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Abstract

In this thesis we develop the representation theory of the affine Lie superalgebra
su(2|2)1 with a purely algebraic method, and in particular we find all the highest
weight representations. We give a criterion for the inclusion of a bosonic subalgebra
in a Lie superalgebra being a conformal embedding, and prove that this is the case
for psu(2|2)1 and u(2|2)1. We then present the free field realisation of u(2|2)1 and
the spectral flow action. The free field representations are then decomposed in terms
of affine representations of the bosonic subalgebra, and explicit branching rules are
presented. The corresponding characters are computed, and for the case of psu(2|2)1
also their modular behaviour. In this case, it turns out that the modular S-matrix
contains terms that are linear in the conformal parameter τ , which suggests that
the psu(2|2)1-WZW model is a logarithmic conformal field theory.
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1 Introduction

One of the gems of string theory in the last decades is the Anti-de Sitter/conformal

field theory (AdS/CFT) correspondence and the application of the holographic duality

to understand strongly coupled quantum field theories (QFTs). The key aspect of the

correspondence stems from the fact that it allows to compute quantum corrections in

the non-perturbative regime of a field theory using a classical gravity theory. This has a

wide spectrum of applications, that go far beyond string theory: AdS/CFT finds fruitful

application in the study of condensed matter systems, non-equilibrium phenomena in

strongly coupled plasmas, and gives an explanation for confinement and chiral symmetry

braking in non-conformal field theories.

The first connection between string theory and Yang Mills gauge theories was proposed

by ’t Hooft [tH84], who was searching for a small parameter in the strong coupling regime

of quantum chromodynamics in order to obtain valid expansions. Later, the first concrete

conjecture of the AdS/CFT correspondence was stated by Maldacena [Mal99] and claimed

that N = 4 superconformal Yang-Mills (SYM) theory in 4 spacetime dimensions is dual

to Type IIB string theory on AdS5 × S5. An important aspect of this duality, is that

since N = 4 SYM theory is a conformal field theory (CFT), one can consider different

limits of the ’t Hooft parameter, relating the large radius limit of AdS5 × S5, which is

well-approximated by supergravity (low energy limit), to the strongly coupled regime in

the field theory.

It is thus of great interest to derive the AdS/CFT correspondence, also because it is

likely to enlighten several aspects of this holographic duality. Recently, progress in this

direction has been made in a special case which relates the small radius or tensionless

limit of AdS3 × S3 × T4, with k = 1 units of Neveu-Schwartz-Neveu-Schwartz (NS-NS)

flux, to the free symmetric product orbifold CFT, SymN(T4). The first evidence for this

duality was the agreement of the full spectrum in the large N limit, see [EGG19] and

[GG18]. Then, it was shown in [EGG20] that the correlators in the two descriptions

agree manifestly. Moreover, since the string background has pure (and minimal k = 1)

NS-NS flux, it can be described be an exactly solvable worldsheet Wess-Zumino-Witten

(WZW) model. The best description relies on the so-called hybrid formalism of Berkovits

Vafa and Witten [BVW99], where the relevant WZW model is based on the superalgebra

psu(1, 1|2)k. This picture, in addition to having manifest spacetime supersymmetry,

allows to avoid a limitation of the Ramond-Neveu-Schwartz (RNS) formulation, which is

not a priori well defined for k < 2. The supergroup sigma model is, on the other hand,

well-defined at k = 1 and has special features. The tensionless limit corresponds to k = 1,

and is where the supergroup WZW model admits a free field description in terms of two

canonically conjugate pairs of fermions, together with four symplectic bosons (each of

spin one half).
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For what concerns the case of AdS5 × S5, the quantisation of a sigma model with

this target space is challenging. First of all, the presence of Ramond-Ramond (R-R) five-

form flux renders a RNS description impossible [CCY18]. Secondly, the Green-Schwarz

(GS) description [MT98] is fairly intractable except for some special cases, see [MT01]

and [AF09]. Lastly, pure spinor descriptions [Ber00], which avoid some difficulties of

both the above approaches, are not yet technically developed to the point where they

can serve a calculational framework. However, a sigma model was recently proposed in

[GG21a] as a natural generalisation of the similar free field sigma model proposed for

the tensionless limit of AdS3 × S3 × T4. This is based on the superalgebra psu(2, 2|4)
and more precisely, in the tensionless limit on psu(2, 2|4)1. As for the case of psu(1, 1|2),
at level k = 1 also this affine superalgebra has a free field realisation, which is obtained

basically by doubling the oscillators of psu(1, 1|2). In [GG21a] it is then argued that

the corresponding worldsheet gauge constraints reduce the degrees of freedom to a finite

number of oscillators in each spectrally flowed sector. Imposing a set of residual gauge

constraints on this reduced oscillator Fock space then determines the physical spectrum

of the string theory. Remarkably, there is evidence that this prescription reproduces

precisely the entire planar spectrum of single trace operators of the free SYM theory.

However, when considering interactions in the SYM theory, the picture is more in-

volved. It is likely that, just as for the spectrum, the integrability approach to correla-

tors [BAA+11] will enter the picture. In this context, upon the choice of vacuum, the

psu(2, 2|4) symmetry of N = 4 SYM is broken down to psu(2|2)⊕psu(2|2). In particular,

it is very interesting to note that the hexagon approach to SYM correlators [BKV15] is

most naturally formulated in terms of bilinears of su(2|2) bits, which seem to be closely

related to the covariant twistorial wedge modes in [GG21b].

Moreover, an actual WZW model on psu(2, 2|4) yields a spectrum generating algebra

which consists of two commuting copies of psu(2, 2|4), which does not directly match the

symmetries of N = 4 SYM, consisting of one single copy. It thus seems natural to look at

a WZW containing fewer degrees of freedom, and a good candidate is the Lie supergroup

su(2|2). Indeed, there is an inclusion of Lie superalgebras su(2|2)⊕ su(2|2) ⊂ spu(2, 2|4),
that could be interpreted as an embedding of the (finite) spectrum generating algebra of

the WZW model on su(2|2) into the symmetry algebra of N = 4 SYM theory. Moreover,

as mentioned above, in the integrability context the two copies of su(2|2) can be obtained

from psu(2, 2|4) by symmetry braking.

We also point out that the WZW model on psu(2|2)1 is strictly related to that on

psu(1, 1|2)1, where the latter was the central object in the tensionless worldsheet descrip-

tion of AdS3 × S3. One of the differences between the two models lies in the signature

of the metric on the corresponding supergroup, which for su(2|2) is (− − − + ++) and

(− + + + ++) for psu(1, 1|2). From the global (topological) perspective of the corre-

sponding Lie supergroups, the former has a compact bosonic subgroup, while the latter a
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non-compact one. This suggests, that in contrast with psu(1, 1|2)1 which has a continuous

spectrum, we expect the psu(2|2)1 spectrum to be discrete.

The thesis is structured as follows.

We start with an introduction to affine Kac-Moody Lie algebras, their representations

and singular vectors, and we give the Kac-Kazhdan determinant formula for singular

vectors in affine highest weight Verma modules. Then, we present Wess-Zumino-Witten

models from both a geometric and an algebraic perspective and explain how they can be

defined in terms of affine Lie algebras. We explain how the Sugawara construction shows

that they are examples of conformal field theories, and we identify WZW primary fields

with highest weight representations of the underlying affine algebra. A special emphasis

is given to the integrable models, which we argue to be rational CFTs, and we illustrate

this concept with the example of su(2)k at k ∈ Z>0. The chapter ends with a brief

overview on the definitions and elementary properties of Lie superalgebras.

In the second chapter, we start with the discussion of the WZW model on the Lie

superalgebras su(2|2) and psu(2|2), which is the main goal of this thesis. First, these

superalgebras are defined in terms of generators and commutator relations. We then

illustrate the sl(2,R)-representation theory, which comes into play in virtue of the fact

that we have to consider also non-unitary representations of su(2). Then, the represen-

tation theory of su(2|2)k at level k = 1 is worked out; in particular, the shortening of the

allowed multiplets are derived with a purely algebraic method.

The third chapter is dedicated to conformal embeddings, starting from the definitions

and then introducing the coset construction. We briefly present some results in meromor-

phic CFTs, in particular about the uniqueness of vertex operators. We need this result,

in order to then give a criterion for knowing whether the inclusion of the bosonic subal-

gebra into the Lie superalgebra is a conformal embedding. We then apply this criterion,

showing that such a conformal embedding exists for psu(N |N)1 and u(N |N)1 for every

N > 1, and for N = 2 we analyse the implications on the allowed representations and

their Casimir.

Chapter four is devoted to the free field realisation of u(2|2)1, which is explicitely

presented in connection to that of psu(2, 2|4)1. We consider the free field representations

and discuss separately the Neveu-Schwartz (NS) and the Ramond (R) sectors, and for

the latter we show how different definitions of the symplectic boson zero modes action

yields different type of su(2)-representations. We then define the spectral flow action at

the free field level and deduce from it the action on the affine superalgebra generators.

This, for instance, allows us to identify the R-sector singlet representation of u(2|2)1 with
the NS vacuum representation through one unit of a specific spectral flow.

The fifth chapter starts with a review on affine characters and modular invariance

in WZW models, with particular attention to the integrable case. This introduction
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terminates with the suggestive example of û(1) modular invariants, which we used to

draw some analogies to the su(2)−1 scenario. We then recall the characters and modular

matrices of the su(2)1 theory and their relation to the corresponding free field realisation

in terms of four real fermions. Then, the Kac-Kazhdan determinant formula is applied

to su(2)−1 and all the singular vectors of the theory are established. The characters

of the corresponding affine irreducible modules are given, together with their modular

behaviour, and the issue of non-holomorphicity of the character functions is pointed out.

In the last chapter, we consider first the free field realisation of su(2)−1 in terms of four

symplectic bosons. In particular, we compute the free field characters and manage to de-

compose them in infinite sums of irreducible su(2)−1-characters thanks to a denominator

identity for Lie superalgebras. This is done for the NS sector, as well as for the different

R sectors. We then calculate the free field characters of psu(2|2)1 and decompose the vac-

uum module in affine highest weight representations of the bosonic subalgebra. Luckily,

this allows to express the vacuum character in terms of theta functions and derivatives

of those. We compute the spectrally flowed characters and their modular behaviour, and

find that for the modular S-matrix involving every spectrally flowed versions of the vac-

uum, an explicit linear dependence on the conformal parameter τ is present. Finally, the

free field characters of su(2|2)1 are computed, and explicit affine branching functions for

the embedding of the bosonic subalgebra are found.
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2 Wess-Zumino-Witten models and affine Lie alge-

bras

For this section we will mainly follow chapters 14 and 15 of [DFMS97]. We try to present

the material that is relevant to our discussion; several results and calculations are just

presented as facts, for proofs and more details we refer to the corresponding bibliography.

The reader is assumed to be familiar with the theory of simple finite-dimensional Lie

algebras and their representations, for which a good review is given in chapter 13 of

[DFMS97].

2.1 Affine Lie algebras

Let g be a real or complex semisimple Lie algebra generated by elements Ja ∈ g for

1 ≤ a ≤ dim g satisfying [Ja, J b] = i
∑

c f
ab
c J

c for fabc ∈ C, and denote by h the Cartan

subalgebra whose generator are denoted by H1, . . . , Hr ∈ g . We consider an infinite-

dimensional generalisation of this algebra, called the affine Kac-Moody algebra or

affine Lie algebra over g, denoted by ĝ or later by gk. This is generated by elements

Jan , L0 and k̂ for n ∈ Z , satisfying the commutation relations

[Jan, J
b
m] = i

∑
c

fabc J
c
n+m + k̂nδabδn+m,0 ,

[L0, J
a
n] = −nJan+m ,

[k̂, Jan] = [k̂, L0] = 0 .

(1)

In particular, the zero modes Ja0 of ĝ generate a Lie subalgebra isomorphic to g , which we

sometimes refer to as the finite subalgebra. Note that Eq. (1) implies that k̂ is a central

element; indeed, one can first define the so called loop algebra consisting only of the

modes Jan, satisfying the commutation relations given by the first line of Eq. (1) without

the term involving k̂, and then show that there exists a unique central extension of this

algebra given by the introduction of k̂ . Similarly, the generator L0 is introduced in order

to extend the abelian subalgebra {H1
0 , . . . , H

r
0 , k̂} to a maximal abelian subalgebra ĥ.

One can then define a Killing form on ĝ extending that of g, which yields an isomorphism

between the Cartan subalgebra ĥ and its dual ĥ∗ inducing a scalar product on the latter.

We choose the ordered basis (H1, . . . , Hr, k̂,−L0) of ĥ and we call affine weights the

elements

λ̂ = (λ; kλ;nλ) ∈ ĥ∗ .

The induced scalar product on affine weights takes the form

⟨λ̂, µ̂⟩ = ⟨λ, µ⟩+ kλnµ + kµnλ ,
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where on the right hand side we used the induced scalar product on h∗, denoted in the

same way.

Similarly to the finite case, affine weights in the adjoint representation are called affine

roots. We denote by ∆ the set of roots of g and by ∆+ the subset of positive roots in

which we fix a basis α1, . . . , αr of simple roots and the associated coroots α∨
i := 2αi/|αi|2.

For a root α ∈ ∆ we define α ·H :=
∑

i α
iH i, where [H i, Eα] = αiEα for every 1 ≤ i ≤ r

and Eα ∈ g is the generator associated to the root α. We also denote the Cartan

generators in the Chevelley basis by hi := α∨
i ·H. Then, the affine roots take the form of

α̂ = (α; 0;n) for n ∈ Z , and δ = (0; 0; 1) ,

where (α; 0;n) is associated with the generator Eα
n ∈ ĝ and nδ with H i

n ∈ ĝ. We write

simply α instead of (α; 0; 0); then we can write α̂ = α + nδ. A basis of affine roots is

obtained from {αi} by adding the extra simple root

α0 := (−θ; 0; 1) = −θ + δ ,

where θ is the highest root of ∆, that is, the unique root
∑

imiαi whose expansion

maximizes
∑

imi. The coefficients of the decomposition of θ in the bases {αi} and {α∨
i }

bear special names, being called, respectively, the marks {ai} and the comarks {a∨i }:

θ =
r∑
i=1

aiαi =
r∑
i=1

a∨i α
∨
i .

We define the affine coroots as

α̂∨ :=
2

|α̂|2
(α; 0;n) =

2

|α|2
(α; 0;n) = (α∨; 0;

2

|α|2
n) ,

and for finite roots we omit the hat,

α∨
0 := α0 , α∨

i := (α∨
i ; 0; 0) .

Then, we have the following equations

δ =
r∑
i=0

aiαi =
r∑
i=0

ariα
∨
i , h∨ := 1 +

r∑
i=1

a∨i =
r∑
i=0

a∨i ,

where h∨ is the dual Coxeter number of g, which only depends on the finite Lie algebra.

The full set of affine roots is

∆̂ = {α + nδ : n ∈ Z, α ∈ ∆} ∪ {nδ : n ∈ Z, n ̸= 0} .
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The root δ is called an imaginary since

⟨δ, δ⟩ = 0 ,

and likewise all the roots in {nδ}, which all have multiplicity equal to r. The other roots

are called real and they all have multiplicity equal to 1. A set of positive affine roots

is given by

∆̂+ = {α + nδ : n > 0, α ∈ ∆} ∪ {α : α ∈ ∆+} .

One can the define the extended Cartan matrix and the extended Dynkin di-

agrams as in the classification of complex simple finite-dimensional Lie algebras, see

[DFMS97] for more details.

In the finite case, the fundamental wights ω1, . . . , ωr ∈ h∗ are defined as the elements

of the basis dual to the simple coroots, that is,

⟨ωi, α∨
j ⟩ = δij ∀ 1 ≤ i, j ≤ r .

Similarly, the affine fundamental weights are defined as elements of ĥ∗ by

ω̂i := (ωi; a
∨
i ; 0) for 1 ≤ i ≤ r , ω̂0 := (0; 1; 0) .

Writing ωi = (ωi; 0; 0) it follows that ω̂i = a∨i ω̂0+ωi. Affine weights can thus be expanded

as

λ̂ =
r∑
i=0

λiω̂i + hδ ,

where we call λi the Dynkin labels of λ̂ and h ∈ R its conformal dimension. We

have that

k := λ̂(k̂) =
r∑
i=0

a∨i λi = ⟨λ̂, δ⟩

called the level. Since in most applications of interest, the level is fixed from the outset,

from now on we will identify k̂ with its eigenvalue k and denote ĝ by gk. Note that the

zeroth Dynkin label λ0 is related to the finite Dynkin labels λi for 1 ≤ i ≤ r by

λ0 = k − ⟨λ, θ⟩ = k −
r∑
i=1

a∨i λi . (2)

Affine weights will therefore be generally given in terms of Dynkin labels under the form

λ̂ = [λ0, λ1, . . . , λr] ,

where we stress that this notation does not keep track of the eigenvalue of L0 , namely
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of the conformal dimension of λ̂. However, as we will see this will not be a problem for

WZW models, since the conformal dimension of an affine highest weight is determined

by its finite part. Finally, the affine Weyl vector is defined as

ρ̂ :=
r∑
i=0

ω̂i = [1, 1, . . . , 1] ,

thus ρ̂(k̂) = h∨.

2.1.1 Affine highest weight representations

In this section we discuss one type of affine representations, that is, Lie algebra repre-

sentations of gk with arbitrary but fixed level k ∈ R. This is called a highest weight

representation and it is characterised by a unique highest weight state |λ̂⟩ annihilated
by the action of all ladder operators of positive roots

Eα
0 |λ̂⟩ = E±α

n |λ̂⟩ = H i
n |λ̂⟩ = 0 , ∀n > 0, α ∈ ∆+ . (3)

The eigenvalue λ̂ of this state is the affine highest weight of the representation, namely

H i
0 |λ̂⟩ = λi|λ̂⟩ for i ̸= 0 , k̂ |λ̂⟩ = k|λ̂⟩ , L0 |λ̂⟩ = h |λ̂⟩ . (4)

All the states in the module are then generated by the action of the lowering operators

on |λ̂⟩. We denote by Ωλ̂ the set of all affine weights in the highest weight representation

of λ̂. From an algebraic point of view, one usually sets h equal to zero by redefining

L0. Note the position of the i-label in λi differentiates this value from the Dynkin label

λi = ⟨λ, α∨
i ⟩.

The analogues of irreducible finite-dimensional representations of g are representations

whose projections onto the su(2) algebra associated with any real root are finite. One

can reduce the analysis on simple roots. Then, for any λ̂′ ∈ Ωλ̂ one has that

⟨λ̂′, α∨
i ⟩ = −(pi − qi) ∀ 0 ≤ i ≤ r

for some positive integers pi, qi, which thereby implies that

λ′i ∈ Z ∀ 0 ≤ i ≤ r .

For the highest weight λ̂ ∈ Z, all pi are zero, and therefore

λi ∈ Z+ ∀ 0 ≤ i ≤ r .
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This requires in particular that

λ0 = k − ⟨λ, θ⟩ ∈ Z>0 .

Since ⟨λ, θ⟩ ∈ Z>0, this immediately implies that

k ∈ Z>0 and k ≥ ⟨λ, θ⟩ . (5)

An affine weight for which all Dynkin labels are non-negative integers is called dominant,

and the set of all dominant weights at level k is denoted by P k
+. A consequence of Eq. (5)

is that for fixed value of k, there can be only finitely many dominant highest weight

representations. For instance, at k = 1, the only such representations are those with

highest weight ω̂i such that the corresponding simple root αi has unit comark. Since

a∨0 = 0 independently on the algebra, ω̂0 is always dominant and the level-1 highest

weight representation associated to it is called the basic representation. For su(N),

all comarks are one and hence there are N dominant highest weight representations at

level 1 whose highest weights are ω̂i for 0 ≤ i ≤ r.

Representations that decompose further into finite irreducible representations of su(2)

and can further be written as a direct sum of finite-dimensional weight spaces are said to

be integrable. Even though the adjoint representation is not a highest weight represen-

tation, it is integrable. The first condition is clearly satisfied, while the second condition

is equivalent to the root-space decomposition, that is, the decomposition of the root space

into a sum of finite roots and imaginary roots. Dominant highest-weight representations

are also integrable. Moreover, if

(Jan)
† = Ja−n , or (H i

n)
† = H i

−n (Ea
n)

† = Ea
−n , (6)

then dominant highest-weight representations are easily checked to be unitary provided

Eq. (5) holds true.

2.1.2 Singular Vectors and Kac-Kazhdan determinant

For dominant highest weights, Eq. (5) is equivalent to the existence of the following

singular vectors in the Verma module of the highest weight state |λ̂⟩:

Eαi
0 |λ̂⟩ = Eθ

1 |λ̂⟩ = 0 ,

and

(E−αi
0 )λi+1 |λ̂⟩ = (Eθ

−1)
k−⟨λ,θ⟩+1 |λ̂⟩ = 0 , (7)
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for 1 ≤ i ≤ r. In sharp contrast with simple Lie algebras, when these singular vectors are

quotiented out from the dominant highest-weight Verma module (modulo their possible

intersections), the resulting irreducible module is not finite-dimensional. The imaginary

root can be subtracted from any weight without leaving the representation. The source

of infinity clearly lies in the absence of a singular vector related to the imaginary root δ,

that is, a singular vector that would involve H i
n for n < 0. In the following, we will call

the grade or level the L0 eigenvalue, shifted such that L0 |λ̂⟩ = 0 on the highest weight

state |λ̂⟩.
The discussion above about singular vectors, and in particular Eq. (7), holds only for

integrable highest weight representations. However, Kac and Kazhdan [KK79] showed

that for any affine Lie algebra gk with symmetrisable generalised Cartan matrix1, there

exists a formula that identifies all the affine singular weights in an highest weight mod-

ule for gk. We will not explain what does it mean for an affine Lie algebra to have a

symmetrisable Cartan matrix, since we will apply this result only to the specific case of

su(2)k which is known to satisfy this condition.

More concretely, Kac and Kazhdan showed that highest weight Verma modules can

be equipped with a unique (up to normalisation) invariant inner product, the Shapovalov

form, and in particular they gave a formula for the determinant of the Shapovalov form

of the Verma module with affine highest weight λ̂ restricted to the weight space µ̂ ∈ Ωλ̂,

which we denote by detλ̂(µ̂).

Theorem 2.1 (Kac-Kazhdan determinant, [KK79]). Let gk be an affine Lie algebra with

a symmetrisable Cartan matrix, λ̂ ∈ h∗k and µ̂ ∈ Ωλ̂. Then, up to a non-zero factor

(depending on the choice of basis) one has

detλ̂(µ̂) =
∏
α̂∈∆̂+

∞∏
l=1

(
⟨λ̂+ ρ̂, α̂⟩ − l

⟨α̂, α̂⟩
2

)P (µ̂−lα̂)

, (8)

where P (µ̂) denotes the multiplicity of µ̂ in the vacuum Verma module of gk, that is, the

affine highest weight module generated by the highest affine weight kω̂0.

The non-trivial singular vectors and their descendants are all null with respect to the

Shapovalov form, meaning that their norm is zero. The presence of such null states can

then be detected by computing the determinant of the Shapovalov form in each affine

weight space µ̂. Indeed, the presence of a singular vector in the Verma module of λ̂ is

signalled by the vanishing of one of the factors appearing in Eq. (8) and the vanishing of

the arguments of the function P occurring in the corresponding exponent (non-vanishing

arguments of this P in general correspond to descendants of the singular vector). We will

refer to weights which admit a singular vector as singular weights. Another consequence

1Actually, the result in [KK79] is proven for a class of objects called contragredient Lie algebras, which
include affine Lie algebras, still under the condition that the associated Cartan matrix is symmetrisable
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from [KK79] is that if a weight is singular, than the null vector of that weight is unique

up to normalisation.

2.2 Wess-Zumino-Witten models

In this section we follow chapter 15 of [DFMS97]. We assume the reader being familiar

with the concept of conformal field theory, for which good references are [BP09] and

[DFMS97].

2.2.1 WZW from a geometrical perspective

Wess-Zumino-Witten (WZW) models are examples of two-dimensional conformal field

theories with a symmetry algebra given by an affine Lie algebra, which thus generates the

spectrum of the theory. What is peculiar of these models is that they have a nice geometric

interpretation in terms of a sigma model on a (semisimple) Lie group; in particular they

can be formulated directly by an action functional. We will thus introduce them by means

of this action and show how to extract from it their algebraic structure, which provides

them with an alternative algebraic definition.

We start by considering a quantum field theory on a Riemann surface Σ, such as

the sphere S2 ∼= C ∪ {∞}, with complex local coordinates (z, z̄). We work in Euclidean

signature, such that we can apply the tools from complex geometry. LetG be a semisimple

Lie group and denote by ⟨·, ·⟩g a non-degenerate invariant inner product on g2, which by

translation can be extended to an invariant Riemannian metric on G and on the cotangent

bundle T ∗G , that we both denote by ⟨·, ·⟩. The fields of this model are smooth maps

g ∈ C∞(Σ, G) whose action functional is defined as a sigma model

S[g] = S0[g] + kSWZ [g] , (9)

where

S0[g] :=
1

4a2

∫
Σ

⟨dg, dg⟩ = 1

4a2

∫
Σ

dz2⟨g−1∂µg g
−1∂µg⟩g ,

for some constant a ∈ R \ {0} to be determined later, and the so called Wess-Zumino

term is given by

SWZ [g] :=

∫
B

g∗H = − i

12π

∫
B

⟨g−1dg ∧ g−1dg ∧ g−1dg⟩g ,

where B is a three-dimensional manifold whose boundary is Σ and H is a multiple of

the harmonic three form of G, see [LW22]. This makes sense only if there exists an

2Since G is semisimple, the Killing form provides such scalar product. Note that in a matrix repre-
sentation, this is given by ⟨X,Y ⟩g = trXY for X,Y ∈ g, normalised such that tr(JaJb) = 1

2δ
ab on the

generators of the Lie algebra.
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extension of g to B; this requires π2(G) ∼= 1, which is true for example if G is compact.

Then, an extension is in general not unique. For the WZW model to be well-defined,

the path integral and hence eiS should not depend on the choice of the extension. The

Wess–Zumino term is invariant under continuous deformations of g, and only depends

on its homotopy class. Possible homotopy classes are controlled by the homotopy group

π3(G) . If G is compact connected simple, then π3(G) ∼= Z and different extensions of g

lead to values of SWZ [g] that differ by integers. Therefore, they lead to the same value

of the path integral provided the level obeys

k ∈ Z . (10)

Thus, the classical theory is defined for any k ∈ R but quantisation requires the level to

be an integer. We remark that this topological argument is true for compact connected

simple groups G, but dropping one of these condition might modify the quantisation

condition Eq. (10). One can show that Eq. (9) has a G×G symmetry given by

G×G× C∞(Σ, G) → C∞(Σ, G), (gL, gR, g) 7→ gLggR ,

and derive the equation of motions of Eq. (9). These reflect this symmetry, and can be

expressed in local coordinates (z, z̄) as(
1 +

a2k

π

)
∂(g−1∂̄g) +

(
1− a2k

π

)
∂̄(g−1∂g) = 0 ,

where ∂ := ∂z and ∂̄ := ∂z̄. For a given k, we can then choose a such that one of the two

terms vanishes; without loss of generality we choose k ∈ Z>0 and a2 = π/k. This choice

determines the WZW action Eq. (9). We obtain the equation of motion

∂(g−1∂̄g) = 0 , (11)

which is solved by g(z, z̄) = g(z)ḡ(z̄) for every g, ḡ ∈ C∞(Σ, G). Also, Eq. (11) implies

the conservation of the antiholomorphic current J̄ := kg−1∂g, which in turn implies that

the current J := −k∂gg−1 is holomorphic. Thus, the theory presents a holomorphic

and an antiholomorphic current; this property enhances the G×G symmetry to a local

G(z)×G(z̄) symmetry acting by

g(z, z̄) 7→ gL(z)g(z, z̄)gR(z̄)
−1 , (12)

where gL, gR ∈ C∞(Σ, G) are holomorphic and antiholomorphic respectively.

12



2.2.2 WZW from an algebraic perspective

We now move to quantizing the theory. An efficient way of doing it is to consider the

operator product expansions (OPE) of the currents. Note that the currents are maps

J(z), J̄(z̄) ∈ C∞(Σ, g), hence we may write J(z) =
∑

a J
a(z)T a, where 1 ≤ a ≤ dim g

are adjoint indices and T a generators of g, and similarly for J̄ . In Eq. (12) we consider

infinitesimal variations gL(z) = expG(ω(z)) with expG : g → G being the Lie group expo-

nential and ω ∈ C∞(Σ, g), and similarly for gR. Then, the variation of the holomorphic

current is given by

δωJ = [ω, J ]− ∂ω ,

or equivalently

δωJ
a = i

∑
b,c

fabc ω
bJ c − k∂ωa , (13)

where the indices in fabc are raised and lowered with the Killing form ⟨·, ·⟩g. Also, the

Ward identity for the local symmetry Eq. (12) is given by

δω,ω̄⟨X⟩ = − 1

2πi

∮
dz
∑
a

⟨JaX⟩+ 1

2πi

∮
dz̄
∑
a

ω̄a⟨J̄ax⟩ . (14)

Then, substituting Eq. (13) into Eq. (14) leads to the OPE

Ja(z)J b(w) ∼ kδab

(z − w)2
+ i
∑
c

fabc
J c(w)

(z − w)
. (15)

We call this OPE structure that of a current algebra. By introducing the modes Jan from

the Laurent expansion

Ja(z) =
∑
n∈Z

z−n−1Jan ,

one checks that Eq. (15) is equivalent to Eq. (1) for the current modes at level k̂ = k.

We can repeat the same argument for the antiholomorphic current, which yields an other

copy of the affine algebra gk commuting with that generated by the holomorphic modes,

since the OPE Ja(z)J̄ b(w̄) ∼ 0 implies that [Jan, J̄
b
m] = 0 for every a, b and n,m ∈ Z.

Remark 2.2. We remark that even though we considered the field g(z, z̄) to transform in

the fundamental representation of G, the WZW model is defined for g transforming in

any unitary representation of G. Neither we need to specify the representations of the left

and right G transformations in Eq. (12). The the full spectrum of the theory is uniquely

fixed by the group G and it can in principle be obtained by canonical quantization, and

global considerations determine the combinations of left and right representations that

can appear. However, we will turn to an algebraic formulation of WZW models in terms

of the affine algebra gk. We stress that gk is not the symmetry algebra of the theory, since
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Jan do not commute with the Hamiltonian for n ̸= 0 but only the zero modes do. For this

reason, the affine gk is referred to as the spectrum-generating algebra. We will shortly

show that WZW models are indeed examples of CFT; this is due to the occurrence of

two independent conserved currents generating independent affine algebras, which leads

to conformal invariance via the Sugawara construction. Then, we will identify primary

fields with dominant weights and physical spectra will be obtained by modular invariance.

2.2.3 The Sugawara construction

To show that the theory is conformal, we argue that the Virasoro algebra embeds in

the universal enveloping algebra of gk: this is the Sugawara construction. This can be

done for both left and right movers, that is for the holomorphic and antiholomorphic

currents, hence we actually obtain an embedding of two copies of the Virasoro algebra

in the enveloping algebra of the the two independent copies of gk. In the following we

concentrate on the holomorphic case and we assume that g is simple. From Eq. (9) one

can derive the holomorphic classical energy-momentum tensor T (z) = γ
∑

a(J
aJa)(z),

which after quantising the theory requires a normal ordering prescription that we fix to

be the conventional one:

:AmBn: :=

AmBn if m ≤ −1 ,

BnAm if m ≥ 0 ,

for the modes Am and Bn of any field in the theory and n,m ∈ Z. The constant prefactor
γ ∈ C in the normal ordered energy momentum tensor is fixed by the quantum theory,

requiring that the OPE T (z)Ja(w) reflects the fact that Ja(z) has conformal weight one

for every a. This fixes T (z) to be the so called Sugawara energy-momentum tensor,

T (z) =
1

2(k + h∨)

∑
a

:JaJa: (z) , (16)

where h∨ is the dual Coxeter number of g, which is the quadratic Casimir of the adjoint

representation, that is,
∑

b,c f
ab
c f

bc
d = 2h∨δab. For instance, for su(N) we have that

h∨ = N . Then one computes the OPE

T (z)T (w) ∼ c

2(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
,

which is that one of the Virasoro algebra, with a specific central charge

c = c(gk) =
k dim g

k + h∨
. (17)
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This construction proves that on the quantum level, WZWmodels define CFTs. Actually,

Eq. (16) may be regarded as an alternative definition of the gk-WZW model. One can

compute that the modes of T (z),

Lm =
1

2(k + h∨)

∑
n∈Z

:JanJ
a
m−n: =

1

2(k + h∨)

(∑
n≤−1

JanJ
a
m−n +

∑
n≥0

Jam−nJ
a
n

)

satisfy the Virasoro algebra

[Lm, J
a
n] = −nJam+n ,

[Lm, Ln] =
c

12
m(m2 − 1)δm+n,0 + (m− n)Lm+n ,

(18)

with the central charge as in Eq. (17). Eq. (18) implies that the affine Kac-Moody

modes and the Virasoro modes are combined in a semidirect product structure and in

particular the first line in Eq. (18) shows that gk is a Lie ideal inside the combined algebra.

