.
Nature Reviews Genetics 8(6), 450-461.

Alstott, J.; Bullmore, E.; Plenz, D. (2014). powerlaw: a python package
for analysis of heavy-tailed distributions. PloS one 9(1), e85777.

Altiparmak, F.; Gen, M.; Lin, L.; Karaoglan, I. (2009). A steady-state
genetic algorithm for multi-product supply chain network design. Com-
puters € industrial engineering 56(2), 521-537.

Amaral, L. A. N.; Buldyrev, S. V.; Havlin, S.; Salinger, M. A.; Stanley,
H. E. (1998). Power law scaling for a system of interacting units with
complex internal structure. Physical Review Letters 80(7), 1385.

Basole, R. C.; Bellamy, M. A. (2014). Supply network structure, visib-
ility, and risk diffusion: a computational approach. Decision Sciences
45(4), 753-789.

173



Bibliography 174

Battiston, S.; Gatti, D. D.; Gallegati, M.; Greenwald, B.; Stiglitz, J. E.
(2012a). Default cascades: when does risk diversification increase sta-
bility? Journal of Financial Stability 8(83), 138-149.

Battiston, S.; Puliga, M.; Kaushik, R.; Tasca, P.; Caldarelli, G. (2012b).
Debtrank: too central to fail? financial networks, the fed and systemic
risk. Scientific reports 2, 541.

Becchetti, L.; Trovato, G. (2002). The determinants of growth for small
and medium sized firms. The role of the availability of external finance.
Small business economics 19(4), 291-306.

Berlec, T.; Kusar, J.; Zerovnik, J.; Starbek, M. (2014). Optimization
of a product batch quantity. Strojniski vestnik-Journal of Mechanical
Engineering 60(1), 35-42.

Bode, C.; Wagner, S. M. (2015). Structural drivers of upstream supply
chain complexity and the frequency of supply chain disruptions. Journal
of Operations Management 36, 215-228.

Boginski, V.; Butenko, S.; Pardalos, P. M. (2005). Statistical analysis
of financial networks. Computational statistics & data analysis 48(2),
431-443.

Bottazzi, G.; Coad, A.; Jacoby, N.; Secchi, A. (2011). Corporate growth
and industrial dynamics: evidence from French manufacturing. Applied
Economics 43(1), 103-116.

Bottazzi, G.; Dosi, G.; Lippi, M.; Pammolli, F.; Riccaboni, M. (2001).
Innovation and corporate growth in the evolution of the drug industry.
International journal of industrial organization 19(7), 1161-1187.

Bottazzi, G.; Secchi, A. (2003). Common properties and sectoral spe-
cificities in the dynamics of US manufacturing companies. Review of
Industrial Organization 23(3-4), 217-232.

Bottazzi, G.; Secchi, A. (2006). Explaining the distribution of firm
growth rates. The RAND Journal of Economics 37(2), 235-256.



Bibliography 175

Brintrup, A.; Ledwoch, A. (2018). Supply network science: emergence
of a new perspective on a classical field. Chaos: An Interdisciplinary
Journal of Nonlinear Science 28(3), 033120.

Brintrup, A.; Wang, Y.; Tiwari, A. (2015). Supply networks as com-
plex systems: a network-science-based characterization. IEEE Systems
Journal 11(4), 2170-2181.

Burke, G. J.; Carrillo, J. E.; Vakharia, A. J. (2004). Sourcing decisions
with stochastic supplier reliability and stochastic demand. Tech. rep.,
Citeseer.

Burkholz, R.; Schweitzer, F. (2019). International crop trade networks:
the impact of shocks and cascades. FEnvironmental Research Letters
14(11), 114013.

Butts, C. T. (2009). Revisiting the foundations of network analysis.
science 325(5939), 414-416.

Caceres, R. S.; Berger-Wolf, T. (2013). Temporal scale of dynamic net-
works. In: Temporal networks, Springer. pp. 65-94.

Calvino, F.; Criscuolo, C.; Menon, C.; Secchi, A. (2018). Growth volat-
ility and size: a firm-level study. Journal of Economic Dynamics and
Control 90, 390-407.

Caridi, M.; Pero, M.; Sianesi, A. (2012). Linking product modular-
ity and innovativeness to supply chain management in the Italian fur-
niture industry. International Journal of Production Economics 136(1),
207-217.

Carvalho, V. M.; Nirei, M.; Saito, Y. U.; Tahbaz-Salehi, A. (2021).
Supply chain disruptions: evidence from the great east japan earthquake.
The Quarterly Journal of Economics 136(2), 1255-1321.

Choi, T. Y.; Dooley, K. J.; Rungtusanatham, M. (2001). Supply net-
works and complex adaptive systems: control versus emergence. Journal
of operations management 19(3), 351-366.



