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Surrogate models have shown to be an extremely efficient aid in solving engineering problems that
require repeated evaluations of an expensive computational model. They are built by sparsely evaluating
the costly original model and have provided a way to solve otherwise intractable problems. A crucial
aspect in surrogate modelling is the assumption of smoothness and regularity of the model to approxi-
mate. This assumption is however not always met in reality. For instance in civil or mechanical engineer-
ing, some models may present discontinuities or non-smoothness e.g., in case of instability patterns such
as buckling or snap-through. Building a single surrogate model capable of accounting for these funda-
mentally different behaviours or discontinuities is not an easy task. In this paper, we propose a three-
stage approach for the approximation of non-smooth functions which combines clustering, classification
and regression. The idea is to split the space following the localized behaviors or regimes of the system
and build local surrogates that are eventually assembled. A sequence of well-known machine learning
techniques are used: Dirichlet process mixtures models (DPMM), support vector machines and
Gaussian process modelling. The approach is tested and validated on two analytical functions and a finite
element model of a tensile membrane structure.

� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Computational models, which allow scientists and engineers to
accurately simulate complex systems and predict their behaviour
in various contexts, are nowadays a key tool present in virtually
all fields of applied sciences and engineering. Cast as computer
experiments, they are able to predict with high fidelity the beha-
viour of the studied system in replacement of, or as a complement
to laboratory experiments. The downside of such high-fidelity
models is however that they are computationally demanding. This
is even more relevant in the context of uncertainty quantification
or design optimization, where the models need to be evaluated
multiple times.

Surrogate models have become paramount in such fields as
they allow for an efficient solution of otherwise computationally
intractable problems. They are inexpensive proxies that can be
used in lieu of expensive computational models. Examples of such
surrogates include Gaussian process models also known as Kriging
[1,2], polynomial chaos expansions [3,4], support vector machines
[5], polynomial response surfaces [6], etc. These methods have
been applied in various problems pertaining to uncertainty quan-
tification or design optimization. The use of surrogate models in
such fields are now mature as shown by the recent reviews in reli-
ability analysis [7,8], Bayesian inversion [9] or design optimization
[10,11].

In most of these applications, it is assumed that the computa-
tional models to approximate feature some accommodating prop-
erties such as smoothness, differentiability or stationarity. Yet
there exists cases when these assumptions do not hold. In mechan-
ical engineering, this may happen for instance when solving non-
linear problems involving instability such as snap-through or
bifurcations in the solution path, e.g., crash simulation. In compu-
tational fluid dynamics, simulations of compressive flows that
involve shocks also belong to this category. In other cases, the
underlying phenomenon may present different localized features
or extreme regime variations which are strongly dependent on
the inputs.

Various methods have been developed in the field of uncer-
tainty quantification to tackle such problems. The first class of
methods borrows from digital signal processing and image detec-
tion to identify discontinuities or strong gradients of the function
to approximate using techniques such as polynomial annihilation
[12,13]. Such approaches however rely on uniformly sampled grids
and are often limited to two-dimensional problems. [14] proposed
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a technique combining Bayesian inference and polynomial chaos
expansions that does not require using a regular grid and hence
allowing for a reduced number of samples. However, their
approach was also developed for two-dimensional problems and
the authors did not investigate how well it scales with
dimensionality.

Another class of methods relies on Gaussian process (GP)
regression where the irregularities on the model to approximate
are tackled by introducing non-stationary covariance functions or
kernels. Indeed, such kernels allow one to capture heterogeneous
variations or heteroscedastic noise while keeping the computa-
tional budget low. The direct approach to build such kernels is to
consider the noise variance, signal variance and/or characteristic
length scale to be input-dependent, such as in [15]. [16] proposed
an approach where all three parameters are considered latent vari-
ables and inferred as hyper-parameters of the GP. Such an
approach has shown increased efficiency compared to vanilla GP
but it also comes with an increased inference cost due to the fact
that there are no more closed-form solution and the hyperparam-
eters need to be calibrated using sampling based techniques (See
[17]). Furthermore, they do not allow to tackle problems with
discontinuities.

A more sensible approach based on non-stationary GP consists
in splitting the input space using for instance treed Gaussian pro-
cesses or a mixture of experts [18,17,19]. Similarly, it is also possi-
ble to define non-stationary Gaussian process models by
partitioning the training data into smaller subsets using clustering
techniques, such as in [20,21], where K-means and nearest-
neighbors clustering are used. Such approaches also have the
advantage of offering faster training and testing of the model as
the experimental design is divided into smaller and more compu-
tationally manageable subsets. Finally, another popular way to
define non-stationary kernels is by warping the input, and some-
times the output, space. By doing so, one may find a latent space
where the function to approximate is smoother. Examples of such
techniques include warped GP [22] or manifold GP regression
[23,24].

In this work, we will focus on multi-stage techniques where the
problem is solved by using a sequence of well-known machine
learning techniques. More specifically, we consider the class of
methods based on the following three-stage approach: clustering,
classification and regression [25,26]. [27,28] were the first to pro-
pose decomposing the problem of identifying multiple failure
domains of mechanical systems using support vector machines.
However, they do not include the regression step as they are only
concerned with an optimization problem where only the state of a
sample is of interest (i.e., whether it belongs to the failure domain
or not). [29,30] extended the approach to the prediction of the
model responses by building local Kriging surrogates in each iden-
tified domain. However in all these approaches, it was assumed
that the clusters were identified either using expert knowledge
or by only considering the model responses which span different
ranges. [31] proposed identifying the clusters by detecting jumps
in the model responses for relatively close samples. However, this
technique works only in low-dimensional problems and when the
response of different clusters are disjoint. This is a strong limitation
and was to some extent overcome by using joint clustering of both
the inputs and outputs in [32]. In that work, they use K-means
clustering to identify the clusters and multi-layer perceptrons for
classification and regression tasks. The number of clusters is
defined here using the elbow approach, which is a visual technique
requiring user interaction. Furthermore it is not robust w.r.t. the
initialization of the K-means algorithm and noise in the data. More
generally, an important limitation in the contributions presented
above is that the three steps are disconnected and the prediction
2

uncertainty in one step is not accounted for in the subsequent
ones.

