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Abstract
TheMaxCut problem asks for the sizemc(𝐺) of a largest
cut in a graph 𝐺. It is well known thatmc(𝐺) ⩾ 𝑚∕2 for
any 𝑚-edge graph 𝐺, and the difference mc(𝐺) − 𝑚∕2

is called the surplus of 𝐺. The study of the surplus of
𝐻-free graphs was initiated by Erdős and Lovász in the
70s, who, in particular, asked what happens for triangle-
free graphs. This was famously resolved by Alon, who
showed that in the triangle-free case the surplus is
Ω(𝑚4∕5), and found constructions matching this bound.
We prove several new results in this area.
(i) Confirming a conjecture of Alon, Krivelevich and

Sudakov, we show that for every fixed odd 𝑟 ⩾

3, any 𝐶𝑟-free graph with 𝑚 edges has surplus
Ω𝑟(𝑚

𝑟+1
𝑟+2 ). This is tight, as is shown by a construc-

tion of pseudo-random 𝐶𝑟-free graphs due to Alon
and Kahale. It improves previous results of sev-
eral researchers, and complements a result of Alon,
Krivelevich and Sudakov which is the same bound
when 𝑟 is even.

(ii) Generalising the result of Alon, we allow the graph
to have triangles, and show that if the number of
triangles is a bit less than in a random graph with
the same density, then the graph has large surplus.
For regular graphs, our bounds on the surplus are
sharp.

(iii) We prove that an 𝑛-vertex graph with few copies of
𝐾𝑟 and average degree𝑑 has surplusΩ𝑟(𝑑

𝑟−1∕𝑛𝑟−3),
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442 GLOCK et al.

which is tight when 𝑑 is close to 𝑛 provided that
a conjectured dense pseudo-random 𝐾𝑟-free graph
exists. This result is used to improve the best known
lower bound (as a function of 𝑚) on the surplus of
𝐾𝑟-free graphs.

Our proofs combine techniques from semi-definite pro-
gramming, probabilistic reasoning, as well as combina-
torial and spectral arguments.

MSC 2020
05C35 (primary)

1 INTRODUCTION

MaxCut is a central problem in discrete mathematics and theoretical computer science. Given a
graph 𝐺, a cut is a partition of the vertex set into two parts, and its size is the number of edges
going across. The aim is to determine the maximum size of a cut, denoted here by mc(𝐺). This
problemhas received a lot of attention in the last 50 years, both from an algorithmic perspective in
theoretical computer science, where the aim is to approximatemc(𝐺) well for a given graph, and
from an extremal perspective in combinatorics, where we are mainly interested in good bounds
onmc(𝐺) in terms of the number of vertices and/or edges of 𝐺.
A folklore observation is that every graph with𝑚 edges has a cut of size at least𝑚∕2. This can

be easily seen using a probabilistic argument, or a greedy algorithm. Therefore, it is a fundamental
question by how much this trivial bound can be improved. Since it was already demonstrated by
Erdős [11] in the 60s that the factor 1∕2 cannot be improved in general, even if we consider very
restricted families such as graphs of large girth, the natural parameterisation is to consider the so-
called surplus of a graph 𝐺, denoted as sp(𝐺), which is the difference mc(𝐺) − 𝑚

2
of the optimal

cut size to the greedy bound. By a classical result of Edwards [9, 10], every graph 𝐺 with𝑚 edges
has surplus

sp(𝐺) ⩾

√
8𝑚 + 1 − 1

8
, (1.1)

and this is tight whenever 𝐺 is a complete graph with an odd number of vertices.
Although the bound Ω(

√
𝑚) on the surplus is optimal in general, it can be significantly

improved for graphs that are ‘far’ from complete. One natural way to enforce this is to forbid the
containment of a fixed subgraph. The study of MaxCut in 𝐻-free graphs was initiated by Erdős
and Lovász (see [12]) in the 70s, and has received significant attention since then (e.g. [2, 3, 5, 6, 14,
21, 22, 24]). For a graph 𝐻, define sp(𝑚,𝐻) as the minimum surplus sp(𝐺) = mc(𝐺) − 𝑚∕2 over
all 𝐻-free graphs 𝐺 with𝑚 edges.
It was shown in [3] that for every fixed graph 𝐻, there exist constants 𝜖 = 𝜖(𝐻) > 0 and

𝑐 = 𝑐(𝐻) > 0 such that sp(𝑚,𝐻) ⩾ 𝑐𝑚1∕2+𝜖 for all 𝑚. This demonstrates that the surplus of
𝐻-free graphs is significantly larger than the bound (1.1) in Edwards’ theorem. Perhaps, the
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 443

main conjecture in the area, due to Alon, Bollobás, Krivelevich and Sudakov [3], is that the
constant 1∕2 in the aforementioned result can be replaced with 3∕4, which would be optimal as
can be seen by considering a random graph with edge probability 𝑝 = 𝑛−𝛿 for some arbitrarily
small 𝛿 > 0 and 𝐻 = 𝐾𝑟 sufficiently large. This conjecture is still wide open. In fact, we do
not even know whether there exists a constant 𝛼 > 1∕2 such that uniformly for all 𝐻, we have
sp(𝑚,𝐻) ⩾ 𝑐𝐻𝑚𝛼, where 𝑐𝐻 > 0may depend on𝐻.
An even more ambitious problem, first explicitly posed in [5], is to determine the asymptotic

growth rate of sp(𝑚,𝐻) for every fixed graph𝐻. However, results of the type sp(𝑚,𝐻) = Θ(𝑚𝑞𝐻)

for some constant 𝑞𝐻 depending only on 𝐻 are still very rare. The case when 𝐻 is a triangle has
received particularly much attention. Erdős and Lovász (see [12]) firstly showed that sp(𝑚,𝐾3) =

Ω(𝑚2∕3(log𝑚∕ log log𝑚)1∕3). They also noted that it seems unclear what the correct exponent of
𝑚 should be, even in this elementary case, which testifies about the difficulty of the problem. The
logarithmic factor was later improved by Poljak and Tuza [21]. Shearer [22] proved an important
bound on the surplus of any triangle-free graph 𝐺 showing that

sp(𝐺) = Ω

( ∑
𝑣∈𝑉(𝐺)

√
𝑑𝐺(𝑣)

)
. (1.2)

This bound is tight in general and implies that sp(𝑚,𝐾3) = Ω(𝑚3∕4). Finally, Alon [2] proved that
sp(𝑚,𝐾3) = Θ(𝑚4∕5). His result is exemplary for many of the challenges and developed methods
in the area.
Our contribution in this paper is threefold. Firstly, we determine 𝑞𝐻 for all odd cycles, which

improves earlier results of several researchers and adds to the lacunary list of graphs for which
𝑞𝐻 is known. Secondly, we extend the result of Alon in the sense that we prove optimal bounds
on the surplus of general graphs in terms of the number of triangles they contain. Thirdly, we
study the surplus of graphs with few cliques of size 𝑟 and improve the currently best bounds for
𝐾𝑟-free graphs.

1.1 Cycles of odd length

The study of MaxCut in graphs without short cycles goes back to the work of Erdős and
Lovász (see [12]). Motivated by one of their conjectures, Alon, Bollobás, Krivelevich and
Sudakov [3] showed that𝑚-edge graphs not containing any cycle of length at most 𝑟 have surplus
Ω𝑟(𝑚

(𝑟+1)∕(𝑟+2)). Later, Alon, Krivelevich and Sudakov [5] proved that

sp(𝑚, 𝐶𝑟) = Ω𝑟

(
𝑚(𝑟+1)∕(𝑟+2)

)
(1.3)

for all even 𝑟. They also conjectured that this bound is tight. It is well known (see, e.g. [2, 8, 17])
that if a graph 𝐺 has the smallest eigenvalue 𝜆min, then

sp(𝐺) ⩽ |𝜆min||𝐺|∕4. (1.4)

In fact, essentially all known extremal examples for the MaxCut problem of 𝐻-free graphs
come from (𝑛, 𝑑, 𝜆)-graphs (i.e. 𝑛-vertex 𝑑-regular graphs where each nontrivial eigenvalue has
absolute value at most 𝜆). For instance, the well-known Erdős–Rényi graphs [13] are 𝐶4-free
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444 GLOCK et al.

(𝑛, 𝑑, 𝜆)-graphs with 𝑑 = Θ(
√

𝑛) and 𝜆 = 𝑂(
√

𝑑), which arise as polarity graphs of finite pro-
jective planes. By (1.4), these graphs have surplus at most 𝑂(𝜆𝑛) = 𝑂((𝑛𝑑)5∕6), which shows the
optimality of the bound (1.3) in the case 𝑟 = 4. Similar constructions work in the cases 𝑟 ∈ {6, 10}

(see [5] for more details). However, showing the tightness of (1.3) in general is probably very
hard since it seems to go hand in hand with the construction of extremal examples for the Turán
problem of even cycles.
Another obvious problem left open by the work of Alon, Krivelevich and Sudakov [5] is to con-

sider odd cycles. In fact, Alon, Krivelevich and Sudakov [5] write that it seems plausible that (1.3)
holds for odd cycles too. One advantage here is that the conjectured extremal examples are already
known. Indeed, the construction of triangle-free dense pseudo-randomgraphs due toAlon [1] gen-
eralises to longer odd cycles, as was observed byAlon andKahale [4] (see also [16]). This yields, for
every fixed odd 𝑟, 𝐶𝑟-free (𝑛, 𝑑, 𝜆)-graphs with 𝑑 = Θ(𝑛2∕𝑟) and 𝜆 = 𝑂(

√
𝑑). By (1.4), these graphs

have surplus at most 𝑂(𝜆𝑛) = 𝑂((𝑛𝑑)(𝑟+1)∕(𝑟+2)), which shows that (1.3) would be optimal for all
odd 𝑟. Regarding this problem, Zeng andHou [24] showed that sp(𝑚, 𝐶𝑟) ⩾ 𝑚(𝑟+1)∕(𝑟+3)+𝑜(1) for all
odd 𝑟, and very recently, Fox,Himwich andMani [14] improved the surplus toΩ𝑟(𝑚

(𝑟+5)∕(𝑟+7)).We
settle this problem completely by proving the following tight result, which confirms the conjecture
of Alon, Krivelevich and Sudakov [5].

Theorem 1.1. For odd 𝑟 ⩾ 3, there is a constant 𝛼𝑟 > 0 such that any 𝐶𝑟-free graph with 𝑚 edges
has a cut of size at least𝑚∕2 + 𝛼𝑟 ⋅𝑚

(𝑟+1)∕(𝑟+2). This is tight up to the value of 𝛼𝑟.

1.2 Few triangles

Shearer’s bound (1.2) implies that any triangle-free 𝑑-degenerate graph with 𝑚 edges has sur-
plus Ω(𝑚∕

√
𝑑). In his proof of sp(𝑚,𝐾3) = Ω(𝑚4∕5), Alon [2] combined this estimate with an

additional argument which shows that a triangle-free graph with average degree 𝑑 has surplus
Ω(𝑑2). This supersedes Shearer’s result when 𝑑 is larger than roughly 𝑚2∕5. It is natural to ask
what happens with both bounds if we do not insist that the graph is triangle-free, but only has
few triangles.
Alon, Krivelevich and Sudakov [5] proved an extension of Shearer’s bound (1.2) to graphs with

few triangles. They showed that if every vertex 𝑣 ∈ 𝑉(𝐺) is contained in 𝑜(𝑑𝐺(𝑣)
3∕2) triangles, then

(1.2) remains true. Their motivation was to use this as a tool to study the surplus of𝐻-free graphs
when𝐻 is an even cycle or a small complete bipartite graph, since then neighbourhoods are sparse
and hence every vertex is contained in few triangles. Recently, Carlson, Kolla, Li, Mani, Sudakov
and Trevisan [6] showed that the local assumption can be relaxed to a global condition, namely
any 𝑑-degenerate graph with𝑚 edges and 𝑂(𝑚

√
𝑑) triangles has surplus Ω(𝑚∕

√
𝑑). Their proof

is based on a probabilistic rounding of the solution of the semi-definite programming relaxation
of MaxCut. This is one of our main tools too, and we will discuss it in more detail in Section 2.
While the above extends Shearer’s bound to graphs with few triangles, it is also natural to ask

how Alon’s second bound, the surplusΩ(𝑑2), is affected when we allow triangles. We answer this
question, proving that if 𝐺 has less triangles than a random graph of the same average degree, it
has large surplus.

Theorem 1.2. Let 𝐺 be a graph with average degree 𝑑 and less than (1 − 𝜖)𝑑3∕6 triangles, for some
𝜖 > 0. Then 𝐺 has surplusΩ𝜖(𝑑

2).
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 445

In the case of regular graphs, we obtain even amuch sharper result, which expresses the surplus
as a function of the order, degree and number of triangles of the graph.

Theorem 1.3. Let 𝐺 be a 𝑑-regular graph with 𝑛 vertices and 𝑑3∕6 + 𝑠 triangles, where 𝑑 ⩽ 𝑛∕2.

∙ If 𝑠 < −𝑛𝑑3∕2, then 𝐺 has surplusΩ(
|𝑠|
𝑑
).

∙ If −𝑛𝑑3∕2 ⩽ 𝑠 ⩽ 𝑛𝑑3∕2, then 𝐺 has surplusΩ(𝑛𝑑1∕2).
∙ If 𝑠 > 𝑛𝑑3∕2, then 𝐺 has surplusΩ(𝑛

2𝑑2

𝑠
).

The bounds given here are tight for all strongly regular graphs that attain the respective param-
eters (see Theorem 2.4 for the exact statement). Also, after a simple modification of the proof of
Theorem 1.3, the condition 𝑑 ⩽ 𝑛∕2 can be replaced by 𝑑 ⩽ (1 − 𝜖)𝑛 for any positive constant 𝜖.
We remark that the conclusion of Theorem 1.3 is no longer true if we only assume that the average
degree of 𝐺 is 𝑑, rather than that it is 𝑑-regular. To see this, take, for example, 𝐺 to be the graph
which is the union of a random graph with 𝑛4∕5 vertices and density 𝑛−2∕5 and an empty graph on
𝑛 − 𝑛4∕5 vertices. It is not hard to see that with high probability,𝐺 has average degree 𝑑 = Θ(𝑛1∕5),
the number of triangles in 𝐺 is 𝑡(𝐺) = Θ(𝑛6∕5), but the surplus is onlyΘ(𝑛) rather thanΩ(𝑛𝑑1∕2).

1.3 Cliques

Recall the conjecture of Alon, Bollobás, Krivelevich and Sudakov [3] that for every graph𝐻, there
exist constants 𝜖 = 𝜖(𝐻) > 0 and 𝑐 = 𝑐(𝐻) > 0 such that sp(𝑚,𝐻) ⩾ 𝑐𝑚3∕4+𝜖 for all𝑚. Clearly, it
suffices to prove this conjecture for cliques. Carlson et al. [6] speculated that the following ana-
logue of Shearer’s bound should hold for 𝐾𝑟-free graphs, and proved that this would imply the
conjecture of Alon, Bollobás, Krivelevich and Sudakov.

Conjecture 1.4 [6]. For every fixed 𝑟 ⩾ 3, any 𝐾𝑟-free 𝑑-degenerate graph with𝑚 edges has surplus
Ω𝑟(𝑚∕

√
𝑑).

They also proved a weakening of this conjecture, namely the lower bound Ω𝑟(𝑚∕𝑑1−1∕(2𝑟−4)).
We improve this bound slightly. It would be very interesting to obtain a version of this result where
the exponent of 𝑑 is bounded by a constant smaller than 1 uniformly for all 𝑟.

Theorem 1.5. For every fixed 𝑟 ⩾ 3, any 𝐾𝑟-free 𝑑-degenerate graph with 𝑚 edges has surplus
Ω𝑟(𝑚∕𝑑1−1∕(𝑟−1)).

As discussed in Section 1.1, essentially all known extremal constructions for MaxCut in𝐻-free
graphs are dense pseudo-random graphs. Motivated by this observation, one can even make a
more precise guess for sp(𝑚,𝐾𝑟). However, the construction of dense pseudo-random 𝐾𝑟-free
graphs is a major open problem in its own right. Sudakov, Szabó and Vu [23] raised the ques-
tion whether, for fixed 𝑟 ⩾ 3, there exist 𝐾𝑟-free (𝑛, 𝑑, 𝜆)-graphs with 𝑑 = Ω(𝑛1−1∕(2𝑟−3)) and 𝜆 =

𝑂(
√

𝑑). It has been proved that this would have striking consequences for off-diagonal Ramsey
numbers [18]. Speculating that such graphs do exist, this would via (1.4) imply that

sp(𝑚,𝐾𝑟) = 𝑂

(
𝑚

1− 1
4+1∕(𝑟−2)

)
. (1.5)
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446 GLOCK et al.

Perhaps, this gives the correct answer. Note that Conjecture 1.4 would provide thematching lower
bound as long as 𝑑 = 𝑂(𝑛1−1∕(2𝑟−3)), that is, in the ‘sparse’ case, when the density is smaller than
that of the speculative extremal examples. We prove a result that complements this in the ‘dense’
regime, analogous to Alon’s Ω(𝑑2) surplus for triangle-free graphs.

Theorem 1.6. For every fixed 𝑟 ⩾ 3, any 𝐾𝑟-free 𝑛-vertex graph with average degree 𝑑 has surplus
Ω𝑟(𝑑

𝑟−1∕𝑛𝑟−3).

For 𝑑 = Ω(𝑛1−1∕(2𝑟−3)), the implied surplus is at least Ω𝑟((𝑛𝑑)
1− 1

4+1∕(𝑟−2) ). Hence, if Conjec-
ture 1.4 is true, then combining it with Theorem 1.6 similar as in Alon’s result, we could deduce

that indeed sp(𝑚,𝐾𝑟) = Ω𝑟(𝑚
1− 1

4+1∕(𝑟−2) ), matching the speculative upper bound in (1.5). Using
Theorem 1.5 instead of Conjecture 1.4, we still improve the current best known lower bound
sp(𝑚,𝐾𝑟) = Ω𝑟(𝑚

1
2
+ 1

4𝑟−8 ), due to Carlson et al. [6].

Theorem 1.7. For every 𝑟 ⩾ 3, any 𝐾𝑟-free graph with𝑚 edges has surplusΩ𝑟(𝑚
1
2
+ 3

4𝑟−2 ).

In fact, we will establish Theorem 1.6 in the stronger form that it is sufficient that the number
of 𝑟-cliques is smaller than in a random graph of the same density. This generalises Theorem 1.2.

Theorem 1.8. For any integer 𝑟 ⩾ 3 and any 𝜖 > 0, there exists a positive constant 𝑐 = 𝑐(𝑟, 𝜖) such
that the following holds. If 𝐺 is a graph on 𝑛 vertices with average degree 𝑑 which has at most (1 −

𝜖)𝑛
𝑟

𝑟!
(𝑑∕𝑛)(

𝑟
2) copies of 𝐾𝑟, then 𝐺 has surplus at least 𝑐𝑑𝑟−1∕𝑛𝑟−3.

Finally, we remark that Theorems 1.2, 1.3 and 1.6 generalise results of Nikiforov [19, 20]. In
[19], he proved that the smallest eigenvalue of a 𝐾𝑟-free 𝑛-vertex graph with average degree 𝑑 has
absolute value Ω𝑟(𝑑

𝑟−1∕𝑛𝑟−2). This also follows from Theorem 1.6 and (1.4). However, a lower
bound on MaxCut is stronger than a bound on 𝜆min because the converse of (1.4) is not true.
Theorem 1.8 shows that the conclusion ofNikiforov’s theorem remains true even ifwe only require
that there are ‘few’ copies of 𝐾𝑟. Nikiforov also proved [20] that an 𝑛-vertex graph with average
degree 𝑑 and at most (1 − 𝜖)𝑑3∕6 triangles has |𝜆min| = Ω(𝜖𝑑2∕𝑛), provided that 𝑑∕𝑛 is bounded
away from 1. This follows from our Theorem 1.2 when 𝜖 > 0 is constant. For an arbitrary positive 𝜖
(possibly tending to 0), his result follows from our Theorem 1.3, provided that the graph is regular.

Notation. We use standard notation. All graphs considered are finite, simple and undirected.We
write |𝐺| for the order of 𝐺, 𝑒(𝐺) for the number of edges and 𝑡(𝐺) for the number of triangles
in 𝐺. The minimum and maximum degree of 𝐺 are denoted by 𝛿(𝐺) and Δ(𝐺), respectively. For
a set 𝑆 ⊂ 𝑉(𝐺), we write 𝑒𝐺(𝑆) for the number of edges in 𝐺[𝑆], and for disjoint sets 𝑆, 𝑇 ⊂ 𝑉(𝐺),
we write 𝑒𝐺(𝑆, 𝑇) for the number of edges in 𝐺 with one endpoint in 𝑆 and one in 𝑇. 𝑁𝐺(𝑣) and
𝑑𝐺(𝑣) stand for the neighbourhood and degree of a vertex 𝑣. The number of common neighbours
of vertices 𝑣1, … , 𝑣𝑟 is denoted by 𝑑𝐺(𝑣1, … , 𝑣𝑟). We occasionally omit subscripts if they are clear
from the context. We let 𝑃𝑛 and 𝐶𝑛 denote the path and cycle, respectively, with 𝑛 edges.

When using Landau symbols, Ω𝑟(⋅), Θ𝑟(⋅), 𝑂𝑟(⋅) mean that the implicit constants may depend
on 𝑟. We denote by ‖ ⋅ ‖ the Euclidean norm. As customary, we tacitly treat large numbers like
integers whenever this has no effect on the argument.
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 447

The rest of this paper is organised as follows. In Section 2, we introduce some of the main tools
utilised in our proofs, and use them to prove a few of our less technical results. In particular, we
first prove Theorem 1.3 in the special case where 𝐺 is strongly regular. Also, we present the proof
of Theorem 1.2. We conclude the section with the proof of Theorem 1.1 for the simplest new case
𝐶5 (the case 𝑟 = 3 is already covered by Alon’s theorem) under the assumption that 𝐺 is regular.
In Section 1.1, we prove Theorem 1.1 in the general case. We give the full proof of Theorem 1.3 in
Section 4. Finally, we prove Theorems 1.5, 1.7 and 1.8 in Section 5.

