
ETH Library

Hydra: Concurrent Coordination
for Fault-tolerant Networking

Conference Paper

Author(s):
Biri, Andreas ; Da Forno, Reto ; Kuonen, Tobias; Mager, Fabian; Zimmerling, Marco; Thiele, Lothar

Publication date:
2023

Permanent link:
https://doi.org/10.3929/ethz-b-000602741

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
https://doi.org/10.1145/3583120.3587047

Funding acknowledgement:
180545 - NCCR Automation (phase I) (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-1495-3780
https://orcid.org/0000-0002-1591-4978
https://doi.org/10.3929/ethz-b-000602741
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3583120.3587047
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Hydra: Concurrent Coordination for Fault-tolerant Networking
Andreas Biri

ETH Zurich

Zurich, Switzerland

abiri@ethz.ch

Reto Da Forno

ETH Zurich

Zurich, Switzerland

rdaforno@ethz.ch

Tobias Kuonen

ETH Zurich

Zurich, Switzerland

tkuonen@ethz.ch

Fabian Mager

TU Dresden

Dresden, Germany

fabian.mager@tu-dresden.de

Marco Zimmerling

University of Freiburg

Freiburg im Breisgau, Germany

zimmerling@cs.uni-freiburg.de

Lothar Thiele

ETH Zurich

Zurich, Switzerland

thiele@ethz.ch

ABSTRACT
Low-power wireless networks have the potential to enable applica-

tions that are of great importance to industry and society. However,

existing network protocols do not meet the dependability require-

ments of many scenarios as the failure of a single node or link

can completely disrupt communication and take significant time

and energy to recover. This paper presents Hydra, a low-power

wireless protocol that guarantees robust communication despite

arbitrary node and link failures. Unlike most existing deterministic

protocols, Hydra steers clear of centralized coordination to avoid

a single point of failure. Instead, all nodes are equivalent in terms

of protocol logic and configuration, performing coordination tasks

such as synchronization and scheduling concurrently. This concept

of concurrent coordination relies on a novel distributed consensus

algorithm that yields provably unique decisions with low delay and

energy overhead. In addition to a theoretical analysis, we evalu-

ate Hydra in a multi-hop network of 23 nodes. Our experiments

demonstrate that Hydra withstands random node failures without

increasing coordination overhead and that it re-establishes efficient

and reliable data exchange within seconds after a major disruption.

CCS CONCEPTS
• Computer systems organization→ Fault-tolerant network
topologies; Availability; Sensor networks; • Networks→ Network
protocol design.

KEYWORDS
Fault tolerance, consensus, network coordination, concurrent trans-

missions, WSN

ACM Reference Format:
Andreas Biri, Reto Da Forno, Tobias Kuonen, Fabian Mager, Marco Zimmer-

ling, and Lothar Thiele. 2023. Hydra: Concurrent Coordination for Fault-

tolerant Networking. In The 22nd International Conference on Information
Processing in Sensor Networks (IPSN ’23), May 09–12, 2023, San Antonio, TX,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3583120.

3587047

This work is licensed under a Creative Commons Attribution International

4.0 License.

IPSN ’23, May 09–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0118-4/23/05.

https://doi.org/10.1145/3583120.3587047

1 INTRODUCTION
The last few years have seen substantial innovations that have

enabled wireless sensor networks (WSNs) with unprecedented de-

pendability. For instance, novel protocols enable distributed battery-

powered devices to reach an agreement [3], deliver messages in

the desired order [17], and exchange data within hard real-time

deadlines to meet the requirements of cyber-physical and Industrial

Internet of Things applications [35]. To achieve these capabilities

reliably and with broad applicability, the concept of concurrent

transmissions [18, 54] has been instrumental in becoming highly

resilient to external interference and network topology changes.

Problem. While such wireless systems are promising for enabling

novel applications in pivotal scenarios, they cannot tolerate the

failure of critical devices or key communication links. However,

such failures are common as WSNs are frequently deployed in

hostile or inaccessible scenarios where extreme weather [4], high

ambient humidity [2, 47], the presence of living beings [8, 37],

disasters [12], and non-line-of-sight conditions [13, 24] render the

availability of devices and wireless links fragile and highly variable.

Current systems typically adopt a centralized design and suffer

from a single point of failure: If the network coordinator that man-

ages synchronization and scheduling fails or gets disconnected, the

entire rest of the network also breaks down as reliable communica-

tion is no longer possible. This vulnerability stands in stark contrast

to the required dependability of wireless communication in many

applications where even minor system outages may involve signif-

icant financial costs and lead to long-term repercussions [47, 52].

Typical scenarios include autonomous drone swarms [27], early-

warning systems in harsh conditions [6, 46], and networks oper-

ating under strong interference [9] or high dependability require-

ments [35]. Designating co-located devices as a failover for the

primary network coordinator cannot solve the fundamental prob-

lem, as this approach is known to provide limited fault tolerance if

failures are correlated, the common case in practice [48]. Modern

WSNs should have the liberty to operate independently without

requiring pre-assigned backups or expensive, redundant hardening.

Contribution. To address this problem, we introduce Hydra, the

first fully distributed protocol that avoids centralized coordination

to enable fault-tolerant low-power wireless networking. The fun-

damental paradigm underlying Hydra is that every node in the

network is equivalent in terms of protocol logic and configura-

tion, thus avoiding any entity that maintains a unique state or that

serves a special role. The protocol adapts to the application’s traffic

219

https://orcid.org/0000-0002-1495-3780
https://orcid.org/0000-0002-1591-4978
https://orcid.org/0009-0002-2464-0355
https://orcid.org/0000-0003-0468-0691
https://orcid.org/0000-0003-1450-2506
https://orcid.org/0000-0001-6139-868X
https://doi.org/10.1145/3583120.3587047
https://doi.org/10.1145/3583120.3587047
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3583120.3587047
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583120.3587047&domain=pdf&date_stamp=2023-05-09

IPSN ’23, May 09–12, 2023, San Antonio, TX, USA A. Biri, R. Da Forno, T. Kuonen, F. Mager, M. Zimmerling, and L. Thiele

demands while tolerating arbitrary message losses, temporary or

permanent node failures, and sudden topology changes. Hydra uses

distributed processing in tandem with communication primitives

based on concurrent transmissions (i) to continuously track the set

of nodes that is currently part of the network, (ii) to ensure that

all nodes that concurrently compute and distribute a new schedule

do so based on the same information, and (iii) to accurately time-

synchronize the network to achieve high reliability and efficiency.

Concurrent coordination empowers Hydra to take full advantage

of physical redundancy to yield outstanding fault tolerance and

dependability for WSNs. Real-world experiments validate that Hy-

dra’s energy overhead almost matches that of LWB [16], a compa-

rable centralized design. Hydra demonstrates robust, efficient data

exchange while swiftly adapting to changing traffic demands de-

spite arbitrary node failures and severe communication disruptions.

In summary, this paper makes the following major contributions:

• We present Hydra, a communication protocol for low-power

WSNs that excels in its fault tolerance through a novel dis-

tributed consensus and synchronization mechanism.

• We provide an algorithmic specification of Hydra and prove

its properties: (i) freedom of harmful packet collisions, thus

ensuring safe operation, (ii) adaptivity to changing traffic de-

mands and dynamic network topologies, and (iii) persistent
data exchange even under node and link failures.

• We implement Hydra on a microcontroller driving a Semtech

SX1262 RF transceiver and provide the code as open source

together with tools for reproducible fault injection [7].

• We evaluate Hydra on the FlockLab testbed [45]. Our experi-

ments not only confirm its safety, adaptivity, and liveness but

also demonstrate its fault tolerance at a negligible runtime

overhead even if almost half of the nodes in the network fail.

After defining the problem space in Section 2, we provide an

overview of Hydra in Section 3, a detailed protocol description

in Section 4, and a formal analysis in Section 5. We implement

Hydra to demonstrate its efficacy in realistic testbed experiments

in Section 6, where we show that Hydra achieves fault tolerance

despite a high degree of induced link errors and prolonged, adver-

sarial node failures. Lastly, Section 7 discusses design trade-offs

and limitations of Hydra.

2 PROBLEM AND CHALLENGES
We first introduce our failure model and derive the objectives and

corresponding protocol requirements to achieve fault-tolerant net-

working before analyzing the challenges in Hydra’s design space.

2.1 Objectives and Protocol Requirements
Failure model. To ensure general applicability, we assume that

communication can fail in any phase of the protocol. This includes

the possibility that a node can neither receive from nor send to any

other node over prolonged periods. Packet loss may occur at any

time and we do not make any assumption on the loss distribution

or correlation between losses. We consider non-Byzantine failures,

i.e., nodes adhere to their specifications and a packet either arrives

correctly or is not received at all. The latter follows from corrupted

packets being filtered using checksums. We further assume that a

node may temporarily or permanently crash at any time.

Objectives. Motivated by cyber-physical and Industrial Internet

of Things applications, we aim to design a protocol that provides

reliable low-powerwireless networking under the above-mentioned

failure model. In particular, unlike state-of-the-art solutions, the

protocol aims to avoid any single point of failure by design.

While tolerating faults, the protocol must also achieve the fol-

lowing objectives: (i) Because of the constrained nature of WSNs,

efficient use of limited resources such as energy and bandwidth is

vital. (ii) These resources should be flexibly allocated so that the

network can react to changing environments and traffic demands.

(iii) The protocol must be able to deliver packets to any node in the

network despite dynamically changing, multi-hop network topolo-

gies. Data exchange needs to be highly reliable and predictable, and

therefore packet collisions must be avoided.

Protocol requirements. Based on these objectives, we identify

three requirements for a fault-tolerant low-power wireless protocol

that must be satisfied under the failure model described above:

• Safety:Guaranteeing correct operation so that any two nodes
never use the same time slot to exchange data, thereby avoid-

ing packet collisions that impair reliability.

• Adaptivity: Enabling each non-faulty node to react to

changes in traffic demands and environmental conditions,

including the addition of nodes and the release of obsolete

resources.

• Liveness: Ensuring that consistent data exchange is main-

tained between all non-faulty nodes that are physically able

to communicate with each other (i.e., remaining network

links suffice to transfer information).

2.2 Challenges and Trade-offs
All three requirements must be simultaneously satisfied, yet they

are mutually conflicting. There are four fundamental challenges in

meeting the objectives and protocol requirements outlined above.

First, one central network coordinator is a single point of fail-

ure. Unavailability of this node leads to unstable control loops

endangering safety [35], inefficient resource usage due to a loss

of adaptivity [48], or disrupted data flows violating liveness [16].

Using backup nodes that take over when the primary network coor-

dinator fails is difficult as incompatible schedules during handover

violate safety and liveness. Moreover, the fault tolerance of this ap-

proach is limited as correlated failures likely affect both the primary

network coordinator and its backups [48], further complicating the

handover procedure and endangering safety.

Second, instead of using a single leader, it is possible to increase

fault tolerance by letting multiple nodes perform network coor-

dination concurrently. However, the complexity of this approach

increases as each of the participating nodes must base its decisions

on the same inputs at the same time, thereby requiring consen-

sus as soon as more than a single coordinator is involved. When

information is missing, liveness and adaptivity are at risk.

Third, consensus on these protocol inputs is critical for safety

but is particularly difficult to find when nodes become unreachable

due to temporary or permanent faults. In this case, the set of nodes

that have to agree must be flexible to maintain adaptivity.

Fourth, we either face reduced liveness if only nodes that ob-

tained the latest inputs can communicate, or we violate safety if

220

Hydra: Concurrent Coordination for Fault-tolerant Networking IPSN ’23, May 09–12, 2023, San Antonio, TX, USA
A

pp
lic

at
io

n
N

et
w

or
k

Li
nk

One-to-all (§3.1)All-to-all (§3.1)

Time Data generation Data reception

H
yd

ra

Bootstrap (§4.1) Membership (§4.2) Scheduling (§4.3)

sync,
time

demand,
data

allocated slots data

data,
sync,
schedule

members,
time

members,
requests

Figure 1: Hydra works on the network layer and interfaces with

link-layer primitives to make fault tolerance available to the appli-

cation. The three individual components of Hydra are explained in

further detail in the respective subsections denoted in grey.

nodes with outdated decisions cause packet collisions. As an alter-

native to coordinated communication, both adaptivity and liveness

are preserved with un-synchronized data exchange schemes, but

packet collisions may violate safety.

