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Abstract: The ability to judge performance accurately is essential for successful learning. 
However, statistics or measures to do so are frequently limited to binary judgments and not 
scalable. Moreover, they primarily assess only one dimension of the metacognitive calibration 
accuracy. In this methodological paper, we develop and discuss a new set of statistics to 
determine the calibration accuracy and the direction of miscalibration. Together, they indicate 
the extent of confidence accuracy and whether learners are overconfident or underconfident in 
their judgments. These statistics are scalable to non-binary judgment data. We then illustrated 
them in an empirical study with 34 doctoral students’ performance judgment data which were 
assessed when answering domain-specific conceptual questions. Results from traditional 
measures were calculated, serving as a reference for the new measures’ reliability. In addition, 
we developed an R-package implementing and visualizing the latter. The theoretical and 
practical implications are discussed.  

Introduction 
The concept of metacognitive calibration describes the idea of a learner’s ability to correctly judge their task 
performance (Keren, 1991). In other words, learners that are able to judge their correct performance as correct 
and incorrect performance as wrong display a high metacognitive calibration. Since the seminal literature review 
by Lin and Zabrucky (1998), the importance of metacognitive calibration became a highly acknowledged concept 
in the field of educational psychology and the learning sciences. Metacognitive miscalibration through 
overconfidence regarding the own performance appeared to negatively influence learning by reducing cognitive 
processing efforts (Lin & Zabrucky, 1998). Inadequate underconfidence, on the other hand, might negatively 
impact self-confidence, which is essential for successful learning as through the affected intrinsic motivation (i.e., 
through perceived competence). Similarly, it might influence potential ability-grounded failure attribution 
(Bandura, 1986; Dweck, 1975; Ryan & Deci, 2000). As such, empirical studies provided evidence for the 
predictive power of anxiety and reduced self-confidence (i.e., underconfidence) on lower test performance 
(Barrows et al., 2013). Furthermore, failure-driven problem-solving (e.g., Productive Failure; Kapur, 2014), in 
contrast to success-driven problem-solving, was shown to partly increase students’ metacognitive calibration, 
potentially due to greater opportunities for self-evaluation (Sinha & Kapur, 2021a). In other words, the failure to 
successfully solve a problem might be beneficial to increase calibration accuracy, next to all other alleged positive 
effects of initial struggle as effective preparation for future learning (Sinha & Kapur, 2021b). In conclusion, high 
accuracy in the judgment of performance appears to constitute often a beneficial prerequisite for knowledge 
acquisition in any domain. The inability to accurately assess the own metacognitive calibration might hinder 
learning.  

Whereas one major field of research is concerned with the analysis of metacognitive calibration in 
different situations, as presented above, another research branch aims to explore various possibilities of enhancing 
learners’ calibration accuracy to ultimately facilitate learning. For instance, Xia and colleagues (2019) could show 
that students’ reflections on their own performance contributed to a more accurate metacognitive calibration. In 
contrast, the calibration assessment after repeated judgments of learning revealed enhanced underconfidence, 
indicating that students who are continually asked to judge their performance might become less confident about 
their responses over time (Koriat et al., 2002). Yet, providing feedback on the actual performance might play an 
important role in an individual’s performance judgment improvement, as empirical evidence suggested (Callender 
et al., 2016). Similarly, delayed conceptual summarizing (Thiede & Anderson, 2003) or strategy training for 
assessing calibration (Nietfeld & Schraw, 2002) supported students’ calibration accuracy. Hence, next to the 
suggested significance of metacognitive calibration for learning, there is substantial empirical evidence on how 
to promote calibration accuracy. 

However, to profit from theoretical and empirical work that investigated various ways of improving 
metacognitive calibration accuracy to positively affect learning, it is irrevocable to have a well-substantiated 
statistic to estimate this accuracy.   



