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Preface

This is a cumulative thesis based on the published articles [15,16,18] and the preprint [17].
Specifically, Chapter 2 is based on [16]; Chapter 3 is based on [15]; Chapter 4 is based on [18];
and Chapter 5 is based on [17]. The introductions of the original articles have been modified
to account for a coherent presentation in this thesis. All three published articles [15,16,18]
are licensed under a Creative Commons license (CC BY-NC-ND 4.0). In particular, the
reproduction of their content, including all figures, in this thesis is permitted.

For each of those four articles, I have made major contributions: I led the development
of the new concepts, the results, the proofs, and the writing. In the course of my doctoral
studies, I also made a contribution to the published article [14] and proved a theoretical
result about efficient numerical Sobolev approximations of solutions to linear parabolic partial
differential equations, the preprint of which is in its final stage but is unpublished as of the
submission date of this thesis.
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Summary

Neural networks have gained widespread attention due to their remarkable performance in
various applications. Two aspects are particular striking: on the one hand, neural networks
seem to enjoy superior approximation capacities than classical methods. On the other hand,
neural networks are trained successfully with gradient-based algorithms despite the training
task being a highly nonconvex optimization problem. This thesis advances the theory behind
these two phenomena.

On the aspect of approximation, we develop a framework for showing that neural networks
can break the so-called curse of dimensionality in different high-dimensional approximation
problems, meaning that the complexity of the neural networks involved scales at most
polynomially in the dimension. Our approach is based on the notion of a catalog network,
which is a generalization of a feed-forward neural network in which the nonlinear activation
functions can vary from layer to layer as long as they are chosen from a predefined catalog
of functions. As such, catalog networks constitute a rich family of continuous functions.
We show that, under appropriate conditions on the catalog, these catalog networks can
efficiently be approximated with rectified linear unit (ReLU)-type networks and provide
precise estimates of the number of parameters needed for a given approximation accuracy.
As special cases of the general results, we obtain different classes of functions that can be
approximated with ReLU networks without the curse of dimensionality.

On the aspect of optimization, we investigate the interplay between neural networks and
gradient-based training algorithms by studying the loss surface. On the one hand, we discover
an obstruction to successful learning due to an unfortunate interplay between the architecture
of the network and the initialization of the algorithm. More precisely, we demonstrate that
stochastic gradient descent fails to converge for ReLU networks if their depth is much larger
than their width and the number of random initializations does not increase to infinity fast
enough. On the other hand, we establish positive results by conducting a landscape analysis
and applying dynamical systems theory. These positive results deal with the landscape of
the true loss of neural networks with one hidden layer and ReLU, leaky ReLU, or quadratic
activation. In all three cases, we provide a complete classification of the critical points in the
case where the target function is affine and one-dimensional. Next, we prove a new variant
of a dynamical systems result, a center-stable manifold theorem, in which we relax some of
the regularity requirements usually imposed. We verify that ReLU networks with one hidden
layer fit into the new framework. Building on our classification of critical points, we deduce
that gradient descent avoids most saddle points. We proceed to prove convergence to global
minima if the initialization is sufficiently good, which is expressed by an explicit threshold
on the limiting loss.
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Zusammenfassung

Neuronale Netze haben aufgrund ihrer bemerkenswerten Leistungsfähigkeit in verschiedenen
Anwendungen viel Aufmerksamkeit bekommen. Zwei Aspekte stechen dabei heraus: einer-
seits besitzen neuronale Netze bessere Approximationseigenschaften als klassische Methoden.
Andererseits können neuronale Netze effizient mit Gradienten-basierten Algorithmen trai-
niert werden, obwohl das Training eines Netzes ein stark nichtkonvexes Problem ist. Diese
Dissertation entwickelt die Theorie hinter diesen beiden Phänomenen weiter.

Im Rahmen der Approximationstheorie entwickeln wir ein Konzept, welches illustriert,
dass neuronale Netze den sogenannten Fluch der Dimensionalität brechen können. Präziser
bedeutet dies, dass die Komplexität eines neuronales Netzes höchstens polynomiell mit der
Dimension wächst. Unsere Herangehensweise basiert auf dem Begriff eines Katalognetzes,
welches eine Verallgemeinerung eines vorwärts gerichteten neuronalen Netzes ist, bei der die
nicht linearen Aktivierungsfunktionen von Schicht zu Schicht unterschiedlich sein können
solange sie aus einem Katalog von vorgegebenen Funktionen stammen. Somit bilden Kata-
lognetze eine umfassende Familie von stetigen Funktionen. Wir zeigen, dass Katalognetze
unter bestimmten Annahmen effizient mit “recitified linear unit” (ReLU)-artigen Netzen
approximiert werden können, und wir liefern genaue Abschätzungen an die Anzahl Parame-
ter, die für eine gegebene Approximationsgenauigkeit benötigt werden. Als Spezialfälle der
allgemeinen Theorie erhalten wir verschiedene Klassen von Funktionen, die ohne den Fluch
der Dimensionalität mit ReLU Netzen approximiert werden können.

Im Rahmen der Optimierungstheorie untersuchen wir das Zusammenspiel von neuronalen
Netzen und Gradienten-basierten Trainingsalgorithmen, indem wir die Verlustoberfläche un-
tersuchen. Einerseits charakterisieren wir eine Schwierigkeit für erfolgreiches Lernen, welche
aus einem unvorteilhaften Zusammenspiel von der Architektur des Netzes und der Initiali-
sierung des Algorithmus herrührt. Genauer gesagt zeigen wir, dass das stochastische Gradi-
entenverfahren zu konvergieren fehlschlägt sobald die Tiefe von ReLU Netzen viel größer ist
als ihre Breite und die Anzahl von zufälligen Initialisierungen nicht genügend schnell gegen
unendlich wächst. Andererseits leiten wir positive Resultate her, indem wir eine Landschafts-
analyse durchführen und einen Satz aus der Theorie dynamischer Systeme verwenden. Diese
positiven Resultate beschäftigen sich mit der Landschaft der tatsächlichen Verlustfunktion
neuronaler Netze mit einer verborgenen Schicht und ReLU, “leaky” ReLU oder quadratischer
Aktivierungsfunktion. In allen drei Fällen erstellen wir eine vollständige Klassifizierung der
kritischen Punkte für eine affine eindimensionale Zielfunktion. Anschließend beweisen wir
eine neue Variante eines Resultats über dynamische Systeme, einen Satz über zentral-stabile
Mannigfaltigkeiten, in der wir einige der üblichen Regularitätsannahmen abschwächen. Wir
stellen sicher, dass ReLU Netze mit einer verborgenen Schicht diesen Bedingungen genügen.
Aufbauend auf unserer Klassifizierung kritischer Punkte schließen wir, dass das Gradienten-
verfahren die meisten Sattelpunkte vermeidet. Des Weiteren beweisen wir Konvergenz zum
globalen Minimum unter der Voraussetzung, dass die Initialisierung hinreichend akkurat ist.
Dies wird durch eine explizite Schranke an die Verlustfunktion quantifiziert.
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CHAPTER 1

Introduction

The two faces of neural network theory

Neural networks have received a lot of attention in the past decade. Originally studied
in the past century, they had still been dominated by classical or other machine learning
methods, causing interest in them to temporarily stagnate; [112]. The emergence of increased
computing power announced the dawn of a new era of interest in neural networks. Motivated
by their widespread success in various applications, research on their mathematical theory
resurged; [47,81,112]. Two aspects observed in applications are particularly striking: on the
one hand, neural networks seem to enjoy good approximation capacities. More precisely,
simulations suggest that they are able to break the so-called curse of dimensionality, meaning
that the complexity of a neural network needed to solve a certain approximation task on a
high-dimensional space scales at most polynomially in the dimension; [35,47,81]. On the other
hand, training a neural network poses a highly nonconvex optimization problem; [104,110].
The algorithms used for this optimization task are typically variants of gradient descent – an
algorithm only known to work on convex problems. It is a long-standing open problem why
these algorithms perform well on the nonconvex task of training a neural network; [28,88,115].
Understanding the success of neural networks entails both of these topics – approximation
and optimization. This thesis explores theoretical results advancing our understanding of
the subject matter in both topics. The results will shed light on why neural networks are
successful, but also reveal some limitations of the theory.

A standard, fully connected, feedforward neural network, which we simply call a neural
network or a network, encodes a succession of affine maps alternating with a fixed nonlinearity,
called the activation (function). An activation function we will encounter frequently is the
rectified linear unit (ReLU) ρ(x) = max{x, 0}. The architecture of a neural network refers
to the number of affine maps (number of layers), which is called the depth of the network,
and the dimension of the domain of each of these affine maps (the number of neurons in
each layer). The first and the last layer are referred to as the input and the output layer,
respectively; the layers in between are called hidden layers. A network of depth one (no
hidden layer) is an affine function and, as such, not particularly interesting in itself. A shallow
network is a network of depth two. The antonymous adjective deep is not used consistently
in the literature. While practitioners tend to call a network deep if the number of layers is
heuristically large (what that means is subjective to the respective current state of the art),
theorists tend to call a network deep if it is not shallow, that is it has two or more hidden
layers.

1



2 Chapter 1

Approximation

Since the late 80’s and early 90’s, neural networks (of any fixed depth) have been known to
be universal approximators, meaning that any function from a reasonable class of functions
can be approximated arbitrarily well by a neural network; [24, 42, 56–59, 86, 93]. Typically,
this reasonable class of functions is taken to be the class of continuous functions or the class
of Lp-functions. The approximation is then measured in the supremum norm on compact
sets or the Lp-norm, respectively. These early approximation results did not specify a rate,
that is how the required number of neurons depends on the desired approximation accuracy.
Later, such rates have been established, but it was found that neural networks suffer from
the curse of dimensionality. Even more so, on a general approximation task, neural networks
do not perform better than polynomial regression; [105,106,129]. This is in contrast to the
performance observed in empirical studies; [35,47,81]. Noteworthy is that the negative results
are not constructive. While we know that there are functions that cannot be approximated
efficiently, we do not know how they look. This leaves hope that any approximation task
encountered in real-world applications is not described by such a function. In particular,
it makes sense to restrict the attention, for example, to subsets of the set of continuous
functions, trying to exclude the above nonconstructive counterexamples. This is the strategy
we adopt in Chapter 2. Therein, we introduce the concept of a catalog network. A catalog
network is a generalization of a neural network. Instead of having a fixed nonlinearity
that acts component-wise between any two affine layers, we allow the nonlinearity to be
a stacking of functions drawn from a prespecified catalog of functions for each layer. The
idea is that the catalog contains “simple” functions and a catalog network can represent
highly complicated functions. We derive rates of approximation for neural networks when
the target function is given by such a catalog network. Naturally, this rate is affected by
the chosen catalog. The strength of the approximation results in Chapter 2 is that the
complicated analysis of a catalog network reduces to the simpler analysis of the functions in
the catalog. We will demonstrate this in examples, showing that catalog networks provide a
very general framework for constructing classes of functions, in the approximation of which
neural networks break the curse of dimensionality. Due to the constructive nature of catalog
networks, we can cook up these examples explicitly. The key property of neural networks
for this to work is their compositional structure because it enables us to concatenate and
parallelize several networks into one; [49]. To improve the approximation rates, we develop a
new way to parallelize networks, which is more efficient than the way it was previously done
in the literature.

In the following, we contrast our approach with existing methods. [6, 71] have proved an
O(n−1/2)-rate for approximating functions in the L2-norm with shallow sigmoidal networks
with n neurons. In particular, this breaks the curse of dimensionality, but it only applies
to a special class of functions. Since then, their results have been applied and generalized
in different directions, always yielding rates of the same nature, but always applicable
only to similarly restricted classes of functions. For example, in [31, 45] these results have
been extended to the Lp-norm for 1 ≤ p < ∞ and p = ∞, respectively, and in [80] the
approximation rate has been improved to a geometric rate for single functions. However, the
basis δ of the geometric rate O((1− δ)n) is usually not known. It could be so small that the
geometric rate does not give useful bounds for typical sizes of n. For further generalizations,
see, e.g., [5,7,51,72,73,75,77–79]. All of them use shallow networks. However, deep networks
have shown better performance in a number of applications; [47, 81]. This has also been
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supported by theoretical evidence; for instance, in [39], an example of a simple continuous
function on Rd has been given that is expressible as a small network with two hidden layers
but cannot be approximated with a shallow network to a given constant accuracy unless its
width is exponential in the dimension. Similarly, it has been shown in [109] that indicator
functions of d-dimensional balls can be approximated much more efficiently with two hidden
layers than with one. Related results for functions on the product of two d-dimensional
spheres have been provided by [25].

[50, 92, 106] have constructed special activation functions which, in principle, allow to
approximate every continuous function f : [0, 1]d → R to any desired precision when used in
a two-hidden-layers network with as few as d neurons in the first and 2d+ 2 neurons in the
second hidden layer. Theoretically, this breaks the curse of dimensionality quite spectacularly.
However, it can be shown that the approximation result only holds if the size of the network
weights is allowed to grow faster than polynomially in the inverse of the approximation
error; [11,105].

Further studies of the approximation capacity of neural networks with standard activation
functions include [89,93,105,127,129]. Their approach is based on approximating functions
with polynomials and then approximating these polynomials with neural networks. Polynomi-
als can approximate smooth functions reasonably well, and neural networks are known to be
able to approximate monomials efficiently. However, since the number of monomials needed
to generate all polynomials in d variables of order k is

(
k+d
d

)
, the intermediate step from

monomials to polynomials introduces the curse of dimensionality. It has been shown in [129]
that this cannot be side-stepped. For instance, it is provably impossible to approximate
the unit ball in the Sobolev space of any regularity with ReLU networks without the curse
of dimensionality. To break the curse of dimensionality with ReLU networks, one has to
concentrate on special classes of functions. [6, 71] and their extensions offer one such class.
Coming from a different angle, [94] has obtained the same rate for periodic functions with an
absolutely convergent Fourier series. In [113], the approximability of “separately holomorphic”
maps via Taylor expansions and applications to parametric partial differential equations have
been studied. The approach of [113] is again based on the intermediate approximation of
polynomials, but the holomorphy ensures that the approximating polynomials contain only
few monomials. [48,60,68] have proved that solutions of various partial differential equations
admit neural network approximations without the curse of dimensionality. Their arguments
use the hierarchical structure of neural networks, which has more extensively been exploited
in [11, 38, 82]. These papers are similar in spirit to Chapter 2 in this thesis since they also
start from a “basis” of functions, which they approximate with neural networks, and then use
this basis to build more complex functions. However, [11, 38] do not study approximation
rates in terms of the dimension. On the other hand, in [82] the curse of dimensionality is
broken, but the “basis” in [82] consists of the functions considered in [6]. In Chapter 2, we
consider more explicit classes of functions and provide bounds on the number of parameters
needed to approximate d-dimensional functions up to accuracy ε.

Optimization

When aiming to numerically solve an approximation task with neural networks, the available
results on approximation capacities discussed above give an idea of what a reasonable choice
for an architecture might be. The theory may state that there is a network with a certain
architecture that solves the task. But we do not know a priori which network that is.
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The unknowns of a network are the parameters that specify the affine maps. This poses
an optimization problem: we need to find parameters for which the network is a good
approximator. This optimization problem is highly nonconvex; [104, 110]. To date, there
are no efficient algorithms that are guaranteed to solve nonconvex optimization problems.
Instead, practitioners rely on variants of (stochastic) gradient descent. These are known to
find the optima of convex problems, even with good rates; [12,96,114]. But in a nonconvex
problem, gradient methods can get stuck at saddle points or local minima. This has not
stopped practitioners from achieving remarkable results with stochastic gradient descent in
the training of neural networks; [47, 81, 112]. Advances in the theory indicate that there is
something specific about the interplay of stochastic gradient descent and neural networks
that makes it work. But a full theoretical understanding of gradient-based methods in
network models is still lacking. In this thesis, we take a closer look at this interplay between
gradient-based methods and neural networks.

To obtain optimal approximation results, several hyper-parameters have to be fine-tuned.
The first one we discussed above: the architecture of the network determines what type of
functions can be approximated. To be able to efficiently approximate complicated functions,
the network needs to be sufficiently wide and deep. Secondly, the goal is to approximate
a target function, but the target function itself is unknown and we only have access to a
finite amount of data points. Phrased in the language of machine learning: we intend to
approximate the target with respect to the true risk, but the algorithm only has access to the
empirical risk. The gap between the two goes to zero as the amount of training data increases
to infinity. Thirdly, the gradient method attempts to minimize the empirical risk, and the
chance of finding a good approximate minimum increases with the number of gradient steps.
Finally, since a single gradient trajectory may not yield good results, it is common to run
several of them with different random initializations. [8,69] have shown that general networks
converge if their size, the amount of training data, and the number of random initializations
are increased to infinity in the correct way, albeit with an extremely slow speed of convergence.
In general, one cannot hope to overcome the slow speed of converge; [116]. On the other
hand, it has been shown that, for the training error, faster convergence can be guaranteed
with certain probabilities if overparametrized networks are used, that is an exceedingly large
number of neurons; see [2, 21, 34, 36, 120, 131] and the references therein. The initialization
method is important for any type of network. But for ReLU networks it plays a special role
due to the particular form of the ReLU activation function; [52,54,90,117].

The main contribution of Chapter 3 is a demonstration that stochastic gradient descent
fails to converge for ReLU networks if the number of random initializations does not increase
fast enough compared to the size of the network. Our arguments are based on an analysis of
regions in the parameter space related to “inactive” neurons (sometimes also coined “dead”
neurons in the literature). In these regions, the neural network function is constant not only
in its argument but also in the network parameter. Suppose θ denotes the vector containing
the parameters of a network. Recall that these are the parameters of the affine functions. Let
Aθ1 be the affine function from the input to the first hidden layer. If θ contains only strictly
negative parameters, then ρ ◦ Aθ1 ◦ ρ(x) is constantly zero in x and in a neighborhood of θ.
As a consequence, stochastic gradient descent will not be able to escape from a neighborhood
of θ. The fact that random initialization can render parts of a ReLU network inactive has
already been noticed in [90,117]. While the focus of [90,117] is on the design of alternative
random initialization schemes to make the training more efficient, we give precise estimates
on the probability that the whole network becomes inactive and deduce that stochastic
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gradient descent fails to converge if the number of random initializations does not increase
fast enough relative to the size of the architecture. In our proof, the depth grows much faster
than the maximal width of all layers. This imbalance between the depth and the width has
the effect that the training procedure does not converge.

The negative result about convergence we just discussed is based on a careful study of
the interplay between the architecture of the network and the initialization of the algorithm.
Another approach, which we pursue in Chapter 4, is a landscape analysis of the loss surface.
This landscape analysis provides an indirect tool for studying the dynamics of gradient-based
algorithms, as these dynamics are governed by the loss surface. One goal of landscape
analysis is a better understanding of the occurrence and frequency of critical points of the
loss function and obtaining information about their type, that is, whether they constitute
extrema, local extrema, or saddle points. Using the hierarchical structure of networks, some
partial results have been obtained; [41]. Though, the choice of the activation function in the
network model can have a significant impact on the landscape. For instance, it is known that
the loss surface of a linear network, that is a network with the identity function as activation,
only has global minima and saddle points but no non-global local minima; [4, 74]. However,
the picture becomes less clear if a nonlinearity is introduced; [110,111,125].

In the last decade, progress has been made in this more difficult nonlinear case. In [22],
the loss surface has been studied by relating it to a model from statistical physics. This
way, detailed results have been obtained about the frequency and quality of local minima.
Although the findings of [22] are theoretically insightful, their theory is based on assumptions
that are not met in practice; [23]. In [122], similar results have been obtained for shallow
networks with less unrealistic assumptions. We refer to [28] for experimental findings, on
which [22,122] is based.

Besides the work studying the effects of overparametrization on gradient-based methods
directly as mentioned further above, there have also been investigations of its impact on the
loss landscape. For instance, it has been shown in [108] that taking larger networks increases
the likelihood to start from a good initialization with a small loss or from which there exists a
monotonically decreasing path to a global minimum. However, it is still not fully understood
in which situations a gradient-based training algorithm follows such a path. If the quadratic
activation function is used in a shallow network, then, in the overparametrized regime, only
global minima and strict saddle points remain, but no non-global local minima; [33, 126].
Even for deeper architectures, all non-global local minima disappear with high probability
for any activation function if the width of the last hidden layer is increased and, under some
regularity assumptions on the activation, this continues to hold if any of the hidden layers
is sufficiently wide and the proceeding layers have a pyramidal structure; [88, 97, 120, 121].
However, note that these results only apply in this level of generality if the loss is measured
with respect to a finite set of data. In particular, these global minima are (potentially) prone
to overfitting.

In contrast to the literature mentioned above, our results in Chapter 4 concern the
landscape of the true loss instead of the empirical loss. The final goal in machine learning is
to minimize not only the empirical loss, but the true loss, so it is of essence to understand
its landscape. In Chapter 4, we consider shallow networks with (leaky) ReLU or quadratic
activation. As an alternative to the popular theme of overparametrization, we do not impose
assumptions on the network model that are not met in practice, but instead focus on special
target functions. In [14], this strategy has been pursued with constant target functions. In
Chapter 4, we expand the scope from constant to affine functions. This represents a first step
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towards a better understanding of the true loss landscape corresponding to general target
functions.

In this framework with affine target functions, we provide a complete classification of
the critical points of the true loss. We do so by unfolding the combinatorics of the problem,
governed by different types of hidden neurons appearing in a network. We find that ReLU
networks admit non-global local minima regardless of the number of hidden neurons. At
the same time, it turns out that these local minima are solely caused by the dead ReLU
neurons we found in Chapter 3. In particular, for leaky ReLU networks, which are often
used to avoid the problem of dead neurons, there are only saddle points and global minima.
This provides further theoretical evidence that leaky ReLU can avoid issues with training
that appear for ReLU networks; see also [52]. Interestingly, also for the quadratic activation,
non-global local minima do not appear, which is in line with the observations in [33, 126]
for the discretized loss but does not require overparametrization. In addition, for networks
with quadratic activation, all saddle points have a constant realization function, whereas for
(leaky) ReLU networks we show that there exist saddle points with a nonconstant realization.

These complete classifications in the proposed approach to consider special target func-
tions shed new light on important aspects of gradient-based methods in the training of
networks. Knowledge of the loss surface can be transformed into results about convergence
of such methods as done in, e.g., [67]. The set of non-global local minima, being caused by
dead ReLU neurons, consists of a single connected component in the parameter space. We
had already discovered these non-global local minima in Chapter 3. But we had not known
that these are in fact the only ones. Chapter 3 revealed issues with initializing in that set of
local minima. For the dynamics after initialization, originally, local minima were assumed
to pose the greater challenge still, but recent results suggest that saddle points are the main
obstacle; [22, 28,126]. An important ingredient in tackling saddle points is strictness, mean-
ing that the Hessian of the loss function has a strictly negative eigenvalue at these saddle
points. The strictness ensures that there is a direction along which the loss surface declines
significantly. Under the strictness assumption, a stochastic version of gradient descent with
suitable noise in each step has the ability to avoid saddle points because the noise ensures
that we discover the declining direction; [43,70,102]. The noise even guarantees a polynomial
speed in escaping these saddle points; [32].

In the case of vanilla gradient descent, there is no noise to rely on, and one needs more
involved analytic methods. A useful tool in this context is the stable manifold theorem, which
is a cornerstone of classical dynamical systems theory; [118]. It has recently been applied to
prove that vanilla gradient descent with suitable random initialization avoids strict saddle
points with probability one if the loss function is sufficiently regular; [84, 99]. We remark
that the applicability of the stable manifold theorem goes beyond vanilla gradient descent;
see [26,83,98] for its application to variants of gradient descent and other first-order methods.

Accumulation points of gradient descent trajectories are critical points. Under typical as-
sumptions like boundedness of trajectories and, e.g., validity of Łojasiewicz-type inequalities,
it is also known that trajectories converge to a critical point; see [29, 40] for the stochastic
and [1, 85] for the non-stochastic version. It follows that, with probability one, these limit
critical points are local minima or nonstrict saddle points. The strictness assumption has
been discussed in the literature and has been shown to hold in a variety of settings; e.g,
in matrix recovery [10, 44, 123], phase retrieval [124], tensor decomposition [43], shallow
quadratic networks, [33,120], and deep linear networks [3,74]. In particular, nonstrict saddle
points appear to be less common than strict ones, and the above results shrink the gap to
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proving convergence to local minima.
Whereas strictness has been discussed in abundance, less attention has been given to the

regularity assumptions imposed on the loss function. In [26, 83, 84, 98], the loss function is
taken to be twice continuously differentiable with a globally Lipschitz continuous gradient,
and in [99] these conditions are assumed to hold on a forward-invariant convex open set.
This level of regularity makes the classical dynamical systems theory directly applicable
to gradient descent algorithms. However, in many modern machine learning applications,
the loss function is neither twice continuously differentiable nor is its gradient uniformly
Lipschitz continuous on suitable invariant sets. One of the main difficulties on the side of the
dynamical systems theory is to provide a variant of the center-stable manifold theorem that
relaxes these restrictions. To this end, we extend a result of [100] in Chapter 5, no longer
requiring uniform Lipschitz continuity. A regularity requirement in this new center-stable
manifold theorem persists. To deal with that, we tweak the framework to which we apply
that theorem. More precisely, we will modify the gradient of the loss for ReLU networks so
that it fulfills the assumptions and do it in a way that we can recover the dynamics of the
original gradient. The final ingredient is strictness of saddle points. The strictness will be
deduced from the classification of critical points from Chapter 4. Thanks to the classification
being explicit, we can study the spectrum of the Hessian of the loss function as previously
pursued in, e.g., [33, 103].

With Chapters 4 and 5, we have gained a good understanding of why gradient-based
methods can successfully train shallow ReLU networks on affine target functions as long as the
obstacle observed in Chapter 3 is taken care of. This also serves as a basis for understanding
the case of more general architectures and target functions. Indeed, after the publication of
the articles corresponding to this thesis, our results have been used as a starting point for
further investigations. We will survey these in Chapter 6 to conclude this thesis.



CHAPTER 2

Efficient approximation of high-dimensional
functions with neural networks

This chapter is an adaptation of the published article [16]. The proofs have been moved from
appendices to the main body.

1. Introduction

In this chapter, we prove that different classes of high-dimensional functions admit a neural
network approximation without the curse of dimensionality. To do that, we introduce the
notion of a catalog network, which is a generalization of a standard neural network in which
the nonlinear activation functions can vary from one layer to another as long as they are
chosen from a given catalog of continuous functions. We first study the approximability
of different catalogs with neural networks. Then, we show how the approximability of
a catalog translates into the approximability of the corresponding catalog networks. An
important building block of our proofs is a new way of parallelizing networks that saves
parameters compared to the standard parallelization. As special cases of our general results,
we obtain that different combinations of one-dimensional Lipschitz functions, sums, maxima
and products as well as certain ridge functions and generalized Gaussian radial basis function
networks admit a neural network approximation without the curse of dimensionality.

The remainder of this chapter is organized as follows. In Section 2, we first establish the
notation. Then, we recall basic facts from [49, 68, 105] on concatenating and parallelizing
neural networks before we introduce a new way of network parallelization. In Section 3,
we introduce the concepts of an approximable catalog and a catalog network. Section 4 is
devoted to different concrete examples of catalogs and a careful study of their approximability.
In Sections 5 and 6, we derive bounds on the number of parameters needed to approximate a
given catalog network to a desired accuracy with neural networks. Theorems 5.2 and 6.3 are
the main results of this chapter. In Section 7, we derive different classes of high-dimensional
functions that are approximable with ReLU networks without the curse of dimensionality.

8
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2. Notation and preliminary results

A neural network encodes a succession of affine and nonlinear transformations. Let us denote
N = {1, 2, . . . } and consider the set of neural network skeletons

N =
⋃
D∈N

⋃
(l0,...,lD)∈ND+1

D∏
k=1

(Rlk×lk−1 × Rlk).

We denote the depth of a neural network skeleton φ ∈ N by D(φ) = D, the number of
neurons in the kth layer by lφk = lk, k ∈ {0, . . . , D}, and the number of network parameters
by P(φ) =

∑D
k=1 lk(lk−1 + 1). Moreover, if φ ∈ N is given by φ = [(V1, b1), . . . , (VD, bD)],

we denote by Aφk ∈ C(Rlk−1 ,Rlk), k ∈ {1, . . . , D}, the affine function x 7→ Vkx + bk. Let
a : R → R be a continuous activation function. As usual, we extend it, for every positive
integer d, to a function from Rd to Rd mapping (x1, . . . , xd) to (a(x1), . . . , a(xd)). Then the
a-realization of φ ∈ N is the function Rφ

a ∈ C(Rl0 ,RlD) given by

Rφ
a = AφD ◦ a ◦ A

φ
D−1 ◦ · · · a ◦ A

φ
1 .

We recall that suitable φ1, φ2 ∈ N can be composed such that the a-realization of the
resulting network equals the concatenation Rφ2

a ◦Rφ1
a . This is done by combining the output

layer of φ1 with the input layer of φ2. More precisely, if φ1 = [(V1, b1), . . . , (VD, bD)] and
φ2 = [(W1, c1), . . . , (WE, cE)] satisfy lφ1D(φ1) = lφ20 , then the concatenation φ2 ◦ φ1 ∈ N is given
by

φ2 ◦ φ1 = [(V1, b1), . . . , (VD−1, bD−1), (W1VD,W1bD + c1), (W2, c2), . . . , (WE, cE)].

The following result is straight-forward from the definition. A formal proof can be found
in [49].

Proposition 2.1. The concatenation

(·) ◦ (·) : {(φ1, φ2) ∈ N ×N : lφ1D(φ1) = lφ20 } → N

is associative and for all φ1, φ2 ∈ N with lφ1D(φ1) = lφ20 one has

(i) Rφ2◦φ1
a = Rφ2

a ◦ Rφ1
a for all a ∈ C(R,R),

(ii) D(φ2 ◦ φ1) = D(φ1) +D(φ2)− 1,

(iii) lφ2◦φ1k = lφ1k if k ∈ {0, . . . ,D(φ1)− 1},

(iv) lφ2◦φ1k = lφ2k+1−D(φ1) if k ∈ {D(φ1), . . . ,D(φ2 ◦ φ1)},

(v) P(φ2 ◦ φ1) = P(φ1) + P(φ2) + lφ21 l
φ1
D(φ1)−1 − l

φ2
0 l

φ2
1 − l

φ1
D(φ1)(l

φ1
D(φ1)−1 + 1),

(vi) P(φ2 ◦ φ1) ≤ P(φ1) if D(φ2) = 1 and lφ21 ≤ lφ1D(φ1)

(vii) and P(φ2 ◦ φ1) ≤ P(φ2) if D(φ1) = 1 and lφ10 ≤ lφ20 .

The next lemma is a direct consequence of the above and will be used later to estimate
the number of parameters in our approximating networks.
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Lemma 2.2. Let a ∈ C(R,R) and φ ∈ N . Suppose that ψ1, ψ2 ∈ N satisfy D(ψ1) =
D(ψ2) = 2, lψ1

0 = lψ1

2 = lφ0 and lψ2

0 = lψ2

2 = lφD(φ). Denote m = lψ1

1 if D(φ) = 1 and
m = lφD(φ)−1 if D(φ) ≥ 2. Then,

P(ψ2 ◦ φ ◦ ψ1) = P(φ) + lψ1

1 (lφ0 + 1) + lψ2

1 (lφD(φ) + 1) + lφ1 (lψ1

1 − l
φ
0 ) +m(lψ2

1 − l
φ
D(φ)).

Proof. Abbreviate D = D(φ). By Proposition 2.1 and the fact that P(ψ1) = lψ1

1 (lψ1

0 + 1) +
lψ1

2 (lψ1

1 + 1), we have

P(φ ◦ ψ1) = P(φ) + lψ1

1 (lφ0 + 1) + lφ1 (lψ1

1 − l
φ
0 )

and lφ◦ψ1

D = m. So, by applying Proposition 2.1 once more and observing lφ◦ψ1

D+1 = lφD = lψ2

2 ,
we obtain

P(ψ2 ◦ φ ◦ ψ1) = P(φ ◦ ψ1) + lψ2

1 (lφD + 1) +m(lψ2

1 − l
φ
D),

which completes the proof.

The standard parallelization of two network skeletons φ1 = [(V1, b1), . . . , (VD, bD)] and
φ2 = [(W1, c1), . . . , (WD, cD)] of the same depth is given by p(φ1, φ2) =[([

V1 0
0 W1

]
,

[
b1

c1

])
, . . . ,

([
VD 0
0 WD

]
,

[
bD
cD

])]
.

From there, arbitrarily many network skeletons φ1, . . . , φn ∈ N , n ∈ N≥3, of the same depth
can be parallelized iteratively:

p(φ1, . . . , φn) = p(p(φ1, . . . , φn−1), φn).

The first three statements of the next proposition follow immediately from the definition.
The last one is shown in [49].

Proposition 2.3. The parallelization

p :
⋃
n∈N

{(φ1, . . . , φn) ∈ N n : D(φ1) = · · · = D(φn)} → N

satisfies for all φ1, . . . , φn ∈ N , n ∈ N, with the same depth

(i) Rp(φ1,...,φn)
a (x1, . . . , xn) = (Rφ1

a (x1), . . . ,Rφn
a (xn)) for all x1 ∈ Rl

φ1
0 , . . . , xn ∈ Rlφn0 and

each a ∈ C(R,R),

(ii) lp(φ1,...,φn)
k =

∑n
j=1 l

φj
k for all k ∈ {0, . . . ,D(φ1)},

(iii) P(p(φ1, . . . , φn)) ≤ n2P(φ1) whenever lφik = l
φj
k for all k ∈ {0, . . . ,D(φ1)} and all

i, j ∈ {1, . . . , n}

(iv) and P(p(φ1, . . . , φn)) ≤ 1
2

[∑n
j=1P(φj)

]2.
Neural networks with different depths can still be parallelized, but only for a special class

of activation functions.
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φ1

φ̃2

I

φ2

p(φ1, φ̃2)

Figure 2.1: Parallelization of a network φ1 (depth 4) and a shorter network φ2 (depth 2)
obtained by concatenating φ2 twice with a network I arising from the 2-identity requirement,
resulting in φ̃2 = I ◦ I ◦ φ2.

p(φ1, φ2)

φ1

φ2

P ∼ l

P ∼ l

l

l
P ∼ l2

Figure 2.2: The parallelization of φ1 with architecture (1, l, 1, 1) and φ2 with architecture
(1, 1, l, 1) has more than l2 parameters.

Definition 2.4. We say a function a ∈ C(R,R) fulfills the c-identity requirement for a
number c ≥ 2 if there exists I ∈ N such that D(I) = 2, lI1 ≤ c and RI

a = idR .

Note that if I satisfies RI
a = idR , one can also realize the identity function idRd for any

d ∈ N, using d-fold parallelization Id = p(I, . . . , I). Obviously, lId1 ≤ cd.
The most prominent example satisfying Definition 2.4 is the rectified linear unit activation

R → R, x 7→ max{x, 0}. It fulfills the 2-identity requirement with I = [([1 − 1]T , [0 0]T ),
([1 − 1], 0)]. However, it is easy to see that generalized ReLU functions of the form

a(x) =

{
rx if x ≥ 0

sx if x < 0

for (r, s) ∈ R2 with r + s 6= 0, such as leaky ReLU, also satisfy the 2-identity requirement.1
Using the identity requirement, one can parallelize networks of arbitrary depths. If

φ1, . . . , φn ∈ N have different depths, one simply concatenates the shorter ones with identity
networks until all have the same depth. Then one applies the standard parallelization; see
Fig. 2.1 for an illustration.

Although this successfully parallelizes networks with arbitrary architecture, one can do
better in terms of parameter counts. The estimate in Proposition 2.3.(iv) contains a square of∑n

j=1P(φj). This is not due to lax estimates, but a square can actually appear if, for some j,
there are two large consecutive layers in p(φj, φj+1) which in φj and φj+1 were next to small
layers; see Fig. 2.2. To avoid this, we introduce a new parallelization which uses identity
networks to shift φ1, . . . , φn away from each other and, as a result, achieves a parameter
count that is linear in

∑n
j=1P(φj). For instance, to parallelize φ1 and φ2, we add D(φ2)

identity networks after φ1 and D(φ1) identity networks in front of φ2 before applying p. The
realization of the resulting network still is (x1, x2) 7→ (Rφ1

a (x1),Rφ2
a (x2)). Extending this

construction to more than two networks is straight-forward; see Fig. 2.3. We denote it by pI ,
where I ∈ N is the network satisfying the identity requirement. The following proposition
shows that pI achieves our goal of a linear parameter count in

∑n
j=1P(φj).

1Other activation functions satisfying the identity requirement are polynomials. For example, 1
2 ((x +

1)2 − x2 − 1) = x shows this for x2.
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hidden
layers
of φ1

hidden
layers
of φ2

hidden
layers
of φ3

Rφ1
a

Rφ2
a

Rφ3
a

Figure 2.3: New “diagonalized” parallelization resulting from shifting φ1, φ2, φ3 away from
each other.

Proposition 2.5. Assume a ∈ C(R,R) fulfills the c-identity requirement for a number c ≥ 2
with I ∈ N . Then the parallelization pI :

⋃
n∈NN n → N satisfies

P(pI(φ1, . . . , φn)) ≤
(

11
16
c2l2n2 − 1

) n∑
j=1

P(φj)

for all n ∈ N and φ1, . . . , φn ∈ N , where we denote l = maxj∈{1,...,n}max{lφj0 , l
φj
D(φj)
}.

Proof. Assume without loss of generality that n ≥ 2. To simplify notation, let us introduce
some abbreviations. Write Dj = D(φj), lij = lφij , Ei =

∑i
j=1Dj, Si =

∑i
j=1 l

j
Dj

and
Ti =

∑n
j=i l

j
0. Moreover, denote ci = c if i ∈ {1, . . . , n− 1} and ci = 1 if i ∈ {0, n}. Consider

the network architecture (L0, . . . , LEn) of depth En given by

Lk =

{
ciSi + ciTi+1 if k = Ei,

cSi−1 + lim + cTi+1 if k = Ei−1 +m,

where m is ranging from 1 to Di−1. As discussed in the paragraph preceding Proposition 2.5,
there is a skeleton ψ ∈ N with this architecture that realizes the parallelization of φ1, . . . , φn;
see also Fig. 2.3. One has P(ψ) =

∑n
i=1 Pi for Pi =

∑Ei
k=Ei−1+1 Lk(Lk−1+1). In the remainder

of the proof, we show that Pi ≤ (11
16
c2l2n2 − 1)P(φi). We distinguish the cases Di ≥ 2 and

Di = 1. Let us begin with the former case. By the definition of Lk, we have

Pi = (cSi−1 + li1 + cTi+1)(ci−1Si−1 + ci−1Ti + 1)

+

Di−1∑
m=2

(cSi−1 + lim + cTi+1)(cSi−1 + lim−1 + cTi+1 + 1)

+ (ciSi + ciTi+1)(cSi−1 + liDi−1 + cTi+1 + 1).