In the design of Hydra, we have carefully explored this trade-off

space, further discussed in Section 7.1. As we will show, Hydra

involves all nodes in concurrent coordination of the network to

maximize robustness and leverages the contention-free data floods

to maintain redundant synchronization without requiring a fixed

time reference. Furthermore, we choose to unconditionally provide

safety for reliable, predictable performance and will hence be forced

to occasionally delay adaptivity or restrict liveness.

3 PROTOCOL DESIGN
We introduce Hydra, a fault-tolerant low-power wireless network

protocol. In Hydra, each node in the network is equivalent in terms

of protocol logic and runtime configuration. As a result, network

coordination tasks such as time synchronization and scheduling

are distributed across all nodes and run concurrently. A formal

analysis in Section 5 shows that Hydra provably satisfies safety,

adaptivity, and liveness under arbitrary node and link failures. We

first describe the protocol interfaces and provide an overview of

Hydra and the mechanisms to achieve concurrent coordination.

3.1 Overview
Existing designs, presented in Section 8, have a single point of

failure that limits their fault tolerance. While the crash of a cen-

tralized coordinator for scheduling and synchronization directly

impairs the networking capabilities [16, 19], even partially decen-

tralized solutions [15, 25, 26] rely on topology information like

the routing tree of RPL-based protocols [49] for coordination that

roots in a single device. However, modern communication prim-

itives such as concurrent transmissions [54] permit reliable and

topology-agnostic communication on the link layer if nodes are suf-

ficiently synchronized. Based on this insight, Hydra adds a network

layer that sits between the application and the link layer (see Fig-

ure 1) and guarantees fundamental properties through concurrent

coordination. As detailed in Section 4, it includes novel concepts

for bootstrapping the network, finding distributed consensus on

network membership, and scheduling persistent communication.

Application layer. Hydra provides accurate network-wide time

synchronization as well as a bi-directional communication service.

The application submits its traffic demands to Hydra, which then

takes care of facilitating corresponding communication resources.

Link layer. Hydra can be based on many communication primi-

tives, as we will show in Section 5 that its safety is formally proven

without relying on the primitives’ reliability. However, concurrent

transmissions have become the basis for countless robust and effi-

cient multi-hop wireless protocols [18, 21, 54]. Network flooding

permits predictable communication at high throughput and low

latency, with its broadcast nature making it ideally suited to exploit

physical redundancy in a system. Due to topology-agnostic message

passing based on concurrent forwarding across hops, these primi-

tives seamlessly handle network changes. In Hydra, we employ a

combination of two classes of such communication primitives.

All-to-all primitives such as Chaos [29] and Mixer [21] exchange

per-node information for network coordination. Nodes indepen-

dently send and receive in consecutive contention slots and con-

tinually adapt packets so that information efficiently propagates

through the network. However, they require tight synchronization

as a prerequisite to receive packets based on the capture effect [31].

One-to-all floods like Glossy [18] reliably disseminate data pack-

ets. The initiator of the flood requires an exclusive time slot through

scheduling for contention-free communication and serves as a

unique time reference for (re-)synchronization.

By combining the ability of these all-to-all primitives to exchange

scheduling information based solely on a shared time basis with

the capability of fast network flooding to tightly synchronize a

multi-hop network, Hydra creates a symbiosis on the link layer

that empowers nodes to fully decentralize network coordination.

3.2 Hydra in a Nutshell
Hydra includes several dedicated mechanisms to fulfill its three

protocol requirements. Next, we introduce the protocol structure

and outline the algorithm presented in detail in Section 4.

Structure. Communication in Hydra occurs in rounds. As shown

in Figure 2, each round consists of three phases: To ensure safety,

a contention-free data dissemination (DD) phase permits nodes to

reliably exchange data. To determine an adaptive schedule that

allocates such exclusive time slots, nodes exchange their demand

during the schedule negotiation (SN) phase. Lastly, the newly com-

puted schedule is shared in the schedule distribution (SD) phase
so nodes can independently communicate without permanently

requiring each other’s input and preserve liveness.

Hydra executes such rounds of period 𝑇 for a network N of 𝑁

nodes 𝑖 with N = {𝑖 ∈ N | 1 ≤ 𝑖 ≤ 𝑁 }. An epoch consists of 𝐹

rounds and defines the rate at which the schedule may change.

Data dissemination. During the DD phase, each node that knows

a schedule initiates a one-to-all flood if it is the owner of the current

slot and otherwise assists in propagating a packet by concurrently

re-transmitting it after reception. Application data is exclusively

221

IPSN ’23, May 09–12, 2023, San Antonio, TX, USA A. Biri, R. Da Forno, T. Kuonen, F. Mager, M. Zimmerling, and L. Thiele

distributionData dissemination Schedule negotiation Schedule
t

All-to-all

One-to-all

0 1Epoch offset

t
Epoch offset

Epoch length

02 1 2 0 1

DD DD DD DD DD SN SD

Computation

Figure 2: Each round in Hydra consists of three phases. During data dissemination (DD), nodes exchange application data according to a local

schedule and synchronize with each other. During schedule negotiation (SN), requests are aggregated to compute the next schedule, which will

be flooded during schedule distribution (SD) to ensure reliable progress. Throughout an epoch consisting of multiple rounds (e.g. three in this

illustration), information regarding network membership and demand is accumulated to reach consensus and enable distributed scheduling.

disseminated in this phase, with each initiator serving as a time

reference to re-synchronize without a centralized entity.

Schedule negotiation. Nodes may leave at any time due to volatile

links or node failures and may (re-)join. Hydra permits a flexible set

of nodes to form a network and determines a schedule that reflects

the dynamically changing bandwidth demands of nodes.

To ensure that concurrent coordination finds consensus on the

set of participating nodes and their bandwidth demands, network

membership is determined dynamically during the SN phase. To

this end, nodes maintain a local notion of whom they consider part

of the current network as membership flags and exchange these

flags in the SN phase. By awaiting and merging information from all

expected nodes, a unique decision among all nodes of the current

network can be guaranteed, as formally proven in Section 5.

To compute the next schedule, each node determines its request

(e.g. the number of slots it desires) according to its current demand

and known schedule. During the SN phase, nodes aggregate sched-

ule requests andmemberships flags from other nodes using all-to-all

messages, as explained in detail in Section 4.2, and update the min-

imum and maximum schedule versions they have encountered. At

the end, they have the ability to determine the next schedule if

(i) they have obtained the complete set of information, meaning

that they have received requests from all nodes that are part of the

current network, i.e., whose membership flags are set after merging,

and (ii) all these nodes have the same schedule version. The next

schedule can then be computed using a deterministic algorithm

based on the current schedule and this complete set of information.

Schedule distribution. During the SD phase, nodes that have com-

puted the next schedule use a single, concurrent one-to-all flood

at the end of an epoch to distribute it to others that have been un-

able to do so themselves or newly joined. In case some nodes have

missed a previous update and still use an older schedule, the most

recent schedule will be re-transmitted by updated nodes. A node

knowing the next schedule, having either computed it or received

it from others, will start using it after the end of the epoch.

3.3 Concepts to Ensure Fault Tolerance
To ensure that Hydra does not suffer from a single point of failure

and simultaneously provides safety, adaptivity, and liveness, we

develop three specialized components represented in Figure 1.

Ensuring safety: Distributed synchronization. To make sure that

data exchange does not interfere, nodes must be reliably synchro-

nized. For this purpose, the initiators of slots in the DD phase provide
a unique time reference. Initial synchronization is achieved through

a bootstrapping algorithm, introduced in Section 4.1, on a separate

channel to prevent interference with an existing network.

Safety of the DD phase further requires that all used schedules

are compatible, i.e., they do not assign slots to two different nodes.

This is achieved by guaranteeing that (i) at most two successive

schedules are present, (ii) successive schedules are compatible, and

(iii) only a single, connected network operates at any point in time

to avoid inter-network interference, as we will show in Section 5.

Ensuring adaptivity: Flexible network membership. If the schedule
computation depends on input from all nodes, node failures block

progress [3]. To permit nodes to join and leave the network anytime

while safely adapting scheduling, Hydra requires consensus on a

flexible set of nodes that form the members of the current network.

By exchanging the local notions of reachable nodes in the SN phase,
elaborated in Section 4.2, we provably guarantee that a schedule is

only computed if the input from all nodes in the current network

is obtained and that the result is unique.

In the case of link failures resulting in a missed schedule, future

schedule computations fail due to a schedule version mismatch and

progress would be permanently prohibited. To preserve adaptivity,

nodes knowing the most recent schedule must detect this case and

re-transmit it in the SD phase, giving other members the chance to

catch up to the rest of the network so progress may resume.

Ensuring liveness: Local schedules. Synchronously changing

schedules incurs the risk that nodes must halt communication when

coordination is disturbed and consensus is unclear. To preserve live-

ness during such transitions between schedules, the conditions

of Hydra’s scheduling algorithm introduced in Section 4.3 ensure

that two successive schedules cannot interfere. Therefore, nodes

can asynchronously update without restricting anyone’s ability to

keep exchanging application data. To continuously maintain this

compatibility between used schedules, the schedule versions ensure

that a new schedule is only computed if all nodes have obtained

the previous version. Therefore, a known schedule guarantees safe

data exchange even if coordination is temporarily prohibited.

222

Hydra: Concurrent Coordination for Fault-tolerant Networking IPSN ’23, May 09–12, 2023, San Antonio, TX, USA

t4

t3

t2

t1

2 ≤ N/2

2 ≤ N/2 3 > N/2

3 > N/2

3 > N/2

RX MainTX BootRX Boot Completed bootstrappingTX Main

Figure 3: Bootstrapping nodes start independently and synchronize
if a majority of the 𝑁 = 4 nodes in this example exchange their

information on the boot channel. As seen for node 𝑖 = 4, a node can

also join an existing network when listening on the main channel.

4 HYDRA IN DETAIL
Next, we take a closer look at Algorithm 1 and first show how a Hy-

dra network is initially formed. Then, the concept of distributed con-

sensus based on flexible network membership is presented. Lastly,

we discuss how careful scheduling provides liveness and safety.

Notation. ⊥ denotes a variable containing no information. The

operator ◦ combines sets whose elements may have the value ⊥
as follows: ⊥ ◦ ⊥=⊥ and 𝑎 ◦ ⊥=⊥ ◦𝑎 = 𝑎 ◦ 𝑎 = 𝑎 for any value

𝑎 ≠⊥. Combining 𝑎 ≠ 𝑏 with 𝑎, 𝑏 ≠⊥ is undefined. The operator ∨
is the element-wise OR with 0∨ 0 = 0 and 1∨ 0 = 0∨ 1 = 1∨ 1 = 1.

4.1 Bootstrapping
After a reset or lost connectivity with a majority of nodes, a node

must discover other nodes to synchronize or assemble a new net-

work. Hydra’s bootstrapping algorithm, detailed in our companion

document [7], requires no pre-existing synchronization and termi-

nates with the node being synchronized to amajority of nodes. It fur-

ther sets the initial conditions for Algorithm 1 as introduced below,

i.e., the currentmembership flags𝑀 [𝑗], the latest schedule version 𝑣 ,
schedule 𝑆𝑣 and epoch offset 𝑓 , and values ∀𝑗 ∈ [1, 𝑁] : 𝐶𝑒 [𝑗] ← 0,

∀𝑗 ∈ [1, 𝑁] : 𝐼𝑒 [𝑗] ← 0, updated ← 0, and retransmit ← 0.

To not endanger the safety of a pre-existing network, bootstrap-

ping occurs on a separate boot channel. To synchronize, each node

randomly chooses whether it should listen on the main or the boot

channel for a non-deterministic duration, depicted in Figure 3. On

the main channel, it reboots if no existing network is discovered.

On the boot channel, it floods a sync packet to which other listen-

ing nodes align. Nodes then aggregate information and sum the

number of encounters. If a majority of nodes synchronizes, the

newly founded network simultaneously switches to Algorithm 1.