 

Theoretical background 
In a recent explorative calibration accuracy comparison study, Schraw and colleagues (2014) evaluated the most 
commonly used statistics (e.g., d’, gamma, G-index). They found that the appropriate metrics of choice depend 
on the research question. One measure alone was shown to only be rarely sufficient to establish an estimation of 
calibration accuracy (Schraw et al., 2014). A particular reason for this conclusion is, however, inherent to the 
different measures themselves. Whereas d’ measures the standardized difference between correctly judging the 
correct answer and wrongly judging a wrong answer as correct, this measure alone mainly indicates whether 
learners are rather over- or underconfident, hence the direction of the miscalibration. Additionally, the 
standardization of this measure does not allow for a direct comparison of calculated indices from different studies, 
as the results will depend on the measured variance in the specific sample population. The G-index, in contrast, 
looks at the proportion of correct judgments to incorrect judgments. Thereby, this index determines the accuracy 
of individuals but does not make any statement regarding the direction of the miscalibration. In other words, a 
low accuracy result does not indicate whether participants are rather underconfident or overconfident, despite the 
essential difference between these two concepts regarding learning. Lastly, gamma follows a similar approach to 
the G-index by subtracting the product of the wrong judgments from the product of the correct judgments, over 
the sum of both products. Whereas the weighting of over- and underconfidence is different from the G-index, also 
in this case, it remains impossible to determine the direction of the miscalibration. Overall, and in agreement with 
the suggestion from Schraw and colleagues, it appears that no measure drastically outperforms the others but that 
they are rather covering different aspects of the concept of calibration accuracy.  

A further limitation of some of these statistics for performance judgment assessment is their restriction 
to dichotomous data sets. Calibration estimations can then only be determined if the judgments are assessed in a 
yes-or-no format (i.e., “Are you sure about your response?” with answer options “yes” and “no”). However, in 
practice, an individual’s judgment of their own answers might not always be so straightforward, and more fine-
grained answering options could yield more accurate approximations of the calibrations. One way to increase the 
sensitivity of calibration analyses is by asking a similar question but assessing responses on a 4-point Likert scale 
(yes / rather yes / rather no / no). Having four items to choose from still forces the participant to decide but allows 
them to indicate uncertainties. Nonetheless, the currently available statistics for examining calibration accuracy 
do often fail to come up for the need for greater sensitivity. Thus, the generally used statistics might answer 
specific research questions very well but not coherently report accuracy and the miscalibration direction. Also, 
they are often limited to binary data sets, thus restricting their application in empirical studies.  

In this paper, we propose a novel set of statistical measures for assessing calibration accuracy and the 
direction of a miscalibration. Moreover, we demonstrate the applicability of these statistics for binary data as well 
as data assessed in 4-point Likert scales, thereby taking into account the non-binary nature of actual performance 
judgments. Thus, we aim to advance the methodological standards of determining and interpreting metacognitive 
calibration. Lastly, we present and apply an R-software package to easily calculate and plot the calibration 
accuracy and miscalibration direction on empirical data from a study with 34 doctoral students to illustrate the 
suggested methodological advancements and compare the results with conventional measures for reliability.  

Methodological expansion of calibration accuracy and miscalibration 
As previous research showed, scholars mostly focused on binary confidence judgment data (Schraw et al., 2014). 
Thereby, students’ judgments are evaluated based on whether they correspond to the actual performance. These 
different combinations of performance and judgment can be visualized in a 2×2 matrix (Table 1, left). However, 
if working with non-binary data, this matrix must be expanded, for example, to a 2×4 matrix in the case of a 4-
point Likert scale-based performance judgment (Table 1, right). Consequently, new statistics are needed.  

