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A B S T R A C T

The complexity of modern multi-modal transport systems increases along with the
spatial scale of many high-density urban and metropolitan areas. These changes
make the existing agent-based modelling tools impractical and lead to long run-
times. This work attempts to close this research gap by developing an agent-based
GPU-enhanced mobility simulator (GEMSim) framework with a co-evolutionary
learning loop. GEMSim incorporates a high-resolution, multi-modal and massively
parallel GPU-accelerated mobility model capable of running large-scale scenarios
with millions of agents in a matter of minutes. Unlike other, relatively simple and
limited GPU-accelerated traffic models, GEMSim provides a modular and extensible
foundation that can be used to run ever more complex future scenarios. The frame-
work was extended to simulate public transit, on-demand coordinated fleets, and
integrated Mobility-as-a-Service (MaaS) packages. The flexibility of framework’s
architecture allowed it to adapt and efficiently run the same traffic model on het-
erogeneous CPU-GPU hardware with many-core CPUs. The results show that the
developed GPU-accelerated traffic model runs up to 100 times faster than one of
the existing state-of-the-art mobility simulators, while the whole learning loop runs
more than 22 times faster.

GEMSim was applied to quantify the uncertainties of simulation outputs when
running scenarios with samples of population and downscaled infrastructure. Re-
sults show that a sample of at least 30% is recommended in scenarios with cars and
public transit to accurately reproduce disaggregated outputs, and a sample of 100%
is recommended for scenarios with on-demand coordinated fleets. These findings
justify the need for improvements in the runtime performance of existing tools to
be able to obtain accurate results.

Furthermore, GEMSim was used in multiple case studies to evaluate the potential
impacts of deploying coordinated fleets in cities. First, the replacement of cars
with coordinated taxi fleets in the Zurich area (Switzerland) can reduce the car
ownership at the cost of the increased traffic congestion due to longer total driven
distances. Second, integrated MaaS packages with public transit and coordinated
fleets in the Munich area (Germany) can attract substantial numbers of public transit
riders living in the areas with a relatively high connectivity; car users, however,
are unlikely to switch to MaaS without push and pull measures as no significant
benefits in travel time are provided. Both scenarios were created and validated using
a novel agent-based demand modelling pipeline, developed as part of this thesis.

Finally, a GPU-accelerated visual analytics framework for large-scale and agent-
based scenarios, Quartz, was developed and evaluated using GEMSim. Quartz
is capable of performing spatio-temporal analytics on disaggregated simulation
outputs with millions of agents, as well as rendering real-time visualizations of the
agents’ dynamics.
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Z U S A M M E N FA S S U N G

Die Komplexität moderner multimodaler Verkehrssysteme nimmt mit der räum-
lichen Ausdehnung von städtischer und großstädtischer Ballungsräume zu. Für
diese Fälle sind existierende agentenbasierte Modellierungen ungeeignet, da sie zu
langen Berechnungszeiten führen. In dieser Arbeit versuchen wir dieses Problem
zu lösen, indem wir einen agentenbasierten, GPU-gestützten Mobilitätssimulator
(GEMSim) mit einer koevolutionären Lernschleife entwickeln. GEMSim bietet ein
hochauflösendes, multimodales und massiv parallelisiertes, GPU-beschleunigtes Mo-
bilitätsmodell, das in der Lage ist, komplexe Szenarien mit Millionen von Agenten in
wenigen Minuten zu simulieren. Im Gegensatz zu anderen einfach gehaltenen GPU
Verkehrssimulations Modellen, wurde GEMSim von Grund auf modular erweiterbar
konzipiert, und kann daher für sehr komplexe Zukunftssimulationen verwendet
werden. Das Framework wurde erweitert, um öffentliche Verkehrsmittel, on-demand
koordinierte Flotten, sowie integrierte Mobility-as-a-Service (MaaS) Pakete zu si-
mulieren. Dank der Flexibilität der Implementierung laufen Verkehrssimulations
ebenfalls auf heterogener CPU-GPU Hardware mit vielen CPU Kernen. Unsere
Ergebnisse zeigen, dass die neu entwickelten GPU-beschleunigten Verkehrssimula-
tions bis zu 100-mal schneller sind als bestehende moderne Mobilitätssimulationen,
und bis zu 22-mal schneller für die gesamte Lernschleife.

GEMSim wurde verwendet um Unsicherheiten von Simulationen zu bestimmen,
die nur mit einem Bruchteil an Fahrzeugen arbeiten, und anschließend die Ergebnis-
se skalieren. Unsere Ergebnisse zeigen, dass bei diesem Ansatz mindestens 30% der
Gesamtheit der Fahrzeuge in Szenarien mit Autos und öffentliche Verkehrsmitteln
berücksichtigt werden sollte, um genaue disaggregierte Ergebnisse zu erhalten. Bei
on-demand koordinierte Flotten sollte sogar die Gesamtheit der Fahrzeuge, d.h
100% berücksichtigt werden. Unsere Ergebnisse rechtfertigen daher die Notwendig-
keit, die Laufzeiten von vorhandenen Tools zu verbessern, um genauere Ergebnisse
zu erzielen.

Des weiteren wurde GEMSim in verschiedensten Fallstudien verwendet, um den
koordinierten Einsatz von Flotten in Städten zu beurteilen: Zum einen kann der
Ersatz von Autos durch koordinierte Taxiflotten in der Region Zürich (Schweiz) den
Autobesitz auf Kosten der erhöhten Verkehrsbelastung aufgrund längerer Gesamt-
fahrstrecken reduzieren. Zweitens können integrierte MaaS-Pakete mit öffentlichem
Nahverkehr und koordinierten Flotten im Raum München (Deutschland) eine be-
trächtliche Anzahl von Fahrgästen des öffentlichen Nahverkehrs anziehen, die in
Gebieten mit einer relativ hohen Verkehrsanbindung leben; es ist jedoch unwahr-
scheinlich, dass Autonutzer ohne Push- und Pull-Maßnahmen auf MaaS umsteigen,
da keine nennenswerten Vorteile bei der Reisezeit entstehen. Beide Szenarien wur-
den mit einer neuartigen agentenbasierten Nachfragemodellierungspipeline erstellt
und validiert, die im Rahmen dieser Arbeit entwickelt wurde.
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Abschließend wurde ein GPU-beschleunigtes visuelles Analysesystem für breit
angelegte und agentenbasierte Szenarien, Quartz, entwickelt und mit GEMSim
erprobt. Quartz ist in der Lage, räumlich-zeitliche Analysen von disaggregierten
Simulationsergebnissen mit Millionen von Agenten durchzuführen und in Echtzeit
darzustellen.

vi



A C K N O W L E D G E M E N T S

This journey started at the hill of Uetliberg and was full of challenges, inspirations,
incredible ideas, unexpected discoveries, all-around emotions, success moments,
and failures. The life lesson received through the years of this work is of exceptional
value, and I’m grateful to everyone who shared the walk and without whom it
would not have been possible.

First and foremost, I would like to express my sincere gratitude to Prof. Reza
Abhari for giving me the opportunity to pursue the degree in a team of talented and
amazing people. Thank you for pushing me to the limits I was not expecting from
myself, for the guidance in the directions that were not obvious from the beginning,
and for the freedom I had in my research. Thank you for constantly teaching me
how to think outside the box, question every outcome of the work, and put practical
applications at the front.

I’m deeply grateful to Dr. Ndaona Chokani for his thorough support and as-
sistance at every stage of my work, for his insightful comments and reviews of
publications and presentations, and for teaching me how to share findings with the
international scientific community. Thank you for the positive mood and passion
for learning that helped me look at the research results from the strong side.

I’m also grateful to Prof. Thomas Bernauer, who introduced me to interdisciplinary
research and opened the door to social and political sciences – something I had
never considered. Thank you for your continuous support and the opportunity to be
part of ISTP, where I have learnt a lot in a great environment with fantastic people
and the diversity of research disciplines.

I want to extend my thanks to Prof. Hubert Klumpner and Prof. Wentong Cai,
who kindly evaluated this work as co-examiners on prompt notice.

I’m extremely grateful to Dr. Anna Gawlikowska, who believed in my potential
and has always supported me throughout this endeavour. Thank you for bringing
in opportunities to apply the research in practice.

I want to thank Marlene Hegner, who provided indispensable help with admin-
istrative tasks and always gave a right advice on which door to knock in every
situation. Thank you for the occasional interesting discussions about many aspects
of this world. I extend my thanks to Sabine Staub-Hugentobler, who also helped me
with organizational matters in the last year. Many thanks to Dietmar Huber for his
perfect management and support at ISTP.

Last years would not have been such a remarkable memory without my colleagues,
some of whom have become good friends. Thanks to Marcello Marini for making
my work possible with his intelligent agents and introducing me to the world of
Nintendo. Thanks to Marco Pagani for all the epic stories, for bringing a positive
atmosphere into the team, and for making the first real application of my work.
Thanks to Patrik Plagowski for giving me deep insights into power systems, fruitful

vii



discussions about optimizations in the ISTP office, and a great time in Heidelberg
and South Africa. Thanks to Michael Walczak for introducing the scientific metaverse
and discussing urban planning after ISTP colloquiums. Thanks to Christiaan Joubert
for diving into the African culture and being brave enough to build your work on
top of mine. Thanks to Marco Weber for countless talks in the LEC office and for
gently pushing me towards the deadlines, even when they were not formally set. I
also want to thank Patrick Eser, Annika Aurbach, Markus Brandstätter, Dominic
Hänni, Jeremy Nichol and Carsten Degendorfer, and all other LEC members who
were always around and ready to help.

Further acknowledgements go to ISTP members of the mobility research incubator
who created and maintained a unique multidisciplinary environment. Thank you,
Sergio Guidon, Michael Wicki, Fabian Willibald, Gracia Brückmann and Victor
Blanco, for all our discussions, ISTP events, and for a memorable trip to South
Africa. I would also like to pass appreciation to the members of other research
incubators at ISTP for extending my view on many non-engineering topics in
research.

Finally, I want to thank all my family members for supporting me throughout
these years. My decision to do doctoral studies was a bit of a sudden, but it was
understood and accepted. Thank you for your patience, love, and motivation to
accomplish this challenge.

viii



ix





C O N T E N T S

List of Figures xiv
List of Tables xxi
Listings xxiii
1 Introduction 1

1.1 Societal challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mobility transformations . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Transport modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Course of heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Mobility simulator 21

2.1 GPU background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 GPU-based approach . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Hardware model . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 Programming model . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.4 Memory management . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Framework overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Supply and demand . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2 Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.4 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Traffic propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.2 Queuing model . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.3 GPU simulation loop . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.4 Network propagation . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.5 Demand scheduling . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.6 Network variations . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.7 Iteration outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.1 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.4.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.3 Simulation loop . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4.5 Kernel profiling . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.5 Gridlock resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5.2 Resolution strategies . . . . . . . . . . . . . . . . . . . . . . . . 74

xi



xii contents

2.5.3 Impact on simulations . . . . . . . . . . . . . . . . . . . . . . . 74

2.6 Velocity model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.6.2 Model implementation . . . . . . . . . . . . . . . . . . . . . . 83

2.7 Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.7.1 Non-BEVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.7.2 BEVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.8 Heterogeneous hardware . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.8.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2.8.3 Data binder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.8.4 Hardware abstraction layer . . . . . . . . . . . . . . . . . . . . 103

2.8.5 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.8.6 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . 109

3 Multi-modal extensions 115

3.1 Flyover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.2 Public transit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.2.2 GPU-based implementation . . . . . . . . . . . . . . . . . . . 117

3.2.3 CPU-based implementation . . . . . . . . . . . . . . . . . . . 123

3.2.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.3 Coordinated fleets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.3.2 DRT-enabled loop . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.3.3 GPU-based implementation . . . . . . . . . . . . . . . . . . . 131

3.3.4 Synchronization of GPU and CPU parts . . . . . . . . . . . . 136

3.3.5 Memory optimizations . . . . . . . . . . . . . . . . . . . . . . 138

3.3.6 Fleet scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.4 Case study: fleet deployment in Zurich . . . . . . . . . . . . . . . . . 140

3.4.1 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.4.2 DRT services in Zurich . . . . . . . . . . . . . . . . . . . . . . 143

3.4.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4 Demand generation: Switzerland case study 151

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.2 Modelling pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.3 Daily-activity model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.3.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.3.2 Car ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.3.3 Mode choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.3.4 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.3.5 Adaptation for COVID-19 . . . . . . . . . . . . . . . . . . . . 164

4.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5 Mobility-as-a-Service: Munich case study 173



contents xiii

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.3.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.3.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.3.3 Fleet performance . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.3.4 Public transit accessibility . . . . . . . . . . . . . . . . . . . . . 192

6 Uncertainties of downscaled scenarios 195

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.2 Similarity measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.3 Downscaling scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.3.1 Cars and public transit . . . . . . . . . . . . . . . . . . . . . . 202

6.3.2 Coordinated fleets . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.4.1 Cars and public transit . . . . . . . . . . . . . . . . . . . . . . 205

6.4.2 Coordinated fleets . . . . . . . . . . . . . . . . . . . . . . . . . 214

7 Visual analytics 223

7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.2 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.3 Framework architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.4 Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

7.5 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

7.6 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8 Conclusions and outlook 241

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

8.1.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

8.1.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

8.1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

8.2.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

8.2.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

a Appendix (Downscaled scenarios) 249

a.1 Calibration coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

a.2 Measures of goodness-of-fit . . . . . . . . . . . . . . . . . . . . . . . . 250

a.3 Performance of cars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Bibliography 257



L I S T O F F I G U R E S

Figure 1.1 Historical and projected data for global population growth
in 1950–2100, medium variant scenario from the UN. . . . . 1

Figure 1.2 Global sustainability reporting rates of companies from two
samples: largest by revenue (G250) and a broad-based set
(N100) of large and mid-cap companies. . . . . . . . . . . . 3

Figure 1.3 Number of migrants by a geographic region of origin and
destination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.4 Monthly active platform consumers in Uber, with a recovery
trend after the COVID-19 pandemic. . . . . . . . . . . . . . . 5

Figure 1.5 Global energy-related CO2 emissions in 1750–2019. . . . . . 6

Figure 1.6 Electric car registrations in the USA, Europe and China. . . 6

Figure 1.7 Evolution of CPU specifications in the last 50 years, notable
increase of the number of logical cores and the decline of
operating frequency. . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 1.8 Comparison of FP64 (floating point, 64-bit) performance for
selected top CPUs and GPUs. In recent years GPUs provide
exponential growth in performance while CPUs are stagnating. 11

Figure 1.9 Number of GPU-accelerated computer systems in the TOP500

list displaying an upward trend, although flattening in recent
years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.1 Schematics of silicon dies for CPU (left) and GPU (right).
Computing cores are filled with dark green. . . . . . . . . . 23

Figure 2.2 Software and hardware models of GPUs in Nvidia’s CUDA
representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2.3 Scattered (top) and coalesced (bottom) memory access pat-
terns of threads within a warp on a GPU. . . . . . . . . . . . 31

Figure 2.4 Structure of the GEMSim’s main co-evolution simulation loop. 33

Figure 2.5 Queueing model: (1) moves a vehicle from the spatial buffer
to the capacity buffer; (2) moves the vehicle from the up-
stream link to the downstream one. . . . . . . . . . . . . . . 45

Figure 2.6 Algorithm for the GPU-accelerated simulation loop of GEM-
Sim. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 2.7 Algorithm for the ProcessLinks() GPU kernel to move ve-
hicles from spatial buffers to capacity buffers. . . . . . . . . 47

Figure 2.8 Algorithm for the ProcessNodes() GPU kernel to move ve-
hicles from upstream links to downstream. . . . . . . . . . . 49

xiv



list of figures xv

Figure 2.9 Layout of a link buffer in GPU memory partitioned in the
global array with the descriptor variables of qo f f and qsize,
and the state of the buffer defined by the variables qcur and
qnext. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 2.10 Algorithm for the ScheduleDemand() GPU kernel to dispatch
agents into the network propagation according to their daily-
activity plans. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 2.11 Distribution of the potential travel demand (left) and the
road network (right) in Switzerland. . . . . . . . . . . . . . . 58

Figure 2.12 Comparison of simulated and real-world traffic counts in
Switzerland using the older scenario. . . . . . . . . . . . . . 59

Figure 2.13 Distribution of travel time for a typical working day, micro-
census and simulation of the older Switzerland scenario. . . 60

Figure 2.14 Average score of agents between iterations when converging
the older Switzerland scenario. . . . . . . . . . . . . . . . . . 61

Figure 2.15 Agents en-route between iterations when converging the
older Switzerland scenario. . . . . . . . . . . . . . . . . . . . 61

Figure 2.16 Difference of traffic flows along links between iterations
when converging the older Switzerland scenario. . . . . . . 62

Figure 2.17 Runtime performance of GEMSim for one simulated itera-
tion depending on population sample size. . . . . . . . . . . 65

Figure 2.18 Real-time ratio (simulated seconds in each second of real
time) of the traffic propagation part for GEMSim and MATSim. 66

Figure 2.19 Speed-up factor of GEMSim over MATSim for the traffic
propagation part depending on population sample size. . . 66

Figure 2.20 Peak host RAM consumption during the simulation for
GEMSim and MATSim depending on population sample
size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 2.21 Peak GPU DRAM consumption by GEMSim during the
simulation depending on population sample size. . . . . . . 67

Figure 2.22 Gridlock situations: arrows show the intended directions
of traffic flows, and the filled vehicles completely block the
traffic flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 2.23 Agents en-route in Switzerland scenario when using the
squeeze gridlock resolution strategy with different sizes (4–
64) of virtual capacity. . . . . . . . . . . . . . . . . . . . . . . 76

Figure 2.24 Agents en-route in Switzerland scenario when using differ-
ent gridlock resolution strategies. . . . . . . . . . . . . . . . 77

Figure 2.25 Locations of the traffic counting stations in the Zurich area
used to evaluate the impacts of gridlock resolution strategies. 80

Figure 2.26 Comparison of simulated and real-world traffic counts in
the Zurich area using different gridlock resolution strategies. 81

Figure 2.27 Algorithm of the velocity tracking model on the GPU used
to improve the modelling of intra-link vehicle dynamics. . . 85



xvi list of figures

Figure 2.28 Distribution of simulated travel times along a link depending
on entry speed and the speed limit of a downstream link. . 87

Figure 2.29 Simulated speed profiles of a vehicle when driving in differ-
ent traffic conditions. . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 2.30 Auxiliary power consumption of a BEV depending on heat
pump availability and ambient temperature. . . . . . . . . . 94

Figure 2.31 Variation in SoC of a simulated BEV (Tesla Model S) against
altitude profile, for multiple trips in the Zurich area. . . . . 96

Figure 2.32 Variation in SoC of a simulated BEV (Tesla Model S) against
speed profile, for multiple trips in the Zurich area. . . . . . 97

Figure 2.33 Variation in SoC of a simulated BEV (Tesla Model S) against
acceleration profile, for multiple trips in the Zurich area. . . 98

Figure 2.34 Data mapping between CPU and GPU address spaces in
GEMSim. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 2.35 Algorithm of the worker thread for parallel execution of
GEMSim’s GPU kernels on a CPU. . . . . . . . . . . . . . . . 105

Figure 2.36 Algorithm of the kernel launcher for parallel execution of
GEMSim’s GPU kernels on a CPU. . . . . . . . . . . . . . . . 105

Figure 2.37 Strong scalability for data binding process from the host to
the GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 2.38 Strong scalability of the CPU-based GEMSim backend by
the number of cores and the per-core task size. . . . . . . . 107

Figure 2.39 Performance comparison of the CPU and GPU backends for
GEMSim running on different hardware configurations. . . 108

Figure 2.40 Power consumption of computing nodes when running
GEMSim with the GPU and CPU backends. . . . . . . . . . 111

Figure 2.41 Power consumption of the V100 computing node when run-
ning MATSim. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 2.42 Absolute energy consumption required to fully run the
Switzerland scenario for 100 iterations with GEMSim and
MATSim. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 2.43 Net energy consumption required to fully run the Switzer-
land scenario for 100 iterations with GEMSim and MATSim. 113

Figure 3.1 Algorithm for demand scheduling of flyover travel legs on a
GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 3.2 Algorithm for driver agents of public transit vehicles check-
ing stop facilities along routes on a GPU. . . . . . . . . . . . 119

Figure 3.3 Algorithm for the departure of public transit passenger
agents on GPUs. . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 3.4 Algorithm for the interaction model of public transit driver
and passenger agents on GPUs. . . . . . . . . . . . . . . . . 121

Figure 3.5 Real-time ratio (simulated seconds in each second of real
time) of the traffic propagation part with public transit for
GEMSim and MATSim. . . . . . . . . . . . . . . . . . . . . . 124



list of figures xvii

Figure 3.6 Speed-up factor of GEMSim over MATSim for the traffic
propagation part with public transit depending on the pop-
ulation sample size. . . . . . . . . . . . . . . . . . . . . . . . 124

Figure 3.7 Peak host RAM consumption during the simulation for
GEMSim and MATSim with public transit depending on
the population sample size. . . . . . . . . . . . . . . . . . . . 125

Figure 3.8 Peak GPU DRAM consumption by GEMSim during the
simulation with public transit depending on the population
sample size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 3.9 Algorithm for the modified GPU-accelerated simulation loop
of GEMSim with integrated modelling of DRT services. . . 131

Figure 3.10 Schematic of the optimization loop run by a fleet operator
within the DRT framework in GEMSim. . . . . . . . . . . . . 132

Figure 3.11 Algorithm for the pickup behaviour of a taxi driver agent on
GPUs when performing a DRT request. . . . . . . . . . . . . 133

Figure 3.12 Algorithm for behaviour when a taxi driver agent on GPUs
arrives at a pickup location. . . . . . . . . . . . . . . . . . . . 134

Figure 3.13 Algorithm for demand scheduling of taxi passenger agents
on GPUs when starting a DRT travel leg. . . . . . . . . . . . 135

Figure 3.14 Algorithm for the interaction model of DRT driver and pas-
senger agents at pickup and drop-off locations on GPUs. . . 136

Figure 3.15 Algorithm of a lock-free procedure to write events into a
GPU buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 3.16 Example of H3 hierarchical hexagonal zone partitioning in
the Zurich area used for spatial aggregation and filtering of
DRT requests and vehicles. . . . . . . . . . . . . . . . . . . . 140

Figure 3.17 Spatial (upper plot) and temporal (lower plot) demand for
AV taxis in the Zurich area. . . . . . . . . . . . . . . . . . . . 143

Figure 3.18 Passenger waiting times after requesting an AV in the Zurich
area for various fleet sizes. . . . . . . . . . . . . . . . . . . . 144

Figure 3.19 AV fleet utilization in the Zurich area for various fleet sizes. 145

Figure 3.20 Distribution of per-vehicle daily travelled distance in the
Zurich area for various fleet sizes. . . . . . . . . . . . . . . . 146

Figure 3.21 Scalability of runtime performance of the GPU-accelerated
DRT model using scenarios with various spatial densities of
taxi trips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 4.1 Structure of the agent-based travel demand modelling pipeline.154

Figure 4.2 Structure of the agent-based population synthesis model
used to provide input for demand generation. . . . . . . . . 155

Figure 4.3 Structure of the agent-based daily-activity model used to
generate individual travel plans. . . . . . . . . . . . . . . . . 156

Figure 4.4 Swiss municipality typology based on the Gemeindetypolo-
gie classification. . . . . . . . . . . . . . . . . . . . . . . . . . 157



xviii list of figures

Figure 4.5 Map of public transit quality in the canton of Zurich, Switzer-
land. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Figure 4.6 Relative error between predicted car ownership and car
register data in Switzerland using the unified modelling
pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Figure 4.7 Predicted share of agents who take public transit for daily
trips in Switzerland using the unified modelling pipeline. . 163

Figure 4.8 En-route dynamics of the agents throughout a day for COVID-
19 scenarios with various governmental measures applied in
Switzerland. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Figure 4.9 Runtime performance of the unified modelling pipeline for
the Switzerland scenario on multi-core CPUs. . . . . . . . . 167

Figure 4.10 Dynamics of the simulated agent-based scenario for Switzer-
land generated with the unified modelling pipeline, com-
pared to microcensus data. . . . . . . . . . . . . . . . . . . . 168

Figure 4.11 Locations of the traffic counting stations in Switzerland used
for the validation of the unified modelling pipeline. . . . . . 169

Figure 4.12 Comparison of simulated and real-world traffic counts in
Switzerland using the unified modelling pipeline. . . . . . . 169

Figure 4.13 Distributions of travel time and distance for a typical work-
ing day in Switzerland generated with the unified modelling
pipeline, microcensus and simulation. . . . . . . . . . . . . . 171

Figure 4.14 Distributions of travel time and distance for a typical week-
end in Switzerland generated with the unified modelling
pipeline, microcensus and simulation. . . . . . . . . . . . . . 172

Figure 5.1 Distribution of potential travel demand (left) and road net-
work (right) in the Munich metropolitan region. . . . . . . . 178

Figure 5.2 Share of agents using a car in the Munich region while
converging the baseline scenario. . . . . . . . . . . . . . . . . 180

Figure 5.3 Average score of agents in the Munich region while converg-
ing the baseline scenario. . . . . . . . . . . . . . . . . . . . . 181

Figure 5.4 Agents en-route during the day in the baseline Munich sce-
nario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Figure 5.5 Locations of the traffic counting stations in the Munich area
used to validate the baseline scenario. . . . . . . . . . . . . . 183

Figure 5.6 Comparison of simulated and real-world traffic counts in
the Munich area. . . . . . . . . . . . . . . . . . . . . . . . . . 183

Figure 5.7 Change in daily travel time of agents in the Munich area
who switched from a car to MaaS, scenario with 1.5 km DRT
lookup radius and a 15 000-strong fleet. . . . . . . . . . . . . 185

Figure 5.8 Change in daily travel time of agents in the Munich area
who switched from public transit to MaaS, scenario with
1.5 km DRT lookup radius and a 15 000-strong fleet. . . . . 185



list of figures xix

Figure 5.9 Fleet utilization depending on the size and policy for DRT
lookup in the Munich area. . . . . . . . . . . . . . . . . . . . 187

Figure 5.10 Average waiting time depending on the size and policy for
DRT lookup in the Munich area. . . . . . . . . . . . . . . . . 188

Figure 5.11 Empty driven mileage depending on the size and policy for
DRT lookup in the Munich area. . . . . . . . . . . . . . . . . 189

Figure 5.12 Distribution of per-vehicle daily distances for the scenario
with a DRT lookup radius of 3 km with intersection in the
Munich area. . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Figure 5.13 Density of DRT requests (left) and public transit quality
(right) in the Munich area. . . . . . . . . . . . . . . . . . . . 193

Figure 6.1 Average score of agents depending on the population sample
size during the simulation of Switzerland, used to identify
the minimum number of iterations to run before evaluating
the uncertainties of downscaled scenarios. . . . . . . . . . . 204

Figure 6.2 Optimized scaling coefficients for spatial and capacity buffers
of the traffic queueing model for the road network of Switzer-
land. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Figure 6.3 Normalized surfaces of the optimization objective during the
calibration procedure of coefficients for the queuing traffic
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Figure 6.4 Measures of goodness-of-fit (hourly time periods) for down-
scaled Switzerland scenarios. . . . . . . . . . . . . . . . . . . 211

Figure 6.5 Measures of goodness-of-fit (daily time periods) for down-
scaled Switzerland scenarios. . . . . . . . . . . . . . . . . . . 212

Figure 6.6 Performance of the simulated car transport in downscaled
Switzerland scenarios. . . . . . . . . . . . . . . . . . . . . . . 213

Figure 6.7 Impact of sample size on the average waiting times of agents
in downscaled scenarios of the Munich area. . . . . . . . . . 215

Figure 6.8 Impact of sample size on fleet utilization in downscaled
scenarios of the Munich area. . . . . . . . . . . . . . . . . . . 216

Figure 6.9 Impact of sample size on fleet empty mileage in downscaled
scenarios of the Munich area. . . . . . . . . . . . . . . . . . . 218

Figure 6.10 Distribution of per-vehicle daily driven distance in down-
scaled scenarios of the Munich area. . . . . . . . . . . . . . . 219

Figure 6.11 Impact of sample size on average per-vehicle daily driven
distance in downscaled scenarios of the Munich area. . . . . 220

Figure 6.12 Spatial distribution of daily average waiting times in down-
scaled scenarios of the Munich area. . . . . . . . . . . . . . . 221

Figure 7.1 Architecture of the Quartz framework for data analytics and
visualization of outputs from GEMSim. . . . . . . . . . . . . 230

Figure 7.2 Structure of a typical graphics pipeline implemented by a
GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232



xx list of figures

Figure 7.3 Main window of Quartz for the Sapporo area from the
Hokkaido scenario. . . . . . . . . . . . . . . . . . . . . . . . . 234

Figure 7.4 Overall reporting interface of Quartz with the travel statistics
section for the Munich scenario. . . . . . . . . . . . . . . . . 234

Figure 7.5 Reporting interface of Quartz with travel mode statistics
from the Munich scenario. . . . . . . . . . . . . . . . . . . . . 235

Figure 7.6 Reporting interface of Quartz with fleet utilization from the
Munich scenario. . . . . . . . . . . . . . . . . . . . . . . . . . 236

Figure 7.7 Interface of Quartz with a customized visualization of mov-
ing agents in the Los Angeles area from the California (USA)
scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Figure 7.8 Interface of Quartz with filtering options for a stream of events.237

Figure 7.9 Runtime performance of data analytics by Quartz depending
on sampling rate. . . . . . . . . . . . . . . . . . . . . . . . . . 238

Figure 7.10 Peak host RAM consumption for data analytics by Quartz
depending on sampling rate. . . . . . . . . . . . . . . . . . . 238

Figure 7.11 Time required to render a frame of the dynamic visualization
timeline in Quartz. . . . . . . . . . . . . . . . . . . . . . . . . 239



L I S T O F TA B L E S

Table 2.1 Comparison of performance for Dijkstra routing algorithm
on a CPU and a GPU. . . . . . . . . . . . . . . . . . . . . . . 38

Table 2.2 Comparison of runtime performance of GEMSim and MAT-
Sim for each part of the simulation loop. . . . . . . . . . . . 64

Table 2.3 Description of main performance metrics collected during
the profiling of GEMSim GPU kernels. . . . . . . . . . . . . 68

Table 2.4 Profiling results of the main GEMSim GPU kernels used
for traffic propagation and the scheduling of agents’ daily-
activity plans. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table 2.5 Impact of gridlock resolution strategies on output external-
ities in the Switzerland scenario. VKT/p and VHT/p are
per-person VKT and VHT values, respectively. . . . . . . . . 79

Table 2.6 Hardware-specific functions used in the CPU and GPU back-
ends of GEMSim. . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table 2.7 Hardware configurations used to benchmark GEMSim’s run-
time in a heterogeneous CPU-GPU environment. . . . . . . 107

Table 2.8 Green-up factor (ratio of Configuration 1 to Configuration
2) for different combinations of simulators and hardware. . 113

Table 3.1 Performance breakdown of a daily iteration run by GEMSim
and MATSim with a 100 000-vehicle fleet for the Zurich city
area and the canton of Zurich. . . . . . . . . . . . . . . . . . 150

Table 4.1 Mapping of Swiss municipality typologies from the Gemein-
detypologie classification. . . . . . . . . . . . . . . . . . . . . 158

Table 4.2 Results of MNL estimation for car ownership in Switzerland.
Pseudo-R2 = 0.1379 and Log-Likelihood is -35174. . . . . . 160

Table 4.3 Results of MNL estimation for transport mode choice in
Switzerland. Pseudo-R2 = 0.1348 and Log-Likelihood is -9518.162

Table 4.4 Reduction in average travel distance and time for COVID-19

scenarios in Switzerland. . . . . . . . . . . . . . . . . . . . . 166

Table 5.1 Overview of simulated MaaS scenarios in the Munich area.
VKT and VHT are given for fleets. . . . . . . . . . . . . . . . 184

Table 5.2 Public transit quality at the home locations for agents who
switch to MaaS in the Munich area. . . . . . . . . . . . . . . 192

Table 6.1 State of the capacity buffer of a downscaled link from a
simulated test case with a constant traffic flow. Queues’ first
spillover states are in bold. . . . . . . . . . . . . . . . . . . . 208

Table 7.1 Discrete events recorded by GEMSim during a traffic simu-
lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

xxi



xxii list of tables

Table 7.2 Summary of large-scale scenarios used for Quartz perfor-
mance benchmarks. . . . . . . . . . . . . . . . . . . . . . . . 237

Table A.1 Optimal scaling coefficients for spatial and capacity buffers
of the network obtained for different population samples of
the Switzerland scenario. . . . . . . . . . . . . . . . . . . . . 249

Table A.2 Measures of goodness-of-fit for the morning peak hour
(07:00–08:00) obtained for different population samples of
the Switzerland scenario. Values of the measures of the
smallest population samples passing an acceptance thresh-
old are marked in bold. . . . . . . . . . . . . . . . . . . . . . 250

Table A.3 Measures of goodness-of-fit for the noon hour (12:00–13:00)
obtained for different population samples of the Switzerland
scenario. Values of the measures of the smallest population
samples passing an acceptance threshold are marked in bold. 251

Table A.4 Measures of goodness-of-fit for the evening peak hour (17:00–
18:00) obtained for different population samples of the Switzer-
land scenario. Values of the measures of the smallest popu-
lation samples passing an acceptance threshold are marked
in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Table A.5 Measures of goodness-of-fit for a whole day (00:00–24:00)
obtained for different population samples of the Switzerland
scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Table A.6 Measures of goodness-of-fit for public transit occupancy
obtained for different population samples of the Switzerland
scenario. Values of the measures of the smallest population
samples passing an acceptance threshold are marked in bold. 254

Table A.7 Performance of the simulated car transport obtained for
different population samples of the Switzerland scenario. . 255



L I S T I N G S

2.1 Exemplary CUDA kernel for element-wise vector summation. . . . . 26

2.2 A typical approach of memory management and execution of code
on GPUs, with data transfer between the host and the device. . . . . 27

2.3 Array of structures (AoS) and structure of arrays (SoA) approaches
to store 3D points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Structure of network graph G on a GPU with per-link queues and
per-node upstream links. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Structure of demand Dt on a GPU with per-agent daily-activity plans
and their personal state attributes used for scheduling and behaviour
modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Base structure of a travel leg Lk on a GPU used to store the daily-
activity plans of the agents. . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Structure of a vehicle fleet on a GPU storing vehicle models and state
of each vehicle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.8 Base structure of a vehicle on a GPU with common attributes used to
update the state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.1 Structure of a public transit schedule T on GPUs used by passenger
and driver agents for interaction. . . . . . . . . . . . . . . . . . . . . . 122

3.2 Structure of a public transit departure of a transit route on GPUs. . . 122

3.3 Structure of DRT operators on GPUs used to store fleet vehicles,
interact with passenger agents and keep data flow synced with the
host. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xxiii



N O M E N C L AT U R E

abbreviations

ABM agent-based model

AI artificial intelligence

AoS array of structures

AMoD automated mobility on-demand

AV automated vehicle

BEV battery electric vehicle

CAS compare-and-swap

CPU central processing unit

DCM discrete choice model

DRAM dynamic random-access memory

DRT demand-responsive transport

FIFO first in, first out

FPGA field programmable gate array

GDP gross domestic product

GEH Geoffrey E. Havers (formula)

GEMSim GPU-enhanced mobility simulator

GPU graphics processing unit

GUI graphical user interface

HPC high-performance computing

ICEV internal combustion engine vehicle

ID identifier

IPC instructions per cycle

MaaS mobility-as-a-service

MAE mean absolute error

MANE mean absolute normalized error

ML machine learning

MNL multinomial logit (model)

NUMA non-uniform memory access

OD origin-destination

xxiv



notation xxv

OSM OpenStreetMap

RAM random-access memory

RL reinforcement learning

RMSE root mean squared error

RMSNE root mean squared normalized error

SAV shared automated vehicle

SIMD single instruction, multiple data

SIMT single instruction, multiple threads

SM symmetric multiprocessor

SoA structure of arrays

SoC state of charge

SSSP single-source shortest path

TAZ traffic analysis zone

TDP thermal design power

VHT vehicle-hours travelled

VKT vehicle-kilometres travelled

gpu programming model

x, y, z coordinate components of GPU threads within block

xb, yb, zb coordinate components of GPU block within grid

Dx, Dy, Dz dimensions of GPU block

Dg,x, Dg,y, Dg,z dimensions of GPU grid

I1_3D ID of GPU thread in grid with single 3D block

I1D_3D ID of GPU thread in grid with array of 3D blocks

I3D_3D ID of GPU thread in 3D grid with 3D blocks

mobility simulation loop

S supply in mobility simulation

Dt demand in mobility simulation at iteration t

T public transit infrastructure with schedule

G network graph of roads and public transit routes

F operators of coordinated fleets

SE
t output externalities at iteration t

L learning process of agents between iterations



xxvi notation

Ut scores of daily-activity plans of agents at iteration t

P set of daily-activity plans in agent’s memory

Ak set of activities in k-th plan of agent

Lk set of travel legs in k-th plan of agent

V nodes of network graph

E edges of network graph

Ei ordered set of upstream links of i-th node

E(k) ordered set of all k-th upstream links

M maximum number of upstream links for any node

RT set of public transit routes

HT set of public transit stop facilities

VF set of vehicles in coordinated fleet

OF set of operating policies for coordinated fleet

T number of iterations in mobility simulation

tsim current simulated time cycle [s]

tend duration of simulated iteration [s]

Mstats,net memory for network congestion statistics [byte]

tstat,net duration of network statistical period [s]

scell,net size of data for one statistical period per link [byte]

Mstats,trip memory for trip statistics [byte]

tstat,trip duration of network statistical period [s]

scell,trip size of data for one statistical period per mode [byte]

Nmodes number of simulated transport modes

Nperiods number of statistical periods

Itrip offset for trip statistics data in output arrays

learning process of agents

U(Pk) score of k-th plan in agent’s memory

Uact score of performed activity

Utrav score of travel leg

Udur score of performing activity

Uwait score of waiting at activity

Ulate score of arriving at place late

Uearly score of finishing activity early



notation xxvii

Ushort score of performing activity for short time

Ubest score of best plan in agent’s memory

βdur marginal utility of performing activity

βwait marginal utility of waiting at activity

βlate marginal utility of being at place late

βearly marginal utility of being at place early

βshort marginal utility of staying at place for short time

βttime marginal utility of travel time

βtdist marginal utility of travel distance

tstart start time of activity [s]

tend end time of activity [s]

tdur duration of activity [s]

ttyp typical duration of activity [s]

twait waiting time [s]

tlatest latest possible start time of activity [s]

tearliest earliest possible end time of activity [s]

tshortest shortest possible duration of activity [s]

ttrav travel time [s]

dtrav travel distance [m]

p priority of activity

pi,k probability to select k-th plan for i-th agent

βU relaxation parameter for plan selection

queueing model

tlink minimum time vehicle stays at link [s]

tenter time vehicle entered link [s]

vlink free-flow speed of link [m/s]

Llink physical length of link [m]

q flow capacity of link [vehicles/tperiod]

tcycle duration of simulation step [s]

tperiod time period to specify flow capacities of links [s]

pk probability to select k-th upstream link

Nlanes number of lanes on link

Lveh average length of lane occupied by vehicle [m]



xxviii notation

kl scaling coefficient of spatial buffer

k f scaling coefficient of capacity buffer

Nl size of spatial buffer [vehicles]

N f size of capacity buffer [vehicles]

qo f f offset of ring buffer in global memory [byte]

qsize size of ring buffer [slot]

qcur offset of first used slot in ring buffer [slot]

qcnt occupied space in ring buffer [slot]

tsch scheduled time of next update of agent [s]

velocity model

v0 speed of vehicle when entering link [m/s]

v1 speed limit on downstream link [m/s]

vlim speed limit of link [m/s]

vtarget target speed by end of link [m/s]

vexit achieved speed of vehicle at end of link

L physical length of link [m]

anorm acceleration/deceleration rate of drivers [m/s2]

vehicles

FICEV fuel consumed by vehicle with internal combustion [l]

Dkm driven distance by vehicle [km]

f ICEV average fuel consumption of vehicle [l/km]

Ewired energy consumed by non-battery electric vehicle [Wh]

Ts driven time by vehicle [h]

pwired average power consumption of vehicle [W]

Pwheels power at wheels of vehicle [W]

m gross mass of vehicle [kg]

a acceleration of vehicle [m/s2]

g gravitational acceleration constant [m/s2]

θ road slope [rad]

Cr, c1, c2 rolling resistance parameters

ρair air mass density [kg/m3]

A f frontal area of vehicle [m2]
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CD aerodynamic drag coefficient of vehicle

v speed of vehicle

Pemotor power at electric motor [W]

Pemotor,net net power at electric motor [W]

Paux auxiliary power consumption [W]

Ptotal total power consumption of electric vehicle [W]

ηdriveline driveline efficiency

ηemotor efficiency of electric motor

ηbattery efficiency of battery

ηrb efficiency of regenerative braking

heterogeneous computing

Iglobal,i global index of i-th object in GPU memory

Igroup,i group index of i-th object in GPU memory

Ilocal,i local index of i-th object in GPU memory

Q queue of CPU-based computing tasks

Ttot total number of tasks

Tdone number of finished tasks

CVQ, CVM condition variables

M mutex for condition variables CVQ and CVM

K GPU kernel to execute on CPU

FGR green-up factor

EC energy consumption of CPU-based hardware [Wh]

EC,G energy consumption of GPU-based hardware [Wh]

PC power consumption of CPU-based hardware [W]

PC,G power consumption of GPU-based hardware [W]

tC runtime of CPU-based hardware [h]

tC,G runtime of GPU-based hardware [h]

Pup power-up factor

Sup speed-up factor

multi-modal extensions

t f o delay time in flyover mode [s]

d f o flyover distance [m]
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v f o flyover speed [m/s]

ltype type of travel leg

fsync synchronization frequency between host and GPU [s]

fopt optimization frequency for fleet requests [s]

Mebu f GPU memory for buffering of events [byte]

Emax maximum number of events agent can emit in cycle

Smax maximum size of event [byte]

Nagents number of agents simulated

demand generation

Pin probability of choice i for person n

Uin utility of choice i for person n

Vin deterministic part of utility function (choice i, person n)

ϵin non-deterministic part of utility function (choice i, person n)

xin vector of choice i attributes

βi vector of taste parameters for choice i

downscaled scenarios

U Theil’s inequality coefficient

Um bias proportion of Theil’s coefficient

Us variance proportion of Theil’s coefficient

Uc covariance proportion of Theil’s coefficient

Sα similarity measure with significance level α

Sm
α traffic similarity in morning peak hour

Se
α traffic similarity in evening peak hour

k∗l optimal scaling coefficient of spatial buffers

k∗l optimal scaling coefficient of capacity buffers



1
I N T R O D U C T I O N

As for the future, your task is not to foresee it, but to
enable it.

— Antoine de Saint-Exupery

1.1 societal challenges

Societies are currently going through rapid and multi-dimensional transformations
that are changing the way that people live and interact. At the frontier of these
changes are transport systems. According to the United Nations (UN) [1], the
world’s population could grow from today’s 7.7 billion to around 8.5 billion in 2030.
Figure 1.1 shows the medium variant scenario of the population growth projected
until 2100 [2] (note that LA stands for Latin America). Currently, global society is
in the active growing phase of population development, and this process of the
population growth is expected to continue until about 2050. While after 2050 most
of the geographic regions are expected to have declining populations, Africa can
still drive the increase of global population.
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Figure 1.1: Historical and projected data for global population growth in 1950–2100,
medium variant scenario from the UN.

At the same time, more and more people will move to urban areas; indeed,
since 1950, the share of urban population has increased from 30% to 55%, and is
expected to increase further to 68% by 2050 [3]. This population growth, along with
urbanization and city sprawl, imposes new challenges for transport engineers and
city planners, who seek to adapt existing infrastructure for increased demand in

1
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order to provide efficient accessibility. For example, according to Urban Mobility
Report 2021 [4], the United States of America (USA) had in 2019 a congestion cost
of US$190 billion, which includes about 8.7 billion travel delay hours (54 hours
annually per commuter) and 13.25 billion litres of wasted excess fuel. The report
also demonstrates that these negative economic impacts of the over-used road
transport infrastructure increase non-linearly with regards to the urbanisation and
the population growth processes: in 1982, the congestion cost was only about US$15

billion (inflation-adjusted to 2020), more than 22 times lower. In the European Union
(EU), according to the report of the European Court of Auditors [5], inefficiencies in
urban mobility, and the negative impacts of traffic congestion on the roads, cost the
EU about €110 billion, which is more than 1% of the EU’s gross domestic product
(GDP). Moreover, as about 70% of Europe’s population already lives in urban areas
(and that number is expected to reach 80% by 2050 according to UN forecasts [3])
the impacts of inefficiencies in urban mobility will become even greater without
adopting relevant policies. China, currently the world’s most populated country
with about 1.5 billion inhabitants, experiences the same negative impacts of growing
population in urban areas onto transport systems. According to the Ministry of
Transport of China, the annual economic loss from traffic congestion is about 250

billion yuan (about US$36.25 billion by the current exchange rate) [6]. As mobility
is always one of the key drivers of economic growth, it is of the utmost importance
for any society to align the development of transport systems with the needs of the
population and economy.

Aside from natural population growth and urbanization, a broad range of other
societal challenges further affects the transformation of the existing mobility infras-
tructure. First, there is a trend in many societies for improved sustainability, which
entails the more responsible use of natural resources, like fossil fuels and minerals,
and reducing the negative externalities, like noise and air pollution, affecting the
environment. Since 1993, KPMG, a multinational professional services network, has
been surveying sustainability reporting among global companies, and the most
recently published survey [7] shows that the number of reporting companies is
growing. Figure 1.2 shows the rate of sustainability reporting companies since the
first survey was done. One sample of the companies, G250, refers to the world’s 250

largest companies by revenue; and another sample, N100, refers to a worldwide
set of 5 200 companies, using the top 100 companies in each of the 52 countries
and jurisdictions where the research was conducted. From the survey, one can
note the upward trend since the previous report made in 2017. While the largest
companies are typically leaders in sustainability reporting (95% in 2020), smaller
companies are now adopting the same practices worldwide (80% in 2020). In the
N100 sample, North America has the highest regional reporting rate of 90%, while
Europe stays at 77%, with Eastern Europe a key contributor to the growth of the
reporting rate. Interestingly, Japan and Mexico reached a 100% reporting rate for
their top companies in the sample. Another interesting aspect of the survey is the
strong growth of the number of companies reporting UN Sustainable Development
Goals (SDGs) [8], which is a set of 17 interlinked goals targeted towards the peace
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and prosperity of the planet. Since 2017, the number of SDG-reporting companies
rose from 39% to 69% in the N100 sample, and from 43% to 72% in the G250 sample.
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Figure 1.2: Global sustainability reporting rates of companies from two samples: largest by
revenue (G250) and a broad-based set (N100) of large and mid-cap companies.

The transport sector attracts more attention from societies regarding sustainabil-
ity and negative impacts on human health. It is estimated that global transport
emissions in 2015 contributed to about 385 000 premature deaths [9], mostly in the
top global vehicle markets, including the USA, EU, China and India. There is also
evidence that noise pollution negatively impacts human health [10, 11].

Migration is another challenge experienced today by many societies across the
globe. According to the International Organisation for Migration [12], there have
been about 272 million international migrants (or 3.5% of the world’s population)
in 2019, which is almost a two-fold increase from 150 million in 2000. Figure 1.3
shows the global migration trends for the last 30 years [13] by geographic region
of origin and destination. The main sources of migrants are Africa, Asia, Europe
and Latin America and the Caribbean. In Europe, however, many people move
internally, hence the outflow is relatively small. Interestingly, the North America
region has almost negligible outflows, while at the same time about 50 million
migrants are there. In overall, more developed regions like Europe and North
America attract more migrants, with Asia also having an increased number of
internal migrants. Migration can impact urban development strategies through the
densification and sprawling processes, which can cause marginalization and the
reduction in sustainable development [14]. In particular, dense urban areas may
require an increase in the capacity of the local road network, while sprawling areas
may negatively impact the cost of infrastructure [15] and increase the amount of
negative externalities generated [16].

Third, technological improvements in communications and the improved acces-
sibility of the population to global networks put mobility service providers closer
to customers. This proximity allows creating new business opportunities like ride-
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Figure 1.3: Number of migrants by a geographic region of origin and destination.

hailing and micro-mobility with shared e-scooters and e-bikes. To give an example,
Figure 1.4 shows the number of monthly active platform consumers (MAPCs) in
Uber [17–19], one of the largest ride-hailing companies in the world. An MAPC is a
unique client who took a ride or used a food delivery service in a given month. One
can see rapid adoption of new ride-hailing technologies in four years preceding
the COVID-19 pandemic, when the number of MAPCs grew from 19 million in
2016 to 111 million in 2019. After a strong drop down to 55 million MAPCs in 2020

due to the pandemic, the number of consumers started growing again after many
countries lifted movement restrictions imposed during the pandemic, and in 2021

the number of MAPCs exceeded pre-pandemic levels. This rapid adoption of ride-
hailing technologies was possible thanks to the wide accessibility of technologies
like the Internet and mobile phones. Technological improvements also lead to the
development of smart infrastructure, where its elements (including vehicles) are
connected into a network in order to optimize overall operating efficiency. For exam-
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ple, adaptive traffic lights with applied reinforcement learning (RL) can outperform
non-adaptable traffic light controllers [20].
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Figure 1.4: Monthly active platform consumers in Uber, with a recovery trend after the
COVID-19 pandemic.

1.2 mobility transformations

It is crucial to understand and foresee the implications of ongoing and upcoming
changes in mobility in order to perform the transition in the most efficient and
beneficial way for a society. However, the aforementioned social challenges lead to
the increase of the complexity of modern mobility systems in order to efficiently
serve the demand from the increasing population in urban areas and to ensure
compliance with policies that support sustainable development and the energy
transition [21, 22]. Emerging technologies such as battery electric vehicles (BEVs)
and automated vehicles (AVs) are among the main drivers of the ongoing trans-
formations in the transport sector [23, 24]. Figure 1.5 shows global energy-related
CO2 emissions [25], which reached 34.8 Gt in 2020; it is estimated that the global
transport sector is responsible for about 8.7 Gt of CO2 emissions, or 25% of the total
volume [26]. That is why the mobility transition from fossil fuels to alternative fuels
can make a major positive contribution in the reduction of CO2 emissions.

BEVs and AVs require new infrastructure (such as chargers for BEVs and in-
telligent traffic management systems for AVs) to be built and maintained [27].
The increased penetration of BEVs and AVs is also paralleled by changes in the
behaviour of people, due to facts like BEVs requiring additional time for charg-
ing, BEVs having limited range compared to internal combustion engine vehicles
(ICEVs) [28], or cheaper AVs result in a different perception of the value of time
[29]. Figure 1.6 shows new registrations of BEVs and plug-in hybrid electric vehicles
(PHEVs) in the USA, Europe (the EU with Norway, Iceland, the United Kingdom
(UK) and Switzerland) and China in recent years [30]. While the magnitude of
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Figure 1.5: Global energy-related CO2 emissions in 1750–2019.

electric car registration varies across the regions, there is a consistent trend towards
the increase of BEV and PHEV sales. The share of electric cars in total sales reached
16% and 17% in China and Europe, respectively, while in the USA the share stays at
a relatively low level of about 5%.
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Figure 1.6: Electric car registrations in the USA, Europe and China.

As further reductions in mobility-related CO2 emissions are targeted by many
countries [31], it is anticipated that the transition to EVs will intensify in the near
future. Furthermore, traditional and free-floating car-sharing services are expected
to reduce the cost of car ownership [32] and to have a positive impact on sustainable
travel [33] by changing patterns of behaviour. The increasing penetration of BEVs
also leads to the coupling of mobility and grid infrastructures as charging demand at
certain locations requires a grid operator to provide sufficient power [34]. Similarly,
the vehicle-to-grid technology allows BEVs to participate in electricity trading
using on-board batteries [35]. These integration processes will drive the future
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development of mobility, and shall, therefore, be given special attention by city
planners and policy-makers.

Simultaneously, and more importantly, there is a trend towards a closer inte-
gration of infrastructure and services of different transport modes. The Mobility-
as-a-Service (MaaS) concept [36] integrates multiple forms of mobility services
into a single service, trying to optimize available modes in order to provide, on
demand, the best-value option for customers. This way, sustainable travel can be
developed further by providing a viable, convenient and cheaper alternative to
cars. The UbiGo project in Gothenburg (Sweden) was a pioneering MaaS concept
in which a six-month trial was performed using paid subscription model [37]. The
service included customized travels solutions with public transit, taxi, car- and
bike-sharing. The overall outcome of the experiment was positive, and 97% of the
participants wanted to continue with UbiGo. The participants also became more
positive towards non-car modes of transport. Another example of MaaS develop-
ment and implementation is the Whim start-up from Finland [38], which provides
services in the Helsinki metropolitan area. Whim provides packages with public
transit, taxi, car rentals, bikes and shared micro-mobility like e-scooters. The authors
note, however, that, aside from the technology, MaaS solutions require support and
coordination from various stakeholders in order to make such transport services
commercially successful.

1.3 transport modelling

Given the complexity of emerging mobility systems, it is almost impractical to
analyse their possible transformations using empirical experiments. Moreover, the
stochastic nature of people’s behaviour and the scale of metropolitan urban areas
do not allow the application of analytical solutions without serious limitations.
Mobility simulations offer one approach to improve planning decisions and provide
more cost-effective assessments of potential solutions, including policies.

The first traffic simulation models date back to the 1950s [39, 40], when theoretical
developments of traffic simulation were established by then-emerging transport
engineering. In that decade, one of the currently most widely used transport
forecasting models, the four-step model [41], was developed to run on mainframe
computers. The model comprises the following steps:

• Trip generation determines the number of outgoing and incoming trips for
each traffic analysis zone (TAZ).

• Trip distribution produces an origin-destination (OD) matrix by matching
origins with destinations.

• Mode choice determines the share of trips for each OD pair that uses a specific
mode.

• Route assignment determines a per-mode route for each OD pair.
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While the four-step model is easy to understand and effective for static planning
(without accounting for temporal effects like congestion spillover) and for simple
scenarios, as discussed elsewhere [42, 43], the four-step model is less realistic and
less precise for dynamic planning, as a person’s decision-making process is not
well represented; this is especially so when the extent of the decision space is large.
Four-step models are also impractical for modelling emerging transport modes
that require tight coupling of city infrastructures, as these modes heavily rely on
individual behaviour. Rather than using an aggregated approach for behaviour,
agent-based models (ABMs) are used to simulate the behaviour and interaction of
people in complex urban environments [44–48]. In ABM, agents are considered as
individuals with their own behavioural logic and rules of interaction; thus, ABM
simulations are more realistic, and provide a framework to understand causal effects
in the complex system as a whole. ABMs are not limited to humans but cover a
broad range of disciplines, from particles in physics to living species in biology [49].
Typically, in a mobility ABM, each agent represents a human being or a vehicle
within a simulated environment comprised of roads, public transit systems and
other mobility services, as well as the policies and regulations that influence agents’
decision-making. During simulation, agents can react to events and adapt their
behaviour. For example, if a road is blocked because of an accident, then agents can
re-route to reach their intended destinations.

On the one hand, ABM yields mobility simulations with a high level of detail and
complexity in which behaviour and decision-making are driven by the same factors
as in the real world (for example, congestion, road accidents, public transport delays,
social networks, and locations of places of activity). Thus, very realistic scenarios can
be formulated and the impacts of potential changes in policies, infrastructure and
transport services can be accurately assessed at the spatial and temporal resolution
of each simulated agent. On the other hand, large-scale and detailed agent-based
models – which integrate complex behaviour and rules of interaction – impose
a substantial computational burden on the simulation process. ABM applied to
large metropolitan areas may encounter bottlenecks in computing performance with
correspondingly long simulation runtimes; these challenges reduce the attractiveness
of such models for transport planners and policy-makers. Moreover, the cost of the
required hardware is also a burden when high performance is needed.

A broad range of work, from multi-threaded processing to distributed computing
on clusters, has been conducted to improve the scalability of traffic simulations.
Multi-threading is typically employed [50, 51] as a first step to accelerate simulations
using multi-core central processing units (CPUs). However, due to limitations in
the available hardware resources (such as number of CPUs, or amount of shared
memory) of a single computing node, the performance improvements are limited.
Distributed computing offers more opportunities to improve the scalability of
traffic simulations [52–56] on large multi-node clusters, but this requires that the
simulation models be adapted. In order to run large-scale simulations on multiple
cluster nodes, the simulation domain must be decomposed [57–59] and evenly
distributed across the nodes using load-balancing techniques [60]. Simultaneously,
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the execution of the simulation must be synchronized [61] across the nodes, and
network communications [53] must be reduced. Surprisingly, distributed multi-
modal traffic simulations are not widely reported, and have only recently received
some attention [62, 63]. Some attempts have been made to improve computing
performance using more efficient algorithms [64, 65] or data structures [66]. Despite
the improvements made with such approaches in recent years, it seems that the
complexity of simulated transport systems is increasing at a rate faster than that
at which performance improvements come into place. Another limitation of many
works is a pure focus on traffic simulations rather than on the mobility system
as a whole, which reduces the applicability of such limited models for urban
transformation scenarios; today, the simulation of car traffic is only a subset of the
capabilities required of mobility modelling tools.

Therefore, another approach adopted by researchers is, first, to downscale the
demand and supply of mobility in the simulated scenario: a fraction of agents
is randomly sampled from the full population, while the capacity of the road
network (that is, the rate at which vehicles pass through a transport link) and other
infrastructure are also downscaled. The simulation outcomes are then scaled up,
and these results are considered to be a good approximation of the full population
and the actual network. For example, if a 10% sample of the whole population is
used, then the capacity of the roads is also downscaled to 10% (approximately; some
variation is possible due to calibration). The simulation outcomes are then scaled
up by a factor of 10. Basically, each agent in the downscaled scenario represents an
aggregate group, not each individual, of the real world. However, the impacts of
such downscaled inputs on the scenario outputs are not well studied.

1.4 course of heterogeneity

According to the well-known Moore’s law [67, 68], the number of transistors in
a dense integrated circuit doubles every two years. In general, since the initial
prediction made in 1965 and refined in 1975, the increased number of transistors
in a CPU means increased performance, and traffic simulations should not be an
exception. Figure 1.7 shows historical data for CPU developments in the last 50

years [69]. One can clearly see that Moore’s law is still relevant as the number
of transistors in a CPU continues to grow. However, the relative gap between the
increasing transistor count and the performance improvement of a single CPU core
is becoming larger. This can be simply explained by the fact that the frequency of a
CPU core stopped increasing from around the year of 2010 due to physical limits and
circuit stability, and, at the same time, the number of logical cores started increasing.
Therefore, in order to get performance improvement in simulation models when
using modern multi-core CPUs, one has to parallelize the code.

However, the parallelization of the code can be a non-trivial task, depending
on the software architecture and the nature of the problem solved with the code.
First, not every code can be parallelized, limiting the applicability of multi-core
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Figure 1.7: Evolution of CPU specifications in the last 50 years, notable increase of the
number of logical cores and the decline of operating frequency.

CPUs for existing models. For example, when some algorithms and tasks are
executed sequentially with a single CPU core, a multi-core CPU will not bring
runtime benefits. Second, even if some parts of an application can benefit from
the execution on a multi-core CPU, the overall improvement in runtime is limited
by the fraction of time the parallelized code is used. This is known as Amdahl’s
law [70]. Moreover, as the overall computing performance of CPUs did not grow
substantially in the last years, it leads to the conclusion that capabilities of CPUs
to improve runtime performance of existing computation-intensive models within
a single node are already almost exhausted. As mentioned above, distributed
computing together with new algorithms do not always provide the required pace
of improvements. This is one of the reasons why researchers are looking into the
computing capabilities of other types of hardware like graphics processing units
(GPUs) and field programmable gate arrays (FPGAs).

Figure 1.8 shows the trends in computing performance (floating point operations
per second, FLOPS) of some CPUs and GPUs on the market [71], including some
announced as of 2022. While the performance of CPUs has grown slowly, GPUs
show an up to five times greater increase in raw computing performance. This
performance leap has led to a wider adoption of GPUs in many fields of academia
and industry, making these devices more accessible. Figure 1.9 shows the number
of GPU-accelerated computer systems in the TOP500 [72] list, and today about 28%
of systems have GPUs installed. Moreover, initial exascale computer systems are
expected to be GPU-accelerated [73], as purely CPU-based systems cannot deliver
the same raw performance within the same power and price envelope. This is one
of the reasons for the increased hardware heterogeneity in recent years.

Another reason for hardware heterogeneity is the increased use of cloud tech-
nologies with the diversity of the workloads customers are running in clouds. Some
estimations show that the global cloud computing market size could double from
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Figure 1.8: Comparison of FP64 (floating point, 64-bit) performance for selected top CPUs
and GPUs. In recent years GPUs provide exponential growth in performance
while CPUs are stagnating.