2 MAIN IDEAS AND FIRST APPLICATIONS

2.1 Preliminaries

We start with a well-known observation that wewill repeatedly use in our proofs. In order to show
that a graph has large surplus, it suffices to find many disjoint-induced subgraphs with relatively
large surplus.

Lemma2.1. Let𝐺 be a graph and let 𝑆1, 𝑆2, … , 𝑆𝑘 be pairwise disjoint subsets of𝑉(𝐺). Then sp(𝐺) ⩾∑𝑘
𝑖=1 sp(𝐺[𝑆𝑖]).

Variants of this have been used in many preceding papers (see, e.g. [5, Lemma 3.2]). The proof
is similar to the standard𝑚∕2 bound formc(𝐺). Note that by adding singletons, one can assume
that the 𝑆𝑖 ’s partition 𝑉(𝐺). Take an optimal cut of each of the induced subgraphs, and form a cut
of 𝐺 by putting the sets of the smaller cuts randomly on either side. The result then follows by
inspecting the expected size of the obtained cut. We omit the details.
Note that in the simplest case, the lemma says that the surplus of a graph is at least as large as

the surplus of any of its induced subgraphs. We will use this fact naturally in our proofs without
necessarily referring to the lemma.

2.2 Semi-definite programming

Semi-definite programming in the algorithmic context of MaxCut was first used by Goemans and
Williamson [15]. The method was exploited by Carlson et al. [6] to give lower bounds on the Max-
Cut for 𝐻-free graphs. The approach can be summarised as follows. Given a graph 𝐺, we try to
assign a unit vector 𝐱𝑣 ∈ ℝ𝑁 to each vertex 𝑣 ∈ 𝑉(𝐺) in a way that the inner products ⟨𝐱𝑢, 𝐱𝑣⟩
are negative on average over all adjacent pairs of vertices 𝑢, 𝑣. Then we take a random unit vector
𝐳 ∈ ℝ𝑁 and define 𝐴 = {𝑣 ∈ 𝑉(𝐺) ∶ ⟨𝐱𝑣, 𝐳⟩ ⩾ 0}, 𝐵 = 𝑉(𝐺) ⧵ 𝐴. Consider the random cut (𝐴, 𝐵).
If vertices 𝑢 and 𝑣 have ⟨𝐱𝑢, 𝐱𝑣⟩ < 0, then with probability more than 1∕2, 𝑢 and 𝑣 will end up in
different parts of the cut. Hence, intuitively, we expect our cut to contain more than half of the
edges. This is made precise by the following lemma, essentially due to Goemans and Williamson
[15].

Lemma 2.2. Let 𝐺 be a graph and let 𝑁 be a positive integer. Then, for any set of non-zero vectors
{𝐱𝑣 ∶ 𝑣 ∈ 𝑉(𝐺)} ⊂ ℝ𝑁 , we have sp(𝐺) ⩾ − 1

𝜋

∑
𝑢𝑣∈𝐸(𝐺) arcsin(

⟨𝐱𝑢,𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖ ).
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448 GLOCK et al.

Proof. Let 𝐳 be a uniformly random unit vector in ℝ𝑁 , let 𝐴 = {𝑣 ∈ 𝑉(𝐺) ∶ ⟨𝐱𝑣, 𝐳⟩ ⩾ 0} and let
𝐵 = 𝑉(𝐺) ⧵ 𝐴. The probability that 𝑢𝑣 belongs to the cut (𝐴, 𝐵) is 𝛼

𝜋
, where 𝛼 = arccos(

⟨𝐱𝑢,𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖ )
is the angle between 𝐱𝑢 and 𝐱𝑣. Hence,

ℙ(𝑢𝑣 belongs to the cut) = 1

𝜋
arccos

( ⟨𝐱𝑢, 𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖
)

=
1

2
−

1

𝜋
arcsin

( ⟨𝐱𝑢, 𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖
)
.

Summing the equality over all edges 𝑢𝑣 ∈ 𝐸(𝐺) shows that the expected number of edges in the
cut (𝐴, 𝐵) is 𝑒(𝐺)

2
− 1

𝜋

∑
𝑢𝑣∈𝐸(𝐺) arcsin(

⟨𝐱𝑢,𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖ ), from which the result follows. □

In some cases, we can use a more convenient form of the above, which is implicit in the work
of Carlson et al. [6].

Corollary 2.3. Let𝐺 be a graph and let𝑁 be a positive integer. Let {𝐱𝑣 ∶ 𝑣 ∈ 𝑉(𝐺)} ⊂ ℝ𝑁 be vectors
with ‖𝐱𝑣‖ = 𝑂(1), and suppose that for every edge 𝑢𝑣 ∈ 𝐸(𝐺), we have ⟨𝐱𝑢, 𝐱𝑣⟩ ⩽ −𝑎𝑢𝑣 + 𝑏𝑢𝑣 for
some 𝑎𝑢𝑣, 𝑏𝑢𝑣 ⩾ 0. Then

sp(𝐺) ⩾ Ω

( ∑
𝑢𝑣∈𝐸(𝐺)

𝑎𝑢𝑣

)
− 𝑂

( ∑
𝑢𝑣∈𝐸(𝐺)

𝑏𝑢𝑣

)
.

Proof. We add extra coordinates, one for each vertex 𝑣 ∈ 𝑉(𝐺). The vector 𝐲𝑣 is obtained from 𝐱𝑣

by setting the new coordinate for 𝑣 to 1 and all other new coordinates to 0.Hence, we have ‖𝐲𝑣‖2 =‖𝐱𝑣‖2 + 1 = Θ(1) for all 𝑣 ∈ 𝑉(𝐺), and ⟨𝐲𝑢, 𝐲𝑣⟩ = ⟨𝐱𝑢, 𝐱𝑣⟩ ⩽ −𝑎𝑢𝑣 + 𝑏𝑢𝑣 for all 𝑢𝑣 ∈ 𝐸(𝐺).
For any 𝑥 ∈ [−1, 1] with 𝑥 ⩽ 𝑏 − 𝑎 for some 𝑎, 𝑏 ⩾ 0, we have arcsin(𝑥) ⩽

𝜋

2
𝑏 − 𝑎. This is

because when 𝑥 < 0, then arcsin(𝑥) ⩽ 𝑥 ⩽ 𝑏 − 𝑎 ⩽
𝜋

2
𝑏 − 𝑎, and if 𝑥 ⩾ 0, then arcsin(𝑥) ⩽

𝜋

2
𝑥 ⩽

𝜋

2
(𝑏 − 𝑎) ⩽

𝜋

2
𝑏 − 𝑎. Hence, for every edge 𝑢𝑣 ∈ 𝐸(𝐺), we have

arcsin

( ⟨𝐲𝑢, 𝐲𝑣⟩‖𝐲𝑢‖‖𝐲𝑣‖
)

⩽
𝜋

2

𝑏𝑢𝑣‖𝐲𝑢‖‖𝐲𝑣‖ −
𝑎𝑢𝑣‖𝐲𝑢‖‖𝐲𝑣‖ = −Ω(𝑎𝑢𝑣) + 𝑂(𝑏𝑢𝑣).

Summing over all edges and using Lemma 2.2 gives the result. □

2.3 Surplus in strongly regular graphs

As a first illustration of the use of semi-definite programming, we determine the order of
magnitude of the surplus in any strongly regular graph. Recall that a graph is called strongly
regular if in addition to being regular, there exist 𝜂, 𝜇 such that any two adjacent vertices
have exactly 𝜂 common neighbours and any two distinct non-adjacent vertices have exactly 𝜇

common neighbours.
In Section 4, we will use a more involved argument to generalise the lower bound to every

regular graph, proving Theorem 1.3.

Theorem 2.4. Let 𝐺 be a strongly regular graph with 𝑛 vertices, degree 𝑑 and 𝑑3∕6 + 𝑠 triangles,
where 𝑑 ⩽ 0.99𝑛.
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 449

∙ If 𝑠 < −𝑛𝑑3∕2, then sp(𝐺) = Θ(
|𝑠|
𝑑
).

∙ If −𝑛𝑑3∕2 ⩽ 𝑠 ⩽ 𝑛𝑑3∕2, then sp(𝐺) = Θ(𝑛𝑑1∕2).
∙ If 𝑠 > 𝑛𝑑3∕2, then sp(𝐺) = Θ(𝑛

2𝑑2

𝑠
).

Proof. Let us start with the lower bounds. Let 𝑎 =
√

𝑑

𝑛−𝑑
and let 0 < 𝛾 ⩽ 1. For every 𝑣 ∈ 𝑉(𝐺), we

define a vector 𝐱𝑣 whose coordinates are labelled by 𝑉(𝐺), that is, 𝐱𝑣 ∈ ℝ𝑉(𝐺). Take

𝐱𝑣
𝑢 =

⎧⎪⎨⎪⎩
1 + 𝛾𝑎 if 𝑢 = 𝑣,

−𝛾 1√
𝑑
if 𝑢 ∈ 𝑁(𝑣),

𝛾𝑎 otherwise.

Then, for any 𝑢𝑣 ∈ 𝐸(𝐺),

⟨𝐱𝑢, 𝐱𝑣⟩ = −2(1 + 𝛾𝑎)𝛾
1√
𝑑

+ |𝑁(𝑢) ∩ 𝑁(𝑣)|𝛾2 1

𝑑
+ |𝑉(𝐺) ⧵ (𝑁(𝑢) ∪ 𝑁(𝑣))|𝛾2𝑎2

+ (|𝑁(𝑢) ⧵ (𝑁(𝑣) ∪ {𝑣})| + |𝑁(𝑣) ⧵ (𝑁(𝑢) ∪ {𝑢})|)(−𝛾2 𝑎√
𝑑

)
.

Observe that |𝑁(𝑢) ∩ 𝑁(𝑣)| = 𝑑(𝑢, 𝑣), |𝑉(𝐺) ⧵ (𝑁(𝑢) ∪ 𝑁(𝑣))| = 𝑛 − 2𝑑 + 𝑑(𝑢, 𝑣) and |𝑁(𝑢) ⧵

(𝑁(𝑣) ∪ {𝑣})| = |𝑁(𝑣) ⧵ (𝑁(𝑢) ∪ {𝑢})| = 𝑑 − 𝑑(𝑢, 𝑣) − 1, so

⟨𝐱𝑢, 𝐱𝑣⟩ = −2𝛾
1√
𝑑

+ 𝛾2

((
1

𝑑
+ 2

𝑎√
𝑑

+ 𝑎2

)
𝑑(𝑢, 𝑣) + (𝑛 − 2𝑑)𝑎2 − 2𝑑

𝑎√
𝑑

)
.

Let 𝛿(𝑢, 𝑣) = 𝑑(𝑢, 𝑣) − 𝑑2

𝑛
. Note that(

1

𝑑
+ 2

𝑎√
𝑑

+ 𝑎2

)
𝑑2

𝑛
+ (𝑛 − 2𝑑)𝑎2 − 2𝑑

𝑎√
𝑑

=
1

𝑛
(𝑑 − 2𝑎

√
𝑑(𝑛 − 𝑑) + 𝑎2(𝑛 − 𝑑)2)

=
1

𝑛
(𝑑 − 2𝑑 + 𝑑) = 0,

so

⟨𝐱𝑢, 𝐱𝑣⟩ = −2𝛾
1√
𝑑

+ 𝛾2

(
1

𝑑
+ 2

𝑎√
𝑑

+ 𝑎2

)
𝛿(𝑢, 𝑣). (2.1)

Note that so farwehave not needed the assumption that𝐺 is strongly regular, only that it is regular.
We will, in fact, use (2.1) also in the proof of Theorem 1.3.
Since 𝐺 is strongly regular, every pair of adjacent vertices has the same number 𝜂 of common

neighbours. Note that 𝑒(𝐺)𝜂 = 3𝑡(𝐺), so

𝜂 =
3𝑡(𝐺)

𝑒(𝐺)
=

3(𝑑3∕6 + 𝑠)

𝑛𝑑∕2
=

𝑑2

𝑛
+

6𝑠

𝑛𝑑
, (2.2)
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450 GLOCK et al.

hence 𝛿(𝑢, 𝑣) = 6𝑠

𝑛𝑑
for every 𝑢𝑣 ∈ 𝐸(𝐺). Thus,

⟨𝐱𝑢, 𝐱𝑣⟩ = −2𝛾
1√
𝑑

+ 𝛾2

(
1

𝑑
+ 2

𝑎√
𝑑

+ 𝑎2

)
6𝑠

𝑛𝑑
.

Observe that since 𝑑 ⩽ 0.99𝑛, we have 𝑎 ⩽
100√

𝑑
, so 1

𝑑
⩽

1

𝑑
+ 2 𝑎√

𝑑
+ 𝑎2 ⩽

105

𝑑
.

If 𝑠 < −𝑛𝑑3∕2, then take 𝛾 = 1 to get

⟨𝐱𝑢, 𝐱𝑣⟩ ⩽
1

𝑑
⋅
6𝑠

𝑛𝑑
=

6𝑠

𝑛𝑑2
.

If −𝑛𝑑3∕2 ⩽ 𝑠 ⩽ 𝑛𝑑3∕2, take 𝛾 = 1∕106 and note that 𝛾2( 1

𝑑
+ 2 𝑎√

𝑑
+ 𝑎2) 6𝑠

𝑛𝑑
⩽ 𝛾 1√

𝑑
, so

⟨𝐱𝑢, 𝐱𝑣⟩ ⩽ −𝛾
1√
𝑑

= −
1

106
√

𝑑
.

Finally, if 𝑠 > 𝑛𝑑3∕2, take 𝛾 = 𝑛𝑑3∕2

106𝑠
and note that 𝛾2( 1

𝑑
+ 2 𝑎√

𝑑
+ 𝑎2) 6𝑠

𝑛𝑑
⩽ 𝛾 1√

𝑑
, so

⟨𝐱𝑢, 𝐱𝑣⟩ ⩽ −𝛾
1√
𝑑

= −
𝑛𝑑

106𝑠
.

In all three cases, ⟨𝐱𝑢, 𝐱𝑣⟩ < 0, and moreover, it is easy to see that ‖𝐱𝑣‖ = 𝑂(1) for every 𝑣 ∈

𝑉(𝐺), so by Corollary 2.3, we have

sp(𝐺) ⩾ Ω

( ∑
𝑢𝑣∈𝐸(𝐺)

−⟨𝐱𝑢, 𝐱𝑣⟩).

Summing the respective upper bounds for ⟨𝐱𝑢, 𝐱𝑣⟩ in the three cases, we obtain the desired lower
bounds for sp(𝐺).
It remains to prove the upper bounds for sp(𝐺). For this, we will use the eigenvalue bound (1.4).

It is well known (see [16], e.g.) that the smallest eigenvalue of a strongly regular graph is

𝜆min =
1

2

(
𝜂 − 𝜇 −

√
(𝜂 − 𝜇)2 + 4(𝑑 − 𝜇)

)
,

where 𝜂 is the number of common neighbours of adjacent pairs and 𝜇 is the number of com-
mon neighbours of non-adjacent pairs. It is a straightforward (but somewhat tedious) exercise
to check that this, using (2.2), implies the desired bounds. For the details, see Lemma A.1 in the
Appendix. □

2.4 Finding good almost regular induced subgraphs

In this subsection, we establish an important lemma that allows us to reduce many of our state-
ments to the special case where 𝐺 is almost regular. For example, in the next subsection, we
already use it to study the surplus of graphs with few triangles. We believe that this lemma will
be a useful tool for future works on this subject as well.
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 451

Lemma 2.5. Let 𝛼 and 𝛽 be real numbers such that 𝛽 > 0, 𝛼 < 𝛽 and 𝛼 + 𝛽 ⩽ 2. Then there exist
positive constants 𝑐1, 𝑐2 and 𝐶 (depending on 𝛼, 𝛽), such that the following holds.
Let𝐺 be a graph on 𝑛 vertices with average degree 𝑑. Then either𝐺 has surplus at least 𝑐1𝑛𝛼𝑑𝛽 or𝐺

has an induced subgraph 𝐺̃ with 𝑛̃ vertices and average degree 𝑑 where 𝑛̃𝛼𝑑𝛽 ⩾ 𝑐2𝑛
𝛼𝑑𝛽 , 𝛿(𝐺̃) ⩾ 𝑑∕𝐶

and Δ(𝐺̃) ⩽ 𝐶𝑑.

A typical use of this lemma will be as follows. Suppose that we want to prove that an 𝑛-vertex
𝐻-free graph with average degree 𝑑 has surplusΩ(𝑛𝛼𝑑𝛽). Applying Lemma 2.5, we can pass to the
induced subgraph 𝐺̃ if necessary, so it suffices to prove the boundΩ(𝑛𝛼𝑑𝛽) under the assumption
that 𝛿(𝐺) ⩾ 𝑑∕𝐶 and Δ(𝐺) ⩽ 𝐶𝑑.
For a few of our results, we will need the following somewhat stronger version of Lemma 2.5.

Similarly to the previous lemma, one could also impose an additional minimum degree condition
𝛿(𝐺̃) ⩾ 𝑑∕𝐶, but we will not need that.

Lemma 2.6. Let 𝜖, 𝛼 and 𝛽 be real numbers such that 𝜖, 𝛽 > 0, 𝛼 < 𝛽 and 𝛼 + 𝛽 ⩽ 2. Then there
exist positive constants 𝑐 and 𝐶 (depending on 𝜖, 𝛼, 𝛽), such that the following holds.
Let 𝐺 be a graph on 𝑛 vertices with average degree 𝑑. Then either 𝐺 has surplus at least 𝑐𝑛𝛼𝑑𝛽 or

𝐺 has an induced subgraph 𝐺̃ with 𝑛̃ vertices and average degree 𝑑 where 𝑛̃𝛼𝑑𝛽 ⩾ (1 − 𝜖)𝑛𝛼𝑑𝛽 and
Δ(𝐺̃) ⩽ 𝐶𝑑.

Proof. Choose 𝜃 such that (1 − 𝜃)𝛽 = 1 − 𝜖. Let 𝑐 = 𝜃2

320
, let𝐶0 be chosen so that (𝜃2∕20)𝛽𝐶

𝛽−𝛼
0

= 1

and let 𝐶 = 𝐶0∕(1 − 𝜃).

Claim 1. If 𝐺 is a graph with 𝑛 vertices, 𝑚 edges and average degree 𝑑, then at least one of the
following must hold.

(i) 𝐺 has an induced subgraph𝐺′ with 𝑛′ < 𝑛 vertices and average degree 𝑑′, where (𝑛′)𝛼(𝑑′)𝛽 ⩾

𝑛𝛼𝑑𝛽 .
(ii) 𝐺 has surplus at least 𝜃2

160
𝑚.

(iii) 𝐺 has an induced subgraph 𝐺̃ with 𝑛̃ vertices and average degree 𝑑, where 𝑛̃𝛼𝑑𝛽 ⩾ (1 −

𝜖)𝑛𝛼𝑑𝛽 and Δ(𝐺̃) ⩽ 𝐶𝑑.

Before proving the claim, let us see how the lemma follows. Given a graph 𝐺, apply the claim
repeatedly for the obtained induced subgraphs 𝐺′, (𝐺′)′, and so forth, as long as (i) holds. Even-
tually, (ii) or (iii) must hold, so 𝐺 has an induced subgraph 𝐹 with 𝑁 vertices and average degree
𝐷 such that 𝑁𝛼𝐷𝛽 ⩾ 𝑛𝛼𝑑𝛽 , and either 𝐹 has surplus at least 𝜃2

320
𝑁𝐷, or 𝐹 has an induced sub-

graph 𝐺̃ with 𝑛̃ vertices and average degree 𝑑, where 𝑛̃𝛼𝑑𝛽 ⩾ (1 − 𝜖)𝑁𝛼𝐷𝛽 and Δ(𝐺̃) ⩽ 𝐶𝑑. In
the latter case, we are done. In the former case, note that since 𝛼 + 𝛽 ⩽ 2, 𝛼 < 𝛽 and 𝑁 > 𝐷,
we have 𝑁𝐷 ⩾ (𝑁𝐷)

1
2
(𝛼+𝛽)

⩾ 𝑁𝛼𝐷𝛽 , so 𝐹 (and, consequently, 𝐺) has surplus at least 𝜃2

320
𝑁𝛼𝐷𝛽 ⩾

𝜃2

320
𝑛𝛼𝑑𝛽 = 𝑐𝑛𝛼𝑑𝛽 . Thus, it suffices to prove the claim.

Proof of claim. Let 𝑆 be the set of vertices in 𝐺 with degree at most 𝐶0𝑑 and let 𝑇 = 𝑉(𝐺) ⧵ 𝑆. We
consider the following three cases (observe that at least one of these must occur).
Case 1. 𝑒𝐺(𝑇) ⩾

𝜃2

20
𝑚.

Let𝐺′ = 𝐺[𝑇] and let 𝑛′ and 𝑑′ be the number of vertices and average degree of𝐺′, respectively.
Then 𝑛′𝑑′ = 2𝑒(𝐺′) ⩾ 𝜃2𝑚∕10 = 𝜃2𝑛𝑑∕20, so 𝑑′

𝑑
⩾

𝜃2

20

𝑛

𝑛′ , and hence,
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452 GLOCK et al.

(𝑛′)𝛼(𝑑′)𝛽

𝑛𝛼𝑑𝛽
⩾

(
𝑛′

𝑛

)𝛼(
𝜃2

20

𝑛

𝑛′

)𝛽

= (𝜃2∕20)𝛽
(

𝑛

𝑛′

)𝛽−𝛼
.

Note that 𝐺 has average degree 𝑑 but every vertex in 𝑇 has degree at least 𝐶0𝑑 in 𝐺, so 𝑛′ = |𝑇| ⩽
𝑛∕𝐶0. Hence,

(𝜃2∕20)𝛽
(

𝑛

𝑛′

)𝛽−𝛼
⩾ (𝜃2∕20)𝛽𝐶

𝛽−𝛼
0

= 1.

Thus, 𝐺′ satisfies (i).
Case 2. 𝑒𝐺(𝑇) < 𝜃2

20
𝑚, but 𝑒𝐺(𝑆, 𝑇) ⩾

𝜃

2
𝑚.