Note that bootstrapping is opportunistic and does not fulfill the re-

quirements in Section 2.1. However, as it can be arbitrarily restarted

without affecting the performance of Hydra’s normal operation, it

guarantees synchronization after termination and enables liveness.

4.2 Consensus on Network Membership
Hydra guarantees safety under any failure by design. To achieve

such robustness despite nodes joining, leaving, or even failing, reli-

ably deciding on the set of nodes whose requests 𝑟 𝑣
𝑗
are considered

for a new schedule is paramount. While quick convergence is desir-

able for adaptivity, the mechanism’s key property is that its result

is provably unique if consensus between a set of nodes is found.

Consensus. To make unique decisions for a flexible set of nodes,

we introduce the membership flags 𝑀 , which reflect a node’s local

notion of whom it considers part of the network. The flags remain

constant throughout an epoch, i.e., 𝑀 [𝑗] = 1 if the node expects

node 𝑗 to be reachable as part of the current network and𝑀 [𝑗] = 0

otherwise. Note that nodes may differ in their view of the current

network and may have unequal membership flags.

The key to reaching consensus can be found in how the mem-

bership flags are used during the SN phase, which is illustrated in

Figure 4. Instead of only gathering schedule requests 𝑅′ from the

nodes whose flags are set in 𝑀 , each node also merges the infor-

mation on network membership that it receives from others into

the temporary membership flags𝑀′. Information is only merged

(line 21 in Algorithm 1) if both transmitter and receiver of a packet

consider each other members of their network (line 16), as dis-

cussed below in more detail. This merging mechanism prevents the

computation of a new schedule until a node has obtained all the

required information (membership flags𝑀 and requests 𝑟 𝑣
𝑗
) from

all nodes it considers part of its network as well as their merged

notion of the network (line 24). We call such a set where the corre-

sponding request is known for each temporarymembership flag, i.e.,

∀𝑗 ∈ [1, 𝑁] : 𝑀′ [𝑖] = 1⇒ 𝑅′ [𝑗] ≠⊥ , a complete set of information.

Merging criteria. A node only accepts information from another

node if both consider one another part of the same network. Check-

ing whether nodes expect each other is done by verifying that a

node 𝑖 is part of the temporary membership flags of 𝑗 and vice versa

(line 16). This acceptance check is crucial to prove the uniqueness

of the complete set of information, presented in Section 5, and

especially relevant for asymmetric links, as discussed in Section 6.5.

Updates. To update the membership flags and maintain adaptiv-

ity, we introduce the connectivity counters 𝐶𝑟 and 𝐶𝑒 which persist

for a round and an epoch, respectively. Whenever a request 𝑟 𝑣
𝑗
from

node 𝑗 is received, 𝐶𝑟 [𝑗] is set (line 14). At the end of the SN phase,

𝐶𝑒 [𝑗] is incremented if a request from node 𝑗 has been received

(line 31). At the end of an epoch, node 𝑗 is added to the expected

set of nodes in 𝑀 if its request has been received (line 52), i.e., if

𝐶𝑒 [𝑗] ≥ 𝐶𝑚𝑖𝑛 with 𝐶𝑚𝑖𝑛 = 1. Otherwise, it is removed from the

local membership flags and not expected anymore for consensus.

4.3 Schedule Computation
To ensure liveness, each node stores its current schedule 𝑆𝑣 , where
𝑆𝑣 [𝑘] ∈ {⊥} ∪ [1, 𝑁] denotes the allocation of a slot 𝑘 ∈ [1, 𝐾]
in the DD phase to a node. However, always transmitting accord-

ing to a known schedule might endanger safety unless dedicated

mechanisms prevent the collision of packets from Hydra nodes.

Versioning. The schedule version 𝑣 uniquely identifies a schedule

and denotes a node’s current level of information. A request 𝑟 𝑣
𝑖

for the next schedule must be unique for every schedule version 𝑣 ,

i.e., it can only be adjusted when the schedule is updated. We use

schedule versioning to control the pace of adaptivity and ensure

that the entire network has been able to obtain the same scheduling

223

IPSN ’23, May 09–12, 2023, San Antonio, TX, USA A. Biri, R. Da Forno, T. Kuonen, F. Mager, M. Zimmerling, and L. Thiele

t3

2

1 Schedule requests
Membership flags

X
1 011

X
1 01

4 4X
011

4X X
1 011

4X X
1 011

4X X X
1 011

4X X
1 011 4X X X

1 011

4X X
1 011 4X X

1 0114 4X
011

X
1 01

4X X
1 011

4X X X
1 011

4X X
1 011

4X X X
1 011 4X X X

1 011

4X X X
1 011

0

0

0

0

5 5 5 5

5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

4 4X X X
1 011t

t
Schedule version

RXTX Packet Loss Obtained complete set of information

mi
n

ma
x

Node 2
Node 1

Node 3
Node 4

Figure 4: During the SN phase, membership flags and schedule requests are exchanged to obtain the complete set of information. In this

example, node 4 failed and is not considered part of the network by nodes 1 - 3, which can reach consensus without requiring its input. At

the end, nodes 1 and 2 have obtained the complete set of information, whereas node 3 is missing the request from node 1. While node 3 does

not initially expect node 1, it correctly determines a lack of information after merging node 2’s packet in the third slot. As node 3’s schedule

version 4 is outdated, nodes 1 and 2 cannot compute the next schedule and will re-transmit their schedule 5 in the following SD phase.

information before applying further changes to it based on new

requests. Nodes independently acquire requests until they have a

complete set of information (line 24), but can only compute a new

schedule if all requests are based on the same schedule version

(line 26). All nodes then apply a deterministic scheduling algorithm

with the current schedule 𝑆𝑣 and the complete set of information,

i.e., the requests 𝑅′ [𝑗] = 𝑟 𝑣
𝑗
from all nodes with𝑀′ [𝑗] = 1, as input

(line 27). If a node detects that an old schedule version is still in use

based on the minimum schedule version in the network, the most

recent schedule will be re-transmitted (line 29) until all nodes have

been able to catch up. Thereafter, adaptation may resume.

Compatibility. To ensure that successive schedules 𝑆𝑣 and 𝑆𝑣+1

are safe, i.e., they do not assign the same DD slot to different nodes,

the following conditions must be satisfied. Suppose that we are

given a schedule 𝑆𝑣 based on previous requests and that new sched-

ule requests 𝑅′ lead to a different number of assigned slots. To

update the schedule, slots of 𝑆𝑣 that are not required anymore to

reach the newly determined number of slots are released. If a node

receives more slots in the next schedule, free slots in 𝑆𝑣 are as-

signed to it. This means that a slot assigned in 𝑆𝑣 can only be used

by the same node in 𝑆𝑣+1 or be released, and a free slot in 𝑆𝑣 can

be assigned to any node in 𝑆𝑣+1 or remain free. Crucially, safety is

guaranteed even if both schedules are used in parallel. Furthermore,

this scheme can be used for any scheduling algorithm as transitions

to an arbitrary slot assignment are possible in two consecutive

steps [7].

Epochs. Nodes start using a new schedule at the beginning of

an epoch at epoch offset 𝑓 = 0. During an epoch of epoch length 𝐹 ,
Hydra gathers information on a node’s connectivity to update its

local notion of the network for the next epoch. If node 𝑗 ’s request 𝑟 𝑣
𝑗

was received as collected in 𝐶𝑒 [𝑗], it is included in the network by

setting the membership flag𝑀 [𝑗] (line 52). Increasing 𝐹 stabilizes

network membership through a longer observation period, but

delays the adaptation of the network membership and the schedule.

Expiration. Nodes that are not part of the network anymore must

be prevented from using outdated schedules, as they would break

the compatibility between schedules that is only guaranteed for

two successive ones. Therefore, such schedules must expire.

Similar to the connectivity counters, we introduce the interaction
counter 𝐼𝑒 . 𝐼𝑒 [𝑗] ← 1 is set if either information from a node 𝑗 in

the network was received (line 18), or if a schedule was obtained

(line 41). At the end of an epoch at 𝑓 = 𝐹 (line 44), a node only keeps

its schedule if it is mutually connected to a majority of nodes or if

it has received the schedule in this epoch (line 47). This mechanism

guarantees that a possibly outdated schedule expires (line 48) unless

it either has been received in the current epoch, i.e. it is up-to-

date, or if the node has ensured that it is still part of the network.

Notice that a schedule can be kept even if no node has obtained

the complete set of information. To verify that a node remains part

of the current network, information is aggregated throughout the

epoch. This duration can be tuned using 𝐹 to ensure liveness despite

a high failure rate. If this verification succeeds, the node’s schedule

cannot be outdated and can still be used without violating safety.

5 FORMAL ANALYSIS OF HYDRA
Consensus protocols are known to be notoriously complicated to

understand and prove [28, 39]. However, due to the variety of states

in distributed systems, it is essential that their properties are not

only experimentally shown but are based on theoretical guarantees

covering all conditions. Due to space constraints, we only sketch

the proofs in this paper and provide complete formal proofs of

safety, adaptivity, and liveness in our companion document [7]. In

particular, adaptivity is omitted as the possibility to submit schedule

requests (line 7) and to join and leave the current network (line 52)

are inherent to and can be directly concluded from Hydra’s design.

5.1 Safety
For Hydra’s distributed consensus, we rely on the fact that for

arbitrary initial membership flags𝑀𝑘 of a node 𝑘 , i.e., independent

of the set of nodes assumed to be reachable by 𝑘 , the schedule

requests 𝑅′
𝑘
used to compute the next schedule (line 27) are identical

for nodes with a complete set of information. In short, nodes with

a complete set of information compute the same schedule.

224

Hydra: Concurrent Coordination for Fault-tolerant Networking IPSN ’23, May 09–12, 2023, San Antonio, TX, USA

Algorithm 1: Behavior of node 𝑖 after bootstrapping
DD (data dissemination) phase

2 A node 𝑖 with 𝑣 > 0 participates with its current schedule 𝑆𝑣 ;

SN (schedule negotiation) phase
Initialization

5 𝑣min ← 𝑣 ; 𝑣max ← 𝑣 ;

forall 𝑗 ∈ [1, 𝑁] do

7 𝑀 ′ [𝑗] ← 𝑀 [𝑗] ; 𝑅′ [𝑗] ←
{
𝑟 𝑣
𝑖

if 𝑗 = 𝑖

⊥ otherwise

;

8 𝐶𝑟 [𝑗] ← 0 ;

Sending
10 send packet 𝑝 = (𝑖, 𝑣min, 𝑣max , 𝑀 ′, 𝑅′) ;

Receiving
if (packet 𝑞 = (𝑗𝑞, 𝑣min

𝑞 , 𝑣max
𝑞 , 𝑀𝑞, 𝑅𝑞) received) then

forall 𝑗 ∈ [1, 𝑁] : 𝑅𝑞 [𝑗] ≠⊥ do
14 𝐶𝑟 [𝑗] ← 1 ;

⊲ Check if requests and flags should be merged ⊳

16 if ((𝑀 ′ [𝑗𝑞] = 1) ∧ (𝑀𝑞 [𝑖] = 1)) then
forall 𝑗 ∈ [1, 𝑁] : 𝑅𝑞 [𝑗] ≠⊥ do

18 𝐼𝑒 [𝑗] ← 1 ;

19 𝑣min ← min{𝑣min, 𝑣min
𝑞 } ;

20 𝑣max ← max{𝑣max , 𝑣max
𝑞 } ;

21 𝑅′ ← 𝑅′ ◦ 𝑅𝑞 ;𝑀 ′ ← 𝑀 ′ ∨𝑀𝑞 ;

Final
⊲ Check if node is complete and part of majority ⊳

24 if ((∀ 𝑗 ∈ [1, 𝑁] : 𝑀 ′ [𝑗] = 1⇒ 𝑅′ [𝑗] ≠⊥) ∧
(| { 𝑗 ∈ [1, 𝑁] : 𝑀 ′ [𝑗] = 1} | > 𝑁 /2)) then

26 if ((𝑣min = 𝑣max) ∧ (𝑣 > 0)) then
27 determine new schedule 𝑆 ; updated ← 1 ;

else if (𝑣 = 𝑣max) then
29 retransmit ← 1 ;

forall 𝑗 ∈ [1, 𝑁] do
31 𝐶𝑒 [𝑗] ← 𝐶𝑒 [𝑗] +𝐶𝑟 [𝑗] ;

