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Commodity DRAM-based processing-using-memory (PuM) techniques that are supported by off-the-shelf

DRAM chips present an opportunity for alleviating the data movement bottleneck at low cost. However, sys-

tem integration of these techniques imposes non-trivial challenges that are yet to be solved. Potential solu-

tions to the integration challenges require appropriate tools to develop any necessary hardware and software

components. Unfortunately, current proprietary computing systems, specialized DRAM-testing platforms, or

system simulators do not provide the flexibility and/or the holistic system view that is necessary to properly

evaluate and deal with the integration challenges of commodity DRAM-based PuM techniques.

We design and develop Processing-in-DRAM (PiDRAM), the first flexible end-to-end framework that en-

ables system integration studies and evaluation of real, commodity DRAM-based PuM techniques. PiDRAM

provides software and hardware components to rapidly integrate PuM techniques across the whole system

software and hardware stack. We implement PiDRAM on an FPGA-based RISC-V system. To demonstrate the

flexibility and ease of use of PiDRAM, we implement and evaluate two state-of-the-art commodity DRAM-

based PuM techniques: (i) in-DRAM copy and initialization (RowClone) and (ii) in-DRAM true random num-

ber generation (D-RaNGe). We describe how we solve key integration challenges to make such techniques

work and be effective on a real-system prototype, including memory allocation, alignment, and coherence.

We observe that end-to-end RowClone speeds up bulk copy and initialization operations by 14.6× and 12.6×,

respectively, over conventional CPU copy, even when coherence is supported with inefficient cache flush

operations. Over PiDRAM’s extensible codebase, integrating both RowClone and D-RaNGe end-to-end on a

real RISC-V system prototype takes only 388 lines of Verilog code and 643 lines of C++ code.
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1 INTRODUCTION

Main memory is a major performance and energy bottleneck in computing systems [48, 120]. One
way of overcoming the main memory bottleneck is to move computation into/near memory, a
paradigm known as processing-in-memory (PiM) [120]. PiM reduces memory latency between
the memory units and the compute units, enables the compute units to exploit the large internal
bandwidth within memory devices, and reduces the overall power consumption of the system by
eliminating the need for transferring data over power-hungry off-chip interfaces [48, 120].

Recent works propose a variety of PiM techniques to alleviate the data movement problem.
One set of techniques propose to place compute logic near memory arrays (e.g., processing capa-
bility in the memory controller, logic layer of three-dimensional- (3D) stacked memory, or near
the memory array within the memory chip) [2–4, 12, 20–22, 25, 31, 34, 37, 39, 45–47, 51, 53, 57,
58, 65, 67, 79, 80, 86, 111, 118, 121, 131, 133, 152, 161, 172, 175–177]. These techniques are called
processing-near-memory (PnM) techniques [120]. Another set of techniques propose to lever-
age analog properties of memory (e.g., Static Random-Access Memory, Dynamic Random-Access
Memory (DRAM), Non-Volatile Memory) operation to perform computation in different ways (e.g.,
leveraging non-deterministic behavior in memory array operation to generate random numbers,
performing bitwise operations within the memory array by exploiting analog charge sharing prop-
erties of DRAM operation) [1, 5–9, 17, 19, 24, 28, 32, 36, 42–44, 54–56, 69, 73, 82, 83, 91–93, 102–104,
114, 134, 136, 145, 147, 151, 155, 159, 162, 167, 170, 171]. These techniques are known as processing-

using-memory (PuM) techniques [120].
A subset of PuM proposals devise mechanisms that enable computation using DRAM ar-

rays [5, 6, 28, 32, 44, 54, 82, 83, 103, 134, 145, 147, 159, 167]. These mechanisms provide significant
performance benefits and energy savings by exploiting the high internal bit-level parallelism of
DRAM for (1) bulk data copy and initialization operations at row granularity [1, 28, 134, 145, 159],
(2) bitwise operations [7–9, 103, 104, 114, 142, 144, 146–148, 167], (3) arithmetic operations [1, 6, 17,
32, 36, 42, 43, 55, 56, 73, 91–93, 102, 103, 151, 162, 170], and (4) security primitives (e.g., true random
number generation [83] and physical unclonable functions [82, 126]). Recent works [44, 82, 83]
show that some of these PuM mechanisms can already be reliably supported in contemporary,
off-the-shelf DRAM chips.1 Given that DRAM is the dominant main memory technology, these
commodity DRAM-based PuM techniques provide a promising way to improve the performance
and energy efficiency of existing and future systems at no additional DRAM hardware cost.

Integration of these PuM mechanisms in a real system imposes non-trivial challenges that re-
quire further research to find appropriate solutions. For example, in-DRAM bulk data copy and
initialization techniques [28, 147] require modifications to memory management that affect dif-
ferent parts of the system. First, these techniques have specific memory allocation and alignment
requirements (e.g., page-granularity source and destination operand arrays should be allocated and
aligned in the same DRAM subarray) that are not satisfied by existing memory allocation primitives
(e.g., malloc [106] and posix_memalign [108]). Second, in-DRAM copy requires efficient handling
of memory coherence, such that the contents of the source operand in DRAM are up-to-date.

1We are especially interested in PiM techniques that do not require any modification to the DRAM chips or the DRAM

interface.
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None of these system integration challenges of PuM mechanisms can be efficiently studied in
existing general-purpose computing systems (e.g., personal computers, cloud computers, and em-
bedded systems), special-purpose testing platforms (e.g., SoftMC [60]), or system simulators (e.g.,
gem5 [18, 132], Ramulator [90, 137], Ramulator-PIM [139], zsim [140], DAMOVSim [125, 138], and
other simulators [35, 168, 169, 174]). Existing general-purpose computing systems do not permit
dynamically changing DDRx timing parameters, which is required to integrate many PuM mech-
anisms into real systems. Although special-purpose testing platforms can be used to dynamically
change DDRx timing parameters, these platforms do not model an end-to-end computing system
where system integration of PuM mechanisms can be studied. System simulators do not model
DRAM operation that violates manufacturer-recommended timing parameters and do not have a
way of interacting with real DRAM chips that embody undisclosed and unique characteristics that
have implications on how PuM techniques are integrated into real systems.

Our goal is to design and implement a flexible real-system platform that can be used to solve
system integration challenges and analyze tradeoffs of end-to-end implementations of commod-
ity DRAM-based PuM mechanisms. To this end, we develop Processing-in-DRAM (PiDRAM)

framework, the first flexible, end-to-end, and open source framework that enables system integra-
tion studies and evaluation of real PuM techniques using real unmodified DRAM devices.

PiDRAM facilitates system integration studies of new commodity DRAM-based PuM mecha-
nisms by providing four customizable hardware and software components that can be used as a
common basis to enable system support. PiDRAM contains two main hardware components. First,
a custom, easy-to-extend memory controller allows for implementing new DRAM command se-
quences that perform PuM operations. For example, the memory controller can be extended with
a single state machine in its hardware description to implement a new DDRx command sequence
with user-defined timing parameters to implement a new PuM technique (i.e., perform a new PuM
operation). Second, an ISA-transparent controller (PuM Operations Controller (POC)) super-
vises PuM execution. POC exposes the PuM operations to the software components of PiDRAM
over a memory-mapped interface to the processor, allowing the programmer to perform PuM oper-
ations using the PiDRAM framework by executing conventional LOAD/STORE instructions. The
memory-mapped interface allows PiDRAM to be easily ported to systems that implement different
instruction set architectures. PiDRAM contains two main software components. First, an extensible

library allows system designers to implement software support for PuM mechanisms. This library
contains customizable functions that communicate with POC to perform PuM operations. Second,
a custom supervisor software contains the necessary OS primitives (e.g., memory management) to
enable end-to-end implementations of commodity DRAM-based PuM techniques.

We demonstrate a prototype of PiDRAM on an FPGA-based RISC-V system [11]. To demonstrate
the flexibility and ease of use of PiDRAM, we implement two prominent PuM techniques: (1) Row-

Clone [145], an in-DRAM data copy and initialization technique, and (2) an in-DRAM true ran-

dom number generation technique (D-RaNGe) [83] based on activation-latency failures. To
support RowClone (Section 5), (i) we customize the PiDRAM memory controller to issue carefully
engineered sequences of DRAM commands that perform data copy (and initialization) operations
in DRAM, and (ii) we extend the custom supervisor software to implement a new memory manage-
ment mechanism that satisfies the memory allocation and alignment requirements of RowClone.
For D-RaNGe (Section 6), we extend (i) the PiDRAM memory controller with a new state machine
that periodically performs DRAM accesses with reduced activation latencies to generate random
numbers [83] and a new hardware random number buffer that stores the generated random num-
bers, and (ii) the custom supervisor software with a function that retrieves the random numbers
from the hardware buffer to the user program. Our end-to-end evaluation of (i) RowClone demon-
strates up to 14.6× speedup for bulk copy and 12.6× initialization operations over CPU copy (i.e.,
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Fig. 1. DRAM organization (left). Timing diagram of DRAM commands (right).

conventional memcpy), even when coherence is satisfied using inefficient cache flush operations,
and (ii) D-RaNGe demonstrates that an end-to-end integration of D-RaNGe can provide true ran-
dom numbers at high throughput (8.30 Mb/s) and low latency (4-bit random number in 220 ns),
even without any hardware or software optimizations. Implementing both PuM techniques over
the Verilog and C++ codebase provided by PiDRAM requires only 388 lines of Verilog code and
643 lines of C++ code.

