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Abstract: We studied trip purpose imputation using data mining and machine learning techniques1

based on a dataset of GPS-based trajectories gathered in Switzerland. With a large number of2

labeled activities in 8 categories, we explored location information using hierarchical clustering3

and achieved a classification accuracy of 86.7% using a random forest approach as a baseline. The4

contribution of this study is summarized below. Firstly, using information from GPS trajectories5

exclusively without personal information shows a negligible decrease in accuracy (0.9%), which6

indicates the good performance of our data mining steps and the wide applicability of our7

imputation scheme in case of limited information availability. Secondly, the dependence of model8

performance on the geographical location, the number of participants, and the duration of the9

survey is investigated to provide a reference when comparing classification accuracy. Furthermore,10

we show the ensemble filter to be an excellent tool in this research field not only because of the11

increased accuracy (93.6%) especially for minority classes, but also the reduced uncertainties in12

blindly trusting the labeling of activities by participants, which is vulnerable to class noise due to13

the large survey response burden. Finally, the trip purpose derivation accuracy across participants14

reaches 74.8%, which is significant and suggests the possibility of effectively applying a model15

trained on GPS trajectories of a small subset of citizens to a larger GPS trajectory sample.16

Keywords: class noise; data mining; ensemble filter; hierarchical clustering; machine learning;17

random forest; trip purpose18

1. Introduction19

Trip purpose imputation is an important part of constructing travel diaries of20

individuals and has attracted the attention of many researchers due to its significance21

in understanding travel behavior, travel demand prediction, and transport planning.22

The prevalence of GPS-integrated devices provides a large amount of GPS trajectories23

consisting of a series of longitude-latitude pairs with abundant explicit information24

(such as travel timing, duration, and location). Nevertheless, the implicit information25

like travel modes and purposes needs to be imputed to enrich such data for better usage26

in transport management. While it triggered plenty of studies over past decades [1],27

most of them focused on mode detection. Although trip purposes can be reported by28

participants along GPS trajectories, this needs too much effort over a long study duration.29

In addition, such surveys might suffer from inaccuracy problems due to memory recall30

issues or the inattention of travelers, and their applicability is still limited to the collected31

travel diaries. As existing trip purpose imputation studies are mainly confined to small-32

scale case studies, how to generalize the results into a larger scale continues to be an33

important research topic and becomes the focus of our work. For comprehensive reviews34

of research status on trip purpose imputation, readers can consult the studies of Nguyen35

et al. [2], Ermagun et al. [3], and Gong et al. [4].36

The classification performance of different studies depends on many factors, such37

as sample sizes, survey duration and methods, data sources, activity categories, and38
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data preparation and cleaning steps. For this reason, it is difficult to set a benchmark for39

comparison across different papers, so we only emphasize innovative aspects of the most40

recent articles instead of comparing their accuracy rate. In our preliminary research,41

we found a striking similarity between trip mode and purpose derivation, which are42

mostly considered separately in the existing literature. While we saw a comparable43

model performance on these two tasks with similar techniques, this article engages in44

trip purpose imputation for simplicity and also mentions some relevant progress in45

mode derivation papers.46

While point of interest (POI) information is considered useful in identifying possible47

activities in a venue, it is not easy to efficiently incorporate such data into an imputation48

scheme. As a solution, Meng et al. [5] employed social media data (Twitter) to determine49

the popularities of POI in trip end areas for purpose inference with dynamic Bayesian50

network models. Scholars in this field seldomly investigate the transferability of trained51

models to other distinguishable datasets, while Gong et al. [6] did look into this aspect.52

They adopted the Aslan & Zech’s test and random forests to explore the effects of datasets53

from different seasons on model performance and stressed the limited transferability of54

models across datasets. To maximize the benefits of activity type detection, Ermagun55

et al. [3] took up the challenge of real-time purpose derivation and advocated the use56

of Google Places information. To impute trip modes, Yazdizadeh et al. [7] found that a57

combination of ensemble convolutional neural networks (CNN) and a random forest as58

a meta learner outperforms single learners like a decision tree, a random forest, or single59

