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A convolutional attention 
mapping deep neural network 
for classification and localization 
of cardiomegaly on chest X‑rays
Mohammed Innat 1, Md. Faruque Hossain 1*, Kevin Mader 2 & Abbas Z. Kouzani 3*

Building a reliable and precise model for disease classification and identifying abnormal sites can 
provide physicians assistance in their decision-making process. Deep learning based image analysis 
is a promising technique for enriching the decision making process, and accordingly strengthening 
patient care. This work presents a convolutional attention mapping deep learning model, Cardio-
XAttentionNet, to classify and localize cardiomegaly effectively. We revisit the global average pooling 
(GAP) system and add a weighting term to develop a light and effective Attention Mapping Mechanism 
(AMM). The model enables the classification of cardiomegaly from chest X-rays through image-level 
classification and pixel-level localization only from image-level labels. We leverage some of the 
advanced ConvNet architectures as a backbone-model of the proposed attention mapping network 
to build Cardio-XAttentionNet. The proposed model is trained on ChestX-Ray14, which is a publicly 
accessible chest X-ray dataset. The best single model achieves an overall precision, recall, F-1 measure 
and area under curve (AUC) scores of 0.87, 0.85, 0.86 and 0.89, respectively, for the classification of 
the cardiomegaly. The results also demonstrate that the Cardio-XAttentionNet model well captures 
the cardiomegaly class information at image-level as well as localization at pixel-level on chest x-rays. 
A comparative analysis between the proposed AMM and existing GAP based models shows that the 
proposed model achieves a state-of-the-art performance on this dataset for cardiomegaly detection 
using a single model.

Cardiomegaly is a sign of a cardiovascular disease that abnormally enlarges the heart. It indicates cardiac insuf-
ficiency which is found in at least 1 out of 500 in the general population1,2. In the U.S. alone, each year around 
260,000 people die from cardiac insufficiency3. Tavora et al. reported a greater risk of sudden heart death for 
cardiomegaly4. Noirin et al. stated that cardiomegaly is prevalent in stillborn children of diabetes mellitus mothers 
and may lead to the threat of fetal death during pregnancies5. As a life-threatening cardiac condition, it is crucial 
to recognize the sign and symptoms at an early stage6.

Medical images provide vital information to doctors for making diagnostic and therapeutic decisions. The 
decision-making process involves manual interpretation of the images. To further enrich decision-making and 
thus strengthen patient care, medical image processing field is devoted to understanding and enhancing the 
process of clinical interpretation. The classical problems in medical image pre-processing such as segmentation, 
identification of anomalies and personalized diagnosis are benefitting from the deep learning algorithms7,8 and 
big data9,10. Also, the latest accessibility of large-scale medical information encourages a more difficult objec-
tive towards causal, explainable, and universal visual medical diagnosis. Thus, in a clinical research area, visual 
explanation supporting the outcomes of classification, such as spatial region or segmentation11–13 of abnormal-
ity locations, is an inevitable component of clinical diagnosis. It is therefore crucial that the image processing 
techniques should be able to provide high precision with both classification results and the associated visual 
explanation. Moreover, the efficiency of a reliable model heavily depends on the training data in a fully supervised 
environment. A large, labelled image dataset is often needed to accomplish acceptable generalized performance. 
However, it is often tedious to perform time-consuming annotation of the targets. Therefore, reducing the anno-
tation costs for locating and detecting objects can be important.
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Over the last few years of advancement in artificial intelligence, researchers developed deep learning algo-
rithms for medical image analysis7,14. Torres-Robles et al.15 proposed a neuro-fuzzy classifier for the detection of 
cardiomegaly in digital chest radiography. The work used classical morphology operations to segment the lungs 
for a neuro-fuzzy classifier and thus obtained the feature values to measure heart enlargement. Sema Candemir 
et al.16 reported a Transfer Learning approach to classify cardiomegaly disease by observing several ConvNet 
architectures. Ilovar et al.17 performed an analysis of radiograph and detection of cardiomegaly which employed 
custom image processing method and defined an edge detector to measure the heart’s and chest cavity’s width. 
Qiwen Que et al.18 presented a procedure to detect cardiomegaly by combing the U-Net model for image segmen-
tation with the DenseNet model as a baseline. In this study, Cardiothoracic Ratio (CTR), calculated from U-Net, 
was used as a diagnostic metric. The work combined the medical criterion and the deep neural nets to detect 
heart disease that led the architecture to a much complex system. Takayuki Ishida et al.19 presented a computer-
ized system to determine CTR based on an edge detection technique and gray-level histogram to analyze with 
feature analysis. Pranav Rajpurkar et al.20 proposed a 121-layer ConvNet model to detect all 14 diseases21 in the 
chest. J. M. Wolterink et al.22 used a dilated convolutional layer for the segmentation of the myocardium and 
blood pool in cardiovascular MR with congenital heart disease. Yan Shen et al.23 applied the routing-by agreement 
method to classify thoracic diseases including cardiomegaly and used Grad-CAM for the model interpretability.