US$445 billion in 2021 to US$947 billion by 2026 [74]. This is happening not only
due to the increased demand for digital services during the COVID-19 pandemic,
but also because of the increased use of artificial intelligence (AI) and machine
learning (ML) technologies by many companies seeking to optimize operating costs
and the scalability of their infrastructure. It should also be noted that today, ML
technologies are infused into traditional high-performance computing (HPC) simu-
lations when data is available, therefore making a need for GPUs and other custom
accelerators. For example, mobility simulations may now include RL, and this type
of workload can benefit substantially from executing on GPUs. Hence, the need for
hardware accelerators comes not only from the existing and established models,
but also through the intensified penetration of other technologies. The increased
availability of heterogeneous hardware, in industry and in HPC sectors, opens
new opportunities for the simulation models that can utilize computing power
more efficiently. Heterogeneous hardware is likely going to dominate future high-
performance systems as a key driver in their performance growth; therefore, in order
to bring mobility simulations at the next level, the models shall be re-developed for
the changing environment.

1.5 literature review

Currently, the transport sector is in transition from a set of relatively disjointed
systems to a highly integrated and optimized system as a whole. This not only
includes various modes of transport, but also the whole complexity of human
behaviour. Transport modelling is one of the key methods for understanding the
impacts of ongoing transformations in society on mobility and vice versa, and can
also help city planners and policy-makers to take decisions for robust and efficient
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Figure 1.9: Number of GPU-accelerated computer systems in the TOP500 list displaying an
upward trend, although flattening in recent years.

solutions. Along with the transformations in mobility, simulation models have to
factor in the relevant processes to match the needs of decision-makers and engineers.
Taking into account the increasing scale of simulations and the increasing complexity
of the models, improvements in the methodology of agent-based mobility modelling
are required in order to make simulated scenarios practical (i.e., of sufficient scale
and with acceptable runtimes). However, the traditional CPU-based hardware used
for traffic simulations has stagnated in computing power per core and provides
limited capacity for the necessary improvements in models’ runtime performance.
Limitations imposed by distributed computing are especially tangible when it comes
to the modelling of emerging transport modes like coordinated fleets or shared
micro-mobility services. This section provides a general review of the literature,
while each chapter provides a more detailed literature review where it is relevant.

One of the still under-explored directions of possible substantial improvements
in the runtime performance of ABMs in mobility is the use of hardware acceler-
ators. Previously, some attempts have been made to utilize GPUs and FPGAs for
traffic simulations, but the models developed were either not scalable or limited in
functionality. Strippgen and Nagel [75] performed one of the first attempts to run
agent-based traffic simulation on a GPU using a queue-based mesoscopic model,
and speed-up factors of 5.5 to 67 were achieved. The developers, however, faced
issues while integrating this GPU-accelerated model into MATSim [76]. The queue-
based model was relatively simple, without public transit support and gridlock
resolution, but proposed data structures for GPUs were important contribution into
the field. Perumalla et al. [77] implemented a field-based GPU-accelerated mobility
model and applied it for a large-scale scenario of the state of Texas (USA), with
the network of 2 million nodes and 5 million links, and initially 10 vehicles per
node. Results showed that is takes 13 minutes to run this scenario, but serious
limitations in modelled behaviour of the agents were applied making the model
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more suitable for evacuation scenarios. Shen et al. [78] developed a microscopic
traffic simulator with GPU acceleration and used it to optimize traffic signal timing.
The simulator, however, was not suitable for large-scale scenarios while focusing
on the specific optimization problem. Wang and Shen [79] presented a microscopic
traffic simulation model running on a GPU with a whole loop including the learning
process between iterations. While the model achieved a speed-up factor of about
105 compared to a CPU-based version, it was tested only on small lattice networks.
Moreover, other limitations were applied, like a single trip per agent and the lack
of multi-modality. Hirabayashi et al. [80] proposed multiple design schemes of
traffic simulation models on a GPU, and the results showed that a better runtime
performance can be achieved if more work is pushed to a GPU with less CPU-
GPU synchronization. Only one-dimensional version of the optimal velocity model
[81] was implemented, but it was able to run about 1 000 times faster on a GPU
compared to a single-threaded CPU version. Sano and Fukuta [82, 83] developed
a framework for large-scale agent-based simulations with the focus on traffic. The
works, however, were mostly focused on the agent-based daily activity planning,
including routing algorithms. This framework was later extended by Sano et al.
[84] to improve semi-automated performance tuning of the GPU-accelerated code.
Xu et al. [85, 86] developed a GPU-based microsimulation framework called Entry
Time-based Supply Framework (ETSF). The framework proposed a new method to
reduce the time spent on processing vehicles during their movement. The frame-
work showed a factor of 11.2 speed-up compared to a single-core CPU model,
however only a small-scale artificial grid network (10 201 nodes and 20 200 links)
was used. On a network with the realistic topology of Singapore (3 179 nodes and
9 419 lanes) the framework showed a factor of 2.37 speed-up [87]. Vu and Tan [88]
developed a GPU-based mesoscopic traffic simulation framework. Depending on
simulated static demand (100 000 to 300 000 vehicles) in the Singapore area, a factor
of 5.8 to 6.5 speed-up compared to a single-core CPU-based version was achieved.
Later, the framework was extended [89] with demand simulation on a GPU with
yet serious limitations like predefined sets of routes for OD pairs. Heywood et al.
[90] used the FLAME GPU framework [91] to run mobility simulations of very
limited scale and capabilities. For example, agents moved randomly on an artificial
grid network without any learning process implemented. Later, the model was
improved for transport simulations [92], and a factor of 43.8 speed-up compared to
the multi-threaded commercial microscopic simulator Aimsun [93] was achieved,
keeping most of the original limitations. Recently, Yedavalli et al. [94] developed a
GPU-accelerated microscopic traffic simulator called MANTA which was able to
run a scenario for San Francisco with 3.2 million trips in about 4.6 minutes. The
simulator had some serious limitations, for example, the lack of learning process
and non-car transport modes, as well as a static demand model with a single trip per
agent. A more comprehensive survey on the application of hardware accelerators in
agent-based models is available elsewhere [95].

The use of heterogeneous hardware can provide a natural way to reduce the
run time of mobility simulations, and this way can bring even more benefits as



14 introduction

the use of hardware accelerators is growing in many mobility-related fields, hence,
the technology can be utilized later in even more sophisticated simulations. Up
to now, only a few attempts have been made to implement traffic models capa-
ble of running on heterogeneous hardware. Xiao et al. [96] offloaded parts of a
CPU-based microscopic simulator to a GPU using the OpenCL framework. A fully
offloaded GPU-based version was found to deliver the highest speed-up factor of
28.7 compared to a sequential CPU-based version. The authors noted that a fully
OpenCL-based implementation was challenging to develop, had limited maintain-
ability and extensibility of the model, and that many commonly used data structures
had to be re-implemented for hardware accelerators. Later, Xiao et al. [97] applied
an OpenCL-based microscopic agent-based simulation model to small-scale (16 384

agents on a single four-lane road) traffic simulations executed on CPUs, GPUs
and FPGAs, where the FPGA-based implementation delivered the shortest runtime
among other types of hardware. Rajf and Potuzak [98] implemented and compared
the runtimes of two microscopic traffic models on CPUs and GPUs. While the
models were implemented in different programming languages, a speed-up of up
to factor of 12.4 was shown for the GPU-based model compared to the CPU-based
multi-threaded model. In other studies on hardware-accelerated traffic models [75,
79, 88, 99] only single-threaded limited implementations for CPUs were evaluated.
The literature shows that previous works on traffic models which can run on hetero-
geneous hardware mostly rely on the OpenCL framework (with its own limitations),
none of the works demonstrate multi-modal scenarios, and CPU-based models were
limited in scalability.

Hence, it remained an open question if specialized hardware accelerators can
not only bring some performance improvements in prototyped traffic models, but
rather be used for practical applications for large-scale and complex multi-modal
scenarios. While the simulation of a public transit system is an essential part of
many existing mobility simulators [76, 93, 100–102], the modelling of this transport
mode on high-performance systems received a very little attention in the literature.
Only a few works demonstrated multi-modal distributed mobility simulations [62,
63], as well as a CPU-based parallelized simulation of public transit [103]. In the
field of large-scale modelling of coordinated fleets, recent works also emphasize
the poor performance of existing simulation tools. Bischoff and Maciejewski [104]
simulated the replacement of private cars in Berlin (Germany) with a coordinated
taxi fleet varying its size from 50 000 to 250 000 vehicles. The authors reported
that it took about 3 hours to run a single iteration with a fleet of 100 000 vehicles.
Maciejewski and Bischoff [105] used fleets of up to 11 000 vehicles in another study
in the Berlin area, and for the largest fleet size more than 30 hours of runtime
required to converge the scenario. Levin et al. [106] noted that in the case study
with coordinated fleets in Austin, Texas (USA), only a sub-region was used due to
performance limitations. Hörl et al. [107] reported that up to 4 hours was required
to run a single daily iteration of a scenario for the city of Zurich (Switzerland) with
a coordinated taxi fleet of up to 18 000 vehicles. The literature shows that large-scale
multi-modal scenarios, which include public transit and coordinated fleets, typically
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require long runtimes, and researchers tend either to reduce the complexity of the
models or to use a sample of the population with downscaled infrastructures. Only
a limited number of works use high-fidelity traffic simulation models for large-scale
multi-modal scenarios with coordinated fleets and public transit systems, and, to
the best of the author’s knowledge, such scenarios were not demonstrated running
on a GPU.

While many researchers tend to use downscaled scenarios with samples of
populations to improve the runtimes, the consequences of such downscaling are
not well studied. Moreover, there is evidence that small population samples can
lead to discrepancies in traffic simulations. Ben-Dor et al. [108] reported issues
when using a 10% population sample in MATSim simulations of the Tel Aviv
metropolitan area. In these simulations, buses tended to get stuck in long waiting
queues when the flow capacity of network links is over-used by private cars. Bischoff
and Maciejewski [109] showed that a 10% population sample leads to 11% of the
demand for autonomous taxis compared to a simulation with the full population
in the case study in Berlin. At the same time, the deviations in the durations of
trips with taxi vehicles involved were no more than 3%. Simoni et al. [110] noted
that depending of the population sample size, the results of a MATSim simulation
of central Zurich do vary. For example, flows on links decreased faster with the
increased population sample size. Erath et al. [111] faced issues with overcrowded
buses when simulating public transit in Singapore with a 10% population sample
using MATSim. Bösch et al. [112] noted that in the Switzerland baseline scenario for
MATSim one should not use population samples less than 5%–10% for scenarios
with shared cars to prevent inconsistencies in the supply-demand balance. Kwak
et al. [113] systematically studied the errors that arise in traffic simulations due to
the use of samples of the full population with a macroscale static traffic assignment
model. The work showed that the use of samples of the full population affects the
predicted traffic flows even at the macro-scale. Llorca and Moeckel [114] studied
the effects of downscaled populations in the scenario of the Munich metropolitan
area. The authors demonstrated that the average travel time varies with the size
of the population sample, with the minimum for a sample 10%–20%. The work
showed that a scale factor of 5% can be used in simulations where only highly
aggregated results are acceptable. Ben-Dor et al. [115, 116] focused on the impacts
of downscaled scenarios in relation to car traffic using scenarios of a relatively
small scale and providing subjective metrics. The authors emphasized the need
of population samples of at least 25%–30% when disaggregated outputs are to
be analysed. In overall, there is the lack of systematic and quantitative studies of
the impacts of downscaled populations output results in multi-modal scenarios,
including car traffic, public transit and coordinated fleets.

Finally, visualization and analytics of large-scale traffic simulations also pose
challenges due to high volumes of generated data. Sewall et al. [117] presented an
approach to visualize large-scale traffic flows on highways by presenting a lane as
a continuum flow with a low variation in speed. This method, while not being an
agent-based traffic simulation, demonstrated that a traffic model can be defined
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to optimize visualization. Later, Sewall et al. [118] presented another method to
visualize massive traffic flows reconstructed from spatio-temporal discrete data
sources. Another approach implemented by Sewall et al. [119] uses a hybrid mi-
croscopic agent-based model which simulates and visualizes only the regions of
interest, while the rest is modelled with continuum flows. This model achieved
eight rendered frames per second with 190 000 vehicles simulated. Suzumura et
al. [120] developed a large-scale traffic simulation platform that was able to run a
Japanese nationwide daily simulation. While the authors mention that the platform
has visualization capabilities for moving vehicles, no performance metrics or im-
plementation details were provided. Shen and Jin [121] developed an agent-based
system for detailed traffic animation in an urban environment using a car-following
model with multiple driving profiles. A straight four-lane road with 40 000 vehicles
took about 40 milliseconds to calculate a frame, and 20 milliseconds per frame if the
lane-changing model is disabled. Heywood et al. [90] used the FLAME GPU [91] to
run a microscopic traffic model on a GPU and visualize it in real-time. This is one
of few works where a GPU-accelerated traffic model has been coupled with visu-
alization. The results showed that it takes 1.2 milliseconds per simulated iteration
to visualize vehicles, and that the visualization negatively impacts the simulation
performance. Lu et al. [122] developed the Toolbox for Urban Mobility Simulations
(TUMS) using LandScan [123] and microscopic agent-based traffic simulator TRAN-
SIMS [101] to make it applicable globally. TUMS includes a macroscopic tool for
link-based analysis in 15-minute intervals, and a microscopic tool for analysis of
individual vehicles which are rendered with up to 1-second resolution. However,
no information about the rendering performance of the tools was provided. The
MATSim framework [76] for agent-based transport simulations has multiple tools to
visualize and analyse outputs from scenarios. OTFVis has been developed mainly
for the debugging of input data and provides limited visualization functionality.
Another alternative is a commercial tool Via which provides better visualization
capabilities, but the free version is limited in scale and functionality, and no runtime
benchmarks for large-scale scenarios are available. Gehlot et al. [124] developed an
agent-based evacuation simulator for large-scale scenarios with a microscopic traffic
model. The visualization module was only evaluated qualitatively and is found to be
smooth and efficient with a network of 4 000 nodes and 8 000 links and with up to
100 000 vehicles simulated. Kim et al. [125] developed a mesoscopic traffic simulator
with a real-time visualization library, SALT-Viz. The rendering performance was
evaluated using the Gangdong district’s model in Seoul (South Korea) and the
visualization part was able to output 148 frames per second. However, dynamically
moving vehicles were not rendered, but rather network segments were colourised
based on flow densities. Charlton and Laudan [126] presented a web-based platform
to visualize outputs of MATSim in a web-browser. However, the performance of
the presented platform is unclear as no specific runtime benchmarks were reported.
To conclude, most of the prior works are focused on static and aggregated forms
of visualization like plots, charts or distributions. Some works, that are focused
on dynamic visualizations, typically use small-scale cases without quantitative
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scalability benchmarks and without almost any technical details how the outputs of
agent-based simulations are coupled with rendering hardware.

1.6 research objectives

Based on the provided literature review, the research objectives of the current work
are the following:

• Design and implement a high-resolution traffic simulation model capable of
running large-scale scenarios with millions of agents in a few minutes.

• Adapt the model to run simulations transparently on heterogeneous hardware
including many-core CPUs and GPUs.

• Implement in the model existing and emerging transport modes other than
cars, including public transit and coordinated fleets with detailed modelling
of BEV technology, making it possible to run multi-modal scenarios.

• Using the developed framework, study the impacts of the deployment of
coordinated fleets, both standalone and integrated with public transit systems,
on transport systems and people’s behaviour.

• Using the developed framework, identify and quantify the uncertainties of
results coming from downscaled scenarios, including cars, public transit and
coordinated fleets.

• Extend the simulation framework with visual analytics to simplify the devel-
opment and post-processing of large-scale scenarios.

• Make the whole developed framework scalable and globally transferable,
ready-to-use as an integrated solution for large-scale mobility simulations.

1.7 outline

The structure of the thesis is organized as follows:

Chapter 1 discusses the motivation for and topic of this study, identifying
objectives which are covered in the consequent chapters.

Chapter 2 provides a short introduction to the concepts and challenges of GPU
programming with a focus on the aspects that are tackled in the thesis. The
overview of the main loop of the developed mobility simulation framework
is presented. While the main focus of the thesis is the simulation of traffic
and people’s interaction with transport systems, a brief description of each
part of the simulation loop is provided. A detailed methodology to simulate
moving vehicles is then presented, including a queueing traffic model, gridlock
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resolution mechanism and a velocity model to improve traffic dynamics for
BEVs. The performance and scalability of the implemented loop is extensively
benchmarked and profiled. How the developed framework can be adapted
to support massively parallel heterogeneous CPU-GPU hardware with little
effort is also demonstrated.

Chapter 3 describes the multi-modal extensions of the developed framework.
These extensions include the simulation of an approximated flyover mode,
public transit systems and coordinated fleets. Detailed descriptions of algo-
rithms and data structures are provided for each of the implemented transport
modes. The simulation framework is evaluated for performance and scala-
bility with multi-modal scenarios. The public transit extension uses a novel
modelling approach based on state machines in order to optimize execution
on GPUs. For the fleet modelling, a dedicated simulation loop is presented
together with scheduling algorithms and mechanisms for host-device synchro-
nization. The developed fleet model is applied to study the impacts of the
deployment of coordinated fleets in Zurich to replace private cars.

Chapter 4 describes a unified modelling pipeline designed to simplify and
automate the generation of agent-based synthetic travel demand for large-scale
scenarios. The pipeline takes available input datasets and, by performing a
series of data transformations, generates disaggregated demand for the given
area. Using Switzerland as a case study, it is demonstrated, in a step-by-step
manner, how local mobility microcensus and other open datasets are used
to build relevant discrete choice models (DCMs), which then are applied to
the existing synthetic population of Switzerland to generate travel demand.
It is demonstrated how the presented pipeline can be adapted to model the
behaviour of people during the COVID-19 pandemic in Switzerland.

Chapter 5 presents the results from a case study in the Munich metropolitan
region, where the impacts of integrated MaaS services composed of public
transit and coordinated fleets are evaluated on a large scale. A modelling
pipeline for Bavaria is built based on a German mobility microcensus in order
to generate travel demand for the local synthetic population. A new transport
mode, MaaS, is implemented in the simulation framework using intermodal
routing with public transit as a backbone mode and a coordinated fleet feeding
passengers at the first and last mile stages of their trips. Various fleet sizing
options, together with distance limitation policies, are evaluated to study the
potential benefits of such integrated systems.

Chapter 6 presents the results of applying the developed framework to eval-
uate the uncertainties in agent-based mobility simulations with downscaled
inputs. First, existing measures of goodness-of-fit are evaluated to identify
applicability for comparison of traffic and vehicle occupancy dynamics from
two simulations. Second, in the absence of a statistically reliable measure, a
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novel similarity measure based on the chi-squared test is introduced. Using
previously developed scenarios for Switzerland and Munich, the uncertainties
of simulation results using downscaled inputs are assessed for both disaggre-
gated and aggregated variables. The analysis of uncertainties is performed for
car traffic, occupancy of public transit vehicles and the predicted performance
of coordinated fleets.

Chapter 7 demonstrates the capabilities of the visual analytics framework
developed as a part of the integrated mobility simulation framework. The
approach used to generate and store detailed events from simulated scenarios
is presented. In contrast to other, event-driven simulators, these events are
only used for analytical and visualization purposes, and can be generated and
recorded upon a request. The architecture of the visual analytics framework is
described, with graphical examples of post-processed outputs. The runtime
performance and scalability of the developed framework are evaluated using
large-scale scenarios of Switzerland and Hokkaido (Japan).

Chapter 8 summarises the main findings of this work and the outcomes of
the case studies. It also suggests directions for future research.





2
M O B I L I T Y S I M U L AT O R

All roads lead to people.
— Antoine de Saint-Exupery

The chapter is based on contributions from the following publications:

Saprykin, A., Chokani, N. & Abhari, R. S. GEMSim: A GPU-accelerated
multi-modal mobility simulator for large-scale scenarios. Simulation Modelling
Practice and Theory 94, 199 (2019)

Saprykin, A., Chokani, N. & Abhari, R. S. Large-scale multi-agent mobility
simulations on a GPU: towards high performance and scalability in. 151 (Elsevier,
2019), 733

Saprykin, A., Chokani, N. & Abhari, R. S. Gridlock resolution in a GPU-accelerated
traffic queue model in. 170 (Elsevier, 2020), 681

Saprykin, A., Chokani, N. & Abhari, R. S. A data-driven approach to run agent-
based multi-modal traffic simulations on heterogeneous CPU-GPU hardware in. 184
(Elsevier, 2021), 720

Plagowski, P., Saprykin, A., Chokani, N. & Shokrollah-Abhari, R. Impact of
electric vehicle charging–An agent-based approach. IET Generation, Transmis-
sion & Distribution 15, 2605 (2021)

This chapter, first, provides a short introduction into the concepts and challenges
of GPU programming. Then, an overview of the developed mobility simulation
framework is presented; detailed descriptions of the algorithms and data structures
used to run GPU-accelerated mobility models are provided. The framework also
includes gridlock resolution and velocity tracking models used to improve simulated
traffic dynamics. In addition to agents with their logic, the state of vehicle agents
is modelled separately. Finally, a hardware abstraction layer that allows massively
parallel mobility models to be run transparently for users not only on GPUs, but
also on many-core CPUs, is presented. The chapter aims to contribute to the field of
GPU-accelerated multi-modal mobility modelling by implementing a full simulation
loop with adaptive behaviour of the agents at a large scale with high temporal and
spatial resolutions. Runtime benchmarks prove that the framework is scalable and
significantly outperforms state-of-the-art tools that have similar functionality.

21
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2.1 gpu background

The hardware design of GPUs is different from CPUs, which reflects different
programming models. The basic knowledge of GPU hardware design is essential to
understand the challenges of implementing agent-based traffic simulations and how
the proposed solutions do work. While this work refers to GPUs and the CUDA
framework developed by Nvidia, the same or very similar concepts are employed
by other GPU vendors like AMD.

2.1.1 GPU-based approach

CPUs and GPUs have been designed to achieve different goals, and their architec-
tures support these design goals. Figure 2.1 presents the schematics of the layouts
of silicon dies for CPU and GPU types of devices. A typical modern CPU has up to
several dozen cores, each of them decoding and executing program instructions in a
parallel thread. A CPU core is designed to execute a stream (thread) of instructions
as quickly as possible. It therefore incorporates quite complex data caching and flow
control, which takes most of the transistors on a silicon die. In contrast, GPUs were
designed to execute thousands of threads in parallel to efficiently render images
from millions of vertices; hence, each core is executing a simpler logic in general.
This difference results in hardware design: while CPUs have large caches with
more complex memory hierarchies, GPUs use more transistors on a die to build
data processing cores. To be more precise, GPU cores are not exactly the same
cores as of CPUs, and one should have called them scalar processors or units, but
during the course of this thesis both naming approaches are accepted and used
interchangeably.

By providing more cores with data processing logic, a GPU can hide long memory
access latencies with computation. That is, when a group of GPU threads is waiting
for data from memory, another group of threads can use hardware resources to
perform computations. A specialized hardware design allows GPUs to achieve
the much higher instruction and memory bandwidth overall compared to CPUs.
One can also look at the difference in the following way: CPU cores are much
faster but have a relatively narrow computing frontier, while slower GPU cores
have a much wider computing frontier. Depending on the workload type, the latter
hardware design, when executed on a large number of cores, can achieve higher
computing performance. However, in order to efficiently run code on a GPU, a
different approach in programming is required.

The main challenge in developing software for GPUs is determining how to
utilize the massively parallel architecture in the most efficient way. In many cases,
this requires that existing software is re-written using different algorithms and data
structures. Generally speaking, a distinct programming mindset is needed to design
and implement software for GPUs, demanding more effort from a developer com-
pared to the writing of software for execution on CPUs that have well-established
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Figure 2.1: Schematics of silicon dies for CPU (left) and GPU (right). Computing cores are
filled with dark green.

frameworks and methodology. Essentially, in light of recent advances in rapid ap-
plication development, writing GPU-accelerated code is a step back that requires
that a developer has a deeper understanding of hardware and, consequently, com-
mits more time and effort to design software for it. The complexity of software
development for GPUs is one of the main disadvantages of the technology; how-
ever, the situation is changing with many ready-to-use GPU-accelerated libraries
and frameworks. For example, the CUDA framework from Nvidia allows one to
develop software for massively parallel execution on a GPU using supplied libraries
for ML, fast Fourier transforms, network communications and more. The future
development of a GPU-accelerated software ecosystem is a key enabler for wider
acceptance and use of this technology.

One should also note that not all software can be executed efficiently on a GPU.
First, typical software represents a mix of sequential and parallelized code. When
the sequential portion of the code dominates, and it is not possible to make it
parallel, there is a little incentive to bring such software to GPUs as benefits would
be negligible. Second, some tasks are simply not well suited for execution on GPUs.
For example, a task may not provide sufficient parallelization, making it challenging
to saturate GPU cores with enough work to hide memory latency; in this case, poor
occupancy of GPU resources may lead to the opposite result when the execution of
the code on a GPU takes longer than on a CPU. A deep domain knowledge of the
problem to be solved on a GPU is another disadvantage of the technology, as the
required assessment of the potential benefits of implementing software for GPUs
has to be made in advance, in order to reduce the risks of wasted development
resources.

That said, a GPU-accelerated model carefully split into parts executed separately
on CPUs and GPUs, and the ways to effectively interact between these parts, shall
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be considered. One can also see a GPU-accelerated model as a combination of
hardware and software (programming) models, where the programming model
defines and controls how the hardware part executes the code. Schematics of the
CUDA software model and the GPU hardware model are presented in Figure 2.2
and described below in more detail.
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Figure 2.2: Software and hardware models of GPUs in Nvidia’s CUDA representation.

2.1.2 Hardware model

On the hardware side, a GPU is composed of symmetric multiprocessors (SM). The
smallest execution unit is a CUDA core (or scalar processor unit), and a typical SM
contains from dozens to hundreds of cores. Each time an SM receives a block of
threads, it splits them into groups and schedules the execution. A core executes a
thread from the software side, and an SM schedules execution of threads on the
available cores in groups of 32 called warps. In addition to scheduling, an SM also
creates and manages the execution of the threads: when a block is finished, another
waiting group of threads is scheduled to use the vacant resources. According to the
SIMD (single instruction, multiple data) principle, all threads in a warp execute the
same instruction to acquire performance gain. Individual threads in a warp always
start at the same program address, but they have their own instruction address
counter and a register state. This organisation of resources allows threads to diverge
at branches and execute independently.

Branching the code requires special care when programming for GPUs. When a
warp executes an instruction, full efficiency is achieved if each thread follows the
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same execution path, otherwise the execution is serialized. If some threads in a
warp diverge on their execution path because of a branching condition, then other
threads are disabled until the diverged threads finish the execution. For example, if
a code contains an if-else condition and half of a warp evaluates it to true, then, first,
half of the warp is executed while the rest of the threads are disabled; afterwards,
when the first half is finished, the second half of the warp is executed while the
first one is waiting. Basically, the total execution time of the warp equals the sum of
times required to execute each of the conditional branches by the halves of the warp,
which means that each thread actually executes both branches. In other words, the
execution is serialized. This is something that a developer should want to avoid
in the models. To improve branching performance, GPUs exploit a SIMT (single
instruction, multiple threads) approach similar to SIMD, but each thread of a SIMT
block has its own stack pointer and can operate on a different data set. This allows
for a GPU to automatically handle code branching through masking, while with the
SIMD approach, a developer has to handle branching manually. Modern GPUs go
even further and introduce so-called independent thread scheduling, when the GPU
can group threads from a warp into SIMT units, hence allowing threads to diverge
and reconverge at sub-warp granularity. When threads are scheduled independently
within SIMT units, both code branches will be executed sooner or later, but still
only a single instruction can be executed by a warp at a time.

An SM as a hardware unit has a limited amount of available resources like
registers, parallel data cache or shared memory. These resources are partitioned
among the executed warps, and the SM keeps the execution context for each warp
until its end of life, hence, warps cannot migrate between SMs. On the one hand,
this approach allows switching between execution contexts at no cost compared
to expensive context switch of a CPU, and the warp scheduler can select a warp
with the threads ready to execute (that is, when required data fetched or stored in
memory, or arithmetic units of the SM are not used) at the time the instruction is
issued. On the other hand, the number of created and managed blocks of threads
on the SM depends on the code executed by threads. For example, if the code
uses too many registers, then only a few blocks can reside on the SM, potentially
making poor use of other hardware resources and reducing the overall runtime
performance.

It would be also interesting to note that many modern CPUs, as they are reaching
the limits of single-core performance, follow the trend for vectorized computations
by implementing special blocks of SIMD units, and making them wider as well. This
means that software designed for GPU execution may benefit later from running on
such SIMD-accelerated CPUs as they become technically closer to GPUs.

2.1.3 Programming model

On the software side, threads are grouped into blocks, and blocks are grouped into
a grid. Grids and blocks define a thread hierarchy within the executed code on
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the GPU. A GPU maps blocks of threads on SMs, and, like warps, a block cannot
migrate from one SM to another. Threads within the block can synchronize their
execution and share SM resources, which provides additional opportunities for
optimizations. A developer defines a function (kernel) that is executed by each
thread on a GPU, and CUDA provides an indexing mechanism for threads within
the kernel by assigning a unique thread identifier (ID) which is accessible through
the built-in kernel variables. A thread ID can be calculated through the indices of a
thread and the block in which it resides. Based on the indexing, threads can split the
workload and communicate to each other. Consider the following example denoted
in Listing 2.1, which adds, element-wise, two vectors of the same size and writes
output to another vector.

1 __global__ void vector_add ( f l o a t * in_a , f l o a t * in_b , f l o a t * out )
2 {
3 i n t idx = threadIdx . x ;
4 out [ idx ] = in_a [ idx ] + in_b [ idx ] ;
5 }

Listing 2.1: Exemplary CUDA kernel for element-wise vector summation.

First, the keyword __global__ indicates to the CUDA compiler that the code
for this function shall be generated for both the host and the device. Second, each
GPU thread uses a built-in three-dimensional (x, y, z)-variable threadIdx to get a
thread index and split the workload. After the index is constructed, the sum of two
elements from input arrays in_a and in_b is calculated pair-wise and is written
into the output vector out. In general, a thread index is a three-dimensional vector,
but in this example y and z components are ignored as the kernel is executed in a
single one-dimensional block of threads, and the component x defines the thread ID.
However, in real applications, a block may have multiple dimensions, and, moreover,
multiple blocks can be also organized in a three-dimensional grid. The built-in
kernel variable blockDim provides the size of a block in each dimension, and the
built-in kernel variable blockIdx provides a block index within the grid, exactly in
the same way that the variable threadIdx does. Additionally, the gridDim variable
provides the size of the grid in each dimension. The presented thread hierarchy
provides a natural way to partition a compound task in an array, matrix or volume.
In a simple case, a thread ID in the grid of a single 3D block can be calculated as
follows:

I1_3D = x + Dx · y + Dx · Dy · z (2.1)

Here, block dimensions are represented by the vector (Dx, Dy, Dz). When a grid
consists of multiple 3D blocks aligned sequentially, a block index (xb, yb, zb) within
the grid is required to calculate a thread ID:

I1D_3D = I1_3D + Dx · Dy · Dz · xb (2.2)
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In the most complicated case, when a 3D grid consists of 3D blocks, a thread
ID is calculated in two steps. First, a block ID within the grid of dimensions
(Dg,x, Dg,y, Dg,z) is calculated:

Ib,1D_3D = xb + Dg,x · yb + Dg,x · Dg,y · zb (2.3)

Then, the final thread ID can be obtained as follows:

I3D_3D = Ib,1D_3D · Dx · Dy · Dz + Dx · Dy · z + Dx · y + x (2.4)

Listing 2.2 shows a code snippet that allocates memory for data arrays on both
the device and host sides, transfers required data to the device, calls the previously
defined vector summation kernel from Listing 2.1, and copies the results back from
the device to the host. One can note how grid and block dimensions are passed to the
kernel at the launch time through a special chevron syntax (<<< >>>). Assuming
that the size of vectors is N, the kernel can be launched with a single-dimension
grid of size 1 (the first parameter within chevrons) and a single-dimension block of
size N (the second parameter within chevrons).

1 s i z e _ t ds ize = N * s i z e o f ( f l o a t ) ;
2

3 // A l l o c a t e memory on device (GPU side )
4 f l o a t * vec_a = ( f l o a t * ) cudaMalloc ( ds ize ) ;
5 // Do s i m i l a r l y with vec_b and vec_out
6

7 // A l l o c a t e memory at host (CPU side )
8 f l o a t vec_a_host [N] ;
9 // Define s i m i l a r l y vec_b_host and vec_out_host

10

11 // F i l l host arrays with data
12 // . . .
13

14 // Copy data from host to GPU
15 cudaMemcpy ( vec_a , vec_a_host , dsize , cudaMemcpyHostToDevice ) ;
16 cudaMemcpy ( vec_b , vec_b_host , dsize , cudaMemcpyHostToDevice ) ;
17

18 // Run GPU code
19 vector_add <<<1 , N>>> ( vec_a , vec_b , vec_out ) ;
20

21 // Copy r e s u l t s from GPU to host
22 cudaMemcpy ( vec_out_host , vec_out , dsize , cudaMemcpyDeviceToHost ) ;
23

24 // . . . Do data process ing and f r e e device memory
25 cudaFree ( vec_a ) ;
26 // Do s i m i l a r l y f o r vec_b and vec_out

Listing 2.2: A typical approach of memory management and execution of code on GPUs,
with data transfer between the host and the device.

The above-mentioned thread indexing system provides a flexible way to split the
workload, but a developer has to find a reasonable compromise between SM occu-
pancy and the performance of a single block to maximize the overall performance.
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As discussed before, large blocks may lead to poor resource usage, while smaller
blocks can reduce the performance by wasting memory bandwidth. There are also
some physical limitations of the grid and block dimensions as block hardware
resources reside on the same SM until the block finishes its execution. This is one of
many challenges arising during the development of GPU-accelerated models. Typi-
cally, a kernel grid is either picked manually by doing test runs, or is determined
dynamically at runtime.

2.1.4 Memory management

One aspect of GPU programming that separates it from the CPU-based program-
ming to which the vast majority of developers are used, is memory management,
including allocation, deallocation and transfers between the host and the device. The
reason for this is how the GPU programming model is organized. While kernels are
executed on a physically separate device, the host continues running the program
that controls the execution of the code on the device. This assumes that the device
has its own memory spaces, physically separate from the host. As kernels work
with device memory only, a host program has to manage device memory spaces
visible to kernels; in the same way, to access data from the device, the host has to
transfer it from the device first. Unified Memory technology, available from CUDA,
allows bridging of the host and device memory spaces by providing automati-
cally managed memory. Managed memory is a common, coherent address space
available to all CPUs and GPUs installed in the system. While Unified Memory sim-
plifies the memory management process, this work is focused on the most generic
approach with manual control of memory management. The manual control of
memory management not only allows for better optimization possibilities in given
hardware resources, but also reduces performance overheads introduced by other
memory management technologies. In Listing 2.2, CUDA functions cudaMalloc and
cudaFree are used to allocate and free the device memory, respectively, and the
CUDA function cudaMemcpy is used to move data between the host and the device.
Depending on the executed software model, data transfers could be one of the major
bottlenecks in the runtime performance of GPU-accelerated code.

Another challenging aspect of GPU programming is the optimization of memory
access. During the execution, a GPU thread has access to multiple memory spaces,
specifically:

• Thread-local memory, which is accessible only by the thread, making this
memory private. Depending on the data size of local variables, it can be placed
either in registers (low latency) or in global memory (high latency).

• Shared (on-chip) memory is visible only to the threads of a block, and
this memory can be used to implement within-block optimizations. Shared
memory has a relatively small size (kilobytes) and much lower latency than
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global memory, but is organized in memory banks that can cause access
conflicts with increased latency.

• Global (off-chip, DRAM) memory is accessible by all threads, but has very
high latency and large size (gigabytes).

• Constant memory is accessible by all threads and it resides in the global
memory space, but is cached in the constant cache. This memory has very
low latency when threads hit the cache and jointly access the same address,
making it suitable for storing constant data used by threads through the same
addresses.

• Texture and surface memory is accessible by all threads and it resides in
the global memory space, but is cached in the texture cache. This memory is
designed for fetches with constant latency; even a cache hit does not reduce
the latency. The texture cache is optimized for 2D spatial locality, hence, when
threads from a warp read data that is close in 2D, optimal performance can
be achieved.

By using the terms "low latency" and "high latency", one can expect that some
memory spaces like shared memory are accessible in a few clock cycles, while others
like global memory require a few hundred clock cycles. Typically, memory on GPUs
is managed manually by a developer, who has to decide how to split data across
multiple memory spaces, and which data structures and algorithms to use in order
to maximize the performance. In general, the performance of a code is limited in
the following ways:

• memory bound code is when the measured performance of the memory
system is close to or at the maximum;

• compute bound code is when the measured throughout of compute instruc-
tions is close to or at the maximum;

• latency bound code is when it is neither memory bound nor compute bound,
and typically happens when GPU hardware is not saturated with enough
work.

As will be shown later, a GPU-accelerated part of the developed mobility simulator
is mostly latency and memory bound as most of its runtime is spent in propagating
agents through the network graph using spatial queues. Moving agents (persons
and vehicles) between queues does not require extensive computations but rather
the execution of many reading and writing transactions through global memory.
While some computations are performed to estimate vehicle dynamics or track the
state of charge (SoC) of BEVs, the number of computations is negligible compared to
the number of global memory transactions. In order to improve access to the global
memory, all threads within a warp shall access memory in a certain continuous
physical range when executing an instruction (this is referred to as coalesced access).
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When threads within a warp access memory in a scattered manner, the memory
latency increases substantially.

Coalesced access can be achieved by using optimized data structures in GPU
memory [128, 129]. There are two main approaches to storing arrays of items: array
of structures (AoS) and structure of arrays (SoA). The difference between these
approaches is shown in Listing 2.3: when a thread with index i in a warp processes
the x coordinate of the object with index i in the array, then with AoS (lines 3–9) the
data is scattered with a gap of sizeof(point3_aos) for any threads i and i + 1 in
the warp. In contrast, with the SoA approach (lines 11–17), the data for the warp
is organized in one single and continuous chunk of memory. The former requires
more memory bandwidth to execute an instruction for the warp, thus reducing the
overall performance.

1 # def ine NPOINTS 32

2

3 // Array of s t r u c t u r e s
4 s t r u c t point3_aos {
5 double x ;
6 double y ;
7 double z ;
8 } ;
9 point3_aos points_aos [NPOINTS ] ;

10

11 // S t r u c t u r e of arrays
12 s t r u c t point3_soa {
13 double x [NPOINTS ] ;
14 double y [NPOINTS ] ;
15 double z [NPOINTS ] ;
16 } ;
17 point3_soa points_soa ;

Listing 2.3: Array of structures (AoS) and structure of arrays (SoA) approaches to store 3D
points.

The above example, showing a warp of threads trying to access the x coordinate
of the points using structures in Listing 2.3, with each thread reading its own point,
is represented in another way in Figure 2.3. When AoS is used, data points are
allocated sequentially in memory, one after another, making gaps between the same
coordinates of close-by points. With SoA, x coordinates of the points are allocated
sequentially in memory first, followed by the arrays of y and z coordinates. In the
former case, two adjacent threads from the warp will have a gap between memory
transactions of 24 bytes, while in the latter case there would be no gaps. This means
that with the AoS approach only one third of the memory bandwidth is utilized
while the rest is wasted. In contrast, the SoA approach does not waste memory
bandwidth at all and the code executes faster.

Obviously, coalesced memory access is not always possible, especially when using
data structures with random memory access patterns like trees or linked lists. For
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Figure 2.3: Scattered (top) and coalesced (bottom) memory access patterns of threads
within a warp on a GPU.

such situations, there are other potential optimizations available for GPUs. For
example, if a kernel executes a lot of scattered memory transactions, one could try
to disable (bypass) the L1 cache to avoid using wide transactions that waste the
memory bandwidth. The reason for such behaviour by the L1 cache is as follows.
Typically, GPUs can execute 32- to 128-byte-long memory transactions. However,
when the L1 cache is turned on, a device will stick to 128-byte transactions as it
fits the size of a cache line, wasting a large fraction of the bandwidth. When the
L1 cache is turned off, the device can use shorter, 32-byte transactions and waste
less of the bandwidth. This behaviour of caches, however, varies depending on the
capabilities of a GPU, and some devices do not promote by default a full cache line
of 128 bytes, but operate with 32-byte long sectors of a cache line, and only fetch
missing sectors of the accessed cache line.

Another issue that may arise during the development of GPU-accelerated agent-
based models is memory alignment and the related alignment of data structures.
For example, Nvidia GPUs allocate memory with the alignment of at least 256

bytes, which means that even if a program needs to allocate four bytes, it will
eventually use 256 bytes of the device memory. Having millions of agents and their
individual data to simulate, a common approach for CPU-based programming when
the memory is allocated in per-agent chunks, may lead to excessive use of memory
when applied to GPUs. In such circumstances, one must effectively implement its
own memory allocator to distribute GPU memory to store agent-based data more
efficiently.

The optimization of global memory access through efficient data structures and
algorithms, use of higher levels of the memory hierarchy like the L2 cache, and the
use of diverse memory spaces are among the major focuses of this thesis. Thus, the
above-mentioned memory access optimizations, as well as others, will be introduced
later in the context of mobility simulations.
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2.2 framework overview

During the course of the thesis, the GPU-enhanced mobility simulator (GEMSim)
was developed as part of EnerPol, a bottom-up, integrated simulation framework
for scenario-based analysis of energy, urban planning and population dynamics
[130–132]. GEMSim integrates into EnerPol the capability to assess mobility. C/C++
programming languages were used to efficiently work with hardware and to have
maximum control for performance optimizations. Nvidia’s CUDA SDK for GPU
programming was used for GPU acceleration.

GEMSim’s main simulation loop implements a co-evolutionary [133] learning
process for the agents. The structure of the main loop is shown in Figure 2.4 and its
parts are described later. The loop iteratively performs heterogeneous computations
that are shared between the host and the GPU, until it converges a scenario to a
Nash equilibrium [134] state, when an agent cannot improve their daily performance
unilaterally. Wardrop [135] suggests that this state can be used to predict traffic
patterns in transport networks.

One of the fundamental problems that may arise when switching from a CPU-
based mobility simulator to a GPU-based simulator is how to handle simulation
events. Many existing simulators rely on the events generated during a simulation in
order to improve performance and provide more flexibility for extensions. An event
occurs when something happens (that is, an agent enters a link), and a simulator
needs to react only to generated events, rather than checking at each time step for
all possible changes from the previous step. For multiple reasons, GPUs are not
well suited for such asynchronous events. First, it is difficult to process events in a
coalesced manner because a typical event has references to agents, links, vehicles
and other objects. Second, some events require a corresponding match with another
event (for example, an agent entering and leaving a link) and with a limited dynamic
memory allocation and limited memory capacity on a GPU device, the processing
of events may be impractical, especially for large-scale scenarios.

GEMSim’s simulation loop does not rely on events, and all necessary reactions
are incorporated into the GPU code directly within the pre-allocated device memory.
For example, congestion is calculated in-situ when each agent passes a link from
his/her route. However, events can be generated and recorded during the simulation
for further post-processing and analysis.

A scenario configuration file contains all the information required for GEMSim
to run the simulation loop, including input datasets and other parameters. The
simulator reads a configuration file, then reads specified input datasets like network
and plans, pre-processes the data if necessary, and executes the simulation loop
according to the provided parameters.
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Supply: G = ⟨V, E⟩

T = ⟨RT , HT⟩

F = ⟨VF , OF⟩

Demand: D0

Mobility simulation

S ,Dt → SE
t ,Ut

Analysis

Learning

Dt+1 ← L(Dt,SE
t ,Ut)

Figure 2.4: Structure of the GEMSim’s main co-evolution simulation loop.

2.2.1 Supply and demand

The supply part S of the input data is represented by a multi-modal network G, and
optional inputs like public transit schedule T and fleet operators F . The network G
is a directed graph with a set of links E and nodes V, where a node represents an
intersection of roads, and a link is a road segment between two nodes. Each link is
described with the physical properties that are required for the traffic simulation
model: length, number of lanes, flow capacity, free speed, and the set of allowable
transport modes.

The public transit schedule, T , is composed of a set of transit routes RT and a
set of transit stops HT . Each transit route defines a network on G, an ordered set of
transit stops from HT to follow; and departure frequencies for the initial terminal
stop of a route.

Each of the fleet operators from F is composed of a set of vehicles from VF and a
set of operating policies OF. Fleets of vehicles can either be generated automatically
using a default type if their performance does not matter during the simulation
(i.e., no need to track SoC of BEVs) or can be provided explicitly. Operating policies
define how a fleet operator works and reacts to the events, for example, how long
to perform pickup and drop-off, or which algorithms to use for demand-supply
optimization.

The demand part, D, of the input data is a population of agents each of whom
has its own set of daily plans, P. Each plan Pk ∈ P is defined as a set, Ak, of spatially
distributed activities of different type and duration, and a set, Lk, of legs with
routes to travel between activities. Agents only switch transport modes at places of
activities; a special class of merge activities is defined in order to delay an agent for
a specified amount of time, such that a line transfer in public transit, or a switch
from walking to public transit, can take place.

A simulation is performed in an iterative manner. After the initial demand D0
has been assigned for the first iteration, the mobility simulator performs network
loading based on the individual daily plans of the agents. Only one plan Pk per agent



34 mobility simulator

is selected for execution on the t-th iteration. Agents perform their activities and
travel between locations, therefore generating traffic externalities such as congestion
on the network G or occupancy of the transit routes RT . The simulated duration
is typically somewhat longer than a day to let agents who depart late reach their
final destinations. The main outputs from the mobility simulator in the t-th iteration
are the externalities SE

t related to input supply and the scores Ut of the plans. A
learning process, L, is then executed with Dt, SE

t , and Ut as the input data, and a
new demand Dt+1 is output. This newly obtained demand Dt+1 is used in the next
t + 1 iteration of the simulation process. After performing T iterations the analysis
is executed and the simulation is finished.

2.2.2 Scoring

A scoring function for the plans can be implemented in any form, but usually
an agent gets a positive score when performing activities and a negative score
when travelling, waiting or upon late arrival at a place of activity. Currently, the
Charypar-Nagel [136] scoring (utility) function formulated from the Vickrey model
[137] for road congestion is implemented:

U(Pk) = ∑
ai∈Ak

Uact(ai) + ∑
li∈Lk

Utrav(li) (2.5)

Here, the function U(Pk) estimates the score of a plan Pk by summing up scores of
each activity using the function Uact and scores of each travel leg using the function
Utrav. The utility of an activity Uact is defined as follows:

Uact(ai) = Udur,i + Uwait,i + Ulate,i + Uearly,i + Ushort,i (2.6)

Udur,i is the utility of performing an activity for a certain duration tdur and is
defined as follows:

Udur,i(tdur) = βdur · ttyp · ln
(

tdur
t0

)
(2.7)

where βdur is the marginal utility of performing an activity, ttyp is the typical
duration of the activity, and t0 is the duration at which the utility start to be positive.
As activities may have different priorities, the value of t0 depends on the priority p:

t0 = ttyp · e−
1
p (2.8)

When the activity duration tdur is below or equal to the value of t0, the utility Udur,i
becomes negative and is calculated as follows:

Udur,i(tdur) = −(t0 − tdur) ·
βdur · ttyp

t0
(2.9)

Uwait,i is the utility of waiting (that is, when the facility is closed) and is defined as
follows:

Uwait,i(twait) = βwait · twait (2.10)
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where twait is the waiting time and βwait is the marginal utility of waiting (typically,
it is negative). Ulate,i is the utility of arriving at the place too late, and is defined as
follows:

Ulate,i(tstart) = βlate · (tstart − tlatest) (2.11)

where tstart is the start time of the activity, tlatest is the latest possible start time of
this activity, and βlate is the marginal utility of being late (typically, it is negative).
Uearly,i is the utility of finishing the activity too early, and is defined as follows:

Uearly,i(tend) = βearly · (tearliest − tend) (2.12)

where tend is the end time of the activity, tearliest is the earliest possible end time of
the activity, and βearly is the marginal utility of being early (typically, it is negative).
Ushort,i is the utility of performing the activity for a too short time, and is defined as
follows:

Ushort,i(tdur) = βshort · (tshortest − tdur) (2.13)

where tshortest is the shortest possible duration of this activity, and βshort is the
marginal utility of staying too short (typically, it is negative). Utilities Ulate,i, Uearly,i
and Ushort,i are calculated only in case the respective violation happens, otherwise
these utilities are set to zero. Finally, the utility (typically, it is negative) of a travel
leg Utrav is defined as follows:

Utrav(li) = Utrav(ttrav, dtrav) = βttime · ttrav + βtdist · dtrav (2.14)

where ttrav is the travel time, dtrav is the travel distance, βttime is the marginal utility
of travel time (typically, it is negative), and βtdist is the marginal utility of travel
distance (typically, it is negative or equal to zero).

Usually, agents improve their score Ut relatively quickly in a few iterations, but
then the impact of the learning process decreases exponentially as the population
reaches a Nash equilibrium.

While in other mobility simulators such as MATSim [76] the scoring procedure in
the simulation loop typically relies on events, in GEMSim the scoring is executed
on a GPU where required data for scoring is recorded during the simulation to
avoid using events. For scoring, start and end times of travel legs and activities
are required, as well as scoring parameters, and the plan data structure on a GPU
contains the corresponding fields. At the end of an iteration, a scoring GPU kernel
is executed and each of GPU threads calculates a score for one of the agents.

2.2.3 Learning

The learning process, L, allows agents to adapt their daily plans from the previous
iteration before starting the next iteration. A genetic algorithm was implemented,
whereby a sample of the population is selected based on a given probability, and
then each agent from the population sample selects one of the plans Pk from memory,
and modifies or leaves the plan as is. A learning strategy comprises two components
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(either of which can be omitted): (i) a plan selector and (ii) a plan modifier. A plan
selector picks one of the plans from the agent’s memory during the learning stage,
while a plan modifier changes the selected plan. The following plan selectors were
implemented in GEMSim:

• best score selector picks a plan with the highest score;

• worst score selector picks a plan with the lowest score;

• random selector picks one of the plans randomly;

• keep selector picks the same plan that was executed in the last iteration;

• exp-beta selector picks one of the plans at random, with the probability of
the k-th plan being selected is defined as follows: pi,k = Vi,k/ ∑j Vi,j, where

Vi,k = e(Ui,k−Ui,best)·βU , and Ui,k is the score of the k-th plan of the current
agent i, and Ui,best is the best score in agent’s memory of plans, and βU is the
relaxation parameter set to 1 by default.

In addition to plan selectors, the following plan modifiers were implemented:

• re-routing modifier estimates routes between the locations of the activities in
the plan considering the congestion patterns from the last simulated iteration;

• mode change modifier switches the transport mode of the travel legs in a plan
uniformly at random from the list of allowed modes;

• time change modifier shifts the start times of all activities in a plan by a time
period sampled uniformly at random within the allowed time window.

In the scenario configuration, a set of used strategies is defined with the respective
probabilities of being executed on the population sample chosen for behaviour
adaptation between the iterations. By splitting learning strategies into selectors
and modifiers, GEMSim provides a flexible mechanism to re-use already existing
implementations in higher-level user-defined strategies. While the set of provided
default plan selectors and modifiers might be considered rather limited, in practice,
strategies constructed from these items converge scenarios in an efficient way. More
sophisticated strategies can be implemented by users for specific needs, including
DCMs and RL [138].

As discussed in the previous chapter, not all parts of the code can be efficiently
parallelized, and not all the parts that can be parallelized are suitable for GPUs.
Based on existing literature [139], there are two major bottlenecks in agent-based
mobility simulations: traffic propagation and learning. While traffic propagation has
great potential to improve runtime performance, the learning part is not that obvious.
The most widely used learning strategy, and the most demanding for computing
performance, is re-routing of agents based on congestion from the previous iteration.
Typically, about 10% of the agents are re-routed between the iterations [140, 141].
This strategy essentially performs the relaxation of traffic between the iterations
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and contributes substantially to the convergence of a scenario. The reason why the
re-routing strategy takes lot of runtime is the scalability of routing algorithms.

In general, there are two types of routing algorithms for handling input data:
with pre-processing and without (on-the-fly) [142]. While the former algorithms
can provide a substantial speed-up in runtime, they require some time for data
pre-processing, and this time can increase up to hours for large-scale road graphs.
Considering that a typical scenario requires that hundreds of iterations are run, and
after each of the iterations travel times across the road graph change due to the
learning process, it is impractical to use routing algorithms with long pre-processing
times. Moreover, not all of these algorithms account for dynamic weights as the
travel time varies during the day. Routing algorithms without pre-processing are
usually more flexible and have a weight function defined that can be implemented
in any way. However, the disadvantage is that these algorithms have to explore
a much wider search space to find an optimal solution, and the time may grow
non-linearly with the size of the road graph.

To keep the re-routing strategy flexible, the decision was made to use algorithms
without or with little (once per scenario run) pre-processing; most of them are based
on the Dijkstra algorithm [143]. In recent years, GPU-accelerated graph algorithms
for analytics and path finding have received attention in the literature [144–148]
with impressive speed-up factors (an order of magnitude or more) achieved over
CPU-based versions of the same algorithms. However, transport networks (and
corresponding graphs) are different from the graphs used for runtime performance
evaluation in the aforementioned studies. Unlike other, dense graphs, transport
graphs have loosely connected nodes, and the average degree of a node (the number
of edges that are incident to a node) varies from two to six when a uni-directed
graph is used. Another aspect of transport graphs is that they are uni-directed,
and each node has roughly half as many outgoing edges (as many roads are
actually bi-directional). The Dijkstra algorithm works, in principle, by expanding
the search area through the outgoing edges of the nodes, and many GPU-accelerated
algorithms parallelize this expansion mechanism. This means that GPU-accelerated
graph algorithms deliver better runtime performance with denser graphs, while for
transport graphs in can be difficult to saturate a GPU with enough work to be done
in parallel.

Table 2.1 shows runtimes for the Dijkstra-based implementation [147] of a single-
source shortest path (SSSP) problem algorithm on both a CPU and a GPU applied
to multiple transport graphs. The algorithm calculates the shortest paths in a
graph from one of the source nodes to the rest of the nodes. The graphs used
in runtime evaluation have been obtained from the OpenStreetMap (OSM) [149]
service followed by a topology simplification procedure. The network simplification
procedure removes nodes that are not essential for traffic simulation and routing;
these are the nodes that define the curvature of the roads. After unused nodes are
removed and other edges consolidated and updated, the performance of routing
was measured. Tests were run using AMD EPYC 7742 CPU and Nvidia V100S GPU,
the CPU-based version of the algorithm is single-threaded.
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Table 2.1. Comparison of performance for Dijkstra routing algorithm on a CPU and a GPU.

Location Nodes Links
Average Execution time, ms

node deg. GPU CPU

Switzerland 513 K 1 127 K 4.39 104.25 65.78

Bosnia and Herzegovina 176 K 400 K 4.55 70.64 18.98

Bavaria (Germany) 290 K 841 K 5.80 34.68 32.51

Los Angeles (USA) 460 K 1 214 K 5.28 34.20 51.66

San Diego (USA) 280 K 765 K 5.46 29.97 24.01

San Francisco (USA) 818 K 2 086 K 5.10 732.55 91.45

Hokkaido (Japan) 333 K 978 K 5.88 61.55 42.55

As one can see, the main finding is that there is no clear advantage to using a
GPU over a CPU for the simple SSSP algorithm. For most of the cases, both the CPU
and GPU showed comparable performance, and in some cases either the GPU or the
CPU was a bit faster than another. The case of San Francisco is notable in that the
GPU runs eight times slower compared to the CPU. The reason could be a relatively
low average node degree, as well as peculiarities of the road graph. The Swiss road
graph also provides poor GPU performance, although not at the same magnitude
as in San Francisco. One can also consider that a more complex logic of routing like
dynamic weights, which is actually required in a practical simulation framework,
will probably lead to greater performance degradation on the GPU compared to the
CPU. The reason is that code branching and fetching additional data from memory
with high latency are more expensive to handle on GPUs.

Another practical aspect of the routing algorithms used in mobility simulations is
that most of the time only a point-to-point route is required, when an agent needs
to know how to drive from one location to another. This means that only a subset
of a graph is explored, in contrast to the SSSP where the whole graph is visited by
the algorithm. A routing algorithm visiting fewer nodes will lead to even less work
that can be parallelized by a GPU, therefore the runtime performance of a GPU may
even decrease compared to a CPU-based implementation.

To conclude these notes on routing, the experiments show that there is no clear
advantage in using GPU-accelerated routing algorithms. Moreover, data transfers
between the host and the device, which might be required for a more complicated
routing logic, were not considered in this comparison. Therefore, GPUs do not
currently provide a robust and superior solution to solve the routing problem for
mobility simulations than CPU-based implementations; hence, the decision was
made to keep this part of the simulation loop at the host side. However, as there is
active research and development into GPU-accelerated routing for both software
and hardware, the situation may be improved in the future.



2.2 framework overview 39

Dijkstra and A* routing algorithms [64, 150] were implemented in GEMSim. The
version of the A* algorithm includes an overdo factor and landmarks with multiple
allocation strategies. These algorithms have also many-to-many versions to route
from multiple sources to multiple sinks. The reason for selecting the A* algorithm
is based on the nature of the learning process, when dynamic weight of congestion
has to be accounted for at the road graph level. In this regard, A* algorithm only
requires one to specify the lower bound of the travel cost between the points. The
lower bound can be calculated as dividing the Euclidean distance by the fastest
possible speed limit used in the network. The advantage over other algorithms is
that no data processing is required between the iterations once initial landmarks
are calculated.

Runtime performance of Dijkstra-based algorithms greatly depends on the im-
plementation of the priority queue used to sort graph nodes by the cost it takes to
reach them. GEMSim uses d-ary min-heap [151] with d = 4 and the heap being
allocated and aligned [152] to a typical CPU cache line size of 64 bytes. Another
typical performance bottleneck in routing algorithms with piece-wise cost function
on the graph edges (that is, the cost changes each 15 minutes based on congestion
evaluated previously) is data mapping for an edge and a time period. A common
approach to solving this problem is to use an associative array (a key-value map)
that connects congestion piece-wise data with a network link through the link ID.
However, when using a router with a large-scale network with millions of links,
millions of mappings from a link ID to actual data, used in the cost function, must
be resolved, leading to long runtimes. Instead, index-based access to congestion data
has near-constant time, and this approach was implemented in GEMSim where each
network element, in addition to a unique ID, has an index associated. These indices,
as will be showed later, can be used not only to speed-up the routing process, but
also to store data on GPUs.

To utilize available CPU resources efficiently, a router can perform multi-threaded
processing by splitting agents among multiple CPU cores. As will be demonstrated,
a more efficient implementation of routing algorithms brings considerable improve-
ment in runtime compared to other mobility simulators using the same routing
algorithms. One should note that, while the learning part of the simulation loop
is executed on the host side, nothing prevents users from implementing their own
GPU-accelerated strategies, for example using AI and ML algorithms to model the
behaviour of people. In fact, it has already been demonstrated [138] that GEM-
Sim can be coupled with GPU-accelerated RL algorithms executed in the learning
strategies.

2.2.4 Outputs

Some data that reside on a GPU at the end of the simulated iteration are required
to run the next iteration, and some data are optional. Mandatory data must be
downloaded from the GPU and post-processed before starting the next iteration.
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An example of mandatory data is congestion statistics for each link in 15-minute
intervals. These congestion statistics are used to re-route agents during the learning
stage. Traffic counts for each link and agent state counters (departures, arrivals,
en-route) are considered optional data. Other optional data include trip statistics per
transport mode, plan execution statistics, score statistics, public transit occupancies
and spatio-temporal statistics for each of the fleet operators. Additionally, a stream
of detailed events from the simulation can be recorded. This stream includes every
event that happened and can be used for custom post-processing, analysis and
visualization. The mobility simulator allows flexible configuration of what data
shall be recorded and how frequently, and the output datasets (which consume a
considerable amount of disk space) are automatically compressed.

2.3 traffic propagation

The traffic propagation part of the simulation loop, which performs the actual
mobility simulation, was accelerated with the GPU, thus removing one of the
runtime performance bottlenecks (learning step being another bottleneck). This
section of the thesis provides relevant background on the topic and a detailed
description of the GPU-accelerated implementation of the traffic model.

2.3.1 Background

Over recent decades a number of agent-based mobility simulation tools have been
developed, including: TRANSIMS [101], MATSim [76], SUMO [102], DRACULA
[153] and DynaMIT [154]. In general, traffic simulations can be classified [155] as
either:

• microscopic, which model in detail the dynamic of each vehicle and their
interactions with others;

• mesoscopic, which aggregate vehicles in homogeneous groups and model
interactions with little detail;

• macroscopic, which simulate aggregated traffic streams without distinguish-
ing their constituent elements.

Some authors have also introduced another class of simulations, nanoscopic [156,
157], which separately model parts of vehicles, or human thinking and decision-
making while driving. In this work, however, nanoscopic elements are considered
part of the microscopic approach.