SD (schedule distribution) phase
⊲ Check if schedule can be distributed at end of epoch ⊳

34 if ((𝑓 = 𝐹 − 1) ∧ (updated = 1)) then
35 𝑣 ← 𝑣 + 1 ; 𝑆𝑣 ← 𝑆 ; send packet (𝑣, 𝑆𝑣) ;

else if (retransmit = 1) then
37 send packet (𝑣, 𝑆𝑣) ; retransmit ← 0 ;

else if (packet 𝑞 = (𝑣𝑞, 𝑆𝑞) received) then
39 𝑣 ← 𝑣𝑞 ; 𝑆𝑣 ← 𝑆𝑞 ;

forall 𝑗 ∈ [1, 𝑁] do
41 𝐼𝑒 [𝑗] ← 1 ;

End of round
43 𝑓 ← 𝑓 + 1 ;
44 if (𝑓 = 𝐹) then
45 updated ← 0 ; 𝑓 ← 0 ;

⊲ Check if schedule must expire as not part of majority ⊳

47 if (∑𝑗 ∈ [1,𝑁] 𝐼𝑒 [𝑗] ≤ 𝑁 /2) then
48 𝑣 ← 0 ;

forall 𝑗 ∈ [1, 𝑁] do
⊲ Check if information from a node was received ⊳

51 if ((𝐶𝑒 [𝑗] ≥ 𝐶𝑚𝑖𝑛) ∨ (𝑗 = 𝑖)) then
52 𝑀 [𝑗] ← 1 ;

else
54 𝑀 [𝑗] ← 0 ;

55 𝐶𝑒 [𝑗] ← 0 ; 𝐼𝑒 [𝑗] ← 0 ;

Theorem 1 (Consensus on current network). After the SN
phase and independently of the initial membership flags𝑀𝑘 of any
node 𝑘 ∈ [1, 𝑁], any two nodes 𝑖, 𝑗 ∈ [1, 𝑁] with a complete set of
information either satisfy 𝑅′

𝑖
= 𝑅′

𝑗
(identical requests) or 𝑅′

𝑖
[𝑘] ≠⊥

⇒ 𝑅′
𝑗
[𝑘] =⊥ for all 𝑘 ∈ [1, 𝑁] (requests from disjoint sets of nodes).

Sketch of Proof. To prove the statement, we use a graph in-

terpretation of the protocol where each node corresponds to a node

𝑖 ∈ 𝑉 in a directed graph 𝐺 = (𝑉 , 𝐸). The initial membership flags

𝑀𝑖 lead to the edges 𝐸 of 𝐺 : If𝑀𝑖 [𝑗] = 1, then (𝑖, 𝑗) ∈ 𝐸. Note that
(𝑖, 𝑖) ∈ 𝐸. We associate two sets with each node 𝑖 ∈ 𝑉 :
• 𝑚𝑖 ⊆ 𝑉 , where initially we have𝑚𝑖 := { 𝑗 : (𝑖, 𝑗) ∈ 𝐸}. This
set corresponds to𝑀′

𝑖
, i.e., we have 𝑗 ∈𝑚𝑖 ⇔ 𝑀′

𝑖
[𝑗] = 1.

• 𝑟𝑖 ⊆ 𝑉 , where initially we have 𝑟𝑖 := {𝑖}. This set corre-
sponds to 𝑅′

𝑖
, i.e., we have 𝑗 ∈ 𝑟𝑖 ⇔ 𝑅′

𝑖
[𝑗] ≠⊥.

We perform arbitrary updates on these sets according to the pro-

tocol. In particular, node 𝑖 may merge information with a node 𝑗

if 𝑗 ∈ 𝑚𝑖 ∧ 𝑖 ∈ 𝑚 𝑗 (line 16). If so, the sets of node 𝑖 are updated

to𝑚𝑖 ← 𝑚𝑖 ∪𝑚 𝑗 and 𝑟𝑖 ← 𝑟𝑖 ∪ 𝑟 𝑗 . A node has a complete set of

information if𝑚𝑖 = 𝑟𝑖 . Using this graph representation, we now

prove an equivalent statement independently of 𝐺 and the number

and order of merges: Any two complete nodes 𝑖, 𝑗 ∈ 𝑉 either satisfy
𝑟𝑖 = 𝑟 𝑗 or 𝑟𝑖 ∩𝑟 𝑗 = ∅. To show this result, we apply three invariants:

• If 𝑘 ∈ 𝑟𝑖 , then 𝑙 ∈ 𝑚𝑖 for all 𝑙 with (𝑘, 𝑙) ∈ 𝐸, i.e., if a node 𝑘
is in the set 𝑟𝑖 , then not only is this node in set𝑚𝑖 but also

all its immediate successor nodes. This also leads to 𝑟𝑖 ⊆ 𝑚𝑖 .

• If 𝑘 ∈𝑚𝑖 , then there exists a directed path in 𝐺 from 𝑖 to 𝑘 .

• If 𝑘, 𝑙 ∈ 𝑟𝑖 , then there exists a directed path in 𝐺 from 𝑘 to 𝑙 .

Based on the above statements, we can conclude that if a node

has the complete set of information (𝑚𝑖 = 𝑟𝑖), the nodes in𝑚𝑖 are

strongly connected (each node 𝑘 ∈ 𝑚𝑖 can reach any other node

𝑙 ∈ 𝑚𝑖), and for any node in𝑚𝑖 , all its immediate successors are

also in𝑚𝑖 . As a result,𝑚𝑖 of a complete node 𝑖 forms a strongly

connected component (SCC) of𝐺 . As all immediate successor nodes

are already in𝑚𝑖 and therefore no node can be added, it is amaximal
SCC. As such SCCs form a partition of all nodes [44], each node

𝑖 ∈ 𝑉 can be in exactly one SCC, which proves the property. □

As the complete sets of information must be either identical

or disjunct, and because only a single disjunct set can contain a

majority of nodes required for schedule computation (line 24), the

uniqueness of the newly computed schedule is guaranteed.

Based on the above result, the following two theorems show the

safety of Hydra, i.e., no two nodes send different packets at the

same time in the SD phase (Theorem 2) or DD phase (Theorem 3).

Theorem 2 (Safety of schedule distribution). In the SD
phase, no two nodes 𝑖, 𝑗 ∈ [1, 𝑁] transmit packets with different
contents (𝑣, 𝑆𝑣) (lines 35 and 37 of Algorithm 1).

Sketch of Proof. Only nodes that have received the identi-

cal complete set of information satisfy either updated = 1 or

retransmit = 1 (see proof of Theorem 1) and send packets in the SD
phase. If the condition in line 26 is satisfied, all nodes in the current

network have the same schedule version and the same set of sched-

ule requests 𝑅′. As the scheduling algorithm is deterministic, they

compute the same schedule 𝑆 with the new schedule version and

distribute it in line 35. An analogous argument holds for line 37. □

225

IPSN ’23, May 09–12, 2023, San Antonio, TX, USA A. Biri, R. Da Forno, T. Kuonen, F. Mager, M. Zimmerling, and L. Thiele

Theorem 3 (Safety of data dissemination). In the DD phase,
no two nodes 𝑖, 𝑗 ∈ [1, 𝑁] transmit different packets in the same DD
slot (line 2 of Algorithm 1).

Sketch of Proof. According to the scheduling conditions de-

scribed in Section 4.3, two successive schedule versions can be used

by any nodes 𝑖, 𝑗 ∈ [1, 𝑁] without violating safety. Note that nodes
with 𝑣 = 0 do not participate in the DD phase and are safe (line 2).

Therefore, we need to show that at the beginning of the DD phase,
nodes have either successive schedule versions or satisfy 𝑣 = 0.

Suppose that two schedule versions 𝑣∗ and 𝑣∗−1 are in use at the
start of a round. Let us first look at nodeswithin the current network,

i.e., the SCC of 𝐺 in the proof of Theorem 1. Due to multiple used

schedule versions, the next schedule cannot be computed in line 27

and hence cannot be distributed in line 35. Only after all nodes with

𝑣∗ − 1 have received version 𝑣∗ in line 39 (and 𝑣∗ − 1 is not used
anymore), a new schedule 𝑣∗ + 1 can be computed. At any time,

there are at most two schedules in use which are successive.

A node that is not part of the current network may still know

the outdated schedule version 𝑣∗ − 1 if it did not receive any of the

newer schedules distributed in the SD phases. The continued use

of 𝑣∗ − 1 is prevented by forcing 𝑣 ← 0 in line 48 as neither has a

schedule been received in any SD phase of the current epoch nor is

the node part of a majority network, i.e., an SCC of 𝐺 with more

than 𝑁 /2 nodes. The latter is derived in line 47 from variables 𝐼𝑒 [𝑗]
which are only set in line 18 if the node has a bidirectional path to a

node 𝑗 in𝐺 . This is however limited to a minority set of nodes. □

As a result, nodes can independently and asynchronously update

their schedules and remain assured that their transmissions will

not collide with data packets from nodes using another schedule.

5.2 Liveness
The following Theorem 4 shows that nodes continue participating

using the current schedule and can communicate data packets in

the DD phase of every round even under broad failure conditions.

Theorem 4 (Liveness of data dissemination). Every node par-
ticipates in the DD phase unless both of the following conditions are
satisfied: (i) It did not receive a schedule in any SD phase of the previ-
ous epoch and (ii) during the entire previous epoch, it only stored the
requests from a minority of nodes.

Sketch of Proof. A node does not participate in the DD phase if
𝑣 = 0, i.e., if line 48 was executed. This only happens if a minority of

nodes 𝑗 ∈ [1, 𝑁] satisfy 𝐼𝑒 [𝑗] = 1 (line 47). If the node has received

a schedule, then 𝐼𝑒 [𝑗] ← 1 for all nodes (line 41) and the condition

is not satisfied. If the node stores the request of a node 𝑗 , it sets

𝐼𝑒 [𝑗] ← 1 (line 18). Therefore, if the node did store the requests

from more than 𝑁 /2 different nodes at least once during the epoch,
the condition to set 𝑣 ← 0 is not satisfied either. □

Note that a schedule is typically computed and distributed by

many nodes due to the high level of redundancy. Therefore, a node

will only fail to receive a schedule in any round of an epoch under

a significant amount of very specific and simultaneous node or link

failures. And even in such a case, a node may still participate in the

data exchange if it has received and stored requests from a majority

of nodes at least once during the entire previous epoch.

6 EVALUATION
To validate Hydra’s fault tolerance to node and link failures and

demonstrate its ability to provide a reliable communication service,

we test the protocol for different failure types and network sizes.

We thereby investigate how the network (i) maintains safe data

exchange, (ii) adapts to changing conditions, and (iii) keeps com-

munication alive between non-faulty nodes. By comparing against

LWB [16], a state-of-the-art wireless protocol using centralized

scheduling, we highlight that concurrent coordination eradicates

any single point of failure without noticeably increasing proto-

col overhead. Throughout our experiments, we never encountered

any safety violation in thousands of Hydra rounds while schedul-

ing under various conditions and adverse failures, experimentally

verifying that our formal proof of safety also holds in practice.

6.1 Implementation
We implement Hydra on an STMicroelectronics STM32L433CC

microcontroller driving a Semtech SX1262 RF transceiver [42]. The

package is available as a target [5] on the FlockLab testbed [45],

operates in the 868MHz band, and provides a wide range of TX

power from −9 to +22 dBm, making it highly versatile for changing

environmental conditions. To minimize the impact of external influ-

ences, we use the GFSK modulation at 250 kbps. One-to-all floods

are implemented using Glossy [18] with multiple consecutive trans-

missions [32], while the all-to-all exchange is based on Chaos [29]

with randomized initial TX/RX decisions to commence without a

network coordinator which usually triggers the exchange.

Research artifacts. The source code is publicly available as open

source [7]. In addition, we provide tools to thoroughly and repro-

ducibly test Hydra in different failure scenarios using a highly-

flexible input method leveraging GPIO actuation. Analysis scripts

automatically validate the correct execution of the communication

primitives and protocol phases, including safety and synchroniza-

tion checks. Our companion document [7] further includes the

bootstrapping algorithm and the detailed formal proofs of Hydra.