Classification of the whole-image24, the region-based object detection25 and the semantic segmentation26 
have been developed with the advancement of supervised convolutional neural network. Implementing such 
networks require advanced network engineering as well as a huge amount of precise training pairs. In the case 
of semantic segmentation or region-based object localization, annotating the precise contours of the target are 
often tedious to specify and time-consuming as well. Que et al.18 presented a system that combined the U-Net 
and DenseNet model to find the presence of cardiomegaly. It required network designing for both segmentation 
and classification that brought challenges of accurate image-level labels specification as well as annotation of 
precise contours of the targets.

Some supervised learning methods27–29 showed the promising result of the auto-localization to minimize 
the annotation effort. However, the region-based procedure for object detection generally uses object proposal 
pipelines to detect the proper candidate30,31 whereas the pixel-level localization procedure15,21 try to predict each 
position on the feature maps. In this work, we examine the GAP system and add a learnable weighting term to 
design the Attention Mapping Mechanism (AMM) for the salience fields, which show the symptoms of cardiac 
insufficiency aligning with the visualization and interpretation. At a high-level, an attention mechanism allows a 
system to concentrate on relevant parts of the input more than the irrelevant parts. The soft attention model-based 
neural machine translation (NMT)32 method has become the state-of-the-art approach, compared with other 
statistical machine translation (MT) methods, and has been used effectively for computer vision problems33,34. It 
looks for the relevant part of the input to the final prediction. In our experiment, we adopt some of the advanced 
ConvNet architectures35–37 with the proposed Attention Mapping network to build Cardio-XAttentionNet. The 
AMM explicitly enables the ConvNet to have precise localization capabilities despite being trained on only 
image-level labels. In contrast to the typical technique of identifying computer vision objects by predicting the 
bounding boxes, this study tackles both classification and localization concurrently with only image-level labels.

As shown in Fig. 1, our model Cardio-XAttentionNet takes frontal-view X-ray image of chest resulting in 
the probability of cardiomegaly along with an attention heat-map at pixel-level to address localization. Cardio-
XAttentionNet is trained with only image-level labels of the recently published ChestX-Ray14 dataset21. To evalu-
ate the empirical evidence of the proposed attention mapping network, we experiment on some of the advanced 
ConvNet architectures. In our experiment, we use Densely Connected ConvNet35, Deep Residual Learning36, 
and Inception-ResNet-v237 as a baseline model which improves the flow of feature information and gradients 
through the whole network. We reinforce their capability by incorporating with the attention mapping network 
build top of each model for end-to-end training from scratch. We examined each of these models and came up 
with the network that had the higher precision.

Specifically, the contributions of this work are:

Figure 1.   Cardio-XAttentionNet (CXA_Dense121) model, based on DenseNet-121 with Attention Mapping 
Mechanism, generating accurately positive outcomes with the most indicative region mapping for cardiomegaly, 
addressing class information and localization on the frontal-view chest X-Ray image. On left side, the original 
image. On right side, the attention map, and the superimposed outcomes with intensity factor 0.2.
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•	 A soft Attention Mapping Mechanism (AMM) that enhances the global average pooling (GAP) method by 
providing a weighting parameter with a range of 0 to 1.

•	 The Cardio-XAttentionNet, a complete machine learning model that has been built with AMM to perform 
image-level classification and pixel-level localization tasks concurrently, using only image-level labels as 
input. Through its training, the model has proven to be effective in successfully carrying out these tasks.

•	 Comparing the proposed AMM (Weighted GAP)-based models and GAP-based models illustrate the efficacy 
of AMM module in detecting cardiomegaly and present a wider scope of adaptability.