Now we use c ≥ 2, c ≥ ci, Si = Si−1 + liDi , Ti = li0 + Ti+1 and Si−1 + Ti+1 ≤ l(n − 1), and
reorder the resulting terms to obtain

Pi ≤
Di∑
m=1

lim(lim−1 + 1) + c2l(n− 1)

Di∑
m=0

lim

+ (c− 1)li1l
i
0 + (c− 1)liDi(l

i
Di−1 + 1) +Dicl(n− 1)(cl(n− 1) + 1).

Then, we bound the second line by 2(c− 1)P(φi), the sum
∑Di

m=0 l
i
m by P(φi) and the depth

Di by 1
2
P(φi) to find

Pi ≤ P(φi)
[
2c− 1 + c2l(n− 1) + 1

2
cl(n− 1)(cl(n− 1) + 1)

]
.
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Finally, since c ≥ 2 and n ≥ 2, the term in the brackets can be bounded by 11
16
c2l2n2− 1, and

the proposition follows in the case Di ≥ 2. Now assume Di = 1 so that P(φi) = li1(li0 + 1).
Then, by the same inequalities as in the previous case,

Pi = (ciSi + ciTi+1)(ci−1Si−1 + ci−1Ti + 1)

≤ c2(l(n− 1) + li1)(l(n− 1) + li0 + 1
2
).

If li0 = 1, then P(φi) = 2li1 and, hence,

Pi + P(φi) ≤ c2l2(n− 1 + 1
2
P(φi))(n+ 1

2
) + P(φi)

≤ c2l2P(φi)
[
n
2
(n+ 1

2
) + 1

4

]
.

Since n ≥ 2, we have n
2
(n+ 1

2
) + 1

4
≤ 11

16
n2, which concludes the case li0 = 1. Finally, if li0 ≥ 2,

then P(φi) ≥ 3 and l ≥ 2, so we obtain

Pi + P(φi) ≤ c2l2(n− 1 + 1
2
li1)(n− 3

4
+ 1

2
li0) + P(φi)

≤ c2l2
[
(n− 1)(n− 3

4
) + n−1

2
li0 + (n−1

2
+ 1

8
)li1 + 1

4
li0l

i
1

]
+ 1

16
c2l2P(φi)

≤ c2l2P(φi)
[

1
3
(n− 1)(n− 3

4
) + n−1

2
+ 5

16

]
,

and the term in the brackets is bounded by 1
3
n2, which finishes the last remaining case.

It can be seen from the proof that the inequality of Proposition 2.5 is never an equality.
However, it can be shown that it is asymptotically sharp up to a constant for large n. Indeed,
if c = 2 (as is the case for ReLU) and if φ1 = · · · = φn has depth at least two (D(φ1) ≥ 2)
and a single neuron in each layer (lφ1k = 1 for all k), then

(2n3 − n2)P(φ1) = P(pI(φ1, . . . , φn)) ≤
(

11
4
n3 − n

)
P(φ1).

The inequality on the right is a consequence of Proposition 2.5. We verify the equality on
the left: with the notation from the previous proof, we have Si = i and Ti = n− i+ 1. Thus,
the formula for Pi reads

Pi = (2n− 1)2n(Di − 2) +


(2n− 1)(n+ 1) + 4n2, if i = 1,

(2n− 1)(2n+ 1) + 4n2, if 2 ≤ i ≤ n− 1,

(2n− 1)(2n+ 1) + 2n2, if i = n.

Since P(φ1) = 2Di, we find for the diagonal parallelization

P(pI(φ1, . . . , φn)) = P1 + (n− 2)P2 + Pn = (2n3 − n2)P(φ1).

Hence, the bound in the proposition is asymptotically sharp up to a factor of at most 11
8
.

Proposition 2.5 illustrates that there is a fundamental difference between counting the
number of neurons and counting the number of parameters. As already observed in [49,68,105],
this also plays a role for the concatenation. The standard concatenation of two networks φ1

and φ2 has roughly P(φ1) + P(φ2) neurons. But the parameter count may increase much
more dramatically. If, e.g., most of the neurons of φ1 are in the last hidden layer and most of
the neurons of φ2 in the first hidden layer, then φ2 ◦φ1 has roughly P(φ1) · P(φ2) parameters;
see Fig. 2.4. To counter this, one can use the concatenation

I
l
φ2
D(φ2)

◦ φ2 ◦ Ilφ20
◦ I

l
φ1
D(φ1)

◦ φ1 ◦ Ilφ10
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l

(I ◦ φ ◦ I) ◦ (I ◦ φ ◦ I)

P ∼ 2l

φ ◦ φφ

P ∼ l2P ∼ l

Figure 2.4: Concatenation with and without additional identity networks. Here, φ is a
network of depth 2 with l neurons in its hidden layer, and I is assumed to satisfy the
2-identity requirement.

instead of φ2 ◦ φ1, where Id is an identity network in d dimensions. Even though this results
in more neurons, it reduces the parameter count. The following estimate is a consequence of
Lemma 2.2.

Corollary 2.6. Assume a ∈ C(R,R) satisfies the c-identity requirement for a number c ≥ 2
with I ∈ N and denote Id = p(I, . . . , I) for all d ∈ N. Let φ ∈ N and abbreviate m =
max{lφ0 , l

φ
D(φ)}. Then

P(IlφD(φ)
◦ φ ◦ Ilφ0 ) ≤ 5

6
cmP(φ) + 29

12
c2m2.

Proof. Abbreviate D = D(φ), k = lφ0 and n = lφD(φ). First, assume D ≥ 2. Lemma 2.2 yields

P(In ◦ φ ◦ Ik) = P(φ) + lIk1 (k + 1) + lIn1 (n+ 1) + lφ1 (lIk1 − k) + lφD−1(lIn1 − n).

Note that lIk1 and lIn1 are at most ck and cn, respectively. This and the fact that lφ1 + lφD−1 ≤
2
3
P(φ) imply

P(In ◦ φ ◦ Ik) ≤ P(φ) + 2cm(m+ 1) + (lφ1 + lφD−1)(cm− 1)

≤ 5
6
cmP(φ) + 2c2m2,

where the last inequality holds because c ≥ 2. Now, suppose D = 1. Then, by Lemma 2.2,

P(In ◦ φ ◦ Ik) ≤ n+ ck(k + 1) + cn(n+ 1) + c2nk

≤ 5
6
cP(φ) + c2m2 + 7

6
cm(m+ 1) +m

≤ 5
6
cmP(φ) + 29

12
c2m2,

where we again used c ≥ 2.

Corollary 2.6 will be used in our proofs to estimate the number of parameters of

I
l
φ2
D(φ2)

◦ φ2 ◦ Ilφ20
◦ I

l
φ1
D(φ1)

◦ φ1 ◦ Ilφ10
.

3. Catalog networks

In this section, we generalize the concept of a neural network by allowing the activation
functions to change from one layer to the next as long as they belong to a predefined
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f1,1

f1,2

f1,3

f2,1

f2,2

Aξ,1 Aξ,2

Figure 2.5: Realization of an example catalog network.

catalog F ⊆
⋃
m,n∈NC(Rm,Rn). We denote the dimension of the domain of a function

f ∈
⋃
m,n∈NC(Rm,Rn) by I(f) and the dimension of its target space by O(f), so that

f ∈ C(RI(f),RO(f)). For a catalog F and numbers D ∈ N, l0, . . . , l2D ∈ N, we define Cl0,...,l2DF
as
D∏
k=1

Rl2k−1×l2k−2 × Rl2k−1 ×
⋃
n∈N

{
(f1, . . . , fn) ∈ Fn :

n∑
j=1

I(fj) = l2k−1 and
n∑
j=1

O(fj) = l2k

}
.

The set of all catalog networks corresponding to F is given by

CF =
⋃
D∈N

⋃
l0,...,l2D∈N

Cl0,...,l2DF .

An element ξ ∈ Cl0,...,l2DF is of the form

ξ = [(V1, b1, (f1,1, . . . , f1,n1)), . . . , (VD, bD, (fD,1, . . . , fD,nD))].

For each k ∈ {1, . . . , D}, we let Aξ,k ∈ C(Rl2k−2 ,Rl2k−1) be the affine function x 7→ Vkx+ bk.
By Gξ,k ∈ C(Rl2k−1 ,Rl2k), we denote the function mapping x ∈ Rl2k−1 to

Gξ,k(x) =
[
fk,1
(
x1, . . . , xI(fk,1)

)
, fk,2

(
xI(fk,1)+1, . . . , xI(fk,1)+I(fk,2)

)
, . . . ,

fk,nk
(
xI(fk,1)+···+I(fk,nk−1)+1, . . . , xI(fk,1)+···+I(fk,nk )

)]
,

that is, we apply fk,1 to the first I(fk,1) entries of x, fk,2 to the next I(fk,2) entries and so
on; see Fig. 2.5. This is well-defined due to the sum conditions in the definition of Cl0,...,l2DF .
The overall realization function Rξ ∈ C(Rl0 ,Rl2D) of the catalog network ξ is

Rξ = Gξ,D ◦ Aξ,D ◦ · · · ◦ Gξ,1 ◦ Aξ,1.

We define the depth of ξ as Dξ = D. Its input dimension is Iξ = l0, its output dimension
Oξ = l2D, and its maximal width Wξ = max{l0, . . . , l2D}.

Our goal is to show that catalog networks can efficiently be approximated with neural
networks with respect to some weight function, by which we mean any function w : [0,∞)→
(0,∞).

Definition 3.1. We say the decay of a weight function w is controlled by (s1, s2) ∈ [1,∞)×
[0,∞) if

s1r
s2w(rmax{x, 1}) ≥ w(x)

for all x ∈ [0,∞) and r ∈ [1,∞).
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Controlled decay is a general concept applicable to different types of weight functions.
The inequality in Definition 3.1 is exactly what is needed in the proofs of our results. Useful
weight functions are constants and functions of the form (1 + xq)−1 or (max{1, xq})−1 for
some q ∈ (0,∞). Constant weight functions have decay controlled by (1, 0). The functions
(1 + xq)−1 and (max{1, xq})−1 are covered by the following result.

Lemma 3.2. Let δ ∈ (0,∞) and consider a nondecreasing function f : [0,∞) → (0,∞).
Moreover, let g : [0,∞) → [0,∞) be of the form x 7→

∑q
j=0 ajx

bj for q ∈ N0 = N ∪ {0} and
a0, b0, . . . , aq, bq ∈ [0,∞). Then the decay of the weight function w(x) = f(x)(max{g(x), δ})−1

is controlled by (max{g(1)/δ, 1},max{b0, . . . , bq}).

Proof. Denote s = max{b0, . . . , bq}. Since the coefficients a0, . . . , aq of g are nonnegative,
one has g(rx) ≤ rsg(x) for all x ∈ [0,∞) and r ∈ [1,∞). This and the assumption that f is
nondecreasing yield

w(x) ≤ f(rx)

max{g(x), δ}
≤ f(rx)rs

max{g(rx), δ}
= rsw(rx)

for all x ∈ [0,∞), r ∈ [1,∞). That f is nondecreasing also gives

w(x) ≤ f(1)

max{g(x), δ}
≤ max{g(1), δ}

δ
w(1)

for all x ∈ [0, 1). Combining the previous two estimates yields

δ

max{g(1), δ}
w(x) ≤ w(max{x, 1}) ≤ rsw(rmax{x, 1})

for all x ∈ [0,∞), r ∈ [1,∞), which finishes the proof.

Our main interest is in catalogs of functions that are well approximable with neural
networks. For the proofs of our main results to work we need the approximations to be
Lipschitz continuous with a Lipschitz constant independent of the accuracy. To make this
precise, we denote the Euclidean norm by ‖ · ‖.

Definition 3.3. Consider an activation function a ∈ C(R,R) and a weight function w. Fix
constants L ∈ [0,∞) and ε ∈ (0, 1]. Given a function f ∈

⋃
m,n∈NC(Rm,Rn) and a set

Q ⊆ RI(f), we define the approximation cost Costa,w(f,Q, L, ε) as the infimum of the setP(φ) ∈ N :
φ ∈ N with Rφ

a ∈ C(RI(f),RO(f))
s.t. Rφ

a is L-Lipschitz on RI(f) and
supx∈Q w(‖x‖)‖f(x)−Rφ

a(x)‖ ≤ ε

 ,

where, as usual, inf(∅) is understood as ∞.

The next definition specifies the class of catalogs for which we will be able to prove
Theorem 5.2 on the approximability of catalog networks.

Definition 3.4. Let a ∈ C(R,R), κ = (κ0, κ1, κ2, κ3) ∈ [1,∞)2 × [0,∞)2, ε ∈ (0, 1], and
suppose w is a weight function. Consider a subset F ⊆

⋃
m,n∈NC(Rm,Rn) together with a

family of sets Q = (Qf )f∈F such that Qf ⊆ RI(f) contains 0 for all f ∈ F and a collection of
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Lipschitz constants L = (Lf )f∈F ⊆ [0,∞). Then we call F an [a, w,Q, L, ε, κ]-approximable
catalog if supf∈F ‖f(0)‖ ≤ κ0 and

Costa,w(f,Qf , Lf , δ) ≤ κ1 max{I(f),O(f)}κ2δ−κ3

for all f ∈ F and δ ∈ (0, ε].

Note that if F is [a, w,Q, L, ε, κ]-approximable, then every f ∈ F must be Lf -Lipschitz
continuous on the set Qf . Indeed, the definition implies that for all δ ∈ (0, ε] there exists
φδ ∈ N such that w(‖x‖)‖f(x)−Rφδ

a (x)‖ ≤ δ and ‖Rφδ
a (x)−Rφδ

a (y)‖ ≤ Lf‖x− y‖ for all
x, y ∈ Qf . Hence, one obtains from the triangle inequality that

‖f(x)− f(y)‖ ≤ δ

w(‖x‖)
+ Lf‖x− y‖+

δ

w(‖y‖)

for all x, y ∈ Qf and δ > 0, which shows that f is Lf -Lipschitz on Qf .
If F is a catalog approximable on sets Q = (Qf)f∈F with Lipschitz constants L =

(Lf)f∈F ⊆ [0,∞), we define for a catalog network ξ ∈ Cl0,...,l2DF of the form ξ = [(V1, b1,
(f1,1, . . . , f1,n1)), . . . , (VD, bD, (fD,1, . . . , fD,nD))],

Qξ,k =

nk∏
j=1

Qfk,j ⊆
nk∏
j=1

RI(fk,j) = Rl2k−1

and
Lξ,k = max

j∈{1,...,nk}
Lfk,j

for all k ∈ {1, . . . ,Dξ}. Then the following holds.

Lemma 3.5. Let ξ ∈ CF be a catalog network based on an [a, w,Q, L, ε, κ]-approximable
catalog F . Then

‖Gξ,k(x)− Gξ,k(y)‖ ≤ Lξ,k‖x− y‖

for all k ∈ {1, . . . ,Dξ} and x, y ∈ Qξ,k.

Proof. Assume ξ is of the form [(V1, b1, (f1,1, . . . , f1,n1)), . . . , (VD, bD, (fD,1, . . . , fD,nD))]. As
discussed after Definition 3.4, every f ∈ F is Lf -Lipschitz continuous on the set Qf . For
k ∈ {1, . . . , D}, j ∈ {1, . . . , nk} and x ∈ Rl2k−1 , denote by x(k,j) the vector

x(k,j) = (xI(fk,1)+···+I(fk,j−1)+1, . . . , xI(fk,1)+···+I(fk,j)) ∈ RI(fk,j).

Then, for all k ∈ {1, . . . , D} and x, y ∈ Qξ,k,

‖Gξ,k(x)− Gξ,k(y)‖2 =

nk∑
j=1

‖fk,j(x(k,j))− fk,j(y(k,j))‖2

≤
nk∑
j=1

L2
fk,j
‖x(k,j) − y(k,j)‖2 ≤ [Lξ,k]2‖x− y‖2,

(3.1)

which is what we wanted to show.
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4. Examples of approximable catalogs

In this section, we provide different examples of approximable catalogs that will be used
in Section 7 to show that various high-dimensional functions admit neural network approx-
imations without the curse of dimensionality. Our catalogs are based on one-dimensional
Lipschitz functions, the maximum function, the square, the product and the decreasing
exponential function. They will be collected in Examples 4.1, 4.2, 4.4, and 4.6.

First, consider a K-Lipschitz function f : R → R for a constant K ∈ [0,∞). For any
given r ∈ (0,∞), f can be approximated on [−r, r] with a piecewise linear function supported
on N + 1 equidistributed points with accuracy Kr/N . Such a piecewise linear function can
be realized with a ReLU network φN with one hidden layer and N hidden neurons. This
results in P(φN) = 3N + 1, from which it follows that

CostReLU,1(f, [−r, r], K, ε) ≤ P(φdKrε−1e) ≤ 3Krε−1 + 4.

Alternatively, one can approximate f on the entire real line with respect to a weight function
of the form wq(x) = (1 + xq)−1 for some q ∈ (1,∞). Then

CostReLU,wq(f,R, K, ε) ≤ 2
1/q−13(Kε−1)

q/q−1 + 4,

the proof of which is a variant of [60, Corollary 3.13]. Indeed, set r = (2Kε−1)1/(q−1) and
N = dKrε−1e. Using φN as above, we have |f(x) − φN(x)| ≤ ε for all x ∈ [−r, r] and
|f(x)−φN(x)| ≤ 2K|x| for all x ∈ R\[−r, r]. The choice of r then ensures that wq(|x|)|f(x)−
φN(x)| ≤ ε for all x ∈ R. In the notation of approximable catalogs, we can summarize as
follows.

Example 4.1. Let r ∈ (0,∞) and consider the weight function wq(x) = (1 + xq)−1 for a
q ∈ (1,∞). For K ∈ [1,∞), introduce the K-Lipschitz catalog

FLip
K =

{
f ∈ C(R,R) : f is K-Lipschitz and |f(0)| ≤ K

}
.

Set LidR = 1 and Lf = K for f ∈ FLip
K \{idR}. If we define approximation sets by QidR = R

and

(i) Qf = [−r, r] for all f ∈ FLip
K \{idR}, then FLip

K is a [ρ, 1, Q, L, 1, κ]-approximable catalog
for κ = (K, 3Kr + 4, 0, 1)

(ii) Qf = R for all f ∈ FLip
K \{idR}, then FLip

K is a [ρ, wq, Q, L, 1, κ]-approximable catalog
for2 κ = (K, 5(2K)q/(q−1), 0, q/q−1).

Let us now turn to the maximum functions maxd : Rd → R, x 7→ max{x1, . . . , xd}, d ∈ N.
They admit an exact representation with ReLU networks. Indeed, max1 is simply the identity
and max2 is the ReLU-realization of

φ2 =

1 −1
0 1
0 −1

 ,
0

0
0

 ,
( [

1 1 −1
]
, 0
).

If I ∈ N is a skeleton for which ReLU satisfies the 2-identity requirement and we define
Id = p(I, . . . , I), d ∈ N, then it easily follows by induction that maxd, d ∈ N≥3, is the

2Here we use that 4 ≤ 2(2Kε−1)q/(q−1) since K ≥ 1.
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ReLU-realization of φd = φd−1 ◦ p(φ2, Id−2), whose architecture is (d, 2d− 1, 2d− 3, . . . , 3, 1).
From this, we obtain P(φd) = 1

3
(4d3 + 3d2− 4d+ 3) ≤ 2d3. In other words, for all d ∈ N and

any weight function w,
CostReLU,w(maxd,Rd, 1, ε) ≤ 2d3.

Adding the maximum functions to the Lipschitz catalog, we obtain the following.

Example 4.2. Adopt the setting of Example 4.1 and define the K-Lipschitz-maximum catalog
FLip,max
K = FLip

K ∪ {maxd : d ∈ N}. Add the approximation set Qmaxd = Rd and the Lipschitz
constant Lmaxd = 1 for all d ∈ N. Then FLip,max

K is

(i) a [ρ, 1, Q, L, 1, κ]-approximable catalog for κ = (K, 3Kr + 4, 3, 1) and Q as in Exam-
ple 4.1.(i).

(ii) a [ρ, wq, Q, L, 1, κ]-approximable catalog for κ = (K, 5(2K)q/(q−1), 3, q/q−1) and Q as in
Example 4.1.(ii).

Next, we study the approximability of the square function sq : R→ R, x 7→ x2 . It has
been shown by different authors that it can be approximated with accuracy ε > 0 on the
unit interval by the ReLU-realization of a skeleton φε ∈ N satisfying P(φε) = O(log2(ε−1));
see [38, 49, 113, 129]. A precise estimate of the required number of parameters is given in
Proposition 3.3 of [49]. In our language it can be stated as

CostReLU,1(sq, [0, 1], 2, ε) ≤ max{13, 10 log2(ε−1)− 7}.

Moreover, the neural network Rφε
ReLU achieving this cost is 2-Lipschitz and satisfies Rφε

ReLU =
ReLU on R\[0, 1]. Using a mirroring and scaling argument, we can deduce the following
estimate for approximating the square function on the interval [−r, r] for any r ∈ (0,∞).

Lemma 4.3. For all r ∈ (0,∞) and ε ∈ (0, 1], there exists a skeleton ψr,ε ∈ N such that
Rψr,ε

ReLU ∈ C(R,R) is 2r-Lipschitz, supx∈[−r,r] |R
ψr,ε
ReLU(x) − x2| ≤ ε, Rψr,ε

ReLU(x) = r|x| for all
x ∈ R\[−r, r] and

P(ψr,ε) ≤ max{52, 80 log2(r) + 40 log2(ε−1)− 28}.

Proof. Choose φr,1, φr,2 ∈ N of depth 1 such that Rφr,1
ReLU ∈ C(R,R2) realizes x 7→ (x

r
,−x

r
)

and Rφr,2
ReLU ∈ C(R2,R) realizes (x, y) 7→ r2(x+y). If (φε)ε∈(0,1] ⊆ N are the ε-approximations

of the square function on [0, 1] derived in Proposition 3.3 of [49], then3 the ReLU-realization
of ψr,ε = φr,2 ◦ p(φr−2ε, φr−2ε) ◦φr,1 approximates the square function on [−r, r] with accuracy
ε. To see this, note that Rψr,ε

ReLU(x) = r2Rφr−2ε
ReLU ( |x|

r
) for all x ∈ R since Rφr−2ε

ReLU = ReLU on
R\[0, 1]. This also implies Rψr,ε

ReLU(x) = r|x| for all x ∈ R\[−r, r] as well as the 2r-Lipschitz
continuity. Finally, (vi) and (vii) of Proposition 2.1 together with (iii) of Proposition 2.3
assure that P(ψr,ε) ≤ 4P(φr−2ε), which concludes the proof.

More concisely, for all r ∈ [2,∞) and ε ∈ (0, 1], the statement of Lemma 4.3 can be
written as

CostReLU,1(sq, [−r, r], 2r, ε) ≤ 80 log2(r) + 40 log2(ε−1)− 28.

3Here, we understand φr−2ε as φ1 if r−2ε > 1.



20 Chapter 2

Now, let us take a closer look at the decreasing exponential function e : R→ R, x 7→ e−x.
Its restriction to [0,∞) is covered by the general approximation result for Lipschitz functions.
But exploiting its exponential decrease, we can obtain better estimates. More precisely, e can
be approximated to a given accuracy ε ∈ (0, 1] uniformly on [0,∞) with a piecewise linear
interpolation supported on the bε−1c points − log(nε), n ∈ {1, . . . , bε−1c} which is constant
on R\[− log(bε−1cε),− log(ε)]. Realizing this piecewise linear function with a ReLU network
with one hidden layer yields

CostReLU,1(e, [0,∞), 1, ε) ≤ 3bε−1c+ 1 ≤ 4ε−1.

Together with idR and sq, e gives rise to the following catalog, which we will use to approxi-
mate generalized Gaussian radial basis function networks in Section 7.

Example 4.4. Let r ∈ [5,∞). Define the catalog FRBF = {idR , e, sq} with approximation
sets QidR = R, Qe = [0,∞), Qsq = [−r, r] and Lipschitz constants LidR = Le = 1, Lsq = 2r.
Then FRBF is4 a [ρ, 1, Q, L, r−3, (1, 4, 0, 1)]-approximable catalog.

Using the identity xy = 1
4
((x+y)2−(x−y)2), we can also estimate the approximation rate

of the product function pr : R2 → R, (x, y) 7→ xy. This trick has already been used before
by, e.g., [87, 129]. We still provide a proof of the following proposition since the results in
the existing literature do not specify the Lipschitz constant. Our proofs of both, Lemma 4.3
and Proposition 4.5, follow the reasoning of Section 3 in [49].

Proposition 4.5. For all r ∈ (0,∞) and ε ∈ (0, 1
2
], one has

CostReLU,1(pr, [−r, r]2,
√

8r, ε) ≤ max{208, 320 log2(r) + 160 log2(ε−1) + 48}.

Proof. Choose ψ1, ψ2 ∈ N of depth 1 such that Rψ1

ReLU ∈ C(R2,R2) realizes (x, y) 7→ (x +
y, x− y) and Rψ2

ReLU ∈ C(R2,R) realizes (x, y) 7→ 1
4
(x− y). If (ψr,ε)r∈(0,∞),ε∈(0,1] ⊆ N denote

the ε-approximations of the square function on the interval [−r, r] from Lemma 4.3, then
the ReLU-realization of χr,ε = ψ2 ◦ p(ψ2r,2ε, ψ2r,2ε) ◦ ψ1 approximates the product function
on [−r, r]2 with accuracy ε. Furthermore, Rχr,ε

ReLU is
√

8r-Lipschitz continuous because Rψ2r,2ε

ReLU

is 4r-Lipschitz continuous and, hence,

|Rχr,ε
ReLU(x1, x2)−Rχr,ε

ReLU(y1, y2)| ≤ 2r(|x1 − y1|+ |x2 − y2|)
≤
√

8r‖(x1 − y1, x2 − y2)‖.

As in the proof of Lemma 4.3, combining (vi) and (vii) of Proposition 2.1 with (iii) of
Proposition 2.3, shows that P(χr,ε) ≤ 4P(ψ2r,2ε), from which the proposition follows.

The following is our last example of an approximable catalog.

Example 4.6. Take FLip
K from Example 4.1, let R ∈ (0,∞), and define the K-Lipschitz-

product catalog FLip,prod
K = FLip

K ∪ {pr}. The approximation sets and Lipschitz constants
are defined as in (i) of Example 4.1 for FLip

K and Qpr = [−R,R]2, Lpr =
√

8R. Then
FLip,prod
K is a [ρ, 1, Q, L, δ, (K,M, 0, 1)]-approximable catalog for5 δ = min{1/2, R2/2} and M =

max{3Kr + 4, 105R2}.
4That r ≥ 5 and ε ≤ r−3 shows 80 log2(r) + 40 log2(ε

−1)− 28 ≤ 4ε−1.
5This specific choice of δ and M ensures that max{208, 320 log2(R) + 160 log2(ε

−1) + 48} ≤Mε−1 for all
ε ∈ (0, δ].
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5. Approximation results

In this section, we state the first of our main results, Theorem 5.2, on the approximability
of catalog networks with neural networks and explore the special case of ReLU activation in
Corollaries 5.5 and 5.6. The next lemma is crucial for the proof of Theorem 5.2. It establishes
the approximability of the functions Gξ,k, k ∈ {1, . . . ,Dξ}, in a catalog network ξ ∈ CF . Since
Gξ,k is composed of functions fk,1, . . . , fk,nk from the catalog F , it can be approximated by
approximating fk,1, . . . , fk,nk with neural networks and then parallelizing them as in Fig. 2.3.
Proposition 2.5 allows us to keep track of the resulting number of parameters.

Lemma 5.1. Assume a ∈ C(R,R) satisfies the c-identity requirement for some c ≥ 2.
Let F be an [a, w,Q, L, ε, κ]-approximable catalog for a nonincreasing weight function w,
and consider a catalog network ξ ∈ Cl0,...,l2DF for some D ∈ N and l0, . . . , l2D ∈ N. Then
for all k ∈ {1, . . . , D} and δ ∈ (0, ε], there exists a skeleton φ ∈ N with a-realization
Rφ
a ∈ C(Rl2k−1 ,Rl2k) such that

(i) supx∈Qξ,k w(‖x‖)‖Gξ,k(x)−Rφ
a(x)‖ ≤ δ,

(ii) Rφ
a is Lξ,k-Lipschitz continuous on Rl2k−1 and

(iii) P(φ) ≤ 11
16
κ1c

2 max{l2k−1, l2k}κ2+κ3/2+5δ−κ3.

If, in addition, I(f) ≤ d and O(f) ≤ d for some d ∈ N and all f ∈ F , then one also has

(iv) P(φ) ≤ 11
16
κ1c

2d2 max{l2k−1, l2k}κ2+κ3/2+3δ−κ3.

Proof. Assume ξ is of the form [(V1, b1, (f1,1, . . . , f1,n1)), . . . , (VD, bD, (fD,1, . . . , fD,nD))]. Fix
any k ∈ {1, . . . , D} and δ ∈ (0, ε]. The assumption that F is [a, w,Q, L, ε, κ]-approximable
for κ = (κ0, κ1, κ2, κ3) guarantees that there exist skeletons ψj ∈ N , j ∈ {1, . . . , nk}, such
that the a-realizations Rψj

a ∈ C(RI(fk,j),RO(fk,j)) satisfy

(i) ‖Rψj
a (x)−Rψj

a (y)‖ ≤ Lfk,j‖x− y‖ for all x, y ∈ RI(fk,j),

(ii) w(‖x‖)‖fk,j(x)−Rψj
a (x)‖ ≤ δ√

nk
for all x ∈ Qfk,j

(iii) and P(ψj) ≤ κ1 max{I(fk,j),O(fk,j)}κ2n
κ3/2
k δ−κ3 .

Pick an I ∈ N such that a fulfills the c-identity requirement with I, and let φ ∈ N be
the I-parallelization φ = pI(ψ1, . . . , ψnk). For j ∈ {1, . . . , nk} and x ∈ Rl2k−1 , denote
x(k,j) = (xI(fk,1)+···+I(fk,j−1)+1, . . . , xI(fk,1)+···+I(fk,j)). Then, for all x, y ∈ Rl2k−1 ,

‖Rφ
a(x)−Rφ

a(y)‖2 =

nk∑
j=1

‖Rψj
a (x(k,j))−Rψj

a (y(k,j))‖2

≤
nk∑
j=1

L2
fk,j
‖x(k,j) − y(k,j)‖2 ≤ [Lξ,k]2‖x− y‖2.

(5.1)

Moreover, since w is nonincreasing, we obtain, for all x ∈ Qξ,k,

‖Gξ,k(x)−Rφ
a(x)‖2 =

nk∑
j=1

‖fk,j(x(k,j))−Rψj
a (x(k,j))‖2

≤ δ2

nk

nk∑
j=1

[w(‖x(k,j)‖)]−2 ≤ δ2[w(‖x‖)]−2.

(5.2)
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It remains to estimate the number of parameters P(φ). Since lψj0 = I(fk,j) ≤ l2k−1 and
l
ψj
D(ψj)

= O(fk,j) ≤ l2k for each j ∈ {1, . . . , nk}, Proposition 2.5 yields

P(φ) ≤ 11
16
c2 max{l2k−1, l2k}2n2

k

nk∑
j=1

P(ψj)

≤ 11
16
κ1c

2 max{l2k−1, l2k}κ2+2n
3+

κ3
2

k δ−κ3 .

(5.3)

Note that we always have nk ≤ max{l2k−1, l2k}, which yields (iii). If I(f) ≤ d and O(f) ≤ d

for some d ∈ N and all f ∈ F , then we use the estimate lψj0 = I(fk,j) ≤ d instead of
l
ψj
0 = I(fk,j) ≤ l2k−1 (and similarly for lψjD(ψj)

) to obtain P(φ) ≤ 11
16
c2d2n2

k

∑nk
j=1P(ψj) in

(5.3), which shows (iv).

Before we can formulate Theorem 5.2, we have to introduce a few more concepts. Let
F be a catalog that is approximable on sets Q = (Qf)f∈F with Lipschitz constants L =
(Lf)f∈F ⊆ [0,∞). Then, for any catalog network ξ = [(V1, b1, (f1,1, . . . , f1,n1)), . . . , (VD, bD,
(fD,1, . . . , fD,nD))] ∈ CF , we define

DomQ,ξ

=

{
x ∈ RIξ : for all k ∈ {1, . . . ,Dξ} :

(
Aξ,k ◦ Gξ,k−1 ◦ · · · ◦ Aξ,2 ◦ Gξ,1 ◦ Aξ,1

)
(x) ∈ Qξ,k

}
and

LipL,ξ =

Dξ∏
k=1

Lξ,k‖Vk‖,

where ‖ · ‖ denotes the operator norm when applied to matrices. The set DomQ,ξ describes
where we will be able to approximate the catalog network ξ. It takes into account that
each each layer function Gξ,k can only be approximated on the set Qξ,k. The number LipL,ξ
represents the worst-case Lipschitz constant of the catalog network.

To estimate the approximation error, we need two more quantities. The first one is

Bξ = max
{

1, ‖Aξ,1(0)‖, . . . , ‖Aξ,Dξ(0)‖
}
,

which simply measures the maximal norm of the inhomogeneous parts of the affine transforma-
tions (capped from below by 1). When using weight functions of the type wq(x) = (1 +xq)−1,
functions in the catalog are approximated better close to the origin. The quantity Bξ together
with the κ0-boundedness of the catalog in the origin will be used to control how far away one
is from the region where one has the best approximation. However, this becomes irrelevant
for constant weight functions, as can be seen in Corollary 5.6 below.

The last quantity we need is TL,ξ, defined as the maximum of 1 and

max
k∈{0,...,D−1}

max{1, Lξ,k, Lξ,D}‖VD‖
D−1∏
j=k+1

Lξ,j‖Vj‖

where we abbreviate D = Dξ and use the convention Lξ,0 = 0. This combines the Lipschitz
constants of the affine and nonlinear functions appearing in the different layers of the catalog
network ξ.
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Theorem 5.2. Suppose a ∈ C(R,R) fulfills the c-identity requirement for some num-
ber c ≥ 2 and let w be a nonincreasing weight function whose decay is controlled by
(s1, s2) for some s1 ∈ [1,∞) and s2 ∈ [0,∞). Consider a catalog network ξ ∈ CF for
an [a, w,Q, L, ε, κ]-approximable catalog F . Then there exists a skeleton φ ∈ N with a-
realization Rφ

a ∈ C(RIξ ,ROξ) such that

(i) supx∈DomQ,ξ
w(‖x‖)‖Rξ(x)−Rφ

a(x)‖ ≤ ε,

(ii) Rφ
a is LipL,ξ-Lipschitz continuous on RIξ and

(iii) P(φ) ≤ CBt−κ3ξ T tL,ξDt+1
ξ W

κ2+t/2+6
ξ ε−κ3 for t = κ3(s2 + 1) and C = 81

32
c3(4κ0)t−κ3κ1s1

κ3.

Proof. We split the proof into two parts. In the first part, we construct an approximating
neural network and bound the approximation error. In the second part, we estimate the
number of parameters of the network. Assume ξ ∈ Cl0,...,l2DF is of the form ξ = [(V1, b1,
(f1,1, . . . , f1,n1)), . . . , (VD, bD, (fD,1, . . . , fD,nD))]. Denote G0 = idRl0 and

Gk = Gξ,k ◦ Aξ,k ◦ Gξ,k−1 ◦ · · · ◦ Gξ,1 ◦ Aξ,1

for k ∈ {1, . . . , D}. Before constructing the approximating network, we show by induction
over k that

‖(Aξ,k ◦Gk−1)(x)‖ ≤ ‖Vk‖
( k−1∏
j=1

Lξ,j‖Vj‖
)
‖x‖+ ‖bk‖

+
k−1∑
i=1

‖Vk‖
( k−1∏
j=i+1

Lξ,j‖Vj‖
)(
Lξ,i‖bi‖+ ‖Gξ,i(0)‖

) (5.4)

for all k ∈ {1, . . . , D} and x ∈ DomQ,ξ. The base case k = 1 reduces to the obvious inequality
‖Aξ,1(x)‖ ≤ ‖V1‖‖x‖ + ‖b1‖. For the induction step, suppose the claim is true for a given
k ∈ {1, . . . , D − 1}. Then we obtain from Lemma 3.5 that

‖(Aξ,k+1 ◦Gk)(x)‖ ≤ ‖Vk+1‖‖(Gξ,k ◦ Aξ,k ◦Gk−1)(x)‖+ ‖bk+1‖
≤ ‖Vk+1‖Lξ,k‖(Aξ,k ◦Gk−1)(x)‖+ ‖Vk+1‖‖Gξ,k(0)‖+ ‖bk+1‖.

for all x ∈ DomQ,ξ, where we used that the sets Qf contain 0. Applying the induction
hypothesis to ‖(Aξ,k ◦Gk−1)(x)‖, we obtain that (5.4) holds for k + 1. Next, observe that

‖Gξ,k(0)‖2 =

nk∑
j=1

‖fk,j(0)‖2 ≤ κ2
0nk ≤ κ2

0Wξ (5.5)

for all k ∈ {1, . . . , D}. Hence, (5.4) yields

‖(Aξ,D ◦GD−1)(x)‖ ≤ TL,ξ‖x‖+ Bξ +DTL,ξ
(
Bξ + κ0

√
Wξ

)
≤ 4κ0BξDξ

√
WξTL,ξ max{1, ‖x‖}

(5.6)

for all x ∈ DomQ,ξ.
To construct an approximating network, we note that it follows from Lemma 5.1 that

for all δ ∈ (0, ε] and k ∈ {1, . . . , D}, there exists ψδ,k ∈ N such that the a-realization
Rψδ,k
a ∈ C(Rl2k−1Rl2k) satisfies
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(i) ‖Rψδ,k
a (x)−Rψδ,k

a (y)‖ ≤ Lξ,k‖x− y‖ for all x, y ∈ Rl2k−1 ,

(ii) w(‖x‖)‖Gξ,k(x)−Rψδ,k
a (x)‖ ≤ δ for all x ∈ Qξ,k and

(iii) P(ψδ,k) ≤ 11
16
κ1c

2Wκ2+
κ3
2

+5

ξ δ−κ3 .

