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Abstract
A promising alternative to standard control strategies for

heating, ventilation, air conditioning and blinds position-
ing of buildings is Model Predictive Control (MPC). Key
to MPC is having a sufficiently simple (preferably linear)
model of the building’s thermal dynamics.

In this paper we propose and test a general approach to
derive MPC compatible models consisting of the follow-
ing steps: First, we use standard geometry and construction
data to derive in an automated way a physical first-principles
based linear model of the building’s thermal dynamics. This
describes the evolution of room, wall, floor and ceiling tem-
peratures on a per zone level as a function of external heat
fluxes (e.g., solar gains, heating/cooling system heat fluxes
etc.). Second, we model the external heat fluxes as lin-
ear functions of control inputs and predictable disturbances.
Third, we tune a limited number of physically meaningful
parameters. Finally, we use model reduction to derive a low-
order model that is suitable for MPC.

The full-scale and low-order models were tuned with and
compared to a validated EnergyPlus building simulation soft-
ware model. The approach was successfully applied to the
modeling of a representative Swiss office building.The pro-
posed modular approach flexibly supports stepwise model
refinements and integration of models for the building’s tech-
nical subsystems.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and

Analysis

General Terms
Algorithms

Keywords
Building modeling; Model predictive control

1 Introduction
Model predictive control uses a model of the building to-

gether with predictions of relevant disturbances over a given
prediction horizon to define an optimization problem for
maintaining thermal comfort for the occupants while mini-
mizing some objective (e.g. energy use or monetary cost).
See [9] for a comprehensive description of MPC. In con-
trast to most conventional building control approaches, MPC
makes it possible to integrate all available actuators and
their interactions as well as predictions of weather, internal
gains and electricity prices into a coherent, mathematically
founded control framework which can handle constraints on
inputs and room temperatures.

One proposed application of MPC to building control is
in a centralized control architecture [2], [4], [12]. Here we
focus on this approach for office buildings which has the ad-
vantages that the control system is typically already orga-
nized in a centralized way and that the computational con-
straints are not restrictive. As a part of the OptiControl1
project, we performed a large-scale simulation study that
suggested significant savings potentials of MPC when com-
pared to industry standard control [2],[6]. In a second project
phase, we have implemented a centralized MPC controlling
the heating, ventilation, air conditioning/cooling (HVAC)
and blinds positioning of a fully operated Swiss office build-
ing (see Figure 1(a)). We present here a general approach
for deriving MPC applicable multi-zone building models and
apply it to the specific architecture of the target building.

The challenge in building modeling for MPC consists in
having a sufficiently detailed and precise but—for the result-
ing optimization problem to be tractable also for reasonably
large problems—linear model of the building’s thermal dy-
namics2.

In building control literature, modeling approaches for
MPC vary in the level of detail and in the extent to which they
rely on identification from experiments or simulations. In [8]

1www.opticontrol.ethz.ch (last accessed Aug 1, 2012)
2For certain building systems it may be necessary to use bilinear models,

see comment in Section 3.2. In that case suboptimal solution techniques
have to be employed.
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the authors identified a multi-zone office building model suit-
able for control using black-box subspace identification from
EnergyPlus3 (EP) building simulation software simulations,
while the authors of [12] used a four state grey-box model
with experimentally identified parameters to model two ref-
erence rooms for the heating of an office building. The ap-
proaches require either a detailed EP model or experimental
data to fit the model before they can be applied. While this
may very well be acceptable for the tasks at hand, in the case
of industry application of MPC in office buildings it is un-
realistic to assume that this experimental data or a detailed
EP model is available beforehand. This holds especially if
one wants to use more detailed (multi-zone) models which
are desirable for the integrated control of office buildings’
HVAC and blinds systems. Moreover, the modeling should
require as little effort as possible for the approach to be at-
tractive for practical application.

