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Abstract
Recurrent hydrological droughts (streamflow deficits) are highly impactful and challenge water
management. Regional studies have provided some evidence of drought-rich periods at specific
time scales. However, it is yet unclear where and when droughts cluster in time. Here, we test for
significant temporal hydrological drought clustering at subseasonal to multi-year time scales in
different climate zones around the world using two different clustering metrics, i.e. the dispersion
index and Ripley’s K. We find that (1) only 10% of the catchments show temporal hydrological
drought clustering, (2) hydrological droughts cluster from seasonal to 3-year time scales with
clustering being strongest at an annual time scale; (3) arid catchments with a low snow fraction are
most prone to temporal drought clustering; and (4) temporal clustering is more pronounced for
hydrological than for meteorological droughts. These results suggest that besides climatic drivers,
land-surface processes importantly influence the temporal clustering behavior of hydrological
droughts.

1. Introduction

Consecutive droughts can have more severe impacts
than droughts occurring in isolation. For example,
consecutive droughts severely impact tree growth
(Mijnsbrugge et al 2016), reduce forest productiv-
ity (DeSoto et al 2020), and increase tree mor-
tality (Caldeira et al 2015, Anderegg et al 2020,
Schuldt et al 2020, Obladen et al 2021, Sánchez-
Pinillos et al 2022). Similarly, they can severely
impact crop yields (Yu et al 2018) and impede
vegetation recovery (Hari et al 2020). In addition,
recurrent hydrological droughts, i.e. streamflow
deficits, also substantially challenge water man-
agement by increasing pressure on water resources
(Tramblay et al 2020) as illustrated by the consecutive
2018 and 2019 summer droughts in Central Europe
(Boergens et al 2020, Hari et al 2020).

Formeteorological drought, alternations between
drought-rich and drought-poor periods have been
documented atmulti-year (Moreira et al 2015, Noone

et al 2017, Yue et al 2021), decadal (Ionita et al
2012, Tong et al 2018), and multi-decadal time scales
(Tanguy et al 2021). However, the existence of met-
eorological drought clustering is not unequivocal as
some studies also provide evidence for a lack of cyc-
licity in precipitation deficits (Pelletier and Turcotte
1997, Bunde et al 2013). In addition, drought period-
icity has been documented for hydrological droughts
at decadal time scales (Hannaford 2015, Barker et al
2019). While these previous studies suggest that
drought periodicity exists in certain regions and at
certain time scales, they have a rather narrow geo-
graphical scope and focus mostly on meteorological
droughts. Therefore, it is yet unclear which catch-
ments are prone to the occurrence of drought-rich
periods, i.e. show significant temporal clustering in
terms of hydrological droughts, and how this cluster-
ing behavior relates to the temporal clustering ofmet-
eorological droughts.

Temporal clustering can be quantified using dif-
ferent types of metrics, including the dispersion
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index, which quantifies the departure from a homo-
geneous Poisson process (Vitolo et al 2009, Mediero
et al 2015, Merz et al 2016); kernel estimation
(Cowling et al 1996, Mudelsee et al 2003), which
estimates the time variation of extreme event counts
as smooth functions of time; or Ripley’s K function
(Ripley 1981, Dixon 2014, Tuel and Martius 2021a),
which measures the average number of extreme
events in the temporal neighborhood of extreme
events. Such measures have been successfully used
to demonstrate the existence of precipitation-rich
(Tuel and Martius 2021a, 2021b) or flood-rich peri-
ods (Villarini et al 2013, Mediero et al 2015, Gu et al
2016, Merz et al 2016, Liu and Zhang 2017, Wang
et al 2020). Here, we apply the concept to droughts
and use two of these temporal clustering metrics to
test whether and at which temporal scales hydrolo-
gical droughts cluster in time. Our analysis focuses
on drought clustering as opposed to drought persist-
ence. That is, we study the occurrence of multiple
drought events in close temporal succession, rather
than the occurrence of individual, long, and persist-
ent drought events. Specifically, we investigate (1)
whether and how hydrological droughts cluster tem-
porally in different hydro-climatic regions across the
globe, (2) whether and how the temporal clustering
of hydrological droughts varies between natural and
regulated catchments, and (3) how the temporal
clustering of hydrological drought relates to the clus-
tering behavior of meteorological drought.We expect
that hydrological droughts show substantially more
temporal clustering than meteorological droughts
because of memory introduced through different
storage and land-surface processes (Alvarez-Garreton
et al 2021, Ho et al 2021).

To address these questions, we compile a large-
sample dataset of catchments in different climate
zones of the world. We combine data available
through different hydrological large sample datasets
providing not just streamflow observations but also
catchment boundaries and characteristics.Weuse this
‘quasi-global’ dataset to identify catchments show-
ing significant temporal hydrological drought clus-
tering at different time scales ranging from sub-
seasonal, seasonal, annual, to multi-year scales. Then,
we investigate how the physiographical and climatic
characteristics of the catchmentswith significant tem-
poral clustering differ from those without cluster-
ing. Finally, we investigate the relationship between
meteorological and hydrological drought clustering
to assess the relative importance of meteorological
and land-surface processes for hydrological drought
clustering.