Moreover, in Eq. (18) the commutativity of the zero modes of the affine algebra with the

Virasoro generators and with L0 reflects the built-in g-invariance. However, the full affine

Lie algebra is not a symmetry algebra, since its generators do not all commute with L0.

It will turn out to be the spectrum-generating algebra of the theory. We remark that

the Sugawara construction has been presented in terms of the particular currents Ja(z),

whose modes are orthonormal with respect to the Killing form ⟨·, ·⟩g, that is

⟨Jam, J bn⟩g = δabδm+n,0 .

In a generic basis J̃am, the affine Lie commutator is changed to

[J̃am, J̃
a
n] = i

∑
c

f̃abc J̃
c
m+n + kn⟨J̃am, J̃ bn⟩δn+m,0

where [J̃a0 , J̃
b
0 ] = i

∑
c f̃

ab
c J̃

c
0 . Then, the energy-momentum tensor in this basis reads

T (z) =
1

2(k + h∨)

∑
a,b

1

⟨J̃a0 , J̃ b0⟩
:J̃aJ̃a: (z) . (19)

Indeed, L0 contains the normal-ordered quadratic Casimir operator of the finite g, it-

self defined in terms of the inverse of the Killing form; this directly implies the above

generalization.

When g is semisimple, that is

g ∼=
⊕
i

gi

for a finite set of simple Lie algebras gi (where the suffix i is simply a counting index, not
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an exponent in any sense), then we define the Sugawara energy-momentum tensor as

T gk :=
∑
i

T giki , (20)

where one can choose the levels ki independently, but every choice determines k. Eq. (20)

is easily shown to satisfy the Virasoro algebra with central charge

c(gk) =
∑
i

c(giki) ,

where c(giki) is as in Eq. (17).

2.2.4 WZW primary fields as highest weight states

We established that the Kac-Moody algebra acts on the Hilbert space of the theory,

hence all states of the CFT will transform in a representation of gk. More precisely,

analogously to the purely conformal case where primary fields transform covariantly with

respect to scale transformations, a WZW primary field is defined as a field that transforms

covariantly with respect to local G(z) × G(z̄) transformations. By Eq. (14) we can

reformulate this property for a solution Φ(z, z̄) = Φλ(z)Φµ(z̄) of Eq. (11) consisting in

fields Φλ, Φµ transforming in representations λ, µ of g, that is, taking values in the

respective representation spaces, see Remark 2.2, in terms of the OPE

Ja(z)Φλ(w) ∼
−T aλΦλ(w)

z − w
,

J̄a(z̄)Φµ(w̄) ∼
Φµ(w̄)T

a
µ

z̄ − w̄
,

(21)

where T aλ , T
a
µ are matrices of the representations λ, µ of g. By expanding the currents as

Ja(z) =
∑
n∈Z

(z − w)−n−1Jan(w)

we have that Eq. (21) yields

Ja0 |λ⟩ = −T aλ |λ⟩ ,

Jan |λ⟩ = 0 ∀n > 0 ,
(22)

after introducing the state |λ⟩ := Φλ(0) |0⟩, where |0⟩ denotes the vacuum of the theory.

A remarkable aspect of WZW models is that WZW primary fields are also Virasoro

primaries. Indeed, one computes

Ln |λ⟩ = 0 ∀n > 0 , (23)
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and

L0 |λ⟩ = hλ|λ⟩ with hλ =
Cλ

2(k + h∨)
, (24)

where Cλ =
∑

a T
a
λT

a
λ is the quadratic Casimir of the representation λ of g. Eq. (23)

confirms that every WZW primary is a Virasoro primary, but the converse is not true:

a Virasoro primary can be a WZW descendant, as it is the example for the field Ja.

Eq. (22) implies that WZW primaries are associated with highest weight representations

λ of g, and all the other states of the theory have the form

Ja1−n1
. . . JaN−nN |λ⟩ for ni > 0 , (25)

that is, they belong to the affine highest weight representation λ̂ = (λ; k;hλ) of gk, where

hλ is as in Eq. (24). The states in Eq. (25) are associated with descendants fields. The

application of negative Virasoro modes needs not to be taken into account separately,

since the energy momentum tensor already belongs to the enveloping algebra of gk.

One can derive the conformal Ward identities for correlator functions of n WZW

primary fields Φλi for some g-representations λi. These are related to the Virasoro primary

nature of the fields, and they take the form

n∑
i=1

T aλi⟨Φλ1(z1) . . .Φλn(zn)⟩ = 0 .

These identities fix the structure of the two- and three-point functions. Further con-

straints arise from the null fields in the primary representation, that is, the affine singu-

lar vectors and also from the definition of the Sugawara energy-momentum tensor. In

particular, by inserting the zero vector(
L−1 +

1

k + h∨

∑
a

(Ja−1T
a
λi
)

)
|λi⟩

inside the correlation function of a set of primary fields, one obtains the celebrated

Knizhnik-Zamolodchikov equation:(
∂zi +

1

k + h∨

∑
j ̸=i

∑
a T

a
λi
⊗ T aλj

zi − zj

)
⟨Φλ1(z1) . . .Φλn(zn)⟩ = 0 .

The solutions of this equation are the correlation functions of primary fields. As in the

purely Virasoro case, the correlation functions involving descendant fields can be obtained

directly from those of primary fields.

Note that Eq. (22) implies that the primary fields of a WZW model, that is, the

fundamental fields from which all other fields can be obtained by the application of the
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Virasoro or affine Lie generators, are those associated with the highest weight states of

g-representations. This means that a state |λ̂⟩ associated to a primary field as above,

satisfies Eq. (3) and Eq. (4) with h = hλ as in Eq. (24). A special class of primary

fields is formed by highest weight states of integrable representations λ̂ ∈ P k
+. Note that

there could be none; for instance if k < 0, then P k
+ is empty by Eq. (5). These states

generate finite representations with respect to any su(2) subalgebra of gk, which as we

have seen implies the presence of the singular vectors of Eq. (7) in the Verma module

of highest weight state |λ̂⟩. The presence of these singular vectors further constraints

the structure of the correlation functions in the theory. Remarkably, it turns out that

all the states in non-integrable representations decouple from the theory, that is, their

correlations with arbitrary fields vanish. We stress that this derivation is general, but it

requires the existence of at least one field corresponding to an integrable representation,

that means

P k
+ ̸= ∅ . (26)

Note that, as explained before, for k ≥ 1 condition Eq. (26) is always true. We call a WZW

model on an affine Lie algebra gk integrable if Eq. (26) holds true. So, in integrable

WZW models the only physically relevant fields are those in integrable representations.

Therefore, primary fields are in correspondence with the affine dominant weights λ̂ ∈ P k
+,

the highest weights of integrable representations. Since there is a finite number of such

weights for a fixed positive integer k, it follows that there is a finite number of primary

fields. We thus conclude, that integrable WZW models are rational CFTs.

2.3 The example of su(2)k

We consider the compact simple real Lie algebra su(2) with generators Ka for a = 3,±
in the usual spin basis, that is

[K3, K±] = ±K± , [K+, K−] = 2K3 .

Then the Cartan subalgebra is one-dimensional and generated by K3, and we take the

generator dual to the positive root to be K+. The affine su(2)k algebra is defined by the

commutation rules

[K3
m, K

3
n] =

k

2
mδm+m,0 ,

[K3
m, K

±
n ] = ±K±

m+n ,

[K+
m, K

−
n ] = 2K3

m+n + kmδm+n,0 .

(27)
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Eq. (27) are equivalent to the OPEs

K3(z)K3(w) ∼ k/2

(z − w)2
,

K3(z)K±(w) ∼ ±K±(w)

(z − w)
,

K+(z)K−(w) ∼ k

(z − w)2
+

2K3(z)

(z − w)
.

The Sugawara energy-momentum tensor reads

T su(2)k =
1

k + 2

[
:K3K3: +

1

2

(
:K+K−: + :K−K+:

)]
.

In the notation introduced before, we have that θ = α1 is the only positive root of the

finite su(2) and it corresponds to the generator K3. Also,

⟨α0, α
∨
1 ⟩ = ⟨α1, α

∨
0 ⟩ = ⟨α1, α0⟩ = −α2

1 = −2 .

In Dynkin labels, the simple roots are

α0 = [2,−2] , α1 = [−2, 2] .

The complete set of roots is

∆̂ = {±α1, ±α1 + nδ, nδ : n ∈ Z, n ̸= 0} ,

corresponding to the generators K±
0 , K

±
n and K3

n respectively. Let λ̂ = [λ0, λ1] be an

affine weight, then by Eq. (2) we have that

λ0 = k − λ1 ,

and one can check that λ1 = 2ℓ, where ℓ ∈ 1
2
N is the su(2) spin of the highest weight

state |λ̂⟩, that is K3
0 |λ̂⟩ = ℓ|λ̂⟩. Since the affine weight is completely determined by ℓ,

we adopt the notation |ℓ⟩ := |λ̂⟩. Then, by scaling the su(2) Casimir by a factor 1/2,

such that it is equal to ℓ(ℓ + 1) on the finite highest weight representation of spin ℓ, by

Eq. (24) we have that the conformal dimension of |ℓ⟩ is

hℓ =
ℓ(ℓ+ 1)

k + 2
. (28)
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All together, the affine su(2)k highest weight representation generated by |ℓ⟩, that is the
affine weight with finite weight equal to 2ℓ ∈ N, is defined by

K+
0 |ℓ⟩ = K±

n |ℓ⟩ = 0 ∀n > 0 ,

K3
0 |ℓ⟩ = ℓ |ℓ⟩ ,

L0 |ℓ⟩ =
ℓ(ℓ+ 1)

k + 2
|ℓ⟩ .

(29)

The canonical norm on the Verma module V(k)
ℓ of highest weight state |ℓ⟩ is given by

Eq. (6), which specifies a real form on the Kac-Moody algebra and implies that we are

indeed considering the compact form su(2).

For k ∈ Z>0, the singular vectors given by Eq. (7) are all encoded in the following

states:
(K−

0 )
2ℓ+1 |ℓ⟩ = 0 ,

N := (K+
−1)

k+1−2ℓ |ℓ⟩ = 0 ,
(30)

where the first state simply means that |ℓ⟩ transforms in the finite-dimensional spin-ℓ

representation of the finite su(2), which is given by the zero modes Ka
0 . On the other

hand, one can explicitely show using the commutator relations that N is a singular

vector, in the sense that it is again an affine highest weight state. It turns out that

the singular vectors Eq. (30) together with their descendants are the only null-vectors in

the Verma module V(k)
ℓ and hence we obtain the corresponding irreducible representation

by taking the quotient by the null-vector relations Eq. (30). We denote this irreducible

representation of su(2)k by H(k)
ℓ .

The presence of these null-vectors constrains the possible representations severely.

Since integrable WZW models on compact groups are unitary, it is crucial that the

integrable representations are free of negative norm states. For that, one can show by

induction on N ∈ N that for arbitrary k ∈ R we have that

∣∣(K+
−1)

N |ℓ⟩
∣∣2 = N∏

n=1

n(k + 1− n− 2ℓ) , (31)

assuming that |ℓ⟩ is normalised. This shows algebraically that for unitarity we must

require

k ∈ Z>0 and 0 ≤ ℓ ≤ k

2
,

which are exactly Eq. (5). This follows from the fact that N = 0 together with the

formula for its norm, given by Eq. (31) with N = k+1−2ℓ. In particular, it follows that

in the integrable case there are only finitely many representations as expected.

There is something peculiar that is present at level k = 1, which is that su(2)1

possesses a free field realisation in terms of four real (or two complex) free fermions ψi
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for 1 ≤ i ≤ 4 satisfying the anti-commutation relation

{ψi, ψj} = δij .

Then, the generators Ka can be constructed by taking bilinear combinations of the free

fermions; we will come back to this construction later when we discuss the free field

realisation of u(2|2)1. Analogously, one can show that N real fermions ψi realise the

WZW model on so(N)1 , whose central charge is c = N/2. Indeed, such free field theory

has Lagrangian

S =

∫
Σ

dz2ψ̄iγµ∂µψ
i ,

where there is an implicit sum over i. It is easy to see that S has an SO(N)-symmetry

acting by rotating the fermions. The corresponding currents are

Ja(z) =
1

2
T aij(ψ

iψj)(z) ,

where T a are so(N) generators in the fundamental representation. By general arguments,

these currents have to satisfy an so(N)k affine Kac-Moody algebra, which turn out to

have level k = 1.

2.4 Lie superalgebras

We have now introduced the basic ingredients for studying WZW models on Lie groups or

algebras. However, the actual model we will consider is built on a Lie superalgebra. We

thus define this concept, following [Kac77]. Throughout this chapter we will work with

objects defined over the field R or C and we assume all the algebras to be associative.

2.4.1 Basic definitions and properties

A superalgebra a is a Z2-graded algebra a = a(0) ⊕ a(1), that is

X ∈ a(i), Y ∈ a(j) =⇒ XY ∈ a(ij) ∀ i, j ∈ Z2 .

We call elements in a(0) bosonic or even, while those in a(1) fermionic or odd. We call

an element X ∈ a homogeneus if X ∈ a(i) for some i ∈ Z2. For a homogeneous element

X ∈ a we define the degree or parity as

|X| :=

0 if X ∈ a(0) ,

1 if X ∈ a(1) ,
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as an element of Z2. A linear subspace b ⊂ a is called Z2-graded if

b =
⊕
i∈Z2

(
b ∩ a(i)

)
.

A subalgebra of a is a Z2.graded subalgebra; the same is true for ideals. We can then

define the quotient of superalgebra by an ideal, which one can check to be again a superal-

gebra. A superhomomorphism of superalgebras a and a′ is an algebra homomorphism

Φ: a → a′ that preserves the grading, in the sense that

Φ(a(i)) ⊂ a(φ(i)) ∀ i ∈ Z2 ,

where φ is an automorphism of Z2, which we take to be the identity unless differently

stated. A superisomorphism is a superhomomorphism which is an algebra isomorphism

on the underlying algebras. Direct and semidirect sums of superalgebras are defined in

the usual way, while the tensor product a⊗ b of two superalgebras consist in the tensor

product of the underlying vector spaces with the induced Z2-grading and the operation

defined by

(X1 ⊗ Y1)(X2 ⊗ Y2) := (−1)|Y1||X2|X1X2 ⊗ Y1Y2 ∀Xn ∈ a, Ym ∈ b .

A Lie superalgebra is a superalgebra g = g(0) ⊕ g(1) together with a bilinear map

[·, ·] : g× g 7→ g called the Lie superbracket of Lie supercommutator satisfying

[X, Y ] = −(−1)|X||Y |[Y,X] ,

[X, [Y, Z]] = [[X, Y ], Z] + (−1)|X||Y |[Y, [X,Z]] ,

where every element is homogeneous and so will be assumed later in any equation in-

volving the degrees of the elements. The second condition is equivalent to the so called

super Jacobi identity

(−1)|X||Z|[X, [Y, Z]] + (−1)|Y ||X|[Y, [Z,X]] + (−1)|Z||Y |[Z, [X, Y ]] = 0 . (32)

In particular, this implies that

[X, Y Z] = [X, Y ]Z + (−1)|X||Y |Y [X,Z] .

We summarise some properties that follow from the super Jacobi identity.

Lemma 2.3. Let g = g(0) ⊕ g(1) be a Lie superalgebra. Then the following are true.

1. g(0) is a Lie subalgebra called the bosonic subalgebra of g .

2. g(1) is a g(0)-module under the adjoint action defined by the Lie superbracket .
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3. The restriction of the Lie superbracket induces a symmetric g(1)-equivariant linear

map

{·, ·} : g(1) ⊗ g(1) → g(0)

satisfying

[{X, Y }, Z] + [{Y, Z}, X] + [{Z,X}, Y ] = 0 ∀X, Y, Z ∈ g(1) .

4. We have that [Y, [Y, Y ]] = 0 , ∀Y ∈ g(1) .

In particular, every Lie superalgebra can be specified by three objects: two vector

spaces g(0), g(1) and a linear map {·, ·} : g(1) ⊗ g(1) → g(0) satisfying conditions 1 − 3 of

Lemma 2.3. It is common in the physics literature to denote the Lie superbracket between

two fermions with {·, ·} and we will stick to this convention later.

There is a natural way of defining a Lie superbracket on a superalgebra a, namely by

[X, Y ] := XY − (−1)|X||Y |Y X . (33)

A superalgebra is then called commutative if [X, Y ] = 0 for every X, Y ∈ a.

Let g = g(0)⊕g(1) be a Lie superalgebra. We call the universal enveloping algebra

of g a pair (U(g), ι) consisting of a Lie superalgebra U(g) and a Lie superhomomorphism

ι : g → U(g), if for any other pair (U ′(g), ι′) there exists a unique superhomomorphism

Φ: U(g) → U ′(g) such that ι′ = Φ ◦ ι. If such pair exists, then it is unique up to

superisomorphism. Existence is given for instance by an explicit construction. Let T (g)

denote the tensor superalgebra over g with the induced Z2 grading, and R the ideal of

T (g) generated by the elements

[X, Y ]−X ⊗ Y + (−1)|X||Y |Y ⊗X ∀X, Y ∈ g homogeneous.

We set U(g) := T (g)/R. The natural embedding ι : g → U(g) is checked to be a super-

homomorphism, and the pair (U(g), ι) is the enveloping superalgebra of g. The following

theorem generalises the homonymous result for Lie algebras.

Theorem 2.4 (Poincaré-Birkhoff-Witt). Let g = g(0)⊕g(1) be a Lie superalgebra, X1, . . . , Xm

be a basis of g(0) and Y1, . . . , Yn a basis of g(1). Then the elements of the form

Xk1
1 . . . Xkm

m Yl1 . . . Yln for ki ≥ 0 and 1 ≤ l1 < · · · < ln ≤ n ,

form a basis of U(g).

Example 2.5. Let V = V (0) ⊕ V (1) be a Z2 graded vector space. Then, the associative

algebra End(V ) is equipped with the induced Z2 grading End(V ) = End(V )(0)⊕End(V )1
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with

End(V )(j) := {X ∈ End(V ) : X(V (j)) ⊂ V i+j ∀ i ∈ Z2} ∀ j ∈ Z2 .

Then, End(V ) equipped with the superbracket of Eq. (33) is a Lie superalgebra, denoted

by gl(V (0)|V 1) and by gl(m|n) when V (0) = Cm and V (1) = Cn, in which case we also

write Cm|n := V = Cm ⊕ Cn.

Let a = a(0) ⊕ a(1) be a superalgebra. A derivation of degree d ∈ Z2 is an endo-

morphism δ ∈ End(a)(d) with the property

δ(XY ) = δ(X)Y + (−1)d|X|Xδ(Y ) .

We denote the space of derivations of any degree by Der(a) ⊂ End(a) which can be seen

to be a Lie superalgebra itself with the induced Z2-grading from End(a), which we call

the superalgebra of derivations of a.

Example 2.6. Let g be a Lie superalgebra. From the super Jacobi identity Eq. (32) it

follows that

adX : g → g , Y 7→ [X, Y ]

is a derivation of g of degree |X| for every X ∈ g. These derivations are called inner and

they form an ideal in Der(g).

2.4.2 Lie superalgebras of type A and the supertrace

We now consider the Lie superalgebra gl(m,n) for m,n ∈ N, which is called the general

linear supergroup of degree m|n. Note that gl(0|m) ∼= gl(m|0) ∼= gl(m), the usual Lie

algebra. We fix a basis e1, . . . em, em+1, . . . , em+n of Cm+n. Then, elements X ∈ gl(m,n)

can be written in block m|n-form as

X =

(
A B

C D

)
. (34)

The bosonic (or even) subalgebra consists of elements of the form

X =

(
A 0

0 D

)
, (35)

hence, it is isomorphic to gl(m) ⊕ gl(n). We define the supertrace of an element X ∈
gl(m|n) as in Eq. (34) by

str(X) := tr(A)− tr(D) .

Note that the supertrace is independent on the choice of basis and it satisfies the following

properties.
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Lemma 2.7. 1. The bilinear form ⟨X, Y ⟩ := str(XY ) on gl(m|n) is

• consistent: ⟨X, Y ⟩ = 0 for X even and Y odd,

• supersymmetric: ⟨X, Y ⟩ = (−1)|X||Y |⟨Y,X⟩,

• invariant: ⟨[X, Y ], Z⟩ = ⟨X, [Y, Z]⟩.

2. str([X, Y ]) = 0 for every X, Y ∈ gl(m|n).

The special linear supergroup of degree m|n to be

sl(m|n) :=
{
X ∈ gl(m|n) : str(X) = 0

}
.

One can check that sl(m|n) = [gl(m|n), gl(m|n)] and that sl(m|n) is a Lie subalgebra of

gl(m|n). Moreover, for m ̸= n we have that sl(m|n) is simple, that is, it does not contain

any non-trivial ideals, and it has bosonic subalgebra isomorphic to sl(m)⊕ sl(n)⊕ u(1).

On the other hand, sl(n|n) has a one-dimensional center generated by CI2n and so the

quotient

psl(n|n) := sl(n|n)/CI2n

is simple for n ≥ 2 with bosonic subalgebra isomorphic to sl(n)⊕ sl(n). Also, gl(n|n) is
obtained by sl(n|n) by adding the generator(

In 0

0 −In

)
. (36)

We now consider a metric

η :=

(
η(p,q) 0

0 η(n,0)

)
,

where η(r,s) denotes a metric of signature (r, s) on Rr+s, and define

u(p, q|n) :=
{
X ∈ gl(p+ q|n) : Xη + ηX† = 0

}
,

and

su(p, q|n) :=
{
X ∈ u(p, q|n) : str(X) = 0

}
.

For m ̸= n we have that su(p, q|n) is simple with bosonic subalgebra isomorphic to

su(p, q)⊕ su(n)⊕ u(1), whilst for n = m the quotient

psu(n|n) := su(n|n)/CI2n (37)

is simple with bosonic subalgebra isomorphic to su(n) ⊕ su(n). As for Lie algebras, the

unitary version of the general linear superalgebras can be seen as real forms of the latter.
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We mention that Kac gave a classification of Lie superalgebras and studied their

representation theory, see [Kac77]. In general Lie superalgebras present analogies with

Lie algebras, but also several results valid in the context of Lie algebras are not true or

not yet known for Lie superalgebras. Also, one can define the notion of Lie supergroup

and naturally associate to each a Lie superalgebra. As we discussed, from the geometric

point of view WZW models are defined in terms of Lie groups, but it turns out that all

the information of the theory, except for global considerations, can be captured by the

corresponding Lie algebra. We thus refrain from introducing Lie supergroups, even if our

main case of study is supersymmetric, because we will work directly at the level of the

superalgebra and the representation theory of the latter.
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3 The affine superalgebra psu(2|2)k

3.1 Commutation relations

We introduce the Lie superalgebra u(2|2)k by explicitely giving the commutation relations.

The finite Lie superalgebra u(2|2) consists in the bosonic subalgebra

su(2)⊕ su(2)⊕ u(1)⊕ u(1) ,

whose generator we denote by Ja0 , K
a
0 for a = 3,±, U0 and V0 respectively, together with

eight fermionic generators Sαβγ0 transforming in the (2,2) ⊕ (2,2) representation of the

bosonic subalgebra under the adjoint action. From the affine point of view, the bosonic

subalgebra of u(2|2)k is thus

su(2)−k ⊕ su(2)k ⊕ u(1)−1/2 ⊕ u(1)1/2 , (38)

generated by the respective modes. In particular, we have that Ka
n satisfy Eq. (27), while

Jan the same by replacing k with −k. We denote by Un and Vn the generators of the two

affine û(1) factors satisfying

[Um, Un] = −1

2
mδm+n,0 , [Vm, Vn] =

1

2
mδm+n,0 . (39)

We define the combinations

Zn = Un + Vn , Yn = Un − Vn ,

such that
[Zm, J

a
n] = [Zm, K

a
n] = 0 = [Ym, J

a
n] = [Yn, K

a
n] ,

[Zm, Zn] = [Ym, Yn] = 0 ,

[Zm, S
αβγ
n ] = 0 ,

[Ym, Zn] = −mδm+n,0 , [Ym, S
αβγ
n ] = γSαβγn+m .

(40)

Note that the modes Zn are central. We can then identify the modes Yn as those that

extend the algebra su(2|2)k to u(2|2)k and the modes of Zn as those that are quotiented

out from su(2|2)k in order to obtain psu(2|2)k. In particular, in the fundamental matrix

representation of u(2|2) we can identify Y0 with the generator of Eq. (36) for n = 2,

and Z0 with I4, see Eq. (37). In this representation, the bosonic subalgebra su(2) ⊕
su(2) corresponds to block diagonal matrices of the form as in Eq. (35) and the eight

fermionic generators Saβγ0 to off-diagonal elements. For the fermionic modes Sαβγn , the

first two indices label the fundamental representations of the two su(2) factors, whilst γ

the action of the outer automorphism group of psu(2|2), which is isomorphic to sl(2,R).
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In particular, we have

[J3
m, S

±βγ
n ] = ±1

2
γS±βγ

m+n ,

[J±
m, S

∓β+
n ] = S±β+

m+n ,

[J±
m, S

±β−
n ] = −S∓β−

m+n ,

[K3
m, S

α±γ
n ] = ∓1

2
γSα±γm+n ,

[K±
m, S

α±+
n ] = −Sα∓+

m+n ,

[K±
m, S

α∓−
n ] = Sα±−

m+n ,

which can also be written as

[Jam, S
αβγ
n ] =

1

2
γ(σγa)αν S

νβγ
m+n , [Ka

m, S
αβγ
n ] = −1

2
γ(σ−γa)βν S

ανγ
m+n ,

where σa, for a = ±, 3 and with the convention −3 ≡ 3 , are the Pauli matrices, which in

this basis take the form

σ+ =

(
0 2

0 0

)
, σ− =

(
0 0

2 0

)
, σ3 =

(
−1 0

0 1

)
.

The anti-commutators between fermions are

{S±β+
m , S∓β−

n } = J±
m+n ,

{S±β−
m , S∓β+

n } = J∓
m+n ,

{Sα±+
m , Sα∓−

n } = K∓
m+n ,

{Sα±−
m , Sα∓+

n } = K±
m+n ,

{Sαβ±m , Sαβ∓n } = αJ3
m+n + βK3

m+n + Zm+n ∓ kmδm+n,0 , (41)

and hence, all together

{Sαβγm , Sµνρn } = δβνδγ,−ρτ αµ
−γa Jam+n + δαµδγ,−ρτ βν

γa Ka
m+n

+ δαµδβνδγ,−ρZm+n − δαµδβνϵγρkmδm+n,0 ,
(42)

where τ3 = σ3, τ± = 1
2
σ± and as above we adopt the convention that −3 ≡ 3 for the

index a of Pauli matrices. Note that in Eq. (41) and Eq. (42) the term involving the

modes of Z have to be dropped when considering the commutators of the superalgebra

psu(2|2)k since these are quotiented out. On the other hand, when passing from u(2|2)k
to su(2|2)k, the generator Y and all its modes are simply ignored.

3.2 Non-unitary representations of su(2)

In order to analyze the affine psu(2|2)k-representations, it is necessary to develop first the

representation theory of the finite psu(2|2) Lie superalgebra. Since the bosonic subalgebra
is su(2) ⊕ su(2), we can decompose representations of psu(2|2) in multiplets of su(2)-

representations. Note that since su(2) is compact, every unitary irreducible representation

is finite-dimensional. As we have seen in Section 2.3, for k ∈ Z>0 the su(2)k-model is
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integrable and it possesses only k + 1 unitary integrable highest weight representations,

which are characterised by the finite-dimensional spin ℓ ∈ 1
2
N representations of su(2)

lying at the top of the affine module. However, by Eq. (5) it follows that the su(2)−k-

model is non-integrable; indeed, it possesses no unitary highest weight representations

and, as we will see in Section 6.4, the spectrum is continuous and parameterised it by

the J3
0 -eigenvalue j ∈ R (and for continuous representations by an additional parameter

λ ∈ [0, 1)). For this reason, we refer to su(2)k and su(2)−k as the compact and non-

compact factor, respectively, of the bosonic subalgebra of psu(2|2)k, and analogously for

their affine versions.

Even though the spectrum of the su(2)−k-theory is continuous, from the perspective

of the Lie group, we expect the compactness of SU(2) to constrain the set of allowed rep-

resentations to a discrete subset of spins j. Nevertheless, the finite su(2) representations

lying at the highest weight su(2)−1-representations are allowed to be non-unitary, that is,

infinite-dimensional. We thus look at all possible representations of su(2), or equivalently

(if disregarding unitarity), of sl(2,R). These are classified in the following three families.

• The finite-dimensional representations Hj of spin j ∈ 1
2
N. These are the usual

unitary representations of dimension 2j + 1, characterised by the J3-eigenvalue j,

which we call spin. The Casimir of these representations is

Csu(2)(Hj) = j(j + 1) .

• The highest/lowest weight discrete representations D±
j of spin j ∈ R \ ±1

2
N. These

are infinite-dimensional non-unitary representations defined by an highest/lowest

weight state |j⟩ such that

D±
j : J± |j⟩ = 0 and J3 |j⟩ = j|j⟩ ,

and with Casimir equal to

Csu(2)(D±
j ) = j(j ± 1) .

• The continuous representations Cλ
j , for j ∈ R and λ ∈ R/Z. These are infinite-

dimensional non-unitary representations that neither contain a highest nor a lowest

weight state, and they are characterised by their Casimir

Csu(2)(Cλ
j ) = j(j − 1) ∈ R,

as well as the fractional part of the J3-eigenvalues λ ∈ R/Z. More specifically, the
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representation Cλ
j is defined by states |m⟩ with m ∈ Z+ λ such that

J3 |m⟩ = m|m⟩ ,

J+ |m⟩ = |m+ 1⟩ ,

J− |m⟩ = (j(j − 1)−m(m− 1)) |m− 1⟩ .

(43)

Notice that for j − λ ∈ Z, from Eq. (43) we have that J− |j⟩ = 0 and hence, there

is a subrepresentation

{|j +m⟩ : m ∈ N} ∼= D−
j . (44)

In this case the module Cλ
j is reducible but indecomposable, since the complement

of Eq. (44) does not form a subrepresentation. However, the corresponding quotient

does:

Cλ
j

/
{|j +m⟩ : m ∈ N} ∼= D+

j−1 .

From now on, we will denote by n for n ∈ Z>0 the n-dimensional representation of su(2),

namely that of spin j ∈ N such that 2j + 1 = n. Later we will need the Clebsh-Goardan

coefficients of the tensor product of D±
j and Cλ

j with 2. An explicit calculation shows

that

Cλ
j ⊗ 2 ∼= C

λ+1/2
j+1/2 ⊕ C

λ+1/2
j−1/2 and D±

j ⊗ 2 ∼= D±
j+1/2 ⊕D±

j−1/2 . (45)

3.3 Representations of su(2|2)

In this chapter we find all the irreducible highest weight representations of su(2|2). In the

following, we omit all the labels indicating zero modes of the generators defined above,

since we will be concerned only with the finite Lie superalgebra. The representations

of u(2|2) are characterised by an additional parameter, which is the Y0-eigenvalue; this

value is an arbitrary real number, but after quantisation we require that Y ∈ 1
2
Z, or when

considering su(2|2) and psu(2|2) there will be the selection rule Y − Z ∈ Z. Moreover,

note that since Z is central, its eigenvalue is constant on any irreducible representation

of su(2|2) and the representations of psu(2|2) correspond to those for which Z = 0.

