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Abstract
An extension of the notion of classical equivalence of equivalence in the Batalin–
Vilkovisky (BV) and Batalin–Fradkin–Vilkovisky (BFV) frameworks for local
Lagrangian field theory on manifolds possibly with boundary is discussed. Equiv-
alence is phrased in both a strict and a lax sense, distinguished by the compatibility
between the BV data for a field theory and its boundary BFV data, necessary for
quantisation. In this context, the first- and second-order formulations of nonabelian
Yang–Mills and of classical mechanics on curved backgrounds, all of which admit
a strict BV–BFV description, are shown to be pairwise equivalent as strict BV–BFV
theories. This in particular implies that their BV complexes are quasi-isomorphic.
Furthermore, Jacobi theory and one-dimensional gravity coupled with scalar matter
are compared as classically equivalent reparametrisation-invariant versions of clas-
sical mechanics, but such that only the latter admits a strict BV–BFV formulation.
They are shown to be equivalent as lax BV–BFV theories and to have isomorphic BV
cohomologies. This shows that strict BV–BFV equivalence is a strictly finer notion of
equivalence of theories.

A. S. C. acknowledges partial support of SNF Grant No. 200020_192080. This research was (partly)
supported by the NCCR SwissMAP, funded by the Swiss National Science Foundation.

B M. Schiavina
michele.schiavina@unipv.it

F. M. Castela Simão
f.castelasimao@qmul.ac.uk

A. S. Cattaneo
cattaneo@math.uzh.ch

1 Queen Mary University of London, School of Mathematical Sciences, Mile End Rd, London E1
4NS, UK

2 Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland

3 Institute for Theoretical Physics and Department of Mathematics, ETH Zurich, Rämistrasse 101,
8092 Zürich, Switzerland

4 Present Address: Dipartimento di Matematica, Università di Pavia, Via Ferrata 5, 27100 Pavia, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11005-023-01646-2&domain=pdf
http://orcid.org/0000-0003-0639-9713
http://orcid.org/0000-0001-5760-4794


25 Page 2 of 91 F. M. C. Simão et al.

Keywords BV formalism · BFV formalism · Classical field theory · Gauge theory ·
Yang-Mills theory

Mathematics Subject Classification 81T70 · 83C47 · 70S15 · 70B05

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Field theories and equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Lagrangian field theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Batalin–Vilkovisky formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Equivalence in the BV setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Field theories on manifolds with higher strata . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Inducing boundary BFV from bulk BV data . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Equivalence in the lax setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Contractible pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 More general contractible pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Classical mechanics on a curved background . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Yang–Mills theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 1D reparametrisation-invariant theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Appendix A: Lengthy calculation for Yang–Mills . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.1. Lemmata used in Theorem 3.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Appendix B: Lengthy Calculations for the Jacobi theory/1D GR case . . . . . . . . . . . . . . . . . 59
B.1 Preliminaries for calculations—tensor number . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.2 Lemmata used in Theorem 3.5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

1 Introduction

The notion of equivalence of field theories is one that can be found throughout physics.
Such a concept is relevant and useful for various reasons. At a classical level, the equa-
tions of motions of a given theory might be easier to handle than other “equivalent”
ones, even if they ultimately yield the samemoduli space of solutions. Such reformula-
tions often result in different and enlightening new interpretations of a given problem.
Moreover, one theory might be better suited for quantisation than another, but the
question of whether two classically equivalent theories result in the same quantum
theory is in general still open. With this work, we attempt to take another step towards
the answer.

The classical physical content of a given field theory is encoded in the set EL of
solutions of the Euler–Lagrange equations. In the case where the theory in question
also enjoys a local symmetry—encoded by a tangent distribution D—we are inter-
ested in the moduli space of inequivalent solutions EL/D. Classical observables are
then defined to be suitable functions on EL/D. Such a quotient is typically singular:
Defining a sensible space of functions over it becomes challenging, and it is often
more convenient to find a replacement; a problem best addressed within the Batalin–
Vilkovisky (BV) formalism.
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The BV formalism was first introduced in [12–14] as an extension of the BRST
formalism [10, 63], named after Becchi, Rouet, Stora,and Tyutin, used to quantise
Lagrangian gauge theories in a way that preserves covariance. Around the same time,
the Batalin–Fradkin–Vilkovisky (BFV) formalism was introduced, which deals with
constrained Hamiltonian systems [4, 11]. It was later noticed by various authors [8, 31,
32, 39, 40, 43, 44, 61, 62] that the aforementioned formalisms enjoy a rich cohomo-
logical structure. For example, a BV theory associates a chain complex to a spacetime
manifold, the BV complex, which aims at a resolution of the desired space of functions
over the quotient EL/D. In the case of the BFV formalism, one introduces the BFV
complex [55, 56, 61] as a resolution of the space of functions over the reduced phase
space of a given constrained Hamiltonian system.

One can then address the question of equivalence of theories in the BV setting.
Following the discussion above, a natural way of comparing two classical theories is
through their BV cohomologies, also called classical observables, as done for example
in [3]. However, a BV theory comes equipped with several pieces of data other than
the underlying dg-algebra structure (for example, a symplectic structure and a Hamil-
tonian function) that one might want an equivalence relation to preserve. Finding the
appropriate notion of “BV equivalence” is thus a nontrivial open question. In [28,
29], a stronger notion of BV equivalence is implemented, which requires all data to
be preserved by a symplectomorphism. A nontrivial example of such equivalence is
found between 3d gravity and (nondegenerate) B F theory. In [17], various alterna-
tive weaker notions of BV equivalence have been presented, which apply to higher
dimensional formulations of General Relativity.

The BV and BFV approaches were linked by Cattaneo, Mnev and Reshetikhin in
[19], where the authors showed that a BV theory on the bulk induces a compatible
BFV theory on the boundary, provided that some regularity conditions are met. The
presence of a boundary will typically spoil the symmetry invariance of the BV data,
encoded in the BV cohomology, but this failure will be controlled by the BFV data
associated to the boundary. From this perspective, the regularity conditions can be
seen as a compatibility condition between the BV complex on the bulk and the BFV
complex on the boundary.

Derived geometry [50] extends the above setting to algebraic geometry, even though
currently only in the restricted setting of AKSZ theories. The induced boundary theory
is in this case an example of derived intersection, [15, 24]. As derived geometry
mainly addresses classical problems, the nondegeneracy of the symplectic form is
only required up to homotopy, which yields problems in the direction of quantisation.

On the other hand the BV–BFV approach [19, 20] is especially successful since it
allows for a quantisation procedure that is compatible with cutting and gluing. This
has already been shown to work in various examples such as B F theory [20, 21], split
Chern–Simons theory [22], 2DYang–Mills theory [42] and AKSZ sigmamodels [23].

This approach was first tested1 on General Relativity in [57]. For diffeomorphism
invariant theories, the compatibility between bulk and boundary data becomes a non-
trivial matter, and there are various cases where the regularity conditions necessary

1 Another approach to General Relativity by means of the BV formalism (without boundary) can be found
in [34, 51].
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for the BV–BFV description fail to be met. Most notable are the examples of Palatini–
Cartan gravity in (3+1) dimensions [27], Plebanski theory [57], the Nambu–Goto
string [46], and the Jacobi action for reparametrisation-invariant classical mechan-
ics [26]. On the other hand, the respectively classically equivalent Einstein–Hilbert
formulation of gravity [25] in (3+1) dimensions and the Polyakov action [46] fulfil
the BV–BFV axioms. The question of how one can go around these problems and
construct a sensible BV–BFV theory for Palatini–Cartan gravity was addressed in [16,
17].

As not all field theories are suitable for a BV–BFV description, the lax approach
to the BV–BFV formalism was proposed in [47], which gathers the data prior to the
step where the regularity conditions become relevant. This setting already allows us to
construct the BV–BFV complex [47], which is the adaptation of the BV complex to the
case with boundary. Likewise, classical observables are contained in its cohomology.
As such, the lax BV–BFV formalism offers a sensible way of comparing two field
theories on manifolds with boundary, even if one does not have a strict BV–BFV
theory.

In this paper, we provide an explicit method to lift classical equivalence to a (poten-
tial) BV equivalence, also in the presence of boundaries. This naturally introduces the
notion of lax equivalence of BV theories on manifolds with boundary, which is in
principle finer than BV equivalence. Our method is applied to the simple cases of
classical mechanics on a curved background as well as to (nonabelian) Yang–Mills
theory, where we explicitly show that the first- and second-order formalisms are lax
BV–BFV equivalent (and hence BV-quasi-isomorphic).

We then turn our attention to the main objective of this paper: the analysis of the
classically equivalent Jacobi theory and one-dimensional gravity coupled to matter
(1D GR). These two models can be regarded as the one-dimensional counterparts of
the Nambu–Goto and Polyakov string models respectively, and they both represent a
reparametrisation-invariant version of classical mechanics. In [26], it was shown that
while 1D GR satisfies the regularity conditions of the BV–BFV formalism, Jacobi
theory produces a singular theory on the boundary, and a similar result was proven for
their 2d string-theoretic analogues [46], which raises the question of the origin of this
boundary discrepancy.

By comparing the BV and BV–BFV cohomologies of Jacobi theory and 1DGR, we
find that, even though the two theories onmanifolds with possibly nonempty boundary
are lax-equivalent, and hence their associated BV (and lax BV–BFV) complexes are
quasi-isomorphic, the chain maps that connect the two theories do not preserve the
regularity condition required by the strictification procedure (Theorem 3.5.7).

In other words, quasi-isomorphisms of lax BV–BFV complexes do not preserve
strict BV–BFV theories, which then should be taken as a genuine subclass of BV
theories: Even in the best case scenario of two theories that are classically equivalent
with quasi-isomorphic lax BV–BFV complexes, an obstruction to their strict BV–
BFV compatibility distinguishes the two. Indeed, consider two lax equivalent theories
(Definition 2.6.3—see, e.g. the case described in Theorem 3.5.6) such that one of the
two models fails to be compatible with the strict BV–BFV axioms (cf. Remark 2.5.6).
In this case, only one of the two admits a quantisation in the BV–BFV setting. Even if
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they both could ultimately admit a sensible quantisation, our result suggests anyway
that they might have different quantisations in the presence of boundaries.

Another way of viewing our result is the following. Suppose we are given a lax
BV–BFV theory that is not strict (Definition 2.5.5 and Remark 2.5.6). Can we find
a quasi-isomorphic lax BV–BFV theory that is strictifiable? If so, we may think of
the second theory as a good replacement for the first, suitable for quantisation with
boundary.

We should stress that the enrichment of the BV complex by the de Rham complex of
the source manifold (in the sense of local forms) has been the object of past research
(see among all [3]). The lax BV–BFV complex we consider coincides with their
Batalin–Vilkovisky–de Rham complex; however, our notion of lax equivalence is
different (Definition 2.6.3), as it requires the existence of chain maps that are quasi-
inverse to one another and compatibile with the whole lax BV–BFV structure.

Crucially, our approach diverges from other investigations of local field theory that
only look at pre-symplectic data. The strictification step is precisely the pre-symplectic
reduction of such data, and where the obstruction lies. We are not aware of a viable
quantisation procedure for pre-symplectic structures.

This paper is structured as follows: Sect. 2 is dedicated to a review of local
Lagrangian field theory (Sect. 2.1), which is followed by the BV formalism (Sect. 2.2)
and the BV–BFV and lax BV–BFV formalisms (Sect. 2.4). We will showcase several
notions of equivalence in classical field theory, starting from Lagrangian field theory
in Sect. 2.1, while the discussion of equivalence in the BV and lax BV–BFV cases can
be found in Sects. 2.3 and 2.6 respectively. Later in Sect. 3 we discuss our general pro-
cedure to prove lax equivalence between two theories (Sect. 3.1) and three examples
of such equivalence, namely

• first- and second-order formulations of classical mechanics on a curved back-
ground (Sect. 3.3);

• first- and second-order formulations of (nonabelian)Yang–Mills theory (Sect. 3.4);
• one-dimensional gravity coupled to matter and Jacobi theory (Sect. 3.5).

Results and outlook:We present our notion of BV equivalence (Definition 2.3.1)
for theories over closed manifolds and lax equivalence (Definition 2.6.3) in the case
of manifolds with higher strata, and show that the latter implies the former for the
respective bulk (codimension-0 stratum) BV theories (Theorem 2.6.9).

We then show lax equivalence for the aforementioned examples, in the sense that
their laxBV–BFVdata can be interchanged in away that preserves their cohomological
structure. In particular, we show that the respective BV–BFV complexes are quasi-
isomorphic

H•(BV-BFV•1) � H•(BV-BFV•2).

Most notably, this means that the boundary discrepancy present in the BV–BFV
formulations of Jacobi theory and 1DGR found in [26] does not have a cohomological
origin, and is rather to be interpreted as an obstruction in pre-quantisation.

We expect the procedure to be applicable to other relevant examples of BV–BFV
obstructions such as the Nambu-Goto and Polyakov actions [46] and, for a more
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challenging one, Einstein–Hilbert and Palatini–Cartan gravity in (3+1) dimensions,
whose extendibility as BV–BFV theories have been shown to differ in [25, 27].

This obstruction, which bars certain theories from being quantisable in the BV
formalism with boundary without additional requirements on the fields, suggests that,
even assuming that some quantum theory exists for both models, they might differ.
Alternatively, it might suggest that among various classically and BV-equivalent mod-
els, there is a preferred choice for models which are BV–BFV compatible. Either way,
these results call for additional investigations in this direction.

2 Field theories and equivalence

We start by presenting the field theoretical structures and objects used throughout this
work, following [1, 30]. Subsequently, we review the BV formalism for closed mani-
folds2 [12–14]− see also [37, 40, 45]− and theBV–BFV formalism, its generalisation
for manifolds with boundaries and corners [18, 19]. As some theories we consider are
not compatible with the BV–BFV axioms, we revise the lax BV–BFV formalism [47],
which not only lets us study these cases, but presents a better stage for our discussions
in the presence of boundaries and corners.

Moreover, this section is used to develop our notion of equivalence of field theories
at every step of the way, first showcasing how we want to compare two classical
field theories in Definition 2.1.6 and adapting these considerations to the BV and lax
BV–BFV formalisms in Definitions 2.3.1 and 2.6.3, respectively.

2.1 Lagrangian field theories

Let M be a manifold of any dimension. In order to build a classical field theory on
M , we need a space of fields E , a local functional S called the action functional and
local observables. In most cases, we can achieve such a construction by considering a
(possibly graded) fibre bundle E → M over M and by defining the space of fields as
its space of smooth sections E :=�(M, E)with coordinates ϕi . Local objects can then
be regarded as a subcomplex of the de Rham bicomplex �•,•(E × M), where “local”
essentially means that these objects only depend on the first k derivatives of the fields
ϕi (or the kth jet). Let us make this notion precise:

Definition 2.1.1 ( (Integrated) local forms [1]) Let E → M be a (possibly graded)
fibre bundle over M , E = �(M, E) its space of smooth sections, J k(E) the kth jet
bundle and { j k : E×M → J k(E)} the evaluationmaps.We consider j∞ as the inverse
limit of these maps and construct the infinite jet bundle J∞(E) as the inverse limit of
the sequence

E = J 0(E)← J 1(E)← · · · ← J k(E)← . . .

2 For a discussion of the BV formalism in the setting of noncompact manifolds see [33, 51]. For the
extension of the BV–BFV framework to manifolds with asymptotic boundary, see [53].
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The bicomplex.3 of local forms on E × M is defined as

(�
•,•
loc (E × M), δ, d):=( j∞)∗

(
�•,•(J∞(E)), dV , dH

)
,

where dH and dV are the horizontal and vertical differentials on the variational complex
for J∞(E), respectively. Let α ∈ �•,•(J∞(E)). The differentials δ, d are defined
through

d( j∞)∗α = ( j∞)∗dHα, (1a)

δ( j∞)∗α = ( j∞)∗dV α. (1b)

Elements of �0,•
loc (E × M) will be called local functionals on E × M .

Whenever the manifold M is compact, one can define the complex of integrated
local k forms �•∫ (E), as the image of

∫
M : �k,top

loc (E × M)→ �k∫ (E) with the (varia-

tional) differential4 δ.

Remark 2.1.2 (On various notions of local forms) Notice that, in some field theory
literature (see, e.g. [30]), the term “local form” is often used to denote integrals over
the manifold M of elements of�•,toploc (E ×M), which instead we call integrated local
forms.

When M is not compact, integration comes with caveats. One can either consider
compactly supported sections or adopt the point of view of [33], where the Lagrangian
density is tested against a compactly supported function. Alternatively, one can forgo
integration and consider the following quotient

�•loc(E):=�
•,top
loc (E × M)/d�•,top−1loc (E × M).

In [1, Page 21], the elements of�•loc(E) are called variational forms when endowed
with the induced vertical differential5 δV .

Clearly, if M is closed, (�•∫ (E), δ) is isomorphic (as a complex) to (�•loc(E), δV ).

Indeed, let f , g ∈ �
•,top
loc (E × M) and define F := ∫

M f , G := ∫
M g, their respective

integrals over M . Then F = G iff the difference f − g is d-exact

F − G =
∫

M
( f − g) =

∫

M
d(. . . ) = 0,

where we used that M is closed in the last step. Hence, �•loc(E) can be taken as a
replacement of integrated local forms in the noncompact case (assuming there still is
no boundary).

3 Note that, strictly speaking, this works when j∞ is surjective. When E has connected fibres, this is true
if and only if E admits a global section [7, Proposition 3.1.14].
4 Explicitly, this is δ

∫
M ( j∞)∗α := ∫

M δ( j∞)∗α = ∫
M ( j∞)∗dV α.

5 It is possible to induce a differential coming from the variational bicomplex, by means of the interior
Euler operator (see, e.g. [1]). We will not be concerned with the details of this construction.
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If M has a nonempty boundary ∂M �= ∅, these considerations no longer hold:
Boundary terms become relevant. If, on the local densities side, we can work with
�
•,•
loc (E × M), we will see in Sect. 2.4 what the consequences of integrating over

boundaries bring about in field theory.

In addition to the previous construction, we will extensively use the following type
of vector field:

Definition 2.1.3 An evolutionary vector field [1] X ∈ Xevo(E) on E is a vector field
on J∞(E) which is vertical with respect to the projection J∞(E)→ M , such that

[LX , d] = 0,

where LX = [ιX , δ] is the variational Lie derivative on local forms on E × M .

We are now ready to define the notion of a classical field theory. We will assume
for simplicity that M is compact, possibly with boundary:

Definition 2.1.4 A classical field theory on M is a pair (E, S), consisting of a space
of fields E = �(M, E)6 and an action functional S ∈ �0∫ (E).

Since S = ∫
L for some local form L , applying the variational differential on E to

S is the same as applying δ, defined in Eq.1b, to L and integrating. This yields two
terms:

δS = EL+ BT.

The term EL is an integrated local 1-form.7 on E , whose vanishing locus defines the
Euler–Lagrange equations EL = 0. The space where these are satisfied is called the
critical locus, the zero locus EL := Loc0(EL) ⊂ F , and its elements are called
classical solutions. The term BT is a boundary term (i.e. an integral over ∂M , when
not empty), which will be crucial for the construction of field theories on manifolds
with boundary (cf. Sect. 2.5).

A further important aspect of field theories is the notion of (gauge) symmetries,
which are transformations that leave the action functional S and the critical locus EL
invariant. Infinitesimally, they can be described as follows:

Definition 2.1.5 An infinitesimal local symmetry of a classical field theory (E, S) is
given by a distribution D ⊆ TE , such that8

LX S = 0 ∀X ∈ �(E, D).

6 More generally, the space of fields is an affine space modelled on a space of sections; e.g. a space of
connections. Evenmore generally, e.g. in the case of sigmamodels, one expands fields around a background
field. It is the space of these perturbations that is a space of sections.
7 The integrand of EL is the pullback along j∞ of a form of source type in the variational bicomplex, see
[1, Definition 3.5].
8 Notice that we want D to be a (generically proper) subspace of all vector fields that annihilate the action
functional. We want it to be maximal, in the sense that all symmetries are considered except trivial ones,
i.e. those that vanish on EL. As such it is not automatically a subalgebra. See [40, Section 1.3]. Observe
that, although not necessary, one might want to restrict D to only (genuinely) local symmetries, meaning
that we do not consider constant Lie group/Lie algebra actions at this stage.
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Furthermore, we require D to be involutive on the critical locus EL, i.e. if X ,Y ∈
�(E, D), then [X ,Y ]∣∣EL ∈ �(E, D|EL).

Whenever local symmetries are present, the space of interest is not EL but rather the
space of inequivalent configurations EL/D,9 i.e. the space of orbits of D on the critical
locus EL. Classical observables are then suitable functions over EL/D, whose space
wedenote byC∞(EL/D). Note that, as a quotient,EL/D is often singular and defining
C∞(EL/D) is a nontrivial task. One way of handling this is to build a resolution of
C∞(EL/D), bymeans of theKoszul–Tate–Chevalley–Eilenberg complex, also known
as the BV complex (see Definition 2.2.4).

We are interested in analysing to what extent two field theories are equivalent.
Starting the discussion of equivalence in the setting of classical Lagrangianfield theory,
we consider the

Definition 2.1.6 Let (Ei , Si ), i ∈ {1, 2}, be two classical field theories with symmetry
distributions Di . We say that (Ei , Si ) are classically equivalent if

EL1 � EL2,

D1|EL1 � D2|EL2 .

Remark 2.1.7 If two theories are classically equivalent, we have EL1/D1 � EL2/D2.
If we have a model for the respective spaces of classical observables, they are isomor-
phic:

C∞(EL1/D1) � C∞(EL2/D2).

This notion will be central in our discussion, and we will provide a refinement of it
within the BV formalism, with and without boundary.

Remark 2.1.8 In certain cases, we can find C1 ⊂ E1, defined as the set of solutions
of some of the equations of motion EL1 = 0. Then, if we can find an isomorphism
φcl : C1 → E2 such that

S1|C1 = φ∗cl S2 and D1|C1

φcl� D2,

the theories are classically equivalent. This is a simple example of the situation in
which two theories are classically equivalent because they differ only by auxiliary
fields (see, e.g. [3]).

2.2 Batalin–Vilkovisky formalism

The BV formalism is a cohomological approach to field theory, that allows one to
characterise the space of inequivalent field configurations bymeans of the cohomology

9 By abuse of notation, we denote by D also the restriction of D to EL.
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of an appropriate cochain complex. It turns out that it also provides a natural notion of
equivalence of field theories, that also takes into account “observables” of the theory.

In this setting, a classical field theory is described through the following data:

Definition 2.2.1 A BV theory is the assignment of a quadruple F = (F , ω,S, Q) to a
closed manifold M where

• F = �(M, F) is the space of smooth sections of a Z-graded bundle10 F → M
(the BV space of fields),

• ω ∈ �2∫ (F) is an integrated, local, symplectic form on F of degree −1 (the BV

form),
• S ∈ �0∫ (F) is an integrated, local, functional on F of degree 0 (the BV action

functional),
• Q ∈ Xevo(F) is a cohomological, evolutionary, vector field of degree 1, i.e.
[Q, Q] = 2Q2 = 0, and [LQ, d] = 0,

such that

ιQω = δS. (2)

The internal degree of F is called the ghost number and will be denoted by gh(·).
Remark 2.2.2 In principle, we only need to consider either S or Q, as they are related
to one another through Eq. (2), apart from the ambiguity of an additive constant in S.
We will nonetheless regard them as separate data for later convenience, as we will see
that introducing a boundary spoils Eq. (2).

As Q is cohomological, its Lie derivative LQ is a differential on �•loc(F), since
gh(LQ) = 1 and 2L2

Q = [LQ,LQ] = L[Q,Q] = 0. In this context, LQ-cocycles are
interpreted as (gauge-)invariant local forms.

Remark 2.2.3 It is easy to gather that both ω and S areLQ-cocycles by applying δ and
ιQ to Eq. (2), respectively. We have

LQω = 0, (3a)

LQS = (S,S) = 0. (3b)

where (·, ·) is the Poisson bracket induced by ω. Eq. (3b) is known as the Classical
Master Eqns [14, 58], and encodes the property that S is gauge invariant. In particular,
Eq. (3) mean that we have the freedom to perform the transformations ω → ω +
LQ(. . . ) and S → S + LQ(. . . ), as long they preserve Eq. (2).

Definition 2.2.4 We define the BV complex of a given BV theory F as the space of
integrated local forms on F endowed with the differential LQ

BV•:=
(
�•∫ (F),LQ

)
,

10 For simplicity, in this note, we assume that the Grassmann parity of a variable is equal to the parity of
its Z-degree. This is okay as long as we only consider theories without fermionic physical fields.
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where the grading on BV• is given by the ghost number. Its cohomology will be
denoted by H•(BV•) and called the BV cohomology.

While the BV complex BV• consists of inhomogeneous local forms (inhomoge-
neous also in ghost number), its 0-form part11 BV•0 ⊂ BV• is of interest as it is
a resolution of D-invariant functionals on EL or, when the quotient is nonsingular,
functionals on EL/D in the sense that the BV cohomology is given by12 [33, 40, 62]

H−i (BV•0) = 0 for i > 0,

H0(BV•0) � C∞(EL/D).

Example 2.2.5 (Lie algebra case [14], see also [40, 45]) In this paper, we will only
consider examples which enjoy symmetries that come from a Lie algebra action. Let
(E, S) be a classical field theory over a closed manifold M with a symmetry on E
given by the action of a Lie algebra (g, [·, ·]). We can build a BV theory as follows:
Choose the space of fields to be

F = T ∗[−1](E ×�0(M, g)[1]),

with local coordinates�i = (ϕ j , ξa) on the base E×�0(M, g)[1] and�
†
i = (ϕ

†
j , ξ

†
a )

on the fibres. Usually, one calls ϕ j the fields, ξa the ghosts13 and �
†
i the antifields.

