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Abstract

The primary source of coherent light at wavelengths not available with com-
mon laser sources are nonlinear processes such as second-harmonic genera-
tion (SHG), optical parametric oscillation (OPO), and spontaneous paramet-
ric down-conversion (SPDC). Noncentrosymmetric crystals are the conven-
tional platform to implement optical frequency conversion. However, their
use is limited by optical dispersion, which imposes strict phase-matching
conditions to achieve efficient nonlinear conversion. Many methods have
been developed for phase-matching control, such as phase-matching in bire-
fringent crystals or quasi-phase-matching in periodically poled materials.
These methods produce nonlinear generation that grows quadratically with
the volume of the crystal. At the micro- or nanoscale it is also possible to ex-
ploit resonant mechanism to enhance the nonlinear light-matter interaction.
In all these cases, the optimal nonlinear conversion is achieved in a narrow
wavelength range, and it requires to control the temperature and the polar-
ization of the pump beam as well. Disordered photonic materials, consisting
of a random assembly of nonlinear optical crystals, provide an alternative
platform to bulk crystals. In fact, it is possible to generate broadband coher-
ent nonlinear light with a mechanism called random quasi-phase-matching
(RQPM). It allows to circumvent the phase-matching conditions and to gen-
erate SHG proportional to the volume of the disordered material. The dis-
advantage of RQPM is its lower efficiency than more conventional phase-
matching schemes. RQPM has been mostly implemented in polycrystals
with micrometer-sized domains (10-100 µm). The nonlinear generation in
micron-size χ(2) structures with nanostructured disorder is completely un-
explored.
In this thesis we present bottom-up assembled microspheres made of nonlin-
ear nanocrystals of barium titanate (BaTiO3) and lithium niobate (LiNbO3) as
our disordered photonic material. The fabrication ensures that the nanocrys-
tals that constitute the microspheres are randomly placed and oriented in the
spherical assembly, and that the volume is known or easy to measure. Our
goal is to use them to show second-harmonic generation with the RQPM
at the microscale. They can achieve frequency conversion from the near-
ultraviolet to the infrared ranges, are low-cost, and can cover large surface
areas. Moreover, we propose different solutions to enhance the nonlinear
emission from the microspheres.
In a first part, we combine the Mie resonances stemming from the spherical
geometry to increase the SHG from microspheres made of BaTiO3 nanocrys-
tals of 50 nm of size. The measured second-harmonic generation shows a
combination of broadband and resonant wave mixing, in which Mie reso-
nances enhance the second-harmonic generation, while the disorder keeps
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the phase-matching conditions relaxed. We support our findings with ana-
lytical models and simulations. Our assemblies provide new opportunities
for tailored phase-matching at the microscale, beyond the coherence length
of the bulk crystal.
In a second part, we use LiNbO3 nanocubes of 100 nm to 400 nm as build-
ing blocks of disordered microspheres and slabs of variable thickness. Bigger
domains are the most direct way to increase the efficiency of the SHG. At the
same time, this introduces multiple light scattering in the assemblies. They
display a remarkable strong light scattering, evidenced by a subwavelength
transport mean free path (l∗). We show that RQPM is robust to scattering and
that the SHG grows linearly with the thickness of the slabs and the volume
of the microspheres. These assemblies represent a promising platform to in-
vestigate the interplay between disorder and nonlinear effects.
In a third part, we bottom-up assemble spherical dielectric resonators with
embedded diamond nanoparticles with nitrogen vacancy centers (NV). Those
assemblies can exploit two phenomena: the photonic nanojet to focus the ex-
citation field into a small volume, and the Mie resonances to enhance the
emission at the resonant wavelength. We show that we can modulate the
fluorescence thanks to the Mie modes and that we can control it with the
temperature.
This work proposes bottom-up disordered assemblies of nonlinear crystals
as a platform for nonlinear light generation. We illustrate the advantages of
the scalable fabrication and the flexibility of the nonlinear generation from
the disorder. Furthermore, we propose strategies to improve the nonlinear
emission and to investigate the physics of a complex nonlinear medium.
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Sommario

La fonte principale di luce coerente a lunghezze d’onda non disponibili con
le comuni sorgenti laser sono i processi non lineari come la generazione di
seconda armonica (SHG), l’oscillazione parametrica ottica (OPO) e la down-
conversion parametrica spontanea (SPDC). I cristalli non centrosimmetrici
sono la piattaforma convenzionale per implementare la conversione ottica di
frequenza. Tuttavia, il loro uso è limitato dalla dispersione ottica, che impone
rigorose condizioni di phase-matching per ottenere una conversione non lin-
eare efficiente. Sono stati sviluppati molti metodi per il controllo del phase-
matching, come il phase-matching in cristalli birifrangenti o il quasi-phase-
matching in materiali polarizzati periodicamente. Questi metodi producono
una generazione non lineare che cresce quadraticamente con il volume del
cristallo. Su scala micro o nanometrica è anche possibile sfruttare un mec-
canismo di risonanza per migliorare l’interazione non lineare luce-materia.
In tutti questi casi, la conversione non lineare ottimale si ottiene in un inter-
vallo di lunghezze d’onda ristretto e richiede il controllo della temperatura
e della polarizzazione della luce di pompa. I materiali fotonici disordinati,
costituiti da un cristalli ottici non lineari assemblati in modo casuale, for-
niscono una piattaforma alternativa ai cristalli monolitici. Infatti, è possibile
generare luce non lineare coerente a banda larga con un meccanismo chiam-
ato random quasi-phase matching (RQPM). Esso consente di aggirare le con-
dizioni di phase-matching e di generare SHG proporzionalmente al volume
del materiale disordinato. Lo svantaggio del RQPM è la sua minore efficienza
rispetto agli schemi di phase-matching più convenzionali. Il RQPM è stata
implementato principalmente in policristalli con domini di dimensioni mi-
crometriche (10-100 mum). La generazione non lineare in strutture di dimen-
sioni micrometriche con disordine nanostrutturato è, invece, completamente
inesplorata.
In questa tesi presentiamo microsfere assemblate con nanocristalli non lin-
eari di titanato di bario (BaTiO3) e niobato di litio (LiNbO3) come materiali
fotonici disordinato. La fabbricazione garantisce che i nanocristalli che costi-
tuiscono le microsfere siano disposti e orientati in modo casuale nell’insieme
sferico e che il volume sia noto o facilmente misurabile. Il nostro obiettivo
è usarle per mostrare la generazione di seconda armonica con l’RQPM su
microscala. Possono ottenere una conversione di frequenza dal vicino ultra-
violetto all’infrarosso, sono a basso costo e possono coprire ampie superfici.
Inoltre, proponiamo diverse soluzioni per migliorare l’emissione non lineare
delle microsfere.
In una prima parte, combiniamo le risonanze Mie derivanti dalla geometria
sferica per aumentare la SHG da microsfere fatte di nanocristalli di BaTiO3 di
50 nm di dimensione. La generazione di seconde armoniche misurata mostra
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una combinazione di generazione a banda larga e risonanti, in cui le riso-
nanze di Mie aumentano la generazione di seconde armoniche, mentre il dis-
ordine mantiene rilassate le condizioni di phase-matching. I nostri risultati
sono supportati da modelli analitici e simulazioni. I nostri assemblaggi of-
frono nuove opportunità per phase-matching adattabile su microscala, oltre
la lunghezza di coerenza del puro cristallo.
In una seconda parte, utilizziamo nanocubi di LiNbO3 da 100 a 400 nm come
elementi costitutivi di microsfere e lastre disordinate di spessore variabile. I
domini più grandi sono il modo più diretto per aumentare l’efficienza della
SHG. Allo stesso tempo, questo introduce uno scattering multipla della luce
negli assemblaggi. Essi mostrano una notevole diffusione della luce, eviden-
ziata da un percorso libero medio di trasporto (l∗) inferiore alla lunghezza
d’onda. Dimostriamo che il RQPM non é soppresso dalla diffusione della
luce e che la SHG cresce linearmente con lo spessore delle lastre e il volume
delle microsfere. Questi materiali rappresentano una piattaforma promet-
tente per studiare l’interazione tra disordine ed effetti non lineari.
In una terza parte, abbiamo assemblato risuonatori dielettrici sferici di dios-
sido di titanio con nanoparticelle di diamante. Questi nanodiamanti sono
fluorescenti poiché presentano centri di vacanza di azoto (NV) che possono
essere utilizzati come biomarker of generatori di single photons. Queste mi-
crosphere possono sfruttare due fenomeni: il photonic nanojet per focaliz-
zare il campo di eccitazione in un piccolo volume e le risonanze di Mie per
aumentare l’emissione alla lunghezza d’onda risonante. Dimostriamo che
possiamo modulare la fluorescenza grazie ai modi Mie e che possiamo con-
trollarla con la temperatura.
Questo lavoro propone assemblaggi disordinati bottom-up di cristalli non
lineari come piattaforma per la generazione di luce non lineare. Illustri-
amo i vantaggi della fabbricazione scalabile e della flessibilità della gener-
azione non lineare dal disordine. Inoltre, proponiamo strategie per miglio-
rare l’emissione non lineare e per studiare la fisica di un mezzo non lineare
complesso.
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Chapter 1

Introduction

The beginning of the field of nonlinear optics is usually considered the dis-
covery of the second-harmonic generation from Franken et al. in 1961 [1],
right after the invention of the laser by Maiman et al. in 1960 [2]. In their
seminal work, the red light from a ruby laser was frequency doubled to ul-
traviolet light passing through a quartz crystal. However, there was evidence
of optical nonlinearities dating back to 1896 with the discovery of the Pock-
els effect [3], which consists in the change of the refractive index of a material
when an external electric field is applied. Another remarkable example was
the prediction of two-photon absorption in 1931 [4]. Nonetheless, it is clear
that the field of nonlinear optics gained relevance when the high intensity
of the laser sources became available in the 60s. Since then, nonlinear optics
has played a key role in the development of laser technology. A nonlinear
optical element combined with a laser allowed to change the wavelength of
the generated light with processes such as second-harmonic generation or
optical parametric oscillation, or to modify the spatial and temporal proper-
ties of the light with Q-switching and mode locking [5]. Nonlinear optics has
also fundamental applications in a variety of different fields such as telecom-
munication, sensors, bioimaging and quantum technologies [6]. In particular
second-harmonic generation is relevant for ultra-short pulse measurements,
SHG microscopy and the characterization of materials. Moreover, sponta-
neous parametric down-conversion (SPDC), which is its inverse process, is
nowadays one of the key phenomenon to generate entangled photon pairs
and single photons, which are the backbone of optical quantum technologies
[7], [8].

1.1 Nonlinear light generation

Optical nonlinearities can be found in many different materials such as crys-
tals, amorphous materials, polymers, liquids or organic compounds. One
of the main platforms is constituted by noncentrosymmetric crystals, which
have a non zero second-order nonlinear susceptibility χ(2) [9]. Many proper-
ties of a nonlinear material can be relevant for applications such as the mag-
nitude of the coefficient of the χ(2) tensor, that regulates the strength of the
nonlinear interaction, the chromatic dispersion and the birefringence prop-
erties, that determine the phase-matching bandwidth, and the transparency
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window. For these listed criteria barium titanate (BaTiO3) and lithium nio-
bate (LiNbO3) have attracted a lot of interest. They display strong nonlinear-
ities, a wide transparency window from the near ultra violet to the infrared
and a high chemical robustness. More information on their properties are
given in Chapter 3. Their application for SHG and SPDC is limited by the
phase-matching conditions which means that a proper phase relationship be-
tween the pump and the generated light has to be maintained in the crystal
to achieve optimal nonlinear generation. Otherwise, the signal generated in
the crystal may interfere destructively during propagation, causing little or
no emission. Phase-matching can be obtained with different techniques. One
of the most widely used is phase-matching in birefringent crystals, achieved
by positioning the crystal at a specific angle to the pump beam. The differ-
ent refractive indices and the optical dispersion can compensate to achieve
the optimal phase relation between the pump and the generated light. De-
pending on the pump wavelength, the specific crystal structure and refrac-
tive index there can be cases in which no angle fulfills the phase-matching
conditions. Moreover, this process works for a specific polarization and also
the temperature of the material has to be kept constant. Another widespread
technique is the quasi-phase-matching in which the crystal is engineered to
periodically reverse its crystal structure to compensate the phase mismatch
given by the optical dispersion. There are several technique to implement
this periodic poling, such as pulsed electric field, electron bombardment and
thermal pulsing [10]. Quasi-phase-matching has the advantage that it can be
implemented for essentially any nonlinear process within the transparency
window of the crystal. In waveguides the refractive index depends on the
mode of the propagation, therefore for nonlinear generation modal phase-
matching has to be imposed. This means that the waveguides have to be
engineered such that the fundamental mode and the generated mode respect
the correct phase relationship. All of the above mentioned techniques can
lead to efficient nonlinear conversion, the common drawback that they share
is that they operate at narrow bandwidth. If we want to change the wave-
length of operation we have to reorient the crystal to a specific angle for
perfect phase-matching or change the temperature and the polarization of
the pump light. While modal and quasi-phase-matching are not usable for
broadband or tunable applications. Moreover, the robustness of the nonlin-
ear generation is limited, because a small variation in the experimental con-
ditions (for example in the incident angle or fabrication imperfection in the
waveguide or in the period of the poled crystal) will result in big variation
of the generated field. So far, the optimal conversion in nonlinear crystals
has been obtained by controlling carefully many properties of the system,
from the crystal structure, to the orientation, to the polarization of the pump
beam, or the precise patterning of the device. All of these approaches rely
in a broad sense to the concept of order and we have seen that small imper-
fection on the system can heavily affect the nonlinear emission. A possible
route to overcome these limitations can be found increasing the complex-
ity of the nonlinear crystal structure [11]. Other possibilities open up if we
loosen the order of the system and insert some disorder. In this case, we
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can replace the non-linear crystal with a disordered assembly of non-linear
nanocrystals. By disorder, we mean that their size, position and orientation
are random. What can be the advantages of using such a material? We need
to introduce the field of disordered photonics here, and then we will show
how the cross-fertilization of non-linear optics with disorder can be fruitful
for the generation of nonlinear light.

1.2 Photonics in disordered materials

In the field of photonics, the most recurrent manifestation of disorder is light
scattering. The scattering of electromagnetic waves stems from the hetero-
geneity of the system that interacts with the light [12]. Scattering is respon-
sible for many optical phenomena that we see every day. The blue color of
the sky is the result of the Rayleigh scattering of the light of the sun by the
atmosphere, and the white color of a cloud on a summer day is the result
of the multiple scattering of the light [13]. Disorder in science is most often
considered undesirable and avoided. However, there is a host of interesting
phenomena happening in a disordered photonic material [14]. First of all,
the light that is multiply scattered in a material interferes with itself but does
not lose any information. It is only scrambled into a "speckle pattern" [15],
that is a granular texture of bright and dark spots. This pattern is the result
of the interference of the light in the disordered material and can be seen,
for example, if we shine light from a coherent source onto a white wall. In
principle it is possible to descramble the speckle to retrieve some information
of the propagating beam or to focus the light into a specific target [16], [17].
This concept can be applied to imaging through the fog or across a white
marble wall [18], or to do bioimaging through skin or bones [19], or to fo-
cus the light on a specific spot in depth in the tissue [20]. It is also known
that many colors that can be seen in nature in birds or insects, arise from
the light interaction with disordered or partially ordered structures [21], [22].
Another famous application of disorder in photonics is the random laser [23],
in which the cavity of the lasing system is replaced with a multiple scattering
material. The emission of such a system is also surprisingly coherent and
shows narrow spikes in the emission spectra [24]. There is also a lot of in-
teresting physics in the properties of the light propagation in a disordered
material. One famous example is constituted by light localization. When the
strength of a scattering material is particularly intense it is possible that the
light stays trapped in the material and it is not able to diffuse out of it. This
concept, known as Anderson localization for light [25], [26], has been shown
in 1D and 2D structures [27], while its demonstration in 3D is still a debated
topic in the field [28][29].
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FIGURE 1.1: Phase-matching schemes. A fundamental beam
impinges on nonlinear crystal and produces SHG as it pro-
ceeds in the material. a) The material is a phase-matched sin-
gle crystal: the SHG adds ups in phase resulting in a signal
that scales quadratically with the sample length or the num-
ber of domains. b) The material is quasi-phase-matched crys-
tal, in which the orientation is periodically reversed to main-
tain the correct phase relation, and the SHG grows again with
the square of the length. c) The material is a disordered poly-
crystal, the SHG interferes with a random phase leading to a

linear growth with the length.
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1.3 Nonlinear and disordered photonics

All the phenomena described in the previous section are the result of the light
interacting with a material which is heterogeneous in the linear refractive in-
dex. Typical examples are the suspended particles that form a cloud or a
complex system composed by a mixture of two materials of different refrac-
tive indices. However, if the particles in the disordered material have also a
second-order nonlinear susceptibility (χ(2)) this allows for the combination
of nonlinear generation and disorder. We refer to a material constituted by
a collection of nonlinear crystalline domains that are randomly oriented and
polydispersed in size as a nonlinear disordered photonic material (NDPM).
Under illumination with a pump beam each domain produces SHG. The
global signal generated by the NDPM is the result of the interference of the
light generated by each domain. Counter-intuitively, the interference does
not destruct the signal. On the contrary, it generates a signal that scales lin-
early with the number of domains of the NDPM. This approach is called ran-
dom quasi-phase-matching (RQPM) since it relies on the random orientation
of the domains rather than their order. This process is less efficient than the
SHG obtained through phase-matching or quasi-phase-matching for which
the converted SHG scales quadratically with the number of domains, as it is
sketched in Fig. 1.1. However, the RQPM has the great advantages of be-
ing completely broadband, circumventing the phase-matching conditions. It
works for every polarization of the impinging beam, every temperature, and
every angle of incidence. Moreover it is robust to imperfections since it does
not require precise orientation of size of single parts. Similarly to the light
that is multiply scattered, the global SHG comes from the interference of all
the sources in the material. Therefore, it is a nonlinear speckle, with bright
spots where the interference is more constructive and dark spot where the
interference is more destructive. The basic physics of linear and nonlinear
speckles is discussed in Chapter 2.
The combination of nonlinear optical properties with disordered material is
still an under-explored field. It has been shown that with wavefront shaping
it is possible to manipulate the nonlinear speckle after a disordered material
made of grains of LiNbO3 [30]. The light trapped in a multiple scattered ma-
terial can exploit disordered modes to enhance the nonlinear emission (sim-
ilarly to a random laser but for SHG) [31]. The properties of linear and non-
linear speckle [32], [33], or its polar dependence [34], have been studied to
understand some properties of the light propagation [35]. A promising route
is represented by optical computing. Optical computing has already bene-
fited from the linear disorderd photonics to implement some algorithms [36].
They exploited the fact that light propagating in a scattering material can be
used to compute matrix multiplication at the speed of light. The possibilities
offered by nonlinearity, which could implement more complex calculations,
have only recently been studied [37], [38]. However, the potential of nonlin-
ear disordered photonic material is still unrealized.
Random quasi-phase-matching has been so far employed mostly in disor-
dered polycrystals with domains of several tens of micron [39]. They have
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FIGURE 1.2: Sketch of a disordered assembled microspheres il-
luminated with a pump beam that generates second-harmonic

light. Image by J. Müller.

been used to implement mode-locked lasers [40], and optical parametric os-
cillators [41] in millimeter-sized devices. The aspect that we investigate in
this thesis is the the use of noncentrosymmetric crystalline nanodomains to
assemble micro-disordered structures with a controlled geometry. We fabri-
cate well-shape microspheres that are composed by a disordered distribution
of nonlinear nanoparticles. We employ a bottom-up method that allows to
control directly the domain size distribution and the volume of the assembly.

1.4 Goals of this thesis

In this work, we propose nonlinear and disordered material fabricated with
bottom-up technique as a platform for nonlinear optical generation (see sketch
in Fig. 1.2). The material chosen are barium titanate (BaTiO3) and lithium
niobate (LiNbO3). Their properties and the fabrication used are presented in
Chapter 3. The goal of this thesis is to demonstrate possible routes to increase
the efficiency of the second-harmonic generation via random quasi-phase-
matching. In Chapter 4 we show how it is possible to combine the nonlinear
generation through the disorder with optical Mie resonances. We do that by
implementing random quasi-phase-matching in Mie resonant spheres made
by bottom-up assembly of BaTiO3 nanoparticles. In Chapter 5 we combine
RQPM with multiple scattering in assemblies of LiNbO3 nanocubes. We
show that the SHG grows linearly with the number of domains, even in
the presence of strong scattering and in different geometries. These LiNbO3
NDPM present strong nonlinearity and scattering that can be used to further
study the interplay of nonlinear generation and disorder. In Chapter 5 we
study the fluorescence properties of nitrogen vacancy (NV) centers of dia-
mond assembled in TiO2 microspheres. The idea is to exploit the Mie modes
of the spheres to enhance the generation of photons from the assemblies.
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A broader scope of this work is to illustrate that disordered nonlinear
materials based on BaTiO3 and LiNbO3 and assembled with bottom-up tech-
niques are a promising platform for nonlinear light generation. We pinpoint
some of the goals of this thesis:

• show that the fabrication through emulsion-templated assembly is a
robust and scalable way to manufacture resonant microstructures with
different materials;

• give evidence of the broadband second-harmonic generation that can
be achieved via random quasi-phase-matching;

• show that the efficiency of RQPM SHG can be enhanced with the Mie
modes of the resonators. Consequently that it is possible to couple
a nonlinear signal coming from disorder with a resonance due to the
spherical shape;

• prove that the power of the SHG with random quasi-phase-matching
scales linearly with the volume of the assembly. This happens both for
transparent and resonant spheres and for multiple scattering materials;

• show that LiNbO3 assemblies of nanocubes are a strongly scattering
and nonlinear material that can be used to further study the combina-
tion of SHG with disorder;

• give evidence that the Mie resonances from the assembled microspheres
can drive the emission from active materials such as NV centers.
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Chapter 2

Theoretical overview of light
interaction with particles

In this chapter we present the theory of the light interaction with particles.
We focus first on the linear scattering of light by a spherical object, a prob-
lem that was solved analytically in the early years of the 20th century by
the german physicist Gustav Mie1[42]. We summarize the key aspects of his
derivation and we review two useful applications: the calculation of the scat-
tering cross section and of the internal electric field. We also show that, when
the particle is much smaller than the wavelength of the impinging light, the
solution converges to the Rayleigh scattering2[43][13].
Afterwards, we extend the concepts from single scattering to the interaction
of light with an ensemble of scatterers, which are usually referred as turbid
or opaque media. In such an environment the light does not propagate as
straight ray but rather is deflected many times by the particles. We discuss
how the scattering strength of a material is characterized and define the mea-
sured quantities that are used in the context of the diffusion approximation.
This theory has certain limitations, we discuss them briefly and we introduce
the concept of localization.
In the final part of the chapter, we present the basis of the light interaction
with nonlinear media focusing our attention on the nonlinear light genera-
tion. We introduce the χ(2) tensor and present the equations that describe
the second-harmonic generation. We then discuss the concept of coherence
length and how the phase-matching conditions can be met with the perfect
phase-matching and quasi phase-matching scheme. In the last section, we
present how a disordered distribution of crystals can be exploited to generate
second harmonic. This mechanism is called random quasi-phase matching.
We explain its working principle and specify its advantages and disadvan-
tages compared to the more conventional phase-matching schemes.