Then, given the form of the bosonic subalgebra, every representation of the superalgebra

comes in the form of a multiplet of su(2)-representations. In fact, the eight supercharges

Sαβγ of su(2|2) generate a 16-dimensional Clifford module and we can find a highest-

weight state which is annihilated by half of them. Let us assume that the highest weight

state transforms in the representation
(
j ,n

)
with respect to the bosonic subalgebra

su(2)⊕ su(2), where we allow j ∈ 1
2
Z to denote a spin-j representation of su(2) from the

whole list of Section 3.2, that is, either finite-dimensional, discrete or continuous (where

for continuous representation we should specify also the parameter λ ∈ R/Z). Since

the supercharges transform in the bispinor representation
(
2 ,2

)
⊕
(
2 ,2

)
of the bosonic
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subalgebra, by Eq. (45) we conclude that a typical multiplet takes the form(
j ,n

)(
j + 1

2
,n+ 1

) (
j + 1

2
,n− 1

) (
j − 1

2
,n+ 1

) (
j − 1

2
,n− 1

)(
j + 1 ,n

) (
j ,n+ 2

)
2
(
j ,n

) (
j ,n− 2

) (
j − 1 ,n

)(
j + 1

2
,n+ 1

) (
j + 1

2
,n− 1

) (
j − 1

2
,n+ 1

) (
j − 1

2
,n− 1

)(
j ,n

)
,

(46)

where the multiplet is also characterised by the Z-eigenvalue Z ∈ R, when viewed as a

representation of su(2|2). Here, the top state is the highest weight state of the Clifford

module, and the action of the supercharges moves between the different bosonic repre-

sentations. For the important cases of n = 1 and n = 2 some shortenings occur. For

n = 2, the representation involving n− 2 is absent, that is,(
j ,2

)(
j + 1

2
,3
) (

j + 1
2
,1
) (

j − 1
2
,3
) (

j − 1
2
,1
)(

j + 1 ,2
) (

j ,4
)

2
(
j ,2

) (
j − 1 ,2

)(
j + 1

2
,3
) (

j + 1
2
,1
) (

j − 1
2
,3
) (

j − 1
2
,1
)(

j ,2
)
,

(47)

while for n = 1 even more representations are missing,(
j ,1

)(
j + 1

2
,2
) (

j − 1
2
,2
)(

j + 1 ,1
) (

j ,3
) (

j ,1
) (

j − 1 ,1
)(

j + 1
2
,2
) (

j − 1
2
,2
)(

j ,1
)
.

(48)

Below we will be interested in the affine algebra su(2|2)k at level k = 1. Then the second

bosonic su(2)k factor also has level k = 1, and as a consequence, the affine highest weight

states are only allowed to transform in the 1 and 2 representations of su(2)3. Hence,

it is clear that all of the long representations we have presented above are not allowed

at k = 1. Let us therefore look systematically for short multiplets. Specifically, we will

consider shortening conditions for the multiplets Eq. (47) and Eq. (48) for different type

of representations j.

Starting with Eq. (47), we assume that j ∈ 1
2
N labels the spin-j finite dimensional

su(2) representation and we require that the two representations with a n− 1 in the

3In this section we are discussing the representations of the finite-dimensional Lie superalgebra su(2|2).
The affine highest weight states of the corresponding affine algebra will therefore transform in represen-
tations of this algebra.
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second line are null. This will remove also all other representations that appear further

below in the multiplet and fix the eigenvalue of Z to j + 1
2
or −j − 1

2
. Then, for j > 0

the multiplet reduces to

Z = ±
(
j + 1

2

)
:

(
j ,2

)(
j + 1

2
,1
) (

j − 1
2
,1
)
,

(49)

whilst for j = 0 we have

Z = ± 1
2 :

(
0 ,2

)(
1
2
,1
) (50)

Similarly, for the multiplet Eq. (48), the only way to eliminate the representation involving

the 3 is to require it to be null. This gives then the following two possibilities depending

on the value of Z, on the left is the configuration obtained for Z = j ≥ 1 while on the

right the one for Z = −j − 1 ≤ −1 :

Z = j ≥ 1 : Z = −j − 1 ≤ −1 :(
j ,1

) (
j ,1

)(
j − 1

2
,2
) (

j + 1
2
,2
)(

j − 1 ,1
)
,

(
j + 1 ,1

)

(51)

where the multiplet on the left is even shorter for j = 0 and j = 1
2
. However, by redefining

j → j ± 1
2
and rearranging the picture4 the multiplets in Eq. (51) become equivalent to

that of Eq. (49), except for the exceptional cases corresponding to Z = 0,±1
2
. Indeed,

the multiplet on the left in Eq. (51) for j = 1
2
reduces to

Z = 1
2 :(

1
2
,1
) (

0 ,2
)
,

(52)

which is Eq. (50) with Z = 1
2
, and for j = 0 to

Z = 0 :(
0 ,1

)
.

(53)

We now consider analogous shortenings when −j ∈ 1
2
Z<0 labels the highest weight

4“Rearranging” means that we change which state we regard as the highest weight state of the Clifford
module.
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discrete representation D+
−j of su(2). In this case, from Eq. (48) we obtain for j ̸= 0 the

multiplet

Z = ±j ̸= 0 :(
D+

−j ,1
) (

D+
−j− 1

2

,2
)

(
D+

−j−1 ,1
)
,

(54)

while for Z = 0 the multiplet

Z = 0 :(
D+

−1 ,1
)(

D+
− 1

2

,2
)
(
D+

−1 ,1
)
.

(55)

For what concerns the case of j ∈ 1
2
Z>0 denoting the lowest weight discrete represen-

tation D−
j , we obtain the multiplets

Z = ±j ̸= 0 :(
D−
j ,1

)(
D−
j+ 1

2

,2
)

(
D−
j+1 ,1

)

(56)

and

Z = 0 :(
D−

1 ,1
)(
D−

1
2

,2
)

(
D−

1 ,1
)
.

(57)

We can then use the results for the multiplets containing discrete representations to

deduce those containing continuous representations. We find

Z = ±j ̸= 0 :(
Cj
j ,1

)
(
C
j+ 1

2

j+ 1
2

,2
)

(
Cj
j+1 ,1

)
,

(58)
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together with

Z = 0 :(
C0

1 ,1
)

(
C

1
2
1
2

,2
)

(
C0

0 ,1
)
.

(59)

We now prove the shortening conditions for the case of j labelling the finite-dimensional

representations; the other cases are obtained by an analogous analysis. We start by

Eq. (49). We first remark that one has to fix a set of annihilators of the highest weight

states of the Clifford module, namely those sitting at the top of Eq. (47). These opera-

tors will be four fermionic generators, and there is only one set of them5 that yields the

Clifford module structure of Eq. (51) or Eq. (49). Also. such set depends on the rep-

resentation of su(2) ⊕ su(2) in which the highest weight states transform. An educated

guess is made by looking at the representation appearing in the second row of Eq. (51)

and Eq. (49). For Eq. (49), this suggests that we should declare

Sα±∓ |j , ↑⟩ := 0 for α = ± , (60)

where |j , ↑⟩ is the highest weight state in
(
j ,2

)
. The generators in Eq. (47) are in fact all

those that raise the compact su(2), thus from Eq. (60) it follows that the representations

in the second line of Eq. (47) containing 3 are not there. However, we have to explicitly

impose that the states corresponding to the missing representation in the third line of

Eq. (47), that is those corresponding to n− 2, are null. This requirement will fix the value

of Z as we see now. We claim that the state N := S−++S+++ |j , ↑⟩ is the highest weight
state in

(
j ,n− 2

)
. This follows since N has the right spins and it is annihilated by both

J+ and K+, which is a short computation done using the commutation relations and

Eq. (60). Knowing this, we can declare N to be null by requiring that the state obtained

from it by applying any two raising fermionic operators is zero. The only non-vanishing

combination is

S++−S−+−N =
(
Z − j − 1

2

) (
Z + j + 1

2

)
|j , ↑⟩ ,

where we identified Z with its eigenvalue. It then follows that

Z = ±
(
j + 1

2

)
. (61)

In the following we discuss the two cases in Eq. (61) in parallel. We start by identifying the

5Actually there are two sets of annihilators that yields a solution, but one is the complement of the
other. That means, that once found a set S of four fermionic zero modes that yields a solution, also
its complement S† yields a solution, namely the one where the highest weight states of the Clifford
module are the lowest weight states of the first solution. Since the module Eq. (46) is symmetric under
exchanging Clifford-highest with -lowest weight states, we can consider only one solution.
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highest weight state in
(
j+ 1

2
,1
)
, which we claim to be either S+++ |j , ↑⟩ or S−−− |j , ↑⟩ ;

indeed, one checks that for Z = j + 1
2

the latter is null and the former is the desired

highest weight state, whilst for Z = −j− 1
2
the situation is reversed. Then, for Z = j+ 1

2

we have that (
j + 1

2
,1
) ∼= 〈 (J−)kS+++ |j , ↑⟩ : 0 ≤ k ≤ 2j + 1

〉
,

and similarly for Z = −j − 1
2
with S−−− instead. This follows from

(J−)kS+++ |j , ↑⟩ = k S−++(J−)k−1 |j , ↑⟩+ S+++(J−)k |j , ↑⟩ ,

which vanishes for k = 2j + 2. We proceed by identifying the highest weight state in(
j − 1

2
,1
)
which we claim to be

N− := S+−− |j , ↑⟩+ S−−− |j − 1 , ↑⟩ or N+ := S−++ |j , ↑⟩ − S+++ |j − 1 , ↑⟩ ,

depending on the value of Z. Indeed, for Z = j + 1
2
, the state N+ is null and the desired

highest weight state is N− and for Z = −j − 1
2
the situation is reversed. As above, if

j ≥ 1
2
then we can identify

(
j − 1

2
,1
) ∼= 〈 (J−)kN− : 0 ≤ k ≤ 2j − 1

〉
,

and similarly for Z = −j − 1
2
. This follows from

2 (J−)kN− = (2j − k)S+−−(J−)k−1 |j − 1 , ↑⟩+ S−−−(J−)k |j − 1 , ↑⟩ ,

which vanishes for k = 2j. This proves the shortening Eq. (49). Moreover, as we claimed

above, a further shortening happens when j = 0, that is when Z = ±1
2
. For Z = 1

2
we

have the following representations:

(
j = 0 ,2

) ∼= 〈 |0, ↑⟩ , |0, ↓⟩ 〉 and
(
j = 1

2
,1
) ∼= 〈S+++ |0, ↑⟩ , S−++ |0, ↑⟩

〉
,

and one computes that Sµ−+S−−− |0, ↑⟩ = Sµ−+
0 S+−−

0 |0, ↑⟩ = 0, which implies that

representation
(
j − 1

2
,1
)
drops out. Analogously, for Z = −1

2
we have:

(
j = 0 ,2

) ∼= 〈 |0, ↑⟩ , |0, ↓⟩ 〉 and
(
j = 1

2
,1
) ∼= 〈S−−− |0, ↑⟩ , S+−− |0, ↑⟩

〉
,

and S+++ |0, ↑⟩ = S−++ |0, ↑⟩ = 0, which implies that again the representation
(
j− 1

2
,1
)

drops out also in this case. Hence, we also proved the shortening given by Eq. (50).

We now analyze the shortening of Eq. (48). For that, we need to declare a different

set of annihilators of the highest weight state |j , 0⟩ ∈
(
j ,1

)
, namely we impose

Sαβ+ |j , 0⟩ := 0 for α, β = ± .
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In this case the condition that fixes Z arises slightly differently than above, namely

by requiring that the representation
(
j ,3

)
drops out of Eq. (48). We thus identify the

highest weight state in
(
j ,3

)
, which is N := S++−S−+− |j , 0⟩. As before, we require that

the application of two raising fermionic generators annihilates N . The only non-trivial

combination is

S−++S+++N = (Z − j)(Z + j + 1) |j , 0⟩ , (62)

which fixes the value of Z to either j or −j − 1 . Then the vanishing of Eq. (62) implies

that N is null and hence that all the states obtained from it by the application of one

fermionic raising operator are also null. The only non-trivial such states are

S+++N = (Z + j + 1)S−+− |j , 0⟩ ,

S−++ N = −(Z − j + 1)S++− |j , 0⟩+ S−+−J− |j , 0⟩ .
(63)

We proceed now the analysis by distinguishing between the two possible values of Z.

• Z = j : the states in Eq. (63) being null translates into

S−+− |j , 0⟩ = 0 , S++− |j , 0⟩ = S−+−J− |j , 0⟩ . (64)

As one can check, that the highest weight state in
(
j + 1

2
,2
)
is S−+− |j , 0⟩ , which

is now null, hence this representation drops out from Eq. (48). We identify the

highest weight state in
(
j − 1

2
,2
)
to be M := S++− |j , 0⟩ = S−+−J− |j , 0⟩ and we

compute K−M = S+−− |j , 0⟩ . Hence, for j ≥ 1
2
we identify

(
j − 1

2
,2
) ∼= 〈 (J−)kM , (J−)kS+−− |j , 0⟩ : 0 ≤ k ≤ 2j − 1

〉
,

which follows from a computation similar to the ones showed above. Note that,

for j = 0 the state M is null, hence
(
j − 1

2
,2
)
drops out and so do all the other

representations except
(
0 ,1

)
: this proves Eq. (53). Now, one can check that all

fermionic lowering operators except S+−− annihilate M. For S−−− this follows

from

S−−− |j , 0⟩ = [K−, S−+−] |j , 0⟩ = K−S−+− |j , 0⟩ = 0 , (65)

by Eq. (64). It follows that for j ≥ 1 there is only one additional representation in

the Clifford module, which is
(
j − 1 ,1

)
whose highest weight state L := S+−−M.

Indeed, for j ≥ 1 we identify

(
j − 1 ,1

) ∼= 〈 (J−)kL : 0 ≤ k ≤ 2j − 2
〉
.
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On the other hand, for j = 1
2
we have that M ∈

(
0 ,2

)
and thus

L = S+−− M = −[J−, S−−−] = −J−S−−−M = 0 , (66)

by Eq. (65), leaving us with the multiplet as in Eq. (52). We have thus proven the

left part of Eq. (51), including the special shortening corresponding to Z = 0, 1
2
.

• Z = −j − 1 : in this case, the state on the left of Eq. (63) is zero, hence the only

non-trivial null vector is

2jS++− |j , 0⟩ − S−+−J− |j , 0⟩ = 0 , (67)

for j ̸= 0. The highest weight state in
(
j − 1

2
,2
)
is

N := S−+− |j − 1 , 0⟩+ S++− |j , 0⟩ ,

which one can check to be null by the choice of Z. Thus the representation
(
j− 1

2
,2
)

drops out from Eq. (48). We then look at
(
j + 1

2
,2
)
whose highest weight state is

M := S−+− |j , 0⟩ and compute K−M = S−−− |j , 0⟩. Hence,

(
j + 1

2
,2
) ∼= 〈 (J−)kM , (J−)kS−−− |j , 0⟩ : 0 ≤ k ≤ 2j + 1

〉
.

The highest weight state in
(
j + 1 ,1

)
is L := S−−−S−+− |j , 0⟩ and thus

(
j + 1 ,1

) ∼= 〈 (J−)k L : 0 ≤ k ≤ 2j + 2
〉
. (68)

In order to prove that this is all there is in the Clifford module for Z = −j − 1, we

compute

S−+−M = 0 , S++−M = −S−+−S++− |j , 0⟩ = (S−+−)2J− |j , 0⟩ = 0 ,

and

2jS+−−M = J−L ,

where we used Eq. (67). With these equations, we see that the only representation

that can be obtained from M by application of fermionic creation operators is the

one generated by L, which is
(
j + 1 ,1

)
. Moreover, since all fermionic creation

operators annihilates L, there are indeed no more representations in the Clifford

module. This proves the right part of Eq. (51).

All together, this concludes the proof of the shortening Eq. (49) for the case of finite-

dimensional representations of the non-compact su(2). As we will see in the next chapter,

these are exactly the multiplets obtained with the free field realisations, namely Eq. (116)
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and Eq. (120), including the ultrashort multiplets corresponding to Z = 0,±1
2
. Also the

multiplets arising with j labelling discrete or continuous representations can be obtained

with the free field realisation.
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4 Conformal Embedding

In this chapter we introduce the notion of affine and conformal embedding, following

the lines of [DFMS97]. In particular, we see that in order for an affine embedding to

exist, the levels of the two algebras must be related by a positive integer factor called

the embedding index. On the other hand, for a conformal embedding to happen we need

the central charges to agree. Conformal embeddings are important because they allow

to study the WZW model on an affine Lie algebra in terms of the WZW model on an

affine subalgebra, or viceversa, in terms of a bigger affine algebra. This is relevant for

the superalgebra setting, since one can ask when does the bosonic subalgebra conformally

embed into a Lie superalgebra. In particular, we present a simple criterion for this, which

allows us to prove that there is such bosonic conformal embedding for psu(2|2)1 and for

u(2|2)1. In order to present this criterion, we need to make a short detour in the world of

meromorphic conformal field theories and their vertex operators. For that we will follow

[God89].

4.1 Affine and conformal embeddings

We start at the level of Lie algebras and present different characterisations of an embed-

ding g̃ ↪→ g of a simple Lie algebra g̃ into a semisimple Lie algebra g.

• Branching rules. An irreducible representation of g viewed as a representation of

g̃ is usually reducible. The corresponding decomposition is called a branching rule

and it is denoted by

λ 7→
⊕
µ∈P̃+

bλ,µ µ

where P̃+ denotes the set of dominant weights of g̃, that is, of all the weights whose

Dynkin labels are all non-negative, and bλ,µ ∈ N gives the multiplicity of the irre-

ducible representation µ in g̃ in the decomposition of the irreducible representation

λ of g. The decomposition of the lowest-dimensional non-trivial representation

is sufficient to characterise an embedding and to each of its inequivalent branch-

ing rules corresponds a distinct embedding. A useful tool for the computation of

branching rules uses tensor products. Namely, if

λ 7→
⊕
µ∈P̃+

bλ,µ µ and ξ 7→
⊕
ν∈P̃+

bλ,ν ν ,

then

λ⊗ ξ 7→
⊕
µ,ν

bλ,µbξ,ν µ⊗ ν .

• Projection matrix. An explicit projection of every weight of g onto a weight of
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g̃ is given by a projection matrix P : h∗ → h̃∗, where h and h̃ denote the Cartan

subalgebras of g and g̃ respectively. Hence, to compute the branching rules one first

projects all the weights of a given irreducible representation of g into g̃-weights,

and then reorganizes them into irreducible representations. Note that projection

matrices are in general not unique.

• Embedding index. The embedding index xe is defined as the ratio of the square

length of the projection of the longest root θ of g, to the square length of the longest

root θ̃ of g̃, that is,

xe :=
|Pθ|2

|θ̃|2
∈ Z>0 .

We know move to the affine setting. The embedding g̃ ↪→ g has a natural affine

extention g̃k̃ ↪→ gk for some levels k̃ and k. In order for such embedding to exist, it turns

out that the levels have to satisfy

k̃ = kxe ≥ k , (69)

We call an embedding g̃k̃ ↪→ gk such that Eq. (69) an affine embedding. In particular,

form Eq. (69) it follows that if k ∈ Z>0 then also k̃ ∈ Z>0 and both the gk- and the

g̃k̃-theory are integrable. The determination of the affine branching rules

λ̂ 7→
⊕
µ̂∈P̃k+

bλ̂,µ̂ µ̂ , (70)

namely of the branching coefficients bλ̂,µ̂ ∈ N, is straightforward but tedious. One de-

composes grade by grade the affine module of λ̂ into irreducible representations of g̃,

and then reorganizes the result into a direct sum of affine g̃k̃ modules λ̂. To proceed, it

is convenient to express a module decomposition into irreducible representations of the

corresponding finite Lie algebra:

λ̂ 7→
∑
n

qn
⊕
i

λ(i,n) ,

where the powers of q keep track of the grade and λ(i,n)’s at fixed n denotes the irreducible

representations of g at grade n.

In what follows we will be interested in a subclass of affine embeddings that preserves

the conformal invariance; these are called conformal embeddings. Concretely, an affine

embedding g̃k̃ ↪→ gk is called conformal if it satisfies

T gk = T g̃k̃ . (71)
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In particular, this requires

c(gk) = c(g̃k̃) ⇐⇒ k dim g

k + h∨g
=
xek dim g̃

xek + h∨g̃
, (72)

where we used Eq. (17) and Eq. (69), and h∨g , h
∨
g̃ denote the respective dual Coxeter

numbers. Moreover, for the case of integrable WZW models, Eq. (72) is equivalent to

Eq. (71). Indeed, if two theories have the same central charge, their difference (in the sense

of the coset construction, see Section 4.2) has zero central charge. Since both theories

under consideration are unitary by construction, their difference is also unitary and,

having zero central charge, it is trivial. A remarkable fact about conformal embeddings

is that they exist only when k = 1, which can be deduced by an elementary analysis of

Eq. (72). Thus, there is a finite number of possible conformal embeddings, and they have

been fully classified.

Above, we looked at affine branching rules. We now consider the branching of Eq. (70)

associated to a conformal embedding. We observe that the non-vanishing of bλ̂,µ̂ means

that the finite weight µ can be found at some grade n in the infinite-dimensional high-

est weight representation to λ̂ at level 1. By Eq. (71) we can compare the conformal

dimensions of the corresponding fields, namely

hλ + n = hµ ,

or equivalently
Cg
λ

2(1 + h∨g )
+ n =

C g̃
µ

2(xe + h∨g̃ )
, (73)

where Cg
λ denotes the Casimir of λ as a g-representations and C g̃

µ the Casimir of µ as a g̃-

representation. A simple way of obtaining the branching rules is to compute the conformal

dimension of every integrable representation of the two algebras under consideration and

find the triplets (λ, µ, n) satisfying Eq. (73). Then, we look at the decomposition of λ̂

at grade n in terms of irreducible representations of g and write down all their finite

branching rules into irreducible representations of g̃. Note that this is a finite process

since the difference in the conformal dimensions is always bounded. The number of times

that µ appears in all these branching rules at grade n is precisely the coefficient bλ̂,µ̂.

4.2 The coset construction

The conformal field theories based on affine Lie algebras contain currents, that is, fields

of conformal dimension equal to one, which is in contrast to the minimal unitary models

with central charge 0 < c < 1 not containing any such fields. We will now present the

so-called coset construction, also known as the Goddard–Kent–Olive (GKO) construction,
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that provides many minimal model CFTs from affine Kac-Moody algebras.

Let g̃k̃ ↪→ gk be an affine embedding and assume that the gk-WZWmodel is integrable;

in particular, the levels are related by Eq. (69) and hence also the g̃k̃-model is integrable.

In the following we denote by T g̃

k̃
and T g

k the corresponding energy-momentum tensors

and similarly their modes by L
g̃k̃
n and Lgk

n . Let J̃an be generators of g̃k̃, which are linear

combinations of generators Jan of gk. Then, since

[L
g̃k̃
n , J̃

a
n] = −nJ̃an = [Lgk

n , J̃
a
n] ∀n ∈ Z ,

it follows that

[Lgk
m − L

g̃k̃
m , L

g̃k̃
n ] = 0 ∀m,n ∈ Z .

Defining

T gk/ g̃k̃ := T gk − T g̃k̃ and L
gk/ g̃k̃
m := Lgk

m − L
g̃k̃
m

leads to the commutation relations

[L
gk/ g̃k̃
m , L

gk/ g̃k̃
n ] = (m− n)L

gk/ g̃k̃
m+n +

c(gk)− c(g̃k̃)

12
m(m2 − 1)δm+n,0 .

Therefore, the modes L
gk/ g̃k̃
m satisfies the Virasoro algebra with central charge equal to

the difference of the central charges of the constituent models:

c(gk/ g̃k̃) := c(gk)− c(g̃k̃) (74)

From now on, the quotient gk/ g̃k̃ characterised by the energy momentum tensor T gk/ g̃k̃

will be referred to as the coset or quotient theory. We also state that the coset theory

contains all fields of gk which have a non-singular OPE with the fields of g̃k̃. In the

present context, this property just means that the two algebras commute.

4.3 Uniqueness of vertex operators

Let F be a dense subspace of a Hilbert space H, the space of states of a conformal field

theory. Assume that there exists a preferred state Ω ∈ F called the vacuum and a

preferred operator L : H → H which annihilates the vacuum,

LΩ = 0 . (75)

A vertex operator for a given state ψ ∈ F is an operator V (ψ, z) : H → H defined for

every z ∈ C, such that

V (ψ, z) Ω = ezLψ , (76)
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and the matrix elements

z 7→ ⟨ϕ1, V (ψ, z)ϕ2⟩

are meromorphic functions for every ϕi ∈ F .

Two field operators ξ(z), η(z) : H → H are said to be local with respect to each other

if for every ϕi ∈ F , the function

fξ,η(z, w) := ⟨ϕ1, ξ(z)η(w)ϕ2⟩

is holomorphic for |z| > |w|, with a meromorphic continuation to (z, w) ∈ C2, which we

still denote by fξ,η, satisfying

fξ,η(z, w) = ϵ(ξ, η) fη,ξ(w, z)

where ϵ(ξ, η) = 1 if either ξ or η is a bosonic field, and ϵ(ξ, η) = −1 if both are fermionic.

A local system of vertex operators is a family of vertex operators

V = {V (ψ, ·) : ψ ∈ F} ,

which are local with respect to each other. From now on we assume that the theory

admits a local system of vertex operators and we fix one denoted by V .
The strength of the locality assumption is shown in the following uniqueness theorem.

Theorem 4.1. Let Uϕ(z) : H → H be an operator defined for z ∈ C and one particular

ϕ ∈ F . Assume that Uϕ is local with respect to every vertex operator in V, then

Uϕ(z) = V (ϕ, z) ∀ z ∈ C .

Proof. Let ψ ∈ F and z ∈ C. Then, by Eq. (76) and locality we have that

Uϕ(z)e
wLψ = Uϕ(z)V (ψ,w) Ω

= ϵ(ϕ, ψ)V (ψ,w)UϕΩ

= ϵ(ϕ, ψ)V (ψ,w)ezL ϕ ,

hence

Uϕ(z)e
wL ψ = V (ϕ, z)ewLψ .

Since ψ ∈ F was arbitrary and F ⊂ H is dense, the claim follows.

In particular, from this result it follows that the map ψ 7→ V (ψ, z) is linear and that

V (Ω, z) = 1, for every z ∈ C.
Let u : H → H be an operator. We say that u acts locally with respect to V ,

if uV (ψ, z)u−1 is local for every V ∈ V and ψ ∈ F . Then, the following result is a
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straightforward application of Theorem 4.1.

Proposition 4.2. Let λ ∈ C and assume that eλL acts locally with respect to V. Then

eλLV (ψ, z)e−λL = V (ψ, z + λ) . (77)

By differentiating Eq. (77) we obtain

dV (ψ, z)

dz
= [L, V (ψ, z)] , (78)

and by applying this equation on the vacuum and using Theorem 4.1 we obtain

dV (ψ, z)

dz
= V (Lψ, z) .

Combining Theorem 4.1 with Proposition 4.2 one can easily prove the following duality

theorem.

Theorem 4.3. Assume that ezL acts locally with respect to V for every z ∈ C. Then

V (ψ, z)V (ϕ,w) = V (V (ψ, z − w), w) .

Note that until now we did not assume that the theory is conformally invariant. The

vacuum expectation value ⟨V (ψ, z)⟩ := ⟨Ω|V (ψ, z)Ω⟩ is translation invariant if and only

if L†Ω = 0, in which case

⟨V (ψ, z)⟩ = ⟨Ω|ψ⟩ ,

that is, it vanishes for vertex operators of states orthogonal to the vacuum. We extend

the translation symmetry Eq. (75) by a global conformal symmetry of the Möbius group,

generated by

L−1 := L , L0 :=
1

2
[L†, L] and L1 := L† , (79)

satisfying the su(1, 1) commutator relations:

[L0, L±1] = ∓L±1 , [L1, L−1] = 2L0 . (80)

From now on, we assume the vacuum to be invariant under the su(1, 1) algebra of Eq. (80),

which means that

LnΩ = 0 for n = −1, 0, 1 .

Note that the operator L0 satisfies

[L0, L] L†
0 = L0 and L0Ω = 0 .

The following result is another consequence of Theorem 4.1.
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Proposition 4.4. Let x ∈ C and assume that xL0 acts locally with respect to V. Let

ψ ∈ F be such that L0ψ = hψ for some h ∈ R, then

xL0V (ψ, z)x−L0 = xhV (ψ, xz) ∀ z ∈ C . (81)

Differentiating Eq. (81) we obtain

[L0, V (ψ, z)] =

(
z
d

dz
+ h

)
V (ψ, z) . (82)

We call a state ψ ∈ F satisfying

L0ψ = hψ and L1ψ = 0

an su(1, 1) highest weight state of conformal dimension h ∈ R.
The following statement summarizes Eq. (78), Eq. (82) and the analogous result for L1.

Proposition 4.5. Assume that Ln for n = −1, 0, 1 act locally with respect to V and let

ψ be an su(1, 1) highest weight state of conformal dimension h. Then

[Ln, V (ψ, z)] = zn
(
z
d

dz
+ (n+ 1)h

)
V (ψ, z) for n = −1, 0, 1 . (83)

For many purposes it is convenient to expand the fields V (ψ, z) ∈ V for L0ψ = hψ in

modes

V (ψ, z) =
∑
r∈Z−h

Vr(ψ)z
−r−h .

From Eq. (76) it follows that

ψ = V−h(ψ) Ω and Vr(ψ) Ω = 0 ∀ r > −h . (84)

Moreover, Eq. (83) is equivalent to the commutation relations

[Ln, Vr(ψ)] = (n(h− 1)− r)Vr+n(ψ) (85)

for the modes of V (ψ, z). In particular, [L0, Vr(ψ)] = −rVr(ψ).
We can also rewrite Theorem 4.3 in the so called operator product expansion form.

Proposition 4.6. Let ψ, ϕ ∈ F be such that L0ψ = hψψ and L0ϕ = hϕϕ. Then,

V (ψ, z)V (ϕ,w) =
∑
r≥0

(z − w)r−hψ−hϕV (χr, w) ,

where |z| > |w|, r ∈ Z+ hψ + hϕ and χr = Vhϕ−r(ψ)ϕ.
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We can rewrite Eq. (80) as

[Lm, Ln] = (m− n)Lm+n , (86)

for m,n = −1, 0, 1. Comparing this with Eq. (85) we see that Eq. (86) is compatible

with Ln for n = −1, 0, 1 being three of the components of a vertex operator for an

su(1, 1) highest weight state ψC with conformal dimension h = 2. Let us assume this and

write

T (z) := V (ψC , z) =
∑
n∈Z

Lnz
−n−2 . (87)

Then Eq. (86) holds for every m = −1, 0, 1 and n ∈ Z. Moreover, by Eq. (84) we have

that

ψC = L−2Ω , (88)

and it follows from Eq. (86) that indeed L1ψC = 0. We can use Proposition 4.6 to

compute

L(z)L(w) ∼ c/2

(z − w)4
+

2L(w)

(z − w)2
+

∂L(w)

(z − w)
for |z| > |w| ,

where c = 2∥ψC∥2 ∈ R>0. From this, it follows that

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 .

Thus, we conclude that T (z) is the Virasoro energy-momentum tensor of the theory.