CNN models.60

Although extensive studies have been devoted to the study of trip purpose imputa-61

tion and there are several comprehensive reviews of this research field, most of them62

are limited to small-scale case studies and do not consider the generalizability of their63

imputation scheme. Consequently, the large-scale spatial-temporal characteristics of64

trip purpose derivation and the problem of mislabeling by participants have not been65

investigated. Albeit an inverse relationship between sample size and model performance66

is expected due to the heterogeneity in diverse samples [2], there is a lack of quantitative67

measures for such phenomenon, which can be used as a guide for comparison across68

studies and future research design. Moreover, while geographic variables like land69

use information or POIs can be of benefit, they show large differences among different70

regions and thus the models using such information are less transferable. Similarly,71

the benefits of participant-related features come with a survey burden and limited72

transferability.73

Accordingly, our study does not aim at achieving a superior performance to exist-74

ing methods or improving classification accuracy, but intends to address the practical75

problems mentioned above. To this end, we propose four research questions: 1) What76

is the minimum set of data sources for a satisfactory model performance, so that the77

applicability of the methods can be maximized even with limited data availability? 2)78

How does the model performance depend on the geographical location, the number of79

participants, and the duration of the survey? 3) How can we account for the mislabeled80

activities by participants during the survey? 4) Can a model trained on a relatively small81

set of data be applied to other data collected from a much larger number of individuals?82

To the best of our knowledge, this is the first time that such problems are addressed in83

the trip purpose detection context.84

The rest of this paper is structured as follows: Section 2 covers the relevant literature.85

The data and methods are presented in Section 3. Section 4 presents the results, with the86

discussion and conclusions in Section 5.87

2. Background88

2.1. Data Sources89

Besides information about location and time collected with GPS-integrated devices,90

additional data sources are normally included in models to improve travel purpose91
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imputation precision. Generally, the socio-demographic characteristics of participants92

are gathered together with GPS trajectories and are taken to be important supplementary93

information [1]. Land use data and POI could be used to indicate possible activities for a94

stopping point on GPS trajectories [8]. In addition, the popularity of POI inferred from95

social media data (e.g. Twitter) [5], travel and tourism statistics [9], and mobile phone96

billing data [10] have also been utilized to derive travel purpose.97

2.2. Data Preparation98

Data pre-processing, which has been intensively investigated in the data mining99

field [11], receives much less discussion than it deserves in trip purpose imputation100

research. Therefore, we discuss the issue in-depth below. García et al. [12] summarized101

the three most influential data pre-processing requirements to improve data mining102

efficiency and performance, i.e. imperfect data handling, data reduction, and imbalanced103

data pre-processing.104

An important aspect of imperfect data handling is noise filtering [13], which aims105

at detecting the attribute noise and the more harmful class noise [14]. For class noise106

removal, ensemble filters proposed by Brodley and Friedl [15,16] have been widely107

applied as an excellent tool. Ensemble filters adopt an ensemble of classifiers to eliminate108

the mislabeled training data that cannot be correctly classified by all or part of the109

classifiers using n-fold cross-validation. To avoid treating an exception that is specific to110

an algorithm as noise, multiple algorithms are used. Basically, there are two strategies111

for implementing ensemble filters: majority vote filters, which mean the instances112

that cannot be correctly classified by more than half of the algorithms are treated as113

mislabeled; and conservative consensus filters, which mean only the instances that114

cannot be correctly classified by all algorithms are treated as noise. Majority vote filters115

are sometimes preferred to conservative consensus filters, as retaining bad data is more116

harmful than discarding good data especially when there are ample training data [16].117

Nevertheless, we chose conservative consensus filters, with the results of these two118

strategies being similar.119

Missing data is another typical problem in transport research that normally involves120

survey processes. The first step to handle missing data should be understanding sources121

of “unknownness” [17], which might be due to lost, uncollected, or unidentifiable in122

existing categories. Besides omitting the instances or features with missing values, which123

is usually not suggested, approaches for missing data inference can be classified into two124

groups [18]: data-driven, e.g. mean or mode; and model-based, e.g. k-nearest neighbors125