Bibliography 176

Choi, T. Y.; Hong, Y. (2002). Unveiling the structure of supply net-
works: case studies in Honda, Acura, and DaimlerChrysler. Journal of
Operations Management 20(5), 469-493.

Clark, K. B.; Chew, W. B.; Fujimoto, T.; Meyer, J.; Scherer, F. (1987).
Product development in the world auto industry. Brookings Papers on
economic activity 1987(8), 729-781.

Clauset, A.; Shalizi, C. R.; Newman, M. E. (2009). Power-law distribu-
tions in empirical data. SIAM review 51(4), 661-703.

Coad, A. (2007). Firm growth: a survey .

Conrad, K. (2017). The Opioid Epidemic. Current Emergency and
Hospital Medicine Reports 5(4), 119-120.

Craighead, C. W.; Blackhurst, J.; Rungtusanatham, M. J.; Handfield,
R. B. (2007). The severity of supply chain disruptions: design charac-
teristics and mitigation capabilities. Decision Sciences 38(1), 131-156.

Dasgupta, N.; Beletsky, L.; Ciccarone, D. (2018). Opioid crisis: no easy
fix to its social and economic determinants. American journal of public
health 108(2), 182-186.

DeWeerdt, S. (2019). Tracing the US opioid crisis to its roots. Nature
573(7773), S10.

Diem, C.; Borsos, A.; Reisch, T.; Kertész, J.; Thurner, S. (2022). Quan-
tifying firm-level economic systemic risk from nation-wide supply net-
works. Scientific reports 12(1), 1-13.

Ding, Z.; Gong, W.; Li, S.; Wu, Z. (2018). System dynamics versus
agent-based modeling: a review of complexity simulation in construction
waste management. Sustainability 10(7), 2484.

Dolgui, A.; Ivanov, D.; Sokolov, B. (2018). Ripple effect in the sup-
ply chain: an analysis and recent literature. International Journal of
Production Research 56(1-2), 414-430.



Bibliography 177

Dong, Y.; Skowronski, K.; Song, S.; Venkataraman, S.; Zou, F. (2020).
Supply base innovation and firm financial performance. Journal of Op-
erations Management 66('7-8), 768-796.

Dyer, O. (2016). Opioid manufacturer bribed doctors to prescribe
fentanyl inappropriately, US says.

Eisenstein, M. (2019). Treading the tightrope of opioid restrictions.
Nature 573(7773), S13.

Elliott, M.; Golub, B.; Jackson, M. O. (2014). Financial networks and
contagion. American Economic Review 104(10), 3115-53.

Elluru, S.; Gupta, H.; Kaur, H.; Singh, S. P. (2019). Proactive and
reactive models for disaster resilient supply chain. Annals of Operations
Research 283, 199-224.

Emanuel, G.; Thomas, K. (2019). Top executives of INSYS, an opioid
company, are found guilty of racketeering. The New York Times. New
York .

Fabozzi, F. J.; Gupta, F.; Markowitz, H. M. (2002). The legacy of
modern portfolio theory. The journal of investing 11(3), 7-22.

Fattahi, M.; Govindan, K. (2018). A multi-stage stochastic program for
the sustainable design of biofuel supply chain networks under biomass
supply uncertainty and disruption risk: a real-life case study. Trans-
portation Research Part E: Logistics and Transportation Review 118,
534-567.

Freeman, L. C. (1977). A set of measures of centrality based on between-
ness. Sociometry , 35-41.

Fu, D.; Pammolli, F.; Buldyrev, S. V.; Riccaboni, M.; Matia, K.; Yama-
saki, K.; Stanley, H. E. (2005). The growth of business firms: theoretical

framework and empirical evidence. Proceedings of the National Academy
of Sciences 102(52), 18801-18806.



Bibliography 178

Geipel, M. M.; Tessone, C. J.; Schweitzer, F. (2009). A complementary
view on the growth of directory trees. The European Physical Journal
B 71(4), 641-648.

Gerefli, G. (2014). Global value chains in a post-Washington Consensus
world. Review of international political economy 21(1), 9-37.

Gereffi, G. (2019). Global value chains, development, and emerging
economies 1. In: Business and Development Studies, Routledge. pp.
125-158.

Gertler, P. J.; Martinez, S.; Premand, P.; Rawlings, L. B.; Vermeersch,
C. M. (2016). Impact evaluation in practice. World Bank Publications.

Ghadge, A.; Er, M.; Ivanov, D.; Chaudhuri, A. (2022). Visualisation
of ripple effect in supply chains under long-term, simultaneous disrup-
tions: a system dynamics approach. International Journal of Production
Research 60(20), 6173-6186.

Gibrat, R. (1931). R and Les Inégalites Economiques, Libraire du Re-

cueil. Paris, France .