1The original publication from 1908 can be found in the Annalen der Physik with the title:
“Beiträge zur Optik trüber Medien speziell kolloidaler Goldlösungen" (“Contributions to the optics
of turbid media, particularly of colloidal metal solutions”)

2Named after Lord Rayleigh, author of the two founding works at the end of the XIX
century “On the electromagnetic theory of light ” and “On the transmission of light through an
atmosphere containing small particles in suspension, and on the origin of the blue of the sky ”.
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2.1 Scattering from a single particle

When light impinges on objects much bigger than its wavelength, the interac-
tion can be explained using ray optics. This means that the physics of the ray
of light can be described in terms of reflection, refraction and transmission. In
particular, the direction and intensity of the light can be derived through the
Fresnel coefficients [12]. When the light impinges on structures with features
of sizes comparable to its wavelength or smaller, these concepts are inappli-
cable. The light-matter interaction at the nano- or micro scale is described by
the concepts of scattering and absorption.

2.1.1 Mie theory

In 1908 Mie solved the problem of absorption and scattering of a plane wave
impinging on a sphere of arbitrary radius and refractive index immersed in
an homogeneous medium. This theory also provides a good first-order ap-
proximation for small non-spherical particles. It consists of the explicit cal-
culation of the solution of Maxwell’s equations (see Eq. (2.1)) in every point
of the space inside and outside the sphere [44].

∇ · E = 0,
∇ ·H = 0,
∇× E = iωµH,
∇×H = −iωεE,

(2.1)

Where E and H are the electric and magnetic field, ω is the angular fre-
quency of oscillation of the field. µ and ε are the permeability and the per-
mittivity of the medium in which the electromagnetic wave is propagating.
Since the space is homogeneous, we can recast the Maxwell’s equation in the
form of two wave equations for the electric and magnetic field. They are
valid both in the space inside the sphere and outside (Eq. (2.2))

∇2E + k2E = 0, ∇2H + k2H = 0 (2.2)

where k in the wavevector. The solution to the problem can be found by
imposing the following boundary conditions on the air-sphere interface:

[E2(r)− E1(r)]× n̂ = 0,
[H2(r)−H1(r)]× n̂ = 0,

(2.3)

Next, we present a brief summary of the calculation of Mie. Further de-
tails and examples are given in Chapter 4 of the book from Craig F. Bohren
“Absorption and scattering of light by small particles" [12]. As depicted in Fig.
2.1, (E1, H1) refer to the fields inside the sphere and (E2, H2) for the fields in
the surrounding medium, which are the superposition of the incident fields
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FIGURE 2.1: Sketch of a sphere with permittivity εs and per-
meability µs in a uniform medium (εm, µm) interacting with a
plane wave. The field inside the sphere is (E1, H1) and outside

is (E2, H2).

(Es, Hs) and the scattered fields (Ei, Hi). Two important quantities are the
size parameter x and the relative refractive index m:

x = ka =
2πNa

λ
, m =

k1

k
=

N1

N
(2.4)

where a is the sphere radius and N1 and N are the refractive indices of
the particle and the medium, respectively. It can be shown that if the scalar
function ψ is a solution of the scalar wave equation:

∇2ψ + k2ψ = 0. (2.5)

Then, the two vectors defined by Eq. (2.6)

M = ∇× (rψ),

N =
∇×M

k
,

(2.6)

are a solution of the wave equation. Therefore, we can solve the scalar
wave equation for ψ and substitute the solution in Eq. (2.6). The electric
and magnetic field will be a combination of M and N with the appropriate
weights. To compute the weights we have to decompose the impinging plane
wave in spherical harmonics. We retrieve the coefficients by applying the
boundary conditions at the surface of the sphere.

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin θ

∂2

∂φ2 (2.7)
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We look for solutions ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) for Eq. (2.5) that are the
product of three scalar functions. We insert ψ(r, θ, φ) in Eq. (2.5) and we use
Eq. (2.7). We obtain three separate equations r, θ and φ:

d2Φ
dφ2 + m2Φ = 0, (2.8)

1
sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+

[
n(n + 1)− m2

sin2 θ

]
Θ = 0, (2.9)

d
dr

(
r2 dR

dr

)
+
[
k2r2 − n(n + 1)

]
R = 0. (2.10)

These give for ψ the following form:

ψemn = cos(mφ)Pm
n (cos θ)zn(kr),

ψomn = sin(mφ)Pm
n (cos θ)zn(kr),

(2.11)

where m and n are integers, e and o indicate the even or odd solutions
and Pm

n and zn are the Legendre functions of the first kind and the Bessel
functions. With this, we can compute Memn, Momn, Nemn and Nomn.

Memn =
−m

sin(θ)
sin(mφ)Pm

n (cos θ)zn(kr)eθ

− cos(mφ)
dPm

n (cos θ)

dθ
zn(kr)eφ,

(2.12)

Momn =
m

sin(θ)
cos(mφ)Pm

n (cos θ)zn(kr)eθ

− sin(mφ)
dPm

n (cos θ)

dθ
zn(kr)eφ,

(2.13)

Nemn =
zn(kr)

kr
cos(mφ)n(n + 1)Pm

n (cos θ)er

+ cos(mφ)
dPm

n (cos θ)

dθ

1
kr

d
d(kr)

[
(kr)zn(kr)

]
eθ

−m sin(mφ)
Pm

n (cos θ)

sin(θ)
1
kr

d
d(kr)

[
(kr)zn(kr)

]
eφ,

(2.14)
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Nomn =
zn(kr)

kr
sin(mφ)n(n + 1)Pm

n (cos θ)er

+ sin(mφ)
dPm

n (cos θ)

dθ

1
kr

d
d(kr)

[
(kr)zn(kr)

]
eθ

+ m cos(mφ)
Pm

n (cos θ)

sin(θ)
1
kr

d
d(kr)

[
(kr)zn(kr)

]
eφ,

(2.15)

The electromagnetic field inside the sphere and scattered outside can be
found as a series of these vectors.

E1 =
∞

∑
n=1

inE0
2n + 1

n(n + 1)

(
cnM(1)

o1n − idnN(1)
e1n

)
,

H1 = − ks

ωµs

∞

∑
n=1

inE0
2n + 1

n(n + 1)

(
dnM(1)

e1n + icnN(1)
o1n

)
.

(2.16)

Es =
∞

∑
n=1

inE0
2n + 1

n(n + 1)

(
ianN(3)

e1n − bnM(3)
o1n

)
,

Hs =
km

ωµm

∞

∑
n=1

inE0
2n + 1

n(n + 1)

(
ibnN(3)

o1n + anM(3)
e1n

)
.

(2.17)

Where the coefficients an,bn,cn,dn are:

cn =
µ1 jn(x)

[
xh(1)n (x)

]′
− µ1h(1)n (x)

[
xjn(x)

]′
µ1 jn(mx)

[
xh(1)n (x)

]′
− µ1h(1)n (x)

[
mxjn(mx)

]′ , (2.18)

dn =
µ1mjn(x)

[
xh(1)n (x)

]′
− µ1mh(1)n (x)

[
xjn(x)

]′
m2 jn(mx)

[
xh(1)n (x)

]′
− µ1h(1)n (x)

[
mxjn(mx)

]′ , (2.19)

an =
m2 jn(mx)

[
xjn(x)

]′
− µ1 jn(x)

[
mxjn(mx)

]′
m2 jn(mx)

[
xh(1)n (x)

]′
− µ1h(1)n (x)

[
mxjn(mx)

]′ , (2.20)

bn =
µ1 jn(mx)

[
xjn(x)

]′
− jn(x)

[
mxjn(mx)

]′
µ1 jn(mx)

[
xh(1)n (x)

]′
− h(1)n (x)

[
mxjn(mx)

]′ . (2.21)

It can be noted that the solution of the problem is expressed solely in
function of the size parameter and the relative refractive index that that we
have previously defined in Eq. 2.4. This means that, when we discuss scat-
tering from a spherical object, a duality exists between the wavelength of the
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impinging beam and the radius of the sphere. Increasing the wavelength or
decreasing the size of the sphere have the same effect on the calculation of the
fields. Alternatively, doubling both λ and a does not affect the result of the
calculation (in the assumption that the refractive index does not depend on
λ, which is not true in most cases)3. At this point, the calculation of the fields
is complete. There is a nice quote from Bohren: “The reader who has painstak-
ingly followed this derivation, and thereby acquired virtue through suffering, may
derive some comfort from the knowledge that it is relatively clear sailing from here
on." Indeed after having derived the coefficients an,bn,cn,dn and the vectors
Memn, Momn, Nemn and Nomn, the calculation is straightforward and it is just a
matter of computing power, and of deciding where to stop the series. This is
clearer when applied to practical examples as it is done in the next sections.

2.1.2 Scattering cross section

The scattering cross section of a single particle is

σs =
∫

4π
|S(u)|2dΩ Qs =

σs

πa2 (2.22)

where S(u) represents the Poynting vector, Ω is the solid angle and Qs
is the scattering cross section normalized by the physical cross section of the
sphere. When light undergoes a scattering event with a sphere of radius a,
the interaction can be described in terms of cross section Q normalized to the
physical cross section of the sphere πa2. If the scattering is elastic (i.e. energy
conservation holds) then we have that the extinction of the impinging beam
is given by the sum of the absorption and the scattering.

Qext = Qsca + Qabs (2.23)

In the case of negligible absorption, the extinction (which represents the
amount of energy that is removed from the original beam), coincides with the
scattering cross section. The scattering cross section can be computed from
Mie theory with the following formula:

Qsca =
2
x2

∞

∑
n=1

(2n + 1)(|an|2 + |bn|2) (2.24)

We can calculate Eq. 2.24 directly with a MATLAB code4.
We compute Qsca for a sphere of radius 200 nm with a refractive index of

2.3 in a medium of refractive index 1 (air) for different wavelengths of the
impinging light. The peaks that are visible in the plot in Fig. 2.2 are a conse-
quence of the Mie resonances in the sphere: the electric dipole, the magnetic

3The refractive index is in principle also dependent on the size of the nanoparticle. How-
ever, in most cases the bulk value of the material is taken, since practically it can be very
hard to measure accurately the refractive index of a single nanoparticle.

4This code was written together with Jolanda Müller extending an original code
from C. Mätzler [45]. The code is available publicly on GitHub at this link:
https://github.com/Nayunis/MieEfield.
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FIGURE 2.2: Scattering cross section computed for a sphere of
radius 200 nm and a refractive index 2.3. The plot is generated
computing explicitly the Eq. 2.24. This plot and the following
ones are obtained with the code which is an extension to the

code originally developed by C. Mätzler et al.[45].

dipole, the electric quadrupole etc... We can see also that the scattering is
stronger when λ ≈ nr, which is the usual rule of thumb that is given to iden-
tify the regime of “Mie scattering”. For shorter wavelengths the Qsca presents
some oscillations which tend roughly to the value of 2. This phenomenon is
called the extinction paradox [12], because one would naively expect to see the
scattering cross section converging to the physical one (i.e. normalized cross
section around 1). This is not the case, the extinction paradox is a textbook
example of fallacious intuition from geometrical optics. A detailed expla-
nation of this phenomenon was given by L. Brillouin [46], who explained
that the discrepancy lies in the interpretation of the Poynting’s flux theorem
and in the role played by the scattered radiation in the shadow of the body.
For longer wavelengths we see that the scattering cross section drops rapidly
[47]. This is the regime known as Rayleigh scattering.

2.1.3 The interaction of light with small particles

When the particle that is scattering the light is much smaller than the wave-
length, the scattering cross section drops with 1

λ4 . This limit is known as
Rayleigh regime. The expression for the scattering cross section is the fol-
lowing:

σ =
α2ω4

6πε2
0c4

(2.25)

Where α is the polarizability of the particle. This equation can be derived
considering the particle as dipole oscillating in response to an external elec-
tromagnetic wave [13]. In Fig. 2.3 we report a plot of the scattering cross
section for a sphere of 5 nm in the Rayleigh regime, computed with Mie the-
ory.



20 Chapter 2. Theoretical overview of light interaction with particles

FIGURE 2.3: Scattering cross section computed for a sphere of
radius 5 nm and a refractive index 2.3. Comparing the y axis
in this plot to Fig. (2.2) we can see 4 orders of magnitude of

difference compared to the case before.

This simple formula tells us that small particles scatter effectively the
short wavelength part (i.e. the blue) and less the red/ near-infrared. This
explains why we see the sky blue5. Since this formula is derived by approxi-
mating the particle with a dipole, it works pretty well for every shape much
smaller than the wavelength.

2.1.4 The internal field

Another important quantity that can be derived from Mie theory is the in-
ternal field in the sphere. In the range where λ ≈ nr we have the low order
modes of interaction ( electric dipole, magnetic dipole, etc... ) sometimes this
ones are referred to as Mie modes. A host of seemingly different phenomena
can be in fact explained as Mie modes and computed by Mie theory [48]. One
recent example are resonant structures used for “Mie-resonant metaphoton-
ics” [49][50], in which dielectric nano or microstructures are used to control
the light at the nanoscale designing low losses nano-antennas. Another very
famous example are the whispering gallery modes [51], in which the light
travels around in a concave surface (they are supported by microspheres, as
well as by microdisks)6 These modes are typically used for lasers and sens-
ing given their high quality factors [52][53][54]. A less known phenomenon
is the photonic nanojet. It consists of the focusing that happens if the light
is impinging on a sphere with refractive index close to 2 [55][56]. In Fig.
2.4 we show four examples of the internal field calculated with Mie theory,
with a plane wave impinging on a microsphere of radius 1 µm. We see that
for wavelengths bigger than the radius we have an interaction similar to a

5It is not purple because our eyes has a very low sensitivity in the violet.
6Another discovery from Lord Rayleigh in 1878, who explained it for sound waves in St.

Paul’s cathedral.
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dipole. For shorter wavelength we have a superposition of the modes which
gradually shifts to a focus on the rear part of the sphere. If the wavelength is
much smaller than the radius we have a strong focusing of the electric field,
which means a high concentration of energy in a small volume. The lat-
eral confinement of photonic nanojet can be exploited to do hyperresolution
imaging breaking the diffraction limit [57][58].

FIGURE 2.4: Internal field calculated with Mie theory for a
sphere of 1 µm of radius and refractive index 1.7. The displayed
values is E

E0
where E0 is the amplitude of the impinging plane

wave (coming from left to right). As we can see from a) the
internal field distribution is similar to a dipole. By decreasing
the wavelength in images b) and c) we see that the distribution
of the electric field in the spheres becomes more complex and
that a high intensity spot on the rear part starts to be evident.
In figure d) the formation of a very strong focusing is very pro-
nounced. This feature is the photonic nanojet. The electric field
is concentrated in a small volume at the interface between the
dielectric sphere and the air. For refractive index below 2 it lies
more outside the sphere while for n>2 it is located in the inner
part of the sphere. The increase in the electric field can be con-
sistent. In the displayed case up to a 25 increase compared to

the plane wave (and this is squared for the energy density).

Mie theory is very useful because it provides a theoretical framework
valid from the Rayleigh regime to spheres much bigger than the wavelength
like in the case of the photonic nanojet. Furthermore it constitutes a useful
tool since it can be use to analytically compute the solution of the modes in
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a microspheres without resorting to finite element methods, which are much
more computationally demanding.

2.2 Multiple scattering

Mie theory and, when applicable, Rayleigh scattering can provide the solu-
tion of an individual scattering event. In many real occurrences there is not
a single nanostructure that interacts with the light. A more frequent phe-
nomenon is the scattering of the light on many particles and the propagation
of electromagnetic radiation in a turbid medium. In such a material it would
be possible to calculate the scattered field with Mie theory and the superpo-
sition principle. However, in practice the number of scattering events is so
big that the problem becomes computationally heavy [59]. The field of light
propagation in multiple scattering media is vast, well explored and it can not
be treated fully in this chapter. Here, we give an overview of some important
aspects and provide the key definitions that can help the readers get their ori-
entation. A more thorough treatment can be found elsewhere [60][61]. The
simplest representation of a scattering media is a binary system: a medium
composed by two materials of different refractive indices n1, n2, the classic
case is air with some scatterers. A binary system composed of spherical par-
ticles of refractive index n2 in air (refractive index n1) is schematically rep-
resented in Fig. 2.5. The scattering strength depends on the arrangements
and sizes of the particles, the refractive index ratio [62]. In particular, if we
model the scattering as a sequence of individual scattering events, the scat-
tering would be the strongest if the sizes of the particles and the voids are of
the same order as the wavelength [63]. The scattering of a coherent wave by
such a disordered material results in a complex spatial distribution of inten-
sity both in reflection and transmission. This pattern is called speckle [64][65]
and a typical example of speckle is shown in Fig. 2.5. While a single realiza-
tion of a speckle pattern may be not particularly interesting, most often its
statistical properties are of a great importance [14][66].

How can we quantify the scattering strength of a material? In literature
two quantities are found [67][68]:

• the scattering mean free path ls which is defined as the average distance
between two scattering events.

ls =
1

ρσs
(2.26)

where ρ is the density of the scatterers in the medium.

• the transport mean free path l∗ that is the average distance that a pho-
ton travels in the turbid medium before his directions is completely
randomized. The two quantities are different because often a single
scattering event is not enough to randomize the direction of the scat-
tered light. In fact the two quantities are linked with the following:
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FIGURE 2.5: Sketch of multiple scattering in a binary material
composed by air of refractive index n1 and polydisperse spher-
ical particles of refractive index n2. The scattering mean free
path ls and the transport mean free path l∗ are also indicated.
On the right side a speckle pattern is displayed. We can see the
typical appearance with dark a bright spots given by the inter-

ference of the light scattered in the material.

l∗ =
ls

1− g
(2.27)

where g is the anisotropy factor, i.e. g = 0 for isotropic scattering and
g ≈ 1 is mostly forward scattering. As can be seen in the equation
above, l∗ > ls because in most cases it takes more than a single scat-
tering event to completely change the direction of propagation of the
light. The scattering mean free path ls and the transport mean free path
l∗ are schematically represented in Fig. 2.5.

2.2.1 Diffusive regime

If a multiple scattering material is much thicker than the transport mean free
path, then the light does not propagate in straight rays and the direction of
the light is deflected several times in the medium. The diffusion theory is
applicable in the following range:

ls << L kls > 1 (2.28)

The first requirement is rather clear: the sample has to be thick enough
to allow the light to undergo an adequate number of scattering events to
randomize its direction. The second one is states that the scattering mean
free path has to be bigger than the wavelengths of the material [28]. A typical
scenario in optics takes place upon propagation of visible light in a material
constituted by a dense assembly of high refractive index nanoparticles (for
example TiO2). For example, in a layer 1 mm thick with a transport mean
free path of 10 µm the direction of the light is randomized every l∗. In such
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a system, the unscattered light is exponentially suppressed in the material.
This corresponds to the part of the light which is not deflected and it is called
ballistic light in Fig. 2.6. The light that is scattered is called diffused light and
it is linearly attenuated with the propagation depth.

FIGURE 2.6: Sketch of light propagating in a multiple scattering
medium composed by a polydisperse distribution of spheres.
The light which stays in the original beam is called ballistic light
and its intensity decreases exponentially with the depth of the
material. The remaining optical power, which belong to the dif-

fused light, is deflected in the material.

Apart from the conditions in Eq. 2.28, there are some assumptions on the
multiple scattering process, that allow us to describe it as a diffusion process.
First of all, every scattering event has to be independent from the previous
one. Therefore, the direction and length of a each light step is memoryless,
allowing us to use the framework of the random walk to describe the motion
of light the in the material. Secondly, the scattering strength of the material
should be homogeneous which means that distribution of the step lengths
has to have finite moments. Based on these hypothesis, one can use the cen-
tral limit theorem and derive a diffusion equation for the energy density of
the light [69].

D∇2ρ(r) + S(r) = 0 (2.29)

where D represents the diffusion constant ρ the energy density and S is a
source term. This equation tells us that the energy density of light in a mul-
tiple scattering medium diffuses from a point to another, similarly to what
happens during Brownian motion of particles suspended in a liquid [70].
In practice, an individual ray of light is subjected to a random walk in the
medium. We can use the diffusion equation in the case of light impinging on
a slab to compute the total transmission.

T =
l∗(λ) + z0

L + 2z0
, z0 =

2
3

l∗(λ)
1 + Ri

1− Ri
(2.30)
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where L is the thickness of the sample, z0 is the extrapolation length, and
Ri is the internal reflectivity calculated with Fresnel laws [71][72]. In the limit
of L >> l∗, L >> 2z0 this equation can be rewritten

T =
l∗

L

(
1 +

2
3

1 + Ri

1− Ri

)
(2.31)

This equation is sometimes referred as Ohm’s law for light [73]. This is
in contrast to what happens in non-scattering materials, in which the atten-
uation is governed by Beer-Lambert law7 and the light is exponentially sup-
pressed in the medium [74]. In a multiple scattering material only a tiny frac-
tion of the light is non-scattered (the ballistic light) and obeys Beer-Lambert
law, however the total transmitted power which is constituted also by the
light that is diffused in the sample decreases linearly with the thickness, fol-
lowing the Ohm’s law for light (Eq. 2.31). The biggest limitation of the dif-
fusion approximation is that by considering the light as a stream of energy
density, completely disregards the wave nature of the light. In fact, it can not
explain coherent effects, i.e. the interference of the light with itself during
the propagation in the random medium [75]. One clear example of this is
given by the coherent backscattering [76][77]. This phenomenon is the peak
of intensity observed in the direction of the backscattering when the light
impinges on a multiple scattering medium.

2.2.2 Beyond diffusion

Let us consider again the second condition expressed by Eq. 2.28. It states
that the scattering mean free path of the material has to be bigger than the
wavelength of the light [28]. When the wavelength is comparable to the ls,
we can no longer consider every scattering event as independent (see para-
graph above) and this breaks one of the founding assumption of the diffusive
regime. In other words, for kls < 1 (known as Ioffe-Regel criterion) we en-
ter a regime in which the interference effects are dominant in the scattering
process [78]. The light is scattered before it can do one full oscillation. This
condition is so different compared to usual wave optics that it is hard to de-
velop a physical intuition of it. We can rewrite the Ioffe-Regel criterion using
the Eq. 2.26, and using the duality of wavelength and radius of the sphere
we can write

σ >
k
ρ
&

R
ρ

(2.32)

This toy model has a lot of limitations since it uses dilute scatterers to
evaluate strong scattering regimes. However, we can use it to understand
what size of nanoparticle would be the ideal to create a material whose mean
free path length would be short enough to break the diffusion regime. In the
graph on Fig. 2.7 we see that the Ioffe-Regel criterion is fulfilled when the
scattering cross section is greater than the radius of the nanoparticles over

7The first formulation of the law can be attributed to Pierre Bouguer in 1729, but it is usu-
ally attributed to Johann Heinrich Lambert and August Beer in late 18th early 19th century
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the density. The red line is plotted with an arbitrary ρ to illustrate the spectral
window where Anderson localization 8 could take place [79].

FIGURE 2.7: Spectral window for Anderson Localization. Scat-
tering cross section of a sphere illuminated by a plane wave
with wavelength 800 nm. On the right figure of the cover of
the book “50 Years of Anderson localization" to testify that the
this is a long-lasting field of research (in this case it refers to

localization of electrons) [80].