Let 𝑆′ be a random subset of 𝑆 obtained by keeping each vertex of 𝑆 with probability 𝜃∕4. Then
𝔼[𝑒𝐺(𝑆

′)] ⩽
𝜃2

16
𝑚 and 𝔼[𝑒𝐺(𝑆

′, 𝑇)] ⩾
𝜃2

8
𝑚. Using 𝑒𝐺(𝑇) ⩽

𝜃2

20
𝑚, it follows that there exists a cut in

𝐺 with surplus at least 1

2
( 𝜃

2

8
𝑚 − 𝜃2

16
𝑚 − 𝜃2

20
𝑚) = 𝜃2

160
𝑚, so (ii) holds.

Case 3. 𝑒𝐺(𝑆) ⩾ (1 − 𝜃)𝑚.
Let 𝐺̃ = 𝐺[𝑆] and let 𝑛̃ and 𝑑 be the number of vertices and average degree of 𝐺̃, respectively.

Clearly, 𝑑 ⩾ (1 − 𝜃)𝑑, so Δ(𝐺̃) ⩽ 𝐶0𝑑 = (1 − 𝜃)𝐶𝑑 ⩽ 𝐶𝑑. Also, 𝑛̃𝑑 ⩾ (1 − 𝜃)𝑛𝑑, so

𝑛̃𝛼𝑑𝛽

𝑛𝛼𝑑𝛽
⩾

(
𝑛̃

𝑛

)𝛼(
(1 − 𝜃)

𝑛

𝑛̃

)𝛽
= (1 − 𝜖)

(
𝑛

𝑛̃

)𝛽−𝛼
⩾ 1 − 𝜖.

Hence, 𝐺̃ satisfies (iii). □

It is not hard to deduce Lemma 2.5.

Proof of Lemma 2.5. By Lemma 2.6, applied with 𝜖 = 1∕2, there exist positive constants 𝑐1 and 𝐶′

such that either 𝐺 has surplus at least 𝑐1𝑛𝛼𝑑𝛽 or 𝐺 has an induced subgraph 𝐺′ with 𝑛′ vertices
and average degree 𝑑′ where (𝑛′)𝛼(𝑑′)𝛽 ⩾

1

2
𝑛𝛼𝑑𝛽 and Δ(𝐺′) ⩽ 𝐶′𝑑′. In the former case, we are

done. In the latter case, note that 𝐺′ has an induced subgraph 𝐺̃ with at least 𝑒(𝐺′)∕2 edges and
minimum degree at least 𝑑′∕4. Then, writing 𝑛̃ for the number of vertices and 𝑑 for the average
degree of 𝐺̃, we have that 𝑑 ⩾ 𝑑′∕2 and 𝑛̃𝑑 ⩾ 𝑛′𝑑′∕2. Therefore, 𝑛̃𝛼𝑑𝛽 ⩾ 2−𝛽(𝑛′)𝛼(𝑑′)𝛽 , so we can
choose 𝑐2 = 2−𝛽−1 and 𝐶 = 4𝐶′. □

2.5 Fewer triangles than in the random graph

In this subsection, we prove Theorem 1.2. Using Lemma 2.6 (as we show in the end of the subsec-
tion), it suffices to consider graphs whose maximum degree is not much larger than the average
degree. Under this assumption, we prove the following slightly stronger result, which we will use
to prove Theorem 1.8.

Theorem 2.7. Let 𝐺 be a graph with 𝑛 vertices, average degree 𝑑, maximum degree at most 𝐶𝑑 and
less than (1 − 𝜖) 𝑑

6𝑛

∑
𝑢∈𝑉(𝐺) 𝑑(𝑢)

2 triangles, for some 𝜖 > 0. Then 𝐺 has surplusΩ(𝜖
2

𝐶
𝑑2).

Proof. Let 𝜇 = 𝜖

4𝐶
and 𝑘 = ⌈𝜇𝑛∕𝑑⌉.

Firstly, we give every vertex a random label from {0, 1, … , 𝑘 + 1}, where 0 is chosen with proba-
bility 1∕3, each of 1, … , 𝑘 is chosen with probability 𝑑∕3𝑛, and the remaining probability falls on
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 453

𝑘 + 1. This is feasible since 𝑘 ⋅ 𝑑

3𝑛
⩽ (𝜇𝑛∕𝑑 + 1) 𝑑

3𝑛
⩽

𝜇

3
+ 𝑑

3𝑛
⩽ 2∕3. For every 𝑗 ∈ [𝑘], let 𝐵𝑗 be the

set of vertices with label 𝑗.
Now, pick uniformly at random with repetition vertices 𝑣1, … , 𝑣𝑘. For 𝑗 ∈ [𝑘], let 𝐴𝑗 be the set

of neighbours of 𝑣𝑗 with label 0 which are not neighbours of any other 𝑣𝑖 .
Let 𝑋 be the number of edges which go between 𝐴𝑗 and 𝐵𝑗 for some 𝑗 ∈ [𝑘] (that is, 𝑋 is the

sum of the number of edges between 𝐴𝑗 and 𝐵𝑗 over all 𝑗 ∈ [𝑘]), let 𝑌 be the number of edges
inside some 𝐴𝑗 and let 𝑍 be the number of edges inside some 𝐵𝑗 . Our goal will be to show that
𝔼[𝑋 − 𝑌 − 𝑍] = Ω(𝜖

2

𝐶
𝑑2). This is achieved in three separate claims.

Claim 1. 𝔼[𝑌] ⩽ (1 − 𝜖) 𝑘𝑑

18𝑛2

∑
𝑢∈𝑉(𝐺) 𝑑(𝑢)

2.

Proof of claim. Consider an edge 𝑢𝑣. Note that 𝑢𝑣 is only going to be an internal edge of some 𝐴𝑗

if some common neighbour is among the 𝑣𝑗 ’s. The probability of this is at most 𝑘
𝑑(𝑢,𝑣)

𝑛
. More-

over, both 𝑢 and 𝑣 need to be labelled 0. Now, summing over all edges, we see that 𝔼[𝑌] ⩽
𝑘

9𝑛

∑
𝑢𝑣∈𝐸(𝐺) 𝑑(𝑢, 𝑣). The sum counts every triangle exactly three times. Using the assumption,

we get the claim. □

Claim 2. 𝔼[𝑍] ⩽
𝑘𝑑3

18𝑛
.

Proof of claim. Consider an edge 𝑢𝑣. The probability that it is contained in 𝐵𝑗 for some fixed 𝑗

is (𝑑∕3𝑛)2. Multiplying this with 𝑘 for the number of possibilities for 𝑗 and 𝑛𝑑∕2 for the total
number of edges yields the claim. □

Claim 3. 𝔼[𝑋] ⩾ (1 − 𝜖∕4) 𝑘𝑑

9𝑛2

∑
𝑢∈𝑉(𝐺) 𝑑(𝑢)

2.

Proof of claim. Consider an edge 𝑢𝑣. With probability 𝑘𝑑∕9𝑛, 𝑢 is labelled 0 and 𝑣 gets a label
from [𝑘]. Condition on such a label 𝑗 ∈ [𝑘]. Now, the probability that 𝑣𝑗 is a neighbour of 𝑢, but
no other 𝑣𝑖 is a neighbour of 𝑢, is

𝑑(𝑢)

𝑛
(1 − 𝑑(𝑢)∕𝑛)𝑘−1 ⩾

𝑑(𝑢)

𝑛
(1 − (𝑘 − 1)𝑑(𝑢)∕𝑛) ⩾

𝑑(𝑢)

𝑛
(1 − (𝑘 −

1)𝐶𝑑∕𝑛) ⩾
𝑑(𝑢)

𝑛
(1 − 𝐶𝜇) = 𝑑(𝑢)

𝑛
(1 − 𝜖∕4). The same applies with the roles of 𝑢 and 𝑣 swapped.

Hence, the probability of 𝑢𝑣 contributing to𝑋 is at least 𝑘𝑑

9𝑛2 (𝑑(𝑢) + 𝑑(𝑣))(1 − 𝜖∕4). Summing over
all edges, we obtain the desired inequality. □

By convexity, 𝑑2 ⩽
1

𝑛

∑
𝑢∈𝑉(𝐺) 𝑑(𝑢)

2, so combining the three claims, we get

𝔼[𝑋 − 𝑌 − 𝑍] ⩾
𝑘𝑑

9𝑛2

( ∑
𝑢∈𝑉(𝐺)

𝑑(𝑢)2

)
((1 − 𝜖∕4) − (1 − 𝜖)∕2 − 1∕2) =

𝜖𝑘𝑑

36𝑛2

∑
𝑢∈𝑉(𝐺)

𝑑(𝑢)2 ⩾
𝜖𝜇

36
𝑑2.

We infer that there exists an outcome forwhich𝑋 − 𝑌 − 𝑍 ⩾ Ω(𝜖𝜇𝑑2). By Lemma2.1, we conclude
that

sp(𝐺) ⩾

𝑘∑
𝑗=1

sp(𝐺[𝐴𝑗 ∪ 𝐵𝑗]) ⩾
1

2

𝑘∑
𝑗=1

(𝑒(𝐴𝑗, 𝐵𝑗) − 𝑒(𝐴𝑗) − 𝑒(𝐵𝑗)) =
1

2
(𝑋 − 𝑌 − 𝑍) ⩾ Ω(𝜖𝜇𝑑2),

which completes the proof by using 𝜇 = 𝜖

4𝐶
. □
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454 GLOCK et al.

It is easy to deduce Theorem 1.2.

Proof of Theorem 1.2. By Lemma 2.6 (with 𝜖∕3 in place of 𝜖, 𝛼 = 0 and 𝛽 = 2), either 𝐺 has sur-
plus Ω𝜖(𝑑

2), or it has an induced subgraph 𝐺̃ with 𝑛̃ vertices and average degree 𝑑, where 𝑑2 ⩾

(1 − 𝜖∕3)𝑑2 and Δ(𝐺̃) ⩽ 𝐶𝑑 for some 𝐶 = 𝐶(𝜖). In the latter case, we have 𝑑3 ⩾ (1 − 𝜖∕3)3∕2𝑑3 ⩾

(1 − 𝜖∕2)𝑑3, so the number of triangles in 𝐺̃ is less than (1 − 𝜖)𝑑3∕6 ⩽
1−𝜖

1−𝜖∕2
𝑑3∕6 ⩽ (1 − 𝜖∕2)𝑑3∕6.

Clearly,
∑

𝑢∈𝑉(𝐺̃) 𝑑𝐺̃(𝑢)
2 ⩾ 𝑛̃𝑑2, so we can apply Theorem 2.7 with 𝜖∕2 in place of 𝜖 and deduce

that 𝐺̃ has surplus Ω𝜖(𝑑
2) ⩾ Ω𝜖(𝑑

2). It follows that 𝐺 has the desired surplus. □

2.6 𝑪𝟓-free graphs

In this subsection, we prove the following result, which is a special case of Theorem 1.1. The proof
already contains many of the ideas needed to prove the more general result, but is less technical.

Theorem 2.8. Let 𝐺 be a regular 𝐶5-free graph with𝑚 edges. Then 𝐺 has surplusΩ(𝑚6∕7).

The following lemma will be convenient to use. (Here we only need it for 𝑟 = 5, but we will use
the general version later.)

Lemma 2.9. Let 𝑟 ⩾ 3 and let 𝐺 be a 𝑑-degenerate 𝐶𝑟-free graph with 𝑚 edges. Then sp(𝐺) =

Ω𝑟(
𝑚√
𝑑
).

Since the proof is very standard, we just briefly sketch it. As 𝐺 is 𝐶𝑟-free, the neighbourhood of
any vertex induces a 𝑃𝑟−2-free graph. In particular, the number of edges in 𝐺[𝑁(𝑣)] is 𝑂𝑟(𝑑(𝑣)),
so the number of triangles in 𝐺 is at most 𝑂𝑟(𝑚). Using Corollary 1.2 from [6] or Lemma 3.3 from
[5] (mentioned in Section 1.2), we conclude that sp(𝐺) = Ω𝑟(

𝑚√
𝑑
).

Proof of Theorem 2.8. Let 𝑑 be the degree of 𝐺 and let 𝑛 be the number of vertices in 𝐺. Firstly
note that we may assume that 𝑑 is arbitrarily large (when 𝑑 is constant, the theorem follows from
Lemma 2.9). Then clearly, the number of paths of length 2 in 𝐺 is Ω(𝑛𝑑2).
Here comes one of the key ideas of the proof. By dyadic pigeonholing, there exists a positive

integer 𝑠 such that for at least Ω( 𝑛𝑑2

𝑠1∕10
) paths 𝑢𝑣𝑤 in 𝐺, we have 𝑠 ⩽ 𝑑(𝑢, 𝑤) < 2𝑠. (The choice of

1∕10 for the exponent is unimportant; it could be replaced by something smaller.) We now prove
the following two lower bounds:

sp(𝐺) = Ω(𝑛𝑑1∕2𝑠2∕5) (2.3)

and

sp(𝐺) = Ω

(
𝑑3

𝑠6∕5

)
. (2.4)

Combining these bounds, we can conclude that

sp(𝐺) ⩾ Ω

(
(𝑛𝑑1∕2𝑠2∕5)6∕7

(
𝑑3

𝑠6∕5

)1∕7
)

= Ω(𝑛6∕7𝑑6∕7𝑠6∕35) ⩾ Ω(𝑚6∕7).
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 455

Before proving (2.3) and (2.4), let us briefly discuss the intuition behind them.We know that there
are many paths 𝑢𝑣𝑤 with 𝑑(𝑢, 𝑤) ≈ 𝑠. Assume for themoment that most paths of length 2 are like
that. Then the second neighbourhood of a typical vertex has size roughly 𝑑2∕𝑠. Since 𝐺 is 𝐶5-free,
these neighbourhoods induce very sparse subgraphs. We can use these very sparse subgraphs to
construct a large cut, just like in Theorem 2.7. Note that we can take roughly 𝑘 = 𝑛𝑠

𝑑2 more-or-less
disjoint second neighbourhoods of size roughly 𝑑2∕𝑠. Each of them is very sparse, whereas in a
random graph with average degree 𝑑, these sets would induce roughly (𝑑2∕𝑠)2(𝑑∕𝑛) = 𝑑5∕(𝑠2𝑛)

edges. This results in a surplus roughly 𝑘 ⋅ 𝑑5∕(𝑠2𝑛) = 𝑑3∕𝑠, which is what (2.4) gives, up to a
small error term.
The inequality (2.3) is harder to explain, but observe that a natural type of graph with the prop-

erty that paths 𝑢𝑣𝑤 have 𝑑(𝑢, 𝑤) ⩾ 𝑠 is an 𝑠-blowup of another graph. However, when 𝐺 is the
𝑠-blowup of 𝐻, then 𝐺 has larger surplus than what is directly provided by Lemma 2.9. Indeed,
𝐻 has𝑚∕𝑠2 edges and degeneracy at most 𝑑∕𝑠, so by Lemma 2.9, sp(𝐻) = Ω( 𝑚

𝑑1∕2𝑠3∕2
), and hence

sp(𝐺) = 𝑠2sp(𝐻) = Ω(𝑚𝑠1∕2

𝑑1∕2
) = Ω(𝑛𝑑1∕2𝑠1∕2), coinciding with (2.3), up to a small error term. We

now proceed with the proofs of (2.3) and (2.4).
The lower bound Ω(𝑛𝑑1∕2𝑠2∕5). We use the method inspired by the semi-definite relaxation of

the MaxCut problem which we presented in Section 2.2. For a vertex 𝑣 ∈ 𝑉(𝐺), let 𝑆(𝑣) be the set
of vertices 𝑢 ≠ 𝑣 with 𝑠 ⩽ 𝑑(𝑢, 𝑣) < 2𝑠. Now for every 𝑣 ∈ 𝑉(𝐺), define 𝐱𝑣 ∈ ℝ𝑉(𝐺) by

𝐱𝑣
𝑢 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

− 1√
𝑑
if 𝑢 ∈ 𝑁(𝑣) ⧵ 𝑆(𝑣),√

𝑠

𝑑
if 𝑢 ∈ 𝑆(𝑣) ⧵ 𝑁(𝑣),

− 1√
𝑑
+

√
𝑠

𝑑
if 𝑢 ∈ 𝑁(𝑣) ∩ 𝑆(𝑣),

0 otherwise.

Then, for any 𝑢, 𝑣 ∈ 𝑉(𝐺),

⟨𝐱𝑢, 𝐱𝑣⟩ = |𝑁(𝑢) ∩ 𝑁(𝑣)| 1
𝑑

+ |𝑆(𝑢) ∩ 𝑆(𝑣)| 𝑠

𝑑2
− (|𝑁(𝑢) ∩ 𝑆(𝑣)| + |𝑆(𝑢) ∩ 𝑁(𝑣)|) 𝑠1∕2

𝑑3∕2
. (2.5)

In particular, for any 𝑢 ∈ 𝑉(𝐺), ‖𝐱𝑢‖2 ⩽ |𝑁(𝑢)|∕𝑑 + |𝑆(𝑢)|𝑠∕𝑑2. Clearly, |𝑁(𝑢)| ⩽ 𝑑. Moreover,|𝑆(𝑢)|𝑠 is a lower bound for the number of paths of the form 𝑢𝑣𝑤 since for any 𝑤 ∈ 𝑆(𝑢), there
are at least 𝑠 such paths. Therefore,

|𝑆(𝑢)|𝑠 ⩽ 𝑑2, (2.6)

so we get ‖𝐱𝑢‖2 ⩽ 2. Hence, using (2.5) and Corollary 2.3,

sp(𝐺) ⩾ Ω

( ∑
𝑢𝑣∈𝐸(𝐺)

(|𝑁(𝑢) ∩ 𝑆(𝑣)| + |𝑆(𝑢) ∩ 𝑁(𝑣)|) 𝑠1∕2
𝑑3∕2

)

− 𝑂

( ∑
𝑢𝑣∈𝐸(𝐺)

(|𝑁(𝑢) ∩ 𝑁(𝑣)| 1
𝑑

+ |𝑆(𝑢) ∩ 𝑆(𝑣)| 𝑠

𝑑2

))
. (2.7)
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456 GLOCK et al.

Observe that ∑
𝑢𝑣∈𝐸(𝐺)

|𝑁(𝑢) ∩ 𝑁(𝑣)| = 3𝑡(𝐺) ⩽ 𝑂(𝑛𝑑), (2.8)

where in the inequality, we used that for any 𝑣 ∈ 𝑉(𝐺), the graph 𝐺[𝑁(𝑣)] is 𝑃3-free.
Write hom(𝐶5, 𝐺) for the number of graph homomorphisms 𝐶5 → 𝐺. In other words,

hom(𝐶5, 𝐺) is the number of 5-tuples (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5) ∈ 𝑉(𝐺)5 with 𝑦5𝑦1 ∈ 𝐸(𝐺) and 𝑦𝑖𝑦𝑖+1 ∈

𝐸(𝐺) for every 1 ⩽ 𝑖 ⩽ 4. Note that if𝑤 ∈ 𝑆(𝑢) ∩ 𝑆(𝑣) and𝑢𝑣 ∈ 𝐸(𝐺), then there are at least 𝑠2 such
5-tuples of the form (𝑢, 𝑣, 𝑦3, 𝑤, 𝑦5). Thus,

∑
𝑢𝑣∈𝐸(𝐺) |𝑆(𝑢) ∩ 𝑆(𝑣)| ⩽ hom(𝐶5,𝐺)

𝑠2
. On the other hand,

𝐺 does not contain a 5-cycle. Hence, in any such 5-tuple, we must have 𝑦𝑖 = 𝑦𝑗 for some 𝑖 ≠ 𝑗.
Without loss of generality, assume that 𝑦1 = 𝑦4. Then 𝑦1, 𝑦2 and 𝑦3 form a triangle in 𝐺. Since 𝑦5

is a neighbour of 𝑦1 and 𝑦4 = 𝑦1, the number of homomorphic 𝐶5’s in 𝐺 is at most𝑂(𝑡(𝐺) ⋅ Δ(𝐺)).
As we noted in (2.8), 𝑡(𝐺) = 𝑂(𝑛𝑑), so hom(𝐶5, 𝐺) = 𝑂(𝑛𝑑2) and hence

∑
𝑢𝑣∈𝐸(𝐺)

|𝑆(𝑢) ∩ 𝑆(𝑣)| ⩽ 𝑂

(
𝑛𝑑2

𝑠2

)
. (2.9)

Finally, recall that the number of paths 𝑢𝑣𝑤 in 𝐺 with 𝑠 ⩽ 𝑑(𝑢, 𝑤) < 2𝑠 is Ω( 𝑛𝑑2

𝑠1∕10
). Any such

path has 𝑤 ∈ 𝑆(𝑢) ∩ 𝑁(𝑣). Thus,

∑
𝑢𝑣∈𝐸(𝐺)

(|𝑆(𝑢) ∩ 𝑁(𝑣)| + |𝑆(𝑣) ∩ 𝑁(𝑢)|) ⩾ Ω

(
𝑛𝑑2

𝑠1∕10

)
. (2.10)

Plugging in inequalities (2.8), (2.9) and (2.10) to (2.7), we get

sp(𝐺) ⩾ Ω(𝑛𝑑1∕2𝑠2∕5) − 𝑂(𝑛) − 𝑂(𝑛∕𝑠) ⩾ Ω(𝑛𝑑1∕2𝑠2∕5).

The lower bound Ω(𝑑3∕𝑠6∕5). This part of the proof is somewhat similar to the proof of The-
orem 2.7. Let 𝜈𝑛𝑑2 be the number of paths 𝑢𝑣𝑤 in 𝐺 with 𝑠 ⩽ 𝑑(𝑢, 𝑤) < 2𝑠. Recall that 𝜈 =

Ω(𝑠−1∕10). Let 𝑘 = ⌈ 𝑠𝑛

2𝑑2 ⌉. Note that (𝑛2)2𝑠 is an upper bound for the number of paths 𝑢𝑣𝑤 with
𝑑(𝑢, 𝑤) < 2𝑠, so 𝜈𝑛𝑑2 ⩽ 𝑛2𝑠 and 𝜈𝑑2∕(𝑠𝑛) ⩽ 1. Give every vertex a random label from {0, 1, … , 𝑘 +

1}, where 0 is chosen with probability 1∕3, each of 1, … , 𝑘 is chosen with probability 𝑝 = 𝜈𝑑2

10𝑠𝑛
, and

the remaining probability falls on 𝑘 + 1. This is feasible since 𝑘𝑝 ⩽ ( 𝑠𝑛

2𝑑2 + 1) 𝜈𝑑2

10𝑠𝑛
⩽

𝜈

20
+ 1

10
⩽ 2∕3.