4.4 A criterion for bosonic embeddings in superalgebras

In this section we will give a simple condition under which the inclusion of the bosonic

affine subalgebra of an affine Lie superalgebra is a conformal embedding. We start with an

affine superalgebra gk generated by bosonic modes Jan and fermionic modes Sβn , for some

finite set of indices a and β, and n ∈ Z. We assume that the finite bosonic subalgebra

g̃ is semisimple. Then, the fermionic zero modes form a completely reducible g̃-module

under the adjoint action of the bosonic zero modes. In particular, we can write

[
Jam, S

β
n

]
= (J a)βµ S

µ
m+n , (89)

where J a are semisimple complex matrices. We then consider the Sugawara stress-energy

tensor of g̃k̃, which has the form

T g̃k̃ = Ngab : J
aJ b: , (90)
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where N = (k̃ + h̃∨)−1 and gab = ⟨Ja0 , J b0⟩−1
g̃ is the inverse of the Killing form6 on g̃, see

Eq. (19), so in particular gab = gba . In Eq. (90) and in the following we use the Einstein

summation convention. Let ψ := |λ̂⟩ be any highest weight state of an affine gk-module,

then we compute

[L
g̃k̃
−2, S

γ
n]ψ = Ngab

∑
m∈Z

[Ja−2−mJ
b
m, S

γ
n]ψ

= Ngab
∑
m∈Z

(
[Ja−2−m, S

γ
n]J

b
m + Ja−2−m[J

b
m, S

γ
n]
)
ψ

= Ngab
∑
m∈Z

(
(J a)γµS

µ
n−2−mJ

b
m + Ja−2−m(J b)γµS

µ
m+n

)
ψ

= Ngab

(∑
m<0

(J a)γµ[S
µ
n−2−m, J

b
m] +

∑
m<−n

(J b)γµ[J
a
−2−m, S

µ
n+m]

)
ψ

= Ngab

(∑
m<0

−(J a)γµ(J b)µν +
∑
m<−n

(J b)γµ (J a)µν

)
Sνn−2 ψ

= N

( ∑
m<−n

gab [J b,J a]γν −
−1∑

m=−n

gab(J aJ b)γν

)
Sνn−2 ψ

= −NCnSγn−2 ψ = − C

k̃ + h̃∨
[Sγn, L

gk
−2]ψ ,

where we used that gab(J aJ b)γν = Cδγν is the Casimir of the bosonic representation

Ja 7→ J a, and Lgk
n are the modes of the stress-energy tensor of gk. Since g̃ is semisimple,

we can write

g̃k̃ =
⊕
i

giki , (91)

where gi are finitely many simple affine algebras. Then, the representation in Eq. (89)

can be block-diagonalised with respect to Eq. (91) and so does the Casimir, whose cor-

responding block components we denote by Ci. We consider the state

N =

(
Lg
−2 −

∑
i

Lgi

−2

)
|0⟩ ,

where |0⟩ denotes the vacuum of gk. Then g̃k̃ conformally embeds into gk, that is,

T gk = T g̃k̃ =
∑
i

T giki , (92)

6Note that gab is well-defined since we assumed that g̃ is semisimple, which is equivalent to its Killing
form being non-degenerate. This is true, for example, for the bosonic subalgebras of psu(1, 1|2) and
psu(2|2) but not for those of su(1, 1|2) and su(2|2), since they contain a central u(1) factor which renders
the Killing form degenerate. However, one can still construct a stress-energy tensor using the Halpern-
Kiritsis construction [HK89] as it was done in [GNS22] for u(1, 1|2)1 ; then, the same criterion we are
presenting also applies.
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if and only if ∑
i

Ci
ki + h∨i

= 1 , (93)

where ki and h
∨
i denote the level and the dual Coxeter number of giki respectively. This

assertion directly follows from the computation above; indeed Eq. (93) is equivalent to

Sβn N = 0 for every n > 0 and fermionic generator Sβ. Then, that Jan N = 0 for every

n > 0 and bosonic generator Ja, follows directly from the action of the Virasoro modes7

on the Jan and the fact that the generators of giki commute with those of gjkj for i ̸= j.

Thus Eq. (93) is equivalent to N being a null-vector. We now argue that N = 0 is

equivalent to Eq. (92). Indeed, by uniqueness of vertex operators, see Theorem 4.1, it

follows that N = 0 if and only if

0 = V (N , z) = V (Lg
−2 |0⟩, z)−

∑
i

V (Lgi−2 |0⟩, z) ∀ z ∈ C .

By Eq. (87) and Eq. (88), this is equivalent to Eq. (92).

We mention that Eq. (93) can be adapted to take into account additional fermionic

indices γ of Sβγn , which may label the action of non-trivial outer automorphisms of gk, as

we will see in the following examples. In particular, instead of Eq. (89) we may write for

every γ:

[Jam, S
βγ
n ] = (J (γ)a)βµ S

µγ
m+n ,

where the representation Ja 7→ J (γ)a of {Sβγ}β depends on γ, and we denote the corre-

sponding Casimir by C(γ) and by C
(γ)
i that associated to the decomposition in Eq. (91).

Then, the conformal embedding condition becomes

∑
i

C
(γ)
i

ki + h∨i
= 1 ∀ γ .

We now look at some examples for which this criterion can be applied.

Example 4.7. Using the same conventions as in [EGG19], we consider psu(1, 1|2)1 with
its bosonic subalgebra sl(2,R)1 ⊕ su(2)1. The eight fermionic generators Sαβγ0 transform

in the 2 (2,2) representation of the bosonic subalgebra8. The corresponding Casimirs are

C1 = −j1(j1 − 1) = −3
4
(since j1 = −1

2
in this convention is the spin characterising the

lowest weight representation of sl(2,R)) and C2 = j2(j2+1) = 3
4
(since j2 =

1
2
denotes the

spin characterising the highest weight representation of su(2)). The levels are k1 = k2 = 1

7Recall that for for every Ja ∈ gi we have that [Ln, J
a
m] = −mJa

m+n, which is true both for Lgk and

Lgi
ki , whilst [L

gj
kj

n , Ja
m] = 0 for i ̸= j.

8This is an example where the index γ = ± encodes the transformation behaviour under the outer
automorphisms su(2). Nevertheless, the bosonic representations are independent of γ, since both copies
transform under the same representation (2,2) of the bosonic subalgebra. Hence, in this case it is enough
to check that Eq. (93) holds for one γ.
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and the dual Coxeter numbers h∨1 = −2 and h∨2 = 2 . With this information, one can

easily verify that (93) holds true and hence that there is a conformal embedding

sl(2,R)1 ⊕ su(2)1 ↪→ psu(1, 1|2)1 . (94)

Knowing Eq. (94) is useful because it can be used to constraint the Casimir of

psu(1, 1|2), and in turn the allowed representations. In particular, in [GNS22] it is ar-

gued, in a way analogous to as we did for the shortening of su(2|2) multiplets, that the

only highest weight states allowed in the psu(1, 1|2)1-spectrum are the vacuum

(
j = 0 ,1

)
, (95)

where j = 0 denotes the one-dimensional trivial representation of sl(2,R) , and those that

form the multiplet (
Cj
λ ,2

)
(
C
j+ 1

2

λ+ 1
2

,1
) (

C
j− 1

2

λ− 1
2

,1
)
,

(96)

and the same multiplet with the replacement Cj
λ → D±

j . Here, Cj
λ denotes the continuous

sl(2,R) representation with Casimir Csl(2,R) = −j(j−1) and λ is the fractional part of the

J3
0 -eigenvalue, while D

±
j denotes the spin j highest/lowest weight discrete representation,

see [GNS22]. Now, since we proved that the bosonic subalgebra conformally embeds in

the whole superalgebra, we have the following relation between the Casimirs:

Cpsu(1,1|2) = −Csl(2,R) + 1
3
Csu(2) ,

and since Cpsu(1,1|2) has the same value on the whole superalgebra representation generated

by the multiplet Eq. (96), we can relate for instance

j(j − 1) + 1
4
= Cpsu(1,1|2)(Cj

λ ,2
)
= Cpsu(1,1|2)(Cj+ 1

2

λ+ 1
2

,1
)
= j2 − 1

4
,

which directly fixes j = 1
2
and Cpsu(1,1|2) = 0 on every representation Eq. (96). Also

the vacuum Eq. (95) is an allowed representation and it also has Cpsu(1,1|2) = 0. Notice

that in order to arrive at this conclusion, we had to know already the structure of the

multiplet in which the highest weight states transform. This can be achieved by purely

algebraic arguments or deduced by the free field realisation, as we have seen for psu(2|2)1
and su(2|2)1.

Example 4.8. Similarly to the example above, we consider the superalgebra psu(2|2)1
with bosonic subalgebra su(2)−1⊕ su(2)1. The eight fermionic generators Sαβγ0 transform

in the representation (2,2)⊕ (2,2) ∼= 2(2,2) of su(2)⊕ su(2)9, therefore the Casimirs are

9In this case the index γ encodes the outer automorphisms sl(2,R), and even though the bosonic
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C1 = C2 =
3
4
. The levels are k1 = −1, k2 = 1 and the dual Coxeter numbers h∨1 = h∨2 = 2,

thus one can verify that also in this case (93) holds true and hence there is a conformal

embedding

su(2)−1 ⊕ su(2)1 ↪→ psu(2|2)1 . (97)

Example 4.9. We generalise Example 4.8, and investigate the embedding

su(N)−k ⊕ su(N)k ↪→ psu(N |N)k (98)

for N > 1 and k ∈ R. The superalgebra psu(N |N) has 2N2 fermionic generators that

transform in the (N,N) ⊕ (N,N) representations of su(N) ⊕ su(N) and the Casimirs

C1 = C2 =
N2−1
2N

has the same value on the fundamental N and the anti-fundamental N

representation of su(N). Also, the dual Coxeter number of su(N) is equal to N . Knowing

this we compute
C1

−k + h∨1
+

C2

k + h∨2
=

N2 − 1

N2 − k2
. (99)

This proves that for every N > 1 the embedding in Eq. (98) is conformal if and only

if k = ±1. Then, for k = 1, this gives the following relation between the Casimirs of

highest weight representations:

Cpsu(N |N)1 =
C

su(N)
−1

N − 1
+
C

su(N)
1

N + 1
,

where C
su(N)
±1 denotes the Casimir of the finite su(N) in su(N)±1 respectively. Note that

there are exactly N integrable highest weight representations of su(N) at k = 1 but none

for k = −1.

As we did above for psu(1, 1|2)1, we want to investigate the implications of the confor-

mal embedding in Eq. (97) on the allowed representations of psu(2|2)1. By Section 3.3,

we know the structure of the psu(2|2)1 highest weight representations. The allowed mul-

tiplets are the vacuum (
j = 0,1

)
, (100)

the triplet containing highest weight discrete representations(
D+

−1/2 ,2
)(

D+
−1 ,1

) (
D+

−1 ,1
)
,

(101)

representations depend on γ = ±, they are isomorphic, and hence the Casimirs are still independent of
γ and its enough to check Eq. (93) for one γ.
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the triplet containing lowest weight representations(
D−

1/2 ,2
)(

D−
1 ,1

) (
D−

1 ,1
)
,

(102)

and the triplet containing continuous representations,(
C

1/2
1/2 ,2

)(
C0

0 ,1
) (

C1
0 ,1

)
,

(103)

It thus turns out, that the value of Z0 is directly related to the spin j of the su−1(2)

representations, hence the condition Z0 = 0 already constrains the allowed spins. How-

ever, we can use the conformal embedding of Eq. (97) to compute the Casimir of these

representations in a very simple way. Indeed, Eq. (99) for N = 2 becomes

Cpsu(2|2)1 = j(j + 1) +
ℓ(ℓ+ 1)

3
,

where j and ℓ are the spin of the su(2)−1 and su(2)1 factor respectively. Thus, we find

that Cpsu(2|2)1 = 0 for both Eq. (100) and Eq. (101). The other multiplets, Eq. (102) and

Eq. (103), the Casimir of the non-compact su(2) is different, and Eq. (99) takes instead

the form

Cpsu(2|2)1 = j(j − 1) +
ℓ(ℓ+ 1)

3
,

which gives again Cpsu(2|2)1 = 0 on both multiplets.

Example 4.10. We now turn to the superalgebra u(2|2)1. we claim that

T u(2|2)1 = T su(2)−1 + T su(2)1− :ZY : , (104)

where − :ZY := − :U2: + :V 2: is the stress energy tensor of the system û(1)U ⊕ û(1)V ,

see Eq. (39); hence, Eq. (104) is equivalent to the existence of the conformal embedding

su(2)−1 ⊕ su(2)1 ⊕ û(1)⊕ û(1) ↪→ u(2|2)1 . (105)

We prove Eq. (104) by showing that state

N :=
(
L
u(2|2)1
−2 − L

su(2)−1

−2 − L
su(2)1
−2 + :ZY :−2

)
|0⟩

is null, namely that XnN = 0 for every n > 0 and generator X of u(2|2). For the bosonic
generators Ja and Ka the assertion is clear, since their modes commute with those of Z

and Y , see (40). For the fermionic generators Saβγ this follows from Example 4.8 together
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with the following computation,

[Saβγn , :ZY :−2] |0⟩ =γ
(
Z−1S

aβγ
n−1 + Z0S

aβγ
n−2

)
|0⟩ = γZ−1S

aβγ
n−1 |0⟩ , (106)

where we used that Z0 |0⟩ = 0. Note that Eq. (106) vanishes for every n > 0 since

Sαβγm |0⟩ = 0 for every m ≥ 0. Finally, that the positive modes of Z and Y annihilate N
follows from

[Zn, :ZY :−2] = −nZn−2 = −[Zn, L
u(2|2)1
−2 ] ,

[Yn, :ZY :−2] = −nYn−2 = −[Yn, L
u(2|2)1
−2 ] .

From Eq. (104) we deduce that

Cu(2|2)1 = j(j + 1) +
ℓ(ℓ+ 1)

3
− ZY , (107)

holds for every representation of u(2|2)1 , where Z and Y are the eigenvalues of Z0 and Y0

respectively. As a consistency check, one can compute the value of the Casimir Cu(2|2)1

on each component of the allowed multiplets using Eq. (107) and show that it is constant

along each multiplet for every value of Y . Moreover, for each allowed multiplet we may

find the values of Y such that Cu(2|2)1 = 0; these are exactly the multiplets obtained in

the free field realisation.

We also mention that one can prove Eq. (104) using Eq. (93), knowing that h∨ = 0

for u(1) and that the Casimirs of both û(1) factors are equal. Then, the fact that the two

algebras possess levels of opposite sign, see Eq. (38), shows that Eq. (104) holds true.

For what concerns su(2|2)1, the embedding

su(2)−1 ⊕ su(2)1 ⊕ û(1)Z ↪→ su(2|2)1 (108)

is not conformal. Indeed, since the modes of Z commute among themselves, a factor

proportional to :Z:2 in the null vector N as above cannot compensate [Zn, L
u(2|2)1
−2 ] =

−nZn−2. Also, a relation between the su(2)-Casimirs and the Z0 does not hold between

different components of the allowed multiplets found in Section 3.3. Lastly, Eq. (93) is

not applicable since the affine algebra û(1)Z has level k = 0, so Eq. (93) is undefined.
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5 The free field realisation at k = 1

Luckily, there is a free field realisation of the Lie superalgebra u(2|2)1, which allows to

study the highest weight representations and their characters. For this construction, we

followed [GG21b] and used the fact that there is an embedding of affine superalgebras

u(2|2)1 ⊕ u(2|2)1 ⊂ u(2, 2|4)1 .
We first recall that the superalgebra psu(1, 1|2)1 has a free field realisation in terms

of two pairs of symplectic bosons, which is a first order system of bosons of spin half, see

[EGG19], and two pairs of complex fermions, modulo two u(1) fields. Doubling the degrees

of freedom leads to a free field realisation of psu(2, 2|4)1 , see [GG21b]. More specifically,

we consider two pairs of symplectic boson fields (λα, µ†
α) and (µα̇, λ†α̇) with α, α̇ = 1, 2, as

well as four complex fermions (ψa, ψ†
a) with a = 1, 2, 3, 4, satisfying commutation relations

[λαr , (µ
†
β)s] = δαβ δr,−s , [µα̇r , (λ

†
β̇
)s] = δα̇

β̇
δr,−s , {ψar , (ψ

†
β)s} = δab δr,−s .

We combine these fields as YJ = (µ†
α, λ

†
α̇, ψ

†
a) and X

I = (λα, µα̇, ψa) , and then consider

the normal ordered bilinears

J IJ = YJX
I .

These fields generate the superalgebra u(2, 2|4)1 , see [GG21b]. The generator C = YI Z
I

of u(2, 2|4)1 plays an important role since its modes Cn are central and in order to obtain

psu(2, 2|4)1 one needs to quotient them out. In the following we will use the Einstein

summation convention.

We begin by identifying the subalgebra su(2)⊕ su(2)⊕ su(4), that is generated by

Lαβ = µ†
βλ

α − δαβU ,

L̇α̇
β̇
= µ†

β̇
λα̇ − δα̇

β̇
U̇ ,

Ra
b = ψ†

bψ
a − 1

2
δabV ,

where we introduced the generators10

U = 1
2
µ†
γλ

γ , U̇ = 1
2
λ†γ̇µ

γ̇ , V = 1
2
ψ†
cψ

c ,

which commute with Lαβ, L̇α̇β̇ and Ra
b. We set

B = U + U̇ , C = U + U̇ + V , D = U − U̇ ,

10Note that there are some slight differences with respect to [GG21b] in the definition of these gen-
erators and also in notation; this is has been done in order to render some later expressions more
cumbersome.
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and the define the “off-diagonal” generators

Qa
α = ψaµ†

α ,

Q̇α̇
a = µα̇ψ†

a ,

P α̇
β = µα̇µ†

β ,

Sαa = λαψ†
a ,

Ṡaα̇ = ψaλ†α̇ ,

Kα
β̇
= λαλ†

β̇
.

For what concerns the su(4) algebra, we use the convention that the zero modes (Ra
b)0

with a < b are the positive roots, and define the Cartan generators of su(4) to be

Hi = (Ri+1
i+1)0 − (Ri

i)0 , i = 1, 2, 3 .

The bosonic generators satisfy

[(Lαβ)m, (L
γ
δ)n] = δαδ (L

γ
β)m+n − δγβ(L

α
δ)m+n +m

(
−δγβδ

α
δ + 1

2
δαβ δ

γ
δ

)
δm+n,0 ,

and likewise for (L̇α̇
β̇
)m . The modes of the generators

J+ = L1
2 , J− = L2

1 , J3 = 1
2

(
L2

2 − L1
1

)
,

satisfy the su(2)−1 relations, that is, Eq. (27) for k = −1. The same construction also

applies to the (L̇α̇
β̇
)m generators, which therefore lead to another copy of su(2)−1 that we

denote by dotted generators J̇an. On the other hand, for the (Ra
b)m generators we find

[(Ra
b)m, (Rc

d)n] = δad(Rc
b)m+n − δcb(Ra

d)m+n +m
(
δadδ

c
b − 1

4
δab δ

c
d

)
δm+n,0 ,

which are the commutation relations of su(4)1. The u(1) currents satisfy

[Dm,Bn] = [Dm, Cn] = [Cm, Cn] = 0 ,

[Bm,Bn] = [Bm, Cn] = [Dm,Dn] = −mδm+n,0 .
(109)

Finally, the fermionic generators satisfy the anti-commutation

{(Sαa )m, (Qb
β)n} = δab (Lαβ)m+n + δαβ (Ra

b)m+n +
1
2
δbaδ

α
β (Dm+n + Cm+n + 2mδm+n,0) ,

{(Ṡ α̇a )m, (Q̇b
β̇
)n} = δab (Lα̇β̇)m+n + δα̇

β̇
(Ra

b)m+n − 1
2
δbaδ

α̇
β̇
(Dm+n − Cm+n + 2mδm+n,0) .

We now identify the affine subalgebra u(2|2)1 ⊕ u(2|2)1. One copy is generated by the

bilinears constructed from the fields (λα, µ†
α) and (ψ†

a, ψ
a) with a = 1, 2, whilst the other

one from (µα̇, λ†α̇) and (ψ†
b , ψ

b) with b = 3, 4. We introduce

Ra
b = ψ†

bψ
a − δabV for a, b = 1, 2 and Ṙa

b = ψ†
bψ

a − δab V̇ for a, b = 3, 4 ,

54



where

V = 1
2
(ψ†

1ψ
1 + ψ†

2ψ
2) and V̇ = 1

2
(ψ†

3ψ
3 + ψ†

4ψ
4) .

Note that then V = V + V̇ . We also define

Z = U + V , Y = U − V ,

and their dotted analogues. Then, we identify

K+ = R1
2 , K− = R2

1 , K3 = 1
2

(
R2

2 −R1
1

)
, (110)

which satisfy the commutator relations of su(2)1, which are Eq. (27) with k = 1. The

dotted copy of u(2|2)1 is obtained by the replacement 1 7→ 3 and 2 7→ 4 in Eq. (110) and

we denote the corresponding generators by K̇a
n. In order to obtain the algebra u(2)1 from

Eq. (110), one has to add the u(1) generator V , and analogously V̇ for the dotted copy.

We identify

Sαβγ =

Qβ
α if γ = + ,

Sαβ if γ = − ,

and write − = 1, + = 2 for the indices α and β. Then one superalgebra u(2|2)1 is

generated by Un, Vn, J
a
n, K

a
n for a = ±, 3 and Sαβγn for α, β, γ = +,−, since the satisfy

the same commutation relations presented in Section 3.1. Analogously, the dotted copy

arises by the dotted version of the bosonic and fermionic generators.

5.1 The Neveu-Schwarz sector

The vacuum representation of u(2|2)1 arises from the Neveu-Schwarz (NS) sector where

both the symplectic bosons and the fermions are half-integer moded11, and it is generated

from a ground state |0⟩, which we call vacuum, satisfying

λαr |0⟩ = (µ†
α)r |0⟩ = ψαr |0⟩ = (ψ†

α)r |0⟩ = 0 for r ≥ 1
2
, α = 1, 2 .

Thus, this state has then the property that

U0 |0⟩ = V0 |0⟩ = Z0 |0⟩ = Y0 |0⟩ = 0 and J3
0 |0⟩ = K3

0 |0⟩ = 0 .

While for Y0 this is a matter of convention (that is, it depends on the normal order-

ing prescription), though the natural one, this is imposed for Z0 by the commutation

relations of Eq. (41). In particular, this shows that the NS sector defines indeed the

vacuum representation of u(2|2)1, that we will denote by V . Note that since Z0 = 0, this

11Since the supercurrent generators involve one fermion and one symplectic boson, the moding of all
generators has to be the same in order for the u(2|2)1 generators to be integer moded.
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representation descend to one of psu(2|2)1, which we denote by L.

5.2 The Ramond sector

Following the lines of [GG21b] and [DGGK21] we construct the Ramond (R) sector. We

label the states by the symplectic boson occupation numbers |m1,m2⟩. Since in the Lie

supergroup perspective the bosonic subgroup SU(2)× SU(2) is compact, we can assume

that the spins, namely the J3
0 and K3

0 eigenvalues, are half-integers, see [GG21b]. There

is freedom in defining the action of the symplectic bosons zero modes, also because we are

dealing with two pairs of them. We will consider four different R sector representations;

as we will see, the first two differ only by the Z0 and Y0 eigenvalues, whose sign is reversed,

and they both contain only finite-dimensional representations of the non-compact su(2)

factor, whilst the third and fourth representation will contain infinite-dimensional highest

and lowest weight discrete representations. In every case, we require without loss of

generality that

m1 ∈ 1
2
N and m2 ∈ 1

2
Z .

The subspace generated by the vectors with m1,m2 ∈ 1
2
N always form an irreducible sub-

representations, and we shall in the following concentrate on this subspace. This highest

weight space is annihilated by the modes XI
n and (YJ)n with n > 0, and the full affine

representation is generated from it by the action of the non-positive modes. The zero

mode action of the symplectic bosons is already encoded in the above occupation num-

bers, but we also have the action of the fermionic zero modes. They generate a Clifford

algebra representation, and with respect to the zero modes of the su(2)1 generators, that

are bilinears in the fermions, the states for fixed values of mi transform as

(2 · 1)⊕ 2 .

We now explicitly express the possible actions of the u(2|2)1 generators. We start by

the bosonic zero modes, which on highest weight states can act as

λ10 |m1,m2⟩ := 2m1|m1 − 1
2
,m2⟩ ,

λ20 |m1,m2⟩ := 2m2|m1,m2 − 1
2
⟩ ,

(µ†
1)0 |m1,m2⟩ := |m1 +

1
2
,m2⟩ ,

(µ†
2)0 |m1,m2⟩ := |m1,m2 +

1
2
⟩ .

(111)
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From this one can compute the action of the u(2)−1 generators12

J3
0 |m1,m2⟩ = (m2 −m1)|m1,m2⟩ ,

J+
0 |m1,m2⟩ = 2m1|m1 − 1

2
,m2 +

1
2
⟩ ,

J−
0 |m1,m2⟩ = 2m2|m1 +

1
2
,m2 − 1

2
⟩ ,

U0 |m1,m2⟩ = (m1 +m2 +
1
2
)|m1,m2⟩ .

(112)

Moreover, one can compute the su(2)−1-Casimir

Csu(2) = J3
0 J

3
0 + 1

2
(J+

0 J
−
0 + J−

0 J
+
0 ) = j (j + 1) = (m1 +m2) (m1 +m2 + 1) ,

thus the associated spin is j = m1 +m2. For the action of the fermionic zero modes we

define

ψa0 |m1,m2⟩ := 0 for a = 1, 2 . (113)

Then the action of the creation operators ψ†
a with a = 1, 2 leads to a 4-dimensional

Clifford module; with respect to su(2)1, it decomposes into two singlet states

2 · 1 : |m1,m2⟩ and (ψ†
2)0(ψ

†
1)0 |m1,m2⟩ ,

as well as a doublet spanned by

2 : (ψ†
2)0 |m1,m2⟩ and (ψ†

1)0 |m1,m2⟩ .

For a ̸= b we can compute,

(ψ†
aψ

b)0 |m1,m2⟩ = 0 and (ψ†
aψ

a)0 |m1,m2⟩ = −1
2
|m1,m2⟩ ,

hence

V0 =


−1

2
on the singlet |m1,m2⟩ ,

0 on the doublet,

+1
2

on the singlet (ψ†
2)0(ψ

†
1)0 |m1,m2⟩ .

12The action of U0 is fixed only up to a constant which depends on the normal ordering prescription;
this in turn implies that the value of Y0 depends on the convention adopted. However, the value of Z0

is determined by Eq. (41) once the action of the fermionic and bosonic zero modes is defined, hence it is
independent of the convention.
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Recalling that Z0 = U0 + V0 and Y0 = U0 − V0 , one computes

Z0 =


j on the first singlet,

j + 1
2

on the doublet,

j + 1 on the second singlet.

Y0 =


j + 1 on the first singlet,

j + 1
2

on the doublet,

j on the second singlet,

(114)

where as above j = m1 +m2 . We now analyze the irreducible representations of u(2|2)
characterized by the fixed value of Z0 ∈ 1

2
N, since Z0 is central. We write such represen-

tations as multiplets (j ,n)Y, Z of the bosonic subalgebra su(2) ⊕ su(2) ⊕ u(1)Y ⊕ u(1)Z ,

where n and j denote the n- and (2j+1)-dimensional representation of su(2) respectively

and Y, Z the eigenvalues of Y0 and Z0 respectively.

• Z0 = 0: this translates into

0 = Z0 |m1,m2⟩ = j |m1,m2⟩ = (m1 +m2) |m1,m2⟩ ,

and since mi ∈ 1
2
N, it follows that m1 = m2 = 0. From this, one easily sees that

|0, 0⟩ is annihilated by all u(2|2) generators, except for

U0 |0, 0⟩ = 1
2
|0, 0⟩ , V0 |0, 0⟩ = −1

2
|0, 0⟩ , Y0 |0, 0⟩ = |0, 0⟩ .

Indeed, the application of any fermionic creation operator annihilates |0, 0⟩, since
each involve a mode λα0 . This shows that the representation of u(2|2) arising from

this construction is the one-dimensional (ultrashort) representation generated by

the single state |0, 0⟩, which we label by

(j = 0,1)1, 0 . (115)

Note that, except that for the Y0 eigenvalue, this coincides with the vacuum repre-

sentation.

• Z0 =
1
2
: the highest weight states |m1,m2⟩ satisfy m1+m2 =

1
2
. The allowed states

are then |1
2
, 0⟩, |0, 1

2
⟩ which generate a (j = 1

2
,1) representation, and ψ†

a|0, 0⟩ for

a = 1, 2 which generate a (j = 0 ,2) representation. Note that the application of

two fermionic creation operators results in a zero state, since such would contain

two λα0 ’s, thus annihilating each state with m1 +m2 =
1
2
. All together, we have

(j = 0 ,2) 1
2
, 1
2
⊕ (j = 1

2
,1) 3

2
, 1
2
.
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• Z0 = j + 1 , for j ∈ 1
2
N: in this case, we have the following representations

(j + 1 ,1) : |m1,m2⟩ with m1 +m2 = j + 1 ,

(j + 1
2
,2) : (ψ†

a)0 |m1,m2⟩ with m1 +m2 = j + 1
2

and a = 1, 2 ,

(j ,1) : (ψ†
2)0(ψ

†
1)0 |m1,m2⟩ with m1 +m2 = j .

All together, this gives

(j ,1)j, j+1 ⊕ (j + 1
2
,2)j+1, j+1 ⊕ (j + 1 ,1)j+2, j+1 . (116)

We denote by R the whole affine module defined by Eq. (111) and Eq. (113), and the

subrepresentations with fixed Z = Z0 ∈ 1
2
N by RZ .

As we mentioned at the beginning of the section, we may define the action of the

symplectic bosons zero modes differently and this yields different representations of u(2|2).
Hence, we define

λ10 |m1,m2⟩ := |m1 +
1
2
,m2⟩ ,

λ20 |m1,m2⟩ := |m1,m2 +
1
2
⟩ ,

(µ†
1)0 |m1,m2⟩ := −2m1|m1 − 1

2
,m2⟩ ,

(µ†
2)0 |m1,m2⟩ := −2m2|m1,m2 − 1

2
⟩ ,

(117)

from which we compute

J3
0 |m1,m2⟩ = (m1 −m2)|m1,m2⟩ ,

J+
0 |m1,m2⟩ = −2m2|m1 +

1
2
,m2 − 1

2
⟩ ,

J−
0 |m1,m2⟩ = −2m1|m1 − 1

2
,m2 +

1
2
⟩ ,

U0 |m1,m2⟩ = −(m1 +m2 +
1
2
)|m1,m2⟩ ,

and the su(2)-Casimir

Csu(2) = j (j + 1) = (m1 +m2) (m1 +m2 + 1),

thus the associated spin is again j = m1+m2. For the action of the fermionic zero modes

we define instead13

(ψ†
a)0 |m1,m2⟩ := 0 , for a = 1, 2 . (118)

Then the Clifford module decomposes with respect to su(2) into two singlet states

2 · 1 : |m1,m2⟩ and ψ2
0ψ

1
0 |m1,m2⟩ ,

13Note that there is freedom in the definition of the fermionic zero modes action, which however does
not affect the structure of the whole Clifford module. Here, we choose a different action from Eq. (113) in
order to obtain the full conjugate spectrum of Z0 ∈ − 1

2N, since Eq. (113) would give a gap corresponding
to Z0 = − 1

2 .
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and a doublet

2 : ψ1
0 |m1,m2⟩ and ψ2

0 |m1,m2⟩ .

As above we compute

V0 =


+1

2
on the singlet |m1,m2⟩,

0 on the doublet,

−1
2

on the singlet ψ2
0ψ

1
0 |m1,m2⟩ .

and consequently

Z0 =


−j on the first singlet,

−j − 1
2

on the doublet,

−j − 1 on the second singlet.

Y0 =


−j − 1 on the first singlet,

−j − 1
2

on the doublet,

−j on the second singlet.

By an analogous analysis to the one above, we obtain the following u(2|2)-representations.

• Z0 = 0:

(j = 0,1)−1, 0 . (119)

• Z0 = −1
2
:

(j = 0 ,2)− 1
2
,− 1

2
⊕ (j = 1

2
,1)− 3

2
,− 1

2
.