Note that the ghost numbers are related by gh(�i )+ gh(�†
i ) = −1 due to the -1 shift

on the fibres. We take the BV form to be the canonical symplectic form on F

ω =
∫

M
〈δ�†, δ�〉,

where 〈·, ·〉 is a bilinear map with values in �
•,top
loc (M). In the case of a Lie algebra

action, the cohomological vector field Q decomposes into the Chevalley–Eilenberg
differential γ and the Koszul–Tate differential δK T

Q = γ + δK T .

The action of γ is defined on the fields and ghosts as

γ ϕ j = ξav
j
a , γ ξa = 1

2
[ξ, ξ ]a,

11 In the literature the terminology “BV complex" is used to denoteBV•0. We use the same name forBV•
as it is the natural extension in the present setting.
12 Counterexamples to this scenario have been observed [35, 36]. In local field theory, the request that the
BV complex be a proper resolution of the moduli space of the theory is generally too strong. Hence, we do
not insist on the vanishing of negative cohomology.
13 In the case of Yang–Mills theory, the ghost field will be denoted as c.
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where vi
a are the fundamental vector fields of g on F . In turn, δK T acts as

δK T ϕ
i = 0, δK T ξ

a = 0,

δK T ϕ
†
i =

δS

δϕi
, δK T ξ

†
a = vi

aϕ
†
i . (4)

The BV action functional can then be constructed as an extension of the classical
action functional

S[�,�†] = S[ϕ] +
∫

M
〈�†, Q�〉

and Q(·) = (S, ·) can be used to compute the full form of Q�
†
i . The data (F , ω,S, Q)

form a BV theory.

2.3 Equivalence in the BV setting

We now have all the necessary tools to develop a notion of equivalence in the BV
formalism. We are interested in comparing the BV data and cohomology H•(BV•i )
of two BV theories Fi , i ∈ {1, 2}. We recall that a quasi-isomorphism is a chain map
between chain complexes which induces an isomorphism in cohomology. In this spirit,
we define:

Definition 2.3.1 Two BV theories F1 and F2 are BV-equivalent if there is a (degree-
preserving) map φ : F2 → F1 that induces a quasi-isomorphism φ∗ : BV•1 → BV•2
of BV complexes, such that φ∗ preserves the cohomological classes of the BV form
and BV action functional as

φ∗[ω1] = [ω2], φ∗[S1] = [S2]. (5)

A BV equivalence is called strong iff φ is a symplectomorphism that preserves the
BV action functionals.

Remark 2.3.2 If F1, F2 are BV-equivalent, we can find a morphism ψ : F1 → F2,
such that its pullback mapψ∗ is the quasi-inverse of φ∗. In particular, the composition
maps

χ∗ = ψ∗ ◦ φ∗ : BV•1 → BV•1, λ∗ = φ∗ ◦ ψ∗ : BV•2 → BV•2,

are the identity in the respective BV cohomologies H•(BV•1), H•(BV•2). This is
equivalent to the existence of two maps hχ : BV•1 → BV•1, hλ : BV•2 → BV•2 of
ghost number −1 such that [64]

χ∗ − id1 = LQ1hχ + hχLQ1 , λ∗ − id2 = LQ2hλ + hλLQ2 .
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Furthermore, note that applying ψ∗ to Eq. (5) yields

ψ∗[ω2] = [ω1], ψ∗[S2] = [S1]. (6)

Let us now explore some direct implications of Definition 2.3.1, in particular that
the transformation of ωi and Si are not independent:

Proposition 2.3.3 Rewrite Eqs. (5) and (6) as

φ∗ω1 = ω2 + LQ2ρ2, ψ∗ω2 = ω1 + LQ1ρ1,

φ∗S1 = S2 + LQ2σ2, ψ∗S2 = S1 + LQ1σ1,

with ρi ∈ �2∫ (Fi ), σi ∈ �0∫ (Fi ). Then

LQi (ιQi ρi + δσi ) = 0. (7)

Moreover, Eq. (7) is satisfied if

ρi = −δμi , σi = ιQi μi (8)

with μi ∈ �1∫ (Fi ).

Proof Applying φ∗ to ιQ1ω1 = δS1 yields

ιQ2ω2 + ιQ2LQ2ρ2 = δS2 + δLQ2σ2

⇒ LQ2(ιQ2ρ2 + δσ2) = 0,

and analogously LQ1(ιQ1ρ1 + δσ1) = 0.
The simplified condition (8) implies Eq. (7) since

LQi (ιQi ρi + δσi ) = LQi (−ιQi δμi + διQi μi ) = −L2
Qi

μi = 0,

where we used LQi = [ιQi , δ]. ��
Remark 2.3.4 Let F1 and F2 be BV-equivalent theories as per Definition 2.3.1, and
let χ∗ : BV•1 → BV•1 and λ∗ : BV•2 → BV•2 be the chain maps defined in
Remark 2.3.2. Then, the theories F1 and χ∗F1:=(F1, χ

∗ω1, χ
∗S1, Q1) are clearly

BV-equivalent, and so are F2 and λ∗F2.

Remark 2.3.5 In the literature, there exists another notion of equivalence of BV the-
ories, based on what is usually called elimination of (generalised) auxiliary fields or
reduction of contractible pairs (see, e.g. [3, 41] and [5] for a review). When two
theories differ by auxiliary fields content, they have the same BV cohomology. In
Sect. 3.2, we show how the presence of auxiliary fields leads to the process of elim-
ination of cohomologically contractible pairs by explicitly constructing chain maps
that are quasi-inverse to one another and homotopic to the identity. Hence, theories
that differ by auxiliary fields/contractible pairs are BV-equivalent in the sense of Def-
inition 2.3.1.
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2.4 Field theories onmanifolds with higher strata

The BV formalism can be extended to the case where the underlying manifold M has
a nonempty boundary ∂M �= ∅, as presented in [19]. This construction relies on the
BFV formalism introduced in [4]; see also [55, 56, 61].

Definition 2.4.1 An exact BFV theory over a manifold � is a quadruple F∂ =
(F∂ , ω∂,S∂ , Q∂ ) where

• F∂ = �(�, F∂ ) is the space of smooth sections of a Z-graded fibre bundle
F∂ → M∂ ,

• ω∂ = δα∂ ∈ �2∫ (F∂ ) is an exact, integrated, local, symplectic form on F∂ of

degree 0,
• S∂ ∈ �0∫ (F∂ ) is a degree 1, integrated, local, functional on F∂ ,

• Q∂ ∈ Xevo(F∂ ) is a degree 1, cohomological, evolutionary, vector field, i.e.
[Q∂ , Q∂ ] = 0, and [LQ∂ , d] = 0

such that Q∂ is the Hamiltonian vector field of S∂

ιQ∂ ω
∂ = δS∂ .

We call ω∂, S∂ the boundary form and boundary action functional, respectively.

Definition 2.4.2 A BV–BFV theory over a manifold M with boundary ∂M is given by
the data

(F , ω,S, Q,F∂ , ω∂,S∂ , Q∂ , π)

where (F∂ , ω∂,S∂ , Q∂ ) is an exact BFV theory over � = ∂M and π : F → F∂ is a
surjective submersion such that

ιQω = δS + π∗α∂ (9)

and Q ◦ π∗ = π∗ ◦ Q∂ .

Remark 2.4.3 Equation (9) implies that in general ω and S are no longer LQ-cocycles
in the presence of a boundary. Instead, we have [19]

LQω = π∗ω∂, (10a)

LQS = π∗(2S∂ − ιQ∂ α
∂). (10b)

Note that the failure of the structural BV forms to be LQ-cocycles is controlled by
(boundary)BFV forms. In particular, Eq. (10b)means thatS fails to be gauge invariant,
and the right-hand side can be related to Noether’s generalised charges [53]. Further-
more, the CME no longer holds. Instead, we have the modified Classical Master
Equation [19]
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1

2
ιQ ιQω = π∗S∂ .

2.5 Inducing boundary BFV from bulk BV data

It is important to emphasise how one can try to construct a boundary theory F∂ from
a BV theory F, since there might be obstructions. The problem we want to address is
that of inducing an exact BFV theory on the boundary ∂M , starting from the BV data
assigned to the bulk manifold M .

Define α̌ as:

α̌:=ιQω − δS. (11)

By restricting the fields of F (and their normal jets) to the boundary ∂M , we can
define the space of pre-boundary fields F̌∂ and endow it with a pre-boundary 2-form
ω̌ = δα̌. Usually ω̌ turns out to be degenerate. In order to define a symplectic space
of boundary fields, one then has to perform symplectic reduction, see, e.g. [60]. Let
ker ω̌ = {X ∈ X(F̌ℵ)

∣∣ιX ω̌ = 0 } and set

F∂ :=F̌∂/ ker ω̌. (12)

Since we are taking a quotient, nothing guarantees that F∂ is smooth, but we want
to assume that this is the case. However, a necessary condition for smoothness is
that ker ω̌ has locally constant dimension, i.e. it is a subbundle of T F̌∂ . As we will
see, this condition is not always satisfied, namely that there is a unique symplectic
form ω∂ such that π∗ω∂ = ω̌, and a unique cohomological vector field Q∂ such that
Q ◦π∗ = π∗ ◦ Q∂ . We assume (although this may not be true in general) that there is
a 1-form α∂ such that π∗α∂ = α̌. Note that, in this case, α∂ is unique and ω∂ = δα∂ .
See [18] for details. However, for F∂ smooth, we have the surjective submersion
π : F → F∂ .

Consider now

Definition 2.5.1 The graded Euler vector field E ∈ Xevo(F) is defined as the degree
0 vector field which acts on local forms of homogeneous ghost number as

LE F = gh(F)F .

Similarly, we have E∂ = π∗E ∈ Xevo(F∂ ) on the boundary.

The cohomological vector field Q∂ is actually Hamiltonian and the corresponding
boundary action functional can be computed as [52]

S∂ = ιE∂ ιQ∂ ω
∂ . (13)

The data F∂ = (F∂ , ω∂,S∂ , Q∂ ) define an exact BFV manifold over the boundary
∂M . For completeness, we also define the pre-boundary action functional Š:=π∗S∂ .
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Pulling back Eq. (13) via π∗ yields

Š = ιE ιQω̌. (14)

Note that by taking Eqs. (11) and (14), we ensure that the data (α̌, Š) can always be
defined, even if the quotient in Eq. (12) does not yield a smooth structure.

Remark 2.5.2 Theprocedurewe just presented canbe repeated in case that themanifold
M not only has a boundary but also corners (higher strata), as presented in [19, 47].
If this is possible up to codimension n, then we call the theory a n-extended (exact)
BV–BFV theory.

Remark 2.5.3 The quantisation programme introduced in [20] relies on the BV–BFV
structure of a given classical theory. As such, even if two theories are classically
equivalent, only one might turn out to have a BV–BFV structure and so be suitable for
quantisation, as we now explore in the example of the Jacobi theory and 1D GR.

Remark 2.4.3 and Sect. 2.5 discuss two potential roadblocks for our construc-
tion of equivalence in the presence of boundaries and corners (and more generally
codimension-k strata). First, to extend the notion of equivalence discussed in Sect. 2.3
to the case with higher strata, we wish to capture the possibility of local forms being
LQ-cocycles up to boundary terms, as is the case with ω and S. This is the problem of
descent, where we enrich the differential LQ by the de Rham differential on M . The
second big problem one encounters is that not all BV theories satisfy the regularity
requirement necessary to induce compatible BV–BFV data. In order to describe such
theories as well, we will relax our definitions.

In order to do this, we turn to a “lax” version of the BV–BFV formalism [47].
We will work with local forms on F × M with inhomogeneous form degree on M ,
namely κ• ∈ �

p,•
loc (F × M), and use the codimension to enumerate them, as it makes

the notation less cumbersome and more intuitive, i.e. κk denotes the (top − k)-form
part of

κ• =
dim M∑

k=0
κk,

where κk ∈ �
p,(top−k)
loc (F × M).

Remark 2.5.4 What we call “lax” BV–BFV formalism is a rewriting of known
approaches to local field theory in the BV/BRST formalism such as [2, 3, 9, 38, 59].
We use the term “lax” to contrast it with the “strict” version given by the BV–BFV
formalism proper.

This should be compared to the standard BV–BFV formalism (extended to codi-
mension k [19]), which instead looks at �•loc(F (k)) with F (k) an appropriate space
of codimension-k fields. In other words, we describe the BV–BFV picture presented
above in terms of densities instead of integrals (cf. Remark 2.1.2), and forfeiting the
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symplectic structure at codimension k. This setting allows us to phrase equivalence
with higher strata in a cohomological way, and it collects all the relevant data before
performing the quotient in Eq. (12), thus temporarily avoiding potential complica-
tions.14

The definitions that we work with rely on the lax degree15 #(·), which describes the
interplay between the co-form degree on M and the ghost number. Let fdM (·) denote
the form degree on M . The lax degree is defined as the difference of the ghost number
gh(·) and the co-form degree cfdM (·):= dim M − fdM (·)

#(·):=gh(·)− cfdM (·).

In particular, if an inhomoegeneous local form has vanishing lax degree, then the
codimension of its homogeneous components corresponds to their respective ghost
number. Most notably, this will be the case for the Lagrangian density. We will use
the total degree for computations, which for elements in �

•,•
loc (E × M) is given by

| · | = gh(·)+ fdM (·)+ fdF (·), where fdF (·) is the form degree on F .

Definition 2.5.5 (Lax BV–BFV theory) A lax BV–BFV theory over a manifold M is a
quadruple Flax = (F lax, θ•, L•, Q) where

• F lax = �(M, F) for some Z-graded fibre bundle F → M ,
• θ• ∈ �

1,•
loc (F lax × M) is a local form with lax degree -1,

• L• ∈ �
0,•
loc (F lax × M) is a local functional with lax degree 0,

• Q ∈ Xevo(F lax) is an evolutionary, cohomological vector field on F lax of degree
1, i.e. [LQ, d] = [Q, Q] = 0,

such that

ιQ� • = δL• + dθ•, (15a)

ιQ ιQ� • = 2dL•, (15b)

where � •:=δθ•.

Remark 2.5.6 (Strictification of lax data)
Let M◦ be the interior (bulk) of M .

(1) If M = M◦ is a closed manifold, then we can assign a BV theory F to M◦ from a
lax BV–BFV theory Flax by choosing16

F = F lax|M◦ , ω =
∫

M◦
� 0, S =

∫

M◦
L0

and restricting Q to F .

14 A similar idea is contained in the work of Brandt, Barnich, and Henneaux [3], but without the structural
BV–BFV equations.
15 In [47] the authors denote the lax degree by total degree.
16 We denote byF lax|M◦ (resp.F lax|M∂ ) the restriction of fields to the interior (resp the boundary stratum,
where we also restrict normal jets) of M , seen as section of a fibre bundle (resp. the tangent bundle to the
induced bundle).
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(2) Similarly, if M is a compact manifold with boundary, the pre-BFV data on ∂M
may be induced by setting

F̌∂ = F lax|M∂ , α̌ =
∫

M∂

θ1, Š =
∫

M∂

L1,

and restricting Q to F̌∂ . When pre-symplectic reduction w.r.t. ω̌ = δα̌ = ∫
M∂ �

1

is possible [19], we can define the space of boundary fields F∂ := F̌∂/ker(ω̌�).
Together with the bulk data presented above, this produces a BV–BFV theory.

The procedure is analogous for higher codimensions: If M (k) denotes the kth-
codimension stratum, we can induce a Hamiltonian dg manifold of fields in
codimension k by performing pre-symplectic reduction of

(
F̌ (k) = F lax|M(k) , ω̌

(k) =
∫

M(k)
δθk

)
� F (k) := F̌ (k)/ker(ω̌(k)�)

Notice that pre-symplectic reduction might fail to be smooth, resulting in an obstruc-
tion to strictification. When there are no obstructions to the pre-symplectic reduction,
this procedure yields an n-extended BV–BFV theory (cf. Remark 2.5.2), and we have
an n-strictification of a lax BV–BFV theory. (For more details we refer to [47].) It is
crucial to observe that this step can fail [26, 27, 46].

Unlike the latter, a lax BV–BFV theory does not require working with symplectic
structures at higher codimensions ≥ 1. This means that lax data allow us to extract
some information about the higher codimension behaviour of the field theory but,
as we will see, the fact that a theory is strictifiable at a given codimension yields a
refinement of the notion of BV equivalence.

Remark 2.5.7 At codimension ≥ 1, it is sufficient to know θ• in order to compute L•.
Applying ιE to Eq. (15a) yields

ιE ιQ� • = LE L• + ιEdθ
•,

which implies
LE L• = ιE

(
ιQδ − d

)
θ•. (16)

We can then compute Lk at codimension k ≥ 1 by using gh(Lk) = cfdM (Lk) = k:

Lk = 1

k
ιE

(
ιQδθk − dθk+1) .

Lemma 2.5.8 ([19, 47]) The following equations hold for a lax BV–BFV theory:

LQ� • = d� •, (17a)

LQ L• = d(2L• − ιQθ•). (17b)
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Remark 2.5.9 Equations (17) are the density versions of Eq. (10). Comparing the two
versions, we see that boundary terms are now encoded as d-exact terms, instead of
objects in the image of π∗. Note that� • is a cocycle of the differential (LQ − d) and
that L• is so whenever L• − ιQθ• = 0.

In the lax BV–BFV formalism, the relevant differential will no longer be LQ , as we
want to take the boundary configurations into account. Instead, we want to consider a
cochain complex of local forms onF lax×M with differentialLQ−d, which describes
the interplay between gauge invariance and boundary terms:

Definition 2.5.10 ([3, 47]) The BV–BFV complex of a lax BV–BFV theory Flax is
defined as the space of inhomogeneous local forms on F lax × M endowed with the
differential (LQ − d)

(BV-BFV)•:=
((

⊕

k

�
•,k
loc (F

lax × M)

)

, (LQ − d)

)

,

where the grading of (BV-BFV)• is given by the lax degree. We will denote its
cohomology by H•((BV-BFV)•) and call it the BV–BFV cohomology.

Remark 2.5.11 The cocycle conditions for an inhomogenoeous local form O• ∈
�

p,•
loc (F lax × M) are often called the descent equations [47, 48, 65, 66]

(LQ − d)O• = 0

i.e.LQOk = dOk+1 with homogeneous componentsOk . Such equations are of interest
since their solutions produce classical observables, i.e. local functionals (i.e. p =
0) which belong to H0(BV•). Let γ k denote a (dim M − k)-dimensional closed
submanifold of M . We can then construct a classical observable by integrating Ok

over γ k since

LQ

∫

γ k
Ok =

∫

γ k
LQOk =

∫

γ k
dOk+1 = 0.

As such, comparing the BV–BFV cohomologies of two lax theories offers a natural
way of comparing their spaces of classical observables.

2.6 Equivalence in the lax setting

Before adapting our notion of equivalence to the case when a boundary and corners
are present, let us define f -transformations, which encode the facts that eventually (i)
we are interested in the 2-forms� • (and not in their potentials θ•) and (ii) Lagrangian
densities will be integrated (so total derivatives become irrelevant). The two issues are
actually related.
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Definition 2.6.1 Let f ∈ �
0,•
loc (F lax × M) be a local functional with #( f ) = −1. An

f -transformation of a lax BV–BFV theory Flax changes (θ•, L•) as

θ• → θ• + δ f •, L• → L• + d f •.

Remark 2.6.2 Note that an f -transformation preserves Eq. (15) since � • = δθ• and
dL• are unchanged, as is the term δL• + dθ•

δL• + dθ• → δL• + δd f + dθ• + dδ f = δL• + dθ•,

where we used [δ, d] = 0. Hence, we will also allow this kind of freedom in our
definition of equivalence.

In the following, we will denote the vertical differentials on F lax
i by δ and the

horizontal (de Rham) differentials on Mi by d.

Definition 2.6.3 (Lax equivalence) We say that two lax theories Flax
1 and Flax

2 are
lax-equivalent if there are two morphisms of graded manifolds φ : F2 → F1 and
ψ : F1 → F2, which induce quasi-isomorphisms φ∗ : BV-BFV•1 → BV-BFV•2,
ψ∗ : BV-BFV•2 → BV-BFV•1 between the BV–BFV complexes, such that φ∗ and
ψ∗ are quasi-inverse to each other and transform (θ•i , L•i ) as

φ∗θ•1 = θ•2 + (LQ2 − d)β•2 + δ f •2 , ψ∗θ•2 = θ•1 + (LQ1 − d)β•1 + δ f •1 ,
φ∗L•1 = L•2 + (LQ2 − d)ζ •2 + d f •2 , ψ∗L•2 = L•1 + (LQ1 − d)ζ •1 + d f •1 , (18)

with β•i ∈ �
1,•
loc (F lax

i × Mi ), #(β•i ) = −2, ζ •i ∈ �
0,•
loc (F lax

i × Mi ), #(ζ •i ) = −1 and

f •i ∈ �
0,•
loc (F lax

i × Mi ), #( f •i ) = −1.
Remark 2.6.4 Similarly to the bulk case, in order to show that the composition maps

χ∗ = ψ∗ ◦ φ∗ : BV-BFV•1 → BV-BFV•1,
λ∗ = φ∗ ◦ ψ∗ : BV-BFV•2 → BV-BFV•2,

are the identity when restricted to the respective cohomologies, one needs to find two
maps hχ : BV-BFV•1 → BV-BFV•1, hλ : BV-BFV•2 → BV-BFV•2 of lax
degree −1 such that

χ∗ − id1 = (LQ1 − d)hχ + hχ (LQ1 − d),

λ∗ − id2 = (LQ2 − d)hλ + hλ(LQ2 − d).

Proposition 2.6.5 If gh(φ) = gh(ψ) = 0,17 then the transformation of L•i is not
independent from the transformation of θ•i :

(1) ζ k
i = ιQi β

k
i at codimension k ≥ 1,

17 We restrict ourselves to the gh(φ) = gh(ψ) = 0 case as this will be the relevant one in our examples.
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(2) LQi (ιQβ0
i − ζ 0i ) = 0.

Proof (1) As gh(φ) = 0, φ∗ commutes with the Euler vector fields LEi : LE2φ
∗ =

φ∗LE1 . Applying φ∗ to Eq. (16) then yields

LE2φ
∗L•1 = ιE2

(
ιQ2δ − d

)
φ∗θ•1

= ιE2

(
ιQ2δ − d

)
θ•2 + ιE2

(
ιQ2δ − d

)
(LQ2 − d)β•2 + ιE2

(
ιQ2δ − d

)
δ f •2 .

The first term is simply LE2 L•2. For the second term, we compute

ιE2

(
ιQ2δ − d

)
(LQ − d)β•2 = ιE2

(
διQ2 + LQ2 − d

)
(LQ2 − d)β•2

= ιE2διQ2 (LQ2 − d)β•2 = (LE2 − διE2 )ιQ2 (LQ2 − d)β•2
= LE2 (LQ2 − d)ιQ2β

•
2 ,

where we used that (LQ2−d)β•2 ∈ �1,•(F lax×M) implies ιE2 ιQ2(LQ2−d)β•2 =
0. The third term reads

ιE2

(
ιQ2δ − d

)
δ f •2 = −ιE2dδ f •2 = dιE2δ f •2 = dLE2 f •2 = LE2d f •2 ,

hence

LE2φ
∗L•1 = LE2(L•2 + (LQ2 − d)ιQ2β

•
2 + d f •2 ).

By counting degrees, we see that both sides have ghost number k at codimension k,
and therefore for k ≥ 1, one can use this equation to determine φ∗Lk

1, in particular
we have ζ k

i = ιQi β
k
i .

(2) Applying φ∗ to ιQ1�
•
1 = δL•1 + dθ•1 yields

ιQ2δ(LQ2 − d)β•2 = δ(LQ2 − d)ζ •2 + d(LQ2 − d)β•2
⇒ (LQ2 − d)ιQ2δβ

•
2 = (LQ2 − d)δζ •2 + (LQ2 − d)dβ•2

⇒ (LQ2 − d)[(ιQ2δ − d)β•2 − δζ •2 ] = 0, (19)

where we used ιQ2�
•
2 = δL•2 + dθ•2 , δ2 = 0 and the fact that f -transformations

preserve Eq. (15a). Note that this condition holds automatically for condimention
higher than zero due to ζ k

2 = ιQ2β
k
2 . To see what Eq. (19) implies at codimention

zero, first note that

ιQ2δβ
1
2 − δζ 12 = ιQ2δβ

1
2 − διQ2β

1
2 = LQ2β

1
2 .

Keeping in mind that [LQ, d] = 0, Eq. (19) gives

LQ2 [ιQ2δβ
0
2 − dβ1

2 − δζ 02 ] − d[ιQ2δβ
1
2 − δζ 12 ] = 0

⇒ LQ2δ(ιQi β
0
2 − ζ 02 ) = 0.
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We now apply ιE2 , but first note that

[LQ, ιE ] = ι[E,Q] = ιLE Q = ιQ,

therefore

ιE2LQ2δ(ιQi β
0
2 − ζ 02 ) = [ιQ − LQ ιE ]δ(ιQi β

0
2 − ζ 02 )

= 2LQ2(ιQi β
0
2 − ζ 02 )

⇒ LQ2(ιQi β
0
2 − ζ 02 ) = 0

where we used ιQδ(ιQi β
0
2 − ζ 02 ) = LQ(ιQi β

0
2 − ζ 02 ) and gh(ιQi β

0
2 − ζ 02 ) =

#(ιQi β
0
2 − ζ 02 ) = −1. The computations are analogous for i = 1.

��
Remark 2.6.6 The previous lemma means that there is a redundancy in our definition
of lax equivalence, as the transformation of L•i at codimension≥ 1 can be determined
through the transformation of θ•i . In particular, when computing explicit examples one
only needs to check whether we have the right transformation for θ•i and L0

i . Observe
that if we have H−1(LQ) = 0 we can conclude that ιQi β

0
2 − ζ 02 = LQ(. . . ).

