
D I S S . E T H N O . 2 9 1 4 8

M O D U L A R M A P P I N G A N D L E A R N I N G
F O R R O B O T I C S

A thesis submitted to attain the degree of

D O C T O R O F S C I E N C E S O F E T H Z U R I C H
(Dr. sc. ETH Zurich)

presented by

A N D R E I C R A M A R I U C

MSc. ETH Electrical Engineering and Information Technology

born on August 11, 1993

citizen of Romania and Finland

accepted on the recommendation of

Prof. Dr. Roland Siegwart, examiner
Prof. Dr. Juan Domingo Tardós, co-examiner

Prof. Dr. Igor Gilitschenski, co-examiner

2023

Autonomous Systems Lab
Department of Mechanical and Process Engineering
ETH Zurich
Switzerland

© 2023 Andrei Cramariuc. All rights reserved.

A B S T R A C T

The ability to precisely localize a robot within the environment is a core
capability for mobile robotics. Knowing a robot’s precise pose permits various
tasks, such as navigation in an environment, interaction between multiple
agents, or mobile manipulation of an object. Various applications such as,
for example, autonomous driving, delivery robots, augmented reality (AR),
mobile manipulation, and robot inspection greatly benefit from an accurate
and robust underlying Simultaneous Localization And Mapping (SLAM)
system. Motivated by these widespread applications, the goal of this thesis is
to improve the existing limits of SLAM. We focus on integrating deep learning
into various components of SLAM, as we aim to integrate the advances in
perceptual understanding deep learning has provided. We wish to draw
inspiration from how humans perceive the environment to include more
semantically meaningful landmarks in the mapping process. We believe deep
learning will not only improve existing solutions but provide novel solutions
to yet unsolved problems.

Different robots and environments have different optimal sensor configu-
rations and perception requirements regarding SLAM. For example, micro
aerial vehicles have limited payload and a different perspective than indoor
wheeled robotic platforms. Accommodating these differences in software
requires a flexible framework that can support multiple different modalities
and types of sensors. However, many existing frameworks are very rigid
and require significant changes when prototyping new products or testing
novel research ideas. Therefore, in the first part of the thesis, we will focus
on a new multi-modal, multi-robot, and modular SLAM framework. We
show through experiments that state-of-the-art accuracy is possible, and we
showcase the integration of various experimental modules.

In the second part of the thesis, we will focus on using deep learning to
improve SLAM, first, by working on a new type of landmark and descriptor.
We further explore the inclusion of semantics into the localization process of
our proposed framework. Finally, we use learning to address maintaining
accurate long-term calibration in SLAM, which is essential to the operation of
all downstream tasks. We focus on the modular and meaningful integration
of learning, as we believe this leads to robust robotic systems that remain
understandable and easier to design.

i

Z U S A M M E N FA S S U N G

Die Fähigkeit zur präzisen Lokalisierung eines Roboters in seiner Umgebung
spielt eine zentrale Rolle in der mobilen Robotik. Die Kenntnis der genauen
Position und Orientierung eines Roboters ermöglicht verschiedene Aufgaben,
wie die Navigation innerhalb seiner Umgebung, die Wechselwirkung zwis-
chen mehreren Agenten oder den Umgang mit Objekten. Verschiedene An-
wendungen wie z. B. autonomes Fahren, Lieferroboter, Augmented Reality
(AR), das Manipulieren von Objekten mit mobilen Agenten und Inspektion
mithilfe von Robotern profitieren in hohem Maße von einem genauen und ro-
busten SLAM-System (Simultaneous Localization And Mapping). Motiviert
durch diese weit verbreiteten Anwendungen ist das Ziel dieser Arbeit, bekan-
nte Limitierungen von SLAM zu überwinden. Dazu konzentrieren wir uns
auf die Integration von Deep Learning in verschiedene Komponenten von
SLAM, da wir die Fortschritte im Bereich des Wahrnehmungsverständnisses,
die durch Deep Learning erreicht wurden, nutzen wollen. Wir möchten
uns davon inspirieren lassen, wie Menschen ihre Umgebung wahrnehmen,
um mehr semantisch bedeutsame Orientierungspunkte in die Kartierung
einzubeziehen. Wir glauben, dass Deep Learning nicht nur bestehende Lösun-
gen verbessern, sondern auch neue Lösungen für bisher ungelöste Probleme
bieten wird.

Verschiedene Roboter und Umgebungen haben unterschiedliche optimale
Sensorkonfigurationen und Wahrnehmungsanforderungen in Zusammen-
hang mit SLAM. Mikro-Luftfahrzeuge haben beispielsweise eine begrenzte
Nutzlast und eine andere Perspektive als Roboterplattformen mit Rädern in
Innenräumen. Um diese Unterschiede in der Software zu berücksichtigen,
ist eine flexible Plattform erforderlich, die unterschiedliche Modalitäten der
Dateninterpretation und Sensortypen unterstützen kann. Viele bestehende
Software-Plattformen sind jedoch sehr starr und erfordern erhebliche Än-
derungen, wenn es um die Entwicklung neuer Produkte oder die Erprobung
neuer Forschungsideen geht. Daher konzentrieren wir uns im ersten Teil der
Arbeit auf ein neues modulares SLAM-Framework, das für unterschiedliche
Roboter und Zusammenstellungen geeignet ist. Wir zeigen anhand von
Experimenten, dass eine aktuell bestmögliche Genauigkeit erreichbar ist, und
wir präsentieren die Integration verschiedener experimenteller Module.

Im zweiten Teil der Arbeit konzentrieren wir uns auf die Verwendung
von Deep Learning zur Verbesserung von SLAM, indem wir zunächst an

iii

iv zusammenfassung

einem neuen Typ von Orientierungspunkten und Deskriptoren arbeiten.
Des Weiteren untersuchen wir die Einbeziehung von Semantik in den Lo-
kalisierungsprozess des von uns vorgeschlagenen Frameworks. Schließlich
nutzen wir maschinelles Lernen, um eine genaue Langzeitkalibrierung bei
SLAM zu gewährleisten, die für alle davon abhängigen Aufgaben unerlässlich
ist. Wir konzentrieren uns auf die modulare und sinnvolle Integration des
maschinellen Lernens, da wir der Meinung sind, dass dies zu robusten
Robotersystemen führt, die verständlich bleiben und einfacher zu entwerfen
sind.

A C K N O W L E D G E M E N T S

Many people have contributed directly and indirectly to the research pre-
sented in this thesis and I would like to use this opportunity to thank some
of them, knowing full well that this list cannot be comprehensive. First and
foremost, I would like to express my sincere gratitude to Prof. Dr. Roland
Siegwart for offering me the opportunity to join his lab and work on exciting
new research topics. He created a unique atmosphere of exploration, freedom,
and collaboration among a group of bright and friendly people that form
the Autonomous Systems Lab (ASL). Through his leadership and insights he
created many opportunities for scientific research, and provided me with the
possibility to make many new life-long connections and friendships.

A big thank you to Prof. Dr. Juan Domingo Tardós and Prof. Dr. Igor
Gilitschenski, for agreeing to act as co-examiners on the committee of the
doctoral defense. I would especially like to thank them for their critical
comments and insightful questions that have helped improve this thesis.

I would furthermore like to thank Dr. Cesar Cadena, Prof. Dr. Igor
Gilitschenski, and Juan Nieto for their insightful supervision during my
PhD. Many explanations, rewriting, lengthy discussions, and ideas happened
throughout the four years of my studies. They were there for both successes
and rejections, for which I will always be grateful. I have learned much from
them and their support and hope to carry these experiences forward in my
career.

When thinking of the members of ASL, Renaud Dubé is one of the first
to come to mind, as he introduced me to the lab, supervising my semester
project. Later as my colleague I am sad we did not have more time to work
on further successful projects. From the mapping team I would like to thank
the old guard whose experience and discussions about maplab guided me
very much at the beginning, namely Marius Fehr, Thomas Schneider, Marcin
Dymczyk, and Hannes Sommer. I can not go by without thanking Florian
Tschopp, who was my neighbor and close collaborator for more than three
years. He especially taught me the value of student supervision, and I can not
count the hours we spent in meetings. Similarly thanks to Lukas Bernreiter,
with whom I enjoyed working on projects together, and always appreciated
his knowledge of programming, statistics, and sci-fi. Thanks to Cornelius
von Einem, who originally a student, and now a colleague I’ve had great
times and worked on interesting projects. I learned much about robotic

v

vi acknowledgements

manipulation when research interests aligned with Michel Breyer, and it
was a pleasure always when he popped in for common coffee breaks and
chit chat. Thanks also to Lukas Schmid, for the shared work on volumetric
mapping, and his willingness to organize events and participate in board
game nights. I would also like to mention the rest of the mapping team, with
whom I’m happy to have cooperated on various projects and shared inspiring
discussions Victor Reijgwart, Patrick Pfreundschuh, Hermann Blum, Lionel
Ott, and Olov Andersson. From the rest of ASL I can’t name everyone that
in one way or another has influenced this work, but I want to mention by
name Jen Jen Chung, Nicholas Lawrance, Daniel Dugas, Fadri Furrer, Tonci
Novkovic, Julian Förster, Kenneth Blomqvist, Giuseppe Rizzi, Paula Wulkop,
and Francesco Milano. Finally nothing at ASL would be possible without the
technical expertise of Michael Riner and the administrative support provided
by Luciana Borsatti and Cornelia Della Casa. It was a pleasure to be part
of such a great lab as ASL, I will always remember fondly the times spent
together at work and outside, and I hope it has lead to many friendships and
collaborations that will last a lifetime.

In addition to ASL, many external institutions and people played a role in
this thesis. I would like to thank SBB for their funding and support for data
collection, provided during the difficult times of the pandemic. Particular
thanks also to Bosch for their support, hosting and with all the great work
done together with Stefan Benz and Dr. Tillmann Falck. Finally, a thanks
to the lab of Prof. Dr. Margarita Chli and especially David Hug for their
cooperation on event based projects.

During my PhD I had the pleasure of supervising many talented and hard-
working students in their own studies. It was a pleasure to be involved in so
many people’s lives and careers. For their direct contributions to publications
and this thesis, I would like to thank Aleksandar Petrov, Rohit Suri, Mayank
Mittal, Andreas Bühler, Le Chen, Yunke Ao, Cornelius von Einem, Patrick
Pfreundschuh, Jiapeng Zhong, Zheyu Ye, Benjamin Hahn, Stefan Lionar,
Samuel Gull, Chunwei Xing, and Xinyu Sun.

Finally, I am deeply grateful to my family and friends without whom all
of this would not have been possible. I would like to thank my mother for
her continuous and unwavering love and support throughout everything. I
would like to thank my friends, for all the adventures and good times we
have shared, for all the support that I have received during hardships and for
always being there for me. Last but not least, I am grateful for the love and
support of Erika, my partner in life, and maybe some day in science. I look
forward to the next step in life together·

acknowledgements vii

Financial Support

The research leading to the results presented in this thesis has received
funding from the ETH Mobility Initiative under the project PROMPT, and
from Bosch Corporate Research.

C O N T E N T S

abstract i

zusammenfassung iii

acknowledgements v

preface 1

1 introduction 3

1.1 Challenges . 5

1.2 Motivation and Objectives . 6

1.3 Approach . 8

1.3.1 Part A: Modular Mapping 9

1.3.2 Part B: Modular Learning 9

2 contribution 13

2.1 Part A: Modular Mapping . 13

2.2 Part B: Modular Learning . 15

2.3 List of Publications . 21

2.3.1 Publications Included in this Thesis 21

2.3.2 Other Publications . 21

2.4 Conference and Workshop Dissemination 23

2.5 Teaching and Student Supervision 24

2.6 List of Open-source Software 28

3 conclusion and outlook 29

3.1 Part A: Modular Mapping . 29

3.1.1 Discussion . 30

3.1.2 Future Outlook . 31

3.2 Part B: Modular Learning . 31

3.2.1 Discussion . 32

3.2.2 Future Outlook . 33

ix

x contents

A modular mapping 35

paper i : maplab 2 .0 – a modular and multi-modal map-
ping framework 37

1 Introduction . 38

2 Related Work . 40

3 The maplab 2.0 Framework 42

4 Use-Cases . 47

5 Conclusion . 54

B modular learning 55

paper ii : segmap : segment based mapping and localiza-
tion using data-driven descriptors 57

1 Introduction . 58

2 Related Work . 61

3 The SegMap Approach . 64

4 The SegMap Descriptor . 67

5 Experiments . 70

6 Discussion and Future Work 84

7 Conclusion . 86

paper iii : semsegmap – 3d segment-based semantic lo-
calization 89

1 Introduction . 91

2 Related Work . 93

3 SemSegMap . 94

4 Experiments . 98

5 Conclusions . 106

paper iv: learning camera miscalibration detection 109

1 Introduction . 110

2 Related Work . 111

3 Methodology . 114

4 Experiments and Discussion 117

5 Conclusion . 123

bibliography 124

curriculum vitae 147

P R E FA C E

This is a cumulative doctoral thesis, which combines four first-author pub-
lications resulting from research carried out during the author’s doctoral
studies. The work was carried out under the supervision of Prof. Roland
Siegwart at the Autonomous Systems Lab (ASL) at ETH Zürich. The thesis is
divided into three prefacing chapters that put the publications into context,
followed by the full publications in Parts A and B. Chapter 1 introduces the
main motivations for the research topics and highlights the challenges this
thesis aims to tackle. Furthermore, the desired goals and approaches taken
to address the introduced challenges are discussed. Chapter 2 introduces
the specific publications included in the thesis, puts them in context, and
explains interrelations and their impact. Additionally, the chapter introduces
additional contributions to the field of robotics, such as involvement in other
publications not included as part of this thesis, teaching, student supervision,
dissemination efforts, and contributions to open-source software. Finally, in
Chapter 3, the findings of the thesis are summarized, and an outlook into
potential future research directions is provided.

1

1
I N T R O D U C T I O N

An essential component of any robotic system is Simultaneous Localization
And Mapping (SLAM). It allows robots to function independently in new
environments and to localize and perform tasks in previously visited places.
For example, SLAM is used in autonomous driving [1], mobile manipula-
tion [2], household robotics [3], and augmented reality (AR) [4]. In these
examples, SLAM can be used to navigate through the indoor or outdoor
environment. However, navigation is only one of many use cases. Local-
ization in a common map between multiple robotic platforms enables more
complex interactions: autonomous cars can synchronize to reduce traffic
jams, cleaning robots can divide work, or AR users can interact with each
other in an application. With such varied applications, environments, and
sensor combinations that a robotic platform can have, much research goes
into perfecting SLAM solutions.

Over recent years, many tailored SLAM solutions have been successfully
developed for specific environments or sensor configurations [7–15]. How-
ever, many challenges remain until SLAM is fully solved or generically
deployed in any conditions. One issue with current solutions is their design
rigidity and how tightly integrated various components are. SLAM can be

(a) Visual-inertial odometry in
difficult conditions, in an under-
ground mine, using ROVIO [5].

(b) LiDAR localization using
SegMap [6], in an urban driving
scenario.

(c) Globally consistent and opti-
mized multi-session map in an
disaster rescue training area.

Figure 1.1: Showcasing some of the components of SLAM in different environments.

3

4 introduction

canonically divided into multiple parts: odometry, localization, and global
or local optimization. While variations exist, most SLAM systems contain
the aforementioned components in one way or another. We showcase the
operation of some of these components on different systems and in different
environments in Figure 1.1. Many times in research, these parts are regarded
as separate, and solutions are developed and proposed individually for each
subproblem. For example, odometry methods [5, 16–18], and benchmarks
exist for multiple environments, sensors, and scenarios [19–21]. New global
localization methods, with a high focus on deep learning in recent years, are
constantly being developed. In computer vision, visual feature extraction is
a popular topic [22–24] and recently also deep learning-based feature track-
ers [25, 26]. Finally, multiple optimization backends exist [27–30], but their
use is difficult as they require significant integration work for more complex
problems and much fine-tuning.

While the SLAM problem can be regarded as highly modular, developing
a fully-fledged framework requires extensive work. Integration requires not
only communication between multiple components but also many technical
considerations that need to be addressed, such as bookkeeping, data syn-
chronization, map storage, visualizations, etc. This leads to many works
where the SLAM framework is tightly integrated, and not much work has
been put into making generic interfaces and components. As a result, while
functional and sometimes highly accurate, these systems are hard to extend
in future research and integrate into new platforms or products. The other
phenomenon is that many modules are only tested individually in a bubble.
While this specific testing provides a good way of directly comparing com-
ponents, it does not fully tell how useful new features are in a real-world
setting. This lack of a complete testing platform impacts the efficiency of
testing new research or prototype components.

In particular, in robotics over the past decade, deep learning has changed
how we approach perception problems. Convolutional Neural Networks
(CNNs) have pushed the boundaries of state-of-the-art tasks such as object
detection, place recognition, and robotic grasping. In addition, with the
development of more efficient hardware acceleration and network architec-
tures, deep learning is becoming capable of solving more complex problems.
However, these intricate, deep learning-based solutions are sometimes hard
to interpret. The question is how to easiest incorporate learning into robotic
systems that need to function in unforeseen environments. For example, in
SLAM, many deep learning solutions tackle localization, 3D reconstruction,
semantic awareness, feature detection and tracking. However, many of these
solutions often go untested in a full SLAM pipeline since their integration

1.1 challenges 5

would take too much time and be very subjective based on the implementa-
tion. Therefore, a modular framework with easily replaceable or modifiable
components is needed.

A modular approach to incorporating learning into robotics is also bene-
ficial for interpretability and robust operation. For example, deep-learned
solutions exist that, from a single image, can predict a full 6 degrees of
freedom (DoF) pose. However, these solutions skip many safeguards present
in hand-crafted, more human-engineered approaches. Moreover, the lack
of interpretability makes it challenging to incorporate human intuition into
learning-based components. The smaller the learning problem, the easier it is
to control and include checks that prevent catastrophic failures. Robustness
is essential everywhere, as components are highly linked in robotic systems.
For example, navigation depends on state estimation and SLAM. Therefore
small modular learning solutions are desirable, as well as a modular SLAM
framework that can easily incorporate a variety of such modules.

1.1 challenges

The task of SLAM and integration of learning into mapping is challenging
for several reasons. Some of the key challenges in these problems are listed
below, especially focusing on the challenges we aim to address.

Different environments There is much variation in the environments we
expect to use robots in, and they each present their own unique difficulties.
From indoor environments (e.g. office buildings, factories, or hospitals),
to outdoor environments (e.g. cities or forests), to special cases such as
mines, construction sites, or disaster sites. As different robots and sensors
are necessary or ideal for each case, we also need perception tools that can
work flexibly and robustly in various configurations.

Multi-session mapping refers to the ability to manage maps taken in the
same environments at different time instances. This involves not only the
ability to merge data across temporal gaps but also to gain a benefit in
doing so. Merging multiple mapping sessions together involves challenges
and innovations not only in localization but also in data management.
Irrelevant data needs to be thrown out, and much bookkeeping needs to
be done to keep maps consistent.

Multi-robot mapping refers to multiple robots simultaneously exploring the
same environment and communicating to create one global map. While
it has some similar aspects to multi-session mapping, the challenge of

6 introduction

multi-robot mapping involves more real-time challenges. Multiple robots
need to be synchronized together, and online operation becomes a critical
aspect of the SLAM framework. Additional challenges include when the
robots have different sensor configurations.

Long-term mapping is the ability to continuously create consistent and accu-
rate maps over long periods of time. Changes in the environment happen
continuously: dynamic objects move and disappear, furniture gets moved
around, or new buildings appear in the city. While tackling multi-session
mapping allows for updated maps, continuous data collection is a time-
consuming process. Maps with features that remain usable longer increase
robustness and decrease operating costs.

Long-term sensor deployment One aspect of long-term robot deployment
is ensuring that sensors remain operational. A critical aspect of any sensor
setup is the quality of its calibration. Degraded calibrations quickly start
affecting not only mapping performance but, for example, navigation and
interactive tasks with the environment. Separating sensor failures from
failures in the perception task can be difficult, and redundant sensors are
not always available or easy to exploit.

Online operation is essential on robotic platforms with limited resources.
As many systems, such as navigation, rely on mapping, online operation
is needed to ensure they remain operational.

Compact maps go towards enabling large-scale mapping and also efficient
multi-robot communication. Reducing the map size must be done to
ensure long-term viability and robustness.

The aforementioned challenges are recurring themes in the works consti-
tuting this thesis. While some of the challenges have been addressed in other
works, they are most often in limited environments or on specific robotic
platforms. No general solutions exist yet. While some of the works in this
thesis will focus on one challenge more than the other, the issues remain
intertwined, and a perfect SLAM system would need to address them all.

1.2 motivation and objectives

The ability to autonomously map and simultaneously localize in an envi-
ronment enables numerous robotic tasks and applications. These include
autonomous driving, mobile manipulation, service robotics, AR applications,

1.2 motivation and objectives 7

and many more. SLAM therefore receives much attention in the robotics
community, and numerous proposed methods exist. Similarly, the integration
of deep learning into robotics has achieved many successful results in the
last decade, achieving leaps in perception that were not possible before. For
example, object detection, feature extraction, segmentation, 3D reconstruc-
tion, and path planning have all greatly benefited from deep learning-based
solutions. The next steps in merging learning and mapping in robotics are
robustness and flexibility.

In SLAM factor graph-based approaches have emerged as one go-to solu-
tion due to their flexibility in easily including different types of constraints
and their efficiency and sparsity. Factor graphs model states as nodes in a
graph, which are constrained by observations that induce edges in the graph.
This simple representation, combined with non-linear solvers, provides a very
powerful representation of maps. One major challenge is the amount of work
necessary to set up the framework that goes from raw data to an optimization
problem formulation. Many small details, such as time synchronization,
sensor calibration, data buffering, and storage, need to be addressed. These
initial steps set up a large overhead to any new development in SLAM for
robotics, as every new module requires an entire framework built around it.
One main objective at the beginning of this thesis was to provide a framework
that can support the easy integration, and testing, of new mapping modules
into a flexible framework. Quick testing not only allows ideas and prototypes
to advance quicker into products in the robotics industry but also benefits
the research community. By allowing the testing of modules in a larger
framework, comparability of results becomes easier across sub-topics and
methods. Our goal is not only to develop a framework with generic interfaces
and flexible usage but also one that can be extended. Easy extendibility is
crucial as we can not foresee all future use cases. Additionally, our goal is
not to focus on providing a new framework but on showing and developing
features towards tackling the challenges mentioned in the previous chapter.
We aim to show development towards multi-robot and multi-session SLAM
and flexibility with sensors and robot configurations.

Furthermore, our goal is to include learning-based components into the
previously mentioned SLAM framework. At the beginning of this thesis, there
was a large trend towards learning-based descriptors and visual keypoints.
In recent years deep learning has also enabled more semantically meaningful
analysis of the environment. In this thesis, we aim to explore using deep
learning to address some of the challenges mentioned in the previous section.
More specifically, we aim to find and explore areas of robotics where we
think deep learning-based solutions will have the largest impact. We wish to

8 introduction

find components in robotic mapping systems where human intuition can be
exploited only so far, and the next step towards progress is exploiting data-
driven solutions. The expected outcome is to see performance improvements
similar to the ones in object detection and semantic segmentation, where data-
driven solutions have become the standard. Additionally, we wish to explore
the possibility of finding new solutions to problems that were previously
considered too hard or too expensive to solve.

The motivation behind this thesis is to address challenges in SLAM from
two sides. First, through better engineering solutions, we wish to provide
more versatile and adaptable SLAM frameworks. The goal is to have a
platform with easily replaceable modules and support for many different
types of robots and sensors. Second, through the use of novel data-driven
deep learning frameworks, we wish to improve the performance of existing
SLAM components. This is a more research-focused direction, where much
effort is made toward developing completely new approaches to previous
problems.

1.3 approach

When examining how humans orient themselves in the environment, we
notice the use of many high-level semantic queues, such as buildings, signs,
unique objects, etc. Scene understanding is a critical part of our ability to
efficiently map and navigate through an environment. Thus to enable robots
to overcome some of the listed challenges in this thesis, we will work towards
facilitating and integrating deep learning into various stages of SLAM. To
accomplish our objectives, we group this thesis into two parts.

In Part A, we focus on creating a modular SLAM framework to facilitate
integrating and testing new ideas. A major driving force behind this is
the lack of good testing platforms that existed at the beginning of this
thesis. The first part of the thesis addresses many technical challenges and
provides solutions that address many of the limitations in SLAM mentioned
in Section 1.1.

Part B explores the integration of deep learning into various components
of SLAM. The idea is to replace small components that would benefit the
most from data-driven approaches. By keeping the components limited, we
maintain modules whose performance and interactions with other compo-
nents can more easily be controlled. We address important challenges in
descriptors, incorporating semantics into SLAM, and detecting miscalibration
in long-term camera deployment.

1.3 approach 9

1.3.1 Part A: Modular Mapping

We first address the problem of a unifying SLAM framework that allows the
integration of different modules and has flexible sensor support. We focus
on factor graph-based solutions as they are more generic than, for example,
volumetric approaches [31, 32] where modifications to the underlying map
structure are more complex. The basis of any factor graph-based SLAM
approach is the ability to optimize and modify the graph-like map repre-
sentation. While numerous non-linear optimization frameworks exist (e.g.,
GTSAM [27], g2o [29], and Ceres [30]), much work is needed to implement
the surrounding tools for SLAM. This involves, most notably, processing the
sensor data into constraints, calculating initialization values for the different
state variables, storing the map data, merging multiple maps, and handling
inputs from multiple robots simultaneously. Other publicly available SLAM
frameworks [12–15] simplify the required engineering work by having very
tightly integrated and non-flexible components.

To overcome these difficulties, we propose a new SLAM framework that
is flexible and multi-modal. We base our design on maplab [15], which is a
strictly visual-inertial mapping framework. We fundamentally modify the
original maplab to create a new framework, maplab 2.0 [33], that better
supports our goals. First, we remove the constraint of visual-inertial sensor
data and enable the use of any type of odometry. Second, we enable the ad-
dition of numerous different modalities and constraints that can be provided
externally. All of these can be added to the same factor graph problem and
optimized jointly. Among the newly added constraints is also the use of mul-
tiple different types of visual feature points, in particular deep-learned ones
that have shown to be more effective at localization in difficult conditions and
across larger changes in time and viewpoint. Finally, we also enable online
and multi-robot operation. All these changes together address many of the
challenges listed in Section 1.1, and bring many of the existing solutions in
SLAM together in one unified framework.

1.3.2 Part B: Modular Learning

At the start of this thesis, the integration of deep learning into mapping
and SLAM was at its beginnings. One of the first areas of SLAM that saw
very practical use of deep learning was keypoint detection and descriptor
generation. These are both topics that had previously seen many handcrafted
solutions proposed based on human intuition. The process of descriptor

10 introduction

generation is well suited for data-driven learning approaches due to the
availability of data, real or simulated, and the use of similarity losses where
little human intervention was needed. In these topics, deep learning has
proven far superior to previous solutions. Keypoint detection and description
are normally followed by humanly meaningful fail-safes to ensure robustness
(e.g., random sample consensus (RANSAC), outlier rejection during triangu-
lation, and robust cost functions in optimization). These safety checks enable
the easy use of deep-learned methods, as mistakes due to unpredictable
behavior or new environments can be filtered out. We show easy integration
of deep-learned keypoints into a SLAM framework.

While visual keypoint descriptors have been largely studied, we use deep
learning to find solutions to descriptor problems where applying human
intuition was difficult. In particular, for more modern sensors, such as
LiDAR, where processing 3D data requires a new paradigm in thinking
when considering previous works on 2D image analysis. In SegMap, we
propose a novel way of generating meaningful landmarks in LiDAR-based
maps. Instead of focusing on local points or on entire scans, we take a middle
ground where we model the environment using segments. While in our initial
approach, these segments have no semantically clear meaning, they represent
distinguishable parts of the environment, e.g. parts of cars, buildings, or
vegetation. We use deep learning to find a much more powerful descriptor
for these segments than handcrafted variants. We show that the descriptors
alone can be used to recreate a 3D representation of the environment. We
again incorporate this learning module into a larger SLAM framework to
show its robustness and usability in real-world conditions and experiments.

Deep learning has also shown great potential for semantic understanding.
We wish to extend and improve our previously described SegMap approach
to leverage semantic awareness. This is inspired by how we as humans use
semantic queues from the environment and object awareness to navigate
around an environment. We integrate semantic awareness into the SegMap
descriptor generation process in two steps. First, we improve the segmenta-
tion process so that segments are now more semantically meaningful but not
entirely limited to segment categories either. Second, we include semantic
information in the network’s input during training to achieve higher recall.
We named the resulting SLAM framework SemSegMap. We also took the
semantic localization process one step further and showcased a fully seman-
tic loop-closure engine in maplab 2.0. There, inspired by the SegMap and
SemSegMap localization methods, we showcase the easy integration of a fully
object-based loop-closure method.

1.3 approach 11

Finally, we explore the use of learning in a completely different facet of
robotics, namely calibration. While obtaining very precise calibrations is a
tedious and complicated process, it is also essential when good performance
is required. Long-term deployment of robotic platforms requires not only
a good starting calibration but also the ability to maintain it. Accidents or
shocks can cause sensors to, for example, move, deform, or get scratched. All
of the above might cause a sensor to become miscalibrated, i.e. the existing
calibration would no longer model reality sufficiently well. While methods
exist that can perform online calibration, these can be very expensive or rely
on other secondary sensors. We develop a novel method that uses deep
learning to detect when a sensor is miscalibrated. This allows us to know
when to use an in-the-wild calibration method or to ask the user to take
the sensor to be re-calibrated. In our approach, we focus on monocular
cameras, as they are a very commonly used sensor, and 2D images are ideal
for deep CNNs. Detecting if the intrinsic parameters of a monocular camera
are sufficiently well calibrated also presents an interesting challenge, as such
a task is difficult to parameterize using hand-crafted methods. Finally, our
miscalibration module also fits well into our idiom of modular learning. We
focus on one specific subtask that is part of a bigger pipeline and does not
rely fully on learning. Even if our method were to erroneously predict a
miscalibration, this would only consume resources to re-calibrate and not
cause a full system failure.

2
C O N T R I B U T I O N

In this chapter, we detail the novel contributions of each paper presented in
this cumulative thesis. Additionally, we describe the context of the work at
the time of publication and the motivations behind it. Finally, we discuss
the interrelations between each paper and the other contributions in this
thesis and our work’s impact in the field of SLAM and robotics. We not only
discuss interrelations between the publications that form this cumulative
thesis but also to other publications to which the author contributed, and
that are detailed in Section 2.3.2. We organized the publications into the two
parts introduced in Chapter 1. First, we present our new modular SLAM
framework, and then we move to the learning-based contributions to various
SLAM components.

2.1 part a: modular mapping

paper i

Andrei Cramariuc∗, Lukas Bernreiter∗, Florian Tschopp∗, Marius Fehr, Victor
Reijgwart, Juan Nieto, Roland Siegwart, Cesar Cadena, “maplab 2.0 – A
Modular and Multi-Modal Mapping Framework”. In IEEE Robotics and
Automation Letters, 2023.

Context

During and before this thesis, various SLAM frameworks have been pub-
lished and open-sourced. However, most of them have been dedicated to
a specific sensor configuration [7–15] or to a very specific purpose, such
as a multi-robot SLAM or semantic mapping. Similarly, multiple works
exist, many of the most recent ones employing deep learning, that explore
improvements to various components of SLAM, such as keypoint detection
and description, localization, outlier detection, etc. However, many of these

13

14 contribution

works are tested in restricted experiments and not as part of a full pipeline.
Similarly, adapting and re-purposing existing frameworks typically involves
considerable engineering effort that does not directly contribute to research.
Having a flexible pipeline that supports multiple different sensor configura-
tions and has easily adaptable and replaceable modules would be of great
use in many projects. It would not only benefit the unified comparison
of novel research ideas in SLAM, but it would also allow fast prototyping
for industrial purposes. As the goal of this thesis was to research ways in
which learning could be leveraged to replace existing components in SLAM
in a modular and controlled way, the need for a modular SLAM framework
became apparent.