Materials and methods
In this section, we describe the ChestX-Ray dataset that is used in this work and demonstrate the model training 
setup and evaluation methods. This section also describes the data pre-processing steps and finally it discusses 
about the proposed methods.

Data set and model settings.  ChestX‑ray data set.  The National Institute of Health (NIH) Clinical Cen-
tre, a research hospital of USA, recently published over 100,000 anonymized chest x-ray frontal-view images21. 
NIH collected the scanning dataset of over 30,805 patients including many with sophisticated lung diseases. All 
images are in high resolution (1024 × 1024). Each image marked with up to 15 distinct thoracic categories, in-
cluding atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneumothorax, consolidation, 
edema, emphysema, fibrosis, pleural thickening, hernia, and normal images. Although the image label is ex-
tracted with natural language processing (NLP), the publisher ensures that the NLP labelling precision exceeds 
the accuracy of 90%21. However, the ChestX-ray14 offers 14 class labels and a limited amount of boundary boxes, 
as ground-truths for fields of localization concern, making it a classic weakly-supervised learning problem38.

Problem formulation.  The cardiomegaly detection task is a binary classification problem along with pixel-level 
localization. The input is a frontal-view chest X-ray Image X and the output is a binary label y: {1, 0}, indicat-
ing the appearance or absence of cardiomegaly respectively along with producing an attention heat map on the 
identified zone for the presence of cardiomegaly in X-ray images. For a single example in the training set, we 
optimize the binary cross-entropy loss, stated in Eq. (1):

where  C(Y = i|X)  is the class probability that the network assigns to the label i.

Hyper‑parameters and model training.  The complete model (Cardio-XAttentionNet) has been trained end-to-
end from scratch, initialize the weight with glorot uniform initializer39. In such process the pre-trained weights 
from ImageNet can also be used with transfer learning. However, this work is particularly motivated to use such 
training from scratch considering the fact that ImageNet weights are mainly constructed using natural images. 
Furthermore, a successful transfer learning requires a significant resemblance between the images used for train-
ing and those used for the target application40. The network is trained using Stochastic Gradient Descent (SGD) 
with momentum of 0.9. We have used the mini batches of size 16 and initialize the learning rate at 0.0001 which 
anneal generally by a factor of 0.3 after 15 epochs each time the validation loss stops improving and saves the 
model with the lowest validation loss. The model is developed to take an early stop by monitoring the validation 
loss at patience 40. We have used Keras41 deep learning framework to realize the deep learning algorithms and it 
is experimented on Windows OS having core i7 7th 32 GB RAM with GeForce GTX 1070.

Evaluation method.  After developing the model, the test dataset is used to assess the model. The parameters 
required to obtain the four readings: accuracy, precision, recall, and f1-score are True Positive (TP: the number 
of cases properly predicted as specified), False Positive (FP: the cases incorrectly predicted as necessary), True 
Negative (TN: the number of cases properly predicted as not necessary) and False Negative (FN: the number of 
cases wrongly predicted as not necessary). As calculated, the Accuracy, Precision, Recall, and F1-score are stated 
in Eqs. (2), (3), (4) and(5) respectively.

In relation to the above assessment criteria, we also use the Area Under Receiver Operating Characteristics 
(AUROC) to assess the merits of the model. The Receiver Operating Characteristics (ROC) curve is developed 

(1)L(X, y) =

{

−ylogC(Y = 1|X)
−(1− y)logC(Y = 0|X)

(2)Accuracy =
TP + TN

TP + FP + TN + FN

(3)Pr ecision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F1−Measure =
2 ∗ Precision ∗ Recall

Precision+ Recall
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at different threshold values by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR), as 
stated in Eqs. (6) and (7) respectively. The stronger the classifier, the greater the region under the ROC curve. If 
the model operates well, a strong classifier will provide TPR close to unity while maintaining FPR close to zero.

As shown in Table 1, we also computed the confusion matrix to demonstrate our best model. It is a table that 
is used to evaluate the performance of a binary classifier. It compares the predicted classifications with the true 
classifications to understand the effectiveness of the model.