6.2 Experimental Setup
Test scenario. To observe Hydra in practice including hardware

failures and varying link characteristics, we utilize the FlockLab

testbed [45] with 23 nodes evenly spread across the 65 × 30m floor

of an office building. We test networks of three sizes to investi-

gate Hydra’s scalability: a small network consisting of 5 nodes, a

medium network of 12 nodes, and a larger network containing all

23 usable indoor nodes of the testbed. A TX power of +7 dBm results

in an average of 1.24 hops for the small network, 1.57 hops for the

medium network, and 1.70 hops for the larger network. During nor-

mal operation, we use a main frequency channel at 869.8875MHz

with an average one-to-all packet reception rate (PRR) of 99.72%,

while bootstrapping occurs at 868.4375MHz.

Fault injection. To reproducibly inject failures, we use the GPIO

actuation feature of FlockLab [45] to precisely affect the protocol

execution of individual nodes. Actuating the reset pin allows us

to cause full hardware failure. Depending on the configuration, a

second GPIO pin changes link characteristics by either enforcing

that nodes drop packets with a given probability or completely

226

Hydra: Concurrent Coordination for Fault-tolerant Networking IPSN ’23, May 09–12, 2023, San Antonio, TX, USA

disconnecting them through a shift to an isolated frequency band.

This mechanism enables us to re-play a real scenario multiple times

to investigate it in more detail, promotes the re-production of our

results, and permits a fair comparison between competing protocols.

Protocol parameters. As a default configuration, we use a round
period of 𝑇 = 3 s and an epoch length 𝐹 = 3. Each node requests 3

slots per DD phase which are fairly allocated to one of 80 DD slots,
transmitting data packets of 20 B in each flood using three trans-

missions. 36 contention slots during the SN phase permit nodes to

exchange membership flags and requests. Nodes leave the network

after 2 epochs with 𝑣 = 0 and revert to bootstrapping. A bootstrap-

ping node listens for traffic of an existing network with a probability

of 20% and otherwise attempts to establish a new network.

Protocol comparison. Since our analysis of the state of the art in
Section 8 shows that no existing design satisfies all three require-

ments of safety, adaptivity, and liveness while tolerating node and

link failures, we compare the concept of concurrent coordination

to its closest relative based on a traditional centralized design.

We benchmark Hydra against LWB [16], a state-of-the-art pro-

tocol using concurrent transmissions, to represent a protocol with

a single point of failure due to its centralized scheduling. Similar to

Hydra’s DD phase, LWB consists of a sequence of data slots where

packets are flooded using Glossy [18]. A contention slot allows

a node to transmit its demand to a host node as the network co-

ordinator which centrally executes the scheduling algorithm and

distributes the resulting schedule using two additional slots. In

stark contrast to Hydra, nodes are only permitted to transmit if

they have received the schedule directly preceding the round. To

avoid that a single schedule miss prevents a node from participating,

the schedule is transmitted both at the end of the previous round

and at the beginning of the round for which it is valid. We use the

same parameters for all slots as for Hydra’s DD phase.

6.3 Hydra’s Fault Tolerance in Action
Node failure. We first investigate how Hydra copes with node

failures. During the entire experiment shown in Figure 5, we moni-

tor the network PRR of fault-free nodes to examine how well the

protocol adapts and whether it preserves liveness. The PRR is de-

fined as the percentage of the total number of data packets received

compared to the total number of data packets the nodes expect to

receive according to their schedule. If no schedule is known, such

as at the start, the PRR is defined to be 0%.

Initially, we bootstrap a network of 23 nodes and do not inject

failures for the first 90 s.We find that Hydra enables nodes to quickly

form a network and transmit packets according to their demands

within 13 s on average by merging requests into a single packet,

while LWB requires three times as long to send individual requests

to the centralized scheduler with a mean scheduling delay of 39 s.

Hydra nodes that first searched for pre-existing networks during

bootstrapping and did not participate from the start (such as nodes

2 and 3) quickly join the formed network after discovery. Hydra’s

PRR remains high once all nodes joined and validates its liveness,

while LWB suffers occasional drops from schedule misses.

At 90 s, we inject a first node failure at node 1, which causes a

drop in PRR for both protocols. Hydra quickly adapts by excluding

0 30 60 90 120 150 180 210 240 270

0

25

50

75

100

PR
R

[%
]

Hydra
LWB

0 30 60 90 120 150 180 210 240 270

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

H
yd

ra
 n

od
e

ID
s

bootstrapping
RX
RX + TX
failure

0 30 60 90 120 150 180 210 240 270
Time [s]

1
(Host) 2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

LW
B

no
de

 ID
s

Figure 5: Hydra (middle) quickly bootstraps a network and starts

exchanging scheduling information, with synchronized nodes lis-

tening according to the schedule (“RX”) until their own request is

granted. The network swiftly reaches distributed consensus, where-

after nodes efficiently transmit and receive data packets (“RX+TX”)

despite node failures. LWB (bottom) cannot maintain communica-

tion if the centralized scheduler at the host node 2 is unreachable.

node 1 after one epoch and determining a new schedule, thereby

regaining efficiency as all assigned schedule slots are used. LWB

on the other hand relies on a centralized timeout mechanism and

delays the exclusion of node 1 until the network coordinator could

confirm over multiple rounds that the node is permanently missing.

At 120 s, we inject a second node failure at node 2, which serves

as the host node for LWB where the centralized scheduler is situ-

ated. Lacking a schedule, all LWB nodes must immediately cease

transmissions to preserve safety as an old schedule might cause

interference. As LWB’s fixed failover leader only takes over after

2min [16], communication collapses and nodes are forced to idle

listen for a new leader. Hydra on the other hand has previously

re-established efficient communication at 100% PRR and now only

227

IPSN ’23, May 09–12, 2023, San Antonio, TX, USA A. Biri, R. Da Forno, T. Kuonen, F. Mager, M. Zimmerling, and L. Thiele

experiences another minor drop. Even three nodes failing almost

simultaneously at 150 s do not endanger Hydra’s liveness.

At 180 s, we reactivate nodes 3 - 5, which quickly join the exist-

ing Hydra network but must wait for the network coordinator to

reappear for LWB. As soon as node 2 is restarted at 190 s, LWB

recommences and gradually includes one node per round due to the

contention-based relaying of requests to the centralized scheduler.

We find that Hydra successfully adapts to node failures and is

able to quickly re-establish efficient communication independently

of which nodes are affected. Liveness is ensured even if distributed

consensus is temporarily delayed as nodes leave and join, and

a coordinated transition between schedules ensures that safety

is preserved. On the other hand, LWB experiences long delays

until nodes could communicate their requests to the centralized

scheduler. While LWB provides both adaptivity and safety, it cannot

maintain liveness as it suffers from a single point of failure at the

host node which orchestrates communication. This centralization

of network coordination results in a catastrophic collapse of the

entire network when the host node is not reachable.

Link failure. Next, we investigate Hydra’s behavior when the net-
work splits, a common scenario for devices moving in swarms [27].

As network separation results in partitions that might interfere and

endanger safety, we artificially form two sets of 11 and 12 nodes.

Initially, a network of 23 nodes establishes without injected failures

as shown in Figure 6. After 45 s, we prevent all communication

between the two sets and observe a brief drop in the PRR of the

majority set of 12 nodes as half of the expected packets are missed.

After these nodes obtain the new complete set of information,

visible in the top plot just before 60 s by the return to 100% of nodes

being complete, they quickly determine a new schedule of version 5

as seen in the middle plot around 60 s. The schedule of the minority

set of nodes already expires beforehand and their schedule version

returns to 0. Finally, the minority again enters bootstrapping.

At 90 s, we reactivate communication between the two sets of

nodes and observe that the minority set quickly rejoins the majority

set. Around 105 s, the network determines a new schedule of version

6 which already includes a combination of the set of nodes.

We draw two major conclusions. First, we find that even if an ar-

bitrary set of almost half the network is unreachable, the remaining

nodes still continue operation and are not impeded in disseminating

their data due to the failure of others. This demonstrates Hydra’s

high degree of fault tolerance. Second, the expiration of the sched-

ule for the minority set of nodes, seen by the drop of the schedule

version to 0 in the middle plot, is crucial for safety. If the minority

kept using it, it could immediately start interfering with a new

schedule determined by the majority of nodes when both sets of

nodes are re-combined at 90 s. Only by asserting that no one but

the majority of nodes is scheduled can the compatibility of used

schedules be ensured and safety unconditionally guaranteed.

6.4 Distributed Scheduling Overhead
We have observed in Section 6.3 that distributed scheduling can

greatly outperform centralized scheduling in case of node failures.

However, concurrent coordination achieves its fault tolerance by

relying on redundancy and therefore strives for every node in

the network to obtain the required scheduling information. To

0 15 30 45 60 75 90 105 120 135 150

0

25

50

75

100

Pe
rc

en
ta

ge
 [%

]

PRR
Complete

0 15 30 45 60 75 90 105 120 135 150

0
2
4
6
8

Sc
he

du
le

 v
er

sio
n Majority (12-23)

Minority (1-11)

0 45 90 150

Fault Network split

0 15 30 45 60 75 90 105 120 135 150
Time [s]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

N
od

e
ID

s

bootstrapping
RX
RX + TX

Figure 6: Splitting a network into a majority and a minority demon-

strates that Hydra correctly forces the schedule of nodes being part

of the minority to expire. To maintain safety, such nodes can only

resume communication after re-connecting to the majority, where-

after a new complete set of information is swiftly obtained.

investigate whether this increases runtime overhead, we execute

both Hydra and LWB for 900 rounds and compare the average RX

and TX duty cycles of their different phases for multiple network

sizes in Figure 7. As mentioned in Section 6.2, LWB includes a data

dissemination phase just like Hydra’s DD phase. In addition, LWB

uses a contention slot for nodes to relay requests to the centralized

scheduler. This functionality corresponds to the SN phase of Hydra’s
distributed scheduler. Lastly, LWB’s network coordinator transmits

the new schedule once at the end of a round and re-transmits it

at the beginning of the next round, while multiple Hydra nodes

initiate a single schedule flood in the SD phase.

As data dissemination is equivalent for both Hydra and LWB

with three packets flooded per node, the TX duty cycle does not

differ for all network sizes. We find that Hydra’s RX duty cycle for

data exchange is slightly increased as Hydra starts to listen early in

the first data slot of a round to compensate for potential clock drifts.

Astonishingly, the scheduling overhead of both protocols is also

228

Hydra: Concurrent Coordination for Fault-tolerant Networking IPSN ’23, May 09–12, 2023, San Antonio, TX, USA

5 12 23

0

2

4

6

8

10

12

14

Network size [#]

R
X

 d
u

ty
 c

y
cl

e
[%

]

5 12 23

0

2

4

6

8

10

12

14
Hydra

Data

Negotiation

Distribution

LWB

Data

Contention

Distribution

Network size [#]

T
X

 d
u

ty
 c

y
cl

e
[%

]

Figure 7:While data exchange is almost identical for both protocols

as they rely on the same communication primitive, the difference

in scheduling overhead is also negligible for larger networks.

almost identical, with the RX duty cycle rising by only 0.12% and

the TX duty cycle dropping by −0.02% for a network of 23 nodes.

With the scheduling costs being almost equivalent for larger

networks and smaller networks showing increases by less than

a quarter despite over-provisioning for quick adaptivity (see Fig-

ure 9), we conclude that the overhead of distributed scheduling is

negligible. While this result might initially be unexpected as the

same data needs to be at all nodes instead of only one, it quickly

becomes apparent that concurrent coordination also enables a re-

duction of the communication costs. First, as most nodes complete

the SN phase successfully and no schedule needs to be distributed if
requests remain constant, the SD overhead diminishes to only 0.02%

RX duty cycle. Second, the constant merging of received informa-

tion in the SN phase leads to relatively few transmissions required

for the exchange of scheduling information. Third, because the SN
phase consists of short contention slots, Hydra does not need to

idle listen for long Glossy slots provisioned for multiple hops, while

LWB’s RX duty cycle increases with a larger network size as floods

take longer to reach nodes further away.

6.5 Investigating Hydra in Detail
Epoch length. Next, we examine the epoch length 𝐹 as a tool to

increase network stability in conjunction with𝐶𝑚𝑖𝑛 , used in line 51.

