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The osteochondral interface is a fascinating construct
of nature which contributes to the functioning skel-
eton, but also is susceptible to injuries and patholo-
gic changes during arthritic diseases. Healthy osteo-
chondral tissue exists as a functional gradient between
two highly specialized, but very different connect-
ive tissues, bone and articular cartilage. The mechan-
isms which allow these two tissues to coexist in close
proximity, while maintaining key differences in oxy-
gen, vascularization, biophysical properties, transport
mechanisms and regenerative capacity, are still being
explored. Biofabricated models of the OC interface
can play a key role in deciphering these mechanisms.
The same biofabrication tools also have the potential
to transform how we treat the osteochondral (OC)
unit following injury or disease.

This special issue on ‘Biofabrication of cartilage,
bone and their interface’ highlights recent advances
in orthopedic applications which harness the power
of bioprintable materials and emerging biofabrica-
tion platforms. The special issue covers new for-
mulations of biomaterials for the engineering of
both chondrogeneic and osteogenic tissues, and high-
lights approaches to promote distinct tissue types.
As an example, Kilian et al presents a coaxial extru-
sion approach where a chondrogenic growth factor
(TGF-33) and an osteogenic growth factor (BMP-2)
are ensconced in a Laponite core which is surroun-
ded by a hydrogel shell of alginate-methylcellulose
[1]. The local delivery of growth factors from the core
was found to stimulate cell differentiation in the shell.
In a similar vein, Terpstra et al modulated the degree
of blood vessel invasion into bioprinted constructs by
incorporating either proangiogenic factors (collagen
1 fibers) or anti-angiogenic factors (decellularized
cartilage microfibers) into their fibrin-based bioink
[2]. These materials were explored in an osteochond-
ral model [1] and a meniscus model [2] respectively,
the latter characterized by both vascularized fibrous
cartilage and avascular hyaline cartilage regions.

© 2023 The Author(s). Published by IOP Publishing Ltd

Bottom-up approaches for biofabrication of tis-
sues have gained considerable attention of late. In par-
ticular, microgel-based granular materials can help
to overcome the nutrient transport challenges asso-
ciated with growing large tissues. The enhanced
mass transport offered by the void compartment of
granular materials was shown to be important by
Flegeau et al, who demonstrated both the printabil-
ity and biocompatibility of tyramine-functionalized
hyaluronan microgels and chondrocytes [3]. In a
related approach, Cui et al have used microgels con-
taining umbilical cord-derived mesenchymal stromal
cells (MSCs) to assemble osteochondral tissues [4].
Chondrogenic microspheres containing heparin and
osteogenic microspheres containing strontium nano-
particles were pressed into a polycaprolactone (PCL)
printed scaffold to allow formation of the two distinct
tissue layers.

Other contributions highlight the importance of
materials which counteract oxidative stress in order
to successfully treat cartilage defects in vivo. Shi
et al developed hyaluronan hydrogels with interest-
ing reactive oxygen species scavenging properties [5].
Their system works by incorporating a dynamic boro-
nate ester bond which could scavenge H,0O,. This
reversible bond was also thought to contribute to the
favorable rheological properties for extrusion print-
ing and injectability. Galarraga et al, on the other
hand, used norbornene-modified hyaluronan gels of
varying stiffness to understand how the properties
of the cell carrier regulate cartilage development and
maturation in vitro [6]. They found that initially
softer hydrogels (2 kPa) significantly enhanced car-
tilage formation by MSCs compared to stiffer gels.
They also demonstrated that the soft hydrogels could
be reinforced by meshes produced by melt elec-
trowriting. Wang et al also considered the challenge
of engineering mechanical functional cartilage, using
3D printed poly(lactide-co-e-caprolactone) to rein-
force highly porous alginate scaffolds, leading to the
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development of highly elastic implants with bulk
mechanical properties comparable to the native tissue
[7]. Furthermore, they observed that functionaliza-
tion with a sulfated glycosaminoglycan mimic sup-
ported the sustained release of TGF-33, potentially
enabling their use as ‘off-the-shelf” implants for joint
regeneration.

Emerging biofabrication strategies can also facil-
itate the engineering of heterogenous constructs that
mimic the transition from articular cartilage to bone
that characterizes the OC unit. Recognizing this,
Beeren et al explored if the introduction of peptides
on the surface of printed polymer scaffolds could
enhance the chondrogenic or osteogenic differenti-
ation of human MSCs [8]. Using a novel extrusion-
based additive manufacturing (AM) technology, they
were able to generate a gradient of functional groups
across the scaffold. As opposed to the spatial presenta-
tion of peptides or growth factors for engineering the
OC unit, Celik et al explored the 3D bioprinting of
microRNA (miR)-transfected adipose-derived stem
cell (ADSC) spheroids to produce interfacial tissues
[9]. The delivery of miR-148b was found to sup-
port osteogenic differentiation, while the codelivery
of miR-140 and miR-21 supported chondrogenesis.
Using aspiration-assisted bioprinting, these spheroids
were then be used to engineer a dual-layer construct
with distinct osteogenic and chondrogenic zones.

The regeneration of large musculoskeletal defects
remains a significant challenge. Many scaffolds that
possess appropriate bioactivity lack the mechanical
properties for use in large, load-bearing defects.
Dewey et al assessed the capacity of mineralized colla-
gen scaffolds reinforced by 3D printed PCL meshes to
support healing in a critically sized porcine craniofa-
cial bone defect model [10]. While successful heal-
ing was limited, the results point to areas for targeted
improvement in large bone defect healing. Preserving
bone structure is also important in the regeneration
of OC defects. Zlotnick et al fabricated thick-shelled
microcapsules containing the pro-osteogenic agents,
and delivered these microcapsules in a large animal
model of osteochondral injury [11]. These micro-
capsules were designed to rupture under mechanical
load, enabling the controlled release of their thera-
peutic cargo at the defect site, which was found to pre-
serve local bone structure within the OC unit.

Also in the field of bone regeneration, Touya et al
assessed the potential of laser-assisted bioprinting in
a critically sized murine calvaria bone defect model
[12]. While a collagen-mineral ink was found to sup-
port early osteogenesis in vitro, complete healing was
not observed in vivo, pointing to the need for further
ink improvements. Kang et al sought to address the
challenge of improving the angiogenic and osteogenic
potential of their 3D printed scaffolds through func-
tionalization with ADSC derived exosomes [13]. The
inclusion of such exosomes was found to improve cell
attachment and proliferation on the scaffolds in vitro,
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as well as enhancing vascular invasion and bone form-
ation in vivo. Alternative materials might also help
in the development of novel bone graft substitutes.
Porous magnesium (Mg) is a promising biodegrad-
able scaffold material for treating critical-size bone
defects, but can be challenging to process using tradi-
tional AM technologies. Xue ef al demonstrated that
3D weaving of Mg wires represents a high through-
put manufacturing method, enabling the production
of scaffolds that can be optimized for stiffness, poros-
ity and topology [14].

A recent linguistic analysis identified the biofab-
rication of osteochondral tissues as a growing field of
research in the field of orthopedics [15]. We hope that
this special issue highlights many of the important
advances that have been made in the field of biofabric-
ation that are enabling the engineering of OC-like tis-
sues. This series of papers also highlights many of the
outstanding challenges in the field, which will hope-
fully stimulate exciting new research projects in the
years ahead.
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