Moreover, since each Aξ,k is an affine function, there exist unique χk ∈ N of depth 1, such
thatRχk

a = Aξ,k for all k ∈ {1, . . . , D}. Let ϕδ,k ∈ N be given by ϕδ,k = ψδ,k◦χk◦· · ·◦ψδ,1◦χ1.
The a-realization of ϕδ,D will be our approximation network. To verify that it does the job
in terms of the approximation precision, we show that

‖Gk(x)−Rϕδ,k
a (x)‖ ≤

k∑
i=1

δ
∏k

j=i+1 L
ξ,j‖Vj‖

w(‖Aξ,i ◦Gi−1(x)‖)
(5.7)

for all k ∈ {1, . . . , D}, δ ∈ (0, ε] and x ∈ DomQ,ξ by induction over k. The base case
k = 1 holds by the approximation property of ψδ,1 and the fact that Aξ,1(x) ∈ Qξ,1 for all
x ∈ DomQ,ξ. For the induction step, we assume (5.7) holds for a given k ∈ {1, . . . , D − 1}.
By the Lipschitz and approximation properties of ψδ,k+1, we obtain

‖Gk+1(x)−Rϕδ,k+1
a (x)‖ ≤ δ[w(‖(Aξ,k+1 ◦Gk)(x)‖)]−1 + Lξ,k+1‖Vk+1‖‖Gk(x)−Rϕδ,k

a (x)‖

for all δ ∈ (0, ε] and x ∈ DomQ,ξ, where we used that (Aξ,k+1 ◦ Gk)(x) ∈ Qξ,k+1 for all
x ∈ DomQ,ξ. Using the induction hypothesis on ‖Gk(x) − Rϕδ,k

a (x)‖, we obtain that (5.7)
holds for k + 1. Now, we combine (5.6), (5.7) and the assumption that the decay of w is
controlled by (s1, s2) to find that

‖GD(x)−Rϕδ,D
a (x)‖ ≤ δDTL,ξ

[
w
(
4κ0BξDξ

√
WξTL,ξ max{1, ‖x‖}

)]−1

≤ s1δ[4κ0Bξ]s2 [DξTL,ξ]s2+1Ws2/2
ξ [w(‖x‖)]−1

(5.8)

for all δ ∈ (0, ε] and x ∈ DomQ,ξ.
Next note that it follows from the fact that the concatenation of Lipschitz functions is

again Lipschitz with constant equal to the product of the original Lipschitz constants that
Rϕδ,D
a is LipL,ξ-Lipschitz.
It remains to estimate the number of parameters of the constructed network. To do

this, we slightly modify ϕδ,D by interposing identity networks. This does not change the
realization but reduces the worst-case parameter count, as discussed before Corollary 2.6.
Choose I ∈ N for which a fulfills the c-identity requirement and let Id = p(I, . . . , I), d ∈ N.
Define ρδ,k = Il2k ◦ ψδ,k ◦ Il2k−1

for k ∈ {1, . . . , D} and δ ∈ (0, ε]. Combining Corollary 2.6
with our parameter bound for P(ψδ,k), we obtain

P(ρδ,k) ≤ 55
96
κ1c

3Wκ2+κ3/2+6
ξ δ−κ3 + 29

12
c2W2

ξ

≤ 57
32
κ1c

3Wκ2+κ3/2+6
ξ δ−κ3

(5.9)

for all δ ∈ (0, ε] and k ∈ {1, . . . , D}, where we used that c ≥ 2. Since lId1 ≤ cd for all d ∈ N,
Proposition 2.1 yields that

P(ρδ,k ◦ χk) ≤ P(ρδ,k) + cW2
ξ (5.10)

for all δ ∈ (0, ε] and k ∈ {1, . . . , D}. Next, we show that

P(ρδ,k ◦ χk ◦ · · · ◦ ρδ,1 ◦ χ1) ≤ (k − 1)c2W2
ξ +

k∑
j=1

P(ρδ,j ◦ χj) (5.11)
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for all k ∈ {1, . . . , D} and δ ∈ (0, ε] by induction over k. The base case k = 1 is trivially
satisfied. For the induction step, we assume (5.11) holds for k ∈ {1, . . . , D − 1}. Then
Proposition 2.1 and the induction hypothesis show that

P(ρδ,k+1 ◦ χk+1 ◦ · · · ◦ ρδ,1 ◦ χ1)

≤ P(ρδ,k+1 ◦ χk+1) + P(ρδ,k ◦ χk ◦ · · · ◦ ρδ,1 ◦ χ1) + c2l2(k+1)−1l2k

≤ kc2W2
ξ +

k+1∑
j=1

P(ρδ,j ◦ χj)

for all δ ∈ (0, ε], which completes the induction. Now we combine (5.10) and (5.11) to obtain

P(ρδ,D ◦ χD ◦ · · · ◦ ρδ,1 ◦ χ1) ≤ 3
2
c2DW2

ξ +
D∑
j=1

P(ρδ,j)

for all δ ∈ (0, ε], where we used c ≥ 2 again. Using (5.9) gives

P(ρδ,D ◦ χD ◦ · · · ◦ ρδ,1 ◦ χ1) ≤ 3
2
c2DW2

ξ + 57
32
Dκ1c

3Wκ2+κ3/2+6
ξ δ−κ3

≤ 81
32
κ1c

3DξWκ2+κ3/2+6
ξ δ−κ3

(5.12)

for all δ ∈ (0, ε]. We conclude by summarizing what we have proved so far. Motivated by
(5.8), let η ∈ (0, ε] be given by

η = ε
(
s1[4κ0Bξ]s2 [DξTL,ξ]s2+1Ws2/2

ξ

)−1
,

and define φ = ρη,D ◦ χD ◦ · · · ◦ ρη,1 ◦ χ1. Then, Rφ
a = Rϕη,D

a and GD = Rξ. So, one obtains
from (5.8) that

supx∈DomQ,ξ
w(‖x‖)‖Rξ(x)−Rφ

a(x)‖ ≤ ε,

and (5.12) gives

P(φ) ≤ 81
32
c3κ1s1

κ3 [4κ0Bξ]κ3s2T κ3(s2+1)
L,ξ Dκ3(s2+1)+1

ξ Wκ2+
κ3
2

(s2+1)+6

ξ ε−κ3 ,

which completes the proof.

The conclusion of Theorem 5.2 could be written more concisely as

Costa,w(Rξ,DomQ,ξ,LipL,ξ, ε) ≤ CBt−κ3ξ T tL,ξDt+1
ξ W

κ2+t/2+6
ξ ε−κ3 .

We point out that the rate in the accuracy is O(ε−κ3), the same as for the underlying catalog
F .

In the proof of Theorem 5.2, we combine the approximations of the functions Gξ,k obtained
in Lemma 5.1 with the affine maps Aξ,k. When concatenating different approximating
networks, we interpose identity networks. This reduces the parameter count in worst-case
scenarios but can lead to slightly looser estimates in certain other situations.

Remark 5.3. If I(f) ≤ d and O(f) ≤ d for some d ∈ N and all f ∈ F , we can use (iv)
instead of (iii) of Lemma 5.1 in the proof of Theorem 5.2 to obtain the following modified
version of the parameter bound in Theorem 5.2:

P(φ) ≤ Cd2Bt−κ3ξ T tL,ξDt+1
ξ W

κ2+t/2+4
ξ ε−κ3 .

Since in many of the example catalogs of Section 4, the maximal input/output dimension is
1 or 2, this will allow us to obtain better estimates in some of the applications in Section 7
below.
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Remark 5.4. A careful inspection of the proof of Theorem 5.2 shows that it does not only
work for the Euclidean norm but also, for instance, the sup-norm.

Proof. To see that the proof of Theorem 5.2 also works for the sup-norm, we note that in
(3.1), (5.1), (5.2) and (5.5), we used the property ‖x‖2 =

∑nk
j=1 ‖x(k,j)‖2 of the Euclidean

norm. However, since the sup-norm satisfies ‖x‖2
∞ = maxj∈{1,...,nk} ‖x(k,j)‖2

∞, and we did not
use any specific property of the Euclidean norm anywhere else in the proof, Theorem 5.2 still
holds for the sup-norm.

We know that the ReLU activation function satisfies the 2-identity requirement. The-
orem 5.2 recast for ReLU activation and the weight function wq(x) = (1 + xq)−1 reads as
follows:

Corollary 5.5. Consider the weight function wq(x) = (1 + xq)−1 for some q ∈ (0,∞). Let
ξ ∈ CF be a catalog network for a [ρ, wq, Q, L, ε, κ]-approximable catalog F . Then there exists
a skeleton φ ∈ N with ReLU-realization Rφ

ReLU ∈ C(RIξ ,ROξ) such that

(i) supx∈DomQ,ξ
(1 + ‖x‖q)−1‖Rξ(x)−Rφ

ReLU(x)‖ ≤ ε,

(ii) Rφ
ReLU is LipL,ξ-Lipschitz continuous on RIξ and

(iii) P(φ) ≤ CBt−κ3ξ T tL,ξDt+1
ξ W

κ2+t/2+6
ξ ε−κ3 for t = κ3(q + 1) and C = 81

4
22t−κ3κt−κ30 κ1.

For the weight function w ≡ 1, the parameter estimate in Theorem 5.2 simplifies consider-
ably. This is because the decay of w ≡ 1 is controlled by (1, 0), which makes the translation
size and the bound of the catalog in the origin irrelevant.

Corollary 5.6. Let ξ ∈ CF be a catalog network for a [ρ, 1, Q, L, ε, κ]-approximable catalog
F . Then there exists a skeleton φ ∈ N with ReLU-realization Rφ

ReLU ∈ C(RIξ ,ROξ) such
that

(i) supx∈DomQ,ξ
‖Rξ(x)−Rφ

ReLU(x)‖ ≤ ε,

(ii) Rφ
ReLU is LipL,ξ-Lipschitz continuous on RIξ and

(iii) P(φ) ≤ 81
4
κ1T κ3L,ξD

κ3+1
ξ Wκ2+κ3/2+6

ξ ε−κ3.

6. Log-approximable catalogs

In this section, we modify the way we measure the approximation cost and derive correspond-
ing approximation results.

Definition 6.1. With the setup of Definition 3.4 and ε ≤ 1/2, F ⊆
⋃
m,n∈NC(Rm,Rn) is

called [a, w,Q, L, ε, κ]-log-approximable if supf∈F ‖f(0)‖ ≤ κ0 and

Costa,w(f,Qf , Lf , δ) ≤ κ1max{I(f),O(f)}κ2 [log2(δ−1)]κ3

for all f ∈ F and δ ∈ (0, ε].

This log-modification is designed for catalogs made of functions like the square or the
product, which can be approximated with rate O(log2(ε−1)), as we have seen in Lemma 4.3
and Proposition 4.5. Its usefulness will become apparent in Proposition 7.6, which is based
on the following catalog.
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Example 6.2. Let Fprod = {idR , pr} be the product catalog and fix r ∈ [1,∞) and d ∈ N.
Consider the approximation sets QidR = R, Qpr = [−rd, rd]2 and the Lipschitz constants
LidR = 1, Lpr =

√
8rd. Then Fprod is a [ρ, 1, Q, L,min{1/2, 1/r}, (1, 320d + 208, 0, 1)]-log-

approximable catalog, where κ1 can also be chosen as 208 instead of 320d+ 208 if r = 1.

Using the notion of log-approximable catalogs, we can derive the following analogue of
Theorem 5.2.

Theorem 6.3. Assume a ∈ C(R,R) satisfies the c-identity requirement for some number
c ≥ 2, and let w be a nonincreasing weight function whose decay is controlled by (s1, s2) for
some s1 ∈ [1,∞) and s2 ∈ [0,∞). Consider a catalog network ξ ∈ CF for an [a, w,Q, L, ε, κ]-
log-approximable catalog F . Then there exists a skeleton φ ∈ N with a-realization Rφ

a ∈
C(RIξ ,ROξ) such that

(i) supx∈DomQ,ξ
w(‖x‖)‖Rξ(x)−Rφ

a(x)‖ ≤ ε,

(ii) Rφ
a is LipL,ξ-Lipschitz continuous on RIξ and

(iii) P(φ) ≤ 81
32
c3κ1DξWκ2+6

ξ

[
log2

(
s1[4κ0Bξ]s2 [TL,ξDξ

√
Wξ]

s2+1ε−1
)]κ3.

Proof. In case the catalog F in Lemma 5.1 is [a, w,Q, L, ε, κ]-log-approximable instead of
[a, w,Q, L, ε, κ]-approximable, a slight modification of the proof yields a version of Lemma 5.1,
for which the parameter bound in (iii) is

11
16
κ1c

2 max{l2k−1, l2k}κ2+5
[
log2

(√max{l2k−1, l2k}
δ

)]κ3
.

Then, in the proof of Theorem 5.2, one only needs to replace (iii) with

P(ψδ,k) ≤ 11
16
κ1c

2Wκ2+5
ξ

[
log2

(√
Wξδ

−1
)]κ3 ,

(5.9) with
P(ρδ,k) ≤ 57

32
κ1c

3Wκ2+6
ξ

[
log2

(√
Wξδ

−1
)]κ3

and (5.12) with

P(ρδ,D ◦ χD ◦ · · · ◦ ρδ,1 ◦ χ1) ≤ 81
32
κ1c

3DξWκ2+6
ξ

[
log2

(√
Wξδ

−1
)]κ3 .

The rest of the proof of Theorem 5.2 carries over without any changes.

The following is the analogue of Corollary 5.6 for log-approximable catalogs.

Corollary 6.4. Let ξ ∈ CF be a catalog network for a [ρ, 1, Q, L, ε, κ]-log-approximable catalog
F . Then there exists a skeleton φ ∈ N with ReLU-realization Rφ

ReLU ∈ C(RIξ ,ROξ) such
that

(i) supx∈DomQ,ξ
‖Rξ(x)−Rφ

ReLU(x)‖ ≤ ε,

(ii) Rφ
ReLU is LipL,ξ-Lipschitz continuous on RIξ and

(iii) P(φ) ≤ 81
4
κ1DξWκ2+6

ξ

[
log2

(
TL,ξDξ

√
Wξε

−1
)]κ3.
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7. Overcoming the curse of dimensionality

Next, we apply the theory of catalog networks to show that different high-dimensional
functions admit a ReLU neural network approximation without the curse of dimensionality.
We use the catalogs introduced in Sections 4 and 6 to construct families of functions indexed
by the dimension of their domain that are of the same form for each dimension. The results
in this section are proved by finding catalog network representations of the high-dimensional
target functions, so that one of the general approximation results of Sections 5 and 6 can
be applied. The mere approximability of these functions with ReLU networks follows from
classical universal approximation results such as [86]. But the quantitative estimates on the
number of parameters in terms of the dimension d and the accuracy ε are new.

Our general results cover a wide range of interesting examples, but it is possible that, for
some of them, the estimates could be improved by using their special structure.

Proposition 7.1. Fix K, r ∈ [1,∞), and let fi : R → R, i ∈ N, be K-Lipschitz continuous
with |fi(0)| ≤ K. Define gd : Rd → R by gd(x) =

∑d
i=1 fi(xi). Then for all d ∈ N and

ε ∈ (0, 1], there exists φ ∈ N with Rφ
ReLU ∈ C(Rd,R) such that

(i) supx∈[−r,r]d |gd(x)−Rφ
ReLU(x)| ≤ ε,

(ii) Rφ
ReLU is

√
dK-Lipschitz continuous on Rd and

(iii) P(φ) ≤ 4
7
103K2rd5ε−1.

Proof. Let F = FLip
K be the K-Lipschitz catalog and suppose Q = (Qf )f∈F and L = (Lf )f∈F

are defined as in (i) of Example 4.1. For d ∈ N, let Vd ∈ R1×d be the matrix Vd = (1, . . . , 1)
and ξd ∈ CF the catalog network ξd = [(idRd , 0, (f1, . . . , fd)), (Vd, 0, idR)]. Then Rξd = gd,
Dξd = 2, Wξd = d and TL,ξd ≤

√
dK. Moreover, DomQ,ξd = Qξd,1 ⊇ [−r, r]d because

Qξd,2 = QidR = R. Now, the proposition follows from Remark 5.3 and Corollary 5.6.

The following is a generalization, whose proof only requires a slight adjustment.

Proposition 7.2. Fix K, r ∈ [1,∞), and let fi : R→ R, i ∈ N0, be K-Lipschitz continuous
with |fi(0)| ≤ K. Define gd : Rd → R by gd(x) = f0(

∑d
i=1 fi(xi)). Then for all d ∈ N and

ε ∈ (0, 1], there exists φ ∈ N with Rφ
ReLU ∈ C(Rd,R) such that

(i) supx∈[−r,r]d |gd(x)−Rφ
ReLU(x)| ≤ ε,

(ii) Rφ
ReLU is

√
dK2-Lipschitz continuous on Rd and

(iii) P(φ) ≤ 5
6
103K4rd6ε−1.

Proof. This proposition is proved as Proposition 7.1, except that we fix d in the beginning,
use (i) of Example 4.1 with dK(r + 1) instead of r and define

ξd = [(idRd , 0, (f1, . . . , fd)), (Vd, 0, f0)].

Then, TL,ξd ≤
√
dK2 and Qξd,2 = [−dK(r + 1), dK(r + 1)], which ensures that DomQ,ξd ⊇

[−r, r]d.

Note that the parameter estimates in Propositions 7.1 and 7.2 depend on r since we
approximate uniformly on the hypercube [−r, r]d. However, the estimate is only linear in r,
even though the volume of the hypercube is of the order rd.
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Proposition 7.3. Let K, r ∈ [1,∞) and suppose fi : R→ R is K-Lipschitz with |fi(0)| ≤ K
and gi : R → R 1-Lipschitz with gi(0) = 0, i ∈ N. Let hd : Rd → R, d ∈ N, be given by
h1 = f1 and hd(x) = gd(max{hd−1(x1, . . . , xd−1), fd(xd)}) for d ≥ 2. Then for all d ∈ N and
ε ∈ (0, 1], there exists φ ∈ N with Rφ

ReLU ∈ C(Rd,R) such that

(i) supx∈[−r,r]d |hd(x)−Rφ
ReLU(x)| ≤ ε,

(ii) Rφ
ReLU is K-Lipschitz continuous on Rd and

(iii) P(φ) ≤ 3
7
104K3rd13/2ε−1.

Proof. Let F = FLip,max
K be the K-Lipschitz-maximum catalog and suppose Q = (Qf)f∈F

and L = (Lf)f∈F are defined as in (i) of Example 4.2 (with R = K(r + 1) instead of r).
Since we know that the functions gi are 1-Lipschitz, we may actually set Lgi = 1 for all i ∈ N
without affecting the approximability of the catalog. Consider ξd ∈ CF , d ∈ N≥2, given by

ξd =
[(

idRd , 0, (f1, . . . , fd)
)
,
(
idRd , 0, (max2, idR , . . . , idR)

)
,
(
idRd−1 , 0, (g2, idR , . . . , idR)

)
,(

idRd−1 , 0, (max2, idR , . . . , idR)
)
, . . . ,

(
idR2 , 0, (gd−1, idR)

)
,
(
idR2 , 0,max2

)
,
(
idR , 0, gd

)]
.

Then Rξd = hd, Dξd = 2d − 1, Wξd = d and TL,ξd ≤ K. Moreover, Qξd,2i = Rd−i+1 and
Qξd,2i+1 = [−R,R] × Rd−i−1 for all i ∈ {1, . . . , d − 1} as well as Qξd,1 = [−R,R]d. If we
define Hi : Ri → R, i ∈ N≥2, by Hi(x) = max{hi−1(x1, . . . , xi−1), fi(xi)}, then it follows by
induction that Hi is K-Lipschitz with respect to the sup-norm and |Hi(0)| ≤ K. This proves
(Hi(x1, . . . , xi), xi+1, . . . , xd) ∈ Qξd,2i−1 for all x ∈ [−r, r]d and i ∈ {2, . . . , d}. Since this
corresponds to the evaluation of the first 2(i−1) layers of ξ, we have shown [−r, r]d ⊆ DomQ,ξd .
Now we conclude with6 Remark 5.3 and Corollary 5.6.

Note that if the functions gi, for 1 ≤ i ≤ d− 1, are chosen to be the identity and gd = f0,
then hd reduces to f0(max{f1(x1), . . . , fd(xd)}).

The functions in the previous propositions were approximated on bounded domains, but
if one is willing to pay a higher approximation cost, one can also approximate the family of
functions from, e.g., Proposition 7.1 on the entire space without the curse of dimensionality
for an appropriate weight function.

Proposition 7.4. Let q ∈ (1,∞), K ∈ [1,∞) and suppose fi : R → R, i ∈ N, are K-
Lipschitz continuous with |fi(0)| ≤ K. Define gd : Rd → R by gd(x) =

∑d
i=1 fi(xi). Then for

all d ∈ N and ε ∈ (0, 1], there exists φ ∈ N with Rφ
ReLU ∈ C(Rd,R) such that

(i) supx∈Rd(1 + ‖x‖q)−1|gd(x)−Rφ
ReLU(x)| ≤ ε,

(ii) Rφ
ReLU is

√
dK-Lipschitz continuous on Rd and

(iii) P(φ) ≤ 2
9
10323t(q+1)K2t(q+1)dt(q+1)+4ε−t for t = q/q−1.

Proof. Let F = FLip
K be the K-Lipschitz catalog and suppose Q = (Qf )f∈F and L = (Lf )f∈F

are defined as in (ii) of Example 4.1. For all d ∈ N, let Vd ∈ R1×d be the matrix Vd = (1, . . . , 1)
and ξd ∈ CF the catalog network ξd = [(idRd , 0, (f1, . . . , fd)), (Vd, 0, idR)]. Then Rξd = gd,
Bξd = 1, Dξd = 2, Wξd = d and TL,ξd ≤

√
dK. Moreover, DomQ,ξd = Qξd,1 = Rd because

Qξd,2 = QidR = R. Now, the proposition follows from Remark 5.3 and Corollary 5.5.
6Strictly speaking, Remark 5.3 is not applicable to the Lipschitz-maximum catalog, but we only used

max2 and could remove maxd, d ≥ 3, from the catalog. This also enables us to use κ = (K, 13K2r, 0, 1)
instead of κ2 = 3.
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An analogous result with the maximum function instead of the sum can be shown similarly.
In the next two propositions, we replace the sum by a product. Then we cannot establish

the approximation on an arbitrarily large domain since the Lipschitz constant of the product
function on [−r, r]2 grows linearly in r.

Proposition 7.5. Let K ∈ [1,∞) and suppose fi : R → R is K-Lipschitz and gi : R → R
1-Lipschitz with fi(0) = 0 = gi(0), i ∈ N. Let hd : Rd → R, d ∈ N, be given by h1 = f1

and hd(x) = gd(hd−1(x1, . . . , xd−1)fd(xd)) for d ≥ 2. Set r = 1/
√

8K. Then for all d ∈ N and
ε ∈ (0, 1/16], there exists φ ∈ N with Rφ

ReLU ∈ C(Rd,R) such that

(i) supx∈[−r,r]d |hd(x)−Rφ
ReLU(x)| ≤ ε,

(ii) Rφ
ReLU is K-Lipschitz continuous on Rd and

(iii) P(φ) ≤ 3
7
104K2d13/2ε−1.

Proof. Let F = FLip,prod
K be the K-Lipschitz-product catalog and suppose Q = (Qf )f∈F and

L = (Lf)f∈F are defined as in Example 4.6 (with 1/
√

8 instead of r and R = 1/
√

8). Since we
know that the functions gi are 1-Lipschitz, we may actually set Lgi = 1 for all i ∈ N without
affecting the approximability of the catalog. Consider ξd ∈ CF , d ∈ N≥2, given by

ξd =
[(

idRd , 0, (f1, f2, . . . , fd)
)
,
(
idRd , 0, (pr, idR , . . . , idR)

)
,
(
idRd−1 , 0, (g2, idR , . . . , idR)

)
,(

idRd−1 , 0, (pr, idR , . . . , idR)
)
, . . . ,

(
idR2 , 0, (gd−1, idR)

)
,
(
idR2 , 0, pr

)
,
(
idR , 0, gd

)]
.

Then Rξd = hd, Dξd = 2d− 1, Wξd = d and TL,ξd ≤ K. Moreover, Qξd,2i = [−R,R]2×Rd−i−1

and Qξd,2i+1 = [−R,R] × Rd−i−1 for all i ∈ {1, . . . , d − 1} as well as Qξd,1 = [−R,R]d. If
we define Hi : Ri → R, i ∈ N≥2, by Hi(x) = hi−1(x1, . . . , xi−1)fi(xi), then Hi(0) = 0 and it
follows by induction that |Hi(x)| ≤ Ri and |hi(x)| ≤ Ri for all x ∈ [−r, r]d and i ≥ 2. This
shows that [−r, r]d ⊆ DomQ,ξd , and we can conclude with Remark 5.3 and Corollary 5.6.

This example includes the special case f0(
∏d

i=1 fi(xi)). Since on large hypercubes the
quantity TL,ξd , where ξd is a catalog network representing the function hd, starts to grow
exponentially in the dimension, the approximators in the proof of Proposition 7.5 can only
be built on the hypercube [−1/

√
8K, 1/

√
8K]d.

However, it has been shown in Proposition 3.3. of [113] that the product
∏d

i=1 xi can be
approximated without the curse of dimensionality on the hypercube [−1, 1]d. Applying the
log-modification of our theory, we can recover this result and even allow for arbitrarily large
hypercubes.

Proposition 7.6. Consider the functions fd : Rd → R, d ∈ N, given by fd(x) =
∏d

i=1 xi,
and let r ∈ [1,∞). Then for all d ∈ N≥2 and ε ∈ (0,min{1/2, r−1}], there exists φ ∈ N with
Rφ

ReLU ∈ C(Rd,R) such that

(i) supx∈[−r,r]d |fd(x)−Rφ
ReLU(x)| ≤ ε,

(ii) Rφ
ReLU is 8(d−1)/2rd(d−1)-Lipschitz continuous on Rd,

(iii) P(φ) ≤ 1
3
105 log2(d)d6 log2(ε−1) if r = 1 and

(iv) P(φ) ≤ 2
5
105 log2(r) log2(d)d8 log2(ε−1) if r ≥ 2.
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Proof. Assume without loss of generality that d ≥ 3, let F = Fprod be the product catalog,
and suppose Q = (Qf)f∈F and L = (Lf)f∈F are defined as in Example 6.2. Moreover, let
ξd ∈ CF be given by

ξd =
[(

idRd , 0, (pr, idR , . . . , idR)
)
,(

idRd−1 , 0, (pr, idR , . . . , idR)
)
, . . . ,

(
idR3 , 0, (pr, idR)

)
,
(
idR2 , 0, pr

)]
.

Then Rξd = fd, Dξd = d − 1, Wξd = d and TL,ξd = 8(d−1)/2rd(d−1). Moreover, Qξd,n =
[−rd, rd]2 × Rd−n−1 for all n ∈ {1, . . . , d− 1}. Hence, the fact that for all n ∈ {1, . . . , d− 1}
and x ∈ [−r, r]d we have |

∏n
i=1 xi| ≤ rd ensures that [−r, r]d ⊆ DomQ,ξd . Now, we can

conclude with Remark 5.3 and Corollary 6.4 using the inequality

log2

(√
d(d− 1)8(d−1)/2ε−1

)
≤ 31

18
d log2(d) log2(ε−1)

if r = 1 and the inequality

log2

(√
d(d− 1)8(d−1)/2rd(d−1)ε−1

)
≤ 67

54
log2(r)d2 log2(d) log2(ε−1)

if r ≥ 2, for which we note that log2(d) ≥ 3
2
since d ≥ 3.

In our next result, we show the approximability of ridge functions based on a Lipschitz
function.

Proposition 7.7. Let K, r, S ∈ [1,∞), θd ∈ [−S, S]d, d ∈ N, and suppose f : R → R is
K-Lipschitz continuous with |f(0)| ≤ K. Consider the ridge functions gd : Rd → R given by
gd(x) = f(θd ·x). Then for all d ∈ N and ε ∈ (0, 1], there exists φ ∈ N with Rφ

ReLU ∈ C(Rd,R)
such that

(i) supx∈[−r,r]d |gd(x)−Rφ
ReLU(x)| ≤ ε,

(ii) Rφ
ReLU is

√
dKS-Lipschitz continuous on Rd and

(iii) P(φ) ≤ 1
7
103K2rS2d6ε−1.

Proof. Let F = FLip
K be the K-Lipschitz catalog and suppose Q = (Qf )f∈F and L = (Lf )f∈F

are defined as in (i) of Example 4.1 (with drS instead of r). Let ξd ∈ CF be given by
ξd = (θTd , 0, f), where T denotes transposition. Then Rξd = gd, Dξd = 1, Wξd = d and
TL,ξd ≤

√
dKS. Moreover, [−r, r]d ⊆ {x ∈ Rd : |θd · x| ≤ drS} ⊆ DomQ,ξd by the Cauchy–

Schwarz inequality. So the proposition follows from Remark 5.3 and Corollary 5.6.

As our last example, we consider generalized Gaussian radial basis function networks, i.e.
weighted sums of the Gaussian function applied to the distance of x to a given vector.

Proposition 7.8. Let N ∈ N, r, S ∈ [1,∞) with r + S ≥ 5 as well as α1, . . . , αN ∈
[0, S], u1, . . . , uN ∈ [−S, S] and vd,1, . . . , vd,N ∈ [−S, S]d, d ∈ N. Consider generalized
Gaussian radial basis function networks fd : Rd → R with N neurons given by fd(x) =∑N

i=1 uie
−αi‖x−vd,i‖2. Then for all d ∈ N and ε ∈ (0, (r + S)−3], there exists φ ∈ N with

Rφ
ReLU ∈ C(Rd,R) such that

(i) supx∈[−r,r]d |fd(x)−Rφ
ReLU(x)| ≤ ε,

(ii) Rφ
ReLU is 2(r + S)S2

√
dN-Lipschitz on Rd and
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(iii) P(φ) ≤ 1
6
104(r + S)S2N 11/2d5ε−1.

Proof. Let F = FRBF be the Gaussian radial basis function catalog and supposeQ = (Qf )f∈F
and L = (Lf )f∈F are defined as in Example 4.4 (with r + S instead of r). For all d ∈ N, let
Ud ∈ RdN×d be the block-matrix Ud = (idRd , . . . , idRd)

T , bd ∈ RdN the vector (vd,1, . . . , vd,N)T ,
Vd ∈ RN×dN the block-matrix with αi(1, . . . , 1) ∈ R1×d blocks on the i-th entry of the diagonal
and 0 entries otherwise and W ∈ R1×N the matrix (u1, . . . , uN). Moreover, let ξd ∈ CF be
given by [(

Ud,−bd, (sq, . . . , sq)
)
,
(
Vd, 0, (e, . . . , e)

)
,
(
W, 0, idR

)]
.

Then Rξd = fd, Dξd = 3, Wξd = dN and TL,ξd ≤ 2(r + S)
√
dNS2. Moreover, Qξd,1 =

[−(r + S), r + S]dN , Qξd,2 = [0,∞)N and Qξd,3 = R. It follows that [−r, r]d ⊆ DomQ,ξd , and
the proposition follows from Remark 5.3 and Corollary 5.6.



CHAPTER 3

Non-convergence of stochastic gradient descent
in the training of deep neural networks

This chapter is an adaptation of the published article [15].

1. Introduction

The main contribution of this chapter is a demonstration that stochastic gradient descent
(SGD) fails to converge for ReLU networks if the number of random initializations does not
increase fast enough compared to the size of the network. To illustrate our findings, we
present a special case of our main result, Theorem 5.3, in Theorem 1.1 below.

We denote by d ∈ N = {1, 2, . . . } the dimension of the input domain of the approximation
problem. The set Ad =

⋃
D∈N({d} × ND−1 × {1}) represents all network architectures with

input dimension d and output dimension 1. In particular, a vector a = (a0, . . . , aD) ∈ Ad
describes the depth D of a network and the number of neurons a0, . . . , aD in the different
layers. For any such architecture a, the quantity P(a) =

∑D
j=1 aj(aj−1 + 1) counts the

number of real parameters, that is, the number of weights and biases of a deep neural
network (DNN) with architecture a. We consider networks with ReLU activation in the
hidden layers and a linear read-out map. That is, the realization function Rθ

a : Rd → R of a
DNN with architecture a = (a0, . . . , aD) ∈ Ad and weights and biases θ ∈ RP(a) is given by

Rθ
a = Aθ,

∑D−1
i=1 ai(ai−1+1)

aD,aD−1 ◦ ρ ◦ Aθ,
∑D−2
i=1 ai(ai−1+1)

aD−1,aD−2 ◦ ρ ◦ · · · ◦ Aθ,a1(a0+1)
a2,a1

◦ ρ ◦ Aθ,0a1,a0 ,

where Aθ,km,n : Rn → Rm denotes the affine mapping

(x1, . . . , xn) 7→


θk+1 θk+2 · · · θk+n

θk+n+1 θk+n+2 · · · θk+2n
...

... . . . ...
θk+(m−1)n+1 θk+(m−1)n+2 · · · θk+mn



x1

x2
...
xn

+


θk+mn+1

θk+mn+2
...

θk+mn+m


and ρ :

⋃
k∈N Rk →

⋃
k∈NRk is the ReLU function

(x1, . . . , xk) 7→ (max{x1, 0}, . . . ,max{xk, 0}).

In the following description of the SGD algorithm, n ∈ N is the index of the trajectory,
t ∈ N0 represents the index of the step along the trajectory, m ∈ N denotes the batch size of

33
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the empirical risk, and a ∈ Ad describes the architecture under consideration. We assume
the training data is given by functions Xn,t

j : Ω→ [0, 1]d and Y n,t
j : Ω→ [0, 1], j, n, t ∈ N0, on

a given probability space (Ω,F ,P). In a typical learning problem, (Xn,t
j , Y n,t

j ), j, n, t ∈ N0,
are i.i.d. random variables. But for Theorem 1.1 to hold, it is enough if (X0,0

j , Y 0,0
j ), j ∈ N0,

are i.i.d. random variables, whereas (Xn,t
j , Y n,t

j ) : Ω → [0, 1]d+1 are arbitrary mappings for
(n, t) 6= (0, 0). The target function E : [0, 1]d → [0, 1] we are trying to learn is the factorized
conditional expectation given (P-a.s.) by E(X0,0

0 ) = E[Y 0,0
0 |X

0,0
0 ]. The empirical risk used for

training is

Ln,ta,m(θ) =
1

m

m∑
j=1

∣∣c ◦ Rθ
a(X

n,t
j )− Y n,t

j

∣∣2, (1.1)

where we compose the network realization with the clipping function c : R → R, x 7→
max{0,min{x, 1}}. This composition inside the risk is equivalent to a nonlinear read-out
map of the network. However, it is more convenient for us to view c as part of the risk
criterion instead of the network. But this is only a matter of notation. Observe that (1.1)
is a supervised learning task with noise since, in general, the best possible least squares
approximation of Y 0,0

0 with a deterministic function of X0,0
0 is E(X0,0

0 ), which is only equal
to Y 0,0

0 in the special case where Y 0,0
0 is X0,0

0 -measurable. We let Gn,ta,m : RP(a)×Ω→ RP(a) be
a function that is equal to the gradient of Ln,ta,m where it exists. The trajectories of the SGD
algorithm are given by random variables Θn,t

a,m : Ω→ RP(a) satisfying the defining relation

Θn,t
a,m = Θn,t−1

a,m − γtGn,ta,m(Θn,t−1
a,m )

for given step sizes (γt)t∈N ⊆ R. Now, we are ready to state the following result, which is a
consequence of [69, Theorem 6.5] and Corollary 5.4 below.

Theorem 1.1. Assume that the target function E is Lipschitz continuous and that E(X0,0
0 ) is

not P-a.s.-constant. Suppose that, for all a ∈ Ad and m ∈ N, the random initializations Θn,0
a,m,

n ∈ N, are independent and uniformly distributed on [−c, c]P(a), where c ∈ [2,∞) is larger
than the Lipschitz constant of E. Let ka,M,N,T : Ω→ N× N0 be random variables satisfying

ka,M,N,T (ω) ∈ argmin(n,t)∈{1,...,N}×{0,...,T},Θn,ta,M (ω)∈[−c,c]P(a)L0,0
a,M(Θn,t

a,M(ω), ω). (1.2)

Then, one has

lim sup
a=(a0,...,aD)∈Ad

min{D,a1,...,aD−1}→∞

lim sup
M,N∈N

min{M,N}→∞

sup
T∈N0

E
[

min

{∫
[0,1]d

∣∣∣∣(c ◦ RΘ
ka,M,N,T
a,M

a

)
(x)− E(x)

∣∣∣∣ PX0,0
0

(dx), 1

}]
= 0

(1.3)

and

inf
N∈N

lim sup
a=(a0,...,aD)∈Ad

min{D,a1,...,aD−1}→∞

inf
M∈N
T∈N0

E
[

min

{∫
[0,1]d

∣∣∣∣(c ◦ RΘ
ka,M,N,T
a,M

a

)
(x)− E(x)

∣∣∣∣ PX0,0
0

(dx), 1

}]
> 0.

(1.4)
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The integrals in (1.3) and (1.4) describe the true risk. Note that in Theorem 1.1 the
random initializations of the different trajectories are assumed to be independent and uni-
formly distributed on the hypercube [−c, c]P(a), but our main result, Theorem 5.3 below, also
covers more general cases. The random variable ka,M,N,T determines the specific trajectory
and gradient step among the first N trajectories and T steps which minimize the empirical
risk corresponding to the batch size of M . Note that E(X0,0

0 ) not being a.s.-constant is a
weak assumption since it merely means that the learning task is nontrivial. Moreover, the
stronger condition that E must be Lipschitz continuous is made only to ensure the validity of
the positive result (1.3), whereas our new contribution (1.4) does not require this. Similarly,
we use the clipping function c to ensure the validity of (1.3), which in [69] is formulated for
networks with clipping function as read-out map.

As outlined in Chapter 1, our arguments are based on an analysis of regions in the
parameter space related to “inactive” neurons. In these regions, the realization function
is constant in the network parameter and, hence, SGD will not be able to escape these
regions. We give precise estimates on the probability that the whole network becomes
inactive and deduce that SGD fails to converge if the number of random initializations does
not increase fast enough. Note that in (1.4) we take the limit superior over all architectures
(a0, . . . , aD) ∈ Ad whose depth D and minimal width min{a1, . . . , aD−1} both tend to infinity.
In particular, to prove (1.4), it is sufficient to construct a single sequence of such architectures
over which the limit is positive. For the sequence we use, the depth grows much faster than
the maximal width max{a1, . . . , aD−1}. This imbalance between the depth and the width
has the effect that the training procedure does not converge.