2. Methods

2.1. Dataset
To identify catchmentswith significant temporal clus-
tering at different time scales across climate zones, we

compile a quasi-global dataset consisting of different
large-scale and -sample datasets providing stream-
flow and catchment characteristics.We include nearly
natural and regulated catchments with continuous
daily streamflow time series of at least 30 years in the
period 1981–2018 with<10% of missing data (miss-
ing datawere omitted for drought identification). The
selection consists of 5015 catchments, more specific-
ally, 720 gauges in Central Europe from the LamaH
dataset (Klingler et al 2021), 2683 gauges in the
United States from the streamflow and basin charac-
teristics dataset by Dudley et al (2018) (Dudley18),
208 gauges in Australia from the CAMELS-AUS data-
set (Fowler et al 2021), 109 gauges in Chile from the
CAMELS-CL dataset (Alvarez-Garreton et al 2018),
576 catchments in Great Britain from the CAMELS-
GB dataset (Coxon et al 2020), and 733 catchments
in Brazil from the Catchments Attributes for Brazil
(CABra) dataset (Almagro et al 2021).

For the selected catchments, we retrieve a set
of different catchment characteristics available in all
datasets including catchment area (km2), mean elev-
ation (m.a.s.l), catchment slope (◦),mean annual pre-
cipitation (mm), aridity (mean potential evapora-
tion/mean precipitation), fraction of snow (0–1), and
reservoir regulation (yes/no). In addition, we derive
precipitation and potential evaporation (Ep) time
series for the period 1981–2018 for which stream-
flow data are available from the different large-
sample datasets cited above. For the US catchments,
we derived precipitation and potential evaporation
time series from gridded ERA5-Land reanalysis data
(ECMWF 2019, Muñoz-Sabater et al 2021) because
the Dudley18 dataset used to obtain streamflow
and regulation information does not provide hydro-
climatic time series.

2.2. Drought event identification
For each catchment in the dataset, we identify a set
of independent hydrological drought events using
a variable threshold-level approach (Van Loon and
Laaha 2015). To minimize the number of dependent
events, we smooth the daily time series over a time
windowof 30 days prior to event extraction (Fleig et al
2006). We compute the variable threshold using the
20th flow percentile for each day of the year derived
within a moving window ±15 days before and after
the day of interest (Brunner et al 2021a, 2021b). Only
drought events longer than 30 days are retained to
limit the selection to important events. This event
identification procedure resulted in a median num-
ber of 27 extracted events per catchment (1st quart-
ile: 22 events, 3rd quartile: 31 events). For each of the
selected drought events, we determine a set of charac-
teristics including its day of occurrence (day of year),
duration (i.e. time elapsing between the time when
streamflow falls below the drought threshold and
the time when it again exceeds this threshold, days),
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deficit (sumof streamflowdrought intensities, i.e. dif-
ferences between the threshold and actual stream-
flow, accumulated during an event, mm/event), and
intensity (i.e. minimum flow, mm, the smaller the
value the more intense). Using these event charac-
teristics, we compute the mean drought seasonal-
ity using circular statistics (which are suitable for
describing variables measured on a cyclical timescale;
Burn (1997)), mean duration, deficit, and intens-
ity for each catchment. We assess the sensitivity of
our results toward threshold and minimum duration
choice by running the temporal clustering analysis
for different thresholds (15th, 20th, 30th percentile)
and minimum durations (10 and 30 days). Choos-
ing alternative lower (15th percentile) or higher (30th
percentile) thresholds, results in the selection of fewer
(<25 events) or more events (40 events) per catch-
ment, respectively. Including shorter events with dur-
ations longer than 10 days would increase the number
of events to around or above 50 events per catchment
depending on the threshold. In addition to hydrolo-
gical droughts, we identify meteorological droughts
in a similar way as hydrological droughts by applying
the variable threshold-level approach to precipitation
time series and precipitation-potential evaporation
(P-Ep) time series, i.e. by defining negative anomalies
in precipitation and P-Ep.

2.3. Temporal clustering quantification
To identify catchments with significant temporal
hydrological and meteorological drought clustering
at different time scales, we use two different met-
rics, i.e. the dispersion index and Ripley’s K. The
dispersion index is defined as the ratio of the vari-
ance of drought event counts and mean drought
counts within a specific time window similarly to the
approaches used by Vitolo et al (2009) for storms and
byMerz et al (2016) for floods. To compute this index,
we first create a binary time series of drought event
occurrences where the days of maximum drought
intensity are indicated with 1’s and all other days with
0’s. That is, each drought event is counted only once,
independent of its duration. Second, we count the
number of droughts (c) within non-overlapping time
windows of t days, where the time window t corres-
ponds to subseasonal to seasonal time scales of 1, 30,
90, and 180 days and annual to decadal time scales of
1, 3, and 5 years. Third, the dispersion index is com-
puted as

ID = var(c)/mean(c)− 1. (1)

Finally, we test for clustering significance by running
a bootstrap experiment (Merz et al 2016). That is, we
simulate n = 1000 binary time series from a homo-
geneous Poisson process, in which events occur at
random time points, with an occurrence rate cor-
responding to the mean occurrence rate of drought

events in the observed time series. For each simulated
drought count time series, we compute the dispersion
index according to equation (1). Using the n indices,
we derive the sampling distribution of the dispersion
index and a critical value for a significance level of 5%,
i.e. the 95th quantile of the sampling distribution. A
time series is said to exhibit significant temporal clus-
tering, if the observed dispersion index is larger than
this critical value. If the observed drought occurrence
time series shows no temporal clustering, it should
show a similar behavior as a homogeneous Poisson
process in which events are randomly distributed
in time. In contrast, drought occurrence time series
showing temporal drought clustering would deviate
from a homogeneous Poisson process. An illustration
of this procedure is provided for four example catch-
ments in figure A1 in the supporting information.