Guy Jr, G. P.; Zhang, K.; Bohm, M. K.; Losby, J.; Lewis, B.; Young,
R.; Murphy, L. B.; Dowell, D. (2017). Vital signs: changes in opioid
prescribing in the United States, 2006-2015. MMWR. Morbidity and
mortality weekly report 66(26), 697.

Hallegatte, S. (2008). An adaptive regional input-output model and its
application to the assessment of the economic cost of Katrina. Risk
Analysis: an International Journal 28(8), 779-799.

Hallegatte, S. (2014). Modeling the role of inventories and heterogeneity
in the assessment of the economic costs of natural disasters. Risk analysis
34(1), 152-167.

Harahap, F. A. U.; Siregar, R. N. I.; Sihotang, W. Y.; Nasution, A. N.
(2022). Drug Management On Availability Of Drugs In Pharmaceutical



Bibliography 179

Installations Pabatu General Hospital Pt Pmn Using Fifo & Fefo Meth-
ods. International Journal of Health and Pharmaceutical (IJHP) 3(1),
72-81.

Hearnshaw, E. J.; Wilson, M. M. (2013). A complex network approach
to supply chain network theory. International Journal of Operations &
Production Management .

Helfgott, A. (2018). Operationalising systemic resilience. European
Journal of Operational Research 268(3), 852-864.

Hollnagel, E.; Woods, D. D.; Leveson, N. (2006). Resilience engineering:
concepts and precepts. Ashgate Publishing, Ltd.

Holme, P. (2015). Modern temporal network theory: a colloquium. The
European Physical Journal B 88(9), 1-30.

Huang, B.; Wu, A. (2016). EOQ model with batch demand and planned
backorders. Applied Mathematical Modelling 40(9-10), 5482-5496.

Inderst, R. (2008). Single sourcing versus multiple sourcing. The Rand
journal of economics 39(1), 199-213.

Inoue, H.; Todo, Y. (2019). Firm-level propagation of shocks through
supply-chain networks. Nature Sustainability 2(9), 841-847.

Iribarren, J. L.; Moro, E. (2009). Impact of human activity patterns on
the dynamics of information diffusion. Physical review letters 103(3),
038702.

Ivanov, D. (2017). Simulation-based ripple effect modelling in the supply
chain. International Journal of Production Research 55(7), 2083-2101.

Jabbarzadeh, A.; Fahimnia, B.; Sheu, J.-B.; Moghadam, H. S. (2016).
Designing a supply chain resilient to major disruptions and supply/de-
mand interruptions. Transportation Research Part B: Methodological
94, 121-149.



Bibliography 180

Jayawardana, S.; Forman, R.; Johnston-Webber, C.; Campbell, A.;
Berterame, S.; de Joncheere, C.; Aitken, M.; Mossialos, E. (2021).
Global consumption of prescription opioid analgesics between 2009-2019:
a country-level observational study. EClinicalMedicine 42, 101198.

Jiang, B.; Prater, E. (2002). Distribution and logistics development
in China: the revolution has begun. International Journal of Physical
Distribution & Logistics Management 32(9), 783-798.

Jones, M. R.; Novitch, M. B.; Sarrafpour, S.; Ehrhardt, K. P.; Scott,
B. B.; Orhurhu, V.; Viswanath, O.; Kaye, A. D.; Gill, J.; Simopoulos,
T. T. (2019). Government legislation in response to the opioid epidemic.
Current pain and headache reports 23(6), 1-7.

Kali, R.; Reyes, J. (2010). Financial contagion on the international trade
network. FEconomic Inquiry 48(4), 1072-1101.

Kim, Y.; Chen, Y.-S.; Linderman, K. (2015). Supply network disruption
and resilience: a network structural perspective. Journal of operations
Management 33, 43-59.

Kim, Y.; Choi, T. Y.; Yan, T.; Dooley, K. (2011). Structural investiga-
tion of supply networks: a social network analysis approach. Journal of
Operations Management 29(3), 194-211.

Kito, T.; Brintrup, A.; New, S.; Reed-Tsochas, F. (2014). The structure
of the Toyota supply network: an empirical analysis. Said Business
School WP 3.

Klemm, K.; Eguiluz, V. M.; San Miguel, M. (2005). Scaling in the
structure of directory trees in a computer cluster. Physical review letters
95(12), 128701.

Ko, D. K.; Brandizzi, F. (2020). Network-based approaches for under-
standing gene regulation and function in plants. The Plant Journal
104(2), 302-317.



Bibliography 181

Lambiotte, R.; Rosvall, M.; Scholtes, I. (2019). From networks to op-
timal higher-order models of complex systems. Nature physics 15(4),
313-320.