• Z0 = −j − 1, for j ∈ 1
2
N:

(j ,1)−j,−j−1 ⊕ (j + 1
2
,2)−j−1,−j−1 ⊕ (j + 1 ,1)−j−2,−j−1 . (120)

Note that these multiplets are the same of those found above with the replacement

Z0 7→ −Z0 and Y0 7→ −Y0. As representations of su(2)1 they differ only by the sign

of the Z0-eigenvalue; in particular, the representations with Z0 = 0 coincide with the

NS vacuum as su(2|2)1- and psu(2|2)1-representation. We denote by R the full affine

module generated by Eq. (117) and Eq. (118) and by RZ the subrepresentations to fixed

Z = Z0 ∈ −1
2
N.

In Eq. (111) and Eq. (117) we have seen two possible definitions of the symplectic

bosons action. Note that in both cases the two pairs (λα0 , (µ
†
α)0) for α = 1, 2 act in the

same way. It is then natural to look also at the R representation where the two pairs act

in opposite ways. This yields

λ10 |m1,m2⟩ := 2m1|m1 − 1
2
,m2⟩ ,

λ20 |m1,m2⟩ := |m1,m2 +
1
2
⟩ ,

(µ†
1)0 |m1,m2⟩ := |m1 +

1
2
,m2⟩ ,

(µ†
2)0 |m1,m2⟩ := −2m2|m1,m2 − 1

2
⟩ .

(121)
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from which we compute

J3
0 |m1,m2⟩ = −(m1 +m2 +

1
2
)|m1,m2⟩ ,

J+
0 |m1,m2⟩ = −4m1m2|m1 − 1

2
,m2 − 1

2
⟩ ,

J−
0 |m1,m2⟩ = |m1 +

1
2
,m2 +

1
2
⟩ ,

U0 |m1,m2⟩ = (m1 −m2)|m1,m2⟩ ,

(122)

and the su(2)-Casimir

Csu(2) = j (j + 1) = (m1 −m2 − 1
2
) (m1 −m2 +

1
2
), (123)

with spin j = m1 − m2 − 1
2
. We define the action of the fermionic zero modes as in

Eq. (113), which gives Eq. (114) with j = m1 −m2 − 1
2
. We now analyze the irreducible

representations of u(2|2) characterized by the fixed value of Z0 ∈ 1
2
Z. For that, we write

Z0 = j − 1
2
for j ∈ 1

2
Z such that

Z0 |m1,m2⟩ = (m1 −m2 − 1
2
)|m1,m2⟩ = (j − 1

2
)|m1,m2⟩ ,

implying that m1 = m2 + j. We distinguish between three cases and find the following

multiplets, where we always have m ∈ 1
2
N.

• j ∈ −1
2
N:

(D+
j− 1

2

,1) : |m,m− j⟩ ,

(D+
j−1 ,2) : (ψ†

a)0 |m,m− j + 1
2
⟩ ,

(D+
j− 3

2

,1) : (ψ†
2)0(ψ

†
1)0 |m,m− j + 1⟩ .

• j ∈ 1
2
N and j ≥ 1:

(D+
−j− 1

2

,1) : |m+ j,m⟩ ,

(D+
−j ,2) : (ψ†

a)0 |m+ j − 1
2
,m⟩ ,

(D+
−j+ 1

2

,1) : (ψ†
2)0(ψ

†
1)0 |m+ j − 1,m⟩ .

All together, these can be summarised by

(D+
−j ,1)±j−1,±j ⊕ (D+

−j− 1
2

,2)±j,±j ⊕ (D+
−j−1 ,1)±j+1,±j , (124)

for every j ∈ 1
2
Z>0, which is Eq. (54).
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• j = 1
2
, Z0 = 0:

(D+
−1 ,1) : |m+ 1

2
,m⟩ ,

(D+
−1/2 ,2) : (ψ†

a)0 |m,m⟩ ,

(D+
−1 ,1) : (ψ†

2)0(ψ
†
1)0 |m,m+ 1

2
⟩ ,

which in particular yields an additional highest weight representation of psu(2|2)
characterised by

(D+
−1 ,1)⊕ (D+

−1/2 ,2)⊕ (D+
−1 ,1) , (125)

which is exactly Eq. (55).

We denote by R+ the whole affine module defined by Eq. (121) and Eq. (113) and by

R+
Z the subrepresentations with fixed Z = Z0 ∈ 1

2
Z.

We consider the action of the symplectic bosons zero modes that is dual to that of

Eq. (121), namely

λ10 |m1,m2⟩ := |m1 +
1
2
,m2⟩ ,

λ20 |m1,m2⟩ := 2m2|m1,m2 − 1
2
⟩ ,

(µ†
1)0 |m1,m2⟩ := −2m1|m1 − 1

2
,m2⟩ ,

(µ†
2)0 |m1,m2⟩ := |m1,m2 +

1
2
⟩ ,

(126)

from which we compute

J3
0 |m1,m2⟩ = m1 +m2 +

1
2
|m1,m2⟩ ,

J+
0 |m1,m2⟩ = |m1 +

1
2
,m2 +

1
2
⟩ ,

J−
0 |m1,m2⟩ = −4m1m2|m1 − 1

2
,m2 − 1

2
⟩ ,

U0 |m1,m2⟩ = (m2 −m1)|m1,m2⟩ ,

and the su(2)-Casimir

Csu(2) = j (j − 1) = (m2 −m1 +
1
2
) (m2 −m1 − 1

2
),

thus the spin is j = m2 −m1 +
1
2
. We define the action of the fermionic zero modes as in

Eq. (118) and we obtain

Z0 =


j on the first singlet,

j − 1
2

on the doublet,

j − 1 on the second singlet,

Y0 =


j − 1 on the first singlet,

j − 1
2

on the doublet,

j on the second singlet,

with j = m2 −m1 +
1
2
. We write Z0 = j + 1

2
for j ∈ 1

2
Z such that

Z0 |m1,m2⟩ = (m2 −m1 +
1
2
)|m1,m2⟩ = (j + 1

2
)|m1,m2⟩ ,
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implying that m2 = m1 + j. We then find the following multiplets, where m ∈ 1
2
N.

• For j ∈ 1
2
Z>0:

(D−
j+ 1

2

,1) : |m,m+ j⟩ ,

(D−
j+1 ,2) : ψa0 |m,m+ j + 1

2
⟩ ,

(D−
j+ 3

2

,1) : ψ2
0ψ

1)0 |m,m+ j + 1⟩ .

• j ∈ 1
2
Z and j ≤ −1:

(D−
−j+ 1

2

,1) : |m− j,m⟩ ,

(D−
−j+1 ,2) : ψa0 |m− j − 1

2
,m⟩ ,

(D−
−j+ 3

2

,1) : ψ2
0ψ

1
0 |m− j − 1,m⟩ .

All together, these can be summarised by

(D−
j ,1)±j−1,±j ⊕ (D−

j+ 1
2

,2)±j,±j ⊕ (D−
j+1 ,1)±j+1,±j , (127)

for j ∈ 1
2
Z>0 . Note that Eq. (127) is exactly the conjugate of Eq. (124) and

reproduced Eq. (56)-

• j = −1
2
, Z0 = 0:

(D−
1 ,1) : |m+ 1

2
,m⟩ ,

(D−
1/2 ,2) : ψa0 |m,m⟩ ,

(D−
1 ,1) : ψ2

0ψ
1
0 |m,m+ 1

2
⟩ ,

which in particular yields Eq. (57).

We denote by R− the whole affine module defined by Eq. (126) and Eq. (118) and by

R−
Z the subrepresentations with fixed Z = Z0 ∈ 1

2
Z.

The only representations found in Section 3.3 that we are missing in the free field

construction are those with highest weight states transforming in multiplets of su(2|2)1
containing continuous representations of su(2). These can be obtained by defining the R

sector as in Eq. (111) and Eq. (113) but allowing m1,m2 ∈ 1
2
Z. Then, the su(2)-modules

that appear are generally reducible but indecomposable, which is an expected feature of

continuous representations Cj
j with j ∈ 1

2
Z, see Section 3.2. Indeed, one can carry out the

same analysis as above, finding exactly the multiplets Eq. (58) and Eq. (59) with specific

Y0-eigenvalues for each component in the multiplets, which can be deduced by Eq. (114).

We denote this free field representation by R̃ and by R̃Z that to fixed Z0 = Z ∈ 1
2
Z.
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5.3 The spectral flow

For the actual world-sheet theory it is to be expected that we do not just need these

highest weight representations, but also the representations that are obtained from them

by spectral flow. Analogously to [GG21b] and [DGGK21], there are two spectral flow

actions that can be defined on the free fields, namely

σ(α)(λαr ) := λα
r+ 1

2
, σ(α)((µ†

α)r) := (µ†
α)r− 1

2
,

on the symplectic bosons, and

σ(α)(ψαr ) := ψα
r+ 1

2
, σ(α)((ψ†

α)r) := (ψ†
α)r− 1

2
,

on the fermions, where α = 1, 2. The combination

σY := σ(1) ◦ σ(2)

leaves the subalgebra su(2)−1 ⊕ su(2)1 and the fermionic generators Sαβγm invariant and

acts on the u(1) generators as

σwY (Um) = Um + w
2
δm,0 , σwY (Vm) = Vm − w

2
δm,0 ,

which implies

σwY (Zm) = Zm σwY (Ym) = Ym + wδm,0 .

and by Eq. (104)

σwY (L
u(2|2)1
0 ) = L

u(2|2)1
0 − wZ0 ,

where we specified that the energy-momentum tensor is that of u(2|2)1, because the u(1)Y
algebra is absent for su(2|2)1 and psu(2|2)1 and thus the automorphism σY is non-trivial

only for u(2|2)1.
The other natural combination is

σ := σ(1) ◦
(
σ(2)
)−1

and it acts on the generators as

σw(J3
m) = J3

m − w
2
δm,0 ,

σw(J±
m) = J±

m±1 ,

σw(K3
m) = K3

m + w
2
δm,0 ,

σw(K±
m) = K±

m±1 ,

σw(Sαβγm ) = Sαβγm+w
2
γ(α−β) ,

σw(Um) = Um ,

σw(Vm) = Vm ,

σw(Zm) = Zm ,

σw(Zm) = Zm ,

σw(L0) = L0 + w(J3
0 +K3

0) .

(128)
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We can obtain one additional independent spectral flows by declaring σ̃(α) to act as σ(α)

on the symplectic bosons, and

σ̃(α)(ψαr ) := ψα
r− 1

2
, σ̃(α)((ψ†

α)r) := (ψ†
α)r+ 1

2
,

on the fermions. The combination

σZ := σ̃(1) ◦ σ̃(2)

then leaves again the subalgebra su(2)−1 ⊕ su(2)1 invariant and acts on the other gener-

ators as

σwZ (Zm) = Zm + wδm,0 σwZ (Ym) = Ym σwZ (S
αβγ
m ) = Sαβγm−γw ,

and by Eq. (104) we have

σwZ (L
u(2|2)1
0 ) = L

u(2|2)1
0 − wY0 .

Note that since the û(1)Z algebra extends psu(2|2)1 to su(2|2)1, the automorphism σZ

is non-trivial only for su(2|2)1 and u(2|2)1 and it transforms L0 differently depending on

which algebra we are considering.

The other combination

σ̃ := σ̃(1) ◦
(
σ̃(2)
)−1

acts on the generators as

σ̃w(J3
m) = J3

m − w
2
δm,0 ,

σ̃w(J±
m) = J±

m±1 ,

σ̃w(K3
m) = K3

m − w
2
δm,0 ,

σ̃w(K±
m) = K±

m∓1 ,

σ̃w(Sαβγm ) = Sαβγm+w
2
γ(α+β) ,

σ̃w(Um) = Um ,

σ̃w(Vm) = Vm ,

σ̃w(Zm) = Zm ,

σ̃w(Zm) = Zm ,

σ̃w(L0) = L0 + w(J3
0 −K3

0) .

In particular, the action of σ̃ is equivalent to that of σ.

Finally we need to fix our conventions for how to describe spectrally flowed represen-

tations. Suppose that ρ is some spectral flow automorphism, that is some combination of

σ(α) and σ̃(α) for α = 1, 2. Then we define the ρ-spectrally flowed representation, denoted

by ρ(H), to be spanned by the states [Φ]ρ , where Φ is a state in a highest weight rep-

resentation H of the kind described in above, and the “twisted” action of any generator

Xn on [Φ]ρ is defined by

Xn [Φ]
ρ := [ρ(Xn) Φ]

ρ ,
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and we write |0⟩ρw := [|0⟩]ρw . We call the modules ρw(H) with w ∈ Z the spectrally

flowed modules of H.

Typically, spectrally flowed representations are not highest weight representations.

Also recall that in general the classification of irreducible g-modules yields a classification

of the affine highest-weight gk modules. In order to include also the spectrally flowed

versions of the highest weight modules, one needs to enlarge the representation category

of gk by the following definition, see [CR12]. We define a gk-module H to be admissible

if it satisfies the following conditions:

• H is finitely generated,

• the Cartan generators hi act semisimply on H (though L0 need not),

• for every |v⟩ ∈ H, there exists an N > 0 such that

Xn |v⟩ = 0 ∀X ∈ g ∀n > N .

Example 5.1. We said that in general spectrally flowed highest weight representations

are non-highest weight. However, as representations of u(2|2)1, the R sector singlet

representation in Eq. (115) is the image of the NS sector highest weight representation

under one unit of a specific spectral flow, namely

|0⟩Y1 := |0⟩σYw=1 = |0, 0⟩ ⇐⇒ σY (V) ∼= R0 , (129)

Note that this distinction is relevant only when we consider representations of u(2|2)1,
otherwise with respect to su(2|2)1 the spectral flow of Eq. (129) is trivial and the two

representations coincide.

In order to prove Eq. (129), we note that all positive modes, as well as the zero modes

λα0 , ψ
α
0 for α = 1, 2 annihilate both sides of the first equation. Furthermore, one checks

that also the eigenvalues of all the Cartan generators agree, that is,

K3
0 |0⟩Y1 = J3

0 |0⟩Y1 = Z0 |0⟩Y1 = 0 , Y0 |0⟩Y1 = |0⟩Y1 .

Analogously, one shows that

|0⟩Y−1 := |0⟩σYw=−1 = |0, 0⟩ ⇐⇒ σ−1
Y (V) ∼= R0 .

Example 5.2. We consider the spectral flow automorphism of u(2|2)1 given by ρ :=

σ−1
Y ◦ σZ and claim that

ρ(Rj) ∼= Rj+1 ∀ j ∈ 1
2
N . (130)

Indeed, recall that the full affine u(2|2)1 representation Rj is characterised by the highest
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weight multiplet

(j − 1 ,1)j−1, j ⊕ (j − 1
2
,2)j, j ⊕ (j ,1)j+1, j , (131)

with additional shortening occurring for j = 0, 1
2
. In any case, let us denote by |j⟩ the

highest weight state in (j ,1)j+1, j, so that in particular Sαβ+0 |j⟩ = 0, and its image under

the spectral flow ρ by |j⟩ρ := |j⟩ρw=1. It is then immediate to check that |j⟩ρ generates

the representation (j ,1)j, j+1 and that

Sαβ±n |j⟩ρ = 0

if n ≥ 1 ,

if n ≥ 0 .

Thus, |j⟩ρ generates the multiplet

(j ,1)j, j+1 ⊕ (j + 1
2
,2)j+1, j+1 ⊕ (j + 1 ,1)j+2, j+1 , (132)

corresponding to Rj+1. For instance, the representation (j + 1
2
,2)j+1, j+1 is generated by

the states Sαβ+0 |j⟩ρ. Indeed, one computes

ρ(L0) = L0 + Z0 − Y0 + 1 ,

where L0 refers to the energy-momentum tensor of u(2|2)1, and consequently

L0 |j⟩ρ = L0S
αβ+
0 |j⟩ρ = 0 ,

where we used that by the conformal embedding in Eq. (104), the u(2|2)1 Casimir vanishes

on all the multiplets found in the various free field R sectors, and that the central charge

of u(2|2)1 is zero. By induction, it follows that

ρj(R0) ∼= Rj and ρj(L0) = L0 + j(j + Z0 − Y0) = L0 + j(j − Y0) , (133)

where in the last equality we used that Z0 = 0 on R0.

Moreover, one can show analogously that ρ−1(RZ) ∼= RZ−1 for every Z ∈ −1
2
N. Also,

similar results hold for the other R sector representations found above. Note that this

result also holds for su(2|2)1 in which case ρ = σZ and the L0 transformation is different.
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6 Characters and Modular Invariants

We review the theory of affine characters and in particular those of integrable affine

highest weight modules following chapter 14.4 of [DFMS97]. We then discuss modular

invariance of partition functions following chapter 4 of [BP09].

6.1 Affine characters of affine integrable modules

Let gk be an affine Lie algebra at fixed level k ∈ R with finite Lie algebra g of rank r. Let

τ ∈ C with Im(τ) > 0 and set q := e2πiτ , such that |q| < 1. Let also z = (z1, . . . , zr) ∈ Cr

be variables, which we will call chemical potentials. Then, the affine character of

the gk-module of affine highest weight λ̂ is

chλ̂(z; τ ; t) := e2πiktTrλ̂ e
2πiτL0e2πi

∑
j zjh

j

, (134)

where the trace is taken over an orthonormal basis of λ̂ and in the following we will often

set t = 0 and dropping the t-dependence, since at fixed level k the corresponding term

does not contain any particular information. If the highest weight representation λ̂ is

integrable, then Eq. (134) can be shown to be equal to

chλ̂(z; τ) =
∑
λ̂′∈Ωλ̂

multλ̂(λ̂
′)eλ̂

′
(ξ̂) ,

where ξ̂ = −2πi(ζ; τ ; t) with ζ =
∑r

i=1 ziα
∨
i and the sum runs over all the weights in the

affine representation, multλ̂(λ̂
′) ∈ N denotes the multiplicity of λ̂′ in the representation λ̂

and eλ̂
′
denotes a formal exponential satisfying

eλ̂
′
eµ̂ = eλ̂

′+µ̂ and e⟨λ̂
′,µ̂⟩ = eλ̂

′(µ̂) ∀ λ̂′, µ̂ ∈ h∗k .

Eq. (134) can be rewritten in the form called Weyl-Kac character formula, which make

use of the affine Weyl group action, see [DFMS97, Eq. 14.148]. Then, thanks to the

Macdonald-Weyl denominator identity it can be written in terms of generalised theta

functions

Θ
(k)

λ̂
(z; τ ; t) = e2πikt

∑
α∨∈Q∨

e2πi⟨α
∨+λ/k,ζ⟩eπikτ |α

∨+λ/k|2 , (135)

where Q∨ = ⊕r
i=1Zα∨

i is the coroot lattice. More precisely, we have that

chλ̂(t; τ ; t) = e−2πiτmλ̂

∑
w∈W ϵ(w)Θ

(k)

w(λ̂+ρ̂)
(z; τ ; t)∑

w∈W ϵ(w)Θ
(k)
w(ρ̂)(z; τ ; t)

, (136)

68



where W is the Weyl group of g and ϵ(w) := (−1)|w| is the signature of w ∈ W , see

[DFMS97, Chapter 13.1.8]. As we will, the fact that the affine characters cane be ex-

pressed in terms of generalised theta functions is a key feature of integrable affine rep-

resentations, since Eq. (135) have nice modular properties, as we will see. In Eq. (136)

there is a special quantity called the modular anomaly

mλ̂ =
|λ+ ρ|2

2(k + h∨)
− |ρ|2

2h∨
= hλ −

c

24
,

where hλ and c are defined as in Eq. (24) and Eq. (17) respectively. As one can see in

Eq. (136), it is natural to normalise the character with respect to the modular anomaly;

therefore, we introduce the normalised affine character (and we will often omit the

epithet “normalised”) as

χλ̂(z; τ) := Trλ̂ e
2πiτ(L0−c/24)e2πi

∑
j zjh

j

, (137)

which is the form of the character we will always use. When evaluated at z = 0, the

character of Eq. (137) is said to be specialised and takes the form

χλ̂(τ) := χλ̂(0; τ) = qhλ−c/24
∑
n≥0

d(n)qn ,

where d(n) gives the total number of states at grade n.

Example 6.1. We want to look at the characters of integrable su(2)k-modules for k ∈
Z>0. In this case, the affine dominant weights are of the form

[k − λ1, λ1] for 0 ≤ λ1 ≤ k .

In the following, we write λ1 = 2ℓ, so that 0 ≤ ℓ ≤ k/2, and we call the spin ℓ su(2)k-

module the highest weight integrable affine representation generated by the highest weight

state |ℓ⟩, see Section 2.3. Recall that ℓ completely characterises the representation for

fixed k, and the state |ℓ⟩ transforms in the finite dimensional spin ℓ representation under

the finite su(2).

The generalised theta functions 135 in this case take the form

Θ(k)
m (z; τ) :=

∑
n∈Z+m

2k

qkn
2

zkn ,
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and with these we can express the integrable spin ℓ su(2)k-characters as

χ
(k)
ℓ (z; τ) :=

Θ
(k+2)
2ℓ+1 (z; τ)−Θ

(k+2)
−2ℓ−1(z; τ)

Θ
(2)
1 (z; τ)−Θ

(2)
−1(z; τ)

=
Θ

(k+2)
2ℓ+1 (z; τ)−Θ

(k+2)
−2ℓ−1(z; τ)

q
1
8 (z

1
2 − z−

1
2 )
∏∞

n=1(1− qn)(1− zqn)(1− z−1qn)
,

(138)

where for the second equality we used Jacobi’s triple product identity

∑
n∈Z

(−1)nzn+
1
2 q

1
2
(n+ 1

2
)2 = q

1
8 (z

1
2 − z−

1
2 )

∞∏
n=1

(1− qn)(1− zqn)(1− z−1q) ,

which is true for every q, z ∈ C with |q| < 1 and z ̸= 0. The oscillator contribution in

the infinite product in the last line of Eq. (138) comes from the modes J3
−n and J±

−n for

n > 0 which are charged under the finite su(2) by z = 0, z±1 respectively. Indeed, since

these modes are bosonic, they contribute to the character by

∞∑
i=0

(zaq)i = (1− zaqn)−1 for a = 0,± .

The rest of the expression accounts for the fact that the ground states form a spin ℓ

su(2)-representation and for the null vectors in the module. The numerator of Eq. (138)

at lowest orders in q looks like

Θ
(k+2)
2ℓ+1 (z; τ)−Θ

(k+2)
−2ℓ−1(z; τ) = q

(ℓ+1
2 )2

k+2

(
zℓ+

1
2 − z−ℓ−

1
2

)
−q

(k−ℓ+3
2 )2

k+2

(
zk−ℓ+

3
2 − z−k+ℓ−

3
2

)
+. . . .

Recall that the character of the finite-dimensional spin ℓ su(2)-representation is given by

χ
su(2)
ℓ (ζ) :=

ℓ∑
m=−ℓ,m+ℓ∈Z

zm =
zℓ+

1
2 − z−ℓ−

1
2

z
1
2 − z−

1
2

=
sin((2ℓ+ 1)πζ)

sin(πζ)
for z = e2πiζ . (139)

Thus, the oscillator contribution is multiplied by

q
(ℓ+1

2 )2

k+2
− 1

8χ
su(2)
ℓ (ζ)−q

(k−ℓ+3
2 )2

k+2
− 1

8χ
su(2)
k+1−ℓ(ζ) + . . .

= q
ℓ(ℓ+1)
k+2

− k
8(k+2)

(
χ
su(2)
ℓ (ζ)− qk+1−2lχ

su(2)
k+1−ℓ(ζ) + . . .

)
.

We recognize on the right hand side the factor qh−
c
24 , where the conformal dimension and

the central charge have been described in Section 2.3. We also understand the second

term in the series as subtracting out the null vector (J+
−1)

k+1−2ℓ |ℓ⟩, see Eq. (30). The next
term in the series correspond to the fact that we have also subtracted all the descendants

of the null-vector. However, some descendants are actually not there and have to be put
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in again into the character. This pattern continues and yields an alternating sum. This is

made even more explicit when looking at the specialised character, that is, letting z → 0,

which after some manipulations yields

χ
(k)
ℓ (τ) := lim

z→0
χ
(k)
ℓ (z; τ) =

q
(ℓ+1

2 )2

k+2

η(τ)3

∑
n∈Z

(2ℓ+ 1 + 2n(k + 2))qn(2ℓ+1+(k+2)n) .

Remark 6.2. In this chapter we mainly considered characters of integrable modules and

we ignored issues related to the convergence of the characters of Eq. (134) and Eq. (137).

There are in general two points of view when considering characters; one can define them

as complex formal power series (or formal distributions) in the variables q and z, which

are then called formal characters, or as meromorphic functions in z expanded on a

specific convergence region dictated by q (where we always assume that |q| < 1), which

are then called character functions. It turns out that the characters of integrable rep-

resentations are holomorphic in z, thus one can identify formal characters with formal

distributions. However, even in the “simplest” non-integrable setting, namely that of

affine Lie algebras at admissible fractional levels, see [DFMS97, Chapter 18], the charac-

ters usually have poles in z and hence one must distinguish between formal characters

and character functions. In particular, when working with character functions one loses

the correspondence between modules and characters. More precisely, the Z-linear map

which assigns to each module in the fusion ring its character is not injective as in the

integrable setting, see for instance [CR13].

However, for what concerns modular invariance of WZW models at fractional levels,

Kac and Wakimoto [KW88] observed that for a given admissible level, there is a finite

number of admissible representations transforming linearly among themselves under mod-

ular transformations. This readily leads to a formal modular invariant which is simply

the diagonal invariant built out of the admissible character functions.

In this regard, one of the most studied case is that of sl(2)k and su(2)k for admissible

fractional levels k, see [CR13] and [LMRS04]. In this setting, the spectral flow action on

the character functions has finite orbits, meaning that even though there are infinitely

many inequivalent spectrally flowed modules, there are only finitely many linearly inde-

pendent character functions. In particular, one finds recursive relations between character

functions and their spectrally flowed versions, which allow to characterise the kernel of

the map from modules to characters. If such kernel contains modules that close under

fusion, namely if forms an ideal, then one can consistently define fusion at the level of

characters and the resulting ring over Z is called theGrothendieck ring of characters.

Assigning modules to their characters therefore define a surjective Z-linear map from the

fusion ring to the Grothendieck ring.

As mentioned above, this has a peculiar effect when considering modular invariance.
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Specifically, one expects from rational theories that pairing each module with itself under

the holomorphic and antiholomorphic affine actions leads to a modular invariant partition

function. However, the coincidence of characters means that there are infinitely many

modules all contributing the same amount to the partition function, which therefore di-

verges. One can then regularise this divergence by only allowing the linearly independent

characters to contribute, effectively dividing the modular invariant by the infinite multi-

plicity of each independent character, and in this way one recovers the modular invariant

of Kac and Wakimoto [KW88]. This is indeed invariant under the modular action of

PSL(2,Z), but one should be careful in interpreting it as a physical partition function,

since technically it does not refer to a complete set of modules of the theory. In particular,

there is no set of modules corresponding to this partition function which is closed under

fusion. In essence however, it determines a modular invariant partition function in the

Grothendieck ring of characters. This is no different to what one does in rational theories,

and evidence is in favor that this is what one should do in logarithmic theories as well.

However, determining a modular invariant in this way does not answer the fundamental

question of how the holomorphic and antiholomorphic sectors of the theory are glued

together. Applications hence require a justification of why such a partition function is

appropriate.

The proposal of [LMRS02] in interpreting the modular invariant on the Grothendieck

ring of characters in relation to the Kac-Wakimoto invariant, is to regard the character

functions as being defined only on the respective annulus of convergence. Summing them

to get a partition function is therefore viewed as summing over the different annuli in order

to have a finite meromorphic partition function on the z-plane with |q| < 1. Presumably

this means each character should take value zero outside its given annulus, in contrast

with analytic continuation. This proposal seems however unlikely [Rid09] since modular

transformations do not preserve this annuli structure, hence one is forced to analytically

continue the characters into the rest of the z-plane.

In fact, it would be better to extend the definition of partition function so that every

module contributes. In [Rid09] it is suggested to introduce an additional quantum number

to distinguish representations with the same character, namely same character functions

with different annuli of convergence. It is not clear however that such a quantum number

need exist and it seems plausible that modular invariants for fractional level models can

only be defined at the level of Grothendieck ring.

With these comments, one should also be careful when interpreting the Verlinde for-

mula. The potential problem linked to the fact that the modular transformations relate

different regions of convergences, is not taken into account in the derivation of the Ver-

linde formula. Therefore, it is well established only for integrable representations, or

equivalently, for holomorphic character functions. On the other hand, if spectrally flowed

modules appear under the modular transformations, this means that we do not flow back
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onto the original set of fields when going around cycles on the torus. This clearly indicates

that the Verlinde formula does not apply in general to admissible fractional level WZW

models. In particular, a naive application of the Verlinde formula to some admissible

fractional level theories [Rid09] has lead to negative fusion coefficients. In [CR12] it is

argued how this arises because the characters of the infinitely many irreducible modules

are not all linearly independent as meromorphic functions.

6.2 Modular Invariance

In CFTs higher order corrections in perturbation theory are equivalent to defining the

fields on higher genus Riemannian surfaces. At one-loop, that is genus one, such surface

is the torus. It turns out that the partition function on the torus has a symmetry under

the modular group PSL(2,Z); we say that it is modular invariant. This feature heavily

constrains the field content of the theory and so the allowed representations.

Starting from a tree-level CFT defined on the Riemann sphere S2 ∼= C ∪ {∞} we

can obtain a CFT on the torus T 2(τ) ∼= C/(Z + Zτ) by taking the quotient of the

punctured sphere with a two dimensional integral lattice specified by a number τ ∈ H
called modular parameter, where we denote the upper half plane by

H := {τ ∈ C : Im(τ) > 0} .

Since we wish to work in a differential geometric setting, instead of a topological one, for

different values of the modular parameter we obtain in general inequivalent tori, where by

inequivalent we mean non-isometric or with non-isomorphic complex structures. There

is an action of the modular group on H given by Möbius transformations

PSL(2,Z)×H → H,

(
a b

c d

)
· τ :=

aτ + b

cτ + d
. (140)

This action preserves the torus T 2(τ) for fixed τ ∈ Z. The modular group PSL(2,Z) is
generated by two elements:

T :=

(
1 1

0 1

)
, τ 7→ τ + 1 and S :=

(
0 1

−1 0

)
, τ 7→ −1

τ
,

with relations S2 = I and (ST )3 = I as elements of PSL(2,Z).
The partition function of a CFT on the torus turns out to be

Z(τ, τ̄) := TrH

(
qL0− c

24 q̄L̄0− c̄
24

)
, (141)

where q = e2πiτ and q̄ = e−2πiτ̄ . Then, by the discussion above Eq. (141) has a PSL(2,Z)
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symmetry. In the following we will be mainly concerned with integrable WZW models.

6.2.1 Modular covariance of integrable affine characters

The modular group action of Eq. (140) can be extended on affine weights of gk by(
a b

c d

)
· (z; τ ; t) :=

(
zcτ + d;

aτ + b

cτ + d
; t+

c|z|2

2(cτ + d)

)
,

where we identify z = (z1, . . . , zr) with ζ =
∑r

i=1 ziα
∨
i . In particular,

T · (z; τ ; t) = (z; τ + 1; t) and S · (z; τ ; t) =
(
z

τ
;−1

τ
; t+

|z|2

2τ

)
.

This action then descend on affine characters as

A · χλ̂(z; τ ; t) := χλ̂(A · (z; τ ; t)) ∀A ∈ PSL(2,Z) .