The presented method aims in this direction. We propose
a semi-automated procedure that is mainly based on physi-
cal modeling using basic construction data together with a
regression model for computing transmitted solar radiation.
2 MPC Model Requirements and Target

Building
For use in MPC we are interested in a linear model of the

form,

x(k+1) = Ax(k)+Buu(k)+Bvv(k) (1a)
y(k) =Cx(k)+Duu(k)+Dvv(k), (1b)

where x(k),u(k),v(k),y(k) denote the states, the control in-
puts (heating/cooling etc.), the predicted disturbances (inter-
nal gains, ambient temperature, solar radiation) and the con-
trol outputs ((possibly averaged) zone temperatures) at time
k, respectively. Model (1a)-(1b) is then used to predict the
control outputs as a function of the current state, the control
input trajectory and the predicted disturbance trajectory over
a given prediction horizon. In theory, the prediction hori-
zon should be as long as possible to ensure a good control
performance. In practice however, this benefit diminishes
with increasing horizon length due to deterioration of the
model’s and the weather forecast’s prediction quality. More-
over, computational restrictions limit the achievable horizon
length. Nevertheless, it is beneficial to have a horizon of at
least 60h for the MPC to “see”, on Friday evening, the Mon-
day morning comfort constraints to enable the planning of
the HVAC/blinds strategy during the weekend. These con-
siderations lead us to choosing a horizon of 72h over which
we compare our linear model to the detailed EP model.

For the resulting optimization problem to be convex, the
actuation constraints must be convex. We use polytopic con-
straints having the general form

F(k)x(k)+Gu(k)u(k)+Gv(k)v(k)≤ g(k), (2)

with (potentially time-varying) matrices F , Gu, Gv and a vec-
tor g of appropriate sizes.

The target building is a medium sized, representative of-
fice building located in Basel, Switzerland. The floorplan of

3http://apps1.eere.energy.gov/buildings/energyplus/ (last accessed Aug
1, 2012)

(a) View of the target building from south.

(b) Floorplan of the second floor considered for MPC mod-
eling.Zone groups of which the averaged room temperatures
are considered as outputs in the reduced order model are in-
dicated.

Figure 1. Target building. Fully operated, conditioned
floor area 6000m2, located in Basel, Switzerland.

the second floor is shown in Figure 1(b). The HVAC system
consists of the following components. First, the thermally
activated building system (TABS), which are pipes buried in
the concrete slabs of the floors carrying hot/cold water for
energy efficient preheating/precooling. See [11] for a com-
prehensive treatment of TABS. Second, an air handling unit
(AHU) that includes a return air heat recovery system, an
evaporative cooler and a heater. Third, the blinds which are
also controlled centrally. The cold water for the TABS is
generated using a cooling tower (a heat exchanger to the am-
bient air) while the hot water for the TABS and the AHU
heater is generated using a gas boiler.

In order to be able to predict lateral temperature varia-
tions within the building, we chose to model the entire sec-
ond floor. The floors and ceilings were modeled to have adi-
abatic boundary conditions.

3 Building Modeling Method for MPC
In the following sections we describe the four steps of

the proposed modeling method. In Section 3.1 we use stan-
dard geometry and construction data to derive in an auto-



mated way a physical first-principles based linear model of
the building’s thermal dynamics4 as a function of external
heat fluxes q(x(t),u(t),v(t))

ẋ(t) = Atx(t)+Btq(x(t),u(t),v(t)). (3)

In Section 3.2 we describe these heat fluxes as functions of
control inputs and predictable disturbances in the following
form

q(x(t),u(t),v(t)) = Aqx(t)+Bq,uu(t)+Bq,vv(t), (4)

with (if applicable) their corresponding actuation con-
straints. Model (3) is combined with (4) and subsequently
discretized. In Section 3.3 we list the model’s tuning param-
eters and motivate their choice. Finally in Section 3.4, we
define control outputs and use a standard model reduction
technique to obtain a MPC compatible model.
3.1 Step 1: Automated Thermal Dynamics