Contribution

To achieve this ambitious goal, we base ourselves on maplab [15], which was
a mapping framework for purely visual-inertial mapping. We transformed
the framework into a new multi-modal and multi-robot SLAM framework,
named maplab 2.0, that allows the integration of an unparalleled amount
of different data. The extension to multi-robot mapping was done through
submapping and a centralized server that all robots communicate with.
This not only allows for new developments in cooperative robotics but also
enables online SLAM for the single robot scenario. The framework integrates
all the multi-session and map management capabilities of its predecessor,
thus enabling a highly customizable multi-session mapping experience. To
showcase how maplab 2.0 can be used, we perform experiments in which
we integrate experimental 3D LiDAR keypoints and a semantic object-based
loop closure engine. We also show that we can reach great accuracy by
using state-of-the-art odometry and any number of visual features, including
deep-learned keypoints. Our new proposed framework incrementally deals
with many of the challenges we list in Section 1.1. Not only do we deal with
many issues in SLAM, but we do so in one unified framework.

Interrelations and Dissemination

This work started with this thesis and was a motivation behind many of
the other works done during the author’s studies. The need for accurate
calibrations, especially in the visual-inertial case, was apparent when working
with maplab 2.0. It motivated the work into miscalibration detection to
ensure accurate long-term operation (Paper IV and [34]), and the struggles in
learning to accurately calibrate visual-inertial sensors served as a motivation

2.2 part b : modular learning 15

for the works on automatic and efficient visual-inertial calibration using
robotic arms [35, 36]. The success of segment-based mapping from Papers II
and III was the inspiration behind a semantically even more meaningful loop
closure method using objects. This work is continued in the constellation-
based loop closure method proposed in [37].

The practical uses of the maplab 2.0 framework were first showcased in
our go and fetch demo [2] for indoor mobile manipulation. Later, most no-
tably, the maplab 2.0 framework was used by the winning team CERBERUS
in the DARPA SubT challenge [38]. The software is made open-source1 and
has a significant userbase and usage throughout the community.

Personal Involvement

My personal contribution to the project involved implementing the multi-
sensor and multi-feature integration. I also implemented the 3D features and
performed the experiment shown in the paper. Additionally I did most of
the work for the HITLI and EuRoC evaluations. I also contributed to the
mapping node and multi-robot code. Additionally, I improved, fixed, and
rewrote miscellaneous parts of the original maplab code, e.g. the optimization
module.

2.2 part b : modular learning

paper ii

Renaud Dubé∗, Andrei Cramariuc∗, Daniel Dugas, Hannes Sommer, Marcin
Dymczyk, Juan Nieto, Roland Siegwart, and Cesar Cadena, “SegMap: Seg-
ment based mapping and localization using data-driven descriptors”. In The
International Journal of Robotics Research (IJRR), 2020.

Context

Much of the research into localization originally focused on local keypoint-
based methods or on global descriptor methods. While highly precise, local
methods suffer from a lack of descriptive power across large changes in time
or viewpoint. Similarly, global methods have more context that they can use,
but they lack precision as they normally only provide place recognition and
not full 6 DoF localization. Our idea was to explore something in between,
namely segments in 3D LiDAR maps. We define segments as larger chunks

1https://github.com/ethz-asl/maplab/

https://github.com/ethz-asl/maplab/

16 contribution

of the environment that are not necessarily semantically meaningful (i.e.,
entire cars or buildings) but geometrically unique and easy to re-identify.
These segments then represented landmarks, which could be stored and
localized against. Originally finding handcrafted descriptors was difficult [39],
as describing these chunks of the environment had little human intuition
involved. However, this was an ideally suited task for deep learning-based
data-driven methods.

Contribution

Our contribution was a segment-based SLAM pipeline for LiDAR that relies
on deep learning for localization and visualization. The most significant part
of our work was developing and training the novel 3D segment description
network. We used GPS data and a convex hull matching technique to obtain
ground truth information and showed on real-world datasets that our method
outperformed baseline methods. A significant advantage of our segment-
based method was the compactness of the resulting map, which also enabled
extremely efficient inter-robot communication in our multi-robot experiment.
Additionally, our CNN provided multiple other useful secondary functionali-
ties. The first such functionality was the ability to 3D reconstruct the map
from the compact segment descriptor representations. Second, we trained an
additional network to semantically classify the descriptor into meaningful
classes, showing that the network inherently learned semantically meaningful
representations. Our SegMap framework also addressed numerous of the
challenges from Section 1.1, among which are long-term mapping, compact
map representations, and multi-robot mapping.

Interrelations and Dissemination

The work here strongly correlates with the topic of integrating learning into
SLAM in a modular fashion. It inspired the need for the work in Paper I,
which would have removed the need for much of the required groundwork.
Additionally, this set up the work in Paper III, where we take semantic
integration into the segmentation and description process one step further.
We also take a similar approach in [37] but instead of segments use full
objects. Both the need to automate the labeling of data and the presence of
multiple dynamic objects in the dataset motivated the work in [40], where
we automatically learn to segment and remove dynamic objects from LiDAR

2.2 part b : modular learning 17

scans. Our work is open-sourced2 and has received wide interest and use as
a baseline in other publications [41, 42].

Personal Involvement

I solely developed and tested the learning part of the project, which included
the descriptor generation, 3D reconstruction, and semantic classification
modules. Additionally, I integrated the LiDAR odometry and contributed to
the KITTI experiments.

paper iii

Andrei Cramariuc∗, Florian Tschopp∗, Nikhilesh Alatur, Stefan Benz, Till-
mann Falck, Marius Brühlmeier, Benjamin Hahn, Juan Nieto, and Roland
Siegwart, “SemSegMap – 3D Segment-based Semantic Localization”. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021.

Context

Semantic awareness is a critical component of how humans perceive the
environment, and we tend to use semantically meaningful landmarks to
orient ourselves in the environment. This intuition on human behavior
motivates the research into including semantically meaningful landmarks
also into the standard SLAM pipeline [8, 43, 44]. Deep learning and data
availability have provided very successful semantic segmentation networks
on which the works in this publication rely. One weakness in SegMap was
the unreliability of the segmentation process, which needed to be tuned
depending on the type of environment. Additionally, the uniqueness of the
resulting segments was hard to control, e.g. most walls looked the same,
leading to poor quality descriptors.

Contribution

In this publication, we extend the previously mentioned SegMap framework
into SemSegMap, by incorporating semantics awareness and color information
into the framework. We include these new attributes not only in the descrip-
tion generation network but also in the segmentation process. We, therefore,
extend both of the key components in the localization module. The proposed

2https://github.com/ethz-asl/segmap/

https://github.com/ethz-asl/segmap/

18 contribution

improvements increase the repeatability of the segmentation process and
generate descriptors with better retrieval. As opposed to SegMap, we test
the new framework both in simulation and on a different real-world dataset,
showing in both cases the resulting improvement in localization performance.
Most importantly, we show that SemSegMap can localize better across large
temporal gaps, thus addressing the challenge of long-term mapping.

Interrelations and Dissemination

SemSegMap is a direct extension of our work in Paper II, improving the net-
work by adding a new learning module. Even with the inclusion of semantics
and color, we notice many segments that are difficult to describe due to lack
of distinguishing features, e.g. many parts of walls, vegetation, or cars, can
appear very similar. We believe that we must include even more environmen-
tal awareness to generate more uniqueness. In another subsequent work [37],
we propose encoding spatial information on the configuration of multiple
neighboring landmarks into the descriptor. SemSegMap is also open-sourced
together with SegMap.

Personal Involvement

I implemented the new segmentation and learning pipeline in SemSegMap,
which included a new loss, new inputs and a new network backbone. Ad-
ditionally, contributed to the experiments and evaluations on the simulated
data and NCLT.

paper iv

Andrei Cramariuc∗, Aleksandar Petrov∗, Rohit Suri, Mayank Mittal, Roland
Siegwart, and Cesar Cadena, “Learning Camera Miscalibration Detection”.
In IEEE International Conference on Robotics and Automation (ICRA), 2020.

Context

The ability to maintain a stable calibration over long periods of time can
be challenging, also depending on the environment and robotic platform.
Shocks, scratches, mechanical stress, or user errors can easily change the
calibration parameters of a sensor setup. The accuracy of the downstream
tasks, e.g., SLAM, is affected as they are directly tied together. Detecting a
miscalibrated setup from other conditions, such as environmental degeneracy

2.2 part b : modular learning 19

(e.g., bad weather or lack of lighting), can be difficult. Particularly difficult are
monocular camera setups where reliance on auxiliary sensors is impossible.
Additionally, linking changes in camera intrinsic parameters (focal length,
optical center, and distortion coefficients) to humanly intuitive effects can be
challenging. We, therefore, see a good niche for a deep learning module that
can detect a miscalibrated camera. This module can then, for example, be
used to trigger a much more expensive online calibration or ask the user to
take the robot in for maintenance.

Contribution

We propose a completely novel way of detecting when a monocular camera
has been miscalibrated, i.e., the existing calibration no longer matches the
sensor’s current physical state. We show on a real-world dataset how such a
system can predict from a single image when a downstream task, in this case,
monocular odometry, will perform poorly due to a miscalibrated sensor. To
simplify the problem and increase robustness, instead of developing a CNN
that can generalize to any camera and calibration, our solution is to individu-
ally specialize the CNN to each camera and calibration pairing. Therefore,
the first challenge was to create an easy and efficient data generation pipeline.
As it would be very time-consuming to generate multiple training sets with
different calibrations for one camera, we proposed a strategy that uses real
images but only needs one recording. The second challenge was developing
a metric on which to train that would quantify miscalibration – for this, we
proposed the average pixel position difference (APPD).

Interrelations and Dissemination

Detecting miscalibrations is an essential component in any SLAM system with
long-term deployment goals. Especially since it is often an external module,
integration can be relatively easy in many cases, making it a potentially
beneficial addition to the work from Paper I. This publication was followed
by a subsequent publication of the author that deals with stereo camera
miscalibration detection [34]. Additionally, as mentioned above, the module
can be used to request a re-calibration of the sensors, which is not a trivial
process for an inexperienced user. This ties into our other work on learning
optimal motions for calibration [35, 36]. Finally, the code for this work too
was made publicly available for the benefit of the community3.

3https://github.com/ethz-asl/camera_miscalib_detection

https://github.com/ethz-asl/camera_miscalib_detection

20 contribution

Personal Involvement

I am responsible for the original idea of training a per-camera specialized
network to detect when a camera is no longer calibrated. Additionally, I also
came up with the dataset generation strategy. I implemented the network
training code and architecture.

2.3 list of publications 21

2.3 list of publications

In the context of the author’s doctoral studies the following publications were
achieved.

2.3.1 Publications Included in this Thesis

1. A. Cramariuc*, A. Petrov*, R. Suri, M. Mittal, R. Siegwart, and C. Ca-
dena, “Learning Camera Miscalibration Detection,” in IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 4997–5003.

2. R. Dubé*, A. Cramariuc*, D. Dugas, H. Sommer, M. Dymczyk, J. Nieto,
R. Siegwart, and C. Cadena, “SegMap: Segment-based mapping and local-
ization using data-driven descriptors,” The International Journal of Robotics
Research (IJRR), vol. 39, no. 2-3, pp. 339–355, 2020.

3. A. Cramariuc*, F. Tschopp*, N. Alatur, S. Benz, T. Falck, M. Brühlmeier,
B. Hahn, J. Nieto, and R. Siegwart, “SemSegMap – 3D Segment-based
Semantic Localization,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021, pp. 1183–1190.

4. A. Cramariuc*, L. Bernreiter*, F. Tschopp*, M. Fehr, V. Reijgwart, J. Nieto,
R. Siegwart, and C. Cadena, “maplab 2.0 – A Modular and Multi-Modal
Mapping Framework,” IEEE Robotics and Automation Letters (RA-L), vol. 8,
no. 2, pp. 520–527, 2023.

2.3.2 Other Publications

5. K. Blomqvist*, M. Breyer*, A. Cramariuc*, J. Förster*, M. Grinvald*, F. Tsch-
opp*, J. J. Chung, L. Ott, J. Nieto, and R. Siegwart, “Go Fetch: Mobile
Manipulation in Unstructured Environments,” in IEEE International Con-
ference on Robotics and Automation (ICRA) Workshop on Perception, Action,
Learning, 2020.

6. A. Bühler, A. Gaidon, A. Cramariuc, R. Ambrus, G. Rosman, and W. Bur-
gard, “Driving Through Ghosts: Behavioral Cloning with False Positives,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2020, pp. 5431–5437.

7. L. Chen*, Y. Ao*, F. Tschopp, A. Cramariuc, M. Breyer, J. J. Chung, R. Sieg-
wart, and C. Cadena, “Learning Trajectories for Visual-Inertial System

22 contribution

Calibration via Model-based Heuristic Deep Reinforcement Learning,” in
Conference on Robot Learning (CoRL), 2020.

8. S. Lionar*, L. Schmid*, C. Cadena, R. Siegwart, and A. Cramariuc, “Neu-
ralBlox: Real-Time Neural Representation Fusion for Robust Volumetric
Mapping,” in International Conference on 3D Vision (3DV), 2021, pp. 1279–
1289.

9. P. Pfreundschuh, H. F. Hendrikx, V. Reijgwart, R. Dubé, R. Siegwart, and
A. Cramariuc, “Dynamic Object Aware LiDAR SLAM based on Automatic
Generation of Training Data,” in IEEE International Conference on Robotics
and Automation (ICRA), 2021, pp. 11 641–11 647.

10. F. Tschopp*, C. von Einem*, A. Cramariuc*, D. Hug, A. W. Palmer, R. Sieg-
wart, M. Chli, and J. Nieto, “Hough2Map – Iterative Event-Based Hough
Transform for High-Speed Railway Mapping,” IEEE Robotics and Automa-
tion Letters (RA-L), vol. 6, no. 2, pp. 2745–2752, 2021.

11. J. Zhong*, Z. Ye*, A. Cramariuc, F. Tschopp, J. J. Chung, R. Siegwart, and
C. Cadena, “CalQNet-Detection of Calibration Quality for Life-Long Stereo
Camera Setups,” in Proceedings of the IEEE Intelligent Vehicles Symposium
(IV), 2021, pp. 1312–1318.

12. Y. Ao*, L. Chen*, F. Tschopp, M. Breyer, R. Siegwart, and A. Cramariuc,
“Unified Data Collection for Visual-Inertial Calibration via Deep Reinforce-
ment Learning,” in IEEE International Conference on Robotics and Automation
(ICRA), 2022, pp. 1646–1652.

13. C. Xing*, X. Sun*, A. Cramariuc, S. Gull, J. J. Chung, C. Cadena, R. Siegwart,
and F. Tschopp, “Descriptellation: Deep Learned Constellation Descriptors
for SLAM,” arXiv preprint arXiv:2203.00567, 2022.

2.4 conference and workshop dissemination 23

2.4 conference and workshop dissemination

The research conducted over the course of the doctoral studies was presented
at multiple national and international conferences, workshops, and seminars,
listed here.

1. Go Fetch: Mobile Manipulation in Unstructured Environments, presented
at the Workshop on Perception, Action, and Learning, held at the International
Conference on Robotics and Automation (ICRA), June 2020, Virtual.

2. Learning Camera Miscalibration Detection, presented at the International
Conference on Robotics and Automation (ICRA), June 2020, Virtual.

3. SemSegMap – 3D Segment-based Semantic Localization, presented at the
International Conference on Robotics and Automation (ICRA), June 2021, Vir-
tual.

4. maplab 2.0 – A Modular and Multi-Modal Mapping Framework, to be
presented at the International Conference on Robotics and Automation (ICRA),
June 2023, London.

24 contribution

2.5 teaching and student supervision

During the doctoral studies, a large emphasis was placed on teaching and
supervising students. In particular, I was a teaching assistant for both the lab’s
courses "Autonomous Mobile Robots" in 2019 and "Perception and Learning
for Robotics" in 2019, 2020 and 2021. I contributed to the organization of
the Robotics Summer School in 2019, 2020, and 2022. In addition, over 45

students have been mentored in almost as many projects during the course of
the doctoral studies. For projects that contributed to a publication, a citation
is provided.

Master Thesis

Master student for 6 months full time (30 ECTS).

1. Jonas Aeschbacher (Spring 2019):
“Semantic Indoor Localization using Deep Learned Object Descriptors”

2. Benjamin Hahn (Spring 2019):
“3D Segment-based SLAM With Stereo Vision” [46]

3. Roman Ehrler (Autumn 2019):
“Development of a Localization and Control Algorithm for an Agricultural
Robot”

4. Juichung Kuo (Autumn 2019):
“Enhance Visual-Inertial Mapping with Semantic Loop closure”

5. Andreas Buhler (Spring 2020):
“Uncertainty-aware Monocular Depth Estimation for Robust Planning” [47]

6. Patrick Pfreundschuh (Spring 2020):
“Dynamic Object Detection for Robust and Accurate LiDAR SLAM” [40]

7. Cornelius von Einem (Spring 2020):
“Path-Constrained Localization for Rail vehicles”

8. Andrej Adzic (Autumn 2020):
“Revisiting Deep Learned Visual Features for Robotics” (ETH Medal 2022

for outstanding Master Thesis)

9. Stefan Lionar (Spring 2021):
“Neural Representations for Robotic Mapping” [48]

2.5 teaching and student supervision 25

10. Philipp Egg (Spring 2022):
“CAD modeling and global registration from indoor LiDAR scans”

11. Oliver Widler (Spring 2022):
“PCES: Path-Constrained Event-based SLAM”

12. Matthias Brucker (Autumn 2022):
“Using Patches for Self-Supervised Obstacle Detection on Railways”

Semester Thesis

Master student for 3-4 months part time (8 ECTS).

1. Juichung Kuo (Autumn 2018):
“Semantic Landmarks for Maplab”

2. Rohit Suri (Autumn 2019):
“L-Infinity SLAM: An Alternative to Bundle Adjustment”

3. Stefano d’Apolito (Autumn 2019):
“Robust odometry for ground robots”

4. Petar Subotic (Autumn 2019):
“LIKey: Lens-Invariant Keypoints”

5. Yassin Sdiri (Autumn 2019):
“High-Speed SLAM for Rail Vehicles using a 1D Laser”

6. Cornelius von Einem (Autumn 2019):
“High-Speed SLAM for Rail vehicles using Dynamic Vision Systems” [49]

7. Julius Erbach (Spring 2020):
“Multi-View Object Detection”

8. Tiancheng Hu (Autumn 2020):
“Object Instance Re-localization from Partial Observations”

9. Samuel Gull (Autumn 2020):
“Descriptellation: Constellation Based Description for Object SLAM”

10. Tuna Turcan (Autumn 2020):
“Deep-Learned Gravity Estimation for Robust Visual-Inertial SLAM”

26 contribution

11. Asil Örgen (Autumn 2020):
“Estimating Uncertainty for Deep-Learned Visual Features”

12. Le Chen, and Yunke Ao (Spring 2021):
“Learn to Calibrate Visual-Inertial Systems” [36]

13. Riccardo Rancan (Autumn 2021):
“Map-based Anomaly Detection with Region of Interest & Laser”

14. Sourya Kovvali (Autumn 2021):
“High-speed Mapping with DVS”

15. Zador Pataki (Autumn 2021):
“How to Fuse?”

16. Oguzhan Ilter (Autumn 2021):
“Multimodal Object Detection & Mapping”

Bachelor Thesis

Bachelor student for 3-4 months part time (15 ECTS).

1. Dominik Bornand (Spring 2019):
“Non Linear Optimization Based Approach to Superquadrics for Object-
Based SLAM”

2. Shuaixin Qi (Autumn 2019):
“Artifact Detection in Challenging Conditions”

3. Marc Odermatt (Spring 2020):
“Simultaneous Localization and Mapping on the TurtleBot3”

4. Andrea Balestra (Autumn 2020):
“Autonomous Charging for Life-Long Autonomous Mapping”

“Perception and Learning for Robotics” course project

Master students for 3-4 months part time (4 ECTS).

1. Fadhil Ginting, and Hamza Javed (Spring 2019):
“TextVLAD: Robust Visual Scene Representation for Place Recognition
Using Text Landmarks”

2.5 teaching and student supervision 27

2. Mayank Mittal, Aleksandar Petrov, and Rohit Suri (Spring 2019):
“Using Semantics to Detect Miscalibration” [45]

3. Tuna Turcan, and Asil Örgen (Spring 2020):
“DEEL-VIO: Deep End-to-End Learning Framework for Visual Inertial
Odometry”

4. Le Chen, and Yunke Ao (Spring 2020):
“Learning Optimal Trajectories for Visual-inertial System Calibration via
Deep Reinforcement Learning” [35]

5. Soomin Lee, and Xiaoao Song (Spring 2020):
“Intelligent Overfitting to Environments”

6. Jiapeng Zhong, and Zheyu Ye (Spring 2020):
“Learn to Detect Sensor miscalibration” [34]

7. Chunwei Xing, and Xinyu Sun (Spring 2021):
“Deep-Learned Constellation-based descriptors for Semantic SLAM”

“Studies on Mechatronics”

Bachelor student for 3-4 months part time (5 ECTS).

1. Pascal Gross (Autumn 2019):
“Advances in SLAM”

2. Ajaykumar Unagar (Spring 2020):
“Comparative study of learned Detectors and Descriptors”

Visiting Students and Summer Projects

1. Hyunjin Jung (Spring 2022):
“Motion Estimation using Event-based Camera”

28 contribution

2.6 list of open-source software

Throughout the doctoral studies, I have actively developed and contributed
to software packages used for various robotics applications. At the time of
writing, the contributed software has 2500+ stars and 1000+ forks on github.
The most notable open-source contributions include:

1. Maplab 2.0: A multi-modal and modular mapping framework that can
work with multiple robots and in challenging environments [33].
https://github.com/ethz-asl/maplab

2. Segmap: A segment-based LiDAR SLAM framework that uses deep learned
descriptors for loop closure [6, 46].
https://github.com/ethz-asl/segmap

3. Camera Miscalibration Detection: Deep learning-based method for
detecting when the intrinsic calibration of a monocular camera has de-
graded [45].
https://github.com/ethz-asl/camera_miscalib_detection

4. Hough2Map: Iterative Hough transform for event-based cameras and line-
based mapping on railway vehicles using a double Hough transform [49].
https://github.com/ethz-asl/hough2map

5. NeuralBlox: Incremental volumetric mapping for indoor scenes based on
neural representations [48].
https://github.com/ethz-asl/neuralblox

6. Learn to Calibrate: Reinforcement learning framework to teach a robot
arm how to most efficiently calibrate a visual-inertial sensor [35, 36].
https://github.com/ethz-asl/learn-to-calibrate

7. Descriptellation: Learning constellation based descriptors for long-term
place recognition [37].
https://github.com/ethz-asl/descriptellation

https://github.com/ethz-asl/maplab
https://github.com/ethz-asl/segmap
https://github.com/ethz-asl/camera_miscalib_detection
https://github.com/ethz-asl/hough2map
https://github.com/ethz-asl/neuralblox
https://github.com/ethz-asl/learn-to-calibrate
https://github.com/ethz-asl/descriptellation

3
C O N C L U S I O N A N D O U T L O O K

In this chapter, we aim to summarize the overall findings following the
topics of modular mapping and learning introduced in Chapter 1. While
the presented contributions are promising, we also wish to add some critical
discussion regarding potential improvements and limitations. Furthermore,
based on our findings and experience gathered throughout this thesis, we
wish to provide an outlook and discuss emerging opportunities for research
from the contributions listed here.

3.1 part a: modular mapping

In the first part of the thesis, we focused on developing a large mapping
framework that supports multiple sensors and robot types. We focused on the
modular aspect of the framework, endeavoring to enable the use of as many
different components that are also easily interchangeable. Additionally, using
submapping we enabled online and multi-robot SLAM using a centralized
server design. While all this implied significant amounts of engineering work,
we simultaneously showcased novel applications in research that can be done
using our framework.

From the challenges listed in Section 1.1 we incrementally addressed most
of them directly or indirectly. Most notably, we showed that it is possible
in one framework to handle very different environments (office buildings,
parking lots, basements, construction sites, search and rescue areas, and other
outdoor areas) and different types of robotic platforms (hand-held sensors,
wheeled sensors, and drones) with many different sensor configurations.
This allowed us to combine various external capabilities (e.g., state-of-the-art
LiDAR odometry, deep-learned visual features, and map sparsification) to
reach better accuracy while maintaining compact maps.

29

30 conclusion and outlook

3.1.1 Discussion

We believe our framework is a good tool for the robotics community to test
out new research and quickly prototype new products or ideas. However,
flexibility and multipurposeness also come at the cost of increased complexity.
The first source of complexity comes from settings that can be modified and
relate to each individual component (odometry, keypoint detection, loop clo-
sure, etc.). While adding a new module might be easy, it will cause changes
downstream and possibly require tuning parameters throughout the frame-
work. This, in turn, requires experience and familiarity with much of the
framework. A second source of complexity that requires expert knowledge
is the multi-session mapping workflow, which allows for very easy tuning
and gives the user much control and responsibility over the process. While
in simple or standard conditions, this is robust and will work out of the
box, new environments or new robotic platforms might require tuning and
understanding many of the underlying components. This is in contrast to
many more tightly integrated solutions which are also, therefore, more robust
but also more limited in scope and in the number of new conditions they can
handle.

While we rely on a factor graph as an underlying representation, we
recognize some implementation limitations. The first relates to the scalability
of the optimization process. Solutions such as iSAM2 [28] exist that can only
partially update the factor graph and thus can deal with larger problems.
In contrast, our use of Ceres [30] as a non-linear optimization framework
forces full batch updates but allows for more flexibility in writing new
constraints with the auto-differentiation function. Keyframing and map
sparsification [50, 51] can alleviate the problem of scalability but also fail
after a certain point as they will gradually drop more information until the
map becomes too sparse to be useful.

Another issue with factor graphs is the need to provide confidence esti-
mates for all measurements. Most often, these are arbitrarily chosen values
since it is impossible to ascertain how reliable a measurement truly is. For
example, a wheel encoder can not ascertain how much slippage occurs,
or a keypoint detector can not estimate the re-projection error in pixels.
While some relative confidence values between measurements from the same
modality might be possible, comparability across sensors can become difficult.
Incorporating multiple sensors can still require hand-tuning of measurement
confidences, also depending on the type of environment.

3.2 part b : modular learning 31

3.1.2 Future Outlook

Hierarchical Approaches While our approach combines multiple modali-
ties, not all modalities need to be used similarly. Drawing inspiration
from how humans think in a hierarchical fashion, using different levels of
semantic understanding, algorithms could learn to mimic this behavior.
In particular, semantically more meaningful and oftentimes less accurate
methods can be used as a filtering step for slower, more accurate meth-
ods [52]. This can be extended to multiple levels and to more complex
decision processes (e.g., exclude the GPS sensors when indoors). Such a
hierarchical implementation would also reduce some of the difficulties
in tuning when adding multiple types of measurements with varying
degrees of precision into the same factor graph. Testing methods in such a
hierarchical system would also require a framework that implements not
only a modular design but also an easily configurable high-level control
system with modifiable stages.

Uncertainty Estimation Another major issue, as we have highlighted in the
discussion section, is the tuning of measurement uncertainties. The topic
of uncertainty estimation is not unknown in the field of deep learning [53].
However, more work is needed to integrate and test these uncertainties
in SLAM systems. Especially many deep learning-based modules and
frameworks do not provide accurate or meaningful confidence values for
their predictions. This complicates integration into factor graphs, as fixed
hand-tuned values can fail in new conditions.

3.2 part b : modular learning

In the second part of the thesis, we focused on developing and incorporating
new learning-based additions to SLAM. Here our focus was on multiple
different components that go into different parts of SLAM. We succeeded in
showing state-of-the-art results in all our works, as well as novel approaches
to problems. First, we presented a new type of deep-learned landmark for
loop closure. Also, we showed the advantages of the CNN we developed in
various secondary tasks, such as classification and reconstruction. Afterward,
we dwelled deeper into semantics and incorporated more object awareness.
Finally, we also showed a prototype for a fully object-based loop closure
engine. These works primarily target the challenge of long-term mapping,
seeking to increase robustness to viewpoint or temporal changes. Being high-

32 conclusion and outlook

level, the resulting maps are compact and sparse, enabling more efficient
optimization and data transfer.

The second goal we achieved was related to maintaining long-term accurate
calibrations in SLAM. By developing a new system for detecting when a
system is miscalibrated, we enabled efficient use of resources where sensors
are re-calibrated only when necessary. This work proposes some novel
approaches to the problem, first of all regarding data acquisition and the
target metric for learning. Secondly, we diverged from the general trend
of CNNs that can generalize to all cases and proposed specializing a CNN
to a specific camera calibration pair. This avoids the seemingly impossible
task of generic miscalibration detection and simplifies it to a more intuitive
task of detecting when perceptual changes occur. This work ties in also to
other contributions in this thesis regarding miscalibration detection [34] and
learning motions for visual-inertial calibration [35, 36].

3.2.1 Discussion

We believe learning is the future of perception in robotics, as more deep-
learned approaches are emerging that can outperform humans. However,
in robotics, safety is a crucial factor of any new system, which is a major
reason learning-based approaches are difficult to integrate into finished
products. Splitting problems into smaller subtasks allows for safety checks to
be added in between and allows for more understandable and controllable
behavior. One downside of this paradigm is that improvements to individual
components do not directly translate to improvements in the entire system.
For example, improving the descriptor recall in SegMap did not directly
lead to an improvement in localization. Still, parameters for the search tree
and RANSAC needed to be tuned to match the new module. Similarly, in
maplab 2.0, changing to deep-learned descriptors required heavy changes in
the configuration of the parameters of the entire system. While the modular
approach allows for easy changes, modules can not always be replaced
without considering ramifications further in the system. End-to-end systems
require less tuning, as they are trained to directly produce the desired output
from raw data. However, they are also more unpredictable, especially in new
environments, and can often produce very erroneous results.

A problem with deep-learned approaches is the need for data, especially
ground truth labels, for training. Descriptors have seen such popularity and
so many approaches since self-supervised losses are easier to formulate. One
area of deep learning we found particularly limiting to our approach was

3.2 part b : modular learning 33

object detection and segmentation. While the methods themselves can have
very good accuracy, a limiting factor was the labels provided in datasets.
For example, the popular COCO dataset [54] for object detection has only a
handful of household or outdoor objects that are presumed static. Of interest,
for example, would be more permanent objects such as windows, doors,
cupboards, shelves, and cabinets for indoors. Similarly, for outdoor scenes,
the ability to segment out building or house instances would be very useful.
We found that the lack of labeled data that interested us severely limited
what we could do with existing CNNs.

3.2.2 Future Outlook

Performance The performance of deep-learned methods needs to be better
taken into account during the design process and solutions focused on
robotics applications. This is essential on smaller mobile platforms, such
as micro aerial vehicles and AR devices, where the computational power is
very limited. Especially for keypoint detection, state-of-the-art CNNs can
run in real-time only on massive GPUs, and often for robotics applications,
much smaller versions need to be trained or distilled. Similar efficiency
issues are when looking at the descriptor sizes these networks generate
that are impractically large (2MB per keypoint). By being more target-
driven, i.e. designing with robotics in mind from the beginning, many
deep learning-based solutions could be more easily deployable and more
applicable to robotics. Similar issues exist between balancing performance
with practical values.