Macroscopic models have limited applicability for agent-based systems as such
models aggregate individual behaviours of agents, and lose interaction dynamic be-
tween them. On the other hand, a microscopic model can perform simulations with
the highest level of detail, although it does not come for free. One of the main dis-
advantages of microscopic models is the need for an extensive and time-consuming
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calibration process, where each behavioural sub-model (i.e., car following, lane
changing, etc.) is adjusted to fit the local context. Another disadvantage of the
microscopic approach is that a highly-detailed infrastructure model is required in
order to make these models more realistic and useful. For example, intersections
need to be described with traffic lights and rules for lane turning. Such data might
not always be available, and it often requires time to collect and prepare. Finally,
microscopic models are more computationally demanding as the state of simulated
agents is tracked individually in each time step. Mesoscopic models provide a bal-
anced trade-off between the high runtime performance of macroscopic models and
the high level of detail provided by microscopic models. In this work, a mesoscopic
approach was used to implement dynamic traffic assignment. This allows one to
efficiently simulate millions of agents, and, where necessary, enrich the model with
the elements found in microscopic models.

As mentioned in Chapter 1, traditional approaches, used to speed up existing
traffic models, do not bring the desired improvement in runtime performance.
Therefore, one of the goals of the thesis was to utilize highly-parallel modern
hardware in order to accelerate traffic simulations and make it possible to run large-
scale scenarios with millions of agents in a few minutes. Though some attempts
have been made to bring agent-based simulations onto GPUs and FPGAs, to date
none of these attempts have succeeded in providing a ready-to-use product for
large-scale and multi-modal scenarios.

The semiconductor industry in the HPC area is moving towards highly-parallel
hardware solutions: many-core CPUs, GPUs, FPGAs and custom accelerators for AI
training and inference are among the main trends. While GPUs have been designed
to efficiently render millions of vertices in parallel from the beginning, in recent
decades these devices have been adapted for general-purpose computing to process
not only graphics, but other data in parallel. This gave rise to a new direction
in HPC, and now GPUs are extensively used in many areas, especially in ML.
Traffic simulation is not an exception, and many researchers have demonstrated the
potential of GPU technology with promising results.

It should be noted that distributed computing introduces additional complexity
into models, and also increases maintenance costs as expensive hardware is required.
On the other hand, GPUs provide both a higher level of parallelism compared
to CPUs, and avoid issues related to the complex distributed architecture and
expensive hardware of distributed systems. Thus, several attempts have been made
to accelerate ABMs using GPUs.

One early attempt to perform agent-based traffic simulations on a GPU was made
by Strippgen and Nagel [75]. A functional queue-based mesoscopic model was
developed and speed-up factors of 5.5 to 67 (compared to an optimized single-core
Java version) were achieved. Though the speed-up was promising, the developers
faced issues while integrating the prototype into MATSim [76]. Specifically, the
achieved performance improvements were not reached in MATSim. Although the
model itself was quite simple (that is, agents did not adjust activity times on a GPU,
and there was neither gridlock resolution nor public transit) and was not applied
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on large-scale networks (i.e., hundreds of thousands of links and nodes), it proved
the concept of running an ABM on a GPU, as well as proposed what data structures
to use on a GPU for this specific problem.

Perumalla et al. [77] developed a field-based GPU-accelerated mobility model for
a large-scale road network with millions of nodes and links. The model converts
a road graph into a grid of cells, where each cell propagates moving agents in
either a horizontal or vertical direction with the pre-defined probabilities of turns.
The model also supports queueing and dynamic re-routing as agents go into
uncongested directions with higher probabilities. Results show that it takes 13

minutes to run a large-scale scenario of the state of Texas (USA), with 2 million
nodes and 5 million links, and initially 10 vehicles per node. While the study
demonstrates promising potential for traffic modelling on GPUs, it has some serious
limitations. First, the behaviour of the agents is not modelled individually with
pre-defined daily plans, but rather probabilistically. Second, the model is more
applicable to evacuation scenarios because turning probabilities are defined based
on the locations of evacuation exits. Third, the model loses granularity with the
increase of the spatial scale due to limited texture memory of GPUs.

Shen et al. [78] implemented a microscopic traffic simulator with GPU acceleration
to optimize traffic signal timing. However, the simulator was tested only on very
small networks (four intersections) and there is no clear evidence of how activities
and agent plans are organized, nor how feedback from the simulation could be fed
into the agent’s learning process. Lastly, the simulator was developed for a specific
optimization problem and was not intended for large-scale scenarios.

Wang and Shen [79] presented a microscopic traffic simulation model running
on a GPU. In contrast to many other works, the model implements a whole loop
with the learning process between iterations included. Additionally, traffic lights
can be modelled at intersections. The model was benchmarked only on small lattice
networks, with sizes from 5 x 5 to 40 x 40 edges, and used randomly generated
traffic. For the largest network, the achieved speed-up of the GPU-accelerated model
was about 105 times greater than a CPU-based implementation. As there was no
travel activity planning module implemented, each agent could only do a single trip.
The model does not support multi-modal traffic, and it is not clear how it would
perform using a large-scale real-world network.

Hirabayashi et al. [80] studied multiple design schemes of how to implement
traffic simulations on GPUs. The main finding was that the more work is pushed
to a GPU with less CPU-GPU synchronization, the more the runtime performance
improves. While the authors implemented a limited, one-dimensional version of
the optimal velocity model [81], the results show that a GPU can execute the
mathematical background of the traffic model about 1 000 times faster than a
CPU-based single-threaded version.

Sano and Fukuta [82, 83] presented a framework to assist the coding process
of large-scale agent-based simulations with the focus on traffic. The framework
provides a way to describe agents’ behaviour and to automatically generate the
code for execution on GPUs. While the framework is claimed to perform a light-
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weight traffic simulation, no details have been reported. Instead, the works are
focused on the planning activities of agents, specifically, path finding over a road
network. Multiple routing algorithms have been implemented and benchmarked,
and the results show that, while GPUs can handle routing in parallel, the runtime
performance depends on hardware and requires tuning to be optimal. Later, Sano et
al. [84] extended the work with a semi-automated performance tuning mechanism
for the GPU-accelerated code. It was demonstrated that proper tuning can double
the performance improvement for GPU-based routing.

Xu et al. [85] developed a GPU-based microsimulation framework called Entry
Time-based Supply Framework (ETSF), and later the framework was improved [86].
The framework introduced a new method to reduce the time spent on processing
vehicles during their movement across a network. The work showed a speed-up
factor of 11.2 compared to a single-core CPU model on a small-scale artificial grid
network (10 201 nodes and 20 200 links) with 100 000 vehicles. However, on a smaller
network with the realistic topology of Singapore (3 179 nodes and 9 419 lanes) the
proposed framework showed only a speed-up factor of 2.37 [87]. The evaluation
of the published source codes [158] shows that ETSF functionality is limited, has
scalability problems (almost all arrays have a predefined size, fixed length of routes,
no feedback loop and convergence process, among others), and the published code
was designed for a specific Singaporean scenario.

Vu and Tan [88] presented a GPU-based mesoscopic traffic simulation framework
with improved performance compared to previous work [87] for Singapore network
with 3 186 nodes and 9 437 lanes. Depending on simulated demand (100 000 to
300 000 vehicles), a speed-up factor of 5.8 to 6.5 compared to a sequential CPU-
based version was achieved. Again, all demand is predefined and static without
convergence (learning) process. The network cannot be considered large-scale, and
there is no evidence that the framework can be developed beyond the prototype
stage. Later, the authors extended [89] the framework with demand simulation
on GPUs, although in a quite limited form with predefined sets of routes for OD
pairs, basically implementing a logit model. Using the same Singapore area for
benchmarks, the demand simulation achieved a five-times speed-up compared to a
single-threaded CPU-based version. Other works related to demand simulation on
GPUs [159] exist, but most of them implement only variations of a logit model.

Heywood et al. [90] recently attempted to implement mobility simulations with
the FLAME GPU framework [91]. However, their prototype is very limited in scale
and capabilities. Firstly, agents do not have daily plans, but instead are randomly
moved on an artificial grid network. Secondly, the scale of the scenarios is very
small – up to a 24 x 24 intersections network and up to 141 312 agents. Finally,
agents do not learn during the simulation process. The focus of the work was to
demonstrate the concept of a car-following model and visualization with FLAME
GPU. Later, Heywood et el. [92] improved FLAME GPU with a general-purpose
graph-based communication strategy to better adapt the framework for transport
simulations. The experiments demonstrated that the improved framework achieved
a speed-up factor of 43.8 compared to the multi-threaded commercial microscopic
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simulator Aimsun [93] when running one hour traffic of 512 000 vehicles over an
artificial square lattice network with a grid size of 512. Nevertheless, the limitations
of the original framework remained.

Yedavalli et al. [94] developed a GPU-accelerated microscopic traffic simulator
called MANTA. The simulator is capable of running metropolitan-scale simulations
with a large network and millions of trips under 10 minutes of wall-clock time.
The performance of the model has been evaluated using a San Francisco Bay Area
(USA) scenario with a network of approximately 225 000 nodes and 550 000 links,
and demand comprising about 3.2 million trips. The scenario was run from 05:00

until 12:00 with MANTA and the MATSim-derived simulator BEAM [160] with the
discrete-event model JDEQSim from MATSim: the former was about 43% faster,
accomplishing the task in about 4.6 minutes. While the performance improvement
is not as significant as one might expect from a GPU-accelerated model, the authors
note that the achieved granularity is greater than that of the mesoscopic model
JDEQSim. However, MANTA has some serious limitations compared to BEAM and
MATSim simulators. First, MANTA does not have a feedback loop with the learning
process to converge a scenario to an equilibrium, and agents are not re-routed
based on traffic jams; instead, agents use shortest routes based on distance. Second,
MANTA simulates only car traffic, without public transit and other emerging modes
like coordinated fleets. Third, only a static demand model is used where each agent
has a single trip assigned, meaning that no activities are modelled and agents do not
have time-dependent daily schedules. This approach also complicates implementing
dynamic transport modes like taxis. Mitigating the above-mentioned limitations
will likely increase MANTA’s runtime as the performance of GPU-accelerated code
is sensitive to changes of data structures and transfers of additional data to or from
global memory or the host.

A more comprehensive survey on the application of hardware accelerators in
agent-based models is available elsewhere [95].

2.3.2 Queuing model

One of the typical approaches to modelling traffic propagation through a network
is a queue. There are various types of queueing models [161] in use. One is a point
queue model [137, 162, 163] where vehicles are organized as a vertical queue by
being stacked in the FIFO (first in, first out) queue of a link. The main drawback
of this simple model is its non-realistic behaviour, including the lack of a spillover
effect for congestion: a link has an infinite capacity, zero spatial length, and no inter-
link interaction. In contrast, a spatial queue model [164–166] assigns the physical
length and the corresponding storage capacity to a link, and therefore a spillover
effect occurs as in the real urban road networks.

GEMSim utilizes a spatial queue model based on [167] and [54] that was adapted
for massively parallel processing on a GPU. Although a GPU prototype of this
queueing model was presented in [75], the current work extends this prior work
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by making the queueing model practical for complex and large-scale scenarios:
specifically, the current implementation improves the GPU data structures, a novel
method to substantially increase the performance of inter-link communications, and
provide built-in gridlock resolution and multi-modal support with a detailed public
transit and coordinated fleets models.

The principle of the queueing model is presented in Figure 2.5. A link in the
network is represented by two buffers: one buffer corresponds to the physical
length of the link (spatial buffer), and the other buffer corresponds to the designed
traffic flow (capacity buffer). A spatial buffer limits the number of vehicles that can
simultaneously queue on a road segment, while a capacity buffer limits the number
of vehicles that can leave the link within a time period.

(1)

(2)

Figure 2.5: Queueing model: (1) moves a vehicle from the spatial buffer to the capacity
buffer; (2) moves the vehicle from the upstream link to the downstream one.

A vehicle moves between the links in a two-step procedure. First, the vehicle
moves from the spatial buffer to the capacity buffer if the following criteria are met:

• A vehicle has stayed for the minimum required time on the link. This minimum
time is defined as tlink = Llink/vlink, where Llink is the physical length of the
link, and vlink is the free-flow speed.

• A vehicle is at the front of the queue.

• Enough flow capacity has been accumulated: during the simulation step with
a duration of tcycle a link accumulates q · tcycle/tperiod of the flow capacity to
keep the physical constraints, where q is a link capacity per time period tperiod.

Second, when a vehicle is in the capacity buffer, the vehicle moves into the spatial
buffer of the downstream link if there is enough free space. When a downstream
link is connected to multiple upstream links, the order in which the upstream links
are processed is defined to be uniformly at random and proportional to the flow
capacity of each link:

pk =
qk

∑n
i=1 qi

(2.15)

where qi and qk are the flow capacities of the i-th and k-th upstream links, re-
spectively, and pk is the probability of the k-th upstream link being selected. The
selection of a downstream link is based on the route followed in the agent’s daily
plan.

As a mesoscopic model was used, there is no intra-link interaction between
vehicles, but a spillover effect with traffic congestion occurs in accordance with the
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queueing principles described above. The model still lacks some physical principles
of traffic flow like kinematic wave propagation, but overall the model gives a good
approximation for traffic flows in congested urban areas, as has been demonstrated
in numerous studies [76].

The reason for using this model on a GPU is that each of the two propagation
steps can be performed in parallel, and thus the model is well suited for GPU
architecture. Indeed, in the first step, there is no data dependency between the links,
while in the second step, there is no data dependency between the nodes: a capacity
buffer of an upstream link is connected to the spatial buffer of a downstream link
only through the same node.

2.3.3 GPU simulation loop

GEMSim has a time-step-driven GPU simulation loop with monotonically in-
creasing simulation time tsim, as presented in Figure 2.6. First, two kernels (a
GPU function that is executed for all threads but with a different index for in-
put data), ProcessLinks() and ProcessNodes(), perform network propagation
by moving agents across the network G from input supply S , while the kernel
ScheduleDemand() schedules the agents for future execution. After reaching the
simulation’s end time tend, the kernel ScorePlans() calculates the scores of plans,
and externalities are collected by the CollectExternalities() kernel.

Input: S , Dt, tend
Output: SE

t ,Ut
1 begin
2 for tsim ←− 0 to tend do
3 ProcessLinks(G, Dt, tsim);
4 ProcessNodes(S , Dt, tsim);
5 ScheduleDemand(S , Dt, tsim);
6 UpdateExternalities(S , Dt, tsim);

7 tsim ←− tsim + 1;
8 end
9 Ut ←− ScorePlans(Dt);

10 SE
t ←− CollectExternalities(S);

11 return SE
t ,Ut;

12 end

Figure 2.6: Algorithm for the GPU-accelerated simulation loop of GEMSim.

The UpdateExternalities() kernel performs a periodic update of collected ex-
ternalities when it is required. For example, some aggregated externalities like
per-mode trip statistics are collected until the end of simulation, but some external-
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ities like congestion are collected in recurring time periods and transferred back
to host during the simulation. The reason for such incremental transfers is the
occupied space in GPU memory. Hence, to avoid unnecessary memory waste on
GPUs, some externalities are updated more or less frequently in the simulation
loop, while others are transferred at once at the end of the simulation.

2.3.4 Network propagation

The kernel ProcessLinks() performs the first step of the two-step traffic propagation
model, following the algorithm presented in Figure 2.7. Each GPU thread processes
its own link denoted by index i. The function GetScheduledTime() retrieves the
time tenter + tlink of an agent, where tenter is the time when the agent has entered
the last link.

Input: G, Dt, i, tsim
1 begin
2 AccumulateCapacity(G, i);

3 in_queue←− GetSpatialBuffer(G, i);
4 out_queue←− GetCapacityBuffer(G, i);

5 while (in_queue not empty) and (out_queue not full) do
6 if not HaveCapacity(G, i) then
7 return
8 end
9 agent←− GetFront(in_queue);

10 if GetScheduledTime(Dt, agent) > tsim then
11 return
12 end

13 RemoveFront(in_queue);
14 PushBack(out_queue, agent);
15 UpdateCapacity(G, i);
16 end
17 end

Figure 2.7: Algorithm for the ProcessLinks() GPU kernel to move vehicles from spatial
buffers to capacity buffers.

The kernel ProcessNodes() performs the second step of the traffic propagation
model, shown in Figure 2.8. Each GPU thread processes its own node denoted
by index n. A special function MultiModeNodeHandler() delegates the flow control
to the handlers of other transport modes like public transit and is discussed in
detail in Chapter 3. The main purpose of the multi-modal handler is to give
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other modes the possibility to implement a more complex logic when an agent
shall be removed from the traffic propagation procedure (for example, parking
activity). When an agent finishes the route and arrives at the place of activity, the
function ScheduleActivity() schedules for how long the agent must perform the
activity before continuing the execution of the daily plan. During the time of the
activity, an agent is removed from the network propagation model. The function
ScheduleLink() calculates time tsim + tlink when the agent can leave the spatial
buffer of enext.

A shortcoming of the original queueing model was the absence of gridlock
resolution. A gridlock situation is typical for queue-based models when the head
of the traffic flow hits the tail, and the whole flow is stuck. This also happens in
real life when a road network has a grid structure (for example, the Manhattan area
of New York, New York, USA) and some cars block intersections. This situation is
resolved in the ResolveGridlock() function that checks when was the last time a
car left a certain link. When this time exceeds a threshold, an agent is forced to try
to queue in the link next to a blocked one in the route. While a gridlock is resolved,
GPU threads are no longer independent and the threads need to synchronize an
update of the downstream buffers with PushBackAtomic(). A gridlock resolution
is essential for queueing models, otherwise agents can get stuck in very long and
unrealistic queues for the rest of simulation time. In the gridlock resolution, a
realistic behaviour of gridlocked drivers, whereby a driver finds a way to squeeze
into the street, is implemented. For the sake of simplicity, only one of the gridlock
resolution strategies is demonstrated here; other strategies will be discussed in
detail in Section 2.5.

As mentioned before, the performance of the code executed on a GPU heavily
depends on the data structures used in the GPU memory. The structure of the
network G on a GPU is presented in Listing 2.4. The SoA approach is used to store
per-link and per-node data. The size of global link buffers needs to be calculated in
advance to pre-allocate memory on a GPU and to avoid poor performance and the
limitations of GPU dynamic memory allocation.

The size Nl of a spatial buffer is calculated as follows:

Nl = max{
[

kl · Nlanes ·
Llink
Lveh

]
, 1} (2.16)

where kl is a spatial scaling coefficient, Lveh is the average length of the space
occupied by a vehicle (a gross space of 7.5 meters is used for all vehicles), Nlanes is
the number of lanes on the link, and [ ] means integer. The size N f of a capacity
buffer is calculated as follows:

N f = max{
[

k f · q ·
tcycle

tperiod

]
, 1} (2.17)

where k f is a capacity scaling coefficient. Both coefficients kl and k f are typically in
the range (0; 1], and are used for calibration purposes and for scenario downscaling.
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Input: S , Dt, n, tsim
1 begin
2 Ein ←− GetUpstreamLinks(G, n);

3 for ein ∈ Ein do
4 out_queue←− GetCapacityBuffer(G, ein);

5 while out_queue not empty do
6 agent←− GetFront(out_queue);

7 if MultiModeNodeHandler(S , Dt, ein, agent) then
8 RemoveFront(out_queue);
9 continue

10 end

11 enext ←− GetNextLink(Dt, agent);

12 if enext = ∅ then
13 RemoveFront(out_queue);
14 ScheduleActivity(Dt, agent);
15 continue
16 end

17 in_queue←− GetSpatialBuffer(G, enext);

18 if in_queue is full then
19 ResolveGridlock(Dt, agent);
20 break
21 end
22 else
23 RemoveFront(out_queue);
24 PushBackAtomic(in_queue, agent);
25 ScheduleLink(Dt, agent, enext);
26 end
27 end
28 end
29 end

Figure 2.8: Algorithm for the ProcessNodes() GPU kernel to move vehicles from upstream
links to downstream.

Link queues are organized as ring buffers. First, two global buffers are allocated
for all links based on the pre-calculated Nl and N f : one for spatial buffers (field
in_queue), and the second for capacity buffers (field out_queue). Then, the global
buffers are sliced for each of the links, and the partition information is stored
in buffer descriptors. A buffer descriptor is a 64-bit integer (fields in_descr and
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1 s t r u c t GpuNetwork {
2 u i n t 3 2 _ t in_queue [ ] ; // S p a t i a l b u f f e r s ( g loba l )
3 u i n t 3 2 _ t out_queue [ ] ; // Capacity b u f f e r s ( g loba l )
4 // Per − l i n k
5 u i n t 6 4 _ t in_descr [ ] ; // Descr ip t ors of s p a t i a l b u f f e r s
6 u i n t 3 2 _ t i n _ s t a t e [ ] ; // S t a t e s of s p a t i a l b u f f e r s
7 u i n t 6 4 _ t out_descr [ ] ; // Descr ip t ors of c a p a c i t y b u f f e r s
8 u i n t 3 2 _ t o u t _ s t a t e [ ] ; // S t a t e s of c a p a c i t y b u f f e r s
9 u i n t 3 2 _ t g r i d l k [ ] ; // Time to t r a c k gr id lock

10 f l o a t acc_flow [ ] ; // Accumulated c a p a c i t y
11 // Per −node
12 u i n t 3 2 _ t l ink_count [ ] ; // Number of upstream l i n k s
13 u i n t 3 2 _ t l i n k _ i d x [ ] ; // I n d i c e s of upstream l i n k s
14 u i n t 3 2 _ t l i n k _ s t [ ] ; // S t a r t index of upstream l i n k s
15 } ;

Listing 2.4: Structure of network graph G on a GPU with per-link queues and per-node
upstream links.

out_descr) in which the high 32 bits define the offset qo f f of the first element in the
global buffer, and the low 32 bits define the size of the link buffer qsize. The dynamic
state (or occupancy) of a link buffer is represented with a 32-bit integer (fields
in_state and out_state) in which the high 16 bits define the offset qcur relative to
qo f f of the first occupied slot in the buffer, and the low 16 bits define the number
qcnt of used slots in the buffer. Each slot in a buffer stores the index of the agent
that is currently occupying the slot. To get a slot qnext for a new agent in a buffer:

qnext = qo f f + ((qcur + qcnt) mod qsize) (2.18)

To remove an agent from the front of the buffer:

qcur = (qcur + 1) mod qsize (2.19)

A schematic of the memory layout for the link buffers is presented in Figure 2.9.

... ...

qo f f qo f f + qcur qnext

qsize

Figure 2.9: Layout of a link buffer in GPU memory partitioned in the global array with the
descriptor variables of qo f f and qsize, and the state of the buffer defined by the
variables qcur and qnext.

Other fields of the network structure are the following: gridlk is used to track
the above-mentioned gridlock situations, acc_flow is used to accumulate per-link
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flow capacities at each simulated time step, and the fields link_count, link_idx
and link_st are used to describe upstream links for each of the nodes.

The idea behind allocation and partition of the global buffers is to reduce fragmen-
tation: most of the GPUs allocate memory evenly to 256 bytes, and for large-scale
networks with millions of links this leads to huge memory waste. The use of a
ring buffer compared to a regular (sequential) buffer prevents expensive memory
copy operations when the occupancy of the buffer changes and data movement is
required, as instead, here only the state of the buffer needs to be updated. Both the
buffer descriptor and the state have two smaller-sized variables combined into a
single larger variable to guarantee that the buffer properties (either descriptor or
state) can always be obtained with a single memory transaction, instead of issuing
separate transactions for qo f f and qsize, or for qcur and qcnt. Even though the amount
of transferred memory is the same, the fewer number of transactions puts less
pressure on the instruction pipeline of an SM.

While the ProcessLinks() kernel can achieve coalesced memory access to the link
buffers, that is not the case for the ProcessNodes() kernel. To solve this issue, the
following method of organizing access to the per-node upstream links was used. Let
Ei ∈ E be an ordered set of upstream links (specifically speaking, indices of the links
to access per-link buffers) of the i-th node, i ∈

[
1, | V |

]
, and let M = maxi | Ei |.

Also, let E(k)
= {E(k)

1 , E(k)
2 , . . . , E(k)

|V|} be the ordered set of the k-th upstream links,
k ∈ [1, M], where

E(k)
i =

E(k)
i , if k ≤| Ei |

E∅, otherwise
(2.20)

and E∅ is used as a NULL link item to ensure that | E(k) |=| V | for a given network

G. The construction of sets E(k) is performed after a two-way sorting process: first,
nodes are sorted so that | Ei |≤| Ei+1 |, and second, the upstream links Ei of each
node are sorted so that pk ≥ pk+1, where pk is from the Equation 2.15. Then, the

ordered set {E(1), E(2), . . . , E(M)} defines an array of upstream links in GPU memory
used by the ProcessNodes() kernel. This method maximizes the probability that
two nearby GPU threads in a warp will perform a coalesced memory access when
processing the upstream links, benefiting from a specific topology of typically sparse
road graphs: most of the nodes have one or two upstream links, and only a few

have more. The drawback is the redundant memory space ∑
|V|
i=1 (M− | Ei |) used

for E∅ when | Ei |< M. The redundancy is introduced to keep a constant offset of
size | V | between two adjacent upstream links of the same node, which eliminates
the need for an additional partitioning of the array.
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2.3.5 Demand scheduling

The ScheduleDemand() kernel dispatches the agents into the network propagation
model according to their plans. Each GPU thread processes its own agent denoted
by the agent index. The demand scheduling algorithm is presented in Figure 2.10.
Agents are modelled as finite state machines where each agent has a state and a role.
In general, a state can be one of the following (other transport modes can extend
the set of states):

• Activity, when an agent does not travel, but performs an activity.

• Travel, when an agent travels through the network.

• Finished, when an agent has finished their daily plan and has no travel legs
left.

The role defines the type of an agent and can be one of the following:

• Normal, a synthetic agent from input data with the given daily-activity plan.

• Transit, an artificial agent created by the simulator and used as a driver of
public transit vehicles.

• DRT, an artificial agent created by the simulator and used as a driver for
vehicles in demand-responsive transport (DRT), i.e., coordinated fleets.

The role is needed to implement a special behaviour of the agents while the
vehicles are propagated through the network. For example, a driver of a public
transit vehicle has to check for stop locations and halt the vehicle to let people board
or leave it; or a taxi driver has to wait for a person who has requested a ride. This
different specific behaviour is implemented in a set of multi-modal handlers called
from multiple GPU kernels.

To reduce the number of performed memory transactions, an agent has a sched-
uled time tsch. It is guaranteed with this approach that until tsch an agent keeps the
state, therefore the agents with tsch > tsim can skip the scheduling procedure. All
scheduling functions in GEMSim set up tsch to the corresponding value. An agent
with states Travel and Finished can also skip the scheduling process. Additionally,
by depending on transport modes other than a private car used by an agent, the
MultiModeDemandHandler() can also force the demand scheduling procedure to
skip the agent. A two-way sorting is applied to the population of agents to increase
the probability that GPU threads in a warp proceed with the same code flow: first,
by agent’s role, and then by the expected arrival time. Sorting by a role allows
GPU threads within a warp to execute a similar logic, while sorting by expected
arrival times helps to balance the workload between the threads of the warp. When
the agents are not sorted by the expected arrival time, the ScheduleDemand() has
many warps where only a few threads are working and the rest are inactive because
agents have already finished their daily-activity plans. Upon the departure of an
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Input: S , Dt, agent, tsim
1 begin
2 if MultiModeDemandHandler(S , Dt, agent, tsim) then return;
3 if GetScheduledTime(Dt, agent) > tsim then return;

4 ltype ←− GetLegType(Dt, agent);

5 if ltype = Network then
6 enext ←− GetNextLink(Dt, agent);
7 in_queue←− GetSpatialBuffer(G, enext);

8 if in_queue not full then
9 PushBackAtomic(in_queue, agent);

10 ScheduleLink(Dt, agent, enext);
11 MultiModeDepartHandler(Dt, agent);
12 end
13 end
14 else
15 MultiModeLegHandler(S , Dt, agent, ltype, tsim);
16 end
17 end

Figure 2.10: Algorithm for the ScheduleDemand() GPU kernel to dispatch agents into the
network propagation according to their daily-activity plans.

agent, another multi-modal handler, MultiModeDepartHandler(), is called to allow
for mode-specific behaviour. Finally, for non-network travel legs, the departure logic
is handled in the MultiModeLegHandler() function.

The main structure of the demand Dt on a GPU is presented in Listing 2.5. The
demand structure stores pointers to the current travel legs of the agents (field cur),
and to the first travel legs (field first) in order to have the possibility of going
through the travelled legs in the plan scoring procedure. Memory for travel legs
is allocated in a single chunk and partitioned. The fields sched, state and role

store per-agent scheduled time, current state and role, respectively. The local index
(field lidx) is used for hierarchical indexing of multi-sampled demand, and will
be explained later in the chapter. The last known velocities of the vehicles used by
the agents are stored in the velc array, and the velocity tracking model is described
in detail in Section 2.6. Therefore, the SoA approach is used here as GPU threads
would require this information at each simulated step to decide which logic to
execute next.

The GpuBaseLeg structure, presented in Listing 2.6, is used as a parent structure
and is nested into other specialized travel leg structures of each transport mode.
This nesting approach allows any specialized travel leg structure to be referred in
the code by a pointer to the base structure; hence, other structures and the code are
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1 s t r u c t GpuDemand {
2 // Per −agent data
3 GpuBaseLeg * cur [ ] ; // Current t r a v e l leg
4 GpuBaseLeg * f i r s t [ ] ; // F i r s t t r a v e l leg
5 u i n t 3 2 _ t sched [ ] ; // Scheduled time
6 u i n t 3 2 _ t l i d x [ ] ; // Local index
7 u i n t 1 6 _ t s t a t e [ ] ; // S t a t e
8 u i n t 1 6 _ t r o l e [ ] ; // Role
9 f l o a t ve l c [ ] ; // Last known v e l o c i t y

10

11 } ;

Listing 2.5: Structure of demand Dt on a GPU with per-agent daily-activity plans and their
personal state attributes used for scheduling and behaviour modelling.

more generalized. In the code, one can distinguish the exact type of the travel leg
structure by using the leg_type field.

1 s t r u c t GpuBaseLeg {
2 GpuBaseLeg * leg_next ; // Next t r a v e l leg
3 i n t 3 2 _ t leg_type ; // Travel leg type
4 i n t 3 2 _ t l e g _ s t a r t ; // Actual s t a r t time
5 i n t 3 2 _ t leg_end ; // Actual end time
6 i n t 3 2 _ t veh_idx ; // Vehic le
7

8 // Following up a c t i v i t y
9 i n t 3 2 _ t a c t _ s t a r t ; // S t a r t time

10 i n t 3 2 _ t act_end ; // End time
11 i n t 3 2 _ t act_dur ; // Duration
12

13 i n t 3 2 _ t udata ; // User data
14

15 // Var iab le length data . . .
16 } ;

Listing 2.6: Base structure of a travel leg Lk on a GPU used to store the daily-activity plans
of the agents.

Both SoA and AoS approaches were used, and the travel leg structure is organized
as a linked list because the leg data is variable and depends on a transport mode.
Each travel leg has a pointer leg_next to the next leg (or NULL for the last one),
but the data of the next activity is embedded directly (AoS approach) into the
leg structure using the fields act_start, act_next and act_dur. This is done to
improve performance, as in most cases all fields of the activity structure (start time,
end time, duration) are required for time scheduling. Memory transactions are
always performed in chunks (the minimum is 32 bytes), and, typically, threads
in a warp randomly access activity data; therefore using SoA will lead to three
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scattered memory transactions instead of one, to load activity data for one thread.
The recorded actual start and end times of a travel leg in the fields leg_start and
leg_end, respectively, are also stored in the leg structure to be used later in the
scoring procedure. Each travel leg can also have a vehicle linked to it through the
field veh_idx, which is used to perform the leg; therefore, an agent can use multiple
vehicles during a day. A travel leg can also carry some user-specific information in
the udata field to allow a flexible customization of the travel modes.

A specialized travel leg structure, which is used for the general network-based
mode, in addition to the base leg data, contains an array of link indices to traverse
over the network in order to perform a route. In addition, the number of links and the
currently traversing link index are stored. The size of the structure varies depending
on the assigned route, and this is accounted for in the memory partitioning function.

2.3.6 Network variations

Network variations allow the definition of spatio-temporal changes in the input
network during the simulation process. With the ongoing spread of intelligent traffic
control systems and expected increase in penetration of AVs, there is a special need
in the modelling of dynamic infrastructure. For example, lanes can be reversed in
peak hours [168, 169] to increase flow capacity in a certain direction, or variable
speed limits can be employed to improve traffic safety [170, 171]. Network variations
can be supplied in a separate input file together with the scenario configuration.

Each variation describes one spatio-temporal change in the network, and specifies
which network link is affected, in what way, and at what time. For now, the free-
flow speed and flow capacity of a link can be changed through the variations.
The implementation of the network variations is relatively straightforward. When
variations are enabled, the host part of the GEMSim’s simulation loop runs another,
internal loop, that stores time-sorted variations and injects the required changes
into the network when time comes. This, in general, generates low volumes of
host-device data transfers as only a single value (four bytes) per variation has to be
updated on a GPU.

2.3.7 Iteration outputs

At the end, the mobility simulator provides an input for the learning process L.
First, the ScorePlans() kernel is executed, where each GPU thread processes its
own agent using temporal data that is recorded and stored in the travel leg structure.
Afterwards, the kernel CollectExternalities() finishes aggregating externalities
(traffic congestion, travel statistics by mode, occupancy of public transit routes, and
others), and then this output is transferred from a GPU to the host.

Network congestion statistics are a mandatory output and are required for the
learning process. However, for a large-scale network, and high temporal resolution,
it may consume lot of GPU memory to collect the data. For example, assume that
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a network G has one million links E, and congestion statistics (speed reduction,
number of car passed) are collected in 15-minute periods. For a typical simulation
of 30 hours, this will require the following amount of memory to be allocated:

Mstats,net =

[
tend

tstat,net

]ceil

· scell,net· | E | (2.21)

where tstat,net is the duration of a network statistical period, scell,net is the size of data
cell for one time period per link, and []ceil means integer rounded up. Assuming
only eight bytes is required per cell to store cell data (four bytes for speed reduction
and four bytes for accumulated number of vehicles), then almost 1 GB of memory
Mstats,net is required. That is why network congestion statistics are collected in
periods and transferred periodically to the host in the UpdateExternalities()

kernel.
The structure used to collect network congestion statistics for a single time period

has two arrays: one contains per-link aggregated travel time, and the second array
holds the number of vehicles passed through. At the end of the simulation loop, the
average per-link speed is obtained by calculating average travel time and using then
the length of the link. The reason to not to store the speed directly is to reduce the
number of computations done during the simulation, and the division operation is
typically the slowest when compared to addition and multiplication.

Each time a vehicle passes a link, the time and counter fields are updated in
the statistics by the corresponding GPU thread. While network links are processed
in parallel by the ProcessLinks() kernel and the global memory is accessed in
a coalesced manner pretty much, there is no guarantee that two links processed
by neighbouring threads from a warp will have leaving vehicles at the same time.
Therefore, the access to network statistics is mostly scattered. However, as the event
of vehicle leaving a link does not happen each simulated time step for each link,the
overall impact of statistics collection on the runtime performance is negligible.

Per-mode trip statistics are not a mandatory output, and, as they do not require
extensive device memory, they are collected in a different way. By default, the
duration of the time period for trip statistics is five minutes of simulated time. The
data structure used to collect per-mode trip statistics is split into three parts: (i)
temporal data aggregated for the current time period, (ii) the output data aggregated
for the whole simulation, and (iii) some additional data required to manage two
previous parts. The first part aggregates the number of departures, arrivals and en-
route agents. The UpdateExternalities() kernel periodically copies this temporal
data into the output part with aggregated values. After copying, the temporal
arrays are reset to zeros, and the current time period is incremented. The output
arrays store data successively per mode and then per time period; that is why some
additional variables are required to calculate these offsets.

For example, for the m-th mode and i-th current period, the offset Itrip in the
output arrays will be calculated as follows:

Itrip = m · Nperiods + i (2.22)
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where Nperiods is the total number of periods. As the amount of data to copy after
each time period is relatively small, this update procedure for trip statistics is
executed by a single GPU thread.

Compared to network congestion statistics, trip statistics consume much less
memory:

Mstats,trip =

[
tend

tstat,trip
+ 1

]ceil

· scell,trip · Nmodes (2.23)

where tstat,trip is the duration of trip statistical period (by default, it is set to five
minutes of simulated time), scell,trip is the size of data cell for one time period per
transport mode, and Nmodes is the number of transport modes used in a simulation.
Assuming that Nmodes = 5 and scell,trip consumes 12 bytes, Mstats,trip will require
only about 20 KB of memory. Similar to network congestion statistics, access by
GPU threads to the structure is scattered. However, the events, which require update
of trip statistics, happen even more rarely; only when an agent starts or finishes an
activity. As one can see, the memory required for both congestion and trip statistics
is known in advance and can be pre-allocated before the simulation starts.

There are other outputs generated by GEMSim, such as automatic comparison of
simulated traffic with field counts provided through the input file. A file contains a
list of stations with specified locations and the network links where traffic is being
measured, and hourly traffic volumes from the fields.

2.4 performance analysis

As the increase in runtime performance of existing agent-based mobility simulations
is one of the key motivations for this thesis, the developed framework was analysed
for its performance from multiple perspectives using a large-scale scenario of
Switzerland. While during the course of the thesis multiple daily-activity models
for demand generation in Switzerland were developed, these benchmarks use an
older version based on the Swiss Mobility and Transport Microcensus 2010 [172],
and the methods to synthesize the trip chains are described elsewhere [173]. The
population of agents consists of approximately 3.5 million agents with private
cars, and approximately 1.7 million agents using public transit. The synthetic
population of agents was derived from EnerPol’s agent-based population model
[131]. The distribution of the population across the country and the national road
network are shown in Figure 2.11. The activity locations are based on Swiss Business
and Enterprise Register 2013 [174] and Swiss Statistics on Enterprise Structure
(STATENT) 2012 [175] and were selected for agents within the population model,
and are fixed during the simulation.

The road network contains 513 770 nodes and 1 127 775 road links obtained from
OSM. As the data quality in OSM varies, some required link attributes that are
unreported are derived based on the road type at a link, or (in the case of flow
capacities) derived from the speed limit and number of lanes. The public transit
schedule of the year 2018, which contains 27 873 stops and 21 847 routes for trains,
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Figure 2.11: Distribution of the potential travel demand (left) and the road network (right)
in Switzerland.

buses, tramways, metro and all other modes of public transit in Switzerland was
taken from Swiss Federal Railways [176]. Public transit vehicles were not mixed
on the links with private cars in this scenario. The calibration of the scenario was
performed in the population model to match census data.

The scenario was validated against 137 traffic counts obtained from the Federal
Roads Office of Switzerland [177]. The traffic count data includes directional hourly
volumes for arterial highways and main roads for the full year of 2012. To converge
to equilibrium, 100 iterations were performed with re-routing (based on conges-
tion) 10% of agents between iterations. This number of iterations, whilst selected
empirically, consistently gives good convergence. Comparisons of simulated and
real counts for the morning (07:00–08:00) and evening (17:00–18:00) peak hours are
presented in Figure 2.12: the main trend is captured.

Figure 2.13 compares the predicted and actual distributions of trip durations by
car and public transit, respectively. The actual distributions of trip durations come
from the Swiss microcensus data [172]. The agreement of the predictions to the data
confirm that the large-scale scenarios are realistically modelled, as the simulations
replicate the behavioural patterns of the agents. Therefore, the Switzerland scenario
is used further to analyse the performance of GEMSim and to compare it with
MATSim.

The performance of GEMSim was benchmarked with MATSim for multiple
reasons. First, MATSim is a well-developed and highly optimized agent-based
mobility simulator that exploits parallel computing. Second, MATSim’s queue-
based model QSim [76] is similar to that implemented in GEMSim, thus it is
interesting to compare the performance of the developed GPU-optimized model
with a CPU-optimized multi-threaded model, rather than with a CPU single-core
implementation that is, as already explained, impractical in reality.
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(a) Morning peak hour (07:00 – 08:00).
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(b) Evening peak hour (17:00 – 18:00).

Figure 2.12: Comparison of simulated and real-world traffic counts in Switzerland using
the older scenario.

2.4.1 Considerations

First of all, some considerations related to expected runtime performance of GEM-
Sim must be taken into account. Computing power is required in only a few places
of the GPU implementation, whereas the movement of agents along and between
links take most of the time; therefore, the GPU implementation has some memory-
and latency-bound limitations and the performance depends strongly on the mem-
ory bandwidth of the GPU device. One limitation is in the ProcessNodes() kernel,
where threads in a warp access agents and downstream links in a non-coalesced
manner. Another limitation is in the ScheduleDemand() kernel, where agents are
injected into the simulation loop; while the data of each agent is coalesced, the
queues of the links are not coalesced.

Notwithstanding the above, it is interesting to note that whereas the performance
of the ProcessNodes() kernel depends on the size of the network, the performance
of the ScheduleDemand() kernel depends on the size of the population sample.

As mentioned in the previous chapter, it is possible to route global memory
requests by bypassing the L1 (on-chip) cache; this improves performance for non-
uniform (that is, scattered) access patterns, and the separate compilation and
linking mechanism from CUDA has been employed to tune the performance of
the presented kernels. This mechanism allows compiling each kernel with different
flags and link the code together afterwards. The following kernels were compiled
with the L1 cache turned off:

• ScheduleDemand()

• ScorePlans()

And the following kernels were compiled with the L1 cache turned on:
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Figure 2.13: Distribution of travel time for a typical working day, microcensus and simula-
tion of the older Switzerland scenario.

• ProcessLinks()

• ProcessNodes()

• UpdateExternalities()

• CollectExternalities()

Regarding the L1 cache, as none of the simulator’s code uses shared memory
capacity, hardware resources were only allocated to the L1 cache. Experiments
showed that such tuning of the L1 cache gives up to 10% improvement in the
runtime performance of the GPU-accelerated code, especially when GPU devices
with full L1 cache line promotion are used.

2.4.2 Convergence

The scenario was evaluated in terms of the convergence to equilibrium, to demon-
strate that the platform, and the learning part in particular, performs as expected.
The convergence to equilibrium of a simulated scenario was evaluated at both
aggregated and disaggregated levels. Figure 2.14 shows the average score of the
agents for each iteration. While initially the score is as low as 15, it quickly increases
asymptotically to 32.5 in 20 iterations. After 20 iterations, the score remains stable
except for a few iterations around an iteration count of 50 when a subset of agents
have poor re-routing. Notably, after 80 iterations when agents stop innovating their
plans, the score increases slightly and remains stable until the end of the simulation.
Figure 2.15 also shows the number of agents en-route during the day for different
iterations. While at the first iteration most agents choose the same routes and are
thus stuck in congestion, after 20 iterations the agents learn where are the congested
areas and avoid these areas when re-routing; hence almost all agents can reach
home by the end of the day. For example, in the area of Zurich city which has a
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population of about 400 000 people, the average duration of a car trip is reduced
from 28 to 20 minutes after the relaxation of road congestion, while the average trip
distance is increased from 15 to 19 km.
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Figure 2.14: Average score of agents between iterations when converging the older Switzer-
land scenario.
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Figure 2.15: Agents en-route between iterations when converging the older Switzerland
scenario.

The convergence at a disaggregated level was evaluated by comparing traffic flows
during the morning (07:00–08:00) and evening (17:00–18:00) peak hours along links
with positive traffic flows which are designated as motorways, and primary and
secondary roads in OSM. A total of 32 441 links were compared for the morning peak
hour, while for the evening peak hour 31 849 links were compared. At each iteration,
except the first, the traffic flows were compared to the traffic flows from the previous
iteration. Figure 2.16 shows the mean absolute difference and standard deviation for
each of the iterations. In the morning both mean and standard deviation are initially
high, but decrease in subsequent iterations. However, after about 10 iterations, the
mean difference stabilizes, but the standard deviation increases. This is because,
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after the initial improvement, agents perturb the system more by changing their
daily plans. After 80 iterations, agents stop actively innovating daily plans and the
standard deviation drops by a factor of four and subsequently remains stable. In
the evening, the behaviour of the system is similar; however the magnitude of the
standard deviation is higher than in the morning. Interestingly, there is a sharp
spike in the standard deviation around 50 iterations that also corresponds to the
decrease in the average score of the agents that was observed before in Figure 2.14.
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(a) Morning peak hour (07:00–08:00).

0 20 40 60 80 100
Iteration

100

50

0

50

100

150

Tr
af

fic
 fl

ow
 c

ha
ng

e

(b) Evening peak hour (17:00–18:00).

Figure 2.16: Difference of traffic flows along links between iterations when converging the
older Switzerland scenario.

2.4.3 Simulation loop

As the systematic design and implementation of a GPU-accelerated mobility model
were among the main goals of the thesis, the runtime performance of the whole
simulation loop was first evaluated and compared with MATSim using a sample of
3 million agents who are car drivers only. To run a scenario with both simulators, a
cluster node with two AMD EPYC 7742 CPUs clocked at 2.25 GHz, 1 TB of RAM
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and Nvidia A100 (40 GB DRAM on-board) GPU was used, running CentOS Linux
8.2 (x64 build). An iteration was run for one full day from 00:01 AM until 06:00 AM
of the next day. MATSim with the QSim multi-threaded CPU-based queuing model
(7 threads for the queueing model itself and 14 threads for events handling) was
used for comparison of performance. The learning process performed re-routing
for 10% of the agents using 20 threads in both simulators. GEMSim also used 20

threads to parallelize other tasks like data binding. Performance results for different
parts of the simulation loop are summarized in Table 2.2. Compared to a similar
benchmark performed with both simulators earlier [178], the following changes
were made:

• More recent hardware and software were used, and include one of the top
CPUs currently on the market, as well as a top available GPU. This ensures
that both simulators can get enough computing power, while before lower-end
CPUs have been used.

• Both simulators were run using the numactl utility that binds the CPU threads
of a process to a single CPU socket and to the nearest (in terms of latency)
memory banks of RAM. This ensures that both simulators allocate hardware
resources optimally on the NUMA node.

• Both simulators now keep three last plans for each of the agents, instead of
only two as before. While creating stronger pressure on consumed RAM, this
is a more realistic setting – typically, three to five plans are used, and the
default value for MATSim is five [76].

• More iterations (ten instead of five) were run before making the measurements.
Again, this reflects a more realistic use case when dozens to hundreds of
iterations are run, generating higher memory pressure and more relaxed
traffic flows. In previous studies, only two plans per person and fewer number
of iteration were possible due to the high RAM usage of MATSim and less
RAM installed in the testing node.

It is interesting to note that GEMSim requires more time to bind all the input data
to a GPU than to run the mobility simulation on a GPU itself, while, in contrast,
MATSim requires much less time to prepare the input data for the simulation. It
is thus evident that the design of a simulation loop with GPU acceleration as a
whole is important to consider, and the implementation of a GPU-accelerated traffic
propagation model itself does not necessarily mean an overall speeding-up of the
same level. Therefore, while many other works in the area of GPU-accelerated
mobility models focus mainly on the improvements of the runtime performance of
the traffic propagation, the major bottlenecks of the whole loop are left outside of
the scope. This leads to situations when speed-up factors, achieved and reported for
prototype models, do not reflect the overall performance improvement of simula-
tions in practice. An example can be seen in previous work of MATSim developers
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Table 2.2. Comparison of runtime performance of GEMSim and MATSim for each part of
the simulation loop.

Step in the loop GEMSim, s MATSim, s GEMSim speed-up

Data preparation 100 21 0.21

Mobility simulation 90 9058 100.64

Scoring 1 4 4.00

GPU output data 47 – –

Learning 213 1149 5.39

Total 451 10232 22.69

[76], where a performance gain of a GPU implementation was lost due to the cost of
data transfers between a GPU-accelerated part of the code and the rest of the code.

GEMSim’s mobility simulation runs 100 times faster than MATSim’s QSim model
(measurements are performed after the first 10 "warm-up" loop iterations), the more
efficient implementation of re-routing has superior performance, and in total the
whole simulation loop of GEMSim is more than 22 times faster than the simulation
loop of MATSim.

Another interesting point to note is that MATSim runs slower compared to the
previous benchmarks, despite the current hardware being more powerful. This can
be explained by the fact that the more relaxed traffic flows become, the more time is
required for MATSim to process generated events. The number of events increases
as agents learn how to travel and do so better, hence fewer agents are stuck in
traffic by the end of the day. Similarly, GEMSim has a runtime performance drop
on later iterations, from about 60 to 90 seconds, as more memory transactions on
GPUs are required to move agents across the network. However, as GEMSim is not
an event-based simulator, the runtime performance stabilizes relatively quickly at
around 90 seconds per iteration.

2.4.4 Scalability

First, the runtime performance of GEMSim simulations with different population
samples was evaluated on a cluster node with two Intel Xeon E5-2620 v4 CPUs
clocked at 2.60 GHz, 256 GB of DRAM and four Nvidia P100 (16 GB RAM on-board)
GPUs. In total, 20 CPU threads were used to run a scenario. The runtime of one
simulated daily iteration for each of the population samples is shown in Figure 2.17.
Agents were sampled uniformly at random from the full-scale scenario, including
car drivers and public transit users. The runtime performance scales non-linearly,
meaning that when the size of a sample increases from 20% to 40%, the runtime
increases from 220 to 350 seconds only. The cause of this behaviour is the structure
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of a GPU-accelerated simulation loop. There are two main performance bottlenecks
beyond traffic propagation: (i) data transfers between a GPU and the host side, and
(ii) re-routing of the agents between iterations. Both bottlenecks almost linearly
depend on the size of a simulated population, but the traffic propagation part,
which is accelerated with a GPU, has a non-linear runtime dependency. Thus, the
overall runtime of a simulated iteration has a non-linear dependency on the size of
a population sample.
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Figure 2.17: Runtime performance of GEMSim for one simulated iteration depending on
population sample size.

Next, the scalability of both simulators, GEMSim and MATSim, was evaluated
by using population samples from 100 000 to 3 million agents. For the traffic
propagation part, Figure 2.18 shows that GEMSim yields a significant reduction in
time for large-scale scenarios. It is evident that in comparison to MATSim, GEMSim
has a real-time ratio two orders of magnitude higher (i.e., how many seconds of
scenario time are simulated in each second of real time). While MATSim quickly
drops to ratios of around 20 with a population size of 1.5 million, GEMSim still has
ratios about two orders of magnitude higher or more even for larger population
samples.

Figure 2.19 shows the speed-up of GEMSim over MATSim for the traffic prop-
agation part, and for large population samples the speed-up factor is between 80

and 100. It is also interesting to observe that GEMSim has a performance saturation
point around the 2 million population sample, probably because the number of
agents becomes greater than the number of network links, and then the runtime
of the GPU procedure that updates states of the agents prevails. Nevertheless, the
speed-up factor continues growing with the further increase in population sample
size.

The host RAM consumption, shown in Figure 2.20, is about five times lower for
GEMSim for large population samples. Moreover, MATSim’s RAM consumption
increases much more rapidly as the population size increases.

Figure 2.21 shows the GPU DRAM consumption for the different population
samples. One limitation of GPU-accelerated models is the relatively small amount
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Figure 2.18: Real-time ratio (simulated seconds in each second of real time) of the traffic
propagation part for GEMSim and MATSim.
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Figure 2.19: Speed-up factor of GEMSim over MATSim for the traffic propagation part
depending on population sample size.

of available on-board memory (currently, up to 80 GB compared to TBs of RAM
available for CPUs). The Switzerland scenario, with this travel demand model and
car-driving agents, uses about 6.8 GB of GPU memory, which includes: 6.00 GB
for the daily-activity plans of the agents, 0.80 GB for the multi-modal network
(mostly for per-link queue buffers), and some relatively small amounts of memory
for the public transit schedule, per-vehicle data and aggregated statistics. Therefore,
the scalability of the GEMSim also depends on the available GPU memory, and
the simulator can run up to 40–45 million agents on a single GPU using currently
available hardware.
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Figure 2.20: Peak host RAM consumption during the simulation for GEMSim and MATSim
depending on population sample size.
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Figure 2.21: Peak GPU DRAM consumption by GEMSim during the simulation depending
on population sample size.

2.4.5 Kernel profiling

CUDA allows the profiling of GPU-accelerated applications in order to evaluate
bottlenecks and to fine-tune kernels for better performance. Profiling also allows us
to understand how well selected data structures and algorithms fit the hardware,
and what are the limitations applied. GEMSim was profiled using Nvidia Nsight
Compute (version 2022.1.0) when simulating the morning peak hour of the older
Switzerland scenario. Table 2.3 describes the main performance metrics collected,
while Table 2.4 presents the actual measurements from the profiler.
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Table 2.3. Description of main performance metrics collected during the profiling of GEMSim GPU kernels.

Metric Description

Duration (microseconds) How much time it takes to execute a kernel.

Compute Throughput (%) Achieved utilization of compute resources. Low values may indicate underutilization.

Memory Throughput (%) Achieved utilization of memory bandwidth. Low values may indicate underutilization.

L1 Cache Hit (%) The rate of successful L1 cache hits for memory transactions. A low hit rate indicates scattered access
patterns. Access to L2 cache imposes higher latencies.

L2 Cache Hit (%) The rate of successful L2 cache hits for memory transactions. A low hit rate indicates scattered access
patterns. Access to global memory in case of miss imposes highest latencies.

Occupancy / Theoretical (%) The ratio of maximum number of active warps to maximum active number of warps supported by SM.
Low occupancy may indicate workload imbalances of a kernel or scheduling overheads.

Branch Efficiency (%) Proportion of branches when all threads in a warp select the same branch target. Low efficiency leads to
serialization of instructions.

Warp Efficiency (no eligible, %) Number of active cycles when no instructions have been issued. High values may indicate stall issues and
underutilization of hardware resources.

Warp Cycles per Instruction Average number of cycles between issuing two instructions for a warp. Large values may indicate scattered
memory access and latency issues.

Long Scoreboard Stall (%) How often a long scoreboard dependency was among the warp stall reasons. Long scoreboards are reported
for instructions that may leave an SM (i.e., global or texture memory).

Registers [/65536] Number of registers used out of the maximum available. Overuse of registers leads to reduced occupancy
and spillover to global memory, causing stall issues.

IPC [/4.0] Instructions per cycle (IPC) executed out of the peak possible.

Instruction Serialization (%) Ratio of serialized instructions, due to latencies, memory or atomic operation conflicts.
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Table 2.4. Profiling results of the main GEMSim GPU kernels used for traffic propagation and the scheduling of agents’ daily-activity plans.

Metric Kernel ProcessLinks() ProcessNodes() ScheduleDemand()

Duration (microseconds) 50.98 144.10 715.81

Compute Throughput (%) 20.32 13.85 5.01

Memory Throughput (%) 55.63 24.34 7.25

L1 Cache Hit (%) 32.67 61.82 49.01

L2 Cache Hit (%) 20.90 48.05 59.42

Occupancy / Theoretical (%) 67.15 / 100.00 35.81 / 50.00 33.91 / 50.00

Branch Efficiency (%) 72.31 82.53 99.32

Warp Efficiency (no eligible, %) 77.07 84.09 94.75

Warp Cycles per Instruction 47.30 36.93 103.78

Long Scoreboard Stall (%) 79.60 83.00 90.30

Registers [/65536] 44 032 47 104 58 528

IPC [/4.0] 0.89 0.60 0.21

Instruction Serialization (%) 1.41 3.18 3.51
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Duration. It is clear that the kernel ScheduleDemand() is the main runtime bottle-
neck, with an average duration of about 715.81 microseconds, contributing about
78% of the total GPU execution time. The ProcessLinks() kernel has the shortest
runtime of about 50.98 microseconds, which is what is expected as it has relatively
simple logic combined with coalesced memory access. The total runtime is about 910

microseconds; however, this time reduces towards the end of a simulation because
as more agents arrive back home, fewer have to be scheduled.

Compute throughput. As mentioned before, mesoscopic mobility simulators
typically do not perform enough computations to saturate a GPU with work.
That is the reason why, overall, only about 20% of compute throughput has been
achieved by the ProcessLinks() kernel. However, most of these operations are
coming from load-store units that have to generate addresses while loading and
storing instructions. The lowest compute throughput of about 5% is achieved by
the ScheduleDemand() kernel due to the few calculations required, as well as high
memory latencies.

Memory throughput. The ProcessLinks() kernel achieved the highest memory
throughput of about 55%, which means that this kernel is memory bound, while
others are latency-bound. Again, the demand scheduling kernel has the poorest
runtime performance due to scattered memory access patterns. The reason why
the ProcessLinks() kernel is so efficient in memory access is that for most of the
execution time it has a coalesced access with low latencies, and the logic of this
kernel is the most straightforward with only a few conditions to be evaluated; it is
also the smallest kernel in terms of the code base.

L1 and L2 cache hit. Interestingly, the ProcessLinks() kernel has the lowest
hit rate of between 20% and 32%, while other kernels are in the range of 48%
to 61%. The lowest hit rate happens because the kernel already has a coalesced
access, so it only needs to fetch data from global memory in those few cases when
scattered access happens. The ProcessNodes() kernel has the best hit rate because it
often reads multiple consecutive fields from data structures with travel demand, so
accessing one fields automatically caches some other fields. However, while it seems
that the ScheduleDemand() kernel has efficient caching behaviour, this is misleading.
First of all, as mentioned earlier, this kernel compiles with L2 cache bypass, and it
does not cache access to global memory there. However, the demand scheduling
procedure requires access to many variables at the same time as making extensive
use of the registers (59 registers per a GPU thread); therefore, a spillover occurs
moving some data back and forth to global memory. These transactions generate
some cache hits, and not the kernel’s code explicitly.

Occupancy. The ProcessNodes() kernel has relatively high occupancy of almost
70%, which means that neither the resources of SM, like registers or shared memory,
nor the kernel launch configuration (block or grid size) are limiters of performance,
but rather latencies of memory access. In contrast, two other kernels have a maxi-
mum theoretical occupancy of only 50% due to extensive use of registers. As each
GPU thread uses too many registers, and it is a limited resource of SM, less warps
can be active at SM, reducing the total achieved occupancy.
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Branch efficiency. For all kernels, the branch efficiency is relatively high, es-
pecially in the demand scheduling where it goes above 99%. Such high branch
efficiency for the demand scheduling can be explained by the fact that the moment
when an agent actually requires a scheduling action is a relatively rare event, as on
average agents have about three to four travel legs. Therefore, most of the warps
only check the status of the agents and exit the kernel execution. On the other hand,
network propagation kernels have more non-uniform decisions across the threads
of a warp.

Warp efficiency. A warp is considered to be eligible if it can issue the next
instruction. At each cycle a warp scheduler tries to select an eligible warp to
issue an instruction: warps that are not eligible are considered to be stalled, for
multiple reasons. All kernels have high share of non-eligible warps at each cycle,
which indicates high latencies from stall issues. As the kernels are memory- and
latency-bound, this is an expected behaviour.

Warp cycles per instruction. This metric indicates how long it takes for a warp
to issue one instruction after another. Large values, like for the ScheduleDemand()

kernel, typically indicate stall issues as a warp cannot proceed to the next instruction.
Again, for a non-compute-bound kernel, this is expected.

Long scoreboard stall. While from the previous metrics it is clear that the kernels
experience stall issues, this metric proves that the majority of the stall issues are
due to waiting long scoreboard dependencies; that is, global memory access. This
stall issue constitutes from 79% to 90% of all stall issues, depending on the kernel.
Therefore, in order to optimize the kernels further, one has to improve memory
access patterns, or reduce the amount of data to read and write.

Registers. As mentioned, only the ProcessLinks() kernel fits the size of a register
file and is not limited in terms of maximum achievable occupancy, using 32 registers
per thread. Kernels ProcessNodes() and ScheduleDemand() consume 64 and 59

registers, respectively. The main reason is that these kernels have more complex
logic with branching and increased number of variables to evaluate.

IPC. For all kernels, the number of instructions per cycle is low, reaching down
from 0.89 for the ProcessLinks() kernel to 0.21 for the ScheduleDemand() kernel,
for which the primary reason is high memory latencies, incurring long waiting
times. Essentially, IPC is inversely proportional to memory latencies in the current
application. As the demand from kernels for arithmetic operations is low, there is
nothing to execute for warps while waiting for memory transactions to finish. This
is also supported by the fact the most frequent instruction for the kernels is integer
multiply-and-add, which is actively used to generate memory addresses.

Instruction serialization. Typically, instruction serialization happens when a GPU
wants to "replay" an instruction for some reason, most often long stall times or mem-
ory conflicts. It seems that such events happen rarely in traffic simulations, and the
serialization varies in the range of 1% to 4%. This means that code branching does
not cause intensive serialization rates, and shared memory is not used by the ker-
nels. There are, however, atomic operations in gridlock resolution (ProcessNodes()
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kernel) and demand scheduling parts, when agents compete for access to the same
link buffers. This is why for these kernels the overall serialization is higher.

Overall, profiling confirms that the GPU kernels are either memory- or latency-
bound, with little use of arithmetic resources. Therefore, to improve the runtime
performance further, one needs to improve memory access by making it less scat-
tered, or reduce the number of memory transactions, for example by compressing
transferred data and using underutilized arithmetic resources for decompression.
On the other hand, as only a small share of compute throughput is utilized, more
complex and detailed modelling algorithms can be implemented to make models
more realistic.

2.5 gridlock resolution

This section elaborates possible ways to effectively resolve artificial gridlocks in
GPU-accelerated mobility simulations. This is accomplished by providing different
gridlock resolution strategies that are specific to GPU-accelerated traffic queue
models. Nevertheless, these strategies can also be applied to traffic models executed
on CPUs in order to improve the overall performance by reducing the number of
memory allocations.