Model Generation
In this section we outline the generation of model (3) from

basic construction data. In this context we use “building el-
ement” to describe walls, floors, ceilings and internal mass.
In the literature on simplified building modeling, the main
approach is to model zones and building elements linearly
using lumped states that describe their temperature, and cal-
culate resistances and heat capacities that define the heat ex-
change between them. Due to the obvious analogy to elec-
trical circuits, this is also called resistance-capacitance (RC)
modeling. See for instance [13] or [14] for grey-box building
models or [1], [5], [3] for white-box models relying solely
on physical first-principles. The white-box building model-
ing literature mainly uses a single state to model a zone’s air
temperature, but differs in the number of states describing
the temperatures within a building element. Since model re-
duction is part of our approach, the initial number of states
modeling a building element is not as critical in terms of final
model complexity. We therefore use the well validated ap-
proach of [3] which uses one state per building element layer
to obtain a single-zone model. In this paper we connect mul-
tiple of these models to build a complete floor model. Figure
2 shows the RC schematic of a single zone i including a floor,
a ceiling, an exterior wall and an interior wall branch as well
as capacitances for the zone air temperature and the inter-
nal mass. For simplicity, only one interior and exterior wall
branch and a fixed number of three states (capacitances) per
building element are shown (there may be more or less). Ta-
ble 1 lists all indicated external heat fluxes, the node at which
they apply and the physical heat flux they represent. Detailed
descriptions of the external heat fluxes are given in Section
3.2. Note that the illustrated zone is adiabatic except for the
branch to the adjacent zone and the external heat fluxes and
hence the overall thermal model is adiabatic except for the
external heat fluxes.

Algorithm 1 constructs the building’s thermal model (3).
As input the following objects are needed:

1. A list of zones containing for each zone its air volume;
4We use the subscript “t” to denote matrices of the thermal dynamics

model (e.g. At ) and subscript “q” for matrices of the external heat flux
models

qi
IWi, j

qi
EWo, j qi

EWi, j

qi
FLi

qi
CLi

qi
zone

qi
IM

qi
TABS

Next Zone

Ceiling Branch

Floor Branch

Exterior Wall Branch

Interior Wall BranchZone Node

Internal Mass Node

Figure 2. RC network for zone i. Capacitances represent
states, resistances the thermal resistances and q external
heat fluxes.

Table 1. External heat flux symbols and descriptions for
zone i.

Symbol Node of application Phyiscal heat flux
qi

zone zone internal gains, win-
dow heat fluxes

qi
EWo, j outermost of ext. wall j solar radiation and

convection
qi

TABS TABS layer TABS gains
qi

FLi innermost of floor solar radiation
qi

CLi innermost of ceiling solar radiation
qi

EWi, j innermost of ext. wall j solar radiation
qi

IWi, j innermost of int. wall j solar radiation
qi

IM internal mass solar radiation

2. A list of all building elements containing for each build-
ing element its construction type, area and identifiers of
the adjacent zones;

3. A list of construction types containing for each con-
struction type all layers with corresponding thicknesses,
heat capacities and thermal resistances.

The listing of Algorithm 1 contains the following func-
tions. The function get element model(.) generates the
building element’s system matrix Āel , its (diagonal) capac-
itance matrix Zel as well as the (possibly empty) external
heat flux input matrix Bel according to the construction type
and area specified in the building element. The function
connect element to adjacent zones(.) then adds ap-
propriate entries (inverse heat transfer resistances) in the Ā
matrix to model the heat transfer between the building ele-
ment and its adjacent zones. These resistances contain con-
vective coefficients which we consider as tuning parameters
(see Section 3.3). Refer to [3] for a more detailed description
of the approach we use to model building elements.