Thereby, an assembly constituted by scatterers with high refractive in-
dex and size of the order of r ≈ nλ. Under these conditions, we would
have the breaking of the diffusion approximation and the propagation of the
light would be hampered by self interference, a phenomenon called localiza-
tion. The localization is sometimes referred as Anderson Localization from
the physicist G.L. Anderson that wrote the first seminal work on electrons in
1958. After that, researchers fostered localization of photons in disordered
media in various geometries. 1D and 2D systems the localization is always
possible provided that the material is bigger than the localization length [27],
and has been experimentally measured [81][82]. This stems from the reduced
complexity that random walks have in 1D and 2D structures. For dimen-
sions d>2 localization should occur only over a critical level of disorder. This
started the quest for the material with the shortest transport mean free path
that would enable a disorder driven phase transition from diffusion to local-
ization [25][83]. The existence and understanding of 3D Anderson localiza-
tion of light is still heavily debated nowadays [84][85][86].

8Anderson localization, which is also known as strong localization, is the absence of dif-
fusion in a disordered medium. If was first introduced P.W. Anderson who applied this
concept to electrons moving in a semiconductor with impurities and disorder.
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2.3 Second-harmonic generation

When a light beam of frequency ω impinges on crystal with dielectric prop-
erties, the electric field induces a polarization that is a nonlinear function of
the field. To describe this process it is necessary to introduce the polarization
field beyond the linear approximation [9].

P(t) = ε0χ(1)E(t) (2.33)

P = P(1) + P(NL). (2.34)

P = P(1) + P(2) + P(3) + . . .

= ε0

[
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

]
,

(2.35)

The parameters χ(2),χ(3) etc. are the second- and third-order non-linear
susceptibilities. In the general case, they are second-rank tensors and they
are wavelength dependent. While all materials have the odd number sus-
ceptibilities, only a certain class of crystals display the even number tensors.
In fact, the even number tensor are present only when there is the breaking of
the inversion symmetry of the crystals. This happens in noncentrosymmetric
crystals, i.e. in crystals without an inversion center. Another important case
is given by the surfaces, in fact the interface between two media constitutes
a symmetry breaking that allows for second order effects [87]. The χ(2) ten-
sor, which has 27 components, can be contracted into a 6 x 3 matrix and this
allows us to rewrite P(2) in vectorial form:

P(2)
x (2ω)

P(2)
y (2ω)

P(2)
z (2ω)

 = 2ε0

d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36

 ·


E2
x(ω)

E2
y(ω)

E2
z(ω)

2Ey(ω)Ez(ω)
2Ex(ω)Ez(ω)
2Ex(ω)Ey(ω)

 ,

(2.36)
Than can be contracted into:

P(2ω) = 2ε0de f f E2(ω) (2.37)

This nonlinear response is responsible the conversion of some of the en-
ergy of the fundamental field into different frequencies. The most common
application of this phenomenon is second-harmonic generation (SHG) in which
a fraction of the light is converted into an output beam with twice the origi-
nal frequency 2ω. In the quantum mechanical picture two photons impinge
on the material exciting it into a virtual state, and the system relaxes back in
the ground state emitting a photon of 2ω.
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FIGURE 2.8: Energy diagram of the SHG. Thanks to the medi-
ation of the χ(2) the two red photons are combined into a blue

one.

This process is used to generate light at frequencies not easily available
with a conventional laser, in SHG microscopy and it is unique tool to charac-
terize crystalline materials. Another key application is spontaneous paramet-
ric down-conversion (SPDC) in which the pump generates radiation at two
lower frequencies ω1 and ω2 such that ω = ω1 + ω2. This process is some-
times called optical parametric generation and it is a key process in quantum
optics since it is used to produce entangled photon pairs and also consti-
tutes an excellent method to produce single photons. The outgoing photons
are called the “signal” and “idler”. SPDC is said to be spontaneous because
there is no input signal or idler field to stimulate the process. It is parametric
because it depends on the electric fields (and not just their intensities), im-
plying that there exists a phase relationship between input and output fields.
Down-conversion refers to that fact that the signal and idler fields always have
a lower frequency than the pump.

Assuming the undepleted pump approximation, following the calcula-
tion detailed in Boyd [9] we arrive to the result:

I2ω =
8ω3de f f I2

ωL2

n3ε0c2 sinc(
∆kL

2
) (2.38)

From Eq. 2.38 we learn that the intensity of the second harmonic grows
quadratically with the intensity of the pump. Also it is quadratically propor-
tional to the length of the crystal in which it is propagating. The last factor in
the equation accounts for the wavevector mismatch and it will be discussed
in the next section.

2.3.1 Phase matching

A key concept in the generation of SH is the phase-matching. When a laser
beam is propagating through a nonlinear crystal the second harmonic will be
generated along the propagation of the beam. In most material the refractive
index decreases monotonically with the wavelength (normal dispersion) and
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this means that the pump beam and the SHG travel with different speed and
they acquire a phase mismatch while propagating in the crystal.

∆k = 2k1 − k2 =
ω

c
(n(ω)− n(2ω)) (2.39)

This phase shift embodies the different velocities at which the fundamen-
tal and the SHG travel in the crystal. This leads to a phase difference between
the SHG generated in two different points in the crystal. If not properly ad-
dressed, this can result in destructive SHG interference at the crystal end.

The length at which the phase shift is
π

2
is called coherence length. After

this distance, the SHG starts destructively interfere and it completely cancels
out when the crystal is two coherence length long. This means that, in such
conditions, there is a maximum second harmonic that can be extracted from
the material, after one coherence length.

Lcoh =
π

∆k
(2.40)

FIGURE 2.9: Non phase matched SHG calculated for a crystal
with ∆k 6= 0.

In most crystals that are isotropic ∆k is only given by the wavelength de-
pendence of the refractive index of the material. Therefore, in most cases,
∆k 6= 0. This means that in a crystal the signal only grows over a certain
length and after that it just goes back. (This still preserves the energy, simply
the SHG destructively interferes and the energy flows back in the fundamen-
tal). This is scenario is plotted in Fig. 2.9. The simplest solution to counteract
this phenomenon is to minimize (or if better to nullify ∆k). This is usually
done in birefringent materials when operated at a specific angle and a spe-
cific polarization. As it can be seen in Fig. 2.10, ∆k = 0 means that the coher-
ence length diverges and this allows the SHG to grow monotonously in the
crystal. This is commonly done using, for example, barium borate crystals
(BBO).

In many materials it is impossible to obtain the phase matching because
simply there is no solution of the equation ∆k = 0, i.e. no angle can cancel ∆k.
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FIGURE 2.10: Perfect phase matching conditions make the SHG
intensity grow quadratically with the length of the crystal.

Quasi-phase-matched SHG grows with the same trend.

In these situation is possible to employ another strategy which is the quasi-
phase-matching (QPM). This strategy is based on engineering the material
flipping the crystals domain at each coherence length. This is represented
in the plot on the right of Fig. 2.10. Both perfect and quasi-phase matching
allow to produce second harmonic with intensity that scales quadratically
with the length of interaction.

2.4 Random quasi-phase-matching

Perfect phase-matching and quasi phase-matching rely on a certain degree
of order in that the wavelength and the polarization of the pump light have
to be fixed, and the temperature and the orientation of the crystal have the
be carefully controlled. This results in efficient SHG at the cost of being very
wavelength-specific. There exists another approach which goes in the direc-
tion of exploiting disorder rather than order. This scheme is called random
quasi-phase matching. It considers a disordered distribution of domains that
generates nonlinear waves with random amplitude and phase, under the ex-
citation of a pump beam. The interference of the SHG from the many random
domains counter-intuitively does not destructively interfere. On the contrary
the light generated from the disordered sources leads to a global second har-
monic, whose power scales linearly with the sample thickness.

ISHG ∝ N (2.41)

This linear scaling, whose properties have been investigated in recent
numerical studies, is a fingerprint of RQPM since it is in contrast to the
quadratic scaling of both phase-matched and quasi-phase-matched crystals.
Therefore at the cost of a lower efficiency, it is possible to have SHG from
crystals broadband and with a random polarization [39]. The counter-intuitive
fact that the random superposition of many disordered nonlinear sources
does not end up in destructive interference has been known since a long
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FIGURE 2.11: Sketch of multiple scattering material which is
constituted by noncentrosymmetric particles. In red there is the
impinging wavelength that is scattered in the material and in
blue the generated and scattered second harmonic. Both these
beam propagates and interfere in the material and result in lin-

ear (as shown in Fig. 2.5) and nonlinear speckle.

time. For example the second harmonic from powders of nonlinear crys-
tals were used to study the components of their nonlinear tensor (identifying
their crystal structure) [88]. Only more recently, this phenomenon has been
called random quasi-phase matching[39]. In Fig. 2.12 it is possible to ap-
preciate a that a sample of polycrystalline ZnSe can be more efficient than a
single crystal, since the SHG that scales linearly with the number of grain can
surpass the light generated by a single ZnSe crystal.

This process is one of the main focus of this thesis. It can generate second
harmonic both in transparent and multiple scattering materials. The combi-
nation of scattering and nonlinear generation in the a material is represented
in Fig. 2.11. Here, on top of the linear speckle that is generated by the in-
terference of the pump scattered by every nanoparticle, we have a nonlinear
speckle which results from the interference of the generated second harmonic
by every χ(2) nanoparticle. It is interesting to note that the nonlinear speckle
is present even in absence of any scattering in a fully transparent material.
Since it is a result of a random intereference, the scattering of the fundamen-
tal and/or the second harmonic simply adds a random phase in the process,
therefore does not prevent the global second harmonic generation. A direct
way to visualize how this random interference leads to a global signal can be
given representing the SHG vector in the complex plane. In particular, if we
consider the SHG generated by a 1D array of randomly oriented nonlinear
crystals, we can compute the interference adding N phasors of SHG. They
can be placed in the complex plane. In this case the SHG at the end of the
complex system is represented by a random walk in this plane. The single
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FIGURE 2.12: SH intensity as a function of the sample thick-
ness. The scaling of a ZnSe polycrystal (averaged over different
configurations of disorder) grows linearly with the number of
grains. In the inset the oscillation of a single ZnSe crystal. This
graphs shows that the disordered emission can outperform the
a single crystal. Image reprinted with permission from Nature.

realization leads to a random result, but the average of many disorder config-
urations will have a certain average distance from the origin. (This is similar
to the problem of the 2D walk of the drunken man, which will find himself
after a certain time at a distance from the start proportional to the number of
steps taken). This can be seen in Fig. 2.13 where we display the SHG from
two different random crystals.

The single realization can fluctuate a lot, however after averaging over
many realization of disorder (ensemble average), we retrieve the linear de-
pendence of the intensity of the SHG with the number of the grains. More-
over, we can picture every speckle grain the nonlinear speckle being the re-
sult of an individual random walk in this phase space. Therefore, it will
happen to have more constructive interference, leading to a bright spot in
the speckle, and more destructive in other points of the image, resulting in a
darker spot. Moreover this model can explain the origin of a speckle pattern
in absence of scattering. In Fig. 2.14 we can see how a pump beam propagat-
ing in a transparent disordered and nonlinear material can produce a SHG
speckle. Each small domain along the propagation of the fundamental pro-
duces second-harmonic light with amplitude and phase randomized by its
position and orientation. If we add all the contribution from the domains
at the end of the disordered assemblies we have a signal which is the inter-
ference of all the grains. The two examples displayed are from an assembly
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FIGURE 2.13: Simulation of a disordered crystal (1D). In red
and blue are a single realization of disorder. In black there is
the average result over 1000 realization from which we can see
the clear linear trend. The simulation is obtained with the code

presented in Appendix A.

with high efficiency and an assembly with mostly destructive interference.
The final image is produced with the code detailed in Appendix A.
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FIGURE 2.14: Local electric field in a transparent disoredered
1D crystal. Two different configurations of disordered are pre-
sented in the left and right side. The fundamental wave trav-
els in the crystal without being significantly deflected (birefrin-
gence is ignored). The SHG generated in each single domain is
plotted on the second raw where we can see that each contribu-
tion is randomly oriented. The total SHG represents the coher-
ent sum of the locally generated fields. On the left we have a
case that is mostly constructive while on the right the random
interference generates a weak global signal. If we consider a
3D system made of these grain in parallel and we monitor the
output after the last domain, we reconstruct a speckle pattern.
Five different examples are plotted in the last raw. This simple
model can explain the appearance of a SHG speckle even in ab-
sence of scattering. The SHG speckle stems only from the ran-
dom interference of the second-harmonic from randomly ori-

ented and polydisperse in size domains.
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Chapter 3

Materials and Fabrication

In this chapter we describe first the two main materials used in this work
which are lithium niobate (LiNbO3) and barium titanate (BaTiO3). We dis-
cuss their most important properties and give their refractive indices in the
visible range. We highlight their technological relevance linking it to specific
material parameters, such as the coefficients of the χ2 tensors for the non-
linear properties. We detail the synthesis of the BaTiO3 nanoparticles and
LiNbO3 nanocubes with chemical hydrothermal and solvothermal methods.
These fabrication approaches can produce mono-crystalline structures down
to sizes of the order of tens of nanometers. The produced particles have usu-
ally a quite broad size distribution. For materials that are hard to fabricate
with top-down methods, the chemically synthesized nanoparticles are of-
ten one of the only viable approaches. The main challenge to exploit these
particles consists in assembling them in structures with targeted function-
ality. We describe the emulsion-templated fabrication used to assemble the
nanocrystals into microspheres and the fabrication employed to assemble the
nanocrystals in a slab geometry. These procedures can control the global ge-
ometry of the assembly and do not control the orientation of the crystalline
axis of the individual nanoparticles. The Brownian motion of the nanopar-
ticles in solution ensures that they have a random orientation. One of the
goal of this work is to exploit the intrinsic disorder that this fabrication en-
tails. In the end, we mention briefly how the fabrication of the microspheres
can be upgraded with microfluidics to target specific sizes of the assembly.
In particular, we use microfluidics to assemble monodisperse microspheres
composed by titanium dioxide (TiO2) with nanodiamonds.

3.1 Lithium niobate and barium titanate

Lithium niobate and barium titanate are ferroelectric metal-oxides. They can
have different crystalline structure, two non-centrosymmetric crystal struc-
tures are displayed in Fig. 3.1. Many of their properties are similar: they
have >2 refractive index, and wide transparency window from the near ul-
traviolet (NUV) to the near infrared (NIR). Some of the properties are sum-
marized in Table 3.1. They are both birefringent with ordinary and extraor-
dinary refractive indices displayed in Fig. 3.2. Both are chemically inert ma-
terials, which makes them very robust, with high damage threshold since
they can withstand intense laser pulses. This robustness makes them also
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FIGURE 3.1: Crystalline structure of tetragonal barium ti-
tanate and hexagonal lithium niobate. Both crystals are non-
centrosymmetric in that the titanium and niobium are dis-
placed from the center inducing a permanent polarization on

the crystals.

FIGURE 3.2: Refractive index of LiNbO3 and BaTiO3 in the vis-
ible and NIR spectrum. Both crystals are birefringent therefore

have an ordinary and an extraordinary axis [89][90].
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Material Crystal structure Bandgap (eV) Electro-optic coefficient (pm/V)
BaTiO3 Tetragonal 3.5 8 to 1640
LiNbO3 Hexagonal 4 6.7 to 32.7

TABLE 3.1: Properties of tetragonal BaTiO3 and hexagonal
LiNbO3 The bandgap values are taken from [95]. The electro-
optic coefficient of BaTiO3 from [95], and of LiNbO3 from [96].

very hard to etch, and for a long time they have not been used in any top-
down fabrication process. In the last years, LiNbO3 is becoming much more
popular since it started to be available in the useful platform of lithium nio-
bate on insulator (LNOI). This new platform, together with a step forward in
the fabrication processes, has allowed to create photonic integrated circuits
in LNOI [91][92]. Recently also thin films of mono-crystalline BaTiO3 are
became available thanks to molecular-beam epitaxy (MBE) [93], and pulsed
laser deposition [94].

Besides their aforementioned linear optical properties, BaTiO3 in tetrago-
nal form and LiNbO3 in hexagonal form display also nonlinear optical prop-
erties because they are non-centrosymmetric. This means that they have a
non-zero second-order susceptibility tensor χ(2). This fact allows them to
display, for example, the Pockels effect which is a very interesting property
stemming from the electro-optic coefficient. It links the applied voltage with
the change in the refractive index of the material and has a lot of applica-
tion for the production of memories or active devices [93]. Here lies another
substantial difference between the two materials, in fact BaTiO3 has an elecro-
optic coefficient two orders of magnitude greater than LiNbO3, as can be seen
in Table 3.1. The most important parameters for the work presented in this
thesis are the components of the χ(2) tensor which are the ones responsible
for second-harmonic generation. They are summarized in Eq. 3.1 and Eq.
3.2.

dBaTiO3 =

 0 0 0 0 d15 0
0 0 0 d15 0 0

d31 d31 d33 0 0 0

 with


d15 = −17.0 pm/V
d31 = −15.7 pm/V
d33 = −6.8 pm/V

(3.1)

dLiNbO3 =

 0 0 0 0 d21 −d22
−d22 d22 0 d31 0 0
d31 d32 d33 0 0 0

 with


d22 = +2.1 pm/V
d31 = −4.2 pm/V
d33 = −27.0 pm/V

(3.2)
We can see that the d33 component of the tensor of LiNbO3 is bigger than

the others and in specific crystal orientation this is the main component ex-
ploited for second-harmonic generation.
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FIGURE 3.3: Characterization of the BaTiO3 nanoparticles from
Nyacol. a) SEM images of BaTiO3 nanoparticles deposited on
a substrate. b) Distribution of sizes of the nanoparticles mea-
sured by dynamic light scattering. Image adapted with permis-

sion from V. Vogler-Neuling PhD Thesis [98].

3.2 Synthesis of the nanoparticles

The barium titanate nanoparticles used in this work are commercially avail-
able from Nyacol (BT801, 25 wt. % in water, diameter of 50nm, tetragonal
phase). The size of the nanoparticles was measured with SEM (42 ± 1 nm)
and with dynamic light scattering (57 nm)1, as can be seen in Fig. 3.3. The
potential of the BaTiO3 nanoparticles to assemble photonic structures is de-
scribed in [97].

The lithium niobate nanoparticles were synthesized by the group of V.
Buscaglia in ICMATE (Genoa, Italy). They were fabricated through solvother-
mal synthesis starting from 3 g of Nb2O5 and 0.689 g of LiOH in 60 cc of ethy-
lene glycol. The suspension was ultrasonicated for 5 min and then poured
in a PTFE-lined stainless-steel acid digestion bomb (model PA4748, volume
120 mL, Parr Instrument Company). The product of the reaction was hy-
drothermally treated at 250 C for 70 h. This resulted in a powder suspen-
sion that was cooled down, washed several times with water and freeze-
dried. The powder obtained contained LiNbO3 rhombohedra with sizes
ranging from 100 nm to 400 nm. We refer to these nanoparticles with the
term LiNbO3 nanocubes. These nanoparticles have been extensively studied
in the PhD thesis of Flavia Timpu [99], which exploited their properties as
Mie resonators using them as nanoantennas [100].

3.3 Emulsion-templated assembly

Microspheres of different materials have a variety of potential applications,
from optical resonators [53][101], to microlenses [102], and biological probes

1The discrepancy can be explained because the dynamic light scattering measures the
hydrodynamic radius, i.e. the radius that the particle assumes in the solution including the
functionalization. Therefore the size is expected to be bigger than the one measured with the
SEM.



3.3. Emulsion-templated assembly 39

[103]. In this work one of the goal is to assemble non-centrosymmetric nanocrys-
tals with nonlinear properties into microspheres. To assemble the nanoparti-
cles into microspheres we adopted a technique called water-in-oil emulsion-
templated assembly [104][105]. This process exploits the immiscibility of two
liquids, for example water and oil. By placing a small amount of water in oil
and shaking it is possible to create an emulsion in which small droplets of
water are embedded into the oil phase. If our nanoparticles are stable in wa-
ter, it is possible to exploit this phase separation. The solution with water
and nanoparticle is called disperse phase. The oil part of the emulsion is called
continuous phase and in all our fabrication process it was Hexadecane. Addi-
tionally, the continuous phase has to be additioned with a surfactant2. This
is a viscous organic compounds constituted by amphiphilic molecules (every
molecule has a hydrophobic and a hydrophilic group).

Once the solution is shaken and it forms an emulsion, the surfactant forms
a protecting layer around the droplets of nanoparticles and water in the
oil, lowering the surface tension between the liquids. After waiting a few
hours, the water diffuses out from the droplets into the continuous phase,
the droplets shrink, and the water/oil interfaces compacts the nanoparticles
into a microsphere [107], as we can see in Fig. 3.4a,b. This process can be
controlled with temperature, pressure or with microwave irradiation [108].
During the diffusion time of water in the oil, the Brownian motion of the
nanoparticles in water, ensures that the position and orientation of the parti-
cles is randomized. The result of this process is schematically illustrated in
Fig. 3.4c. The assembling part of the process happens on a glass slide at a
controlled temperature.

3.3.1 Microspheres of BaTiO3 nanoparticles

We realized micrometer-sized spherical structures by the emulsion-templated
assembly of colloidal BaTiO3 nanocrystals (5% polydispersity, 50 nm diam-
eter). 10 µl of aqueous dispersion (2 wt%) of BaTiO3 nanocrystals is mixed
with 2.5 ml of surfactant-loaded (SPAN80 1 wt%) hexadecane. The solution
was then emulsified by mechanical shaking to generate polydispersed water-
in-oil droplets. Afterwards 100 µl of emulsion was transferred onto a glass
substrate and placed in the oven at 80◦ C for 12 hours. During this time
the water diffusion in the hexadecane reduced the size of the droplets and
the water/oil interfaces acted as dynamic templates for the assembly of the
nanocrystals into larger microspheres. Their size distribution depends on the
size dispersion of the droplets and on the concentration of the nanocrystals
in water. After the baking in the oven, the residual surfactant was removed
by gentle washing with hexane. As can be seen in Fig. 3.5, we generated mi-
crospheres with diameters from 0.5 µm to 20 µm. The assembled structures
have a purely spherical geometry over the whole size range and the surface
roughness is solely determined by the finite size of the nanocrystals. The mi-
crospheres are by kept surface forces. Since BaTiO3 has a Curie temperature

2The word surfactant comes from surface-active agent and was created to specify the role
of these compounds which control the surface tension between two liquids.
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FIGURE 3.4: a) Representation of the BaTiO3 nano-crystals dis-
persed in water. They have different sizes and orientations,
which is indicated by the arrows. The SHG efficiency of the
nano-crystals depends on the size and orientation with respect
to the incoming beam. b) Sketch of the emulsion-driven assem-
bly procedure. c) Representation of an assembled micro-sphere
highlighting the randomness in the sizes, positions and orien-
tations of the nano-crystals. d) SEM image of a BaTiO3 micro-
sphere assembled on a silicon substrate for better image quality.

Image adapted from [106].
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FIGURE 3.5: SEM images of BaTiO3 microspheres of different
sizes. Each individual fabrication can produce thousands of

spheres on a substrate.

of 120◦ C [109], the microspheres were not sintered. Exposing the nanocrys-
tals to much higher temperatures could result in a non-reversible transition
to the cubic crystalline phase and in the loss of non-centrosymmetry. Re-
markably, they are robust and appear free from deformation several months
after fabrication. In Fig. 3.5 we report some SEM images of cluster of spheres
of different radii, to show that their surface quality is maintained over differ-
ent sizes. In fact, in the range of radii between 0.5 µm to 20 µm, no difference
can be observed. In this work, we studied the optical properties of individual
microspheres. However, the tendency of these microsphere to cluster could
have some application in fundamental studies [110][111]. Moreover, the op-
tical coupling between spherical microresonators can have application in for
low-loss light guiding over a long distance [112].