(kNN). kNN has gained popularity because of its simplicity and good performance in126

dealing with both numerical and nominal values [19].127

Attribute selection, as a classic part of data reduction, is conducive to generating128

a simpler and more accurate model and avoiding over-fitting risks [12,20]. For feature129

selection, feature importance measured by mean decrease in the Gini coefficient in130

the random forest approach can be used as a reference [21]. However, such a rank-131

based measure cannot take feature interactions into account and might suffer from132

stochastic effects [22]. Conventionally, feature selection techniques can be grouped into133

two categories: filter methods, i.e. variable ranking techniques; and wrapper methods,134

which involve classifiers and become an NP-hard problem [20]. One of the most popular135

algorithms for feature selection is minimum redundancy maximum relevance based on136

mutual information [23], which is initially designed as a filter and then developed to137

be a wrapper as well [12]. Another popular wrapper algorithm that is designed for the138

random forest is provided in an R package Boruta [22], which aims at identifying all139

relevant features rather than an optimal subset and is employed for our analysis.140

An imbalanced distribution of categories might result in unbalanced accuracies141

of classification. This problem also troubled the machine learning community, where142

Ling and Li [24] suggested duplicating small-portion classes and Kubat and Matwin143

[25] tried to downsize large-portion classes. One of the most prevalent ways to cope144
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with imbalanced data is the Synthetic Minority Over-Sampling Technique (SMOTE)145

introduced by Chawla et al. [26], which suggests formulating new samples as randomized146

interpolation of minority class samples. SMOTE is widely used because of its simplicity,147

good performance, and compatibility with any machine learning algorithm [12]. As148

a variation of SMOTE, Adaptive Synthetic Sampling Approach (ADASYN) proposed149

by He et al. [27] puts more weight on minority samples that are harder to learn when150

selecting samples for interpolation.151

2.3. Classification Techniques152

The methods used to derive trip purposes can be divided into two main categories153

[28]: rule-based systems with an accuracy of around 70% [29], which rely predominantly154

on land use and personal information, as well as timing, duration, and sequence of155

activities; and machine learning approaches, which focus more on activities than position156

and show varying accuracy between 70% and 96% depending on different algorithms,157

data set, activity categories, and so on [8]. Although manual trip purpose derivation158

approaches using rules give satisfactory results, there is no standard set of accepted rules159

for mining travel information and thus it relies on researchers’ experiences. Compared to160

conventional deterministic approaches, machine learning algorithms like random forest161

and dynamic Bayesian network models could even rank possible activities, which are162

particularly helpful when activities are ambiguous [5]. Consequently, we opt for machine163

learning approaches that have already been widely applied in this area, such as decision164

trees [30], random forests [28], artificial neural networks [31], and dynamic Bayesian165

network models [5]. Because of the good performance of random forests compared to166

other methods demonstrated by numerous studies [32–34], we employed it as a starting167

point for analysis. An introduction to random forests is given in Section 3.2.168

2.4. Model Performance Assessment169

Model performance can be assessed in various ways, which act as an important170

component of model development. Although reported trip information might suffer171

from memory recall errors or other issues, it is probably the best candidate as ground-172

truth for model validation and assessment [35]. Innovatively, Li et al. [36] used the173

visualized spatial distribution of recognized trip purposes to validate simulation outputs.174

Albeit classification models might be used to generate travel diaries for citizens that are175

not in the training dataset, Montini et al. [32] found that the accuracy of trip purpose176

detection is participant-dependent. As proportion and categories of trip purposes have a177

significant influence on the accuracy of classification [9], high-frequency activities should178

be treated with special care.179

3. Materials and Methods180

3.1. Materials181

In this study, we analyzed GPS trajectories collected from 3689 Swiss participants182

from September 2019 to September 2020 through the “Catch-my-day” GPS tracking183

app, developed by Motion Tag. Considering solely the 91% of all activities that are184

within Switzerland, it amounts to 1.82 million activities above a time threshold of 5185

minutes, of which 43% is labeled by participants. Although a threshold of 5 minutes to186

extract activities from GPS trajectories might ignore some short activities, we use it as a187

