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Abstract

In this thesis we develop the representation theory of the affine Lie superalgebra
su(2]2); with a purely algebraic method, and in particular we find all the highest
weight representations. We give a criterion for the inclusion of a bosonic subalgebra
in a Lie superalgebra being a conformal embedding, and prove that this is the case
for psu(2]2); and u(2|2);. We then present the free field realisation of u(2|2); and
the spectral flow action. The free field representations are then decomposed in terms
of affine representations of the bosonic subalgebra, and explicit branching rules are
presented. The corresponding characters are computed, and for the case of psu(2]2),
also their modular behaviour. In this case, it turns out that the modular S-matrix
contains terms that are linear in the conformal parameter 7, which suggests that
the psu(2|2);-WZW model is a logarithmic conformal field theory.
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1 Introduction

One of the gems of string theory in the last decades is the Anti-de Sitter/conformal
field theory (AdS/CFT) correspondence and the application of the holographic duality
to understand strongly coupled quantum field theories (QFTs). The key aspect of the
correspondence stems from the fact that it allows to compute quantum corrections in
the non-perturbative regime of a field theory using a classical gravity theory. This has a
wide spectrum of applications, that go far beyond string theory: AdS/CFT finds fruitful
application in the study of condensed matter systems, non-equilibrium phenomena in
strongly coupled plasmas, and gives an explanation for confinement and chiral symmetry
braking in non-conformal field theories.

The first connection between string theory and Yang Mills gauge theories was proposed
by 't Hooft [tH84], who was searching for a small parameter in the strong coupling regime
of quantum chromodynamics in order to obtain valid expansions. Later, the first concrete
conjecture of the AdS/CFT correspondence was stated by Maldacena [Mal99] and claimed
that N = 4 superconformal Yang-Mills (SYM) theory in 4 spacetime dimensions is dual
to Type IIB string theory on AdS; x S°. An important aspect of this duality, is that
since N' = 4 SYM theory is a conformal field theory (CFT), one can consider different
limits of the 't Hooft parameter, relating the large radius limit of AdSs x S°, which is
well-approximated by supergravity (low energy limit), to the strongly coupled regime in
the field theory.

It is thus of great interest to derive the AdS/CFT correspondence, also because it is
likely to enlighten several aspects of this holographic duality. Recently, progress in this
direction has been made in a special case which relates the small radius or tensionless
limit of AdS3 x S* x T*, with k¥ = 1 units of Neveu-Schwartz-Neveu-Schwartz (NS-NS)
flux, to the free symmetric product orbifold CFT, Sym®™ (T*). The first evidence for this
duality was the agreement of the full spectrum in the large N limit, see [EGGI19] and
[GG18|. Then, it was shown in [EGG20] that the correlators in the two descriptions
agree manifestly. Moreover, since the string background has pure (and minimal k = 1)
NS-NS flux, it can be described be an exactly solvable worldsheet Wess-Zumino-Witten
(WZW) model. The best description relies on the so-called hybrid formalism of Berkovits
Vafa and Witten [BVW99], where the relevant WZW model is based on the superalgebra
psu(1l,1]2);. This picture, in addition to having manifest spacetime supersymmetry,
allows to avoid a limitation of the Ramond-Neveu-Schwartz (RNS) formulation, which is
not a priori well defined for k < 2. The supergroup sigma model is, on the other hand,
well-defined at £ = 1 and has special features. The tensionless limit corresponds to £ = 1,
and is where the supergroup WZW model admits a free field description in terms of two
canonically conjugate pairs of fermions, together with four symplectic bosons (each of

spin one half).



For what concerns the case of AdSs x S°, the quantisation of a sigma model with
this target space is challenging. First of all, the presence of Ramond-Ramond (R-R) five-
form flux renders a RNS description impossible [CCY18]. Secondly, the Green-Schwarz
(GS) description [MT9§] is fairly intractable except for some special cases, see [MT01]
and [AF09]. Lastly, pure spinor descriptions [Ber(0], which avoid some difficulties of
both the above approaches, are not yet technically developed to the point where they
can serve a calculational framework. However, a sigma model was recently proposed in
[GG21a] as a natural generalisation of the similar free field sigma model proposed for
the tensionless limit of AdS® x S* x T*. This is based on the superalgebra psu(2,2[4)
and more precisely, in the tensionless limit on psu(2,2[4);. As for the case of psu(1,1]2),
at level k£ = 1 also this affine superalgebra has a free field realisation, which is obtained
basically by doubling the oscillators of psu(1,1]2). In [GG21a] it is then argued that
the corresponding worldsheet gauge constraints reduce the degrees of freedom to a finite
number of oscillators in each spectrally flowed sector. Imposing a set of residual gauge
constraints on this reduced oscillator Fock space then determines the physical spectrum
of the string theory. Remarkably, there is evidence that this prescription reproduces
precisely the entire planar spectrum of single trace operators of the free SYM theory.

However, when considering interactions in the SYM theory, the picture is more in-
volved. It is likely that, just as for the spectrum, the integrability approach to correla-
tors [BAAT11] will enter the picture. In this context, upon the choice of vacuum, the
psu(2, 2]4) symmetry of N =4 SYM is broken down to psu(2|2) @ psu(2]2). In particular,
it is very interesting to note that the hexagon approach to SYM correlators [BKV15| is
most naturally formulated in terms of bilinears of su(2|2) bits, which seem to be closely
related to the covariant twistorial wedge modes in [GG21D].

Moreover, an actual WZW model on psu(2,2[4) yields a spectrum generating algebra
which consists of two commuting copies of psu(2,2|4), which does not directly match the
symmetries of A" = 4 SYM, consisting of one single copy. It thus seems natural to look at
a WZW containing fewer degrees of freedom, and a good candidate is the Lie supergroup
su(2|2). Indeed, there is an inclusion of Lie superalgebras su(2|2) & su(2|2) C spu(2,2/4),
that could be interpreted as an embedding of the (finite) spectrum generating algebra of
the WZW model on su(2|2) into the symmetry algebra of N' =4 SYM theory. Moreover,
as mentioned above, in the integrability context the two copies of su(2|2) can be obtained
from psu(2,2]4) by symmetry braking.

We also point out that the WZW model on psu(2|2); is strictly related to that on
psu(1,1|2),, where the latter was the central object in the tensionless worldsheet descrip-
tion of AdSs; x S3. One of the differences between the two models lies in the signature
of the metric on the corresponding supergroup, which for su(2|2) is (— — — 4+ ++) and
(— + + + ++) for psu(1,1|2). From the global (topological) perspective of the corre-

sponding Lie supergroups, the former has a compact bosonic subgroup, while the latter a



non-compact one. This suggests, that in contrast with psu(1, 1/2); which has a continuous

spectrum, we expect the psu(2|2); spectrum to be discrete.

The thesis is structured as follows.

We start with an introduction to affine Kac-Moody Lie algebras, their representations
and singular vectors, and we give the Kac-Kazhdan determinant formula for singular
vectors in affine highest weight Verma modules. Then, we present Wess-Zumino-Witten
models from both a geometric and an algebraic perspective and explain how they can be
defined in terms of affine Lie algebras. We explain how the Sugawara construction shows
that they are examples of conformal field theories, and we identify WZW primary fields
with highest weight representations of the underlying affine algebra. A special emphasis
is given to the integrable models, which we argue to be rational CFTs, and we illustrate
this concept with the example of su(2), at k € Z-o. The chapter ends with a brief
overview on the definitions and elementary properties of Lie superalgebras.

In the second chapter, we start with the discussion of the WZW model on the Lie
superalgebras su(2|2) and psu(2|2), which is the main goal of this thesis. First, these
superalgebras are defined in terms of generators and commutator relations. We then
illustrate the sl(2, R)-representation theory, which comes into play in virtue of the fact
that we have to consider also non-unitary representations of su(2). Then, the represen-
tation theory of su(2|2), at level k = 1 is worked out; in particular, the shortening of the
allowed multiplets are derived with a purely algebraic method.

The third chapter is dedicated to conformal embeddings, starting from the definitions
and then introducing the coset construction. We briefly present some results in meromor-
phic CFTs, in particular about the uniqueness of vertex operators. We need this result,
in order to then give a criterion for knowing whether the inclusion of the bosonic subal-
gebra into the Lie superalgebra is a conformal embedding. We then apply this criterion,
showing that such a conformal embedding exists for psu(N|N); and u(N|N); for every
N > 1, and for N = 2 we analyse the implications on the allowed representations and
their Casimir.

Chapter four is devoted to the free field realisation of u(2|2);, which is explicitely
presented in connection to that of psu(2,2[4);. We consider the free field representations
and discuss separately the Neveu-Schwartz (NS) and the Ramond (R) sectors, and for
the latter we show how different definitions of the symplectic boson zero modes action
yields different type of su(2)-representations. We then define the spectral flow action at
the free field level and deduce from it the action on the affine superalgebra generators.
This, for instance, allows us to identify the R-sector singlet representation of u(2/2); with
the NS vacuum representation through one unit of a specific spectral flow.

The fifth chapter starts with a review on affine characters and modular invariance

in WZW models, with particular attention to the integrable case. This introduction



terminates with the suggestive example of 1(1) modular invariants, which we used to
draw some analogies to the su(2)_; scenario. We then recall the characters and modular
matrices of the su(2); theory and their relation to the corresponding free field realisation
in terms of four real fermions. Then, the Kac-Kazhdan determinant formula is applied
to su(2)_; and all the singular vectors of the theory are established. The characters
of the corresponding affine irreducible modules are given, together with their modular
behaviour, and the issue of non-holomorphicity of the character functions is pointed out.

In the last chapter, we consider first the free field realisation of su(2)_; in terms of four
symplectic bosons. In particular, we compute the free field characters and manage to de-
compose them in infinite sums of irreducible su(2)_;-characters thanks to a denominator
identity for Lie superalgebras. This is done for the NS sector, as well as for the different
R sectors. We then calculate the free field characters of psu(2]2); and decompose the vac-
uum module in affine highest weight representations of the bosonic subalgebra. Luckily,
this allows to express the vacuum character in terms of theta functions and derivatives
of those. We compute the spectrally flowed characters and their modular behaviour, and
find that for the modular S-matrix involving every spectrally flowed versions of the vac-
uum, an explicit linear dependence on the conformal parameter 7 is present. Finally, the
free field characters of su(2|2); are computed, and explicit affine branching functions for

the embedding of the bosonic subalgebra are found.



2 Wess-Zumino-Witten models and affine Lie alge-

bras

For this section we will mainly follow chapters 14 and 15 of [DEMS97]. We try to present
the material that is relevant to our discussion; several results and calculations are just
presented as facts, for proofs and more details we refer to the corresponding bibliography.
The reader is assumed to be familiar with the theory of simple finite-dimensional Lie
algebras and their representations, for which a good review is given in chapter 13 of

[DEMS97].

2.1 Affine Lie algebras

Let g be a real or complex semisimple Lie algebra generated by elements J* € g for
1 < a < dimg satisfying [J?, J*] =4, faJ¢ for f® € C, and denote by b the Cartan
subalgebra whose generator are denoted by H',..., H" € g. We consider an infinite-
dimensional generalisation of this algebra, called the affine Kac-Moody algebra or
affine Lie algebra over g, denoted by g or later by g;. This is generated by elements

J2, Ly and k for n € 7, satisfying the commutation relations

2= 5 0+ i

Lo, J%] = —nJ® (1)

n n+m

[k, Ji] = [k, Lo] = 0.

In particular, the zero modes J§ of g generate a Lie subalgebra isomorphic to g, which we
sometimes refer to as the finite subalgebra. Note that Eq. implies that k is a central
element; indeed, one can first define the so called loop algebra consisting only of the
modes Jy, satisfying the commutation relations given by the first line of Eq. without
the term involving l%, and then show that there exists a unique central extension of this
algebra given by the introduction of k. Similarly, the generator Ly is introduced in order
to extend the abelian subalgebra {H}, ..., H}, l%} to a maximal abelian subalgebra E
One can then define a Killing form on g extending that of g, which yields an isomorphism
between the Cartan subalgebra 6 and its dual H* inducing a scalar product on the latter.
We choose the ordered basis (H',..., H", l;:, —Ly) offj\ and we call affine weights the
elements

A= Nk €.

The induced scalar product on affine weights takes the form

<5‘7 ﬂ) = <)‘7 ,u> + k)\n,u + kun)\ ’



where on the right hand side we used the induced scalar product on h*, denoted in the
same way.

Similarly to the finite case, affine weights in the adjoint representation are called affine
roots. We denote by A the set of roots of g and by A, the subset of positive roots in
which we fix a basis ay, .. ., o, of simple roots and the associated coroots ) := 2a; /| ;|2
For a root v € A we define - H := >, o’ H', where [H*, E*| = o' E® for every 1 <i <r
and E* € g is the generator associated to the root a. We also denote the Cartan

generators in the Chevelley basis by h' := . - H. Then, the affine roots take the form of
&= (a;0;n) for n€Z, and 6=(0;0;1),

where (o;0;n) is associated with the generator £ € g and nd with H! € g. We write
simply « instead of (a;0;0); then we can write & = a + nd. A basis of affine roots is

obtained from {«;} by adding the extra simple root
ap = (=0;0;1) = =0+,

where 6 is the highest root of A, that is, the unique root ) .m;c; whose expansion
maximizes ) . m;. The coefficients of the decomposition of 6 in the bases {a;} and {¢;}

bear special names, being called, respectively, the marks {a;} and the comarks {a;’}:

s T
_ _ VoV
Q—E aiozi—g a; o) .
i=1 i=1

We define the affine coroots as

2 2 2
AV S0 0em) — (V).
aY = |d‘2(a,0,n) = W(a, 0;n) = (a’;0; Wn),

and for finite roots we omit the hat,

ay = ag, o) == (a;;0;0).

U
Then, we have the following equations
T T T T
(522@0@22@{@% hvzzl—l—Zaiv: a;
i=0 i=0 i=1 i=0

where h" is the dual Coxeter number of g, which only depends on the finite Lie algebra.

The full set of affine roots is

A={a+nd:neZaecAU{nd:neZ,n+0}.



The root ¢ is called an imaginary since
(0,0) =0,

and likewise all the roots in {nd}, which all have multiplicity equal to r. The other roots
are called real and they all have multiplicity equal to 1. A set of positive affine roots
is given by

A, ={a+ni:n>0,aec A}U{a:aecA,}.

One can the define the extended Cartan matrix and the extended Dynkin di-
agrams as in the classification of complex simple finite-dimensional Lie algebras, see
[DFMSO97] for more details.

In the finite case, the fundamental wights wy,...,w, € h* are defined as the elements
of the basis dual to the simple coroots, that is,

(wiyaf) =0y V1<, j<r.

Similarly, the affine fundamental weights are defined as elements of H* by
©; = (wi;a/;0)  for 1<i<r, wo == (0;1;0).

Writing w; = (w;; 0;0) it follows that @; = a)@o+w;. Affine weights can thus be expanded
as .
A=) i@+ hi,
i=0
where we call \; the Dynkin labels of A and h € R its conformal dimension. We
have that

r

ko= \k) = Zaiv)\i = (\,0)

i=0
called the level. Since in most applications of interest, the level is fixed from the outset,
from now on we will identify k with its eigenvalue k and denote g by gi. Note that the
zeroth Dynkin label )\ is related to the finite Dynkin labels \; for 1 < < r by

M=k—\0)=k=> a’\. (2)
i=1
Affine weights will therefore be generally given in terms of Dynkin labels under the form

S\Z[AOaAla"w)\’r‘}a

where we stress that this notation does not keep track of the eigenvalue of Lj, namely



of the conformal dimension of \. However, as we will see this will not be a problem for
WZW models, since the conformal dimension of an affine highest weight is determined

by its finite part. Finally, the affine Weyl vector is defined as

pr=> Gi=[11,...,1],
=0
thus p(k) = h.

2.1.1 Affine highest weight representations

In this section we discuss one type of affine representations, that is, Lie algebra repre-
sentations of g, with arbitrary but fixed level £ € R. This is called a highest weight
representation and it is characterised by a unique highest weight state ];\> annihilated

by the action of all ladder operators of positive roots
ES|IN) =EXf N =H |A) =0, Vn>0ael,. (3)
The eigenvalue ) of this state is the affine highest weight of the representation, namely
HU A =N fori#£0, k[N =EkA), Lo\ =h|)\). (4)

All the states in the module are then generated by the action of the lowering operators
on |5\> We denote by ;5 the set of all affine weights in the highest weight representation
of A\. From an algebraic point of view, one usually sets h equal to zero by redefining
Ly. Note the position of the i-label in A\ differentiates this value from the Dynkin label
A = (A ).

The analogues of irreducible finite-dimensional representations of g are representations
whose projections onto the su(2) algebra associated with any real root are finite. One

can reduce the analysis on simple roots. Then, for any N e ()5 one has that
N, o))y = —(pi — @) Vo<i<r
for some positive integers p;, ¢;, which thereby implies that
NeZ NO<i<r.
For the highest weight \e Z, all p; are zero, and therefore



This requires in particular that
X=k—(\0)€Zy.
Since (A, 0) € Z~, this immediately implies that
ke€Zsy and k> (\0). (5)

An affine weight for which all Dynkin labels are non-negative integers is called dominant,
and the set of all dominant weights at level k is denoted by P¥. A consequence of Eq.
is that for fixed value of k, there can be only finitely many dominant highest weight
representations. For instance, at k& = 1, the only such representations are those with
highest weight @; such that the corresponding simple root «; has unit comark. Since
ag = 0 independently on the algebra, wy is always dominant and the level-1 highest
weight representation associated to it is called the basic representation. For su(N),
all comarks are one and hence there are N dominant highest weight representations at
level 1 whose highest weights are w; for 0 <17 < r.

Representations that decompose further into finite irreducible representations of su(2)
and can further be written as a direct sum of finite-dimensional weight spaces are said to
be integrable. Even though the adjoint representation is not a highest weight represen-
tation, it is integrable. The first condition is clearly satisfied, while the second condition
is equivalent to the root-space decomposition, that is, the decomposition of the root space
into a sum of finite roots and imaginary roots. Dominant highest-weight representations
are also integrable. Moreover, if

(St =72, or (H)' =H., (B =E,, (6)

n

then dominant highest-weight representations are easily checked to be unitary provided
Eq. holds true.

2.1.2 Singular Vectors and Kac-Kazhdan determinant

For dominant highest weights, Eq. is equivalent to the existence of the following

singular vectors in the Verma module of the highest weight state |\):
Ey |\ = EY|X) =0,

and
(B 3) = (B2 004115 = 0, ©



for 1 <1¢ < r. In sharp contrast with simple Lie algebras, when these singular vectors are
quotiented out from the dominant highest-weight Verma module (modulo their possible
intersections), the resulting irreducible module is not finite-dimensional. The imaginary
root can be subtracted from any weight without leaving the representation. The source
of infinity clearly lies in the absence of a singular vector related to the imaginary root 9,
that is, a singular vector that would involve H! for n < 0. In the following, we will call
the grade or level the L, eigenvalue, shifted such that Lj |5\> = 0 on the highest weight
state |\).

The discussion above about singular vectors, and in particular Eq. , holds only for
integrable highest weight representations. However, Kac and Kazhdan [KK79] showed
that for any affine Lie algebra g with symmetrisable generalised Cartan matri’] there
exists a formula that identifies all the affine singular weights in an highest weight mod-
ule for g,. We will not explain what does it mean for an affine Lie algebra to have a
symmetrisable Cartan matrix, since we will apply this result only to the specific case of
su(2);, which is known to satisfy this condition.

More concretely, Kac and Kazhdan showed that highest weight Verma modules can
be equipped with a unique (up to normalisation) invariant inner product, the Shapovalov
form, and in particular they gave a formula for the determinant of the Shapovalov form
of the Verma module with affine highest weight A restricted to the weight space i € )5,
which we denote by det; (/).

Theorem 2.1 (Kac-Kazhdan determinant, [KK79]). Let gx be an affine Lie algebra with
a symmetrisable Cartan matriz, A€ by and i € Q5. Then, up to a non-zero factor

(depending on the choice of basis) one has

00 . &. & P(i—1é&)
det; (i) = [] H((A+ﬁ,d>—l< ’2 >) : (8)

aeAy 1=1

where P(f1) denotes the multiplicity of v in the vacuum Verma module of gy, that is, the
affine highest weight module generated by the highest affine weight k.

The non-trivial singular vectors and their descendants are all null with respect to the
Shapovalov form, meaning that their norm is zero. The presence of such null states can
then be detected by computing the determinant of the Shapovalov form in each affine
weight space fi. Indeed, the presence of a singular vector in the Verma module of A is
signalled by the vanishing of one of the factors appearing in Eq. and the vanishing of
the arguments of the function P occurring in the corresponding exponent (non-vanishing
arguments of this P in general correspond to descendants of the singular vector). We will

refer to weights which admit a singular vector as singular weights. Another consequence

! Actually, the result in [KK79)] is proven for a class of objects called contragredient Lie algebras, which
include affine Lie algebras, still under the condition that the associated Cartan matrix is symmetrisable

10



from [KK79] is that if a weight is singular, than the null vector of that weight is unique

up to normalisation.

2.2 Wess-Zumino-Witten models

In this section we follow chapter 15 of [DFMS97]. We assume the reader being familiar
with the concept of conformal field theory, for which good references are [BP09] and
[DEMS97].

2.2.1 WZW from a geometrical perspective

Wess-Zumino-Witten (WZW) models are examples of two-dimensional conformal field
theories with a symmetry algebra given by an affine Lie algebra, which thus generates the
spectrum of the theory. What is peculiar of these models is that they have a nice geometric
interpretation in terms of a sigma model on a (semisimple) Lie group; in particular they
can be formulated directly by an action functional. We will thus introduce them by means
of this action and show how to extract from it their algebraic structure, which provides
them with an alternative algebraic definition.

We start by considering a quantum field theory on a Riemann surface X, such as
the sphere S? = C U {oo}, with complex local coordinates (z,z). We work in Euclidean
signature, such that we can apply the tools from complex geometry. Let G be a semisimple
Lie group and denote by (-, )4 a non-degenerate invariant inner product on ﬂ, which by
translation can be extended to an invariant Riemannian metric on GG and on the cotangent
bundle T*G, that we both denote by (-,-). The fields of this model are smooth maps

g € C*(X%, @) whose action functional is defined as a sigma model
Slg) = Solg] + kS ?[g], 9)

where

1
Solg) : (dg,dg) = —; / dz*(g 0.9 970" g)g
)

:4_012 D) 4&2

for some constant a € R\ {0} to be determined later, and the so called Wess-Zumino

term is given by

« { _ _ _
S 7g] rz/g H=—1-[1{g Ydg A g tdg A gdg),
B TJB

where B is a three-dimensional manifold whose boundary is ¥ and H is a multiple of

the harmonic three form of G, see [LW22]. This makes sense only if there exists an

2Since G is semisimple, the Killing form provides such scalar product. Note that in a matrix repre-
sentation, this is given by (X,Y)y = tr XY for X,Y € g, normalised such that tr(J*J%) = 16 on the
generators of the Lie algebra.

11



extension of g to B; this requires mo(G) = 1, which is true for example if G is compact.
Then, an extension is in general not unique. For the WZW model to be well-defined,
the path integral and hence e*® should not depend on the choice of the extension. The
Wess—Zumino term is invariant under continuous deformations of g, and only depends
on its homotopy class. Possible homotopy classes are controlled by the homotopy group
m3(G) . If G is compact connected simple, then 73(G) = Z and different extensions of g
lead to values of S"Z[g] that differ by integers. Therefore, they lead to the same value
of the path integral provided the level obeys

keZ. (10)

Thus, the classical theory is defined for any £ € R but quantisation requires the level to
be an integer. We remark that this topological argument is true for compact connected
simple groups G, but dropping one of these condition might modify the quantisation
condition Eq. . One can show that Eq. @ has a G x G symmetry given by

GxGxC®%,G) = C®%,G), (90,9r,9) — 9LIIR

and derive the equation of motions of Eq. @ These reflect this symmetry, and can be

expressed in local coordinates (z, Z) as
2]€ _ 2]{7 _
(1 + a?) (g~ '0g) + (1 - GT) (g~ 'dg) =0,

where 0 := 0, and 0 := 0;. For a given k, we can then choose a such that one of the two
terms vanishes; without loss of generality we choose k € Z-q and a® = m/k. This choice
determines the WZW action Eq. @ We obtain the equation of motion

0(9~'9g9) =0, (11)

which is solved by ¢g(z,2) = g(2)g(z) for every g,g € C>*(%,G). Also, Eq. implies
the conservation of the antiholomorphic current J := kg~'dg, which in turn implies that

1

the current J := —kdgg~" is holomorphic. Thus, the theory presents a holomorphic

and an antiholomorphic current; this property enhances the G x G symmetry to a local

G(z) x G(Z) symmetry acting by

9(2,2) = gr(2)g(z 2)gr(2) ", (12)

where g1, gr € C°(X, G) are holomorphic and antiholomorphic respectively.
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2.2.2 WZW from an algebraic perspective

We now move to quantizing the theory. An efficient way of doing it is to consider the
operator product expansions (OPE) of the currents. Note that the currents are maps
J(2),J(Z) € C®(%,g), hence we may write J(z) = >, J%(2)T%, where 1 < a < dimg
are adjoint indices and T generators of g, and similarly for J. In Eq. we consider
infinitesimal variations gr,(z) = exps(w(z)) with exp,: g — G being the Lie group expo-
nential and w € C*(X, g), and similarly for gg. Then, the variation of the holomorphic

current is given by

or equivalently

JO=iY frwhJ¢ = kow®, (13)
b,c

where the indices in f? are raised and lowered with the Killing form (-, -);. Also, the

Ward identity for the local symmetry Eq. is given by

1 a
ToalX) = =g f 422 (1"X) +—de2 (14
Then, substituting Eq. into Eq. leads to the OPE

S (w)

JU2)J (w) ~ (Z"f—wy +iy ff”(z - (15)

We call this OPE structure that of a current algebra. By introducing the modes J from

_ —n—1 ya
= E z gy

nel

the Laurent expansion

one checks that Eq. is equivalent to Eq. for the current modes at level k = k.
We can repeat the same argument for the antiholomorphic current, which yields an other
copy of the affine algebra g, commuting with that generated by the holomorphic modes,
since the OPE J%(2)Jb(w) ~ 0 implies that [J2, J°] = 0 for every a,b and n,m € Z.