In this paper, we propose an approach that aims at solving these
two limitations. First, to automatically identify the number of clus-
ters in a robust way, we consider a non-parametric Bayesian tech-
nique, namely Dirichlet process mixture models (DPMM) [33–35].
The interest in using DPMM are threefold: i. they automatically
estimate the optimal number of clusters according to patterns
identified in the data, ii. they offer a probabilistic framework that
allows one to propagate the epistemic uncertainty related to this
clustering task to both the subsequent classification and regression
steps, and iii. they are flexible enough and their complexity can
grow as new data is observed (for instance in an active learning
scheme, where new regimes of the model could be identified).
The last two points are a direct consequence of the non-
parametric Bayesian nature of DPMM, as described in Section 3.1.
Furthermore, many applications in the literature make use of these
features (see for instance [36–38]).

In the remainder of this paper, we first present the three-stage
methodology and how the steps are connected in Section 2. In Sec-
tion 3, we present in details the three methods used in each step,
namely, Dirichlet process mixture models, support vector machi-
nes for classification and Gaussian process modelling. We finally
illustrate the proposed approach in Section 4 using two analytical
examples and an engineering application related to the design of a
tensile membrane structure [39,40].

2. Problem set-up and three-stage approach

Let us consider a set of N data points X;Yð Þ where
X ¼ x ið Þ 2 X � RM ; i ¼ 1; . . .N

� �
is a set of M-dimensional inputs

and Y are corresponding scalar outputs such that
Y ¼ y ið Þ ¼ M x ið Þ� � 2 R; i ¼ 1 . . .N

� �
. The model M is assumed

black-box, meaning that it is only accessible through an evaluation
over a finite set of input points. We further assume in this setting
that the model is non-smooth, i.e., it exhibits sharp localized fea-
tures and, most noticeably, discontinuities. As the model can only
be evaluated on a finite set of samples, discontinuities in the cur-
rent work is assumed when the model presents extreme variations
in the outputs for seemingly close input points.

The goal of the analysis is to learn the input–output relationship
of the modelM through the limited set of training dataD ¼ X;Yð Þ,
also known as experimental design. This ultimately leads to a
cheaper-to-evaluate surrogate model that can be used to predict
the response of the model for any new point. Generally, this type
of problems is tackled using regression techniques where a class
of parameterized models are assumed and then their hyper-
parameters are calibrated so as to minimize a generalization error.
Such models would however fail when there are discontinuities or
heterogeneous variations associated to limited observations.

In this work, we consider tackling this problem by splitting the
space along the discontinuities and building local regression mod-
els in each of the obtained subdomains. To achieve this, we con-
sider a three-stage framework which is illustrated in Fig. 1 and
summarized as follows:

1. Clustering: The first learning step aims at identifying patterns
in the data that hint to subdomains separated by discontinu-
ities. To achieve this, we cluster the joint input–output data
points. This is an unsupervised learning problem for which
numerous techniques have been developed [41]. K-means clus-
tering [42] is probably the most common approach thanks to its
simplicity. However, it assumes that the number of clusters is
known and further fails when the clusters are of disproportion-
ate sizes. Another approach that partially overcomes difficulties



Fig. 1. Illustration of the three-stage approach.
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related to K-means clustering are Gaussian mixture models
which offer a probabilistic framework for clustering [43]. They
hence allow for a more nuanced clustering of the data by pro-
viding soft cluster memberships, i.e., each data point is assigned
with a probability of belonging to a given cluster. This feature
allows one to solve more complex problems, e.g., when the clus-
ters are partially overlapping. However, similarly to K-means,
they assume that the number of clusters is known in advance.
In general, trial-and-errors approaches are used to define the
optimal number of clusters for such problems, which is not
optimal.
We therefore consider in this work a more holistic approach
where the number of clusters is also inferred from the data
using a non-parametric Bayesian model, more specifically
Dirichlet process mixture models [35] as described in Sec-
tion 3.1.
At the end of this step, the experimental design is split into K
subsets Ck; k ¼ 1; . . . ;K.

2. Classification: Assuming that the data have been clustered, we
can now place labels on them and turn to supervised learning.
More specifically, let us assume K clusters are identified in the
previous step. We thus define the labels ‘1; . . . ; ‘Kf g and the

labelled training data X�L where each couple x ið Þ; ‘ ið Þ
� �

is

defined such that ‘ ið Þ ¼ ‘k if x ið Þ; y ið Þ� � 2 Ck. The goal of this step
is then to partition the input space such that any new sample
can be mapped to at least one of the clusters Ck. This will ulti-
mately allow us to select the appropriate local regression model
(s) to evaluate the new point.
This task is carried out in this work by using support vector
machines (SVM) for binary and multi-class classification [5].
The probabilistic framework is introduced by considering Platt’s
approach to computing posterior probabilities given a binary
SVM prediction [44]. For multi-class problems, binary classifiers
are appropriately combined to provide both class membership
and posterior probabilities.

3. Regression: In this final step, Gaussian process (GP) models [2]
are employed to make the final prediction. We further investi-
gate the use of three different approaches for combining the
various GP models built in this stage. In the first two

approaches, local surrogate models cMk are built for each of
the K identified clusters. When it comes to prediction, the
recombination is made as follows:
3

� Hard recombination: In this approach, the surrogate model
which corresponds to the cluster predicted by the classifier
is solely used to make the final prediction, i.e.,

cM xð Þ ¼
XK
k¼1

1Ck
xð ÞcMk xð Þ; ð1Þ

where 1Ck
xð Þ is equal to 1 if x is predicted to belong to the

cluster Ck, i.e., MSVC xð Þ ¼ ‘k and 0 otherwise;
� Soft recombination: In this approach, the prediction for each

point is obtained as a weighted combination of all the local
surrogate models, i.e.,

cM xð Þ ¼
XK
k¼1

wk xð ÞcMk xð Þ; ð2Þ

where the weight wk xð Þ 2 0; 1½ � with
PK

k¼1wk xð Þ ¼ 1 may be
related to the actual probability that the point x belongs to
the cluster Ck as defined by the classifier.