simplification for the current study. As a GPS-integrated mobile phone has a position188

error of 1 to 50 meters with a mean of 6.5 meters as shown by Garnett and Stewart [37],189

this is taken into account when conducting spatial clustering of activities. More details190

about the study design and research scope can be found in Molloy et al. [38] and Molloy191

et al. [39].192

Based on the “Mobility and Transport Microcensus 2015” in Switzerland, we193

grouped activities into eight categories as shown in Table 1 with decreasing frequen-194

cies of their occurrence. Following “Home” and “Work”, “Leisure” becomes the most195
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frequent activity and involves sophisticated characteristics that require special atten-196

tion [40,41]. The extracted features are shown in Table 2 and split into three types:197

personal-based, activity-based, and cluster-based information.198

Table 1. Activity categories.

Category Example activities Count Percent

Home Any activities at home 293,129 16.1
Work Any activities at work place 171,329 9.4
Leisure Exercise, travel 123,735 6.8
Shopping Food, clothing 64,071 3.5
Other Transfer 46,413 2.5
Errand Travel for business 40,119 2.2
Assistance Pick up/drop off 28,189 1.5
Education University, school 12,694 0.7
Unlabeled - 1,041,409 57.2
Total - 1,821,088 100

Table 2. Selected features for trip purpose imputation. The categorical features are indicated by *,
while m() and std() denote "mean of" and "standard deviation of", respectively.

Personal-based Activity-based Cluster-based

Household size Duration m(duration)
Employment* Start time std(duration)
Age End time m(start time)
Annual income* Day of week* std(start time)
If a worker* Activities per day m(end time)
If a student* - std(end time)
- - Percentage of weekdays
- - Percentage of activities per cluster
- - Daily occurrence
- - Distance to most often visited cluster

Moreover, POI information from Google Places API as adopted in Ermagun et al. [3]199

was investigated for a pilot study and not considered further due to the large monetary200

cost for large datasets such as the one used here and its comparatively minor benefits.201

Residential zoning information in Switzerland as land use information is also tested202

with very little effect on trip purpose derivation accuracy and hence excluded from the203

final models.204

3.2. Methods205

As a classification method, kNN [42] is also shown to be a good missing value206

imputation technique [12,19]. Here we give a short introduction to the kNN algorithm.207

Given a training set T = {U, V}, where U are predictors and V are labels, we can208

estimate the distance between a test object w0 = {u0, v0} and all training objects w =209

{u, v} ∈ {U, V} to find its k nearest neighbors. Then the label v0 for this test object210

w0 is determined as median of v of its k nearest neighbors in the case of numerical211

variables and mode in the case of categorical variables. The Gower distance computation212

between u0 and u, which is applicable for both categorical and continuous variables,213

can be referred to in Kowarik and Templ [43]. Two issues might affect the performance214

of kNN: one is the choice of k, where a small value of k could be noise sensitive and a215

large value of k might include redundant information; another issue is that an arithmetic216

average might ignore the distance-dependent characteristics, where closer objects have217

higher similarities. These two issues can be addressed by weighting the vote of each218
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nearest neighbor for the final result by their distance, i.e. weighted kNN. Missing219

value imputation for personal-related information in this work is conducted using the R220

package “VIM” developed by Kowarik and Templ [43], which also provides weighted221

kNN methods for better performance.222

To explore implicit information contained in the data, data mining techniques like223

clustering can be employed [28]. Using the hierarchical clustering method introduced by224

Ward Jr [44], we grouped the spatial location of activities for each participant to make use225

of repetitive patterns of human behaviors. Hierarchical clustering optimizes the route226

by which groups are obtained [45], so it might not give the best clustering result for a227

specified number of groups [44]. However, compared to another widely known k-means228

clustering technique, hierarchical clustering allows us to define the distance used for229

grouping rather than defining the number of groups. The basic steps for hierarchical230

clustering are illustrated below: 1) Treat initial x objects as individual clusters; 2) Group231

a pair of the most “similar” clusters; 3) Repeat step 2 until a single cluster containing all232

objects is obtained. To define the “similarity” between two clusters, [45] summarized six233

strategies, from which we selected the “Group-average” strategy as it is more reasonable234

and conservative than its alternatives. In our case, the similarity between two activities235

is defined as the Euclidean distance of their geographical location. Next, we use two236

general activity clusters X and Y to illustrate the estimation of their average distance.237