Remark 2.2. We remark that even though we considered the field g(z, z) to transform in
the fundamental representation of GG, the WZW model is defined for g transforming in
any unitary representation of G. Neither we need to specify the representations of the left
and right G transformations in Eq. . The the full spectrum of the theory is uniquely
fixed by the group GG and it can in principle be obtained by canonical quantization, and
global considerations determine the combinations of left and right representations that
can appear. However, we will turn to an algebraic formulation of WZW models in terms

of the affine algebra g;. We stress that g is not the symmetry algebra of the theory, since
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J? do not commute with the Hamiltonian for n # 0 but only the zero modes do. For this
reason, the affine g; is referred to as the spectrum-generating algebra. We will shortly
show that WZW models are indeed examples of CFT; this is due to the occurrence of
two independent conserved currents generating independent affine algebras, which leads
to conformal invariance via the Sugawara construction. Then, we will identify primary

fields with dominant weights and physical spectra will be obtained by modular invariance.

2.2.3 The Sugawara construction

To show that the theory is conformal, we argue that the Virasoro algebra embeds in
the universal enveloping algebra of gx: this is the Sugawara construction. This can be
done for both left and right movers, that is for the holomorphic and antiholomorphic
currents, hence we actually obtain an embedding of two copies of the Virasoro algebra
in the enveloping algebra of the the two independent copies of gi. In the following we
concentrate on the holomorphic case and we assume that g is simple. From Eq. (9 one
can derive the holomorphic classical energy-momentum tensor 7'(z) = v >, (J*J*)(2),
which after quantising the theory requires a normal ordering prescription that we fix to

be the conventional one:

AnB, ifm<-—1,
B,A,, ifm>0,

AnB: =

for the modes A,, and B, of any field in the theory and n, m € Z. The constant prefactor
v € C in the normal ordered energy momentum tensor is fixed by the quantum theory,
requiring that the OPE T'(z)J%(w) reflects the fact that J%(z) has conformal weight one

for every a. This fixes T'(z) to be the so called Sugawara energy-momentum tensor,

T(z) = m Z T (=), (16)

where 1Y is the dual Coxeter number of g, which is the quadratic Casimir of the adjoint
representation, that is, >, fefl = 2nY§®. For instance, for su(N) we have that
hY = N. Then one computes the OPE

c 2T (w) N oT (w)

T(z)T(w) ~ 2(2—11))4 (Z—w)2 —w

which is that one of the Virasoro algebra, with a specific central charge

kdimg

c=clgr) = e (17)
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This construction proves that on the quantum level, WZW models define CFTs. Actually,
Eq. may be regarded as an alternative definition of the g-WZW model. One can
compute that the modes of T'(2),

1 1 Z Z
L — : a jJa = a jJa a a
" 2(k+hY) Znez Dl = 5 ) <n<1 Tl Jm‘”J">

n>0

satisfy the Virasoro algebra

(L, Jo] = —nJ}

m—4+n
c ) (18)
Ly, L] = Em(m — 1)0mno + (m —n)Lpip,

with the central charge as in Eq. . Eq. implies that the affine Kac-Moody
modes and the Virasoro modes are combined in a semidirect product structure and in
particular the first line in Eq. shows that g; is a Lie ideal inside the combined algebra.
Moreover, in Eq. the commutativity of the zero modes of the affine algebra with the
Virasoro generators and with Ly reflects the built-in g-invariance. However, the full affine
Lie algebra is not a symmetry algebra, since its generators do not all commute with L.
It will turn out to be the spectrum-generating algebra of the theory. We remark that
the Sugawara construction has been presented in terms of the particular currents J%(z),
whose modes are orthonormal with respect to the Killing form (-, -),, that is

(T2 T2 g = 6% smo

m?“n

In a generic basis j,‘fl, the affine Lie commutator is changed to

[jz“ jg] = ZZ fcabjranrn + kn<jr(;lw ‘]NrbL>6n+m,0

[

where [J¢, J8] =4, f®Js. Then, the energy-momentum tensor in this basis reads

T(z) = 2(k41rhv) 3 < ~a1jb> Je e (2). (19)

Indeed, Ly contains the normal-ordered quadratic Casimir operator of the finite g, it-
self defined in terms of the inverse of the Killing form; this directly implies the above
generalization.

When g is semisimple, that is
s=Pyd’

for a finite set of simple Lie algebras g’ (where the suffix 4 is simply a counting index, not

15



an exponent in any sense), then we define the Sugawara energy-momentum tensor as

T = T (20)
where one can choose the levels k; independently, but every choice determines k. Eq.

is easily shown to satisfy the Virasoro algebra with central charge

clor) = Y clah,)

)

where (g}, ) is as in Eq. (17).

2.2.4 WZW primary fields as highest weight states

We established that the Kac-Moody algebra acts on the Hilbert space of the theory,
hence all states of the CFT will transform in a representation of g;. More precisely,
analogously to the purely conformal case where primary fields transform covariantly with
respect to scale transformations, a WZW primary field is defined as a field that transforms
covariantly with respect to local G(z) x G(2) transformations. By Eq. we can
reformulate this property for a solution ®(z,z) = ®5(2)®,(z) of Eq. consisting in
fields ®,, ®, transforming in representations A, p of g, that is, taking values in the

respective representation spaces, see Remark in terms of the OPE

7 (e a) o ),
e (21)
JQ(Z)‘bu(w) ~ ﬁ7

where TY, T} are matrices of the representations A, p1 of g. By expanding the currents as

JU2) =Y (= w) " (w)

ne”Z

we have that Eq. yields
Jy |A) = =TY|\),
$ 10 = ~T3IA )
JA) =0 ¥n>0,

after introducing the state |A) := ®,(0) |0), where |0) denotes the vacuum of the theory.
A remarkable aspect of WZW models is that WZW primary fields are also Virasoro

primaries. Indeed, one computes

L,JA)=0 Vn>0, (23)
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and

: C
L(] |>\> = h)\|>\> with h)\ = m,

where Cy = Y T{TY is the quadratic Casimir of the representation A of g. Eq.

confirms that every WZW primary is a Virasoro primary, but the converse is not true:

(24)

a Virasoro primary can be a WZW descendant, as it is the example for the field J°.
Eq. implies that WZW primaries are associated with highest weight representations
A of g, and all the other states of the theory have the form

JU g A for ng >0, (25)

—ni —nN

that is, they belong to the affine highest weight representation A= (A; k5 hy) of gk, where
hy is as in Eq. . The states in Eq. are associated with descendants fields. The
application of negative Virasoro modes needs not to be taken into account separately,
since the energy momentum tensor already belongs to the enveloping algebra of g;.

One can derive the conformal Ward identities for correlator functions of n WZW
primary fields ®,, for some g-representations );. These are related to the Virasoro primary
nature of the fields, and they take the form

ZT;Z_@M(Q) Dy (22)) = 0.

These identities fix the structure of the two- and three-point functions. Further con-
straints arise from the null fields in the primary representation, that is, the affine singu-
lar vectors and also from the definition of the Sugawara energy-momentum tensor. In

particular, by inserting the zero vector

1 a a
<L1 o %:(JlTAi)> )

inside the correlation function of a set of primary fields, one obtains the celebrated

Knizhnik-Zamolodchikov equation:

1 > In®Ty
(azz + k4 hY Z 2z — 2 <(I)>\1(z1) s @/\n('zn» =0.

JFi

The solutions of this equation are the correlation functions of primary fields. As in the
purely Virasoro case, the correlation functions involving descendant fields can be obtained
directly from those of primary fields.

Note that Eq. implies that the primary fields of a WZW model, that is, the
fundamental fields from which all other fields can be obtained by the application of the
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Virasoro or affine Lie generators, are those associated with the highest weight states of
g-representations. This means that a state |;\> associated to a primary field as above,
satisfies Eq. and Eq. with h = hy as in Eq. . A special class of primary
fields is formed by highest weight states of integrable representations A€ Pf. Note that
there could be none; for instance if & < 0, then Pf is empty by Eq. . These states
generate finite representations with respect to any su(2) subalgebra of g, which as we
have seen implies the presence of the singular vectors of Eq. in the Verma module
of highest weight state |;\> The presence of these singular vectors further constraints
the structure of the correlation functions in the theory. Remarkably, it turns out that
all the states in non-integrable representations decouple from the theory, that is, their
correlations with arbitrary fields vanish. We stress that this derivation is general, but it
requires the existence of at least one field corresponding to an integrable representation,

that means

PEA£D. (26)

Note that, as explained before, for £ > 1 condition Eq. is always true. We call a WZW
model on an affine Lie algebra g, integrable if Eq. holds true. So, in integrable
WZW models the only physically relevant fields are those in integrable representations.
Therefore, primary fields are in correspondence with the affine dominant weights \e Pf,
the highest weights of integrable representations. Since there is a finite number of such
weights for a fixed positive integer k, it follows that there is a finite number of primary
fields. We thus conclude, that integrable WZW models are rational CFTs.

2.3 The example of su(2);

We consider the compact simple real Lie algebra su(2) with generators K* for a = 3, +

in the usual spin basis, that is
(K3, K*] = £K*, (KT, K] =2K3.

Then the Cartan subalgebra is one-dimensional and generated by K?, and we take the
generator dual to the positive root to be K. The affine su(2); algebra is defined by the

commutation rules

k
[KSw Ks] = §m5m+m,0 )
[ng Kf] = iKi—i—n ) (27)

(K5 K] =2K2 ., + kmyino -
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Eq. are equivalent to the OPEs

k/2
(z —w)*’
+K*(w)
(z —w)
k . 2K3(2)

(z—w)? (z-w)

K3 (2) K (w) ~

K3(2)K*(w) ~

Y

KT(2)K™ (w) ~

The Sugawara energy-momentum tensor reads

1 1
T2k — k‘—+2 K3 K3 +§ (:K+K_: + :K_K+:) .

In the notation introduced before, we have that § = «; is the only positive root of the

finite su(2) and it corresponds to the generator K3. Also,
(a0, af) = (a1, ag) = (a1, a0) = —af = ~2.
In Dynkin labels, the simple roots are
ap = [2,—-2], a; =[—2,2].
The complete set of roots is
A:{ial, +ay +nd,nd:n €Z,n#0},

corresponding to the generators K, K* and K2 respectively. Let A= [Ao, A1] be an
affine weight, then by Eq. we have that

Ao =k — A,

and one can check that A, = 2¢, where ¢ € ;N is the su(2) spin of the highest weight
state |\), that is K3|\) = £|A). Since the affine weight is completely determined by ¢,
we adopt the notation [¢) := |A). Then, by scaling the su(2) Casimir by a factor 1/2,
such that it is equal to ¢(¢ + 1) on the finite highest weight representation of spin ¢, by
Eq. we have that the conformal dimension of |¢) is

0+ 1)

h, —
S )

(28)
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All together, the affine su(2); highest weight representation generated by |¢), that is the
affine weight with finite weight equal to 2¢ € N, is defined by

Kf|0)=Kf|()=0 V¥n>0,

K310 =010, (29)
roly =

The canonical norm on the Verma module Vék) of highest weight state |¢) is given by
Eq. @, which specifies a real form on the Kac-Moody algebra and implies that we are
indeed considering the compact form su(2).
For k € Z~, the singular vectors given by Eq. are all encoded in the following
states:
(Kq)* 0y =0,

N = (K200 =0, (30)

where the first state simply means that |¢) transforms in the finite-dimensional spin-¢
representation of the finite su(2), which is given by the zero modes K§. On the other
hand, one can explicitely show using the commutator relations that A is a singular
vector, in the sense that it is again an affine highest weight state. It turns out that
the singular vectors Eq. together with their descendants are the only null-vectors in
the Verma module Vék) and hence we obtain the corresponding irreducible representation
by taking the quotient by the null-vector relations Eq. . We denote this irreducible
representation of su(2); by ’Hék).

The presence of these null-vectors constrains the possible representations severely.
Since integrable WZW models on compact groups are unitary, it is crucial that the
integrable representations are free of negative norm states. For that, one can show by
induction on N € N that for arbitrary £ € R we have that

N
(KN =T nk+1-n—20), (31)
n=1
assuming that |¢) is normalised. This shows algebraically that for unitarity we must
require

k
ke€Zsy and 0§€§§,

which are exactly Eq. . This follows from the fact that N/ = 0 together with the
formula for its norm, given by Eq. with N = k+1—2/. In particular, it follows that
in the integrable case there are only finitely many representations as expected.

There is something peculiar that is present at level & = 1, which is that su(2),

possesses a free field realisation in terms of four real (or two complex) free fermions 1)

20



for 1 < i < 4 satisfying the anti-commutation relation
{¥', 7} ="

Then, the generators K can be constructed by taking bilinear combinations of the free
fermions; we will come back to this construction later when we discuss the free field
realisation of u(2|2);. Analogously, one can show that N real fermions " realise the
WZW model on so(NN); , whose central charge is ¢ = N/2. Indeed, such free field theory

has Lagrangian
S = / dz2 'y o,
)

where there is an implicit sum over . It is easy to see that S has an SO(N)-symmetry

acting by rotating the fermions. The corresponding currents are

J(2) = STH) (),

where T are so(IN) generators in the fundamental representation. By general arguments,
these currents have to satisfy an so(N); affine Kac-Moody algebra, which turn out to

have level k = 1.

2.4 Lie superalgebras

We have now introduced the basic ingredients for studying WZW models on Lie groups or
algebras. However, the actual model we will consider is built on a Lie superalgebra. We
thus define this concept, following [Kac77]. Throughout this chapter we will work with

objects defined over the field R or C and we assume all the algebras to be associative.

2.4.1 Basic definitions and properties

A superalgebra a is a Zy-graded algebra a = a(® @ a(V) that is
Xecad? vVead) —= Xy ea®  VijeZ,.

We call elements in a(?) bosonic or even, while those in al!) fermionic or odd. We call
an element X € a homogeneus if X € a®® for some i € Z,. For a homogeneous element

X € a we define the degree or parity as

0 if Xea®,
| X = ‘
1 if X ea®,
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as an element of Zy. A linear subspace b C a is called Zy-graded if
b= (bna) .
1€ZLo

A subalgebra of a is a Z,.graded subalgebra; the same is true for ideals. We can then
define the quotient of superalgebra by an ideal, which one can check to be again a superal-
gebra. A superhomomorphism of superalgebras a and a’ is an algebra homomorphism

®: a — o that preserves the grading, in the sense that
CID(a(i)) ca®®)  viez,,

where ¢ is an automorphism of Z,, which we take to be the identity unless differently
stated. A superisomorphism is a superhomomorphism which is an algebra isomorphism
on the underlying algebras. Direct and semidirect sums of superalgebras are defined in
the usual way, while the tensor product a ® b of two superalgebras consist in the tensor
product of the underlying vector spaces with the induced Z,-grading and the operation
defined by

(X10V)(Xe®Ys) = ()M X, o VY, VX, €a Y, cb.

A Lie superalgebra is a superalgebra g = g(© @ g™ together with a bilinear map

[,:]: g x g — g called the Lie superbracket of Lie supercommutator satisfying

(X, Y] = —(=)* My, X],
[X7 [Ya Z]] = [[Xv Y]’ Z] + (_1>|XHY|[Ya [X7 ZH )

where every element is homogeneous and so will be assumed later in any equation in-
volving the degrees of the elements. The second condition is equivalent to the so called

super Jacobi identity
(D)WL, [, 2] + ()N [2,X] + (DAY [Z, [ Y = 0. (32)
In particular, this implies that
(X, YZ] = [X,Y]Z+ (-)*My[X, 7].

We summarise some properties that follow from the super Jacobi identity.
Lemma 2.3. Let g = g @ g") be a Lie superalgebra. Then the following are true.

1. g9 is a Lie subalgebra called the bosonic subalgebra of g .

2. gW is a g9 -module under the adjoint action defined by the Lie superbracket.
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3. The restriction of the Lie superbracket induces a symmetric g\ -equivariant linear
map

satisfying

(X, YV, Z)+ [{Y, 2}, X+ [{Z,X},Y]=0 VX,Y,ZcgW.

4. We have that [Y,[Y,Y]] =0, VY €g® .

In particular, every Lie superalgebra can be specified by three objects: two vector
spaces g°, g™ and a linear map {-,-}: g ® g — g satisfying conditions 1 — 3 of
Lemmal[2.3] It is common in the physics literature to denote the Lie superbracket between
two fermions with {-,-} and we will stick to this convention later.

There is a natural way of defining a Lie superbracket on a superalgebra a, namely by
(X,Y]:= XY — (1) ¥y Xx (33)

A superalgebra is then called commutative if [X,Y] = 0 for every X,Y € a.

Let g = g @ g™ be a Lie superalgebra. We call the universal enveloping algebra
of g a pair (U(g),¢) consisting of a Lie superalgebra U(g) and a Lie superhomomorphism
t: g — U(g), if for any other pair (U’(g),:’) there exists a unique superhomomorphism
®: U(g) — U'(g) such that // = ® o . If such pair exists, then it is unique up to
superisomorphism. Existence is given for instance by an explicit construction. Let T'(g)
denote the tensor superalgebra over g with the induced Z, grading, and R the ideal of
T'(g) generated by the elements

X, Y]-XoYV+(-DXWy o X VX,V e ghomogeneous.

We set U(g) := T'(g)/R. The natural embedding ¢: g — U(g) is checked to be a super-
homomorphism, and the pair (U(g), ¢) is the enveloping superalgebra of g. The following

theorem generalises the homonymous result for Lie algebras.

Theorem 2.4 (Poincaré-Birkhoff-Witt). Let g = g®@@g™M) be a Lie superalgebra, X1, ..., X
be a basis of g9 and Y1, ...,Y, a basis of gV). Then the elements of the form

Xfl...Xff{”Yll...Yl fork; >0 and 1<l <---<l,<n,

n

form a basis of U(g).

Example 2.5. Let V =V @ V() be a Z, graded vector space. Then, the associative
algebra End(V) is equipped with the induced Z, grading End(V) = End(V)©® @ End(V)*
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with

End(V)Y = {X € End(V) : X(VU) c VI Vi€ Zy)} VjcZ.
Then, End(V) equipped with the superbracket of Eq. is a Lie superalgebra, denoted
by gl(V@|V1) and by gl(m|n) when V() = C™ and V) = C", in which case we also
write C™" .=V = C™ & C™.

Let a = al® @ a®™ be a superalgebra. A derivation of degree d € Z, is an endo-
morphism 6 € End(a)@ with the property

S(XY) =8(X)Y + (=) X5(Y).

We denote the space of derivations of any degree by Der(a) C End(a) which can be seen
to be a Lie superalgebra itself with the induced Zs-grading from End(a), which we call

the superalgebra of derivations of a.

Example 2.6. Let g be a Lie superalgebra. From the super Jacobi identity Eq. it
follows that
ady:g—g, Y= [X)Y]

is a derivation of g of degree | X| for every X € g. These derivations are called inner and

they form an ideal in Der(g).

2.4.2 Lie superalgebras of type A and the supertrace

We now consider the Lie superalgebra gl(m, n) for m,n € N, which is called the general
linear supergroup of degree m|n. Note that gl(0]m) = gl(m|0) = gl(m), the usual Lie
algebra. We fix a basis e1,...€m, €mi1, -+, €min of C"™". Then, elements X € gl(m,n)

can be written in block m|n-form as

A B
(). "

The bosonic (or even) subalgebra consists of elements of the form

A 0
X:<O D), (35)

hence, it is isomorphic to gl(m) @ gl(n). We define the supertrace of an element X €

gl(m|n) as in Eq. by
str(X) :=tr(A) — tr(D).

Note that the supertrace is independent on the choice of basis and it satisfies the following

properties.
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Lemma 2.7. 1. The bilinear form (X,Y) :=str(XY) on gl(m|n) is
e consistent: (X,Y) = 0 for X even andY odd,
e supersymmetric: (X,Y) = (—1)XIVI(y X),
e invariant: ((X,Y],7Z) = (X,[Y, Z]).
2. str([X,Y]) =0 for every X,Y € gl(m|n).

The special linear supergroup of degree m|n to be
sl(m|n) := {X € gl(m|n) : str(X) = 0} .

One can check that sl(m|n) = [gl(m|n), gl(m|n)] and that sl(m|n) is a Lie subalgebra of
gl(m|n). Moreover, for m # n we have that sl(m|n) is simple, that is, it does not contain
any non-trivial ideals, and it has bosonic subalgebra isomorphic to sl(m) @ sl(n) @ u(1).
On the other hand, sl(n|n) has a one-dimensional center generated by Cly, and so the

quotient
psl(n|n) = sl(n|n)/Cls,

is simple for n > 2 with bosonic subalgebra isomorphic to sl(n) @ sl(n). Also, gl(n|n) is

obtained by sl(n|n) by adding the generator

I, 0
(s ). .
o 77(177Q) 0
77 T O 7’](”’0) )

where 7("*) denotes a metric of signature (r,s) on R""* and define

We now consider a metric

u(p, qln) == {X € gl(p +qln) : Xn+nX' =0},

and
su(p, qn) == {X € u(p,q|n) : str(X) =0} .

For m # n we have that su(p,q|n) is simple with bosonic subalgebra isomorphic to

su(p, q) @ su(n) & u(1), whilst for n = m the quotient
psu(n|n) := su(n|n)/Cly, (37)

is simple with bosonic subalgebra isomorphic to su(n) @ su(n). As for Lie algebras, the

unitary version of the general linear superalgebras can be seen as real forms of the latter.
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We mention that Kac gave a classification of Lie superalgebras and studied their
representation theory, see [Kac77]. In general Lie superalgebras present analogies with
Lie algebras, but also several results valid in the context of Lie algebras are not true or
not yet known for Lie superalgebras. Also, one can define the notion of Lie supergroup
and naturally associate to each a Lie superalgebra. As we discussed, from the geometric
point of view WZW models are defined in terms of Lie groups, but it turns out that all
the information of the theory, except for global considerations, can be captured by the
corresponding Lie algebra. We thus refrain from introducing Lie supergroups, even if our
main case of study is supersymmetric, because we will work directly at the level of the

superalgebra and the representation theory of the latter.
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3 The affine superalgebra psu(2]2);

3.1 Commutation relations

We introduce the Lie superalgebra 1(2|2),, by explicitely giving the commutation relations.

The finite Lie superalgebra 1(2|2) consists in the bosonic subalgebra
su(2) @su(2) e u(l) du(l),

whose generator we denote by J§, K§ for a = 3, £, Uy and Vj respectively, together with
eight fermionic generators Sy 77 transforming in the (2,2) @ (2, 2) representation of the
bosonic subalgebra under the adjoint action. From the affine point of view, the bosonic
subalgebra of u(2|2); is thus

su(2)_; ®su(2)r S u(l)_1 Du(l)i2, (38)

generated by the respective modes. In particular, we have that K2 satisfy Eq. (27), while
J? the same by replacing k£ with —k. We denote by U,, and V,, the generators of the two

affine u(1) factors satisfying

1 1
[Um7 Un] - _§m5m+n,0 5 [Vma Vn] = §m5m+n,0 . (39)

We define the combinations
Zn:Un+Vn7 Yn:Un_Vna

such that
Zmy Jg] - [Zm, Kz] =0= [Yma JS] = [an be] )

(40)

Ym, Zn] = _m5m+n,0 , [Ym7 Sf;ﬁw] = ’)/S,O;ﬁjn .

