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Abstract

Nowadays, more and more complex interdependent infrastructures and networks are developed in engi-
neering. The design and maintenance of such systems increasingly call for advanced computational models to
optimize their performance and assess their reliability under various operational conditions. Unlike many con-
ventional simulators that are deterministic, stochastic simulators feature intrinsic stochasticity. More precisely,
they produce different results when run multiple times with a given set of input parameters. Due to this random
nature, repeated model evaluations of the stochastic model with the same input value, called replications, are
necessary to fully characterize the probability distribution of the associated model response.

For the purpose of optimization or uncertainty quantification (e.g., uncertainty propagation or sensitivity
analysis), computational models typically need to be evaluated a large number of times. The additional layer
of randomness due to the intrinsic stochasticity of stochastic simulators makes it even more computationally
demanding to perform these complex analyses. A common practice to alleviate the prohibitive cost associated
with expensive simulators is to build surrogate models, which behave similarly to the original model but are
much cheaper to evaluate.

Contrary to the deterministic case, surrogate modeling of stochastic simulators has only emerged in the
past decade. The main challenge in this field is that one model evaluation yields only a single realization of the
random model response associated with the given input value. In other words, one run of a stochastic simulator
provides proportionally much less information than that of a deterministic one.

This thesis focuses on developing efficient and accurate surrogate models to emulate the response distribu-
tion of stochastic simulators, combining statistical methods with state-of-the-art deterministic surrogate mod-
eling techniques.

To this end, we propose two new approaches: the generalized lambda model (GLaM) and the stochastic
polynomial chaos expansion (SPCE). The first one capitalizes on the use of the generalized lambda distribution
to characterize the random nature of the simulator response. The distribution parameters are functions of
the input variables and are represented by polynomial chaos expansions (PCEs). We explore replication-based
methods to build GLaMs and improve their performance by an additional joint optimization of the overall
likelihood function. We further elaborate this idea and develop a new method that does not require replications.
Using this surrogate, we investigate sensitivity analysis for stochastic simulators.

The second class of stochastic surrogates, SPCE, overcomes the main shortcoming of GLaM, which is un-
able to represent multimodal distributions. In this more versatile stochastic emulator, we extend PCE by intro-
ducing an artificial latent variable to the expansion and an additive noise variable to mimic the intrinsic stochas-
ticity of the simulator. We also propose an adaptive algorithm to construct the surrogate model without the
need for replications.

For both stochastic surrogate models, we investigate basic theoretical properties of the primary estimation
method. Analytical examples and engineering applications, including wind turbine design and seismic fragility
analysis, are used to validate and illustrate the performance of the new approaches. Furthermore, these engi-
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neering case studies provide valuable insights into the applicability of the developed framework to real-world
industrial problems.
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Résumé

De nos jours, de plus en plus d’infrastructures complexes et de réseaux interdépendants sont développés en
ingénierie. La conception et la maintenance de ces systèmes font appel à des modèles numérique avancés afin
d’optimiser leur performances et d’évaluer leur fiabilité dans diverses conditions opérationnelles. Contrairement
à de nombreux simulateurs conventionnels qui sont déterministes, les simulateurs dits stochastiques possèdent
une stochasticité intrinsèque. Plus précisément, ils produisent des résultats différents lorsqu’ils sont exécutés
plusieurs fois avec les mêmes paramètres d’entrée. En raison de ce caractère aléatoire, des évaluations répétitives
d’un modèle stochastique avec la même valeur d’entrée, appelées réplications, sont nécessaires pour caractériser
entièrement la loi de probabilité de la réponse associée.

Dans un contexte d’optimisation ou de quantification des incertitudes (e.g., propagation des incertitudes
ou analyse de sensibilité), les modèles numeriques doivent généralement être évalués un grand nombre de fois.
La couche aléatoire supplémentaire due à la stochasticité intrinsèque des simulateurs stochastiques rend ces
analyses encore plus exigeantes sur le plan des ressources informatiques. Une façon courante d’alléger les coûts
de calculs prohibitifs consiste à construire des métamodèles, qui se comportent de manière similaire au modèle
original, mais dont l’évaluation est beaucoup moins coûteuse.

Contrairement aux métamodèles développés pour les simulateurs déterministes, la métamodelisation des
simulateurs stochastiques n’est apparue qu’au cours de la dernière décennie dans diverses applications d’ingénierie.
L’enjeu principal dans ce domaine est qu’une évaluation du modèle ne produit qu’une seule réalisation de la
réponse aléatoire associée à la valeur d’entrée. En d’autres termes, une exécution d’un simulateur stochastique
fournit beaucoup moins d’information que dans le cas d’un simulateur déterministe.

Cette thèse est dédiée au développement de métamodèles efficaces et précis pour émuler la loi de probabil-
ité de la réponse de simulateurs stochastiques, en combinant des méthodes statistiques avec des techniques de
pointe de métamodelisation déterministe.

Pour cela, nous proposons deux métamodèles : le modèle « lambda généralisé » (MLaG) et les polynômes
de chaos stochastiques (PCS). Le premier modèle capitalise sur l’utilisation de la loi lambda généralisée pour
caractériser la réponse aléatoire. Les paramètres de la distribution sont des fonctions des variables d’entrée et
sont représentés par polynômes de chaos. Nous explorons des méthodes basées sur la réplication pour constru-
ire des MLaGs et améliorer leurs performances par une optimisation conjointe supplémentaire de la fonction
de vraisemblance globale. Nous approfondissons cette idée et développons une nouvelle méthode qui ne né-
cessite pas de réplications. À l’aide de ce métamodèle, nous étudions l’analyse de sensibilité pour simulateurs
stochastiques.

La deuxième catégorie de métamodèles stochastiques PCS permet de représenter des distributions multi-
modales, ce que ne permet pas l’approache MLaG. Dans cet émulateur stochastique plus flexible, nous intro-
duisons une variable latente artificielle dans l’expansion des polynômes de chaos et une variable de bruit additive
pour imiter la stochasticité intrinsèque du simulateur. Nous proposons également un algorithme adaptatif pour
construire ce modèle sans avoir besoin de réplications.

Pour les deux métamodèles stochastiques proposés, nous étudions certaines propriétés théoriques sur la
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méthode d’estimation principale. Des exemples analytiques et des applications d’ingénierie, y compris la concep-
tion d’éoliennes et l’analyse de fragilité sismique, valident et illustrent la performance des nouvelles approches.
En outre, ces études des cas d’ingénierie fournissent des indications précieuses sur l’applicabilité des méthodes
développées à des problèmes industriels réels.
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Our responsibility is to do what we can, learn what we can, im-
prove the solutions, and pass them on.

Richard Phillips Feynman

1
Overview

1.1 Motivation

Understanding the world has always been a driving force of scientific progress, from ancient Egyptians to Greek
philosophers (Grant, 2007), from “scientific revolution” to “Kelvin’s clouds” (Thomson, 1901). Derived from
philosophy, science nowadays factors in knowledge in the form of principles and laws, usually obtained by ob-
servations and experiments. Based on these discoveries and reasonable assumptions, mathematical models are
developed to represent real-life scenarios with mathematical concepts and language. For example, one of the
fundamentals of fluid dynamics is the Navier–Stokes equations (Landau and Lifshitz, 1987). This system of
partial differential equations lies on the continuum assumption and encodes mathematically the conservation
of mass, momentum, and energy. In addition, assumptions (usually based on experimental data) on the bound-
ary and initial conditions and constitutive laws (e.g., Newtonian fluid) that link the stress field to flow velocity
should be introduced to depict the operational conditions and physical properties.

To study the behavior of a given system, one needs to solve the equations of its mathematical representa-
tion. However, complex problems usually do not have analytical closed-form solutions. To this end, numerical
analysis has been developed to study the properties of the solution and tackle it numerically (Allaire, 2005).
Typical methods applied to problems governed by partial differential equations include finite difference meth-
ods (Smith, 1985), finite element methods (Zienkiewicz et al., 2013), and finite volume methods (LeVeque,
2002). The mathematical model together with the numerical solver is a computational model, also known as
a simulator, as it simulates the system behavior. In the last century, the swift development of computer archi-
tecture and computational software has substantially fueled computational models that can accurately mirror
the underlying real-world system. Therewith, scientists and engineers can perform “numerical experiments” in
silico. Nowadays, simulators are indispensable in all fields of science and engineering, e.g., physics, chemistry,
biology, economics, mechanical and civil engineering.

By nature, a computational model takes a set of variables called the input and maps them to the output.
The input consists typically of parameters from the mathematical model that characterize the system, such
as the boundary/load conditions and constitutive material properties. The output contains some important
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1. Overview

engineering quantities of the system in response to the input, e.g., displacement, deformation, and internal
forces.

The input-output relation of a classical simulator is usually deterministic: for a given set of values of the
input variables, the corresponding output value is unique. In other words, running repeatedly a deterministic
simulator for the same input parameters will always give the same outcome. As an example, the mechanical
behavior (output) of a well-defined structure is deterministic with respect to the external loads (input).

In contrast to their deterministic counterparts, stochastic simulators, as the name suggests, exhibit a stochas-
tic behavior: for a fixed set of input parameters, several model evaluations produce different output values. More
precisely, the model response is random given the input value, and each model run returns only a single possible
outcome. As an illustration, Figure 1.1 compares a one-dimensional deterministic simulator with a stochastic
one.

(a) Deterministic simulator (b) Stochastic simulator

Figure 1.1: Comparisons of deterministic and stochastic simulators.

The data scattering observed in the stochastic simulator (Fig. 1.1b) seems unrealistic at first glance. How-
ever, real-world experiments are stochastic, and we can never be sure to obtain the exact same results even by
fixing the same experimental conditions. This is because some noise or relevant variables cannot be identified
or controlled, and thus they are not taken into account a priori. These factors are usually random and thus
inject uncertainty into the predictions. To replicate this behavior in virtual experiments, one introduces some
intrinsic stochasticity on top of the physical parameters, which makes the simulator stochastic. Despite this
complex behavior, stochastic simulators are broadly developed and applied, especially in economics and social
science, where stochastic processes are commonly used in modeling. In engineering, notwithstanding that most
computational models are deterministic, stochastic simulators are increasingly deployed in different fields. Two
examples of modern engineering are described below.

• Wind turbine simulation: The robust design of wind turbines requires analyzing the structural com-
ponents under diverse wind conditions across the lifespan of the turbine. A typical simulator in this field
consists of two submodels, namely the wind generator and the aero-servo-elastic simulator. The wind
generator takes as input some macroscopic descriptors of the wind climate, such as the mean wind veloc-
ity, the turbulence intensity, and the wind shear exponent, which characterizes the variation of the mean
velocity with altitude. These characteristic values are usually combined with a power spectral model to
generate a coherent stochastic wind field (both in time and space; Jonkman, 2009). Then, the turbulent
inflow is injected into the subsequent aero-servo-elastic model to simulate the complex multi-physics

2



1.2. Contribution

scenario including mutual interactions of wind inflow, aerodynamics, structural dynamics, and control
systems. Because of the stochastic wind generator, a given set of macroscopic wind parameters does not
determine a unique wind profile, and thus the associated structural response is random.

• Seismic fragility analysis: In performance-based earthquake engineering, seismic loads are character-
ized by some summary statistics of ground motions, called intensity measures. A non-exhaustive list of
conventional intensity measures includes peak ground acceleration, spectral acceleration, peak ground
velocity, and Arias intensity. Because these parameters are only filtered quantities, they cannot uniquely
determine the detailed time series. In other words, one can find (or generate) infinite earthquake signals
that share the same values of intensity measures. Consequently, the level of damage incurred by a struc-
ture under various earthquakes sharing the same intensity measures is a random variable, rather than a
deterministic value.

Because of the random behavior of the model response, it is generally necessary to repeatedly evaluate a
stochastic simulator with the same input to fully characterize the probability distribution of the associated out-
put. Such a repetitive procedure is called replication in the stochastic simulation literature. In addition, a sim-
ulator needs to be run for various configurations of the system (which entails various values of the input) for
the purpose of optimization or uncertainty quantification. These two issues altogether require a large number
of model runs for performing complex analyses with stochastic simulators. This is practically intractable for
high-fidelity models, for which a single run may take hours or days.

To alleviate the computational burden, surrogate models, also known as emulators or metamodels, can be
constructed as a proxy of the original simulator. Such models mimic the input-output relation of the target
simulator but are much cheaper and easier to evaluate. In the past decades, surrogate modeling of deterministic
models has gained increasing attention (Vapnik, 1995; Rasmussen and Williams, 2006; Blatman and Sudret,
2011; Chevreuil et al., 2015). These surrogate models consist in approximating the deterministic mapping of
the simulator and have been successfully applied across different disciplines (see, e.g., Forrester et al., 2008;
Asher et al., 2015; Harenberg et al., 2019; Tröndle et al., 2020; Lauvernet and Helbert, 2020) enabling complex
analyses involving expensive simulations. Due to their stochastic nature, however, stochastic simulators cannot
be directly emulated by deterministic surrogate models. Indeed, the development of stochastic emulators has
only emerged recently in the field of uncertainty quantification and still remains in its infancy.

1.2 Contribution
The objective of the manuscript is to develop accurate and efficient surrogate modeling methods for stochastic
simulators. In particular, the surrogate models should fulfill the following requirements for general-purpose
use:

• Full representation: to yield the full probability distribution of the model response for any input value,
as well as some important probabilistic quantities of interest (as functions of the input), e.g., mean, vari-
ance, and quantiles.

• Flexibility: to cover a wide range of distributions, i.e., without introducing restrictive assumptions (e.g.,
normality) on the response distribution.
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1. Overview

As indicated above, the response distribution is of main interest in this thesis. In addition, the surrogate model
should also be able to provide some summary quantities of the distribution, either as a direct feature or through
simple post-processing, e.g., by sampling the emulator.

For practical implementations and applications, the model construction process should satisfy the following
requirements:

• Non-intrusiveness: to treat the stochastic simulator as a black box and build the surrogate in a data-
driven manner, i.e., without adapting or modifying the computational model itself.

• Adaptivity: to construct the surrogate model adaptively under a finite amount of available data.

• Versatility: to be compatible with training samples generated following different schemes, especially
when replications are not available.

Surrogate models of interest should be as flexible as possible to have wide applicability. However, when building
them from finite data, the more flexible they are, the more data are necessary to ensure an accurate approxima-
tion. This is the so-called bias–variance trade-off in statistical learning (Hastie et al., 2001). As a result, a crucial
point is to find a suitable model flexibility to maximize its performance under finite samples.

To address these requirements, we have developed mainly two surrogate models in this Ph.D. thesis: the
generalized lambda model (GLaM) and the stochastic polynomial chaos expansion (SPCE).

GLaM capitalizes on the generalized lambda distribution (GLD) to approximate the response distribution.
Such a choice allows us to cover a wide range of probability distributions (especially unimodal distributions)
while remaining in a parametric setup. The distribution parameters, as functions of the input, are represented
by polynomial chaos expansions (PCEs). By combining GLD and PCE, the generalized lambda model inherits
their respective advantages and meets the aforementioned desired properties. To build up such a surrogate in
a non-intrusive and adaptive manner, we have developed replication-based approaches and further improved
their performance through a joint optimization step, thus leveraging all the available information. This method
is not restricted to GLaM but can be adapted to other surrogates with parametric features. To fulfill the last
requirement (i.e., versatility), we have extended the method by combining advanced statistical learning tech-
niques to bypass the need for replications.

The performance of GLaM is limited by GLD, as the latter is unable to represent multimodal distributions.
To cope with more complex problems, we have proposed the stochastic polynomial chaos expansion. This sur-
rogate model does not make any assumption on the shape of the response distribution. Instead, it introduces an
artificial latent variable and a noise variable on top of the well-defined input to mimic the intrinsic stochasticity
of the simulator. More precisely, the emulator is expressed as a PCE of both the input and the latent variables
plus the noise term. The model exhibits high flexibility and allows for approximating accurately both unimodal
and multimodal distributions. As a consequence of the properties of PCE, several quantities of interest can
be calculated analytically from the model. Besides, one can easily sample the emulated response distribution,
thanks to the efficient PCE representation. To construct the model following the requirements, we have devel-
oped an adaptive algorithm that does not require replications.

The developed methods have been validated on several analytical examples and applications from various
fields, including the two engineering examples presented in Section 1.1. Furthermore, we have investigated the
topic of sensitivity analysis for stochastic simulators using the surrogate models.
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1.2. Contribution

The research of this thesis has produced six published international journal papers (Zhu and Sudret, 2020,
2021c,d, 2023; Tsokanas et al., 2021; Saubin et al., 2021), one submitted journal article (currently under review;
Zhu et al., 2023), three peer-reviewed conference papers with accompanying talks (Zhu and Sudret, 2019c,
2022b; Zhu et al., 2022), seven conference presentations (Zhu and Sudret, 2019d,b, 2021f,b,e,a, 2022a), and
two conference posters (Zhu and Sudret, 2018, 2019a).

1.2.1 Journal papers
• Zhu, X. and Sudret, B. (2020). Replication-based emulation of the response distribution of stochastic simula-

tors using generalized lambda distributions. International Journal for Uncertainty Quantification, 10:249–275.
DOI:10.1615/Int.J.UncertaintyQuantification.2020033029.

• Zhu, X. and Sudret, B. (2021). Emulation of stochastic simulators using generalized lambda models. SIAM/ASA
Journal on Uncertainty Quantification, 9:1345–1380. DOI:10.1137/20M1337302.

• Zhu, X. and Sudret, B. (2021). Global sensitivity analysis for stochastic simulators based on generalized lambda sur-
rogate models. Reliability Engineering & System Safety, 214:107815. DOI:10.1016/j.ress.2021.107815.

• Zhu, X. and Sudret, B. (2023). Stochastic polynomial chaos expansions to emulate stochastic simulators. Interna-
tional Journal for Uncertainty Quantification, 13:31–52. DOI:10.1615/Int.J.UncertaintyQuantification.
2022042912.

• Zhu, X., Broccardo, M., and Sudret, B. (2023). Seismic fragility analysis using stochastic polynomial chaos expan-
sions. Probabilistic Engineering Mechanics, 72:103413. DOI:10.1016/j.probengmech.2023.103413.

• Tsokanas, N., Zhu, X., Abbiati, G., Marelli, S., Sudret, B., and Stojadinović, B. (2021). A global sensitivity analysis
framework for hybrid simulation with stochastic substructures. Frontiers in Built Environment, 7:1–12. DOI:10.
3389/fbuil.2021.778716.

• Saubin, M., de Mita, S., Zhu, X., Sudret, B., and Halkett, F. (2021). Impact of ploidy and pathogen life cycle on
resistance durability. Peer Community Journal, 1:1–12. DOI:10.24072/pcjournal.10.

1.2.2 Conference papers
• Zhu, X. and Sudret, B. (2020). Surrogating the response PDF of stochastic simulators using generalized lambda

distributions. Proceedings of the 13th International Conference on Applications of Statistics and Probability in Civil
Engineering (ICASP13), Seoul, South Korea. May 2019. DOI:10.22725/ICASP13.086.

• Zhu, X. and Sudret, B. (2022). Introducing latent variables in polynomial chaos expansions to surrogate stochastic
simulators. Proceedings of the 13th International Conference on Structural Safety and Reliability (ICOSSAR 2021-
2022). Shanghai, China. DOI:10.3929/ethz-b-000572535.

• Zhu, X., Broccardo, M., and Sudret, B. (2022). Use of generalized lambda models for seismic fragility analysis. Pro-
ceedings of the 8th International Symposium on Reliability Engineering and Risk Management (ISRERM 2022),
Hannover, Germany. DOI:10.3929/ethz-b-000551727.

1.2.3 Talks (speaker is underlined)
• Zhu, X. and Sudret, B. (2019). Use of generalized lambda distributions to emulate stochastic simulators. 3rd In-

ternational Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP
2019), Crete Island, Greece. June 2019. DOI:10.3929/ethz-b-000352754.
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1. Overview

• Zhu, X. and Sudret, B. (2019). Global sensitivity analysis for stochastic simulators based on generalized lambda
surrogate models. In 9th International Conference on Sensitivity Analysis of Model Output (SAMO 2019), Univer-
sitat Oberta de Catalunya. October 2019. DOI:10.3929/ethz-b-000394777.

• Zhu, X. and Sudret, B. (2021). Stochastic polynomial chaos expansions for emulating stochastic simulators. Work-
shop on Stochastic Simulators, Paris, France. March 2021. DOI:10.3929/ethz-b-000526108.

• Zhu, X. and Sudret, B. (2021). Emulating the response distribution of stochastic simulators. MASCOT-NUM
Workshop (MASCOT-NUM 2021), Aussois, France. April 2021. DOI:10.3929/ethz-b-000501633.

• Zhu, X. and Sudret, B. (2021). Metamodels of stochastic simulators using polynomial chaos expansions with la-
tent variables. Engineering Mechanics Institute Conference and Probabilistic Mechanics and Reliability Conference
(EMI/PMC 2021), Columbia University, New-York (USA) May, 2021. DOI:10.3929/ethz-b-000525701.

• Zhu, X. and Sudret, B. (2021). Construction of sparse polynomial chaos surrogate models for simulators with
mixed continuous and categorical variables. 4th International Conference on Uncertainty Quantification in Compu-
tational Sciences and Engineering (UNECOMP 2021), Athens, Greece. June 2021. DOI:10.3929/ethz-b-000493029.

• Zhu, X. and Sudret, B. (2022). Extension of polynomial chaos expansions to the metamodeling of stochastic sim-
ulators. SIAM Conference on Uncertainty Quantification (UQ 2022), Atlanta, GA, USA, April 2022. DOI:10.
3929/ethz-b-000542493.

1.2.4 Conference posters
• Zhu, X. and Sudret, B. (2018). Surrogating the response PDF of stochastic simulators using parametric & semi-

parametric representations. MASCOT-NUM Workshop (MASCOT-NUM 2018), Nantes, France. March 2018.
DOI:10.3929/ethz-b-000309591.

• Zhu, X. and Sudret, B. (2019). Emulating the response PDF of stochastic simulators using sparse generalized
lambda models. MASCOT-NUM Workshop (MASCOT-NUM 2019), Rueil-Malmaison, France. March 2019.
DOI:10.3929/ethz-b-000336526.

1.3 Outline

The dissertation is organized following the format of a cumulative thesis with three parts. Part I provides a gen-
eral introduction to the topic, including a comprehensive literature review on all the methods that are further
used in Part II. Part II presents our main contribution to the development of stochastic surrogate models. A few
related discussions and collaborations are presented in the appendices. The content of each chapter is briefly
summarized as follows.

Chapter 2 recaps the classical uncertainty quantification framework for deterministic computational mod-
els. To set up the mathematical foundations for a self-consistent presentation throughout the thesis, this chapter
offers a summary of probability theory with a focus on the concept of random variables and probability distri-
butions. Then, it introduces some classical methods for uncertainty propagation and discusses the principles of
sensitivity analysis. Finally, two conventional surrogate models developed for emulating deterministic simula-
tors, namely polynomial chaos expansions (PCEs) and Gaussian processes, are presented with a special emphasis
on PCE, as it is applied across the main developments of the thesis. Note that an overall rather mathematical
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1.3. Outline

formalism is chosen to facilitate the subsequent discussions and to bring more insights into uncertainty quan-
tification.

Chapter 3 provides a thorough review of the state-of-the-art developments for surrogate modeling of stochas-
tic simulators. Depending on their nature, the methods are grouped into three categories: statistical, replication-
based, and random field approaches. This chapter starts with a brief presentation of the essential elements of
statistical learning, which serve as the basis for statistical approaches. Then, it presents the statistical models
for estimating some probabilistic quantities of interest of the response distribution, e.g., mean, variance, and
quantiles. More importantly, it summarizes the methods developed for fitting the entire response distribution,
including parametric and nonparametric models from classical statistics as well as related developments from
machine learning. Finally, the major ideas of the replication-based and random field approaches are discussed
to complete the review.

Chapter 4 presents a novel stochastic surrogate model called generalized lambda model (GLaM) and a few
replication-based methods used in its construction. As a major component of GLaM, the probabilistic prop-
erties of generalized lambda distributions are studied. In this model, the distribution parameters are functions
of the input and are modeled by PCE. Two local inference methods are first tested within the replication-based
framework to construct the surrogate model. Then, an additional joint optimization step is developed to im-
prove the accuracy of the replication-based approaches. The performance of the different fitting methods is
compared on various examples and a case study from wind turbine design.

In Chapter 5, the idea of the joint optimization with all the available data is extended to a stand-alone
target to deal with the cases where replications are not available. The statistical properties of the estimator are
investigated, which offers a theoretical justification for this choice. For practical use with finite samples, some
statistical methods are combined to adaptively select the basis functions for the PCE representations of the
distribution parameters. The resulting estimation procedure does not require replications and yields accurate
surrogate models.

With the help of the surrogate model, we look into sensitivity analysis for stochastic simulators in Chapter 6.
A review of the state-of-the-art extensions of the popular variance-based indices to stochastic simulators is given.
We provide some insights into the different sensitivity indices and offer a general guideline to the practitioners.
Moreover, this chapter illustrates the effectiveness of GLaM on some examples for estimating the indices that
only rely on the statistical dependence between the model input and output.

To bypass the limit of GLaM, which is unable to represent multimodal distributions, a more versatile surro-
gate model called stochastic polynomial chaos expansion (SPCE) is proposed in Chapter 7. This model introduces
an artificial latent variable to imitate the random behavior of the stochastic simulator and a noise variable to
smooth out the response distribution. An adaptive algorithm is developed to fit the model from finite samples
without the need for replications. The benchmark examples showcase the excellent performance of the novel
method compared with other state-of-the-art statistical models.

In Chapter 8, SPCE is applied to perform simulation-based seismic fragility analysis. In contrast to classical
methods where the intensity measure needs to be obtained from the earthquake time series, we follow a new
framework where engineering meaningful parameters of the ground motion model are selected as intensity
measures. This allows for bridging the ground motion modeling and the fragility analysis. In this application,
SPCE is used to quantify the statistical dependence between the input and output of the stochastic simulator,
and it exhibits high accuracy for estimating not only the response distribution but also the fragility function.
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Chapter 9 concludes the main findings and contributions of the thesis. The limitations of the developed
methods are pointed out and several paths of improvement are suggested for future research on the topic of
surrogate modeling of stochastic simulators.

Finally, some complementary materials and two journal papers to which we contributed through data anal-
ysis and discussions on stochastic simulators are presented as appendices. Appendix A discusses the role of
replications in building the surrogate models proposed in this thesis. It also shows the consistency of maximum
likelihood estimation for SPCE, thus providing some theoretical insight into SPCE developed in Chapter 7.
Appendix B introduces a global sensitivity analysis framework for hybrid simulations with the help of GLaM.
Appendix C develops an agent-based stochastic simulator to study the impact of the ploidy and the life cycle of
pathogens on the resistance durability of plants.
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Introduction
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Not only does God play dice, but he sometimes throws them where
they cannot be seen.

Stephen Hawking

2
Uncertainty quantification of deterministic models

Design and maintenance of modern engineering systems (e.g., power plants and wind turbines) require examin-
ing the system behavior under various conditions and operational scenarios. This is necessary to help engineers
optimize the performance, assess the risk, and guarantee the reliability of the system. However, such analy-
sis cannot merely rely on experiments, as only a limited number of experiments are feasible due to both time
constraints and monetary costs. In this respect, computational models have been developed to virtually reflect
engineering phenomena and processes (Winsberg, 2019).

A computational model contains parameters introduced in the mathematical modeling of the underlying
system. In engineering, these parameters typically characterize the geometry of the structure under considera-
tion (e.g., dimension of different components), material properties (e.g., elasticity or elasto-plastic constitutive
laws), boundary conditions (e.g., of Dirichlet or Neumann type), and initial conditions for time-dependent
problems. Through numerical algorithms, a computational model outputs a set of quantities (e.g., displace-
ment and stress fields) that describe the system behavior. As a result, a simulator can be considered as a map
that takes the system parameters as input and returns the abovementioned output quantities.

Simulators used in engineering are usually deterministic, in the sense that running them with a given set of
input parameters will always return the same values. Mathematically, such a model is a function, that is,

Md : DX Ñ DY ,

x ÞÑ Mdpxq,
(2.1)

where the subscript d stands for deterministic, DX is the domain of definition of the input parameters, and DY

denotes the output range.

In this thesis, we consider simulators with a finite numberM of scalar input parameters. They are collected
in anM -dimensional vector x, i.e., DX Ă RM . The performance of an engineering system is typically assessed
by a small number of meaningful quantities instead of the entire solution field (in time and space). For example,
the maximum deflection of a bridge is usually regarded as an indicator of its serviceability (Eurocode, 2004),
and the absorbed kinetic energy of a car under crash impact serves as a key objective to optimize its crash-related
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components (Moustapha, 2016). In this respect, we consider the case where a single aggregated quantity can
represent the system performance. Thus, we suppose here that DY Ă R.1

2.1 Uncertainty quantification
With the increasing power of computer hardware and software, the predictive capacity of a high-fidelity simu-
lator is limited by the accuracy of the mathematical representation of the engineering system. On the one hand,
several assumptions and simplifications (e.g., continuum assumption and idealized constitutive laws) are intro-
duced in the modeling process to approximate the engineering scenario, which leads to a modeling discrepancy,
called the modeling error. On the other hand, the model parameters are not perfectly determined and are affected
by so-called parametric uncertainties. Sources of uncertainty can be classified into two categories: epistemic and
aleatory uncertainty (Der Kiureghian and Ditlevsen, 2009). The epistemic uncertainty (originated from the
Greek word ϵπιστηµη meaning “knowledge”) is due to a lack of knowledge. This can be caused by imprecise
measurements or scarce data, e.g., the dimension of a beam measured by a device with a certain measurement
tolerance. Such type of uncertainty can be reduced by acquiring more knowledge, e.g., by using a more accu-
rate device or by collecting more data. In contrast, aleatory uncertainty (originated from the Latin word “alea”
standing for “dice”) corresponds to the irreducible intrinsic variability in the parameters, such as the outcome
of a dice throw.

The modeling error is examined by validation studies on experimental data (Kennedy and O’Hagan, 2001).
It is not within the scope of this manuscript, as we focus on studying the impact of parametric uncertainties.

Although the idea of determinism, such as Laplace’s demon,2 is elegant and attractive to scientists and engi-
neers, uncertainties are ubiquitous, and one cannot avoid dealing with them in engineering. In this respect, un-
certainty quantification has been developed to tackle rigorously the uncertain aspects (Sullivan, 2015; Ghanem,
2017; Soize, 2017). Figure 2.1 summarizes the general framework proposed by de Rocquigny (2006) and Sudret
(2007) for uncertainty quantification.

• Step A defines the computational model representing the engineering system of interest. This involves
considering all the relevant elements in the modeling process: combining possible sub-models and iden-
tifying the input and output across the model, as formulated in Eq. (2.1).

• Step B consists in quantifying the sources of uncertainty. The parameters whose exact values are un-
known are identified and modeled. Common tools for modeling uncertainty include probability theory
(Jaynes, 2003), possibility theory (Zadeh, 1999), and imprecise probability theory (Schöbi, 2017). The
quantitative representation (e.g., probability distributions, fuzzy sets, intervals) can be prescribed based
on expert judgment or calibrated from available data.

• Step C propagates the uncertainty from the input parameters to the output through the computational
model. In the probabilistic context, the output is a random variable and is fully characterized by a prob-

1For vector-valued output, we can simply consider it as a set of scalar-valued functions.
2Laplace’s demon, or originally “démon de Laplace” in French, is defined by Laplace (Laplace, 1814): “An intellect which at a certain

moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect
were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of
the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be
present before its eyes.” (translated from French to English by Truscott, F.W. and Emory, F.L.).
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Step A
Model of the system
Assessment criteria

Step B
Quantification of

sources of uncertainty

Step C

Uncertainty propagation

Input uncertainty Computational model

(Batchu, 2022)

Output uncertainty
Probability distribution

Failure probability
Moments

Step C’
Sensitivity analysis

Step C’
Sensitivity analysis

Figure 2.1: General framework of uncertainty quantification (derived from de Rocquigny, 2006; Sudret, 2007)

ability distribution. Depending on the focus of the application, however, certain summary quantities of
the distribution are of more significance: quantiles and moments (e.g., mean and variance) for risk as-
sessment (McNeil et al., 2005), and the probability of failure for reliability analysis (Melchers and Beck,
2018).

• Step C’ complements the forward uncertainty propagation in Step C by assessing the contribution of
the input uncertainty to that of the output (Saltelli et al., 2000). Sensitivity analysis guides engineers to
find the most influential parameters to be investigated to efficiently reduce the output uncertainty and
the least important variables that can be ignored at Step C. Moreover, it provides more insights into the
computational model (e.g., how the input variables affect the model output) and thus helps understand
the underlying phenomenon.

2.2 Probability theory in a nutshell
In this thesis, we use probability theory (Jacod and Protter, 2004) to model uncertainty. Within the probabilistic
framework, we treat the exact values of the uncertain parameters as outcomes of a random experiment (such
as flipping a coin). In particular, we represent the input parameters by a random vector X , and the model
output becomes a random variable Y “ MdpXq. In this section, we briefly review the essential components
of probability theory with a focus on random variables to lay the foundation for the following presentation.
Importantly, the concepts recapitulated in this section are introduced with their rather formal mathematical
definitions. This is meant to benefit readers, especially fresh researchers in the field, to understand the important
mathematical tools in a rigorous way.

2.2.1 Probability space

Modern probability theory was established by Kolmogorov (1933) based on rigorous axioms and measure the-
ory. At the root is the probability space given by the triplet pΩ, F , Pq, where Ω is the sample space, F is the
collection of events, and P is the probability measure. In a random experiment, the sample space Ω contains all
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the possible outcomes. In this respect, an event A is modeled as a subset of Ω, and whether it happens or not
is determined by checking if A contains the outcome ω of an experiment. The collection of all the observable
events (i.e., all the events that can be verified whether they occur or not in an experiment) forms the event alge-
bra F . In other words, F is the set of subsets of Ω. It is mathematically modeled as a σ-algebra on Ω, that is,

• Ω P F ;

• F is closed under complements, i.e., for allA P F , its complement ΩzA P F ;

• F is closed under countable unions, i.e., for a sequences of eventsAn P F with n P N,
Ť

nPN
An P F .

For each event inF , we need to assign a number that quantifies how “probable” it is to happen in an experiment.
This is accomplished by introducing a probability measure P : F Ñ r0, 1s that fulfills

• P pΩq “ 1;

• for a series of countably many events pAnqnPN that are mutually disjoint, i.e., An

Ş

Am “ H for n ‰

m P N, P
ˆ

Ť

n

An

˙

“
ř

nPN
P pAnq.

With the definition above, pΩ, F , Pq is a measure space with the “volume” of an event corresponding to its
probability.

The dependence of events A1, A2 P F is represented by the conditional probability P pA1 | A2q depicting
the probability that event A1 occurs given that event A2 has happened. For P pA2q ‰ 0, P pA1 | A2q is defined
by

P pA1 | A2q
def
“

P pA1
Ş

A2q

P pA2q
. (2.2)

Two events are said to be independent if

P
´

A1

č

A2

¯

“ P pA1qP pA2q , (2.3)

which implies that P pA1 | A2q “ P pA1q, i.e., the incidence ofA2 does not affect the probability ofA1.

2.2.2 Random variables

A random variableX is a measurable function that maps the probability space Ω to pE, Eq whereE is the space
containing the range ofX (i.e., all the possible values that a random variable can take in a random experiment),
and E is a collection of events related toX , a σ-algebra defined onE. Mathematically,X is defined as

X : pΩ,Fq Ñ pE, Eq,

ω ÞÑ Xpωq,
(2.4)

whereXpωq is called a realization ofX . In Eq. (2.4), we explicitly state the σ-algebras to emphasize thatX is a
measurable function that is defined by

@B P E , X´1pBq
def
“ tω P Ω : Xpωq P Bu P F . (2.5)
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In this setup,E can be interpreted as a space of observation related to outcomes ofX , andX being measurable
implies that all the observable events (that constitute E) can be “measured” with a probability. In other words,
X induces a probability measure PX on pE, Eq defined by

PX pX P Bq
def
“ P

`

X´1pBq
˘

. (2.6)

PX is called the probability distribution ofX . When there is no ambiguity, we ignore the subscript and express
directly P pX P Bq for simplicity.

2.2.3 Real-valued random variables

An uncertain parameter that takes real values is commonly modeled by a real-valued random variable mapping
Ω to the real line, i.e., E “ R with E being the Borel-algebra BpRq.3 This concept of Borel-algebra is quite
abstract, but it can be understood as follows: all the intervals can be assigned a probability (i.e., the probability
that the random variable falls into an interval can be assessed). Hence, P pX P p´8, xsq is well-defined and
gives rise to the definition of the cumulative distribution function (CDF) ofX , that is,

FXpxq
def
“ P pX P p´8, xsq “ P pX ď xq . (2.7)

According to the definition of the probability measure P, FX has the following properties:

• FX is non-decreasing, i.e., @x1 ă x2, FXpx1q ď FXpx2q;

• FX is right-continuous, i.e., @x0 P R, lim
xÑx`

0

FXpxq “ FXpx0q;

• lim
xÑ´8

FXpxq “ 0 and lim
xÑ`8

FXpxq “ 1.

A functionF : R Ñ r0, 1s having the three properties above is a CDF for a unique probability measure PX on
pR,BpRqq. In other words, FX fully characterizes the probability distribution PX on pR,BpRqq.

Because FX is a non-decreasing function, its generalized inverse denoted by QX exists (Embrechts and
Hofert, 2013) and is given by

QXpαq
def
“ inf tx P R : FXpxq ě αu . (2.8)

QX is called the quantile function ofX , and the quantityQXpαq is called the α-quantile ofX .
The measurable space pR,BpRqq is naturally equipped with the Lebesgue measure µ, which can be seen as

a measure of the length of intervals. If PX is absolutely continuous with respect to µ,4 there exists a function
fX : R Ñ r0,`8q such that

FXpxq “

ż x

´8

fXptqµpdtq “

ż x

´8

fXptqdt, (2.9)

where µpdtq is usually denoted by dt for simplicity. fX is called the probability density function (PDF) of X ,
and can be defined by

fXpxq
def
“

dFXpxq

dx
. (2.10)

3Borel σ-algebra is the smallest σ-algebra containing all the open sets.
4This means @B P BpRq, µpBq “ 0 implies PX pX P Bq “ 0.
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2. Uncertainty quantification of deterministic models

Following the properties of CDF, a PDF fX fulfills fXpxq ě 0 and
ş

R fXpxqdx “ 1. Conversely, any function
f : R Ñ R that has these two properties is a valid PDF. For a given fX , one can calculate the CDF using
Eq. (2.9). Therefore, fX also fully characterizes the probability distribution ofX .

As a random variable is a measurable function, one can define its Lebesgue integral

E rXs
def
“

ż

Ω

XpωqP pdωq . (2.11)

The integration operator E is called expectation. The integral can also be calculated by

E rXs “

ż

R
xPX pdxq “

ż

R
x dFXpxq. (2.12)

The first equality is obtained by a change of variables and the second equality follows the definition of the
Lebesgue–Stieltjes integral (Bogachev, 2007). In addition, ifX has a PDF, Eq. (2.11) can be explicitly calculated
as

E rXs “

ż

R
xfpxqdx. (2.13)

If E r|X|s ă `8, X is called integrable. Let Lp pΩ, F , Pq be the space of measurable functions whose
absolute p-th power is integrable, i.e., E r|X|ps ă `8. Based on Eq. (2.11), different types of moments of a
random variable are defined and summarized in Table 2.1.

Table 2.1: Definition of different types of moments.

Moment Central moment Standardized moment

E rXrs E rpX ´ E rXsqrs
E rpX ´ E rXsqrs

E rpX ´ E rXsq2s
r
2

In particular, some specific quantities in Table 2.1 are commonly used in practice to characterize a random
variable. The first moment is known as the expected or mean value mX

def
“ E rXs, which shows the average

value of X over R. Moreover, this quantity is the best constant that approximates X P L2 pΩ, F , Pq in the
mean-squared sense, that is,

mX “ argmin
mPR

E
“

pX ´mq2‰ . (2.14)

The second central moment is called the variance Var rXs
def
“ E rpX ´ E rXsq2s, which is equal to the mini-

mum value of the objective function in Eq. (2.14). Its square root is called the standard deviationσX
def
“
a

Var rXs,
which measures the variability of X deviating from its mean mX . The ratio between σX and mX , namely
σX{mX , is called the coefficient of variation, which characterizes the extent of variability in relation to the ex-
pected value. The third and fourth standardized moments are known as skewness and kurtosis, respectively,
which describe the level of asymmetry and tail behaviors of a probability distribution.

A probability distribution characterized by a fixed number of parameters is called a parametric distribution.
Table 2.2 lists some parametric distributions that are widely used to model continuous uncertain parameters.
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2.2. Probability theory in a nutshell

Table 2.2: Some important parametric distributions. φpxq “ 1?
2πe

´x2
{2 is the PDF of the standard normal

distribution, B is the beta function, and Γ is the gamma function.

Name Parameters PDF Mean Variance Skewness Kurtosis

Normal
N pµ, σ2

q
µ P R, σ ą 0 1

σ
φp

x´µ
σ

q µ σ2 0 3

Lognormal
LN pλ, ζq

λ P R, ζ ą 0 1
ζx

φ
´

lnpxq´λ
ζ

¯

eλ`
ζ2

2 e2λ`ζ2a

eζ2
´ 1 peζ

2
` 2q

a

eζ2
´ 1 e4ζ2

` 2e3ζ2
` 3e2ζ2

´ 3

Uniform
Upa, bq

a ă b P R x´a
b´a

1ra,bspxq 1
2 pb ´ aq 1

12 pb ´ aq
2 0 1.8

Beta
Betapα, βq

α, β ą 0 xα´1p1´xqβ´1

Bpα,βq

α
α`β

αβ
pα`βq2pα`β`1q

2pβ´αq
?
α`β`1

pα`β`1q
?
αβ

3pα`β`1qp2pα´βq2´αβpα`β`2qq
αβpα`β`2qpα`β`3q

Gamma
Gammapθ, kq

θ, k ą 0 xk´1e´x{θ

Γpkqθk
kθ kθ2 2?

k

6
k

` 3

2.2.4 Vector-valued random variables (random vectors)

In engineering applications, multiple uncertain resources are usually identified and should be jointly taken into
account in the uncertainty quantification framework presented in Fig. 2.1. To this end, we can group them into
a random vector. More precisely, an M dimensional random vector is a collection of M real-valued random
variables X “ pX1, . . . , XMq

T , where the superscript T denotes the transposition (so X is a column vector).
Equivalently, we can also define a random vector by taking E “ RM and E “ B pRMq (the Borel σ-algebra of
RM ) in the generic definition of a random variable in Eq. (2.4), i.e., X can be seen as a vector-valued random
variable.

2.2.4.1 Joint properties

The probability distribution of X is described by the joint CDF given by

FXpxq
def
“ PX pX ď xq “ P

˜

M
č

j“1

X´1
j pp´8, xjsq

¸

, (2.15)

wherePX is the induced probability measure on pRM ,BpRMqq, andX ď x stands for tX1 ď x1, . . . , XM ď xMu.
An important feature of the joint CDF is that if we split the random vector X into two random subvectors Xu

and Xvq with u Ă t1, . . . ,Mu and v “ t1, . . . ,Muzu, the joint CDF of the random subvector Xu can be
computed by

FXu
pxuq “ lim

xvÑ`8
FXpxq. (2.16)

The operation in Eq. (2.16) is called marginalization. By this, one can obtain the probability distribution FXj

of each individual componentXj , which is called the marginal distribution.
Similar to Eqs. (2.9) and (2.10), if PX is absolutely continuous with respect to the Lebesgue measure µ on

pRM ,B pRMqq, X has a joint PDF fX that satisfies

@B P BpRMq, PX pX P Bq “

ż

B

fXpxqdx. (2.17)
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2. Uncertainty quantification of deterministic models

By taking B as the Cartesian product of the segment p8, xjs of each dimension, namely, p´8, x1s ˆ . . . ˆ

p´8, xM s denoted by p´8,xs for short, we obtain

FXpxq “

ż

p´8,xs

fXptqdt, (2.18)

Therefore, fX is sometimes defined by

fXpxq
def
“

BMFXpxq

Bx1 ¨ ¨ ¨ BxM
, (2.19)

if the right-hand side exists.
From Eq. (2.17), the joint PDF is non-negative, and its integral over RM is equal to 1. Conversely, if a

function f has these two properties, it is a joint PDF of a certain random vector whose probability measure is
defined by Eq. (2.17).

Using the property of the joint CDF in Eq. (2.15), the joint PDF of a random subvectorXu can be obtained
by marginalizing the effect of Xv:

fXupxuq “

ż

R|v|
fXpxqdxv, (2.20)

where |¨| denotes the cardinality of a set.
As each component of X is a random variable, we can calculate the moments defined in Table 2.1 indi-

vidually and then group them together, such as the mean vector mX “ E rXs
def
“ pE rX1s , . . . ,E rXM sq

T

(for X1, . . . , XM P L1 pΩ, F , Pq) and variance vector vX “ Var rXs
def
“ pVar rX1s , . . . ,Var rXM sq

T

(for
X1, . . . , XM P L2 pΩ, F , Pq).

In addition, several quantities that summarize the probabilistic relations among the components can be
defined using the expectation operator E, among others, covariance and correlation. The covariance of two
random variablesXj , Xk P L2 pΩ, F , Pq is given by

Cov rXj , Xls
def
“ E rpXj ´ E rXjsq pXl ´ E rXlsqs “ E rXj Xls ´ E rXjsE rXls . (2.21)

This quantity characterizes the co-variability of Xj and Xl. We can group the covariance of all the pairs of X
into a matrix ΣX . Using vector notation, the covariance matrix is given by

ΣX
def
“ E

”

pX ´ E rXsq pX ´ E rXsq
T
ı

, (2.22)

with its diagonal elements being the variance of each componentΣj,j “ Var rXjs, and its off-diagonal elements
corresponding to the covariance Σj,l “ Cov rXj , Xls.

Based on the covariance in Eq. (2.21), the correlation coefficient of two random variables Xj and Xl is
defined by

Corr rXj , Xks
def
“

Cov rXj , Xks
a

Var rXjs
a

Var rXks
. (2.23)

Following its definition, the correlation coefficient is a normalized version of the covariance and always takes
values in r´1, 1s. This quantity essentially measures the linear relation between two random variables. In the
extreme case, if Corr rXj , Xks is equal to 1 or ´1, Xj and Xk are said to be perfectly correlated, and we can
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2.2. Probability theory in a nutshell

find a linear relation between them, i.e., Xj “ aXk ` b with a ą 0 for Corr rXj , Xks “ 1 and a ă 0 for
Corr rXj , Xks “ ´1.

2.2.4.2 Conditional properties

Effectively, one may collect information on some variables and update the probability distribution of the others
in X . This is particularly useful if it is difficult to measure some quantities directly, but it is relatively simple to
gauge certain related variables. The update procedure is achieved by using conditional probability distributions.
Moreover, conditional distribution is an important concept when studying stochastic simulators in Chapter 3.

Intuitively, we can use Eq. (2.2) to form the probability measure of Xu conditioned on the values of the
other random variables Xv “ xv. However, this is only well-defined for P pXv “ xvq ą 0 but becomes ill-
posed if P pXv “ xvq “ 0. A rigorous definition of conditional distribution is complex and beyond the scope
of the thesis, and interested readers are referred to Kolmogorov (1933), Durrett (2019), and Billingsley (1995)
for a more detailed presentation. For simplicity, we assume in the sequel that the random vector has a joint PDF,
as is the case for most engineering problems.

The conditional probability distribution of Xu for Xv “ xv is fully characterized by the conditional PDF
defined by

fXu|Xv
pxu | xvq

def
“

$

&

%

fXpxq

fXv pxvq
if fXv pxvq ą 0,

0 if fXv pxvq “ 0,
(2.24)

where fXv
is the joint PDF of Xv. Eq. (2.20) shows that fXu|Xv

is a valid joint PDF for all xv such that
fXv pxvq ą 0. Similar to Eq. (2.20), we can compute the conditional PDF for any subset of Xu by marginal-
ization.

From Eq. (2.17), the conditional CDF is given by integrating the conditional PDF:

FXu|Xv
pxu | xvq “

ż

p´8,xus

fXu|Xv
pt | xvqdt. (2.25)

For a random variable Xj with j P u and Xj P L1 pΩ, F , Pq, its conditional expectation given Xv “ xv

can be computed in a similar manner to Eq. (2.13), that is,

E rXj | Xv “ xvs “

ż

R
xj fXj |Xv

pxj | xvq dxj , (2.26)

where fXj |Xv
is the conditional PDF ofXj . This gives a function of the conditioning value

mXj |Xv
pxvq

def
“ E rXj | Xv “ xvs , (2.27)

which is called the expected mean function.

Based onmXj |Xv
, we define the conditional expectation ofXj given Xv

E rXj | Xvs
def
“ mXj |Xv

pXvq . (2.28)
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2. Uncertainty quantification of deterministic models

Note that we do not condition on a specific value xv but keep Xv random.5 As a result, E rXj | Xvs is a
function of Xv and thus a random variable. The expectation of this random variable can be calculated by

E rE rXj | Xvss “

ż

R|v|

ˆ
ż

R
xjfXj |Xv

pxj | xvqdxj

˙

fXvpxvqdxv

“

ż

R
xjfXj

pxjqdxj “ E rXjs ,

(2.29)

which is called the law of total expectation. The interpretation is straightforward: the expected value of a random
variable is the average of its expected values on the segments of a partition formed by Xv.6

Following Eqs. (2.14) and (2.29), it is straightforward to show that the conditional mean function fulfills

mXj |Xv
“ argmin

gPG
E
”

pXj ´ g pXvqq
2
ı

, (2.30)

where the feasible set G contains all the measurable functions that map R|v| to R.
Similar to Eq. (2.27), one can define the conditional variance ofXj given Xv “ xv by

vXj |Xv
pxvq

def
“ E

”

`

Xj ´mXj |Xv
pxvq

˘2
ı

, (2.31)

and the conditional variance ofXj given Xv is

Var rXj | Xvs
def
“ vXj |Xv

pXvq “ E
”

pXj ´ E rXj | Xvsq
2
ˇ

ˇ

ˇ
Xv

ı

. (2.32)

The law of total variance states that

Var rXjs “ E rVar rXj | Xvss ` Var rE rXj | Xvss , (2.33)

which decomposes the variance of Xj into two parts. By considering that Xv generates a partition of Ω, the
first part in Eq. (2.33) is the average of the variances within each segment, and the second part corresponds to
the variance of the segmental average values.

2.2.5 Independence

The independence of events in Eq. (2.3) can be extended to real-valued or vector-valued random variables. Xu

and Xv are called independent if

@B1 P BpR|u|q, B2 P BpR|v|q, P pXu P B1,Xv P B2q “ P pXu P B1qP pXv P B2q . (2.34)

In this case, the joint PDF can be expressed as

fXpxq “ fXu
pxuq fXv

pxvq. (2.35)

5The formal definition of conditional expectation relies on conditioning on the σ-algebra generated by Xv.
6Intuitively, this partition of the sample space can be seen as

Ť

xvPR|v|
tω P Ω : Xvpωq “ xvu (it is formally defined by theσ-algebra

generated by Xv).
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2.2. Probability theory in a nutshell

Following Eq. (2.24), the conditional distribution fXu|Xv
is equal to the unconditional one, fXu in this case,

which implies that knowledge of Xv does not provide additional information on Xu.

Multiple random variablesX1, . . . , XM are called mutually independent if

@B1, . . . , BM P BpRq, P pX1 P B1, . . . , XM P BMq “

M
ź

j“1

P pXj P Bjq . (2.36)

Therefore, the joint PDF of X in Eq. (2.17) can be factorized as

fXpxq “

M
ź

j“1

fXj
pxjq. (2.37)

By considering random vectors as vector-valued random variables, mutual independence can be extended to
random vectors. If a set of random variables (or random vectors) are mutually independent and follow the same
probability distribution, they are said to be independent and identically distributed (i.i.d.).

From Eqs. (2.24) and (2.35), we can define the conditional independence. Let u1 be a subset of u and u2 “

uzu1. The two subvectors Xu1 and Xu2 are conditional independent given Xv if

fXu|Xv
pxu | xvq “ fXu1 |Xv

pxu1 | xvq fXu2 |Xv
pxu2 | xvq. (2.38)

2.2.6 Convergence of random variables

As random variables are functions and characterized by their probability distributions, there exist several dif-
ferent notions of convergence. These concepts are very important in statistics for assessing the property of
estimators.

Let X1,X2, . . . be a sequence of random vectors taking values in RM . Such a sequence converges to the
random variable X

• almost surely (a.s.), which is denoted by XN
a.s.
ÝÑ X , if

P
ˆ

lim
NÑ`8

XN “ X

˙

“ 1; (2.39)

• in probability, which is denoted by XN
P
ÝÑ X , if

@ε ą 0, lim
NÑ`8

P p∥XN ´ X∥2 ą εq “ 0, (2.40)

where ∥¨∥2 stands for the Euclidean norm on RM ;

• in Lp (or in p-th mean), which is denoted by XN
Lp

ÝÑ X , if

lim
NÑ`8

E r∥XN ´ X∥p2 s “ 0; (2.41)
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2. Uncertainty quantification of deterministic models

• in distribution, which is denoted by XN
d

ÝÑ X , if

lim
NÑ`8

FXN
pxq “ FXpxq, (2.42)

for all x at which FXpxq is continuous.

The relations among the different convergences are summarized in Section 2.2.6. The definition of almost
sure convergence is similar to the almost everywhere convergence for functions. The convergence in Lp relies
on the norm on Lp pΩ, F , Pq, i.e., ∥X∥Lp

def
“ pE r∥X∥p2 sq

1{p. If for all N ą 0 ∥XN∥2 is dominated by a ran-
dom variable Z with E rZps ă `8, the almost sure convergence implies that in Lp, based on the dominated
convergence theorem. The convergence in probability is weaker, and both almost sure convergence and con-
vergence in Lp imply convergence in probability. Finally, the convergence in distribution focuses only on the
probability distribution without considering the behavior of random variables as functions. This is the weakest
and is implied by the other three types of convergence.

Lp

ÝÑ

a.s.
ÝÑ

P
ÝÑ

d
ÝÑ

Dominate
d converg

ence

Figure 2.2: Relations among different types of convergence.

2.3 Uncertainty propagation
By means of the tools from probability theory in Section 2.2, the uncertain parameters in a computation model
are identified and modeled by a random vector. The detailed probabilistic description of PX can be determined
by design codes (Joint Committee on Structural Safety, 2002), statistical inferences (James et al., 2014), expert
knowledge (O’Hagan, 2019), or a combination these techniques (Sudret, 2007).

Propagating the uncertainty in the input parameters through the model Eq. (2.1) leads to the output being
a random variable, namely,

Y : Ω Ñ R,

ω ÞÑ Y pωq
def
“ Md ˝ Xpωq.

(2.43)

Eq. (2.43) is well-defined if the domain of definitionDX ofMd contains the range ofX . In this case, the image
of X belongs to pDX ,BpDXqq where BpDXq is the Borel algebra of DX . With this restriction, we can work
only with DX instead of RM .

The compositionMd˝X is assumed to be measurable, and thus it defines a probability measure denoted by
PY on pR,BpRqq. As PX is prescribed when quantifying the source of uncertainty, we can ignore the abstract
probability space pΩ, F , Pq and work directly on the probability space pDX ,BpDXq,PXq. To complete this
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2.3. Uncertainty propagation

simplification, the computational model Md is assumed to be a measurable function from pDX ,BpDXqq to
pR,BpRqq.7 This implies that any observable event of Y results from an observable event of X . Therefore, the
probability measure PY is given by

PY pY P Bq
def
“ PX

`

X P M´1
d pBq

˘

, (2.44)

where M´1
d pBq

def
“ tx P DX : Mdpxq P Bu.

The objective of uncertainty quantification is to studyPY . Following Eqs. (2.11) and (2.12), the expectation
of Y is given by

E rY s “

ż

R
y PY pdyq “

ż

DX

MdpxqPX pdxq . (2.45)

Similarly, for any measurable function g : R Ñ R, the expectation of the random variable gpY q can be
calculated by

E rgpY qs “

ż

R
gpyqPY pdyq “

ż

DX

g ˝ MdpxqPX pdxq . (2.46)

Eq. (2.46) is a more general form of Eq. (2.45). Many characteristic quantities of Y can be expressed as in
Eq. (2.46). For example, the variance of Y corresponds to

gpyq “ py ´ E rY sq
2
, (2.47)

and the probability that Y exceeds a given threshold δ0 uses

gpyq “ 1rδ0,8qpyq, (2.48)

where 1 is an indicator function, since P pY ě δ0q “ E r1rδ0,8qpY qs.
For X with a joint PDF, Eq. (2.45) can be calculated by the integral

E rgpY qs “

ż

DX

g ˝ MdpxqfXpxqdx. (2.49)

Evaluating the expectation in Eq. (2.46) is practically difficult. In the rest of this section, we review some
classical methods developed for uncertainty propagation. In Section 2.3.1, we present the perturbation method,
which is relatively simple but has a limited estimation power. A more generic method — Monte Carlo simula-
tion — is introduced in Section 2.3.2. There, we also recap some sampling methods, which are used for con-
structing surrogate models throughout the manuscript. In Section 2.3.3, we present the method of Gaussian
quadrature, which is later applied in Chapter 7 for evaluating one-dimensional integrals.

2.3.1 Perturbation method

The perturbation method consists in approximating the computational modelMd by a Taylor series expansion
around the mean vector mX of the input X (Handa and Andersson, 1981). It is mainly used to estimate the
mean and variance of Y .

7This assumption is stronger than Eq. (2.1), as measurability also relies on the associated σ-algebras.
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2. Uncertainty quantification of deterministic models

Recall that the Taylor series expansion of Md around a given value x0 reads

Mdpxq “ M px0q ` px´x0q
T
∇Md px0q `

1
2

px´x0q
T
∇2Md px0q px´x0q ` o

`

∥x ´ x0∥2
2

˘

, (2.50)

whereop¨q stands for “decreasing to zero at a faster rate than p¨q”,∇Md px0q is the gradient atx0, and∇2Md px0q

is the Hessian matrix defined as follows:

∇Md px0q
def
“

¨

˚

˚

˝

BMdpxq

Bx1
...

BMdpxq

BxM

˛

‹

‹

‚

∣∣∣∣∣∣∣∣
x“x0

, ∇2Md px0q
def
“

¨

˚

˚

˚

˚

˝

B
2Mdpxq

Bx2
1

B
2Mdpxq

Bx1Bx2
¨ ¨ ¨

B
2Mdpxq

Bx1BxM

B
2Mdpxq

BBx2x1

B
2Mdpxq

B2x2
¨ ¨ ¨

B
2Mdpxq

Bx2BxM

...
... . . . ...

B
2Mdpxq

BxMBx1

B
2Mdpxq

BxMBx2
¨ ¨ ¨

B
2Mdpxq

B2xM

˛

‹

‹

‹

‹

‚

∣∣∣∣∣∣∣∣∣∣∣
x“x0

. (2.51)

As the mean vector mX represents the average behavior of X , X can be considered varying around mX .
Hence, the latter is selected as x0 in the expansion. In addition, we truncate this expansion up to the second
order and represent Md by

MdpXq « M̃dpXq “M pmXq ` pX ´ mXq
T
∇Md pmXq

`
1
2

pX ´ mXq
T
∇2Md pmXq pX ´ mXq.

(2.52)

By taking the expectation of Eq. (2.52), we approximate the expected value of Y by

E rY s « Md pmXq ` E rX ´ mXs
T

∇Md pmXq `
1
2
E
”

pX ´ mXq
T
∇2Md pmXq pX ´ mXq

ı

“ Md pmXq ` 0 `
1
2
Tr

´

pX ´ mXqpX ´ mXq
T
∇2Md pmXq

¯

“ Md pmXq `
1
2
Tr

`

ΣX ∇2Md pmXq
˘

,

(2.53)

whereTrp¨q denotes the trace of a matrix, andΣX is the covariance matrix ofX as defined in Eq. (2.22). Because
E rX ´ mXs “ 0, the computational model evaluated at mX yields a first-order approximation Md pmXq

to E rY s. The additional term provides an enhancement based on the covariance matrix of X and the second-
order derivatives of Md evaluated at mX .

To calculate the variance, we use only the first-order expansion in Eq. (2.52) (i.e., ignoring the second-order
term), which gives

Var rY s « Var
”

Md pmXq ` pX ´ mXq
T

∇Md pmXq

ı

“ E
„

´

pX ´ mXq
T

∇Md pmXq

¯2
ȷ

“ p∇Md pmXqq
T

ΣX ∇Md pmXq .

(2.54)

Eqs. (2.53) and (2.54) are quite simple as they only requires evaluating the first- and second-order derivatives
of Md at the mean vector mX . This comes at the cost of accuracy: if the computational model shows a strong
nonlinearity in the region where X mostly likely lies, the first-order approximation would fail and the second-
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2.3. Uncertainty propagation

order correction may not be enough. The idea to represent the computational model with a more accurate
proxy gives rise to the development of surrogate models, which are presented in Section 2.5.

2.3.2 Monte Carlo simulation

Monte Carlo simulation is a general framework to study the probabilistic properties of random quantities. This
method can be applied without any assumptions about the regularity of the computational model.

2.3.2.1 Estimation

The main idea of Monte Carlo simulation is to generate a set of realizations of Y and then study the sample
statistics. To this end, we can see the computational model as a sampler for Y : one first generates a set of sam-
ples X “

␣

xp1q, . . . ,xpNq
(

following the probability distribution of X and then evaluates the computational
model to obtain samples Y “

␣

yp1q, . . . , ypNq
(

for Y with ypiq “ Md

`

xpiq
˘

.

The samples ofX are typically generated independently, so the realizations ofY are also independent. From
a statistical perspective, X can be seen as a single realization of i.i.d. random variables

␣

Xp1q, . . . ,XpNq
(

, and
the same holds for Y with

␣

Y p1q, . . . , Y pNq
(

. The average of the latter is again a random variable given by

ĎYN “

řN

i“1 Y
piq

N
, (2.55)

which is called the empirical mean of Y . Following the (strong) law of large numbers (Loève, 1977), the random
variable ĎYN converges almost surely to E rY s, i.e., ĎYN

a.s.
ÝÑ E rY s (see the definition in Section 2.2.6). In other

words, even though ĎYN is random, it converges to the deterministic value E rY s with increasingN . As a result,
ĎYN is commonly used to estimate E rY s.

The estimation uncertainty can be assessed using the central limit theorem (Billingsley, 1995), which states
that

?
N
`

ĎYN ´ E rY s
˘ d

ÝÑ N p0,Var rY sq , (2.56)

where N p0,Var rY sq stands for the normal distribution with zero mean and variance Var rY s. As Eq. (2.56)
suggests, Monte Carlo estimators are usually said to have a convergence rate of 1{

?
N .

Similar results can be obtained for the general case in Eq. (2.46) by consideringGpiq “ g
`

Y piq
˘

. In partic-
ular, let us define the empirical distribution function (similar to Eq. (2.48)):

FNpyq
def
“

N
ÿ

i“1

1p´8,ys

`

Y piq
˘

. (2.57)

By the law of large numbers, FNpyq converges almost surely to the CDF FY pyq of Y for any given value y as
N Ñ `8. Furthermore, the Glivenko–Cantelli theorem (Tucker, 1959) provides an even stronger conver-
gence:

sup
y

|FNpyq ´ FY pyq| a.s.
ÝÑ 0. (2.58)
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2. Uncertainty quantification of deterministic models

The estimator for the variance is given by

V̂N “

řN

i“1

`

Y piq ´ ĎYN

˘2

N
, (2.59)

which is not a simple sample average and thus cannot be plugged directly into the framework of Eqs. (2.46)
and (2.55) (as the mean value is unknown but represented by the empirical mean ĎYN ). Nevertheless, Eq. (2.59)
can be recast as

V̂N “

řN

i“1

`

Y piq
˘2

N
´
`

ĎYN

˘2
“ ĎY 2

N ´
`

ĎYN

˘2
, (2.60)

where ĎY 2
N is the average of sample squares. The first term converges almost surely to E rY 2s by the law of large

numbers, and the second term
`

ĎYN

˘2 to E rY s
2 by continuity, which implies V̂ a.s.

ÝÑ Var rY s. Note that the
denominatorN is sometimes replaced byN ´ 1 to obtain an unbiased estimator, whose expectation is equal to
the target quantity, i.e., E

”

N
N´1 V̂

ı

“ Var rY s.
In general, for any function g whose discontinuous points form a set of zero probability, the continuous

mapping theorem (van der Vaart, 1998, Theorem 2.3) guarantees that

ỸN
a.s.
ÝÑ y0 ùñ g

`

ỸN

˘ a.s.
ÝÑ gpy0q. (2.61)

By taking ỸN “
`

ĎY 2
N ,

ĎYN

˘

T

and gpyq “ y1 ´ y2
2 and applying the above theorem, we obtain the almost sure

convergence of V̂N to Var rY s. Finally, the asymptotic behavior of such kinds of estimators can be addressed
by the δ-method (van der Vaart, 1998, Theorem 3.1). It states that if g is differentiable at y0 and ỸN satisfies

?
N
`

ỸN ´ y0
˘ d

ÝÑ N p0,ΣỸ q , (2.62)

where ΣỸ is called the asymptotic covariance of ỸN , the asymptotic behavior of g
`

ỸN

˘

can be depicted by

?
N
`

g
`

ỸN

˘

´ gpy0q
˘ d

ÝÑ N
´

0, p∇gpy0qq
T

ΣỸ ∇gpy0q

¯

. (2.63)

2.3.2.2 Sampling

To perform Monte Carlo estimation, one needs to generate samples of X . In practice, computer programs are
deterministic in nature, and thus programs are only implemented to simulate pseudo-random samples, namely
a set of numbers that look as if they were random.

Many methods focus on generating samples of U that are uniformly distributed in r0, 1sM (Gentle, 2003).
They can be classified into three groups. The first group called Monte Carlo sampling consists of congruential
generators, which calculate the next sample point by a function of existing samples (Matsumoto and Nishimura,
1998). The initial value at the start of the recursion is called the random seed. Therefore, one can obtain the ex-
act same sequence of numbers by controlling the random seed. Otherwise, if the random seed is not fixed, the
algorithm will generate a different sequence upon each simulation, which shows certain “randomness” in the
generation process. In contrast, the second type of approach called quasi-Monte Carlo sampling produces a
deterministic sequence. Sacrificing the pseudo-randomness, this sequence tries to be “representative” of the
sample space in the sense that it has a low discrepancy with respect to a certain space-filling measure. Several
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2.3. Uncertainty propagation

such sequences can be found in the literature, among others, Halton sequences (Halton, 1960) and Sobol’ se-
quences (Sobol’, 1967). The third category is stratified sampling, which consists in dividing the space r0, 1sM

into subdomains and generating samples (e.g., based on the congruential generators) within each of them. This
procedure ensures that the samples will not be close to one another and cover more uniformly the sample space.
The most popular method of this type is called Latin hypercube sampling (LHS; McKay et al., 1979).

In many applications, the sources of uncertainty do not follow independent uniform distributions. There-
fore, the simulated sequence (as described above) needs to be transformed into numbers that are close to what
might be expected when sampling from the target distribution.

For X with mutually independent components, it is simply necessary to sample each marginal distribution
individually. This corresponds to transforming each uniform component Uj P Up0, 1q of U to the random
variableXj with the target distribution. To this end, we can apply an important property of the quantile func-
tion defined in Eq. (2.8): QXj pUjq follows the same probability distribution as Xj (Embrechts and Hofert,
2013). In other words,

X
d
“ pQX1 pU1q , . . . , QX1 pUMqq

T

, (2.64)

where d
“ denotes that the equality is in distribution, i.e., both sides of the equation follow the same probability

distribution.
For X with dependent components, the quantile transform is not directly applicable, as the component-

wise transform cannot create the desired dependence structure. Nevertheless, the joint distribution of X can
be factorized using conditional distributions defined in Section 2.2.4.2:

FXpxq “ FX1 px1qFX2|X1 px2 | x1q . . . FXM |X1,...,XM´1 pxM | x1, . . . , xM´1q. (2.65)

Therefore, we can apply sequentially the quantile transform to independent realizations u “ pu1, . . . , uMq
T of

U to sample X , that is,

x1 “ QX1 pu1q, x2 “ QX2|X1 pu1 | x1q, . . . , xM “ QXM |X1,...,XM´1 puM | x1, . . . , xM´1q, (2.66)

where we express directly the relation in terms of realizations to avoid possible ambiguity. We denote this trans-
form byx “ R̃Xpuq, and it is also known as the inverse Rosenblatt transform (Rosenblatt, 1952) in probability
theory.

2.3.3 Gaussian quadrature

According to the definition in Eq. (2.49), calculating the properties of Y corresponds to evaluating integrals.
One numerical technique to approximate these integrals is Gaussian quadrature, which calculates a weighted
sum of the function values at a finite set of points.

For computing the expectation of gpXq for a single random variableX with PDF fX , theNQ-point Gaus-
sian rule is given by

E rgpXqs “

ż

R
gpxqfXpxqdx «

NQ
ÿ

k“1

wi g
`

xpiq
˘

, (2.67)

whereNQ is the number of integration points, xpiq is the i-th integration point, andwi is the associated weight.
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2. Uncertainty quantification of deterministic models

A Gaussian quadrature rule is designed such that the integral is exact for any polynomials of degree less than
2NQ ´ 1, and thus the integration points and weights depend only on fX . This is equivalent to ensuring the
exact integration of monomials up to degree 2NQ ´ 1. Therefore, NQ controls the accuracy of the numerical
integration. Intuitively, one can solve a system of nonlinear equations to calculate

␣`

xpiq, wi

˘

: i “ 1, . . . , NQ

(

using the moments ofX up to the order 2NQ ´ 1 (as moments ofX are integrals of monomials ofX according
to their definition in Table 2.1). A more practical way to generate integration points and weights can be found
in Abramowitz and Stegun (1970) and Golub and Welsch (1969).

ForX with mutually independent components, the joint PDF can be factorized into a product of marginal
distributions Eq. (2.37). In this case, one can first establish the quadrature rule for each marginal PDF fXj

and
then group them to form multidimensional quadrature points, the so-called tensorized scheme:

E rgpXqs “

ż

R
gpxq

M
ź

j“1

fXj
pxjqdx «

NQ
ÿ

i1

NQ
ÿ

i2

. . .

NQ
ÿ

iM

˜

M
ź

j“1

wij

¸

g
`

xpiq
˘

, (2.68)

wherexpiq “

´

x
pi1q
1 , . . . , x

piM q

M

¯

T

. ForX with a general dependent structure, one can apply the inverse Rosen-
blatt transform in Eq. (2.66) and evaluate the integral by

E rgpXqs “ E
“

g
`

R̃XpUq
˘‰

“

ż

r0,1sM

g ˝ R̃Xpuqdu «

NQ
ÿ

i1

NQ
ÿ

i2

. . .

NQ
ÿ

iM

˜

M
ź

j“1

wij

¸

g
`

R̃X

`

upiq
˘˘

, (2.69)

where the integration points and weights are calculated with respect to the uniform distribution between r0, 1s.

Owing to the tensorized scheme, which takes a full tensor product of the integration points, the quadrature
method can require a large number of model evaluations if used in high-dimensional problems. For example, by
fixingNQ points per dimension, we need to evaluate the computational modelNM

Q times. This number grows
dramatically by increasing NQ, which controls the accuracy of the approximation, and the dimensionality of
X .

2.4 Global sensitivity analysis

Uncertainty propagation aims at studying the probabilistic properties of the output Y . Global sensitivity anal-
ysis instead concentrates on quantifying the impact of each or a group of uncertain parameters on the output
uncertainty.

Let A “ t1, . . . ,Mu be the set of all the input indices. Similar to Section 2.2, for the following analysis, we
split the input vector into two subvectors Xu and Xvq, where v “ Azu.

2.4.1 Sobol’ indices

Sobol’ analysis is one of the most popular sensitivity analysis methods (Alexanderian et al., 2012; Brown et al.,
2013; Wagner et al., 2020; Abbiati et al., 2021b) and has been extensively studied (Sobol’, 1993; Homma and
Saltelli, 1996; Saltelli et al., 2000). This method relies on the Hoeffding–Sobol decomposition (Hoeffding, 1948;
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2.4. Global sensitivity analysis

Sobol’, 1993) of the model Md into functions of increasing dimensionality, which offers a decomposition of
the variance of Y . Therefore, it is also called variance-based sensitivity analysis.