Remark 2.6.7 Our definition of lax equivalence directly implies that the local 2-forms
� •

i are interchanged up to (LQi − d)-exact and δ-exact terms

φ∗� •
1 = δφ∗θ•1 = � •

2 − (LQ2 − d)δβ•2 ,
ψ∗� •

2 = δψ∗θ•2 = � •
1 − (LQ1 − d)δβ•1 .

Similar to the bulk case (cf. Proposition 2.3.3), choosing ζ 0i = ιQi β
0
i ensures that the

second condition from Proposition 2.6.5 is satisfied.

Proposition 2.6.8 The theories Flax
1 , χ∗Flax

1 :=(F lax
1 , χ∗θ•1 , χ∗L•1, Q1) and Flax

2 ,
λ∗Flax

2 :=(F lax
2 , λ∗θ•2 , λ∗L•2, Q2) are pairwise lax-equivalent.

Proof The proof is analogous to the proof of Proposition 2.3.4. ��
Theorem 2.6.9 Let Flax

i , i ∈ {1, 2}, be lax equivalent. Then the respective BV theories
Fi (cf. Remark 2.5.6) are BV-equivalent.

Proof Let κ• ∈ �
p,•
loc (E × M) and K := ∫

M κ0 ∈ �
p∫ (E). We need to check if:

(1) φ∗, ψ∗ are chain maps w.r.t. the BV complexes,
(2) the cohomological classes of ωi and Si are mapped into one another,
(3) χ∗, λ∗ are the identity on H•(BV•i ).

To prove these, we simply need to integrate the various conditions over the bulk M .
For the chain map condition, we have

φ∗ ◦ (LQ1 − d)κ• = (LQ2 − d) ◦ φ∗κ•
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⇒
∫

M
φ∗(LQ1κ

0 − dκ1) =
∫

M
(LQ2φ

∗κ0 − dφ∗κ1)

⇒ φ∗LQ1 K = LQ2φ
∗K .

We can compute the transformations of ω1 and S1 in a similar way

φ∗� •
1 = ω•2 − (LQ2 − d)δβ•2 , φ∗L•1 = L•2 + (LQ2 − d)ζ •2 + d f •2 ,

⇒ φ∗ω1 = ω2 − LQ2

∫

M
δβ0

2 , φ
∗S1 = S2 + LQ2

∫

M
ζ 02 .

In the same manner

(χ∗ − id1)κ
• = (LQ1 − d)hχκ

• + hχ (LQ1 − d)κ•,
⇒ (χ∗ − id1)K = LQ1hχ K + hχLQ1 K ,

implying that χ∗, and analogously λ∗, are also homotopic to the identity inBV•i and
as such the identity when restricted to H•(BV•i ), meaning that the BV complexes are
quasi-isomorphic. ��

3 Examples

This section is dedicated to the explicit computation of lax BV–BFV equivalence
in three different examples. We start by presenting the general strategy in Sect. 3.1.
We then look at the examples of classical mechanics on a curved background and
(nonabelian) Yang–Mills theory in Sects. 3.3 and 3.4 respectively. Subsequently we
turn our attention to the classically equivalent Jacobi theory and one-dimensional
gravity coupled to matter (1D GR) in Sect. 3.5, and show that they are lax BV–BFV
equivalent, despite their different boundary behaviours w.r.t. the BV–BFV procedure.
Furthermore, we show that the chain maps used to prove lax BV–BFV equivalence
spoil the compatibility with the regularity condition for the BV–BFV procedure in the
case of 1D GR.

3.1 Strategy

We shortly demonstrate our strategy to show explicitly that two theories Flax
i are lax

BV–BFV equivalent. In practice, we need two maps φ∗, ψ∗ between the BV–BFV
complexes BV-BFV•i

BV-BFV•1 BV-BFV•2
φ∗

ψ∗

which (cf. Definition 2.6.3):

(1) are chain maps,
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(2) transform θ•i , L•i in the desired way (cf. Eq. (18)),
(3) are quasi-inverse to one another.

In order to check the first property, we note that, as pullback maps, φ∗ and ψ∗
automatically commute with the de Rham differentials δ and d. Thus it suffices to
show that φ∗, ψ∗ are chain maps w.r.t. Qi on the fields ϕ j

i ∈ F lax
i

φ∗Q1ϕ
j
1 = Q2φ

∗ϕ j
1 , ψ∗Q2ϕ

j
2 = Q1ψ

∗ϕ j
2 ,

as this together with the fact that they commute with δ then implies that they are chain
maps w.r.t. (LQi − d) onBV-BFV•, resulting in the following Lemma:

Lemma 3.1.1 If the pullback maps φ∗, ψ∗ are chain maps w.r.t. Qi on Fi , then they
are also chain maps w.r.t. (LQi − d) on BV-BFV•i .

Showing the second property is a matter of computation. For the third property, we
shortly present our strategy to show that χ∗ = ψ∗ ◦ φ∗ is the identity in cohomology.
The same procedure can then be applied to λ∗ = φ∗ ◦ψ∗. Recall that we need a map
hχ : BV-BFV•1 → BV-BFV•1 of lax degree −1 such that

χ∗ − id1 = (LQ1 − d)hχ + hχ (LQ1 − d). (20)

We start by constructing a homotopy between χ∗ and id1, by finding an evolutionary
vector field R1 ∈ Xevo(F1)with gh(R1) = #(R1) = −1 and defining a one-parameter
family of morphisms of the form

χ∗s :=es[(LQ1−d),LR1 ],

such that χ∗s=0 = id1 and lims→∞ χ∗s = χ∗. Note that choosing s = − ln τ gives the
usual definition of homotopy with τ ∈ [0, 1], i.e. a continuous map F(τ ):=χ∗(− ln τ)
satisfying F(0) = χ∗ and F(1) = id1. We will nonetheless work with the parameter
s to keep the calculations cleaner, changing when necessary. Furthermore, we can
simplify the term in the exponent by setting D1:=[Q1, R1], since

[(LQ1 − d),LR1 ] = [LQ1 ,LR1 ] = L[Q1,R1] = LD1 ,

which results in

χ∗s = esLD1 .

Lemma 3.1.2 The Lie derivative LD1 commutes with the differential (LQ1 − d).

Proof Since R1 and Q1 are evolutionary vector fields, we directly have [LD1 , d] = 0.
To see that LD1 commutes with LQ1 we compute
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[D1, Q1] = [[Q1, R1], Q1] = −[[R1, Q1], Q1] − [[Q1, Q1], R1] = −[D1, Q1]
⇒[D1, Q1] = 0.

where we have used the graded Jacobi identity and [Q1, Q1] = 0. Thus

[LD1 ,LQ1 ] = L[D1,Q1] = 0,

proving the statement. ��
We can then determine the map hχ by rewriting the RHS of Eq. (20) as

χ∗ − id1 =
∫ ∞

0

d

ds
esLD1 =

∫ ∞

0
esLD1LD1ds

=
∫ ∞

0
esLD1 [(LQ1 − d)LR1 + LR1(LQ1 − d)]ds

= (LQ1 − d)

(∫ ∞

0
esLD1LR1ds

)
+

(∫ ∞

0
esLD1LR1ds

)
(LQ1 − d),

resulting in the following Lemma:

Lemma 3.1.3 The map hχ : BV-BFV•1 → BV-BFV•1 defined through

hχκ =
∫ ∞

0
esLD1LR1κ ds

satisfies Eq. (20).

If hχ converges onBV-BFV•1, then χ∗ will be the identity in the BV–BFV coho-
mology H•(BV-BFV•1) as desired. For this last step, the next Lemma will be useful:

Lemma 3.1.4 If hχ converges on F1, then it converges on the whole BV–BFV complex
BV-BFV•1.

Proof Let κ ∈ BV-BFV•1. Start by redefining s = − ln τ with τ ∈ [0, 1], such thatwe
integrate over a compact interval instead of over R≥0. Performing this transformation
results in

hχκ =
∫ ∞
0

esLD1LR1κ ds =
∫ 0

1
e− ln(τ )LD1LR1κ d(− ln τ) =

∫ 1

0

e− ln(τ )LD1

τ
LR1κ dτ.

Assuming that

hχϕ
j
1 =

∫ ∞

0
esLD1 R1ϕ

j
1 ds =

∫ 1

0

e− ln(τ )LD1

τ
R1ϕ

j
1 dτ <∞ ∀ϕ j

1 ∈ F1,
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we can show that hχκ converges onBV-BFV•1. Let first κ = f be a local functional.

Writing R1 = R1ϕ
j
1

δ

δϕ
j
1

then gives

hχ f =
∫ 1

0

e− ln(τ )LD1

τ
R1 f dτ =

∫ 1

0

e− ln(τ )LD1

τ

(

R1ϕ
j
1
δ f

δϕ
j
1

)

dτ

=
∫ 1

0

(
e− ln(τ )LD1

τ
R1ϕ

j
1

)(

e− ln(τ )LD1
δ f

δϕ
j
1

)

dτ,

where we used that χ∗s = esLD1 = e− ln(τ )LD1 is a morphism in the last equality.
The integral over the first integrand is finite by assumption and the second integrand
e− ln(τ )LD1

δ f

δϕ
j
1

= esLD1
δ f

δϕ
j
1

is nowhere divergent ∀τ ∈ [0, 1], since we assume χ∗s =
esLD1 to be well-defined onBV-BFV•1.

Consider now the local form κ = f δϕJ⊗ν ∈ BV-BFV•1, where J is a multiindex
raging over the fields and their jets, and ν ∈ �•(M) is a form on M . We then have

hχκ =
∫ 1

0

e− ln(τ )LD1

τ
LR1 [ f δϕJ ⊗ ν]dτ

=
∫ 1

0

e− ln(τ )LD1

τ
[LR1 f δϕJ ± f LR1δϕJ ] ⊗ νdτ

=
∫ 1

0

[{
e− ln(τ )LD1

τ
R1 f

}

δ
(

e− ln(τ )LD1ϕJ

)

∓ e− ln(τ )LD1 f δ

{
e− ln(τ )LD1

τ
R1ϕJ

}]
⊗ νdτ.

The terms in the brackets {·} are just the integrands of hχ f and hχϕJ , which con-
verge. Since the other terms e− ln(τ )LD1ϕJ = esLD1ϕJ , e− ln(τ )LD1 f = esLD1 f are
well-defined ∀τ ∈ [0, 1] and we are integrating over a compact interval, the integral
converges and hχ is well-defined on BV-BFV•1. ��

3.2 Contractible pairs

The simplest example we can discuss is when the cohomologically trivial fields are
nicely decoupled from the rest. This follows the procedure of [41], which we explicitly
embed in our framework by constructing suitable chain maps to fit Definition 2.3.1
(see also [3] and [5, 6, 38]). Namely, we have an action of the form

S1[ã, v, ã†, v†] = S2[ã, ã†] + 1

2
(v, v),

where (, ) is some constant nondegenerate bilinear form on the space V of the v fields
and S2 is a solution of the master equation (w.r.t. the fields ã, ã†). We want to compare
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this theory with the one defined by S2[a, a†], where we remove the tilde for clarity of
the notation.

The cohomological vector field Q1 of S1 acts on the fields ã, ã† as Q1. In addition
we have

Q1v
† = v, Q1v = 0.

where we hve identified V ∗ with V using the bilinear fom. The fields (v, v†) are called
a contractible pair.

Define maps φ, ψ .

φ∗a = ã, φ∗a† = ã†, φ∗v = 0, φ∗v† = 0, (21a)

ψ∗ã = a, ψ∗ã† = a†. (21b)

Lemma 3.2.1 The composition map λ∗ = φ∗◦ψ∗ is the identity, while the composition
map χ∗ = ψ∗ ◦ φ∗ acts as

χ∗a = a, χ∗a† = a†, χ∗v = 0, χ∗v† = 0,

and is homotopic to the identity.

Proof One can directly check that λ∗ is the identity. In order to show that χ∗ is
the identity in cohomology, we define a family of maps χ∗s = esLD1 , where D1 =
[Q1, R1], and show lims→∞ χ∗s = χ∗.

We choose R1 to act as

R1a = 0, R1a† = 0, R1v = −v†, R1v
† = 0.

We can then compute

D1v = (Q1R1 + R1Q1)v = Q1R1v = −v ⇐⇒ Dk
1v = (−1)kv, ∀k ≥ 1,

and

D1v
† = R1v = −v†, ⇐⇒ Dk

1v
† = −v†,

which yield

χ∗s v = esLD1 v = v +
∞∑

k=1

sk

k! D
k
1v = e−sv

s→∞−→ χ∗∞v = 0,

and similarly χ∗∞v† = 0.
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On the other hand,

D1a = D1a† = 0 �⇒ esLD1 a = a, esLD1 a† = a†, ∀s,

so that lims→∞ χ∗s ≡ χ∗.
Furthermore, the map hχ converges on all the fields, as hχa = hχa† = hχv

†

trivially and

hχv =
∫ ∞

0
esLD1LR1v ds = −

∫ ∞

0
esLD1 v† ds = −

∫ ∞

0
e−sv† ds = −v†.

��
A direct consequence of this Lemma, together with the facts that φ∗S1 = S2 and

φ∗ω1 = ω2 for the canonical BV forms, is

Theorem 3.2.2 The BV theories defined by S1 and S2 are BV-equivalent.

3.2.1 More general contractible pairs

As in [41], wemay consider a situationwhere S1 depends on fields ã, w, ã†, w̃†, where
(w,w†) are not a contractible pair on the nose but satisfy the condition that

(Q1w
†)|w†=0 = 0

has a unique solutionw = w(ã, ã†).We can then get closer to the previously discussed
case by defining18

v = Q1w
†, v† = w†.

We have indeed that Q1v
† = v and Q1v = 0. Moreover, the above condition implies

that the change of variables (w,w†) → (v, v†) is invertible (near w† = 0, or every-
where if w† is odd) and that the submanifold defined by the constraints v = 0 and
v† = 0 is symplectic.

The above strategy thenworks, in the absenceof boundary,with somemodifications.
Namely, the fact that now v and v† are not Darboux coordinates requires modifying
the map of Eq. (21). In turn, the transformation R1 will get a nontrivial action on the
fields (a, a†).

All the examples we discuss below belong to this class of contractible pairs. As we
will see, the modifications required in the case of classical mechanics and Yang–Mills
theory are minimal, whereas those required in the case of 1D parametrisation invariant
theories are more consistent—due to the fact that pairing of the v fields will depend on
the a fields. In addition, in all the examples we show how to extend this construction
to lax theories in order to encompass the presence of boundaries.

18 We may also think of this construction as the semiclassical approximation of a BV pushforward [20,
Section 2.2.2] that gets rid of the (w,w†) variables. Indeed, the above conditionmay be read as the statement
that setting w† to zero is a good gauge fixing.
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3.3 Classical mechanics on a curved background

We start by discussing the example of classical mechanics on a curved background as
a warm-up exercise. We take the source manifold to be a time interval I = [a, b] ⊂ R

and some smooth Riemannian manifold (M, g) as target. We will denote time deriva-
tives with a dot and use tildes to distinguish fields between the different formulations
of the theory.

We can formulate the theory by considering a “matter” field q̃ ∈ F2:=C∞(I , M),
and themetric tensor on the targetwill dependon themap q̃ .We introduce the shorthand
notation g̃:=g̃(q̃). The classical action functional is given by

S2[q̃] =
∫

I

1

2
g̃( ˙̃q, ˙̃q)dt .

This is usually called the second-order formulation.
On the other hand, we can phrase the theory in its first-order formulation, by

considering again a map q : I → M , together with an “auxiliary” field19 p ∈
C∞(I , q∗T ∗M) and the classical action functional

S1[q, p] =
∫

I

(
〈p, q̇〉 − 1

2
h(p, p)

)
dt,

where h:=g−1 denotes the inverse of the target metric.
For ease of notation, we will introduce the musical isomorphisms

g� : T M → T ∗M, h� : T ∗M → T M

g�(v)(·) = g(v, ·) h�(α)(·) = g−1(α, ·),

and clearly g� ◦ h� = h� ◦ g� = id.
We recall the rather obvious and well-known

Proposition 3.3.1 The first-order and second-order formulations of classical mechan-
ics with a background metric are classically equivalent.

Proof FollowingDefinition 2.1.6, we start by solving the EL equation of the first-order
theory corresponding to the auxiliary field p, we have

δp S1[q, p] =
∫

I
〈(q̇ − h�(p)

)
, δ p〉 dt,

which results in

p = g�(q̇).

19 Obviously the pair (q, p) is a map from I to T ∗M .
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Let C1 be the set of such solutions and define the map φcl : C1 → F2 through
φ∗cl q̃ = q. Then the restriction of S1[q, p] to C1 coincides with the pullback of S2 via
φ∗cl

S1[q, p]∣∣C1
= S1[q, p = g�(q̇)] =

∫

I

1

2
〈g�(q̇), q̇〉dt = φ∗cl

∫

I

1

2
g̃( ˙̃q, ˙̃q)dt = φ∗cl S2[q̃],

hence the two formulations are classical equivalent. ��
Both of these theories can be extended to the lax BV–BFV formalism. Note that,

as there are no gauge symmetries in these models, there is no need to introduce ghost
fields. We start with the second-order formulation:

Proposition/Definition 3.3.2 The data

Flax
2C M = (F lax

2C M , θ•2 , L•2, Q2)

where

F lax
2C M = T ∗[−1]C∞(I , M).

together with θ•2 ∈ �
1,•
loc (F lax

2C M ) and L•2 ∈ �
0,•
loc (F lax

2C M ), which are given by

θ•2 = 〈q̃†, δq̃〉dt + 〈g̃�( ˙̃q), δq̃〉,
L•2 =

1

2
g̃( ˙̃q, ˙̃q)dt,

and the cohomological vector field Q2 ∈ Xevo(F lax
2C M )

Q2q̃ = 0, Q2q̃† = +1

2
∂ g̃( ˙̃q, ˙̃q)− d

dt
(g̃�)( ˙̃q)− g̃�( ¨̃q),

where20 ∂ g̃:= δg̃
δq̃ , defines a lax BV–BFV theory.

Proof We need to check Eq. (15) at codimension 0 and 1, namely

ιQ2�
0
2 = δL0

2 + dθ12 , ιQ2 ιQ2�
0
2 = 2dL1

2,

ιQ2�
1
2 = δL1

2, ιQ2 ιQ2�
1
2 = 0.

Note that the Lagrangian only has a top-form term L•1 = L0
1. The only nontrivial

equation is ιQ� 0
2 = δL0

2 + dθ12 , since L1
2 = ιQ2 ιQ2�

0
2 = ιQ2�

1
2 = 0. We compute

ιQ2�
0
2 = 〈Q2q̃†, δq̃〉dt =

〈(
1

2
∂ g̃( ˙̃q, ˙̃q)−

(
d

dt
g̃�

)
( ˙̃q)− g̃�( ¨̃q)

)
, δq̃

〉
dt

20 Observe that, in a local chart, we have ∂g(q̇, q̇) = ∂ρgμν q̇μq̇ν , while ( d
dt g�)(q̇) = q̇ρ∂ρgμν q̇μq̇ν .
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δL0
2 =

1

2
δg̃( ˙̃q, ˙̃q)dt + g̃(δ ˙̃q, ˙̃q)dt

= 1

2
〈∂ g̃( ˙̃q, ˙̃q), δq̃〉dt + d

dt
(g̃( ˙̃q, ˙̃q))dt − d

dt
(g̃)(δq̃, ˙̃q)dt − g̃(δq̃, ¨̃q)dt

= 1

2
〈∂ g̃( ˙̃q, ˙̃q), δq̃〉dt − d〈g̃�( ˙̃q), δq̃〉 −

〈
d

dt
g̃�( ˙̃q), δq̃

〉
dt − 〈g̃�( ¨̃q)), δq̃〉dt

= −d〈g̃�( ˙̃q), δq̃〉 +
〈
1

2
∂ g̃( ˙̃q, ˙̃q)− d

dt
g̃�( ˙̃q)− g̃�( ¨̃q)), δq̃

〉
dt

= −dθ12 + ιQ2�
0
2 ,

where we used |dt | = −1 and |δq̃| = −1. ��
In the case of the first-order theory, we have the lax BV–BFV theory:

Proposition/Definition 3.3.3 The data

Flax
1C M = (F lax

1C M , θ•1 , L•1, Q1)

where

F lax
1C M = T ∗[−1](C∞(I , M)× C∞(I , M)),

together with θ•1 ∈ �
1,•
loc (F lax

1C M ) and L•1 ∈ �
0,•
loc (F lax

1C M ), which take the forms

θ•1 = (〈q†, δq〉 + 〈p†, δ p〉)dt + 〈p, δq〉,
L•1 =

(
〈p, q̇〉 − 1

2
h(p, p)

)
dt,

and the cohomological vector field Q1 ∈ Xevo(F lax
1C M )

Q1q = Q1 p = 0, Q1q† = − ṗ − 1

2
∂h(p, p), Q1 p† = q̇ − h�(p),

with ∂h:=δh/δq, defines a lax BV–BFV theory.

Proof Again we need to check Eq. (15) at codimension 0 and 1. Explicitly we have

ιQ1�
0
1 = δL0

1 + dθ11 , ιQ1 ιQ1�
0
1 = 2dL1

1,

ιQ1�
1
1 = δL1

1, ιQ1 ιQ1�
1
1 = 0.

As in the second-order theory, the Lagrangian only has a top-form component. The
only nontrivial equation is ιQ� 0

1 = δL0
1+dθ11 , since L1

1 = ιQ1 ιQ1�
0
1 = ιQ1�

1
1 = 0.

We compute

ιQ1�
0
1 = (〈Q1q†, δq〉 + 〈Q1 p†, δ p〉)dt
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= −
〈

ṗ + 1

2
∂h(p, p), δq

〉
dt,+〈(q̇ − h�(p)), δ p〉dt,

δL0
1 =

(
〈p, δq̇〉 − 1

2
〈∂h(p, p), δq〉

)
dt + 〈q̇ − h�(p), δ p〉dt

= d

dt
〈p, δq〉dt − 〈 ṗ + 1

2
∂h(p, p), δq〉dt + 〈q̇ − h�(p), δ p〉dt

= −dθ11 + ιQ1�
0
1 .

��
We now present the main theorem of this section, together with an outline of its

proof.21 The computational details and the various lemmata are presented afterwards.

Theorem 3.3.4 The lax BV–BFV theories Flax
1C M and Flax

1C M of the first-order and
second-order formulations of classical mechanics with a background metric are lax
BV–BFV equivalent.

Proof We need to check all the conditions from Definition 2.6.3. The existence of
two maps φ, ψ with the desired properties is presented in Lemmata 3.3.5 and 3.3.6
respectively, where we also show that the pullback maps φ∗, ψ∗ are chain maps w.r.t.
the BV–BFV complexes BV-BFV•i , and that they map (θ•i , L•i ) in the desired way.

Furthermore, we need to show that the respective BV–BFV complexes are quasi-
isormophic. The composition map λ∗ = φ∗ ◦ ψ∗ is shown to be the identity in
Lemma 3.3.7. In Lemma 3.3.8, we prove that the composition map χ∗ = ψ∗ ◦ φ∗, is
homotopic to the identity by following the strategy presented in Sect. 3.1.

In Lemma 3.3.9, we demonstrate that χ∗ is the identity in cohomology by showing
that the map

hχϕ
j
1 =

∫ ∞

0
esLD1LR1ϕ

j
1ds

satisfying χ∗ − id1 = (LQ1 − d)hχ + hχ (LQ1 − d) (cf. Lemma 3.1.3) converges,
therefore proving that the two lax BV–BFV theories in question have isomorphic
BV–BFV cohomologies

H•(BV-BFV1C M ) � H•(BV-BFV2C M )

and thus that they are lax BV–BFV equivalent. ��
Let us now look at the computations in detail. We start with the chain maps:

Lemma 3.3.5 Let φ : F lax
2C M → F lax

1C M be the map defined through

φ∗q = q̃, φ∗ p = φ∗ p = g̃�( ˙̃q),
21 For a similar conclusion to the one presented here, see [38, Section 3.2]Ourmethod allows to additionally
construct explicit chain maps that implement the quasi-isomorphism.

123



BV equivalence with boundary Page 33 of 91 25

φ∗q† = q̃†, φ∗ p† = 0.

Its pullback map φ∗ is a chain map w.r.t. (LQi − d) and maps the lax BV–BFV data
of the first-order theory as

φ∗θ•1 = θ•2 , φ∗L•1 = L•2.

Proof To check that φ is a chain map, we compute

φ∗Q1q = φ∗(0) = 0 = Q2q̃ = Q2φ
∗q,

φ∗Q1 p = φ∗(0) = 0 = Q2(g̃
�( ˙̃q)) = Q2φ

∗ p,

φ∗Q1q† = φ∗
(
− ṗ − 1

2
∂h(p, p)

)
= − d

dt
(g̃�( ˙̃q))− 1

2
∂ h̃(g̃�( ˙̃q), g̃�( ˙̃q))

= − d

dt
(g̃�)( ˙̃q)− g̃�( ¨̃q)+ 1

2
∂ g̃( ˙̃q, ˙̃q) = Q2q̃† = Q2φ

∗q†,

φ∗Q1 p† = φ∗(q̇ − h�(p)) = 0 = Q2φ
∗ p†

Together with Proposition 3.1.1, this shows that φ∗ is a chain map w.r.t. (LQi − d). In
turn, φ∗ acts on θ•1 , L•1 as

φ∗θ•1 = φ∗
(
(〈q†, δq〉 + 〈p†, δ p〉)dt + 〈p, δq〉

)
= 〈q̃†, δq̃〉dt + 〈g̃�( ˙̃q), δq̃〉 = θ•2 ,

φ∗L•1 = φ∗
(
〈p, q̇〉 − 1

2
h(p, p)

)
dt =

(
g̃( ˙̃q, ˙̃q)− 1

2
h̃(g̃�( ˙̃q), g̃�( ˙̃q))

)
dt

= 1

2
g̃( ˙̃q, ˙̃q)dt = L•2.