Temporal Data One advantage of robotics is the availability of temporal
data, i.e. instead of dealing with individual images or other sensor mea-
surements, we have a continuous stream. However, oftentimes also, to
simplify difficult problems, we tend to develop single-frame solutions.
This leaves unexploited a vast amount of potential data. One issue is that
temporal approaches, such as for example recurrent neural networks, are
harder to train. For example, the descriptor network in SegMap and the
miscalibration detection network could greatly benefit from added tempo-
ral information. The addition of temporal information would hopefully
significantly reduce the chances of spurious miscalibration detection.

New Datasets As we mentioned in the previous section, one limiting factor
was the labels in datasets. Namely, many objects of interest were difficult
to detect. However, some of them were difficult also due to perceptual

34 conclusion and outlook

reasons. For example, cameras can not detect windows but see the environ-
ment behind them, which creates a conflict that classic CNN approaches
can not resolve. Both an increase in datasets labeled for robotics pur-
poses would greatly benefit research and the addition of multi-modality to
datasets. For example, an object detection dataset with equally rich labels
and annotations as COCO [54], but also with LiDAR, would be of great
interest and would have ramifications in many areas of robotics, including
mapping.

Text-based Mapping While we focus on including semantics in mapping,
we have ignored one of the more important cues humans sometimes
follow, namely text. We rely on text in difficult environments, such
as repetitive office buildings or cities. A simple example of perceptual
aliasing that happens is between similar floors in an office building or
hotel, for example, where the text on doors would immediately resolve
the ambiguity. Existing approaches have been shown only in very limited
environments [55, 56]. The development and robustness of text-recognition
tools in the wild still need to improve, but the usefulness of text in robotics
is still a domain that remains largely unexplored.

Generalizing Miscalibration While our work focuses on detecting when
monocular cameras are miscalibrated, it is rarely true that a robotic plat-
form has only one sensor. A future tool for detecting miscalibration could
hopefully leverage information from other sensors to detect when either
one is miscalibrated. Especially inertial measurement units (IMUs) are
cheap and can be mounted in parallel with any sensor to ensure a redun-
dant modality. We hope that adding other sensors would simplify the
problem allowing for a network that generalizes better and maybe does
not need to be specialized for each camera.

Part A

M O D U L A R M A P P I N G

PA P E RI
M A P L A B 2 . 0 – A M O D U L A R A N D M U LT I - M O D A L

M A P P I N G F R A M E W O R K

Andrei Cramariuc∗, Lukas Bernreiter∗, Florian Tschopp∗, Marius Fehr, Victor
Reijgwart, Juan Nieto, Roland Siegwart, Cesar Cadena

∗contributed equally

abstract

Integration of multiple sensor modalities and deep learning into
Simultaneous Localization And Mapping (SLAM) systems are ar-
eas of significant interest in current research. Multi-modality is a
stepping stone towards achieving robustness in challenging envi-
ronments and interoperability of heterogeneous multi-robot systems
with varying sensor setups. With maplab 2.0, we provide a ver-
satile open-source platform that facilitates developing, testing, and
integrating new modules and features into a fully-fledged SLAM
system. Through extensive experiments, we show that maplab 2.0’s
accuracy is comparable to the state-of-the-art on the HILTI 2021

benchmark. Additionally, we showcase the flexibility of our sys-
tem with three use cases: i) large-scale (∼10 km) multi-robot multi-
session (23 missions) mapping, ii) integration of non-visual land-
marks, and iii) incorporating a semantic object-based loop closure
module into the mapping framework. The code is available open-
source at https://github.com/ethz-asl/maplab.

Published in:
IEEE Robotics and Automation Letters, 2023

DOI: 10.1109/LRA.2022.3227865

https://github.com/ethz-asl/maplab

38 paper i: maplab 2.0 – a modular and multi-modal mapping

Figure 4.1: We propose maplab 2.0, a flexible and generic multi-robot, and multi-
modal framework. maplab 2.0 can seamlessly integrate multiple robots (colored
paths), visual landmarks (colored points), and LiDAR scans (black points).

1 introduction

Simultaneous Localization And Mapping (SLAM) is an essential component
for various robotic applications, such as autonomous driving [1], mobile
manipulation [2], and augmented/mixed reality. In these applications, the
robotic platform needs to be aware of the surrounding environment and its
location to perform the given task, be it driving autonomously to a particular
destination or picking up and delivering an object. One step further is the
ability to perform long-term mapping, which typically requires tools for
processing and merging multiple maps enabling an even wider range of
diverse applications and tasks.

Over recent years, many tailored SLAM solutions have been successfully
developed for specific environments or sensor configurations [7–15]. However,
many challenges remain until SLAM is fully solved or generically deployed in
ubiquitous operating conditions. Recent efforts in fusing multiple modalities
have gained significant traction due to the ability of multi-modal systems to
compensate for weaknesses in individual sensors or methods. Thus, enabling
a more robust robotic operation in degraded environments and even with full
or partial sensor failures. Works combining many different sensors exist [7–9]
and achieve remarkable performance. However, together with other open-
source SLAM frameworks [12–15], these systems are tightly integrated. More

1 introduction 39

specifically, they function only with specific sensor configurations, and the
basic modules (e.g., odometry, localization, or feature extraction) are highly
entangled. Modifying those modules or incorporating new functionalities
requires significant engineering work, adding major overheads to scientific
research and the development of new products. Therefore, versatile systems
that can seamlessly integrate various sensor setups and leverage multiple
sensor modalities are desirable. Flexible support of multiple modalities is also
the stepping stone for heterogeneous multi-robot systems, where different
robots can be equipped with varying combinations of sensors, e.g., due to
platform constraints.
maplab 2.0 provides an open-source platform for multi-session, multi-

robot, and versatile multi-modal mapping. The original maplab [15] was an
open-source toolbox for creating and managing exclusively visual-inertial
maps. With maplab 2.0, we extend the original framework far beyond its
initial scope by integrating multiple new modalities such as LiDAR, GPS re-
ceivers, wheel encoders, semantic objects, and more. These examples provide
the templates for easy extension to further sensing modalities. maplab 2.0
also offers interfaces for easy integration of external components, such as
adding any number of different visual features or loop closure constraints.
These features make our new platform ideally suited as a development and
research tool for deep-learned keypoint detectors and loop closure engines
that, until now, have mostly been tested separately [22]. Additionally, online
collaborative SLAM is now possible in maplab 2.0 due to the new submap-
ping capabilities, enabling online building, optimization, and co-localization
of one global map from multiple sources. This is made possible by our
implementation of a new centralized server node that aggregates the data
from multiple robots and can transmit the collaboratively built map back to
the robots for increased performance [57]. We showcase the capabilities and
performance of our system in multiple experiments and datasets, providing
proof of concept implementations for non-visual keypoints, deep-learned
descriptor integration, and a semantic object-based loop closure engine. Our
contributions can be summarized as follows:

• We provide an open-source, multi-modal, and multi-robot mapping
framework that allows integration and fusion of an unparalleled amount
of different data compared to other existing methods.

• An online collaborative mapping system that utilizes submapping and a
central server to compile and distribute globally consistent, feature-rich
maps.

40 paper i: maplab 2.0 – a modular and multi-modal mapping

• Integration of interfaces for any number of custom feature points, de-
scriptors, and loop closure. We showcase their flexibility in experiments
featuring 3D LiDAR keypoints and semantic object-based loop closures.

2 related work

Mapping can be defined as the challenge of creating environment representa-
tions and has seen a vast and diverse range of solutions over the past decades,
with significant changes driven by new sensors and scenarios [58]. Multi-
modality has evolved beyond standard sensor fusion (i.e., visual-inertial or
stereo cameras) to include more complex combinations involving, for exam-
ple, LiDARs and semantic information. Another notable topic is multi-robot
mapping, where multiple robots simultaneously explore an environment and
aim to create one globally consistent map. Multi-robot mapping differs from
multi-session mapping, which involves collecting measurements of the same
place at separate time intervals and enabling offline operations to and be-
tween sessions. While multi-robot frameworks can be used in a multi-session
manner by sequentially processing data recordings, this is inefficient as it
requires reprocessing all previous data any time a new recording is added
due to their lack of map management tools. A comparison of significant
SLAM frameworks and their features is presented in Table 4.1.

The first version of maplab [15] is a multi-session mapping framework
designed for visual-inertial systems. Other comparable frameworks are
ORB-SLAM3 [12] and RTAB-Map [7]. ORB-SLAM3 is an extension of its
predecessor ORB-SLAM2 [59], adding support for an IMU and multi-session
mapping capabilities. RTAB-Map integrates vision and depth measurements
from a LiDAR or an RGB-D camera. An extension [60] to RTAB-Map supports
a variety of handcrafted visual features and SuperPoint [22], but does not
allow for easy integration of other descriptors. Both frameworks offer similar
map creation and management features as maplab, with the addition of
online loop closure and optimization during mapping. All three of the
aforementioned frameworks are tightly integrated systems designed for a
particular sensor configuration. On the contrary, we allow easy integration of
different sensor setups, visual features, and support an arbitrary odometry
input in maplab 2.0, which facilitates the use of heterogeneous robots and
provides a new level of flexibility.

Kimera [8] is a multi-modal mapping framework that provides both local
and global 3D meshes with semantic annotations and a global trajectory
estimate based on visual-inertial SLAM. As opposed to maplab 2.0, Kimera

2 related work 41

Table 4.1: Comparison of supported features in state-of-the-art mapping frameworks.
(Diff. sensors: Maps with different sensor configurations can be combined; Ext.: External
source; LC.: Loop closure; ∗: IMU biases have to be provided alongside the poses)

M
ul

ti
-M

od
al

M
ul

ti
-R

ob
ot

M
ul

ti
-S

es
si

on
O

nl
in

e
D

if
f.

Se
ns

or
s

Ex
t.

O
do

m
et

ry

Ex
t.

Fe
at

ur
es

Ex
t.

LC
s

G
PS

su
pp

or
t

Se
m

an
ti

c
LC

s
O

pe
n-

So
ur

ce

RTAB-Map [7] ✓ ✓ ✓ ✓ ✓
ORB-SLAM3 [12] ✓ ✓ ✓ ✓

LAMP 2.0 [10] ✓ ✓ ✓ ✓ ✓ ✓
CVI-SLAM [11] ✓ ✓

COVINS [13] ✓ ✓ ∗ ✓
DOOR-SLAM [14] ✓ ✓ ✓ ✓ ✓

Kimera [8] ✓ ✓ ∗ ✓
Kimera-Multi [9] ✓ ✓ ✓ ∗ ✓

maplab [15] ✓ ✓
maplab 2.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

does not have multi-session capabilities, and the 3D reconstruction with
its semantic annotations is not used to improve the accuracy of the SLAM
estimates. In general, semantic information has the potential to significantly
improve mapping [58] by being a catalyst for high-level scene understanding.
However, previous works utilizing semantics for mapping [6, 46, 61–63] focus
mainly on generating improved descriptors rather than leveraging them in
a fully semantic SLAM system. In this work, we propose utilizing image
descriptors and a simple semantic object representation, which allows us to
optimize using well-known relative pose errors.

Kimera-Multi [9] is a direct extension of Kimera [8], which enables the
multi-robot scenario using a fully distributed system but does not improve
on the purely visual-inertial SLAM backend in the original Kimera. Our
approach instead uses a centralized server that collects submaps, optimizes
them, and creates one globally consistent map. A similarly centralized setting
was also explored by COVINS [13]. However, COVINS is limited to the
visual-inertial use case, while maplab 2.0 can incorporate multiple sensor
modalities and configurations. In a similar vein are also LAMP 2.0 [10],
CVI-SLAM [11], and DOOR-SLAM [14], which offer collaborative mapping

42 paper i: maplab 2.0 – a modular and multi-modal mapping

Vision Maplab Node

Feature
Tracker

GPS
Feature Tracks...

Vision Maplab Node

Feature
Tracker

GPS
Feature Tracks...

Server
Submap Processing

Global Loop Closure

Global Optimization

Tr
an

sm
is

si
on

In
te

rf
ac

e

Offline Console
Global Loop Closure

Global Optimization

IMU
LiDAR
Vision

Odometry

Mapping Node

Feature
Tracker Tr

an
sm

is
si

on
In

te
rf

ac
e

GPS
Feature Tracks

6-DoF Poses

...

Submaps

Global
Multi-Robot

Map

 Legend: Sensor Input External Processing Onboard Mapping Multi-Robot MappingNetworking

Figure 4.2: Overview of the maplab 2.0 framework and its three main components,
namely the mapping node, the centralized server, and the offline console. The mapping
node runs on each robot and collects the sensor data into submaps which are passed to
the centralized server that merges them into a globally consistent map. This map can
then, at later stages, be refined or merged with other maps using the tools provided by
the offline console. This figure showcases an example of one possible configuration of
how maplab 2.0 can be used. There are multiple other combinations as well as inputs
and modules that can be added or excluded as described in Section 3.

between robots but are tightly integrated systems, limited to one sensor
modality, and have little flexibility.

Although various other SLAM frameworks exist, they are mainly focused
on specific sensor or robot-environment configurations, and changes to either
one are usually difficult or impossible. To our knowledge of all the existing
methods, maplab 2.0 is the most flexible mapping and localization frame-
work that not only supports a variety of sensors but can also be seamlessly
adapted to new needs.

3 the maplab 2.0 framework

The general structure of the maplab 2.0 framework is presented in Figure 4.2.
The entire framework can be divided into three main components: the
mapping node, the mapping server, and the offline console interface. We
begin with an overview of the underlying map structure in maplab 2.0, after
which we discuss in more detail the main components.

3.1 Map Structure

We denote a map as a collection of one or more missions, where each mission
is based on a single continuous mapping session. The underlying structure
of a map is a factor graph consisting of vertices and edges that incorporate

3 the maplab 2.0 framework 43

all the robot information and the measurements across different missions.
The state of the robot at a certain point in time t is parameterized as a vertex
(6 degrees of freedom (DoF) pose, velocity, IMU biases). Landmarks are also
represented as vertices in the graph whose state is defined as a 3D position.
The 3D landmarks can be used as an underlying representation for anything
in the environment with a 3D position, e.g., visual landmarks, 3D landmarks,
or even semantic objects.

Constraints

Vertices are connected through different types of edges that impose con-
straints on their state variables based on observations (e.g., keypoints, imu
measurements, and loop closures). IMU edges contain the pre-integrated
IMU measurements between connected vertices and therefore only connect
temporally sequential vertices. Relative pose constraint edges impose a rigid
6 DoF transformation between two vertices and are used to represent either
relative motion (i.e., odometry) or loop closures across larger temporal gaps or
missions. The edges are assigned a covariance to quantify the measurement
noise, which is typically set to a predefined constant value. The covariance
can be used to model the degrees of motion a sensor can observe, e.g. wheel
odometry has infinite covariance for motion along the z-axis, as well as pitch
and roll. We consider loop closure edges a special case of relative pose
constraint edges. For increased robustness and to account for outliers, loop
closure edges can be included as switchable constraints [64]. The optimizer
can then discard edges from the graph if they conflict too much with the
other constraints. Finally, edges connect a landmark to the poses from which
it was observed and impose an error based on the difference between the
estimated and observed landmark position.

During optimization, constraints can also be imposed directly on the
internal states of chosen vertices. For example, absolute constraints enforce
a global 3D position on a vertex with a given uncertainty and allow us
to integrate GPS measurements or absolute fiducial marker observations.
Additionally, fixing certain states enables the flexibility of choosing which
parts of the problem are to be optimized.

Landmarks

The visual mapping module at the core of maplab [15] is still a part of
maplab 2.0. It includes feature detection based on ORB [65], with binary
descriptors from either BRISK [66] or FREAK [67]. Feature correspondences

44 paper i: maplab 2.0 – a modular and multi-modal mapping

between consecutive frames are established based on descriptor matches,
where for robustness, the matching window is restricted by integrated gy-
roscope measurements. These feature tracks are then triangulated into 3D
landmarks.

Global localization and loop closure is done by taking individual frames
and establishing a set of 2D-3D matches using the feature descriptors. A
covisibility check is applied afterward to the matches to filter outliers. Then,
with a P3P algorithm within a RANSAC scheme, the remaining matches are
used to obtain a transformation with respect to the map’s reference frame.
This transformation can then be added to the factor graph as a loop closure
edge. We also provide an alternative method that incorporates loop closures
by merging the covisible landmarks and minimizing their reprojection error.
This approach foregoes the difficulty of tuning explicit loop closure edge
covariances but enforces softer constraints on the factor graph.

In maplab 2.0, we have added the possibility of concurrently including
any number of different types of features into the map. To obtain feature
tracks across consecutive frames, users can either use the included generic
implementation of a Lucas–Kanade tracker [68] or supply the track informa-
tion themselves. In addition, we expanded the matching engine to support
floating point descriptors, enabling loop closure using the latest developed
descriptors. Binary descriptors are matched, as in maplab, using an inverted
multi-index [69], while floating point descriptors are matched using a Fast
Library for Approximate Nearest Neighbors (FLANN) [70]. Matches are then
treated similarly for the purpose of loop closures as previously described.
Still, for tuning purposes, different feature types can have separate parameter
sets to account for differences in quality and behavior.

maplab 2.0 can also handle landmarks with 3D observations. These could
originate from, for example, RGB-D cameras, where visual features also
have an associated depth, or from features detected directly in a 3D point
cloud. The significant difference is that the position of these landmarks
is not triangulated using multi-view geometry but by averaging the 3D
measurements. Similarly, the pose graph error term is not based on the
reprojection error, but on the Euclidean distance between the observed 3D
position and the 3D position of the landmark. The other significant difference
is that loop closure is set up as a 3D to 3D RANSAC matching problem
without the P3P algorithm.

3 the maplab 2.0 framework 45

3.2 Mapping Node

The mapping node runs onboard each robot and uses external input sources
and the raw sensor data to create a map in the form of a multi-modal
factor graph. A 6 DoF odometry input is used during map building to
initialize the robot pose vertices for the underlying factor graph. The mapping
node is agnostic to the odometry method and features a simple interface,
thus enabling its easy use across various robots and sensor setups. This is
in contrast to maplab [15], where only the built-in visual-inertial estimator
ROVIOLI [5] was available – whereas maplab 2.0 does not even require an
IMU. However, if an IMU is available, inertial constraints are added to the
map, and the state estimator can optionally also compute an initial estimate
for the IMU biases. These bias estimates can then be used to improve the
initialization of the global map optimization problem, which benefits its
convergence speed and accuracy. If an IMU is present but not used by the
state estimator, the bias estimation can also be done separately [71–73].

Substantial changes to the original maplab framework were also made such
that other sensor modalities can be processed and integrated using custom
internal components or easily configurable external interfaces. Most notably,
maplab 2.0 can incorporate any number of different 3D landmarks types at
runtime. Furthermore, relative constraints (e.g., odometry or external loop
closures) and absolute 6 DoF constraints (e.g., GPS or fiducial markers) can
now seamlessly be added.

The raw camera images or the LiDAR point clouds can be attached to the
map as resources that later modules can use at any time, for example, to
compute additional loop-closures or detect objects. The resulting maps with
all the included constraints can then be passed on to the mapping server
for online processing or stored and loaded for later offline processing in the
console.

3.3 Mapping Server

The mapping server is a new addition to maplab 2.0, enabling collaborative
and online mapping. This method was successfully deployed in the DARPA
Subterranean Challenge as part of the winning team’s (CERBERUS) multi-
robot mapping system [74]. The server node can run on a dedicated machine
or one of the robots in parallel with the mapping node. The mapping nodes
divide their maps into chunks, called submaps, at regular intervals. The
submaps are immediately transmitted to the mapping server where they are

46 paper i: maplab 2.0 – a modular and multi-modal mapping

preprocessed and concatenated to the corresponding previously transmitted
submap from the same robot. Bookkeeping is done by duplicating the
last vertex of each submap into the next submap when splitting. This also
avoids discontinuities in edges and feature tracks. In parallel the server
continuously loop closes maps from different robots into a globally consistent
map. Notably, the server and console share the same code base, therefore
any new functionalities can easily be integrated into either one.

Submap Preprocessing

The incoming submaps are not merged directly but rather first processed indi-
vidually to ensure local accuracy. Specifically, a configurable set of operations
is executed on each robot’s submap, which includes local map optimization
(full bundle adjustment over all sensor data and constraints), feature qual-
ity evaluation, and intra-map loop closure (visual and LiDAR depending
on what is available). Since the submaps are processed independently of
each other, the mapping server can efficiently process multiple maps concur-
rently. After completion of the preprocessing steps, each finished submap is
concatenated to the previous submap from the same robot.

Multi-Robot Processing

The mapping server continuously operates on the global multi-robot map
and executes a second set of configurable operations (loop closure, feature
quality evaluation, bundle adjustment, visualizations, absolute constraint
outlier rejection, etc.). Here, the loop closure algorithms (visual or LiDAR) try
and place all the different robots into the same reference frame and correct
drift. In contrast to the preprocessing step, the operations on the multi-robot
map are always performed at a global scope, e.g., loop closures are detected
in an intra- and inter-robot approach, and the global optimization is done
jointly over all robot maps. The collaboratively built global map can also
be transmitted back to the robots to increase the accuracy of their onboard
estimation [57]. The increased awareness of the environment not only benefits
localization accuracy but also other tasks such as global path planning.

3.4 Offline Console

The offline console was ported over from maplab, with old tools adapted to
the new features regarding sensors and modalities. There are tools for further
processing maps, such as batch optimization, merging maps from different

4 use-cases 47

sessions, outlier rejection, key-framing, map sparsification [50], etc. Loop
closure using LiDAR is also now possible with a new module that includes
an implementation of ICP [75] and G-ICP [76] but is not limited to these
and can easily be extended. Transformations computed by the registration
module are added as loop closure edges with switchable constraints (see
Section 3.1). For each sensor and method combination we use a predefined
fixed covariance, which is set separately for each translation and rotation
component. The values are empirically chosen based on the sensor noise
and the accuracy of the registration method. Dense reconstruction can also
be done using the integrated Voxblox [31] plugin. The console additionally
provides tools for resource management (manipulating or visualizing the
attached point clouds, images, and semantic measurements) or exporting
map data (poses, IMU biases, landmarks, etc.).

Finally, the console enables easy extensions through plugins that can
run code offline and are independent of the map-building process. We
used plugins, for example, to implement the LiDAR registration module
mentioned above and a semantic loop closure module (see Section 4.4).

4 use-cases

We conducted several experiments to evaluate our proposed framework thor-
oughly and to demonstrate its ease of use and high flexibility. Specifically,
this section presents results on four datasets to showcase the new features and
capabilities of maplab 2.0. First, we validate the performance and accuracy
of our proposed framework on the public HILTI SLAM 2021 dataset [20] and
compare it to well-known state-of-the-art approaches. Next, we demonstrate
the real-world applicability of our proposed framework and showcase the
large-scale multi-robot multi-session capabilities. Then, we show the versa-
tility of the landmark system by incorporating 3D LiDAR features detected
from projected point clouds. Finally, we showcase a semantic loop closure
module on a custom indoor dataset. All datasets are collected with hardware
time-synchronized sensor setups.

4.1 Validation and Comparison

We use the HILTI SLAM Challenge 2021 dataset [20] to compare our proposed
framework to state-of-the-art approaches. The dataset includes 12 recordings
covering indoor office environments and challenging outdoor construction
sites. In our experiments we exclude three sequences that are too small

48 paper i: maplab 2.0 – a modular and multi-modal mapping

(a) BRISK descriptors with ORB detector.

(b) SuperPoint visual features with SuperGlue tracking.

(c) Accumulated point cloud reconstruction.

(d) SuperPoint on LiDAR images with SuperGlue tracking.

Figure 4.3: Visualizations of the features and sensor data in maplab 2.0 on the Office
Mitte sequence from the HILTI 2021 dataset, using OKVIS and global bundle adjust-
ment over the features.

4 use-cases 49

and do not present interesting challenges. Three pairs (Construction Site,
Basement, and Campus) of the remaining nine sequences were taken in the
same environment and can be co-localized to increase accuracy.

For maplab 2.0, we can use the five cameras, the ADIS IMU and the OS0-
64 LiDAR provided in the dataset. We show three use-cases for maplab 2.0
using three different odometry sources: ROVIO [5], OKVIS [16], and FAST-
LIO2 [18]. Besides the standard BRISK [66] descriptors, we use the external
interfaces from Section 3.1 to also include SuperPoint [22] features with
SuperGlue [25] tracking, and SIFT features [77] with LK tracking [68]. To
reduce map size and speed up the descriptor search, we compress the Su-
perPoint and SIFT features using principal component analysis (PCA) from
256 floating points to 32. Global loop closures are computed using all avail-
able features, and matched landmarks are merged. We also use ICP [75]
from the LiDAR registration module (see Section 3.4) to refine our poses
locally. Covariances for the loop closure edges are predefined empirically.
Visualizations from sequence Office Mitte are presented in Figure 4.3a-c. It
can be observed how SuperPoint features better follow the building structure
compared to ORB.

Table 4.2 also shows the performance of the odometry sources alone, and
other SLAM baselines (LVI-SAM [78], ORB-SLAM3 [12], RTAB-Map [7], and
maplab [15]). Maplab and maplab 2.0 are the only methods able to use all five
cameras for loop closures. For ROVIO and OKVIS we only use the frontal
camera or stereo pair for odometry. Among all methods that use vision
maplab 2.0 outperforms the baselines by a significant margin. FAST-LIO2,
which uses only LiDAR-Inertial, is the best baseline, outperforming even LVI-
SAM, which is a vision-LiDAR-inertial fusion based on the same principles.
However, we show that we can also take the best performing method as
odometry and further refine the result, especially improving significantly on
the Parking sequence over FAST-LIO2. We also present a fusion of ROVIO
and SIFT, demonstrating the versatility of maplab 2.0 for fast incremental
improvements, independently of better deep-learned visual features. Timings
for all methods are also presented on a machine with an Intel i7-8700 and an
Nvidia RTX 2080 GPU.

4.2 Large-Scale Multi-Robot Multi-Session Mapping

We demonstrate the applicability toward complex real-world scenarios by
deploying our proposed framework in a large-scale training facility in Switzer-
land. The environment features urban-like streets with buildings and harsh

5
0

p
a

p
e

r
i:

m
a

p
l

a
b

2.
0

–
a

m
o

d
u

l
a

r
a

n
d

m
u

l
t

i-
m

o
d

a
l

m
a

p
p

i
n

g

Table 4.2: Comparison of state-of-the-art methods in terms of the RMSE of the absolute position error (APE). SP + B represents
SuperPoint and BRISK visual features. The icons represent the utilized sensors: monocular , multi-camera , LiDAR , and
IMU . The total duration of the dataset is 52 minutes.

HILTI 2021 SLAM Dataset

Sequence

maplab 2.0
ORB LVI RTAB maplab ROVIO OKVIS FAST ROVIO OKVIS FAST-LIO2

SLAM3 SAM Map LIO2 + SIFT + SP + B + ICP + SP + B

Construction 1 1.55 m 0.13 m 0.36 m 0.16 m 0.98 m 1.17 m 0.04m 0.14 m 0.08 m 0.08 m 0.04m
Construction 2 2.77 m 0.33 m 0.67 m 0.57 m 1.50 m 2.13 m 0.07m 0.34 m 0.19 m 0.19 m 0.07m

IC Office 1.86 m 0.12 m 1.50 m 0.09 m 1.16 m 1.27 m 0.08 m 0.08 m 0.08 m 0.07m 0.07m
Office Mitte 1.70 m 0.24 m 0.94 m 3.18 m 0.86 m 1.15 m 0.12 m 0.27 m 0.18 m 0.15 m 0.10m
Basement 3 1.55 m 0.10 m 0.38 m 0.09 m 3.05 m 1.01 m 0.05m 0.09 m 0.09 m 0.08 m 0.05m
Basement 4 1.71 m 0.13 m 0.38 m 0.11 m 2.90 m 1.23 m 0.04m 0.11 m 0.10 m 0.09 m 0.04m

Parking 5.49 m 4.43 m 7.82 m 0.39 m 6.13 m 3.36 m 5.00 m 0.31 m 0.21m 0.21m 0.21m
Campus 1 1.93 m 0.12 m 0.93 m 0.60 m 5.10 m 2.41 m 0.07m 0.38 m 0.19 m 0.17 m 0.07m
Campus 2 2.24 m 0.14 m 0.79 m 0.47 m 2.02 m 2.23 m 0.09 m 0.28 m 0.20 m 0.18 m 0.08m

Total Time 61 min 68 min 163 min 82 min 58 min 121 min 52 min 98 min 236 min 267 min 194 min

4 use-cases 51

Figure 4.4: Visual mapping results of the global multi-robot map comprising 23 map-
ping runs. Individual colors denote robot trajectories and gray points denote triangu-
lated BRISK landmarks in the multi-robot map. The top right image shows the LiDAR
map by reprojecting the point clouds onto the optimized poses.

environments such as collapsed buildings with narrow spaces. For this
experiment, we recorded 23 individual runs with a handheld device with
five cameras and an Ouster OS0-128 comprising more than two hours of
data over approximately 10 km and multiple indoors-outdoors transitions.
Each run used OKVIS [16] for odometry. The first five maps were used to
build a global multi-robot map using the mapping server, and the remaining
maps were merged using multi-session mapping in the console. Consistency
between all missions was enforced using global visual loop closures, and if
available, additional absolute pose constraints from an RTK GPS. Moreover,
individual trajectories were refined by performing intra- and inter-mission
LiDAR registrations. Figure 4.4 shows the final multi-robot map.

To quantitatively evaluate the multi-robot server we test on the public
EuRoC benchmark [21]. As the console and server use the same underlying
mapping framework, excluding minor details such as operation ordering,
the expected accuracy is the same. We run all 11 sequences simultaneously
in a multi-robot experiment using the mapping server, with ROVIO and
BRISK. Afterwards, we repeat the experiment by sequentially processing
each mission using the mapping node and console and then merging them
together. Both scenarios achieve an average RMSE APE of 0.043 m, but the
parallelized mapping server only takes 3 min 27 s for everything, as opposed
to 35 min 56 s for the sequential multi-session workflow. For both scenarios
the timings include the odometry, optimization and map merging.

52 paper i: maplab 2.0 – a modular and multi-modal mapping

(a)

(b)

Figure 4.5: Tracking keypoints on LiDAR images. (a) shows a related camera image
only for illustration purposes. (b) shows the LiDAR image (cropped for visualization
∼ 40◦) where the green circles and lines represent SuperPoint detections along with
their tracked motion to the previous frame.

4.3 Visual Tracking on Projected LiDAR Images

To showcase the flexibility of the landmark system in maplab 2.0, we inte-
grate 3D LiDAR keypoints1. We draw inspiration from the work of Streiff et
al. [79] and project the LiDAR point cloud onto a 2D plane. We normalize
the LiDAR range and intensity values using a logarithmic scale and merge
the two channels using Mertens fusion [80]. Missing pixels from bad LiDAR
returns are in-painted using neighboring values. An example image of the
resulting 2D projection is shown in Figure 4.5, alongside a camera image from
the same perspective showing the environment. We then treat the LiDAR
image like a camera image and apply SuperPoint with SuperGlue to obtain
point features and tracks, as shown in Figure 4.5. Since, for each feature
observation, we have depth information from the LiDAR, we can more ef-
ficiently initialize and loop close these 3D LiDAR landmarks, as described
in Section 3.1. Finally, we use these LiDAR keypoints to map out one of

1Please note that a similar workflow could be implemented for other modalities, e.g., RGB-D
cameras, radar or sonar imaging.

4 use-cases 53

the sequences in the HILTI 2021 dataset and visualize the resulting map in
Figure 4.3d. The LiDAR landmarks are mapped more accurately onto the
structure than the visual keypoints, as seen from the straightness of the walls.
However, they also suffer from outliers caused by noise in the LiDAR image
from missing points or moving objects in the environment.