The main assumption of this method is that X has mutually independent components and Y has a finite

variance, i.e., Md P L2

ˆ

DX ,BpDXq,
M
b
j“1

PXj

˙

. Hence, this method is only applicable to independent uncer-

tain sources.
Under this assumption, the function Md can be uniquely decomposed into

Mdpxq “ M0 `

M
ÿ

i“1

Mipxiq `
ÿ

1ďjăkďM

Mj,kpxj , xkq ` . . .` M1,...,Mpx1, . . . , xMq,

“
ÿ

wPPpAq

Mwpxwq,

(2.70)

wherePpAq is the power set ofA (set of all the subsets ofA). Moreover,M0 corresponds toMH, which is a con-
stant, andMwpxwq is the function associated with the subset of input variablesxw defined byw Ă t1, . . . ,Mu.
For example, w “ t1, 2u corresponds to M1,2px1, x2q. Each component Mwpxwq is defined by conditional ex-
pectations (see Section 2.2.4.2), that is,

Mwpxwq
def
“

ÿ

tPPpwq

p´1q|w|´|t|E rY | Xt “ xts , (2.71)

which implies that M0 “ E rY s and E rMwpXwqs “ 0 for all w P PpAqzH. Moreover, the functions
tMw : w P PpAqu are mutually orthogonal, i.e.,

@w ‰ t, E rMwpXwqMtpXtqs “ 0. (2.72)

Therefore, the variance of the model output can be computed as

Var rY s “ E
“

pY ´ M0q2‰ “
ÿ

wPPpAqzH

Var rMw pXwqs . (2.73)

Let Vw
def
“ Var rMw pXwqs. Following the variance decomposition, the Sobol’ indices are defined by

Sw
def
“

Vw

Var rY s
. (2.74)

For |w| “ 1, we obtain the first-order Sobol’ indices tSj : j P Au, which represent the main effect of each
input variable. Higher-order indices defined by |w| ě 2 quantify the pure interactive effect within a given group
of input variables. Because of the additive structure of Eq. (2.73), the sum of all the Sobol’ indices is equal to 1,
i.e.,

ř

wPPpAq
Sw “ 1.

To assess the overall contribution ofXj to the output variance, Homma and Saltelli (1996) introduced the
total Sobol’ index

STj

def
“

ÿ

wPPpAq
wQj

Sw “ 1 ´
ÿ

wPPpAztjuq

Sw. (2.75)

It is worth remarking that the sum of all the total Sobol’ indices are greater or equal to 1, i.e.,
řM

j“1 STj
ě 1.

29



2. Uncertainty quantification of deterministic models

The equality holds if and only if there is no interactive effect among the input variables, meaning that all the
higher-order Sobol’ indices are 0.

Similar to the first-order and total Sobol’ indices, we can define two indices associated with a group of
variables Xu

Stuu

def
“

ÿ

wPPpuq

Sw, STtuu

def
“

ÿ

wĂA
wXu‰H

Sw “ 1 ´ Stvu, (2.76)

which quantify the effect of the variables contained in Xu.

According to the definition of Mwpxwq in Eq. (2.71), Vu can be expressed as

Vu
def
“ Var rMu pXuqs “

ÿ

wĂu

p´1q|u|´|w|Var rE rY | Xwss . (2.77)

Hence, the Sobol’ indices defined in Eq. (2.76) can be calculated by conditional variances, that is,8

Stuu “
Var rE rY | Xuss

Var rY s
, STtuu

“ 1 ´
Var rE rY | Xvss

Var rY s
. (2.78)

2.4.1.1 Monte Carlo estimation

To compute the Sobol’ indices, one needs to estimateVar rY s and conditional variance of the typeVar rE rY | Xuss.
To apply the Monte Carlo estimator in Eq. (2.61), these quantities should be expressed in form of expectations.
The variance of Y can be calculated by Var rY s “ E rY 2s ´ E rY s

2. To tackle the conditional variance, we
define an auxiliary random variable

Yu “ MpXu, X̃vq, (2.79)

where X̃v is an i.i.d. copy of Xv. In other words, Yu shares the same argument Xu as Y , but they differ from
X̃v and Xv, which are i.i.d. Under this setup, Y and Yu follow the same probability distribution. Moreover, for
any given value Xu “ xu, Y and Yu also follow the same probability distribution, and they are conditionally
independent given Xu.

With the help of Yu, we can derive Var rE rY | Xuss as

Var rE rY | Xuss “ E
”

E rY | Xus
2
ı

´ E rE rY | Xuss
2

“ E rE rY | XusE rYu | Xuss ´ E rY s
2

“ E rE rY Yu | Xuss ´ E rY s
2

“ E rY Yus ´ E rY s
2

“ Cov rY, Yus

(2.80)

As a result, we can sample Xu, Xv and X̃v to get samples of Y and Yu. Following Homma and Saltelli
(1996), we obtain the estimator

Ŝtuu,N “

1
N

řN

i“1 Y
piq Y

piq
u ´

´

řN

i“1
1
N
Y piq

¯2

řN

i“1
1
N

pY piqq
2

´

´

řN

i“1
1
N
Y piq

¯2 (2.81)

8For the first-order and total Sobol’ indices of a variable Xj , it is sufficient to take u “ tju.
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Furthermore, leveraging the property that Y and Yu have the same probability distribution, Janon et al. (2014)
proposed another estimator

Ŝtuu,N “

1
N

řN

i“1 Y
piq Y

piq
u ´

´

1
N

řN

i“1
1
2

´

Y piq ` Y
piq
u

¯¯2

1
N

řN

i“1
1
2

ˆ

pY piqq
2

`

´

Y
piq
u

¯2
˙

´

´

1
N

řN

i“1
1
2

´

Y piq ` Y
piq
u

¯¯2
. (2.82)

Following Eq. (2.61), both Eq. (2.81) and Eq. (2.82) converges almost surely to the target Sobol’ index. Based
on Eq. (2.63), Eq. (2.82) is shown to yield a smaller asymptotic variance than Eq. (2.81) (Janon et al., 2014),
which is equivalent to say that Eq. (2.82) is asymptotically more efficient than Eq. (2.81).

2.4.2 A general framework

The Sobol’ indices deal only with the allocation of output variance to the input. In this section, we consider a
more general framework (Borgonovo et al., 2014) based on which many other types of sensitivity indices have
been developed.

Consider a contrast measure dp¨, ¨q for comparing the discrepancy between probability measures. More
specifically, dpP1,P2q quantifies the dissimilarity of the probability measure P2 in respect to P1. Within this
perimeter, d pPY ,PY |Xu“xu

q characterizes how the knowledge of Xu “ xu can change the probability of
Y . d pPY ,PY |Xu“xu

q is a function of the conditioning value xu. By randomizing xu (similar to Eqs. (2.28)
and (2.31)), we obtain a random variable d pPY ,PY |Xu

q. The expected value of the latter can be used to define
a sensitivity index Sd

tuu
of the group Xu

Sd
tuu

def
“ E rd pPY ,PY |Xu

qs , (2.83)

which indicates the average changes of the probability distribution of Y by knowing the value of Xu.

The first-order Sobol’ indices can be defined as a special case of this general construction. Let us define
dp¨, ¨q as the difference of the variance of the probability measures, that is,

d pPY ,PY |Xu
q

def
“ Var rY s ´ Var rY | Xus . (2.84)

The associated index for u “ tju reads

Sd
j “ E

“

d
`

PY ,PY |Xj

˘‰

“ Var rY s ´ E rVar rY | Xjss “ Var rE rY | Xjss , (2.85)

where the last equality comes from the law of total variance Eq. (2.33). This index measures how much one can
reduce on average the variance ofY if the value ofXj is known. DividingSd

j byVar rY s provides the first-order
Sobol’ index ofXj . Alternatively, we can divide Var rY s in the definition of the contrast measure in Eq. (2.84)
to obtain directly the first-order Sobol’ index.

In information theory, entropy (MacKay, 2013) is usually used to describe the amount of information (or
uncertainty) of a random variable. Replacing the variance Var r¨s by the entropyHp¨q in Eq. (2.84), we obtain
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2. Uncertainty quantification of deterministic models

another sensitivity index

Sd
tuu “ E rd pPY ,PY |Xu

qs “ E rHpY q ´H pY | Xuqs “ I pY ;Xuq , (2.86)

which is called the mutual information IpY ;Xuq. This index is widely used for variable selection in decision
trees where IpY ;Xuq is referred to as the “information gain” (Rokach and Maimon, 2005). The mutual infor-
mation can be normalized by the entropy of Y yielding a quantity within the range r0, 1s.

As variance and entropy are merely characteristic values of a probability measure, Borgonovo (2007) pro-
posed a dissimilarity metric dp¨, ¨q to take into account the whole probability distribution: it is defined as half
of the L1 distance between the PDFs, i.e.,

d pPY ,PY |Xu“xu
q “

1
2
∥∥fY ´ fY |Xu

∥∥
L1 “

1
2

ż

R

∣∣fY pyq ´ fY |Xu
py | xuq

∣∣dy, (2.87)

which gives the Borgonovo index

Sd
tuu “ E rd pPY ,PY |Xu

qs “
1
2
E
“∥∥fY ´ fY |Xu

∥∥
L1

‰

. (2.88)

Recent research in sensitivity analysis consists in looking for other suitable contrast measures. For example,
da Veiga (2021) proposed embedding probability distributions in a reproducing kernel Hilbert space. The norm
in the embedding space induces a contrast metric, which allows for a similar decomposition as in Eq. (2.73).
Besides, the mutual information in Eq. (2.86) can also be extended to the embedding space and thus defines
another sensitivity measure. Borgonovo et al. (2022) suggested using the Wasserstein-type metrics developed in
optimal transport to represent the difference between probability measures.

2.5 Surrogate models
Performing uncertainty quantification with Monte Carlo simulation typically requires a large number of model
runs to produce a reliable estimate due to the slow convergence behavior. However, high-fidelity simulators can
be computationally demanding and costly to evaluate, e.g., a single model run can take hours to days. It is
therefore impracticable to study directly these expensive models in the context of uncertainty quantification.

The high complexity of a computational model is usually due to the sophisticated representation of the
physical processes and accurate numerical solvers. To reduce the computational cost, one can approximate di-
rectly the input-output relation of the original simulator with a non-physical surrogate model

Mdpxq « Ms
dpxq. (2.89)

By construction, the formulation of Ms
d is much simpler compared to the original simulator, and thus Ms

d is
much cheaper to evaluate. With Ms

d, one can then perform a large-scale Monte Carlo simulation to study the
physical model Md.

Surrogate modeling consists in approximating the computational model by a function from a specific func-
tion space. Depending on how the function space is represented, surrogate models can be classified into two
groups. The first one consists in parameterizing or defining the function space by a countable set of parame-
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ters. Popular models of this type include polynomial chaos expansions (Ghanem and Spanos, 2003; Berveiller
et al., 2006), wavelet expansions (Meyer, 1993; Mallat, 2009), and artificial neural networks (LeCun et al., 2015;
Bishop, 1995; Cartwright, 2015). In contrast, the second group of methods defines the function space by a cer-
tain regularity. This type of model is mostly developed in statistics and applied to surrogate modeling, including
smoothing splines (Craven and Wahba, 1978; Friedman, 1991), tree-based methods (Breiman, 2001; Loh, 2014),
kernel regression (Schölkopf and Smola, 2002), Gaussian processes (Rasmussen and Williams, 2006; Bachoc
et al., 2014; Lataniotis et al., 2018), and support vector regression (Vapnik, 1995; Moustapha et al., 2018).

In this thesis, we only focus on the non-intrusive methods to construct surrogate models. In this frame-
work, the detailed structure of the computational model is not considered, and one only treats it as a black
box: by feeding in an input value, it returns the model response. Hence, the only necessary operation to carry
out with the simulator is model evaluation. More precisely, the simulator is evaluated on a set of selected in-
put values X “

␣

xp1q, . . . ,xpNq
(

called the experimental design (ED), and the associated model outcomes are
collected into Y “

␣

yp1q, . . . , ypNq
(

with ypiq “ Md

`

xpiq
˘

. Conventional methods to generate the ED in-
cludes Monte Carlo sampling, quasi-Monte Carlo sampling, and Latin hypercube sampling as reviewed in Sec-
tion 2.3.2.2. Non-intrusive methods consist in building surrogate models only from the generated input-output
pairs pX ,Yq without modifying or adapting the simulator. The decoupling of computational simulation and
surrogate modeling is a very important feature of non-intrusive methods. This facilitates the application of sur-
rogate models to all kinds of simulators, especially to computer codes that involve large-scale computations or
substructures that are confidential or not publicly available.

Both Monte Carlo simulation in Section 2.3.2 and non-intrusive surrogate modeling rely on sampling and
model evaluations. The main advantage of using surrogate models is that their construction takes into account
the regularity of the simulator. For example, if the input-output relation of a simulator happens to be linear
despite its complex underlying formulation, onlyM`1 points are needed to build an accurate surrogate model,
whereas Monte Carlo simulation ignores the model behavior and only works with the output samples.

In this section, we review two of the most popular and widely used surrogate models in uncertainty quan-
tification, namely polynomial chaos expansions and Gaussian processes.

2.5.1 Polynomial chaos expansions

2.5.1.1 Spectral representation

We assume that the input vector X possesses a joint PDF fX and that the random model output variable Y has
a finite variance. This is equivalent to assuming Md P L2 pDX ,BpDXq,PXq with the probability measure in
Eq. (2.17). Let us further introduce the Hilbert space H “ L2 pDX ,BpDXq,PXq with the inner product

xg, hyH “ E rgpXqhpXqs “

ż

DX

gpxqhpxqPXpdxq “

ż

DX

gpxqhpxqfXpxqdx. (2.90)

This inner product induces a norm ∥¨∥H that reads

∥h∥H
def
“
a

xh, hyH “

d

ż

DX

h2pxqfXpxqdx. (2.91)
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According to (Brezis, 2011, Theorem 4.13), H is separable, meaning that H has a countable dense subset. This
implies thatH is a separable Hilbert space (Kantorovich and Akilov, 1982) with a countable orthonormal basis.
Denoting the latter by tψγ : γ P Nu, it satisfies

xψγ1 , ψγ2 yH “ δγ1,γ2 , (2.92)

where δ is the Kronecker delta defined by δγ1,γ2 “ 1 if γ1 “ γ2 and δγ1,γ2 “ 0 otherwise. Most importantly,
any function in H can be represented by a unique expansion onto the basis, and thus the computational model
Md is expressed by

Mdpxq “
ÿ

γPN

cγψγpxq, with cγ
def
“ xMd, ψγyH, (2.93)

where c are the coefficients. The equality stands for the convergence of the infinite series to Md in the mean-
square sense (L2), as defined in Section 2.2.6. Since this convergence in L2 implies the convergence in distribu-
tion, one can study the probabilistic properties of Y from the expansion.

2.5.1.2 Polynomial basis

To representMd by a spectral expansion in Eq. (2.93), one needs to construct an appropriate basis tψγ : γ P Nu.
In the following presentation, we assume that the input vector X has mutually independent components. The
case of dependent input is addressed later on in this section.

Similar to H, the space Hj “ L2
`

R,BpRq,PXj

˘

is also a separable Hilbert space with the inner product

xg, hyHj
“ E rgpXjqhpXjqs “

ż

DXj

gpxjqhpxjqPXj
pdxjq “

ż

DXj

gpxjqhpxjqfXj
pxjqdxj . (2.94)

We denote its orthonormal basis by
!

ϕ
pjq
αj : αj P N

)

.

For independent input variables, the probability measurePX can be factorized as a product of the marginal

measures. Therefore, there is an isomorphism betweenH and the tensor product space
M
b
j“1

Hj (Reed and Simon,

1972). In other words, we can form an orthonormal basis for H by a tensor product of the orthonormal bases
associated with Hj for j “ 1, . . . ,M . More precisely, the basis is defined by

␣

ψα : α P NM
(

with ψα “
M
b
j“1
ϕpjq
αj
, that is, ψαpxq “

M
ź

j“1

ϕpjq
αj

pxjq, (2.95)

where α “ pα1, . . . , αMq
T

P NM is called a multi-index and gathers the indices of the univariate basis func-
tions.

With Eq. (2.95), the construction of a basis forH reduces to constructing an orthonormal basis for eachHj .
Various types of univariate bases can be found in the literature on surrogate models, e.g., polynomials (Xiu and
Karniadakis, 2002), wavelets (Meyer, 1993; Mallat, 2009), Fourier series (Trigub and Belinsky, 2004; Millman
et al., 2005), and Poincaré basis (Roustant et al., 2017; Lüthen et al., 2022c), which has recently been developed
for sensitivity analysis. Among the possible choices, arguably the most common in engineering applications is
polynomials.
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2.5. Surrogate models

Following Riesz (1923), if the marginal distribution fXj
can be uniquely determined by its moments,9 the

set of polynomials is dense in Hj . This condition holds for many classical parametric distributions: normal,
uniform, gamma, beta, etc. As a result, one can find an orthonormal polynomial basis

!

ϕ
pjq
αj : αj P N

)

for Hj .
Here, αj stands for the polynomial degree. In particular, for conventional distributions such as normal, uni-
form, Gamma, and beta (see their definition in Table 2.2), the associated univariate orthogonal polynomials are
the well-known Hermite, Legendre, Laguerre, and Jacobi polynomials, respectively. A detailed description of
these polynomials can be found in Xiu and Karniadakis (2002). For any other marginal distributions that ful-
fill the moment condition, such a basis can be computed numerically through the Stieltjes procedure (Gautschi,
2004).

If a marginal distribution does not allow for a polynomial basis (e.g., lognormal distribution), one can trans-
form the variableX to another random variableΥwith a well-behaved distribution (e.g., normal, uniform). For
a continuous random variable X , U def

“ FXpXq is a random variable following a uniform distribution in r0, 1s

(Embrechts and Hofert, 2013). Combining it with the quantile transform in Eq. (2.64), one can transform X

to Υ with a desired continuous distribution FΥ by

Υ “ T pXq
def
“ QΥ pFXpXqq . (2.96)

Thus, a univariate basis forX is given by
ϕα “ ϕ̃α ˝ T . (2.97)

where
␣

ϕ̃α : α P N
(

is the polynomial basis associated with the probability distribution of Υ.

IfX has dependent components, the tensor product in Eq. (2.95) does generally not produce an orthonor-
mal basis, and the condition for multivariate polynomials being dense in H is more complicated (see Freud,
1971; Ernst et al., 2012). To circumvent this problem, we can apply a similar procedure as in Eq. (2.96) to trans-
form X into an auxiliary vector Υ “ T pXq with independent components (e.g., a standard normal vector;
Torre et al., 2019a). The main tool is the Rosenblatt transform (Rosenblatt, 1952). Let u “ RXpxq with the
transform RX given by

u1 “ FX1 px1q, u2 “ FX2|X1 px2 | x1q, . . . , uM “ FXM |X1,...,XM´1 puM | x1, . . . , xM´1q. (2.98)

The random vector U “ RXpXq has mutually independent and uniformly distributed components in r0, 1s.
By applying the quantile transform to each component of U , we can obtain a random vector Υ with desired
marginal distributions. Denote the overall transform as T “ R̃Υ ˝ RX , where R̃Υ follows the definition of
the inverse Rosenblatt transform in Eq. (2.66). The basis is then defined with respect to the auxiliary variables,
and the associated orthonormal basis function for X is given by

ψα
def
“

M
b
j“1
ϕ̃pjq
αj

˝ T ùñ ψαpxq “

M
ź

j“1

ϕ̃pjq
αj

pυjq with υ “ T pxq. (2.99)

9This is called the Hamburger moment problem (Freud, 1971).
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With the polynomial basis tψα : α P NMu defined in this section, the spectral representation of Md is

MdpXq “
ÿ

αPNM

cαψαpXq, (2.100)

which is called the polynomial chaos expansion (PCE) of Md.

2.5.1.3 Truncation schemes

For practical implementation, it is necessary to truncate the infinite sum in Eq. (2.100) to a finite series to handle
the expansion. This consists in defining a finite subset A Ă NM of multi-indices corresponding to the basis
functions used in the expansion, which is equivalent to fixing the coefficients to 0 for unselected functions.
The approximation error of the truncated PCE compared to the full representation is given by

∥∥∥∥∥ÿ
αPA

cαψαpXq ´ MdpXq

∥∥∥∥∥
2

H

“

∥∥∥∥∥∥
ÿ

αPNM zA

cαψαpXq

∥∥∥∥∥∥
2

H

“
ÿ

αPNM zA

c2
α. (2.101)

Hence, the truncated model is accurate if most of the significant terms are included in A.

For many engineering applications, computational models are usually smooth and do not exhibit significant
high-order polynomial behaviors. As a result, the most common truncation scheme is to include basis functions
with the total degree lower than a given value p, that is,

Ap,M “

#

α Ă NM :
M
ÿ

j

αj ď p

+

. (2.102)

The total number of the resulting basis functions is

∣∣Ap,M
∣∣ “

pp`Mq!

p!M !
. (2.103)

This number grows very fast with increasing maximum degree p and the number of input variables M . For
example,M “ 5 and p “ 5 produce 252 terms, whereasM “ 10 and p “ 10 result in 184,756 functions in the
truncated set. Working with a huge number of basis functions means that we need to estimate the same amount
of unknown coefficients (see Section 2.5.1.4), which is impracticable for expensive simulators.

To effectively reduce the cardinality of Ap,M , one can assume that the sparsity-of-effects principle (Mont-
gomery, 2004) applies to the computational model, as first observed by Blatman (2009). According to this
heuristic, most physical systems are dominated by some main effects and low-order interactions, whereas con-
tributions of most high-order interactions are negligible.10 Therefore, we can limit the interactions between
input variables by restricting ∥α∥0 ď Rwhere ∥α∥0 counts the non-zero entries of α, andR is called the max-
imum interaction order (Blatman, 2009). Another application of the principle leads to the hyperbolic (q-norm)

10This principle is examined and discussed in the field of factorial designs (Li et al., 2006). In this context, the high-order interactions
correspond to the joint effect of three or more input variables.
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truncation scheme (Blatman and Sudret, 2011):

Ap,q,M “

$

&

%

α P NM : ∥α∥q
def
“

˜

M
ÿ

i“1

|αi|q
¸

1
q

ď p

,

.

-

, (2.104)

where q ď 1 defines the quasi-norm ∥¨∥q.11 Using the q-norm, this truncation scheme offers a versatile control
of interactions among high-degree polynomials. Note that q “ 1 leads to Ap,M defined in Eq. (2.102).

2.5.1.4 Model construction

Once the truncated basis functions are selected, what remains is to calculate the coefficients cA (i.e., the com-
ponents of c restricted to the truncated set A) to build a PCE surrogate model. For most simulators, analytical
closed-form solutions to evaluate the expectation in Eq. (2.93) do not exist. Following the non-intrusive philos-
ophy, the coefficients should instead be estimated from a set of evaluations pX ,Yq of the computational model.

To this end, several methods have been developed. The first one is to compute the expectation in Eq. (2.93)
numerically by Gaussian quadrature presented in Section 2.3.3. In this case,X corresponds to the set of integra-
tion points. To alleviate the excessive number of model runs associated with the tensorized scheme for relatively
high dimensional problems (M ě 5), Smolyak’s quadrature rule (Smolyak, 1963; Le Matre et al., 2004) can be
adopted to construct a sparse grid. Alternatively, one can employ the Monte Carlo estimation of Eq. (2.93) by
taking the empirical mean from an ED generated based on the distribution ofX (Ghiocel and Ghanem, 2002).

As an alternative to quadrature, regression methods have gained significant attention for constructing PCEs
non-intrusively in the last decade (Berveiller et al., 2006; Blatman and Sudret, 2010, 2011; Sargsyan et al., 2014).
We recap the principle of this approach in this section.

In Eq. (2.93), each coefficient cα is defined by projecting Md onto ψα, which is equivalent to

cα “ argmin
a

E
”

pMdpXq ´ aψαpXqq
2
ı

. (2.105)

Similarly, the coefficientscA associated with a set of basis functions tψα : α P Au can be seen as the coordinates
of Md projected onto the space spanned by the associated basis functions, namely

cA “ argmin
a

E

»

–

˜

MdpXq ´
ÿ

αPA

aαψαpXq

¸2
fi

fl . (2.106)

Because of the orthogonality of the basis, solving Eq. (2.106) leads to the same result as solving Eq. (2.105) for
each coefficient individually.

Let the experimental design X be generated by sampling the distribution of X . The ordinary least-squares
(OLS) estimation is based on approximating the expectation in Eq. (2.106) by the empirical mean, i.e.,

ĉN “
1
N

argmin
c

N
ÿ

i“1

˜

ypiq ´
ÿ

αPA

cαψα

`

xpiq
˘

¸2

. (2.107)

11∥¨∥q with q ă 1 is not a norm because it does not satisfy the triangle inequality.
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By re-indexing the basis functions, we can write tψα : α P Au as tψγ : γ “ 1, . . . , |A|u. Let us define the
design matrix Ψ and the response vector y by

Ψ
def
“

¨

˚

˚

˚

˚

˝

ψ1
`

xp1q
˘

ψ2
`

xp1q
˘

¨ ¨ ¨ ψ|A|
`

xp1q
˘

ψ1
`

xp2q
˘

ψ2
`

xp2q
˘

¨ ¨ ¨ ψ|A|
`

xp2q
˘

...
... . . . ...

ψ1
`

xpNq
˘

ψ2
`

xpNq
˘

¨ ¨ ¨ ψ|A|
`

xpNq
˘

˛

‹

‹

‹

‹

‚

, y
def
“

¨

˚

˚

˚

˚

˝

yp1q

yp2q

...
ypNq

˛

‹

‹

‹

‹

‚

. (2.108)

Then, Eq. (2.107) can be expressed in matrix notation as

ĉN “
1
N

argmin
c

py ´ Ψcq
T

py ´ Ψcq , (2.109)

and the solution to this problem is given analytically by

ĉN “

´

Ψ
T
Ψ
¯´1

Ψ
T
y “

ˆ

1
N

Ψ
T
Ψ

˙´1 ˆ 1
N

Ψ
T
y

˙

. (2.110)

Note that it can easily be shown that 1
N
Ψ

T
y is the empirical projection ofMd onto each selected basis function,

i.e., solving the empirical solution to Eq. (2.105). Consequently, even though Eq. (2.105) and Eq. (2.106) are
equivalent, their empirical version would generally lead to different estimators, as 1

N
Ψ

T
Ψ is not the identity

matrix. However, each element of the matrix 1
N

´

Ψ
T
Ψ
¯

reads

1
N

´

Ψ
T
Ψ
¯

γ1,γ2

“
1
N

N
ÿ

i“1

ψγ1

`

xpiq
˘

ψγ2

`

xpiq
˘

, (2.111)

which is the empirical mean of xψγ1 , ψγ2 yH “ δγ1,γ2 . Because of the law of large numbers, 1
N

´

Ψ
T
Ψ
¯

converges
almost surely to the identity matrix I|A| of size |A|, i.e.,

1
N

Ψ
T
Ψ

a.s.
ÝÑ I|A|. (2.112)

Since matrix inversion is a continuous function and 1
N
Ψ

T
y converges almost surely to cA, the OLS estimator

in Eq. (2.110) is consistent, meaning that
ĉN

a.s.
ÝÑ cA. (2.113)

Eq. (2.113) offers a theoretical justification for using Eq. (2.110). In practice, however, we can only afford a
limited number of model runs. When there are only a few available data points but many coefficients to be
estimated, Eq. (2.110) is prone to overfitting, which means that the fitted model performs well on the given data
set (e.g., interpolates the data points) but fails to represent the global behavior of Md. As a rule-of-thumb, it is
usually necessary to haveN between 2 |A| and 3 |A| to achieve an accurate estimate (Fajraoui et al., 2017).

Due to this requirement, OLS becomes prohibitive in the case of high-dimensional or highly nonlinear
problems. Applying the hyperbolic scheme and limiting the interaction order shown in Section 2.5.1.3 may
still result in numerous coefficients (e.g., restricting the hyperbolic truncated setA10,10,0.5 with up to third-order
interactions still produces 671 terms). To overcome this issue, sparse PCEs have been developed. The main idea
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2.5. Surrogate models

is to minimize Eq. (2.107) while selecting only the most significant basis functions among a candidate set (e.g.,
generated by applying the truncation schemes in Section 2.5.1.3). Various sparse algorithms can be found in
the literature, such as penalized least-squares with least absolute shrinkage and selection operator (LASSO)
(Tibshirani, 1996), least-angle regression (LAR; Efron et al., 2004), orthogonal matching pursuit (Tropp and
Gilbert, 2007; Doostan and Owhadi, 2011), stepwise regression (Blatman and Sudret, 2010; Abraham et al.,
2017), Bayesian compressive sensing (Babacan et al., 2010; Sargsyan et al., 2014), etc. We refer to Lüthen et al.
(2021, 2022a) for a thorough review of sparse PCEs.

In this thesis, we employ LAR to progressively enrich the set of selected basis functions, and we adopt the
hybrid algorithm introduced in Blatman and Sudret (2011) to build the final surrogate.

2.5.1.5 Post-processing

After constructing a PCE surrogate model

MPCEpXq “
ÿ

αPA

ĉαψαpXq, (2.114)

where ĉ are the estimated coefficients, we can easily perform a large-scale Monte Carlo simulation on MPCE

for uncertainty quantification analysis, as it is computationally inexpensive. In addition, because of the use
of an orthonormal basis, several important quantities of the model output can be computed directly by post-
processing the coefficients.

According to the construction of the polynomial basis, the basis functionψ0 with0 “ p0, . . . , 0q
T is always

constant and equal to 1. As a result, the mean value of MPCEpXq is equal to the coefficient ĉ0, i.e.,

E
“

MPCEpXq
‰

“ xMPCE, 1yH “ ĉ0. (2.115)

Similarly, the variance can be calculated by

Var
“

MPCEpXq
‰

“ E

»

–

˜

ÿ

αPAzt0u

ĉαψαpXq

¸2
fi

fl “

∥∥∥∥∥∥
ÿ

αPAzt0u

ĉαψα

∥∥∥∥∥∥
2

H

“
ÿ

αPAzt0u

ĉ2
α. (2.116)

The computation of high-order moments requires evaluating quantities of the formE r
śr

k“1 ψαk
pXqs, where

r is the target order of moment. Analytical solutions for r ą 2 are only available for certain types of polynomials,
e.g., Hermite polynomials (Sudret et al., 2006).

Furthermore, PCE has a close link to the Hoeffding–Sobol decomposition presented in Eq. (2.70) (Sudret,
2007). Indeed, one can re-arrange a PCE and group the summands to express the PCE in the form of Eq. (2.70).
More precisely, each element MPCE

w in the decomposition is given by

MPCE
w pxq “

ÿ

αPAw

ĉαψαpxq, (2.117)

where Aw “ tα P A : @j P w, αj ‰ 0 and @k P Azw, αk “ 0u.
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2. Uncertainty quantification of deterministic models

As a result, the Sobol’ index in Eq. (2.74) can be calculated by

SPCE
w “

ř

αPAw

ĉ2
α

ř

αPAz0
ĉ2
α

, (2.118)

and thus first-order, higher-order, and total Sobol’ indices can all be computed analytically based on Eq. (2.76)
and Eq. (2.118).

2.5.2 Gaussian processes

Gaussian process modeling, also known as Kriging (named after Krige, 1951), is a nonparametric technique that
interpolates the data points. It has been originally developed in geostatistics and then elaborated to a general
model (Santner et al., 2003). To understand this method, we first introduce the concept of random fields, which
is also used in the next chapter to model stochastic simulators.

A real-valued random field (also known as random process) is defined as a collection of real-valued random
variables tYt : t P DT u indexed by twithDT Ă RM denoting the index set. For random vectors, DT is a subset
of N, whereas for random fields DT can contain intervals (e.g., DT “ r0, 1sM ). As a result, a realization of a
random fieldYtpωq is a function of its index, also called a trajectory. BecauseDT is uncountable, the probability
measure of a random field cannot be defined as for random vectors in Eq. (2.15). In general, there are two ways
to define and characterize a random field.

• The first one is to directly define it as a function-valued random variable as in Section 2.2.2 with the
functions defined on DT .12 For example, we can define a random field having continuous trajectories on
r0, 1sd by using orthogonal polynomials (of t) in Section 2.5.1.2 with random coefficients. Describing
the joint probability distribution of the (countable) set of coefficients would then fully characterize the
random field.

• The second one is through finite-dimensional distributions. In this case, one focuses on describing the
probability distribution of any finite subset of random variables tYt1 , . . . , Ytnu. A typical example is the
Gaussian random field where any finite-dimensional random vector pYt1 , . . . , Ytnq

T follows a multivari-
ate Gaussian distribution.

Gaussian process modeling of a deterministic function assumes that the target function Md is a realization
of a Gaussian random field tYx : x P DXu that is indexed by the input variables. As a result, the value ofMdpxq

is a specific realization of Yx.
A Gaussian random field is fully specified by its mean and auto-covariance function

mpxq
def
“ E rYxs , Kpx,x1q “ Cov rYx, Yx1 s . (2.119)

Any finite subset of variables Yn “ pYx1 , . . . , Yxnq
T

follows a multivariate Gaussian distribution N pmn,Σnq

with mean vector mn “ pm px1q , . . . ,m pxnqq
T

and covariance matrix Σn where pΣnqi,j “ Kpxi,xjq.

12In this case, E is a certain function space endowed with a specific σ-algebra E .
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More precisely, the joint PDF is given by

fYn
pynq “

1
a

2π detpΣnq
exp

ˆ

´
1
2

pyn ´ mnq
T

Σ´1
n pyn ´ mnq

˙

. (2.120)

When evaluating the computational model on the EDX of sizeN , we obtain a realizationy “
`

yp1q, . . . , ypNq
˘

T

of YN “ pYxp1q , . . . , YxpNq q
T

. Conditioned on this information (using the conditional distribution defined in
Section 2.2.4.2 forYN “ y), for any new pointx,Yx is still a Gaussian random variableYx „ N pmNpxq, σ2

Npxqq

with

mNpxq “ mpxq ` K
T

X pxqΣ´1
N py ´ mNq ,

σ2
Npxq “ Kpx,xq ´ K

T

X pxqΣ´1
N KX pxq,

(2.121)

where mN and ΣN are the mean vector and covariance matrix of the Gaussian random vector YN defined
above, and KX pxq “

`

K
`

x,xp1q
˘

, . . . ,K
`

x,xpNq
˘˘

T

is the covariance between Yx and YN . It can be easily
shown that for any xpiq P X , mN

`

xpiq
˘

“ ypiq and σ2
N

`

xpiq
˘

“ 0, which implies that the surrogate model
interpolates the data. Moreover, the mean function is usually used to represent the surrogate model response,
and the variance function shows some uncertainty in the estimation.

2.5.2.1 Model construction

To use Gaussian processes for surrogate modeling, the mean and auto-covariance functions need to be estimated
from data, since they are unknown a priori.

Typically, the mean function is represented by a linear combination of Nf prescribed functions fpxq “
`

f1pxq, . . . , fNf
pxq

˘

, that is,
mpxq “ β

T
f pxq (2.122)

where β is the associated coefficient vector. Common choices of f are fpxq “ 0 (i.e., the mean function is
fixed to 0), constant function fpxq “ 1, linear functions fpxq “ p1, x1, . . . , xMq

T

, or PCE basis defined in
Section 2.5.1.2 (Schöbi et al., 2015).

The auto-covariance function by nature is a kernel (Rasmussen and Williams, 2006), meaning that it is
symmetric, and that for any x1, . . . ,xn P DX and a1, . . . , an P R it satisfies

ÿ

i,j

aiajKpxi,xjq ě 0. (2.123)

Conversely, any valid kernel (i.e., symmetric and which verifies Eq. (2.123)) is a valid auto-covariance function.
As a result, one can choose any kernel Kp¨, ¨q in the modeling. In practice, the auto-covariance function is
usually factorized by

Kpx,x1q “ σ2Rpx,x1q, (2.124)

where Rpx,x1q “ Corr rYx, Yx1 s is the correlation function, and σ2 is the variance of the marginal distri-
butions of the Gaussian process (i.e., under this factorization, all the marginal distributions have the same
variance). By its definition, the correlation function is usually modeled by a normalized kernel Rpx,x1;θq

(i.e., Rpx,x;θq “ 1) parameterized by θ. Because the correlation coefficient quantifies the co-variability of
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two random variables deviating from their mean values, R is actually a similarity measure. Most computa-
tional models show a certain level of regularity: the closer the input values, the more similar the associated
model responses become. This inspires the definition of R as a function of the difference between the points
Rpx,x1;θq “ Rpx ´ x1;θq, such as the isotropic Gaussian kernel

Rpx,x1; θq “ exp

ˆ

´
∥x ´ x1∥2

2
2θ2

˙

, (2.125)

where ∥¨∥2 is the Euclidean norm in RM . More generally, the multivariate correlation function R can be con-
structed based on one or several one-dimensional kernels (e.g., exponential, Gaussian, Matérn functions; Ras-
mussen and Williams, 2006; Dubourg, 2011; Santner et al., 2003).

After parametrizing the mean and covariance functions as described above, all that remains is to estimate
β, σ2, and θ.

Let F be the matrix containing the evaluations of the prescribed functions f on the ED X , i.e., Fi,j “

fj
`

xpiq
˘

. Let Rθ be the correlation matrix pRθqi,j “ R
`

xpiq,xpjq;θ
˘

. Under this matrix notation, YN fol-
lows a multivariate Gaussian distribution with mean Fβ and covariance matrix σ2Rθ. Following Eq. (2.120),
the log-likelihood is given by

LRpβ, σ,θ;X ,Yq “
N

2
logp2πq ´

log pdetRθq

2
`
N

2
log

`

σ2˘ ´
1

2σ2 py ´ Fβq
T
R´1

θ py ´ Fβq (2.126)

By maximizing the likelihood, we can solve analytically for β and σ2:

β̂θ “

´

F
T
R´1

θ F
¯´1

F
T
R´1

θ y,

σ̂2
θ “

1
N

´

y ´ F β̂θ

¯

T

R´1
θ

´

y ´ F β̂θ

¯

,

(2.127)

where the subscript θ denotes that the associated quantity depends on the kernel parametersθ. The latter can be
estimated by plugging Eq. (2.127) into Eq. (2.126) and again maximizing the likelihood. Alternatively, θ can be
treated as a set of hyperparameters and thereafter tuned separately fromβ andσ2 (MacKay, 1999; Bachoc, 2013).
We refer to Santner et al. (2003) and Rasmussen and Williams (2006) for a summary of different estimation
methods.

2.6 Summary

In this chapter, we briefly reviewed the general framework and essential ingredients of uncertainty quantifi-
cation for deterministic computational models. The computational model at the core of the analysis is deter-
ministic. It maps a given set of input parameters that describe the modeled phenomena to the response. For
real-world applications, the input parameters are often uncertain. Probability theory is our mathematical tool
of choice to model uncertain quantities, which are represented by random variables and characterized by a joint
probability distribution. By propagating the input uncertainty, the model output is a random variable whose
probabilistic properties are of interest. Sensitivity analysis aims at studying how the output uncertainty can be
allocated to the input variables. Monte Carlo simulation is a general method for uncertainty quantification but
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2.6. Summary

can require a large number of model evaluations. To work with computationally expensive simulators, easy-to-
evaluate surrogate models, such as polynomial chaos expansions or Gaussian processes, can be built on a small
set of model runs to emulate the deterministic input-output map. Because of their simplicity, surrogate models
can be used in a large-scale Monte Carlo simulation to perform uncertainty quantification analysis.
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The fact that the polynomial is an approximation does not neces-
sarily detract from its usefulness because all models are approxi-
mations. Essentially, all models are wrong, but some are useful.
However, the approximate nature of the model must always be
borne in mind.

George Box

3
Stochastic surrogate models: state of the art

As presented in the previous chapter, computational models considered in classical uncertainty quantification
are deterministic, and the uncertainty only comes from the input variables. In contrast, stochastic simulators
contain intrinsic stochasticity, and the model response remains random even for a fixed set of input parameters
(as we illustrated in Fig. 1.1). Mathematically, a stochastic simulator can be expressed by

Ms : DX ˆ Ω Ñ R,

px, ωq ÞÑ Mspx, ωq,
(3.1)

where Ω is the sample space as defined in Section 2.2.1. We denote the response random variable by Yxpωq
def
“

Mspx, ωq.

The intrinsic stochasticity comes from the fact that the input variables provide only partial information
about the model response, and other relevant variables, called latent variables and denoted by Ξ, are not ex-
plicitly taken into account and remain random. In other words, a stochastic simulator embeds a deterministic
model Md : px, ξq ÞÑ Mdpx, ξq, but ξ is uncertain (modeled by Ξ) and not identified as part of the input,
as illustrated in Fig. 3.1. When fixing the input vector x and letting the latent variables vary in their domain of
definition, multiple simulations with the same input x yield different results.

Mdx

Ξ

Yx

Ms

Figure 3.1: Schematic representation of stochastic simulators.

In this thesis, we simplify the notation in Eq. (3.1) by explicitly expressing the source of intrinsic stochasticity
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as latent variables, that is,
Yx “ Mdpx,Ξq. (3.2)

Each model evaluation for x generates a realization ξ of Ξ and produces a realization Mdpx, ξq of Yx. This
simplification is introduced to avoid additional definition on the probability space when modeling the random
input X . Furthermore, we assume that the latent variables Ξ are independent of X . When this is not the case,
one can always apply the inverse Rosenblatt transform Eq. (2.66) to representΞ as a deterministic functionJ of
X and a set of random variables Ξ̃ that are independent of X , i.e., Ξ “ J

`

X, Ξ̃
˘

. The underlying simulator
is then given by M̃d

`

x, ξ̃
˘ def

“ Md

`

x, J
`

x, ξ̃
˘˘

.

Since computers are deterministic machines, stochastic codes are always implemented following Fig. 3.1.
In this case, the distribution of the latent variables is known. Moreover, their values can be controlled and
assessed. In principle, one can includeΞ in the input and use the classical uncertainty quantification framework
presented in Chapter 2. However, this is not always feasible or meaningful in many cases.

First, in some applications (e.g., wind turbine simulations [Abdallah et al., 2019]), the uncertain sources
can be extremely high-dimensional, especially when random processes (which contain an infinite number of
random variables) are considered. Therefore, surrogate modeling of such a computational model directly is
intractable. To this end, we can extract a finite number of dominant features as input and disregard the residuals
as latent variables (Lataniotis, 2019), which transforms the deterministic simulator into a stochastic one.

Second, the latent variables can correspond to some parameters without significant physical meaning or in-
terest. A typical example is agent-based models, which simulate the behavior of a system consisting of a large
number of discrete agents under certain conditions or interventions, e.g., the spread of an infectious disease
within a population (Cuevas, 2020). There, each agent behaves independently (in the sense that they do not
react in the exact same way) and interacts within the population. Studying the individual’s effect on the pop-
ulation’s overall behavior is much less important than looking at the aggregated macroscopic properties of the
population, as practitioners cannot intervene in the precise behavior of every agent in reality. For instance, dur-
ing the outbreak of Covid-19, policymakers and researchers are more interested in the effectiveness of limiting
the contact rate and boosting the vaccination rate of the whole population to contain the spread of the disease
(Shattock et al., 2022), instead of focusing on a specific individual. Therefore, only some important macro-
scopic quantities are modeled as input, and the other agent-related variables are considered latent. Moreover,
validation of such a simulator consists in comparing the statistics of the simulated data with the experimen-
tal data (Windrum et al., 2007). This implies that the statistical properties of Yx are carefully modeled and
validated, but the precise data generation process involving specific values of latent variables is less important.
Therefore, it is practical to not include the latent variables in the input.

Third, some uncertain sources may not be accessed or even controlled. This mainly happens in simula-
tions with experimental components such as hybrid simulations (Moustafa and Mosalam, 2015; Tsokanas et al.,
2021). In this case, one cannot identify nor control all the relevant variables that affect the value of the model
response. Consequently, working with these models in a deterministic manner is impossible. In an even broader
sense, experiments can be seen as stochastic simulators: the input contains only a part of the relevant variables
identified by the experimentalists, whereas all the others are considered latent.

For deterministic simulators, one model run produces all the information of the response corresponding
to the given set of input parameters. Due to the intrinsic randomness, however, evaluating a stochastic simu-
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lator once yields only a single realization of the associated response random variable. Hence, it is necessary to
repeatedly run the simulator for the given set of input parameters to fully characterize the response distribution.
The number of simulations could easily become intractable if the distribution of multiple values of the input
should be investigated, such as in optimization problems. In the context of uncertainty quantification, Monte
Carlo simulation is always applicable, but its slow convergence and the additional layer of randomness due to
the intrinsic stochasticity always prevent its application to computationally expensive models.

Due to their deterministic nature, conventional surrogate models developed for deterministic simulators
cannot be directly applied to emulate stochastic ones. For instance, polynomial chaos expansions (PCEs) in
Section 2.5.1 represent a simulator by a deterministic polynomial function of the input variables, and Gaussian
processes in Section 2.5.2 interpolate the data.

In this chapter, we provide a thorough review of different methods that can be used to emulate stochastic
simulators. In Section 3.1, we go through the ingredients of statistical models. Methods of this type require the
minimum control of computational models (i.e., it does not require replications nor controlling the intrinsic
stochasticity), and thus they are the main focus of the review. In Section 3.2, we present replication-based
methods that rely on replications to characterize the response distribution. In Section 3.3, we introduce random
field approaches, which consist in representing a stochastic simulator by a random field. Finally, we summarize
the existing methods and discuss their shortcomings in Section 3.4.

3.1 Statistical models

Let us define the random variable Y “ MdpX,Ξq that aggregates all the randomness from both the input and
the latent variables. The model responseYx for a given input valuex is equivalent toY conditioned onX “ x.
Therefore, the model response for any x can be characterized by some conditional quantities (e.g., conditional
mean, variance, quantiles) and fully depicted by the conditional distribution.

Following the non-intrusive requirement and without controlling the intrinsic stochasticity, one evaluation
of a stochastic model forx simply produces one realization of Y conditioned onx. In other words, the stochas-
tic simulator can be seen as a conditional sampler. Moreover, if we sample X using its probability distribution
and then evaluate once the stochastic simulator, the input and output we obtain are a sample from the joint
distribution of pX, Y q.

The question of approximating stochastic models has arisen recently in engineering applications, but it is
a rather classical task in statistics, as real data are never exact and always contain unknown and uncontrollable
latent variables. In statistical learning (Hastie et al., 2001), samples are typically considered independent from
the joint distribution of pX, Y q, which fits perfectly into the framework of non-intrusive surrogate model-
ing. More precisely, we can generate the data in the following way. We first create an experimental design (ED)
X “

␣

xp1q, . . . ,xpNq
(

of size N following the distribution of X . Then, we evaluate the stochastic simulator
only once for each point xpiq P X without controlling the latent variables (by default realizations of the latent
variables Ξ are generated independently for each model evaluation), i.e., ypiq “ Md

`

xpiq, ξpiq
˘

. We group the
associated model responses intoY “

␣

yp1q, . . . , ypNq
(

. The resulting data set pX ,Yq
def
“
␣`

xpiq, ypiq
˘

: i “ 1, . . . , N
(

contains independent samples of pX, Y q.
In this section, we recap the principles of statistical learning in Sections 3.1.1 to 3.1.3. More importantly,
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we review the statistical models that have been developed to emulate several of the conditional quantities in
Section 3.1.4 and estimate the entire conditional distribution in Section 3.1.5 from pX ,Yq.

3.1.1 Statistical modeling

In statistical modeling, assumptions are needed to characterize the unknown joint distribution of pX, Y q. In
the context of uncertainty quantification, the distribution of X is usually known (see Section 2.1), and we are
interested in the conditional properties of Y . Hence, the assumptions discussed here are introduced to depict
the conditional probability measure PY |X .

Depending on the prior knowledge and the final goal of the practitioner, assumptions can be made on two
levels. The first one is about some characteristics of the conditional distribution for any given input value. For
instance, the conditional distribution is assumed to be Gaussian or to have a finite mean (if only the mean is of
interest). The second level corresponds to how some properties of the conditional distribution vary within the
domain of the input variables. For example, we can assume that the conditional mean of Y given X “ x is a
linear function of x. These two levels of assumptions can be jointly or separately proposed by the modeler.

In general, statistical assumptions form a class of (conditional) probability measures P indexed by a set of
parameters, say c, from some parameter space C. A statistical model is an instance in P to approximate the
ground truth PY |X , which can be accurately represented for a certain set of parameters c0. Depending on the
statistical assumptions, the parameter space C can be a subspace of Rd (e.g., linear regression) but it can be more
general, or even infinite-dimensional (e.g., nonparametric models).

As an example, let us assume that the conditional distribution is Gaussian with its mean being an affine
function of x and a constant variance that does not depend on x. Based on these assumptions, the model is
expressed as

Yx “ β0 `

M
ÿ

j“1

βjxj ` ϵ, (3.3)

where ϵ is a Gaussian random variable with zero-mean and variance σ2, and it is independent of X . Eq. (3.3) is
a classical linear model and widely used in economics and social science. The model parameters here are β and
σ. If we do not know the parametric form of the conditional mean function but only assume that it is smooth
with a certain regularity (e.g., Hölder class; Tsybakov, 2009), the parameter c of this model is a function (that
satisfies the regularity condition), and the associated parameter space has infinite dimensions.

In some applications, one is only interested in some conditional quantities of interest (QoIs), which are
deterministic functions of x (e.g., the conditional mean and quantiles, see Section 3.1.4).1 Besides, following
certain statistical assumptions (e.g., the conditional distribution belongs to a specific parametric family, see Sec-
tion 3.1.5.1), PY |X can be determined by one or a few deterministic functions g0p¨q of x. Hence, characterizing
PY |X by P is reduced to choosing an appropriate class of functions G “ tgc : c P Cu to represent g0. For
example, Eq. (3.3) uses a linear model to emulate the conditional mean function. As g0 is deterministic, surro-
gate models like PCEs in Section 2.5.1, artificial neural networks (LeCun et al., 2015; Bishop, 1995; Cartwright,
2015), smoothing splines (Craven and Wahba, 1978; Friedman, 1991) or kernel-based models (Schölkopf and

1In this case, these functions do not uniquely determine the conditional probability measure. Since they are the targets of the
estimation, we do not distinguish the conditional probability measures if the latter share the same such functions.
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Smola, 2002) can be applied to the modeling.2

Once G is selected, we need to estimate a set of parameters (such as β and σ in Eq. (3.3)) from data to build
up the surrogate model to characterize PY |X .

3.1.2 M-estimators

Based on the statistical assumptions, various estimation methods (van der Vaart, 1998) can be used. In this
thesis, we present the M-estimator, which is simple yet the most popular estimation method used in modern
statistical learning (e.g., both least-squares and maximum likelihood estimators belong to this family).

Let us first define a loss function ℓpc;x, yq which represents a certain “risk” if we fix the model parameters
to c and pX, Y q takes the value px, yq. We want to find a set of parameters c0 P C such that the expected risk

Lpcq “ E rℓpc;X, Y qs (3.4)

is minimized, i.e.,
c0 “ argmin

c
E rℓpc;X, Y qs , (3.5)

where the expectation is taken with respect to the true joint distribution of X and Y . The loss function is gen-
erally designed such that if PY |X satisfies the statistical assumptions (i.e., PY |X P P), its associated parameters
c0 are the solution to Eq. (3.5) (see different types of loss functions in Section 3.1.4 and Section 3.1.5).

Because the expectation in Eq. (3.5) cannot be analytically evaluated, we replace it with its empirical version
given by

LNpcq “
1
N

N
ÿ

i“1

ℓ
`

c;xpiq, ypiq
˘

, (3.6)

and the associated estimator is defined by

ĉN “ argmin
c
LNpcq, (3.7)

where the subscript N denotes the sample size. ĉN in Eq. (3.7) is called an M-estimator with M standing for
minimization (or maximization if the negative loss is considered).

For C being infinite-dimensional or containing (finitely) too many parameters compared to the number of
data points, simply optimizing Eq. (3.7) on a finite data set would fail as Eq. (3.7) can be ill-posed. Depending
on the statistical models, this problem can be addressed by choosing certain penalty functions (Tibshirani, 1996;
Zou and Hastie, 2005; Fan and Li, 2001; Craven and Wahba, 1978; Schölkopf and Smola, 2002) to regularize
the estimation.

As a short summary, the parameterization C and the loss function are at the core of statistical learning: the
former encodes the statistical assumptions, and the latter fosters a group of estimation methods.

2The application of Gaussian process modeling for stochastic simulators needs specific assumptions, see Section 3.1.5.3.
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3.1.3 Assessment of the model performance

After fitting the model, it is necessary to evaluate its performance. With the loss function, we can define the
generalization error as the expected loss for the estimated parameter ĉN , that is,

εgenN “ E rℓpĉN ;X,Y q | X ,Ys . (3.8)

The conditional expectation above indicates that the model is built on the given data pX ,Yq, which is called
the training set.

To evaluate the expectation in Eq. (3.8), one could compute the average loss on the training set. However,
because the model was built on the same data, this is not a good indicator of its general performance: indeed, the
model may simply interpolate the data but can hardly be generalized to unseen data. Corrections to the training
loss can be derived to estimate the expected generalization error, i.e., E rεgenN s, by treating the training samples as
random variables and taking the expectation with respect to their distribution. For instance, we can apply some
information criteria (Konishi and Kitagawa, 2008) for likelihood-based estimators and certain scaling factors to
ordinary least-squares with orthogonal basis (Chapelle et al., 2002).

A more robust way is to generate a separate data set pXtest,Ytestq, called test set, following the joint distri-
bution of pX, Y q, and calculate the average loss Eq. (3.8) using this data set. However, for expensive computa-
tional models, this is not feasible as it involves carrying out new simulations. Furthermore, this approach uses
only part of the available data to train the surrogate model.

A more general approach to assess the performance of a statistical model is cross-validation (CV; Hastie et al.,
2001). TheNcv-fold CV procedure is illustrated in Fig. 3.2 and described as follows. First, the data pX ,Yq are
randomly partitioned intoNcv equal-sized groups tVk : k “ 1, . . . , Ncvu (so each group containsN{Ncv data
points by assuming thatN is divisible ofNcv). For k P t1, . . . , Ncvu, we pick the k-th groupVk as the validation
set and the otherNcv ´ 1 folds denoted by V„k as the training set. By applying the estimation method to V„k,
we obtain ĉpkq. Then, the loss function of the fitted model is evaluated on Vk, hence assessing its out-of-sample
performance by

ε̂k “
1

N{Ncv

ÿ

px,yqPVk

ℓ
`

ĉpkq;x, y
˘

. (3.9)

We repeat this procedure for each group of the partition tVk : k “ 1, . . . , Ncvu, and take the average of the
respective scores to estimate the generalized performance3 of the model, that is,

ε̂cv “
1
Ncv

Ncv
ÿ

k“1

ε̂k. (3.10)

For Ncv “ N , the number of CV-folds is equal to the size of the data set. This case is called leave-one-out
(LOO) cross-validation, and the associated loss is denoted by ε̂LOO. From Fig. 3.2, the calculation of ε̂LOO can
be very costly since it is required to construct N different models. Nevertheless, ε̂LOO is widely used in some
regression problems with a mean-squared loss, such as Eq. (2.107), because an analytical formula can be derived

3The cross-validation error is an estimator of the expected generalization error E rεgens where the expectation is taken with respect
to the training data of size N ´Ncv. However, under certain stability conditions (Bousquet and Elisseeff, 2002), ε̂cv is a good approx-
imation to εgenN .
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1st Iteration ¨ ¨ ¨

2nd Iteration ¨ ¨ ¨

3rd Iteration ¨ ¨ ¨

Ncvth Iteration ¨ ¨ ¨

TrainTest

...

Fold-1

ε̂1

Fold-2

ε̂2

Fold-3

ε̂3

Fold-Ncv

ε̂Ncv

...

ε̂cv

Figure 3.2: Ncv-fold cross-validation.

without refitting the model at each time. More precisely, if the fitted response at training points X is

ŷ “ Hy, (3.11)

where H is a matrix independent of y and satisfies H1 “ 1 with 1 denoting the vector having all its elements
being 1, we can compute the LOO error by

εLOO “

N
ÿ

i“1

`

ypiq ´ ŷpiq
˘2

1 ´Hi,i

, (3.12)

whereHi,i is the i-th diagonal element of H (Hastie and Tibshirani, 1990). This is the case for PCE built with

ordinary least-squares (OLS) in Eq. (2.110), where H “ Ψ
´

Ψ
T
Ψ
¯´1

Ψ
T .

3.1.4 QoIs estimation

In this section, we review the statistical models applied to the estimation of some conditional properties of
Y given X , namely the conditional mean function in Section 3.1.4.1, conditional variance function in Sec-
tion 3.1.4.2, and conditional quantiles in Section 3.1.4.3. As these are deterministic functions of x, the models
mentioned in Section 3.1.1 can be used for modeling. Therefore, we focus on discussing the loss functions that
can be applied to the estimation. It is worth remarking that the presented methods do not assume a specific
type of conditional distribution of Y given X .4

4Gaussian process modeling indeed requires assumptions on the type of the distribution of PY |X : this case is discussed in Sec-
tion 3.1.5.3.
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3.1.4.1 Mean estimation

The most important quantity related to PY |X is the conditional mean function mY |X . Estimation of this
function is a very classical task in regression where the stochastic model is expressed as

Yx “ mY |Xpxq ` ϵ, (3.13)

where E rϵ | Xs “ 0.
Let G “ tgc : c P Cu be a class of functions used to representmY |X . Following the property in Eq. (2.30),

we can use the quadratic loss and obtain the mean-squared error:

ℓpc;x, yq “ py ´ gcpxqq
2
, LNpcq “

1
N

N
ÿ

i“1

`

ypiq ´ gc
`

xpiq
˘˘2

. (3.14)

As pointed out in Section 3.1.2, some regularization terms can be added toLNpcq to enable the use of complex
models. Moreover, Eq. (3.14) offers a systematic way to estimate any conditional expected quantities ofY . More
precisely, for any function h, the conditional mean of hpY q can be tackled by applying the method to the data
pX , hpYqq.

3.1.4.2 Joint mean-variance estimation

The conditional variance is another very important quantity: it characterizes the variability of Y depending on
the input variables. If the conditional variance function vY |X is a constant, the stochastic simulator is called
homoskedastic. Otherwise, it is called heteroskedastic. In the presence of heteroskedasticity, a more appropriate
loss function can be constructed to estimatemY |X , that is,

LNpcq “
1
N

N
ÿ

i“1

`

ypiq ´ gc
`

xpiq
˘˘2

v pxpiqq
, (3.15)

which is called the weighted mean-squared error (Hastie et al., 2001). As a result, the conditional variance
function is sometimes estimated (even when not of interest) to yield a better estimate of the conditional mean
function.

Following its definition, the conditional variance function can be expressed as

vY |Xpxq “ Var rY | X “ xs “ E
“

Y 2
ˇ

ˇX “ x
‰

´ E rY | X “ xs
2
. (3.16)

Therefore, one can model and estimate separately the conditional mean functions of Y 2 and Y , respectively.
The conditional variance function can then be estimated by v̂Y |Xpxq “ m̂Y 2|Xpxq ´ m̂Y |Xpxq2 (Härdle and
Tsybakov, 1997). However, there is no guarantee that the estimated conditional variance is always positive for
any x because the related two conditional mean functions are estimated independently.

Another approach consists in modeling directly the conditional variance function and forming a loss func-
tion based on residuals from the mean estimation (Harvey, 1976; Amemiya, 1977; Fan and Yao, 1998). In the
first step, we estimate the conditional mean function as in Section 3.1.4.1. If this consistently estimates mY |X ,
then the residual rpiq “ ypiq ´ m̂Y |X

`

xpiq
˘

is a good proxy of ypiq ´ mY |X

`

xpiq
˘

, which is a sample of
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Y ´mY |XpXq. Using the property

vY |Xpxq “ E
”

pY ´mY |Xpxqq
2
ˇ

ˇ

ˇ
X “ x

ı

, (3.17)

we can infer the conditional variance function by regressing the squared residuals (Amemiya, 1977). Following
the same line of thought, some methods propose constructing the conditional variance function from certain
transforms of the residuals (see Davidian and Carroll, 1987 for a summary).

After fitting the conditional variance function, we can estimate again the conditional mean function using
weighted least-squares in Eq. (3.15) and iterate the procedure. This method that alternatively updates the con-
ditional mean and variance functions is called the feasible generalized least-squares (FGLS; Wooldridge, 2013).

3.1.4.3 Quantile regression

Quantile regression is a very powerful tool developed in econometrics (Koenker and Bassett, 1978) to estimate
conditional quantiles. Following the definition of quantiles, the conditional α-quantile is given by

qαpxq “ inf tq P R : FY |Xpq | xq ě αu . (3.18)

As in Section 3.1.4.1, various classes of functions G “ tgc : c P Cu can be chosen to represent qα (see Koenker,
2017; Torossian et al., 2020 for comparisons of different models).

The main essence of quantile regression is the loss function, that is,

ℓ pc;x, yq “ ρα py ´ gcpxqq , (3.19)

where ρα is called the check function (also known as pinball loss) defined by

ραptq “

$

&

%

pα´ 1q t if t ă 0,

α t if t ě 0.
(3.20)

Fig. 3.3 compares graphically the check function with the quadratic function (used for the mean estima-
tion). We observe that ρα is piecewise linear with a discontinuity point at t “ 0.

Figure 3.3: Comparison of the quadratic loss and check loss

This loss function is designed such that the α-quantile of the random variable Y solves the following opti-
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mization problem
QY pαq “ argmin

qPR
E rραpY ´ qqs . (3.21)

Therefore, for any given x, qαpxq minimizes the conditional version of Eq. (3.21), and thus the conditional
α-quantile function can be calculated by

qαp¨q “ argmin
gPG

E rE rραpY ´ gpXqq |Xss “ argmin
gPG

E rραpY ´ gpXqqs . (3.22)

3.1.5 Distribution estimation

Not all the conditional quantities can be directly estimated via some loss functions, e.g., entropy and super-
quantiles (Acerbi, 2002). Besides, estimating separately the conditional quantities presented in the previous
sections can produce incompatible results. For instance, if we apply the quantile regression in Section 3.1.4.3
for various values of α, the estimated conditional quantiles may not generally follow the right order, i.e., lower
quantiles can take larger values than higher quantiles (He, 1997).5

In order to fully represent PY |X and estimate all the conditional quantities in a consistent manner, we need
a statistical model to emulate the entire conditional distribution. Considering problems where the response
Y has a continuous distribution, it is assumed that the conditional probability density function (PDF) fY |X

exists, and the latter is the function to estimate in this section.
As discussed in Section 3.1.1, two types of assumptions can be made regarding the conditional distribution:

(i) how it behaves for any given value ofx, and (ii) how it varies as a function ofxwithin the input domainDX .
We review the methods developed for estimating the conditional PDF by grouping different types of statistical
assumptions in the remaining part of this section.

3.1.5.1 Parametric conditional distribution

The most common way to model fY |X is to assume that the conditional distribution belongs to a certain para-
metric family of distributions (corresponding to the first type of assumptions). For most applications in statis-
tics, the response distribution is assumed to be Gaussian, which is fully characterized by its conditional mean
and variance functions. Other common parametric assumptions consist in using a specific type of distribution
from the exponential family (McCullagh and Nelder, 1989), e.g., Bernoulli distribution (for classification prob-
lems), Gamma distribution, beta distribution, etc.

Under the parametric assumption, the distribution parameters, say g0, are functions of the input vari-
ables. To represent this function, we introduce the second type of assumptions, which gives a class of functions
G “ tgc : c P Cu (similar to the conditional QoI in Section 3.1.4). As a result, C defines a class of conditional
distributions which can be expressed by f̃Y |Xpy | xq “ f̃Y |X py | gcpxqq.

The estimation of the model parameters usually follows the principle of maximum likelihood. Let us first
define the Kullback–Leibler divergence between two PDFs f1 and f2

DKLpf1}f2q “

ż

R
log

ˆ

f1pyq

f2pyq

˙

f1pyqdy “ E1

„

log

ˆ

f1pY q

f2pY q

˙ȷ

, (3.23)

5This issue can be addressed by introducing constraints to bridge the independent optimization problems (Takeuchi et al., 2006).
However, the joint optimization is very difficult to solve and does not improve the overall accuracy (Torossian et al., 2020).
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where the expectation is taken with respect to the distribution defined by the PDF f1. By applying the Jensen’s
inequality, we can show thatDKLpf1}f2q ě 0 and the equality is reached if and only if f2 “ f1. In other words,
the PDF f1 solves the following optimization problem

f1 “ argmin
f

E1

„

log

ˆ

f1pY q

fpY q

˙ȷ

“ argmin
f

E1 rlog pf1pY qqs´E1 rlog pfpY qqs “ argmax
f

E1 rlog pfpY qqs ,

(3.24)
where the optimization is performed among all the valid PDFs (i.e., non-negative functions with their inte-
gration over R equal to 1). Therefore, the conditional distribution for a given value x of the input solves the
conditional version of Eq. (3.24), that is,

fY |Xp¨ | xq “ argmax
f

E rlog pfpY qq | X “ xs . (3.25)

By varying x, the conditional distribution can be calculated by

fY |X “ argmax
f

E rE rlog pfpY | Xqqs | Xs “ argmax
f

E rlog pfpY | Xqqs , (3.26)

where the feasible set contains all the valid conditional PDFs (i.e., for any x such that fXpxq ‰ 0, fp¨ | xq is a
valid PDF). Therefore, we can form a loss function as follows

ℓpc;x, yq “ ´ log
`

f̃Y |X py | gcpxqq
˘

, (3.27)

where we add the negative sign to turn the maximization to minimization to comply with the concept “loss” as
in Section 3.1.2. The M-estimator associated with Eq. (3.27) is called the maximum likelihood estimator.

Methods of this class usually rely on rather restrictive assumptions about the type of response distribution.
The advantage is that the estimation is very efficient and accurate if the model response does follow (or is very
close to) the prescribed distribution family. However, the applicability of these methods is limited to a small
group of problems bounded by the assumptions.

3.1.5.2 Nonparametric estimation

To enable a more flexible representation, nonparametric models can be used. In this case, only assumptions
on the smoothness of the response distribution and of its variations within DX are needed (i.e., no parametric
assumptions).

Kernel smoothing is the most popular nonparametric approach (Silverman, 1986) to estimate (joint) PDFs.
Using this technique, a natural way to estimate the conditional PDF is to first approximate the joint PDF fX,Y

of pX, Y q and the PDF fX of X , and then to express the conditional PDF as the ratio of the two estimated
functions (following Eq. (2.24)), that is,

f̂Y |Xpy | xq “
f̂X,Y px, yq

f̂Xpxq
“

1
N

řN

i“1 KY

`

y, ypiq;hy
˘

KX

`

x,xpiq;h
˘

1
N

řN

i“1 KX px,xpiq;hq
, (3.28)

whereKY andKX are kernels for Y and X , and hy and h are the associated parameters called bandwidths. To
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guarantee that Eq. (3.28) produces a valid conditional PDF,KY should satisfy
ż

R
KY py, y1;hyqdy “ 1. (3.29)

Eq. (3.28) is referred to as the kernel conditional density estimator (KCDE; Hayfield and Racine, 2008).

The estimator in Eq. (3.28) does not take into account the information of the PDFfX ofX . To improve the
accuracy of the estimation, we can replace the denominator in Eq. (3.28) by fX , as suggested in some literature
(Lacour, 2015; Bertin et al., 2016):

f̂Y |Xpy | xq “

1
N

řN

i“1 KY

`

y, ypiq;hy
˘

KX

`

x,xpiq;h
˘

fXpxq
. (3.30)

However, Eq. (3.28) does not produce a valid conditional PDF, as the integration over y is equal to

ż

R

1
N

řN

i“1 KY

`

y, ypiq;hy
˘

KX

`

x,xpiq;h
˘

fXpxq
dy “

1
N

řN

i“1 KX

`

x,xpiq;h
˘

fXpxq
, (3.31)

which is generally not 1. If we re-normalize Eq. (3.28) by the inverse of Eq. (3.31), we will obtain the exact same
result as Eq. (3.28).

For PDF estimations, multivariate kernels can be constructed as a product of univariate kernels,

KXpx,x1;hq “

M
ź

j“1

KXj
pxj , x

1
j ;hjq, (3.32)

and one-dimensional kernels are typically given by

Kpx, x1;hq “
1
h
k

ˆ

x´ x1

h

˙

, (3.33)

where kp¨q is a PDF (Silverman, 1986). Common choices for k include uniform, Gaussian, Epanechnikov, etc.
The selection of kernels depends on the statistical assumptions of the problem. For example, if the PDF is
expected to be continuous and unbounded, Gaussian kernels are usually quite suitable.

For Eq. (3.28), we need to choose the bandwidths hy and h. This cannot be achieved by maximizing the
likelihood since the loss function reaches ´8 for hy “ 0, which makes the optimization problem ill-posed.
One way to solve the problem is to introduce certain Gaussian assumptions (Silverman, 1986; Chen et al., 2001).
A more robust method is to use cross-validation: we treat the bandwidths as hyperparameters and select their
values such that the CV error in Section 3.1.3 is minimized. Holmes et al. (2007) proposed using the negative
log-likelihood function in Eq. (3.27) as a loss and optimizing the LOO error. Another choice of the loss function
that is widely used in nonparametric estimations corresponds to the integrated mean-squared error (Hall et al.,
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2004). The conditional PDF can be calculated by

fY |X “ argmin
f

ż

DX

ż

R
pfpy | xq ´ fY |Xpy | xqq

2
dy fXpxqdx

“ argmin
f

ż

DX

ż

R
fpy | xq2fXpxqdydx ´ 2

ż

DX

ż

R
fpy | xqfY |Xpy | xqfXpxqdxdy

“ argmin
f

ż

DX

ż

R
fpy | xq2fXpxqdydx ´ 2E rfpY | Xqs .

(3.34)

By modeling f as Eq. (3.28), we can tune the bandwidths by optimizing an approximation to the objective
function in Eq. (3.34). The first term in Eq. (3.34) does not involve the unknown conditional distribution and
can be easily computed (e.g., by Monte Carlo integration if an analytical solution is not available). The second
term involves an expectation, but it cannot be replaced by its empirical version, since hy “ 0 would minimize
the approximation of Eq. (3.34) and lead the loss function once again to ´8. For a more robust estimation, we
apply the leave-one-out cross-validation: first, for each point of the data set, we use the rest of theN ´ 1 data to
build the conditional PDF following Eq. (3.28) and evaluate its value on the hold-out data; second, we average
theseN validation values to get an estimate to E rfpY | Xqs. Finally, the bandwidths are selected such that the
CV estimation of the objective function in Eq. (3.34) is minimized.

Some other nonparametric models can also be found in the literature. Stone (1994) proposed representing
the conditional PDF by splines, i.e., as a function of bothx and y. Efromovich (2010) projected the conditional
PDF onto a Fourier basis of both x and y. Similarly, Izbicki and Lee (2017) adopted a Fourier basis for y but
used regression methods for estimating the coefficients (of the Fourier series) as functions of x. Fan et al. (1996)
suggested transforming approximately the conditional PDF estimation to a regression problem and applying
local polynomials for the estimation.

Owing to their flexibility, a significant drawback of nonparametric models is that they suffer from the curse-
of-dimensionality, meaning that the accuracy of the model decreases drastically with increasing dimension. For
example, using a second-order kernel (e.g., Gaussian kernel), the estimator in Eq. (3.30) converges at a rate
N´ 2

M`5 to the conditional PDF (Hall et al., 2004).

3.1.5.3 Remarks on Gaussian process models

Because of their flexibility and built-in uncertainty quantification of the estimation, Gaussian processes have
been extensively explored in statistical learning to model functions. In this section, we briefly comment on their
usage for conditional PDF estimation. In this context, the mean function of the Gaussian random field is always
set to zero, and thus such a random process is only characterized by its auto-covariance function.

If the conditional distribution is assumed to be Gaussian with a constant variance (i.e., homoskedastic), we
can follow the regression setup in Eq. (3.13) with ϵ „ N p0, σ2q independent of X . We model the conditional
mean function as a realization of a Gaussian random field with the auto-covariance function Kmp¨, ¨;θq. Be-
cause ϵ is additive and Gaussian, the stochastic simulator is also a realization of a Gaussian random field with

Kpx,x1q “ Kmpx,x1;θq ` σ2δx,x1 . (3.35)

Similarly, if the variance of ϵ is not a constant but a known function v of x (which is the conditional variance
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function), the auto-covariance function becomes

Kpx,x1q “ Kmpx,x1;θq ` vpxqδx,x1 . (3.36)

Therefore, we can use the same methods in Section 2.5.2 to construct the model and make predictions.
If the conditional variance function is unknown, we can model it as a realization of a lognormal random

field, i.e., the exponential transform of a Gaussian random field, to ensure its positiveness. Under this construc-
tion, the stochastic simulator is not a realization of a Gaussian random field anymore, and we should look into
more details of the formulation.

As a short recap, the model responseY for a givenx follows a Gaussian distribution. The mean and variance
functions are modeled as realizations of a Gaussian random field and exponential transform of another Gaussian
random field, respectively. The two random fields are independent.

Following the properties of the Gaussian random field in Section 2.5.2, the joint distributions of the means
MX and variances VX of Y at the ED X are known: MX follows a multivariate normal distribution with joint
PDF denoted by fMX , and VX follows a multivariate lognormal distribution with joint PDF denoted by fVX .
After observing the data Y , the distribution of MX and VX can be updated to

fpm,v | X ,Yq 9 fY |XpY | m,vq ¨ fMX pmq ¨ fVX pvq

“

N
ź

i“1

1
?

2πvi
exp

˜

´

`

ypiq ´mi

˘2

2vi

¸

¨ fMX pmq ¨ fVX pvq,
(3.37)

where the first term fY |XpY | m,vq corresponds to the likelihood.6

Applying again the properties of the Gaussian random field, given the data, the distribution of the mean
and variance of Yx for any input value x reads

fpm̃, ṽ | X ,Yq “

ż

fMx|MX pm̃ | mq fVx|VX pṽ | vq fpm,v | X ,Yqdmdv, (3.38)

where fMx|MX p¨ | mq and fVx|VX p¨ | vq are the conditional PDFs of the two random fields evaluated at x
conditioned on their values m and v on X .