For every 𝑗 ∈ [𝑘], let 𝐵𝑗 be the set of vertices with label 𝑗.
Now, pick uniformly at random with repetition vertices 𝑣1, … , 𝑣𝑘. For 𝑗 ∈ [𝑘], let 𝐴𝑗 be the set

of vertices in 𝑆(𝑣𝑗) with label 0 which do not belong to any other 𝑆(𝑣𝑖).
Let𝑋 be the number of edgeswhich go between𝐴𝑗 and𝐵𝑗 for some 𝑗 ∈ [𝑘], let𝑌 be the number

of edges inside some 𝐴𝑗 and let 𝑍 be the number of edges inside some 𝐵𝑗 .

Claim 1. 𝔼[𝑌] ⩽ 𝑂(𝑘𝑑
2

𝑠2
).

Proof of claim. If an edge 𝑢𝑣 ∈ 𝐸(𝐺) is in some 𝐴𝑗, then 𝑣𝑗 ∈ 𝑆(𝑢) ∩ 𝑆(𝑣). Hence, the probability
that 𝑢𝑣 contributes to 𝑌 is at most 𝑘 |𝑆(𝑢)∩𝑆(𝑣)|

𝑛
. Thus,
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 457

𝔼[𝑌] ⩽
∑

𝑢𝑣∈𝐸(𝐺)

𝑘
|𝑆(𝑢) ∩ 𝑆(𝑣)|

𝑛
⩽ 𝑂

(
𝑘𝑑2

𝑠2

)
,

where for the second inequality, we used (2.9). □

Claim 2. 𝔼[𝑍] ⩽
𝑘𝑝2𝑛𝑑

2
.

Proof of claim. For any 𝑗, the expected number of edges in𝐺[𝐵𝑗] is 𝑝2𝑒(𝐺) = 𝑝2 𝑛𝑑

2
. Summing over

the 𝑘 possibilities for 𝑗, the claim follows. □

Claim 3. 𝔼[𝑋] ⩾
𝑘𝑝𝜈𝑑3

12𝑠
.

Proof of claim. Let 𝑢𝑣 ∈ 𝐸(𝐺). For any 𝑗, the probability that 𝑣𝑗 ∈ 𝑆(𝑢), but 𝑣𝑖 ∉ 𝑆(𝑢) for every
𝑗 ≠ 𝑖 is

|𝑆(𝑢)|
𝑛

(
1 −

|𝑆(𝑢)|
𝑛

)𝑘−1

⩾
|𝑆(𝑢)|

𝑛

(
1 −

(𝑘 − 1)|𝑆(𝑢)|
𝑛

)
⩾

|𝑆(𝑢)|
𝑛

(
1 −

(𝑘 − 1)𝑑2

𝑠𝑛

)
⩾

|𝑆(𝑢)|
2𝑛

,

where the second inequality uses (2.6). Thus, the probability that 𝑢𝑣 contributes to 𝑋 is at least
𝑘

𝑝

6𝑛
(|𝑆(𝑢)| + |𝑆(𝑣)|). Summing over all edges,

𝔼[𝑋] ⩾
𝑘𝑝𝑑

6𝑛

∑
𝑢∈𝑉(𝐺)

|𝑆(𝑢)|.
Since the number of paths 𝑢𝑣𝑤 with 𝑠 ⩽ 𝑑(𝑢, 𝑤) < 2𝑠 is 𝜈𝑛𝑑2, there are at least 𝜈𝑛𝑑2∕(2𝑠) pairs
𝑢,𝑤 with 𝑤 ∈ 𝑆(𝑢), so

∑
𝑢∈𝑉(𝐺) |𝑆(𝑢)| ⩾ 𝜈𝑛𝑑2∕(2𝑠), from which the claim follows. □

Combining the three claims, we get

𝔼[𝑋 − 𝑌 − 𝑍] ⩾ 𝑘𝑑

(
𝑝𝜈𝑑2

12𝑠
− 𝑂(𝑑∕𝑠2) − 𝑝2𝑛∕2

)
= 𝑘𝑑

(
𝜈2𝑑4

120𝑠2𝑛
− 𝑂(𝑑∕𝑠2) −

𝜈2𝑑4

200𝑠2𝑛

)
.

If 𝜈2𝑑4

𝑠2𝑛
= 𝑂(𝑑∕𝑠2), then 𝑑3 = 𝑂(𝑛∕𝜈2) ⩽ 𝑂(𝑛𝑠1∕5), so the bound sp(𝐺) ⩾ Ω(𝑛

√
𝑑) ⩾ Ω(𝑑3∕𝑠6∕5)

follows from Lemma 2.9. Otherwise,

𝔼[𝑋 − 𝑌 − 𝑍] ⩾ Ω

(
𝑘𝜈2𝑑5

𝑠2𝑛

)
⩾ Ω

(
𝜈2𝑑3

𝑠

)
⩾ Ω

(
𝑑3

𝑠6∕5

)
.

Therefore, there exists an outcome in which 𝑋 − 𝑌 − 𝑍 ⩾ Ω(𝑑3∕𝑠6∕5), and then

sp(𝐺) ⩾

𝑘∑
𝑗=1

sp(𝐺[𝐴𝑗 ∪ 𝐵𝑗]) ⩾
1

2

𝑘∑
𝑗=1

(𝑒(𝐴𝑗, 𝐵𝑗) − 𝑒(𝐴𝑗) − 𝑒(𝐵𝑗)) =
1

2
(𝑋 − 𝑌 − 𝑍) ⩾ Ω(𝑑3∕𝑠6∕5),

completing the proof. □
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458 GLOCK et al.

3 ODD CYCLES

In this section, we prove Theorem 1.1. As discussed in Section 1.1, the tightness of the result
follows from the known construction of dense pseudo-random 𝐶𝑟-free graphs due to Alon and
Kahale [4]. It remains to show that, for fixed odd 𝑟 ⩾ 3, any 𝐶𝑟-free graph with 𝑚 edges has sur-
plus Ω𝑟(𝑚

(𝑟+1)∕(𝑟+2)). Since the case 𝑟 = 3 is covered by Alon’s theorem, we may assume 𝑟 ⩾ 5.
The proof is similar to the one for 𝐶5 which we presented in Section 2, but more technical, and
some new ideas are needed.
In the ‘sparse case’, when the graph is 𝑑-degenerate, we have the bound Ω(𝑚∕

√
𝑑) on the sur-

plus. The rest of this section is devoted to the proof of the following lemma which we use in the
‘dense’ case. We set

𝛼 =
𝑟

𝑟 + 1
and 𝛽 =

2𝑟 + 1

2𝑟 + 2
. (3.1)

Note that 0 < 𝛼 < 𝛽 and 𝛼 + 𝛽 ⩽ 2.

Lemma 3.1. Let𝐺 be a𝐶𝑟-free graph with 𝑛 vertices and average degree 𝑑. Then sp(𝐺) = Ω𝑟(𝑛
𝛼𝑑𝛽).

Before proving it, let us see how it implies Theorem 1.1. We will need the following lemma.

Lemma3.2. Let𝐺 be a graph and let𝑑 be a non-negative real number. Then there exists a bipartition
(𝑆, 𝑇) of 𝑉(𝐺) such that 𝐺[𝑆] is 𝑑-degenerate and 𝐺[𝑇] has minimum degree at least 𝑑.

Proof. Start with 𝑆0 = ∅ and 𝑇0 = 𝑉(𝐺). If there exists a vertex 𝑣 ∈ 𝑇0 with less than 𝑑 neighbours
in 𝑇0, then set 𝑆1 = 𝑆0 ∪ {𝑣} and 𝑇1 = 𝑇0 ⧵ {𝑣}. More generally, for 𝑖 ⩾ 0, if there exists 𝑣 ∈ 𝑇𝑖 with
less than 𝑑 neighbours in 𝑇𝑖 , then let 𝑆𝑖+1 = 𝑆𝑖 ∪ {𝑣} and let 𝑇𝑖+1 = 𝑇𝑖 ⧵ {𝑣}. Eventually, the pro-
cess stops and we are left with a partition (𝑆𝑘, 𝑇𝑘). Take 𝑆 = 𝑆𝑘, 𝑇 = 𝑇𝑘. By definition, 𝐺[𝑆] is
𝑑-degenerate and 𝐺[𝑇] has minimum degree at least 𝑑. □

Proof of Theorem 1.1. Let 𝐺 be a 𝐶𝑟-free graph with𝑚 edges. Let 𝑑 = 𝑚2∕(𝑟+2) and take a partition
(𝑆, 𝑇) of 𝑉(𝐺) as in Lemma 3.2. If 𝑒(𝑆, 𝑇) ⩾ 2𝑚∕3, then clearly sp(𝐺) ⩾ 𝑚∕6. If 𝑒(𝑆) ⩾ 𝑚∕6, then
by Lemma 2.9,

sp(𝐺) ⩾ sp(𝐺[𝑆]) ⩾ Ω𝑟

(
𝑚∕6√

𝑑

)
= Ω𝑟(𝑚

1−1∕(𝑟+2))

as desired. Finally, suppose that 𝑒(𝑇) ⩾ 𝑚∕6 and write 𝑛 for the number of vertices in 𝐺[𝑇].
Clearly, 𝑛𝑑 ⩾ 2𝑒(𝑇) ⩾ 𝑚∕3. Therefore, by Lemma 3.1,

sp(𝐺) ⩾ sp(𝐺[𝑇]) ⩾ Ω𝑟(𝑛
𝛼𝑑𝛽) = Ω𝑟

(
𝑚𝛼𝑑𝛽−𝛼

)
= Ω𝑟(𝑚

𝛼+2(𝛽−𝛼)∕(𝑟+2)) = Ω𝑟(𝑚
1−1∕(𝑟+2)),

since 𝛼 + 2(𝛽 − 𝛼)∕(𝑟 + 2) = 1 − 1∕(𝑟 + 2). □

It remains to prove Lemma 3.1. By Lemma 2.5 (applied with 𝛼, 𝛽 as defined in (3.1)), it suffices
to prove Lemma 3.1 for 𝐶𝑟-free graphs with 𝑛 vertices, average degree 𝑑, minimum degree Ω𝑟(𝑑)
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 459

and maximum degree 𝑂𝑟(𝑑). Assume throughout that 𝐺 is such a graph. We may, of course, also
assume that 𝑑 is sufficiently large.
Let 𝜖 > 0 be chosen sufficiently small, depending only on 𝑟. (Hence, implicit constants

depending on 𝜖 will also be indicated by a subscript 𝑟.) Set

𝓁 =
𝑟 − 1

2
.

Recall from Section 2.6 that it was crucial to find many 2-paths 𝑢𝑣𝑤 for which the codegree of
𝑢 and 𝑤, that is, the number of 2-paths from 𝑢 to 𝑤, was roughly the same. Here, we need to
generalise this concept to paths of length 𝓁. For some steps of our argument, it will actually be
more convenient toworkwithwalks rather thanpaths. For two vertices𝑢, 𝑣 ∈ 𝑉(𝐺) and an integer
𝑗, we write ℎ𝑗(𝑢, 𝑣) for the number of walks in 𝐺 of length 𝑗 from 𝑢 to 𝑣.
Using the minimum degree condition, we easily observe that there areΩ𝑟(𝑛𝑑

𝓁) paths of length
𝓁 in 𝐺. Now, the first crucial step in our argument is to select a large subset of 𝓁-paths which
exhibit a certain regularity condition.

Proposition 3.3. There exist 𝑐 = 𝑐(𝑟) > 0, positive integers (𝑠𝑖,𝑗)0⩽𝑖<𝑗⩽𝓁 and at least

𝑐

(∏
𝑖<𝑗

𝑠𝑖,𝑗

)−𝜖

𝑛𝑑𝓁

paths 𝑢0𝑢1 …𝑢𝓁 in 𝐺 with the property that

𝑠𝑖,𝑗 ⩽ ℎ𝑗−𝑖(𝑢𝑖, 𝑢𝑗) < 2𝑠𝑖,𝑗 (3.2)

for all 0 ⩽ 𝑖 < 𝑗 ⩽ 𝓁.

Proof. We apply dyadic pigeonholing. For each given path 𝑢0𝑢1 …𝑢𝓁 , there are unique
non-negative integers (𝑏𝑖,𝑗)0⩽𝑖<𝑗⩽𝓁 such that 2

𝑏𝑖,𝑗 ⩽ ℎ𝑗−𝑖(𝑢𝑖, 𝑢𝑗) < 2𝑏𝑖,𝑗+1.
Suppose, for a contradiction, that for every choice of (𝑏𝑖,𝑗)0⩽𝑖<𝑗⩽𝓁 , there are at most

𝑐

(∏
𝑖<𝑗

2𝑏𝑖,𝑗

)−𝜖

𝑛𝑑𝓁

corresponding paths. Summing over all choices for the 𝑏𝑖,𝑗 , we deduce that the total number

of 𝓁-paths is at most 𝑐𝑛𝑑𝓁(
∑∞

𝑏=0 2
−𝜖𝑏)(

𝓁+1
2 ) = 𝑐𝑛𝑑𝓁𝑂𝑟(1). Choosing 𝑐 small enough, we reach a

contradiction. □

From now on, we fix 𝑐 and (𝑠𝑖,𝑗)0⩽𝑖<𝑗⩽𝓁 which satisfy the conclusion of Proposition 3.3, and call
the paths 𝑢0𝑢1 …𝑢𝓁 in𝐺 which satisfy (3.2) good. Hence, there are at leastΩ𝑟(𝜈𝑛𝑑

𝓁) good 𝓁-paths
in 𝐺, where we set

𝜈 =

(∏
𝑖<𝑗

𝑠𝑖,𝑗

)−𝜖

.
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460 GLOCK et al.

Note that we clearly have 𝑠𝑖,𝑗 ⩽ Δ(𝐺)𝑗−𝑖−1 = 𝑑𝑂(𝓁) for all 0 ⩽ 𝑖 < 𝑗 ⩽ 𝓁. Thus, for small enough 𝜖,
we have, say,

𝜈 ⩾ 𝑑−1∕10. (3.3)

We extend the notion of a good path to smaller lengths in the obvious way. That is, for 𝑞 ⩽ 𝓁,
a path 𝑢0𝑢1 …𝑢𝑞 is called good if (3.2) holds for all 0 ⩽ 𝑖 < 𝑗 ⩽ 𝑞. Since 𝐺 has maximum degree
𝑂𝑟(𝑑), every 𝑞-path can be extended into at most 𝑂𝑟(𝑑

𝓁−𝑞) 𝓁-paths. Moreover, every subpath of
a good 𝓁-path (with the same start vertex) is also good. Hence, for each 𝑞 ⩽ 𝓁, there are at least
Ω𝑟(𝜈𝑛𝑑

𝑞) good 𝑞-paths in 𝐺.
We now state the key lemmaswhich provide lower bounds on the surplus. Using the SDP (semi-

definite programming) method, we will prove the following.

Lemma 3.4. For each 2 ⩽ 𝑞 ⩽ 𝓁, we have

sp(𝐺) = Ω𝑟

(
𝜈𝑛𝑑1∕2(𝑠0,𝑞∕𝑠0,𝑞−1)

1∕2
)
.

Corollary 3.5. We have

sp(𝐺) = Ω𝑟

(
𝜈𝑛𝑑1∕2𝑠

1∕2(𝓁−1)

0,𝓁

)
.

Proof. By the AM–GM inequality,

1

𝓁 − 1

𝓁∑
𝑞=2

(𝑠0,𝑞∕𝑠0,𝑞−1)
1∕2 ⩾

(
𝓁∏

𝑞=2

(𝑠0,𝑞∕𝑠0,𝑞−1)
1∕2

)1∕(𝓁−1)

= 𝑠
1∕2(𝓁−1)

0,𝓁

since 𝑠0,1 = 1.We infer that there exists 2 ⩽ 𝑞 ⩽ 𝓁with (𝑠0,𝑞∕𝑠0,𝑞−1)
1∕2 ⩾ 𝑠

1∕2(𝓁−1)

0,𝓁 . Lemma 3.4 then
implies the claim. □

Moreover, using random neighbourhood sampling, we will prove the following bound on the
surplus. We actually only need this for 𝑞 = 𝓁.

Lemma 3.6. For each 2 ⩽ 𝑞 ⩽ 𝓁, we have

sp(𝐺) = Ω𝑟

(
𝜈2𝑑𝑞+1∕𝑠0,𝑞

)
.

Before proving the two key lemmas, let us complete the proof of Lemma 3.1. We need one final
simple observation.

Proposition 3.7. For any 0 ⩽ 𝑖 ⩽ 𝑖′ < 𝑗′ ⩽ 𝑗 ⩽ 𝓁, we have 𝑠𝑖′,𝑗′ ⩽ 2𝑠𝑖,𝑗 . In particular, 𝜈 =

(2𝑠0,𝓁)
−𝑂(𝓁2𝜖).

Proof. Consider any good 𝓁-path 𝑢0𝑢1 …𝑢𝓁 . Then we know ℎ𝑗−𝑖(𝑢𝑖, 𝑢𝑗) ⩽ 2𝑠𝑖,𝑗 . On the other
hand, we have ℎ𝑗−𝑖(𝑢𝑖, 𝑢𝑗) ⩾ ℎ𝑗′−𝑖′ (𝑢𝑖′ , 𝑢𝑗′ ) ⩾ 𝑠𝑖′,𝑗′ since we can replace 𝑢𝑖′ … 𝑢𝑗′ with any walk of
length 𝑗′ − 𝑖′ from 𝑢𝑖′ to 𝑢𝑗′ . Hence, 𝑠𝑖′,𝑗′ ⩽ 2𝑠𝑖,𝑗 , proving the first claim. The second claim easily
follows. □
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 461

Proof of Lemma 3.1. Write 𝑠 = 𝑠0,𝓁 . We have

max{𝑑𝓁+1∕𝑠, 𝑛𝑑1∕2𝑠1∕2(𝓁−1)} ⩾

(
𝑑𝓁+1

𝑠
⋅
(
𝑛𝑑1∕2𝑠1∕2(𝓁−1)

)2𝓁+1
) 1

2𝓁+2

= 𝑛𝛼𝑑𝛽𝑠
3

(𝑟−3)(𝑟+1) .

Thus, by Corollary 3.5 and Lemma 3.6, we have sp(𝐺) = Ω𝑟(𝜈
2𝑛𝛼𝑑𝛽𝑠

3
(𝑟−3)(𝑟+1) ). Finally, by Proposi-

tion 3.7, we can ensure that 𝜈2𝑠
3

(𝑟−3)(𝑟+1) = Ω(1) when 𝜖 is sufficiently small, which completes the
proof. □

Remark 3.8. Observe that the same proof, using max{𝑎, 𝑏} ⩾ (𝑎𝑏2𝓁+2)1∕(2𝓁+3) instead of
max{𝑎, 𝑏} ⩾ (𝑎𝑏2𝓁+1)1∕(2𝓁+2), gives us sp(𝐺) = Ω𝑟((𝑛𝑑)

(2𝓁+2)∕(2𝓁+3)), which proves Theorem 1.1
directly when 𝐺 is (almost) regular. We used the slightly biased weighting here in order to be able
to apply our regularisation lemma.

It remains to prove the key Lemmas 3.4 and 3.6. Since some steps in the proofs are similar, we
treat them in a unified setup. For the rest of this section, fix 2 ⩽ 𝑞 ⩽ 𝓁. To enhance readability, we
also set 𝑠 = 𝑠0,𝑞 and 𝑠′ = 𝑠0,𝑞−1.
Partition of 𝑉(𝐺). We will be interested in good paths of length 𝑞. In order to maintain better

control onhowdifferent suchpaths can intersect,we consider ‘partite’ pathswhere the vertices are
chosen from disjoint vertex subsets. To this end, partition𝑉(𝐺) randomly as𝑈0 ∪ 𝑈1 ∪⋯ ∪ 𝑈𝑞 by
placing, each vertex 𝑢 independently, in𝑈𝑖 with probability 1∕(𝑞 + 1), for every 0 ⩽ 𝑖 ⩽ 𝑞.Write
for the set of tuples (𝑢0, 𝑢1, … , 𝑢𝑞) ∈ 𝑈0 × 𝑈1 ×⋯ × 𝑈𝑞 such that𝑢0𝑢1 …𝑢𝑞 is a good path.Write
for the set of tuples (𝑢0, 𝑢1, … , 𝑢𝑞−1) ∈ 𝑈0 × 𝑈1 ×⋯ × 𝑈𝑞−1 such that 𝑢0𝑢1 …𝑢𝑞−1 is a good path.
Since there are Ω𝑟(𝜈𝑛𝑑

𝑞) good paths of length 𝑞 in 𝐺, each of which contributes to  with
probability (𝑞 + 1)−(𝑞+1) = Ω𝑟(1), we have 𝔼[||] = Ω𝑟(𝜈𝑛𝑑

𝑞). Hence, there exists a partition
𝑈0 ∪ 𝑈1 ∪⋯ ∪ 𝑈𝑞, which we will fix from now on, for which || = Ω𝑟(𝜈𝑛𝑑

𝑞). (Note that, since
any tuple in can be extended to at most Δ(𝐺) tuples in, we also know that || = Ω𝑟(𝜈𝑛𝑑

𝑞−1),
although we will not explicitly need this.)
The sets 𝑆(𝑢), 𝑇(𝑢). For every vertex 𝑢 ∈ 𝑉(𝐺), define sets 𝑇(𝑢) and 𝑆(𝑢) as follows. If 𝑢 ∈

𝑈0 ∪ 𝑈1 ∪⋯ ∪ 𝑈𝑞−2, then let 𝑇(𝑢) = 𝑆(𝑢) = ∅. If 𝑢 ∈ 𝑈𝑞−1, then let 𝑆(𝑢) = ∅ and let 𝑇(𝑢) be
the set of those 𝑢0 ∈ 𝑈0 for which there exist at least ||𝑠′

4𝑛Δ(𝐺)𝑞
= Ω𝑟(𝜈𝑠

′) tuples of the form
(𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑞−2, 𝑢) ∈ . Finally, if 𝑢 ∈ 𝑈𝑞, then let 𝑇(𝑢) = ∅ and let 𝑆(𝑢) be the set of those
𝑢0 ∈ 𝑈0 for which there exist at least

||𝑠
4𝑛Δ(𝐺)𝑞

= Ω𝑟(𝜈𝑠) tuples of the form (𝑢0, 𝑢1, … , 𝑢𝑞−1, 𝑢) ∈ .
Very roughly, we can think of 𝑆(𝑢) as the 𝑞th neighbourhood of 𝑢, but we only use this for

𝑢 ∈ 𝑈𝑞 and only consider ‘𝑞th neighbours’ in 𝑈0 which can be reached by a substantial amount
of good paths.
The following lemma is the crucial point where we use the assumption that 𝐺 is 𝐶𝑟-free. We

will use it in the proofs of both key lemmas in order to bound terms that would otherwise drive
the surplus to be small.