3.3.2 Microspheres of LiNbO3 nanocubes

We fabricated the disordered microspheres by using the LiNbO3 nanocubes
described in Section 3.2 and adapting the recipe used for BaTiO3 microspheres.
We used emulsion-templated assembly technique; we mixed 10 µl of aqueous
dispersion of the nanocubes (2wt%) with 1 ml of surfactant loaded (10wt%
SPAN 80) hexadecane, followed by an emulsification process obtained through
mechanical shaking. This process generates a polydispersed distribution of
water-in-oil droplets filled with the nanocubes, which are collected and then
deposited on a glass substrate with a pipette. The water in the droplets dif-
fuses into the oil, shrinking the size of the droplets and forcing the nanocubes
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to assemble into microspheres, as depicted in Fig. 3.6a. During this pro-
cess and similarly as what occurred with BaTiO3 nanoparticles, the Brown-
ian motion of the nanocubes in the droplets ensures that each nano-cube is
positioned and oriented randomly within the microsphere. As can be seen in
Fig. 3.6b the microspheres in dark field are opaque white, suggesting that the
light is multiply scattered in the structure. Fig. 3.6c displays a SEM image
of a microsphere made of nanocubes. We can see that the structure is rough
and the system is porous.

The obtained microspheres have diameters ranging from 2 µm to 40 µm.
In Fig. 3.7 we have two examples of microspheres of different sizes. On
the left side, a microsphere of roughly 3 µm in diameter, shows the polydis-
persity of sizes of the nanocubes, as well as their random orientation in the
assembly.

3.3.3 Microspheres of TiO2 nanoparticles and nanodiamonds

Diamond containing nitrogen vacancy is a fluorescent emitter which is avail-
able in forms of nanoparticles that are usually referred to as nanodiamonds
[114]. They have promising properties for bio markers and quantum sources.
To better exploit their properties, it is crucial to couple the nanodiamonds to
optically resonant structures [115]. In our case we used the emulsion tem-
plated assembly to fabricate TiO2 microspheres with a small percentage of
nanodiamond, to realize bottom-up resonators. We tried to exploit the optical
modes given by the geometry to influence the emission of the nanodiamonds.
To do that, we adapted the emulsion-templated fabrication explained in the
previous sections for the new purposes. As is depicted in Fig. 3.8 the dis-
persed phase is composed by water with nanodiamonds (15mg/ml in deion-
ized water, 100 nm average particle size, 3 ppm NV centers, Sigma Aldrich)
and TiO2 nanoparticles (Titanium Oxide (Anatase), 15 nm average particle
size, dispersion in water, 15 wt%, Nanostructured & Amorphous Materials Inc.
Hexadecane (95%, Alfa Aesar) with a mixture of two surfactants, Span 80 (Sor-
bitan monooleate, Sigma Aldrich) and Tween 60 (Polyoxyethylen(20)-sorbitan-
monostearat, Sigma Aldrich) was used as a continuous phase. The concentra-
tion of surfactants in the continuous phase was 4wt% Span 80 and 1wt%
Tween 60. 10 µl of nanoparticle solution and 1 ml of surfactant loaded hex-
adecane were filled into a 2 ml Eppendorf and emulsified by shaking. The
emulsion was deposited onto a glass substrate and put in the oven for 4 hours
at 80◦ C. With this technique it is possible to have full control the concentra-
tion of the nanodiamonds in the microsphere. As can be seen in Fig. 3.8b
the resulting assembly are very homogeneous and under the dark field mi-
croscope they appear of light blue color. From the SEM image in Fig. 3.8c
we see a microsphere with nanodiamonds on the surface. To study the in-
ternal structure and composition, we cut the microsphere with focused ion
beam milling, revealing the internal structure. We see in Fig. 3.8d which is
SEM collecting the backscattered electrons that some nanodiamonds are ran-
domly distributed in the volume of the sphere. The dark appearance tells us
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FIGURE 3.6: Fabrication of the LiNbO3 microspheres. a) Princi-
ple of the emulsion-templated assembly of the LiNbO3 spheres.
b) Dark-field microscopy image of an assembled microsphere
obtained with a 50x apochromat objective. The white appear-
ance suggests that the light undergoes multiple scattering in
the microspheres. c) Scanning electron micrograph image of an
assembled microsphere, which was also used to precisely mea-
sure the volume of the microspheres. This image is adapted

from [113].
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FIGURE 3.7: SEM images of two microspheres made of LiNbO3
nanocubes. The spheres are rough and porous because of the
constituting nano-cubes are not small enough to form a smooth

surface.

that the element has a lower atomic weight compared to titania (compatible
with the carbon of the nanodiamonds).

3.3.4 Spin coated nanodiamonds

In Chapter 6 we use spin coated nanodiamonds on a glass sample to measure
the second-order correlation function g(2). To do that we employed nanodi-
amonds that contained on average a single NV center (Carboxylated 20 nm
Red Fluorescent Nanodiamond in DI water, < 1ppm NV center from Adamas
Nano). To fabricate slabs with different concentration of nanodiamonds per
unit area we used different spin coating parameters. The recipe that was em-
ployed was 50 rpm/m of acceleration and 2000 rpm of velocity for 2 minutes.

3.3.5 Monodisperes TiO2 microspheres with microfluidics

Up to this point, we have been interested in producing polydispersed spheres.
However, for many applications it would be of great importance to control
the size of the microspheres. This is not possible with the mechanical shaking
of the Eppendorf or by using a vortex to shake the emulsion. Nonetheless,
there are established techniques in materials science that allow to fabricate
monodisperse microspheres by emulsions assembly. This whole branch of
material since is called microfluidics and it involves the use of small chan-
nels to control the forces acting on fluids at the microscale. We tested this
possibility in collaboration with the Laboratory for Soft Materials and Inter-
faces of Prof. Lucio Isa. In Fig. 3.9, it is reported a picture of the microfluidics
circuit that we used. It consists of a T-junction for two-phase mixing. This
device can generate droplets of different sizes that can be controlled with
the flow rate. The dispersed phase is pushed from the left and crosses the
continuous phase that flows from top to bottom in the picture. This flow at
constant speed can create highly monodispersed droplets. If we use the con-
tinuous phase and dispersed phase described in the previous section, we can
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FIGURE 3.8: a) Sketch of the emulsion templated assembly fab-
rication of hybrid sphere with a matrix of TiO2 and vairable
concentration of nanodiamonds. b) Dark field image of a hy-
brid microsphere, the ligth blue color stems from the Rayleigh
scattering of the 15 nm titania particles, the ring comes from the
illumination. This is possible because the sphere is very homo-
geneous and interact with the light like an effective medium, i.e.
like a spherical microlens. c) SEM image of the microspheres,
the white dots on the surface are the nanodiamond. d) Cross
section of the sphere obtained by FIB and with the backscat-
tered electrons. The dark spot here corresponds to the white
ones of the image in c). The brightness is linked to the atomic
weight of the element, therefore the carbon in the nd scatters

less the electrons compared to TiO2.
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FIGURE 3.9: a) Picture of the microfluidics setup used to pro-
duce TiO2 microspheres. Photograph of the T-junction mi-
crofluidic setup used to fabricate the microspheres. The dis-
persed phase of water and TiO2 nanoparticles flows from left
to right and the continuous phase of surfactant-loaded hexade-
cane from top to bottom. This process generates the droplets
that can be seen in the right part of the image. b) SEM image
of many microspheres. c) Close up SEM image on a cluster of

microspheres which are smooth and monodispersed.

fabricate microspheres of arbitrary fixed size. We tested this fabrication with
spheres of TiO2 and this resulted in the microspheres showed in Fig. 3.9.
Employing microfluidics enables to create microsphere of excellent surface
quality and with controlled size to target specific properties.

3.4 Slabs assembly

As useful as spherical geometry can be, having a flat layer (or slab) of a given
material is essential for many applications. The physics in slab is more eas-
ily modeled with analytical approaches and even faster simulated. For these
reasons, we developed a recipe to assemble the LiNbO3 nanocubes into slabs.
Unfortunately, a simple drop-casting method is not sufficient because in a
droplet drying on a flat hydrophilic surface, a faster evaporation occurs at
the edges of the droplet and this generates an outward flow responsible for
the accumulation of the solute at the borders [116]. In our case this would
have produced rings of nanocubes and not the flat layer that we were aim-
ing to. This phenomenon is known as the coffee-ring effect [117][118]. We
assembled the nanocubes into slabs by drop deposition and solvent evapo-
ration. An aqueous suspension (2wt%) of the LiNbO3 nanocubes was mixed
with 30% polyvinyl alcohol and deposited over a glass substrate framed with
hydrophilic tape, as depicted in Fig. 3.10. The sample was placed onto a
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FIGURE 3.10: Fabrication and thickness characterization of dis-
ordered LiNbO3 slabs. a) Schematic of the inverted meniscus
technique to avoid the coffee ring effect. The contact angle be-
tween the liquid and the frame ensures a uniform deposition
in the center of the sample. b) Top view of a typical sample.
Prior to the deposition, the substrate was cleaned with acetone
and ethanol, followed by 10 min of plasma cleaning. The white
circle is the slab and the black frame around it is the tape. The
slab is unsealed from the top. c) SEM image of the slab surface
composed of nanocubes of LiNbO3. d) 2D map of the thickness
of the slab measured by profilometry technique. e) Measured
thickness along the white dashed line reported in d) with a
close-up on a smaller region of 0.1 mm. The sample can be con-
sidered flat on the length scale of the beam diameter (30 µm).

Adapted from [113].
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horizontal substrate holder within an isolating box filled with ice water to
keep the sample at 0◦ C. After 36 hours, the nanocubes were deposited and
the water had evaporated. We prevented the coffee ring effect by adding a
frame around the droplet, which ensured that the meniscus of the suspension
stayed concave during the evaporation of the water. This inverted meniscus
technique made the suspension evaporate first in the center of the droplet
such that the resulting internal capillary flow carried most of the nanocubes
towards the center of the droplet where they deposited. Under visible light
illumination, the slabs have the white appearance that is typical of multiple
scattering media, as can be seen in Fig. 3.10b. In Fig. 3.10c a SEM picture
of the surface of the slabs to show a uniform packing of the nanocubes. The
measurement of the thickness of the slab was performed with profilometry.
Thanks to this technique it is possible to realize a 2D scan of the thickness
of the sample over a large area (contrary to what is usually achievable with
atomic force microscopy). The 2D map is presented in Fig. 3.10d, with the
plot over a line displayed in Fig. 3.10e. We can see that the thickness changes
smoothly with the lateral size of the sample, such that it can be considered
flat on the length scale of tens of microns. However different thicknesses can
be obtained by translating the sample with respect to the laser beam.

3.5 Measurement of the filling fraction

To study how the nanoparticles are assembled in the microspheres we cut
them with focus ion beam (FIB) milling. This allowed us the see the interior
of the microsphere and to measure the filling fraction by image analysis of
the cross section. The images are taken with the SEM with the same FIB-
SEM NVision40-Zeiss. To minimize the local charging effects, the sample
was previously covered with a 3 nm layer of platinum that was sputtered in
the deposition chamber Elios600i. To achieve uniform deposition the sample
was mounted on a planetary stage during the sputtering. The cross section
of a microsphere of about 3 µm of diameter is shown in Fig. 3.11a. The image
is tilt-corrected in the vertical direction to preserve the proportions. The im-
age is then binarized through the adaptive Otzu algorithm [119], through the
function IMBINIRIZE, which returns 0 for the empty space and 1 for a pixel
filled by a nanocrystal. The high contrast image is shown in Fig. IMBINI-
RIZEb. A circular region of interest was selected starting from the center of
the cross section with different radii. The filling fraction ff is measured as
f f = N f ull/NTOT. ff was measured ad different radii to test if the porosity
was homogeneous in the assembly. This measures displayed in Fig. 3.11d
shows that the filling fraction is roughly constant in the volume with a value
of f f ≈ 0.55. The same procedure was applied to 5 different spheres with
radii in the range 1-5 µm, resulting in similar results. This ff is consistent
with the limit given by the random close packing which are in the range 50-
70% [120][121]. The value of the filling fraction is fundamental for optical
studies since it is closely linked with the effective refractive index.
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FIGURE 3.11: Filling fraction study on the microspheres. SEM
image of a FIB cut of a microsphere. b) Binarized image for
different radii. The algorithm used is Otzu algorithm [119]. c)
Displayed binarized cross sections. The filling fraction mea-
sured with this technique is 0.55. d) Measured filling fraction

as a function of the radius of the selection region.
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3.5.1 Effective refractive index with the Maxwell-Garnett mix-
ing rule

When dealing with a macroscopic composite material, it can be convenient to
describe some of its properties as if it was an homogeneous medium. These
models are called effective medium approximations or effective medium the-
ories. In the field of optics, one of the prominent application of these homog-
enization theories is the concept of effective refractive index ne f f . In practice,
under some conditions it is possible to treat a composite system as an homo-
geneous medium with an effective refractive index. The advantage of using
an effective-medium theory lies in its simplicity and in the possibility to de-
scribe the optical behaviour of a complex medium with a single parameter
[122]. In general, effective-medium mixing formulas are expected to work
well for diluted composite media with a low index-contrast [123]. However,
when the size of the composite medium gets smaller (e.g. nanoparticles clus-
ters, meso-crystals), the main requirement is to have individual nanoparti-
cles with an optical response dominated by the electric dipole term [124].
In our case, BaTiO3 nano-crystals have a full dipole behaviour, with a size
parameter x ≈ 0.3 (Rayleigh scattering regime), and the effective-medium
approximation is a viable solution. On the contrary, the microspheres assem-
beld with LiNbO3 nanocubes can not be described with an effective medium
approach. In fact, the approximation gets weaker when light scattering from
the constituent particles/enclosures is not negligible. In such a case an exact
solution of Maxwell’s equations is required.

We calculated the effective refractive index of the assembled nanocrystals-
air composite with the Maxwell-Garnett3 mixing rule is reported in Eq. 3.3,
with n˘ the average refractive index of bulk BaTiO3 and f f the nano-crystals
filling fractions of the composite [125]. The wavelength-dependent effective
refractive indices calculated at different filling fractions are shown in Fig.
3.12.

n2
eff(λ) =

1 +
1 + 2 f f

3
(n2(λ)− 1)

1 +
1− f f

3
(n2(λ)− 1)

(3.3)

We employed the MG model, and not other effective-medium mixing
rules as the Brugmann’s rule [125] because MG provides a slightly better es-
timation of the effective refractive index for small and packed systems [123].

3.6 Declaration of personal contribution

The idea of the fabrication of the microspheres through the emulsion-templated
assembly was the result of a collaboration between Dr. Romolo Savo, who
started the project, and Prof. Lucio Isa and Michele Zanini (from ETH group

3James Clerk Maxwell Garnett (1880–1958) was the son of physicist William Garnett, who
named his son after his friend James Clerk Maxwell the renowned physicist.
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FIGURE 3.12: Wavelength-dependent effective refractive in-
dices for the BaTiO3-air composite calculated with the Maxwell-
Garnett mixing rule at different filling fractions. Assembled
micro-spheres have a refractive index corresponding to ff =0.55.

of soft materials and interfaces). My contributions were the development of
the actual recipe for the BaTiO3 nanoparticles (type and quantity of surfac-
tant, temperature and timing of procedure, etc...), the FIB milling and the
profilometry. The fabrication of the LiNbO3 microsphere was adapted by
Jolanda Müller during her master thesis. The hybrid microspheres with TiO2
and nanodiamonds was developed with the contribution of Andrea Schei-
degger during her master project. The microfluidics assembling was done by
Dr. Minghan Hu (from ETH group of soft materials and interfaces). The dis-
ordered slabs of LiNbO3 nanocubes were fabricated by Simeon Richter under
Dr. R. Savo supervision.
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Chapter 4

Mie driven random
quasi-phase-matching in BaTiO3
microspheres

In this chapter we study the second-harmonic generation from bottom-up
microspheres of BaTiO3. The fabrication of the microspheres is presented in
Chapter 3. The goal is to show that it is possible to couple the SHG obtained
through random quasi-phase-matching with resonances given by the spheri-
cal geometry of our assemblies. We begin by providing the context of nonlin-
ear generation in disordered materials, highlighting the advantages and the
disadvantages of exploiting a disordered structure over an ordered one. This
scheme is called random quasi-phase-matching (RQPM). After the context is
given, we present the linear measurements on the microspheres. We show
that the linear scattering cross section and the internal energy of the bottom-
up microspheres can be matched with the results obtained through effective
medium approximation combined with Mie theory (effective medium Mie
model, EMM) as well as with the finite element method simulations (with
COMSOL). These results verify that the homogenization theory can be ap-
plied to our microspheres and that the quality of the fabrication is good
enough to sustain resonances.
Next, we show the measurements of the second-harmonic signal from the
spheres. To pump the assemblies we use a femtosecond pulsed Ti-Sa laser
in the visible. We provide evidence of the nonlinear generation measur-
ing the quadratic power scaling and the spectrum of the emitted light. We
present, then, the images of the SHG from the microspheres both in the real
and in the Fourier plane and discuss different properties of the emitted light,
such as the nonlinear speckle and the dependency on the input polarization.
Furthermore, we show the linear dependency of the SHG on the volume of
the spheres, which is one of the fingerprint of random quasi-phase-matching
even though it was never shown from sample with spherical geometry. To
highlight the effect of the Mie modes in the spheres, we measure the SHG
sweeping the pump wavelength; we emphasize the broadband emission and
the modulation given by the resonances of the pump in the assembly. To
conclude, we adapt the model of the random walk to include resonances and
we use it to study the efficiency of the random quasi-phase-matched SHG
in comparison with perfect phase-matching and quasi-phase-matching for
crystals of the same size using the code described in Appendix A. The results
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presented in this chapter are based on [106].

4.1 State of the art

Well-ordered noncentrosymmetric crystals are widely used to generate co-
herent light at frequencies at which laser light is unavailable [9]. In fact,
thanks to the high coefficients of the χ(2) tensor, they allow for efficient three-
wave mixing such as second-harmonic generation and spontaneous para-
metric down-conversion [126]. These light sources have numerous appli-
cations in a wide range of fields including spectroscopy [54], bioimaging
[127][128], and ultrafast optics [35]. More recently, noncentrosymmetric crys-
tals became one of the leading materials for the generation quantum states of
light [129–131]. To generate efficiently light at new wavelengths the pure
crystals have to be properly handled. In fact, the emission is efficient only if
the new waves generated by the different atoms in the crystal interfere con-
structively. These constraints are known as phase-matching conditions and
they are a consequence of momentum conservation. The phase-matching
control is usually achieved by perfect phase-matching in birefringent crystals
[132], quasi-phase-matching in periodically poled crystals [133], or through
modal phase-matching in waveguides [134]. All of these phase-matching
schemes require the control of the temperature as well as the polarization of
the pump. Most importantly, by fulfilling these conditions the resulting de-
vice has wavelength-dependent performances. In practice, if we change the
pump wavelength, we would need to change the angle of the birefringent
bulk crystal to maintain the phase matching (and for certain crystals there
might be no angle that solves the problem). For quasi-phase-matching and
modal phase-matching there is no flexibility at all since the sample is fab-
ricated to target a single wavelength of operation. High-order crystals are
therefore not the ideal platform for broadband or widely tunable applica-
tions. For these reasons, solutions that relied on a different mechanism were
investigated [11]. One viable strategy is to employ a crystal smaller than
the coherence length and boost its emission by coupling it to a dielectric or
a plasmonic resonator [100, 135–137]. In all these cases however, the opti-
mization of the nonlinear generation relies on a resonant mechanism, which
usually provides wavelength-specific performances that hampers the use of
χ(2) sub-coherence length monocrystals for widely tunable applications.
The approach that we discuss in this thesis is very different, it exploits the
disorder of a random distribution of χ(2) crystals to generate second-harmonic
light. As was proposed by Baudrier-Raybaut et al. [39], a polycrystalline
disordered material, with single-crystal domains with random orientation,
random shape and random size can be used as a platform. Thanks to the
disorder, the nonlinear light generated in each domain interferes with a ran-
dom phase. This process is, counterintuitively, non-destructive, but gives rise
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to a global signal that scales linearly with the number of domains. This ap-
proach is called random quas-phase-matching (RQPM) and was also theoret-
ically studied by Morozov et al. [138] (which called it stochastic quasi-phase-
matching). So far RQPM has been realized mostly in in disordered polycrys-
tals with domains with the typical sizes of tens of microns. Based on these
transparent polycristals it was possible to fabricate polycristalline lasers [40],
and disordered optical parametric oscillators (OPOs) [41]. In a conventional
OPO there is a bulk crystal in a cavity and, if a new emitted wavelength is tar-
geted, then the full cavity and the crystals need to be reoriented (or require a
temperature change). This results in bulky and expensive OPOs. On the con-
trary, an OPO based on a disordered polycrystal can reduce the complexity
of the device, removing the phase-matching constrains. The benefits of the
frequency conversion in random structures are in the wide bandwidth and
the reduced costs of fabrication. On the other side, the efficiency is, in many
implementations, much lower compared to bulk or periodically poled crys-
tal (see Section 4.4.1). In this thesis we explore the advantages of the random
quasi-phase-matching and we present ideas to compensate the drawback of
a lower efficiency.
It is important to note that, in all the parts discussed until here, we considered
random quasi-phase-matching with negligible scattering from the domains.
However, when we study the interaction of light with disordered materials,
scattering is an ubiquitous phenomenon, in particular when the sizes of the
crystalline domains are comparable to the pump and second-harmonic wave-
length. In fact, it has been known at least since the seminal work of Kurtz and
Perry [88] that grinded nonlinear crystals could generate SHG in the presence
of scattering. In this chapter we focus only on random quasi-phase-matching
in transparent disordered crystals. The combination of disordered nonlinear
crystals and scattering is addressed in detail in the next Chapter 5.

4.2 Linear effective medium Mie scattering

The linear measurements on the assembled microspheres of BaTiO3 nanocrys-
tals (see Subsection 3.3.1) are performed with an upright microscope adapted
to do spectral measurements. The samples are illuminated with a halogen
lamp and the light is collected both in reflection and transmission by a 50X
objective (Zeiss EC Epiplan Aphocromat, NA=0.95) with a collection angle of
72◦. The microscope allows for both bright-field and dark-field illumination.
Part of the collected light is divided by a beam splitter onto a CMOS camera
and into an optical fiber. The fiber then guides the light into a spectrome-
ter (Shamrock, Andor). We filtered the pump to allow only red-near-infrared
light on the sample (RNI) or blue-green (BG) light, the spectra of the source
are shown in the inset of Fig. 4.1. From the images in transmission we can
see that the microspheres of different sizes focus the light in a small spot,
and this happens both for the BG and the RNI spectral region. This focus-
ing on the rear part of the microsphere is the photonic nanojet discussed in
Chapter 2. Effectively our microspheres behave as microlenses, the light is
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FIGURE 4.1: True color microscopy images of assembled micro-
spheres with diameters in the range 3 µm to 12 µm under red-
near-infrared (RNI) or blue-green (BG) illumination. The illu-
mination is constituted by a halogen lamp with a colored filter.
The spectra of the illumination is displayed in the inset. The
same 4 microspheres are measured both in transmission and
bright-field (BF) and reflection dark-field (DF). In transmission
it is possible to see a strong focusing of the light in a small cen-
tral spot, a phenomenon called photonic nanojet. In reflection
the microsphere create an image of the illumination cone. The
blue part of the spectrum is scattered more than the red by the
nanoparticles in the spheres, which gives a brighter blue color

compared to the red halo. Image adapted from [106].