Lan, Y.; Li, Y.; Papier, F. (2018). Competition and coordination in a
three-tier supply chain with differentiated channels. FEuropean Journal
of Operational Research 269(3), 870-882.

Latour, A. (2001). Trial by fire: a blaze in Albuquerque sets off major
crisis for cell-phone giants. Wall Street Journal 1(29), 2001.

Li, X.; Jin, Y. Y.; Chen, G. (2003). Complexity and synchronization of
the world trade web. Physica A: Statistical Mechanics and its Applica-
tions 328(1-2), 287-296.

Li, Y.; Zobel, C. W. (2020). Exploring supply chain network resilience
in the presence of the ripple effect. International Journal of Production
FEconomics , 107693.

Lorenz, J.; Battiston, S.; Schweitzer, F. (2009). Systemic risk in a uni-
fying framework for cascading processes on networks. The Furopean
Physical Journal B 71(4), 441.

Mangram, M. E. (2013). A simplified perspective of the Markowitz port-
folio theory. Global journal of business research 7(1), 59-70.

Martinez-Olvera, C.; Davizon-Castillo, Y. A.; Tozan, H.; Erturk, A.
(2015). Modeling the supply chain management creation of value—a
literature review of relevant concepts. Applications of Contemporary
Management Approaches in Supply Chains , 57-82.

Mattsson, C. E.; Takes, F. W. (2021). Trajectories through temporal
networks. Applied Network Science 6(1), 1-31.

Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon,
U. (2002). Network motifs: simple building blocks of complex networks.
Science 298(5594), 824-827.



Bibliography 182

Mizgier, K. J.; Jittner, M. P.; Wagner, S. M. (2013). Bottleneck iden-
tification in supply chain networks. International Journal of Production

Research 51(5), 1477-1490.

Paniccia, I. (1998). One, a hundred, thousands of industrial districts.
Organizational variety in local networks of small and medium-sized en-
terprises. Organization studies 19(4), 667-699.

Pathak, S. D.; Day, J. M.; Nair, A.; Sawaya, W. J.; Kristal, M. M.
(2007). Complexity and adaptivity in supply networks: building supply
network theory using a complex adaptive systems perspective. Decision
sciences 38(4), 547-580.

Peel, L.; Peixoto, T. P.; De Domenico, M. (2022). Statistical infer-
ence links data and theory in network science. Nature Communications
13(1), 1-15.

Peixoto, T. P.; Rosvall, M. (2017). Modelling sequences and temporal
networks with dynamic community structures. Nature communications
8(1), 1-12.

Perera, S.; Bell, M. G.; Bliemer, M. C. (2017a). Network science ap-
proach to modelling the topology and robustness of supply chain net-
works: a review and perspective. Applied network science 2(1), 1-25.

Perera, S.; Perera, H. N.; Kasthurirathna, D. (2017b). Structural char-
acteristics of complex supply chain networks. In: 2017 Moratuwa En-
gineering Research Conference (MERCon). IEEE, pp. 135-140.

Pero, M.; Abdelkafi, N.; Sianesi, A.; Blecker, T. (2010). A framework for
the alignment of new product development and supply chains. Supply

Chain Management: An International Journal .

Potter, A.; Wilhelm, M. (2020). Exploring supplier—supplier innova-
tions within the Toyota supply network: a supply network perspective.
Journal of Operations Management 66(7-8), 797-819.



Bibliography 183

Reisch, T.; Heiler, G.; Diem, C.; Klimek, P.; Thurner, S. (2022). Mon-
itoring supply networks from mobile phone data for estimating the sys-
temic risk of an economy. Scientific reports 12(1), 1-10.

Riccaboni, M.; Schiavo, S. (2010). Structure and growth of weighted
networks. New Journal of Physics 12(2), 023003.

Roukny, T.; Bersini, H.; Pirotte, H.; Caldarelli, G.; Battiston, S. (2013).
Default cascades in complex networks: topology and systemic risk. Sci-
entific reports 3(1), 1-8.

Scheibe, K. P.; Blackhurst, J. (2018). Supply chain disruption propaga-
tion: a systemic risk and normal accident theory perspective. Interna-
tional Journal of Production Research 56(1-2), 43-59.

Schmitt, A. J.; Sun, S. A.; Snyder, L. V.; Shen, Z.-J. M. (2015). Cent-
ralization versus decentralization: risk pooling, risk diversification, and

supply chain disruptions. Omega 52, 201-212.

Schoenherr, T. (2010). Outsourcing decisions in global supply chains: an
exploratory multi-country survey. International Journal of Production
Research 48(2), 343-378.

Scholtes, I. (2017). When is a network a network? multi-order graphical
model selection in pathways and temporal networks. In: Proceedings of
the 23rd ACM SIGKDD international conference on knowledge discovery
and data mining. pp. 1037-1046.