A starting point for establishing new statistics comes from defining a robust measure for a binary system, 
which then can be scaled up, for instance, to a 4-point scale system. Of primary importance are thereby measures 
for overconfidence (1–sensitivity; Feuerman & Miller, 2008) and underconfidence (1–specificity; Feuerman & 
Miller, 2008). Simply put, the overconfidence ratings indicate the frequency with which a learner wrongly judges 
their answer as correct when they are wrong, thus being overconfident in their abilities. Likewise, underconfidence 
describes the frequency of correct answers that are wrongly judged wrong, thus indicating a learner’s lack of 
recognizing their abilities (Table 2). The accuracy of one’s metacognitive calibration depends on these two 
measures. High underconfidence and high overconfidence, as well as a combination of these two, must be 
reflected in such a value. Additionally, the frequency of their actual occurrence must be considered as well. If this 
is neglected, a participant with all judgments and performance correct beside one obtains the same calibration 
accuracy score as a participant with all judgments wrong. Thus, the values for under- and overconfidence must 
be considered in relation to their actual frequency. The resulting formula for the calibration accuracy is shown in 
Table 2. 



 

Table 1 
Performance-evaluation matrices for dichotomous and 4-point-based confidence judgments  

 Performance   Performance 

Confidence 
Judgment  

Correct Incorrect  Confidence 
Judgment 

Correct Incorrect 

Yes a (true positive) b (false positive)  Yes  a b 

No c (false negative) d (true negative)  Rather Yes c d 

    Rather No e f 

    No g h 
       

Note. Letters a to d (left) and a to h (right) indicate the variables needed for the formulas used for the calculations 
displayed in Table 2. Performance specifies whether a specific problem was solved correctly or not. Confidence 
judgment indicates students’ judgments of their own answers’ correctness, either collected in dichotomous format 
(yes / no) or on a 4-point Likert scale (yes / rather yes / rather no / no).  
 

Like the limitations of the statistics gamma and G-index, this new calibration accuracy measure does not 
make any statement regarding the direction of the miscalibration. However, it is possible to apply the same 
theoretical and mathematical reasoning to determine whether any calibration inaccuracy is due to over- or 
underconfidence. By relatively subtracting the false positive (b) from the false negatives (c), one obtains a similar 
statistic to d’ that allows investigating the miscalibration direction (Table 2). Additionally, this miscalibration 
value is not based on standardization, as is the case for d’, but yields relative and comparable miscalibration 
estimates. Combining these newly established statistics (i.e., calibration accuracy and miscalibration), we can 
assess the accuracy of a performance judgment and the cause of any inaccuracy.  
 
Table 2 
Calibration calculation formulas for dichotomous confidence judgments 

Statistic Formula Explanation of the formula 

      Overconfidence O 𝑂 =	𝑏 (𝑏 + 𝑑)⁄  This value explains how often a student 
wrongly answers a question while 
wrongly believing to have answered it 
correctly. 

      Underconfidence U 𝑈 =	𝑐 (𝑎 + 𝑐)⁄  This value explains how often a student 
correctly answers a question while 
wrongly believing to have answered it 
wrongly. 

      Calibration accuracy C 𝐶 = 1 − 1 !
"#$#%#&2 · 1

$!

$#&
	+	 %

!

%#&2 

 

The metacognitive calibration accuracy 
value is based on the relative occurrence 
of a students’ over- and 
underconfidence judgment.  
1 indicates perfect calibration, and 0 
indicates full miscalibration.  

      Miscalibration M 𝑀 =	 !
"#$#%#&

· (𝑏 − 𝑐) The miscalibration value explains the 
cause of any metacognitive calibration 
inaccuracy. M = 1 indicates full 
overconfidence, and M = –1 indicates 
full underconfidence.  

Note. The variables a to d correspond to the participant-specific count values established as described in Table 1. 
If the nominator of any fraction is equal to 0, this specific fraction must be set to 0. For instance, if a student never 
judges an incorrect answer as correct (b), the overconfidence value must be set to 0. In this case, the calibration 
and miscalibration values remain dependent only on the underconfidence statistic.  