Eq. (3.38) is typically used to quantify the uncertainty for estimating the mean and variance of Y at x.
Moreover, we can aggregate this uncertainty and predict the distribution of Yx conditioned on the data by

fY |Xpy | x,X ,Yq “

ż

fpy | m̃, ṽq fpm̃, ṽ | X ,Yqdmdv

“

ż

1
?

2πv
exp

˜

´
py ´ m̃q

2

2ṽ

¸

fpm̃, ṽ | X ,Yqdmdv.

(3.39)

Eq. (3.38) and Eq. (3.39) follow directly from the conditioning properties of the random fields and the
Gaussian assumption of the model response, respectively, whereas Eq. (3.37) carries the information of the data
and is the central part of the model. In most cases, Eq. (3.37) cannot be obtained analytically. Goldberg et al.

6The updating procedure in Eq. (3.37) follows Bayes’ theorem. In Bayesian terminology, fMX pmq ¨ fVX pvq is called the prior
distribution (provided by the two independent random fields), and fpm, v | X ,Yq is the posterior distribution given the available
data.
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(1997) proposed a method based on Markov chain Monte Carlo to sample Eq. (3.37). Other major develop-
ments consist in approximating the distribution Eq. (3.37) by variational inference (Lázaro-Gredilla and Titsias,
2011; Saul et al., 2016) or replacing the updated distribution of the variances v at X with (estimated) determin-
istic values (Kersting et al., 2007; Marrel et al., 2012; Binois et al., 2018).

Similarly, if the conditional distribution is parametric, we can model the distribution parameters as realiza-
tions of Gaussian random fields and follow the same procedure from Eq. (3.37) to Eq. (3.39) for predictions
(Rasmussen and Williams, 2006; Chan and Dong, 2011; Saul et al., 2016). The only difference is to adapt the
likelihood in Eq. (3.37) and the conditional distribution in Eq. (3.39) to the actual parametric distribution.7

When the type of the response distribution is unknown, one can model the conditional PDF as a realization
of a logistic Gaussian process given by

f̃Y |X „
exp pWx,yq

ş

R exp pWx,yqdy
, (3.40)

where Wx,y is a Gaussian random field indexed by both x and y. The prediction can be made through a cer-
tain discretization of the random field Wx,y, which approximates the random field through a finite number
of random variables. The distribution of the latter conditioned on the data can be calculated similarly to the
parametric cases in Eq. (3.37) (see Lenk, 1991; Tokdar and Ghosh, 2007; Riihimäki and Vehtari, 2014; Gautier
et al., 2021 for more details).

In general, Gaussian process models are very flexible, and they embed an intrinsic uncertainty quantification
feature. However, employing such models for estimating conditional distributions being not homoskedastic
Gaussian is typically time-demanding and requires large data set (Binois et al., 2018).

3.1.5.4 Generative models in deep learning

In recent years, generative models have been extensively investigated in deep learning to estimate probability
distributions. For conditional distribution estimations, the conditional generative model reads

Yx “ gcpx,Zq, (3.41)

where Z are artificial latent variables introduced to represent intrinsic stochasticity, and gc is parameterized by
a deep neural network. Here, Yx is usually a high-dimensional output, e.g., a picture of a human face.

Dinh et al. (2017) proposed a special architecture of neural networks called normalizing flow, which is a
bijective map from Z to Y (for a given x). This allows expressing analytically the conditional PDF, which
can thus be estimated by maximum likelihood. For general structures of neural networks, the conditional PDF
of Yx is intractable (it requires integrating over the latent variables Z). Kingma and Welling (2014) suggested
optimizing the evidence lower bound, which is a lower bound of the intractable log-likelihood. Goodfellow et al.
(2014) developed an adversarial strategy that trains simultaneously a discriminator and the generator Eq. (3.41).

7The framework presented here requires the likelihood Eq. (3.37). For M-estimators, however, we only have a loss function but
the likelihood is generally unknown (as it depends on the unknown conditional PDF). Nevertheless, one can treat the loss function as
a negative log-likelihood and construct a pseudo conditional PDF, which allows applying the Gaussian process model to represent the
target function. As an example, Lum and Gelfand (2012) derived an asymmetric Laplace distribution from the check loss Eq. (3.19)
and use it for quantile regressions. However, it should be kept in mind that the data may not come from the constructed distribution,
and the confidence bounds produced by the model should be carefully interpreted. In this case, it is more suitable to see the Gaussian
process as a kernel-based method (Schölkopf and Smola, 2002).
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The discriminator is built for distinguishing the real data from the samples of the generator, while the latter is
trained to “fool” the discriminator as much as possible. Assuming an optimal discriminator, the generator is
optimized asymptotically in terms of the Jensen-Shannon divergence with respect to the underlying distribution.
Finally, Ren et al. (2016) proposed embedding conditional distributions into a reproducing kernel Hilbert space
(Song et al., 2009) and employed the metric in that space for fitting the model.

Methods developed in deep learning are designed particularly for big data and high-dimensional model out-
puts. The objective of these tasks is mainly to capture the dependence structure among the output components.
For example, to generate human faces, the practitioner is mostly interested in the overall patterns instead of the
probability distribution of a single pixel. The architecture of neural networks is difficult to design (so-called
architecture engineering; Elsken et al., 2019), and conventional choices are typically over-parameterized with a
huge number of unknowns (e.g., ResNets [He et al., 2016] contain over 10 million parameters). These complex
models are black boxes and hard to interpret. In addition, they can be subject to numerical issues (Hanin, 2018;
Bau et al., 2019), and the model construction is extremely time-consuming even with powerful hardware.

3.2 Replication-based approaches
The second category of methods is that of replication-based approaches. Unlike the statistical approaches in
Section 3.1, where the input and latent variables are treated in the same way when generating the data, methods
of this type capitalize on using replications to “separate” the intrinsic stochasticity.

Performing replications for a given input value x produces independent samples from the underlying con-
ditional distribution at x. These samples can be used in return to characterize or estimate the conditional dis-
tribution fY |Xp¨ | xq. Collecting this information on the discrete points of the ED X , we can extend it to the
entire input space DX with standard regression methods. The basic ideas of replication-based approaches are
summarized as follows:

1. For each point xpiq of the ED X , the stochastic simulator is repeatedly evaluated Rpiq times, and the
results are collected in Ypiq “

!

ypi,1q, . . . , ypi,Rpiqq
)

.

2. From Ypiq, one can estimate certain characteristic quantities (e.g., QoIs, distribution parameters), say
λpiq, of the conditional distribution at xpiq.

3. The estimated values Λ̂ “

!

λ̂p1q, . . . , λ̂pNq

)

are treated as observations of the underlying function
evaluated at X disturbed by Gaussian noises, i.e.,

λ̂piq “ g
`

xpiq
˘

` ϵpiq, (3.42)

with ϵpiq „ N p0, σ2
i q. Therefore, the problem is reduced to estimating the conditional mean from

data with additive Gaussian noises. This can be achieved by applying the standard regression methods in
Section 3.1.4.1 and Section 3.1.5.3 to pX , Λ̂q.

For example, to estimate the conditional mean function, we calculate the average value of the replications
for each point in X . As illustrated in Fig. 3.4a, the empirical means scatter around the underlying conditional
mean function, and they are much closer to the reference values than the raw data points. We can observe a
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similar behavior for the 90%-quantiles on X in Fig. 3.4b. The regression model in Eq. (3.42) typically assumes
that the local estimations based on replications are unbiased and follow normal distributions. This is generally
not true (e.g., the empirical quantiles are biased). However, if the estimator is consistent and asymptotically
normal, Eq. (3.42) is applicable when a relatively large number of replications are considered.

(a) Average values of replications (b) 90%-quantiles of replications

Figure 3.4: Empirical mean values and 90%-quantiles of replications.

The first replication-based method, called stochastic Kriging, was developed by Ankenman et al. (2010) for
estimating the conditional mean and variance functions. In this approach, Gaussian process regression with
homoskedastic additive noise in Eq. (3.35) is applied to estimate the conditional variance function from the
empirical variance of the replications (i.e., it assumes that the variance of the noise terms in Eq. (3.42) does not
depend on x). Evaluating the estimated conditional variance v̂piq on the ED point xpiq can help provide an
estimate v̂piq

Rpiq of the variance of the empirical mean of the replications. Using these variances as σ2
i in Eq. (3.42),

the conditional mean function is estimated by applying the Gaussian process regression in Eq. (3.36) to the
average values of replications.

Based on a similar idea, Plumlee and Tuo (2014) proposed using the Gaussian process regression model with
homoskedastic additive noise in Eq. (3.35) to estimate the conditional quantiles from the empirical quantiles
of the replications. Torossian et al. (2020) suggested improving the efficiency by applying Eq. (3.36) with the
variance of the local inference estimated by bootstrapping.

For the conditional PDF estimation, Moutoussamy et al. (2015) applied the kernel density estimator to the
replications. They developed two approaches to extend the conditional PDF estimated from replications on the
discrete points in X to the entire input space DX . In the first one, they chose the nonparametric estimator

f̂Y |Xpy | xq “

řN

i“1 KXpx,xpiq;hqf̂ipyq
řN

i“1 KXpx,xpiq;hq
, (3.43)

where f̂ipyq is the estimated conditional PDF at xpiq and KX is a multivariate kernel. The second approach
consists in looking for an appropriate parameterization of the conditional distribution. This is achieved by
performing a functional principal component analysis to construct a basis of finite size and then projecting
every f̂ipyq onto the basis to get the associated coefficients. The latter are treated as λ̂piq in the replication-based
procedure described above and are employed to construct the coefficients as functions of x as in Eq. (3.42).

The main advantage of replication-based methods is that the estimation of any conditional QoI or PDF is
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transformed into a standard regression problem. However, as the surrogate model is built sequentially from
two separate steps, the available data are never used altogether. If the quantities estimated from replications are
not sufficient statistics of the underlying conditional distribution, this two-step strategy would lead to a loss of
information when estimating the conditional distribution. Besides, since the output of the first step is the input
of the second step, the quality of the surrogate model depends strongly on the accuracy of the local inference.
If there is a systematic bias in the estimation from replications, such as in the 90%-quantiles in Fig. 3.4b, the
regression methods would not be able to filter it out. In order to have an accurate local estimate, a relatively
large number of replications is necessary, especially for nonparametric estimators: Moutoussamy et al. (2015)
considered 400 replications for the conditional PDF estimation, while Browne et al. (2016) used 104 replications
to estimate quantiles. This may result in an unaffordable number of model runs when multiplied by the size of
the ED.

3.3 Random field modeling
The last type of approach, which has recently been developed, capitalizes on representing a stochastic simulator
by a random field (Azzi et al., 2019; Lüthen et al., 2022b).

According to its formulation, a stochastic simulator can be viewed as a random field (presented in Sec-
tion 2.5.2) indexed by its input parameters x. For a specific value x, keeping the latent variables random would
result in the output random variable Yx “ Mdpx,Ξq. By fixing the values of latent variables, the stochastic
simulator is a function of x, i.e., Mdp¨, ξq, which is a trajectory of the random field on DX . As a result, using
a random field to approximate the stochastic simulator allows one to consider not only the marginal distribu-
tion of Yx but also the entire dependence structure, e.g., the joint distribution of any finite number of random
variables Yx1 , . . . , Yxn

.
The main tool used in this section is the Karhunen–Loève expansion (Karhunen, 1947; Loève, 1978), which

consists in decomposing a random field into a set of random variables and functions of the index parameters x.
Assuming that the auto-covariance functionK is continuous and the index space DX is a closed and bounded
subset of RM ,8 the random field Yx can be represented by

Yx “ mpxq `

`8
ÿ

l“1

?
λl Zl elpxq, (3.44)

wheremY |Xpxq “ E rYxs is the conditional mean function and
ż

DX

Kpx,x1qelpx
1qdx1 “ λlelpxq,

Zl
def
“

1
?
λl

ż

DX

Yx elpxqdx.

(3.45)

The functions tel : l P Nu are eigenfunctions of the integral operator with corresponding eigenvalues tλl : l P Nu,
and they form an orthonormal basis of L2pDXq. The coefficients tZl : l P Nu in the expansion are random

8The method was originally developed for the index space being an interval of type ra, bs based on Mercer’s theorem (Mercer, 1909;
Loève, 1978). Its extension to DX P RM has various versions (Ghanem and Spanos, 2003; Schwab and Todor, 2006; Minh et al.,
2006). Here, we present a rather classical one (Steinwart and Scovel, 2012).
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variables with zero-mean E rZls “ 0 and unit-variance Var rZls “ 1. Moreover, they are uncorrelated, i.e.,
Cov rZl1 , Zl2 s “ 0 for l1 ‰ l2.

By truncating the infinite series toNl terms, the random field is approximated by

Yx « mpxq `

Nl
ÿ

l“1

?
λl Zl elpxq. (3.46)

To build the surrogate model in Eq. (3.46), one needs to estimate the auto-covariance function and the
joint distribution of Zl : l “ 1, . . . , Nl. To this end, it is necessary to get access to the information revealing
the dependence structure of the computational model as a random field. Evaluating the stochastic simulator
with independent samples of X and Ξ always results in independent realizations of Y . In other words, such a
sampling scheme breaks the dependence structure of the random field and thus is not suitable for random field
approaches. To explore the dependence structure, one should fix the values of the latent variables, and run the
stochastic simulators for realizations of X , which provides the trajectories on a discrete set of points.

For each random seed, the model is run for the same ED points X , which allows us to estimate the auto-
covariance function on the discrete points of X . Based on the empirical covariance matrix, Azzi et al. (2019)
proposed two approaches to estimate the eigenvalues and eigenfunctions. The first one emulates directly the
auto-covariance function by regressing the empirical covariance matrix and then solves Eq. (3.45). The second
one performs a spectral decomposition of the empirical covariance matrix and then emulates the eigenvectors
as functions of x. Two potential problems may occur in practice: regressing the covariance matrix can lead
to invalid auto-covariance functions, and emulating the eigenvectors will generally not provide orthonormal
functions in DX .

To solve the problem more robustly, Lüthen et al. (2022b) explored the use of sparse PCEs to approxi-
mate the trajectories directly (so the ED for different trajectories does not need to be the same). The empirical
auto-covariance function is then estimated from the continuous trajectories. By considering the PDF of X
in Eq. (3.45) (only independent uniform distributions were used by Azzi et al., 2019),9 solving the eigenvalue
problem is reduced to a discrete principal component analysis of the PCE coefficients, which can be efficiently
tackled. When the basis functions are available, by projecting the emulated continuous trajectories onto the
eigenfunctions, one can get samples of the tZl : l P Nlu and then apply statistical methods (e.g., vine copula
inference [Czado, 2019]) to estimate the joint distribution of the random coefficients.

The methods presented in this section not only provide the conditional distribution but also capture the
dependence structure of the stochastic simulator as a random field. It is essential to control the intrinsic stochas-
ticity, which is infeasible in some cases, especially when working with experimental data (e.g., hybrid simu-
lations). Besides, we need to introduce statistical assumptions (e.g., regularities) on the trajectories or on the
auto-covariance function so that they can be inferred from discrete samples. In addition, we should also model
and estimate the joint probability distribution of the random coefficients tZl : l “ 1, . . . , Nlu from data whose
size is equal to the number of available trajectories. Therefore, the accuracy of such a surrogate depends on the
quality of two separate steps: the estimation of trajectories and the statistical inference of the joint distribution
of tZl : l “ 1, . . . , Nlu.

9This is an extended version of Karhunen–Loève expansion as the index space has an additional probability measure. To make the
expansion in Eq. (3.44) still possible, some assumptions on the auto-covariance function should be made, e.g., K is bounded (König,
1986, Theorem 3.a.1).
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3.4 Discussion
In this chapter, we reviewed the state-of-the-art methods developed in various fields which can be adopted for
emulating stochastic simulators.

For statistical models in Section 3.1, the stochastic simulator can be simply evaluated “as is” without con-
trolling the random seed or requiring replications. These approaches generally consider all the data together to
build up the model. Most of the statistical methods have been developed for estimating some conditional QoIs
(mean, variance, quantiles). For conditional distribution estimation, however, the common practice relies ei-
ther on quite restrictive assumptions on the distribution type or on nonparametric estimators which are flexible
but require a large number of samples.

Replication-based approaches in Section 3.2 explore repeated model evaluations for the same input value
to reduce the stochasticity and characterize the conditional properties. Based on the filtered quantities on the
discrete points of X , classical regression-based surrogate modeling methods for deterministic simulators can
be used with minimum modifications to emulate the target functions. Within this framework, replications are
indispensable. Furthermore, a large number of replications are necessary for conditional distribution estimation
especially when nonparametric estimators are employed for local inference.

The third type of approach in Section 3.3 casts the stochastic simulator as a random field. On top of the
conditional properties, it also accounts for the statistical dependence of the model response on the intrinsic
stochasticity. The construction of the surrogate random field consists of two major steps: (i) emulating trajec-
tories and the auto-covariance function of the stochastic simulator; (ii) applying Karhunen–Loève expansions
to represent the intrinsic stochasticity through a finite number of random variables. By their nature, these ap-
proaches require the values of the latent variables to be fixed to evaluate trajectories, which is infeasible in some
applications.

The objective of this thesis is to develop efficient surrogate modeling methods for emulating the conditional
distribution of stochastic simulators, i.e., the dependence structure of the stochastic simulator as a random field
is not of interest in the present work. To tackle a wide range of problems, we do not consider the possibility of
controlling intrinsic stochasticity. Within this perimeter, we investigate in the following chapters flexible para-
metric models to bypass the restrictive assumptions for estimating the conditional distribution without going
through the nonparametric framework. Replication-based methods are considered in the first place. Then, we
focus on developing versatile models and methods that do not require replications.
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Abstract
Due to limited computational power, performing uncertainty quantification analyses with complex computa-
tional models can be a challenging task. This is exacerbated in the context of stochastic simulators, the response
of which to a given set of input parameters, rather than being a deterministic value, is a random variable with
unknown probability density function (PDF). Of interest in this paper is the construction of a surrogate that
can accurately predict this response PDF for any input parameters. We suggest using a flexible distribution fam-
ily — the generalized lambda distribution — to approximate the response PDF. The associated distribution
parameters are cast as functions of input parameters and represented by sparse polynomial chaos expansions.

1First published in International Journal of Uncertainty Quantification in Volume 10, Issue 3, 2020, published by Begell House,
Inc. Copyright © by Begell House, Inc.
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4. Replication-based stochastic emulation using generalized lambda distributions

To build such a surrogate model, we propose an approach based on a local inference of the response PDF at
each point of the experimental design based on replicated model evaluations. Two versions of this framework
are proposed and compared on analytical examples and case studies.

4.1 Introduction

Computer models, a.k.a. simulators, are nowadays widely used in the context of design optimization, uncer-
tainty quantification and sensitivity analysis. A simulator is called deterministic if repeated runs with the same
input parameters produce exactly the same output quantity of interest (QoI); for example, a finite element
model of a structure with external load as input and stresses as output is a deterministic simulator. In contrast,
a stochastic simulator provides different results when run repeatedly with the same input values. In other words,
for a given vector of input parameters, the QoI of a stochastic simulator is a random variable, whose proba-
bility density function (PDF) is of interest. The reason for this intrinsic stochasticity is that some source of
randomness inside the model, which can be represented by latent variables, is not taken explicitly into account
within the input parameters. Therefore, if not all the relevant variables that uniquely determine the output can
be fully specified, the model output remains random. Examples of stochastic simulators are encountered when
evaluating the performance of a wind turbine under stochastic loads when only some characteristic values of
the wind climate are known, or when predicting the price of an option in financial market with only historical
data.

Such numerical models can be time-consuming: a single model evaluation may require minutes to hours
of simulation, as it is the case for complex fluid dynamic codes. To alleviate the computational burden, sur-
rogate models, a.k.a. emulators, have been successfully developed for deterministic simulators, such as Gaus-
sian processes (Rasmussen and Williams, 2006) and polynomial chaos expansions (Xiu and Karniadakis, 2002;
Ghanem and Spanos, 2003). The construction of surrogate models relies on a set of model evaluations, called
the experimental design (ED). However, when it comes to stochastic simulators, one single model evaluation for
a given vector of input parameters is incapable to fully characterize the associated QoI. As a result, repeated runs
with the same input parameters, called replications, are necessary to obtain the resulting (unknown) probability
distribution of the QoI. Consequently, standard surrogate modeling techniques cannot directly be applied to
stochastic simulators, due to the very random nature of the output.

Large efforts have been dedicated to estimate summary scalar quantities of the random output as a func-
tion of the input parameters, such as the mean value (McCullagh and Nelder, 1989; Iooss and Ribatet, 2009;
Ankenman et al., 2010), the standard deviation (Dacidian and Carroll, 1987; Fan and Yao, 1998; Marrel et al.,
2012) and quantiles (Bhattacharya and Gangopadhyay, 1990; Plumlee and Tuo, 2014; Koenker, 2017). How-
ever, surrogate modeling for the entire response PDF of a stochastic code is a less mature field. Two types of
approaches can be found in the literature. The first is known as the statistical approach. If the response PDF
belongs to the exponential family, generalized linear models (GLM) can be efficiently applied (McCullagh and
Nelder, 1989; Hastie and Tibshirani, 1990). When the probability distribution is arbitrary and no prior knowl-
edge on its shape is available, nonparametric estimators may be considered, notably kernel density estimators
(Fan and Gijbels, 1996; Hall et al., 2004) and projection estimators (Efromovich, 2010). Nonparametric esti-
mators, however, suffer from the curse of dimensionality (Tsybakov, 2009), meaning that the necessary amount
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4.2. Generalized lambda distributions

of data needed to achieve sufficient accuracy increases drastically with increasing input dimensionality.

A second approach is the replication-based method, which capitalizes instead on available replications to
represent the response distribution through a suitably general parametric distribution. The parameters of the
latter are then treated as outputs of a deterministic simulator. Conventional deterministic surrogate modeling
methods may then be used to emulate these parameters as functions of the input. Note that this approach was
initially proposed to estimate summary statistics (Ankenman et al., 2010; Plumlee and Tuo, 2014). It has been
extended to more general cases given the functional form of the parametric PDF by Moutoussamy et al. (2015).
So far, nonparametric estimators have been used to estimate the distribution from replications (Moutoussamy
et al., 2015; Browne et al., 2016). Thus, many replications are necessary, sometimes as many as 104 replications
for each point of the experimental design, which severely limits the applicability of such an approach.

It is worthwhile to notice that the existing methods either assume a rather restrictive shape of the distribu-
tion or require a large number of model evaluations. The present paper aims at designing a replication-based
approach which will reduce the necessary amount of replications. To this end, we propose approximating the re-
sponse PDF of a stochastic simulator by generalized lambda distributions (GLDs; Karian and Dudewicz, 2000).
Then, the distribution parameters are functions of the input parameters and further represented by polynomial
chaos (PC) expansions (Ghanem and Spanos, 2003; Xiu, 2010). Note that we limit ourselves to non-intrusive
PC methods in this paper, as the generation of data from the stochastic simulator is purely data-driven. To
construct such a surrogate model, we then present two algorithms in this paper: the first one follows the general
idea of the replication-based approach, while the second enriches the former with an additional optimization
step.

The paper is organized as follows. Sections 4.2 and 4.3 introduce generalized lambda distributions and
polynomial chaos expansions, respectively. In Section 4.4, we present our novel algorithms to infer the response
PDF of a stochastic simulator based on limited replicated data. Section 4.5 validates the proposed methods
through two toy examples, and Section 4.6 illustrates their performance on two applications, namely a stochastic
differential equation case study and a wind turbine simulation. Finally, we summarize the main findings of the
paper and provide outlooks for future research in Section 4.7.

4.2 Generalized lambda distributions

4.2.1 Formulation

The generalized lambda distribution is a highly flexible four-parameter probability distribution function de-
signed to approximate most of the well-known parametric distributions (Karian and Dudewicz, 2000). Fig-
ure 4.1 illustrates how, with the proper choice of parameters, it can accurately approximate, normal, uniform,
Student’s t, exponential, lognormal, Weibull distributions, among others.

Instead of providing a direct parametrization of the PDF, the GLD parametrizes the quantile function,
which is the inverse of the cumulative distribution function Q “ F´1puq. Therefore, Q is a non-decreasing
function defined in r0, 1s. In this paper, we consider the GLD of the Freimer–Kollia–Mudholkar–Lin (FKML)
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Figure 4.1: Visual comparison of GLD approximation of several common distributions.

family (Freimer et al., 1988), which is defined as:

Qpuq “ λ1 `
1
λ2

ˆ

uλ3 ´ 1
λ3

´
p1 ´ uqλ4 ´ 1

λ4

˙

, (4.1)

where λ1 is the location parameter, λ2 is the scaling parameter, and λ3 and λ4 are shape parameters. To ensure
valid quantile functions, it is only required that λ2 be positive.

Parametrizing the quantile function is equivalent to modeling the inverse probability integral transform.
More precisely, the random variable Y with Q as quantile function and the random variable QpUq with U „

U p0, 1q follow the same distribution. Therefore, the PDF fY pyq of a random variable Y following a GLD can
be calculated through a change of variables as follows:

fY pyq “
fUpuq

Q1puq
“

λ2

uλ3´1 ` p1 ´ uqλ4´11r0,1spuq, with u “ Q´1pyq, (4.2)

where 1r0,1s is the indicator function. A closed form expression of Q´1, and therefore of fY , is in general not
available.

Figure 4.2 illustrates some PDF shapes of the FKML generalized lambda distributions in the pλ3, λ4q plane.
It shows that distributions which belong to this family can cover a wide range of shapes that are determined by
λ3 and λ4. For example, λ3 “ λ4 produces symmetric PDFs, and λ3, λ4 ă 1 yields bell-shaped distributions.
Importantly, λ3 and λ4 control the support and the tail properties of the resulting PDF. The distribution has
lower infinite support for λ3 ď 0 and upper infinite support for λ4 ď 0. In contrast, λ3 ą 0 implies that
the PDF support is left-bounded and λ4 ą 0 corresponds to right-bounded distributions. More precisely, the
support of the PDF, denoted by supp pfY pyqq “ rBl, Bus, can be derived from Eq. (4.1) as follows:

Bl pλ1, λ2, λ3q “

$

&

%

´8, λ3 ď 0

λ1 ´ 1
λ2λ3

, λ3 ą 0
, Bu pλ1, λ2, λ4q “

$

&

%

`8, λ4 ď 0

λ1 ` 1
λ2λ4

, λ4 ą 0
. (4.3)
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Figure 4.2: A graphical illustration of the shapes that can be represented by the FKML family of GLD as a
function of λ3 and λ4. The values of λ1 and λ2 are set to 0 and 1, respectively. The dotted line is λ3 “ λ4,
which produces symmetric PDFs. The blue points indicate that the PDF has infinite support in the marked
direction. In contrast, both the red and green points denote the boundary points of the PDF support. The
PDF fY pyq “ 0 on the red dots, whereas fY pyq “ 1 on the green ones.
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4.2.2 Estimation ofλ

Many estimation methods have been proposed to fit a generalized lambda distribution to data (Chalabi et al.,
2011). Karian and Dudewicz (2010) and Corlu and Meterelliyoz (2016) compared different methods through
exhaustive Monte Carlo simulations with various test cases. All of the estimators show comparable perfor-
mance, and none of them is shown to always outperform the others. The performance depends on the shape
of the true distribution, the sample size and the goodness-of-fit criterion used for comparison. In this paper, we
choose to apply the method of moments that relies on matching the four moments: mean, variance, skewness,
and kurtosis (Lakhany and Massuer, 2000), and the maximum likelihood estimation (Su, 2007).

4.2.2.1 Method of moments

Following Eq. (4.2), the expectation of any function gpY q can be calculated as

E rgpY qs “ E rgpQpUqqs “

ż 1

0
gpQpuqqdu. (4.4)

Accordingly, the kth moment is given by

E
“

Y k
‰

“

ż 1

0

ˆ

λ1 `
1
λ2

ˆ

uλ3 ´ 1
λ3

´
p1 ´ uqλ4 ´ 1

λ4

˙˙k

du,

which is then simplified as

E
“

Y k
‰

“

ż 1

0

ˆ

c`
1
λ2
spuq

˙k

du, (4.5)

where c def
“ λ1 ´ 1

λ2λ3
` 1

λ2λ4
and spuq

def
“ uλ3

λ3
´

p1´uq
λ4

λ4
. To further elaborate Eq. (4.5), we calculate

vk “

ż 1

0
spuqkdu “

k
ÿ

j“0

p´1qj

λk´j
3 λj

4

˜

k

j

¸

Bpλ3pk ´ jq ` 1, λ4j ` 1q, (4.6)

where B denotes the beta function. With the help of Eq. (4.6), Eq. (4.5) can be calculated through binomial
expansions. As a result, the mean, variance, skewness, and kurtosis are given by (see details in Lakhany and
Massuer, 2000)

µ “ E rY s “ λ1 ´
1
λ2

ˆ

1
λ3 ` 1

´
1

λ4 ` 1

˙

, σ2 “ E
“

pY ´ µq2‰ “
pv2 ´ v2

1 q

λ2
2

, (4.7)

δ “ E

«

ˆ

pY ´ µq

σ

˙3
ff

“
v3 ´ 3v1v2 ` 2v3

1

pv2 ´ v2
1 q

3
2

, κ “ E

«

ˆ

pY ´ µq

σ

˙4
ff

“
v4 ´ 4v1v3 ` 6v2

1 v2 ´ 3v4
1

pv2 ´ v1q
2 .

(4.8)

The method of moments matches these four quantities to the associated empirical moments
´

µ̂, σ̂2, δ̂, κ̂
¯

computed from the available sample set Y “
␣

yp1q . . . , ypNq
(

. Since vk is only a nonlinear function of λ3

and λ4, the skewness and kurtosis are also functions of only λ3 and λ4. Therefore, the fitting procedure first
estimates λ3, λ4 solving Eq. (4.8), which can be replaced by an optimization problem shown in Eq. (4.9). The
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remaining parameters, namely λ1 and λ2, are then estimated directly from Eq. (4.7).
´

λ̂3, λ̂4

¯

“ argmin
λ3,λ4

pδpλ3, λ4q ´ δ̂q2 ` pκpλ3, λ4q ´ κ̂q2. (4.9)

Note that for λ3 ď ´0.25 or λ4 ď ´0.25, the generalized lambda distribution has infinite fourth order mo-
ment as shown in Figure 4.2 for k “ 4. Therefore, the method of moments only provides λ3 ą ´0.25 and
λ4 ą ´0.25.

4.2.2.2 Maximum likelihood estimation

Since the PDF of the generalized lambda distribution is not explicitly given, the negative log-likelihood function
can only be evaluated numerically according to Eq. (4.2):

lpλq “ ´

N
ÿ

i“1

log

ˆ

λ2

uλ3´1
i ` p1 ´ uiqλ4´1

˙

, (4.10)

where

ui “ Q´1 pyiq , yi “ Qpuiq “ λ1 `
1
λ2

ˆ

uλ3
i ´ 1
λ3

´
p1 ´ uiq

λ4 ´ 1
λ4

˙

. (4.11)

The maximum likelihood method estimates the distribution parameters by minimizing the negative log-
likelihood defined in Eq. (4.10):

λ̂ “ argmin
λ
lpλq. (4.12)

For a sample set of sizeN , each likelihood function evaluation requires solvingN times the nonlinear equation
Eq. (4.11). Consequently, the maximum likelihood estimation can be time-consuming for large data sets. To
alleviate the computational burden, we propose the bisection method (Burden et al., 2015) to efficiently solve
Eq. (4.11) using the property thatQpuq is monotonic and defined in r0, 1s.

4.3 Polynomial chaos expansions

4.3.1 Introduction

A deterministic simulator is a functionM that maps a set of input parametersx “ px1, x2, . . . , xMq
T

P DX Ă

RM to the output quantity of interest y P R. In the context of uncertainty quantification, the input parameters
are modeled by a random vector X “ pX1, X2, . . . , XMq

T

described by its joint distribution fX with support
DX . Therefore, the uncertainty in the input variables propagates through the computational model to the
output, which becomes a random variable denoted by Y “ MpXq.

Under the assumption that Y has finite variance, M belongs to the Hilbert space H of square-integrable
functions with respect to the inner product xu, vyH “ E rupXqvpXqs “

ş

DX
upxqvpxqfXpxqdx. If the

joint distribution fX satisfies certain conditions (Ernst et al., 2012), the output random variable Y can be cast
as the following spectral expansion:

Y “ MpXq “
ÿ

αPNM

aαψαpXq, (4.13)
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where aα is the coefficient associated to the basis function ψαpXq. The latter can be obtained as a tensor
product of univariate polynomials, each of them being orthogonal with respect to the probability measure
fXi

pxiqdxi of the i´th variableXi:

ψαpxq “

M
ź

j“1

ϕpjq
αj

pxjq. (4.14)

Details about the construction of this generalized polynomial chaos expansion can be found in Xiu and Karni-
adakis (2002) and Sudret (2015).

4.3.2 Sparse PCE

The spectral expansion in Eq. (4.13) is an infinite series. In practice, truncation schemes must be adopted,
which leads to approximating the computational model by a finite series defined by a finite multi-index subset
A Ă NM :

Mpxq « MPCpxq “
ÿ

αPA

aαψαpxq. (4.15)

Once the set of candidates is selected, regression-based algorithms such as ordinary least squares (Berveiller et al.,
2006) can be applied to the data pX ,Yq “

␣`

xpiq, ypiq
˘

, i “ 1, . . . , N
(

to build the surrogate model. Here, X
denotes the experimental design of the input variables, and Y are the associated model outputs. One common
method to select A is the full basis of degree p, which contains all the PC basis functions the degree of which is
lower than a given value p. However, it is well known that the classical “full” PC approximation suffers from the
curse of dimensionality (Blatman and Sudret, 2011), due to the quick increase of the basis size with increasing
input dimension or polynomial degree. To overcome this problem, sparse polynomial chaos expansions have
been proposed, which select only the most important basis functions among a candidate set (Blatman and Su-
dret, 2010, 2011), before ordinary least squares are used to compute the coefficients. In the present work, we
use the hybrid-LAR algorithm (Marelli and Sudret, 2019) implemented in the open source software UQLab
(Marelli and Sudret, 2014) for building sparse PCE. The selection procedure of the algorithm is based on least-
angle regression (LAR; Efron et al., 2004).

In the sequel, we will combine PCE with the local inference of generalized lambda distributions on each
point of the experimental design with replications.

4.4 Infer-and-Fit algorithm and joint modeling

4.4.1 Introduction

We assume that the response PDF of the stochastic simulator for a given input realizationx follows a generalized
lambda distribution, with distribution parameters λ “ pλ1, λ2, λ3, λ4q

T

that are functions of x:

Y pxq „ GLD pλ1pxq, λ2pxq, λ3pxq, λ4pxqq . (4.16)

Under appropriate assumptions discussed in Section 4.3, each component of λpxq admits a PC represen-
tation. For the FKML family, λ2pxq is required to be positive (see Section 4.2), and thus the associated PC
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approximation is built on the natural logarithm log pλ2pxqq. In a nutshell, λpxq are decomposed as

λs pxq « λPC
s px;aq “

ÿ

αPAs

as,αψαpxq, s “ 1, 3, 4, (4.17)

λ2 pxq « λPC
2 px;aq “ exp

˜

ÿ

αPA2

a2,αψαpxq

¸

, (4.18)

whereλPC px;aq are the PC approximations of the unknown functionsλpxq. The truncation sets tAs, s “ 1, 2, 3, 4u

are to be defined, and the coefficients as,α are the model parameters to be estimated from the samples. For the
purpose of clarification, we explicitly express the model parameters a in the surrogate model λPC px;aq so as
to emphasize that a are unknown and need to be estimated from the data.

4.4.2 Infer-and-Fit algorithm

To account for the intrinsic randomness, the stochastic simulator is repeatedly runR times for each point xpiq

of the experimental design X , and the associated output is denoted by Ypiq “
␣

ypi,1q, ypi,2q, . . . , ypi,Rq
(

, where
the upper index pi, rq refers to the output of the rth replication for the ith set of input parameters in the exper-
imental design.

Following Moutoussamy et al. (2015) and Browne et al. (2016), one straightforward way to build a surrogate
model is the Infer-and-Fit algorithm presented in Algorithm 4.1.

Algorithm 4.1 Infer-and-Fit algorithm
1: for i Ð 1, N do
2: λ̂piq Ð λ̂

`

Ypiq
˘

3: end for
4: Λ̂ Ð

´

λ̂p1q, λ̂p2q, . . . , λ̂pNq

¯

T

5: λPCpx; ãq Ð Hybrid-LAR
´

X , Λ̂
¯

Function λ̂p¨q in the second line of Algorithm 4.1 denotes an estimator of the distribution parameters based
on the replications (see Section 4.2.2), and Hybrid-LAR in the last line is the algorithm (Blatman and Sudret,
2011) used to build sparse PCE for λpxq.

Algorithm 4.1 consists of two main steps. The first step is used to capture the intrinsic stochasticity through
replications. More precisely, this inference step aims at providing an estimate λ̂piq of the distribution parame-
ters λ

`

xpiq
˘

for each point of the experimental design X . The second step independently builds four surrogate
models for the distribution parameters, based on the estimated parameters at discrete points of the experimental
design. For the local inference in the first step, we test both the method of moments and the maximum likeli-
hood estimation (a detailed comparison is presented in Section 4.5). Besides, in the second step, we choose to
use the hybrid-LAR for sparse PCE constructions, but Algorithm 4.1 is not bounded to this choice: any other
regression methods such as ordinary least squares (Berveiller et al., 2006), orthogonal matching pursuit (Tropp
and Gilbert, 2007), etc. can be used equivalently.
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In practice, the estimator λ̂piq is calculated from replications of finite size due to finite computational bud-
get, and it is subject to noise. Consequently, the choice of the regression setting for building sparse PCE is
advantageous because of its robustness to noise (Torre et al., 2019). However, the generalized lambda distribu-
tion is rather flexible, so that a few samples cannot guarantee an accurate estimation (Corlu and Meterelliyoz,
2016), and none of the existing methods have been proved to produce unbiased estimators. If a consistent bias
is present in the estimation, the use of regression algorithms cannot filter it out. Moreover, the four parameters
of the GLD, considered as functions of the input variables, are approximated by four PCE built independently.
As a result, the Infer-and-Fit algorithm qualitatively requires many replications R to achieve a good estimate
(quantitative results are shown in Section 4.5).

The two separate steps of Algorithm 4.1 may be seen as two successive, independent optimization problems.
First, the four parameters of the GLD are optimally fitted for each point xpiq P X , leading to Λ̂. Second,
coefficients of the PCE of each parameterλspxq are optimized based on the data collected in Λ̂, so as to minimize
a mean squared error. Intuitively, it appears that these two successive optimizations are suboptimal. We propose
to complement the Infer-and-Fit algorithm with a subsequent joint optimization.

4.4.3 Joint PCE-GLD fitting

To reduce the computational cost associated with the need for a large number of replications, we propose a
similar approach as that of generalized linear models (McCullagh and Nelder, 1989). In this joint modeling
method, PC coefficients a of the four λs’s are calibrated from the original data pX ,Yq through a maximum
likelihood estimation, instead of being calibrated from the local estimates Λ̂ “

!

Λ̂p1q, . . . , Λ̂pNq

)

, as shown in
Algorithm 4.1.

To form such an estimator, a deeper insight into the nature of stochastic simulators is necessary. Running
once the stochastic simulator for x, the output value is a realization of the random variable Y pxq, which can
also be written as Y | X “ x. As a result, the stochastic simulator can be regarded as a conditional sampler
with the response PDF fY |X py | xq. Therefore, we can write the joint distribution of pX, Y q as fX,Y px, yq “

fY |X py | xq fXpxq. The GLD surrogate provides an approximation fY |X

`

y
∣∣λPCpx;aq

˘

to the conditional
PDF. Therefore, the joint PDF of the GLD model is fX,Y px, y;aq “ fXpxqfY |X

`

y
∣∣λPCpx;aq

˘

.

Minimizing the Kullback–Leibler divergence between fX,Y px, yq and fX,Y px, y;aq gives an appropriate
approximation of the GLD surrogate to the underlying true model:

a0 “ argmin
a
DKL pfX,Y px, yq }fX,Y px, y;aqq , (4.19)

where:

DKL pfX,Y px, yq }fX,Y px, y;aqq “

ż

fX,Y px, yq log

ˆ

fX,Y px, yq

fX,Y px, y;aq

˙

dxdy

“ ´

ż

fX,Y px, yq log pfX,Y px, y;aqqdxdy ` const.

“ ´

ż

fX,Y px, yq log pfY |X py | x;aq fXpxqqdxdy ` const.

(4.20)
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Since fX does not contain the model parameters a, Eq. (4.19) can be further simplified as

a0 “ argmin
a

´

ż

fX,Y px, yq log pfY |X py | λpx;aqqqdxdy. (4.21)

Thus the model parameters a0 can be obtained by minimizing the following function:

lpaq
def
“ ´EX,Y

”

log
´

fY |X

´

Y
∣∣∣λPCpX;aq

¯¯ı

. (4.22)

Note that if the true underlying model can be expressed as the formfY |X

`

y
∣∣λPC px;atrueq

˘

,a0 from Eq. (4.21)
guarantees that fY |X

`

y
∣∣λPCpx;a0q

˘

is the same as that of the true model @x P DX .

To estimate a0, the expectation in Eq. (4.22) is replaced by some estimator. In most cases, a sample based
empirical average 1

N

řN

i“1 log
´

fY |X

´

ypiq
∣∣∣λPC

`

xpiq;a
˘

¯¯

is used, where
␣`

xpiq, ypiq
˘(N

i“1 are drawn inde-

pendently from the joint distribution fX,Y px, yq. For a given r,
␣`

xpiq, ypi,rq
˘(N

i“1 are independent samples,
and thus it is natural to consider the estimator

l̂prqpaq “
1
N

N
ÿ

i“1

´ log
´

fY |X

´

ypi,rq

∣∣∣λPC
`

xpiq;a
˘

¯¯

(4.23)

to replace the expectation in Eq. (4.22). Note that
!

l̂prqpaq

)R

r“1
are unbiased estimators of lpaq. Therefore,

the following estimator l̂paq is also unbiased:

l̂paq “
1
R

R
ÿ

r“1

l̂prqpaq. (4.24)

For a given a,
!

l̂prqpaq

)R

r“1
have the same variance σ2paq, because they are the same estimator applied to differ-

ent samples
␣`

xp1q, yp1,rq
˘

, . . . ,
`

xpNq, ypN,rq
˘(

, generated by the same scheme and indexed by r. Nevertheless,
these estimators of lpaq are not mutually independent due to the presence of replications. Hence, the variance
of l̂paq is calculated as follows:

Var
”

l̂paq

ı

“ Var

«

1
R

R
ÿ

r“1

l̂prqpaq

ff

“
1
R2

˜

R
ÿ

r“1

Var
”

l̂prqpaq

ı

`

R
ÿ

r1“1

ÿ

r2‰r1

Cov
”

l̂pr1qpaq, l̂pr2qpaq

ı

¸

.

(4.25)

Using the Cauchy-Schwartz inequality, we have

Var
”

l̂paq

ı

ď
1
R2

˜

R
ÿ

r“1

Var
”

l̂prqpaq

ı

`

R
ÿ

r1“1

ÿ

r2‰r1

c

Var
”

l̂pr1qpaq

ı

c

Var
”

l̂pr2qpaq

ı

¸

“
1
R2

`

R ¨ σ2paq `RpR ´ 1q ¨ σ2paq
˘

“ σ2paq.

(4.26)

The inequality becomes an equality if and only if l̂pr1qpaq is an affine function of l̂pr2qpaq. In the context of
stochastic simulators, l̂pr1qpaq is not a deterministic function of l̂pr2qpaq. Therefore, for a given a, l̂paq has less
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variance than any estimator of the set
!

l̂prqpaq

)R

r“1
, so it is a better estimator in terms of variance. Replacing

the expectation in Eq. (4.22) by l̂paq, we end up with a new estimator:

â “ argmin
a
l̂ paq , (4.27)

where

l̂ paq
def
“

N
ÿ

i

R
ÿ

r

´ log
´

fY |X

´

ypi,rq

∣∣∣λPC
`

xpiq;a
˘

¯¯

. (4.28)

This estimator by itself does not produce sparsity in the PC representations, meaning that the basis functions
for λPCpx;aq should be predefined before optimizing Eq. (4.27). To this end, we first exploit Algorithm 4.1 to
identify a sparse truncation scheme tAs, s “ 1, . . . , 4u for each component of λ in terms of the input vector
x. Then, we keep this representation and optimize the associated coefficients over the R ˆ N data points
globally (by joint likelihood maximization Eq. (4.27)), instead of separately. Therefore, this new procedure,
which is summarized in Algorithm 4.2, can be considered as a refinement of Algorithm 4.1, which is expected
to improve the surrogate quality with respect to the number of available replications.

Algorithm 4.2 Joint PCE-GLD fitting
1: Apply Algorithm 4.1 to get the sparse PCE truncation schemes tAs, s “ 1, . . . , 4u, and the associated co-

efficients ã
2: â Ð argmina l̂ paq, where l̂ paq is defined in Eq. (4.28) and

λPC
s px;aq “

ÿ

αPAs

as,αψαpxq s “ 1, 3, 4 (4.29)

λPC
2 px;aq “ exp

˜

ÿ

αPA2

a2,αψαpxq

¸

(4.30)

In the second step of Algorithm 4.2, the log-likelihood l̂paq needs to be evaluated with given PC coefficients
a for each data point

`

xpiq, ypi,rq
˘

. The computation details are illustrated in Figure 4.3 and described here. The
preliminary step (referred to as Step 0 in Figure 4.3) evaluates the basis functions tψα,α P Asu at all xpiq P X .
Step 1 calculates the distribution parametersλpiq “ λPC

`

xpiq;a
˘

according to Eqs. (4.29) and (4.30), in which
the model parameters a are used. The two layers involved in this step (Layer 1 and Layer 2 in Figure 4.3) are not
fully connected because the sparse basis sets are independently selected for each components of λPC px;aq in
Algorithm 4.1. Step 2 solves the nonlinear equation ui,r “ Q´1

`

ypi,rq
˘

, where the current values of λpiq’s are
used, see Eq. (4.1). The nonlinear equation is explicitly written as

ypi,rq “ λ
piq
1 `

1
λ

piq
2

¨

˝

u
λ

piq

3
i,r ´ 1

λ
piq
3

´
p1 ´ ui,rqλ

piq

4 ´ 1
λ

piq
4

˛

‚. (4.31)
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Layer 0 Layer 1

L

Layer 2 Layer 3 Layer 4

Negative log-likelihood

Step 1Step 0 Step 2 Step 3 

Figure 4.3: Flow chart of the negative log-likelihood calculation

Eventually, Step 3 computes the negative log-likelihood using Eq. (4.2). More precisely, we have

´ log
´

fY |X

´

ypi,rq

∣∣∣λpiq
¯¯

“ log

¨

˝

u
λ

piq

3 ´1
i,r ` p1 ´ ui,rqλ

piq

4 ´1

λ
piq
2

˛

‚. (4.32)

The optimization problem in the second step of Algorithm 4.2 is not only highly nonlinear but also sub-
ject to complex constraints. As discussed in Section 4.2, the FKML family can produce PDFs with bounded
support (see Eq. (4.3)), which implies that the negative log-likelihood function will take value `8 if the data
are outside the support. To avoid numerical issues, constraints need to be introduced, and the complete opti-
mization problem becomes

â “ argmin
a
l̂paq, (4.33)

such that @i

$

&

%

Bl

`

λPC
1

`

xpiq;a
˘

, λPC
2

`

xpiq;a
˘

, λPC
3

`

xpiq;a
˘˘

ď minr y
pi,rq,

Bu

`

λPC
1

`

xpiq;a
˘

, λPC
2

`

xpiq;a
˘

, λPC
4

`

xpiq;a
˘˘

ě maxr y
pi,rq,

(4.34)

whereBl andBu are computed from Eq. (4.3).
In general, the fact that the negative log-likelihood function can reach `8 is not a problem because Eq. (4.33)

is a minimization problem. Therefore, we can always treat the optimization problem as unconstrained. How-
ever, numerical issues can occur when applying unconstrained derivative-based algorithms. For this reason, we
choose to use the derivative-based algorithm trust region without constraints (Steihaug, 1983) in the first place.
If it does not converge, which implies that some constraints are activated, the constrained (1+1)-CMA-ES algo-
rithm (Arnold and Hansen, 2012) available in UQLab (Moustapha et al., 2019) is used instead.

For derivative-based algorithms, the choice of a relevant starting point is important to ensure convergence.
In the proposed method, we use the coefficients resulting from the Infer-and-Fit algorithm as the starting point,
namely ã. However, ã is generally not guaranteed to be feasible. If it violates the inequality conditions in
Eq. (4.34), additional operations are necessary to have a feasible starting point, see details in Section 4.a.1.
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4. Replication-based stochastic emulation using generalized lambda distributions

When applying derivative-based optimizers to solve Eq. (4.33), using finite difference to calculate gradients
would be time-consuming and inaccurate. This is because the likelihood (Eq. (4.28)) is expensive to evaluate,
especially considering that NR nonlinear equations (Eq. (4.31)) need to be solved. To alleviate the computa-
tional burden, we derived analytical expressions of the derivatives through implicit differentiations of Eqs. (4.1)
and (4.2) and the chain rule (see Section 4.a.2 for details). Besides, the Hessian matrix (second order derivatives
of l̂ with respect to a) has also been derived. As a result, each iteration of the trust region algorithm only evalu-
ates once the likelihood function l̂paq.

4.5 Analytical examples
In this section, we investigate the performance of the Infer-and-Fit and of the joint modeling algorithm using
two analytical examples. The examples are built such that the PDF of Y pxq is known but does not follow the
generalized lambda distribution, so as to test the flexibility of the proposed approaches. As an inference tool
for the first algorithm, we apply both the method of moments and the maximum likelihood estimation to get
the values λ̂piq for each xpiq P X . The associated surrogate models built from the Infer-and-Fit algorithm are
respectively denoted by GLD MM and GLD MLE. Similarly, the joint PCE-GLD algorithm provides another
two models denoted by GLD joint_MM and GLD joint_MLE. Note that when building these two joint models
following Algorithm 4.2, both of them rely on solving the optimization problem in Eq. (4.33). However, results
are not identical because the sparse truncation sets tAs, s “ 1, . . . , 4u for λPCpx;aq as well as the starting
points for the optimization generally differ.

The error measure between the emulated PDF and the true one is computed using the Hellinger distance,
which is then averaged over all possible x. More precisely, we define

ϵ “ EX

“

dHD
`

fY |Xpy | Xq, fY |X

`

y | λPC pX; âq
˘˘‰

. (4.35)

It is reminded that the Hellinger distance between two continuous PDFs p and q reads

dHD pppyq, qpyqq “
1

?
2

∥∥∥appyq ´
a

qpyq

∥∥∥
2

“

d

1
2

ż `8

´8

´

a

ppyq ´
a

qpyq

¯2
dy “

d

1 ´

ż `8

´8

a

ppyqqpyqdy.

(4.36)

Another natural choice for measuring the distance between two PDFs would have been the KL divergence.
However, DKLpp}qq tends to `8 if suppppqz supppqq has non zero probability with respect to p, which is
not suitable for the comparison.

In practice, the integral in Eq. (4.36) is computed using numerical integration. In this paper, we restrict
the integral interval from p´8,`8q to rQ0.001

p , Q0.999
p s

Ť

rQ0.001
q , Q0.999

q s, where Q0.001
p and Q0.999

p denote the
0.1% and 99.9% quantiles of a random variable having p as PDF (similar notations are used for q). Note that
this is feasible here because the two densities in Eq. (4.35) we want to compare have analytical expressions for
the specific examples handled.

To calculate the expectation in Eq. (4.35), quasi-Monte Carlo simulation is used with Ntest “ 1,000 sam-
ples generated by the Sobol’ sequence (Sobol’, 1967) in the input space. The Sobol’ sequence sampler is also used
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to draw the experimental design (ED). To study the performance of the proposed methods, data are generated
for various combinations of the experimental design size N and the amount of replications R per ED point.
Each scenario is run 100 times with independent experimental designs to account for statistical uncertainty. Er-
ror estimates for each scenario pN,Rq are thus represented by box plots.

4.5.1 Example 1: a one-dimensional simulator

The first example is defined as follows:

Y pX,ωq “ sin

ˆ

2π
3
X `

π

6

˙

¨ pZ1pωq ¨ Z2pωqq
cospXq

, (4.37)

where X „ Up0, 1q is the input parameter, and Z1pωq „ LN p0, 0.25q and Z2pωq „ LN p0, 0.5q are latent
variables following lognormal distributions. Under this definition, Y px, ωq follows a lognormal distribution
LN pℓpxq, ζpxqq with ℓpxq “ log

`

sin
`

2π
3 x` π

6

˘˘

and ζpxq “

b

3
8 cospxq, x P r0, 1s. As mentioned in

Section 4.2, the lognormal distribution, which is widely used in engineering, can be approximated by the gen-
eralized lambda distribution. The nonlinearity in its parameters leads to nonlinear functions of λpxq in the
GLD approximation, and thus the PC representations λPCpxq are also nonlinear.

Figure 4.4 shows one realization of an experimental design of N “ 40 and R “ 20 for each point and
the predicted PDF of the four surrogate models for X “ 0.5. We observe that the two models GLD MM
and GLD MLE built using the Infer-and-Fit algorithm cannot capture the shape of the true distribution. In
contrast, the two joint models GLD joint_MM and GLD joint_MLE produce a PDF that not only has the
correct shape but also is an accurate approximation of the underlying distribution. We remark that with the
data illustrated in Figure 4.4, GLD joint_MM and GLD joint_MLE are identical, implying that even though
GLD MM and GLD MLE are different, their associated joint models can still be identical if they select the same
sparse truncation sets tAs, s “ 1, . . . , 4u. Therefore, the selected algorithm is appears to be not too sensitive to
the starting point.
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(a) Generated data
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(b) PDF prediction forX “ 0.5

Figure 4.4: Example 1 — 40 ED points and 20 replications

Figures 4.5 to 4.6 show quantitative comparisons of the convergence behavior of the four models. It turns
out that in general all the GLD models converge when increasing the size of experimental design N and the
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4. Replication-based stochastic emulation using generalized lambda distributions

number of replications R. Moreover, the two joint models outperform the models built of the Infer-and-Fit
approach, especially when only a few replications are available.

In the case with only 20 replications (Figure 4.5), the convergence behavior of GLD MM and GLD MLE
shows a weak dependence onN . This is because in the first step of Algorithm 4.1, estimators λ̂piq from both the
method of moments and the maximum likelihood estimation might be biased. Then regression used in the sec-
ond step is not able to filter the bias. Moreover, a few replications lead to high variance of the estimators, which
together with the bias explains the non convergent behavior of GLD MM and GLD MLE. When increasing
the number of replications, the bias becomes less significant and the variance of the error decreases. Therefore,
ϵ decreases with increasingN for GLD MM and GLD MLE in Figure 4.6.

In contrast, GLD joint_MLE exhibits a fast error decay even with a small number of replications. This is
because all the available data are used at once to estimate the model parameters, which reduces both the bias and
the variance. GLD joint_MM appears to provide less accurate PDF estimation than GLD joint_MLE, which
is due to the less appropriate truncation scheme selected by GLD MM. Nevertheless, GLD joint_MM still
improves the results of GLD MM and outperforms GLD MLE.

Figure 4.5: Example 1 — Hellinger distance between the surrogate model built with R “ 20 and the true
response PDF, averaged over Xtest (log-scale).

Figure 4.6: Example 1 — Hellinger distance between the surrogate model built with R “ 80 and the true
response PDF, averaged over Xtest (log-scale).

We have run the simulation for N “ t10, 20, 40, 80, 160u and R “ t10, 20, 40, 80, 160u. Figure 4.7 sum-
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marizes the total number of model runsNR (only up to 1,600) against the error measure. The results are con-
sistent with what we have observed in the case of fixed number of replications. More precisely, the two models
built with the joint modeling algorithm outperform those based on the Infer-and-Fit algorithm: with 400 mod-
els runs, GLD joint_MM and GLD joint_MLE provide more accurate PDF estimations than GLD MM and
GLD MLE with 1,600 model evaluations.

Figure 4.7: Example 1 — Hellinger distance between surrogate models built with different total number of
model runs and the true response PDF, averaged over Xtest (log-scale).

4.5.2 Example 2: a five-dimensional simulator

The second analytical example is defined as follows:

Y pX, ωq “ µpXq ` σpXq ¨ Zpωq, (4.38)

whereZpωq „ N p0, 1q is the latent variable that represents the source of randomness, andX is a five-dimensional
random vector, with independent components having uniform distribution Up0, 1q. Y pxq is a Gaussian ran-
dom variable with mean µpxq and standard deviation σpxq. In this example, the mean function µpxq reads

µpxq “ 3 ´

5
ÿ

j“1

jxj `
1
5

5
ÿ

j“1

jx3
j `

1
15

log

˜

1 `

5
ÿ

j“1

jpx2
j ` x4

jq

¸

` x1 x
2
2 ´ x5 x3 ` x2 x4, (4.39)

and the standard deviation σpxq is given by

σpxq “ exp

˜

1
4

5
ÿ

j“1

xj

¸

, (4.40)

which implies a strong heteroskedastic effect with a highly nonlinear mean function. This example is used to
show the performance of the proposed methods in moderate dimensional problems.

Similar to the previous example, the GLD models demonstrate a convergent behavior, as illustrated in Fig-
ures 4.9 to 4.11. The two joint models yield more accurate estimates than those built with the Infer-and-Fit
algorithm. In the case of a few replications, both GLD MM and GLD MLE fail to capture the shape of the
PDF (Figure 4.8), and thus converge rather slowly with respect to N (see Figure 4.9). In contrast, the two
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Figure 4.8: Example 2 — PDF predictions with an experimental design of size 50 and 25 replications.

joint models are less sensitive to the number of replications, and their performance mainly depends on the ED
size. Unlike the first example, using the method of moment turns out to produce slightly more accurate es-
timates when applying the Infer-and-Fit algorithm. However, the parametric estimation methods employed
to get λ̂piq do not have a significant influence on the accuracy of the joint algorithm: GLD joint_MM and
GLD joint_MLE show very similar convergence.

Figure 4.9: Example 2 — Hellinger distance between the surrogate model built with R “ 25 and the true
response PDF, averaged over Xtest (log-scale)

In this section, only the error measure based on the Hellinger distance is reported for convergence studies.
Nevertheless, quantitative comparisons using other metrics such as the Kolmogorov–Smirnov distance, the
mean value and the 95% quantile of the predicted distributions show similar trends.

4.6 Applications

4.6.1 Stochastic differential equation

Stochastic differential equations (SDEs) are widely used to model the evolution of complex systems in many
fields, e.g., finance (McNeil et al., 2005), epidemics (Gray et al., 2011), and meteorology (Iversen et al., 2015).

84



4.6. Applications

Figure 4.10: Example 2 — Hellinger distance between the surrogate model built with R “ 100 and the true
response PDF, averaged over Xtest (log-scale)

Figure 4.11: Example 2 — Hellinger distance between surrogate models built with different total number of
model runs and the true response PDF, averaged over Xtest (log-scale).

Due to the stochastic process (e.g., Wiener processes) involved in a SDE, the associated solution is also a stochas-
tic process. As a results, when fixing the parameters of a SDE, any scalar-valued deterministic function of the
solution process produces a random variable, which can be regarded as a stochastic simulator. In this case study,
we consider the example proposed by Jimenez et al. (2017), the governing equation of which reads

dYt “ pX1 ´ Ytqdt` pνYt ` 1qX2 dWt, (4.41)

with the initial condition defined by

Y0 “ 0 almost surely.

In this equation, X “ pX1, X2q
T

are the SDE parameters, andWt is a standard Wiener process that represents
the source of randomness. We denote Ytpxq the solution of Eq. (4.41) for X “ x, and we focus on the value
of Ytpxq at t “ 10, i.e., Y10pxq is the scalar QoI.

Note that the value of ν controls how the Wiener process affects the QoI: for ν “ 0, dWt is multiplied
with a constant, and thus the solution Ytpxq is a Gaussian process; whereas for ν ‰ 0, Wt interacts with the
unknown process Ytpxq, and the marginal distribution of Ytpxq does not have an analytical closed-form. We
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set ν “ 0.2 in this study. To numerically solve Eq. (4.41), we apply the classical Euler–Maruyana method
(Kloeden and Platen, 1992) with time step ∆t “ 0.01. Therefore, the discretized version of Eq. (4.41) has a
large number of latent random variables Z equal to 10

∆t
“ 1,000. This problem is representative of cases with

low dimensionality in X and very large size of Z.
The original definition of X proposed by Jimenez et al. (2017) follows X1 „ Up0.95, 1.15q and X2 „

Up0.02, 0.22q. According to some preliminary tests, we found that under this setting, the response PDF is close
to a normal distribution and does not vary significantly with respect to x because the range of definition of the
input parameters is rather narrow. In order to have richer shapes for the output PDF of Y10pxq and challenge
our algorithm, we choose X1 „ Up0.9, 2q, X2 „ Up0.1, 1q in this paper. Thus, the response PDF can have
normal-like shape and can also be right-skewed depending on x.
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Figure 4.12: Stochastic differential equation — PDF predictions with an experimental design of size 80 using
40 replications. The reference histogram is calculated based on 10,000 replications.

Figure 4.12 shows the results when applying the developed methods to an experimental design ofN “ 80
and R “ 40. We observe that all the four models can generally well approximate the underlying distributions.
Detailed comparison shows that the Infer-and-Fit algorithm is not able to correctly emulate the shape varia-
tion of the response PDF: when the underlying PDF is close to a normal distribution, both GLD MM and
GLD MLE predict a slightly right-skewed PDF; whereas for positively skewed PDF, neither of them is able to
accurately approximate the tail. In contrast, GLD joint_MM and GLD joint_MLE not only capture the shape
variation but also better represent the underlying PDF.

Similar to the analytical examples in Section 4.5, we investigate the convergence behavior of the developed
methods. Since the analytical PDF is not available, we use kernel density estimation (Wand and Jones, 1995)
using 10,000 replications as the reference distribution for each point in the test set. The Hellinger distance
between the predicted PDF and the reference is averaged over a test set Xtest containing 100 points generated
with a Sobol’ sequence.

The convergence study of the four models is reported in Figures 4.13 to 4.14. As expected from the analytical
examples, the joint modeling algorithm appears much more efficient. In particular, both GLD joint_MM and
GLD joint_MLE yield an error around 0.07 in the case of 20 replications and 80 ED points, i.e., 1,600 model
evaluations, whereas GLD MM and GLD MLE can barely achieve this accuracy even when 80 replications and
160 ED points, i.e., a total of 12,800 model evaluations, are available. More generally, the joint algorithm pro-
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Figure 4.13: Stochastic differential equation — Hellinger distance between the surrogate model built withR “

20 and the reference response PDF, averaged over Xtest (log-scale).

Figure 4.14: Stochastic differential equation — Hellinger distance between the surrogate model built withR “

80 and the reference response PDF, averaged over Xtest (log-scale).

duce more accurate results than the Infer-and-Fit algorithm when a large number of replications are available.

4.6.2 Wind turbine design

In the wind turbine design process, structural components need to be analyzed under diverse environmental
loads to assess their performance and reliability. Typical simulations consist of two parts, namely the generation
of the external excitations (i.e., wind inflow) and the aero-servo-elastic simulation as illustrated in Figure 4.15.
The latter refers to the complex multi-physics scenario including mutual interactions of wind inflow, aerody-
namics, structural dynamics (elastic deflections) and control systems.

The wind field generator used in this study is TurbSim (Jonkman, 2009), which is a stochastic inflow tur-
bulence simulator. It takes five macroscopic parameters as input: (1) the mean wind velocity U at reference
altitude zref ; (2) the turbulence intensity I , denoting the coefficient of variation of the wind time series, i.e.,
I “ σ{U ; (3) the wind shear exponent α, describing the variation of the mean wind velocity with the altitude
according to the following equation:

Upzq “ U ¨

ˆ

z

zref

˙α

; (4.42)
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(4) the air density ρ and (5) the inclination angle β (see Abdallah et al., 2019 for details). Since these five pa-
rameters cannot fully determine a wind field, random seeds are used on top of these macroscopic parameters in
TurbSim to generate a coherent turbulent three-dimensional velocity time series (Jonkman, 2009).

The wind turbine structure studied here is the reference 5 MW upwind turbine described in Jonkman et al.
(2009). The aero-servo-elastic simulator is FAST (Jonkman et al., 2009), a deterministic computational model
that takes inflow wind fields as input and calculates the structural response as output. However, due to the use
of random seeds in the turbulent wind generation, simulations of wind turbines are stochastic with respect to
the five input macroscopic parameters. In other words, fixing the five quantities described above, any number
of three-dimensional wind fields can be simulated, each of which leads to a different response and predicted
performance of the wind turbine. Note that this is also what happens in reality for wind turbines.

Of interest is the maximum flap-wise bending moment at the blade rootMb within the simulated time (10
minutes) for a given wind climate defined by the 5 macroscopic parameters, as illustrated in Figure 4.15. To
build a stochastic surrogate, the Latin hypercube sampling (LHS) method (McKay et al., 1979) with rejection
is used to create an experimental design of 485 points in dimension 5. More precisely, input samples are firstly
generated by the LHS following Table 4.1, and then the samples that are outside the bounds that are calibrated
from real wind climate are removed. The bounds are respectively defined in the pI, Uq plane, pα,Uq plane,
and pα, Iq plane, as illustrated in Figure 4.16 (Slot et al., 2020). Importantly, when the turbulence standard
deviation σ “ I ¨ U is close to zero, the wind speed barely varies in time, and thus the response PDF is close
to being degenerate, which can cause numerical problems. In this case, the simulator can be considered as
deterministic and does not fit to the GLD framework. Hence, we introduce an additional bound in σ, and only
samples with σ ą 0.05 are simulated. Finally, the simulator is run 50 times for each set of input parameters as
replications.

Considering the physical process, we chose to use the turbulence standard deviation σ rather than the tur-
bulence intensity I to build the surrogate models. Hence, the input parameters are pre-processed as X “

pU, σ, α, β, ρq
T

for training.
Because of the sampling scheme, the input parameters U , I and α are not independent, which violates

the independent assumption when building PC basis. One possibility to tackle this problem would be to use
the Rosenblatt transform (Rosenblatt, 1952) to map the dependent inputs into a set of independent random
variables and then build PC basis of the latter. However, Torre et al. (2019) shows that this approach, while
yielding improved estimates of the output statistics, is typically detrimental to the accuracy of pointwise pre-
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Figure 4.15: Wind turbine simulation scheme
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Table 4.1: Wind turbine case study — description of the input variables

Name Description Distribution Parameters
U Mean speed (m) Uniform r3, 22s

I Turbulence intensity Uniform r0, 0.5s

α Shear exponent Uniform r´2, 5s

ρ Air density (kg{m3) Uniform r0.8, 1.4s

β Declination angle (deg) Uniform r´10, 10s

(a) Bounds in pI, Uq plane (b) Bounds in pα,Uq plane (c) Bounds in pα, Iq plane

Figure 4.16: Bounds on the physical parameters pU, I, αq calibrated from real wind data

dictions. This is because the Rosenblatt transform is highly nonlinear, resulting in a transformed model whose
PCE spectrum decays typically more slowly than the original one. Therefore, we ignore the dependence when
building PC basis functions, and only the marginal distribution of each input variables is needed. Since the
marginal distributions are difficult to be derived analytically due to the bounds, we apply the kernel density
estimators to 10,000 samples generated according to the rejection sampling scheme described before. Note that
the air density ρ and the inclination angle β are uniform variables, and they are independent from U , I and α.
Therefore, we use Legendre polynomials as the associated univariate PC basis functions for these two variables.

Unlike the previous example in Section 4.6.1, the wind turbine simulation is costly, and thus we cannot
run as many times the simulator as needed to have a reliable estimate of the error defined in Eq. (4.35). To
assess the performance of the proposed methods, 120 samples of input parameters are generated by the same
scheme as the training set. The simulator is repeatedly run 500 times for each test point. We then compare some
sample statistics with those predicted by the stochastic emulators built by the developed methods. The former
are considered as references. The metrics used for comparison are the mean, the standard deviation (std) and
the 5%, 10%, 50%, 90% and 95% quantiles.

The results of the four GLD models are shown in Figure 4.17 and Figure 4.18. Comparisons of the scalar
quantities show that all the four GLD models demonstrate a good fit to the simulated scenario. Among the
scalar quantities, the mean and the quantiles are estimated with high accuracy, whereas the standard deviation
estimation is relatively poor.

To have more quantitative comparison among the four GLD models, we define the normalized mean squared
error:

ϵ “

řNtest

i“1

´

q
piq
GLD ´ q̂piq

¯2

řNtest

i“1

`

q̂piq ´ ¯̂q
˘2 , with ¯̂q “

1
Ntest

Ntest
ÿ

i“1

q̂piq, (4.43)
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(a) Mean estimation (b) Std estimation

Figure 4.17: Wind turbine case study — Comparison of the mean and the standard deviation estimation of the
maximum flapwise bending moment (kN¨m). The x-axis (reference) is the empirical quantity calculated from
the 500 replications.

where q is the statistical quantity of interest (mentioned above), qpiq
GLD is the value predicted by the GLD model,

and q̂piq denotes the estimated quantity (empirical mean, standard deviation and quantiles) based on the repli-
cations for xpiq.

The errors associated with the scalar quantities are reported in Table 4.2. We can observe that the method
of moments outperforms the maximum likelihood estimation for both the Infer-and-Fit and the joint model
in terms of all the error measures used here. The joint models generally improve their associated Infer-and-Fit
models, and GLD joint_MM provides the best estimates.

Table 4.2: Normalized mean squared error of various quantities in the test set. The best results among the four
GLD models are highlighted in bold.

GLD models mean std Q05 Q10 Q50 Q90 Q95

GLD MM 0.0185 0.1125 0.0231 0.0221 0.0188 0.0166 0.0165
GLD joint_MM 0.0099 0.124 0.0133 0.0154 0.0103 0.009 0.0091

GLD MLE 0.0235 0.1488 0.0292 0.0280 0.0237 0.0214 0.0213
GLD joint_MLE 0.0128 0.1642 0.0167 0.0155 0.0131 0.0121 0.0125

Apart from the detailed quantitative comparison of the scalar quantities, we visualize also the PDF pre-
diction in Figure 4.19 for two specific values of x. The reference histograms are obtained based on the 500
replications. Since only 500 samples are available, the histograms are less smooth than those of the previous
example in Section 4.6.1. We observe that all the four surrogate models can well capture the location of the
underlying distribution. In addition, the two joint models demonstrate better performance on the shape ap-
proximation. For example, in Figure 4.19, the two Infer-and-Fit models produce narrower support than the
range of the samples, whereas the support is accurately approximated by the two joint models.

As a conclusion, the GLD joint models allows for accurate prediction of the PDF of the maximum flapwise
bending moment at the blade root at a total cost of about 24,000 runs of Turbsim+FAST. The calculation have
been carried out on the ETH Euler cluster using 96 cores for a physical time of about 20.5 hours. Interestingly,
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(c) 50% quantile estimation
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(d) 90% quantile estimation
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Figure 4.18: Wind turbine case study — Comparison of the quantiles estimation of the maximum flapwise
bending moment (kN¨m). The x-axis (reference) is the empirical quantity calculated from the 500 replications.
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Figure 4.19: Wind turbine case study — PDF predictions with the experimental design of size 485 using 50
replications. The reference histogram is calculated based on 500 replications.

the 95% quantile, which is of interest for design assessment, is remarkably predicted all over the space of input
parameters.

4.7 Conclusions

The aim of this paper is to build efficient and accurate surrogate models for stochastic simulators within the
replication-based framework. Generalized lambda distributions are used to flexibly approximate the output
PDF, while the relationship of their parameters with the inputs is approximated through polynomial chaos
expansions. To construct surrogate models in a non-intrusive manner, we first proposed the Infer-and-Fit al-
gorithm which consists of solving two consecutive problems. In the first step, the distribution parameters are
inferred based on repeated model evaluations for each point of the experimental design. Then the estimated
values are used to build a PCE surrogate model for each distribution parameters. The Infer-and-Fit algorithm
allows us to use conventional regression techniques to construct PCE. However, this method is sensitive to the
number of replications due to the two-step strategy, whereby the model responses are only used in the first step.
In order to build accurate surrogate models even when a few replications are available, we proposed in a second
part the joint modeling method described in Algorithm 4.2. This approach carries out one more optimization
step after getting a first estimate from the Infer-and-Fit approach, which is used to provide sparse truncation
sets for λPCpx;aq and a starting point for the optimization. This enrichment allows us to use all the available
data at once and provides a maximum likelihood estimator of the model parameters, namely the coefficients of
the polynomial chaos expansions of the λ’s. Due to the complexity of the likelihood function, this additional
optimization problem can be expensive to solve. To alleviate the computational burden, we vectorized the im-
plementation in the Matlab environment and derived analytically the gradient and the Hessian matrix of the
objective function. As a result, we can efficiently apply derivative-based optimizers.