Scholtes, I.; pathpy contributors (2019). pathpy. https://www.pathpy.
net/. Python package version 2.2.0.

Scholtes, I.; Wider, N.; Garas, A. (2016). Higher-order aggregate net-
works in the analysis of temporal networks: path structures and cent-
ralities. The European Physical Journal B 89(3), 1-15.

Scholtes, I.; Wider, N.; Pfitzner, R.; Garas, A.; Tessone, C. J.; Sch-
weitzer, F. (2014). Causality-driven slow-down and speed-up of dif-
fusion in non-Markovian temporal networks. Nature communications
5(1), 1-9.


https://www.pathpy.net/
https://www.pathpy.net/

Bibliography 184

Schueller, W.; Diem, C.; Hinterplattner, M.; Stangl, J.; Conrady, B.;
Gerschberger, M.; Thurner, S. (2022). Propagation of disruptions in
supply networks of essential goods: a population-centered perspective of
systemic risk. arXiv preprint arXiv:2201.13525 .

Schwartz, F.; VoB, S. (2007). Distribution network design with post-
ponement. Wirtschaftinformatik Proceedings 2007 , 78.

Schweitzer, F. (2020). The law of proportionate growth and its sib-
lings: applications in agent-based modeling of socio-economic systems.
In: Complezity, Heterogeneity, and the Methods of Statistical Physics in
Economics, Springer. pp. 145-176.

Schweitzer, F. (2022a). Agents Networks Evolution: a quarter century

of advances in complex systems.

Schweitzer, F. (2022b). Group relations, resilience and the I Ching.
Physica A: Statistical Mechanics and its Applications , 127630.

Schweitzer, F.; Casiraghi, G.; Tomasello, M. V.; Garcia, D. (2021). Fra-
gile, yet resilient: adaptive decline in a collaboration network of firms.
Frontiers in Applied Mathematics and Statistics 7, 634006.

Shukla, A.; Agarwal Lalit, V.; Venkatasubramanian, V. (2011). Optim-
izing efficiency-robustness trade-offs in supply chain design under uncer-
tainty due to disruptions. International journal of physical distribution
& logistics management 41(6), 623-647.

SLCG (2019). Opioid Data. https://www.slcg.com/opioid-data.

Squartini, T.; Van Lelyveld, I.; Garlaschelli, D. (2013). Early-warning
signals of topological collapse in interbank networks. Scientific reports
3, 3357.

Sterman, J. (2010). Business dynamics. Irwin/McGraw-Hill.

Sutton, J. (2002). The variance of firm growth rates: the “scaling”
puzzle. Physica a: statistical mechanics and its applications 312(3-4),
577-590.


https://www.slcg.com/opioid-data

Bibliography 185

Tomasello, M. V.; Perra, N.; Tessone, C. J.; Karsai, M.; Schweitzer,
F. (2014). The role of endogenous and exogenous mechanisms in the
formation of R&D networks. Scientific reports 4(1), 1-12.

Tomlin, B. (2006). On the value of mitigation and contingency strategies
for managing supply chain disruption risks. Management science 52(5),
639-657.

Treiblmaier, H. (2018). Optimal levels of (de) centralization for resilient
supply chains. The International Journal of Logistics Management .

Turnquist, M.; Vugrin, E. (2013). Design for resilience in infrastructure
distribution networks. Environment Systems & Decisions 33, 104-120.

Vaccario, G.; Verginer, L.; Schweitzer, F. (2020). The mobility network
of scientists: analyzing temporal correlations in scientific careers. Ap-
plied Network Science 5(1), 1-14.

Volkow, N. D. (2014). America’s addiction to opioids: heroin and pre-
scription drug abuse. Senate Caucus on International Narcotics Control
14.

Vujanac, R.; Miloradovic, N.; Vulovic, S. (2016). Dynamic storage sys-
tems. Annals of the Faculty of Engineering Hunedoara 14(1), 79.

Wang, G.; Gunasekaran, A.; Ngai, E. W. (2018). Distribution network
design with big data: model and analysis. Annals of Operations Research
270(1), 539-551.

Washington Post Investigative (2019). ARCOS API. https://github.
com/wpinvestigative/arcos-api.

Whalen, J. (2018). Purdue Pharma to stop promoting OxyContin to US
doctors. The Wall Street Journal .

Wichmann, P.; Brintrup, A.; Baker, S.; Woodall, P.; McFarlane, D.
(2018). Towards automatically generating supply chain maps from nat-
ural language text. IFAC-PapersOnLine 51(11), 1726-1731.


https://github.com/wpinvestigative/arcos-api
https://github.com/wpinvestigative/arcos-api

Bibliography 186

Wiedmer, R.; Griffis, S. E. (2021). Structural characteristics of complex
supply chain networks. Journal of Business Logistics 42(2), 264-290.