Lemma 3.9. We have

∑
𝑢𝑣∈𝐸(𝐺)

|𝑆(𝑢) ∩ 𝑆(𝑣)| = 𝑂𝑟

(
𝑛𝑑𝑞

𝜈𝑠

)
and

∑
𝑢𝑣∈𝐸(𝐺)

|𝑇(𝑢) ∩ 𝑇(𝑣)| = 𝑂𝑟

(
𝑛𝑑𝑞−1

𝜈𝑠′

)
.
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462 GLOCK et al.

The intuition is that if 𝑢0 ∈ 𝑆(𝑢) ∩ 𝑆(𝑣), then we must have 𝑢, 𝑣 ∈ 𝑈𝑞, and two of the good
paths in, one from 𝑢0 to 𝑢 and one from 𝑢0 to 𝑣, will give us together with the edge 𝑢𝑣 an odd
cycle. In the extreme case that 𝑞 = 𝓁 and the two paths are internally vertex disjoint, this would
be a cycle of length 2𝓁 + 1 = 𝑟, a contradiction to our assumption that 𝐺 is 𝐶𝑟-free. In order to
prove the more general case when 𝑞 can be smaller and the paths might not be internally disjoint,
we need a counting lemma which we will establish in the next subsection.

3.1 Counting good paths and short cycles

As discussed above, when 𝑢0 ∈ 𝑆(𝑢) ∩ 𝑆(𝑣), then we find an odd cycle of the form
𝑢𝑖 …𝑢𝑞−1𝑢𝑣𝑣𝑞−1 … 𝑣𝑖 , where 𝑢𝑖 = 𝑣𝑖 and 𝑢𝑗, 𝑣𝑗 ∈ 𝑈𝑗 for all 𝑖 ⩽ 𝑗 ⩽ 𝑞 − 1. The following lemma
shows that we can utilise the 𝐶𝑟-freeness of 𝐺 to control such short odd cycles. In its statement,
one can think of 𝑧 = 𝑢𝑖 = 𝑣𝑖 and 𝑅 ⊂ 𝑈𝑞.

Lemma 3.10. Let 𝑧 ∈ 𝑉(𝐺) and let 𝑅 ⊂ 𝑉(𝐺) ⧵ {𝑧}. Let 𝑗 ⩽ 𝓁 be a positive integer. Define the
auxiliary graph 𝐻 with vertex set 𝑅 such that 𝑢𝑣 ∈ 𝐸(𝐻) if there is a 𝐶2𝑗+1 in 𝐺 of the form
𝑧𝑢1𝑢2 …𝑢𝑗−1𝑢𝑣𝑣𝑗−1𝑣𝑗−2 … 𝑣1𝑧with𝑢1, … , 𝑢𝑗−1, 𝑣1, … , 𝑣𝑗−1 ∉ 𝑅. Then𝐻 has average degree atmost
22𝑗+1(𝑟 − 2𝑗) = 𝑂𝑟(1).

Proof. Define a random partition 𝑉(𝐺) ⧵ {𝑧} = 𝐴 ∪ 𝐵 by placing each vertex on either side
with probability 1∕2, independently of the other vertices. Let 𝐻′ be the subgraph of 𝐻 on
the same vertex set 𝑅 in which 𝑎𝑏 is an edge if 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and there is a 𝐶2𝑗+1 in 𝐺 of
the form 𝑧𝑢1𝑢2 …𝑢𝑗−1𝑎𝑏𝑣𝑗−1𝑣𝑗−2 … 𝑣1𝑧 such that 𝑢1, … , 𝑢𝑗−1 ∈ 𝐴 ⧵ 𝑅 and 𝑣1, … , 𝑣𝑗−1 ∈ 𝐵 ⧵ 𝑅.
Clearly, each edge in𝐻 is an edge in𝐻′ with probability at least 2−2𝑗 . Hence, 𝔼[𝑒(𝐻′)] ⩾ 2−2𝑗𝑒(𝐻),
and there exists a partition 𝐴, 𝐵 for which 𝑒(𝐻′) ⩾ 2−2𝑗𝑒(𝐻).
Crucially, 𝐻′ cannot contain a path of length 𝑟 − 2𝑗. Indeed, suppose that there is such a path

𝑎1𝑏1𝑎2𝑏2 …𝑎𝑖𝑏𝑖 where 𝑟 − 2𝑗 = 2𝑖 − 1.Without loss of generality,𝑎1 ∈ 𝐴 and 𝑏𝑖 ∈ 𝐵. Since𝑎1𝑏1 ∈

𝐸(𝐻′), there exists a path 𝑧𝑢1𝑢2 …𝑢𝑗−1𝑎1 in 𝐺 with 𝑢1, 𝑢2, … , 𝑢𝑗−1 ∈ 𝐴 ⧵ 𝑅. Similarly, there exists
a path 𝑧𝑣1𝑣2 … 𝑣𝑗−1𝑏𝑖 in 𝐺 with 𝑣1, 𝑣2, … , 𝑣𝑗−1 ∈ 𝐵 ⧵ 𝑅. Then

𝑧𝑢1𝑢2 …𝑢𝑗−1𝑎1𝑏1𝑎2𝑏2 …𝑎𝑖𝑏𝑖𝑣𝑗−1 … 𝑣1𝑧

is a 𝐶𝑟 in 𝐺, which is a contradiction. Thus,𝐻′ does not contain a path of length 𝑟 − 2𝑗. It follows
that𝐻′ has average degree at most 2(𝑟 − 2𝑗). Hence,𝐻 has average degree at most 22𝑗+1(𝑟 − 2𝑗) =

𝑂𝑟(1). □

Lemma 3.11. Let 𝑧 ∈ 𝑉(𝐺) and let 𝑅 ⊂ 𝑉(𝐺) ⧵ {𝑧}. Let 𝑗 ⩽ 𝓁 be a positive integer. Suppose that
there exists a real number 𝑠′′ ⩾ 1 such that for any 𝑢 ∈ 𝑅, we have 𝑠′′ ⩽ ℎ𝑗(𝑧, 𝑢) < 2𝑠′′. Then there
are at most𝑂𝑟(𝑑

𝑗) paths 𝑧𝑢1 …𝑢𝑗−1𝑢𝑣 in𝐺 with 𝑢1, … , 𝑢𝑗−1 ∉ 𝑅, 𝑢, 𝑣 ∈ 𝑅 which can be extended to
a 𝐶2𝑗+1 of the form 𝑧𝑢1 …𝑢𝑗−1𝑢𝑣𝑣𝑗−1 … 𝑣1𝑧 with 𝑣1, … , 𝑣𝑗−1 ∉ 𝑅.

Proof. Since every 𝑢 ∈ 𝑅 has ℎ𝑗(𝑧, 𝑢) ⩾ 𝑠′′ and the total number of walks of length 𝑗 starting
from 𝑧 is at most Δ(𝐺)𝑗 = 𝑂𝑟(𝑑

𝑗), we have |𝑅| = 𝑂𝑟(𝑑
𝑗∕𝑠′′). Define the auxiliary graph 𝐻 like in

Lemma 3.10. Then we have 𝑒(𝐻) = 𝑂𝑟(𝑑
𝑗∕𝑠′′). Since ℎ𝑗(𝑧, 𝑢) < 2𝑠′′ for every 𝑢 ∈ 𝑅, there are at

most 2𝑒(𝐻) ⋅ 2𝑠′′ = 𝑂𝑟(𝑑
𝑗) paths 𝑧𝑢1 …𝑢𝑗−1𝑢𝑣 in 𝐺 with 𝑢1, … , 𝑢𝑗−1 ∉ 𝑅 and 𝑢, 𝑣 ∈ 𝑅 which can

be extended to a 𝐶2𝑗+1 of the form 𝑧𝑢1 …𝑢𝑗−1𝑢𝑣𝑣𝑗−1 … 𝑣1𝑧 with 𝑣1, … , 𝑣𝑗−1 ∉ 𝑅. □
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 463

Lemma 3.12. The number of tuples (𝑢0, … , 𝑢𝑞, 𝑣) with (𝑢0, … , 𝑢𝑞) ∈ , 𝑣 ∈ 𝑁(𝑢𝑞) ∩ 𝑈𝑞 and 𝑢0 ∈

𝑆(𝑣) is at most𝑂𝑟(𝑛𝑑
𝑞). Similarly, the number of tuples (𝑢0, … , 𝑢𝑞−1, 𝑣)with (𝑢0, … , 𝑢𝑞−1) ∈ , 𝑣 ∈

𝑁(𝑢𝑞−1) ∩ 𝑈𝑞−1 and 𝑢0 ∈ 𝑇(𝑣) is at most 𝑂𝑟(𝑛𝑑
𝑞−1).

Proof. We prove the first claim. The proof of the second is almost verbatim the same. Take a tuple
(𝑢0, … , 𝑢𝑞, 𝑣) with (𝑢0, … , 𝑢𝑞) ∈  and 𝑣 ∈ 𝑁(𝑢𝑞) ∩ 𝑈𝑞 for which 𝑢0 ∈ 𝑆(𝑣). The last condition
implies that there exists (𝑣0, 𝑣1, … , 𝑣𝑞−1, 𝑣) ∈  with 𝑣0 = 𝑢0. Let 𝑖 be the largest index for which
𝑢𝑖 = 𝑣𝑖 . Then 𝑢𝑖 …𝑢𝑞−1𝑢𝑞𝑣𝑣𝑞−1 … 𝑣𝑖 is a 𝐶2𝑗+1 in 𝐺, where 1 ⩽ 𝑗 = 𝑞 − 𝑖 ⩽ 𝑞 ⩽ 𝓁. We now count
the number of choices for (𝑢𝑖, 𝑢𝑖+1, … , 𝑢𝑞−1, 𝑢𝑞, 𝑣).
There are at most 𝑛 possibilities for 𝑢𝑖 . Fix such a choice 𝑢𝑖 (which also determines 𝑖). Set 𝑅 =

{𝑢′ ∈ 𝑈𝑞 ∶ 𝑠𝑖,𝑞 ⩽ ℎ𝑞−𝑖(𝑢𝑖, 𝑢
′) < 2𝑠𝑖,𝑞}. By Lemma 3.11 (with 𝑧 = 𝑢𝑖 = 𝑣𝑖 and 𝑠′′ = 𝑠𝑖,𝑞), there are

at most 𝑂𝑟(𝑑
𝑗) choices for (𝑢𝑖+1, … , 𝑢𝑞−1, 𝑢𝑞, 𝑣). Given any such choice, there are clearly at most

Δ(𝐺)𝑖 = 𝑂𝑟(𝑑
𝑞−𝑗) possibilities to choose 𝑢𝑖−1, … , 𝑢0. In total, this gives 𝑂𝑟(𝑛𝑑

𝑞) possibilities. □

Proof of Lemma 3.9. We prove the first bound, and the proof of the second is verbatim the
same. Note that

∑
𝑢𝑣∈𝐸(𝐺) |𝑆(𝑢) ∩ 𝑆(𝑣)| is half the number of triples (𝑢0, 𝑢, 𝑣) with 𝑢, 𝑣 ∈ 𝑈𝑞,

𝑢𝑣 ∈ 𝐸(𝐺) and 𝑢0 ∈ 𝑆(𝑢) ∩ 𝑆(𝑣). Each such triple, spelling out 𝑢0 ∈ 𝑆(𝑢), gives us Ω𝑟(𝜈𝑠) tuples
(𝑢0, … , 𝑢𝑞−1, 𝑢, 𝑣) with (𝑢0, … , 𝑢𝑞−1, 𝑢) ∈ , 𝑣 ∈ 𝑁(𝑢) ∩ 𝑈𝑞 and 𝑢0 ∈ 𝑆(𝑣).
Thus, it suffices to show that the total number of tuples (𝑢0, … , 𝑢𝑞−1, 𝑢, 𝑣) with

(𝑢0, … , 𝑢𝑞−1, 𝑢) ∈ , 𝑣 ∈ 𝑁(𝑢) ∩ 𝑈𝑞 and 𝑢0 ∈ 𝑆(𝑣) is at most 𝑂𝑟(𝑛𝑑
𝑞). This follows from

Lemma 3.12. □

One last tool is the following, which will help us in both key lemmas to give good bounds on
terms that influence the surplus in our favour.

Proposition 3.13. At least half of the tuples (𝑢0, … , 𝑢𝑞−1, 𝑢𝑞) ∈  satisfy 𝑢0 ∈ 𝑇(𝑢𝑞−1) ∩ 𝑆(𝑢𝑞).

Proof. We count the number of tuples (𝑢0, … , 𝑢𝑞−1, 𝑢𝑞) ∈  with 𝑢0 ∉ 𝑆(𝑢𝑞) as follows. Firstly,
we have at most 𝑛 choices for 𝑢0. Then, the number of possibilities for 𝑢𝑞 such that there exists
at least one tuple (𝑢0, 𝑢1, … , 𝑢𝑞) ∈  is at most Δ(𝐺)𝑞∕𝑠, since there are obviously at most Δ(𝐺)𝑞

walks of length 𝑞 starting from 𝑢0, and if the final vertex 𝑢𝑞 is such that there exists a good 𝑞-path
from 𝑢0 to 𝑢𝑞, then we have ℎ𝑞(𝑢0, 𝑢𝑞) ⩾ 𝑠. Now, given 𝑢0 and 𝑢𝑞, if 𝑢0 ∉ 𝑆(𝑢𝑞), then there are
at most ||𝑠

4𝑛Δ(𝐺)𝑞
tuples of the form (𝑢0, … , 𝑢𝑞−1, 𝑢𝑞) ∈  by definition of 𝑆(𝑢𝑞). Hence, the total

number of such tuples is at most ||∕4.
The same proof shows that the number of (𝑢0, … , 𝑢𝑞−1) ∈  with 𝑢0 ∉ 𝑇(𝑢𝑞−1) is at most

𝑛 ⋅
Δ(𝐺)𝑞−1

𝑠′
⋅

||𝑠′
4𝑛Δ(𝐺)𝑞

=
||

4Δ(𝐺)
.

Since any tuple in can be extended to at mostΔ(𝐺) tuples in, we see that the number of tuples
(𝑢0, … , 𝑢𝑞−1, 𝑢𝑞) ∈  with 𝑢0 ∉ 𝑇(𝑢𝑞−1) is also at most ||∕4, which completes the proof. □

3.2 Lower bound using the SDPmethod

Our goal in this subsection is to prove Lemma 3.4. We need onemore tool which controls the gain
that we will achieve with the SDP method.
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464 GLOCK et al.

Proposition 3.14. We have ∑
𝑢𝑣∈𝐸(𝐺)

|𝑆(𝑢) ∩ 𝑇(𝑣)| = Ω𝑟

(
𝜈𝑛𝑑𝑞

𝑠′

)
,

where the sum here is over all ordered pairs (𝑢, 𝑣) with 𝑢𝑣 ∈ 𝐸(𝐺).

Proof. By Proposition 3.13, there are Ω𝑟(𝜈𝑛𝑑
𝑞) tuples (𝑢0, … , 𝑢𝑞−1, 𝑢𝑞) ∈  which satisfy 𝑢0 ∈

𝑇(𝑢𝑞−1) ∩ 𝑆(𝑢𝑞). Each of these gives a triple (𝑢0, 𝑢𝑞−1, 𝑢𝑞) which is counted in
∑

𝑢𝑣∈𝐸(𝐺) |𝑆(𝑢) ∩
𝑇(𝑣)|. Moreover, any such triple (𝑢0, 𝑢𝑞−1, 𝑢𝑞) arises in this way at most 2𝑠′ times since, if
some (𝑢0, 𝑢1, … , 𝑢𝑞−1, 𝑢𝑞) ∈  exists, then the number of choices for 𝑢1, … , 𝑢𝑞−2 is at most
ℎ𝑞−1(𝑢0, 𝑢𝑞−1) < 2𝑠′. □

Proof of Lemma 3.4. For every 𝑢 ∈ 𝑉(𝐺), define 𝐱𝑢 ∈ ℝ𝑉(𝐺) by

𝐱𝑢
𝑤 =

⎧⎪⎨⎪⎩
−(𝑠′∕𝑑𝑞−1)1∕2 if 𝑤 ∈ 𝑇(𝑢),

(𝑠∕𝑑𝑞)1∕2 if 𝑤 ∈ 𝑆(𝑢),

0 otherwise.

This is well defined since for any 𝑢 ∈ 𝑉(𝐺), we have 𝑇(𝑢) ∩ 𝑆(𝑢) = ∅.
Our goal is to apply Corollary 2.3. Clearly, we have ||𝐱𝑢||2 ⩽ |𝑇(𝑢)|𝑠′∕𝑑𝑞−1 + |𝑆(𝑢)|𝑠∕𝑑𝑞. For

each 𝑢0 ∈ 𝑇(𝑢), we know that ℎ𝑞−1(𝑢0, 𝑢) ⩾ 𝑠′. Hence, the number of walks of length 𝑞 − 1 start-
ing from 𝑢 is at least |𝑇(𝑢)|𝑠′. On the other hand, this quantity is trivially bounded from above by
Δ(𝐺)𝑞−1. Hence, we have |𝑇(𝑢)|𝑠′∕𝑑𝑞−1 = 𝑂𝑟(1). Similarly, the number of walks of length 𝑞 start-
ing from 𝑢 is at least |𝑆(𝑢)|𝑠 and at most Δ(𝐺)𝑞, implying that |𝑆(𝑢)|𝑠∕𝑑𝑞 = 𝑂𝑟(1), too. Hence,||𝐱𝑢|| = 𝑂𝑟(1) for all 𝑢 ∈ 𝑉(𝐺).
Now, consider 𝑢𝑣 ∈ 𝐸(𝐺). We have ⟨𝐱𝑢, 𝐱𝑣⟩ = −𝑎𝑢𝑣 + 𝑏𝑢𝑣, where

𝑎𝑢𝑣 = (|𝑇(𝑢) ∩ 𝑆(𝑣)| + |𝑆(𝑢) ∩ 𝑇(𝑣)|) (𝑠𝑠′)1∕2
𝑑𝑞−1∕2

,

𝑏𝑢𝑣 = |𝑇(𝑢) ∩ 𝑇(𝑣)| 𝑠′

𝑑𝑞−1
+ |𝑆(𝑢) ∩ 𝑆(𝑣)| 𝑠

𝑑𝑞
.

Invoking Proposition 3.14, we have a ‘gain’ of

∑
𝑢𝑣∈𝐸(𝐺)

𝑎𝑢𝑣 = Ω𝑟

(
𝜈𝑛𝑑𝑞

𝑠′
(𝑠𝑠′)1∕2

𝑑𝑞−1∕2

)
= Ω𝑟

(
𝜈𝑛𝑑1∕2(𝑠∕𝑠′)1∕2

)
.

On the other hand, by Lemma 3.9, we have a ‘loss’ of

∑
𝑢𝑣∈𝐸(𝐺)

𝑏𝑢𝑣 = 𝑂𝑟

(
𝑛𝑑𝑞−1

𝜈𝑠′
𝑠′

𝑑𝑞−1
+

𝑛𝑑𝑞

𝜈𝑠

𝑠

𝑑𝑞

)
= 𝑂𝑟(𝑛∕𝜈).

Since 𝑠′ ⩽ 2𝑠 by Proposition 3.7 and 𝜈 ⩾ 𝑑−1∕10 by (3.3), the second sum is negligible compared
to the first, and so by Corollary 2.3, we conclude sp(𝐺) = Ω𝑟(𝜈𝑛𝑑

1∕2(𝑠∕𝑠′)1∕2). This completes the
proof. □
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 465

Note that in the above proof, 𝐱𝑢 is the zero vector unless 𝑢 ∈ 𝑈𝑞−1 ∪ 𝑈𝑞. This essentially means
that we find a cut with large surplus in 𝐺[𝑈𝑞−1 ∪ 𝑈𝑞].

3.3 Random neighbourhood sampling

Our goal in this subsection is to prove Lemma 3.6. While in the proof of Lemma 3.4, the dominant
term for the surplus was given by the sum over all edges 𝑢𝑣 of the intersection size |𝑆(𝑢) ∩ 𝑇(𝑣)|,
here, the surplus will be mainly given by

∑
𝑢∈𝑉(𝐺) |𝑆(𝑢)|. Recall that 𝑆(𝑢) = ∅ unless 𝑢 ∈ 𝑈𝑞, so

the important vertices here are the ones in 𝑈𝑞. Roughly speaking, we find subsets 𝐴𝑗 inside 𝑈𝑞

which contain few edges, and use this to find a large cut.

Proposition 3.15. We have
∑

𝑢∈𝑉(𝐺) |𝑆(𝑢)| = Ω𝑟(𝜈𝑛𝑑
𝑞∕𝑠).

Proof. The sum
∑

𝑢∈𝑉(𝐺) |𝑆(𝑢)| counts the number of pairs (𝑢0, 𝑢𝑞) ∈ 𝑈0 × 𝑈𝑞 with 𝑢0 ∈ 𝑆(𝑢𝑞).
By Proposition 3.13 and ⩾ Ω𝑟(𝜈𝑛𝑑

𝑞), and since each pair (𝑢0, 𝑢𝑞) ∈ 𝑈0 × 𝑈𝑞 appears in at most
2𝑠 tuples in, we have

∑
𝑢∈𝑉(𝐺) |𝑆(𝑢)| = Ω𝑟(𝜈𝑛𝑑

𝑞∕𝑠). □

Proof of Lemma 3.6. Let 𝜇 be a sufficiently small constant depending only on 𝑟. Note that || ⩽
𝑛2(2𝑠) since for any choice of (𝑢0, 𝑢𝑞) ∈ 𝑈0 × 𝑈𝑞 that appears in some tuple in , there are at
most 2𝑠 tuples containing it. Moreover, recall || = Ω𝑟(𝜈𝑛𝑑

𝑞). Hence, 𝜈𝑑𝑞

𝑠𝑛
= 𝑂𝑟(1). Let

𝑘 =

⌈
𝑠𝑛

2Δ(𝐺)𝑞

⌉
.