For the analytical examples in Section 4.5 and the stochastic differential equation case study in Section 4.6.1,
the proposed two algorithms are both able to approximate the reference distributions with high accuracy, even
though the data generation scheme does not follow the generalized lambda distribution. As expected, the joint
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models show better performance when only a few replications are available. For the wind turbine application
in Section 4.6.2, due to the cost of the simulator, only some important statistical scalar quantities are compared
to a reference solution obtained from a large Monte Carlo simulation, whereas PDFs at selected input points
are only compared visually. Both developed methods demonstrate high accuracy for the mean and quantiles
estimation.

In all the examples and applications, joint models are observed to consistently improve the result of the as-
sociated models built with the Infer-and-Fit algorithm. Besides, for the parametric estimation in the first step of
the Infer-and-Fit algorithm, the method of moments and maximum likelihood show comparable performance.
This observation matches the conclusion in Corlu and Meterelliyoz (2016).

In the joint modeling method, the main role played by the replications is to obtain a truncation scheme
for each component of λPCpx;aq as well as to find an initial starting point for the following optimization
step. Therefore, replications are not necessary if the basis functions of each distribution parameter are known
or preselected. Work is in progress to improve the proposed method by combining feasible generalized least
squares and sparse regressions for finding appropriate starting points and basis selections, which completely
avoids the need for replications and thus drastically reduces the computational cost (Zhu and Sudret, 2021).
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4.a Appendix

4.a.1 Feasible starting point

For the additional optimization problem introduced in the joint algorithm, the coefficients ã fitted from the
Infer-and-Fit algorithm are chosen as an appropriate starting point for the optimization. However, as discussed
in Section 4.4, the objective function lpaq can take the value `8, and thus complex constraints are present,
which is summarized in Eq. (4.34). Therefore, additional operations are necessary to have a feasible starting
point if ã does not satisfy the constraints.

It is observed from Eq. (4.3) that the lower (upper) bound of the support is a monotonic function of λ3

(λ4) for fixed λ1 and λ2. Therefore, reducing the coefficients a3,0 and a4,0 that are associated with the constant
functions in Eq. (4.29) broadens the support of the response PDF for all x P DX . Based on this property, the
following procedure is proposed to adjust ã to be feasible:

1. Evaluate λpiq “ λPC
`

xpiq; ã
˘

for all xpiq P X

2. Collect the index i into the set I , whose associated λpiq
3 is positive
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3. For all i P I , calculate λ̌piq
3 such that the minimum value of the associated replication results located

exactly on the lower bound. More precisely, according to Eq. (4.3), we have

λ̌
piq
3 “

1

λ
piq
2

´

λ
piq
1 ´ min

r
ypi,rq

¯ (4.44)

4. Decrease the value of ã3,0 so that λpiq
3 ă λ̌

piq
3 for all i P I .

This algorithm only deals with the constraints related to the lower bounds. The same method can be used for
those from upper bounds, which consists in modifying the constant ã4,0 based on λ̃piq

4 .

4.a.2 Analytical derivations for Algorithm 4.2

In this section, we compute the analytical derivatives of the negative log-likelihood function lwith respect to the
model parameters a. Since the objective function is a composition of several functions as shown in Figure 4.3,
the derivatives can be calculated through the chain rule, which flows from Step 3 to Step 1. Starting from

l “ log

ˆ

uλ3´1 ` p1 ´ uqλ4´1

λ2

˙

, (4.45)

we get the following partial derivatives:

Bl

Bu
“

pλ3 ´ 1quλ3´2 ´ pλ4 ´ 1qp1 ´ uqλ4´2

uλ3´1 ` p1 ´ uqλ4´1 , (4.46)

Bl

Bλ2
“ ´

1
λ2
, (4.47)

Bl

Bλ3
“

uλ3´1 logpuq

uλ3´1 ` p1 ´ uqλ4´1 , (4.48)

Bl

Bλ4
“

p1 ´ uqλ4´1 logp1 ´ uq

uλ3´1 ` p1 ´ uqλ4´1 . (4.49)

The differentiation at Step 2 is more complex because u is not an explicit function of λ, and thus it involves
derivatives of a highly nonlinear implicit function Eq. (4.1). Based on

y “ Qpuq “ λ1 `
1
λ2

ˆ

uλ3 ´ 1
λ3

´
p1 ´ uqλ4 ´ 1

λ4

˙

,

and because y is given, differentiating both side gives

0 “ d

ˆ

λ1 `
1
λ2

ˆ

uλ3 ´ 1
λ3

´
p1 ´ uqλ4 ´ 1

λ4

˙˙

,

where d stands for the total differentiation.
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Expanding and rearranging the equations above, we have

Bu

Bλ1
“ ´

λ2

uλ3´1 ` p1 ´ uqλ4´1 , (4.50)

Bu

Bλ2
“

1
λ2 puλ3´1 ` p1 ´ uqλ4´1q

ˆ

uλ3 ´ 1
λ3

´
p1 ´ uqλ4 ´ 1

λ4

˙

, (4.51)

Bu

Bλ3
“
uλ3 ´ λ3u

λ3 logpuq ´ 1
λ2

3 puλ3´1 ` p1 ´ uqλ4´1q
, (4.52)

Bu

Bλ4
“

´p1 ´ uqλ4 ` λ4p1 ´ uqλ4 logp1 ´ uq ` 1
λ2

4 puλ3´1 ` p1 ´ uqλ4´1q
. (4.53)

As illustrated in Figure 4.3, the derivatives of the negative log-likelihood function with respect to λ come from
two parts: one is from the direct derivative (Eqs. (4.47) to (4.49)) in Step 3, the other part is contributed by the
implicit differentiation (Eqs. (4.50) to (4.53)) in Step 2. As a result, we have

dl

dλs

“
Bl

Bλs

`
Bl

Bu

Bu

Bλs

, s “ 1, 2, 3, 4. (4.54)

Finally, the derivatives flow back to the model parameters a at Step 1 as follows:

dl

das,α
“

dl

dλs

Bλs

Bas,α
“

dl

dλs

ψα pxq , s “ 1, 3, 4, (4.55)

dl

da2,α
“

dl

dλ2

Bλ2

Ba2,α
“

dl

dλ2

1
L1 pλ2q

ψα pxq , (4.56)

where L denotes the transform that is used to guarantee the positiveness of λ2pxq. Recall that we chose to use
Lpλ2q “ logpλ2q in this paper. Similar techniques can be used to derive the Hessian matrix of the negative
log-likelihood function, which is necessary for the trust-region algorithm. Due to the lengthy derivation, we
omit the result here. Eq. (4.54) calculates the derivatives of the log-likelihood function with respect to the
distribution parameters λ. Hence, it can be used in the maximum likelihood estimation of the distribution
parameters of a random variable following a generalized lambda distribution.
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Abstract
Stochastic simulators are ubiquitous in many fields of applied sciences and engineering. In the context of un-
certainty quantification and optimization, a large number of simulations is usually necessary, which becomes
intractable for high-fidelity models. Thus surrogate models of stochastic simulators have been intensively inves-
tigated in the last decade. In this paper, we present a novel approach to surrogating the response distribution of
a stochastic simulator which uses generalized lambda distributions, whose parameters are represented by poly-
nomial chaos expansions of the model inputs. As opposed to most existing approaches, this new method does
not require replicated runs of the simulator at each point of the experimental design. We propose a new fitting
procedure which combines maximum conditional likelihood estimation with (modified) feasible generalized
least-squares. We compare our method with state-of-the-art nonparametric kernel estimation on four different
applications stemming from mathematical finance and epidemiology. Its performance is illustrated in terms of
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5. Generalized lambda models

the accuracy of both the mean/variance of the stochastic simulator and the response distribution. As the pro-
posed approach can also be used with experimental designs containing replications, we carry out a comparison
on two of the examples, showing that replications do not necessarily help to get a better overall accuracy and
may even worsen the results (at a fixed total number of runs of the simulator).

5.1 Introduction

With increasing demands on the functionality and performance of modern engineering systems, design and
maintenance of complex products and structures require advanced computational models, a.k.a. simulators.
They help assess the reliability and optimize the behavior of the system already at the design phase. Classical
simulators are usually deterministic because they implement solvers for the governing equation of the system.
Thus, repeated model evaluations with the same input parameters consistently result in the same value of the
output quantities of interest (QoIs). In contrast, stochastic simulators contain intrinsic randomness, which
leads to the QoI being a random variable conditioned on the given set of input parameters. In other words,
each model evaluation with the same input values generates a realization of the response random variable that
follows an unknown distribution. Formally, a stochastic simulator Ms can be expressed as

Ms : DX ˆ Ω Ñ R,

px, ωq ÞÑ Mspx, ωq,
(5.1)

where x is the input vector that belongs to the input space DX , and Ω denotes the sample space of the proba-
bility space tΩ,F ,Pu that represents the internal source of randomness.

Stochastic simulators are widely used in modern engineering, finance, and medical sciences. Typical ex-
amples include evaluating the performance of a wind turbine under stochastic loads (Abdallah et al., 2019),
predicting the price of an option in financial markets (Shreve, 2004), and the spread of a disease in epidemiol-
ogy (Britton, 2010).

Due to the random nature of stochastic simulators, repeated model evaluations with the same input pa-
rameters, called hereinafter replications, are necessary to fully characterize the probability distribution of the
corresponding QoI. In addition, uncertainty quantification and optimization problems typically require model
evaluations for various sets of input parameters. Altogether, it is necessary to have a large number of model runs,
which becomes intractable for costly models. To alleviate the computational burden, surrogate models, a.k.a.
emulators, can be used to replace the original model. Such a model emulates the input-output relation of the
simulator and is easy and cheap to evaluate.

Among several options for constructing surrogate models, this paper focuses on the so-called nonintrusive
approaches. More precisely, the computational model is considered as a “black box” and is only required to be
evaluated on a limited number of input values, called the experimental design (ED).

Three classes of methods can be found in the literature for emulating the entire response distribution of
a stochastic code in a nonintrusive manner. The first one is the random field approach, which approximates
the stochastic simulator by a random field. The definition in Eq. (5.1) implies that a stochastic simulator can
be regarded as a random field indexed by its input variables. Controlling the intrinsic randomness allows one
to get access to different trajectories of the simulator, which are deterministic functions of the input variables.

102



5.2. Generalized lambda distributions

In practice, this is achieved by fixing the random seed inside the simulator. Evaluations of the trajectories over
the experimental design can then be extended to continuous trajectories, either by classical surrogate methods
(Jimenez et al., 2017) or through Karhunen–Loève expansions (Azzi et al., 2019). Since this approach requires
the effective access to the random seed, it is only applicable to data generated in a specific way.

Another class of methods is the replication-based approach, which relies on using replications at all points
of the experimental design to represent the response distribution through a suitable parametrization. The esti-
mated distribution parameters are then treated as (noisy) outputs of a deterministic simulator. Then, conven-
tional surrogate modeling methods, such as Gaussian processes (Rasmussen and Williams, 2006) and polyno-
mial chaos expansions (PCEs; Blatman and Sudret, 2011), can emulate these parameters as a function of the
model input (Moutoussamy et al., 2015; Browne et al., 2016). Because this approach employs two separate
steps, the surrogate quality depends on the accuracy of the distribution estimation from replicates in the first
step (Zhu and Sudret, 2020). Therefore, many replications are necessary, especially when nonparametric esti-
mators are used for the local inference (Moutoussamy et al., 2015; Browne et al., 2016).

A third class of methods, known as the statistical approach, does not require replications or controlling the
random seed. If the response distribution belongs to the exponential family, generalized linear models (McCul-
lagh and Nelder, 1989) and generalized additive models (Hastie and Tibshirani, 1990) can be efficiently applied.
When the QoI for a given set of input parameters follows an arbitrary distribution, nonparametric estimators
can be considered, notably kernel density estimators (Fan and Gijbels, 1996; Hall et al., 2004) and projection
estimators (Efromovich, 2010). However, it is well known that nonparametric estimators suffer from the curse
of dimensionality (Tsybakov, 2009), meaning that the necessary amount of data increases drastically with in-
creasing input dimensionality.

In a recent paper (Zhu and Sudret, 2020), we proposed a novel stochastic emulator called the generalized
lambda model (GLaM). Such a surrogate model uses generalized lambda distributions (GLDs) to represent the
response probability density function (PDF). The dependence of the distribution parameters on the input is
modeled by PCEs. However, the methods developed in Zhu and Sudret (2020) rely on replications. In the
present contribution, we propose a new statistical approach combining feasible generalized least-squares with
maximum conditional likelihood estimations to get rid of the need for replications. Therefore, the proposed
method is much more versatile in the sense that replications and seed controls are no longer necessary.

The paper is organized as follows. In Sections 5.2 and 5.3, we briefly review GLDs and PCEs, which are the
two main elements constituting the GLaM. In Section 5.4, we recap the GLaM framework and introduce the
maximum conditional likelihood estimator. Then, we present the algorithm developed to find an appropriate
starting point to optimize the likelihood, and to design ad hoc truncation schemes for the PCEs of distribution
parameters. In Section 5.5, we validate the proposed method on two analytical examples and two case studies in
mathematical finance and epidemiology, respectively, to showcase its capability to tackle real problems. Finally,
we summarize the main findings of the paper and provide an outlook for future research in Section 5.6.

5.2 Generalized lambda distributions
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5.2.1 Formulation

The generalized lambda distribution (GLD) is a flexible probability distribution family. It is able to approxi-
mate most of the well-known parametric distributions (Freimer et al., 1988; Karian and Dudewicz, 2000), e.g.,
uniform, normal, Weibull, and Student’s t distributions. The definition of a GLD relies on a parametrization
of the quantile function Qpuq, which is a nondecreasing function defined on r0, 1s. In this paper, we consider
the GLD of the Freimer–Kollia–Mudholkar–Lin family (Freimer et al., 1988), which is defined by

Qpu;λq “ λ1 `
1
λ2

ˆ

uλ3 ´ 1
λ3

´
p1 ´ uqλ4 ´ 1

λ4

˙

, (5.2)

whereλ “ tλl : l “ 1, . . . , 4u are the four distribution parameters. More precisely,λ1 is the location parameter,
λ2 is the scaling parameter, and λ3 and λ4 are the shape parameters. To ensure valid quantile functions (i.e., Q
being nondecreasing on u P r0, 1s), it is required that λ2 be positive. Based on the quantile function, the PDF
fW pw;λq of a random variableW following a GLD can be derived as

fW pw;λq “
1

Q1pu;λq
“

λ2

uλ3´1 ` p1 ´ uqλ4´11r0,1spuq, with u “ Q´1pw;λq, (5.3)

where Q1pu;λq is the derivative of Q with respect to u, and 1r0,1s is the indicator function. A closed-form
expression ofQ´1, and therefore of fW , is in general not available, and thus the PDF is evaluated by solving the
nonlinear equation Eq. (5.3) numerically.

5.2.2 Properties

GLDs cover a wide range of unimodal shapes, including bell-shaped, U-shaped, S-shaped and bounded-mode
distributions, which is determined by λ3 and λ4, as illustrated in Figure 5.1 (Zhu and Sudret, 2020). For in-
stance, λ3 “ λ4 produces symmetric PDFs, andλ3, λ4 ă 1 leads to bell-shaped distributions. Moreover, λ3 and
λ4 are closely linked to the support and the tail properties of the corresponding PDF. λ3 ą 0 implies that the
PDF support is left-bounded and λ4 ą 0 corresponds to right-bounded PDFs. Conversely, the distribution
has lower infinite support for λ3 ď 0 and upper infinite support for λ4 ď 0. More precisely, the support of the
PDF denoted by supp pfW pw;λqq “ rBl, Bus is given by

Bl pλq “

$

&

%

´8, λ3 ď 0,

λ1 ´ 1
λ2λ3

, λ3 ą 0,
Bu pλq “

$

&

%

`8, λ4 ď 0,

λ1 ` 1
λ2λ4

, λ4 ą 0.
(5.4)

Importantly, for λ3 ă 0 (λ4 ă 0), the left (resp., right) tail decays asymptotically as a power law, and thus the
GLD family can also provide fat-tailed distributions. Due to this power law decay, for λ3 ď ´ 1

k
or λ4 ď ´ 1

k
,

moments of order greater than k do not exist. For λ3, λ4 ą ´0.5, the mean and variance exist and are given by

µ “ E rW s “ λ1 ´
1
λ2

ˆ

1
λ3 ` 1

´
1

λ4 ` 1

˙

, v “ Var rW s “
pd2 ´ d2

1 q

λ2
2

, (5.5)
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where the two auxiliary variables d1 and d2 are defined by

d1 “
1
λ3

Bpλ3 ` 1, 1q ´
1
λ4

Bp1, λ4 ` 1q,

d2 “
1
λ2

3
Bp2λ3 ` 1, 1q ´

2
λ3λ4

Bpλ3 ` 1, λ4 ` 1q `
1
λ2

4
Bp1, 2λ4 ` 1q,

(5.6)

with B denoting the beta function.

Moments of order    k do not exist

M
om

en
ts o

f ord
er    k d

o
 n

ot exist

Figure 5.1: A graphical illustration of the PDF of the FKML family of GLD as a function of λ3 and λ4. The
values of λ1 and λ2 are set to 0 and 1, respectively. The blue points indicate that the PDF has infinite support
in the marked direction. In contrast, both the red and green points denote the boundary points of the PDF
support. More precisely, the PDF fW pwq “ 0 on the red dots, whereas fW pwq “ 1 on the green ones.

5.3 Polynomial chaos expansions

Consider a deterministic computational modelMdpxq that maps a set of input parametersx “ px1, x2, . . . , xMq
T

P

DX Ă RM to the system response z P R. In the context of uncertainty quantification, the input variables are
affected by uncertainty due to lack of knowledge or intrinsic variability (also called aleatory uncertainty). There-
fore, they are modeled by random variables and grouped into a random vector X characterized by a joint PDF
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fX . The uncertainty in the input variables propagates through the the model Md to the output, which be-
comes a random variable denoted by Z “ MdpXq.

Remark. fX is the joint PDF for the input variables, which is needed to define orthogonal polynomials as described
below. It should not be confused with the stochasticity of the simulator addressed in the next sections.

Provided that the output random variable Z has finite variance, Md belongs to the Hilbert space H of
square-integrable functions associated with the inner product

xu, vyH
def
“ E rupXqvpXqs “

ż

DX

upxqvpxqfXpxqdx. (5.7)

If the joint PDF fX fulfills certain conditions (Ernst et al., 2012), the space spanned by multivariate polynomials
is dense in H. In other words, H is a separable Hilbert space admitting a polynomial basis.

In this study, we assume thatX has mutually independent components, and thus the joint distribution fX
is expressed as

fXpxq “

M
ź

j“1

fXj
pxjq. (5.8)

Let tϕ
pjq

k : k P Nu be the orthogonal polynomial basis with respect to the marginal distribution of fXj
,

i.e.,
E
”

ϕ
pjq

k pXjqϕ
pjq

l pXjq

ı

“ δkl, (5.9)

with δ being the Kronecker symbol defined by δkl “ 1 if k “ l and δkl “ 0 otherwise. Then, the multivari-
ate orthogonal polynomial basis can be obtained as the tensor product of univariate polynomials (Soize and
Ghanem, 2004):

ψαpxq “

M
ź

j“1

ϕpjq
αj

pxjq, (5.10)

where α “ pα1, . . . , αMq P RM denotes the multi-index of degrees. Each component αj indicates the poly-
nomial degree of ϕαj

and thus of ψα in the jth variable xj . For some classical distributions, e.g., normal, uni-
form, exponential, the associated univariate orthogonal polynomials are well known as Hermite, Legendre, and
Laguerre polynomials (Xiu and Karniadakis, 2002). For arbitrary marginal distributions, such a basis can be
computed numerically through the Stieltjes procedure (Gautschi, 2004).

Following the construction defined in Eq. (5.10), tψαp¨q,α P NMu forms an orthogonal basis forH. Thus,
the random output Z can be represented by

Z “ MdpXq “
ÿ

αPNM

cαψαpXq, (5.11)

where cα is the coefficient associated with the basis function ψα. The spectral representation in Eq. (5.11) is a
series with infinitely many terms. In practice, it is necessary to adopt truncation schemes to approximateMdpxq

with a finite series defined by a finite subset A Ă NM of multi-indices. A typical scheme is the hyperbolic (q-
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norm) truncation scheme (Blatman and Sudret, 2010):

Ap,q,M “

$

&

%

α P NM , }α}q “

˜

M
ÿ

i“1

|αi|q
¸

1
q

ď p

,

.

-

, (5.12)

where p is the maximum total degree of polynomials, and q ď 1 defines the quasi-norm ∥¨∥q. Note that with
q “ 1, we obtain the so-called full basis of total degree less than p.

For an arbitrary distribution fX with dependent components of X , the usual practice is to transform X

into an auxiliary vector ξ with independent components (e.g., a standard normal vector) using the Nataf or
Rosenblatt transform (Torre et al., 2019). Alternatively, polynomials orthogonal to the joint distribution may
be computed on the fly using a numerical Gram–Schmidt orthogonalization (Jakeman et al., 2019).

5.4 Generalized lambda models (GLaMs)

5.4.1 Introduction

Because of their flexibility, we assume that the response random variable of a stochastic simulator for a given
input vector x follows a GLD. Hence, the distribution parameters λ are functions of the input variables:

Y pxq „ GLD pλ1pxq, λ2pxq, λ3pxq, λ4pxqq . (5.13)

Under appropriate conditions discussed in Section 5.3, each component of λpxq admits a spectral repre-
sentation in terms of orthogonal polynomials. Recall that λ2pxq is required to be positive (see Section 5.2).
Thus, we choose to build the associated PCE on the natural logarithm transform log pλ2pxqq. This results in
the following approximations:

λl pxq « λPC
l px; cq “

ÿ

αPAl

cl,αψαpxq, l “ 1, 3, 4, (5.14)

λ2 pxq « λPC
2 px; cq “ exp

˜

ÿ

αPA2

c2,αψαpxq

¸

, (5.15)

where A “ tAl : l “ 1, . . . , 4u are the truncation sets defining the basis functions, and c “ tcl,α : l “

1, . . . , 4, α P Alu are coefficients associated to the bases. For the purpose of clarity, we explicitly express c in
the spectral approximations as in λPC px; cq to emphasize that c are the model parameters.

The generalized lambda model presented above is a statistical model. It involves two approximations. First,
the response distribution of a stochastic simulator is approximated by GLDs. As illustrated in Figure 5.1, GLDs
cover a wide range of unimodal shapes but cannot produce multimodal distributions. Thus, the GLD represen-
tation is appropriate when the response distribution stays unimodal. In this case, the flexibility of GLDs allows
capturing the possible shape variation of the response distribution within a single parametric family. Second,
the distribution parameters λpxq seen as functions of x are represented by truncated polynomial chaos expan-
sions. So they must belong to the Hilbert space of square-integrable functions with respect to fXpxqdx.
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5.4.2 Estimation of the model parameters

Given the truncation sets A, the coefficients c need to be estimated from data to build the surrogate model. In
this paper, as opposed to Zhu and Sudret (2020) and the vast majority of the literature on stochastic simulators,
the simulator is required to be evaluated only once on the experimental design X “

␣

xp1q, . . . ,xpNq
(

, and the
associated model responses are collected in Y “

␣

yp1q, . . . , ypNq
(

. To develop surrogate models in a nonintru-
sive manner, we propose using the maximum conditional likelihood estimator:

ĉ “ argmax
cPC

L pcq , (5.16)

where

L pcq “

N
ÿ

i“1

log
`

fGLD
`

ypiq;λPC
`

xpiq; c
˘˘˘

. (5.17)

Here, fGLD denotes the PDF of the GLD defined in Eq. (5.3), and C is the search space for c. The estimator
introduced in Eq. (5.17) can be derived from minimizing the Kullback–Leibler divergence between the surrogate
PDF and the underlying true response PDF over DX ; see details in Zhu and Sudret (2020). The advantages of
this estimation method are twofold. On the one hand, it removes the need for replications in the experimental
design. On the other hand, if a GLaM for a certain choice of c can exactly represent the stochastic simulator, the
proposed estimator is consistent under mild conditions, as shown in Theorem 5.1 (see Section 5.a.1 for a detailed
proof).

Theorem 5.1. Let pXp1q, Y p1qq, . . . , pXpNq, Y pNqq be independent and identically distributed random vari-
ables followingX „ PX andY pxq „ GLD pλPCpx; c0qq. If the following conditions are fulfilled, the estimator
defined in Eq. (5.16) is consistent, that is,

ĉ
a.s.
ÝÑ c0. (5.18)

(i) PX is absolutely continuous with respect to the Lebesgue measure of RM , i.e., the joint PDF fXpxq is
Lebesgue-measurable.

(ii) fX has a compact support DX .

(iii) C is compact, and c0 P C.

(iv) There exists a set A Ă DX with PX pX P Aq ą 0 such that @x P A, Y pxq does not follow a uniform
distribution.

Most of the assumptions in the Theorem 5.1 are realistic, except the one that the true model can be exactly
represented by a GLaM, which is rather technical to guarantee the consistency. In practice, we do not require
the QoI for any input parameters following a GLD but assume that the response distribution can be well ap-
proximated by GLDs.

It is worth remarking that since a GLD can have very fat tails (see Section 5.2.2), solving the optimiza-
tion problem may produce response PDFs with unexpected infinite moments when the model is trained on a
small data set. To prevent too-fat tails (if no prior knowledge suggests it), we apply the threshold λPC

3 pxq “

max tλPC
3 px; ĉq,´0.3u and λPC

4 pxq “ max tλPC
4 px; ĉq,´0.3u, which indicates that we enforce the surro-

gate PDFs to have finite moments up to order 3 (higher order moments may exist depending on ĉ). Thresholds
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larger than ´0.3 (e.g., from ´0.1 to 0) can be used if the response PDF is known to be light-tailed. Note that
when enough data are available, these operations are unnecessary because the resulting model does not exceed
the threshold. Although the thresholdings could have been imposed in the model definition in Eq. (5.14), they
change the regularity of the optimization problem, and do not generally improve the performance according to
our experience. Therefore, we only use them for postprocessing.

Remark 5.1. While we consider the simulator to be evaluated only once for each point of the experimental design
in this paper, the estimator defined in Eq. (5.16) is not limited to this type of data. When replications are available,
the objective function can be reformulated to

L pcq “

N
ÿ

i“1

1
Rpiq

Rpiq
ÿ

r“1

log
`

fGLD
`

ypi,rq;λPC
`

xpiq; c
˘˘˘

, (5.19)

where Rpiq denotes the number of replications at point xpiq, and ypi,rq is the model response for xpiq at the rth
replication. In addition, ifRpiq is constant for all points xpiq P X , Eq. (5.19) provides the same estimator as in our
previous work (Zhu and Sudret, 2020).

5.4.3 Fitting procedure

In practice, the evaluation of Lpcq is not straightforward because the PDF of GLDs does not have an explicit
form as shown in Eq. (5.3). Details about the evaluation procedure are given in Zhu and Sudret (2020). Note
that the optimization problem Eq. (5.16) is subject to complex inequality constraints due to the dependence of
the PDF support on λ (see Eq. (5.4)). Given a starting point, we follow the optimization strategy developed in
Zhu and Sudret (2020): We first apply the derivative-based trust-region optimization algorithm (Steihaug, 1983)
without constraints. If none of the inequality constraints is activated at the optimum, we keep the results as the
final estimates. Otherwise, the constrained (1+1)-CMA-ES algorithm (Arnold and Hansen, 2012) available in
the software UQLab (Moustapha et al., 2019) is used instead.

Because Lpcq is highly nonlinear, a good starting point is necessary to guarantee the convergence of the
optimization algorithm. In this section, we introduce a robust method to find a suitable starting point.

According to Eq. (5.5), the mean µpxq and the variance function vpxq of a GLaM satisfy

µpxq “ λPC
1 pxq `

1
λPC

2 pxq
g
`

λPC
3 pxq, λPC

4 pxq
˘

,

log pvpxqq “ ´2 log
`

λPC
2 pxq

˘

` h
`

λPC
3 pxq, λPC

4 pxq
˘

,

(5.20)

where we group the dependence of µ and logpvq on λ3 and λ4 into g and h, respectively, for the purpose of
simplicity. If λPC

3 pxq and λPC
4 pxq do not vary strongly on DX , we observe that the variations of the mean and

the variance function are mostly dominated by the location parameterλPC
1 pxq and the scale parameterλPC

2 pxq.

Recall that the spectral approximation for λ2pxq is on its logarithmic transform. If a PCE can be con-
structed for µpxq and ´ 1

2 log pvpxqq, the associated coefficients can be used as a preliminary guess for the coef-
ficients of λPC

1 pxq and λPC
2 pxq, respectively. As a result, we first focus on estimating the mean and the variance
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function as follows:

µpxq “
ÿ

αPAµ

cµ,αψαpxq, vpxq “ exp

˜

ÿ

αPAv

cv,αψαpxq

¸

,

where the form of the variance function implies a multiplicative heteroskedastic effect (see Harvey, 1976).

The mean estimation is a classical regression problem. However, since the variance function is also un-
known and needs to be estimated, the heteroskedastic effect should be taken into account. Many methods have
been developed in statistics and applied science to tackle heteroskedastic regression problems. They can be clas-
sified into two groups: one class of methods relies on repeated measurements at given input values (Sadler and
Smith, 1985; Ankenman et al., 2010; Murcia et al., 2018) (replication-based), whereas a second class of meth-
ods jointly estimates both quantities by optimizing certain functions without the need for replications (Nelder
and Pregibon, 1987; Davidian and Carroll, 1987; Goldberg et al., 1997; Marrel et al., 2012). Some studies (Da-
vidian and Carroll, 1987; Marrel et al., 2012) have shown higher efficiency of the second class of methods over
the former. This finding supports our pursuit for a replication-free approach. In particular, we opt for feasible
generalized least-squares (FGLS; Wooldridge, 2013), which iteratively fits the mean and variance functions in
an alternative way.

The details are described in Algorithm 5.1. In this algorithm, OLS denotes the use of ordinary least-squares,
and WLS is weighted least-squares. v̂ corresponds to the set of estimated variances on the design points in X
which are then used as weights in WLS to re-estimate cµ.

Algorithm 5.1 Feasible generalized least-squares (FGLS)
1: ĉµ Ð OLS pX ,Yq

2: for i Ð 1, . . . , NFGLS do
3: µ̂ Ð

ř

αPAµ
cµ,αψαpX q

4: r̃ Ð 2 log p|Y ´ µ̂|q
5: ĉv Ð OLS pX , r̃q

6: v̂ “ exp
`
ř

αPAv
cv,αψαpX q

˘

7: ĉµ Ð WLS pX ,Y, v̂q

8: end for
9: Output: ĉµ, ĉv

After obtaining ĉµ and ĉv from FGLS, we perform two rounds of the optimization procedure described
at the beginning of this section to build the GLaM surrogate. First, we set the starting points as c1 “ cµ,
c2 “ ´ 1

2cv, and λPC
3 pxq “ λPC

4 pxq “ 0.13, which corresponds to a normal-like shape. Then, we fit a GLaM
with λPC

3 pxq λPC
4 pxq being only constant; i.e., the coefficients of nonconstant basis functions are kept as zeros

during the fitting. Finally, we use the resulting estimates as a starting point and construct a final GLaM with all
the considered basis functions by solving Eq. (5.17).

110



5.4. Generalized lambda models (GLaMs)

5.4.4 Truncation schemes

Provided that the bases of λPCpxq are given, we have presented a procedure to construct GLaMs from data
in the previous section. However, there is generally no prior knowledge that would help select the truncation
sets Al’s ab initio. In this section, we develop a method to determine a suitable hyperbolic truncation scheme
Ap,q,M presented in Eq. (5.12) for each component of λPCpxq.

As discussed in Section 5.2, λPC
3 pxq and λPC

4 pxq control the shape variations of the response PDF. We
assume that the shape does not vary in a strongly nonlinear way. Hence, the associated p can be set to a small
value, e.g., p “ 1, in practice. In contrast, λPC

1 pxq and λPC
2 pxq require possibly larger degree p since their

behavior is associated with the mean and the variance function, which might vary nonlinearly over DX . To this
end, we modify Algorithm 5.1 to adaptively find appropriate truncation schemes for µpxq and vpxq, which are
then used for λ1pxq and λ2pxq, respectively.

Algorithm 5.2 Modified feasible generalized least-squares
1: Input: pX ,Yq, p1, q1, p2, q2

2: Aµ, ĉµ Ð AOLS pX ,Y,p1, q1q

3: for i Ð 1, . . . , NFGLS do
4: µ̂ Ð

ř

αPAµ
cm,αψαpX q

5: r̃ Ð 2 log p|Y ´ µ̂|q
6: Ai

v, ĉ
i
v, ε

i
LOO Ð AOLS pX , r̃,p2, q2q

7: v̂ Ð exp
`
ř

αPAv
cv,αψαpX q

˘

8: ĉµ Ð WLS pX ,Y,Aµ, v̂q

9: end for
10: i˚ “ argmin tεiLOO : i “ 1, . . . , NFGLSu

11: Output: Aµ, ĉi˚

µ , Ai˚

v , ĉi˚

v

Algorithm 5.2 presents the modified FGLS. Instead of using OLS, we apply the adaptive ordinary least-
squares with degree and q-norm adaptivity (referred to as AOLS; Marelli and Sudret, 2019). This algorithm
builds a series of PCEs, each of which is obtained by applying OLS with the truncation set Ap,q,M defined by
a particular combination of p P p and q P q. Then, it selects the truncation scheme for which the associated
PCE has the lowest leave-one-out error. In the modified FGLS, the truncation set Aµ for µpxq is selected only
once (before the loop), whereas several truncation schemes tAi

v : i “ 1, . . . , NFGLSu are obtained. We select
the one corresponding to the smallest leave-one-out error on the expansion of the variance as the truncation
set Av for vpxq. After running Algorithm 5.2, we apply the two-round optimization strategy described in the
previous section to build the GLaM corresponding to the selected truncation schemes.

There are several parameters to be determined in Algorithm 5.2. In the following examples and applications,
we set the candidate degrees p1 “ t0, . . . , 10u for λPC

1 pxq, and p2 “ t0, . . . , 5u for λPC
2 pxq. p1 contains high

degrees to approximate possibly highly nonlinear mean functions, the accuracy of which is crucial for basis
selections for λ2pxq in Algorithm 5.2. p2 is set to have degrees up to 5, allowing relatively complex variations.
The lists of q-norms are q1 “ q2 “ t0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1u, which contains the full basis. The total
number of FGLS iterations is set to NFGLS “ 10 which, according to our experience, is enough to find an
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appropriate truncated set for λPC
2 pxq.

5.5 Application examples

In this section, we validate the proposed algorithm on two analytical examples and two case studies in mathemat-
ical finance and epidemiology. In the four cases, the response distributions do not belong to a single parametric
family, so as to test the flexibility of the proposed method. In addition, we compare the performance of GLaMs
with the nonparametric kernel conditional density estimator from the package np (Hayfield and Racine, 2008)
implemented in R. The latter performs a thorough leave-one-out cross-validation with a multistart strategy to
choose the bandwidths (Hall et al., 2004), which is one of the state-of-the-art kernel estimation methods. The
surrogate model built by this method is referred to as the kernel conditional density estimator (KCDE).

Alongside GLaM and KCDE, another surrogate model, the heteroskedastic Gaussian process (denoted
by GP), is also considered. This model assumes that the response distribution is Gaussian, and the mean and
variance functions are represented by Gaussian processes. We apply the method proposed by Binois et al. (2019)
which adopts a sequential design strategy to actively balance the trade-off between replications and explorations.
The algorithm is available in the package hetGP in R. However, due to the sequential design (the new points
are added one by one), building such a surrogate can be very time-consuming (cf. Section 5.5.2 for details).
Consequently, we present the comparisons with hetGP only for the first two examples.

Moreover, for comparison purposes, we consider another “Gaussian” surrogate model where we represent
the response distribution with a normal distribution. The associated mean and variance, which are functions of
the inputx, are not fitted to data but set to the true values of the simulator. In other words, this surrogate model
should represent the “oracle” of Gaussian-type mean-variance surrogate models, such as the ones presented in
Marrel et al. (2012) and Binois et al. (2018).

We use Latin hypercube sampling (McKay et al., 1979) to generate the experimental design for GLaM and
KCDE. The stochastic simulator is only evaluated once for each vector of input parameters. The associated
QoI values are used to construct surrogate models with the proposed estimation procedure in Section 5.4.3. In
contrast, the construction of the GP relies on a sequential design strategy which adaptively find new points to
evaluate (Binois et al., 2019). Hence, we use Latin hypercube sampling of 20% of the total number of model
runs to initiate the process. Then, the algorithm proceeds by iteratively looking for points to evaluate and up-
dating the surrogate.

To quantitatively assess the performance of the surrogate model, we define an error measure between the
underlying model and the emulator by

ε “ E
”

d
´

Y pXq, Ŷ pXq

¯ı

, (5.21)

where Y pXq is the model response, Ŷ pXq corresponds to that of the surrogate, d pY1, Y2q denotes the contrast
measure between the probability distributions of Y1 and Y2, and the expectation is taken with respect to X . In
this study, we use the normalized Wasserstein distance, defined by

d pY1, Y2q “
dWS pY1, Y2q

σ pY1q
, (5.22)
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where dWS is the Wasserstein distance of order two (Villani, 2009) defined by

dWS pY1, Y2q
def
“ ∥Q1 ´Q2∥2 “

d

ż 1

0
pQ1puq ´Q2puqq

2
du , (5.23)

whereQ1 andQ2 are the quantile functions of Y1 and Y2, respectively. As a summary, by combining Eq. (5.21)
and Eq. (5.23) the global error reads

ε “

ż

DX

d

ż 1

0

´

QY pxqpuq ´QŶ pxq
puq

¯2
du

fXpxq
a

Var rY pxqs
dx. (5.24)

Following this definition, the standard deviation σY1 can be seen as the Wasserstein distance between the
distribution of Y1 and a degenerate distribution concentrated at the mean valueµY1 . As a result, the Wasserstein
distance normalized by the standard deviation can be interpreted as the ratio of the error related to emulating
the distribution of Y1 by that of Y2, and to using the mean value µY1 as a proxy of Y1.

Because dWS is invariant under translation, the normalized Wasserstein distance is invariant under both
translation and scaling; that is,

@a P Rz0, b P R
dWS pa Y1 ` b, a Y2 ` bq

σpa Y1 ` bq
“
dWS pY1, Y2q

σpY1q
. (5.25)

To calculate the expectation in Eq. (5.21), we use Latin hypercube sampling to generate a test set Xtest of
sizeNtest “ 1,000 in the input space. The normalized Wasserstein distance is calculated for each x P Xtest and
then averaged byNtest.

For the last two case studies, the analytical response distribution of Y pxq is unknown. To characterize it,
we repeatedly evaluate the model 104 times for x. In addition, we also compare some summarizing statistical
quantity bpxq of the model response Y pxq, such as the mean E rY pxqs or variance Var rY pxqs, depending on
the focus of the application. Note that bpxq is a deterministic function of input variables, and we define the
normalized mean-squared error by

εb “

řNtest

i“1

´

b
piq
S ´ b̂piq

¯2

řNtest

i“1

´

b̂piq ´
¯̂
b
¯2 , with ¯̂

b “
1

Ntest

Ntest
ÿ

i“1

b̂piq, (5.26)

where bpiq
S is the value predicted by the surrogate for xpiq P Xtest, and b̂piq denotes the quantity estimated from

104 replicated runs of the original stochastic simulator for xpiq. The error εb defined in Eq. (5.26) indicates how
much of the variance of bpXq cannot be explained by bSpXq estimated from surrogate model.

Experimental designs of various sizeN P t250; 500; 1,000; 2,000; 4,000u are investigated to study the con-
vergence of the proposed method. Each scenario is run 50 times with independent experimental designs to
account for statistical uncertainty in the random design for GLaM and KCDE. For GP, N corresponds to the
total number of model runs. We repeat 10 times for each value ofN (i.e., 10 heteroskedastic Gaussian processes
are built using the same number of model runs). As a consequence, error estimates for each N are represented
by box plots.
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5.5.1 Example 1: a two-dimensional simulator

The first example is the Black–Scholes model used for stock prices (McNeil et al., 2005):

dSt “ x1 St dt` x2 St dWt, (5.27)

where x “ px1, x2q
T are the input parameters, corresponding to the expected return rate and volatility of a

stock, respectively. Wt is a standard Wiener process, which represents the source of stochasticity. Eq. (5.27) is a
stochastic differential equation whose solution Stpxq is a stochastic process for given parameters x. Note that
we explicitly expressx inStpxq to emphasize thatx are input parameters, but the stochastic equation is defined
with respect to time. Without loss of generality, we set the initial condition to S0pxq “ 1.

In this example, we are interested in Y pxq “ S1pxq, which corresponds to the stock value in one year i.e.,
t “ 1. We set X1 „ Up0, 0.1q and X2 „ Up0.1, 0.4q to represent the input uncertainty, where the ranges are
selected based on parameters calibrated from real data (Reddy and Clinton, 2016).

The solution to Eq. (5.27) can be derived using Itô calculus (Shreve, 2004): Y pxq follows a lognormal
distribution defined by

Y pxq „ LN
ˆ

x1 ´
x2

2

2
, x2

˙

. (5.28)

As the distribution of Y pxq is known, it is not necessary to simulate the whole processStpxq with time integra-
tion to evaluate S1pxq. Instead, we can directly generate samples from the distribution defined in Eq. (5.28).

(a) PDF for x “ p0.03, 0.33q
T

(b) PDF for x “ p0.07, 0.11q
T

Figure 5.2: Example 1 — Comparisons of the emulated PDF,N “ 500.

Figure 5.2 shows two PDFs predicted by a GLaM and a KCDE built on an experimental design of size
N “ 500. We observe that with 500 model runs, the KCDE yields PDFs with spurious oscillations and demon-
strates relatively poor representation of the bulk. In contrast, the GLaM can better approximate the underlying
response PDF in terms of both magnitude and shape variations. Figures 5.3 and 5.4 compare the mean and
variance function predicted by the GLaM, KCDE, and GP. The analytical mean function following Eq. (5.28)
is exppx1q, which only depends on the first variable. The GLaM gives an accurate estimate of the mean func-
tion, whereas the KCDE captures a wrong dependence, and GP produces a rather complex structure. For the
variance function, the GLaM yields a more detailed trend than the KCDE and GP.

For quantitative comparisons, Figure 5.5 summarizes the error measure Eq. (5.21) with respect to the size
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(a) Reference (b) GLaM

(c) KCDE (d) GP

Figure 5.3: Example 1 — Comparisons of the mean function estimation,N “ 500.
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(a) Reference (b) GLaM

(c) KCDE (d) GP

Figure 5.4: Example 1 — Comparisons of the variance function estimation,N “ 500.
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of experimental design. The accuracy of the oracle normal approximation is also reported (black dashed line).
This error is only due to model misspecifications because we use the true mean and variance (however, the
true response distribution is lognormal). The GP approach performs rather poorly and converges to the oracle
normal approximation when the number of points in the experimental design increases. This means that it
can accurately estimate the mean and variance functions for large data sets. However, due to the limitation of
the Gaussian assumption, GP cannot further decrease the error. The average error of GLaMs built on N “

500 model runs are smaller than that of the normal approximation. For N ą 500, GLaMs clearly provide
more accurate results. KCDEs show a slow rate of convergence even in this example of dimension two. In
contrast, GLaMs reveal high efficiency with a faster decrease of the errors. In terms of the average error, GLaMs
outperform KCDEs for all sizes of experimental design. Furthermore, GLaMs yield an average error near 0.1
forN “ 1,000, which can be hardly achieved by KCDEs even with four times more model runs.

Figure 5.5: Example 1 — Comparison of the convergence between GLaMs and KCDEs in terms of the nor-
malized Wasserstein distance as a function of the size of the experimental design. The dashed lines denote the
average value over 50 repetitions of the full analysis. The green box plots and associated dashed lines correspond
to the errors of the heteroskedastic Gaussian Process with sequential design (10 repetitions for each size of the
experimental design). The black dash-dotted line represents the error of the model assuming that the response
distribution is normal with the true mean and variance.

5.5.2 Example 2: a five-dimensional simulator

The second example is given by

Y pxq “ Mspx, ωq “ µpxq ` σpxq ¨ Zpωq, (5.29)

where X „ U pr0, 1s5q are the input variables, and Z „ N p0, 1q is the latent variable that introduces the
stochasticity. The simulator has an input dimension of M “ 5, which is used to show the performance of the
proposed method in a moderate-dimensional problem. By definition, Y pxq is a Gaussian random variable with
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mean µpxq and standard deviation σpxq which are defined by

µpxq “ 3 ´

5
ÿ

j“1

j xj `
1
5

5
ÿ

j“1

j x3
j `

1
15

5
ÿ

j“1

j log
`

px2
j ` x4

jq
˘

` x1 x
2
2 ´ x5 x3 ` x2 x4,

σpxq “ exp

˜

1
10

5
ÿ

j“1

j xj

¸

,

(5.30)

Thus, this example has a nonlinear mean function and a strong heteroskedastic effect: the variance varies be-
tween 1 and 20.

(a) PDF for x “ p0.1, 0.1, 0.1, 0.1, 0.1q
T

(b) PDF for x “ p0.4, 0.4, 0.4, 0.4, 0.4q
T

(c) PDF for x “ p0.7, 0.7, 0.7, 0.7, 0.7q
T

(d) PDF for x “ p0.9, 0.9, 0.9, 0.9, 0.9q
T

Figure 5.6: Example 2 — Comparisons of the emulated PDF,N “ 1,000. Variance values 1.35, 3.32, 8.17, 14.88
from (a) to (d)

Figure 5.6 compares the model response PDFs (with different variances) for four input values with those
predicted by a GLaM and a KCDE built upon 1,000 model runs. The results show that the GLaM correctly
identifies the shape of the underlying normal distribution among all possible shapes of the GLD. Moreover,
it yields a better approximation to the reference PDF, whereas KCDE tends to “wiggle” in Figure 5.6d (high
variance) and overestimate the spread in Figure 5.6a (low variance). Figures 5.7 and 5.8 illustrate the mean and
variance function predicted by the GLaM, KCDE, and GP in the x4 ´x5 plan with all the other variables fixed
at their expected value. The results show that the GLaM provides more accurate estimates for both functions.

Similar to the first example, we perform a convergence study for N P t250; 500; 1,000; 2,000; 4,000u, the
results of which are shown in Fig. 5.9. The underlying response distribution is Gaussian, and thus the oracle
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(a) Reference (b) GLaM

(c) KCDE (d) GP

Figure 5.7: Example 2 — Comparisons of the mean function estimation in the plan x4 ´ x5 with all the other
input fixed at their expected value. The surrogate models are fitted to an ED withN “ 1,000.
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(a) Reference (b) GLaM

(c) KCDE (d) GP

Figure 5.8: Example 2 — Comparisons of the variance function estimation in the planx4 ´x5 with all the other
input fixed at their expected value. The surrogate models are fitted to an ED withN “ 1,000.

Figure 5.9: Example 2 — Comparison of the convergence between GLaMs and KCDEs in terms of the nor-
malized Wasserstein distance as a function of the size of the experimental design. The dashed lines denote the
average value over 50 repetitions of the full analysis. The green box plots and associated dashed lines correspond
to the errors of the heteroskedastic Gaussian Process with sequential design (10 repetitions for each size of the
experimental design). The “oracle” normal model has an error ε “ 0 that is not plotted here.
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normal approximation has ε “ 0, which is not reported in the figure. Surprisingly, GP gives the worst results.
This may be understood as follows: the updating criterion of the sequential design targets at minimizing the
integrated mean-squared error. The latter mainly focuses on improving the mean estimation (as illustrated in
Figs. 5.7 and 5.8), yet both the mean and variance contribute to the Wasserstein distance Eq. (5.23). Also, this
example is a five-dimensional problem, which results in more parameters to estimate for GP. In the case of small
N , namelyN “ 250, both the GLaMs and KCDEs perform poorly, with the GLaMs showing a similar average
error but higher variability. This is explained as follows. Because of the use of AOLS in the modified FGLS
procedure, we observe that the total number of coefficients of GLaMs to be estimated varies between 19 to 39
for N “ 250. Since the GLD is very flexible, a relatively large data set is necessary to provide enough evidence
of the underlying PDF shape. Consequently, a smallN can lead to overfitting for high-dimensional c, but good
surrogates can be obtained for more parsimonious models. In contrast, KCDE always performs a thorough
leave-one-out cross-validation strategy to select the bandwidths. Therefore, KCDEs show a slightly more stable
estimate for N “ 250. With N increasing, however, GLaMs converge much faster and outperform KCDEs
forN ě 500 both in terms of the mean and median of the errors. ForN ě 1,000, the average performance of
GLaM is even better than the best KCDE model among the 50 repetitions.

In this example of moderate dimensionality, building a GP with sequential design is surprisingly time-
consuming, especially for large experimental designs. This is probably due to the sequential design of exper-
iments, which adds new points one by one and updates the surrogate after each enrichment. The associated
simulations were performed on the ETH Euler cluster, and the average CPU time varied from 463 seconds for
N “ 250 to over 9 days for N “ 4,000 to build a single GP. For KCDE, it took about 20 CPU seconds for
N “ 250 up to 30 minutes for N “ 4,000 on a standard laptop. In comparison, constructing a GLaM is
always on the order of seconds: around 8 seconds for bothN “ 250 andN “ 4,000 on a standard laptop.

5.5.3 Effect of replications

As pointed in Remark 5.1, the proposed method can also work with a data set containing replicates. The latter
are simply treated as separate points in the ED. In this section, we analyze the effect of replications using the
previous two analytical examples. To this end, we generate data by replicating R P t5; 10; 25; 50u for each set
of input parameters in the ED. We keep the total number of simulations the same as nonreplicated cases by
reducing the size of the ED accordingly. For instance, a data set of total N “ 1,000 model evaluations with 10
replications consists of 100 different sets of input parameters, each of which is simulated 10 times.

For quantitative comparisons, we investigate a convergence study similar to Sections 5.5.1 and 5.5.2: the
total number of runsN varies in t250; 500; 1,000; 2,000; 4,000u, and each scenario is repeated 50 times.

Figures 5.10 and 5.11 summarize the error defined in Eq. (5.21) averaged over the 50 repetitions for each
R P t5; 10; 25; 50u. In the first example, replications do not have a strong effect for R P t5; 10; 25u. This is
because the expansions for λpxq contain only a few terms. Therefore, as long as we have enough ED points,
exploring the input space and performing replications bring similar improvements to the surrogate accuracy.
However, a large number of replications, i.e., R “ 50, gives too few ED points for small values of N , which
yields GLaMs of poor performance.

In the second example, we observe a clear negative effect of replications: for the same total amount of model
runs, the surrogate quality deteriorates when increasing the number of replications / decreasing the size of the
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experimental design.
In summary, homogeneous replications (i.e., those with the same number of replicates for each point of the

experimental design) do not necessarily bring additional accuracy and may even lead to a “waste” of computa-
tional budget for the proposed GLaM method. Nevertheless, this does not imply that replications are always
useless. On the one hand, for methods that explore the usage of replications, there is a trade-off between repli-
cations and exploration (Binois et al., 2019). On the other hand, an adaptive selection of different numbers of
replications for each point in the experimental design could possibly improve the performance of the proposed
method. However, unlike the heteroskedastic GP, GLaM not only estimates the mean and the variance but also
produces the whole PDF. As a result, sequential design strategies for building GLaMs remain to be developed
in future study and are outside the scope of the paper.

Figure 5.10: Example 1 — Comparison of the GLaMs built on data with different number of replications. The
curves corresponds to the mean error over the 50 repetitions.

Figure 5.11: Example 2 — Comparison of the GLaMs built on data with different number of replications. The
curves corresponds to the mean error over the 50 repetitions.
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5.5.4 Example 3: Asian options

In this third example, we apply the proposed method to a financial case study, namely an Asian option (Kemna
and Vorst, 1990). Such an option, a.k.a. average value option, is a derivative contract, the payoff of which
is contingent on the average price of the underlying asset over a certain fixed time period. Due to the path-
dependent nature, an Asian option has complex behavior, and its valuation is not straightforward, as opposed
to European options.

Recall the Black–Scholes model defined in Eq. (5.27) that represents the evolution of a stock price Stpxq.
Instead of relying on the stock price on the maturity date t “ T , the payoff of an Asian call option reads

Cpxq “ max tAT pxq ´K, 0u , withAtpxq “
1
t

ż t

0
Supxqdu. (5.31)

where Atpxq is called the continuous average process, and K denotes the strike price. Because AT pxq plays an
important role in the Asian option modeling Eq. (5.31), the PDF ofAT pxq is of interest in this case study. As in
Section 5.5.1, we set T “ 1, which corresponds to a one-year inspection period. We chooseX1 „ Up0, 0.1q and
X2 „ Up0.1, 0.4q for the two input random variables. Unlike S1pxq, the distribution of A1pxq cannot be de-
rived analytically. It is necessary to simulate the trajectory ofStpxq to computeA1pxq. Based on the Markovian
and lognormal properties of Stpxq, we apply the following recursive equations for the path simulation with a
time step ∆t “ 0.001:

S0pxq “ 1,

St`∆tpxq | Stpxq „ LN
ˆ

log pStpxqq `

ˆ

x1 ´
x2

2

2

˙

∆t, x2
?
∆t

˙

.

Finally, the continuous average defined in Eq. (5.31) is approximated by the arithmetic mean, that is,

A1pxq “

ř1,000
k“1 Sk∆tpxq

1,000

(a) PDF for x “ p0.03, 0.33q
T

(b) PDF for x “ p0.07, 0.11q
T

Figure 5.12: Asian option — Comparisons of the emulated PDF,N “ 500

Figure 5.12 shows two response PDFs predicted by the two surrogate models constructed on an experimen-

123



5. Generalized lambda models

(a) Reference (b) GLaM (c) KCDE

Figure 5.13: Asian option — Comparisons of the mean function estimation,N “ 500.

(a) Reference (b) GLaM (c) KCDE

Figure 5.14: Asian option — Comparisons of the variance function estimation,N “ 500.
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tal design ofN “ 500. The reference histograms are calculated from 104 repeated runs of the simulator for each
set of input parameters. We observe that the KCDE exhibits slight fluctuations at the right tail for high volatility
(in Figure 5.12a) and does not well approximate the bulk of the response distribution for low volatility (in Fig-
ure 5.12b). In comparison, the GLaM can well represent the PDF shape in both cases and also more accurately
approximates the tails. Figures 5.13 and 5.14 shows the mean and variance function, where the reference values
can be obtained by applying Itô’s calculus. For the experimental design ofN “ 500, the GLaM more accurately
predicts the two functions. Finally, quantitative comparisons in Figure 5.15 confirm the superiority of GLaMs
to KCDEs: GLaMs yield smaller average error for all N P t250; 500; 1,000; 2,000; 4,000u and demonstrate a
better convergence rate. Moreover, for large experimental designs (N ě 2,000), the average error of GLaMs
is nearly half of that of KCDEs. The oracle Gaussian approximation in this case study has a similar error to
GLaMs built on 1,000 model runs. ForN ě 2,000, GLaMs fitted from data are much more accurate than the
best possible Gaussian-type mean-variance model.

Figure 5.15: Asian option, average process A1pxq at T “ 1 year — Comparison of the convergence of GLaMs
and KCDEs in terms of the normalized Wasserstein distance as a function of the size of the experimental design.
The dashed lines denote the average value over 50 repetitions of the full analysis. The black dash-dotted line
represents the error of the model assuming that the response distribution is normal with the true mean and
variance

As a second quantity of interest, we consider the expected payoff µCpxq “ E rCpxqs. This quantity not
only is important for making investment decisions but also has a very similar form to the option price (Kemna
and Vorst, 1990). The definition Eq. (5.31) implies that the payoff Cpxq is a mixed random variable, which
has a probability mass at 0 and a continuous PDF on the positive line depending on the strike price K. In the
following analysis,K is set to 1.

For GLaMs, µCpxq can be calculated by

µCpxq “

ˆ

λ1 ´
1

λ2λ3
`

1
λ2λ4

´K

˙

p1 ´ uKq `
1
λ2

ˆ

1 ´ uλ3`1
K

λ3 pλ3 ` 1q
´

p1 ´ uKqλ4`1

λ4 pλ4 ` 1q

˙

(5.32)

where λ’s are the distribution parameters at x, and uK is the solution of the nonlinear equation

QpuK ;λq “ K. (5.33)
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withQ being the quantile function defined in Eq. (5.2).
Figure 5.16 shows the convergence of estimations of µCpxq in terms of the error defined in Eq. (5.26). The

difference between the performance of GLaMs and KCDEs is not as significant as for the distribution estimation
of A1pxq in Figure 5.15. For relatively small data sets, namely N ď 500, both models work poorly: they are
only able to explain on average no more than 70% of the variance of µCpXq. In addition, GLaMs demonstrate
a higher variability of the errors. For larger experimental designs N ě 2,000, however, the performance of
GLaMs improves significantly more than that of KCDEs. ForN “ 4,000, the average error of GLaMs is twice
smaller than that of KCDEs, and the smallest error achieved by GLaMs is one order of magnitude smaller than
the best KCDE.

Figure 5.16: Asian option, expected payoff estimations — Comparison of the convergence of GLaMs and
KCDEs in terms of the normalized mean squared error as a function of the size of the experimental design.
The dashed lines denote the average value over 50 repetitions of the full analysis.

5.5.5 Example 4: Stochastic SIR model

In this fourth example, we apply the proposed method to a stochastic susceptible-infected-recovered (SIR) model
in epidemiology (Britton, 2010). This model simulates the spread of an infectious disease, which can help find
appropriate epidemiological interventions to minimize social and ethical impacts during the outbreak.

According to the standard SIR model, at time t a population of sizePt contains three groups of individuals:
susceptible, infected, and recovered, the counts of which are denoted bySt, It, andRt, respectively. These three
quantities fully characterize a population configuration at time t. Among the three groups, only susceptible in-
dividuals can get infected due to close contact with infected individuals, whereas an infected person can recover
and becomes immune to future infections. We consider a fixed population without newborns and deaths, i.e.,
the total population size is constant,Pt “ P . As a result,St, It, andRt satisfy the constraintSt `It `Rt “ P ,
and only the time evolution of pSt, Itq is necessary to characterize the spread of a disease.

To account for random recoveries and interactions among individuals, stochastic SIR models are usually
preferred to represent the epidemic evolution. Without going into details, the model dynamics is briefly sum-
marized as follows. The pair pIt, Stq evolves as a continuous-time Markov process following mutual transition
rates β and γ, which denote the contact rate and recovery rate, respectively. The epidemic stops at time t “ T
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where IT “ 0, indicating that no further infections can occur. The evolution process is simulated by the Gille-
spie algorithm (Gillespie, 1977). The reader is referred to Britton (2010) for a more detailed presentation of
stochastic SIR models.

In this case study, we set the total population equal to P “ 2,000 and β “ γ “ 0.5 as in Binois et al.
(2018). The initial configuration x “ pS0, I0q is the vector of input parameters. To account for different
scenarios, the input variablesX are modeled asX1 „ Up1200, 1800q (initial number of susceptible individuals)
and X2 „ Up20, 200q (initial number of infected individuals). The QoI is the total number of newly infected
individuals during the outbreak, i.e., Y pxq “ ST ´ S0.

(a) PDF for x “ p1714, 165q
T

(b) PDF for x “ p1364, 61q
T

Figure 5.17: SIR model — Comparisons of the emulated PDF,N “ 500

(a) Reference (b) GLaM (c) KCDE

Figure 5.18: SIR model — Comparisons of the mean function estimation in the planN “ 500.

Figure 5.17 compares two response PDFs estimated by a GLaM and by a KCDE for two sets of initial config-
urations, using an experimental design of sizeN “ 500. The reference histograms are obtained by 104 repeated
model runs for eachx. We observe that the PDF shape varies: it changes from symmetric to slightly right-skewed
distributions depending on the input variables. The GLaM is able to accurately capture this shape variation,
while KCDE exhibits relatively poor shape representations.

Figures 5.18 and 5.19 illustrate the mean and variance function. Because the analytical results are unknown
for this simulator, we use 1,000 replications to estimate these quantities for plotting. We observe that both
functions vary nonlinearly in the input space. Compared with the KCDE, the GLaM is able to capture the trend
of the two functions and provides more accurate estimates. More detailed comparisons of the surrogate models
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(a) Reference (b) GLaM (c) KCDE

Figure 5.19: SIR model — Comparisons of the variance function estimation,N “ 500.

are shown in Figure 5.20. The error of the oracle Gaussian approximation is quite small. This implies that the
response distribution for most of the input parameters in the input space is close to a Gaussian distribution.
Nevertheless, GLaMs built onN “ 4,000 model runs still demonstrate better average behavior. For all sizes of
experimental design, GLaMs clearly outperform KCDEs. ForN ě 500, the biggest error of GLaMs is smaller
than the smallest error of KCDEs among the 50 repetitions. Finally, to achieve the same accuracy as GLaMs,
KCDEs require around 7 times more model runs.

Figure 5.20: SIR model — Comparison of the convergence between GLaMs and KCDEs in terms of the nor-
malized Wasserstein distance as a function of the size of the experimental design. The dashed line denotes the
average value over 50 repetitions of the full analysis. The black dash-dotted line represents the error of the model
assuming that the response distribution is normal with the true mean and variance

In epidemiological management, the expected value µpxq “ E rY pxqs is crucial for decision making (Merl
et al., 2009). Therefore, we investigate the accuracy ofµpxq estimations, and the results are in Figure 5.21. First,
both GLaM and KCDE can explain more than 90% of the variance in µpXq for N “ 250, which implies an
overall accurate approximation to the mean function. With increasing N , GLaM shows a more rapid decay of
the error. Furthermore, GLaMs built on N “ 1,000 have a similar (or even slightly better) performance to
KCDEs withN “ 4,000.
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Figure 5.21: SIR model, mean value estimations — Comparison of the convergence between GLaMs and
KCDEs in terms of the normalized mean-squared error as a function of the size of the experimental design.
The dashed line denotes the average value over 50 repetitions of the full analysis.

5.6 Conclusions

This paper presents an efficient and accurate nonintrusive surrogate modeling method for stochastic simulators
that does not require replicated runs of the latter. We follow the setting of Zhu and Sudret (2020), where the
generalized lambda distribution is used to flexibly approximate the response probability density function. The
distribution parameters, as functions of the input variables, are approximated by polynomial chaos expansions.
In this paper, however, we do not require replicated runs of the stochastic simulator, which provides a more
general and versatile approach. We propose the maximum conditional likelihood estimator to construct such
a model for given basis functions. This estimation method is shown to be consistent and applicable to data
with or without replications. In addition, we modify the feasible generalized least-squares algorithm to select
suitable truncation schemes for the distribution parameters, which also provides a good starting point for the
subsequent optimization of the likelihood function.

The performance of the new method is illustrated on analytical examples and case studies in mathematical
finance and epidemics. The results show that with a reasonable number of model runs, the developed algo-
rithm can produce surrogate models that accurately approximate the response probability density function and
capture the shape variations of the latter with x. Considering the normalized Wasserstein distance as an error
metric, generalized lambda models always show a better convergence rate than the nonparametric kernel con-
ditional density estimator with adaptive bandwidth selections (from the package np in R). Furthermore, the
proposed method generally yields more reliable estimates of certain important quantities.

Quantifying the uncertainty of surrogate models that emulate the entire response distribution of a stochas-
tic simulator remains to be developed in future work, especially when no or only a few replications are available.
One possibility is to use cross-validation to calculate the expected loss. However, when the log-likelihood is used
as the loss function such as Eq. (5.17), the resulting score is not intuitive and is difficult to interpret. Alterna-
tively, with a given basis for λpxq in GLaMs, one can use bootstrap (Efron, 1982) to assess the uncertainty in
the estimation of the coefficients. Figure 5.22 illustrates the PDF predictions of 100 bootstrapping GLaMs of
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a data set withN “ 500 of Example 1. Note that the associated theoretical aspects remain to be developed: it is
necessary to prove the bootstrap consistency, which is usually achieved by showing the asymptotic normality of
the estimator. As a result, the asymptotic properties of the maximum likelihood estimator in Eq. (5.17) need to
be further investigated.

(a) PDF for x “ p0.03, 0.33q
T

(b) PDF for x “ p0.07, 0.11q
T

Figure 5.22: Example 1 — Uncertainty on the PDF predicted by GLaM for two values of the input parameters,
using an experimental design of N “ 500. The blue line is the PDF predicted by GLaM from the 500 data
points. The grey lines correspond to 100 PDFs generated by GLaM using bootstrapped experimental designs.

Possible interesting applications of the proposed method to be investigated in future studies include relia-
bility analysis and sensitivity analysis (Zhu and Sudret, 2021). To improve the performance of the generalized
lambda surrogate model for small data sets, we plan to develop algorithms that select only important basis func-
tions based on appropriate model selection criteria. Finally, since the generalized lambda distribution cannot
represent multimodal distributions, potential extensions to mixtures of generalized lambda distributions may
provide a more flexible surrogate for simulators with multimodal response distribution (Fadikar et al., 2018).
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5.a Appendix

5.a.1 Consistency of the maximum likelihood estimator

In this section, we prove the consistency of the maximum likelihood estimator, as described in Theorem 5.1.
For the ease of derivation, we introduce the following notation:

qcpx, yq “ fY |X

`

y
∣∣λPCpx; cq

˘

, pcpx, yq “ fX,Y px, yq “ fXpxqqcpx, yq,
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where qc denotes the conditional PDF with model parameters c, and pc corresponds to the associated joint
PDF. Under this setting, we assume that the true distribution q0 belongs to the family for a particular set of
coefficients c0, i.e., q0 “ qc0 and p0 “ pc0 . We denote the probability measure of the probability space of
pX, Y q by P0 and the Lebesgue measure by µ.

The maximum likelihood estimation defined in Eq. (5.16) belongs to the generalized method of moments
(GMM; Hansen, 1982) for which we define the loss function by

ℓcpx, yq “ ´ log pqcpx, yqq1q0px,yqą0px, yq. (5.34)

It holds that
c0 “ argmin

c
lpcq, where lpcq “ E rℓcpX, Y qs .

The maximum likelihood estimator is then defined by

ĉ “ argmin
c
lnpcq, where lnpcq “

1
n

n
ÿ

i“1

ℓc
`

Xpiq, Y piq
˘

,

where ln is the empirical version of l.
To prove the consistency of a GMM estimator, the uniform law of large numbers is usually used. In the case

of a maximum likelihood estimator for the generalized lambda model, classical methods (Newey and McFadden,
1994) to prove the uniform law of large numbers cannot be applied directly, due to the fact that the support
of qc can depend on the model parameters c, as shown in Eq. (5.4). To circumvent this problem, we use the
techniques suggested by van de Geer (2000) for the proof.

Lemma 5.1. Under the conditions described in Theorem 5.1, we have the following:

(i) Boundedness: supcPC qcpx, yq ă `8.

(ii) Continuity: @ c̃ P C, the map c ÞÑ qc is continuous at c̃ for µ-almost all px, yq P Dx ˆ R.

Proof. (i) As the conditions of Theorem 5.1 indicate that DX and C are compact, the two sets are bounded
according to the Heine–Borel theorem. Hence, the value of λPC px; cq is also bounded. We denote respectively
␣

Ci, i “ 1, . . . , 4
(

and tCi, i “ 1, . . . , 4u as the upper and lower bounds for each component of λ:

Ci ď λi ď Ci @i “ 1, . . . , 4. (5.35)

In addition, Eq. (5.15) guarantees thatλPC
2 px; cq is bounded away from 0, i.e.,C2 ą 0. Consider now Eq. (5.3)

to evaluate the PDF of GLDs. If u in Eq. (5.3) does not exist in r0, 1s, qc “ 0 and thus bounded. For u P r0, 1s,
we have

λ2

uλ3´1 ` p1 ´ uqλ4´1 ď
C2

uk ` p1 ´ uqk
, (5.36)

where
k “ max

␣

C3 ´ 1, C4 ´ 1
(

.

Define the function mpuq “ uk ` p1 ´ uqk, which corresponds to the denominator of Eq. (5.36). For
k “ 0 and 1, mpuq is a constant function equal to 2 and 1, respectively. If k ‰ 0, 1, the derivative m1puq “
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k
´

uk´1 ´ p1 ´ uqk´1
¯

is equal to 0 only atu “ 0.5 in r0, 1s. As a result,minmpuq “ min tmp0q,mp0.5q,mp1qu.

For k ă 0, minmpuq “ mp0.5q “ 21´k. While for k ą 0, minmpuq “ min tmp0q,mp0.5q,mp1qu “

min
!

1, 21´k
)

. Hence, we have minmpuq ě min
!

1, 21´k
)

“ Cm. Taking this property into account,
Eq. (5.36) becomes

λ2

uλ3´1 ` p1 ´ uqλ4´1 ď
C2

Cm

“ Cq. (5.37)

Therefore, supcPC qcpx, yq ď Cq.

(ii) Next, we prove the continuity. For any c̃ P C, we classify the points px, yq P Dx ˆR into three groups
based on their corresponding latent variable ũ: (1) ũ P p0, 1q, (2) ũ does not exist within r0, 1s, and (3) ũ “ 0
or 1.

For px, yq in the first class, y is an interior point of the support of the conditional distribution qc̃px, ¨q.
Thereby, the following equation holds:

y “ Qpũ; λ̃q “ λ̃1 `
1
λ̃2

˜

ũλ̃3 ´ 1
λ̃3

´
p1 ´ ũqλ̃4 ´ 1

λ̃4

¸

, (5.38)

where the distribution parameters λ̃ are obtained by evaluating λPC px; c̃q. The partial derivatives of Qpu;λq

with respect to all the relevant parameters are

BQ

Bu
“

1
λ2

`

uλ3´1 ` p1 ´ uqλ4´1˘ , (5.39)

BQ

Bλ1
“ 1, (5.40)

BQ

Bλ2
“ ´

1
λ2

2

ˆ

uλ3 ´ 1
λ3

´
p1 ´ uqλ4 ´ 1

λ4

˙

, (5.41)

BQ

Bλ3
“

1
λ2λ2

3

`

uλ3 lnpuqλ3 ´
`

uλ3 ´ 1
˘˘

, (5.42)

BQ

Bλ4
“

1
λ2λ2

4

``

p1 ´ uqλ4 ´ 1
˘

´ p1 ´ uqλ4 lnp1 ´ uqλ4
˘

. (5.43)

It can be easily observed that Eq. (5.39) and Eq. (5.40) are continuous functions of u P p0, 1q and λ. Although
Eq. (5.41) is undefined for λ3 “ 0 and λ4 “ 0, the limit exists according to l’Hôpital’s rule. The same holds for
Eq. (5.42) and Eq. (5.43). As a result, we can extend Eqs. (5.41) to (5.43) by continuity, and thus they become
continuous functions of u P p0, 1q and λ. Therefore, Qpu,λq is continuously differentiable. In addition,
Eq. (5.39) is bounded away from 0. These two properties allow one to apply the implicit function theorem, and
thusu is a continuous function ofλ in a neighborhood of λ̃, which implies thatu is continuous at λ̃. According
to Eq. (5.3), the PDF is a continuous function of both u and λ. Hence, using the continuity shown before,
fY py;λq is continuous at λ̃. Furthermore,λPCpx; cq areC8 functions of c, and thusλPCpx; cq is continuous
at c̃. Combining both the continuity of fY py;λq and λPCpx; cq, we have that qcpx, yq is continuous at c̃ for
the point px, yq.

Now consider a point px, yq in the second class, which implies that y is outside the support of qc̃px, ¨q,
say, y is smaller than the lower bound of the support of qc̃px, ¨q. In this case, qc̃px, yq “ 0. According to
Eq. (5.4), if the lower bound is finite, it is a continuous function of λ and thus continuous at c̃. As a result, for
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c within a certain neighborhood of c̃, the lower bound is larger than y, which implies qxpx, yq “ 0 for c in this
neighborhood. Thereby, qcpx, yq is continuous at c̃. Analogous reasoning holds for the case where y is bigger
than the upper bound of the support.

The last class corresponds to the case where y is located on the endpoint of the support of qc̃px, ¨q. By taking
ũ “ 0 and 1 in Eq. (5.38) or considering directly Eq. (5.4), we obtain two associated deterministic functions
between x and y. As a result, points of the third class can be represented by two curves in Dx ˆ R, whose
Lebesgue measure is zero. This closes the proof of continuity.

Lemma 5.2. The class G defined below satisfies the uniform strong law of large numbers:

G “

"

gc “ log

ˆ

qc ` q0

2q0

˙

1q0ą0 : c P C
*

. (5.44)

Proof. According to the continuity property in Lemma 5.1, it is obvious that for all c̃ P C, the map c ÞÑ gc

is continuous at c̃ for µ-almost all px, yq P D ˆ R. By assumption, the probability measure P0 is absolutely
continuous with respect to µ, and thus gc is continuous for P0-almost all px, yq P D ˆ R.

Define G as the envelope function of the class G, i.e., Gpx, yq “ supcPC |gcpx, yq|. Let us prove that
G P L1pP0q, where L1pP0q denotes the set of absolutely integrable functions with respect to P0.