The remainder of this chapter is organized as follows. In Section 2, we provide an abstract
version of the SGD algorithm for training neural networks in a supervised learning framework.
Section 3 contains preliminary results on inactive neurons and constant network realization
functions. In Section 4, we discuss the consequences of these preliminary results for the
convergence of the SGD method, and Section 5 contains our main results, Theorem 5.3 and
Corollary 5.4.

2. Mathematical description of the SGD method

In this section, we give a mathematical description of an abstract version of the SGD
algorithm for training neural networks in a supervised learning framework. To do that, we
slightly generalize the setup of the introduction. We begin with an informal description and
give a precise formulation afterwards. First, fix a network architecture a = (a0, . . . , aD) ∈ Ad.
Let X : Ω→ [u, v]d and B : Ω→ [u, v] be random variables on a probability space (Ω,F ,P),
on which the true risk L(θ) = E[|(c ◦ Rθ

a)(X ) − B|] of a network θ ∈ RP(a) is based. Here,
c : R → R can be any continuous function, which covers the case of network realizations
with nonlinear read-out maps. In the context of the introduction, B stands for the random
variable E(X0,0

0 ). Throughout, n ∈ N will denote the index of the gradient trajectory and
t ∈ N0 the index of the gradient step. Ln,t denotes the empirical risk defined on the space of
functions C(Rd,R). In this general setting, Ln,t can be any function from C(Rd,R)× Ω to
R, but the specific example we have in mind is

Ln,t(f) =
1

m

m∑
j=1

∣∣f(Xn,t
j )− Y n,t

j

∣∣2
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for a given batch size m ∈ N. Ln,t is the empirical risk defined on the space of network
parameters, given in terms of Ln,t by Ln,t(θ) = Ln,t(c ◦ Rθ

a). Let Gn,t : RP(a) × Ω→ RP(a) be
a function that agrees with the gradient of Ln,t where it exists. Then, we can introduce the
gradient trajectories Θn,t : Ω→ RP(a) satisfying

Θn,t = Θn,t−1 − γtGn,t(Θn,t−1)

for given step sizes γt. The N random initializations Θn,0, n ∈ {1, . . . , N}, are assumed to
be i.i.d in n and have independent marginals. Lastly, k : Ω → N × N0 specifies the output
of the algorithm consisting of a pair of indices for a gradient trajectory and a gradient step.
The expected true risk is V = E[min{L(Θk), 1}]. In the following, we present the formal
algorithm.

Setting 2.1. Let u, u ∈ R, v ∈ (u,∞), v ∈ (u,∞), c ∈ C(R,R), d,D,N ∈ N, a =
(a0, . . . , aD) ∈ Ad, and (γt)t∈N ⊆ R. Consider random variables X : Ω→ [u, v]d and B : Ω→
[u, v] on a probability space (Ω,F ,P). Let L : RP(a) → [0,∞] be given by L(θ) = E[|(c ◦
Rθ
a)(X ) − B|]. For all n ∈ N and t ∈ N0, let Ln,t be a function from C(Rd,R) × Ω to

R, and denote by Ln,t : RP(a) × Ω → R the mapping given by Ln,t(θ) = Ln,t(c ◦ Rθ
a). Let

Gn,t = (Gn,t1 , . . . ,Gn,tP(a)) : RP(a) × Ω→ RP(a) be a function satisfying

Gn,ti (θ, ω) =
∂

∂θi
Ln,t(θ, ω) (2.1)

for all n, t ∈ N, i ∈ {1, . . . ,P(a)}, ω ∈ Ω, and

θ ∈
{
ϑ = (ϑ1, . . . , ϑP(a)) ∈ RP(a) :

Ln,t(ϑ1, . . . , ϑi−1, (·), ϑi+1, . . . , ϑP(a), ω)
as a function R→ R is differentiable at ϑi.

}
.

Let Θn,t = (Θn,t
1 , . . . ,Θn,t

P(a)) : Ω → RP(a), n ∈ N, t ∈ N0, be random variables such that
Θ1,0, . . . ,ΘN,0 are i.i.d., Θ1,0

1 , . . . ,Θ1,0
P(a) are independent, and

Θn,t = Θn,t−1 − γtGn,t(Θn,t−1) (2.2)

for all n, t ∈ N. Let k : Ω → {1, . . . , N} × N0 be a random variable, and denote V =
E[min{L(Θk), 1}].

Note that, by [69, Lemma 6.2] and Tonelli’s theorem, it follows from Setting 2.1 that
L(Θk) : Ω → [0,∞] is measurable and, as a consequence, V = E[min{L(Θk), 1}] is well-
defined.

3. DNNs with constant realization functions

In this section, we study a subset of the parameter space, specified in Definition 3.1 below,
for which neurons in a DNN become “inactive”, rendering the realization function of the DNN
constant. We deduce a few properties for such DNNs in Lemmas 3.2, 3.3, and 3.4 below.
The material in this section is related to the findings in [90,117].
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Definition 3.1. Let D ∈ N and a = (a0, . . . , aD) ∈ ND+1. For all j ∈ N ∩ (0, D), let
Ia,j ⊆ RP(a) be the set

Ia,j =

{
θ = (θ1, . . . , θP(a)) ∈ RP(a) :

[
∀ k ∈ N∩

( j−1∑
i=1

ai(ai−1+1),

j∑
i=1

ai(ai−1+1)

]
: θk < 0

]}
,

and denote Ia =
⋃
j∈N∩(1,D) Ia,j.

First, we verify that the realization function is constant in both the argument and the
network parameter on certain subsets of Ia,j.

Lemma 3.2. Let D ∈ N, j ∈ N ∩ (1, D), a = (a0, . . . , aD) ∈ ND+1, θ = (θ1, . . . , θP(a)),
ϑ = (ϑ1, . . . , ϑP(a)) ∈ Ia,j, x ∈ Ra0, and assume that θk = ϑk for all k ∈ N ∩

(∑j
i=1 ai(ai−1 +

1),P(a)
]
. Then Rθ

a(0) = Rθ
a(x) = Rϑ

a(x) = Rϑ
a(0).

Proof. For all k ∈ {1, . . . , D}, denote mk =
∑k

i=1 ai(ai−1 + 1). Since, by assumption, θ, ϑ ∈
Ia,j, one has for all k ∈ N∩(mj−1,mj] that θk < 0 and ϑk < 0. This and ρ(Raj−1) = [0,∞)aj−1

imply for all y ∈ Raj−1 , φ ∈ {θ, ϑ} that Aφ,mj−1
aj ,aj−1 ◦ ρ(y) ∈ (−∞, 0]aj . This ensures for all

y ∈ Raj−1 , φ ∈ {θ, ϑ} that ρ ◦ Aφ,mj−1
aj ,aj−1 ◦ ρ(y) = 0. Moreover, the assumption that θk = ϑk for

all k ∈ N ∩
(∑j

i=1 ai(ai−1 + 1),P(a)
]
yields Aθ,mk−1

ak,ak−1 = Aϑ,mk−1
ak,ak−1 for all k ∈ N ∩ (j,D]. This

implies that Rθ
a(y) = Rϑ

a(z) for all y, z ∈ Ra0 , which completes the proof of Lemma 3.2.

The next lemma shows that networks with parameters in Ia cannot perform better than
a constant solution to the learning task.

Lemma 3.3. Assume Setting 2.1 and let θ ∈ Ia. Then L(θ) ≥ infb∈R E[|b− B|].

Proof. Let ζ ∈ Ω. By Lemma 3.2, one has Rθ
a(x) = Rθ

a(0) for all x ∈ Rd. Therefore, we
obtain Rθ

a(X (ω)) = Rθ
a(X (ζ)) for all ω ∈ Ω. In particular, L(θ) = E[|(c ◦Rθ

a)(X (ζ))−B|] ≥
infb∈R E[|b− B|].

Finally, we show that SGD cannot escape from Ia.

Lemma 3.4. Assume Setting 2.1 and let n, t ∈ N, ω ∈ Ω, j ∈ N ∩ (1, D). Suppose that
Θn,0(ω) ∈ Ia,j. Then Θn,t(ω) ∈ Ia,j.

Proof. Denote m0 =
∑j−1

i=1 ai(ai−1 + 1) and m1 =
∑j

i=1 ai(ai−1 + 1). We prove by induction
that for all s ∈ N0 we have Θn,s(ω) ∈ Ia,j. The case s = 0 is true by assumption. Now
suppose that s ∈ N0 and θ = (θ1, . . . , θP(a)) ∈ RP(a) satisfy θ = Θn,s(ω) ∈ Ia,j. Let
U ⊆ RP(a) be the set given by U = {(θ1, . . . , θm0)} × (−∞, 0)m1−m0 × {(θm1+1, . . . , θP(a))}.
Then θ ∈ U ⊆ Ia,j. By Lemma 3.2, we have Rφ

a(x) = Rθ
a(x) for all φ ∈ U and x ∈ Rd.

Hence, Ln,s+1(φ, ω) = Ln,s+1(θ, ω) for all φ ∈ U and, as a consequence, ∂
∂θk
Ln,s+1(θ, ω) = 0

for all k ∈ N ∩ (m0,m1]. So, it follows from (2.1), (2.2), and the induction hypothesis that
Θn,s+1(ω) ∈ Ia,j, which completes the proof of Lemma 3.4.
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4. Quantitative lower bounds for the SGD method in the training of
DNNs

In this section, we establish in Proposition 4.2 below a quantitative lower bound for the error
of the SGD method in the training of DNNs.

Lemma 4.1. Assume Setting 2.1 and suppose D ≥ 3. For all j ∈ {1, . . . , D − 1}, denote
kj =

∑j
i=1 ai(ai−1 + 1), p = infi∈{1,...,P(a)} P(Θ1,0

i < 0), and W = max{a1, . . . , aD−1}. Then

P
(
∀n ∈ {1, . . . , N}, t ∈ N0 : Θn,t ∈ Ia

)
=

[
1−

D−1∏
j=2

(
1−

kj∏
i=1+kj−1

P(Θ1,0
i < 0)

)]N
≥
[
1− (1− pW (W+1))D−2

]N
.

Proof. It follows from the independence of Θ1,0
1 , . . . ,Θ1,0

P(a) that

P(Θ1,0 ∈ Ia) = P
(
∃ j ∈ N ∩ (1, D) : ∀ i ∈ N ∩ (kj−1, kj] : Θ1,0

i < 0
)

= 1−
D−1∏
j=2

(
1−

kj∏
i=1+kj−1

P(Θ1,0
i < 0)

)
.

By definition of p andW , the right hand side is greater than or equal to 1−(1−pW (W+1))D−2.
Moreover, Lemma 3.4 and the assumption that Θ1,0, . . . ,ΘN,0 are i.i.d. yield

P
(
∀n ∈ {1, . . . , N}, t ∈ N0 : Θn,t ∈ Ia

)
= P

(
∀n ∈ {1, . . . , N} : Θn,0 ∈ Ia

)
=
(
P(Θ1,0 ∈ Ia)

)N
,

which completes the proof of Lemma 4.1.

Proposition 4.2. Under the same assumptions as in Lemma 4.1, one has

V = E[min{L(Θk), 1}] ≥
[
1−

D−1∏
j=2

(
1−

kj∏
i=1+kj−1

P(Θ1,0
i < 0)

)]N
min

{
inf
b∈R

E[|b− B|], 1
}

≥
[
1− (1− pW (W+1))D−2

]N
min

{
inf
b∈R

E[|b− B|], 1
}
.

(4.1)

Proof. Denote C = min{infb∈R E[|b − B|], 1} and observe that Lemma 3.3 implies for all
ω ∈ Ω with Θk(ω)(ω) ∈ Ia that min{L(Θk(ω)(ω)), 1} ≥ C. Markov’s inequality hence ensures
that

C P(Θk ∈ Ia) ≤ C P(min{L(Θk), 1} ≥ C) ≤ V .

Combining this with Lemma 4.1 and the fact that P(Θk ∈ Ia) ≥ P(∀n ∈ {1, . . . , N}, t ∈
N0 : Θn,t ∈ Ia) establishes (4.1).

Let us briefly discuss how the inequality in Proposition 4.2 relates to prior work in the
literature. Fix a depth D ∈ N and consider the problem of distributing a given number of
neurons among the D− 1 hidden layers. In order to minimize the chance of starting with an
inactive network, one needs to minimize the quantity 1−

∏D−1
j=2 (1−

∏kj
i=1+kj−1

P(Θ1,0
i < 0))
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from (4.1). Under the assumption that P(Θ1,0
i < 0) does not depend on i, this can be achieved

by choosing the same number of neurons in each layer.
The effects of initialization and architecture on early training have also been studied

in [52, 54]. While [52] investigates the problem of vanishing and exploding gradients, [54]
studies two failure modes associated with poor starting conditions. Both find that, given a
total number of neurons to spend, distributing them evenly among the hidden layers, yields
the best results. This is in line with our findings.

5. Non-convergence of the SGD method in the training of DNNs

In this section, we prove the chapter’s main results, Theorem 5.3 and Corollary 5.4. While
Theorem 5.3 provides precise quantitative conditions under which SGD does not converge
in the training of DNNs, Corollary 5.4 is a qualitative result. To prove them, we need the
following elementary result. Throughout, log denotes the natural logarithm.

Lemma 5.1. Let D,N,W ∈ (0,∞) and κ, p ∈ (0, 1) be such that D ≥ |log(p)|Wp−W and
N ≤ |log(κ)|(1− pW )1−D. Then [1− (1− pW )D]N ≥ κ.

Proof. Let the functions f : [0, 1)→ R and g : [0, 1)→ R be given by f(x) = x+log(1−x) and
g(x) = (1−pW )−1x+log(1−x). Since f(0) = 0 and f ′(x) = 1−(1−x)−1 < 0 for all x ∈ (0, 1),
one has |log(1− x)|−1 < x−1 for all x ∈ (0, 1). Hence, D > |log(p)|W |log(1− pW )|−1, from
which it follows that (1− pW )D < pW . In addition, g(0) = 0 and g′(x) = (1− pW )−1 − (1−
x)−1 > 0 for all x ∈ (0, pW ), which implies that |log(1−x)| < (1− pW )−1x for all x ∈ (0, pW ).
Hence, we deduce from (1−pW )D < pW thatN |log(1−(1−pW )D)| < N(1−pW )D−1 ≤ |log(κ)|,
and taking the exponential yields the desired statement.

We proved Proposition 4.2 in the abstract framework of Setting 2.1. For the sake of
concreteness, we now return to the setup of the introduction. We quickly recall it below.

Setting 5.2. Let u, u ∈ R, v ∈ (u,∞), v ∈ (u,∞), c ∈ C(R,R), d ∈ N, and (γt)t∈N ⊆ R.
Consider functions Xn,t

j : Ω → [u, v]d and Y n,t
j : Ω → [u, v], j, n, t ∈ N0, on a probability

space (Ω,F ,P) such that X0,0
0 and Y 0,0

0 are random variables. Let E : [u, v]d → [u, v] be
a measurable function such that P-a.s. E(X0,0

0 ) = E[Y 0,0
0 |X

0,0
0 ]. Let Ln,ta,m : RP(a) × Ω → R,

m ∈ N, n, t ∈ N0, a ∈ Ad, be given by

Ln,ta,m(θ) =
1

m

m∑
j=1

∣∣(c ◦ Rθ
a)(X

n,t
j )− Y n,t

j

∣∣2, (5.1)

and assume Gn,ta,m = (Gn,ta,m,1, . . . ,G
n,t
a,m,P(a)) : RP(a) × Ω→ RP(a) are mappings satisfying

Gn,ta,m,i(θ, ω) =
∂

∂θi
Ln,ta,m(θ, ω)

for all m,n, t ∈ N, a ∈ Ad, i ∈ {1, . . . ,P(a)}, ω ∈ Ω, and

θ =∈
{
ϑ = (ϑ1, . . . , ϑP(a)) ∈ RP(a) :

Ln,ta,m(ϑ1, . . . , ϑi−1, (·), ϑi+1, . . . , ϑP(a), ω)
as a function R→ R is differentiable at ϑi.

}
.
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Let Θn,t
a,m = (Θn,t

a,m,1, . . . ,Θ
n,t
a,m,P(a)) : Ω → RP(a), m,n ∈ N, t ∈ N0, a ∈ Ad, be random

variables such that Θn,0
a,m, n ∈ N, are i.i.d., Θ1,0

a,m,1, . . . ,Θ
1,0
a,m,P(a) are independent for all m ∈ N,

a ∈ Ad, and
Θn,t
a,m = Θn,t−1

a,m − γtGn,ta,m(Θn,t−1
a,m )

for all m,n, t ∈ N, a ∈ Ad. Let ka,M,N,T : Ω→ {1, . . . , N} × N0, M,N ∈ N, T ∈ N0, a ∈ Ad,
be random variables.

The following is the main result of this chapter.

Theorem 5.3. Assume Setting 5.2 and fixM ∈ N. Consider sequences (Dl, Nl,Wl)l∈N0 ⊆ N3,
(al)l∈N0 = (al0, . . . , a

l
Dl

)l∈N0 ⊆ Ad and constants κ, p ∈ (0, 1) such that, for all l ∈ N0,
Wl = max{al1, . . . , alDl−1}, Dl ≥ |log(p)|Wl(Wl + 1)p−Wl(Wl+1) + 2, and Nl ≤ |log(κ)|(1 −
pWl(Wl+1))3−Dl. Let Φl,T : Ω → RP(al), l, T ∈ N0, be given by Φl,T = Θ

k
al,M,Nl,T

al,M
, and assume

that inf l∈N0 infi∈{1,...,P(al)} P
(
Θ1,0
al,M,i

< 0
)
≥ p. Then

lim inf
l→∞

inf
T∈N0

E
[

min

{∫
[u,v]d

∣∣∣(c ◦ RΦl,T
al

)
(x)− E(x)

∣∣∣ PX0,0
0

(dx), 1

}]
≥ κmin

{
inf
b∈R

E
[
|b− E(X0,0

0 )|
]
, 1
}
.

(5.2)

Proof. Denote q = inf l∈N0 infi∈{1,...,P(al)} P
(
Θ1,0
al,M,i

< 0
)
. By Proposition 4.2, one has, for all

l, T ∈ N0,

E
[

min

{∫
[u,v]d

∣∣∣(c ◦ RΦl,T
al

)
(x)− E(x)

∣∣∣ PX0,0
0

(dx), 1

}]
≥
[
1− (1− qWl(Wl+1))Dl−2

]Nl min
{

inf
b∈R

E
[
|b− E(X0,0

0 )|
]
, 1
}
.

Moreover, Lemma 5.1 implies that, for all l ∈ N0,[
1− (1− qWl(Wl+1))Dl−2

]Nl ≥ [1− (1− pWl(Wl+1))Dl−2
]Nl ≥ κ,

which completes the proof of Theorem 5.3.

Instead of focusing on a single sequence of architectures as in Theorem 5.3, one can instead
consider the limit superior over all possible architectures, which we do in Corollary 5.4 below.
Note that this allows us to increase the constant κ from (5.2) to 1.

Corollary 5.4. Assume Setting 5.2 and let c ∈ (0,∞). Suppose that Var(E(X0,0
0 )) > 0 and

assume that Θn,0
a,m is uniformly distributed on [−c, c]P(a) for all m,n ∈ N, a ∈ Ad. Then

inf
N∈N

lim sup
a=(a0,...,aD)∈Ad

min{D,a1,...,aD−1}→∞

inf
M∈N
T∈N0

E
[

min

{∫
[u,v]d

∣∣∣∣(c ◦ RΘ
ka,M,N,T
a,M

a

)
(x)− E(x)

∣∣∣∣ PX0,0
0

(dx), 1

}]

≥ min
{

inf
b∈R

E
[
|b− E(X0,0

0 )|
]
, 1
}
> 0.

(5.3)
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Proof. First note that infM∈N infa∈Ad infi∈{1,...,P(a)} P(Θ1,0
a,M,i < 0) = 1

2
. So, it follows from

Theorem 5.3 that for all k,N ∈ N, κ ∈ (0, 1) there exist D ∈ N and a = (a0, . . . , aD) ∈ Ad
such that min{D, a1, . . . , aD−1} ≥ k and

inf
T∈N0

E
[

min

{∫
[u,v]d

∣∣(c ◦ RΘ
ka,M,N,T
a,M

a

)
(x)− E(x)

∣∣PX0,0
0

(dx), 1

}]
≥ κmin

{
inf
b∈R

E
[
|b− E(X0,0

0 )|
]
, 1
}

for all M ∈ N. As a result, one has

inf
N∈N

lim sup
a=(a0,...,aD)∈Ad

min{D,a1,...,aD−1}→∞

inf
M∈N
T∈N0

E
[

min

{∫
[u,v]d

∣∣∣∣(c ◦ RΘ
ka,M,N,T
a,M

a

)
(x)− E(x)

∣∣∣∣ PX0,0
0

(dx), 1

}]

≥ κmin
{

inf
b∈R

E
[
|b− E(X0,0

0 )|
]
, 1
}

for all κ ∈ (0, 1). Taking the limit κ ↑ 1 and noting that the assumption Var(E(X0,0
0 )) > 0

implies infb∈R E
[
|b− E(X0,0

0 )|
]
> 0 completes the proof of the corollary.
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Landscape analysis for shallow neural networks:
complete classification of critical points

for affine target functions

This chapter is an adaptation of the published article [18].

1. Introduction

In this chapter, we conduct a landscape analysis of the loss surface. Our goal is to understand
the occurrence and frequency of critical points of the loss function and knowing their type.
We consider shallow networks with (leaky) ReLU or quadratic activation. As mentioned in
Chapter 1, we do not impose assumptions on the network model that are not met in practice,
but instead focus on special target functions, namely affine ones. In this framework, we
provide a complete classification of the critical points of the true loss. We do so by unfolding
the combinatorics of the problem, governed by different types of hidden neurons appearing
in a network.

Using the classification in this chapter, we are able to derive results about the existence
of strictly negative eigenvalues of the Hessian at most of the saddle points (understood in a
suitable sense because we have to deal with differentiability issues arising from the (leaky)
ReLU activation). This will be important later in Chapter 5.

The remainder of this chapter is organized as follows. The first activation function we
consider is the ReLU activation in Section 2. We begin by introducing the relevant notation
and definitions, including a new description of the types of hidden neurons that can appear
in a ReLU network, in Sections 2.1 and 2.2. The first main result, the classification for ReLU
networks, is Theorem 2.4 in Section 2.3. The remainder of Section 2 is dedicated to proving
the classification. More precisely, we discuss a few important ingredients for the proof in
Section 2.4. Thereafter, Section 2.5 is devoted to the differentiability and regularity properties
of the loss function in view of the non-differentiability of the ReLU activation. The heart of
the proof is contained in Sections 2.6 and 2.7. Finally, we establish in Section 2.8 a special
case of Theorem 2.4 and deduce it in full generality afterwards in Section 2.9. Section 3 is
concerned with extending the classification to leaky ReLU, stated as our second main result
in Theorem 3.5, which heavily relies on understanding the ReLU case. To conclude, we also
classify the critical points for networks with the quadratic activation in our third main result,
Theorem 4.1 in Section 4.

42
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2. Classification for ReLU activation

2.1 Notation and formal problem description

For simplicity, we focus on shallow networks with a single input and output neuron. The
set of such networks with N ∈ N hidden neurons can be parametrized by R3N+1. We begin
by describing the problem for the ReLU activation function x 7→ max{x, 0}. We will always
write an element φ ∈ R3N+1 as φ = (w, b, v, c), where w, b, v ∈ RN and c ∈ R. The realization
of the network φ with ReLU activation is the function fφ ∈ C(R,R) given by

fφ(x) = c+
N∑
j=1

vj max{wjx+ bj, 0}.

We suppose that the objective is to approximate an affine function on an interval [T0, T1] in
the L2-norm. In other words, given A = (α, β) ∈ R2 and T = (T0, T1) ∈ R2, one tries to
minimize the loss function LN,T,A ∈ C(R3N+1,R) given by

LN,T,A(φ) =

∫ T1

T0

(fφ(x)− αx− β)2 dx.

The purpose of the first half of this chapter is to classify the critical points of the loss function
LN,T,A. Since the ReLU function is not differentiable at 0, we work with the generalized
gradient GN,T,A : R3N+1 → R3N+1 of the loss obtained by taking right-hand partial derivatives;

(GN,T,A(φ))k = lim
h↓0

LN,T,A(φ+ hek)− LN,T,A(φ)

h

for all k ∈ {1, . . . , 3N + 1}, where ek is the kth unit vector in R3N+1. The function GN,T,A is
defined on the entire parameter space R3N+1 and agrees with the gradient of LN,T,A if the
latter exists. We verify this and study regularity properties of LN,T,A more thoroughly in
Section 2.5.

Definition 2.1. Let N ∈ N and A, T ∈ R2. Then we call φ ∈ R3N+1 a critical point of
LN,T,A if GN,T,A(φ) = 0 and a saddle point if it is a critical point but not a local extremum.1

It can be shown that if φ is a critical point of LN,T,A, then 0 belongs to the limiting
sub-differential of LN,T,A; see2 [37, Prop. 2.12]. With Definition 2.1, it is not immediately
clear whether all local extrema are critical points. However, we will show that this is the
case by demonstrating that local extrema are points of differentiability of the loss function.
In particular, Definition 2.1 is well-suited for our purposes. The next notion relates the outer
bias, i.e., the coordinate c, to the target function x 7→ αx+ β.

Definition 2.2. Let N ∈ N, φ = (w, b, v, c) ∈ R3N+1, A = (α, β) ∈ R2, and T = (T0, T1) ∈
R2. Then we say that φ is (T,A)-centered if c = α

2
(T0 + T1) + β.

To motivate this definition, note that α
2
(T0 +T1)+β is the best constant L2-approximation

of the function [T0, T1]→ R, x 7→ αx+ β.
1We consider nonstrict local extrema, i.e. φ is a local minimum (maximum) of LN,T,A if LN,T,A(φ) ≤

LN,T,A(ψ) (≥) for all ψ in an open neighborhood of φ, allowing equality LN,T,A(φ) = LN,T,A(ψ).
2In [37], the authors use a different generalization of the gradient, which can be obtained by taking

left-hand partial derivatives. However, if GN,T,A is zero at some φ, then its left-hand analog is also zero at φ,
so [37, Prop. 2.12] is applicable.
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Figure 4.1: Illustration of the notions introduced in Definition 2.3: regions4 with different
types of a hidden neuron as seen in the (wj, bj)-plane.

2.2 Different types of hidden neurons

In this section, we introduce a few notions that describe how the different hidden neurons in
a network are contributing to the realization function. In the definition below, we introduce
sets Ij, which are defined such that [T0, T1]\Ij is the interval on which the output of the jth
hidden neuron is rendered zero by the ReLU activation.

Definition 2.3. Let N ∈ N, φ = (w, b, v, c) ∈ R3N+1, j ∈ {1, . . . , N}, and T0, T1 ∈ R such
that T0 < T1. Then, we denote by Ij the set given by Ij = {x ∈ [T0, T1] : wjx+ bj ≥ 0}, we
say that the jth hidden neuron of φ is

• flat if vj = 0,
• non-flat if vj 6= 0,
• inactive if Ij = ∅,
• semi-inactive if #Ij = 1,
• semi-active if wj = 0 < bj,

• active if wj 6= 0 < bj + maxk∈{0,1}wjTk,
• type-1-active if wj 6= 0 ≤ bj + mink∈{0,1}wjTk,
• type-2-active if ∅ 6= Ij ∩ (T0, T1) 6= (T0, T1),
• degenerate if |wj|+ |bj| = 0,
• non-degenerate if |wj|+ |bj| > 0,

and we say that t ∈ R is the breakpoint of the jth hidden neuron of φ if wj 6= 0 = wjt+ bj.

Let us briefly motivate these notions. Every hidden neuron is exactly one of: inactive,
semi-inactive, semi-active, active, or degenerate. Moreover, observe that Ij is always an
interval.

For an inactive neuron, applying the ReLU activation function yields the constant zero
function on [T0, T1]. The breakpoint tj might not exist (if wj = 0 and bj < 0), or it might
exist and lie outside of [T0, T1] with tj < T0 if wj < 0 and tj > T1 if wj > 0. Note that
inactivity is a stable condition in the sense that a small perturbation of an inactive neuron
remains inactive.

Applying the ReLU activation to a semi-inactive neuron also yields the constant zero
function on [T0, T1]. But in this case, a breakpoint must exist and be equal to one of the
endpoints T0, T1 (which one depends on the sign of wj similarly to the inactive case). However,
a perturbation of a semi-inactive neuron may yield a (semi-)inactive or a type-2-active neuron;
see Fig. 4.1. In this sense, semi-inactive neurons are boundary cases.

4Fig. 4.1 shows the case T0 = 0, T1 = 1. The general case is obtained by a shear transformation.
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The realization of a semi-active neuron is also constant, but not necessarily zero since the
corresponding interval Ij is [T0, T1]. As can be seen from Fig. 4.1, perturbing a semi-active
neuron always yields a semi- or type-1-active neuron.

Non-flat active neurons provide a nonconstant contribution to the overall realization
function. Note that a hidden neuron is active exactly if it is type-1- or type-2-active. These
two types distinguish whether the breakpoint tj, which exists in either case, lies outside
or inside the interval (T0, T1) and, hence, whether the contribution of the neuron is affine
(corresponding to Ij = [T0, T1]) or piecewise affine (corresponding to Ij = [T0, tj] or Ij =
[tj, T1]). Type-1 and type-2-active neurons both form two connected components in the
(wj, bj)-plane; see Fig. 4.1. A perturbation of an active neuron remains active.

The case wj = 0 = bj is called degenerate because it leads to problems with differentiability.
Perturbing a degenerate neuron may yield any of the other types of neurons.

Lastly, a flat neuron also does not contribute to the overall realization, but the reason for
this lies between the second and third layer and not between the first and second one, which
is why this case deserves a separate notion.

2.3 Classification of the critical points of the loss function

Now, we are ready to provide a classification of the critical points of the loss function.

Theorem 2.4. Let N ∈ N, φ = (w, b, v, c) ∈ R3N+1, A = (α, β) ∈ R2, and T = (T0, T1) ∈ R2

satisfy α 6= 0 and 0 ≤ T0 < T1. Then the following hold:

(I) φ is not a local maximum of LN,T,A.
(II) If φ is a critical point or a local extremum of LN,T,A, then LN,T,A is differentiable at φ

with gradient ∇LN,T,A(φ) = 0.

(III) φ is a non-global local minimum of LN,T,A if and only if φ is (T,A)-centered and, for
all j ∈ {1, . . . , N}, the jth hidden neuron of φ is

(a) inactive,
(b) semi-inactive with Ij = {T0} and αvj > 0, or
(c) semi-inactive with Ij = {T1} and αvj < 0.

(IV) φ is a saddle point of LN,T,A if and only if φ is (T,A)-centered, φ does not have any
type-1-active neurons, φ does not have any non-flat semi-active neurons, φ does not
have any non-flat degenerate neurons, and exactly one of the following two items holds:

(a) φ does not have any type-2-active neurons and there exists j ∈ {1, . . . , N} such
that the jth hidden neuron of φ is

(i) flat semi-active,
(ii) semi-inactive with Ij = {T0} and αvj ≤ 0,
(iii) semi-inactive with Ij = {T1} and αvj ≥ 0, or
(iv) flat degenerate.

(b) There exists n ∈ {2, 4, 6, . . . } such that

⋃
j∈{1,...,N}, wj 6=0

{
− bj
wj

}
∩ (T0, T1) =

n⋃
i=1

{
T0 +

i(T1 − T0)

n+ 1

}
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and, for all j ∈ {1, . . . , N}, i ∈ {1, . . . , n} with wj 6= 0 = bj + wj(T0 + i(T1−T0)
n+1

), it
holds that sign(wj) = (−1)i+1 and∑

k∈{1,...,N}, wk 6=0=bk+wk(T0+
i(T1−T0)
n+1

)

vkwk =
2α

n+ 1
.

(V) If φ is a non-global local minimum of LN,T,A or a saddle point of LN,T,A without
type-2-active neurons, then fφ(x) = α

2
(T0 + T1) + β for all x ∈ [T0, T1].

(VI) If φ is a saddle point of LN,T,A with at least one type-2-active neuron, then there exists
n ∈ {2, 4, 6, . . . } such that n ≤ N and

fφ(x) = αx+ β − (−1)iα

n+ 1

(
x− T0 −

(i+ 1
2
)(T1 − T0)

n+ 1

)
for all i ∈ {0, . . . , n}, x ∈ [T0 + i(T1−T0)

n+1
, T0 + (i+1)(T1−T0)

n+1
].

Theorem 2.4.(IV.b) says that the set of breakpoints of all type-2-active neurons agrees
with the set of n equally spaced points T0 < q1 < · · · < qn < T1. Furthermore, for any
type-2-active neuron with breakpoint qi, the sign of the coordinate w is given by (−1)i+1.
Lastly, the sum of vkwk, where k ranges over all type-2-active neurons with breakpoint qi, is
equal to 2α

n+1
. The term vkwk is the contribution of the kth hidden neuron to the slope of the

realization.

Remark 2.5. Note that, by Theorem 2.4.(II), all local extrema and all critical points of
LN,T,A, which we defined as zeros of GN,T,A, are actually critical points of LN,T,A in the
classical sense, i.e. points of differentiability of LN,T,A with vanishing gradient. In particular,
the classification in Theorem 2.4 turns out to be a classification of the critical points in the
classical sense as well.

Remark 2.6. Gradient Descent-type algorithms typically use generalized gradients to train
ReLU networks. For instance, they might compute G, its left-hand analog, the average of
the two, or quantities obtained by artificially defining the derivative of the ReLU function
at 0. For each of these versions, a similar classification of critical points could be derived.

Theorem 2.4.(V) shows that any non-global local minimum has the constant realization
α
2
(T0 + T1) + β. In particular, there is only one value that the loss function can take at

non-global local minima. Similarly, it follows from Theorem 2.4.(VI) that a saddle point can
lead to exactly one of bN/2c+ 1 possible loss values.

Corollary 2.7. Let N ∈ N, A = (α, β) ∈ R2, and T = (T0, T1) ∈ R2 satisfy 0 ≤ T0 < T1,
and assume that φ ∈ R3N+1 is a critical point of LN,T,A. Then the following hold:

(i) If φ is a non-global local minimum of LN,T,A, then LN,T,A(φ) = 1
12
α2(T1 − T0)3.

(ii) If φ is a saddle point of LN,T,A, then there exists n ∈ {0, 2, 4, . . . } such that n ≤ N and
LN,T,A(φ) = 1

12(n+1)4
α2(T1 − T0)3.

Formally, Corollary 2.7 only follows from Theorem 2.4 for α 6= 0. But for α = 0 it holds
trivially since for constant target functions there exist no critical points other than global
minima; see [14].
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2.4 Ingredients for the proof of the classification

As a first step, let us provide a simple argument to establish Theorem 2.4.(I).

Lemma 2.8. Let N ∈ N, A ∈ R2, and T = (T0, T1) ∈ R2 satisfy T0 < T1. Then LN,T,A does
not have any local maxima.

Proof. Write A = (α, β). The lemma directly follows from the simple fact that

LN,T,A(w, b, v, c) =

∫ T1

T0

(
c+

N∑
j=1

vj max{wjx+ bj, 0} − αx− β
)2

dx

is strictly convex in c.

As a consequence of this lemma, whenever we want to show that a critical point φ is a
saddle point, it suffices to show that it is not a local minimum, that is, it suffices to show
that, in every neighborhood of φ, L attains a value that is below L(φ).

Remark 2.9. The previous proof only used linearity of the realization function in the c-
coordinate and strict convexity of the square function. In particular, the same argument
shows that the square loss never has local maxima regardless of the target function, the
activation function, and the architecture of the network.

Let us now provide a sketch of the proofs to come. Instead of proving Theorem 2.4
directly, we first assume that the affine target function is the identity on the interval [0, 1],
corresponding to the special case T0 = β = 0 and T1 = α = 1 in Theorem 2.4. Afterwards,
we will verify that the general case can always be reduced to this one. For convenience of
notation, we assume the following convention to hold throughout the remainder of Section 2.

Setting 2.10. Fix N ∈ N and denote L = LN,(0,1),(1,0) and G = GN,(0,1),(1,0). We say that a
network φ ∈ R3N+1 is centered if it is ((0, 1), (1, 0))-centered.

The generalized gradient G was defined in terms of the right-hand partial derivatives of
L. These are given by

∂+

∂wj
L(φ) = 2vj

∫
Ij

x(fφ(x)− x)dx,

∂+

∂bj
L(φ) = 2vj

∫
Ij

(fφ(x)− x)dx,

∂+

∂vj
L(φ) = 2

∫
Ij

(wjx+ bj)(fφ(x)− x)dx,

∂+

∂c
L(φ) = 2

∫ 1

0

(fφ(x)− x)dx.

Regularity properties of the loss function will be discussed in detail in the next section. We
will see then that these right-hand partial derivatives are proper partial derivatives if the
jth hidden neuron is flat or non-degenerate. If these partial derivatives are zero, then we
encounter the system of equations

0 = 2vj

∫
Ij

x(fφ(x)− x)dx,

0 = 2vj

∫
Ij

(fφ(x)− x)dx,

0 = 2

∫
Ij

(wjx+ bj)(fφ(x)− x)dx,

0 = 2

∫ 1

0

(fφ(x)− x)dx,

(2.1)
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from which we deduce that any non-flat non-degenerate neuron of a critical point or local
extremum φ satisfies ∫

Ij

(fφ(x)− x)dx = 0 =

∫
Ij

x(fφ(x)− x)dx. (2.2)

This simple observation will be used repeatedly in the proof of Theorem 2.4. Moreover, for
a type-1-active neuron (for which Ij = [0, 1]), (2.2) is even satisfied if the neuron is flat as
can be seen from the third and fourth line of (2.1). Here is an example of how (2.2) can be
employed: note that any affine function f : [0, 1]→ R satisfying∫ 1

0

(f(x)− x)dx = 0 =

∫ 1

0

x(f(x)− x)dx (2.3)

necessarily equals the identity on [0, 1]. Thus, if φ is a critical point or local extremum of
L for which fφ is affine and if φ admits a type-1-active or non-flat semi-active neuron (so
that Ij = [0, 1]), then we obtain from (2.2) that φ is a global minimum. If fφ is not affine,
we will be able to develop similar arguments for each affine piece of fφ. In this case, we will
obtain a system of equations from (2.1) that intricately describes the combinatorics of the
realization function.