Our contributions are as follows:

• We develop PiDRAM, the first flexible framework that enables end-to-end integration and
evaluation of PuM mechanisms using real unmodified DRAM chips.
• We develop a prototype of PiDRAM on an FPGA-based platform. To demonstrate the ease-

of-use and evaluation benefits of PiDRAM, we implement two state-of-the-art DRAM-based
PuM mechanisms, RowClone and D-RaNGe, and evaluate them on PiDRAM’s prototype
using unmodified DDR3 chips.
• We devise a new memory management mechanism that satisfies the memory allocation

and alignment requirements of RowClone. We demonstrate that our mechanism enables
RowClone end-to-end in the full system, and provides significant performance improve-
ments over traditional CPU-based copy and initialization operations (memcpy [107] and
calloc [105]) as demonstrated on our PiDRAM prototype.
• We implement and evaluate a state-of-the-art D-RaNGe. Our implementation provides a

solid foundation for future work on system integration of DRAM-based PuM security prim-
itives (e.g., PUFs [13, 82] and TRNGs [13, 123, 124]), implemented using real unmodified
DRAM chips.

2 BACKGROUND

We provide the relevant background on DRAM organization, DRAM operation, and commodity
DRAM-based PuM techniques. We refer the reader to prior works for more comprehensive back-
ground about DRAM organization and operation [26, 29, 49, 50, 87, 89, 95, 98, 100, 113, 123, 128].

2.1 DRAM Background

DRAM-based main memory is organized hierarchically. Figure 1 (left) depicts this organization. A
processor is connected to one or more memory channels (DDRx in the figure) ➊. Each channel has
its own command, address, and data buses. Multiple memory modules can be plugged into a single
channel. Each module contains several DRAM chips ➋. Each chip contains multiple DRAM banks
that can be accessed independently ➌. Data transfers between DRAM memory modules and proces-
sors occur at cache block granularity. The cache block size is typically 64 bytes in current systems.

Inside a DRAM bank, DRAM cells are laid out as a two-dimensional array of wordlines (i.e.,
DRAM rows) and bitlines (i.e., DRAM columns) ➍. Wordlines are depicted in blue and bitlines
are depicted in red in Figure 1. Wordline drivers drive the wordlines and sense amplifers read the
values on the bitlines. A DRAM cell is connected to a bitline via an access transistor ➎. When
enabled, an access transistor allows charge to flow between a DRAM cell and the cell’s bitline.
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DRAM Operation. When all DRAM rows in a bank are closed, DRAM bitlines are precharged

to a reference voltage level of VDD

2 . The memory controller sends an activate (ACT) command
to the DRAM module to drive a DRAM wordline (i.e., enable a DRAM row). Enabling a DRAM
row starts the charge sharing process. Each DRAM cell connected to the DRAM row starts sharing

its charge with its bitline. This causes the bitline voltage to deviate from VDD

2 (i.e., the charge in
the cell perturbs the bitline voltage). The sense amplifier senses the deviation in the bitline and
amplifies the voltage of the bitline either to VDD or to 0. As such, an ACT command copies one
DRAM row to the sense amplifiers (i.e., row buffer). The memory controller can send READ/WRITE
commands to transfer data from/to the sense amplifier array. Once the memory controller needs
to access another DRAM row, the memory controller can close the enabled DRAM row by sending
a precharge (PRE) command on the command bus. The PRE command first disconnects DRAM

cells from their bitlines by disabling the enabled wordline and then precharges the bitlines to VDD

2 .

DRAM Timing Parameters. DRAM datasheets specify a set of timing parameters that define
the minimum time window between valid combinations of DRAM commands [26, 27, 81, 97]. The
memory controller must wait for tRCD, tRAS, and tRP nanoseconds between successive ACT→
RD, ACT → ACT, and PRE → ACT commands, respectively (Figure 1, right). Prior works show
that these timing parameters can be violated (e.g., successive ACT→ RD commands may be issued
with a shorter time window than tRCD) to improve DRAM access latency [26, 27, 81, 96, 97], im-
plement physical unclonable functions [13, 82, 126], generate true random numbers [83, 123, 124],
copy data [44, 145], and perform bitwise AND/OR operations [44, 142, 146–148] in commodity
DRAM devices.

DRAM Internal Address Mapping. DRAM manufacturers use DRAM-internal address mapping
schemes [30, 89, 130] to translate from logical (e.g., row, bank, column) DRAM addresses that
are used by the memory controller to physical DRAM addresses that are internal to the DRAM
chip (e.g., the physical position of a DRAM row within the chip). These schemes allow (i) post-
manufacturing row repair techniques to map erroneous DRAM rows to redundant DRAM rows and
(ii) DRAM manufacturers to organize DRAM internals in a cost-efficient and reliable way [76, 158].
DRAM-internal address mapping schemes can be substantially different across different DRAM
chips [15, 30, 63, 70, 75–77, 88, 96, 110, 127, 129, 130, 141]. Thus, consecutive logical DRAM row
addresses might not point to physical DRAM rows in the same subarray.

2.2 PuM Techniques

Prior work proposes a variety of in-DRAM computation mechanisms (i.e., PuM techniques) that (i)
have great potential to improve system performance and energy efficiency [6, 28, 40, 54, 144–150]
or (ii) can provide low-cost security primitives [13, 14, 82, 83, 124, 126]. A subset of these in-DRAM
computation mechanisms are demonstrated on real DRAM chips [13, 44, 82, 83, 124, 126]. We
describe the major relevant prior works briefly:

RowClone [145] is a low-cost DRAM architecture that can perform bulk data movement opera-
tions (e.g., copy, initialization) inside DRAM chips at high performance and low energy.

Ambit [144, 146, 147, 149, 150] is a new DRAM substrate that can perform (i) bitwise majority
(and thus bitwise AND/OR) operations across three DRAM rows by simultaneously activating
three DRAM rows and (ii) bitwise NOT operations on a DRAM row using 2-transistor 1-capacitor
DRAM cells [72, 112].

ComputeDRAM [44] demonstrates in-DRAM copy (previously proposed by RowClone [145]) and
bitwise AND/OR operations (previously proposed by Ambit [147]) on real DDR3 chips. Compute-
DRAM performs in-DRAM operations by issuing carefully engineered, valid sequences of DRAM
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commands with violated tRAS and tRP timing parameters (i.e., by not obeying manufacturer-
recommended timing parameters defined in DRAM chip specifications [116]). By issuing command
sequences with violated timing parameters, ComputeDRAM activates two or three DRAM rows
in a DRAM bank in quick succession (i.e., performs two or three row activations). ComputeDRAM
leverages (i) two row activations to transfer data between two DRAM rows and (ii) three row
activations to perform the majority function in real unmodified DRAM chips.

D-RaNGe [83] is a state-of-the-art high-throughput DRAM-based true random number genera-
tion technique. D-RaNGe leverages the randomness in DRAM activation (tRCD) failures as its en-
tropy source. D-RaNGe extracts random bits from DRAM cells that fail with 50% probability when
accessed with a reduced (i.e., violated) tRCD. D-RaNGe demonstrates high-quality true random
number generation on a vast number of real DRAM chips across multiple generations.

QUAC-TRNG [124] demonstrates that four DRAM rows can be activated in a quick succession
using an ACT-PRE-ACT command sequence (called QUAC) with violated tRAS and tRP timing
parameters in real DDR4 DRAM chips. QUAC-TRNG uses QUAC to generate true random numbers
at high throughput and low latency.

3 MOTIVATION

Integrating DRAM-based PuM techniques into a real system requires modifications across the
hardware and software stack. End-to-end implementations of PuM techniques require proper tools
that (i) are flexible, to enable rapid development of PuM techniques and (ii) support real DRAM
devices, to correctly observe the effects of reduced DRAM timing operations that are fundamental
to enabling commodity DRAM-based PuM in real unmodified DRAM devices. Existing general-
purpose computers, specialized DRAM testing platforms, and simulators (e.g., those mentioned
in Section 1) cannot be used to study end-to-end implementations of commodity DRAM-based
PuM techniques. We discuss the limitations of such computers, specialized testing platforms, and
simulators in detail in Section 8.

Our goal is to develop a flexible end-to-end framework that enables rapid system integration of
commodity DRAM-based PuM techniques and facilitates studies on end-to-end full-system imple-
mentations of PuM techniques using real DRAM devices. To this end, we develop PiDRAM.

4 PIDRAM

Implementing commodity DRAM-based PuM techniques end-to-end requires developing new
hardware (HW) and software (SW) components or augmenting existing components with new
functionality (e.g., memory allocation for RowClone requires a new memory allocation routine in
the OS, Section 5.1). To ease the process of modifying various components across the hardware
and software stack to implement new PuM techniques, PiDRAM provides key HW and SW compo-
nents. Figure 2 presents an overview of the HW and SW components of the PiDRAM framework.
In Section 4.3, we describe the general workflow for executing a PuM operation on PiDRAM.

4.1 Hardware Components

PiDRAM comprises two key hardware components. Both of these components are designed with
the goal to provide a flexible and easy to use framework for evaluating PuM techniques.