2.5.1 Background

Traffic gridlock occurs when a vehicle at the front of a queue of traffic can neither
move forward nor turn because the traffic is blocked (or the flow of traffic is very
slow) in all directions for the local area. Traffic gridlock is not uncommon when
roads are laid out in a grid pattern and cars block intersections (for example,
Manhattan Island in New York, New York, USA), or at a roundabout junction
of roads. A schematic of gridlock situations is shown in Figure 2.22. The physics
of gridlocks and ways to mitigate them have been extensively studied [179–182].
However, in practice, there is a set of very simple and efficient measures that are
applied to prevent gridlock, such as properly configured traffic lights with turn
restrictions, or fines for blocking an intersection.

In road traffic simulations, the implementation of real-world rules can be chal-
lenging: these rules range from the complexity arising from human behaviour to
computational limitations. Moreover, while in reality a gridlock typically happens
in highly congested areas, in microscopic simulations artificial gridlocks may occur.
These artificial gridlocks may lead to a completely jammed traffic flow with most
of the agents getting stuck, putting the simulation into an abnormal and unreal-
istic state. Reiser and Nagel [183] used the MATSim [76] framework to study the
phenomenon of network breakdown with a mesoscopic traffic queue model. They
showed that an iterative learning process in which agents adapt their behaviour to
the environment (that is, re-routing of a daily plan based on observed congestion)
between simulated daily iterations leads to the oscillatory process of a network
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(a) Triangular gridlocked section. (b) Rectangular gridlocked section.

Figure 2.22: Gridlock situations: arrows show the intended directions of traffic flows, and
the filled vehicles completely block the traffic flows.

breakdown. This network breakdown, which was observed to occur at random,
led to a global and unrealistic gridlock. Rickert and Nagel [184] observed gridlock
situations while performing microscopic simulation of Dallas-Fort Worth, Texas
(USA), using TRANSIMS [101]. The authors suggested reducing the green light
phase of traffic lights by about 40%, which improved gridlocking behaviour while
keeping the relative delays of the agents optimal. Nagel and Barrett [140] also
showed that gridlocks in microsimulations can be mitigated by removing stuck
vehicles from a simulation and performing iterative re-routing of the agents.

Horni and Axhausen [185] showed that the use of queue models in traffic simu-
lations may lead to artificial gridlocks because of the predefined behaviour of the
agents (that is, an inability to dynamically re-route when a gridlock occurs); thus,
two strategies to resolve gridlocks were proposed:

• Increase the physical capacity of simulated streets (links) by up to a factor of
five; or

• Push stuck vehicles into downstream links even if there is no available free
physical space.

The second approach is implemented in the current version of the MATSim’s
queue model, QSim, through the dynamic extension of queues based on the spatial
capacities of the network links. When one implements a traffic queue model that is
executed by a CPU, the above-mentioned approaches can be easily implemented
using dynamic memory allocation, even though the impact of such implementations
on the simulation outcomes remains an open question. With GPU-accelerated
mobility simulators, it is more challenging to resolve artificial gridlocks because
dynamic on-device memory allocation is unavailable.
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2.5.2 Resolution strategies

A vehicle moves along a route that comprises a sequence of links. A potential
gridlock situation arises when a link accumulates enough flow in a capacity buffer,
and therefore a vehicle cannot move to a downstream link because no free space
is available for a simulated time duration longer than tstuck. While configurable,
currently, tstuck is set at 10 seconds based on simulation experiments reported in the
previous work [185]. The following strategies to resolve a gridlock were proposed
and evaluated:

• push-through: a vehicle skips the congested link immediately in front of
it and tries to enter into the next downstream link along its route. If the
next link is full, then at the next simulation step the vehicle will try to
progress even further downstream, and so on. This strategy was mentioned in
Subsection 2.3.4, as one of the reference implementations.

• re-inject: a vehicle is removed from the capacity buffer and, starting from the
next simulation step, tries to enter the next link in the demand scheduling
kernel, thus competing with other vehicles for space in the queue in an atomic
compare-and-swap operation.

• squeeze: each link has a pre-allocated virtual capacity of constant size in the
spatial buffer, and a vehicle tries to use the virtual capacity of the downstream
link. Virtual capacity can be used only by stuck vehicles.

It should be noted that these strategies were designed for GPU execution without
dynamic on-device memory allocation. The push-through strategy, although very
simple to implement, is the least realistic strategy, and furthermore, this strategy
makes visualization of simulation outcomes difficult. The main disadvantage of the
push-through strategy is that the ProcessNodes() kernel can no longer be executed
completely in parallel, and GPU threads have to use atomic operations to reserve
space in downstream queues. The re-inject strategy is a more realistic strategy as
vehicles do not make spatial leaps, but visualization of simulation outcomes remains
a problem. Finally, the squeeze strategy is the most realistic of the three strategies,
and allows for easy visualization of simulation outcomes. However, this strategy
requires that additional memory on a GPU is pre-allocated for the virtual capacity.
A constant virtual capacity (that is, defined in the configuration of a scenario) was
used for all links in order to avoid extra memory transactions and calculations
when GPU threads work with link buffers. One can also note that the two former
strategies make the simulations more stochastic because the sequence of vehicles
along the same route departing at the same time is not always the same.

2.5.3 Impact on simulations

To evaluate the three gridlock resolution strategies, a large-scale scenario for the
whole of Switzerland, described in Section 2.4, was used. Here, while 3.1 million cars
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were simulated, public transit was not simulated. For each strategy, 100 iterations of
the original scenario were run to converge to equilibrium, where in one iteration a
30-hour long period starting from midnight is simulated with 1-second temporal
resolution. A computing node with four Nvidia P100 GPUs (16 GB DRAM on-board)
was used to run the simulations.

The squeeze strategy requires that the size of the virtual capacity is an input pa-
rameter, and Figure 2.23 presents the number of en-route agents during a simulated
day for different sizes of virtual capacity. A smaller virtual capacity leads to a larger
number of agents becoming stuck during the simulation. After 100 iterations, for
small sizes of virtual capacity (4–16) a substantial number of agents are still en-route
in the last 6 hours of the simulated 30-hour period; that is, the agents are gridlocked
and cannot continue performing their daily plans. On the other hand, for virtual
capacities of larger sizes (32 and 64) there are almost identical final results, with no
gridlocked agents at the end of the simulated 30-hour period; the relative difference
is less than 8%. Therefore, virtual capacities between 32 and 64 completely resolve
gridlocks in a large-scale simulation. Thus a virtual capacity of 64 was used below
to compare the performance of the three gridlock resolution strategies.

The impact of proposed gridlock resolution strategies on simulation convergence
is presented in Figure 2.24. After 25 iterations, all strategies converge to very similar
states. It is noteworthy that only the push-through strategy shows a faster congestion
relaxation after peak hours. This faster convergence is expected as the push-through
strategy is the least realistic, and can push vehicles over multiple links within a
short time. Both the re-inject and squeeze strategies provide almost identical results.
One can also note that the push-through strategy provides a good approximation of
the final result in just a few iterations. This observation can be used for calibration
purposes to save time on a search through a large set of input variables when a
large-scale scenario has to be run dozens or hundreds of times.



76 mobility simulator

0 4 8 12 16 20 0 4
Hour

0.0

0.5

1.0

1.5
Ag

en
ts
 e
n-
ro
ut
e

×106

4
8
16
32
64

(a) Iteration 1.

0 4 8 12 16 20 0 4
Hour

0.0

2.0

4.0

6.0

Ag
en

ts
 e
n-
ro
ut
e

×105

(b) Iteration 25.

0 4 8 12 16 20 0 4
Hour

0.0

2.0

4.0

6.0

Ag
en

ts
 e
n-
ro
ut
e

×105

(c) Iteration 100.

Figure 2.23: Agents en-route in Switzerland scenario when using the squeeze gridlock
resolution strategy with different sizes (4–64) of virtual capacity.
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(c) Iteration 25.

Figure 2.24: Agents en-route in Switzerland scenario when using different gridlock resolu-
tion strategies.
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Table 2.5 gives more insight into the impacts of the different gridlock resolution
strategies on the outcomes of the simulation. During simulation, each time an
agent gets stuck, the stuck event is recorded. At the first iteration, the push-through
strategy generates five times more stuck events (44 million) than the re-inject strategy
(8 million) and four times more than the squeeze strategy (10.6 million). This can
be explained by the fact that the push-through strategy resolves a gridlock much
faster, therefore more agents can propagate through the congested network. It is
also for this reason that this strategy has a higher vehicle-kilometres travelled (VKT)
figure than the other strategies. On the other hand, the squeeze strategy has the
highest vehicle-hours travelled (VHT) figure, as this strategy is the least efficient (in
terms of relaxation speed) for a gridlock resolution, and agents spend more time in
congestion. Additionally, the squeeze strategy requires about 280–300 MB of GPU
DRAM to allocate virtual capacity in the buffers, which is nevertheless acceptable
for modern GPUs that already have 80 GB DRAM.

After 100 iterations, the situation changes, and all metrics, except the number of
stuck events, are close to each other for all strategies. However, this does not mean
that all strategies similarly model the dynamics of individual congested intersections.
The re-inject strategy has the best runtime (that is, clock time required to simulate
one iteration) performance to reach a converged state, because the strategy does
not introduce additional atomic operations in GPU kernels. The squeeze strategy is
about 25% slower due to more scattered memory transactions to larger link buffers
with virtual capacity allocated (since all buffers are allocated on a GPU sequentially
in a single chunk). Interestingly, for a converged simulation, the squeeze and re-inject
strategies generate twice as many stuck events compared to the push-through strategy.
The explanation is that a more realistic gridlock resolution relaxes congestion more
slowly, thus more vehicles get stuck, whereas a less realistic strategy allows the
traffic to flow more smoothly, resulting in fewer stuck events.
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Table 2.5. Impact of gridlock resolution strategies on output externalities in the Switzerland scenario. VKT/p and VHT/p are per-person
VKT and VHT values, respectively.

Strategy Stuck events VKT VHT VKT/p VHT/p GPU DRAM, GB Runtime, s

Iteration 1

push-through 44 354 624 150 349 601 9 805 151 49.36 3.22 5.09 133

re-inject 7 990 270 141 929 124 7 768 868 46.59 2.55 5.09 218

squeeze 10 598 743 119 122 573 10 275 535 39.22 3.38 5.37 163

Iteration 100

push-through 478 856 168 762 000 4 395 740 55.40 1.44 5.10 173

re-inject 971 311 168 601 745 4 423 140 55.35 1.45 5.10 141

squeeze 1 078 083 168 746 345 4 495 997 55.40 1.48 5.39 196
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Figure 2.25 shows the location of 10 traffic counting stations in the Zurich area
(the largest metropolitan area in Switzerland). Figure 2.26 compares those stations’
traffic count data for the year 2017 to the simulation outcomes of the three gridlock
resolution strategies. The comparison for a typical working day was made for the
morning (07:00–08:00) and evening (17:00–18:00) peak hours. It can be seen that the
push-through strategy tends to predict slightly higher counts compared to the re-
inject and squeeze strategies. However, on average, the gridlock resolution strategies’
predictions capture the trends in the data, and quantitatively the predicted traffic
counts have relatively small differences to each other.

Figure 2.25: Locations of the traffic counting stations in the Zurich area used to evaluate
the impacts of gridlock resolution strategies.

Overall, the results show that all strategies can efficiently resolve gridlock situa-
tions. However, each strategy has advantages and disadvantages, and one has to
find a trade-off to apply the strategies in practice: the push-through strategy provides
faster convergence; the re-inject strategy provides a better runtime performance; and
the squeeze strategy provides a more realistic approach that allows for an easier
visualization at the expense of higher memory consumption. A good compromise
would be to use a hybrid approach, whereby the push-through strategy is applied in
the initial iterations, before switching to a more realistic squeeze strategy afterwards.
This hybrid approach can provide an overall faster convergence of a simulation.
The evaluation that is presented here also shows the sensitivity of the performance
of a GPU-accelerated traffic simulator when considering practical applications. A
gridlock resolution strategy alone reduces the performance of the simulator by up
to 25% due to the longer runtime.
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(a) Morning peak hour (07:00 – 08:00).
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(b) Evening peak hour (17:00 – 18:00).

Figure 2.26: Comparison of simulated and real-world traffic counts in the Zurich area using
different gridlock resolution strategies.

2.6 velocity model

One of the drawbacks of the original queuing model, as well as the mesoscopic
approach in general, is the limited level of detail used for intra-link vehicle dynamics
modelling, which defines how the longitudinal speed and the acceleration rate,
together with the lateral position of a vehicle, change as it moves along the link.
While macroscopic traffic models do not model interactions of individual vehicles,
mesoscopic models have only limited interactions like spatial queues. Specifically,
in the original queue model, vehicle dynamics are only modelled at intersections,
and the movement along a link is supposed to be uniform when a vehicle moves
with a certain average speed without acceleration or deceleration.

While intra-link vehicle dynamics can be omitted to model overall traffic flows
and congestion patterns in a study area, emerging transport technologies like BEVs
require a more accurate estimation of vehicle dynamics in order to model complex
physical processes like battery discharge in a more realistic way. For example,
an electric battery is sensitive to the acceleration rate applied to the vehicle, and
the battery can also recover some energy while the vehicle is driving downhill.
Therefore, mesoscopic traffic models shall be adapted for improved estimation of
intra-link vehicle dynamics.

2.6.1 Background

In microscopic traffic models, a car-following model is used to explain the behaviour
of people or AVs driving on the roads while following another car. A vehicle can
be classified as following when its speed is constrained by another, preceding,
vehicle; otherwise, when not constrained, a vehicle is considered to be at the desired
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speed. A following vehicle reacts to the actions of the preceding vehicle in the same
lane through the change of its speed. In addition to car-following models, other
traffic behavioural sub-models exist, for example, lane-changing models, overtaking
models, gap acceptance, ramp merging and so on. As mesoscopic models mostly
provide queue-based intra-link interaction between vehicles in single lanes, car-
following models can be used as a basis for the extension. According to Olstam and
Tapani [186], car-following models can be classified into the following categories
depending on the utilized logic:

• General models, or the Gazis-Herman-Rothery (GHR) family of models [187],
which assume that the acceleration of a following vehicle is proportional to
the relative speed and distance to a preceding vehicle.

• Safety distance, or collision avoidance models, assume that a vehicle always
keeps a safe distance to a preceding vehicle [188, 189]. One of the most widely
used models of this category in the existing microscopic traffic simulators is
Gipps’s model [190], which is based on the desired acceleration and braking
rates of the following vehicle. In Gipps’s model, a safety distance can be
defined as a function of maximum accepted braking rates of both following
and preceding vehicles [191]. These models, however, do not consider drivers’
perceptions.

• Psycho-physical, or action point models, assume that a driver reacts to spacing
or relative velocity only when a certain threshold is reached. In contrast, GHR
models assume that a driver reacts to any small change in relative velocity,
even when the distance to a preceding vehicle is large. The use of thresholds
allows the introduction of driving modes, like free driving or emergency
braking, when the reaction of a following vehicle is non-linear. Some widely
used examples of psycho-physical car-following models include the works of
Wiedemann [192, 193] and Fritzsche [194].

There are also some extensions to existing car-following models that make the
simulated behaviour more human-driven, for example by using fuzzy logic [195]. As
one can see, car-following models can enhance a mobility simulation with realistic
human-like behaviour and decision-making on the roads, but at the expense of a
more challenging calibration process [196] and increased computational burden.
Moreover, it not simply possible to apply the same car-following model to every
scenario because of heterogeneity [197] in car-following behaviour (that is, trucks
behave differently compared to passenger cars) and transferability problems arising
from cultural differences [198]. Therefore, as a mesoscopic model cannot descend to
the level of detail of car-following models, another approach is required.

The major problem related to vehicle’s speed during its movement in mesoscopic
queueing models is the instantaneous change of speed between the links. As no
speed change is modelled along a link, a profile looks like a step-wise function
where speed limits of the links from a taken route are used. Another problem is
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the quality of input data, especially when it comes from crowd-sourced services
like OSM where speed limits are not always set, or set improperly. After importing
such datasets, and imputing missing speed limits by road type and the number of
lanes, there could be situations when speed limits change substantially over a short
distance, for example, when exiting from a roundabout or entering a highway from
a ramp. Acceleration rate between such network links will be unrealistic, and may
lead to biased results when used to model electric battery discharge processes.

2.6.2 Model implementation

In order to provide more accurate speed profiles, a mesoscopic velocity tracking
model was developed. The model incorporates ideas from car-following models
and extends the queuing model to make drivers’ decisions more realistic. While in
car-following models a vehicle reacts to the behaviour of a preceding vehicle, here,
only average time over a network link is calculated to give a better lower-bound
estimation of travel time. In case of congestion, the travel time will increase, and a
vehicle would not be able to leave the link earlier.

Moreover, in reality, a driver knows more about the environment than just the
speed limit of the current link. For example, road signs can indicate changing
road conditions, giving a driver time to adapt their speed. A driver may also have
previous experience, so that they know the speed limits along the route and can
change speed in advance. The developed velocity model uses this fact and gives
information to an agent about the next network link, and the agent can decide how
to drive along the current link in order to make a comfortable transition to the next
link without breaking speed limits or performing emergency braking. In addition to
the original model, the speed of each vehicle from the last travelled link is tracked,
which requires an extra array of data to be stored in GPU memory.

Like some car-following models, the developed velocity model accounts for
multiple driving modes:

• Normalization mode, when a driver tries to normalize a vehicle’s speed
according to the defined speed limit. When a vehicle enters a link with a
higher-than-allowed speed, the driver will brake until the limit is reached.
Similarly, if the link entry speed is lower, the driver will try to accelerate up
to the limit.

• Cruise mode, when a vehicle moves at a constant speed and without accel-
eration. This mode is activated when the entry speed of a vehicle matches
the speed limits of the next two links, hence no speed change is required.
The cruise mode is also used in the middle of relatively long links, when an
agent has time to normalize the speed at the beginning and, if required, before
entering the next link.

• Deceleration mode, when a driver tries to match the speed limit on the next
link by braking.
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A detailed algorithm of the velocity model is presented in Figure 2.27. This model
is executed in the ProcessNodes() kernel each time a vehicle enters a new link, and
this also determines the minimum amount of time a vehicle should spend on the
link. The model is optional and can be disabled in the configuration file. Here, the
following inputs are required to evaluate the speed: v0 is the velocity of a vehicle
when entering a link, vlim is the speed limit of the entered link, v1 is the speed
limit on the downstream link, L is the length of the entered link, and anorm is the
acceleration/deceleration rate used by drivers.

In the algorithm, a driver first decides whether the normalization mode shall be
activated (lines 2–9) to reduce the entry speed v0 until the limit vlim or to the closest
possible value, and the output is stored in the variable vnorm. The variable vtarget is
set to the speed the driver wants to achieve by the end of the link, and this speed
is the lowest of the limit vlim of the current link and the limit v1 of the next link
(line 10). After the target speed is set, the driver tries to find an optimal strategy to
achieve it.

First, the driver evaluates (line 11) if the length of the link is long enough to
enable the cruse mode after the normalization mode is switched off. The cruise
mode assumes that a vehicle moves with a constant speed equal to the limit vlim,
and, moreover, a driver has enough time to accelerate up to the cruise speed and
to brake at the end of the link to meet the target speed vtarget. This is done by
calculating the corresponding distances required for acceleration and braking (lines
12–13), and then a vehicle either gradually changes the speed from entry one to
the target (lines 15–16), or goes to the cruise mode (lines 19–20). In the case that
the vehicle enters a link too fast or too slow (line 24), the speed changes to the best
possible match of the downstream link limits. After the length required for each
driving mode is calculated, the minimum travel time can be obtained (lines 26–27).
Finally, link exit speed is stored in the vexit variable.
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Input: v0, v1, vlim, L, anorm
1 begin
2 [vnorm, Lnorm]←− [v0, 0];

3 if v0 > vlim then
4 Lnorm ←− (v2

lim − v2
0)/(−2 · anorm);

5 if Lnorm > L then

6 vnorm ←−
√

2 · L · (−anorm) + v2
0;

7 Lnorm ←− L;
8 end
9 end

10 [vtarget, Ldec]←− [min(vlim, v1), 0];

11 if Lnorm < L then
12 Lacc ←− (v2

lim − v2
norm)/(2 · anorm);

13 Ldec ←−
∣∣∣(v2

target − v2
lim)/(2 · anorm)

∣∣∣;
14 if Lacc + Ldec > L− Lnorm then

15 vexit ←− min(
√

2 · anorm · (L− Lnorm) + v2
norm, vtarget);

16 Ldec ←−
∣∣∣(v2

exit − v2
norm)/(2 · anorm)

∣∣∣;
17 end
18 else
19 [vexit, vnorm]←− [vtarget, vlim];
20 Lnorm ←− max(Lnorm, Lacc);
21 end
22 end
23 else
24 vexit ←− vnorm;
25 end

26 Lcruise ←− L− Lnorm − Ldec;

27 return |vnorm − v0| /anorm + Lcruise/vlim +|vexit − vnorm| /anorm;
28 end

Figure 2.27: Algorithm of the velocity tracking model on the GPU used to improve the
modelling of intra-link vehicle dynamics.

The value for anorm defines comfortable acceleration and braking rates, and can
be taken from the literature or by using other, personal assumptions. For example,
Proctor et al. [199] used a 1987 Lincoln Mark VII LSC car to test the acceleration rates
of passenger cars, and the results showed the acceleration varies from about 1.5 m/s2

to about 4.12 m/s2. Hoberock [200] did a survey of 11 studies on passenger comfort
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due to longitudinal motion, and the results showed that in public mass transport
non-emergency accelerations from 1.08 m/s2 to 1.47 m/s2 are in the acceptable
range for most studies, although larger values could also be accepted. Values larger
than 2.94 m/s2 are unlikely to be accepted for most public transport. Panwai and
Dia [201] collected radar data in Stuttgart (Germany), during an afternoon peak
hour from a single lane under stop-and-go conditions. They found that vehicles
tend to have acceleration rates in the range from −4 m/s2 to around 2 m/s2. Wee et
al. [202] used GPS data from Singapore to calibrate simulated vehicle speeds along
signalized arterial roads using the microscopic model of PARAMICS. The authors
found that an average acceleration rate of 2.05 m/s2 allowed it to fit field datasets
with high accuracy.

Based on the above-mentioned literature, values for anorm can be set in the range
of 1− 2 m/s2. Moreover, as many studies show that there is no exact value for
comfortable acceleration as people perceive longitudinal forces differently, a per-
agent value for anorm can be set based on personal attributes. This will require an
additional array to be allocated in GPU memory.

The value of anorm defines the response rate at which a driver wants to recover
the difference between entry speed and the speed limit of a link, as well as the
difference between the limit of the current link and the limit of the downstream link.
In other words, it can be treated as "driving aggressiveness". While this parameter
defines which driving modes will be enabled on a link and for how long, it also
impacts the total link travel time in free-flow conditions. Figure 2.28 shows the
distribution of travel times along a 500 m link with a speed limit of 100 km/h,
for different combinations of the entry speed (in speed) and the speed limit set
for the downstream link (out speed). Two types of behaviour were modelled:
relaxed behaviour when anorm = 1.5 m/s2, and more aggressive behaviour when
anorm = 3.0 m/ss.

The horizontal plane around the z-value of 18 is the output of the original
model, and the travel time depends neither on entry speed nor the speed limit of a
downstream link. The more aggressive a driver, the closer the surface generated by
the velocity model to the original plane. This can be simply explained by the fact
that a driver can accelerate and brake faster, thus approaching the instantaneous
change in speed from the original model. The difference in travel time from the
original model, in the case of aggressive driving, is relatively minor and results in
about four additional seconds (about 22% increase); for the case of lower anorm, the
difference can reach almost 12 seconds, or about a 67% increase. However, such
extreme cases, when high-speed and slow links are on both endpoints, should rarely
occur in reality or simulations, and in most situations only minor differences in the
range of one to two seconds shall be observed.
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(a) Relaxed driving style with acceleration
rate anorm = 1.5 m/s2.
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(b) Aggressive driving behaviour with accel-
eration rate anorm = 3.0 m/s2.

Figure 2.28: Distribution of simulated travel times along a link depending on entry speed
and the speed limit of a downstream link.

While the travel time does not change significantly with the introduction of
the velocity model, the main impact can be observed in tracking the velocity of
individual vehicles. Figure 2.29a shows the recorded speed profile of a simulated
agent when driving in the city of Zurich, Switzerland, from the Wiedikon area to
Dübendorf, which is located on the other side of the city border. Here, free-flow
conditions were modelled without any congestion. Most of the time the agent drives
in the city area with speed limits of no more than 40 km/h, with only a brief period
on the highway, before reaching the destination area with lower speed limits again.
Figure 2.29b shows the same output, but for another agent travelling from Bern to
Zurich, hence making a long-distance inter-regional trip for which most of the time
was spent on a highway.

First, one can see that the original model produces a step-wise speed profile, with
instantaneous changes of speed. In contrast, the developed velocity model produces
a more realistic profile, with gradual changes of speed. This is especially visible
in the beginning and at the end of the trips, when in realistic conditions a vehicle
should have zero speed. Second, some sharp peaks from the original model are
smoothed out, for example around minute 15 in Figure 2.29a and around minute
63 in Figure 2.29b. These peaks were produced because routes have some short
parts with higher speed limits on the links, and the original model simply changes
up and down. The velocity model, instead, can gradually change, when possible,
speed and switch a driver to the cruise mode followed by gradual decrease of the
speed back to the lower limits. Moreover, on short links drivers tend not to vary
significantly.

This velocity smoothing behaviour results in one drawback to the velocity model,
in that it can lead to lower average speeds on some links. For example, around
minute 10 in the inter-regional trip, there is a 7 km highway link with a speed limit
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(a) City trip from Wiedikon to Dübendorf in the canton of Zurich, Switzerland.
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(b) Intercity trip from Bern to Zurich, Switzerland.

Figure 2.29: Simulated speed profiles of a vehicle when driving in different traffic condi-
tions.

of 120 km/h, however the model produces the average speed of 100 km/h only. The
reason for such behaviour is the following: as the high-speed link has lower-speed
entry and exit limits, and a driver has enough time to optimize his/her behaviour,
the vehicle spends most of its time in cruise mode, before braking to the same speed
as at the entry. As intra-link dynamics are not captured and not recorded, this part
of the behaviour is lost, making no difference between entry and exit speeds. This
will mean a lower power consumption if a BEV has been driving this route, even
though the vehicle can regenerate some energy while braking. The solution for this
problem is to slightly modify the input network to split long links into parts, so that
the first and last parts will provide acceleration and braking behaviour, respectively,
while other parts will capture the real speed limit of the original link.
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2.7 vehicles

Many initial studies on agent-based traffic simulations did not distinguish between
people and vehicles and used person-vehicle equivalents, when vehicle attributes
are attached directly to a person. This approach simplifies the representation of
the data used in a simulation, as well as reducing the complexity of the models
by effectively reducing the number of modelled agents. On the other hand, the
use of person-vehicle equivalents creates some difficulties in modelling complex
and multi-modal scenarios, for example simulating non-car modes of transport
like public transit or taxis where passengers are be accounted separately, or having
agents with multiple cars in their daily-activity plans with detours. Moreover, with
the development of emerging technologies like BEVs, it becomes of increasing
importance to model the state of vehicles individually as the state impacts the
behaviour of the agents.

In GEMSim, vehicles are modelled individually when needed through the vehicle
index, specified in the base travel leg data structure in Listing 2.6. When an agent
does not have an associated vehicle for a travel leg, the state of the vehicle is not
modelled and the parameters of a generic vehicle are used in simulation. This
dynamic approach allows a reduced computational burden when it is not needed.
Vehicles are always grouped in fleets, and separate fleets can be specified in multiple
parts of input data, for example each taxi operator or public transit agency has its
own fleet.

The description of a fleet is twofold: (i) models of vehicles with their correspond-
ing attributes, and (ii) vehicles of certain models used by the agents. This description
allows the separation of the properties of the vehicles from their states, where a
state defines the values of the properties. Second, it allows the optimization of
the amount of input data, as many agents use the same models of vehicles but
each model only has to be described once. Third, this approach also simplifies the
random assignment of vehicles to agents based on the available statistical data of
car markets. Each vehicle type, used to describe a specific vehicle model, has a set
of attributes: fuel type (energy source), physical dimensions and mass, frontal area
and drag coefficient, available space for passengers, etc. In this set, some attributes
are mandatory and some not, depending on the fuel technology of a vehicle. For
example, the drag coefficient and mass are required for BEVs, while for ICEVs these
attributes are optional and do not affect the modelling process.

One of the main purposes for the modelling of individual vehicles is fuel con-
sumption tracking. For fossil fuel vehicles this allows the estimation of externalities
like air pollution, while for electric vehicles it allows the assessment of impacts on
charging infrastructure and distribution grids. Such a fuel consumption tracking
subsystem was implemented in GEMSim. It comprises three main components:

• tracking of fuel consumption of individual vehicles;

• refuelling behaviour;
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• refuelling infrastructure.

Depending on the fuel types, GEMSim supports the following classes of vehicles:

• ICEV. Vehicles with internal combustion engines, using liquid fuels like petrol
or diesel.

• BEV. Vehicles with electric batteries, using electricity from batteries as a source
of energy.

• Wired. Vehicles which are attached to wires or other types of electrical links,
use electricity coming from these links as a source of energy.

Each of the classes defines a set of additional attributes specific to a given vehicle
type, and the state of each individual vehicle is based on the type of vehicle used.

In general, vehicle types can be split in two categories by the level of detail
used to model them in GEMSim: non-BEVs and BEVs. Non-BEVs are modelled
in a simplified way as these vehicles are already well studied, and they are more
predictable in terms of fuel consumption and the impacts on infrastructure and so-
ciety through negative externalities. In contrast, BEVs have only started penetrating
markets, hence, this class of vehicles gains more attention from researchers, society
and policy-makers, and there are multiple reasons why BEVs require more accurate
modelling.

First, the state of a BEV is more sensitive to the environment. For example, driving
cycle, weather conditions and elevation profile have a strong impact on the battery’s
SoC. At the same time, the typical driving range of a BEV is shorter compared to
modern ICEVs, while the recharging takes longer (up to several hours, depending on
the type of the charger used). These factors affect the behaviour of agents with BEVs
for whom the refuelling process is more critical in daily-activity planning, especially
considering the scarcity of charging infrastructure. Second, the demand for charging
infrastructure, and the consequent impact on local electric distribution grids, is
more complex to predict. For example, one can refuel an ICEV in a few minutes,
while recharging of a BEV can vary from minutes to hours, depending on SoC,
charging point and the BEV’s capabilities. Moreover, as many countries set goals
to reduce the number of private non-BEVs in order to make positive contributions
into the reduction of global CO2 emissions, there is a high probability that the
transition to BEVs will put more BEVs on the roads in upcoming years. Therefore,
more accurate modelling of BEVs and related infrastructure is required for better
understanding of the mobility transition process. As one of the goals of this thesis
was to develop a large-scale mobility model with the focus on emerging technologies,
BEVs are modelled with a high level of detail, accounting for their specific physical
properties and surrounding environmental conditions, while for other types of
vehicles simplified models based on per-distance average fuel consumption are
used. This, however, does not prevent possible future implementations of fuel
consumption models for non-BEVs, as the framework has a flexible and modular
architecture.
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Refuelling behaviour is modelled at two points of the simulation loop. The first
point is during the simulation, when a vehicle runs out of fuel and the driving agent
can make a decision where and how to refuel. This behaviour is only supported
for BEVs, while for other vehicle classes it is assumed that refuelling activities are
performed on-the-go and do not affect the daily-activity planning of the agents.
The second refuelling point happens between simulated iterations, and it defines
the initial simulation conditions in the scenario. For example, fuel levels can be
either distributed according to a certain law, or each vehicle can be fully fuelled.
This decision is performed through the special fleet refuelling handlers which are
registered in the main simulation loop, and automatically executed upon the end
of an iteration. Some default implementations are available: for example, refuel to
maximum level, or use the same level as at the beginning of the previous iteration.
More complex decision-making models can easily be integrated into the simulator.
Refuelling infrastructure, for the same reasons as refuelling behaviour, is only
modelled for BEVs, as described in Subsection 2.7.2.

The main structure of a vehicle fleet on a GPU is presented in Listing 2.7. The
structure contains the static attributes of vehicle models in the array vehicles of
base structures, while per-vehicle dynamic states, namely fuel level and occupancy,
are stored separately in the arrays fuel_level and space_occupied, respectively.
The number of vehicles vehicle_count is used to iterate through the fleet.

1 s t r u c t GpuFleet {
2 // Per − v e h i c l e data
3 GpuBaseVehicle * v e h i c l e s [ ] ; // Vehic les
4

5 // Per − v e h i c l e s t a t e
6 f l o a t f u e l _ l e v e l [ ] ; // Fuel l e v e l
7 i n t 3 2 _ t space_occupied [ ] ; // Occupied space , pax
8

9 i n t 3 2 _ t vehic le_count ; // Vehic le count
10 } ;

Listing 2.7: Structure of a vehicle fleet on a GPU storing vehicle models and state of each
vehicle.

Here, an approach similar to storing travel legs in GPU memory was used, when
the base vehicle structure GpuBaseVehicle contains common attributes of a vehicle,
and this structure is nested into a more specialized structure that represents a
specific class of vehicles. In contrast to the AoS approach used for vehicle attributes,
SoA is used to store vehicle states. The reason is that when a GPU thread needs
to update the state of a vehicle (typically, when a vehicle changes a network link),
many attributes are required as inputs to algorithms, and at the same time, this
update event is scattered across the vehicles, making it difficult to perform coalesced
memory access. Therefore, storing per-vehicle attributes as AoS allows for a GPU to
cache per-thread data efficiently. Vehicle states, however, use SoA because this data
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can be accessed from the CPU side, for example to model refuelling behaviour, and
it is also more convenient to export data for further post-processing and analysis
as part of simulation outputs. GPU memory for attributes is allocated in a single
chunk and then partitioned, similar to travel legs.

The base vehicle structure in GPU memory is presented in Listing 2.8. It contains
the common attributes of vehicle models, and these attributes are used as inputs to
update the states of vehicles during the simulation. The veh_type field indicates the
class of a vehicle and is used to promote the base structure to a specialized one.

1 s t r u c t GpuBaseVehicle {
2 i n t 3 2 _ t v e h i c l e _ i d ; // Vehic le ID
3 f l o a t mass ; // Mass , kg
4 f l o a t drag_coef ; // Drag c o e f f i c i e n t
5 f l o a t f r o n t a l _ a r e a ; // Fr on ta l area , m^2

6 i n t 1 6 _ t s p a c e _ a v a i l a b l e ; // Avai lable space , pax
7 i n t 1 6 _ t veh_type ; // Vehic le type
8 } ;

Listing 2.8: Base structure of a vehicle on a GPU with common attributes used to update
the state.

2.7.1 Non-BEVs

ICEVs have tank volume and average fuel consumption per driven kilometre spec-
ified as class-specific attributes. ICEVs are modelled in a simple way, when fuel
consumption FICEV is directly proportional to the driven distance Dkm:

FICEV = Dkm · f ICEV (2.24)

where ficev is the average fuel consumption per kilometre for this vehicle type. The
structure of an ICEV in GPU memory, in addition to the base vehicle structure,
contains tank capacity and fuel consumption f ICE of the vehicle.

Vehicles that use wires or special links to get electricity as a source of energy, and
are modelled in a way similar to ICEVs, when the energy consumption Ewired is
directly proportional to the driven time Ts:

Ewired = Ts · pwired (2.25)

where pwired is the average power consumption for this vehicle type, and it is the
only class-specific attributed required as an input. While pwired is specified through
class-specific attributes (as for ICEVs), it does not require any limits for fuel storage,
so the state of such a vehicle type contains total consumed energy stored instead of
the fuel level. Wired vehicles are mostly intended for public transit simulations to
estimate rough energy consumption figures for trams and trolleybuses. The structure
of a wired vehicle in GPU memory, in addition to the base vehicle structure, contains
average power consumption pwired of the vehicle.
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2.7.2 BEVs

BEVs have battery capacity, supported plugs and charging power specified as
mandatory class-specific attributes, while the availability of a heat pump is optional.
The state of this vehicle class keeps track of how much energy left in the battery.
The energy consumption model is based on the work of Fiori et al. [203]. In the first
step, the power at wheels is calculated at the moment of simulation time t:

Pwheels(t) = [m · a(t) + m · g · cos(θ) · Cr · (c1 · v(t) + c2)

+
1
2
· ρair · A f · CD · v2(t) + m · g · sin(θ)] · v(t) (2.26)

where m is the gross mass of the vehicle in kg; a(t) is the acceleration of the
vehicle in m/s2, g = 9.8066 m/s2 is the gravitational acceleration constant, θ is
the road slope; Cr = 0.00175, c1 = 0.0328 and c2 = 4.575 are the rolling resistance
parameters coming from the road surface type, road condition, and vehicle tire type;
ρair = 1.2256 kg/m3 is the air mass density at sea level at 15◦C; A f is the frontal
area of the vehicle in m2; CD is the aerodynamic drag coefficient of the vehicle; and
v(t) is the speed of the vehicle in m/s.

The value of m comprises vehicle empty mass from the input data plus the total
mass of passengers in the vehicle using the average human body mass of 70 kg. This
allows to quantify the impacts of occupancy on public transit power consumption.
The values of cos(θ) and sin(θ) are calculated for each network link in advance
using the digital elevation model of the area, but this is only possible when the
z coordinate for each of the network nodes is provided in the input; these values
are stored in GPU memory separately in per-link arrays. The speed value v(t) is
calculated as link distance divided by the link travel time of the vehicle, while the
acceleration a(t) is calculated based on the entry and leave speed values for the link
using the velocity model from Section 2.6. The values of A f and CD are taken from
the input description of the vehicle.

In the second step, the power at the electric motor is calculated by accounting for
the losses in the powertrain:

Pemotor(t) = Pwheels(t) · ηdriveline · ηemotor (2.27)

where ηdriveline = 0.92 is the driveline efficiency and ηemotor = 0.91 is the efficiency
of the electric motor.

Next, the net electric power is calculated depending on whether the power at
the electric motor is negative or positive. In the case of regenerative braking, when
Pemotor < 0, the net electric power is defined as follows:

Pemotor,net = Pemotor · ηbattery · ηrb (2.28)
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where ηbattery = 0.90 is the efficiency of the battery, and the efficiency of regenerative
braking ηrb is defined as follows:

ηrb =


(

exp
0.0411
|a(t)|

)−1

∀a(t) < 0

1 ∀a(t) ≥ 0

(2.29)

where negative acceleration means that a vehicle regenerates energy.
In addition to the powertrain, the auxiliary power Paux consumption is modelled

depending on the availability of a heat pump and the ambient temperature. Fig-
ure 2.30 shows the power consumption curves used to model auxiliary systems [34].
The ambient temperature comes from a dedicated GEMSim service that can define
the variation in temperature on a per-link basis during the day, as the scale of a
simulation can be country-wide, covering different climate zones. Otherwise, one
can specify a single global temperature value for the scenario.
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Figure 2.30: Auxiliary power consumption of a BEV depending on heat pump availability
and ambient temperature.

Finally, the total power consumption is quantified, and the battery capacity is
updated based on the travel time of the agent along the network link:

Ptotal(t) = Pemotor,net + Paux (2.30)

Charging infrastructure is critical for the realistic simulation of BEVs as it impacts
the behaviour of people in terms of which locations for activities they select. It
can also generate additional travel demand for charging activities. To support
the simulation of scenarios involving the charging behaviour of the agents, a
specification of BEV charging infrastructure as part of input supply for GEMSim
was implemented. The decision-making process for charging of BEVs is performed
at the host side as it includes spatial lookup and other complex algorithms not
particularly suitable for GPUs. The infrastructure comprises a set of geo-referenced
charging stations, where each of these stations has one or more charging slots
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with defined charging type technology (AC or DC), compatible plug types and
the maximum output charging power. This input charging infrastructure is used
by simulation algorithms to find a compatible charger whenever agents decide to
charge their BEVs. One can also implement custom decision-making algorithms on
how to agents look for chargers except using distance and plug compatibility, for
example, based on dynamic pricing options or parking.

Figures 2.31–2.33 show the change of SoC against altitude, speed and acceleration
of three simulated trips of a Tesla Model S vehicle with a battery capacity of
100 kWh in the Zurich area. First of all, steeper altitude profiles have a significant
impact on the battery discharge, while downward slopes help to regenerate energy.
Higher velocity, as expected, leads to increased power consumption, and spikes in
acceleration cause more intensive power demand. As the acceleration of the vehicle
has to be calculated for the estimation of power consumption, the velocity model is
always enabled whenever the fuel tracking model is used in a scenario. The fuel
tracking model is also optional and can be disabled in the scenario configuration
file.

The structure of a BEV in GPU memory, in addition to the vehicle base structure,
contains battery capacity and a flag that indicates the availability of a heat pump.



96 mobility simulator

0 10 20 30 40 50
Distance, km

300

400

500

600

700

800

Al
tit
 d

e,
 m

75

80

85

90

95

100

St
at
e 
of
 c
ha
rg
e,
 %

(a) Trip 1.
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(b) Trip 2.
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(c) Trip 3.

Figure 2.31: Variation in SoC of a simulated BEV (Tesla Model S) against altitude profile,
for multiple trips in the Zurich area.
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Figure 2.32: Variation in SoC of a simulated BEV (Tesla Model S) against speed profile, for
multiple trips in the Zurich area.
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Figure 2.33: Variation in SoC of a simulated BEV (Tesla Model S) against acceleration
profile, for multiple trips in the Zurich area.
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2.8 heterogeneous hardware

One of the ideas behind this thesis was not only to develop the methodology for
a GPU-accelerated mobility simulator, but to do so in a generalized way so that
the technology could be transferred to other parallel hardware, such as modern
many-core CPUs. This required two steps to be implemented: (i) memory and data
management for specific hardware, and (ii) a hardware abstraction layer for the
simulator such that it does not deal with heterogeneous hardware directly. The
first step was needed because of separate memory space used at host and on a
device like a GPU. While there are developments in a coherent memory space
provided for both CPUs and other attached accelerators like GPUs and FPGAs, a
more general approach will make the model compatible with a broader range of
devices. The second step allowed the development of mobility simulation models
without dealing with hardware specifics, thus making models hardware-agnostic.
Separation of mobility models from hardware also reduced the development effort
as algorithms only need to be implemented once, after which they can be scaled
onto available hardware automatically.

This section describes how the data is managed on the host and the device, and
also introduces a hardware abstraction layer that permits running the same mobility
model on GPUs and many-core CPUs.

2.8.1 Introduction

A typical approach to supporting the use of heterogeneous hardware in mobility
simulations is to apply specially designed frameworks such as OpenCL [204], which
allow one to run the same model on CPUs, GPUs, FPGAs or other accelerators.
OpenCL provides a way of writing functions (kernels), which are then executed
in parallel on the supported hardware. Furthermore, OpenCL automatically maps
kernels on available computing cores (elements). However, while OpenCL is portable
across different hardware, there are several limitations. First, hardware vendors
must provide the required drivers for OpenCL [205]. Second, the performance of
a model can vary a lot across the hardware of different vendors [98], and some
vendors may only provide a partial implementation of the OpenCL standard. Third,
1.x, the most widely used version of OpenCL, does not support raw device pointers
but rather memory buffers [206]. Thus, it is not a trivial task to use complex and
linked data structures, such as trees, on an OpenCL device. Last but not least, in
many cases, OpenCL requires additional tuning to achieve optimal performance on
specific hardware [207–209], although for some applications auto-tuning methods
have been developed [210, 211].

A different approach to facilitating the use of heterogeneous hardware in mobility
simulations, applied in this thesis, is to combine parallel computing with hardware
accelerators in such a way that a model can be run on either CPU or GPU with
minimum effort in development and without using OpenCL.
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It is evident that the already discussed data structures are well suited for CPUs in
terms of runtime performance. First, the data is compact and organized sequentially
in memory (without cross-pointers between nodes and links). A CPU can exploit
cache locality when multiple links or nodes are processed one-by-one. Second,
multiple CPU cores can process links and nodes in parallel, as with GPU threads,
but in order to avoid false sharing (that is, when multiple cores write into the same
cache line), each core must process a chunk of items instead of one item as done by
a GPU thread. To run the same traffic model around the same data structures on
both CPU and GPU, the following abstractions were made:

• Backend. The aim of a backend is to abstract hardware management and
parallel code execution from the simulator. A backend is used to initialize the
hardware; to execute a simulation step in parallel; and to provide hardware-
optimized functions such as atomic operations.

• Data binder. The aim of a data binder is to abstract data layer management
from specific hardware. On the host side, the data layer was implemented
using classes, including complex data structures such as collections and trees.
However, the host structures do not provide optimal performance because the
traffic model has to iterate over a large number of links, nodes and agents,
and each object in a collection can be allocated in a random memory location.
A data binder maps host objects onto cache-friendly structures using memory
functions from the backend.

The main reason why GPU-optimized data structures are not widely used in
developed CPU-based models is the complexity of the code development and main-
tenance, especially for large projects. To simplify the development process, typically
object-oriented paradigms are used, complemented with object-oriented program-
ming languages. Therefore, while there is no surprise about runtime performance
drop when using rapid development methods, this is often accepted as a cost of
having a simpler and faster approach to delivering software. On the other hand, al-
ready having a GPU-accelerated model implemented means that one can potentially
benefit from the possibility of running the same model on many-core CPUs more
efficiently. The proposed approach for running a mobility model on both CPUs and
GPUs aims at minimizing the cost of development of such heterogeneous software.

2.8.2 Background

Xiao et al. [96] studied the performance improvement when parts of a CPU-based
microscopic simulator are offloaded to a GPU using the OpenCL framework. Sin-
gapore’s road network was simulated, and the generation rate of agents varied
from 8 to 400 per simulated second. A fully offloaded GPU-based version had a
speed-up factor of 28.7 compared to a sequential CPU-based version in conditions
of low-intensity traffic, and up to a 14.8 speed-up factor in conditions of high-
intensity traffic. On a multi-core CPU (four physical cores) a speed-up factor of



2.8 heterogeneous hardware 101

6.7 was achieved. The authors noted that a fully OpenCL-based implementation
was challenging to develop, had limited maintainability and extensibility of the
model, and that many commonly used data structures had to be re-implemented for
hardware accelerators. In later work, Xiao et al. [97] developed an OpenCL-based
microscopic agent-based simulation model that was applied to small-scale (16 384

agents on a single four-lane road) traffic simulations executed on CPUs, GPUs and
FPGAs. It was demonstrated that an FPGA ran 24.35 times faster than a CPU core,
and 8.9 times faster than a GPU. Rajf and Potuzak [98] compared the runtimes of
two microscopic traffic models on CPUs and GPUs that used the same algorithms.
Using artificial grid networks and up to 250 000 initial vehicles, a speed-up of up to
a factor of 12.4 was shown for the GPU-based model compared to the CPU-based
multi-threaded (six physical cores) model. While it was intended to keep both mod-
els as similar as possible, the CPU-based and GPU-based versions were respectively
implemented with the .NET and the OpenCL frameworks. Interestingly, the authors
showed that the GPU model ran significantly slower on AMD than Nvidia hardware;
this difference may have been because of the less efficient implementation of the
OpenCL driver. While other studies on hardware-accelerated traffic models [75, 79,
88, 99] have been presented, these are only single-threaded implementations for
CPU, and often have limited functionality.

Nevertheless, the above-mentioned literature shows that runtime is improved
when hardware accelerators are used. However: (i) these previous works rely on
the OpenCL framework and its attendant limitations; (ii) none of these previous
works demonstrate scalability and improved performance of CPU-based versions
on many-core CPUs (of up to six physical CPU cores only); and (iii) none of these
previous works demonstrate that multi-modal traffic can be run. Therefore, the
following research question is still open: to what extent can modern many-core
CPUs compete with GPUs in agent-based mobility simulations when the code is
optimized for execution on heterogeneous hardware?

2.8.3 Data binder

Data binding is one of the important contributions of this work to the more widely
known structure of the simulation loop. This step is either missing or not considered
in previous literature, which is surprising when one considers that input data is
somehow given and can be put on a GPU easily. For small-scale scenarios, indeed,
the transfer of input and output data between the host and a device does not
have a significant impact on the overall simulation time and can be omitted in
considerations of the performance, but for large-scale scenarios with the feedback
loop, data transfers to or from a GPU can become a bottleneck. The bottleneck
happens due to the need to use data structures that provide less scattered or even a
coalesced access to memory for GPU threads. Therefore, as data structures on the
host are different from those used on a GPU, a conversion procedure is required to
exchange the data between the host and the GPU.
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The data binder is a software unit (class) that incorporates logic on how a certain
part of the host data must be placed on a GPU in order to maximize the overall
performance. A binder (i) manages GPU-optimized structures that are suited for
faster code execution, (ii) allocates memory on a GPU and partitions memory
according to a certain layout, (iii) transforms host data into GPU structures, (iv)
copies data to partitioned GPU memory, and (v) finally releases the allocated
resources. Another important role of a binder is to provide bidirectional mapping
of the data from host objects to corresponding GPU objects and vice versa. Nearly
all objects (that is, network links and nodes, persons and vehicles) of the input
data have unique IDs that are used as short, quick references. On the host side,
data structures like key-value associative arrays can be used to quickly access a
certain object using its ID; this is not the case for a GPU, due to its limitations
in dynamic memory allocation and data structures with random memory access.
Instead, mapping is used so that the GPU code operates only with predefined array
indices to improve the utilization of memory bandwidth.

Agent ID:

Age:

Gender:

23

30

Female (1)

Index: 12

CPU

GPU

0 1 2 3 ... 12 ...

20 25 31 54 ... 30 ...

1 0 0 1 ... 1 ...

0 1 2 3 ... 12 ...

Age

Gender

Figure 2.34: Data mapping between CPU and GPU address spaces in GEMSim.

Figure 2.34 shows an example of data mapping between the host and the GPU.
Here, at the host side, a program has an object (class instance) in memory with
the attributes of ID, age and gender, which are located successively in memory. On
the other hand, the GPU stores age and gender attributes in separate arrays, and
uses an index instead of ID to access the attributes in constant time. Constant time
memory access is achieved by avoiding a non-linear procedure that looks up an
object by its ID. Moreover, for optimization purposes, the order of the objects in
GPU memory may be completely different from the order on the host. This mapping
is more complex for composite objects, where each item may have local indexing
within a group and global indexing within a composite object. For example, agents
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are grouped in sets called populations, and each population object maintains the
agents independently from other sets. One set may represent input synthetic agents,
and another set may represent artificially created drivers of public transit vehicles.
However, as was shown in Subsection 2.3.5, the attributes of all simulated agents
are stored together in separate arrays (one array per attribute). To deal with such
a composite structure, a binder stores information for hierarchical indexing. The
global index Iglobal,i of the i-th object from a set of items on a GPU is defined as
follows:

Iglobal,i = Igroup,i + Ilocal,i (2.31)

where Igroup,i is the offset of a set of items within the whole GPU-allocated array,
and Ilocal,i is the offset of the item within the set itself. For example, for per-agent
attributes, the local offset is stored in the lidx field of the GpuDemand structure
(Listing 2.5), and can be used to calculate the group offset.

For millions of agents with multiple travel legs in each of the plans, and when
a travel leg contains from a handful to hundreds of network links in a route,
mapping itself is a computational challenge and shall be designed with maximum
performance in mind. In GEMSim, a single chunk of GPU memory is allocated,
partitioned between the multiple CPU binding threads, and then each of the binding
threads (i) replicates the GPU data structures for a given portion of agents in host
memory, and (ii) executes as few memory transfers as possible between a GPU and
the host to copy the data. Typically, a GPU has multiple copy engines to transfer
data between the host and the device, so a binder benefits from multi-threaded
mapping processes. At the host side, each thread is mapped onto a separate logical
CPU core.

In GEMSim, all objects transferred to a GPU are grouped into sets, and a whole
set is always mapped to a device. Each type of these sets (that is, a population
of agents, or a network of links and nodes, or a fleet of vehicles) has its own
indexing implementation to better optimize the memory access of GPU threads,
with different ways of sorting the items (see, for example, sorting of network links
in Subsection 2.3.4). When downloading data back to the host, the same binders
are used to re-map indices to IDs, and to update the host structures accordingly
(e.g., for scores of individual plans, or information about traffic congestion across a
network).

2.8.4 Hardware abstraction layer

Table 2.6 shows the hardware-specific functions that were used to implement back-
ends for CPUs and GPUs. The implementation of the GPU backend is comparatively
trivial as CUDA provides the required functions and kernels are executed in par-
allel, like a normal function call using the chevron syntax extension for C++. The
CPU backend is a bit more complicated for two reasons: (i) atomic operations in
C/C++ standard libraries do not operate directly on a memory address but rather
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on special atomic data types; and (ii) a customized solution is required to run
kernels efficiently in parallel on CPU cores.

The first issue can be solved by using built-in compiler functions (intrinsics), and
both GCC and Clang compilers support the __atomic_* family of functions, while
__sync_* or Interlocked* families can be used as well. The simulator build system
automatically detects the presence of atomic operations and switches to one of
the available implementations. Atomic operations, especially compare-and-swap
(CAS), are used to avoid race conditions in the ScheduleDemand() kernel when
multiple agents may want to depart from the same network link (hence, the same
spatial buffer can be accessed simultaneously from multiple threads). The use of
atomic operations, together with the probabilistic order of upstream links in the
ProcessNodes() kernel, makes outputs of a simulation slightly different for each
run.

Table 2.6. Hardware-specific functions used in the CPU and GPU backends of GEMSim.

Function CPU GPU

Memory
malloc()
free()
memcpy()

cudaMalloc()
cudaFree()
cudaMemcpy()

Atomic CAS __atomic_compare_exchange_n() atomicCAS()

Atomic add __atomic_fetch_add() atomicAdd()

Scientific sinf(), cosf(), expf() __sinf(), __cosf(), __expf()

Execute kernel Pool of workers kernel⟨⟨...⟩⟩(...)

The second issue relates to the fact that a typical CPU, in comparison to a GPU,
is less suited to very short and intensive burst loads: a context switch takes longer,
and spawning a thread also takes more time. Moreover, when running on many-
core CPUs, load balancing can be a problem if the workload has been statically
partitioned. To overcome this issue, a pool of N worker threads was used; the
algorithm of a worker thread is shown in Figure 2.35.

In it, Q is a queue of tasks, Tdone is the number of already finished tasks, Ttot is
the total number of tasks to perform, CVQ and CVM are condition variables, and M
is a mutex. All variables are passed by pointers. The main idea here is to minimize
synchronization overhead: therefore, at the beginning of the loop, workers wait
until the queue receives new tasks; and at the end of the loop, only the last worker
signals to the backend that all tasks are finished. The AtomicAdd() operation is used
to count the number of finished tasks without locking the mutex twice.

The algorithm of the backend that executes a kernel in parallel is shown in
Figure 2.36. At the backend side, a queue is filled with the tasks to be performed.
The partitioning process splits either the network G (links and nodes) or the demand
D (agents) into chunks, where each chunk represents a task for a worker thread.
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Input: Q, Tdone, Ttot, CVQ, CVM, M
1 begin
2 while true do
3 LockMutex(M);
4 while IsQueueEmpty(Q) do
5 WaitOnCV(CVQ, M);
6 end
7 T ←− TakeLastTask(Q);
8 UnlockMutex(M);
9 ExecuteTask(T);

10 Tdone−1 ←− AtomicAdd(Tdone, 1);
11 if Tdone−1 = (Ttot − 1) then
12 SignalOnCV(CVM);
13 end
14 end
15 end

Figure 2.35: Algorithm of the worker thread for parallel execution of GEMSim’s GPU
kernels on a CPU.

Input: G, D, Q, Tdone, Ttot, CVQ, CVM, M, K
1 begin
2 LockMutex(M);
3 Tdone ←− 0;
4 Q, Ttot ←− PartitionTasks(G, D, K);
5 SignalOnCV(CVQ);
6 WaitOnCV(CVM, M);
7 UnlockMutex(M);
8 end

Figure 2.36: Algorithm of the kernel launcher for parallel execution of GEMSim’s GPU
kernels on a CPU.

Each task contains the start and end indices of the elements to be processed, and K
specifies which kernel must be executed. After that, the backend wakes up worker
threads and waits until they finish processing the tasks. Before leaving the function,
the backend unlocks the mutex M as it is always locked after waiting in the condition
variable. In general, a worker calls the same functions as GPU threads, but it does
it in a loop for a given chunk of data. Worker threads are spawned once at the
beginning of a simulation.
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2.8.5 Benchmarks

First, the scalability of the multi-threaded data binder was evaluated using the older
Switzerland scenario from Section 2.4 with 3 million cars only. Benchmarks were
run on a dual-socket computing node with Intel Xeon E5-2690v4 CPUs and Nvidia
P100 GPUs. Figure 2.37 shows the strong scalability for the data binding process
from the host to the GPU. While for a single CPU core it takes about 15 minutes
to map host data to GPU structures, 12 cores can reduce this time to less than 2

minutes. Using more than 12 cores offers only marginal performance improvement.
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Figure 2.37: Strong scalability for data binding process from the host to the GPU.

Next, a large-scale agent-based scenario for Switzerland, described in Chapter 4,
was used to evaluate the novel approach of using heterogeneous hardware in
mobility simulations. This scenario includes 5.5 million agents (3 million cars and
2.5 million public transit users), the whole road network of Switzerland (1.1 million
links and 0.5 million nodes) and the entire Swiss public transit schedule (30 000

stop facilities and 20 000 routes). An iteration covers a duration of 30 hours with
1-second resolution. Between the iterations, the learning process of the agents is
performed by re-routing a random sample of 10% of the agents based on congestion
patterns identified in previous iterations.

The hardware configurations used for the experiments are shown in Table 2.7. The
Graviton2 configuration is the c6g.8xlarge instance in Amazon’s EC2. For the Intel
CPUs hyper-threading was switched on, while the other CPUs used only physical
cores. All machines had the RedHat/CentOS (version 7 or 8) Linux distribution
installed. On dual-socket systems, the numactl utility was used to ensure that, if
possible, all simulation threads and memory banks were bound to the same physical
socket. For RAM subsystems used, the number of channels varied from four to
eight. Additionally, in order to quantify the improved performance by using the
proposed data structures on CPUs, the same scenario was also run with MATSim
on the E5 2690 configuration with 32 threads.
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Table 2.7. Hardware configurations used to benchmark GEMSim’s runtime in a heteroge-
neous CPU-GPU environment.

Abbreviation CPU / cores GPU / cores RAM (chnls)

Gold 6150 Intel Xeon Gold 6150 2 x 36 – – DDR4 2667 (6)

E5 2690 Intel Xeon E5-2690v4 2 x 28 – – DDR4 2400 (4)

EPYC 7442 AMD EPYC 7442 2 x 64 – – DDR4 3200 (8)

Graviton2 Amazon Graviton2 64 – – DDR4 3200 (8)

K40 Intel Xeon E5-2620v2 2 x 12 K40c 2 880 DDR3 1600 (4)

P100 Intel Xeon E5-2690v4 2 x 28 P100 3 584 DDR4 2400 (4)

V100 AMD EPYC 7442 2 x 64 V100S 5 120 DDR4 3200 (8)

A100 AMD EPYC 7442 2 x 64 A100 6 912 DDR4 3200 (8)

First, using the Gold 6150 configuration, the scalability of the CPU backend,
depending on the task size and the number of cores, was evaluated. For each
combination of task size and the number of cores, the scenario was run 10 times for
10 iterations. The runtime was then averaged: first, averaged across the 10 iterations
of each launch, and then averaged across multiple launches. As one can see in
Figure 2.38, the task size impacts the runtime performance only when 10 to 20 cores
are run, and the difference is up to 19% for task sizes of 4 096 and 8 192. The use of
more than 20 cores yields only marginal improvements in runtime performance, and
the use of 32 cores results in only a 10% faster runtime. The task size of 4 096 with
32 cores, which provided the best speed-up factor of 14.53 over a single-threaded
execution, is used further in this benchmark. For a single core, the runtime is in the
range of 120–125 minutes on all configurations.
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Figure 2.38: Strong scalability of the CPU-based GEMSim backend by the number of cores
and the per-core task size.
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The 10-iteration runtime averages of the CPU and GPU backends on different
hardware configurations are shown in Figure 2.39. For each configuration, 32 CPU
threads were used for the CPU backend and re-routing. The worst overall perfor-
mance, as expected, is for the relatively old (year 2013) K40 configuration, which
takes more than 15 minutes to run one daily iteration. However, it is interesting
to note that almost all of the modern many-core CPUs have a similar performance
for traffic propagation; this indicates that synchronization overhead and memory
latency are the most important factors in improving runtime performance. Another
interesting point is that each new generation of GPUs essentially doubles the run-
time performance of the traffic propagation model (this is due to higher memory
bandwidth, more cores, hardware-optimized atomic operations and improved warp
scheduling). In contrast, the new generation CPUs, such as the AMD EPYC 7442,
result in only marginal performance improvements. The ARM CPU has a compara-
ble performance to modern x86 CPUs, and, overall, is less than 5% slower than the
AMD EPYC 7442. Lastly, it can be seen by comparing the best-performing CPU and
GPU configurations that the GPU backend runs up to 3.89 times faster, while the
overall iteration with learning included runs up to 1.87 times faster.
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Figure 2.39: Performance comparison of the CPU and GPU backends for GEMSim running
on different hardware configurations.