Ripley’s K is a cumulative function that has been
traditionally used to study the spatial or spatio-
temporal clustering behavior of point processes at dif-
ferent spatial scales (Ripley 1981). More recently, it
has also been used to study the temporal clustering
behavior of extreme events (Dixon 2014, Barton et al
2016, Tuel and Martius 2021a) and is defined as the
average number E(t) of events within a time window
t around a randomly chosen drought event

K(t) = E(t). (2)

We again vary the timewindow t between subseasonal
to seasonal time scales of 1, 30, 90, and 180 days and
annual to decadal time scales of 1, 3, and 5 years.
Finally, we also run a bootstrap experiment to test for
clustering significance. That is, we simulate n= 1000
samples from a homogeneous Poisson process with
the same event occurrence rate as the observations
and computeKb(t) for each of these samples to derive
a sampling distribution and critical value. For any
given t, the data are significantly temporally clustered
if the estimatedK(t) from the observed data is greater
than the 95th percentile of the simulatedKb(t) values.
An illustration of this procedure is provided for four
example catchments in figure A2 in the supporting
information.We test for significant temporal drought
clustering at different time scales for hydrological and
meteorological droughts by applying the dispersion
index and Ripley’sK to streamflow, precipitation, and
P-Ep time series, respectively. To quantify the degree
of clustering for different time scales, we determine
the percentage (0–1) of catchments showing signific-
ant temporal clustering at a specific time scale.

To assess the differences between catchments with
and without significant clustering, we focus on a spe-
cific time scale, e.g. one year. We divide the catch-
ments into two groups, those catchments which show
significant temporal clustering at that time scale and
those catchments that do not show any clustering at
that time scale. Then, we summarize the catchment
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and drought characteristics of each group of catch-
ments using boxplots to highlight the differences in
characteristics between catchments with and without
temporal hydrological drought clustering.

3. Results

3.1. Spatio-temporal drought variability
The catchments included in the quasi-global dataset
are hydro-climatologically diverse, with drought sea-
sonality (figure A3 in the supporting information)
and drought characteristics varying across different
climate zones (figures A4–A6).

Hydrological drought events in the Northern
Hemisphere, i.e. in the US, GB, and Central Europe,
mainly occur during the warm season (summer and
fall) except in mountain regions where hydrological
droughts are observed mainly in the cold season
(figure A3). In the Southern Hemisphere, hydrolo-
gical droughts in coastal regions mainly occur dur-
ing the cold season, while hydrological droughts
in the Amazon and Central Australia occur in fall
and summer, respectively. These findings regarding
hydrological drought seasonality are in line with pre-
vious studies which have shown similar spatial pat-
terns when using a variable drought threshold e.g. for
Europe (Sutanto and Van Lanen 2021). These diverse
catchments, with respect to climate and hydrolo-
gical drought seasonality, can have different behavi-
ors in terms of the occurrence of drought events and
their temporal clustering, as illustrated for two catch-
ments in figures 1(b) and (c). The first catchment
shows temporal clustering at seasonal time scales
(figure 1(b)), meaning that hydrological droughts are
likely to occur in subsequent seasons. The second
catchment shows temporal clustering at longer, i.e.
multi-annual time scales (1(c)), meaning that the
catchment is affected by hydrological droughts in reg-
ular multi-annual intervals.

3.2. Temporal drought clustering
Only a small part of the catchments analyzed (<10%)
show significant temporal hydrological drought clus-
tering with the percentage of catchments varying by
time scale (figure 2(a)).

Temporal hydrological drought clustering is most
common at seasonal (180 days), annual (365 days),
and multi-year time scales of up to 5 years inde-
pendent of the clustering metric chosen. At a sea-
sonal timescale, around 5% of the catchments show
significant temporal clustering according to Ripley’s
K, at an annual scale, 10%, and at a 3-year time
scale, 5% of the catchments. Hardly any significant
temporal clustering is observed at sub-seasonal scales
(<180 days) and at longer time scales exceeding 5
years. These findings are robust with respect to the
choice of the clustering metric, except for longer time
scales where the dispersion index still indicates some

significant temporal clustering while Ripley’s K does
not. Because the results derived with the two met-
rics are very similar, the subsequent analyses will
mostly focus on one of the metrics, i.e. Ripley’s K,
which has been used to study the temporal cluster-
ing behavior of a range of other extreme phenom-
ena. The results are also robust with respect to the
choice of the dataset as illustrated by the comparison
of the results obtained for the quasi-global dataset and
the results obtained for a different dataset containing
421 catchments in Europe part of the Global Run-
off Data Center database (GRDC 2019) (figure A7
in the supporting information). Furthermore, these
findings are independent of the exact hydrological
drought definition (i.e. the exact drought threshold
and minimum duration) chosen to identify drought
events, with temporal clustering being strongest at
seasonal, annual, and 3-year time scales independ-
ent of the drought threshold and minimum duration
chosen (figure A8 in the supporting information).