� Categorical recombination: Contrary to the previous two
approaches, a single Gaussian process model is built here.
This is achieved by using an additional variable which is a
categorical parameter indicating which cluster a given point
belongs to, i.e., the training set is the couple X;Lf g �Y

where L ¼ ‘ ið Þ; i ¼ 1; . . . ;N
n o

are the labels of the training

set identified in the clustering stage. The surrogate model
is therefore built on a space of dimension

M þ 1 : cM xð Þ ¼ cMcat ex ¼ x; b‘ xð Þ
� �� �

, where the categorical

variable is given by the SVC prediction, i.e., b‘ xð Þ ¼ MSVC xð Þ.

The following section describes in details each of the ingredi-
ents introduced in the proposed framework.

3. Description of the components of the proposed method

3.1. Clustering using Dirichlet process mixture models

3.1.1. Gaussian mixture models
Let us now consider the set of available data

W ¼ w ið Þ; i ¼ 1; . . . ;N
� �

, where w ið Þ ¼ x ið Þ; y ið Þ� �
is a vector gather-

ing both inputs and outputs, and let us assume that they are asso-
ciated to some latent variables z. In a clustering set-up, say using a



Fig. 2. Illustration of a Dirichlet process: G0 is the base distribution from which the
atoms g	

k are sampled, pk are the corresponding weights and G a realization of the
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Gaussian mixture, the latent variables would be z ¼ p;l;R
� �

where p are mixing coefficients and l and R are the mean and
covariance of multivariate normal random variables. The goal is
then to find the posterior distribution p zjwð Þ of the latent variables
given the data and using Bayes rules, i.e.,

p zjwð Þ ¼ p w; zð Þ
p wð Þ ¼ p wjzð Þp zð Þ

p wð Þ / p wjzð Þp zð Þ; ð3Þ

where p wjzð Þ is the data likelihood, p zð Þ ¼ p p;l;Rð Þ is the prior over
the latent variables and p wð Þ is the evidence.

The prior can be fully factorized into p pð Þp lð Þp Rð Þ since the
three parameters are considered mutually independent. The prior
on the mixing coefficients p pð Þ is usually chosen as a Dirichlet dis-
tribution with parameters a=K where a is a positive scaling param-
eter and K is the predefined number of clusters:

p p1; . . . ;pK jað Þ ¼ Dirichlet a=K; . . . ;a=Kð Þ

¼ C að Þ
C a=Kð ÞK

YK
k¼1

pa=K�1
k ; ð4Þ

where C is the Gamma function.
The Dirichlet distribution is chosen precisely because it is the

conjugate distribution to the multinomial distribution, which is
used for clusters membership assignment, later denoted by c. The
generative model for data derived from a Gaussian mixture model
can therefore be cast as

pk � Dirichlet a=K; . . . ;a=Kð Þ; k ¼ 1; . . . ;Kf g;
c ið Þ � Multinomial p1; . . . ;pKð Þ; i ¼ 1; . . . ;Nf g;

w ið Þj c ið Þ ¼ k
� � � N lk;Rk

� �
; i ¼ 1; . . . ;Nf g;

ð5Þ

where lk and Rk are respectively the mean and covariance param-
eters of each local Gaussian distribution in the mixture.

It is generally assumed in such a model that K � N, which in
other words means that samples from all clusters have been
observed. However, there may exist cases when K is in the same
order or even larger than N. An alternative view to such cases is
that at any moment all clusters have not yet been observed and
drawing more data from the generative model will reveal new
clusters. This naturally leads to extending this finite mixture model
into an infinite one using non-parametric Bayesian models whose
complexity can grow as more data are observed.

This is precisely what a Dirichlet process mixture model does. It
generalizes the generative model described in Eq. (5) by assuming
an infinite number of clusters, i.e., that K ! 1. This corresponds to
choosing a Dirichlet process [33] as prior for the mixing coeffi-
cients, as explained in the sequel.

3.1.2. Dirichlet process
A Dirichlet process (DP) is a distribution over distributions

defined by a base distribution G0 and a positive scaling parameter
a. The output from a Dirichlet process is therefore a discrete distri-
bution. It is however not possible to directly draw from G consid-
ering the formal definition of a Dirichlet process. Other
alternative views such as the Chinese restaurant process [45], the
Pólya urn scheme [46] or the stick-breaking representation [47]
have been proposed instead.

In this work, we consider the latter approach. More specifically,
let us consider an infinite collection of two random variables
Vk � Beta 1;að Þ and g	

k � G0 with k ¼ 1;2; . . .f g. The stick-breaking
representation of G is then defined as follows:

pk ¼ vk

Yk�1

j¼1

1� v j
� �

;

G ¼
X1
k¼1

pk vð Þdg	
k
gkð Þ;

ð6Þ
4

where d is the Kronecker symbol. This representation is illustrated
in Fig. 2 where the g	

k are location parameters also known as atoms
and pk are corresponding weights.

In a DP, there is a countably infinite number of atoms and the
weights sum up to 1, making G a discrete distribution. This infinite
set of atoms lends itself to modelling priors in infinite mixture
models. More specifically, the DP is used in Dirichlet process mix-
ture models as a non-parametric prior in a hierarchical Bayesian
model specified as follows [34,48]:

Gj a;G0f g � DP a;G0ð Þ;
g ið ÞjG � G;

W ið Þjg ið Þ � p w ið Þjg ið Þ� �
:

ð7Þ

Given a dataset W, each data point w ið Þ is assumed to be generated
by first drawing a component label c ið Þ ¼ 1;2; . . .f g with probability
distribution p c ið Þ ¼ kjV� � ¼ pk vð Þ and then drawing w ið Þ from
p w ið Þjgk

� �
. In this work, p is chosen as a distribution from the expo-

nential family for which G0 is a conjugate prior, which turns out to
also belong to the exponential family and hence making inference
easier.