Data: ’list of zones’, ’list of building elements’, ’list of
construction types’

Result: Thermal model of the form (3)
Initialize empty capacitance matrix Z, empty resistance
matrix Ā, empty external heat flux matrix B̄;
for all zones do

compute ’zone capacitance’;
Ā = bdg5(Ā,0); B̄ = bdg(B̄,1);
Z = bdg(Z, ’zone capacitance’);

end
for all building elements do

[Āel ,Zel ,Bel ] = get element model(’building
element’, ’list of construction types’);
Ā = bdg(Ā, Āel); B̄ = bdg(B̄,Bel); Z = bdg(Z,Zel);
Ā =connect element to adjacent zones(Ā,
’building element’);

end
At = Z−1Ā;
Bt = Z−1B̄;

Algorithm 1: Automated generation of the thermal dynam-
ics model.

3.2 Step 2: Adding External Heat Flux Mod-
els

External heat fluxes describe all heat fluxes into the build-
ing and to its hull that are not direct heat exchanges among
building elements and zones. For different building cases,
the external heat flux models may have similar forms (e.g.
convective losses to the environment, or internal gains) but
can also vary substantially on a case-to-case basis due to the
differences in the type of HVAC subsystems.

The approach proposed in this paper allows for a modular
addition of these subsystems to the thermal dynamics model.
Due to the large variety, it is not possible to give models for
all existing HVAC systems, but we limit ourselves to describ-
ing a subset of the external heat flux models we have devel-
oped for the target building. These models include the con-
vective heat flux and solar gains to the building hull, convec-
tive and solar radiation gains through the windows as a func-
tion of blind position, internal gains due to occupants and
appliances as well as heating/cooling gains from the TABS.
We do not show models of the AHU or air infiltration. For a
detailed modeling of the target building’s AHU refer to [10]
and for models of further HVAC subsystems refer to [3].

Note that even though we require a linear form (4) it is
possible (and in the case of ventilation systems typically nec-
essary) to relax this restriction to models containing bilinear
terms in inputs and disturbances (ui · v j) and in inputs and
states (ui · x j). Since this results in a (mildly) nonlinear op-
timization problem, it makes the use of suboptimal solution
techniques such as sequential linear programming necessary.
It was shown in [2] that this approach gives reasonable re-
sults.

For the windows and building hull models the diffuse and

5bdg(a,b) :=

[
a 0
0 b

]
.

direct components of the solar radiation on the different parts
of the facade have to be computed from the global solar radi-
ation on a horizontal surface. We use the Perez direct/diffuse
split model [7] and basic trigonometry to compute the facade
incident radiation.

In the following we will consider qi
zone in two parts, an

internal gains and a window heat flux, i.e.

qi
zone = qi

zone,IG +qi
zone,win.

3.2.1 Internal gains
Internal gains due to occupants, lighting and appliances

are considered as simple convective heat sources and denoted
by vIG in Watts per squaremeter floor area (for simplicity we
assumed the same value for all zones), i.e. for zone i with
floor area ai we have,

qi
zone,IG = aivIG(t).

3.2.2 Building hull
Consider exterior wall j of zone i with area ai

EW, j. The
convective heat flux is modeled to be proportional to the
temperature difference between the outermost layer of ex-
terior wall j, i.e. xi

EWo, j, and the ambient air temperature vTa.
The solar radiation heat gains are considered to be the prod-
uct of the global radiation incident onto the exterior wall,
vi

solGlobEW, j (in Watts per squaremeter wall area), and an ab-
sorption coefficient, γabsorp. The latter coefficient as well as
the convective coefficient, αEW, are tuning parameters of our
model (see Section 3.3). We then have

qi
EWo, j = ai

EW, jαEW
(
vTa(t)− xi

EWo, j(t)
)
+γabsorpvi

solGlobEW, j(t).

For simplicity we will in the following approximate
vi

solGlobEW, j by the average global radiation incident onto the
corresponding facades, i.e. by the appropriate element in
{vsolGlobFac,N,vsolGlobFac,E,vsolGlobFac,W,vsolGlobFac,S}.
3.2.3 TABS

The heat flux to the TABS slab node of zone i is modeled
to be a floor area proportional fraction of the total TABS heat
fluxes which are denoted by uTABS,h and uTABS,c (the latter
being positive if cooling is active). Hence, using aTABS,tot as
the total area of all zones equipped with TABS and ai as the
floor area of zone i we have,

qTABS,i =
ai

aTABS,tot
(uTABS,h(t)−uTABS,c(t)) .