Taking the boundedness property in Lemma 5.1 into account, we obtain

gcpx, yq ď log

ˆ

2Cq

q0px, yq

˙

“ logp2Cqq ´ logpq0px, yqq. (5.45)

Obviously, gcpx, yq ě ´ logp2q. Therefore,

|gcpx, yq| ď max tlogp2q, |logp2Cqq| ` |logpq0px, yqq|u

ď logp2q ` |logpCqq| ` |logpq0px, yqq| .
(5.46)

Because the inequality is independent of c, we have

Gpx, yq ď logp2q ` |logpCqq| ` |logpq0px, yqq| ,

E rGpX, Y qs ď logp2q ` |logpCqq| ` E r|logpq0pX, Y q|s .
(5.47)

Now consider the last term in Eq. (5.47):

E r|logpq0pX, Y q|s “

ż

DxˆR
|log pq0px, yqq| p0px, yqdxdy

“

ż

Dx

ˆ
ż

R
|log pq0px, yqq| q0px, yqdy

˙

fXpxqdx.

(5.48)

Through a change of variables, the integral within the parenthesis of Eq. (5.48) can be calculated as

Bpxq “

ż

R
|log pq0px, yqq| q0px, yqdy “

ż 1

0

∣∣∣∣logˆ λ2

uλ3´1 ` p1 ´ uqλ4´1

˙∣∣∣∣du, (5.49)
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where λ “ λPCpx; c0q. According to Eq. (5.35), we have

Bpxq ď

ż 1

0
|logpλ2q| `

∣∣log `uλ3´1 ` p1 ´ uqλ4´1˘
∣∣ du

ď k2 `

ż 1

0
max

!∣∣log `uk ` p1 ´ uqk
˘∣∣ , ∣∣∣log´uk ` p1 ´ uqk

¯∣∣∣)du,

(5.50)

where

k2 “ max
␣∣∣log `C2

˘∣∣ , |log pC2q|
(

, k “ min tC3 ´ 1, C4 ´ 1u , k “ max
␣

C3 ´ 1, C4 ´ 1
(

.

Using the symmetry of the integrand, we get

Bpxq ď k2 ` 2 ¨ max

#

ż 1
2

0

∣∣log `uk ` p1 ´ uqk
˘∣∣du, ż 1

2

0

∣∣∣log´uk ` p1 ´ uqk
¯∣∣∣du+

ď k2 ` 2 ¨

˜

ż 1
2

0

∣∣log `uk ` p1 ´ uqk
˘∣∣ du`

ż 1
2

0

∣∣∣log´uk ` p1 ´ uqk
¯∣∣∣du¸ .

(5.51)

Without loss of generality, we now study the property of the integral

ż 1
2

0

∣∣log `uk ` p1 ´ uqk
˘∣∣du. (5.52)

For k “ 0, Eq. (5.52) is equal to 1
2 logp2q. For k ą 0, we have uk ď p1 ´ uqk, and thus

ż 1
2

0

∣∣log `uk ` p1 ´ uqk
˘∣∣du ď

ż 1
2

0

∣∣log `2p1 ´ uqk
˘∣∣ du ď

1
2
logp2q ´

ż 1
2

0
k logp1 ´ uqdu

“
1
2
logp2q `

k

2
p1 ´ logp2qq .

(5.53)

Through similar calculation, for k ă 0, we have

ż 1
2

0

∣∣log `uk ` p1 ´ uqk
˘∣∣du ď

ż 1
2

0

∣∣log `2uk
˘∣∣du ď

1
2
logp2q `

ż 1
2

0
k logpuqdu

“
1
2
logp2q `

´k

2
plogp2q ` 1q .

(5.54)

As a result, Eq. (5.52) is finite. More precisely,

ż 1
2

0

∣∣log `uk ` p1 ´ uqk
˘∣∣ du ď

1
2
logp2q `

|k|
2

plogp2q ` 1q . (5.55)

Eq. (5.55) implies
Bpxq ď k2 ` logp2q `

`

|k| `
∣∣k∣∣˘ plogp2q ` 1q “ CB. (5.56)

By inserting Eq. (5.56) into Eq. (5.48), we obtain

E r|logpq0pX, Y q|s ď CB. (5.57)
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Then, according to Eq. (5.47), the envelope functionG fulfills

E rGpX, Y qs ď logp2q ` |logpCqq| ` E r|log pq0pX, Y qq|s

“ logp2q ` |logpCqq| ` CB ă `8.
(5.58)

Since G is always positive according to its definition, Eq. (5.58) means G P L1pP0q. The continuity and the
property of the envelope function G shown above allow applying (van de Geer, 2000, Lemma 3.10), which
guarantees that G satisfies the uniform weak law of large numbers:

sup
cPC

˜

1
n

n
ÿ

i“1

gc
`

Xpiq, Y piq
˘

´ E rgc pX, Y qs

¸

P
ÝÝÝÝÑ
nÑ`8

0. (5.59)

Finally, (Talagrand, 1987, Theorem 22) extends the convergence to almost surely, which is the uniform strong
law of large numbers.

Now, we have all the ingredients to prove Theorem 5.1.

Proof. Following (van de Geer, 2000, Lemma 4.1, 4.2), it can be easily shown that

0 ď

ż

Dx

h2 pqĉ, q0 | xq fXpxqdx ď 8

˜

N
ÿ

i“1

gĉ
`

Xpiq, Y piq
˘

´ E rgĉ pX, Y qs

¸

, (5.60)

where the Hellinger distance is given by

h2 pqĉ, q0 | xq “
1
2

ż

R

´

a

qĉpx, yq ´
a

q0px, yq

¯2
dy.

According to Lemma 5.2, Eq. (5.60) implies
ż

Dx

h2 pqĉ, q0 | xq fXpxqdx
a.s.
ÝÑ 0, (5.61)

which is called the Hellinger consistency.
We define the function

Rpcq “

ż

Dx

h2 pqc, q0 | xq fXpxqdx. (5.62)

According to Lemma 5.1, @c̃ P C, the map c ÞÑ
`?

qc ´
?
q0
˘2 is continuous at c̃ for all x P Dx and almost

all y P R. Since
`?

qc ´
?
q0
˘2

ď qc ` q0, and
ş

R pqc ` q0qdy “ 2 ă `8, the map c ÞÑ h2 pqc, q0 | xq

is continuous for all x P Dx, which is guaranteed by the generalized Lebesgue dominated convergence theorem.
Similarly, the map c ÞÑ Rpcq is also continuous.

Without going into lengthy discussions, it can be shown that the GLD is not identifiable only for λ3 “

λ4 “ 1 and λ3 “ λ4 “ 2. In other words, by excluding two points in the λ3 ´ λ4 plane, different values of
λ lead to different distributions. Note that the two exceptions are the only two cases where the corresponding
distributions are uniform distributions. As a result, the last condition in Theorem 5.1 excludes the nonidenti-
fiable cases. Furthermore, λPCpx; cq are polynomials in x and linear in c. Therefore, for c ‰ c̃, λPCpx; cq

and λPC px; c̃q are not identical for µ-almost all x P RM , and thus for PX -almost all x P DX . Hence, there
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exists a set Ωx with PXpΩxq ą 0 such that as long as c ‰ c0, h pqc, q0 | xq ą 0 @x P Ωx, which implies the
uniqueness. Finally, combining Eq. (5.61) with the continuity and uniqueness ofRpcq, we have ĉ a.s.

ÝÑ c0.
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Abstract
Global sensitivity analysis aims at quantifying the impact of input variability onto the variation of the response
of a computational model. It has been widely applied to deterministic simulators, for which a set of input pa-
rameters has a unique corresponding output value. Stochastic simulators, however, have intrinsic randomness
due to their use of (pseudo)random numbers, so they give different results when run twice with the same in-
put parameters but non-common random numbers. Due to this random nature, conventional Sobol’ indices,
used in global sensitivity analysis, can be extended to stochastic simulators in different ways. In this paper, we
discuss three possible extensions and focus on those that depend only on the statistical dependence between
input and output. This choice ignores the detailed data generating process involving the internal randomness,
and can thus be applied to a wider class of problems. We propose to use the generalized lambda model to em-
ulate the response distribution of stochastic simulators. Such a surrogate can be constructed without the need
for replications. The proposed method is applied to three examples including two case studies in finance and
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epidemiology. The results confirm the convergence of the approach for estimating the sensitivity indices even
with the presence of strong heteroskedasticity and small signal-to-noise ratio.

6.1 Introduction

Computational models, a.k.a. simulators, have been extensively used to represent physical phenomena and
engineering systems. They can help assess the reliability, control the risk and optimize the behavior of complex
systems early at the design stage. Conventional simulators are usually deterministic, in the sense that repeated
model evaluations with the same input parameters yield the same value of the output. In contrast, several runs
of a stochastic simulator for a given set of input parameters provide different results. More precisely, the output
of a stochastic simulator is a random variable following an unknown probability distribution. Hence, each
model evaluation with the same input values generates a realization of the random variable. Mathematically, a
stochastic simulator can be defined by

Ms : DX ˆ Ω Ñ R,

px, ωq ÞÑ Mspx,Zpωqq,
(6.1)

where x is the input vector that belongs to the input space DX , and Ω denotes the probability space that rep-
resents the stochasticity. The intrinsic randomness is due to the fact that some latent variables Zpωq inside the
model are not explicitly considered as a part of the input variables: given a fixed input value x0, the output of
the simulator is a random variable.

In this respect, we can consider a stochastic simulator as a random field indexed by the parameters x P

DX (Azzi et al., 2019). For a given realization of the latent variables z0, the simulator becomes a deterministic
function of x. This is realized in practice by initializing the random seed to the same value before running
the simulator for different x’s, a trick known as common random numbers. The (classical) functions x ÞÑ

Mspx, z0q will be called trajectories in this paper. One particular trajectory corresponds to one particular value
z0.

In contrast, for a givenx0 P DX , the output of the stochastic simulator is a random variable. Its distribution
can be obtained by repeatedly running the simulator with x0, yet different realizations of the latent variables
called replications.

Stochastic simulators are ubiquitous in modern engineering, finance and medical sciences. Typical examples
include stochastic differential equations (e.g., financial models [McNeil et al., 2005]) and agent-based models
(e.g., epidemiological models [Britton, 2010]). To a certain extent, physical experiments can also be considered
as stochastic models, because we may not be able to measure and consider all the relevant variables that can
uniquely determine the experimental conditions.

In practice, the input variables may be affected by uncertainty due to noisy measurements, expert judgment
or lack of knowledge. Therefore, they are modeled as random variables and grouped into a random vector
X “ pX1, X2, . . . , XMq, which is characterized by a joint distribution fX . Quantification of the contribution
of input variability to the output uncertainty is a major task in sensitivity analysis (Saltelli et al., 2000). It allows
us to identify the most important set of input variables that dominate the output variability and also to figure
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out non-influential variables. This information provides more insights into the simulator and can be further
used for model calibrations and decision making (de Rocquigny et al., 2008).

A large number of methods have been successfully developed to perform sensitivity analysis in the context
of deterministic simulators (Saltelli et al., 2000; Helton et al., 2006; Borgonovo, 2017). Among others, the
variance-based sensitivity analysis, also referred to as Sobol’ indices (Sobol’, 1993), is one of the most popular
approaches, which relies on the analysis of variance. Several extensions of Sobol’ indices to stochastic simulators
can be found in the literature, depending on the treatment of the intrinsic randomness. It is worth emphasizing
that the overall uncertainty now consists of two parts, namely the inherent stochasticity in the latent variables
and the uncertainty in the input parameters X . Iooss and Ribatet (2009) include the latent variables as a part
of the input, which results in a natural extension of the classical Sobol’ indices to stochastic simulators. Hart
et al. (2016) and Jimenez et al. (2017) define the Sobol’ indices as functions of the latent variables which, as a
consequence, become random variables whose statistical properties can be studied. Recently, Azzi et al. (2020)
propose to represent the intrinsic randomness by the entropy of the response distribution and to calculate the
classical Sobol’ indices on the latter. All in all, relatively little attention has been devoted to sensitivity analysis
for stochastic simulators.

Sensitivity analysis usually requires a large number of model evaluations for different realizations of the in-
put vector. Due to the intrinsic randomness of stochastic simulators, an additional layer of stochasticity comes
on top of the input uncertainty, which requires repeated runs with the same input parameters to fully charac-
terize the model response. As a consequence, such analyses become intractable when the simulator is expensive
to evaluate. To alleviate the computational burden, surrogate models can be constructed to mimic the original
numerical model at a smaller computational cost. Large efforts have been dedicated to emulating the mean and
variance function of stochastic simulators (Dacidian and Carroll, 1987; Marrel et al., 2012; Binois et al., 2018).
These two functions provide only the first two moments of the response distribution and are mostly used to
estimate the Sobol’ indices proposed in Iooss and Ribatet (2009). In recent papers (Zhu and Sudret, 2020,
2021), we developed a novel surrogate model, called generalized lambda model (GLaM), to emulate the whole
response distribution of stochastic simulators. This model uses generalized lambda distributions (GLDs; Kar-
ian and Dudewicz, 2000) to flexibly approximate the response distribution, while the distribution parameters
cast as functions of the inputs are approximated through polynomial chaos expansions (PCEs; Ghanem and
Spanos, 2003).

Based on these premises, the goal of this paper is to establish a clear framework to carry out global sensitivity
analysis for stochastic simulators, and to propose efficient computational approaches based on GLaM stochastic
emulators. Therefore, the original contributions of this paper are two-fold. On the one hand, we give a thorough
review of the current development of global sensitivity analysis for stochastic simulators. We point out the
nature and the properties of different extensions of Sobol’ indices, which provides a general guideline to their
usage. On the other hand, we present a unified framework based on generalized lambda models to calculate a
whole variety of global sensitivity indices using this single surrogate.

The paper is organized as follows. First, we review three extensions of Sobol’ indices to stochastic simulators
in Section 6.2. In Section 6.3, we present the framework of GLaMs (Zhu and Sudret, 2020). There, we recap the
fitting procedure proposed in Zhu and Sudret (2021), where it is emphasized that there is no need for replicated
runs. Then, we discuss the use of GLaMs for estimating different types of Sobol’ indices. In Section 6.4, we
illustrate the performance of GLaMs on three examples. While the first example is analytical, the second and
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third ones are realistic case studies in finance and epidemiology, respectively. Finally, we summarize the main
findings of the paper and provide an outlook for future research in Section 6.5.

6.2 Globalsensitivityanalysisofstochasticsimulators

6.2.1 Sobol’ indices

Variance-based sensitivity analysis has been extensively studied and successfully developed in the context of de-
terministic simulators. For a deterministic model Md, Sobol’ indices quantify the contribution of each input
variable tXi, i “ 1, . . . ,Mu, or combination thereof, to the variance of the model output Y “ MdpXq.

In this paper, we assume thatXi’s are mutually independent. Let us split the input vector into two subsets
X “ pXu,X„uq, where u Ă t1, . . . ,Mu and „ u is the complement of u, i.e., „ u “ t1, . . . ,Mu zu. From
the total variance theorem, the variance of the output can be decomposed as

Var rY s “ E rVar rY | Xuss ` Var rE rY | Xuss . (6.2)

The first-order and total Sobol’ indices introduced by Sobol’ (1993) and Homma and Saltelli (1996) for the
subset of input variables Xu are defined by

Su
def
“

Var rE rY | Xuss

Var rY s
, STu

def
“ 1 ´

Var rE rY | X„uss

Var rY s
“ 1 ´ S„u. (6.3)

Higher-order Sobol’ indices can be defined with the help of Su. For example, the second-order or two-factor
interaction Sobol’ index ofX1 andX2 is given by

S1,2
def
“ St1,2u ´ S1 ´ S2, (6.4)

where we denote Stiu by Si for the sake of simplicity.
In the context of stochastic simulators defined in Eq. (6.1), the input variables alone do not determine the

value of the output. Iooss and Ribatet (2009) extend X by adding the internal source of randomness repre-
sented by latent variables Z, which turns the stochastic simulator into a deterministic one. In this case, all the
input variables are gathered in pXu,X„u,Zq, and thus the Sobol’ indices in Eq. (6.3) can be naturally extended
to

Su
def
“

Var rE rY | Xuss

Var rY s
, STu

def
“ 1 ´

Var rE rY | X„u,Zss

Var rY s
. (6.5)

Note that Su has the same expression as in the case of deterministic simulators, but STu contains the additional
variables Z (Marrel et al., 2012). Similarly, higher-order Sobol’ indices corresponding to interactions among
components of X are defined in the same way as deterministic simulators, whereas interactions between com-
ponents of X and Z involve Z in their definition. Since this is a direct extension, the Sobol’ indices defined in
Eq. (6.5) are referred to as classical Sobol’ indices in the sequel.

Another way to extend Sobol’ indices to stochastic simulators is to first eliminate the internal randomness by
representing the response random variable Y pxq by some summarizing statistical quantity, called here quantity
of interest (QoI) denoted byQoIpxq, such as the mean valuempxq, variance vpxq (Iooss and Ribatet, 2009),α-
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quantile qαpxq (Browne et al., 2016) and differential entropy hpxq (Azzi et al., 2020). As a result, the stochastic
simulator is reduced to a deterministic function QoIpxq, and we can calculate the associated QoI-based Sobol’
indices as follows:

SQoI
u

def
“

Var rE rQoIpXq|Xuss

Var rQoIpXqs
, SQoI

Tu

def
“ 1 ´

Var rE rQoIpXq|X„uss

Var rQoIpXqs
. (6.6)

A third extension is defined by considering a stochastic simulator as a random field. For a fixed internal
randomness Zpωq “ z, the stochastic simulator is a deterministic function of the input variables, which cor-
responds to a trajectory. Hence, the associated Sobol’ indices are well-defined. Yet, they are random variables
because of their dependence on Z (Hart et al., 2016), which results in the trajectory-based Sobol’ indices:

Straj
u pZq

def
“

VarXu rE rY | Xu,Zss

Var rY | Zs
, Straj

Tu
pZq

def
“ 1 ´

VarX„u rY | X„u,Zs

Var rY | Zs
, (6.7)

where the indices of the variance operators correspond to those variables to which these operators apply.

6.2.2 Discussion

The three types of Sobol’ indices introduced above have different nature and focus. The classical Sobol’ indices
defined in Eq. (6.5) treat the latent variablesZ as a set of separate input variables. As a result, indices of this type
treat Z in the same way as X . The first-order index Su indicates how much the output variance can be reduced
(in expectation) if we can fix the value of Xu. Besides, the classical Sobol’ indices can also quantify the influence
of the intrinsic randomness as well as its interactions with input variables.

The QoI-based Sobol’ indices defined in Eq. (6.6) help study a specific statistical quantity of the model re-
sponse, which is a deterministic function of the inputs. Using a summary quantity to represent the random
output might lead to a loss of information (Hart et al., 2016), unless this quantity itself is of interest. For ex-
ample, we may want to find the variable(s) that has the largest effect(s) on the 95% quantile (i.e., qαpXq for
α “ 0.95) of the model response. However, the importance (ranking) of the inputsXi’s can be quite different
depending on the choice of the QoI.

Unlike the previous two types of indices, trajectory-based Sobol’ indices presented in Eq. (6.7) are random
variables. This is because the latent variables Z and the input parameters X are treated differently: conditioned
on a given Z “ z0, the stochastic simulator reduces to a deterministic function of X , and we can calculate
the associated (classical) Sobol’ indices. To evaluate the probability distribution of these trajectory-based Sobol’
indices requires that the same random seeds can be explicitly fixed in the simulator when running it for different
values ofx. In a sense, trajectory-based Sobol’ indices emphasize the variation of the trajectory of stochastic sim-
ulators. They typically show the importance of each input variable in terms of its contribution to the variability
of trajectories.

For stochastic simulators, the question “which input variable has the strongest effect?” is rather vague and
cannot be answered by a single type of index. The analyst should properly pose the problem and select the
appropriate sensitivity measures. If one aims at reducing the variance of the model output, the classical Sobol’
indices are of interest. If one is interested in some summary QoIs (which is often the case for applications,
e.g., quantiles in reliability analysis), the QoI-based indices are more appropriate. Finally, if one can control
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the internal randomness and is interested in the variability of the model output for fixed intrinsic stochasticity,
trajectory-based indices should be selected.

To further illustrate this discussion, let’s consider the stochastic simulator

Y pXq “ MspX, Zq “ X1 `X2 ¨ Z

where X1, X2 and Z are independent random variables following standard normal distributions. The classical
first-order Sobol’ indices are S1 “ 0.5 and S2 “ 0. Therefore, if we want to primarily reduce the variance of
Y , X1 should be investigated. For the response mean function mpXq “ X1, we have Sm

1 “ 1 and Sm
2 “ 0,

which indicates that X1 contributes fully to the variation of the mean function. In contrast, for the variance
function vpXq “ X2

2 , Sv
1 “ 0 and Sv

2 “ 1 reveals a different order. Regarding the trajectory-based indices, we
have Straj

1 pZq “ 1
1`Z2 and Straj

2 pZq “ Z2

1`Z2 which are two random variables (due to the randomness in Z).
The probability distribution of the two variables characterize how the randomness in X affects the function
MspX, zq with z being fixed as a single realization of Z. In summary, even for this simple toy example, the
various indices provide different conclusions.

It is worth remarking that the classical Sobol’ indicesSu in Eq. (6.5) share some common properties with the
mean-based Sobol’ indices in Eq. (6.6), when we consider the mean functionQoIpxq

def
“ mpxq “ E rY | X “ xs:

Sm
u “

Var rE rmpXq|Xuss

Var rmpXqs
. (6.8)

According to the law of total expectation, we have

E rY | Xus “ E rE rY | Xs | Xus “ E rmpXq | Xus . (6.9)

As a result, Su can be rewritten as

Su “
Var rE rY | Xuss

Var rY s
“

Var rE rmpXq | Xuss

Var rY s
, (6.10)

This implies that both classical Sobol’ indices Su and mean-based Sobol’ indices Sm
u provide the same ranking,

as the numerators of Equations (6.8) and (6.10) are identical. However, it is worth emphasizing that Su is not
equal to Sm

u and they are measuring different quantities, since the denominator of Eq. (6.10) is Var rY s but
that of Eq. (6.8) is Var rmpXqs.

As a summary for all three extensions, a stochastic simulator is essentially transformed into a reduced deter-
ministic model at a certain stage. The classical Sobol’ indices include the latent variables as a part of the inputs.
The QoI-based Sobol’ indices rely on a deterministic representation. The trajectory-based indices are random
variables whose statistical properties can be studied at the cost of repeating a standard Sobol’ analysis for differ-
ent realizations of the latent variables separately. As a result, the three types of sensitivity indices can be estimated
by modifying only slightly the standard methods based on Monte Carlo simulation developed for deterministic
simulators (Saltelli et al., 2000).

The classical Sobol’ indices involving Z (e.g., SZ , STu
in Eq. (6.5)) and the trajectory-based Sobol’ indices

require controlling the latent variables Z. In practical computations, this is achieved by fixing the random
seed in the computational model (Marrel et al., 2012; Hart et al., 2016). However, for certain types of stochastic
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simulators, or when the data are generated by physical experiments, it may be difficult to control or even identify
Z. For the sake of general applicability, we focus in this paper only on Sobol’ indices that can be estimated by
manipulating X , that is, the QoI-based Sobol’ indices and, to some extent, the classical Sobol’ indices.

Using Monte Carlo simulations to estimate these indices requires evaluating the simulator for various real-
izations of the input vector. In addition, it is generally necessary to evaluate the functionQoIpxq for calculating
the associated QoI-based Sobol’ indices. However, this function is not directly accessible due to the intrinsic
randomness. Therefore this function is usually estimated by using replications; i.e., for each realization x, the
simulator is run many times, and QoIpxq is estimated from the output samples. Both factors call for a large
number of model runs, which becomes impracticable for costly models. Therefore, the use of surrogate models
is unavoidable.

In the sequel, we present the generalized lambda model as a stochastic surrogate. Such a model emulates
the response distribution conditioned on X “ x, which fully characterizes the statistical dependence between
the inputs and output. Therefore, it can be used to estimate the considered Sobol’ indices.

6.3 Generalized lambda models
Generalized lambda models consist of mainly two parts: the generalized lambda distribution and polynomial
chaos expansions. In this section, we briefly recap these two elements and present an algorithm to construct such
a model without the need for replicated runs of the simulator. Then, we discuss how to estimate the sensitivity
indices from the surrogate.

6.3.1 Generalized lambda distributions

The generalized lambda distribution is a flexible distribution family, which is designed to approximate many
common distributions (Karian and Dudewicz, 2000), e.g., normal, lognormal, Weibull and generalized extreme
value distributions. A GLD is defined by its quantile function Qpuq with u P r0, 1s, that is, the inverse of the
cumulative distribution functionQpuq “ F´1puq. In this paper, we consider the GLD of the Freimer–Kollia–
Mudholkar–Lin (FKML) family (Freimer et al., 1988) with four parameters, whose quantile function is defined
by

Qpu;λq “ λ1 `
1
λ2

ˆ

uλ3 ´ 1
λ3

´
p1 ´ uqλ4 ´ 1

λ4

˙

, (6.11)

where λ1 is the location parameter, λ2 is the scaling parameter, and λ3 and λ4 are the shape parameters. λ2

is required to be positive to produce valid quantile functions (i.e., Q being non-decreasing on r0, 1s). Based
on the quantile function defined in Eq. (6.11), the probability density function (PDF) of a random variable Y
following a GLD is given by

fY py;λq “
fUpuq

Q1pu;λq
“

λ2

uλ3´1 ` p1 ´ uqλ4´11r0,1spuq, with u “ Q´1py;λq, (6.12)

where 1r0,1s is the indicator function. A closed-form expression of Q´1 is not available for arbitrary values of
λ3 and λ4. Therefore, evaluating the PDF for a given y usually requires solving the nonlinear equation (6.12)
numerically.
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GLDs cover a wide range of shapes determined byλ3 andλ4 (Zhu and Sudret, 2020). For instance,λ3 “ λ4

produces symmetric PDFs, and λ3 ă λ4 (λ3 ą λ4) results in left-skewed (resp. right-skewed) distributions.
Moreover, λ3 and λ4 are closely linked to the support and the tail behaviors of the corresponding PDF. More
precisely, λ3 and λ4 control the left and right tail, respectively. Whereas λ3 ą 0 implies that the PDF support is
left-bounded, λ3 ď 0 implies that the distribution has a lower infinite support. Similarly, λ4 ą 0 implies that
the PDF support is right-bounded, whereas it is `8 for λ4 ď 0. In addition, for λ3 ă 0 (λ4 ă 0), the left
(resp. right) tail decays asymptotically as a power law. Hence, GLDs can also provide fat-tailed distributions.
The reader is referred to Zhu and Sudret (2020) and Freimer et al. (1988) for a longer presentation of GLDs.

6.3.2 Polynomial chaos expansions

Consider a deterministic model Md that maps a set of input parameters x “ px1, x2, . . . , xMq P DX Ă RM

to the output y P R. Under the assumption that Y “ MdpXq has finite variance, Md belongs to the
Hilbert spaceH of square-integrable functions with respect to the inner product xu, vyH “ E rupXqvpXqs “
ş

DX
upxqvpxqfXpxqdx. If the joint distribution fX satisfies certain conditions (Ernst et al., 2012), the simu-

lator Md admits a spectral representation in terms of orthogonal polynomials:

Y “ MdpXq “
ÿ

αPNM

cαψαpXq, (6.13)

whereψα is a multivariate polynomial basis function indexed by α P NM , and cα denotes the associated coeffi-
cient. The orthogonal basis can be obtained by using tensor products of univariate polynomials, each of which
is orthogonal with respect to the probability measure fXi

pxiqdxi of the i-th variableXi:

ψαpxq “

M
ź

j“1

ϕpjq
αj

pxjq. (6.14)

Details about the construction of this generalized polynomial chaos expansion can be found in Xiu and Karni-
adakis (2002) and Sudret (2015).

The PCE defined in Eq. (6.13) contains an infinite sum of terms. However, in practice, it is only feasible
to use a finite series as an approximation. To this end, truncation schemes are adopted to select a set of basis
functions defined by a finite subset A Ă NM of multi-indices. A typical scheme is the hyperbolic (a.k.a. q-
norm) truncation scheme (Blatman and Sudret, 2010) given by

Ap,q,M “

$

&

%

α P NM : }α}q
def
“

˜

M
ÿ

i“1

|αi|q
¸

1
q

ď p

,

.

-

, (6.15)

where p is the maximum degree of polynomials, and q ď 1 defines the quasi-norm } ¨ }q. Note that with q “ 1,
we obtain the full basis of total degree less than p, which corresponds to the standard truncation scheme.
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6.3.3 Formulation of generalized lambda models

Because of the flexibility of GLDs, we assume that the response random variable Y pxq of a stochastic simulator
for a given input vector x can be well approximated by a GLD. Hence, the associated distribution parameters
λ are functions of the input variables:

Y pxq „ GLD pλ1pxq, λ2pxq, λ3pxq, λ4pxqq . (6.16)

Under appropriate conditions discussed in Section 6.3.2, each component of λpxq can be represented by
a series of orthogonal polynomials. Because λ2pxq is required to be positive (see Section 6.3.1), the associated
polynomial chaos representation is built on the natural logarithmic transform log pλ2pxqq. This results in the
following approximations:

λl pxq « λPC
s px; cq “

ÿ

αPAl

cl,αψαpxq, l “ 1, 3, 4, (6.17)

λ2 pxq « λPC
2 px; cq “ exp

˜

ÿ

αPA2

c2,αψαpxq

¸

, (6.18)

where Al (l “ 1, 2, 3, 4) is a finite set of selected basis functions for λl, and cl,α’s are the coefficients. For the
purpose of clarity, we explicitly expressc in the PC approximationsλPC

l px; cq to emphasize thatc are the model
parameters yet to be estimated from data.

6.3.4 GLaM constructions

We assume that our costly stochastic simulator is evaluated once for each point xpiq of the experimental design
X , and the associated model response ypiq is collected in Y :

X “
␣

xp1q, . . . ,xpNq
(

, Y “
␣

Ms

`

xp1q, ωp1q
˘

, . . . ,Ms

`

xpNq, ωpNq
˘(

(6.19)

As already mentioned (and as emphasized by the notation ωpiq), no replications are required, and we do not
control the random seed. To construct a GLaM from the available data pX ,Yq, both the truncated sets A of
basis functions and the coefficients c shall be determined. In this section, we summarize the method proposed
in Zhu and Sudret (2021), which is designed to achieve both purposes without the need for replications.

Sometimes prior knowledge is available to set the basis functions. For example, when working with a stan-
dard linear regression problem, the data is supposed to be generated by

Y “ β0 ` Xβ ` ϵ, (6.20)

where ϵ has mean zero and is independent of X . This case can be treated within the GLaM framework as
follows: A1 contains the constant and linear term, and A2, A3, A4 contain only a constant term. Note that
such a GLaM allows estimating the distribution of ϵ, which is not required to be normal, whereas the usual
linear regression framework assumes normally distributed ϵ.
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6. GSA for stochastic simulators based on GLaMs

However, in general there is no prior knowledge that would help select A. Thus, we make the following
assumptions to find appropriate hyperbolic truncation schemes defined in Eq. (6.15) for each λi, i “ 1, . . . , 4:

(A1) The response distribution of Y pxq can be well-approximated by a generalized lambda distribution;

(A2) The shape of this distribution smoothly varies as a function of x, so that the parameters λipxq can be
well approximated by a low-order PCE

Because the shape of a GLD is controlled byλ3 andλ4, the associated hyperbolic truncation schemesAp,q,M

can be set with a small value of p, say p “ 1.
Moreover, the parametersλ1pxq andλ2pxq mainly affect the variation of the meanmpxq and of the variance

vpxq as a function of the inputx, respectively. As a result, they may require possibly larger degree p. To this end,
we modify the feasible generalized least-squares (FGLS; Wooldridge, 2013) to find suitable truncation schemes
for the mean and variance function modeled as

mpxq “
ÿ

αPAm

cm,αψαpxq, vpxq “ exp

˜

ÿ

αPAv

cv,αψαpxq

¸

.

Basically, FGLS iterates between a weight least-square problem (WLS) to fit the mean function, and an ordinary
least-square (OLS) analysis to estimate the variance function.

The details of the modified FGLS are presented in Algorithm 6.1. In this algorithm, the inputs p1 and q1

stand for the set of candidate degrees and q-norms that are tested to expand λ1pxq, respectively. The same nota-
tion apply top2 and q2 forλ2pxq. Indeed, because of the low cost of least-square analysis, various combinations
of p and q are tested for both λ1pxq and λ2pxq.

More precisely, AOLS denotes adaptive ordinary least-squares with degree and q-norm adaptivity (Marelli
and Sudret, 2019; Blatman and Sudret, 2011). This algorithm first builds a series of PCEs, each of which is
obtained by applying ordinary least-squares with a truncation schemeAp,q,M defined by a combination ofp P p

and q P q. Then, it selects the PCE, therefore the associated truncation scheme, with the smallest leave-one-out
errors (see Blatman and Sudret, 2011 for details). WLS denotes the use of weighted least-squares, which takes the
estimated variance v̂ as weight to re-estimate cm. In this procedure, the truncation set Am formpxq is selected
only once (before the loop), whereas a set of truncation schemes tAi

v : i “ 1, . . . , NFGLSu is obtained.
We finally select the one with the smallest leave-one-out error as the final truncated set Av for vpxq. The

number of iterationsNFGLS is defined by the user, typicallyNFGLS “ 5–10. After applying Algorithm 6.1, we
set A1 “ Am and A2 “ Av.

Once the basis functions are selected, we use the maximum (conditional) likelihood estimator to estimate
c:

ĉ “ argmin
cPC

L pcq , (6.21)

where L pcq is the conditional negative log-likelihood

L pcq “

N
ÿ

i“1

´ log
`

fGLD
`

ypiq;λPC
`

xpiq; c
˘˘˘

, (6.22)

with fGLD being the probability density function of the GLD defined in Eq. (6.12).
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Algorithm 6.1 Modified feasible generalized least-squares
1: Input: pX ,Yq, p1, q1, p2, q2

2: Output: truncated sets for the mean and variance function–Am and Av

3: Am, ĉm Ð AOLS pX ,Y,p1, q1q

4: for i Ð 1, . . . , NFGLS do
5: m̂ Ð

ř

αPAm
cm,αψαpX q

6: r̃ Ð 2 log p|Y ´ m̂|q
7: Ai

v, ĉv, ε
i
LOO Ð AOLS pX , r̃,p2, q2q

8: v̂ Ð exp
`
ř

αPAv
cv,αψαpX q

˘

9: ĉm Ð WLS pX ,Y,Am, v̂q

10: end for
11: i˚ “ argmin tεiLOO : i “ 1, . . . , NFGLSu and Av Ð Ai˚

v

The advantages of the proposed estimator are twofold. On the one hand, the simulator is required to be
evaluated only once (but not limited to one) on each point of the experimental design. Thereby, replications
are not necessary (yet possible), and the method is versatile in this respect. On the other hand, if the underlying
computational model can be exactly represented by a GLaM for a specific choice of c, the maximum likelihood
estimator is consistent (see proof in Zhu and Sudret, 2021).

In practice, the evaluation of Lpcq is not straightforward because the PDF of generalized lambda distribu-
tions does not have an explicit form: it is necessary to solve nonlinear equations as shown in Eq. (6.12). Never-
theless, the nonlinear function Qpu;λq is monotonic and defined on r0, 1s. Therefore, we proposed using the
bisection method (Burden et al., 2015) to efficiently solve the nonlinear equations.

6.3.5 Sensitivity analysis with GLaMs

6.3.5.1 Introduction

The various Sobol’ indices introduced in Eq. (6.5) and (6.6) can be estimated by sampling from the conditional
distribution Y | Xu. Because of the specific format of the GLaM definition, such a sampling can be easily
performed.

The generalized lambda distribution parameterizes the quantile function Qpu;λq (see Eq. (6.11)), which
can be seen as the inverse probability integral transform. In other words, the random variable QpU ;λq with
U „ Up0, 1q follows GLDpλq. As a result, sampling from a GLD is straightforward. We define the function
QGLaM : pu,xq P r0, 1s ˆ DX ÞÑ R by

QGLaMpu;xq “ Qpu;λPCpxqq “ λPC
1 pxq `

1
λPC

2 pxq

˜

uλ
PC
3 pxq ´ 1
λPC

3 pxq
´

p1 ´ uqλ
PC
4 pxq ´ 1

λPC
4 pxq

¸

. (6.23)

QGLaMpU ;xq is a so-called GLaM stochastic emulator where U „ Up0, 1q serves as a latent variable that intro-
duces the internal source of randomness. Precisely,QGLaMpU ;xq is a random variable following the surrogate
response PDF for X “ x, and QGLaMpu;xq provides its corresponding u-quantile. In other words, GLaM is
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6. GSA for stochastic simulators based on GLaMs

a simple stochastic surrogate model with only one latent variable (namely, U ); this surrogate behaves similarly
to the original stochastic simulator in terms of the response distribution for any x.

Eq. (6.23) emulates the conditional quantile function QY |Xpu;xq of the original model, so calculating
Sobol’ indices Su of the deterministic function QGLaMpu;xq can directly provide the classical Sobol’ indices
defined in Eq. (6.5). Note that QGLaM also allows us to calculate classical Sobol’ indices involving U , e.g., SU .
However, since the surrogate approximates only the response distribution but cannot produce the trajecto-
ries, these Sobol’ indices are not representative of those of the original model, e.g., SZ that requires estimating
Var rE rY | Zss (according to Eq. (6.5)), where the inner expectation E rY | zs is taken over a trajectory.

For QoI-based Sobol’ indices in Eq. (6.6), if the quantity of interest qGLaMpxq can be directly calculated
from generalized lambda distributions, we can just treat it as a classical surrogate model of QoIpxq. This is
the case for the mean mpxq and the variance vpxq (see Section 6.a.1 for details). In addition, if QoIpxq is a
u-quantile of the response distribution, Eq. (6.23) is used directly.

Finally, if it is impossible to evaluate analytically qGLaMpxq, we generate a large sample set from Eq. (6.23)
by sampling U „ Up0, 1q, and then use the sample statistic q̂GLaMpxq as a surrogate model for QoIpxq.

6.3.5.2 Monte Carlo estimates

Because bothQGLaMpu;xq and qGLaMpxq are deterministic, we can use methods based on Monte Carlo simu-
lations (Homma and Saltelli, 1996) to estimate the considered Sobol’ indices. Here, we illustrate the estimator
suggested by Janon et al. (2014) for classical Sobol’ indices estimations.

We first define two random variables Y “ QGLaMpU ;Xu,X„uq and Yu “ QGLaMpŨ ;Xu, X̃„uq, where
Ũ and X̃„u are independent copies of U and X„u. This indicates that Yu is correlated to Y by using the same
set of random variables Xu as argument. In addition, Y and Yu follow the same distribution, and thus they
share the same moments, e.g., E rY s “ E rYus, E rY 2s “ E rY 2

u s.
Following Janon et al. (2014), Su defined in Eq. (6.5) can be re-written as:

Su “
Cov rY, Yus

Var rY s
“

E rY Yus ´ pE rY sq
2

E rY 2s ´ pE rY sq
2 “

E rY Yus ´
`

1
2E rY ` Yus

˘2

1
2E rY 2 ` Y 2

u s ´
`

1
2E rY ` Yus

˘2 . (6.24)

We generate NMC realizations of Y and Yu by sampling (independently) Xu, X„u, U , X̃„u, and Ũ . The
expectations in Eq. (6.24) can be estimated by sample statistics, which leads to

Ŝu “

1
NMC

řNMC

i“1 ypiq y
piq
u ´

´

1
2NMC

řNMC

i“1

´

ypiq ` y
piq
u

¯¯2

1
2N

řNMC

i“1

ˆ

pypiqq
2

`

´

y
piq
u

¯2
˙

´

´

1
2NMC

řNMC

i“1 ypiq ` y
piq
u

¯2
, (6.25)

where ypiq “ QGLaM

`

upiq;xu,x„u

˘

and ypiq
u “ QGLaM

`

ũpiq;xu, x̃„u

˘

are the i-th realizations of Y and Yu,
respectively.

For QoI-based Sobol’ indices defined in Eq. (6.6), we follow the same procedure by replacing QGLaM by
qGLaM.
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6.3.5.3 PCE-based estimates

As discussed in Section 6.3.5.1, estimating the considered two types of Sobol’ indices of a GLaM surrogate model
is reduced to studying two deterministic functions QGLaMpu;xq and qGLaMpxq. According to the definition
in Section 6.2.1, X has mutually independent components, which are also independent of U „ Up0, 1q. Both
functions can be represented by polynomial chaos expansions (see Section 6.3.2):

QGLaMpu;xq « QPC
GLaMpu;xq “

ÿ

αPAQ

cQαψ
Q
αpu,xq,

qGLaMpxq « qPC
GLaMpxq “

ÿ

αPAq

cqαψαpxq,
(6.26)

where AQ Ă NM`1 and Aq Ă NM are the truncated sets defining the basis functionsψαpxq’s andψQ
αpu,xq’s,

respectively, as discussed in Eq. (6.14). Note that each multi-index in AQ has a dimension M ` 1 because of
the additional variable u, and the univariate basis functions of u in ψQ

αpu,xq are Legendre polynomials (Xiu
and Karniadakis, 2002). The advantage of using a PCE surrogate is that its Sobol’ indices (of any order) can be
analytically calculated by post-processing its coefficients (Sudret, 2008).

Several methods have been developed to construct PCEs for deterministic functions with given basis func-
tions, such as the projection method (Ghanem and Spanos, 2003) and ordinary least-squares (Berveiller et al.,
2006). To both determine the truncated set and estimate the associated coefficients, we opt for the hybrid-
LAR algorithm (Blatman and Sudret, 2011). This method selects the most important basis functions among a
candidate set, before ordinary least-squares is used to compute the coefficients. The selection procedure of the
algorithm is based on least angle regression (LAR; Efron et al., 2004).

Practically, we first generateNPC samples by sampling X andU . They are used to evaluate the target func-
tion QGLaMpu;xq or qGLaMpxq to obtain the associated model responses. Then, we apply the hybrid-LAR
algorithm with the generated data to construct the PCE surrogate. Finally, the Sobol’ indices are calculated by
post-processing the PC coefficients.

In the following examples, we use the PCE-based estimates for the Sobol’ indices of the GLaM surrogate
model, instead of performing Monte Carlo simulations, as the accuracy of the former turned out to be extremely
good.

6.4 Examples

In this section, we illustrate the performance of GLaMs for global sensitivity analysis on an analytical example
and two case studies. We focus on the classical first-order Sobol’ indices and QoI-based total Sobol’ indices. The
choice of the QoI depends on the focus of the example. To characterize the examples, we define the signal-to-
noise ratio of a stochastic simulator by

SNR “
Var rE rY | Xss

E rVar rY | Xss
“

Var rmpXqs

Var rY s ´ Var rmpXqs
. (6.27)

This quantity gives the ratio between the variance ofY explained by the mean functionmpxq and the remaining
variance.
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We use Latin hypercube sampling (McKay et al., 1979) to generate the experimental design. The stochastic
simulator is evaluated only once on each combination of input parameters. The associated output values are
used to construct surrogates with the proposed estimation procedure introduced in Section 6.3.4.

To assess the overall surrogate quality, we define the error measure

εQ
def
“

E
”

pQY |XpU ;Xq ´QGLaMpU ;Xqq
2
ı

Var rQY |XpU ;Xqs
“

E
”

pQY |XpU ;Xq ´QGLaMpU ;Xqq
2
ı

Var rY s
(6.28)

where QY |Xpu;xq is the conditional quantile function of the model, QGLaMpu;xq is that of the GLaM fol-
lowing the definition in Eq. (6.23), and U „ Up0, 1q. This error has a form similar to the Wasserstein distance
between probability measures (Villani, 2009). In addition, we also define an error measure to assess the accuracy
of estimating the quantity of interest QoIpxq whose approximation by GLaM is denoted by qGLaMpxq

εq
def
“

E
”

pQoIpXq ´ qGLaMpXqq
2
ı

Var rQoIpXqs
. (6.29)

The expectations in Eq. (6.28) and Eq. (6.29) are estimated by averaging the error over a test set Xtest of size 105.
Experimental designs of various size N are investigated to study the convergence of the proposed method.

For each size, 50 independent realizations of these experimental designs are carried out to account for statistical
uncertainty in the random design. As a consequence, estimates for each scenario are represented by box plots.

6.4.1 A three-dimensional toy example

The first example is defined as follows:

Y px, ωq “ sinpx1q ` 7 sin2
px2q ` exp

´x1

π
` x3 Zpωq

¯

(6.30)

where X1, X2 „ Up0, 2πq, X3 „ Up0.25, 0.75q are independent input variables, and Z „ N p0, 1q denotes
the latent variable that introduces the intrinsic randomness. The response distribution is a shifted lognormal
distribution: the shift is equal to sinpx1q ` 7 sin2

px2q and the lognormal distribution is parameterized by
LN

`

x1
π
, x3

˘

. As a result, this stochastic simulator has a nonlinear location function and a strong heteroskedas-
tic effect: the variance varies between 0.069 and 72.35. Besides, this example has a mild signal-to-noise ratio
SNR “ 1.4. This implies that the input variables can explain around 58% of the total variance of Y (i.e.,
St1,2,3u “ 0.58).

Figure 6.1 compares the PDFs predicted by a GLaM built on an experimental design ofN “ 1,000 with the
reference response PDFs of the simulator. The results show that the developed algorithm correctly identifies the
shape of the underlying shifted lognormal distribution. Moreover, the PDF supports and tails are also accurately
approximated.

We consider the differential entropy hpxq (Azzi et al., 2020) as the QoI in this example. Because the ana-
lytical response distribution and entropy are known, we investigate the convergence of GLaM in terms of the
conditional quantile function estimation Eq. (6.29) and the entropy estimation Eq. (6.28). The size of exper-
imental design varies among N P t250; 500; 1,000; 2,000; 4,000u. Note that the entropy of a GLD does not
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Figure 6.1: Toy example — Emulated response PDFs,N “ 1,000
.

have a closed form. Therefore, we use 104 Monte Carlo samples to estimate this quantity of a GLaM for each x

in the test set.
In addition, we consider another model where we approximate the response distribution with a normal

distribution. The mean and variance (as functions of x) for such an approximation are chosen as the true mean
and variance of the original. In other words, this model represents the “oracle” of Gaussian-type mean-variance
models.

The results are summarized in Figure 6.2. The proposed method exhibits a clear convergence with respect
to N for both Qpu;xq and hpxq estimations. We observe in Figure 6.2a that the decay of εQ has two regimes
separated by N “ 1,000. For a small N , the error coming from the use of finite samples dominates the esti-
mation accuracy. When we consider a large data set, the error mainly comes from the model misspecification,
because the stochastic simulator cannot be exactly represented by a GLaM. This phenomenon is not significant
for the entropy estimation, which demonstrates a relatively consistent decay.

The accuracy of the oracle normal approximation is reported with red dash lines in Figure 6.2. The error
shown is only due to model misspecifications (because the true response distribution is not Gaussian) since
we use the underlying true mean and variance. For both measures, the medians of the errors of GLaMs built
on N “ 250 model runs are smaller than those of the normal approximation. For N ě 1,000, the GLaM
clearly outperforms the oracle of Gaussian-type mean-variance models. This example illustrates the limits of
such Gaussian-type models in practice.

Finally, the errors of GLaMs are below 0.05 for N ě 1,000 indicating that the surrogate is able to explain
over 95% of the variance of the target functions.

For sensitivity analysis, we focus on the classical first-order and the entropy-based total Sobol’ indices. Fig-
ure 6.3 and Figure 6.4 show the convergence of GLaMs for estimating these quantities of each input variable.
The reference values are derived from Eq. (6.30). As shown by the two figures, this toy example is designed to
haveX2 as the most important variable according to the classical first-order Sobol’ indices, which also indicates
that X2 contributes the most to the variance of the mean function mpXq. In contrast, it has zero effect to the
entropy. In comparison,X1 is the dominant variable for the variation of the entropy hpXq. BecauseX3 mainly
controls the shape of the response distribution (especially the right tail), it has a minor first-order effect to the
mean function, which leads to a very small value of S3. In contrast, the entropy depends on the distribution
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(a) Conditional quantile function estimation (b) Entropy estimation

Figure 6.2: Toy example — Convergence study. The blue lines denote the errors averaged over 50 repetitions
of the full analysis. The red dash lines are the corresponding errors of the model assuming that the response
distribution is normal with the true mean and variance

shape, and thus Sh
T3

is not negligible. The results reveal that GLaMs capture this characteristic and yield accu-
rate estimates for both classical Sobol’ indices and entropy-based Sobol’ indices.

Similar to Figure 6.2, we also reported the sensitivity indices calculated by using Gaussian approximations
with the true mean and variance. Because the classical first-order indices depend only on the mean and vari-
ance functions, the oracle Gaussian model gives the exact values. Therefore, we showed only the results for the
entropy-based Sobol’ indices in Figure 6.4. It is clear that the Gaussian approximation with the true mean and
variance demonstrates a significant bias. In contrast, GLaMs show nearly no bias and approximate much more
accurately the reference values.

Figure 6.3: Estimation of the classical first-order Sobol’ indices. The black lines are the reference values, and the
blue lines denote the average values of 50 repetitions of the full analysis.
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Figure 6.4: Estimation of the entropy-based total Sobol’ indices. The black lines are the reference values, and
the blue lines denote the average values of 50 repetitions of the full analysis. The red dash lines correspond to
the indices calculated from the normal approximation using the true mean and variance

6.4.2 Heston model

In this example, we perform the global sensitivity analysis for a Heston model used in mathematical finance
(Heston, 1993). The Heston model describes the evolution of a stock priceYt. It is an extension of the geometric
Brownian motion by modeling the volatility as a stochastic process vt, instead of considering it as constant.
Hence, the Heston model is a stochastic volatility model and consists of two coupled stochastic differential
equations:

dYt “ µYtdt`
?
vtYtdW

1
t ,

dvt “ κpθ ´ vtqdt` σ
?
vtdW

2
t ,

(6.31)

with
E
“

dW 1
t dW

2
t

‰

“ ρdt, (6.32)

where W 1
t and W 2

t are two Wiener processes with correlation coefficient ρ, which introduce the intrinsic ran-
domness of the stochastic model. The model parameters x “ pµ, κ, θ, σ, ρ, v0q

T are summarized in Table 6.1.
The range of the last five input variables are selected based on the parameters calibrated from real data (S&P 500
and Eurostoxx 50) (Rouah, 2013). The range of the first variable µ is set to r0, 0.1s to take the uncertainty of
the expected return rate into account. Without loss of generality, we set Y0 “ 1.

Table 6.1: Parameters of the Heston model

Variable Description Distribution
µ Expected return rate Up0, 0.1q

κ Mean reversion speed of the volatility Up0.3, 2q

θ Long term mean of the volatility Up0.02, 0.07q

σ Volatility of the volatility Up0.2, 0.4q

ρ Correlation coefficient between dW 1
t and dW 2

t Up´1,´0.5q

v0 Volatility at time 0 Up0.02, 0.07q
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In this example, we are interested in the stock price after one year, i.e., Ytpxq with t “ 1. A closed form
solution to Eq. (6.31) is generally not available. To get samples ofY1pxq, we simulate the entire time evolution of
Yt and vt for a given x using Euler integration scheme with ∆t “ 0.001 over the time interval r0, 1s. Note that
when simulating the bivariate process pYt, vtq, a problem may happen: since vt follows a Cox–Ingersoll–Ross
process (Rouah, 2013), the simulation scheme can generate negative values for vt. To overcome the problem,
we apply the full truncation scheme, which replaces the update of vt by max pvt, 0q (Rouah, 2013).
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Figure 6.5: Heston model — Emulated response PDFs,N “ 2,000

Figure 6.5 shows two response PDFs predicted by a surrogate built upon N “ 2,000 model runs. The
reference histograms are obtained from 104 repeated model runs with the same input parameters. We observe
that the variance of the response distribution is not constant, e.g., 0.065 and 0.027 for the two illustrated PDFs.
Moreover, the PDF shape varies: it changes from symmetric to left-skewed distributions depending on the
model parameters. This would be difficult to approximate with a simple distribution family such as normal or
lognormal. In contrast, GLaMs are able to accurately capture this shape variation, because of the flexibility of
generalized lambda distributions.

Even though a closed form distribution of Y1pxq does not exist, the mean functionmpxq “ E rY1pxqs can
be derived analytically:

mpxq “ exppx1q “ exppµq. (6.33)

As a result, we use εm defined in Eq. (6.29) with QoIpxq “ mpxq to assess the convergence of the surrogate. In
addition, we also consider the expected payoff of an European call option. The payoff Cpxq and the expected
payoffmCpxq of an European call option are defined by

Cpxq “ max t0, Y1pxq ´Ku ,

mCpxq “ E rCpxqs ,
(6.34)

where K is the strike price and set to 1 in the following analysis. In finance, mC not only is important for
making investment decisions but also has a very similar form to the option price (Shreve, 2004). For the Heston
model, numerical methods based on the Fourier transform have been developed to calculate the expected payoff
without the need for Monte Carlo simulations (Heston, 1993). For the GLaM surrogate, this quantity can also
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be calculated numerically (see Section 6.a.1). As a second performance index, we compute the associated error
denoted by εC (Eq. (6.29)) for the convergence study.

Figure 6.6 shows box plots of the errors εm and εc forN P t500; 1,000; 2,000; 4,000; 8,000; 16,000u. Both
εm and εc are relatively large for N ď 2,000. This is mainly due to the fact that the variability of the model
response is dominated by the intrinsic randomness: the model parameters X altogether are only able to explain
about 2% of the variance of the output (i.e.,St1,...,6u “ 0.02). In other words, the stochastic simulator has a very
small signal-to-noise ratio SNR “ 0.02{p1 ´ 0.02q « 0.02. Since GLDs are flexible, a few data scattered in a
moderately high dimensional space may not provide enough information of the response distribution variation.
We observe that for N ď 1,000, the selection procedure proposed in Algorithm 6.1 can choose λPC

1 pxq and
λPC

2 pxq being only constant. Such a model is too simple and thus fails to capture the variations of the scalar
quantities. Consequently, it is necessary to have enough data to achieve an accurate estimate: when increasing
the size ofN of the LHS design, we observe a clear decay of the errors.

(a) Mean estimation (b) Expected payoff estimation

Figure 6.6: Heston model — Convergence study. The blue lines denote the errors averaged over 50 repetitions
of the full analysis.

We now study the convergence for the Sobol’ indices estimations. According to Eq. (6.33), the mean func-
tion depends only on the first input variable X1, which contributes little (2%) to the total variance of Y1pXq.
This implies that the classical Sobol’ indices are not informative (they are either 0 or very close to 0). How-
ever, we cannot ignore the variability of the input variables because the response distribution demonstrates a
clear dependence on the input parameters, as shown in Figure 6.5. Therefore, we focus on the accuracy of the
expected-payoff-based total Sobol’ indices, denoted by SC

Tu
.

As a second quantity of interest, we also calculate the total Sobol’ indices associated to the 95%-superquantile,
referred to asSsq

Tu
. Superquantiles are known as the conditional value-at-risk, which is an important risk measure

in finance (Acerbi, 2002). The α-superquantile of a random variable Y is defined by

sqα “ E rY | Y ě qαs , (6.35)
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6. GSA for stochastic simulators based on GLaMs

where qα is the α-quantile of Y . This quantity corresponds to the conditional expectation of Y being larger
than its α-quantile. For the Heston model, this quantity does not have an analytical closed form, whereas sqα
of a GLD can be derived analytically (see Section 6.a.1).

We use 105 Monte Carlo samples to evaluate (numerically) the functionmCpxq to obtain a reference value
for each SC

Tu
. To calculate the Sobol’ indices associated to the 95%-superquantile sq95pXq, it is necessary to

evaluate the function sq95pxq. Because it cannot be analytically derived for the Heston model, we use 104 repli-
cations to calculate the sample 95%-superquantile ŝq95pxq as an estimate for sq95pxq. Then, we treat it as a
deterministic function and use 104 samples to estimate each Sobol’ index. This indicates that a total number
of 7 ˆ 108 model runs are performed to obtain the six reference 95%-superquantile-based total Sobol’ indices.
Because only 104 samples are used to estimate each Ssq

Tu
, we use bootstraps (Efron, 1979) to calculate the 95%

confidence interval to account for the uncertainty of the Monte Carlo simulation.

Figure 6.7: Estimation of the expected-payoff-based total Sobol’ indices. The black lines are the reference values,
and the blue lines denote the average values of 50 repetitions.

Figures 6.7 and 6.8 confirm and quantify the convergence of GLaMs to estimate SC
Tu

and Ssq
Tu

. For the ex-
pected payoffmCpxq, the first variableµ is the most important. The estimation of its total effect converges from
below the reference value, and we observe a bias in the estimate. Nevertheless, withN large enough (ě 4,000),
the GLaM can always correctly identify its importance (the bias is 0.072 for ě 8,000 and 0.055 for ě 16,000),
and each classical first-order Sobol’ index of the other five variables converge to the reference line. The 95%-
superquantile suggests a different ranking: µ, θ, ρ and v0 (corresponding to the first, third, fifth and sixth input
variable, respectively) have similar total effects, which are superior to those ofκ andσ (i.e., the second and fourth
input variables). In addition, none of the input variables has nearly 0 total effect. The GLaM surrogate model
accurately reproduces the phenomena. Moreover, the estimates generally vary around the reference values, and
largerN results in narrower spread of the box plots.

As a conclusion, GLaM surrogates allow us to represent accurately the QoI of the Heston model and carry
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Figure 6.8: Estimation of the 95%-superquantile-based total Sobol’ indices. The blue lines denote the average
value of 50 repetitions of the full analysis. The black lines are the reference values, and the dashed lines corre-
spond to the 95% confidence intervals.

out a detailed sensitivity analysis at the cost ofOp104q runs of the stochastic simulator. Note that in this example
the leave-one-out errors of the polynomial chaos expansions built on the GLaM surrogates are of the order of
op10´4q, which justifies the use of PCE-based Sobol’ indices.

6.4.3 Stochastic SIR model

In this example, we apply the proposed method to a stochastic Susceptible–Infected–Recovered (SIR) model in
epidemiology (Britton, 2010). This model simulates the spread of an infectious disease, which can help conduct
appropriate epidemiological intervention to minimize the social and ethical impacts during the outbreak.

In a SIR model, a population of size Pt at time t can be partitioned into three groups: susceptible, infected
and recovered during the outbreak of an epidemic. Susceptible individuals are those who can get infected by
contacting an infectious person. Infected individuals are suffering from the disease and are contagious. They can
recover (therefore classified as recovered) and become immune to future infections. The number of individuals
within each group is denoted by Et, It and Rt, respectively. Without differentiating individuals, these three
quantities characterize the configuration of the population at a given time t. Hence, their evolutions represent
the spread of the epidemic. In this study, we consider a fixed population without newborns and deaths, i.e., the
total population size is constant, Pt “ P . As a result, Et, It and Rt satisfy the constraint Et ` It ` Rt “ P ,
and thus only the time evolution ofEt and It is necessary to represent the disease evolution.

Without going into detailed assumptions of the model, we illustrate the system dynamics in Figure 6.9,
where the black icons represent susceptible individuals, the red icons indicate infected persons, and the blue
icons are those recovered. Suppose that at time t the population has the configuration pEt, Itq (top left figure
of Figure 6.9). Infected individuals can meet susceptible individuals, or they may receive essential treatments
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6. GSA for stochastic simulators based on GLaMs

Figure 6.9: Dynamics of the stochastic SIR model: black icons denote susceptible individuals, red icons repre-
sent infected individuals, and blue icons are those recovered.

and recover from the disease. Hence, the next configuration has two possibilities: (1)CI , where one susceptible
individual is infected; (2) CR, where one infected person recovers. The population state evolving either to CI

orCR depends on two random variables, TI andTR, which denote the respective time to move to the associated
candidate configuration. Both random variables follow an exponential distribution, yet with different parame-
ters:

TI „ ExppλIq, λI “ β
EtIt
P

, (6.36)

TR „ ExppλRq, λR “ γIt, (6.37)

where β indicates the contact rate of an infected individual, and γ is the recovery rate. If TI ą TR,CI becomes
the next configuration at t ` TI with St`TI

“ Et ´ 1 and It`TI
“ It ` 1, and vice versa. This update step

iterates until timeT when IT “ 0. Because the population size is finite and the recovered individuals will not get
infected again, the total number of updates is finite (ď P ). This number is not a constant due to the updating
process, indicating that the amount of latent variables of this simulator is also random. Note that the evolution
procedure described here corresponds to the Gillespie algorithm (Gillespie, 1977).

In this case study, we set P “ 2,000. x “ pE0, I0, β, γq is the vector of input parameters. To account
for different scenarios, the input variables X are modeled as X1 „ Up1,600 , 1,800q, X2 „ Up20, 200q and
X3, X4 „ Up0.5, 0.7q. The uncertainty in the first two variables can be interpreted as lack of knowledge of the
initial condition. While the last two variables are affected by possible interventions, such as social distancing
measures that can reduce the contact rate β and increasing medical resources that improves the recovery rate γ.
We are interested in the total number of newly infected individuals during the outbreak, i.e., ET ´ E0. The
signal-to-noise ratio of this stochastic model is estimated to be SNR « 6.7, which is relatively large.

Figure 6.10 shows the response PDF estimation of the surrogate model built on an experimental design of
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N “ 1,000. The reference histograms are calculated from 104 repeated model runs with the same input values.
We observe that the response distribution changes from right-skewed to left-skewed distributions (so we can also
find symmetric distributions in between), which is correctly represented by the surrogate. In addition, GLaMs
also accurately approximate the bulk and the support of the response PDF.
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Figure 6.10: Stochastic SIR model — Emulated response PDFs,N “ 1,000

In this example, we investigate the convergence of GLaMs for estimating the classical first-order Sobol’ in-
dices and the standard-deviation-based total Sobol’ indices, denoted by Sσ

Tu
. To calculate the reference values,

we use 105 Monte Carlo samples for each classical Sobol’ index. Regarding the standard-deviation-based Sobol’
indices, we calculate the sample standard deviation σ̂pxq based on 104 replications. Then, we apply Monte Carlo
simulations with 104 samples to estimate the associated Sobol’ indices. The total cost to get reference values is
thus equal to 5 ˆ 108. As in the previous example, we use bootstraps to calculate the 95% confidence intervals.

Figure 6.11: Estimation of the classical first-order Sobol’ indices. The black lines are the reference values, and
the blue lines denote the average values of 50 repetitions of the full analysis.

Figures 6.11 and 6.12 show the results of the convergence study. In terms of the classical Sobol’ indices, the
GLaM yields accurate estimates even when N “ 250: the box plots scatter around the reference values with a
small variability. Among the four input variables, the second one I0 that corresponds to the number of infected
individuals at time 0 is the most important. It is followed by the contact rate and the recovery rate, which show
similar first-order effect. As a result, performing medical test to better determine I0 would be the most effective
way to reduce the variance of the output. In contrast, Figure 6.12 suggests that controlling the contact rate and
recovery rate would be the best measure to reduce the variation of σpXq. For estimating the associated Sobol’
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6. GSA for stochastic simulators based on GLaMs

Figure 6.12: Estimation of the standard-deviation-based total Sobol’ indices. The blue lines denote the average
values of 50 repetitions of the full analysis. The black lines are the reference values, and the dashed lines corre-
spond to the 95% confidence intervals.

indices, the GLaM converges within the 95% confidence intervals of the Monte Carlo estimates, and the spread
of the box plots decreases significantly withN increasing.

Finally, we remark that when higher-order Sobol’ indices are of interest, Monte Carlo simulations require
additional runs of the original model. For example, 4 ˆ 108 more model evaluations should be performed
to obtain the reference values for the standard-deviation-based second-order Sobol’ indices. This results in a
large amount of total model runs, which become impracticable even with cheap models. In contrast, GLaM
surrogates can be used without additional cost: the PCE-based method presented in Section 6.3.5.3 provides
analytical higher-order indices by post-processing the PC coefficients. In this example, the leave-one-out errors
of PCE built on the GLaM surrogates are of the order Op10´3q, which justifies the use of PCE estimates. Based
on the surrogate model, we observe that the largest standard-deviation-based second-order Sobol’ indices, which
translate parameters interactions, are I0 and β, I0 and γ. Both have a value 0.09, while the other second-order
interactions are very small. As illustrated in Figure 6.12, I0 has a total effect Sσ

T2
“ 0.26. Moreover, it has a

relatively small first-order effect Sσ
2 “ 0.05. This implies that I0 mainly affects the variance of σpXq through

its interactions with β and γ.

6.5 Conclusions

In this paper, we discuss the nature and focus of three extensions of Sobol’ indices to stochastic simulators:
classical Sobol’ indices, QoI-based Sobol’ indices and trajectory-based Sobol’ indices. The first two types are
of interest because of their versatility and applicability to a broad class of problems. We propose to use the
generalized lambda model as a stochastic emulator to estimate the considered indices. This surrogate model
aims at emulating the entire response distribution, instead of focusing only on some scalar statistical quantities,
e.g., mean and variance. More precisely, it relies on using the four-parameter generalized lambda distribution
to approximate the response distribution. The associated distribution parameters as functions of the input
are represented by polynomial chaos expansions. Such a surrogate can be constructed without the need for
replications, and thus it is not restricted to a special data structure.

Because of the special formulation of GLaM, the considered sensitivity indices can be estimated by directly
working with deterministic functions. This allows applying the methods developed for deterministic simula-
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tors, namely estimators based on Monte Carlo simulations and on polynomial chaos expansions. In this paper,
we suggest the latter to post-process the surrogate model to achieve high computational efficiency.

The performance of the proposed method for estimating various Sobol’ indices is illustrated on three exam-
ples with different signal-to-noise ratios. The toy example is designed to have a strong heteroskedastic effect. It
shows the general convergent behavior of GLaMs for approximating the conditional quantile functions and es-
timating the entropy of the response distributions. The second example is a Heston model from mathematical
Finance. This case study has a very small signal-to-noise ratio and demonstrates a shape variation of the response
PDF. The surrogate generally yields accurate estimate of the Sobol’ indices associated to the expected payoff and
the 95%-superquantile. The last example is a stochastic SIR model in epidemiology, in which GLaMs exhibit
robust estimates of the classical Sobol’ indices and the standard-deviation-based Sobol’ indices. All three exam-
ples have a different ranking of the input variables depending on the type of Sobol’ indices, which is correctly
captured by GLaMs when comparing to reference values obtained by extremely costly Monte Carlo simula-
tions. Fairly accurate results are obtained at a cost ofO p104q runs of the simulator compared to reference values
based on O p108q runs by a brute force approach.

In future work, we plan to develop algorithms to improve GLaMs for small data sets. Besides, we will
investigate GLaMs for estimating distribution-based sensitivity indices (Borgonovo, 2007; Huoh, 2013). The
estimation of these indices usually requires a large number of model runs to infer the conditional PDF, which
can be easily obtained from GLaMs. In addition, appropriate contrast measures between distributions, such as
the Wasserstein metric, can be developed for sensitivity analysis in the context of stochastic simulators. Finally,
developing sensitivity indices for stochastic simulators with dependent input variables will allow engineers to
tackle a broader group of problems.
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6.a Appendix

6.a.1 Some properties of GLDs

The mean and variance of a GLD can be calculated by

m “ λ1 ´
1
λ2

ˆ

1
λ3 ` 1

´
1

λ4pxq ` 1

˙

, (6.38)

v “
pd2 ´ d2

1 q

λ2
2

, (6.39)
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where tdk : k “ 1, 2u are defined by

d1 “
1
λ3

Bpλ3 ` 1, 1q ´
1
λ4

Bp1, λ4 ` 1q,

d2 “
1
λ2

3
Bp2λ3 ` 1, 1q ´

2
λ3λ4

Bpλ3 ` 1, λ4 ` 1q `
1
λ2

4
Bp1, 2λ4 ` 1q,

(6.40)

with B denoting the beta function.
The expected payoff defined in Eq. (6.41) of a GLD with the strike priceK is given by

mC
def
“ E rmax tY ´K, 0us

“

ˆ

λ1 ´
1

λ2λ3
`

1
λ2λ4

´K

˙

p1 ´ uKq `
1
λ2

ˆ

1 ´ uλ3`1
K

λ3 pλ3 ` 1q
´

p1 ´ uKqλ4`1

λ4 pλ4 ` 1q

˙

.
(6.41)

where uK is the solution of the nonlinear equation:

QpuK ;λq “ K. (6.42)

The α-superquantile sqα defined in Eq. (6.35) of a GLD has a closed-form:

sqα
def
“ E rY | Y ą qαs

“ λ1 ´
1

λ2λ3
`

1
λ2λ4

`
1

p1 ´ αqλ2

ˆ

1 ´ αλ3`1

λ3 pλ3 ` 1q
´

αλ4`1

λ4 pλ4 ` 1q

˙

.
(6.43)
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Abstract
In the context of uncertainty quantification, computational models are required to be repeatedly evaluated.
This task is intractable for costly numerical models. Such a problem turns out to be even more severe for stochas-
tic simulators, the output of which is a random variable for a given set of input parameters. To alleviate the
computational burden, surrogate models are usually constructed and evaluated instead. However, due to the
random nature of the model response, classical surrogate models cannot be applied directly to the emulation
of stochastic simulators. To efficiently represent the probability distribution of the model output for any given
input values, we develop a new stochastic surrogate model called stochastic polynomial chaos expansions. To this
aim, we introduce a latent variable and an additional noise variable, on top of the well-defined input variables,
to reproduce the stochasticity. As a result, for a given set of input parameters, the model output is given by a

1First published in International Journal of Uncertainty Quantification in Volume 13, Issue 2, 2023, published by Begell House,
Inc. Copyright © by Begell House, Inc.
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function of the latent variable with an additive noise, thus a random variable. As the latent variable is purely
artificial and does not have physical meanings, conventional methods (pseudo-spectral projections, collocation,
regression, etc.) cannot be used to build such a model. In this paper, we propose an adaptive algorithm which
does not require repeated runs of the simulator for the same input parameters. The performance of the pro-
posed method is compared with the generalized lambda model and a state-of-the-art kernel estimator on two
case studies in mathematical finance and epidemiology and on an analytical example whose response distribu-
tion is bimodal. The results show that the proposed method is able to accurately represent general response
distributions, i.e., not only normal or unimodal ones. In terms of accuracy, it generally outperforms both the
generalized lambda model and the kernel density estimator.

7.1 Introduction

In modern engineering, computational models, a.k.a. simulators, are commonly used to simulate different op-
erational scenarios of complex systems in silico. These models help engineers assess the reliability, control the
risk, and optimize the system components in the design phase. Conventional simulators are usually determinis-
tic: a given set of input parameters has a unique corresponding model response. In other words, repeated model
evaluations with the same input values will always give identical results. In contrast, stochastic simulators return
different outcomes of the model response when run twice with the same input parameters.

Stochastic simulators are widely used in engineering and applied science. The intrinsic stochasticity typi-
cally represents some uncontrollable effect in the system (McNeil et al., 2005; Britton, 2010). For example, in
mathematical finance, Brownian motions are commonly introduced to represent stochastic effects and volatil-
ity of the stock market (McNeil et al., 2005). In epidemic simulations, additional random variables on top of
the well-defined characteristic values of the population are used to simulate the stochastic spread of a disease
(Britton, 2010).

Mathematically, a stochastic simulator can be viewed as a function

Ms : DX ˆ Ω Ñ R,

px, ωq ÞÑ Mspx, ωq,
(7.1)

where DX is the domain of the input parameters, and Ω denotes the probability space that represents the inter-
nal stochasticity. The latter is due to some latent random variables Ξpωq which are not explicitly considered as
a part of the input variables. The stochastic simulator can then be considered as a deterministic function of the
input vector x and the latent variables Ξ. However, it is assumed that one can only control x but not Ξ when
evaluating the model. Hence, when the value ofx is fixed butΞ is generated randomly following the underlying
probability distribution, the output remains random.

In practice, each model evaluation for a fixed vector of input parameters x0 uses a particular realization of
the latent variables, i.e., a particular ω0 P Ω that is usually controlled by the random seed. Thus, it provides
only one realization of the output random variable. In order to fully characterize the associated distribution of
Mspx0, ¨q, it is necessary to repeatedly run the stochastic simulator with the same input parameters x0. The
various output values obtained by this procedure are called replications in the sequel.
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In the context of uncertainty quantification or optimization, various input values should be investigated.
To this aim, multiple runs of the simulator are needed for many different inputs and for many replications.
This becomes impracticable for high-fidelity costly numerical models. In this context, surrogate models have
received tremendous attention in the past two decades. A surrogate model is a proxy of the original model
constructed from a limited number of model runs. However, standard surrogate models such as polynomial
chaos expansions (Ghanem and Spanos, 2003) and Gaussian processes (Rasmussen and Williams, 2006) that
have been successfully developed for deterministic simulators are not directly applicable to emulating stochastic
simulators due to the random nature of the latter.

In the past decade, large efforts have been dedicated to estimating some summary quantities of the response
distribution which are deterministic functions of the input.

For the mean and variance of the response distribution, Ankenman et al. (2010) proposed using replications
to estimate the mean and variance for various input values. The mean function is represented by a Gaussian
process, for which the variance estimated from the replications is cast as a heteroskedastic effect. Marrel et al.
(2012) modeled both the mean and variance by Gaussian processes. The estimation procedure is similar to the
feasible generalized least-squares (Wooldridge, 2013) that consists in alternating between fitting the mean from
the data and the variance from the residuals. This approach does not require replications. Binois et al. (2018)
proposed jointly optimizing the likelihood to represent the mean and variance by Gaussian processes, which is
mainly designed for data with replications.