3.1.3. Posterior estimation
The latent variables in this setting are therefore z ¼ v ;g; cf g.

The goal of the analysis is then to find the posterior distribution
of these latent variables given the observed data W, which is
denoted by p zjW; hð Þ. There is no closed-form solution to this prob-
lem and typical solution schemes rely on Markov Chain Monte
Carlo (MCMC). MCMC algorithms allow one to obtain an approxi-
mation of the posterior using Markov chains whose stationary dis-
tribution is the sought posterior. The usual approach in Dirichlet
process mixture models is Gibbs sampling which is particularly
suited to this task as one can have access to the conditional distri-
butions of the latent variables analytically [49,50]. However, the
difficulty with MCMC algorithms is that they are expensive, as they
require a large number of samples, often generated sequentially,
and their convergence is difficult to monitor.

An alternative approach to circumvent these issues is varia-
tional inference, where the estimation of the posterior is replaced
by an optimization problem [51]. More specifically, the intractable
posterior is replaced by a parametric family of variation distribu-
tions denoted here by qm zjmð Þ. In this paper, we consider the
approach proposed by [48] which relies on the mean-field approx-
imation, i.e., the variational distribution is fully factorized (all the
latent variables are mutually independent). The optimization prob-
DP.
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lem then consists in finding within the selected family of varia-
tional distributions the values of the hyperparameters m that will
minimize the Kullback-Liebler (KL) divergence between the true
posterior and its approximation. This quantity reads

KL qm zjmð Þjjp zjW; hð Þð Þ

¼
Z 1

�1
qm zjmð Þ log qm zjmð Þ

p zjW; hð Þ
� 	

dz

¼ Eqm log qm zjmð Þ½ � � Eqm p z;Wjhð Þ½ � þ logp wjhð Þ:

ð8Þ

By noting that the divergence is always positive (or using Jensen’s
inequality), it can be shown that minimizing Eq. (8) is equivalent
to maximizing a lower bound of the marginal log likelihood, also
referred to as ELBO and denoted by

logp wjhð Þ P Eqm p z;Wjhð Þ½ � � Eqm log qm zjmð Þ½ �: ð9Þ
By appropriately choosing the family of variational distributions for
each latent variable, it is possible to make the computation of the
ELBO tractable. In the approach proposed by [48] considered here,
the factorized variational distribution is cast as

qm v ;g; zjmð Þ ¼
YT�1

t¼1

qct v tð Þ
YT
t¼1

qst gtð Þ
YN
k¼1

qUk
ckð Þ; ð10Þ

where qct v tð Þ are Beta distributions, qst gtð Þ are exponential family
distributions and qUk

ckð Þ are multinomial distributions. In this equa-
tion, the infinite samples is truncated to T terms by setting
q vT ¼ 1ð Þ ¼ 1, which implies that pt vð Þ ¼ 0 for t P T. The solution
to this problem is eventually obtained using a coordinate ascent
algorithm for which the incremental updates can be computed ana-
lytically [52]. The reader is referred to [48] for further details.

3.2. Classification using support vector machines

3.2.1. Binary classification
Support vector machines are a popular supervised learning

algorithm developed by [5]. They were developed for binary classi-
fication and were later extended to account for multiple classes.
Let us first consider the binary case (i.e., assuming only two clus-
ters were identified) and denote the dataset by

x ið Þ; ‘ ið Þ
� �

; i ¼ 1; . . . ;N
n o

where ‘ ið Þ ¼ �1; 1f g are the labels of the

training points.
Given this training set, the support vector classifier (SVC) pre-

diction for any yet-to-be observed sample reads [53]

MSVC xð Þ ¼
XN
i¼1

ai ‘
ið Þ k x ið Þ; x; h
� �þ b; ð11Þ

where a; bf g are parameters to calibrate. The coefficients ai, some of
which are the so-called support vectors, and the offset parameter b
are obtained by solving a quadratic optimization problem

min
a

1
2a

T eKYYT
� �

aþ hTa

subject to : aTY ¼ 0; ai P 0; i ¼ 1; . . . ;Nf g;
ð12Þ

where h ¼ �1; . . . ;�1f g is a column vector of size N andeK ¼ K þ 1=CIN with C > 0 being a penalty term. The matrix K is
the so-called Gram matrix built by evaluating the parameterized
kernel function on pairs of points of the training data set, such that
Kij ¼ k x ið Þ; x jð Þ; h

� �
; i; j 2 1; . . . ;Nf g. Multiple kernels have been used

in SVM. In this work, we consider the Gaussian kernel defined by

k x ið Þ; x jð Þ; h
� � ¼YM

l¼1

exp �1
2

x ið Þ
l � x jð Þ

l

h2l

 !2
24 35: ð13Þ
5

The hyperparameters of this model are the penalty term C
which controls the penalty incurred for misclassifying a training
point and the kernel parameter h which controls, among others,
the smoothness of the separating hyperplane. They are both esti-
mated in this work by minimizing the span estimate of the
leave-one-out error [54,55] using the covariance-matrix adapta-
tion evolution scheme (CMA-ES) (See [56–58] for details).

3.2.2. Extension to multi-class classification
Let us now consider the case when the classification task aims

at categorizing data with a set of K > 2 labels, where each label
is defined as ‘ ið Þ ¼ ‘k if the original training pair x ið Þ; y ið Þ� �

belongs
to the cluster Ck.

The most popular approach to tackle this multi-class problem is
to reduce it to a series of binary classification problems that can be
solved using a standard SVM algorithm. The two most popular
approaches are the one-against-all and the one-vs-one decomposi-
tion schemes [59,60]. In the former, one binary problem is derived
for each class k by assigning one label, say the positive one, to all
samples such that ‘ ið Þ ¼ ‘k and the negative label to all the other
samples. In the one-vs-one approach, binary classifiers considering
all pairs of labels and ignoring all other samples are built. This
leads to a total of K K � 1ð Þ=2 classifiers, which is larger than the
K classifiers required by the one-against-all approach. However,
such classifiers are trained on a noticeably smaller subset of the
training samples making the overall procedure computationally
efficient despite the larger number of classifiers to build.