Data preprocessing.  In this study, we have used normal (healthy) images and cardiomegaly conditioned 
images. The cardiomegaly cases in this dataset are 2776 compared to the non-cardiomegaly (healthy) cases of 
60,361. From this dataset14,21, the training (80%) and testing (20%) datasets are prepared with a patient-wise 
official split, which creates the training dataset of 52,207 images (1707 cardiomegaly and 50,500 normal images) 
and a testing dataset of 10,930 images (1069 cardiomegaly and 9861 normal images). Furthermore, we also cre-
ate 10% validation set (or development set) from the training set which consists of 5221 images including 171 
cardiomegaly and 5050 normal images. This validation dataset is used for hyper-parameter optimization and 
typically smaller than the size of test dataset. In our experiment, the primary picture is scaled down to 224 × 224 
pixels for fast processing. We also conduct min–max normalization to decrease computational costs as the Con-
vNet converges on [0, 1] information much quicker than [0, 255].

The framework of the model is shown in Fig. 2a. As we have a significant class imbalance in the datasets 
between Cardiomegaly and Non-Cardiomegaly cases, we estimate the class weight and use it during the model 
training. We have taken the training part (training set and development set) for end-to-end training and learning 

(6)TPR =
TP

TP + FN

(7)FPR =
FP

FP + TN

Table 1.   Confusion matrix table.

Predicted 
label

True label
TN FP

FN TP

Figure 2.   (a) Model’s Framework: pre-processing the acquired data to make the training part (train set and 
dev set) for end-to-end training and learning algorithms to build the models; test set is used to final assessment 
of the models. (b) Architectural design of the learning algorithms. A: CXA_Dense121, B: CXA_Dense201, C: 
CXA_IncepRes2 and D: CXA_Res50 are built by integrating AMM with the baseline models of DenseNet121, 
DenseNet201, Inception_ResNet_V2 and ResNet50 respectively.
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algorithms to build the models. The development set has been used for the optimization of hyperparameter 
and for choosing the prevailing model. Finally, the test set has been used for the final evaluation of the models.

Data augmentation.  In this work, we apply online image data augmentation methods to the training dataset. 
Online augmentation methods are robust to overfitting and natural variance of objects since the model never 
sees exactly the same training image twice. Thus, they also have advantage of saving disk space42. Figure 3 shows 
some typical augmented images where the amount of the training data is enhanced arbitrarily by generating an 
altered image version. The methods used for the augmentation are shifts, rotations, shear, brightness, and zoom-
ing. Creating such image variability in the training set will usually enhance the capacity of the fitted model for 
its generalized applications43.

Cardio‑XAttentionNet.  Generally, the operation of Global Max Pooling (GMP)44 and Global Average 
Pooling (GAP)27 have been considered for precise location of the objects. In GMP, only the maximum value is 
considered as the final output by discarding other possible relevant details. On the other hand, GAP requires all 
inputs as the final production. However, it is unable to specify which inputs require more attention to show that 
some areas are more significant than the others. Since GAP contains all values, we examine the operation of GAP 
and add a learnable weighting term to develop the AMM. To implement the complete learning algorithm, we 
remove the final fully connected layer of the baseline model and replace it with the AMM. Next, we add a binary 
output where we apply sigmoid non-linearity. It is to be noted that the layer of the AMM module consisting this 
sigmoid nonlinearity ultimately builds the fully connected layer for the classification tasks. Finally, we accom-
plish that our proposed Cardio-XAttentionNet along with the DenseNet-like base model appears as the most 
generalized model which produces strong results in addressing cardiomegaly class information and localization 
concurrently, and substantially outperforms many other models. We demonstrate that such pixel-level attention 
algorithm trained only on image-level labels can efficiently highlight the areas of salience to demonstrate the 
symptoms of cardiac insufficiency aligned with visualization and perception.

In our experiment, we have used Densely Connected ConvNet35, Deep Residual Network36, and Inception-
ResNet-v237 which performs as a base model of the Cardio-XAttentionNet. Figure 2b demonstrates the archi-
tectural design of the learning algorithms. As shown in figure, the learning algorithms: CXA_Dense121, CXA_
Dense201, CXA_IncepRes2 and CXA_Res50 are developed by combining the proposed Attention Mechanism 
with, DenseNet-121, DenseNet-201, InceptionResNet_V2 and ResNet50 respectively. We experiment with each of 
these promising systems and finalized it with the most established network. As previously mentioned, we remove 
the final fully connected layer of the base models and replace it by the Attention Mapping Mechanism (AMM) 
with a binary output where we apply sigmoid non-linearity. Finally, we achieve that Cardio-XAttentionNet 
based on DenseNet-121 with AMM, which appears as the most generalized model producing strong results in 
cardiomegaly classification and localization simultaneously and significantly outperforms the other models.