The TABS heating constraint is approximated by the maxi-
mum power suppliable by the boiler QTABS,h,max. Since the
TABS cooling circuit is fed by a cooling tower (essentially
a heat exchanger to the ambient air), the maximum available
TABS cooling power is a function of vTa and the TABS slab
temperatures. In [11] a formula was derived to calculate an
equivalent resistance Rt on the basis of the TABS construc-
tion details. The maximum heat flux is modeled as

QTABS,c,max(x(t),vTa(t))=
aTABS,tot

Rt

(
vTa(t)−TavgTABSslab(x(t)

)
,

where TavgTABSslab is the area weighted average TABS slab
temperature which is a linear function of x. The constraints



can then be written as

0≤uTABS,h(t)≤ QTABS,h,max

0≤uTABS,c(t)≤ QTABS,c,max(x(t),vTa(t)).

3.2.4 Window heat fluxes
Unsurprisingly, the window modeling turned out to be

crucial for a good model performance. We denote direct and
diffuse radiations onto window j of zone i by vi

solDirWin, j and
vi

solDiffWin, j, respectively. We consider the heat flux through
the windows in three parts; a radiation part which we model
to directly act on the innermost layers of the building ele-
ments directly in contact with the zone’s air (see Figure 2),
a heat flux due to conduction through the window and an
additional heat flux due to absorption of solar radiation and
subsequent heating up of the window. The first part consti-
tutes the heat fluxes qi

FLi, qi
CLi, qi

EWi, j, qi
IWi, j and qi

IM while
the latter two are reflected in qi

zone,win.
We model the blinds control input ui

bl of zone i as a con-
trollable heat flux with the minimum constraint being the
heat flux with blinds set to maximum allowed shading po-
sition while the maximum heat flux is given by the heat flux
with blinds set to open position. The conductive heat flux
through windows is modeled to be proportional to the differ-
ence of the ambient air temperature and the zone temperature
xzone,i. We model the additional heat gains due to absorption
of solar radiation by the product γwinSolAbsui

bl . Using ai
win,tot

as the total window area of zone i and Uwin as the windows’
heat transmission factor we get for the window heat flux act-
ing on the zone node

qi
zone,win =Uwinai

win,tot(vTa(t)− xi
zone(t))+ γwinSolAbsui

bl(t).

In this, γwinSolAbs and Uwin are tuning parameters of our
model (see Section 3.3). For the heat flux on the building
element nodes with total area ai

BE,tot (here shown for inte-
rior wall j with area ai

IW, j, analogously for the other building
elements) we have,

qi
IWi, j =

ai
IW, j

ai
BE,tot

ui
bl(t).

The constraints on ui
bl are given by

Qi
bl,min(v

i
solDirWin, j(t),v

i
solDiffWin, j(t))≤ ubl,i(t)

ubl,i(t)≤ Qi
bl,max(v

i
solDirWin, j(t),v

i
solDiffWin, j(t)).

Computing Qi
bl,min and Qi

bl,max can be done offline. To have
an as accurate model as possible without having to model
detailed blinds physics, we identified from EP a regression
model

Qi
bl, j = αvi

solDiffWin, j +βvi
solDirWin, j + γ(vi

solDirWin, j)
2 +δ,

where α, β, γ are functions of the calendar month, the fa-
cade orientation and the blind position and δ is in addition
a function of the hour of day. The parameters α to δ were
estimated by a multivariate linear regression based on out-
puts Qi

bl, j, vi
solDiffWin, j and vi

solDirWin, j from a year-long EP
simulation.