Wrycisk, C.; McKelvey, B.; Hiilsmann, M. (2008). “Smart parts” sup-
ply networks as complex adaptive systems: analysis and implications.
International Journal of Physical Distribution & Logistics Management

Wynarczyk, P.; Watson, R. (2005). Firm growth and supply chain part-
nerships: an empirical analysis of UK SME subcontractors. Small Busi-
ness Economics 24(1), 39-51.

Yadav, A. S.; Sharma, V.; Agarwal, P.; Swami, A.; Yadav, P. K. (2021).
Pharmaceutical drug two-warehouse inventory model under FIFO dis-
patching policy using ant colony optimization for travelling salesman
problem. Linguistics and Culture Review 5(S2), 1148-1171.

Zhao, K.; Kumar, A.; Yen, J. (2010). Achieving high robustness in
supply distribution networks by rewiring. IEEE Transactions on Engin-
eering Management 58(2), 347-362.

Zhou, H.; de Wit, G. (2009). Determinants and dimensions of firm
growth. SCALES EIM Research Reports (H200903) .

Zimmermann, R.; Ferreira, L. M. D.; Moreira, A. C. (2016). The influ-
ence of supply chain on the innovation process: a systematic literature
review. Supply Chain Management: An International Journal .



Appendix

187



Appendix A

Supplementary Material to

Chapter 2

Business Activities

RESEARCHER (II-V)
CENTRAL FILL PHARMACY
CHEMICAL EXPORTER
CHAIN PHARMACY
HOSP/CLINIC-VA
MLP-OPTOMETRIST
MLP-ANIMAL SHELTER
IMPORTER

MLP-NURSE PRACTITIONER
M/O PHARMACY

CHEMICAL MANUFACTURER
COMPOUND/DETOX
HOSPITAL/CLINIC
CHEMICAL DISTRIBUTOR
MAINT DETOX
MLP-EUTHANASIA TECHNICIAN
PRACTITIONER-DW/30
DISTRIBUTOR

MLP-MILITARY

REVERSE DISTRIB
MLP-NATUROPATHIC PHYSICIAN
MLP-AMBULANCE SERVICE
DETOXIFICATION

MLP-NURSE PRACTITIONER-DW /100
PHARMACY - FED

EXPORTER

CHEMPACK/SNS DISTRIBUTOR
MLP-DEPT OF STATE

MLP-NURSE PRACTITIONER-DW/30
MLP-PHYSICIAN ASSISTANT-DW /30
MLP-PHYSICIAN ASSISTANT
MLP-PHYSICIAN ASSISTANT-DW /100
RETAIL PHARMACY
PRACTITIONER-DW /275

TEACHING INSTITUTION

CANINE HANDLER

PHARMACY- MIL
PRACTITIONER-DW/100
HOSP/CLINIC FED

MANUF (BULK)

HOSP/CLINIC- MIL
MLP-REGISTERED PHARMACIST
PRACTITIONER-MILITARY
PRACTITIONER

ANALYTICAL LAB

RESEARCHER (T)

MAINTENANCE

CHAIN HOSP/CLINIC
COMP/MAINT/DETOX
MLP-NURSING HOME
COMPOUND/MAINT

AUTOMATED DISPENSING SYSTEM
MANUFACTURER

IMPORTER (C 1,IT)

Table A.1: Business activities listed in the ARCOS dataset. We group them into three
categories: manufacturers, distributors, and “consumers”. The consumers are those
who only receive goods and are not classified as either manufacturers or distributors.
Importers and exporters are not included in our analysis since they only appear in
less than 0.01% of the transactions.
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Hydrocodone Oxycodone