❶ PuM Operations Controller. POC decodes and executes PiDRAM instructions that are used
by the programmer to perform PuM operations. POC communicates with the rest of the system
over two well-defined interfaces. First, it communicates with the CPU over a memory-mapped
interface, where the CPU can send data to or receive data from POC using memory store and
load instructions. The CPU accesses the memory-mapped registers (instruction, data, and flag

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 8. Publication date: November 2022.



PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-DRAM 8:7

Fig. 2. PiDRAM overview. Modified hardware (in green) and software (in blue) components. Unmodified
components are in gray. A pumolib function executes load and store instructions in the CPU to perform
PuM operations (in red). We use yellow to highlight the key hardware structures that are controlled by the
user to perform PuM operations.

registers) in POC to execute in-DRAM operations. This improves the portability of the framework
and facilitates porting the framework to systems that employ different instruction set architec-
tures. Second, POC communicates with the memory controller to perform PuM operations in the
DRAM chip over a simple hardware interface. To do so, POC (i) requests the memory controller to
perform a PuM operation, (ii) waits until the memory controller performs the operation, and (iii)
receives the result of the PuM operation from the memory controller. The CPU can read the result
of the operation by executing load instructions that target the data register in POC.

❷ Custom Memory Controller. PiDRAM’s memory controller provides an easy-to-extend
basis for commodity DRAM-based PuM techniques that require issuing DRAM commands with
violated timing parameters [13, 44, 82, 83, 124]. The memory controller is designed modularly
and requires easy-to-make modifications to its scheduler to implement new PuM techniques. For
instance, RowClone operations (Section 5) is enabled in just 60 lines of Verilog code on top of the
baseline custom memory controller’s scheduler that implements conventional DRAM operations
(e.g., read, write).

The custom memory controller employs three key sub-modules to facilitate the implementation
of new PuM techniques. (i) The Periodic Operations Module periodically issues DDR3 refresh [117]
and interface maintenance commands [52]. (ii) A simple DDR3 Command Scheduler supports con-
ventional DRAM operations (e.g., activate, precharge, read, and write). This scheduler applies an
open-bank policy (i.e., DRAM banks are left open following a DRAM row activation) to exploit
temporal locality in memory accesses to the DRAM module. LOAD/STORE memory requests are
simply handled by the command scheduler in a latency-optimized way. Thus, new modules that are
implemented to provide new PuM functionality (e.g., a state machine that controls the execution
of a new PuM operation) in the custom memory controller do not compromise the performance of
LOAD/STORE memory requests. (iii) The Configuration Register File (CRF) comprises 16 user-
programmable registers that store the violated timing parameters used for DDRx sequences that
trigger PuM operations (e.g., activation latency used in generating true random numbers using
D-RaNGe [83], see Section 6) and miscellaneous parameters for PuM implementations (e.g., true
random number generation period for D-RaNGe, see Section 6). In our implementation, CRF stores
only the timing parameters used for performing PuM operations (e.g., RowClone and D-RaNGe).
We do not store every standard DDRx timing parameter (i.e., non-violated, which are used exactly
as defined as in DRAM chip specifications) in the CRF. Instead these timings are embedded in the
command scheduler.

4.2 Software Components

PiDRAM comprises two key software components that complement and control PiDRAM’s hard-
ware components to provide a flexible and easy to use end-to-end PuM framework.
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Table 1. Pumolib Functions

Function Arguments Description

set_timings RowClone_T1, RowClone_T2, tRCD Updates CRF registers with the timing parameters used in RowClone (T1 and T2) and D-RaNGe (tRCD) operations.

rng_configure period, address, bit_offsets
Updates CRF registers, configuring the random number generator to to access the DRAM cache block at address

every period cycles and collect the bits at bit_offsets from the cache block.
copy_row source_address, destination_address Performs a RowClone-Copy operation in DRAM from the source_address to the destination_address.

activation_failure address Induces an activation failure in a DRAM location pointed by the address.

buf_size — Returns the number of random words in the random number buffer.

rand_dram — Returns 32 bits (i.e., random words) from the random number buffer.

❸ PuM Operations Library (pumolib). This extensible library allows system designers to
implement software support for PuM techniques. Pumolib contains customizable functions that
interface with POC to perform PuM operations in real unmodified DRAM chips. The customizable
functions hide the hardware implementation details of PuM techniques from software develop-
ers (that use pimolib). For example, although we expose PuM techniques to software via memory
LOAD/STORE operations (POC is exposed as a memory-mapped module, Section 4.1), PuM tech-
niques can also be exposed via specialized instructions provided by ISA extensions. Pumolib hides
such implementation details from the user of the library and contributes to the modular design of
the framework.

We implement a general protocol that defines how programmers express the information re-
quired to execute PuM operations to the POC. A typical function in pumolib performs a PuM
operation in four steps: It (i) writes a PiDRAM instruction to the POC’s instruction register, (ii) sets
the Start flag in POC’s flag register, (iii) waits for the POC to set the Ack flag in POC’s flag regis-
ter, and (iv) reads the result of the PuM operation from POC’s data register (e.g., the true random
number after performing an in-DRAM true random number generation operation, Section 6). We
list the currently implemented pumolib functions in Table 1.

❹ Custom Supervisor Software. PiDRAM provides a custom supervisor software that im-
plements the necessary OS primitives (i.e., virtual memory management, memory allocation, and
alignment) for end-to-end implementation of PuM techniques. This facilitates developing end-to-
end integration of PuM techniques in the system as these techniques require modifications across
the software stack. For example, integrating RowClone end-to-end in the full system requires
a new memory allocation mechanism (Section 5.1) that can satisfy the memory allocation con-
straints of RowClone [145]. Thus, we implement the necessary functions and data structures in
the custom supervisor software to implement an allocation mechanism that satisfies RowClone’s
constraints. This allows PiDRAM to be extended easily to implement support for new PuM tech-
niques that share similar memory allocation constraints (e.g., Ambit [147], SIMDRAM [54], and
QUAC-TRNG [124], as shown in Table 2).

4.3 Execution of a PuM Operation

We describe the general workflow for a PiDRAM operation (e.g., RowClone-Copy [145]) in Figure 3
over an example copy_row() function that is called by the user to perform a RowClone-Copy
operation in DRAM.

The user makes a system call to the custom supervisor software ① that in turn calls the
copy_row(source, destination) function in the pumolib ②. The function executes two store
instructions in the RISC-V core ③. The first store instruction updates the instruction register with
the copy_row instruction (that performs a RowClone-Copy operation in DRAM) ④ and the sec-
ond store instruction sets the Start flag in the flag register to logic-1 ⑤ in POC. When the Start
flag is set, POC instructs the PiDRAM memory controller to perform a RowClone-Copy operation
using violated timing parameters ⑥. The POC waits until the memory controller starts executing
the operation, after which it sets the Start flag to logic-0 and the Ack flag to logic-1 ⑦, indicating
that it started the execution of the PuM operation. The PiDRAM memory controller performs the
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Fig. 3. Workflow for a PiDRAM RowClone-Copy operation.

Table 2. Various Known PuM Techniques That Can Be Studied Using PiDRAM

PuM Technique Description Integration Challenges

ComputeDRAM-

based [44]

RowClone [145]

Bulk data-copy and
initialization within
DRAM

(i) memory allocation and alignment mechanisms that map source & destination operands of a copy operation
into same DRAM subarray; (ii) memory coherence, i.e., source operand must be up-to-date in DRAM.

D-RaNGe [83]
True random number
generation using DRAM

(i) periodic generation of true random numbers; (ii) memory scheduling policies that minimize the interference
caused by random number requests.

ComputeDRAM-based [44]
Ambit [147]

Bitwise operations in
DRAM

(i) memory allocation and alignment mechanisms that map operands of a bitwise operation into same DRAM
subarray; (ii) memory coherence, i.e., operands of the bitwise operations must be up-to-date in DRAM.

SIMDRAM [54]
Arithmetic operations
in DRAM

(i) memory allocation and alignment mechanisms that map operands of an arithmetic operation into same
DRAM subarray; (ii) memory coherence, i.e., operands of the arithmetic operations must be up-to-date in
DRAM; (iii) bit transposition, i.e., operand bits must be laid out vertically in a single DRAM bitline.

DL-PUF [82]
Physical unclonable
functions in DRAM

memory scheduling policies that minimize the interference caused by generating PUF responses.

QUAC-TRNG [123] and
Talukder+ [13]

True random number
generation using DRAM

(i) periodic generation of true random numbers; (ii) memory scheduling policies that minimize the interference
caused by random number requests; (iii) efficient integration of the SHA-256 cryptographic hash function.

PuM techniques we implement in this work are highlighted in bold.