3.2.5 Discretization
Adding the external heat flux models (4) to the ther-

mal dynamics model (3) yields a continuous time model
in x(t),v(t),u(t) which we subsequently discretize at a 15
minute sampling rate.
3.3 Step 3: Model tuning

Table 2. Overview of tuning parameters.
Parameter Description Tuned value
αIW int. wall conv. coeff. 8.4 [W/(m2K)]
αFL floor conv. coeff. 2.4 [W/(m2K)]
αCL ceiling conv. coeff. 5.6 [W/(m2K)]
αEW ext.wall conv. coeff. 12.5 [W/(m2K)]
γabsorp building hull solar

absorption factor
0.6 [-]

γwinSolAbs window additional heat
gain factor

0.35 [-]

Uwin window heat
transmission value

1.25 [W/(m2K)]

Our model contains seven tuning parameters as listed in
Table 2. The motivation for tuning the convective coeffi-
cients was to adjust the according heat fluxes for unmodeled
radiation and air motion effects. The window transmission
value and additional heat gain factor turned out to be needed
to linearly represent the complicated window physics. The
facade absorption parameter was tuned because its value was
considered to be unknown.

All other parameter values (excepting the solar regression
model) were computed from construction data.
3.4 Step 4: Model reduction

To reduce the model order we first define a set of outputs
we want to control. We use a Hankel norm based approach to
compute a linear map T ∈ Rn×m,n� m that defines a trans-
formation x̃= T x such that the resulting low-order model has
a closely matching input-output behavior.

As control outputs we defined the averaged temperatures
of the rooms of each of the four facades as well as the center
zone, see Figure 1(b). Note that the minimum order of the
model depends on the number of inputs and outputs. Hence
we computed (as in the case of hull solar absorption) average
solar gains per facade to lower the number of solar gains
inputs to 5 (one per individually actuatable set of blinds) in
order to be able to further reduce the model order. The result
was a model having 5 outputs and 13 inputs including 5 for
the window solar gains for each facade zone, 2 for the TABS,
4 for the irradiation on the facades, one for the ambient air
temperature and one for the internal gains. The number of
states was reduced from 372 to 25.

4 Application of Method and Testing
Two possibilities exist for testing a model; either the

model’s predictions are compared to measurements taken on
a real system or they are compared to the predictions of a
reference model. Clearly, the first approach allows to make
a more definitive statement on the model performance since
its final goal is to predict reality but the latter typically gives



(a) Simulation inputs.

(b) EP and RC model temperatures of the room with median average error
Emean,i (see Equation (5a)).

(c) Zone temperature errors TEP,i(k)− xi
zone(k) of all 20 zones.

Figure 3. Heating case simulation. Weather was recorded
from January 16-19, 2011, in Basel, Switzerland. Emean =
0.25K

more insight into potential model discrepancies due to flexi-
bility in setting up simulation experiments and the ability to
directly access most of the relevant physical quantities. In
the latter approach, the implicit assumption is that the refer-
ence model reflects reality to a sufficient degree of accuracy.

In this paper we used EP as our reference model. The
EP model has been built by building simulation experts from
Gruner AG, Switzerland6 and was partly validated with sat-
isfying results (full validation ongoing) by comparing with
measurements from the target building.

4.1 Parameter tuning
For the tuning we used two three-day simulation periods

with spring and autumn conditions. The evaluation of the
tuned model used winter and summer simulation periods. A
grid search space method centered around physically reason-
able initial values was used. The resulting set of tuned pa-
rameter values was chosen by minimizing the average zone
temperature errors over both tuning periods.

6www.gruner.ch/gruner/home (last accessed Aug 1, 2012)

(a) Simulation inputs.

(b) EP and RC model temperatures of the room with median average error
Emean,i (see Equation (5a)).

(c) Zone temperature errors TEP,i(k)− xi
zone(k) of all 20 zones.

Figure 4. Cooling case simulation. Weather was recorded
from July 21-24, 2011, in Basel, Switzerland. Emean =
0.21K

4.2 Full-scale model testing
The main evaluation of the model’s predictive quality was

the comparison of the full-scale model to EP, since a good
full-scale model on one hand yields a good reduced order
model (given a reasonable reduction) and on the other hand
allows for the consistent incorporation of external heat flux
models that may depend for instance on accurate single zone
temperature predictions.