Note that the modes Z,, are central. We can then identify the modes Y,, as those that
extend the algebra su(2]2); to u(2|2), and the modes of Z,, as those that are quotiented
out from su(2|2); in order to obtain psu(2|2),. In particular, in the fundamental matrix
representation of u(2|2) we can identify Yy with the generator of Eq. for n = 2,
and Z, with I, see Eq. (37). In this representation, the bosonic subalgebra su(2) @
su(2) corresponds to block diagonal matrices of the form as in Eq. and the eight
fermionic generators S5°7 to off-diagonal elements. For the fermionic modes S%%7, the
first two indices label the fundamental representations of the two su(2) factors, whilst

the action of the outer automorphism group of psu(2|2), which is isomorphic to sl(2, R).
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In particular, we have

[J3,, S = i%vsﬂl, (K2, S = FiyS0in
[JE, 578 = Sy, [KE, Sot] = —soit,
[‘]iv Sr:il,:ﬁ_] = - jf&—?_w [K;:w SSZF—] = Sfrﬁkﬁ?

which can also be written as

1 1
[ng 53’87] — 57(07%&” Sﬁffn, [ng Sﬁﬁv] — _év(a—va)ﬁy gy

m—+n

where ¢¢, for a = 4,3 and with the convention —3 = 3, are the Pauli matrices, which in
this basis take the form

0 2 0 0 -1
0'+ = , o = , 0'3 = 0 .
0 0 2 0 0 1

The anti-commutators between fermions are

(S5, S50 = T {So ST = Ky
{S;,EB_, S;fﬁ—i_} = Ji—i—n ) {ngi_a ST?ZH_} = KT:::H-n )
{Sgnﬁia Sgﬁ:':} = a‘]r?;z—kn + BK’?VZ-FTZ + Zm-‘rn + km5m+n,0 5 (41)

and hence, all together

al Ta
Jern

apf v _ SBvgv,— « ,— Br 1-a
{5987 guwey = §ovgr—er I ey )

4 0SSV L — 0P PR MGy 0

where 73 = 03, T4 = %ai and as above we adopt the convention that —3 = 3 for the
index a of Pauli matrices. Note that in Eq. and Eq. the term involving the
modes of Z have to be dropped when considering the commutators of the superalgebra
psu(2]2), since these are quotiented out. On the other hand, when passing from u(2|2);

to su(2|2)g, the generator Y and all its modes are simply ignored.

3.2 Non-unitary representations of su(2)

In order to analyze the affine psu(2|2),-representations, it is necessary to develop first the
representation theory of the finite psu(2|2) Lie superalgebra. Since the bosonic subalgebra
is su(2) @ su(2), we can decompose representations of psu(2|2) in multiplets of su(2)-
representations. Note that since s1(2) is compact, every unitary irreducible representation
is finite-dimensional. As we have seen in Section for k € Z-o the su(2),-model is
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integrable and it possesses only k£ 4+ 1 unitary integrable highest weight representations,
which are characterised by the finite-dimensional spin ¢ & %N representations of su(2)
lying at the top of the affine module. However, by Eq. it follows that the su(2)_g-
model is non-integrable; indeed, it possesses no unitary highest weight representations
and, as we will see in Section [6.4] the spectrum is continuous and parameterised it by
the J3-eigenvalue j € R (and for continuous representations by an additional parameter
A € [0,1)). For this reason, we refer to su(2), and su(2)_, as the compact and non-
compact factor, respectively, of the bosonic subalgebra of psu(2|2), and analogously for
their affine versions.

Even though the spectrum of the su(2)_j-theory is continuous, from the perspective
of the Lie group, we expect the compactness of SU(2) to constrain the set of allowed rep-
resentations to a discrete subset of spins j. Nevertheless, the finite su(2) representations
lying at the highest weight su(2)_;-representations are allowed to be non-unitary, that is,
infinite-dimensional. We thus look at all possible representations of su(2), or equivalently

(if disregarding unitarity), of s[(2,R). These are classified in the following three families.

e The finite-dimensional representations H; of spin j € %N. These are the usual
unitary representations of dimension 2j + 1, characterised by the J3-eigenvalue j,

which we call spin. The Casimir of these representations is
C(Hy) = j(5+1).

e The highest/lowest weight discrete representations Dj-t of spin j € R\ j:%N. These
are infinite-dimensional non-unitary representations defined by an highest/lowest

weight state |j) such that

Dy J¥[)=0 and J°[j) =jl5),
and with Casimir equal to

CH*A(DY) =j(j £ 1).

e The continuous representations Cj, for j € R and A € R/Z. These are infinite-
dimensional non-unitary representations that neither contain a highest nor a lowest

weight state, and they are characterised by their Casimir
2 A\ /s
CH(C) =j(i - 1) ER,

as well as the fractional part of the J3-eigenvalues A € R/Z. More specifically, the
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representation CJ’-\ is defined by states |m) with m € Z + A such that

J* fm) = m|m)
JH|m) =|m+1), (43)
J7m) = (G —1) —m(m —1)) [m —1).

Notice that for j — \ € Z, from Eq. we have that J~ |j) = 0 and hence, there
is a subrepresentation
{lj +m):meN}=D>. (44)

In this case the module C;\ is reducible but indecomposable, since the complement
of Eq. does not form a subrepresentation. However, the corresponding quotient
does:
A . ~
C} /{lj+m):meN}y=Dr .

From now on, we will denote by n for n € Z-, the n-dimensional representation of su(2),
namely that of spin 7 € N such that 25 + 1 = n. Later we will need the Clebsh-Goardan
coefficients of the tensor product of D]j-E and CjA with 2. An explicit calculation shows
that

Cre2zcPoc™? ad Df®2x=D*

+
J+1/2 Jj—1/2 j+1/2 ® D; (45)

j—1/2"

3.3 Representations of su(2|2)

In this chapter we find all the irreducible highest weight representations of su(2|2). In the
following, we omit all the labels indicating zero modes of the generators defined above,
since we will be concerned only with the finite Lie superalgebra. The representations
of u(2|2) are characterised by an additional parameter, which is the Yj-eigenvalue; this
value is an arbitrary real number, but after quantisation we require that Y € %Z, or when
considering su(2]2) and psu(2|2) there will be the selection rule Y — Z € Z. Moreover,
note that since Z is central, its eigenvalue is constant on any irreducible representation
of su(2|2) and the representations of psu(2|2) correspond to those for which Z = 0.
Then, given the form of the bosonic subalgebra, every representation of the superalgebra
comes in the form of a multiplet of su(2)-representations. In fact, the eight supercharges
S of su(2|2) generate a 16-dimensional Clifford module and we can find a highest-
weight state which is annihilated by half of them. Let us assume that the highest weight
state transforms in the representation (j,n) with respect to the bosonic subalgebra
su(2) @ su(2), where we allow j € 37 to denote a spin-j representation of su(2) from the
whole list of Section that is, either finite-dimensional, discrete or continuous (where
for continuous representation we should specify also the parameter A € R/Z). Since

the supercharges transform in the bispinor representation (2 ,f) S5 (§ , 2) of the bosonic
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subalgebra, by Eq. (45)) we conclude that a typical multiplet takes the form

(4.m)
(G+in+1) (G+3in-1) (G-Ln+1) (j-Ln-1)
(j+1,n) (j,n+2) 2 (j,n) (j,n—2) (j—1.n) (46)
(G+in+1) (Gj+in-1) (Gj-Lin+1) (j-Lin-1)

(7:m).,

where the multiplet is also characterised by the Z-eigenvalue Z € R, when viewed as a
representation of su(2|2). Here, the top state is the highest weight state of the Clifford
module, and the action of the supercharges moves between the different bosonic repre-
sentations. For the important cases of n = 1 and n = 2 some shortenings occur. For

n = 2, the representation involving n — 2 is absent, that is,

(4.2)
(G+3.8) (G+3.1) (G-33) (G-31)
(j+1,2) (j,4) 2(5,2) (j—1,2) (47)
(G+3.3) U+31) (G-3.3 (-3.1)

(7:2)

while for n = 1 even more representations are missing,

Below we will be interested in the affine algebra su(2|2), at level £ = 1. Then the second
bosonic su(2), factor also has level £ = 1, and as a consequence, the affine highest weight
states are only allowed to transform in the 1 and 2 representations of 5u(2)E|. Hence,
it is clear that all of the long representations we have presented above are not allowed
at k = 1. Let us therefore look systematically for short multiplets. Specifically, we will
consider shortening conditions for the multiplets Eq. and Eq. for different type
of representations j.

Starting with Eq. (47, we assume that j € %N labels the spin-j finite dimensional

su(2) representation and we require that the two representations with a n — 1 in the

3In this section we are discussing the representations of the finite-dimensional Lie superalgebra su(2|2).
The affine highest weight states of the corresponding affine algebra will therefore transform in represen-
tations of this algebra.

31



second line are null. This will remove also all other representations that appear further
below in the multiplet and fix the eigenvalue of Z to j + % or —j — % Then, for 7 > 0

the multiplet reduces to

Z==%(j+3):
(1+3.1) (F=3.1),
whilst for 7 = 0 we have
Z==1i:
(0,2) (50)

(z.1)
Similarly, for the multiplet Eq. , the only way to eliminate the representation involving
the 3 is to require it to be null. This gives then the following two possibilities depending
on the value of Z, on the left is the configuration obtained for Z = 7 > 1 while on the
right the one for 7 = —j —1 < —1:

Z=j>1: Z=—-j-1<-1: (51)

(4.1) (4,1)
(j—%,Z) (j+%,2)
(j—1,1), (j+1,1)

where the multiplet on the left is even shorter for j = 0 and j = % However, by redefining
== % and rearranging the pictureﬂ the multiplets in Eq. become equivalent to
that of Eq. , except for the exceptional cases corresponding to Z = 0, j:%. Indeed,
the multiplet on the left in Eq. for j = % reduces to

Z:%: (52)

(0,2),

which is Eq. (50) with Z = 3, and for j = 0 to

Z=0: (53)

We now consider analogous shortenings when —j € %Z<0 labels the highest weight

4“Rearranging” means that we change which state we regard as the highest weight state of the Clifford
module.
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discrete representation ij of su(2). In this case, from Eq. 1' we obtain for j # 0 the

multiplet
Z=+j#0: (54)
(D%, 1)
(Dirjfé ) 2)
(DZo0,1),
while for Z = 0 the multiplet
Z=0: (55)
(D%, 1)
(D7,.2)
(D*,,1).

For what concerns the case of j € %Z>0 denoting the lowest weight discrete represen-

tation D}, we obtain the multiplets

Z==4j#0: (56)
(D; 1)
( J_-g-% ’2)
(D710 1)
and

Z=0 (57)

(Dr,1)

(D1 ,2)
(Dy,1).

We can then use the results for the multiplets containing discrete representations to
deduce those containing continuous representations. We find
Z=%j#0: (58)
(.1
(c}1.2)

(1),
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together with
(e, 1)

(Co.1).

We now prove the shortening conditions for the case of j labelling the finite-dimensional
representations; the other cases are obtained by an analogous analysis. We start by
Eq. . We first remark that one has to fix a set of annihilators of the highest weight
states of the Clifford module, namely those sitting at the top of Eq. . These opera-
tors will be four fermionic generators, and there is only one set of themﬂ that yields the
Clifford module structure of Eq. or Eq. . Also. such set depends on the rep-
resentation of su(2) @ su(2) in which the highest weight states transform. An educated

guess is made by looking at the representation appearing in the second row of Eq.
and Eq. . For Eq. , this suggests that we should declare

SoEF |5, 1) =0 fora ==+, (60)

where |7,7) is the highest weight state in ( 7j, 2). The generators in Eq. are in fact all
those that raise the compact su(2), thus from Eq. it follows that the representations
in the second line of Eq. containing 3 are not there. However, we have to explicitly
impose that the states corresponding to the missing representation in the third line of
Eq. , that is those corresponding to n — 2, are null. This requirement will fix the value
of Z as we see now. We claim that the state N := S™T+ST++ | 1) is the highest weight
state in ( Jj,n— 2). This follows since N has the right spins and it is annihilated by both
JT and KT, which is a short computation done using the commutation relations and
Eq. . Knowing this, we can declare N to be null by requiring that the state obtained
from it by applying any two raising fermionic operators is zero. The only non-vanishing

combination is

S++_S_+_N: (Z_,]_%) (Z+j+%) |j7/]\>7

where we identified Z with its eigenvalue. It then follows that
Z=x(j+3)- (61)

In the following we discuss the two cases in Eq. in parallel. We start by identifying the

5Actually there are two sets of annihilators that yields a solution, but one is the complement of the
other. That means, that once found a set S of four fermionic zero modes that yields a solution, also
its complement ST yields a solution, namely the one where the highest weight states of the Clifford
module are the lowest weight states of the first solution. Since the module Eq. is symmetric under
exchanging Clifford-highest with -lowest weight states, we can consider only one solution.
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highest weight state in (j +% , 1), which we claim to be either ST+ [j 1) or S~ |7,1);
indeed, one checks that for Z = j + % the latter is null and the former is the desired
highest weight state, whilst for Z7 = —j — % the situation is reversed. Then, for Z = j+%
we have that

G+L1) =2 (IS, 0<k<2j+1),

and similarly for Z = —j — % with ST~ instead. This follows from
(J)RSTEG ) = kST TG )+ ST 1)

which vanishes for £ = 25 + 2. We proceed by identifying the highest weight state in
(j — % , 1) which we claim to be

No=ST 1, N+ 5 =1, or Ny=8"*j, 1) =5 -1,1),

depending on the value of Z. Indeed, for Z = j + %, the state N is null and the desired
highest weight state is N_ and for Z = —j — % the situation is reversed. As above, if

] > % then we can identify
(-3, 1) 2N 0<k<2i—1),
and similarly for Z = —j — % This follows from
2(J7 )N =2 = k) ST T =L+ ST ) - 1,1,

which vanishes for k£ = 2j. This proves the shortening Eq. . Moreover, as we claimed

above, a further shortening happens when j = 0, that is when Z = j:%. For Z = % we

have the following representations:

(G=0.2) = (0,1,[0.4) and (G=1,1)2 (S50, 1),5(0,1)),

and one computes that S*~tS~=~0,1) = SA TS 10,1 = 0, which implies that

representation (j i

-3, 1) drops out. Analogously, for Z = —% we have:

(1=0,2)=([0,1),]0,4)) and (j=3,1)=(S77[0,1),5"[0,1)),

and STT0,1) = S+ 0,1) = 0, which implies that again the representation (j — 3 ,1)
drops out also in this case. Hence, we also proved the shortening given by Eq. .
We now analyze the shortening of Eq. . For that, we need to declare a different

set of annihilators of the highest weight state |7,0) € ( 7, 1), namely we impose
SOPF5,0) =0 for a, 8 = %.
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In this case the condition that fixes Z arises slightly differently than above, namely
by requiring that the representation (j ,3) drops out of Eq. . We thus identify the
highest weight state in (j,3), which is A" := ST=57= [ 0). As before, we require that
the application of two raising fermionic generators annihilates A'. The only non-trivial

combination is

STHSTHIN = (Z - ) (Z+j5+1)]5,0), (62)

which fixes the value of Z to either j or —j — 1. Then the vanishing of Eq. implies
that A is null and hence that all the states obtained from it by the application of one

fermionic raising operator are also null. The only non-trivial such states are

STHEN=(Z+j+1)S7 7,0,

(63)
SN = —(Z—j+1)SH[5,0) +SJj,0).

We proceed now the analysis by distinguishing between the two possible values of Z.

e / = j: the states in Eq. being null translates into
STTj,0)=0,  STTj,00=S""J"|j,0). (64)

As one can check, that the highest weight state in (j +3, 2) is St |7,0), which
is now null, hence this representation drops out from Eq. . We identify the
highest weight state in (j — 3 ,2) to be M := ST+, 0) = S~t~J~ |j,0) and we
compute K~ M = ST |5,0). Hence, for j > % we identify

(13,2 = ()M, (TS j,0): 0<k<2j—1),

2

which follows from a computation similar to the ones showed above. Note that,
for j = 0 the state M is null, hence (j — %,2) drops out and so do all the other
representations except (0 , 1): this proves Eq. . Now, one can check that all
fermionic lowering operators except S*t~~ annihilate M. For S~~~ this follows
from

ST, 0) = [K7, 87, 0) = K757 ]5,0) =0, (65)

by Eq. . It follows that for 7 > 1 there is only one additional representation in
the Clifford module, which is (j -1, 1) whose highest weight state £ := ST=~ M.
Indeed, for 7 > 1 we identify

(G-1,1)={((J)L:0<k<2j—2).
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On the other hand, for j = % we have that M € (O , 2) and thus
L=St"M=-[J,8 " ]=-JS5S " "M=0, (66)
by Eq. , leaving us with the multiplet as in Eq. . We have thus proven the
left part of Eq. , including the special shortening corresponding to Z = 0, %
e / = —j — 1: in this case, the state on the left of Eq. is zero, hence the only
non-trivial null vector is
2jSTF7,0) = ST 5,0) =0, (67)

for 5 # 0. The highest weight state in (j —1 2) is

N:: S_+_ |j_170>+5++_ |.770>7

which one can check to be null by the choice of Z. Thus the representation ( J —% ) 2)

drops out from Eq. . We then look at ( Jj+ % , 2) whose highest weight state is
M :=S""715,0) and compute K~ M = S~~~ |7,0). Hence,

G+L2)=((J )M, (J)FSj,00:0<k<2j+1).
The highest weight state in (j+1,1) is £:=S57"~S7"|j,0) and thus
(G+1,1)=((J)L:0<k<2j+2). (68)

In order to prove that this is all there is in the Clifford module for Z = —j — 1, we

compute
STTM=0, STTTM=-SF"5"1j,0)=(S")2]5,0) =0,

and
2jSTT"M=JL,

where we used Eq. . With these equations, we see that the only representation
that can be obtained from M by application of fermionic creation operators is the
one generated by L, which is (j +1, 1). Moreover, since all fermionic creation
operators annihilates £, there are indeed no more representations in the Clifford
module. This proves the right part of Eq. .

All together, this concludes the proof of the shortening Eq. for the case of finite-
dimensional representations of the non-compact su(2). As we will see in the next chapter,
these are exactly the multiplets obtained with the free field realisations, namely Eq. (116]
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and Eq. 1) including the ultrashort multiplets corresponding to Z = 0, :I:%. Also the
multiplets arising with j labelling discrete or continuous representations can be obtained

with the free field realisation.
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4 Conformal Embedding

In this chapter we introduce the notion of affine and conformal embedding, following
the lines of [DFMS97]. In particular, we see that in order for an affine embedding to
exist, the levels of the two algebras must be related by a positive integer factor called
the embedding index. On the other hand, for a conformal embedding to happen we need
the central charges to agree. Conformal embeddings are important because they allow
to study the WZW model on an affine Lie algebra in terms of the WZW model on an
affine subalgebra, or viceversa, in terms of a bigger affine algebra. This is relevant for
the superalgebra setting, since one can ask when does the bosonic subalgebra conformally
embed into a Lie superalgebra. In particular, we present a simple criterion for this, which
allows us to prove that there is such bosonic conformal embedding for psu(2|2); and for
u(2|2);. In order to present this criterion, we need to make a short detour in the world of
meromorphic conformal field theories and their vertex operators. For that we will follow
[God89).

4.1 Affine and conformal embeddings

We start at the level of Lie algebras and present different characterisations of an embed-

ding g < g of a simple Lie algebra g into a semisimple Lie algebra g.

e Branching rules. An irreducible representation of g viewed as a representation of
g is usually reducible. The corresponding decomposition is called a branching rule

and it is denoted by

where Er denotes the set of dominant weights of g, that is, of all the weights whose
Dynkin labels are all non-negative, and by, € N gives the multiplicity of the irre-
ducible representation p in g in the decomposition of the irreducible representation
A of g. The decomposition of the lowest-dimensional non-trivial representation
is sufficient to characterise an embedding and to each of its inequivalent branch-
ing rules corresponds a distinct embedding. A useful tool for the computation of

branching rules uses tensor products. Namely, if
AH@bMLu and 5»—>@b>\7uy,
,ueﬁ+ V€ﬁ+

then
A®E P bauben @ v

2l

e Projection matrix. An explicit projection of every weight of g onto a weight of
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g is given by a projection matrix P: h* — E*, where h and E denote the Cartan
subalgebras of g and g respectively. Hence, to compute the branching rules one first
projects all the weights of a given irreducible representation of g into g-weights,
and then reorganizes them into irreducible representations. Note that projection

matrices are in general not unique.

¢ Embedding index. The embedding index x. is defined as the ratio of the square
length of the projection of the longest root € of g, to the square length of the longest
root 6 of g, that is,

= — € >0 -

We know move to the affine setting. The embedding g < g has a natural affine
extention gj < g for some levels k and k. In order for such embedding to exist, it turns

out that the levels have to satisfy

= kx, >k, (69)

We call an embedding g; < g such that Eq. an affine embedding. In particular,
form Eq. |@} it follows that if k& € Z-o then also k € Z-o and both the gi- and the

g;-theory are integrable. The determination of the affine branching rules

N @ bs s it (70)

o =Dk
uEPJr

namely of the branching coefficients by i €N is straightforward but tedious. One de-
composes grade by grade the affine module of X into irreducible representations of g,
and then reorganizes the result into a direct sum of affine g; modules A. To proceed, it
is convenient to express a module decomposition into irreducible representations of the

corresponding finite Lie algebra:
b i @

where the powers of ¢ keep track of the grade and A(#™’s at fixed n denotes the irreducible
representations of g at grade n.

In what follows we will be interested in a subclass of affine embeddings that preserves
the conformal invariance; these are called conformal embeddings. Concretely, an affine

embedding g; < gy is called conformal if it satisfies

T = T% (71)
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In particular, this requires

. kdimg x.kdimg
clon) =clgr) = FrhY kbt Y

(72)

where we used Eq. and Eq. , and h;/, hfg denote the respective dual Coxeter
numbers. Moreover, for the case of integrable WZW models, Eq. is equivalent to
Eq. . Indeed, if two theories have the same central charge, their difference (in the sense
of the coset construction, see Section has zero central charge. Since both theories
under consideration are unitary by construction, their difference is also unitary and,
having zero central charge, it is trivial. A remarkable fact about conformal embeddings
is that they exist only when k£ = 1, which can be deduced by an elementary analysis of
Eq. . Thus, there is a finite number of possible conformal embeddings, and they have
been fully classified.

Above, we looked at affine branching rules. We now consider the branching of Eq.
associated to a conformal embedding. We observe that the non-vanishing of b , means
that the finite weight 1 can be found at some grade n in the infinite-dimensional high-
est weight representation to A at level 1. By Eq. we can compare the conformal

dimensions of the corresponding fields, namely
h A+ n = hﬂ 5
or equivalently

a
2(1+ hy)

+n= _ G (73)
2(ze + h,gY )’
where C§ denotes the Casimir of A as a g-representations and C’g the Casimir of u as a g-
representation. A simple way of obtaining the branching rules is to compute the conformal
dimension of every integrable representation of the two algebras under consideration and
find the triplets (A, p,n) satisfying Eq. 1) Then, we look at the decomposition of A
at grade n in terms of irreducible representations of g and write down all their finite
branching rules into irreducible representations of g. Note that this is a finite process
since the difference in the conformal dimensions is always bounded. The number of times

that p appears in all these branching rules at grade n is precisely the coefficient b5 i

4.2 The coset construction

The conformal field theories based on affine Lie algebras contain currents, that is, fields
of conformal dimension equal to one, which is in contrast to the minimal unitary models
with central charge 0 < ¢ < 1 not containing any such fields. We will now present the

so-called coset construction, also known as the Goddard-Kent-Olive (GKQO) construction,
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that provides many minimal model CFTs from affine Kac-Moody algebras.

Let g; < g be an affine embedding and assume that the g,-WZW model is integrable;
in particular, the levels are related by Eq. and hence also the gj-model is integrable.
In the following we denote by ?]:f and T} the corresponding energy-momentum tensors
and similarly their modes by Ly* and L8 . Let J2 be generators of g;, which are linear
combinations of generators J? of gi. Then, since

(L, Ti) = —nJ = (L, T;]) ¥neZ,
it follows that
(L% — Ly Lyl =0 Vm,n€Z.

Defining
TO/0 = T% T8 qpd LY/ % = 8 _ L%

leads to the commutation relations

[Lgr;;/ﬁ,;’ Lgk/ﬁ,;} _ (m . n)LETIzigk + wm(ﬂf _ 1)5m+n,0‘

Therefore, the modes L%’;“ % satisfies the Virasoro algebra with central charge equal to

the difference of the central charges of the constituent models:

c(ar/ 8i) = c(gr) — c(g;) (74)

From now on, the quotient g5/ g; characterised by the energy momentum tensor Tox/ 8
will be referred to as the coset or quotient theory. We also state that the coset theory
contains all fields of g; which have a non-singular OPE with the fields of g;. In the

present context, this property just means that the two algebras commute.

4.3 Uniqueness of vertex operators

Let F be a dense subspace of a Hilbert space H, the space of states of a conformal field
theory. Assume that there exists a preferred state 2 € F called the vacuum and a

preferred operator L: H — H which annihilates the vacuum,
LQ=0. (75)

A vertex operator for a given state i) € F is an operator V (¢, z): H — H defined for
every z € C, such that
V(,2) Q= ey, (76)
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and the matrix elements

2+ (01, V(¢, 2) )

are meromorphic functions for every ¢; € F.
Two field operators {(z),n(z): H — H are said to be local with respect to each other
if for every ¢; € F, the function

fen(z,w) = (1, £(2)n(w)d2)

is holomorphic for |z| > |w|, with a meromorphic continuation to (z,w) € C?, which we

still denote by f¢,, satisfying

fen(z,w) = €(§,n) fre(w, 2)

where €(£,n) = 1 if either £ or 7 is a bosonic field, and €(§,n) = —1 if both are fermionic.