Convolutional neural networks.  As previously mentioned, the base models of our experiment are ResNet-50, 
DenseNet-121, DenseNet-201 and InceptionResNet_V2. These models have dominant performances in ILS-

Figure 3.   Pre-processed and augmented x-ray images used as training samples. The methods used for 
augmentation are shifts, rotations, flips, shear, brightness, and zooming. Cardiomegaly and the healthy images 
were mapped as 1 (Cardiomegaly) and 0 (non-Cardiomegaly) respectively.
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VRC competitions45. We select these ground-breaking network concepts to build the model with the proposed 
AMM. Our proposed AMM can also be easily extended to any other advanced ConvNet architectures.

As shown in Table 2, after removing the final classification layer and global pooling layer, an input image 
with shape (H, W, C) generates a feature tensor with shape (Fx, Fy, Fk). Here H, W and C are the height, width, 
and channel numbers of the input image respectively, and Fx, Fy, Fk are the height, width, and channel numbers 
of the feature maps. The output of these networks encodes the image information into an abstract collection of 
function maps.

Attention mapping mechanism.  As explained before, the different inputs require different level of care. How-
ever, the available GMP or GAP operations are limited to such operation since there are no learnable parameters 
in it. The developed Attention Mapping Mechanism (AMM) is used in this case to generate a learned weight map 
to create a spatial mask for the feature maps of the base model. To implement the mechanism, we take the feature 
maps F ∈ ℝ (Fx, Fy, Fk) from the last convolution layer of the baseline model. The class and localization informa-
tion of the target should already emerge in the feature maps, F now. Thereafter, we apply the Batch Normalization 
(BN) to feature maps F to further accelerate network training46.

Figure 4 illustrates the network architecture of attention mapping mechanism (AMM) where an Attention 
Model is used to obtain a weight W that learns a spatial mask for the feature maps F to produce region wise 
attention. The learned weight should be a positive value and cannot be zero either, such as ∀WK

(

x, y
)

≥ 0 and 
∑k

x,yW  = 0 . Generally, the network architecture is like Network-In-Network as demonstrated in47. Table 3 gives 
the detail of each layer of the model. As shown in table, the model largely consists of 1 × 1 convolutional layer 
with exponential linear units (ELU) activations48.

In the last layer, we apply a sigmoid non-linearity activation function to obtain a weight W that will be used 
to make the features attentive in the feature maps F. For each feature, thus, the attention model gives a learned 
weight from 0 to 1 according to sigmoid non-linearity. Then the output feature dimensions of the learned weight 
maps of the attention model rescale back to the original number of base model feature F using a hard-coded 
operation where we ignore the bias term and set the network layer non-trainable. Next, we use this attention 
model to weight the regions of the feature of F; since some of the regions are more relevant than others. Thus, 
the high weighted features will get more attention to the weighted mean than the low weighted features. Before 
the final output layer, we perform the global weighted average pooling (GWAP) operation on the convolutional 
weighted feature maps (A) of the baseline model with the learned weight maps (W) of the attention model as 
shown in Fig. 4. With this connectivity framework, we can effectively distinguish the relevance of the spatial 
image regions by re-projecting the weight maps of the output layer onto the convolutional feature maps.

Let Fk be the kth feature map and Wc,k be the learned weight in the final classification layer of the attention 
model for feature map k leading to pathology c. We obtain an attention feature maps Ac,k of the most salient fea-
tures in classifying the image as having pathology to class c. Ac,k is the results of the element-wise products (⊙) 
of feature maps F using their associated weight maps W, which obtained from the proposed AMM.

Table 2.   Size of input images (H, W, C) and generated feature tensor (Fx, Fy, Fk) using four different base 
model.