Both approaches can be generalized, or somehow combined,
using concepts of the error correcting output codes (ECOC) [61].
The recombination of the binary classifiers into a final one can be
achieved either by a simple voting system or by considering the
posterior probabilities derived from each classifier. In this work,
we consider the one-vs-one approach with a final voting system
thanks to its simplicity and efficiency. We note that in case of equal
voting between two classes, we heuristically choose the class that
was predicted with the classifier that considered the two classes of
interest.

3.2.3. Posterior probabilities
As mentioned in Section 2, the soft recombination of the final

predictor requires some weights which are proportional to the
probability that the sample belongs to a given class. In case of
SVM, such weights can be derived by computing posterior proba-
bilities derived from the classifier. In practice, this can be achieved
by post-processing the output of the classifier using a sigmoid
function as proposed by [44]:

P ‘ xð Þ ¼ 1jMSVC xð Þ� � ¼ 1
1þ exp AMSVC xð Þ þ B

� � ; ð14Þ

where the coefficients A and B are calibrated by solving a regular-
ized maximum likelihood problem. In this work, we use an efficient
numerical implementation proposed by [62].

There have been many attempts to extend these probabilities to
multi-class problems [59,60,63,64]. Let us denote by

pij ¼ P x 2 Cijx 2 Ci [ Cj
� � ð15Þ

the posterior probability provided by the classifier that discrimi-
nates between the classes Ci (positive) and Cj (negative). Note how-
ever that we are interested in the overall probability of belonging to
a class given all possible classes, i.e. pi ¼ P x 2 Cið Þ. [60] proposed
estimating this probability by combining the partial ones, i.e.,

bpi ¼ 2
k k� 1ð Þ

XK
j–i;j¼1

pij ð16Þ
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This value is however flawed, as it accounts for spurious probabili-
ties defined by classifiers discriminating two classes, none of which
being the true one.

Using Bayes theorem, it can however be noted that

pi ¼ P x 2 Cið Þ ¼ P x 2 Cijx 2 Ci [ Cj
� �

P x 2 Ci [ Cj
� �

; ð17Þ
which, by averaging over all combinations of i and j, leads to the fol-
lowing system of equations:

pi ¼
1

k� 1

XK
j–i;j¼1

pij pi þ pj

� �
; ð18Þ

since P x 2 Ci [ Cj
� � ¼ pi þ pj

� �
. [63] noted that this system of equa-

tions can be written in a matrix form

p ¼ Tp; ð19Þ
where p ¼ p1; . . . ;pKf gT and T is a K � K matrix whose elements
read

Tij ¼
1

k�1 pij if i– j;

1
k�1

XK
j–i;j¼1

pij if i ¼ j:

8>><>>: ð20Þ

[63] then noted that there exists a finite Markov chain whose tran-

sition matrix is T , since
PK

j¼1Tij ¼ 1 and 0 6 Tij 6 1. Further assum-
ing that pij > 0 for any i; j 2 1; . . . ;Kf g implies that Tij > 0, which
ensures that the Markov chain is irreducible and aperiodic. In fine,
these conditions guarantee that Eq. (19) defines a Markov chain
whose stationary distribution exists and is unique.

Taking advantage of the fact that T is a transition kernel and p is
the stationary distribution of the corresponding Markov chain, we
cast Eq. (18) in an iterative scheme

p tþ1ð Þ
i ¼ 1

k� 1

XK
j–i;j¼1

pij p tð Þ
i þ p tð Þ

j

� �
; ð21Þ

where the initial values p 0ð Þ
i ; i ¼ 1; . . .Kf g using the estimate in Eq.

(16) and pij are the partial probabilities obtained by the binary
one-vs-one classifiers using Eq. (14). This chain eventually con-
verges after a few iterations, generally with t < 100 in our exam-
ples, to the posterior probabilities estimates.

3.3. Regression using Kriging

3.3.1. Basics of Kriging
The final ingredient considered in the proposed framework is

Kriging a.k.a. Gaussian process model. It is used here to build local
surrogates in the different regions identified by the clustering step.

A Kriging model assumes that the model to approximate is of
the form [1,2]

M xð Þ ¼
Xp
j¼1

bjf j xð Þ þ Z xð Þ; ð22Þ

where the first summand represents the trend written here in a
polynomial form using p regressors f j with corresponding coeffi-
cients bj. The second summand is a zero-mean stationary covari-
ance process defined by an auto-covariance function
Cov Z xð Þ; Z x0ð Þ½ � ¼ r2R x; x0; hð Þ where r2 is the process variance and
R is an auto-correlation function parameterized by the vector h. In
this work, we consider an anisotropic Matérn 5=2 auto-correlation
function defined by

R x ið Þ; x jð Þ; h
� � ¼YM

l¼1

1þ ffiffiffi
5

p x ið Þ
l
�x jð Þ

l

�� ��
hl

��
þ 5

3

x ið Þ
l
�x jð Þ

l

�� ��
hl

� 	2
!

exp �
ffiffiffi
5

p x ið Þ
l
�x jð Þ

l

�� ��
hl

� 	
:

ð23Þ
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The calibration of the model is performed by estimating the regres-
sion coefficients of the trend and the hyperparameters of the
selected kernel that minimize a generalization error, herein using
a maximum likelihood approach [1,65,66].