 

Generally, there are two major advantages of using these statistics instead of a combination of the 
commonly used ones. First, the obtained measures are mathematically based on the same underlying construct 
and are, thus, directly comparable within and across studies. And second, both are directly scalable to any 
dimension of interest. Being able to estimate calibration for not only binary response judgments but those of a 
higher level might deepen the understanding of learners’ actual calibrations. As such, we derived the formulas for 
performance judgments of a 4-point Likert scale (Table 3). The exact calculations to obtain the formulas in Tables 
2 and 3 can be found in the supplementary materials on OSF (see methods). 

 
Table 3 
Calibration calculation formulas for 4-point-based confidence judgments 

Statistic Formula Explanation of the formula 

      Overconfidence O 𝑂 =	 '$#(&
'($#*)#((&#,)	

 This value explains the weighted ratio 
of how often a student wrongly 
overestimates their performance in case 
the given answer is incorrect.  

      Underconfidence U 𝑈 =	 '.#(/
'("#.)#((%#/)	

 This value explains the weighted ratio 
of how often a student wrongly 
underestimates their performance in 
case the given answer is correct.  

      Calibration accuracy C 𝐶 = 1 −	 "
tot'
· ( ('$#(&)!

'($#*)#((&#,)
	

+	 ('.#(/)!

'("#.)#((%#/)
) 

with "tot' =
"

&(()*)+),)).(/)0)1)2)   

The calibration accuracy describes the 
inversed relative sum of the weighted 
overconfidence and underconfidence 
values. C = 1 indicates perfect 
calibration, and C = 0 indicates full 
miscalibration.  

      Miscalibration M 𝑀 = !
tot'
· (𝑥(𝑏 − 𝑔) + 𝑦(𝑑 − 𝑒)) The miscalibration score describes the 

relative difference between the weighted 
incorrect answers (overconfident – 
underconfident). M = 1 indicates full 
overconfidence, and M = –1 shows full 
underconfidence.  

Note. The variables a to h correspond to the participant-specific count values established as described in Table 1. 
If the numerator of any fraction is equal to 0, this specific fraction must be set to 0. For instance, if a student never 
judges an incorrect answer as correct (b) or as rather correct (d), the overconfidence value must be set to 0, and 
the calibration and miscalibration values remain dependent only from the underconfidence statistic. The factors x 
and y indicate the relative weighting of the individual values from the performance-evaluation matrix to come up 
for the different judgment certainty levels (x for “yes” and “no”; y for “rather yes” and “rather no”). The 
generalized formulas are described in the supplementary materials on OSF (see methods). 

Weighting confidence ratings 
Suppose working with a non-dichotomous performance-judgment matrix, as in those cases in which the response 
confidence was assessed with 4-point Likert scales. The weighting of the individual confidence judgments then 
gains importance. Not differently weighting the answers would reduce them again to a binary measure. Thus, 
introducing the weighting factors x and y could overcome the shortcoming of presently available measures that 
categorize judgments in a binary manner (Table 3).  

Founding the weighting ratio (𝑤 = 	𝑥 𝑦⁄ ) in theoretical elaborations, we propose one specific solution 
for this problem: attributing a three times higher weight to those ratings with greater confidence (𝑤 = 3). The 
rationale for doing so is motivated by the literature on and common practice of interpreting Likert-based data as 
interval data despite its ordinal nature (Wu & Leung, 2017). To understand why ordinal-scaled Likert data can be 
treated as interval scales in some instances, Boone's and Boone's (2012) distinguishment between Likert-type and 
Likert scale data comes into play. Whereas the first describes situations in which single items are compared, the 
latter is based on multiple items that describe together one characteristic. Thus, when having multiple items that 
constitute one composite characteristic, there is evidence in favor of analyzing them on an interval scale (e.g., 
Boone & Boone, 2012; Sullivan & Artino Jr, 2013).  