In addition, the finding that temporal hydrolo-
gical drought clustering is most common at seasonal,
annual, and 3-year time scales applies to all six regions
in our dataset (figure 2(b)). Inmost regions, temporal
hydrological drought clustering is most common at
an annual time scale (Brazil, Chile, Great Britain,
United States), while in Australia and the Alps tem-
poral hydrological drought clustering is most com-
mon at a 3-yearly time scale. However, the regions
considered slightly differ in terms of the percent-
age of catchments that show significant clustering.
Temporal hydrological drought clustering is most
common in Brazil and Australia at an annual time
scale and at a 3-year time scale, respectively, and
least common in the Alps. While the percentage of
catchments showing temporal hydrological drought
clustering to some degree depends on the region,
it is independent of whether catchments are nat-
ural or regulated (figure 2(c)). Catchments showing
significant temporal hydrological drought clustering
share some common characteristics as shown by our
comparison of physiographical and drought char-
acteristics for catchments with significant and non-
significant temporal clustering (figure 3). Catchments
with significant temporal clustering at an annual time
scale (figure 3) have a small fraction of snow and/or
are characterized by an arid climate with little precip-
itation input. They also show comparably long hydro-
logical drought events, lowminimum flows but small
deficits. In contrast, wetter catchments and catch-
ments influenced by snow are less likely to show sig-
nificant temporal clustering at an annual time scale.

Temporal clustering is even less common formet-
eorological droughts (P deficits and P-Ep deficits)
than for hydrological droughts but follows the same
patternwith respect to time scale (figure 4(a)). Hardly
any catchments show temporal clustering for met-
eorological droughts (both derived based on P and
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Figure 1. Temporal hydrological drought variability: (a) Locations of the 5015 catchments which are part of the quasi-global
dataset and of the two example catchments. Temporal hydrological drought occurrences determined using the variable
threshold-level approach (see section Drought event identification) for. (b) the Riss catchment at Warthausen (part of LamaH
dataset) and (c) the Little Pee Dee catchment at Galivants Ferry (part of Dudley18 dataset).

Figure 2. Percentage of catchments showing significant temporal hydrological drought clustering per time scale (a) derived using
the dispersion index and Ripley’s K, (b) derived for different hydro-climatic regions using Ripley’s K, and (c) derived for natural
and regulated catchments using Ripley’s K.
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Figure 3. Catchment and hydrological drought characteristics of catchments with and without significant temporal hydrological
drought clustering at an annual time scale according to Ripley’s K: catchment area (km2), mean elevation (m.a.s.l), catchment
slope (◦), mean annual precipitation (mm), fraction of snow (0–1), and aridity (mean potential ET/mean precipitation), number
of drought events, drought intensity (i.e. minimum flow; mm/day), drought deficit (mm/event), and drought duration (number
of days the streamflow is below the threshold). All differences between catchments with and without significant temporal
clustering are statistically significant according to the Kolmogorov–Smirnov test.

Figure 4. Fraction of catchments with significant drought clustering at different time scales for Ripley’s K for (a) hydrological vs.
meteorological drought (defined using precipitation (P) and P-potential evaporation (Ep) deficits) and (b) for hydrological and
meteorological droughts (defined using Ep deficits) for all regions.

P-Ep deficits) when looking at Ripley’s K, while up
to 10% of the catchments show significant clustering
at seasonal, annual, and multi-annual (up to 5 years)
time scales for hydrological drought. However, sim-
ilar to hydrological droughts, temporal clustering
of meteorological droughts is strongest at seasonal,
annual, and 3-yearly time scales independent of the

clustering metric chosen. In case of the dispersion
index, there is still some temporal clustering at shorter
time scales (up to 3%) but it is also much less com-
mon than for hydrological droughts. The finding that
temporal clustering is more common for hydrolo-
gical than for meteorological droughts applies to all
regions (figure 4(b)) but the difference between the
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meteorological and hydrological temporal drought
clustering is stronger for some than for other regions.
For example, the difference between temporal met-
eorological and hydrological drought clustering is
particularly large in Brazil, while it is relatively small
in Chile.

4. Discussion

Our analysis included different methodological
choices, i.e. the choice of the dataset, the drought
definition and threshold applied, and the clustering
metric, which influence the results to a certain degree.
However, our sensitivity analysis shows that the res-
ults and conclusions are relatively robust toward the
choice of dataset (figure A7 in the supporting inform-
ation), drought threshold and minimum drought
duration (figure A8 in the supporting information),
and clustering metric (figure 2).

Our detection of significant hydrological drought
clustering at different time scales, ranging from sea-
sonal, over annual, to multi-annual time scales,
expands findings of previous studies suggesting
hydrological drought clustering at decadal time scales
in the UK (Hannaford 2015, Barker et al 2019).
While these regional studies have highlighted drought
periodicity at longer time scales, we here show that
temporal hydrological drought clustering is most
common at seasonal to 3-year time scales using a
dataset spanning different climate zones (figure 2).
Our findings indicate temporal hydrological clus-
tering in 5%–10% of the catchments considered,
depending on time scale and region (figure 2(b)).
Temporal hydrological drought clustering is in most
regions more common at an annual than at a 3-yearly
time scale, in particular in wet regions such as Brazil
or Great Britain, while it is more common at a 3-
yearly time scale in dry regions such as Australia.
These regional differences in the importance of dif-
ferent time scales for temporal hydrological drought
clustering, are on the one hand related to differences
in the temporal clustering behavior of meteorological
droughts (figure 4(b), meteorological drought clus-
tering varies by region) and on the other hand to
the memory of the system (figure 4(b), differences
between meteorological and hydrological drought
clustering vary by region), which is shorter in wet-
ter than in drier regions (De Lavenne et al 2022).
Shortmemories inwetter regions imply that droughts
happening in any given year may influence the like-
lihood of drought occurrence in the next year but
not in 3-years, while longer memories may result in
drought influences on future droughts at longer than
annual time scales. The relationship between met-
eorological and hydrological drought clustering var-
ies by region (figure 4(b)) suggesting that the relat-
ive importance of climatic and land-surface effects for
temporal hydrological drought clustering varies for

regions characterized by different climate and catch-
ment properties.