Assuming there are m and l activities in clusters X and Y, respectively, while i and j238

are single elements of the m and l activities, respectively. We use dij to represent the239

distance between activities i and j, dXY the distance between clusters X and Y. Then we240

can calculate dXY as:241

dXY = Σm
i=1Σl

j=1dij. (1)

Through the process of hierarchical clustering, dXY will increase gradually. There-242

fore, we can define an appropriate threshold to stop the process and get intermediate243

clustering results. In our study, a threshold of 30 meters is chosen to restrict the size of244

each cluster considering the GPS accuracy [37] and results in a radius of fewer than 30245

meters for each cluster.246

A random forest is an ensemble of classification and regression trees [46]. Since247

its introduction, classification and regression tree (CART) has been an important tool248

and received lots of attention in different research fields [42]. A detailed description of249

CART can be found in Song and Ying [47]. As a further development of CART, Breiman250

[21] developed the random forest with detailed proofs and experiments based on prior251

studies.252

The process to develop a forest comprises three stages: 1) Bootstrap N sets of253

samples from and with the same size as training data; 2) Build a decision tree for each254

sample, and at each node choose the best feature from randomly selected M features;255

3) Obtain classification results as the mode of outputs of all trees. As classification256

algorithms are unstable, this bagging (bootstrap aggregating) process could improve the257

accuracy of model results [48]. The ensemble method with sampling techniques has also258

the advantage of more accurate imputation in case of imbalanced distribution across259

different activities [5]. The classification power and generalization errors of random260

forests depend on the accuracy and interdependence of each tree, which can be measured261

by out-of-bag (OOB) errors [49] with two steps: 1) For each tree, predict the data that262

are not in its bootstrap samples (also called OOB data, about 37% of the training set); 2)263

Aggregate predictions and calculate error rates.264

The advantages of the random forest are multifaceted. Firstly, the generalization265

error converges with the increase of the number of trees N, so there is no over-fitting266

problem based on the strong law of large numbers even when N gets large, which allows267

us to select a large N as long as it is computationally efficient. OOB estimates can not only268

reveal generalization errors, variable importance, strength and correlation of trees, but269

also replace a test set as it is as accurate as using a test set of the same size as the training270
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set. Also, OOB estimates are unbiased in contrast to cross-validation with unknown bias.271

In addition, it is robust in the case of unbalanced class population, missing data, and272

noise, which often exists in labels of objects [50]. The significance of forest parameters,273

e.g. N, M, and the maximum final node size of trees, as well as multiple extensions of274

random forests, are well summarized by Biau and Scornet [51]. Khoshgoftaar et al. [52]275

suggested default values of N = 100 and M = log2m + 1 through extensive experiments,276

where m is the number of features. While many efforts have been devoted to improving277

the original random forest approach [51,53], the implementation of random forests in278

this paper is based on a classic R package “randomForest” developed by Liaw and279

Wiener [54].280

In addition to the above-mentioned algorithms, C5.0 [55] - an extension of a well-281

known classification algorithm C4.5 [56], naive Bayes classifier [57], and multivariate282

adaptive regression splines (MARS) [58] are adopted in the framework of ensemble283

filters. In our preliminary analysis, principal component analysis for numerical features284

transformation, support vector machine [59], which is time-consuming (O(N3)) for high285

dimensional data, and ADASYN [60] were tested but excluded from further analysis286

because of limited contributions and high computational requirements. Furthermore,287

Janzen et al. [10] proposed a Multi-Stage Random Forest method as a modification to288

account for the independence of certain trip purposes on specific tour attributes, but this289

complicated method did not improve the model performance in our re-implementation.290

4. Results291

4.1. Initial Analysis using Random Forests292

The performance of random forests can be measured through OOB error rates293

without splitting the training and test dataset and implementing cross-validation, so we294

use only labeled data as training data in this subsection for supervised machine learning.295