Give every vertex a random label from {0, 1, … , 𝑘 + 1}, where 0 is chosen with probability 1∕3,
each of 1, … , 𝑘 is chosen with probability 𝑝 = 𝜇𝜈𝑑𝑞

𝑠𝑛
, and the remaining probability falls on 𝑘 + 1.

This is feasible since 𝑘𝑝 ⩽ 𝜇∕2 + 𝑝 ⩽ 2∕3, provided that 𝜇 is sufficiently small. For every 𝑗 ∈ [𝑘],
let 𝐵𝑗 be the set of vertices with label 𝑗.
Now, pick uniformly at randomwith repetition vertices 𝑣1, … , 𝑣𝑘 ∈ 𝑉(𝐺). For 𝑗 ∈ [𝑘], let𝐴𝑗 be

the set of vertices 𝑢 with label 0 such that 𝑣𝑗 ∈ 𝑆(𝑢), but 𝑣𝑖 ∉ 𝑆(𝑢) for all 𝑖 ≠ 𝑗.
Let𝑋 be the number of edgeswhich go between𝐴𝑗 and𝐵𝑗 for some 𝑗 ∈ [𝑘], let𝑌 be the number

of edges inside some 𝐴𝑗 and let 𝑍 be the number of edges inside some 𝐵𝑗 .

Claim 1. 𝔼[𝑌] = 𝑂𝑟(
𝑘𝑑𝑞

𝜈𝑠
).

Proof of claim. If an edge 𝑢𝑣 ∈ 𝐸(𝐺) is in some 𝐴𝑗, then 𝑣𝑗 ∈ 𝑆(𝑢) ∩ 𝑆(𝑣). Hence, the probability
that 𝑢𝑣 contributes to 𝑌 is at most 𝑘 |𝑆(𝑢)∩𝑆(𝑣)|

𝑛
. Thus,

𝔼[𝑌] ⩽
∑

𝑢𝑣∈𝐸(𝐺)

𝑘
|𝑆(𝑢) ∩ 𝑆(𝑣)|

𝑛
= 𝑂𝑟

(
𝑘𝑑𝑞

𝜈𝑠

)
by Lemma 3.9. □

Claim 2. 𝔼[𝑍] = 𝑂(𝑘𝑝2𝑛𝑑).
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466 GLOCK et al.

Proof of claim. For any 𝑗, the expected number of edges in𝐺[𝐵𝑗] is 𝑝2𝑒(𝐺) = 𝑝2 𝑛𝑑

2
. Summing over

the 𝑘 possibilities for 𝑗, the claim follows. □

Claim 3. 𝔼[𝑋] = Ω𝑟(𝑘𝑝𝜈𝑑
𝑞+1∕𝑠).

Proof of claim. Let 𝑢𝑣 ∈ 𝐸(𝐺). For any 𝑗 ∈ [𝑘], the probability that 𝑣𝑗 ∈ 𝑆(𝑢), but 𝑣𝑖 ∉ 𝑆(𝑢) for
every 𝑖 ≠ 𝑗, is

|𝑆(𝑢)|
𝑛

(
1 −

|𝑆(𝑢)|
𝑛

)𝑘−1

⩾
|𝑆(𝑢)|

𝑛

(
1 −

(𝑘 − 1)|𝑆(𝑢)|
𝑛

)
⩾

|𝑆(𝑢)|
𝑛

(
1 −

(𝑘 − 1)Δ(𝐺)𝑞

𝑠𝑛

)
⩾

|𝑆(𝑢)|
2𝑛

,

whereweused the bound |𝑆(𝑢)|𝑠 ⩽ Δ(𝐺)𝑞 (explained in the proof of Lemma3.4) and the definition
of 𝑘. Thus, the probability that 𝑢𝑣 contributes to 𝑋 is at least 𝑘 𝑝

6𝑛
(|𝑆(𝑢)| + |𝑆(𝑣)|). Hence,

𝔼[𝑋] ⩾
𝑘𝑝

6𝑛

∑
𝑢∈𝑉(𝐺)

𝑑(𝑢)|𝑆(𝑢)| ⩾ 𝑘𝑝𝛿(𝐺)

6𝑛

∑
𝑢∈𝑉(𝐺)

|𝑆(𝑢)| = Ω𝑟(𝑘𝑝𝜈𝑑
𝑞+1∕𝑠),

where we have used Proposition 3.15 in the last step. □

Combining the three claims, and plugging in 𝑝 with a sufficiently small 𝜇, we get

𝔼[𝑋 − 𝑌 − 𝑍] ⩾ 𝑘𝑑

(
Ω𝑟(𝑝𝜈𝑑

𝑞∕𝑠) − 𝑂𝑟

(
𝑑𝑞−1

𝜈𝑠

)
− 𝑂(𝑝2𝑛)

)
⩾ 𝑘𝑑

(
Ω𝑟

(
𝜈2𝑑2𝑞

𝑠2𝑛

)
− 𝑂𝑟

(
𝑑𝑞−1

𝜈𝑠

))
.

If 𝜈2𝑑2𝑞

𝑠2𝑛
= 𝑂𝑟(

𝑑𝑞−1

𝜈𝑠
), then 𝜈2𝑑𝑞+1

𝑠
= 𝑂𝑟(𝑛∕𝜈) = 𝑂𝑟(𝑛𝑑

1∕10) by (3.3), so the surplus we are aiming
for already follows from Lemma 2.9. Otherwise,

𝔼[𝑋 − 𝑌 − 𝑍] = Ω𝑟

(
𝑘𝜈2𝑑2𝑞+1

𝑠2𝑛

)
= Ω𝑟

(
𝜈2𝑑𝑞+1

𝑠

)
.

Then there exists an outcome in which 𝑋 − 𝑌 − 𝑍 = Ω𝑟(𝜈
2𝑑𝑞+1∕𝑠), and therefore,

sp(𝐺) ⩾

𝑘∑
𝑗=1

sp(𝐺[𝐴𝑗 ∪ 𝐵𝑗]) ⩾
1

2
(𝑋 − 𝑌 − 𝑍) = Ω𝑟

(
𝜈2𝑑𝑞+1∕𝑠

)
by Lemma 2.1, completing the proof. □

4 FEW TRIANGLES

In this section, we prove Theorem 1.3. Similarly to the proof of Theorem 2.4, we let 𝑎 =
√

𝑑

𝑛−𝑑
,

0 < 𝛾 ⩽ 1 and for every 𝑣 ∈ 𝑉(𝐺), we define 𝐱𝑣 ∈ ℝ𝑉(𝐺) by

𝐱𝑣
𝑢 =

⎧⎪⎨⎪⎩
1 + 𝛾𝑎 if 𝑢 = 𝑣,

−𝛾 1√
𝑑
if 𝑢 ∈ 𝑁(𝑣),

𝛾𝑎 otherwise.
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 467

Just like in the strongly regular case, the sum
∑

𝑢𝑣∈𝐸(𝐺)
⟨𝐱𝑢,𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖ is negative for a suitable choice

of 𝛾. However, this does not directly lead to a large surplus because the inner product is not nega-
tive for every𝑢𝑣 ∈ 𝐸(𝐺), and for positive𝑥, we have arcsin(𝑥) > 𝑥. Nevertheless, for small positive
𝑥, arcsin(𝑥) is very close to 𝑥, so the main discrepancy is caused by edges 𝑢𝑣 for which ⟨𝐱𝑢, 𝐱𝑣⟩
is very large. In view of (2.1), this happens when 𝑑(𝑢, 𝑣) is much larger than 𝑑2∕𝑛. To deal with
these edges, we will introduce a slightly modified version of 𝐱𝑣. For 𝑣 ∈ 𝑉(𝐺), define 𝐲𝑣 ∈ ℝ𝑉(𝐺)

randomly by

𝐲𝑣
𝑢 =

⎧⎪⎪⎨⎪⎪⎩

1 + 𝛾𝑎 if 𝑢 = 𝑣,

−𝛾 1√
𝑑
if 𝑢 ∈ 𝑁(𝑣) and 𝑑(𝑢, 𝑣) ⩽ 20𝑑2∕𝑛,

±𝛾 1√
𝑑
if 𝑢 ∈ 𝑁(𝑣) and 𝑑(𝑢, 𝑣) > 20𝑑2∕𝑛,

𝛾𝑎 otherwise,

where, for any 𝑢𝑣 ∈ 𝐸(𝐺) with 𝑑(𝑢, 𝑣) > 20𝑑2∕𝑛, the sign of 𝐲𝑣
𝑢 is + with probability 1∕2,

independently of all other coordinates and vectors.
Our first lemma states that if there are many edges with large codegree, then, when applying

Lemma 2.2, the vectors 𝐲𝑣 provide significantly better surplus than the vectors 𝐱𝑣.

Lemma 4.1. Let 0 < 𝛾 ⩽ 1∕10 and 𝑑 ⩽ 𝑛∕2. If 𝐺 is an 𝑛-vertex 𝑑-regular graph with at most 𝑑3∕3

triangles and the vectors 𝐱𝑣 , 𝐲𝑣 are defined as above, then

𝔼

[ ∑
𝑢𝑣∈𝐸(𝐺)

(
arcsin

( ⟨𝐲𝑢, 𝐲𝑣⟩‖𝐲𝑢‖‖𝐲𝑣‖
)

− arcsin

( ⟨𝐱𝑢, 𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖
))]

⩽
𝛾𝑛

√
𝑑

4
− 𝛾2

⎛⎜⎜⎜⎜⎝
∑

𝑢𝑣∈𝐸(𝐺)∶

𝑑(𝑢,𝑣)>20𝑑2∕𝑛

𝑑(𝑢, 𝑣)

10𝑑

⎞⎟⎟⎟⎟⎠
.

The proof of this lemma is a tedious calculation, so it is given in the Appendix. Choose signs in
a way that

∑
𝑢𝑣∈𝐸(𝐺)

(
arcsin

( ⟨𝐲𝑢, 𝐲𝑣⟩‖𝐲𝑢‖‖𝐲𝑣‖
)

− arcsin

( ⟨𝐱𝑢, 𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖
))

⩽
𝛾𝑛

√
𝑑

4
− 𝛾2

⎛⎜⎜⎜⎜⎝
∑

𝑢𝑣∈𝐸(𝐺)∶

𝑑(𝑢,𝑣)>20𝑑2∕𝑛

𝑑(𝑢, 𝑣)

10𝑑

⎞⎟⎟⎟⎟⎠
.

By Lemma 2.2, we get

sp(𝐺) ⩾ −
1

𝜋

∑
𝑢𝑣∈𝐸(𝐺)

arcsin

( ⟨𝐲𝑢, 𝐲𝑣⟩‖𝐲𝑢‖‖𝐲𝑣‖
)

⩾ −
1

𝜋

⎛⎜⎜⎜⎜⎝
∑

𝑢𝑣∈𝐸(𝐺)

arcsin

( ⟨𝐱𝑢, 𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖
)

+
𝛾𝑛

√
𝑑

4
− 𝛾2

⎛⎜⎜⎜⎜⎝
∑

𝑢𝑣∈𝐸(𝐺)∶

𝑑(𝑢,𝑣)>20𝑑2∕𝑛

𝑑(𝑢, 𝑣)

10𝑑

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
. (4.1)

 14697750, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12750 by E

th Z
ürich E

th-B
ibliothek, W

iley O
nline L

ibrary on [07/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



468 GLOCK et al.

We can use this inequality to prove the following lemma, which is a lower bound on the surplus
of a graph in terms of the number of triangles and the codegrees. Recall that for vertices 𝑢, 𝑣, we
write 𝛿(𝑢, 𝑣) = 𝑑(𝑢, 𝑣) − 𝑑2∕𝑛. Let 𝛿+(𝑢, 𝑣) be equal to 𝛿(𝑢, 𝑣)when 𝛿(𝑢, 𝑣) > 0, and otherwise let
𝛿+(𝑢, 𝑣) = 0.

Lemma 4.2. Let 0 < 𝛾 ⩽ 1∕10 and 𝑑 ⩽ 𝑛∕2. If 𝐺 is an 𝑛-vertex 𝑑-regular graph with 𝑑3∕6 + 𝑠

triangles where 𝑠 ⩽ 𝑑3∕6, then

sp(𝐺) ⩾ Θ(𝛾𝑛
√

𝑑) − Θ

(
𝛾2𝑠

𝑑

)
− Θ

⎛⎜⎜⎜⎜⎝
𝛾2

∑
𝑢𝑣∈𝐸(𝐺)∶

𝑑(𝑢,𝑣)⩽20𝑑2∕𝑛

𝛿+(𝑢, 𝑣)
3

𝑑3

⎞⎟⎟⎟⎟⎠
.

The proof is again given in the Appendix. Our goal is now to remove the ‘error term’ in the
above lemma and prove the following stronger result.

Lemma 4.3. Let 0 < 𝛾 ⩽ 1∕10 and 𝑑 ⩽ 𝑛∕2. If 𝐺 is an 𝑛-vertex 𝑑-regular graph with 𝑑3∕6 + 𝑠

triangles where 𝑠 ⩽ 𝑑3∕6, then sp(𝐺) ⩾ Θ(𝛾𝑛
√

𝑑) − Θ(
𝛾2𝑠

𝑑
).

This is a significant sharpening (in the regular case) of Corollary 1.2 from [6], which states that
if 𝐺 is a 𝑑-degenerate graph with 𝑚 edges and 𝑡 triangles, then for any 𝛾 ⩽ 1, we have sp(𝐺) ⩾
𝛾𝑚

2𝜋
√

𝑑
−

𝛾2𝑡

2𝑑
. Note that 𝑠 is much smaller than 𝑡, and can be negative. Given Lemma 4.3, it is easy

to deduce Theorem 1.3.

Proof of Theorem 1.3. We claim that for any 0 < 𝛾 ⩽ 1∕10,

sp(𝐺) ⩾ Θ(𝛾𝑛
√

𝑑) − Θ

(
𝛾2𝑠

𝑑

)
. (4.2)

When 𝑠 ⩽ 𝑑3∕6, this follows from Lemma 4.3. Otherwise, 𝑠 = Θ(𝑡(𝐺)) and we can use the
aforementioned Corollary 1.2 from [6] to obtain the desired inequality.
When 𝑠 < −𝑛𝑑3∕2, take 𝛾 = 1∕10 and use (4.2) to get sp(𝐺) = Ω(|𝑠|∕𝑑).
When−𝑛𝑑3∕2 ⩽ 𝑠 ⩽ 𝑛𝑑3∕2, take 𝛾 to be a sufficiently small constant and use (4.2) to get sp(𝐺) =

Ω(𝑛
√

𝑑).
Finally, when 𝑠 > 𝑛𝑑3∕2, take 𝛾 = 𝑐 𝑛𝑑3∕2

𝑠
for a sufficiently small constant 𝑐 and use (4.2) to get

sp(𝐺) = Ω(𝑛2𝑑2∕𝑠). □

The rest of this section is devoted to the proof of Lemma 4.3.

Lemma 4.4. Let𝐻 be a graph on𝑁 vertices. Let𝐷 > 0 be a real number. For 𝑧 ∈ 𝑉(𝐻), letΔ+(𝑧) =

𝑑𝐻(𝑧) − 𝐷 if 𝑑𝐻(𝑧) > 𝐷, and otherwise let Δ+(𝑧) = 0. Then there exists a positive absolute constant
𝑐 with the following property. If

𝑒(𝐻) ⩽
𝑁𝐷

2
+

𝑐

𝐷2

∑
𝑧∈𝑉(𝐻)∶

𝑑𝐻(𝑧)⩽20𝐷

Δ+(𝑧)
3, (4.3)
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 469

then there exists some 𝑇 ⊂ 𝑉(𝐻) such that

𝑒𝐻(𝑇) ⩽
|𝑇|2
2

𝐷

𝑁
−

𝑐

𝐷2

∑
𝑧∈𝑉(𝐻)∶

𝑑𝐻(𝑧)⩽20𝐷

Δ+(𝑧)
3.

Proof. Let 𝑐 = 1

12⋅402
and let𝐻 be a graph on 𝑁 vertices satisfying (4.3). Write

𝑞 =
∑

𝑧∈𝑉(𝐻)∶
𝑑𝐻(𝑧)⩽20𝐷

Δ+(𝑧)
3.

Then

𝑒(𝐻) ⩽
𝑁𝐷

2
+

𝑐

𝐷2
𝑞. (4.4)

Observe that there exists a positive integer 𝑖 such that∑
𝑧∶ 2−𝑖20𝐷<Δ+(𝑧)⩽2−(𝑖−1)20𝐷

Δ+(𝑧)
3 ⩾ 𝑞∕2𝑖.

Letting 𝑆 be the set of 𝑧 ∈ 𝑉(𝐻) with 2−𝑖20𝐷 < Δ+(𝑧) ⩽ 2−(𝑖−1)20𝐷, we get

|𝑆| ⩾ 𝑞∕2𝑖

(2−(𝑖−1)20𝐷)3
=

22𝑖𝑞

403𝐷3
. (4.5)

Let 𝑝 = 2−𝑖 and let 𝑆′ be the random subset of 𝑆 obtained by keeping each vertex of 𝑆 with
probability 𝑝, independently of the other vertices. Let 𝑇 = 𝑉(𝐻) ⧵ 𝑆′.

Claim 1.

𝔼[𝑒𝐻(𝑇)] ⩽
𝔼[|𝑇|2]

2

𝐷

𝑁
−

𝑐

𝐷2
𝑞. (4.6)

This suffices since then we can find 𝑇 ⊂ 𝑉(𝐻) such that 𝑒𝐻(𝑇) ⩽
|𝑇|2
2

𝐷

𝑁
− 𝑐

𝐷2 𝑞.

Proof of claim. For a set 𝑋 ⊂ 𝑉(𝐻), write 𝑒(𝑋) for the number of edges in 𝐻[𝑋]. For disjoint sets
𝑋 and 𝑌, write 𝑒(𝑋, 𝑌) for the number of edges between 𝑋 and 𝑌 in𝐻.
We start by giving an upper bound for 𝔼[𝑒(𝑇)]. Let 𝑅 = 𝑉(𝐻) ⧵ 𝑆. Since 𝑇 = 𝑉(𝐻) ⧵ 𝑆′, we

have 𝑒(𝑇) = 𝑒(𝐻) − 𝑒(𝑇, 𝑆′) − 𝑒(𝑆′) = 𝑒(𝐻) − 𝑒(𝑅, 𝑆′) − 𝑒(𝑆 ⧵ 𝑆′, 𝑆′) − 𝑒(𝑆′). Taking expectations,
we get

𝔼[𝑒(𝑇)] = 𝑒(𝐻) − 𝔼
[
𝑒(𝑅, 𝑆′)

]
− 𝔼

[
𝑒(𝑆 ⧵ 𝑆′, 𝑆′)

]
− 𝔼

[
𝑒(𝑆′)

]
= 𝑒(𝐻) − 𝑝𝑒(𝑅, 𝑆) − 2(1 − 𝑝)𝑝𝑒(𝑆) − 𝑝2𝑒(𝑆)

= 𝑒(𝐻) − 𝑝(𝑒(𝑅, 𝑆) + 2𝑒(𝑆)) + 𝑝2𝑒(𝑆)

= 𝑒(𝐻) − 𝑝

(∑
𝑧∈𝑆

𝑑𝐻(𝑧)

)
+ 𝑝2𝑒(𝑆)
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470 GLOCK et al.

⩽ 𝑒(𝐻) − 𝑝|𝑆|(𝐷 + 2−𝑖20𝐷) + 𝑝2𝑒(𝑆)

⩽ 𝑒(𝐻) − 𝑝|𝑆|𝐷 − 𝑝2−𝑖|𝑆|20𝐷 + 𝑝2 |𝑆|21𝐷
2

⩽ 𝑒(𝐻) − 𝑝|𝑆|𝐷 −
1

3
2−2𝑖|𝑆|20𝐷,

⩽
𝑁𝐷

2
+

𝑐

𝐷2
𝑞 − 𝑝|𝑆|𝐷 −

1

3
2−2𝑖|𝑆|20𝐷, (4.7)

where the first inequality follows from the fact every 𝑧 ∈ 𝑆 has Δ+(𝑧) > 2−𝑖20𝐷, the second
inequality holds since Δ+(𝑧) ⩽ 2−(𝑖−1)20𝐷 ⩽ 20𝐷 for every 𝑧 ∈ 𝑆, and the last inequality is true
because of (4.4). By (4.5), we have 1

3
2−2𝑖|𝑆|20𝐷 ⩾

𝑞

6⋅402𝐷2 = 2𝑐

𝐷2 𝑞. Hence, by (4.7) we have

𝔼[𝑒(𝑇)] ⩽
𝑁𝐷

2
− 𝑝|𝑆|𝐷 −

𝑐

𝐷2
𝑞.

On the other hand, 𝔼[|𝑇|2] ⩾ 𝔼[|𝑇|]2 = (𝑁 − 𝑝|𝑆|)2 ⩾ 𝑁2 − 2𝑝|𝑆|𝑁, so
𝔼
[|𝑇|2]
2

𝐷

𝑁
⩾

𝑁𝐷

2
− 𝑝|𝑆|𝐷,

which completes the proof of the claim. □

Finally, we need the following lemma.

Lemma 4.5. Let 𝐺 be a 𝑑-regular graph on 𝑛 vertices and let 𝑆 ⊂ 𝑉(𝐺) be a subset. Then sp(𝐺) ⩾
1

2
(
|𝑆|2
2

𝑑

𝑛
− 𝑒𝐺(𝑆)).

Proof. Let 𝑇 be a random subset of 𝑉(𝐺) such that each 𝑣 ∈ 𝑉(𝐺) belongs to 𝑇 with probability|𝑆|∕𝑛, independently of the other vertices. Write 𝑒𝐺(𝑆, 𝑇) for the number of pairs (𝑢, 𝑣) ∈ 𝑆 × 𝑇

with 𝑢𝑣 ∈ 𝐸(𝐺). Clearly, 𝔼[𝑒𝐺(𝑆, 𝑇)] = |𝑆|𝑑 ⋅ |𝑆|
𝑛
. Moreover, 𝔼[𝑒𝐺(𝑇)] = 𝑛𝑑

2
⋅ |𝑆|2

𝑛2 . Hence,

𝔼[𝑒𝐺(𝑆, 𝑇) − 𝑒𝐺(𝑆) − 𝑒𝐺(𝑇)] =
|𝑆|2
2

𝑑

𝑛
− 𝑒𝐺(𝑆).