2.5 Differentiability of the loss function

Since the ReLU function is not differentiable at 0, the loss function is not everywhere
differentiable. However, a simple argument establishes that L is differentiable at any of its
global minima as the following lemma shows.

Lemma 2.11. Let φ ∈ R3N+1. If fφ(x) = x for all x ∈ [0, 1], then L is differentiable at φ.

Proof. It is well known that the realization function R3N+1 → C([0, 1],R), φ 7→ fφ|[0,1] is
locally Lipschitz continuous if C([0, 1],R) is equipped with the supremums norm; see, e.g.,
[104]. Thus, there is a constant L > 0 depending only on N and φ with |fφ+ψ(x)− fφ(x)| ≤
L‖ψ‖ uniformly on [0, 1] for all ψ sufficiently close to φ. Then

L(φ+ ψ)− L(φ)

‖ψ‖
=

1

‖ψ‖

∫ 1

0

(fφ+ψ(x)− fφ(x))2dx ≤ L2‖ψ‖,

which shows that L is differentiable at φ.

The next result shows that there even are regions in the parameter space where L is
infinitely often differentiable in spite of the ReLU activation.

Lemma 2.12. The loss function L is everywhere analytic in (v, c). Moreover, if the jth
hidden neuron of φ ∈ R3N+1 is inactive, semi-active, or type-1-active with breakpoint neither
0 nor 1 for some j ∈ {1, . . . , N}, then L is also analytic in (wj, bj, v, c) in a neighborhood
of φ, and mixed partial derivatives of any order can be obtained by differentiating under the
integral. In particular,

∂

∂wj
L(φ) = 2vj

∫
Ij

x(fφ(x)− x)dx,

∂

∂bj
L(φ) = 2vj

∫
Ij

(fφ(x)− x)dx,

∂

∂vj
L(φ) = 2

∫
Ij

(wjx+ bj)(fφ(x)− x)dx,

∂

∂c
L(φ) = 2

∫ 1

0

(fφ(x)− x)dx.
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Proof. For the first part, note that L is a polynomial in the coordinates (v, c). Secondly,
assume that the jth hidden neuron of φ0 ∈ R3N+1 is inactive. Then for all φ in a sufficiently
small neighborhood of φ0 and all x ∈ [0, 1] we have max{wjx + bj, 0} = 0. Hence, L is
constant in the coordinates (wj, bj) near φ0 and it is a polynomial in (wj, bj, v, c). Thirdly,
assume that the jth hidden neuron of φ0 is semi-active or type-1-active with breakpoint
neither 0 nor 1. Then for all φ in a sufficiently small neighborhood of φ0 and all x ∈ [0, 1]
we have max{wjx + bj, 0} = wjx + bj. In particular, L is a polynomial in the coordinates
(wj, bj, v, c) near φ0. The statement about differentiating under the integral follows from
dominated convergence.

In regions of the parameter space not covered by Lemma 2.12, we cannot guarantee
as much regularity of the loss function, but we can still hope for differentiability. In-
deed, we already noted in the proof of Lemma 2.11 that the realization function R3N+1 →
C([0, 1],R), φ 7→ fφ|[0,1] is locally Lipschitz continuous. So, it follows from Rademacher’s
theorem that G is, in fact, equal to the true gradient ∇L of L almost everywhere. In the
next result, we obtain insights about the measure-zero set on which G may not be the true
gradient.

Lemma 2.13. For all j ∈ {1, . . . , N}, the right-hand partial derivatives ∂+L(φ)/∂wj and
∂+L(φ)/∂bj exist everywhere and are given by

∂+

∂wj
L(φ) = 2vj

∫
Ij

x(fφ(x)− x)dx and
∂+

∂bj
L(φ) = 2vj

∫
Ij

(fφ(x)− x)dx.

Moreover, if the jth hidden neuron is flat or non-degenerate, then L is differentiable in
(wj, bj, v, c) and, in particular, the right-hand partial derivatives ∂+L(φ)/∂wj and ∂+L(φ)/∂bj
are proper partial derivatives.

Proof. Let φ ∈ R3N+1 be arbitrary and denote by φh, h = (h1, h2) ∈ R2, the network with
the same coordinates as φ except in the jth hidden neuron, where φh has coordinates wj + h1

and bj + h2. We use the notation Ihj for the interval Ij associated to φh and denote

ε = L(φh)− L(φ)− 2vjh
1

∫
Ij

x(fφ(x)− x)dx− 2vjh
2

∫
Ij

(fφ(x)− x)dx.

The proof is complete if we can show that ε goes to zero faster than (h1, h2). To do that, we
estimate the two terms of the last line of

ε =

∫ 1

0

(fφh(x)− fφ(x))2dx

+ 2

∫ 1

0

(fφh(x)− fφ(x))(fφ(x)− x)dx− 2vj

∫
Ij

(h1x+ h2)(fφ(x)− x)dx

=

∫ 1

0

(fφh(x)− fφ(x))2dx+ 2vj

∫ 1

0

(wjx+ bj + h1x+ h2)(fφ(x)− x)(1Ihj (x)− 1Ij(x))dx.

To control the first term, we use local Lipschitz continuity of the realization function, which
yields a constant L > 0 depending only on φ so that |fφh(x)−fφ(x)| ≤ L(|h1|+|h2|) uniformly
on [0, 1] for all sufficiently small h. To estimate the second term, we note that the absolute
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value of 1Ihj − 1Ij is the indicator function of the symmetric difference Ij4Ihj . By definition
of these sets, we obtain the bound |wjx+ bj| ≤ |h1x+ h2| for any x ∈ Ij4Ihj . This yields

|ε|
|h1|+ |h2|

≤ L2(|h1|+ |h2|) + 4|vj|
∫ 1

0

|fφ(x)− x|1Ij4Ihj (x)dx.

The term L2(|h1| + |h2|) vanishes as h → 0. We need to argue that the second term also
vanishes as h→ 0. If the jth hidden neuron is flat, then the second term is trivially zero. On
the other hand, if the jth hidden neuron is non-degenerate, then the Lebesgue measure of
Ij4Ihj tends to zero as h→ 0. Thus, in this case, the integral also vanishes as h→ 0. If the
jth hidden neuron is non-flat degenerate, then we consider the directional derivatives from
the right, i.e. with h1, h2 ↓ 0. But then Ij = [0, 1] = Ihj , so 1Ij4Ihj is constantly zero.

It is well known that a multivariate function is continuously differentiable if it has
continuous partial derivatives. The following result is a slight extension for the loss function
L.

Lemma 2.14. The loss function L is continuously differentiable on the set of networks
without degenerate neurons. In addition, L is differentiable at networks without non-flat
degenerate neurons.

Proof. The preceding two results established existence of all partial derivatives of first order at
networks without degenerate neurons. Furthermore, these partial derivatives are continuous
in the network parameters. This is clear for (v, c) and it also holds for (w, b) because the
endpoints of Ij vary continuously in wj and bj as long as not both are zero. This concludes
the first statement.

To prove that L is still differentiable if flat degenerate neurons appear, assume without
loss of generality that the first M ≤ N hidden neurons of φ ∈ R3N+1 are flat degenerate
and the remaining N − M hidden neurons are non-degenerate. Denote by φ1 ∈ R3M+1

the network comprised of the first M hidden neurons of φ (with zero outer bias) and by
φ2 ∈ R3(N−M)+1 the network comprised of the last N −M hidden neurons. We write LN−M
for the loss defined on networks with N −M hidden neurons. Then, for any perturbation
φh = φ + h ∈ R3N+1 of φ with the same decomposition into its first M and last N −M
hidden neurons, we can write fφh(x) = fφ1,h(x) + fφ2,h(x) and, hence,

L(φh) =

∫ 1

0

fφ1,h(x)2dx+ 2

∫ 1

0

fφ1,h(x)(fφ2,h(x)− x)dx+ LN−M(φ2,h).

Since the first M hidden neurons of φ are flat degenerate, fφ1,h(x) is given by

fφ1,h(x) =
M∑
j=1

hj+2N max{hjx+ hj+N , 0}.

In particular, fφ1,h(x)/‖h‖ → 0 uniformly in x ∈ [0, 1] as h → 0. Denote by h̃ the last
3(N−M) components of h. Since φ2 has only non-degenerate neurons, LN−M is differentiable
at φ2 with some gradient A. Using that the first M hidden neurons of φ do not contribute
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to its realization and, hence, L(φ) = LN−M(φ2), we find

lim
h→0

L(φh)− L(φ)− Ah̃
‖h‖

= lim
h→0

LN−M(φ2,h)− LN−M(φ2)− Ah̃
‖h̃‖

‖h̃‖
‖h‖

+ lim
h→0

1

‖h‖

(∫ 1

0

fφ1,h(x)2dx+ 2

∫ 1

0

fφ1,h(x)(fφ2,h(x)− x)dx
)

= 0.

This proves differentiability of L at φ.

So far, we have seen that, in some regions of the parameter space, the loss is differentiable
while in others it may not be. In the following, we show that, for type-2-active neurons, one
even has twice continuous differentiability.

Lemma 2.15. Let i, j ∈ {1, . . . , N}. If the ith and jth hidden neuron of φ ∈ R3N+1 are type-
2-active, then L is twice continuously differentiable in (wi, wj, bi, bj, v, c) in a neighborhood
of φ in R3N+1.

Proof. We established twice continuous differentiability of L in (v, c) in Lemma 2.12. Suppose
the ith and jth hidden neuron of φ0 = (w0, b0, v0, c0) ∈ R3N+1 are type-2-active. Since a
small perturbation of a type-2-active neuron remains type-2-active and since a type-2-active
neuron is non-degenerate, it follows from Lemma 2.13 that L is differentiable in (wj, bj) in a
neighborhood U ⊆ R3N+1 of φ0 with partial derivatives

∂

∂wj
L(φ) = 2vj

∫
Ij

x(fφ(x)− x)dx and
∂

∂bj
L(φ) = 2vj

∫
Ij

(fφ(x)− x)dx

for any φ = (w, b, v, c) ∈ U . Because the jth hidden neuron is assumed to be type-2-active,
the interval I0

j is exactly [0, t0j ] or [t0j , 1] for the breakpoint t0j = −b0
j/w

0
j ∈ (0, 1). Assume

I0
j = [0, t0j ] as the other case is dealt with analogously. By shrinking U if necessary, we
therefore integrate over [0,−bj/wj] in the above partial derivatives for all φ = (w, b, v, c) ∈ U .
In particular, the integration boundaries vary smoothly in (wj, bj) in U . So, it follows from
Leibniz’ rule that these partial derivatives are continuously differentiable with respect to
(wj, bj). Furthermore, since tj = −bj/wj does not depend on (wi, bi, v, c), it follows from
dominated convergence that ∂L(φ)/∂wj and ∂L(φ)/∂bj are also differentiable with respect
to (wi, bi, v, c). The mixed partial derivative with respect to wi and wj is given by

∂

∂wi

∂

∂wj
L(φ) = 2vj

∫
Ij

x
∂

∂wi
fφ(x)dx = 2vivj

∫
Ii∩Ij

x2dx.

That the ith and jth hidden neuron are type-2-active ensures that
∫
Ii∩Ij x

2dx is continuous in
(wi, wj, bi, bj) and, hence, that ∂2L(φ)/(∂wi∂wj) is continuous in (wi, wj, bi, bj, v, c). Analo-
gous considerations show that all mixed partial derivatives with respect to wi, wj, bi, bj, v, c
up to second order exist and are continuous. Thus, L restricted to (wi, wj, bi, bj, v, c) is twice
continuously differentiable in a neighborhood of φ0.

Remark 2.16. We mentioned in Remark 2.5 that all critical points and local extrema of L
are actually proper critical points and, hence, the classification actually does not deal with
points of non-differentiability. Furthermore, by modifying the Gradient Descent algorithm
and the initialization in an appropriate way, one can ensure that the trajectories of the
algorithm avoid any points of non-differentiability; see [128] and also the appendix in [20].
Nonetheless, to formally prove the classification, including that all critical points are proper,
an extensive regularity analysis of the loss function as done in this section is necessary.
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2.6 Critical points of the loss function with affine realization

In this and the next section, we develop the building blocks necessary for proving the main
result. The first lemma establishes one direction of the equivalence in Theorem 2.4.(III).

Lemma 2.17. Suppose φ ∈ R3N+1 is centered and all of its hidden neurons satisfy one of
the properties (III.a)-(III.c) in Theorem 2.4. Then φ is a local minimum of L.

Proof. Denote by J0 ⊆ {1, . . . , N} the set of those hidden neurons of φ that satisfy Theo-
rem 2.4.(III.b), and, likewise, denote by J1 ⊆ {1, . . . , N} the set of those hidden neurons of
φ that satisfy Theorem 2.4.(III.c). Write φ = (w0, b0, v0, c0) and consider ψ = (w, b, v, c) ∈ U
in a small neighborhood U of φ. Since a small perturbation of an inactive neuron remains
inactive, we have for all ψ ∈ U and every x ∈ [0, 1] that

fψ(x) = c+
∑

j∈J0∪J1

vj max{wjx+ bj, 0}

if U is small enough. Moreover, for any j ∈ J0 and ψ ∈ U , note that max{wjx+ bj, 0} = 0
for all x ∈ [1/4, 1]. Similarly, max{wjx+ bj, 0} = 0 for all x ∈ [0, 3/4] if j ∈ J1. Since we also
know v0

j > 0 for all j ∈ J0 and v0
j < 0 for all j ∈ J1, we find that the realization of ψ ∈ U

satisfies

fψ(x) =


c+

∑
j∈J0 vj max{wjx+ bj, 0} ≥ c if x ∈ [0, 1/4]

c if x ∈ [1/4, 3/4]

c+
∑

j∈J1 vj max{wjx+ bj, 0} ≤ c if x ∈ [3/4, 1]

for sufficiently small U . In particular, it follows that |fψ(x) − x| ≥ |c − x| for all x ∈ [0, 1]
and, because φ is centered, that

L(ψ) ≥
∫ 1

0

(c− x)2dx ≥
∫ 1

0

(1
2
− x)2dx = L(φ).

Thus, φ is a local minimum.

The proof of the next lemma revolves, for the most part, around the argument (2.3),
presented in Section 2.4. The last statement of the lemma paired with Lemma 2.14 shows
that saddle points with an affine realization are also points of differentiability of L.

Lemma 2.18. Suppose φ ∈ R3N+1 is a critical point or a local extremum of L but not a
global minimum and that fφ is affine on [0, 1]. Then φ is centered and does not have any
active or non-flat semi-active neurons, so, in particular, fφ ≡ 1/2. Moreover, if φ is a saddle
point, then it also does not have any non-flat degenerate neurons.

Proof. We know from Lemma 2.13 that L is differentiable in those coordinates that correspond
to non-degenerate neurons and its partial derivatives must vanish at φ. Thus, the argument
using (2.3) shows that φ does not have any type-1-active or non-flat semi-active neurons. If
φ had a non-flat type-2-active neuron, say the jth, then we could, using the same argument
with Ij in place of [0, 1], conclude that fφ(x) = x on Ij. But since fφ was assumed to be affine,
this could only be true if φ were a global minimum. Having no type-1-active or non-flat
type-2-active neurons, fφ must be constant. By the fourth equation of (2.1), this constant is
1/2, so φ is centered.
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Next, suppose that the jth hidden neuron is flat type-2-active. In particular, Ij = [0, tj] or
Ij = [tj, 1], where tj = −bj/wj ∈ (0, 1) is the breakpoint. After dividing by 2wj, the integral
in the third equation of (2.1) evaluates to

0 =

∫
Ij

(x− tj)(1
2
− x)dx =

{
−1

6
t2j(

3
2
− tj) if Ij = [0, tj]

−1
6
(1− tj)2(tj + 1

2
) if Ij = [tj, 1]

}
6= 0,

yielding a contradiction. Lastly, suppose φ is a saddle point. If there were a non-flat
degenerate neuron, then G(φ) = 0 would imply 0 =

∫ 1

0
x(fφ(x)− x)dx. But since we know

that fφ(x) ≡ 1/2, this cannot be.

The next lemma serves as the basis of Theorem 2.4.(IV.a). However, note that we
also consider the possibility of a non-flat degenerate neuron, whereas Theorem 2.4.(IV.a.iv)
requires the degenerate neuron to be flat. This generalization is needed in the proof of
Theorem 2.4.(III), which will be given later by way of contradiction. In addition, Lemma 2.19
shows that non-global local minima with an affine realization cannot have non-flat degenerate
neurons and, hence, are points of differentiability of L by Lemma 2.14. Together with the
preceding lemma and Lemmas 2.11 and 2.14, we conclude that all critical points and local
extrema with an affine realization are points of differentiability.

Lemma 2.19. Suppose φ ∈ R3N+1 is a critical point or a local extremum of L but not a
global minimum and that fφ is affine on [0, 1]. Suppose further that at least one of its hidden
neurons satisfies one of the properties (IV.a.i)-(IV.a.iii) in Theorem 2.4 or is degenerate.
Then φ is a saddle point.

Proof. Since, by Lemma 2.8, L cannot have any local maxima, it is enough to show that
L is strictly decreasing along some direction starting from φ. First, assume that the jth
hidden neuron of φ is flat semi-active. Then Lemma 2.12 asserts smoothness of the loss in
the coordinates of the jth hidden neuron and

∂

∂wj

∂

∂wj
L(φ) = 2vj

∫ 1

0

x
∂

∂wj
fφ(x)dx = 0,

∂

∂vj

∂

∂wj
L(φ) = 2vj

∫ 1

0

x
∂

∂vj
fφ(x)dx+ 2

∫ 1

0

x(fφ(x)− x)dx

= 2

∫ 1

0

x(fφ(x)− x)dx =: R,

∂

∂vj

∂

∂vj
L(φ) = 2

∫ 1

0

(wjx+ bj)
∂

∂vj
fφ(x)dx =: S,

where we used that the jth hidden neuron is flat. Since 2
∫ 1

0
(fφ(x)− x)dx = ∂

∂c
L(φ) = 0, we

must have R 6= 0 for otherwise φ would be a global minimum by the argument (2.3). This
yields

det

(
∂
∂wj

∂
∂wj
L(φ) ∂

∂wj

∂
∂vj
L(φ)

∂
∂vj

∂
∂wj
L(φ) ∂

∂vj

∂
∂vj
L(φ)

)
= det

(
0 R
R S

)
= −R2 < 0.

In particular, this matrix must have a strictly negative eigenvalue, and a second order
expansion of the loss restricted to (wj, vj) shows that L is strictly decreasing along the
direction of an eigenvector associated to this negative eigenvalue.
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Next, assume that the jth hidden neuron is semi-inactive with Ij = {0} and vj ≤ 0 (case
one) or that it is degenerate with vj ≤ 0 (case two). In either case, note that bj = 0 and
consider the perturbation φs = (ws, bs, vs, cs), s ∈ [0, 1], of φ = φ0 given by wsj = wj − s,
bsj = −swsj , and vsj = vj − s (all other coordinates coincide with those of φ). Note that we
have wsj < 0 and vsj < 0 for all s ∈ (0, 1] in both cases. For simplicity, denote as = vsjw

s
j . By

Lemma 2.18, we already know that φ is centered and does not have any active or non-flat
semi-active neurons. Thus, for every s, x ∈ [0, 1], we can write

fφs(x) = c+ vsj max{wsjx+ bsj , 0} = c+ vsj max{wsj(x− s), 0} = 1
2

+ as(x− s)1[0,s](x).

Using this formula, we have for all s ∈ [0, 1]

L(φs)− L(φ) =

∫ s

0

[as(x− s)]2dx−
∫ s

0

2as(x− s)(x− 1
2
)dx

= 1
3
as(as + 1)s3 − 1

2
ass2

=


−1

2
vjwjs

2 +O(s3) if wj 6= 0 6= vj

−1
2
|vj + wj|s3 +O(s4) if wj 6= 0 = vj or wj = 0 6= vj

−1
2
s4 +O(s5) if wj = 0 = vj,

which is strictly negative for small s > 0. Hence, φ is a saddle point.
Lastly, assume that the jth hidden neuron is semi-inactive with Ij = {1} and vj ≥ 0 (case

one) or that it is degenerate with vj > 0 (case two). This is dealt with the same way as the
previous step. Let φs ∈ R3N+1, s ∈ [0, 1], be given by wsj = wj + s, bsj = −(1 − s)wsj , and
vsj = vj + s. This time, we have wsj > 0 and as = vsjw

s
j > 0 for all s ∈ (0, 1] in both cases.

The realization of φs on [0, 1] is given for all s, x ∈ [0, 1] by

fφs(x) = c+ vsj max{wsjx+ bsj , 0} = 1
2

+ as(x− 1 + s)1[1−s,1](x).

Essentially by the same computation as in the previous step,

L(φs)− L(φ) = 1
3
as(as + 1)s3 − 1

2
ass2

=


−1

2
vjwjs

2 +O(s3) if wj 6= 0 6= vj

−1
2
(vj + wj)s

3 +O(s4) if wj 6= 0 = vj or wj = 0 6= vj

−1
2
s4 +O(s5) if wj = 0 = vj,

from which we conclude that φ is a saddle point.

This finishes the treatment of the affine case, and we now tend to the more involved
non-affine case in the next section.

2.7 Critical points of the loss function with non-affine realization

The following lemma is the main tool for this section. It generalizes the argument (2.3)
that we presented in Section 2.4; see Lemma 2.20.(vi) below. This lemma captures the
combinatorics of piecewise affine functions satisfying conditions of the form (2.2).

Lemma 2.20. Let n ∈ N0, A0, . . . , An, B0, . . . , Bn, q0, . . . , qn+1 ∈ R satisfy q0 < · · · < qn+1,
and consider a function f ∈ C([q0, qn+1],R) satisfying for all i ∈ {0, . . . , n}, x ∈ [qi, qi+1]
that f(x) = Aix+Bi and

∫ qi+1

qi
(f(y)− y)dy = 0. Then
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(i) we have for all i ∈ {0, . . . , n} that

Ai − 1 = (−1)i
q1 − q0

qi+1 − qi
(A0 − 1),

Bi = (−1)i+1 qi+1 + qi
2

q1 − q0

qi+1 − qi
(A0 − 1),

(2.4)

(ii) we have f = id[q0,qn+1] ⇐⇒ ∀i ∈ {0, . . . , n} : Ai = 1, Bi = 0
⇐⇒ ∃i ∈ {0, . . . , n} : Ai = 1, Bi = 0 ⇐⇒ ∃i ∈ {0, . . . , n} : f |[qi,qi+1] =

id[qi,qi+1],
(iii) for all i ∈ {0, . . . , n} we have sign(Ai − 1) = (−1)isign(A0 − 1).

If, in addition, 0 =
∫ qn+1

q0
x(f(x)− x)dx, then

(iv) we have 0 = (A0 − 1)
∑n

i=0(−1)i(qi+1 − qi)2,
(v) if f 6= id[q0,qn+1], then 0 =

∑n
i=0(−1)i+1(qi+1 − qi)2,

(vi) if n = 0, then f = id[q0,q1].

Proof. First note that we must have Aiqi+1 +Bi = Ai+1qi+1 +Bi+1 for all i ∈ {0, . . . , n− 1}.
Moreover, the assumption 0 =

∫ qi+1

qi
(f(x)− x)dx is equivalent to Bi = −1

2
(qi+1 + qi)(Ai − 1).

Combining these yields
Ai+1 − 1 = − qi+1 − qi

qi+2 − qi+1

(Ai − 1)

for all i ∈ {0, . . . , n− 1}. Induction then proves the formula for Ai − 1, and the formula for
Bi follows. Lastly, by plugging the formulas for Ai and Bi into f(x), we compute∫ qn+1

q0

x(f(x)− x)dx =
n∑
i=0

∫ qi+1

qi

x((Ai − 1)x+Bi)dx

=
q1 − q0

12
(A0 − 1)

n∑
i=0

(−1)i(qi+1 − qi)2.

The remaining items follow immediately.

In order to apply this lemma later on, let us verify that our network always satisfies the
condition

∫ qi+1

qi
(f(y)− y)dx = 0 for suitable choices of qi and qi+1.

Lemma 2.21. Suppose φ ∈ R3N+1 is a critical point or a local extremum of L and denote by
0 = q0 < q1 < · · · < qn < qn+1 = 1, for n ∈ N0, the roughest partition such that fφ is affine
on all subintervals [qi, qi+1]. Then we have for all i ∈ {0, . . . , n} that∫ qi+1

qi

(fφ(x)− x)dx = 0.

Proof. First, note that φ must have a non-flat type-2-active neuron whose breakpoint is qi,
for all i ∈ {1, . . . , n}. From the fourth line of (2.1), we know that

∫ 1

0
(fφ(x)− x)dx = 0. This

and the second line of (2.1) imply, for any non-flat type-2-active neuron j,∫
Ij

(fφ(x)− x)dx = 0 =

∫
[0,1]\Ij

(fφ(x)− x)dx.

Since either Ij = [0, tj] or [0, 1]\Ij = [0, tj], it follows that
∫ qi

0
(fφ(x) − x)dx = 0, for all

i ∈ {0, . . . , n+ 1}. Taking differences of these integrals yields the desired statement.
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Next, as a first application of Lemma 2.20, we prove that only global minima can have
type-1-active or non-flat semi-active neurons. We already established this in Lemma 2.18 in
the affine case, but now we extend it to the non-affine case. The statement from Lemma 2.18
about saddle points not having non-flat degenerate neurons also holds in the non-affine case,
but we will not see this until later in Section 2.8.

Lemma 2.22. Suppose φ ∈ R3N+1 is a critical point or a local extremum of L but not a
global minimum. Then φ does not have any type-1-active or non-flat semi-active neurons.

Proof. For affine fφ, the result has been established in Lemma 2.18. Thus, suppose fφ is
not affine on [0, 1] and that φ has a type-1-active or non-flat semi-active neuron. Denote by
0 = q0 < q1 < · · · < qn < qn+1 = 1, for n ∈ N, the roughest partition such that fφ is affine on
all subintervals [qi, qi+1]. We know from Lemma 2.21 that

∫ q1
q0

(fφ(x)−x)dx = 0, and we claim
that also

∫ q1
q0
x(fφ(x)− x)dx = 0. To prove this, note that φ must have at least one non-flat

type-2-active neuron (without loss of generality the first) with breakpoint −b1/w1 = q1.
Moreover, (2.2) shows that 0 =

∫ 1

0
x(fφ(x)−x)dx if applied with the type-1-active or non-flat

semi-active neuron. Using this and ∂
∂w1
L(φ) = 0, one deduces the claim as in the proof of

Lemma 2.21. Hence, we conclude fφ|[q0,q1] = id[q0,q1] with the argument (2.3). But then we
also get fφ = id[q0,qn+1] by Lemma 2.20.(ii) and Lemma 2.21, yielding a contradiction.

We now turn to the proof of Theorem 2.4.(IV.b). More precisely, we show that critical
points and local extrema whose realizations are not affine must take a very specific form. The
only degree of freedom of their realization functions is a single parameter varying over the set
of even integers in {1, . . . , N}. Examples of the possible realizations are shown in Fig. 4.2,
which illustrates that the degree of freedom is reflected by the number of breakpoints. Once
this number is fixed, the shape of the function is uniquely determined: the breakpoints are
equally spaced in the interval [0, 1], and the slope of the realization on each affine segment
alternates between two given values in such a way that the function symmetrically oscillates
around the diagonal. In addition, we deduce in Lemma 2.23 that critical points and local
extrema can realize these functions only in a very specific way, limited by few combinatorial
choices.

Lemma 2.23. Suppose φ ∈ R3N+1 is a critical point or a local extremum of L but not a global
minimum and that fφ is not affine on [0, 1]. Denote by 0 = q0 < q1 < · · · < qn < qn+1 = 1,
for n ∈ N, the roughest partition such that fφ is affine on all subintervals [qi, qi+1], and
denote by Ki ⊆ {1, . . . , N} the set of all type-2-active neurons of φ whose breakpoint is qi.
Then the following hold:

(i) n is even,

(ii) qi = i
n+1

for all i ∈ {1, . . . , n},
(iii) −bj/wj ∈ {q1, . . . , qn} for all type-2-active neurons j ∈ {1, . . . , N} of φ,
(iv) sign(wj) = (−1)i+1 for all i ∈ {1, . . . , n}, j ∈ Ki,

(v)
∑

j∈Ki vjwj = 2/(n+ 1) for all i ∈ {1, . . . , n},
(vi) φ is centered,

(vii) fφ(x) = x− (−1)i

n+1

(
x− i+1/2

n+1

)
for all i ∈ {0, . . . , n}, x ∈ [qi, qi+1].
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Figure 4.2: Examples of the network realizations (red) in Lemma 2.23 for the cases n = 2
and n = 4. The blue line is the target function (identity function).

The proof of this lemma requires a successive application of Lemma 2.20. We prove
the statements of the lemma in a different order than stated. First of all, Lemma 2.20.(ii)
will enforce the correct sign for each wj, j ∈ Ki. That n is even will be a consequence of
these signs. It will also follow from the signs together with Lemma 2.20.(v) that qi = i

n+1
.

Afterwards, we use the formulas (2.4) from Lemma 2.20 to verify that any type-2-active
neuron must have as breakpoint one of q1, . . . , qn. Once this has been shown, we obtain a
more explicit version of those formulas and deduce

∑
k∈Ki vkwk = 2/(n+ 1). That fφ takes

exactly the form in Lemma 2.23.(vii) is a byproduct of the last derivation, and that φ is
centered is shown last.

Proof of Lemma 2.23. We begin by noting that none of the sets Ki, i ∈ {1, . . . , n}, can
be empty. Furthermore, the third equation of (2.1) and Lemma 2.21 imply that (2.2) holds
for all neurons in

⋃
iKi even if they are flat. Applying Lemma 2.20.(ii), which we can

do by Lemma 2.21, ensures that fφ|[qi,qi+1] 6= id[qi,qi+1] for all i ∈ {0, . . . , n}. In particular,
(2.2) and the argument (2.3) show for all i ∈ {1, . . . , n − 1} and j0 ∈ Ki, j1 ∈ Ki+1 that
sign(wj0) 6= sign(wj1) for otherwise we would have Ij0\Ij1 = [qi, qi+1] or Ij1\Ij0 = [qi, qi+1]
(depending on the sign) and, hence,∫ qi+1

qi

(fφ(x)− x)dx = 0 =

∫ qi+1

qi

x(fφ(x)− x)dx.

Likewise, we must have
∫ q1

0
x(fφ(x)−x)dx 6= 0 and, hence, wj > 0 for any j ∈ K1. Combining

the previous two arguments establishes sign(wj) = (−1)i+1 for any i ∈ {1, . . . , n}, j ∈ Ki.
Just like wj > 0 for any j ∈ K1, we must also have wj < 0 for any j ∈ Kn. Thus, −1 =
sign(wj) = (−1)n+1 for all j ∈ Kn, so n is even. Now that we know the sign of each parameter
wj for neurons j ∈

⋃
iKi, we can use (2.2) again to find that

∫ qi+2

qi
x(fφ(x)− x)dx = 0 for all

i ∈ {0, . . . , n− 1}. Then Lemma 2.20.(v) (with the partition qi, qi+1, qi+2) tells us

0 = (qi+2 − qi+1)2 − (qi+1 − qi)2.

This can only hold for all i ∈ {0, . . . , n− 1} if the points q1, . . . , qn are equidistributed, which
means qi = i/(n+1). Next, if we denote fφ(x) = Aix+Bi on [qi, qi+1], then the formulas (2.4)
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must hold for all i ∈ {0, . . . , n}. Since q1, . . . , qn are equidistributed, the formulas simplify to

Ai − 1 = (−1)i(A0 − 1) and Bi = (−1)i+1 i+ 1
2

n+ 1
(A0 − 1) (2.5)

for all i ∈ {0, . . . , n}. Using (2.5), one can verify that any type-2-active neuron of φ must
have as breakpoint one of the points q1, . . . , qn. If this were not the case, say the jth hidden
neuron were type-2-active with breakpoint tj = −bj/wj, then one could choose i ∈ {0, . . . , n}
such that qi < tj < qi+1. Using (2.2), (2.5), and Lemma 2.21, the integral from the third line
of (2.1) reads (after dividing by 2wj)∫

Ij

(x− tj)(fφ(x)− x)dx

=

∫
[qi,qi+1]∩Ij

(x− tj)(fφ(x)− x)dx−

{
0 if i is even∫ qi+1

qi
x(fφ(x)− x)dx if i is odd

=


1
6
(A0 − 1)(tj − qi)2(qi+1 − tj + 1

2(n+1)
)

if Ij = [0, tj] and i is even
or if Ij = [tj, 1] and i is odd

1
6
(A0 − 1)(qi+1 − tj)2(tj − qi + 1

2(n+1)
)

if Ij = [0, tj] and i is odd
or if Ij = [tj, 1] and i is even.

So, the partial derivative of L with respect to vj does not vanish, yielding a contradiction.
This proves that all type-2-active neurons lie in

⋃
iKi. In particular, we can write

Al =
l∑

i=1
i odd

∑
j∈Ki

vjwj +
n∑

i=l+1
i even

∑
j∈Ki

vjwj

for all l ∈ {0, . . . , n} because φ does not have any type-1-active neurons by Lemma 2.22. We
can combine this formula with (2.5) to find for all i ∈ {0, . . . , n− 1}

−(A0 − 1) = (−1)i(Ai+1 − 1) = (−1)i(Ai − 1) +
∑

j∈Ki+1

vjwj = A0 − 1 +
∑

j∈Ki+1

vjwj.

Thus, the quantity a :=
∑

j∈Ki vjwj is independent of i ∈ {1, . . . , n}. Consequently, we
obtain Ai = an/2 for even i (including i = 0) and Ai = a(1 + n/2) for odd i. The identity
A1 − 1 = 1 − A0 then forces a = 2/(n + 1). That φ has to be centered follows from
fφ(0) = B0.

As our final building block for the proof of Theorem 2.4, we show that the networks from
Lemma 2.23 are saddle points of the loss function. To achieve this, we will find a set of
coordinates in which L is twice differentiable and calculate the determinant of the Hessian
of L restricted to these coordinates. It will turn out to be strictly negative, from which it
follows that we deal with a saddle point.

Lemma 2.24. Suppose φ ∈ R3N+1 is a critical point or a local extremum of L but not a
global minimum and that fφ is not affine on [0, 1]. Then φ is a saddle point of L.



Chapter 4 59

Proof. Take n ∈ N satisfying the assumptions of Lemma 2.23 and let K1 ⊆ {1, . . . , N} denote
the set of those type-2-active neurons with breakpoint 1/(n+1). Denote by K−1 ⊆ K1 the set
of all those hidden neurons j ∈ K1 with vj < 0. It may happen that K−1 is empty. However,
the complement K1\K−1 is never empty since

∑
j∈K1

vjwj = 2/(n+ 1) and sign(wj) = 1 for
all j ∈ K1 by Lemma 2.23. Let j1 ∈ K1 be any hidden neuron with vj1 > 0 and denote by
j2, . . . , jl, for l ∈ {1, . . . , N}, an enumeration of K−1 . Moreover, let k ∈ {1, . . . , N} be any
type-2-active neuron with breakpoint tk = 2/(n+ 1).

We know from Lemma 2.15 that L is twice continuously differentiable in the coordinates
of type-2-active neurons and in (v, c). We will show that the Hessian H of L restricted to
(bj1 , . . . , bjl , vk, c) has a strictly negative determinant.

In order to compute this determinant, we introduce some shorthand notation. For
i ∈ {1, . . . , l}, denote λi = n+1

2
vjiwji so that

∑l
i=1 λi ≤ 1 by the choice of neurons in the

collection {j1, . . . , jl}. Define µ = n+1
2n

and the vectors u1 = (vj1 , . . . , vjl), u2 = ( −1
4n2µ

wk, 1),
and u = (u1, u2). Furthermore, let D be the diagonal matrix with entries −v2

ji
/(4λin),

i ∈ {1, . . . , l}, let A be the Hessian of L restricted to (vk, c), let B = µA− u2u
T
2 , and let E

be the diagonal block matrix with blocks D and B. Then H = 1
µ
(E + uuT ) and, hence,

det(H) = µ−(l+2)(1 + uTE−1u) det(E)

once we verified that E is invertible. We calculate directly

det(A) = det

(
2

3(nµ)3
w2
k

−1
(nµ)2

wk
−1

(nµ)2
wk

n+1
nµ

)
=

2n− 1

3(nµ)4
w2
k > 0.

Next, we compute

Γ :=
1

µ
uT2A

−1u2 =
32n2 − 21n+ 3

16n(2n− 1)
∈ (0, 1). (2.6)

Using Γ, we obtain det(B) = µ2(1− Γ) det(A) > 0 and B−1 = 1
µ
A−1 + 1

µ2(1−Γ)
A−1u2u

T
2A
−1.

In particular, E is invertible. Using uT2B−1u2 = Γ
1−Γ

, we can write

uTE−1u = uT1D
−1u1 + uT2B

−1u2 = −4n
l∑

i=1

λi +
Γ

1− Γ
.

The determinant of D is −(4n)−l
∏l

i=1 v
2
ji
|λi|−1 < 0 so that

∆ := −µ−(l+2)(1− Γ)−1 det(D) det(B)

is strictly positive. Summing up, we obtain that the determinant of H is

det(H) = ∆
(

4n(1− Γ)
l∑

i=1

λi − 1
)
.

We already mentioned that
∑l

i=1 λi ≤ 1. Finally, we compute 4n(1 − Γ) = 5n−3
8n−4

< 1 to
conclude det(H) < 0, which finishes the proof.

We now have constructed all the tools needed to prove Theorem 2.4 in the special case
in which the target function is the identity on [0, 1]. This will be done in the next section.
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2.8 Classification of the critical points if the target function is the identity

In this section, we gather the results of the previous two sections to prove the main theorem
in the case where the target function is the identity on [0, 1].

Proposition 2.25. Let φ = (w, b, v, c) ∈ R3N+1. Then the following hold:

(I) φ is not a local maximum of L.
(II) If φ is a critical point or a local extremum of L, then L is differentiable at φ with

gradient ∇L(φ) = 0.

(III) φ is a non-global local minimum of L if and only if φ is centered and, for all j ∈
{1, . . . , N}, the jth hidden neuron of φ is

(a) inactive,
(b) semi-inactive with Ij = {0} and vj > 0, or
(c) semi-inactive with Ij = {1} and vj < 0.