A local system of vertex operators is a family of vertex operators
V:{V<wa)¢€f}7

which are local with respect to each other. From now on we assume that the theory
admits a local system of vertex operators and we fix one denoted by V.

The strength of the locality assumption is shown in the following uniqueness theorem.

Theorem 4.1. Let Uy(z): H — H be an operator defined for z € C and one particular

¢ € F. Assume that Uy is local with respect to every vertex operator in V, then
Us(2) =V(p,z) VzeC.

Proof. Let ¢ € F and z € C. Then, by Eq. and locality we have that

Us(2)e ) = Uy(2)V (¢, w) Q
= €(0, V) V(@ w)Us Q
= e(¢, ) V(g w)e ¢,
hence
Uy(2)e"" p = V (e, z)e" .
Since 1) € F was arbitrary and F C H is dense, the claim follows. m

In particular, from this result it follows that the map 1 — V' (1), 2) is linear and that
V (€, z) =1, for every z € C.

Let u: H — H be an operator. We say that u acts locally with respect to V,
if uV(1,2)ut is local for every V € V and ¢ € F. Then, the following result is a
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straightforward application of Theorem [4.1]

Proposition 4.2. Let A € C and assume that e acts locally with respect to V. Then
MV, 2)e ™M =V (i, 24+ N). (77)

By differentiating Eq. we obtain

e ) (73)

and by applying this equation on the vacuum and using Theorem we obtain

dv(y,2)

Combining Theorem [4.1] with Proposition 4.2 one can easily prove the following duality

theorem.

Theorem 4.3. Assume that e* acts locally with respect to V for every z € C. Then

V(% Z)V(¢7 w) = V(‘/(w? z = ’LU), U)) :

Note that until now we did not assume that the theory is conformally invariant. The
vacuum expectation value (V (v, 2)) 1= (Q|V (¥, 2)Q2) is translation invariant if and only
if LT = 0, in which case

(V (1, 2)) = Q).

that is, it vanishes for vertex operators of states orthogonal to the vacuum. We extend
the translation symmetry Eq. by a global conformal symmetry of the Mobius group,
generated by

Ly:=L, Ly:= %[LT,L] and Ly := LT, (79)

satisfying the su(1,1) commutator relations:
(Lo, Lar] = FLi1, [L1,L_1] =2Ly. (80)

From now on, we assume the vacuum to be invariant under the su(1, 1) algebra of Eq. ,

which means that
L,2=0 for n=-1,0,1.

Note that the operator Ly satisfies
[Lo,L] Li=1Ly and LyQ=0.
The following result is another consequence of Theorem

44



Proposition 4.4. Let x € C and assume that x'° acts locally with respect to V. Let
¥ € F be such that Loy = hi for some h € R, then

eV (), 2)e70 = 2"V (p,22) VzeC. (81)

Differentiating Eq. we obtain

d
Lo V02 = (5 ) V0.2), (©)
We call a state ¢ € F satisfying
Loy =hy and Lyp =0

an su(1,1) highest weight state of conformal dimension h € R.
The following statement summarizes Eq. , Eq. and the analogous result for L;.

Proposition 4.5. Assume that L, for n = —1,0,1 act locally with respect to V and let
¥ be an su(1,1) highest weight state of conformal dimension h. Then

(L, V(1,2)] = 2" (zdii + (n+ 1)h> V(,z) for n=-1,0,1. (83)

For many purposes it is convenient to expand the fields V' (¢, z) € V for Lytp = ht) in

modes

V(,2) = Y Vel)z "

r€Z—h
From Eq. it follows that
Yv=V,®)Q and V,(¢)Q=0 Vr>—h. (84)
Moreover, Eq. is equivalent to the commutation relations
(L, Vo)l = (n(h = 1) = 1) Veyn () (85)

for the modes of V (1, z). In particular, [Lg, V;.(¢)] = —rV,.(¥).

We can also rewrite Theorem in the so called operator product expansion form.

Proposition 4.6. Let ¢, ¢ € F be such that Loy = hy and Lop = hy¢. Then,

V(@ 2)V(g,w) =D (2 = w) "V (x,w),

r>0

where |z| > |w|, r € Z + hy + hy and X, = Vi, ().
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We can rewrite Eq. (80) as

for m,n = —1,0,1. Comparing this with Eq. we see that Eq. is compatible
with L, for n = —1,0,1 being three of the components of a vertex operator for an
su(1, 1) highest weight state ¢¢ with conformal dimension h = 2. Let us assume this and
write

T(z):=V(e,2) = Y Lnz "7 (87)

nez
Then Eq. holds for every m = —1,0,1 and n € Z. Moreover, by Eq. we have
that
Yo =L _5Q, (88)

and it follows from Eq. that indeed L19¢ = 0. We can use Proposition to

compute
c/2 N 2L(w) N OL(w)

- w? s (-w)

where ¢ = 2|[1)¢||? € Rsg. From this, it follows that

L(z)L(w) ~

=) for |z| > |w|,

C
[Lon, Ly = (m — 1) Loy + Em(m2 — 1)mino -

Thus, we conclude that T'(z) is the Virasoro energy-momentum tensor of the theory.

4.4 A criterion for bosonic embeddings in superalgebras

In this section we will give a simple condition under which the inclusion of the bosonic
affine subalgebra of an affine Lie superalgebra is a conformal embedding. We start with an
affine superalgebra gy, generated by bosonic modes J¢ and fermionic modes SZ, for some
finite set of indices a and 3, and n € Z. We assume that the finite bosonic subalgebra
g is semisimple. Then, the fermionic zero modes form a completely reducible g-module

under the adjoint action of the bosonic zero modes. In particular, we can write
[ng Srlﬂ = (ja)ﬂ,u Sﬁz-&—n ) (89)

where J¢ are semisimple complex matrices. We then consider the Sugawara stress-energy

tensor of gz, which has the form

T% = Ngg : J*J": (90)
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where N = (k + hY)™" and go = (J2, J(l)’)g_l is the inverse of the Killing formﬁ on g, see
Eq. , so in particular g,, = gpe . In Eq. and in the following we use the Einstein
summation convention. Let 1) := ]5\> be any highest weight state of an affine g;-module,

then we compute

L%, S0 = Ngap > [J%_ b, S2] 0

meZ
=Ngap > ([T ST+ T[T, ST]) @
mEZ
= Nga Y (TS oo+ I (T Sin) ¥
meZ
= Ngab (Z(ja) [ —2— m?‘]'rl:m] + Z (jb) [ a? m?Serm]) ¢
m<0 m<—n
:Ngab(z (ja + Z jb M) 2¢
m<0 m<—n
= ( > ga T T, Z 9 (T T )S;;Qw
m<—n m=-n
— _NCnS)_yt =~ [S1, %] ¥,
n— k+ h\/ n —

where we used that g, (J%7°%)", = C§7 is the Casimir of the bosonic representation
J— J° and L8 are the modes of the stress-energy tensor of g;. Since g is semisimple,

we can write

i =Dt (91)

where g° are finitely many simple affine algebras. Then, the representation in Eq.
can be block-diagonalised with respect to Eq. and so does the Casimir, whose cor-

responding block components we denote by C;. We consider the state

N = (LSQ - ZL&}) 0)

where |0) denotes the vacuum of g;. Then g; conformally embeds into g, that is,

T = T% =y T% (92)

6Note that gqs is well-defined since we assumed that § is semisimple, which is equivalent to its Killing
form being non-degenerate. This is true, for example, for the bosonic subalgebras of psu(1,1]2) and
psu(2]2) but not for those of su(1, 1/2) and su(2|2), since they contain a central u(1) factor which renders
the Killing form degenerate. However, one can still construct a stress-energy tensor using the Halpern-
Kiritsis construction [HK89] as it was done in [GNS22] for u(1,1]2); ; then, the same criterion we are
presenting also applies.
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if and only if

&
—1
22,: e (93)

where k; and h; denote the level and the dual Coxeter number of g}C respectively. This
assertion directly follows from the computation above; indeed Eq. is equivalent to
SN =0 for every n > 0 and fermionic generator S”. Then, that J*N = 0 for every
n > 0 and bosonic generator J¢, follows directly from the action of the Virasoro modesﬂ
on the J¢ and the fact that the generators of g};i commute with those of gij for ¢ # j.
Thus Eq. is equivalent to A being a null-vector. We now argue that NV = 0 is
equivalent to Eq. . Indeed, by uniqueness of vertex operators, see Theorem it
follows that N' = 0 if and only if

0=VWN,2)=V(L,0),2) = > V(L'=]0),z) VzeC.

By Eq. and Eq. , this is equivalent to Eq. .

We mention that Eq. can be adapted to take into account additional fermionic
indices v of S%7, which may label the action of non-trivial outer automorphisms of gy, as
we will see in the following examples. In particular, instead of Eq. we may write for

every -y:

[ 2] = (T, Shl

where the representation J¢ — J ¢ of {S#7}5 depends on v, and we denote the corre-
sponding Casimir by C) and by C}’” that associated to the decomposition in Eq. .

Then, the conformal embedding condition becomes

C('Y)

paia RS

We now look at some examples for which this criterion can be applied.

Example 4.7. Using the same conventions as in [EGG19], we consider psu(1,1|2); with
its bosonic subalgebra s[(2, R); & su(2);. The eight fermionic generators Si”7 transform

in the 2 (2, 2) representation of the bosonic subalgebraﬂ The corresponding Casimirs are

Ci1 = —ji(j1 —1) = =3 (since j; = —3 in this convention is the spin characterising the

lowest weight representation of s[(2,R)) and Cy = ja(ja+1) = % (since jp = % denotes the
spin characterising the highest weight representation of su(2)). The levels are ky = ko = 1

"Recall that for for every J* € g' we have that [L,, J%] = —mJ2 which is true both for L% and

m—+n?
i o3,
L% whilst [L,"”, J%] = 0 for i # j.
8This is an example where the index v = # encodes the transformation behaviour under the outer
automorphisms su(2). Nevertheless, the bosonic representations are independent of +, since both copies

transform under the same representation (2, 2) of the bosonic subalgebra. Hence, in this case it is enough
to check that Eq. holds for one ~.
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and the dual Coxeter numbers hy = —2 and hy = 2. With this information, one can
easily verify that holds true and hence that there is a conformal embedding

sl(2,R); @ su(2); < psu(l,1|2); . (94)

Knowing Eq. is useful because it can be used to constraint the Casimir of
psu(1,1]2), and in turn the allowed representations. In particular, in [GNS22| it is ar-
gued, in a way analogous to as we did for the shortening of su(2|2) multiplets, that the

only highest weight states allowed in the psu(1,1|2);-spectrum are the vacuum

(7=0,1), (95)

where j = 0 denotes the one-dimensional trivial representation of s[(2,R), and those that
form the multiplet
(€3.2)

(Y €,

A3 P

(96)

and the same multiplet with the replacement Ci — D;E . Here, C’i denotes the continuous
sl(2, R) representation with Casimir C*">®) = —j(j—1) and ) is the fractional part of the
J3-eigenvalue, while Dji denotes the spin j highest /lowest weight discrete representation,
see |[GNS22]. Now, since we proved that the bosonic subalgebra conformally embeds in

the whole superalgebra, we have the following relation between the Casimirs:

Cpﬁu(1,1|2) — _Csl(Q,R) + %Csu(Q) ’

and since C***(1L112) hag the same value on the whole superalgebra representation generated
by the multiplet Eq. , we can relate for instance

; i+1
G =1) jLZ_1l — psu(L12) (C’i : 2) — psu(L12) (Cf\jré 7 1) _ j2 _ %’

which directly fixes j = 5 and CP*(11? = 0 on every representation Eq. . Also
the vacuum Eq. is an allowed representation and it also has CP**(1:112) = (. Notice
that in order to arrive at this conclusion, we had to know already the structure of the
multiplet in which the highest weight states transform. This can be achieved by purely
algebraic arguments or deduced by the free field realisation, as we have seen for psu(2|2),

and su(2]2);.

Example 4.8. Similarly to the example above, we consider the superalgebra psu(2|2),
with bosonic subalgebra su(2)_; @ su(2);. The eight fermionic generators S° transform
in the representation (2,2) @ (2, 2) = 2(2, 2) of su(2) @ su(2)f] therefore the Casimirs are

In this case the index 7 encodes the outer automorphisms sl(2,R), and even though the bosonic
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Ci=0y= %. The levels are k; = —1, ko = 1 and the dual Coxeter numbers hy = hy = 2,
thus one can verify that also in this case holds true and hence there is a conformal
embedding

su(2)_1 @ su(2); — psu(2(2); . (97)

Example 4.9. We generalise Example [1.8] and investigate the embedding
SU(N)_p @ su(N)g < psu(N|N), (98)

for N > 1 and k € R. The superalgebra psu(N|N) has 2N? fermionic generators that
transform in the (N,N) @ (N, N) representations of su(N) @ su(N) and the Casimirs
Ci=0Cy = N;]Q L has the same value on the fundamental N and the anti-fundamental N
representation of su(N). Also, the dual Coxeter number of su(N) is equal to N. Knowing

this we compute
C Cs N?Z -1
= . 99
by Tk hy Nk (99)
This proves that for every N > 1 the embedding in Eq. is conformal if and only

if k = +1. Then, for £ = 1, this gives the following relation between the Casimirs of

highest weight representations:

N) N
Cpsu(N|N)1 — Ciul( + CTU( :
N—-1 N+1°

where C’iul(N) denotes the Casimir of the finite su(N) in su(N)y, respectively. Note that
there are exactly N integrable highest weight representations of su(N) at k = 1 but none
for k = —1.

As we did above for psu(1, 1]2);, we want to investigate the implications of the confor-
mal embedding in Eq. on the allowed representations of psu(2|2);. By Section |3.3
we know the structure of the psu(2|2); highest weight representations. The allowed mul-

tiplets are the vacuum
(j =0, 1) , (100)

the triplet containing highest weight discrete representations

(D%)5,2)

(101)
(D%, 1) (D,1),

representations depend on v = =+, they are isomorphic, and hence the Casimirs are still independent of
~ and its enough to check Eq. for one 7.
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the triplet containing lowest weight representations

D7, ,2
) o
(Dlal) (Dlul)a
and the triplet containing continuous representations,
o2 2
(€1.2) o

(Co.1) (Co:1),

It thus turns out, that the value of Z; is directly related to the spin j of the su_;(2)
representations, hence the condition Z; = 0 already constrains the allowed spins. How-
ever, we can use the conformal embedding of Eq. to compute the Casimir of these
representations in a very simple way. Indeed, Eq. for N = 2 becomes

((0+1)
3 Y

CPrCR = (i 4+ 1) +

where j and ¢ are the spin of the su(2)_; and su(2); factor respectively. Thus, we find

that C**(121 = 0 for both Eq. (100) and Eq. (101)). The other multiplets, Eq. (102) and
Eq. (103)), the Casimir of the non-compact su(2) is different, and Eq. takes instead
the form

CPEEn — j(j — 1) + S
which gives again C**(121 = 0 on both multiplets.

Example 4.10. We now turn to the superalgebra u(2|2);. we claim that
e = T 7Y (104)

where — :ZY:= — :U% + :V?: is the stress energy tensor of the system u(1)y & u(1)y,
see Eq. ; hence, Eq. (104)) is equivalent to the existence of the conformal embedding

su(2)_; ®su(2); u(l) eu(l) = u(2)2); . (105)
We prove Eq. (104)) by showing that state
N = (LGP — 4P — 12 12y, o)

is null, namely that X, N' = 0 for every n > 0 and generator X of u(2|2). For the bosonic
generators J* and K® the assertion is clear, since their modes commute with those of Z
and Y, see . For the fermionic generators S**7 this follows from Exampletogether
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with the following computation,
152,27 310y =y (210857 + ZoSi% ) 10) = 4218577 10) (106)

where we used that Z;|0) = 0. Note that Eq. (106) vanishes for every n > 0 since
S987|0) = 0 for every m > 0. Finally, that the positive modes of Z and Y annihilate A/

follows from
(20, 2Y i) = =nZy = = (2, L],

Yo, :2Y:0] = =nY,up = ~[V,,, L"),
From Eq. (104) we deduce that

CreD =+ 1) + - ZY, (107)

holds for every representation of u(2]2); , where Z and Y are the eigenvalues of Z, and Y;
respectively. As a consistency check, one can compute the value of the Casimir C*(221
on each component of the allowed multiplets using Eq. and show that it is constant
along each multiplet for every value of Y. Moreover, for each allowed multiplet we may
find the values of Y such that C*®?)1 = 0; these are exactly the multiplets obtained in
the free field realisation.

We also mention that one can prove Eq. using Eq. , knowing that hY = 0
for u(1) and that the Casimirs of both u(1) factors are equal. Then, the fact that the two

algebras possess levels of opposite sign, see Eq. , shows that Eq. (104)) holds true.

For what concerns su(2|2);, the embedding
su(2)_; ®su(2); ®u(l)z — su(2(2), (108)

is not conformal. Indeed, since the modes of Z commute among themselves, a factor
proportional to :Z:2 in the null vector A/ as above cannot compensate [Z,, L*C2"] =
—nZ,_o. Also, a relation between the su(2)-Casimirs and the Z, does not hold between
different components of the allowed multiplets found in Section Lastly, Eq. is

not applicable since the affine algebra u(1)z has level k = 0, so Eq. is undefined.
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5 The free field realisation at £ =1

Luckily, there is a free field realisation of the Lie superalgebra u(2|2);, which allows to
study the highest weight representations and their characters. For this construction, we
followed [GG21b] and used the fact that there is an embedding of affine superalgebras
u(2(2); ®u(2)2); C u(2,2[4);.

We first recall that the superalgebra psu(1,1]|2); has a free field realisation in terms
of two pairs of symplectic bosons, which is a first order system of bosons of spin half, see
[EGG19], and two pairs of complex fermions, modulo two u(1) fields. Doubling the degrees
of freedom leads to a free field realisation of psu(2,2[4); , see [GG21Db]. More specifically,
we consider two pairs of symplectic boson fields (A%, ul) and (u¢, )\L) with a, & = 1,2, as

well as four complex fermions (¢, 9]) with a = 1,2, 3,4, satisfying commutation relations
N (h)s) = 080, [, () =830, s, {0, (0f)s} = 350r .

We combine these fields as Y = (uf, AL, ¢) and X7 = (A%, u®,¢*), and then consider
the normal ordered bilinears
J, =Y, X",

These fields generate the superalgebra u(2,2|4); , see [GG2ID]. The generator C = Y; Z1
of u(2,2]4); plays an important role since its modes C, are central and in order to obtain
psu(2,2]4); one needs to quotient them out. In the following we will use the Einstein
summation convention.

We begin by identifying the subalgebra su(2) & su(2) @ su(4), that is generated by
LY = Mﬁ/\a opU,
LY = plA* =530,
b - ¢b¢a T2
where we introduced the generatord |
U:z'uT/\V U_l/\T : V:%¢I¢c7

which commute with £, £% 5 and R?,. We set

B=U+U, C=U+U~+V, D=U-U,

0Note that there are some slight differences with respect to [GG21D] in the definition of these gen-
erators and also in notation; this is has been done in order to render some later expressions more
cumbersome.
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and the define the “off-diagonal” generators

Q*, = ul S*, =\
%, = uyl, S =9\l
& ot a _ yant
Pﬁ—/vblu/% ’Cﬁ_/\/\ﬁ

For what concerns the su(4) algebra, we use the convention that the zero modes (R%,)o

with @ < b are the positive roots, and define the Cartan generators of su(4) to be
Hi=(R™* 1 )o— (R,  i=1,2,3.
The bosonic generators satisfy
[(L8)ms (L75)n] = 05 (L7 g)mtn — O5(LY)msn +m (0305 + 30507) Omno s
and likewise for (£¢ B)m . The modes of the generators
Jt=rly, J=r4, P=i-r),

satisfy the su(2)_; relations, that is, Eq. for k = —1. The same construction also
applies to the (£* B>m generators, which therefore lead to another copy of su(2)_; that we
denote by dotted generators J¢ On the other hand, for the (R%,),, generators we find

[(Rab)ma (Rcd)n] = 5S(Rcb)m+n - 5§(Rad)m+n +m (5355 - iég&fl) 5m+n,0 )
which are the commutation relations of su(4);. The u(1) currents satisfy

[Dmvlgn] = [Dm,cn] = [Cm>cn] =0,

(109)
[Bma Bn] = [Bmacn] = [DmaDn] = _m5m+n,0-

Finally, the fermionic generators satisfy the anti-commutation

g(ﬁaﬁ)m—l-n + 5g(Rab)m+n + %5255 (Dm+n + Cm—l—n + 2m5m+n,0) )
S(LYmtn + 05 (R%)min = 50205 (Dt — Contn + 2MBpnin0)

We now identify the affine subalgebra u(2|2); @ u(2]|2);. One copy is generated by the
bilinears constructed from the fields (A%, u) and (¥],4?) with a = 1,2, whilst the other
one from (u®, L) and (¥] ,4?) with b = 3,4. We introduce

R% =l — 68V for a,b=1,2 and RY =ly® — 6V for a,b=3,4,
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where
V=1 +9ly®)  and V= J(@fg® + ly?) .
Note that then ¥V = V + V. We also define

Z — U —'I_ V 5 Y - U - V)
and their dotted analogues. Then, we identify
K*=RY), K =R,, K’=i(R,»-R'Y), (110)

which satisfy the commutator relations of su(2);, which are Eq. with £ = 1. The
dotted copy of 1(2]2); is obtained by the replacement 1 — 3 and 2 — 4 in Eq. and
we denote the corresponding generators by K;;. In order to obtain the algebra u(2); from
Eq. 1' one has to add the u(1) generator V', and analogously V for the dotted copy.
We identify

B ; —
Saﬂ’}’ — Q « if V=
Saﬁ lf ’y —
and write — = 1, + = 2 for the indices o and . Then one superalgebra u(2)2); is

generated by U,, V,,J¢, K2 for a = +,3 and S for «, 8,7 = +, —, since the satisfy
the same commutation relations presented in Section [3.1] Analogously, the dotted copy

arises by the dotted version of the bosonic and fermionic generators.

5.1 The Neveu-Schwarz sector

The vacuum representation of u(2|2); arises from the Neveu-Schwarz (NS) sector where
both the symplectic bosons and the fermions are half-integer modedﬂ, and it is generated

from a ground state |0), which we call vacuum, satisfying

XE10) = (), 0) = ¥2 10) = (), [0) =0 for r> 1, a=1,2.

2

Thus, this state has then the property that
Up|0) = V5 |0) = Zp|0) = Y5 [0) =0 and  J3|0) = K |0) =0.

While for Yj this is a matter of convention (that is, it depends on the normal order-
ing prescription), though the natural one, this is imposed for Zy by the commutation
relations of Eq. . In particular, this shows that the NS sector defines indeed the

vacuum representation of 1(2]2);, that we will denote by V. Note that since Zy = 0, this

"Since the supercurrent generators involve one fermion and one symplectic boson, the moding of all
generators has to be the same in order for the u(2|2); generators to be integer moded.
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representation descend to one of psu(2|2);, which we denote by L.

5.2 The Ramond sector

Following the lines of [GG21b] and [DGGK21] we construct the Ramond (R) sector. We
label the states by the symplectic boson occupation numbers |my, msy). Since in the Lie
supergroup perspective the bosonic subgroup SU(2) x SU(2) is compact, we can assume
that the spins, namely the J3 and KJ eigenvalues, are half-integers, see [GG2ID]. There
is freedom in defining the action of the symplectic bosons zero modes, also because we are
dealing with two pairs of them. We will consider four different R sector representations;
as we will see, the first two differ only by the Z; and Yj eigenvalues, whose sign is reversed,
and they both contain only finite-dimensional representations of the non-compact su(2)
factor, whilst the third and fourth representation will contain infinite-dimensional highest
and lowest weight discrete representations. In every case, we require without loss of
generality that

my € %N and mg € %Z.

The subspace generated by the vectors with mq, my € %N always form an irreducible sub-
representations, and we shall in the following concentrate on this subspace. This highest
weight space is annihilated by the modes X! and (Y;), with n > 0, and the full affine
representation is generated from it by the action of the non-positive modes. The zero
mode action of the symplectic bosons is already encoded in the above occupation num-
bers, but we also have the action of the fermionic zero modes. They generate a Clifford
algebra representation, and with respect to the zero modes of the su(2); generators, that

are bilinears in the fermions, the states for fixed values of m; transform as
(2-1)®2.

We now explicitly express the possible actions of the u(2|2); generators. We start by

the bosonic zero modes, which on highest weight states can act as

Mg Im, ma) i= 2my|my — %,mg) , (p])o [may, ma) == |my + %,m2> , (111)

.I>
1
A3 [ma, mg) i= 2ma|my, my — %) , (ﬂ;)o My, ma) i= |my,my + ).
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From this one can compute the action of the u(2)_, generatorﬂ

JS’ |my, mo (mg — my)|m, ma),

) ) (112)
2mo|my + 5, M2 — 5,

2

):
Jo Ima, ma) = 2my|my — %,m2 + %>7
Jo Ima,ma) =

>:

Uo [m1, ma (my 4+ mao + %)|m1,m2) .