Following this step, Kriging assumes that any unknown sample

actually follows a normal distribution N lbM ;r2bM� �
where the

mean is the actual prediction, while the standard deviation informs
about the local accuracy of the prediction. The two quantities
respectively read

lbM xð Þ ¼ f T xð Þbb þ r xð ÞR�1 Y� Fbb� �
;

r2bM xð Þ ¼ br2 1� r xð ÞTR�1r xð Þ þ u xð ÞT FTR�1F
� ��1

u xð Þ
� 	

;
ð24Þ

where

� u xð Þ ¼ FTR�1r xð Þ � f xð Þ has been introduced for convenience,

� bb ¼ FTR�1F
� ��1

FTR�1Y is the generalized least-square estimate

of the regression coefficients b,

� br2 ¼ 1
N Y� Fbb� �T

R�1 Y� Fbb� �
is the estimate of the process

variance,
� F ¼ f j x ið Þ� �

; j ¼ 1; . . . ; p; i ¼ 1; . . . ;n0
� �

is the Vandermonde
matrix,

� R is the correlation matrix with Rij ¼ R x ið Þ; x jð Þ; h
� �

,
� r xð Þ is a vector gathering the correlation between the unknown
sample x and the experimental design points and

� Y ¼ Y ið Þ ¼ M x ið Þ� �
; i ¼ 1; . . . ;n0

� �
is the vector of available

model responses.

To account for the categorical variable, the compound symmetry
kernel defined by [67]

R ‘ ið Þ; ‘ jð Þ
� �

¼ 1 if ‘ ið Þ ¼ ‘ jð Þ;

r if ‘ ið Þ – ‘ jð Þ;

(
ð25Þ

is considered. The parameter r is computed here by embedding this
kernel within a usual auto-correlation function for continuous vari-
ables with a tunable parameter hcat that can be calibrated in the
same setting than the continuous parameters. More precisely, we
consider a Gaussian kernel which then reads:

R ‘ ið Þ; ‘ jð Þ; hcat
� �

¼ exp �1
2

S‘ ið Þ ;‘ jð Þ

hcat

� 	2
 !

; ð26Þ

where S‘ ið Þ ;‘ jð Þ ¼ 0 if ‘ ið Þ ¼ ‘ jð Þ and 1 otherwise. The final auto-
correlation function is obtained by multiplying the M þ 1 one-
dimensional auto-correlation functions i.e.,

R ex ið Þ; exj; eh� �
¼ exp �1

2

XM
k¼1

x ið Þ � x jð Þ

hk

� 	2

� 1
2

S‘ ið Þ ;‘ jð Þ

hcat

� 	2
 !

; ð27Þ

where eh ¼ h; hcatf g and ex ið Þ ¼ x ið Þ; ‘ ið Þ
n o

.

4. Examples

The proposed algorithm is illustrated in this section using two
toy problems with analytical functions (Manhattan function and
snap-through instability) and an engineering problem related to
a tensile membrane structure design. The methodology is applied
to all three examples, but detailed illustrations for each step are
only given for the two-dimensional Manhattan function. To assess
accuracy of the method, we estimate the following two generaliza-
tion errors using a validation set of size Nval ¼ 104:
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� Normalized mean-square error:
NMSE ¼

XNval

i¼1

Yi � bYi

� �2
XNval

i¼1

Yi � �Yð Þ2
; ð28Þ

� Mean absolute error:

MAE ¼ 1
Nval

XNval

i¼1

Yi � bYi

��� ���: ð29Þ

Furthermore, each analysis is repeated 20 times in order to
assess the robustness of the proposed algorithm with respect to
Fig. 3. Example 1 - Three-dimensional representation of the Manhattan function.

Fig. 4. Example 1 - Clustering of the data by DPMM considering tw

7

the statistical uncertainty associated with the experimental
designs.
4.1. Manhattan function

For this first validation example, we consider a two-
dimensional function proposed by [68]. The function consists of
three global regions, one of which is a checkerboard, and reads

M xð Þ ¼
Checkerboard if x1 P 0;
sin 7x1ð Þ 
 sin 4x2ð Þ; if x1 6 0 and x2 6 0;

1þ 2
7 2x1 þ 1ð Þ2 þ 2x2 þ 1ð Þ2; if x1 6 0 and x2 P 0

8><>:
The checkerboard is made of smaller rectangular regions alternating
the values of 0 and 1 as illustrated in Fig. 3.

In this section, we will illustrate each of the three steps of the
proposed algorithm. We first start by showing how the clustering
algorithm splits the data. Fig. 4 shows the clusters identified using
three experimental designs of different sizes. The original model is
built assuming 10 regions where each of the squares in the
checkerboard is considered as one region on its own. The Dirichlet
process mixture model yields 3 to 6 clusters according to the
experimental design. In each of these cases, clustering leads to a
partition of the space such that no discontinuity exists in any sub-
domain. Hence, the prediction is made easier compared to a direct
method. Furthermore, regardless of the experimental design, the
clustering algorithm reduces the checkerboard into two regions,
one with y ¼ 1 and the other with y ¼ 0. This results in discon-
nected subdomains but as we will see in the next paragraph, this
does not affect the overall prediction capability of the algorithm.
In fact, since the observations in each of these subdomains are con-
stant values, the Kriging approximations are equally accurate
whether the checkerboard is divided in eight squares or in two
o repetitions of three experimental designs of increasing sizes.



Fig. 6. Example 1 - Partition of the space in the 4 regions using hard reconstruction.
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non-compact subdomains. The difference then lies in the classifica-
tion part which, as shown in the sequel, is relatively accurate.

Another important observation from the partitions in Fig. 4 is
that the more data points, the more clusters are identified. For
small datasets, the partition is quite sensitive to the data. However,
the partition becomes more stable and robust as the data size is
increased.

Once the clusters are identified (4 different ones in the case of
medium-size experimental design, and in the sequel), the inputs
are labelled accordingly and binary classification is performed on
each pair of classes. Fig. 5 shows the resulting classifiers for one
realization of the experimental design. The blue and orange points
correspond to the positive and negative labels respectively, while
the support vectors are highlighted in green. The thick line is the
classifier, whereas the dashed ones delimit the margin. Finally,
the gray triangles represent the data points that were ignored by
the illustrated classifier. As expected, support vector machines
are appropriately calibrated for the problem at hand. However,
the choice of the Gaussian kernel may not be appropriate for the
classification of C3 against C4 (Fig. 5f) as it produces smooth
boundaries whereas the original boundary results from a checker-
board with sharp edges. This does not substantially affect the
results. However, better prediction could have been obtained by
including the choice of the kernel in the model selection.