ndc count (%) ‘ ndc count (%)
00406035705 10,910,767 0.062 | 00406051201 6,232,985 0.059
00591034905 6,812,588  0.039 | 00406055201 4,471,392  0.042
00406036601 5,999,312  0.034 | 00406052301 4,100,955 0.038
00406035801 4,775,253 0.027 | 60951071270 3,995,670  0.037
00406036701 4,550,834 0.026 | 00591093201 3,667,308  0.034
00406036501 4,448,582  0.025 | 59011042010 2,526,600 0.023
00406036301 4,061,444 0.023 | 00406853001 2,494,118 0.023
00591320201 4,053,442  0.023 | 10702005601 2,449,938 0.023
00591054005 3,913,581  0.022 | 00406052201 2,370,002 0.022
00591085305 3,749,532  0.021 | 00406051205 2,347,109 0.022
53014054867 3,569,557  0.020 | 59011044010 2,233,023  0.021
00591320301 3,353,134  0.019 | 00591093301 2,212,098 0.020
00591038505 3,325,400 0.019 | 59011010510 2,120,228 0.020
00591038705 3,322,107  0.019 | 00406851501 1,993,107 0.018
00406036001 3,284,559  0.018 | 59011010310 1,911,144 0.018
00603388721 3,193,247  0.018 | 53746020401 1,855,454  0.017
00406036005 3,127,428 0.017 | 59011041010 1,839,704 0.017
00406036101 3,103,683 0.017 | 59011048010 1,831,662 0.017
00603129558 2,747,435 0.015 | 59011010710 1,820,031 0.017
00603388728 2,491,943 0.014 | 00228287911 1,525,280 0.014
53746010901 2,480,188 0.014 | 00591082501 1,505,802 0.014
00472103016 2,381,028 0.013 | 00228287811 1,435,455 0.013
00406036705 2,354,949  0.013 | 60951079770 1,424,639 0.013
00406036201 2,354,279  0.013 | 60951070070 1,399,898 0.013
00093516101 2,292,773  0.013 | 00591074905 1,386,795 0.013
00406035805 2,237,094 0.012 | 00603499121 1,258,779  0.011
00591050301 2,094,122  0.012 | 52152021402 1,239,981 0.011
60432045516 2,035,496 0.011 | 59011043010 1,210,664 0.011
00603389021 2,034,056  0.011 | 59011010010 1,171,686 0.011
00603389121 1,957,034 0.011 | 00603499221 1,152,195 0.010
00591054001 1,915,460 0.010 | 10702001801 1,143,682  0.010
53746014501 1,817,595 0.010 | 52152021502 1,111,036  0.010
62175049064 1,805,494 0.010 | 59011046010 1,060,151  0.010
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00121065516 1,718,466  0.009 | 00603499021 996,659  0.009
00406035701 1,641,846  0.009 | 00603499821 932,652  0.008
00591085301 1,568,519  0.009 | 00591082401 904,828 0.008
62037052401 1,455,052  0.008 | 00406051262 851,748  0.008
00591038501 1,429,288 0.008 | 00406055401 783,627  0.007
00603388821 1,417,980 0.008 | 53746020301 782,929  0.007
00591050305 1,264,323  0.007 | 63481062970 764,743  0.007
00591261205 1,108,056  0.006 | 60951060270 707,572 0.006
00603388732 1,107,293  0.006 | 10702005701 690,618  0.006
50383004316 1,084,475 0.006 | 58177004104 684,372 0.006
00603388128 1,083,364 0.006 | 00406058201 632,841  0.006
49884023533 1,079,695 0.006 | 57664022388 613,833  0.005
00406036505 1,066,333  0.006 | 00406053201 588,304 0.005
00406035901 1,041,860 0.005 | 00406055262 586,295 0.005

00406036305 981,502  0.005 | 60951079670 579,048  0.005
00074197314 849,987  0.004 | 00093003101 573,648 0.005
00591038701 849,143  0.004 | 00054368663 559,198  0.005
53746011001 844,058 0.004 | 10702000801 558,788  0.005
00603389128 825,323  0.004 | 10702000901 557,748  0.005
58177088107 776,063 0.004 | 63481062370 542,343  0.005
64376064801 744,735 0.004 | 00093003201 527,752 0.005
00603389028 716,042 0.004 | 68382079401 517,357 0.004
53746011005 709,098 0.004 | 00093003301 516,448  0.004
00591034901 699,897  0.004 | 00228298311 488,727 0.004
58177087707 665,867 0.003 | 00054465025 436,924  0.004
00591038801 655,307  0.003 | 59011041510 432,445  0.004
00591320205 653,703  0.003 | 59011086010 431,103  0.004

Tot 140,590,671 0.81 ‘ 87,741,121 0.83

Table A.2: List of the top 60 Hydrocodone (left side) and Oxycodone (right side)
products ranked by the number of transactions, along with the total number of
transactions reported in both absolute and percentage values. These 60 products
constitute approximately 80% of the total number of transactions for both opioids



Appendix B

Supplementary Material to
Chapter 3

Hydrocodone Oxycodone
» 40 A = en ] — ingi
c /x 2 60 m.d'rECt
o o —— Direct
= 30 =
1S £ 40
; — Indirect ;
é 20 A — Direct §
" " 20 A
g 101 £
© ©
— —
O o4 O 0
T T T T T T T T T T T T T T T T T T
2006 2007 2008 2009 2010 2011 2012 2013 2014 2006 2007 2008 2009 2010 2011 2012 2013 2014

Figure B.1: The red line on the chart shows the annual volume of Hydrocodone (left)
and Oxycodone (right) drugs supplied to consumers through the distribution network
(indirect process). In comparison, the blue line represents the volume of these drugs
sold directly from manufacturers to consumers without the use of a distribution
network. The majority of the volume is seen to pass through the distribution network.
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Figure B.2: The figure shows the in-degree and out-degree distributions of nodes that
lost a link in the empirical case (represented by the blue line) and in the random
model (represented by the red line). As we discussed in Chapter 3, there are no
significant differences between the empirical data and the simulation data points.
We have confirmed this using a KS-test, and the results are reported in the table
below.