4.4 Semantic-based Mapping

This section showcases the extensibility and modular design of maplab 2.0
by augmenting the map with semantic information and illustrating its po-
tential application in a real-world scenario. Initially, semantic objects are
detected in an image using Mask R-CNN [81], and for each detection, we
use NetVLAD [82] to extract a descriptor on the masked instance segmen-
tation. Instead of the built-in tracker, all detected objects are tracked using
Deep SORT [83], which extends typical spatial data association metrics with
an appearance term that can directly utilize the previously extracted object
descriptor. Similar to visual landmarks, semantic objects are 3D landmarks
in the maplab 2.0 map but have an associated class label and can be used
for, e.g., semantic loop closure detection.

Finally, candidate semantic loop closures are found by directly comparing
the object descriptors of the same class. First, a unique visibility filter is ap-
plied, i.e., two landmarks observed in a single image cannot be matched. After
geometrically verifying the candidates and clustering co-visible landmarks,
a 6-DoF constraint between the two robot vertices closest to two matched
landmark clusters is constructed using the relative coordinate transformation
between two 3D landmark clusters, obtained through Horn’s method [84]. Fi-
nally, the covariance of the corresponding factor-graph constraint is calculated
using the method proposed by Manoj et al. [85].

We collected an indoor dataset in an office environment with multiple
objects using an RGB-inertial sensor [86]. We observe an office table with
objects on two occasions while leaving some time to accumulate drift (see
Figure 4.6a and 4.6c). Figure 4.6b shows semantic landmark clusters and
detected loop closure candidates. After adding the loop closure edges from
the semantic objects to the full factor graph, the drift significantly reduces,
and an improved map can be seen in Figure 4.6c.

54 paper i: maplab 2.0 – a modular and multi-modal mapping

(a) (b)

(c)

Figure 4.6: Semantic mapping pipeline. (a) Experimental setup: a table with multiple
semantic objects. (b) Loop closure matches (magenta) between semantic landmarks
(blue), resulting in a loop closure constraint (orange). (c) Visual-inertial-semantic map
before and after semantic loop closure.

5 conclusion

We presented a research platform for multi-modal and multi-robot map-
ping, supporting online and offline processing of the maps. We showcase
state-of-the-art performance on a large-scale SLAM benchmark and multiple
experimental use cases for maplab 2.0. Our proposed mapping framework’s
flexible and modular design facilitates research in various robotic applica-
tions and yields important implications in academia and industry. The code
and tutorials to reproduce the experiments are available on the wiki of the
repository.

Part B

M O D U L A R L E A R N I N G

PA P E RII
S E G M A P : S E G M E N T B A S E D M A P P I N G A N D

L O C A L I Z AT I O N U S I N G D ATA - D R I V E N D E S C R I P T O R S

Renaud Dubé∗, Andrei Cramariuc∗, Daniel Dugas, Hannes Sommer, Marcin
Dymczyk, Juan Nieto, Roland Siegwart, and Cesar Cadena

∗contributed equally

abstract

Precisely estimating a robot’s pose in a prior, global map is a fun-
damental capability for mobile robotics, e.g. autonomous driving or
exploration in disaster zones. This task, however, remains challenging
in unstructured, dynamic environments, where local features are
not discriminative enough and global scene descriptors only provide
coarse information. We therefore present SegMap: a map representa-
tion solution for localization and mapping based on the extraction of
segments in 3D point clouds. Working at the level of segments offers
increased invariance to view-point and local structural changes, and
facilitates real-time processing of large-scale 3D data. SegMap exploits
a single compact data-driven descriptor for performing multiple tasks:
global localization, 3D dense map reconstruction, and semantic in-
formation extraction. The performance of SegMap is evaluated in
multiple urban driving and search and rescue experiments. We show
that the learned SegMap descriptor has superior segment retrieval
capabilities, compared to state-of-the-art handcrafted descriptors. In
consequence, we achieve a higher localization accuracy and a 6%
increase in recall over state-of-the-art. These segment-based localiza-
tions allow us to reduce the open-loop odometry drift by up to 50%.
SegMap is open-source available along with easy to run demonstra-
tions.

Published in:
The International Journal of Robotics Research (IJRR), 2020

DOI: 10.1177/0278364919863090

58 paper ii : segmap: segment-based mapping and localization

1 introduction

Mapping and localization are fundamental competencies for mobile robotics
and have been well-studied topics over the last couple of decades ([58]).
Being able to map an environment and later localize within it unlocks a
multitude of applications, that include autonomous driving, rescue robotics,
service robotics, warehouse automation or automated goods delivery, to
name a few. Robotic technologies undoubtedly have the potential to disrupt
those applications within the next years. In order to allow for the successful
deployment of autonomous robotic systems in such real-world environments,
several challenges need to be overcome: mapping, localization and navigation
in difficult conditions, for example crowded urban spaces, tight indoor areas
or harsh natural environments. Reliable, prior-free global localization lies at
the core of this challenge. Knowing the precise pose of a robot is necessary
to guarantee reliable, robust and most importantly safe operation of mobile
platforms and also allows for multi-agent collaborations.

The problem of mapping and global localization has been well covered
by the research community. On the one hand, a large body of algorithms
use cameras and visual cues to perform place recognition. Relying purely
on appearance has, however, significant limitations. In spite of tremendous
progress within this field, state-of-the-art algorithms still struggle with chang-
ing seasons, weather or even day-night variations ([87]). On the other hand,
several approaches address the variability of appearance by relying instead
on the 3D structure extracted from LiDAR data, which is expected to be more
consistent across the aforementioned changes. Current LiDAR-based Simul-
taneous Localization And Mapping (SLAM) systems, however, mostly use
the 3D structure for local odometry estimation and map tracking, but fail to
perform global localization without any prior on the pose of the robot ([88]).

There exist several approaches that propose to use 3D point clouds for
global place recognition. Some of them make use of various local fea-
tures ([89, 90]), which permit to establish correspondences between a query
scan and a map and subsequently estimate a 6-degrees of freedom (DoF)
pose. The performance of those systems is limited, as local features are
often not discriminative enough and not repeatable given the changes in
the environment. Consequently, matching them is not always reliable and
also incurs a large computational cost given the number of processed fea-
tures. Another group of approaches relies on global descriptors of 3D LiDAR
scans ([91]) that permit to find a correspondence in the map. Global descrip-
tors, however, are view-point dependent, especially when designed for only
rotational-invariance and not as translation-invariant. Furthermore, a global

1 introduction 59

Figure 5.1: An illustration of the SegMap approach. The red and orange paths represent
the trajectories of two robots driving simultaneously in opposite directions through an
intersection. In white we show the local segments extracted from the robots’ vicinity
and characterized using our compact data-driven descriptor. Correspondences are
then made with the target segments, resulting in a successful localization depicted
with green vertical lines. A reconstruction of the target segments is illustrated below,
where colors represent semantic information (cars in red, buildings in light blue, and
others in green), all possible by leveraging the same compact representation. We take
advantage of the semantic information by performing localization only against static
objects, improving robustness against dynamic changes. Both the reconstruction and
semantic classification are computed by leveraging the same descriptors used for global
prior-free localization.

scan descriptor is more prone to failures under dynamic scenes e.g. parked
cars, which can be important for reliable global localization in crowded,
urban scenarios.

We therefore present SegMap1: a unified approach for map representation in
the localization and mapping problem for 3D LiDAR point clouds. SegMap
is formed on the basis of partitioning point clouds into sets of descriptive
segments ([39]), as illustrated in Figure 5.2. The segment-based localization
combines the advantages of global scan descriptors and local features –
it offers reliable matching of segments and delivers accurate 6-DoF global
localizations in real-time. The 3D segments are obtained using efficient region-
growing techniques which are able to repeatedly form similar partitions of

1SegMap is open-source available along with easy to run demonstrations at www.github.com/eth
z-asl/segmap. A video demonstration is available at https://youtu.be/CMk4w4eRobg

www.github.com/ethz-asl/segmap
www.github.com/ethz-asl/segmap
https://youtu.be/CMk4w4eRobg

60 paper ii : segmap: segment-based mapping and localization

Figure 5.2: Exemplary segments extracted from 3D LiDAR data collected in a rural
environment. These segments were extracted with an incremental Euclidean distance-
based region-growing algorithm and represent, among others, vehicles, vegetation and
parts of buildings ([92]).

the point clouds ([92]). This partitioning provides the means for compact,
yet discriminative features to efficiently represent the environment. During
localization global data associations are identified by segment descriptor
retrieval, leveraging the repeatable and descriptive nature of segment-based
features. This helps satisfy strict computational, memory and bandwidth
constraints, and therefore makes the approach appropriate for real-time use
in both multi-robot and long-term applications.

Previous work on segment-based localization considered hand-crafted fea-
tures and provided only a sparse representation ([39, 93]). These features
lack the ability to generalize to different environments and offer very limited
insights into the underlying 3D structure. In this work, we overcome these
shortcomings by introducing a novel data-driven segment descriptor which of-
fers high retrieval performance, even under variations in view-point, and that
generalizes well to unseen environments. Moreover, as segments typically
represent meaningful and distinct elements that make up the environment, a
scene can be effectively summarized by only a handful of descriptors. The
resulting reconstructions, as depicted in Figure 5.1, can be built at no extra
cost in descriptor computation or bandwidth usage. They can be used by
robots for navigating around obstacles and visualized to improve situational
awareness of remote operators. Moreover, we show that semantic labeling can
be executed through classification in the descriptor space. This information
can, for example, lead to increased robustness to changes in the environment
by rejecting inherently dynamic classes.

2 related work 61

To the best of our knowledge, this is the first work on robot localization
that is able to leverage the extracted features for reconstructing environ-
ments in three dimensions and for retrieving semantic information. This
reconstruction is, in our opinion, a very interesting capability for real-world,
large-scale applications with limited memory and communication bandwidth.
To summarize, this paper presents the following contributions:

• A data-driven 3D segment descriptor that improves localization perfor-
mance.

• A novel technique for reconstructing the environment based on the
same compact features used for localization.

• An extensive evaluation of the SegMap approach using real-world,
multi-robot automotive and disaster scenario datasets.

In relation to the Robotics: Science and System conference paper ([94]), we
make the following additional contributions:

• A comparison of the accuracy of our localization output with the results
of recently published technique based on data-driven global 3D scan
descriptors ([91]).

• An evaluation of trajectory estimates by combining our place recogni-
tion approach with a state-of-the-art 3D LiDAR-based SLAM technique
([17]).

• A triplet loss descriptor training technique and its comparison to the
previously introduced classification-based approach.

• A particularly lightweight variant of our SegMap descriptor that can be
deployed on platforms with limited computational resources.

The remainder of the paper is structured as follows: Section 2 provides
an overview of the related work in the fields of localization and learning-
based descriptors for 3D point clouds. The SegMap approach and our novel
descriptor that enables reconstruction of the environment are detailed in
Section 3 and Section 4. The method is evaluated in Section 5, and finally
Sections 6 and 7 conclude with a short discussion and ideas on future works.

2 related work

This section first introduces state-of-the-art approaches to localization in 3D
point clouds. Data driven techniques using 3D data which are relevant to the
present work are then presented.

62 paper ii : segmap: segment-based mapping and localization

Localization in 3D point clouds Detecting loop-closures from 3D data
has been tackled with different approaches. We have identified three main
trends: (i) approaches based on local features, (ii) global descriptors and (iii)
based on planes or objects.

A significant number of works propose to extract local features from key-
points and perform matching on the basis of these features. [95] extract
keypoints directly from the point clouds and describe them with a 3D Gestalt
descriptor. Keypoints then vote for their nearest neighbors in a vote matrix
which is eventually thresholded for recognizing places. A similar approach
has been used in [96]. Apart from such Gestalt descriptors, a number of alter-
native local feature descriptors exist, which can be used in similar frameworks.
This includes features such as Fast Point Feature Histogram (FPFH) ([89]) and
SHOT ([90]). Alternatively, [97] transform the local scans into bearing-angle
images and extract Speeded Up Robust Features (SURFs) from these images.
A strategy based on 3D spatial information is employed to order the scenes
before matching the descriptors. A similar technique by [98] first transforms
the local scans into a range image. Local features are extracted and compared
to the ones stored in a database, employing the Euclidean distance for match-
ing keypoints. This work is extended in [99] by using Normal-Aligned Radial
Features (NARF) descriptors and a bag of words approach for matching.

Using global descriptors of the local point cloud for place recognition
is also proposed in ([100–103]). [100] propose to describe each local point
cloud with a 1D histogram of point heights, assuming that the sensor keeps
a constant height above the ground. The histograms are then compared
using the Wasserstein metric for recognizing places. [101] describe point
clouds with rotation invariant features such as volume, nominal range, and
range histogram. Distances are computed for feature vectors and cross-
correlation for histogram features, and an AdaBoost classifier is trained to
match places. Finally, Iterative Closest Point (ICP) is used for computing
the relative pose between point clouds. In another approach, [102] split the
cloud into overlapping grids and compute shape properties (spherical, linear,
and several type of planar) of each cell and combine them into a matrix
of surface shape histograms. Similar to other works, these descriptors are
compared for recognizing places. Recently, [103] proposed to leverage Li-
DAR intensity information with a global point cloud descriptor. A two-stage
approach is adopted such that, after retrieving places based on global descrip-
tors retrieval, a local keypoint-based geometric verification step estimates
localization transformations. The authors demonstrated that using intensity
information can reduce the computational timings. However, the complete

2 related work 63

localization pipeline operates at a frequency one order of magnitude lower
than most LiDAR sensor frequencies.

While local keypoint features often lack descriptive power, global descrip-
tors can struggle with variations in view-point. Therefore other works have
also proposed to use 3D shapes or objects for the place recognition task.
[104], for example, propose to perform place recognition by detecting planes
in 3D environments. The planes are accumulated in a graph and an inter-
pretation tree is used to match sub-graphs. A final geometric consistency
test is conducted over the planes in the matched sub-graphs. The work is
extended in [105] to use the covariance of the plane parameters instead of
the number of points in planes for matching. This strategy is only applied to
small, indoor environments and assumes a plane model which is no longer
valid in unstructured environments. A somewhat analogous, seminal work
on object-based loop-closure detection in indoor environments using RGB-D
cameras is presented by [106]. Although presenting interesting ideas, their
work can only handle a small number of well segmented objects in small
scale environments. Similarily, [107] proposed a novel SLAM solution in
which semantic information and local geometric features are jointly incorpo-
rated into a probabilistic framework. Such semantic-based approaches have
significant potential, for example robustness to stark changes in point of view,
but require the presence of human-known objects in the scene.

We therefore aim for an approach which does not rely on assumptions
about the environment being composed of simplistic geometric primitives
such as planes, or a rich library of objects. This allows for a more general,
scalable solution.

Learning with 3D point clouds In recent years, Convolutional Neural
Networks (CNNs) have become the state-of-the-art-method for generating
learning-based descriptors, due to their ability to find complex patterns in
data ([108]). For 3D point clouds, methods based on CNNs achieve impressive
performance in applications such as object detection ([109–116]), semantic
segmentation ([111, 112, 115, 117–119]), and 3D object generation ([120]), and
LiDAR-based local motion estimation ([121, 122]).

Recently, a handful of works proposing the use of CNNs for localization
in 3D point clouds have been published. First, [123] proposes extracting
data-driven 3D keypoint descriptors (3DMatch) which are robust to changes
in view-point. Although impressive retrieval performance is demonstrated
using an RGB-D sensor in indoor environments, it is not clear whether this
method is applicable in real-time in large-scale outdoor environments. A
different approach based on 3D CNNs was proposed in [124] for perform-
ing localization in semi-dense maps generated with visual data. Recently,

64 paper ii : segmap: segment-based mapping and localization

[91] introduced a semi-handcrafted global descriptor for performing place
recognition and rely on an ICP step for estimating the 6-DoF localization
transformations. This method will be used as a baseline solution in Sec-
tion 5.8 when evaluating the precision of our localization transformations.
[125] propose describing local subsets of points using a deep neural network
autoencoder. The authors state, however, that the implementation has not
been optimized for real-time operation and no timings have been provided.
In contrast, our work presents a data-driven segment-based localization
method that can operate in real-time and that enables map reconstruction
and semantic extraction capabilities.

To achieve this reconstruction capability, the architecture of our descriptor
was inspired by autoencoders in which an encoder network compresses the
input to a small dimensional representation, and a decoder network attempts
to decompress the representation back into the original input. The com-
pressed representation can be used as a descriptor for performing 3D object
classification ([126]). [126] also present successful results using variational au-
toencoders for reconstructing voxelized 3D data. Different configurations of
encoding and decoding networks have also been proposed for achieving local-
ization and for reconstructing and completing 3D shapes and environments
([125, 127–131]).

While autoencoders present the interesting opportunity of simultaneously
accomplishing both compression and feature extraction tasks, optimal per-
formance at both is not guaranteed. As will be shown in Section 5.4, these
two tasks can have conflicting goals when robustness to changes in point of
view is desired. In this work, we combine the advantages of the encoding-
decoding architecture of autoencoders with a technique proposed by [132].
The authors address the face recognition problem by first training a CNN to
classify people in a training set and afterwards use the second to last layer as
a descriptor for new faces. Other alternative training techniques include for
example the use of contrastive loss ([133]) or triplet loss ([134]), the latter one
being evaluated in Section 5.4. We use the resulting segment descriptors in
the context of SLAM to achieve better performance, as well as significantly
compressed maps that can easily be stored, shared, and reconstructed.

3 the segmap approach

This section presents our SegMap approach to localization and mapping in
3D point clouds. It is composed of five core modules: segment extraction,
description, localization, map reconstruction, and semantics extraction. These

3 the segmap approach 65

modules are detailed in this section and together allow single and multi-robot
systems to create a powerful unified representation which can conveniently
be transferred.

Segmentation The stream of point clouds generated by a 3D sensor is
first accumulated in a dynamic voxel grid2. Point cloud segments are then
extracted in a section of radius R around the robot. In this work we con-
sider two types of incremental segmentation algorithms ([92]). The first one
starts by removing points corresponding to the ground plane, which acts
as a separator for clustering together the remaining points based on their
Euclidean distances. The second algorithm computes local normals and
curvatures for each point and uses these to extract flat or planar-like surfaces.
Both methods are used to incrementally grow segments by using only newly
active voxels as seeds which are either added to existing segments, form new
segments or merge existing segments together3. This results in a handful of
local segments, which are individually associated to a set of past observa-
tions i.e. Si = {s1, s2, . . . , sn}. Each observation sj ∈ Si is a 3D point cloud
representing a snapshot of the segment as points are added to it. Note that
sn represents the latest observation of a segment and is considered complete
when no further measurements are collected, e.g. when the robot has moved
away.

Description Compact features are then extracted from these 3D segment
point clouds using the data-driven descriptor presented in Section 4. A global
segment map is created online by accumulating the segment centroids and
corresponding descriptors. In order for the global map to most accurately
represent the latest state of the world, we only keep the descriptor associated
with the last and most complete observation.

Localization In the next step, candidate correspondences are identified
between global and local segments using k nearest neighbours (k-NN) in
feature space. The approximate k nearest descriptors are retrieved through
an efficient query in a kd-tree. Localization is finally performed by verifying
the largest subset of candidate correspondences for geometrical consistency
on the basis of the segment centroids. Specifically, the centroids of the
corresponding local and global segments must have the same geometric
configuration up to a small jitter in their position, to compensate for slight
variations in segmentation. In the experiments presented in Section 5.9, this

2In our experiments, we consider two techniques for estimating the local motion by registering
successive LiDAR scans: one which uses ICP and one based on LOAM ([17]).

3For more information on these segmentation algorithms, the reader is encouraged to consult our
prior work ([92]).

66 paper ii : segmap: segment-based mapping and localization

C
on

v
| 3

2
| 3

×
3×

3

F
C

 |
51

2

M
ax

P
oo

l |
 2

×
2×

2

C
on

v
| 6

4
| 3

×
3×

3

M
ax

P
oo

l |
 2

×
2×

2

C
on

v
| 6

4
| 3

×
3×

3

F
C

 |
64

64x1

Scale 3x1

D
ec

on
v

| 3
2

| 3
×

3×
3

D
ec

on
v

| 3
2

| 3
×

3×
3

D
ec

on
v

| 1
 |

3×
3×

3

Reconstruction

Class

Descriptor extractor

32x32x16 32x32x16B
N

 |
D

ro
po

ut
 0

.5

FC | N

S
ig

m
oi

d

F
C

 |
81

92

BN | Dropout 0.5 Softmax

Classification

Figure 5.3: The descriptor extractor is composed of three convolutional and two fully
connected layers. The 3D segments are compressed to a representation of dimension
64×1 which can be used for localization, map reconstruction and semantic extraction.
Right of the descriptor we illustrate the classification and reconstruction layers which
are used for training. In the diagram the convolutional (Conv), deconvolutional
(Deconv), fully connected (FC) and batch normalization (BN) layers are abbreviated
respectively. As parameters the Conv and Deconv layers have the number of filters
and their sizes, FC layers have the number of nodes, max pool layers have the size
of the pooling operation, and dropout layers have the ratio of values to drop. Unless
otherwise specified, Rectified Linear Unit (ReLU) activation functions are used for all
layers.

is achieved using an incremental recognition strategy which uses caching of
correspondences for faster geometric verifications ([92]).

When a large enough geometrically consistent set of correspondence is
identified, a 6-DoF transformation between the local and global maps is
estimated. This transformation is fed to an incremental pose-graph SLAM
solver which in turn estimates, in real-time, the trajectories of all robots
([135]).

Reconstruction Thanks to our autoencoder-like descriptor extractor archi-
tecture, the compressed representation can at any time be used to reconstruct
an approximate map as illustrated in Figure 5.9. As the SegMap descriptor can
conveniently be transmitted over wireless networks with limited bandwidth,
any agent in the network can reconstruct and leverage this 3D information.
More details on these reconstruction capabilities are given in Section 4.3.

Semantics The SegMap descriptor also contains semantically relevant
information without the training process having enforced this property on
the descriptor. This can, for example, be used to discern between static
and dynamic objects in the environment to improve the robustness of the
localization task. In this work we present an experiment where the network is
able to distinguish between three different semantic classes: vehicles, buildings,
and others (see Section 4.4).

4 the segmap descriptor 67

4 the segmap descriptor

In this section we present our main contribution: a data-driven descriptor for
3D segment point clouds which allows for localization, map reconstruction
and semantic extraction. The descriptor extractor’s architecture and the
processing steps for inputting the point clouds to the network are introduced.
We then describe our technique for training this descriptor to accomplish
tasks of both segment retrieval and map reconstruction. We finally show how
the descriptor can further be used to extract semantic information from the
point cloud.

4.1 Descriptor extractor architecture

The architecture of the descriptor extractor is presented in Figure 5.3. Its
input is a 3D binary voxel grid of fixed dimension 32× 32× 16 which was
determined empirically to offer a good balance between descriptiveness and
the size of the network. The description part of the CNN is composed of three
3D convolutional layers with max pool layers placed in between and two
fully connected layers. Unless otherwise specified, ReLU activation functions
are used for all layers. The original scale of the input segment is passed as an
additional parameter to the first fully connected layer to increase robustness
to voxelization at different aspect ratios. The descriptor is obtained by taking
the activations of the extractor’s last fully connected layer. This architecture
was selected by grid search over various configurations and parameters.

4.2 Segment alignment and scaling

A pre-processing stage is required in order to input the 3D segment point
clouds for description. First, an alignment step is applied such that segments
extracted from the same objects are similarly presented to the descriptor
network. This is performed by applying a 2D Principal Components Analysis
(PCA) of all points located within a segment. The segment is then rotated so
that the x-axis of its frame of reference, from the robot’s perspective, aligns
with the eigenvector corresponding to the largest eigenvalue. We choose to
solve the ambiguity in direction by rotating the segment so that the lower
half section along the y-axis of its frame of reference contains the highest
number of points. From the multiple alignment strategies we evaluated, the
presented strategy worked best.

68 paper ii : segmap: segment-based mapping and localization

The network’s input voxel grid is applied to the segment so that its center
corresponds to the centroid of the aligned segment. By default the voxels
have minimum side lengths of 0.1m. These can individually be increased
to exactly fit segments having one or more larger dimension than the grid.
Whereas maintaining the aspect ratio while scaling can potentially offer better
retrieval performance, this individual scaling with a minimum side length
better avoids large errors caused by aliasing. We also found that this scaling
method offers the best reconstruction performance, with only a minimal
impact on the retrieval performance when the original scale of the segments
is passed as a parameter to the network.

4.3 Training the SegMap descriptor

In order to achieve both a high retrieval performance and reconstruction
capabilities, we propose a customized learning technique. The two desired
objectives are imposed on the network by the softmax cross entropy loss Lc for
retrieval and the reconstruction loss Lr. We propose to simultaneously apply
both losses to the descriptor and to this end define a combined loss function
L which merges the contributions of both objectives:

L = Lc +αLr (5.1)

where the parameter α weighs the relative importance of the two losses.
The value α = 200 was empirically found to not significantly impact the
performance of the combined network, as opposed to training separately with
either of the losses. Weights are initialized based on Xavier’s initialization
method ([136]) and trained using the Adaptive Moment Estimation (ADAM)
optimizer ([137]) with a learning rate of 10−4. In comparison to Stochastic
Gradient Descent (SGD), ADAM maintains separate learning rates for each
network parameter, which facilitates training the network with two separate
objectives simultaneously. Regularization is achieved using dropout ([138])
and batch normalization ([139]).

Classification loss Lc For training the descriptor to achieve better retrieval
performance, we use a learning technique similar to the N-ways classification
problem proposed by [132]. Specifically, we organize the training data into N

classes where each class contains all observations of a segment or of multiple
segments that belong to the same object or environment part. Note that these
classes are solely used for training the descriptor and are not related to the
semantics presented in Section 4.4. As seen in Fig 5.3, we then append a
classification layer to the descriptor and teach the network to associate a

4 the segmap descriptor 69

score to each of the N predictors for each segment sample. These scores are
compared to the true class labels using softmax cross entropy loss:

Lc = −

N∑
i=1

yi log
eli∑N

k=1 e
lk

(5.2)

where y is the one hot encoded vector of the true class labels and l is the
layer output.

Given a large number of classes and a small descriptor dimensionality,
the network is forced to learn descriptors that better generalize and prevent
overfitting to specific segment samples. Note that when deploying the system
in a new environment the classification layer is removed, as its output is no
longer relevant. The activations of the previous fully connected layer are then
used as a descriptor for segment retrieval through k-NN.

Reconstruction loss Lr As depicted in Figure 5.3, map reconstruction is
achieved by appending a decoder network and training it simultaneously with
the descriptor extractor and classification layer. This decoder is composed of
one fully connected and three deconvolutional layers with a final sigmoid
output. Note that no weights are shared between the descriptor and the
decoder networks. Furthermore, only the descriptor extraction needs to be
run in real-time on the robotic platforms, whereas the decoding part can be
executed any time a reconstruction is desired.

As proposed by [126], we use a specialized form of the binary cross entropy
loss, which we denote by Lr:

Lr = −
∑
x,y,z

(γ txyz log(oxyz)

+ (1− γ)(1− txyz) log(1− oxyz))

(5.3)

where t and o respectively represent the target segment and the network’s
output and γ is a hyperparameter which weighs the relative importance of
false positives and false negatives. This parameter addresses the fact that
only a minority of voxels are activated in the voxel grid. In our experiments,
the voxel grids used for training were on average only 3% occupied and we
found γ = 0.9 to yield good results.

4.4 Knowledge transfer for semantic extraction

As can be observed from Figure 5.1, segments extracted by the SegMap ap-
proach for localization and map reconstruction often represent objects or

70 paper ii : segmap: segment-based mapping and localization

Vehicle

Building

OtherF
C

 |
64

F
C

 |
3

D
ro

po
ut

 0
.5

Semantics
64x1

SegMap
Decriptor

Figure 5.4: A simple fully connected network that can be appended to the SegMap
descriptor (depicted in Figure 5.3) in order to extract semantic information. In our
experiments, we train this network to distinguish between vehicles, buildings, and
other objects.

parts of objects. It is therefore possible to assign semantic labels to these
segments and use this information to improve the performance of the localiza-
tion process. As depicted in Figure 5.4, we transfer the knowledge embedded
in our compact descriptor by training a semantic extraction network on top
of it. This last network is trained with labeled data using the softmax cross
entropy loss and by freezing the weights of the descriptor network.

In this work, we choose to train this network to distinguish between three
different semantic classes: vehicles, buildings, and others. Section 5.9 shows
that this information can be used to increase the robustness of the localization
algorithm to changes in the environment and to yield smaller map sizes. This
is achieved by rejecting segments associated with potentially dynamic objects,
such as vehicles, from the list of segment candidates.

4.5 SegMini

Finally we propose a lightweight version of the SegMap descriptor which is
specifically tailored for resource-limited platforms. SegMini has the same
architecture as SegMap (see Figure 5.3), with the exception that the number
of filter in the convolutional layers and the size of the dense layers is halved.
Without compromising much on the descriptor retrieval performance this
model leads to a computational speedup of 2x for GPU and 6x for CPU
(Section 5.3).

5 experiments

This section presents the experimental validation of our approach. We first
present a procedure for generating training data and detail the performance
of the SegMap descriptor for localization, reconstruction and semantics extrac-

5 experiments 71

Figure 5.5: An illustration of the SegMap reconstruction capabilities. The segments
are extracted from sequence 00 of the KITTI dataset and represent, from top to
bottom respectively, vehicles, buildings, and other objects. For each segment pair, the
reconstruction is shown to the right of the original. The network manages to accurately
reconstruct the segments despite the high compression to only 64 values. Note that
the voxelization effect is more visible on buildings as larger segments necessitate larger
voxels to keep the input dimension fixed.

tion. We finally evaluate the complete SegMap solution in multiple real-world
experiments.

5.1 Experiment setup and implementation

All experiments were performed on a system equipped with an Intel i7-6700K
processor, and an NVIDIA GeForce GTX 980 Ti GPU. The CNN models
were developed and executed in real-time using the TensorFlow library. The
libnabo library is used for descriptor retrieval with fast k-NN search in low
dimensional space ([140]). The incremental optimization back-end is based
on the iSAM2 implementation from [28].

5.2 Training data

The SegMap descriptor is trained using real-world data from the KITTI odom-
etry dataset ([141]). Sequences 05 and 06 are used for generating training
and testing data, whereas sequence 00 is solely used for validation of the
descriptor performance. In addition, end-to-end experiments are done using
sequences 00 and 08, as they feature long tracks with multiple overlapping
areas in the trajectories. For each sequence, segments are extracted using an
incremental Euclidean distance-based region growing technique ([92]). This
algorithm extracts point clouds representing parts of objects or buildings
which are separated after removing the ground plane (see Figure 5.5). The
training data is filtered by removing segments with too few observations, or

72 paper ii : segmap: segment-based mapping and localization

training classes (as described in Section 4.3) with too few samples. In this
manner, 3300, 1750, 810 and 2400 segments are respectively generated from
sequences 00, 05, 06 and 08, with an average of 12 observations per segment
over the whole dataset.

Data augmentation

To further increase robustness by reducing sensitivity to rotation and view-
point changes in the descriptor extraction process, the dataset is augmented
through various transformations at the beginning of each training epoch.
Each segment is rotated at different angles to the alignment described in
Section 4.2 to simulate different view-points. In order to simulate the effect
of occlusion for each segment we remove all points which fall on one side
of a randomly generated slicing plane that does not remove more than 50%
of the points. Finally, random noise is simulated by randomly removing up
to 10% of the points in the segment. Note that these two data augmentation
steps are performed prior to voxelization.

Ground-truth generation

In the following step, we use GPS readings in order to identify ground truth
correspondences between segments extracted in areas where the vehicle
performed multiple visits. Only segment pairs with a maximum distance
between their centroids of 3.0m are considered. We compute the 3D convex
hull of each segment observation s1 and s2 and create a correspondence
when the following condition, inspired from the Jaccard index, holds:

Volume(Conv(s1)∩ Conv(s2))
Volume(Conv(s1)∪ Conv(s2))

⩾p (5.4)

In our experiments we found p = 0.3 to generate a sufficient number of
correspondences while preventing false labelling. The procedure is performed
on sequences 00, 05, and 06, generating 150, 260, and 320 ground truth
correspondences respectively. We use two-thirds of the correspondences for
augmenting the training data and one-third for creating validation samples.
Finally, the ground-truth correspondences extracted from sequence 00 are
used in Section 5.4 for evaluating the retrieval performance.