Running the same scenario with MATSim takes 87.5 minutes (single iteration
only) for the traffic propagation part and 11.7 minutes for the learning part; that is,
99.2 minutes for a daily iteration. Thus, on the same hardware, the proposed CPU
backend runs 11.64 times faster than MATSim, while the overall iteration is 7.62

times faster. The runtime performance of the GPU backend on V100/A100 is even
more impressive: it runs 45.26 faster than MATSim, while the overall iteration is
15.84 times faster.

As one can see, only a small number of changes were required to port an ex-
isting GPU-accelerated traffic model to many-core CPUs without using OpenCL.
Moreover, it is demonstrated that the same data structures can be used to achieve
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high computing performances on both CPU and GPU hardware. The use of a CPU
backend opens up new opportunities to further scale up agent-based mobility simu-
lations. While GPUs have limited global memory (currently, up to 80 GB on a single
board), a computing node can be equipped with much larger capacity host memory.
However, in contrast to CPUs, each new generation of GPUs yields substantial
improvement in runtime performance. This, however, does not hold for A100, which
can be explained by the fact that, while the aggregated memory bandwidth increases
from about 900 GB/s to 1 500 GB/s, the memory bandwidth is aggregated across
multiple memory banks and it becomes difficult to saturate it. Another interesting
outcome is that it is demonstrated that emerging high-performance CPUs, which
are built upon the ARM architecture, have similar runtime performances as modern
CPUs that are built upon the x86 architecture. As ARM CPUs are considered to
be more power-efficient, there are opportunities for improved power consumption
when large-scale traffic simulations are run.

2.8.6 Power consumption

Due to high demand in decarbonization and the reduction of CO2 emissions from
global society, there has been a recent trend towards green computing [212, 213],
which many companies aim to support. Paralleled with the increased spread of
cloud technologies for computational tasks, green computing becomes particularly
important for data centres [214, 215], as well as for manufacturers and users of HPC
systems [216]. One of the ways to conform to green computing ideals is to maximize
the power efficiency of hardware during its lifetime, and this can be achieved not
only through the development of more energy-efficient hardware, but also on the
software side. In particular, certain software can be optimized for execution on more
energy-efficient hardware, and today’s diversity of available hardware in the cloud
provides opportunities for that optimization.

In general, GPUs are more power-efficient (more operations per consumed power)
than CPUs [217], hence, the use of GPUs can potentially contribute positively into
the green computing initiative. As GEMSim can be run on heterogeneous hardware,
producing the same output, it was possible to not only quantify a speed-up in
runtime performance, but also a green-up factor FGR [218], that is, the extent to
which energy consumption can be reduced thanks to the use of GPUs:

FGR =
EC

EC,G
=

PC · tC
PC,G · tC,G

= Pup · Sup (2.32)

where EC and EC,G are energy consumptions by CPU-based and GPU-based systems,
respectively; PC and PC,G are power consumptions by CPU-based and GPU-based
systems, respectively; tC and tC,G are times to run the same simulation on CPU-
based and GPU-based systems, respectively; Pup is the power-up factor; and Sup is
the speed-up factor.

IPMI (Intelligent Platform Management Interface) was used to measure power
consumption of computing nodes when running the same Switzerland scenario
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from Chapter 4 with GEMSim and MATSim. Most modern server motherboards
provide IPMI to collect data from various sensors, including the instantaneous
global power consumption of a node. The measurements were performed every
second (wall clock time). Computing nodes were configured to run in performance
mode, that is, increasing frequency of CPUs with the shortest possible delay.

Figure 2.40 shows power consumption for a single iteration (after 10 warm-up
iterations) run by GEMSim with GPU and CPU backends. The reference value is
the power consumption of the nodes when they are idle. Both backends provide
a similar power consumption profile, which can be divided in three parts, plotted
chronologically in time: (i) traffic propagation, (ii) learning, and (iii) data preparation
and transfer before starting the next iteration. For both CPU and GPU backends,
the peak power consumption occurs during the learning (more specifically, in the
re-routing process), and it has a shape of the gate function, clearly showing the
upper limits of thermal power design (TDP): around 520 W and 900 W for P100

and V100 nodes, respectively. It is interesting that the power consumption of a
GPU at node V100, when running the traffic propagation part, is lower compared
to the CPU backend; however, the thermal envelopes of both CPUs and GPUs
have similar values of around 225–250 W. This can be explained by the fact that a
GPU experiences less pressure on its computing blocks, hence it does not require
throttling. On the other hand, CPUs are more sensitive to workloads, quickly raising
power consumption when running multi-threaded applications.

Another interesting aspect is the relative increase in power consumption of the
nodes when using the CPU backend. Being an older node, P100 consumes about
120 W more (above the reference value) power during the peak load, while V100

requires almost 400 W of additional power. The most probable reason for this is
that P100 has older CPUs, Intel Xeon E5-2690 v4, which have TDP of about 135 W.
The inertial of returning to the idle state for V100 is also higher, probably due to
longer times required to dissipate more heat. At the same time, V100 runs only
about 15% faster; this could be because the traffic propagation model faces more
memory and latency bottlenecks, meaning that the increase in CPU power does not
directly impact the runtime performance.

The power consumption of MATSim, running one iteration of the same scenario
on the V100 node, is presented in Figure 2.41. Notably, for almost the whole iteration,
the power consumption remains stable above 650 W, and only during the re-routing
process does it go up to 800–850 W. This, again, can be explained because MATSim
does not require heavy computations to propagate traffic; rather, memory access
to large and scattered data becomes a bottleneck. It could also be the reason why
MATSim has a relatively poor level of strong scalability during traffic propagation,
when using more than five to seven threads already brings only marginal runtime
improvements.

However, one can note that when using the CPU backend and the same hardware,
GEMSim has higher power consumption of around 800 W compared to the 650 W
(roughly) of MATSim. As both CPU-based simulators seem to be both memory- and
latency-bound, it means that GPU-optimized data structure and algorithms help to
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Figure 2.40: Power consumption of computing nodes when running GEMSim with the
GPU and CPU backends.
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Figure 2.41: Power consumption of the V100 computing node when running MATSim.

utilize CPUs more efficiently, causing the cores do more work and, consequently,
have higher power consumption.
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Figure 2.42 shows the absolute (total) energy consumption to run the scenario
for 100 iterations, which is a more practical application. The CPU-based backend
of GEMSim has much higher energy consumption on both P100 and V100, with
nodes in the range of 10 kWh to 15 kWh, while the GPU backend consumes about
7.5 kWh on both nodes. In contrast, MATSim requires about 140 kWh when running
on the V100 node, which is more than 9 times higher than the CPU backend of
GEMSim running on the same hardware, and more than 18 times higher than
the GPU backend. When comparing both CPU and GPU backends of GEMSim
running on the same nodes, the GPU backend provides up to 2.07 times less energy
consumption.
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Figure 2.42: Absolute energy consumption required to fully run the Switzerland scenario
for 100 iterations with GEMSim and MATSim.

A similar comparison of consumed energy is presented in Figure 2.43, where only
the net consumption above the baseload (reference) power is reported. GEMSim
consumes from about 1.5 kWh to almost 6 kWh to run a scenario with the CPU
backend, and only up to about 2 kWh when using the GPU backend. In contrast,
MATSim consumes about 51 kWh when running on the V100 node, which is almost
9 times higher than the CPU backend of GEMSim running on the same hardware,
and more than 25 times higher than the GPU backend. The net energy efficiency
of the GPU backend, compared to MATSim, is even higher, up to almost 55 times
when using the older P100 node. When comparing both CPU and GPU backends of
GEMSim running on the same nodes, the GPU backend provides up to 2.76 times
less net energy consumption.

Another, perhaps unexpected finding from these energy consumption benchmarks
is that, in terms of energy efficiency, it makes more sense to run mobility simulations
on older hardware with TDP of CPUs around 120–150 W, and older GPUs which
do not require equipment with higher baseload power. One can also look at these
results as a trade-off between time and energy consumption per simulation. When
time does not matter, energy efficient (and cheaper) hardware will be more suitable
and, potentially, more cost-effective overall. However, if the simulation speed is
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Figure 2.43: Net energy consumption required to fully run the Switzerland scenario for
100 iterations with GEMSim and MATSim.

of the utmost importance, then a GPU-based backend shall be used with modern
GPUs, which means a higher upfront investment cost, as well as higher maintenance
costs due to increased energy demand for simulations.

Green-up factors for different combinations of hardware and simulators are
summarized in Table 2.8. When GEMSim runs on the same hardware, a GPU
backend provides a positive contribution to energy savings, as well as running
much faster. Compared to MATSim, green-up factors are even more impressive,
especially when GPUs are used.

Table 2.8. Green-up factor (ratio of Configuration 1 to Configuration 2) for different combi-
nations of simulators and hardware.

Configuration 1 Configuration 2 Node Green-up

GEMSim, GPU GEMSim, CPU P100 1.68

GEMSim, GPU GEMSim, CPU V100 2.76

GEMSim, GPU MATSim V100 25.14

GEMSim, CPU MATSim V100 9.09

There are also two points that should be mentioned here. First, with the spread
of cloud computing, many organisations are looking at how to optimize their
bills, which depend on the computing materiel rented and the duration of its
usage. In general, CPU-only computing instances are much (multiple times) cheaper
compared to instances with accelerators like GPU or FPGA attached. Moreover,
instances with accelerators have less flexibility in terms of available configurations.
For example, if one needs only a single GPU but with lot of host RAM (which is
very typical for traffic simulations), it may only be possible by renting a computing
instance with multiple GPUs, hence stranding the resources. Here, running a
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simulation longer with the CPU backend may result in overall cheaper costs for
cloud infrastructure, and a user can decide whether to optimize for simulation time
or the cost of running. In case consumed energy is accounted separately, that would
be another dimension of the final decision.

Second, this flexibility of cost optimization is possible thanks to the support of
heterogeneous hardware in GEMSim, and it shows how important it is to have such
support implemented in the models to be run in a modern computing environment.
Hence, for performance demanding models, heterogeneous computing should be
reconsidered regarding what type of hardware to support and which frameworks
to use. Such decisions are better made before starting model development, as
the algorithms or data structures used can make it costly to switch later to other
hardware.
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M U LT I - M O D A L E X T E N S I O N S

Transport of the mails, transport of the human voice,
transport of flickering pictures – in this century, as in
others, our highest accomplishments still have the single
aim of bringing men together.

— Antoine de Saint-Exupery

The chapter is based on contributions from the following publications:

Saprykin, A., Chokani, N. & Abhari, R. S. GEMSim: A GPU-accelerated
multi-modal mobility simulator for large-scale scenarios. Simulation Modelling
Practice and Theory 94, 199 (2019)

Saprykin, A., Chokani, N. & Abhari, R. S. Accelerating agent-based demand-
responsive transport simulations with GPUs. Future Generation Computer Sys-
tems 131, 43 (2022)

This chapter presents multi-modal extensions of GEMSim which have been
developed and integrated through the course of this thesis. This is one of its main
contributions to the field, as other works in the area of GPU-accelerated mobility
modelling are only capable of running a single mode of transport, typically cars.
The ability to run multi-modal scenarios on a GPU brings more complexity into the
GPU code and makes it challenging to optimize as the logic of agents becomes non-
linear. Moreover, depending on the simulated transport mode, a more sophisticated
interaction between the host and the GPU is required during the simulation process,
including fine-grained access to the device memory.

3.1 flyover

In many cases, certain transport modes may not be possible to simulate either
due to unimplemented functionality, or the absence of the required input data
(for example, a missing public transit schedule). However, one can estimate some
average movement speeds of agents using such transport modes, and the speed to
approximate a time delay when moving from one location to another. For example,
walking mode can be simulated by using Manhattan distance and an average human
walking speed.

GEMSim has support for so-called flyover modes, where a flyover travel leg stands
for an approximate transport mode when an agent is delayed for a predefined
amount of time t f o:

t f o = d f o/v f o (3.1)
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where d f o is the flyover distance (typically, the Euclidean distance is used), and v f o is
the average movement speed for this flyover mode. Multiple flyover modes with dif-
ferent speeds can be specified for a simulation scenario. Essentially, when an agent
departs from an activity location with a flyover travel leg, the demand scheduling
kernel, presented in Figure 2.10, updates the scheduled time tsch of the agent. Fig-
ure 3.1 presents the logic used for flyover travel legs in the MultiModeLegHandler()

function in the demand scheduling kernel. When an agent with a flyover travel leg,
detected by the value of ltype, has the Delayed state, then it means that a previously
set delay has expired, and the agent can proceed to the next activity. Otherwise, the
agent has just started the travel leg, so the scheduled time tsch is updated with a
calculated delay, and the state of the agent is set to Delayed. In general, flyover travel
legs are modelled through a simple state machine and do not require substantial
computing power or memory bandwidth from a GPU device.

Input: S , Dt, agent, ltype, tsim
1 begin

/* Logic executed for other modes ... */

2 if ltype = Flyover then
3 state←− GetAgentState(Dt, agent);
4 if state = Delayed then
5 ScheduleActivity(Dt, agent);
6 end
7 else
8 tdelay ←− GetFlyoverDelay(Dt, agent);
9 SetScheduledTime(Dt, agent, tsim + tdelay);

10 SetAgentState(Dt, agent, Delayed);
11 end
12 end
13 end

Figure 3.1: Algorithm for demand scheduling of flyover travel legs on a GPU.

The structure of a flyover travel leg in GPU memory, in addition to the base leg
structure, contains an estimated delay value with origin and destination network
links. The structure of a flyover travel leg has fixed size and can be pre-allocated in
GPU memory before a simulation starts.

3.2 public transit

Public transit systems play important social, economic and environmental roles
in many countries. First, effective public transit systems positively contribute to
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sustainable development at the city level [219–221] by attracting the users of energy-
intensive transport modes. Second, the development of public transit positively
impacts issues related to societal needs through the increase of transport diversity,
especially for the older population and people with disabilities [222]. It improves
road safety [223] and helps to maintain social capital within and between communi-
ties [224, 225]. Third, public transit brings economic benefits to a society through
effective land-use [226], more compact development and reduced urban sprawl
[227, 228]. Fourth, public transit provides health benefits by shifting people towards
transport modes involving more physical activity like cycling and walking [229–
232].

While being important for dense urban areas, public transit systems are also
becoming more complex and increasing in scale, providing services not only in city
core areas but across large metropolitan areas with millions of inhabitants. Therefore,
the modelling of public transit systems is essential for urban scenarios, making the
GPU-accelerated implementation of public transit in GEMSim an important step
towards the practical applicability of the simulator.

3.2.1 Background

Simulation of a public transit system is an essential part of many existing mobility
simulators [76, 93, 100–102]. However, only a few works demonstrated multi-modal
distributed mobility simulations [62, 63], while one other demonstrated CPU-based
parallelized simulation of public transit [103].

3.2.2 GPU-based implementation

The input public transit schedule comprises two sets, HT and RT , which are public
transit facilities and transit routes, respectively. A stop facility HT

k ∈ T is described,
with its coordinates, name, unique ID and the network link to which it is attached.
Transit routes are grouped into a transit line, where each transit line represents one
or more routes. While a transit line is what people get used to in reality, a transit
route represents variables of the line, for example, movement in different directions,
or some departures on the line that have different terminal stations. In general, from
simulation perspective, transit lines do not present any computational burden, and
the sole role is to provide a logical aggregation for inputs.

Each transit route RT
k ∈ T comprises three main parts: a route profile, a network

route and a list of departures. A route profile defines arrival and departure time
offsets at stop facilities; offsets are relative to the departure time from the terminal
stop. One can also indicate if a vehicle waits until the departure time specified in
the schedule, or if it can leave as soon as possible. A network route simply specifies
the sequence of links that a driver will follow to complete a transit route. A list
of departures contains times of departure from the terminal stop, where a specific
vehicle can be linked to each of the departures. Each transit route and departure



118 multi-modal extensions

has a unique ID, similar to stop facilities. A fleet of public transit vehicles can
be provided as an optional input to GEMSim, otherwise it will be automatically
generated using some default specifications.

The modelling of public transit on a GPU poses some additional challenges
compared to cars. First, the logic of agents becomes more complex. For example,
while a car driver can finish an activity and depart the place, a transit passenger
has to wait until a vehicle for a specific transit route arrives. Moreover, a passenger
needs to board and leave the vehicle, requiring them to track the vehicle along
the route. In CPU-based models, especially event-driven ones, this behaviour can
be modelled through the subscription method, when an agent can subscribe for
certain events of other agents, and the logic of the subscribed agent is implemented
in the respective event handlers. When an event happens, subscribed agents are
notified, and the event handlers are automatically executed. As the main idea of
the GPU-accelerated mobility model was to eliminate event-driven systems, the
subscription method could not be applied to model public transit.

Another limitation when using CPU-based approaches to model public transit on
a GPU is the lack of on-device dynamic memory allocation. One can use queues, one
per stop facility, for agents waiting for vehicles to arrive; once a vehicle arrives, the
driving agent can iterate over the waiting passengers and notify for boarding. The
same can be implemented for each vehicle, when a queue of on-board passengers is
checked at each stop to notify to leave. This approach to queues will require extra
GPU memory to be allocated, and, in general, it represents a traditional event-based
system adapted for GPUs. However, as there are uncertainties involved with the
delays of public transit vehicles, it is not possible to predict the size of the queues,
which is knowledge required for stop facilities, and to allocate memory on the
device. One can also define the maximum queue size for stop facilities, which can
be adjusted during the calibration process to fit the passenger demand; but this can
cause difficulties with evacuation scenarios and when simulating large crowded
public events.

Instead of using queues for public transit demand modelling, an approach with
state machines was implemented. In the public transit model, agents have two
different roles: a transit driver and a transit passenger (rider). A transit driver
behaves as a normal agent except that when traversing the route, they check the
stops and the links where the transit stops are located. A driver executes only a
single departure of a single route RT

k ∈ T over the network G between the terminal
stations, and therefore there can be multiple drivers who follow the same route but
at different times. Drivers are artificially created agents that are not part of the input
travel demand. Integration of public transit into the network propagation model
allows public transit vehicles to share lanes with cars.

Integration of driver behaviour into the demand scheduling was done through two
additional agent states: Parking and Parked. When a driver has a transit stop along
the route, the state is switched to Parking, and then to Parked when an empty park-
ing slot is obtained. This is the first integration point of the public transit system into
the GPU-accelerated framework, and this is done in the MultiModeNodeHandler()
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function from the ProcessNodes() kernel (Figure 2.8). The algorithm for arriving
at stop facilities by a driver of a public transit vehicle is presented in Figure 3.2.
Here, the agent is checked for performing a transit travel leg using the role, and
in the case that it is a transit driver, the current network link ein is checked for the
link hnext of the next stop facility from the transit route. In case a required stop
facility is reached, the driver is switched to the Parking state, and the returned True

value indicates to the ProcessNodes() kernel to remove the agent from the traffic
propagation process. In any other case, nothing happens to the agent at this point.

Input: S , Dt, ein, agent
1 begin

/* Logic executed for other modes ... */

2 role←− GetAgentRole(Dt, agent);

3 if role = TransitDriver then
4 hnext ←− GetNextStopLink(S , Dt, agent);
5 if ein = hnext then
6 SetAgentState(Dt, a, Parking);
7 end

8 end
9 return TrueIfHandled;

10 end

Figure 3.2: Algorithm for driver agents of public transit vehicles checking stop facilities
along routes on a GPU.

Another integration point is in the demand scheduling kernel (Figure 2.10) when
the function MultiModeLegHandler() is called (the same one used to schedule
flyover travel legs). Here, public transit passengers depart for their rides. A public
transit passenger is a normal agent with two additional states: Waiting and Riding.
A transit passenger does not participate in the network propagation model, but only
switches between Waiting and Riding states, and checks when to board or leave the
vehicle. The part of the function responsible for the departure of the passengers is
presented in Figure 3.3. The function checks if an agent has just finished performing
an activity and the next travel leg has the public transit mode; if so, the state of
the agent is switched to Waiting. If not, nothing happens to the agent. It should
be noted that a public transit driver has travel legs of network type, exactly the
same used by car drivers, so only public transit passengers have travel legs of public
transit type.

The interaction between transit drivers and passengers was implemented through
the parking slots. Each public transit stop HT

k ∈ T has an array of slots where
drivers can park vehicles. The parking is performed by putting the unique ID of a
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Input: S , Dt, agent, ltype, tsim
1 begin

/* Logic executed for other modes ... */

2 state←− GetAgentState(Dt, agent);

3 if ltype = Transit and state = Activity then
4 SetAgentState(Dt, agent, Waiting);
5 end
6 end

Figure 3.3: Algorithm for the departure of public transit passenger agents on GPUs.

transit driver into a slot. A passenger agent checks at each tsim step if a driver who
runs a required transit route has arrived at the desired transit stop to board or leave
the vehicle. When boarding, only a transit route ID for the driver is required, but to
leave a passenger agent checks a departure ID as multiple drivers who serve the
same route may park at the same stop at different times.

The main logic of the public transit driver-passenger interaction model was
implemented in the MultiModeDemandHandler() function of the ScheduleDemand()

kernel (see Figure 3.4). This is the third integration point of the public transit system.
The function ParkTransitVehicle() atomically acquires a parking slot at a transit
stop facility. When all the parking slots at a stop facility are occupied, the driver
will attempt to park at each next simulation step until they succeed. Functions for
boarding or leaving a vehicle keep track of the occupancy statistics and adjust the
scheduled departure time of the driver if the process takes too long. A passenger
agent uses function TransitVehicleArrived() to check when a vehicle arrives to
the stop facility where they board or leave, depending on the current state of the
agent.

When the scheduled time tsch of a parked public transit vehicle, initially set
by the ScheduleDeparture() function, and later updated by boarding and leaving
passengers, comes, and the driver agent is dispatched back to the network, the
parking slot is released atomically in the MultiModeDepartHandler() function from
the demand scheduling kernel. This is the fourth and the last integration point of
the public transit model.

The structure of a public transit travel leg on GPUs, used by passenger agents, in
addition to the base leg structure, contains IDs for public transit route and departure,
and indices of start and end stop facilities. The route ID is used to look for vehicles
while waiting for boarding, and the departure ID is used to track the movement of
the public transit vehicle along the route to decide at which stop to leave. Indices of
start and end stop facilities are specified relative to the terminal stop station of the
transit route.
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Input: S , Dt, agent, tsim
1 begin
2 state←− GetAgentState(Dt, agent);
3 role←− GetAgentRole(Dt, agent);

4 if role = TransitDriver and state = Parking then
5 ParkTransitVehicle(S , Dt, agent);
6 ScheduleDeparture(S , Dt, agent);
7 SetAgentState(Dt, agent, Parked);
8 end
9 else if role = TransitRider and state = Waiting then
10 if TransitVehicleArrived(S , Dt, agent) then
11 BoardTransitVehicle(S , Dt, agent);
12 SetAgentState(Dt, agent, Riding);
13 end
14 end
15 else if role = TransitRider and state = Riding then
16 if TransitVehicleArrived(S , Dt, agent) then
17 LeaveTransitVehicle(S , Dt, agent);
18 ScheduleActivity(Dt, agent);
19 end
20 end
21 return TrueIfHandled;
22 end

Figure 3.4: Algorithm for the interaction model of public transit driver and passenger
agents on GPUs.

The structure of a public transit schedule on GPUs is presented in Listing 3.1. No
information about transit lines is stored, as they are used only for logical grouping.
The list of departures (field deps) contains information used by drivers, and the
drivers are sorted within the local index in the same order as their respective
departures; therefore, the driver’s local index Ilocal,i is used to access the departure
information. The stop_queue array contains parking slots, with a fixed capacity
per stop facility. Experiments showed that for the Switzerland scenario with the
full-scale national public transit system, use of 10 parking slots per stop facility does
not cause the vehicle to be unable to park. Increasing this number, however, does
not require a lot of additional GPU memory as only four bytes per parking slot is
used. The array veh_idx stores indices of vehicles used for each of the departures.
Finally, the values of deps_count and stop_count hold the number of departures
and stop facilities, respectively.
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1 s t r u c t GpuTransitSchedule {
2 GpuTransitDeparture deps [ ] ; // Departures
3 i n t 3 2 _ t stop_queue [ ] ; // Parking s l o t s
4 i n t 3 2 _ t veh_idx [ ] ; // Vehic les
5 i n t 3 2 _ t deps_count ; // Departure count
6 i n t 3 2 _ t stop_count ; // Stop f a c i l i t y count
7 } ;

Listing 3.1: Structure of a public transit schedule T on GPUs used by passenger and driver
agents for interaction.

The structure of a public transit departure is presented in Listing 3.2. It contains
four arrays with the data per stop facility from the route: network links to which
facilities are attached (field stop_links), indices of stop facilities to visit (field
stops_idx), departure offsets (field stops_offset), and occupancy counters (field
occupancy_cnt). In addition, the number of stops is stored in the stop_count field.
While a transit driver is moving along the route, it tracks visited stop facilities by
incrementing the stop_next field. Route and departure IDs used to interact with the
passengers at parking slots are stored in the fields route_id and departure_id, re-
spectively. Finally, the departure from the terminal stop, used to schedule departure
times from next stops, is in the departure_time.

1 s t r u c t GpuTransitDeparture {
2 i n t 3 2 _ t s t o p _ l i n k s [ ] ; // Links of t r a n s i t s tops
3 i n t 3 2 _ t s tops_ idx [ ] ; // T r a n s i t s tops
4 i n t 3 2 _ t s t o p s _ o f f s e t [ ] ; // Departure o f f s e t s , s
5 i n t 3 2 _ t occupancy_cnt [ ] ; // Occupancy counters , per stop
6 i n t 3 2 _ t stop_count ; // T r a n s i t stop count
7 i n t 3 2 _ t stop_next ; // Next t r a n s i t stop s h i f t
8 i n t 3 2 _ t departure_time ; // T r a n s i t departure times , s
9 i n t 3 2 _ t route_ id ; // T r a n s i t route ID

10 i n t 3 2 _ t departure_id ; // T r a n s i t departure ID
11 } ;

Listing 3.2: Structure of a public transit departure of a transit route on GPUs.

As one can see, the structures of the public transit model combine both SoA and
AoS approaches. For example, as driver agents need most of the departure data at
the same time, it makes sense to use an AoS approach here to pack more data into a
single memory transaction. There is a chance, though relatively small, that partially
coalesced access may happen when GPU threads access vehicle data. Access to
parking slots at each stop is also not coalesced, but as many departures share the
same stop facilities, a single array has been used. In general, the public transit
model does not provide high utilization of the memory bandwidth due to highly
non-linear logic and interaction patterns for both driver and passenger agents.
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3.2.3 CPU-based implementation

While the CPU backend also works with public transit, a straightforward port
of the code from GPUs to CPUs incurs high performance penalties. The reason
is because of how the interaction between drivers and passengers is organized.
As both parking and departing actions are performed in the demand scheduling
kernel, drivers can compete for the same resources, specifically, iterating through
parking slots. However, at the same time, passenger agents at each simulation
step iterate through parking slots to check for arrived vehicles. As hundreds of
thousands of agents travel with public transit at the same time, this imposes a high
computational burden. The main reason is that a CPU has very few cores compared
to a GPU, iterative loops cause short and intensive burst loads, and a compiler may
not necessarily can optimize loops properly. While a GPU can hide latencies by
running many more threads, this is not the case for CPUs.

For the CPU backend, GEMSim uses a custom event notification system for passen-
ger agents. This system extends the GPU-based data structure, GpuTransitSchedule,
with two additional queues: one for passengers waiting to board a vehicle, and
another for passengers waiting for a vehicle to arrive at a destination stop. Each of
the queues contains a list of waiting agents for each of the stop facility; essentially,
each stop facility has a key-value associative array where a key is the agent’s unique
ID and the value is the unique ID of a public transit route or departure, depending
on the queue (to board or to leave a vehicle). When a public transit vehicle arrives at
a stop facility, it checks respective queues, schedules agents for the next simulation
step, and removes them from the queues. At the next simulation step, re-scheduled
agents will start checking parking slots for arrived vehicles. Hence, passenger agents
are active (checking parking slots) only when a needed vehicle arrives at the awaited
stop facility.

3.2.4 Scalability

The scalability of both GEMSim and MATSim was evaluated and compared by using
population samples of 100 000 up to 3 million agents from the older Switzerland
scenario introduced in Chapter 2, but replacing 30% of each sample with public
transit users. Figure 3.5 shows that GEMSim delivers significant improvements in
runtime for multi-modal large-scale scenarios. Compared to MATSim, GEMSim
provides a higher real-time ratio more than order of magnitude greater. Interestingly,
MATSim runs faster with fewer cars simulated; for example, it achieved a ratio of 39

for a population size of 1.5 million, compared to the ratio of about 20 achieved in the
car-only scenario. In contrast, GEMSim ratios are lower compared to car-only cases
of the same population sizes, for example 1 060 versus 1 720 for a population size of
1.5 million. This behaviour is expected as the public transit model is less optimal for
GPU execution, compared to the car-only one. Nevertheless, the improvements are
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significant and, with the increasing population sample, MATSim shows a steeper
drop in performance than GEMSim.
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Figure 3.5: Real-time ratio (simulated seconds in each second of real time) of the traffic
propagation part with public transit for GEMSim and MATSim.

The speed-up of GEMSim over MATSim is shown in Figure 3.6, and for the
sample sizes of 1 million or more the speed-up factor is between 27 and 31. This is
lower compared to the case when only cars have been modelled and a speed-up
factor of over 100 was reached. The saturation point of GEMSim also shifts from 2

million agents to 1 million, due to the fact that the more complex and non-linear
logic of public transit agents makes it more difficult to hide the latencies of GPU
threads. The speed-up factor continues to increase at a lower rate, however, with
samples above 2 million.
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Figure 3.6: Speed-up factor of GEMSim over MATSim for the traffic propagation part with
public transit depending on the population sample size.

Figure 3.7 shows the host RAM consumption, and like the car-only case, GEMSim
consumes about five to six times less RAM depending on the population sample size.
Both simulators consume about 8%–12% more memory when public transit is being
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modelled, which is expected as additional input data is used, as well as routing
services that build additional data structures and caches. As before, MATSim has a
steeper curve for RAM consumption with the increase of the sample size.
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Figure 3.7: Peak host RAM consumption during the simulation for GEMSim and MATSim
with public transit depending on the population sample size.

Figure 3.8 shows the GPU DRAM consumption for the different population
sample sizes. Compared to the car-only case, the GPU memory consumption is
slightly higher, which can be explained by the fact that daily-activity plans for
public transit users are typically larger in terms of the number of travel legs and
additional transfer activities. This difference, however, varies depending on what
kind of public transit user travel profile prevails in the samples.
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Figure 3.8: Peak GPU DRAM consumption by GEMSim during the simulation with public
transit depending on the population sample size.

Overall, GEMSim provides a substantial increase in runtime performance (and
with a smaller RAM footprint at the same time) over MATSim even with a large-scale
public transit system modelled in addition to car traffic. Although the efficiency
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is reduced compared to the car-only case, the improvement in runtime and RAM
footprint over MATSim continues to increase with larger population sample sizes.

3.3 coordinated fleets

Demand-responsive transport (DRT), which is a more general term for taxi-like
services operating upon a request (as opposed to private car and public transit
modes), represents a different way of transport scheduling, as an agent may not
know in advance the route that shall be taken while travelling from one location
to another. The concept of DRT can be extended further into the operation of
coordinated fleets, when an operator has a full control over the vehicles in the fleet.
DRT becomes a very attractive in combination with emerging technologies like AVs
and BEVs, as a fleet can be optimized as a whole, as well as co-optimized with
energy infrastructure. Currently, there is an increasing interest from industry and
policymakers in automated driving technologies and fleet coordination that can be
used in DRT services to lower the operating costs and provide social benefits.

In recent years, automated driving technologies have been under very intense de-
velopment, with many automotive companies targeting the production and delivery
of highly automated vehicles within the next 5 to 10 years. This expected widespread
availability of AVs opens up new opportunities for providers of mobility services
though centrally coordinated fleets. For example, in cities and their surroundings, if
reliable and cost-effective taxi-like services with fully automated vehicles are widely
available, car owners may be motivated to switch to such AV taxi services [233,
234]. Furthermore, there are a number of challenges that may be addressed by the
deployment of AV taxi fleets. A first example is the first and last mile problem [235,
236], that arises as people tend to own a car because public transit services are not
located in walking proximity to a person’s dwelling or location of work. A second
example is the ever-increasing demand for parking; the substitution of private cars
by AV fleets may alleviate the demand for parking and allow for the more efficient
use or alternate re-use of existing parking infrastructure [237]. A third example is
increased revenues for public transit authorities, which may result when AV fleets
are coordinated with public transit services [238] in order to attract more users of
public transit.

Notwithstanding the aforementioned potential benefits, an open question con-
cerning the impact of AV fleets on congestion remains. While studies indicate that
fewer AVs are required to serve the same travel demand of private car owners
[109, 239, 240], the total travelled distance of the vehicles increases due to pickup
trips and induced demand [29, 241], which may adversely affect congestion [105].
Additionally, these studies suggest different impacts on the replacement rate (how
many private vehicles each centrally operated AV replaces) and the quality of service
(how long a passenger waits after requesting an AV). Despite these questions and
challenges, cities such as Singapore have already begun to use AV fleets for taxi
service, and it is expected that in the near future more cities will follow this path.
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Hence, an improved understanding of how AV fleets will be used is of importance
for policymakers and city planners. Among the tools to improve this understanding
are agent-based mobility simulators, like TRANSIMS [53], MATSim [76], SimMo-
bility [242] and TaxiSim [243], that have been used to assess scenarios with AV or
taxi fleets. Agent-based modelling is well suited to simulate taxi fleets: each taxi
vehicle can be modelled as an agent controlled by a central operator who dispatches
available vehicles in response to requests from passengers.

While agent-based simulations of taxi services using fleets have been conducted,
it is evident from the review of recent literature (see below) that there is a gap
to be filled by high-performance, agent-based simulation tools that are suited for
large-scale, integrated deployments of coordinated fleets. In the absence of such a
capability, many prior works have reduced the complexity of the models by either
not simulating non-taxi traffic or by reducing the population sample. As the authors
of the reviewed works have commented, high resolution, large extent simulations of
both the road network and mobility services would yield simulation results that are
both more realistic as well as more reliable. For example, if the modelled taxis were
electric vehicles, then it would be difficult, if not impossible, to quantify the impact
of battery charging on a local distribution grid if a low resolution (aggregated)
simulation framework were applied. Another limitation of many prior works is
that multi-modal mobility was not considered. The simulations omitted non-taxi
modes of transport; however, many indications are that multi-modal trips (including
coordinated fleets) are likely to be one of the most widely adopted solutions by
future mobility services [244]. In order to fill this gap, GEMSim incorporates the
ability to model coordinated fleets for large-scale DRT services. While this thesis
is focused on taxi services, the same model can also be used for product delivery
modelling.

3.3.1 Background

Recent works focusing on the application of large-scale taxi fleets emphasize the
poor performance of existing simulation tools. The city-wide replacement of private
cars in Berlin (Germany) with an optimized taxi fleet was assessed using MATSim
by Bischoff and Maciejewski [104]. Different-sized taxi fleets, over the range of 50 000

to 250 000 vehicles, were evaluated to replace the 2.5 million city trips made by 1.1
million private cars. While the computing performance was not clearly indicated, it
appears that it took around 3 hours for one daily iteration (typically, somewhere
in the range of dozens to hundreds of iterations are required to converge to an
equilibrium state) for a fleet of 100 000 vehicles. In another study of large-scale fleet
deployment in Berlin, Maciejewski and Bischoff [105] assessed congestion effects
for different replacement ratios of private cars. In total, up to 11 000 AVs in a fleet
were used to serve the demand of more than 278 000 trips. The simulations were
reported to be computationally demanding, with 51 iterations run to converge
the mixed traffic, where one iteration took between 12 to 38 minutes, and the
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computation with 100% AVs was the slowest. Thus, more than 30 hours of runtime
was required for the simulations. Levin et al. [106] presented a general framework
to model automated fleets (with and without dynamic ride-sharing) with realistic
flow models. The framework was applied to Austin, Texas (USA). A relatively small
network consisting of 1 247 links and 546 intersections was used together with the
demand provided by 62 836 trips over 2 hours in the morning peak. The authors
noted that only a sub-network of the region with 1.2 million trips was used due
to performance limitations. Hörl et al. [107] studied fleet operating policies using
a scenario for the city of Zurich (Switzerland), with 137 000 agents performing
363 503 trips, and up to 18 000 AVs serving the demand. Even the baseline scenario,
without any fleet services, took 35 minutes to run a single daily iteration, and up to
4 hours (depending on the fleet re-balancing policy) with fleet services included.

One way to deal with the increased runtimes of mobility simulations with large-
scale fleets is to use a sample of the population and to scale down the infrastructure
accordingly (that is, use a fraction of the actual road capacity). In the Berlin sce-
nario [105], the population sample was only 10% of the actual population, and the
capacity of the road network was downscaled accordingly; it is evident that the
demonstrated approach is impractical for simulations that include the complete
population. Fagnant et al. [239] used MATSim to study the operations of an AV
fleet in Austin, Texas (USA). The simulations included a realistic road network of
the area with a spatial extent of 12 x 24 miles; the AV trips were generated based
on household travel diary data from a survey in Seattle, Washington (USA). The
MATSim framework was used to generate link-specific travel times for private cars
during the day in the Austin area; only 5% of the 4.5 million trips in the area were
simulated, and the capacity of the road network was correspondingly scaled due to
the computational and memory limitations of MATSim. Interestingly, the authors
emphasized that such a small population sample led to a loss of model fidelity.

While small population samples can significantly improve simulation runtimes,
there is evidence that such small samples lead to uncertainties in the outcomes.
These uncertainties are especially critical when the simulated infrastructure cannot
be downscaled easily (e.g., a public transit schedule, a fleet or charging stations).
Erath et al. [111] found that public transit in a Singapore scenario with a 10%
population sample has artefacts of overcrowded buses; a 25% population sample
improves the accuracy of the simulation. Bösch et al. [245] indicate that population
samples of less than 5%–10% should not be used for scenarios with shared cars
as such small samples lead to demand-supply imbalance: the reduced number
of shared vehicles prevents situations of over-supply, and at the same time, leads
to under-supply in the area due to reduced availability. In general, studies about
uncertainties of agent-based mobility simulations with population samples [114, 115]
show that at least a 25%–30% population sample is required to keep disaggregated
results statistically similar to results with the full population sample.

Another way to improve runtimes is to use simplified models. Bösch et al. [240]
performed large-scale simulations of AV taxis in the region of Zurich. The simula-
tions included about 1.3 million agents with a total of 3.6 million trips that were
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simulated with different sizes of AV fleets. While the authors presented and empha-
sized the need to model the demand in detail, a simplified version of the mobility
model was instead used. In this simplified version, the travel demand and travel
times were calculated in advance based on previous simulations, and the actual
road network was not modelled. Instead, the movements of agents were simulated
as a time delay based on a beeline distance between locations and adjusted with
a multiplication factor and the average speed in the area. Thereby, no private car
traffic was simulated, and the computing performance of the model was not clearly
reported (but appears to be in the range of minutes to hours). In the study of
Austin [239], the link-specific travel times were used in simulations to substitute
the traffic from private cars when simulating the operation of AV fleets. Levin et
al. [106] demonstrated that, when a realistic traffic flow model and travel patterns
of a population are used, the replacement rate of private cars by AV fleets is less
than in studies that use simplified traffic models; that is, one AV can substitute at
most 3.6 personal vehicles compared to 9 or more vehicles found in studies that use
simplified traffic models [104, 239, 240]. Hörl et al. [107] modelled fleet services in
the city of Zurich without congestion and used free-speed travel times instead. The
authors emphasized the need for more realistic studies to understand the impacts
of congestion on fleet operating policies.

While in recent years GPU-accelerated traffic models have been developed, they
remain relatively limited in functionality for simulating coordinated fleets. This
section aims to demonstrate how fleet simulations were integrated with GPU-
accelerated traffic models.

3.3.2 DRT-enabled loop

As many types of DRT services are similar (that is, a request from a client followed
by the assignment of a vehicle from an operator), an initial decision was made
to separate the implementation into two parts. The first part provides a generic
framework for DRT services, and the second part provides an implementation of a
specific type of service, that is, conventional taxis or shared taxis. This approach
allows for the extension of the simulator with more DRT services in the future. This
approach is conceptually close to that implemented in MATSim [246], however later
development stages showed that such a separation for a GPU-accelerated model
does not bring much benefit. The main reason is that GPUs are not well-suited
for abstracted object-oriented code, causing code duplication and more non-linear
logic of the agents, hence imposing performance penalties. Therefore, the final
implementation relies on a universal model that can be configured to the scenario
needs.

The DRT framework introduces the notion of an operator that provides mobility
services upon a request from passengers. An operator comprises (i) a fleet of
vehicles, (ii) a placer that defines the initial locations of the vehicles, (iii) a data
parser that transforms the raw binary data coming from a GPU, (iv) a fleet tracker
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that monitors the locations of the vehicles, (v) a fleet scheduler that assigns available
vehicles to incoming requests from passengers and prepares a schedule, and (vi)
a schedule dispatcher that uploads a schedule onto a GPU, notifying passenger
agents about the assigned vehicles.

As an input, a set of fleet operators is described in the scenario configuration file
and multiple operators can be simulated in a single scenario. The description of an
operator contains a unique operator ID, name, specifications of the vehicles, and
algorithms for initial placement and scheduling, operating area and some others.
Instead of providing detailed specifications of vehicles, one can simply specify the
number of vehicles in the fleet, and GEMSim will create an artificial fleet with a
default vehicle model.

The integration of the DRT framework into the previously developed GPU-
accelerated simulation loop, shown in Figure 2.6, required some structural changes;
the modified simulation loop is shown in Figure 3.9. Here, the additional input of
the fleet operator structure, F ∈ S , was required. Compared to the original loop,
the ScheduleDemand() part now also handles DRT passengers, while two additional
steps, SyncEvents() and OptimizeFleet(), were added to allow executing fleet
management operations.

The decision was made to implement the fleet scheduling part completely on
CPUs. The main reason is that a fleet operator has to perform extensive routing to
match requests with available vehicles, as well as to provide routes from pickup
to drop-off locations. As was demonstrated in Subsection 2.2.3, GPUs are not well
suited for such optimization problems in the transport domain. Moreover, fleet
scheduling algorithms involve highly non-linear logic, spatial filtering and other
types of tasks which it is mostly not practical to run on GPUs. Therefore, in contrast
to other transport modes supported in GEMSim, DRT services are very different
as this mode requires not only efficient synchronization between the host and the
GPU, but also a high-performance CPU-based part for fleet scheduling.

These two new steps in the simulation loop provide the points of synchronization
between the traffic propagation part on a GPU and the fleet optimization part on
the host side (using CPUs). An operator constantly runs the optimization loop
shown in Figure 3.10. The optimization loop runs completely on the host side,
communicates with a GPU at certain frequencies fsync and fopt, and is split into two
threads which work in a pipeline manner to overlap data processing on the host
with computations on a GPU. When multiple fleet operators are simulated, each
of them runs its own loop in separate threads, and the synchronization points act
as muxers and demuxers of data streams of different operators, meaning that each
operator gets only relevant data.

The first thread loads data from a device and converts this raw binary data
into the operator’s input data. Two types of input data, or events, come from a
GPU: (i) notices when something happens (for example, a taxi arrives at a specific
location) that can be quickly updated in the fleet model, and (ii) requests for service
from passengers. Binary data is stored on a GPU in a single memory chunk and
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Input: S , Dt, tend
Output: SE

t ,Ut
1 begin
2 for tsim ←− 0 to tend do
3 ProcessLinks(G, Dt, tsim);
4 ProcessNodes(S , Dt, tsim);
5 ScheduleDemand(S , Dt, tsim);
6 UpdateExternalities(S , Dt, tsim);

7 if tsim mod
[
1/ fsync

]
= 0 then

8 SyncEvents(F);
9 end

10 if tsim mod
[
1/ fopt

]
= 0 then

11 OptimizeFleet(F , D);
12 end
13 tsim ←− tsim + 1;
14 end
15 Ut ←− ScorePlans(Dt);
16 SE

t ←− CollectExternalities(S);
17 return SE

t ,Ut;
18 end

Figure 3.9: Algorithm for the modified GPU-accelerated simulation loop of GEMSim with
integrated modelling of DRT services.

is atomically updated by GPU-run threads. Data is downloaded by SyncEvents()

from a GPU at a frequency of fsync that is currently 1 Hz.
The second thread distributes the operator’s input among processing blocks: a

tracker receives the locations of vehicles, and a scheduler prepares requests for
assignment. At a frequency of fopt, the OptimizeFleet() procedure flushes all data
from the first thread and runs a scheduling procedure that assigns available vehicles
to the collected requests and prepares a dispatch schedule. The dispatch schedule is
then uploaded to a GPU by a dispatcher. The frequency fopt, on one hand allows for
the accumulation of requests, which results in a more optimal assignment for a set
of requests or vehicles at the same time; and on the other hand improves the overall
performance by reducing the number of optimizations to be performed. Currently,
fopt is 1/30 Hz.

3.3.3 GPU-based implementation

In general, the GPU-based concept of DRT services is close to public transit, except
that taxi drivers do not follow fixed routes, but are rather managed by an operator.



132 multi-modal extensions

Data loader

Parser

Scheduler

Dispatcher

Tracker

G
PU

(t
ra

ffi
c

si
m

ul
at

io
n)

Thread 1: Data loading
and parsing

Thread 2: Scheduling and
dispatching

fsync

fopt

Requests

Locations

Figure 3.10: Schematic of the optimization loop run by a fleet operator within the DRT
framework in GEMSim.

Instead of having parking slots, drivers perform pickup and drop-off activities of
fixed durations, as with any other activities like work or shopping performed by
the agents, and use network travel legs as any other car driving agents do. The
difference, however, is that a driver has to wait (or cancel waiting after a certain
time limit) until the passengers requesting the trip have boarded. It could be also
that an agent pre-books a trip in advance, hence a driver may need to wait when a
passenger arrives. Integration of the taxi driver’s pickup behaviour was done in the
MultiModeDemandHandler() function in the ScheduleDemand() kernel (Figure 2.10),
and the algorithm is presented in Figure 3.11.

A taxi driver, after arriving at the pickup location, sets the number of passengers
to wait there, taking this number from the user data field, udata, of the last travelled
leg. The driver continues waiting by adjusting the scheduled time tsch for one more
minute each time until the expected number of passengers arrive. Waiting conditions
are set up in the MultiModeNodeHandler() function in the ProcessNodes() kernel,
and for a DRT driver this function also returns a False statement to let the kernel
schedule the agent’s activity in a normal way. The algorithm of the driver’s actions
upon arrival at a pickup location is shown in Figure 3.12.

Another integration point of the DRT services is in the demand scheduling
kernel, when the function MultiModeLegHandler() is called. Here, DRT passengers
send their requests to fleet operators. This approach is similar to that used with
public transit passengers, when an agent uses two states, Waiting and Riding,
to distinguish when to wait for pickup and when for drop-off. The algorithm is
presented in Figure 3.13, albeit in slightly simplified form because in GEMSim
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Input: S , Dt, agent, tsim
1 begin
2 state←− GetAgentState(Dt, agent);
3 role←− GetAgentRole(Dt, agent);

4 if role = DrtDriver and state = Activity then
5 tsch ←− GetScheduledTime(Dt, agent);
6 Npax ←− GetPaxToWait(S , Dt, agent);

7 if tsch ≤ tsim and Npax ̸= 0 then
8 SetScheduledTime(Dt, agent, tsim + 60);
9 end

10 end
11 return TrueIfHandled;
12 end

Figure 3.11: Algorithm for the pickup behaviour of a taxi driver agent on GPUs when
performing a DRT request.

agents can pre-book their DRT trips by sending requests in advance, that is, before
leaving home in the morning. But without loss of generality, one can assume that
agents send requests upon arrival to a pickup location.

Finally, the last integration point is in the MultiModeDemandHandler() function
in the demand scheduling kernel. It provides the interaction model for drivers
and passengers at pickup and drop-off locations, and the algorithm is presented
in Figure 3.14. Here, as with public transit, agents interact through the states and
passenger agents change states when boarding and leaving taxi vehicles. One
important action that a passenger agent performs when boarding, in the BoardDrt()

function, is to decrement the number of passengers for whom the driver is waiting.
Atomic operations are used to update the value of this variable as multiple agents
at the same simulation step may try to board the vehicle.

For vehicles from a coordinated fleet, an artificial population of driver agents is
created, and the drivers use exactly the same data structure for travel legs as normal
car drivers. The data structure of a DRT travel leg, used by passenger agents, in
addition to the base leg structure, contains origin and destination network links,
the local index of the assigned taxi driver agent (see Subsection 2.8.3 for more
information), the desired operator ID to serve the request, and the current state
of the request. Origin and destination links are related to the pickup and drop-off
locations, respectively. The driver’s local index is used to access per-driver data
in the fleet operator data structure. This local index is negative until an operator
assigns a specific vehicle. Link indices are used to access network properties, as
well as traffic queuing buffers. The operator ID is used to indicate which service
operator a passenger agent wants to reach with a request, and the state of the



134 multi-modal extensions

Input: S , Dt, ein, agent
1 begin

/* Logic executed for other modes ... */

2 role←− GetAgentRole(Dt, agent);

3 if role = DrtDriver then
4 enext ←− GetNextLink(Dt, agent);

5 if enext = ∅ then
6 SetPaxToWait(S , Dt, agent);
7 end
8 end
9 return False;

10 end

Figure 3.12: Algorithm for behaviour when a taxi driver agent on GPUs arrives at a pickup
location.

request (pending or sent) is kept to avoid duplication of the requests in the next
simulation steps. It is also important to note that the size of the DRT travel leg
structure is always fixed.

The structure used to store DRT operators’ data is shown in Listing 3.3. The
events buffer is used to pass the previously mentioned requests and notices from
taxis simulated on a GPU to the host side, and is further described below. The array
last_link_idx stores the last known location of each taxi and is used by passenger
agents to check when to board and leave a vehicle. The array pax_to_wait contains
the number of passengers to wait at the next pickup location for each of the drivers.
The array veh_idx stores unique vehicle indices of drivers and these indices can be
used to retrieve extended vehicle specifications (that is, a vehicle model, mass and
maximum number of passengers). Lastly, the driver_count field stores the total
number of vehicles. A single structure is used to hold data for all fleet operators
from a scenario.

In order to reduce memory fragmentation and scattered access by warps to travel
legs, GEMSim allocates memory on a GPU for all daily plans in a single chunk in
advance and partitions this chunk for daily plans successively. While this can be
done for DRT passenger legs as the structure has fixed size, this approach is not valid
for driver agents as they have varying sizes of travel legs: it is not known in advance
which routes will be assigned and for which fleet vehicles, so dynamic memory
allocation is required. Driver agents are marked as dynamic, for which memory on
a GPU is allocated individually. Moreover, the GPU typically aligns memory by the
256 bytes boundary, which means that the structure always occupies GPU memory
space in multiples of 256 bytes. While the GPU can combine multiple threads when
accessing sequential passenger travel legs (with some drop in efficiency because of
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Input: S , Dt, agent, ltype, tsim
1 begin

/* Logic executed for other modes ... */

2 state←− GetAgentState(Dt, agent);

3 if ltype = Drt and state = Activity then
4 SendDrtRequest(S , Dt, agent);
5 SetAgentState(Dt, agent, Waiting);
6 end
7 end

Figure 3.13: Algorithm for demand scheduling of taxi passenger agents on GPUs when
starting a DRT travel leg.

1 s t r u c t GpuDrtOperators {
2 GpuEventStorage events ; // Events
3

4 // Per −dr iver data
5 i n t 3 2 _ t l a s t _ l i n k _ i d x [ ] ; // Last l i n k
6 i n t 3 2 _ t pax_to_wait [ ] ; // Number of passengers to wait
7 i n t 3 2 _ t veh_idx [ ] ; // Vehic le index
8 i n t 3 2 _ t dr iver_count ; // Number of d r i v e r s
9 } ;

Listing 3.3: Structure of DRT operators on GPUs used to store fleet vehicles, interact with
passenger agents and keep data flow synced with the host.

the gaps), it is almost impossible to do the same for driver agents as the gaps are
typically wider than a memory transaction size (up to 128 bytes). Information for
each of the allocated memory chunks is stored in the memory registry on the host
side, and only in the cases when an agent needs a larger chunk of memory does the
dispatcher reallocate the memory.

In a simple case, when taxi vehicles are not shared, each assigned driver agent gets
a plan with two travel legs: a pickup leg from the vehicle’s last position to the pickup
location, and a trip leg from the pickup location to the final destination. At the
pickup and drop-off locations, a driver agent performs the corresponding activities
by waiting for a passenger to board or leave (60 seconds by default, although this
can be adjusted as a part of scenario input), following which the taxi becomes
available for the next task. In a more general case, however, GEMSim supports
multiple pickup and drop-off legs, making it possible to simulate DRT services with
shared vehicles.
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Input: S , Dt, agent, tsim
1 begin
2 state←− GetAgentState(Dt, agent);
3 role←− GetAgentRole(Dt, agent);

4 drv_id←− GetAssignedDrv(Dt, agent);
5 pickup_link←− GetPickupLink(Dt, agent);
6 drop_link←− GetDropLink(Dt, agent);

7 if role = DrtRider and state = Waiting then
8 if drv_id != -1 then
9 drv_link←− GetDrvLink(S , drv_id);

10 if drv_link = pickup_link then
11 BoardkDrt(S , Dt, agent);
12 SetAgentState(Dt, agent, Riding);
13 end
14 end
15 end
16 else if role = DrtRider and state = Riding then
17 drv_link←− GetDrvLink(S , drv_id);
18 if drv_link = drop_link then
19 LeaveDrt(S , Dt, agent);
20 ScheduleActivity(D, agent);
21 end
22 end
23 return TrueIfHandled;
24 end

Figure 3.14: Algorithm for the interaction model of DRT driver and passenger agents at
pickup and drop-off locations on GPUs.

3.3.4 Synchronization of GPU and CPU parts

Initially, the GPU-based simulation loop did not require data synchronization
between the GPU and CPU parts as the GPU part with traffic propagation is always
fully synchronized across all GPU threads after each simulation step (1 second).
In contrast, the operator’s optimization loop on the host side runs concurrently
with the GPU part, meaning that data synchronization between the GPU and CPU
parts was required. The events synchronization mechanism between both parts is
another addition to the model which makes it possible to run fleet optimization in
a GPU-accelerated mobility model.

Data transfers between CPUs and GPUs are amongst the most common bot-
tlenecks of runtime performance in GPU-accelerated simulations. Reducing the
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Input: storage, event
1 begin
2 ev_size←− sizeof(event);
3 cur_pos←− atomicAdd(storage.offset, ev_size);
4 storage_event←− typecast(event, cur_pos);
5 storage_event←− event;
6 end

Figure 3.15: Algorithm of a lock-free procedure to write events into a GPU buffer.

number of memory transactions, as well as the amount of transferred data, are
the most effective strategies to improve the performance. The fleet optimization
frequency, fopt, is used not only to make the fleet scheduling itself more efficient, but
also to reduce the number of synchronized memory transactions between the CPU
and GPU: many small memory transactions can be either grouped or submitted to
GPU asynchronously as the GPU memory occupied by agents does not overlap.

The main data structure, used to synchronize events, GpuEventStorage, contains
a pointer to the memory buffer that is allocated on a GPU in advance based on
knowledge of how many agents are in the simulation and the maximum number
of events that an agent can emit within a simulation step. In addition, an offset
pointer to the current write position in the buffer and the total capacity of the
allocated memory in the buffer, are stored. When SyncEvents() is executed in the
main simulation loop, it downloads accumulated bytes of raw data from a GPU for
further processing in the fleet optimization loop.

A lock-free algorithm used by GPU threads to concurrently write events into the
storage is shown in Figure 3.15. First, a GPU thread reserves space in the buffer
by using the atomic operation addAtomic() to shift the offset of the current write
position: the size of the event structure is atomically added to the offset and the
previous value of the offset is returned. This function, provided by CUDA SDK, has
hardware acceleration in the more recent GPUs. When space is reserved, the pointer
to the current write position is type-casted to the event structure, and then event
data is copied into the buffer.

There are two main event structures used for CPU-GPU synchronization. The
first structure is emitted by driver agents when they change their location, specified
by a link ID, such that a fleet operator can track the fleet vehicles in real-time. The
second structure is emitted by a passenger whenever they want to make a trip from
one location, specified by the network link ID, to another location. The rest of the
data in these structures are common: the type of event, ID of the agent who has
emitted the event, and the simulation time when the event occurs.

In the GPU-to-CPU direction of data transfers, only events are written. When an
agent wants to request a taxi, the DRT request event is written into the events buffer,
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and the state of the agent is switched to Waiting. Similarly, when a taxi driver wants
to report the location, the respective event is written into the events buffer.

In the CPU-to-GPU data transfer direction, daily plans for drivers are written
and passenger plans are updated by a schedule dispatcher. For a driver agent, the
schedule dispatcher first uploads the daily plan of the assigned trip reallocating
GPU dynamic memory if necessary. Then, in the GpuDemand structure (Listing 2.5),
the fields first and cur are updated for the assigned plan, and the fields state and
sched are updated to switch a driver from idle to the active state. For a passenger,
the schedule dispatcher updates only the local index of the assigned driver in their
current travel leg structure.

3.3.5 Memory optimizations

Five approaches to GPU memory optimization were used in the DRT model to
improve the overall runtime performance. First, coalesced memory access of GPU
threads is crucial for almost any GPU-accelerated model. As demonstrated, only
limited coalesced memory access is possible, mainly for per-agent attributes (state,
role or scheduled update time). Passenger data structures provide limited coalesced
access as the agents are active at different times of the day, and drivers are assigned
to passengers in a wholly unpredictable manner. Thus, a GPU can rarely combine
multiple memory transactions when passengers check if a driver has arrived from
such agents. Instead, the focus in passenger data structures is to get as much per-
agent data from a travel leg as possible in a single transaction. Data structures of
driver agents almost exclude coalesced access, as a plan of every driver is allocated in
a different region of GPU memory. This can be addressed by implementing a custom
GPU memory allocator to reduce fragmentation. Second, asynchronous memory
transfers were used to update the daily plans of passengers and drivers on GPUs.
After fleet scheduling, a large stream of small memory transactions between the host
and GPU has to be executed. Asynchronous transfers allow the GPU to aggregate
and optimize a stream of memory transfers without blocking the execution of the
main code. Third, it is possible to route global memory requests bypassing the
L1 (on-chip) cache; this improves performance for non-uniform (that is, scattered)
access patterns, and the DRT-related code was compiled with the L1 cache turned
off. Fourth, some GPUs use the same hardware resources for the L1 cache and
shared memory (that is, they are shared by a block of cooperatively executed GPU
threads). As the code does not use shared memory, hardware resources were only
allocated to the L1 cache. Finally, GPUs have fast and cached constant memory,
which is as fast as a register when threads in warp access the same address. Constant
memory was used to store configuration parameters and physical constants, as
these variables do not change and are frequently accessed during the simulation.
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3.3.6 Fleet scheduler

A fleet scheduling problem can be formulated as a minimization of ∑i,j Wij where
Wij is the waiting time of the i− th passenger if the j− th vehicle from the fleet is
assigned. There are other possible problem formulations, for example the minimiza-
tion of empty mileage, but the idea remains the same: efficiently assign vehicles
from the fleet to incoming requests based on the optimization objective.

There are two major performance bottlenecks when running large-scale agent-
based scenarios that also include fleet deployment: the movement of the agents and
the assignment of vehicles from the fleet to incoming requests. GPU acceleration can
be used to solve the former bottleneck; however, as the fleet assignment part was
implemented on the host side, GEMSim required a computationally efficient fleet-
scheduling algorithm in order to keep the overall high-performance throughput. To
tackle the latter bottleneck, a modified version of the scheduler based on [104, 247]
was used.

First, the operating area of the fleet is split into a set of hexagonal zones using the
H3 spatial indexing library from Uber [248]. This library partitions the whole globe
into hierarchical hexagonal zones of 16 resolutions with an edge length from 1 000

km to less than a single meter, and provides efficient methods to map geographical
coordinates to zones and back. Additionally, the library provides a convenient
interface to deal with neighbouring rings of hexagons. Each hexagon from a lower
resolution includes the hexagon and its six closest neighbours (called a ring) from
the higher resolution level. An example of partitioning for the Zurich area is shown
in Figure 3.16.

Zones are used to aggregate incoming requests and to keep track of idle taxis in
separate, per-zone, registries (organized as key-value associative arrays). By default,
the scheduler assumes that a taxi stays at its last position after a passenger leaves
the vehicle, while there is an option available in the scheduler to assign a parking
or relocation travel leg after dropping off a passenger. The assignment itself is
performed as per the original version of the algorithm and is based on the idea of
load-balancing supply and demand:

• During an over-supply period, the scheduler processes incoming requests in a
FIFO manner minimizing the waiting time of each passenger by looking for
the nearest available vehicle.

• During an over-demand period, the scheduler tries to minimize the empty
mileage of the fleet by looking for the nearest request for each of the idle taxis
in a FIFO manner as well.