 

Having concluded that interpreting Likert scales on interval data might be appropriate in specific 
situations, we need to assign values to the individual judgment options. On a 4-point Likert scale from “no” to 
“yes,” the interval is set around the value 0 (“neither yes nor no”), whereby 0 is not a selectable option, aiming to 
enforce students’ decisions. Looking at the two intermediate values (“rather no” and “rather yes”), it appears that 
they are mathematically twice as much represented on any interval scale than the border values (“yes” and “no”). 
In other words, if a student selects the option “rather yes,” this answer implies that the student’s decision of 
performance judgment was either in the interval of (0; “rather yes”] or [“rather yes”; “yes”). In contrast, a student’s 
answer of “yes” suggests that the student’s decision was only in the interval of (“rather yes”; “yes”]. Expanding 
this train of thought, we find the numerical decision interval of (0, 1.5) for the answer “rather yes” (at the interval 
value of 1) and [1.5,2] for the answer “yes” (at the interval value of 2). The absolute decision interval of the 
answer “rather yes” is thus three times as large as the interval of the answer “yes.” Consequently, we can only 
mathematically account for this double representation if the weighting is set to 3 (see endnotes 1 & 2). 

Empirical application  

Methods 
All data sets and annotated R-scripts used for the present analysis are openly available in an OSF online repository 
(https://osf.io/6pdjt/). The various functions of the novel R-package for the metacognitive calibration analysis can 
be directly installed as R-package (https://github.com/samueltobler/mcc).  

Participants 
The participants of the application study were 34 doctoral students in natural sciences at a highly-ranked European 
university. The participants were, in average, 27.1 years old (SD = 2.3), whereby 41% indicated to be female, 
59% male, and 0% non-binary. Participation in the study was voluntary, and three vouchers from a local grocery 
store were raffled among all participants. The university's ethics commission approved all studies before their 
conductance. 

Materials 
The test materials consisted of nine multiple-choice questions that covered a fundamental concept of the 
participants’ study field and were published as part of a validated concept inventory (𝛼 = 0.69; 95% CI: 0.54-
0.84) (Tobler et al., 2023). The students’ self-reported performance judgment was assessed for each question by 
asking them, “How confident are you with your response?” on a 4-point Likert scale with the descriptors very 
unconfident, rather unconfident, rather confident, very confident.  

Metacognitive calibration R-package 
The for this purpose developed R-package directly calculates metacognitive calibration accuracy C values and the 
miscalibration M estimations for data sets with performance results and performance judgments on a 4-point 
Likert scale. The calculations are based on the proposed formulas in Table 2. Moreover, conventional measures, 
including d’, gamma, and G-index are functionally integrated to directly compare the different statistics. 
Eventually, the package allows plotting the results for more informative analyses of the data set. The extensively 
annotated R-package can be directly installed in the R software environment from GitHub (see link above).  

Procedure and analysis 
The participants were recruited through university-internal mailing lists and asked to complete the online test 
alone and without further resources. There was no time limit for taking the test. However, we excluded participants 
who showed statistical duration outliers (n = 3) and those who were faster in finishing the test than it would take 
to read the individual questions (n = 4). The final sample size consisted of 27 participants (Age: M = 27.2, SD = 
2.3; 30% female, 70% male, 0% non-binary).  

The test results were descriptively analyzed. The metacognitive calibration accuracy and miscalibration 
values were analyzed and plotted using the hereby introduced metacognitive calibration R-package. Additionally, 
we compared the results from the newly proposed calibration accuracy statistics with the results that would have 
been obtained by applying the commonly used calibration accuracy measures (i.e., d’, gamma, and G-index). 
Moreover, we investigated the correlation between calibration scores and actual performance. All analyses were 
conducted in the R software environment (R version 4.2.1; R Core Team, 2022). A list of all R-packages used for 
the analysis can be found in the supplementary materials on OSF.   