RowClone-Copy operation by issuing a set of DRAM commands with violated timing parameters
⑧. When the last DRAM command is issued, the memory controller sets the Finish flag (denoted
as Fin. in Figure 3) in the flag register to logic-1 ⑨, indicating the end of execution for the last
PuM operation that the memory controller acknowledged. The copy function periodically checks
either the Ack or the Finish flag in the flag register (depending on a user-supplied argument) by
executing load instructions that target the flag register ⑩. When the periodically checked flag is
set, the copy function returns. This way, the copy function optionally blocks until the start (i.e.,
the Ack flag is set) or the end (i.e., the Finish flag is set) of the execution of the PuM operation (in
this example, RowClone-Copy).2

4.4 Use Cases

Beyond commodity DRAM-based PuM techniques [13, 44, 82, 83, 123], which PiDRAM can be
used to study, many prior works propose minor modifications to DRAM arrays to enable vari-
ous arithmetic [6, 32, 40, 54] and bitwise operations [6, 144, 147, 148, 150] and security primi-
tives [126]. These PuM techniques share common memory allocation and coherence requirements
(Section 5.1). PiDRAM facilitates developing new mechanisms that satisfy these requirements.
Table 2 describes some of the PuM case studies PiDRAM can enable.3

Other than providing an easy-to-use basis for end-to-end implementations of commod-
ity DRAM-based PuM techniques, PiDRAM can be easily extended with a programmable

2The data register is not used in a RowClone-Copy [145] operation, because the result of the RowClone-Copy operation

is stored in memory (i.e., the source memory row is copied to the destination memory row). The data register is used in a

D-RaNGe [83] operation, as described in Section 6.
3We acknowledge that PiDRAM’s key components require modifications to implement new PuM techniques in PiDRAM

and possibly to integrate PiDRAM into other systems. In fact, we quantify the degree of these modifications in our Row-

Clone and D-RaNGe case studies. We show that the key components form a useful and easy-to-extend basis for PuM

techniques with our Verilog and C code complexity analyses for both use cases (Sections 5.5.1 and 6.2).
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Fig. 4. PiDRAM’s FPGA prototype.

microprocessor placed near the memory controller to study system integration challenges of PnM
techniques (e.g., efficient pointer chasing [57, 58, 66], general-purpose compute [157], machine
learning [74, 84, 94, 101, 122], databases [21, 22, 99], and graph processing [16]).

4.5 PiDRAM Prototype

We develop a prototype of the PiDRAM framework on an FPGA-based platform. We use the Xil-
inx ZC706 FPGA board [166] to interface with real DDR3 modules. Xilinx provides a DDR3 PHY
IP [163] that exposes a low-level “DFI” interface [33] to the DDR3 module on the board. We use
this interface to issue DRAM commmands to the DDR3 module. We use the existing RISC-V-based
SoC generator, Rocket Chip [11], to generate the RISC-V hardware system. Our custom supervi-
sor software extends the RISC-V Proxy Kernel [135] to support the necessary OS primitives on
PiDRAM’s prototype. Figure 4 shows our prototype.

Simulation Infrastructure. To aid the users in testing the correctness of any modifications they
make on top of PiDRAM, we provide the developers with a Verilog simulation environment that
injects regular READ/WRITE commands and custom commands (e.g., update the CRF, perform
RowClone-Copy, generate random numbers) to the memory controller. When used in conjunction
with the Micron DDR3 Verilog model provided by Xilinx [163], the simulation environment can
help the developers to easily understand if something unexpected is happening in their implemen-
tation (e.g., if timing parameters are violated).

Open Source Repository. We make PiDRAM freely available to the research community as open
source software at https://github.com/CMU-SAFARI/PiDRAM. Our repository includes the full
PiDRAM prototype that has RowClone (Section 5) and D-RaNGe (Section 6) implemented end-to-
end on the RISC-V system.

5 CASE STUDY #1: END-TO-END ROWCLONE

We implement support for ComputeDRAM-based RowClone (in-DRAM copy/initialization) oper-
ations on PiDRAM to conduct a detailed study of the challenges associated with implementing
RowClone end-to-end on a real system. None of the relevant prior works [44, 54, 142, 145, 147,
148, 150, 159] provide a clear description or a real system demonstration of a working memory
allocation mechanism that can be implemented in a real operating system to expose RowClone
capability to the programmer.

5.1 Implementation Challenges

Data Mapping. RowClone has four data mapping and alignment requirements that cannot be
satisfied by current memory allocation mechanisms (e.g., malloc [106]). First, the source and des-
tination operands (i.e., page (4-KiB)-sized arrays) of the copy operation must reside in the same
DRAM subarray. We refer to this as the mapping requirement. Second, the source and destination
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Fig. 5. RowClone memory allocation requirements (left) and memory allocation mechanism overview (right).

operands must be aligned to DRAM rows. We refer to this as the alignment requirement. Third, the
size of the copied data must be a multiple of the DRAM row size. The size constraint defines the
granularity at which we can perform bulk-copy operations using RowClone. We refer to this as
the granularity requirement. Fourth, RowClone must operate on up-to-date data that resides in
main memory. Modern systems employ caches to exploit locality in memory accesses and reduce
memory latency. Thus, cache blocks (typically 64 B) of either the source or the destination operands
of the RowClone operation may have cache block copies present in the cache hierarchy. Before per-
forming RowClone, the cached copies of pieces of both source and destination operands must be in-
validated and written back to main memory. We refer to this as the memory coherence requirement.

We explain the data mapping and alignment requirements of RowClone using Figure 5(a). The
operand Source 1 cannot be copied to the operand Target 1 as the operands do not satisfy the
granularity requirement (➊). Performing such a copy operation would overwrite the remaining
(i.e., non-Target 1) data in Target 1’s DRAM row with the remaining (i.e., non-Source 1) data in
Source 1’s DRAM row. Source 2 cannot be copied to Target 2 as Target 2 is not aligned to its DRAM
row (➋). Source 3 cannot be copied to Target 3, as these operands are not mapped to the same
DRAM subarray (➌). In contrast, Source 4 can be copied to Target 4 using in-DRAM copy, because
these operands are (i) mapped to the same DRAM subarray, (ii) aligned to their DRAM rows and
(iii) occupy their rows completely (i.e., the operands have sizes equal to DRAM row size) (➍).

5.2 Memory Allocation Mechanism

Computing systems employ various layers of address mappings that obfuscate the DRAM row-
bank-column address mapping from the programmer [30, 61], which makes allocating source and
target operands as depicted in Figure 5(a) (➍) difficult. Only the virtual addresses are exposed to the
programmer. Without control over the virtual address to DRAM address mapping, the programmer
cannot easily place data in a way that satisfies the mapping and alignment requirements of an in-
DRAM copy operation.

We implement a new memory allocation mechanism that can perform memory allocation for
RowClone (in-DRAM copy/initialization) operations. This mechanism enables page-granularity
RowClone operations (i.e., a virtual page can be copied to another virtual page using RowClone)
without introducing any changes to the programming model. Figure 5(b) depicts an overview of
our memory allocation mechanism.

At a high level, our memory allocation mechanism (i) splits the source and destination operands
into page-sized virtually addressed memory blocks, (ii) allocates two physical pages in different
DRAM rows in the same DRAM subarray, (iii) assigns these physical pages to virtual pages that
correspond to the source and destination memory blocks at the same index such that the source
block can be copied to the destination block using RowClone. We repeat this process until we
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exhaust the page-sized memory blocks. As the mechanism processes subsequent page-sized mem-
ory blocks of the two operands, it allocates physical pages from a different DRAM bank to maxi-
mize bank-level parallelism in streaming accesses to these operands.

To overcome the mapping, alignment, and granularity problems, we implement our memory
management mechanism in the custom supervisor software of PiDRAM. We expose the allocation
mechanism using the alloc_align(N, ID) system call. The system call returns a pointer to a
contiguous array of N bytes in the virtual address space (i.e., one operand). Multiple calls with
the same ID to alloc_align(N, ID) place the allocated arrays in the same subarray in DRAM,
such that they can be copied from one to another using RowClone. If N is too large such that it
exceeds the size of available physical memory, then alloc_align fails and causes an exception.
Our implementation of RowClone requires application developers to directly use alloc_align to
allocate data instead of malloc and similar function calls.

The custom supervisor software maintains three key structures to make alloc_align() work:
(i) Subarray Mapping Table (SAMT), (ii) Allocation ID Table (AIT), and (iii) Initializer Rows

Table (IRT).
(1) Subarray Mapping Table. We use the SAMT to maintain a list of physical page addresses

that point to DRAM rows that are in the same DRAM subarray. alloc_align() queries SAMT to
find physical addresses that map to rows in one subarray.

SAMT contains the physical pages that point to DRAM rows in each subarray. SAMT is indexed
using subarray identifiers in the range [0, number of subarrays). SAMT contains an entry for every
subarray. An entry consists of two elements: (i) the number of free physical address tuples and
(ii) a list of physical address tuples. Each tuple in the list contains two physical addresses that
respectively point to the first and second halves of the same DRAM row. The list of tuples contains
all the physical addresses that point to DRAM rows in the DRAM subarray indexed by the SAMT
entry. We allocate free physical pages listed in an entry and assign them to the virtual pages (i.e.,
memory blocks) that make up the row-copy operands (i.e., arrays) allocated by alloc_align().
We slightly modify our high-level memory allocation mechanism to allow for two memory blocks
(4 KiB virtually addressed pages) of an array to be placed in the same DRAM row, as the page
size in our system is 4 KiB and the size of a DRAM row is 8 KiB. We call two memory blocks
in the same operand that are placed in the same DRAM row sibling memory blocks (also called
sibling pages). The parameter N of the alloc_align() call defines this relationship: We designate
memory blocks that are precisely N/2 bytes apart as sibling memory blocks.