The next step is then to recombine those predictions into a final
one. In the hard reconstruction, a vote is carried out and the class
that wins is the final prediction. The resulting partition of the input
space is shown in Fig. 6. Fig. 7 shows the soft reconstruction
approach where each tile represents the probabilities of a given
point to belong to a given class. The resulting classification is in
accordance with the regions defined by the original model except
for the boundaries of the checkerboard which present some slight
deviations. Also, the boundary between the two regions where M
Fig. 5. Example 1 - Pairwise classification of the data (with 4 cluster
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is smooth (i.e., polynomial or sines) is not exactly the line
x1 6 0; x2 ¼ 0f g.
This partition of the input space is eventually used to build local

Kriging surrogates to provide the final prediction. Fig. 8 shows the
prediction made when using a global Kriging model and when
using variants of the methods we propose. As expected, due to
the non-stationarity of the response, vanilla Kriging fails to capture
the local features of the function (Fig. 8a). Indeed, a single hyperpa-
rameter in a stationary kernel cannot produce a function whose
landscape fundamentally changes for different areas of the input
space. It produces instead spurious irregularities in lieu of the
checkerboard. However, the proposed approach can rightly iden-
tify each of the local behaviors and builds accurate regression mod-
els. In this example, the hard reconstruction (Fig. 8c) and and
s identified in Step 1 for the medium-size experimental design).



Fig. 7. Example 1 - Partition of the space in the 4 regions using soft reconstruction.

Fig. 8. Example 1 - Final prediction for the case with 4 clusters identified in Step 1 for the medium-size experimental design.
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Fig. 10. Example 1 - Final prediction using the categorical Kriging approach for a
case when the Kriging calibration fails.

Fig. 11. Illustration of the two-bar truss structure subject to snap-through.

Table 1
Truss snap-through problem: probabilistic input model.

Parameter Distribution Mean C.o.V.

Load (P in N) Gumbel 430 0:20
Young’s modulus (E in GPa) Lognormal 210 0:10

Cross sectional area (A in cm2) Gaussian 10 0:05
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categorical Kriging (Fig. 8d) behave similarly and produce results
close to the original function (See Fig. 3). The checkerboard levels
are accurately represented but the error in the classification are
propagated as the sides of each square in the checkerboard are
not accurately captured. The soft reconstruction (Fig. 8b) reduces
the effect of these errors by providing a smooth transtion between
the adjacent squares of the checkerboard.

To assess the robustness of the method, we repeat the analysis
20 times where each repetition starts with a randomly sampled
Sobol’ sequence [69]. Fig. 9 shows boxplots of the resulting errors
for increasing sizes of the experimental design. For any ED size,
both recombination techniques yield improved NMSE and MAE.
In general, the soft reconstruction also yields better prediction than
the hard one. This is even more clear when considering the MAE
error. Categorical Kriging produces very unstable results. This is
due to the difficulty in fine-tuning the hyperparameters for this
specific example. When calibration is successful, the results are
very similar to the ones obtained with the hard reconstruction.
However in some cases, the calibration fails and models as shown
in Fig. 10 are produced instead.

4.2. Snap-through instability problem

This example is a mechanical problem related to the snap-
through instability of a two-bar truss structure. The structure is
loaded at its tip and responds linearly with small displacements
until a critical point is reached. Past that point, the structure sud-
denly snaps through a new equilibrium point and resumes its
small displacements. In this example, we consider as quantity of
interest the displacementw of the tip of the structure as illustrated
in Fig. 11.

The load at the deformed position can be expressed as a func-
tion of the inclination angles at the initial position and deformed
one, respectively denoted by a0 and a, the bars cross-sectional
areas A and their constitutive material Youngs’s modulus E

P ¼ �2EA tan að Þ cos a0ð Þ � cos að Þð Þ: ð30Þ
The corresponding displacement of the tip of the truss can then be
computed as follows:

w ¼ l0 cos a0ð Þ tan a0ð Þ � tan að Þð Þ: ð31Þ
In this example, we assume that the length of the bar l0 ¼ 5 m and
the initial inclination angle a0 ¼ 10� are deterministic. In contrast,
the load, the Young’s modulus and the cross section areas are
Fig. 9. Example 1: Boxplots of the computed errors fo
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assumed random and characterized by the distributions shown in
Table 1.

We run the analysis using the proposed method and consider-
ing three different experimental design sizes and 20 repetitions.
The resulting errors are summarized as boxplots shown in
r various methods and experimental design sizes.



Fig. 12. Example 2: Boxplots of the computed errors for various methods and experimental design sizes.

Fig. 14. Hypar structure considered in this study.
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Fig. 12. For each repetition, two clusters are obtained, reflecting the
presence or not of snap-through. The first observation is that the
difference between the results obtained by the proposed method
and a direct Kriging model (i.e. a single Kriging model built using
the entire data set) is much more important than in the previous
case, often by orders of magnitude. This is due to the fact that
the two regimes of non-linear structure behaviours are promi-
nently different as shown in Fig. 13. Furthermore in this example,
categorical Kriging performs quite well. It is not clear however
which recombination approach is the best. When looking at the
normalized mean square error, the hard recombination is slightly
better. This is the opposite when looking at the mean absolute
error, i.e., the soft and categorical recombination are slightly better.

Fig. 13 shows the original vs. predicted vertical displacement for
the four approximations using a random subset of the validation
set of size 200. The left panel of this figure shows how a single
model (called ‘‘direct”) spans the entire range between the two
regimes of the truss and leads to huge errors. In contrast, the
multi-stage approaches properly detect the discontinuities. It is
also clear from this figure how the recombination scheme affects
Fig. 13. Example 2: Original vs. predicted vertical disp
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the final prediction when there are classification errors. The soft
recombination reduces the error for those cases when there is
uncertainty in the classification. Note that the same outlier points
are observed in Figs. 13a and 13b when hard reconstruction and
categorical Kriging are used: these outliers only stem from classifi-
cation error.
lacement for different approximation techniques.
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4.3. Tensile fabric structure

In this final example, we investigate a model that simulates the
behaviour of a tensile membrane structure (TMS) under extreme
loading [39,40]. TMS are flexible lightweight structures made of
composite fabric spanning long distances. They have many advan-
tages in terms of architectural sophistication but are yet challeng-
ing to design. By their very nature, they are unable to carry out-of-
Table 2
Hypar structure: probabilistic input model.