��

Lemma 3.3.6 Let ψ : F lax
1C M → F lax

2C M be the map defined through

ψ∗q̃ = q, ψ∗q̃†= q† − 1

2
∂g(p†, Q1 p†)− d

dt
(g�(p†))+ ∂g(q̇, p†)

Its pullback map ψ∗ is a chain map w.r.t. (LQi − d) and maps the lax BV–BFV data
of the second-order theory as

ψ∗θ•2 = θ•1 + (LQ1 − d)β•1 + δ f •1 , ψ∗L•2 = L•1 + (LQ1 − d)ιQ1β
•
1 + d f •1 .

where

β•1 =
1

2
g(p†, δ p†)dt + g(p†, δq), f •1 = −

1

2
g(p†, Q1 p†)dt .
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Proof The only nontrivial calculation that is needed to check whether ψ∗ is a chain
map w.r.t. (LQi − d) is Q1ψ

∗q̃† = ψ∗Q2q̃†. We compute

Q1ψ
∗q̃† = Q1q† − 1

2
∂g′(Q1 p†, Q1 p†)− g�(Q1 ṗ†)− (ġ�)(Q1 p†)+ ∂g(q̇, Q1, p†)

= − ṗ − 1

2
∂h(p, p)− 1

2
g(q̇, q̇)− 1

2
∂g(h�(p), h�(p))

+ ∂g(q̇, h�(p))− g�
(
q̈ − ḣ�(p)− h�( ṗ)

)

− ġ�
(
q̇ − h�(p)

)+ ∂g(q̇, q̇)− ∂g(q̇, h�(p))

= −g�(q̈)− ġ�(q̇)+ 1

2
∂g(q̇, q̇) = ψ∗Q2q̃†.

where we used ġ�(h�(p)) = −g�(ḣ�(p)), in virtue of the fact that g� ◦ h� = id.
Let �θ•2 :=ψ∗θ•2 − θ•1 and �L•2:=ψ∗L•2 − L•1. We need to check whether

�θ02 = LQ1β
0
1 − dβ1

1 + δ f 01 ,

�θ12 = LQ1β
1
1 + δ f 01 ,

�L0
2 = LQ1 ιQ1β

0
1 − dιQ1β

1
1 + d f 11 .

Recall that we only need to compute �L0
2, as �Lk

2 for k > 0 are determined through
�θ•2 (cf. Proposition 2.6.5, Remark 2.6.6). Furthermore, note that f 11 = 0.

Computation of �θ02 : For the first equation, we compute

�θ02 = ψ∗(〈q̃†, δq̃〉dt)− (〈q†, δq〉 + 〈p†, δ p〉)dt

=
[〈

q† − 1

2
∂g(p†, Q1 p†)− g�( ṗ†)− d

dt
(g�)(p†)+ ∂g(q̇, p†)− q†, δq

〉

−〈p†, δ p〉
]
dt

=
[〈
−1

2
∂g(p†, Q1 p†)− g�( ṗ†)− d

dt
(g�)(p†)+ ∂g(q̇, p†), δq

〉
− 〈p†, δ p〉

]
dt

LQ1β
0
1 = LQ1

(
1

2
g(p†, δ p†)dt

)
=

[
1

2
g(Q1 p†, δ p†)+ 1

2
g(p†, δQ1 p†)

]
dt,

dβ11 = dt
d

dt

(
g(p†, δq)

)
=

[
ġ(p†, δq)+ g( ṗ†, δq)+ g(p†, δq̇)

]
dt,

δ f 01 = δ

(
−1

2
g(p†, Q1 p†)dt

)

=
[
+1

2
〈∂g(p†, Q1 p†), δq〉 − 1

2
g(δ p†, Q1 p†)+ 1

2
g(p†, δQ1 p†)

]
dt .

Using

δQ1q† = δ(q̇ − h�(p)) = δq̇ − 〈∂h�(p), δq〉 − h�(δ p),

g(·, 〈∂h�(·), δq〉) = −〈∂g(·, h�(·)), δq〉,
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the last three terms together yield

LQ1β
0
1 − dβ11 + δ f 01 =

1

2
g(Q1 p†, δ p†)+ 1

2
g(p†, δQ1 p†)

=
[
g(p†, δQ1 p†)− ġ(p†, δq)− g( ṗ†, δq)− g(p†, δq̇)+ 1

2
〈∂g(p†, Q1 p†), δq〉

]
dt

=
[
����
g(p†, δq̇)− g(p†, 〈∂h�(p), δq〉)− g(p†, h�(δ p))− ġ(p†, δq)− g( ṗ†, δq)

−����
g(p†, δq̇)+ 1

2
〈∂g(p†, Q1 p†).δq〉

]
dt

= 〈∂g(p†, h�(p)), δq〉 − 〈p†, δ p〉 − ġ(p†, δq)− g( ṗ†, δq)+ 1

2
〈∂g(p†, Q1 p†).δq〉

]
dt

= 〈∂g(p†, q̇ − Q1 p†)− ġ�(p†)− g�( ṗ†)+ 1

2
〈∂g(p†, Q1 p†), δq〉 − 〈p†, δ p〉

]
dt

=
〈
−1

2
〈∂g(p†, Q1 p†)+ ∂g(p†, q̇)− ġ�(p†)− g�( ṗ†), δq

〉
− 〈p†, δ p〉

]
dt = �θ02 .

Computation of �θ12 : In this case, we have

�θ12 = ψ∗(〈g̃�( ˙̃q), δq̃〉)− 〈p, δq〉 = 〈g�(q̇ − h�(p)), δq〉 = g(Q1 p†, δq),

LQ1β
1
1 = LQ1

(
g(p†, δq)

)
= g(Q1 p†, δq),

δ f 11 = 0,

thus showing �θ12 = LQ1β
1
1 + δ f 11 .

Computation of �L0
2: For the third equality, we compute

�L0
2 = ψ∗

(
1

2
g̃( ˙̃q, ˙̃q)dt

)
−

(
〈p, q̇〉 − 1

2
h(p, p)

)
dt

=
[
1

2
g(q̇, q̇)− 〈p, q̇〉 + 1

2
h(p, p)

]
dt,

LQ1 ιQ1β
0
1 = LQ1 ιQ1

(
1

2
g(p†, δ p†)dt

)

= 1

2
g(Q1 p†, Q1 p†)dt = 1

2
g(q̇ − h�(p), q̇ − h�(p)), dt

=
[
1

2
g(q̇, q̇)− 〈p, q̇〉 + 1

2
h(p, p)

]
dt,

dιQ1β
1
1 = d

(
g(p†, Q1q)

)
= 0,

d f 11 = 0,

as desired. ��
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Lemma 3.3.7 The composition map λ∗ = φ∗ ◦ ψ∗ : BV-BFV•2 → BV-BFV•2 is
the identity

λ∗q̃ = q̃, λ∗q̃† = q̃†

and as such the identity in cohomology.

Proof Using λ∗ = φ∗ ◦ ψ∗, we have

λ∗q̃ = φ∗ ◦ ψ∗(q̃) = φ∗q = q̃,

λ∗q̃† = φ∗ ◦ ψ∗(q̃†)

= φ∗
(

q† − 1

2
∂g(p†, Q1 p†)− g�( ṗ†)− d

dt
(g�)(p†)+ ∂g(q̇, p†))

)
= q̃†,

as φ∗ p† = 0. ��
Lemma 3.3.8 The composition map χ∗ = ψ∗ ◦φ∗ : BV-BFV•1 → BV-BFV•1 acts
as

χ∗q = q, χ∗ p = g�(q̇),

χ∗q† = q† − 1

2
∂g(p†, Q1 p†)− g�( ṗ†)− d

dt
(g�)(p†)+ ∂g(q̇, p†), χ∗ p† = 0.

and is homotopic to the identity.

Proof By definition χ∗ = ψ∗ ◦ φ∗. Then

χ∗q = ψ∗ ◦ φ∗(q) = ψ∗q̃,
χ∗ p = ψ∗ ◦ φ∗(p) = ψ∗(g̃ ˙̃q) = = ψ∗(g̃�( ˙̃q)) = g�(q̇),

χ∗q† = ψ∗ ◦ φ∗(q†) = ψ∗q̃†

= q† − 1

2
∂g(p†, Q1 p†)− g�( ṗ†)− d

dt
(g�)(p†)+ ∂g(q̇, p†),

χ∗ p† = ψ∗ ◦ φ∗(p†) = ψ∗(0) = 0.

In order to prove that χ∗ is homotopic to the identity, we first compute χ∗s = esLD1 ,
where D1 = [Q1, R1], and show lims→∞ χ∗s = χ∗. We choose R1 to act as

R1q = 0, R1 p = g�(p†), R1q† = 0, R1 p† = 0.

For q we have

D1q = [Q1, R1]q = 0,

⇒ esLD1 q = q,
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⇒ lim
s→∞ esLD1 q = q = χ∗q.

For p:

D1 p = Q1R1 p = Q1(g
�(p†)) = g�(q̇)− p,

⇒ D2
1 p = D1(g

�(q̇)− p) = −D1 p = −(g�(q̇)− p),

⇒ Dk
1 p = −(−1)k(g�(q̇)− p) for k ≥ 1,

⇒ esLD1 p = p +
∞∑

k=1

sk

k! D
k
1 p = p −

∞∑

k=1

(−s)k

k! (g�(q̇)− p)

= p − (e−s − 1)(g�(q̇)− p)

⇒ lim
s→∞ esLD1 p = g�( ṗ) = χ∗ p.

For p†:

D1 p† = R1Q1 p†= R1(q̇ − h�(p)) = −h�(g�(p†)) = −p†,

⇒ Dk
1 p† = (−1)k p† for k ≥ 0,

⇒ esLD1 p† = p† +
∞∑

k=1

sk

k! D
k
1 p† = p +

∞∑

k=1

(−s)k

k! p† = e−s p†

⇒ lim
s→∞ esLD1 p† = 0 = χ∗ p†.

For q†:

D1q† = R1Q1q† = −R1

(
ṗ + 1

2
∂h(p, p)

)
= − d

dt
(g�(p†))− ∂h(g�(p†), p)

= −ġ�(p†)− g�( ṗ†)− ∂h(p, g�(p†))

= −ġ�(p†)− g�( ṗ†)− ∂g(Q1 p†, p†)+ ∂g(q̇, p†),

where we used p = g�(q̇ − Qp†), and ∂h(g�(·), g�(·)) = −∂g(·, ·).
We see that

D1(ġ
�(p†)+ g�( ṗ†)− ∂g(q̇, p†)) = (ġ�(D1 p†)+ g�(

d

dt
(D1 p†))− ∂g(q̇, D1 p†))

= −(ġ�(p†)+ g�( ṗ†)− ∂g(q̇, p†)),

so that, for all k ≥ 0

Dk
1(ġ

�(p†)+ g�( ṗ†)− ∂g(q̇, p†)) = (−1)k(ġ�(p†)+ g�( ṗ†)− ∂g(q̇, p†))
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and (recalling that [D1, Q1] = 0)

D1(∂g(p†, Q1 p†)) = ∂g(D1 p†, Q1 p†)+ ∂g(p†, Q1D1 p†) = −2∂g(p†, Q1 p†),

we have

Dk
1(∂g(p†, Q1 p†)) = (−2)k∂g(p†, Q1 p†)

for k ≥ 0, which ultimately yields

Dk
1q† = −Dk−1

1 (ġ�(p†)+ g�( ṗ†)− ∂g(q̇, p†))− Dk−1
1 (∂g(p†, Q1 p†))

= −(−1)k−1(ġ�(p†)+ g�( ṗ†)− ∂g(q̇, p†))− (−2)k−1(∂g(p†, Q1 p†))

= (−1)k(ġ�(p†)+ g�( ṗ†)− ∂g(q̇, p†))+ 1

2
(−2)k(∂g(p†, Q1 p†))

for all k ≥ 0, so that

esLD1 q† = q† + 1

2
(e−2s − 1)(∂g(p†, Q1 p†))

+ (e−s − 1)(ġ�(p†)− g�( ṗ†)+ ∂g(q̇, p†))

lim
s→∞ esLD1 q† = q† − 1

2
(∂g(p†, Q1 p†))− (ġ�(p†)+ g�( ṗ†)− ∂g(q̇, p†)) = χ∗ p†.

All in all, the homotopy χ∗s takes the form

χ∗s q = q,

χ∗s p = e−s p − (e−s − 1)g�(q̇),

χ∗s q† = q† + 1

2
(e−2s − 1)∂g(p†, Q1 p†)+ (e−s − 1)(ġ�(p†)− g�( ṗ†)+ ∂g(q̇, p†)),

χ∗s p† = e−s p†,

and clearly satisfies lims→∞ χ∗s = χ∗. ��
Lemma 3.3.9 The map χ∗ is the identity in cohomology.

Proof We have to check whether the map hχ converges on F lax
1C M , namely

hχϕ
j
1 =

∫ ∞

0
es D1 R1ϕ

j
1 ds <∞ ∀ϕ j

1 ∈ F lax
1C M .

As {q, q†, p†} ∈ ker R1 we have

hχq = 0, hχq† = 0, hχ p† = 0.
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For hχ p† we compute

hχ p =
∫ ∞

0
esLD1 R1 p ds =

∫ ∞

0
esLD1 (g�(p†))ds = g�(p†)

∫ ∞

0
e−sds = g�(p†),

thus, by Proposition 3.1.4, hχ converges on BV-BFV•1 and χ∗ is the identity in
cohomology. ��

3.4 Yang–Mills theory

We now look at the example of (nonabelian) Yang–Mills theory. Let (M, g) be a
d-dimensional (pseudo-)Riemanian manifold and G a connected Lie group with Lie
algebra (g, [·, ·]), endowed with an ad-invariant inner product, which for ease of nota-
tion will be denoted by means of an invariant trace operation22 Tr[·]. As we consider
two formulations of Yang–Mills theory, we will use tildes to distinguish the fields
between the two. We point out that an alternative proof of the equivalence of first-
and second-order formulations of Yang–Mills theory has been given in [54] using
homotopy transfer of A∞-structures. We will give here an argument that is different
on the surface, but which is compatible to their results. However, we stress that our
analysis also includes a comparison of the boundary data of the first- and second-order
formulations.

We can phrase the theory by considering connection 1-forms Ã ∈ �1(M, g), with
curvature F̃Ã, and the classical action functional

S2[ Ã] =
∫

M
Tr

[
1

2
F̃Ã�F̃Ã

]
.

This is often known as the second-order formulation.
Alternatively, one can phrase the theory in itsfirst-order formulation, by considering

an additional “auxiliary” field B ∈ �d−2(M, g) and the classical action functional

S1[A, B] =
∫

M
Tr

[
B FA − εs

2
B�B

]
,

where εs = ±1 denotes the signature of g.

Proposition 3.4.1 The first- and second-order formulations of Yang–Mills theory are
classically equivalent.

Proof Solving the EL equations of the first-order theory w.r.t. the auxiliary field B
gives

δB S1[A, B] =
∫

M
Tr

[
δB FA − εs

2
δB�B − εs

2
B�δB

]

22 For a better nonperturbative behaviour, one usually requires G to be compact, in which case one uses
the Killing form as the invariant inner product. This is the motivation for using the trace notation.
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=
∫

M
Tr [δB (FA − εs�B)] .

Let C1 be the set of solutions of FA = εs�B, or equivalently

�FA = εs�
2B = ε2s (−1)2(d−2)B = B,

where we used �2 = εs(−1)k(d−k) when acting on k-forms, and let φcl : C1 → F2 be
the map defined through φ∗cl Ã = A. Then

S1[A, B]
∣∣
∣
C1
=

∫

M
Tr

[
�FA FA − ε2s

2
�FA FA

]
=

∫

M
Tr

[
1

2
FA�FA

]

= φ∗cl

∫

M
Tr

[
1

2
F̃Ã�F̃Ã

]
= φ∗cl S2[ Ã],

showing that the two theories are classically equivalent. ��
Both first- and second-order formulations of Yang–Mills theory can be extended to

lax BV–BFV theories as follows. As the symmetries of the theory are given by a Lie
algebra g, we can follow the construction of Example 2.2.5.

Proposition/Definition 3.4.2 ([19, 47]) The data

Flax
2Y M = (F lax

2Y M , θ•2 , L•2, Q2),

where

F lax
2Y M = T ∗[−1](�1(M, g)⊕�0(M, g)[1]),

together with θ•2 ∈ �
1,•
loc (F lax

2Y M×M) and L•2 ∈ �
0,•
loc (F lax

2Y M×M), which are given by

θ•2 = Tr
[

Ã†δ Ã + c̃†δc̃ + δ Ã�F̃Ã + Ã†δc̃ + �F̃Ãδc̃
]
,

L•2 = Tr

[
1

2
F̃Ã�F̃Ã + Ã†d Ã c̃ + 1

2
c̃†[c̃, c̃] + �F̃Ãd Ã c̃ + 1

2
Ã†[c̃, c̃] + 1

2
�F̃Ã[c̃, c̃]

]
,

and the cohomological vector field Q2 ∈ Xevo(F lax
2Y M )

Q2 Ã = d Ãc̃, Q2c̃ = 1

2
[c̃, c̃],

Q2 Ã† = d Ã�F̃Ã + [c̃, Ã†], Q2c̃† = d Ã Ã† + [c̃, c̃†],

defines a lax BV–BFV theory.

In the first-order formulation we have:
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Proposition/Definition 3.4.3 ([19, 47]) The data

Flax
1Y M = (F lax

1Y M , θ•1 , L•1, Q1),

where

F lax
1Y M = T ∗[−1](�1(M, g)⊕�d−2(M, g)⊕�0(M, g)[1]).

together with θ•1 ∈ �
1,•
loc (F lax

1Y M ) and L•1 ∈ �
0,•
loc (F lax

1Y M ), which take the form

θ•1 =Tr
[

A†δA + B†δB + c†δc + BδA + A†δc + Bδc
]
,

L•1 =Tr
[

B FA − εs

2
B�B + A†dAc + B†[c, B] + 1

2
c†[c, c]

+ BdAc + 1

2
A†[c, c] + 1

2
B[c, c]

]

and the cohomological vector field Q1 ∈ Xevo(F lax
1Y M )

Q1A = dAc, Q1A† = dA B + [c, A†],
Q1B = [c, B], Q1B† = FA − εs�B + [c, B†],
Q1c = 1

2
[c, c], Q1c† = dA A† + [c, c†] + [B†, B],

defines a lax BV–BFV theory.

We now present the main theorem of this section, together with an outline of the
proof. The computational details and the various required Lemmata are presented in
“Appendix A”.

Theorem 3.4.4 The lax BV–BFV theories Flax
1Y M and Flax

2Y M of the first- and second-
order formulations of nonabelian Yang–Mills theory are lax BV–BFV equivalent.

Proof We need to check all the conditions from Definition 2.6.3. The existence of
two maps φ, ψ with the desired properties is presented in Lemmata A.1.1 and A.1.2
respectively, where we also show that the pullback maps φ∗, ψ∗ are chain maps w.r.t.
the BV–BFV complexes BV-BFV•i , and that they map (θ•i , L•i ) in the desired way.
Specifically, φ : F lax

2Y M → F lax
1Y M is defined through

φ∗A = Ã, φ∗B = �F̃Ã, φ∗c = c̃,

φ∗A† = Ã†, φ∗B† = 0, φ∗c† = c̃†.

and maps the lax BV–BFV data of the first-order theory as

φ∗θ•1 = θ•2 , φ∗L•1 = L•2,
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whereas ψ : F lax
1Y M → F lax

2Y M is given by

ψ∗ Ã = A, ψ∗c̃ = c,

ψ∗ Ã† = A† − dA�B†, ψ∗c̃† = c† − 1

2
[B†, �B†],

and maps the lax BV–BFV data of the second-order theory as

ψ∗θ•2 = θ•1 + (LQ1 − d)β•1 + δ f •1 , ψ∗L•2 = L•1 + (LQ1 − d)ιQ1β
•
1 + d f •1 ,

where

β•1 = Tr

[
1

2
B†�δB† + �B†δA + �B†δc

]
, f •1 = Tr

[
1

2
B†(B − �FA)

]

in accordance with our notion of lax BV–BFV equivalence. Note that f 11 = f 21 = 0.
Furthermore, we need to show that the respective BV–BFV complexes are quasi-

isormophic. The composition map λ∗ = φ∗ ◦ ψ∗ is shown to be the identity in
Lemma A.1.3, which follows directly from φ∗B† = 0. In Lemma A.1.4, we prove
that the composition map χ∗ = ψ∗ ◦ φ∗, which has the explicit form

χ∗A = A, χ∗A† = A† − dA�B†,

χ∗B = �FA, χ∗B† = 0,

χ∗c = c, χ∗c† = c̃† − 1

2
[B†, �B†],

is homotopic to the identity by constructing the morphism χ∗s = esLD1 with D1 =
[R1, Q1], where R1 is chosen to act as

R1A = 0, R1A† = 0,

R1B = �B†, R1B† = 0,

R1c = 0, R1c† = 0.

The homotopy is explicitly given by

χ∗s A = A, χ∗s A† = A† + (e−s − 1)dA�B†,

χ∗s B = e−s B − (e−s − 1)�FA, χ∗s B† = e−s B†,

χ∗s c = c, χ∗s c† = c† + 1

2
(e−2s − 1)[B†, �B†].

and fulfils lims→∞ χ∗s = χ∗. In Lemma A.1.5, we demonstrate that χ∗ is the identity
in cohomology by showing that the map

hχϕ
j
1 =

∫ ∞

0
esLD1LR1ϕ

j
1ds ϕ

j
1 ∈ F lax

1Y M ,
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satisfying χ∗ − id1 = (LQ1 − d)hχ + hχ (LQ1 − d) (cf. Lemma 3.1.3) converges to

hχ A = hχ A† = hχ B† = hχc = hχc† = 0,

hχ B = �B†,

therefore proving that the two lax BV–BFV theories in question have isomorphic
BV–BFV cohomologies

H•(BV-BFV1Y M ) � H•(BV-BFV2Y M )

and thus that they are lax BV–BFV equivalent. ��

3.5 1D reparametrisation-invariant theories

In this section, we compare two one-dimensional reparamentrisation invariant theo-
ries, namely Jacobi theory, which one can think of as classical mechanics at constant
energies, and one-dimensional gravity coupled to matter (1D GR). For an in-depth
discussion of these theories we refer to [26]. We recall that the motivation to inves-
tigate the equivalence of these two theories is that, even though they are classically
equivalent, 1D GR is compatible with the BV–BFV procedure while the Jacobi the-
ory is not and yields a singular boundary structure. Firstly, this raises the question
whether this boundary discrepancy is reflected at a cohomological level. Secondly,
this discrepancy in the boundary behaviour is also present in the classically equivalent
Einstein–Hilbert gravity and Palatini–Cartan gravity in (3+1) dimensions, where the
latter is incompatible with the BV–BFV procedure. Our hope is that the comparison
and analysis of these toy models might shed light in the question of equivalence of the
(3+1) dimensional theories.

We take the base manifold to be a closed interval on the real line M = I =
[a, b] ⊂ R with coordinate t for both theories, which should be interpreted as a finite
time interval.

In the case of Jacobi theory, we consider amatter field q̃ ∈ �(Rn× I ) = C∞(I ,Rn)

with mass m. The kinetic energy is taken to be T ( ˙̃q) = m
2 ‖ ˙̃q‖2 where ‖ · ‖ is the

Euclidean norm on R
n and ˙̃q = ∂t q̃ is the time derivative of q̃ . Let E denote a

parameter and V (q̃) a potential term. We do not assume E = T ( ˙̃q) + V (q̃). The
Jacobi action functional takes the form

SJ [q̃] =
∫

I
2
√
(E − V )T dt .

To see that SJ is parameterisation invariant, note that writing

ds2 = 2m(E − V ) dq̃2

lets us interpret the Jacobi action functional as the length of a path in the target spaceRn

with metric ds2. As such the symmetry group of Jacobi theory is the diffeomorphism
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group of the interval Diff(I ), i.e. the reparameterisations of I . The critical locus of SJ

is then given by the geodesics of the metric ds2, which are the trajectories of classical
mechanics with an arbitrary parameterisation [26]. Imposing E = T ( ˙̃q) + V (q̃)
allows us to recover the standard parameterisation. We set V (q̃) = 0 for the rest of
the discussion. The EL equations can be shown to have the form

∂t

(√
E

T
m ˙̃q

)

= 0,

which are singular for ˙̃q = 0. As such, the space of fields for Jacobi theory is not
C∞(I ,Rn) but rather

FJ =
{

q̃ ∈ C∞(I ,Rn) | ˙̃q(t) �= 0 ∀t ∈ I
}
.

We can then interpret Jacobi theory as classical mechanics at constant energies where
the solutions donot have turning points, i.e. points inwhich thefirst derivative vanishes.

In the case of 1D GR [26], we also consider a metric field g ∈ �(S2+T ∗ I ) as a non-
vanishing section of the bundle of symmetric nondegenerate rank-(0, 2) tensors over
I . For simplicity, we write g = g dt2 and work with the component g ∈ C∞(I ,R>0).
The space of fields is given by

FG R = FJ ⊕ C∞(I ,R>0).

The condition q̇ �= 0 in FJ is strictly speaking not necessary in the 1D GR case, but
we are ultimately interested in comparing 1D GRwith the Jacobi theory and therefore
impose it for consistency. In this picture, we can interpret 1D GR as an extension of
Jacobi theory. We consider the action functional

SG R[q, g] =
∫

I

(
T

g
+ E

)√
g dt =

∫

I

(
T√

g
+√gE

)
dt .

Note that the Ricci tensor vanishes in 1D and hence the Einstein–Hilbert term is
absent. The first term in SG R is simply the matter Lagrangian for vanishing potential
in the presence of a metric field and the second is a cosmological term. As such we
interpret the parameter E as a cosmological constant. Since we are integrating over
the Riemannian density

√
g dt of the metric ds2 = gdt2, the symmetry group is again

Diff(I ).

Proposition 3.5.1 ([26]) Jacobi theory and 1D GR are classically equivalent.