Finding the DRAM Rows in a Subarray. Finding the DRAM row addresses that belong to
the same subarray is not straightforward due to DRAM-internal mapping schemes employed by
DRAM manufacturers (Section 2.1). It is extremely difficult to learn which DRAM address (i.e.,
bank-row-column) is actually mapped to a physical location (e.g., a subarray) in the DRAM de-
vice, as these mappings are not exposed through publicly accessible datasheets or standard defi-
nitions [71, 116, 130]. We make the key observation that the entire mapping scheme need not be
available to successfully perform RowClone operations.

We observe that for a set of {source, destination} DRAM row address pairs, RowClone opera-
tions repeatedly succeed with a 100% probability. We hypothesize that these pairs of DRAM row
addresses are mapped to the same DRAM subarray. We identify these row address pairs by con-
ducting a RowClone success rate experiment where we repeatedly perform RowClone operations
between every source, destination row address pair in a DRAM bank. Our experiment works in
three steps: We (i) initialize both the source and the destination row with random data, (ii) per-
form a RowClone operation from the source to the destination row, and (iii) compare the data in
the destination row with the source row. RowClone success rate is calculated as the number of
bits that differ between the source and destination rows’ data divided by the number of bits stored
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in a row (8 KiB in our prototype). If there is no difference between the source and the destination
rows’ data (i.e., the RowClone success rate for the source and the destination row is 100%), then we
infer that the RowClone operation was successful. We repeat the experiment for 1000 iterations for
each row address pair and if every iteration is successful, we store the address pair in the SAMT,
indicating that the row address pair is mapped to different rows in the same DRAM subarray.4

(2) Allocation ID Table. To keep track of different operands that are allocated by alloc_align
using the same ID (used to place different arrays in the same subarray), we use the AIT. AIT
entries are indexed by allocation IDs (the parameter ID of the alloc_align call). Each AIT entry
stores a pointer to an SAMT entry. The SAMT entry pointed by the AIT entry contains the set of
physical addresses that were allocated using the same allocation ID. AIT entries are used by the
alloc_align function to find which DRAM subarray can be used to allocate DRAM rows from,
such that the newly allocated array can be copied to other arrays allocated using the same ID.

(3) Initializer Rows Table. To find which row in a DRAM subarray can be used as the source
operand in RowClone-Initialize operations, we maintain the IRT. The IRT is indexed using physical
page numbers. RowCopy-Initialize operations query the IRT to obtain the physical address of the
DRAM row initialized with zeros and that belongs to the same subarray as the destination operand
(i.e., the DRAM row to be initialized with zeros).

Figure 6 describes how alloc_align()works over an end-to-end example. Using the RowClone
success rate experiment (described above), the custom supervisor software (CSS for short) finds the
DRAM rows that are in the same subarray (➊) and initializes the SAMT. The programmer allocates
two 128-KiB arrays, A and B, via alloc_align() using the same allocation id (0), with the intent
to copy from A to B (➋). CSS allocates contiguous ranges of virtual addresses to A and B and
then splits the virtual address ranges into page-sized memory blocks (➌). CSS assigns consecutive
memory blocks to consecutive DRAM banks and accesses the AIT with the allocation id (➍) for
each memory block. By accessing the AIT, CSS retrieves the subarray id that points to a SAMT
entry. The SAMT entry corresponds to the subarray that contains the arrays that are allocated
using the allocation id (➎). CSS accesses the SAMT entry to retrieve two physical addresses that
point to the same DRAM row. CSS maps a memory block and its sibling memory block (i.e., the
memory block that is N/2 bytes away from this memory block, where N is the size argument of the
alloc_align() call) to these two physical addresses, such that they are mapped to the first and
the second halves of the same DRAM row (➏). Once allocated, these physical addresses are pinned
to main memory and cannot be swapped out to storage. Finally, CSS updates the page table with
the physical addresses to map the memory blocks to the same DRAM row (➐).

5.3 Maintaining Memory Coherence

Since memory instructions update the cached copies of data (Section 5.1), a naive implementation
of RowClone can potentially operate on stale data, because cached copies of RowClone operands
can be modified by CPU store instructions. Thus, we need to ensure memory coherence to prevent
RowClone from operating on stale data.

We implement a new custom RISC-V instruction, called CLFLUSH, to flush dirty cache blocks
to DRAM (RISC-V does not implement any cache management operations [160]) so as to ensure
RowClone operates on up-to-date data. A CLFLUSH instruction flushes (invalidates) a physically
addressed dirty (clean) cache block. CLFLUSH or other cache management operations with similar
semantics are supported in X86 [68] and ARM architectures [10]. Thus, the CLFLUSH instruction

4The same RowClone success rate experiment could be conducted in other systems that are based on PiDRAM or in a

PiDRAM prototype that uses a different DRAM module. Since the RowClone success rate experiment is a one-time process,

its overheads (e.g., time taken to iterate over all DRAM rows using our experiment) are amortized over the lifetime of such

a system.
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Fig. 6. Alloc_align() and RowClone-Copy (rcc, see Section 5.4) workflow.

(that we implement) provides a minimally invasive solution (i.e., it requires no changes to the spec-
ification of commercial ISAs) to the memory coherence problem. Before executing a RowClone
Copy or Initialization operation (see Section 5.4), the custom supervisor software flushes (invali-
dates) the cache blocks of the source (destination) row of the RowClone operation using CLFLUSH.

5.4 RowClone-Copy and RowClone-Initialize

We support the RowClone-Copy and RowClone-Initialize operations in our custom supervisor
software via two functions: (i) RowClone-Copy, rcc(void *dest, void *src, int size) and (ii)
RowClone-Initialize, rci(void* dest, int size). rcc copies size number of bytes in the virtual
address space starting from the src memory address to the dest memory address. rci initializes size

number of bytes in the virtual address space starting from the dest memory address. We expose
rcc and rci to user-level programs using system calls defined in the custom supervisor software.

rcc (i) splits the source and destination operands into page-aligned, page-sized blocks, (ii) tra-
verses the page table (Figure 6 ➑) to find the physical address of each block (i.e., the address of a
DRAM row), (iii) flushes all cache blocks corresponding to the source operand and invalidates all
cache blocks corresponding to the destination operand, and (iv) performs a RowClone operation
from the source row to the destination row using pumolib’s copy_row() function.

rci (i) splits the destination operand into page-aligned, page-sized blocks, (ii) traverses the page
table to find the physical address of the destination operand, (iii) queries the IRT (see Section 5.2)
to obtain the physical address of the initializer row (i.e., source operand), (iv) invalidates the cache
blocks corresponding to the destination operand, and (v) performs a RowClone operation from the
initializer row to the destination row using using pumolib’s copy_row() function.

5.5 Evaluation

We evaluate our solutions for the challenges in implementing RowClone end-to-end on a real
system using PiDRAM. We modify the custom memory controller to implement DRAM command
sequences (ACT → PRE → ACT ) to trigger RowClone operations. We set the tRAS and tRP param-
eters to 10 ns (below the manufacturer-recommended 37.5 ns for tRAS and 13.5 ns for tRP [117]).

5.5.1 Experimental Methodology. Table 3 (left) describes the configuration of the components
in our system. We use the pipelined and in-order Rocket core with 16-KiB L1 data cache and
4-entry TLB as the main processor of our system. We use the 1-GiB DDR3 module available on the
ZC706 board as the main memory where we conduct PuM operations.

Implementing RowClone requires an additional 198 lines of Verilog code over PiDRAM’s exist-
ing Verilog design. We add 43 and 522 lines of C code to pumolib and to our custom supervisor
software, respectively, to implement RowClone.
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Table 3. PiDRAM System Configuration (Left)

Physical address to DRAM address mapping in PiDRAM (right). Byte offset is used to address the byte in the DRAM

burst.

Table 3 (right) describes the mapping scheme we use in our custom memory controller to trans-
late from physical to DRAM row-bank-column addresses. We map physical addresses to DRAM
columns, banks, and rows from lower-order bits to higher-order bits to exploit the bank-level paral-
lelism in memory accesses to consecutive physical pages. We note that our memory management
mechanism is compatible with other physical address → DRAM address mappings [62]. For ex-
ample, for a mapping scheme where page offset bits (physical address (PA) [11:0]) include all or a
subset of the bank address bits, a single RowClone operand (i.e., a 4-KiB page) would be split across
multiple DRAM banks. This only coarsens the granularity of RowClone operations as the sibling
pages that must be copied in unison, to satisfy the granularity constraint, increases. We expect
that for other complex or unknown physical address → DRAM address mapping schemes, the
characterization of the DRAM device for RowClone success rate would take longer. In the worst
case, DRAM row addresses that belong to the same DRAM subarray can be found by testing all
combinations of physical addresses for their RowClone success rate.

We evaluate rcc and rci operations under two configurations to understand the copy/initializa-
tion throughput improvements provided by rcc and rci over CPU-copy operations performed by
the Rocket core, and to understand the overheads introduced by end-to-end support for commodity
DRAM-based PuM operations. We test two configurations:

(1) Bare-Metal. We assume that RowClone operations always target data that are allocated
correctly in DRAM (i.e., there is no overhead introduced by address translation, IRT accesses,
and CLFLUSH operations). We directly issue RowClone operations via pumolib using physical
addresses. CPU-copy operations also use physical addresses.

(2) No Flush. We assume that the programmer uses the alloc_align function to allocate the
operands of RowClone operations. We use a version of rcc and rci system calls that do not use
CLFLUSH to flush cache blocks of source and destination operands of RowClone operations. We
run the No Flush configuration on our custom supervisor software; rcc and rci and traditional
CPU-copy operations use virtual addresses.