Moreover, one can compute the su(2)_;-Casimir
CMO = 8IS+ 3 (Jy Jy +Jy Jy) =3+ 1) = (my +ma) (my +ma + 1),

thus the associated spin is j = m; + my. For the action of the fermionic zero modes we
define
g lmy,mey =0 fora=1,2. (113)

Then the action of the creation operators v with a = 1,2 leads to a 4-dimensional

Clifford module; with respect to su(2);, it decomposes into two singlet states
2-1: my,ma) and  (¥)o(¥])o [ma, ms)
as well as a doublet spanned by
2: (D)o [ma,ma)  and  (])o [y, ms) .
For a # b we can compute,
(Wi lmy,my) =0 and  (¥fv*)o [ma, ma) = —5 [my,my)

hence
on the singlet |my, ms) ,

1
2
Vo= 0 on the doublet,
+3 on the singlet (13)o(¢1)o [my, ma) .

12The action of Uy is fixed only up to a constant which depends on the normal ordering prescription;
this in turn implies that the value of Yy depends on the convention adopted. However, the value of Z,
is determined by Eq. once the action of the fermionic and bosonic zero modes is defined, hence it is
independent of the convention.
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Recalling that Zy = Uy + Vo and Yy = Uy — V}, one computes

j on the first singlet, j+1  on the first singlet,
Zo =147+ % on the doublet, Yo=47+ % on the doublet,
j+1 on the second singlet. J on the second singlet,
(114)

where as above j = mj + my. We now analyze the irreducible representations of u(2|2)
characterized by the fixed value of Z, € %N, since 7 is central. We write such represen-
tations as multiplets (j,n)y, z of the bosonic subalgebra su(2) @ su(2) & u(l)y G u(l)y,
where n and j denote the n- and (25 + 1)-dimensional representation of su(2) respectively

and Y, Z the eigenvalues of Y and Z, respectively.

e Zy = 0: this translates into
0 = Zy|mi,mg) = j|mi,mg) = (my + mg) [my, my),

and since m; € %N, it follows that m; = my = 0. From this, one easily sees that

|0,0) is annihilated by all u(2|2) generators, except for
Uo]0,0) = 510,0),  V4[0,0) = —310,0),  ¥;]0,0) =10,0).

Indeed, the application of any fermionic creation operator annihilates |0, 0), since
each involve a mode A§. This shows that the representation of u(2|2) arising from
this construction is the one-dimensional (ultrashort) representation generated by
the single state |0,0), which we label by

(J=0,1)10. (115)

Note that, except that for the Y, eigenvalue, this coincides with the vacuum repre-

sentation.

o 7y, = %: the highest weight states |mq, ms) satisfy my +mq = % The allowed states
1

25
a = 1,2 which generate a (7 = 0, 2) representation. Note that the application of

are then [3,0), |0, %) which generate a (j = %, 1) representation, and 7|0, 0) for

two fermionic creation operators results in a zero state, since such would contain

two Aj’s, thus annihilating each state with m; + my = % All together, we have
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o /y=7+1,forje %N . in this case, we have the following representations

(]—l—l,l) : ]ml,m2> with m1+m2:j+17
(j—l—%,2): (W0 Ima, my) with ml—l—mg:j—l—% and a=1,2,
(.1 = @do(®])olmi,m) with my +mg = .

All together, this gives
(1)1 @+ 35:2)j41,401 @ (G +1,1) 5241 (116)

We denote by R the whole affine module defined by Eq. and Eq. , and the
subrepresentations with fixed Z = 7, € %N by Rz.

As we mentioned at the beginning of the section, we may define the action of the
symplectic bosons zero modes differently and this yields different representations of u(2|2).

Hence, we define

Ay [ma,ma) = |my + 3, ma) (1))o [ma, ma) := —2mymy — 5, mo),  (117)

i
/\(2) |m1, m2> = |m1, mo + %) ) (M;)o |m1,m2> = —2m2|m1, mo — %> )

from which we compute

Jo Ima, my) = (my m2)|m17m2>,
JS_ |m17m2> = _2m2|m1 + mo — %> )
Jy Imi,ma) = —2my|my — é,m2 + l>
UO ]ml,m2> (ml + mo + )\ml, m2>
and the su(2)-Casimir
CM® = 5 (j+1) = (my 4+ ma) (my +ma + 1),

thus the associated spin is again 7 = my +msy. For the action of the fermionic zero modes
we define instead™|
(@h)olmi,ma) =0, for a=1,2. (118)

Then the Clifford module decomposes with respect to su(2) into two singlet states

2.1: |my,me) and ¢8¢é |my, ma),

BBNote that there is freedom in the definition of the fermionic zero modes action, which however does
not affect the structure of the whole Clifford module. Here, we choose a different action from Eq. (113]) in
order to obtain the full conjugate spectrum of 7, € —%N , since Eq. |) would give a gap corresponding
to ZO = —%.
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and a doublet

2: Vg |mi,ma)  and g |my, ma) .
As above we compute
—i—% on the singlet |mq,ms),
Vo = 0 on the doublet,
—3  on the singlet 3] [mq, ma) .
and consequently
—J on the first singlet, —j7 —1  on the first singlet,
Zop=1q —j— % on the doublet, Yo=4q -7 — % on the doublet,
—j —1 on the second singlet. —J on the second singlet.

By an analogous analysis to the one above, we obtain the following u(2|2)-representations.

L Zo = 0:
(J=0,1)_1,0. (119)

N |

o Zy=—j—1,forjeiN:
(G D1 ® (45,211 ® (G + 1, 1) a1 (120)

Note that these multiplets are the same of those found above with the replacement
Zy — —Zy and Yy — —Y5. As representations of su(2); they differ only by the sign
of the Zy-eigenvalue; in particular, the representations with Z; = 0 coincide with the
NS vacuum as su(2]2);- and psu(2|2);-representation. We denote by R the full affine
module generated by Eq. and Eq. and by R the subrepresentations to fixed
Z = Zy e —3N.

In Eq. and Eq. we have seen two possible definitions of the symplectic
bosons action. Note that in both cases the two pairs (A, (i} )o) for a = 1,2 act in the
same way. It is then natural to look also at the R representation where the two pairs act

in opposite ways. This yields

>\(1) |m1; m2> = 2m1|m1 - %7m2> ) (M )0 |m1; m2> = |m1 + %7 m2> ) (121)

i
NG [ma,ma) = [my,ma + 3 (o [ma,ma) = —2malmi,my — 3) .
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from which we compute

JS Imy, ma) = —(mq +mo + %)|m1, ma)
JSL |m1,m2) = —4m1m2|m1 - %,m2 - %) ) (122)
‘]0_ |m1,m2) = |m1 + %,mg + %> s
U ]ml,m2> = (my — mg)]ml,m2> )
and the su(2)-Casimir
CM® = j(j+1) = (my —ma — 1) (m1 —ma + 1), (123)

with spin j = m; — my — % We define the action of the fermionic zero modes as in

Eq. (113), which gives Eq. (114) with j = m; —my — 3. We now analyze the irreducible
representations of u(2[2) characterized by the fixed value of Z, € 3Z. For that, we write
Zo=17 — % for j € %Z such that

Zo Imy,ma) = (my —mo — 3)|my,ma) = (j — 1)|m1,ma)

implying that m; = my + j. We distinguish between three cases and find the following

multiplets, where we always have m € %N.

e jc —%N:

(D;T_%,l) : |m,m — j),

(Df,,2) : (1o |m,m — j+1),

(DY 4. 1) s oo lmm—j+1).
OjE%NandeL

(Dirj,la]') : |m+.]7m>7

2
(D*;,2) : (Wl)o|m+j—1.m),
(D5 ) @ho(olm 45— 1,m).

All together, these can be summarised by
(DY, 1)j1,4, @ (ijfé 1 2)1j, 25 D (DF 1)y, 45, (124)

for every j € $7Z-¢, which is Eq. (54)).
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(D*,,1) : Im + 1, m),
(Dfl/g ) 2) : (¢D0 ‘m> m> )
(DI, 1) = (Wh)o(who fm,m+3),

which in particular yields an additional highest weight representation of psu(2|2)
characterised by

(D, 1)@ (DY, ,,,2) ® (DX, 1), (125)
which is exactly Eq. (55).

We denote by Rt the whole affine module defined by Eq. (121) and Eq. (113)) and by
R} the subrepresentations with fixed Z = Z, € %Z.

We consider the action of the symplectic bosons zero modes that is dual to that of

Eq. (I21), namely

)\(1) \ml, m2> = \ml + %, m2> y (ILL )0 |m1,m2> = —2m1|m1 —1 m2> s (126)

1
1 27
)\(2) My, ma) 1= 2ma|my, my — %> ) (Mg)o |m1, ma) == |my, mg + %) )

from which we compute

Jg’ ]ml,mQ =mp+mo+ 3 ]ml,m2>

JO_ |m1,m2 == —4m1m2|m1

)

Ji |my,ma) = [my + 5, mo + 1),
) 5,7712—%);
)=

Uy |m1,m2 ( m1)|m1,m2>,

and the su(2)-Casimir

C™* = j(j —1) = (my —my + 3) (my —my — 3),

thus the spin is j = mg — mq + % We define the action of the fermionic zero modes as in
Eq. (118) and we obtain

J on the first singlet, j—1  on the first singlet,
Zo=147— % on the doublet, Yo=47— % on the doublet,
j—1 on the second singlet, Ji on the second singlet,

with j = mg —my + % We write Zy = j + % for j € %Z such that

Zy |my, mg) = (mQ_m1+ )\ml,m2> (]+ )\ml,m2>
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implying that ms = my 4+ 7. We then find the following multiplets, where m € %N.

e For j € $Zy:

<Dj_+%’1) : |m,m+ j),

(Dji1,2) : Wflmom+j+3),

(D5,1) Yoo m,m +j+1).
e jE€iZand j < —1:

(D:j+%71> : |m_j7m>7

(DZj152) © dglm—j—5.m),

(D, 1) s YRudlm—j—1,m).

All together, these can be summarised by
(Dj  D)sjo1,4; ® (Djjr% 1 2) 2,45 D (Djhq s Vg, 255 (127)

for j € %Z>0. Note that Eq. 1D is exactly the conjugate of Eq. 1} and
reproduced Eq. —

(D7, 1) : |m+%,m>,
(D7)5,2) : Y5 lm,m),
(Dy,1) = gy lm,m+ 3),

which in particular yields Eq. .

We denote by R~ the whole affine module defined by Eq. and Eq. and by
R the subrepresentations with fixed Z = Z, € 7.

The only representations found in Section that we are missing in the free field
construction are those with highest weight states transforming in multiplets of su(2|2);
containing continuous representations of su(2). These can be obtained by defining the R
sector as in Eq. and Eq. but allowing mq, my € %Z. Then, the su(2)-modules
that appear are generally reducible but indecomposable, which is an expected feature of
continuous representations C’j with j € %Z, see Section . Indeed, one can carry out the
same analysis as above, finding exactly the multiplets Eq. and Eq. with specific
Yo-eigenvalues for each component in the multiplets, which can be deduced by Eq. .
We denote this free field representation by R and by R that to fixed Zy = Z € %Z.
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5.3 The spectral flow

For the actual world-sheet theory it is to be expected that we do not just need these
highest weight representations, but also the representations that are obtained from them
by spectral flow. Analogously to [GG21b] and [DGGK21], there are two spectral flow

actions that can be defined on the free fields, namely

OO =N ) = ),y
on the symplectic bosons, and

o) =Y a((Wh)r) = (W),

on the fermions, where o = 1,2. The combination

Oy ‘= 0'(1) o 0'(2)

leaves the subalgebra su(2)_; @ su(2); and the fermionic generators S invariant and

acts on the u(1) generators as
Og(Um) = Um + %5777,,07 O—}U/)(Vm) = Vm - %5m,07

which implies
0 (Zm) = Zm 0y (Vi) = Yo + Wl -

and by Eq. (104)
o (LG = L —wZy,

where we specified that the energy-momentum tensor is that of u(2|2);, because the u(1)y
algebra is absent for su(2]2); and psu(2|2); and thus the automorphism oy is non-trivial
only for u(2|2);.

The other natural combination is
o:=o0cWo (0(2))_1

and it acts on the generators as

0" () = T = 50mo0. 0" (Un) = Un, (128)
0" (o) = Jm1 0" (Vin) = Vin,
0" (Ky,) = Ky + 50mo 0" (Zm) = Zm ,
o"(K5) = Ko s 0 (Zm) = Zm
0" (Sp0T) = Syl 0" (Lo) = Lo + w(Jg + )
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We can obtain one additional independent spectral flows by declaring * to act as o(®)

on the symplectic bosons, and
GOW) = O ((Wh)r) = (Wh)s s
on the fermions. The combination

0y = A NAC)

then leaves again the subalgebra su(2)_; @ su(2); invariant and acts on the other gener-

ators as
0Y(Zm) = T+ Wono 05 (Vi) =Y 0%(S2) =S37,,
and by Eq. (104) we have
J?(LS(ZI%) _ L8(2|2)1 —wY;.

Note that since the (1) algebra extends psu(2|2); to su(2|2);, the automorphism oy
is non-trivial only for su(2]2); and u(2|2), and it transforms L, differently depending on

which algebra we are considering.

The other combination

acts on the generators as

G(Jp) = I = §0mo 5" (Up) = Up,,
G (J) = Jopar » " (Vin) = Vi,
GV (Ky) = K — %0my0, G Z) = Zim
7 (K) = Kot » G (Zi) = Znm
7 (Sa) = S are) " (Lo) = Lo +w(Jg — K)

In particular, the action of & is equivalent to that of o.
Finally we need to fix our conventions for how to describe spectrally flowed represen-

tations. Suppose that p is some spectral flow automorphism, that is some combination of
0@ and 5@ for o = 1,2. Then we define the p-spectrally flowed representation, denoted
by p(H), to be spanned by the states [®]?, where ® is a state in a highest weight rep-

resentation H of the kind described in above, and the “twisted” action of any generator

X,, on [®]? is defined by
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and we write |0)? := [|0)]*". We call the modules p¥(H) with w € Z the spectrally
flowed modules of H.

Typically, spectrally flowed representations are not highest weight representations.
Also recall that in general the classification of irreducible g-modules yields a classification
of the affine highest-weight gr modules. In order to include also the spectrally flowed
versions of the highest weight modules, one needs to enlarge the representation category
of gi by the following definition, see [CR12]. We define a gi-module H to be admissible

if it satisfies the following conditions:
e 7 is finitely generated,
e the Cartan generators h’ act semisimply on H (though Ly need not),

e for every |v) € H, there exists an N > 0 such that

X,[v)=0 VYXegVn>N.

Example 5.1. We said that in general spectrally flowed highest weight representations
are non-highest weight. However, as representations of u(2]2);, the R sector singlet
representation in Eq. is the image of the NS sector highest weight representation
under one unit of a specific spectral flow, namely

01 = 10)7

w=1 —

10,0) < oy (V) 2Ry, (129)

Note that this distinction is relevant only when we consider representations of u(2|2);,

otherwise with respect to su(2]2); the spectral flow of Eq. is trivial and the two
representations coincide.

In order to prove Eq. , we note that all positive modes, as well as the zero modes

G, ¥§ for a = 1,2 annihilate both sides of the first equation. Furthermore, one checks

that also the eigenvalues of all the Cartan generators agree, that is,
K3 10)y = Jg0)f = Zo[0)y =0, Y5[0)1 =01 .

Analogously, one shows that

10)7 = 10)7Y 10,0) <= o7'(V) = R,.

w=—1 —

Example 5.2. We consider the spectral flow automorphism of u(2|2); given by p =
oy' 00z and claim that

p(R;j) = Rjp1  Vje3N. (130)

Indeed, recall that the full affine u(2|2), representation R; is characterised by the highest
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weight multiplet
(G=1,1)190G — 35,250 1)jr1, (131)

with additional shortening occurring for j = 0, 3. In any case, let us denote by |j) the
highest weight state in (j,1);41,;, so that in particular SaPF14) = 0, and its image under
the spectral flow p by |j)? := [j)7 _,. It is then immediate to check that |j)? generates
the representation (j,1); j+1 and that

if n>1,
spreliyr =09 "
if n>0.
Thus, |j)* generates the multiplet
(7 Dj1 ® (G + 3, 2)j41501 © ( + 1, 1)j12, 541, (132)

corresponding to R ;4. For instance, the representation (j + % ,2) 41,41 is generated by

the states S¢°* [5)?. Indeed, one computes
p(Lo) = Lo+ Zy — Yo +1,

where Lg refers to the energy-momentum tensor of u(2|2);, and consequently
Lo |j)” = LoS3"* 15)P =0,

where we used that by the conformal embedding in Eq. (104)), the u(2|2); Casimir vanishes
on all the multiplets found in the various free field R sectors, and that the central charge

of u(2|2); is zero. By induction, it follows that

P(Ro)=R; and p'(Lo)=Lo+j(j+2Z0—Yo)=Lo+j(j — Yo), (133)

where in the last equality we used that Zy = 0 on Ry.
Moreover, one can show analogously that p~}(R,) & Ry, for every Z € —%N. Also,
similar results hold for the other R sector representations found above. Note that this

result also holds for su(2|2); in which case p = 0z and the L, transformation is different.
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6 Characters and Modular Invariants

We review the theory of affine characters and in particular those of integrable affine
highest weight modules following chapter 14.4 of [DFMS97]. We then discuss modular

invariance of partition functions following chapter 4 of [BP09].

6.1 Affine characters of affine integrable modules

Let gr be an affine Lie algebra at fixed level k£ € R with finite Lie algebra g of rank r. Let
7 € C with Im(7) > 0 and set q := e*™", such that |q| < 1. Let also z = (z1,...,2,) € C"
be variables, which we will call chemical potentials. Then, the affine character of

the gr-module of affine highest weight A is
Chj\(27 T t) - eZwikt TI‘/“\ e27‘ri7’Loe27ri > z;h? : (134)

where the trace is taken over an orthonormal basis of A and in the following we will often
set t = 0 and dropping the t-dependence, since at fixed level k the corresponding term

does not contain any particular information. If the highest weight representation \ is
integrable, then Eq. (134)) can be shown to be equal to

chi(z7) = > mults(V)e (€),

)\/GQ;\

where f = —2mi((;7;t) with ¢ = > ;) and the sum runs over all the weights in the
affine representation, mult ;\(5\’ ) € N denotes the multiplicity of X’ in the representation A
and e denotes a formal exponential satisfying

Neft = N and V) — N0 VS\,, [ € by .
Eq. (134) can be rewritten in the form called Weyl-Kac character formula, which make
use of the affine Weyl group action, see [DEMS97, Eq. 14.148]. Then, thanks to the

Macdonald-Weyl denominator identity it can be written in terms of generalised theta

functions
k)r . . 2mik 2milay +M/k,C) mwikT|aY +\/k|?
@E\)(z,ﬁt):e t Z 2mile AAkQ) gmikrlat + AR (135)
aveRV
where QY = ®_,Z«; is the coroot lattice. More precisely, we have that

(k) -
ZweW €(w>®w(5\+f)) (Zv ) t)
k ?
D wew €(w>@1(u(),3)(25 1))

chy(t; 7 t) = e 277 (136)
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where W is the Weyl group of g and e(w) := (—1)*! is the signature of w € W, see
[DFMS97, Chapter 13.1.8]. As we will, the fact that the affine characters cane be ex-
pressed in terms of generalised theta functions is a key feature of integrable affine rep-
resentations, since Eq. have nice modular properties, as we will see. In Eq.
there is a special quantity called the modular anomaly

AP el c

- — hy — —
BT A YA Y

where hy and c are defined as in Eq. and Eq. respectively. As one can see in
Eq. (136)), it is natural to normalise the character with respect to the modular anomaly;
therefore, we introduce the normalised affine character (and we will often omit the

epithet “normalised”) as
X;(Z; ) = Tr; e2miT(Lo—c/24) 2mi 37, z;h ’ (137)

which is the form of the character we will always use. When evaluated at z = 0, the
character of Eq. (137)) is said to be specialised and takes the form

X3 (7) = x5(057) = ¢ " d(n)g",

n>0
where d(n) gives the total number of states at grade n.

Example 6.1. We want to look at the characters of integrable su(2),-modules for k €

Z~¢. In this case, the affine dominant weights are of the form
[k‘-)q,)q] for OS)\lSk:

In the following, we write A\; = 2/, so that 0 < ¢ < k/2, and we call the spin ¢ su(2)-
module the highest weight integrable affine representation generated by the highest weight
state |¢), see Section . Recall that ¢ completely characterises the representation for
fixed k, and the state |¢) transforms in the finite dimensional spin ¢ representation under
the finite su(2).

The generalised theta functions in this case take the form

O ()= 3

n€Z+%
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and with these we can express the integrable spin ¢ su(2),-characters as

k+2 k+2
Py o Sir (37) — O (z57)
o 0P (z;7) — 0% (z;7)
k+2 k+2
_ Oy (1) — 0% (2;7)

g5 (27 — 2 2) [0, (1 — qn) (1 — 2qn)(1 — 2~ 1g")

(138)

where for the second equality we used Jacobi’s triple product identity

S (—1)remtigEt e = gs (e — 73 [ (1 - g1 - 2¢") (1 — 27 Ng),

nez n=1
which is true for every ¢,z € C with |¢| < 1 and z # 0. The oscillator contribution in
the infinite product in the last line of Eq. (138) comes from the modes J2, and J%, for
n > 0 which are charged under the finite su(2) by z = 0, z*! respectively. Indeed, since

these modes are bosonic, they contribute to the character by

o0

Z(z“q)i =(1-2¢")"" for a=0,%.

1=0

The rest of the expression accounts for the fact that the ground states form a spin ¢
su(2)-representation and for the null vectors in the module. The numerator of Eq. (138)

at lowest orders in ¢ looks like

(k+2) (k+2) (G T R Rtb® ( j 043 _hie3
®2e+1 (ZJT)_@—25—1(Z§7') =q 2 |z —2 " 2)—q 2 z 2 — 2 2 4. .

Recall that the character of the finite-dimensional spin ¢ su(2)-representation is given by

)4 41 -1 .
au(2) /o m 22—z sin((20+ 1)7(Q) ; 2mi¢
Xe Q) E z p— Sn(r0) or z=-¢e (139)

m=—{, m+LEZ
Thus, the oscillator contribution is multiplied by

<é+%)2 7; 2 (k*é‘i’%)Q 71 2
LI Pl (9 s e PN (O B
2(£+1) k

= q 2 8GR <X2u(2)(<=) . qk+1_2lX2u+(?)fg(C> 4. > ‘

We recognize on the right hand side the factor ¢"~2i, where the conformal dimension and
the central charge have been described in Section We also understand the second
term in the series as subtracting out the null vector (J*,)¥17 |¢), see Eq. (30). The next
term in the series correspond to the fact that we have also subtracted all the descendants

of the null-vector. However, some descendants are actually not there and have to be put

70



in again into the character. This pattern continues and yields an alternating sum. This is
made even more explicit when looking at the specialised character, that is, letting z — 0,
which after some manipulations yields

(e+3)2

q k+2

€Z

Remark 6.2. In this chapter we mainly considered characters of integrable modules and
we ignored issues related to the convergence of the characters of Eq. and Eq. (137).
There are in general two points of view when considering characters; one can define them
as complex formal power series (or formal distributions) in the variables ¢ and z, which
are then called formal characters, or as meromorphic functions in z expanded on a
specific convergence region dictated by ¢ (where we always assume that |¢| < 1), which
are then called character functions. It turns out that the characters of integrable rep-
resentations are holomorphic in z, thus one can identify formal characters with formal
distributions. However, even in the “simplest” non-integrable setting, namely that of
affine Lie algebras at admissible fractional levels, see [DEMS97, Chapter 18], the charac-
ters usually have poles in z and hence one must distinguish between formal characters
and character functions. In particular, when working with character functions one loses
the correspondence between modules and characters. More precisely, the Z-linear map
which assigns to each module in the fusion ring its character is not injective as in the
integrable setting, see for instance [CR13].

However, for what concerns modular invariance of WZW models at fractional levels,
Kac and Wakimoto [KWS88] observed that for a given admissible level, there is a finite
number of admissible representations transforming linearly among themselves under mod-
ular transformations. This readily leads to a formal modular invariant which is simply
the diagonal invariant built out of the admissible character functions.

In this regard, one of the most studied case is that of s[(2); and su(2), for admissible
fractional levels k, see [CR13] and [LMRSO04]. In this setting, the spectral flow action on
the character functions has finite orbits, meaning that even though there are infinitely
many inequivalent spectrally flowed modules, there are only finitely many linearly inde-
pendent character functions. In particular, one finds recursive relations between character
functions and their spectrally flowed versions, which allow to characterise the kernel of
the map from modules to characters. If such kernel contains modules that close under
fusion, namely if forms an ideal, then one can consistently define fusion at the level of
characters and the resulting ring over Z is called the Grothendieck ring of characters.
Assigning modules to their characters therefore define a surjective Z-linear map from the
fusion ring to the Grothendieck ring.