While up to 10% of the catchment show temporal
clustering of hydrological droughts, only up to 2%
of the catchments show significant temporal cluster-
ing of meteorological droughts (figure 4). Such relat-
ively weak clustering of meteorological droughts is in
contrast to findings of previous studies which docu-
mented meteorological drought variations at multi-
year to multi-decadal time scales by assessing inter-
annual and decadal drought variability (Ionita et al
2012, Yue et al 2021). These differences in the tem-
poral clustering behavior of meteorological drought
may be explained by the different methods and data-
sets used for the analyses. We focused on event occur-
rences independent of drought duration, while these
previous studies focused either on very long events or
on fluctuations inmeteorological droughtmagnitude
rather than occurrence.

Our finding that temporal hydrological drought
clustering is substantially more common than the
temporal clustering of meteorological droughts sug-
gests that only looking at the temporal cluster-
ing of meteorological droughts does not provide a
comprehensive picture of temporal clustering in the
hydrological domain. There, additional land-surface
processes appear to enhance temporal clustering, par-
ticularly in arid catchments and catchments without
snow storage (figure 3). In addition, it supports our
hypothesis that storage or the lack thereof import-
antly influence the temporal clustering behavior of
hydrological droughts. That is, the less storage a
catchment has, the higher is the likelihood that it
shows temporal hydrological drought clustering. In
a snow-dominated catchment, for example, regu-
lar streamflow contributions from snowmelt might
prevent the development of recurrent hydrological
droughts. In contrast, in an arid, precipitation-
driven regime, subsequent hydrological droughts
might develop if streamflow deficits develop as a res-
ult of low precipitation inputs in combination with
low baseflow contributions related to persistently low
groundwater levels. Similarly, recurrent hydrological
droughts can also evolve if soil moisture is consist-
ently low and remains unreplenished for a long time.
The importance of land-surface processes for tem-
poral hydrological drought clustering corroborates
findings of earlier studies highlighting the important
role of catchment memory for drought propagation
(Van Loon and Laaha 2015, Alvarez-Garreton et al
2021).

Various local and regional studies provide evid-
ence for the occurrence of drought persistence in
the form of multi-year droughts both from a met-
eorological and hydrological perspective. The occur-
rence of multi-year meteorological droughts has for
example been documented for France (Vidal et al
2010), Central Europe (Moravec et al 2021), and
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the United States (Goodrich 2007, Diffenbaugh et al
2015, Abatan et al 2018, Bales et al 2018) and the
occurrence of multi-year hydrological droughts for
different parts of Europe (Parry et al 2012, Folland
et al 2015, Hanel et al 2018, Brunner and Tallaksen
2019) and Chile (Alvarez-Garreton et al 2021). The
phenomenon of multi-year droughts is distinct from
the temporal clustering behavior investigated in this
study because it focuses on individual, long droughts
compared to the multiple subsequent droughts stud-
ied here. However, the two phenomena—multi-year
and temporally clustered droughts—might to some
degree be related, as indicated by our finding that
catchments with significant temporal hydrological
drought clustering tend to be characterized by longer
droughts than catchmentswithout significant cluster-
ing (figure 3). For example, a long drought with slow
recovery might prompt further subsequent droughts
because the hydrological system might take a long
time to fully recover from depleted groundwater stor-
age. How exactly the two concepts of multi-year and
temporally clustered droughts are related, remains to
be investigated.

Our findings show that climate and the land-
surface are important modulators of the temporal
clustering behavior of hydrological droughts. In
contrast, the degree of reservoir regulation does
not affect the temporal clustering of hydrological
drought (figure 2(c)). While the impact of reser-
voir regulation does not influence the temporal
clustering of hydrological drought, it has been
shown to affect local (e.g. duration or deficit) and
regional drought characteristics (e.g. spatial extent)
or drought propagation (López-Moreno et al 2009,
Wen et al 2011, Mix et al 2016, Wan et al 2017, van
Oel et al 2017, Tu et al 2018, Brunner 2021, Ribeiro
Neto et al 2022). These findings suggest that while
reservoirs are able to alleviate drought magnitude,
they may not necessarily prevent the occurrence of
drought altogether, which results in small impacts
on the temporal clustering behavior of hydrolo-
gical drought as defined in this study. How other
types of regulation such as groundwater abstraction
affect the temporal clustering behavior of hydrolo-
gical droughts remains to be investigated (Tijdeman
et al 2018, Van Loon et al 2022). Overall, our find-
ing that the temporal clustering behavior of hydro-
logical droughts varies with climate and catchment
characteristics stresses that the influence of climate
and catchment characteristics influence a range of
drought characteristics not limited to magnitude and
frequency (Van Loon and Laaha 2015, Barker et al
2016, Parry et al 2016, Apurv and Cai 2020, Konapala
and Mishra 2020, Ganguli et al 2022).