5.5.2 Workloads. For the two configurations, we run a microbenchmark that consists of two
programs, copy and init, on our prototype. Both programs take the argument N , where copy copies
an N -byte array to another N -byte array and init initializes an N -byte array to all zeros. Both pro-
grams have two versions: (i) CPU-copy, which copies/initializes data using memory loads and
stores, and (ii) RowClone, which uses RowClone operations to perform copy/initialization. All
programs use alloc_align to allocate data. The performance results we present in this section
are the average of a 1,000 runs. To maintain the same initial system state for both CPU-copy and
RowClone, we flush all cache blocks before each one of the 1,000 runs. We run each program for
array sizes (N ) that are powers of two and 8 KiB < N < 8 MiB and find the average copy/initializa-
tion throughput across all 1,000 runs (by measuring the # of elapsed CPU cycles to execute copy/
initialization operations) for CPU-copy, RowClone-Copy (rcc), and RowClone-Initialize (rci).5

5We tested RowClone operations using alloc_align() with up to 8 MiB of allocation size, since we observed diminishing

returns on performance improvement provided by RowClone operations on larger array sizes.
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Fig. 7. RowClone-Copy and RowClone-Initialize throughput improvement for the Bare-Metal (left) and the
NoFlush (right) configurations.

We analyze the overheads of CLFLUSH operations on copy/initialization throughput that rcc
and rci can provide. We measure the execution time of CLFLUSH operations in our prototype to
find how many CPU cycles it takes to flush a (i) dirty and (ii) clean cache block on average across
1,000 measurements. We simulate various scenarios (described in Section 5.5.5) where we assume
a certain fraction of the operands of RowClone operations are cached and dirty.

5.5.3 Bare-Metal RowClone. Figure 7(a) shows the throughput improvement provided by rcc
and rci for copy and initialize over CPU-copy and CPU-initialization for increasing array sizes.

We make two major observations. First, we observe that rcc and rci provide significant through-
put improvement over traditional CPU-copy and CPU-initialization. The throughput improvement
provided by rcc ranges from 317.5× (for 8 KiB arrays) to 364.8× (for 8 MiB arrays). The throughput
improvement provided by rci ranges from 172.4× to 182.4×. Second, the throughput improvement
provided by rcc and rci increases as the array size increases. This increase saturates when the
array size reaches 1 MiB. The load/store instructions used by CPU-copy and CPU-initialization
access the operands in a streaming manner. The eviction of dirty cache blocks (i.e., the destina-
tion operands of copy and initialization operations) interfere with other memory requests on the
memory bus.6 We attribute the observed saturation at 1-MiB array size to the interference on the
memory bus.

5.5.4 No Flush RowClone. We analyze the overhead in copy/initialization throughput intro-
duced by system support. Figure 7(b) shows the throughput improvement of copy and initialization
provided by rcc and rci operations.

We make two major observations: First, rcc improves the copy throughput by 58.3× for 8 KiB
and by 118.5× for 8-MiB arrays, whereas rci improves initialization throughput by 31.4× for 8 KiB
and by 88.7× for 8-MiB arrays. Second, we observe that the throughput improvement provided by
rcc and rci improves non-linearly as the array size increases. The execution time (in Rocket core
clock cycles) of rcc and rci operations (not shown in Figure 7(b)) does not increase linearly with
the array size. For example, the execution time of rcc is 397 and 584 cycles at 8-KiB and 16-KiB
array sizes, respectively, resulting in a 1.47× increase in execution time between 8-KiB and 16-KiB
array sizes. However, the execution time of rcc is 92,656 and 187,335 cycles at 4-MiB and 8-MiB
array sizes, respectively, resulting in a 2.02× increase in execution time between 4-MiB and 8-
MiB array sizes. We make similar observations on the execution time of rci. For every RowClone
operation, rcc and rci walk the page table to find the physical addresses corresponding to the
source (rcc) and the destination (rcc and rci) operands. We attribute the non-linear increase in
rcc and rci’s execution time to (i) the locality exploited by the Rocket core in accesses to the

6Because the data cache in our prototype employs random replacement policy, as the array size increases, the fraction

of cache evictions among all memory requests also increases, causing larger interference on the memory bus (i.e., more

memory requests to satisfy all cache evictions). The interference saturates at 1-MiB array size.
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Fig. 8. Throughput improvement (left) and forkbench speedup (right).

page table and (ii) the diminishing constant cost in the execution time of both rcc and rci due to
common instructions executed to perform a system call.

5.5.5 CLFLUSH Overhead. We find that our implementation of CLFLUSH takes 45 Rocket core
clock cycles to flush a dirty cache block and 6 Rocket core cycles to invalidate a clean cache block.
We estimate the throughput improvement of rcc and rci including the CLFLUSH overhead. We
assume that all cache blocks of the source and destination operands are cached and that a fraction
of the all cached cache blocks is dirty (quantified on the x axis). We do not include the overhead of
accessing the data (e.g., by using load instructions) after the data gets copied in DRAM. Figure 8(a)
shows the estimated improvement in copy and initialization throughput that rcc and rci provide
for 8-MiB arrays.

We make three major observations. First, even with inefficient cache flush operations, rcc and
rci provide 3.2× and 3.9× higher throughput over the CPU-copy and CPU-initialization opera-
tions, assuming 50% of the cache blocks of the 8-MiB source operand are dirty, respectively. Sec-
ond, as the fraction of dirty cache blocks increases, the throughput improvement provided by both
rcc and rci decreases (down to 1.9× for rcc and 2.3× for rci for 100% dirty cache block frac-
tion). Third, we observe that rci can provide better throughput improvement compared to rcc
when we include the CLFLUSH overhead. This is because rci flushes cache blocks of one operand
(destination), whereas rcc flushes cache blocks of both operands (source and destination).

We do not study the distribution of dirty cache block fractions in real applications as that is not
the goal of our CLFLUSH overhead analysis. However, if a large dirty cache block fraction causes
severe overhead in a real application, then the system designer or the user of the system would
likely decide not to offload the operation to PuM (i.e., performing rcc operations instead of CPU-
Copy). PiDRAM’s prototype can be useful for studies on different PuM system integration aspects,
including such offloading decisions.

We observe that the CLFLUSH operations are inefficient in supporting coherence for RowClone
operations. Even so, we see that RowClone-Copy and RowClone-Initialization provides through-
put improvements ranging from 1.9× to 14.6×. We expect the throughput improvement benefits to
increase as coherence between the CPU caches and PIM accelerators become more efficient with
new techniques [21, 22, 143].

5.5.6 Real Workload Study. The benefit of rcc and rci on a full application depends on what
fraction of execution time is spent on bulk data copy and initialization. We demonstrate the bene-
fit of rcc and rci on forkbench [145] and compile [145] workloads with varying fractions of time
spent on bulk data copy and initialization to show that our infrastructure can enable end-to-end ex-
ecution and estimation of benefits on real workloads.7 We study forkbench in detail to demonstrate
how the benefits vary with the time spent on data copying in the baseline for this workload.

7A full workload study (i.e., with system calls to a full operating system such as Linux) of forkbench and compile is out of

the scope of this article. Our infrastructure currently cannot execute all possible workloads due to the limited library and

system call functionality provided by the RISC-V Proxy Kernel [135].
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Forkbench first allocates N memory pages and copies data to these pages from a buffer in the
process’s memory and then accesses 32K random cache blocks within the newly allocated pages to
emulate a workload that frequently spawns new processes. We evaluate forkbench under varying
bulk data copy sizes where we sweep N from 8 to 2,048.

Compile first zero-allocates (calloc or rci) two pages (8 KiBs) and then executes a number of
arithmetic and memory instructions to operate on the zero-allocated data. We carefully develop the
compile microbenchmark to maintain a realistic ratio between the number of arithmetic and mem-
ory instructions executed and zero-allocation function calls made, which we obtain by profiling
gcc [109]. We use the No-Flush configuration of our RowClone implementation for both forkbench

and compile.
Figure 8(b) plots the speedup provided by rcc over the CPU-copy baseline, and the proportion of

time spent on memcpy functions by the CPU-copy baseline, for various configurations of forkbench

on the x axis.

Forkbench. We observe that RowClone-Copy can significantly improve the performance of fork-

bench by up to 42.9%. RowClone-Copy’s performance improvement increases as the number of
pages copied increase. This is because the copy operations accelerated by rcc contribute a larger
amount to the total execution time of the workload. The memcpy function calls take 86% of the
CPU-copy baseline’s time during forkbench execution for N = 2048.

Compile. RowClone-Initialize improves the performance of compile by 9%. Only an estimated
17% of the execution time of compile is used for zero-allocation by the CPU-initialization baseline,
rci reduces the overhead of zero-allocation by (i) performing in-DRAM bulk-initialization and
(ii) executing a smaller number of instructions.

Libquantum. To demonstrate that PiDRAM can run real workloads, we run a SPEC2006 [153]
workload (libquantum). We modify the calloc (allocates and zero initializes memory) function
call to allocate data using alloc_align, and initialize data using rci for allocations that are larger
than 8 KiBs.