Base ConvNets H, W, C Fx, Fy, Fk

InceptionResNet_V2 224 × 224 × 3 5 × 5 × 1536

ResNet-50 " 7 × 7 × 2048

DenseNet-121 " 7 × 7 × 1024

DenseNet-201 " 7 × 7 × 1920

Figure 4.   The network architecture of the Attention Mapping Mechanism (AMM) where BN, F, W and A 
represent Batch Normalization, output feature maps of the base model, learned weight maps of the attention 
model and weighted feature maps respectively. GWAP represent the Global Weighted Average Pooling operation 
that perform on weighted feature maps (A) and learned weight maps (W). Layers with concerned filter sizes of 
the AMM are demonstrated in Table 3.
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where 1 ≤ x ≤ Fx, 1 ≤ y ≤ Fy. Here Fx, Fy, and Fk denote height, width, and channels of the feature maps respectively.
The higher the weighting term of Wc,k, the higher the values in Ac,k production. Therefore, we use the weighted 

average to calculate the value of Ac,k(x,y), so that the scale is independent of the region of attention. To achieve 
this, we employ the GAP layer which sums the spatial information for both Ac,k and Wc,k as it is more prevalent 
to a spatial translation of the input. Both feature maps have the spatial mask information and should emerge the 
localization information of the target along with classification confidence. We can now normalize the weighted 
feature maps Ac,k by the learned weight maps Wc,k as follows:

where f GWAP ∈ ℝk x 1. Next, we grab the output of the attention map and use the Dropout layer49 followed by the 
fully connected layer for the classification. A binary cross-entropy loss function is generally used for training 
the entire network. After the training, the model produces accurate class labelling along with simultaneously 
anticipating the relevant areas in a forward pass. By this, along with the classification, the proposed model 
(Cardio-XAttentionNet) can create an attention map at pixel-level to address localization for cardiomegaly on 
the chest X-ray image.

Results and discussions
This section demonstrates the results of each model and compare their efficiency based on distinct criteria for 
assessment. For this purpose, we use the test data which is not used in the training phase. First, we shall explain 
the classification report of each model and confusion matrix of our best model. Next, the ROC AUC scores of 
all the models are compared and then visualize some class-specific attention maps on the chest x-ray.

Classification report.  We obtain four measurements: accuracy, precision, recall, and F1-score using the test 
dataset. As demonstrated in Fig. 2b, the learning algorithms CXA_Res50, CXA_IncepRes2, CXA_Dense121, 
and CXA_Dense201 are used to obtain these measurements. The results of each model are shown in Table 4 for 
both classes: Non-Cardiomegaly and Cardiomegaly. We also calculate their average weighted by the number of 
true instances for each target.

We see that the precision of CXA_Dense121 is top among other designs by attaining 85 percent peak accuracy. 
The recall of the CXA_IncepRes2 model and the CXA_Dense121 model is similar by scoring 0.85. The average 
precision score of CXA_Dense121 is 0.87, highest in all. Thus, the model CXA_Dense121 produces highest 
F1-score by scoring 0.86 than other designs. We also perform several fundamental studies to comprehend the 
GWAP based AMM with GAP on the same baseline models. For a valid comparison, we apply these techniques 
to the same fundamental network architecture35–37. We exclude the last layers and replace them with a GWAP 
based AMM or GAP followed by a classification layer. Quantitative average results of each of these models are 
shown in Table 5.

Confusion matrix.  Figure 5 illustrates the confusion matrix obtained for our best model CXA_Dense121 
(right) and its base model DenseNet121-GAP (left). It is found that CXA_Dense121 performs significantly bet-

(8)Ac,k(x, y) = Fk(x, y)⊙Wc,k(x, y)

(9)fGWAP =

∑

c,k

A(x, y)

∑

c,k

W(x, y)
=

∑

c,k

Fk(x, y)⊙Wc,k(x, y)

∑

c,k

W(x, y)

Table 3.   Layers of the Attention Mapping Mechanism (AMM). Conv refers to the Convolution operation. 
During training, we scale down the image into 224 × 224 pixels, where testing is performed on the entire input 
image.