Let us now turn to the lax BV–BFV formulation of Jacobi theory. We first need to
introduce the ghost field, which in case of diffeomorphims invariance is chosen to be
ξ̃ ∂t ∈ X(I )[1] [49]. In this setting, the Chevalley–Eilenberg operator acts on the fields
as the Lie derivative γJ = Lξ̃ ∂t

and on the ghost as the Lie bracket of vector fields (cf.

Example 2.2.5). We work with the component ξ̃ ∈ C∞(I ,R)[1] for simplicity.
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Proposition/Definition 3.5.2 The data

Flax
J = (F lax

J , θ•J , L•J , Q J )

where

F lax
J = T ∗[−1](FJ ⊕ C∞(I ,R)[1]). (22)

together with θ•J ∈ �
1,•
loc (F lax

J ×I ) and L•J ∈ �
0,•
loc (F lax

J ×I ), which are given by

θ•J =
[
q̃+ · δq̃ + ξ̃+δξ̃

]
dt +

√
E

T
m ˙̃q · δq̃ + q̃+ξ̃ · δq̃ − ξ̃+ξ̃ δξ̃ ,

L•J =
[
2
√

ET + q̃+ · ξ̃ ˙̃q + ξ̃+ξ̃ ˙̃ξ
]
dt .

and the cohomological vector field Q J ∈ Xevo(F lax
J )

Q J q̃ = ξ̃ ˙̃q, Q J q̃+ = −∂t

(√
E

T
m ˙̃q + q̃+ξ̃

)

,

Q J ξ̃ = ξ̃
˙̃
ξ, Q J ξ̃

+ = −q̃+ · ˙̃q + ξ̃
˙̃
ξ+ + 2 ˙̃ξ ξ̃+.

defines a lax BV–BFV theory.

Proof It is a matter of a straightforward calculation to check that the formulas above
satisfy the axioms of Definition 2.5.5. ��
Remark 3.5.3 Note that we can explicitly decompose the cohomological vector field
Q J into its Chevalley–Eilenberg and Koszul–Tate parts as Q J = γJ + δJ by using
Eq. (4) and setting γJ = Q J − δJ on {q̃+, ξ̃+}. We have:

γJ q̃+ = ξ̃ ˙̃q+ + ˙̃ξq+, δJ q̃+ = −∂t

(√
E

T
m ˙̃q ξ̃

)

,

γJ ξ̃
+ = ξ̃

˙̃
ξ+ + 2 ˙̃ξ ξ̃+, δJ ξ̃

+ = −q̃+ · ˙̃q.

As q̃ is a function and ξ̃ is the component of a vector field, defining q̃+ and ξ̃+
through Eq. (22) lets us interpret them as components of tensor fields in �top(I ) ⊗
C∞(I ,Rn)[−1] and �top(I ) ⊗ �top(I )[−2], respectively, or rather as components
of a rank-(0, 1) and a rank-(0, 2) tensors over I . As such we see that the Chevalley–
Eilenberg differential also acts as γJ = Lξ̃ ∂t

on {q̃+, ξ̃+}.
In the case of 1D GR we have

Proposition 3.5.4 The data

Flax
G R = (F lax

G R, θ
•
G R, L•G R, QG R)
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where

F lax
G R = T ∗[1](FJ ⊕ C∞(R>0)⊕ C∞(I )[1]).

together with θ•G R ∈ �
1,•
loc (F lax

G R×I ) and L•G R ∈ �
0,•
loc (F lax

G R×I ), which are given by

θ•G R =
[
q+ · δq + ξ+δξ + g+δg

]
dt + mq̇√

g
· δq + q+ξ · δq

+ g+ξδg − (2g+g + ξ+ξ)δξ,

L•G R =
[

T√
g
+√gE + q+ · ξ q̇ + g+(ξ ġ + 2gξ̇ )+ ξ+ξ ξ̇

]
dt +

(
T

g
− E

)√
gξ.

and the cohomological vector field QG R ∈ Xevo(F lax
G R)

QG Rq = ξ q̇, QG Rq+ = −∂t

(
mq̇√

g
+ q+ξ

)
,

QG Rg = ξ ġ + 2ξ̇g, QG Rg+ = ELg + ξ ġ+ − ξ̇g+,
QG Rξ = ξ q̇, QG Rξ

+ = −q+ · q̇ + g+ġ + 2ġ+g + ξ ξ̇+ + 2ξ̇ ξ+.

with

ELg:=δSG R

δg
= E

2
√

g
− T

2g3/2 ,

defines a lax BV–BFV theory.

Proof It is straightforward to show that these formulas satisfy the axioms of Defini-
tion 2.5.5. ��
Remark 3.5.5 As in Jacobi theory, we can decompose the cohomological vector field
as QG R = γG R + δG R . We have

γG Rq+ = ξ q̇+ + ξ̇q+, δG Rq+ = −∂t

(
mq̇√

g

)
,

γG Rg+ = ξ ġ+ − ξ̇g+ δG Rg+ = ELg,

γG Rξ
+ = ξ ξ̇+ + 2ξ̇ ξ+, δG Rξ

+ = −q+ · q̇ + g+ġ + 2ġ+g.

Similarly to the Jacobi case, q+, g+ and ξ+ are components of tensors in �top(I )⊗
C∞(I ,Rn)[−1], �[−1](S2+T I )⊗�top(I ) and �top(I )⊗�top(I )[−2], respectively,
or rather components of a rank-(0, 1), a rank-(2, 1) and a rank-(0, 2) tensors over I .
Therefore, we again have γG R = Lξ∂t on {q+, g+, ξ+}.

Before presenting the main theorem of this section, we need to introduce some
useful notation. Let v ∈ C∞(I ,Rn) be a Rn-valued field and let u = q̇/‖q̇‖ denote
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the normalised velocity of q. Note that u is always well-defined because we assume
q̇ �= 0. We can then decompose v = v‖ + v⊥ into its parallel v‖ and perpendicular v⊥
components with respect to u as

v‖ = (u · v)u = (q̇ · v) q̇

‖q̇‖2 = (q̇ · v)mq̇

2T
,

v⊥ = v − (u · v)u = v − (q̇ · v)mq̇

2T
,

(23)

where we used that T = m
2 ‖q̇‖2.

We now present the main theorem of this section, together with an outline of the
proof. The computational details and the various required Lemmata are presented in
the “Appendix B”.

Theorem 3.5.6 The lax BV–BFV theories Flax
G R and Flax

J of 1D GR and Jacobi theory
are lax BV–BFV equivalent.

Proof We need to check all the conditions from Definition 2.6.3. The existence of
two maps φ, ψ with the desired properties is presented in Lemmata B.2.1 and B.2.2
respectively, where we also show that the pullback maps φ∗, ψ∗ are chain maps w.r.t.
the BV–BFV complexes BV-BFV•i , and that they map (θ•i , L•i ) in the desired way.
Specifically, φ : F lax

J → F lax
G R is defined through

φ∗q = q̃, φ∗g = T

E
, φ∗ξ = ξ̃ ,

φ∗q+ = q̃+, φ∗g+ = 0, φ∗ξ+ = ξ̃+.

and maps the lax BV–BFV data of 1D GR as

φ∗θ•G R = θ•J , φ∗L•G R = L•J .

On the other hand, ψ : F lax
G R → F lax

J is given by

ψ∗q̃ = q,

ψ∗ξ̃ = ξ,

ψ∗q̃+‖ = η3/2
(

q+‖ −
[
g+ġ + 2ġ+g

] mq̇

2T
− g3/2

E

[ ˙ELgg+ − ELg ġ+
] mq̇

2T

)
,

ψ∗q̃+⊥ = η3/2
(

q+⊥ +
2m

E
g+q̈⊥

)
,

ψ∗ξ̃+ = η3/2
(
ξ+ + g3/2

E
ġ+g+

)
,

where η:= gE
T , and maps the lax BV–BFV data of the Jacobi theory as

ψ∗θ•J = θ•G R + (LQG R − d)β•G R + δ f •G R,
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ψ∗L•J = L•G R + (LQG R − d)ιQG Rβ
•
G R + d f •G R,

where (writing κ• = κ0dt + κ1)

β0
G R =−

4g7/2

�2 T g+δg+ +
(
2g2

�
+ η3/2

2
√

g

E

)
g+q+⊥ · δq

+
(
4g7/2

�2 T − η3/2
g3/2

E

)
ġ+g+mq̇

2T
· δq − (η3/2 − 1)ξ+mq̇

2T
· δq,

β1
G R = ξβ0

G R +
2g3/2

�
g+mq̇ · δq,

f 0G R = 2g+
(

g − 2g3/2

�
T

)
,

f 1G R = ξ f 0G R,

with� = √gT +g
√

T E , in accordance with our notion of lax BV–BFV equivalence.
Furthermore, we need to show that the respective BV–BFV complexes are quasi-

isormophic. The composition map λ∗ = φ∗ ◦ ψ∗ is shown to be the identity in
Lemma B.2.3. In Lemma B.2.5, we prove that the composition map χ∗ = ψ∗ ◦ φ∗,
which has explicitly form

χ∗q = q,

χ∗ξ = ξ,

χ∗g = T

E
,

χ∗q+‖ = η3/2
(

q+‖ −
[
g+ġ + 2ġ+g

] mq̇

2T
− g3/2

E

[ ˙ELgg+ − ELg ġ+
] mq̇

2T

)
,

χ∗q+⊥ = η3/2
(

q+⊥ +
2m

E
g+q̈⊥

)
,

χ∗ξ+ = η3/2
(
ξ+ + g3/2

E
ġ+g+

)
,

χ∗g+ = 0,

is homotopic to the identity by constructing the morphism χ∗s = esLDG R with DG R =
[RG R, QG R], where RG R is chosen to act as

RG Rq = 0, RG Rξ = 0, RG Rg = −2g3/2

E
g+,

RG Rq+‖ = −
3
√

g

E
ELgξ

+mq̇

2T
, RG Rξ

+ = 0, RG Rg+ = 0,

RG Rq+⊥ =
3
√

g

E
g+q̇+⊥ .
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The homotopy is given by

χ∗s q = q,

χ∗s ξ = ξ,

χ∗s g = e−s g + (1− e−s)
T

E
,

χ∗s q+‖ =
(

g

χ∗s g

)3/2 (
q+‖ + (e−s − 1)2g−3/2σ

(
T

E

)
mq̇

2T

+(e−2s − 1)
3

E
g−3/2σ(g3/2E Lg)

mq̇

2T
,

)

χ∗s q+⊥ =
(

g

χ∗s g

)3/2 (
q+⊥ − (e−s − 1)

2m

E
q̈⊥g+

)
,

χ∗s ξ+ =
(

g

χ∗s g

)3/2 (
ξ+ − (e−2s − 1)

g3/2

E
ġ+g+

)
,

χ∗s g+ =
(

g

χ∗s g

)3/2

e−s g+.

where σ(ϕ) = ϕ∂t (g3/2g+)− ϕ̇g3/2g+, and fulfils lims→∞ χ∗s = χ∗. There are some
steps that are important to highlight in this case. First, in Lemma B.2.4, we show that
RG R commutes with the Chevalley–Eilenberg differential γG R

23

[RG R, γG R] = 0,

by using general arguments and γG R ∼ Lξ∂t , but it can also be checked through
straightforward calculations. We do this as it greatly simplifies the computations since
DG R = [RG R, QG R] = [RG R, δG R].

Furthermore, while the computations for the action of χ∗s = esLDG R on the fields
ϕ ∈ {q, ξ, g} is analogous to the ones presented for the other examples, it turns out that
in this case of the antifieldsϕ+ ∈ {q+, ξ+, g+}finding a recursive formula for Dk

G Rϕ
+

is quite challenging. Instead, it is easier to take a slight detour: We first compute
χ∗s (g3/2ϕ+) through Dk

G R(g
3/2ϕ+) and then use the property that χ∗s = esLDG R is a

morphism in order to recover χ∗s ϕ+

χ∗s (g3/2ϕ+) = (
χ∗s g

)3/2
χ∗s ϕ+

⇔ χ∗s ϕ+ =
χ∗s (g3/2ϕ+)
(χ∗s g)3/2

= χ∗s (g3/2ϕ+)
[
g + (e−s − 1)

(
g − T

E

)]3/2 . (24)

The limit s →∞ then reads

lim
s→∞χ∗s ϕ+ =

(
E

T

)3/2

lim
s→∞χ∗s (g3/2ϕ+). (25)

23 Note that this is also the case in the Yang–Mills example.
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Since χ∗s g is nowhere vanishing for any s ∈ R≥0, this expression is well-defined
∀s ∈ R≥0 iff χ∗s (g3/2ϕ+) is well-defined ∀s ∈ R≥0 as well.

We exemplify this procedure with the computation of χ∗s g+. In order to see where
the aforementioned problem arises, we compute

DG Rg+ = (δG R RG R + RG RδG R) g+ = RG R(ELg) = δELg

δg
RG Rg

=
(
− E

4g3/2 +
3T

4g5/2

) −2g3/2

E
g+ =

(
1

2
− 3

2

T

Eg

)
g+.

One can then proceed with the calculation of Dk
G Rg+ for higher k’s and notice that the

expressions become quite lengthy as DG Rg = T /E − g (Eq. (43)). The idea to avoid
this complication by considering Dk

G R(g
3/2g+), where a recursive formula becomes

apparent. We have

DG R(g
3/2g+) = 3

2
g1/2DG Rgg+ + g3/2DG Rg+

= 3

2
g1/2

(
T

E
− g

)
g+ + g3/2

(
1

2
− 3

2

T

Eg

)
g+

= −g3/2g+.

It is then straightforward to see that

Dk
G R(g

3/2g+) = (−1)k g3/2g+ for k ≥ 0,

⇒ esLDG R (g3/2g+) = e−s g3/2g+.

Using Eq. (24) we then have

esLDG R g+ =
(

g

χ∗s g

)3/2

e−s g+,

⇒ lim
s→∞ esLDG R g+ = 0 = χ∗g+.

The computations for q+, ξ+ are lengthier and can be found in the “Appendix B.2”.
In Lemma B.2.6, we demonstrate that χ∗ is the identity in cohomology by showing

that the map

hχϕ
j =

∫ ∞

0
esLDG R LRG Rϕ

jds, ϕ j ∈ F lax
G R,

satisfying χ∗ − idG R = (LQG R −d)hχ +hχ (LQG R −d) (cf. Lemma 3.1.3) converges
to

hχq = hχξ = hχξ
+ = hχg+ = 0,
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hχg = −2g3/2

E
g+,

hχq+‖ = (1− η3/2)

[
ξ+ + g3/2

E
ġ+g+

]
mq̇

2T
+ 3η − 2

√
η − 1

(
√
η + 1)2

g3/2

E
ġ+g+mq̇

2T
,

hχq+⊥ =
2

T

(
η√
η + 1

+ 1

)
g3/2g+q+⊥ .

therefore proving that the two lax BV–BFV theories in question have isomorphic
BV–BFV cohomologies

H•(BV-BFVJ ) � H•(BV-BFVG R)

and thus that they are lax BV–BFV equivalent. ��
In this example, we are also interested on how the composition maps λ∗, χ∗ affect

the boundary structure, namely the strict BV–BFV structure of the Jacobi theory and
1D GR. More specifically, we want to investigate how they change the kernel of the
pre-boundary forms ω̌ and as such the quotient F∂ = F̌∂/ ker ω̌ (cf. Eq. (12)).

In the case of λ∗, this is trivial since it is the identity. Regarding χ∗, we argue
that ker χ∗ω̌G R has a singular behaviour and that we cannot construct a BV–BFV
theory from the data χ∗Flax

G R :=(F lax
G R, χ

∗θ•G R, χ
∗L•G R, QG R). Thus, although χ∗ is

the identity in the BV–BFV cohomology H•(BV-BFVG R), it spoils the BV–BFV
structure of 1D GR.

Theorem 3.5.7 The lax BV–BFV theoryχ∗Flax
G R :=(F lax

G R, χ
∗θ•G R, χ

∗L•G R, QG R) does
not yield a BV–BFV theory.

Proof Recall that pulling back (θ•G R, L•G R) with φ∗ gives φ∗θ•G R = θ•J and φ∗L•G R =
L•J . Applying the map χ∗ = ψ∗ ◦ φ∗ to (θ•G R, L•G R) then yields

χ∗θ•G R = (ψ∗ ◦ φ∗)θ•G R = ψ∗θ•J = θ•J [ψ∗q̃, ψ∗q̃+, ψ∗ξ̃ , ψ∗ξ̃+],
χ∗L•G R = (ψ∗ ◦ φ∗)L•G R = ψ∗L•J = L•J [ψ∗q̃, ψ∗q̃+, ψ∗ξ̃ , ψ∗ξ̃+].

Thus, the lax BV–BFV data of χ∗Flax
G R has the same form as the lax BV–BFV data for

Jacobi theory presented in Proposition/Definition 3.5.2 on the submanifold of F lax
G R

with local coordinates {ψ∗q̃, ψ∗q̃+, ψ∗ξ̃ , ψ∗ξ̃+}. Furthermore, applying χ∗ to Eq.
(15) for the lax BV–BFV formulation of 1D GR yields

ιQG Rψ
∗� •

J = δψ∗L•J + dψ∗θ•J ,
ιQG R ιQG Rψ

∗� •
J = 2 dψ∗L•J .

Thismeans that the theoryχ∗Flax
G R is just a version of Jacobi theorywhich is defined on

a submanifold of F lax
G R with local coordinates {ψ∗q̃, ψ∗q̃+, ψ∗ξ̃ , ψ∗ξ̃+}. This theory
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will have the same behaviour as the original Jacobi theory and as such the kernel of
the pre-boundary 2-form

χ∗ω̌G R =
∫

∂ I
δχ∗θ1G Rdt =

∫

∂ I
δψ∗θ1Jdt = ψ∗ω̌J

= ω̌J [ψ∗q̃, ψ∗q̃+, ψ∗ξ̃ , ψ∗ξ̃+],

will be singular, just as the kernel of the pre-boundary 2-form ω̌J of Jacobi theory
[26]. As such, the data χ∗Flax

G R does not yield a BV–BFV theory. ��

Remark 3.5.8 It is clear that the theoriesFlax
G R andχ∗Flax

G R are also laxBV–BFV equiva-
lent (see Remark 2.3.4). We have thus presented two pairs of theories, (Flax

J ,Flax
G R) and

(Flax
G R, χ

∗Flax
G R), which have isomorphic BV–BFV cohomologies, but differ in terms

of their compatibility with the BV–BFV axioms, a behaviour which is not present in
the examples of classical mechanics on a curved background and Yang–Mills theory
whichwe considered in Sects. 3.3 and 3.4. Indeed, a remarkable feature of the classical
equivalence between Jacobi theory and 1d GR is that it can actually be promoted to a
quasi-isomorphism of their BV–BFV complexes (lax equivalence), which in particular
implies BV equivalence in the sense of Definition 2.3.1. This is compatible with the
process of removal of auxiliary fields outlined in [3]. However, the request that two
lax-equivalent theories both admit a strictification in the sense of Remark 2.5.6 is a
genuine refinement of the notion of BV (and lax) equivalence of field theories. Since
the BV–BFV quantisation programme requires a strict theory, this obstruction marks
a roadblock for nonstrictifiable lax BV–BFV theories.
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Appendix A: Lengthy calculation for Yang–Mills

A.1. Lemmata used in Theorem 3.4.4

In this Appendix we present the lemmata used in Theorem 3.4.4 and the respective
detailed proofs and calculations.

Lemma A.1.1 Let φ : F lax
2Y M → F lax

1Y M be defined through

φ∗A = Ã, φ∗B = �F̃Ã, φ∗c = c̃,

φ∗A† = Ã†, φ∗B† = 0, φ∗c† = c̃†.

Its pullback map φ∗ is a chain map w.r.t. (LQi − d) and maps the lax BV–BFV data
of the first-order theory as

φ∗θ•1 = θ•2 , φ∗L•1 = L•2.

Proof The computations are in the same line as the ones presented in the example of
Classical Mechanics on a curved background (cf. Lemma 3.3.5). One should keep in
mind that Q2�F̃Ã = [c̃, �F̃Ã]. ��
Lemma A.1.2 Let ψ : F lax

1Y M → F lax
2Y M be the map defined through

ψ∗ Ã = A, ψ∗c̃ = c,

ψ∗ Ã† = A† − dA�B†, ψ∗c̃† = c† − 1

2
[B†, �B†].

Its pullback map ψ∗ is a chain map w.r.t. (LQi − d) and maps the lax BV–BFV data
of the second-order theory as

ψ∗θ•2 = θ•1 + (LQ1 − d)β•1 + δ f •1 , ψ∗L•2 = L•1 + (LQ1 − d)ιQ1β
•
1 + d f •1 ,

where

β•1 = Tr

[
1

2
B†�δB† + �B†δA + �B†δc

]
, f •1 = Tr

[
1

2
B†(B − �FA)

]
.

Proof The chain map conditions in the case of Ã and c̃ are straightforward to check.
In the case of Ã†, we first note that

Q1dA�B† = −dA Q1�B† + [dAc, �B†] = −dA(�FA − B)− dA[c, �B†] + [dAc, �B†]
= −dA(�FA − B)+ [c, dA�B†],

as such we have

Q1ψ
∗ Ã† = Q1(A† − dA�B†) = dA B + [c, A†] − Q1dA�B†
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= dA�FA + [c, A†] − [c, dA�B†] = ψ∗(d Ã�F̃Ã + [c̃, Ã†]) = ψ∗Q2 Ã.

Before addressing the case of c†, we compute

Q1[B†, �B†] =[FA, �B†] − εs[�B, �B†] + [[c, B†], �B†]
− [B†, FA] − [B†, B] + [B†, [c, �B†]].

Using [α, �β] = −[β, �α] for α, β ∈ �•(M, g), the graded Jacobi identity for c, B,
�B and [FA, �B†] = d2A�B†, this yields

Q1[B†, �B†] = 2d2A�B† + 2[B†, B] + [c, [B†, �B†]].
With this in hand, we have

Q1ψ
∗c̃† = dA A† + [c, c†] + [B†, B] − 1

2
Q1[B†, �B†]

= dA(A† − dA�B†)+
[

c, c† − 1

2
[B†, �B†]

]
= ψ∗(d Ã Ã† + [c̃, c̃†]) = ψ∗Q2c̃†.

Let now �θ•2 :=ψ∗θ•2 − θ•1 and �L•2:=ψ∗L•2 − L•1. We need to check whether

�θ02 = LQ1β
0
1 − dβ1

1 + δ f 01 ,

�θ12 = LQ1β
1
1 − dβ2

1 + δ f 21 ,

�θ22 = LQ1β
2
1 + δ f 21 ,

�L0
2 = LQ1 ιQ1β

0
1 − dιQ1β

1
1 + d f 11 .

Note that f 11 = f 21 = 0. Recall that we only need to compute�L0
2, as�Lk

2 for k > 0
is determined by �θ•2 , as shown in Proposition 2.6.5.

Computation of �θ02 : Explicitly computing �θ02 = ψ∗θ02 − θ01 yields

�θ02 = Tr

[
−dA�B†δA − 1

2
[B†, �B†]δc − B†δB

]
.

Before tackling LQ1β
0
1 = Tr[ 12LQ1(B†�δB†)], we note that

B†δ[c, �B†] = B†[δc, �B†] − [c, δ�B†] = −[B†, �B†]δc − [c, δ�B†]
⇒ B†δ[c, �B†] + [c, δ�B†] = −[B†, �B†]δc,

where we ignored the term [B†δc, �B†] since Tr
[[α, βγ ]] = 0 for α, β, γ ∈

�•(M, g). As such

LQ1(B†�δB†) = (FA − εs�B + [c, B†])�δB† + B†�δ(FA − εs�B + [c, B†])
= δB†(�FA − B)+ [c, B†]�δB† + B†δ(�FA − B)+ B†δ[c, B†]
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= δB†(�FA − B)+ B†δ(�FA − B)− [B†, �B†]δc

Therefore, keeping in mind that δFA = −dAδA,

LQ1β
0
1 − dβ11 + δ f 01 = Tr

[
LQ1

(
1

2
B†�δB†

)
− d(�B†δA)+ δ

(
1

2
B†(B − �FA)

)]

= Tr

[
1

2
δB†(�FA − B)+ 1

2
B†δ(�FA − B)− 1

2
[B†, �B†]δc − dA + 1

2
δ(B†(B − FA))

]

= Tr

[
Tr[1

2
δB†�FA − 1

2
δB†B + 1

2
B†δ�FA − 1

2
B†δB − 1

2
[B†, �B†]δc

−dA�B†δA − B†�δFA + 1

2
δB†B − 1

2
δB†�FA − 1

2
B†δB + 1

2
B†�δFA

]

= Tr

[
−dA�B†δA − 1

2
[B†, �B†]δc − B†δB

]
= �θ02 .

Computation of �θ12 : We have �θ12 = ψ∗θ12 − θ11 and as such

�θ12 = Tr
[
δA�FA − dA�B†δc − BδA

]
.

Noting the identities

δdAc = −dAδc + [δA, c],
[c, �B†δA] = −�B†[c, δA] + [c, �B†]δA = �B†[δA, c] + [c, �B†]δA,

we see that

LQ1β
1
1 − dβ2

1 + δ f 11 = Tr
[
LQ1(�B†δA)− d(�B†δc)

]

= Tr
[
(�FA − B + [c, �B†])δA + �B†δdAc − dA�B†δc + �B†dAδc

]

= Tr
[
(�FA − B)δA − dA�B†δc + [c, �B†]δA + �B†[δA, c]

]
= �θ12

Computation of �θ22 : �θ22 = ψ∗θ22 − θ21 takes the form

�θ22 = (�FA − B)δc.