Table 3 presents the confusion matrix of labeled versus predicted trip purposes using296

random forests. We set N = 100 and M = log2m + 1 as suggested in Khoshgoftaar et al.297

[52], which approaches the best possible performance in reasonable computation time.298

Several important patterns can be observed in Table 3: Firstly, an overall accuracy299

of 86.7% indicates a satisfactory performance of random forests as already demonstrated300

by numerous studies. Secondly, the accuracy for each activity category decreases approx-301

imately in sync with their occurrence frequency except for “Education”. Two reasons302

might explain this phenomenon: One is that “Home”, “Work”, and “Education” have303

more regular spatial and temporal patterns, so it is easier to correctly classify them;304

Another reason is that the imbalanced distribution of these categories makes random305

forests prefer labeling ambiguous objects as majority classes, as has been discussed306

by del Río et al. [61]. Another interesting phenomenon in Table 3 is that all categories307

except “Leisure” are most likely to be mislabeled as “Leisure”, which involves more308

complicated characteristics that often make it hard to be distinguished from other cate-309

gories. In addition, the difference in precision and accuracy might result from specific310

characteristics of each category: For “Home” and “Leisure”, accuracy is slightly higher311

than precision as it is safer for the model to classify ambiguous objects as these major-312

ity classes, while accuracies of “Errand”, “Other”, and “Assistance” are lower for the313

same reason. To better understand the strengths and possible improvement of random314

forests, we investigate the importance of feature selection, the number of participants315

and duration of the survey, and spatial characteristics of the accuracy.316
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Table 3. Confusion matrix of labeled versus predicted trip purposes using random forests (Overall accuracy: 86.7%).

Labeled
Predicted Home Work Leisure Shopping Errand Other Assistance Education Accuracy Precision

Home 286,000 1,980 2,980 937 720 558 384 20 97.4% 95.8%
Work 3,670 157,000 5,400 1,680 1,490 1,270 362 131 91.8% 92.0%
Leisure 3,430 3,850 105,000 4,670 2,720 2,930 870 190 84.9% 74.0%
Shopping 1,340 1,960 7,770 47,600 2,690 2,130 511 71 74.3% 74.7%
Errand 2,020 2,630 7,700 4,400 27,000 1,960 560 107 58.3% 72.7%
Other 1,090 1,680 6,870 2,710 1,540 25,600 429 192 63.9% 71.7%
Assistance 913 1,110 5,430 1,590 861 1,030 17,200 50 61.1% 84.5%
Education 64 448 737 149 145 267 39 10,800 85.4% 93.4%

An advantage of the random forest is that it provides an inherent measure of317

feature importance using Gini impurity as shown in Fig. 1, which provides an important318

reference on feature selection. Among the 21 features, the most important six features319

are more useful in classification, whereas the personal-based attributes are less relevant:320

except for “Age”, all personal information belongs to the least relevant 7 features. To321

assess the importance of three sets of features grouped in Table 2, we conduct three322

additional experiments by leaving one set of features out and present the results in Fig.323

2. When leaving all the personal information unused, the overall accuracy decreased324

around 0.9%. Although the Boruta method [22] shows that all features are relevant,325

which indicates a good result of our preliminary feature selection, we omit the personal326

information from further analysis for the following reasons: This could indicate the327

strength and applicability of our method even when no personal information is available,328

i.e., we can undertake trip information enrichment at high accuracy using only GPS329

trajectories; The inclusion of socio-demographic data might lead to overfitting of models330

to current participants and limit the applicability of models on GPS trajectories of other331

users. While the elimination of activity information gives similar results, the removal of332

cluster-based information leads to a dramatic decrease in model performance, which333

strongly suggests the effectiveness of our usage of hierarchical clustering algorithms.334



Version August 11, 2021 submitted to ISPRS Int. J. Geo-Inf. 9 of 15

Figure 1. Feature importance in trip purpose imputation measured with mean decrease in Gini in
random forests.