(IV) φ is a saddle point of L if and only if φ is centered, φ does not have any type-1-
active neurons, φ does not have any non-flat semi-active neurons, φ does not have any
non-flat degenerate neurons, and exactly one of the following two items holds:

(a) φ does not have any type-2-active neurons and there exists j ∈ {1, . . . , N} such
that the jth hidden neuron of φ is

(i) flat semi-active,
(ii) semi-inactive with Ij = {0} and vj ≤ 0,
(iii) semi-inactive with Ij = {1} and vj ≥ 0, or
(iv) flat degenerate.

(b) There exists n ∈ {2, 4, 6, . . . } such that

⋃
j∈{1,...,N}, wj 6=0

{
− bj
wj

}
∩ (0, 1) =

n⋃
i=1

{
i

n+ 1

}

and, for all j ∈ {1, . . . , N}, i ∈ {1, . . . , n} with wj 6= 0 = bj +
iwj
n+1

, it holds that
sign(wj) = (−1)i+1 and ∑

k∈{1,...,N}, wk 6=0=bk+
iwk
n+1

vkwk =
2

n+ 1
.

(V) If φ is a non-global local minimum of L or a saddle point of L without type-2-active
neurons, then fφ(x) = 1/2 for all x ∈ [0, 1].

(VI) If φ is a saddle point of L with at least one type-2-active neuron, then there exists
n ∈ {2, 4, 6, . . . } such that n ≤ N and, for all i ∈ {0, . . . , n}, x ∈ [ i

n+1
, i+1
n+1

], one has

fφ(x) = x− (−1)i

n+ 1

(
x−

i+ 1
2

n+ 1

)
. (2.7)
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Proof. Statement (I) follows from Lemma 2.8 and the ‘if’ part of the ‘if and only if’ statement
in (III) is the content of Lemma 2.17. Moreover, if φ is as in (IV.a), then it is a critical point
because it satisfies (2.1) and it is a saddle point by Lemma 2.19. Next, denote qi = i/(n+ 1)
for all i ∈ {0, . . . , n+ 1}. If φ is as in (IV.b), then its realization on [0, 1] is given by

fφ(x) =
1

2
+

2

n+ 1

n∑
i=1

(−1)i+1 max{(−1)i+1(x− qi), 0}. (2.8)

which coincides with the formula (2.7). In particular, we have
∫ qi+1

qi
(fφ(x)− x)dx = 0 for all

i ∈ {0, . . . , n} and
∫ qi+2

qi
x(fφ(x)− x)dx = 0 for all i ∈ {0, . . . , n− 1}. The latter asserts that∫ 1

qi
x(fφ(x)− x)dx = 0 for odd i and

∫ qi
0
x(fφ(x)− x)dx = 0 for even i. Thus, φ satisfies (2.1)

and, hence, is a critical point. Furthermore, it is a saddle point by Lemma 2.24. This proves
the ‘if’ part of the ‘if and only if’ statement in (IV).

Now, suppose φ is a non-global local minimum. Then fφ is affine by Lemma 2.24.
Lemma 2.18 asserts that φ is centered and does not have any active or non-flat semi-active
neurons. Furthermore, for each hidden neuron, Lemma 2.19 rules out all possibilities except
(III.a)-(III.c). This proves the ‘only if’ part of (III).

Next, suppose φ is a saddle point. If fφ is affine, then φ is centered and does not have any
active, non-flat semi-active, or non-flat degenerate neurons by Lemma 2.18. If there is no
hidden neuron as in (IV.a.i)-(IV.a.iv), then all hidden neurons satisfy one of the conditions
in (III.a)-(III.c). But this contradicts Lemma 2.17. This proves (IV.a). If fφ is not affine,
then it still does not admit any type-1-active or non-flat semi-active neurons by Lemma 2.22.
Moreover, Lemma 2.23 shows that φ is centered and its type-2-active neurons satisfy (IV.b).
We need to argue that φ does not have any non-flat degenerate neurons in this case either.
If there were a non-flat degenerate neuron, then G(φ) = 0 implies 0 =

∫ 1

0
x(fφ(x) − x)dx.

But Lemma 2.20.(v) and Lemma 2.23 ensure that this integral is different from zero. This
finishes the proof of the ‘only if’ part of (IV).

Next, we prove (II). If φ is a saddle point, then it does not have any non-flat degenerate
neurons by (IV). If φ is a non-global local extremum, then (I) and (III) imply that φ does not
have any non-flat degenerate neurons either. Thus, L is differentiable at φ by Lemma 2.14.
If φ is a global minimum, then φ is point of differentiability by Lemma 2.11.

Statement (V) follows immediately from (III) and (IV.a). The remaining statement (VI)
is implied by (IV.b) and (2.8).

2.9 Completion of the proof of Theorem 2.4

In this section, we show that Theorem 2.4 can always be reduced to its special case, Propo-
sition 2.25, by employing a transformation of the parameter space.

Proof of Theorem 2.4. First, we assume that T = (0, 1). Consider the transformation
P : R3N+1 → R3N+1 of the parameter space given by P (w, b, v, c) = (w, b, v

α
, c−β

α
). We then

have LN,T,A(φ) = α2L ◦ P (φ) for all φ ∈ R3N+1. Since the coordinates w and b remain
unchanged and the vector v only gets scaled under the transformation P , the transformation
P does not change the types of the hidden neurons. Moreover, a network φ ∈ R3N+1 is (T,A)-
centered if and only if P (φ) is centered. The map P clearly is a smooth diffeomorphism and,
hence, Theorem 2.4 with T = (0, 1) is exactly what we obtain from Proposition 2.25 under
the transformation P .



62 Chapter 4

Now, we deduce Theorem 2.4 for general T . This time, set B = (α(T1−T0), αT0 +β) and
denote by Q : R3N+1 → R3N+1 the transformation Q(w, b, v, c) = ((T1 − T0)w, T0w + b, v, c).
Then LN,T,A(φ) = (T1−T0)LN,(0,1),B ◦Q(φ) for any φ ∈ R3N+1. As above, the transformation
Q does not change the types of the hidden neurons. Note for the breakpoints that

− bj
wj

= T0 +
i(T1 − T0)

n+ 1
⇐⇒ − T0wj + bj

(T1 − T0)wj
=

i

n+ 1
.

Also, φ ∈ R3N+1 is (T,A)-centered if and only if Q(φ) is ((0, 1),B)-centered. Since we have
shown the theorem to hold for T = (0, 1), the smooth diffeomorphism Q yields Theorem 2.4
in the general case.

3. From ReLU to leaky ReLU

In this section, we attempt to derive Theorem 2.4 for leaky ReLU activation, given by
x 7→ max{x, γx} for a parameter γ ∈ (0, 1). We denote the realization fγφ ∈ C(R,R) of a
network φ = (w, b, v, c) ∈ R3N+1 with this activation by

fγφ (x) = c+
N∑
j=1

vj max{wjx+ bj, γ(wjx+ bj)}.

Analogously to the ReLU case, given A = (α, β) ∈ R2 and T = (T0, T1) ∈ R2, the loss
function LγN,T,A ∈ C(R3N+1,R) is the L2-loss given by

LγN,T,A(φ) =

∫ T1

T0

(fγφ (x)− αx− β)2 dx.

Again, we call a point a critical point of LγN,T,A if it is a zero of the generalized gradient defined
by right-hand partial derivatives. The notions about types of neurons remain the same as
in Definition 2.3. Strictly speaking, the notions ‘inactive’ and ‘semi-inactive’ are no longer
suitable for leaky ReLU activation, but it is convenient to stick to the same terminology.
We will deduce the classification for leaky ReLU by reducing it to the ReLU case in some
instances and deal with other instances directly.

3.1 Partial reduction to the ReLU case

As before, we first consider the special case where the target function is the identity on [0, 1].
Let us abbreviate Lγ = LγN,(0,1),(1,0) and L = L2N,(0,1),(1,0). Let P : R3N+1 → R6N+1 denote
the smooth map P (w, b, v, c) = (w,−w, b,−b, v,−γv, c). Then, fγφ = fP (φ) and Lγ = L ◦ P .
Hence, if L is differentiable at P (φ), then Lγ is differentiable at φ, so differentiability
properties of L convert to Lγ. The partial derivatives of Lγ at any network φ and any
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non-degenerate or flat degenerate neuron j are given by
∂

∂wj
Lγ(φ) =

( ∂

∂wj
L
)

(P (φ))−
( ∂

∂wj+N
L
)

(P (φ)),

∂

∂bj
Lγ(φ) =

( ∂

∂bj
L
)

(P (φ))−
( ∂

∂bj+N
L
)

(P (φ)),

∂

∂vj
Lγ(φ) =

( ∂

∂vj
L
)

(P (φ))− γ
( ∂

∂vj+N
L
)

(P (φ)),

∂

∂c
Lγ(φ) =

( ∂
∂c
L
)

(P (φ)).

We can also write these in explicit formulas. To do so, we complement the notation Ij by
the intervals Îj = {x ∈ [0, 1] : wjx+ bj < 0} = [0, 1]\Ij. Then,

∂

∂wj
Lγ(φ) = 2vj

∫
Ij

x(fγφ (x)− x)dx+ 2γvj

∫
Îj

x(fγφ (x)− x)dx,

∂

∂bj
Lγ(φ) = 2vj

∫
Ij

(fγφ (x)− x)dx+ 2γvj

∫
Îj

(fγφ (x)− x)dx,

∂

∂vj
Lγ(φ) = 2

∫
Ij

(wjx+ bj)(f
γ
φ (x)− x)dx+ 2γ

∫
Îj

(wjx+ bj)(f
γ
φ (x)− x)dx,

∂

∂c
Lγ(φ) = 2

∫ 1

0

(fγφ (x)− x)dx.

This notation allows to treat non-flat degenerate neurons. For such neurons, the right-hand
partial derivatives of Lγ are also given by the above formulas. We now show how the reduction
to the ReLU case works.

Lemma 3.1. Suppose φ ∈ R3N+1 is a critical point or a local extremum of Lγ but not a
global minimum and that

∫ 1

0
x(fγφ (x)− x)dx = 0. Then all neurons of φ are flat semi-active,

flat inactive with wj = 0, or flat degenerate.

Proof. We first show that P (φ) is a critical point of L and then apply Theorem 2.4 to P (φ).
Since the partial derivative of Lγ with respect to c exists and must be zero, we have

1

2

∂

∂c
Lγ(φ) =

∫ 1

0

(fP (φ)(x)− x)dx = 0 =

∫ 1

0

x(fP (φ)(x)− x)dx.

This shows that the (right-hand) partial derivatives of L are zero at P (φ) with respect to co-
ordinates corresponding to inactive, semi-inactive, semi-active, type-1-active, and degenerate
neurons. We need to verify that also partial derivatives of L with respect to type-2-active
neurons vanish at P (φ). To see this, note that, for a type-2-active neuron j of φ, the partial
derivative of Lγ with respect to wj exists at φ and

0 =
∂

∂wj
Lγ(φ) = 2(1− γ)vj

∫
Ij

x(fγφ (x)− x)dx.

Thus,

0 = 2vj

∫
Ij

x(fγφ (x)− x)dx =
( ∂

∂wj
L
)

(P (φ)),

0 = −2γvj

∫
Îj

x(fγφ (x)− x)dx =
( ∂

∂wj+N
L
)

(P (φ)),
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and analogously for the coordinates bj, bj+N , vj, vj+N . This concludes that P (φ) is a critical
point of L. By Theorem 2.4, P (φ) does not have any type-1-active, non-flat semi-active, or
non-flat degenerate neurons. By definition of the map P , it follows that φ does not have
any type-1-active, non-flat semi-active, or non-flat degenerate neurons, nor does it have any
semi-inactive, non-flat inactive, or inactive neurons with wj 6= 0 for otherwise P (φ) would
have one of the former types. Further, by definition of P , any type-2-active neuron of φ gives
rise to two type-2-active neurons of P (φ) with the same breakpoint but with opposite signs
of the w-coordinate. This is not possible by (IV.b) of Theorem 2.4, so φ cannot have any
type-2-active neurons. In summary, φ can only have flat semi-active, flat degenerate, or flat
inactive neurons with wj = 0.

The condition
∫ 1

0
x(fγφ (x) − x)dx = 0 in the previous lemma is easily converted into a

condition about existence of certain types of neurons. This is done in the first part of the
next lemma. For the second part, we recycle some arguments we learned from the ReLU
case.

Lemma 3.2. Suppose φ ∈ R3N+1 is a critical point or a local extremum of Lγ but not a global
minimum. Then all neurons of φ are flat semi-active, flat inactive with wj = 0, degenerate,
or type-2-active. Moreover, if φ does not have any non-flat type-2-active neurons, then φ is a
saddle point and it also does not have any flat type-2-active or non-flat degenerate neurons.

Proof. Suppose φ had a neuron of a different type than in the first statement of this lemma,
say the jth. Note that one of the intervals Ij and Îj is empty and the other one is [0, 1] (up
to possibly a singleton). Since the jth neuron is non-degenerate, Lγ is differentiable with
respect to the coordinates of the jth neuron, so

∫ 1

0
x(fγφ (x) − x)dx = 0. This contradicts

Lemma 3.1.
The remainder of the proof is similar to the ones of Lemmas 2.18 and 2.19. Assume φ does

not have any non-flat type-2-active neurons. Then fγφ is constant on [0, 1], and this constant is
1/2 since ∂

∂c
Lγ(φ) = 0. We claim that φ cannot have any flat type-2-active neurons. Suppose

for contradiction the jth neuron were that. Let τ = sign(wj) and tj = −bj/wj ∈ (0, 1). Then
∂
∂vj
Lγ(φ) = 0 implies

0 =

∫ 1

tj

(x− tj)(1
2
− x)dx+ γτ

∫ tj

0

(x− tj)(1
2
− x)dx

=
1

12

(
− 1 + (1− γτ )(3− 2tj)t

2
j

)
.

But, for any γ, t ∈ (0, 1), τ ∈ {−1, 1}, we have −1 + (1 − γτ )(3 − 2t)t2 < 0, which is a
contradiction. Thus, all neurons of φ are flat semi-active, flat inactive with wj = 0, or
degenerate. With an argument analogous to the proof of Lemma 2.19, we find that φ is a
saddle point of Lγ . Indeed, if there is a flat semi-active or flat inactive neuron j with wj = 0,
then, with τ = 1− sign(bj),

det

(
∂
∂wj

∂
∂wj
Lγ(φ) ∂

∂wj

∂
∂vj
Lγ(φ)

∂
∂vj

∂
∂wj
Lγ(φ) ∂

∂vj

∂
∂vj
Lγ(φ)

)
= −

(
2γτ/2

∫ 1

0

x(1
2
− x)dx

)2

= − 1

36
γτ < 0.

Instead, if there is a degenerate neuron j, then, for the perturbation φs, s ∈ [0, 1], in the
coordinates of the jth neuron given by wsj = τs, bsj = −τs2, and vsj = vj + τs with τ = 1 if
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vj ≥ 0 and τ = −1 if vj < 0, we have

Lγ(φs)− Lγ(φ)

=
1

6
vsjw

s
jγ

(1−τ)/2
(
− 1 + (1− γτ )(3− 2s)s2

)
+

1

3
(vsjw

s
j)

2γ1−τ((1− s)3 + γ2τs3
)

= −1

6
s(|vj|+ s)γ(1−τ)/2 +

1

3
|vj|2s2γ1−τ +O(s3),

which is strictly negative for small s > 0. This concludes that φ is a saddle point. In
particular, any degenerate neuron j must be flat because

0 =
∂+

∂wj
Lγ(φ) = 2vj

∫ 1

0

x(1
2
− x)dx = −vj

6
.

We finished dealing with critical points of Lγ that have a constant realization function.
In the next section, we find saddle points of Lγ analogous to the ones in Theorem 2.4.(IV.b).
For these, we cannot reduce the analysis entirely to the known ReLU case. However, the
arguments are analogous to the ones developed in Lemmas 2.23 and 2.24, and we can use a
shortcut for small γ by arguing that we approximate the ReLU case in a suitable sense.

3.2 Explicit analysis for leaky ReLU

The following is the analog of Lemma 2.23 in the leaky ReLU case. Informally, one recovers
Lemma 2.23 from Lemma 3.3 in the limit γ → 0. We will discuss this in more detail after
having proved the lemma.

Lemma 3.3. Suppose φ ∈ R3N+1 is a critical point or a local extremum of Lγ but not a
global minimum and that φ has a type-2-active neuron. Denote by 0 = q0 < q1 < · · · < qn <
qn+1 = 1, for n ∈ N0, the roughest partition such that fγφ is affine on all subintervals [qi, qi+1],
and denote by Ki ⊆ {1, . . . , N} the set of all type-2-active neurons of φ whose breakpoint is
qi. Then n ≥ 1 and there exists σ ∈ {−1, 1} such that, abbreviating

δ = γ(1−σ)/4 + γ(1−σ(−1)n)/4 + (n− 1)
√

1 + γ,

the following hold:

(i) (a) qi = q1 + (i−1)(qn−q1)
n−1

for all i ∈ {2, . . . , n− 1},
(b) q1 = δ−1γ(1−σ)/4, and qn = 1− δ−1γ(1−σ(−1)n)/4, and qn − q1 = δ−1(n− 1)

√
1 + γ,

(ii) −bj/wj ∈ {q1, . . . , qn} for all type-2-active neurons j ∈ {1, . . . , N} of φ,
(iii) sign(wj) = σ(−1)i+1 for all i ∈ {1, . . . , n}, j ∈ Ki,

(iv) (a)
∑

j∈Ki vjwj =


γ−1/2 if i = 1 = n,
1
δ

(
1√
1+γ

+ 1
γ(1−σ)/4

)
if i = 1 6= n,

1
δ

2√
1+γ

if 2 ≤ i ≤ n− 1,
1
δ

(
1√
1+γ

+ 1
γ(1−σ(−1)n)/4

)
if i = n 6= 1,

(v) φ is centered,
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(vi) fγφ (x)− x =
−σ(−1)i(1− γ)

δ
·


x

γ(1−σ)/4
− 1

2δ
if i = 0,

x√
1+γ
− i−1/2

δ
− γ(1−σ)/4

δ
√

1+γ
if 1 ≤ i ≤ n− 1,

x
γ(1−σ(−1)n)/4 + 1

2δ
− 1

γ(1−σ(−1)n)/4 if i = n

for all i ∈ {0, . . . , n}, x ∈ [qi, qi+1].

Proof. First, note that φ must have at least one non-flat type-2-active neuron by Lemma 3.2.
For any such neuron j,

0 =
1

2vj

∂

∂wj
Lγ(φ) = (1− γ)

∫
Ij

x(fγφ (x)− x)dx+ γ

∫ 1

0

x(fγφ (x)− x)dx,

so the two integrals ∫
Ij

x(fγφ (x)− x)dx =
−γ

1− γ

∫ 1

0

x(fγφ (x)− x)dx,∫
Îj

x(fγφ (x)− x)dx =
1

1− γ

∫ 1

0

x(fγφ (x)− x)dx

(3.1)

are independent of the non-flat type-2-active neuron j. Doing the same with the coordinate
bj and using that 2

∫ 1

0
(fγφ (x)− x)dx = ∂

∂c
Lγ(φ) = 0, we find∫

Ij

(fγφ (x)− x)dx = 0 =

∫
Îj

(fγφ (x)− x)dx. (3.2)

The function fγφ cannot be affine for otherwise we could apply Lemma 2.20 with the partition
0 < tj < 1 for the breakpoint tj of any non-flat type-2-active neuron j and obtain a
contradiction with φ not being a global minimum. In other words, n 6= 0. Moreover,
since each Ki, i ∈ {1, . . . , n}, must contain a non-flat neuron, we deduce from (3.2) that∫ qi+1

qi
(fγφ (x)− x)dx = 0 for all i ∈ {0, . . . , n}. It follows from this and ∂

∂v
Lγ(φ) = 0 that (3.1)

holds even for flat neurons j ∈
⋃
iKi. Also, Lemma 2.20 implies that the two integrals in

(3.1) are not zero. In particular,∫
Ij

x(fγφ (x)− x)dx 6=
∫
Îj

x(fγφ (x)− x)dx

for any j ∈
⋃
iKi and, hence, sign(wj0) = sign(wj1) if j0 and j1 belong to the same set Ki.

Furthermore, we find from (3.1) that sign(wj0) 6= sign(wj1) for all i ∈ {1, . . . , n − 1} and
j0 ∈ Ki, j1 ∈ Ki+1 by taking differences of the integrals

∫
Ij
x(fγφ (x) − x)dx for different j.

This establishes item (iii). Consequently, we obtain from Lemma 2.20.(v) (with the partition
qi, qi+1, qi+2) that

0 = (qi+2 − qi+1)2 − (qi+1 − qi)2,

for all i ∈ {1, . . . , n − 2} (note that we do not obtain this equality for i = 0 or i = n − 1).
Thus, the points q1, . . . , qn are equidistributed in [q1, qn] (but not necessarily in [0, 1]), which
is exactly item (i.a). Next, we prove item (i.b). To do so, we distinguish between even n and
odd n. In the former case, sign(wj1) 6= sign(wjn) for all j1 ∈ K1, jn ∈ Kn by item (iii) and,
hence, by (3.1), ∫ q1

0

x(fγφ (x)− x)dx =

∫ 1

qn

x(fγφ (x)− x)dx.
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Write fγφ (x) = Aix+Bi on [qi, qi+1], for all i ∈ {0, . . . , n}, so that the formulas in (2.4) hold.
We compute

1

12
(A0 − 1)q3

1 =

∫ q1

0

x(fγφ (x)− x)dx

=

∫ 1

qn

x(fγφ (x)− x)dx =
(−1)n

12
(A0 − 1)q1(1− qn)2.

Thus, q1 = 1− qn and, by (i.a),∫ 1

0

x(fγφ (x)− x)dx =
1

12
(A0 − 1)q1

n∑
k=0

(−1)k(qk+1 − qk)2

=
1

12
(A0 − 1)q1

(
2q2

1 −
(

1− 2q1

n− 1

)2
)
.

Hence, it follows from (3.1) and item (iii) that

q2
1 =

σγ(1−σ)/2

1− γ

(
2q2

1 −
(

1− 2q1

n− 1

)2
)
.

Solving this as a quadratic equation in q1 under the constraint q1 ∈ (0, 1/2) yields q1 =
δ−1γ(1−σ)/4. Now, assume n is odd. Recall that

∫ qi+2

qi
x(fγφ (x) − x)dx = 0 for all i ∈

{1, . . . , n− 2}. In particular,
∫ qn
q1
x(fγφ (x)− x)dx = 0. Note that σ is already determined as

the sign of wj for any j ∈ K1. The partial derivative with respect to wj being zero for a
non-flat neuron j ∈ K1 implies

0 =

∫ 1

qn

x(fγφ (x)− x)dx+ γσ
∫ q1

0

x(fγφ (x)− x)dx

= − 1

12
(A0 − 1)q1((1− qn)2 − γσq2

1).

Thus, 1− qn = γσ/2q1. From this, the formula for q1 follows in the case n = 1. If n 6= 1, then
we use that the partial derivative with respect to wj for a non-flat neuron j ∈ K2 is zero to
calculate

0 =

∫ 1

q2

x(fγφ (x)− x)dx+ γ−σ
∫ q2

0

x(fγφ (x)− x)dx

=

∫ 1

qn−1

x(fγφ (x)− x)dx+ γ−σ
∫ q2

0

x(fγφ (x)− x)dx

=
1

12
(A0 − 1)q1

[
γ−σq2

1 − (1− qn)2 + (1− γ−σ)

(
qn − q1

n− 1

)2
]
.

Using 1− qn = γσ/2q1, the term in the rectangular brackets becomes a quadratic polynomial
in q1, and solving for q1 leads to q1 = δ−1γ(1−σ)/4. This finishes item (i.b). From here on, we
no longer treat even n and odd n separately. Next, we show item (ii). Given any type-2-active
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neuron j ∈ {1, . . . , N}, take i ∈ {0, . . . , n} with qi ≤ tj ≤ qi+1 and denote τ = sign(wj).
Then, ∂

∂vj
L(φ) = 0 implies

0 =

∫ qi+1

tj

(x− tj)(fγφ (x)− x)dx+ γτ
∫ tj

qi

(x− tj)(fγφ (x)− x)dx

+

∫ 1

qi+1

x(fγφ (x)− x)dx+ γτ
∫ qi

0

x(fγφ (x)− x)dx.

(3.3)

A direct computation with the formulas in (2.4) yields∫ qi+1

tj

(x− tj)(fγφ (x)− x)dx+ γτ
∫ tj

qi

(x− tj)(fγφ (x)− x)dx

=
(−1)i

12
(A0 − 1)

q1

qi+1 − qi

[
(qi+1 − qi)3 − (1− γτ )(tj − qi)2(3qi+1 − 2tj − qi)

]
.

(3.4)

Furthermore, if i 6= 0 and τ = σ(−1)i+1, then∫ 1

qi+1

x(fγφ (x)− x)dx+ γτ
∫ qi

0

x(fγφ (x)− x)dx

= −
∫ qi+1

qi

x(fγφ (x)− x)dx+

∫ 1

qi

x(fγφ (x)− x)dx+ γτ
∫ qi

0

x(fγφ (x)− x)dx

= −
∫ qi+1

qi

x(fγφ (x)− x)dx = −(−1)i

12
(A0 − 1)q1(qi+1 − qi)2,

where the second-last equality is implied by ∂
∂wk
L(φ) = 0 for a non-flat type-2-active neuron

k ∈ Ki. Similarly, if i 6= n and τ = σ(−1)i+2, then∫ 1

qi+1

x(fγφ (x)− x)dx+ γτ
∫ qi

0

x(fγφ (x)− x)dx = −γτ
∫ qi+1

qi

x(fγφ (x)− x)dx

= −γτ (−1)i

12
(A0 − 1)q1(qi+1 − qi)2.

The remaining cases are i ∈ {0, n} with τ = −σ, respectively τ = σ(−1)n, for which∫ 1

qi+1

x(fγφ (x)− x)dx+ γτ
∫ qi

0

x(fγφ (x)− x)dx

=
(−1)n−i

12
(A0 − 1)γiτ/nq1 ·

{
γ(n−i)σ/nq2

1 if n is odd,
q2

1 − (q2 − q1)2 if n is even.

In conclusion, we obtain from (3.3) and (3.4) that

0 =



−(tj − qi)2(3qi+1 − 2tj − qi) if i 6= 0 and τ = σ(−1)i+1,

(qi+1 − qi)3 − (tj − qi)2(3qi+1 − 2tj − qi) if i 6= n and τ = σ(−1)i+2,

(1− γσ)q31 − (1− γ−σ)t2j (3q1 − 2tj) if n is odd, i = 0, and τ = −σ,
(1 + γσ)(1− qn)q21 − (tj − qn)2(3− 2tj − qn) if n is odd, i = n, and τ = −σ,
2q31 − q1(q2 − q1)2 − (1− γ−σ)t2j (3q1 − 2tj) if n is even, i = 0, and τ = −σ,
(1 + γσ)q31 − γσq1(q2 − q1)2 − (1− γσ)(tj − qn)2(3− 2tj − qn) if n is even, i = n, and τ = σ.
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In the first case, we must have tj = qi. In the second case, the term can be rewritten as
(qi+1− tj)2(qi+1 + 2tj − 3qi), so we must have tj = qi+1. In the third case, the two summands
always have opposite signs, so their difference is always strictly positive or strictly negative
but not zero. In the fourth case, the right hand side is lower bounded by (1 − qn)q2

1, so it
cannot be zero. In the fifth case, after plugging in q1 and q2, we find that tj must satisfy

0 =
√
γγ(1+σ)/4 + t2jδ

2(3γ(1−σ)/4 − 2tjδ).

However, there is no solution tj to this equation with tj ∈ [0, q1]. Lastly, in the sixth case,
1 − tj must satisfy the same equation, which is incompatible with tj ∈ [qn, 1]. This proves
item (ii). Now, we tend to item (iv). Since

⋃
iKi contains all type-2-active neurons of φ and

there are no type-1-active neurons by Lemma 3.2, we can write the slopes of fγφ as

Al =
l∑

i=1

γ
1+σ(−1)i

2

∑
j∈Ki

vjwj +
n∑

i=l+1

γ
1−σ(−1)i

2

∑
j∈Ki

vjwj, (3.5)

for all l ∈ {0, . . . , n}, by item (iii). With this, we find, for all i ∈ {1, . . . , n},

− q1

qi+1 − qi
(A0 − 1) = (−1)i−1(Ai − 1) = (−1)i−1(Ai−1 − 1) + σ(1− γ)

∑
j∈Ki

vjwj

=
q1

qi − qi−1

(A0 − 1) + σ(1− γ)
∑
j∈Ki

vjwj.

Thus, for all i ∈ {1, . . . , n},∑
j∈Ki

vjwj =
−σ

1− γ
(A0 − 1)q1

qi+1 − qi−1

(qi+1 − qi)(qi − qi−1)
.

Combining this with the formula (3.5) for A0 yields

−σ(1− γ)

A0 − 1
= σ(1− γ) + q1

n∑
i=1

γ
1−σ(−1)i

2
qi+1 − qi−1

(qi+1 − qi)(qi − qi−1)
= γ(1−σ)/4δ. (3.6)

Plugging this back into the formula for
∑

j∈Ki vjwj, we obtain for n = 1 that
∑

j∈K1
vjwj =

γ−1/2 and for n ≥ 2, i ∈ {1, . . . , n} that∑
j∈Ki

vjwj =
1

δ2

qi+1 − qi−1

(qi+1 − qi)(qi − qi−1)

=


δ−1
(
(1 + γ)−1/2 + γ−(1−σ)/4

)
if i = 1,

2δ−1(1 + γ)−1/2 if 2 ≤ i ≤ n− 1,

δ−1
(
(1 + γ)−1/2 + γ−(1−σ(−1)n)/4

)
if i = n.

This establishes item (iv). By the formulas in (2.4) and (3.6),

Ai − 1 = σ(−1)i+1(1− γ)δ−1 ·


γ−(1−σ)/4 if i = 0,

(1 + γ)−1/2 if 1 ≤ i ≤ n− 1,

γ−(1−σ(−1)n)/4 if i = n
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and

Bi =
1

2
σ(−1)i(1− γ)δ−2 ·


1 if i = 0,

2i− 1 + 2γ(1−σ)/4(1 + γ)−1/2 if 1 ≤ i ≤ n− 1,

2γ−(1−σ(−1)n)/4δ − 1 if i = n.

In particular, item (vi) holds. Lastly, we know from Lemma 3.2 and item (iii) that

0 = fγφ (0)−B0 = c−
n∑
i=1

γ
1−σ(−1)i

2 qi
∑
j∈Ki

vjwj −B0.

After plugging in the formulas for B0, δ, qi, and
∑

j∈Ki vjwj, a lengthy but straight-forward
computation results in c = 1/2. Thus, φ is centered, which concludes the proof.

We make a few remarks about the relationship between the previous and Lemma 2.23.
The quantity δ in Lemma 3.3 replaces the factor n+ 1 that appears throughout Lemma 2.23.
In the limit γ → 0,

δ →


n if n is odd,
n+ 1 if n is even and σ = 1,

n− 1 if n is even and σ = −1.

Thus, in order to match Lemma 2.23 with the limit case γ → 0 of Lemma 3.3, one would
need to apply the former lemma with

ñ =


n− 1 if n is odd,
n if n is even and σ = 1,

n− 2 if n is even and σ = −1

in place of n so that δ → ñ+1. One would hope that the quantities in Lemma 3.3 converge to
their counterparts from Lemma 2.23 with ñ as γ → 0. Although the number of breakpoints
in each lemma is different in most cases (i.e. n 6= ñ), this convergence actually happens: on
the one hand, if n is odd and σ = 1, then qn → 1 ‘degenerates’ into the endpoint of the
interval [0, 1] and only the (n − 1)-many breakpoints q1, . . . , qn−1 remain, which converge
to i

ñ+1
, i ∈ {1, . . . , ñ}. Similarly, if n is odd and σ = −1, then q1 → 0 degenerates and

q2, . . . , qn remain and converge to the correct breakpoints i
ñ+1

, i ∈ {1, . . . , ñ}. On the other
hand, if n is even and σ = 1, then none of the breakpoints degenerate and q1, . . . , qn remain
and converge. Lastly, if n is even and σ = −1, then both q1 → 0 and qn → n, and we are
left with q2, . . . , qn−1, which converge.

In addition, note that the parity of the w-coordinate of the type-2-active neurons match in
each lemma even though these are σ(−1)i+1 and (−1)i+1, respectively. They match because
q1 can only degenerate into 0 if σ = −1. Lastly, note that the quantities

∑
j∈Ki vjwj also

converge to their counterparts as γ → 0.

Lemma 3.4. Suppose φ ∈ R3N+1 is a critical point or a local extremum of Lγ but not a
global minimum and that φ has a type-2-active neuron. There exists γ0 ∈ (0, 1] depending
only on N such that if γ < γ0, then φ is a saddle point of Lγ.
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Recall that, in the proof of Lemma 2.24, we studied the Hessian of Lγ restricted to a
suitable set of coordinates, taken from type-2-active neurons with breakpoints i

n+1
, i ∈ {1, 2}.

To prove Lemma 3.4, we proceed analogously, which works for sufficiently small γ by the
above observation about Lemmas 2.23 and 3.3. More precisely, if n 6= 1 and σ = 1, then we
will be able to work with the same set of coordinates because q1 → 1

ñ+1
and q2 → 2

ñ+1
. On

the other hand, if n ≥ 3 and σ = −1, then q1 → 0 but q2 → 1
ñ+1

and q3 → 2
ñ+1

. In this case,
we will use the analogous set of coordinates with q2 and q3 in place of q1 and q2. However,
the argument does not work if n = 1 or if n = 2 and σ = −1 because then q1 → 0, q2 → 1,
and fγφ becomes an affine function as γ → 0. We will treat these two cases separately.

Proof of Lemma 3.4. Take n, δ, q1, . . . , qn, and σ from Lemma 3.3. First, assume n = 2
with σ = 1 or n ≥ 3. Abbreviate τ = (3−σ)/2 ∈ {1, 2}. Similar to the proof of Lemma 2.24,
let Kτ ⊆ {1, . . . , N} denote the set of those type-2-active neurons with breakpoint qτ , and
let K−τ ⊆ Kτ be the subset of those neurons j ∈ Kτ with vj < 0. Let j1 ∈ Kτ with vj1 > 0,
which exists since a :=

∑
j∈Kτ vjwj > 0 and wj > 0 for all j ∈ Kτ , and let j2, . . . , jl, for

l ∈ {1, . . . , N}, be an enumeration of K−τ . Moreover, let k ∈ {1, . . . , N} be any type-2-active
neuron with breakpoint qτ+1. As in the ReLU case, we consider the Hessian H of Lγ restricted
to (bj1 , . . . , bjl , vk, c).

We again introduce some shorthand notation. For all i ∈ {1, . . . , l}, denote λi = a−1vjiwji
so that

∑l
i=1 λi ≤ 1. Define µ = 1

2
(1− (1− γ2)qτ )

−1 > 0 and the vectors u1 = (vj1 , . . . , vjl),

u2 = µ

(
wk
(
γ(1− 2qτ+1)− (1− γ)(qτ+1 − qτ )2

)
2(1− (1− γ)qτ )

)
,

and u = (u1, u2). Further, let D be the diagonal matrix with entries −µ(1− γ)2v2
ji
/(aδ2λi),

i ∈ {1, . . . , l}, let A be the Hessian of Lγ restricted to (vk, c), let B = µA− u2u
T
2 , and let E

be the diagonal block matrix with blocks D and B. Then H = 1
µ
(E+uuT ). The matrix A is

A =

(
2
3
w2
k

(
q3
τ+1 + γ2(1− qτ+1)3

)
−wk

(
q2
τ+1 − γ(1− qτ+1)2

)
−wk

(
q2
τ+1 − γ(1− qτ+1)2

)
2

)
,

of which both the determinant and the upper left entry are strictly positive. In particular,
A is positive definite and, hence, Γ := 1

µ
uT2A

−1u2 is strictly positive. If Γ < 1, then the same
considerations as in the proof of Lemma 2.24 show that B and E are invertible and

det(H) = µ−(l+2)(1 + uT1D
−1u1 + uT2B

−1u2) det(E)

= ∆
(a
µ

( δ

1− γ

)2

(1− Γ)
l∑

i=1

λi − 1
)
,

where ∆ = −µ(l+2)(1− Γ)−1 det(D) det(B) > 0. So far, we did not impose any restrictions
on γ. To verify that Γ < 1, we use the limit argument to reduce the calculation to the one
we performed in the proof of Lemma 2.24. To this end, we point out that Γ is independent
of wk and that δ, qτ , qτ+1, and µ only depend on n and γ. For fixed n, if we let γ tend to
zero, then δ → ñ+ 1, qτ → 1

ñ+1
, qτ+1 → 2

ñ+1
, and µ→ ñ+1

2ñ
, where we take ñ = n− 1 + σ if n

is even and ñ = n− 1 if n is odd. These limits coincide with the corresponding objects from
the proof of Lemma 2.24 with ñ in place of n as discussed prior to stating Lemma 3.4. The
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same goes for the limits of a, u2, and A. Thus, we find from (2.6) that, for sufficiently small
γ,

Γ ≈ 32ñ2 − 21ñ+ 3

16ñ(2ñ− 1)
< 1 and

a

µ

( δ

1− γ

)2

(1− Γ) ≈ 4ñ(1− Γ) ≈ 5ñ− 3

8ñ− 4
< 1.

This concludes the existence of a γ0 ∈ (0, 1] such that if γ < γ0, then det(H) < 0. This γ0

depends only on n. Since n ≤ N , we can shrink γ0 if necessary so that it depends only on N .
It remains to treat the cases n = 1 and n = 2 with σ = −1. Assume n = 1. This time,

let j1 ∈ {1, . . . , N} be any type-2-active neuron with sign(vj1) = σ, and let j2, . . . , jl, for
l ∈ {1, . . . , N}, be an enumeration of all type-2-active neurons with sign(vj1) = −σ. As
before, let a = γ−1/2, λi = a−1vjiwji , µ = 1

2
γ−1/2(1−√γ + γ)−1, Di = −µ(1− γ)2v2

ji
/(aδ2λi),

and u1 = (vj1 , . . . , vjl) so that
∑l

i=1 λi ≤ 1 and det(D) < 0. On the other hand, let
u2 = σµ

√
γ(1− γ)λ1/(δ

2vj1) and B = µ ∂2

∂v2j1
Lγ(φ)− u2

2 = 1
3
µ2γλ2

1v
−2
j1
> 0. Then the Hessian

of Lγ restricted to the coordinates (bj1 , . . . , bjl , vj1) is H = 1
µ
(E + uuT ), where E is the

diagonal block matrix with blocks D and B. Hence,

det(H) = µ−(l+1)B det(D)(1 + uT1D
−1u1 + u2

2/B)

= −µ−(l+1)B det(D)
4(1−√γ + γ)

(1 +
√
γ)2

(
1

2

(
1 +
√
γ

1−√γ

)2 l∑
i=1

λi − 1

)
.