The selection of the nearest driver or a request is performed using the hexagonal
partitioning and the above-mentioned registries. The lookup area is constantly
expanding from the initial zone outwards by using k-ring neighbour zones: the
six closest neighbour zones first (ring-0), then the next 12 neighbour zones (ring-1)
and so on. The hexagonal shape provides a good approximation of a circular area,
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Figure 3.16: Example of H3 hierarchical hexagonal zone partitioning in the Zurich area
used for spatial aggregation and filtering of DRT requests and vehicles.

thus one may treat found taxis or requests as the closest (by a straight line) to the
central zone. The expansion is continued until at least 20 available taxis or requests
are found or when all zones are checked. Afterwards, pickup and trip routes
from the nearest taxi or to the nearest request are calculated using the multi-node
(multiple sources or multiple sinks) A* algorithm [64] with Euclidean heuristic, an
overdo factor of 2.5 and per-link congestion statistics from the previously simulated
iteration. A resolution level of eight is used for the H3 library by default, and it
creates hexagons with an edge size of about 470 m. While smaller zones tend to
provide a more gradual expansion of the search area, they introduce (rather small)
computational overhead when iterating in the lookup procedure.

Apart from the above-mentioned zone-based scheduler, other fleet schedulers
were implemented in GEMSim, some based on the Euclidean distance or using
global optimization algorithms as in the Hungarian method [249]. Therefore, the
simulator can be used as a flexible and customizable testbed for the evaluation of
algorithms related to fleet operation.

3.4 case study : fleet deployment in zurich

This case study demonstrates the application of the developed GEMSim DRT
modelling subsystem to evaluate potential impacts of a large-scale deployment of
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an AV fleet in the city of Zurich to replace private cars. In addition, the scalability
of the developed DRT model is evaluated.

3.4.1 Scenarios

To run all scenarios, a computing node with two AMD EPYC 7742 CPUs clocked
at 2.25 GHz, 1 TB of RAM and four Nvidia V100 (32 GB DRAM on-board) GPUs
was used. The older Switzerland scenario, described in Section 2.4 and in which 3.5
million agents travel by car and 1.7 million agents use public transit, was used as
the basis. In the derived scenarios, a DRT operator of an on-demand non-shared taxi
service was added in the Zurich area, with the following assumptions regarding
fleet deployment:

• Requests are not dropped after a long waiting time, and all requests have to
be served.

• While the impact of AVs on flow capacity is not fully understood, studies
[250, 251] indicate that AVs can drive in a more efficient way (that is, lower
headways) with an increase of up to double the flow capacity compared to
conventional cars. Yet, as driving in mixed traffic may negate this improvement,
AVs in the scenario use the same capacity as conventional cars and do not
move faster.

• An agent posts a request for an AV immediately as soon as they want to leave
their current activity place; no pre-booking is done.

• An AV is used as a personal vehicle, and only one agent can use an AV at a
time.

• The initial positions of AVs are sampled from the home locations of the
customers. In reality, there could be a premium paid by customers of AV taxi
services to get a vehicle in the morning at a certain time, or a fleet operator
will have learned where to place AVs in the morning.

While the original scenario was converged before, the switch of some agents to
AVs causes a disturbance in the previously reached traffic flow equilibrium: AVs not
only introduce different congestion hot spots for private cars but can also induce
self-inhibited congestion [252–254] as many AVs are routed along the same streets.
The reason for this behaviour is that agents with a private car know the complete
congestion situation from the previous daily iteration and only a fraction of them
(10%) are re-routed between the simulated daily iterations to reach the equilibrium.
AVs are dispatched and routed dynamically, and all of them are routed using the
same congestion statistics. In order to converge the scenario with mixed traffic,
another method [105] was used. In this method, private cars are re-routed between
the iterations (51 in total) in the same way as before, but AVs are routed using long-
term averaged (exponential moving average with α = 0.05) congestion statistics.
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The re-routing procedure can include not only travel time but other externalities
like tolls.

Even though the fleet deployment is performed in the Zurich area, the whole
of Switzerland was simulated with car traffic and public transit services to keep
incoming and outgoing traffic flows in the study area realistic. A full (100%) sample
of the Swiss population was used, and the mesoscopic traffic model considered
congestion effects for all the simulated transport modes, including AVs.

Using the basic scenario, and the above-mentioned assumptions regarding the
modelling of AV fleets, two sets of AV-enabled scenarios were created. For the first
set of scenarios, to evaluate a fleet deployment in the Zurich area, the AV fleet
operator was limited to the city of Zurich and 14 neighbouring municipalities as
many people who work in Zurich live just across the city border. Agents who use
private cars in the original scenario and who travel during the day only within the
defined fleet operating area are switched to AV taxi mode: 84 510 agents performing
185 770 trips out of 216 620 agents performing 515 320 trips by private car in the
zone (leaving or entering), or about 36% of the trips in total, are performed by
AVs. The remaining car owners outside the fleet operating area continue using
private cars, and public transit users do not switch to the AV taxi service at all. The
average Euclidean distance of a trip performed by agents switched to AVs is about
3.4 km or about 5 km of the travelled distance. Spatio-temporal distribution of the
demand (where trips originate) for AV taxis within the defined fleet operation area
is presented in Figure 3.17. For scheduling, the area was split in 319 hexagonal
zones (resolution level of seven), and empty zones without any roads were removed
during pre-processing.

Multiple fleet sizes of 8 500, 10 500 and 12 000 vehicles were considered according
to the values from the literature. These fleets should provide replacement rates for
private cars of about 10, 8 and 7, respectively. The scenario was run for 100 iterations
for each of the fleet sizes. In the first 80 iterations, agents used the above-mentioned
re-routing strategy, keeping up to three of the best-scored daily plans in their
memory, while in the last 20 iterations agents only picked one of the memorized
plans with a probability proportional to the scores of the plans. The initial placement
of AVs in the morning was fixed between iterations to prevent traffic oscillations
and to improve the convergence.

The second set of scenarios, to assess the scalability of GEMSim for large fleets,
comprised two synthetic scenarios: (i) the city of Zurich area, used in the first set
of scenarios, in which all 515 320 trips that left or entered the Zurich area were
served by a fleet of 100 000 taxis; and (ii) the whole canton of Zurich with the
same number of taxis and served trips. As the canton, compared to the city, is
about 20 times larger in area and about three times larger in population, the two
scenarios represent different trip densities and fleet vehicle spatial distributions.
For the canton scenario, the car trips to be converted to taxi trips were sampled at
random. For both scenarios, a set of cases varied the number of converted trips and
the fleet size from 10% to 100% in increments of 10%, thus maintaining the same
trips-per-taxi ratio.
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Figure 3.17: Spatial (upper plot) and temporal (lower plot) demand for AV taxis in the
Zurich area.

3.4.2 DRT services in Zurich

The waiting time for passengers after requesting an AV is presented in Figure 3.18.
A fleet of 8 500 vehicles can provide relatively good service throughout a day, and
during the morning peak hour the average waiting time is no more than 6 minutes,
and the 90th percentile is about 12 minutes. However, in the afternoon peak hour
when a strong increase in demand happens, the quality of service deteriorates and
the average waiting time increases to almost 14 minutes, while the 90th percentile
goes up to 34 minutes. As expected, increasing the fleet size to 10 500 vehicles
helps to reduce the waiting time during the afternoon peak hour to about 11 and
22 minutes for the average and the 90th percentile, respectively. At the same time,
improvement for the morning peak hour is only about a 2-minute reduction. Finally,
a fleet of 12 000 vehicles can push the average waiting time in the afternoon to
about 5 minutes, while the 90th percentile is slightly under 10 minutes. Therefore,
the waiting time of the passengers non-linearly depends on the fleet size, and for
the Zurich area, a fleet of 12 000 vehicle provides short waiting times throughout
the day.
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(a) Average waiting time.
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(b) 90th percentile of waiting time.

Figure 3.18: Passenger waiting times after requesting an AV in the Zurich area for various
fleet sizes.

From the fleet operator’s point of view, not only is the customer waiting time
important, so too is the fleet utilization. This is because an under-utilized fleet
is generally less profitable. Utilization of the different-sized fleets is presented in
Figure 3.19. As one might expect, a larger fleet provides shorter waiting times for
passengers at the cost of higher under-utilization of the fleet. A fleet of 8 500 vehicles
is fully utilized during the afternoon peak hour, and it increases the probability
that during the assignment process a less optimal (with a longer pickup distance)
AV will be assigned to a customer. An increase in fleet size to 10 500 keeps the
utilization rate close to 100% in the afternoon while providing a shorter waiting
time. For both fleet sizes, empty driven time in the afternoon peak reaches 30% of
the utilization, and for the fleet of 10 500 vehicles, it is half of the occupied driven
time. When increasing the fleet size even more to 12 000 vehicles, the total utilization
drops to 70% in the afternoon, while empty driven time contributes only about 12%.
Interestingly, the time a fleet spends performing pickup and drop-off activities is
quite high and contributes from 5% to 8% of the total utilization.
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(a) Fleet of 8 500 vehicles.
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(b) Fleet of 10 500 vehicles.
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(c) Fleet of 12 000 vehicles.

Figure 3.19: AV fleet utilization in the Zurich area for various fleet sizes.

Another important aspect for a fleet operator is the distribution of driven distance
among the vehicles, presented in Figure 3.20. As expected, vehicles from a smaller
fleet drive a further distance daily: a fleet of 8 500 vehicles makes some AVs travel
up to 240 km per day with rare cases of 270 km, while a fleet of 12 000 vehicles
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rarely pushes AVs beyond 210 km, and less than 1% of vehicles travel this distance.
For an operator, it means that a gasoline-fuelled fleet does not need to be refuelled
during the day, and empty mileage to gasoline stations can be avoided. On the
other hand, if an operator considers a fleet of BEVs, the distance and the battery
recharging time matter. Here, a larger, under-utilized BEV fleet does not necessarily
mean less profitability as for a larger fleet an operator can use cheaper EVs that
have a driving range of under 300 km. Otherwise, for a smaller fleet, either a more
expensive BEV model or intra-day recharging is required.
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Figure 3.20: Distribution of per-vehicle daily travelled distance in the Zurich area for
various fleet sizes.

A smaller fleet increases the per-vehicle average daily travelled distance from
95 km for a fleet of 12 000 vehicles to 144 km for a fleet of 8 500 vehicles. The
total VKT is also increased with a smaller fleet size, from 1.14 million VKT to 1.23

million VKT. An increase in fleet size by 41% leads to a decrease in VKT by 8%.
The share of empty mileage in total VKT decreases with the increase of fleet size
and contributes from 25.1% for a fleet of 8 500 vehicles down to 19.6% for a fleet
of 12 000 vehicles. As the use of an AV fleet leads to the increase of the total VKT,
the average travel time of the agents within the operating area is increased from
39 to 57 minutes excluding the waiting time. Fleet size mostly does not affect this
increase in travel time as empty mileage is decreased by only 5% for the largest fleet
of 12 000 vehicles.

On the other side, the model also represents a trade-off between demand for
parking space and demand for the flow capacity of the roads when the fleet size is
changed under the constant travel demand. One of the incentives to replace private
cars with a coordinated fleet is to reclaim existing parking space in a city for other
needs as fewer cars in total will be on the streets. However, to keep travel times and
congestion at the same levels, a city should also increase either the fleet size or flow
capacities of the roads, reducing the amount of space reclaimed for other needs.

The outcomes of the case study show that the Zurich area has good potential
for replacing private cars with a coordinated AV fleet. A fleet of 10 500 vehicles
has a high utilization but longer waiting times, while a fleet of 12 000 vehicles has
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lower utilization and shorter waiting times. This provides a replacement rate of
between seven and eight private cars per AV. However, this replacement rate is
lower compared to other studies performed in the same area. In one study [240], a
replacement rate of 10 was achieved with a participating population of 10% and
waiting times below 10 minutes. Another study of the city of Zurich [107] showed
that a fleet of 7 000 to 14 000 vehicles can replace the demand of 137 000 people
travelling in Zurich by car or public transit while keeping the 90th percentile of
waiting times below 5 minutes in the morning peak hour; however, congestion
effects are not accounted for. Thus, a comparison to the present work indicates
that as soon as the simulation scenario becomes more detailed and considers more
realistic factors, the replacement rate of private cars by AVs decreases.

3.4.3 Scalability

The performance breakdown of one iteration for each of the scenarios with a large-
scale fleet is shown in Figure 3.21. The first interesting finding is that the runtime for
the smaller, city-scale scenario increases faster as the size of the problem increases.
The reason for this is because of how the scheduling algorithm works. During times
of over-supply (which is most of the day), the scheduler prepares a list of nearby
driver candidates for each of the incoming requests. The greater the number of
idle drivers (or, the more taxis per unit of space), then the greater the time spent
preparing a list of candidates to serve a request (this is up to 20% of scheduling time
for the 100% case). The second finding is that only the fleet scheduling part increases,
more or less linearly, with the size of the fleet, while the other parts of an iteration
remain more or less constant: only a slight increase of runtime in data transfers and
traffic propagation is observed with samples. One can note that with relatively small
fleets, that is with 10 000 vehicles, data transfers dominate the runtime performance
of the simulated iteration. This can be explained by the fact that the scheduler is not
saturated with enough work (that is, number of incoming requests and idle vehicles).
However, starting with 20 000 or 30 000 vehicles (depending on the scenario), all four
parts of an iteration contribute equally to the runtime performance, and only further
increasing the fleet size makes the scheduler a bottleneck. This demonstrates that
this approach to simulating fleets with a GPU-accelerated traffic model is effective
and scalable for real-world applications.

GEMSim’s runtime performance was compared with MATSim’s performance.
Both scenarios at full scale were run with MATSim on the same cluster node, and
using the same number of CPU threads (20) to parallelize re-routing (10% of car
users) of the agents between iterations. While MATSim’s mobility simulator, QSim, is
capable of multi-threaded traffic propagation, it was found to be limited (probably
due to synchronization issues between QSim and a taxi optimizer) and only a
single-threaded execution of QSim was possible when taxi fleets were simulated.
The performance breakdown of one simulated daily iteration for both scenarios
is compared for GEMSim and MATSim in Table 3.1. MATSim runs the scenario
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Figure 3.21: Scalability of runtime performance of the GPU-accelerated DRT model using
scenarios with various spatial densities of taxi trips.

with lower trip spatial density more slowly than GEMSim. This can be explained
by the fact that MATSim’s re-routing is about eight times slower than GEMSim’s,
and a scheduler has to do extensive routing on longer distances when assigning
the available vehicles to requests. Overall, GEMSim is up to nine times faster
than MATSim, requiring less than 30 minutes for the simulation for one full day
compared to three-and-a-half hours for MATSim. The simulation time for MATSim
is similar to that reported for a Berlin scenario [104] that has a similar-sized fleet
but a smaller population sample.

Fleet deployment is the most computationally expensive part in GEMSim, taking
77%–81% of the simulation time; of this time, the scheduling algorithm constitutes
more than 77%—83%, with the rest of the time being spent on data transfers to and
from the GPU. MATSim’s fleet scheduling part, while using the same algorithm
as GEMSim, can run more than three times slower. This poorer performance can
be explained by the fact that MATSim has a less efficient implementation of the
routing algorithms used by the scheduler. Nevertheless, the overall performance
improvement of GEMSim over the whole simulation loop is significant; the traffic
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propagation part, which is accelerated by a GPU, contributes most of the speed-up,
and runs up to 50 times faster than in MATSim.

Overall, the model for large-scale fleet deployment in GPU-accelerated mobility
simulations has a substantial performance improvement compared to existing state-
of-the-art solutions. However, a shift in required computing power was observed in
GEMSim, and for the fleet deployment not only was GPU acceleration required, but
good CPU processing power was advantageous as well. It transforms the simulator
into a truly hybrid high-performance tool in which the GPU and CPU components
complement each other.
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sTable 3.1. Performance breakdown of a daily iteration run by GEMSim and MATSim with a 100 000-vehicle fleet for the Zurich city area and

the canton of Zurich.

Part of iteration
City scenario Canton scenario

GEMSim, s MATSim, s Speed-up GEMSim, s MATSim, s Speed-up

Traffic propagation (cars, transit, DRT) 180 9 091 50.50 205 9 202 44.89

Fleet scheduling 1085 2 109 1.94 820 2 740 3.34

Dispatching schedule to GPU 212 – – 235 – –

Re-routing 10% of private cars 112 890 7.95 109 898 8.24

Total 1 589 12 090 7.61 1 369 12 840 9.38
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All grown-ups were once children. . . but only few of
them remember it.

— Antoine de Saint-Exupery

The chapter is based on contributions from the following publications:

Saprykin, A., Marini, M., Chokani, N. & Abhari, R. S. Holistic, integrated
generation of daily-activity plans for Switzerland: from population synthesis to trip
generation in 20th Swiss Transport Research Conference (STRC 2020)(online) (2020)

Over recent decades, agent-based models have been increasingly applied in many
sectors, including the transport sector [44]. One of the main drivers for the increased
usage of agent-based models is their ability to model complex behaviour on a
disaggregated level of detail. This contrasts with four-step models that have been
used in the transport sector since the 1950s. Four-step models, while being simple
and computationally efficient, are unable to account for the dynamics of individual
behaviour, as well as person-person interactions in transport systems. With the
development of new transport modes such as car-sharing or ride hailing, these
limitations are even more important. Moreover, it is a formidable challenge to apply
four-step models in scenarios with Mobility-as-a-Service (MaaS) platforms. While
agent-based models are well suited for these emerging challenges in mobility, the
development and application of agent-based models requires even bigger datasets
and more detailed information about the actors and environment to be simulated.
Typically, the accuracy of an agent-based simulation directly depends on both the
quality and the quantity of available data. Moreover, as the operation of transport
systems also involves the complex behaviour of people, the more widespread
application of agent-based models is not trivial.

As demand and supply drive any transport system, the synthetic population
is a cornerstone in any agent-based transport model. Both individual attributes
as well as behavioural patterns, or daily activities, must be described. Typically,
the synthetic population is derived from a variety of datasets, ranging from a
mobility census to statistical data of the local area to be studied. These datasets
are often in incompatible formats, with different levels of resolution, and may
refer to different years. They must often be pre-processed and/or converted into a
customized representation in order to be analysed or visualized. Furthermore, the
generation of agent-based travel demand is typically divided into the two steps:
(i) synthesis of the population and (ii) generation of trip chains, which requires
additional effort to make the two steps compatible. Another challenge arises when
something has to be changed either in the input data or in the steps, for example in
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the evaluation of scenarios, and the whole process of generating the travel demand
must be repeated in a reproducible way.

Here, a unified modelling pipeline (that is, a sequence of executed models) was
proposed in order to automate the generation of agent-based travel demand. The
modelling pipeline, when executed, reads the required input data and transforms it
into an agent-based travel demand that is ready-to-use in an agent-based mobility
simulator. This approach both simplifies the maintenance of agent-based models,
and allows a user to easily re-generate travel demand for specific situations, such as
the spread of a viral disease (which is very closely linked to people’s behaviour). Fur-
thermore, this approach makes the use of agent-based models easier for non-experts
such as policymakers, who may only want to specify a set of input parameters for
a scenario that they then simulate without going into the details of the demand
modelling.

4.1 background

The synthesis of population agents that realistically represent the actual population
in the area of interest is the first requirement for the generation of travel demand
and subsequent mobility simulations.

The most common approach [255] comprises two main stages: (i) population
fitting, and (ii) allocation. In the first stage, fitting, a reference sample of agents,
typically derived from census data, is fitted to aggregated constraints, for example
the total population. The most common fitting approach is the iterative proportional
fitting (IPF) procedure [256] that estimates the distribution of control variables based
on the reference sample. This method is used in recent population synthesizers,
such as ALBATROSS [257] and PopGen [258]. The second stage, allocation, disaggre-
gates the fitted population amongst individual population agents and households
selected from the reference sample. In some cases, the geographic placement of the
households is also refined in this stage. The different methods of allocation include
altered selection probability [259], a conditional Monte Carlo approach [260], or a
deterministic selection [261]. Other approaches to synthesizing population agents
are summarised elsewhere [262]. The main limitation of these approaches is that
the quality of the resultant synthetic population depends directly on the quality of
the reference sample; this sample is very often of limited size and detail for reasons
of personal privacy in census data. While this part of the thesis is focused on the
generation of disaggregated travel demand, it requires a synthetic population as
an input. The synthetic population is generated using LEC’s in-house model [263],
which combines registers for dwellings and commercial activities with aggregated
population registers. The population agents are synthesized through a series of
models with the goal of realistically capturing the characteristics of the actual
population, but without the need to use a reference population sample. Thus, this
approach is more advantageous as it can be applied in many geographic locations,
where the data required to generate a reference population sample are unavailable.
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The synthetic population is the basis for disaggregated travel demand generation
models. Activity-based models [264–266] derive travel demand from an integrated
overview of people and households. These models are based on the demand for
socio-economic activities, where individual agents have spatio-temporal constraints
[267] and move between different locations incurring time and travel costs. Activity-
based models place emphasis on the fact that participation in certain activities
generates travel demand and complex interactions. Agents typically try to maximize
their utility function [268] by building and scheduling a sequence of trips between
the locations of activities. Many daily-activity models are tour-based, whereby an
agent starts and ends their day at the same location, usually home. Rule-based
algorithms [269, 270] are most widely applied in activity-based demand gener-
ation, but it is noted that these algorithms tend to approximate the process of
activity scheduling [271]. However, as activity-based models are used to model
the socio-economic behaviour of individuals, they are difficult to implement and
calibrate; hence, many such models are applied only at a regional or local level
[272, 273]. Another approach to generating travel demand for agent-based transport
simulation models is to sample trip chains directly from microcensus data [274]. In
this approach, trip chains are sampled from statistically similar respondents and
adjusted in time and space. The main advantage of this approach is its simplicity,
as few assumptions are made regarding the process of activity scheduling, and the
approach can be applied at the scale of census data.

This part of the thesis integrates the latter approach to generate trip chains for
synthetic agents, thus avoiding the need to develop and calibrate econometric
models of people’s behaviour. However, mobility microcensus data is required to
apply the unified modelling pipeline described in this chapter to another geographic
area. Given that many countries conduct mobility surveys on a regular basis, the
unified modelling pipeline can be applied to a wide range of cases.

4.2 modelling pipeline

The structure of the modelling pipeline is shown in Figure 4.1. The pipeline is
organized as a sequence of steps, which are executed in order to transform raw
input data into agents’ daily-activity plans for a mobility simulator. The pipeline
can be split into two main parts: a population synthesis model and a daily-activity
model, with the daily-activity model taking the output of the population synthesis
model as an input. The whole modelling pipeline was implemented in Python,
and, for reasons of improved performance, parts of the population model were
accelerated with a GPU using the Numba framework [275]. While this chapter
describes the modelling pipeline using the Switzerland case, the main structure
is flexible and can be adapted for other geographic areas: see Chapter 5 for the
application of the pipeline to the Munich metropolitan region.

Population synthesis, being a constituent of demand generation, is out of the
scope of this thesis, and only a brief description is provided. The structure and
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Figure 4.1: Structure of the agent-based travel demand modelling pipeline.

data flow of the population synthesis is presented in Figure 4.2. In the agent-
based population synthesis framework, four typologies of geo-referenced agents are
modelled, specifically:

• Population agents. These represent individual persons who perform their
daily activities and travel between the locations of activities.

• Household agents. These represent individuals who are grouped into a family
unit, and who live in the same dwelling.

• Job agents. These represent available and occupied jobs that are assigned to
agents that have a matching skill set.

• Dwelling agents. These represent available and occupied residential locations,
in which households live.

The generation and linking of the synthetic population for the reference year can
be subdivided into the following steps:

• Individual population agents are generated, starting from demographic data
that characterises population agents in terms of age, sex and education level,
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and are extrapolated as a function of age from the Adult Literacy and Life
Skills Survey for Switzerland [276].

• Individual job and dwelling agents are generated based on the Business
and Enterprise Register [174] and the Register of Residential Buildings and
Dwellings [277], while the costs of dwellings are assigned based on the data
taken from online listings.

• Population agents are linked to job agents in the vicinity of the municipality
as a function of the distribution of skills; the commuting matrix, described in
the Mobility and Transport Microcensus (MTMC) [278], is used to define the
probability of working in a specified district.

• Individual agents are linked in households, starting with the distribution
of household typologies in the municipality [279]. Partners are matched
assuming minimization of difference, with compatible sex and sexuality, while
children are assigned to parents as a function of the age of the female partner.

• Residential dwellings are assigned to households, such that size and cost of
the dwelling matches the structure and income of the household.

The generated synthetic agents are then used as an input for the daily-activity
model that generates input daily plans for GEMSim.

Population

Jobs assignment

Households
assignment

Households

Municipal statistics Business and
enterprise register

Dwellings
assignment

Jobs

Residential
dwellings register

Dwellings

Agents

Models

Data

Figure 4.2: Structure of the agent-based population synthesis model used to provide input
for demand generation.
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4.3 daily-activity model

The structure and data flow of the daily-activity model is shown in Figure 4.3.
The model incorporates other sub-models including DCMs for car ownership
and transport mode; as well as input datasets together with the output from the
population synthesis model, which are propagated successively until the daily-
activity plans are generated.

Households
Microcensus, transit quality

municipality typology
Population

Car ownership Mode choice

Statistical matching

Generation of plansActivity
locations Agents

Models

Data

Figure 4.3: Structure of the agent-based daily-activity model used to generate individual
travel plans.

4.3.1 Pre-processing

The following datasets are inputs to the daily-activity model:

• Synthetic population.

• Mobility and Transport Microcensus (MTMC) [278].

• Administrative borders [280].

• Municipality typology: urban, sub-urban, rural [281].

• Public transit quality map [282].

• Postal code boundaries [283].

• Locations of places of activity from OSM [149].

• Car register (MOFIS) [284].
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The microcensus provides information about the personal attributes and the
detailed travel behaviour of 57 090 participants in Switzerland. Both the synthetic
population and microcensus datasets contain comparable attributes of agents as
required by the daily-activity model:

• People: age, gender, job location.

• Households: location, size, typology, income.

The travel behaviour in the microcensus is described as a set of individual daily
trips, 193 880 in total. In the daily-activity model the following trip properties are
used: start and end locations, departure and arrival times, transport mode, travel
purpose, and travel distance. The microcensus data can be filtered as either a typical
working day or weekend; as a result, variations in behaviour within a week can be
distinguished. Here, a typical working day is used as an example, but the developed
model can also generate travel demand for a typical weekend.

Municipalities are classified into one of three categories based on the Gemeindety-
pologie [281] classification, which accounts for spatial attributes such as population
density and accessibility. This classification was used to estimate car ownership and
transport mode choice models. Figure 4.4 shows the classification of municipalities
in Switzerland used in the daily-activity model, while the mapping of typology
from the Gemeindetypologie classification is shown in Table 4.1.

Figure 4.4: Swiss municipality typology based on the Gemeindetypologie classification.

The public transit quality map (ÖV-Güteklassen) specifies four classes (A, B, C
and D) of public transit service quality depending on the proximity of stops, the
variety of transport modes in the area and the frequency of service. The public
transit quality map for the canton of Zurich is shown in Figure 4.5. Areas outside
these four classes are considered to not have public transit quality. As agents travel
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Table 4.1. Mapping of Swiss municipality typologies from the Gemeindetypologie classifi-
cation.

Gemeindetypologie (code) Typology

Municipality of a large agglomeration (11) Urban

Municipality of a medium-sized agglomeration (12) Urban

Municipality of a small or outside an agglomeration (13) Sub-urban

Periurban high-density community (21) Urban

Periurban medium-density community (22) Sub-urban

Periurban low-density community (23) Rural

Rural centre (good connection) community (31) Rural

Rural centre (local) community (32) Rural

Rural peripheral community (33) Rural

to perform activities throughout a day, the locations of places of activity are required.
These locations were taken from OSM (Geofabrik) and their types were mapped to
the purpose of the trip from the microcensus. Trips with a business purpose include
all available types of activities. In total, 123 577 places of activity were downloaded
from OSM. The car register (MOFIS) contains detailed information about registered
vehicles in Switzerland at the resolution of ZIP-code (i.e., post code); this register
was used to validate the car ownership model.

After reading, the input data was cleaned. The purpose of cleaning is to remove
incomplete samples that cannot be used in DCMs or which contain insufficient
information to generate a proper daily-activity plan for an agent. Examples of
removed samples include trips with loops (start and end in the same location),
unknown transport mode, trip chains not starting or ending at the home location, or
respondents without any trips reported. In total, 34 028 trips and 15 335 respondents
were removed from the microcensus dataset. After cleaning, the synthetic and
microcensus households data were merged with the municipalities classification
and public transit quality map; thus, each household was assigned its attributes
from municipality-related datasets and the quality of public transit service based
on the location of the household.

4.3.2 Car ownership

A car ownership model was used to assign the number of cars owned by each of the
synthetic households. The multinomial logit (MNL) DCM was applied to synthetic
households to estimate the number of cars. The MNL model assumes that random
terms are identically and independently (iid) distributed (Gumbel distribution). The
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Figure 4.5: Map of public transit quality in the canton of Zurich, Switzerland.

probability of choice of a given alternative i for a decision-maker n is defined as
follows:

Pin =
eVin

∑j eVjn
(4.1)

In discrete choice modelling, the probability of each alternative is based on a set of
attributes that reflect the cost and benefits of an alternative, and the utility function
U is defined as follows:

Uin = Vin + ϵin = βixin + ϵin (4.2)

where Vin is the deterministic part of the utility function based on the vector
βi of taste parameters and the vector xin of alternative attributes, and ϵin is the
non-deterministic part of the utility function.

Microcensus data was used to estimate the parameters of the MNL model. The
following household variables were observed to have a strong impact on the choice:
monthly income (SFr, Swiss franc), typology, public transit quality and municipality
typology. The variables are used as categorical, and the available alternatives are as
follows: no car, one car, two cars, and three or more cars. In the microcensus, 13 712

respondents did not specify income levels and these samples were excluded from
the MNL model estimate. The coefficients of the MNL model were estimated using
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the maximum-likelihood method from the statsmodels package for Python, and the
results are presented in Table 4.2. Alternatives are estimated against the alternative
of not having a car.

Table 4.2. Results of MNL estimation for car ownership in Switzerland. Pseudo-R2 = 0.1379
and Log-Likelihood is -35174.

Variable (dummy) 1 car z 2 cars z 3+ cars z

Income ( 2 000–4 000) 0.28 2.98 0.12 0.74 0.03 0.13

Income ( 4 001–6 000) 0.82 8.56 0.92 5.61 1.00 3.52

Income ( 6 001–8 000) 1.01 10.13 1.40 8.52 1.66 5.86

Income ( 8 001–10 000) 1.07 9.90 1.77 10.42 2.18 7.62

Income (10 001–12 000) 1.04 9.03 1.85 10.57 2.41 8.31

Income (12 001–14 000) 1.01 7.47 1.88 9.98 2.60 8.68

Income (14 001–16 000) 0.98 6.80 1.98 10.18 3.00 9.94

Income (> SFr. 16 000) 1.06 7.80 2.22 11.83 3.50 11.82

Household (single) 0.37 3.03 -1.78 -9.63 -3.48 -11.15

Household (non-family) 0.35 2.37 0.17 0.88 -0.63 -2.05

Household (couple) 1.02 7.94 0.69 3.82 -1.03 -3.55

Household (couple+children) 1.12 8.46 1.08 5.82 0.17 0.60

Household (single+children) 0.67 4.85 0.08 0.44 -1.21 -3.95

Transit quality (A) -1.98 -19.94 -3.47 -31.72 -4.09 -29.57

Transit quality (B) -1.46 -14.76 -2.45 -23.19 -2.93 -23.59

Transit quality (C) -0.93 -9.59 -1.61 -15.72 -1.90 -16.67

Transit quality (D) -0.44 -4.45 -0.76 -7.37 -1.00 -8.91

Municipality (sub-urban) 0.19 3.79 0.36 6.47 0.52 7.48

Municipality (rural) 0.21 2.83 0.46 5.61 0.74 7.88

The results show that every variable is statistically significant. Income does not
particularly impact the alternative of having a single car; however, a higher income
increases the probability of having multiple cars. Households of a single person have
a lower probability of having a car, while an increase in household size (including
children) increases the probability of having one or two cars. Public transit quality in
the area of the household’s dwelling has a very strong impact on the decision to have
a car: the higher the quality of public transit, the more negatively the alternatives of
having a car are correlated. In general, households located in sub-urban and rural
areas tend to have more than one vehicle.
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To validate the car ownership model, car register data at ZIP-code resolution
was used. Non-private cars were removed from the register, as well as all types
of non-personal vehicles like trucks and agricultural machines. Figure 4.6 shows
the relative error of the predicted number of cars at ZIP-code spatial resolution
compared to the actual number of registered cars. One can note that the model
captures the trend in the data: most of the high-density areas have a relative error
below 10%, some areas have up to a 20% error, and very few areas (mostly close
to the border) have a higher error. Most areas with high (>30%) relative errors are
located in low-density mountainous regions of Switzerland, and many of these
areas have in the range of a few dozen to a few hundred registered cars. Finally,
one should also account for the fact that the car register gives only an approximate
spatial distribution of the actual locations of registered cars. That is, for tax reasons,
cars can be registered in one canton but used in another.

Figure 4.6: Relative error between predicted car ownership and car register data in Switzer-
land using the unified modelling pipeline.

4.3.3 Mode choice

Like the car ownership model, a mode choice model was implemented using MNL
regression with two alternatives: car or public transit (including walking). The
microcensus data was additionally filtered as follows, prior to model estimation:

• Agents below the legal driving age (18 years in Switzerland) are assigned to
public transit and excluded.

• Agents living in households without cars are assigned to public transit and
excluded.
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• Agents who are passengers, not drivers, are excluded.

The coefficients of the MNL model are summarised in Table 4.3. The alternative
of taking public transit was estimated against the alternative of using a car.

Table 4.3. Results of MNL estimation for transport mode choice in Switzerland. Pseudo-
R2 = 0.1348 and Log-Likelihood is -9518.

Variable (dummy) Public transit z

Age (18–24) -0.37 -0.65

Age (25–44) -1.85 -3.19

Age (45–64) -1.73 -2.99

Age (>64) -1.79 -3.10

Gender (female) 0.55 15.155

Income ( 2 000–4 000) 0.02 0.16

Income ( 4 001–6 000) -0.03 -0.18

Income ( 6 001–8 000) 0.07 0.45

Income ( 8 001–10 000) 0.03 0.21

Income (10 001–12 000) 0.26 1.54

Income (12 001–14 000) 0.42 2.36

Income (14 001–16 000) 0.49 2.71

Income (> SFr. 16 000) 0.43 2.44

Employed -0.55 -10.70

Transit quality (A) 1.41 17.970

Transit quality (B) 0.89 12.060

Transit quality (C) 0.67 9.785

Transit quality (D) 0.35 5.222

Cars in household (2) -1.4392 -32.420

Cars in household (3) -2.1771 -25.749

The results show that persons older than 25 tend to switch to a car rather than to
public transit, while, in general, females prefer to use public transit. Interestingly,
persons with high monthly income (more than SFr. 12 000) tend to prefer public
transit. This can be explained by the fact that travel in first class is quite comfortable
and/or the dwellings of these persons are centrally located. As expected, if there is a
higher quality of public transit in an area then the probability of using public transit
increases, while the availability of a car in a household reduces the probability of
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using public transit. Finally, in general, employed persons prefer to use a car over
public transit.

Figure 4.7 shows the predicted share of agents who select public transit in Swiss
municipalities. In urban areas that have a high quality of public transit, people tend
to drop a car, while in mountainous and low-density regions, where the quality of
public transit is insufficient, the trend is opposite.

Figure 4.7: Predicted share of agents who take public transit for daily trips in Switzerland
using the unified modelling pipeline.

4.3.4 Generation

The generation of the agent-based travel demand comprises three steps:

• Finding statistically the best donor of an activity chain for each synthetic agent
derived from the microcensus dataset.

• Sampling the locations of activities to match the activity chains relative to the
locations of homes.

• Converting the activity chains into output format and writing to a file.

All steps are performed in parallel, wherein one thread handles a block of synthetic
agents, so the model is scalable as the size of population is increased. Each thread
processes its own block of agents and writes output to a file. After all working
threads are finished, the main thread consolidates the output files into a single
output file.

In the first step, two sets of attributes for an agent in the synthetic population are
compared with the same sets of attributes of each respondent in the microcensus
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dataset. The first set contains mandatory attributes (of age class, gender, employment
status and commute mode) which must be exactly matched for a respondent from
the microcensus in order to be accepted as a donor candidate. The second set
contains optional attributes (of income class, household typology, municipality
typology and distance from home to work) which should be closely matched.
A minimum of 30 donors is required for a synthetic agent to be accepted for
generation of the plan, otherwise the agent is discarded. After comparison, the 30

donor candidates with the best overall match scores are selected, and a final donor
is sampled uniformly at random from this pool. In total, all 5 542 305 synthetic
agents were matched using 28 328 donors from the microcensus.

As activity chains from the microcensus contain the specific coordinates of the
locations that are visited, these coordinates must be re-sampled from the OSM
dataset for each agent from the synthetic population based on their household and
job (if any) locations. A Monte Carlo type re-sampling of the locations of activities
was made for each trip in the chain, and the chain always starts and ends at home:

• Randomly pick a direction in the range of 0–360 degrees.

• Select a point located at the trip distance from the last place of activity in the
direction picked at the previous step.

• Find the closest place of activity with the corresponding trip purpose.

When locations of activities for a whole chain are re-sampled, the total travel
distance between re-sampled locations is compared with the total travel distance of
the donor. If the travel distance difference is less than 200 m then the re-sampled
chain is accepted, otherwise the re-sampling procedure is repeated for this chain. The
number of re-sampling attempts was set to 200, as this provides a good compromise
between the accuracy of re-sampling and the runtime performance of the model.
If after 200 iterations a solution is not found, the best re-sampled activity chain is
accepted. The timeline of a re-sampled activity chain is shifted randomly within a
30-minute interval. Finally, a re-sampled activity chain is written to the output file.

4.3.5 Adaptation for COVID-19

To demonstrate the flexibility of the developed pipeline, it was modified to simulate
the behaviour of people during the public health intervention measures imposed by
the Swiss government to prevent the spread of COVID-19. Thus, an additional con-
figuration that describes the transformation of people’s behaviour during epidemics
was added to the generation part of the pipeline. The transformation of behaviour
can be defined in the following ways:

• Specify types of OSM locations which are closed and to which agents cannot
therefore go.
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• Specify NOGA codes (general classification of economic activities) for jobs
that are unaffected by the measures and to which employees have to travel to
work (that is, these employees do not work from home).

• For each trip purpose in the microcensus, specify a probability that an agent
will abandon a trip of this purpose in their daily plan. Abandoning working
activities means that an agent works from home.

• For agents who have a car in a household but do not use it, specify the
probability of using a car instead of public transit.

Using the modified pipeline, four scenarios, based on data from mobility reports
from Google [285], Apple (as of April 14, 2022, Apple no longer provides the data)
and locally observed behaviour, were simulated:

• No closing (February 22, 2020): no limitations of places of activity; 0.30

probability of dropping any activity; jobs in healthcare, public services and
groceries are kept running; 0.1 probability of switching to a car;

• 1st partial closure (March 13, 2020): schools, universities and leisure facil-
ities are closed; 0.45 probability of dropping any activity (except already
closed); jobs in healthcare, public services and groceries are kept running; 0.2
probability of switching to a car;

• 2nd partial closure (March 16, 2020): schools, universities and leisure facil-
ities are closed; 0.70 probability of dropping any activity (except already
closed); jobs in healthcare, public services and groceries are kept running; 0.3
probability of switching to a car;

• All closed (March 20, 2020): all facilities except explicitly allowed are closed;
0.95 probability of dropping any activity (except already closed); jobs in
healthcare, public services and groceries are kept running; 0.4 probability of
switching to a car.

Figure 4.8 compares the number of travelling agents throughout a day for each
COVID-19 scenario. The model clearly shows that there is a change in mobility
behaviour, especially in the 1st partial closure scenario when educational and leisure
facilities were closed. Further measures, such as stricter social distancing, do not
have a strong impact on the number of people travelling daily.

Table 4.4 summarises the reduction in average travel distance and time for the
scenarios. The predicted average travel distance and time were compared to real
tracking data obtained in the MOBIS project [286], in which more than 3 000

participants were tracked with mobile phones and travel diaries. The real tracking
data shows that after the introduction of the strictest measures on March 20, the
reduction in average travel distance by car was about 50%. Thus: (i) the 2nd partial
closure scenario is the most realistic; and (ii) more people than expected continued
to travel even after restrictions were imposed.
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Figure 4.8: En-route dynamics of the agents throughout a day for COVID-19 scenarios with
various governmental measures applied in Switzerland.

Table 4.4. Reduction in average travel distance and time for COVID-19 scenarios in Switzer-
land.

Scenario Avg. dist, km Avg. time, h Red. dist, % Red. time, %

Baseline 34.62 1.42 0.00 0.00

No closing 28.49 1.12 17.70 21.13

1st partial closure 19.47 0.74 43.76 47.89

2nd closure 17.47 0.65 49.53 54.23

All closed 15.71 0.57 54.62 59.86

4.4 benchmarks

The runtime performance of the unified modelling pipeline was evaluated on a GPU
computing node equipped with four Nvidia P100 GPUs, two Intel Xeon E5-2690 v4

CPUs clocked at 2.6 GHz and 256 GB of RAM. Each CPU has 14 physical cores and
can run up to 28 threads in parallel when a physical CPU core represents two logical
cores in the system. The runtime performance of the pipeline is shown in Figure 4.9.
Depending on the number of CPU cores used, a simulation takes 4 to 5 hours and
about 10 GB of host RAM to generate travel demand for Switzerland from raw input
data. When using more than 20 threads the performance of the pipeline does not
improve much and may even degrade. One reason for the degraded performance
could be the lack of multi-threading (address space is shared among threads within
a single process) in Python where multi-processing (each process has dedicated
address space) is used instead. Multi-processing may lead to data segmentation
and less efficient utilization of the CPU cache. Moreover, an operating system
may schedule resources less efficiently when dealing with the large number of
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processes (more expensive context switch). Another explanation is that the number
of physical CPU cores becomes a limiting factor because a single physical CPU core
has performance drop when running more than one thread in parallel. Out of total
runtime, the population synthesis takes about 2.5 hours to run, while the rest of the
time is spent to generate daily-activity plans of the agents.
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Figure 4.9: Runtime performance of the unified modelling pipeline for the Switzerland
scenario on multi-core CPUs.

The unified modelling pipeline was used to generate the agent-based travel
demand for a large-scale mobility scenario for the whole of Switzerland. The
scenario was subsequently run with GEMSim. The scenario includes the entire
population of Switzerland (3 million car drivers and 2.5 million public transit users
and walkers) with their detailed travel demand; the road network (1.1 million links
and 0.5 million intersections) generated from OSM; and the public transit schedule
(30 000 stops and 20 000 routes) from SBB (Swiss Federal Railways), including routes
for trains, buses, trams and other means of transport in Switzerland. The input
synthetic population, as well as road network, are the same as was used for the
older Switzerland scenario, shown in Figure 2.11. The scenario was run for 100

iterations to converge, and 10% of the agents were re-routed between the iterations.
Figure 4.10 compares the predicted departure and en-route dynamics to the micro-

census. In both cases, the trends are captured, especially the dynamics of the morn-
ing and evening peak hours. The generated travel demand slightly overestimates
departures in the afternoon, while the number of agents travelling simultaneously
is underestimated. This can be explained by various reasons: some of the generated
trips have shorter distances, traffic lights were not simulated in the scenario, or
other factors such as pedestrians were not accounted for.

The scenario was validated against 291 traffic counts provided by the Federal
Roads Office of Switzerland [177], which were previously used in Section 2.4,
and the locations of the counting stations are shown in Figure 4.11. The counting
stations cover the whole country and most of them are located along highways and
primary roads. The peak morning (07:00–08:00) and evening (17:00–18:00) hours
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(a) Departure dynamics.
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(b) En-route dynamics.

Figure 4.10: Dynamics of the simulated agent-based scenario for Switzerland generated
with the unified modelling pipeline, compared to microcensus data.

of a typical working day were used to compare simulated traffic flows with real
data, as presented in Figure 4.12. The comparison shows agreement of simulation
outputs with the field data, however, a few locations close to the country borders
tend to be heavily underestimated as the cross-border traffic was not modelled.

Figure 4.13 compares the distributions of travel time and distance by simulated
agents with the data from microcensus [278] for a typical working day of the
week. For cars, the routed distance of trips is used (i.e., the total distance of the
path to drive from one location to another, and not the Euclidean distance). For
public transit, the Euclidean distance is used as the precise information about the
routes of public transit vehicles is not always available. Moreover, public transit
includes walking trips as a subset mode. Overall, the simulated results are in the
agreement with the microcensus, and only some minor variations are present. For
cars, short-distance trips are slightly underestimated, while long-distance trips
are overestimated. One also needs to consider here that microcensus interviewees
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Figure 4.11: Locations of the traffic counting stations in Switzerland used for the validation
of the unified modelling pipeline.
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(a) Morning peak hour (07:00 – 08:00).
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(b) Evening peak hour (17:00 – 18:00).

Figure 4.12: Comparison of simulated and real-world traffic counts in Switzerland using
the unified modelling pipeline.

tend to round their answers regarding departure and arrival times, most often to
15 minutes. This rounding can impact the distribution of probabilities for travel
times. For public transit, short-distance trips are slightly overestimated, while
long-distance trips are underestimated. This can be affected by walking activities
modelled together with public transit.

A similar comparison of distributions of travel time and distance, but for a typical
weekend, is shown in Figure 4.14. Again, the results show an overall agreement
of simulated data with the microcensus, and minor variations in distributions are
similar to variations in respective distributions for a typical working day. This
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comparison of the weekend scenario, however, must be taken with caution, as it may
not be fully representative (for example, in terms of the daily dynamics of travelling)
and is provided mostly to demonstrate the capabilities of the pipeline. The reason is
that while during the working week people tend to demonstrate reasonably uniform
day-to-day behaviour, this does not occur across weekends. Therefore, the presented
pipeline can generate only averaged weekend behaviour due to the low availability
of the weekend-related travel data. Nevertheless, should more weekend-related
behavioural data become available, the pipeline can be utilized to generate custom
scenarios for weekend days.
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Figure 4.13: Distributions of travel time and distance for a typical working day in Switzerland generated with the unified modelling pipeline,
microcensus and simulation.
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Figure 4.14: Distributions of travel time and distance for a typical weekend in Switzerland generated with the unified modelling pipeline,
microcensus and simulation.
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He who must travel happily must travel light.
— Antoine de Saint-Exupery

The design and implementation methodology for the integration of DRT services
into public transit systems has been developed since the 1970s–1980s [287–289]. In
later years, the methodology was improved with various concepts, like mixing fixed-
route scheduled public transit services for high-density areas with DRT services
on low-density areas [290, 291]. One of the problems with public transit is the
first and last mile problem, when people do not use public transit due to long
walking times at the beginning or end of a trip. This is the area where DRT
services are considered to contribute positively. In reality, however, implementation
of such hybrid systems faced many difficulties, including high operating costs
and communication problems between drivers and riders. In recent years, with
the development of global communication systems through the Internet, as well
as the widespread adoption of mobile phones, novel business opportunities have
appeared in the area of DRT services. Companies like Uber and Lyft offer flexible
and relatively cheap DRT services including ride-hailing and ride-sharing.

Moreover, considering the anticipated rate of improvement of AVs, the operation
of DRT services shall become even cheaper in the future as fleet operators can
cut costs through reduced operating expenditures (no need to pay salaries and
social insurance for drivers, better control of the fleet, optimization of parking
and charging fees). In addition, as booking platforms are working online and the
data about customer behaviour is constantly collected, operators can utilize ML
algorithms to match the demand more efficiently using dynamic pricing schemes.

While ride-hailing and ride-sharing services can already provide competitive
pricing schemes for customers when compared to other DRT services like taxi cabs,
researchers and politicians have raised concerns regarding the impacts of companies
like Uber on the local public transit systems. Typically, local public transit systems
are subsidized with public funds to increase ridership and, in turn, to increase the
frequency of service and reduce waiting times. In addition, shifting people to public
transit can reduce negative externalities like traffic congestion and air pollution.
Subsidies can also provide welfare redistribution effects by providing access to
transport systems to low-income people [292, 293].

Some works indicate that DRT services lead to a reduction in public transit
ridership [294, 295]. Interestingly, when a ride-hailing company starts operating
in an urban area, it initially leads to the increased usage of public transit, thereby
complementing it. But when another ride-hailing company enters the market in the
same urban area, ride-hailing services start competing with public transit, and this

173
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leads to the overall decrease of transit ridership below the level normal before the
first ride-hailing service started operations. Other works show that DRT services can
complement public transit [296, 297] instead of becoming a main mode of transport
by providing a supply of riders. This, however, may require significant investment
into infrastructure close to public transit lines. Ride-hailing, while decreasing usage
of one transport mode like buses, can lead to the increased use of other public
transit modes like rail [298].

There are further negative externalities to which DRT services can contribute,
such as increased VKT [299], which typically leads to increased traffic congestion
and air pollution, unless the average occupancy of the trips is increased through
ride-sharing. By replacing walking activities that people might take when using
public transit, DRT services may lead to negative health impacts like obesity [300].
The legal status of drivers working with ride-hailing platforms also remains unclear,
and is a source of controversy in many countries [301]. Ride-hailing companies
typically deny employee status, meaning that drivers do not get social insurance
or other employment protection mechanisms. This means that social costs are not
carried fully by companies, which can lead to biased distribution of social welfare.

Overall, controversy surrounds the business of ride-hailing companies. DRT
services can offer positive experiences to some people but can also cannibalize public
transit systems with successive deterioration of their quality. A proper balance that
maximizes the overall social welfare is to be generated in the regulation of ride-
hailing companies. Moreover, the impacts of DRT services may differ depending on
their geographical context. For example, in the USA, public transit systems have
historically low coverage and a small percentage of the overall mode share split,
as people tend to use cars. In many European countries, public transit systems are
more widely available, and cities target the reduction of cars through the extensive
development of public transit. Therefore, the impacts of integrating ride-hailing
with public transit systems should be estimated in advance and take into account
local specifics.

Recently, the concept of MaaS has gained a lot of attention and development.
MaaS aims to provide the seamless integration of multiple modes of transport,
including public and private providers of services, giving users maximum flexibility
in trip planning. Moreover, with MaaS, a user does not need to own access to certain
transport modes, but they can use a pay-as-you-go principle, when a MaaS provider
has a unified and convenient gateway for trip payment through a single digital
application. Therefore, instead of having fixed subscriptions for transport modes, a
user can obtain travel services based on their needs.

One way to estimate the integration of DRT services with public transit systems is
agent-based modelling. GEMSim’s ability to model public transit and coordinated
fleets was demonstrated in Chapter 3, and a flexible architecture of the simulation
framework allows the coupling of both modes to study even more complex cases.
This chapter contributes to the area of MaaS, which includes public transit and
a coordinated fleet used for DRT services in the Munich metropolitan region
(Germany). In the example adopted for this study, a MaaS provider operates a taxi
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fleet used as a demand feeder for the public transit system by serving the first
and last mile travel legs of agents’ trips. The demand-supply interaction makes
it possible to estimate the users who may benefit from the proposed MaaS, and
examine the causal effects of agents’ decisions.

5.1 background

As with the impact of DRT services on public transit, studies on transport systems
with integrated public transit and DRT services show varying results. Oh et al. [302]
studied the integration of automated mobility on-demand (AMoD) services into
Singapore’s public transit system using agent-based scenarios with various adoption
levels of AMoD. In the moderate adoption scenario, the share of AMoD in the modal
split reaches 5.8%–8.9% depending on the pricing scheme, while the share of AMoD
combined with public transit is only 1.6%–2.3%. At the same time, VKT increases
by 11%–17% together with congestion, which increases by 14% in the morning
peak hour. In the high adoption scenario, AMoD share reaches 11.9%–18.8%, while
AMoD combined with public transit gets up to 3.4% of the model split. At the
same time, VKT increases by 25%–42%; so too does morning peak hour congestion,
by 28%. The authors conclude that AMoD leads to the cannibalization of public
transit unless mitigated with policies (e.g., discounts for trips, pricing schemes,
more limited area-wide deployment of fleets, etc.).

Basu et al. [303] evaluated two agent-based scenarios with AMoD in a virtual
city of 351 000 inhabitants and Singaporean activity patterns: replacement of buses
and mass rail transit (MRT), and the integration of AMoD with public transit. The
replacement of public transit with AMoD leads to much higher congestion levels
compared to the scenario in which AMoD complements it, especially during off-peak
hours. In overall, AMoD gets 16.7% in modal shares for the replacement scenario and
6.6% when complementing public transit. In terms of the customer perspective, the
replacement scenario leads to the most unfavourable travel experience with longer
waiting and in-vehicle times due to higher congestion levels. In both scenarios, the
total VKT is increased, and fleets generate about 40%–45% of empty driven distance.
Moreover, VKT may increase even further with the increased travel demand for
AMoD despite using ride-sharing.

Scheltes and de Almeida Correia [235] performed a case study on the connec-
tion between the campus of TU Delft university and the train station Delft Zuid
(Netherlands) using AVs for the last mile problem. Trip lengths were distributed
between 1.5 km and 2.4 km, and there is no public transit between the locations;
walking and cycling are used by about 5 000 people daily. Agent-based simulations
showed that the proposed system was only able to compete with walking, not
with cycling. In order to compete with cycling, additional measures for AVs are
required. The authors also found that fleet re-balancing and pre-booking allow
significantly reduced waiting times and reduction in average travel times. While
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only a single-seat vehicle was used in the study, shared vehicles with larger capacity
can bring more operating and economic advantages.

Gurumurthy et al. [304] studied the impacts of introducing a fleet of shared
automated vehicles (SAVs) in Austin, Texas (USA). Multiple scenarios for fleet
integration were evaluated, including door-to-door service, first and last mile travel
legs, and the combination of the two. Scenarios use a 5% population sample with
about 45 000 agents and a fleet of 4 500 SAVs, as well as the public transit network
for the area. All scenarios showed a system-wide increase in VKT, and this increase
is of at least 6% when low fares for SAVs are applied. When SAVs serve the first and
last mile travel legs, VKT only increases by 1.6%. Low fares for SAVs impact transit
ridership negatively by cannibalizing public transit, but high fares lead to increased
transit ridership during peak hours when SAVs complement public transit. Low
fares mostly impact the use of public transit in low-density areas, while high fares
impact high-density areas.

Stiglic et al. [305] investigated the potential benefits for residents through the
integration of public transit and ride-sharing services. Extensive computational
experiments have been performed for an artificial urban area of 20 x 10 miles
with an urban center radius of 2.5 miles, and which has two commuter train lines
and four urban rapid transit lines. The study showed that an integrated transport
system can significantly enhance mobility and increase the use of public transit.
For example, the average length of detour time for ride-sharing drivers is 7.2% of
the total distance when integration with public transit is implemented, compared
to 8.4% when no integration is provided. The authors also emphasize that public
transit frequency is more important than speed to provide better performance for
ride-sharing fleets.

Shen et al. [236] proposed and evaluated an integrated system with public transit
and DRT services in the Tampines area of Singapore with about 240 000 inhabitants
living in an area of 12 km2. A fleet of AVs was used to serve the first and last mile
travel legs to local MRT lines, and the fleet was fully integrated into the public transit
system in terms of fares, tickets and information. High-demand buses were kept in
the study, while low-demand routes were replaced with introduced DRT services.
The results show that the proposed system is financially sustainable, improves the
quality of service and leads to lower usage of road resources, especially when AVs
are shared. The study, however, assumes static AV demand and does not account
for demand-supply interaction.

Huang et al. [306] presented a dynamic ride-pooling algorithm to match the
demand of SAVs with the known schedule of trains in the area of central Austin,
Texas (USA). The area was split into two automated mobility districts, served by
different fleet operators during the 3-hour morning peak with a demand for public
transit from about 4 000 riders, and the rest of the modes were not simulated. SAVs
were used to serve the transit riders’ first and last mile travel legs. The study showed
the importance of public transit schedule in ride-pooling algorithms in order to
provide higher quality service. Only about 57% of transit riders could catch a train
on time when no coordination with the train schedule was performed, compared
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to about 87% when coordination was explicitly performed. However, coordination
leads to about a 24% higher VKT compared to the baseline scenario with similar
fleet size, as well as 48% longer waiting times and 86% longer trip durations.

Lau and Susilawati [307] used a four-step model of Kuala Lumpur (Malaysia)
to study the integration of SAVs for transit riders’ first and last mile travel legs in
the morning peak hour. The area around MRT and LRT (light rail transit) of Kuala
Lumpur was considered, as it contributed about 40% of total passenger demand in
the city. The routes for SAVs were pre-assigned with pickup and drop-off locations
around stops of public transit. Hence, the focus of the study was on passengers
who drive cars to the nearest LRT and MRT stations. The results show that public
transit usage increased by 3% while the total VKT of personal cars dropped by 6%.
However, the authors emphasize that the reduction in waiting time for SAVs by
about 20% leads to a significant decrease in public transit as more people tend to
switch to SAVs.

Wen et al. [238] studied the transit-oriented deployment of SAVs with integrated
demand-supply interaction. The study area of 15 x 10 km with 159 000 residents
was located in a major European city with an extensive and developed public transit
system (45% of mode share). A fleet of SAVs was used to serve the agents’ first
and last mile travel legs. No traffic was simulated, and only static travel times were
used. The results show that a fleet size represents a balance between the quality of
service and operating costs. Trip sharing increases the efficiency of operation and
reduces the costs; however, it also leads to a 10%–15% increase in in-vehicle time for
passengers. Fare discounts impact the choice of SAVs and require better integration
into the system. Interestingly, for trips downtown, 73% of SAV passengers are from
rail, 17% from park-n-ride and 10% from a car mode. For intrazonal trips, 82% of
passengers come from a car and 18% from a bus mode.

Overall, many previous studies used simplified assumptions for some parts of
their scenarios, such as not accounting for traffic congestion, using static demand
for DRT services, not including demand-supply interaction, using artificial areas
for case studies, or limiting the possibilities of agents to decide when to use DRT
services. Moreover, none of the papers assessed the impact of geo-fencing for the
first and last mile travel legs, while the impacts of public transit accessibility on the
use of DRT services in the area were not well studied. Moreover, the spatial scale for
most of the performed simulations was relatively small, so it would be interesting
to see how the proposed integration of DRT services with public transit is affected
by the deployment scale.

5.2 scenarios

This case study uses the Munich scenario, which covers the whole of the Munich
metropolitan region with the agglomerated areas of Munich, Augsburg, Ingolstadt,
Landshut, Rosenheim, and Landsberg am Lech. The region’s total population
is about 6 million inhabitants, the distribution is shown in Figure 5.1, and the
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region covers about 40% of the area of Bavaria. The region’s road network, which
includes 289 893 nodes and 840 752 links, was generated from OSM. The public
transit schedule was taken from the OpenData ÖPNV portal [308], and includes all
provided 1 555 lines and 34 206 stops in the region. The initial daily-activity plans
of the agents were generated based on the methodology described in Chapter 4

and using the Mobility in Germany [309] nationwide travel survey. The synthetic
population includes 3 248 739 agents who either drive cars or use public transit;
walking was considered a sub-mode of public transit. People who either stay at
home or use other modes, such as bicycles, were not included in the simulation.

Figure 5.1: Distribution of potential travel demand (left) and road network (right) in the
Munich metropolitan region.

The original generated scenario was run for 400 iterations to converge the traffic.
Moreover, compared to the scenario of Switzerland, 10% of agents, in addition to
10% of re-routed agents, were allowed to switch a transport mode. There are two
reasons for the mode change strategy to be permitted in the Munich scenario. First,
the data quality for Germany is lower than for Switzerland; for example, trip data
is given at the municipality resolution level, what makes it difficult to evaluate the
effect of public transit quality on mode choice. Second, as one of the goals of the
present case study is to evaluate the impacts of coordinated fleets integrated into
public transit systems as MaaS, in the reference scenario agents should be allowed
to pick an optimal transport mode in order to later distinguish the effects of fleets
rather than a simple mode choice estimation.

The converged baseline scenario was used to run scenarios with a MaaS mode
that includes DRT services integrated with public transit. The DRT operation area,
where taxi vehicles are allowed to pick up and drop off passengers, is shown in red
on the left side of Figure 5.1. The fleet operation area includes the city of Munich and
surrounding neighbourhoods of varying population density. While the fleet operates
in a limited area, the whole Munich metropolitan region was simulated with car
traffic and public transit in order to keep boundary conditions more realistic.
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Fleets of 5 000, 10 000, 15 000 and 30 000 vehicles were simulated based on the
reviewed literature that suggests some optimal fleet sizing depending on potential
demand. As the demand for DRT is not known in advance, four sizes were simulated
for each set of fleet operating policies. In general, for the fleet operation, the same
assumptions used in Chapter 3 were kept. In addition, simulated DRT service has
some limitations imposed to prevent agents using it as a personal taxi without the
use of public transit:

• Pickup and drop-off locations can be chosen either at origin and destination
points or at public transit facilities like train and bus stops.

• DRT services are spatially limited and a taxi can drive a passenger only within
an area of a certain radius, called a DRT lookup area, around the origin and
destination points of a trip, while the rest of the trips are covered by public
transit or walking.

• In general, trip’s DRT lookup areas should not intersect; therefore, the mini-
mum distance of a trip is as twice as the limiting radius of DRT service.