The existence of temporal hydrological drought
clustering has considerable implications for hazard
assessments, trend analyses, climate impact assess-
ments, and risk analyses. Hazard estimates derived

using a short record might not be representative
in catchments with significant temporal drought
clustering, as estimates derived on a drought-poor
or drought-rich period can under- or overestimate
drought risk, respectively. This issue highlights the
importance of using a sufficiently long time series
for drought frequency analysis. In addition, temporal
drought clustering should be considered in trend ana-
lyses where drought-rich periods at the beginning or
end of a time series might lead to the detection of
artificial decreasing or increasing trends, respectively.
This problem highlights the importance of choosing
a sufficiently long time window for a trend analysis.
Furthermore, temporal drought clustering needs to
be considered in climate impact assessments, which
is challenging because of various uncertainties intro-
duced along different parts of the modeling chain.
For example, it has been shown that global circu-
lation models underestimate persistence in precip-
itation deficits (Kumar et al 2013, Ault et al 2014,
Moon et al 2018). Such misestimation might become
more pronounced when coupling climate models
with hydrological models, i.e. when including storage
processes that also need to accurately represent clus-
tering behavior. While modeling the temporal clus-
tering behavior of hydrological droughts might be
challenging, it is also crucial to understand how tem-
poral drought clustering might change in a warming
world.

Our results suggest that temporal hydrological
drought clustering might become more common
with increasing temperatures as aridity increases and
snow storage decreases (figure 3). For example, tem-
porally clustered events may become more common
in regions with increasing aridity such as cent-
ral North America, central South America, south-
ern Europe and southern Africa (Chai et al 2021).
Furthermore, more catchments in snow-influenced
regions such as the Alps and other mountain regions
of the world, where currently only few catchments
show temporal hydrological drought clustering
(figure 2(b)), may become more affected by this
phenomenon as snow cover decreases (Beaumet
et al 2021, Matiu et al 2021). How exactly climate
change affects temporal drought clustering needs
to be assessed in targeted modeling experiments by
e.g. using large ensembles of climate model output
in combination with a hydrological model (Deser
et al 2012). We might also improve our understand-
ing of changes in drought clustering by identify-
ing reasons/drivers for clustering at different time
scales.

5. Conclusions

We tested for significant temporal hydrological
drought clustering at subseasonal to multi-year time
scales in different climate zones ranging from tropical
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regions in the Amazon, over snow-influenced regions
in the Alps, to arid regions in Australia and theUnited
States using two different clustering metrics, i.e.
Ripley’s K and the dispersion index. We find that
temporal hydrological drought clustering is not very
common, as only roughly 10% of the catchments
show such clustering behavior. In catchments with
temporal clustering, hydrological droughts cluster in
time at seasonal, annual, and multi-year time scales
and less at subseasonal and longer time scales. Tem-
poral clustering ismost common at annual time scales
where roughly 10%of the catchments show such clus-
tering behavior and at seasonal and 3-year time scales
where roughly 5% show significant temporal cluster-
ing. Catchments most prone to significant temporal
clustering are arid catchments and catchments with
a low snow fraction, i.e. precipitation-driven catch-
ments. Finally, we demonstrate that the temporal
clustering of hydrological droughts is substantially
more common than the clustering of meteorological
droughts. That is, climatic drivers are insufficient
to explain the temporal clustering of hydrological
droughts, suggesting that additional land-surface
processes are needed to explain this behavior. Such
processes include snow storage or the absence thereof,
seasonal and inter-annual groundwater level vari-
ations, temporal soil moisture variability, or fluctu-
ations in glacier-melt contributions but not reservoir
storage.We conclude that the risk of recurrent hydro-
logical droughts is substantial in arid catchments
without substantial snow storage, which should
be considered in hazard, risk, and climate impact
assessments.
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Muñoz-Sabater J et al 2021 ERA5-Land: a state-of-the-art global
reanalysis dataset for land applications Earth Syst. Sci. Data
13 4349–83

Noone S, Broderick C, Duffy C, Matthews T, Wilby R L and
Murphy C 2017 A 250-year drought catalogue for the island
of Ireland (1765–2015) Int. J. Climatol. 37 239–54

Obladen N et al 2021 Tree mortality of European beech and
Norway spruce induced by 2018-2019 hot droughts in
central Germany Agric. Forest Meteorol. 307 108482

Parry S, Hannaford J, Lloyd-Hughes B and Prudhomme C 2012
Multi-year droughts in Europe: analysis of development and
causes Hydrol. Res. 43 689

Parry S, Wilby R L, Prudhomme C and Wood P J 2016 A
systematic assessment of drought termination in the United
Kingdom Hydrol. Earth Syst. Sci. 20 4265–81