4.2. Linear effective medium Mie scattering 57

not diffused and the spheres look very transparent. This constitutes an in-
direct evidence that the fabrication is able to assemble very homogeneous
spheres that interact with the light as an homogeneous medium. The images
of Fig. 4.1 in reflection show a very distinctive ring for every size in the range,
which stems from the cone of the illumination of the dark-field microscope.
In practice the assemblies create an image of the source of the illumination.
The only qualitative difference that can be seen between the BG and the RNI
illumination comes from a slightly more pronounced halo for the blue part of
the spectrum. This can be attributed to a weak Rayleigh scattering from the
nanoparticles that constitutes the microspheres. In fact, it is expected that the
blue part of the spectrum is scattered more by particles of 50 nm in diameter.
To test if the microspheres could be modeled by Mie theory, we measured
the wavelength-dependent scattering cross section under white light illumi-
nation. The results are displayed for two different spheres of diameter 0.8
µm and 3.2 µm in Fig. 4.2. The experimental curves are plotted in red and
blue. We can see the distinctive peaks of the Mie resonances in the normal-
ized scattering cross section. These peaks tell us that the light interact with
the microsphere as if it were a uniform medium. The measured spectra were
normalized with the following:

σ(λ) =
σ(λ)meas − σ(λ)BG

σ(λ)Illum − σ(λ)DC
(4.1)

where σ(λ)meas is the scattering from the micro-sphere, σ(λ)BG is the
background (measured as the light scattered in an empty area near the micro-
sphere), σ(λ)Illum is the illumination and σ(λ)DC are the dark counts. In the
reflection configuration, σ(λ)Illum was measured as the spectrum of the light
reflected by a thick Teflon diffuser (99% reflectivity). In the transmission con-
figuration, σ(λ)Illum was measured as the spectrum of the background in a
completely dark environment. To show that these modes indeed come from
the spherical geometry, we calculated the scattering cross section as it was
done in Chapter 2 of spheres of the same size with an effective refractive
index given by the Maxwell-Garnett rule. We called this model effective
medium Mie (EMM) theory. Thanks to this model, we could plot the the-
oretical curves in Fig. 4.2. The estimate effective refractive index is ne f f ≈
1.55. While in the RNI part of the spectrum the agreement supports the Mie
description, in the BG wavelength range the Rayleigh scattering starts to af-
fect the measurements, giving a flatter spectral response. However, we note
that there is a good qualitative agreement between the experiment and the
analytical calculation.

4.2.1 Analytical model and FEM simulations

To further test our analytical EMM theory we performed finite element simu-
lations with COMSOL. We calculated both in the simulation and in the EMM
model the same microsphere with effective refractive index ne f f = 1.6. The
benefit of using the simulation is the possibility to include the substrate. In
fact, experimentally we measure the spheres on a glass substrate and not in
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FIGURE 4.2: Normalized scattering cross section of the micro-
spheres of diameter 0.8 µm and 3.2 µm. In red-blue it is plotted
the experimental result, in dashed gray the effective medium
Mie model which matches the modes. The measurements are
obtained in dark-field (DF). The filling fraction theoretical plot
is 52% for the smaller one and 55% for the bigger. The imagi-
nary part of the refractive index k=0.003 for the microspheres.
The agreement in the BG part of the spectrum is worsened by
Rayleigh scattering which affect the Mie modes in the sphere.

Image adapted from [106].
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FIGURE 4.3: Comparison between the normalized internal en-
ergy with the EMM model and the COMSOL simulation. The
calculations are done for a microsphere of 1.2 µm radius and
ne f f = 1.6. The energy is normalized to the same volume with-
out the Mie modes. a) Internal energy for the microsphere in air
with no substrate, we can see that the results match. b) Internal
energy for the same microsphere simulated with a glass sub-
strate. In the case of EMM model it is not possible to insert the
substrate as it is done in COMSOL. However, we can mimic the
losses by artificially increasing the imaginary part of the refrac-
tive index. This generates good agreement in terms of positions

of the peaks and quality factor of the modes.



60 Chapter 4. Mie driven random quasi-phase-matching in BaTiO3
microspheres

vacuum. This substrate heavily affects the measurements given that the re-
fractive index contrast between the samples (≈ 1.6) and the glass substrate
(≈ 1.5) is small. We expect, therefore, that the substrate modifies the mode
in the spheres and that it is responsible for the out-coupling of some energy,
effectively inserting losses into the system. The simulated and computed in-
ternal energy for the microspheres for different wavelengths are represented
in Fig. 4.3. First we check that, in absence in of the substrate, the results
coincide. It is worth to point out that the analytical calculation with EMM
model is fast and allows to sweep the wavelength range with a very fine step
keeping the computation time in the orders of minutes. This is not the case
for the COMSOL simulation that was computed for less dense values. The
absorption coefficient of BaTiO3 in the displayed wavelength range is of the
order of k = 10−5. The comparison in Fig. 4.3b is more interesting. From the
simulation we see that the presence of the substrate indeed lowers the quality
factor of the modes. Moreover, it induces a tiny shift, which can be expected
considering the microsphere and the substrate as two coupled resonators. In
the EMM model we can mimic these losses with the imaginary part of the
refractive index k, i.e. inserting artificial losses in the system. This model can
reproduce the results in terms of Q factor and roughly match the position of
the peaks. This comparison shows that the EMM mode can reproduce the
results of the simulation of the internal energy.

The COMSOL simulation are also compared to the linear optical images
obtained using the setup depicted in Fig. 4.5 without filtering the fundamen-
tal at 930 nm. In Fig. 4.4 we can see for both the sizes (0.8 µm and 3.2 µm)
that the simulated mode matches the experimental one. Moreover the opti-
cal modes are in agreement to the analytical calculation presented in Fig. 2.4.
Our bottom-up assemblies interact with the light as homogeneous media and
the scattering cross section and the internal energy density can be computed
with our EMM model. This is further supported by the close correspondence
that both the analytical model and the simulation with COMSOL have with
the linear measurements.

4.3 Nonlinear generation from the BaTiO3 micro-
spheres

The setup used to perform the nonlinear measurements of the BaTiO3 mi-
crospheres is shown in Fig. 4.5. The source is a Titanium-Sapphire pulsed
laser (Spectra-Physics MaiTai HP) with pulse width of 120 fs at the output
of the laser and a repetition rate of 80 MHz. The wavelength can be tuned
in the range of 690 nm to 1040 nm with an average power that can exceed
1 W. We used this set-up to measure the second-harmonic light from the
microspheres. To give evidence that the collected signal is indeed second-
harmonic generation (and, for example, to exclude the presence of significa-
tive fluorescence from the assemblies) we measured both the spectra and the
power scaling. These measurements are displayed in Fig. 4.6 and confirm
that the detected light is SHG. We measured the SHG from a microspheres
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FIGURE 4.4: Finite element method simulation using the effec-
tive medium approximation of the internal energy density of
microspheres with matching optical measurement. The simu-
lation of the modes is obtained for a plane wave of wavelength
of 930 nm coming from the left. a,b) COMSOL simulation of a
microsphere of size 0.8 µm and of size 3.2 µm. The field is con-
centrated on the rear part of the sphere, for the bigger sphere
we see that the formation of the nanojet is more pronounced
(see Fig. 2.4) for a comparison. c,d) Experimental image of the
rear plane of the microspheres of size 0.8 µm and of size 3.2
µm illuminated with laser light at 930 nm. Image adapted from

[106].
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FIGURE 4.5: Schematic of the setup used to do the nonlinear op-
tical characterization of the microspheres. The pump power at
930 nm is controlled with a λ

2 half-wave plate and a polarizing
beam splitter (BS). After that, the polarization is controlled by a
second λ

2 wave plate. The beam is then focused with lens (F1)
of focal distance 75 mm on the sample (S). The pump and the
second harmonic are then collected by an objective and imaged
sent to three different path to do Fourier plane imaging (Path
1), real plane imaging (Path 2), and spectrometry. When mea-
suring the second-harmonic the pump at 930 nm was filtered
with short-pass filter (SP-BG39). In the inset there is a zoomed
representation of the pump impinging on the microsphere and
the disordered SHG at 465 nm collected by the wide numerical

aperture objective. Image adapted from [106].
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FIGURE 4.6: Second-harmonic generatino measurement from
the BaTiO3 assembled microspheres. a) Spectrum of the SHG at
465 nm and the pump at 930 nm, not to scale. b) Power scaling
of microspheres of different size. The quadratic power scaling
gives evidence that the measured light comes from second har-
monic generation. The shift on the vertical axis shows that the
bigger spheres generate more nonlinear signal than the smaller

ones.

of different size. The SEM images of 4 microspheres are displayed in Fig.
4.7a-d. The images of the SHG in Fig. 4.7e-h show that the emission is a
speckle pattern. Comparing these images with the linear microscopy ones in
Fig. 4.7a-d, we can appreciate an evident contrast. The assemblies presented
in Fig. 4.1 are transparent and ordered from the pump view point, and the
effective medium model can describe the linear interaction that they have
with the laser light. On the contrary, they produce second-harmonic signal
stemming from the disorder of the positions, orientations and sizes of the
BaTiO3 nanoparticles. Furthermore, we see that the SHG is stronger from the
center of the image as a result of the nanojet of the fundamental. As shown
in Fig. 4.7i-l, the measurement of the SHG is emitted over the whole angle
72◦. In this k-space the SHG generates another speckle: similarly to the real
plane the interference of the random sources is more constructive in some
directions and less in others. This fact is evidenced by the alternation of light
and dark points in Fig. 4.7i-l. Interestingly for smaller spheres there is more
emission at wider angles (i.e. closer to the outer ring in Fig. 4.7i-j). For bigger
spheres the speckle in the k-space is more evenly distributed in the emission
cone, as reported in Fig. 4.7k-l.

To test further the random quasi-phase-matching SHG from the micro-
spheres, we measured the SHG from a set of 32 assemblies of different diam-
eter in the range of 1 µm to 12 µm. The scaling with the size is reported in Fig.
4.8. The data are displayed with their best fit curves both in semi-logarithmic
and logarithmic scale. We can see that the SHG grows linearly with the vol-
ume of the assembly, i.e. with number of the BaTiO3 nano-crystals. This
scaling is the predicted trend and has been already measured in polycrys-
tals with micron-size domains and in a planar geometry [39][139][140]. The
presented results extend the validity of the linear relation between SHG and
volume for a different geometry and even in presence of resonant modes.
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FIGURE 4.7: Measurements of the microspheres. a,d) SEM im-
ages of four microspheres with different sizes. e,h) SHG emit-
ted from the microspheres. The signal with spherical geometry
is nonlinear speckle. i,m) SHG of the back focal plane of the
objective. This measures the k vectors of the emission, and this
is also a nonlinear speckle pattern. Image adapted from [106].
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FIGURE 4.8: Measured SHG from 32 microspheres of different
diameters, integrated over the speckle. The results are averaged
over input polarization and the error bars represents the range
of variability of the global SHG with the polarization. In the
inset the same data are plotted with the volume, to show the
consistent linear trend over four orders of magnitude of vol-

ume. Image adapted from [106].

In light blue in the graph it is displayed the coherence length for BaTiO3 at
the pump wavelength of 930 nm. Since BaTiO3 is birefringent the coherence
length is angle dependent and we have to compute ∆k for every k-vector (or-
dinary and extraordinary for both pump and SHG). We computed it thanks
to the code detailed in Appendix A. BaTiO3 is non-phase matchable at 930
nm, i.e. there is no solution angle for which ∆k = 0. The angle-dependent
coherence length have values in the range 0.95 µm to 1.87 µm. This number
is interesting because it tells us that we are working in a range in which ev-
ery crystalline domain is smaller than the coherence length (i.e. every crys-
tal contributes to generate second-harmonic). At the same time, for micro-
spheres with diameter longer than the coherence length we do not see any
decrease in the SHG up to sizes six times greater than the coherence length.
By looking carefully at the data, we see that the efficiency of the individual
microspheres fluctuates around the purely cubic trend. We attribute this dif-
ference to the resonances in the microspheres that drives the SHG emission.
The measured efficiency will be investigated further in the Section 4.4.1 of
this chapter. Another explanation has to be considered, these different effi-
ciencies can be due to fabrication imperfection since the surface quality of
the spheres in not identical for different assemblies and this can result lower
emission for some microspheres.
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4.3.1 Nonlinear Speckle and polarization

Besides the scaling of the SHG with the volume there are other interesting
properties of the SHG from the disordered microspheres. For instance, in
Fig. 4.9 we show the statistical intensity distribution of the nonlinear speckle
for three different microspheres. This plot follows a Rayleigh distribution
[67], which stems from the interference of many emitters of randomized po-
sitions, orientations and sizes. While the linear speckle from scattering is
heavily studied, little is known on this nonlinear speckle of SHG through
RQPM. Recently, properties like the speckle correlation with the angle [141],
or the intensity-dependent speckle contrast [32] are gaining interest. We ac-
quired also the polar dependency of the SHG by changing the input polar-
ization, reported in Fig. 4.9. The polarplots shape depends on the size of
the assembly, as reported in [34]. We can see, bigger microspheres have an
almost isotropic response which can be attributed to the averaging between
the many sources in the assemblies. At smaller sizes (D< 5 µm) there is
still a remaining polarization dependence. This phenomenon is a result of
the averaging with a smaller number of sources. To provide more insights
on the polar dependency we combined the COMSOL simulation as in Fig.
4.4, to export the intensity distribution of the pump in the microsphere. The
distribution of the fundamental E-field in the micro-spheres (blue) and the
same distribution weighted with the square of the fundamental power (E4)
(orange) are reported in Fig. 4.9. They are called electric field enhancement
because they are compared to the electric field of the pump field impinging
on the microsphere (plane wave). The fourth power of the E-field enhance-
ment represents the contribution to the total SHG power from grains with
a specific enhancement (I2ω ∝ I2(ω) ∝ E4(ω)). This skewed distribution
shows that a small portion of the grains (grains in the nanojet, with high E-
field enhancements) contribute significantly to the total SHG. We quantified
this effect by determining how many grains on average positioned where the
pump is focused in the microsphere contribute to 50% of the total emission
(P50). For the reported case of a sphere of 1.2 µm of diameter, only 170 grains
of average diameter of 50 nm generate half of the SHG. We calculated this for
a cuboid of 170 grains with random orientation with the code in Appendix
A, for two different realization of disorder, showing that in that case the SHG
is not randomized enough in the sample and still have a clear polar response.

4.4 SHG coupled with the Mie resonances

To investigate the influence of the Mie modes on the SHG, we measured the
nonlinear light from microspheres of different diameters sweeping the pump
wavelength over 100 nm around a central wavelength 930 nm. The measure-
ments give evidence that the SHG with the random quasi-phase-matching is
broadband. The data plotted in Fig. 4.10 show that the SHG is modulated in
the explored range. We attributed these peaks to the Mie modes, in that the
internal energy of the microsphere changes for different wavelengths. To test
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FIGURE 4.9: Statistical intensity distribution of the nonlin-
ear speckles. SHG counts integrated over the whole image
(speckle) for different input polarization. Smaller spheres have
a polar dependency while the emission of the bigger assem-
blies is isotropic. Distribution of the fundamental electric field
enhancement in the microsphere (blue). The same distribution
weighted with the electric field enhancement at the power 4 (in
red). Simulated polar plot of two different assembly with the
same number of grains equals to P50, summed each point with

their mean.
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FIGURE 4.10: SHG measured on six microspheres of different
sizes. The experimental data are normalized with the transmis-
sion of the setup and the quantum efficiency of the camera. The
peaks obtained through EMM theory match the experiments
with ne f f around 0.55 and k between 0.001 and 0.01. Image

adapted from [106].

this hypothesis, we fitted the experimental data with the analytical calcula-
tion of the internal energy with Mie theory. We optimized with two param-
eters, the filling fraction, which regulates the effective refractive index of the
assembly, and the imaginary part of the refractive index that (as explained in
Section 4.2.1) controls the losses. For every result we found a correspondence
from EMM theory that could explain the modulation. The quality factor of
the modes is modest, similar to what was obtained through the COMSOL
simulation in Fig. 4.4, however provides a consistent explanation of the ob-
served emission. The agreement with the EMM modes is not perfect, and we
attribute this to the artifact introduced by using a complex part of the refrac-
tive index to mimic the losses from the substrate. For spheres of diameter
bigger than 3 µm the model loses progressively is validity due the aforemen-
tioned reason or because the Rayleigh scattering plays a non-negligible role.

It is possible to extend the model of the random walk in the complex plane
that we introduced in Section 2.4, to explain how the random quasi-phase-
matched emission can be coupled with modes. The resonant modes in the
microspheres can enhance the emission from a single domain in the assem-
bly. This can happen for two reasons. The first mechanism is the focusing of
the fundamental; we already explained that the microspheres behave as mi-
crolenses and focus the fundamental in the nanojet area. Therefore, the grains
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in that area are pumped with higher intensity and generate more second har-
monic compared to the case of a non-resonant system. Since the generation
of SHG is quadratically proportional to the intensity of the pump, this results
in a net enhancement. A second mechanism of enhancement can arise from
the Purcell factor (most likely it has an influence only with the small spheres).
A nanodomain will emit more efficiently if its emission is coupled to a mode
of the second harmonic in the microsphere.
We can explain the resonant enhancement of the SHG upgrading the random
walk model. If we consider a 1D disordered array of N poly-dispersed crys-
talline domains with random orientations, as sketched in Fig. 4.11. The SHG
field at the end of the array is given by the sum of the SHG generated in
each domain. This can be represented by the sum of N phasors, whose phase
and amplitude depend on the disorder configuration, as expressed in Eq. 4.2.
The SHG amplitude from each grain expressed is here concisely represented
by Ai. We highlight the dependence of the amplitudes on the randomly dis-
tributed lengths Li and orientations si of the domains. The phase terms are
assumed to be randomly distributed in [0, 2π].

ESHG =
N

∑
i

A(Li, si)eiφi (4.2)

Eq. 4.2 describes a random walk in the complex plane of the SHG field.
Accordingly, the SHG intensity is given by the mean square displacement
(MSD) of this random walk ISHG = 〈(∑N

i A(Li, si) · eiφi)2〉, where 〈...〉 indi-
cates the ensemble averaging. By assuming that all domains are equally illu-
minated by the pump beam and that there is no correlations between the con-
tributions of the phasors, the MSD grows linearly with the number of steps,
such that ISHG ∝ N, without any particular wavelength-dependent modu-
lation. This is the well known result of the random quasi-phase-matching.
Now, we assume that the disordered array can sustain optical modes, both
at ω and 2ω. In such a case the specific pattern of the modes defines an in-
homogeneous distribution of the pump and of the SHG field, see Fig. 4.11.
We assume that the spatial features of the modes evolve on a scale larger than
the mean size of the domains (large-scale modes), such that the fields can be
considered constant over the single domain.

The modulated fundamental E-field in each domain is given by: Ẽi(ω) =
Fi(ω) · Ei(ω)eiφi , with Ei(ω) the unmodulated field amplitude, φi the phase of
the fundamental, and Fi the Mie-enhancement factor. The second-harmonic
E-field of the ith domain is: Ei(2ω) = ξi · Ai · eiφi , with Ai ∝ Ei(ω)2 the
second-harmonic E-field amplitude generated from the unmodulated field,
and φ the phase of the SHG. The modulation can be described by a domain-
dependent SHG enhancement factor ξi(ω, 2ω) = F2

i (ω)Fi(2ω) combining
Mie effects of the fundamental as well as the SHG as in an homogeneous non-
linear resonator [142]. Thus, the total SHG E-field of N domains is: ESHG =
∑N

i ξi · Ai · eiφi . In the ensemble average 〈...〉ens the SHG intensity is therefore
given by:
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FIGURE 4.11: Sketch of a one-dimensional χ(2)-disordered sys-
tem and effect of an optical mode on the RQPM mechanism.
The color modulation within the disordered crystalline stick in-
dicates the intensity distribution of the pump, which here is
a sin2 (x) as an example. Crystalline domains in a region of
high field-enhancement (red) generate a SH-wave with a larger
amplitude compared to the others. The corresponding phasors
(am) are longer steps of the random walk in the SH complex
plane, which enhance the RQPM generation by increasing the

mean square displacement.

〈ISHG〉ens ∝ 〈|
N

∑
i

ξi Aieiφi |2〉ens (4.3)

The SHG intensity with a modulated field corresponds to the the mean
square displacement of a random walk with a mode-dependent step-length
distribution, in which some steps contribute more than others if the corre-
sponding domain is in a high-enhancement region. We consider the stan-
dard situation of RQPM, where the system is disordered in the χ(2) spatial
distribution, but it is homogeneous in the χ(1) spatial distribution, i.e. the re-
fractive index. This way, the modes are determined by the geometry and are
independent from specific disorder configurations, which means that (ξ2

i )
can be taken out of the ensemble average. With this in mind we can simplify
Eq. 4.3 as follows:
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〈ISHG〉ens ∝ 〈|
N

∑
i

ξi Aieiφi |2〉ens = 〈 ∑(ξi Ai)
2 + 2

N

∑
i 6=j

ξiξ j Ai Aj cos(φi − φj) 〉ens

(4.4)

= 〈∑(ξi Ai)
2〉ens + 〈2

N

∑
i 6=j

ξiξ j Ai Aj cos(φi − φj)〉ens︸ ︷︷ ︸
= 0 (interference terms)

(4.5)

= 〈∑(ξ2
i A2

i )〉ens = ∑(〈ξ2
i A2

i 〉ens) = ∑ ξ2
i 〈A2

i 〉ens (4.6)

approx.
= (ξ2

i )
N

∑
i
〈A2

i 〉ens = (ξ2
i )N〈A2

i 〉ens (4.7)

We used the approximation ∑i(ci · Xi) ≈ ci ∑i Xi, where ci = (∑N
i ci)/N

denotes the average of all coefficients ci. We tested the validity of this approx-
imation numerically for multiple different field distributions of the modes
(with finite mean and variance). In the equation above, ci = ξ2

i and Xi = A2
i .

We evaluate the total contribution of the field enhancement as

(ξ2
i ) = 1/N

N

∑
i
(ξi(ω, 2ω)2) = 1/N

N

∑
i

F4
i (ω)F2

i (2ω) (4.8)

We emphasize that this leads to a stronger overall SHG enhancement,
when the power is distributed more unevenly within the volume (i.e. stronger
focusing of the power into a small region, like the photonic jet). This comes
from the fact, that the enhancement factor of the fundamental E-field F4

i (ω)
is taken to the fourth power before averaging. The final expression for the
SHG intensity is reported in Eq. 4.9

ISHG ∝ (ξ2
i )N〈A2

i 〉ens (4.9)

We find the expected linear dependence on the number of domains and an
additional term (ξ2

i ) accounting for the resonant enhancement, which is de-
termined by both the internal energy enhancement at the pump wavelength
and the spatial distribution of the mode. For our micro-spheres, this calcula-
tion is exact for the pump since we have a plane-wave illumination, but it is
an approximation for the SHG, since real sources are randomly placed within
the sphere.