• When the intersection of DRT lookup areas is explicitly allowed, locations
within the intersected area are not considered by DRT service. This should
not allow agents to make a whole trip consisting of two DRT travel legs with
the transfer location in the middle.

• First and last mile travel legs shorter than 700 m are covered by walking and
DRT service does not operate over these short distances.

• Public transit is only used when the expected duration of a trip without using
DRT service is shorter.

In GEMSim, the integration of public transit with DRT services was implemented
within a separate MaaS module that provides intermodal routing considering public
transit schedule and expected waiting times of DRT services. Multiple DRT operators
are supported, with or without overlapped operation areas; as a result, an agent
may use one operator for the first mile travel leg and another for the last mile travel
leg. The functionality of the proposed MaaS solution is available for agents through
a dedicated transport mode, which works in a way similar to cars or public transit,
simply by specifying the mode for a travel leg in an agent’s daily-activity plan. In
the present case study, in addition to different fleet sizes, multiple DRT radii for
DRT lookup areas were evaluated: specifically, 1.5 km, 3 km and 5 km. Intersection
of DRT lookup areas was allowed for the scenarios with 5 km and 3 km radii, while
the 3 km radius was also used in scenarios with and without intersecting lookup
areas. In total, 16 scenarios were run, for each combination of the fleet size and
the radius policy for DRT lookup areas. Each scenario was run for 400 iterations to
converge: in the first 350 iterations, 10% of the agents were re-routed and the other
10% were allowed to change the trip mode between a car, public transit and the
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Figure 5.2: Share of agents using a car in the Munich region while converging the baseline
scenario.

newly introduced MaaS mode. Agents who make trips during the day outside of
the fleet operation area were not allowed to change the mode to MaaS, only between
a car and public transit. In the last 50 iterations, agents stop innovating their plans
and choose only from their previous memory of five plans.

5.3 results

5.3.1 Convergence

Figure 5.2 shows how the share of agents using a car changes between the iterations
in the baseline scenario. Initially, about 53% of agents have a car assigned as a main
transport mode, and 47% of agents have public transit. However, according to the
German mobility survey data, only about 10% of the trips are performed by public
transit and about 22% of the trips are made by foot. As public transit and walking
trips are combined in a single mode, and many people who use public transit also
perform walking trips, in the Munich scenario, the actual number of agents using
a car can be larger. Hence, the share of agents using public transit and walking
should be around 25%–30%. These numbers fit well with the simulation results,
where more agents switch from public transit to a car.

Figure 5.3 shows the average score of the agents in the baseline scenario. It rapidly
increases in a few iterations as the traffic congestion dissipates and the agents learn
which modes provide a better travel experience. Most of the score advancement
happens in the first 50 iterations, when agents actively change their modes. After the
mode change rate drops, the improvement in score also stops increasing. One can
note, however, that the score has sharp drops in some iterations, which corresponds
to situations when many agents did not choose an optimal mode. With a non-
optimal mode, an agent can travel long times either due to the poor quality of the
public transit system in the area, or due to increased traffic congestion when many
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Figure 5.3: Average score of agents in the Munich region while converging the baseline
scenario.

agents in the same area switch to a car. After 350 iterations, there are no score drops
as agents choose from modes and routes learned from their previous experience.

The dynamics of en-route agents by car and public transit during the day for
the baseline scenario are shown in Figure 5.4. There are two main travelling peak
hours, starting from 07:00 in the morning and from 17:00 in the evening, for both
the car and public transit modes. One can note how the convergence evolves
throughout the iterations. In a few iterations, many agents are either stuck in
congested and gridlocked traffic, or cannot find suitable routes using public transit.
In later iterations, more agents switch from public transit to the car mode, so
congestion on the roads after 25 iterations increases at the end. It is also important
to note that almost 25 000 agents, who had problems with public transit by the end
of the day, switched to the car mode. Overall, the agents learned which transport
modes satisfy their daily-activity needs and how to drive through the traffic, and
then switched towards favourable solutions.

5.3.2 Validation

The baseline scenario was validated with traffic counts provided by the Federal
Highway Research Institute of Germany [310]. Data for a random working day from
the year 2017, which was when the German travel survey was conducted, was used
for the validation. Figure 5.5 shows the locations of 64 traffic counting stations in the
Munich metropolitan region; most of the stations are located along major highways
and around the city of Munich.

The comparison of simulated traffic counting data with real measurements for
the periods from 07:00 to 08:00 and from 17:00 to 18:00 is shown in Figure 5.6.
Simulation results are in agreement with real data and the trends are captured.
Simulation tends to underestimate traffic counts at some locations, mostly at the
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(a) Agents travelling by car.
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(b) Agents travelling by public transit.

Figure 5.4: Agents en-route during the day in the baseline Munich scenario.

border of the case study area. This underestimation is expected, as the behaviour of
people from neighbouring municipalities was out of the scope of this study.

5.3.3 Fleet performance

Table 5.1 shows the overview of simulated scenarios in the Munich area. The
scenario names are abbreviated in the following way: first, a DRT lookup radius
in kilometres is specified; second, a fleet size in thousands follows the underscore
symbol; lastly, the i suffix is specified in case intersection of DRT lookup areas was
allowed. Here, Nreq is the number of served DRT requests by a fleet operator, and
Dreq is the average Euclidean distance, in km, between the pickup and drop-off
locations of the requests.

The first interesting observation is how the mode shares change in the scenarios.
In general, the share of car users is close to its baseline value of 78%, dropping
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Figure 5.5: Locations of the traffic counting stations in the Munich area used to validate
the baseline scenario.
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(a) Morning peak hour (07:00 – 08:00).
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(b) Evening peak hour (17:00 – 18:00).

Figure 5.6: Comparison of simulated and real-world traffic counts in the Munich area.

to 72%–75% only when fleets of 30 000 vehicles are used. On the other hand, the
share of public transit drops significantly in all scenarios with MaaS, meaning
that most of the MaaS users come from public transit. Similar behaviour has been
observed in other studies in which automated fleets cannibalized public transit
services. However, one should treat these numbers with care as the simulation
generated a probability that agents can pick a non-optimal mode. Figure 5.7 shows
the distribution of daily travel time changes for agents who switched from cars to
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Table 5.1. Overview of simulated MaaS scenarios in the Munich area. VKT and VHT are
given for fleets.

Scenario Mode share, % VKT VHT Nreq Dreq
Car PT MaaS

Baseline 78.00 22.00 – – – – –

r1.5_5k 75.86 13.35 10.79 1 549 420 65 059 361 129 1.20

r1.5_10k 75.37 13.61 11.02 2 510 495 108 867 605 023 1.20

r1.5_15k 75.28 13.86 10.86 2 669 019 116 365 645 551 1.20

r1.5_30k 74.24 13.88 11.88 3 106 329 117 697 896 297 1.20

r3.0_5k 77.48 14.91 7.61 1 658 872 67 600 258 123 2.13

r3.0_10k 76.95 15.51 7.54 2 863 073 120 474 438 161 2.20

r3.0_15k 76.61 15.80 7.59 3 241 530 137 146 499 658 2.23

r3.0_30k 75.77 15.91 8.32 3 883 052 152 538 660 902 2.23

r3.0_5ki 74.40 10.62 14.98 1 911 159 75 727 274 826 2.18

r3.0_10ki 74.44 10.98 14.58 2 998 306 123 594 477 046 2.19

r3.0_15ki 74.18 11.27 14.55 3 927 377 161 613 648 355 2.24

r3.0_30ki 72.92 11.93 15.15 5 308 567 208 122 902 361 2.27

r5.0_5ki 75.02 10.79 14.19 1 845 870 71 887 209 492 3.51

r5.0_10ki 74.78 10.93 14.29 3 244 051 130 225 371 979 3.46

r5.0_15ki 74.42 11.27 14.31 4 361 780 170 054 502 337 3.52

r5.0_30ki 72.72 12.23 15.05 6 737 799 261 141 753 804 3.63

MaaS. This was from one of the iterations from the scenario with a DRT lookup
radius of 1.5 km and a fleet of 15 000 vehicles; in other scenarios, the output is
similar. Positive numbers mean that travel time increased, and for most of the agents
this increase is quite substantial, with an average of 55 minutes (vertical dashed
line).

This result shows that in reality, it is highly unlikely that people would abandon
cars in favour of public transit or even MaaS as there is no incentive in terms of
travel time. Hence, actual MaaS mode shares are expected to be 2%–3% lower due
to the lack of time benefits for car users. In contrast, transit users can get travel
time benefits when switching to MaaS, as shown in Figure 5.8. Here, most of the
switchers get reductions in travel time, and even when someone experiences an
increase in travel time it is mostly in the range of 0 to 20 minutes, which can be
considered acceptable if split across multiple trips during the day.

Another interesting finding from Table 5.1 is how the structure of demand changes
with the increase of the fleet size while the DRT lookup radius (and the allowance
of intersection) is kept constant. For each combination of radius and the intersection
allowance policy, while the share of MaaS users remains within the same narrow
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Figure 5.7: Change in daily travel time of agents in the Munich area who switched from a
car to MaaS, scenario with 1.5 km DRT lookup radius and a 15 000-strong fleet.
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Figure 5.8: Change in daily travel time of agents in the Munich area who switched from
public transit to MaaS, scenario with 1.5 km DRT lookup radius and a 15 000-
strong fleet.

range, the number of served requests increases along with the fleet size. At the
same time, the average distance per served request remains almost the same. This
means that with the increase of the fleet size the demand shifts towards agents who
can benefit from taking multiple DRT travel legs per day. For small fleets of 5 000

vehicles, one or even fewer DRT requests per agent who has switched to MaaS is
served; for larger fleet sizes the number of requests per agent reaches values of
around two. It should also be noted that even when an agent switches to MaaS
mode, there is a probability that the whole trip will be performed with public transit
if the waiting time for DRT services outweighs other options.

One can also note that with the increase of DRT lookup radius, VKT and VHT
significantly increase for the same fleet sizes. This can be explained by the fact that
for agents who travel longer distances with public transit, potentially making more
transfers and walking, DRT can provide a larger improvement in their daily score,
thus making the probability of switching to MaaS higher compared to agents with
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less benefits in travel time. This is also aligned with the increase of average distance
per DRT request.

Fleet utilization, i.e., when the vehicles are not idle, is presented in Figure 5.9.
The first trend is that increasing the fleet size leads to decreased utilization; this
was expected. Large fleets of 15 000 and 30 000 vehicles are mostly underutilized
throughout a day, while smaller fleets provide better utilization. The second trend
observed is that, in general, increasing the radius of the DRT lookup area leads to
higher fleet utilization for both small and large configurations. Notably, for the set
of scenarios with 3 km radius allowing intersection of DRT lookup areas, the fleet
of 5 000 vehicles is fully utilized from 07:00 to 18:00. The increase of utilization is
expected with the increase of the radius as longer distance rides are performed.

A similar analysis was performed for the average waiting time of the passengers,
shown in Figure 5.10. Here, as expected, larger fleet configurations provide shorter
waiting times and hence a better quality of service. Fleet sizes of 15 000 vehicles and
fewer are more sensitive to demand peak hours in the morning and in the evening,
while a fleet of 30 000 vehicles provides almost uniform waiting times throughout
a day. One can observe that a larger radius of DRT lookup area leads to increased
waiting time for all fleet configurations. In general, when the radius is 1.5 km, the
waiting time is in the range of 2–8 minutes for most of the day, and during demand
peaks it increases up to about 20 minutes. Increasing the radius to 3 km raises the
lower threshold of the waiting time to about 5 minutes, while peaks remain around
the same values and only a fleet of 10 000 vehicles has a short peak of about 27

minutes in the morning. This morning peak in waiting time can also be the result of
non-optimal and probabilistic behaviour of the agents during the simulations.

Interestingly, the allowance of the intersection of DRT lookup areas for a 3 km
radius does not really impact the average waiting times, but helps to flatten both
evening and morning peaks, as agents can find more optimal routes. At the same
time, more agents may want to use the DRT service, hence, there is a higher chance
that an idle vehicle will be closer to next requests. This higher usage of DRT services,
when the intersection is allowed, is also observable in Figure 5.9. Further increase
in the radius to 5 km leads to minimum average waiting time of about 10 minutes
throughout a day, but with peaks of only around 16 minutes.

Empty driven mileage gives another insight into fleet performance, and is shown
in Figure 5.11. First, smaller fleet sizes and smaller DRT lookup radii lead to higher
empty mileage driven, causing them to contribute more to negative externalities
like traffic congestion, air pollution and noise. For example, for radii less than 5 km
a fleet of 5 000 vehicles constantly yields empty mileage of about 40%, with demand
peaks around 60%. However, for a short DRT lookup radius of 1.5 km, even a fleet
of 10 000 vehicles yields on average about 30% of empty mileage. Second, a small
fleet of 5 000 vehicles has almost constant empty mileage above 40% in cases of 3 km
radius with intersection allowed. This explains high daily utilization of this fleet
configuration, as shown in Figure 5.9, and can be explained by increased demand
as ride-hailing conditions become more flexible.
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Figure 5.9: Fleet utilization depending on the size and policy for DRT lookup in the Munich area.
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Figure 5.10: Average waiting time depending on the size and policy for DRT lookup in the Munich area.
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Figure 5.11: Empty driven mileage depending on the size and policy for DRT lookup in the Munich area.
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Overall, the analysis shows that more flexible conditions for ride-hailing, in terms
of larger DRT lookup areas and the possibility of their intersection at both ends of
public transit trips, provide better fleet performance for operators and customers.
From the operator’s point of view, constant fleet utilization of around 75%–80%
provides better demand predictions and leaves opportunity for additional optimiza-
tions, for example re-balancing or battery recharging during a day. Moreover, in
the event of road accidents or fleet vehicle maintenance needs, the operator can
redistribute the workload among the whole fleet. From the customer’s point of view,
predictable and short waiting times provide higher quality of service.

At the same time, when designing such integrated services, special attention
should be put on negative externalities produced by fleets. For example, in the
case of Munich, the increase of DRT lookup radius leads to the increase of VKT
and VHT in almost every scenario due to the shift in the demand structure as the
same number of agents tend to use DRT services more during a day. Therefore,
limiting the distance of DRT trips can be one of the policies to regulate demand
and keep negative externalities within an acceptable range. One can also note that
increasing DRT lookup radius from 3 km to 5 km does not bring significant benefits,
except when using the smallest fleet configuration, which becomes overutilized
with 3 km radius and allowed intersection. Otherwise, the demand shifts to the
travellers with longer distances, when a fleet is utilized more as a real taxi service
instead of feeding public transit as a backbone mode.

The distribution of per-vehicle daily distances varies with the fleet size, and
larger fleet configurations have lower average distances. The example of distance
distribution for scenarios with the DRT lookup radius of 3 km and intersection
enabled is shown in Figure 5.12. As expected, the increase in fleet size moves the
distribution towards lower values, and for large fleet configurations the distribution
transforms from a normal-like shape to a bimodal shape. One reason is that the
larger the fleet, the higher the chance that an idle vehicle would be close to an
incoming ride request, so some vehicles will have short pickup trips. These vehicles
correspond mostly to the daily distance range of between 100 km and 200 km.
Another reason is that large fleets have more underutilized vehicles serving low-
demand areas, and these vehicles have daily distances below 100 km.
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Figure 5.12: Distribution of per-vehicle daily distances for the scenario with a DRT lookup radius of 3 km with intersection in the Munich
area.



192 mobility-as-a-service : munich case study

5.3.4 Public transit accessibility

Another intention of this case study was to look into correlations between public
transit accessibility and the use of MaaS. A public transit quality map for Germany
has been created using the same methodology as for Switzerland [282]. As was
described in Chapter 4, the area is divided spatially into four classes of public transit
quality, from A (highest) to D (lowest), although areas may have no public transit
quality classes as well. Table 5.2 shows public transit quality at the home locations
of the agents who switched to MaaS. Most of the agents live in the highest classes,
A and B; shares of the classes do not deviate much between the scenarios: 50%–55%
of the agents are in class A, and 30%–32% are in class B.

Table 5.2. Public transit quality at the home locations for agents who switch to MaaS in the
Munich area.

Scenario Class A, % Class B, % Class C, % Class D, % None, %

r1.5_5k 55.07 31.01 9.58 2.83 1.51

r1.5_10k 54.89 30.84 9.70 2.92 1.65

r1.5_15k 54.27 30.87 9.92 3.10 1.84

r1.5_30k 52.71 31.03 10.52 3.50 2.24

r3.0_5k 50.83 32.60 11.02 3.33 2.22

r3.0_10k 50.83 31.80 11.04 3.58 2.75

r3.0_15k 49.92 31.78 11.36 3.86 3.08

r3.0_30k 48.40 31.53 11.87 4.47 3.73

r3.0_5ki 53.28 30.89 10.39 3.25 2.19

r3.0_10ki 53.93 30.62 10.18 3.09 2.18

r3.0_15ki 53.83 30.35 10.21 3.22 2.39

r3.0_30ki 52.55 30.23 10.64 3.69 2.89

r5.0_5ki 51.23 31.57 10.99 3.61 2.60

r5.0_10ki 51.78 31.40 10.78 3.46 2.58

r5.0_15ki 51.94 31.16 10.73 3.49 2.68

r5.0_30ki 50.92 30.83 11.06 3.94 3.25

The distribution of public transit quality classes shows that about 80%–85% of
potential MaaS adopters live in areas with high-quality public transit services, in
terms of available transport modes and their frequencies. As demonstrated, the
increase in DRT lookup radius does not lead to a higher share of MaaS, and the
quality of public transit is one of the key factors. This is somewhat counterintuitive
as DRT services are supposed to solve the problem of the poor connectivity of
agents to public transit systems. However, when public transit does not operate
with a certain level of quality in an area, DRT services become less useful because
they cannot organise delivery of agents to major transport hubs. Considering the
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additional waiting time for passengers, there would be little incentive for agents to
use DRT.

Figure 5.13 shows (a) the density of DRT requests per thousand inhabitants in
a municipality and (b) a public transit quality map of the same area. It is clear
that more requests are served in the municipalities with a higher quality of public
transit, which is primarily the city of Munich (with some other neighbourhoods).
As soon as the quality of public transit drops when moving outwards from Munich,
the number of DRT requests also drops significantly.

(a) Requests per 1 000 of population. (b) Public transit quality.

Figure 5.13: Density of DRT requests (left) and public transit quality (right) in the Munich
area.

Therefore, DRT services should not be considered as a standalone solution for
the first and last mile problem. They should be developed together with public
transit infrastructure in order to become attractive for at least existing public transit
riders as part of potential MaaS packages. Considering Germany, Mocanu et al.
[311] evaluated and compared accessibility by car and public transit for the whole
country; the authors indicated that public transit is not a competitive alternative
to cars in terms of travel times. Results showed that travel times for public transit
are three times higher on average, and, moreover, this large discrepancy does not
depend on region type. The authors concluded that, in order to motivate people
to switch from cars to public transit, both pull and push measures are required:
heavy investments into public transit infrastructure and car-related measures like
congestion charges or increased parking fees. The results of the current case study
in the Munich area also align with another study [305] that showed that frequent
public transit services (hence, public transit quality) is essential in such integrated
systems in order to be efficient for passengers.





6
U N C E RTA I N T I E S O F D O W N S C A L E D S C E N A R I O S

Truth is not that which is demonstrable but
that which is ineluctable.

— Antoine de Saint-Exupery

The chapter is based on contributions from the following publications:

Saprykin, A., Chokani, N. & Abhari, R. S. Uncertainties of sub-scaled supply
and demand in agent-based mobility simulations with queuing traffic model.
Networks and Spatial Economics 21, 261 (2021)

Saprykin, A., Chokani, N. & Abhari, R. S. Impacts of downscaled inputs on the
predicted performance of taxi fleets in agent-based scenarios including Mobility-as-a-
Service in. 201 (Elsevier, 2022), 574

While ABMs can be used to model the behaviour and complex interactions of
people together with urban infrastructure, large-scale and detailed agent-based
models also pose a high computational burden. One way to improve the runtimes
of such scenarios is to improve the simulation process itself, through more efficient
utilization of hardware resources, through better algorithms, parallelization and
distributed computing, and the use of specialized hardware accelerators like GPUs
and FPGAs. Another approach adopted by researchers is to downscale simulation in-
puts, namely supply and demand, and scale up the results afterwards. This method
allows scenarios of smaller scales to be run faster using aggregated behaviour and
without changing the simulation process, as well as avoiding the need for expensive
hardware.

When using the latter method, each agent in a simulation represents an aggregate
group of modelled individuals. It is evident that such aggregated behaviour in a
simulated scenario can lead to errors. For example, a scaled road network introduces
rounding errors (such as, when the physical length of a street is too short when large
downscaling factors are used), or there may be an over- and under-supply of travel
demand on links and for public transit due to the skew of the sampled population
on certain routes and at certain locations. Depending on the context of the scenario,
distortions in the simulation outcomes may lead to a biased interpretation of the
results. In light of the ongoing shift to e-mobility, one can also consider the impact
on electricity distribution grids: in a simulation with a downscaled population,
the demand for charging would be concentrated at certain aggregated points and
may lead to the overloading of power lines, while in reality the demand may be
distributed more uniformly in space and time without causing line overloading
issues. Another open question is how one should properly scale the charging
infrastructure of BEVs in a simulation with a downscaled population.

195
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It should be noted that in general ABM introduces uncertainties into simulations
[312, 313] because input data, such as synthetic population and travel demand, are
typically derived from surveys and aggregated statistics. Furthermore, the modelled
patterns of behaviour are also mostly based on surveys. In contrast to the almost
unavoidable uncertainties that result from input data, the uncertainties that result
from the use of downscaled input data are introduced artificially because of the
lack of required computing power, and these uncertainties can be avoided either by
employing a more efficient simulation approach or by running the simulations on
more powerful and expensive hardware. Until now, there has been relatively little
effort made to understand and quantify the uncertainties introduced by sampling
the demand and supply in mobility simulations. Moreover, there is strong evidence
(see below) that, in comparison to a simulation with the full-scale input data,
sampling distorts the spatio-temporal characteristics of the simulated travel demand
and of the traffic externalities. Moreover, while the impacts of downscaled inputs
on simulations of car traffic and public transit systems have received some limited
attention, the impacts on simulations of coordinated taxi fleets have not been
addressed.

This chapter quantifies the impacts of using downscaled populations and down-
scaled inputs in agent-based scenarios that use a mesoscopic queueing model for
traffic propagation. The main question tackled here is the following: what does it
mean, in terms of output errors, to run a downscaled agent-based mobility scenario?
While GEMSim pushes forward the capabilities to run large-scale agent-based mo-
bility scenarios, it remained unclear if one actually needed the full-scale model to
be run, and this chapter closes that gap.

6.1 background

There are only a few multi-agent mobility simulators capable of running truly large-
scale and multi-modal scenarios with millions of agents and millions of links and
nodes in the network. They include TRANSIMS [101], MATSim [76], and GEMSim.
MATSim, as one of the most widely used, provides the main evidence for issues
with downscaled populations, and mostly for cars and public transit.

It is common among researchers to use small population samples (1% to 10%)
to run large-scale scenarios with scaled input data. Hülsmann et al. [314] used
1% of the population to run a Munich scenario while studying traffic-related air
pollution. The speed of computations was the major reason for downscaling, and
the simulation output results were scaled back up to 100% of the population. Zhang
et al. [315] used 1% of the population to run a large-scale scenario for the city of
Shanghai. The memory constraints of the available hardware were stated as the
main reason for downscaling. Bekhor et al. [316] integrated activity-based and
agent-based models for the Tel Aviv metropolitan area using 10% of population
to avoid long running times. Kickhofer et al. [317] used a population sample of
0.65% to run a large-scale scenario for the city of Santiago de Chile. The authors
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concluded that the congestion patterns of the simulated scenario do not match the
real patterns well and recommended expanding the population sample in the range
of 10% to 100%.

More scenarios and case studies with population samples are available in the
MATSim book [76]. Furthermore, MATSim developers present in the aforementioned
book the use of a 1% to 10% samples of the population to obtain reliable results with
the acceptable runtimes. Therefore, the most popular sample sizes for large-scale
scenarios run with MATSim are within this range.

In recent years, ABM simulations using public transit and other emerging modes
of transport have increased. As a consequence, the required computing power has
also increased, and researchers have continued to use small population samples
so that the runtimes of their simulations are kept reasonable. However, there is
evidence that small population samples are the source of some discrepancies in
traffic simulations.

Ben-Dor et al. [108] faced issues using network links shared by private cars and
public transit vehicles in MATSim simulations of the Tel Aviv metropolitan area
with a 10% population sample. In the simulations, buses tended to get stuck in
long waiting queues because the link flow capacity was over-used by cars, resulting
in disruptions to public transit services. The study showed that when a coarse
population sample is used, the traffic flows on links are not scaled by the same ratio.
Furthermore, while for private cars it is possible to calibrate the predicted road
traffic flows in order to reduce the adverse effects of scaling, public transit has to
run according to schedule, making it more sensitive to changes in network capacity.

Bischoff and Maciejewski [109], in a study of autonomous taxis in the Berlin
area, showed that use of a 10% population sample leads to 11% of the demand
for autonomous taxis compared to a simulation of the full population; that is a
10% relative error. On the other hand, changes in fleet occupancy statistics were
considered acceptable, and the deviations in the durations of both pickup trips and
trips with customers were no more than 3% of their length.

Simoni et al. [110] compared the accumulation-production relationship for the
links in a MATSim simulation of central Zurich using different sized population
samples (10%, 20% and 50%). The simulation results were seen to vary with the
size of the population sample. It was also noted that flows on links decreased faster
with the increased flow density of the larger population samples. However, only
qualitative graphical comparisons were presented, without any quantitative results.

Erath et al. [111] had artefacts of overcrowded buses in a MATSim simulation of
public transit in Singapore using a 10% population sample. In order to improve the
simulation, a 25% population sample was used. No further details on the issues
with public transit were presented.

Bösch et al. [112] in the Switzerland baseline scenario for MATSim drew attention
to the use of population downscaling by providing an example from car-sharing
simulations: using a smaller population sample means that a reduction in shared
vehicles is required to prevent over-supply, and at the same time reduction of
the number of shared vehicles leads to reduced availability in the area or under-
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supply. Thus, it is not recommended to use population samples of less than 5%–10%
for scenarios with shared cars. Issues with the scaling of public transit were also
mentioned: because of the inability to scale a public transit schedule itself (that is, a
fleet size, the frequency of operation), it is suggested to scale down the size (and, as
consequence, link flow capacity consumed by a vehicle) of public transit vehicles
proportionally to the size of the population sample. But as shown earlier [108], this
approach does not solve the issues with public transit completely when using small
population samples.

Kwak et al. [113] conducted probably the first attempt to systematically study
the errors that arise in traffic simulations due to the use of samples of the full
population. In their study, a macroscale static traffic assignment model was used for
different periods of the day. This traffic model was not an agent-based model, but
rather used OD matrices with zones. The OD matrices were scaled up to match the
flows of the full population. While not an ABM simulation, the work nevertheless
showed that the use of samples of the full population affects the predicted traffic
flows even at the macro-scale.

Llorca and Moeckel [114] studied the effects of downscaled populations in agent-
based traffic simulations of the Munich metropolitan area. The study focused mostly
on the impacts on average travel time and the distribution of travel times. The
results showed that the average travel time depends on the size of the population
sample and is minimal with a sample that is 10%–20% of the full population. Travel
time distributions for 5% and 100% of population samples were observed to be very
similar. Another interesting finding was that the scale factor for spatial length of the
links (streets) did not have a strong influence on the average travel time of agents.
The authors concluded that a scale factor of 5% seems reasonable for simulations
where only analysis of highly aggregated results is required. However, the authors
emphasized that for traffic flow analysis of a single corridor a full population sample
is likely required.

While there are a few other studies [115, 116] focused on the impacts of down-
scaled inputs in relation to car traffic, the scale of their scenarios is relatively small,
and the results are subjective. These works suggest that for analysis of disaggre-
gated performance metrics, population samples of at least 25%–30% are used, while
small populations samples of 5%–10% can only be used when analysis of highly
aggregated simulation results is required.

6.2 similarity measure

In order to evaluate the impacts of using downscaled input data, a similarity measure
was required. This similarity measure must not only be able to compare the outputs
from two simulations in relation to each other, but must also provide a quantitative
measure of how close the predictions from a simulation with downscaled input data
are to a scenario with the full-scale population. As the goal was also to compare
simulation outputs both spatially and temporally, a spatio-temporal point was
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utilized for the generalization of a similarity measure. A spatio-temporal point
represents a measure taken at a certain location over a certain period of time. For
traffic flow, the measure may be a set of counts from inductive loops throughout a
day, and for public transit the measure may be vehicle occupancy at each stop along
a route.

As the problem of uncertainty quantification of downscaled populations has
received little attention in prior studies, there are no specific measures suggested
in the literature. However, one can see that a comparison of the outputs of two
simulations is very close to the procedures used in the calibration and validation of
traffic models. While these procedures compare outputs from simulations using a
common set of measures of goodness-of-fit, most of these measures have a notable
limitation: one must specify a threshold that indicates whether the goodness-of-fit
is considered to be acceptable or not.

A brief description of the most commonly used measures of goodness-of-fit, with
their limitations and applicability to the present study, is provided below. Some of
the measures were subsequently evaluated to see if they qualitatively captured the
same trends in goodness-of-fit as identified in the proposed new measure described
later.

The mean absolute error (MAE), mean absolute normalized error (MANE), root
mean squared error (RMSE) and root mean squared normalized error (RMSNE)
are used by many researchers for calibration purposes [318–320]. MAE and MANE
are insensitive to large errors, and the non-normalized RMSE may give a biased
assessment as different roads have different traffic volumes throughout a day;
nevertheless, the RMSNE is a good candidate for further evaluation:

RMSNE =

√√√√ 1
N
·

N

∑
i=1

(
xi − yi

yi

)2

(6.1)

where xi is the prediction at the i-th spatio-temporal point, yi is an empirical or
observed value at the same point, and N is the total number of evaluated spatio-
temporal points.

While the RMSNE can show system-wide relative differences in the outputs of
scenarios, the RMSNE does not show the nature of the differences. For that, Theil’s
inequality coefficient [321] is a preferred measure and has been used in numerous
studies [319, 322]:
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(6.2)

An inequality coefficient of 0 (zero) indicates a perfect fit, while an inequality
coefficient of 1 (one) indicates the worst possible fit. Theil’s inequality coefficient
can be decomposed into three parts:

Um =
N(y− x)2

∑N
i=1 (yi − xi)2

(6.3)
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Us =
N(σy − σx)2

∑N
i=1 (yi − xi)2

(6.4)

Uc =
2 · (1− r) · N · σx · σy

∑N
i=1 (yi − xi)2

(6.5)

where x and y are the averages of the predicted and the observed quantities X
and Y, σx and σy are standard deviations of the quantities, and r is a Pearson’s
correlation coefficient of the quantities. The three parts, the bias proportion Um, the
variance proportion Us, and the covariance proportion Uc indicate the sources of
the differences: respectively, the systematic bias, the distribution mismatch between
the predicted and the observed quantities, and the non-systematic bias. A value of 0

(zero) for Um and Us and a value of 1 (one) for Uc indicate a perfect match between
the predicted and the observed quantities. Additionally, the sum of the three parts
of Theil’s inequality coefficient is unity:

Um + Us + Uc = 1 (6.6)

While the RMSNE and Theil’s coefficient are generally applicable to any type of
simulation model, the GEH measure of goodness-of-fit has been adopted by many
highway agencies around the world (USA [323], UK [324], Australia [325], New
Zealand [326], etc.) for the validation of traffic models:

GEH(xi, yi) =

√
2 · (xi − yi)2

xi + yi
(6.7)

GEH(xi, yi) values less than 5 are considered to be indicative of a good fit; values
in the range of 5 to 10 indicate that the model’s outcomes are still acceptable but
some inconsistency in the model’s predictions is present; and values greater than 10

require that the inconsistencies be explained in order for the model’s outcomes to
be accepted. Typically, at least 85% of spatio-temporal points must yield GEH(xi, yi)
values less than 5 in order for a model to be considered properly validated. Although
GEH(xi, yi) is not a real statistic, it is very similar to the chi-squared two-sample
test statistic introduced by Pearson, which is for a pair of measurements xi and yi
defined as:

χ2(xi, yi) =
(xi − yi)

2

xi + yi
(6.8)

where χ2(xi, yi) approaches a χ2 distribution with one degree of freedom. The
tested null hypothesis H0 is that xi and yi come from the same distribution, and H0
is accepted if the value of the χ2(xi, yi) test statistic is less than the critical value of
χ2

1,α distribution for a chosen significance level α (typically 0.05) and one degree of
freedom; otherwise, the null hypothesis H0 is rejected. As predicted outputs that are
inherently variable must be compared, it seems reasonable to use the GEH measure
of goodness-of-fit to assess similarity with a selected significance level. However,
even though GEH has been adopted by many highway agencies for the validation
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of predictions compared to field data, as discussed below, GEH is not considered to
be a good similarity measure for two predicted outputs.

From Equation 6.7 and Equation 6.8 one can obtain:

χ2
GEH(xi, yi) =

GEH(xi, yi)
2

2
(6.9)

where χ2
GEH(xi, yi) approaches a χ2 distribution with one degree of freedom. It

can be shown that a given critical value GEHth used to test GEH(xi, yi), with its
corresponding value of χ2

GEH,th, acts as a non-linear scaling factor for the critical
value of χ2

1,α that is used to test the chi-squared statistic for the same pair of
quantities xi and yi:

KGEH =
χ2

GEH,th

χ2
1,α

=
GEH2

th
2 · χ2

1,α
(6.10)

In other words, the use of the GEH formula is similar to using the chi-squared test
statistic, but with the critical value of χ2

1,α corresponding to the different and shifted
significance level α. KGEH establishes the relation between these two different critical
values of the χ2

1 distribution. Essentially, the value of KGEH > 1 decreases (and
shifts) the initial significance level α (the rate of type I errors) in the chi-squared test,
therefore increasing the rate of type II errors significantly. Moreover, the same initial
(and unshifted) value of α is used to make the decision on the goodness-of-fit for
the model that is being validated: the number of spatio-temporal points that needs
to satisfy the scaled critical value of χ2

1,α is not increased due to the decreased α. It
is for this reason that GEH is not considered to be a real statistic.

For example, the recommended value of GEH = 5 with an initial critical value of
χ2

1,α = 2.07 for a significance level α = 0.15 (that is, the requirement that at least 85%
of the spatio-temporal points pass the GEH test) gives approximately KGEH = 6,
thus shifting α to 0.00041 while ensuring that 85% of points pass the GEH test.
Similarly, a threshold value of GEH = 4 with at least 95% of the points passing the
GEH test (that is, initial α = 0.05), gives KGEH = 2 and a shifted α = 0.00468.

Another interesting interpretation of the GEH formula can be obtained from the
following:

χ2(xi, yi) =
(xi − yi)

2

2 · Exy,i
=

(xi − Exy,i)
2

Exy,i
+

(yi − Exy,i)
2

Exy,i
=

2 · σ2
xy,i

Exy,i
(6.11)

where Exy,i and σ2
xy,i are average and variance of xi and yi. The variance σ2

xy,i is
multiplied by a factor of 2 because both xi and yi are random variables. Combining
Equation 6.10 and Equation 6.11 gives:

KGEH =
χ2

GEH,th

χ2
1,α

=
σ2

GEH,th · E1,α

EGEH,th · σ2
1,α

∣∣∣∣∣
E1,α=EGEH,th

=
σ2

GEH,th

σ2
1,α

(6.12)

where σ2
GEH,th and σ2

1,α are variances for the corresponding critical values of χ2
GEH,th

and χ2
1,α conditional on the equality of corresponding means EGEH,th and E1,α.
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Equation 6.12 shows that GEH with KGEH > 1 yields model predictions with a
higher variance than allowed with the chi-squared statistic, and over-dispersion is
exactly defined by KGEH .

The lack of clarity in how the GEHth values that are suggested as critical for
traffic model validation are determined casts doubt on the general applicability of
the GEH formula as a good similarity measure for the outcomes from simulations.
Neither of these GEHth values can be considered to be a reliable statistical measure.
Instead, the chi-squared test statistic is considered to be more suitable for assessing
similarity. This statistic is perhaps the most widely used statistic, with well-known
properties. Moreover, the chi-squared test allows one to choose a significance level
α, making this measure of goodness-of-fit more widely applicable. Nevertheless, it
worthwhile to see if the GEH measure can also capture the trends in similarity.

Considering the above, the following similarity measure for a given significance
level α was proposed:

Sα = min{ ∑N
i=1 δi

N · (1− α)
, 1} (6.13)

where

δi =

1, if χ2(xi, yi) < χ2
1,α

0, otherwise.
(6.14)

Sα has a minimum of 0 (zero) when none of spatio-temporal points pass the
chi-squared test, and a maximum of 1 (one) when at least (1− α) · 100% of spatio-
temporal points pass the test. Thus, Sα represents a straightforward statistical and
quantitative approach to measure the similarity of outputs from mobility simulations.
This similarity measure is generic enough that it can be applied to both traffic flows
and occupancy of public transit vehicles.

The following four measures are further evaluated in subsequent sub-sections:
the RMSNE, Theil’s inequality coefficient, GEH and the proposed Sα.

6.3 downscaling scenarios

6.3.1 Cars and public transit

The older Switzerland scenario, described in Section 2.4, was used to access the
impact of scenario downscaling on car traffic and public transit occupancies. To
scale the network for the size of the population sample, coefficients kl and k f of the
queueing buffers in Equations 2.16–2.17 were used. Typically, when full scale input
data is used, the coefficients are equal or close to one, while for downscaled input
data the coefficients are equal or close to the fraction of the population sample that
is used for sampling. The reason why these coefficients do not necessarily scale in
direct proportion to the size of a sample is that the simulation process is highly
non-linear and stochastic. The dependence of these coefficients on the scale that is
used is evaluated later in the chapter.
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To investigate the impact of scaling one’s input data, the following set of popu-
lation samples was used: 1%, 2%, 5%, and 10%–90% at 10% intervals. Uniformly
random sampling of the full population was applied, and the simulation outputs
with the full population (that is, 100% population sample) were used as the reference
(that is, quantity Y). Hence, all simulated population samples were compared to
the full population sample simulated as a reference case. A 30-hour period, starting
from midnight, was simulated. As the dependence of the network parameters kl and
k f on the size of population sample is unknown, a calibration (impedance matching)
was performed for each of the samples to match the simulation outputs of the
reference case as closely as possible. Two sets of spatio-temporal points were chosen
for the calibration of car traffic: counts on all car-related network links during the
morning (07:00–08:00) and the evening (17:00–18:00) peak hours. During simulation,
the traffic counts are aggregated over 15-minute time intervals, and therefore for
each peak hour each network link has four distinct spatio-temporal points that were
used in the assessment of similarity. The use of multiple spatio-temporal points
on each link allows the temporal dynamics of traffic flows to be compared rather
than limiting the comparison to only time-averaged states. In addition to the peak
hours, two other sets of spatio-temporal points were used to evaluate similarity
measures with calibrated coefficients: noon hour (12:00–13:00) when the traffic is
relaxed and daily (00:00–24:00) aggregated values. Network links where no cars
pass in the reference case were excluded from the analysis. As public transit was
not scaled (neither its network links nor the schedule), it need not be calibrated.
The occupancy of each public transit vehicle after its departure from each stop were
used as the set of spatio-temporal points to assess the similarity of simulated public
transit. The traffic and occupancy counts from simulations with population samples
were scaled up by the inverse of the sampling fraction size to match the counts from
the reference case.

The determination of the optimal values k∗l and k∗f for the calibrated parameters
kl and k f was the subject of the following optimization problem:

max Sm
α (kl , k f ) + Se

α(kl , k f )

s.t. {kl , k f } ∈ (0; 1]
(6.15)

where a significance level α of 0.05 was chosen, and Sm
α and Se

α are the similarity
measures for the morning and evening peak hours, respectively. To reduce the
number of simulations required for the calibration, the search space for values k∗l
and k∗f was adjusted depending on the sampling fraction size as follows:

• {kl , k f } ∈ [0.1; 1] with a step of 0.1 for population samples from 10% to 90%;

• {kl , k f } ∈ [0.005; 0.015] with a step of 0.001 for the 1% population sample;

• {kl , k f } ∈ [0.01; 0.1] with a step of 0.01 for population samples of 2% and 5%.

Additionally, the small population samples (less than 10%) were examined with a
broader range of kl and k f , but the variation in the optimization objective was in
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the range of 1%. Similarly, larger population samples did not show significantly
different behaviour for intermediate scaling ratios. In total, 1 221 simulations were
performed for the whole set of population samples. After calibration, the k∗l and k∗f
determined for each population sample were used to calculate similarity measures
of car traffic for the population sample. This procedure was repeated five times with
different sets of the random population samples and the results of the similarity
measures were averaged to smooth out fluctuations. Thus, a total of 6 105 simulation
runs were performed.

To determine the number of iterations to run for each of the population samples,
the average score of the agents between iterations was examined for different
sample sizes. Figure 6.1 (left side) shows that larger population samples require
more iterations to converge the average score, while samples smaller than 10%
require only a few iterations. The same behaviour, when the number of iterations
required for a simulation to converge depends on the population sample size,
was previously reported by [114]. Moreover, using larger population samples may
lead to oscillations of the score between iterations. Figure 6.1 (right side) shows
a zoomed-in part of the previous plot after 80 iterations, when agents stopped
innovating their daily plans and only chose one of the previously memorized daily
plans with the best scores. After 100 iterations, the difference of the average score
between 1% and 100% samples is less than 1%. However, after 20 iterations, there is
only marginal improvement for the average score even for large samples. Hence,
downscaled scenarios were run for 20 iterations with a re-routing strategy followed
by 5 iterations with up to three previously memorized plans only.
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Figure 6.1: Average score of agents depending on the population sample size during the
simulation of Switzerland, used to identify the minimum number of iterations
to run before evaluating the uncertainties of downscaled scenarios.
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6.3.2 Coordinated fleets

The Munich scenario from Chapter 5 was used to evaluate the impacts of downscaled
scenarios on predicted fleet performance. The simulations were conducted as follows.
First, a simulation was run for 350 iterations, with 10% of the agents re-routed after
each iteration, to converge to an equilibrium. Then, in successive simulations, a
new transport mode, MaaS, was made available to the agents; the MaaS includes
a combination of public transit and taxi rides for the first and last mile travel legs.
The taxi trips were limited to a direct distance of up to 3 km, and the total trip
length must be of at least 6 km to prevent the use of taxis for uni-modal travelling.
The area of fleet operation is shown in red in the left plot of Figure 5.1, and only
agents who travel within this area could switch to the MaaS mode. The fleet size
was set to 15 000 vehicles. The simulation was run again for 700 iterations: first, 350

iterations with 10% of the agents re-routed and 10% of the agents allowed to switch
the mode between either car, public transit, or MaaS; and then 350 iterations where
agents can pick only one of the previously experienced plans. In the end, about
7.5%, or 252 389, of the agents switched to the MaaS mode. This converged reference
scenario was used to assess the impacts of downscaling, which was performed by
sampling, uniformly at random, a fraction of agents from the reference scenario and
adjusting the flow capacities of the road network according to optimal coefficients
obtained for the Switzerland scenario. The fleet size was downscaled in proportion
to the size of the population sample. Each downscaled scenario was run for 150

iterations to converge: 100 iterations with 10% re-routing and 50 iterations using
plans from the agents’ memories. Sample sizes of 1%, 2%, 5%, and 10%–90% in
increments of 10% were used. The memory of agents was always set for the five last
chosen plans.

6.4 results

6.4.1 Cars and public transit

The mean, standard deviation (shaded area) and 95% confidence intervals using
t-distribution (vertical bars) for the optimal values of the scaling coefficients k∗l and
k∗f are shown in Figure 6.2. The standard deviation and confidence intervals were
obtained based on five runs for each of the combinations of kl and k f during the
calibration process as described above. It is interesting to note that the capacity
coefficient k∗f matches exactly the scale of the input data for almost all population
samples; thus, it is evident that flow capacity is the main driver of the traffic
dynamics in the traffic model. For almost all population samples, the standard
deviation of k∗f is either zero or very close to zero; therefore the flow capacity
coefficient is stable and is not affected by traffic fluctuations between simulation
runs.
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Figure 6.2: Optimized scaling coefficients for spatial and capacity buffers of the traffic
queueing model for the road network of Switzerland.

The spatial coefficient k∗l is close to one for population samples in the range of
20%–50%, and decreases for larger-sized population samples. However, for very
small population samples, less than 10%, k∗l decreases substantially, and does not
match the overall input scale factor. This can be explained as follows: the more
the network is downscaled, the more the performance of spatial buffers degrades
due to rounding errors when smaller values of kl are applied. Conversely, larger
kl better matches the impedance of the reference case. The same behaviour is
reported by [114] where spatial buffers were scaled with factors larger than the
corresponding size of the population sample. The standard deviation of k∗l is larger
than the standard deviation of k∗f , therefore indicating that spatial buffers are more
sensitive to stochastic fluctuations in the simulated traffic.

To show the impact of rounding errors on the simulated traffic flow, consider
the following example with a network link of Nl = 8 (about 60 meters long) and
N f = 1 (flow capacity of 900 cars/hour) which is very typical for the city of Zurich.
For the sake of simplicity, one can assume that the flow of this link is fully matched
with downstream links such that there is always free space available in downstream
spatial buffers. Further, consider a stable flow of 900 cars/hour from upstream links,
or 1 car every 4 seconds of simulated time. In a non-scaled scenario, this link should
never be overflown, and no spillover should occur under the assumed conditions. In
the first scenario, a 40% sample is used, and, according to Equations 2.16 – 2.17, link
buffers are scaled to Nl,0.4 = 3 and N f ,0.4 = 1, whereby the link accumulates 0.4 cars
of flow capacity every 4 seconds. In the second scenario, a 70% sample is used, and
link buffers are scaled to Nl,0.7 = 5 and N f ,0.7 = 1, whereby the link accumulates
0.7 cars of flow capacity every 4 seconds. As soon as the link has accumulated
flow capacity >= 1.0, it can release 1 car into the capacity buffer and downstream
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consequentially. Table 6.1 shows the state of the spatial buffer of the link during
a simulation when the upstream flow is kept constant (one car every 4 seconds).
Since the flow of a single car cannot be downscaled, there exists a probability that
for a certain time period a flow of 900 cars/hour is kept. In Table 6.1, a simulation
step equals to 4 seconds to keep the calculations simple.
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Table 6.1. State of the capacity buffer of a downscaled link from a simulated test case with a constant traffic flow. Queues’ first spillover
states are in bold.

Step
40% sample 70% sample

Flow capacity (0.4/step) Queue state (Nl,0.4 = 3) Flow capacity (0.7/step) Queue state (Nl,0.7 = 5)

1 0.4 1 (0) 0.7 1 (0)

2 0.4 + 0.4 = 0.8 1 + 1 = 2 (0) 0.7 + 0.7 - 1.0 = 0.4 1 - 1 + 1 = 1 (0)

3 0.8 + 0.4 - 1.0 = 0.2 2 - 1 + 1 = 2 (0) 0.4 + 0.7 - 1.0 = 0.1 1 - 1 + 1 = 1 (0)

4 0.2 + 0.4 = 0.6 2 + 1 = 3 (0) 0.1 + 0.7 = 0.8 1 + 1 = 2 (0)

5 0.6 + 0.4 - 1.0 = 0.0 3 - 1 + 1 = 3 (0) 0.8 + 0.7 - 1.0 = 0.5 2 - 1 + 1 = 2 (0)

6 0.0 + 0.4 = 0.4 3 + 1 = 3 (1) 0.5 + 0.7 - 1.0 = 0.2 2 - 1 + 1 = 2 (0)

. . . . . . . . . . . . . . .

15 0.6 + 0.4 - 1.0 = 0.0 9 - 1 + 1 = 3 (6) 0.8 + 0.7 - 1.0 = 0.5 5 - 1 + 1 = 5 (0)

16 0.0 + 0.4 = 0.4 9 + 1 = 3 (7) 0.5 + 0.7 - 1.0 = 0.2 5 - 1 + 1 = 5 (0)

17 0.4 + 0.4 = 0.8 10 + 1 = 3 (8) 0.2 + 0.7 = 0.9 5 + 1 = 5 (1)
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Table 6.1 shows that the spatial buffer of the link is overflown in only 6 steps
(24 simulated seconds) when using a 40% population sample with the network
downscaled accordingly. However, when using a 70% population sample, it takes
17 steps (68 simulated seconds) to overflow the link. In total, after 17 steps, the
link with a smaller scaling factor of 0.4 spills over eight cars causing congestion in
upstream links. Hence, rounding errors in downscaled network links can severely
affect congestion patterns and traffic dynamics during the simulation.

Additional insight into the nature of the impacts of kl and k f is given in Figure 6.3,
where the optimization objective for one of the sets of samples (not averaged across
five sets) is shown. The characteristics of the optimization objective in the kl - k f
plane, given in Equation 6.15, are sensitive to the size of the population sample that
is used. For very small population samples of 1% the objective is very dissimilar
compared to the reference case and the surface of the objective is flat. With this flat
surface, there is a high likelihood that many different combinations of kl and k f may
be optimal. Thus, with the very small population sample, the scaled flow capacity
of the network does not drive the traffic dynamics, and the model generates mostly
noise rather than proper traffic dynamics. When the size of the population sample
is increased to 10%, the model is more similar to the reference case in terms of the
traffic dynamics, and the flow capacities of the buffers generate more realistic traffic
flows. With a 50% population sample the model is almost fully driven by the flow
capacity and generates traffic that is very similar to the reference case. It is also clear
that the kl coefficient does not significantly affect the simulation outputs. With a 90%
population sample, the model is sensitive to both the flow capacity and the spatial
length of the links; in this regard kl effectively fine-tunes the traffic dynamics.

As the size of the population sample increases, the objective (traffic similarity)
improves, and the surface of the objective in the kl - k f plane becomes more concave.
The concave surface indicates that the objective is more sensitive to changes of the
scaling coefficients, meaning that the optimal values of kl and k f are closer to the
scaling factor when the surface is concave. Nevertheless, as the simulations are
highly non-linear, the optimum coefficient k∗l for spatial buffers is smaller than the
corresponding scale factor for the flow capacity. The optimal values of kl and k f
together with standard deviations for each of the population samples are given in
Table A.1.

The measures of goodness-of-fit for the different population samples are presented
in Figures 6.4–6.5. In the legend, GEH5 and GEH10 indicate that the links satisfy,
respectively, the conditions 5 ≤ GEH(xi, yi) < 10, and GEH(xi, yi) ≥ 10, and HW
indicates that the similarity measure was only applied to a subset of network links
consisting from motorway and expressway links with a minimum speed of 80 km/h.
The GEH measure is given as a percentage of the total number of links that are
analysed. A total of 1 033 642 links, including 67 483 motorway and expressway
links, were analysed.

As expected, the GEH measure satisfies the validity condition GEH < 5 for at
least 85% of the links even with the 5% population sample during hourly evaluated
periods (morning, afternoon and evening), while the traffic similarity Sα (based on



210 uncertainties of downscaled scenarios

kl (length)
0.01

0.015

kf (flow)

0.015

0.01

0.005

Sm α
+
Se α

0.0
0.2
0.4
0.6
0.8
1.0

(a) 1% sample.

kl (length)
0.5

1.0

kf (flow)

1.0

0.5

0.0

Sm α
+
Se α

0.0
0.2
0.4
0.6
0.8
1.0

(b) 10% sample.

kl (length)
0.5

1.0

kf (flow)

1.0

0.5

0.0

Sm α
+
Se α

0.0
0.2
0.4
0.6
0.8
1.0

(c) 50% sample.

kl (length)
0.5

1.0

kf (flow)

1.0

0.5

0.0

Sm α
+
Se α

0.0
0.2
0.4
0.6
0.8
1.0

(d) 90% sample.

Figure 6.3: Normalized surfaces of the optimization objective during the calibration proce-
dure of coefficients for the queuing traffic model.

the chi-squared statistic) yields statistically significant results only with a population
sample of at least 30% in the morning, 60% in the afternoon and 40% in the evening.
The lower similarity in the afternoon and evening peak hours is only observed
for motorways and expressways, while for the whole set of links a statistically
significant result is already achieved with a population sample of at least 30%.
Motorways and expressways are also affected by discrepancies in traffic dynamics
when small population samples are used. However, one may not intuitively expect
this result considering that links with smaller volumes are affected more by traffic
fluctuations, but simulations show that both road types are affected by the size of
the population samples. Nevertheless, lower traffic volumes on highways in the
afternoon could be the reason for higher fluctuations and lower similarity.

The same trend is also observed for daily aggregated counts in Figure 6.5, where
neither GEH nor Sα reaches a statistically significant result, as the error accumulates
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Figure 6.4: Measures of goodness-of-fit (hourly time periods) for downscaled Switzerland
scenarios.

throughout the day for each of the links. It is also noteworthy that as the size of the
population sample increases from 1% to 30%, the GEH measure decreases sharply
from more than 30% to less than 1% (except the daily evaluated period where errors
are accumulated), and then decreases only slightly up to a population sample of
90%. Therefore, GEH captures qualitatively a critical point with a population sample
of 30%, while Sα captures this point quantitatively. The shape of curves for the
GEH measure with the GEH10 condition decreases more rapidly than the curves for
the GEH measure with the GEH5 condition as the more heavily penalized links fit
better to the reference distribution as the size of the population sample is increased.
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(a) Theil’s inequality coefficient (U).
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(b) RMSNE measure.
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(c) GEH measure (% of a total).
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Figure 6.5: Measures of goodness-of-fit (daily time periods) for downscaled Switzerland
scenarios.

All other measures of goodness-of-fit qualitatively capture the impacts of the size
of the population sample on traffic dynamics. However, Theil’s inequality coefficient
highlights a critical point when the size of the population sample is in the range of
10%–20%; further increases in the size of the population sample lead to only minor
improvements. One can also note that for the noon hour the errors are higher, as was
previously mentioned. More detailed data on the three component parts of Theil’s
inequality coefficient are presented in Tables A.2–A.5 for cars and in Table A.6 for
public transit. These data show that there is a larger systematic bias and a larger
mismatch in the distribution for small population samples. Such errors can be
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expected when small traffic volumes are scaled up by large multipliers. For large
population samples, non-systematic errors contribute more than the systematic bias
and mismatch of distribution, as the overall match of traffic dynamics and transit
occupancy is better.

The RMSNE also shows that there is a tendency for the error to reduce with
larger population samples, but it is very difficult to interpret these results. For
example, the RMSNE is below 2 for cars when a 5% population sample is used,
as the simulation results were averaged over a large number of links when the
RMSNE were evaluated.

Although the public transit infrastructure was not scaled using kl and k f co-
efficients and public transit vehicles did not share the roads with other cars, in
general, all similarity measures indicate that public transit has higher uncertainties
in peak hours but the similarity remains almost unaffected in a daily evaluated
period. Public transit vehicles always run according to the schedule, and therefore
are unaffected by the queueing model (that is, no congestion forms, and vehicles
can always move forward). Thus, one can infer that discrepancies in the predicted
traffic dynamics that result from the use of small population samples do not derive
primarily from the traffic model that is used, but rather are a consequence of the
sub-scale population which itself distorts the demand.

Figure 6.6 and Table A.7 show the performance of the simulated car transport in
terms of the total VHT and total VKT during hourly and daily evaluated periods;
the performance is normalized relative to the reference case. The simulations with a
5% population sample give errors in the range of 5%–6%, and the errors are 2%–3%
for simulations with 10%–20% population samples.
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Figure 6.6: Performance of the simulated car transport in downscaled Switzerland scenar-
ios.
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It is worthwhile to note that VKT varies much less than VHT and has an error
of no more than 6%, even with a 1% population sample, while VHT has errors in
the range of 7%–30% for small population samples. A possible explanation is that
the distribution of trip distances performed by the agents is narrower and more
concentrated around the mean value, so it is easier to approximate the distribution
with a few agents. On the other hand, the distribution of trip durations is broader,
and the use of a small population sample gives a larger error. However, it is also
evident that discrepancies in the measures of goodness-of-fit depend on the patterns
of behaviour of the simulated population, and these patterns can be different in
other scenarios.

6.4.2 Coordinated fleets

The impact of sample size on the average waiting times of clients (the time from
when a request is sent to the time when a taxi arrives) is shown in Figure 6.7. For
sample sizes less than 5%, the evening peak hour has substantially longer waiting
times of about 1 hour compared to about 20 minutes for the larger sample sizes. The
waiting times in the morning for smaller sample sizes are also longer and range from
about 30 to 50 minutes, compared to the waiting times of 10–20 minutes for sample
sizes larger than 10%. The substantially longer waiting times of small sample sizes
in the evening peak hour can be explained by the fact that the initial placement of
vehicles is based on the known morning-time demand; hence the waiting times are
less affected in the morning. The larger sample sizes of 20%–50% yield quite similar
results over the whole day, with some differences observed during the evening. As
for car traffic, for sample sizes larger than 30% there are no substantial differences
in the waiting times. However, for the full-scale population, the longest waiting
times occur 3 hours later than with the smaller samples.

Figure 6.8 compares the impact of sample size on fleet utilization. During the
morning peak hour, the fleet utilization differs substantially over the range of 60%–
100% for sample sizes of 1% to 10%, while sample sizes of 30% to 50% yield fleet
utilization in the range of 70%–80%. Sample sizes larger than 60% consistently
yield fleet utilization of around 60% in the morning. All sample sizes have a fleet
utilization of 100% in the evening peak hour. However, the distribution of fleet
utilization over the evening differs with sample size: for the smaller samples, the
distribution tends to be flatter and wider than for the larger samples; only the
full-scale population has a narrow distribution with a sharp peak. The flatter and
wider distributions of fleet utilization with the smaller samples indicate that for
longer portions of the evening peak hours, a fleet operator finds it challenging to
schedule the increased number of requests. The most probable reason for this is
the spatial imbalance between supply and demand that results when downscaled
samples are used; this imbalance is most pronounced in municipalities with low
population densities. It is worth noting that the narrow and sharp distribution of
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Figure 6.7: Impact of sample size on the average waiting times of agents in downscaled
scenarios of the Munich area.

fleet utilization in the full-scale population case explains the shift in the evening
peak of waiting times compared to the downscaled sample sizes.
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Figure 6.8: Impact of sample size on fleet utilization in downscaled scenarios of the Munich
area.

The impact of sample size on the fleet empty mileage is compared in Figure 6.9.
It is evident that the fleet tends to drive longer distances with downscaled sample
sizes. As with the fleet utilization, for sample sizes of 1% to 10% the fleet empty
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mileage differs substantially, especially in the morning peak hour. This is because the
smaller samples are more affected by the imbalance between supply and demand.
The sample sizes of 30% to 50% differ less across the day, and have a smaller empty
mileage in the morning of 40% compared to 60% in the sample sizes of 1% to 10%.
The larger samples of 60% to 100% yield empty mileage of 30% in the morning. The
magnitudes of the empty mileage in the evening are similar across all sample sizes.
However, similar to the fleet utilization, only the full-scale population case has a
narrow and sharp distribution of the fleet empty mileage.

The distributions of the per-vehicle daily driven distances for some sample sizes
are compared in Figure 6.10, and the impact of sample size on average per-vehicle
daily driven distance is shown in Figure 6.11. It can be seen that the distribution
of distances changes with sample size. For sample sizes of 10% and less, the
distributions are close to a normal distribution, with mean per-vehicle daily driven
distances of 175 km and 250 km for the sample sizes of 1% and 10%, respectively.
As the sample size increases, the distributions tend towards a bimodal distribution:
for the 100% sample size, the peaks are around 100 km and 270 km, with an overall
mean per-vehicle daily driven distance of 215 km. The bimodal distribution can be
explained by the fact that the more vehicles and clients are in the system, the higher
the probability that a nearby vehicle can be found for each request, and the higher
the probability that a vehicle will be idle. This is especially relevant for low-density
areas that have fewer vehicles and clients.
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Figure 6.9: Impact of sample size on fleet empty mileage in downscaled scenarios of the
Munich area.
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Figure 6.10: Distribution of per-vehicle daily driven distance in downscaled scenarios of the Munich area.
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Figure 6.11: Impact of sample size on average per-vehicle daily driven distance in down-
scaled scenarios of the Munich area.

The spatial distribution of daily average waiting times is presented in Figure 6.12.
Here, the locations of requests are aggregated in hexagons having an edge size of
500 m. It can be seen that the 1% sample size has a substantially different spatial
distribution than for the full-scale case. One reason is that downscaling significantly
reduces the number of requests in the low-density areas outside Munich. As a
result, fleet vehicles are mostly concentrated in the city, where the vehicles generate
and encounter more congestion, and thus for requests coming from low-density
areas there is a lower likelihood of finding a nearby vehicle. Another reason for the
difference is that traffic dynamics are changed more with smaller samples, causing
different travel times. For the 10% sample size, the spatial distribution in the city is
more akin to the full-scale case, while low-density areas outside of the city are still
highly under-sampled.