In particular, det(H) < 0 for sufficiently small γ.
Lastly, assume n = 2 and σ = −1. Similar as in the beginning, let K1 ⊆ {1, . . . , N}

denote the set of those type-2-active neurons with breakpoint q1, and let K+
1 ⊆ K1 be the

subset of those neurons j ∈ K1 with vj > 0. Let j1 ∈ K1 with vj1 < 0, which exists since
a =

∑
j∈K1

vjwj > 0 and wj < 0 for all j ∈ K1, and let j2, . . . , jl, for l ∈ {1, . . . , N}, be an
enumeration ofK+

1 . Further, denote the same shorthand λi = a−1vjiwji and u1 = (vj1 , . . . , vjl)
but set µ = 3

2
(q3

1 + γ2 − γ2q3
1)−1 and Di = −µ(1− γ)2q2

1v
2
ji
/(aδ2λi). Then the Hessian of Lγ

restricted to (wj1 , . . . , wjl) is H = 1
µ
(D + u1u

T
1 ) with determinant

det(H) = µ−l(1 + uT1D
−1u1) det(D) = −µ−l det(D)

(
aδ2

µ(1− γ)2q2
1

l∑
i=1

λi − 1

)
.

By construction,
∑l

i=1 λi ≤ 1 and, by plugging in the formulas for a, q1, and δ from
Lemma 3.3,

aδ2

µ(1− γ)2q2
1

=
2

3

√
1 + γ +

√
γ

(1− γ)2
√

1 + γ
(1 +

√
γδ3 − γ2) =

2

3

1

(1− γ)2
+O(

√
γ).

In particular, det(H) < 0 for small γ.

3.3 Classification for leaky ReLU activation

In the following, we state the classification of critical points of the L2-loss for leaky ReLU
networks. It is almost analogous to Theorem 2.4, but the main difference is the absence
of non-global local minima. These critical points vanish for leaky ReLU because they were
caused solely by dead ReLU neurons.
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Theorem 3.5. Let N ∈ N, φ = (w, b, v, c) ∈ R3N+1, A = (α, β) ∈ R2, and T = (T0, T1) ∈ R2

satisfy α 6= 0 and 0 ≤ T0 < T1. Then there exists γ0 ∈ (0, 1] such that for all γ ∈ (0, γ0) the
following hold:

(I) φ is not a local maximum of LγN,T,A.
(II) If φ is a critical point or a local extremum of LγN,T,A, then L

γ
N,T,A is differentiable at φ

with gradient ∇LγN,T,A(φ) = 0.

(III) φ is not a non-global local minimum of LγN,T,A.
(IV) φ is a saddle point of LγN,T,A if and only if φ is (T,A)-centered, for all j ∈ {1, . . . , N}

the jth hidden neuron of φ is flat semi-active, flat inactive with wj = 0, flat degenerate,
or type-2-active, and exactly one of the following two items holds:

(a) φ does not have any type-2-active neurons.
(b) There exist σ ∈ {−1, 1}, n ∈ N such that if

δ = γ(1−σ)/4 + γ(1−σ(−1)n)/4 + (n− 1)
√

1 + γ,

qi = T0 +
T1 − T0

δ

(
γ(1−σ)/4 + (i− 1)

√
1 + γ

)
, i ∈ {1, . . . , n},

then
⋃
j∈{1,...,N}, wj 6=0{−bj/wj} = {q1, . . . , qn} and, for all j ∈ {1, . . . , N}, i ∈

{1, . . . , n} with wj 6= 0 = bj + wjqi, it holds that sign(wj) = σ(−1)i+1 and

∑
k∈{1,...,N},

wk 6=0=bk+wkqi

vkwk =


α√
γ

if i = 1 = n,
α
δ

(
1√
1+γ

+ 1
γ(1−σ)/4

)
if i = 1 6= n,

α
δ

2√
1+γ

if 2 ≤ i ≤ n− 1,
α
δ

(
1√
1+γ

+ 1
γ(1−σ(−1)n)/4

)
if i = n 6= 1.

(V) If φ is a saddle point of LγN,T,A without type-2-active neurons, then fγφ (x) = α
2
(T0 +

T1) + β for all x ∈ [T0, T1].

(VI) If φ is a saddle point of LγN,T,A with at least one type-2-active neuron, then there exist
σ ∈ {−1, 1}, n ∈ N such that n ≤ N and, for all i ∈ {0, . . . , n}, x ∈ [qi, qi+1], one has

fγφ (x)− αx− β

=

[
−σ(−1)i(1− γ)α

δ

]
·


x−T0

γ(1−σ)/4
− T1−T0

2δ
if i = 0,

x−T0√
1+γ
− (i−1/2)(T1−T0)

δ
− γ(1−σ)/4(T1−T0)

δ
√

1+γ
if 1 ≤ i ≤ n− 1,

x−T0
γ(1−σ(−1)n)/4 + T1−T0

2δ
− T1−T0

γ(1−σ(−1)n)/4 if i = n,

where δ and q1, . . . , qn are the same as in item (IV.b).

Proof. We prove Theorem 3.5 in the special case A = (1, 0) and T = (0, 1). The general case
follows from this the same way as Theorem 2.4 followed from Proposition 2.25 in Section 2.9.
The first item is shown in Lemma 2.8; see Remark 2.9.

Suppose φ is a critical point or a local extremum of Lγ but not a global minimum. By
Lemma 3.2, all neurons of φ are flat semi-active, flat inactive with wj = 0, degenerate, or
type-2-active. If, in addition, φ does not have any type-2-active neurons, then it also does
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not have any non-flat degenerate neurons, it is a saddle point, and φ must be centered since
∂
∂c
Lγ(φ) = 0. If, on the other hand, φ has a type-2-active neuron, then φ is as in item (IV.b)

by Lemma 3.3 apart from potentially having non-flat degenerate neurons, and φ is a saddle
point by Lemma 3.4. However, a posteriori, φ cannot have non-flat degenerate neurons
because, by Lemma 3.3.(vi),∫ 1

0

x(fγφ (x)− x)dx = −(1− γ)2

12δ4
< 0,

so ∂+

∂wj
Lγ(φ) could not be zero for a non-flat degenerate neuron j. This proves item (III) and

the ‘only if’ part in item (IV). This also implies that any critical point or local extremum
of Lγ is a global minimum or does not have any non-flat degenerate neurons. Hence, the
relation Lγ = L ◦ P with the smooth map P and the differentiability properties of L assert
item (II).

If φ is as in item (IV.a), then it clearly is a critical point of Lγ, and it is a saddle point
by Lemma 3.2. If φ is as in item (IV.b), then fγφ is given by the formula in item (VI). We
can calculate

∫ qi+1

qi
(fγφ (x)− x)dx = 0 for all i ∈ {0, . . . , n} and∫ 1

qi

x(fγφ (x)− x)dx+ γσ(−1)i+1

∫ qi

0

x(fγφ (x)− x)dx = 0

for all i ∈ {1, . . . , n}. It follows from this that φ is a critical point of Lγ, and it is a saddle
point by Lemma 3.4. This proves the ‘if’ part in item (IV). Item (V) is immediate and the
last item was implicit in the previous step.

Remark 3.6. The restriction on γ to lie in (0, γ0) is only needed in the proof of Lemma 3.4.
All other proofs were carried out for general γ ∈ (0, 1). We believe that, in fact, one can take
γ0 = 1 in Lemma 3.4 and, hence, that Theorem 3.5 also holds for general γ ∈ (0, 1).

4. Classification for quadratic activation

As the last case, we consider the quadratic activation function. The realization fquad
φ ∈

C(R,R) of a network φ = (w, b, v, c) ∈ R3N+1 with the quadratic activation is

fquad
φ (x) = c+

N∑
j=1

vj(wjx+ bj)
2.

Given A = (α, β) ∈ R2 and T = (T0, T1) ∈ R2, the loss function Lquad
N,T,A is the L2-loss given

by

Lquad
N,T,A(φ) =

∫ T1

T0

(fquad
φ (x)− αx− β)2dx.

This time, there are no issues with differentiability since Lquad
N,T,A is infinitely times differen-

tiable, even analytic, everywhere. The classification turns out to be simpler than in the
ReLU and leaky ReLU case as there are no local extrema and only saddle points with a
constant realization function.
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Theorem 4.1. Let N ∈ N, φ = (w, b, v, c) ∈ R3N+1, A = (α, β) ∈ R2, and T = (T0, T1) ∈ R2

satisfy α 6= 0 and T0 < T1. Then the following hold:

(I) φ is not a local maximum of Lquad
N,T,A.

(II) φ is not a non-global local minimum of Lquad
N,T,A.

(III) φ is a global minimum of Lquad
N,T,A if and only if N ≥ 2 and Lquad

N,T,A(φ) = 0.

(IV) φ is a saddle point of Lquad
N,T,A if and only if φ is (T,A)-centered and, for all j ∈

{1, . . . , N}, the jth hidden neuron of φ satisfies vjbj = 0 = wj or wj 6= vj = 0 =
bj + 1

2
(T0 + T1)wj.

(V) If φ is a saddle point of Lquad
N,T,A, then f

quad
φ (x) = α

2
(T0 + T1) + β for all x ∈ [T0, T1].

Proof. As for the other activation functions, the first item is shown in Lemma 2.8; see
Remark 2.9. Now, suppose φ is a critical point of Lquad

N,T,A and Lquad
N,T,A(φ) > 0. Since Lquad

N,T,A is
smooth, we have, for any j ∈ {1, . . . , N},

0 =
∂

∂wj
Lquad
N,T,A(φ) = 4vj

∫ T1

T0

x(wjx+ bj)(f
quad
φ (x)− αx− β)dx,

0 =
∂

∂bj
Lquad
N,T,A(φ) = 4vj

∫ T1

T0

(wjx+ bj)(f
quad
φ (x)− αx− β)dx,

0 =
∂

∂vj
Lquad
N,T,A(φ) = 2

∫ T1

T0

(wjx+ bj)
2(fquad

φ (x)− αx− β)dx,

0 =
∂

∂c
Lquad
N,T,A(φ) = 2

∫ T1

T0

(fquad
φ (x)− αx− β)dx.

Thus, if there exists j ∈ {1, . . . , N} with vj 6= 0 6= wj, then
∫ T1
T0
xm(fquad

φ (x)−αx− β)dx = 0
for all m ∈ {0, 1, 2}. However, note that the zero polynomial is the only polynomial p
of degree at most two satisfying

∫ T1
T0
xmp(x)dx = 0 for all m ∈ {0, 1, 2}. Hence, since

Lquad
N,T,A(φ) > 0, we must have vj = 0 or wj = 0 for all neurons. In particular, fquad

φ is constant
and

∫ T1
T0
x(fquad

φ (x)− αx− β)dx 6= 0. Thus, for all j, if vj 6= 0, then bj = 0. So far, we have
shown that all neurons must satisfy vj = 0 or wj = 0 = bj. It follows that φ is (T,A)-centered.
For a neuron j with wj 6= 0 and tj = −bj/wj, we have

0 = 2

∫ T1

T0

(wjx+ bj)
2(c− αx− β)dx = −2αw2

j

∫ T1

T0

(x− tj)2(x− T0+T1
2

)dx,

which is true if and only if tj = (T0 +T1)/2. This proves the ‘only if’ direction in (IV). Next,
we show that φ must be a saddle point. We will pick a path φs = (ws, bs, vs, cs), s ∈ (−1, 1),
through φ = φ0, which differs only in the coordinates of the first neuron and in

cs = c− vs1(bs1)2 − 1

3
As(T

2
0 + T0T1 + T 2

1 )−Bs(T0 + T1),

where As = vs1(ws1)2 and Bs = vs1w
s
1b
s
1. Then,

Lquad
N,T,A(φs)− Lquad

N,T,A(φ0)

(T1 − T0)3
=

1

45
A2
s(4T

2
0 + 7T0T1 + 4T 2

1 ) +
1

3
AsBs(T0 + T1)

+
1

3
B2
s −

α

6
(As(T0 + T1) + 2Bs).
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We distinguish three cases. First, if v1 = 0 6= w1, then we use ws1 = w1, bs1 = b1 − sw1, and
vs1 = −sign(α)s2. In this case, Bs = −1

2
As(T0 + T1)− sAs and, hence,

Lquad
N,T,A(φs)− Lquad

N,T,A(φ0)

(T1 − T0)3
= −|α|

3
w2

1s
3 +O(s4).

This is strictly negative for sufficiently small s > 0, so φ is a saddle point. Secondly, if
v1 6= 0 = w1, then we use ws1 = s, bs1 = −1

2
(T0 + T1)s+ sign(αv1)s2, and vs1 = v1. In this case,

Lquad
N,T,A(φs)− Lquad

N,T,A(φ0)

(T1 − T0)3
= −|α|

3
|v1|s3 +O(s4).

In the last case, namely v1 = 0 = w1, we use ws1 = sbs1, bs1 = b1 + s, and vs1 = sign(α)s3(bs1)−2.
Then,

Lquad
N,T,A(φs)− Lquad

N,T,A(φ0)

T1 − T0

= −|α|
3
s4 +O(s5).

We have shown that if φ is a critical point with Lquad
N,T,A(φ) > 0, then it is a saddle point. This

establishes item (II) and it also implies that if φ is a global minimum, then Lquad
N,T,A(φ) = 0.

The latter is only possible if N ≥ 2. Conversely, if N ≥ 2, then there are networks with zero
loss, so item (III) holds. If φ is (T,A)-centered and all of its neurons are as in item (IV),
then ∇Lquad

N,T,A(φ) = 0 and φ is a saddle point since clearly Lquad
N,T,A(φ) > 0. This finishes (IV),

and (V) follows.

The conditions in Theorem 4.1.(IV) are equivalent to all neurons being flat semi-active,
flat inactive with wj = 0, flat type-2-active with breakpoint −bj/wj = (T0 + T1)/2, or
degenerate. However, for the quadratic activation, the notions of in-/active neurons seem no
longer appropriate.

Remark 4.2. In Theorem 4.1, the case N = 1 of a single neuron is special due to the absence
of global minima. The loss can still be arbitrarily small, but there is no network achieving
the infimum. Indeed, for all (w, b) ∈ R2 with w 6= 0,

inf
(v,c)∈R2

Lquad
1,T,A(w, b, v, c) =

α2(T1 − T0)3

12

(
1−

60
(
T0+T1

2
+ b

w

)2

(T1 − T0)2 + 60
(
T0+T1

2
+ b

w

)2

)
T0+T1

2
+ b
w
→±∞

−−−−−−−−−→
monotone

0.



CHAPTER 5

Gradient descent provably escapes saddle points
in the training of shallow ReLU networks

This chapter is an adaptation of the preprint [17].

1. Introduction

As discussed in Chapter 1, in this chapter, we intend to apply a stable manifold theorem
to analyze the training of neural networks with gradient descent. The intuition behind
this theory becomes clearer if one pictures the linearization of the gradient descent map
f(x) = x−γ∇L(x) (the function describing one step of the algorithm with step size γ and loss
function L) around a saddle point z. Note that z, being a critical point of the loss function, is a
fixed point of the gradient descent map. For simplicity of the presentation, assume z = 0. The
first-order Taylor approximation of f around the origin reads f(x) ≈ f ′(0)x = (I−γ∇2L(0))x,
where I denotes the identity matrix. Therefore, after neglecting the second and the higher-
order terms, the behavior of the next step f(x) can be determined by looking at x in the
eigenspace decomposition of the matrix f ′(0). If the saddle point 0 is strict, then ∇2L(0) has
a strictly negative eigenvalue, so f ′(0) has an eigenvalue strictly greater than 1. Thus, there
is a direction in the linearization along which we move away from the origin. This means that
the only way to actually move towards the origin is if one moves inside a so-called center-
stable manifold. Loosely speaking, a center-stable manifold is a manifold whose tangent
space at the origin is the span Ecs of the eigenvectors of f ′(0) for eigenvalues of absolute
value less than or equal to 1. The span Ecs is the center-stable space of the linearization,
and a1 center-stable manifold takes into account the second and the higher-order terms. The
final step of the approach consists in showing that the set of initializations, from which the
gradient descent trajectory eventually enters this center-stable manifold, has measure zero.

In the argument above, we implicitly use that f ′(0) is diagonalizable, which is guaranteed
if I − γ∇2L(0) is a real symmetric matrix. But this requires L to be twice differentiable at
the origin. In the framework of ReLU networks, this regularity is not given for the L2-loss
measured against a given target function. To tackle this problem, we have to modify the
gradient descent map and consider f(x) = x− γG(x), where G is a modification of ∇L. The
function G may not arise as the gradient of any scalar-valued function. Therefore, we need
to ensure explicitly that G ′ is symmetric at the origin so that f ′(0) is still diagonalizable.

Another (more restrictive) assumption implicitly used in the above argument is that f ′(0)

1While the linear subspace Ecs is unique, a center-stable manifold is not; [118].

77



78 Chapter 5

is non-degenerate. Indeed, if f ′(0) is degenerate, then, for x in the kernel of f ′(0), nothing
can be said about f(x) without considering the second-order terms. In [26,83,84,98,99], this
non-degeneracy assumption is guaranteed to hold by requiring ∇L to be globally Lipschitz
continuous. Then, I − γ∇2L(0) cannot be degenerate for sufficiently small γ compared to
the Lipschitz constant.2 But global Lipschitz continuity of ∇L is a strong assumption and
does not hold in the aforementioned framework of ReLU networks (nor for networks with
other activation functions). In conclusion, one of the main difficulties on the side of the
dynamical systems theory is to provide a variant of the center-stable manifold theorem that
works even if f ′(0) is degenerate. To this end, we extend a result of [100], which we present
in Theorem 1.1. Therein, observe that f ′(x) need only be non-degenerate almost everywhere
but not necessarily at the saddle points x ∈ S of interest.

Theorem 1.1. Let d ∈ N, let ‖·‖ : Rd → R be the standard norm on Rd, let f : Rd → Rd be
a function, let (Xx

n)(n,x)∈N0×Rd ⊆ Rd be given by Xx
0 = x and Xx

n+1 = f(Xx
n), let V ⊆ U ⊆ Rd

be open sets, assume that Rd\V has Lebesgue measure zero, assume f |U ∈ C1(U,Rd), assume
that U 3 x 7→ f ′(x) ∈ Rd×d is locally Lipschitz continuous, assume for all x ∈ V that
det(f ′(x)) 6= 0, let S ⊆ {x ∈ U : f(x) = x}, and assume for all x ∈ S that the matrix f ′(x)
is symmetric and has an eigenvalue whose absolute value is strictly greater than 1. Then, the
set {x ∈ Rd : (∃ y ∈ S : lim supn→∞ ‖Xx

n − y‖ = 0)} has Lebesgue measure zero.

Concerning the ReLU network application, the main challenge is to construct a suitable
modification G of ∇L mentioned above and verify that it suits our purpose. Of course, we
have to ensure that, upon replacing ∇L by its modification G, we do not loose information
about the dynamics of the original gradient descent algorithm. To obtain the necessary
strictness of (in some sense) most saddle points, we rely on the classification of saddle points
from Chapter 4. To apply this classification, we need to restrict our attention to shallow
ReLU networks on the L2-loss with respect to an affine target function. Combining all of
the above, we prove in Theorem 3.7 that the gradient descent algorithm almost surely avoids
most saddle points in this framework, where almost surely is understood with respect to a
random initialization that is absolutely continuous with respect to the Lebesgue measure.

Building more intricately on the classification of critical points from Chapter 4, we proceed
to deduce convergence of the algorithm to a global minimum under a suitable initialization
as stated in Theorem 1.2 below. Let us explain the notation used in that theorem. A shallow
network with N hidden neurons is a collection of weights and biases, represented by a vector
θ ∈ R3N+1. The realization of such a network is the function Rθ. The map L is the squared
L2-loss measured against a target function f. As L is not differentiable everywhere, we take G
to be the left gradient of L, that is we take partial directional derivatives from the left. This
specific choice is for the sake of the presentation, but in the main body of this chapter G may
take coordinate-wise any values when L is not differentiable. Finally, Θγ,θ

k+1 = Θγ,θ
k −γG(Θγ,θ

k )
is the gradient descent algorithm with step size γ and initial value θ.

Theorem 1.2. Let N ∈ N, α, β ∈ R satisfy α < β and N/2 ∈ N, for every θ =

2We remark that local Lipschitz continuity at the origin is sufficient to guarantee that I − γ∇2L(0) is
non-degenerate for small γ. But we want to study many saddle points in an unbounded set simultaneously,
and γ would depend on the local Lipschitz constant around each of those saddle points. Therefore, to
guarantee γ 6= 0, we would need a uniform upper bound on these local Lipschitz constants, which essentially
amounts to a global bound.
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(θ1, . . . , θ3N+1) ∈ R3N+1 let Rθ ∈ C([α, β],R) be given by

Rθ(x) = θ3N+1 +
N∑
j=1

θ2N+j max{θjx+ θN+j, 0},

let f ∈ C([α, β],R) be affine, let L ∈ C(R3N+1,R) be given by L(θ) =
∫ β
α

(Rθ(x)− f(x))2 dx,
let G : R3N+1 → R3N+1 be the left gradient of L, and let (Θγ,θ

k )(k,γ,θ)∈N0×(0,∞)×R3N+1 ⊆ R3N+1

be given by Θγ,θ
0 = θ and Θγ,θ

k+1 = Θγ,θ
k − γG(Θγ,θ

k ). Then, for Lebesgue almost all γ ∈ (0,∞)
and Lebesgue almost all

θ ∈
{
ϑ ∈ R3N+1 : (Θγ,ϑ

k )k∈N0 is convergent and lim
k→∞
L(Θγ,ϑ

k ) < [f′(α)]2(β−α)3

12(N−1)4

}
(1.1)

it holds that limk→∞ L(Θγ,θ
k ) = 0.

We remark that the conclusion of Theorem 1.2 is void if the target function f is constant.
In this case, every critical point of L is a global minimum and there is nothing to prove; [14].

The remainder of this chapter is organized as follows. In Section 2, we state our variant
of the center-stable manifold theorem and deduce Theorem 1.1. Section 3 introduces the
shallow ReLU network framework and begins with constructing the previously mentioned
modification of the gradient of the loss function. Then, Section 3.1 is devoted to almost
everywhere non-degeneracy of the Jacobian of the modified gradient descent map, and
Section 3.2 deals with strictness of saddle points. In Section 3.3, we deduce Theorem 1.2.
Finally, Section 4 contains the proof of the center-stable manifold theorem.

Notation

We denote by ‖·‖ the Euclidean norm when applied to vectors and the operator norm induced
by the Euclidean norm when applied to matrices. Throughout this chapter, we fix a dimension
d ∈ N and write I ∈ Rd×d for the identity matrix. The closed ball around a point x ∈ Rd

with radius r ∈ (0,∞) is denoted Br(x) = {y ∈ Rd : ‖y − x‖ ≤ r}. A discrete dynamical
system is written as follows. For every function f : Rd → Rd, we denote by fk : Rd → Rd,
k ∈ N0, the functions that satisfy for all k ∈ N0 that f 0 = idRd and fk+1 = f ◦ fk. To
describe critical points of a function L : Rd → R, we use the following terminology. Local
extrema refer to nonstrict local extrema; a point x ∈ Rd is called a critical point of L if L is
differentiable at x with ∇L(x) = 0; and a critical point is called a saddle point if it is not a
local extremum.

2. A center-stable manifold theorem

The core of this section is a variant of the stable manifold theorem. The novelty is that we do
not require the dynamical system to be a local diffeomorphism as is the case in the classical
formulation [118]. Specifically, the Jacobian may be degenerate at the fixed point under
consideration. This comes at the expense of less regularity of the center-stable manifold.
Indeed, the graph in Theorem 2.2 is only proved to be Lipschitz-regular. Our variant is an
extension of the corresponding statement in [100]. The exact regularity requirement needed is
a certain local Lipschitz condition on the remainder term of the first-order Taylor expansion
of the dynamical system around a fixed point:
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Assumption 2.1. Let f : Rd → Rd be a function and let S ⊆ {x ∈ Rd : f(x) = x}. Assume
for all z ∈ S that f is differentiable at z, that the matrix f ′(z) ∈ Rd×d is diagonalizable over
R and has an eigenvalue of absolute value strictly greater than 1, and that for all ε ∈ (0,∞)
there exists rε ∈ (0,∞) so that the map Brε(z) → Rd, x 7→ f(x) − z − f ′(z)(x − z) is
ε-Lipschitz continuous.

For all z ∈ S, denote by Ecs
z ⊆ Rd the span of those eigenvectors of f ′(z) associated with

eigenvalues that lie in [−1, 1] (the center-stable space) and by Eu
z ⊆ Rd the span of those

eigenvectors of f ′(z) associated with eigenvalues that lie in R\[−1, 1] (the unstable space).
Then, Rd = Ecs

z ⊕ Eu
z . Under Assumption 2.1, we have 0 ≤ dim(Ecs

z ) ≤ d− 1 for all z ∈ S.
Now, we can state our version of the center-stable manifold theorem.

Theorem 2.2 (Center-stable Lipschitz manifold). Let Assumption 2.1 hold and let z ∈ S.
Then, there exists an r ∈ (0,∞) and a Lipschitz continuous map Ψ: Ecs

z → Eu
z such that

{x ∈ Rd : fk(x) ∈ Br(z) for all k ∈ N0} ⊆ Graph(Ψ).

This theorem states that all those points, whose orbits under the dynamical system
remain close to z, lie in the graph of a Lipschitz function, whose domain is a linear space
of dimension between 0 and d − 1. We defer the proof to Section 4. In Theorem 2.2, we
considered a single point z ∈ S. We obtain a statement about all points in S simultaneously
the same way it was done in [83, 99], using second-countability of Euclidean space. For
completeness, we repeat the argument to prove Corollary 2.3.

Corollary 2.3. Let Assumption 2.1 hold. Then, there exists a set W ⊆ Rd of Lebesgue
measure zero such that {

x ∈ Rd : lim
k→∞

fk(x) ∈ S
}
⊆

⋃
k,n∈N0

f−k(W ).

Proof. By Theorem 2.2, for all z ∈ S, there exists an open neighborhood Uz ⊆ Rd of z
and a Lipschitz continuous map Ψz : Ecs

z → Eu
z such that {x ∈ Rd : fk(x) ∈ Uz for all k ∈

N0} ⊆ Graph(Ψz). Now,
⋃
z∈S Uz is an open cover of S and, by second-countability of Rd,

there exists a countable subcover
⋃
n∈N0

Uzn . Set W =
⋃
n∈N0

Graph(Ψzn). If y ∈ {x ∈
Rd : limk→∞ f

k(x) ∈ S}, then there exist k, n ∈ N0 such that for all m ∈ N0 we have
fm(fk((y)) = fm+k(y) ∈ Uzn . Thus, fk(y) ∈ Graph(Ψzn) and, hence, y ∈ f−k(W ). Lastly,
the set W , being a countable union of graphs, has Lebesgue measure zero.

Note that Corollary 2.3 is a statement about the stable set of S and not its center-stable
set. However, the proof of the corollary relies on the center-stable manifolds from Theorem 2.2
and would not work with the stable manifolds.

The goal is to show, under reasonable assumptions, that the set {x ∈ Rd : limk→∞ f
k(x) ∈

S} has Lebesgue measure zero. This follows from the previous corollary if we can ensure that
preimages of measure zero sets under fk have themselves measure zero. This is certainly true
for local diffeomorphisms (see [83, 99]), but we do not want to exclude the possibility that
the dynamical system has a degenerate Jacobian at points in S. Fortunately, it is sufficient
to have a non-degenerate Jacobian almost everywhere (but potentially at no point in S), as
the next lemma shows.
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Lemma 2.4. Let f : Rd → Rd be a function and suppose there exists an open set V ⊆ Rd,
whose complement has Lebesgue measure zero, such that f is continuously differentiable on
V with det(f ′(x)) 6= 0 for all x ∈ V . Then, for any set W ⊆ Rd of Lebesgue measure zero,
the set f−1(W ) also has Lebesgue measure zero.

Proof. First, note that f is Lebesgue measurable because it is continuous on a subset of
full measure. It suffices to show that the set f−1(W ) ∩ V has Lebesgue measure zero. By
the assumptions, the restriction of f to V is a local C1-diffeomorphism. This and second-
countability of Rd guarantee the existence of a countable open cover

⋃
n∈NDn = V of V

such that, for all n ∈ N, the restriction f |Dn : Dn → f(Dn) is a C1-diffeomorphism. By the
integral transformation theorem, we have, for all n ∈ N,∫

f−1(W )∩Dn
|det(f ′(x))| dx =

∫
f(f−1(W )∩Dn)

dx ≤
∫
W

dx = 0.

Since det(f ′(x)) 6= 0 for all x ∈ V , this implies that f−1(W )∩Dn has Lebesgue measure zero
for all n ∈ N and, hence, so does f−1(W ) ∩ V .

With Corollary 2.3, we conclude that if Assumption 2.1 holds as well as the assumption
of Lemma 2.4, then the stable set {x ∈ Rd : limk→∞ f

k(x) ∈ S} of S has Lebesgue measure
zero. We finish this section by applying this result to a class of dynamical systems that
includes the gradient descent algorithm, which will be of interest in the next section.

Proposition 2.5. Let f : Rd → Rd be a function and suppose there exist open sets V ⊆ U ⊆
Rd, whose complements have Lebesgue measure zero, such that f is continuously differentiable
on U with a locally Lipschitz continuous Jacobian, which is non-degenerate on V . Let S ⊆
{x ∈ U : f(x) = x} and assume for all x ∈ S that f ′(x) is symmetric and has an eigenvalue
of absolute value strictly greater than 1. Then, the set {x ∈ Rd : limk→∞ f

k(x) ∈ S} has
Lebesgue measure zero.

Proof. The result is immediate from Corollary 2.3 and Lemma 2.4 once we have verified
that Assumption 2.1 is fulfilled. Let z ∈ S and let R(x) = f(x) − z − f ′(z)(x − z) be the
remainder term of the first-order Taylor expansion of f around z. We need to verify that
for a given ε ∈ (0,∞) we can take rε ∈ (0,∞) so small that the restriction of R to Brε(z) is
ε-Lipschitz continuous. Take r ∈ (0,∞) so that Br(z) ⊆ U . For all x ∈ Br(z), note that

R(x) =

∫ 1

0

[
f ′(z + s(x− z))− f ′(z)

]
(x− z) ds.

Denote the Lipschitz constant of f ′ on Br(z) by L ∈ [0,∞) Then, for all x, y ∈ Br(z),

‖R(x)−R(y)‖

=

∥∥∥∥∫ 1

0

[
f ′(z + s(x− z))− f ′(z)

]
(x− y) +

[
f ′(z + s(x− z))− f ′(z + s(y − z))

]
(y − z) ds

∥∥∥∥
≤
∫ 1

0

Ls ‖x− z‖ ‖x− y‖+ Ls ‖x− y‖ ‖y − z‖ ds ≤ Lr ‖x− y‖ .

So, given ε ∈ (0,∞), we pick rε = min{r, εL−1}.
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3. Gradient descent for shallow ReLU networks

We now turn to studying shallow ReLU networks. Throughout this section, suppose d =
3N + 1 for an N ∈ N and fix α, β ∈ R with α < β. Then, Rd represents the space of all
shallow networks with N hidden neurons. We will always write a network θ ∈ R3N+1 as
θ = (w, b, v, c), where w, b, v ∈ RN and c ∈ R. The realization of a network θ is the function
Rθ ∈ C(R,R) given by

Rθ(x) = c+
N∑
j=1

vj max{wjx+ bj, 0}.

Fix f ∈ C([α, β],R). We denote by L ∈ C(Rd,R) the squared L2-loss with target function f,
that is

L(θ) =

∫ β

α

(Rθ(x)− f(x))2 dx.

To discuss regularity properties of the loss function, it is convenient to recall the following
definition, which we introduced in Chapter 4 (see Definition 2.3 therein). Motivation and
discussion of these notions can be found there.

Definition 3.1. Let θ = (w, b, v, c) ∈ R3N+1 and j ∈ {1, . . . , N}. Then, we denote by Ij the
set given by Ij = {x ∈ [α, β] : wjx+ bj ≥ 0}, we say that the jth hidden neuron of θ is

• flat if vj = 0,
• non-flat if vj 6= 0,
• inactive if Ij = ∅,
• semi-inactive if #Ij = 1,
• semi-active if wj = 0 < bj,

• active if wj 6= 0 < bj + max{wjα,wjβ},
• type-1-active if wj 6= 0 ≤ bj + min{wjα,wjβ},
• type-2-active if ∅ 6= Ij ∩ (α, β) 6= (α, β),
• degenerate if |wj|+ |bj| = 0,
• non-degenerate if |wj|+ |bj| > 0,

and we say that t ∈ R is the breakpoint of the jth hidden neuron of θ if wj 6= 0 = wjt+ bj.

We showed in Chapter 4 that L is differentiable at all coordinates corresponding to
non-degenerate or flat degenerate neurons. In general, the loss fails to be differentiable at
non-flat degenerate neurons. To apply the dynamical systems theory, we need a function
defined on the whole Rd. Thus, we need to work with a generalized gradient of L. There
are many different choices for such a generalized gradient. Here, we actually do not specify
a choice, but only require that our generalized gradient agrees with partial derivatives of L
coordinate-wise. So, throughout this section, let G : Rd → Rd satisfy for all θ ∈ Rd and all
j ∈ {1, . . . , N} such that the jth neuron of θ is non-degenerate or flat degenerate that

Gj(θ) =
∂

∂wj
L(θ), GN+j(θ) =

∂

∂bj
L(θ), G2N+j(θ) =

∂

∂vj
L(θ), G3N+1(θ) =

∂

∂c
L(θ).

The map G may take any values at coordinates of non-flat degenerate neurons. The dynamical
system we are interested in is the gradient descent step fγ(θ) = θ − γG(θ) for some given
step size γ ∈ (0,∞).

One crucial aspect of Theorem 2.2 is that we do not need the dynamical system to
be a local diffeomorphism, let alone differentiable everywhere. However, the dynamical
system ought to be differentiable at the saddle points of L we are interested in. Where
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G = ∇L, differentiability of fγ means two times differentiability of L. Even though L is
twice differentiable on a set of full measure (see [66]), some of the saddle points lie outside
of that full-measure set. More precisely, it is semi-inactive neurons that cause the regularity
problems. The resulting nonexistence of the Hessian of L urges us to work with suitably
modified dynamical systems. The idea is to replace entries of G that correspond to semi-
inactive neurons of a given saddle point but to keep the remaining entries as they are. For
technical reasons, a prescribed set J ⊆ {1, . . . , N} of semi-inactive neurons is split into two
subsets J+ and J−, each containing those semi-inactive neurons with wj > 0 and wj < 0,
respectively. The exact formula for the modified gradient GJ is given below. The new
dynamical system fγ,J(θ) = θ− γGJ(θ) no longer coincides with the original gradient descent
fγ, but we will be able to recover information about the dynamics of fγ from fγ,J ; see
Lemma 3.2 below. Now, let J be the set

J = {(J+, J−) : J+, J− ⊆ {1, . . . , N} such that J+ ∩ J− = ∅}.

For any J = (J+, J−) ∈ J , let GJ : Rd → Rd satisfy for all θ ∈ Rd and j ∈ {1, . . . , N} that
GJ3N+1(θ) = G3N+1(θ) and(

GJj ,GJN+j,GJ2N+j

)
(θ)

=


(Gj,GN+j,G2N+j) (θ) if j /∈ J+ ∪ J− or wj = 0,

2
∫ β
tj

(vjx, vj, wjx+ bj)(Rθ(x)− f(x)) dx if j ∈ J+ and wj 6= 0,

2
∫ tj
α

(vjx, vj, wjx+ bj)(Rθ(x)− f(x)) dx if j ∈ J− and wj 6= 0.

Note that G(∅,∅) = G. If a neuron j ∈ J+ ∪ J− is semi-inactive or type-2-active with the sign
of wj matching the sign in the subscript of J±, then GJ agrees with G in the coordinates of
the jth neuron. Thus, we did not actually change G at semi-inactive neurons with matching
signs, but we changed G at inactive neurons in a way that GJ becomes differentiable at
semi-inactive neurons (which are neighbored by inactive neurons). In the next lemma, we
leverage that the original dynamical system fγ does not alter coordinates of inactive neurons
to show how to infer dynamical information about fγ from its modifications.

Lemma 3.2. Let S ⊆ Rd and, for all J = (J+, J−) ∈ J , let SJ ⊆ S contain all networks
θ ∈ S such that J+ is exactly the set of neurons of θ that are semi-inactive with wj > 0 and
J− is exactly the set of neurons of θ that are semi-inactive with wj < 0. Then, S =

⋃
J∈J SJ

and {
θ ∈ Rd : lim

k→∞
fkγ (θ) ∈ S

}
⊆
⋃
J∈J

⋃
n∈N0

f−nγ

({
θ ∈ Rd : lim

k→∞
fkγ,J(θ) ∈ SJ

})
.

Proof. That S =
⋃
J∈J SJ is clear. Suppose θ0 ∈ {θ ∈ Rd : limk→∞ f

k
γ (θ) ∈ S} and let

θ∞ ∈ S be the limit point of fkγ (θ0) as k → ∞. Take J ∈ J with θ∞ ∈ SJ and abbreviate
θk = fkγ (θ0). Note that fγ does not change coordinates of inactive neurons. More precisely,
for all j ∈ {1, . . . , N} and k, n ∈ N0, if the jth neuron of θn is inactive, then θn and θn+k

agree in the (wj, bj, vj)-coordinates. Furthermore, any sufficiently small neighborhood of
a semi-inactive neuron contains only inactive, semi-inactive, and type-2-active neurons. It
follows from this that there exists an n ∈ N0 such that for all k ∈ N0 and all j ∈ J+ ∪ J−
the jth neuron of θn+k is type-2-active or semi-inactive with sgn(wj) matching the subscript
of J± in both cases. Then, GJ(θn+k) = G(θn+k) for all k ∈ N0. In particular, θn+k = fkγ,J(θn)
for all k ∈ N0 and, hence, θn ∈ {θ ∈ Rd : limk→∞ f

k
γ,J(θ) ∈ SJ}.
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Subsequently, we need to accomplish two objectives. First, we need to verify that the
dynamical systems theory (Proposition 2.5) is applicable to each fγ,J to deduce that the sets
{θ ∈ Rd : limk→∞ f

k
γ,J(θ) ∈ SJ} have zero Lebesgue measure. Secondly, we need to apply

Lemma 2.4 to fγ to conclude with the previous lemma that {θ ∈ Rd : limk→∞ f
k
γ (θ) ∈ S}

also has zero Lebesgue measure.