By default,𝐶𝑚𝑖𝑛 = 1 so nodes are included in𝑀 if their information

is received at least once in an epoch. We now increase this threshold

to 𝐶𝑚𝑖𝑛 = 𝐹 and compare the behavior of networks with 𝐹 = 1

and 𝐹 = 3 upon link failures in Figure 8. To simulate packet loss,

we force a network of nodes 1, 2, 4, and 5 to drop received packets

from node 3 with a probability of 90% for the first 50 s. We find

that a network with 𝐹 = 3 successfully prevents such a node with

unreliable links from joining and therefore preserves a high PRR.

A network with 𝐹 = 1 accepts node 3 even if it is only heard once,

causing a PRR drop due to the included links with high loss.

At 50 s, we stop the artificial drop of packets and find that node 3

can quickly join the network with 𝐹 = 3. At 100 s, we re-introduce

link failures and observe that Hydra with 𝐹 = 3 adjusts by excluding

node 3 after it has been confirmed that its link quality has decreased.

0 25 50 75 100 125 150
0

25
50
75

100

PR
R

[%
]

F = 3
F = 1

0 50 100 150

Fault Drop node 3 with 90% 0% drop rate Drop node 3 with 90%

0 25 50 75 100 125 150

1
2
3
4
5

N
od

e
ID

s F = 3

0 25 50 75 100 125 150
Time [s]

1
2
3
4
5

N
od

e
ID

s F = 1

Figure 8: The epoch length 𝐹 offers control of the speed of adap-

tivity and quality of included links. For both networks, 90% of the

packets from node 3 are dropped for the first and last 50 s. In con-

trast to 𝐹 = 1 (bottom), node 3 is only part of the network with

𝐹 = 3 (middle) when it communicates reliably, which boosts PRR.

Thereafter, the PRR for the remaining network again reaches 100%.

With 𝐹 = 1, node 3 is permitted to stay to preserve liveness but

incurs a reduced PRR for the rest of the network. We conclude that

the epoch length is a valuable knob to increase network stability

and can enable efficient networks by enforcing reliable links.

Asymmetric links. A critical case that may put safety at risk

is the occurrence of asymmetric communication links, as a node

might continue to consider itself part of the majority without them

even being aware of the node. To prevent such imbalances, the

merging criteria presented in Section 4.2 ensure that only nodes

that mutually include each other in their membership flags can

prevent schedule expiration. The effect of the merging criteria can

be seen in Figure 8 for 𝐹 = 3 at 125 s, where the exclusion of a node

from the majority forces its schedule to expire and preserves safety.

Time synchronization. In contrast to traditional Chaos which is

initiated by a network coordinator, Hydra needs another means

of time synchronization. We find that we can successfully use the

Glossy floods during the DD phase to synchronize transmissions of

all 23 nodes during the contention-based transmissions of the SN
phase to an average of 0.4 𝜇s. With a maximum offset of 1.43 𝜇s, this

is more than sufficient for the capture effect requiring 160 𝜇s [29].

Time to completion. Lastly, we test how quickly distributed con-

sensus is found in Figure 9. We run 300 rounds for different network

sizes and observe in which of the 36 contention slots of the SN phase
the complete set of information is obtained. A network of 5 nodes

succeeds for 99% of nodes in gathering the complete set with an

average of 10 slots. For 12 nodes, 91% of nodes are complete at an

average of 21 slots, and 23 nodes complete 88% of the time in a mean

of 26 slots. As a single successful node is sufficient to determine

the next schedule and distribute it to the rest of the nodes in the SD

229

IPSN ’23, May 09–12, 2023, San Antonio, TX, USA A. Biri, R. Da Forno, T. Kuonen, F. Mager, M. Zimmerling, and L. Thiele

5 10 15 20 25 30 35

0

25

50

75

100

12

5

23

Network size

Slots to completion [#]

CD
F
[%
]

Figure 9: The average number of slots during the SN phase to obtain
the complete set of information depends on the network size, with

small networks requiring less overhead as they complete quickly.

phase, using fewer contention slots could substantially reduce the

scheduling overhead, particularly for smaller networks.

7 DISCUSSION
7.1 Exploring the Trade-off Space

Trading off adaptivity and liveness. Hydra’s three protocol re-
quirements are conflicting. As a design choice, we unconditionally

guarantee safety, as avoiding packet collisions is an indispensable

precondition for reliable packet delivery and hence dependable

communication. If we were to relax safety, then achieving adaptiv-

ity and liveness would be easily possible using best-effort strategies,

e.g., by letting nodes send data purely according to current demand.

However, there is a trade-off between adaptivity and liveness.

If the schedule were fully static, safety and liveness can be guar-

anteed as the schedule is always up-to-date. At the other extreme,

adapting the network membership every round could result in a

disproportionate loss of liveness for nodes briefly losing connectiv-

ity as schedules expire to preserve safety. With the epoch length 𝐹 ,

Hydra offers control of this trade-off. While Hydra’s design uses a

fixed length, dynamically reducing this parameter at runtime based

on current channel state information and past performance may

boost adaptivity when environmental conditions remain stable.

Trading off complexity and robustness. While centralized network

coordination constitutes a straightforward solution, it lacks robust-

ness as demonstrated by the collapse in network communication in

Figure 5 and must therefore be decentralized to provide fault toler-

ance. As soon as more than a single node is involved, the protocol

complexity of consensus needs to be introduced independently of

the number of participating coordinators. Therefore, while a hybrid

approach with only a subset of nodes coordinating concurrently

may seem appealing, reducing the fraction of involved nodes does

not simplify the underlying problem. Furthermore, as the employed

communication primitives based on concurrent transmissions re-

sult in all nodes indiscriminately obtaining all information, only

the negligible local overhead of the schedule computation could be

avoided. As nodes that do not participate in coordinationmust listen

during the SD phase, we expect the resulting idle listening overhead
to significantly surpass any potential computational savings.

7.2 Limitations and Extensions
Supporting flexible network sizes. With Hydra, we choose to prior-

itize safety over liveness. However, Hydra’s consensus mechanism

can also be employed for a fault-tolerant network where liveness

should be maintained at the cost of potential packet collisions. This

is of particular importance if co-existing network partitions should

be supported, which Hydra deliberately prevents by enforcing that

only a majority of nodes may persist. By removing the check on

the number of included nodes (line 24) and the schedule expiration

(line 48), such an extension is straightforward and would remedy a

limitation on the minimum and maximum network sizes. However,

an extra discovery mechanism to merge partitions is required to

avoid a continuous decay into smaller sets of nodes.

Scaling to large networks. The use of all-to-all primitives such as

Chaos [29] demands the allocation of fixed variables per potential

node in each packet so that information can be merged. While

this only amounts to 4 bits per node in our implementation for the

membership flag and the request, the energy consumption scales

proportionally with 𝑁 . In addition to the packet size, we also see in

Figure 9 that the length of the SN phase needs to be increased with

𝑁 as more information has to be exchanged to obtain the complete

set of information. While we find that an all-to-all primitive enables

a network of 𝑁 = 23 to bootstrap 2.9× faster than a traditional

design based on a single contention slot (Figure 5) and is therefore

favorable if requests are changing frequently, a large and stable

network may benefit from only exchanging information on demand.

8 RELATEDWORK
Consensus in WSNs. LWB [16] ensures safety by limiting nodes

to only transmitting when a schedule from a network coordinator

has been received. It cyclically shifts through leaders upon fail-

ure, further dropping liveness in between. Virtus [17] provides

atomic multicast with packet delivery ordering in addition to group

membership but builds on LWB. Chaos [29] and Mixer [21] do not

require explicit scheduling to exchange data among all nodes but

depend on a static network coordinator to initiate the transfer and

thus cannot ensure liveness. A
2
[3] andWireless Paxos [40] are con-

sensus protocols built on top of Chaos to take decisions on values

proposed by nodes in the network, but rely on a static coordinator

and hence a single point of failure. Furthermore, Hydra’s special-

ized scope reaches asynchronous consensus without the overhead

of distinct phases common in consensus protocols [28, 39]. BUT-

LER [36] enables the use of existing protocols based on concurrent

transmissions without a unique time source once coarse synchro-

nization could be established. wChain [50] focuses on fault-tolerant

blockchain operations in wireless networks, but may not sustain

leader failure. BCA [10] evaluates sensor data based on majority-

consensus voting, but does not tolerate link failures.

Decentralized scheduling. TSCH [14] supports reliable multi-sink

applications but requires fragile routing trees and a central network

coordinator, which limits liveness and presents a single point of

failure. Most TSCH schedulers, such as MASTER [19], are central-

ized and send all requests to a single entity, which then computes

and distributes a schedule. Distributed schedulers, such as MSF [11]

and DeTAS [1], leverage information provided by RPL [49], which

230

Hydra: Concurrent Coordination for Fault-tolerant Networking IPSN ’23, May 09–12, 2023, San Antonio, TX, USA

requires a stable routing tree and hence increases latency upon link

failures by up to 25min [30], thereby forfeiting liveness.

By contrast, Orchestra [15] uses local schedules to perform syn-

chronous communication through pseudo-random resource usage.

However, it still builds upon RPL and relies on its tree structure

for coordination and synchronization. ALICE [25] and A
3
[26]

are autonomous scheduling schemes that adapt to arbitrary traffic

patterns, but cannot avoid a single point of failure due to their re-

liance on RPL. TREE [30] tries to learn demands without RPL, and

AUTOBAHN [20] bridges the gap between TSCH and concurrent

transmissions. However, both require centralized coordination and

therefore cannot tolerate arbitrary node failures.

Fighting interference. Significant effort has increased network ro-
bustness under external interference [22, 23, 33, 34, 38, 41, 43, 51, 53].

However, these protocols remain constrained by their requirement

to reach a network coordinator for either scheduling or synchro-

nization. We consider such efforts to optimize link robustness or-

thogonal to Hydra, which adds an extra layer of fault tolerance and

guarantees fundamental properties despite failures.

9 CONCLUSION
With Hydra, we introduce a fault-tolerant WSN protocol that pro-

vides safety, adaptivity, and liveness for multi-hop networks. At its

core is a distributed consensus algorithm which is formally proven

to result in unique decisions and does not increase overhead com-

pared to centralized schemes. We demonstrate that combined with

a versioning-based scheduling mechanism, collisions with packets

from other nodes running Hydra can be eradicated by design. By

inducing node and link failures, we experimentally validate that

concurrent coordination preserves efficient data exchange while re-

maining adaptive to changing conditions. We show that centralized

approaches are unable to provide an equally reliable communication

service, even though they build on the same robust communication

primitives. While Hydra does not focus on mitigating failures, it

addresses their impact on a higher layer by providing guarantees de-

spite them. Hydra offers a unique ability to create networks where

each node is equivalent in protocol logic and configuration, paving

the way for a highly dependable Internet of Things.

ACKNOWLEDGMENTS
This research was supported by the Swiss National Science Founda-

tion under NCCR Automation (grant agreement 51NF40_180545)
and by the German Research Foundation through SPP 1914 (grant

ZI 1635/1-1) and NextIoT (grant ZI 1635/2-1).

REFERENCES
[1] Nicola Accettura, Elvis Vogli, Maria Rita Palattella, Luigi Alfredo Grieco, Gennaro

Boggia, and Mischa Dohler. 2015. Decentralized Traffic Aware Scheduling in

6TiSCH Networks: Design and Experimental Evaluation. IEEE Internet of Things
Journal 2, 6 (2015), 455–470. https://doi.org/10.1109/JIOT.2015.2476915

[2] Mikhail Afanasov, Naveed Anwar Bhatti, Dennis Campagna, Giacomo Caslini,

Fabio Massimo Centonze, Koustabh Dolui, Andrea Maioli, Erica Barone, Muham-

mad Hamad Alizai, Junaid Haroon Siddiqui, and Luca Mottola. 2020. Battery-Less

Zero-Maintenance Embedded Sensing at the Mithræum of Circus Maximus. In

18th ACM Conference on Embedded Networked Sensor Systems (SenSys ’20). ACM,

New York, NY, USA, 368–381. https://doi.org/10.1145/3384419.3430722

[3] Beshr Al Nahas, Simon Duquennoy, and Olaf Landsiedel. 2017. Network-Wide

Consensus Utilizing the Capture Effect in Low-Power Wireless Networks. In

15th ACM Conference on Embedded Network Sensor Systems (Delft, Netherlands)
(SenSys ’17). ACM, New York, NY, USA, Article 1, 14 pages. https://doi.org/10.