Using rci to bulk initialize data in libquantum improves end-to-end application performance
by 1.3% (compared to the baseline that uses CPU-Initialization). This improvement is brought by
rci, which initializes a total amount of 512 KiBs of memory8 using RowClone operations. We
note that the proportion of store instructions executed by libquantum to initialize arrays in the
CPU-initialization baseline is only 0.2% of all dynamic instructions in the libquantum workload,
which amounts to an estimated 2.3% of the total runtime of libquantum. Thus, the 1.3% end-to-end
performance improvement provided by rci is reasonable, and we expect it to increase with the
initialization intensity of workloads.

Summary. We conclude from our evaluation that end-to-end implementations of RowClone (i)
can be efficiently supported in real systems by employing memory allocation mechanisms that
satisfy the memory alignment, mapping, granularity requirements (Section 5.1) of RowClone op-
erations, (ii) can greatly improve copy/initialization throughput in real systems, and (iii) require
cache coherence mechanisms (e.g., PIM-optimized coherence management [21, 22, 143]) that can
flush dirty cache blocks of RowClone operands efficiently to achieve optimal copy/initialization
throughput improvement. PiDRAM can be used to estimate end-to-end workload execution bene-
fits provided by RowClone operations. Our experiments using libquantum, forkbench, and compile
show that (i) PiDRAM can run real workloads, (ii) our end-to-end implementation of RowClone

8In libquantum, there are 16 calls to calloc that exceed the 8-KiB allocation size. We only bulk initialize data using rci
for these 16 calls.
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operates correctly, and (iii) RowClone can improve the performance of real workloads in a real
system, even when inefficient CLFLUSH operations are used to maintain memory coherence.

6 CASE STUDY #2: END-TO-END D-RANGE

Prior work on DRAM-based random number generation techniques [13, 83, 123] do not integrate
and evaluate their techniques end-to-end in a real system. We evaluate one DRAM-based true
random number generation technique, D-RaNGe [83], end-to-end using PiDRAM. We implement
support for D-RaNGe in PiDRAM by enabling access to DRAM with reduced activation latency
(i.e., tRCD set to values lower than manufacturer recommendations).

6.1 D-RaNGe Implementation

We implement a simple version of D-RaNGe in PiDRAM. PiDRAM’s D-RaNGe controller col-
lects true random numbers from four DRAM cells in the same DRAM cache block inside one
DRAM bank. We implement the D-RaNGe controller within the Periodic Operations Module (Sec-
tion 4.1). The D-RaNGe controller (i) periodically accesses a DRAM cache block with reduced tRCD,
(ii) reads four of the TRNG DRAM cells in the cache block, (iii) stores the four bits read from the
TRNG cells in a 1 KiB random number buffer. We reserve multiple configuration registers in the
CRF to configure (i) the TRNG period (in nanoseconds) used by the D-RaNGe controller to pe-
riodically generate random numbers by accessing DRAM with reduced activation latency while
the buffer is not full (the D-RaNGe controller accesses DRAM every TRNG period), (ii) the timing
parameter (tRCD) used to induce activation latency failures, and (iii) the physical location (DRAM
bank, row, column addresses, and bit offset within the DRAM column) of the TRNG cells to read.
We implement two pumolib functions: (i) buf_size(), which returns the number of random words
(4 bytes) available in the buffer, and (ii) rand_dram(), which returns one random word that is read
from the buffer. The two functions first execute PiDRAM instructions in the POC that update the
data register either with (i) the number of random words available (when buf_size() is called) or
(ii) a random word read from the random number buffer (when rand_dram() is called). The two
functions then access the data register using LOAD instructions to retrieve either the size of the
random number buffer or a random number. The application developer reads true random numbers
using these two functions in pumolib.

Random Cell Characterization. D-RaNGe requires the system designer to characterize the
DRAM module for activation latency failures to find DRAM cells that fail with a 50% probabil-
ity (i.e., randomly) when accessed with reduced tRCD. Following the methodology presented in
Reference [83], the system designer can characterize a DRAM device or use an automated pro-
cedure to find cells that fail with a 50% probability. In PiDRAM, we implement reduced latency
access to DRAM by (i) extending the scheduler of the custom memory controller and (ii) adding
a pumolib function activation_failure(address) that induces a tRCD failure on the DRAM
cache block at address.

6.2 Evaluation and Results

Experimental Methodology. We run a microbenchmark to understand the effect of the TRNG
period on true random number generation throughput observed by a program running on the
Rocket core. The microbenchmark consists of a loop that (i) checks the availability of random
numbers using buf_size() and (ii) reads a random number from the buffer using rand_dram().
We execute the microbenchmark until we read one million bytes of random numbers.

Results. The D-RaNGe controller can perform reduced-latency accesses frequently, every 220 ns.
Figure 9 depicts the TRNG throughput observed by the microbenchmark for TRNG periods in the
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Fig. 9. TRNG throughput observed by our microbenchmark for TRNG periods ranging from 220 to 1,000 ns.

range [220 ns, 1,000 ns] with increments of 10 ns. We observe that the TRNG throughput decreases
from 8.30 Mb/s at 220 ns TRNG period to 1.90 Mb/s at 1,000 ns TRNG period. D-RaNGe [83] reports
25.2 Mb/s TRNG throughput using a single DRAM bank when there are four random cells in a
cache block. PiDRAM’s D-RaNGe controller can be optimized to generate random numbers more
frequently to match D-RaNGe’s observed maximum throughput.9 We leave such optimizations to
PiDRAM’s D-RaNGe controller for future work.

Including the modifications to the custom memory controller and pumolib, implementing D-
RaNGe and reduced-latency DRAM access requires an additional 190 lines of Verilog and 74 lines
of C code over PiDRAM’s existing codebase. We conclude that our D-RaNGe implementation
(i) provides a basis for PiDRAM developers to study end-to-end implementations of DRAM-based
true random number generators and (ii) shows that PiDRAM’s hardware and software components
facilitate the implementation of new commodity DRAM-based PuM techniques, specifically those
that are related to security. Our reduced-latency DRAM access implementation provides a basis
for other PuM techniques for security purposes, such as the DRAM-latency physical unclonable
functions (DL-PUF [82]) and QUAC-TRNG [124] (Section 4.4). We leave further exploration on end-
to-end implementations of D-RaNGe, DL-PUF, and QUAC-TRNG, as well as end-to-end analyses
of the security benefits they provide using PiDRAM for future work.

7 EXTENDING PIDRAM

We briefly describe the modifications required to extend PiDRAM (i) with new DRAM commands
and DRAM timing parameters, (ii) with new case studies, and (iii) to support new FPGA boards.

New DRAM Commands and Timing Parameters. Implementing new DRAM commands or
modifying DRAM timing parameters require modifications to PiDRAM’s memory controller. This
is straightforward as PiDRAM’s memory controller’s Verilog design is modular and uses well-
defined interfaces: It is composed of multiple modules that perform separate tasks. For example,
the memory request scheduler comprises two main components: (1) command timer and (2) com-

mand scheduler . To serve LOAD and STORE memory requests, the command scheduler maintains
state (e.g., which row is active) for every bank. The command scheduler selects the next DRAM
command to satisfy the LOAD or STORE memory request and queries the command timer with
the selected DRAM command. The command timer checks for all possible standard DRAM timing
constraints and outputs a valid bit if the selected command can be issued in that FPGA clock cy-
cle. To extend the memory controller with a new standard DRAM command (e.g., to implement a
newer standard like DDR4 or DDR5), a PiDRAM developer simply needs to (i) add a new timing

9D-RaNGe has a smaller true random number generation (TRNG) latency (i.e., takes a smaller amount of time to generate

a 4-bit random number) than PiDRAM. PiDRAM has a larger TRNG latency due to (i) discrepancies in the data path (i.e.,

on-chip interconnect) in D-RaNGe’s simulated system and PiDRAM’s prototype and (ii) the TRNG period of the D-RaNGe

controller (D-RaNGe controller performs a reduced tRCD access only as frequently as one every 220 ns). The D-RaNGe

controller can be optimized further to further reduce the TRNG period by down the DRAM row cycle time (tRC standard

timing parameter, typically 45 ns [117]).
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Table 4. Comparison of PiDRAM with Related State-of-the-art Prototyping and
Evaluation Platforms

Platforms Interface with real DRAM chips Flexible MC for PuM System software support Open-source

Silent-PIM [78] ✗ ✗ � ✗

SoftMC [60] �(DDR3) ✗ ✗ �
ComputeDRAM [44] �(DDR3) ✗ ✗ ✗

MEG [173] �(HBM) ✗ � �
PiMulator [119] ✗ � ✗ �
Commercial platforms (e.g., ZYNQ [165]) �(DDR3/4) ✗ � ✗

Simulators [18, 35, 90, 132, 139, 168, 169, 174] ✗ � �(potentially) �
PiDRAM (this work) �(DDR3) � � �

constraint by replicating the logic in the command timer and (ii) extend the command scheduler
to correctly maintain the bank state.

New Case Studies. Implementing new techniques (e.g., those that are listed in Table 2) to per-
form new case studies requires modifications to PiDRAM’s hardware and software components.
We describe the required modifications over an example ComputeDRAM-based in-DRAM bitwise
operations case study.