The result that is at the core of modular covariance in unitary rational WZW models

is that the characters of dominant highest weight representations at some fixed level k

transform into each other under the modular group action, that is

χλ̂(z; τ + 1; t) =
∑
µ̂∈Pk+

Tλ̂µ̂χµ̂(z; τ ; t) ,

χλ̂(z/τ ;−1/τ ; t+ |z|2/2τ) =
∑
µ̂∈Pk+

Sλ̂µ̂χµ̂(z; τ ; t) ,
(142)

where

Tλ̂µ̂ = δλ̂µ̂e
2πimλ̂ , (143)

which means that the T -transformation induces only a phase change, and

Sλ̂µ̂ = i|∆+||P/Q∨|−
1
2 (k + h∨)−r/2

∑
w∈W

ϵ(w)e−2πi⟨w(λ+ρ),µ+ρ⟩/(k+h∨) , (144)

where P := ⊕r
i=1Zωi denotes the weight lattice of g and P/Q∨ the set of lattice points

of P lying in an elementary cell of Q∨. It is very important for the derivation of Eq. (143)

and Eq. (144) that the affine characters can be expressed in terms of generalised theta

functions, see Eq. (136). Then, Eq. (143) is straightforward, while Eq. (144) follows from

the Poisson resummation formula

∑
x∈Γ

f(x) =
1

|Γ|
∑
p∈Γ∗

f̂(p) , (145)
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where Γ = ⊕d
i=1Zϵi ⊂ Rd is a d-dimensional lattice with volume |Γ| :=

√
det ⟨ϵi, ϵj⟩,

Γ∗ := ⊕d
i=1Zϵ∗i is the dual lattice with ⟨ϵi, ϵ∗j⟩ = δij for every 1 ≤ i, j ≤ d, and f : Rd → C

is a Schwartz function with Fourier transform f̂ . In particular, for d = 1, ε1 = 1 and

f(x) := e−πax
2+bx with a ∈ H and b ∈ C, one obtains the useful identity

∑
n∈Z

e−πan
2+bn =

1√
a

∑
m∈Z

e−
π
a (m− b

2πi)
2

(146)

We investigate the properties of the modular T - and S-matrices. A very important

fact is that both matrices are unitary

T −1 = T † and S−1 = S† .

Note that S2 = 1 but S2 ̸= 1. Indeed, at the level of affine weights

S2 · (z; τ ; t) = (−z; τ ; t) ,

which implies that at the level of characters

S2 · χλ̂(z; τ ; t) = χλ̂(−z; τ ; t) = χλ̂∗(z; τ ; t) , (147)

where λ̂∗ the affine highest weight conjugate to λ̂, see [DFMS97, Chapter 14]. This in

particular shows that S2 is the charge conjugation matrix

C := S2 with C · χλ̂ = χλ̂∗ .

On S, the action of C is simply the usual complex conjugation

S̄ = CS = SC .

An interesting result, is that when looking at the specialised form of the second line

in Eq. (142) and in particular at its asymptotic behaviour for τ → i0+, one finds that

Sλ̂0 ≥ S00 > 0 ,

where the label 0 stands for kω̂0, the vacuum representation. This means that the S-

transformation of the vacuum character is a non-trivial linear combination of every inte-

grable highest weight character present in the model.
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6.2.2 Modular invariance in WZW models

For an integrable WZW model, the full Hilbert space decomposes as

H =
⊕

λ̂,µ̂∈Pk+

Mλ̂µ̂Hλ̂ ⊗Hµ̂ (148)

where the tensor product reflects the separation into holomorphic and antiholomorphic

sectors. Also, Mλ̂µ̂ ∈ N gives the multiplicity of the combined modules Hλ̂ ⊗ Hµ̂ in

the Hilbert space of the theory. Since there are finitely many integrable highest weight

representations, say N > 0, the coefficients of M can be assembled into a matrix which

we call mass matrix since it specifies the physical spectrum of the model. The partition

function Eq. (141) can thus be expressed in terms of the affine integrable characters as

Z(τ, τ̄) =
∑

λ̂,µ̂∈Pk+

χλ̂(τ)Mλ̂µ̂ χµ̂(τ̄) , (149)

where now Mλ̂µ̂ can be interpreted as the multiplicity of the primary field which under

G(z) × G(z̄) transforms with respect to the λ and µ representations of g respectively.

This form of the partition function for WZW models does not fully take into account

the Lie algebra symmetry; in other words, even though the parameter t in Eq. (137) in

unnecessary, the chemical potential z ∈ Cr is required for the full characterisation of

the spectrum and is missing in Eq. (149). For instance, the z dependence is needed to

distinguish between conjugate characters, see Eq. (147). However, in order to lighten the

notation, we omit these parameters14.

With Eq. (142) we have that modular invariance of Eq. (149) is equivalent to the

following conditions:

T †MT = S†MS = M ⇐⇒ [M,S] = [M, T ] = 0 , (150)

that is, M must be in the centraliser of S and T .

In addition to being modular invariant, the partition functions must satisfy the fol-

lowing physical conditions:

1. Mλ̂µ̂ ∈ N,

2. M00 = 1 for the vacuum state to be unique.

14The complete partition function Eq. (141) including the chemical potentials of the Cartan generators
is often written under the form

Z(z, z̄; τ, τ̄) = TrH qL0−c/24x
hi
0

i q̄L0−c/24x̄
hi
0

i ,

where xi = e2πizi , x̄i = e−2πiz̄i and there is an implicit product over i = 1, . . . , r.
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An N × N -matrix M satisfying Eq. (150) and conditions 1, 2 is said to be a physical

invariant. It appears though that the physical conditions are not quite sufficient to fully

specify well-defined theories. For example, a physical invariant could lead to a theory

with non-integer fusion coefficients, which should not be acceptable. At this time, a

complete set of conditions that must be satisfied by a physical invariant to qualify it as

a genuine rational CFT is not known.

There is a natural choice for the mass matrix, namely

Mλ̂µ̂ = δλ̂µ̂ .

Then the partition function is simply

Z(τ, τ̄) =
∑
λ̂∈Pk+

χλ̂(τ)χλ̂(τ̄) ,

which is modular invariant by unitarity of both T and S. Such theory is called diagonal.

In this case, all integrable representations appear exactly once and all the fields have equal

holomorphic and anti-holomorphic conformal dimensions. Moreover, the diagonal theory

with M = I is a physical invariant.

The problem of finding modular invariance has lead to mainly three approaches: the

method of outer automorphisms (which is an abelian orbifold construction), conformal

embeddings (immersion into a larger theory, see Section 4) and Galois permutations

(modular-invariant permutation of the fields associated with an automorphism of the

fusion rules). These methods always produce physical theories but none of these prove

to be complete; that is, all known physical invariants cannot be generated by only one of

these techniques. For a more detailed discussion we refer to [DFMS97, Chapter 17].

Example 6.3. In Example 6.1 we gave an explicit expression for the integrable su(2)k

characters. Recall that for fixed level k ∈ Z>0 there are k + 1 integrable highest weight

representations which we label by the spin ℓ ∈ N such that 0 ≤ ℓ ≤ k/2. We choose the

ordered basis (χ
(k)
0 , χ

(k)
1/2, . . . , χ

(k)
k/2) for the vector space of integrable affine characters of

su(2)k. Then, by Eq. (143) the modular T -matrix is given by

T (k)
ℓℓ′ = e2πi(

ℓ(ℓ+1)
k+2

− k
8(k+2))δℓ,ℓ′ .

Since |∆+| = 1, |P/Q∨| = 1, h∨ = 2 and |ω1|2 = 1
2
, the modular S-matrix of Eq. (144) is

given by

S(k)
ℓℓ′ =

√
2

k + 2
sin

(
π(2ℓ+ 1)(2ℓ′ + 1)

k + 2

)
for 0 ≤ ℓ, ℓ′ ≤ k/2 , (151)

which is clearely symmetric and one can check explicitely that it is also unitary. Eq. (151)
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can be obtained explicitely with Eq. (138) and the Poisson summation formula, Eq. (146).

A remarkable fact is that for the su(2)k-WZW model there exists a complete classifi-

cation of modular invariants; this is due to Cappelli, Itzykson and Zuber [CIZ87]. There

are three types of modular invariants: the A-type, corresponding to the diagonal invari-

ants, which exists for every level k ∈ Z>0, the D-type, which exists for even level, and

the E-type, which exist at the three exceptional levels k = 10, k = 16 and k = 28. The

terminology ADE comes from the fact that the classification problem for su(2)k can be

mapped to the classification of simply-laced Lie algebras. The modular invariants have

also a physical interpretation. The A-type modular invariant defines the SU(2)-WZW

model at level k ∈ Z>0; it contains every integrable representation exactly once. The

D-type corresponds to the SO(3)-WZW model, which turns out to have a quantisation

condition k ∈ 2Z instead of Eq. (10) because it is not simply-connected. This is an

instance where the global topology of the Lie group affects the spectrum of the theory.

Remark 6.4. We stress that in the discussion above we considered WZW models on an

affine algebra gk that admit at least one integrable representation, which then implies

that all the relevant representation of the theory consist in the finite set of all integrable

highest weight representations of gk. At the level of the corresponding Lie group G, this

requires that G is compact.

As we mentioned before, global properties of G also affects the spectrum. Indeed, if

G is compact and simply-connected, then the theory possess a diagonal invariant. On

the other hand, if G is compact but not simply connected, then the WZW model is still

rational but not necessarily diagonal. As an example, the SO(3)-WZW model exists for

even integer levels k ∈ 2Z>0 and its spectrum is a non-diagonal combination of finitely

many integrable highest weight representations corresponding to the D-type invariants in

the su(2)k classification.

If G is not compact, then the WZW is non-rational. Moreover, its spectrum may

include non-highest weight representations. This is the example for the SL(2,R)-WZW

model, whose spectrum is built from highest weight representations, plus their images

under the spectral flow automorphisms of the affine Lie algebra, see [MO01].

If G is a Lie supergroup, and correspondingly g is a Lie superalgebra, then the spec-

trum may involve representations that do not factorize as tensor products of represen-

tations of the holomorphic and antiholomorphic symmetry algebras. This occurs for

example in the case of gl(1|1) [SS06] and also in more complicated supergroups such as

psu(1, 1|2) [GQS06]. Non-factorizable representations are responsible for the fact that

the corresponding WZW models are logarithmic conformal field theories.
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6.2.3 Modular transformations and invariants for coset theories

We come back to the setting of Section 4.1 and consider an affine embedding, following

the lines of [DFMS97, Chapter 18.7]. In this context, the branching coefficients satisfy

a simple rule, which can also be used for their determination. More specifically, the

branching functions correspond to the normalised character identity

χPλ̂(z; τ) =
∑

µ̂∈P̃xek+

e2πiτ(mλ̂−mµ̂)bλ̂,µ̂(τ)χµ̂(z; τ) , (152)

which simplifies further for conformal embeddings, since mλ̂ = hλ − c
24
, and one can use

Eq. (73). Moreover, for characters of integrable representations there is an asymptotic

relation given by

χλ̂(τ → i0+) ∼ Sλ̂,0 e
iπc/12τ .

All together, we obtain

Sλ̂,0 =
∑
µ̂

bλ̂,µ̂ S̃µ̂,0 ,

where S and S̃ are the S-matrices of g and g̃ respectively. Note that this relation holds

true in the case of integrable theories.

We now move our attention to coset theories, continuing the discussion of Section 4.2.

To extract the coset gk/ g̃k̃ conformal theory from the gk-WZW model, we must strip

off its g̃k̃ content. In practice, this means that if we consider the affine branching rules

of Eq. (70), then the various characters of the coset model should emerge from this

decomposition. In other words, the branching functions are the natural candidates for

the coset characters. However, this is not quite exact and we must first consider the

precise relationship between characters and branching functions. For that, we look at

Eq. (152) and define the normalised branching functions as

χ{λ̂; µ̂}(τ) := e2πiτ(mλ̂−mµ̂)bλ̂,µ̂(τ) . (153)

By Eq. (152) we identify the coset characters with normalised branching functions. How-

ever, an immediate consequence of this identification is that not all pairs of fields (or

weights) can be combined into coset fields. Indeed, for the branching function Eq. (153)

to be non-zero, the so called selection rule must be satisfied:

Pλ− µ ∈ PQ , (154)

where Q is the root lattice of g and P is the projection matrix of the embedding g̃ ↪→ g.

We now consider the modular transformation properties of the branching functions.
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The modular transformations of affine integrable characters Eq. (142) leads to

χ{λ̂; µ̂}(−1/τ) =
∑

λ̂′∈Pk+, µ̂′∈P̃
kxe
+

Sλ̂λ̂′ S̃
−1
µ̂µ̂′ χ{λ̂′; µ̂′}(τ) ,

χ{λ̂; µ̂}(τ + 1) = e2πi(mλ̂−mµ̂) χ{λ̂; µ̂}(τ) ,

(155)

where S and S̃ are the modular S-matrices of gk and g̃k̃ respectively, and we omitted the

projection operator from the S matrix indices since χPλ̂ and χλ̂ have identical modular

transformation properties. Then, Eq. (155) shows that the transformation matrices for

the normalised branching functions are

S{λ̂; µ̂},{λ̂′; µ̂′} := Sλ̂λ̂′ S̃
∗
µ̂µ̂′

T{λ̂; µ̂},{λ̂′; µ̂′} := Tλ̂λ̂′ T̃
∗
µ̂µ̂′

where the ∗ here means complex conjugation. In particular, unitarity of the branching

function modular matrices is inherited from the unitarity of the WZW modular matrices.

Note that the T transformation matrix for χ{λ̂; µ̂} in Eq. (155) is given by

χ{λ̂; µ̂}(τ + 1) = e2πi(hλ−hµ−c/24) χ{λ̂; µ̂}(τ) ,

where c is the coset central charge as in Eq. (74). Moreover, there is a simple expression

for the fractional part of the conformal dimension for the coset field {λ̂; µ̂}. If the tip of

the µ̂ representation of g̃k̃ lies at grade n in the λ̂ representation of gk, then

h{λ̂; µ̂} = hλ − hµ + n ,

whose fractional part is just hλ − hµ. Thus,

χ{λ̂: µ̂}(τ + 1) = e2πi(hλ−hµ−c/24) χ{λ̂: µ̂}(τ) .

Finally, we mention that from the modular transformations of the coset characters in

Eq. (155), one can construct modular invariants for the coset theory from invariants of

gk and g̃k̃. At first sight, a straightforward way of constructing the coset mass matrix

Mcoset is the product

Mcoset = MM̃ , (156)

of the mass matrices M of gk and M̃ of g̃k̃ . Then, the modular invariance of M and

M̃ ensures automatically the invariance of their product. However, this simple product

matrix does not give the coset partition function, since the selection rules of Eq. (154),

which impose constraints on the summations, are not taken into account. In general, the
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true partition function has the form

Zcoset(τ, τ̄) ∼
∑

λ̂,λ̂′∈Pk+ µ̂,µ̂′∈P̃kxe+

Pλ−µ=Pλ′−µ′=0 mod Q

χ{λ̂; µ̂}(τ)Mλ̂,λ̂′ Mµ̂,µ̂′ χ{λ̂′; µ̂′} , (157)

where the proportionality factor depends on the length of fields identification orbits under

the outer automorphism group, which we did not discuss here and we refer to [DFMS97,

Chapter 18.3]. The partition function Eq. (157) no longer has the simple product form

Eq. (156), and modular invariance is not guaranteed from the onset but it turns out that

it still holds true. Moreover, note that by construction, the coset models we considered

are rational conformal field theories. Indeed, since there is a finite number of primary

fields in both the gk- and the g̃k̃-WZW model, there is a finite number of branching rules,

and thus a finite number of coset primary fields.

6.2.4 Modular invariants of û(1)

We now consider the affine Lie algebra u(1)k, which is also called the Heisenberg alge-

bra. This affine Lie algebra is generated by modes Jn for n ∈ Z and L0 satisfying the

commutation relations

[Jm, Jn] = kmδm+n,0 and [L0, Jn] = −nJn .

Note that by redefinition of the generators, we can assume without loss of generality that

k = 1; this is also why when considering the affine algebra û(1) the specification of the

level is often omitted. The module of the Heisenberg algebra is simply the Fock space of

a free boson and it is specified by an highest weight state |s⟩ for s ∈ R such that

J0 |s⟩ = s|s⟩ and Jn |s⟩ = 0 ∀n > 0 .

Such modules are always irreducible, and the states are of the form

Jn1
−1J

n2
−2 . . . |s⟩ = |s;n1, n2, . . . ⟩ with ni ∈ N ,

which holds up to a normalisation constant and only finitely many ni’s are nonzero. Then

L0 |s⟩ = |s;n1, n2, . . . ⟩ =

(
s2

2
+

∞∑
i=0

ni

)
|s;n1, n2, . . . ⟩ ,

and hence the number of states at fixed grade n is given by p(n) ∈ N, the number of

partitions of n. Also, since the dual Coxeter number of u(1) is zero, this theory has

central charge c = 1. Thus, the specialised character of the Heisemberg module is thus
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equal to the inverse of the Euler function times a factor related to the modular anomaly:

χs(τ) := q
s2

2
− 1

24

∞∑
n=0

p(n)qn =
q
s2

2

η(τ)
.

Note that these characters are holomorphic in τ ∈ H and integrable as functions of s ∈ R.
From this, we can compute the modular transformations

χs(τ + 1) = e
2πi

(
s2

2
− 1

24

)
χs(τ) ,

χs (−1/τ) =

∫
R
dt e−2πistχt(τ) ,

(158)

by using the modular behaviour of η(τ), see Appendix A, and the Fresnel-integral :

∫
R
eiax

2+ibx =

√
iπ

a
e−i

b2

4a ∀ a ∈ H, b ∈ C .

From Eq. (158) which we read of the modular matrices

Tst = e
2πi

(
s2

2
− 1

24

)
δ(s− t) and Sst = e−2πist (159)

for s, t ∈ R. Note that we are in a more general setting than Eq. (142) since we have a

continuous spectrum and the T and S matrices are now distribution valued functions of

(s, t) ∈ R2. The matrices in Eq. (159) are still unitary in the sense that∫
R
dt TstT †

tr = δ(s− r) and

∫
R
dtSstS†

tr = δ(s− r) . (160)

This suggests that a diagonal modular invariant should be applicable in some sense.

Let τ̄ be the complex conjugate of τ ∈ H and χs̄(τ̄) for s̄ ∈ R be the affine character

corresponding to the antiholomorphic copy of û(1). Then, we consider a partition function

of the form

Z(τ, τ̄) =

∫
R

∫
R
dsds̄ χs(τ)Mss̄χs̄(τ̄) ,

for some generalised mass matrix Mss̄, a distribution valued function of (s, s̄) ∈ R2. For

the special case of a diagonal mass matrix

Mdiag
ss̄ := δ(s− s̄) ,

the associated partition function is

Zdiag(τ, τ̄) =

∫
R
ds χs(τ)χs(τ̄) =

∫
R
ds

eπi(τ−τ̄)s
2

|η(τ)|2
=

1√
2 Im(τ)

1

|η(τ)|2
, (161)

82



which is exactly the partition function of a free boson. This reflects the fact that the

modes of the conserved current of a free boson theory satisfy the affine û(1) commutation

rules. One can easily verify that Eq. (161) is indeed modular invariant, since

S : Im(τ) 7→ Im(τ)

|τ |2
.

In the field-theoretic setting, the boson can be compactified on a circle of radius

R ∈ R>0 which causes windings that must be taken into account at the level of the

partition function. In particular, the periodicity condition on the boson field imposed by

the compactification constrains the J0 and the J̄0 eigenvalues to

pR(m,n) :=
m

R
+
Rn

2
and pR(m,n) :=

m

R
− Rn

2
for m,n ∈ Z (162)

respectively. Thus, the corresponding mass matrix is given by

M(R)
ss̄ :=

∑
m,n∈Z

δ(s− pR(m,n))δ(s̄− pR(m,n)) ,

which gives the familiar partition function of a boson compactified on a circle of radius R:

ZR(τ ; τ̄) :=
1

|η(τ)|2
∑
m,n∈Z

q
pR(m,n)2

2 q̄
pR(m,n)2

2 . (163)

One can check that Eq. (163) is modular invariant for every R > 0 by applying twice the

Poisson summation formula Eq. (146). We show this with a formal computation using

Eq. (158):

ZR

(
−1

τ
,−1

τ̄

)
=
∑
m,n∈Z

∫
R

∫
R
dtdt̄ e−2πi(tpR(m,n)−t̄ pR(m,n))χt(τ)χt̄(τ̄)

=

∫
R

∫
R
dtdt̄

∑
m,n∈Z

e2πi(m
t−t̄
R

+nR t+t̄
2 )χt(τ)χt̄(τ̄)

=

∫
R

∫
R
dtdt̄

∑
m,n∈Z

δ

(
t− t̄

R
−m

)
δ

(
t+ t̄

R
− n

)
χt(τ)χt̄(τ̄)

=

∫
R
dt
∑
m,n∈Z

δ

(
2t

R
− 2n

R2
−m

)
χt(τ)χ 2n

R
−t(τ̄)

=
∑
m,n∈Z

χpR(n,m)(τ)χpR(n,m)(τ̄) = ZR(τ, τ̄) ,

(164)

where for the third equality we used∑
n∈Z

e2πinx =
∑
m∈Z

δ(x− n) ∀x ∈ R . (165)
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This calculation is only formal since the interchange of summation and integration in the

first equality of Eq. (164) is actually not allowed, since∫
R

∫
R
dtdt̄

∣∣∣e−2πi(tpR(m,n)−t̄ pR(m,n))χt(τ)χt̄(τ̄)
∣∣∣ = 1

Im(τ)

is not summable over Z2, and hence the Fubini’s theorem is not applicable.

We thus found that the û(1) theory has at least two types of modular invariants:

the diagonal invariant of Eq. (161) and the continuous family of Eq. (163) parametrised

by a positive real number R > 0. Moreover, these invariants can be understood in a

field-theoretic context. We point out that even if at the level of the affine Lie algebra

the theory possess a continuous spectrum parametrised by s ∈ R, once considering the

compactness properties coming from the corresponding Lie group U(1) ∼= S1
R we obtain a

spectrum which consists only of a discrete subset of these representations parametrised by

two integers, see Eq. (162). This is similar to what we wish to happen for su(2)−1, which

has no integrable representations and a continuous spectrum. Nevertheless we expect the

compactness of SU(2) to reduce the set of representations appearing in the spectrum to

a discrete subset.

6.3 Characters of su(2)1

We begin by recalling the character formulae of the integrable unitary representations of

su(2)1. Using the notation as in Example 6.1 and the conventions on the theta functions

given in Appendix A, we have that

χ
(1)
0 (z; τ) =

[
ϑ3(

z+ν
2
; τ)ϑ3(

z−ν
2
; τ)

η(τ)

]
ν=0

=

[
ϑ3(z; 2τ)ϑ3(ν; 2τ) + ϑ2(z; 2τ)ϑ2(ν; 2τ)

η(τ)

]
ν=0

,

(166)

and

χ
(1)
1/2(z; τ) =

[
ϑ2(

z+ν
2
; τ)ϑ2(

z−ν
2
; τ)

η(τ)

]
ν=0

=

[
ϑ2(z; 2τ)ϑ3(ν; 2τ) + ϑ3(z; 2τ)ϑ2(ν; 2τ)

η(τ)

]
ν=0

,

(167)

where [·]ν=r extracts the coefficient of the factor (e2πiν)r. We remark that for su(2)1, the

free field realisation in terms of two complex fermions actually yields15

so(4)1 ∼= su(2)1 ⊕ su(2)1 . (168)

15This reflects the fact that the fermions naturally lead to u(2)1 ∼= su(2)1 ⊕ u(1) and the u(1) current
V can actually be extended to another su(2)1 algebra - we can equivalently think of this construction
in terms of four real fermions generating so(4) ∼= su(2) ⊕ su(2) - by considering the charged generators

K̃+ = ψ1 ψ2 and K̃− = ψ†
1 ψ

†
2.
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This then accounts for the full central charge of c = 2 coming from four real fermions, each

contributing c = 1
2
. The representations of su(2)1 ⊕ su(2)1 are also naturally described

in this language: in the NS sector we have

H(1)
NS

∼=
(
H(1)
ℓ=0 ⊗H(1)

ℓ=0

)
⊕
(
H(1)
ℓ=1/2 ⊗H(1)

ℓ=1/2

)
, (169)

whereH(1)
ℓ denotes the spin ℓ irreducible su(2)1-module. Note that Eq. (169) is equivalent

to the second equality in Eq. (166). On the other hand, the R sector leads to

H(1)
R

∼=
(
H(1)
ℓ=1/2 ⊗H(1)

ℓ=0

)
⊕
(
H(1)
ℓ=0 ⊗H(1)

ℓ=1/2

)
, (170)

which is equivalent to the second equality in Eq. (167). The modular-behaviour of these

characters is well-known and encoded in the modular T - and S-matrices. Note that at

level k = 1 the ordered set (χ
(1)
0 , χ

(1)
1/2) constitutes a basis for the set of unitary irreducible

representations of su(2)1. With respect to this basis, the modular transformations are

T (1) =

(
e−

πi
12 0

0 e−
5πi
12

)
,

and

S(1) =
1√
2

(
1 1

1 −1

)
,

which are both symmetric and unitary, see Example 6.1.

6.4 Characters of su(2)−1

In relation to Remark 6.2, we point out that the su(2)−1 theory, in addition to being

non-integrable it does not even belong to the realm of admissible fractional level WZW

models. Indeed, as we will see, there are infinitely many admissible representations, whose

characters present analogous convergence issues as in [Rid09], so we expect the discussion

of Remark 6.2 to at least partially apply also to this setting. In particular, even though

there are some formal similarities between the modular transformations presented in

Section 6.2.4 and those of su(2)−1, the author was not able to find a partition function

for this theory that is at least formally modular invariant. Moreover, even if such exists,

there would be probably technical difficulties in interpreting it as a physical invariant,

see Remark 6.2.

6.4.1 Singular vectors in the Verma modules

We begin by analyzing the structure of the su(2)−1-Verma module with highest weight

state |j⟩ of su(2)-spin j ∈ R, where we allow all the su(2)-representations presented in

85



Section 3.2. In particular, we prove that there are no singular vectors except for the

discrete highest weight representations of spin j ∈ 1
2
Z<0 and for the lowest weight discrete

representation of spin j ∈ 1
2
Z>0, where in both cases the singular submodule is generated

by a single vector. In turn, this implies that also the continuous representations with

j ∈ 1
2
N and λ− j ∈ Z contain singular vectors.

That the vacuum Verma module is free of singular vectors can be elegantly argued

from Eq. (193) through the following reasoning: if it contained a non-trivial null vector

N , then by Theorem 4.1 the vertex operator associated to it is zero, namely V (N , z) = 0

for every z ∈ C. In particular, the zero mode V0(N ), applied on any highest-weight state

|j⟩ of the su(2)−1-theory vanishes, that is

V0(N ) |j⟩ = P (j) |j⟩ = 0 , (171)

where P (j) is a polynomial in j. This follows from the fact that V0(N ) applied on |j⟩
has grade zero and hence it can be obtained from |j⟩ by application of su(2)−1-zero

modes and using the commutator rules it can be expressed as a polynomial in j and

the conformal dimension hj = Cj of |j⟩, which is equal to the Casimir Cj of the spin

j su(2)-representation in which |j⟩ transforms, see Eq. (28). Since P (j) posses finitely

many roots, we conclude that the existence of a null vector would restrict the set of

allowed representations to a finite subset of spins j, corresponding to the roots of P (j).

However, this would contradict Eq. (193), which is an admissible representation of su(2)−1

containing infinitely many j’s. It thus follows that there is no null vector in the vacuum

Verma module of su(2)−1.

We now consider the Verma module corresponding to the highest weight represen-

tation of generic spin j ∈ R of su(2)−1. We start by recalling our conventions. For

completeness, we report here the commutation relations of the affine algebra su(2)k,

[J3
m, J

3
n] =

k

2
mδm+n,0 ,

[J3
m, J

±
n ] = ±J±

m+n ,

[J+
m, J

−
n ] = 2J3

m+n + kmδm+n,0 .

The automorphisms of su(2)k which preserve the Cartan subalgebra are generated by

the conjugation automorphism τ and the spectral flow automorphism σ, which we

already defined above through the free field representation. These automorphisms leave

the level k invariant and their action is given by

τ(J±
n ) = J∓

n , τ(J3
n) = −J3

n , τ(L0) = L0 ,

σw(J±
n ) = J±

n±w , σw(J3
n) = J3

n +
k

2
wδn,0 , σ(Ln) = Ln + wJ3

n +
k

4
w2δn,0 .

(172)
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Note that τσ = σ−1τ and according to the convention introduced in 5.3, the module τ(H)

is the conjugate of H.

We proceed with the singular vector analysis. It will be convenient to denote by

λ = 2j the su(2)-weight of the affine weights, where j is the usual spin. As we have

seen in Section 2.3, at fixed level k an affine su(2)k-weight λ̂ = (λ, k, hλ) is completely

determined by the finite su(2)-weight λ, since its conformal dimension is given by

hλ =
λ(λ+ 2)

4(k + 2)
=
j(j + 1)

k + 2
,

and similarly for a lowest weight by the replacement λ 7→ −λ. In the following we will

focus on the case k = −1, which is non-integrable, that is, it contains only non-unitary

affine representations. Hence, the null vector relations Eq. (7), namely Eq. (30), do not

hold and we shall instead use the Kac-Kazhdan determinant formula, Eq. (8). For a

highest weight su(2)k-module with highest weight state |λ⟩, this takes the form [Rid09]

detλ(µ,m) =
∞∏
l=1

{
(λ+ 1 + l)P (−µ+2l,m)

∞∏
n=1

(λ+ 1 + n(k + 2)− l)P (−µ+2l,m−nl)

· (−λ− 1 + n(k + 2)− l)P (−µ−2l,m−nl) (n(k + 2))P (−µ,m−nl)
}
,

(173)

where P (µ,m) denotes the multiplicity of (µ, 0,m) ∈ Ωλ̂ in the vacuum Verma module

(this is independent of k). The presence of a singular vector in the Verma module to

λ is signalled by the vanishing of one of the factors appearing in this formula and the

vanishing of the arguments of the function P occurring in the corresponding exponent.

Moreover, recall that if a weight is singular, than the null vector of that weight is unique

up to normalisation [KK79].

We now specialise to k = −1 and we omit the k-label in the specification of weights.

Note that this theory has central charge c = −3, see Eq. (17). The Verma module to

λ = 2j is characterised by an highest weight state |j⟩ satisfying Eq. (29) with k = −1.

We than see that Eq. (173) vanishes when

l = λ+ 1 , l = λ+ 1 + n , l = −λ− 1 + n with n ∈ Z>0 . (174)

Since l ∈ Z>0, we see that the first equation has a solution if and only if λ ∈ N; moreover,

a necessary condition for the other two equations two have a solution is λ ∈ Z. We

distinguish between two cases: λ ∈ N and λ ∈ Z<0.

For λ ∈ N the first equation always has a solution and the arguments of P in the

corresponding exponent vanish if µ = 2l = 2(λ+1) andm = 0, indicating that the singular

vector has weight (−2(λ + 1), hλ), corresponding to the state (J−
0 )

2j+1 |j⟩ , which means

that the state |j⟩ transforms in the finite-dimensional spin j representations Hj of su(2).
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By repeating the same reasoning for the other two equations one finds correspondingly

the singular weights

(−λ− 2m,hλ +m(m− λ− 1)) for m ≥ max{1, λ+ 2},

(λ+ 2m,hλ +m(m+ λ+ 1)) for m ≥ max{1,−λ} ,
(175)

which is true for every λ ∈ Z. These seem at first sight to be additional singular vectors,

however they all actually belong to the submodule generated by the singular vector

(−2(λ+1), hλ). Indeed, by repeating the above Kac-Kazhdan analysis for (−2(λ+ 1), hλ)

we find exactly the singular vectors of Eq. (175). As a consistency check, one can also

repeat the analysis for all the singular weights in Eq. (175) and find that the so obtained

singular vectors are are again of the form as in Eq. (175), which confirms that they all

lie in the same singular submodule. From this we conclude, that the Verma module to

highest weight λ is irreducible for all λ ∈ R \ Z<0 if we naturally supply the definition

of the module by requiring that for λ = 2j ∈ N the highest-weight state also satisfies

(J−
0 )

2j+1 |j⟩ = 0 ,

that is, that |j⟩ lies in the finite dimensional su(2)-representation of dimension 2j + 1.