Parameter Distribution Mean C.o.V.

Wind load (Vw - m/s) Gumbel 36:11 0:132
Cable pre-stress (Sxx - N/m2) Gaussian 5:09 
 108 0:06

Young’s modulus (Ewf - N/m) Lognormal 8 
 105 0:07

Poisson modulus (m -) Gaussian 0:4 0:05
Fabric prestress warp (Fw - N/m2) Gaussian 4 
 106 0:05

Fabric prestress fill (Ff - N/m
2) Gaussian 4 
 106 0:05

Mast Young’s modulus (Em - N/m2) Lognormal 2:1 
 1011 0:03

Cables Young’s modulus (Ec - N/m2) Lognormal 2:1 
 1011 0:03

Mast cross-sectional area (Am - m2) Gaussian 1:7 
 10�3 0:032

Cable cross-sectional area (Ac - m2) Gaussian 7:854 
 10�5 0:032

Fig. 15. Example 3: Kernel smoothing density of the maximum reaction force of the
hypar.

Fig. 16. Example 3: Computed errors for the hypar st
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plane moments and shear forces that may result from the extreme
wind loads they are expected to withstand. They further require
careful pre-stressing to keep a stable form.

Special codes are designed to simulate the response of complex
tensile membrane structures. COMET is one such in–house finite ele-
ment code developed at the University of Gua [40]. In this work, we
consider a double hypar (hyperbol-paraboloid), which is one of the
most common shapes for TMS, designed using COMET and illustrated
in Fig. 14. The structure consists of fabric membrane supported by
masts and cables and subjected to wind loads. This system is mod-
elled using a fluid–structure interaction (FSI) model that consists of
three parts: (i) a computational fluid dynamics model to predict
the fluid flow and wind pressure, (ii) a finite element model using
computational structure dynamics that considers plane stress ele-
ments for the membrane and two-node uni-dimensional finite ele-
ments for the cables andmasts, and (iii) an interaction between the
fluid and the structure calculated in terms of pressure force applied
to the structure. In this work, the fluid is treated as a Euler fluid and
the structure as a Lagrangian one. The readers is referred to [39] for
more details. The probabilistic model is described using the ran-
dom variables presented in Table 2. There are various quantities
of interest for such a design model. We consider here the maxi-
mum reaction forces on the supports of the system (cables or
masts). It turns out that according to the boundary conditions,
the maximum reaction force occurs in two different locations with
entirely different magnitudes. This is shown by the bi-modality of
the kernel density estimate of the model response in Fig. 15.

The underlying mechanisms leading to each of two model
response modes are different and building a single surrogate model
to account for both leads to inaccurate results. We consider then
the three-stage approach proposed in this paper, with an experi-
mental design of size 500 and a validation set of size 1;000. The
experimental design is split into five different subsets of sizes
100;200;300;400 and 500. In each of these, the DPMM clustering
rightly identifies that there are two sets of responses by providing
two clusters.

Fig. 16 shows the resulting NMSE and MAE for each experimen-
tal design size. As expected, the error decreases with increasing ED
size and our proposed workflow yields more accurate approxima-
tions than a global single Kriging model, except for NMSE when
N ¼ 100 due to the large weight of misclassification errors. The soft
recombination is slightly better than hard recombination and cat-
egorical Kriging which have very similar predictions.
ructure for increasing experimental design sizes.



Fig. 17. Example 3: Computed errors for the hypar structure for increasing experimental design sizes.
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Finally, Fig. 17 shows PDFs of the responses for different models
with ED sizes of 100 and 300. We can see that even for 100 sam-
ples, the densities with the hard recombinations are extremely
similar to those obtained from the original model. This shows that
the reconstructed surrogate models are extremely accurate except
for a few outliers which are due to misclassification in the second
step of the workflow. The soft recombination puts more mass in
the middle of the density support, due to the weighted recombina-
tion. This mass reduces as the ED size increases.
5. Conclusion

Surrogate modelling is now a well-established method that
allows one to reduce the computational burden of simulation
intensive methods that require multiple evaluations of a costly
computational model. Building an accurate surrogate model with
limited data generally requires that the functions to approximate
are smooth and regular. This is however not always the case in
many applications, e.g. crash simulation or computational fluid
dynamics.

In this paper, we propose a three-stage approach for the
approximation of non-smooth functions for systems exhibiting
multiple behaviours and/or discontinuities. The problem is tackled
by dividing the task into three complementary parts: i. a joint
input–output clustering stage that identifies the different patterns
exhibited by the system using a non-parametric Bayesian
approach, namely a Dirichlet process mixture model, ii. a partition
of the input space according to the identified clusters using sup-
port vector machines, and eventually iii. the construction of local
13
surrogates, herein Kriging models, using data from each of the par-
titions. For any new point, the prediction is made by appropriately
recombining the predictions made by each of the Kriging models,
according to the assigned class of the new point.

The proposed approach is validated on two analytical examples
and an engineering application (FE-based tensile membrane struc-
ture). It is shown to be both accurate and efficient compared to a
traditional surrogate modelling approach ignoring the non-
smoothness.

The three methods selected for each stage all provide proba-
bilistic predictions. While the posterior probabilities of the support
vector machines classifiers have been used within the soft recon-
struction scheme, the ones provided by the Dirichlet process mix-
ture models have not been exploited yet. However, as seen in the
examples, mislabelling the initial data leads to large errors. These
could be reduced by accounting for the uncertainties in the cluster-
ing stage. In a future work, we intend to account for the latter so as
to provide a fully probabilistic prediction scheme that propagates
the epistemic uncertainties from one step to the next.
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