To estimate the quantiles of the response distribution, Koenker and Bassett (1978) proposed optimizing the
check function, which established the quantile regression method. Plumlee and Tuo (2014) suggested estimating
the quantiles by performing replications and building a Gaussian process from the estimated quantiles. The
reader is referred to Torossian et al. (2020) for a detailed review.

The methods listed above produce only targeted summary quantities. However, far less literature has been
devoted to the emulation of the entire probability distribution function of the response random variable for a
given input. Three types of methods can be found in the literature.

Moutoussamy et al. (2015) proposed using replications to characterize the response distribution for dif-
ferent input values. Then, the fitted distributions (based on replications) for the discrete input values can be
extended to the entire input space by parametric or nonparametric techniques. Since this approach capitalizes
on replications for local inference, it is necessary to generate many replications to obtain an accurate surrogate
(Zhu and Sudret, 2020), i.e., in the order of 103 ´ 104 (Moutoussamy et al., 2015).

In the second approach, a stochastic simulator is considered as a random field indexed by the input variables
(Azzi et al., 2019; Lüthen et al., 2022b). When fixing the internal stochasticity ω in Eq. (7.1), the stochastic
simulator is a mere deterministic function of x, called a trajectory. This function can be emulated by standard
surrogate methods. Collecting different trajectories, one can approximate the underlying random field using
Karhunen–Loève expansions. Therefore, it is necessary to fix the internal randomness to apply this approach,
which is practically achieved by controlling the random seed.

The third type of methods is referred to as the statistical approach and does not require replications or ma-
nipulating the random seed. If the response distribution belongs to the exponential family, generalized linear
models (McCullagh and Nelder, 1989) and generalized additive models (Hastie and Tibshirani, 1990) can be ef-
ficiently applied. For arbitrary types of response distributions, nonparametric estimators developed in statistics
can be applied, namely kernel density estimators (Fan and Gijbels, 1996; Hall et al., 2004) and projection esti-
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mators (Efromovich, 2010). However, nonparametric estimators are known to suffer from the curse of dimen-
sionality, which indicates that the necessary amount of data increases drastically with increasing input dimen-
sionality. To balance between very restrictive parametric assumptions and nonparametric approaches, Zhu and
Sudret (2021a,b) proposed using generalized lambda distributions to approximate the response distributions.
The four distribution parameters are seen as functions of the input and further represented by polynomial chaos
expansions. The main limitation of this approach is that it cannot produce multimodal distributions, however.

In this paper, we develop an original approach that directly emulates the functional representation in Eq. (7.1).
More precisely, we extend the classical polynomial chaos expansions to emulating stochastic simulators. We
introduce a latent variable and a noise variable to reproduce the random behavior of the model output. We
develop an adaptive method to construct such a surrogate model. This novel stochastic surrogate is parametric
and shown to be not limited to unimodal distributions.

The remainder of the paper is organized as follows. In Section 7.2, we first review the standard polynomial
chaos representations. In Section 7.3, we present a novel formulation named stochastic polynomial chaos expan-
sions which is meant for stochastic simulators. In Section 7.4, we present the algorithms to adaptively build
such a surrogate from data without the need for replications. We illustrate the performance of the proposed
method on a complex analytical example and on case studies from mathematical finance and epidemiology in
Section 7.5. Finally, we conclude the main findings of the paper and provide outlooks for future research in
Section 7.6.

7.2 Reminder on polynomial chaos expansions

Polynomial chaos expansions (PCEs) have been widely used in the last two decades to emulate the response of
deterministic simulators in many fields of applied science and engineering. Consider a deterministic modelMd

which is a function that maps the input parameters x “ px1, x2, . . . , xMq
T

P DX Ă RM to the scalar output
y “ Mdpxq P R. In the context of uncertainty quantification, the input vector x is affected by uncertainties
and thus modeled by a random vector X with prescribed joint probability density function (PDF) denoted by
fX . In the sequel, we focus on the case where the input parameters are independent for simplicity. Therefore,
the joint PDF is expressed by

fXpxq “

M
ź

j“1

fXj
pxjq, (7.2)

where fXj
is the marginal PDF of the input random variable Xj . Note that in the case where the input vector

X has dependent components, it is always possible to transform them into independent ones using the Nataf
or Rosenblatt transform (Nataf, 1962; Rosenblatt, 1952; Blatman and Sudret, 2010).

Because of the randomness in the input, the model response Y “ MdpXq becomes a random variable.
Provided that Y has a finite variance, i.e., Var rY s ă `8, the function Md belongs to the Hilbert space H of
square-integrable functions with respect to the inner product

xu, vyH
def
“ E rupXqvpXqs “

ż

DX

upxqvpxqfXpxqdx. (7.3)

Under certain conditions on the joint PDF fX (Ernst et al., 2012), the Hilbert space H possesses a polynomial

174



7.2. Reminder on polynomial chaos expansions

basis. As a result, Md can be represented by an orthogonal series expansion

Mdpxq “
ÿ

αPNM

cαψαpxq, (7.4)

where cα is the coefficient associated with the basis function ψα that is defined by the multi-index α. More
precisely, the multivariate basis function ψα is given by a tensor product of univariante polynomials

ψαpxq “

M
ź

j“1

ϕpjq
αj

pxjq, (7.5)

where αj indicates the degree of ψαpxq in its j-th component xj , and
!

ϕ
pjq

k : k P N
)

is the orthogonal poly-
nomial basis with respect to the marginal distribution fXj

ofXj , which satisfies

E
”

ϕ
pjq

k pXjqϕ
pjq

l pXjq

ı

“ δkl. (7.6)

In the equation above, the Kronecker symbol δkl is such that δkl “ 1 if k “ l and δkl “ 0 otherwise.

Following Eq. (7.5), the multivariate polynomial basis is defined from univariate orthogonal polynomials
that depend on the corresponding marginal distribution. For uniform, normal, gamma and beta distributions,
the associated orthogonal polynomial families are known analytically (Xiu and Karniadakis, 2002). For arbi-
trary marginal distributions, such a basis can be iteratively computed by the Stieltjes procedure (Gautschi, 2004).

The spectral representation in Eq. (7.4) involves an infinite sum of terms. In practice, the series needs to
be truncated to a finite sum. The standard truncation scheme is defined by selecting all the polynomials whose
total degree is small than a given value p, i.e., Ap,M “

!

α P NM ,
řM

j“1 αj ď p
)

. However, this will provide a
large number of terms for big values of p andM . A more flexible scheme is the hyperbolic (q-norm) truncation
scheme (Blatman and Sudret, 2011):

Ap,q,M “
␣

α P NM , }α}q ď p
(

, (7.7)

where p is the maximum polynomial degree, and q P p0, 1s defines the quasi-norm ∥α∥q “

´

řM

j“1 |αj |q
¯1{q

.
This truncation scheme allows excluding high-order interactions among the input variables but keeps univariate
effects up to degree p. Note that with q “ 1, we recover the full basis of total degree less than p.

To estimate the coefficients in Eq. (7.4), one popular approach relies on minimizing the mean-squared error
between the model response and the surrogate model. The basic method applies ordinary least-squares (OLS)
with a given set of basis (e.g., defined by a truncation scheme; Berveiller et al., 2006). In this approach, the model
is evaluated on a number of points called the experimental designX “

␣

xp1q, . . . ,xpNq
(

. The associated model
responses are gathered into y “

␣

yp1q, . . . , ypNq
(

with ypiq “ M
`

xpiq
˘

. The basis functions (and thus the
coefficients) can be arranged by ordering the multi-indices tαju

P

j“1. The regression matrix Ψ is defined by
Ψij “ ψαj

`

xpiq
˘

. By minimizing the mean-squared error between the original model and the surrogate on the
experimental design, the OLS estimator is given by

ĉ “ argmin
c

∥y ´ Ψc∥2
2 (7.8)
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With increasing polynomial degree or input dimension, the number of coefficients increases drastically.
As a consequence, a large number of models runs are necessary to guarantee a good accuracy, which becomes
intractable for costly simulators. To solve this problem, Blatman and Sudret (2011), Doostan and Owhadi
(2011), and Babacan et al. (2010) developed methods to build sparse PCEs by only selecting the most influential
polynomials. The reader is referred to the review papers by Lüthen et al. (2021, 2022a) for more details.

7.3 Stochastic polynomial chaos expansions

7.3.1 Introduction

Let us now come back to stochastic simulators. It would be desirable to have a spectral expansion such as
Eq. (7.4) for stochastic simulators. Indeed, the standard PCE has numerous features such as close-to-zero-cost
model evaluations, and clear interpretation of the coefficients in terms of sensitivity analysis (Sudret, 2008).
However, because the spectral expansion in Eq. (7.4) is a deterministic function of the input parameters, it can-
not be directly used to emulate stochastic simulators.

Considering the randomness in the input variables, the output of a stochastic simulator is a random variable.
The randomness of the latter comes from both the intrinsic stochasticity and the uncertain inputs. When fixing
the input parameters, the model response remains random. For the purpose of clarity, we denote by Yx the
random model response for the input parametersx and byY the model output containing all the uncertainties:
following Eq. (7.1), we have

Yx
def
“ Mspx, ωq, Y

def
“ MspXpωq, ωq. (7.9)

From a probabilistic perspective, Yx is equivalent to the conditional random variable Y | X “ x. Let
FY |X py |xq denote the associated cumulative distribution function (CDF). By using the probability integral
transform, we can transform any continuous random variable Z to the desired distribution, that is

Yx
d
“ F´1

Y |X pFZ pZq |xq , (7.10)

where FZ is the CDF of Z. The equality in Eq. (7.10) is to be understood in distribution, meaning that two
random variables on the left- and right-hand side follow the same distribution. In Eq. (7.10), the right-hand side
is a deterministic function of both x and z. As a result, assuming that Y has a finite variance, we can represent
this function using a PCE in the pX, Zq space, that is,

F´1
Y |X pFZ pZq |Xq “

ÿ

αPNM`1

cαψα pX, Zq . (7.11)

For a given vector of input parameters x, the expansion is a function of the artificial latent variable Z, thus a
random variable

Yx
d
“

ÿ

αPNM`1

cαψα px, Zq . (7.12)
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Then, we apply a truncation scheme A (e.g., Eq. (7.7)) to reduce Eq. (7.12) to a finite sum

Yx
d
« Ỹx “

ÿ

αPA

cαψα px, Zq . (7.13)

Even though Eq. (7.13) is derived from Eq. (7.11), it is more general. Eq. (7.10) offers one way to represent
the response distribution by a transform of a latent variable. But many other transforms can achieve the same
goal. For example, using Z „ N p0, 1q, both µpxq ` σpxqZ and µpxq ´ σpxqZ can represent the stochastic
simulator defined by Yx „ N pµpxq, σpxqq. Because we are interested in the response distribution, Eq. (7.13)
only requires that the polynomial transform of the latent variable produces a distribution that is close to the
response distribution, but the transform does not need to follow Eq. (7.11) exactly. Note that the latent variable
Z is only introduced to reproduce the stochasticity, but it does not allow us to represent the detailed data gen-
erating process of the simulator though. In other words, the PCE in Eq. (7.13) cannot emulate the response for
a particular replication, yet it provides a representation of the distribution of Yx.

7.3.2 Potential issues with the formulation in Eq. (7.13)

Building a PCE by least-squares as presented in Section 7.2 requires evaluating the deterministic function to
surrogate, which, in the case of stochastic simulators, is the left-hand side of Eq. (7.11). However, it is practically
impossible to evaluate such a function, as the response distribution F´1

Y |X is unknown. One common way to
fit the latent variable model defined in Eq. (7.13) is maximum likelihood estimation (Everitt, 1984; Desceliers
et al., 2006). In this section, we show some potential problems associated with a standard use of this method
for building Eq. (7.13), which calls for a novel fitting algorithm.

According to the definition in Eq. (7.13), Ỹx is a function of Z. Denote fZpzq the PDF of Z and DZ the
support of Z. Based on a change of variable (Jacod and Protter, 2004), we can obtain the PDF of Ỹx, which is
denoted by fỸx

py;x, cq. As a result, the (conditional) likelihood function of the coefficients c for a data point
px, yq is given by

lpc;x, yq “ fỸx
py;x, cq. (7.14)

Now, let us consider an experimental design X “
␣

xp1q, . . . ,xpNq
(

. The stochastic simulator is assumed
to be evaluated once for each point xpiq, yielding y “

␣

yp1q, . . . , ypNq
(

with ypiq “ Ms

`

xpiq, ωpiq
˘

. Note that
here we do not control the random seed, so the model outcomes for different values ofx are independent. Thus,
the likelihood function can be computed by the product of l

`

c;xpiq, ypiq
˘

over theN data points. As a result,
the maximum likelihood estimator is given by

ĉ “ argmax
c

N
ÿ

i“1

log l
`

c;xpiq, ypiq
˘

. (7.15)

Eq. (7.15) commonly serves as a basic approach for fitting parametric statistical models (including stochastic
surrogates; McCullagh and Nelder, 1989; Hastie et al., 2001; Zhu and Sudret, 2021a). However, the likelihood
function of the latent PCE defined in Eq. (7.13) is unbounded and can reach `8, making the maximization
problem Eq. (7.15) ill-posed.

To illustrate the issue, let us consider a simple stochastic simulator without input variables, which gives a
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realization ofY upon each model evaluation. Hence, the surrogate in Eq. (7.13) contains only the latent variable
Z, that is, Ỹ “ g pZq “

ř

αPA cαψα pZq. For simplicity, let gpzq be a second-degree polynomial expressed
by monomials gpzq “ a1z

2 ` a2z ` a3. Note that there is a one-to-one mapping between monomials and full
polynomial chaos basis, so one can map a “ pa1, a2, a3q

T to c through a change of basis. Using a change of
variable (Jacod and Protter, 2004), the PDF of Ỹ is

fỸ pyq “
fZpzq

|g1pzq|
1gpzqpyq, (7.16)

where 1 is the indicator function, and g1 denotes the derivative of g. For a given y0, certain choices of a can
make any given z0 with fZpz0q ‰ 0 satisfy gpz0q “ y0 and g1pz0q “ 0:

$

&

%

gpz0q “ y0

g1pz0q “ 0
ñ

$

&

%

a1z
2
0 ` a2z0 ` a3 ´ y0 “ 0

2a1z0 ` a2 “ 0
ñ

$

&

%

´z2
0 a

2
1 ` a3 ´ y0 “ 0

a2 “ ´2z0 a1

. (7.17)

The system of equations in Eq. (7.17) is underdetermined for a. Therefore, there are infinite combinations
of the coefficients a, and therefore of c, such that the denominator of Eq. (7.16) is zero and the numerator is
non-zero, which gives fỸ py0q “ `8. Consequently, the maximum likelihood estimation will always produce
a certain vector c that makes the likelihood reach `8.

As a conclusion, the surrogate ansatz of Eq. (7.13) can produce non-smooth conditional PDFs with singu-
larity points where fỸx

tends to infinity. Consequently, the standard maximum likelihood estimation would
fail.

7.3.3 Formulation of stochastic polynomial chaos expansions

In the previous section, we discussed some potential problems of the model defined in Eq. (7.13). To regularize
the optimization problem in Eq. (7.15) and smooth out the produced PDFs, we introduce an additive noise
variable ϵ, and define the stochastic surrogate as follows:

Yx
d
« Ỹx “

ÿ

αPA

cαψα px, Zq ` ϵ, (7.18)

where ϵ is a centered Gaussian random variable with standard deviation σ, i.e., ϵ „ N p0, σ2q. With this new
formulation, the response PDF of the stochastic surrogate is a convolution of that of the PCE and the Gaussian
PDF of ϵ. LetGx “

ř

αPA cαψα px, Zq. The PDF of Ỹx “ Gx ` ϵ reads

fỸx
pyq “ pfGx

˚ fϵqpyq “

ż `8

´8

fGx
py ´ tqfϵptqdt. (7.19)

Using Hölder’s inequality, the above integral is bounded from above by

∥fGx
∥1 ∥fϵ∥8

“ ∥fϵ∥8
“

1
σ

?
2π
, (7.20)

meaning that the PDF of Ỹx and the associated likelihood function are bounded.
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To illustrate the role of the additive noise variable in Eq. (7.18), let us consider a random variable Y with
bimodal distribution to be represented by

Y
d
«

ÿ

αPA

cαψα pZq ` ϵ, (7.21)

where the latent variable Z follows a standard normal distribution and ϵ „ N p0, σq. In the case σ “ 0 (the
noise term vanishes), we build the model by applying a standard algorithm such as least-angle regression (LAR;
Blatman and Sudret, 2011) to the probability integral transform F´1

Y pFZpZqq. When the regularization term ϵ

is added, maximum likelihood estimation can be used (see Section 7.4.1 for details) to construct the surrogate.

Figure 7.1: Emulating a bimodal distribution. The blue line corresponds to the result of using LAR to represent
directly the probability integral transform (without regularization term). The red and green lines are the results
of maximum likelihood estimation for two different values of σ.

Figure 7.1 shows the original (reference) PDF, and the ones obtained by LAR (σ “ 0) and by the stochastic
PCE for two different values of σ. It is observed that the PDF obtained by LAR has singularity points, which
confirms the analysis in Section 7.3.2, whereas the proposed noise term regularizes the PDFs. Moreover, LAR is
applied directly to the probability integral transform which in practice is unknown. In contrast, the maximum
likelihood estimation does not require knowing the values of Z (in this example, only the realizations of Y are
used). Finally, the value of σ affects the accuracy of the model. Hence, σ is an additional parameter of the model
that must also be fitted to the data to get the optimal approximation. The fitting procedure is detailed in the
next section.

7.4 Fitting the stochastic polynomial chaos expansion

To construct a stochastic PCE defined in Eq. (7.18), one needs to estimate both the coefficients c and the stan-
dard deviation σ of the noise variable. In this section, we present a method to calibrate these parameters from
data without replications. Moreover, we propose an algorithm that adaptively selects an appropriate distribu-
tion for the latent variable Z and truncation scheme A.
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7.4.1 Maximum likelihood estimation

Let us assume for a moment that the standard deviation σ of the noise variable is given (the estimation of σ will
be investigated separately in Section 7.4.4). From Eq. (7.18), we see that our surrogate response Ỹx is the sum
of a polynomial function of px, zq and the noise variable ϵ. Therefore, its PDF can be computed by

fỸx
pyq “

ż

DZ

fỸx|Zpy | zqfZpzqdz

“

ż

DZ

1
σ
φ

ˆ

y ´
ř

αPA cαψαpx, zq

σ

˙

fZpzqdz,

(7.22)

since Ỹx | Z “ z is a Gaussian random variable with mean value
ř

αPA cαψαpx, zq and variance σ2 according
to Eq. (7.18). In this equation, φ stands for the standard normal PDF. Therefore, for a given data point px, yq,
the likelihood of the parameters c conditioned on σ reads

lpc;x, y, σq “

ż

DZ

1
?

2πσ
exp

˜

´
py ´

ř

αPA cαψαpx, zqq
2

2σ2

¸

fZpzqdz. (7.23)

In practice, we can use numerical integration schemes, namely Gaussian quadrature (Golub and Welsch, 1969),
to efficiently evaluate this one-dimensional integral, that is

lpc;x, y, σq « l̃pc;x, y, σq “

NQ
ÿ

j“1

1
?

2πσ
exp

˜

´
py ´

ř

αPA cαψαpx, zjqq
2

2σ2

¸

wj , (7.24)

where NQ is the number of integration points, zj is the j-th integration point, and wj is the corresponding
weight, both associated to the weight function fZ . Based on Eq. (7.24) and the available data pX ,yq, the PCE
coefficients c can be fitted using the maximum likelihood estimation (MLE)

ĉ “ argmax
c

N
ÿ

i

log
`

l̃
`

c;xpiq, ypiq, σ
˘˘

. (7.25)

The gradient of Eq. (7.24), and therefore of Eq. (7.25), can be derived analytically. Hence, we opt for the
derivative-based BFGS quasi-Newton method (Fletcher, 1987) to solve this optimization problem.

7.4.2 Starting point for the optimization

The objective function to optimize in Eq. (7.25) is highly nonlinear. As a result, a good starting point is necessary
to ensure convergence. According to the properties of the polynomial chaos basis functions, the mean function
of a stochastic PCE can be expressed as

m̃pxq
def
“ E

“

Ỹx

‰

“ EZ,ϵ

«

ÿ

αPA

cαψα px, Zq ` ϵ

ff

“
ÿ

αPA,αz“0

cαψαpxq, (7.26)
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where αz is the degree of the univariate polynomial in Z. Eq. (7.26) contains all the terms without Z, as indi-
cated by αz “ 0. We define this set of multi-indices as

Am “ tα P A : αz “ 0u . (7.27)

Another surrogate m̂pxq of the mean function can be obtained by using standard (or sparse) regression to
directly fit the following expansion:

mpxq
def
“ E rYxs « m̂pxq

def
“

ÿ

αPAm

cmαψpxq. (7.28)

The obtained coefficients cm are used as initial values for the coefficients tcα : α P Amu of the stochastic sur-
rogate in the optimization procedure, i.e., cα for α P Am.

For the other coefficients tcα : α P AzAmu, we randomly initialize their value.

7.4.3 Warm-start strategy

Because of the form of the likelihood Eq. (7.23), the gradient at the starting point can take extremely large values
when σ is small. In this case, the optimization algorithm may become unstable and converge to an undesired
local optimum. To guide the optimization, we propose a warm-start strategy summarized in Algorithm 7.1.
We generate a decreasing sequence σ “ tσ1, . . . , σNsu with σNs

“ σ (the target value). In this paper, we
choose the maximum value σ1 of the sequence as the square root of the leave-one-out error εLOO in the mean
fitting procedure (see Section 7.a.1 for the explanation of this choice). Then, σ is generated equally-spaced in
the log-space between ?

εLOO and σ. Starting with σ1 which is the largest element of σ, we build a stochastic
PCE based on Eq. (7.25) with the initial values defined above (the mean function estimation and random ini-
tialization). Then, the results are used as a starting point for the construction of the surrogate for σ2. We repeat
this procedure sequentially for each element in σ with each new starting point being the results of the previous
optimization. Because the standard deviation decreases progressively to the target value and the starting point
is updated accordingly, the associated gradient for each optimization prevents extremely big values.

Algorithm 7.1 Warm-start approach for estimating c with known σ
Input: pX ,yq, σ, A
Output: Coefficients ĉ

1: cm, εLOO Ð OLSpX ,y,Amq % Estimation of the coefficients of the mean function
2: c0

α Ð cmα for α P Am and randomly initialize tc0
α : α P AzAmu

3: σlog Ð linspace
`

log
`?

εLOO

˘

, logpσq, Ns

˘

4: σ Ð exp pσlogq

5: for i Ð 1, . . . , Ns do
6: Solve Eq. (7.25) to compute ci using ci´1 as initial values
7: end for
8: ĉ Ð cNs
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7.4.4 Cross-validation

As explained in Section 7.3.2, the hyperparameter σ cannot be jointly estimated together with the PCE coeffi-
cients c because the likelihood function can reach `8 for certain choices of c and σ “ 0. As a result, σ should
be tuned separately from the estimation of c.

In this paper, we propose applying cross-validation (CV; Hastie et al., 2001) to selecting the optimal value of
σ. More precisely, the data pX ,yq are randomly partitioned intoNcv equal-sized groups tVk : k “ 1, . . . , Ncvu

(so-called Ncv-fold CV). For k P t1, . . . , Ncvu, we pick the k-th group Vk as the validation set and the other
Ncv´1 folds denoted byV„k as the training set. The latter is used to build a stochastic PCE following Eq. (7.25)
and Algorithm 7.1, which yields

ĉkpσq “ argmax
c

ÿ

iPV„k

log
`

l̃
`

c;xpiq, ypiq, σ
˘˘

. (7.29)

Note that the coefficients depend on the value of σ, and thus we explicitly write them as functions of σ. The
validation set Vk is then used to evaluate the out-of-sample performance:

lkpσq “
ÿ

iPVk

log
`

l̃
`

ĉkpσq;xpiq, ypiq, σ
˘˘

. (7.30)

We repeat this procedure for each group of the partition tVk : k “ 1, . . . , Ncvu and sum up the respective score
to estimate the generalized performance, referred to as CV score in the sequel. Then, the optimal value of σ is
selected as the one that maximizes this CV score:

σ̂ “ argmax
σ

Ncv
ÿ

k“1

lkpσq. (7.31)

Because of the nested optimization in Eq. (7.29), the gradient of Eq. (7.31) is difficult to derive. In this paper,
we apply the derivative-free Bayesian optimizer (Snoek et al., 2012) to solving Eq. (7.31) and search for σ within
the range r0.1, 1s ˆ

?
εLOO. The upper bound of the interval is explained in Section 7.a.1. The lower bound is

introduced to prevent numerical instabilities near σ “ 0. According to our investigations, the optimal value σ̂
is always within the proposed interval.

After solving Eq. (7.31), the selected σ̂ is used in Eq. (7.25) with all the available data to build the final
surrogate.

Large value ofNcv can lead to high computational cost, especially whenN is big. In this paper, we choose
Ncv “ 10 for N ă 200 (small data set), Ncv “ 5 for 200 ď N ă 1,000 (moderate data set) and Ncv “ 3 for
N ě 1,000 (big data set).

7.4.5 Adaptivity

The method developed in Sections 7.4.1 and 7.4.4 allows us to build a stochastic PCE for a given distribution
of the latent variable Z and truncated set A of polynomial chaos basis. In principle, one can choose any con-
tinuous probability distribution for the latent variable and a large truncated set. However, in practice, certain
types of latent variables may require a lot of basis functions to approximate well the shape of the response dis-
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tribution. This leads to many model parameters to estimate, which would cause overfitting when only a few
data are available. In this section, we propose a procedure to iteratively find a suitable distribution for the latent
variable Z and truncation scheme A.

We consider Nz candidate distributions D “ tD1, . . . , DNzu for the latent variable, Np degrees p “
␣

p1, . . . , pNp

(

andNq q-norms q “
␣

p1, . . . , pNp

(

that are used to define the hyperbolic truncation scheme in
Eq. (7.7). Both p and q are sorted in increasing order.

The adaptive procedure is shown in Algorithm 7.2 and described here. For each type of latent variable and
truncation set A “ Ap,q,M , we first apply the hybrid LAR algorithm developed by Blatman and Sudret (2011)
to fitting the mean function m̂pxq as shown in Eq. (7.28). This algorithm only selects the most important basis
among the candidate setAm defined in Eq. (7.27). To reduce the total number of unknowns in the optimization
Eq. (7.25), we exclude from A the basis functions in Am that are not selected by hybrid LAR. In other words,
we only estimate the coefficients associated with the basis functions that either have αz ‰ 0 or are selected by
the hybrid LAR when fitting the mean function mpxq. Then, we use the methods presented in Sections 7.4.1
and 7.4.4 to build a stochastic PCE for A and record the CV score. The latter is used for model comparisons,
and the one with the best CV score is selected as the final surrogate.

Algorithm 7.2 Adaptive algorithm for building a stochastic PCE
Input: pX ,yq, D, p, q
Output: Dopt, Aopt, ĉ, σ̂

1: lopt Ð ´8

2: for iz Ð 1, . . . , Nz do
3: Set Z „ Diz

4: for ip Ð 1, . . . , Np do
5: for iq Ð 1, . . . , Nq do
6: A Ð Apip ,qiq ,M`1

7: Am Ð tα : α P A, αz “ 0u , Ac Ð AzAm

8: An Ð Hybrid-LAR pX ,y,Amq % Selection of the basis for m̂pxq

9: A Ð An

Ť

Ac

10: Apply the algorithm presented in Sections 7.4.1 and 7.4.4 to build a stochastic PCE with A, which
gives c, σ, and the CV score lip,iq associated with σ.

11: end for
12: end for
13: end for
14: Return the model with the maximum CV score

In order to avoid going through all the possible combinations, we propose a heuristic early stopping criterion
for both degree and q-norm adaptivity. If two consecutive increases of q-norm cannot improve the CV score,
the inner loop for q-norm adaptivity stops. Besides, if the best model (among all the q-norms) of a larger degree
decreases the CV score, the algorithm stops exploring higher degrees. Note that the early stopping is only applied
to p- and q-adaptivity, but all the candidate distributions are investigated.
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In summary, we sketch the overall procedure (presented in Sections 7.4.1 to 7.4.5) to adaptively build a
stochastic PCE from data in Figure 7.2.

START

Initialization

Apply hybridLAR
to select the 
basis       for 

the mean function

Initialize 

STOP

Estimate the 
coefficients          

for each training set 
of cross-validation (CV)

Set latent variable

Set truncated set

Update

Evaluate the 
out-of-sample 
performance
(CV score)

Input: Output:
Yes

Yes

Yes

No

No

No or
the current degree
does not improve 

the CV score

or
two consecutive increases of 

q-norm do not improve 
the CV score

Data:
Candidate distributions:
Candidate degrees:
Candidata q-norms:

q-norm adaptivity

Cross-validation to tune 

Degree adaptivity

Selection of the type of the latent variable

Converged?
No Yes

model with the 
best CV score

Figure 7.2: Flow chart of the procedure to adaptively build a stochastic PCE

In the application examples, we choose NZ “ 2 possible distributions for the latent variable Z, namely a
standard normal distribution N p0, 1q and a uniform distribution Up´1, 1q. The truncation parameters p and
q may be selected according to the dimensionality M of the problem and the prior knowledge on the level of
non-linearity. We typically use p “ t1, 2, 3, 4, 5u and q “ t0.5, 0.75, 1u.

7.4.6 Post-processing of stochastic polynomial chaos expansions

In this section, we show how to post-process a stochastic PCE for various analyses. The very feature of this
surrogate is that it provides a functional mapping between the input parameters X , the latent variable Z, and
the noise term ϵ:

Ỹ
def
“

ÿ

αPA

cαψα pX, Zq ` ϵ, (7.32)
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To generate realizations of Ỹ , we simply sample X , Z and ϵ following their distributions and then evaluate
Eq. (7.32). To obtain samples of Ỹx for a fixed x (e.g., to plot the conditional distribution), we follow the same
procedure with fixed X “ x. Moreover, Eq. (7.32) can be easily vectorized for efficient sampling.

By generating a large number of samples, one can display the distribution of Ỹ and Ỹx using histograms or
kernel density estimation. We can also use the quadrature version in Eq. (7.24) to get an explicit form of the
conditional response distribution of Ỹx.

In addition, because the proposed surrogate model is derived based on PCE, it inherits all the good prop-
erties of PCE. In particular, some important quantities can be directly computed by post-processing the PCE
coefficients c and the parameterσ, without the need for sampling. Indeed, the mean and variance of Ỹ are given
by

E
“

Ỹ
‰

“ c0, Var
“

Ỹ
‰

“
ÿ

αPAz0

c2
α ` σ2. (7.33)

where c0 is the coefficient of the constant function.

As already shown in Eq. (7.26), for a given value of x, the mean of the model response Ỹx can be computed
as

E
“

Ỹx

‰

“
ÿ

αPA,αz“0

cαψαpxq, (7.34)

Similarly, we can compute the variance as follows:

Var
“

Ỹx

‰

“ VarZ,ϵ

«

ÿ

αPA

cαψα px, Zq ` ϵ

ff

“
ÿ

αPAzAm

c2
αψ

2
αpxq ` σ2. (7.35)

7.4.7 Global sensitivity analysis

In the context of global sensitivity analysis of stochastic simulators (Zhu and Sudret, 2021b), various types of
Sobol’ indices can also be computed analytically for the proposed surrogate model. The classical Sobol’ indices are
defined from the Sobol’-Hoeffding decomposition of the deterministic model given by the stochastic simulator
with both the well-defined input variables X and its intrinsic stochasticity as explicit inputs ω, see Eq. (7.1).
Since the surrogate model in Eq. (7.32) is also a deterministic function of X and the additional variablesZ and
ϵ, the Sobol’ indices can be efficiently computed from the PCE coefficients, similarly to the classical PCE-based
Sobol’ indices (Sudret, 2008). For example, the first-order classical Sobol’ index of the i-th inputXi is given by

Si
def
“

Var
“

E
“

Ỹ | Xi

‰‰

Var
“

Ỹ
‰ “

ř

αPAi

c2
α

ř

αPAz0
c2
α ` σ2 , (7.36)

whereAi
def
“ tα P A : αi ‰ 0, αj “ 0 ,@j ‰ iu. Similarly, one can also calculate higher-order and total Sobol’

indices of the model Eq. (7.32). Let us split the input vector into two subsets X “ pXu,X„uq, where u Ă

t1, . . . ,Mu and „u is the complement of u, i.e., „u “ t1, . . . ,Mu zu. The higher-order and total Sobol’
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indices, denoted by Su and STi
, respectively, are given by

Su “

ř

αPAu

c2
α

ř

αPAz0
c2
α ` σ2 , STi

“

ř

αPA,αi‰0
c2
α

ř

αPAz0
c2
α ` σ2 , (7.37)

where Au
def
“ tα P A : αi ‰ 0, αj “ 0 , αz “ 0 ,@i P u,@j P „uu. However, as mentioned in Section 7.3,

the surrogate model aims only at emulating the response distribution of the simulator instead of representing
the detailed data generation process. Therefore, the indices involving the artificial variables introduced in the
surrogate (i.e., Z and ϵ), e.g., the first-order Sobol’ index for Z and the total Sobol’ index for each component
of X , do not reveal the nature of the original model (Zhu and Sudret, 2021b).

The QoI-based Sobol’ indices quantify the influence of the input variables on some quantity of interest of
the random model response, e.g., mean, variance, and quantiles (Zhu and Sudret, 2021b). As the mean function
in Eq. (7.26) is a PCE, the associated Sobol’ indices can be computed in a straightforward way (Sudret, 2008).
Similar to Eq. (7.36), the first-order index is given by

Sm
i

def
“

Var rE rm̃pXq | Xiss

Var rm̃pXqs
“

ř

αPAi

c2
α

ř

αPAmz0
c2
α

, (7.38)

while higher-order and total Sobol’ indices of the mean function read

Sm
u “

ř

αPAu

c2
α

ř

αPAmz0
c2
α

, Sm
Ti

“

ř

αPA,αi‰0
c2
α

ř

αPAmz0
c2
α

. (7.39)

In addition, the variance function in Eq. (7.35) is a polynomial. The associated Sobol’ indices can be computed
by building another PCE to represent Eq. (7.35) the without error.

7.5 Numerical examples

In this section, we validate the proposed method on several examples, namely case studies from mathematical
finance and epidemiology and a complex analytical example with bimodal response distributions. To illustrate
its performance, we compare the results obtained from the stochastic polynomial chaos expansion (SPCE) with
two state-of-the-art models that are developed for emulating the response distribution of stochastic simula-
tors. The first one is the generalized lambda model (GLaM). This surrogate uses the four-parameter generalized
lambda distribution to approximate the response distribution of Yx for any x P DX . The distribution pa-
rameters, as functions of the inputs, are represented by PCEs (see details in Zhu and Sudret, 2020, 2021a).
The second model is based on kernel conditional density estimator (KCDE; Hayfield and Racine, 2008). This
method uses kernel density estimation to fit the joint distribution f̂X,Y px, yq and the marginal distribution
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f̂Xpxq. The response distribution is then estimated by

fY |Xpy | xq “
f̂X,Y px, yq

f̂Xpxq
“

řN

i“1
1
hy
KY

´

y´ypiq

hy

¯

śM

j“1
1
hj
Kj

ˆ

xj´x
piq

j

hj

˙

řN

i“1
śM

j“1
1
hj
Kj

ˆ

xj´x
piq

j

hj

˙ , (7.40)

where Ky and Kj ’s are the kernels for Y and Xj ’s, and hy and hj ’s are the associated bandwidths which are
hyperparameters selected by a thorough leave-one-out cross-validation (Hall et al., 2004).

Finally, we also consider a model where we represent the response with a normal distribution. The asso-
ciated mean and variance as functions of the input x are set to the true values obtained from the simulator.
Therefore, the accuracy of such an approximation measures how close the response distribution is to the nor-
mal distribution. Moreover, this model represents the “oracle” of Gaussian-type mean-variance models, such as
the ones presented in Marrel et al. (2012) and Binois et al. (2018).

To quantitatively compare the various surrogates, we define an error metric between the simulator and the
emulator by

ε “
EX

“

d2
WS

`

YX , ỸX

˘‰

Var rY s
, (7.41)

where Yx is the model response, Ỹx denotes that of the surrogate (with the same input parameters as Yx), and
Y is the model output aggregating all the uncertainties from both the input and the intrinsic stochasticity. dWS

is the Wasserstein distance of order two (Villani, 2009) between the two probability distributions defined by

d2
WS pY1, Y2q

def
“ ∥Q1 ´Q2∥2

2 “

ż 1

0
pQ1puq ´Q2puqq

2
du, (7.42)

where Q1 and Q2 are the quantile functions of random variables Y1 and Y2, respectively. The error metric ε in
Eq. (7.41) is unitless and invariant to shift and scale, i.e.,

EX

“

d2
WS

`

aYX ` b, aỸX ` b
˘‰

Var raY ` bs
“

EX

“

d2
WS

`

YX , ỸX

˘‰

Var rY s
. (7.43)

To evaluate the numerator in Eq. (7.41), we generate a test set Xtest of size Ntest “ 1,000 from the input
distribution ofX . The Wasserstein distance is calculated for each pointx P Xtest and then averaged overNtest.

We use Latin hypercube sampling (LHS; McKay et al., 1979) to generate the experimental design and the
test set. The stochastic simulator is evaluated only once for each set of input parameters, i.e., we do not use
replications. To study the convergence property of the surrogates, experimental designs of various sizes are
investigated. Each scenario is run 20 times with independent experimental designs to account for the statistical
uncertainty in the LHS design and also in the internal stochasticity of the simulator. As a result, error estimates
for each size of experimental design are represented by box plots constructed from the 20 repetitions of the full
analysis.
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7.5.1 Geometric Brownian motion

In the first example, we consider the Black-Scholes model that is popular in mathematical finance (McNeil et al.,
2005)

dSt “ x1 St dt` x2 St dWt. (7.44)

Eq. (7.44) is a stochastic differential equation used to model the evolution of a stock price St. Here, x “

px1, x2q
T are the input variables that describe the expected return rate and the volatility of the stock, respectively.

Wt is a Wiener process that represents the stochastic behavior of the market. Without loss of generality, we set
the initial condition to S0 “ 1.

The simulator is stochastic: for a given x, the stock price St is a stochastic process, where the stochasticity
comes from Wt. In this example, we are interested in Yx “ S1, which corresponds to the stock value at t “ 1
year. We set X1 „ Up0, 0.1q and X2 „ Up0.1, 0.4q to represent the uncertainty in the return rate and the
volatility, where the ranges are selected based on real data (Reddy and Clinton, 2016).

The solution to Eq. (7.44) can be derived using Itô calculus (Shreve, 2004): Yx follows a lognormal distri-
bution defined by

Yx „ LN
ˆ

x1 ´
x2

2

2
, x2

˙

. (7.45)

As the distribution of Yx is known analytically in this simple example, we can sample directly from the response
distribution to get the model output instead of simulating the whole path of St.

(a) PDF for x “ p0.07, 0.13q
T

(b) PDF for x “ p0.04, 0.21q
T

(c) PDF for x “ p0.05, 0.3q
T

(d) PDF for x “ p0.02, 0.33q
T

Figure 7.3: Geometric Brownian motion — Comparisons of the emulated PDFs,N “ 400.

Figure 7.3 illustrates four response PDFs predicted by the considered surrogates built on an experimental
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design of sizeN “ 400. We observe that with 400 model runs, both SPCE and GLaM accurately represent the
variation of the response PDF. Moreover, SPCE better represents the left tail in Fig. 7.3d. In contrast, KCDE
can well approximate the response PDF for low volatility (in Fig. 7.3a) but exhibits unrealistic oscillations in the
case of high volatility.

Figure 7.4: Geometric Brownian motion — Comparison of the convergence of the surrogate models. The
dashed lines denote the average value over 20 repetitions of the full analysis, whereas the box plot summarize the
20 results. The black dash-dotted line represents the error of the model assuming that the response distribution
is normal and using the true mean and variance.

For convergence studies, we vary the size of the experimental design N P t100; 200; 400; 800; 1,600u and
plot the error ε defined in Eq. (7.41) with respect toN in Fig. 7.4. In order to show more details, each subfigure
in Fig. 7.4 compares SPCE with one competitor. We observe that the average error of KCDE built on N “

400 model runs is similar to the best normal approximation, whereas both SPCE and GLaM provide smaller
errors. Compared with KCDE and GLaM, the average performance of SPCE is always the best for all sizes of
experimental design. For large N , namely N “ 1,600, the average error of SPCE is less than half of that of
KCDE, and the spread of the error is narrower than that obtained by GLaM.

7.5.2 Stochastic SIR model

The second example is the stochastic Susceptible-Infected-Recovered (SIR) model frequently used in epidemi-
ology (Britton, 2010). This model simulates the outbreak of an infectious disease which spreads out through
stochastic contacts between infected and susceptible individuals. The simulator is a compartmental state-space
model. More precisely, a population of P individuals at time t is partitioned into three groups: (1) susceptible
individuals who have not caught the disease and may be infected by close contact with infectious patients; (2)
infected individuals who are contaminated and infectious; (3) recovery individuals who have recovered from the
disease and are immune to future infections. The count of each group is denoted bySt, It, andRt, respectively.
Because no newborn or death is considered, the three quantities satisfyEt ` It `Rt “ P . As a result, any two
out of the three counts, e.g.,Et and It, can characterize the configuration of the population of size P at time t.

Figure 7.5 illustrates the dynamics of the model, where the black icons stand for susceptible individuals,
the red icons correspond to infected persons, and the blue icons are the ones who have recovered. At time t,
the state of the population is given by pSt, Itq (the top left panel of Fig. 7.5). The next configuration depends
on two transition channels: infection and recovery. The first channel evolves the system to CI where one sus-
ceptible individual is infected (the bottom left panel of Fig. 7.5). The recovery channel proceeds to CR where
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one infected person recovers (the bottom right panel of Fig. 7.5). Whether the system evolves to the candidate
state CI or CR depends on two random variables, TI and TR which are the respective transition time of each
channel. Both TI and TR follow an exponential distribution, yet with different parameters:

TI „ ExppλIq, λI “ β
StIt
P

,

TR „ ExppλRq, λR “ γIt,

(7.46)

where β is the contact rate of an infected individual, and γ is the recovery rate. The next configuration of the
population is the one that comes first, i.e., forTR ă TI , the system evolves toCR at t`TR withSt`TR

“ Et´1
and It`TI

“ It ` 1, and vice versa. We iterates this updating procedure until the time T where IT “ 0
corresponding to no remaining infected individual: no infection or recovery can happen, and the outbreak
stops. Since the population size is constant and recovered individuals will not be infected again, the outbreak
will stop at finite time, i.e., T ă `8. The simulation process described here corresponds to the Gillespie
algorithm (Gillespie, 1977).

Figure 7.5: Dynamics of the stochastic SIR model: black icons stand for susceptible individuals, red icons rep-
resent infected individuals, and blue icons are the ones that have recovered.

The input variables of the simulator are the initial conditions S0 and I0 and the transitive rates β and γ.
We are interested in the total number of newly infected individuals during the outbreak without counting the
initial infections, which is an important quantity in epidemics management (Binois et al., 2018). This can be
calculated by the difference between the number of susceptibles at time 0 andT , i.e.,Y “ S0´ST . Because each
updating step in Eq. (7.46) depends on two latent variables TI and TR, the simulator is stochastic. Moreover,
the total number of latent variables is also random.

In this case study, we setP “ 2,000. To account for different scenarios, the input variablesX “ tS0, I0, β, γu

are modeled as S0 „ Up1,200 , 1,800q, I0 „ Up20, 200q, and β, γ „ Up0.5, 0.75q. The uncertainty in the first
two variables is due to the lack of knowledge of the initial condition. The two transitive rates β, γ are affected
by possible interventions such as quarantine and increase of medical resources.
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(a) PDF for x “ p1500, 60, 0.6, 0.7q
T

(b) PDF for x “ p1400, 100, 0.6, 0.6q
T

(c) PDF for x “ p1700, 140, 0.55, 0.55q
T

(d) PDF for x “ p1600, 180, 0.7, 0.6q
T

Figure 7.6: Stochastic SIR — Comparisons of the emulated PDFs,N “ 1,600.

Figure 7.6 illustrates the response PDF for four different sets of input parameters. Because of the transi-
tion process in Eq. (7.46), no analytical closed-form distribution of Yx can be derived. Therefore, we use 104

replications for each input values to obtain the reference histograms. The surrogate models are trained on an
experimental design of size N “ 1,600 (without any replications). We observe that the four PDFs are uni-
modal. The reference histogram in Fig. 7.6a is slightly right-skewed, while the others in Fig. 7.6 are symmetric.
SPCE and GLaM produce similar predictions of the PDF which are very close to the reference histograms.
In comparison, KCDE overestimates the spread of the distributions in. Moreover, the KCDE prediction has
non-negligible probability for unrealistic negative values in Fig. 7.6a. Besides, it exhibits relatively poor shape
representations with spurious wiggles in Fig. 7.6c and Fig. 7.6d.

Figure 7.7 compares the performance of the surrogates built on various sizes of experimental design N P

t200; 400; 800; 1,600; 3,200u. To evaluate the error defined in Eq. (7.41), the reference distribution for each
x is given by the empirical distribution of 104 replications. The oracle normal approximation gives an error of
6 ˆ 10´4 which is smaller than any of the surrogates in consideration. Note that this model is not built on
the training data but using the mean and variance from the 104 replications for each test point. This implies
that the response distribution is close to normal. We do not include this error in Fig. 7.7 to not loose detailed
comparisons of the surrogate models. Figure 7.7 reveals a poor performance of KCDE in this case study. This
is because the example is four-dimensional, and KCDE is a kernel-based method which is known to suffer from
the curse of dimensionality. In contrast, SPCE and GLaM are flexible parametric models, and both provide a
much smaller error than KCDE for all values ofN . Compared with GLaM, SPCE yields a similar spread of the
error but demonstrates better average performance forN ě 400.
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Figure 7.7: Stochastic SIR — Comparison of the convergence of the surrogate models. The dashed lines denote
the average value over 20 repetitions of the full analysis, whereas the box plot summarize the 20 results. The
Gaussian model that assumes the response distribution being normal with the mean and variance estimated
from 104 replications yields an error of 6 ˆ 10´4, which is not plotted in the figure.

7.5.3 Bimodal analytical example

The response distributions of the previous two examples are unimodal. In the last example, we consider a com-
plex analytical example to test the flexibility of the stochastic polynomial chaos expansion. For this purpose, we
directly define the response distribution to approximate as

fY |Xpy | xq “ 0.5φ
`

1.25 y ´ p5 sin2pπ ¨ xq ` 5x´ 2.5q
˘

` 0.75φ
`

1.25 y ´ p5 sin2pπ ¨ xq ´ 5x` 2.5q
˘

(7.47)
where φ stands for the standard normal PDF. This response PDF is a mixture of two Gaussian PDFs with
weights 0.6 and 0.8. The mean function of each component distribution depends on the input variable x. Let
X „ Up0, 1q. With different realization of X , the two components change their location accordingly. Fig-
ure 7.8 illustrates a data set generated by N “ 800 model runs and the mean function of each component of
Eq. (7.47) which varies nonlinearly with respect to the input. It is clear that the resulting conditional distribu-
tion is bimodal for small (x À 0.2) and large values of x (x Á 0.8), whereas it is unimodal in between.

Figure 7.8: Bimodal analytical example — Illustration of the model with an experimental design ofN “ 800

Figure 7.9 compares the response PDF estimated by the surrogates built on the experimental design of
Fig. 7.8 (N “ 800) for four different values of x. We observe that small values of x yield a bimodal distribution
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with the higher mode on the right. With x increasing, the two modes merge and form a unimodal distribution
at x “ 0.5. Then, the two modes separate again, which leads to bimodal distributions with the higher mode
on the left. This shape variation can also be observed from Fig. 7.8.

As opposed to the previous two examples, GLaM cannot represent this evolution, since generalized lambda
distributions cannot produce multimodal distributions. In contrast, SPCE and KCDE capture well the bi-
modality and also the shape variation. Moreover, in Fig. 7.9c the higher mode is moving to the left, which is a
feature not exhibited by KCDE but correctly captured by SPCE.

(a) PDF for x “ 0.2 (b) PDF for x “ 0.5

(c) PDF for x “ 0.7 (d) PDF for x “ 0.9

Figure 7.9: Bimodal analytical example — Comparisons of the emulated PDFs,N “ 800.

Quantitative comparisons for N P t100; 200; 400; 800; 1,600u in Fig. 7.10 confirm our observation in
Fig. 7.9. Because of the bimodality, GLaM provides the least accurate approximation. When increasing N ,
it converges slowly to the same error as the best normal approximation which is clearly outperformed by the
best two surrogates: SPCE and KCDE for N ě 800. Both SPCE and KCDE show a consistent decay of the
error. Only when a few samplesN “ 100 are available does KCDE provide stabler estimates (the spread of the
error is small) and better average performance. For N ě 200, SPCE yields more accurate results and exhibits
an overall faster rate of convergence. In summary, this example demonstrates that SPCE can represent bimodal
distributions with a high accuracy.

7.6 Conclusions
In this paper, we present a novel surrogate model called stochastic polynomial chaos expansions (SPCE) to emu-
late the response distribution of stochastic simulators. This surrogate is an extension of the classical polynomial
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Figure 7.10: Bimodal analytical example — Comparison of the convergence of the surrogate models. The dashed
lines denote the average value over 20 repetitions of the full analysis. The black dash-dotted line represents the
error of the model assuming that the response distribution is normal with the true mean and variance.

chaos expansions developed for deterministic simulators. In order to represent the intrinsic stochasticity of the
simulator, we combine a latent variable with the well-defined inputs to form a polynomial chaos representa-
tion. In addition, we introduce an additive Gaussian noise as a regularizer. We propose using the maximum
likelihood estimation for calibrating the coefficients c of the polynomial basis. The standard deviation σ of the
noise variable is a hyperparameter that regularizes the optimization problem for the polynomial coefficients c
and is tuned by cross-validation to avoid overfitting. The cross-validation score is also used as a model selection
criterion to choose an appropriate truncation scheme for the polynomial chaos expansion in an adaptive man-
ner, and the most suitable distribution for the latent variable. As seen from the presentation and the application
examples, the proposed method does not require replications.

The performance of the developed method is illustrated on examples from mathematical finance and epi-
demiology and on an analytical example showcasing a bimodal response distribution. The results show that
SPCE is able to well approximate various response distributions whether unimodal or not, with a reasonable
number of model runs.

Using an appropriate error measure defined in Eq. (7.41), SPCE is compared with the generalized lambda
model (GLaM) and one state-of-the-art kernel conditional density estimator (KCDE). In the first two examples
where the response distribution is unimodal, SPCE noticeably outperforms KCDE and provides slightly more
accurate results than GLaM which is known for its flexibility for representing unimodal distributions. In the
last example featuring bimodal distributions which cannot be well approximated by generalized lambda distri-
butions, SPCE can still capture the complex shape variation and yields smaller errors than KCDE. All in all,
SPCE generally performs as the best against the various competitors considered in this study.

Applications of the proposed method to complex engineering problems, such as wind turbine design (Ab-
dallah et al., 2019) and structural dynamics (Mai et al., 2017), should be considered in future investigations.
Statistical properties (e.g., consistency and asymptotics) of the maximum likelihood estimation used in SPCE
remains to be studied. This will allow for assessing the uncertainty in the estimation procedure.

Finally, the proposed approach has been validated so far only for problems with small to moderate dimen-
tionality. To improve the efficiency and performance of SPCE in high dimensions, models that have a general
sparse structure (not only regarding the mean function) are currently under investigations.
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7.a Appendix

7.a.1 Upper bound

In this section, we demonstrate that the leave-one-out error obtained from fitting the mean function Eq. (7.28)
provides an upper bound for σ2.

Taking the expectation of Eq. (7.35) with respect to X , it holds

E
“

Var
“

Ỹ
ˇ

ˇX
‰‰

“ E

«

ÿ

αPAzAm

c2
αψ

2
αpXq ` σ2

ff

“
ÿ

αPAzAm

c2
α ` σ2. (7.48)

The leave-one-out error εLOO in the mean-fitting process is an estimate ofE
”

pm̂pXq ´ YXq
2
ı

(James et al.,
2014). The latter can be decomposed as

E
”

pm̂pXq ´ YXq
2
ı

“ E
”

pm̂pXq ´mpXq `mpXq ´ YXq
2
ı

“ E
”

pm̂pXq ´mpXqq
2
ı

` E rVar rY |Xss

. (7.49)

Aiming at approximating Yx with Ỹx, we have E rVar rY |Xss « E
“

Var
“

Ỹ
ˇ

ˇX
‰‰

. Hence, εLOO provides an
upper bound for Eq. (7.48) and therefore for σ2.
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Abstract
Within the performance-based earthquake engineering (PBEE) framework, the fragility model plays a pivotal
role. Such a model represents the probability that the engineering demand parameter (EDP) exceeds a certain
safety threshold given a set of selected intensity measures (IMs) that characterize the earthquake load. The-
state-of-the art methods for fragility computation rely on full non-linear time-history analyses. Within this
perimeter, there are two main approaches: the first relies on the selection and scaling of recorded ground mo-
tions; the second, based on random vibration theory, characterizes the seismic input with a parametric stochastic
ground motion model (SGMM). The latter case has the great advantage that the problem of seismic risk analysis
is framed as a forward uncertainty quantification problem. However, running classical full-scale Monte Carlo
simulations is intractable because of the prohibitive computational cost of typical finite element models. There-
fore, it is of great interest to define fragility models that link an EDP of interest with the SGMM parameters
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— which are regarded as IMs in this context. The computation of such fragility models is a challenge on its
own and, despite few recent studies, there is still an important research gap in this domain. This comes with no
surprise as classical surrogate modeling techniques cannot be applied due to the stochastic nature of SGMM.
This study tackles this computational challenge by using stochastic polynomial chaos expansions to represent the
statistical dependence of EDP on IMs. More precisely, this surrogate model estimates the full conditional prob-
ability distribution of EDP conditioned on IMs. We compare the proposed approach with some state-of-the-art
methods in two case studies. The numerical results show that the new method outperforms its competitors in
estimating both the conditional distribution and the fragility functions.

8.1 Introduction

The PEER1 performance-based earthquake engineering (PBEE) framework introduced two decades ago (Cor-
nell and Krawinkler, 2000) represents the state-of-the-art approach to seismic risk assessment. The frame-
work builds on the total probability theorem by convolving the output of probabilistic seismic hazard analysis
(PSHA; Cornell, 1968) with fragility, damage, and loss models. The output of the PSHA analysis is given by
the so-named hazard curves, which are rates of occurrence of a given intensity measure (IM, e.g., peak ground
acceleration, spectral acceleration, etc.) or a vector of IMs. The damage of a structure is typically characterized
by the engineering demand parameter (EDP) which represents the structural response (e.g., the maximum in-
terstory drift for a multistory building, the maximum base shear, etc.).

A critical component of the framework is represented by the statistical relationship between IMs and EDP.
This relationship, named fragility model, is a function of the IMs and computes the EDP exceeding probability
(e.g., EDP exceeds a certain threshold) conditioned on the corresponding value of IMs. As an important part
of PBEE, fragility models have become a rich field of research with two major lines of investigation. The first
line is based on the selection and scaling of recorded ground motions and (non-)linear time history analysis. An
incomplete list of studies following this line of research includes Vamvatsikos and Cornell (2002), Baker and
Cornell (2006), Luco and Bazzurro (2007), and Kiani and Khanmohammadi (2015).

The second line of research builds on stochastic ground motion models (SGMM; Rezaeian and Der Ki-
ureghian, 2008, 2010), and (non-)linear time history analysis. An SGMM typically combines a set of engineering-
meaningful parameters, referred to as SGMM parameters in the sequel, with a set of hidden aleatory variables
(e.g., white noise) to generate synthetic ground motions. The available records are considered as realizations of
the SGMM and used to calibrate the SGMM parameters. The latter are modeled as random variables to account
for epistemic uncertainties due to limited data. In this setting, the SGMM parameters are statistically related
to the earthquake and site characteristics (e.g., magnitude, faulting mechanism, source-to-site distance, and the
site shear-wave velocity) via predictive equations. In essence, these are classical ground motion predictive equa-
tions (GMPEs; Cornell, 1968) with the IMs being the SGMM parameters.

Following this line, a fragility model becomes the statistical relationship between the SGMM parameters
and the EDP. These models, when developed, allow for a rapid seismic risk assessment by computing directly
or via (inexpensive) simulations of the convolutions of the PEER-PBEE framework. Within this perimeter,
therefore, the development of efficient algorithms for fragility computation is paramount. While several studies

1Pacific Earthquake Engineering Center

200



8.1. Introduction

use a SGMM for seismic risk assessment (an incomplete list includes Taflanidis and Beck, 2009; Gidaris et al.,
2015; Mai et al., 2017; Smerzini and Pitilakis, 2018; Ghosh and Chakraborty, 2020; Ghosh et al., 2021), to the
best of our knowledge, fragility models as a function of the SGMM parameters have been explicitly introduced
only recently (Abbiati et al., 2021).

In this context, however, there is a research gap in the development of efficient algorithms that allow a
feasible computation of these special fragility models. This paper aims to fill this gap by using the stochastic
polynomial chaos expansion (SPCE; Zhu and Sudret, 2023), which we show to be the most computationally
efficient option up to date. As such, this paper focuses only on the fragility model computation without em-
ploying the full seismic risk analysis.

A great advantage of the simulation-based approach is that the problem of seismic risk analysis can be framed
as a forward uncertainty quantification problem (Abbiati et al., 2021). In fact, by combining the SGMM with
the dynamical analysis of structures, one obtains a simulator that maps a set of ground motion parameters to the
associated EDP. More specifically, this is a stochastic simulator (Zhu and Sudret, 2020; Abbiati et al., 2021), i.e.,
several runs with the same ground motion parameters produce different values of the EDP, due to the aleatory
hidden variables in the generation of ground motions. Therefore, one can run multiple simulations for given
values of IMs without introducing bias. Moreover, this allows for coupling the seismic hazard model and the
fragility function without going through intermediate variables.

When working with ground motion parameters, replication-based methods have been proposed so far in the
literature (Gidaris et al., 2015; Abbiati et al., 2021). In this framework, one fixes the SGMM parameters, and
the hazard model produces a set of consistent earthquake loads for dynamical analysis of the structure. This
procedure is called replication, as we evaluate repeatedly the simulator for the same values of the input. The
associated EDP values are realizations of the structural response conditioned on the given SGMM parameters.
Therefore, they can be used to estimate the underlying conditional distribution. This procedure is repeated
for different SGMM parameters, and the fragility function can be estimated from the conditional distribution.
Because many replications (e.g., 100) are necessary to characterize the conditional distribution, this approach
requires a large number of model runs (as shown in Abbiati et al., 2021).

To alleviate the computational cost, in this paper, we explore the methods that do not rely on replications
(Cornell et al., 2002; Shinozuka et al., 2000; Mai et al., 2017). Since the SGMM parameters are vector-valued
IMs, some methods developed for fragility analysis with a single IM can be extended and applied. Cornell et al.
(2002) proposed the so-called cloud analysis, which is a linear model in the log-scale with a homoscedastic Gaus-
sian noise. This parametric model relies on rather restrictive assumptions (log-linearity and homoscedasticity).

Alternatively, fragility models can be computed in a classification framework (Shinozuka et al., 2000; Baker,
2015). This method only works with binary damage variables (whether the structure fails or not) and does
not make use of the precise value of the EDP, which leads to a certain loss of information. More recently,
nonparametric models, namely kernel smoothing, have been proposed in the literature (Noh et al., 2015; Mai
et al., 2017). However, it is well-known that nonparametric models suffer from the curse of dimensionality
(Tsybakov, 2009): the model accuracy decreases drastically with increasing input dimensionality (in our case,
the number of IMs).

In this paper, to better balance the model flexibility and limited number of simulations, we propose applying
the newly developed stochastic polynomial chaos expansion (SPCE) technique (Zhu and Sudret, 2023). This
model introduces an artificial latent variable and a noise variable to represent the random nature of the stochastic
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simulation. More precisely, it expresses the EDP as a function of the IMs and the latent variable plus the additive
noise. Therefore, this model can tackle a full representation of conditional distributions. It follows that natural
byproducts of the analysis are the classical fragility models. In fact, one can naturally develop statistical relations
between classical IMs and the selected EDP. In this case, the classical IMs are available as statistics of the synthetic
ground motions2, and the fragility models can be used in the original PEER-PBEE framework directly.

The paper is organized as follows. In Section 8.2, we outline the stochastic simulator approach; then, we
recap the extension of classical methods developed to multiple intensity measures. In Section 8.3, we summarize
the main ingredients of the stochastic polynomial chaos expansion. In Section 8.4, we use a synthetic ground
motion model and two computational examples to illustrate the performance of the proposed method. Finally,
we conclude with the main finding of the study and give an outlook for future research in Section 8.6.

8.2 Stochastic simulator approach for fragility analy-
sis

8.2.1 The stochastic simulator approach

This paper follows the line of research that uses an SGMM to characterize seismic excitation. Using the repre-
sentation introduced in Abbiati et al. (2021), the stochastic ground motion can be expressed as follows

Aptq “ Mapt,Ξ|Xq, (8.1)

where Ma represents the synthesis formula of a parametric SGMM, Ξ is a Gaussian vector (with i.i.d. standard
normal random variables) representing the aleatory variability of the process, and X is a random vector collect-
ing the parameters of the model and the associated epistemic variability. The SGMM parameters are selected
to be engineering meaningful (Rezaeian and Der Kiureghian, 2008; Broccardo and Dabaghi, 2017); therefore,
in this framework, X can be regarded as a vector of IMs. In the PEER-PBEE framework, X is statistically re-
lated to the earthquake and site characteristics via predictive equations. However, this study focuses only on
the fragility model computation and, therefore, for simplicity, we use a marginal joint probability distribution
of X fitted to a specific seismic catalog (see Section 8.4.1 for further details).

Let Y denote the EDP (e.g., maximum interstory drift) of a structural system of interest computed as
Y “ MdpAptq|xdq, where Md is an expensive-to-evaluate deterministic solver3 with xd being a set of deter-
ministic parameters (e.g., a finite element model with deterministic masses, damping, and constitutive models).
It follows that Y can be expressed as

Y “ MdpMapt,Ξ|Xq|xdq “ MspΞ|Xq, (8.2)

where Ms
def
“ Md ˝ Ma is a stochastic simulator since for X “ x the response Y is still stochastic (due to the

aleatory variability encoded inΞ). Provided with this framework, the objective of this study is to use a stochastic
2In this case, one has to verify that the rate of exceedance of the classical IMs emerging from the SGMM is compatible to the ones

derived by PSHA analysis (Rezaeian and Der Kiureghian, 2010)
3In Abbiati et al. (2021), the solver is also assumed to be stochastic to accommodate random fields. In this paper, we choose the

more restrictive deterministic solver as it is the most typical case in earthquake engineering
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surrogate model, namely the SPCE, to develop fragility models.

8.2.2 Fragility analysis

In PBEE, seismic loads are typically characterized by a selected set of IMs. An incomplete list of conventional
IMs includes peak ground acceleration, spectral acceleration, peak ground velocity, and Arias intensity (Mackie
and Stojadinović, 2003). In general, an IM can represent any “optimal” feature of the seismic load. According
to Mackie and Stojadinović (2003), optimal is defined as being practical, sufficient, effective, and efficient (see
Mackie and Stojadinović, 2003 for further details). To improve the power of the prediction and reduce the
variability among ground motions, one can combine several IMs for fragility analysis (Baker and Cornell, 2005;
Seyedi et al., 2010; Modica and Stafford, 2014).

In the SGMM context, a natural choice for the IMs is the set of SGMM parameters. This allows applying
directly the PBEE-PEER framework by convolving the predictive equations (which extend the classical GMPEs)
with these fragility models based on the SGMM parameters (Abbiati et al., 2021). In this study, we pursue
this philosophy by proposing SPCE as a computational method that outperforms the current state of the art.
In particular, this section first introduces the general concept of fragility models; second, it reviews a series of
computational methods which can be used directly in this context and that we will use to compare the proposed
SPCE approach.

The structural performance is usually defined by the event that the EDP exceeds a certain threshold δ0,
which represents a predefined damage level. A fragility model expresses the exceeding probability as a function
of IMs, that is,

pf pxq “ P pY ą δ0 | X “ xq “ 1 ´ FY |Xpδ0 | xq. (8.3)

Using the probability distribution characterizing the SGMM parameters, we generateN samples grouped into
X “ txp1q, . . . ,xpNqu. Unlike Gidaris et al. (2015) and Abbiati et al. (2021), where Op102q replications are
used, we do not consider replications in this paper to drastically reduce the overall number of simulations. This
is feasible because of the features of the SPCE approach introduced by Zhu and Sudret (2023), which is recapped
in Section 8.3. Therefore, for each set of the ground motion parameters xpiq, we generate one synthetic ground
motion and then compute the associated EDP ypiq which is collected in Y “

␣

yp1q, . . . , ypNq
(

.

In the sequel, we introduce a series of classical fragility model computation methods which can be used
directly in this context. Moreover, we use these benchmark methods to compare the proposed SPCE approach.

One of the most popular methods for fragility analysis is the linear model (i.e., cloud analysis; Cornell et al.,
2002; Modica and Stafford, 2014), where the logarithm of EDP is expressed as a linear function of the logarithm
of the IMs with an independent additive Gaussian noise, i.e.,

logpY q “

M
ÿ

i“1

β0 `
ÿ

j“1

βj logpxjq ` e, (8.4)

where e „ N p0, σ2q. The model parameters β and σ can be estimated using standard ordinary least-squares.
Eq. (8.4) gives directly the conditional probability density function (PDF), and the fragility function is calcu-
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lated as

pf pxq “ 1 ´ Φ

˜

δ0 ´ β0 ´
řM

j“1 βj lnpxjq

σ

¸

, (8.5)

where Φ is the cumulative distribution function (CDF) of the standard normal distribution.
Probit regression is another classical method used to estimate directly fragility functions (Shinozuka et al.,

2000; Baker, 2015). In this context, fragility models are interpreted as a soft classifier. In the earthquake engi-
neering community, the CDF of a lognormal distribution is typically selected as classifier. Although this method
is usually used for a single IM, it can be extended directly to the case of multiple IMs, that is,

pf pxq “ Φ

˜

β0 `
ÿ

j“1

βj lnpxjq

¸

. (8.6)

The model parametersβ are estimated by maximum likelihood estimation. In this classification framework, the
threshed δ0 is used to directly classify the samples of the outcomes (e.g., tnot failu def

“ tEDP ă δ0u, tfailu def
“

tEDP ě δ0u), and the precise value of the EDP is ignored. Therefore, δ0 is a property of the classifier; in other
words, when the value of δ0 varies, it is necessary to build a new model.

In recent years, nonparametric methods for fragility model computations have gained momentum (Noh
et al., 2015; Mai et al., 2017), given their inherent flexibility. Recall the definition of the conditional distribution

fY |Xpy | xq “
fY,Xpy,xq

fXpxq
. (8.7)

Without introducing restrictive assumptions, the distributions fY,X and fX can be estimated using nonpara-
metric estimators, namely kernel smoothing, which then provides an estimate of the conditional distribution.
In this approach, the bandwidths are hyper-parameters to be defined. Noh et al. (2015) proposed selecting
the bandwidths by engineering judgments and prior information. Mai et al. (2017) applied the method devel-
oped in Duong and Hazelton (2005) to estimate separately fY,X and fX . However, this does not yield a valid
conditional distribution (the integral over y is unequal to 1). In this paper, we consider a more advanced non-
parametric method developed by Li et al. (2013) that is typically designed for estimating the conditional CDF,
as the latter is directly related to the exceeding probability. Following Mai et al. (2017), the kernel estimator is
applied to the logarithmic transform of the data to guarantee the positiveness of the EDP and the IMs.

8.3 Stochastic polynomial chaos expansion

The methods reviewed in the previous section have their limitations: the linear model relies on very restrictive
assumptions, the probit model does not make full use of the available information, and the kernel estimator
suffers from the curse of dimensionality (Tsybakov, 2009). To achieve better accuracy with a limited number of
simulations, we propose using the stochastic polynomial chaos expansion (SPCE) approach recently proposed
in Zhu and Sudret (2023) to estimate the probability distribution of the EDP, Y , conditioned on the IMs,
X “ x. The conditional random variable is denoted by Yx. In this section, we recap the principle of the
standard polynomial chaos expansion (PCE) and its extension to SPCE.

PCE is a surrogate model that has been widely applied to emulate deterministic simulators in the context
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of uncertainty quantification. Considering the uncertain input variables X , this surrogate represents a deter-
ministic model Md : x ÞÑ Mdpxq by a series of polynomial expansions, that is,

MdpXq «
ÿ

αPA

cαψαpXq, (8.8)

where ψα is the basis function defined by the multi-index α, cα is the associated coefficient, and A is the trun-
cated set of multi-indices that define the basis functions used in the expansion.

For X with independent components, the basis function is given by a product of univariate polynomials:

ψαpxq “

M
ź

j“1

ϕpjq
αj

pxjq, (8.9)

where M is the dimension of X , i.e., the number of input parameters, αj is the polynomial degree in xj , and
!

ϕ
pjq

k : k P N
)

is the orthogonal polynomial basis with respect to the marginal distribution fXj
, which satisfies

E
”

ϕ
pjq

k pXjqϕ
pjq

l pXjq

ı

“

$

&

%

1 if l “ k,

0 otherwise.
(8.10)

For uniform, normal, gamma, and beta distributions, the associated univariate orthogonal polynomials are well
known as Legendre, Hermite, Laguerre, and Jacobi polynomials (Xiu and Karniadakis, 2002).

When X has dependent components, the tensor product in Eq. (8.9) generally does not produce an or-
thogonal basis. To circumvent this problem, one common way is to transform X into an auxiliary vector
H “ T pXq with independent components (e.g., a standard normal vector) using the Nataf or Rosenblatt
transform (Torre et al., 2019). The polynomial basis is then defined with respect to the auxiliary variables

ψαpxq “

M
ź

j“1

ϕpjq
αj

phjq. (8.11)

where h “ T pxq, and
!

ϕ
pjq

k : k P N
)

is defined by the marginal distribution ofHj .
Let us introduce now the stochastic extension of PCE. Eq. (8.8) is a deterministic function of the input

variables x. To represent the stochastic behavior in the earthquake simulation, we include an artificial latent
variableZ in the expansion and an additive noise variable ϵwhich results in the SPCE (Zhu and Sudret, 2023):

log pYxq
d
« log

`

Ỹx

˘

“
ÿ

αPA

cαψα px, Zq ` ϵ, (8.12)

where the expansion is expressed on the logarithmic transform of Yx to ensure the EDP is positive (this trans-
form is also applied by Gidaris et al., 2015). The noise variable ϵ is a centered Gaussian random variable with
standard deviation σ, i.e., ϵ „ N p0, σ2q.

Here, we aim at approximating the distribution of the EDP Yx for any x. As a result, we use the notation
d
« to denote approximation in distribution. The artificial latent variable Z in Eq. (8.12) is only introduced
to reproduce the stochasticity, and it is not related to the high-dimensional hidden random vector Ξ in the
stochastic ground motion model of Eq. (8.2). In this paper, we select a standard Gaussian latent variableZ „
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N p0, 1q. With this choice, if only linear terms are considered in Eq. (8.12), the SPCE is equivalent to the linear
model in Eq. (8.4).

To build such a model, we need to determine the coefficients c of the expansion and the standard deviation
σ of the noise term.For a data point px, yq the conditional likelihood can be expressed as (see details in Zhu and
Sudret, 2023)

lpc, σ;x, yq “
1
y

ż

DZ

1
?

2πσ
exp

˜

´
plogpyq ´

ř

αPA cαψαpx, zqq
2

2σ2

¸

fZpzqdz. (8.13)

In practice, we can apply the Gaussian quadrature (Golub and Welsch, 1969) with respect to the weight function
fZ to efficiently evaluate the one-dimensional integral, that is

lpc, σ;x, yq « l̃pc, σ;x, yq

“
1
y

NQ
ÿ

j“1

1
?

2πσ
exp

˜

´
plogpyq ´

ř

αPA cαψαpx, zjqq
2

2σ2

¸

wj ,
(8.14)

whereNQ is the number of integration points, zj is the j-th integration point, andwj is the associated weight.
Based on Eq. (8.14) and the available data pX ,yq, we calibrate the coefficients c by maximum likelihood esti-
mation (MLE)

ĉ “ argmax
c

N
ÿ

i

log
`

l̃
`

c, σ;xpiq, ypiq
˘˘

. (8.15)

The standard deviation σ cannot be fitted jointly with c because the likelihood in Eq. (8.13) is unbounded
for σ “ 0 (see Zhu and Sudret, 2023 for a detailed discussion). Therefore, σ is a hyper-parameter, and we use
cross-validation with the out-of-sample likelihood as the performance metric to select an optimal value for σ.
In addition, the cross-validation score is also useful for determining an appropriate truncated set A.

After constructing the model, one can efficiently generate new samples of Ỹx by fixing the value of x and
sampling pZ, ϵq to evaluate Eq. (8.12). Therefore, probabilistic quantities of Ỹx (e.g., mean, variance, quantiles,
and exceeding probabilities Eq. (8.3)) can be estimated by large-scale Monte Carlo simulations. Similarly, jointly
sampling pX, Z, ϵq produces samples of Ỹ which can be used to study the properties of the emulated EDP.