Furthermore since [c, �B†δc] = [c, �B†]δc − �B†[c, δc], we have

LQ1β
2
1 + δ f 21 = LQ1(�B†δc) = (�FA − B + [c, �B†])δc + 1

2
�B†δ[c, c]

= �θ22 + [c, �B†]δc − �B†[c, δc] = �θ22
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Computation of �L0
2: Explicitly �L0

2 = ψ∗L0
2 − L0

1 yields

�L0
2 = Tr

[
1

2
FA�FA − B FA + εs

2
B�B − dA�B†dAc − 1

4
[B†, �B†][c, c] − B†[c, B]

]
.

Before computing LQ1 ιQ1β
0
1 − dιQ1β

1
1 + d f 11 we note that

[�B†FA, c] = �B†[FA, c] + [�B†, c]FA = �B†[FA, c] + FA[c, �B†]
[c, B†B] = −B†[c, B] + [c, B†]B

and

[c, B†][c, �B†] = [c, B†[c, �B†]] + B†[c, [c, �B†]]
= [c, B†[c, �B†]] − B†[c, [�B†, c]] − B†[�B†[c, c]]
= [c, B†[c, �B†]] + [c, B†[�B†, c]] − [c, B†][c, �B†]
+ [�B†, B†[c, c]] − [�B†, B†][c, c]
⇒ Tr

[
[c, B†][c, �B†]

]
= Tr

[
− 1

2
[B†, �B†][c, c]

]
.

Since f 11 = 0 we therefore have

LQ1 ιQ1β
0
1 − dιQ1β

1
1 + d f 11 = Tr

[
1

2
Q1B†�Q1B† − d(�B†Q1A)

]

= Tr

[
1

2
(FA − εs�B + [c, B†])(�FA − B + [c, �B†])− dA(�B†dAc)

]

= Tr

[
1

2

(
FA�FA − FA B + FA[c, �B†] − εs�B�FA + εs�B B − εs�B[c, �B†]

+ [c, B†]�FA − [c, B†]B + [c, B†][c, �B†]
)
− dA�B†dAc + �B†d2Ac

]

= Tr

[
1

2
FA�FA − B FA + εs

2
B − �B − dA�B†

+ FA[c, �B†] + �B†[FA, c] − [c, B†]B + 1

2
[c, B†][c, �B†]

]

= Tr

[
1

2
FA�FA − B FA + εs

2
B�B − dA�B† − [c, B†]B − 1

4
[B†, �B†][c, c]

]

= �L0
2.

��
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Lemma A.1.3 The composition map λ∗ = φ∗ ◦ ψ∗ : BV-BFV•2 → BV-BFV•2 is
the identity

λ∗ Ã = Ã, λ∗c̃ = c̃,

λ∗ Ã† = Ã†, λ∗c̃† = c̃†,

and as such the identity in cohomology.

Proof Keeping in mind that φ∗B† = 0, this is a straightforward calculation. ��
Lemma A.1.4 The composition map χ∗ = ψ∗ ◦φ∗ : BV-BFV•1 → BV-BFV•1 acts
as

χ∗A = A, χ∗B = �FA, χ∗c = c,

χ∗A† = A† − dA�B†, χ∗B† = 0, χ∗c† = c̃† − 1

2
[B†, �B†],

and is homotopic to the identity.

Proof The explicit computation for χ∗ is again straightforward. To show that it is
indeed homotopic to the identity, we choose the vector field R1 ∈ Xevo(F lax

1Y M )[−1]
to act as

R1A = 0, R1B = �B†, R1c = 0,

R1A† = 0, R1B† = 0, R1c† = 0.

We now want to compute χ∗s = esLD1 , with D1 = [R1, Q1], and show that
lims→∞ χ∗s = χ∗.

Computation for A and c:

D1A = [Q1, R1]A = R1dAc = 0

⇒ esLD1 A = A

⇒ lim
s→∞ esLD1 A = A = χ∗A,

D1c = [Q1, R1]c = 1

2
R1[c, c] = 0

⇒ esLD1 c = c

⇒ lim
s→∞ esLD1 c = c = χ∗c.

Computation for B:

D1B = [Q1, R1]B = Q1�B† + R1[c, B]
= �FA − B + [c, �B†] − [c, �B†] = �FA − B.
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Noting that D1A = 0 implies D1FA = 0, we have

D2
1 B = −D1B = −(�FA − B)

⇒ Dk
1 B = (−1)k(B − �FA) for k ≥ 1

⇒ esLD1 B = B +
∞∑

k=1

sk

k! (−1)
k(B − �FA)

= B + (e−s − 1)(B − �FA)

⇒ lim
s→∞ esLD1 B = �FA = χ∗B.

Computation for B†:

D1B† = R1(FA − εs�B + [c, B†]) = −B†

⇒ Dk
1 B† = (−1)k B† for k ≥ 0

⇒ esLD1 B† = e−s B†

⇒ lim
s→∞ esLD1 B† = 0 = χ∗B†.

Computation for A†:

D1A† = R1(dA B + [c, A†]) = −dA�B†

⇒ Dk
1 A† = −dA�Dk−1

1 B† = (−1)kdA�B† for k ≥ 1

⇒ esLD1 A† = A† + (e−s − 1)dA�B†

⇒ lim
s→∞ esLD1 A† = A† − dA�B† = χ∗A†.

Computation for c†:

D1c† = R1(dA A† + [c, c†] + [B†, B]) = −[B†, �B†]
⇒ D2

1c† = −[D1B†, �B†] − [B†, �D1B†] = 2[B†, �B†] = −2D1c†

⇒ Dk
1c† = −(−2)k−1[B†, �B†] = 1

2
(−2)k[B†, �B†] for k ≥ 1

⇒ esLD1 c† = c† + 1

2
(e−2s − 1)[B†, �B†]

⇒ lim
s→∞ esLD1 c† = c† − 1

2
[B†, �B†] = χ∗c†.

Thus we have shown that χ∗ is homotopic to the identity. ��

Lemma A.1.5 The map χ∗ is the identity in cohomology.
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Proof We have to show that the map hχ converges on F lax
1Y M , namely

hχϕi =
∫ ∞

0
es D1 R1ϕi ds <∞ ∀ϕi ∈ F lax

1Y M .

As R1A = R1c = R1A† = R1B† = R1c† = 0 we have

hχ A = hχ A† = hχ B† = hχc = hχc† = 0.

In the case of B we compute

hχ B =
∫ ∞

0
es D1 R1Bds =

∫ ∞

0
e−s�B†ds = �B†.

As such hχ converges and χ∗ is the identity in cohomology. ��

Appendix B: Lengthy Calculations for the Jacobi theory/1D GR case

B.1 Preliminaries for calculations—tensor number

This appendix has two purposes. It serves as a preliminary for the computations, by
presenting a straightforward way to compute the action of the Chevalley–Eilenberg
differentials γJ , γG R , and it provides an explaination for why they act as Lξ∂t on the
antifields and antighosts (see Remarks 3.5.3 and 3.5.5). We will be using the 1D GR
theory in this discussion but all considerations hold for the Jacobi theory as well.

Let M be a manifold of arbitrary dimension and X = Xσ ∂σ ∈ X(M). Recall
that the Lie derivative LX acts on the components of a tensor field A ∈ T n

m (M) of
rank-(n,m) as

LXAμ1...μn
ν1...νm

= Xσ ∂σAμ1...μn
ν1...νm

− ∂σ Xμ1Aσ ...μn
ν1...νm

− · · · − ∂σ XμnAμ1...σ
ν1...νm

+ ∂ν1 XσAμ1...μn
σ ...νm

+ · · · + ∂νn XσAμ1...μn
ν1...σ

.
(26)

Let now M = I ⊂ R denote an interval and X = ξ∂t ∈ X(I )[I ] be the ghost field. In
this setting, Eq. (26) is greatly simplified since μi = νi = t , where t is the coordinate
on I . Let A ∈ T n

m (I ) and denote its component by A. We define the tensor number as
t(A) = (m − n). We then have

Lξ∂t A = ξ∂t A − n∂tξ A + m∂tξ A

= ξ Ȧ + t(A)ξ̇ A.

As an example, we list the tensor number for the fields, ghosts, antifields and antighosts
of the 1D GR theory

t(q) = 0− 0 = 0, t(g) = 2− 0 = 2, t(ξ) = 0− 1 = −1,
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t(q+) = 1− 0 = 1, t(g+) = 1− 2 = −1, t(ξ+) = 2− 0 = 2, (27)

which explains why we claimed that the Chevalley–Eilenberg differential γG R acts as
Lξ∂t on the antifields and antighosts in Remark 3.5.5. As such we have γG R = Lξ∂t on
all the functions on {q, g, q+, g+, ξ+} and γG R = 1

2Lξ∂t on the ghost. Since the ghost
is a special case, we assume that the tensor fields only depend on {q, g, q+, g+, ξ+}
for the rest of the discussion.When computing γG R(·), we then consider the parts with
ghosts and without separately.

The discussion until now only holds for tensor fields that only depend on the zeroth
jets of {q, g, q+, g+, ξ+}. The action of γG R is then naturally extended to all jets
since we assume that QG R , and as such γG R , is evolutionary, i.e. [LγG R , d] = 0. For
example, if A only depends on 0th-jets then

γG R Ȧ = ∂tγG R A = ∂t [ξ Ȧ + t(A)ξ̇ A]
= ξ Ä + [1+ t(A)]ξ̇ Ȧ + t(A)ξ̈ A.

(28)

For a general tensor field A which depends on arbitrary jets of the fields, we have

γG RA = ξȦ+
∑

n≥1
tn(A)∂n

t ξan, (29)

for some real scalars tn(A) and some functions an that depend on the jets of�,�+ ∈
FG R . In order to extend the notion of tensor number to such objects we define

Definition B.1.1 LetA be a tensor field that depends on arbitrary jets of�,�+ ∈ FG R .
The tensor number t(A) of A is defined as the scalar t1(A) in Eq. (29).

Note that in order to compute γG R we only have to find out what the tn(A) are. For
most of the computations, we are only going to encounter tensor fields that depend
on the zeroth jets, and they will atmost include second jets. As such we want to find
a pragmatic way of computing t(A). If necessary, we then look at higher tn(A), for
example by following Eq. (28). We list some useful properties of t(·), since they
immensely simplify the explicit computations of γG R(A).

Proposition B.1.2 Let A,B be two tensor fields that depend on an arbitrary number
of jets of �,�+ ∈ FG R. The tensor number has the following properties:

(1) t(AB) = t(A)+ t(B),
(2) t(An) = nt(A),
(3) t(Ȧ) = 1+ t(A).

Proof Note that the only two terms fromEq. (29) that can contribute to these properties
are the first two. Therefore we will only show the computations for two tensor fields
A, B that only depend on the zeroth jets, but they extend to the general case in a
straightforward way.
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(1) Let gh(A) = a. We compute

γG R(AB) = (Lξ∂t A)B + (−1)a A(Lξ∂t B)

= (ξ Ȧ + t(A)ξ̇ A)B + (−1)a A(ξ Ḃ + t(B)ξ̇ B)

= ξ∂t (AB)+ [t(A)+ t(B)]ξ̇ (AB).

(2) Using that γG R is a derivative we see that

γG R An = n An−1γG R A = n An−1[ξ Ȧ + t(A)ξ̇ A] = ξ∂t An + nt(A)ξ̇ An .

(3) This equality follows directly from Eq. (28). ��
We finish this section by presenting the action of γG R tensor numbers for some

relevant quantities

t(q̇) = 1+ t(q) = 1,

t(T ) = t(‖q̇‖2) = 2t(q̇) = 2,

t(u) = t

(
q̇

‖q‖
)
= t(q̇)− t(‖q̇‖) = 0,

t(ELg) = t

(
E

2
√

g
− T

2g3/2

)
= t

(
1√
g

)
= −1

2
t(g) = −1.

(30)

We exemplify this method of calculating γG R(A) with the computation of A = T =
m
2 ‖q̇‖2. Recall that γG Rq = ξ q̇ and as such γG Rq̇ = ξ q̈+ ξ̇ q̇ . γG RT could potentially
have terms proportional to ξ̈ since it depends on the derivative q̇ , but as there are no
such terms in γG Rq̇ there will not be any in γG RT . As such we have

γG RT = ξ Ṫ + t(T )ξ̇T = ξ Ṫ + 2ξ̇T .

B.2 Lemmata used in Theorem 3.5.6

In this subsection we explicitly present the lemmata used in Theorem 3.5.6 and the
detailed calculations.

Lemma B.2.1 Let φ : F lax
J → F lax

G R be defined through

φ∗q = q̃, φ∗ξ = ξ̃ , φ∗g = T

E
,

φ∗q+ = q̃+, φ∗ξ+ = ξ̃+, φ∗g+ = 0.

Its pullback map φ∗ is a chain map w.r.t. (LQi − d) and maps the lax BV–BFV data
of the first-order theory as

φ∗θ•G R = θ•J , φ∗L•G R = L•J .
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Proof The proof for the chain map condition φ∗ ◦ QG R = Q J ◦ φ∗ is a matter of
straightforward computations

φ∗QG Rq = φ∗(ξ q̇) = ξ̃ ˙̃q = Q J q̃ = Q Jφ
∗q,

φ∗QG Rξ = φ∗(ξ ξ̇ ) = ξ̃
˙̃
ξ = Q J ξ̃ = Q Jφ

∗ξ,

φ∗QG R g = φ∗(ξ̃ ġ + 2 ˙̃ξg) = ξ̃
Ṫ

E
+ 2 ˙̃ξ T

E
= Q J

T

E
= Q Jφ

∗g,

φ∗QG Rq+ = φ∗
(
−∂t

(
mq̇√

g

)
+ ξ q̇+ + ξ̇q+

)
= −∂t

(√
E

T
m ˙̃q

)

+ ξ̃ ˙̃q+ + ˙̃ξ q̃+

= Q J q̃+ = Q Jφ
∗q+,

φ∗QG Rξ
+ = φ∗(−q+ · q̇ + g+ ġ + 2ġ+g + ξ ξ̇+ + 2ξ̇ ξ+) = −q̃+ · ˙̃q + ξ̃

˙̃
ξ+ + 2 ˙̃ξ ξ̃+

= Q J ξ̃
+ = Q Jφ

∗ξ+,

φ∗QG R g+ = φ∗
(

1

2
√

g

(
E − T

g

)
+ ξ ġ+ − ξ̇g+

)
= 0 = Q J 0 = Q Jφ

∗g+.

φ∗ is then a chain map w.r.t.LQi −d due to Lemma 3.1.1. Applying φ∗ to (θ•G R, L•G R)

gives

φ∗θ0G R = φ∗
(
q+ · δq + ξ+δξ + g+δg

) = q̃+ · δq̃ + ξ̃+δξ̃ = θ0J ,

φ∗θ1G R = φ∗
(

mq̇√
g
· δq + q+ξδq + g+ξδg − (2g+g + ξ+ξ)δξ

)

=
√

E

T
m ˙̃q · δq̃ + q̃+ξ̃ δq̃ +−ξ̃+ξ̃ δξ̃ = θ1J ,

φ∗L0
G R = φ∗

(
T√

g
+√gE + q+ · ξ q̇ + g+(ξ ġ + 2gξ̇ )+ ξ+ξ ξ̇

)

= 2
√

ET + q̃+ · ξ̃ ˙̃q + ξ̃+ξ̃ ˙̃ξ = L0
J ,

φ∗L1
G R = φ∗

((
T

g
− E

)√
gξ

)
= 0 = L1

J .

��
Lemma B.2.2 Let ψ : F lax

G R → F lax
J be the map defined through

ψ∗q̃ = q,

ψ∗ξ̃ = ξ,

ψ∗q̃+‖ = η3/2
(

q+‖ −
[
g+ġ + 2ġ+g

] mq̇

2T
− g3/2

E

[ ˙ELgg+ − ELgġ+
] mq̇

2T

)
,

ψ∗q̃+⊥ = η3/2
(

q+⊥ +
2m

E
g+q̈⊥

)
,

ψ∗ξ̃+ = η3/2
(
ξ+ + g3/2

E
ġ+g+

)
,
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where η := gE/T and the q̃+‖ , q̃+⊥ notation works as in Eq.23. Its pullback map ψ∗ is
a chain map w.r.t. (LQi − d) and maps the lax BV–BFV data of the first-order theory
as

ψ∗θ•J = θ•G R + (LQG R − d)β•G R + δ f •G R,

ψ∗L•J = L•G R + (LQG R − d)ιQG Rβ
•
G R + d f •G R,

where

β0
G R =−

4g7/2

�2 T g+δg+ +
(
2g2

�
+ η3/2

2
√

g

E

)
g+q+⊥ · δq

+
(
4g7/2

�2 T − η3/2
g3/2

E

)
ġ+g+mq̇

2T
· δq − (η3/2 − 1)ξ+mq̇

2T
· δq,

β1
G R = ξβ0

G R +
2g3/2

�
g+mq̇ · δq,

f 0G R = 2g+
(

g − 2g3/2

�
T

)
,

f 1G R = ξ f 0G R,

with � = √gT + g
√

T E.

Proof We start with the chain map condition ψ∗ ◦ Q J = QG R ◦ ψ∗. In the case of
the fields {q̃, ξ̃ } we simply compute

ψ∗Q J q̃ = ψ∗(ξ̃ ˙̃q) = ξ q̇ = QG Rq = QG Rψ
∗q̃,

ψ∗Q J ξ̃ = ψ∗(ξ̃ ˙̃ξ) = ξ ξ̇ = QG Rξ = QG Rψ
∗ξ̃ .

When dealing with the antifields {q̃+, ξ̃+} it is useful to first show thatψ∗ is a chain
map w.r.t. to the Chevalley–Eilenberg differentials and then proceed to show that is
also fulfils this condition w.r.t. the Koszul–Tate differentials.

In the case of the Chevalley–Eilenberg differentials γJ , γG R it is sufficient to inves-
tigate how ψ∗ changes the tensorial properties of the fields, i.e. to analyse the tensor
number introduced “Section B.1.” Indeed using ψ∗ξ̃ = ξ we can compute

ψ∗γJ �̃
+ = ψ∗(ξ̃ ˙̃�+ + t(�̃+) ˙̃ξ�̃+) = ξ∂t (ψ

∗�̃+)+ t(�̃+)ξ̇ψ∗�̃+. (31)

Themost general form of the other side of the chain map condition γG Rψ
∗�̃+ is given

by

γG R(ψ
∗�̃+) = ξ∂t (ψ

∗�̃+)+ t(ψ∗�̃+)ξ̇ψ∗�̃+ +
∑

n≥2
∂n

t ξan, (32)

where the field dependent coefficients an do not vanish trivially since the expressions
for ψ∗�̃+ depend on derivative terms such as ġ, ġ+, and ˙ELg . In order to show that
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the two sides of the chain map condition given in Eqs. (31) and (32) are equal, we
need prove thatψ∗ preserves the tensor number t(·) and that the coefficients an vanish

t(�̃+) = t(ψ∗�̃+), an = 0.

Recalling that t(g) = t(T ) = 2, we see that the rescaling factor η3/2 has vanishing
tensor number

t(η) = t
( g

T

)
= t(g)− t(T ) = 0.

Furthermore, since tn≥2(g) = tn≥2(T ) = 0, we have γG Rη = ξ η̇ and thus it can be
ignored, since it neither changes t(·) nor tn≥2(·).

We start by showingψ∗ ◦γJ = γG R ◦ψ∗ on the antifield q̃+. Using Eqs. (27), (28)
and (30), it then follows that all the terms in ψ∗q̃+‖ have tensor number 1

t(q+‖ ) = t(u(u · q+)) = t(q+)+ 2t(u) = 1,

t

(
g+ġ

mq̇

2T

)
= −1+ (2+ 1)+ (0+ 1− 2) = 1,

t

(
g+ g3/2

E
˙ELg

mq̇

2T

)
= −1+ 3

2
· 2+ (−1+ 1)+ (0+ 1− 2) = 1,

t

(
ġ+g

mq̇

2T

)
= (−1+ 1)+ 2+ (0+ 1− 2) = 1,

t

(
ġ+ g3/2

E
ELg

mq̇

2T

)
= (−1+ 1)+ 3

2
· 2− 1+ (0+ 1− 2) = 1,

showing that t(ψ∗q̃+‖ ) = 1 = t(q̃+‖ ). We still need to check what happens with the

terms in γG Rψ
∗q̃+‖ that are proportional to ξ̈ . Using Eq. (28), we can see that they

take the form

ξ̈

(
− [

g+(2g)− 2g+g
] mq̇

2T
− g3/2

E

[−ELgg+ + ELgg+
]) = 0,

and thus ψ∗γJ q̃+‖ = γG Rψ
∗q̃+‖ .

In the case of q̃+⊥ wehave t(q+⊥ ) = t(q+)+2t(u) = t(q+) since t(u) = 0. The same
reasoning applies to q̈⊥, but here we need to consider terms which are proportional to
higher derivatives of the ghost since

γG Rq̈ = ∂2t (γG Rq) = ∂2t (ξ q̇) = ξ
...
q + 2ξ̇ q̈ + ξ̈ q̇.

The terms proportional to ξ̈ in γG Rψ
∗q̃⊥ come from γG Rq̈ and u(u · γG Rq̈). As such

they take the form

ξ̈ (q̇ − u(q̇ · u)) = ξ̈ (q̇ − q̇) = 0,
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hence showing that there are no terms proportional to ξ̈ in γG Rψ
∗q̃+⊥ . Furthermore,

t(g+q̈⊥) = −1 + 2 = 1 and as such ψ∗γJ q̃+⊥ = γG Rψ
∗q̃+⊥ . In order to check the

chain map condition for ξ̃+ first note that

γG Rġ+ = ∂t (ξ ġ+ − ξ̇g+) = ξ g̈+ − ξ̈g+,

since γG Rg+ = ξ ġ+ − ξ̇g+. This in turn implies that

γG R(ġ
+g+) = γG Rġ+g+ − ġ+γG Rg+ = ξ g̈+g+ − ξ̇ ġ+g+

= ξ∂t (ġ
+g+)− ξ̇ ġ+g+.

As such t(ġ+g+) = −1 and t(g3/2ġ+g+) = 3
2 · 2− 1 = 2. Furthermore, t(ξ+) = 2

then means that t(ψ∗ξ̃+) = t(ξ̃+) = 2 and since there are no other derivative terms
in ψ∗ξ̃+, we have an = 0, which completes the proof for

ψ∗ ◦ γJ = γG R ◦ ψ∗.

We now move to the Koszul–Tate differentials. In the case of q̃+‖ we first note that

ψ∗δJ q̃+‖ = ψ∗
(

δJ (q̃
+ · ˙̃q)m ˙̃q

2T

)

= −ψ∗
(

δ2J ξ̃
+m ˙̃q
2T

)

= ψ∗(0) = 0,

since δJ ξ̃
+ = −q̃+ · ˙̃q and δ2J = 0. The term δG Rψ

∗q̃+‖ vanishes for a similar reason

δG Rψ
∗(q̃+‖ ) = δG R

{

η3/2

(

q+‖ −
[
g+ ġ + 2ġ+g

] mq̇

2T
− g3/2

E

[ ˙ELgg+ − ELg ġ+
] mq̇

2T

)}

= −η3/2δ2G R

{

ξ+ + g3/2

E
ġ+g+

}
mq̇

2T
= 0,

where we used that δG Rξ
+ = −q+ · q̇ + g+ġ + 2ġ+g and δG R(ġ+g+) = ˙ELgg+ −

ġ+ELg .
The computations for the perpendicular part of q̃+ go as follows

ψ∗δJ q̃+⊥ = ψ∗
(

−∂t

(√
E

T
m ˙̃q

)

+ ũ∂t

(√
E

T
m ˙̃q

)

· ũ
)

= ψ∗
⎛

⎝1

2

(
E

T

)3/2 Ṫ

E
m ˙̃q −

√
E

T
m ¨̃q + ũ

√
2m E ˙̃u · ũ︸︷︷︸

=0

⎞

⎠

=
(

E

T

)3/2 ( Ṫ

2E
mq̇ − T

E
mq̈

)
,

123



25 Page 66 of 91 F. M. C. Simão et al.

the other side of the equation reads

δG Rψ
∗q̃+⊥ = η3/2δG R

(
q+⊥ +

2m

E
q̈⊥g+

)

= η3/2
(
−∂t

(
mq̇√

g

)
+ u∂t

(
mq̇√

g

)
· u + 2m

E
q̈⊥ELg

)

= η3/2

(

−mq̈√
g
−

������
∂t

(
1√
g

)
mq̇ + u

mq̈ · u√
g
+

������
∂t

(
1√
g

)
mq̇ + 2m

E
q̈⊥ELg

)

= η3/2
(
−mq̈√

g
+ mq̇

2T

mq̈ · q̇√
g
+ 2m

E
q̈⊥ELg

)

= η3/2
(
−mq̈√

g
+ Ṫ

2T
√

g
mq̇ + 2m

E
q̈⊥ELg

)
,

where we have used that T = m‖q̇‖/2 and Ṫ = mq̈ · q̇. The last term can be expanded
to give

2m

E
q̈⊥ELg = 2m

E
q̈

(
E

2
√

g
− T

2g3/2

)
− 2m

E
q̇

q̈ · q̇
‖q̇‖2

(
E

2
√

g
− T

2g3/2

)

= mq̈√
g
− mT

Eg3/2 q̈ − Ṫ

2T
√

g
mq̇ + Ṫ

2Eg3/2 mq̇.