So,wemay choose𝑇 in away that 𝑒𝐺(𝑆, 𝑇) − 𝑒𝐺(𝑆) − 𝑒𝐺(𝑇) ⩾
|𝑆|2
2

𝑑

𝑛
− 𝑒𝐺(𝑆). If 𝑆 and𝑇 are disjoint,

thenwe get the desired surplus in𝐺[𝑆 ∪ 𝑇]. Otherwise, one by one for each vertex 𝑣which appears
both in 𝑆 and 𝑇, we can remove 𝑣 from one of the two remaining sets (to be precise, from the one
in which it has more neighbours) and not decrease the surplus corresponding to the cut. □

Proof of Lemma 4.3. Let 𝑐 be the constant provided by Lemma 4.4. If∑
𝑢𝑣∈𝐸(𝐺)∶

𝑑𝐺(𝑢,𝑣)⩽20𝑑2∕𝑛

𝛿+(𝑢, 𝑣)
3 <

3

2𝑐
𝑠𝑑2,
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 471

then the result follows from Lemma 4.2. Assume that∑
𝑢𝑣∈𝐸(𝐺)∶

𝑑𝐺(𝑢,𝑣)⩽20𝑑2∕𝑛

𝛿+(𝑢, 𝑣)
3 ⩾

3

2𝑐
𝑠𝑑2. (4.8)

Define an auxiliary graph 𝐻 as follows. Let 𝑉(𝐻) = {(𝑢, 𝑣) ∈ 𝑉(𝐺)2 ∶ 𝑢𝑣 ∈ 𝐸(𝐺)} and take an
edge between (𝑢, 𝑣) and (𝑢, 𝑤) if 𝑣𝑤 ∈ 𝐸(𝐺). Let all other vertex pairs be non-edges. Observe
that 𝑒(𝐻) = 3𝑡(𝐺) = 𝑑3∕2 + 3𝑠. Let 𝑁 = |𝑉(𝐻)| = 𝑛𝑑 and 𝐷 = 𝑑2

𝑛
. Note that for any 𝑧 = (𝑢, 𝑣) ∈

𝑉(𝐻), we have 𝑑𝐻(𝑧) = 𝑑𝐺(𝑢, 𝑣). Moreover, if Δ+(𝑧) is defined as in Lemma 4.4, then for 𝑧 =

(𝑢, 𝑣), we have Δ+(𝑧) = 𝛿+(𝑢, 𝑣). Hence, (4.8) translates to∑
𝑧∈𝑉(𝐻)∶

𝑑𝐻(𝑧)⩽20𝐷

Δ+(𝑧)
3 ⩾

3

𝑐
𝑠𝑑2,

since an edge 𝑢𝑣 ∈ 𝐸(𝐺) corresponds to both (𝑢, 𝑣) ∈ 𝑉(𝐻) and (𝑣, 𝑢) ∈ 𝑉(𝐻). Thus,

𝑐

𝐷2

∑
𝑧∈𝑉(𝐻)∶

𝑑𝐻(𝑧)⩽20𝐷

Δ+(𝑧)
3 ⩾

3𝑠𝑑2

𝐷2
⩾ 3𝑠,

and hence,

𝑒(𝐻) = 𝑑3∕2 + 3𝑠 ⩽
𝑁𝐷

2
+

𝑐

𝐷2

∑
𝑧∈𝑉(𝐻)∶

𝑑𝐻(𝑧)⩽20𝐷

Δ+(𝑧)
3.

Therefore, by Lemma 4.4, there exists 𝑇 ⊂ 𝑉(𝐻) such that

𝑒𝐻(𝑇) ⩽
|𝑇|2
2

𝐷

𝑁
−

𝑐

𝐷2

∑
𝑧∈𝑉(𝐻)∶

𝑑𝐻(𝑧)⩽20𝐷

Δ+(𝑧)
3.

For every 𝑢 ∈ 𝑉(𝐺), let 𝑇𝑢 = {(𝑢, 𝑣) ∈ 𝑇}. Note that
∑

𝑢∈𝑉(𝐺) |𝑇𝑢|2 ⩾
(
∑

𝑢∈𝑉(𝐺) |𝑇𝑢|)2
𝑛

=
|𝑇|2
𝑛
. More-

over, there are no edges in 𝐻 between 𝑇𝑢 and 𝑇𝑣 when 𝑢 ≠ 𝑣, so 𝑒𝐻(𝑇) =
∑

𝑢∈𝑉(𝐺) 𝑒𝐻(𝑇𝑢).
Thus,

∑
𝑢∈𝑉(𝐺)

𝑒𝐻(𝑇𝑢) ⩽
∑

𝑢∈𝑉(𝐺)

|𝑇𝑢|2
2

𝑛𝐷

𝑁
−

𝑐

𝐷2

∑
𝑧∈𝑉(𝐻)∶

𝑑𝐻(𝑧)⩽20𝐷

Δ+(𝑧)
3.

Therefore, there exists 𝑤 ∈ 𝑉(𝐺) such that

𝑒𝐻(𝑇𝑤) ⩽
|𝑇𝑤|2

2

𝑛𝐷

𝑁
−

𝑐

𝑛𝐷2

∑
𝑧∈𝑉(𝐻)∶

𝑑𝐻(𝑧)⩽20𝐷

Δ+(𝑧)
3 =

|𝑇𝑤|2
2

𝑑

𝑛
−

2𝑐𝑛

𝑑4

∑
𝑢𝑣∈𝐸(𝐺)∶

𝑑𝐺(𝑢,𝑣)⩽20𝑑2∕𝑛

𝛿+(𝑢, 𝑣)
3.
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472 GLOCK et al.

This means that there exists a set 𝑆 ⊂ 𝑁𝐺(𝑤) such that

𝑒𝐺(𝑆) ⩽
|𝑆|2
2

𝑑

𝑛
−

2𝑐𝑛

𝑑4

∑
𝑢𝑣∈𝐸(𝐺)∶

𝑑𝐺(𝑢,𝑣)⩽20𝑑2∕𝑛

𝛿+(𝑢, 𝑣)
3.

Hence, by Lemma 4.5,

sp(𝐺) ⩾
𝑐𝑛

𝑑4

⎛⎜⎜⎜⎜⎝
∑

𝑢𝑣∈𝐸(𝐺)∶

𝑑𝐺(𝑢,𝑣)⩽20𝑑2∕𝑛

𝛿+(𝑢, 𝑣)
3

⎞⎟⎟⎟⎟⎠
⩾ Ω

⎛⎜⎜⎜⎜⎝
𝛾2

∑
𝑢𝑣∈𝐸(𝐺)∶

𝑑(𝑢,𝑣)⩽20𝑑2∕𝑛

𝛿+(𝑢, 𝑣)
3

𝑑3

⎞⎟⎟⎟⎟⎠
.

This, combined with Lemma 4.2, implies the result. □

5 CLIQUES

In this section, we prove Theorems 1.5, 1.7 and 1.8. We start with the proof of Theorem 1.8, as the
proof of the other two results will use its weaker version Theorem 1.6.

Proof of Theorem 1.8. We prove the theorem by induction on 𝑟. The case 𝑟 = 3 is Theorem 1.2.
Assume that 𝑟 ⩾ 4. First observe that we may assume that 𝐺 has maximum degree at most 𝐶𝑑

for some 𝐶, depending only on 𝜖 and 𝑟. Indeed, we may apply Lemma 2.6 with 𝜖∕𝑟 in place of 𝜖,
𝛼 = −(𝑟 − 3) and 𝛽 = 𝑟 − 1 to find an induced subgraph 𝐺̃ with 𝑛̃ vertices and average degree 𝑑

such that 𝑑𝑟−1

𝑛̃𝑟−3 ⩾ (1 − 𝜖∕𝑟)𝑑
𝑟−1

𝑛𝑟−3 andΔ(𝐺̃) ⩽ 𝐶𝑑 (if such subgraph does not exist, then𝐺 has surplus
Ω𝜖,𝑟(𝑑

𝑟−1∕𝑛𝑟−3) by the lemma). Now

𝑛̃𝑟(𝑑∕𝑛̃)(
𝑟
2) = (𝑑𝑟−1∕𝑛̃𝑟−3)𝑟∕2 ⩾ ((1 − 𝜖∕𝑟)𝑑𝑟−1∕𝑛𝑟−3)𝑟∕2

= (1 − 𝜖∕𝑟)𝑟∕2𝑛𝑟(𝑑∕𝑛)(
𝑟
2) ⩾ (1 − 𝜖∕2)𝑛𝑟(𝑑∕𝑛)(

𝑟
2),

so the number of 𝐾𝑟’s in 𝐺̃ is at most (1 − 𝜖∕2) 𝑛̃
𝑟

𝑟!
(𝑑∕𝑛̃)(

𝑟
2).

Thus, by replacing 𝐺 by 𝐺̃ and 𝜖 by 𝜖∕2 if necessary, we may assume that Δ(𝐺) ⩽ 𝐶𝑑 for some
𝐶 = 𝐶(𝜖, 𝑟).
If 𝐺 has at most (1 − 𝜖

4𝑟2
) 𝑑

6𝑛

∑
𝑣∈𝑉(𝐺) 𝑑(𝑣)

2 triangles, then by Theorem 2.7, 𝐺 has surplus
Ω𝜖,𝑟,𝐶(𝑑

2) and we are done since 𝑑2 ⩾ 𝑑𝑟−1∕𝑛𝑟−3. So, assume that

𝑡(𝐺) ⩾
(
1 −

𝜖

4𝑟2

)
𝑑

6𝑛

∑
𝑣∈𝑉(𝐺)

𝑑(𝑣)2. (5.1)

Let 𝑘 = ⌈ 𝜖

8𝐶𝑟2
𝑛

𝑑
⌉ and let 𝑣1, 𝑣2, … , 𝑣𝑘 be random vertices chosen from𝑉(𝐺)with replacement. For

every 1 ⩽ 𝑖 ⩽ 𝑘, let 𝐴𝑖 = 𝑁(𝑣𝑖) ⧵ (∪𝑗≠𝑖𝑁(𝑣𝑗)).
Fix 1 ⩽ 𝑖 ⩽ 𝑘. Let 𝑋 be the number of edges in 𝐺[𝐴𝑖] and let 𝑌 be the number of copies of 𝐾𝑟−1

in 𝐺[𝐴𝑖].
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 473

Claim 1. 𝔼[𝑋] ⩾ (1 − 𝜖

4𝑟2
) 3𝑡(𝐺)

𝑛
.

Proof of claim. Let 𝑥𝑦 ∈ 𝐸(𝐺).We have 𝑥𝑦 ∈ 𝐸(𝐺[𝐴𝑖]) precisely if 𝑥, 𝑦 ∈ 𝑁(𝑣𝑖) ⧵ (∪𝑗≠𝑖𝑁(𝑣𝑗)), that
is, if 𝑣𝑖 ∈ 𝑁(𝑥) ∩ 𝑁(𝑦), but 𝑣𝑗 ∉ 𝑁(𝑥) ∪ 𝑁(𝑦) for every 𝑗 ≠ 𝑖. Since |𝑁(𝑥) ∪ 𝑁(𝑦)| ⩽ 2𝐶𝑑, we get

ℙ(𝑥𝑦 ∈ 𝐸(𝐺[𝐴𝑖])) ⩾
𝑑(𝑥, 𝑦)

𝑛

(
1 −

2𝐶𝑑

𝑛

)𝑘−1

⩾
𝑑(𝑥, 𝑦)

𝑛

(
1 − (𝑘 − 1)

2𝐶𝑑

𝑛

)
⩾

(
1 −

𝜖

4𝑟2

)𝑑(𝑥, 𝑦)

𝑛
.

Hence,

𝔼[𝑋] ⩾
∑

𝑥𝑦∈𝐸(𝐺)

(
1 −

𝜖

4𝑟2

)𝑑(𝑥, 𝑦)

𝑛
=

(
1 −

𝜖

4𝑟2

)3 ⋅ 𝑡(𝐺)

𝑛
.

□

Claim 2. 𝔼[𝑌] ⩽ (1 − 𝜖) 𝑛𝑟−1

(𝑟−1)!
(𝑑∕𝑛)(

𝑟
2).

Proof of claim. Let 𝑥1𝑥2 …𝑥𝑟−1 be a copy of𝐾𝑟−1 in𝐺. Then, writing 𝑑(𝑥1, … , 𝑥𝑟−1) for the number
of common neighbours of 𝑥1, … , 𝑥𝑟−1, we have ℙ(𝑥1, … , 𝑥𝑟−1 ∈ 𝐴𝑖) ⩽

𝑑(𝑥1,…,𝑥𝑟−1)

𝑛
. Since the sum of

𝑑(𝑥1, … , 𝑥𝑟−1) over all (𝑟 − 1)-cliques 𝑥1 …𝑥𝑟−1 is 𝑟 times the number of 𝐾𝑟’s, and the number of
𝐾𝑟’s in 𝐺 is at most (1 − 𝜖)𝑛

𝑟

𝑟!
(𝑑∕𝑛)(

𝑟
2), we get the desired bound. □

For simplicity, write 𝐴 = 𝐴𝑖 . Note that 𝐺[𝐴] has average degree 2𝑋|𝐴| . By the induction hypoth-
esis, there exists a positive 𝑐′ = 𝑐′(𝑟, 𝜖) such that if 𝑌 ⩽ (1 − 𝜖∕2)

|𝐴|𝑟−1

(𝑟−1)!
(2𝑋∕|𝐴|2)(𝑟−1

2 ), then

𝐺[𝐴] has surplus at least 𝑐′(2𝑋)𝑟−2∕|𝐴|2𝑟−6. On the other hand, since |𝐴|𝑟−1(2𝑋∕|𝐴|2)(𝑟−1
2 ) =

((2𝑋)𝑟−2∕|𝐴|2𝑟−6)
𝑟−1
2 , if

𝑌 ⩾ (1 − 𝜖∕2)
|𝐴|𝑟−1

(𝑟 − 1)!
(2𝑋∕|𝐴|2)(𝑟−1

2 )
,

then

𝑐′
(

(𝑟 − 1)! ⋅ 𝑌
1 − 𝜖∕2

) 2
𝑟−1

⩾ 𝑐′(2𝑋)𝑟−2∕|𝐴|2𝑟−6.

Hence, in both cases, we have

sp(𝐺[𝐴]) ⩾ 𝑐′(2𝑋)𝑟−2∕|𝐴|2𝑟−6 − 𝑐′
(

(𝑟 − 1)! ⋅ 𝑌
1 − 𝜖∕2

) 2
𝑟−1

.

Taking expectations, we get

𝔼[sp(𝐺[𝐴])] ⩾ 𝑐′

(
2𝑟−2𝔼

[
𝑋𝑟−2∕|𝐴|2𝑟−6

]
−

(
(𝑟 − 1)!

1 − 𝜖∕2

) 2
𝑟−1

𝔼
[
𝑌

2
𝑟−1

])
. (5.2)
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474 GLOCK et al.

By Hölder’s inequality, we have

𝔼

[
𝑋𝑟−2|𝐴|2𝑟−6

] 1
𝑟−2

𝔼
[|𝐴|2] 𝑟−3

𝑟−2 ⩾ 𝔼

[(
𝑋𝑟−2|𝐴|2𝑟−6

) 1
𝑟−2 |𝐴| 2(𝑟−3)

𝑟−2

]
= 𝔼[𝑋],

so

𝔼

[
𝑋𝑟−2|𝐴|2𝑟−6

]
⩾

𝔼[𝑋]𝑟−2

𝔼
[|𝐴|2]𝑟−3

.

Observe that 𝔼[|𝐴|2] ⩽
1

𝑛

∑
𝑣∈𝑉(𝐺) 𝑑(𝑣)

2. This inequality is the reason why we used Theorem 2.7
instead of Theorem 1.2 in our argument. By Claim 1 and (5.1),

𝔼[𝑋] ⩾
(
1 −

𝜖

4𝑟2

)3𝑡(𝐺)

𝑛
⩾

(
1 −

𝜖

4𝑟2

)2 𝑑

2𝑛2

∑
𝑣∈𝑉(𝐺)

𝑑(𝑣)2 ⩾
(
1 −

𝜖

4𝑟2

)2 𝑑

2𝑛
𝔼
[|𝐴|2].

Thus, using Claim 1, (5.1) and
∑

𝑣 𝑑(𝑣)2 ⩾ 𝑛𝑑2,

𝔼[𝑋]𝑟−2

𝔼
[|𝐴|2]𝑟−3

⩾

((
1 −

𝜖

4𝑟2

)2 𝑑

2𝑛

)𝑟−3

𝔼[𝑋] ⩾

((
1 −

𝜖

4𝑟2

)2 𝑑

2𝑛

)𝑟−3(
1 −

𝜖

4𝑟2

)3𝑡(𝐺)

𝑛

⩾

((
1 −

𝜖

4𝑟2

)2 𝑑

2𝑛

)𝑟−3(
1 −

𝜖

4𝑟2

)2 𝑑3

2𝑛
⩾

(
1 −

𝜖

2𝑟

)
𝑑𝑟

(2𝑛)𝑟−2
,

so

𝔼

[
𝑋𝑟−2|𝐴|2𝑟−6

]
⩾

(
1 −

𝜖

2𝑟

)
𝑑𝑟

(2𝑛)𝑟−2
. (5.3)

On the other hand, by Claim 2, we have

𝔼
[
𝑌

2
𝑟−1

]
⩽ 𝔼[𝑌]

2
𝑟−1 ⩽

(
1 − 𝜖

(𝑟 − 1)!

) 2
𝑟−1 𝑑𝑟

𝑛𝑟−2
.

Substituting this and Equation (5.3) into Equation (5.2), we get

𝔼[sp(𝐺[𝐴])] ⩾ 𝑐′

((
1 −

𝜖

2𝑟

)
𝑑𝑟

𝑛𝑟−2
−

(
1 − 𝜖

1 − 𝜖∕2

) 2
𝑟−1 𝑑𝑟

𝑛𝑟−2

)
.

Note that ( 1−𝜖

1−𝜖∕2
)

2
𝑟−1 ⩽ (1 − 𝜖∕2)

2
𝑟−1 ⩽ 1 − 𝜖∕(𝑟 − 1) ⩽ 1 − 𝜖∕𝑟, so we conclude that

𝔼[sp(𝐺[𝐴])] ⩾ 𝑐′
𝜖

2𝑟

𝑑𝑟

𝑛𝑟−2
.
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 475

Since sp(𝐺) ⩾
∑𝑘

𝑖=1 sp(𝐺[𝐴𝑖]) by Lemma 2.1, we get

sp(𝐺) ⩾ 𝑘𝔼[sp(𝐺[𝐴])] ⩾
𝜖

8𝐶𝑟2
𝑐′

𝜖

2𝑟

𝑑𝑟−1

𝑛𝑟−3
,

which completes the proof. □

It remains to prove Theorems 1.5 and 1.7. We prove them simultaneously using induction on 𝑟.
Carlson et al. [6] provided a general tool that allows to convert results on the surplus formulated
purely in terms of the number of edges (as in Theorem 1.7) into results that hold for degener-
ate graphs (as in Theorem 1.5). In particular, a special case of their Lemma 3.5 is the following:
If sp(𝑚,𝐾𝑟−1) = Ω𝑟(𝑚

𝑎) for some 𝑎 = 𝑎(𝑟) ∈ [1
2
, 1], then any 𝑑-degenerate graph 𝐺 with 𝑚 ⩾ 1

edges has surplus

Ω𝑟(𝑚∕𝑑(2−𝑎)∕(1+𝑎)). (5.4)

Proof of Theorems 1.5 and 1.7. We know that both theorems hold for 𝑟 = 3. Assume now that 𝑟 ⩾ 4

and that both theorems hold for 𝑟 − 1. It follows from (5.4) (applied with 𝑎 = 1

2
+ 3

4(𝑟−1)−2
= 𝑟

2𝑟−3
)

that Theorem 1.5 holds for 𝑟. We now use this additional information to prove Theorem 1.7 for 𝑟.
Let 𝐺 be any 𝐾𝑟-free graph with 𝑚 edges. Let 𝑑 = 𝑚

𝑟−1
2𝑟−1 . Assume first that 𝐺 is 𝑑-degenerate.

Then by Theorem 1.5, 𝐺 has surplus Ω𝑟(𝑚𝑑−𝑟−2
𝑟−1 ) = Ω𝑟(𝑚

1− 𝑟−2
2𝑟−1 ) = Ω𝑟(𝑚

𝑟+1
2𝑟−1 ), which is the

desired bound. Otherwise,𝐺 has a non-empty induced subgraph𝐻 withminimum degree at least
𝑑. If the number of vertices in𝐻 is 𝑛, then clearly 𝑛𝑑 ⩽ 2𝑒(𝐻) ⩽ 2𝑒(𝐺) = 2𝑚, so 𝑛 ⩽

2𝑚

𝑑
= 2𝑚

𝑟
2𝑟−1 .

Thus, by Theorem 1.6, 𝐻 has surplus

Ω𝑟(𝑑
𝑟−1∕𝑛𝑟−3) ⩾ Ω𝑟

(
𝑚

(𝑟−1)2

2𝑟−1
−

𝑟(𝑟−3)
2𝑟−1

)
= Ω𝑟(𝑚

𝑟+1
2𝑟−1 ),

which is again the desired bound. □

6 CONCLUDING REMARKS

∙ We proved that for any odd 𝑟 ⩾ 3, sp(𝑚, 𝐶𝑟) = Θ𝑟(𝑚
(𝑟+1)∕(𝑟+2)). The same function has been

shown to be a lower bound when 𝑟 is even, but a matching upper bound is only known for
𝑟 ∈ {4, 6, 10} (see [5]). A related open problem is to construct graphs with𝑚 edges and girth at
least 𝑟 + 1 which have surplus 𝑂𝑟(𝑚

(𝑟+1)∕(𝑟+2)). Such examples are only known for 𝑟 = 3 and
𝑟 = 4 (see [2] and [3]).