To implement ComputeDRAM-based in-DRAM bitwise operations, the developers need to
(i) extend the custom command scheduler in PiDRAM’s memory controller with a new state ma-
chine that schedules new DRAM command sequences (ACT-PRE-ACT) with an appropriate set of
violated timing parameters (our ComputeDRAM-based in-DRAM copy implementation provides
a solid basis for this), (ii) expose the functionality to the processor by implementing new PiDRAM
instructions in the PuM controller (e.g., by replicating and customizing the existing logic for decod-
ing and executing RowClone operations), and (iii) and make modifications to the software library
to expose the new instruction to the programmer (e.g., by replicating the copy_row function’s
behavior, described in Table 1).

Porting to New FPGA Boards. Developing new PiDRAM prototypes on different FPGA boards
could require modifications to design constraints (e.g., top level input/outputs to physical FPGA
pins) and the DDRx PHY IP depending on the FPGA board. Modifying design constraints is a
straightforward task involving looking up the FPGA manufacturer datasheets and modifying de-
sign constraint files [164]. Manufacturers may provide different DDRx PHY IPs for different FPGAs.
Fortunately, these IPs typically expose similar (based on the DFI standard [33]) interfaces to user
hardware (in our case, to PiDRAM’s memory controller). Thus, other PiDRAM prototypes on dif-
ferent FPGA boards can be developed with small yet careful modifications to the ZC706 prototype
design we provide.

8 RELATED WORK

To our knowledge, this is the first work to develop a flexible, open source framework that enables
integration and evaluation of commodity DRAM-based PuM techniques on real DRAM chips by
providing the necessary hardware and software components. We demonstrate the first end-to-end
implementation of RowClone and D-RaNGe using real DRAM chips. We compare the features
of PiDRAM with other state-of-the-art prototyping and evaluation platforms in Table 4 and dis-
cuss them below. The four features we use for comparison are as follows: (1) Interface with real

DRAM chips: The platform allows running experiments using real DRAM chips. (2) Flexible mem-

ory controller for PuM: The platform provides a flexible memory controller that can easily be ex-
tended to perform (e.g., as in PiDRAM) or emulate (e.g., as in PiMulator [119]) new PuM operations.
(3) System software support: The platform provides support for running system software such as
operating systems or supervisor software (e.g., RISC-V PK [135]). (4) Open source: The platform is
available as open source software.

Silent-PIM [78]. Silent-PIM proposes a new DRAM design that incorporates processing units
capable of vector arithmetic computation. Silent-PIM’s goal is to evaluate PIM techniques on a
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new, PIM-capable DRAM device using standard DRAM commands (e.g., as defined in DDR4 [71]);
it does not provide an evaluation platform or prototype. In contrast, PiDRAM is designed for
rapid integration and evaluation of PuM techniques that use real DRAM devices. PiDRAM pro-
vides key hardware and software components that facilitate end-to-end implementations of PuM
techniques.

SoftMC [52, 60]. SoftMC is an FPGA-based DRAM testing infrastructure. SoftMC can issue ar-
bitrary sequences of DDR3 commands to real DRAM devices. SoftMC is widely used in prior work
that studies the performance, reliability and security of real DRAM chips [13, 14, 28, 38, 41, 50,
59, 77, 83, 85, 96, 127, 154]. SoftMC is built to test DRAM devices, not to study end-to-end imple-
mentations of PuM techniques. Thus, SoftMC (i) does not support application execution on a real
system and (ii) cannot use DRAM modules as main memory. While SoftMC is useful in studies that
perform exhaustive search on all possible sequences of DRAM commands to potentially uncover
undocumented DRAM behavior (e.g., ComputeDRAM [44], QUAC-TRNG [123]), PiDRAM is devel-
oped to study end-to-end implementations of PuM techniques. PiDRAM provides an FPGA-based
prototype that comprises a RISC-V system and supports using DRAM modules both for storing
data (i.e., as main memory) and performing PuM computation.

ComputeDRAM [44]. ComputeDRAM partially demonstrates that two DRAM-based state-
of-the-art PuM techniques, RowClone [145] and Ambit [147], are already possible on real off-
the-shelf DDR3 chips. ComputeDRAM uses SoftMC to demonstrate in-DRAM copy and bitwise
AND/OR operations on real DDR3 chips. ComputeDRAM’s goal is not to develop a framework
to facilitate end-to-end implementations of PuM techniques. Therefore, it does not provide (i) a
flexible memory controller for PuM or (ii) support for system software. PiDRAM provides the
necessary software and hardware components to facilitate end-to-end implementations of PuM
techniques.

MEG [173]. MEG is an open source system emulation platform for enabling FPGA-based oper-
ation interfacing with High-Bandwidth Memory (HBM). MEG aims to efficiently retrieve data
from HBM and perform the computation in the host processor implemented as a soft core on the
FPGA. Unlike PiDRAM, MEG does not implement a flexible memory controller that is capable
of performing PuM operations. We demonstrate the flexibility of PiDRAM by implementing two
state-of-the-art PuM techniques [83, 145]. We believe MEG and PiDRAM can be combined to get
the functionality and prototyping power of both works.

PiMulator [119]. PiMulator is an open source PiM emulation platform. PiMulator implements
a main memory and a PiM model using SystemVerilog, allowing FPGA emulation of PiM archi-
tectures. PiMulator enables easy emulation of new PiM techniques. However, it does not allow
end-to-end execution of workloads that use PiM techniques and it does not provide the user with
full control over the DRAM interface.

Commercial Platforms (e.g., ZYNQ [165]). Some commercial platforms implement CPU-
FPGA heterogeneous computing systems. A memory controller is provided to access DRAM as
the main memory in such systems. However, in such systems, (i) there is no support for PuM
mechanisms and (ii) the entire hardware-software stack is closed source. PiDRAM can be inte-
grated into these systems, using the closed source computing system as the main processor. Our
prototype utilizes an open source system-on-chip (Rocket Chip [11]) as the main processor, which
enables developers to study architectural and microarchitectural aspects of PuM techniques (e.g.,
data allocation and coherence mechanisms). Such studies cannot be conducted using closed source
computing systems.

Simulators. Many prior works propose full-system (e.g., References [18, 132]), trace-based (e.g.,
References [64, 90, 139, 168, 169, 174]), and instrumentation-based (e.g., References [35, 64, 168])
simulators that can be used to evaluate PuM techniques. Although useful, these simulators do

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 8. Publication date: November 2022.



PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-DRAM 8:23

not model DRAM behavior and cannot integrate proprietary device characteristics (e.g., DRAM
internal address mapping) into their simulations, without conducting a rigorous characterization
study. Moreover, the effects of environmental conditions (e.g., temperature and voltage) on DRAM
chips are unlikely to be modeled on accurate, full-system simulators as it would require excessive
computation, which would negatively impact the already poor performance (200K instructions
per second) of full system simulators [140]. In contrast, PiDRAM interfaces with real DRAM de-
vices and its prototype achieves a 50-MHz clock speed (and can be improved further), which lets
PiDRAM execute >10M instructions per second (assuming <5 cycles per instruction). PiDRAM can
be used to study end-to-end implementations of PuM techniques and explore solutions that take
into account the effects related to the environmental conditions of real DRAM devices. Future ver-
sions of PiDRAM could be easily extended (e.g., with real hardware that allows controlling DRAM
temperature and voltage [115, 156]) to experiment with different DRAM temperature and voltage
levels to better understand the effects of these environmental conditions on the reliability of PuM
operations. Using PiDRAM, experiments that require executing real workloads can take an order
of magnitude shorter wall clock time compared to using full-system simulators.

Other Related Work. Prior works (see Section 2.2) (i) propose or (ii) demonstrate using real
DRAM chips, several DRAM-based PuM techniques that can perform computation [6, 28, 40, 54,
144, 146, 147, 149, 150], move data [145, 159], or implement security primitives [13, 14, 82, 83, 124,
126] in memory. SIMDRAM [54] develops a framework that provides a programming interface
to perform in-DRAM computation using the majority operation. DR-STRANGE [23] proposes an
end-to-end system design for DRAM-based true random number generators. None of these works
provide an end-to-end in-DRAM computation framework that is integrated into a real system using
real DRAM chips. We conclude that existing platforms cannot substitute PiDRAM in studying
commodity DRAM-based PuM techniques.

9 CONCLUSION

We develop PiDRAM, a flexible and open source prototyping framework for integrating and eval-
uating end-to-end commodity DRAM-based PuM techniques. PiDRAM comprises the necessary
hardware and software structures to facilitate end-to-end implementation of PuM techniques. We
build an FPGA-based prototype of PiDRAM along with an open source RISC-V system and en-
able computation on real DRAM chips. Using PiDRAM, we implement and evaluate RowClone
(in-DRAM data copy and initialization) and D-RaNGe end-to-end in the entire real system. Our
results show that RowClone significantly improves data copy and initialization throughput in a
real system on real workloads, and efficient cache coherence mechanisms are needed to maxi-
mize RowClone’s potential benefits. Our implementation of D-RaNGe requires small additions to
PiDRAM’s codebase and provides true random numbers at high throughput and with low latency.
We conclude that unlike existing prototyping and evaluation platforms, PiDRAM enables (i) easy
integration of existing and new PuM techniques end-to-end in a real system and (ii) novel stud-
ies on end-to-end implementations of PuM techniques using real DRAM chips. PiDRAM is freely
available as an open source tool for researchers and designers in both academia and industry to
experiment with and build on.
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