Layers Kernels Size, Stride, Pad Description

Train Data – 224 × 224 RGB image crop

Test Data – Full Size (1024 × 1024) RGB image full

Base Model – – DenseNet-121 | DenseNet-201 | Inception_ResNet_V2 | 
ResNet-50

Conv1 128 1 × 1, 1, ‘same’ ELU

Conv2 32 1 × 1, 1, ‘same’ ELU

Conv3 16 1 × 1, 1, ‘same’ ELU

Avg-Pool – 2 × 2, 1, ‘same’ –

Conv4 1 1 × 1, 1, ‘valid’ Sigmoid

Conv5 (Same as base model) 1 × 1, 1, ‘same’ Linear + Trainable: False (Hard-Coded Conv)

Conv6 – – Conv5 (Conv4)

Conv7 – – Multiply ([Conv6, Base Model)]

GAP (Conv6 and Conv7) – – Rescale-Gap + Dropout

Dense – 128 units ELU + Dropout

Dense – 1 unit Sigmoid
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Table 4.   Classification report on the test datasets from four models. Significant values are in bold. Precision, 
recall, f1-score of each model for both classes: non-cardiomegaly and cardiomegaly (cardio) along with the 
corresponding test accuracy.

Model Class-Labels Precision Recall F1-Score Accuracy

CXA_Res50

Non-Cardio 0.88 0.80 0.84

Cardio 0.41 0.57 0.48 75%

Avg/total 0.78 0.75 0.76

CXA_IncepRes2

Non-Cardio 0.90 0.91 0.91

Cardio 0.61 0.59 0.60 84.75%

Avg/total 0.85 0.85 0.85

CXA_Dense201

Non-Cardio 0.89 0.86 0.88

Cardio 0.52 0.59 0.55 80.58%

Avg/total 0.82 0.81 0.81

CXA_Dense121

Non-Cardio 0.93 0.88 0.90

Cardio 0.59 0.73 0.66 85%

Avg/total 0.87 0.85 0.86

Table 5.   The performance comparison on the test dataset of the base-model-gap with the base-model-amm to 
the average precision, average recall, average f-1 score and auroc scores. Significant values are in bold.

Model Avg. Precision Avg. Recall Avg. F-1 Score AUROC

ResNet50-GAP 0.84 0.70 0.73 0.86

CXA_Res50 0.78 0.75 0.76 0.87

InceptionRes2-GAP 0.84 0.81 0.82 0.86

CXA_IncepRes2 0.85 0.85 0.85 0.85

DenseNet201-GAP 0.83 0.66 0.69 0.84

CXA_Dense201 0.82 0.81 0.81 0.86

DenseNet121-GAP 0.84 0.68 0.71 0.85

CXA_Dense121 0.87 0.85 0.86 0.89

Figure 5.   Comparison of confusion matrix of our (a) base model DenseNet121-GAP and (b) proposed best 
single model CXA_Dense121 under test dataset.
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ter than its base model in terms of both true positive and true negative predictions. This indicates that the pro-
posed CXA_Dense121 is a more robust classifier.

ROC AUC curves.  The obtained AUROC scores of GWAP based AMM (left) and GAP (right) are shown in 
Fig. 6. The AUC scores of models CXA_Dense121, CXA_Dense201, CXA_IncepRes2 and CXA_Res50 are 0.89, 
0.86, 0.85 and 0.87 respectively. Here the CXA_Dense121 outperforms other models followed by CXA_Res50. 
Among all the models, CXA_Dense121 appears as the strong classifier that produces a greater region under the 
ROC curve. The model operates well as a strong classifier that provides TPR close to unity while maintaining 
FPR close to zero.

Visualization of class‑specific attention map.  In this part, we illustrate some heatmap visualization 
outcomes produced by the AMM. By leveraging the technique of the attention module, each baseline model 
yields very promising results. Along with properly classifying cardiomegaly class information at image-level, 
these models are also able to localize the most precise region on the chest x-ray to report cardiomegaly.

A few images are selected randomly from the test dataset, as shown in Fig. 7, to demonstrate the visualization 
outcomes. It shows that CXA_Dense121 (Fig. 7a) strongly detects the cardiomegaly class information along with 
producing strong attention map on the precise location of the Chest-Xray images. We label the ground truth 1 and 
0 for cardiomegaly and non-cardiomegaly respectively. The outcomes of other three models of CXA_Dense201, 
CXA_IncepRes2, and CXA_Res50 are also shown in Fig. 7b,c for better comparison. Each model shows promis-
ing outcomes to classify cardiomegaly class information and localization with the attention map. However, the 
proposed CXA_Dense121 model generates the most salient region maps on the chest x-ray while learning not 
to map for the non-cardiomegaly with highly classified confidences.