∙ Weobtained sharp bounds for the surplus of regular graphs as a function of the order, degree and
number of triangles. As we remarked after Theorem 1.3, it is easy to find examples for which the
statement of the theorem is not truewhen𝐺 is not 𝑑-regular, but has average degree𝑑. However,
it seems plausible that the first bound in Theorem 1.3 still holds in this more general setting;
that is, if 𝐺 is an 𝑛-vertex graph with average degree 𝑑 ⩽ 𝑛∕2 and at most 𝑑3∕6 − 𝑠 triangles for
some 𝑠 > 0, then sp(𝐺) = Ω(𝑠∕𝑑). This would strengthen Theorem 1.2 in the case where 𝜖 is not
constant. By a result of Nikiforov [20] mentioned at the end of Section 1.3, such graphs have|𝜆min| = Ω( 𝑠

𝑛𝑑
), providing some evidence towards sp(𝐺) = Ω(𝑠∕𝑑).
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476 GLOCK et al.

∙ We also proved that any 𝐾𝑟-free graph with 𝑚 edges has surplus Ω𝑟(𝑚
1
2
+ 3

4𝑟−2 ). Arguably, the
main open problem is to decide whether there exists a positive absolute constant 𝜖 such that
any 𝐾𝑟-free graph with 𝑚 edges has surplus Ω𝑟(𝑚

1∕2+𝜖). It seems that the bound Ω𝑟(𝑚
1
2
+ 3

4𝑟−2 )

is the best our methods can give. We think that any improvement on it, even just beating the
exponent 5∕7 in the 𝑟 = 4 case, would be interesting.

∙ Another natural infinite sequence of graphs to consider is the set of complete bipartite graphs
𝐾𝑟,𝑟. Forbidding bipartite subgraphs puts more restrictions on the host graph, so it is potentially
easier to show that there exists an absolute constant 𝜖 > 0 such that any 𝐾𝑟,𝑟-free graph with𝑚

edges has surplus Ω𝑟(𝑚
1∕2+𝜖). Nevertheless, it is likely that this requires new ideas. See [5] for

the correct exponent for 𝐾𝑟,𝑠 when 𝑟 ∈ {2, 3}, and a conjecture for the general case.
∙ Conlon, Fox, Kwan and Sudakov [7] proved analogues of Edwards’s result for hypergraphs. It
would be interesting to further investigate theMaxCut problem in this setting and to obtain the
tight bounds for the surplus.

∙ Finally, we remark that if Conjecture 1.4 and the conjecture of Alon, Bollobás, Krivelevich and
Sudakov stating sp(𝑚,𝐾𝑟) ⩾ 𝑐𝑟𝑚

3∕4+𝜖𝑟 are not true, then a possible way of disproving them is by
finding a𝐾𝑟-free strongly regular graphwithmany triangles. To bemore precise, by LemmaA.1,
a strongly regular graph with degree 𝑑 and 𝑑3∕6 + 𝜔(𝑛𝑑3∕2) triangles has the smallest eigen-
value |𝜆min| = 𝑜(

√
𝑑), which implies that it has surplus 𝑜(𝑛

√
𝑑). If a 𝐾𝑟-free graph exists (for

some fixed 𝑟) with these properties, it disproves Conjecture 1.4.

APPENDIX A: THE SMALLEST EIGENVALUE OF STRONGLY REGULAR GRAPHS

Lemma A.1. Let 𝐺 be a strongly regular graph with 𝑛 vertices, degree 𝑑 ⩽ 0.99𝑛 and 𝑑3∕6 + 𝑠

triangles. Let 𝜆min be the smallest eigenvalue of 𝐺.

∙ If 𝑠 < −𝑛𝑑3∕2, then |𝜆min| = 𝑂(
|𝑠|
𝑛𝑑

).
∙ If −𝑛𝑑3∕2 ⩽ 𝑠 ⩽ 𝑛𝑑3∕2, then |𝜆min| = 𝑂(𝑑1∕2).
∙ If 𝑠 > 𝑛𝑑3∕2, then |𝜆min| = 𝑂(𝑛𝑑

2

𝑠
).

Proof. We can assume that 𝑛 is sufficiently large; otherwise, the statement is clear. Recall that

𝜆min =
1

2

(
𝜂 − 𝜇 −

√
(𝜂 − 𝜇)2 + 4(𝑑 − 𝜇)

)
, (A.1)

where 𝜂 is the number of common neighbours of adjacent pairs and 𝜇 is the number of com-
mon neighbours of non-adjacent pairs. Double-counting the number of (not necessarily induced)
copies of 𝐾1,2 in 𝐺, we get

𝑛

(
𝑑

2

)
=

𝑛𝑑

2
𝜂 +

((
𝑛

2

)
−

𝑛𝑑

2

)
𝜇. (A.2)

Let 𝛿 = 𝜂 − 𝑑2

𝑛
and 𝛽 = 𝜇 − 𝑑2

𝑛
. After a straightforward algebraic manipulation of (A.2), we get

𝛽 = −
𝑑

𝑛 − 𝑑 − 1
𝛿 −

𝑑(𝑛 − 𝑑)

𝑛(𝑛 − 𝑑 − 1)
.
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 477

Using 𝑑 ⩽ 0.99𝑛, we see that if |𝛿| ⩽ 6𝑑1∕2, then |𝛽| = 𝑂(𝑑1∕2); if 𝛿 < −6𝑑1∕2, then 𝛿 − 𝛽 =

−Θ(|𝛿|); and if 𝛿 > 6𝑑1∕2, then 𝛿 − 𝛽 = Θ(𝛿).
Now if 𝑠 < −𝑛𝑑3∕2, then by (2.2), we have 𝛿 = 6𝑠

𝑛𝑑
< −6𝑑1∕2, so 𝜂 − 𝜇 = 𝛿 − 𝛽 = −Θ(|𝛿|) =

−Θ(
|𝑠|
𝑛𝑑

). Thus, (A.1) gives 𝜆min = −Θ(
|𝑠|
𝑛𝑑

).
If −𝑛𝑑3∕2 ⩽ 𝑠 ⩽ 𝑛𝑑3∕2, then |𝛿| = | 6𝑠

𝑛𝑑
| ⩽ 6𝑑1∕2, so |𝜂 − 𝜇| = |𝛿 − 𝛽| = 𝑂(𝑑1∕2). Thus, (A.1)

gives that |𝜆min| = 𝑂(𝑑1∕2).
Finally, if 𝑠 > 𝑛𝑑3∕2, then 𝛿 = 6𝑠

𝑛𝑑
> 6𝑑1∕2, so 𝜂 − 𝜇 = 𝛿 − 𝛽 = Θ(𝛿). Note that

√
(𝜂 − 𝜇)2 + 4(𝑑 − 𝜇) ⩽ 𝜂 − 𝜇 +

2(𝑑 − 𝜇)

𝜂 − 𝜇
,

so by (A.1), we have 𝜆min ⩾ −
𝑑−𝜇

𝜂−𝜇
⩾ − 𝑑

𝜂−𝜇
. Thus, |𝜆min| = 𝑂(𝑑

𝛿
) = 𝑂(𝑛𝑑

2

𝑠
). □

APPENDIX B: PROOFS FOR SECTION 4

Before proving Lemmas 4.1 and 4.2, wemake a few computations whichwill be used in the proofs.
Assume that 𝑑 ⩽ 𝑛∕2 and 0 < 𝛾 ⩽ 1∕10, like in the setting of these lemmas. Recall that 𝑎 =

√
𝑑

𝑛−𝑑
,

which is at most 2
√

𝑑

𝑛
since 𝑑 ⩽ 𝑛∕2. Again using 𝑑 ⩽ 𝑛∕2, we have 𝑎 ⩽

1√
𝑑
. In particular, 1

𝑑
+

2𝑎√
𝑑
+ 𝑎2 ⩽

4

𝑑
.

Note also that if vectors 𝐱𝑣 and 𝐲𝑣 are defined as at the beginning of Section 4, then for every
𝑣 ∈ 𝑉(𝐺), ‖𝐱𝑣‖2 = ‖𝐲𝑣‖2 = (1 + 𝛾𝑎)2 + 𝑑

𝛾2

𝑑
+ (𝑛 − 𝑑 − 1)𝛾2𝑎2. Write 𝑞 for this value and note

that 1 ⩽ 𝑞 ⩽ (1 + 𝛾 1√
𝑑
)2 + 𝛾2 + (𝑛 − 𝑑 − 1)𝛾2 𝑑

(𝑛−𝑑)2
⩽ 2.

Proof of Lemma 4.1. For a vertex 𝑣 ∈ 𝑉(𝐺), write 𝑆(𝑣) for the set of vertices 𝑢 ∈ 𝑁(𝑣) for which
𝑑(𝑢, 𝑣) > 20𝑑2∕𝑛. Also write 𝐹(𝑣) = 𝑉(𝐺) ⧵ 𝑁(𝑣). First note that for any 𝑢𝑣 ∈ 𝐸(𝐺), we have

|⟨𝐱𝑢, 𝐱𝑣⟩| ⩽ ∑
𝑤∈𝑉(𝐺)

|𝐱𝑢
𝑤||𝐱𝑣

𝑤| ⩽ 2(1 + 𝛾𝑎)
𝛾√
𝑑

+ 𝑑
𝛾2

𝑑
+ (𝑛 − 𝑑)𝛾2𝑎2 + 2𝑑𝛾2 𝑎√

𝑑

⩽ 2
𝛾√
𝑑

+ 𝛾2

(
2

𝑛 − 𝑑
+ 1 +

𝑑

𝑛 − 𝑑
+ 2

𝑑

𝑛 − 𝑑

)
⩽ 2𝛾 + 6𝛾2 ⩽ 1∕2.

The same estimate holds for |⟨𝐲𝑢, 𝐲𝑣⟩|. On the other hand,wehave ‖𝐱𝑣‖, ‖𝐲𝑣‖ ⩾ 1 for all 𝑣. Hence,
for any 𝑢𝑣 ∈ 𝐸(𝐺), | ⟨𝐱𝑢,𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖ | ⩽ 1∕2 and | ⟨𝐲𝑢,𝐲𝑣⟩‖𝐲𝑢‖‖𝐲𝑣‖ | ⩽ 1∕2.

The derivative of arcsin(𝑥) is 1√
1−𝑥2

which is always at least 1, and for −1∕2 ⩽ 𝑥 ⩽ 1∕2, it is at
most 2. Thus, by the mean value theorem, we have

arcsin

( ⟨𝐲𝑢, 𝐲𝑣⟩‖𝐲𝑢‖‖𝐲𝑣‖
)

− arcsin

( ⟨𝐱𝑢, 𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖
)

= 𝛼

( ⟨𝐲𝑢, 𝐲𝑣⟩‖𝐲𝑢‖‖𝐲𝑣‖ −
⟨𝐱𝑢, 𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖

)
(B.1)

for some random variable 1 ⩽ 𝛼 ⩽ 2 (𝛼 depends on the choices of signs in 𝐲𝑢 and 𝐲𝑣).
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478 GLOCK et al.

Write 𝑆(𝑣)+ for the set of those 𝑢 ∈ 𝑆(𝑣) for which 𝐲𝑣
𝑢 = 𝛾∕

√
𝑑. Now if 𝑢𝑣 ∈ 𝐸(𝐺), then

⟨𝐲𝑢, 𝐲𝑣⟩ − ⟨𝐱𝑢, 𝐱𝑣⟩ = 𝟙𝑢∈𝑆(𝑣)+

2𝛾√
𝑑

+ 𝟙𝑣∈𝑆(𝑢)+

2𝛾√
𝑑

+ |(𝑆(𝑢)+ ∩ 𝐹(𝑣)) ∪ (𝑆(𝑣)+ ∩ 𝐹(𝑢))|2𝛾2𝑎√
𝑑

− |(𝑆(𝑢)+ ∩ 𝑁(𝑣)) ∪ (𝑆(𝑣)+ ∩ 𝑁(𝑢)) ⧵ (𝑆(𝑢)+ ∩ 𝑆(𝑣)+)|2𝛾2

𝑑
.

Hence, using that 1 ⩽ 𝛼 ⩽ 2,

𝛼(⟨𝐲𝑢, 𝐲𝑣⟩ − ⟨𝐱𝑢, 𝐱𝑣⟩) ⩽ 𝟙𝑢∈𝑆(𝑣)+

4𝛾√
𝑑

+ 𝟙𝑣∈𝑆(𝑢)+

4𝛾√
𝑑

+ |(𝑆(𝑢)+ ∩ 𝐹(𝑣)) ∪ (𝑆(𝑣)+ ∩ 𝐹(𝑢))|4𝛾2𝑎√
𝑑

− |(𝑆(𝑢)+ ∩ 𝑁(𝑣)) ∪ (𝑆(𝑣)+ ∩ 𝑁(𝑢)) ⧵ (𝑆(𝑢)+ ∩ 𝑆(𝑣)+)|2𝛾2

𝑑
.

If 𝑤 ∈ 𝑆(𝑢), then ℙ(𝑤 ∈ 𝑆(𝑢)+) = 1∕2, so

𝔼[𝛼(⟨𝐲𝑢, 𝐲𝑣⟩ − ⟨𝐱𝑢, 𝐱𝑣⟩)] ⩽ 𝟙𝑢∈𝑆(𝑣)

2𝛾√
𝑑

+ 𝟙𝑣∈𝑆(𝑢)

2𝛾√
𝑑

+ |(𝑆(𝑢) ∩ 𝐹(𝑣)) ∪ (𝑆(𝑣) ∩ 𝐹(𝑢))|2𝛾2𝑎√
𝑑

− |(𝑆(𝑢) ∩ 𝑁(𝑣)) ∪ (𝑆(𝑣) ∩ 𝑁(𝑢))|𝛾2

𝑑

⩽
4𝛾√
𝑑
𝟙𝑑(𝑢,𝑣)>20𝑑2∕𝑛 +

2𝛾2𝑎√
𝑑

(|𝑆(𝑢)| + |𝑆(𝑣)|)
−

𝛾2

2𝑑
(|𝑆(𝑢) ∩ 𝑁(𝑣)| + |𝑆(𝑣) ∩ 𝑁(𝑢)|). (B.2)

Recall that ‖𝐱𝑣‖2 = ‖𝐲𝑣‖2 = 𝑞 for every 𝑣, where 1 ⩽ 𝑞 ⩽ 2. Therefore, by Equations (B.1) and
(B.2), we have

(∗) ∶= 𝔼

[ ∑
𝑢𝑣∈𝐸(𝐺)

(
arcsin

⟨𝐲𝑢, 𝐲𝑣⟩‖𝐲𝑢‖‖𝐲𝑣‖ − arcsin
⟨𝐱𝑢, 𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖

)]

⩽
4𝛾√
𝑑

∑
𝑢𝑣∈𝐸(𝐺)

𝟙𝑑(𝑢,𝑣)>20𝑑2∕𝑛 +
2𝛾2𝑎√

𝑑

∑
𝑢𝑣∈𝐸(𝐺)

(|𝑆(𝑢)| + |𝑆(𝑣)|)
−

1

2
⋅
𝛾2

2𝑑

∑
𝑢𝑣∈𝐸(𝐺)

(|𝑆(𝑢) ∩ 𝑁(𝑣)| + |𝑆(𝑣) ∩ 𝑁(𝑢)|). (B.3)

Now note that ∑
𝑢𝑣∈𝐸(𝐺)

(|𝑆(𝑢) ∩ 𝑁(𝑣)| + |𝑆(𝑣) ∩ 𝑁(𝑢)|)
= |{(𝑢, 𝑣, 𝑤) ∈ 𝑉(𝐺)3 ∶ 𝑢𝑣, 𝑣𝑤,𝑤𝑢 ∈ 𝐸(𝐺), 𝑑(𝑢, 𝑤) > 20𝑑2∕𝑛}|
= 2

∑
𝑢𝑤∈𝐸(𝐺)∶

𝑑(𝑢,𝑤)>20𝑑2∕𝑛

𝑑(𝑢, 𝑤). (B.4)
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NEW RESULTS FOR MAXCUT IN𝐻-FREE GRAPHS 479

On the other hand, ∑
𝑢𝑣∈𝐸(𝐺)

(|𝑆(𝑢)| + |𝑆(𝑣)|) = ∑
𝑢∈𝑉(𝐺)

𝑑|𝑆(𝑢)| = ∑
𝑢𝑣∈𝐸(𝐺)∶

𝑑(𝑢,𝑣)>20𝑑2∕𝑛

2𝑑. (B.5)

Finally, as the number of triangles in 𝐺 is at most 𝑑3∕3, the number of 𝑢𝑣 ∈ 𝐸(𝐺) with 𝑑(𝑢, 𝑣) >

20𝑑2∕𝑛 is at most 𝑛𝑑

20
, so

∑
𝑢𝑣∈𝐸(𝐺)

𝟙𝑑(𝑢,𝑣)>20𝑑2∕𝑛 ⩽
𝑛𝑑

20
. (B.6)

Thus, plugging (B.4), (B.5) and (B.6) into (B.3), we get

(∗) ⩽ 𝛾
4𝑛

√
𝑑

20
− 𝛾2

⎛⎜⎜⎜⎜⎝
∑

𝑢𝑣∈𝐸(𝐺)∶

𝑑(𝑢,𝑣)>20𝑑2∕𝑛

(
𝑑(𝑢, 𝑣)

2𝑑
− 4

√
𝑑𝑎

)⎞⎟⎟⎟⎟⎠
⩽

𝛾𝑛
√

𝑑

4
− 𝛾2

⎛⎜⎜⎜⎜⎝
∑

𝑢𝑣∈𝐸(𝐺)∶

𝑑(𝑢,𝑣)>20𝑑2∕𝑛

𝑑(𝑢, 𝑣)

10𝑑

⎞⎟⎟⎟⎟⎠
,

where in the second inequality, we used that 𝑎 ⩽
2
√

𝑑

𝑛
. □

Proof of Lemma 4.2. Define the vectors 𝐱𝑣 as before. Looking at the Taylor series of arcsin(𝑥),
one can see that arcsin(𝑥) ⩽ 𝑥 + 10𝑥3 holds for all 0 ⩽ 𝑥 ⩽ 1. On the other hand, arcsin(𝑥) ⩽ 𝑥

for −1 ⩽ 𝑥 < 0. Thus, by (2.1),

arcsin
⟨𝐱𝑢, 𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖ ⩽

⟨𝐱𝑢, 𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖ + 10

(
1‖𝐱𝑢‖‖𝐱𝑣‖𝛾2

(
1

𝑑
+

2𝑎√
𝑑

+ 𝑎2

)
𝛿+(𝑢, 𝑣)

)3

⩽
⟨𝐱𝑢, 𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖ + 𝛾2 𝛿+(𝑢, 𝑣)

3

10𝑑3
,

where in the second inequality, we used ‖𝐱𝑢‖, ‖𝐱𝑣‖ ⩾ 1, 1

𝑑
+ 2𝑎√

𝑑
+ 𝑎2 ⩽

4

𝑑
and 𝛾 ⩽ 1∕10.

Summing over all 𝑢𝑣 ∈ 𝐸(𝐺) and using that 𝑞 = ‖𝐱𝑣‖2 for every 𝑣 ∈ 𝑉(𝐺), we get

∑
𝑢𝑣∈𝐸(𝐺)

arcsin
⟨𝐱𝑢, 𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖ ⩽

1

𝑞

∑
𝑢𝑣∈𝐸(𝐺)

⟨𝐱𝑢, 𝐱𝑣⟩ + 𝛾2
∑

𝑢𝑣∈𝐸(𝐺)

𝛿+(𝑢, 𝑣)
3

10𝑑3
.

By (2.1),

∑
𝑢𝑣∈𝐸(𝐺)

⟨𝐱𝑢, 𝐱𝑣⟩ = −𝛾𝑛
√

𝑑 + 𝛾2

(
1

𝑑
+

2𝑎√
𝑑

+ 𝑎2

) ∑
𝑢𝑣∈𝐸(𝐺)

𝛿(𝑢, 𝑣)

= −𝛾𝑛
√

𝑑 + 𝛾2

(
1

𝑑
+

2𝑎√
𝑑

+ 𝑎2

)
3𝑠 = −𝛾𝑛

√
𝑑 + Θ

(
𝛾2𝑠

𝑑

)
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since
∑

𝑢𝑣∈𝐸(𝐺) 𝛿(𝑢, 𝑣) =
∑

𝑢𝑣∈𝐸(𝐺) 𝑑(𝑢, 𝑣) −
𝑛𝑑

2
𝑑2∕𝑛 = 3𝑡(𝐺) − 𝑑3∕2 = 3𝑠. Using 1 ⩽ 𝑞 ⩽ 2, we

get

∑
𝑢𝑣∈𝐸(𝐺)

arcsin
⟨𝐱𝑢, 𝐱𝑣⟩‖𝐱𝑢‖‖𝐱𝑣‖ ⩽ −

𝛾𝑛
√

𝑑

2
+ Θ

(
𝛾2𝑠

𝑑

)
+ 𝛾2

∑
𝑢𝑣∈𝐸(𝐺)

𝛿+(𝑢, 𝑣)
3

10𝑑3
.

Substituting this into (4.1) and using that if 𝑑(𝑢, 𝑣) > 𝑑2∕𝑛, then 𝛿+(𝑢, 𝑣) ⩽ 𝑑(𝑢, 𝑣) ⩽ 𝑑(𝑢) = 𝑑,

sp(𝐺) ⩾ −
1

𝜋

⎛⎜⎜⎜⎜⎝
−
𝛾𝑛

√
𝑑

4
+ Θ

(
𝛾2𝑠

𝑑

)
+ 𝛾2

∑
𝑢𝑣∈𝐸(𝐺)

𝛿+(𝑢, 𝑣)
3

10𝑑3
− 𝛾2

∑
𝑢𝑣∈𝐸(𝐺)∶

𝑑(𝑢,𝑣)>20𝑑2∕𝑛

𝑑(𝑢, 𝑣)

10𝑑

⎞⎟⎟⎟⎟⎠
⩾ −

1

𝜋

⎛⎜⎜⎜⎜⎝
−
𝛾𝑛

√
𝑑

4
+ Θ

(
𝛾2𝑠

𝑑

)
+ 𝛾2

∑
𝑢𝑣∈𝐸(𝐺)∶

𝑑(𝑢,𝑣)⩽20𝑑2∕𝑛

𝛿+(𝑢, 𝑣)
3

10𝑑3

⎞⎟⎟⎟⎟⎠
,

which completes the proof of the lemma. □
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