 

Results 
The normalized performance score analysis indicated that the participant understood the tested concept relatively 
well (M = 0.72, SD = 0.21, min = 0.11, max = 1.00). Furthermore, the results from the empirical application of 
the novel statistics revealed that most doctoral students answered the performance judgments with relatively high 
accuracy (M = 0.84, SD = 0.16; Figure 1, left). The miscalibration scores further indicated that most of the 
students, if demonstrating some calibration inaccuracy, were somewhat overconfident regarding their 
performance (M = 0.16, SD = 0.22). This finding is in line with the color-coded miscalibration scores 
demonstrating that those students with lower calibration accuracy rather were over- or underconfident but not 
both (Figure 1, right).  
 
Figure 1 
Metacognitive calibration and miscalibration values 

 
Note. The dots in both sub-figures indicate the individual participants. The miscalibration scores (Figure 1, right) 
are color-coded according to the individual calibration accuracy. Green indicates perfect accuracy; red indicates 
complete inaccuracy. 
 

Looking at the Pearson’s correlation values determined for each comparison of newly proposed and 
priorly discussed measures, the results showed significant correlations between the new statistics and the G-index, 
but fewer between the new ones and d’ or gamma (Table 4). Additionally, the correlation of gamma or d’ accuracy 
values with the 4-point calibration accuracy and miscalibration scores were weaker compared to the binary values 
of the new measures. These results indicate that the 4-point-based calculations contain more information that the 
other measures cannot capture, explaining more variance and, thus, revealing more precise estimates. Lastly, we 
found no significant correlation between performance and calibration accuracy C (r(25) = 0.26, p < .18). Instead, 
the calibration results obtained by using the G-index statistics on the artificially binarized data set revealed a 
significant correlation with performance (r(25) = 0.57, p < .01). No significant correlations were found between 
performance score and d’ (r(25) = -0.01, p = .97) or gamma (r(25) = -0.37, p = .06). However, a performance 
score-dependent visual breakdown of calibration accuracy and miscalibration descriptively indicates greater 
variability in accuracy and miscalibration with lower performance (Figure S1 in the supplementary materials). 

 
Table 4 
Statistic comparisons with empirical data 

Measure M SD 1 2 3 4 5 6 
1. Calibration accuracy C (4-point) 0.84 0.16 –      
2. Miscalibration M (4-point) 0.16 0.21 –0.64*** –     
3. Calibration accuracy C (binary) 0.84 0.13   0.86*** –0.62*** –    
4. Miscalibration M (binary) 0.21 0.17 –0.56**   0.89*** –0.73*** –   
5. d' 0.00 1.46   0.41* –0.19   0.43* –0.30* –  
6. Gamma 0.48 0.33   0.34 –0.29   0.46* –0.34 0.18 – 
7. G-index 0.14 0.75   0.72*** –0.42*   0.89*** –0.65*** 0.47* 0.29 

Note. The performance judgment ratings have been transformed to binary values to calculate the various statistics 
(d’, gamma, G-index). The newly proposed statistics have been evaluated with both the binary-transformed and 
the original 4-point Likert scale data. Statistically significant correlations are marked with an asterisk sign (* p < 
.05; ** p < .01; *** p < .001). N = 27.  
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General discussion and conclusion 
The significance of being metacognitively well calibrated and, thus, able to accurately judge the performance has 
been repeatedly shown to positively affect learning (Lin & Zabrucky, 1998). Moreover, prior work has 
documented and compared various statistical approaches to accurately estimate a learner’s metacognitive 
calibration (Schraw et al., 2014). By comparing different statistics, they investigated which of them might show 
the best suitable measure for accuracy. Regrettably, they did not find a one-size-fits-all statistic to measure the 
latter but concluded that the appropriate measure must be chosen based on the research question. Furthermore, 
some of these measures can only be applied to dichotomous data but are not directly scalable to judgment data 
assessed on higher order Likert scales, for instance.  