1145/3131672.3131685

[4] Guillermo Barrenetxea, François Ingelrest, Gunnar Schaefer, and Martin Vet-

terli. 2008. The Hitchhiker’s Guide to Successful Wireless Sensor Network

Deployments. In 6th ACM Conference on Embedded Network Sensor Systems
(Raleigh, NC, USA) (SenSys ’08). ACM, New York, NY, USA, 43–56. https:

//doi.org/10.1145/1460412.1460418

[5] Jan Beutel, Roman Trüb, Reto Da Forno, Markus Wegmann, Tonio Gsell, Romain

Jacob, Michael Keller, Felix Sutton, and Lothar Thiele. 2019. The Dual Processor

Platform architecture: Demo abstract. In 18th ACM/IEEE International Conference
on Information Processing in Sensor Networks (Montreal, QC, Canada) (IPSN ’19).
ACM, New York, NY, USA, 335–336. https://doi.org/10.1145/3302506.3312481

[6] Andreas Biri, Reto Da Forno, Tonio Gsell, Tobias Gatschet, Jan Beutel, and Lothar

Thiele. 2021. STeC: Exploiting Spatial and Temporal Correlation for Event-Based

Communication inWSNs. In 19th ACM Conference on Embedded Networked Sensor
Systems (Coimbra, Portugal) (SenSys ’21). ACM, New York, NY, USA, 274–287.

https://doi.org/10.1145/3485730.3485951

[7] Andreas Biri, Reto Da Forno, Tobias Kuonen, Fabian Mager, Marco Zimmerling,

and Lothar Thiele. 2023. Hydra: Companion document and source code. https:

//gitlab.ethz.ch/tec/public/hydra

[8] Amelie Bonde, Jesse Codling, Kanittha Naruethep, Yiwen Dong, Wachirawich

Siripaktanakon, Sripong Ariyadech, Akkarit Sangpetch, Orathai Sangpetch, Shijia

Pan, Hae Young Noh, and Pei Zhang. 2021. PigNet: Failure-Tolerant Pig Activity

Monitoring System Using Structural Vibration. In 20th IEEE International Confer-
ence on Information Processing in Sensor Networks (Nashville, TN, USA) (IPSN ’21).
ACM, New York, NY, USA, 328–340. https://doi.org/10.1145/3412382.3458902

[9] Hannah Brunner, Michael Stocker, Maximilian Schuh, Markus Schuß, Carlo Al-

berto Boano, and Kay Römer. 2022. Understanding and Mitigating the Im-

pact of Wi-Fi 6E Interference on Ultra-Wideband Communications and Rang-

ing. In 21th ACM/IEEE International Conference on Information Processing in
Sensor Networks (Milan, Italy) (IPSN ’22). ACM, New York, NY, USA, 92–104.

https://doi.org/10.1109/IPSN54338.2022.00015

[10] Jenghorng Chang and Fanpyn Liu. 2021. A Byzantine Sensing Network Based on

Majority-Consensus Data Aggregation Mechanism. Sensors 21, 1 (2021), 17 pages.
https://doi.org/10.3390/s21010248

[11] Tengfei Chang, Mališa Vučinić, Xavier Vilajosana, Simon Duquennoy, and

Diego Roberto Dujovne. 2021. 6TiSCH Minimal Scheduling Function (MSF).

RFC 9033. https://dl.acm.org/doi/10.17487/RFC9033

[12] Lili Chen, Jie Xiong, Xiaojiang Chen, Sunghoon Ivan Lee, Kai Chen, Dianhe

Han, Dingyi Fang, Zhanyong Tang, and Zheng Wang. 2019. WideSee: Towards

Wide-Area Contactless Wireless Sensing. In 17th ACM Conference on Embedded
Networked Sensor Systems (New York, NY, USA) (SenSys ’19). ACM, New York,

NY, USA, 258–270. https://doi.org/10.1145/3356250.3360031

[13] Madeleine Daepp, Alex Cabral, Vaishnavi Ranganathan, Vikram Iyer, Scott

Counts, Paul Johns, Asta Roseway, Charlie Catlett, Gavin Jancke, Darren Gehring,

Chuck Needham, Curtis von Veh, Tracy Tran, Lex Story, Gabriele D’Amone, and

Bichlien Nguyen. 2022. Eclipse: An End-to-End Platform for Low-Cost, Hyper-

local Environmental Sensing in Cities. In 21th ACM/IEEE International Conference
on Information Processing in Sensor Networks (Milan, Italy) (IPSN ’22). ACM, New

York, NY, USA, 28–40. https://doi.org/10.1109/IPSN54338.2022.00010

[14] Domenico De Guglielmo, Simone Brienza, and Giuseppe Anastasi. 2016. IEEE

802.15.4e: A survey. Computer Communications 88 (2016), 1–24. https://doi.org/

10.1016/j.comcom.2016.05.004

[15] Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and ThomasWatteyne. 2015.

Orchestra: Robust Mesh Networks Through Autonomously Scheduled TSCH.

In 13th ACM Conference on Embedded Networked Sensor Systems (Seoul, South
Korea) (SenSys ’15). ACM, New York, NY, USA, 337–350. https://doi.org/10.1145/

2809695.2809714

[16] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele. 2012.

Low-Power Wireless Bus. In 10th ACM Conference on Embedded Network Sensor
Systems (Toronto, ON, Canada) (SenSys ’12). ACM, New York, NY, USA, 1–14.

https://doi.org/10.1145/2426656.2426658

[17] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele. 2013.

Virtual Synchrony Guarantees for Cyber-physical Systems. In IEEE 32nd Interna-
tional Symposium on Reliable Distributed Systems (Braga, Portugal) (SRDS ’13).
IEEE, 20–30. https://doi.org/10.1109/SRDS.2013.11

[18] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. 2011. Effi-

cient network flooding and time synchronization with Glossy. In 10th ACM/IEEE
International Conference on Information Processing in Sensor Networks (Chicago,
IL, USA) (IPSN ’11). ACM, New York, NY, USA, 73–84. https://ieeexplore.ieee.

org/abstract/document/5779066

[19] Oliver Harms and Olaf Landsiedel. 2020. MASTER: Long-Term Stable Routing and

Scheduling in Low-Power Wireless Networks. In 16th International Conference
on Distributed Computing in Sensor Systems (Marina del Rey, CA, USA) (DCOSS
’20). IEEE, 86–94. https://doi.org/10.1109/DCOSS49796.2020.00025

[20] Oliver Harms and Olaf Landsiedel. 2021. Opportunistic Routing and Synchro-

nous Transmissions Meet TSCH. In 46th Conference on Local Computer Networks
(Edmonton, AB, Canada) (LCN ’22). IEEE, 107–114. https://doi.org/10.1109/

LCN52139.2021.9524952

231

https://doi.org/10.1109/JIOT.2015.2476915
https://doi.org/10.1145/3384419.3430722
https://doi.org/10.1145/3131672.3131685
https://doi.org/10.1145/3131672.3131685
https://doi.org/10.1145/1460412.1460418
https://doi.org/10.1145/1460412.1460418
https://doi.org/10.1145/3302506.3312481
https://doi.org/10.1145/3485730.3485951
https://gitlab.ethz.ch/tec/public/hydra
https://gitlab.ethz.ch/tec/public/hydra
https://doi.org/10.1145/3412382.3458902
https://doi.org/10.1109/IPSN54338.2022.00015
https://doi.org/10.3390/s21010248
https://dl.acm.org/doi/10.17487/RFC9033
https://doi.org/10.1145/3356250.3360031
https://doi.org/10.1109/IPSN54338.2022.00010
https://doi.org/10.1016/j.comcom.2016.05.004
https://doi.org/10.1016/j.comcom.2016.05.004
https://doi.org/10.1145/2809695.2809714
https://doi.org/10.1145/2809695.2809714
https://doi.org/10.1145/2426656.2426658
https://doi.org/10.1109/SRDS.2013.11
https://ieeexplore.ieee.org/abstract/document/5779066
https://ieeexplore.ieee.org/abstract/document/5779066
https://doi.org/10.1109/DCOSS49796.2020.00025
https://doi.org/10.1109/LCN52139.2021.9524952
https://doi.org/10.1109/LCN52139.2021.9524952

IPSN ’23, May 09–12, 2023, San Antonio, TX, USA A. Biri, R. Da Forno, T. Kuonen, F. Mager, M. Zimmerling, and L. Thiele

[21] Carsten Herrmann, Fabian Mager, and Marco Zimmerling. 2018. Mixer: Efficient

Many-to-All Broadcast in Dynamic Wireless Mesh Networks. In 16th ACM Con-
ference on Embedded Networked Sensor Systems (Shenzhen, China) (SenSys ’18).
ACM, New York, NY, USA, 145–158. https://doi.org/10.1145/3274783.3274849

[22] Timofei Istomin, Oana Iova, Gian Pietro Picco, and Csaba Kiraly. 2019. Route

or Flood? Reliable and Efficient Support for Downward Traffic in RPL. ACM
Transactions on Sensor Networks 16, 1, Article 1 (Oct. 2019), 41 pages. https:

//doi.org/10.1145/3355997

[23] Timofei Istomin, Matteo Trobinger, Amy Lynn Murphy, and Gian Pietro Picco.

2018. Interference-Resilient Ultra-Low Power Aperiodic Data Collection. In 17th
ACM/IEEE International Conference on Information Processing in Sensor Networks
(Porto, Portugal) (IPSN ’18). IEEE, 84–95. https://doi.org/10.1109/IPSN.2018.00015

[24] Dhananjay Jagtap and Pat Pannuto. 2021. Repurposing Cathodic Protection

Systems as Reliable, in-Situ, Ambient Batteries for Sensor Networks. In 20th
International Conference on Information Processing in Sensor Networks (Nashville,
TN, USA) (IPSN ’21). ACM, New York, NY, USA, 357–368. https://doi.org/10.

1145/3412382.3458277

[25] Seohyang Kim, Hyung-Sin Kim, and Chongkwon Kim. 2019. ALICE: Autonomous

Link-Based Cell Scheduling for TSCH. In 18th ACM/IEEE International Conference
on Information Processing in Sensor Networks (Montreal, QC, Canada) (IPSN ’19).
ACM, New York, NY, USA, 121–132. https://doi.org/10.1145/3302506.3310394

[26] Seohyang Kim, Hyung-Sin Kim, and Chong-kwon Kim. 2021. A3: Adaptive

Autonomous Allocation of TSCH Slots. In 20th IEEE International Conference on
Information Processing in Sensor Networks (Nashville, TN, USA) (IPSN ’21). ACM,

New York, NY, USA, 299–314. https://doi.org/10.1145/3412382.3458273

[27] Demeke Lakew, Umar Sa’ad, Nhu-Ngoc Dao, Woongsoo Na, and Sungrae Cho.

2020. Routing in Flying Ad Hoc Networks: A Comprehensive Survey. IEEE
Communications Surveys and Tutorials 22, 2 (2020), 1071–1120. https://doi.org/

10.1109/COMST.2020.2982452

[28] Leslie Lamport. 2001. PaxosMade Simple. ACMSIGACTNews 32, 4 (Dec. 2001), 51–
58. https://www.microsoft.com/en-us/research/publication/paxos-made-simple/

[29] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. 2013. Chaos: Versatile

and Efficient All-to-All Data Sharing and in-Network Processing at Scale. In 11th
ACM Conference on Embedded Networked Sensor Systems (Roma, Italy) (SenSys
’13). ACM, New York, NY, USA, Article 1, 14 pages. https://doi.org/10.1145/

2517351.2517358

[30] Tim Van Der Lee, Georgios Exarchakos, and Sonia Heemstra De Groot. 2020.