8.4 Numerical examples

In this section, we compare SPCE with the methods reviewed in Section 8.2.2, namely the linear model (LM;
Cornell et al., 2002), the kernel conditional distribution estimator (KCDE), and the classical classification-
based fragility model (i.e., the probit model; Shinozuka et al., 2000), on two numerical examples. For the
KCDE, we apply the kernel estimator developed for conditional CDF estimation (Li et al., 2013) which is
available in the package np (Hayfield and Racine, 2008) implemented in R. To quantitatively assess the per-
formance, we report the convergence of the models for the estimation of the conditional distribution and the
fragility function.

When comparing the distribution estimation, we consider only LM, SPCE, and KCDE, as the probit model
directly estimates the fragility function without providing the conditional distribution. Since LM, SPCE, and
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KCDE are all applied to the logarithmic transform of the EDP, we examine the estimation accuracy of the
conditional distribution of the transformed quantity. In this respect, we use the normalized Wasserstein distance
(Zhu and Sudret, 2023) as the error metric which reads

ε “
EX

“

d2
WS

`

log pYXq , log
`

ỸX

˘˘‰

Var rlogpY qs
, (8.16)

where Yx is the EDP obtained from the stochastic simulation, Ỹx is that of the surrogate model, and dWS is the
Wasserstein distance of order two (Villani, 2009) between two probability measures. For continuous random
variables Y1 and Y2 with quantile functions (i.e., inverse CDF)Q1 andQ2, this distance can be computed by

d2
WS pY1, Y2q “ ∥Q1 ´Q2∥2

2 “

ż 1

0
pQ1puq ´Q2puqq

2
du, (8.17)

For the fragility model in Eq. (8.3) which is a deterministic function of x, we use the relative mean-squared
error to assess the global approximation accuracy

εp
def
“

E
”

ppf pXq ´ p̃f pXqq
2
ı

Var rpf pXqs
, (8.18)

where pf is the fragility function of the simulator, and p̃f denotes that of the surrogate.

8.4.1 Stochastic ground motion model

This section briefly describes the simplified SGMM model used in our analysis. It is out of the scope of the
current study to develop predictive equations that link the SGMM parameters to the earthquake site and source
characteristics. Specifically, we employ a site-based SGMM defined in the frequency domain (Broccardo and
Dabaghi, 2017; Vlachos et al., 2016). The model is the spectral representation of the original time-domain model
implemented in Rezaeian and Der Kiureghian (2010). It targets broad-band excitations, which are typically
associated with far-field ground motions.

In detail, the SGMM is completely characterized by an evolutionary power spectral density (EPSD; Priest-
ley, 1965). Like its original time-domain counterpart, this representation allows separating the temporal and
spectral components of the process (Broccardo and Dabaghi, 2017; Vlachos et al., 2016). In this study, without
losing generality, we neglect the non-stationary spectral characteristics of the ground motion. In fact, within a
good engineering approximation, the frequency content and the bandwidth of the strong ground motion phase
can be assumed constant for broad-band excitations. Moreover, it is assumed that severe structural damage oc-
curs during the strong motion phase.

Finally, the spectral content of the process is represented by a normalized stationary Kanai-Tajimi power
spectral density (KT-PSD), which is a function of two parameters: the main frequency, ωg, and the bandwidth,
ζg. The normalized KT-PSD produces a stationary process with unit variance so that the intensity of the ground
motion is completely controlled by a time-modulating function. We use a gamma modulating function (Reza-
eian and Der Kiureghian, 2010; Broccardo and Dabaghi, 2017), which is completely defined by the expected
Arias intensity Ia, the time at which 45% of the expected Arias intensity is reached, tmid, and the effective dura-
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tion of the motion,D5´95. Finally, the complete SGMM EPSD is given by modulating the normalized KT-PSD
with the time modulating function. Moreover, to ensure zero residual velocity and displacement, we apply a
high-pass filter using the evolutionary theory of Priestley (see Broccardo and Dabaghi, 2017 for a detailed de-
scription). To summarize, the SGMM model parameters are x “ rIa, tmid, D5´95, ωg, ζgs.

Next, we fit the SGMM model to a catalog of recorded far-field ground motions from the PEER NGA-
West2 database (the same used in Broccardo and Dabaghi, 2019). The catalog includes 71 ground motions
recorded at a range of distances (10-90 km) and site conditions from reverse earthquakes with a magnitude be-
tween 6 and 7.6. The two horizontal components of each record are rotated into the major and intermediate
principal directions (Rezaeian and Der Kiureghian, 2010). In this study, we used only the major component
(i.e., we used 71 time series). The fitting procedure for the frequency content of the ground motion is described
in detail in Broccardo and Dabaghi (2017). However, in Broccardo and Dabaghi (2017), ωg and ζg are a time-
varying function, while in this study ωg corresponds to the main frequency of the ground motions at tmid

(which is considered the strong phase of the ground motion). Moreover, we fix ζg to a constant value of 0.9,
which was a good approximation for the selected broad-band excitations4. The approach to estimates the param-
eters Ia, tmid, D5´95 follows Rezaeian and Der Kiureghian (2010). In this respect, the free SGMM parameters
are random variables (i.e., x becomes a random vector, X) to account for the epistemic uncertainty related to
the chosen data set.

Provided with the 71 estimates of the free parameters, we fit a joint-probability model based on log-normal
marginal distributions and a Gaussian copula (i.e., a joint log-normal distribution). Consequently, the models
also account for the dependence structure among the parameters. The joint-probability model parameters are
reported in Table 8.1. Finally, the simulation of the synthetic time series follows a two-step simulation (which
is typical in a stochastic simulator setting). First, the SGMM parameters are sampled from the joint log-normal
distribution. Second, using the synthesis formula of the frequency domain representation of a stochastic process
(Shinozuka and Deodatis, 1991), the time series are generated by filtering white noise Gaussian vectors with the
EPSD and the high-pass filter. Therefore, for a given set of model parameters X “ x, multiple time series can
be generated. Consequently, the EDP of interest is a random variable even when X “ x.

Table 8.1: Ground motion parameters, g is the gravitational constant expressed in [m/s2]

Name Distribution

Ia [g2¨ s] LN p´4.61, 1.452q

tmid [s] LN p2.55, 0.902q

D5´95 [s] LN p2.67, 0.532q

ωg [rad/s] LN p1.42, 0.592q

Correlation
matrix R “

¨

˚

˚

˝

1 0.015 ´0.23 ´0.13
0.015 1 0.68 ´0.36
´0.23 0.68 1 ´0.11
´0.13 ´0.36 ´0.11 1

˛

‹

‹

‚

4We found that the EDP response was not sensitive to large values of ζg . Therefore, we used a point approximation and reduced the
parameter space. Note that this approximation does not limit the generality of the SPCE approach for fragility model computation.

208



8.4. Numerical examples

8.4.2 Toy example

In this example, we introduce the properties of a three-story shear frame idealized as a three-degree of freedom
system. We are interested in the dynamic response of the system subjected to the ground motions generated
according to Section 8.4.1. The interstory behavior is inelastic, with a force-interstory-drift relationship based
on a Bouc-Wen hysteretic model (Wen, 1976). Specifically, the i-th interstory restoring force is written as

qipviptq, 9viptqq “ ki rαviptq ` p1 ´ αqzptqs , (8.19)

where viptq denotes the interstory drift, α is a parameter that controls the degree of inelasticity (i.e., α “ 1
corresponds to the linear case), ki is the initial elastic interstory stiffness, and zptq is the hysteretic response
governed by the following law

9zptq “ ´γ | 9vptq| |zptq|
n´1

´ η |zptq|
n

9viptq `A 9vptq, (8.20)

where γ, n,A and η are the model parameters. The values of structural properties, including the local masses
mi and damping ci, and model parameters are reported in Table 8.2. The story yield displacement, δy, is set to
0.01 m and the post-hardening stiffness is set at 10% of the elastic stiffness ki for all the three stories. The EDP
of interest is the maximum interstory drift, i.e.,

Y “ max
”

max
t

rv1ptqs,max
t

rv2ptqs,max
t

rv3ptqs

ı

. (8.21)

Table 8.2: Structural properties and Bouc-Wen parameters (δy “ 0.01 m).

mi 106[kg] ci [106[Ns/m] ki 108[N/m] α n γ [1/mn] η [1/mn] A

Story 1 1 1.73 3.0 0.1 5 1{p2δyqn 1{p2δyqn 1
Story 2 1 1.73 2.4 0.1 5 1{p2δyqn 1{p2δyqn 1
Story 3 1 1.73 1.5 0.1 5 1{p2δyqn 1{p2δyqn 1

Figure 8.1 illustrates the conditional PDF of the maximum interstory drift for four different values of the
ground motion variables. The models are constructed based on a total number of 1,000 simulations. The refer-
ence histograms are obtained by replicating the simulation 250 times for each set of ground motion parameters,
i.e., we generated 250 ground motions for each x and computed the associated structural responses. The distri-
butions are plotted on the logarithmic transform ofYx, which allows for verifying the assumptions of the linear
model.

As shown in Figure 8.1, the linear model can represent the overall location and shape of the conditional dis-
tribution: the prediction of the mean values are close to the reference histograms that demonstrate normal-like
shapes. Nevertheless, the linear model loses some details of the mean estimation in Figures 8.1a and 8.1c and
cannot capture the heteroskedastic effect (varying variance). The PDF predictions of KCDE are quite poor, as
it yields spurious oscillations in Figures 8.1a, 8.1c and 8.1d. This is because the bandwidth selection procedure
(Hayfield and Racine, 2008) is designed for estimating the conditional CDF. Moreover, the conditional dis-
tribution estimation requires estimating the joint distribution of pX, Y q in Eq. (8.7) which is of dimension 5.
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This is rather high for nonparametric estimators and leads to the observed poor predictions. In contrast, SPCE
can accurately emulate the PDFs in terms of not only the location and the heteroskedastic effect but also the
shape of the distributions: Figure 8.1d is slightly right-skewed which is well represented by SPCE.

(a) x “ p0.0013, 69.94, 61.59, 5.66q
T

(b) x “ p0.017, 7.57, 10.06, 7.01q
T

(c) x “ p0.055, 3.67, 3.45, 4.79q
T

(d) x “ p0.16, 7.23, 6.15, 2.70q
T

Figure 8.1: Example 1 — comparison of emulated PDFs of log pYxq for four different values of x; the models
are built onN “ 1,000 simulations.

To study the convergence of the various methods, we generated a big data pool of size 105 (following the
distribution of X described in Table 8.1). We randomly subsampled it to have samples of desired sizes N P

t250; 500; 1,000; 2,000; 4,000u to train the models. Note that this mimics the procedure of random design
of experiment. To account for the uncertainties in the estimation, we repeated the procedure 20 times for each
sample size (i.e., we obtain 20 models constructed on independent subsamples for eachN ). To evaluate the error
metrics defined in Eqs. (8.16) and (8.18), we generated a validation set of size 400. For each validation point, we
used 250 replications to have a reference distribution (meaning a total number of 400 ˆ 250 simulations for
the validation set). The error estimates for each sample size are represented by box plots constructed from the
20 repetitions of the full analysis.

Figure 8.2 shows the results of the models for estimating the conditional distribution. For relatively small
sample sizes N ď 500, the linear model gives the best results. This is because the linear model is very simple,
and its assumptions are relatively “suitable” for this example. More precisely, the error of a statistical model can
be decomposed into bias and variance (James et al., 2014). In Figure 8.1, we observe that the conditional distri-
bution is close to Gaussian, the mean function does not exhibit a strong nonlinearity, and the heteroskedastic
effect is relatively weak. Therefore, the bias of the linear model is rather small. Because of its simplicity, the linear
model has a small variance. As a result, when only a few data points are available, the linear model gives the best
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results. However, with increasing sample size, the errors of the linear model run into a plateau. This is due to
the irreducible bias (caused by the model misspecification). On the contrary, SPCE and KCDE are more flexible
models that have smaller bias but bigger variance. Hence, both models exhibit a clear decay of the error. Due
to its nonparametric feature, KCDE is merely comparable to the linear model for N “ 4,000. When enough
samples are available, i.e.,N ě 1,000, SPCE is the best model. Furthermore, the average error of SPCE is three
times smaller than those of the linear model and kernel estimator forN “ 4,000.

Figure 8.2: Example 1 — comparison of the convergence among the models in terms of the normalized Wasser-
stein distance. The lines correspond to the average values over 20 repetitions of the full analysis, whereas the
box plot summarize the 20 results.

When considering fragility functions, we select two thresholds δ0 “ 0.02 m and δ0 “ 0.07 m. The relative
mean-squared errors for estimating the associated fragility functions are reported in Figure 8.3. In general,
SPCE produces the best overall approximation to the fragility functions for all sample sizes. Similar to what
we observed in Figure 8.2, the performance of the linear model barely improves with increasing N . For δ0 “

0.07 m, SPCE outperforms the linear model in the case of a few samples N ď 500. This indicates that SPCE
better approximates the tails. The probit model yields relatively large errors for training sets of sizesN ď 1,000
in the estimation of the fragility function associated with δ0 “ 0.07 m. This is because this model ignores
the precise values of EDP and only works with the binary variable. For δ0 “ 0.07 m, only a small fraction of
samples (about 1.3%) exceed the threshold. Consequently, the probit model only produces reliable estimates
for large N . Finally, KCDE performs quite poorly even though the associated bandwidth selection procedure
is designed for CDF estimation.

8.4.3 Three-story frame

As a second example, we apply the methods to study the three-story steel frame modeled with the software
OpenSees (Pacific Earthquake Engineering and Research Center, 2004). The geometry of the structure is
shown in Figure 8.4a, and the story height and floor span are H “ 3 m and L “ 5 m, respectively. We choose
the standard European IPE A 330 for the beams and HE 200 AA for the columns.
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(a) Fragility function for δ0 “ 0.02 m (b) Fragility function for δ0 “ 0.07 m

Figure 8.3: Example 1 — comparison of the convergence among the models in terms of the fragility functions.
The lines correspond to the average values over 20 repetitions of the full analysis, whereas the box plot summa-
rize the 20 results.

The mechanical property of the steel follows the uniaxial Giuffre-Menegotto-Pinto model with isotropic
strain hardening (material of type “Steel02” in OpenSees). More precisely, we set the Young’s modulus toE “

205,000 MPa, the yield stress to fy “ 235 MPa, and the strain hardening ratio to b “ 0.01 (the other parameters
controlling the elastic-plastic transition are given by R0 “ 18, CR1 “ 0.925, and CR2 “ 0.15). The load
applied to the structure consists of dead load (weight of frame elements and supported floors) and live load,
which results in a total distributed load on the beams equal to q “ 20 kN/m (Mai et al., 2017).

The structural components (beams and columns) are modeled by nonlinear beam elements based on the
iterative force-based formulation. The element cross-sections are defined by a set of fiber sections, which allows
modeling the plasticity over the cross-section. Figure 8.4b illustrates the stress-strain relation of the bottom left
column for the frame under an example ground motion. The first two fundamental periods of the structure are
0.950 s and 0.317 s (from modal analysis), respectively. In this study, we are interested in the dynamic response
of the system subjected to the ground motions generated according to Section 8.4.1. The EDP of interest is the
maximum interstory drift ratio.

Figure 8.5 shows the prediction of the conditional PDFs for four different values of x. The reference his-
togram of eachx is calculated by performing 250 replications, and the surrogate models are built on 1,000 simu-
lations. Similar to the first example Figure 8.1, we observe that the conditional distributions have bell shapes that
are close to Gaussian distributions. The linear model can well approximate the location of the distributions, so
the (log-)mean function does not demonstrate a strong non-linearity. The variance of the conditional distribu-
tion does not vary too much. The linear model shows a good overall approximation, but it fails to characterize
the precise variation of the distribution. On the contrary, the kernel method is too flexible and completely mis-
predicts the shape of the distribution. In contrast, SPCE turns out to accurately represent not only the location
and shape of the distribution but also the heteroskedastic effect.

For the convergence study, we followed the same procedure as Section 8.4.2. In this example, we gener-
ated a data pool of size 50,000. We randomly subsampled this data set to have the experimental design of sizes
N t250; 500; 1,000; 2,000; 4,000u to build the surrogate models. We repeated the analysis 20 times for each
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(a) Illustration of the frame structure (b) Hysteric behavior of the steel material at section 1-1 for
a ground motion

Figure 8.4: Example 2 — three-story steel frame.

(a) x “ p0.0098, 44.21, 47.08, 2.33q
T

(b) x “ p0.0058, 31.36, 26.89, 2.69q
T

(c) x “ p0.014, 15.15, 10.19, 1.24q
T

(d) x “ p0.11, 12.85, 5.49, 1.76q
T

Figure 8.5: Example 2 — comparison of emulated PDFs of log pYxq for four different values of x; the models
are built onN “ 1,000 simulations.
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value of N to account for the uncertainties (due to the random ground motion parameters and the intrinsic
stochasticity of the ground motion model). To evaluate the error defined in Eqs. (8.16) and (8.18), we created a
validation set of size 200, and we performed 250 replications for each validation point to have a reference con-
ditional distribution.

Figure 8.6 shows the error metric defined in Eq. (8.16). Similar to Figure 8.2, the linear model is superior
to SPCE and KCDE when only N “ 250 data points are used. With increasing N , its errors exhibit narrower
spreads, but the average values do not decrease due to the bias resulted from the model simplicity. The kernel
estimator exhibits a better convergence rate but performs poorly overall. SPCE has a similar performance to the
linear model at N “ 500 and surpasses the latter for N ě 1,000. In addition, SPCE has a clear decay of the
errors with a similar rate to KCDE. For N “ 4,000, the average error of SPCE is less than half of those of the
linear model and KCDE.

Figure 8.6: Example 2 — comparison of the convergence among the models in terms of the normalized Wasser-
stein distance. The lines correspond to the average values over 20 repetitions of the full analysis, whereas the
box plot summarize the 20 results.

For fragility function, we select two thresholds δ0 “ 0.7% and δ0 “ 2.5% which are typically used to
characterize light and moderate damages for steel frames (Federal Emergency Management Agency, 2000). The
relative mean-squared errors for estimating the associated two fragility functions are reported in Figure 8.7. For
the small threshold of δ0 “ 0.7%, the results are similar to the distribution estimation in Figure 8.6. Specifically:
first, the linear model yields the best estimates of the fragility function when small data sets of N “ 250 are
considered, but the errors get stagnant with more data; second, KCDE is too flexible to estimate robustly the
fragility function due to its nonparametric feature; third, SPCE performs similarly to the linear model forN “

500 but outperforms all the other models for N ě 1,000. Unlike the first example (Figure 8.3a), the errors of
the probit model are not comparable to these of SPCE but between the linear model and KCDE. For the high
threshold of δ0 “ 2.5%, SPCE is the best model for all values of N . The simplicity of the linear model leads
to a significant irreducible bias. In contrast, SPCE, KCDE, and the probit model all demonstrate a clear decay
of the errors. The kernel estimator has a large spread of errors but a slow convergence of the average value. The
probit model performs poorly for N ď 500 because the model ignores the precise values of the EDP and only
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a few data points exceed the threshold (ca. 1.8% in the data set). In summary, SPCE generally provides more
accurate estimates of the fragility functions than the other models.

(a) Fragility function for δ0 “ 0.7% (b) Fragility function for δ0 “ 2.5%

Figure 8.7: Example 2 — comparison of the convergence among the models in terms of the fragility function.
The lines correspond to the average values over 20 repetitions of the full analysis, whereas the box plot summa-
rize the 20 results.

In this example, we plot the two fragility functions in the Ia ´ωg plan of an SPCE built upon 1,000 model
evaluations in Figure 8.8. The plotted fragility models are obtained by averaging out the functions with respect
to tmid and D5´95. Specifically, we obtain the “cross section” fragility model conditional to each ttmid, D5´95u

sample and, then, we compute the average fragility model.
We choose Ia ´ ωg which are the most important parameters of the fragility functions according to a sen-

sitivity analysis. This outcome is in line with the results reported in Abbiati et al. (2021). As a comparison, we
run the simulator for a validation set of nine points obtained by the Cartesian product of Ia P t0.02, 0.06, 0.1u

and ωg P t2, 6, 10u. The reference failure probability associated with each validation point is computed by 250
replications (i.e., a total number of 2,250 simulations for validation). As seen in Figure 8.8, the diamonds repre-
senting the reference points lie fairly well on the estimated fragility surface. More precisely, the average absolute
error of SPCE (averaged over the 9 validation points) is 2.7% for δ0 “ 0.7% and 0.7% for δ0 “ 2.5%. In this
case, we observe that the dominant variable is the Arias intensity Ia (also confirmed by the sensitivity analysis).
This was expected, given the broad-band nature of the excitation, which “spread” the energy content among
the full range of frequencies.

8.4.4 Discussion

The models considered in this paper were constructed on data without replications. For replication-based ap-
proaches (Gidaris et al., 2015; Abbiati et al., 2021), a typical number of Op102q replications are used. Following
such a strategy, the amount of points exploring the input space would significantly reduce to only Op10q (as the
total number of simulations varies in t250; 500; 1,000; 2,000; 4,000u). This does not allow for good coverage
of the input space, especially when the failure occurs with a higher probability at the tail of the input distribu-
tion. Moreover, using replications in the estimation of conditional distributions of a parametric model is also
not optimal, as shown in Zhu and Sudret (2021).
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(a) Fragility function for δ0 “ 0.7% (b) Fragility function for δ0 “ 2.5%

Figure 8.8: Example 2 — Fragility function in the Ia ´ωg plan of a SPCE built on 1,000 samples. The diamond
points correspond to the reference value computed from 250 replications.

Our numerical results demonstrate that SPCE is accurate for estimating both the conditional distribution
and the fragility functions for different thresholds. Therefore, SPCE provides a good balance between the model
flexibility and limited data. The linear model performs usually well for small values of N but cannot correctly
approximate fragility functions with large thresholds. Due to its restrictive assumptions, the linear model can-
not be further improved by using more data. Surprisingly, the kernel estimator is almost always the worst model
despite that the bandwidth selection procedure is designed for CDF estimation. The probit model directly es-
timates the fragility function and has a rather low accuracy compared to the other models.

8.5 Additional post-processing

8.5.1 CCDF of the EDP

As the conditional distribution is available from SPCE, one can aggregate the uncertainties in X and evaluate
the overall risks by uncertainty propagation. As an example, we can compute the complementary cumulative
distribution function (CCDF) defined by PpY ě δq of the EDP by resampling Y from SPCE. This represents
the unconditioned exceeding probability of the EDP as a function of δ0.

In Figure 8.9, we plot the CCDFs of the two examples estimated by LM, SPCE, and KCDE, as the probit
model does not allow resampling the EDP. The reference curves are the empirical CCDFs using all the available
samples (105 for the first example and 50,000 for the second example). The surrogate models are built on 1,000
simulations.

We observe that the linear model exhibits a systematic gap at the tail: it overestimates the exceeding proba-
bilities for relatively large values of δ0, which cannot be reduced by increasing N . The CCDFs obtained from
the kernel estimator are generally more accurate than the linear model but are unstable for big values of δ0 in
Figure 8.9a. SPCE achieves a high accuracy in Figure 8.9a but has a slight discrepancy at the tail in Figure 8.9b)
which, according to the numerical investigation, can be efficiently reduced by using more data.

216



8.5. Additional post-processing

(a) Example 1 (3-DOF system) — CCDF of the maximum
interstory drift

(b) Example 2 (OpenSees model) — CCDF of the maxi-
mum interstory drift ratio

Figure 8.9: Comparisons of the CCDF estimation (the models are built onN “ 1,000).

8.5.2 Classical fragility curves

With the data generated for estimating the distribution of EDP conditioned on the ground motion parameters,
we can also compute the fragility curves with respect to a classical IM, such as peak ground acceleration (PGA) or
spectral acceleration at the fundamental frequency (SA). More precisely, we first extract the values of the selected
IM from the synthetic seismograms and then apply the proposed method to estimate conditional distributions
which, by post-processing, gives the fragility curves. As an illustration, we choose a data set of size 1,000 to
estimate the fragility curves for each of the examples in Sections 8.4.2 and 8.4.3.

For the first example (the 3-DOF system), we select the spectral acceleration (SA) as IM. More specifically,
SA corresponds to the spectral acceleration for a single-degree-of-freedom system with a period equal to the
fundamental period of the structural and viscous damping ratio equal to 2%. Figure 8.10a shows the scatter
plot of the 1,000 data points. We observe that the data have a strong heteroskedasticity (in the log-log scale)
reflecting a typical nonlinear structural behavior.

Figure 8.10b summarizes the fragility curves estimated by the different models (constructed on the data
illustrated in Figure 8.10a) for δ0 “ 0.02 m and δ0 “ 0.07 m. The reference fragility curves are computed by
applying the kernel estimator to all the available data (i.e., 105). Due to the heteroskedastic effect and the possibly
non-Gaussian shape of the conditional distribution, the linear model has a significant gap to the reference, in
particular for δ0 “ 0.07. KCDE produces an irregular fragility curve for δ0 “ 0.07. The reason is that most
of the data are in the region where the intrinsic variability is not significant, which leads to a small value of the
selected bandwidth. This results in a large variance of the estimation in the region where the data are sparse, as
KCDE is a local estimator. The probit model is quite accurate for δ0 “ 0.02, but it yields unstable estimate of
the fragility curve for δ0 “ 0.07. This is because only a few points (9 out of 1,000) lead to exceedance. Finally,
SPCE built on the data in Figure 8.10b approximates the fragility curves with high accuracy.

For the second example (OpenSees model), we use the PGA as intensity measure. Figure 8.11a shows the
scatter plot of a data set of size N “ 1,000. We observe that the PGA is a less relevant IM than the SA as the
relationship PGA-EDP shows a much larger variability. Therefore, the derived fragility curves are less informa-
tive than the previous ones. The PGA-EDP relationship is close to linear with a homoscedastic noise (in the
log-log scale). Therefore, the linear model is able to approximate well the fragility curves with relatively small
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(a) Training samples of sizeN “ 1,000 (b) Comparison of fragility curve estimation

Figure 8.10: Example 1 — fragility curves using spectral acceleration as IM.

biases. Unlike Figure 8.10b, the kernel estimator yields smooth predictions, but the fragility curve shows a non-
increasing behavior for δ0 “ 2.5%. The probit model and SPCE provide the most accurate estimate for the
fragility curve of δ0 “ 0.7%. However, in this case, SPCE underestimates the exceeding probabilities associated
with the threshold of δ0 “ 2.5% for very large values of PGA. This is because most of the data are in the region
where PGA is small and the structure does not fail with very high probabilities: the 95% and 99% quantiles of
PGA are 0.351g and 0.605g, and the associated reference exceeding probabilities are 0.079 and 0.4427, respec-
tively. The SPCE is a flexible model developed to estimate the overall conditional distribution (with respect to
the probability distribution of the IM), but not designed to fit directly the tail of the distribution. As a con-
sequence, in specific cases, it may suffer of over-fitting and lack of robust extrapolation behavior for extreme
quantiles. In this case, the problem is exacerbated by the relative large variability between PGA and EDP, which
makes difficult the estimation of the tail of the distribution.

The lack of failure data for large damage thresholds is a well-known problem in fragility analysis. In the
classical framework for fragility computation based on real ground motions, this problem is overcome by scaling
the ground motions and fitting procedures based on censored data (Baker, 2015). In the context of stochastic
simulation, scaling is not recommended (Grigoriu, 2011). A promising future research line is to develop an
importance sampling scheme to simulate extreme events from the SGMM model and fill adaptively the EDP
intervals of interest. Observe that the presented SPCE approach is orthogonal to this research line and can be
easily adapted and applied once the adaptive importance density scheme is developed.

8.6 Conclusions
In this paper, we propose methods to efficiently perform fragility analysis based on artificial ground motions,
following the recent development in Abbiati et al. (2021). We characterize the ground motion model by a few
engineering-meaningful parameters that are calibrated from seismic records and modeled by random variables.
Combing this model with the dynamical analysis of structures, we obtain a stochastic simulator: for a given set
of ground motion parameters, the engineering demand parameter that characterizes the structural damage is
random. Because of this non-deterministic relation, classical surrogate models cannot be used to represent the
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(a) Training samples of sizeN “ 1,000 (b) Comparison of fragility curve estimation

Figure 8.11: Example 2 — fragility curves using peak ground acceleration as IM.

simulator.
Some methods that have been developed for estimating classical fragility curves can be extended and applied

by regarding the ground motion parameters as multiple intensity measures. To have a reliable model without
introducing restrictive assumptions, we propose using the recently developed stochastic surrogate model called
stochastic polynomial chaos expansion to emulate the conditional distribution. This model introduced an artifi-
cial latent variable and a noise variable to reproduce the stochastic behavior of the earthquake simulation.

The performance of the proposed method is illustrated by two numerical examples: a three-degree-of-
freedom system and a 3-story steel frame (modeled in OpenSees). For the conditional distribution estimation,
SPCE is compared with the linear model and a state-of-the-art kernel conditional distribution estimator. Us-
ing an appropriate error measure defined in Eq. (8.16) to assess the accuracy, we observe that the linear model
reaches its performance limit for onlyN “ 250 simulations because of its simplicity. The kernel estimator is too
flexible to have a stable estimate as a consequence of its nonparametric feature. In contrast, SPCE demonstrates
a steep decay of the errors and yields the best approximation forN ě 1,000.

For the fragility function, we include the probit model in the comparison. The results show that SPCE
prevails over the other models, especially for higher thresholds. In addition, SPCE can be used to propagate the
uncertainties in the ground motion parameters to evaluate the overall risks. By resampling the model, SPCE
can accurately estimate the complementary cumulative distribution function with limited data even at the tail.
Furthermore, one can also apply the method to estimate the fragility curves with respect to classical intensity
measures, i.e., PGA and SA.

SPCE can generally produce accurate estimates of the fragility curves. However, the data are mostly in
the safe region for a high threshold because of the sampling procedure. Thus, extrapolating SPCE for extreme
quantiles of the intensity measure with limited data is not reliable. To cope with small exceeding probabilities,
adaptive design strategies remain to be explored. The simulation scheme will not simply sample the distribution
of the ground motion parameters but adaptively select the samples in the region where the structure is prone
to fail to improve the predictive quality of the surrogate model (Echard et al., 2011; Marelli and Sudret, 2018).
This will also benefit the estimation of fragility curves with classical IM.

We underline that the proposed method can be extended by considering uncertain parameters in the struc-
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tural properties to tackle a larger set of problems. It can also be applied to model other probabilistic components
in PBEE such as relating decision variables (e.g., monetary loss) to structural damage and the damage state to
EDP. With these models representing the conditional distributions, one can evaluate the exceeding probability
function of the decision variables by resampling (similar to the calculation of the CCDF in Figure 8.9). Studies
in this direction are currently under investigation.
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Every new beginning comes from some other beginning’s end.

Lucius Annaeus Seneca

9
Conclusions

9.1 Summary

In contrast to conventional deterministic computational models, stochastic simulators are affected by their in-
trinsic stochasticity, and their response remains a random variable even for a fully specified set of input param-
eters. To assess the probabilistic properties of the model response, repeated runs with the same set of input
parameters are therefore necessary. In the context of uncertainty quantification or optimization, various input
values should also be investigated. Both aspects call for a large number of model runs that can be intractable
when dealing with computationally expensive simulators. A common solution to this problem is to construct
surrogate models that approximate the original simulator but can be evaluated at a low cost. Due to the random
nature of stochastic simulators, however, well-established deterministic surrogate models cannot be applied di-
rectly. To fill this gap, this manuscript aims at developing efficient and accurate surrogate models to emulate
stochastic simulators. More precisely, we have focus on estimating the entire response probability distribution
over the input domain.

9.1.1 Literature review

Compared to deterministic simulators, surrogate modeling of stochastic simulators is a much less mature re-
search field. Most of the methods developed in this area are replication-based approaches, where the simula-
tor is repeatedly evaluated for each point of the experimental design (ED). The probability distribution of the
response is characterized by a small set of statistics of the available replications. The estimated quantities are
considered noisy observations of the underlying functions, which can in turn be estimated by regressions using
conventional deterministic surrogate modeling techniques. As a result, the model construction typically con-
sists of two steps: local inference and regression.

Another class of methods views the stochastic simulator as a random field indexed by the input variables. It
requires controlling the intrinsic stochasticity to evaluate trajectories. By collecting multiple trajectories, one can
estimate the covariance function and build up a surrogate random field, e.g., via Karhunen–Loève expansions.
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As a result, methods of this category not only estimate the response distribution but also capture the dependence
structure of the stochastic simulator as a random field. Because it is necessary to fix the intrinsic stochasticity,
this type of approach is not always applicable, especially when experimental data are involved.

Most importantly, we pointed out in Chapter 3 that working with data containing unknown sources of
randomness is a rather classical task in statistical learning. The response distribution is mathematically a con-
ditional distribution. Many statistical models have been developed to estimate some important quantities of
the conditional distribution, such as mean, variance, and quantiles, as functions of the input. For estimating
the entire conditional distribution, however, conventional models either assume a very restrictive parametric
distribution family or use nonparametric models that require a large number of model runs for the inference.

9.1.2 generalized lambda models (GLaMs)

The first model that we proposed in the manuscript is GLaM. This stochastic surrogate model uses the four-
parameter generalized lambda distribution (GLD) to represent the response distribution. GLD is a very flexible
family that can accurately approximate many commonly used parametric distributions and cover a large range
of unimodal distributions. Under the assumption that the model response to any input value follows a GLD,
its four distribution parameters are functions of the input variables. We proposed using polynomial chaos ex-
pansion (PCE) to represent these four functions. Therefore, to determine a GLaM, one should select the basis
functions and estimate the associated PCE coefficients.

To construct such a surrogate, we developed a replication-based approach in Chapter 4. In this chapter,
we tested both the method of moments and the maximum likelihood estimation (MLE) for local inference.
The sparse regression algorithm called hybrid least-angle regression (LAR) was used in the second step for basis
selection and coefficients estimation. We pointed out the inefficiency of such a sequential optimization strategy:
the data are separated into two steps but never considered altogether. Consequently, replications are crucial
and limit the accuracy of the regression step. To improve the model performance, we suggested an additional
joint step leveraging all the data. Numerical examples from various fields including wind turbine simulations
confirmed the superiority of the new method over the two-step replication-based approach.

Based on the idea of this joint framework, we proposed in Chapter 5 the use of MLE to estimate the co-
efficients of GLaM without going through replications. We proved the consistency of the estimation method,
which provides it with some theoretical justifications. To select an appropriate set of basis functions, we applied
the feasible generalized least-squares (FGLS) with hybrid-LAR method to alternatively fit the mean and vari-
ance functions. The associated basis functions are used for the location and scale parameters of the GLD. For
the two shape parameters, we chose low-degree polynomials, which are suitable for problems where the shape
of the response distribution does not vary in a significant nonlinear way. Numerical benchmarks have shown
that without replications, the developed method generally outperforms the best Gaussian approximations and
one of the state-of-the-art nonparametric kernel estimators.

9.1.3 Global sensitivity analysis

In Chapter 6, we investigated global sensitivity analysis for stochastic simulators. We first provided a thor-
ough review of three possible extensions of Sobol’ indices to stochastic models. First, by including the intrinsic
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stochasticity as part of the input, stochastic models are turned into deterministic, and thus classical Sobol’ in-
dices in Section 2.4.1 are well defined. Second, a certain quantity of interest (QoI) of the response distribution
can serve as the main performance indicator in practice. As it is a deterministic function of the input, the as-
sociated Sobol’ indices can be used for such a specific focus. Third, by treating the stochastic simulator as a
random field, one can evaluate the Sobol’ indices for each trajectory. These indices are random variables with
their randomness resulting from the intrinsic stochasticity of the simulator. We analyzed the nature and math-
ematical interpretations of the three proposed extensions and offered guidelines for their usage. Furthermore,
we applied GLaM to help efficiently estimate the Sobol’ indices that are related to the statistical dependence
between the model input and output. The case studies illustrated the wide applicability and accuracy of the
surrogate model.

9.1.4 Stochastic polynomial chaos expansions (SPCEs)

Limited by the capacity of GLD, GLaM cannot represent stochastic simulators whose response can follow a
multimodal distribution. To gain more flexibility, we extended the classical PCE to a stochastic emulator in
Chapter 7. In this model, we introduced an artificial latent variable to jointly form a PCE together with the
input variables. To regularize the surrogate response distribution and the estimation of the coefficients, we
enriched the extended PCE with an additional additive Gaussian noise. To construct such a stochastic emulator,
we proposed using MLE to estimate the coefficients (the consistency of this estimation method is discussed in
Section A.2). We considered the standard deviation of the noise term as a hyperparameter and tune its value
by cross-validation (CV). Moreover, we developed an adaptive algorithm to select the truncation scheme of
the PCE and the type of latent variable based on hybrid-LAR and CV, without the need for replications. The
numerical results demonstrated that the novel surrogate could compete with GLaM for estimating unimodal
response distributions. Additionally, for multimodal distributions where GLaM fails, SPCE can still produce
robust approximations and outperform nonparametric kernel estimators.

In Chapter 8, we applied SPCE to seismic fragility analysis in earthquake engineering. Following a newly
developed framework for simulation-based fragility analysis, we selected a set of physically meaningful parame-
ters of the ground motion model as intensity measures. Because of the white noise used for generating coherent
stochastic ground motions, the engineering demand parameter (EDP) that is related to the structural damage re-
mains random in response to a given set of ground motion parameters. To quantitatively represent this stochas-
tic behavior, we employed SPCE to estimate the response distribution. The numerical results showed that SPCE
outperforms conventional methods in terms of estimating both the response distribution and fragility function:
on the one hand, SPCE is much more versatile than linear models relying on restrictive Gaussian assumptions;
on the other hand, SPCE is more efficient than the fully nonparametric kernel model.

9.2 Limitations and outlook

As this thesis is an early investigation in the field of stochastic emulations, some aspects and ideas remain to
be explored. In this section, we discuss the limitations of the proposed methods and provide several paths and
challenges for future research.
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9.2.1 Theoretical development

Because the probability density function (PDF) support of a GLD depends on the distribution parameters,
the negative log-likelihood function of GLaM is not bounded (from below). This makes it hard to study the
statistical properties of MLE. In Chapter 5, we employed techniques from the empirical process theory to show
the consistency of MLE. However, this is under a strong condition: the underlying model is assumed to be
correctly represented by a GLaM for a certain choice of coefficients. As a result, model misspecifications have not
been considered from the theoretical perspective, even though numerical results have illustrated the applicability
of the method to problems that are not exact GLaM. Hence, it remains to study the limiting model to which
MLE of GLaM would converge with increasing sample size under model misspecifications.

For SPCE, we showed in Section A.2 that MLE consistently minimizes the Kullback–Leibler divergence
despite model misspecifications. As SPCE does not assume a specific type of response distribution, its capacity
is yet to be studied in theory: from the intuition of its formulation in Eq. (7.11), SPCE seems to have a certain
property of universal approximation, which is worth further investigation.

The asymptotic behavior of the MLE for both GLaM and SPCE is not yet fully understood. For GLaM,
the difficulty comes again from the fact that the support of the response distribution depends on the unknown
parameters. For SPCE, the main challenge lies in its non-identifiability (see Section A.2). Note that the asymp-
totic properties are not only theoretical aspects but offer a practical way to quantify the uncertainty in the model
construction. Similarly, bootstrap consistency is another important statistical property to look into for MLE,
as it guarantees the application of bootstrapping.1 For non-asymptotic behavior in the case of finite samples,
one may explore the recent development of conformal prediction (Vovk et al., 2005; Lei et al., 2018; Romano
et al., 2019; Chernozhukov et al., 2021; Sesia and Romano, 2021) to establish a good prediction interval of the
model response for any given input values regardless of model misspecifications.

9.2.2 Active learning

The current methods apply a “one-shot” strategy: the ED is generated at once for a given simulation budget
(either with replications or not), and the surrogate model is built by applying the estimation methods to the
available data. Therefore, the data generation process is independent of the model construction. To make max-
imum use of the computational resources, it is necessary to bridge these two components.

Active learning is a group of methods in machine learning aiming at finding an optimal ED to adaptively
build the model (Settles, 2009). It consists in enriching sequentially the ED by querying the model response
on new points selected based on optimizing a suitable learning function to efficiently improve the surrogate
performance. For deterministic simulators, active learning has been widely applied in the field of reliability
analysis (Echard et al., 2011; Marelli and Sudret, 2018; Wagner et al., 2022; see Moustapha et al., 2022 for a
detailed review). For stochastic simulators, methods have been mainly developed for improving the mean func-
tion estimation using Gaussian processes (Binois et al., 2019). For the developed models, which estimate the
entire response distribution, it is crucial to find an appropriate learning function to guide the sequential design
of experiments. Besides, for seismic fragility analysis, engineers are mainly interested in the fragility function

1Typically, local asymptotic linearity seems to be necessary for consistency of bootstrap (Mammen, 1992), which also calls for inves-
tigating the asymptotic behavior of the estimators.
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rather than in the response distribution. Therefore, designing a good learning function to improve the fail-
ure probability estimation from stochastic surrogate models would be particularly beneficial to applications in
earthquake engineering.

9.2.3 High-dimensional problems

To select appropriate basis functions for GLaM, we apply the feasible generalized least-squares method with
sparse regression methods for the location and scale parameters, and we prescribe low-degree polynomials for
the two shape parameters. Such a choice relies on the empirical observation that the shape of the response
distribution does typically not have a significant variation in practical applications. In this case, the location
and scale parameters are closely related to the response mean and variance functions, respectively. This setting
would be inappropriate when the shape of the response distribution varies in a strongly nonlinear way over
the input domain. In addition, for high-dimensional problems, the sparse regression algorithms may select too
many irrelevant basis functions, and even low-degree polynomials can contain a lot of unknown terms.

For SPCE, we use sparse regression methods to select the part of the basis functions that is related to the
response mean function. The developed adaptive algorithm does not work on the level of individual basis func-
tions but rather looks for a suitable truncation scheme. Similar to GLaM, a general sparse structure would be
desirable for dealing with high-dimensional problems.

As a result, it is necessary to handle sparsity in a more systematic way for both GLaM and SPCE. The first
option would be stepwise regression (Jennrich and Sampson, 1968). This approach consists of two principal
steps: forward selection and backward elimination. The first step starts with only the constant function and
progressively enriches the selected basis functions one by one according to a certain model selection criterion.
The second step eliminates one by one the basis functions that are less relevant. To develop algorithms of this
type for GLaM and SPCE, it is essential to design an efficient strategy to decide at each iteration step which basis
function should be added or eliminated, as well as a model selection criterion to decide whether the proposed
operation should be accepted.

A popular approach for tackling high-dimensional problems is to introduce a penalty function to the loss
function, that is,

ĉN “ argmin
c
LNpcq ` penθpcq, (9.1)

where penθ is a penalty function with hyperparameters θ. Multiple penalty functions have been proposed in
statistical learning and can be potentially used to improve the developed models, such as ridge regularization
(Hoerl and Kennard, 1970), least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996), adap-
tive LASSO (Zou, 2006), elastic-net (Zou and Hastie, 2005), or smoothly clipped absolute deviation (Fan and
Li, 2001). In this respect, suitable optimization algorithms like Zou and Li (2008) and Fan et al. (2018) remain
to be explored to cope with the highly nonlinear likelihood function and possibly complex penalty function.

9.2.4 SPCEwith a flexible latent variable

For SPCE developed in Chapter 7, the type of the latent variable is a hyperparameter, and we chose between
uniform and normal distributions in that chapter. To automatically tune the latent variable and further enrich
the capacity of SPCE under finite samples, we can choose a flexible probability distribution for the latent vari-
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able, such as beta distribution or GLD. With this, the SPCE is expressed as

Ỹx “
ÿ

αPA

cαψθ,α px, Zθq ` ϵ, (9.2)

where Zθ denotes the latent variable with the distribution parameters θ. The latter can be estimated jointly
with the coefficients of the SPCE, and thus no more CV is needed at this level. However, the orthonormal basis
associated with Zθ depends also on θ. As a result, the gradient of the likelihood function with respect to θ

is yet to be investigated, and an appropriate method should be developed to solve the associated optimization
problem.

9.2.5 Other loss functions

In this work, the negative log-likelihood function has been chosen as the loss function, and it corresponds to
the Kullback–Leibler divergence between the surrogate model and the simulator. The reason for this choice
is that it does not require replications in the estimation and the formulation of the associated optimization
problem is straightforward. However, the loss function is non-convex and the optimization can be difficult to
solve, as it is the case for GLaM in Chapter 4 and for tuning σ of SPCE in Chapter 7. Alternatively, one can use
the integrated mean-squared error loss in Eq. (3.34) that is widely applied to nonparametric kernel estimators.
Moreover, as we used the Wasserstein distance to assess the model performance, methods related to this error
metric (Arjovsky et al., 2017; Genevay et al., 2018) may be more relevant.

For seismic fragility analysis, the fragility function is the most important quantity to estimate. Minimizing
an error metric of the whole distribution is less sensitive to the exceeding probability of a specific damage-related
threshold, which is usually at the tail of the distribution. Consequently, it might be unsuitable for this study. To
this end, one can explore other kinds of loss functions or combine metrics from classification (e.g., area under
the receiver operating characteristic curve [Fawcett, 2006]) to better estimate the fragility function.

9.2.6 Extension to vector-valued response

This thesis has focused on surrogate modeling of stochastic simulators with a scalar output. The developed
methods are still applicable to computational models with multiple output variables if the statistical dependence
of the response variables is not of interest or if they are conditionally independent given the input variables. In
this case, we can emulate individually the response distribution of each component of the output vector. How-
ever, if the statistical dependence among the response variables is unknown and should be correctly represented
(e.g., fragility analysis with multiple critical components [Nielson and DesRoches, 2007]), it is necessary to es-
timate the response joint distribution.

A first extension is to use the proposed method to represent the response distribution of each component of
the response variables and to model separately their dependence. The latter can be typically tackled by copulas
(Torre et al., 2019b). Within this perimeter, one needs to select and fit an appropriate copula. If a parametric
copula is used, the copula parameters are generally functions of the input variables and need to be estimated
from data (in the simplest case, one can assume that the copula parameters are constant).

230



9.3. Final conclusion

A second option is to introduce multiple latent variables Z to SPCE. Hence, each output component is
expressed as

Yj
d
« Ỹj “

ÿ

αPAj

cj,αψθ,α px,Zq ` ϵj , (9.3)

where the same set of latent variables is consistently used to model inherently the statistical dependence. There-
fore, the joint response PDF is given by

fỸ |Xpy | xq “

ż

DZ

ź

j

1
σj
φ

˜

yj ´
ř

αPAj
cj,αψαpx, zq

σj

¸

fZpzqdz, (9.4)

where φ is the PDF of the standard normal distribution. The evaluation of the joint PDF involves a multi-
dimensional integral, which can become intractable for high-dimensional Z. As Eq. (9.3) is very similar to
conditional generative models reviewed in Section 3.1.5.4, techniques developed in this field can be helpful for
both modeling and fitting.

A third way is to sequentially construct the surrogate model by treating iteratively a part of the output
variables as input. More precisely, we can factorize the joint response PDF by

fY |Xpy | xq “
ź

j

fYj |X,Y1,...,Yj´1 pyj | x, y1, . . . , yj´1q . (9.5)

Therefore, we can first build a surrogate model forY1, i.e., fY1|Xpy1 | xq. Then, we combineY1 withX and build
a surrogate model for Y2, i.e., fY2|X,Y1 py2 | x, y1q. We repeat sequentially this procedure for each component,
and the surrogate model of the last component requires combining all the other response variables with X .
As this framework allows for reusing all the existing methods, approaches and possible improvements in this
direction are worth further investigation.

9.3 Final conclusion
In the present manuscript, we have successfully extended the classical deterministic surrogate modeling tools
to the field of stochastic simulators. More precisely, we have proposed two surrogate models, namely GLaM
and SPCE, to emulate the entire response distribution of stochastic simulators. To construct them, we have de-
veloped adaptive methods that are applicable to data without replications. We demonstrated their effectiveness
and efficiency on multiple examples and engineering case studies, where the proposed surrogate models exhibit
greater performance compared to state-of-the-art models. All in all, the novel approaches have a lot of potential
for real-world applications, and they will hopefully foster ideas for future research.
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A
Complementary discussions

In this chapter, we complement the main findings and developments by discussing some related topics. In
Section A.1, we look into the role of replications in building surrogate models. In Section A.2, we show the
consistency of maximum likelihood estimation (MLE) for stochastic polynomial chaos expansion (SPCE).

A.1 Replicate or not?

Most of the methods developed in the thesis aim at being independent of replications or tend to avoid them. In
contrast, replications lie at the core of replication-based approaches (Ankenman et al., 2010; Plumlee and Tuo,
2014; Moutoussamy et al., 2015). Besides, some methods also explore replications to achieve a better efficiency
(Binois et al., 2018, 2019). To look into the question of whether to replicate, we discuss in this section the
role of replications for M-estimators (presented in Section 3.1), based on which the estimation methods in this
manuscript are developed.

Let us consider a random experimental design (ED)X following the joint distribution ofX . For each point
inX , we repeatedly and independently evaluate the simulatorR times. As a result, for a total budget ofN model
runs, the ED size is |X | “ N{R.

Following the discussions in Section 3.1.1, we choose an appropriate loss function ℓ based on the statistical
assumption and the estimation target. The associated M-estimator is given by Chapters 4 and 5, that is,

LN,Rpcq “
1
N

N{R
ÿ

i“1

R
ÿ

r“1

ℓ
`

c;Xpiq, Y pi,rq
˘

(A.1)

where we treat the data as random variables to study the statistical properties of the estimator. Here, Xpiq

denotes the i-th point in X , and Y pi,rq is the model response of the r-th replicated run for Xpiq. By taking the
expectation, we obtain

E rLN,Rpcqs “ E
“

ℓ
`

c;Xpiq, Y pi,rq
˘‰

“ E rℓ pc;X, Y qs “ Lpcq. (A.2)
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According to the law of large numbers, E rLN,Rpcqs converges in expectation to Lpcq with N{R Ñ `8,
independent of the size ofR. This complies with the main idea of M-estimators in Section 3.1.2. The variance
of Eq. (A.1) is calculated by

Var rLN,Rpcqs “
1
N 2

N{R
ÿ

i“1

Var

«

R
ÿ

r“1

ℓ
`

c;Xpiq, Y pi,rq
˘

ff

`
1
N 2

ÿ

i1‰i2

Cov

«

R
ÿ

r“1

ℓ
`

c;Xpi1q, Y pi1,rq
˘

,
R
ÿ

r“1

ℓ
`

c;Xpi2q, Y pi2,rq
˘

ff

.

(A.3)

Because the samples of the ED are independently drawn, the covariance across different input samples is zero.
As a result, Eq. (A.3) becomes

Var rLN,Rpcqs “
1
N 2

N{R
ÿ

i“1

Var

«

R
ÿ

r“1

ℓ
`

c;Xpiq, Y pi,rq
˘

ff

“
1
N 2

N{R
ÿ

i“1

˜

R
ÿ

r“1

Var
“

ℓ
`

c;Xpiq, Y pi,rq
˘‰

`
ÿ

r1‰r2

Cov
“

ℓ
`

c;Xpiq, Y pi,r1q
˘

, ℓ
`

c;Xpiq, Y pi,r2q
˘‰

¸

.

(A.4)

Under the independent sampling scheme, the variance terms in Eq. (A.4) can be simplified to

Var
“

ℓ
`

c;Xpiq, Y pi,rq
˘‰

“ Var rℓ pc;X, Y qs . (A.5)

Unlike Eq. (A.3), the covariance terms are not 0, as the same X is used in the loss function and for evaluating
the stochastic simulator. Resorting to the same techniques used in the derivations of Eq. (2.80), we obtain

Cov
“

ℓ
`

c;Xpiq, Y pi,r1q
˘

, ℓ
`

c;Xpiq, Y pi,r2q
˘‰

“ Var
“

E
“

ℓ pc;X, Y q
ˇ

ˇX
‰‰

. (A.6)

By injecting Eq. (A.5) and Eq. (A.6) to Eq. (A.4), the variance of the empirical loss function is

Var rLN,Rpcqs “
1
N 2

N{R
ÿ

i“1

`

RVar rℓ pc;X, Y qs `RpR ´ 1qVar
“

E
“

ℓ pc;X, Y q
ˇ

ˇX
‰‰˘

“
1
N

Var rℓ pc;X, Y qs `
R ´ 1
N

Var
“

E
“

ℓ pc;X, Y q
ˇ

ˇX
‰‰

.

(A.7)

As the empirical loss Eq. (A.1) is an unbiased and consistent estimator of Lpcq, it is desirable to have a
variance as small as possible, so that it converges as fast as possible toLpcq. To this end,R “ 1, i.e., no replication,
should be chosen to minimize the variance according to Eq. (A.7). Because both models developed in this
thesis are constructed with MLE, which is an M-estimator, it is preferred not to have replications. Rigorously
speaking, one should compute the variance of the M-estimator (assuming that it is consistent). However, the
asymptotic properties of the M-estimators for the proposed models in this thesis are yet to be investigated.
Hence, we cannot draw a definitive conclusion in theory but use Eq. (A.7) to shed light on this aspect, as the
loss function plays a central role in M-estimators for both estimations and validations. Nevertheless, for the loss
function ℓ being “regular” (e.g., van der Vaart, 1998, Section 5.3), it can be easily shown that the asymptotic
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variance of the associated M-estimator ĉN,R is

Var rĉN,Rs “
1
N

E
“

∇2ℓpc0;X, Y q
‰´1 E

”

∇ℓpc0;X, Y q∇ pℓpc0;X, Y qq
T
ı

E
“

∇2ℓpc0;X, Y q
‰´1

`
R ´ 1
N

E
“

∇2ℓpc0;X, Y q
‰´1 E

”

E r∇ℓpc0;X, Y q | XsE
”

p∇ℓpc0;X, Y qq
T ˇ
ˇX

ıı

E
“

∇2ℓpc0;X, Y q
‰´1

.

(A.8)

where c0 is the optimal set of coefficients that minimize the expected lossLpcq. Therefore, using no replication
would result in a more efficient estimator. In addition, this aspect is illustrated empirically by the numerical
results in Section 5.5.3.

The discussions above are limited to the strategy of performing the same number of replications for each
point of the ED and to M-estimators with a joint loss function as in Eq. (A.1). In some cases, however, replica-
tions can be important and helpful. First, replication-based methods reviewed in Section 3.2 rely on informa-
tion extracted from replications. The conventional two-step sequential fitting procedure calls for replications to
ensure an accurate local inference (Moutoussamy et al., 2015). Second, for Gaussian process models, relatively
big training samples would make the model construction and prediction very time-consuming (Snelson and
Ghahramani, 2005; Binois et al., 2018). As a result, replications can efficiently reduce the model complexity
from using all the data to only focusing on the quantities extracted from the replications (Plumlee and Tuo,
2014). Third, some methods explore sequential designs of experiments that actively select new points to evalu-
ate the simulator (Binois et al., 2019). In this case, a new point can be an existing point, and thus the associated
model evaluation is a replication. Last but not least, replications can help validate the model, which offers a
straightforward way to check the accuracy of the prediction.

A.2 Consistency ofMLE for SPCE

In Chapter 5, we proved the consistency of MLE for generalized lambda model (GLaM). In this section, we
study this property of MLE for SPCE. Since MLE is only applied to estimate the coefficients, we assume here a
given set basis functions A and fixed variance of the noise variable σ.

In general, a SPCE is not “identifiable”, meaning that two different sets of the coefficients can produce the
same response distribution. For instance, for Z following a symmetric probability distribution centered at 0
(e.g.,Z „ Up´1, 1q andZ „ N p0, 1q as used in Chapter 7), ´Z has the same distribution asZ, which leads to

ÿ

αPA

cαψα px, Zq ` ϵ
d
“

ÿ

αPA

cαψα px,´Zq ` ϵ “
ÿ

αPA

c̃αψα px, Zq ` ϵ. (A.9)

As a result, the solution to the following optimization problem is not unique:

c0 “ argmin
cPC

Lpcq (A.10)

where Lpcq “ E rℓpc;X, Y qs, and ℓ is the negative log-likelihood function. Consequently, the consistency
of the estimation of the coefficients does not hold (the limiting coefficients are not unique). Nonetheless, we
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investigate in the following the consistency in terms of the loss function, that is,

LpĉNq ´ Lpc0q
a.s.
ÝÑ 0, (A.11)

where c0 is one of the minimizers solving Eq. (A.10). Eq. (A.11) indicates that the expected loss function is min-
imized withN Ñ `8, and thus the fitted model converges to the “projection” (in terms of the loss function)
of the true model onto the set of response distributions defined by SPCE.

Lemma A.1. If the parameter space C is a compact subset of R|A|, and Y has a finite variance, the negative log-
likelihood function parameterized by c P C forms a Glivenko–Cantelli class, that is,

sup
cPC

|LNpcq ´ Lpcq| a.s.
ÝÑ 0, (A.12)

where LNpcq
def
“ 1

N

řN

i“1 ℓ
`

c;Xpiq, Y piq
˘

and Lpcq
def
“ E rℓ pc;X, Y qs.

Proof. To prove this lemma, we rely on Newey and McFadden (1994, Lemma 2.4), where it is only necessary to
show that the negative log-likelihood function ℓpc;x, yq has the following properties:

1. ℓpc;x, yq is continuous at each c P C for any px, yq P DX ˆ R.

2. There is a functionG : DXˆR Ñ R such that |ℓpc;x, yq| ď Gpx, yq for anyc P C andE rGpX, Y qs ă

`8.

In the first step, we prove the continuity. Recall the negative log-likelihood function of SPCE

ℓpc;x, yq “ ´ log

˜

E

«

1
?

2πσ
exp

˜

´
py ´

ř

αPA cαψαpx, Zqq
2

2σ2

¸ff¸

“ ´ log

ˆ

E
„
ż

DZ

hpZ, c;x, yq

ȷ˙

,

(A.13)

where h can be also expressed as hpz, c;x, yq “ φ ppy ´
ř

αPA cαψαpx, zqq {σq {σ with φ being the proba-
bility density function (PDF) of the standard normal distribution.

Because φ is continuous, and the basis functions ψα are polynomials and thus continuous. Therefore, for
any given px, yq P DX ˆ R, hp¨, ¨;x, yq is a continuous function in both c and z. Taking any sequence of
coefficients pcnqnPN that converges to c, i.e., limnÑ`8 cn “ c, we define a sequence of functions phnqnPN by
hnpzq “ hpz, cn;x, yq. Because of the continuity of h in c, hn converges pointwise to hp¨, c;x, yq. Following
its definition, h is positive and it is bounded by

hpz, c;x, yq ď
1

σ
?

2π
. (A.14)

The same properties hold for the sequence of functions phnqnPN. It is clear that the constant upper bound is
integrable with respect to the PDF fZ . Applying the dominated convergence theorem gives

lim
nÑ`8

E rhnpZqs “ E rhpZ, c;x, yqs . (A.15)
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This means that the mapping c ÞÑ E rhpz, c;x, yqs is continuous. By composing this function with ´ log,
which is a continuous function, we prove that ℓpc;x, yq is continuous at each c P C for any px, yq P DX ˆR.

In the second step, we will show the existence of the envelope functionGwith a finite expectation.

According to Eq. (A.14), we obtain

ℓpc;x, yq ě ´ log

ˆ

E
„

1
?

2πσ

ȷ˙

“ log
´?

2πσ
¯

(A.16)

which provides a lower bound of ℓpc;x, yq.

For the upper bound, we apply Jensen’s inequality to the negative log-likelihood function, which gives

´ log

˜

E

«

1
?

2πσ
exp

˜

´
py ´

ř

αPA cαψαpx, Zqq
2

2σ2

¸ff¸

ď log
´?

2πσ
¯

` E

«

py ´
ř

αPA cαψαpx, Zqq
2

2σ2

ff

.

(A.17)
For ease of notation, we denote the main part of the expectation term on the right-hand side as

G̃pc;x, yq
def
“ E

»

–

˜

y ´
ÿ

αPA

cαψαpx, Zq

¸2
fi

fl ě 0 (A.18)

Summarizing the results in Eq. (A.14) and Eq. (A.17) gives

log
´?

2πσ
¯

ď ℓpc;x, yq ď
1

2σ2 G̃pc;x, yq ` logp
?

2πσq. (A.19)

By taking the absolute value, we obtain

|ℓpc;x, yq| ď max

ˆ∣∣∣∣ 1
2σ2 G̃pc;x, yq ` log

´?
2πσ

¯

∣∣∣∣ , ∣∣∣log´?
2πσ

¯∣∣∣˙
ď

∣∣∣∣ 1
2σ2 G̃pc;x, yq ` log

´?
2πσ

¯

∣∣∣∣ `

∣∣∣log´?
2πσ

¯∣∣∣
ď

1
2σ2 G̃pc;x, yq ` 2

∣∣∣log´?
2πσ

¯∣∣∣
(A.20)

To find an envelope function for |ℓpc;x, yq|, it is sufficient to find one for G̃pc;x, yq, which is investigated
in the following derivations.

By separating the polynomials basis functions that are not related to Z in the expansion, G̃ becomes

G̃pc;x, yq “E

»

–

˜

y ´
ÿ

αPAm

cαψαpxq ´
ÿ

αPAzAm

cαψαpx, Zq

¸2
fi

fl

“

˜

y ´
ÿ

αPAm

cαψαpxq

¸2

´ 2

˜

y ´
ÿ

αPAm

cαψαpxq

¸

E

«

ÿ

αPAzAm

cαψαpx, Zq

ff

` E

»

–

˜

ÿ

αPAzAm

cαψαpx, Zq

¸2
fi

fl ,

(A.21)
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where Am
def
“ tα P A : αz “ 0u as defined in Eq. (7.27). Using the orthonormality of the polynomial chaos

expansion (PCE) basis functions, Eq. (A.21) becomes

G̃pc;x, yq “

˜

y ´
ÿ

αPAm

cαψαpxq

¸2

`
ÿ

αPAzAm

c2
αψ

2
αpxq, (A.22)

where the basis function ψ2
αpxq for α P AzAm is defined by only considering the components of x while

ignoring those of z.

Applying Jensen’s inequality to the first part of Eq. (A.22) gives

G̃pc;x, yq ď p1 ` |Am|q

˜

y2 `

˜

ÿ

αPAm

c2
αψ

2
αpxq

¸¸

`
ÿ

αPAzAm

c2
αψ

2
αpxq. (A.23)

Because C is a compact subset ofR|A|, it is bounded and closed (according to the Heine–Borel theorem). Define
C the minimum radius of a ball centered at 0 that covers C, and thus |cα| ď C for all α P A. Therefore, G̃ is
bounded by

G̃pc;x, yq ď Ḡpx, yq
def
“ p1 ` |Am|q

˜

y2 `

˜

ÿ

αPAm

C2ψ2
αpxq

¸¸

`
ÿ

αPAzAm

C2ψ2
αpxq. (A.24)

Taking the expectation of Ḡwith respect to the joint distribution of pX, Y q provides

E rḠpX, Y qs “ E

«

p1 ` |Am|q

˜

Y 2 `

˜

ÿ

αPAm

C2ψ2
αpXq

¸¸

`
ÿ

αPAzAm

C2ψ2
αpXq

ff

“ p1 ` |Am|q
`

E
“

Y 2‰ ` |Am|C2˘ ` p|A| ´ |Am|qC2

“ p1 ` |Am|qE
“

Y 2‰ `
`

|A| ` |Am|2
˘

C2.

(A.25)

By combining Eq. (A.20) with Eq. (A.24), we find a function independent of c that bounds ℓ:

|ℓpc;x, yq| ď Gpx, yq “
def
“

1
2σ2 Ḡpx, yq ` 2

∣∣∣log´?
2πσ

¯∣∣∣ . (A.26)

Based on Eq. (A.25), E rGpX, Y qs is calculated by

E rGpX, Y qs “
1

2σ2

`

p1 ` |Am|qE
“

Y 2‰ `
`

|A| ` |Am|2
˘

C2˘ ` 2
∣∣∣log´?

2πσ
¯∣∣∣ . (A.27)

Since Y has a finite variance, E rGpX, Y qs ă `8.

Finally, as C is compact and ℓ is continuous and has an envelope function with a finite expectation, applying
Newey and McFadden (1994, Lemma 2.4) proves this lemma.

Theorem A.1. If the parameter space C is compact and Y has a finite variance, MLE consistently minimizes the
expected risk, that is,

LpĉNq ´ Lpc0q
a.s.
ÝÑ 0. (A.28)
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Proof. Because c0 minimizes the expected loss, we have

0 ď LpĉNq ´ Lpc0q “ LpĉNq ´ LNpĉNq ` LNpĉNq ´ LNpc0q ` LNpc0q ´ Lpc0q. (A.29)

Since ĉN minimizes the empirical loss LNpcq, LNpĉNq ´ LNpc0q ď 0, and thus Eq. (A.29) becomes

0 ď LpĉNq ´ Lpc0q ď LpĉNq ´ LNpĉNq ` LNpc0q ´ Lpc0q. (A.30)

Applying Lemma A.1 shows LpĉNq ´ LNpĉNq
p

ÝÑ 0 and LNpc0q ´ Lpc0q
p

ÝÑ 0, which implies LpĉNq ´

Lpc0q
p

ÝÑ 0. Finally, applying Talagrand (1987, Theorem 22) extends the convergence in probability to almost
sure convergence.

The proof of the consistency of MLE for SPCE in this section requires more loose conditions than that
for GLaM where the underlying model is assumed to be a GLaM. Even though the stochastic simulator is not
a SPCE for a given set of basis functions, the estimator still converges to a model that minimizes the expected
loss function. This is because the support of the response distribution of SPCE is R and independent of the
unknown parameters, which allows for applying classical techniques to the proof. However, due to the non-
identifiability of the response distribution of SPCE, the estimator is not consistent in terms of coefficients but
minimizes consistently the expected loss — the Kullback–Leibler divergence between the stochastic simulator
and the emulator.
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Abstract

Hybrid simulation is an experimental method used to investigate the dynamic response of a reference prototype
structure by decomposing it to physically-tested and numerically-simulated substructures. The latter substruc-
tures interact with each other in a real-time feedback loop and their coupling forms the hybrid model. In this
study, we extend our previous work on metamodel-based sensitivity analysis of deterministic hybrid models to
the practically more relevant case of stochastic hybrid models. The aim is to cover a more realistic situation
where the physical substructure response is not deterministic, as nominally identical specimens are, in practice,
never actually identical. A generalized lambda surrogate model recently developed by some of the authors is
proposed to surrogate the hybrid model response, and Sobol’ sensitivity indices are computed for substructure
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B. GSA for hybrid stochastic simulations

quantity of interest response quantiles. Normally, several repetitions of every single sample of the inputs param-
eters would be required to replicate the response of a stochastic hybrid model. In this regard, a great advantage of
the proposed framework is that the generalized lambda surrogate model does not require repeated evaluations
of the same sample. The effectiveness of the proposed hybrid simulation global sensitivity analysis framework
is demonstrated using an experiment.

B.1 Introduction

Hybrid simulation (HS) is used to investigate the experimental dynamic response of a structural component or
sub-assembly subjected to a realistic loading scenario, which includes the dynamic interaction with a credible
yet virtual structural system. Coupled physical and numerical substructures (PS and NS) form the so-called
hybrid model. Specifically, the PS is tested using servo-controlled actuators provided with force transducers,
while the NS is instantiated in a structural analysis software. A time-stepping analysis algorithm computes the
hybrid model response on-the-fly. This ensures displacement compatibility and force balance between NS and
PS throughout the entire experiment. Additionally, HS is used to investigate the inner workings of a structural
component beyond the linear regime without testing an entire structural assembly. As a result, the cost of
experimentation is substantially reduced. A report by Schellenberg and co-workers provides a comprehensive
review of HS methods and algorithms (Schellenberg et al., 2009).

In earthquake engineering, HS is the only viable solution for testing large structures (e.g., Abbiati et al.,
2019; Moustafa and Mosalam, 2015; Bas et al., 2022). Similarly, HS has been recently proposed to test mooring
lines of offshore structures for which hydrodynamic tests with sizeable scale are prohibitive (e.g., Sauder et al.,
2018; Vilsen et al., 2019). HS is gaining popularity for component-level testing in fire engineering. The rea-
son is that internal force redistribution occurring at the system level heavily influences the failure modes at the
component level (e.g., Abbiati et al., 2020). More recently, HS has been combined with centrifuge testing for
investigating soil-structure interaction problems (Idinyang et al., 2019).

In all the cases reviewed above, NS and related excitation are conceived as deterministic. However, in the
majority of cases encountered in structural engineering, loading is stochastic, while the boundary conditions
are highly uncertain. An exhaustive exploration of all possible load cases is clearly not an option given the ex-
perimental cost associated with a single hybrid model evaluation. Accordingly, Abbiati et al. (2021) proposed
surrogate modeling to compute the variance-based global sensitivity analysis (GSA) of the response quantity of
interest (QoI) of a given hybrid model with respect to a set of input parameters that characterize both substruc-
tures and loading excitations. In detail, polynomial chaos expansion (PCE) was used to construct a surrogate
model (a.k.a. response surface) of the hybrid model response. Sobol’ sensitivity indices of the QoIs were ob-
tained as a by-product of polynomial coefficients as explained in Sudret (2008). The goal of such an approach
was to reveal what influences what within the HS: This entails uncovering the inner workings of the PS, the
unknown part of the hybrid model in both epistemic and aleatory sense. In that study, the PS was treated as
deterministic, that is, aleatory uncertainty was neglected by assuming that nominally identical specimens have
identical responses (plus some negligible measurement noise).

This assumption, however, is still far from a realistic scenario in structural testing. Nominally identical
specimens are, in practice, never actually identical. Also, some sources of loading exerted through the PS are
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inherently stochastic (e.g., fire or hydrodynamic loading). As a result, uncertainty, both aleatory or epistemic,
always affects the PS structural behavior.

This paper extends the GSA framework for HS proposed in Abbiati et al. (2021) to the case of PSs with non-
deterministic behavior. Similar to the original framework, the idea is to surrogate the hybrid model response as
a function of the input parameters that can be controlled by the experimenter and originate from substructures
and loading (physical and numerical). However, latent variables that do not appear in the input parameter vec-
tor make the hybrid model response stochastic. To account for the latter, the generalized lambda model recently
developed by Zhu and Sudret (2020, 2021a) is used here to directly surrogate the probability density function
(PDF) of the response QoI. This is achieved by means of the family of generalized lambda distributions, which
are suitable to approximate a wide class of distributions commonly found in engineering contexts (Karian and
Dudewicz, 2000). The parameters of the generalized lambda distributions are cast as functions of the input
parameters of the hybrid model and approximated via PCE (Xiu and Karniadakis, 2002; Blatman and Sudret,
2011). Normally, several repetitions of every single sample of the inputs parameters would be required to repli-
cate the response of a stochastic hybrid model. However, acquiring such repetitions would be impossible in a
HS. Instead, by using the generalized lambda model presented in Zhu and Sudret (2021a) we can solve this prob-
lem, as the generalized lambda model can be computed in a non-intrusive manner (i.e., the model is considered
as a black-box) and does not require repeated HSs for a single sample of input parameters. For these reasons, the
generalized lambda model is well-suited to surrogate the response of a stochastic hybrid model. Variance-based
GSA is uniquely defined for deterministic simulators (Saltelli, 2008). In the context of stochastic simulators,
three alternative variants of Sobol’ sensitivity indices are discussed in Zhu and Sudret (2021b), namely classical,
quantile-based and trajectory-based Sobol’ indices. In this work, quantile-based Sobol’ indices are used for the
GSA of the HS response QoI. The reasoning behind this selection is twofold: firstly the quantile functions of
the QoI is more of interest for the presented case study as the QoI itself is stochastic; secondly computation
of the classical and the trajectory-based Sobol’ indices (but not of the quantile-based) would require control
of the latent variables. However, controlling the latent variables in data obtained from physical experiments is
generally not possible.

The effectiveness of the proposed framework is demonstrated for a 3-degree-of-freedom (DOF) hybrid
model subjected to mechanical and thermal loading. Specifically, thermal loading is experimentally exerted on
the PS so that temperature fluctuations (out of control of the experimenter) entail a stochastic response of the
hybrid model. It should be noted that the proposed framework handles the hybrid model as a black-box, and
hence it can be applied to any dynamic system investigated via HS.

This paper is organized as follows. Section B.2 introduces the generalized lambda model and describes
the GSA framework for stochastic hybrid models. Section B.3 presents the 3-DOF hybrid model used to test
the framework. Section B.4 discusses the results of the GSA of the stochastic hybrid model response. Finally,
Section B.5 presents the overall conclusions of this study.

B.2 Global sensitivity analysis framework

Let a random variable vector x “ px1, . . . , xMq
T

P DX Ă RM , where DX denotes the range of definition of
x, represent the input parameters to a HS. Due to the random nature of the hybrid model response, for a given
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set of parameters x, the corresponding QoI Y pxq is a random variable rather than a deterministic value. This
is because some latent variables z cannot be identified or measured in the process, which makes it impossible to
include all the relevant variables in x. Therefore, a stochastic HS can be expressed as a mapping:

Ms : x ÞÑ Mspx,Zq. (B.1)

The latent variables are grouped into a random vector Z. Note that with a fixed x and Z varying according to
some probability distribution, the HS output Y pxq remains random.