We now consider the case where λ ∈ Z<0. It follows that the first equation in Eq. (174)

has no solution, which in turn implies that there is no singular vector at level zero (where

by level we refer to the shifted eigenvalue of L0 − hλ). Indeed, this is true for all λ /∈ N,
meaning that the corresponding highest weight states lie in a (semi)-infinite dimensional

representation of su(2), namely D+
j . The first (with lowest level) singular vector obtained

from Eq. (175), is (−λ, h−λ) = (−λ, hλ − λ) corresponding to the state

(J+
−1)

−2j |j⟩ , (176)

which one can explicitly compute to be a highest weight state, that is singular, by using

the commutation relations. Moreover, this singular vector generates a submodule that

contains all the others of Eq. (175), as one can confirm by repeating the Kac-Kazhdan

analysis for the weight (−λ, hλ− λ). It follows that for λ = 2j ∈ Z<0 the quotient of the

Verma module to λ by the submodule generated by the vector Eq. (176) is irreducible.

Moreover, note that D−
j = τ(D+

−j), where τ denotes the restriction of the conjugation

automorphism on the finite su(2) subalgebra, and the analogous relation holds for the

corresponding affine su(2)−1-modules. Hence, from Eq. (176) we infer that the singular

submodule of the Verma module with highest weight states transforming in the D−
j

representation for j ∈ 1
2
Z>0 is generated by the singular vector

(J−
−1)

2j |j⟩ . (177)
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6.4.2 The affine characters

We can now compute the characters of the su(2)−1 highest weight representations, which

as we have seen are characterised by the spin j ∈ R (and the continuous ones also by

λ ∈ R/Z). We denote the chemical potential of su(2) by x := e2πit for t ∈ C. As we will

see, all the character formulae can be written as meromorphic functions expanded on a

specific convergence domain in the x-plane, so in general an su(2)−1 character consists

in such a function and the specification of the domain. In particular, following the

discussion in Remark 6.2, we mainly work with character functions, unless differently

stated.

By the null vector analysis, for the highest weight affine representation of spin j ∈ 1
2
N

we have

χ
(−1)
j (t; τ) = qj(j+1) χ

su(2)
j (t)χ

(−1)
0 (t; τ) = iq(j+

1
2
)2 x

j+ 1
2 − x−j−

1
2

ϑ1(t; τ)
, (178)

valid on the convergence region |q| < |x| < |q|−1, where χ
su(2)
j (t) was defined in Eq. (139)

and

χ
(−1)
0 (t; τ) = q

1
8

1∏
n≥1(1− xqn)(1− qn)(1− x−1qn)

is the character of the irreducible vacuum Verma module. Note that ϑ1(t; τ) has zeros

at x = qn for all n ∈ Z and the vanishing of the denominator in Eq. (178) at x = 1

is compensated by the vanishing of the numerator, hence the convergence region can be

extended from 1 < |x| < |q|−1 to |q| < |x| < |q|−1, feature which is peculiar of characters

of affine modules generated by finite-dimensional su(2) representations. For the highest

weight affine representations of spin j ∈ R \ 1
2
Z we have

χ
(−1)
j,+ (t; τ) = q

1
8

qj(j+1)
∑

m≤j x
m∏

n≥1(1− xqn)(1− qn)(1− x−1qn)
=
iq(j+

1
2
)2xj+

1
2

ϑ1(t; τ)
, (179)

where the second equality holds for 1 < |x| < |q|−1, and the +-sign in the label of the

character is there to recall that it corresponds to the highest weight discrete representation

D+
j . The character of the conjugate representation, namely that corresponding to a lowest

weight discrete representation, is

χ
(−1)
j,− (t; τ) = q

1
8

qj(j−1)
∑

m≥j x
m∏

n≥1(1− xqn)(1− qn)(1− x−1qn)
= −iq

(j− 1
2
)2xj−

1
2

ϑ1(t; τ)
,

where the second equality holds on the convergence region |q| < |x| < 1. We point out

that there is an identity

χ
(−1)
j,+ (t; τ) = χ

(−1)
−j,−(−t; τ) ∀ j ∈ R \ 1

2
Z
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as formal power series, whilst as meromorphic functions

χ
(−1)
j,+ (t; τ) = −χ(−1)

j+1,−(t; τ) ∀ j ∈ R \ 1
2
Z ,

which at the level of characters is wrong since the two sides of the equation possess disjoint

convergence regions. By the above null-vector analysis and in particular by Eq. (176), we

can also express the character of the highest weight affine representation with j ∈ 1
2
Z<0,

which is

χ
(−1)
j,+ (t; τ) = χ̃

(−1)
j,+ (t; τ)(1− q−2jx−2j) , (180)

where χ̃
(−1)
j,+ (t; τ) is the character of Eq. (179) formally extended to j ∈ 1

2
Z<0. Note that

since in Eq. (180) the singularity at x = q−1 is removable, the convergence region can be

extended from 1 < |x| < |q|−1 to 1 < |x| < |q|−2. Using Eq. (177), the corresponding

result for the lowest weight affine representation with j ∈ 1
2
Z>0 is

χ
(−1)
j,− (t; τ) = χ̃

(−1)
j,− (t; τ)(1− q2jx−2j) ,

with extended convergence region |q|2 < |x| < 1 after removing the singularity at x = q.

Again, there is an identity of formal power series

χ
(−1)
j,+ (t; τ) = χ

(−1)
−j,−(−t; τ) ∀ j ∈ 1

2
Z<0 . (181)

We now turn to the characters χ
(−1)
j,λ of the continuous representation Cλ

j for j ∈ R and

λ ∈ R/Z. As we have seen in Section 3.2, for j− λ /∈ Z this representation is irreducible,

and by the Kac-Kazhdan analysis, the affine Verma module constructed out of it is free

of singular vectors if λ ̸= 0, 1
2
. For j − λ ∈ Z and λ ̸= 0, 1

2
, the module Cλ

j is reducible

and indecomposable but its Verma module is still free of singular vectors. We conclude

that

χ
(−1)
j,λ (t; τ) = q

1
8

qj(j−1)
∑

m∈Z x
λ+m∏

n≥1(1− xqn)(1− qn)(1− x−1qn)
=
q(j−

1
2
)2
∑

m∈Z x
λ+m

η(τ)3
if λ ̸= 0, 1

2
,

(182)

where we rearranged ∑
m∈Z x

m∏
n≥1(1− xqn)(1− x−1qn)

=
q

1
12

∑
m∈Z x

m

η(τ)2
.

Note that Eq. (182) does not converge anywhere on the x-plane, so we have to consider

this character as a formal power series. For j ∈ 1
2
Z and λ = j modZ, the situation

is quite different. Since in this case j and −j + 1 parameterise the same module, we

restrict our attention to j ∈ 1
2
N. Then, as we have seen in Section 3.2, the module Cj

j is
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indecomposable but its structure is given by

Cj
j
∼= D+

−j−1 ⊕Hj ⊕D−
j+1 ∀ j ∈ 1

2
N . (183)

This decomposition then translates at the level of affine su(2)−1-modules, implying the

presence of non-trivial singular vectors. Hence, we might compute the character of the

corresponding affine module Cjj in terms of those appearing in Eq. (183) by considering

them as formal power series, since some of the character functions involved possess disjoint

convergence regions.

We also note that the following identities hold true

χ
(−1)
j = χ̃

(−1)
j,+ − χ̃

(−1)
−j−1,+ = −χ̃(−1)

j+1,− + χ̃
(−1)
−j,− ∀ j ∈ 1

2
N ,

χ
(−1)
j,+ = χ̃

(−1)
j,+ − χ̃

(−1)
−j,+ ∀ j ∈ 1

2
Z<0 ,

χ
(−1)
j,− = χ̃

(−1)
j,− − χ̃

(−1)
−j,− ∀ j ∈ 1

2
Z>0 ,

(184)

where the expressions are convergent on the regions dictated by the corresponding for-

mulae specified above.

We now turn to the spectral flow σ defined in Eq. (172). For k = −1, we find the

following isomorphisms

σ(Hj) ∼= D+
−j− 1

2

, σ−1(Hj) ∼= D−
j+ 1

2

∀ j ∈ 1
2
N ,

σ(D−
j )

∼= D+
j− 1

2

, σ−1(D+
j )

∼= D−
j+ 1

2

∀ j /∈ 1
2
Z .

(185)

By Eq. (172), every su(2)−1 character transforms as

χ
(−1)
σw(j)(t; τ) = x

−w
2 q

−w2

4 χ
(−1)
j (t+ wτ ; τ) ∀w ∈ Z ,

which has convergence region in the x-plane scaled by a factor |q|−w. Using Eq. (230)

one shows that the extended characters transform as

χ̃
(−1)
σw(j),+ = (−1)w χ̃

(−1)
j+w

2
,+ , χ̃

(−1)
σw(j),− = (−1)w χ̃

(−1)
j+w

2
,− ∀ j ∈ R , (186)

with convergence regions |q|−w < |x| < |q|−w−1 and |q|−w+1 < |x| < |q|−w respectively.

Since χ̃
(−1)
j for j ∈ R formally build a basis for all the characters, see Eq. (184), from

Eq. (186) we can also deduce the character of all the spectrally flowed modules. When

forgetting about the convergence domain of the characters and treating them as mero-

morphic functions, we derive recursive relations similar to those in [Rid09], namely

χ
(−1)

σw+1(j) + χ
(−1)

σw(j+ 1
2
)
+ χ

(−1)

σw−1(j) + χ
(−1)

σw(j− 1
2
)
= 0 ∀j ∈ 1

2
Z>0 ,

χ
(−1)
σw(j) + χ

(−1)

σw+1(j+1) + χ
(−1)
σw(j+1) + χ

(−1)

σw−1(j+ 1
2
)
= 0 ∀j ∈ 1

2
N ,
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for every w ∈ Z. These shows explicitly that the association of modules to character

functions is not injective and it allows to identify the kernel of this map. It could be

interesting to find all the linearly independent character functions, namely to identify the

Grothendieck ring of characters. From that, it could be possible to construct a modular

invariant partition function, similar in spirit to the Kac-Wakimoto invariant [KW88].

Inspired by [HHRS91], we look if the sums over all spectrally flowed versions of a

character at fixed spin yields a useful basis of the Grothendieck ring for considering

modular transformations. Thus, using Eq. (186) we compute

∑
w∈Z

χ̃
(−1)
σw(j),+(t; τ) =

−i qj2xjϑ4(t/2 + jτ ; τ/2)

ϑ1(t; τ)
=
i qj

2
xj
(
ϑ2(t+ 2jτ ; 2τ)− ϑ3(t+ 2jτ ; 2τ)

)
ϑ1(t; τ)

,

(187)

which for j ∈ 1
2
Z further simplifies to

∑
w∈Z

χ̃
(−1)
σw(j),+(t; τ) = i (−1)2j

ϑ2(t; 2τ)− ϑ3(t; 2τ)

ϑ1(t; τ)
,

where we used Eq. (231). It follows that∑
w∈Z

χ
(−1)
σw(j)(t; τ) = 0 ∀ j ∈ 1

2
N ,∑

w∈Z

χ
(−1)
σw(j),+(t; τ) = 0 ∀ j ∈ 1

2
Z<0 ,

(188)

which shows that such sums are not of interest, if the characters are considered as mero-

morphic functions. At the level of characters and not character functions, Eq. (187)

involves a sum of terms with disjoint convergence domains, so we need to be careful in

interpreting Eq. (188).

We can compute the modular transformations to be

χ̃
(−1)
j,± (t; τ + 1) = e2πi(j(j±1)+ 1

8) χ̃
(−1)
j,± (t; τ) ,

χ̃
(−1)
j,±

(
t

τ
;−1

τ

)
= e−

πit2

2τ

∫
R
ds
√
2i e−πi(2s±1)(2j±1) χ̃

(−1)
s,± (t; τ) .

(189)

Note the similarity with the generalised modular matrices of the û(1)-theory, see Eq. (159).

In particular, we have that

Tjs = e2πi(j(j±1)+ 1
8) δ(j − s) and Sjs =

√
2i e−πi(2s±1)(2j±1) , (190)

which satisfy the unitarity relations of Eq. (160). One could then attempt to construct a
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“naive” diagonal modular invariant analogous to Eq. (161), and this yields

Zdiag. naive(t, t̄; τ, τ̄) :=

∫
dj χ̃

(−1)
j,+ (t; τ)χ̃

(−1)
j,+ (t̄; τ̄) =

1

2

1√
Im(τ)

e2π
Im(t)2

Im(τ)

|ϑ(t; τ)|2
,

which interestingly agrees with the contribution of the discrete representations D+
j to

the partition function of the SL(2,R) WZW model at level k > 2, whose allowed range

of spins is 1/2 < j < (k − 1)/2 [MO01]. This probably correspond to an analogous

contribution of the discrete representations D+
j of su(2)−1 on the range −1/2 < j < 0,

which combines with the spectral flow sum to give the range j ∈ R \ 1
2
Z at the level of

character functions, see 186. We could have expected some similarity in such contribution

since

su(2)−1
∼= sl(2,R)1 .

However, since the corresponding Lie group is compact, when considering su(2)−1 we

would like to construct a partition function containing only a discrete subset of the allowed

representations, namely those with j ∈ 1
2
Z. The author tried constructions analogous to

that of Eq. (163), where the spins included in the partition function belong to a lattice

in R2, but without success.

An other interesting formal computation that we report here, comes from Eq. (189)

and it is

χ
(−1)
σw(j)

(
t

τ
;−1

τ

)
= e−

πit2

2τ

∫
R
ds 2

√
2 e2πisw sin(π(2s+ 1)(2j ± 1)) χ̃

(−1)
s,± (t; τ) ∀ j ∈ 1

2
N ,

(191)

which summing over w ∈ Z and using Eq. (165) yields

∑
w∈Z

χ
(−1)
σw(j)

(
t

τ
;−1

τ

)
= e−

πit2

2τ

∑
j′∈N

2
√
2 sin(π(2j + 1)(2j′ + 1))χ

(−1)
j′ (t; τ) ∀ j ∈ 1

2
N .

This, together with Eq. (188), shows in particular that the summation over the spec-

tral flow action does not commute with the modular S-transformation. We point out

the apparent similarity of the modular S-matrix elements appearing in Eq. (191) and

Section 6.4.2 with those of Eq. (151) for k = −1.

93



7 Free field characters

7.1 The free field characters of su(2)−1

We recall that the affine characters of the integrable su(2)1 modules can be easily ex-

tracted from the corresponding free field realisation in terms of two complex fermions.

This is due to Eq. (168). On the other hand, the situation is quite different for su(2)−1,

since it is not possible to extend the u(1) generator U0 to another commuting su(2) al-

gebra as before because the analogues of K̃± in Footnote 15 do not commute with the

generators J±. More precisely, the bilinears formed by two pairs of symplectic bosons

generate sp(4)1, which contains su(2)−1⊕ u(1)1 as the U0-uncharged subalgebra, but it is

bigger since at the level of the zero modes

sp(4) ∼= su(2)⊕ u(1)⊕ 31 ⊕ 3−1 , (192)

where 31 and 3−1 denote the 3-dimensional representation of su(2) and its conjugate

respectively, and the subscript labels the U0-eigenvalue. The additional two terms in

Eq. (192) are formed by the six independent bilinears λαλβ and µ†
αµ

†
β respectively, which

generate an ideal of sp(4) but not a subalgebra. Hence, there is no decomposition anal-

ogous to Eq. (168) and the relevant (U0-uncharged) algebra associated to two pairs of

symplectic bosons is u(2)−1
∼= su(2)−1⊕u(1) which has central charge c = −3+1 = −2, in

agreement with the central charge of the four symplectic bosons (each symplectic boson

contributes c = −1
2
).

As before, there are again two natural sectors: the NS sector in which the symplectic

bosons are half-integer moded, as well as the R sector in which the symplectic bosons are

integer moded. Because of Eq. (192), we expect the U0-uncharged part of the free-field

representations (both in the NS and R sectors) to be reducible with respect to su(2)−1.

Indeed, the analogous of Eq. (169) turns out to be

H(−1)
NS

∼=
⊕
j∈N

H(−1)
j , (193)

where H(−1)
j denotes the spin-j irreducible representation of su(2)−1, whose structure has

been described in the previous section. Eq. (193) can be shown at the level of characters,
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namely

χ
(−1)
NS (t; τ) =

q 1
8

∞∏
n=1

(1− qn)
∏

a,b=± 1
2

1

1− xaybqn−
1
2


µ=0

=

(
q

1
8

∞∏
n=1

∏
a=±1,0

1

1− xaqn

)(
∞∑
j=0

j∑
m=−j

xmqj(j+1)

)

= χ
(−1)
0 (t; τ)

∞∑
j=0

χ
su(2)
j (t)qj(j+1)

=
∞∑
j=0

χ
(−1)
j (t; τ)

(194)

where y = e2πiµ is the chemical potential of Z0
16. This equation can also be expressed in

terms of theta functions as[
η(τ)3

ϑ4(
t+µ
2
; τ)ϑ4(

t−µ
2
; τ)

]
µ=0

=
q

1
4

ϑ1(t; τ)

∞∑
j=0

sin((2j + 1)πt)qj(j+1) .

For what concerns the R sector, the analogous of Eq. (170) turns out to be

H(−1)
R

∼=
⊕
Z∈ 1

2
Z

H(−1)
R,Z with H(−1)

R,±Z
∼= q−Z(Z±1)

⊕
j∈N+Z

H(−1)
j for every Z ∈ 1

2
N , (195)

where we are considering the Ramond sector corresponding to R as defined in Eq. (111),

and we denote by H(−1)
R,Z the subrepresentation corresponding to fixed Z0 = Z. The

conjugate R sector R, defined by Eq. (117), yields the conjugate representations and we

denote it by H(−1)

R and by H(−1)

R,Z the subrepresentation to fixed Z0 = Z. We have an

analogous decomposition for the conjugate R sector as

H(−1)

R
∼=
⊕
Z∈ 1

2
Z

H(−1)

R,Z with H(−1)

R,∓Z
∼= q−Z(Z±1)

⊕
j∈N+Z

H(−1)
j for every Z ∈ 1

2
N .

One can deduce Eq. (195) at the level of characters:

χ
(−1)
R (t, µ; τ) = q−

1
8

∑
m1,m2∈ 1

2
N

xm2−m1ym1+m2

∞∏
n=1

(1− qn)
∏

a,b=± 1
2

1

1− xaybqn

=
∑
s∈ 1

2
N

ysχsu(2)
s (t)

4 sin(π t+µ
2
) sin(π t−µ

2
)η(τ)3

ϑ1(
t+µ
2
; τ)ϑ1(

t−µ
2
; τ)

=
∑
Z∈ 1

2
Z

yZ χ
(−1)
R,Z (t; τ) ,

(196)

16Note that the Z0 has the same value as U0 on the symplectic bosons, since they are V0-uncharged
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where we defined

χ
(−1)
R,Z (t; τ) :=

[
χ
(−1)
R (t, µ; τ)

]
µ=Z

.

Then the following relation holds true:

q2Zχ
(−1)
R,Z (t; τ) = χ

(−1)
R,−Z(t; τ) ∀Z ∈ 1

2
N . (197)

Denoting by χ
(−1)
R (t; τ) the character of the conjugate R sector representation R (notice

that the bar does not mean complex conjugation), we have that

χ
(−1)
R (t, µ; τ) = χ

(−1)
R (−t,−µ; τ) = χ

(−1)
R (t,−µ; τ) ,

which yields

χ
(−1)
R,−Z(t; τ) = χ

(−1)
R,Z (t; τ) ∀Z ∈ 1

2
Z .

Then, the key result is the following relation which holds for every Z ∈ 1
2
N and confirms

Eq. (195):

q(Z+
1
2
)2 χ

(−1)
R,Z (t; τ) = χ

(−1)
0 (t; τ)

∑
j∈N+Z

χ
su(2)
j (t) qj(j+1) =

∑
j∈N+Z

χ
(−1)
j (t; τ) , (198)

and consequently

q(Z−
1
2
)2 χ

(−1)
R,−Z(t; τ) =

∑
j∈N+Z

χ
(−1)
j (t; τ) , (199)

and the analogous statement for the conjugate representation follows directly. In partic-

ular, for Z = 0 we obtain

q
1
4χ

(−1)
R, 0 (t; τ) = χ

(−1)
NS (t; τ) .

Eq. (198) follows easily from this particular denominator identity for Lie superalgebras

[KW94], which states that for |q| < |u| , |v| < 1 we have that

∞∏
n=1

(1− qn)2(1− uvqn−1)(1− u−1v−1qn)

(1− uqn−1)(1− u−1qn)(1− vqn−1)(1− v−1qn)
=

(
∞∑

m,n=0

−
−∞∑

m,n=−1

)
umvnqmn ,

(200)

and by substituting u = x
1
2y−

1
2 , v = x

1
2y

1
2 it yields

∞∑
m,n=0

x
n−m

2 y
n+m

2

∞∏
n=1

(1− qn)2(1− xqn)(1− x−1qn)

(1− x
1
2y−

1
2 qn)(1− x−

1
2y

1
2 qn)(1− x

1
2y

1
2 qn)(1− x−

1
2y−

1
2 qn)

=

(
∞∑

m,n=0

−
−∞∑

m,n=−1

)
x
n+m+1

2

x− 1
y
m−n−1

2 qmn ,

which proves Eq. (198) and Eq. (197). Additionally, by substituting u = q
1
2x

1
2y−

1
2 ,
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v = q
1
2x

1
2y

1
2 in Eq. (200) one can show that for every Z ∈ 1

2
Z: ∞∏

n=1

∏
a,b=± 1

2

1

1− xa yb qn−
1
2


µ=Z

= qZ

∑
s∈ 1

2
N

ys
s∑

m=−s

xm
∞∏
n=1

∏
a,b=± 1

2

1

1− xa yb qn


µ=Z

,

which for Z = 0, together with Eq. (198), proves Eq. (194).

A result similar to Eq. (198) holds for the character of the symplectic bosons in the R

sector R+ defined by Eq. (121) which contained discrete representations of su(2) to spin

j ∈ −1
2
N. Indeed, the character is given by

χ
(−1)
R+ (t, µ; τ) = q−

1
8

∑
m1,m2∈ 1

2
N

x−m1−m2− 1
2ym1−m2− 1

2

∞∏
n=1

(1− qn)
∏

a,b=± 1
2

1

1− xa yb qn

= x−
1
2y−

1
2

∑
s∈ 1

2
N

x−sχsu(2)
s (µ)

4 sin(π t+µ
2
) sin(π t−µ

2
)η(τ)3

ϑ1(
t+µ
2
; τ)ϑ1(

t−µ
2
; τ)

=
∑
Z∈ 1

2
Z

yZ χ
(−1)
R+, Z(t; τ) ,

(201)

where as above we defined

χ
(−1)
R+, Z(t; τ) :=

[
χ
(−1)
R+ (t, µ; τ)

]
µ=Z

.

The key fact is that

χ
(−1)

R+, Z− 1
2

(t; τ) = χ
(−1)

R+,−Z− 1
2

(t; τ) ∀Z ∈ 1
2
N , (202)

and that

q(Z+
1
2
)2 χ

(−1)
R+, Z(t; τ) =

∑
j∈N−Z

χ
(−1)
−j,+(t; τ) ∀Z ∈ −1

2
N . (203)

In particular, for Z = 0 one obtains

q
1
4χ

(−1)
R+, 0(t; τ) =

∑
j∈Z<0

χ
(−1)
j,+ (t; τ) .

Eq. (202) and Eq. (203) can be proven again by applying Eq. (200) with the substitu-

tions u = x−
1
2y

1
2 and v = x−

1
2y−

1
2 ; note that this changes the convergence region to
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1 < |x| 12 |y|− 1
2 ,|x| 12 |y| 12 < |q|−1, which needs to be taken into account in order to obtain

∞∑
m,n=0

x−
n+m+1

2 y
n−m−1

2

∞∏
n=1

x
1
2 (1− qn)2(1− xqn)(1− x−1qn−1)

(1− x
1
2y−

1
2 qn)(1− x−

1
2y

1
2 qn)(1− x

1
2y

1
2 qn)(1− x−

1
2y−

1
2 qn)

=

(
∞∑

m,n=0

−
−∞∑

m,n=−1

)
x−

n+m
2 y

m−n−1
2 qmn .

Eq. (203) shows that

H(−1)
R+

∼=
⊕
Z∈ 1

2
Z

H(−1)
R+, Z with H(−1)

R+,±Z− 1
2

∼= q−Z
2
⊕
j∈N+Z

D+
−j− 1

2

for every Z ∈ 1
2
N . (204)

We can transfer these results for R+ to R− defined by Eq. (117) by noticing that

χ
(−1)
R− (t, µ; τ) = χ

(−1)
R+ (−t,−µ; τ) ,

which implies that for the representations with fixed Z ∈ 1
2
Z we have

χ
(−1)
R−, Z(t; τ) = χ

(−1)
R+,−Z(−t; τ) .

Then, Eq. (197) translates into

χ
(−1)

R−, Z+ 1
2

(t; τ) = χ
(−1)

R−,−Z+ 1
2

(t; τ) ∀Z ∈ 1
2
N ,

and we can use Eq. (181) to infer

q(Z−
1
2
)2χ

(−1)
R−, Z(t; τ) =

∑
j∈N+Z

χ
(−1)
j,− (t; τ) ∀Z ∈ 1

2
Z>0 . (205)

In particular, for Z = 0 we obtain

q
1
4χ

(−1)
R+,0(t; τ) =

∑
j∈Z>0

χ
(−1)
j,− (t; τ) .

We can write Eq. (205) as

H(−1)
R−

∼=
⊕
Z∈ 1

2
Z

H(−1)
R−, Z with H(−1)

R−,±Z+ 1
2

∼= q−Z
2
⊕
j∈N+Z

D−
j+ 1

2

∀Z ∈ 1
2
N .

Finally, the full affine character corresponding to the free field representation of four
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symplectic bosons defined in Eq. (111) and allowing m1,m2 ∈ 1
2
Z is given by

χ
(−1)

R̃
(t, µ; τ) = q−

1
8

∑
m1,m2∈ 1

2
Z

xm2−m1ym1+m2

∞∏
n=1

(1− qn)
∏

a,b=± 1
2

1

1− xaybqn

=

∑
Z,s∈Z

+
∑

Z,s∈Z+ 1
2

 yZxs
1

η(τ)3
=
∑
Z∈ 1

2
Z

yZχ
(−1)

R̃, Z
(t; τ)

(206)

where

χ
(−1)

R̃, Z
(t; τ) :=

[
χ
(−1)

R̃
(t, µ; τ)

]
µ=Z

=
∑
s∈Z+Z

xs
1

η(τ)3
∀Z ∈ 1

2
Z . (207)

7.2 The free field characters of psu(2|2)1
Following the lines of [EGG19], we note that we can obtain psu(2|2)1 from u(2|2)1 by a

coset construction. More explicitely, there is an isomorphism

psu(2|2)1 ∼=
u(2|2)1

û(1)U ⊕ û(1)V

∼=
two pairs of symplectic bosons and two complex fermions

û(1)U ⊕ û(1)V
,

(208)

where û(1)U and û(1)V denote the affine algebra generated by the modes of U and V

respectively. With the analogous notation for the affine algebra generated by Y and Z,

we have the following short exact sequences

0 → su(2|2)1 → u(2|2)1 → û(1)Y → 0 ,

0 → û(1)Z → su(2|2)1 → psu(2|2)1 → 0 ,
(209)

which give

u(2|2)1 ∼= su(2|2)1 ⊕ û(1)Y ,

su(2|2)1 ∼= psu(2|2)1 ⊕ û(1)Z .

The coset free field representations of Eq. (208) are labelled by

(σwY (E);Y ;Z) (210)

where σwY (E) denotes a σwY -spectrally flowed representation of two pairs of symplectic

bosons. Since the supercharges are bilinear expressions of one symplectic boson and one

fermion, and since we require them to be integer-moded, the moding of the symplectic

bosons also fixes that of the fermions. Thus the fermions will be in the R sector if w is

even and in the NS sector if w is odd. In particular, this thereby fixes the representations

of the su(2)1 algebra. Finally, Y and Z denote the eigenvalues of Y0 and Z0. With
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these conventions, the symplectic bosons and free fermions transform with respect to

su(2)⊕ su(2)⊕ u(1)Y ⊕ u(1)Z as

symplectic bosons (λα, µ†
β) : (2, 1)−1,−1 ⊕ (2, 1)1,1 ,

fermions (ψα, ψ†
β) : (1,2)−1,1 ⊕ (1,2)1,−1 .

By Eq. (209), it follows that only the zero-charge sector of the central extension Z

descends to a representation of psu(2|2)1. Furthermore, in order to obtain complete

psu(2|2)1-representations, we have to sum over all Y0-charges, because the fermionic

modes carry charge with respect to u(1)Y . On the other hand, for irreducible repre-

sentations of su(2|2)1 we have that Z ∈ 1
2
Z and we also have to sum over all allowed

Y0-charges, which are specified by the requirement that Z − Y ∈ Z. Hence, we have the

identifications
L ∼=

⊕
Y ∈Z

(σwY (K);Y ; 0) ,

RZ
∼= Z ⊗

⊕
Z−Y ∈Z

(σwY (E);Y ;Z) ,

R−Z ∼= Z ⊗
⊕

Z−Y ∈Z

(σwY (E);Y ;−Z) ,

(211)

for every Z ∈ 1
2
N, where K denote the NS representation of two pairs of symplectic

bosons, while E and E denote the R sector defined by Eq. (111) and Eq. (117) respectively,

and Z denotes the representation of a single free boson associated to the algebra û(1)Z .

Analogous isomorphisms also hold for the other R sectors defined by Eq. (121) and

Eq. (126). Note that here we are considering the representations in the R sectors RZ and

RZ as su(2|2)1 representations.

We can thus compute the characters of both the su(2|2)1 and the psu(2|2)1 represen-

tations using the free field realisation. We start with psu(2|2) and in particular with the

vacuum module L, which arises in the NS sector. Its character is computed by multiply-

ing the NS character of two complex fermions given by Eq. (166) with the NS character

of two pairs of symplectic bosons given by Eq. (194), then extracting the coefficient to

Z0 = 0, summing over all Y0 ∈ Z and dividing the result by the character of two free

bosons, see Eq. (208). Concretely, we have that

ch[(K;Y ; 0)](t, z; τ) = η(τ)2

[
ϑ3(

z+ν−µ
2

)ϑ3(
z−ν+µ

2
)

ϑ4(
t+ν+µ

2
)ϑ4(

t−ν−µ
2

)

]
ν=0,µ=Y

=

χ
(1)
0 (z; τ)

∑
j∈N+ |Y |

2

χ
(−1)
j (t; τ) if Y ∈ 2Z ,

χ
(1)
1/2(z; τ)

∑
j∈N+ |Y |

2

χ
(−1)
j (t; τ) if Y ∈ 2Z+ 1 ,

where ν and µ denote the chemical potentials of Y0 and Z0 respectively. By Eq. (211) it
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follows that

ch[L](t, z; τ) =
∑
Y ∈Z

ch[(K;Y ; 0)](t, z; τ)

= χ
(1)
0 (z; τ)

∑
j∈N

(2j + 1)χ
(−1)
j (t; τ) + χ

(1)
1/2(z; τ)

∑
j∈N+ 1

2

(2j + 1)χ
(−1)
j (t; τ)

=
∂tϑ2(t; 2τ)ϑ3(z; 2τ) + ∂tϑ3(t; 2τ)ϑ2(z; 2τ)

π η(τ)ϑ1(t; τ)

=
∂t
(
ϑ2(

t+z
2
; τ)ϑ2(

t−z
2
; τ)
)

π η(τ)ϑ1(t; τ)
.

(212)

The second line of Eq. (212) gives the decomposition of the vacuum module L in repre-

sentations of the affine bosonic subalgebra, that is, the branching rules for the embedding

su(2)−1 ⊕ su(2)1 ⊂ psu(2|2)1; this is depicted in Table 1. Such decomposition is due to

L0 − 1
12

0
(
0 ,1

)
0

1
(
1
2
,2
)
−1

(
1
2
,2
)
1

2
(
1 ,1

)
−2

(
1 ,1

)
0

(
1 ,1

)
2

4
(
3
2
,2
)
−3

(
3
2
,2
)
−1

(
3
2
,2
)
1

(
3
2
,2
)
3

6 . .
. (

2 ,1
)
−2

(
2 ,1

)
0

(
2 ,1

)
2

. . .
...