As mentioned above, this has a peculiar effect when considering modular invariance.
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Specifically, one expects from rational theories that pairing each module with itself under
the holomorphic and antiholomorphic affine actions leads to a modular invariant partition
function. However, the coincidence of characters means that there are infinitely many
modules all contributing the same amount to the partition function, which therefore di-
verges. One can then regularise this divergence by only allowing the linearly independent
characters to contribute, effectively dividing the modular invariant by the infinite multi-
plicity of each independent character, and in this way one recovers the modular invariant
of Kac and Wakimoto [KWS8S§]. This is indeed invariant under the modular action of
PSL(2,Z), but one should be careful in interpreting it as a physical partition function,
since technically it does not refer to a complete set of modules of the theory. In particular,
there is no set of modules corresponding to this partition function which is closed under
fusion. In essence however, it determines a modular invariant partition function in the
Grothendieck ring of characters. This is no different to what one does in rational theories,
and evidence is in favor that this is what one should do in logarithmic theories as well.
However, determining a modular invariant in this way does not answer the fundamental
question of how the holomorphic and antiholomorphic sectors of the theory are glued
together. Applications hence require a justification of why such a partition function is
appropriate.

The proposal of [LMRS02] in interpreting the modular invariant on the Grothendieck
ring of characters in relation to the Kac-Wakimoto invariant, is to regard the character
functions as being defined only on the respective annulus of convergence. Summing them
to get a partition function is therefore viewed as summing over the different annuli in order
to have a finite meromorphic partition function on the z-plane with |¢| < 1. Presumably
this means each character should take value zero outside its given annulus, in contrast
with analytic continuation. This proposal seems however unlikely [Rid09] since modular
transformations do not preserve this annuli structure, hence one is forced to analytically
continue the characters into the rest of the z-plane.

In fact, it would be better to extend the definition of partition function so that every
module contributes. In [Rid09] it is suggested to introduce an additional quantum number
to distinguish representations with the same character, namely same character functions
with different annuli of convergence. It is not clear however that such a quantum number
need exist and it seems plausible that modular invariants for fractional level models can
only be defined at the level of Grothendieck ring.

With these comments, one should also be careful when interpreting the Verlinde for-
mula. The potential problem linked to the fact that the modular transformations relate
different regions of convergences, is not taken into account in the derivation of the Ver-
linde formula. Therefore, it is well established only for integrable representations, or
equivalently, for holomorphic character functions. On the other hand, if spectrally flowed

modules appear under the modular transformations, this means that we do not flow back
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onto the original set of fields when going around cycles on the torus. This clearly indicates
that the Verlinde formula does not apply in general to admissible fractional level WZW
models. In particular, a naive application of the Verlinde formula to some admissible
fractional level theories [Rid09] has lead to negative fusion coefficients. In [CRI12| it is
argued how this arises because the characters of the infinitely many irreducible modules

are not all linearly independent as meromorphic functions.

6.2 Modular Invariance

In CFTs higher order corrections in perturbation theory are equivalent to defining the
fields on higher genus Riemannian surfaces. At one-loop, that is genus one, such surface
is the torus. It turns out that the partition function on the torus has a symmetry under
the modular group PSL(2,7Z); we say that it is modular invariant. This feature heavily
constrains the field content of the theory and so the allowed representations.

Starting from a tree-level CFT defined on the Riemann sphere S? = C U {co} we
can obtain a CFT on the torus T?(r) = C/(Z + Z7) by taking the quotient of the
punctured sphere with a two dimensional integral lattice specified by a number 7 € H

called modular parameter, where we denote the upper half plane by
H:={r € C:Im(r) >0} .

Since we wish to work in a differential geometric setting, instead of a topological one, for
different values of the modular parameter we obtain in general inequivalent tori, where by
inequivalent we mean non-isometric or with non-isomorphic complex structures. There

is an action of the modular group on H given by Md&bius transformations

b
PSL(2,7) x H — H, <a ) i (140)
c d ct +d

This action preserves the torus T?(7) for fixed 7 € Z. The modular group PSL(2,7Z) is

generated by two elements:

11 0 1 1
T := , T—71+1 and S:= , T ——,
01 -1 0 T

with relations S? = I and (ST)? = I as elements of PSL(2,Z).

The partition function of a CF'T on the torus turns out to be
Z(r,7) = Tew (g™ Sigh 5 (141)

where ¢ = €™ and ¢ = e ?™". Then, by the discussion above Eq. (141 has a PSL(2,Z)

73



symmetry. In the following we will be mainly concerned with integrable WZW models.

6.2.1 Modular covariance of integrable affine characters

The modular group action of Eq. (140]) can be extended on affine weights of g, by

a b ar +b clz]?
(ziTit) = d: ot
(c d) (2:7;%) (ZCT+ "er+d’ +2(c7’—|—d) ’

where we identify z = (z1,...,2,) with ( =>_/_, ;). In particular,

1 2
T-(z;1:t) = (z;7+ 1;t)  and S (275t) = (z;——;t+ﬁ> :

T T 2T

This action then descend on affine characters as
A-xs(zm5t) = x5 (A (5731)) VYA€ PSL(2,Z).

The result that is at the core of modular covariance in unitary rational WZW models
is that the characters of dominant highest weight representations at some fixed level k

transform into each other under the modular group action, that is

(5T 5 = Y Taxalzimit),

pepPk
) (142)
Xa 2/ =1/mit+ |27 /2r) = > SipxalziTit)
pepPk
where
Tip = 03,6778, (143)
which means that the T-transformation induces only a phase change, and
Sﬁ( _ Z-|A+\|P/Q\/|—%(k: + hV)—r/Q Z 6(w)e—Qm‘(w()\-i—p)7M+P>/(k+hv) (144)
" 9

weW

where P := @®!_,Zw; denotes the weight lattice of g and P/Q" the set of lattice points
of P lying in an elementary cell of V. It is very important for the derivation of Eq. (143
and Eq. (144) that the affine characters can be expressed in terms of generalised theta

functions, see Eq. (136]). Then, Eq. (143) is straightforward, while Eq. (144]) follows from
the Poisson resummation formula

S fla) = 1_11“| S f), (145)

zel pel™*
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where I' = &% ,Z¢; C R? is a d-dimensional lattice with volume |T'| := \/m ,
I* = @ Ze; is the dual lattice with (e;, €f) = ;5 for every 1 <4,j < d, and f: R? = C
is a Schwartz function with Fourier transform f. In particular, for d = 1, &, = 1 and
f(x) == e ™" with ¢ € H and b € C, one obtains the useful identity

Z e—ﬂanz-i-bn — L e—%(m—ﬁf (146)
nez \/a meZ

We investigate the properties of the modular 7- and S-matrices. A very important

fact is that both matrices are unitary
T =7 and S'=8".
Note that S =1 but S? # 1. Indeed, at the level of affine weights
S (zim5t) = (=2 73),
which implies that at the level of characters
S?xi(z 7 t) = i (—2 7)) = X (2575 8) (147)

where A\* the affine highest weight conjugate to ), see [DEMS97, Chapter 14]. This in

particular shows that S? is the charge conjugation matrix
C:=8" with C-x5=x;..
On &S, the action of C is simply the usual complex conjugation
S=CS8=8C.

An interesting result, is that when looking at the specialised form of the second line
in Eq. (142) and in particular at its asymptotic behaviour for 7 — 07, one finds that

S50 = Soo >0,

where the label 0 stands for kwg, the vacuum representation. This means that the S-
transformation of the vacuum character is a non-trivial linear combination of every inte-

grable highest weight character present in the model.
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6.2.2 Modular invariance in WZW models

For an integrable WZW model, the full Hilbert space decomposes as

H= P MM, @H; (148)

A pePk

where the tensor product reflects the separation into holomorphic and antiholomorphic
sectors. Also, M sp € N gives the multiplicity of the combined modules H; ® H; in
the Hilbert space of the theory. Since there are finitely many integrable highest weight
representations, say N > 0, the coefficients of M can be assembled into a matrix which
we call mass matrix since it specifies the physical spectrum of the model. The partition
function Eq. can thus be expressed in terms of the affine integrable characters as

Z(rm) = ), (DM Xa(), (149)

5 1 e pk
A f €P+

where now Mj; can be interpreted as the multiplicity of the primary field which under
G(z) x G(Z) transforms with respect to the A and p representations of g respectively.
This form of the partition function for WZW models does not fully take into account
the Lie algebra symmetry; in other words, even though the parameter ¢ in Eq. in
unnecessary, the chemical potential z € C" is required for the full characterisation of
the spectrum and is missing in Eq. . For instance, the z dependence is needed to
distinguish between conjugate characters, see Eq. . However, in order to lighten the
notation, we omit these parameterﬁ.

With Eq. we have that modular invariance of Eq. is equivalent to the

following conditions:
TIMT =8 MS=M — [M,S8]=[M,T|=0, (150)

that is, M must be in the centraliser of S and 7.
In addition to being modular invariant, the partition functions must satisfy the fol-

lowing physical conditions:
1. M sa € N,

2. Mgy =1 for the vacuum state to be unique.

4The complete partition function Eq. (141)) including the chemical potentials of the Cartan generators
is often written under the form

_ _ he _[o— _hl
Z(z,z;71,7) = Try qto 6/24mi°qL° 0/24931‘0

)

where x; = €*™% | ; = e~2™%% and there is an implicit product over i =1,...,7.
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An N x N-matrix M satisfying Eq. and conditions 1, 2 is said to be a physical
invariant. It appears though that the physical conditions are not quite sufficient to fully
specify well-defined theories. For example, a physical invariant could lead to a theory
with non-integer fusion coefficients, which should not be acceptable. At this time, a
complete set of conditions that must be satisfied by a physical invariant to qualify it as
a genuine rational CF'T is not known.

There is a natural choice for the mass matrix, namely

i

Then the partition function is simply

Z(n7) =) xmxe),

) k
\eP¥

which is modular invariant by unitarity of both 7 and §. Such theory is called diagonal.
In this case, all integrable representations appear exactly once and all the fields have equal
holomorphic and anti-holomorphic conformal dimensions. Moreover, the diagonal theory
with M = I is a physical invariant.

The problem of finding modular invariance has lead to mainly three approaches: the
method of outer automorphisms (which is an abelian orbifold construction), conformal
embeddings (immersion into a larger theory, see Section and Galois permutations
(modular-invariant permutation of the fields associated with an automorphism of the
fusion rules). These methods always produce physical theories but none of these prove
to be complete; that is, all known physical invariants cannot be generated by only one of

these techniques. For a more detailed discussion we refer to [DFMS97, Chapter 17].

Example 6.3. In Example we gave an explicit expression for the integrable su(2)y
characters. Recall that for fixed level k € Z~ there are k + 1 integrable highest weight
representations which we label by the spin ¢ € N such that 0 < ¢ < k/2. We choose the

ordered basis (X(()k), Xgl;)zv e 7X1(f;)2) for the vector space of integrable affine characters of

su(2)g. Then, by Eq. (143]) the modular T-matrix is given by

. L(L+1) k
722]/‘3) — e27”( k+2 _8(k+2))5e o

Since [Ay| =1, |P/QY| =1, ¥ = 2 and |w;|* = 1, the modular S-matrix of Eq. (144) is
given by

(k) 2 n 7T<2£+1)(2€/+1)
w = \VEy2® k+ 2

) for 0 < 0,0 <k/2, (151)

which is clearely symmetric and one can check explicitely that it is also unitary. Eq. (151
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can be obtained explicitely with Eq. and the Poisson summation formula, Eq. .
A remarkable fact is that for the su(2),-WZW model there exists a complete classifi-
cation of modular invariants; this is due to Cappelli, Itzykson and Zuber [CIZ87]. There
are three types of modular invariants: the A-type, corresponding to the diagonal invari-
ants, which exists for every level k € Z-q, the D-type, which exists for even level, and
the E-type, which exist at the three exceptional levels k = 10, £k = 16 and k£ = 28. The
terminology ADE comes from the fact that the classification problem for su(2); can be
mapped to the classification of simply-laced Lie algebras. The modular invariants have
also a physical interpretation. The A-type modular invariant defines the SU(2)-WZW
model at level k& € Z-q; it contains every integrable representation exactly once. The
D-type corresponds to the SO(3)-WZW model, which turns out to have a quantisation
condition k € 27 instead of Eq. because it is not simply-connected. This is an
instance where the global topology of the Lie group affects the spectrum of the theory.

Remark 6.4. We stress that in the discussion above we considered WZW models on an
affine algebra g; that admit at least one integrable representation, which then implies
that all the relevant representation of the theory consist in the finite set of all integrable
highest weight representations of g. At the level of the corresponding Lie group G, this
requires that G is compact.

As we mentioned before, global properties of G also affects the spectrum. Indeed, if
G is compact and simply-connected, then the theory possess a diagonal invariant. On
the other hand, if G' is compact but not simply connected, then the WZW model is still
rational but not necessarily diagonal. As an example, the SO(3)-WZW model exists for
even integer levels k € 2Z-y and its spectrum is a non-diagonal combination of finitely
many integrable highest weight representations corresponding to the D-type invariants in
the su(2); classification.

If G is not compact, then the WZW is non-rational. Moreover, its spectrum may
include non-highest weight representations. This is the example for the SL(2, R)-WZW
model, whose spectrum is built from highest weight representations, plus their images
under the spectral flow automorphisms of the affine Lie algebra, see [MOO1].

If G is a Lie supergroup, and correspondingly g is a Lie superalgebra, then the spec-
trum may involve representations that do not factorize as tensor products of represen-
tations of the holomorphic and antiholomorphic symmetry algebras. This occurs for
example in the case of gl(1|1) [SS06] and also in more complicated supergroups such as
psu(1,1]2) [GQS06]. Non-factorizable representations are responsible for the fact that

the corresponding WZW models are logarithmic conformal field theories.
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6.2.3 Modular transformations and invariants for coset theories

We come back to the setting of Section and consider an affine embedding, following
the lines of [DEMS97, Chapter 18.7]. In this context, the branching coefficients satisfy
a simple rule, which can also be used for their determination. More specifically, the

branching functions correspond to the normalised character identity

Xpa(zim) = > T (T)xa(zi ), (152)
pepyer

2

Eq. . Moreover, for characters of integrable representations there is an asymptotic

which simplifies further for conformal embeddings, since mj = hy — and one can use

relation given by

X3 (1 = 107) ~ S5 eime/12T

All together, we obtain
S0 =2 b3 S0,
i

where S and S are the S-matrices of g and g respectively. Note that this relation holds
true in the case of integrable theories.

We now move our attention to coset theories, continuing the discussion of Section [4.2]
To extract the coset gi/g; conformal theory from the g,-WZW model, we must strip
off its g;, content. In practice, this means that if we consider the affine branching rules
of Eq. , then the various characters of the coset model should emerge from this
decomposition. In other words, the branching functions are the natural candidates for
the coset characters. However, this is not quite exact and we must first consider the
precise relationship between characters and branching functions. For that, we look at
Eq. and define the normalised branching functions as

X{X; i} (1) = QZMT(meﬂ)bxn(ﬂ . (153)

By Eq. (152)) we identify the coset characters with normalised branching functions. How-
ever, an immediate consequence of this identification is that not all pairs of fields (or
weights) can be combined into coset fields. Indeed, for the branching function Eq. (153))

to be non-zero, the so called selection rule must be satisfied:
PAX—puePqQ, (154)

where @ is the root lattice of g and P is the projection matrix of the embedding g < g.

We now consider the modular transformation properties of the branching functions.
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The modular transformations of affine integrable characters Eq. (142)) leads to

X (U = D S S X (7).

NePk, yeplkre (155)

Xgaop (7 1) = 27Ty (7).

where S and S are the modular S-matrices of g, and g; respectively, and we omitted the
projection operator from the & matrix indices since x5 and xj have identical modular
transformation properties. Then, Eq. (155) shows that the transformation matrices for

the normalised branching functions are

St v = Siv S
Ty vy = Tan T

where the * here means complex conjugation. In particular, unitarity of the branching
function modular matrices is inherited from the unitarity of the WZW modular matrices.
Note that the 7 transformation matrix for x5,y in Eq. 1} is given by

Xpao (T 1) = T (1),

where c is the coset central charge as in Eq. . Moreover, there is a simple expression
for the fractional part of the conformal dimension for the coset field {5\, i}, If the tip of

the /1 representation of g; lies at grade n in the A representation of g, then
whose fractional part is just hy — h,. Thus,

Xpay(T+1) = 2T hume/24) X3 (7) -

Finally, we mention that from the modular transformations of the coset characters in
Eq. , one can construct modular invariants for the coset theory from invariants of
gr and g;. At first sight, a straightforward way of constructing the coset mass matrix
M oser 18 the product

Mepset = MM, (156)

of the mass matrices M of g, and M of gi.- Then, the modular invariance of M and
M ensures automatically the invariance of their product. However, this simple product
matrix does not give the coset partition function, since the selection rules of Eq. (154)),

which impose constraints on the summations, are not taken into account. In general, the
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true partition function has the form

N

Zeoset (7-7 T) ~ § X{j\,ﬂ}(T) Mj\,j\’
ANePE fiiePfve
PA—pu=PN —p'=0 mod Q

N Y{j\';ﬂ’} y (157)

where the proportionality factor depends on the length of fields identification orbits under
the outer automorphism group, which we did not discuss here and we refer to [DFMS97,
Chapter 18.3]. The partition function Eq. no longer has the simple product form
Eq. , and modular invariance is not guaranteed from the onset but it turns out that
it still holds true. Moreover, note that by construction, the coset models we considered
are rational conformal field theories. Indeed, since there is a finite number of primary
fields in both the gg- and the g;-WZW model, there is a finite number of branching rules,

and thus a finite number of coset primary fields.

6.2.4 Modular invariants of u(1)

We now consider the affine Lie algebra u(1)y, which is also called the Heisenberg alge-
bra. This affine Lie algebra is generated by modes J, for n € Z and L, satisfying the

commutation relations
[, In] = kmOpmino and  [Lo, J,] = —nd, .

Note that by redefinition of the generators, we can assume without loss of generality that
k = 1; this is also why when considering the affine algebra u(1) the specification of the
level is often omitted. The module of the Heisenberg algebra is simply the Fock space of
a free boson and it is specified by an highest weight state |s) for s € R such that

Jols) =sls) and J,|s) =0 ¥Vn>0.
Such modules are always irreducible, and the states are of the form
JMJ" . s) = |s;ny,ng, ... ) withn; € N

which holds up to a normalisation constant and only finitely many n;’s are nonzero. Then

2 oo
S
L0‘8> = ‘S;’I’Ll,n2,...> = <E+an) |S;n1,n2,...>,
1=0

and hence the number of states at fixed grade n is given by p(n) € N, the number of
partitions of n. Also, since the dual Coxeter number of u(1) is zero, this theory has

central charge ¢ = 1. Thus, the specialised character of the Heisemberg module is thus
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equal to the inverse of the Euler function times a factor related to the modular anomaly:

2

nzzop(n)q =0

[~

62
Xs(T) = q? 2

=

Note that these characters are holomorphic in 7 € H and integrable as functions of s € R.

From this, we can compute the modular transformations

s2i

xo(r +1) = (5 730) y ()

| (158)
Xs (—1/7) = /}Rdt e 2ty (1),

by using the modular behaviour of n(7), see Appendix , and the Fresnel-integral:

o, 1T
/ezax +ibr _ —e ‘1 VQEH, beC.
R a

From Eq. (158) which we read of the modular matrices
Tot = 627”(7724)(5(8 —t) and Sy =e ™ (159)

for s,t € R. Note that we are in a more general setting than Eq. (142)) since we have a
continuous spectrum and the 7 and & matrices are now distribution valued functions of
(s,t) € R?. The matrices in Eq. (159) are still unitary in the sense that

/ dt TuT, =6(s—r) and / dt SyS! = 6(s—r). (160)
R R

This suggests that a diagonal modular invariant should be applicable in some sense.
Let 7 be the complex conjugate of 7 € H and X,(7) for § € R be the affine character
corresponding to the antiholomorphic copy of u(1). Then, we consider a partition function

of the form

2(r.7) = [ [ dsds M),

for some generalised mass matrix Mgz, a distribution valued function of (s, s) € R2 For

the special case of a diagonal mass matrix
M = 8(s —3),

the associated partition function is

e7ri(7'—7")52

T) = SXs(T)XAT) = S = ! !
Zur ) = [ 4l 0) = [ i = s

(161)
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which is exactly the partition function of a free boson. This reflects the fact that the
modes of the conserved current of a free boson theory satisfy the affine 11(1) commutation

rules. One can easily verify that Eq. (161)) is indeed modular invariant, since

Im(7)
7|2

S: Im(7) —

In the field-theoretic setting, the boson can be compactified on a circle of radius
R € R.y which causes windings that must be taken into account at the level of the
partition function. In particular, the periodicity condition on the boson field imposed by

the compactification constrains the .J; and the J; eigenvalues to

m  Rn _ __m  Rn
pr(m,n) = 7 + - and  pr(m,n) = 73 for m,n € Z (162)

respectively. Thus, the corresponding mass matrix is given by

Mgg) = Z 6(5 - pR(m7 n))5(§ - TOR(mv n)) )

mne”
which gives the familiar partition function of a boson compactified on a circle of radius R:

pR(m,n)? pR<m n>2

2 (163)

Zg(T37)

m,neL

One can check that Eq. (163]) is modular invariant for every R > 0 by applying twice the

Poisson summation formula Eq. (146]). We show this with a formal computation using

Eq. :

1 1
Zn (—‘ —r) = 3 [ [ dudre ety oy
T T

[ [y >

= [ [ aar :Za (F=m)o (5 ) wetomn) o
- [ paf. (E - = m) (X ()
_ mzn;z Xor(nm) (T Xp ) (T) = Za(T,7),

where for the third equality we used

Ze%mx:Z(S(x—n) VzeR. (165)

ne”Z meZ
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This calculation is only formal since the interchange of summation and integration in the
first equality of Eq. (164) is actually not allowed, since

/ / i ’e—2wi(tpR<m,n)—fzsR(m,n>>Xt(ﬂyﬁ)‘ _
RJR

is not summable over Z?, and hence the Fubini’s theorem is not applicable.

We thus found that the 1(1) theory has at least two types of modular invariants:
the diagonal invariant of Eq. and the continuous family of Eq. parametrised
by a positive real number R > 0. Moreover, these invariants can be understood in a
field-theoretic context. We point out that even if at the level of the affine Lie algebra
the theory possess a continuous spectrum parametrised by s € R, once considering the
compactness properties coming from the corresponding Lie group U(1) & SL we obtain a
spectrum which consists only of a discrete subset of these representations parametrised by
two integers, see Eq. . This is similar to what we wish to happen for su(2)_;, which
has no integrable representations and a continuous spectrum. Nevertheless we expect the
compactness of SU(2) to reduce the set of representations appearing in the spectrum to

a discrete subset.

6.3 Characters of su(2);

We begin by recalling the character formulae of the integrable unitary representations of
su(2);. Using the notation as in Example and the conventions on the theta functions
given in Appendix [A] we have that

MWy r) = P3(55%57) V(555 7) _ [9s(227)05(v; 27) + U(2; 27) 05 (v 27)
R e e ) L&é@
and

) Vo(5E 1) ¥2(55%57) Va(2;27)05(v; 27) + U3(2; 27)09(v; 27
e e T e 1o el IR

(167)
where [],—, extracts the coefficient of the factor (e*™)". We remark that for su(2);, the

free field realisation in terms of two complex fermions actually yieldﬂ

s0(4); = su(2); @ su(2); . (168)

15This reflects the fact that the fermions naturally lead to u(2); = su(2); @ u(1) and the u(1) current
V can actually be extended to another su(2); algebra - we can equivalently think of this construction
in terms of four real fermions generating so(4) = su(2) @ su(2) - by considering the charged generators
K+ =4 9?2 and K~ = ¢] ¢l

84



This then accounts for the full central charge of ¢ = 2 coming from four real fermions, each
contributing ¢ = . The representations of su(2); @ su(2); are also naturally described

in this language: in the NS sector we have
) ~ 1 1 1 1
U = (M o HE) @ (1Y, @1, ,) | (169)

where Hél) denotes the spin ¢ irreducible su(2);-module. Note that Eq. l' is equivalent
to the second equality in Eq. (166]). On the other hand, the R sector leads to

1) ~ 1 1 1 1
/Hl(l%) = (Héz)yg ® /HE:)O) = (Hg:)() ® ,Hé:)1/2> ’ <170)

which is equivalent to the second equality in Eq. (167]). The modular-behaviour of these
characters is well-known and encoded in the modular 7T- and S-matrices. Note that at
level k£ = 1 the ordered set (Xgl), X§1/)2) constitutes a basis for the set of unitary irreducible

representations of su(2);. With respect to this basis, the modular transformations are

and

1 (1 1
S — — ’
a0)

which are both symmetric and unitary, see Example [6.1}

6.4 Characters of su(2)_;

In relation to Remark , we point out that the su(2)_; theory, in addition to being
non-integrable it does not even belong to the realm of admissible fractional level WZW
models. Indeed, as we will see, there are infinitely many admissible representations, whose
characters present analogous convergence issues as in [Rid09], so we expect the discussion
of Remark to at least partially apply also to this setting. In particular, even though
there are some formal similarities between the modular transformations presented in
Section and those of su(2)_;, the author was not able to find a partition function
for this theory that is at least formally modular invariant. Moreover, even if such exists,
there would be probably technical difficulties in interpreting it as a physical invariant,
see Remark [6.21

6.4.1 Singular vectors in the Verma modules

We begin by analyzing the structure of the su(2)_;-Verma module with highest weight

state |j) of su(2)-spin j € R, where we allow all the su(2)-representations presented in
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Section [3.2] In particular, we prove that there are no singular vectors except for the
discrete highest weight representations of spin j € %Z<0 and for the lowest weight discrete
representation of spin j € %Z>0, where in both cases the singular submodule is generated
by a single vector. In turn, this implies that also the continuous representations with
VRS %N and A — 7 € Z contain singular vectors.