Figure 2. The model performance for each activity categories and the overall acuracy in four exper-
iments, where we use all features or leave one set of features unused to measure the significance
of each set of features.
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Figure 3 shows the spatial distribution of labeled activities and accuracy rate using335

grids with an area of 4 km2 in Switzerland. As these two fields have a small correlation336

coefficient of 0.23, we cannot conclude that higher spatial activity density, which normally337

means an urban area, will result in a higher accuracy rate. However, the five big cities in338

Switzerland with higher activity density seem to correspond to a more homogeneous339

accuracy rate. We can also observe that low activity density areas show large fluctuations340

in the accuracy rate.341

(a) (b)

Figure 3. The spatial distribution of the number of labeled activities (a) and accuracy rate (b) using grids with an area of 4
km2 in Switzerland. The exponential scale in (a) is used to account for the unevenly distributed activities.

To investigate the dependence of classification performance on the number of partic-342

ipants and the duration of the survey, we extract five groups of participants with different343

duration of the survey - from 60 days to 300 days - during which all activities are labeled344

as shown in Fig. 4. Several interesting patterns can be observed and could provide345

a reference when comparing results in existing literature with different datasets and346

designing similar research: Longer survey duration leads to higher accuracy, whereas347

increasing the number of participants deteriorates the accuracy due to more heteroge-348

neous data; When there are only 8 participants, the model performance undergoes some349

fluctuations at a short survey duration; Moreover, there seems to be an upper bound350

at around 90%. Further research is required to determine whether this upper bound351

is due to stochastic human behaviors, model ability, incomplete information, or class352

noise. In the next subsection, we focus on class noise, which has not been discussed in353

the existing transport literature, due to the smaller datasets available in this research354

field. It is, however, an essential consideration when dealing with large data sets like355

ours. We also propose a new criterion in exploring additional features and improving356

model performance in the next subsection.357
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Figure 4. The impact of the number of participants and the duration of the survey on model
performance.

4.2. Ensemble Filter with Multiple Classification Algorithms358

A large data set is more vulnerable to class noise than smaller ones because of the359

heavier and longer survey response burden of participants. It is a challenging topic that360

has not been considered in the context of trip purpose imputation. Although it has been361

intensively studied in the machine learning field [13,15,62], no perfect solution exists362

due to a lack of validation information from real data. For our research, we investigate a363

very popular solution – the ensemble filter - proposed by Brodley and Friedl [15]. The364

main idea behind the ensemble filter is to identify mislabeled instances that cannot be365

correctly classified by a set of classifiers. We employ four classifiers with satisfactory366

performance – random forests, C5.0, Naive Bayes classifiers, and MARS – based on a367

preliminary test on a pool of algorithms. In this case, we use 10-fold cross-validation to368

assess model performance. For cross-validation, we also split training and test datasets369

based on participants, i.e. we test the model performance across participants.370

The results are shown in Table 4. For the original labeled data, the random forest371

gives the best results with an overall accuracy rate of 85.8% and is followed by C5.0 with372

84.7%. Naive Bayes classifiers have the lowest accuracy of 57.2%, which is still higher373

than the suggested threshold (50%) for classifiers in the ensemble filter [16]. Using the374

strategy of conservative consensus filters in ensemble filters, we removed 8.5% of the375

labeled data. The model performance improved significantly on these ensemble filtered376

data - 93.6% with random forests and 93.2% with C5.0. These results are promising377

because of not only the increased accuracy, but also the reduced uncertainties in blindly378

trusting labels recorded by participants. The minority classes benefit more from this379

technique as shown in Fig. 5, where the accuracy of “Errand”, “Other”, and “Assistance”380

increased by 23%, 17%, and 29%, respectively. When the model is applied across381

participants, the accuracy of random forests and C5.0 decreased by about 20% as in382

Table 4, whereas Naive Bayes classifiers and MARS show nearly no deterioration. The383

classification accuracy of random forests (74.8%), which is applied across participants on384

the ensemble filtered data, is an acceptable baseline considering the limited information385

and inherent difficulties of the across-participants classification. The behavior of Naive386