Putting everything together results in

δG Rψ
∗q̃+⊥ = η3/2

(
Ṫ

2Eg3/2 mq̇ − T

Eg3/2 mq̈

)
=

(
E

T

)3/2 ( Ṫ

2E
mq̇ − T

E
mq̈

)
,

which shows that ψ∗δJ q̃+⊥ = δG Rψ
∗q̃+⊥ . Finally we show that ψ∗ acts as a chain map

w.r.t. δK T on ξ+. We have

ψ∗δJ ξ̃
+ = ψ∗(−q̃+ · ˙̃q) = ψ∗(−q̃+) · q̇

= η3/2
(
−q+ · q̇ + [

g+ġ + 2ġ+g
]+ g3/2

E

[ ˙ELgg+ − ELg ġ+
])

,

δG Rψ
∗ξ̃+ = η3/2δG R

(
ξ+ + g3/2

E
ġ+g+

)

= η3/2
(
−q+ · q̇ + g+ġ + 2ġ+g + g3/2

E
˙ELgg+ − g3/2

E
ġ+ELg

)

= η3/2
(
−q+ · q̇ + [

g+ġ + 2ġ+g
]+ g3/2

E

[ ˙ELgg+ − ELg ġ+
])

,

finally showing that

ψ∗ ◦ δJ = δG R ◦ ψ∗,
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which show that ψ∗ is indeed a chain map.
We now present the calculations for (ψ∗θ•J , ψ∗L•J ). Recall that θ•J = θ0J dt + θ1J ,

L•J = L0
J dt + L1

J with

θ0J = q̃+ · δq̃ + ξ̃+δξ̃ , θ1J =
√

E

T
m ˙̃q · δq̃ + q̃+ξ̃ δq̃ − ξ̃+ξ̃ δξ̃ ,

L0
J = 2

√
ET + q̃+ · ξ̃ ˙̃q + ξ̃+ξ̃ ˙̃ξ, L1

J = 0.

as in Proposition/Definition 3.5.2. Specifically we want compute

�θ0dt = LQG Rβ
0dt − dβ1 + δ f 0dt,

�θ1 = LQG Rβ
1 + δ f 1dt,

�L0dt = LQG R ιQG Rβ
0dt − dιQG Rβ

1 + d f 1,

where we skip �L1 as it is determined by �θ•. We will from now on drop the label
G R in order to keep the calculations cleaner, we will denote the Koszul–Tate operator
by δK T to avoid confusion with the de Rham differential δ. The terms on the left hand
sides can be computed explicitly by using the form of ψ∗. We get:

�θ0 = (η3/2 − 1)q+ · δq + (η3/2 − 1)ξ+δξ − g+δg

− η3/2
[
g+ġ + 2ġ+g

] mq̇

2T
· δq − η3/2

g3/2

E

[ ˙ELgg+ − ELg ġ+
] mq̇

2T
· δq

+ η3/2
2m

E
g+q̈⊥ · δq + η3/2

g3/2

E
ġ+g+δξ,

�θ1 =
[√

E

T
mq̇ − mq̇√

g

]

· δq

+ (η3/2 − 1)q+ξδq − (η3/2 − 1)ξ+ξδξ − g+ξδg + 2g+gδξ

− η3/2
[
g+ġ + 2ġ+g

] mq̇

2T
· ξδq − η3/2

g3/2

E

[ ˙ELgg+ − ELg ġ+
] mq̇

2T
· ξδq

+ η3/2
2m

E
g+ξ q̈⊥ · δq + η3/2

g3/2

E
ġ+g+ξδξ

=
[√

E

T
mq̇ − mq̇√

g

]

· δq + 2g+gδξ − ξ�θ1,

�L0 = 2
√

ET − T√
g
−√gE

+ (η3/2 − 1)q+ · ξ q̇ + (η3/2 − 1)ξ+ξ ξ̇ − g+(ξ ġ + 2ξ̇g)

− η3/2
[
g+ġ + 2ġ+g

]
ξ − η3/2

g3/2

E

[ ˙ELgg+ − ELg ġ+
]
ξ

+ η3/2
g3/2

E
ġ+g+ξ ξ̇ .
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The following identities are going to be used throughout the calculations:

√
E

T
− 1√

g
= 2g3/2

�
ELg, (33)

2
√

ET − T√
g
−√gE = −4g7/2

�2 TEL2
g, (34)

where � = √gT + g
√

T E with t(�) = 3. To see that the first Eq. (33) holds we
compute

√
E

T
− 1√

g
= 1√

gT

(√
gE −√T

)
= gE − T
√

gT
[√

T +√gE
]

= 2g3/2

�

(
E

2
√

g
− T

2g3/2

)
= 2g3/2

�
ELg.

For the second one (34) we have

2
√

ET − T√
g
−√gE = −

(

g1/4
√

E −
√

T

g1/4

)2

.

The term in the brackets can be changed to

g1/4
√

E −
√

T

g1/4 = g1/4

(√
E −

√
T

g

)

= g1/4

√
E +

√
T
g

(
E − T

g

)

= g5/4
√

T√
gT + g

√
T E

(2
√

gELg) = 2g7/4
√

T

�
ELg,

and as such

2
√

ET − T√
g
−√gE = −4g7/2

�2 T EL2
g.

Computation of �θ0: We want to show

�θ0dt = LQβ0dt − dβ1 + δ f 0dt .
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In order to compute LQβ0 we decompose the cohomological vector field as Q =
γ + δK T . Starting with Lγ , we write β0 = A1δg+ + A⊥ · δq + A2 · δq where

A1 = −4g7/2

�2 T g+,

A⊥ =
(
2g2

�
+ η3/2

2
√

g

E

)
g+q+⊥ ,

A2 =
(
4g7/2

�2 T − η3/2
g3/2

E

)
ġ+g+mq̇

2T
− (η3/2 − 1)ξ+mq̇

2T
,

(35)

with the following tensor and ghost numbers:

t(A1) = 7

2
· 2− 2 · 3+ 2− 1 = 2, |A1| = −1,

t(A⊥) = 2 · 2− 3− 1+ 1 = 1, |A⊥| = 1,

t(A2) = 7

2
· 2− 2 · 3+ 2− 1+ 1− 2 = 1, |A2| = −2.

We then have

Lγ (A1δg+) = γ A1δg+ + A1δγ g+ = ξ Ȧ1δg+ + 2ξ̇ A1δg+ + A1δ(ξ ġ+ − ξ̇g+)
= ξ Ȧ1δg+ + �2ξ̇ A1δg+ + A1δξ ġ+ − A1ξδġ+ +����A1ξ̇ δg+

= ∂t
(
ξ A1δg+

)+ A1ġ+δξ,
Lγ (A⊥δq) = γ A⊥ · δq − A⊥ · δγ q = ∂t (ξ A⊥) · δq − A⊥ · δ(ξ q̇)

= ∂t (ξ A⊥) · δq −���A⊥ · q̇δξ + A⊥ξδq̇

= ∂t (ξ A⊥ · δq)

Lγ (A2 · δq) = γ A2 · δq − A2 · δγ q = ∂t (ξ A2) · δq − A2 · δ(ξ q̇)

= ∂t (ξ A2) · δq − A2 · q̇δξ + A2ξδq̇

= ∂t (ξ A2 · δq)− A2 · q̇δξ,

which shows

Lγ β
0 = ∂t (ξβ

0)− 4g7/2

�2 T g+ ġ+ −
(
4g7/2

�2 T − η3/2
g3/2

E

)

ġ+g+δξ + (η3/2 − 1)ξ+δξ

= ∂t (ξβ
0)+ η3/2

g3/2

E
ġ+g+δξ + (η3/2 − 1)ξ+δξ.

Before addressing the computation of LδK T β
0 we note that

δELg =
(
− E

4g3/2 +
3T

4g5/2

)
δg − δT

2g3/2 ,
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δ� = δ
(√

gT + g
√

ET
)
=

(
T

2
√

g
+√ET

)
δg +

(
√

g + g
√

E

2
√

T

)

δT

=
(
�−

√
gT

2

)
δg

g
+

(

�− g
√

ET

2

)
δT

T
,

�2 = gT 2 + 2g3/2T 3/2
√

E + g2ET ,

4g7/2

�2 TELg = 2g2

�
T

(√
E

T
− 1√

g

)

= 2

�

(
g2
√

ET − g3/2T
)

= 2

�

(
g�− 2g3/2T

)
= 2g − 4g3/2

�
T ,

δ

(
g3/2

�

)
= 3
√

g

2�
δg − g3/2

�2

(
�−

√
gT

2

)
δg

g
− g3/2

�2

(

�− g
√

ET

2

)
δT

T

= 1

2

(√
g

�
+ gT

�2

)
δg −

(
g3/2

T�
− g5/2

√
E

2
√

T�2

)

δT .

The calculation for the first term in LδK T β
0 goes as follows

LδK T

(
−4g7/2

�2 T g+δg+
)
= −4g7/2

�2 TELgδg+ − 4g7/2

�2 T g+δELg

= −δ

(
4g7/2

�2 TELgg+
)
+ δ

(
4g7/2

�2 TELg

)
g+ − 4g7/2

�2 T g+δELg

= δ

(
4g3/2

�
T g+ − 2gg+

)
+ 2δgg+ − δ

(
4g3/2

�

)
T g+ − 4g3/2

�
δT g+

− 4g7/2

�2 T g+
(
− E

4g3/2 +
3T

4g5/2

)
δg + 4g7/2

�2 T g+ δT

2g3/2 .

Gathering everything in front of δg we have

g+
[
−2+

(
2
√

g

�
+ 2gT

�2

)
T + g2ET − 3gT 2

�2

]
δg

= g+
[
−2+ 2

√
gT

�
+ g2ET − gT 2

�2

]
δg

= g+
[

−2+ 2�− 2g
√

ET

�
+ �2 − 2g3/2T 3/2

√
E − 2gT 2

�2

]

δg

= g+
[

1− 2g
√

ET�+ 2g3/2T 3/2
√

E + 2gT 2

�2

]

δg

= g+
[

1− 2g2ET + 4g3/2T 3/2
√

E + 2gT 2

�2

]

δg
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= g+
[
1− 2�2

�2

]
δg = −g+δg.

The terms in front of δT simplify to

g+
[

−
(

�
�

�4g3/2

�
− 2g5/2

√
ET

�2

)

+
�

�
�4g3/2

�
+ 2g2T

�2

]

δT

= g+ 2g3/2

�

[
g
√

ET +√gT

�

]

δT = g+ 2g3/2

�
δT ,

and as such:

LδK T

(
−4g7/2

�2 T g+δg+
)
= δ

(
4g3/2

�
T g+ − 2gg+

)
+ g+

(
2g3/2

�
δT − δg

)
.

The rest of LδK T β
0 yields

LδK T

(
2g2

�
g+q+⊥ · δq,

)

= 2g2

�

(
ELgq+⊥ + g+mq̈⊥√

g

)
· δq

= √g

(√
E

T
− 1√

g

)

q+⊥ · δq + g+ 2g3/2

�
mq̈⊥ · δq

= (η1/2 − 1)q+⊥ · δq + g+ 2g3/2

�
mq̈⊥ · δq,

LδK T

(
η3/2

2
√

g

E
g+q+⊥ · δq

)
= η3/2

2
√

g

E

[(
E

2
√

g
− T

2g3/2

)
q+⊥ + g+mq̈⊥√

g

]
· δq

= (η3/2 − η1/2)q+⊥ · δq + η3/2
2

E
g+mq̈⊥ · δq,

LδK T

(
4g7/2

�2 T ġ+g+mq̇

2T
· δq

)

= 4g7/2

�2 T
[ ˙ELgg+ − ġ+ELg

] mq̇

2T
· δq,

LδK T

(

−η3/2
g3/2

E
ġ+g+mq̇

2T
· δq

)

= −η3/2
g3/2

E

[ ˙ELgg+ − ġ+ELg
] mq̇

2T
· δq,

LδK T

(
−(η3/2 − 1)ξ+mq̇

2T
· δq

)
= (η3/2 − 1)

[
q+ · q̇ − g+ ġ − 2ġ+g

] mq̇

2T
· δq

= (η3/2 − 1)q+‖ · δq − (η3/2 − 1)
[
g+ ġ + 2ġ+g

] mq̇

2T
· δq.

Gathering everything gives

LQβ0 = ∂t (ξβ
0)+ η3/2

g3/2

E
ġ+g+δξ + (η3/2 − 1)ξ+δξ

+ δ

(
4g3/2

�
T g+ − 2gg+

)
+ g+

(
2g3/2

�
δT − δg

)
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+ (η1/2 − 1)q+⊥ · δq + g+ 2g3/2

�
mq̈⊥ · δq

+ (η3/2 − η1/2)q+⊥ · δq + η3/2
2

E
g+mq̈⊥ · δq

+
(
4g7/2

�2 T − η3/2
g3/2

E

) [ ˙ELgg+ − ġ+ELg
] mq̇

2T
· δq

+ (η3/2 − 1)q+‖ · δq − (η3/2 − 1)
[
g+ġ + 2ġ+g

] mq̇

2T
· δq

= �θ0 + ∂t (ξβ
0)− δ f 0 + 2g3/2

�
g+δT + g+ 2g3/2

�
mq̈⊥ · δq

+ 4g7/2

�2 T
[ ˙ELgg+ − ġ+ELg

] mq̇

2T
· δq + [

g+ġ + 2ġ+g
] mq̇

2T
· δq,

which in turn implies

�θ0 = LQβ0 − ∂t

(
ξβ0 + 2g3/2

�
g+mq̇ · δq

)
+ δ f 0 + ∂t

(
2g3/2

�
g+mq̇ · δq

)

− 2g3/2

�
g+δT − g+ 2g3/2

�
mq̈⊥ · δq

− 4g7/2

�2 T
[ ˙ELgg+ − ġ+ELg

] mq̇

2T
· δq − [

g+ġ + 2ġ+g
] mq̇

2T
· δq

= LQβ0 − ∂tβ
1 + δ f 0

+ g+
[
∂t

(
2g3/2

�

)
mq̇ · δq + 2g3/2

�
mq̈ · δq + 2g3/2

�
mq̇ · δq̇ − 2g3/2

�
δT

− 2g3/2

�
mq̈⊥ · δq − 4g7/2

�2 T ˙ELg
mq̇

2T
· δq − ġ

mq̇

2T
· δq

]

+ ġ+
[(

4g3/2

�
T − 2g

)
+ 4g7/2

�2 TELg

]
mq̇

2T
· δq. (36)

The last term vanishes due to Eq. (34). In order to show that the term proportional to
g+ vanishes as well we note:

δT = mq̇ · δq̇,

q̈⊥ = q̈ − q̇
q̇ · q̈
‖q̇‖2 = q̈ − q̇

Ṫ

2T
,

˙ELg =
(
− E

4g3/2 +
3T

4g5/2

)
ġ − Ṫ

2g3/2 ,

∂t

(
2g3/2

�

)
=

(√
g

�
+ gT

�2

)
ġ −

(
2g3/2

T�
− g5/2

√
E√

T�2

)

Ṫ .
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Then

g+
[

∂t

(
2g3/2

�

)
mq̇ · δq + 2g3/2

�
mq̈ · δq +

������
2g3/2

�
mq̇ · δq̇ −

�
�

�
�2g3/2

�
δT

− 2g3/2

�
mq̈⊥ · δq − 4g7/2

�2 T ˙ELg
mq̇

2T
· δq − ġ

mq̇

2T
· δq

]

= g+
[(√

g

�
+ gT

�2

)
ġmq̇ −

(
2g3/2

T�
− g5/2

√
E√

T�2

)

Ṫ mq̇

+
������
2g3/2

�
mq̈ · δq − 2g3/2

�

(

��mq̈ − mq̇
Ṫ

2T

)

− 4g7/2

�2 T

((
− E

4g3/2 +
3T

4g5/2

)
ġ − Ṫ

2g3/2

)
mq̇

2T
− ġ

mq̇

2T

]
· δq

= g+ ġ

�2

[
2
√

gT�+ 2gT 2 + g2T E − 3gT 2 −�2
] mq̇

2T
· δq

+ g+ Ṫ

�2

[
−4g3/2�+ 2g5/2

√
ET + 2g3/2�+ 2g2T

] mq̇

2T
· δq

= g+ ġ

�2

[
�2gT 2 + 2g3/2T 3/2

√
E + g2T E −�

�gT 2 −�2
] mq̇

2T
· δq

+ g+ Ṫ

�2

[
−2g3/2�+ 2g3/2(

√
gT + g

√
ET )

] mq̇

2T
· δq

= 0.

Taking this into account and introducing dt in v (36) yields

�θ0dt = LQβ0dt − ∂tβ
1dt + δ f 0dt = LQβ0dt − dβ1 + δ f 0dt, (37)

since |β1| = 0.
Computation of �θ1: We want to compute

�θ1 = LQβ1 + δ f 1.

First note that Eq. (37) implies LQβ0 = �θ0+∂tβ
1− δ f 0, which we use to compute

LQβ1. Since

β1 = ξβ0 + 2g3/2

�
g+mq̇ · δq,

we have

LQβ1 = ξ ξ̇β0 − ξ
(
�θ0 + ∂tβ

1 − δ f 0
)
+ LQ

(
2g3/2

�
g+mq̇ · δq

)
.
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Keeping in mind that

t

(
2g3/2

�
g+mq̇

)
= 3

2
· 2− 3− 1+ 1 = 0,

the last term reads

Lγ

(
2g3/2

�
g+mq̇ · δq

)
= ξ∂t

(
2g3/2

�
g+mq̇

)
· δq + 2g3/2

�
g+mq̇ · δ(ξ q̇)

= ξ∂t

(
2g3/2

�
g+mq̇

)
· δq + 4g3/2

�
g+T δξ

+ ξ
2g3/2

�
g+mq̇ · δq̇,

LδK T

(
2g3/2

�
g+mq̇ · δq

)
= 2g3/2

�
ELgmq̇ · δq =

[√
E

T
− 1√

g

]

mq̇ · δq,

which results in

LQβ1 = ξ ξ̇β0 − ξ�θ0 − ξ∂t

(
ξβ0 +�������2g3/2

�
g+mq̇ · δq

)
+ ξδ f 0

+
����������
ξ∂t

(
2g3/2

�
g+mq̇

)
· δq + 4g3/2

�
g+T δξ

+��������
ξ
2g3/2

�
g+mq̇ · δq̇ +

[√
E

T
− 1√

g

]

mq̇ · δq

=
[√

E

T
− 1√

g

]

mq̇ · δq − ξ�θ0 +���ξ ξ̇β0 −���ξ ξ̇β0

− δ(ξ f 0)+ δξ2g+
(

g −
�

�
��2g3/2

�
T

)

+
������
4g3/2

�
g+T δξ

= �θ1 − δ f 1.

Showing �θ1 = LQβ1 + δ f 1 as desired.
Computation of �L0: We want to show

�L0 = LQ ιQβ0 − dιQβ1 + d f 1.

Note that β0 is of the form β0 = aiδbi , where we sum over i . We have

LQ ιQ(aiδbi ) = LQ(ai Qbi ) = Qai Qbi

= γ aiγ bi + δK T aiγ bi + γ aiδK T bi + δK T aiδK T bi .
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Starting with the term A1δg+ (see Eq. (35)) we have

γ

(

−4g7/2

�2 T g+
)

γ g+ =
[

ξ∂t

(

−4g7/2

�2 T g+
)

− 2ξ̇
4g7/2

�2 T g+
]

· [ξ ġ+ − ξ̇g+
]

= ξ
4g7/2

�2 T ġ+ξ̇g+ − 2ξ̇
4g7/2

�2 T g+ξ ġ+

= 4g7/2

�2 T ġ+g+ξ ξ̇ ,

δK T

(

−4g7/2

�2 T g+
)

γ g+ = −4g7/2

�2 TELg(ξ ġ+ − ξ̇g+),

γ

(

−4g7/2

�2 T g+
)

δK T g+ =
[

ξ∂t

(

−4g7/2

�2 T g+
)

− 2ξ̇
4g7/2

�2 T g+
]

ELg,

δK T

(

−4g7/2

�2 T g+
)

δK T g+ = −4g7/2

�2 T E L0
g = 2

√
ET − T√

g
−√g,

where we used Eq. (34). As such

LQ ιQ

(

−4g7/2

�2 T g+δg+
)

= 4g7/2

�2 T ġ+g+ξ ξ̇ − ∂t

(

ξ
4g7/2

�2 T g+
)

ELg − 4g7/2

�2 TELgξ ġ+ + 2
√

ET − T√
g
−√g

= 4g7/2

�2 T ġ+g+ξ ξ̇ − ∂t

(

ξ
4g7/2

�2 T g+ELg

)

+ ξ
4g7/2

�2 T g+ ˙ELg − 4g7/2

�2 TELgξ ġ+

+ 2
√

ET − T√
g
−√g.

For the term A⊥ · δq we have

LQ ιQ(A⊥δq) = Q A⊥Qq = γ A⊥ · ξ q̇ + δK T (A⊥) · ξ q̇

= ξ̇ A⊥ · ξ q̇ + δK T (A⊥ · ξ q̇) = 0.

For the computation w.r.t. the term

LQ ιQ

[(
4g7/2

�2 T − η3/2
g3/2

E

)
mq̇

2T
ġ+g+ · δq

]

first define

B:=
(
4g7/2

�2 T − η3/2
g3/2

E

)
mq̇

2T
,
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with t(B) = 7
2 · 2− 2 · 3+ 2+ 1− 2 = 2 and note

t(Bġ+g+) = 2+ 1+ t(g+)+ t(g+) = 1.

As such

LQ ιQ
[
Bġ+g+ · δq

] = Q
[
Bġ+g+

]
ξ q̇

= ∂t
[
ξ Bġ+g+

] · ξ q̇ + B
[ ˙ELgg+ − ELg ġ+

] · ξ q̇

= ξ̇ Bġ+g+ · ξ q̇ + B
[ ˙ELgg+ − ELg ġ+

] · ξ q̇

=
(
4g7/2

�2 T − η3/2
g3/2

E

)

ġ+g+ξ̇ ξ +
(
4g7/2

�2 T − η3/2
g3/2

E

)
[ ˙ELgg+ − ELg ġ+

]
ξ.

For the last term in β0

−(η3/2 − 1)ξ+mq̇

2T
· δq,

we have

LQ ιQ

[
−(η3/2 − 1)ξ+mq̇

2T
· δq

]
= −γ

[
(η3/2 − 1)ξ+mq̇

2T

]
· ξ q̇

− (η3/2 − 1)
[−q+ · q̇ + g+ġ + 2ġ+g

] mq̇

2T
· ξ q̇

= (η3/2 − 1)ξ+ξ ξ̇ − (η3/2 − 1)
[−q+ · q̇ + g+ġ + 2ġ+g

]
ξ.

All in all the expression for LQ ιQβ0 is

LQ ιQβ0 =�������4g7/2

�2 T ġ+g+ξ ξ̇ − ∂t

(
ξ
4g7/2

�2 T g+ELg

)
+�������

ξ
4g7/2

�2 T g+ ˙ELg

−�������4g7/2

�2 TELgξ ġ+ + 2
√

ET − T√
g
−√g

+
(

�
�

��4g7/2

�2 T − η3/2
g3/2

E

)

ġ+g+ξ̇ ξ +
(

�
�

��4g7/2

�2 T − η3/2
g3/2

E

)

˙ELgg+ξ

−
(

�
�

��4g7/2

�2 T − η3/2
g3/2

E

)

ELg ġ+ξ

+ (η3/2 − 1)ξ+ξ ξ̇ − (η3/2 − 1)
[−q+ · q̇ + g+ġ + 2ġ+g

]
ξ

= 2
√

ET − T√
g
−√gE

+ (η3/2 − 1)q+ · ξ q̇ + (η3/2 − 1)ξ+ξ ξ̇ − g+(ξ ġ + 2ξ̇g)

− η3/2
[
g+ġ + 2ġ+g

]
ξ − η3/2

g3/2

E

[ ˙ELgg+ − ELg ġ+
]
ξ
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− ∂t

(
ξ
4g7/2

�2 T g+ELg

)
+ ∂t

(
2g+gξ

)

= �L0 + ∂t

(
2g+gξ + 4g7/2

�2 TELgg+ξ
)
, (38)

where we used that

g+ġξ + 2ġ+gξ = g+ġξ + ∂t
(
2g+gξ

)− 2g+ġξ − 2g+ġξ

= ∂t
(
2g+gξ

)− 2g+ġξ − g+ġξ.

Recall that we are want to show �L0 dt = LQ ιQβ0 dt − dιQβ1 + d f 1. The last two
terms read

dιQβ1 − d f 1 = ∂t

[
ξ ιQβ0 + 2g3/2

�
g+mq̇ · ιQδq − 2ξg+

(
g − 2g3/2

�
T

)]
dt .

which can be simplified by noting that

ξ ιQβ0 =− ξ
4g7/2

�2 T g+Qg+ + ξ

(
2g2

�
+ η3/2

2
√

g

E

)
g+q+⊥ · Qq,

+ ξ

(
4g7/2

�2 T − η3/2
g3/2

E

)
ġ+g+mq̇

2T
· Qq − ξ(η3/2 − 1)ξ+mq̇

2T
· Qq

= 4g7/2

�2 TELgg+ξ, (39)

and

2g3/2

�
g+mq̇ · ιQδq = 4g3/2

�
T g+ξ. (40)

The resulting expression for dιQβ1 − d f 1 is then

dιQβ1 − d f 1 = ∂t

[
4g7/2

�2 TELgg+ξ + 4g3/2

�
T g+ξ − 2ξg+

(
g − 2g3/2

�
T

)]
dt

= ∂t

(
2g+gξ + 4g7/2

�2 TELgg+ξ
)
dt,

which is exactly the total derivative in Eq. (38). Hence

LQ ιQβ0dt = �L0dt + dιQβ1 − d f 1

⇒ �L0dt = LQ ιQβ0dt − dιQβ1 + d f 1.

finishing the proof. ��
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Lemma B.2.3 The composition map λ∗ is the identity

λ∗q̃ = q̃, λ∗ξ̃ = ξ̃ ,

λ∗q̃+ = q̃+, λ∗ξ̃+ = ξ̃+.

and as such the identity in cohomology.

Proof On the matter and ghost fields {q̃, ξ̃ } this is trivial, since at this level both ψ∗
and φ∗ simply interchange q̃ with q and ξ̃ with ξ

λ∗q̃ = (φ∗ ◦ ψ∗)q̃ = φ∗q = q̃,

λ∗ξ̃ = (φ∗ ◦ ψ∗)ξ̃ = φ∗ξ = ξ̃ .