That the vacuum Verma module is free of singular vectors can be elegantly argued
from Eq. through the following reasoning: if it contained a non-trivial null vector
N, then by Theorem the vertex operator associated to it is zero, namely V(N z) =0
for every z € C. In particular, the zero mode V(N), applied on any highest-weight state
|7) of the su(2)_;-theory vanishes, that is

VoN)17) = P() 1) =0, (171)

where P(j) is a polynomial in j. This follows from the fact that V4(N') applied on |j)
has grade zero and hence it can be obtained from |j) by application of su(2)_;-zero
modes and using the commutator rules it can be expressed as a polynomial in 5 and
the conformal dimension h; = C; of |j), which is equal to the Casimir C; of the spin
j su(2)-representation in which |j) transforms, see Eq. (28). Since P(j) posses finitely
many roots, we conclude that the existence of a null vector would restrict the set of
allowed representations to a finite subset of spins j, corresponding to the roots of P(j).
However, this would contradict Eq. , which is an admissible representation of su(2)_;
containing infinitely many j’s. It thus follows that there is no null vector in the vacuum
Verma module of su(2)_;.

We now consider the Verma module corresponding to the highest weight represen-
tation of generic spin j € R of su(2)_;. We start by recalling our conventions. For

completeness, we report here the commutation relations of the affine algebra su(2)g,

. k
[JS ‘]3] = _m5m+n,0a

m’“n 2
[ng Jni] = iji-i-n )
[T T ] =202+ kmbmino -

The automorphisms of su(2); which preserve the Cartan subalgebra are generated by
the conjugation automorphism 7 and the spectral flow automorphism o, which we
already defined above through the free field representation. These automorphisms leave

the level k£ invariant and their action is given by

() = I UCHE 7(Lo) = Lo,
2 I (172)
o I) = a0 () = Jat Gwone,  0(La) = Lot w4 Jw 0.
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Note that 70 = o~ !7 and according to the convention introduced in , the module 7(H)
is the conjugate of H.
We proceed with the singular vector analysis. It will be convenient to denote by
A = 27 the su(2)-weight of the affine weights, where j is the usual spin. As we have
seen in Section , at fixed level k an affine su(2),-weight A = (X, k, hy) is completely
determined by the finite su(2)-weight A, since its conformal dimension is given by
AA+2)  j(H+1)

h pu— pu—
A Ak +2) T k42

and similarly for a lowest weight by the replacement A — —A\. In the following we will
focus on the case k = —1, which is non-integrable, that is, it contains only non-unitary
affine representations. Hence, the null vector relations Eq. , namely Eq. , do not
hold and we shall instead use the Kac-Kazhdan determinant formula, Eq. . For a
highest weight su(2),-module with highest weight state |A), this takes the form [Rid09]

o0

dety(p,m) = H {()\ 14+ l)P(—u+21,m) H(/\ +1+n(k+2)— Z)P(—u+2l,m—nl)
= =l (173)

(A =1+ n(k+2) = DPEr2m=nl) (n(F 4 2))P(u,mn1)} :

where P(u,m) denotes the multiplicity of (1,0, m) € €5 in the vacuum Verma module
(this is independent of k). The presence of a singular vector in the Verma module to
A is signalled by the vanishing of one of the factors appearing in this formula and the
vanishing of the arguments of the function P occurring in the corresponding exponent.
Moreover, recall that if a weight is singular, than the null vector of that weight is unique
up to normalisation [KKT79.

We now specialise to k = —1 and we omit the k-label in the specification of weights.
Note that this theory has central charge ¢ = —3, see Eq. . The Verma module to
A = 2j is characterised by an highest weight state |j) satisfying Eq. with & = —1.
We than see that Eq. vanishes when

Il=X+1, Il=X+1+n, l==-X—14+n withn € Z.,. (174)

Since | € Z~q, we see that the first equation has a solution if and only if A € N; moreover,
a necessary condition for the other two equations two have a solution is A € Z. We
distinguish between two cases: A € N and \ € Z_.

For A € N the first equation always has a solution and the arguments of P in the
corresponding exponent vanish if g = 2 = 2(A+1) and m = 0, indicating that the singular
vector has weight (—2(\ + 1), hy), corresponding to the state (J; )**!|;), which means

that the state |j) transforms in the finite-dimensional spin j representations H; of su(2).

87



By repeating the same reasoning for the other two equations one finds correspondingly

the singular weights

(=X =2m,hy+m(m —A—1)) for m > max{l, A+ 2},

(175)
(A+2m,hy+m(m+A+1)) for m > max{l, —A},

which is true for every A € Z. These seem at first sight to be additional singular vectors,
however they all actually belong to the submodule generated by the singular vector
(—2(A+1), hy). Indeed, by repeating the above Kac-Kazhdan analysis for (—2(A + 1), hy)
we find exactly the singular vectors of Eq. . As a consistency check, one can also
repeat the analysis for all the singular weights in Eq. and find that the so obtained
singular vectors are are again of the form as in Eq. , which confirms that they all
lie in the same singular submodule. From this we conclude, that the Verma module to
highest weight A is irreducible for all A € R\ Z_q if we naturally supply the definition
of the module by requiring that for A = 25 € N the highest-weight state also satisfies

(Jo)*15) =0,

that is, that |j) lies in the finite dimensional su(2)-representation of dimension 2j + 1.

We now consider the case where A\ € Z_(. It follows that the first equation in Eq.
has no solution, which in turn implies that there is no singular vector at level zero (where
by level we refer to the shifted eigenvalue of Ly — hy). Indeed, this is true for all A ¢ N|
meaning that the corresponding highest weight states lie in a (semi)-infinite dimensional
representation of su(2), namely D} The first (with lowest level) singular vector obtained
from Eq. (I79)), is (=X, h—x) = (=X, hy — A) corresponding to the state

(J5) ™ 13) (176)

which one can explicitly compute to be a highest weight state, that is singular, by using
the commutation relations. Moreover, this singular vector generates a submodule that
contains all the others of Eq. , as one can confirm by repeating the Kac-Kazhdan
analysis for the weight (=X, hy — A). It follows that for A = 2j € Z_, the quotient of the
Verma module to A by the submodule generated by the vector Eq. is irreducible.
Moreover, note that D; = T(ij), where 7 denotes the restriction of the conjugation
automorphism on the finite su(2) subalgebra, and the analogous relation holds for the
corresponding affine su(2)_;-modules. Hence, from Eq. we infer that the singular
submodule of the Verma module with highest weight states transforming in the D

representation for j € %Z>0 is generated by the singular vector
(J2)7 15) - (177)
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6.4.2 The affine characters

We can now compute the characters of the su(2)_; highest weight representations, which
as we have seen are characterised by the spin j € R (and the continuous ones also by
A € R/Z). We denote the chemical potential of su(2) by z := e*™ for t € C. As we will
see, all the character formulae can be written as meromorphic functions expanded on a
specific convergence domain in the z-plane, so in general an su(2)_; character consists
in such a function and the specification of the domain. In particular, following the
discussion in Remark [6.2] we mainly work with character functions, unless differently
stated.

By the null vector analysis, for the highest weight affine representation of spin j € %N

we have ) )
palta —gTITs

ENTES (178)

-1 i(5 2 -1 .o(q4 L
X5 7) = UG () X6 (8 7) = gVt

valid on the convergence region |q| < |z| < |g|™*, where Xj“(Z) (t) was defined in Eq. (139

and
1

anl(l —zq")(1 —q")(1 —z~1q")
is the character of the irreducible vacuum Verma module. Note that ¢;(¢;7) has zeros
at x = ¢" for all n € Z and the vanishing of the denominator in Eq. (178) at z = 1

is compensated by the vanishing of the numerator, hence the convergence region can be

—1 1
XS () = ¢

extended from 1 < |z| < |¢|™* to |¢| < |z| < |¢|™", feature which is peculiar of characters
of affine modules generated by finite-dimensional su(2) representations. For the highest

weight affine representations of spin j € R\ %Z we have

¢+ qu m iq(j+%>2$j+%

[l =gl —gm)(1—2z"lq") i)

ool

~1
X = ¢ (179)
where the second equality holds for 1 < |z| < |g|™!, and the +-sign in the label of the
character is there to recall that it corresponds to the highest weight discrete representation
Df. The character of the conjugate representation, namely that corresponding to a lowest
weight discrete representation, is
@l >y 2" iqu—2) g

(_1)(t ) i Vg3
X — yT)=¢q8 = - )
g [Ls (X —2g)(1 —¢g")(1 —27¢") h(t;7)

where the second equality holds on the convergence region |q| < |z| < 1. We point out

that there is an identity

X (67) = x5l (—t7) VieR\3Z

j77
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as formal power series, whilst as meromorphic functions
(=1) ¢ _ =D t: VieR\ 17z
Xj,+ ( 77—) - Xj+1,—< 77—) J € \ 2%

which at the level of characters is wrong since the two sides of the equation possess disjoint
convergence regions. By the above null-vector analysis and in particular by Eq. (176)), we
can also express the character of the highest weight affine representation with j € %Z<0,
which is

X 67) = X (61— g M), (180)

where Yg-;l)(t; 7) is the character of Eq. (179) formally extended to j € %Z<0. Note that

since in Eq. (180]) the singularity at z = ¢~' is removable, the convergence region can be
extended from 1 < |z| < |¢|™" to 1 < |z| < |¢|™ Using Eq. (177), the corresponding

result for the lowest weight affine representation with j € %Z>0 is

~1 ~(—1 =y
X (tm) = BT = ),
with extended convergence region |q|? < |z| < 1 after removing the singularity at z = q.
Again, there is an identity of formal power series

Xg;l)(t;T) = X(:j’lZ(—t;T) Vji€ily. (181)

5.;\1) of the continuous representation C’} for j € R and

A € R/Z. As we have seen in Section , for 7 — \ ¢ Z this representation is irreducible,
and by the Kac-Kazhdan analysis, the affine Verma module constructed out of it is free
of singular vectors if A # 0, % For j — A € Z and \ # 0, %, the module C']f\ is reducible
and indecomposable but its Verma module is still free of singular vectors. We conclude
that

We now turn to the characters x

Ji(G—1) Am (j—1)2 Am
XVt r) = g5 7 Dmen® =T ngz ’ ifA#£0,L,
’ [[>:(1—2¢")(1—q¢")(1—2"q") n(7)
(182)
where we rearranged
> omez " _ qi > omez "
HnZl(l —xq")(1 —a~1q") n(r)?

Note that Eq. does not converge anywhere on the z-plane, so we have to consider
this character as a formal power series. For j € %Z and A\ = 7 modZ, the situation
is quite different. Since in this case j and —j + 1 parameterise the same module, we
restrict our attention to j € %N. Then, as we have seen in Section , the module C’Jj is
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indecomposable but its structure is given by
C/=Df  @H;®D;,, VjeiN, (183)

This decomposition then translates at the level of affine su(2)_;-modules, implying the
presence of non-trivial singular vectors. Hence, we might compute the character of the
corresponding affine module Cj in terms of those appearing in Eq. by considering
them as formal power series, since some of the character functions involved possess disjoint
convergence regions.

We also note that the following identities hold true

Xg D= X§+) X(_jl_) - _X§+1)_ + X( ]1) v] S %Na

=X -5 Vje iz, (184)
1 1 1 .

Xg_)—xg_) x(_jl Vj€ 3Zs,

where the expressions are convergent on the regions dictated by the corresponding for-
mulae specified above.
We now turn to the spectral flow o defined in Eq. (172)). For k = —1, we find the

following isomorphisms

o(H;) =D, 0_1(7'[]')%7).71 Vi€ IN,
T o ) (185)
o(D;) = D;r_% 7 Df) =D, Vj¢;L.

By Eq. (172), every su(2)_; character transforms as

OV (7) = sVt +wrsr) YweZ
de(j) ) - q Xj ) ’

which has convergence region in the x-plane scaled by a factor |¢|~. Using Eq. (230))

one shows that the extended characters transform as

~(-1)  _ w ~(=1) ~(-1  _ w ~(=1) :
XO-UJ(]‘)7+ - (_1> Xj+%,+7 Xaw(j) - (_1) Xj+%’_ \V/j € Ra (186)

with convergence regions |q|™" < |z| < |¢|7*! and |q|7“T! < |z| < |g|™" respectively.

Since x X ) for j € R formally build a basis for all the characters, see Eq. (184, from
Eq. (186 - we can also deduce the character of all the spectrally flowed modules. When

forgetting about the convergence domain of the characters and treating them as mero-

morphic functions, we derive recursive relations similar to those in [Rid09], namely

(1) (-1) (1) cy .
Xaw+1(j) + ng(j+%) + Xaw—l(j) + Xaw(j—%) =0 V] € 2Z>0 ,
(-1 (-1 1) cy o
Xow(j) T Xowii(j41) T Xow(jtn) T Xow-1(j+1) = 0 VjesN,
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for every w € Z. These shows explicitly that the association of modules to character
functions is not injective and it allows to identify the kernel of this map. It could be
interesting to find all the linearly independent character functions, namely to identify the
Grothendieck ring of characters. From that, it could be possible to construct a modular
invariant partition function, similar in spirit to the Kac-Wakimoto invariant [KWS8].
Inspired by [HHRS91], we look if the sums over all spectrally flowed versions of a
character at fixed spin yields a useful basis of the Grothendieck ring for considering

modular transformations. Thus, using Eq. (186 we compute

D () = —i ¢/ a09u(t/2 + jri7/2) i@l (Da(t + 2§73 27) — Vst + 2573 27))
Xov) - 0 (t:7) - 0 (t:7) ’
(187)

wWEZ

which for j € %Z further simplifies to

. ﬁg(f 27) —193<t 27')
—1\¥ ) )
ZXUW(J =i(=1 V1(t;7) ’

wWEZ

where we used Eq. (231)). It follows that

E:qu )=0 VjelN,

wEZ (188)
Y X BT =0 V)€ iz,
wEeZ

which shows that such sums are not of interest, if the characters are considered as mero-
morphic functions. At the level of characters and not character functions, Eq. (187
involves a sum of terms with disjoint convergence domains, so we need to be careful in

interpreting Eq. (188)).
We can compute the modular transformations to be

APt + 1) = mil6E0H) FD 1)

~(— t ]. 7rzt (189)
xﬁ»,i” (—;—;) 27 /dS\/_ze mi(2s41)(2j+1) Xg,il)(t;T).

T

Note the similarity with the generalised modular matrices of the u(1)-theory, see Eq. (159)).

In particular, we have that
T = e2m(j(ji1)+§) 5(j—s) and Sy = @e—m(%ﬁ:l)@jil)’ (190)

which satisfy the unitarity relations of Eq. (160]). One could then attempt to construct a
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“naive” diagonal modular invariant analogous to Eq. (161]), and this yields

Im(t)2
1 eZﬂ- Im(T)

L
2 /Tm(7) [0(t; 7) 2

- _ . ~(—1 ~(=1) /7 =
Zdiag.naive<t7 i, T) = /d] X;,—s-)(ta T) §,+)(t7 T) =

which interestingly agrees with the contribution of the discrete representations D;T to
the partition function of the SL(2,R) WZW model at level k£ > 2, whose allowed range
of spins is 1/2 < j < (k — 1)/2 [MOOQ1]. This probably correspond to an analogous
contribution of the discrete representations D} of su(2)_; on the range —1/2 < j < 0,
which combines with the spectral flow sum to give the range j € R\ %Z at the level of
character functions, see[186] We could have expected some similarity in such contribution
since

su(2)_; = sl(2,R); .

However, since the corresponding Lie group is compact, when considering su(2)_; we
would like to construct a partition function containing only a discrete subset of the allowed
representations, namely those with j € %Z. The author tried constructions analogous to
that of Eq. , where the spins included in the partition function belong to a lattice
in R?, but without success.

An other interesting formal computation that we report here, comes from Eq.

and it is

— t 1 7\'it2 . ~(—
A (;; _;> — e 5 / ds 2v/2 ™= sin(r(2s +1)(2j £ 1)) X2 (5;7) Vi€ IN,
R
(191)
which summing over w € Z and using Eq. (165)) yields

1 t 1 _ mit? . . . -1 .
ngw&) <—; —;) =e o 22\/5 sin(m(27 + 1)(25" + 1))X§, Wt:7) Vje IN.

-
wWEZ j'eN

This, together with Eq. (188]), shows in particular that the summation over the spec-
tral flow action does not commute with the modular S-transformation. We point out

the apparent similarity of the modular S-matrix elements appearing in Eq. (191) and

Section with those of Eq. (151)) for k = —1.
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7 Free field characters

7.1 The free field characters of su(2)_,

We recall that the affine characters of the integrable su(2); modules can be easily ex-
tracted from the corresponding free field realisation in terms of two complex fermions.
This is due to Eq. . On the other hand, the situation is quite different for su(2)_q,
since it is not possible to extend the u(1) generator Uy to another commuting su(2) al-
gebra as before because the analogues of K* in Footnote (15 do not commute with the
generators J¥. More precisely, the bilinears formed by two pairs of symplectic bosons
generate sp(4)1, which contains su(2)_; & u(1); as the Up-uncharged subalgebra, but it is

bigger since at the level of the zero modes
sp(4) = su(2) Du(l) ® 3,93, (192)

where 3; and 3_; denote the 3-dimensional representation of su(2) and its conjugate
respectively, and the subscript labels the Ujy-eigenvalue. The additional two terms in
Eq. are formed by the six independent bilinears A*\® and ], ,ujg respectively, which
generate an ideal of sp(4) but not a subalgebra. Hence, there is no decomposition anal-
ogous to Eq. and the relevant (Ujp-uncharged) algebra associated to two pairs of
symplectic bosons is u(2)_; = su(2)_; Gu(1) which has central charge c = —3+1 = -2, in
agreement with the central charge of the four symplectic bosons (each symplectic boson
contributes ¢ = —3).

As before, there are again two natural sectors: the NS sector in which the symplectic
bosons are half-integer moded, as well as the R sector in which the symplectic bosons are
integer moded. Because of Eq. , we expect the Up-uncharged part of the free-field
representations (both in the NS and R sectors) to be reducible with respect to su(2)_;.

Indeed, the analogous of Eq. (169)) turns out to be

i =PH ", (193)

jeN

where 7—[](-_1) denotes the spin-j irreducible representation of su(2)_;, whose structure has
been described in the previous section. Eq. (193)) can be shown at the level of characters,

94



namely

1 = n 1
st = e [T0 =) 1] -
n—1 r1 L — 20y
a, 3 4=0

:<;n ) (55 )

n=1a=%1,0 7=0 m=—j (194)
t 7) Zxﬁu(Q) §(5+1)
—1

=Y X

.
Il
=)

where y = €2™* is the chemical potential of ZE. This equation can also be expressed in

terms of theta functions as

n(r)?

__a iG+1)
[194(%&;7.)194@_—2&;7)] - 191( ZSID (2 + 1)mt)g’V
“w

1

For what concerns the R sector, the analogous of Eq. (170]) turns out to be

M @R it DT @) WY ey Z N, (199

AS Y JEN+Z

where we are considering the Ramond sector corresponding to R as defined in Eq. ,
and we denote by %ﬁ;lz) the subrepresentation corresponding to fixed Zy, = Z. The
conjugate R sector R, defined by Eq. , yields the conjugate representations and we
denote it by ﬂﬁ{” and by ﬁglz) the subrepresentation to fixed Zy, = Z. We have an

analogous decomposition for the conjugate R sector as

’H EBHRZ with ’H,RJFZ— 2(Z£1) @ 7-[ for every Z € IN.

ZE Z JjEN+Z

One can deduce Eq. (195]) at the level of characters:

oo

—1 -1 mo—mi,,mi+m n 1
X D) =g Y ey [ -¢n ] 1— zeuban
ml,mQG%N n=1 a,b::ﬁ:% v
-y ysxsu(2)(t)4Sin( m i) sin(r 5 ) (1)? (196)
— &0 Oy (55 7)1 (55 7)
s€§N
1
- Z yZXE%Z)(th)v
ALY/

16Note that the Z; has the same value as Uy on the symplectic bosons, since they are Vj-uncharged
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where we defined

N (8 7) = ke V(i)
w=z

Then the following relation holds true:
i T =X Y1) YZ e N, (197)

Denoting by Y X R (t 7) the character of the conjugate R sector representation R (notice
that the bar does not mean complex conjugation), we have that

(—1)(

—(—1 -1
Xi(t 7)) = X )

—t,—p;7) =X (6= T),

which yields
Yo Ly tm) =X () VZelL.

Then, the key result is the following relation which holds for every Z € %N and confirms

Eq. :

1,\2 — —
(NG =g V) Y PP = Y X ) (198)

jeEN+Z jeEN+Z

and consequently
¢ = Y T (199)

JjeEN+Z
and the analogous statement for the conjugate representation follows directly. In partic-

ular, for Z = 0 we obtain
1(-1
¢ XG0 (57) = x\s (7).
Eq. (198) follows easily from this particular denominator identity for Lie superalgebras
[KW94], which states that for |¢| < |u|,|v| < 1 we have that

= (1 — qn)2<1 — uvqn_l)(l — u_lv_lq mgn mn
,Hl (1 —ug" )1 —u'g")(1 —vg")(1 —v~'q") (mzn:o mnz_l)
(200)

and by substituting u = x%y_%, v = x%y% it yields

N o 11— 1— :1:_1"
S ( Q)( )( Q)
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v = q%x%y% in Eq. 1' one can show that for every Z € %Z:

DI | Sr ST I |

n=1 1 m=—s n=1 1
ab==+3 y=7 SES 1N ab==+3 y=z

which for Z = 0, together with Eq. , proves Eq. .

A result similar to Eq. holds for the character of the symplectic bosons in the R
sector RT defined by Eq. ( - which contained discrete representations of su(2) to spin
J € ——N Indeed, the character is given by

_1 —mi—m mi—m - 1
R D e | CRT O | e
mqmuE%N n=1 ab:i%
byt Z e 4Sin(7r%ﬂ) sin(r54)n(7)? (201)
st D1(5 )0 (5 T)
-1
= > NG,
Zeiz
where as above we defined
-1
Xz (6:7) = [xﬁﬂ)(t ; )L:Z-
The key fact is that
1 -1
X§E+)Z 1(25;7') = X;Jﬁ)_z_%(t;T) VZ €3N, (202)
and that
g\ Z+a) XR+ St 7) Z X_]+ (t;7) VZe—3N. (203)
JEN-Z

In particular, for Z = 0 one obtains

1
qXR+OtT ij+t7
J€Z<o

Eq. ( and Eq can be proven again by applying Eq. - ) with the substitu-

tions u = x~ 2y2 and v =x" 2y 2 note that this changes the convergence region to
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1 < |z|2|y|~2,]z|2|y|2 < |g|™*, which needs to be taken into account in order to obtain

Eq. (203) shows that

1) = @ HR with HR+ i1 =4 = EB D_ ~,  forevery Z € IN. (204)

Zel o JjEN+Z 2
We can transfer these results for R* to R~ defined by Eq. (117)) by noticing that

-1
XD ) = XS (= 1)

which implies that for the representations with fixed Z € %Z we have
-1 1
Xg«zf,)z(a T) = XSDH) Z2(=67).