10

https://doi.org/10.1029/2019WR025903
https://doi.org/10.1029/2019WR025903
https://doi.org/10.1038/nclimate1830
https://doi.org/10.1038/nclimate1830
https://doi.org/10.1016/S0022-1694(97)00068-1
https://doi.org/10.1016/S0022-1694(97)00068-1
https://doi.org/10.1038/srep15110
https://doi.org/10.1038/srep15110
https://doi.org/10.1038/s41612-021-00223-5
https://doi.org/10.1038/s41612-021-00223-5
https://doi.org/10.1080/01621459.1996.10476719
https://doi.org/10.1080/01621459.1996.10476719
https://doi.org/10.5194/essd-12-2459-2020
https://doi.org/10.5194/essd-12-2459-2020
https://doi.org/10.5194/hess-26-2715-2022
https://doi.org/10.5194/hess-26-2715-2022
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.1038/s41467-020-14300-5
https://doi.org/10.1038/s41467-020-14300-5
https://doi.org/10.1073/pnas.142238511
https://doi.org/10.1073/pnas.142238511
https://doi.org/10.1002/9781118445112.stat07751
https://doi.org/10.1002/9781118445112.stat07751
https://www.sciencebase.gov/catalog/item/5b183960e4b092d965219d62
https://www.sciencebase.gov/catalog/item/5b183960e4b092d965219d62
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://doi.org/10.5194/hess-10-535-2006
https://doi.org/10.5194/hess-10-535-2006
https://doi.org/10.5194/hess-19-2353-2015
https://doi.org/10.5194/hess-19-2353-2015
https://doi.org/10.5194/essd-13-3847-2021
https://doi.org/10.5194/essd-13-3847-2021
https://doi.org/10.1038/s41598-022-11293-7
https://doi.org/10.1038/s41598-022-11293-7
https://doi.org/10.1111/j.1749-8198.2007.00035.x
https://doi.org/10.1111/j.1749-8198.2007.00035.x
www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html
www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html
https://doi.org/10.1016/j.gloplacha.2016.10.011
https://doi.org/10.1016/j.gloplacha.2016.10.011
https://doi.org/10.1038/s41598-018-27464-4
https://doi.org/10.1038/s41598-018-27464-4
https://doi.org/10.1177/0309133314536755
https://doi.org/10.1177/0309133314536755
https://doi.org/10.1038/s41598-020-68872-9
https://doi.org/10.1038/s41598-020-68872-9
https://doi.org/10.1016/j.jhydrol.2021.127056
https://doi.org/10.1016/j.jhydrol.2021.127056
https://doi.org/10.1007/s00382-011-1028-y
https://doi.org/10.1007/s00382-011-1028-y
https://doi.org/10.5194/essd-13-4529-2021
https://doi.org/10.5194/essd-13-4529-2021
https://doi.org/10.1029/2018WR024620
https://doi.org/10.1029/2018WR024620
https://doi.org/10.1175/JCLI-D-12-00259.1
https://doi.org/10.1175/JCLI-D-12-00259.1
https://doi.org/10.1016/j.jhydrol.2017.10.072
https://doi.org/10.1016/j.jhydrol.2017.10.072
https://doi.org/10.1029/2008WR007198
https://doi.org/10.1029/2008WR007198
https://doi.org/10.5194/tc-15-1343-2021
https://doi.org/10.5194/tc-15-1343-2021
https://doi.org/10.1016/j.jhydrol.2015.06.016
https://doi.org/10.1016/j.jhydrol.2015.06.016
https://doi.org/10.1016/j.jhydrol.2016.07.041
https://doi.org/10.1016/j.jhydrol.2016.07.041
https://doi.org/10.3389/fpls.2016.00419
https://doi.org/10.3389/fpls.2016.00419
https://doi.org/10.1111/lre.12147
https://doi.org/10.1111/lre.12147
https://doi.org/10.1002/2017JD027577
https://doi.org/10.1002/2017JD027577
https://doi.org/10.1088/1748-9326/abe828
https://doi.org/10.1088/1748-9326/abe828
https://doi.org/10.5194/nhess-15-571-2015
https://doi.org/10.5194/nhess-15-571-2015
https://doi.org/10.1038/nature01928
https://doi.org/10.1038/nature01928
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.1002/joc.4999
https://doi.org/10.1002/joc.4999
https://doi.org/10.1016/j.agrformet.2021.108482
https://doi.org/10.1016/j.agrformet.2021.108482
https://doi.org/10.2166/nh.2012.024
https://doi.org/10.2166/nh.2012.024
https://doi.org/10.5194/hess-20-4265-2016
https://doi.org/10.5194/hess-20-4265-2016


Environ. Res. Lett. 18 (2023) 034011 M I Brunner and K Stahl

Pelletier J D and Turcotte D L 1997 Long-range persistence in
climatological and hydrological time series: analysis,
modeling and application to drought hazard assessment J.
Hydrol. 203 198–208

Ribeiro Neto G G, Melsen L A, Martins E S P R, Walker D W and
Oel P R 2022 Drought cycle analysis to evaluate the
influence of a dense network of small reservoirs on drought
evolutionWater Resour. Res. 58 e2021WR030799

Ripley B D 1981 Spatial Statistics (Hoboken, NJ: Wiley)
Sánchez-Pinillos M, D’Orangeville L, Boulanger Y, Comeau P,

Wang J, Taylor A R and Kneeshaw D 2022 Sequential
droughts: a silent trigger of boreal forest mortality Glob.
Change Biol. 28 542–56

Schuldt B et al 2020 A first assessment of the impact of the
extreme 2018 summer drought on Central European forests
Basic Appl. Ecol. 45 86–103

Sutanto S J and Van Lanen H A 2021 Streamflow drought:
implication of drought definitions and its application for
drought forecasting Hydrol. Earth Syst. Sci. 25 3991–4023

Tanguy M, Haslinger K, Svensson C, Parry S, Barker L J,
Hannaford J and Prudhomme C 2021 Regional differences
in spatiotemporal drought characteristics in Great Britain
Front. Environ. Sci. 9 1–20

Tijdeman E, Hannaford J and Stahl K 2018 Human influences on
streamflow drought characteristics in England and Wales
Hydrol. Earth Syst. Sci. 22 1051–64

Tong S, Lai Q, Zhang J, Bao Y, Lusi A, Ma Q, Li X and Zhang F
2018 Spatiotemporal drought variability on the Mongolian
Plateau from 1980–2014 based on the SPEI-PM, intensity
analysis and Hurst exponent Sci. Total Environ.
615 1557–65