In order to compute the action of λ∗ on the antifield and antighost, first recall that
φ∗g+ = 0 and note that φ∗g = T /E implies φ∗(η3/2) = (φ∗(g)E/T )3/2 = 1. We
then have

λ∗q̃+‖ = (φ∗ ◦ ψ∗)q̃+‖
= φ∗(η3/2)φ∗

(
q+‖ −

[
g+ġ + 2ġ+g

] mq̇

2T
− g3/2

E

[ ˙ELgg+ − ELg ġ+
] mq̇

2T

)

= φ∗q+‖ = q̃+‖ ,

λ∗q̃+⊥ = (φ∗ ◦ ψ∗)q̃+⊥ = φ∗(η3/2)φ∗
(

q+⊥ +
2m

E
g+q̈⊥

)
= φ∗q+⊥ = q̃+⊥ ,

λ∗ξ̃+ = (φ∗ ◦ ψ∗)ξ̃+ = φ∗(η3/2)φ∗
(
ξ+ + g3/2

E
ġ+g+

)
= φ∗ξ+ = ξ̃+,

thus showing λ = idJ . ��
We now prove that RG R commutes with the Chevalley–Eilenberg differential γG R

if RG Rξ = 0. Effectively, this means that we can ignore the Chevalley–Eilenberg part
of QG R in DG R = [QG R, RG R] and only have to regard the Koszul–Tate differential
when explicitly computing the action of DG R . Recall that the Chevalley–Eilenberg
differential acts as γG R = Lξ∂t on {q, g, q+, g+, ξ+} and as γG R = 1

2Lξ∂t on {ξ}.
Lemma B.2.4 Let RG R ∈ Xevo(FG R) be an evolutionary vector field on FG R with the
following properties

• RG R vanishes on X[1](I ),
• RG R preserves the tensor rank on I ,

and let γG R be the Chevalley–Eilenberg differential of the 1D GR theory. Then
[RG R, γG R] = 0.

Proof Recall that all the fields we are considering are components of tensor fields over
I . In particular, note that the property that RG R vanishes onX[1](I ) implies RG Rξ = 0,
since ξ∂t ∈ X[1](I ). As γG R ∼ Lξ∂t , it suffices to show that [RG R,Lξ∂t ] = 0 on
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functions, 1-forms and vector fields over I . We assume that all objects have an internal
grading throughout the proof in order to account for the ghost number.

Wewill first show [RG R, γG R] = 0 for functions and1-forms. SinceLξ∂t = [ιξ∂t , d]
on �•(I ) we have

[RG R,Lξ∂t ] = [RG R, [ιξ∂t , d]] = [d, [RG R, ιξ∂t ]] + [ιξ∂t , [d, RG R]]
= [d, [RG R, ιξ∂t ]],

where we used that RG R is evolutionary. As such it is sufficient to show that�•(I ) ⊂
ker[RG R, ιξ∂t ]. By definition all functions on I are in the kernel of ιξ∂t : C∞(I ) =
�0(I ) ⊂ ker ιξ∂t . Let f ∈ �0(I ). Since we assume that RG R preserves the tensor
rank we also have RG R f ∈ �0(I ), then

RG R ιξ∂t f = 0, ιξ∂t RG R f = 0,

and as such [RG R, ιξ∂t ] f = 0. Let now � = f dt ∈ �1(I ) be a 1-form. Taking into
account that |dt | = 1, we have

RG R ιξ∂t � = RG R ιξ∂t ( f dt) = RG R( f dt(ξ∂t )) = −RG R( f ξ) = −RG R f ξ,

ιξ∂t RG R� = ιξ∂t RG R( f dt) = ιξ∂t [RG R f dt]
= RG R f dt(ξ∂t ) = −RG R f ξ,

⇒ [RG R, ιξ∂t ]� = RG R ιξ∂t � − ιξ∂t RG R� = −RG R f ξ + RG R f ξ = 0,

thus showing that �0(I )×�1(I ) ⊂ ker[RG R, ιξ∂t ]. This implies

[d, [RG R, ιξ∂t ]] f = 0, [d, [RG R, ιξ∂t ]]� = d[RG R, ιξ∂t ]� = 0,

where we used f ∈ �0(I ) ⊂ ker[RG R, ιξ∂t ], d f ∈ �1(I ) ⊂ ker[RG R, ιξ∂t ] and
d� = 0, since �1(I ) = �top(I ).

Consider now a vector field X = f ∂t ∈ X(I ) of degree n. In this case we have:

RG RLξ∂t X = RG R[ξ∂t , f ∂t ] = RG R(ξ ḟ − (−1)n f ξ̇ )∂t

= −(ξ RG R ḟ + (−1)n RG R f ξ̇ )∂t ,

Lξ∂t RG R X = [ξ∂t , RG R f ∂t ] = (ξ RG R ḟ ∂t − (−1)n−1RG R f ξ̇ )∂t ,

⇒ [RG R,Lξ∂t ]X = RG RLξ∂t X + Lξ∂t RG R X = 0,

where we used ∂t (RG R f ) = RG R ḟ . Since [RG R,Lξ∂t ] = 0 on functions, 1-forms
and vector fields it holds for all tensors. As such we have [RG R, γG R] = 0 on FG R . ��

A direct implication of Lemma B.2.4 is that the vector field DG R reduces to

DG R = [QG R, RG R] = [δG R, RG R].
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Lemma B.2.5 The composition map χ∗ acts as

χ∗q = q,

χ∗ξ = ξ,

χ∗g = T

E
,

χ∗q+‖ = η3/2
(

q+‖ −
[
g+ġ + 2ġ+g

] mq̇

2T
− g3/2

E

[ ˙ELgg+ − ELgġ+
] mq̇

2T

)
,

χ∗q+⊥ = η3/2
(

q+⊥ +
2m

E
g+q̈⊥

)
,

χ∗ξ+ = η3/2
(
ξ+ + g3/2

E
ġ+g+

)
,

χ∗g+ = 0.

(41a)

and is homotopic to the identity.

Proof Recall that χ∗ = ψ∗ ◦ φ∗ and let ϕi ∈ {q, q+, ξ, ξ+}. In this case we have
φ∗ϕi = ϕ̃i and as such χ∗ϕi = ψ∗ϕ̃i , which reproduces the expressions above due to
the explicit form of ψ∗. For {g, g+} we compute

χ∗g = (ψ∗ ◦ φ∗)g = ψ∗
(

T

E

)
= T

E
,

χ∗g+ = (ψ∗ ◦ φ∗)g+ = ψ∗(0) = 0.

In order to show that χ∗ is homotopic to the identity we choose the vector field RG R

to act as

RG Rq = 0, RG Rξ = 0, RG Rg = −2g3/2

E
g+,

RG Rq+‖ = −
3
√

g

E
ELgξ

+mq̇

2T
, RG Rξ

+ = 0, RG Rg+ = 0,

RG Rq+⊥ =
3
√

g

E
g+q+⊥ , (42)

Since RG Rξ = 0 we can use Lemma B.2.4. We start with the computation for q and
ξ . Recalling that they are both in the kernel of δG R (cf. Remark 3.5.5) we have

DG Rq = (δG R RG R + RG RδG R)q = R(ξ q̇) = 0,

⇒ esLDG R q = q,

⇒ lim
s→∞ esLDG R q = q = χ∗q,

DG Rξ = (δG R RG R + RG RδG R)ξ = 0,

⇒ esLDG R ξ = ξ,
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⇒ lim
s→∞ esLDG R ξ = ξ = χ∗ξ.

Keeping in mind that δG Rg = 0 and

δG Rg+ = ELg = E

2
√

g
− T

2g3/2 ,

(cf. Remark 3.5.5), we compute DG Rg to be

DG Rg = (δG R RG R + RG RδG R) g = δG R

(−2g3/2

E
g+

)

= −2g3/2

E

(
E

2
√

g
− T

2g3/2

)
= −

(
g − T

E

)
. (43)

We can then show

Dk
G Rg = (−1)k

(
g − T

E

)
for k ≥ 1, (44)

using induction. As we have computed, this holds for k = 1. Assuming that Eq. (44)
holds for an arbitrary k, we then have the following for k + 1

DG R
k+1g = (−1)k

(
DG Rg − DG R

T

E

)
= (−1)k+1

(
g − T

E

)
,

where we used DG RT = mq̇ DG Rq̇ = mq̇∂t (DG Rq) = 0. This results in

esLDG R g = g +
∑

k≥1

sk

k! (−1)
k
(

g − T

E

)
= g + (e−s − 1)

(
g − T

E

)

⇒ lim
s→∞ esLDG R g = T

E
= χ∗g.

We now compute χ∗s ξ+ and its s →∞ limit, which follows the same strategy as
the analogous computations for g+ presented in the main proof. We start with DG Rξ

+

DG Rξ
+ = RG RδG Rξ

+ = RG R
(−q+ · q̇ + g+ġ + 2ġ+g

)

= −RG R(q
+ · q̇)− g+∂t

(−2g3/2

E
g+

)
− ġ+2 (−2)g

3/2

E
g+

= −RG R(q
+ · q̇)+ 2g3/2

E
g+ġ+ + 4g3/2

E
ġ+g+

= −RG R(q
+ · q̇)+ 2g3/2

E
ġ+g+,
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where we used that g+g+ = 0 in the second line and g+ġ+ = −ġ+g+ in the third.
With this in hand we can proceed with the calculation of DG R(g3/2ξ+)

DG R(g
3/2ξ+) = 3

2
√

gDG Rgξ+ + g3/2DG Rξ
+

= −3g2

E
ELgξ

+ − g3/2RG R(q
+ · q̇)+ 2g3

E
ġ+g+

= 2

E
∂t (g

3/2g+)g3/2g+.

It should now be clear why we chose the specific form for RG Rq+ · q̇: the first two
terms in the second line cancel and we are left with a term for which we know how to
compute Dk

G R . Using induction we can then prove

Dk
G R(g

3/2ξ+) = − (−2)k

E
∂t (g

3/2g+)g3/2g+ for k ≥ 1.

We have already shown that it holds for k = 1. Assuming that it is true for k, the
expression for k + 1 reads:

DG R
k+1(g3/2ξ+) = − (−2)k

E
∂t (DG R g3/2g+)g3/2g+ − (−2)k

E
∂t (g

3/2g+)DG R g3/2g+

= 2
(−2)k

E
∂t (g

3/2g+)g3/2g+ = − (−2)k+1
E

∂t (g
3/2g+)g3/2g+.

Since ∂t (g3/2g+)g3/2g+ = g3ġ+g+ due to g+g+ = 0, we then have

χ∗s (g3/2ξ+) = esLDG R (g3/2ξ+) =
∑

k≥0

sk

k! Dk
G R(g

3/2ξ+)

= g3/2ξ+ −
⎛

⎝
∑

k≥1

(−2s)k

k!

⎞

⎠ g3

E
ġ+g+ = g3/2ξ+ − (e−2s − 1)

g3

E
ġ+g+,

and

lim
s→∞χ∗s ξ+ =

(
E

T

)3/2

lim
s→∞χ∗s (g3/2ξ+)

=
(

E

T

)3/2

lim
s→∞

(
g3/2ξ+ − (e−2s − 1)

g3

E
ġ+g+

)

= η3/2
(
ξ+ + g3/2

E
ġ+g+

)
= χ∗ξ+.

The strategy in the case of q+ is the same as for g+ and ξ+. Due to

DG R

(
mq̇

2T

)
= 0,
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we have

DG R(g
3/2q+‖ ) = DG R

(
g3/2q+ · mq̇

2T

)
= DG R(g

3/2q+ · q̇)mq̇

2T
.

Wewill therefore omit the termmq̇/(2T ) from the computations in order to keep them
cleaner. We start by calculating

DG R(q
+ · q̇) = (δG R RG R + RG RδG R) q+ · q̇

= −δG R

(
3
√

g

E
ELgξ

+
)
− RG R

(
∂t

(
mq̇√

g

))
· q̇

= 3
√

g

E
ELg(q

+ · q̇ − g+ ġ − 2ġ+g)− ∂t

(
mq̇

2g3/2
2g3/2

E
g+

)

· q̇

= 3

2

(
1− T

Eg

)
q+ · q̇ − 3

√
g

E
ELg(g

+ ġ + 2ġ+g)− mq̈ · q
E

g+ − m‖q̇‖2
E

ġ+

= 3

2

(
1− T

Eg

)
q+ · q̇ − 3

√
g

E
ELg(g

+ ġ + 2ġ+g)− Ṫ

E
g+ − 2T

E
ġ+.

Let σ(ϕ) = ϕ∂t (g3/2g+) − ϕ̇g3/2g+. With the result for DG R(q+ · q̇) we compute
the following

DG R(g
3/2q+ · q) = 3

√
g

2
DG Rgq+ · q̇ + g3/2DG R(q

+ · q̇)

= 3
√

g

2

(
T

E
− g

)
q+ · q̇ + g3/2DG R(q

+ · q̇)

= −3g2

E
ELg(g

+ġ + 2ġ+g)− g3/2 Ṫ

E
g+ − g3/2 2T

E
ġ+

=
(√

g
3T

2E
− 3

2
g3/2

)
(g+ġ + 2ġ+g)− g3/2 Ṫ

E
g+ − g3/2 2T

E
ġ+

= T

E
∂t (g

3/2)g+ + 3T

E
g3/2ġ+ − 3

2
g3/2 ġg+ − 3gg3/2ġ+

− g3/2 Ṫ

E
g+ − g3/2 2T

E
ġ+

= T

E
∂t (g

3/2g+)− Ṫ

E
g3/2g+ − 3

[
g∂t (g

3/2g+)− ġ(g3/2g+)
]

= σ

(
T

E

)
− 3σ(g) = −2σ

(
T

E

)
− 3σ

(
g − T

E

)

= −2σ
(

T

E

)
− 2

3

E
σ(g3/2ELg).
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Reintroducing mq̇/(2T ) gives

DG R(g
3/2q+‖ ) = −2σ

(
T

E

)
mq̇

2T
− 2 · 3

E
σ(g3/2ELg)

mq̇

2T
. (45)

Using induction it is then possible to show that

Dk
G R(g

3/2q+‖ ) = (−1)k2σ

(
T

E

)
mq̇

2T
+ (−2)k 3

E
σ(g3/2ELg)

mq̇

2T
, (46)

for k ≥ 1. The case k = 1 is presented in Eq. (45). To see how the case k + 1 follows
from the case k, note that

DG Rσ

(
T

E

)
= DG R

(
T

E
∂t (g

3/2g+)− Ṫ

E
g3/2g+

)
= −σ

(
T

E

)
,

where we used DG R T = 0 and DG R(g3/2g+) = −g3/2g+. Before computing
DG Rσ(g3/2ELg) note that

g3/2ELg = E

2

(
g − T

E

)
= − E

2
DG Rg

⇒ DG R(g
3/2ELg) = − E

2
DG R

2g = E

2
DG Rg = −g3/2ELg.

The action of DG R on σ(g3/2ELg) is then

DG R(σ (g
3/2ELg)) = DG R

(
g3/2ELg∂t (g

3/2g+)− ∂t (g
3/2ELg)g

3/2g+
)

= −2
(

g3/2ELg∂t (g
3/2g+)− ∂t (g

3/2ELg)g
3/2g+

)
= −2σ(g3/2ELg),

which proves Eq. (46). Having Dk
G R(g

3/2q+‖ ) we can now write

χ∗s q+‖ = esLDG R (g3/2q+‖ ) =
∑

k≥0

sk

k! Dk
G R(g

3/2q+‖ )

= g3/2q+‖ +
⎛

⎝
∑

k≥1

(−s)k

k!

⎞

⎠ 2σ

(
T

E

)
mq̇

2T
+

⎛

⎝
∑

k≥1

(−2s)k

k!

⎞

⎠ 3

E
σ(g3/2ELg)

mq̇

2T

= g3/2q+‖ + (e−s − 1)2σ

(
T

E

)
mq̇

2T
+ (e−s − 1)

3

E
σ(g3/2ELg)

mq̇

2T
,

taking the s →∞ limit then yields

lim
s→∞χ∗s (g3/2q+‖ ) = g3/2q+‖ − 2σ

(
T

E

)
mq̇

2T
− 3

E
σ(g3/2ELg)

mq̇

2T
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as desired. We can then extract lims→∞ χ∗s q+‖ from this expression using

lim
s→∞χ∗s q+‖ = (E/T )3/2 lim

s→∞χ∗s (g3/2q+‖ ),

see Eq. (25). We have

lim
s→∞χ∗s q+‖ = η3/2

(
q+‖ − 2g−3/2σ

(
T

E

)
mq̇

2T
− 3

E
g−3/2σ(g3/2ELg)

mq̇

2T

)

= η3/2
(

q+ · q̇ − 2g−3/2σ
(

T

E

)
− 3

E
g−3/2σ(g3/2ELg)

)
mq̇

2T
.

(47)

This expression can be further simplified, but first note that

˙ELg = − E

4g3/2 ġ + 3T

4g5/2
ġ − Ṫ

2g3/2

⇒ 3T

Eg
ġ − 2Ṫ

E
= 4g3/2

E
˙ELg + ġ,

and

ELg = E

2
√

g
− T

2g3/2

⇒2T

E
= 2g − 4g3/2

E
ELg.

Using these two identities the last two terms in Eq. (47) yield

2g−3/2σ
(

T

E

)
+ 3

E
g−3/2σ(g3/2ELg)

= 2T

E
g−3/2∂t (g

3/2g+)− 2Ṫ

E
g+ + 3

E
ELg∂t (g

3/2g+)− 3

E
∂t (g

3/2ELg)g
+

= g+
[
3T

Eg
ġ − 2Ṫ

E
+ 3

E
ELg∂t (g

3/2)− 3

E
∂t (g

3/2ELg)

]
+ ġ+

[
2T

E
+ 3

E
g3/2ELg

]
,

= g+
[

ġ + g3/2

E
˙ELg

]
+ ġ+

[
2g − g3/2

E
ELg

]

= [
g+ ġ + 2ġ+g

]+ g3/2

E

[ ˙ELgg+ − ELg ġ+
]
,

and as such

lim
s→∞χ∗s q+‖ = η3/2

(
q+‖ −

[
g+ġ + 2ġ+g

] mq̇

2T
− g3/2

E

[ ˙ELgg+ − ELg ġ+
] mq̇

2T

)

= χ∗q+.
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Wenowmove to the computation ofχ∗s q+⊥ . As before our strategywill be to compute
χ∗s q+⊥ via Dk

G R(g
3/2q+⊥ ). First note that we have

δG Rq+⊥ = −∂t

(
mq̇√

g

)
+ mq̇

2T
∂t

(
mq̇√

g

)
· q̇

= −mq̈√
g
−

������
∂t

(
1√
g

)
mq̇ + mq̇

2T

mq̈ · q̇√
g
+

������
∂t

(
1√
g

)
mq̇ = −mq̈⊥√

g
.

It follows that

DG Rq+⊥ = (δG R RG R + RG RδG R)q
+
⊥ = δG R RG Rq+⊥ − RG R

(
mq̈⊥√

g

)

= δG R RG Rq+⊥ +
mq̈⊥
2g3/2

(−2)g3/2

E
g+ = δG R RG Rq+⊥ −

mq̈⊥
E

g+,

and thus

DG R(g
3/2q+⊥ ) =

3
√

g

2
DG Rgq+⊥ + g3/2DG Rq+⊥

= −3g2

E
ELgq+⊥ + g3/2δG R RG Rq+⊥ − g3/2 mq̈⊥

E
g+

= −3g2

E
δG Rg+q+⊥ +

3g2

E
δG R(g

+q+⊥ )− g3/2 mq̈⊥
E

g+

= −3g2

E
g+δG Rq+⊥ − g3/2 mq̈⊥

E
g+

= 3g2

E
g+mq̈⊥√

g
− g3/2 mq̈⊥

E
g+ = 2m

E
q̈⊥g3/2g+.

Since DG Rq̈⊥ = 0, the computation of the higher powers of Dk
G R(g

3/2q+⊥ ) becomes
quite straightforward. We have

Dk
G R(g

3/2q+⊥ ) = −(−1)k 2m

E
q̈⊥g3/2g+ for k ≥ 1,

which results in

χ∗s (g3/2q+⊥ ) = esLDG R (g3/2q+⊥ ) =
∑

k≥0

sk

k! D
k
G R(g

3/2q+⊥ )

= g3/2q+⊥ −
⎛

⎝
∑

k≥1

(−s)k

k!

⎞

⎠ 2m

E
q̈⊥g3/2g+

= g3/2q+⊥ − (e−s − 1)
2m

E
q̈⊥g3/2g+,
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and as such

lim
s→∞χ∗s q+⊥ = η3/2

(
q+⊥ +

2m

E
g+q̈⊥,

)
= χ∗q+.

as desired. ��
Lemma B.2.6 The map χ∗ is the identity in cohomology.

Proof We need to show that

hχ f =
∫ ∞

0
esLDG R LRG R f ds

is well-defined on FG R . Note that {q, ξ, ξ+, g+} ∈ ker RG R and as such

hχq = hχξ = hχξ
+ = hχg+ = 0.

In the case of the metric field g we compute

hχg =
∫ ∞

0
esLDG R RG Rg ds = − 2

E

∫ ∞

0
esLDG R (g3/2g+)ds

= − 2

E

∫ ∞

0
e−s g3/2g+ds = −2g3/2

E
g+.

We now compute the action of the map hχ on q+‖ and q+⊥ . For the perpendicular part
of q+ we have

hχq+⊥ =
∫ ∞

0
esLDG R RG Rq+⊥ds =

∫ ∞

0
esLDG R

(
3

E

√
gg+q+⊥

)
ds

= 3

E

∫ ∞

0
(esLDG R g)1/2esLDG R (g3/2g+)esLDG R (g3/2q+⊥ )(e

sLDG R g)−3ds

= 3

E

∫ ∞

0
(esLDG R g)−5/2e−s g3/2g+

(
g3/2q+⊥ − (e−s − 1)������2m

E
q̈⊥g3/2g+

)
ds

= 3

E
g3g+q+⊥

∫ ∞

0

e−s

[
e−s g + (1− e−s) T

E

]5/2 ds.

The integral yields

I⊥ =
∫ ∞
0

e−s

[
e−s g + (1− e−s) T

E

]5/2 ds = 2

3

(
g − T

E

)−1 [
e−s g + (1− e−s)

T

E

]−3/2∣∣∣∣
∣

∞

0

= 2

3

(
g − T

E

)−1 [( E

T

)3/2
− 1

g3/2

]

= 2

3

E

T g3/2
η3/2 − 1

η − 1
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= 2

3

E

T g3/2

(
η√
η + 1

+ 1

)
.

Which results in

hχq+⊥ =
2

T

(
η√
η + 1

+ 1

)
g3/2g+q+⊥ .

Similarly we have

hχq+‖ =
∫ ∞
0

esLDG R RG Rq+‖ ds = − 3

E

∫ ∞
0

esLDG R

(√
g

(
E

2
√

g
− T

2g3/2

)
ξ+mq̇

2T

)
ds

= 3

2

mq̇

2T

∫ ∞
0

esLDG R

((
T

Eg
− 1

)
ξ+

)
ds

= 3

2

mq̇

2T

∫ ∞
0

(
T

E
(esLDG R g)−1 − 1

)

× (esLDG R g)−3/2
[

g3/2ξ+ − (e−2s − 1)
g3

E
ġ+g+

]

ds

= 3

2

mq̇

2T

∫ ∞
0

(
T

E
− esLDG R g

)

× (esLDG R g)−5/2
[

g3/2ξ+ + g3

E
ġ+g+ − e−2s g3

E
ġ+g+

]

ds

= 3

2

mq̇

2T

[

g3/2ξ+ + g3

E
ġ+g+

]

I1 − 3

2

mq̇

2T

g3

E
ġ+g+ I2.

The integrals that we need to consider are

I1 =
∫ ∞

0

(
T

E
− e−s g − (1− e−s)

T

E

)[
e−s g + (1− e−s)

T

E

]−5/2
ds

=
(

T

E
− g

)∫ ∞

0

e−s

[
e−s g + (1− e−s) T

E

]5/2 ds

= T

E
(1− η)I⊥ = −2

3
g−3/2(η3/2 − 1),

and

I2 =
∫ ∞

0

(
T

E
− e−s g − (1− e−s)

T

E

)
e−2s

(esLDG R g)5/2
ds

=
(

T

E
− g

)∫ ∞

0

e−3s

(esLDG R g)5/2
ds = −2

3

∫ ∞

0
e−2s d

ds

[
(esLDG R g)−3/2

]
ds

= −2

3

e−2s

(esLDG R g)3/2

∣∣∣∣∣

∞

0

− 4

3

∫ ∞

0

e−2s

(esLDG R g)3/2
ds
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= 2

3
g−3/2 − 4

3

∫ ∞

0
e−s d

ds

⎡

⎣ 2
(
g − T

E

)√
esLDG R g

⎤

⎦ ds

= 2

3
g−3/2 − 8

3

e−s

(
g − T

E

)√
esLDG R g

∣∣∣
∣∣∣

∞

0

− 8

3

∫ ∞

0

e−s

(
g − T

E

)√
esLDG R g

ds

= 2

3
g−3/2 + 8

3

(
g − T

E

)−1
g−1/2 + 16

3

(
g − T

E

)−2 √
esLDG R g

∣∣∣
∣

∞

0

= 2

3
g−3/2 + 8

3

(
g − T

E

)−1
g−1/2 + 16

3

(
g − T

E

)−2 (√
T

E
−√g

)

=
(

E

T

)3/2 [2
3

1

η3/2
+ 8

3

1

(η − 1)
√
η
+ 16

3

1−√η

(η − 1)2

]

= −2

3
g−3/2

3η − 2
√
η − 1

(
√
η + 1)2

.

Where on the third line we used the integral in I⊥ and similarly for the other integrals.
Gathering everything results in

hχq+‖ = (1− η3/2)

[
ξ+ + g3/2

E
ġ+g+

]
mq̇

2T
+ 3η − 2

√
η − 1

(
√
η + 1)2

g3/2

E
ġ+g+mq̇

2T
.

��
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