Bayes classifiers and MARS in this example might require further exploration in a future387

study. When one plans to improve the model performance through incorporating more388

features or investigating new algorithms, considering the model performance across389

participants should be an essential part to avoid overfitting to a training dataset, which390

has inherent differences with a test set.391

The results in this paper indicate some directions for future research. The trip392

purpose imputation across participants or across data that are inherently different should393
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still be improved for wider applicability in transport management, where the possibility394

might exist in including other data sources. While the division of activity categories395

is primarily subject to practical applications, its effects on model performance could396

be quantified in further analysis. In addition, the complexity of specific activities like397

“Leisure” can be considered, such as dividing it into several categories.398

Table 4. Classification accuracy of multiple algorithms with ensemble filter and across participants imputation.

Random forest C5.0 Naive Bayes MARS

Original data 85.8% 84.7% 57.2% 66.7%
Ensemble filtered (8.5%) data 93.6% 93.2% 61.8% 73.0%

Original data, across participants imputation 68.0% 65.4% 57.2% 66.6%
Ensemble filtered (8.5%) data, across participants imputation 74.8% 72.3% 62.0% 72.7%

Figure 5. The model performance on the original data and the ensemble filtered data through four
classification algorithms.

5. Discussion and Conclusions399

To summarize, this paper investigated multiple classification algorithms including400

the random forest for trip purpose imputation to enrich GPS trajectories with data401

mining techniques like hierarchical clustering and ensemble filters.402

As a baseline, we achieved an overall accuracy rate of 86.7% for eight activity403

categories using the highly heterogeneous data (3689 participants) with random forests.404

Through feature importance analysis using the inherent measure of the mean decrease405

in Gini of random forests and the Boruta method, we verified that current features are of406

high relevance and the features extracted with hierarchical clustering are crucial in model407

performance. Additional experiments that leave out a set of personal-related features408

reveal the possibility of trip purpose imputation with only GPS trajectories. Thanks409

to the innovative application of hierarchical clustering in extracting relevant features,410

the answer to the first research question becomes obvious: the required data sources411

for a satisfactory model performance are minimized to GPS trajectories. Although412

many researchers managed to achieve better performance by incorporating various413

data sources, we advocate considering limited data availability on a larger scale, where414

collecting personal information along with GPS trajectories is impossible or the quality415

of data sources varies considerably, is vital to generalize our results.416

In this context, it is important to note, this is misleading to compare accuracy rates417

among papers due to the different sample sizes (persons and length of observation418

periods), activity categories, and data sources. To alleviate this circumstance and pro-419
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vide a reference for the design of similar research, we investigated the dependence of420

classification performance on the geographical location, the number of participants, and421

the duration of the survey. Taking advantage of the abundant (780,000) user-labeled422

activities along GPS trajectories, the spatial distribution of the accuracy rate over Switzer-423

land is visualized. This result is meaningful for densely populated regions where better424

transport management is required. We show that the model performance in these re-425

gions undergoes fewer fluctuations and is more reliable. Furthermore, a longer survey426

duration helps to improve performance except for the fluctuations when only limited427

participants are involved over a short period, whereas a larger number of participants428

results in a higher diversity of the data that is detrimental to model performance but429

helps improve representativeness.430

The employment of the ensemble filter improves model performance significantly431

from 85.8% to 93.6% with random forests, particularly for minority classes that have432

lower accuracy due to imbalanced class distribution and complicated characteristics of433

instances. Besides improving accuracy, the ensemble filter is also effective in reducing434

errors caused by mislabeling, to which our dataset is vulnerable due to the large response435

burden imposed on participants.436

Another aspect that has not been studied in the existing literature is the trip purpose437

derivation across participants, where we obtained an accuracy rate of 74.8% using438

random forests. This result is quite promising, as it indicates that we can apply our439

trained model using only GPS trajectories and user labels to other GPS trajectories at440

a much larger scale, without the need to collect additional personal information. As441

the collection of GPS trajectories exclusively involves much less effort and monetary442

costs, the applicability of our imputation scheme could be readily expanded, which is443

significant for transport demand prediction and transport planning at a large scale.444
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