4.4.1 Efficiency comparison

Using the model developed in the Appendix A we can analyze the SHG
emission with the random quasi-phase-matching coupled with Mie modes
in comparison to other efficiencies. We can see that we retrieve a linear de-
pendence on the number or grains (i.e. linear with the volume). The results
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of the calculations are displayed in Fig. 4.12. We can compare the efficiency
of the emission from a microsphere with modes with a sphere with no modes
(purely artificial). On top of the modulation, we notice that there is at least an
order of magnitude increase for all the sizes. This stems from the increased
mean energy and the focusing of the pump power in a very small volume.
We see with this indeed the spherical geometry is very effective in increasing
the emission. The fact that the assemblies behave as microlenses focuses very
tightly the pump resulting in a boost of the nonlinear process. On top of that,
there are clear wavelength-dependent peaks. These modes correspond to the
ones showed in Fig. 4.10 (Mie modes arise for certain combination of radii
and wavelength and sweeping one of the two parameters results in a similar
plot). It is useful to compare the gain in efficiency with the emission from
a single crystal. As we mentioned previously, BaTiO3 is non phasematch-
able at 930 nm of pump. We computed the second-harmonic emission from
a single crystal for two different orientation (one random one the best possi-
ble, i.e. longest coherence length). They are displayed with the grey dashed
line in Fig. 4.12. We can see that the EEM modes outperform a crystal of
the same size at this wavelength. We also compared it with a periodically
poled BaTiO3 crystal (simulated). This comparison shows that the PP crystal
is better than the microsphere for of one order of magnitude and this differ-
ence increases with the dimension of the sample. On the other hand this PP
crystal is wavelength specific and could not be used with the same efficiency
for another wavelength. It is worth to note that the calculation for these Fig.
4.12 were performed with the code in Appendix A, which considers cubes
instead of spheres and does not account for the filling fraction. In practice
the microspheres contain only 29 % of the material of the cubes.

4.5 Summary and perspectives

In this chapter we presented bottom-up assembled microspheres made of
BaTiO3 nanoparticles. Our assemblies are transparent in the visible and present
clearly visible Mie resonances. Interacting with the pump light in the visible
range, they display a photonic nanojet and wavelength-dependent modes.
We used them as a platform to study the combination of order in the linear
interaction with pump light, together with nonlinear effects in a disordered
material. Our fabrication one one hand provides nice quality of the linear res-
onances, on the other, it ensures that individual nanocrystals are randomly
oriented in the assemblies. Therefore, our BaTiO3 microspheres are disor-
dered only with respect to the nonlinear optical interaction. We studied the
peculiar broadband generation of second-harmonic light from the disorder
thanks to the random quasi-phase-matching enhanced by the Mie resonances
of the spheres. This optimization mechanism for the SHG circumvents the
phase-matching conditions and works also at scales larger than the coher-
ence length of the material. We accompanied our findings with and analytical
model that combined Mie theory and homogenization theories, as well as a
model to compute the SHG from disordered structures to support our results
[143]. As can be seen in Fig. 4.8, the presence of the resonances provides an
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FIGURE 4.12: Numerical comparison of SHG scaling between
the disordered microspheres with the Mie modes and different
BaTiO3 crystalline structure. The blue line is the SHG from our
resonant Mie microsphere. The dashed blu line is the SHG from
the same sphere removing the contribution of the Mie modes.
We can see a wavelength-dependent enhancement constituted
by the narrow peaks on top of a broadband enhancement. The
grey dashed lines are monocrystals of BaTiO3 with a random
and the optimal orientation. The solid gray line shows a peri-
odically poled BaTiO3, this is more efficient than the RQPM by
roughly one order of magnitude for the considered size range.

Image adapted from [106].
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broadband increase of one order of magnitude compared with non-resonant
structures. This comes from the photonic nanojet, which enhances the effi-
ciency of the nonlinear generation by focusing in the assembly. Moreover the
wavelength-dependent Mie modes produce the small modulation that can
be seen in Fig. 4.10.
If we want to consider how to further increase efficiency of our BaTiO3 mi-
crospheres the first issue is represented by the losses due to the outcoupling
to the substrate. Employing a substrate with lower refractive index or intro-
ducing a spacer could drastically improve the enhancement performances.
The other approach is to use bigger nanocrystals, forgoing the resonances
and benefiting from a greater efficiency from the individual domains. This
comes at the price of introducing scattering and it will be the subject of the
next chapter.
This work paves the way to novel research that combines nonlinearity and
disorder. For examples, intriguing perspective are unlocked by hierarchi-
cally assembling the microspheres into large-scale structures. These supra-
structure could display correlation in the positions resulting in a different
interplay between order and disorder. The impact that a microfluidic fabri-
cation can have with this structures is still unexplored. Another unexplored
application of disordered bottom-up structures is the RQPM to generate dis-
ordered quantum sources. In fact, owing the to time-reversal symmetry of
the three-wave mixing, it could be possible to use nonlinear disordered ma-
terials to generate global spontaneous parametric down-conversion.

4.6 Declaration of personal contribution

The results presented in this chapter are published in [106]. The work pre-
sented was done by Romolo Savo, Jolanda Müller and me. My contributions
were the fabrication of the microspheres and the optical linear and nonlinear
measurements. I was also responsible of the FEM simulations, the concep-
tions and implementation of the effective Mie medium model and the ran-
dom walk representation of the random quasi-phase-matched SHG.
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Chapter 5

Multiple scattering and random
quasi-phase-matching in LiNbO3
assemblies

In this chapter we study the linear scattering properties and the second-
harmonic generation from bottom-up fabricated assemblies of LiNbO3 nanocubes.
The fabrication of the assemblies, which consist in slabs and microspheres, is
presented in Chapter 3. The goal of this chapter is to investigate the random
quasi-phase-matching in presence of strong scattering. There are several mo-
tivations to study the combination of second-harmonic generation and scat-
tering in disordered materials. To increase the efficiency of the SHG from dis-
ordered materials the simplest approach is, in fact, to increase the size of the
nano-domains. Bigger domains, from sub-wavelength size in the previous
chapter, to size comparable to the wavelength for this chapter, enhance dras-
tically the efficiency of the SHG, since the efficiency of a single domain scales
with its diameter to the power of 6 [144]. This increase of the size introduces
scattering in the assemblies, since, as was discussed in Chapter 2, the scatter-
ing cross section of a single nanoparticle is maximal when λ ≈ nd. There-
fore, to increase the efficiency of the SHG in disordered materials we have to
understand how random quasi-phase-matching can be combined with scat-
tering. A second motivation to study SHG in multiple scattering materials is
constituted by the many applications in bioimaging [145]. Second-harmonic
emitting nanoparticles are a useful biomarker used in one of the most stud-
ied multiple scattering material, the human tissue [146]. Moreover, recent
works have shown that specific cells are able to emit second-harmonic and
that it is possible to distinguish between different type of cancer from the po-
larization dependence of the SHG that the cells emit [147]. In the beginning
of the chapter, we present a state of the art of the second-harmonic genera-
tion in nonlinear and scattering material. From Kurtz and Perry’s seminal
work [88] to some reviewed version of their study [148][149]. After that, we
describe how we quantified the scattering strength of the disordered mate-
rial made of LiNbO3 nanocubes. To do so, we used slabs made of the LiNbO3
nanocubes presented in Chapter 3, since a planar geometry is necessary to in-
terpret the experimental results with diffusion theory. These measurements
show that our bottom-up disordered material have a subwavelength trans-
port mean free path. Next, we show the nonlinear measurements on the slabs
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of LiNbO3 and on the microspheres. The nonlinear properties of the individ-
ual nanocubes are well studied and their SHG has been proved to be very
efficient [100]. The idea is to study RQPM SHG both in planar and spherical
geometry to give explicit evidence that the SHG power scales linearly with
the the volume even in presence of strong scattering and for different geome-
tries. This result was previously claimed but never presented. This chapter
is based on [113].

5.1 State of the art

The study of disordered photonic media in which light is multiply scattered
is a well established field in optics. Indeed, the behavior of light beams in
random materials has numerous interesting physical aspects such as anoma-
lous diffusion [150], Anderson localization [14, 26, 84], and mean path length
invariance [151]. On top of that, the knowledge of multiple light scattering
can be used to develop new applications from laser sources [152], to novel
bio-medical imaging [19]. While the transport of light in scattering mate-
rial in the linear regime has been more extensively explored, less is known
of the light scattering in disordered media composed by nonlinear domains.
These nonlinear disordered photonic media (NDPM), composed by a ran-
dom configuration of noncentrosymmetric crytals, are able to generate co-
herent light through random quasi-phase-matching. As we discussed in the
previous chapter, SHG in disordered media has been investigated in trans-
parent polycrystals which are disordered distribution of non-scattering χ(2)

domains that generate second-harmonic with random amplitude and phase.
The interference of the SHG from the numerous random sources leads to a
global SHG, the power of which scales linearly with sample thickness. This
linear scaling is a fingerprint of the RQPM, as it is in contrast to the quadratic
scaling of phase-matched and quasi-phase-matched crystals. Differently to
this scenario, nonlinear disordered photonic media (NDPM) have noncen-
trosymmetric domains that also scatter the light. The fabrication of such a
medium is non-trivial, in that it has to have both nonlinear crystalline do-
mains and high refractive index contrast. The simplest way to produce a
NDPM is to grind bulk nonlinear material into powders [153][154], which
have to be deposited uniformly on a substrate. Kurtz and Perry first reported
a study of the nonlinear emission from grinded powders [88]. They proposed
a method to study the nonlinear optical coefficient using SHG, telling which
materials could be phase-matched. However, grinding a bulk crystals has
two main drawbacks. The first one is that it usually produces grains of tens
of microns, which are not very efficient to scatter the light in the visible range.
Secondly, grinding usually creates defects and strain in the resulting grains,
that can cause undesired sub-band gap absorption. Kurtz and Perry even-
tually removed the scattering by inserting an index matching liquid in the
powder, because the scattering even though was present, was not the focus
of their work. Several experiments of SHG from NDPM were performed
much more recently on electrochemically etched GaP and GaAs slabs [63,



5.2. Linear scattering measurements 77

155], [156]. This fabrication allowed to create a porous (network-like) struc-
ture in the crystals with high nonlinearity and strong scattering, avoiding the
problems created by the grinding. In a work from Faez et al. [157], they mea-
sured SHG from the material and provided a diffusion model to interpret the
data. However, they did not display the scaling of the SHG power with the
thickness of the slabs. Indeed, to measure SHG scaling, they used multiple
samples with increasing thicknesses, which were etched independently, po-
tentially generating different internal structures. This lack of control over the
size distribution of crystalline nanodomains may introduce systematic dif-
ferences in the SHG and scattering properties of the samples. Consequently,
there is no explicit demonstration of RQPM scaling for SHG in NDPM, al-
though the effect has been clearly predicted by models combining RQPM
and the light diffusion hypothesis. Many other properties have been studied
in more recent works, for example the intensity distribution [85], the polar-
ization dependency [34], and the nonlinear speckle pattern [32]. The physics
of the NDPM is in many of its aspects not understood, and consequently
many of their properties not exploited.

5.2 Linear scattering measurements

The linear scattering measurements were performed on the slabs of LiNbO3
nanocubes described in Section 3. The quantification of the scattering strength
was done by measuring the total transmission as a function of the thick-
ness, and fitting the result using diffusion theory. This procedure, which
is quite standard in the field of light propagation in complex media, is pos-
sible thanks to the planar geometry of the slabs, which allows for analitycal
solution of the diffusion equation. The key component of the experimental
set-up is the integrating sphere. This device consists of a hollow sphere with
internal surfaces coated by a material with high and broadband reflectance.
If the sample is place at the entrance port of an integrating sphere, as it is
shown in Fig 5.1a, it is possible to measure the total transmission. All the
light transmitted through the sample, in fact, scatters on the inner surface of
the sphere and it is collected by a fiber and sent to a detector. By moving
the sample laterally, it is possible to measure the total transmission for every
point of the sample. In our case, the transmission of our slab is reported in
Fig. 5.1b, where we can map the total transmission for different point in of
the sample. By matching the map of the transmittance with the thickness
obtained by profilometry (Fig. 3.10d) we can have many data points of the
transmittance versus the sample thickness. This procedure motivates the fab-
rication of the slabs illustrated in Fig. 3.10a, that resulted in samples with the
thickness slowly varying over the lateral size. We measured the total trans-
mission for different wavelengths, the data reported in Fig. 5.1c is for 930 nm
wavelength, and every point is the average over many points with the same
thickness.

We can fit the reciprocal of the total transmittance as a function of the
thickness with the following Eq. 5.1
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FIGURE 5.1: Characterization of the scattering properties of the
slabs. a) Schematic of the setup with the sample placed on mo-
torized stages to access the 1 cm2 surface and with an integrat-
ing sphere to collect the transmitted light. The inset depicts
the working principle of the integrating sphere. b) Measured
2D map of the transmittance measured at 930 nm of pump. c)
Reciprocal total transmittance over the thickness with the lin-
ear fit, the error bars represent the standard deviation of all the
data collected at the same thickness. d) Transport mean free
path estimated for different wavelengths between 750 and 1000

nm. Taken from [113].
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FIGURE 5.2: Inverse transmittance obtained with the integrat-
ing sphere for different wavelengths. While lower wavelengths
are in optimal agreement with the linear expected from the
model, for higher wavelengths a deviation from the trend is
appreciable at low thicknesses of the sample. This is due to the
fact that l∗ approaches the thickness of the sample reaching the

limit of validity of the diffuse approximation.

1
T(λ)

=
1

`∗(λ) + z0(λ)
L +

2z0(λ)

`∗(λ) + z0(λ)
(5.1)

where `∗(λ) is the transport mean free path and z0 = 2
3 l∗(λ)1+Ri

1−Ri
is the

extrapolation length, and L the thickness of the slab as defined in chapter 2.
From this fitting procedure it is possible to extract the transport mean free
path. It is worth to discuss briefly what is the meaning of z0 and how it is
computed. The extrapolation length is the position outside the slab where the
light intensity extrapolates to zero. These conditions are imposed to the dif-
fusive Eq. 2.29 outside the system and not at the border, because this would
mean that no energy could enter or leave the medium [68]. The specific value
of the z0 is a transport mean free path `∗(λ) modified by a number that takes
into account the internal reflectivity of the system (Ri). The diffusive the-
ory was first applied for transport problems and this correction was not in-
cluded (for example it was used to calculate the diffusion of neutrons in a
nuclear reactor). However, light has a different behavior at the interfaces (
for exampled compared to a neutron). At an interface we have to compute
the angle-dependent Fresnel coefficient (the light can impinge on the surface
with every angle). This requires to compute the effective refractive index of
the material. It is important to specify that in this case the material does not
behave as an effective medium and the calculation of the filling fraction to ex-
tract ne f f is needed only to compute properly the extrapolation length. The
effective refractive index was measured by image analysis and it is reported
in Fig. 5.3 The images are acquired with a scanning electron microscope and
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FIGURE 5.3: Scanning electron microscopy image of LiNbO3
slabs (a) and microsphere (b) with image binarized to extract

the filling fraction.

are binarized through a Matlab function called imbinarize which is based on
the Otzu thresholding algorithm [119]. The values obtained vary depending
on the threshold of the algorithm. The function imbinarize allows to control
the sensitivity of this modification and we tuned this from 0.5 to 0.7 and took
the average filling fraction as the result of our calculation. The final result
is f f = 52± 4% for the microspheres and f f = 55± 5% for the slabs. The
numbers obtained were used to calculate the correction factor for the extrap-
olation length and allowed us to perform a fit with a single free parameter l∗

on the data displayed in Fig. 5.2.
The values of the refractive index and the correction factor for the inter-

nal reflection A are plotted in Fig. 5.4. By fitting all the data in the range
750 nm to 1000 nm, we obtain the values of l∗reported in Fig. 5.1d and in
Table 5.1. For all the measurements, l∗ is subwavelength and shorter than
the thickness of the sample. This fact is a confirmation a-posteriori of the
validity of the diffusive regime. If we check again the results of Fig. 5.2
at 950 nm and 1000 nm of wavelength, we notice that for small thicknesses
(above 2 µm) the data deviate from the linear trend. This deviation can be at-
tributed to the fact that for those wavelengths the transport mean free path is
only twice smaller than the thickness and this condition is at the edge of the
validity of diffusion theory (the sample is not optically thick enough). The
value of l∗ are of particular interest if we use them to compute the inverse
scattering efficiency kl∗ = 2πl∗/λ (reported in Table 5.1). The smallest value
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FIGURE 5.4: Effective refractive index computed with the
Maxwell-Garnett mixing rule. Correction factor for extrapola-
tion length A = 1+Ri

1−Ri
, for an interface of LiNbO3 with filling

fraction 55 % and air. The formula to compute A is taken from
[71], [72].

Wavelength [nm] `∗ [nm] k · `∗
750 476 ± 6 3.9 ± 0.1
800 567 ± 7 4.4 ± 0.1
850 649 ± 8 4.8 ± 0.1
900 752 ± 12 5.3 ± 0.1
930 788 ± 14 5.4 ± 0.1
950 831 ± 22 5.5 ± 0.2

1000 927 ± 34 5.8 ± 0.2

TABLE 5.1: Transport mean free path and inverse scattering co-
efficient at different pump wavelengths.

reported is kl∗ = 3.9 at 750 nm and it is close to the smallest value reported
for visible light of 2.6 [63]. On top of that, the value of kl∗ decreases with
the wavelength as it is shown by the linear trend of Fig. 5.1d. This decrease
suggests that at wavelengths shorter than 750 nm a stronger scattering could
be reached. This possibility is permitted by the wide transparency window
of the LiNbO3 that is transparent at least down to 400 nm [90]. Furthermore,
the individual nanocubes have scattering resonances in the blue spectral re-
gion, as was shown by [100]. Therefore, it could be interesting to investi-
gate the nonlinear response of the the disordered assemblies of the LiNbO3
nanocubes. They could show values of kl∗ similar or even lower than the
lowest reported value of kl∗ = 2.6 [63], that can be close to the localization
transition.
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FIGURE 5.5: Nonlinear setup used for the optical characteri-
zation of the microspheres. (a) Schematic of the setup used to
measure the SHG. (b) Sketch of the fundamental beam scatter-
ing in the assembly as well as the second-harmonic signal gen-
erated from the disordered nanocubes. Image adapted from

[113].

5.3 Second-harmonic and scattering trend

We measured the second-harmonic emission from the disordered LiNbO3
microspheres with the setup sketched in Fig. 5.5. We illuminated the as-
semblies with the same laser pulses used for the BaTiO3 spheres in Chapter
4 at 930 nm of wavelength, and collected the emitted photons with a 50X
Zeiss apochromat objective. The collected light, after the fundamental wave-
length is filtered out, can be imaged by a camera or coupled in a spectrometer
through a fiber. In the inset of Fig. 5.5 we can see a sketch of the pump light
being scattered in the disordered assembly as well as the nonlinear genera-
tion in the system. Thanks to the results presented in the previous section, we
know that the light at the pump wavelength is undergoing multiple scatter-
ing in the assemblies and the trend presented in Fig. 5.1d, suggests that the
scattering for the SHG may be even stronger. To confirm that the measured
signal is indeed SHG, we measured the scaling of the second-harmonic with
the power of the input beam. The data and the quadratic fit for two spheres
of different sizes are displayed in Fig. 5.6. This measurement ensures that
the signal collect comes indeed from second-harmonic generation and do not
arise from fluorescence of defects or impurities in the assembly. The SHG is
further confirmed by the spectral measurements displayed in Fig. 5.6.

We performed the nonlinear characterization of the LiNbO3 disordered
slabs by collecting the SHG with the setup sketched in Fig. 5.5. We mea-
sured a 2D map of the transmitted second-harmonic for different positions
of the slabs by moving the sample laterally with respect to the impinging
laser beam. This measurement produces the intensity map displayed in Fig.
5.7a.

Similarly to the procedure adopted for the linear case, in which we com-
pared the thickness with the total transmission, here we established a one
to one correspondence between the thickness and the SHG. This procedure
produces a wide set of data points, allowing to average the results over many
configurations of disorder. The data are plotted in Fig. 5.7b together with a
linear fit with a power law y = βxα. The fitting procedure returns a value
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FIGURE 5.6: Nonlinear measurements on LiNbO3 assemblies.
SHG quadratic scaling with the power of the pump for two dif-
ferent spheres of diameter 2.8 µm and 13 µm. Spectrum of the

pump and of the SHG.

FIGURE 5.7: Second-harmonic generation from a LiNbO3 slab.
(a) SHG 2D map with a pitch of 200 µm. This ensures that
every pixel is independent from the neighbors since the beam
waist is around 30µ m. The wavelength used is 930 nm. The
SHG is more intense from the sample, where the slab is thicker.
SHG for different thicknesses. Every point is an average over
many measurements of positions of the slabs with same thick-
ness. The error bars quantify the standard deviations of the
different SHG produced for comparable thicknesses. The lin-
ear trend seems to decrease for samples thicker than 4 µm, this
can be due to a progressive redistribution of the emission from
the forward transmitted to the backscattered SHG. Image taken

from [113].
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of α = 0.98± 0.3 which is compatible with a linear trend. This observation
agrees with different theoretical results for the SHG in multiple scattering
medium that predicts a linear trend with the thickness for both the forward-
and the backward-emitted second-harmonic power. This trend is one of the
key results of this work because the linearity of the random quasi-phase-
matched emission was not explicitly shown in previous studies. The use-
fulness of our disordered LiNbO3 slabs assembled from nanocubes lies in
their wide area, that allows to explore numerous configurations of disorder
in the same sample knowing the thickness in every point. In many studies
it is required to change sample to access different thicknesses and this might
introduce sample-to-sample variability, that here is prevented. The fitted lin-
ear trend deviates slightly at thicknesses above 4 µm. An explanation for this
deviation can be found in the hypothesis of the diffusive model used here.
In fact, the conditions of application of the diffusive model are that the trans-
port mean free path has to be much smaller than the thickness of the sample.
Here, we have thicknesses spanning from 2 to 10 transport mean free paths,
therefore we can be observing a transition between two linear trends which
stems from a redistribution between the forward emitted and the backward
emitted SHG. It is interesting to note that, while the fundamental is linearly
suppressed in the assembly, the SHG grows linearly with the system depth.
This apparent contradiction is well explained by [158], where they show that
it is a result of the combined effect of the quadratic increase of the SHG with
the linear decrease due to scattering. This compensation mechanism can be
well understood in the slab geometry, and it is backed up by several theo-
retical studies, however how the geometry of the sample would affect the
scaling of the SHG is still an open question. Indeed, the scaling of the SHG
power with the slab thickness, or in general sample volume, is in principle
geometry-dependent since the specific distribution and generation of light
depend on the sample shape. We tackle this question in the next section with
the nonlinear measurements on the LiNbO3 disordered spheres.

5.3.1 Second-harmonic in disordered LiNbO3 microspheres

We measured the SHG from the disordered LiNbO3 microspheres with the
setup depicted in Fig. 5.5. The images of the emission are a nonlinear speckle
pattern. A picture of a typical image is reported in Fig. 5.8. Similarly to what
we presented for the BaTiO3 resonant microspheres, we measured the SHG
for assemblies of different sizes. We measured a total of 25 microspheres
with diameters in the range 1 µm to 15 µm. The results are shown in Fig.
5.9 both in logarithmic and semi-logarithmic scale. We fitted with the func-
tion y = αxβ which results in a best-fit exponent of β = 2.76± 0.34, which
corresponds to a linear scaling of the SHG power with the volume of the
assembly (i.e., with the number of nanocubes). The show the linear scaling
with the volume we plotted it in the inset of Fig. 5.9. The second-harmonic
generation in a sphere, in which conventional diffusive equations are chal-
lenging to solve due to nontrivial boundary conditions, we retrieve a linear
trend of the SHG power versus the volume. This observation demonstrates
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FIGURE 5.8: Second-harmonic speckle of a LiNbO3 micro-
sphere.

that the compensation mechanism discussed before for the slab case, that is,
that the laterally growing illuminated volume and the continuously atten-
uated pump power compensate to return the typical scaling of RQPM for
transparent media, applies to a larger class of sample geometry. The bigger
microspheres (above 8 µm) slightly deviate from the linear trend similarly to
what happens for thick LiNbO3 slabs. This deviation can be explained with a
partial redistribution from transmitted to backscattered SHG, similarly to the
behavior in the slabs. An alternative explanation for the observed deviation
could be that the diameter of the microspheres is comparable to the size of
the Gaussian profile of the pump beam (FWHM 18 µm) and, therefore, the
bigger microspheres of the data set are illuminated with less average inten-
sity than the smaller ones.