5 experiments 73

0 128 256

Epoch [#]

2

4

6

8

L
c

[-
]

Train

Test

0 128 256

Epoch [#]

3

4

5

L
r

[-
]

Train

Test

Figure 5.6: The classification loss Lc (left) and the reconstruction loss Lr (right) com-
ponents of the total loss L, when training the descriptor extractor along with the
reconstruction and classification networks. The depicted reconstruction loss has al-
ready been scaled by α.

5.3 Training the models

The descriptor extractor and the decoding part of the reconstruction network
are trained using all segments extracted from drive 05 and 06. Training lasts
three to four hours on the GPU and produces the classification and scaled
reconstruction losses depicted in Figure 5.6. The total loss of the model is the
sum of the two losses as describe in Section 4.3. We note that for classification
the validation loss follows the training loss before converging towards a
corresponding accuracy of 41% and 43% respectively. In other words, 41%
of the validation samples were correctly assigned to one of the N = 2500

classes. This accuracy is expected given the large quantity of classes and
the challenging task of discerning between multiple training samples with
similar semantic meaning, but few distinctive features, e.g. flat walls. Note
that we achieve a very similar classification loss Lc, when training with and
without the Lr component of the combines loss L. On a GPU the SegMap
descriptor takes on average 0.8ms to compute, while the SegMini descriptor
takes 0.3ms. On the CPU the performance gain is more significant, as it takes
245ms for a SegMap descriptor as opposed to only 41ms for SegMini, which
is a 6x improvement in efficiency.

74 paper ii : segmap: segment-based mapping and localization

5.4 Descriptor retrieval performance

We evaluate the retrieval performance of the SegMap descriptor against
state-of-the-art methods as well as other networks trained with different
secondary goals. First, our descriptor is compared with eigenvalue-based
point cloud features ([142]). We also evaluate the effect of training only for the
classification task (Classification) or of training only for the reconstruction one
(Autoencoder). Additionally, we compare classification-based learning with
a triplet loss solution ([143]), where during training, we enforce segments
from the same sequence to have a minimal Euclidean distance. We use a per
batch hard mining strategy and the best performing variant of triplet loss
as proposed by [144]. We finally evaluate the SegMini model introduced in
Section 4.5.

The retrieval performance of the aforementioned descriptors is depicted
in Fig 5.7. The Receiver Operating Characteristic (ROC) curves are obtained
by generating 45M labeled pairs of segment descriptors from sequence 00 of
the KITTI odometry dataset ([141]). Using ground-truth correspondences, a
positive sample is created for each possible segment observation pair. For
each positive sample a thousand negative samples are generated by randomly
sampling segment pairs whose centroids are further than 20m apart. The
positive to negative sample ratio is representative of our localization problem
given that a map created from KITTI sequence 00 contains around a thousand
segments. The ROC curves are finally obtained by varying the threshold
applied on the L2 norm between the two segment descriptors. We note that
training with triplet loss offers the best ROC performance on these datasets,
as it imposes the most consistent separation margin across all segments.

The ROC is not the best evaluation metric for this retrieval task, because it
evaluates the quality of classification for a single threshold across all segments.
As introduced in Section 3, correspondences are made between segments
from the local and global maps by using k-NN retrieval in feature space. The
varying parameter is the number of neighbours that is retrieved and not a
threshold on the feature distances, which only matter in a relative fashion
on a per query basis. In order to avoid false localizations, the aim is to
reduce the number k of neighbours that need to be considered. Therefore,
as a segment grows with time, it is critical that its descriptor converges as
quickly as possible towards the descriptor of the corresponding segment in
the target map, which in our case is extracted from the last and most complete
observation (see Section 3). This behaviour is evaluated in Figure 5.8a which
relates the number of neighbours which need to be considered to find the
correct association, as a function of segment completeness. We note that the

5 experiments 75

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate [-]

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

o
si

ti
v
e

R
a
te

[-
]

SegMap
(area = 0.84)

SegMini
(area = 0.87)

Classification
(area = 0.85)

Autoencoder
(area = 0.63)

Triplet
(area = 0.91)

Eigen
(area = 0.67)

Figure 5.7: ROC curves for the descriptors considered in this work. This evaluation
is performed using ground-truth correspondences extracted from sequence 00 of the
KITTI odometry dataset ([141]). Note that the ROC is not an optimal measure of the
quality of the retrieval performance, since it only considers a single threshold for all
segment pairs and does not look at the relative ordering of matches on a per query
basis.

SegMap descriptor offers competitive retrieval performance at every stage
of the growing process. In practice this is important since it allows closing
challenging loops such as the one presented in Figure 5.1.

Interestingly, the autoencoder has the worst performance at the early grow-
ing stages whereas good performance is observed at later stages. This is in
accordance with the capacity of autoencoders to precisely describe the geome-
try of a segment, without explicitly aiming at gaining a robust representation
in the presence of occlusions or changes in view-point. Although the triplet
loss training method offers the best ROC performance, Figure 5.8a suggests
that training with the secondry goal of classification yields considerably
better results at the later stages of growing. The poor performance of the
triplet loss method especially for very similar segments could be caused by
the hard mining amplifying the noise in the dataset. After a certain point
the ordering of matches becomes irrelevant, because the goal is to minimize
the number of retrieved neighbours and retrieving too many is computation-
ally unfeasible for later stages of the process. Therefore although the purely

76 paper ii : segmap: segment-based mapping and localization

10 20 30 40 50 60 70 80 90 100

Segment completness [%]

1

10

100

1000

M
ed

ia
n

k
-n

ei
g
h
b

o
u

rs
n

ee
d

ed
[-

]

SegMap

SegMini

Classification

Autoencoder

Triplet

Eigen

(a) Median k-nearest neighbours needed for all
methods as a function of segment completeness.

10 20 30 40 50 60 70 80 90 100

Segment completness [%]

1

10

100

1000

k
-n

ei
g
h
b

o
u
rs

n
ee

d
ed

[-
]

SegMap

SegMini

(b) More detailed plot of the k-nearest neigh-
bours needed for the proposed methods as a
function of segment completeness.

Figure 5.8: This figure presents how quickly descriptors extracted from incrementally
grown segments contain relevant information that can be used for localization. The
x-axis represents the completeness of a segment until all its measurements have been
accumulated (here termed complete, see Section 3). In (a) the log-scaled y-axis represents
the median of how many neighbours in the target map need to be considered in order
to retrieve the correct target segment (the lower the better). Similarly (b) presents
the same results in more detail for the proposed models. The SegMap descriptor
offers over the majority of the growing process one order of magnitude better retrieval
performance than the hand-crafted baseline descriptor.

classification-based model performs slightly better for very early observations
of a segment, this gain in performance does not matter. The proposed SegMap
descriptor achieves the best performance for very complete segments, where
matches are most likely to happen, and maintains a comparable performance
across very partial observations. A more detailed plot for the retrieval perfor-
mance of the SegMap and SegMini is presented in Figure 5.8b, where also the
variance in the retrieval accuracy is shown.

5.5 Reconstruction performance

In addition to offering high retrieval performance, the SegMap descriptor
allows us to reconstruct 3D maps using the decoding CNN described in
Section 4.3. Some examples of the resulting reconstructions are illustrated
in Figure 5.5, for various objects captured during sequence 00 of the KITTI
odometry dataset. Experiments done at a larger scale are presented in

5 experiments 77

Descriptor size
16 32 64 128

Autoencoder 0.87 0.91 0.93 0.94

SegMap 0.86 0.89 0.91 0.92

Table 5.1: Average ratio of corresponding points within one voxel distance between
original and reconstructed segments. Statistics for SegMap and the autoencoder baseline
using different descriptor sizes.

Figure 5.9: Visualization of segment reconstructions, as point clouds (left), and as sur-
face meshes (right), generated from sequence 00 of the KITTI dataset. The quantization
of point cloud reconstructions is most notable in the large wall segments (blue) visible
in the background. Equivalent surface mesh representations do not suffer from this
issue.

Figure 5.14, where buildings of a powerplant and a foundry are reconstructed
by fusing data from multiple sensors.

Since most segments only sparsely model real-world surfaces, they occupy
on average only 3% of the voxel grid. To obtain a visually relevant compari-
son metric, we calculate for both the original segment and its reconstruction
the ratio of points having a corresponding point in the other segment, within
a distance of one voxel. The tolerance of one voxel means that the shape of
the original segment must be preserved while not focusing on reconstruct-
ing each individual point. Results calculated for different descriptor sizes
are presented in Table 5.1, in comparison with the purely reconstruction
focused baseline. The SegMap descriptor with a size of 64 has on average
91% correspondences between the points in the original and reconstructed

78 paper ii : segmap: segment-based mapping and localization

segments, and is only slightly outperformed by the autoencoder baseline.
Contrastingly, the significantly higher retrieval performance of the SegMap
descriptor makes it a clear all-rounder choice for achieving both localization
and map reconstruction.

Overall, the reconstructions are well recognizable despite the high com-
pression ratio. In Figure 5.9, we note that the quantization error resulting
from the voxelization step mostly affects larger segments that have been
downscaled to fit into the voxel grid. To mitigate this problem, one can adopt
a natural approach to representing this information in 3D space, which is
to calculate the isosurface for a given probability threshold. This can be
computed using the “marching cubes” algorithm, as presented by [145]. The
result is a triangle-mesh surface, which can be used for intuitive visualization,
as illustrated in Figure 5.9 and Figure 5.10.

5.6 Semantic extraction performance

For training the semantic extractor network (Figure 5.4), we manually labeled
the last observation of all 1750 segments extracted from KITTI sequence 05.
The labels are then propagated to each observation of a segment for a total of
20k labeled segment observations. We use 70% of the samples for training the
network and 30% for validation. Given the low complexity of the semantic
extraction network and the small amount of labeled samples, training takes
only a few minutes. We achieve an accuracy of 89% and 85% on the training
and validation data respectively. Note that our goal is not to improve over
other semantic extraction methods ([112, 115]), but rather to illustrate that our
compressed representation can additionally be used for discarding dynamic
elements of the environment and for reducing the map size (Section 5.9).

5.7 6-DoF pose retrieval performance

In this section, we demonstrate how the advantageous properties of SegMap,
particularly the descriptor retrieval performance, translate to state-of-the-art
global localization results. We therefore compare our approach to a global
localization method, LocNet ([91]). It uses rotation-invariant, data-driven
descriptors that yield reliable matching of 3D LiDAR scans. LocNet retrieves
a nearest neighbor database scan and returns its pose, its output is thus
limited to the poses already present in the target map. Therefore, it works
reliably in environments with well defined trajectories (e.g. roads), but fails
to return a precise location within large traversable areas such as squares

5 experiments 79

Figure 5.10: A visual comparison between (left) the original point cloud, (middle) the
reconstruction point cloud, and (right) the reconstruction mesh, for 3 segments.

or hallways. In contrast, SegMap uses segment correspondences to estimate
an accurate 6-DoF pose that includes orientation, which cannot be retrieved
directly using the rotation-invariant LocNet descriptors.

Figure 5.11 presents the evaluation of both methods on the KITTI 00

odometry sequence (4541 scans). We use the first 3000 LiDAR scans and their
ground-truth poses to create a map, against which we then localize using
the last 1350 scans. SegMap demonstrates a superior performance both by
successfully localizing about 6% more scans and by returning more accurate
localized poses. To note is that from the query positions only 65% of them
were taken within a distance of 50m of the target map, therefore limiting the
maximum possible saturation. We believe that robust matching of segments,

80 paper ii : segmap: segment-based mapping and localization

0 1 2 3 4 5

Distance threshold [m]

0

10

20

30

40

50

60

C
o
rr

ec
tl

y
lo

ca
li

ze
d

q
u

er
ie

s
[%

]

SegMap

LocNet

Figure 5.11: Cumulative distribution of position errors on KITTI 00 odometry sequence
that compares SegMap with state-of-the-art data-driven LocNet approach presented
in [91]. Our proposed method retrieves a full 6-DoF pose while LocNet uses global
scan descriptors to obtain the nearest pose of the target map. SegMap retrieves poses
for a larger number of scans and the returned estimates are more accurate. The results
saturate at about 52% as not all query positions overlap with the target map, with
only 65% of them being within a radius of 50m from the map.

a principle of our method, helps to establish reliable correspondences with
the target map, particularly for queries further away from the mapped areas.
This state-of-the-art localization performance is further complemented by
a compact map representation, with reconstruction and semantic labeling
capabilities.

5.8 A complete mapping and localization system

So far, we have only evaluated SegMap as a stand-alone global localization
system, demonstrating the performance of segment descriptors and the 6-DoF
pose retrieval. Such global localization systems, however, are commonly used
in conjunction with odometry and mapping algorithms. To prove the qualities
of SegMap in such a scenario, we have combined it with a state-of-the-art
LiDAR odometry and mapping system, LOAM ([17]). Our implementation is
based on a publicly available version of LOAM and achieves similar odometry
performance results on KITTI, as the ones reported by other works, such as
[122]. We use a loosely coupled approach, where LOAM is used to undistort
the scans and provide an odometry estimate between frames, in real-time.
The scans from LOAM are used to build a local map from which segments

5 experiments 81

−200 0 200

X [m]

0

100

200

300

400

500
Y

[m
]

Ground truth

LOAM

LOAM + SegMap

200 400 600 800

Path length [m]

0.0

0.5

1.0

1.5

2.0

T
ra

n
sl

a
ti

o
n

er
ro

r
[%

]

LOAM

LOAM+SegMap

200 400 600 800

Path length [m]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

R
o
ta

ti
o
n

er
ro

r
[d

eg
/
m

]

LOAM

LOAM+SegMap

(a) KITTI odometry sequence 00.

−250 0 250

X [m]

0

100

200

300

400

Y
[m

]

Ground truth

LOAM

LOAM + SegMap

200 400 600 800

Path length [m]

0.0

0.5

1.0

1.5

2.0

T
ra

n
sl

a
ti

o
n

er
ro

r
[%

]

LOAM

LOAM+SegMap

200 400 600 800

Path length [m]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

R
o
ta

ti
o
n

er
ro

r
[d

eg
/
m

]

LOAM

LOAM+SegMap

(b) KITTI odometry sequence 08.

Figure 5.12: The trajectories for KITTI odometry sequences a) 00 and b) 08 for LOAM
and the combination of LOAM and SegMap. In addition we show translation and rota-
tion errors for the two approaches, using the standard KITTI evaluation method [141].

are extracted and attached to a pose-graph, together with the odometry
measurements. Loop closures can then be added in real-time as constraints
in the graph, to correct the drifting odometry. This results in a real-time
LiDAR-only end-to-end pipeline that produces segment-based maps of the
environment, with loop-closures.

In all experiments, we use a local map with a radius of 50m around the
robot. When performing segment retrieval we consider 64 neighbours and
require a minimum of 7 correspondences, which are altogether geometrically
consistent, to output a localization. These parameters were chosen empirically
using the information presented in Figure 5.7 and 5.8 as a reference.

Our evaluations on KITTI sequences 00 and 08 (Figure 5.12) demonstrate
that global localization results from SegMap help correct for the drift of the
odometry estimates. The trajectories outputted by the system combining
SegMap and LOAM, follow more precisely the ground-truth poses provided
by the benchmark, compared to the open-loop solution. We also show
how global localizations reduce both translational and rotational errors.

82 paper ii : segmap: segment-based mapping and localization

Particularly over longer paths SegMap is able to reduce the drift in the
trajectory estimate by up to 2 times, considering both translation and rotation
errors. For shorter paths, the drift only improves marginally or remains the
same, as local errors are more dependent on the quality of the odometry
estimate. We believe that our evaluation showcases not only the performance
of SegMap, but also the general benefits stemming from global localization
algorithms.

5.9 Multi-robot experiments

We evaluate the SegMap approach on three large-scale multi-robot experi-
ments: one in an urban-driving environment and two in search and rescue
scenarios. In both indoor and outdoor scenarios we use the same model
which was trained on the KITTI sequences 05 and 06 as described in Sec-
tion 5.3.

The experiments are run on a single machine, with a multi-thread approach
to simulating a centralized system. One thread per robot accumulates the 3D
measurements, extracting segments, and performing the descriptor extraction.
The descriptors are transmitted to a separate thread which localizes the robots
through descriptor retrieval and geometric verification, and runs the pose-
graph optimization. In all experiments, sufficient global associations need
to be made, in real-time, for co-registration of the trajectories and merging
of the maps. Moreover in a centralized setup it might be crucial to limit the
transmitted data over a wireless network with potentially limited bandwidth.

Multi-robot SLAM in urban scenario

In order to simulate a multi-robot setup, we split sequence 00 of the KITTI
odometry dataset into five sequences, which are simultaneously played back
on a single computer for a duration of 114 seconds. In this experiment, the
semantic information extracted from the SegMap descriptors is used to reject
segments classified as vehicles from the retrieval process.

With this setup, 113 global associations were discovered, allowing to link
all the robot trajectories and create a common representation. We note that
performing ICP between the associated point clouds would refine the local-
ization transformation by, on average, only 0.13(6)m which is in the order of
our voxelization resolution. However, this would require the original point
cloud data to be kept in memory and transmitted to the central computer.
Future work could consider refining the transformations by performing ICP
on the reconstructions.

5 experiments 83

Table 5.2: Statistics resulting from the three experiments.

Statistic KITTI Powerplant Foundry

Duration (s) 114 850 1086

Number of robots 5 3 2

Number of segmented local cloud 557 758 672

Average number of segments per cloud 42.9 37.0 45.4

Bandwidth for transmitting local clouds (kB/s) 4814.7 1269.2 738.1

Bandwidth for transmitting segments (kB/s) 2626.6 219.4 172.2

Bandwidth for transmitting descriptors (kB/s) 60.4 9.5 8.1

Final map size with the SegMap descriptor (kB) 386.2 181.3 121.2

Number of successful localizations 113 27 85

Localization and map reconstruction was performed at an average fre-
quency of 10.5Hz and segment description was responsible for 30% of the
total runtime with an average duration of 28.4ms per local cloud. A section of
the target map which has been reconstructed from the descriptors is depicted
in Figure 5.1.

Table 5.2 presents the results of this experiment. The required bandwidth is
estimated by considering that each point is defined by three 32-bit floats and
that 288 additional bits are required to link each descriptor to the trajectories.
We only consider the useful data and ignore any transfer overhead. The final
map of the KITTI sequence 00 contains 1341 segments out of which 284 were
classified as vehicles. A map composed of all the raw segment point clouds
would be 16.8 MB whereas using our descriptor it is reduced to only 386.2
kB. This compression ratio of 43.5x can be increased to 55.2x if one decides
to remove vehicles from the map. This shows that our approach can be used
for mapping much larger environments.

Multi-robot SLAM in disaster environments

For the two following experiments, we use data collected by Unmanned
Ground Vehicles (UGVs) equipped with multiple motor encoders, an Xsens
MTI-G inertial measurement unit (IMU) and a rotating 2D SICK LMS-151

LiDAR. First, three UGVs were deployed at the decommissioned Gustav
Knepper powerplant: a large two-floors utility building measuring 100m
long by 25m wide. The second mission took place at the Phoenix-West
foundry in a semi-open building made of steel. A section measuring 100m
by 40m was mapped using two UGVs. The buildings are shown in Fig 5.13.

84 paper ii : segmap: segment-based mapping and localization

Figure 5.13: Buildings of the Gustav Knepper powerplant (left) and the Phoenix-West
foundry (right).

For these two experiments, we used an incremental smoothness-based
region growing algorithm which extracts plane-like segments ([92]). The
resulting SegMap reconstructions are shown in Figure 5.14 and detailed
statistics are presented in Table 5.2. Although these planar segments have a
very different nature than the ones used for training the descriptor extractor,
multiple localizations have been made in real-time so that consistent maps
could be reconstructed in both experiments. Note that these search and
rescue experiments were performed with sensors without full 360

◦ field of
view. Nevertheless, SegMap allowed robots to localize in areas visited in
opposite directions.

6 discussion and future work

While our proposed method works well in the demonstrated experiments
it is limited by the ability to only observe the geometry of the surrounding
structure. This can be problematic in some man-made environments, which
are repetitive and can lead to perceptual aliasing, influencing both the de-
scriptor and the geometric consistency verification. This could be addressed
by detecting such aliasing instances and dealing with them explicitly, through
for example an increase in the constraints of the geometric verification. On
the other hand, featureless environments, such as for example flat fields or
straight corridors, are equally challenging. As even LIDAR-based odometry
methods struggle to maintain an accurate estimate of pose, these environ-
ments do not allow for reliable segment extraction. In these cases the map
will drift until a more distinct section is reached that can be loop-closed, thus

6 discussion and future work 85

Figure 5.14: This figure illustrates a reconstruction of the buildings of the Gustav
Knepper powerplant (top) and the Phoenix-West foundry (bottom). The point clouds
are colored by height and the estimated robot trajectories are depicted with colored
lines.

allowing for partial correction of the previously built pose-graph. In different
environments the two segmentation algorithms will have varying perfor-
mances, with the Euclidean distance based one working better in outdoor
scenarios, while the curvature-based one is more suited for indoor scenar-
ios. A future approach would be to run the two segmentation strategies in
parallel, thus allowing them to compensate for each others short-comings
and enabling robots to navigate in multiple types of environments during
the same mission.

86 paper ii : segmap: segment-based mapping and localization

In order to address some of the aforementioned drawbacks, in future work
we would like to extend the SegMap approach to different sensor modalities
and different point cloud segmentation algorithms. For example, integrating
information from camera images, such as color, into the descriptor learning
could mitigate the lack of descriptiveness of features extracted from segments
with little distinct geometric structure. In addition, color and semantic
information from camera images could not only be used to improve the
descriptor but also to enhance the robustness of the underlying segmentation
process. Considering the real-time constraints of the system, to note with
respect to future work are the additional computational expenses introduced
by processing and combining more data modalities.

Furthermore, whereas the present work performs segment description in a
discrete manner, it would be interesting to investigate incremental updates
of learning-based descriptors that could make the description process more
efficient, such as the voting scheme proposed by [109]. Instead of using a
feed-forward network, one could also consider a structure that leverages
temporal information in the form of recurrence in order to better describe
segments based on their evolution in time. Moreover, it could be of interest
to learn the usefulness of segments as a precursory step to localization, based
on their distinctiveness and semantic attributes.

7 conclusion

This paper presented SegMap: a segment-based approach for map represen-
tation in localization and mapping with 3D sensors. In essence, the robots’
surroundings are decomposed into a set of segments, and each segment
is represented by a distinctive, low dimensional learning-based descriptor.
Data associations are identified by segment descriptor retrieval and matching,
made possible by the repeatable and descriptive nature of segment-based
features.

We have shown that the descriptive power of SegMap outperforms hand-
crafted features as well as the evaluated data-driven baseline solutions. Our
experiments indicate that SegMap offers competitive localization performance,
in comparison to the state-of-the-art LocNet method. Additionally, we have
combined our localization approach with LOAM, a LiDAR-based local motion
estimator, and have demonstrated that the output of SegMap helps correct
the drift of the open-loop odometry estimate. Finally, we have introduced
SegMini: a light-weight version of our SegMap descriptor which can more
easily be deployed on platforms with limited computational power.

7 conclusion 87

In addition to enabling global localization, the SegMap descriptor allows us
to reconstruct a map of the environment and to extract semantic information.
The ability to reconstruct the environment while achieving a high compres-
sion rate is one of the main features of SegMap. This allows us to perform
both SLAM and 3D reconstruction with LiDARs at large scale and with low
communication bandwidth between the robots and a central computer. These
capabilities have been demonstrated through multiple experiments with
real-world data in urban driving and search and rescue scenarios. The recon-
structed maps could allow performing navigation tasks such as, for instance,
multi-robot global path planning or increasing situational awareness.

acknowledgments

This work was supported by the European Union’s Seventh Framework
Program for research, technological development and demonstration under
the TRADR project No. FP7-ICT-609763, from the EU H2020 research project
under grant agreement No 688652, the Swiss State Secretariat for Education,
Research and Innovation (SERI) No 15.0284, and by the Swiss National
Science Foundation through the National Center of Competence in Research
Robotics (NCCR). The authors would like to thank Abel Gawel, Mark Pfeiffer,
Mattia Gollub, Helen Oleynikova, Philipp Krüsi, Igor Gilitschenski and Elena
Stumm for their valuable collaboration and support.

PA P E RIII
S E M S E G M A P – 3 D S E G M E N T- B A S E D S E M A N T I C

L O C A L I Z AT I O N

Andrei Cramariuc∗, Florian Tschopp∗, Nikhilesh Alatur, Stefan Benz,
Tillmann Falck, Marius Brühlmeier, Benjamin Hahn, Juan Nieto, and Roland

Siegwart

∗contributed equally

abstract

Localization is an essential task for mobile autonomous robotic sys-
tems that want to use pre-existing maps or create new ones in the
context of SLAM. Today, many robotic platforms are equipped with
high-accuracy 3D LiDAR sensors, which allow a geometric map-
ping, and cameras able to provide semantic cues of the environment.
Segment-based mapping and localization have been applied with
great success to 3D point-cloud data, while semantic understanding
has been shown to improve localization performance in vision based
systems. In this paper we combine both modalities in SemSegMap,
extending SegMap into a segment based mapping framework able to
also leverage color and semantic data from the environment to im-
prove localization accuracy and robustness. In particular, we present
new segmentation and descriptor extraction processes. The segmenta-
tion process benefits from additional distance information from color
and semantic class consistency resulting in more repeatable segments
and more overlap after re-visiting a place. For the descriptor, a tight
fusion approach in a deep-learned descriptor extraction network is
performed leading to a higher descriptiveness for landmark matching.
We demonstrate the advantages of this fusion on multiple simulated
and real-world datasets and compare its performance to various base-
lines. We show that we are able to find 50 9% more high-accuracy
prior-less global localizations compared to SegMap on challenging
datasets using very compact maps while also providing accurate full
6 DoF pose estimates in real-time.

90 paper iii : semsegmap – 3d segment-based semantic localization

Published in:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021

DOI: 10.1109/IROS51168.2021.9636156

1 introduction 91

Figure 6.1: This image shows the SemSegMap pipeline in action. SemSegMap is able
to perform segment-based semantic localization on point cloud data enriched with
semantic and color information from a visual camera. The currently observed local
map around the robot is shown as the colored point cloud on top of the global map
depicted below, with each segment having a unique color. Green lines show matched
segment correspondences leading to a localization while the orange line shows the
robot trajectory.

1 introduction

Mobile robots are continuously increasing their impact on our everyday life
and becoming more and more viable not only in structured factories but also
unstructured environments and in contact with humans [58]. One of the
most crucial capabilities of mobile robots is the ability to know their position
in the environment in order to navigate and fulfill their task. Positioning
can be framed either in the context of localization in a known map or in the
context of the Simultaneous Localization And Mapping (SLAM) problem
where localizations and potential loop closures are needed to maintain a
consistent map. A multitude of solutions to the positioning problem exist,
mainly depending on the available sensor data, specific challenges of the
environment and computational limitations of the robotic platform [58].

For standard indoor applications, visual localization based on hand-crafted
keypoint descriptors [15, 146] has been demonstrated to achieve high accu-
racy and recall. However, outdoor applications typically pose challenges
to those methods, namely large-scale environments, self similarity and vast

92 paper iii : semsegmap – 3d segment-based semantic localization

appearance changes due to weather, daytime and seasonal conditions [147].
Vision based learning methods improve on viewpoint and appearance invari-
ance [52, 82, 148] by enabling a more context aware description. In contrast,
LiDAR based localization achieves illumination invariance using geometry to
describe the environment [6, 149], however in turn missing rich information
available from vision.

As a combined solution, in this paper, we introduce SemSegMap, a method
that leverages the visual and semantic information available from cameras
and fuses it with geometric information from a standard 3D LiDAR. As
a basis for our localization framework we use SegMap [6], a LiDAR based
SLAM pipeline that uses 3D segments of the environment as landmarks and
allows for 6D pose retrieval from compact descriptors in large-scale maps.
In contrast to SegMap, in SemSegMap, as outlined in Figure 6.1, first the
point cloud (PC) gets enriched with color and semantic information using
back-projection of semantically segmented RGB images. Further, the PC is
segmented based on geometric, color and semantic information to create
consistent and meaningful segments. We show in multiple experiments
that as a result of this fusion, the segmentation process and the generated
descriptors become more robust to viewpoint and appearance changes, thus
enabling a more consistent re-localization of the robot.

Our contributions are as follow

• We show that integrating color and semantic information from a cam-
eras into PCs improves both the segmentation and descriptor genera-
tion processes, leading to more consistent 6D localizations in a SLAM
pipeline.

• We introduce a simulation based learning pipeline for training segment
descriptors using ground truth associations, and show their transfer-
ability to real-world scenarios.

• We demonstrate the performance of SemSegMap in an extensive evalua-
tion on simulation and real-world data outperforming various baselines.

• For the benefit of the community, we open-source the whole framework
under a permissive license available at: https://github.com/ethz-a
sl/segmap.

https://github.com/ethz-asl/segmap
https://github.com/ethz-asl/segmap

2 related work 93

2 related work

The ability to localize is at the heart of the SLAM problem [58]. Two distinct
problems addressed in localization are the localization of landmarks, which
can then be used to calculate a precise 6D location in a global map, and place
recognition, where only a rough neighborhood is estimated.

Vision-based place recognition methods such as NetVLAD [82] or DE-
LF [150] have the advantage that they can incorporate a lot of contextual
information and thus gain high robustness to viewpoint and illumination
changes. Some recent techniques explicitly model the semantics of the scene
to obtain higher robustness towards seasonal changes [61, 151, 152]. More
precise visual keypoint-based place recognition methods are well studied [87]
and of significant interest [153], but they present their own set of challenges
with regards to scalability, viewpoint, and illumination changes. A compro-
mise between precise keypoint localization and the ability to incorporate
contextual and semantic information can be found in object-based localization
frameworks [62, 154].

LiDAR based localization methods rely mainly on matching geometry and
can be separated into various categories. Many PC registration methods,
out of which Iterative Closest Point (ICP) [155] is the most well-known one,
require a good pose prior and are not suited for global localization. While
global registration methods exist that work beyond the local context [156, 157],
they still require storing at least parts of the PC data. This can be partially
mitigated by only extracting compact descriptors during map building and
localization. Descriptors of single LiDAR scans [91, 158–160] only allow
rough location estimates and not precise 6D poses that could be integrated
into a SLAM pipeline. Descriptors of local keypoint neighborhoods [89, 161–
163] in turn can be noisy and lack distinctiveness due to only having geometry
data available. A combination can be achieved by performing a refinement
step, e.g. using ICP, after the rough localization, but would again require
storing and working with PC data [164, 165].

PC segment description and mapping based approaches were first pro-
posed by Douillard et al. [166] and Nieto et al. [167] and then further extended
into a full SLAM pipeline in SegMap by Dubé et al. [6]. SegMap leverages
advantages from both local and global descriptors by looking at features in
the environment that are large enough to be more robust and meaningful,
while also maintaining the ability to produce accurate 6D poses. Extensions
to the pipeline include different training methods for the descriptor, as well
as fine tuning to different environments [42, 93].