The shift of the average waiting time during the evening peak hour, when the
sample size is reduced from 100% to 90%, was examined in detail. In the current
case, it seems that this shift arises due to a combination of multiple factors, including
the spatial distributions of fleet and requests, the congestion patterns (in particular,
the highly congested city centre and uncongested low-density surroundings), and
the fleet size and served demand. The experiment was repeated three times using
different sets of samples in order to exclude substantial stochastic variations in the
simulation outcome; however, the outputs of simulations were observed to be similar
for each set of samples. Further analysis of the case with the full-scale population
showed that the equilibrium, which is finally reached, is relatively fragile, and even
insignificant fluctuations in the non-taxi demand shifted the evening peak to earlier
times, as in the case of the 90% sample. Therefore, even downscaling the scenario
by 10% can lead to shifts of peak utilization of the fleet. That means that scenarios
with fully utilized fleets must be very carefully evaluated during the downscaling
process.

Overall, in comparison to the full-scale population, sample sizes of 30% or more
predict fleet performance metrics that are of comparable, not exact, magnitudes.
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(a) 1% sample. (b) 10% sample.

(c) 50% sample. (d) 100% sample.

Figure 6.12: Spatial distribution of daily average waiting times in downscaled scenarios of
the Munich area.

These sample sizes of 30% or more can thus be used if only an approximate
knowledge of spatially aggregated externalities of the fleet, such as noise or air
pollution, are desired. However, as the predicted performance using downscaled
inputs can have quite different characteristics during peak hours, such as a shift
in the peak utilization, the use of the full-scale population is recommended if
accurate spatial and temporal estimates are required. For example, with a sample
size of 50%, the mean per-vehicle daily driven distance is 235 km; while with the
full-scale population, the mean driven distance of 215 km is 8.5% less. Thus, for
an all-electric fleet, with a German electricity price assumed to be €150/MWh
and the average electric vehicle energy consumption of 0.2 kWh/km, the annual
difference in cost for charging the fleet is about €3.3 million. Similarly, the required
charging infrastructure and corresponding investments will be overestimated when
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downscaled inputs are used in the mobility simulations. On the other hand, in
low-density areas the charging infrastructure would be underestimated.



7
V I S UA L A N A LY T I C S

What makes the desert beautiful is that
somewhere it hides a well.

— Antoine de Saint-Exupery

While agent-based modelling is a promising approach to addressing existing and
upcoming challenges in the transport systems of urban areas by using detailed and
policy-relevant scenarios, some issues of ABMs have to be resolved before their
wider adoption. One of such issue related to large-scale ABMs is data analysis and
visualization.

First, agent-based scenarios generate large amounts of data that must be analysed.
As simulation outputs come out in a disaggregated form where each agent can be
tracked individually through the whole period of simulated time, an additional
effort to aggregate and post-process the data is typically required. For that, faster
storage solutions (software like appropriate databases [327], specialized file systems
[328], or hardware solid-state drives) and parallel data processing [329] can bring
significant improvements in runtimes. Second, the visualization and analysis of
agent-based scenarios need to be adjusted to use individual data to understand
traffic phenomena and their negative externalities better. Moreover, when using
hardware accelerators like GPUs to run scenarios, visualization requires a special
coupling of simulation outputs and scenario inputs as per-agent data is stored on a
device in a way optimised for simulation execution rather than for analysis.

Although visualization comes as the last step in a whole simulation process, it
remains one of the most important parts of the scenario evaluation after preparing
input data and traffic simulation. Visualization provides a convenient way to display
results for a user and allows them to explore data in multiple directions, that is, by
executing queries to filter, aggregate or reduce a dataset, or interactively change the
view of analysed outputs. Visualization becomes of special importance when highly
multi-dimensional data is analysed, like agent-based traffic simulations where (i)
data has temporal and spatial dimensions, and (ii) each agent has a set of individual
attributes that affect their decisions. For example, by visualizing the movement of
the agents on a map, one can identify that a certain public transit route becomes
overcrowded because too many agents live and work in the same parts of a city.

However, when running a large-scale scenario, visualization may become a per-
formance bottleneck if too many agents have to be displayed and analysed in spatial
and temporal dimensions with a high resolution (that is, 1 second in time and 1

meter in space). Slow rendering of moving agents with unacceptable waiting times
will result in a poor user experience with interrupting workflow and unwillingness
to use such visualization software [330, 331]. As shown in Chapter 6, one approach

223
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utilized by researchers is to scale down a scenario (that is, take 10% of the popu-
lation and set flow capacities of roads to 10%) and multiply output results by a
factor inversely proportional to a scale factor. While this will reduce the number of
visualized agents, it may (i) also bias output results if insufficiently large samples
are used, and (ii) retain a rather high number of agents in a downscaled scenario of
extensive urban areas for smooth rendering of visualization frames.

Another area where big data analysis and visualization play a crucial role is the
smart city concept [332, 333]. In a smart city, data is collected from distributed
sensors, devices and citizens in order to find more optimal and efficient ways to
operate the city and to improve people’s daily lives. In large urban areas, this
requires real-time big data analysis, visualization and monitoring of the city’s assets
and resources, and the same technologies used for agent-based simulations can be
utilized in the infrastructures of smart cities.

Currently, there is a research gap in the area of the visualization of large-scale
agent-based mobility simulations. First, most of the existing works are focused
on static (no movement of agents) and aggregated forms of visualization like
plots, charts or distributions. The lack of dynamics in the temporal dimension of
a visualized simulation reduces users’ ability for interactive reasoning about the
causal effects of the situations on the roads. For example, dynamic visualization can
help to quickly identify when and where traffic spillover situations occur without
writing and executing complex data processing queries. Second, works focused
on dynamic visualizations are typically applied for small-scale cases with up to a
few thousand agents without quantitative scalability benchmarks. Third, almost no
technical details have been provided on how to efficiently implement visualization
of agent-based data, especially when simulations are running on external hardware
accelerators with limited memory capacity and data transfer bandwidth.

This chapter aims to fill this gap, and proposes a visualization and analytics
framework, Quartz, which is designed specifically to work with large datasets from
agent-based mobility simulations.

7.1 background

One approach to visualizing large-scale highway traffic flows was introduced by
Sewall et al. [117]. In the proposed method, each lane (discretized in cells) is
represented as a continuum flow with a low variation in speed, and the discrete
state of a vehicle is defined by the cell containing it. While this is not an agent-
based simulation, it demonstrates how a traffic model can be defined to optimize
visualization. In another study, Sewall et al. [118] presented a method to reconstruct
and visualize massive traffic flows from discrete spatio-temporal data sources like
sensors. This method searches for a trajectory for each vehicle in the whole state-
time space, incrementally and depending on the vehicle’s priority. The runtime
performance was analysed with up to 500 vehicles, and it drops quickly with the
growing number of discrete states (that is, the length of a highway). In a later
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work, Sewall et al. [119] implemented a hybrid approach where a microscopic
agent-based model is used in regions of interest and where the movements of agents
are visualized, while the rest is modelled with continuum flows. On a road network
of 2 152 km of lanes and with the demand of 110 000 to 190 000 vehicles, the agent-
based approach provides approximately 18 to 8 frames per second, respectively.

Suzumura et al. [120] developed a large-scale traffic simulation platform that uses
the parallel and distributed programming language X10 to accelerate computations.
The platform was able to run a Japanese nationwide daily simulation with the
demand of 180 000 trips per hour and with a network of 993 731 nodes and
2 552 160 links in 1.73 hours using 100 distributed computing nodes. While the
authors mention that the presented platform includes a visualization part for
moving vehicles, no performance metrics or implementation details related to the
user interface have been provided.

Shen and Jin [121] presented an agent-based system for detailed traffic animation
in an urban environment using the hardware-accelerated graphics engine Horde3D.
While their work is focused on the realistic visualization of traffic flows without
any analytical capabilities, it gives insights into the possible performance of such
systems for large-scale scenarios. The traffic model includes a car-following model
with different driving styles, continuous lane-changing models and detailed road
infrastructure (multi-lane roads, traffic lights). A straight four-lane road with 40 000

vehicles takes about 40 milliseconds to calculate per frame, and 20 milliseconds
per frame if the lane-changing model is disabled. The authors also notice that the
performance is competitive when compared with another agent-based microscopic
traffic simulator, SUMO [102], when using a similar scale.

Heywood et al. [90] used the FLAME GPU [91], an agent-based simulation
framework, to run a microscopic traffic model on a GPU and visualize it in real-time.
The visualization uses an OpenGL and Simple DirectMedia Layer framework to
accelerate the rendering in a 3D environment, and CUDA OpenGL Interoperability
is used to avoid unnecessary memory copying from the simulation part. This is
one of few works where a GPU-accelerated traffic model has been coupled with
visualization. The visualization was found to have a negative impact on simulation
performance: specifically, for a small-scale artificial lattice road network with the
grid size of 8 and 8 192 vehicles, it takes about 1.2 milliseconds per simulated
iteration to visualize vehicles, representing an 8% decrease in the overall runtime.

Lu et al. [122] developed the Toolbox for Urban Mobility Simulations (TUMS)
using LandScan [123] and OSM for input data and the microscopic agent-based
traffic simulator TRANSIMS [101] to make it applicable globally (to any location).
TUMS includes two levels of visualization: a macroscopic tool for link-based analysis
(that is, congestion, delay and density) in 15-minute intervals, and a microscopic tool
for vehicle-based analysis when individual vehicles are rendered using WebGL with
up to 1-second resolution. Neither information about the rendering performance of
the visualization tools nor implementation details were reported.

The MATSim framework [76] for agent-based transport simulations has multiple
tools to visualize and analyse outputs from scenarios. A free, open-source tool,
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OTFVis, has been developed mainly for the debugging of input data. OTFVis pro-
vides limited functionality for visualizing road networks, moving vehicles (recorded
and in real-time) and highlighting results of executed queries in a real-time mode
(that is, finding a link by ID or showing agents’ routes). OTFVis uses OpenGL to
accelerate rendering, but no aggregated analysis is supported. Another alternative
is to use a commercial tool Via which provides many features for the visualization
of individual agents and aggregated analysis. However, the free version is minimal
in terms of the number of vehicles (up to 500) and functionality, and neither per-
formance benchmarks for large-scale scenarios nor technical details of the tool are
available.

Gehlot et al. [124] developed an agent-based and parallel evacuation simula-
tor to handle complex decision-making processes in large-scale scenarios using
microscopic traffic models. One of the work’s main contributions is an efficient visu-
alization module that communicates with the traffic simulator through WebSocket
[334]. In each simulation tick, the simulator sends a list of moving vehicles to a
collection queue to update on a screen, making it efficient to visualize as not all
vehicles have to be updated. Per-link network statistics can also be collected during
a traffic simulation and visualized in a separate viewer. The visualization module’s
computing performance was only evaluated qualitatively and is found to be smooth
and efficient on a small-scale network of about 4 000 nodes and 8 000 links with up
to 100 000 vehicles simulated. However, it is not clear if all vehicles were in motion
at the same time.

Kim et al. [125] developed a mesoscopic traffic simulator with a real-time vi-
sualization library, SALT-Viz. The simulator can handle large-scale urban traffic
simulations with dynamic generation of road geometry based on the attributes of
links, and the visualization part uses OpenGL to accelerate rendering. The presented
library uses overlays and multi-resolution rendering model to speed up the process.
Additionally, 3D buildings can be reconstructed using rule-based modelling. The
rendering performance was evaluated using the model of the Gangdong district
of Seoul (South Korea) with a road network graph of 5 112 nodes and 12 437

links, and 370 093 vehicles. On average, the system was able to output 148 frames
per second. However, the visualization part does not render moving vehicles but
rather colourizes network segments based on flow density aggregated in fixed time
intervals.

Charlton and Laudan [126] presented a web-based platform to visualize MATSim
outputs. The entire user interface works in a web browser and can display aggre-
gated (i.e., OD flows, per-link traffic volumes and emissions) and disaggregated
outputs (movement of individual vehicles during a simulation). The performance of
the presented platform is unclear. First, pre-processing time is stated to be from a
few seconds to many minutes depending on the simulation scale. Second, WebGL’s
rendering performance of moving vehicles is stated to be enough to handle tens of
thousands of vehicles, without explaining the size of the network or time required to
render a frame. The platform currently follows the concept of good defaults where
a user has minimum options to configure the "look-n-feel" of visualized datasets.
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7.2 events

GEMSim is a discrete-time simulator with high spatial (1 meter) and temporal
(1 second) resolution levels, and the traffic model is invoked in each simulated
second. As a scenario has to be run for dozens and hundreds of iterations within
the simulation loop, it is desirable to record required data for further analysis and
visualization instead of doing it in real-time. For this purpose, discrete events were
introduced into the simulation. These events are the same as in other discrete-event
simulations [335] except that they are used only to record the simulation process,
which means how the states of modelled objects have been evolving over time. For
example, an event is emitted when an agent enters a new network link or when they
start performing an activity after arriving at the desired location. This is similar
to how coordinated fleets were simulated in Chapter 3, when events were used to
notify fleet operators with riding requests from passenger agents, or state events
from fleet drivers.

As described in Chapter 2, a different approach to storing data on a GPU is
required for better performance throughput. For example, GPU-accelerated data
structures can use indices instead of unique IDs to refer to agents in order to opti-
mize runtime performance. Use of different data structures and the lack of object
identification in the same way as in the input data (through unique IDs) on a GPU
makes it impossible to simply collect and store data as it comes from mobility simu-
lations. Instead, either a back-mapping process is required or additional metadata
must be stored in order to make it possible to back-map recorded data later. The
latter approach was chosen for analysis of events in GEMSim in order to avoid
costly back-mapping process during a simulation. At the same time, some events,
like those used by coordinated fleets, are back-mapped "on the fly" in a separate
event stream, and the number of such events is orders of magnitude less than those
recorded from a full simulation.

When events are recorded, the following rules apply:

• An event with a later time stamp always comes after an event with an earlier
time stamp.

• Events of a single agent occurring in the same simulation time step are ordered
according to the logical sequence. For example, in the first event an agent
finishes an activity, and in the second event they board a vehicle.

A stream of events, organized in an ordered way, can easily be analysed and
visualized as one can rely on the specific temporal sequence. A list of back-mapped
events available in GEMSim is presented in Table 7.1. All events have a mandatory
time stamp and a set of other fields that vary depending on the event type. Events
also contain unique IDs of the related objects, and these IDs can be used during the
analysis or visualization to filter, aggregate or build complex processing logic. In
a typical simulation, LinkEnter, LinkLeave and FuelChange events correspond to
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about 90% of all generated events as they are emitted each time an agent passes
through a network link.

Table 7.1. Discrete events recorded by GEMSim during a traffic simulation.

Event Description Fields (except time)

LinkLeave Vehicle leaves network link Agent, link

LinkEnter Vehicle enters network link Agent, link

QueueStuck Vehicle is stuck in traffic Agent, link

ActivityStart Agent starts activity Agent, link, activity type

ActivityEnd Agent ends activity Agent, link, activity type

LegStart Agent starts travel leg Agent, link, transport mode

LegEnd Agent ends travel leg Agent, link, transport mode

VehicleBoard Agent boards vehicle Agent, vehicle

VehicleLeave Agent leaves vehicle Agent, vehicle

TransitArrive Transit vehicle stops at station Vehicle, station, departure, route

TransitDepart Transit vehicle leaves station Vehicle, station, departure, route

TaxiRequest Taxi request comes from agent Agent, start link, end link, operator

FuelChange Fuel level of vehicle is changed Vehicle, old level, new level

One of the limitations of GPU-accelerated simulations is that device memory must
be allocated in advance. However, it is not known in advance how many, or when,
events will occur during a simulation, and one cannot simply store all of the events
on a GPU in a single chunk of memory to transfer them to the host afterwards. To
overcome this limitation, GEMSim uses periodical data synchronization between a
GPU and the host, in the same way as done for coordinated fleets. The memory on
a device is pre-allocated in a separate buffer using the following assumptions:

Mebu f =
Emax · Smax · Nagents

fsync
(7.1)

where Emax is the maximum number of events a single agent can emit in a simulation
step (currently equals to 5), Smax is the size of the largest event data structure
(currently equals to 24 bytes, and event structure is always aligned to the 8-byte
boundary), Nagents is the total number of agents in the simulation, and fsync is the
data synchronization frequency between the host and the device. The number of
agents Nagents also includes artificially created agents not provided in the input data
(i.e., drivers of public transit vehicles). The memory buffer of size Mebu f provides
enough capacity to hold all possible events generated between two synchronization
points. At a synchronization point, collected events are transferred from a GPU to
the host and written into a file for further analysis. During a simulation, events are
written into the buffer atomically, as described in Chapter 3.

A huge amount of data with events is generated during a large-scale simulation,
and this stream of data must be handled almost in real-time so as not to slow
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down the simulation process and to keep memory consumption at a reasonable
level (as the event stream is coming from a GPU, it must be either written down or
queued in memory for later processing). For example, when simulating the whole
of Switzerland, about 22 GB of binary events data, or about 1 billion events, are
generated in two minutes of real time; that is approximately 180 MB of data every
second. This stream of data is compressed in a separate thread using the GZIP
algorithm and written into a file, so the simulation does not wait at synchronization
points for any time longer than is required to transfer the data. Here, another
limitation of a GPU-accelerated model, mentioned above, comes into play: a GPU
does not keep host-like data of the objects but rather indices to the objects in GPU
memory are used by the device. For the same reason (high volume of data in
real-time) the back-mapping process is not performed and the events are written as
they come. To overcome this issue, a custom binary file format was used to include
not only events, but also the corresponding metadata to perform back-mapping
during the later analysis of the events.

A file with an event stream contains the following parts, written successively:

• Header. Information about the version of metadata and events that can be
used for backward compatibility. The version of the metadata is increased
each time it is extended with new information, and the version of events is
increased each time new events are added into the simulation.

• Metadata. Back-mapping information required to convert events from a GPU
representation to the host’s and to link it with the scenario input data. These
are key-value associative arrays where keys are GPU indices and values are
host-based IDs or other data. For example, lookup arrays are built for the
IDs of agents, network links, vehicles, public transit stops and fleet operators.
There are also lookup arrays for non-ID values like transport modes, agent
roles and types of activities.

• Events. A stream of time-ordered events as it comes from a GPU. The first
field of any event is a 4-byte type which is used to properly parse it along a
stream or to skip it, and each event has a static size depending on its type.

The header and metadata are written before the simulation begins, hence, even if a
simulation aborts in the middle, the data which is already written can be parsed. The
minimum amount of redundant data compared to other human-readable formats
like XML allows it to save disk space, and a fast GZIP algorithm reduces the file
size by up to a factor of three. There is, however, a separate utility, which comes
with GEMSim, that can filter and convert binary events to the human-readable XML
format for further post-processing in high-level languages like Python.

7.3 framework architecture

The overview of the Quartz architecture is shown in Figure 7.1. The main idea
was to make the framework flexible, fast and scalable by using streamlined data
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processing. The analytics pipeline comprises an event stream and a set of attached
event handlers that are responsible for the analysis of specific areas of interest. For
example, one handler analyses general travel statistics like per-agent daily travel
time and distance, while another handler aggregates statistics related to coordinated
fleet utilization. A stream parser reads events and concurrently back-maps them
from a GPU-based representation to a CPU-based one using the metadata from
the stream binary file. Each event from the stream is then fed into each handler
where an event is either processed or discarded based on the handler’s logic. In
the end, each handler goes through the whole stream and filters out only relevant
information. Input datasets are also connected to handlers such that an event stream
can be analysed in a broader context (e.g., the physical length of road links is
required to calculate statistics of travel distance). After the event stream is analysed,
each handler outputs a hierarchical representation (a tree-like report item) of the
results, and all report items are aggregated into a single structured report that
is visualized for a user. Besides a report, input data from a scenario can also be
visualized separately.

Events

Travel statistics
handler

Fleet utilization
handler

Timeline
handler

...

ReportVisualization

GUI

Input data

Network

Public transit
schedule

Figure 7.1: Architecture of the Quartz framework for data analytics and visualization of
outputs from GEMSim.

To improve the runtime performance, a hybrid sampling approach was imple-
mented. Hybrid sampling allows the model to use only a fraction of agents where
it is acceptable, for example to build statistical distributions of travel time or dis-
tance. For visualization, it also makes sense to use only a sample of agents to keep
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rendering smooth and not overload graphics with too many moving vehicles, as
they are not rendered with a physical scale and overlap each other on a screen. The
sampling rate for each of the event handlers can be specified by a user separately.

7.4 timeline

The only handler that behaves slightly differently in terms of the output is the
timeline handler. This handler builds a disaggregated timeline of agents’ behaviour
and outputs it directly to the visualization part of the framework without any
report items. The purpose of the timeline is to describe how the state of each agent
changes throughout a simulation, and visualize these changes (that is, movements
or performed activities) individually. A timeline consists of frames, and each frame
is generated at a simulated time step (1-second resolution) only if there were any
changes of the agents. A frame includes the following information:

• Trajectory points. Each trajectory point specifies agent ID, network link ID
and the time the agent spent moving along the link.

• Activity points. Each activity point specifies agent ID, network link ID, and
the start time, duration and type of performed activity.

• Arrived agents. A list of agents who finished their trips and arrived at the
locations of activities.

The timeline is one of the key parts of Quartz and it allows it to interactively
visualize simulated traffic flows in motion. The reason why the timeline is split in
frames with the transition of agents’ states is because of how a graphics pipeline
is organized in GPUs. In order to maximize GPU rendering performance and to
visualize large-scale scenarios with millions of agents, the OpenGL framework is
used to minimize computing effort on the CPU side and move as many computations
to a GPU as possible.

The OpenGL framework works with GPUs through a graphics pipeline, and a
simplified model of such a pipeline is shown in Figure 7.2. A host program prepares
OpenGL input vertex buffers with the arrays of vertex attributes like position in
space (x, y, and z coordinates) and colour or texture coordinates, and supplies the
buffers into the vertex processing stage. At this stage, the GPU executes a vertex
shader program for each set of vertex attributes and outputs an array of vertices
projected into the screen space with modified (if needed) attributes. For example,
a vertex shader can modify a colour attribute based on input variables like the
simulation time. At the next stage, generated vertices are assembled into basic
geometric primitives like triangles or lines, and are sent further to the rasterization
stage. The rasterization clips and discards parts of the primitives outside the screen,
and breaks remaining parts into pixel-sized fragments while interpolating vertex
attributes across the rasterized surface of primitives. For example, a triangle is
colourized with a gradient made from a colour value from each of the vertices.
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Then, at the fragment processing stage, a fragment shader operates on each pixel
and outputs individual values for colour and depth attributes. Lastly, after some
final operations like depth testing and blending, the pipeline outputs a framebuffer
that can be rendered on a screen. There can be some variations in the pipeline like
additional shaders but the main principle and the workflow remain the same.

Vertex
processing

Primitive
processing

Rasterization Fragment
processing

Pixel
processing

x y z
0 1 0

1 0 1

1 1 0

Buffers

Vertices Primitives Fragments Pixels

Framebuffer

Figure 7.2: Structure of a typical graphics pipeline implemented by a GPU.

As modern GPUs have thousands of processing elements in a pipeline, they
can execute shaders in a massively parallel manner achieving high computing
throughput. Therefore, the main idea behind the timeline was to utilize vertex
shaders to calculate and update the states of moving agents on the screen, offloading
this work from a CPU. The timeline comprises two parts: (i) a controller part that is
executed on the host side and (ii) a shader part which is executed on a GPU.

The controller part manages OpenGL vertex buffers and updates these buffers
each time an agent changes their state (that is, finishes driving a link, or starts doing
an activity). One of the issues here is that in each simulated second the number of
agents in motion varies from a few to tens of thousands, and removing or adding
agents for visualization can cause frequent re-allocation of OpenGL buffers. To
avoid it, the timeline handler calculates the maximum number of agents that can
be visualized in each second and pre-allocates buffers according to this number.
Additionally, it maintains a list of free slots in the buffers according to the following
rules:

• When an agent arrives at the location of activity, the corresponding vehicle is
marked with a transparent colour, and the slot (index) in the OpenGL buffers
is marked as free.

• When an agent starts travelling, the first available slot in the buffers is marked
as used, and the personal attributes of the agent are used to fill data in the
buffers.
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This approach allows the size of the buffers to be kept constant, and a GPU performs
the work to discard invisible objects from the screen. As this procedure is imple-
mented in hardware and executed in parallel, it provides a much higher runtime
performance than if it were executed on a CPU.

The timeline supports variability in visualization speed, which means how many
seconds of simulated time to render in one second of real time. The update frequency
of the buffers depends on the visualization speed-up compared to real time; however,
as the temporal resolution of a simulation is no less than a second, no update of
OpenGL buffers is required in between timeline frames on the host side. For
example, if the speed-up factor of visualization is set to two, then, in each second
of real time, the timeline may receive up to two frames (each within a half-second)
with agents to update, and will redraw the screen an additional 46 times to make
the movement of the vehicle smooth with 24 frames rendered per second.

Between any two frames, the shader part of the timeline is executed on a GPU to
animate moving vehicles. For each moving vehicle, the vertex shader receives, in
arrays, the start and end locations of a network link, the start and end time stamps
for the movement along the link, and a colour for the vehicle. Before executing the
shader program, the timeline controller updates the current simulated time, and
the shader can then interpolate the position and the direction of a moving vehicle
(marked as a triangle) along a link. Here, data in vertex buffers is represented by
trajectory points from the frames, and CPU does not need to perform additional
calculations.

7.5 user interface

The Quartz framework was developed as a native application in C++ using the Qt
cross-platform framework and can run on Windows, GNU/Linux and macOS. The
main window of the Quartz graphical user interface (GUI) with the Hokkaido (Japan)
scenario visualized is shown in Figure 7.3. Here, each vehicle is represented as a
directed triangle, where green marks private cars, red is for public transit vehicles,
and purple dots indicate the locations of activities. The speed of visualization as
well as the simulated time can be controlled interactively at the bottom bar.

The window is split into three areas: a map view on the right, a list of geo-
referenced layers to render on the left, and tabs to switch between the map and
reports on top. Layers are rendered in the map view according to their vertical
z-order, one on top of another, but any layer can be disabled from rendering. Plots,
as well as the map view, can be interactively zoomed and panned while the dynamic
visualization is running.

The reporting part of the interface is presented in Figure 7.4 For now, a report
can contain the following analytics:

• Travel statistics. Aggregated statistics like distributions of travel distance and
time, and average and total values for VKT and VHT (Figure 7.4).



234 visual analytics

Figure 7.3: Main window of Quartz for the Sapporo area from the Hokkaido scenario.

Figure 7.4: Overall reporting interface of Quartz with the travel statistics section for the
Munich scenario.

• Mode statistics. Aggregated statistics for each mode of transport, including
departing, arriving and en-route agents, and the total number of travelled legs
and legs per person (Figure 7.5).

• Fleet utilization. Provides aggregated information about coordinated fleets
of vehicles, including empty mileage, idle time, occupied time and the dis-
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tribution of driven distances (Figure 7.6). Each fleet operator is processed
separately in case a multi-fleet scenario was run.

Figure 7.5: Reporting interface of Quartz with travel mode statistics from the Munich
scenario.

Some of the plots provide interaction with data, for example a user can select a
cut value for histograms. Each layer can provide options to configure its behaviour
and visualization, for example changing colours or the way the colours are assigned.
Figure 7.7 shows a customized visualization of the Los Angeles area (USA).

Another important capability of Quartz is data filtering, when original events can
be narrowed down to a subset based on provided criteria. Filtering allows running
further analysis and visualization only to the area of interest, hence improving
runtime. Figure 7.8 shows Quartz filter options, of which any combination can
be selected. The event filter was implemented as another event handler in the
processing loop, and it analyses events in two passes. In the first pass, it collects
information about which agents do fall into filtering conditions, and in the second
pass it actually discards unrelated events and write the output stream. This also
demonstrates the flexibility of the streaming approach implemented in Quartz.

7.6 benchmarks

To benchmark the Quartz framework, two large-scale scenarios were used: the
Switzerland scenario from Chapter 4 and a scenario made for the prefecture of
Hokkaido in Japan based on available travel statistics [336, 337]; a summary of the
scenarios is presented in Table 7.2. Due to the limited availability of disaggregated
travel data from Japan [338], only aggregated statistics were used to generate the
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Figure 7.6: Reporting interface of Quartz with fleet utilization from the Munich scenario.

Figure 7.7: Interface of Quartz with a customized visualization of moving agents in the
Los Angeles area from the California (USA) scenario.
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Figure 7.8: Interface of Quartz with filtering options for a stream of events.

Hokkaido scenario. Both scenarios have comparable road network sizes, however
the Switzerland scenario has a full national public transit schedule incorporated
while the Hokkaido scenario has a transit schedule limited to the area of Sapporo.
The Switzerland scenario has almost double the number of agents and events (more
than 1 billion events are generated), hence the number of events almost linearly
scales with the number of agents, having the same road network size. Scenarios
were run for 200 iterations to converge and the output events from the last iteration
were used for performance benchmarks.

Table 7.2. Summary of large-scale scenarios used for Quartz performance benchmarks.

Scenario Agents Events Data size, GB

Switzerland 5 542 305 1 344 502 163 21.09

Hokkaido 2 924 938 739 452 279 13.06

A laptop with an Intel Core i9-9980HK CPU, AMD Radeon Pro 5500M GPU,
32 GB of RAM and an SSD was used to run Quartz with simulation output events.
First, the runtime performance of data analytics is evaluated by using output
events from both scenarios; handlers for general travel statistics, mode statistics
and timeline were enabled. Each scenario was run with a sampling rate for travel
statistics and timeline from 10% to 100% with a step of 10% to assess the scalability
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of the framework. The sampling was performed by Quartz, while the scenarios were
always run at the full scale. Figure 7.9 shows the runtime required by Quartz for
data analytics, and the runtime scales sub-linearly depending on the sampling rate
and the size of a scenario. While the overall population in the Switzerland scenario
is almost twice as large as the Hokkaido scenario, the overall processing time is
more than double. For the smaller scenario of Hokkaido, the runtime also increases
more slowly with the increase of sampling rate. This sub-linear scalability reflects a
non-linear logic implemented in event handlers, when unrelated events are being
discarded efficiently.
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Figure 7.9: Runtime performance of data analytics by Quartz depending on sampling rate.

The consumption of host RAM by Quartz when performing data analytics is
shown in Figure 7.10. Here, the RAM consumption grows more linearly with the
number of agents to be analysed. Most of the RAM is consumed by the timeline to
store the frames, while the rest of the handlers store only limited amount of data,
some of which is already aggregated. Nevertheless, 10% sampling rate consumes
less than 2 GB of memory which can be handled easily on commodity hardware.
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Figure 7.10: Peak host RAM consumption for data analytics by Quartz depending on
sampling rate.
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Finally, the runtime performance of the timeline was evaluated. Figure 7.11 shows
the runtime required to process a single frame depending on the number of agents
that have their states updated in this frame. As one can see, 2 000 agents can be
processed at a rate of about 20 frames per second, which is enough for smooth
rendering. When the number of agents in a frame increases to 3 000–4 000, the
frame rate drops to about 6–10 per second. However, one must consider that for a
typical scenario, the number of agents per frame varies a lot during the simulation,
hence only in a few peak moments might it have 4 000 agents, while for the rest
of simulation it will be 2 000–3 000. One should not confuse the number of agents
updated in the frame with the number of agents being rendered; in the latter case
the number of agents can be orders of magnitude higher.

The experiments show that 4 000 agents at the peak correspond to the 50% sample
of the Hokkaido scenario, which means that about 120 000 of the agents were
visualized simultaneously during the peak hour. Increasing the number of agents
in a population sample leads to visible slowdown of rendered movement on the
screen due to long frame processing times. Therefore, scenarios with up to 2 million
agents can be visualized directly without filtering, while for larger scale scenarios
pre-filtering is required for dynamic visualization.
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Figure 7.11: Time required to render a frame of the dynamic visualization timeline in
Quartz.

It should be also noted that, while the timeline performs rendering, it remains
fully interactive, and a user can pan and zoom on the view, adjust rendering speed
and customize the visualization properties of the layers. This should improve user
experience while working with large-scale datasets from simulated scenarios. As
the developed analytics and visualization framework has flexible architecture, other
analytical modules and geo-referenced layers can be integrated into Quartz easily.
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C O N C L U S I O N S A N D O U T L O O K

Perfection is achieved, not when there is
nothing more to add, but when there is
nothing left to take away.

— Antoine de Saint-Exupery

8.1 conclusions

8.1.1 Modelling

GPU-accelerated mobility modelling framework. In this thesis, an agent-based
GPU-enhanced mobility simulator (GEMSim) framework was developed. The frame-
work incorporates a co-evolutionary learning process in its agents, when they adapt
their behaviour between simulated daily iterations based on previous travel experi-
ence. A simulation converges when unilateral improvements in the travel behaviour
of the agents are negligible. The framework provides a solid and ready-to-use foun-
dation for the modelling of large-scale scenarios with agents’ complex behavioural
logic and detailed transport infrastructure. The developed traffic model is based
on the mesoscopic spatial queueing model that provides a trade-off between the
modelled level of detail and runtime performance. GEMSim was developed in a
modular way to allow the further extensions and adaptations required to simulate
future mobility scenarios. The massively parallel, GPU-accelerated traffic model
provides substantial speed-up in simulations – being up to two orders of magnitude
faster – compared to MATSim, a state-of-the-art agent-based transport modelling
framework with a conceptually similar traffic queueing model. To simulate the
traffic propagation of a typical day for the whole of Switzerland, using the full
population sample and the full-scale road network, takes GEMSim less than 2 min-
utes. The whole simulation loop of GEMSim, with the learning process included,
runs more than 22 times for the same scenario of Switzerland, compared to MAT-
Sim. These runtime performance achievements prove that GPUs are well suited
for general-purpose agent-based traffic simulations with the complex patterns of
behaviour used by the agents.

Gridlock resolution. In order to make GEMSim’s GPU-accelerated traffic model
scalable and applicable to a wide range of mobility scenarios, a gridlock resolution is
required. Without a gridlock resolution strategy, a simulated scenario may produce
unrealistic congestion levels with completely clogged areas. While there are multiple
methods used in other CPU-based traffic models, these methods rely on the fact that
the host memory can be dynamically allocated during the simulation process, which
is not the case for GPUs. To tackle this issue, novel gridlock resolution strategies,
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which can be also applied to CPU-based traffic queuing models to improve runtime
performance, were proposed and implemented. These strategies allow it to efficiently,
in terms of the impacts on runtime and the fidelity of simulated outputs, resolve
gridlock situations that tend to happen when queueing traffic models are used,
especially at a large scale.

Multi-modal extensions. Multi-modal extensions to simulate public transit and
coordinated fleets on GPUs, integrated together with car traffic, were implemented
in GEMSim, making it capable of running large-scale and multi-modal scenarios. It
was found that intensive interactions of passenger agents with vehicles at the stop
facilities when waiting for public transit or taxis, together with hardware limitations
of GPUs and CPUs, require a different modelling approach to mitigate an other-
wise significant runtime performance drop. A novel state-based GPU-accelerated
approach was developed to overcome these limitations. Moreover, simulation of
fleets required redistribution of computing workload among GPU and CPU sides
to achieve optimal runtime performance. For public transit, a speed-up factor of
31 was achieved compared to MATSim, while for a coordinated fleet of 100 000

vehicles a speed-up factor of up to 50 was achieved.

8.1.2 Hardware

Heterogeneous CPU-GPU hardware. As modern computing, especially high-
performance systems, is becoming more heterogeneous, with various hardware
accelerators attached including GPUs, a novel approach to running mobility simu-
lations on heterogeneous hardware with GEMSim was implemented. The whole
simulation loop was designed to fit and to optimally distribute heterogeneous
computations, between both the host and the device sides of the hardware. First, a
hardware abstraction layer separates the whole simulation loop from the parallel
execution of the traffic model on specific hardware, so that only a relatively small
part of the simulator, called the backend, interacts with hardware directly. Second, a
data binder abstracts data layer management from specific hardware by applying a
device-optimized memory layout for host data structures. Both backend and data
binder concepts allow to port GEMSim onto other types of parallel hardware with
little effort. Such portability was demonstrated by running the same large-scale
mobility scenarios on many-core CPUs, including ARM architecture, without any
GPU acceleration. While the CPU backend is capable of running the traffic model
up to 4 times slower compared to a GPU backend, it can still deliver a speed-up
of more than 11 times compared to MATSim running the same scenario with the
same hardware resources. An interesting finding was that the CPU backend could
bring more commercial benefits when running large-scale scenarios in the cloud.
Here, GEMSim provides a trade-off between the cost and runtime of simulations:
while the CPU backend is 4 times slower than the GPU backend, the price of GPU-
accelerated instances in computing clouds can be 6 or more times higher. In the
long term, however, the GPU backend can bring larger energy savings than the
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CPU backend, consuming about 2.76 times less energy to run a large-scale scenario.
It is also interesting that older CPU-GPU hardware is even more energy-efficient.
Overall, a mobility model which supports heterogeneous hardware can provide
more flexibility in terms of the cost-benefit ratio. This flexibility allows a user of
such models to adapt easier to the dynamic availability of hardware on the market
and gives more options for long-term investment decisions related to hardware.

Runtime performance bottlenecks. In general, large-scale agent-based mobility
simulations have two major bottlenecks in runtime performance: traffic propagation
through spatial queues and the learning process. The developed GPU-accelerated
model resolves the former bottleneck by providing up to 100 times faster traffic
propagation model. However, custom hardware accelerators generally do not have
coherent memory space shared with CPUs and require data to be transferred back
and forth between an accelerator and a CPU. Data transfers form another, the third,
runtime performance bottleneck, although of a much smaller magnitude than the
traffic propagation part when running on CPUs. For example, when running a 10%
sample of car traffic in Switzerland, data transfers and traffic propagation contribute
about 8% and 61% of the runtime, respectively. Still, for the full population sample,
the same parts of the simulation loop contribute about 17% and 43% of the runtime,
respectively. An interesting finding of the work is that in a GPU-accelerated model,
the learning part becomes the largest runtime performance bottleneck contributing
about 40% of iteration runtime at a large scale. Currently, GPUs are not well suited
for routing algorithms used during the learning process, but the situation may
change with the switch to more complex behaviour modelling like reinforcement
learning (RL).

8.1.3 Applications

Travel demand generation. As travel demand is one of the key inputs for any
agent-based mobility simulation, this thesis had a goal to improve demand genera-
tion for large-scale scenarios. A unified modelling pipeline was implemented and
validated with the case of Switzerland. The pipeline represents a sequence of data
transformation steps, including car ownership and transport mode discrete choice
models, which propagate input data until they produce individual daily-activity
plans for the agents. It was demonstrated that GEMSim can accurately reproduce
the Swiss cars’ and public transit’s travel time and distance distributions found
in the national mobility microcensus using the developed pipeline. Moreover, as
the pipeline is highly parallelized with multi-core CPUs, only about 2 hours are
required to generate travel demand. Furthermore, the pipeline has an integrated
mechanism to flexibly adjust the behaviour of the agents, as was shown for the
case of COVID-19 measures in Switzerland. It should also be noted that the same
approach with the unified pipeline has already been applied to other countries and
regions, such as Bavaria (Germany) and California (USA). However, the quality
of the generated agent-based travel demand heavily depends on the quality of
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available datasets, and disaggregated data from travel surveys is one of the keys for
agent-based mobility scenarios.

Coordinated taxi fleets. Multiple case studies were conducted using GEMSim and
developed demand generation pipelines for Switzerland and Germany. The first case
study evaluated the impacts of the deployment of a coordinated fleet of automated
vehicles (AVs) in the Zurich area of Switzerland to substitute the travel demand
of car users with private taxi trips. The results showed that a replacement rate of
seven to eight can be achieved if passengers are willing to wait up to 10–15 minutes
during the evening peak hour. However, the fleet deployment will increase the total
vehicle-kilometres travelled (VKT) up to 25% in the area, leading to vehicle-hours
travelled (VHT) increased by 44% on average, from 39 to 57 minutes. Overall, an AV
fleet is likely not to be a good candidate for the wide replacement of private cars in
the city of Zurich, at least until the driving efficiency of AVs is improved. The second
case study evaluated the potential acceptance of Mobility-as-a-Service (MaaS) in
the Munich metropolitan region of Germany. The proposed MaaS comprises a
tightly coupled public transit system as a backbone mode and a fleet of private
taxis to serve the first and last mile travel legs of the trips. This study not only
demonstrated GEMSim’s multi-modal capabilities for emerging modes, but also
assessed the impacts of geo-fencing limitations (put on legs travelled by taxi) on
the performance of MaaS operators and customers. It was found that more flexible
operating policies for fleets, like longer first and last mile travel legs, can bring
more benefits for operators and customers. However, a lack of restrictions on fleet
operators can lead to the increase of negative externalities like traffic congestion
(empty mileage is about 20%–40%) due to the shift of demand towards the agents
who benefit from longer taxi travel legs and more frequent service usage during
the day. In general, a fleet of 10 000 vehicles with taxi travel legs of up to 3 km can
attract 7%–15% of the travellers with an average waiting time of about 8 minutes
and up to 18 minutes in a peak, while utilizing the fleet for about 75% during the
day. The majority of MaaS adopters are existing public transit users, and without
additional incentives car users are unlikely to switch to MaaS or public transit. It
was also found that about 80%–85% of MaaS users are living in the areas with high
accessibility to public transit, so if policymakers want mobility concepts like MaaS
fleets to succeed in reducing car usage, investments in public transit infrastructure
are required.

Downscaled agent-based mobility scenarios. The developed mobility simulation
framework was used to study the impacts of downscaled scenarios on simulation
outputs. A novel measure of the goodness-of-fit of output results from two scenarios
was proposed and evaluated together with other, more commonly used measures.
The proposed measure is based on well-known chi-squared statistical distribution.
The queueing model, used in GEMSim, was found to be more sensitive to the scaling
of capacity buffers rather than to spatial buffers; this knowledge, however, can be
used for calibration purposes to reduce the search space of the optimal buffer scaling
coefficients. It was found that there is a critical size of approximately 30% of the full
population, below which the simulated traffic dynamics are markedly different, as
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well as the dynamics of the occupancy of public transit vehicles. However, if high
accuracy in the predicted traffic dynamics and in the occupancy of public transit
are not required, and the main interest is in only aggregated parameters such as
VKT and/or VHT, with errors in the range of 2%–6% being acceptable, then smaller
population samples, in the range of 5%–10% of the full population, can be used.
For coordinated taxi fleets, sample sizes of 30% or more predict fleet performance
metrics that are of comparable, though not exact, magnitudes. These sample sizes
of 30% or more can thus be used if only an approximate knowledge of spatially
aggregated externalities of the fleet, such as noise or air pollution, are desired.
However, as the predicted performance using downscaled inputs can have quite
different characteristics during peak hours, such as a shift in the peak utilization,
the use of the full-scale population is recommended if accurate spatial and temporal
estimates are required.

Large-scale visual analytics. A complementary framework for visual analytics
of agent-based simulations, Quartz, was developed during this thesis. Quartz
provides a flexible and extensible architecture that can analyse and visualize a
stream of discrete events recorded by GEMSim during a simulation. The tool
provides customizable and interactive visualization of the movement of the agents,
as well as generation of analytical reports with various metrics like travel time and
distance distributions, or fleet utilization breakdown. GPU acceleration is used to
dynamically render agents in real-time, without significant drop of frame rate, from
scenarios with up to 1.5–2.0 million agents. For larger scenarios, Quartz provides
sampling and filtering capabilities that can reduce the number of agents to be
processed. Working with discrete events coming from GPU-accelerated agent-based
models, however, requires additional data conversions to keep short runtimes of the
simulations. The main reason is that input data is stored differently in GPU memory,
and one has to save additional metadata allowing later required data conversions
for visual analytics.

8.2 outlook

8.2.1 Modelling

Non-motorized modes of transport. In addition to cars, public transit and coordi-
nated fleets, other modes of transport like bicycles or scooters can be implemented
given that many cities promote sustainable travelling. For these modes, the input
multi-modal network will require some adaptation to include dedicated lanes and
pedestrian areas, as well as modification of the queueing mechanism. The problem is
that bicycles and scooters can seep between cars and avoid congested areas, therefore
either the queueing approach needs to be modified to account for the flow capacity
of non-motorized modes separately, or such behaviour should be modelled through
separate queues. For battery electric variants of bicycles and scooters the power
consumption model can also be adapted. Urban air mobility modes using electric
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vehicles with vertical take-off and landing can be also implemented, benefiting from
the available computing power of GPUs for in-air navigation algorithms.

Shockwave back-propagation model. To improve the fidelity of modelled traffic
dynamics, a shockwave back-propagation model can be implemented. In the current
implementation, as soon as a vehicle leaves a link’s spatial buffer, the previously
occupied space, located at the front of the queue, becomes immediately available
to vehicles entering the same buffer from the upstream links. In reality, however,
newly available space back-propagates through the queue of vehicles, affecting
the congestion formation and spillover effects. On GPUs, this back-propagation
behaviour can be implemented using double queues for each of the network links:
one queue for the forward propagation of traffic, and the other for the backward
propagation of free space. Such implementation will require double the memory
used for networks on GPUs (which is a few hundred megabytes only for large-scale
scenarios). It should not significantly increase the runtime, as the performance
analysis showed that the GPU spends most of the time in the demand scheduling
kernel, and not in the kernel that processes link buffers.

Hybrid traffic model. In the thesis it was demonstrated that the traffic propagation
model leaves the computing units of a GPU heavily underutilized. Consequently, it
is possible to perform more computations while waiting for memory transactions
to be completed. For example, it is possible to implement a hybrid traffic model,
when some areas of interest are modelled with a higher level of detail using a
microscopic traffic model. This can be especially useful for urban and rural areas,
where rural areas around a city define boundary conditions through incoming and
leaving traffic flows, while the urban part is modelled with more detail.

Traffic lights. Currently, the impacts of traffic lights on traffic formation and
congestion are not fully accounted for. This is partially compensated for through
the reduced flow capacities of the roads, and partially through the calibration
coefficients of link buffers. The GPU-based implementation of traffic lights can be
relatively straightforward, when scheduled light cycles are stored either directly
on a GPU or, as with network variations, at the host side. Then, at each simulation
time step, another kernel in the GPU-based simulation loop can check traffic light
cycles and flag network links to block the movement of vehicles. This can be done
in parallel when each GPU thread processes a traffic light location. In case one also
wants to model traffic lights’ dynamic schedules, these checks should be moved to
the host side as more complex logic could be involved, such as RL.

Parking space. Implemented parking capabilities are quite limited, involving
sending agents to some network links to perform a specialized parking activity.
This, however, does not facilitate proper occupancy tracking, or the application of
various payment schemes depending on who wants to park and where. Parking
space is of special importance for the potential deployment of coordinated fleets
with AVs, because there should be a trade-off on how much public space can be
reclaimed and how much still is required for fleets to keep empty mileage at an
acceptable level. A parking model can be mostly host-based, as on GPUs an agent
does not need to know the real reason they are going to a certain location.
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Reinforcement learning. One can identify the areas of mobility simulations to
which RL is applicable, for example, agents’ decision-making, or selection of the
locations of activities. As GEMSim already runs on GPUs, the same GPUs can be
used to execute RL algorithms in an efficient way. While such a simulation loop
may require many more iterations to converge, it can provide a more sophisticated
decision-making process. A similar approach can be also applied to infrastructure
like the dynamic optimization of traffic lights, or pricing for recharging infras-
tructure. One can also think about using multiple GPUs so that one runs traffic
simulation while another is used for RL algorithms.

8.2.2 Hardware

Multi-GPU traffic model. One of the current limitations of GPU-based models, in
general, is a relatively small amount of available on-board memory, which is typically
up to 80 GB per single board for the top GPU models on the market. Estimates
show that more memory is required to run large countries like Germany or France
in their entirety, without breaking a scenario into sub-regions. The architecture
of GEMSim allows the implementation of such an approach, but it may require
substantial changes in the simulation loop. First, one should implement partitioning
of the population into realms, each of them running on a separate GPU. Second, one
has to deal with the limitations in dynamic memory allocation on GPUs. As agents
can cross the boundaries of realms during the simulation, their data, like individual
daily plans, need to be transferred between GPUs. This transfer procedure can
be even more complicated for public transit vehicles or shared taxis, as passenger
data must be collected and transferred as well. Potentially, an approach similar to
dynamic agents for taxi drivers can be utilized for transferred agents. It is, however,
unclear what the impact would be on the runtime performance when running such a
multi-GPU traffic simulation. One can also consider using Nvidia’s Unified Memory
technology, which allows GPUs to transparently access each other’s memories while
the devices are connected directly through the high-speed NVLink interconnect.

Unified Memory. As the CPU and GPU parts of the simulator require tighter
synchronization when modelling fleet services, one may think about using a so-
called Unified Memory provided by CUDA. This technology allows the use of a
single memory space for all devices in a system (CPUs and GPUs), and automatically
migrates data between the host and a device when required (i.e., when a GPU thread
attempts to access an array which is located on the host side). The Unified Memory
can greatly simplify the development of such GPU-accelerated models by taking
over some data copying responsibilities from a developer, as well as giving more
opportunities like multi-GPU execution without implementing complex cross-device
synchronization schemes. It would be interesting to evaluate the applicability of
this technology to traffic simulations, as well as the impacts of introduced data
management overheads on the runtime performance. The Unified Memory design
can also include cases when CPUs and GPUs share the same physical memory space,
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so the data is always coherent. Execution on such coherent architectures would
be of especial interest, and one may also consider splitting the traffic modelling
workload between CPU and GPU threads. Moreover, emerging technologies like
CXL (Compute Express Link) may provide memory pools for both CPUs and GPUs,
hence solving the issue of limited on-board memory capacity.

Data types with reduced precision. As was demonstrated, GEMSim’s GPU-
accelerated model is mostly memory- or latency-bound in terms of runtime perfor-
mance. Therefore, in order to improve the performance even further, one needs to
either improve the access patterns of GPU threads (which was shown to be difficult
for agents with non-linear logic), or reduce the amount of data transferred to and
from global (on-board) memory. Recently, GPUs gained support for data types of re-
duced precision used mainly in machine learning applications. For example, instead
of using a four-byte data type to store a floating-point variable, a two-byte data type
may be suitable in some cases, effectively reducing the required memory bandwidth
by half. This approach, however, may face difficulties and runtime penalties due to
the need for data type conversion between the host and the GPU.

More non-CUDA backends. With the ongoing developments in heterogeneous
computing, more hardware engineering companies are releasing frameworks for
software developers to simplify the implementation of massively parallel models on
heterogeneous hardware. For example, Intel is pushing its oneAPI toolkit which
allows a unified code to run on CPUs, GPUs and other types of hardware acceler-
ators. At the same time, AMD also provides the HIP programming environment
which allows portable GPU-accelerated applications that can run on GPUs from
both Nvidia and AMD. Another company, Apple, has its own application pro-
gramming interface, Metal, used for hardware-accelerated graphics and massively
parallel computations. Thus, it would be interesting to see GEMSim (and other
GPU-accelerated mobility simulators) ported to other hardware and investigate its
runtime performance there.

Vulkan rendering in Quartz. The OpenGL interface, used by Quartz to render
moving agents, is already 30 years old and it was not designed for modern hardware.
One of the most serious limitations of OpenGL is single-threaded rendering, where
only a single CPU core can interact with the rendering context. Modern rendering
interfaces like Vulkan or Metal were designed for multi-threaded systems, and they
provide possibilities for low-level optimizations like multi-threaded rendering. One
can try to use such new interfaces to improve the rendering performance of Quartz
when multiple threads can prepare per-frame data.
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a.1 calibration coefficients

Table A.1. Optimal scaling coefficients for spatial and capacity buffers of the network
obtained for different population samples of the Switzerland scenario.

Sample, % k∗
l k∗

f σ[k∗
l ] σ[k∗

f ]

1 0.0086 0.0110 0.0025 0.0012

2 0.0680 0.0200 0.0192 0.0000

5 0.0920 0.0500 0.0130 0.0000

10 0.6200 0.1000 0.2588 0.0000

20 0.9000 0.2200 0.1414 0.0447

30 0.9400 0.3000 0.0548 0.0000

40 0.9600 0.4000 0.0548 0.0000

50 0.9800 0.5000 0.0447 0.0000

60 0.7800 0.6000 0.2049 0.0000

70 0.5600 0.7000 0.0548 0.0000

80 0.7000 0.8000 0.0707 0.0000

90 0.8000 0.9000 0.0707 0.0000
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a.2 measures of goodness-of-fit

Table A.2. Measures of goodness-of-fit for the morning peak hour (07:00–08:00) obtained for different population samples of the Switzerland
scenario. Values of the measures of the smallest population samples passing an acceptance threshold are marked in bold.

Sample, % U Us Um Uc RMSNE GEH5, % GEH10, % Sm
α Sm,hw

α

1 0.1970 0.0022 0.0113 0.9864 2.7663 19.77 13.58 0.51 0.23

2 0.1441 0.0021 0.0035 0.9944 1.9397 21.62 5.85 0.55 0.33

5 0.0932 0.0003 0.0078 0.9918 1.2105 13.61 0.79 0.65 0.50

10 0.0694 0.0064 0.0083 0.9852 0.8493 5.42 0.11 0.77 0.66

20 0.0543 0.0036 0.0027 0.9936 0.5756 1.19 0.05 0.92 0.84

30 0.0370 0.0001 0.0038 0.9958 0.4278 0.11 0.02 1.00 0.97

40 0.0310 0.0003 0.0058 0.9935 0.3442 0.04 0.01 1.00 1.00

50 0.0258 0.0002 0.0042 0.9950 0.2819 0.02 0.01 1.00 1.00

60 0.0203 0.0002 0.0034 0.9954 0.2321 0.01 0.00 1.00 1.00

70 0.0169 0.0001 0.0025 0.9959 0.1879 0.01 0.00 1.00 1.00

80 0.0143 0.0000 0.0025 0.9954 0.1464 0.01 0.00 1.00 1.00

90 0.0111 0.0002 0.0042 0.9920 0.1033 0.00 0.00 1.00 1.00
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Table A.3. Measures of goodness-of-fit for the noon hour (12:00–13:00) obtained for different population samples of the Switzerland scenario.
Values of the measures of the smallest population samples passing an acceptance threshold are marked in bold.

Sample, % U Us Um Uc RMSNE GEH5, % GEH10, % Sm
α Sm,hw

α

1 0.2610 0.0013 0.0920 0.9067 3.3671 14.24 10.58 0.67 0.21

2 0.1954 0.0026 0.0625 0.9348 2.3822 15.95 4.58 0.70 0.30

5 0.1321 0.0067 0.0506 0.9427 1.4629 10.89 0.77 0.76 0.47

10 0.1041 0.0096 0.0419 0.9485 1.0027 4.77 0.15 0.84 0.63

20 0.0810 0.0168 0.0573 0.9259 0.7208 1.38 0.08 0.93 0.81

30 0.0748 0.0264 0.0702 0.9034 0.6504 0.83 0.08 0.97 0.87

40 0.0719 0.0305 0.0845 0.8849 0.5754 0.64 0.07 0.99 0.91

50 0.0698 0.0324 0.0851 0.8824 0.5310 0.53 0.08 1.00 0.94

60 0.0710 0.0334 0.0887 0.8778 0.4971 0.51 0.09 1.00 0.95

70 0.0653 0.0394 0.0963 0.8642 0.4704 0.47 0.08 1.00 0.97

80 0.0560 0.0495 0.1056 0.8448 0.4494 0.41 0.05 1.00 0.98

90 0.0550 0.0531 0.1130 0.8338 0.4383 0.39 0.05 1.00 0.99
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Table A.4. Measures of goodness-of-fit for the evening peak hour (17:00–18:00) obtained for different population samples of the Switzerland
scenario. Values of the measures of the smallest population samples passing an acceptance threshold are marked in bold.

Sample, % U Us Um Uc RMSNE GEH5, % GEH10, % Se
α Se,hw

α

1 0.1856 0.0052 0.0124 0.9824 2.7455 19.23 14.49 0.52 0.24

2 0.1357 0.0061 0.0020 0.9919 1.8854 20.81 6.71 0.57 0.33

5 0.0910 0.0002 0.0204 0.9794 1.1995 13.74 1.09 0.66 0.50

10 0.0723 0.0023 0.0021 0.9955 0.8389 6.06 0.33 0.77 0.65

20 0.0622 0.0013 0.0255 0.9731 0.5827 1.76 0.29 0.91 0.82

30 0.0477 0.0042 0.0372 0.9585 0.4414 0.46 0.17 0.99 0.94

40 0.0445 0.0074 0.0539 0.9385 0.3632 0.37 0.17 1.00 0.98

50 0.0405 0.0088 0.0610 0.9300 0.3039 0.32 0.17 1.00 1.00

60 0.0356 0.0093 0.0574 0.9330 0.2603 0.29 0.15 1.00 1.00

70 0.0293 0.0114 0.0590 0.9291 0.2212 0.28 0.07 1.00 1.00

80 0.0221 0.0097 0.0457 0.9438 0.1808 0.14 0.04 1.00 1.00

90 0.0135 0.0034 0.0153 0.9791 0.1261 0.04 0.01 1.00 1.00
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Table A.5. Measures of goodness-of-fit for a whole day (00:00–24:00) obtained for different population samples of the Switzerland scenario.

Sample, % U Us Um Uc RMSNE GEH5, % GEH10, % Sm
α Sm,hw

α

1 0.0782 0.0296 0.0746 0.8957 2.3386 31.14 27.59 0.22 0.19

2 0.0637 0.0439 0.0857 0.8703 1.6581 32.96 16.27 0.29 0.24

5 0.0547 0.0716 0.1398 0.7884 1.0607 25.54 8.23 0.40 0.28

10 0.0473 0.0651 0.1309 0.8038 0.7403 16.46 4.74 0.55 0.36

20 0.0451 0.0732 0.1488 0.7778 0.5306 11.84 3.90 0.68 0.40

30 0.0480 0.0935 0.1718 0.7346 0.4659 13.55 4.61 0.69 0.28

40 0.0476 0.0971 0.1810 0.7217 0.4146 13.40 4.47 0.71 0.28

50 0.0471 0.0980 0.1781 0.7237 0.3802 13.26 4.33 0.73 0.27

60 0.0468 0.0987 0.1782 0.7230 0.3539 13.14 4.26 0.73 0.28

70 0.0461 0.1026 0.1806 0.7166 0.3359 13.14 4.21 0.74 0.27

80 0.0456 0.1047 0.1776 0.7175 0.3205 13.16 4.14 0.74 0.27

90 0.0452 0.1042 0.1730 0.7227 0.3082 13.03 4.07 0.74 0.27
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Table A.6. Measures of goodness-of-fit for public transit occupancy obtained for different population samples of the Switzerland scenario.
Values of the measures of the smallest population samples passing an acceptance threshold are marked in bold.

Sample, % U Us Um Uc RMSNE GEH5, % GEH10, % S
pt
α

1 0.4083 0.0187 0.0048 0.9765 4.5617 23.93 9.99 0.49

2 0.2536 0.0000 0.0708 0.9291 2.0408 24.21 3.76 0.53

5 0.1650 0.0001 0.0263 0.9737 1.3663 13.54 0.47 0.65

10 0.1150 0.0001 0.0165 0.9834 1.0205 4.74 0.03 0.79

20 0.0779 0.0001 0.0066 0.9933 0.8017 0.68 0.02 0.94

30 0.0591 0.0000 0.0025 0.9974 0.6759 0.09 0.01 1.00

40 0.0477 0.0000 0.0025 0.9974 0.6185 0.03 0.01 1.00

50 0.0391 0.0000 0.0021 0.9978 0.5245 0.02 0.00 1.00

60 0.0323 0.0000 0.0007 0.9991 0.5216 0.02 0.00 1.00

70 0.0263 0.0000 0.0005 0.9992 0.5454 0.02 0.01 1.00

80 0.0205 0.0000 0.0005 0.9990 0.5027 0.02 0.00 1.00

90 0.0153 0.0000 0.0002 0.9990 0.5968 0.02 0.01 1.00
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Table A.7. Performance of the simulated car transport obtained for different population samples of the Switzerland scenario.

Morning (07:00–08:00) Noon (12:00–13:00) Evening (17:00–18:00) Daily (00:00–24:00)

Sample, % VHT, % VKT, % VHT, % VKT, % VHT, % VKT, % VHT, % VKT, %

1 123.90 95.22 131.85 99.16 132.59 94.68 133.05 100.42

2 119.19 97.38 119.43 99.08 123.52 95.56 121.47 100.11

5 106.32 99.64 102.41 99.78 106.89 101.03 101.50 100.21

10 102.58 99.61 99.31 99.80 104.92 100.60 100.20 100.02

20 98.32 100.35 95.53 100.22 97.33 103.07 93.93 100.20

30 99.51 100.37 95.32 100.21 98.32 102.41 94.68 100.21

40 99.27 100.37 95.63 100.28 97.30 102.67 94.17 100.23

50 99.14 100.28 95.54 100.22 96.81 102.64 94.00 100.17

60 99.30 100.24 95.80 100.40 96.54 102.28 94.22 100.17

70 99.24 100.08 96.72 100.29 96.71 101.77 94.78 100.06

80 99.57 100.05 97.65 100.18 98.02 101.21 96.31 100.08

90 99.80 99.99 98.95 100.19 99.09 100.52 97.98 100.00

Reference case for VHT (hours): 219 469 in the morning, 107 355 in the noon, 359 633 in the evening and 3 217 881 in a
day. Reference case for VKT (vehicle-km): 12 387 429 in the morning, 6 068 409 in the noon, 16 899 257 in the evening and
168 031 450 in a day.
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