5.4 Summary and perspectives

In this chapter we used LiNbO3 nanocubes as building blocks to fabricate
nonlinear disordered photonic media (NDPM) with slab and spherical ge-
ometry. The nanocubes were chosen because it was shown in a previous
work that they individually have a high scattering cross section and efficient
second-harmonic generation [100]. Both of these effects stemmed from the
Mie resonances of the single nanocubes. The initial goal of the fabrication
of our bottom-up NDPM, was to produce disordered structures with a high
SHG efficiency due to the Mie modes and the higher χ(2) tensor of LiNbO3
compared to BaTiO3.
We measured the scattering strength of our assemblies, revealing bottom-up
NDPM with a very short transport mean free path. In particular, we showed
a minimum value of l∗ of 476± 6 which corresponds to an inverse scattering
coefficient of kl∗ = 3.9± 0.1. This low value makes our assemblies a promis-
ing platform to study the combination of nonlinearity and multiple scatter-
ing. Moreover, the measured trend in Fig. 6.4d hints to an even lower kl∗

for shorter wavelengths (i.e. stronger scattering), close to regimes in which
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FIGURE 5.9: SHG scaling with the microspheres diameter and
data fit with a power law function, proving the linear scaling
with the volume, signature of the RQPM regime. Inset: SHG as
a function of the microspheres volume, to explicitly show the
linear scaling with volume over more than 2 orders of magni-

tude. Taken from [113].

the diffusion model fails and sign of 3D localization could appear. In order
to study this further, an in-depth characterisation of the absorption of assem-
blies and the creation of thicker samples in which localisation can take place
would be crucial. The presence of 3D Anderson localization for the funda-
mental beam can create disordered cavity modes that would affect the SHG
efficiency in unforeseen ways [35][31].
In this work, we measured the scaling of the second harmonic with the vol-
ume of the microspheres and the thickness of the slabs. We provided evi-
dence of the linear scaling typical of RQPM with the number of domains,
which was predicted for multiple scattering samples, but never explicitly
shown [158][157]. It is interesting to note that the scaling with the num-
ber of domains is independent of the scattering strength in the assemblies.
This common behavior suggests that the energy distribution of the pump
and SHG in the sample, could be regulated by a more fundamental property
such as the mean path length invariance [151]. This aspect could be inves-
tigated in a future study. An under-explored combination will be possible
at the intersection of the field of nonlinear optics and wavefront shaping.
For instance, a spatial light modulator (SLM) can be used to control the non-
linear speckle of RQPM second-harmonic generation as well as the linear
speckle [30]. This approach could be used to explore a possible regime af-
ter the random quasi-phase-matching towards and "optimal" RQPM, to en-
hance further the efficiency of the nonlinear generation. Furthermore, the
combination of wavefront shapting and NDPM can have deep implications



5.5. Declaration of personal contribution 87

from fundamental studies such as the definition of nonlinear transmission
matrix, to application in optical computing. The possibilities enabled by the
combination of nonlinear and disordered materials can have unforeseeable
impact on the coming years. In this chapter we presented and characterized
a bottom-up fabricated platform in which the interplay of coherent nonlinear
generation and multiple light scattering can be studied, to enable it to realize
its potential.

5.5 Declaration of personal contribution

The results presented in this chapter are published in [113]. The work pre-
sented was done by Romolo Savo, Jolanda Müller and me. My personal con-
tribution was the implementation of the optical setup for both the linear and
nonlinear measurements. I performed the linear measurement of total trans-
mission with the integrating sphere, the SHG measurements on the LiNbO3
slabs and the analysis of the data. The nonlinear measurements on the mi-
crospheres were done by Jolanda Müller.





89

Chapter 6

Modulated fluorescence of
nanodiamonds in bottom-up
dielectric microspheres

Optically active nitrogen vacancies in diamond (known as NV centers) have
attracted considerable research interest in recent years. They have numerous
applications in biophotonics [159], sensing [160], [161] and quantum optics
[162]. To harness the potential of the NV centers, it is of great importance
to manipulate their photonic properties, such as spectrum and emission rate.
One of the most employed approach consists in coupling the NV centers to
resonating structure [115].
In this chapter we present a novel approach based on active NV centers in
nanoparticles of diamond (we will refer to them as nanodiamonds). The
main idea is to couple the nanodiamonds with bottom-up fabricated micro-
spheres of titanium dioxide TiO2, with a fabrication process that is heavily
scalable (see Chapter 3). The resulting hybrid microspheres (with a matrix
of TiO2 and a 1% of nanodiamonds in volume) can manipulate the emission
of the NV center thanks to two effects: the photonic nanojet which focuses
the excitation in a small volume of the sphere [56], and the Mie resonances
that enhance the fluorescent emission of the NV centers at specific wave-
lengths [50]. This approach could be ideal to create single photon sources,
maximizing both the contribution of the pump and the emitted light. We be-
gin the chapter describing briefly the NV centers, focusing on their optical
properties. Then, we give an overview of the state of the art in the field of
diamond nanophotonics, discussing different applications reported in litera-
ture to engineer the emission with plasmonic and dielectric resonators. Next,
we present our optical results on the hybrid microspheres, showing that we
can assemble bottom-up resonators that can present Mie resonances in the
scattering cross section. These Mie resonances of the spheres can shape the
emission from the nanodiamonds; we show this thanks to measurements of
the photoluminescence spectrum. In the following section we demonstrate
that, thanks to the thermo-optic effect, we can actively change the position
of the resonances with the temperature. This tunability is crucial to match
the modes of the resonator with the desired emission wavelength. To check
whether the Mie-assisted fluorescence of the NV center could show an en-
hanced emission rate thanks to the Purcell effect, we measured the lifetime
of the emitted light. We describe the technique employed which is time
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FIGURE 6.1: Crystal structure of diamond with a nitrogen va-
cancy. The substitutional nitrogen atom is represented in yel-
low with the neighboring vacancy in purple. All the other
atoms in green are carbon. Photoluminescence spectrum of ni-
trogen vacancy in nanodiamons of 100 nm, from Sigma Aldrich.
The two ZPLs are at 575 nm and 637 nm are indicated by the

dashed lines.

correlated single photon counting (TCSPC) in the following section and we
present the results for the lifetime of the emission. Unfortunately, the low Q
factor (about 200) and the large mode volume of the measured microspheres
prevented us from measuring a clear reduction. To conclude, we show the
measurement of the second-order correlation function g(2) of the individual
nanodiamonds with a Hanbury-Brown-Twiss (HBT) setup. This measure-
ment is needed to assess the quality of the emitters and the setup prior to test
the combination of the microspheres with the nanodiamonds. In the end, we
summarize the results and the perspectives of this work. Parts of this chap-
ter are taken from the Master thesis of Andrea Scheidegger and Daniel Streiff
and from the semester thesis of Paolo Fischer.

6.1 Optically active NV centers in diamond

Diamond is a material with many interesting properties for photonics. It is
biocompatible, chemically robust, has a transparency range from the deep
ultra violet to the infrared, and has a refractive index of 2.4 in the visible
range [163][164]. On top of these properties which are from bulk diamond,
many other unique properties are enabled by optically active defects in di-
amond, sometimes referred as color centers [114]. These impurities consists
of a missing atom in the lattice and/or a neighboring atom replaced with
another material. There exists a host of optically active defects in diamond,
determined by the element that replaces the carbon in the lattice. Their emis-
sion spectrum span the whole visible range and part of the infrared (therefore
the name color center). Here, we focus on the nitrogen vacancy (NV center),
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in which an atom of nitrogen replaces a carbon, as it is schematically illus-
trated in Fig. 6.1. The NV centers are the first and most studied defects in
diamonds for their outstanding spin properties [165]. They have vast ap-
plications in the detection and imaging of magnetic field at the nanoscale,
which is enabled by the spin of the defect in the diamond placed in a tip of
a scanning probe setup. NV centers display a long coherence time and the
spin can be coupled to its fluorescence allowing for an optical readout of the
spin state. This topic is not the focus of the work discussed in this chap-
ter, for a detail discussion of the properties of NV centers for magnetometry
we refer the reader to the following review [166]. Moreover, the emission
from NV centers does not blink nor photobleach, which makes them ideal
as biomarker [167]. The other most important application of optically active
NV centers is to use them as single photon sources. The NV center exists in
two states: the neutral NV0 and the negatively charged state NV−. These
two defects can be excited with an optical beam in the range 490 nm to 560
nm of wavelength. Then, they relax into the ground state by emitting a pho-
ton at a specific wavelength which is 575 nm for the NV0 and 637 nm for
the NV− [168]. These two emission lines are called zero-phonon lines (ZPL)
since they are the result of the radiative decay in the ground level, without
interaction with the lattice. These two lines are highlighted by the arrows
in Fig. 6.1. The rest of the broad spectrum from 500 nm to 900 nm, is con-
stituted by phonon-assisted transitions. The photons emitted at the ZPL are
preferred for quantum applications thanks to their defined energy. The ratio
of the number of photon emitted in the ZPL compared to the total emission
is called Debye-Waller factor ηDW . Compared to other defects such as silicon
vacancies (SiV) ηDW for NV centers is rather small around 0.04 [169].

6.1.1 Single photon emission

Single photon emitters are a key building block of quantum optics [170]. The
ideal single photon source should emit only one photon at a known time, in-
distinguishable from the others with a fast emission rate. The emission rate
can be tested with TCSPC, the degree of indistinguishability with a Hong-
Ou-Mandel experiment. To provide evidence that the emitters are single
photons, we measure the antibunching. That means that the probability of
detecting two photons at the same time tends to zero. This measurement is
routinely done with a Harnbury-Brown-Twiss setup (HBT) [171]. The mea-
sured quantity is the second-order autocorrelation function g(2)

g(2)(τ) =
< I(t)I(t + τ) >

< I2(t) >
(6.1)

A typical example of antibunching is reported in Fig. 6.2.
The emission of single photons from a NV center can be enhanced with

two mechanisms. The first one consist in enhancing the excitation field inten-
sity on the emitter. The second one is enhancing the quantum yield, i.e. the
ratio of the radiative decay rate over the total decay rate. It can summarized
with the following Eq. 6.2
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FIGURE 6.2: Typical measurement of antibunching in the
second-order autocorrelation function g(2) for single photons.

Adapted from [172].

ρ =
γrad

γrad + γnon−rad
(6.2)

where γrad is the radiative decay rate and γnon−rad is the non-radiative
one. In this context the lifetime is defined by τ = 1

γ . The radiative decay rate
can be modified by increasing the local density of state of the emitter, and
this can be achieved by coupling the emitter to a cavity and exploiting the
Purcell enhancement F [173].

F =
3

4π2 λ3 Q
V

(6.3)

Q represents the quality factor of the resonator and V its volume. In our
work the idea is to use the nanodiamond in a microsphere that should in-
crease the pump intensity and to shape the emission thanks to its resonant
Mie modes.

6.2 State of the art

As we mentioned in the previous section, an improved emission from the
NV centers has been obtained by coupling the defects to resonant structures.
Three reviews detail the progress of this active field [114], [115, 164]. The
two main types of resonators are the plasmonic and the dielectric ones. Plas-
monic resonators are very useful since they support broadband modes and
they have a very small mode volume which allows to reach high Purcell en-
hancement (see Eq. 6.3). In fact, they have been used to increase the rate of
the emission from a single NV centers by at least two orders of magnitude.
The common drawback of this approach is constituted by the Ohmic losses
which are due to the strong absorption of the metals. One notable example
is represented in Fig. 6.3a, in where Bogdanov et. al coupled a single nanodi-
amond with a silver nanocube on a silver substrate [174]. The enhancement
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FIGURE 6.3: NV centers coupled with resonators. a) Schematic
of a nanodiamond in a plasmonic resonator done by a silver
nanocube and substrate. Image taken from [174]. b) Sketch
of the working principle of Mie-enhanced photoluminescence
from diamonds. c) Schematic of fluorescence modulated by the

Mie modes of the dielectric resonator. Adapted from [173].

that they achieve is indeed remarkable, however the process is hardly scal-
able, since it requires to randomly disperse the nanocubes on a sample with
spin coated nanodiamonds. Another viable approach which does not suffer
from the absorption losses is constituted by coupling the NV centers with
a dielectric resonator. For instance, thanks to ion beam milling, it is possi-
ble to shape the diamond with NV centers into a resonator down to sizes
in the range 100 nm to 400 nm, where it should exhibit Mie modes [173].
The sketch of the sample and the concept of this work is displayed in Fig.
6.3b,c. This technique can display up to two-fold enhancement of the emis-
sion rate, but no single photon emission ( with g(2) measurements ) given
that it is hard to locate a single defect and mill a structure around it, resulting
in Mie resonators with several NV centers. A recent work by Obydennov
et al. demonstrated the concept of Mie resonance assisted spontaneous light
emission in nanodiamonds synthesized by high pressure high temperature
technique (HBHT) [175]. There, they gave evidence of an enhanced emis-
sion rate and of an increase in the Raman intensity thanks to the Mie modes.
However, they work with silicon vacancies (SiV) and their method can not
be applied for single photon sources due to the high number of defects in
a single assembly. An alternative solution is to take single nanoparticles of
diamond with defects (nanodiamond) and couple them one-by-one with a
dielectric sphere [176]. Many of the insightful methods summarized here
have the common drawback of the scalability, since they can produce single
photon sources coupled with resonator at the cost of micromanipulating each
individual structure. Our idea is to achieve comparable results with bottom-
up fabricated spheres whose fabrication can be heavily scaled, as discussed
in Chapter 3. The advantage from the fabrication side is that we can also
carefully control the concentration of the nanodiamonds (therefore the con-
centrations of the NV centers) in each microassembly.
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FIGURE 6.4: Experimental and theoretical scattering cross sec-
tion of a TiO2 microsphere. The experimental data in red are
collected from a sphere of diameter (1.4 ± 0.4) µm measured
with a darkfield microscope. In blue scattering efficiency for
a TiO2 microsphere of 1.46 µm composed entirely of TiO2 and
filling fraction 0.58. The imaginary part of the refractive index

k is 0.001.

6.3 Fluorescence modulation

To fabricate the microsphere we used titanium dioxide (TiO2) nanoparticles,
as shown in Chapter 3. TiO2 was chosen for its transparency combined with
high refractive index of 2.7 in the visible spectrum. Both these properties
are useful to fabricate a resonator in the visible range with low losses and
high mode confinement. On top of that, the small size of 15 nm of the TiO2
nanoparticles allowed us to fabricate structures with smooth surfaces. To
asses the quality of the fabrication, we measured the scattering cross sec-
tion with dark-field microscopy, similarly to what we did for the BaTiO3 mi-
crospheres in Chapter 4. We compared the scattering cross section with the
one obtained through analytical calculation with the effective medium Mie
model (EMM). The data are reported in Fig. 6.4. The discrepancy in the in
the y-axis can be attributed to our setup, that was not collecting all the light
scattered in transmission. However, the qualitative agreement between the
model and the experiment can be appreciated for positions and shape of the
peaks. This correspondence indicates that the microspheres of titania interact
with the illumination beam as an effective medium. Therefore our bottom-
up fabrication can deliver spheres that are effectively a resonator for the light
and that can be modeled with our effective medium Mie model.

The fluorescence of the hybrid microspheres was measured with the setup
depicted in Fig. 6.5a. A pulsed laser at 520 nm wavelength of emission (Thor-
labs, NPL52C), is focused and the sample and the collected light is directed
to a camera or to an optical fiber (to be sent into a spectrometer). An SEM
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FIGURE 6.5: a) Schematic of the setup used to measure the im-
ages of the microspheres and to collect the spectra. In the inset,
SEM of a microsphere of around 6 µm diameter. The scalebar
is fixed for all the figures to 3 µm. b) Image of a hybrid mi-
crosphere with the image plane in the center of the sphere. c)
Image of the sphere with focal plane on the rear part of the mi-
crosphere, to highlight the focusing (nanojet). d) Fluorescence

image, filtering out the pump.
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FIGURE 6.6: Fluorescence spectra collected for two micro-
spheres of 5 µm of diameter and 10 µm diameter. The pump
wavelength used is 520 nm and a longpass filter 550 is used to

block the pump light.

picture of a hybrid microsphere is also shown in Fig. 6.5. The images of the
microspheres show the strong focusing typical of the photonic nanojet for the
pump as well as emission from the whole volume. With the same setup it is
possible to measure the fluorescence spectrum. It is displayed in Fig. 6.6, for
two microspheres with 1% nanodiamonds compared to TiO2 of diameter 5
µm and 10 µm, respectively. It is possible to see that the width of the modes
decreases with the size of the microsphere as it is expected from Mie theory.

The results displayed in Fig. 6.6 give evidence that we can modify the
spectrum of the emitted fluorescence from the nanodiamonds thanks to the
spherical geometry of the assembly. The Q factor of the peaks is around 200.
As we pointed out in beginning of the chapter, for single photons applica-
tions we want to work close to a ZPL line. Therefore, we would have spheres
of a certain size with a resonance at that wavelength and spheres of other
sizes without a resonant peak. This means that, to exploit the modes, we
should control the size of the sphere and target a specific size to match the
mode of the assembly with the ZPL at 637 nm. The fabrication used to as-
semble the spheres for this measurement was producing microspheres poly-
dispersed in size, thus it was not suitable to target a specific resonant size.
For this reason, we decided to exploit the thermo-optic effect to change the
refractive index of the sphere to shift the modes.

6.4 Thermal shift of the resonances

The same setup illustrated in Fig. 6.5a was used to measure the spectrum
for different temperatures. The measured microsphere has a diameter of 10
µm and the temperature was changed in the range 21◦C and 220◦C, as can
be seen in Fig. 6.7a. The two arrows indicate the peaks taken as examples
that shift to lower wavelengths. The central position of three peaks is repre-
sented in Fig. 6.7b. We can see that even a modest change in the temperature
of tens of degrees is sufficient to shift a resonance (measured by the central
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FIGURE 6.7: Thermal shift of the Mie resonances in the fluores-
cence. a) Fluorescence spectra at different temperatures T. As
the temperature of the substrate increases, the effective refrac-
tive index of the TiO2 decreases, modifying the emission spec-
trum. b) Central position of specific peaks for different temper-
atures. c) Spectral shift for a microsphere heated with a Peltier

element in a narrower temperature range.
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wavelength position) by few nanometers. We performed Mie theory simula-
tions to match the modes. For simplicity, we neglected the contribution of the
nanodiamonds in the calculation of the effective refractive index of the mi-
crospheres (they constitute by design 1% only of the volume). Moreover we
assumed that the spherical geometry is preserved for different temperatures
such that we can use the Mie theory for spherical microparticles. In a next
step, we changed the effective refractive index of ∆n = 0.033 and this pro-
duces a shift around 4 nm in the peak wavelength. This is compatible to our
measurement with ∆T = 49◦C. By computing the thermo-optic coefficient
at room temperature in the wavelength range from 650 nm to 700 nm we get
a negative number of the order of 10−4K−1. This is compatible to values re-
ported in the literature for the thermo-optic coefficient of thin film of TiO2
[177]. For example Zhang et al. [178], reported a value of −4 · 10−4K−1. Even
though the order of magnitude of the coefficient agrees with some work in
literature, we point out that different values can be found in literature for dif-
ferent size of the nanoparticles, different thicknesses and different annealing
temperatures.

6.4.1 Lifetime measurements

We measured the temperature dependence of the fluorescence lifetime of the
hybrid microspheres with the setup depicted in Fig. 6.8a. The set-up is sim-
ilar to the one depicted in Fig. 6.5a but the fiber is sent to a single photon
detector and the technique used is the time correlated single photon mea-
surement. The working principle is the following: a train of laser pulses of
10 ns is sent on the sample and excites periodically the system. We record the
delay between the trigger of the pulse, which is a consistent measurement of
the time of the emission of the pump pulse, and the arrival of one emitted
photon on our single photon detector. If we repeat this measurement several
times, we are able to construct an histogram of photons collected versus the
time delay with the trigger. With large enough statistic we can map the ex-
ponential decay of the emission. There are a couple of small caveat in this
method. First, it works only provided that only 2% or less of the pulses are
causing the emission of a photon from the sample. This is done to prevent
the pile-up distortion on the detector which happens if too many photons are
emitted by the NV centers. Secondly, the measured curve is not the true de-
cay of the emitter, but rather it is a convolution with the temporal profile of
the pump [179]. This can become an issue if the temporal width of the pump
laser is not negligible compared to the characteristic decay time of the expo-
nential. An example of measured exponential decay is show in Fig. 6.8b. It is
possible to fit the data with an multi-exponential fit, to take into account the
instrument response function. However, we applied a more robust method
to deconvolve the signal from the IRF. The method chose is the iterative re-
convolution [180]. It performs a least square fitting where the model function
is given by the convolution of the IRF with an exponential decay. The final
output of the code is the function that minimizes the residuals.
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FIGURE 6.8: a) Setup for time correlated single photon count-
ing. The laser source (NPL52C, 520nm, 6-120 ns pulse width,
max 50 kHz, Thorlabs) is triggered with square voltage gener-
ator. The laser wavelength is filtered with long-pass filters and
the signal is detected by single photon counting unit ((C14463-
050GD, Hamamatsu). The time difference is measured via a
time tagger (time tagger ultra, Swabian Instruments). b) Typi-
cal fluorescence decay measurement. The instrument response
function in yellow was measured using TCSPC with the laser

light itself heavily attenuated with neutral density filters.
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FIGURE 6.9: a,b) Fluorescence lifetime in the range 636 nm -
638 nm (in blue) and in the range 670 nm - 672 (in yellow) as
a function of the applied temperature for two different spheres
of diameter 10 µm. The points in the upper plots are extracted
from the fit of the lifetime. c,d) Fluorescence spectra of the two
microspheres with a shaded area that highlights the collected

wavelength range.

6.4.2 Temperature dependent lifetime

To check the effect of the temperature change on the lifetime we filtered the
flourescence of the hybrid microspheres with two narrow bandpass filters of
central wavelength 637 nm and 671 with a FWHM of 2 nm. The filter at 637
was selected because it can select the photons emitted at the ZPL of the NV
center, the most suitable candidate to generate single photons. The filter at
671 was chosen because it is located in the spot of the maximal emission from
the microspheres. The idea is that, by means of the applied temperature, we
can shift the peaks of the fluorescence. This for certain temperature should
increase the emission rate thanks to the Purcell enhancement. Therefore, by
recording the lifetime as a function of the temperature, we should see the
modulation of the lifetime, i.e. fast emission on a peak of the resonance and
slower emission elsewhere. We show these measurement for two spheres
that displayed resonances in the wavelength range of the filters. The spectra
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FIGURE 6.10: Hanbury-Brown-Twiss interferometer used to
measure the second-order correlation function g(2) for the emis-

sion of the nanodiamonds.

are plotted in Fig. 6.9c,d. From these spectra they demonstrate that with nar-
row band pass filter we are able to collect the signal from a single peak of the
spectrum, if placed in correspondence of the center of the peak. In Fig. 6.9
we plotted the lifetime fitted with the iterative reconvolution method. The
modulation lies within the error limits of our measurements, therefore we
can not conclude that the lifetime is modulated by the different resonances
of the assembly. We can see a clear descending trend that has to be attributed
by different transition times in the electronic levels of the NV centers due to
the temperature. However we do not detect a change in correspondence of
the peaks in the spectra. This can be explained with the volume dependency
of the Purcell factor of Eq. 6.3. In particular our modest Q factor is counter-
balanced at the denominator by a volume that is too big for a sphere of sev-
eral microns. The mode volume of our measured microspheres is not small
enough to allow the Purcell effect to reduce the lifetime, we should repeat the
measurement with spheres of sub-micron diameter or replace the NV center
with SiV center that have a narrower emission line at room temperature.