We first defined and ran a simulation in EP and stored the
room temperature trajectories. Then we used the same inputs
(weather, internal gains, heating/cooling/blinds commands)
to simulate the RC model. Finally we compared the EP with
the RC simulated room temperatures by computing two error
measures, the mean as well as the maximum of the absolute
error on a per zone basis.

Emean,i :=
1
nk

nk

∑
k=1
|TEP,i(k)− xi

zone(k)| (5a)

Emax,i :=max
k
|TEP,i(k)− xi

zone(k)|. (5b)

In this, nz, nk denote the number of zones and simulation



time steps and xi
zone(k), TEP,i(k) denote the RC model’s and

EP model’s temperature value of zone i at time k. We also
used analogous values on a per floor basis, i.e.,

Emean :=
1
nz

nz

∑
i=1

Emean,i (6a)

Emax :=max
i

Emax,i. (6b)

We compared our model in a heating and a cooling case. The
building was in both cases initialized to a constant tempera-
ture of 23oC in order to have identical initial conditions.

For both simulations we used real weather data recorded
in Basel in 2011. In Subfigure a) of Figures 3 and 4, we
show the inputs to the simulations, in b) EP and RC model
temperatures of the median Emean,i zone and in c) the errors
TEP,i(k)− xi

zone(k) of all 20 zones.
Figure 3 shows the heating case simulation starting on

January 16. The ambient air temperature varied between
−1oC and 10oC, internal gains were set to 10W/m2 during
office hours and a periodic TABS heating signal of 9kW was
applied. The blinds were open all the time. In Figure 3(b) it
can be seen that in this zone Emean,i ≈ 0.25K, Emax,i ≈ 0.5K
with a temperature trajectory peak-to-peak value of 3K. Fig-
ure 3(c) finally shows the errors of all zones which range
from −0.4K to 0.9K with Emean = 0.25K.

Figure 4 shows the cooling case simulation starting on
July 21. The ambient air temperature varied between 10
and 22oC, internal gains were set to the same schedule as
in the heating case and a periodic TABS cooling signal was
applied. After the first day, the blinds were set to a shad-
ing position. In Figure 4(b) it can be seen that in this zone
Emean,i ≈ 0.2K, Emax,i ≈ 0.5K with a peak-to-peak value of
2.7K. Figure 4(c) shows the errors of all zones which range
from −1.2K to 0.7K with Emean = 0.21K. The largest abso-
lute values of the error were observed during the first day
when blinds were open.
4.3 Low-order model testing

We show in Figure 5 for the cooling case the difference
between the weighted average zone temperatures as com-
puted from EP and the same quantities for the reduced or-
der model (see Section 3.4). Unsurprisingly, the errors have
a similar profile as in Figure 4(c). Nevertheless Emax was
reduced by the averaging process from 1.2K to 1K, even
though the number of controllable heat fluxes had been re-
duced by taking average values.
4.4 Sensitivity study

Figure 6 shows the sensitivities of the full-scale model
with respect to changes in the tuning parameters. For
all parameters shown in Table 2 we calculated relative
changes in two error metrics

(
Emean,Jan +Emean,July

)
/2 and

max
(
Emean,Jan,Emean,July

)
denoted in Figure 6 as “mean er-

ror” and “max error” to +/-20% changes of each individ-
ual parameter (the others were fixed at the nominal value as
given in Table 2).

We found that only three (αCL, γwinSolAbs, Uwin) of the
seven parameters had a significant impact on the model per-
formance, the others’ influences were within +/-5% of the
nominal model’s error.

Figure 5. Output errors of reduced model (EP value -
reduced model value). Outputs are averaged room tem-
peratures. For the grouped zones see Figure 1(b).

Figure 6. Relative changes of mean and maximum er-
ror (as defined in Section 4.4) with respect to changes
in the three most sensitive parameters. Nominal mean
and maximum error were 0.23K and 1.2K, respectively.
Nominal parameter values shown in Table 2.