Then, Eq. (197)) translates into

1 -1
X )Z+ (t;7) = X;_y)_ZJr%(t;T) VZ e N,
and we can use Eq. (181]) to infer
1 _ —
¢ = Y ) VZelzy,. (205)
JEN+Z

In particular, for Z = 0 we obtain

a XRJrOtT ZXJ,

JE€Z>0

We can write Eq. (205)) as

1) ~ ,2
Hpl = P Hyy with H V=07 P Dy, V7N,

ZG Z jeEN+-Z

Finally, the full affine character corresponding to the free field representation of four
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symplectic bosons defined in Eq. {) and allowing my, mo € %Z is given by

-1 —1 mo—m1,,mi+m ¥ n 1
N sy =g Y0 ammymte [T - [ e by
ml,mQG%Z n=1 a,b:i% y
(206)
s 1 -1
- Z T Z y'a GE Z yZX%,Z)(t;T)
Zs€l  Zscr+i U Zeliz
where .
—1 —1 S

X St T) = [x% >(t,u;7)] =X oy V7 17.. (207)

w= SEL+Z n

7.2 The free field characters of psu(2]2);

Following the lines of [EGG19], we note that we can obtain psu(2[2); from u(2|2); by a

coset construction. More explicitely, there is an isomorphism

@)
pou(i2h = 20y By

-, two pairs of symplectic bosons and two complex fermions
- u(ly e u(l)y 7

(208)

where (1) and u(1)y denote the affine algebra generated by the modes of U and V
respectively. With the analogous notation for the affine algebra generated by Y and Z,

we have the following short exact sequences

0 — su(2)2); — u(2]2); — u(l)y — 0, (200)
0—u(l)z — su(2]2); — psu(2]2); — 0,

which give
u(2|2); = su(2]2); @ u(l)y,
su(2(2); = psu(2)2); ®u(l)z
The coset free field representations of Eq. are labelled by

(oy(€);Y;2) (210)

where o{(£) denotes a o-spectrally flowed representation of two pairs of symplectic
bosons. Since the supercharges are bilinear expressions of one symplectic boson and one
fermion, and since we require them to be integer-moded, the moding of the symplectic
bosons also fixes that of the fermions. Thus the fermions will be in the R sector if w is
even and in the NS sector if w is odd. In particular, this thereby fixes the representations
of the su(2); algebra. Finally, Y and Z denote the eigenvalues of Yy and Z,. With
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these conventions, the symplectic bosons and free fermions transform with respect to
su(2) dsu(2) du(l)y du(l)z as

symplectic bosons ()\O‘,ML) (2, ) e (2,11,
fermions (¢, w;) b (1,2)o11 8 (1,2)1,-1

By Eq. , it follows that only the zero-charge sector of the central extension Z
descends to a representation of psu(2|2);. Furthermore, in order to obtain complete
psu(2]2);-representations, we have to sum over all Yp-charges, because the fermionic
modes carry charge with respect to u(l)y. On the other hand, for irreducible repre-
sentations of su(2[2); we have that Z € 3Z and we also have to sum over all allowed

Yo-charges, which are specified by the requirement that Z — Y € Z. Hence, we have the

identifications
L= P(oy(K);Y;0),
Yez
Rz=Ze @ (03(€):Y:2), (211)
Z-YeE
R 7¥ZQ® @ (ov(€);Y;-2),
Z-YeErL

for every Z € %N, where IC denote the NS representation of two pairs of symplectic
bosons, while £ and £ denote the R sector defined by Eq. and Eq. respectively,
and Z denotes the representation of a single free boson associated to the algebra u(1).
Analogous isomorphisms also hold for the other R sectors defined by Eq. and
Eq. . Note that here we are considering the representations in the R sectors R, and
Rz as su(2]2); representations.

We can thus compute the characters of both the su(2|2); and the psu(2|2); represen-
tations using the free field realisation. We start with psu(2|2) and in particular with the
vacuum module £, which arises in the NS sector. Its character is computed by multiply-
ing the NS character of two complex fermions given by Eq. with the NS character
of two pairs of symplectic bosons given by Eq. , then extracting the coefficient to
Zy = 0, summing over all Y, € Z and dividing the result by the character of two free
bosons, see Eq. . Concretely, we have that

04(t+g+u>§4(t7u7u)

2

ztv—p 2—v+p
chl(K; Y5 0)](t, 25 7) = n(r)? [193( )0 (5 >]

X(()l)(Z;T) Z]ENJF% X§_1)(t;7‘) ifY € 2Z,
XA E e XS V(7)Y €224 1,

where v and p denote the chemical potentials of Yy and Zj respectively. By Eq. (211)) it
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follows that

ch[£](t, 2 7) = Y ch[(K;Y;0)](t, 2 7)
YeZ
=0 (=7) D27+ DX (B7) + xh(ET) Y 2+ DG ()
JEN jEN+2
_ 000s(t;27)03(2; 27) + 0,03(t; 27) 02 (25 27)
m ()01 (t;7)
O (792(HTZ;T)792(FTZ;T>)

m(r)d: (¢ 7)

(212)
The second line of Eq. (212)) gives the decomposition of the vacuum module £ in repre-
sentations of the affine bosonic subalgebra, that is, the branching rules for the embedding
su(2)_; @ su(2); C psu(2|2);; this is depicted in Table |1, Such decomposition is due to

Lo— &
0 (0,1),
1 (3.2), (5.2),
2 (1.1), (1.1), (1.1),
4 (5.2) (5:2) (5.2), (5.2)
6 (2.1), (2.1), (2,1),

Table 1: Decomposition of the vacuum module £ of psu(2|2); in affine highest weight
representations (j,n)y of the bosonic subalgebra su(2)_; & su(2);, where the conformal
dimensions are displayed on the left and Y indicates the Yj-eigenvalue. Note that Yj is
not part of the psu(2|2); algebra, so the label Y is actually arbitrary is there to simply
because the relative Y-value between the representations helps to understand the pattern
of the fermionic modes in the module.

the fact that the action of negative fermionic modes Sffﬂ for n € N generates high-
est weight states with respect to the affine bosonic subalgebra. For instance, one can
check that as it is indicated in Table , the vectors Sffﬂ()} are singular with respect to
su(2)_; @ su(2); and generate the affine modules (5,2)_, @ (3,2),. In general it seems
that the pattern of these singular vectors is pretty complicated to deduce with a purely
algebraic approach, mostly, as we will see, for the modules Rz with Z # 0, hence we
work at the level of characters.

We now wish to compute the spectrally flowed characters and the modular behaviour
of Eq. . For that, we remark that in order to obtain good modular properties, we
shall include a factor (—1)¥ in the definition of the character, where F' is the fermion
number, effectively replacing the character by the supercharacter. This modification
has the concrete effect of substituting the plus sign in the second and third line of Eq.

with a minus sign, and thus substituting 95 to ¢; in the numerator of the last line, that
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’ By (01 (E2;7)0, (552 7))
(7)o (£ 7)

Note that as for the characters of su(2)_;, the presence of 9; in the denominator of

sch[L](t,z;7) = (213)

Eq. makes this affine character a meromorphic function on the z-plane, and its
validity is bound to be true only on the convergence region specified by |q| < |z| < |q| .

The non-holomorphicity of the character causes some technical issues when we com-
pute the characters of the spectrally flowed vacuum module, since as in [Rid09], for
different integer values of spectral flow the flowed characters generally possess disjoint
convergence regions, see Remark . Indeed, using Eq. and Eq. , as well as
the spectral flow action Eq. , we compute

—mwﬁl( )191(%, )+3t(191( 7')?91(75_7”2;7'»
mn(7)d1(t; 7) ’

which is valid only in the convergence region |q|'™" < |z| < |¢g|™~!. Note that Eq. (214))

ch[e“(L)](t, z;7) = (—=1)* (214)

has a convergence domain that intersects that of Eq. (213) only for the values w = +1.
However, if we ignore the issue of the convergence regions, that is, if we consider the

characters Eq. (214]) as meromorphic functions of x, we obtain the following identities:

ehle) = TV (ehfov ()] + chlo(2)])
Ch[a“’“(ﬁ)] = 3(—1)"ch[L] + (=1)“ch[o(L)] — ch[c™(L)],

(215)

for every w € Z. Eq. imply that there are only two independent character functions
among all the spectrally flowed versions of the vacuum. This in turn implies that as in
[Rid09] the association of psu(2|2);-modules with the corresponding character functions
is not injective. Thus, all the discussion of Remark is relevant also for the psu(2|2),
theory.

We can now make use of the simple modular behaviour of theta functions, see Ap-

pendix [A] and compute

t 2z 1 ri oy T2 UL (5 )0 (5555 7) — 4T (01 (P55 )0 (525 7))
safg] (121 ) = et DA ,
(216)

where we recognize the prefactor NG coming from the general transformation prop-

erty of weak Jacobi forms of index 1 and —1, and the second therm in the fraction which
is again the vacuum character. It follows that the component of the modular S-matrix

of psu(2|2); relating the vacuum module to itself, is given by

8575 = iT, (217)
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and the explicit (linear) 7-dependence suggests that this model is an example of a loga-
rithmic CFT.

More generally, the modular transformation of the spectrally flowed characters is

t 2 1
sefo(0)] (£, 551 =
w{w + 2) 0y (525 7Yy (555 7) — i (0 (5257 (5552 7))
7 (7)1 55 7) ’

if we treat the characters as meromorphic functions, that is, if we work at the level of

ety

character functions.

7.3 The free field characters of su(2[2);

We now look at the free field su(2|2); characters. Similarly to as we did for £, we first
compute the full R character to fixed values Z and Y of Z; and Y. We begin with the
R free field representation R which yields the representations R for fixed Z € %N . We
obtain

192(,2—&-3 “)19 (z 1/+u

777'

n(r) ch[(€;Y5 Z)](t, 2:7) = Z PTG E (# )

i€3 32 v=Z,u=Y

=z ()

¢ 7 AET) X 1Y’+Z VD, () Y —Ze2Z,

¢ V(2 )x; 1Y>+Z Yo tr) Y —Ze2Z+1,
(218)

where the eta function on the left hand side comes from the u(1), factor generated by Z,

see Eq. (209)). Using Eq. (211]) we compute

n(r) ch[R(t,27) = Y ch[(&Y;2)](t, %)

Ye Z+Z

— (z;7 Zq(nJr X Z+n(t T)—i-Xg/QZT Zq XZD (t;T)
nez neZ

) ) (=1)
ZYEQZ qZY Z]EN-F% XJ + X1/2 ZYGQZJrl qZY ZjENﬁ-% X] :|
(-1 (1) (-1
X1/2 ZYG2Z q ZjeN+m X; tXo ZY@ZH q* ZjeNJr% X; }
_ 1 j 1 1 j i\ L (—1
¢?7 X((J : ZjeN ( ngj q ) X; '+ Xg/)Q ZjeI\H% (Zngj il ) X§ )]
— j 1 j i -1
qZ(Z 2 X1/2 Z]GN < szj q > Xg Y + Xé ) Zj€N+% (Zngj q2Z ) Xg‘ )] )
(219)
where in the last two equations the top line holds if Z € N and the bottom one if Z € N+%;

qZ(Z—l) (1)

A

also, in the last equation the sums in the round brackets run over integers whenever j € N

and half integers if 7 € N 4 % Note that we dropped the arguments of all the functions
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in the last two equations for more readability. Then, the last equation explicitly gives
the branching rules for the representation associated to the affine embedding of the affine
bosonic subalgebra su(2)_; @ su(2); ®u(1)z. At this point, we clarify the fact that since
the multiplets in Eq. and in Eq. differ only by the substitution Z, — —Z,
and Yy — —Y; we have the following identities for every Z & %N:

ch[(&;Y; Z)|(t, z;7) = ch[(&; =Y = 2)](t, ;7) ,
ch[Rz|(t, z;7) = ch[R_Z|(t, z; 7).

Unfortunately, the branching functions in Eq. do not seem to allow for a simpler
understanding of the modular behaviour of the affine su(2|2);-character, as it was for the
vacuum L. Only for Ry, where one observes that Table [2|is the same as Table [1| but with
an overall shifted Yj-eigenvalue by 1 (which is irrelevant from the perspective of su(2|2);)

and by quotienting out the affine u(1), factor. These relation is explicit also at level of

Lo— %
0 (0,1),
! (3.2) (3:2),
2 (1.1, (1.1), (1,1),
4 (3.2), (3:2), (3.2), (5:2),
6 (2.1) (2,1), (2,1),

Table 2: Decomposition of the affine module R in affine highest weight representations
of the bosonic subalgebra su(2)_; @ su(2). Note that we omitted the representations
generated by the affine u(1)z, so each affine bosonic representation is actually tensored
with the affine u(1) module Z. The conformal dimension is also different from that of
Table [I} as the latter is the former shifted by the modular anomaly of a free boson,
namely by —1/24.

characters, where
ch[(£,Y +1,0)] = ch[(K,Y,0)] VY eZ, (220)

or more generally
ch[(E,Y +1—2,2)] = ¢?% 1"V ch[(K,Y,0)] VZeNVY €Z, (221)
from which follows that

ch[(E,)Y — Z,2)] = ¢?“ V) ch[(£,Y,0)] VZeNVY eZ, (222)
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which is Eq. (133) at the level of characters. Then, when summed over Y € Z, Eq. (220)
yields
1(7) ch[Ro] = ch[L],

which is exactly Eq. (129)). Similarly, summing Eq. (221]) over Y € Z+ Z yields for every
Z e N:

n(r) chR ] (1.2 < 7) = 77D Z 2 Xij(z; ) ZjeNJr% X; _11) (t;7) ifY €22,
va dpEn) Tiagum )y ) #Y €224 1,
(223)
which agrees with Eq. . Eq. allows to understand the affine bosonic structure
of Rz for Z € N in relation to the structure of £ (or Ry) seen in Table[l] In particular,
if we ignore for a moment the conformal dimensions at which each affine bosonic module
appears, we note that the affine bosonic content of R is the same as that of Ry. By
considering also the conformal dimensions, we obtain the structure of Rz, up to an overall
difference in the conformal dimension, by taking that of £ in Table [I] and “flowing to
the right” of Z columns, weighting each column by a different conformal dimension. For

instance, the decomposition of R; is given in Table [3]

0 0.1), (3.2), (1,1),

1 (%72)4

2 (3.2), (1.1), (2.1), (2,1),

3 (3.2),

4 1L, (5.2, (3,2)s
5) (g’2>4

6 (271)0 (3’1)3

Table 3: Decomposition of the affine su(2|2);-module R,. As in Table [2] also here we
omitted the overall tensor product with the affine u(1)-module Z.

For Z e N+ % a similar reasoning is also true, but one also needs to exchange all the
su(2), representations, namely 1 <+ 2. For instance, the structure of R/, is shown in
Table [l

We wish to compute also the characters of the Ramond sectors R*. We denote by

E* the R sector representations of two pairs of symplectic bosons defined by Eq. (121))
and Eq. (126) respectively; then ch[€F;Y; Z](t,2;7) is equal to Eq. (218) up to the
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1
L0_24

0 0.2), (5:1),

1 (%;1>,1 (172)2

2 (172)0 (371)3

3 (1,2) 9 (371)1

4 (%71)—1 (2’2)4
5 (2,1), (2,2),

6 2.2),

7 (2,2)_, (3:1),

Table 4: Decomposition of the affine s1(2|2);-module Ry 5.

replacement X; S) — ng + ¢ More concretely,

n(r) h[RF)(t,zm) = Y ch[(EXY;2)](t, %)

2 [ ) (-1) (1) (-1)
¢ X0 Xverrn €7 Xjeny Xa(iadye T X1z Dven S DI X¢(j+%)¢}

2 [ (=1 (1) (=1
¢ Xap Dvenn O Vet Xagip e TX0 2vent” Lienslzl X?(ﬂ%),ﬂ:}

z2 [ (1) j 27i) +(-1) (1) j 27i\ (-1
7 [Xo Zj€N+% <Z§:,j q ) X(id)+ + Xi/2 ZjEN ( ngj q ) X;F(jJr%),i]

2 [ (1) j i) (-1 (1) j i) (1)
¢ X172 ZjeNJr% (Z‘zz—j ¢* ) Xg(d)t + X0 2jen ( i=j ¢ ) XHF(J'+%)¢] ’
(224)
where in the last two equations the top line holds if Z € 7Z and the bottom one if

Z el+ —; also the sums in the round brackets in the last equation run over integers
whenever 7 € N and half integers if j € N + 5. Again, these are just the branching rules
for the affine bosonic embedding su(2)_; @ su(2); ® u(l)z C su(2]2);.

For the special case of Z = 0, the representations R descend to representations £+
of psu(2]2);. Concretely, the module £* is obtained from R by quotienting out all the
states containing at least one mode Z, with n < 0, namely Ry = £L*® Z. At the level of
the characters, this means that the character of £* equals the character to R5 divided
by the character of a free boson. Then, Eq. (224) can be written using Eq. and
Eq. in terms of theta functions as follows:

. —1
ch[LF](¢, 2 7) (2;7) Z 2ix L T) X h () > (25 + 1)X§F(j>+%)7i(t;7)

V3(2; 27) (£mida(t; 27) — 0p02(8;27)) 4+ Vo(2; 27) (£mwids(t; 27) — 003(1; 27))
m(r)d1(t;7)

;7)) — O (192(t+TZ§ 7)192(%§ T))

n(7)01(t;7) ’

B iy (552 )02 (52
N T
(225)
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which agrees with Eq. with w = 41 after replacing ¥ — ¢; in the last line of
Eq. , that is, by replacing the character with the supercharacter. Note that the
domain of convergence of Eq. forw =11is 1 < |z < |g|™® and for w = —1 is
lg|? < |z| < 1, which is the same as the corresponding domains in Eq. (225), since the
latter contains the characters Xﬁ»i)(t; 7) respectively. The affine bosonic content of these
modules is depicted in Table 5 This explicit computation is an incarnation of the fact
that

Gil(ﬁ)%ﬁi.
Lo— &
0 (F1,1), (¥3.2), (F1.1),
1 (F3.2), (F3.2), (F3.2),
2 (F2.1) (F2.1)_, (F2,1),
4 (¥3.2), (F3.2), (F3.2),

Table 5: Decomposition of the module £+, where all the labels j € 37\ {0} denote the
highest weight discrete representation D; of su(2) if j < 0, or the lowest weight discrete
representations D) if j > 0. One can identify the states at level zero via the spectral
flow action. Indeed, for £, the highest weight state in (— % , 2)0 corresponds to |0)7 _, ,
while those in (—1,1),, to SF £10)7 = [STFF0)]7 correspondingly. Analogously, for
L~, the highest weight state in (% , 2)0 corresponds to [0)?_ , , while those in (1 , 1)jEl

to SEFE|0)7, = [SEFF|0)]7, correspondingly. Note that as we already know from the
conformal embedding, the Casimir of psu(2|2) of both representations is zero.

Lastly, we compute the characters of the free field realisation R defined by Eq. 1'
and Eq. 1) allowing mq, mq € %Z. Denoting by £ the corresponding sector, we obtain

n(r) h[RA(tz7) = > [(EY;2)](t,%7)

Yer+z
a5 ) (226)
- Z r ()t ,
s€Z+3+7

which converges nowhere in the z-plane and thus has to be interpreted as a formal power

series. Then, by passing to supercharacters, which effectively replaces ¥ — ¥, we
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compute the spectrally flowed characters

n(r)chlo" (Ro)](t, ) = (~1)"a~ 5 Y. a'g U(T;l :
s€EL+i+2Z
W . . U (B2 1), (525 7)
_ (_1)wq— 5 esz(t+wr)(2+Z) esz(t+wr)s 2 2
2 TGk
thz. t—z
= (_1)wq—‘”7262m(t+w7)(%+z) Z(g(t+w7_ _ m)ﬂl( 2 77)1914( 2 7)
—~ n(7)
w? L1 191(t+_zv7-)191(t__277_)
=(—1)"q = 2 MG+ §(t 4+ wr — m) = : ;
N;Z n(r)*
(227)
and their modular transformation
n(—1) chlo(Rz)](£, % —1)
T (32 w Z. —z.
_ e%(zQ—t2)(_1) er (t' ) Z eQﬂim(%-l—Z)(S(t—w—mT)ﬁl(%’ )01 (F7)
Ep T )’
s 19 t_'__z7 /19 t__z7
= 5 =) (—isgn(Re(r) Zq 5 2mim(+ 25t —w — mr) 1557 (55 7)
meZ 77(7—)
= e (") Z/ AN Sy 7419 wr oy SCh[™ (Fa)](t, 25 7)

w' €L

(228)

where in the second equality we used

J <£> = 1sgn(Re(7))d(z) VezeRVreH,
T
and we used the characters analogous to those in [EGGI19] for the continuous multiplets
of psu(1,1]2) to general A € R/Z:
2

sch[o™(F)(t, z;7) = (—1)"¢ T Z xsqsw%( 2,

SEZAA

The modular S-matrix in Eq. (228)) is given by

S(w,/\),(w’,/\’) = —1 Sgn(Re(T)) e27r7j[w’()\+%)+w()\'+%)] . (229)
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8 Outlook

We mention some of the possible developments that could follow to the results presented
in this thesis.

We analyzed all the representations appearing in the su(2)_; theory and their char-
acters. It would be interesting to find a modular invariant partition function and in
particular one containing only a discrete subset of modules, since the global WZW model
is defined on the corresponding compact Lie group. Finding such invariant could in turn
be useful in constructing one for the psu(2|2); and su(2]|2); models. Indeed, because
of the conformal embedding of the bosonic subalgebra for the former, and the explicit
branching rules for the latter, knowing the mass matrices of all the components of the
respective affine bosonic subalgebras should allow for an understanding of the partition
function for the superalgebra. However, as already explained in Remark [6.2] the techni-
cal issues related to the non-holomorphicity of the su(2)_; characters and the fact that
the Grothendieck ring of characters is “smaller” than the ring of modules, challenges the
physical interpretation of partition functions constructed out of character functions. The
same convergence issues appear in the characters of the superalgebras discussed here.

A big step forward in the understanding of the WZW model on su(2|2); would be
to have under control the modular transformation of its characters. Even though we
presented explicit brunching rules in terms of affine bosonic representations, they do not
seem to simplify this task. However, the relatively close relation between the su(2[2),
vacuum module, namely Ry, and all the representations R, for Z € N, suggests that
it should be possible to relate the issue of understanding the modular behaviour of the
latter to the better-understood case of the former. Similar relations should be possible
between the other R sector representations with fixed Z; € Z and Ry. Computing the
modular transformations should also clarify if in order to build an invariant partition
function one has to consider also spectrally flowed modules.

For what concerns psu(2|2);, it is important to understand the logarithmic nature
of the theory, emerging from Eq. . In particular, the appearance of reducible but
indecomposable modules on which Ly is not diagonalisable has been observed in [EGG19]
for psu(1,1]2); and in [CR12] for sl(2, R); at admissible fractional levels k. In the former
case, there is a unique such module, which does not appear separately in the spectrum
since it is already taken into account from the contribution of irreducible representations.
At this point, it is also useful to point out the “duality” of the representation theory
of psu(1,1|2); and that of psu(2|2);. The main difference, is that for the latter we
only allowed the spin j of the non-integrable factor su(2)_; to be quantised to j € %Z,
and in particular we imposed A = j mod Z for the continuous representations. This is
due to global considerations regarding the compactness of the bosonic subalgebra. The

situation is instead quite different for psu(1,1|2);, since because of the non-compactness
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of the sl(2,R); factor in the bosonic subalgebra, the spectrum is continuous and more
specifically parametrised by A\ € R/Z. Then, the indecomposable module mentioned
before appears at A = 1/2; and it is the unique module from the family of continuous
s[(2, R)-representations that appears also in the psu(2|2);-theory. It would be interesting
to make this connection more precise.

As a continuation to this project, it would be also relevant to compute the fusion rules
and the Verlinde formula for both psu(2]2); and su(2]2);. We note that the fusion rules
of symplectic bosons have been explicitely worked out in [Rid10] and those of psu(1,1|2),
in [EGG19]. It is to be expected that the physical interpretation of the fusion coefficients
obtained from a “naive” application of the Verlinde formula is hidden, see Remark [6.2]
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A Theta functions

Following the notation of [BLTT3], let ¢ := ¢*™" € C for 7 € H, z € C, and we define the

theta functions as

9 [5] (z;7) =

Z eﬂi(n+a)27+27ri(n+a) (2+P8)

nez

27rzoz(z+ﬁ 0‘7 H 1_ q 1_’_qn+a—%627ri(z+5))<1 +qn a— e 27rz(z+ﬂ))’

where the second equality holds by applying the Jacobi triple product. The Jacobi theta

functions are then

D (555 7)1 (555 7) = 225 27)05(t; 27)
192(%”WW2(%3 7) = ¥2(2; 27)05(¢; 27)
V3555 T)03(555 7) = U3(2; 27)03(¢; 27)
Dy (4 7)04(55E 7) = V(25 27)05(t; 27)

and quasi-periodicity relations, such as

. —w?
Vi(z +wr;T) = e 7" g2 (2 7)

Vi(z + wr;T) =

for every w € 7Z, and

. W2 | Pa(z;27)

Uo(z +wr;2T) = e ™WFgT T
Us(z; 27)
, W2 | Us(z;27)

Us(z +wr;21) = e ™WFgT T
Ua(z; 27)

We also need the modular transformations

S
|

<
w

LS
|

111

. 71.112
(_1)wef2mwquﬁi(z; 7.)

0
RE
2

(230)

Yw e 2Z,

Ywe2Z+1,
(231)

Yw e 27,
Ywe2Z+1.

= \/—_ZTGMTZ U3(z;7),
= \/—_ZTem‘: Va(2;7),



and

Va(Z; —%) =/ —%T GW’ZQ (193(Z§ 7) — ¥a(2; 7'))
V3(Z; —%) = \/—?e 2 (793(2' T) + Ja(z; 7'))

We also make use of the Dedekind eta function, which is defined by

lzlﬁ 1—q

and it transform under the modular group as
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