94 paper iii : semsegmap – 3d segment-based semantic localization

Enriching PCs with semantic information, e.g. obtained by fusing camera
and LiDAR data, has proven beneficial [43, 168–171]. Ratz et al. [172] propose
not only to use just one scan instead of an accumulated PC but also to enrich
the descriptor with appearance information from a camera using NetVLAD
and a customized fusion layer in their network. This increases accuracy at
the cost of a significant decrease in computational performance, due to the
expensive NetVLAD backbone. Also, the segmentation procedure is still
purely based on geometry and cannot incorporate any additional information
from the camera. Schönberger et al. [131] propose a localization scheme based
on semantically labeled 3D PCs able to localize in the presence of severe
viewpoint and appearance changes. They extract a deep-learned descriptor
for a subvolume of the semantic map and compare it to similarly extracted
ones from a prior map. However, using such submaps only provides a rough
place-recognition like localization and require further refinement steps to get
6D poses. Furthermore, by operating on comparably larger subvolumes and
the need to check multiple hypothesis, the corresponding descriptor network
is computationally expensive.

In contrast, SemSegMap introduces a framework that is both efficient enough
to be run in real-time on a consumer CPU (excluding the semantic segmen-
tation running on the GPU) and still able to leverage the rich information
available from geometry, appearance and semantics. We perform a very early
fusion of the two sensor modalities which allows also the segmentation to be
based on all available information.

3 semsegmap

In this section we present the details of the proposed SemSegMap pipeline,
as shown in Figure 6.2. The approach can be split into several key modules,
out of which the new segmentation and descriptor explained in Sections 3.2
and 3.3, represent the core contributions of this paper.

3.1 Semantic enrichment

The inputs to the pipeline consist of a stream of color images and PCs. The
color images are passed through a semantic segmentation network to obtain
a semantic class for each pixel. Using the extrinsic calibration between the
camera and the LiDAR as well as the intrinsic calibration parameters of the
camera, the color and semantic class of each pixel is projected onto the PC.
The result is a set of enriched points in the form p = {x,y, z,h, s, v, c}, where x,

3 semsegmap 95

Odometry

RGB image

3D point cloud

Semantics

Se
ns

or
 in

pu
t

Enriched PC

Centroids Descriptors

Descriptor extraction
(see Fig. 3)

Local map

Target map

Candidates

Matching

Loop closure / localization constraints

Geometric
verification

Poses
for

accumulation

Poses and map

Pose-graph mapping

Segmentation

64x1
III-A III-B III-C

Figure 6.2: Overview of the SemSegMap pipeline. The whole pipeline can be run in
localization mode with a target map loaded from the disk or in loop closure mode where
the target map is provided by the current pose-graph. Green: Main modules changed
from [6] with corresponding section numbers.

y, and z are the spatial coordinates, featuring also color values h, s, and v in
HSV space (result visible in Figure 6.1), and semantic class labels c (example
depicted in Figure 6.2: Enriched PC).

3.2 Semantic segmentation

To remove noise and achieve a more compact data representation, we ac-
cumulate the enriched PC data in a fixed size voxel grid. The voxel grid
is a cylinder with a radius of R that dynamically follows the robot and is
centered on it. For each voxel, the color information of multiple points is
fused by using a running average over the incoming values to obtain the
current value for the voxel. In contrast, the semantic class labels can not
be averaged, and therefore, all values are stored and the semantic label of
the voxel is determined by majority voting. Further filtering can be done by
excluding points that belong to known dynamic classes e.g. humans and cars.

We use an incremental Euclidean segmentation that does not need to be
rerun on the entire PC at each step, but is computed incrementally only on
the newly active voxels, as detailed in [6]. A segment S is defined as a set
of points, where for each point p1 ∈ S there exists at least one other point
p2 ∈ S, so that the distance between these two points is smaller than the
segmentation distance dsegment.

96 paper iii : semsegmap – 3d segment-based semantic localization

To include the semantic and color information into the segmentation pro-
cess, we modify the standard Euclidean distance function between two points
p1 and p2 to be

d2 = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2+

f2h(|h1 − h2|) + f2c(c1, c2).
(6.1)

The function fh is used to compute the distance between two colors by only
comparing the difference in hue values in order to mitigate the appearance
variance and is defined as

fh(∆h) =

{
ph min (∆h, 1−∆h) > th

0 otherwise
, (6.2)

where ph is a fixed penalty for when the color difference is above a certain
chosen threshold th and where the hue values h are normalized to [0, 1). In
practice, there are two cases because the hue color space is cyclical. Similarly,
the semantic class distance function is defined as

fc(c1, c2) =

{
pc c1 ̸= c2

0 otherwise
, (6.3)

where pc is a fixed penalty applied when the semantic classes do not match.
Fixed penalties are necessary because the color space and semantic spaces are
either not continuous or not numerically comparable to physical distances
in space. A soft constraint on the segmentation can be imposed by choosing
ph and pc smaller than dsegment, which means that two points that are
sufficiently close in space can still be part of the same segment, even if they
have a very different color or class.

During the segmentation process, at each step, the robot extracts a set of
segments in the local map around itself. Those segments slowly accumulate
points as more observations are made from different viewpoints. Similarly
to how a keypoint is tracked, a segment will have multiple accumulated
observations. Therefore, the final observation, just before it moves out of the
local map neighborhood, will be the most complete one.

3.3 Description

For each segment observation, a learned descriptor is calculated and the local
map is built by associating each descriptor to the corresponding segment

3 semsegmap 97

Colored PC

Po
in

tn
et

++

D
en

se

3D
 C

on
v

64x1

Class Grid

Reconstruction
loss

Triplet loss

Scale

Descriptor

3D
 C

on
v

Anchor Positive Negative

Figure 6.3: The descriptor extraction of the colored PC is based on a Pointnet++ [173]
backbone while the semantics are fused in a coarse voxel grid of semantic class
histograms. The network is trained using both a reconstruction loss and a triplet loss.

centroid point. For efficiency reasons, we only keep the descriptor of the last
and most complete observation of each segment to create the target map for
subsequent localizations or loop closures.

The new descriptor network, illustrated in Figure 6.3, uses the Pointnet++
architecture [173] that is based on hierarchical point set feature learning. The
input to the Pointnet++ backbone is the colored PC segment that has been
randomly subsampled to a fixed size of 2048 points. The class labels are
instead accumulated into a very coarse 3× 3× 3 spatial voxel grid, where each
cell contains a normalized histogram of the class labels that fall inside that
section of the PC segment. This very coarse description is enough because due
to the semantic segmentation process the class labels inside most segments are
relatively homogeneous. For the sake of computational efficiency this class
representation is handled separately by a small 3D convolutional network,
whose output is later concatenated with that of the Pointnet++ backbone.
Finally, we also input into the network the scaling factor by which the point
coordinates were normalized, which helps the network better discriminate
between segments that do not match but are either visually or geometrically
similar.

The descriptor is trained using both a triplet loss as well as a reconstruction
loss from a convolutional decoder. The triplet loss is formulated as

Ltriplet = max(m+ σ(A,P) ·DA,P −DA,N, 0) (6.4)

where m = 0.4 is the margin, DA,P is the Euclidean distance between an
anchor segment A and a positive example P, DA,N is the Euclidean distance

98 paper iii : semsegmap – 3d segment-based semantic localization

between the anchor and a negative example N, and σ(A,P) = card(P)
card(A) is the

ratio in number of points between anchor and positive example. The scaling
σ(A,P) is a heuristic that prevents the loss function from penalizing too much
segment observations that should match, but due to segment incompleteness
only share a small overlap and therefore in practice are hard to match. For
the reconstruction loss we use a binary cross entropy loss applied to each
voxel. This enables approximate reconstructions of the PC map from only
the descriptor space for visualization and improves the descriptor quality
of very similar looking segments. During training we augment the PCs in
multiple ways, including both geometric variations such as random rotations,
jitter, scale shifts, missing points or sections, and visual variations such as
color shifts or erronous class labels.

3.4 Localization and loop closure

To perform localization or loop closure, candidate correspondences are iden-
tified between the locally built map of segments and the prior or global
map, respectively. The candidates are identified using the descriptors of each
locally visible segment and retrieving the k most similar descriptors from the
global map. Finally, a geometric verification step is performed based on the
centroids of the target and query match candidates to identify the 6 degrees
of freedom (DoF) transformation that leads to the largest set of inliers using
random sample consensus (RANSAC). The resulting transformation can
either be used as a localization result when localizing from a previously built
map, or as a loop closure constraint in a SLAM scenario. In the latter case,
both the loop closure constraint and robot odometry constraints are placed
into an online pose graph based on iSAM2 [28].

4 experiments

In this section, we describe our training procedure and present thorough
evaluation of SemSegMap on both simulated and public real-world datasets,
demonstrating a superior performance compared to different baselines on
segmentation, descriptor quality, and localization accuracy and robustness.

4.1 Datasets

Datasets including visual as well as PC data, spanning large areas and cover-
ing different environmental conditions that include semantic annotations are

4 experiments 99

Figure 6.4: Bird’s eye view of the simulation environment including the simulated
trajectories (blue: S0, green: S1, red: S2, yellow: S3).

rare and hard to obtain. Therefore, for the data intensive step of descriptor
training, we utilize simulated data to be able to quickly produce training data
for SemSegMap. Furthermore, simulated datasets provide the opportunity
to specifically evaluate our contribution in isolation of sensor noise, state
estimation and calibration inaccuracies, and imperfect semantic segmenta-
tion. In addition, we demonstrate the transferablility of our approach to a
challenging real-world dataset.

Simulation

Photo-realistic simulation is a popular tool for efficiently generating visually
rich data with high quality ground truth annotations. Some of the most
popular simulation tools in the robotics domain are Gazebo [174], CARLA
[175], LGVSL [176] and AirSim [177]. While CARLA and LGVSL focus on
autonomous driving scenarios, Gazebo does not provide photorealistic visual
output. The datasets used in the following experiments were generated by

100 paper iii : semsegmap – 3d segment-based semantic localization

(a) RGB image: Sunny day (b) RGB image: Sunrise

(c) Semantic segmentation (d) 3D LiDAR PC

Figure 6.5: Overview of simulated sensor modalities and environmental conditions.

AirSim using the "Modular Neighborhood Pack"1, a large residential environ-
ment. Each dataset consists of RGB image data, a semantic segmentation map
for the image, LiDAR PCs as well as odometry information. The image data
consists of three cameras, one on each side and a front facing one, spanning
a total horizontal field of view (FoV) of 270 ◦. The simulated LiDAR has a
resolution of 1920× 64 and the same 270 ◦ FoV. All sensors are synchronized
and operated at 5Hz.

An overview of the neighborhood, the simulated environmental conditions,
as well as the simulated trajectories, is given in Figure 6.4 and 6.5, and
Table 6.1, respectively.

Real world data

For demonstrating the applicability of our approach to real-world environ-
ments, we use the NCLT dataset [178]. The dataset provides raw sensor data
from a LiDAR sensor, an omnidirectional camera, and ground truth position
data, among others. As the images lack ground-truth semantic labelling,
we used the author’s implementation2 from [179] to semantically segment

1https://www.unrealengine.com/marketplace/en-US/product/modular-neighborhood-pac
k

2https://github.com/NVIDIA/semantic-segmentation, accessed on 8th of November 2020

https://www.unrealengine.com/marketplace/en-US/product/modular-neighborhood-pack
https://www.unrealengine.com/marketplace/en-US/product/modular-neighborhood-pack
https://github.com/NVIDIA/semantic-segmentation

4 experiments 101

Table 6.1: Overview of simulated trajectories. The referenced trajectories as well as
environmental conditions are shown in Figures 6.4 and 6.5, respectively.

Length Conditions Comment

S0 2071m daytime, sunny, clear Covers whole map
S1 1462m daytime, sunny, clear Medium size with overlap
S2 377m daytime, sunny, clear Single small loop
S3 358m early sunrise, shadows Opposite direction to S2

Table 6.2: Overview of the trajectories extracted from the NCLT dataset. Please refer
to [178] for a detailed description of the dataset.

Date Time Conditions

N0 2012-04-29 4min − 30min morning, sunny, foliage
N1 2012-05-26 0min − 10min evening, sunny, foliage
N2 2012-11-04 0min − 25min morning, cloudy
N3 2013-04-05 54min − 69min afternoon, sunny, snow

the images from the five horizontal color cameras. The camera-to-LiDAR
extrinsics, provided in the dataset, were used to enrich the PCs with color
and semantic information by projection onto the image plane. As a last step,
we removed the local ground plane from the enriched PC in order to make
the subsequent segmentation process more robust. Because the dataset was
recorded on a SegWay, which experiences a lot of back and forth pitching
motion, the ground plane cannot simply be removed by setting a height
threshold on the raw PC. Instead, we estimated the local ground plane based
on the points in the enriched PC whose class labels correspond to ground
and subsequently removed all points in close proximity to these points. A
subset of the dataset featuring large map overlap and different environmental
conditions was processed and used for our experiments as listed in Table 6.2.

4.2 Segmentation

To evaluate the segmentation method presented in Section 3.2 we use the sim-
ulation dataset run S1 and the NCLT run N0. For the classic Euclidean segmen-
tation in SegMap we use the default segmentation distance dsegment = 0.2.
In SemSegMap we adjust this to dsegment = 0.3 and set the penalties and

102 paper iii : semsegmap – 3d segment-based semantic localization

thresholds in the color and semantic distance functions to th = 0.1, ph = 0.05
and pc = 0.15.

To measure the segmentation quality, we first calculate the convex hull Vi

of each segment Si in the local map, and then compare it to the segment Sj
with the convex hull Vj at the same global location in the target map. The
quality of the segmentation is then given by the intersection over union (IOU)
as

IoU(Vi,Vj) =
Vi ∩ Vj

Vi ∪ Vj
. (6.5)

In this way, we compare how repeatable and accurate the segmentation is
when visiting the same place multiple times. Figure 6.6 shows the segmenta-
tion IOU results from run S1 in the simulated environment which features
multiple intersecting loops in the same environment and N0 for the NCLT
dataset. A low IOU indicates that the segment was not properly re-segmented
when re-visiting the place, while a high IOU corresponds to a consistent
re-segmentation. In the latter case the segments occupy the same volume in
space and are therefore more likely to be matched based on their descriptors.
We consider an IoU ⩾ 0.33 to represent a good overlap while an IoU < 0.33
represents an inconsistent segmentation. SemSegMap produced −24.24% and
−8.38% less inconsistent segments with IoU < 0.33 while obtaining 30.97%
and 25.03% more consistent segments with an IoU ⩾ 0.33 with respect to
SegMap for the simulation and NCLT dataset, respectively.

4.3 Descriptor quality

To evaluate the impact of our adapted descriptor extraction network described
in Section 3.3, we performed a similar experiment as described in [6, Section
5.4].

In order to use the segments as landmarks in a localization and loop-closure
scenario as described in Section 3.4, we obtain candidate matches using k

nearest neighbours (k-NN). For a more robust and efficient localization, the
amount k of candidates necessary to retrieve the correct match should be
as small as possible, even with partially observed segments which occur
during live operation or different directions of travel. In Figure 6.7, we show
a comparison of how high k needs to be in order to retrieve the correct match
using SemSegMap and different state-of-the-art PC descriptors operating on
the simulation dataset S0 and the NCLT dataset N0. The SemSegMap network
is trained solely on ground truth data obtained from S1 and not retrained on
the NCLT data.

4 experiments 103

0
0 - 0

.33

0.33 - 0
.67

0.67 - 1

-25

0

+25

+50

0
0 - 0

.33

0.33 - 0
.67

0.67 - 1

-15

0

+15

+30

Figure 6.6: Change of the segmentation IOU for the simulation dataset S1 (left) and
NCLT N0 (right) using SemSegMap with respect to SegMap. The bins represent the
change in number of segments with a specific IOU range. The small numbers on
top of the bars depict the absolute numbers of segments in that range produced by
SemSegMap. While SemSegMap produces less segments with low IOU, which represent
inconsistent segmentations, it is able to produce more consistent segments with a high
overlap and IOU compared to SegMap.

We compare the quality of our descriptor to a learned segment descrip-
tor [6] for the simulated data, and extended the evaluation for the NCLT
dataset to the hand-crafted descriptor FPFH [89] and the learned local de-
scriptor 3DSmoothNet [163]. For FPFH, a single segment descriptor was
computed by selecting the segment centroid as the keypoint and choosing
the descriptor radius to encompass all points of the respective segment [180].
In the case of 3DSmoothNet, simply extending the radius did not yield
meaningful results. One reason could be that the descriptor was specifically
designed and trained as a local descriptor. In order to deploy it within our
segment-based framework, we randomly select points from the segment PC
as keypoints, extract local descriptors for each keypoint and aggregate them
to a global descriptor by following a Bag-of-Words (BoW) approach using
k-means clustering. Specifically, we trained the k-means model on a subset
of segments extracted from N0, where k = 16 yielded the best results.

Note from Figure 6.7 that SemSegMap outperforms all other descriptors in
both datasets except for FPFH with incomplete segments with completeness
< 30%. This property of the SemSegMap descriptor is controlled by the σ

term in the triplet loss formulation introduced in Equation 6.4 that biases
the network towards better matching more complete segments. Removing
the influence of this term causes better matching performance for harder
matches, i.e. at low completeness thresholds, but at the same time reduces the

104 paper iii : semsegmap – 3d segment-based semantic localization

20 40 60 80 100
100

102

20 40 60 80 100
100

101

102

Figure 6.7: Comparison of descriptor quality on the simulation dataset S0 (left) and the
NCLT dataset N0 (right).

matching performance of more complete segments as the descriptor attempts
to perform more unlikely matches. However, in a typical SLAM application,
while an early localization, e.g. with many incomplete segments is important,
achieving more accurate and robust localizations during operation with com-
plete segments is often of greater interest in a full smoothing and mapping
framework. The descriptor transfers well to the more challenging real-world
data from the NCLT dataset, where the performance difference is even more
evident.

4.4 Localization accuracy and robustness

To assess the localization accuracy and robustness, we tested SemSegMaps
ability to localize in a previously built target map. Therefore, we recorded
the target map on trajectories S0 and N0 for the simulation and NCLT dataset,
respectively. The map for S0 contains 2006 segments and has a size of 0.51MB
while for N0 there are 2588 segments in a 0.66MB map. All other trajectories
except for the training set S1 are used for on-line localization against the
target map as described in Section 3.4.

For the localization evaluation we retrieve a total of 16 neighbours using
k-NN. For the geometric verification in our experiments the RANSAC was
set to require a minimum of 6 and 7 inliers for the simulation and NCLT
dataset, respectively, and allow a centroid distance of at most 0.4m. For all
the experiments for both SegMap and SemSegMap we keep these parameters

4 experiments 105

0 1 2 3 4 5
0

100

200

300

0 1 2 3 4 5
0

100

200

300

Figure 6.8: Cumulative successful localizations with a certain accuracy on the simulation
datasets with a target map built from S0.

0 1 2 3 4 5
0

500

1000

1500

0 1 2 3 4 5
0

500

1000

1500

Figure 6.9: Cumulative successful localizations with a certain accuracy on the real-
world datasets with a target map built from N0.

fixed and only change the segmentation and description process as outlined
in Sections 3.1 and 3.3, to provide the fairest comparison. With these settings
SemSegMap (excluding the semantic segmentation) runs on an Intel i7-8700

CPU with an average frequency of 6.13Hz and 6.74Hz on the simulation and
NCLT dataset, respectively.

Table 6.3 and Figures 6.8 and 6.9 report the accuracy results of the estimated
6-DoF pose for the simulation and NCLT dataset, respectively. SemSegMap is

106 paper iii : semsegmap – 3d segment-based semantic localization

Table 6.3: Localization accuracy results overview (n<•m relative improvement of
SemSegMap with respect to SegMap with a certain accuracy).

Number of localizations n<1m n<5m
SegMap SemSegMap

S2 126 258 53.93% 100.79%
S3 10 108 4400% 980%

N1 1201 1395 60.00% 14.96%
N2 1060 1337 44.17% 27.55%
N3 774 1056 41.70% 35.58%

able to consistently find more localizations throughout all the tested datasets.
In simulation, less affected by odometry and sensor noise, SemSegMap is able
to find a total of 102% more high accuracy localizations (translation error of
less than 1m) with respect to SegMap and 165% more accurate localizations
(translation error of less than 5m). Especially on trajectory S3, SegMap suffers
from different appearance and viewpoint while SemSegMap is less affected
and still able to produce many accurate localizations. Those results also
transfer to the real-world dataset where more than 50.9% high accuracy
localization and 24.7% more accurate localizations are found compared to
SegMap.

5 conclusions

In this paper, we introduced SemSegMap, an extension to SegMap that fuses
both color and semantic information from an RGB camera with LiDAR data
in real-time. In a real-world robotic application, the addition of cameras to
a platform equipped with a LiDAR is typically easily possible due to the
comparably low price of cameras and their cross-purpose use, especially
when also performing semantic segmentation to improve scene understand-
ing. We include this additional modality both to improve segmentation and
descriptor quality, which we showed in a stimulated dataset with accurate
ground truth and a challenging real-world dataset.

Using the described extensions, SemSegMap is able to outperform a geomet-
ric segmentation approach by producing less inconsistent segments and more
highly overlapping segments when re-visiting a place. The tight fusion of
the additional information in the descriptor also increases descriptor quality
where SemSegMap not only outperforms the SegMap baseline but also other

5 conclusions 107

state-of-the-art PC descriptors like FPFH and 3DSmoothNet in terms of k-NN
required to find the correct match. These improvements also propagate to the
localization accuracy and robustness resulting in SemSegMap providing 102%
and 50.9% more high accuracy localizations than SegMap for the simulated
and the real-world dataset, respectively.

To further extend our framework, a combination of FPFH and SemSegMap
descriptor based on the expected completeness of a segment could be used
in order to benefit from both advantages.

PA P E RIV
L E A R N I N G C A M E R A M I S C A L I B R AT I O N D E T E C T I O N

Andrei Cramariuc∗, Aleksandar Petrov∗, Rohit Suri, Mayank Mittal, Roland
Siegwart, and Cesar Cadena

∗contributed equally

abstract

Self-diagnosis and self-repair are some of the key challenges in
deploying robotic platforms for long-term real-world applications.
One of the issues that can occur to a robot is miscalibration of its
sensors due to aging, environmental transients, or external distur-
bances. Precise calibration lies at the core of a variety of appli-
cations, due to the need to accurately perceive the world. How-
ever, while a lot of work has focused on calibrating the sensors, not
much has been done towards identifying when a sensor needs to
be recalibrated. This paper focuses on a data-driven approach to
learn the detection of miscalibration in vision sensors, specifically
RGB cameras. Our contributions include a proposed miscalibration
metric for RGB cameras and a novel semi-synthetic dataset gen-
eration pipeline based on this metric. Additionally, by training a
deep convolutional neural network, we demonstrate the effectiveness
of our pipeline to identify whether a recalibration of the camera’s
intrinsic parameters is required or not. The code is available at
http://github.com/ethz-asl/camera_miscalib_detection.

Published in:
IEEE International Conference on Robotics and Automation (ICRA), 2020

DOI: 10.1109/ICRA40945.2020.9197378

http://github.com/ethz-asl/camera_miscalib_detection

110 paper iv: learning camera miscalibration detection

Figure 7.1: Illustration of the subtle differences that a miscalibration detection system
needs to be sensitive to. Top left: Unrectified image; Top right: Correctly rectified
image; Bottom: Two examples of incorrectly rectified images. The image is taken from
the KITTI dataset [19].

1 introduction

In robotics, errors in the estimation of the system’s parameters can adversely
affect the accuracy of algorithms for state estimation and the performance
of feedback controllers. In order to avoid systematic errors due to incorrect
parameter estimates, a common practice is to perform sophisticated calibra-
tion of the system by a human expert [181]. Once determined, calibration
parameters are kept fixed during the operation cycle of the robot. However,
this approach is not sustainable for a variety of real-world applications where
robots need to operate in harsh environments for extended periods of time.
The calibration parameters of the system are prone to change over time due
to component wear, environmental transients such as temperature changes,
or external disturbances like collisions. Additionally, it may be impractical to
perform offline calibration regularly as a means to address this issue.

An alternative solution to offline calibration is online calibration techniques
that are performed during the system’s normal operation, such as those
presented in [182, 183]. These techniques, though promising, are compu-
tationally expensive and have various limiting requirements, such as the
type of required motion or the storage and processing of data to create a
calibration dataset. Hence, instead of running these methods periodically
and recalibrating the robotic platform, ideally, one would like to perform
the calibration only when the system is detected to be miscalibrated. This
objective is considered as a constituent of the fault detection and diagnosis
for a robotic system [184].

2 related work 111

Since sensors lie at the core of any autonomous system, it is critical to
detect the sensor data faults for safety and stable performance [185]. However,
unlike sensors for measuring attitude or temperature, calibration errors in
vision sensors do not appear as an offset or as a drift in the sensor’s readings.
Although having hardware redundancy is a way to detect imperfections,
it increases the cost and complexity of the system. Further, due to their
complex nature, it is difficult to obtain a unified analytical solution for
identifying miscalibration in vision sensors. Fortunately, common operating
environments, both indoors and outdoors, contain regularities that can be
exploited for this purpose, such as walls, furniture, street lamps, etc. We
propose a data-driven approach that implicitly utilizes these regularities.

In this work, our goal is not to provide a neural network that detects
miscalibrations for any camera. Instead, we propose a method in which
a network is tuned for a specific camera to predict when an automatic
recalibration is necessary for that camera. However, using a learning-based
approach poses its own set of challenges. First, a large-scale dataset for
training a network to detect miscalibration is not currently available in the
public domain. Second, there is no standard metric for measuring the degree
of miscalibration in the intrinsics of a camera. We address these challenges
and provide the following key contributions:

• A novel dataset generation pipeline to create a large-scale dataset for
camera miscalibration detection.

• A metric, average pixel position difference, for estimating the degree of
miscalibration and analysis of how it correlates with performance in a
monocular odometry task.

• A deep convolutional neural network (CNN) that predicts when the
camera is miscalibrated even in previously unseen scenes.

2 related work

In the last decade, a variety of approaches have been proposed for calibration
of various types of range-based sensors, inertial sensors, and vision sensors,
as well as the extrinsic calibration between them. In this section, we focus
on literature related to sensor miscalibration, the estimation of intrinsic
parameters of vision sensors, and fault detection in multi-sensor systems.

Accurate camera calibration is an important step for a multitude of 3D
computer vision tasks. The existing calibration techniques can be broadly

112 paper iv: learning camera miscalibration detection

categorized as photogrammetric calibration and self-calibration. In pho-
togrammetric calibration, the camera calibration is performed by observing
a target of known geometry in 3D space. Over the years, various types of
tags such as checkerboards [186, 187] and fiducial markers [188] have been
proposed for this purpose. These approaches typically pose the calibration
problem as a non-linear optimization problem to minimize a reprojection
error and to estimate the most likely values of the camera parameters. How-
ever, the need to have an apparatus and a human expert in these techniques
prevents them from being scalable or practical for robots deployed into the
real world.

On the other hand, self-calibration, as introduced in [189], does not require
a calibration object. Through a sequence of images, these methods estimate
the intrinsic parameters that are consistent with the underlying projective
reconstruction of the observed scene. Certain approaches use camera motion
constraints, such as planar motion [190] or rotation of the camera [191], in
conjunction with the 3D metric reconstruction of the scene to calibrate the
camera’s intrinsic parameters. Sturm [192] presents the concept of critical
motion sequences for a camera with constant parameters for which there
exists no unique solution for self-calibration. Wildenauer and Hanbury [193]
detect orthogonal vanishing points in the scene to generate a hypothesis for
focal length. However, the flexibility provided by self-calibration techniques
comes at the price of computation expenses.

More recently, with the advent of deep learning [194], data-driven ap-
proaches have also been proposed to estimate the calibration parameters
of the camera. Workman et al. [195] propose a CNN for estimating the fo-
cal length of an image. To train the network, they construct a dataset by
combining images and camera models estimated using 1D structure from
motion [196]. On the other hand, Lopez et al. [197] use separate regressors,
which share a common pre-trained network architecture, to estimate tilt, roll,
focal length, and radial distortion parameters from a single image. They
use the SUN360 panorama dataset [198] to artificially generate the training
images. However, the estimation of these parameters is highly dependent on
finding the horizon in the image, an assumption that is highly environment
dependent. Unlike the previous two approaches, which aim to estimate the
camera calibration parameters, Yin et al. [199] propose an end-to-end multi-
context deep network for removing distortions from single fish-eye camera
images. They use a scene-parsing network to provide semantic cues during
training and use an L2 reconstruction loss for rectified image prediction.

Fault detection in multi-sensor systems can be done by correlating the
information from multiple sensors and rejecting measurements that do not

2 related work 113

Figure 7.2: Top: An unrectified image from the KITTI dataset [19]. Bottom: For
illustration purposes, canny edges detected from correctly (in green) and incorrectly
(in red) rectified images are shown. A set of incorrect rectification parameters results
in pixel projections from the raw image to be displaced relative to that with the correct
parameters (indicated by the black segments). The mean of the L2-norms of these
displacements over the image corresponds to the APPD.

match [200–204]. These methods are generally able to detect when a fault
has occurred, however they rely on a redundant sensor setup. When the
fault estimation is done indirectly, through an intermediary task such as
localization performance, it can be ambiguous to decide whether the sensor
is at fault or if the localization system failed.

While some of the above mentioned approaches deal with estimating the
calibration parameters through either a geometry-based or a learning-based
approach, our work is orthogonal and does not aim to replace them. We
want to complement these methods by identifying when a camera needs
to be recalibrated. Further, we do not want to rely on sensor redundancy
since that increases the cost of the system. Thus, our objective is to detect
miscalibration in a single camera. To the best of our knowledge, this is the
first work proposing a deep learning approach to detect miscalibration of the
intrinsic parameters for an RGB camera.

114 paper iv: learning camera miscalibration detection

3 methodology

In this section, we present our contributions in detail. The dataset generation
pipeline is explained in Section 3.1. In Section 3.2, our novel metric for
miscalibration is defined. The neural network and its training are detailed in
Section 3.3.

3.1 Dataset Generation

A straightforward procedure to create a dataset for camera miscalibration
detection is to manually vary the camera parameters by using different lenses
while taking any one of the settings as the nominal one. However, this
process is time-consuming and tedious since offline calibration would be
required for every new setting. The procedure is also limited with respect to
the generation of disturbances in the camera parameters. Some cameras have
only one degree of freedom for calibration (the distance between the lens and
the sensor), hence the calibration parameters cannot be varied independently.
Due to these limitations, we propose an alternative solution to generate a
semi-synthetic dataset by using a set of raw images and a set of correct
calibration parameters for a given camera setup. The presented method is
based on the idea that the visual effect obtained from rectifying an image
from a miscalibrated sensor with its initial belief of the parameters is similar
to the effect of rectifying an image from a calibrated sensor with parameters
different from the correct ones.

In our semi-synthetic dataset generation pipeline, we consider the pinhole
camera model with radial and tangential distortion [205]. We denote the set of
true calibration parameters of the camera model as Θ = {fu, fv,uc, vc, kr, kt}.
Consider the raw camera image I, which is rectified using the parameters
Θ to obtain the rectified image I ′. The rectification map M ′ = f(Θ) used
in this process relates each pixel in the rectified image to a position in the
original image. Generally, not all the pixels in the rectified image have a
corresponding position in the original one. Therefore, we define a validity
mask, R, which is the largest rectangular region in the rectified image I ′ with
only valid pixels, and that has the same aspect ratio as the original image I.
The final sample image Î is obtained by first cropping the valid mask region
R of the image I ′ and then rescaling the result to the size of the original
raw image I. An alternate way to express the rectification is by applying the
rectification map M̂ (which is obtained by cropping and rescaling M ′) on the
raw image I to directly obtain the final sample image Î.

3 methodology 115

Figure 7.3: The network architecture used to run the experiments. All layers except the
last one use Rectified Linear Unit (ReLU) activation functions.