6.5 Single photon emission

To measure the single photons from the nanodiamonds we spin coated some
diamonds containing NV centers on a glass substrate. The spinning parame-
ters and the choice of the specific nanodiamond is described in Chapter 3, the
important parameter here is that the nanodiamonds have roughly size of 20
nm, and contain on average a single NV center. The new setup which works
in reflection, was chosen in analogy to many setups reported in the literature.
The sample with the spin coated nanodiamonds was placed face-down in the
setup depicted in Fig. 6.10. This was done to prevent the losses due to the
substrate, given that we were not working with an oil-immersion objective
and a index matching liquid. One of the main advantages comes from the
dichroic beam splitter that allows to remove efficiently the laser light after
the excitation of the sample. The signal is then sent into a fiber with a built-in
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50:50 beam splitter that directs the light to two single photon counting mod-
ules (SPCM). Contrary to what was done to measure the fluorescence with
the TCSPC method, here we are measuring with the time tagger the differ-
ence of the arrival time of photons in the two ends of the fiber. The signal
of single NV centers is too small to be able to image large area of the sam-
ple with a camera (that was use for alignment only). Instead, the scanning
of the sample was done by measuring the counts in the SPCM moving lat-
erally the samples with motorized stages. The spin coated sample with NV
centers were coarsely scanned on the x and y axis and a multi-mode fiber (to
collect more light). The result of one of these scans is displayed in Fig. 6.11a.
The x-y position is plotted with the number of counts per second recorded
in one of the two SPCM. They present a lot of brights spots that correspond
to nanodiamonds or, more likely, clusters of nanodiamonds. However, the
signal-to-noise ratio is very low due to collection from areas that presented
several NV centers. For this reason, we replaced the multimode fiber with
a single mode fiber, realizing a confocal microscope, in which the fiber core
acted as a pinhole of the setup. With this upgrade it was possible to increase
heavily the signal-to-noise ratio. The measurement with the upgraded setup
is plotted in Fig. 6.11b where the collected area is the one in the white rect-
angle of Fig. 6.11a. The bright spots in the figure are candidate single pho-
ton sources. All the measurements were performed with 1.3 mW of average
pump power. The area in Fig. 6.11b highlighted by a white circle contains the
nanodiamond whose g(2) function is reported in Fig. 6.11c. The antibunching
dip is evident at zero delay between the arrival of the photons and provides
evidence of nonclassical radiation.

To explain this dip we should start by using the following equation

g(2)(τ) = 1− eτ/τ0 (6.4)

which describes the dip at τ = 0. This represents the fact that the single
NV center can not emit two consecutive photons with a time delay smaller
than τ0. This formula must be upgraded to account for background radiation.
In fact our SPCMs can have a detection event also triggered by background
radiation or electrical noise. We call ps the probability that a certain detection
is triggered by a photon from the diamonds, while pb for the detection of
noise. Therefore, the g(2) of our HBT setup has to be expressed as

g(2)exp(τ) = p2
s g(2)s (0) + 2ps pb + p2

b (6.5)

where the first term represents a double detection of photons emitted by
the NV centers, and the other terms are one count from the background and
one from the sample, and finally two counts from the noise. Thanks to Eq.
6.4 and Eq. 6.4, we can write:

g(2)exp(τ) = p2
s

(
1 +

1
n
[
− ce−τ/τ1 + (c− 1)e−τ/τ2

])
+ 1− p2

s (6.6)

where the factor n was introduce to account for multiple NV centers.
The fit of the data of Fig. 6.11c with the function from Eq. 6.6 returns
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FIGURE 6.11: 2D fluorescent image of spin coated nanodia-
monds on a glass substrate scanned over the lateral size. a)
Scan performed with a multimode fiber. b) Scan done with a
single mode fiber to increase the signal-to-noise ratio. The area
highlighted with the white circle is the one investigated in the
following plots. c) Experimental g(2)(τ) with the fit. d) Counts
on the SPCM as a function of the excitation power, which dis-

plays the typical saturation behavior.
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g(2)(0) = 0.69 and n = 2.23 ± 0.18. This means that, most likely, we are
detecting the emission from a cluster of two nanodiamonds, or a single nan-
odiamond with two active NV centers. In Fig. 6.11d we investigated the
saturation trend, measuring the emitted signal in comparison with the back-
ground while increasing the pump power.

6.6 Summary and perspectives

In this chapter we presented a novel approach that had the ambitious goal
of producing scalable single photon sources. We have benefited from the
emulsion-templated assembly developed for the BaTiO3 and LiNbO3 micro-
spheres described in Chapter 4, 5. We used as a host matrix TiO2 nanopar-
ticles that, with their high refractive index and small size, allowed to fabri-
cated sphere with high surface quality. We added in the fabrication a small
proportion of nanodiamonds containing NV centers. The resulting hybrid
microspheres displayed a fluorescence spectrum which was modulated by
the Mie resonances stemming from the sphericity of the assemblies. There-
fore the resonant properties of the assemblies are able to increase the intensity
of the emission at certain wavelength. Since the targeted wavelength that we
wanted to enhance was in correspondence of the ZPL at 637 nm, we studied
how we could control the position of the Mie peaks to boost the emission at
that wavelength. This was demonstrated thanks to the thermo-optics effect
of TiO2. Therefore, our bottom-up microspheres are effectively an active res-
onator that can control the wavelength dependent emission with the temper-
ature. Nevertheless, the key measurement of the modulation of the lifetime
with the temperature did not succeed. In fact, with the data displayed in Fig.
6.9, it is not possible to identify a clear modulation of the lifetime with the
temperature. The reason for this absence can be found in the big mode vol-
ume that suppresses the Purcell enhancement. In the final part we showed
the set-up and the measurement on individual nanodiamonds with one NV
center. This is a key step towards the measurement of g(2) in NV centers cou-
pled to the microspheres. We showed that our diamonds can be used to emit
single photons and that our setup can be used to measure their second-order
correlation function.
Some challenges are still to be faced, in particular one can be very harmful
for the success of the project. That is a small fluorescence from the matrix
of TiO2 of the sphere. The origin of this fluorescence is still to be clarified,
but for single photon measurement even a small background radiation can
suppress the emission from the NV centers.
A possible route to use this bottom-up fabrication to enhance the emission
rate of the single photons from the nanodiamond would be to fabricate small
spheres (submicron radius) to increase the local density of states with the
Purcell. This is similar to what was done in recent works [173][175]. The
difference would be that in our case the fabrication is cheaper and scalable,
and in principle allows to control fully the concentration of defects in the as-
semblies. Another interesting upgrade would be to replace the NV centers
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with SiV vacancies that exhibit a sharper emission line at room temperature.
A general upgrade would be to repeat the measurements at cryogenic tem-
perature to suppress the emission in the phonon sidebands. There is another
interesting aspect that we mentioned but did not elaborate further: the pump
beam impinging on the microsphere, generates the photonic nanojet. This
phenomenon concentrates the pump with high intensity in a small volume
on the rear part of the microsphere. With an improved microfluidic fabrica-
tion, similarly to what it is done with Janus nanoparticles [181], it would be
possible to position one nanodiamond exactly at the top of the microsphere,
such that it could benefit the most from the resonant enhancement of the
pump. In conclusion, further steps are needed to realize bottom-up scalable
single photon sources and the potential of the assemblies that we conceived,
fabricated and analyzed in this chapter has still to be fully unlocked.

6.7 Declaration of personal contribution

The work presented was done by different students under my supervision.
Andrea Scheidegger implemented the fabrication (master thesis), Daniel Streiff
the thermal measurements and the second-order correlation measurements
(master thesis), Paolo Fischer the fluorescence spectra (bachelor thesis). I was
mainly responsible for the conception of the project and supervised the opti-
cal setups and the measurements.
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Chapter 7

Conclusion and Outlook

In this thesis we showed that bottom-up disordered assemblies of noncen-
trosymmetryc nanocrystals can be used for broadband second-harmonic gen-
eration in the random quasi-phase-matching scheme. The material used,
BaTiO3 and LiNbO3, are chosen for they broad transparency windows in
the visible and infrared part of the spectrum and high nonlinear coefficients.
The assemblies constitute as well an ideal platform to study the interplay of
nonlinearity and disorder. The core of the efforts of this thesis was to find
a solution to compensate for the main challenge of second-harmonic gen-
eration through RQPM: the lower efficiency compared to SHG from phase-
matched or quasi-phase-matched crystals. In Chapter 3 we described how it
possible to assemble microspheres of nanoparticles. The special feature of the
templated emulsion assembly is that it produces well-formed microspheres
while ensuring that the position and orientation of the nanocrystals are ran-
domized. Another advantage of the fabrication used is that it can be applied
to every material available in nanocrystals in solution, or even to mixtures.
This flexibility allows to control the effective refractive index of the assem-
blies and to tune their optical property (for example embedding NV centers,
quantum dots, rare-earth doped particles). The other benefit of the bottom-
up fabrication is the large scale production of assemblies at a low cost. We
presented as well how our manufacture can be upgraded thanks to microflu-
idics, to target specific sizes achieving a great control of the properties of the
fabricated structures.
In Chapter 4 we presented the microspheres assembled with BaTiO3 nanopar-
ticles. The goal of this project was to show that it is possible to enhance the
SHG from a disordered material with the help of the Mie resonances. Inter-
estingly, this requires exploiting the disorder of the distribution of domains
in the spheres on one side, and on the other hand, the order of the geometry
imposed on the assembly. We showed first that the spheres presented Mie
resonances in the scattering cross section, to give evidence that they behaved
as effective medium in the linear interaction. We supported this with numer-
ical simulation with COMSOL and analytical simulation with a model com-
bining effective medium approximeation and Mie theory (EMM). We demon-
strated the SHG with spectral and power measurements. More interesting is
the scaling of the SHG with the volume of the microspheres, which showed a
linear trend. The novelty of this result lies in the fact that until now this had
been shown only for transparent polycrystals (tens of microns in domains
size) in a slab geometry. By sweeping the pump wavelength we confirmed
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that the emission is broadband and we matched the modes presented in the
emission with our EMM model. Additionally, we compared the efficiency
of the RQPM SHG coupled with Mie modes, with the nonlinear emission
without the Mie modes. This evidences at least an order of magnitude of
increase. When a pump beam impacts the assemblies, the spherical geom-
etry generates two phenomena which are included in the Mie theory: the
photonic nanojet and the wavelength-dependent Mie modes. This fact has
a twofold impact on the energy of a pump: firstly, the nano-jet constitutes a
self-focusing that concentrates much of the power in a smaller volume of the
sample; secondly, at certain wavelengths, the pump power is more confined
to the spheres. Both of these effects result in an enhanced non-linear emission
from the microsphere.
In Chapter 5 the goal was to increase the efficiency of the SHG from a disor-
dered material by increasing the size of the nonlinear domains (up to 100 nm
- 400 nm). We used LiNbO3 nanocubes that were previously characterized
for their high scattering cross section and second-harmonic generation effi-
ciency. In fact, the assemblies with the LiNbO3 nanocubes displayed a very
strong light scattering. Despite the fact that the microspheres of this chapter
can look similar to the ones in the previous chapter, the physics within the
assemblies is radically different. By increasing the size we also suppressed all
the Mie modes from the whole assembly. To study the scattering properties,
we also fabricated the slabs with the same nanocubes and similar filling frac-
tion. Our measurements revealed a NDPM with a transport mean free path
as short as l∗ of 476± 6 at 750nm of wavelength. The strength of the scatter-
ing was also qualitatively confirmed by the opaqueness of the samples that
were completely white even when the thickness was only 1 µm. We used the
slabs and the spheres to show that the SHG with the random quasi-phase-
matching is robust to scattering. Moreover, the law of the linear scaling with
the thickness (or the volume) is preserved even in the presence of scattering.
This linear scaling appears to be related to some more fundamental property
of light generation in disordered material since it does not depend on the
scattering strength or on the sample geometry. This can be seen by compar-
ing the two scalings in Fig. 4.8 and Fig. 5.9.
Chapter 6 is a bit of a stand-alone in the broader scope of this thesis, since
it does not involve second-harmonic generation from a disordered material.
The link with the rest of the work is constituted by the same bottom-up fabri-
cation and the idea to exploit the Mie resonances to enhance a certain optical
performance. In this case, we used TiO2 as a host matrix to create hybrid
microspheres containing nanodiamonds. The intent was to use the nanojet
to increase the intensity of the pump in a small area with a NV center and
to exploit the Purcell effect to enhance the single photon emission rate. In
the chapter we showed good fabrication results (also with the outlook given
by the microfluidics approach), with microspheres with controlled concen-
tration of the nanodiamonds. We gave evidence of heavily modulated fluo-
rescence of the NV centers thanks to the Mie resonances and also that these
modes could be tuned with temperature thanks to the thermo-optic effect.
Therefore we achieved bottom-up resonators that emitted fluorescent light
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that could be actively controlled with the temperature. Nonetheless, we mea-
sured spheres with a volume that was too big (sizes above 5 µm in diameter)
and this suppressed the Purcell effect. In fact, our lifetime measurements did
not show a clear reduction in the lifetime (enhanced emission rate). In the
end of the chapter, we demonstrated and characterized a setup to measure
second-order correlation function g(2) from single nanodiamonds. This was
done to check the single photons from our NV centers prior to measuring the
g(2) from hybrid microspheres.

To conclude, in this thesis we contributed to show a part of the potential
of the nonlinear properties of disordered materials. We illustrated the advan-
tages of our platform based on noncentrosymmetric crystals and bottom-up
fabrication. Other possibilities are illustrated in a recent perspective article
[182]. Moreover, we presented and analyzed strategies to improve the effi-
ciency of the SHG with the random quasi-phase-matching scheme. We be-
lieve that this topic presents promising prospects, some of which are briefly
discussed in the next section.

7.1 Outlook

In this last section, I would like to examine the results presented in this the-
sis and highlight what the future challenges are and what can be improved.
Afterwards, I will try to envision what could be some possible applications
of this work and some future directions for disordered and nonlinear pho-
tonics. One of the main advantages of the bottom-up fabrication consists
in the scalability of the production. However, most of the results presented
here are hampered by the presence of the substrate. In fact, working with
microspheres with effective refractive index smaller than 2, causes a lot of
outcoupling the in substrate. Therefore one of the main challenges would
be to decrease the refractive index of the substrate or to couple smartly se-
lected modes in the spheres that would suffer less from the presence of the
substrate (for example whispering gallery modes). In terms of fabrication of
disordered and multiple scattering slabs, a big upgrade would be to fabricate
thicker samples (both to increase the efficiency and, eventually, localization
phenomena). Therefore our method has to be improved to become faster
(now it requires a lot of hours for a 5 µm thick sample). For the project of
the microspheres of TiO2 with the nanodiamonds there are two clear possi-
ble improvements. One would be to measure smaller spheres to be able to
see the Purcell effect, secondly, we could replace the NV centers with SiV to
benefit from their narrow emission around the ZPL.

7.1.1 Disordered quantum sources

Noncentrosymmetric crystals, when illuminated with a pump beam, do not
emit only SHG (which was the focus of this work), but also do spontaneous
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parametric down-conversion (SPDC). This means that, similarly to the ran-
dom quasi-phase-matching for the second-harmonic generation, the interfer-
ence of the SPDC from a disordered crystals should emit a detectable signal.
In my opinion, this hypothesis should be tested first in non-scattering disor-
dered crystals, because the scattering introduces another layer of complica-
tion in this already intricate problem. This measurement (that we attempted
but failed), has to fight with a very low efficiency of the SPDC that can be
easily overtaken by fluorescence from impurities in the sample.

7.1.2 Nonlinear generation and localization

The long-lasting problem of 3D Anderson localization has been proven to be
very elusive in the last decades. What can be added more on such a topic?
In my opinion our nonlinear disordered photonic media can present some
unexplored advantages. First of all, as is shown in Table 5.1, the inverse scat-
tering efficiency of our LiNbO3 slabs is short and it could present interesting
values of kl∗ ≈ 1 in the blue part of the spectrum. This would still be within
the bandgap of LiNbO3, preventing in theory undesired subbandgap absorp-
tion. Moreover, the SHG can be used as a probe of the diffusive/localizing
nature of a sample, given that the scattering strength of the material is heav-
ily wavelength dependent [85].

7.1.3 Nonlinear generation and wavefront shaping

Wavefront shaping has proven to be a fertile field of research. The possib-
lity to control the phase and the amplitude of a light profile can be used in
many applications, from bioimaging to optical computing. On contrary, the
wavefront shaping combined with the second-harmonic generation in multi-
ple scattering and nonlinear materials is hardly explored. There is a practical
reason for that, given that it requires the combination of nonlinear disordered
crystals, spatial light modulators (SLMs) and pulsed lasers. However, on a
practical standpoint the cross-contamination between these field can be very
promising. First of all, wavefront shaping would be the primary tool to in-
vestigate the nonlinear generation in NDPM. Little is known, in fact, if and
how transfer matrix theory can be applied to the nonlinear case. Secondly,
with wavefront shaping it is possible to modify the emission pattern from
a NDPM, converting a SHG speckle into a focal point or more complicated
images [30]. This approach could be further used to increase the efficiency of
the random quasi-phase-matching towards and "optimal" RQPM. The pos-
sibilities are actually broader. An SLM and a complex material can be used
to perform optical calculation tasks such as random linear projections [36].
If the medium is nonlinear, it enables a host of possible optical computing
operations, such as reservoir computing [38] or extreme machine learning
[37]. Most of the works in these fields rely on nonlinearities in fibers or in
waveguides, but no one so far harnessed the potential of fully nonlinear and
disordered materials.
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Appendix A

Modeling of random
quasi-phase-matching

The vectorial model presented in this appendix is illustrated in depth in [143].
This model simulates the SHG in transparent media composed by an ar-
bitrary configuration of crystalline domains. The problem is reduced to a
one-dimensional calculation by dividing the three-dimensional structure in
one-dimensional sticks and computing the SHG in each stick individually,
as depicted in Fig. A.1a. This is similar to other models presented in litera-
ture [139, 149, 183]. In Fig. A.1b a single stick is shown. Each domain has a
random orientation and a random size chosen from a Gaussian distribution.
The second-harmonic field generated by each domain is computed analyt-
ically and added in phase with the SHG from all the domains in the stick.
The result of this interference can be represented in the SHG complex plane
reported in Fig A.1c. The incoming beam is defined as the plane wave

E(ω) = (êaeiφa cos β + êbeiφb sin β)Eωei(kc−ωt)

with amplitude Eω, frequency ω, wavevector k, the starting phases φa and φb,
and a polarization angle β in the lab frame. The vectors êa and êb are the unit
vectors along the a and b axes. At the beginning of each domain, the electric
fields in the lab frame Elab, are transformed into the reference frame of the
respective crystal Ecry = R · Elab (see Fig. A.1d). The domain orientation is
defined by the rotation between the laboratory frame and the crystal frame as
shown in Fig. A.1e. The beams are decomposed into their components along
the o and e axes and each polarization combination of the pump (oo, eo, oe, ee)
generates a second-harmonic field Eu

gen(2ω, Xn) along u ∈ {o, e}. At the end
of the nth single grain the field is given according to:

Eu
gen(2ω, Xn) = ∑

v,w

i(2ω)2

2ε0c2ku
3

Pu,vw
(

ei∆ku,vwXn − 1
i∆ku,vw

)
eiku

3 Xn (A.1)

with the phase mismatch ∆ku,vw = kv(ω) + kw(ω)− ku(2ω), the wave vec-
tor ku

3 of the second-harmonic along u, and Pu,vw = 〈êu, Pvw〉 the second-
harmonic polarization along v, w ∈ {o, e} projected onto the o/e-axis (êu unit
vector along u ∈ {o, e}), where Pvw

i = 2ε0 ∑jk dijkEv
j Ew

k . Further details are
given in the supplementary information of [143].
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FIGURE A.1: a) Sketch of a disordered assembly of χ(2) do-
mains composed by parallel sticks. b) Each stick is formed by
domains of different size Xn and different orientation, repre-
sented by the arrows and the Euler angles. c) Representation of
the SHG generated by each domain in a stick, in the complex
plane. Each domain produces a phasor in the plane, each stick
is a different random walk d) Sketch of the angles between the
crystal frame and the laboratory frame. β represents the polar-
ization of the input beam. The ordinary axis is indicated with o
and the extraordinary with e. e) Illustration of the propagation,
generation and interference of the beams. Image taken from

[143].
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The pump and the SHG propagated in the domains take into considera-
tion for each step the amplitude, the polarization and the phase of both the
beams. Scattering in grain-to-grain propagation is neglected as well as walk-
off angle of the generated SHG. In this model it is possible to replace the ran-
dom distribution of the domains with specific orientations, such that it can
be used to calculate bulk quasi-phase-matching, or perfect phase-matching.
Moreover, it can be applied to any nonlinear crystal one the χ(2) tensor is pro-
vided. The output of the calculation is a nonlinear speckle pattern in which
every speckle grain is generated by a single stick (in this simplified model
one pixel corresponds to one speckle grain). At this moment there is no mix-
ing between the sticks, therefore, this model is applicable only to transparent
or weakly scattering materials.

One possible application of this code, to illustrate its working principle,
is to study the dependency of the SHG on the input polarization. In Fig.
A.2a we see the SHG speckle produced for different input polarizations from
a 10x10x10 cuboids (i.e. 100 sticks in parallel, each of them composed by
10 domains). As expected, some speckle grains change heavily with the in-
put polarization and some are not very affected. In Fig. A.2b,e there is a
schematic of a 4x4x4 cuboid, to show how the model works. A single stick
can have a strong polar dependency (as represented in Fig. A.2c), while many
sticks in parallel have a more isotropic response as in Fig. A.2d. The polar de-
pendency is obtained adding the contribution of all the sticks. Interestingly,
in this model the thickness does not contribute on average on the polar de-
pendency. This is shown in Fig. A.2f, where we can see that thicker cuboids
(i.e. longer assemblies in the direction of the propagation of the fundamental
beam) do not modify the polar dependency of the RQPM SHG.
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FIGURE A.2: Simulation of the polarization dependence of the
random quasi-phase-matched SHG in a transparent disordered
material. a) Nonlinear speckle pattern for for different input
polarizations. b) Sketch of a 4x4x4 cube. c) Polar plot obtained
for two different sticks of four domains. d) Polar plot obtained
integrating over the speckle of the 4x4 sticks, with a weaker po-
lar dependency. e) Sketch of a 4x4x8 cuboid, composed by 16
sticks of length 8 domains. f) Simulation of cuboids of different
length along the beam propagation. The solid lines are the av-
erage over 100 realization of disorder per different length. We
can see that the polar dependence is not affected by the length
of the disordered crystal in the direction of propagation of the

fundamental beam. Image realized by J. Müller.
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