We developed a methodology that compensates for these two shortcomings. Our novel approach is 
grounded in two complementary statistics that are based on the relative occurrence of false positive and false 
negative performance judgments. These two statistics, the calibration accuracy and the direction of any 
miscalibration, yield a direct estimate of an individual’s metacognitive calibration. Furthermore, they explain any 
deviation from a perfect calibration in terms of underconfidence or overconfidence. Additionally, these two 
statistics are directly scalable from binary judgment inputs to 4-point Likert scale ratings, and generalizable 
beyond that as well. Thus, it appears that the newly developed methodology to estimate metacognitive calibration 
accuracy might overcome the major limitations of commonly used statistics. Also, it presents easily applicable 
measures that might be valuable for researchers in and outside the field of the learning sciences when working 
with calibration measurements. Nonetheless, triangulating the results with other metrics such as d’ or G-index, 
recommended by Benjamin and Diaz (2008) or Schraw (1995), might provide supplementary validity of the 
calculated accuracy estimates.  
 Moreover, we empirically tested the new measures to demonstrate their performance. Statistical 
comparisons with the established measures revealed significant correlations in most cases, indicating that the new 
statistics assess a similar construct to conventional measures but explain more variance. Lastly, we developed a 
freely available and directly implementable R-package to apply the proposed formulas as well as more 
conventional ones to calculate calibration accuracy and visualize the results for facilitated interpretation.   

Limitations and future directions 
One limitation of the current approach is that the ordinal nature of Likert-scale data is ignored and interpreted as 
interval data. However, treating the data as ordinal data would not allow determining a calibration score, which 
emphasizes the different extent of judgment certainty. Instead, it would lead again to a dichotomous data set. 
Furthermore, assessing calibration accuracy over multiple items was shown to approximately resemble an interval 
scale (Boone & Boone, 2012). Nonetheless, the technical advancements as present in online conducted studies 
(Evans & Mathur, 2005) would allow collecting performance judgment data directly on true interval scales. Yet, 
the herein presented statistics could easily be expanded for higher degree matrices.  
 Future work could focus on applying these statistics in classrooms where most participants are novice 
learners and not experts in the field. Whereas students at the end of their educational career (i.e., post-graduate 
students) might have learned well over the years to accurately judge their own capabilities, learners at lower 
educational levels might struggle more to do so. Thus, using these measures to continuously investigate the 
students’ metacognitive calibration accuracy and the impact of success or failure on it might reveal more detailed 
insights regarding the development of calibration accuracy throughout their education. Similarly, future studies 
could emphasize assessing calibration accuracy with the proposed measures when testing new educational 
interventions to investigate their impact on this trait. 

Endnotes 
(1)  Intervals are described according to the general notation standards for mathematical intervals. Round brackets indicate 

that all values until but without the start- or endpoint are included, and square brackets indicate that all values until 
and with the start- or endpoint are included. Mathematically expressed, this means (0,1] = {𝑥	|	0 < 𝑥	 ≤ 1}.  

(2) A weighting of 𝑤 = 2 might appear more logical at first glance. To explain why this might be less exact, let’s 
reconsider the interval of [-2; 2] on a 4-point Likert scale. This interval would then result in the values of [-2; -1; 1; 
2] for [“no”; “rather no”; “rather yes”; “yes”]. Like before, we have three 0.5 interval steps for the answer “rather 
yes” (0, 1.5), but only one for the answer “yes” [1.5, 2]. Suppose we now set the weight of “yes” answers to be double 
as high as that for “rather yes” answers. In that case, the relative weight of the different answers with respect to their 
abundance on the interval scale corresponds to 1 · 1.5 for the “rather yes” answer and 2 · 0.5 for the “yes” answer. 
Thus, the “rather yes” answer option still weighs more than the “yes” option ((1 · 1.5) (2 · 0.5) = 	1.5	 ≠ 1⁄ ). Only 
if we set the weight to 𝑤 = 3, we get an equal ratio (i.e., 1) for the weighting of “yes” and “rather yes” answers.  
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