In general, it is difficult to obtain the true calibration parameters of the
camera. Thus, we use the values estimated using a calibration toolbox as the
correct calibration parameters Θ⋆ and denote the correct rectified image and
rectification map as Î⋆ and M̂⋆ respectively. To obtain samples of miscali-
brated images, we perturb each intrinsic parameter independently to obtain
Θm. This process allows generating arbitrarily many miscalibrated images,
Îm, and rectification maps, M̂m, by randomly perturbing the parameters.
Thus, by collecting only a set of raw images with a correct calibration of the
sensor, one can generate a large amount of data for detecting camera miscali-
bration. Even though we consider a pinhole camera model, this approach is
also applicable to other camera models.

3.2 Metric for Degree of Miscalibration

As described in Section 3.1, image rectification is a transformation parameter-
ized by the calibration parameters. Since these parameters are continuous,
one can generate images arbitrarily close to a correctly rectified image by
applying small perturbations to the true calibration parameters. Due to the
non-linear effects and the strong correlations of these parameters on the
rectification transformation, defining a meaningful distance metric to directly
assess the quality of different randomly chosen calibrations is difficult. More-
over, as the rectification of an input image is typically only the first stage of a
system, the degree of miscalibration should be considered in conjunction with
the corresponding reduction in the overall system performance. Therefore,
we propose an indirect approach using the average pixel position difference
(APPD) as a scalar metric to measure the degree of camera miscalibration.

116 paper iv: learning camera miscalibration detection

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

2.
25

2.
50

2.
75

True APPD value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
re

d
ic

te
d

A
P

P
D

va
lu

e

(a) Trained on camera 2, eval. on camera 2

Same as trained, MAE=0.0837

True calibration, MAE=0.0957

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

2.
25

2.
50

2.
75

True APPD value

(b) Trained on camera 3, eval. on camera 3

Same as trained, MAE=0.0684

True calibration, MAE=0.2559

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

2.
25

2.
50

2.
75

True APPD value

(c) Cross-evaluation between cameras

Train cam2, eval. cam3, MAE=0.1242

Train cam3, eval. cam2, MAE=0.4890

Figure 7.4: APPD prediction accuracy of the trained neural network models for the two
RGB cameras from KITTI [19]. The plots show the distributions of networks predictions
for given quantized APPD values. The dashed line designates perfect prediction.

Using the symbols introduced in Section 3.1, the numeric value for the
APPD, denoted by δ, is calculated using the rectification maps M̂⋆ and M̂m

obtained from using calibration parameters Θ⋆ and Θm respectively. Since
these maps are computed using different parameters, they relate the same
pixel coordinate in their corresponding rectified images to a different image
coordinate in the raw image. The Euclidean distance between these two
positions is referred to as the pixel position difference. This is illustrated in
Figure 7.2. The APPD is the mean value of these pixel position differences
over the entire image, i.e.

δ =
1

H×W

∑
p∈I

||M̂⋆(p) − M̂m(p)||2,

where (H,W) is the size of the image I and p denotes the pixel coordinate
(u, v). Even when normalized by the number of pixels, the value still depends
on the resolution. Normalizing further by the diagonal makes it resolution-
independent. That is why we report APPD values as a percentage of the
image diagonal, i.e. they are divided by the diagonal and scaled by a factor
of 100.

3.3 Network Architecture and Training

The architecture of the APPD prediction network is presented in Figure 7.3.
The input to the network is the rectified image Îm, and the output is the
APPD metric. To prevent artifacts and loss of minute details due to image
resizing, we use the input at full resolution.

4 experiments and discussion 117

For each camera and corresponding correct calibration, we train a separate
network to deploy alongside the respective camera. This can be seen as
an addition to the calibration procedure that, in a similar manner, is also
pre-computed for each camera separately. The goal of the dataset generation
process described in Section 3.1 is to reduce the amount and variety of data
required to train the model. With the proposed method, it is sufficient to
collect a single dataset, with correct calibration known and without any
manual labeling.

During training, the perturbed parameters are sampled such that the
calculated APPD values follow an approximately uniform distribution. Addi-
tionally, 1% of the samples are kept with the correct rectification, i.e. APPD
value of zero. We use a mean squared error loss between the network pre-
dictions and the ground-truth labels for training. This loss is optimized
by using the Adaptive Moment Estimation (ADAM) optimizer [137]. We
initialize the network parameters by Xavier’s initialization method [136] and
use dropout [138] to avoid overfitting.

4 experiments and discussion

The results from evaluating the trained models are discussed in Section 4.1.
We present some generalization results for our approach in Section 4.2. The
relationship between APPD and the intrinsic parameters is experimentally
investigated in Section 4.3. Section 4.4 compares APPD and reprojection
error.

4.1 Detection of Miscalibrations with a Neural Network

The KITTI dataset has two RGB cameras (cameras 2 and 3). We split the
KITTI sequences from September 26, 2011 to obtain our training and valida-
tion sets. For testing, we use all sequences from the other four days. We vary
the focal lengths from −5% to 20%, the optical center ±5%, and the distortion
coefficients ±15%. The dataset provides different calibration files for every
day, which were observed to be inconsistent. It is not known whether the
cameras differed physically on different days, or if the differences in the
calibrations arise from imperfections in the calibration procedure. Therefore,
there is no single ‘correct’ calibration that can be used as a reference for
calculating the true APPD value when evaluating prediction performance.
Instead, we consider two cases: (i) taking the set of parameters corresponding

118 paper iv: learning camera miscalibration detection

1.0 1.1 1.2
fu

0.0

0.2

0.4

0.6

A
P

P
D

va
lu

e

1.0 1.1 1.2
fv

0.00

0.05

0.10

0.15

0.20

A
P

P
D

va
lu

e

0.95 1.00 1.05
uc

0.0

0.5

1.0

1.5

2.0

A
P

P
D

va
lu

e

0.95 1.00 1.05
vc

0.000

0.025

0.050

0.075

0.100

A
P

P
D

va
lu

e

0.9 1.0 1.1
k1

0.0

0.2

0.4

0.6

A
P

P
D

va
lu

e

0.9 1.0 1.1
k2

0.0

0.1

0.2

0.3

A
P

P
D

va
lu

e

0.9 1.0 1.1
p1

0.000

0.005

0.010

0.015

0.020

A
P

P
D

va
lu

e

0.9 1.0 1.1
p2

0.00

0.01

0.02

0.03

A
P

P
D

va
lu

e

0.9 1.0 1.1
k3

0.00

0.02

0.04

0.06

0.08

A
P

P
D

va
lu

e

Figure 7.5: Plots showing the different effects of the camera’s intrinsic parameters on
the APPD, when one parameter is varied, and the rest are kept fixed. The x-axis is the
multiplication factor applied to the reference parameter. The used reference calibration
is from camera 2 for the KITTI sequences from date 26.09.2011. Note that the y-axis
scales in the plots for fu and fv, as well as for uc and vc, are different. This is due to
the image’s aspect ratio.

to the day used for training, and (ii) using the set corresponding to the day
on which the test image was actually recorded.

Figures 7.4a and 7.4b show the prediction quality of the trained networks
for both camera 2 and camera 3, evaluated for the two cases described above.
The mean absolute error (MAE) for each case is also reported. It can be
seen that the models are able to generalize also to images and environments
they have not seen before. While both networks are powerful in detecting
miscalibration with respect to the reference set of parameters that they were
trained with, the one for camera 2 performs significantly better.

This mismatch in performance is caused by the level of similarity between
the sets of correct calibration parameters provided for each camera. The
APPD ranges for the four test days, relative to the day used for training
and validation are [0.12, 0.93] and [0.78, 2.37] for camera 2 and camera 3

respectively. It is likely that camera 3 might not have been well-calibrated
either on the training day or on some of the other days. This result illustrates
the importance of selecting a ‘correct’ calibration, with respect to which the
training process must be defined.

As the two cameras are of the same make and brand, are positioned
solely with a horizontal offset from one another, and operate in the same
environment, the transferability of the model trained on the data from one
camera to the other was also evaluated. The corresponding results are shown
in Figure 7.4c. Indeed, the model trained on camera 2 generalizes well to

4 experiments and discussion 119

camera 3. Figure 7.4c also shows that the reverse generalization does not
hold, which stresses the importance of the choice of reference calibration and
is another indication that camera 3 might have been slightly less consistently
calibrated.

Figure 7.4 further demonstrates that the trained models experience bias
in the extremely low and extremely high APPD values. This is a limitation
of both training in a regression setting and of the miscalibration sampling
procedure, which provides very few miscalibrations with APPD values close
to 0. Instead, if one targets a specific performance metric, which can be
related to APPD (see Section 4.4), then they can determine a threshold value
and rephrase the problem into a binary classification setting.

While the presented neural network architecture is simple and further
performance improvement may be possible, the above results indicate that a
CNN can indeed be trained to be sensitive to miscalibration artifacts. One
should note that the data does not explicitly designate the regularities which
are not robust to the perturbation effects arising from disturbing a camera
setup, but the model has discovered these regularities on its own. Moreover,
even though motion distortion and blur are not explicitly addressed by the
analysis, they are represented in both the training and test sets (as the images
are obtained from a moving vehicle), and therefore the results account for
them as well.

4.2 Generalization to new Environments and Cameras

The KITTI dataset is limited in the variation of its scenes (recordings only in
the city of Karlsruhe, Germany), and in the position of the camera sensors
(both oriented forward with only a horizontal offset between them). In order
to study the potential further generalization capabilities of the proposed
method, we trained the same model on some of the scenes recorded in Boston
from the forward camera of the nuScenes dataset [206]. Only the scenes
recorded during the day were considered.

The performance of the model was evaluated on the other scenes of the
same camera in Boston, as well as on the forward camera in Singapore, and
the forward-left and forward-right cameras in Boston. The results can be seen
in Figure 7.6 and show that the accuracy is comparable in the four cases. The
sets of intrinsic calibration parameters for the four cameras considered are
almost the same and hence much closer in terms of APPD than the ones from
the KITTI dataset (less than 10−5). This consistency between the different

120 paper iv: learning camera miscalibration detection

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

2.
25

2.
50

2.
75

True APPD value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
re

d
ic

te
d

A
P

P
D

va
lu

e

(a) Evaluated on same camera position

Boston front-center, MAE=0.0409

Singapore front-center, MAE=0.0412

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

2.
25

2.
50

2.
75

True APPD value

(b) Evaluated on diff. camera positions

Boston front-left, MAE=0.0521

Boston front-right, MAE=0.0423

Figure 7.6: APPD prediction accuracy when evaluating on environments and camera
positions that were not represented in the training set. The training was performed on
a subset of the nuScenes dataset [206] recorded with the front-center camera in Boston.
The plots show the distribution of predictions for given quantized APPD values. The
dashed line designates perfect prediction.

sensors, as well as the higher resolution of the images, explains why the
model trained on nuScenes exhibits better performance.

4.3 Relationship between APPD and Calibration Parameters

Some of the effects of the different intrinsic parameters on the APPD value
are illustrated in Figure 7.5. The plots are obtained by individually varying
one parameter while keeping the others fixed. The difference in effect when
varying fu and uc compared to fv and vc, respectively, is due to the wide
aspect ratio (2.72) of the image. This causes parameters along the u-axis
to have a stronger effect on the distortion of the images. Another point to
observe from Figure 7.5 is the noise, which is more visible at lower APPD
values. This noise is due to quantization effects causing numerical imprecision
when computing the undistortion maps. The amount of noise can be reduced,
at the cost of more computation time, by calculating the APPD at a higher
image resolution, but is not necessary for any practical purposes.

4 experiments and discussion 121

4.4 Relationship between APPD and Reprojection Error

Reprojection error is a standard measure of the deterioration of a robotic
system’s performance in various vision-related tasks [207]. Therefore, it is
of interest to relate the APPD metric of a misrectification to the reprojection
error it causes. As mentioned in Section 3.1, the physical scenario that we
are interested in is when a camera experiences a hardware change without
the corresponding change in intrinsic parameters. Data for such scenarios is
difficult to obtain. Therefore we propose applying the reverse process: the
physical sensor stays the same while the parameters are changed. We perform
a few simple tests on simulated data to further analyze the relationship
between APPD and reprojection error.

First, consider the case when the camera is kept unchanged, but the robot’s
belief of its intrinsic calibration is changed. One can generate a set of points
in front of a virtual camera and then project them into the camera plane
using the correct intrinsic parameters of the physical camera. These points
can then be rectified with both the correct and incorrect sets of parameters.
Since point associations are known, the reprojection error can be calculated as
the average distance between the resulting rectified projections in the image
plane. Figure 7.7a shows the obtained relationship. Indeed, APPD is a good
measure of the reprojection error that arises from rectifying with a wrong
calibration parameter set.

Second, it is of interest to know how the real physical scenario would relate
with the reverse synthetic scenario in order to evaluate if the method outlined
here can be applied to a real system. This can be achieved by repeating the
above-described point-projection and rectification procedure, but keeping
the intrinsic parameters for the rectification step fixed while varying the
set for the projection step. This setting corresponds exactly to the physical
situation but cannot be reproduced synthetically on a real image (we cannot
‘reproject’ reality with a different set of intrinsic parameters). The comparison
between the resulting reprojection error and APPD can be seen in Figure 7.7b.
The result is that there is no-longer an injective functional relationship from
APPD to reprojection error, and the dependence between the two values is
less pronounced.

APPD is easy to calculate for a real-world dataset as it is independent
of the hardware that is used to obtain the image. Furthermore, it allows
the sampling of an almost infinite number of different intrinsic calibration
parameters, which is beneficial for training neural networks, which require
large amounts of data. Nevertheless, it might not be the most accurate
metric for detecting physical miscalibration. In fact, as Figure 7.8 shows, the

122 paper iv: learning camera miscalibration detection

0 1 2 3
APPD value

0

20

40

60

80
R

ep
ro

je
ct

io
n

er
ro

r
[p

x
]

(a) Fixed projection,
multiple rectifications

0 1 2 3
APPD value

(b) Multiple projections,
fixed rectification

Figure 7.7: Plot between APPD and reprojection error for (a) when projecting a set
of points with a single set of calibration parameters and rectifying with a variety
of parameters, and (b) when projecting a set of points with a variety of calibration
parameters and rectifying with a fixed set.

reprojection error as computed for the physical scenario is better correlated
with the SLAM performance of a system. As mentioned above, the drawback
of using reprojection error as a miscalibration metric is that it cannot be
calculated for a real-world dataset. No procedure similar to the one in
Section 3.1 can be constructed for the physical miscalibration case and its
corresponding reprojection error. Therefore, one would need to create a
dataset with various camera settings and the respective calibration parameters
for each one, which can be impractically time-consuming as it needs to be
repeated for each camera individually. The variety of possible calibrations
would also be severely limited by the design of the lens, as most lenses only
have one degree of freedom. Alternatively, a fully synthetic dataset, e.g.
generated in simulation, can be used, but then transferability to real image
data would be questionable.

The advantage of using APPD is that it facilitates training with very large
sets of data that are easily obtained via the procedure detailed in Section 3.1.
The type of artifacts introduced by the dataset generation in Section 3.1 can
be considered similar to the ones introduced by a physical miscalibration. By
demonstrating that APPD is learnable by a neural network, we show that it
might be possible to also learn the reprojection error.

5 conclusion 123

0 25 50 75

Reprojection error [px]

20

40

60

80

R
el

.
tr

an
sl

.
er

ro
r

at
10

0m
[m

]
(a) Transl. performance

vs. reprojection error

0 1 2 3
APPD value

(b) Transl. performance
vs. APPD value

Figure 7.8: Plot between the performance of ORB-SLAM [59], evaluated on the KITTI
odometry sequence 10, and (a) reprojection error when projecting a set of points with a
single set of parameters and rectifying with a variety of sets, and (b) the corresponding
APPD.

5 conclusion

We proposed a novel semi-synthetic data generation procedure that requires
no data labeling and a corresponding camera miscalibration metric called
the average pixel position difference (APPD). These tools can then be used to
train a simple CNN, which we show is able to predict the APPD values from
images with no additional data necessary. The performance of the network
was evaluated on different real-world datasets and cameras. Provided the
camera’s true intrinsic parameters remained close, the network was able to
generalize well to different cameras and environments that it had not seen
before. Such a network can then be deployed on a real robotic platform, run-
ning at a very low frequency, to determine if a more expensive recalibration
procedure needs to be executed.

acknowledgments

The authors would like to thank Jen Jen Chung, Lionel Ott, Juan Nieto and
Davide Scaramuzza for their feedback and valuable insights.

B I B L I O G R A P H Y

[1] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous Localization
and Mapping: A Survey of Current Trends in Autonomous Driving,”
IEEE Transactions on Intelligent Vehicles (T-IV), vol. 2, no. 3, pp. 194–220,
2017.

[2] K. Blomqvist*, M. Breyer*, A. Cramariuc*, J. Förster*, M. Grinvald*,
F. Tschopp*, J. J. Chung, L. Ott, J. Nieto, and R. Siegwart, “Go Fetch: Mo-
bile Manipulation in Unstructured Environments,” in IEEE International
Conference on Robotics and Automation (ICRA) Workshop on Perception,
Action, Learning, 2020.

[3] J. L. Jones, “Robots at the tipping point: the road to iRobot Roomba,”
IEEE Robotics and Automation Magazine (RAM), vol. 13, no. 1, pp. 76–78,
2006.

[4] D. Ungureanu, F. Bogo, S. Galliani, P. Sama, X. Duan, C. Meekhof,
J. Stühmer, T. J. Cashman, B. Tekin, J. L. Schönberger et al., “HoloLens 2

Research Mode as a Tool for Computer Vision Research,” arXiv preprint
arXiv:2008.11239, 2020.

[5] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “Iterated
extended Kalman filter based visual-inertial odometry using direct
photometric feedback,” The International Journal of Robotics Research
(IJRR), vol. 36, no. 10, pp. 1053–1072, 2017.

[6] R. Dubé*, A. Cramariuc*, D. Dugas, H. Sommer, M. Dymczyk, J. Nieto,
R. Siegwart, and C. Cadena, “SegMap: Segment-based mapping and
localization using data-driven descriptors,” The International Journal of
Robotics Research (IJRR), vol. 39, no. 2-3, pp. 339–355, 2020.

[7] M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and
visual simultaneous localization and mapping library for large-scale
and long-term online operation,” Journal of Field Robotics, vol. 36, no. 2,
pp. 416–446, 2019.

[8] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: An Open-
Source Library for Real-Time Metric-Semantic Localization and Map-

125

126 bibliography

ping,” in IEEE International Conference on Robotics and Automation (ICRA),
2020, pp. 1689–1696.

[9] Y. Tian, Y. Chang, F. Herrera Arias, C. Nieto-Granda, J. How, and
L. Carlone, “Kimera-Multi: Robust, Distributed, Dense Metric-Semantic
SLAM for Multi-Robot Systems,” IEEE Transactions on Robotics (T-RO),
pp. 1–17, 2022.

[10] Y. Chang, K. Ebadi, C. E. Denniston, M. F. Ginting, A. Rosinol,
A. Reinke, M. Palieri, J. Shi, A. Chatterjee, B. Morrell, A.-a. Agha-
mohammadi, and L. Carlone, “LAMP 2.0: A Robust Multi-Robot SLAM
System for Operation in Challenging Large-Scale Underground Envi-
ronments,” IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 4, pp.
9175–9182, 2022.

[11] M. Karrer, P. Schmuck, and M. Chli, “CVI-SLAM—collaborative visual-
inertial SLAM,” IEEE Robotics and Automation Letters (RA-L), vol. 3,
no. 4, pp. 2762–2769, 2018.

[12] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós,
“ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–
Inertial, and Multimap SLAM,” IEEE Transactions on Robotics (T-RO),
vol. 37, no. 6, pp. 1874–1890, 2021.

[13] P. Schmuck, T. Ziegler, M. Karrer, J. Perraudin, and M. Chli, “COVINS:
Visual-Inertial SLAM for Centralized Collaboration,” in ISMAR-Adjunct,
2021, pp. 171–176.

[14] P.-Y. Lajoie, B. Ramtoula, Y. Chang, L. Carlone, and G. Beltrame,
“DOOR-SLAM: Distributed, online, and outlier resilient SLAM for
robotic teams,” IEEE Robotics and Automation Letters (RA-L), vol. 5, no. 2,
pp. 1656–1663, 2020.

[15] T. Schneider, M. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschenski,
and R. Siegwart, “maplab: An Open Framework for Research in Visual-
inertial Mapping and Localization,” IEEE Robotics and Automation Letters
(RA-L), vol. 3, no. 3, pp. 1418–1425, 2018.

[16] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual-inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research (IJRR), vol. 34, no. 3,
pp. 314–334, 2015.

bibliography 127

[17] J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in
Real-time,” in Robotics: Science and Systems (RSS), 2014.

[18] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “FAST-LIO2: Fast Direct
LiDAR-Inertial Odometry,” IEEE Transactions on Robotics (T-RO), vol. 38,
no. 4, pp. 2053–2073, 2022.

[19] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” The International Journal of Robotics Research (IJRR),
vol. 32, no. 11, pp. 1231–1237, 2013.

[20] M. Helmberger, K. Morin, B. Berner, N. Kumar, G. Cioffi, and D. Scara-
muzza, “The Hilti SLAM Challenge Dataset,” IEEE Robotics and Au-
tomation Letters (RA-L), vol. 7, no. 3, pp. 7518–7525, 2022.

[21] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle datasets,”
The International Journal of Robotics Research (IJRR), vol. 35, no. 10, pp.
1157–1163, 2016.

[22] D. Detone, T. Malisiewicz, and A. Rabinovich, “SuperPoint: Self-
supervised interest point detection and description,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, 2018, pp.
337–349.

[23] Z. Luo, L. Zhou, X. Bai, H. Chen, J. Zhang, Y. Yao, S. Li, T. Fang,
and L. Quan, “ASLFeat: Learning Local Features of Accurate Shape
and Localization,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 6589–6598.

[24] M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and
T. Sattler, “D2-Net: A Trainable CNN for Joint Description and De-
tection of Local Features,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 8092–8101.

[25] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperGlue:
Learning Feature Matching with Graph Neural Networks,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp.
4938–4947.

[26] J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou, “LoFTR: Detector-Free
Local Feature Matching With Transformers,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2021, pp. 8922–8931.

128 bibliography

[27] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep., 2012.

[28] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert,
“iSAM2: Incremental smoothing and mapping using the Bayes tree,”
The International Journal of Robotics Research (IJRR), vol. 31, no. 2, pp.
216–235, 2012.

[29] G. Grisetti, R. Kümmerle, H. Strasdat, and K. Konolige, “g2o: A gen-
eral framework for (hyper) graph optimization,” in IEEE International
Conference on Robotics and Automation (ICRA), 2011, pp. 9–13.

[30] S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres Solver 2.1,” https:
//github.com/ceres-solver/ceres-solver, 2022.

[31] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3D Euclidean Signed Distance Fields for on-board MAV
planning,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017, pp. 1366–1373.

[32] V. Reijgwart, A. Millane, H. Oleynikova, R. Siegwart, C. Cadena, and
J. Nieto, “Voxgraph: Globally Consistent, Volumetric Mapping Using
Signed Distance Function Submaps,” IEEE Robotics and Automation
Letters (RA-L), vol. 5, no. 1, pp. 227–234, 2019.

[33] A. Cramariuc*, L. Bernreiter*, F. Tschopp*, M. Fehr, V. Reijgwart, J. Ni-
eto, R. Siegwart, and C. Cadena, “maplab 2.0 – A Modular and Multi-
Modal Mapping Framework,” IEEE Robotics and Automation Letters
(RA-L), vol. 8, no. 2, pp. 520–527, 2023.

[34] J. Zhong*, Z. Ye*, A. Cramariuc, F. Tschopp, J. J. Chung, R. Siegwart, and
C. Cadena, “CalQNet-Detection of Calibration Quality for Life-Long
Stereo Camera Setups,” in Proceedings of the IEEE Intelligent Vehicles
Symposium (IV), 2021, pp. 1312–1318.

[35] L. Chen*, Y. Ao*, F. Tschopp, A. Cramariuc, M. Breyer, J. J. Chung,
R. Siegwart, and C. Cadena, “Learning Trajectories for Visual-Inertial
System Calibration via Model-based Heuristic Deep Reinforcement
Learning,” in Conference on Robot Learning (CoRL), 2020.

[36] Y. Ao*, L. Chen*, F. Tschopp, M. Breyer, R. Siegwart, and A. Cramar-
iuc, “Unified Data Collection for Visual-Inertial Calibration via Deep
Reinforcement Learning,” in IEEE International Conference on Robotics
and Automation (ICRA), 2022, pp. 1646–1652.

https://github.com/ceres-solver/ceres-solver
https://github.com/ceres-solver/ceres-solver

bibliography 129

[37] C. Xing*, X. Sun*, A. Cramariuc, S. Gull, J. J. Chung, C. Cadena, R. Sieg-
wart, and F. Tschopp, “Descriptellation: Deep Learned Constellation
Descriptors for SLAM,” arXiv preprint arXiv:2203.00567, 2022.

[38] “Team CERBERUS in the DARPA SubT challenge,” https://www.subt
-cerberus.org/, accessed: 04.01.2023.

[39] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena,
“SegMatch: Segment-based place recognition in 3D point clouds,” in
IEEE International Conference on Robotics and Automation (ICRA), 2017,
pp. 5266–5272.

[40] P. Pfreundschuh, H. F. Hendrikx, V. Reijgwart, R. Dubé, R. Siegwart,
and A. Cramariuc, “Dynamic Object Aware LiDAR SLAM based on
Automatic Generation of Training Data,” in IEEE International Conference
on Robotics and Automation (ICRA), 2021, pp. 11 641–11 647.

[41] G. Kim, S. Choi, and A. Kim, “Scan Context++: Structural Place Recog-
nition Robust to Rotation and Lateral Variations in Urban Environ-
ments,” IEEE Transactions on Robotics (T-RO), 2021.

[42] G. Tinchev, A. Penate-Sanchez, and M. Fallon, “Learning to See the
Wood for the Trees: Deep Laser Localization in Urban and Natural
Environments on a CPU,” IEEE Robotics and Automation Letters (RA-L),
vol. 4, no. 2, pp. 1327–1334, 2019.

[43] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and C. Stachniss,
“Suma++: Efficient lidar-based semantic slam,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp. 4530–4537.

[44] X. Kong, X. Yang, G. Zhai, X. Zhao, X. Zeng, M. Wang, Y. Liu, W. Li,
and F. Wen, “Semantic Graph Based Place Recognition for 3D Point
Clouds,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020, pp. 8216–8223.

[45] A. Cramariuc*, A. Petrov*, R. Suri, M. Mittal, R. Siegwart, and C. Ca-
dena, “Learning Camera Miscalibration Detection,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2020, pp. 4997–5003.

[46] A. Cramariuc*, F. Tschopp*, N. Alatur, S. Benz, T. Falck, M. Brühlmeier,
B. Hahn, J. Nieto, and R. Siegwart, “SemSegMap – 3D Segment-based
Semantic Localization,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021, pp. 1183–1190.

https://www.subt-cerberus.org/
https://www.subt-cerberus.org/

130 bibliography

[47] A. Bühler, A. Gaidon, A. Cramariuc, R. Ambrus, G. Rosman, and
W. Burgard, “Driving Through Ghosts: Behavioral Cloning with False
Positives,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020, pp. 5431–5437.

[48] S. Lionar*, L. Schmid*, C. Cadena, R. Siegwart, and A. Cramariuc,
“NeuralBlox: Real-Time Neural Representation Fusion for Robust Volu-
metric Mapping,” in International Conference on 3D Vision (3DV), 2021,
pp. 1279–1289.

[49] F. Tschopp*, C. von Einem*, A. Cramariuc*, D. Hug, A. W. Palmer,
R. Siegwart, M. Chli, and J. Nieto, “Hough2Map – Iterative Event-
Based Hough Transform for High-Speed Railway Mapping,” IEEE
Robotics and Automation Letters (RA-L), vol. 6, no. 2, pp. 2745–2752, 2021.

[50] M. Dymczyk, S. Lynen, T. Cieslewski, M. Bosse, R. Siegwart, and
P. Furgale, “The gist of maps - Summarizing experience for lifelong
localization,” in IEEE International Conference on Robotics and Automation
(ICRA), 2015, pp. 2767–2773.

[51] M. Dymczyk, S. Lynen, M. Bosse, and R. Siegwart, “Keep it brief:
Scalable creation of compressed localization maps,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2015, pp.
2536–2542.

[52] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, “From Coarse
to Fine: Robust Hierarchical Localization at Large Scale,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp.
12 716–12 725.

[53] A. Loquercio, M. Segu, and D. Scaramuzza, “A General Framework for
Uncertainty Estimation in Deep Learning,” IEEE Robotics and Automa-
tion Letters (RA-L), vol. 5, no. 2, pp. 3153–3160, 2020.

[54] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dol-
lár, and C. L. Zitnick, “Microsoft COCO: Common Objects in Context,”
in European Conference on Computer Vision (ECCV), 2014, pp. 740–755.

[55] B. Li, D. Zou, D. Sartori, L. Pei, and W. Yu, “TextSLAM: Visual SLAM
with Planar Text Features,” in IEEE International Conference on Robotics
and Automation (ICRA), 2020, pp. 2102–2108.

bibliography 131

[56] N. Zimmerman, L. Wiesmann, T. Guadagnino, T. Läbe, J. Behley, and
C. Stachniss, “Robust Onboard Localization in Changing Environments
Exploiting Text Spotting,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2022, pp. 917–924.

[57] L. Bernreiter, S. Khattak, L. Ott, R. Siegwart, M. Hutter, and C. Cadena,
“Collaborative Robot Mapping using Spectral Graph Analysis,” in IEEE
International Conference on Robotics and Automation (ICRA), 2022.

[58] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, Present, and Future of Simultaneous
Localization and Mapping: Toward the Robust-Perception Age,” IEEE
Transactions on Robotics (T-RO), vol. 32, no. 6, pp. 1309–1332, 2016.

[59] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras,” IEEE Transactions
on Robotics (T-RO), vol. 33, no. 5, pp. 1255–1262, 2017.

[60] M. Labbé and F. Michaud, “Multi-Session Visual SLAM for
Illumination-Invariant Re-Localization in Indoor Environments,” Fron-
tiers in Robotics and AI, p. 115, 2022.

[61] A. Gawel, C. Del Don, R. Siegwart, J. Nieto, and C. Cadena, “X-View:
Graph-Based Semantic Multi-View Localization,” IEEE Robotics and
Automation Letters (RA-L), vol. 3, no. 3, pp. 1687–1694, 2017.

[62] F. Taubner, F. Tschopp, T. Novkovic, R. Siegwart, and F. Furrer, “LCD -
Line Clustering and Description for Place Recognition,” in International
Conference on 3D Vision (3DV), 2020, pp. 908–917.

[63] L. Bernreiter, A. Gawel, H. Sommer, J. Nieto, R. Siegwart, and C. Ca-
dena, “Multiple Hypothesis Semantic Mapping for Robust Data Asso-
ciation,” IEEE Robotics and Automation Letters (RA-L), vol. 4, no. 4, pp.
3255–3262, 2019.

[64] N. Sünderhauf and P. Protzel, “Switchable constraints for robust pose
graph SLAM,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2012, pp. 1879–1884.

[65] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in International Conference on Computer
Vision (ICCV), 2011, pp. 2564–2571.

132 bibliography

[66] S. Leutenegger, M. M. Chli, and R. Y. Siegwart, “Binary Robust Invari-
ant Scalable Keypoints,” in International Conference on Computer Vision
(ICCV), 2011, pp. 2548–2555.

[67] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast Retina Key-
point,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2012, pp. 510–517.

[68] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique
with an Application to Stereo Vision,” in International Joint Conference
on Artificial Intelligence, vol. 2, 1981, pp. 674–679.

[69] S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, and R. Siegwart,
“Get Out of My Lab: Large-scale, Real-Time Visual-Inertial Localization,”
in Robotics: Science and Systems (RSS), 2015, p. 18.