Tramblay Y et al 2020 Challenges for drought assessment in the
Mediterranean region under future climate scenarios
Earth-Sci. Rev. 210 103348

Tu X, Wu H, Singh V P, Chen X, Lin K and Xie Y 2018
Multivariate design of socioeconomic drought and impact
of water reservoirs J. Hydrol. 566 192–204

Tuel A and Martius O 2021a A climatology of sub-seasonal
temporal clustering of extreme precipitation in Switzerland
and its links to extreme discharge Nat. Hazards Earth Syst.
Sci. 21 2949–72

Tuel A and Martius O 2021b A global perspective on the
sub-seasonal clustering of precipitation extremesWeather
Clim. Extremes 33 100348

Van Loon A F et al 2022 Streamflow droughts aggravated by
human activities despite management Environ. Res. Lett.
17 044059

Van Loon A F and Laaha G 2015 Hydrological drought severity
explained by climate and catchment characteristics J.
Hydrol. 526 3–14

van Oel P R, Martins E and Costa A 2017 The effect of reservoir
networks on drought propagation Eur. Water 60 287–92

Vidal J P, Martin E, Franchistéguy L, Habets F, Soubeyroux J M,
Blanchard M and Baillon M 2010 Multilevel and multiscale
drought reanalysis over France with the Safran-Isba-Modcou
hydrometeorological suite Hydrol. Earth Syst. Sci. 14 459–78

Villarini G, Smith J A, Vitolo R and Stephenson D B 2013
On the temporal clustering of US floods and its
relationship to climate teleconnection patterns Int. J.
Climatol. 33 629–40

Vitolo R, Stephenson D B, Cook I M and Mitchell-Wallace K 2009
Serial clustering of intense European stormsMeteorol. Z.
18 411–24

Wan W et al 2017 Hydrological drought in the anthropocene:
impacts of local water extraction and reservoir regulation in
the U.S J. Geophys. Res.: Atmos. 122 11313–28

Wang N, Lombardo L, Tonini M, Cheng W, Guo L and Xiong J
2020 Space-time clustering of flash floods in a changing
climate (China, 1950-2015) Nat. Hazards Earth Syst. Sci.
21 2109–24

Wen L, Rogers K, Ling J and Saintilan N 2011 The impacts of river
regulation and water diversion on the hydrological drought
characteristics in the Lower Murrumbidgee River, Australia
J. Hydrol. 405 382–91

Yu H, Zhang Q, Sun P and Song C 2018 Impact of droughts on
winter wheat yield in different growth stages during
2001–2016 in Eastern China Int. J. Disaster Risk Sci.
9 376–91

Yue Y, Liu H F, Mu X X, Qin M S, Wang T T, Wang Q and Yan Y Q
2021 Spatial and temporal characteristics of drought and its
correlation with climate indices in Northeast China PLoS
One 16 e0259774

11

https://doi.org/10.1016/S0022-1694(97)00102-9
https://doi.org/10.1016/S0022-1694(97)00102-9
https://doi.org/10.1029/2021WR030799
https://doi.org/10.1029/2021WR030799
https://doi.org/10.1111/gcb.15913
https://doi.org/10.1111/gcb.15913
https://doi.org/10.1016/j.baae.2020.04.003
https://doi.org/10.1016/j.baae.2020.04.003
https://doi.org/10.5194/hess-25-3991-2021
https://doi.org/10.5194/hess-25-3991-2021
https://doi.org/10.3389/fenvs.2021.639649
https://doi.org/10.3389/fenvs.2021.639649
https://doi.org/10.5194/hess-22-1051-2018
https://doi.org/10.5194/hess-22-1051-2018
https://doi.org/10.1016/j.scitotenv.2017.09.121
https://doi.org/10.1016/j.scitotenv.2017.09.121
https://doi.org/10.1016/j.earscirev.2020.103348
https://doi.org/10.1016/j.earscirev.2020.103348
https://doi.org/10.1016/j.jhydrol.2018.09.012
https://doi.org/10.1016/j.jhydrol.2018.09.012
https://doi.org/10.5194/nhess-21-2949-2021
https://doi.org/10.5194/nhess-21-2949-2021
https://doi.org/10.1016/j.wace.2021.100348
https://doi.org/10.1016/j.wace.2021.100348
https://doi.org/10.1088/1748-9326/ac5def
https://doi.org/10.1088/1748-9326/ac5def
https://doi.org/10.1016/j.jhydrol.2014.10.059
https://doi.org/10.1016/j.jhydrol.2014.10.059
https://doi.org/10.5194/hess-14-459-2010
https://doi.org/10.5194/hess-14-459-2010
https://doi.org/10.1002/joc.3458
https://doi.org/10.1002/joc.3458
https://doi.org/10.1127/0941-2948/2009/0393
https://doi.org/10.1127/0941-2948/2009/0393
https://doi.org/10.1002/2017JD026899
https://doi.org/10.1002/2017JD026899
https://doi.org/10.5194/nhess-21-2109-2021
https://doi.org/10.5194/nhess-21-2109-2021
https://doi.org/10.1016/j.jhydrol.2011.05.037
https://doi.org/10.1016/j.jhydrol.2011.05.037
https://doi.org/10.1007/s13753-018-0187-4
https://doi.org/10.1007/s13753-018-0187-4
https://doi.org/10.1371/journal.pone.0259774
https://doi.org/10.1371/journal.pone.0259774