...
...

...
...

...
...

...

Table 1: Decomposition of the vacuum module L of psu(2|2)1 in affine highest weight
representations (j,n)Y of the bosonic subalgebra su(2)−1 ⊕ su(2)1, where the conformal
dimensions are displayed on the left and Y indicates the Y0-eigenvalue. Note that Y0 is
not part of the psu(2|2)1 algebra, so the label Y is actually arbitrary is there to simply
because the relative Y -value between the representations helps to understand the pattern
of the fermionic modes in the module.

the fact that the action of negative fermionic modes Sαβγ−n for n ∈ N generates high-

est weight states with respect to the affine bosonic subalgebra. For instance, one can

check that as it is indicated in Table 1, the vectors Sαβ±−1 |0⟩ are singular with respect to

su(2)−1 ⊕ su(2)1 and generate the affine modules
(
1
2
,2
)
−1

⊕
(
1
2
,2
)
1
. In general it seems

that the pattern of these singular vectors is pretty complicated to deduce with a purely

algebraic approach, mostly, as we will see, for the modules RZ with Z ̸= 0, hence we

work at the level of characters.

We now wish to compute the spectrally flowed characters and the modular behaviour

of Eq. (212). For that, we remark that in order to obtain good modular properties, we

shall include a factor (−1)F in the definition of the character, where F is the fermion

number, effectively replacing the character by the supercharacter. This modification

has the concrete effect of substituting the plus sign in the second and third line of Eq. (212)

with a minus sign, and thus substituting ϑ2 to ϑ1 in the numerator of the last line, that
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is,

sch[L](t, z; τ) =
∂t
(
ϑ1(

t+z
2
; τ)ϑ1(

t−z
2
; τ)
)

π η(τ)ϑ1(t; τ)
. (213)

Note that as for the characters of su(2)−1, the presence of ϑ1 in the denominator of

Eq. (213) makes this affine character a meromorphic function on the x-plane, and its

validity is bound to be true only on the convergence region specified by |q| < |x| < |q|−1.

The non-holomorphicity of the character causes some technical issues when we com-

pute the characters of the spectrally flowed vacuum module, since as in [Rid09], for

different integer values of spectral flow the flowed characters generally possess disjoint

convergence regions, see Remark 6.2. Indeed, using Eq. (230) and Eq. (231), as well as

the spectral flow action Eq. (128), we compute

ch[σw(L)](t, z; τ) = (−1)w
−πiw ϑ1(

t+z
2
; τ)ϑ1(

t−z
2
; τ) + ∂t(ϑ1(

t+z
2
; τ)ϑ1(

t−z
2
; τ))

π η(τ)ϑ1(t; τ)
, (214)

which is valid only in the convergence region |q|1−w < |x| < |q|−w−1. Note that Eq. (214)

has a convergence domain that intersects that of Eq. (213) only for the values w = ±1.

However, if we ignore the issue of the convergence regions, that is, if we consider the

characters Eq. (214) as meromorphic functions of x, we obtain the following identities:

ch[L] = (−1)w

2

(
ch[σw(L)] + ch[σ−w(L)]

)
,

ch[σw+1(L)] = 3(−1)wch[L] + (−1)wch[σ(L)]− ch[σw(L)] ,
(215)

for every w ∈ Z. Eq. (215) imply that there are only two independent character functions

among all the spectrally flowed versions of the vacuum. This in turn implies that as in

[Rid09] the association of psu(2|2)1-modules with the corresponding character functions

is not injective. Thus, all the discussion of Remark 6.2 is relevant also for the psu(2|2)1
theory.

We can now make use of the simple modular behaviour of theta functions, see Ap-

pendix A, and compute

sch[L]
(
t

τ
,
z

τ
;−1

τ

)
= e

πi
2τ

(z2−t2)πxϑ1(
t+z
2
; τ)ϑ1(

t−z
2
; τ)− iτ ∂t(ϑ1(

t+z
2
; τ)ϑ1(

t−z
2
; τ))

π η(τ)ϑ1(t; τ)
,

(216)

where we recognize the prefactor e
πi
2τ

(z2−t2) coming from the general transformation prop-

erty of weak Jacobi forms of index 1 and −1, and the second therm in the fraction which

is again the vacuum character. It follows that the component of the modular S-matrix

of psu(2|2)1 relating the vacuum module to itself, is given by

SL,L = iτ , (217)
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and the explicit (linear) τ -dependence suggests that this model is an example of a loga-

rithmic CFT.

More generally, the modular transformation of the spectrally flowed characters is

sch[σw(L)]
(
t

τ
,
z

τ
;−1

τ

)
=

e
πi
2τ

(z2−t2)(−1)w
π(w + x)ϑ1(

t+z
2
; τ)ϑ1(

t−z
2
; τ)− iτ ∂t(ϑ1(

t+z
2
; τ)ϑ1(

t−z
2
; τ))

π η(τ)ϑ1(t; τ)
,

if we treat the characters as meromorphic functions, that is, if we work at the level of

character functions.

7.3 The free field characters of su(2|2)1
We now look at the free field su(2|2)1 characters. Similarly to as we did for L, we first

compute the full R character to fixed values Z and Y of Z0 and Y0. We begin with the

R free field representation R which yields the representations RZ for fixed Z ∈ 1
2
N. We

obtain

η(τ) ch[(E ;Y ;Z)](t, z; τ) =

ϑ2(
z+ν−µ

2
)ϑ2(

z−ν+µ
2

)

η(τ)

∑
j∈ 1

2
Z

e2πi(µ+ν)(j+
1
2
)χ

(−1)
R, j (t; τ)


ν=Z, µ=Y

=

q
(Y−Z)2

4 χ
(1)
1/2(z; τ)χ

(−1)

R, Y+Z−1
2

(t; τ) if Y − Z ∈ 2Z ,

q
(Y−Z)2

4 χ
(1)
0 (z; τ)χ

(−1)

R, Y+Z−1
2

(t; τ) if Y − Z ∈ 2Z+ 1 ,

(218)

where the eta function on the left hand side comes from the û(1)Z factor generated by Z,

see Eq. (209). Using Eq. (211) we compute

η(τ) ch[RZ ](t, z; τ) =
∑

Y ∈Z+Z

ch[(E ;Y ;Z)](t, z; τ)

= χ
(1)
0 (z; τ)

∑
n∈Z

q(n+
1
2
)2χ

(−1)
R,Z+n(t; τ) + χ

(1)
1/2(z; τ)

∑
n∈Z

qn
2

χ
(−1)

Z+n− 1
2

(t; τ)

=

q
Z(Z−1)

[
χ
(1)
0

∑
Y ∈2Z q

ZY
∑

j∈N+ |Y |
2

χ
(−1)
j + χ

(1)
1/2

∑
Y ∈2Z+1 q

ZY
∑

j∈N+ |Y |
2

χ
(−1)
j

]
qZ(Z−1)

[
χ
(1)
1/2

∑
Y ∈2Z q

ZY
∑

j∈N+ |Y |
2

χ
(−1)
j + χ

(1)
0

∑
Y ∈2Z+1 q

ZY
∑

j∈N+ |Y |
2

χ
(−1)
j

]
=

q
Z(Z−1)

[
χ
(1)
0

∑
j∈N

(∑j
i=−j q

2Zi
)
χ
(−1)
j + χ

(1)
1/2

∑
j∈N+ 1

2

(∑j
i=−j q

2Zi
)
χ
(−1)
j

]
qZ(Z−1)

[
χ
(1)
1/2

∑
j∈N

(∑j
i=−j q

2Zi
)
χ
(−1)
j + χ

(1)
0

∑
j∈N+ 1

2

(∑j
i=−j q

2Zi
)
χ
(−1)
j

]
,

(219)

where in the last two equations the top line holds if Z ∈ N and the bottom one if Z ∈ N+ 1
2
;

also, in the last equation the sums in the round brackets run over integers whenever j ∈ N
and half integers if j ∈ N + 1

2
. Note that we dropped the arguments of all the functions
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in the last two equations for more readability. Then, the last equation explicitly gives

the branching rules for the representation associated to the affine embedding of the affine

bosonic subalgebra su(2)−1 ⊕ su(2)1 ⊕ û(1)Z . At this point, we clarify the fact that since

the multiplets in Eq. (116) and in Eq. (120) differ only by the substitution Z0 → −Z0

and Y0 → −Y0 we have the following identities for every Z ∈ 1
2
N:

ch[(E ;Y ;Z)](t, z; τ) = ch[(E ;−Y ;−Z)](t, z; τ) ,

ch[RZ ](t, z; τ) = ch[R−Z ](t, z; τ) .

Unfortunately, the branching functions in Eq. (219) do not seem to allow for a simpler

understanding of the modular behaviour of the affine su(2|2)1-character, as it was for the
vacuum L. Only for R0, where one observes that Table 2 is the same as Table 1 but with

an overall shifted Y0-eigenvalue by 1 (which is irrelevant from the perspective of su(2|2)1)
and by quotienting out the affine û(1)Z factor. These relation is explicit also at level of

L0 − 1
24

0
(
0 ,1

)
1

1
(
1
2
,2
)
0

(
1
2
,2
)
2

2
(
1 ,1

)
−1

(
1 ,1

)
1

(
1 ,1

)
3

4
(
3
2
,2
)
−2

(
3
2
,2
)
0

(
3
2
,2
)
2

(
3
2
,2
)
4

6 . .
. (

2 ,1
)
−1

(
2 ,1

)
1

(
2 ,1

)
3

. . .
...

...
...

...
...

...
...

...

Table 2: Decomposition of the affine module R0 in affine highest weight representations
of the bosonic subalgebra su(2)−1 ⊕ su(2). Note that we omitted the representations
generated by the affine û(1)Z , so each affine bosonic representation is actually tensored
with the affine û(1) module Z. The conformal dimension is also different from that of
Table 1, as the latter is the former shifted by the modular anomaly of a free boson,
namely by −1/24.

characters, where

ch[(E , Y + 1, 0)] = ch[(K, Y, 0)] ∀Y ∈ Z , (220)

or more generally

ch[(E , Y + 1− Z,Z)] = qZ(Z−1−Y ) ch[(K, Y, 0)] ∀Z ∈ N ∀Y ∈ Z , (221)

from which follows that

ch[(E , Y − Z,Z)] = qZ(Z−Y ) ch[(E , Y, 0)] ∀Z ∈ N ∀Y ∈ Z , (222)
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which is Eq. (133) at the level of characters. Then, when summed over Y ∈ Z, Eq. (220)
yields

η(τ) ch[R0] = ch[L] ,

which is exactly Eq. (129). Similarly, summing Eq. (221) over Y ∈ Z+Z yields for every

Z ∈ N:

η(τ) ch[RZ ](t, z : τ) = qZ(Z−1)
∑
Y ∈Z

qZY

χ
(1)
0 (z; τ)

∑
j∈N+ |Y |

2

χ
(−1)
j (t; τ) if Y ∈ 2Z ,

χ
(1)
1/2(z; τ)

∑
j∈N+ |Y |

2

χ
(−1)
j (t; τ) if Y ∈ 2Z+ 1 ,

(223)

which agrees with Eq. (219). Eq. (223) allows to understand the affine bosonic structure

of RZ for Z ∈ N in relation to the structure of L (or R0) seen in Table 1. In particular,

if we ignore for a moment the conformal dimensions at which each affine bosonic module

appears, we note that the affine bosonic content of RZ is the same as that of R0. By

considering also the conformal dimensions, we obtain the structure ofRZ , up to an overall

difference in the conformal dimension, by taking that of L in Table 1 and “flowing to

the right” of Z columns, weighting each column by a different conformal dimension. For

instance, the decomposition of R1 is given in Table 3.

L0 − 1
24

0
(
0 ,1

)
0

(
1
2
,2
)
1

(
1 ,1

)
3

1
(
3
2
,2
)
4

2
(
1
2
,2
)
−1

(
1 ,1

)
0

(
2 ,1

)
3

(
2 ,1

)
5

3
(
3
2
,2
)
1

4
(
1 ,1

)
−2

(
3
2
,2
)
−1

(
5
2
,2
)
6

5
(
5
2
,2
)
4

6 . .
. (

2 ,1
)
0

(
3 ,1

)
3

. . .
...

...
...

...
...

...
...

Table 3: Decomposition of the affine su(2|2)1-module R1. As in Table 2, also here we
omitted the overall tensor product with the affine û(1)-module Z.

For Z ∈ N+ 1
2
a similar reasoning is also true, but one also needs to exchange all the

su(2)1 representations, namely 1 ↔ 2. For instance, the structure of R1/2 is shown in

Table 4.

We wish to compute also the characters of the Ramond sectors R±. We denote by

E± the R sector representations of two pairs of symplectic bosons defined by Eq. (121)

and Eq. (126) respectively; then ch[E±;Y ;Z](t, z; τ) is equal to Eq. (218) up to the
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L0 − 1
24

0
(
0 ,2

)
0

(
1
2
,1
)
1

1
(
1
2
,1
)
−1

(
1 ,2

)
2

2
(
1 ,2

)
0

(
3
2
,1
)
3

3
(
1 ,2

)
−2

(
3
2
,1
)
1

4
(
3
2
,1
)
−1

(
2 ,2

)
4

5
(
3
2
,1
)
−3

(
2 ,2

)
2

6
(
2 ,2

)
0

7 . .
. (

2 ,2
)
−2

(
5
2
,1
)
3

. . .
...

...
...

...
...

...
...

Table 4: Decomposition of the affine su(2|2)1-module R1/2.

replacement χ
(−1)
R, s → χ

(−1)
R±, s. More concretely,

η(τ) ch[R±
Z ](t, z; τ) =

∑
Y ∈Z+Z

ch[(E±;Y ;Z)](t, z; τ)

=

q
Z2
[
χ
(1)
0

∑
Y ∈2Z+1 q

ZY
∑

j∈N+ |Y |
2

χ
(−1)

∓(j+ 1
2
),± + χ

(1)
1/2

∑
Y ∈2Z q

ZY
∑

j∈N0+
|Y |
2

χ
(−1)

∓(j+ 1
2
),±

]
qZ

2
[
χ
(1)
1/2

∑
Y ∈2Z+1 q

ZY
∑

j∈N+ |Y |
2

χ
(−1)

∓(j+ 1
2
),± + χ

(1)
0

∑
Y ∈2Z q

ZY
∑

j∈N+ |Y |
2

χ
(−1)

∓(j+ 1
2
),±

]
=

q
Z2
[
χ
(1)
0

∑
j∈N+ 1

2

(∑j
i=−j q

2Zi
)
χ
(−1)

∓(j+ 1
2
),± + χ

(1)
1/2

∑
j∈N

(∑j
i=−j q

2Zi
)
χ
(−1)

∓(j+ 1
2
),±

]
qZ

2
[
χ
(1)
1/2

∑
j∈N+ 1

2

(∑j
i=−j q

2Zi
)
χ
(−1)

∓(j+ 1
2
),± + χ

(1)
0

∑
j∈N

(∑j
i=−j q

2Zi
)
χ
(−1)

∓(j+ 1
2
),±

]
,

(224)

where in the last two equations the top line holds if Z ∈ Z and the bottom one if

Z ∈ Z + 1
2
; also the sums in the round brackets in the last equation run over integers

whenever j ∈ N and half integers if j ∈ N+ 1
2
. Again, these are just the branching rules

for the affine bosonic embedding su(2)−1 ⊕ su(2)1 ⊕ û(1)Z ⊂ su(2|2)1.
For the special case of Z = 0, the representations R±

0 descend to representations L±

of psu(2|2)1. Concretely, the module L± is obtained from R±
0 by quotienting out all the

states containing at least one mode Zn with n < 0, namely R±
0
∼= L±⊗Z. At the level of

the characters, this means that the character of L± equals the character to R±
0 divided

by the character of a free boson. Then, Eq. (224) can be written using Eq. (180) and

Eq. (231) in terms of theta functions as follows:

ch[L±](t, z; τ) = χ
(1)
0 (z; τ)

∑
j∈Z>0

2jχ
(−1)
∓j,±(t; τ) + χ

(1)
1/2(z; τ)

∑
j∈N

(2j + 1)χ
(−1)

∓(j+ 1
2
),±(t; τ)

=
ϑ3(z; 2τ)(±πiϑ2(t; 2τ)− ∂tϑ2(t; 2τ)) + ϑ2(z; 2τ)(±πiϑ3(t; 2τ)− ∂tϑ3(t; 2τ))

π η(τ)ϑ1(t; τ)

=
±πiϑ2(

t+z
2
; τ)ϑ2(

t−z
2
; τ)− ∂t

(
ϑ2(

t+z
2
; τ)ϑ2(

t−z
2
; τ)
)

π η(τ)ϑ1(t; τ)
,

(225)
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which agrees with Eq. (214) with w = ±1 after replacing ϑ2 → ϑ1 in the last line of

Eq. (225), that is, by replacing the character with the supercharacter. Note that the

domain of convergence of Eq. (214) for w = 1 is 1 < |x| < |q|−2 and for w = −1 is

|q|2 < |x| < 1, which is the same as the corresponding domains in Eq. (225), since the

latter contains the characters χ
(−1)
j,± (t; τ) respectively. The affine bosonic content of these

modules is depicted in Table 5. This explicit computation is an incarnation of the fact

that

σ±1(L) ∼= L± .

L0 − 1
12

0
(
∓ 1 ,1

)
−1

(
∓ 1

2
,2
)
0

(
∓ 1 ,1

)
1

1
(
∓ 3

2
,2
)
−2

(
∓ 3

2
,2
)
0

(
∓ 3

2
,2
)
2

2
(
∓ 2 ,1

)
−3

(
∓ 2 ,1

)
−1

(
∓ 2 ,1

)
1

. . .

4
(
∓ 5

2
,2
)
−2

(
∓ 5

2
,2
)
0

(
∓ 5

2
,2
)
2

... . .
. ...

...
...

...
...

. . .

Table 5: Decomposition of the module L± , where all the labels j ∈ 1
2
Z \ {0} denote the

highest weight discrete representation D+
j of su(2) if j < 0, or the lowest weight discrete

representations D−
j if j > 0 . One can identify the states at level zero via the spectral

flow action. Indeed, for L+, the highest weight state in
(
− 1

2
,2
)
0
corresponds to |0⟩σw=1 ,

while those in
(
− 1 ,1

)
±1

to S∓±±
0 |0⟩σ1 = [S∓±±

−1 |0⟩]σ1 correspondingly. Analogously, for

L−, the highest weight state in
(
1
2
,2
)
0
corresponds to |0⟩σw=−1 , while those in

(
1 ,1

)
±1

to S±∓±
0 |0⟩σ−1 = [S±∓±

−1 |0⟩]σ−1 correspondingly. Note that as we already know from the
conformal embedding, the Casimir of psu(2|2) of both representations is zero.

Lastly, we compute the characters of the free field realisation R̃ defined by Eq. (111)

and Eq. (113) allowing m1,m2 ∈ 1
2
Z. Denoting by Ẽ the corresponding sector, we obtain

η(τ) ch[R̃Z ](t, z; τ) =
∑

Y ∈Z+Z

ch[(Ẽ ;Y ;Z)](t, z; τ)

=
∑

s∈Z+ 1
2
+Z

xs
ϑ2(

t+z
2
; τ)ϑ2(

t−z
2
; τ)

η(τ)4
,

(226)

which converges nowhere in the x-plane and thus has to be interpreted as a formal power

series. Then, by passing to supercharacters, which effectively replaces ϑ2 → ϑ1, we
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compute the spectrally flowed characters

η(τ) ch[σw(R̃Z)](t, z; τ) = (−1)wq−
w2

2

∑
s∈Z+ 1

2
+Z

xsqsw
ϑ1(

t+z
2
; τ)ϑ1(

t−z
2
; τ)

η(τ)4

= (−1)wq−
w2

2 e2πi(t+wτ)(
1
2
+Z)
∑
s∈Z

e2πi(t+wτ)s
ϑ1(

t+z
2
; τ)ϑ1(

t−z
2
; τ)

η(τ)4

= (−1)wq−
w2

2 e2πi(t+wτ)(
1
2
+Z)

∑
m∈Z

δ(t+ wτ −m)
ϑ1(

t+z
2
; τ)ϑ1(

t−z
2
; τ)

η(τ)4

= (−1)wq−
w2

2

∑
m∈Z

e2πim( 1
2
+Z)δ(t+ wτ −m)

ϑ1(
t+z
2
; τ)ϑ1(

t−z
2
; τ)

η(τ)4
,

(227)

and their modular transformation

η(− 1
τ
) ch[σw(R̃Z)](

t
τ
, z
τ
;− 1

τ
)

= e
πi
2τ

(z2−t2)(−1)w
e
πi
τ
(t2+w2)

iτ

∑
m∈Z

e2πim( 1
2
+Z)δ( t−w−mτ

τ
)
ϑ1(

t+z
2
; τ)ϑ1(

t−z
2
; τ)

η(τ)4

= e
πi
2τ

(z2−t2) (−i sgn(Re(τ))) (−1)w
∑
m∈Z

q−
m2

2 e2πim( 1
2
+Z)δ(t− w −mτ)

ϑ1(
t+z
2
; τ)ϑ1(

t−z
2
; τ)

η(τ)4

= e
πi
2τ

(z2−t2)
∑
w′∈Z

∫ 1

0

dλ′ S(w,Z+ 1
2
),(w′,λ′) sch[σ

w′
(Fλ′)](t, z; τ) ,

(228)

where in the second equality we used

δ
(x
τ

)
= τ sgn(Re(τ)) δ(x) ∀x ∈ R ∀ τ ∈ H ,

and we used the characters analogous to those in [EGG19] for the continuous multiplets

of psu(1, 1|2) to general λ ∈ R/Z:

sch[σw(Fλ)](t, z; τ) = (−1)wq−
w2

2

∑
s∈Z+λ

xsqsw
ϑ1(

t+z
2
; τ)ϑ1(

t−z
2
; τ)

η(τ)4
.

The modular S-matrix in Eq. (228) is given by

S(w,λ),(w′,λ′) = −i sgn(Re(τ)) e2πi[w′(λ+ 1
2
)+w(λ′+ 1

2
)] . (229)
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8 Outlook

We mention some of the possible developments that could follow to the results presented

in this thesis.

We analyzed all the representations appearing in the su(2)−1 theory and their char-

acters. It would be interesting to find a modular invariant partition function and in

particular one containing only a discrete subset of modules, since the global WZW model

is defined on the corresponding compact Lie group. Finding such invariant could in turn

be useful in constructing one for the psu(2|2)1 and su(2|2)1 models. Indeed, because

of the conformal embedding of the bosonic subalgebra for the former, and the explicit

branching rules for the latter, knowing the mass matrices of all the components of the

respective affine bosonic subalgebras should allow for an understanding of the partition

function for the superalgebra. However, as already explained in Remark 6.2, the techni-

cal issues related to the non-holomorphicity of the su(2)−1 characters and the fact that

the Grothendieck ring of characters is “smaller” than the ring of modules, challenges the

physical interpretation of partition functions constructed out of character functions. The

same convergence issues appear in the characters of the superalgebras discussed here.

A big step forward in the understanding of the WZW model on su(2|2)1 would be

to have under control the modular transformation of its characters. Even though we

presented explicit brunching rules in terms of affine bosonic representations, they do not

seem to simplify this task. However, the relatively close relation between the su(2|2)1
vacuum module, namely R0, and all the representations RZ for Z ∈ N, suggests that

it should be possible to relate the issue of understanding the modular behaviour of the

latter to the better-understood case of the former. Similar relations should be possible

between the other R sector representations with fixed Z0 ∈ Z and R0. Computing the

modular transformations should also clarify if in order to build an invariant partition

function one has to consider also spectrally flowed modules.

For what concerns psu(2|2)1, it is important to understand the logarithmic nature

of the theory, emerging from Eq. (217). In particular, the appearance of reducible but

indecomposable modules on which L0 is not diagonalisable has been observed in [EGG19]

for psu(1, 1|2)1 and in [CR12] for sl(2,R)k at admissible fractional levels k. In the former

case, there is a unique such module, which does not appear separately in the spectrum

since it is already taken into account from the contribution of irreducible representations.

At this point, it is also useful to point out the “duality” of the representation theory

of psu(1, 1|2)1 and that of psu(2|2)1. The main difference, is that for the latter we

only allowed the spin j of the non-integrable factor su(2)−1 to be quantised to j ∈ 1
2
Z,

and in particular we imposed λ = j modZ for the continuous representations. This is

due to global considerations regarding the compactness of the bosonic subalgebra. The

situation is instead quite different for psu(1, 1|2)1, since because of the non-compactness
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of the sl(2,R)1 factor in the bosonic subalgebra, the spectrum is continuous and more

specifically parametrised by λ ∈ R/Z. Then, the indecomposable module mentioned

before appears at λ = 1/2, and it is the unique module from the family of continuous

sl(2,R)-representations that appears also in the psu(2|2)1-theory. It would be interesting

to make this connection more precise.

As a continuation to this project, it would be also relevant to compute the fusion rules

and the Verlinde formula for both psu(2|2)1 and su(2|2)1. We note that the fusion rules

of symplectic bosons have been explicitely worked out in [Rid10] and those of psu(1, 1|2)1
in [EGG19]. It is to be expected that the physical interpretation of the fusion coefficients

obtained from a “naive” application of the Verlinde formula is hidden, see Remark 6.2.
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A Theta functions

Following the notation of [BLT13], let q := e2πiτ ∈ C for τ ∈ H, z ∈ C, and we define the

theta functions as

ϑ

[
α

β

]
(z; τ) :=

∑
n∈Z

eπi(n+α)
2τ+2πi(n+α)(z+β)

= e2πiα(z+β)q
α2

2

∞∏
n=1

(1− qn)(1 + qn+α−
1
2 e2πi(z+β))(1 + qn−α−

1
2 e−2πi(z+β)) ,

where the second equality holds by applying the Jacobi triple product. The Jacobi theta

functions are then

ϑ1 := ϑ

[
1
2
1
2

]
, ϑ2 := ϑ

[
1
2

0

]
, ϑ3 := ϑ

[
0

0

]
, ϑ4 := ϑ

[
0
1
2

]
.

These functions obey the following addition rules:

ϑ1(
z+t
2
; τ)ϑ1(

z−t
2
; τ) = ϑ2(z; 2τ)ϑ3(t; 2τ)− ϑ3(z; 2τ)ϑ2(t; 2τ) ,

ϑ2(
z+t
2
; τ)ϑ2(

z−t
2
; τ) = ϑ2(z; 2τ)ϑ3(t; 2τ) + ϑ3(z; 2τ)ϑ2(t; 2τ) ,

ϑ3(
z+t
2
; τ)ϑ3(

z−t
2
; τ) = ϑ3(z; 2τ)ϑ3(t; 2τ)− ϑ2(z; 2τ)ϑ2(t; 2τ) ,

ϑ4(
z+t
2
; τ)ϑ4(

z−t
2
; τ) = ϑ3(z; 2τ)ϑ3(t; 2τ)− ϑ2(z; 2τ)ϑ2(t; 2τ) ,

and quasi-periodicity relations, such as

ϑi(z + wτ ; τ) = e−2πiwzq
−w2

2 ϑi(z; τ) i = 2, 3 ,

ϑi(z + wτ ; τ) = (−1)we−2πiwzq
−w2

2 ϑi(z; τ) i = 1, 4 ,
(230)

for every w ∈ Z, and

ϑ2(z + wτ ; 2τ) = e−πiwzq−
w2

4

ϑ2(z; 2τ) ∀w ∈ 2Z ,

ϑ3(z; 2τ) ∀w ∈ 2Z+ 1 ,

ϑ3(z + wτ ; 2τ) = e−πiwzq−
w2

4

ϑ3(z; 2τ) ∀w ∈ 2Z ,

ϑ2(z; 2τ) ∀w ∈ 2Z+ 1 .

(231)

We also need the modular transformations

ϑ1(
z
τ
;− 1

τ
) = −i

√
−iτ e

πiz2

τ ϑ1(z; τ) ,

ϑ2(
z
τ
;− 1

τ
) =

√
−iτ e

πiz2

τ ϑ4(z; τ) ,

ϑ3(
z
τ
;− 1

τ
) =

√
−iτ e

πiz2

τ ϑ3(z; τ) ,

ϑ4(
z
τ
;− 1

τ
) =

√
−iτ e

πiz2

τ ϑ2(z; τ) ,
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and

ϑ2(
z
τ
;− 2

τ
) =

√
− iτ

2
e
πiz2

2τ

(
ϑ3(z; τ)− ϑ2(z; τ)

)
,

ϑ3(
z
τ
;− 2

τ
) =

√
− iτ

2
e
πiz2

2τ

(
ϑ3(z; τ) + ϑ2(z; τ)

)
.

We also make use of the Dedekind eta function, which is defined by

η(τ) := q
1
24

∞∏
n=1

(1− qn) ,

and it transform under the modular group as

η(τ + 1) = e
πi
12 η(τ) ,

η(− 1
τ
) =

√
−iτ η(τ) .
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theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York,

1997. MR 1424041

[DGGK21] Andrea Dei, Matthias R. Gaberdiel, Rajesh Gopakumar, and Bob Knighton,

Free field world-sheet correlators for AdS3, J. High Energy Phys. (2021), no. 2,

Paper No. 081, 42. MR 4260337

[EGG19] Lorenz Eberhardt, Matthias R. Gaberdiel, and Rajesh Gopakumar, The

worldsheet dual of the symmetric product CFT, J. High Energy Phys. (2019),

no. 4, 103, 46. MR 3953971

[EGG20] Lorenz Eberhardt, Matthias R. Gaberdiel, and Rajesh Gopakumar, Deriv-

ing the AdS3/CFT 2 correspondence, Journal of High Energy Physics 2020

(2020), no. 2.

[Gab01] Matthias R. Gaberdiel, Fusion rules and logarithmic representations of a

WZW model at fractional level, Nuclear Phys. B 618 (2001), no. 3, 407–436.

MR 1870445

[Gab03] , An algebraic approach to logarithmic conformal field theory, Proceed-

ings of the School and Workshop on Logarithmic Conformal Field Theory and

its Applications (Tehran, 2001), vol. 18, 2003, pp. 4593–4638. MR 2030633

[GG00] Matthias R. Gaberdiel and Peter Goddard, Axiomatic conformal field theory,

Comm. Math. Phys. 209 (2000), no. 3, 549–594. MR 1743609

[GG18] Matthias R. Gaberdiel and Rajesh Gopakumar, Tensionless string spectra on

AdS3, J. High Energy Phys. (2018), no. 5, 085, front matter+18. MR 3832679

[GG21a] Matthias R. Gaberdiel and Rajesh Gopakumar, String Dual to Free Super-

symmetric Yang-Mills Theory, Physical Review Letters 127 (2021), no. 13.



[GG21b] Matthias R. Gaberdiel and Rajesh Gopakumar, The worldsheet dual of free

super Yang-Mills in 4D, J. High Energy Phys. (2021), no. 11, Paper No. 129,

44. MR 4368728

[GN03] Matthias R. Gaberdiel and Andrew Neitzke, Rationality, quasirationality and

finite W -algebras, Comm. Math. Phys. 238 (2003), no. 1-2, 305–331. MR

1990879

[GNS22] Matthias R. Gaberdiel, Kiarash Naderi, and Vit Sriprachyakul, The free field

realisation of the BVW string, Journal of High Energy Physics 2022 (2022),

no. 8.

[God89] Peter Goddard, Meromorphic conformal field theory, Infinite-dimensional Lie

algebras and groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., vol. 7,

World Sci. Publ., Teaneck, NJ, 1989, pp. 556–587. MR 1026966

[GOW87] P. Goddard, D. Olive, and G. Waterson, Superalgebras, symplectic bosons and

the Sugawara construction, Comm. Math. Phys. 112 (1987), no. 4, 591–611.

MR 910580
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[Rid09] David Ridout, ŝl(2)−1/2: A case study, Nuclear Physics B 814 (2009), no. 3,

485–521.

[Rid10] David Ridout, Fusion in Fractional Level ŝl(2)-Theories with k = −1/2.
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