The localization outcomes using the proposed AMM can be better visualized by superimposing the attention 
maps on the corresponding x-ray images. In Fig. 8, we have shown some superimposed outcomes of the follow-
ing models CXA_Dense121, CXA_Dense201, CXA_IncepRes2, and CXA_Res50. It is found in generally that 
the proposed AMM explicitly enables the ConvNet to have precise localization capabilities despite being trained 
on only image-level labels. The results also reveal that the CXA_Dense121 model substantially outperforms the 
other models considered in this work.

To validate the effectiveness of our proposed method, we also visually demonstrate the class-activation maps 
of our best model (CXA_Dense121) in comparing with that of its base model (DenseNet121-GAP) on the 
cardiomegaly test images in Fig. 9. This indicates that the proposed method achieves better visual performance 
producing remarkable attention outcomes for the localization of the most indicative region on chest x-ray images, 
whereas the base model only could not produce clear visual outcomes. Such results are really promising since 
they are produced without any annotated bounding box.

However, there are several limitations to the proposed method. For example, out of the 2776 cardiomegaly 
cases in the ChestX-ray14 dataset, only 146 had manually annotated bounding boxes, which were not utilized 
in the proposed method. Additionally, multiple diseases often co-occur, and taking this into account could 
improve the accuracy of diagnosis. Finally, the disease labels in the dataset may be noisy, as they were extracted 
from radiological reports using natural language processing techniques, and this should be considered when 
designing the classification model.

Conclusions
In this study, we examined the global weighted average pooling (GWAP) operation and developed the AMM 
network that enables the classification of cardiomegaly from the chest X-rays addressing with simultaneously 
image-level classification and pixel-level localization with only the image-level labels. To evaluate the empirical 

Figure 6.   Comparison of ROC curves under Test dataset (a) for CXA_Dense121, CXA_Dense201, 
CXA_IncepRes2 and CXA_Res50; and (b) for DenseNet121-GAP, DenseNet201-GAP, ResNet50-GAP, and 
InceptionRes2-GAP.
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Figure 7.   The results from attention map CXA_Dense121, CXA_Dense201, CXA_Res50 and CXA_IncepRes2 
are shown in above (a), (b), (c) and (d) respectively. The ground truth of Class: 0 for Non-Cardiomegaly and 
1 for Cardiomegaly are set. CXA_Dense121 model produces strong results compare to others for classifying 
cardiomegaly class information and localization on the most indicative area on the chest x-ray image.

Figure 8.   A visual illustration of superimposing the Attention Map on the corresponding cardiomegaly chest 
x-ray images with intensity factor 0.2. Outputs of CXA_Dense121 (a), CXA_Dense201 (b), CXA_IncepRes2 (c) 
and CXA_Res50 (d) are sequentially from left to right.
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evidence of the proposed AMM, we leverage the advantages of some of the well-performed state-of-the-art Con-
vNet architectures (i.e. DenseNet-121, DenseNet-201, InceptionResNet_V2 and ResNet50). Finally, we develop 
the Cardio-XAttentionNet by incorporating these advanced ConvNet architectures as baseline models with the 
proposed attention mechanism (AMM). From our experiment, we achieved that Cardio-XAttentionNet based 
on DenseNet-121 (CXA_Dense121) appears as the well-generalized model and produced remarkable results 
in addressing cardiomegaly class information and localization simultaneously and substantially outperforms 
the other models. It achieves an overall precision, recall, F-1 measure and area under curve scores of 0.87, 0.85, 
0.86 and 0.89 respectively for the classification of the cardiomegaly symptoms which is the state-of-the-art 
performance on this data set using a single model. Further, we demonstrated a comparative analysis on the 
effectiveness of the proposed mechanism (AMM) against the previous methods (GAP) for the classification of 
cardiomegaly as well.

As the visual proof supporting the results of classification is an inevitable part of clinical diagnosis, Cardio-
XAttentionNet can provide high interpretation and deep insight. By showing the symptoms of cardiac insuf-
ficiency on the salient areas aligned with the visualization and high precision, Cardio-XAttentionNet can be a 
great AI tool to use in medical diagnosis for the radiologist and can be widely applied in clinical practice where 
thorough annotations are hardly available.

Data availability
All datasets used in this study are publicly available as indicated in “Data Set and Model Settings” section. 
Algorithmic implementations generated and analyzed during this study are available from the corresponding 
author on reasonable request.
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