3.1 Non-degeneracy almost everywhere

In this section, we show that there exists an open subset of Rd of full measure such that
the modified dynamical system exhibits the regularity required by Proposition 2.5 on that
subset. For any J = (J+, J−) ∈ J , let UJ

0 ⊆ Rd be the set of all networks without degenerate
neurons such that wj 6= 0 for all j ∈ J+ ∪ J−; let UJ

1 ⊆ Rd be the set of all networks
without degenerate neurons such that no neuron in {1, . . . , N}\(J+ ∪ J−) is semi-inactive or
type-1-active with breakpoint α or β; and let UJ = UJ

0 ∩ UJ
1 . Let U∞ ⊆ U∅,∅ ∩ U{1,...,N},∅ be

the set of all networks that do not have two distinct type-2-active neurons with the same
breakpoint. We remark that U∞ ⊆ Rd is open and has full measure.
Lemma 3.3. Let J = (J+, J−) ∈ J . Then, the following properties hold.
(i) GJ is continuously differentiable on UJ .
(ii) The Jacobian (GJ)′(θ) is a symmetric matrix for all θ ∈ UJ for which for all τ ∈ {+,−}

and j ∈ Jτ the jth neuron of θ is semi-inactive with sign(wj) = τ .
(iii) If f is Lipschitz continuous, then the Jacobian of GJ is locally Lipschitz continuous on

UJ .
(iv) If f is a polynomial, then GJ is a rational function on U∞.

Proof. The set U (∅,∅)
0 is the set of all networks without degenerate neurons. For all j ∈

{1, . . . , N}, we let rj, sj : U
(∅,∅)
0 → R be the functions given by

rj(θ) =


α+β

2
− wj(β−α)2

2wj(α+β)+4bj
if the jth neuron of θ is inactive,

β if the jth neuron of θ is semi-inactive with wj > 0,

tj if the jth neuron of θ is type-2-active with wj > 0,

α otherwise

and

sj(θ) =


rj(θ) if the jth neuron of θ is inactive,
α if the jth neuron of θ is semi-inactive with wj < 0,

tj if the jth neuron of θ is type-2-active with wj < 0,

β otherwise.

rj(θ) and sj(θ) are the endpoints of the interval Ij if the jth neuron of θ is not inactive and
[rj, sj] is a singleton if it is inactive. Observe that rj and sj are locally Lipschitz continuous
and, for any connected component V of U ({j}c,∅)

1 , the restrictions rj|V and sj|V are rational
functions. In particular, rj and sj are infinitely often differentiable on U

({j}c,∅)
1 . Next, we

define similar functions rJj , sJj : UJ
0 → R by

rJj (θ) =


rj(θ) if j /∈ J+ ∪ J−,
tj if j ∈ J+,

α if j ∈ J−,
sJj (θ) =


sj(θ) if j /∈ J+ ∪ J−,
β if j ∈ J+,

tj if j ∈ J−.



Chapter 5 85

These functions are locally Lipschitz continuous on UJ
0 and infinitely often differentiable

on UJ because if j /∈ J+ ∪ J−, then UJ ⊆ U
({j}c,∅)
1 . Now, for all θ ∈ UJ

0 , j ∈ {1, . . . , N},
i ∈ {0, 1, 2},

GJiN+j(θ) = 2

∫ sJj

rJj

( ∂

∂θiN+j

vj(wjx+ bj)
)

(Rθ(x)− f(x)) dx,

GJ3N+1(θ) = 2

∫ β

α

(Rθ(x)− f(x)) dx.

Thus, all partial derivatives of GJ exist on UJ by the Leibniz integral rule and are given by

∂

∂θi′N+j′
GJiN+j(θ) = 2

∫ sJj

rJj

( ∂

∂θiN+j

vj(wjx+ bj)
)( ∂

∂θi′N+j′
vj′(wj′x+ bj′)

)
1[rj′ ,sj′ ]

(x) dx

+ 2

∫ sJj

rJj

( ∂

∂θi′N+j′

∂

∂θiN+j

vj(wjx+ bj)
)

(Rθ(x)− f(x)) dx

+ 2
( ∂

∂θiN+j

vj(wjx+ bj)
)

(Rθ(x)− f(x))
∣∣∣
x=sJj

( ∂

∂θi′N+j′
sJj

)
− 2
( ∂

∂θiN+j

vj(wjx+ bj)
)

(Rθ(x)− f(x))
∣∣∣
x=rJj

( ∂

∂θi′N+j′
rJj

)
and

∂

∂θ3N+1

GJiN+j(θ) = 2

∫ sJj

rJj

∂

∂θiN+j

vj(wjx+ bj) dx,

∂

∂θiN+j

GJ3N+1(θ) = 2

∫ sj

rj

∂

∂θiN+j

vj(wjx+ bj) dx,

∂

∂θ3N+1

GJ3N+1(θ) = 2.

In particular, all partial derivatives of GJ are continuous and, hence, GJ is continuously
differentiable on UJ . This proves (i). Moreover, since rj, sj, rJj , sJj , and θ 7→ Rθ are locally
Lipschitz continuous on UJ

0 , it follows from the above formulas that if f is Lipschitz, then
(GJ)′ is locally Lipschitz on UJ . Next, note the following equality, for all j, j′ ∈ {1, . . . , N},
i, i′ ∈ {0, 1, 2}, θ ∈ U ({j,j′},∅)

0 ;( ∂

∂θiN+j

vj(wjx+ bj)
)∣∣∣

x=tj

∂

∂θi′N+j′
tj =

( ∂

∂θi′N+j′
vj′(wj′x+ bj′)

)∣∣∣
x=tj′

∂

∂θiN+j

tj′ .

Therefore, if θ ∈ UJ satisfies rJj = rj and sJj = sj for all j ∈ {1, . . . , N}, then (GJ)′(θ) is
symmetric. In particular, this holds for all θ ∈ UJ satisfying the conditions of (ii).

Now, suppose f is a polynomial. For any θ ∈ UJ
0 , j ∈ {1, . . . , N}, i ∈ {0, 1, 2}, we can

write

GJiN+j(θ) = 2

∫ sJj

rJj

( ∂

∂θiN+j

vj(wjx+ bj)
)

(c− f(x)) dx

+ 2
N∑
n=1

∫ sJj

rJj

( ∂

∂θiN+j

vj(wjx+ bj)
)
vn(wnx+ bn)1[rn,sn](x) dx.
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The functions Pi,j : Rd × [α, β]→ R given by

Pi,j(θ, x) =

∫ x

0

( ∂

∂θiN+j

vj(wjy + bj)
)

(c− f(y)) dy

=
∂

∂θiN+j

(
1

2
vjwjcx

2 + vjbjcx− vj(wjx+ bj)

∫ x

0

f(y) dy + vjwj

∫ x

0

∫ y

0

f(z) dzdy

)
are polynomials. By definition of these functions, for any θ ∈ UJ

0 ,∫ sJj

rJj

( ∂

∂θiN+j

vj(wjx+ bj)
)

(c− f(x)) dx = Pi,j(θ, s
J
j )− Pi,j(θ, rJj ).

For any j ∈ {1, . . . , N} and any connected component of U∞, the functions rJj and sJj equal
each other, are constant, or are equal to tj = −bj/wj throughout that entire component. It
follows that we can take q ∈ N sufficiently large so that

θ 7→

(
N∏
k=1

wqk

)∫ sJj

rJj

( ∂

∂θiN+j

vj(wjx+ bj)
)

(c− f(x)) dx =

(
N∏
k=1

wqk

)(
Pi,j(θ, s

J
j )− Pi,j(θ, rJj )

)
is a polynomial on U∞. The remainder of the proof is similar to the previous step. The
functions Pi,j,n : Rd × [α, β]→ R given by

Pi,j,n(θ, x) =

∫ x

0

( ∂

∂θiN+j

vj(wjy + bj)
)
vn(wny + bn) dy

=
1

6

( ∂

∂θiN+j

vjwj

)
(2vnwnx

3 + 3vnbnx
2) +

1

2

( ∂

∂θiN+j

vjbj

)
(vnwnx

2 + 2vnbnx)

are polynomials. By definition of U∞, given j, n ∈ {1, . . . , N}, if two of the functions rJj , sJj ,
rn, and sn agree at some network θ ∈ U∞, then they agree on the entire component of U∞
containing θ or the nth neuron is inactive for all networks in that component. Thus, given
any connected component of U∞, one of the following eight cases holds throughout the entire
component:

∫ sJj

rJj

( ∂

∂θiN+j

vj(wjx+ bj)
)
vn(wnx+ bn)1[rn,sn](x) dx =



Pi,j,n(θ, sJj )− Pi,j,n(θ, sn),

Pi,j,n(θ, sJj )− Pi,j,n(θ, rn),

Pi,j,n(θ, sJj )− Pi,j,n(θ, rJj ),

Pi,j,n(θ, sn)− Pi,j,n(θ, rJj ),

Pi,j,n(θ, sn)− Pi,j,n(θ, rn),

Pi,j,n(θ, rn)− Pi,j,n(θ, sn),

Pi,j,n(θ, rn)− Pi,j,n(θ, rJj ),

0.

This implies that

θ 7→

(
N∏
k=1

wqk

)∫ sJj

rJj

( ∂

∂θiN+j

vj(wjx+ bj)
)
vn(wnx+ bn)1[rn,sn](x) dx

is a polynomial on U∞ for a sufficiently large q ∈ N. We conclude that also the map
θ 7→ GJiN+j(θ)

∏N
k=1 w

q
k is a polynomial on U∞ for a sufficiently large q ∈ N. The same

argument in a simplified version works for GJ3N+1(θ) = 2
∫ β
α

(Rθ(x)− f(x)) dx.
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The last bit of regularity we need to check is the non-degeneracy of the Jacobian f ′γ,J .
Lemma 3.3.(iv) enables this.

Lemma 3.4. If f is a polynomial, then for almost all γ ∈ (0,∞) and for all J ∈ J there
exists an open set UJ

γ ⊆ U∞ of full measure such that det(f ′γ,J(θ)) 6= 0 for all θ ∈ UJ
γ .

Proof. Fix J ∈ J . Since GJ is a rational function on U∞, there exists a polynomial p : U∞ →
R, which is not constantly zero on any connected component of U∞, such that θ 7→ p(θ)GJ(θ)
is a polynomial on U∞. Since the derivative of a polynomial is still a polynomial, it follows
that

θ 7→ p(θ)2(GJ)′(θ) = (ppGJ)′(θ)− 2p(θ)p′(θ)GJ(θ)

is also a polynomial on U∞. The differential of fγ,J on U∞ is f ′γ,J(θ) = I−γ(GJ)′(θ). Therefore,
the map P : U∞× R → R given by P (θ, γ) = det(p(θ)2f ′γ,J(θ)) is a polynomial. Moreover,
P is not constantly zero on any connected component of U∞× R because P (θ, 0) = p(θ)2.
In particular, its zero set P−1(0) has Lebesgue measure zero. For every γ ∈ R, denote
Zγ = {θ ∈ U∞ : P (θ, γ) = 0}. By Tonelli’s theorem,

0 =

∫
P−1(0)

dθdγ =

∫
R

∫
Zγ

dθdγ,

from which it follows that Zγ has zero Lebesgue measure for almost every γ ∈ R. Set
UJ
γ = U∞\Zγ.

This concludes the discussion of the regularity requirements. It remains to establish
strictness of saddle points of L.

3.2 Strict saddle points

To investigate saddle points of L, it is useful to classify them in terms of their types of
neurons. The next result follows from Theorem 2.4 and Corollary 2.7 in Chapter 4.

Proposition 3.5. Assume f is affine but not constant and let θ = (w, b, v, c) ∈ U (∅,∅)
0 be a

critical point of L that is not a global minimum. Then, the following hold:

(i) θ is not a local maximum of L.
(ii) θ is a local minimum of L if and only if c = f(α+β

2
) and, for all j ∈ {1, . . . , N}, the jth

hidden neuron of θ is inactive or semi-inactive with f′(α)vjwj < 0.

(iii) θ is a saddle point of L if and only if c = f(α+β
2

), θ does not have any type-1-active or
non-flat semi-active neurons, and exactly one of the following two conditions holds:

(a) θ does not have any type-2-active neurons and there exists j ∈ {1, . . . , N} such that
the jth hidden neuron of θ is flat semi-active or semi-inactive with f′(α)vjwj ≥ 0.

(b) There exists n ∈ {2, 4, 6, . . . } such that

⋃
j∈{1,...,N}, wj 6=0

{
− bj
wj

}
∩ (α, β) =

n⋃
i=1

{
α +

i(β − α)

n+ 1

}
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and, for all j ∈ {1, . . . , N}, i ∈ {1, . . . , n} with wj 6= 0 = bj + wj(α + i(β−α)
n+1

), it
holds that sign(wj) = (−1)i+1 and∑

k∈{1,...,N}, wk 6=0=bk+wk(α+
i(β−α)
n+1

)

vkwk =
2f′(α)

n+ 1
.

(iv) There exists n ∈ {0, 2, 4, . . . } with n ≤ N such that L(θ) =
[f′(α)]2(β − α)3

12(n+ 1)4
and

Rθ(x) = f(x)− (−1)if′(α)

n+ 1

(
x− α−

(i+ 1
2
)(β − α)

n+ 1

)
for all i ∈ {0, . . . , n}, x ∈ [α + i(β−α)

n+1
, α + (i+1)(β−α)

n+1
].

Now, we can clarify for which saddle points of L we can establish strictness. For an
affine target function f, let S ⊆ U

(∅,∅)
0 be the set of all saddle points of L that are not

solely comprised of inactive neurons and semi-inactive neurons with f′(α)vjwj ≤ 0. As in
Lemma 3.2, for all J ∈ J , let SJ ⊆ S be the set of networks θ such that J+ is exactly the
set of neurons of θ that are semi-inactive with wj > 0 and J− is exactly the set of neurons
of θ that are semi-inactive with wj < 0.

Recall that fγ,J(θ) = θ − γGJ(θ). Thus, to show that f ′γ,J(θ) = I − γ(GJ)′(θ) has an
eigenvalue of absolute value strictly greater than 1, it is sufficient to show that (GJ)′(θ) has
a strictly negative eigenvalue.

Lemma 3.6. Assume f is affine but not constant, and let J ∈ J , θ ∈ SJ . Then, GJ(θ) = 0
and the matrix (GJ)′(θ) has a strictly negative eigenvalue.

Proof. On the one hand, for all j /∈ J+ ∪ J− and i ∈ {0, 1, 2}, we know that GJiN+j(θ) =
GiN+j(θ) = 0. On the other hand, for all j ∈ J+, we have that tj = β and, hence, also
GJiN+j(θ) = 0 for all i ∈ {0, 1, 2}; likewise for j ∈ J−. This shows that GJ(θ) = 0.

Proposition 3.5 tells us that θ has no type-1-active neurons, so θ ∈ UJ and GJ is differen-
tiable at θ with symmetric Jacobian (GJ)′(θ) by Lemma 3.3. We will conclude the proof by
showing that (GJ)′(θ) contains a strictly negative principle minor. To this end, we distinguish
two cases. First, if Rθ is affine on [α, β], then θ must have a flat semi-active neuron or a
semi-inactive neuron with f′(α)vjwj > 0, by Proposition 3.5 and by the definition of the set
S. If θ has a flat semi-active neuron j, then

det

(
∂
∂θj
GJj (θ) ∂

∂θj
GJ2N+j(θ)

∂
∂θ2N+j

GJj (θ) ∂
∂θ2N+j

GJ2N+j(θ)

)
=

(
0 −1

6
f′(α)(β − α)3

−1
6
f′(α)(β − α)3 2b2

j(β − α)

)
= − 1

36
[f′(α)]2(β − α)6 < 0.

If θ has a semi-inactive neuron j with f′(α)vjwj > 0, then

∂

∂θN+j

GJN+j(θ) = −f′(α)
vj
wj

(β − α) < 0.
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Secondly, if Rθ is not affine on [α, β], then exactly as in the proof3 of Lemma 2.24 in
Chapter 4 we can find a set of coordinates corresponding to type-2-active neurons such that
the determinant of the Hessian H of L restricted to these coordinates is strictly negative.
Since this involves only neurons in {1, . . . , N}\(J+ ∪ J−), the matrix (GJ)′(θ) contains H as
a submatrix.

Having established strictness of saddle points, it is now straight-forward to apply Propo-
sition 2.5, which yields the following result.

Theorem 3.7. Assume f is affine but not constant. Then, for almost every step size γ ∈
(0,∞), the set {θ ∈ Rd : limk→∞ f

k
γ (θ) ∈ S} has Lebesgue measure zero.

Proof. By Lemmas 3.3, 3.4, and 3.6, we can apply Proposition 2.5 for almost all γ ∈ (0,∞)
and all J ∈ J to the dynamical system fγ,J and the set SJ with U = UJ and V = UJ

γ

to find that {θ ∈ Rd : limk→∞ f
k
γ,J(θ) ∈ SJ} has Lebesgue measure zero. Since G = G(∅,∅),

Lemmas 3.3 and 3.4 enable us to apply Lemma 2.4 to fγ so that, together with Lemma 3.2,
we obtain the desired result.

3.3 Convergence to global minima for suitable initialization

Suppose a trajectory of gradient descent for the loss function L with affine nonconstant
target function f converges to a critical point of L. If the gradient descent algorithm was
initialized randomly under a probability measure that is absolutely continuous with respect
to the Lebesgue measure, then, with probability one, the limit critical point is not a saddle
point in S by Theorem 3.7. Here, S is the same set of saddle points as specified above
Lemma 3.6. We can say more about the limit critical point using Proposition 3.5.(iv). It
states that there are only finitely many possibilities for the value of the loss function at its
critical points, which we can think of as partitioning the set of all critical points into “layers”.
In particular, if the loss at the limit critical point is below the threshold [f′(α)]2(β−α)3

12(N+1)4
, then

this critical point must belong to the first layer, that is it must be a global minimum. In the
following, we improve this threshold to the next layer of critical points.

Proposition 3.8. Assume f is affine but not constant and that N is even. For almost all
γ ∈ (0,∞) and almost all

θ ∈
{
ϑ ∈ Rd : (fkγ (ϑ))k∈N0 is convergent and lim

k→∞
L
(
fkγ (ϑ)

)
< [f′(α)]2(β−α)3

12(N−1)4

}
, (3.1)

it holds that limk→∞ L(fkγ (θ)) = 0.

Proof. Let θ0 be in (3.1) and let θ = limk→∞ f
k
γ (θ0). By definition of fγ, we have

lim
k→∞

∥∥G(fkγ (θ0))
∥∥ = lim

k→∞

1

γ

∥∥fkγ (θ0)− fk+1
γ (θ0)

∥∥ = 0. (3.2)

3While Lemma 2.24 in Chapter 4 considers the special case α = 0, β = 1, and f(x) = x, the arguments
work exactly the same way in the general case. In the proof of Lemma 2.24 in Chapter 4, only the following
modifications need to be made: the sign condition on vj in K−1 becomes sgn(vj) = −sgn(f′(α)) instead of
vj < 0; the sign condition on vj1 becomes sgn(vj1) = sgn(f′(α)) instead of vj1 > 0; and the constants µ and
λi become µ = n+1

2n(β−α) and λi = n+1
2f′(α)vjiwji , respectively.
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Let m ∈ {0, . . . , N} be the number of degenerate neurons of θ. Note that Rθ cannot be
constant on [α, β] since

L(θ) <
1

12
[f′(α)]2(β − α)3 = inf

C∈R

∫ β

α

(C − f(x))2 dx.

Hence, it cannot be that θ has N degenerate neurons. In other words, m ≤ N − 1. Let
ϑ ∈ Rd−3m be the network obtained from θ by dropping its degenerate neurons. Since the
generalized gradient is assumed to agree with the partial derivatives of the loss coordinate-wise
when the latter exist, it follows that the generalized gradient defined on Rd−3m is continuous
in a neighborhood of ϑ. This and (3.2) show that ϑ is a critical point of the loss function
defined on Rd−3m. Moreover, since we only removed degenerate neurons, the value of the loss
at ϑ is equal to L(θ). Proposition 3.5 and the assumption on L(θ) imply that ϑ is a global
minimum or a saddle point with N type-2-active neurons (because ϑ belongs to the first or
second layer of critical points). In the former case, θ is also a global minimum of L and we
are done. In the latter case, m = 0, so θ = ϑ is a saddle point of L. We already know that
all neurons of ϑ are type-2-active neurons, so θ ∈ S. Finally, Theorem 3.7 tells us that γ or
θ0 belongs to a set of Lebesgue measure zero.

4. Proof of the center-stable manifold theorem

In this section, we present a proof of Theorem 2.2. The structure of the proof follows the
appendix of [100] with some modifications. We begin with a lemma needed later on.

4.1 Auxiliary lemma

The following lemma involves the existence of bump functions on balls of radii r > 0 with
bounds on their derivative independent of r.

Lemma 4.1. For all r ∈ (0,∞), there exists ρr ∈ C∞(Rd,Br(0)) with support in Br(0),
which is the identity on Br/2(0), such that the Frobenius norm of ρ′r is uniformly bounded by
6
√
d, so, in particular, ρr is 6

√
d-Lipschitz continuous.

Proof. This can be achieved, for example, by taking a function σ ∈ C∞(R, [0, 1]) such that σ
is 1 on (−∞, 1], it is 0 on [4,∞), and σ′(x) ∈ [−2/3, 0] for all x ∈ R. A possible choice for σ
would be σ(x) = e3/(x−4)

[
e3/(x−4)+e3/(1−x)

]−1 for x ∈ (1, 4). Then, set ρr(x) = xσ
(
4 ‖x‖2 /r2

)
.

We estimate the square of the Frobenius norm of dρr by

d∑
j,k=1

[ ∂

∂xk
ρr(x)j

]2

= d
[
σ
(4 ‖x‖2

r2

)
︸ ︷︷ ︸

≤1

]2

+
16 ‖x‖2

r2
σ
(4 ‖x‖2

r2

)
σ′
(4 ‖x‖2

r2

)
︸ ︷︷ ︸

≤0

+
64 ‖x‖4

r4

[
σ′
(4 ‖x‖2

r2

)]2

︸ ︷︷ ︸
≤4/9

≤ d+
256

9
< 36d.
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4.2 Proof of the theorem in the diagonal case

In this section, we will proof Theorem 2.2 in a special case. Denote s = dim(Ecs
z ) ∈

{0, . . . , d − 1} and A = f ′(z) ∈ Rd×d. Assume that z = 0 and that A is a diagonal matrix
with diagonal entries λ1, . . . , λd such that λ1, . . . , λs ∈ [−1, 1] and λs+1, . . . , λd ∈ R\[−1, 1].
We deduce the general case in the next section. Denote by B ∈ Rs×s the diagonal matrix
with diagonal entries λ1, . . . , λs and by C ∈ R(d−s)×(d−s) the diagonal matrix with diagonal
entries λs+1, . . . , λd. Denote projections Π+ : Rd → Ecs = Ecs

z and Π− : Rd → Eu = Eu
z onto

the first s coordinates and onto the last d− s coordinates, respectively. For any x ∈ Rd, we
write x+ = Π+(x) and x− = Π−(x) so that x = (x+, x−). Similarly, we write g+ = Π+ ◦ g
and g− = Π− ◦ g for any function g : Rd → Rd so that g(x) = (g+(x), g−(x)). Note that

max
{∥∥x+

∥∥ ,∥∥x−∥∥} ≤ ‖x‖ ≤ ∥∥x+
∥∥+

∥∥x−∥∥ .
We use the following convention throughout this proof: we denote by A0 ∈ Rd×d and
B0 ∈ Rs×s identity matrices even if one of the entries of the matrices A and B is zero. The
matrices Aj ∈ Rd×d, j ∈ N0, split into a center-stable and an unstable component. More
precisely, they take on the block form

Aj =

(
Bj 0
0 Cj

)
: Ecs ⊕ Eu → Ecs ⊕ Eu, x 7→ (Bjx+, Cjx−).

Denote by η : Rd → Rd the remainder term of the first-order Taylor expansion of f around 0,
that is the map η(x) = f(x)− Ax. The dynamical system is given for all k ∈ N0, x ∈ Rd by

fk(x) = Akx+
k∑
i=1

Ak−iη(f i−1(x)),

which can easily be shown by induction on k. This can be written in the center-stable and
unstable components as

(fk)+(x) = Bkx+ +
k∑
i=1

Bk−iη+(f i−1(x)),

(fk)−(x) = Ckx− +
k∑
i=1

Ck−iη−(f i−1(x)).

(4.1)

In particular, we obtain

x− = C−k(fk)−(x)−
k∑
i=1

C−iη−(f i−1(x)). (4.2)

Next, define µ = minj∈{s+1,...,d} |λj| = ‖C−1‖−1 ∈ (1,∞) and let ω = (ωk)k≥0 ⊆ (0, 1] be given
by ωk = µ−k/2. Note that the space Cw = {(xk)k≥0 ⊆ Rd : supk≥0 ωk ‖xk‖ < ∞} equipped
with ‖(xk)k≥0‖w = supk≥0 ωk ‖xk‖ is a Banach space since it is isomorphic to the Banach
space `∞ of bounded sequences. If x = (xk)k≥0 ∈ Cw, then∥∥C−kx−k ∥∥ ≤ ∥∥C−k∥∥∥∥x−k ∥∥ = ω2

k

∥∥x−k ∥∥ ≤ ωk ‖x‖w
k→∞−−−→ 0.
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Let us introduce the orbit map O to the space of sequences C = {(xk)k≥0 ⊆ Rd};

O : Rd → C, x 7→ Ox = (fk(x))k≥0.

If Ox ∈ Cw, then
∥∥C−k(fk)−(x)

∥∥ → 0 as k → ∞, so the partial sums in (4.2) converge in
this case. Thus, if Ox ∈ Cw, then

x− = −
∞∑
i=1

C−iη−(f i−1(x)).

Plugging this into (4.1) yields

(fk)−(x) = −
∞∑

i=k+1

Ck−iη−(f i−1(x)) (4.3)

for all x ∈ Rd with Ox ∈ Cw. Let ρr be the functions promised by Lemma 4.1 and let rε be
the radii from Assumption 2.1. Since ρrε(Rd) ⊆ Brε(0) and since η is ε-Lipschitz continuous
on Brε(0) by assumption with η(0) = 0, we have, for all x ∈ Cw and k ∈ N,

∞∑
i=k+1

∥∥Ck−iη−(ρrε(xi−1))
∥∥

≤
∞∑

i=k+1

∥∥Ck−i∥∥∥∥η−(ρrε(xi−1))− η−(ρrε(0))
∥∥

≤ 6ε
√
d
∞∑

i=k+1

∥∥Ck−i∥∥ ‖xi−1‖ = 6ε
√
d
∞∑

i=k+1

ωi−kωi−1 ‖xi−1‖ω−1
k−1

≤ 6ε
√
d ‖x‖w ω

−1
k−1

∞∑
i=k+1

ωi−k = 6ε
√
d ‖x‖w ω

−1
k−1

ω1

1− ω1

<∞

(4.4)

and for k = 0

∞∑
i=1

∥∥C−iη−(ρrε(xi−1))
∥∥

≤
∥∥C−1η−(ρrε(x0))

∥∥+
∥∥C−1

∥∥ ∞∑
i=2

∥∥C1−iη−(ρrε(xi−1))
∥∥

≤
∥∥C−1

∥∥ 6ε
√
d ‖x‖w +

∥∥C−1
∥∥ 6ε
√
d ‖x‖w

ω1

1− ω1

= 6ε
√
d ‖x‖w

ω2
1

1− ω1

.

(4.5)

Hence, for all ε ∈ (0, 1) and y ∈ Ecs, the map T εy : Cw → C given by

(T εyx)k =

(
Bky +

∑k
i=1B

k−iη+(ρrε(xi−1))
−
∑∞

i=k+1C
k−iη−(ρrε(xi−1))

)
∈ Ecs ⊕ Eu

for all k ≥ 0 is well-defined. We write Uε ⊆ Rd for the set Uε = {x ∈ Rd : fk(x) ∈
Brε/2(0) for all k ∈ N0}. In (4.1) and (4.3) above, we established that if x ∈ Uε (which
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implies Ox ∈ Cw), then Ox is a fixed point of T εx+ . Since ‖Bj‖ ≤ 1 for all j ∈ N0, we have,
for all x ∈ Cw and k ∈ N0,

ωk

∥∥∥∥∥Bky +
k∑
i=1

Bk−iη+(ρrε(xi−1))

∥∥∥∥∥ ≤ ωk ‖y‖+ ωk

k∑
i=1

∥∥η+(ρrε(xi−1))
∥∥

≤ ωk ‖y‖+ 6ε
√
dωk

k∑
i=1

‖xi−1‖

= ωk ‖y‖+ 6ε
√
d

k∑
i=1

ωk−i+1ωi−1 ‖xi−1‖

≤ ωk ‖y‖+ 6ε
√
d ‖x‖w

k∑
i=1

ωk−i+1

= ωk ‖y‖+ 6ε
√
d ‖x‖w ω1

1− ωk
1− ω1

≤ ‖y‖+ 6ε
√
d ‖x‖w

ω1

1− ω1

.

Together with (4.4) and (4.5), we obtain, for all y ∈ Ecs, x ∈ Cw, and k ∈ N0,

ωk
∥∥(T εyx)k

∥∥ ≤ ‖y‖+ 12ε
√
d ‖x‖w

ω1

1− ω1

,

so T εy (Cw) ⊆ Cw. By essentially the same calculations, we find, for all x1, x2 ∈ Cw and k ∈ N0,

ωk
∥∥(T εyx

1)k − (T εyx
2)k
∥∥ ≤ 12ε

√
d
∥∥x1 − x2

∥∥
w

ω1

1− ω1

.

In other words, the restriction T εy : Cw → Cw is 12ε
√
dω1(1− ω1)−1 Lipschitz continuous with

respect to ‖·‖w. In particular, for all y ∈ Ecs and ε ∈ (0, (1−ω1)(12
√
dω1)−1), the restriction

T εy : Cw → Cw is a contraction. Now, let ε = (1−ω1)(24
√
dω1)−1. By the Banach Fixed Point

Theorem, there is a unique fixed point map Φ: Ecs → Cw specified by T εyΦ(y) = Φ(y). Note
that, for any y1, y2 ∈ Ecs, x ∈ Cw, and k ∈ N0,

(T εy1x− T
ε
y2
x)k =

(
Bk(y1 − y2)

0

)
∈ Ecs ⊕ Eu.

Thus,

‖Φ(y1)− Φ(y2)‖w ≤
∥∥T εy1Φ(y1)− T εy2Φ(y1)

∥∥
w

+
∥∥T εy2Φ(y1)− T εy2Φ(y2)

∥∥
w

≤ ‖y1 − y2‖+
1

2
‖Φ(y1)− Φ(y2)‖w

and, hence,
‖Φ(y1)− Φ(y2)‖w ≤ 2 ‖y1 − y2‖ .

So, Φ: Ecs → Cw is Lipschitz continuous. Denote by Ψ: Ecs → Eu the map Ψ(y) = (Φ(y))−0 .
Then, for all y1, y2 ∈ Ecs,

‖Ψ(y1)−Ψ(y2)‖ ≤ ‖Φ(y1)− Φ(y2)‖w ≤ 2 ‖y1 − y2‖ ,

so Ψ is also Lipschitz continuous. We noted above that if x ∈ Uε, then Ox is a fixed point
of T εx+ . Thus, if x ∈ Uε, then Ox = Φ(x+) and x− = Ψ(x+). In other words, we have shown
that Uε ⊆ Graph(Ψ). This proves Theorem 2.2 in the diagonal case.
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4.3 Proof of the theorem in the general case

In this section, we prove Theorem 2.2 in the general case by reducing it to the special case from
the previous section. As before, denote s = dim(Ecs

z ). Since f ′(z) is diagonalizable, there is
an invertible matrix Q ∈ Rd×d such that Q−1f ′(z)Q is a diagonal matrix, of which the first s
entries lie in [−1, 1] and the last d−s entries lie in R\[−1, 1]. Set f̃(x) = Q−1f(z+Qx)−Q−1z.
Given ε ∈ (0,∞), set δ(ε) = ε/(‖Q‖ ‖Q−1‖) and r̃ε = rδ(ε)/ ‖Q‖, where rδ are the radii from
Assumption 2.1. Then, f̃ and r̃ε satisfy Assumption 2.1 at the point 0. Indeed, if x, y ∈ Br̃ε(0),
then z +Qx, z +Qy ∈ Brδ(ε)(z) and∥∥∥f̃(x)− f̃ ′(0)x−

(
f̃(y)− f̃ ′(0)y

)∥∥∥
=
∥∥Q−1

[
f(z +Qx)− z − f ′(z)(z +Qx− z)−

(
f(z +Qy)− z − f ′(z)(z +Qy − z)

)]∥∥
≤
∥∥Q−1

∥∥ δ(ε) ‖z +Qx− (z +Qy)‖ ≤ ε.

By the theorem for the diagonal case, there exist an r̃ ∈ (0,∞) and a Lipschitz continuous
map Ψ̃ : Ẽcs → Ẽu such that {x ∈ Rd : f̃k(x) ∈ Br̃(0) for all k ∈ N0} ⊆ Graph(Ψ̃). Note that
Ecs
z = QẼcs and Eu

z = QẼu. Now, set r = r̃/ ‖Q−1‖. Observe that f̃k(x) = Q−1fk(z+Qx)−
Q−1z for all x ∈ Rd and k ∈ N0. In particular, if fk(x) ∈ Br(z), then f̃k(Q−1(x− z)) ∈ Br̃(0).
Thus, if y ∈ {x ∈ Rd : fk(x) ∈ Br(z) for all k ∈ N0}, then Q−1(y − z) ∈ Graph(Ψ̃) and,
hence, y ∈ Q(Graph(Ψ̃)) + z. Define Ψ: Ecs

z → Eu
z by

Ψ(x) = QΨ̃(Q−1(x− Π+(z))) + Π−(z),

where Π+ : Rd → Ecs
z and Π− : Rd → Eu

z are the projections given by Π±(x) = QΠ̃±(Q−1x).
Then, Q(Graph(Ψ̃)) + z = Graph(Ψ), which finishes the proof of Theorem 2.2.
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Outlook

In this thesis, we considered neural network theory from the approximation and the op-
timization point of view. In Chapter 2, we constructed a framework for neural networks
to approximate functions without the curse of dimensionality. Therein, we relied on what
we coined the c-identity requirement (Definition 2.4 in Chapter 2), which is a condition on
the activation function, ensuring that neural networks of depth at least two can represent
identity functions exactly. It is natural to wonder whether one can relax the c-identity re-
quirement. The answer is ‘yes’ as long as we restrict ourselves to approximations on compact
sets, which we did not do in Chapter 2. In fact, for the approximation on compact sets, the
following weak assumption is sufficient: suppose the activation function admits a point of
differentiability at which its derivative does not vanish. Then, the c-identity requirement
is “asymptotically satisfied” in the sense that we can approximate the identity function on
any compact set to any desired accuracy with a shallow network, whose number of neurons
is independent of the compact set and the accuracy; [87, 107]. This includes virtually all
activation functions except for the (noncontinuous) Heaviside activation; [76]. Furthermore,
regardless of the c-identity requirement, any approximation task on compact sets that can
be solved with ReLU networks can also be solved with sigmoidal networks up to increasing
the number of neurons by a constant factor. This is due to sigmoidal networks with six
neurons being able to approximate the ReLU activation function on any compact set to any
accuracy. This kind of approximations with an architecture independent of the accuracy,
which are known in the approximation of polynomials (see [30,107]), can be taken further to
the approximation of arbitrary polynomial splines.

Another aspect is the depth-width trade-off. Some of the examples in Chapter 2 featured
wide networks of limited depth, others featured networks of unlimited depth and width. Using
that networks can represent identity functions, one can shift depth and width around. This
has been demonstrated for ReLU networks in [53,55,91] but continues to hold for all other
activation functions that can asymptotically represent identity functions as discussed above.
However, depth and width do not contribute equally to the expressiveness of a network;
recall [25, 39,109] from Chapter 1 and also see [13,27,91,105,129,130].

In the context of optimization, this thesis presented results based on a landscape analysis
of the loss surface of the true loss as a function of the network parameters. Another possibility
is to study the loss defined on a function space, which does not take the parameter vector
as input but the realization function of the network. One is then interested in how the two
different landscapes interact. This raises the question of stability of the realization operator
that maps a parameter vector to its realization function. In general, neural networks fail

95
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this inverse stability; [104]. For shallow ReLU networks, by restricting the parameter space
and considering realizations in a Sobolev norm, inverse stability can be recovered; [9]. But
for ReLU networks, the Sobolev norm is a very strong norm in the sense that the realization
operator is no longer continuous. For input and output dimension one, it is possible to drop
the Sobolev norm and still obtain a local inverse stability, which is sufficient to relate local
minima of the two different landscapes. Trying to establish local inverse stability for higher
input dimensions would require a careful study of the tessellation of the input space into the
convex polytopes on which the realization function is piecewise linear. This tessellation is
tractable for shallow networks, but its complexity can grow exponentially with the depth of
the network; [95,101].

Since training algorithms act on the parameter space and since said local inverse stability
only holds on certain subsets, it is more promising to study the landscape in parameter space,
which we did in the second part of this thesis. We stress again that the landscape analysis in
Chapter 4 was conducted for a fixed number of hidden neurons. In particular, the classification
did not rely on an over-parametrization, with which we would enter the regime of the neural
tangent kernel or of a many-particle flow; [19,21,63]. At the other extreme, previous articles
had studied the case of a single neuron; [46, 119]. We used our classification from Chapter 4
to study a convergence property of the gradient descent algorithm in Chapter 5. Inspired by
the ideas introduced in [14] and in Chapters 4 and 5, subsequent works deduced other related
results about gradient-based algorithms. In the simpler case of constant target functions, the
convergence of gradient descent in [14] has been extended to its stochastic analogue in [65]
and has been adapted to the setting of deep networks in [61]. For affine target functions, the
convergence of gradient descent in Chapter 5 has been extended to its continuous analogue,
gradient flows, in [67]. For the discrete algorithm, the range of possible target functions
has been broadened to piecewise affine in [66]. Finally, [37, 62, 64] study similar problems as
Chapters 4 and 5 for piecewise polynomial target functions.
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