Distribution ‘ D(KS) p-—value

0.016 0.087
0.021 0.010

In-degree
Out-degree

Table B.1: Results from the KS-test that estimates the similarity between the (in
and out) degree distributions of the nodes that lost a link in the empirical case and
under the random model.
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Markovian transition matrix under supply substitution. In condition of per-
fect substitution we assume that the order placed by two interacting firms, ¢
and j are independent. Specifically, we assume that the orders placed by i to
j are indipendent from the the orders place by j to k, i.e., P(i = j — k) =
P(i — j)P(j — k). Assuming such independency of the orders, we obtain for
the second-order Markovian transition matrix :

T(Q)Mkv(m)(j’k) o< T, 5T, (C.1)

where T{; ;) indicates the probability that ¢ places orders to j and T{; ;) indic-

T(Q)Mkv

ates the probability that j places orders to k. To make row-stochastic

T(2)Mkv

matrix, as , we have to normalize it. We write T(Q)Mkv(i_j)(jyk) =

AT T,y and we compute the normalizing constant:

Mkv
D TN G Gk = 1= AT Y Tim (C2)
(k) R
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Tigy 22 Tk
(4,k)
and hence, we have
T, .
T(2)Mkv(, NGE) = B C1) Tiim (C.4)
,5) (4, Z(j,k:) Ton) 7,

From Eq. (C.4), we notice that the element T(Q)Mk"(i7j)(j7k) does not contain
information on the node ¢. In other words, the orders placed by ¢ to k, via j,
do not depends on 4, but only on the orders placed by j to k, i.e., T{; ). @ has
relaxed its preferences towards supplier k& aligning them to its intermediary
firm j.
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Density of the Oxycodone and Hydrocodone distribution
networks in the nine-year observation period.

Mean value, standard deviation, third and fourth moment
of the out-degree and in-degree distributions for the Oxy-
codone and Hydrocodone distribution networks. .

Distances, D(KS), and p—values obtained form the KS-test
that compares the out and in-degree distributions: (i) in the
first year and in the peak year; (i) and in the last year and
in the peak year.
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3.4

4.1

5.1

6.1

6.2

7.1

7.2

Results from the KS-test evaluating the similarity between
the degree distributions of nodes leaving the network in the
empirical case and in the random model.

Pearson coefficients and the Kendall-Tau rank correlation
coefficients, along with the corresponding p-values, which
resulted from comparing the static centrality ranking with
the one that incorporates the observed flow. As a test case
for the comparison, we use the distribution network of Oxy-
codone drugs. .

Name, dea-number of the top six opioid manufacturers, as
well as the number of nodes in the distribution networks
reconstructed, the optimal parameters (o, ¢s, ¢;), and the
fitting score..

On the right: Optimal parameter values (u and b) resulted
from the Gaussian and Laplacian fit the empirical growth
rates. On the left: distances and p-values from the KS-test
compare the similarity between the theoretical and empir-
ical distributions. .

Results from the OLS regressions. The coefficients with p-
values smaller than 0.01 are reported in bold character. .

p-values obtained from the KS-test that compare the stat-
istical similarity of P(g) in different years. Not all the years
of observation appear in this Table, but only the ones for
which a p-values > 0.01 has been obtained.

On the left side: mean, standard deviation, skewness, and
kurtosis of three distributions of growth rates: empirical
(first row), simulated with k = k°Pt (second row); simulated
with & = 1 (third row]). On the right side: distances and
p-values obtained from the KS-test between empirical dis-
tribution and simulated ones.
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8.1

A1

A2

B.1

Name, production (product units), city, and dea-number of
the top 20 opioid (Oxycodone) producers in 2008.

Business activities listed in the arcos dataset. We group
them into three categories: manufacturers, distributors,
and “consumers”. The consumers are those who only re-
ceive goods and are not classified as either manufacturers
or distributors. Importers and exporters are not included
in our analysis since they only appear in less than 0.01% of
the transactions. .

List of the top 60 Hydrocodone (left side) and Oxycodone
(right side) products ranked by the number of transactions,
along with the total number of transactions reported in both
absolute and percentage values. These 60 products consti-
tute approximately 80% of the total number of transactions
for both opioids

Results from the KS-test that estimates the similarity
between the (in and out) degree distributions of the nodes
that lost a link in the empirical case and under the random
model..
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