Distributed Reliable and Energy-Efficient Scheduling for LR-WPANs. ACM
Transactions on Sensor Networks 16, 4, Article 32 (Aug. 2020), 20 pages. https:

//doi.org/10.1145/3399805

[31] Krijn Leentvaar and Jan Flint. 1976. The capture effect in FM receivers. IEEE
Transactions on Communications 24, 5 (May 1976), 531–539. https://doi.org/10.

1109/TCOM.1976.1093327

[32] Roman Lim, Reto Da Forno, Felix Sutton, and Lothar Thiele. 2017. Competition:

Robust Flooding using Back-to-Back Synchronous Transmissions with Channel-

Hopping. In International Conference on Embedded Wireless Systems and Networks
(Uppsala, Sweden) (EWSN ’17). Junction Publishing, USA, 270–271. https://dl.

acm.org/doi/abs/10.5555/3108009.3108076

[33] Xiaoyuan Ma, Peilin Zhang, Xin Li, Weisheng Tang, Jianming Wei, and Oliver

Theel. 2018. DeCoT: A Dependable Concurrent Transmission-Based Protocol for

Wireless Sensor Networks. IEEE Access 6 (2018), 73130–73146. https://doi.org/

10.1109/ACCESS.2018.2877692

[34] Xiaoyuan Ma, Peilin Zhang, Ye Liu, Carlo Alberto Boano, Hyung-Sin Kim,

Jianming Wei, and Jun Huang. 2020. Harmony: Saving Concurrent Trans-

missions from Harsh RF Interference. In IEEE Conference on Computer Com-
munications (Toronto, ON, Canada) (INFOCOM ’20). IEEE, 1024–1033. https:

//doi.org/10.1109/INFOCOM41043.2020.9155423

[35] FabianMager, Dominik Baumann, Romain Jacob, Lothar Thiele, Sebastian Trimpe,

and Marco Zimmerling. 2019. Feedback Control Goes Wireless: Guaranteed

Stability over Low-Power Multi-Hop Networks. In 10th ACM/IEEE International
Conference on Cyber-Physical Systems (Montreal, QC, Canada) (ICCPS ’19). ACM,

New York, NY, USA, 97–108. https://doi.org/10.1145/3302509.3311046

[36] FabianMager, Andreas Biri, Lothar Thiele, andMarco Zimmerling. 2022. BUTLER:

Increasing the Availability of Low-Power Wireless Communication Protocols.

In International Conference on Embedded Wireless Systems and Networks (Linz,
Austria) (EWSN ’22). ACM, New York, NY, USA, 108–119. https://dl.acm.org/doi/

abs/10.5555/3578948.3578958

[37] Matthias Meyer, Timo Farei-Campagna, Akos Pasztor, Reto Da Forno, Tonio Gsell,

Jérome Faillettaz, Andreas Vieli, Samuel Weber, Jan Beutel, and Lothar Thiele.

2019. Event-triggered Natural Hazard Monitoring with Convolutional Neural

Networks on the Edge. In 18th ACM/IEEE International Conference on Information
Processing in Sensor Networks (Montreal, QC, Canada) (IPSN ’19). IEEE, 73–84.
https://doi.org/10.1145/3302506.3310390

[38] Venkata Modekurthy, Abusayeed Saifullah, and Sanjay Madria. 2019. Distributed-

HART: A Distributed Real-Time Scheduling System for WirelessHART Networks.

In IEEE Real-Time and Embedded Technology and Applications Symposium (Mon-

treal, QC, Canada) (RTAS ’19). IEEE, 216–227. https://doi.org/10.1109/RTAS.2019.

00026

[39] Diego Ongaro and John Ousterhout. 2014. In search of an understandable consen-

sus algorithm. In USENIX Annual Technical Conference (Philadelphia, PA, USA)
(USENIX ATC ’14). USENIX Association, USA, 305–319. https://dl.acm.org/doi/

10.5555/2643634.2643666

[40] Valentin Poirot, Beshr Al Nahas, and Olaf Landsiedel. 2019. Paxos Made Wireless:

Consensus in the Air. In International Conference on Embedded Wireless Systems
and Networks (Beijing, China) (EWSN ’19). Junction Publishing, USA, 1–12. https:

//dl.acm.org/doi/abs/10.5555/3324320.3324322

[41] Valentin Poirot and Olaf Landsiedel. 2021. Dimmer: Self-Adaptive Network-Wide

Flooding with Reinforcement Learning. In IEEE 41st International Conference
on Distributed Computing Systems (Washington, DC, USA) (ICDCS ’21). IEEE,
293–303. https://doi.org/10.1109/ICDCS51616.2021.00036

[42] Semtech. Accessed: 2023-02-10. “Semtech SX1262 - LoRa Connect Long

Range Low Power LoRa Transceiver”. semtech.com/products/wireless-rf/lora-

core/sx1262.

[43] Alberto Spina, Michael Breza, Naranker Dulay, and Julie McCann. 2020. XPC:

Fast and Reliable Synchronous Transmission Protocols for 2-Phase Commit and

3-Phase Commit. In International Conference on Embedded Wireless Systems and
Networks (Lyon, France) (EWSN ’20). Junction Publishing, USA, 73–84. https:

//dl.acm.org/doi/10.5555/3400306.3400316

[44] Robert Tarjan. 1972. Depth-First Search and Linear Graph Algorithms. SIAM J.
Comput. 1, 2 (1972), 146–160. https://doi.org/10.1137/0201010

[45] Roman Trüb, Reto Da Forno, Lukas Sigrist, Lorin Mühlebach, Andreas Biri, Jan

Beutel, and Lothar Thiele. 2020. FlockLab 2: Multi-Modal Testing and Validation

for Wireless IoT. In 3rd Workshop on Benchmarking Cyber-Physical Systems and
Internet of Things (CPS-IoTBench 2020). OpenReview.net, 7 pages. https://doi.org/

10.3929/ethz-b-000442038

[46] Samuel Weber, Jan Beutel, Reto Da Forno, Alain Geiger, Stephan Gruber, Tonio

Gsell, Andreas Hasler, Matthias Keller, Roman Lim, Philippe Limpach, Matthias

Meyer, Igor Talzi, Lothar Thiele, Christian Tschudin, Andreas Vieli, Daniel Von-

derMühll, andMustafa Yücel. 2019. A decade of detailed observations (2008–2018)

in steep bedrock permafrost at the Matterhorn Hörnligrat (Zermatt, CH). Earth
System Science Data 11, 3 (2019), 1203–1237. https://doi.org/10.5194/essd-11-

1203-2019

[47] Daniel Winkler, Miguel Carreira-Perpinan, and Alberto Cerpa. 2018. Plug-and-

Play Irrigation Control at Scale. In 17th ACM/IEEE International Conference on
Information Processing in Sensor Networks (Porto, Portugal) (IPSN ’18). ACM, New

York, NY, USA, 1–12. https://doi.org/10.1109/IPSN.2018.00008

[48] Daniel Winkler and Alberto Cerpa. 2019. WISDOM: Watering Intelligently

at Scale with Distributed Optimization and Modeling. In 17th Conference on
Embedded Networked Sensor Systems (New York, NY, USA) (SenSys ’19). ACM,

New York, NY, USA, 219–231. https://doi.org/10.1145/3356250.3360023

[49] Tim Winter, Pascal Thubert, Anders Brandt, Jonathan Hui, Richard Kelsey, Philip

Levis, Kris Pister, Rene Struik, Jean-Philippe Vasseur, and Roger Alexander. 2012.

RPL: IPv6 routing protocol for low-power and lossy networks. RFC 6550. https:

//doi.org/10.17487/RFC6550

[50] Minghui Xu, Chunchi Liu, Yifei Zou, Feng Zhao, Jiguo Yu, and Xiuzhen Cheng.

2021. wChain: A Fast Fault-Tolerant Blockchain Protocol for Multihop Wireless

Networks. IEEE Transactions on Wireless Communications 20, 10 (Oct. 2021),

6915–6926. https://doi.org/10.1109/TWC.2021.3078639

[51] Zihao Yu, Xin Na, Carlo Alberto Boano, Yuan He, Xiuzhen Guo, and Meng Jin.

2022. SmarTiSCH: An interference-aware engine for IEEE 802.15. 4e-based net-

works. In 21st ACM/IEEE Conference on Information Processing in Sensor Networks
(Milano, Italy) (IPSN ’22). IEEE, 350–362. https://doi.org/10.1109/IPSN54338.2022.

00035

[52] Pouria Zand, Supriyo Chatterjea, Kallol Das, and Paul Havinga. 2012. Wireless

Industrial Monitoring and Control Networks: The Journey So Far and the Road

Ahead. Journal of Sensor and Actuator Networks 1, 2 (2012), 123–152. https:

//doi.org/10.3390/jsan1020123

[53] Tianyu Zhang, Tao Gong, Song Han, Qingxu Deng, and Xiaobo Sharon Hu. 2021.

Fully Distributed Packet Scheduling Framework for Handling Disturbances in

Lossy Real-Time Wireless Networks. IEEE Transactions on Mobile Computing 20,

2 (2021), 502–518. https://doi.org/10.1109/TMC.2019.2950913

[54] Marco Zimmerling, Luca Mottola, and Silvia Santini. 2020. Synchronous Trans-

missions in Low-Power Wireless: A Survey of Communication Protocols and

Network Services. Comput. Surveys 53, 6, Article 121 (Dec. 2020), 39 pages.

https://doi.org/10.1145/3410159

232

https://doi.org/10.1145/3274783.3274849
https://doi.org/10.1145/3355997
https://doi.org/10.1145/3355997
https://doi.org/10.1109/IPSN.2018.00015
https://doi.org/10.1145/3412382.3458277
https://doi.org/10.1145/3412382.3458277
https://doi.org/10.1145/3302506.3310394
https://doi.org/10.1145/3412382.3458273
https://doi.org/10.1109/COMST.2020.2982452
https://doi.org/10.1109/COMST.2020.2982452
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1145/2517351.2517358
https://doi.org/10.1145/2517351.2517358
https://doi.org/10.1145/3399805
https://doi.org/10.1145/3399805
https://doi.org/10.1109/TCOM.1976.1093327
https://doi.org/10.1109/TCOM.1976.1093327
https://dl.acm.org/doi/abs/10.5555/3108009.3108076
https://dl.acm.org/doi/abs/10.5555/3108009.3108076
https://doi.org/10.1109/ACCESS.2018.2877692
https://doi.org/10.1109/ACCESS.2018.2877692
https://doi.org/10.1109/INFOCOM41043.2020.9155423
https://doi.org/10.1109/INFOCOM41043.2020.9155423
https://doi.org/10.1145/3302509.3311046
https://dl.acm.org/doi/abs/10.5555/3578948.3578958
https://dl.acm.org/doi/abs/10.5555/3578948.3578958
https://doi.org/10.1145/3302506.3310390
https://doi.org/10.1109/RTAS.2019.00026
https://doi.org/10.1109/RTAS.2019.00026
https://dl.acm.org/doi/10.5555/2643634.2643666
https://dl.acm.org/doi/10.5555/2643634.2643666
https://dl.acm.org/doi/abs/10.5555/3324320.3324322
https://dl.acm.org/doi/abs/10.5555/3324320.3324322
https://doi.org/10.1109/ICDCS51616.2021.00036
https://www.semtech.com/products/wireless-rf/lora-core/sx1262
https://www.semtech.com/products/wireless-rf/lora-core/sx1262
https://dl.acm.org/doi/10.5555/3400306.3400316
https://dl.acm.org/doi/10.5555/3400306.3400316
https://doi.org/10.1137/0201010
https://doi.org/10.3929/ethz-b-000442038
https://doi.org/10.3929/ethz-b-000442038
https://doi.org/10.5194/essd-11-1203-2019
https://doi.org/10.5194/essd-11-1203-2019
https://doi.org/10.1109/IPSN.2018.00008
https://doi.org/10.1145/3356250.3360023
https://doi.org/10.17487/RFC6550
https://doi.org/10.17487/RFC6550
https://doi.org/10.1109/TWC.2021.3078639
https://doi.org/10.1109/IPSN54338.2022.00035
https://doi.org/10.1109/IPSN54338.2022.00035
https://doi.org/10.3390/jsan1020123
https://doi.org/10.3390/jsan1020123
https://doi.org/10.1109/TMC.2019.2950913
https://doi.org/10.1145/3410159