5 Discussion
The results showed that the full scale model is capable

of predicting individual room temperatures in a cooling and
a heating case with a maximum error of 1.2K and a much
smaller average error of around 0.25K when compared to
EnergyPlus simulations. The maximum error is not negligi-
ble compared to typical comfort ranges in building control
and this can have some impact on the MPC’s control deci-
sions due to its constraint avoidance. However, because of
the large discrepancy between average and maximum error,
it can be expected that by defining control outputs as aver-
ages of thermally similar zones (e.g. on the same facade)
the maximum error can be reduced while keeping enough
model detail to predict facade-wise temperature variations.
In Section 4.3 this effect has been shown for the summer case
where the maximum error was reduced from 1.2K to 1K. An
MPC using a model generated by an earlier, less elaborated,
approach showed reasonable control actions throughout its
first phase of application on the target building from April to
August 2012. We expect that using better models generated
based on the present work will further improve its perfor-
mance.



Development of our simplified model required availabil-
ity of a detailed EnergyPlus model for (i) parameter tuning,
and (ii) identifying a regression model for computing solar
heat gains as a function of the incident solar radiation and the
blinds position. If an EnergyPlus model of a given building
is available, it certainly can and should be used to improve
the MPC model as was done here. If however no detailed
building model is at hand (which is not unlikely in a practi-
cal application), points (i) and (ii) need to be addressed. We
believe that the EnergyPlus dependence can be dropped with
reasonable effort: (i), the tuning parameters have a physical
meaning such that reasonable initial values can be chosen
and refined by measurements during online operation. As for
(ii), it is unlikely that the currently used detailed regression
model could be identified on an operating building, since so-
lar fluxes are typically only indirectly measured via room
temperatures. However, it may be possible to obtain simpler,
yet for our purposes sufficiently accurate, models from mea-
sured data. These points will be addressed in future work.

Our choice was to build a detailed model from physical
first-principles using basic construction data. Some alterna-
tives to this choice exist, such as using a grey-box modeling
approach and identifying model parameters from measure-
ments, or identifying black-box models from simulations.
However, we believe that our approach is better suited for
modeling office buildings for MPC because it allows for
physical interpretation of input-output relationships and be-
cause it can be easily adapted to changing zone geometries,
HVAC systems etc. In contrast, black-box model identi-
fication from detailed simulations requires re-identification
from scratch and updated detailed models for varying build-
ing cases. In grey-box identification methods a good initial
model structure is not always easily found. Moreover, in
both mentioned alternative approaches either measurement
data or a detailed model are absolutely necessary before the
corresponding controller can be applied, while—if points (i)
and (ii) were addressed—the presented approach could be
used without any prior knowledge except for the construc-
tion data.

Even though the EnergyPlus model has already partly
been validated against measured data, a definitive statement
about the RC model’s predictive quality can only be made by
direct comparison with measurements. However, the com-
parison of the RC model to EnergyPlus gave valuable in-
sights which could not have been gained by comparing to
measured data because of restrictions in viable experiments.
The RC model’s validation against measurements is planned
to be addressed in future work.

6 Conclusions
The proposed approach combines the application of basic

physical laws with building-specific data into a systematic
modeling procedure for generating MPC applicable models.
External heat flux models related to disturbances and techni-
cal systems can be readily included in a modular way. The
effort for the formulation of appropriate submodels leading
to an overall model suitable for MPC varies strongly on a
case-by-case basis. Tuning of the model and a part of the
solar heat flux calculations currently require the availability

of a detailed building model.
Temperature errors of the resulting model averaged over

all zones and time steps of two (heating case, cooling case)
three-day simulations were found to be less than 0.25K when
compared to a detailed building simulation software. The
resulting full-scale linear model enables the realistic simu-
lation of a building’s thermal dynamics at the level of indi-
vidual zones. Defining a limited set of control outputs and
reducing the model order allows for application of the result-
ing model in MPC.
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