The input parameters of the vector x are treated as random, modeled by known probability distributions
and grouped into a random vector X “ pX1, . . . , XMq

T

. X is characterized by its joint distribution with the
PDF denoted by fX . Furthermore, we assume that Xi’s are mutually independent, and thus the joint PDF
is the product of marginal PDFs, i.e. fXpxq “

śM

i“1 fXi
pxiq with fXi

being the marginal PDF of the i-th
variable.

For a given set of input parametersx, the QoIY pxq is a random variable characterized by an unknown con-
ditional probability distribution. Therefore, representing the stochastic behavior of a HS consists in estimating
the response distribution for any parameters x P DX . However, one simulation for x does not provide the
whole probability distribution but rather a single realization of Y pxq. Hence, it is usually necessary to repeat-
edly conduct experiments for the same x (called replications) to have enough insight into the resulting hybrid
model response probability distribution. This quickly becomes intractable when the number of x’s to be in-
vestigated increases. To alleviate the burden, surrogate models can be constructed to emulate the stochastic
behavior of a HS. Once a surrogate model is constructed, we can perform further analysis of the hybrid model
response at a low cost, namely the GSA.

The simplest surrogate model of a stochastic HS involves additive Gaussian noise:

Y spxq “ hpxq ` Z, Z „ N p0, σ2q. (B.2)

To build such a surrogate, one needs to estimate the mean functionh and the noise varianceσ2. In this case,
PCE (Xiu and Karniadakis, 2002; Berveiller et al., 2006) and Gaussian processes (Rasmussen and Williams,
2006) with a regression setup can be directly applied. However, Eq. (B.2) can be rather restrictive. To cover
a wider group of problems, we choose to use the recently developed statistical model called the generalized
lambda model (Zhu and Sudret, 2020, 2021a).

B.2.1 Generalized lambda models

A generalized lambda model (GLaM) assumes that the probability distribution of the hybrid model response
QoI Y pxq can be approximated by a generalized lambda distribution (GLD). The latter is a highly flexible
four-parameter distribution family, which is able to approximate many common distributions such as normal,
lognormal, uniform and extreme value distributions (Freimer et al., 1988). A GLD is defined by its quantile
function:

Qpu;λq “ λ1 `
1
λ2

ˆ

uλ3 ´ 1
λ3

´
p1 ´ uqλ4 ´ 1

λ4

˙

, (B.3)
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where u P r0, 1s and λ “ tλl : l “ 1, . . . , 4u are the four distribution parameters. More precisely, λ1 is the
location parameter, λ2 is the scaling parameter, and λ3 and λ4 are the shape parameters. To have valid quantile
functions, λ2 should be positive. From Eq. (B.3), we can derive the associated PDF:

fY py;λq “
λ2

uλ3´1 ` p1 ´ uqλ4´11r0,1spuq, with u “ Q´1py;λq, (B.4)

where1r0,1s is the indicator function. From the above equation, it is clear that evaluating the PDF for a particular
y requires solving numerically the equation u “ Q´1py;λq.

Under this setup, varying x will lead to Y pxq following a GLD with different distribution parameters λ.
In other words, λl’s are functions of x, which allows us to express the QoI as:

Y pxq „ GLD pλ1pxq, λ2pxq, λ3pxq, λ4pxqq . (B.5)

Recall that the input parameters x are modelled as independent random variables X with joint PDF fXpxq “
śM

i“1 fXi
pxiq. Under appropriate assumptions (Ernst et al., 2012), each component of λpxq admits a polyno-

mial chaos (PC) representation:

λl pxq « λPC
l px; cq “

ÿ

αPAl

cl,αψαpxq, l “ 1, 3, 4,

λ2 pxq « λPC
2 px; cq “ exp

˜

ÿ

αPA2

c2,αψαpxq

¸

,

(B.6)

where tψα : α P NMu is a basis of multivariate polynomials that are mutually orthogonal with respect to the
probability measure ofX ,α is a multi-index that identifies the polynomial degree in each of the input variables,
Al Ă NM is a truncated set defining a finite set of basis functions for λlpxq and c “ tc1,α, . . . , cl,αu denotes
the associated coefficients (see Zhu and Sudret, 2020 for details). Note that the polynomial chaos expansion for
λ2pxq is built on the logarithmic transform so as to ensure thatλPC

2 pxq is always positive. Combining Eq. (B.5)
with Eq. (B.6), we define the generalized lambda surrogate model:

Y GLaMpxq „ GLD
`

λPC
1 px; cq, λPC

2 px; cq, λPC
3 px; cq, λPC

4 px; cq
˘

. (B.7)

To build a GLaM, we need to determine the associated coefficients c. To avoid the need for replications,
which may result in a large number of experiments, we use the method developed by Zhu and Sudret (2021a).
We first generate a set of realizations of the input random vector X “

␣

xp1q, . . . ,xpNq
(

, called the exper-
imental design (ED). For each point of the ED, we conduct a HS and collect the corresponding QoI into
Y “

␣

yp1q, . . . ,ypNq
(

. Note that each HS may correspond to a different realization of the latent variable
Z, which does not need to be explicitly known in the analysis. In a second step, we estimate c by maximizing
the conditional likelihood, i.e. minimizing the negative log-likelihood, that is:

ĉ “ argmin
c

L pcq “ argmin
c

N
ÿ

i“1

´ log
`

fGLD
`

ypiq;λPC
`

xpiq; c
˘˘˘

, (B.8)

where fGLD is the PDF of the GLD defined in Eq. (B.4). To solve the optimization problem, it is necessary to
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determine the support of c, which is equivalent to finding the truncation set Al for each λPC
l . To this end, we

plug the hybrid-LAR algorithm (Blatman and Sudret, 2011) into the modified feasible generalized least-squares
framework (Zhu and Sudret, 2021a). The latter fits the mean and the variance function in an alternative way.
The basis functions selected for these two functions are then used to representλPC

1 pxq andλPC
2 pxq, respectively.

Asλ3 andλ4 mainly control the PDF shape of a GLD, which is expected not to change much whenx is changed,
we can pick polynomials with low degree, namely 0 or 1, for λPC

3 pxq and λPC
4 pxq. After specifying the basis

functions, we solve Eq. (B.4) to build the associated GLaM.
A great advantage of using the generalized lambda surrogate model presented in Zhu and Sudret (2021a)

is that it does not require repeated replications of the same sample. The reason behind this feature is that
GLaM works as a statistical model, imposing the shape of the response distribution and using a parametric form,
namely the PCE, to represent the dependence of the distribution parameters on the input variables. The basis
selection forλ1 andλ2 is performed in a data-driven manner (which allows us to detect potential heteroskedastic
effects), whereasλ3 andλ4 are kept constant. If we use replications, information is rather concentrated on those
replicated points. In contrast, when there are no replications, the training samples cover uniformly the design
space and provide more "homogeneous" information.

B.2.2 Sobol’ sensitivity indices

Variance-based sensitivity analysis has been extensively studied and successfully developed in the context of de-
terministic models (Abbiati et al., 2021; Saltelli, 2008). For a random vectorX with independent components,
any deterministic mapping Y “ MdpXq with Var rY s ă `8 can be decomposed as (Sobol’, 1993):

Mdpxq “ M0 `

M
ÿ

i“1

Mipxiq `
ÿ

1ďiăjďM

Mi,jpxi, xjq ` . . .` M1,...,Mpx1, . . . , xMq

“ M0 `
ÿ

u‰H

Mupxuq,

(B.9)

where M0 is constant and denotes the mean value of Y , u “ ti1, . . . , isu Ă t1, . . . ,Mu are index sets and xu

is a subvector ofx containing only the components indexed by u. This decomposition is unique (Sobol’, 1993),
and the elementary functions Mu are defined by conditional expectations:

Mupxuq
def
“

ÿ

vĂu

p´1q|u|´|v|E rY | Xv “ xvs , (B.10)

where |u| gives the cardinality of u. Following this definition, M0 “ E rY s is the expected value of Y . More-
over, the various terms Mu are orthogonal with each other w.r.t. the inner product induced by the input PDF.
Thus we can decompose the variance of Y as:

Var rY s “ E
“

pY ´ M0q2‰ “
ÿ

uĂt1,...,Mu

u‰H

Var rMu pXuqs . (B.11)

Additionally, the definition in Eq. (B.10) allows for calculating the variance of Mu pXuq by:
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Vu
def
“ Var rMu pXuqs “

ÿ

vĂu

p´1q|u|´|v|Var rE rY | Xvss . (B.12)

The Sobol’ index Su is defined as the ratio of Vu to the total variance Var rY s (Sobol’, 1993):

Su
def
“

Vu

Var rY s
. (B.13)

For |u| “ 1, we obtain the first-order Sobol’ indices tSi : i “ 1, . . . , pu, which represent the main effect of
each input variable. Higher-order indices quantify the interactive effect within a given group of input variables.
The total Sobol’ index STi

account for all the effect related toXi:

STi

def
“
ÿ

uQi

Su. (B.14)

Due to the random nature of stochastic simulators, decomposition similar to Eq. (B.9) is generally impossi-
ble. Therefore, it is necessary to represent a stochastic model by a deterministic function to obtain the associated
Sobol’ indices. Based on the choice of the deterministic representation, we can have different extensions of the
Sobol’ indices (Zhu and Sudret, 2021b).

The most straightforward way is to include the latent variables within the input variables (Iooss and Ribatet,
2009). This leads to the underlying (yet unknown in practice) deterministic model Ms defined in Eq. (B.1).
Decomposing this function, we have:

Y “ MspX,Zq “ M0 `
ÿ

uĂt1,...,pu

u‰H

MupXuq ` MZpZq ` MX,ZpX,Zq. (B.15)

As the definition of Mu is the same as Eq. (B.10), the Eq. (B.12) for Vu still holds. This implies that Su can
be determined by the statistical dependence between Y and Xu. The definition of the total index STi

requires
including the interactive effect betweenXi and the latent variables Z. However, interactions with Z cannot be
determined by the response distribution but rather depend on the precise data generation process (i.e. how Z

is present in the function Ms). Since the latent variables Z are generally impossible to characterize and control
in a real experiment, the total Sobol’ indices cannot be assessed.

Alternatively to Eq. (B.15), certain summary quantities of the response random variable Y pxq can be em-
ployed as a deterministic representation of Y pxq. This is particularly helpful when the selected summary quan-
tity itself is of interest. Typical quantities are mean mpxq “ E rY pxqs, variance vpxq “ Var rY pxqs (Iooss
and Ribatet, 2009), andα-quantiles qαpxq (Browne, 2017). As these functions are well-defined as deterministic
functions of x (since the effect of the latent variables Z has been marginalized), the associated Sobol’ indices
follow directly from Eq. (B.9).

A generalized lambda surrogate model emulates the response distribution of a stochastic model, which fully
captures the statistical dependence between the input variables X and the QoI Y . Therefore, such a surrogate
allows for evaluating both types of Sobol’ indices mentioned above. More precisely, we can apply either Monte
Carlo simulations or polynomial chaos expansions to the easy-to-evaluate emulator (see Zhu and Sudret, 2021b
for more details).

Recall that the presented GSA framework assumes that the input parameters in x are statistically indepen-
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dent. Nevertheless, a generalized lambda surrogate model can emulate the response of a stochastic hybrid model
even in the case of dependent input parameters (Zhu and Sudret, 2021a). This holds since the dependence of
Y on the input parameters are not affected by the dependence within the input variables. Nevertheless, for the
case of dependent input parameters, generalized Sobol’ indices or alternative variance-based sensitivity analysis
methods should be employed as described in Chastaing et al. (2015) and Marelli et al. (2019).

B.3 Experimental illustrationoftheproposedGSAframe-
work

B.3.1 Stochastic hybrid model

The proposed GSA framework is illustrated using a stochastic 3-DOF hybrid model subjected to both thermal
and mechanical loading, illustrated in Figure B.1. As can be appreciated from Figure B.1a, the hybrid model
consists of a simply-supported beam provided with rotational elastic restraints. In this regard,u1 andu2 indicate
the two rotational DOF, whileu3 is the axial DOF. Figure B.1b describes the substructuring of the hybrid model
into PS and NS. The NS comprises two elastic rotational restraints, an axial spring and a linear dashpot whereas
the PS coincides with the beam element. Specifically, the axial spring is characterized by a constant stiffness of
K3 “ 8,100 ˆ 103 N/m. Two lumped rotational masses are defined by J1 “ J2 “ 10 kgm2 while the lumped
translational mass is defined byM3 “ 5,000 kg. The linear dash-pot is characterized byC3 “ 1,129ˆ103 Ns/m.
The PS consists of an aluminum plate of 0.2 ˆ 0.002 m rectangular cross-section and length L “ 0.47 m.
Accordingly, the cross-section of the plate is characterized by an area A “ 4 ˆ 10´4 m2 and a moment of
inertia I “ 66.67 ˆ 10´12 m4. The Young’s modulus, density and thermal expansion coefficient of aluminum
are E “ 69.5 GPa, ρ “ 2,700 kg/m3, and α “ 23 ˆ 10´6 ℃-1, respectively. Since HS are conducted in
pseudodynamic mode using a testing time scale equal to 50, the PS mass (rotational and translational) does not
contribute to the hybrid model inertia. For the sake of clarity, all equations and plots in the following refer to
simulation time, which is virtual and 50 times slower than the wall-clock time.

Mechanical loading is supplied as a bending moment history F ptq applied to the right rotational DOF u2,
while thermal loading, applied by a heating lamp, is defined by a ramp & hold temperature history θptq. The
expressions of both read:

F ptq “

$

&

%

Fmax sinp
πpt´t0q

T
q , t0 ď t ď t0 ` T {2

0 , elsewhere
(B.16)

θptq “

$

&

%

9θt , θptq ă θmax

θmax , elsewhere
(B.17)

where Fmax and T are peak value and period of the half-side bending moment pulse applied to DOF u2 with a
time shift t0 “ 0.1 s; 9θ “ 21.5 ℃/s and θmax are temperature rate and plateau characterizing the temperature
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Figure B.1: Reference structural system: (a) prototype structure and (b) its hybrid model.

history imposed to the PS. For the sake of this example, Figure B.2a depicts the bending moment history com-
puted for Fmax “ 45 Nm and T “ 1 s. Similarly, Figure B.2b depicts the temperature history computed for
θmax “ 120 ℃.
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Figure B.2: Sample time history loading: (a) bending moment history for Fmax “ 45 Nm and T “ 1 s; (b)
temperature time history for θmax “ 120 ℃.

Consistent with the motivations underlying the development of the GSA framework, the stiffness of the
two elastic rotational springs, which play the role of boundary conditions to the PS, as well as the loading pa-
rameters, are selected as input parameters for the surrogate modeling phase. Recall that these parameters were
chosen as inputs to the GSA framework, since in the majority of cases encountered in structural engineering,
loading is stochastic, while the boundary conditions are highly uncertain. In line with the procedure described
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Parameter Description Lower Bound Upper Bound Units
K1 Rotational stiffness left spring 110.58 1,105.80 Nm/rad
K2 Rotational stiffness right spring 110.58 1,105.80 Nm/rad
Fmax Bending moment pulse peak 40.00 50.00 Nm
T Bending moment pulse period 0.50 2.00 sec

θmax Temperature plateau 100.00 130.00 ℃

Table B.1: Input parameters of the hybrid model.

in Section B.2, the input parameters are described by independent uniform distributions, whose bounds are
summarized in Table B.1.

It is important to remark that, in order to reduce the experimental effort required to validate the proposed
framework, the hybrid model and loading excitation were designed such that the PS always remained in the
linear response regime. As a result, HS were conducted using a single aluminum plate.

The response QoI selected for the GSA corresponds to the maximum absolute out-of-plane deflection of
the tested aluminum plate, which is denoted as uL,max.

B.3.2 Hybrid simulation setup

The 3-DOF HS test rig used to conduct HS is a stiff loading frame equipped with four electro-mechanical
actuators and an infrared (IR) lamp module interfaced to an INDEL real-time computer (Abbiati et al., 2018).
The 3-DOF HS test rig is designed to test plate specimens with an approximate footprint of 200 ˆ 500 mm
and thickness varying between 1 and 3 mm. Figure B.3 illustrates the architecture of the HS setup, including a
close-up view of the plate specimen accommodation. Two axonometric views of the 3-DOF test rig, consisting
of the main hardware components are shown in Figure B.4.

The moving parts of the test rig are colored in yellow, the plate specimen in brown and the fixed parts in
gray. The latter are fixed to a reaction frame. In order to impose the u1 and u2 rotations, two rack-pinion
systems (10) are installed along the vertical actuator y1 and y2 (1). The rack-pinion systems aim at transforming
the commanded displacements from the actuators to rotational DOF, applied to the short edges of the plate
specimen (6) through aluminum clamps (3). The two horizontal actuators x1 andx2 control the position of the
moving frame mounted on profiled rail guides (4) and corresponding to the axial DOF u3 of the plate specimen
(6). A linear variable differential transformer (LVDT) measures the out-of-plane deflection at the mid-span
of the plate specimen (labeled uL in Figure B.3). A Type K thermocouple installed at the center of the plate
provides the feedback signal for the control of the IR lamp, which imposes the temperature history θptq.

The GINLink bus connects the actuator servo-drivers INDEL stand-alone controllers (SAC4), the IR lamp
and all the data acquisition (DAQ) modules to the real-time computer INDEL stand-alone master (SAM4),
which executes the HS software. The latter is developed in MATLAB/SIMULINK, compiled, and downloaded
to the INDEL SAM4 from the Host-PC. At each simulation time step, the HS software generates the temper-
ature command for the IR lamp. The latter command is generated using a predefined time history temperature
response (see, for example, Figure B.2b). Also, at each time step of the simulation, the HS software imposes
displacements u1, u2 and u3 to the plate specimen, the PS. The latter displacements are computed as the re-
sponse of the NS to the imposed bending moment time history response (see, for example, Figure B.2a). Using
force transducers the HS software reads the corresponding restoring forces r1, r2 and r3, due to the imposed dis-
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placements and temperature commands, and uses them to solve the coupled equation of motion of the hybrid
model. A comprehensive description of the time integration scheme used for HS is reported in Abbiati et al.
(2019).

Forces were manually set to zero before starting the HS. An electric fan cools down the PS at the end of each
test. Room temperature was quite stable and equal to 30 ℃, namely θp0q “ 30 ℃in Eq. (B.17), for the entire
testing campaign.

u1 u2
u3

uL

θ(t)

INDEL SAM4
Real-time computer
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Actuator servo-drivers
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PS
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Figure B.3: Architecture of the 3-DOF HS test rig.

B.4 Results and discussion

The response of the hybrid model described in Section B.3.1 was evaluated using the HS setup described in
Section B.3.2 on 200 samples of the input parameter vector generated using Latin hypercube sampling (Mckay
et al., 2000). The resulting ED X ,Y was used for computing surrogate models. In a previous work of some of
the authors (Abbiati et al., 2021), 200 samples were proven to be adequate to train PCE surrogate models with
acceptably small validation error. In particular, in that work, PCE estimates converged in trustworthy values
with ED size larger than 50 samples. In this regard, 200 samples of the input parameter space were used in this
study as well, as an initial estimate. Results presented later on demonstrate that this number of samples was
sufficient to train the generalized lambda surrogate model.

Figure B.5 reports out-of-plane and axial displacement histories obtained via HS for a single sample of in-
put parameters, where uL,max, u3,max, uL,0 and u3,0 scalar quantities are highlighted. Specifically, uL,max cor-
responds to the QoI (see Eq. (B.18)) and u3,max to the absolute maximum axial displacement while uL,0 and
u3,0 indicate the initial position of the out-of-plane displacement and axial axes respectively, relative to the value
measured during the first HS. Figure B.6 describes the evolution ofuL,0 andu3,0 scalar quantities over the entire
experimental campaign.
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(a) (b)

Figure B.4: Axonometric views of the 3-DOF HS test rig with its main components (the moving parts are
colored in yellow, the plate specimen is brown, while those parts fixed to the reaction frame are gray): (a) front
and (b) back view perspective.

B.4.1 Drift observed in measurement data

From Figure B.6 it is clear that both uL,0 and u3,0 quantities have a constant drift, which results in a total accu-
mulated out-of-plane and axial displacements of 3.0 mm and 0.3 mm, respectively. Such a drift can be reason-
ably ascribed to the cumulative slippage of plate fixtures produced by heating/cooling cycles. This drift occurs
regardless of the type of analysis that the HS setup was used for, and since the source of the drift is clear, it
should be removed from the acquired raw data before any further post-processing. Accordingly, prior to the
calculation of surrogate models, the effect of drift on uL,max was eliminated via linear detrending with respect
to uL,0. The detrended QoI is referred to as ûL,max and compared to original values in Figure B.7. Notably,
uL,0 is independent of the parameters of the hybrid model since the initial position of the PS was set by zeroing
actuator forces.

Consistent with the notation introduced in Section B.2, surrogate modeling was performed considering
the following input parameter vector and response QoI:

X “ pK1,K2, Fmax, T, θmaxq
T

,

Y “ ûL,max.
(B.18)
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Figure B.5: Time history response of the hybrid model with K1 “ 224.454 Nm/rad, K2 “ 118.235 Nm/rad,
Fmax “ 48 Nm, T “ 0.618 s and θmax “ 116.73 ℃: (a) out-of-plane displacement and (b) axial displacement.
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Figure B.6: Drift in the hybrid model response: (a) uL and (b) u3

B.4.2 Global sensitivity analysis framework results

A GLaM of the hybrid model dynamic response QoI was computed as explained in Section B.2. In this study,
we set the candidate degrees up to 5 for λPC

1 and 3 for λPC
2 . In order to validate the GLaM, 10 repeated HS

were performed for two validation ED points, namely 58 and 157, associated with different regions of the input
parameter space and characterized by appreciably different QoI values. For each validation ED point, Figure B.8
compares the GLaM prediction to the empirical distribution of the 10 related repetitions. It is observed that
the GLaM correctly captures the empirical distribution of the QoI for both points. It is interesting to note that
the computed GLaM model converged to zero-order polynomials forλPC

2 , and that the two PDFs of Figure B.8
are similar in shape, thus suggesting an homoscedastic stochasticity of the hybrid model, which was further
verified using a PCE surrogate model. Specifically, a residual analysis was performed on the difference between
the measured QoI and its PCE.

As highlighted by Torre et al. (2019), in presence of noisy data, PCE is a powerful denoiser, which natu-
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Figure B.7: Effect of detrending on the QoI: (a) original values (uL,max) and (b) values after detrending
(ûL,max). Dashed lines indicate a linear trend of data.

rally provides a surrogate of the average model response EZ rY |xs. In this regard, the Tukey-Anscombe plot
(Anscombe and Tukey, 1963) of Figure B.9a compares the PCE output to the corresponding residual for each
sample of the ED. The Q-Q plot of Figure B.9b compares the empirical quantiles of the residuals normalized
to unit standard deviation to the theoretical values of a standard normal distribution N p0, 1q. The zero-average
uniform scattering of residuals highlighted by the Tukey-Anscombe plot and the fairly good agreement between
empirical and theoretical quantiles highlighted by the Q-Q plot confirms that the hybrid model response was
affected by a Gaussian homoscedastic additive noise.
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Figure B.8: PDF of ûL,max predicted by the GLaM versus empirical distributions for ED points: (a) 58 and (b)
157. Cross markers denote the 10 related repetitions for each point.

As reported in Section B.2.2, only first- and higher-order Sobol’ indices but not total Sobol’ indices can be
obtained from the GLaM of the QoI. Instead, first and total Sobol’ indices can be computed for the QoI quan-
tiles. Accordingly, Figure B.10 provides first and total Sobol’ indices of the 5, 50 and 95 % quantiles of ûL,max.
The results of the GSA indicate that the temperature plateau value θmax is the most sensitive input parameter
for the selected QoI. Additionally, the equal Sobol’ indices values for each quantile unveil the homoscedastic
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Figure B.9: Analysis of QoI residuals with respect to PCE: (a) Tukey-Anscombe plot and (b) Q-Q plot.

response of the stochastic surrogate.

(a) (b)

Figure B.10: Sobol’ indices of 5, 50 and 95 % quantiles of ûL,max: (a) first order and (b) total.

The development and implementation of the surrogate modeling, as well as the GSA, was performed using
the UQLab software framework developed by the Chair of Risk, Safety and Uncertainty Quantification in ETH
Zurich (Marelli and Sudret, 2014).

B.5 Conclusions
This paper described a framework for global sensitivity analysis of stochastic hybrid models. A generalized
lambda surrogate modeling technique is used to compute the Sobol’ sensitivity indices for the quantiles of a
response quantity of interest. The idea of using surrogate modeling to enable global sensitivity studies with few
expensive-to-evaluate hybrid simulations was already presented in a previous work of the authors. However,
in that work the physical substructure of the hybrid model was treated as deterministic, namely the associated
aleatory uncertainties were neglected by assuming that nominally identical specimens have identical responses.
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Nevertheless, this assumption is still far from a realistic scenario in structural testing, as nominally identical spec-
imens are, in practice, never actually identical. Therefore, the novelty of this work lies in the extension of global
sensitivity analysis to the case of stochastic hybrid models, covering the more realistic situation where the hybrid
model response for two nominally identical physical substructures is not repeatable. A great advantage of the
proposed framework is that the generalized lambda surrogate model does not require repeated evaluations of
the same sample. On the other hand, an assumption of the framework is that the response distribution of the
stochastic hybrid model can be approximated by the generalized lambda distribution. The main limitation of
the generalized lambda surrogate model is that the generalized lambda distribution is flexible but cannot repre-
sent multimodal distributions. Nevertheless, one can use a mixture of generalized lambda models to bypass this
limit. In addition, a generalized lambda surrogate model can emulate the response of a stochastic model even
in the case of dependent input parameters. However, for the latter case, generalized Sobol’ indices should be
employed instead.

The effectiveness of the proposed framework is demonstrated in an experimental application consisting
of a hybrid model with five parameters and subjected to mechanical and thermal loading. The results of the
demonstration study highlight that the stochasticity of the particular hybrid model under consideration is ho-
moscedastic with respect to the hybrid model parameters. Accordingly, both the first-order and total Sobol’
sensitivity indices of 5, 50, and 95 % quantiles are almost identical. Moreover, the temperature plateau value
of the thermal loading is the most sensitive parameter for the selected response quantity of interest. The out-
come of the experiment demonstrates the effectiveness of the proposed global sensitivity analysis framework in
revealing the inner workings of the hybrid model.

Global sensitivity analysis for stochastic hybrid models advances the current practices of hybrid simulation
and establishes it as a tool capable to investigate the dynamic response of structural systems taking into account
aleatory and epistemic uncertainties originating not only from numerical substructures and respective loading
but also from physical specimens. The latter feature is of significant importance since the internal stochasticity
of physical specimens is in general unknown and difficult to control.

Future research will address the issue of adaptive sampling of the parameter space of the stochastic hybrid
model to minimize the experimental cost necessary to compute an accurate surrogate model for global sensitivity
analysis.
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Abstract

The breeding of resistant hosts based on the gene-for-gene interaction is crucial to address epidemics of plant
pathogens in agroecosystems. Resistant host deployment strategies are developed and studied worldwide to de-
crease the probability of resistance breakdown and increase the resistance durability in various pathosystems.
A major component of deployment strategies is the proportion of resistant hosts in the landscape. However,
the impact of this proportion on resistance durability remains unclear for diploid pathogens with complex life
cycles. In this study, we modelled pathogen population dynamics and genetic evolution at the virulence locus
to assess the impact of the ploidy (haploid or diploid) and the pathogen’s life cycle (with or without host al-
ternation) on resistance durability. Ploidy has a strong impact on evolutionary trajectories, with much greater
stochasticity and delayed times of resistance breakdown for diploids. This result emphasises the importance of
genetic drift in this system: as the virulent allele is recessive, positive selection on resistant hosts only applies to
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homozygous (virulent) individuals, which may lead to population collapse at low frequencies of the virulent al-
lele. We also observed differences in the effect of host deployment depending on the pathogen’s life cycle. With
host alternation, the probability that the pathogen population collapses strongly increases with the proportion
of resistant hosts in the landscape. Therefore, resistance breakdown events occurring at high proportions of
resistant hosts frequently amount to evolutionary rescue. Last, life cycles correspond to two selection regimes:
without host alternation (soft selection) the resistance breakdown is mainly driven by the migration rate. Con-
versely, host alternation (hard selection) resembles an all-or-nothing game, with stochastic trajectories caused
by the recurrent allele redistributions on the alternate host.

C.1 Introduction

Plant pathogens can quickly evolve (Perkins et al., 2013), and the loss of host genetic diversity in agroecosystems
compared to natural ecosystems can enhance the spread of epidemics (Mundt, 2002; Burdon and Thrall, 2008;
Garrett et al., 2009; Haas et al., 2011; Ostfeld and Keesing, 2012; Zhan et al., 2015). In this context, many
plant protection strategies are developed and studied worldwide (Bousset and Chèvre, 2013), particularly spatio-
temporal host resistance deployment strategies (Mundt, 2002; Gilligan and van den Bosch, 2008; Sapoukhina
et al., 2009; Burdon et al., 2014; Djian-Caporalino et al., 2014; Fabre et al., 2015; Bousset et al., 2018; Rimbaud
et al., 2018). However these modelling studies seldom account for pathogen differences in life cycle and ploidy
levels.

While quantitative resistance has gained interest (Pilet-Nayel et al., 2017), the breeding of disease resistant
plants is still often based on the gene-for-gene interaction (Person et al., 1962; Zhan et al., 2015). In the simplest
case of specific response, the result of the infection is determined by the interaction between a locus in the plant
(the resistance gene) and in the pathogen (the avirulence gene; Flor, 1971). This interaction leads to an all-or-
nothing response and therefore such resistances are called qualitative. Qualitative resistances often rely on the
recognition of a specific pathogen molecule (an effector protein for instance) by a plant immune receptor (Lo
Presti et al., 2015). If the pathogen is recognised by the plant, the infection is stopped and the plant is called
resistant. But the pathogen species evolves in multiple ways to escape host recognition (Rouxel and Balesdent,
2017). When a pathogen can infect a resistant host it is called virulent, as opposed to avirulent individuals. For
avirulent individuals, if the product of the avirulence gene is not recognised by the plant, the infection occurs
and the plant is called susceptible. Hence, virulent individuals can infect both susceptible and resistant hosts,
while avirulent individuals can only infect susceptible hosts. In its simplest cases, the avirulence gene exists in
two versions: the avirulent Avr allele and the virulent avr allele. The plant resistance can thus be overcome
by a mutation of the Avr allele which modifies the pathogen recognition by the plant. The Avr allele is then
replaced by a virulent avr allele which leads to a virulent pathogen (Stukenbrock and McDonald, 2009).

In natural systems, the constant turnover of resistance and avirulence genes results from a strong coevolu-
tionary interaction between both species (Zhan et al., 2014), represented by the concept of arms-race (Brown
and Tellier, 2011). On both sides, the most adapted allele can spread in the population, sometimes replacing
alleles conferring lower fitness to individuals (Brown and Tellier, 2011; Persoons et al., 2017). These genes are
under strong selective pressure and at each selective event a selective sweep can occur and drastically reduce the
genetic diversity of both species (Oleksyk et al., 2010; Terauchi and Yoshida, 2010). In natural populations, rare
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host genotypes can be maintained by negative frequency-dependent selection, resulting in the preservation of
host polymorphism (Lewontin, 1958). In agroecosystems, however, pure crops of resistant hosts hinder this
maintenance of polymorphism (Zhan et al., 2015). Therefore, the issue of such resistance deployments is of-
ten a resistance breakdown, i.e. the failing of the host to remain resistant to the pathogen, which can result
in severe epidemics (Johnson, 1984; Pink and Puddephat, 1999; Brown and Tellier, 2011; Burdon et al., 2016).
Such a resistance breakdown can occur more or less quickly, depending on the pathosystem considered and the
environmental conditions (Van den Bosch and Gilligan, 2003). This observation raises the question of resis-
tance durability, which can be defined as the time until the virulent population reaches a given threshold in
the pathogen population. Definitions of resistance durability can have diverse acceptations depending on the
threshold considered (Van den Bosch and Gilligan, 2003; Pietravalle et al., 2006; Brown, 2015; Carolan et al.,
2017; Lof et al., 2017; Pacilly et al., 2018; Rimbaud et al., 2021). Considering several thresholds can help in
capturing different steps of the pathogen dynamics.

Resistance durability becomes a major economical issue when epidemics impact crop yields. Therefore, it
has often been studied through the modelling of epidemics spread in agricultural landscapes (Rimbaud et al.,
2021). Such models can couple epidemiological and evolutionary processes, and often aim to study the influ-
ence of different biological parameters on the emergence of pathogens, their specialisation to the host plant,
the evolutionary dynamics of virulence, or on the resistance durability (Van den Bosch and Gilligan, 2003).
Virulence is defined here as the ability for a pathogen individual to infect a resistant host, in accordance to the
phytopathology literature (Flor, 1971; McDonald and Linde, 2002). These parameters can be specific to the host
plant (proportion of resistant host in the landscape, their spatial and temporal distribution) or to the pathogen
(life cycle, mutation rate, dispersal; Fabre et al., 2012, 2015; Papaïx et al., 2015, 2018; Soularue et al., 2017).
These models often represent haploid pathogens with a virulent and an avirulent genotype, evolving purely
asexually on a landscape composed of compartments, gathering resistant or susceptible hosts (Pietravalle et al.,
2006; Lof and van der Werf, 2017; Lof et al., 2017; Pacilly et al., 2018). Regarding the pathogen, high risks of
resistance breakdown are observed for pathogen populations with high gene flow and mutation rates, large ef-
fective population sizes, and partially asexual reproductions (McDonald and Linde, 2002). Regarding the host,
the increase in the proportion of resistant hosts should increase the selection pressure, hence weakening the re-
sistance durability (Van den Bosch and Gilligan, 2003; Pietravalle et al., 2006). However, a large proportion of
resistant hosts also reduces the initial size of the pathogen population and thus the risk of resistance breakdown
(Pacilly et al., 2018), partly because a small population size reduces the likelihood that a virulent individual will
emerge through mutation.

However, the impact of host resistance deployment on resistance durability remains unclear when the
pathogen is diploid (like rust fungi, oomycetes, or nematodes). When the product of the avirulence gene is
a specific molecule like an effector protein, the pathogen is virulent only if this product is not detected by the
product of the corresponding resistance gene in the host (Stukenbrock and McDonald, 2009). Therefore, for
a diploid individual the pathogen is virulent only if the products of both alleles avoid detection by the host. In
other words, in the classical gene-for-gene interaction the virulent allele is recessive (Thrall et al., 2016). Con-
sequently, a heterozygous Avr/avr individual is phenotypically avirulent, and the selective advantage of the
virulence is effective among homozygous avr/avr individuals only. At low frequency, avr alleles are then car-
ried by heterozygous individuals and mostly subjected to drift.

Diploid pathogens exhibit a large variability of life cycles (Agrios, 2005). We can especially distinguish
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autoecious pathogens, which complete their life cycle on a unique host species, from heteroecious pathogens
which need two different and successive host species to complete their life cycle (Moran, 1992; Lorrain et al.,
2019). This presence or absence of an alternate host species could also affect the influence of host deployment
strategy on resistance durability. Moreover, most studies focus on purely asexual pathogens, but the highest
risks of resistance breakdown were observed for mixed reproduction systems (McDonald and Linde, 2002),
with the best invaders combining high rates of asexual reproduction and rare events of sex (Bazin et al., 2014).
Yet, the allelic redistribution resulting from a sexual reproduction event could have an even stronger impact on
resistance durability when the pathogen is diploid.

To study resistance durability and evolutionary forces shaping the system, the understanding of the evolu-
tion of gene and virulence allele frequencies is needed. Coupling epidemiology and population genetics provides
insights on both short and long time scales. It allows in particular detailed analyses of transition periods (Day
and Proulx, 2004; Day and Gandon, 2007; Bolker et al., 2010), through variables like the pathogen population
size, affecting both the disease incidence in epidemiology and the impact of genetic drift in population genet-
ics (McDonald, 2004). This approach is also crucial for highlighting transient effects like evolutionary rescue,
i.e. the genetic adaptation of a population to a new environment, thus preventing its extinction (Martin et al.,
2013; Alexander et al., 2014). Evolutionary rescue as a process leading to resistance breakdown has not received
consideration so far.

The virulence of pathogens can be associated with a fitness cost on susceptible hosts (Leach et al., 2001;
Thrall and Burdon, 2003; Montarry et al., 2010; Laine and Barrès, 2013; Bousset et al., 2018; Nilusmas et al.,
2020), sometimes referred to as the cost of pathogenicity (Sacristán and García-Arenal, 2008). This fitness cost
has been shown to have a strong impact on resistance durability (Fabre et al., 2012). However, depending on the
avirulence gene considered, such a fitness cost is not systematic (see Leach et al., 2001 for a review). Therefore,
in the absence of data, it could be more conservative of the risk of breakdown not to consider fitness cost while
modelling resistance durability.

In this paper, we aim to broaden our understanding about the impact of the ploidy and the life cycle of
pathogens on resistance durability. We used a non-spatialised model coupling population dynamics and pop-
ulation genetics to simulate the evolution of pathogens on susceptible and resistant hosts. We investigated the
effects of resistant host deployment and pathogen demography on resistance durability, for a population of
diploid and partially clonal pathogens, and compared the results to those obtained for haploid pathogens. Two
different life cycles were implemented specifically: with or without host alternation for the sexual reproduction
of the pathogen population. We assessed the resistance durability in two steps. First we examined the dynamics
of fixation of the virulent allele in the population, and considered in parallel the cases when the pathogen popu-
lation could go extinct, to highlight evolutionary rescue events. Then we focused on the invasion and resistance
breakdown events, and disentangle the relationship between the durability of resistance and the dynamics of
virulent populations after the invasion of the resistant plants.

C.2 Model description
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C.2.1 Model overview

The model is individual-based, forward-time and non-spatialised, and couples population dynamics and popu-
lation genetics to study the evolution of a population of pathogens for a succession of generations. It allows us
to follow the evolutionary trajectory of different genotypes at the avirulence locus of pathogens through time.
We consider a life cycle usually found in temperate pathogen species, which alternate rounds of clonal repro-
duction with an annual event of sexual reproduction (Agrios, 2005). This model is designed in four variants
to represent haploid or diploid pathogens with two distinct life cycles: with or without host alternation for
the sexual reproduction (Figure C.1). Without host alternation, the model represents the evolution in time of
a population of pathogens on two static host compartments: a resistant compartment (R) and a susceptible
compartment (S). Fixed carrying capacities of pathogens,KR andKS , are respectively assigned to R and S com-
partments and represent the maximum amount of pathogens that each compartment can contain. With host
alternation, the alternate host compartment (A) is added, where the sexual reproduction takes place. This static
compartment is assumed to be sufficiently large and thus with unbounded population size. Note that the life
cycle with host alternation for haploid pathogens was added for the sake of comparison but has no real biologi-
cal meaning, because no haploid pathogen display this life cycle.

C.2.2 Demographic evolution of the pathogen population

C.2.2.1 Reproduction events

Each discrete generation corresponds to a reproduction event, either sexual or asexual. Each year is composed
of g non-overlapping generations, with one annual sexual reproduction event followed by a succession of g´ 1
asexual reproduction events. In our simulations, we considered a year composed of g “ 11 generations. At
each reproduction event, parents give way to offspring and the new population is composed exclusively of new
individuals. The within-compartment dynamics of the pathogen population are provided by the following
equations:

Before each sexual reproduction event, a proportion Reduct of pathogen individuals is picked randomly
to form the parental population. We fixed Reduct “ 0.2 to cope to pathogen life cycles displaying drastic
reduction in population size during sexual reproduction which usually takes place in winter.

For the sexual reproduction event itself, the population size is considered constant before and after the
reproduction event:

Nn`1 “ Nn, (C.1)

withNn`1 the population size at generation n` 1 andNn the population size at generation n. Sexual offspring
genotypes are obtained through random mating within the parental population.

For the asexual reproduction following the sexual reproduction in the A compartment in the life cycle with
host alternation, the population growth is exponential, with the following relation:

Nn`1 “ r ˆNn, (C.2)

with r the growth rate of the pathogen population.
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(a) Without host alternation

(b) With host alternation

Figure C.1: Model representation for two different life cycles: (a) without or (b) with host alternation. g corre-
sponds to the total number of generations (asexual plus sexual) in a year. Dashed arrows represent reproduction
events, and solid arrows represent migration events occurring at each generation. asex stands for asexual repro-
duction events, and sex for sexual reproduction events. avr denotes the virulent recessive allele, and Avr the
avirulent dominant allele.

For each asexual reproduction in the R or S compartments, the population growth is logistic, with the
following relation:

Nn`1 “ Nn ` pr ´ 1q ˆNn ˆ p1 ´
Nn

K
q, (C.3)

with K the carrying capacity of the compartment (KR or KS for R or S compartment respectively). For all
clonal reproduction events, offspring genotypes are drawn randomly from the parental population, with re-
placement, considering the same reproduction rate for all pathogen genotypes.
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C.2.2.2 Migration events

A regular two-way migration event takes place each generation before the reproduction event, between individ-
uals evolving in the R and S compartments. The number of migrant individuals is determined by a migration
rate (mig) multiplied by the number of individuals on the compartment of origin. Migrant individuals suc-
ceed to invade the compartment of arrival, even if the number of individuals on this compartment reached the
maximum carrying capacity. The population size on each compartment is restricted to the carrying capacity
during reproduction events only, and not during migration events. Thereby, this choice enables the immigra-
tion of new pathogens regardless of the size of the population, as it is observed in natural populations for plant
pathogens.

For the life cycle with host alternation, the annual sexual reproduction event coincides with the obligate mi-
gration of the entire pathogen population to and from the alternate host. The first migration event takes place
once every year after g´2 asexual reproduction events in the R and S compartments (Figure C.1). For this migra-
tion event, an established proportion of individualsReduct is picked randomly from R and S compartments to
migrate to the A compartment. All remaining individuals die in the R and S compartments, because the sexual
reproduction is mandatory to complete the life cycle. After the two reproduction events (sexual and asexual) in
the A compartment, the second migration event redistributes randomly all individuals from the compartment
A to R and S compartments, in proportion to the relative size of R and S compartments (Figure C.1).

C.2.3 Genetic evolution of the pathogen population

To better highlight the effect of drift among other evolutionary forces, we did not consider mutation, that is,
there is no change by chance of allelic state. This amounts to study evolution of the pathogen population
from standing genetic variation (Barrett et al., 2008). The avirulence gene exists at two possible states: theAvr
allele and the avr allele. For haploid pathogens, the Avr allele leads to avirulent individuals surviving only in
the S compartment (and in the A compartment in the case of host alternation), while the avr allele leads to
virulent ones capable to survive on all compartments without any fitness cost (Leach et al., 2001; Brown, 2015).
For diploid pathogens, Avr is dominant and avr is recessive. Thus, individuals with genotypes Avr/Avr,
Avr/avr and avr/avr survive with equal fitness in the S and A compartments, while only individuals with the
virulent genotype avr/avr survive in the R compartment. Every avirulent individual (Avr for haploids, and
Avr/Avr or Avr/avr for diploids) migrating to the R compartment dies before any subsequent migration or
reproduction event.

Besides the demographic evolution of pathogen populations, the model describes the evolution of allelic
and genotypic frequencies through generations in each compartment. Reproduction events can change allelic
and genotypic frequencies. In particular, the annual sexual reproduction is the only event responsible for allele
reshuffling in diploid individuals. For haploid pathogens, as only one locus is studied, the sexual reproduction
event amounts to asexual reproduction, with differences in the size of the offspring population only.

Resistance durability is evaluated at four steps representing different proportions of virulent individuals in
the population: (1) the time of apparition of the first virulent individual on the R compartment; (2) the time
of invasion of the R compartment (1‰ of the R compartment occupied); (3) the time of resistance breakdown
(1% of the R compartment occupied); and (4) the time of fixation of the virulence (all individuals are virulent,
i.e only avr alleles remain). The thresholds of 1‰ and 1% were arbitrarily fixed to correspond to (i) the estab-
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lishment of a pathogen population on the R compartment for the invasion and (ii) the detection of the virulent
population on the R compartment for the resistance breakdown, respectively.

C.2.4 Implementation of model analyses

The model was implemented in Python (version 3.7; van Rossum, 1995), with the package “simuPOP” (Peng
and Kimmel, 2005). The starting point of each replicate simulated was a population of 2,000 individuals in
the susceptible compartment. A proportion favr of virulent alleles was introduced initially in the pathogen
population at Hardy-Weinberg equilibrium, as standing genetic variation. For diploid individuals, homozygous
avr/avr individuals could therefore be initially present, depending on favr. All simulations were run with a
fixed total carrying capacity for the host population size,K “ KR `KS “ 100 000, but a variable proportion
of the size of the R compartment propR “ KR

K
.

Preliminary analyses were carried out to study demographic and genetic outcomes with varying parameters.
These analyses enabled six variables of interest to be identified: the initial frequency of avr allele (favr), the
migration rate (mig), the growth rate (r), the proportion of resistant hosts in the landscape (propR), the ploidy
(Ploidy) and the life cycle (Cycle). Statistical analyses were performed on simulations with quantitative input
parameters picked randomly from known distributions, resulting into a random simulation design (Table C.1).
The same simulation design was run four times, once for each combination of categorical input parameters
(Ploidy and Cycle). To investigate further the impact of the input parameters on the simulation outcome in
specific cases and to present the model results in a more didactic form, a regular simulation design was developed
to complement the random design (Table C.1).

This regular simulation design allowed us to present the results in a more conventional form. For both
the random and the regular simulation design, simulations were run for each combination of parameters for
100 years (1,100 generations) with 100 replicates. During this period, nearly all replicates reached equilibrium
(fixation of one allele or extinction of the population).

A principal component analysis was performed on the data obtained with the random simulation design
using R (R Core Team, 2018), on the following output variables: the frequency of extinction of population
(freq_ext), the frequency of fixation of the Avr allele in the population (freq_fix_Avr), the frequency of
fixation of the avr allele (freq_fix_avr) and the generation of fixation of avr (gen_fix_avr). To study the
influence of the six input parameters (Ploidy, Cycle, favr, mig, r, and propR) on the three main output
variables selected (freq_ext, freq_fix_avr, and gen_fix_avr), generalized linear models (GLM) were per-
formed on R. GLM on freq_ext and freq_fix_avr were performed with a Logistic link function, and the
GLM on gen_fix_avr was performed with a Gamma link function.

To analyse further the temporal dynamics of avr allele frequency and population size, simulations were
run recording population size and allelic states over time. Because these simulations were time- and memory-
consuming, they were run on a restricted simulation design with only 24 combinations of parameters (Ta-
ble C.1). The generation of fixation of the avr allele was thus decomposed into two distinct output variables:
the year of invasion of the R compartment and the time elapsed between the invasion and the avr allele fixation
in the population. The influence of three parameters (propR, Ploidy and Cycle) on these two output vari-
ables was studied with 1,000 replicates for each combination through 1,100 generations. For these two output
variables, GLM were performed with a Gamma link function.
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C.2. Model description

For each general linear model developed, a dominance analysis was performed with the R package “domi-
nanceanalysis” (Bustos Navarrete and Coutinho Soares, 2020) to compare the relative importance of the input
parameters on the five output variables described. Estimated general dominance were calculated using boot-
strap average values with the corresponding standard errors for each predictor with 100 bootstrap resamples,
with McFadden’s indices (McFadden, 1974).

Calculations of a growth rate threshold r0 were carried out on Python for several parameter combinations.
This value determines the growth rate below which the population goes extinct before the end of the simulation
if there are no virulent individuals, therefore if the R compartment remains empty.
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C.3 Results

C.3.1 Model behaviour

Since the model leads to stochastic outputs, we first analysed model behaviour in order to identify sound output
variables. We visualised both population size and allele frequency dynamics through generations. The trajectory
of each simulation either lead to the extinction of the entire pathogen population or to the fixation of one allele,
provided that simulations last long enough. An example of such model behaviour is illustrated in Figure C.9
with four replicates, assuming diploid pathogens with host alternation. In this example, population sizes display
cyclical dynamics due to the annual migration event on the A compartment. Three out of five replicates lead
to population extinctions, while in the two other replicates, some pathogen individuals succeed to invade the
R compartment after the initial phase of population dynamics collapse, leading to the fixation of the avr allele.
These two dynamics with the survival of the population following a genetic adaptation to harsh environment
illustrates evolutionary rescue. Interestingly, all replicates succeed to invade the R compartment at some time,
but - because of host alternation - the annual redistribution of individuals breaks the invasion dynamics of the
R compartment. Therefore, invasion does not necessarily lead to avr fixation.

In the following, we will summarise simulation results with four output variables, computed over repli-
cates: the frequency of extinction, freq_ext; the frequency of fixation of Avr or avr allele, freq_fix_Avr
or freq_fix_avr, respectively; and the generation of fixation of avr allele, gen_fix_avr. The later output
variable provides insights on the durability of resistance.

C.3.2 Sensitivity analyses

To identify the most significant parameters on the different output variables, we conducted a PCA analysis,
general linear models and dominance analyses.

The PCA analysis was performed on the four output variables, with the first and second axes accounting for
49.5% and 33.3% of the total variability respectively (Figure C.2). The most influential parameters of interest
on the output variables were the growth rate r, negatively correlated with the frequency of extinction of popu-
lation freq_ext. The initial frequency of avr alleles in the population favr was positively correlated with the
frequency of fixation of the avr allele freq_fix_avr. The migration ratemig and the proportion of resistant
hosts in the landscape propR were negatively correlated with both the frequency of fixation of the Avr allele
freq_fix_Avr, and the generation of fixation of the avr allele gen_fix_avr. The qualitative input parame-
ters (Ploidy and Cycle) were studied by representing each of the combinations of parameters of the random
simulation design colored according to its ploidy and life cycle (Figure C.2.b). This PCA highlights a higher
frequency of extinctions of population for diploids with host alternation. Moreover, simulations without host
alternation lead to higher frequencies of fixation of Avr, and longer times to avr fixation. The ellipses also
illustrate that haploid individuals with host alternation lead to less variable outcomes and to higher frequencies
of fixation of avr.

Dominance analyses highlight the high impact of r on freq_ext (Figure C.3.a), which is confirmed by
the analysis of Sobol’ indices (Figure C.8). For freq_fix_avr and gen_fix_avr, the influence of model pa-
rameters is more balanced with a lower contribution of the input parameters on gen_fix_avr (Figure C.3.b, c).
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Overall, this analysis points out thatfreq_ext andfreq_fix_avr are relatively well explained whilegen_fix_avr
is more stochastic.
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Figure C.2: Principal component analysis on four output variables: freq_ext, freq_fix_Avr,
freq_fix_avr, and gen_fix_avr. Two results are displayed: (a) the correlation circle on four output
variables. The quantitative parameters favr, mig, r, and propR are represented informatively in blue on the
correlation circle and do not contribute to the variability; (b) the individual representation of simulations
which represents the influence of the pathogen ploidy and life cycle. Each point represents a different
combination of parameters with 100 replicates. Ellipses correspond to the 95% multivariate distribution.
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Figure C.3: Estimated general dominance of each predictor calculated from general linear models applied to
three output variables of the random simulation design: the frequency of extinction of population, the fre-
quency of fixation of the avr allele among replicates with surviving populations, and the generation of fixation
of the avr allele. For each predictor the general dominance was estimated from bootstrap average values with
the corresponding standard error for 100 bootstrap resamples.
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C.3.3 Patterns of virulence fixation

Three different and exclusive equilibria are observed: the extinction of the pathogen population, the fixation
of the avr allele and the fixation of the Avr allele. The frequencies of these outputs among replicates are rep-
resented depending on favr, r, propR and Cycle, for haploids and diploids (Figures C.4 and C.12). For both
ploidy levels, there is an increase in the frequency of fixation of the avr allele with the increase in favr and r.
This representation also highlights the existence of a growth rate threshold r0 above which there is fixation of
either the avr allele or theAvr allele, and below which there is instead either fixation of the avr allele or extinc-
tion of the population. In other words, for a growth rate below r0 the pathogen population only survives when
virulent individuals invade the R compartment, which corresponds to evolutionary rescue. Evolutionary rescue
is particularly noticeable for the life cycle with host alternation because in this case, r0 increases with propR.

Above r0, we observe a gradient between the predominant fixation of the two alleles depending of favr,
with slightly different patterns influenced by propR, Cycle and r for diploids (Figure C.4). The influence of
the life cycle on the fixation pattern is the most noticeable for low values of propR and r. The frequency of
fixation of the avr allele appears maximal for intermediate values of propR.

To examine further the influence of propR on the probability of fixation of the avr allele, we plotted the
evolution of the frequency of fixation of the avr allele among all replicates of the regular simulation design de-
pending on propR and r for a fixed value of favr (Figure C.5). For haploid individuals with host alternation,
the frequency of fixation of the avr allele increases very slightly with propR. For haploids without host alter-
nation, a plateau is observed for intermediate values of propR. For diploids, the distribution is shifted with a
peak of maximal proportion of avr fixation for a slightly lower value of propR.

C.3.4 Variations in the speed of virulence spread

To analyse in more details the dynamics of virulence spread, we examine two time points, reflecting two mea-
sures of resistance durability: the invasion of the R compartment and the resistance breakdown event. Invasion
and resistance breakdown were defined as the first year when at least 1‰ and 1% of the resistant compartment
were occupied by pathogens, respectively. Distributions of these two measures of resistance durability were plot-
ted for three values of propR, with and without host alternation, only for the replicates for which we observed
eventually a fixation of the avr allele. To broaden the picture, we monitored also the evolutionary trajectory
of the avr allele from the invasion of the R compartment. The dynamics of invasion is mainly driven by the
ploidy level and the dynamics of virulence spread is mainly driven by propR (Figure C.10).

For haploid individuals resistance breakdown occur very rapidly: during the first or second year of simula-
tion, regardless of the life cycle (figure not shown). There is a small delay in the time of the resistance breakdown
with the increase in propR, especially without host alternation.

For diploid individuals, we observed longer periods before invasion and resistance breakdown and higher
kurtosis. Assuming a strong migration rate, there are few differences between life cycles on the time of invasion.
Both life cycles display an increase in kurtosis that goes hand in hand with the increase in propR. Without host
alternation, distributions of the year of resistance breakdown and invasion time are similar, but with a one-year
lag. Conversely, with host alternation, there are strong changes in the distributions that flatten out when consid-
ering the year of resistance breakdown (Figure C.6). Assuming a low migration rate (i.e. for telluric pathogens),
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Figure C.4: For diploid pathogens, representation of the frequencies of population extinction or fixation of
alleles Avr or avr for each combination of four parameters: favr, r, propR and cycle, with mig “ 0.05. On
each graph the black line corresponds to the calculated value of the growth rate threshold r0 below which the
population dies if it does not expand to the R compartment. The surface of each plotted result is proportional
to the number of simulations, among the 100 replicates, for which an equilibrium was reached at the end of the
1,100 generations simulated.
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Figure C.5: Evolution of the frequency of fixation of the avr allele depending on propR for r varying between
1.1 and 2.0, with favr “ 0.0005. Simulations were performed without and with host alternation, for haploid
and diploid individuals, with 100 replicates for each combination of parameters. The plotted results correspond
to the local regression on the frequency of fixation of the avr allele with the 95% confidence intervals associated
with each regression. The vertical dotted lines correspond to the bounds of simulated values of propR for this
regular experimental design.

distributions of the year of invasion and resistance breakdown remain unchanged with host alternation, while
these distributions flatten out considerably without host alternation (Figure C.11). Note that in both migration
regimes, with host alternation we observe a bimodal distribution of invasion year for propR “ 0.9, with many
invasion events in the first year of simulations. Early invasion events result from the initial redistribution of
pathogen individuals following sexual reproduction on the alternate host: it is all the more likely that a virulent
individual arrives on the R compartment the more predominant it is in the landscape.

In a last step, the evolution of the frequency of the avr allele in the population was studied along with
the evolution of the population sizes through generations, from the invasion (Figure C.7, see Figure C.13 for
haploids). For both life cycles, we observe an increase in the speed of fixation of the avr allele with the increase
in propR. The median speed of fixation is higher with host alternation for haploids, and highly dependant of
propR without host alternation for diploids (Figure C.10). We also observe differences in stochasticity levels
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Figure C.6: Histograms of (a) the year of invasion and (b) the year of resistance breakdown depending on the life
cycle of the diploid pathogen, for three values of propR. Simulations were performed with favr “ 0.02,mig “

0.05, and r “ 1.5. The plotted results were obtained from the restricted simulation design, and correspond to
all simulations among the 1,000 replicates per combinations for which we observed a fixation of the avr allele
in the population.

depending on the ploidy and the life cycle. For haploids, the dynamics of virulence fixation is almost determin-
istic. For diploids, the dynamics are more variable, with a highly stochastic behaviour for the life cycle with host
alternation. Moreover, the results of GLM, the dominance analysis and the comparison of both figures show
that independently of propR and of the life cycle, the increase in the proportion of avr allele is faster for haploid
than for diploid individuals.

Focusing on diploid simulations, Figure C.7.b highlights the existence of an evolutionary rescue effect, for
the life cycle with host alternation and a high value of propR. The median population size decreases through
time and almost reached 0 before the 20th generation following the invasion, when an increase in the proportion
of avr alleles lead to an increase in the population size in the R compartment, followed by an increase in the
population size of the S compartment, preventing the extinction of the population.

Interestingly, the speed of invasion is mainly driven by the ploidy, while the speed of fixation of the avr
allele from the invasion is mainly driven by the landscape composition propR (Figure C.10).
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Figure C.7: For diploid pathogens, evolution of the population size in the R and S compartments (on the left
scale) and of the frequency or avr alleles in the S compartment (on the right scale) through generations. Sim-
ulations were performed without and with host alternation, for two values of propR: (a) 0.1 and (b) 0.9, with
favr “ 0.02, mig “ 0.05, and r “ 1.5. For each simulation, generation 0 corresponds to the generation
at which the invasion occurred. For each combination of parameters, simulations were performed on 1,000
replicates. The plotted results correspond to the median results (frequency of avr alleles or population size) for
all simulations among the 1,000 replicates for which we observed a fixation of the avr allele in the population.
Coloured intervals correspond to the 95% confidence intervals.

C.4 Discussion

C.4.1 Deep impact of the ploidy on resistance durability

Lof et al. (2017) demonstrated that the pre-existence of virulent alleles in the pathogen population could greatly
diminish resistance durability. In the present study, we varied the initial frequency of avr alleles in the popula-
tion but focused only on cases where this allele was already present at the beginning of the simulation, which
corresponds to standing genetic variation (Barrett et al., 2008; Alexander et al., 2014). Our results illustrated
a strong positive relationship between the initial frequency of virulent alleles and the probability of invasion
and resistance breakdown. For haploid individuals, we found no stochasticity in the time of occurrence of the
invasion, which occurred in the first year of the simulation for all replicates. Thus, for simulations with hap-
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loid pathogens, almost as soon as one virulent individual invaded the resistant compartment, it was selected
and the resistance breakdown occurred. This result explains why a lot of models on haploid individuals focus
on the probability of apparition of the first virulent individual, in particular by mutation (Fabre et al., 2015;
Papaïx et al., 2015). Our results for simulations with haploid pathogens also highlighted low stochasticity in
the increase in the proportion of virulent alleles in the population after the invasion. The results obtained with
haploids were consistent with previous studies on resistance durability (Pacilly et al., 2018), which permitted
us to consider this model as the reference model, in order to study the influence of the diploid state on the sys-
tem dynamics. Diploid individuals, however, display strongly different evolutionary trajectories. In particular,
we observed higher stochasticities in the evolution of the virulent allele frequency, both before and after the
resistance breakdown. This is mainly caused by the recessivity of the avr allele, according to the gene-for-gene
model. Before the invasion, the avr allele is rare and mostly at the heterozygous state, hence leading to phe-
notypically avirulent individuals. Therefore, the avr allele is poorly selected, and variations in its frequency
are mostly driven by genetic drift, which induces high stochasticity among replicates. This effect should be
strengthened in species with small effective population sizes, such as in cyst nematodes (Gracianne et al., 2016;
Montarry et al., 2019).

As a consequence, we observed lower frequencies of avr fixation and higher extinction rates for diploid in-
dividuals, independently of the life cycle and the host deployment strategy. Moreover, simulations with diploid
pathogens resulted in lower speeds of fixation of the virulent allele, that is, higher resistance durability. Because
of the heterozygousAvr/avr state, avr alleles are not necessarily selected and their presence in the population
does not inevitably lead to an immediate resistance breakdown, as observed for haploid individuals. Thus, be-
sides its impact on the stochasticity of the results, the vulnerability of the virulent allele at the heterozygous
state is also responsible for an increase in resistance durability. The impact of the landscape composition on
resistance durability also differs with the ploidy. Consistently with the work of Van den Bosch and Gilligan
(2003) and Pietravalle et al. (2006), for haploid individuals the increase in propR leads to a strong increase in
the speed of fixation of the avr allele, thus decreasing the resistance durability. In all cases except for haploids
with host alternation, this result was accompanied in the present study by a maximum frequency of avr fixation
for intermediate values of propR. This non-linear relationship is similar to the one highlighted for haploids by
Pacilly et al. (2018), and is caused by two distinct mechanisms. At low proportions of resistant hosts in the
landscape, the selective pressure on the avr allele is sufficiently low to limit the increase in the virulence in the
pathogen population. At high values of propR, the opposition between selection and drift is magnified: on
one hand the selective pressure is high and imposes a rapid pace of adaptation; on the other hand the small size
of the S compartment increases genetic drift and the risk of extinction of the avr allele, provided that the R
compartment is not invaded. Hence, in most cases the virulent allele is lost if it does not spread quickly enough
in the population: either r ą r0 which lead to a fixation of the avirulentAvr allele, either r ă r0 and the pop-
ulation goes extinct. Therefore, it would be possible to reduce the probability of invasion for diploid pathogens
with either very low or very high proportions of resistant hosts in the landscape. However the increase in the
proportion of resistant hosts is at the risk of weaker resistance durability: if the resistance breakdown occurs, it
occurs more rapidly. For haploid pathogens with host alternation, we observed an almost constant and slightly
increasing frequency of fixation of avr with the increase in propR. In this case and contrary to diploids with
host alternation, the increase in the proportion of avr alleles on the resistant host is not counteracted by the
allele reshuffling during the sexual reproduction event on the alternate host. For diploids, this allelic reshuffling
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causes a rise in the number of phenotypically avirulentAvr/avr heterozygous individuals, which will die if the
redistribution following the sexual reproduction lead them on the resistant host. This can result in a drastic
drop in the avr allele proportion while for haploids, the proportion of resistant hosts in the landscape does
not increase the mortality rate of individuals carrying the virulent allele, because these haploid individuals are
necessarily surviving on the resistant host.

C.4.2 Lifecycles imposedifferentselectionregimesandleadtocon-
trasted evolutionary trajectories

The two different life cycles considered in this study - with or without host alternation - can be assimilated to
hard and soft selection respectively (Wallace, 1975; Christiansen, 1975). Soft selection is expected to protect
polymorphims, and hence promote local adaptation, while hard selection resembles an all or nothing game,
that is to adapt to the encountered environment or to perish. Here host alternation can lead to faster evolution
of allelic frequencies, with higher speeds of virulence fixation, especially for high values of propR. Without host
alternation on the contrary, the evolution of virulence alleles are buffered, which result in more constrained dy-
namics. The increase in gene flow resulting from host alternation limits natural selection and local adaptation
(Lenormand, 2002), especially because of the dispersal of non-adapted individuals on resistant hosts. The life
cycle with host alternation is thus characterized by higher probabilities of population extinctions, and strong
dependency of the growth rate threshold r0 and the landscape composition propR. For diploids with host al-
ternation, contrary to the local adaptation on each compartment without host alternation, the forced allelic
reshuffling on the alternate host is responsible for the increase in the number of Avr/avr heterozygous indi-
viduals. Because the avr allele is recessive, a large proportion of these newly-produced individuals die from the
redistribution on the resistant compartment following the sexual reproduction. Noticeably, the reduction in
virulence fixation at high proportions of resistant host discussed above hence results from two mechanisms in
diploids: impediment of local adaptation without host alternation or increase in selective pressure with host
alternation.

For diploid individuals, we also observed contrasting patterns of variation in the evolution of the avr allele
frequency before and after the invasion, depending on the life cycle. The time of invasion is more stochastic
without host alternation, while the speed of increase in the avr allele frequency from the invasion is far more
stochastic with host alternation. The first step relies essentially on the probability of encounter between a vir-
ulent individual and a resistant host. Without host alternation the encounter is restrained to the probability
that a virulent individual migrates from the susceptible to the resistant host during the vegetative season. The
host alternation reinforces gene-flow, with the annual migration event that redistributes pathogen individuals
among all host plants, thereby favoring the encounter. Interestingly, in the case of host alternation, early infec-
tions of resistant host (invasion) does not readily translate into population establishment on that host (disease
outbreak leading to resistance breakdown). At the end of the vegetative season and initial invasion, the sexual
reproduction on alternate host reshuffles allele frequencies, and thus breaks virulent (homozygous) individu-
als into mostly avirulent (heterozygous) individuals. These up and down selection phases amplify the effect of
genetic drift and lead to nearly chaotic evolutionary trajectories, resulting in a resistance durability all the more
difficult to predict. Without host alternation, virulent individuals mate with each others and the homozygous
state is sheltered, which results in a strict time lag between initial invasion and population outbreak. Overall
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our model is in accordance with the framework proposed by McDonald and Linde (2002) which highlights
the importance of gene flow as an impediment to resistance durability. Our analysis completes this framework,
taking into account the variation in life cycles.

The life cycle also plays a role in the frequency of observation of evolutionary rescue effects. Carolan et al.
(2017) highlighted the impact of the growth rate of the pathogen on resistance durability, by presenting the lim-
itation of the growth rate as a mean to increase resistance durability. In accordance with this study, we displayed
a growth rate threshold r0 below which the pathogen population goes extinct if it does not invade the resistant
compartment. Hence, for a growth rate below r0, the genetic adaptation of the pathogen population is the only
way for the population to survive, which is a classical example of evolutionary rescue. In the current study, r0,
and thus the observation range of evolutionary rescue, is highly dependent on the life cycle. Without host alter-
nation, the redistribution of individuals between compartments and the mortality rate is limited, which leads
to a quite low r0, independently of the proportion of resistant hosts in the landscape. With host alternation,
however, the redistribution event occurring each year from the alternate host to the S and R compartments
leads to a strong dependence of r0 on the landscape composition, with an increase in the observation range of
evolutionary rescue with the proportion of resistant hosts.

C.5 Conclusion

Short-term epidemiological control is predicted to be optimal for a landscape composed of a high proportion
of resistant hosts in a low degree of spatial aggregation (Holt and Chancellor, 1999; Skelsey et al., 2010; Papaïx
et al., 2014, 2018). However other authors also highlighted that optimal resistance durability could be obtained
by reducing the proportion of resistant hosts (Pink and Puddephat, 1999; Pietravalle et al., 2006; Fabre et al.,
2012; Papaïx et al., 2018), thus minimising the selection pressure on the pathogen population. In the current
study, the minimisation of the probability of fixation of the virulent allele for a diploid pathogen population
was obtained either at very low or very high proportions of resistant hosts in the landscape. In cases where
the population does not go extinct and the virulent allele increases in proportion, however, the proportion
of resistant hosts in the landscape strongly impacts the speed of increase, and thus the resistance durability.
Consistently with Van den Bosch and Gilligan (2003), we displayed that for a diploid pathogen population
with standing genetic variation, the increase in the proportion of resistant hosts decreases resistance durability.
In particular, with host alternation both the invasion and the fixation of the virulent allele in the population
can occur very quickly. However, in such a case, the evolutionary trajectory of the virulent allele is all the more
stochastic and durability is thus difficult to predict. Without host alternation (i.e. for the majority of pathogen
species) early detection and population control measures would increase resistance durability. However such
prophylactic measures are made all the more difficult by the strong unpredictability of the invasion date. For the
few species with host alternation, a massive intervention could durably control a population of pathogens, such
as the eradication of the alternate host species Berberis vulgaris for wheat stem rust control (Peterson, 2018).
Overall, the high stochasticity of evolutionary trajectory impedes accurate forecasts of resistance durability for
diploid organisms.
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C.6 Perspectives

In the current study, we considered a single qualitative resistance gene. The combination of several resistance
genes is often studied and deployed to increase resistance durability (Djian-Caporalino et al., 2014; Mundt,
2014; Djidjou-Demasse et al., 2017; Rimbaud et al., 2018). These combinations of resistances can occur at the
plant scale with multiple resistance genes (pyramiding) inside one host genotype, or at the landscape scale with
multiple resistance deployments in time or space (Mundt, 2002; Van den Bosch and Gilligan, 2003). Some re-
sistant cultivars progressively introduced in the landscape are composed of different combinations of qualitative
resistance genes, resulting in an evolving selective pressure through time (Goyeau and Lannou, 2011). Building
on our results, we can extrapolate on the impact of the ploidy and the life cycle on resistance durability for these
different strategies of deployment. Hence, rotating cultures with different resistances would amount to force
gene flow, favoring the encounter of pathogen individuals with new hosts without an actual migration. This
would be comparable to the hard selection regime observed with host alternation, and we expect similar results.
With the pyramiding of several resistance genes in same host, meanwhile, we would expect a higher short term
efficiency than with a single resistance, but with a higher risk of rapid resistance breakdown by multi-virulent
individuals due to the inducing of a strong selective pressure. This may especially be true for pathogens with
host alternation because of the increased probability of mating between pathogens with different virulent pro-
files when they meet on the alternate host.

Data accessibility

Python simulation code and results, as well as R script for result analyses are available on Zenodo repository:
(DOI:10.5281/zenodo.4892587).
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C.a Appendix

C.a.1 Sobol’ indices

Sensitivity analyses were performed with the calculation of Sobol’ indices (first-order, second-order and total-
order) with the R package “sensitivity” (Iooss et al., 2021). Sobol’ indices were calculated to study the im-
portance of each of the six parameters of interest on the output variable freq_ext only (Figure C.8). These
calculations were based on the results issued from the random simulation design.

For the four remaining outputs (freq_fix, gen_fix, the year of occurrence of the invasion, and the time
elapsed between the invasion and the fixation of the avr allele), only the simulations not leading to extinc-
tion were retained for the sensitivity analyses. Thus, the input combinations of parameters retained depended
strongly on the results of the output variable freq_ext, the independence hypothesis of the input parameters
were then not verified and Sobol’ indices could not be calculated for these four remaining output variables.
Further analyses would be necessary to disentangle the effect of each parameter of interest on these remaining
output variables.

Figure C.8: Sobol’ indices to evaluate the influence of six variables of interest on the frequency of extinctions
among simulations. Main effect correspond to first-order Sobol’ indices, and total effect correspond to total-
order Sobol’ indices.
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C.a.2 Supplementary figures

Figure C.9: Example of the simulated populations demographic (on the left) and virulent allele frequency (on
the right) dynamics through time on S and R compartments. The model was run for four replicates with diploid
individuals and host alternation, propR “ 0.9, r “ 1.5, favr “ 0.025, andmig “ 0.05. Each color represents
a distinct replicate.
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Figure C.10: Estimated general dominance of each predictor calculated from general linear models applied to
two output variables of the restricted simulation design: the year of invasion and the time elapsed between
the invasion and the fixation of the avr allele. For each predictor the general dominance was estimated from
bootstrap average values with the corresponding standard error for 100 bootstrap resamples.
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Figure C.11: Histograms of (a) the year of invasion and (b) the year of resistance breakdown depending on the
life cycle of the diploid pathogen, for three values of propR. Simulations were performed with favr “ 0.02,
mig “ 0.001, and r “ 1.5. The plotted results were obtained from the restricted simulation design, and
correspond to all simulations among the 1 000 replicates per combinations for which at least 80% of the R
compartment is occupied at the end of the simulation.
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Acronyms

a.s. almost surely

AOLS adaptive ordinary least-squares

CCDF complementary cumulative distribution
function

CDF cumulative distribution function

CV cross-validation

DOF degree of freedom

ED experimental design

EDP engineering demand parameter

EPSD evolutionary power spectral density

FGLS feasible generalized least-squares

FKML Freimer–Kollia–Mudholkar–Lin

GLaM generalized lambda model

GLD generalized lambda distribution

GLM generalized linear model

GMM generalized method of moments

GMPE ground motion predictive equation

GSA global sensitivity analysis

HS hybrid simulation

i.i.d. independent and identically distributed

IM intensity measure

KCDE kernel conditional density estimator

KDE kernel density estimator

KT-PSD Kanai-Tajimi power spectral density

LAR least-angle regression

LASSO least absolute shrinkage and selection
operator

LHS Latin hypercube sampling

LM linear model

LOO leave-one-out

MCMC Markov chain Monte Carlo

MLE maximum likelihood estimation

NS numerical substructure

OLS ordinary least-squares

PBEE performance-based earthquake
engineering

PCA principal component analysis

PCE polynomial chaos expansion

PDF probability density function

PGA peak ground acceleration

PS physical substructure

PSHA probabilistic seismic hazard analysis

QoI quantity of interest

SA spectral acceleration

SDE stochastic differential equation

SGMM stochastic ground motion model

SIR susceptible-infected-recovered

SPCE stochastic polynomial chaos expansion

std standard deviation

WLS weighted least-squares
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