[70] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP, vol. 1, pp. 331–340, 2009.

[71] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A
robust and modular multi-sensor fusion approach applied to MAV
navigation,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2013, pp. 3923–3929.

[72] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, “Estimation of
IMU and MARG orientation using a gradient descent algorithm,” IEEE
International Conference on Rehabilitation Robotics (ICORR), 2011.

[73] R. G. Valenti, I. Dryanovski, and J. Xiao, “Keeping a Good Attitude: A
Quaternion-Based Orientation Filter for IMUs and MARGs,” Sensors,
vol. 15, no. 8, pp. 19 302–19 330, 2015.

[74] M. Tranzatto, T. Miki, M. Dharmadhikari, L. Bernreiter, M. Kulkarni,
F. Mascarich, O. Andersson, S. Khattak, M. Hutter, R. Siegwart, and
K. Alexis, “CERBERUS in the DARPA Subterranean Challenge,” Science
Robotics, vol. 7, no. 66, 2022.

[75] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing ICP
variants on real-world data sets Open-source library and experimental
protocol,” Autonomous Robots, vol. 34, no. 3, 2014.

[76] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” Robotics: Science
and Systems (RSS), vol. 2, no. 4, p. 435, 2009.

bibliography 133

[77] D. G. Lowe, “Object recognition from local scale-invariant features,”
in International Conference on Computer Vision (ICCV), vol. 2, 1999, pp.
1150–1157.

[78] T. Shan, B. Englot, C. Ratti, and D. Rus, “LVI-SAM: Tightly-coupled
Lidar-Visual-Inertial Odometry via Smoothing and Mapping,” in IEEE
International Conference on Robotics and Automation (ICRA), 2021, pp.
5692–5698.

[79] D. Streiff, L. Bernreiter, F. Tschopp, M. Fehr, and R. Siegwart, “3D3L:
Deep Learned 3D Keypoint Detection and Description for LiDARs,” in
IEEE International Conference on Robotics and Automation (ICRA), 2021,
pp. 13 064–13 070.

[80] T. Mertens, J. Kautz, and F. Van Reeth, “Exposure fusion,” in Pacific
Graphics, 2007, pp. 382–390.

[81] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in
International Conference on Computer Vision (ICCV), 2017, pp. 2980–2988.

[82] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD:
CNN Architecture for Weakly Supervised Place Recognition,” IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5297–
5307, 2016.

[83] N. Wojke, A. Bewley, and D. Paulus, “Simple Online and Realtime
Tracking with a Deep Association Metric,” in IEEE International Confer-
ence on Image Processing (ICIP), 2017, pp. 3645–3649.

[84] B. K. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” Journal of the Optical Society of America A, vol. 4, no. 4, pp.
629–642, 1987.

[85] P. S. Manoj, L. Bingbing, Y. Rui, and W. Lin, “A Closed-form Estimate
of 3D ICP Covariance,” in IAPR International Conference on Machine
Vision Applications (MVA), 2015, pp. 526–529.

[86] F. Tschopp, M. Riner, M. Fehr, L. Bernreiter, F. Furrer, T. Novkovic,
A. Pfrunder, C. Cadena, R. Siegwart, and J. Nieto, “VersaVIS—An
Open Versatile Multi-Camera Visual-Inertial Sensor Suite,” Sensors,
vol. 20, no. 5, p. 1439, 2020.

134 bibliography

[87] S. Lowry, N. Sunderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke,
and M. J. Milford, “Visual Place Recognition: A Survey,” IEEE Transac-
tions on Robotics (T-RO), vol. 32, no. 1, pp. 1–19, 2016.

[88] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2D LIDAR SLAM,” in IEEE International Conference on Robotics and
Automation (ICRA), 2016, pp. 1271–1278.

[89] R. B. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature Histograms
(FPFH) for 3D registration,” in IEEE International Conference on Robotics
and Automation (ICRA), 2009, pp. 3212–3217.

[90] S. Salti, F. Tombari, and L. Di Stefano, “SHOT: Unique signatures of
histograms for surface and texture description,” Computer Vision and
Image Understanding, vol. 125, pp. 251–264, 2014.

[91] H. Yin, L. Tang, X. Ding, Y. Wang, and R. Xiong, “LocNet: Global
Localization in 3D Point Clouds for Mobile Vehicles,” in Proceedings of
the IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 728–733.

[92] R. Dubé, M. G. Gollub, H. Sommer, I. Gilitschenski, R. Siegwart, C. Ca-
dena, and J. Nieto, “Incremental Segment-Based Localization in 3D
Point Clouds,” IEEE Robotics and Automation Letters (RA-L), vol. 3, no. 3,
pp. 1832–1839, 2018.

[93] G. Tinchev, S. Nobili, and M. Fallon, “Seeing the Wood for the Trees:
Reliable Localization in Urban and Natural Environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2018,
pp. 8239–8246.

[94] R. Dubé*, A. Cramariuc*, D. Dugas, J. Nieto, R. Siegwart, and C. Ca-
dena, “SegMap: 3D Segment Mapping using Data-Driven Descriptors,”
in Robotics: Science and Systems (RSS), 2018.

[95] M. Bosse and R. Zlot, “Place Recognition using Keypoint Voting in
Large 3D Lidar Datasets,” in IEEE International Conference on Robotics
and Automation (ICRA), 2013, pp. 2677–2684.

[96] A. Gawel, T. Cieslewski, R. Dubé, M. Bosse, R. Siegwart, and J. Ni-
eto, “Structure-based vision-laser matching,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016, pp. 182–188.

bibliography 135

[97] Y. Zhuang, N. Jiang, H. Hu, and F. Yan, “3-D-Laser-Based Scene Mea-
surement and Place Recognition for Mobile Robots in Dynamic Indoor
Environments,” IEEE Transactions on Instrumentation and Measurement,
vol. 62, no. 2, pp. 438–450, 2013.

[98] B. Steder, G. Grisetti, and W. Burgard, “Robust place recognition for
3D range data based on point features,” in IEEE International Conference
on Robotics and Automation (ICRA), 2010, pp. 1400–1405.

[99] B. Steder, M. Ruhnke, S. Grzonka, and W. Burgard, “Place recognition
in 3D scans using a combination of bag of words and point feature
based relative pose estimation,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2011, pp. 1249–1255.

[100] T. Röhling, J. Mack, and D. Schulz, “A fast histogram-based similarity
measure for detecting loop closures in 3-D LIDAR data,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2015,
pp. 736–741.

[101] K. Granström, T. B. Schön, J. I. Nieto, and F. T. Ramos, “Learning
to close loops from range data,” The International Journal of Robotics
Research (IJRR), vol. 30, no. 14, pp. 1728–1754, 2011.

[102] M. Magnusson, H. Andreasson, A. Nüchter, and A. J. Lilienthal, “Auto-
matic appearance-based loop detection from three-dimensional laser
data using the normal distributions transform,” Journal of Field Robotics,
vol. 26, no. 11-12, pp. 892–914, 2009.

[103] K. Cop, P. Borges, and R. Dubé, “DELIGHT: An Efficient Descriptor
for Global Localisation using LiDAR Intensities,” in IEEE International
Conference on Robotics and Automation (ICRA), 2018, pp. 3653–3660.

[104] E. Fernández-Moral, W. Mayol-Cuevas, V. Arevalo, and J. Gonzalez-
Jimenez, “Fast place recognition with plane-based maps,” in IEEE
International Conference on Robotics and Automation (ICRA), 2013, pp.
2719–2724.

[105] E. Fernández-Moral, P. Rives, V. Arévalo, and J. González-Jiménez,
“Scene structure registration for localization and mapping,” Robotics
and Autonomous Systems, vol. 75, pp. 649–660, 2016.

[106] R. Finman, L. Paull, and J. J. Leonard, “Toward object-based place
recognition in dense rgb-d maps,” in IEEE International Conference on

136 bibliography

Robotics and Automation (ICRA) Workshop on Visual Place Recognition in
Changing Environments, 2015.

[107] S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, “Probabilis-
tic data association for semantic slam,” in IEEE International Conference
on Robotics and Automation (ICRA), 2017, pp. 1722–1729.

[108] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “magenet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (NeurIPS), 2012, pp. 1097–1105.

[109] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner, “Vote3deep:
Fast object detection in 3D point clouds using efficient convolutional
neural networks,” in IEEE International Conference on Robotics and Au-
tomation (ICRA), 2017, pp. 1355–1361.

[110] D. Maturana and S. Scherer, “VoxNet: A 3D convolutional neural
network for real-time object recognition,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 371–382.

[111] G. Riegler, A. Osman Ulusoy, and A. Geiger, “OctNet: Learning deep
3D representations at high resolutions,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 3577–3586.

[112] B. Li, T. Zhang, and T. Xia, “Vehicle detection from 3D lidar using fully
convolutional network,” in Robotics: Science and Systems (RSS), 2016.

[113] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D
shapenets: A deep representation for volumetric shapes,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp.
1912–1920.

[114] P. Wohlhart and V. Lepetit, “Learning descriptors for object recognition
and 3D pose estimation,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 3109–3118.

[115] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3D classification and segmentation,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 652–660.

[116] Y. Fang, J. Xie, G. Dai, M. Wang, F. Zhu, T. Xu, and E. Wong, “3D Deep
Shape Descriptor,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 2319–2328.

bibliography 137

[117] L. P. Tchapmi, C. B. Choy, I. Armeni, J. Gwak, and S. Savarese, “SEG-
Cloud: Semantic Segmentation of 3D Point Clouds,” in International
Conference on 3D Vision (3DV), 2017.

[118] B. Graham, M. Engelcke, and L. van der Maaten, “3D Semantic Seg-
mentation With Submanifold Sparse Convolutional Networks,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp.
9224–9232.

[119] B. Wu, A. Wan, X. Yue, and K. Keutzer, “SqueezeSeg: Convolutional
Neural Nets with Recurrent CRF for Real-Time Road-Object Segmenta-
tion from 3D LiDAR Point Cloud,” in IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 1887–1893.

[120] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learn-
ing a probabilistic latent space of object shapes via 3D generative-
adversarial modeling,” in Advances in Neural Information Processing
Systems (NeurIPS), 2016, pp. 82–90.

[121] A. Dewan, T. Caselitz, and W. Burgard, “Learning a Local Feature
Descriptor for 3D LiDAR Scans,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2018, pp. 4774–4780.

[122] M. Velas, M. Spanel, M. Hradis, and A. Herout, “CNN for IMU assisted
odometry estimation using velodyne LiDAR,” in IEEE International
Conference on Autonomous Robot Systems and Competitions (ICARSC),
2018, pp. 71–77.

[123] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser,
“3DMatch: Learning Local Geometric Descriptors From RGB-D Recon-
structions,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 1802–1811.

[124] Y. Ye, T. Cieslewski, A. Loquercio, and D. Scaramuzza, “Place Recogni-
tion in Semi-Dense Maps: Geometric and Learning-Based Approaches,”
in Proceedings of the British Machine Vision Conference (BMVC), 2017.

[125] G. Elbaz, T. Avraham, and A. Fischer, “3D Point Cloud Registration
for Localization using a Deep Neural Network Auto-Encoder,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
2472–2481.

138 bibliography

[126] A. Brock, T. Lim, J. Ritchie, and N. Weston, “Generative and Dis-
criminative Voxel Modeling with Convolutional Neural Networks,” in
Conference on Neural Information Processing Systems (NeurIPS) Workshop
on 3D Deep Learning, 2016.

[127] V. Guizilini and F. Ramos, “Learning to reconstruct 3D structures for
occupancy mapping,” in Robotics: Science and Systems (RSS), 2017.

[128] A. Dai, C. Ruizhongtai Qi, and M. Niessner, “Shape Completion Using
3D-Encoder-Predictor CNNs and Shape Synthesis,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5868–5877.

[129] J. Varley, C. DeChant, A. Richardson, J. Ruales, and P. Allen, “Shape
completion enabled robotic grasping,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2017, pp. 2442–2447.

[130] D. Ricao Canelhas, E. Schaffernicht, T. Stoyanov, A. J. Lilienthal, and
A. J. Davison, “Compressed Voxel-Based Mapping Using Unsupervised
Learning,” Robotics, vol. 6, no. 3, p. 15, 2017.

[131] J. L. Schönberger, M. Pollefeys, A. Geiger, and T. Sattler, “Semantic
Visual Localization,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 6896–6906.

[132] O. M. Parkhi, A. Vedaldi, A. Zisserman et al., “Deep face recognition,”
in Proceedings of the British Machine Vision Conference (BMVC), 2015, pp.
1–12.

[133] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
Verification using a "Siamese" Time Delay Neural Network,” in Advances
in Neural Information Processing Systems (NeurIPS), 1994, pp. 737–744.

[134] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning
for large margin nearest neighbor classification,” in Advances in Neural
Information Processing Systems (NeurIPS), 2006, pp. 1473–1480.

[135] R. Dubé, A. Gawel, H. Sommer, J. Nieto, R. Siegwart, and C. Cadena,
“An online multi-robot SLAM system for 3D lidars,” in IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), 2017, pp.
1004–1011.

[136] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the International
Conference on Artificial Intelligence and Statistics, vol. 9, 2010, pp. 249–256.

bibliography 139

[137] K. D. P. and B. J. L., “ADAM: A Method for Stochastic Optimization,”
arXiv preprint arXiv:1412.6980, 2015.

[138] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958,
2014.

[139] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in International
Conference on Machine Learning (ICML), 2015, pp. 448–456.

[140] J. Elseberg, S. Magnenat, R. Siegwart, and A. Nüchter, “Comparison of
Nearest-Neighbor-Search Strategies and Implementations for Efficient
Shape Registration,” Journal of Software Engineering for Robotics, vol. 3,
no. 1, pp. 2–12, 2012.

[141] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3354–3361.

[142] M. Weinmann, B. Jutzi, and C. Mallet, “Semantic 3D scene interpre-
tation: A framework combining optimal neighborhood size selection
with relevant features,” ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. 2, no. 3, p. 181, 2014.

[143] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A Unified Em-
bedding for Face Recognition and Clustering,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 815–823.

[144] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for
person re-identification,” arXiv preprint arXiv:1703.07737, 2017.

[145] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D
surface construction algorithm,” ACM SIGGRAPH Computer Graphics,
vol. 21, no. 4, pp. 163–169, 1987.

[146] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A
Versatile and Accurate Monocular SLAM System,” IEEE Transactions on
Robotics (T-RO), vol. 31, no. 5, 2015.

[147] M. J. Milford and G. F. Wyeth, “SeqSLAM: Visual route-based navi-
gation for sunny summer days and stormy winter nights,” in IEEE

140 bibliography

International Conference on Robotics and Automation (ICRA), 2012, pp.
1643–1649.

[148] J. Revaud, P. Weinzaepfel, C. R. de Souza, and M. Humenberger, “R2D2:
Repeatable and Reliable Detector and Descriptor,” in Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[149] M. Elhousni and X. Huang, “A Survey on 3D LiDAR Localization for
Autonomous Vehicles,” in Proceedings of the IEEE Intelligent Vehicles
Symposium (IV), 2020, pp. 1879–1884.

[150] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, “Large-Scale Im-
age Retrieval With Attentive Deep Local Features,” in International
Conference on Computer Vision (ICCV), 2017, pp. 3456–3465.

[151] A. Benbihi, S. Arravechia, M. Geist, and C. Pradalier, “Image-Based
Place Recognition on Bucolic Environment Across Seasons From Se-
mantic Edge Description,” in IEEE International Conference on Robotics
and Automation (ICRA), 2020, pp. 3032–3038.

[152] H. Hu, Z. Qiao, M. Cheng, Z. Liu, and H. Wang, “DASGIL: Domain
Adaptation for Semantic and Geometric-aware Image-based Localiza-
tion,” IEEE Transactions on Image Processing, vol. 30, pp. 1342–1353,
2020.

[153] L. Hammarstrand, F. Kahl, W. Maddern, T. Pajdla, M. Pollefeys, T. Sat-
tler, J. Sivic, E. Stenborg, C. Toft, and A. Torii, “Benchmarking Long-
term Visual Localization,” https://www.visuallocalization.net/,
Accessed 2020-11-23.

[154] K. Ok, K. Liu, K. Frey, J. P. How, and N. Roy, “Robust Object-based
SLAM for High-speed Autonomous Navigation,” in IEEE International
Conference on Robotics and Automation (ICRA), 2019, pp. 669–675.

[155] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 2, 1992, pp. 239–256.

[156] L. Bernreiter, L. Ott, J. Nieto, R. Siegwart, and C. Cadena, “PHASER:
a Robust and Correspondence-free Global Pointcloud Registration,”
IEEE Robotics and Automation Letters (RA-L), vol. 6, no. 2, pp. 855–862,
2021.

https://www.visuallocalization.net/

bibliography 141

[157] H. M. Le, T.-T. Do, T. Hoang, and N.-M. Cheung, “SDRSAC:
Semidefinite-Based Randomized Approach for Robust Point Cloud
Registration Without Correspondences,” in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019, pp. 124–133.

[158] X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag, J. Behley,
and C. Stachniss, “OverlapNet: Loop Closing for LiDAR-based SLAM,”
in Robotics: Science and Systems (RSS), 2020.

[159] H. Yin, Y. Wang, X. Ding, L. Tang, S. Huang, and R. Xiong, “3D
LiDAR-Based Global Localization Using Siamese Neural Network,”
IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 4, pp.
1380–1392, 2019.

[160] G. Kim, B. Park, and A. Kim, “1-Day Learning, 1-Year Localization:
Long-Term LiDAR Localization Using Scan Context Image,” IEEE
Robotics and Automation Letters (RA-L), vol. 4, no. 2, pp. 1948–1955, 2019.

[161] W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song, “L3-Net: Towards
Learning Based LiDAR Localization for Autonomous Driving,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp.
6389–6398.

[162] F. Kallasi, D. L. Rizzini, and S. Caselli, “Fast Keypoint Features From
Laser Scanner for Robot Localization and Mapping,” IEEE Robotics and
Automation Letters (RA-L), vol. 1, no. 1, pp. 176–183, 2016.

[163] Z. Gojcic, C. Zhou, J. D. Wegner, and A. Wieser, “The perfect match: 3d
point cloud matching with smoothed densities,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 5545–5554.

[164] L. Schaupp, M. Bürki, R. Dubé, R. Siegwart, and C. Cadena, “OREOS:
Oriented Recognition of 3D Point Clouds in Outdoor Scenarios,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 3255–3261.

[165] A. Zaganidis, A. Zerntev, T. Duckett, and G. Cielniak, “Semantically
Assisted Loop Closure in SLAM Using NDT Histograms,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2019,
pp. 4562–4568.

[166] B. Douillard, A. Quadros, P. Morton, J. P. Underwood, M. De Deuge,
S. Hugosson, M. Hallström, and T. Bailey, “Scan segments matching

142 bibliography

for pairwise 3D alignment,” in IEEE International Conference on Robotics
and Automation (ICRA), 2012, pp. 3033–3040.

[167] J. Nieto, T. Bailey, and E. Nebot, “Scan-SLAM: Combining EKF-SLAM
and scan correlation,” in Field and Service Robotics, vol. 25, 2006, pp.
167–178.

[168] L. Sun, Z. Yan, A. Zaganidis, C. Zhao, and T. Duckett, “Recurrent-
OctoMap: Learning State-Based Map Refinement for Long-Term Se-
mantic Mapping With 3-D-Lidar Data,” IEEE Robotics and Automation
Letters (RA-L), vol. 3, no. 4, pp. 3749–3756, 2018.

[169] A. Zaganidis, L. Sun, T. Duckett, and G. Cielniak, “Integrating Deep Se-
mantic Segmentation Into 3-D Point Cloud Registration,” IEEE Robotics
and Automation Letters (RA-L), vol. 3, no. 4, pp. 2942–2949, 2018.

[170] S. A. Parkison, L. Gan, M. G. Jadidi, and R. Eustice, “Semantic iterative
closest point through expectation-maximization,” in Proceedings of the
British Machine Vision Conference (BMVC), 2018.

[171] L. Bernreiter, L. Ott, J. Nieto, R. Siegwart, and C. Cadena, “Spherical
Multi-Modal Place Recognition for Heterogeneous Sensor Systems,” in
IEEE International Conference on Robotics and Automation (ICRA), 2021,
pp. 1743–1750.

[172] S. Ratz, M. Dymczyk, R. Siegwart, and R. Dubé, “OneShot Global Lo-
calization: Instant LiDAR-Visual Pose Estimation,” in IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 5415–5421.

[173] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space,” Advances in Neural
Information Processing Systems (NeurIPS), 2017.

[174] N. Koenig and A. Howard, “Design and Use Paradigms for Gazebo,
An Open-Source Multi-Robot Simulator,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2004, pp. 2149–2154.

[175] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An Open Urban Driving Simulator,” in Conference on Robot Learning
(CoRL), 2017.

[176] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko,
E. Boise, G. Uhm, M. Gerow, S. Mehta, E. Agafonov, T. H. Kim,

bibliography 143

E. Sterner, K. Ushiroda, M. Reyes, D. Zelenkovsky, and S. Kim, “LGSVL
Simulator: A High Fidelity Simulator for Autonomous Driving,” in
IEEE International Conference on Intelligent Transportation Systems (ITSC),
2020.

[177] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles,” in Field and
Service Robotics, 2018, pp. 621–635.

[178] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “University
of Michigan North Campus long-term vision and lidar dataset,” The
International Journal of Robotics Research (IJRR), vol. 35, no. 9, pp. 1023–
1035, 2016.

[179] A. Tao, K. Sapra, and B. Catanzaro, “Hierarchical Multi-Scale Attention
for Semantic Segmentation,” arXiv preprint arXiv:2005.10821, 2020.

[180] Anu, W. Nguatem, and Jan, “Computing a global descriptor with local
descriptors,” Point Cloud Library (PCL) Users mailing list - Computing a
global descriptor with local descriptors, 2015.

[181] Z. Roth, B. Mooring, and B. Ravani, “An Overview of Robot Calibra-
tion,” IEEE Journal of Robotics and Automation, vol. 3, pp. 377 – 385,
1987.

[182] J. A. Preiss, K. Hausman, G. S. Sukhatme, and S. Weiss, “Simultane-
ous self-calibration and navigation using trajectory optimization,” The
International Journal of Robotics Research (IJRR), vol. 37, no. 13-14, pp.
1573–1594, 2018.

[183] T. Schneider, M. Li, M. Burri, J. I. Nieto, R. Siegwart, and I. Gilitschenski,
“Visual-inertial self-calibration on informative motion segments,” IEEE
International Conference on Robotics and Automation (ICRA), pp. 6487–
6494, 2017.

[184] M. L. Visinsky, J. R. Cavallaro, and I. D. Walker, “Robot fault detection
and fault tolerance: A survey,” Reliability Engineering and System Safety,
vol. 46, no. 2, pp. 139–158, 1994.

[185] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi,
E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, “Sensor Network
Data Fault Types,” ACM Transactions on Sensor Networks, vol. 5, no. 3,
p. 25, 2009.

144 bibliography

[186] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11,
pp. 1330–1334, 2000.

[187] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A Toolbox for Eas-
ily Calibrating Omnidirectional Cameras,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2006, pp. 5695–5701.

[188] B. Atcheson, F. Heide, and W. Heidrich, “CALTag: High Precision
Fiducial Markers for Camera Calibration,” in International Workshop on
Vision, Modeling and Visualization, vol. 10, 2010, pp. 41–48.

[189] S. J. Maybank and O. D. Faugeras, “A theory of self-calibration of a
moving camera,” International Journal of Computer Vision, vol. 8, no. 2,
pp. 123–151, 1992.

[190] M. Armstrong, A. Zisserman, and R. Hartley, “Self-calibration from
image triplets,” in European Conference on Computer Vision (ECCV), 1996,
pp. 1–16.

[191] L. Agapito, E. Hayman, and I. Reid, “Self-calibration of rotating and
zooming cameras,” International Journal of Computer Vision, vol. 45, no. 2,
pp. 107–127, 2001.

[192] P. Sturm, “Critical motion sequences for monocular self-calibration and
uncalibrated Euclidean reconstruction,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 1997, pp. 1100–1105.

[193] H. Wildenauer and A. Hanbury, “Robust camera self-calibration from
monocular images of Manhattan worlds,” in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012, pp. 2831–2838.

[194] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[195] S. Workman, C. Greenwell, M. Zhai, R. Baltenberger, and N. Jacobs,
“Deepfocal: A method for direct focal length estimation,” in IEEE
International Conference on Image Processing (ICIP), 2015, pp. 1369–1373.

[196] K. Wilson and N. Snavely, “Robust Global Translations with 1DSfM,”
in European Conference on Computer Vision (ECCV), 2014, pp. 61–75.

http://www.deeplearningbook.org

bibliography 145

[197] M. Lopez, R. Mari, P. Gargallo, Y. Kuang, J. Gonzalez-Jimenez, and
G. Haro, “Deep Single Image Camera Calibration With Radial Dis-
tortion,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 11 817–11 825.

[198] J. Xiao, K. A. Ehinger, A. Oliva, and A. Torralba, “Recognizing Scene
Viewpoint using Panoramic Place Representation,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2695–2702.

[199] X. Yin, X. Wang, J. Yu, M. Zhang, P. Fua, and D. Tao, “FishEyeRecNet:
A Multi-Context Collaborative Deep Network for Fisheye Image Recti-
fication,” in European Conference on Computer Vision (ECCV), 2018, pp.
469–484.

[200] J. P. Mendoza, M. Veloso, and R. Simmons, “Mobile robot fault detection
based on redundant information statistics,” in IROS Workshop on Safety
in Human-Robot Coexistence and Interaction, vol. 945, 2012.

[201] P. Sundvall and P. Jensfelt, “Fault detection for mobile robots using
redundant positioning systems,” in IEEE International Conference on
Robotics and Automation (ICRA), 2006, pp. 3781–3786.

[202] S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey, “Sensor fault de-
tection and identification in a mobile robot,” in Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Innova-
tions in Theory, Practice and Applications, vol. 3, 1998, pp. 1383–1388.

[203] Y. Lu, E. G. Collins Jr, and M. F. Selekwa, “Parity Relation Based Fault
Detection, Isolation and Reconfiguration for Autonomous Ground
Vehicle Localization Sensors,” Florida State University Tallahassee
Department of Mechanical Engineering, Tech. Rep., 2004.

[204] T. Schneider, M. Li, C. Cadena, J. Nieto, and R. Siegwart, “Observability-
aware self-calibration of visual and inertial sensors for ego-motion
estimation,” IEEE Sensors Journal, vol. 19, no. 10, pp. 3846–3860, 2019.

[205] J. Heikkila, “Geometric camera calibration using circular control points,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 10, pp. 1066–1077, 2000.

[206] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A Multimodal
Dataset for Autonomous Driving,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 11 621–11 631.

146 bibliography

[207] L. Oth, P. Furgale, L. Kneip, and R. Siegwart, “Rolling shutter camera
calibration,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2013, pp. 1360–1367.

C U R R I C U L U M V I TA E

Andrei Cramariuc
born August 11, 1993, citizen of Romania and Finland

education

Jan 2019 – Feb 2023 ETH Zurich, Switzerland
PhD at the Autonomous Systems Lab, under the
supervision of Prof. Roland Siegwart, on the top-
ics of mapping and learning for robotics.

Sep 2016 – Jun 2019 ETH Zurich, Switzerland
MsC in Electrical Engineering and Information
Technology. Thesis “Learning Visual Object De-
scriptors for Place Recognition.”

Sep 2012 – Jul 2015 Tampere University of Technology, Finland
BsC in Electrical Engineering.

work

Sep 2015 – Mar 2016 Tampere University of Technology, Finland
Research Assistant and Teaching Assistant for two
courses at the Computer Vision Group.

achievements

• Supervised over 45 students in almost many projects.

• Over 400 citations on Google Scholar with an h-index of 10.

• A main contributor to an open source mapping framework, with 2000+
stars and 500+ forks (https://github.com/ethz-asl/maplab/).

• International Olympiad in Informatics (Bronze 2011, Bronze 2012), Baltic
Olympiad in Informatics (Silver 2012), Finnish Nationals in Informatics
(Silver 2012).

147

https://github.com/ethz-asl/maplab/

148 bibliography

first author publications

• A. Cramariuc*, et al., “maplab 2.0 – A Modular and Multi-Modal Mapping
Framework”, RA-L, vol. 8, no. 2, pp. 520–527, 2023.

• A. Cramariuc*, et al., “SemSegMap – 3D Segment-Based Semantic Local-
ization”, IROS, pp. 1183–1190, 2021.

• A. Cramariuc*, et al., “Hough2Map – Iterative Event-based Hough Trans-
form for High-Speed Railway Mapping”, RA-L, vol. 6, no. 2, pp. 2745–2752,
2021.

• A. Cramariuc*, et al., “SegMap: Segment-based mapping and localization
using data-driven descriptors”, IJRR, vol. 39, no. 2-3, pp. 339—355, 2020.

• A. Cramariuc*, et al., “Learning Camera Miscalibration Detection”, ICRA,
pp. 4997–5003, 2020.

• A. Cramariuc*, et al., “SegMap: 3D Segment Mapping using Data-Driven
Descriptors”, RSS, 2018.

• A. Cramariuc, et al., “Clustering benefits in mobile-centric WiFi positioning
in multi-floor buildings”, ICL-GNSS, pp. 1–6, 2016.

other publications

• Y. Ao*, L. Chen*, et al., A. Cramariuc, “Unified Data Collection for Visual-
Inertial Calibration via Deep Reinforcement Learning”, ICRA, 2022.

• P. Pfreundschuh, et al., A. Cramariuc, “Dynamic Object Aware LiDAR
SLAM based on Automatic Generation of Training Data”, ICRA, 2021.

• S. Lionar*, L. Schmid*, et al., A. Cramariuc, “NeuralBlox: Real-Time Neural
Representation Fusion for Robust Volumetric Mapping”, 3DV, 2021.

• J. Zhong*, Z. Ye*, A. Cramariuc, et al., “CalQNet - Detection of Calibration
Quality for Life-Long Stereo Camera Setups”, IV, 2021.

• L. Chen*, Y. Ao*, F. Tschopp, A. Cramariuc, et al., “Learning Trajectories
for Visual-Inertial System Calibration via Model-based Heuristic Deep
Reinforcement Learning”, CoRL, 2020.

• A. Bühler, A. Gaidon, A. Cramariuc, et al., “Driving Through Ghosts:
Behavioral Cloning with False Positives”, IROS, 2020.

	Abstract
	Zusammenfassung
	Acknowledgements
	Preface
	1 Introduction
	1.1 Challenges
	1.2 Motivation and Objectives
	1.3 Approach

	2 Contribution
	2.1 Part A: Modular Mapping
	2.2 Part B: Modular Learning
	2.3 List of Publications
	2.4 Conference and Workshop Dissemination
	2.5 Teaching and Student Supervision
	2.6 List of Open-source Software

	3 Conclusion and Outlook
	3.1 Part A: Modular Mapping
	3.2 Part B: Modular Learning

	Modular Mapping
	Paper I: maplab 2.0 – A Modular and Multi-Modal Mapping Framework
	1 Introduction
	2 Related Work
	3 The maplab 2.0 Framework
	4 Use-Cases
	5 Conclusion

	Modular Learning
	Paper II: SegMap: Segment based mapping and localization using data-driven descriptors
	1 Introduction
	2 Related Work
	3 The SegMap Approach
	4 The SegMap Descriptor
	5 Experiments
	6 Discussion and Future Work
	7 Conclusion

	Paper III: SemSegMap – 3D Segment-based Semantic Localization
	1 Introduction
	2 Related Work
	3 SemSegMap
	4 Experiments
	5 Conclusions

	Paper IV: Learning Camera Miscalibration Detection
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments and Discussion
	5 Conclusion

	Bibliography
	Curriculum Vitae

