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Abstract—The architectural changes introduced with multi-
core CPUs have triggered a redesign of main-memory join
algorithms. In the last few years, two diverging views have
appeared. One approach advocates careful tailoring of the
algorithm to the architectural parameters (cache sizes, TLB, and
memory bandwidth). The other approach argues that modern
hardware is good enough at hiding cache and TLB miss latencies
and, consequently, the careful tailoring can be omitted without
sacrificing performance.

In this paper we demonstrate through experimental analysis
of different algorithms and architectures that hardware still
matters. Join algorithms that are hardware conscious perform
better than hardware-oblivious approaches. The analysis and
comparisons in the paper show that many of the claims regarding
the behavior of join algorithms that have appeared in literature
are due to selection effects (relative table sizes, tuple sizes,
the underlying architecture, using sorted data, etc.) and are
not supported by experiments run under different parameters
settings. Through the analysis, we shed light on how modern
hardware affects the implementation of data operators and
provide the fastest implementation of radix join to date, reaching
close to 200 million tuples per second.

I. INTRODUCTION

Modern processors provide parallelism at various levels:
instruction parallelism via super scalar execution; data-level
parallelism by extended support for single instruction over
multiple data (SIMD; i.e., SSE, 128-bits; AVX, 256-bits); and
thread-level parallelism through multiple cores and simulta-
neous multi-threading (SMT). Such changes are triggering a
profound redesign of main-memory join algorithms. However,
the landscape that has emerged so far is rather inconclusive.

One line of argument maintains that main-memory parallel
joins should be hardware-conscious: the best performance can
only be achieved by fine tuning the algorithm to the underlying
architecture [1]. These results also show that SIMD is still not
good enough to tip the decision on join algorithm towards
sort-merge join instead of the more commonly used hash join.
In the future, however, as SIMD becomes wider, sort-merge
join is likely to perform better.

Another line of argument suggests that join algorithms
can be made efficient while remaining hardware-oblivious
[2]. That is, there is no need for tuning—particularly of the
partition phase of a join where data is carefully arranged to
fit into the corresponding caches—because modern hardware
hides the performance loss inherent in multi-layer memory
hierarchy. In addition, so the argument goes, fine tuning of

the algorithms to specific hardware makes them less portable
and less robust to, e.g., data skew.

A third line of thought claims that sort-merge join is already
better than hash join and can be efficiently implemented
without using SIMD [3]. These results contradict the claims of
both Blanas et al. [2] because they are based on careful tuning
to the hardware (in this case to its non-uniform memory access
characteristics) as well as the claims of Kim et al. [1] regarding
the behavior of sort-merge vs. hashing when using SIMD.

For reasons of space, in this paper we focus on the question
of whether it is important to tune the main-memory hash join
to the underlying hardware as claimed explicitly by [1] and
implicitly by [3]. We also focus on radix join algorithms and
leave the comparison with sort-merge joins for future work.

Answering the question of whether hardware still matters is
a complex task because of the intricacies of modern hardware
and the many possibilities available when implementing and
tuning main-memory joins. To make matters worse, there are
many parameters that affect the behavior of join operators:
relative table sizes, use of SIMD, page sizes, TLB sizes,
structure of the tables and organization, hardware architecture,
tuning of the implementation, etc. Existing studies share very
few points in common in terms of the space explored, making
it difficult to compare their claims. As shown in the paper,
many of these claims are specific to the choice of certain
parameters and architectures and cannot be generalized.

The first contribution of the paper is algorithmic. We
analyze the algorithms proposed in the literature and propose
several important optimizations leading to new algorithms that
are more efficient and robust to parameter changes. In doing
so, we provide important insights on the effects of multi-core
hardware on algorithm design.

The second contribution is to put existing claims into con-
text, showing what choice of parameters or hardware features
cause the observed behaviors. These results shed light on
what parameters play a role in multi-core systems, thereby
establishing the basis for the choices a query optimizer for
multi-core will need to make. The third and final contribution
is to settle the issue of whether tuning to the underlying
hardware plays a role. The answer is a definitive yes, as it
is only on a narrow combination of parameters and certain
architectures where hardware-oblivious approaches have an
advantage.



II. BACKGROUND: IN-MEMORY HASH JOINS

Existing algorithms can be classified into two camps.
Hardware-oblivious hash join variants, represented here by
no partitioning join (Section II-B), do not depend on any
hardware-specific parameters. Rather, they consider qualitative
characteristics of modern hardware and are expected to achieve
good performance on any technologically similar hardware.
Hardware-conscious implementations, such as (parallel) radix
join (Sections II-C and II-D), aim to maximally exploit a given
piece of hardware by tuning algorithm parameters (e.g., hash
table sizes) to its particular features.

The goal of our work is to compare two alternatives. One is
to assume hardware has now become good enough at hiding
its own limitations—through automatic hardware prefetching
or out-of-order execution—to make hardware-oblivious al-
gorithms competitive. The other is to assume that explicit
parameter tuning1 yields enough performance advantages to
warrant the effort required.

A. Canonical Hash Join Algorithm

The basis behind any modern hash join implementation is
the canonical hash join algorithm [5], [6], which operates
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Fig. 1. Hash join.

in two phases as shown in Figure
1. In the first build phase, the
smaller of the two input relations,
R, is scanned to populate a hash
table with all R tuples. The probe
phase then scans the second input
relation, S, and probes the hash
table for each S tuple to find
matching R tuples.

Both input relations are
scanned once and, with an

assumed constant-time cost for hash table accesses, the
expected complexity for the canonical hash join algorithm is
O(|R|+ |S|).

B. No Partitioning Join

To benefit from modern parallel hardware, Blanas et al. [2]
proposed a variant of the canonical algorithm that they termed
no partitioning join, essentially a direct parallel version of
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Fig. 2. No partitioning join.

the canonical hash join. It does
not depend on any hardware-
specific parameters and—unlike
alternatives that we will dis-
cuss shortly—does not physi-
cally partition data. The argu-
ment is that the partitioning
phase requires multiple passes
over the data and can be omitted
by relying on modern processor
features such as simultaneous
multi-threading (SMT) to hide
cache latencies.

1usually by means of automated tools, such as Calibrator [4]
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Fig. 3. Partitioned hash join (following Shatdal et al. [7]).

Both input relations are divided into equi-sized portions that
are assigned to a number of worker threads. As shown in
Figure 2, in the build phase, all worker threads populate a
shared hash table that all worker threads can access.

After synchronization via a barrier, all worker threads enter
the probe phase and concurrently find matching join partners
for their assigned S portions.

An important characteristic of no partitioning is that the
hash table is shared among all participating threads. This
means that concurrent insertions into the hash table must be
synchronized. To this end, each bucket is protected via a latch
that a thread must obtain before it can insert a tuple. The
potential latch contention is expected to remain low, because
the number of hash buckets is typically large (in the millions).
The probe phase accesses the hash table in read-only mode.
Thus, no latches have to be acquired in that second phase.

On a system with p cores, the expected complexity of this
parallel version of hash join is O (1/p(|R|+ |S|)).

C. Radix Join

Hardware-conscious, main-memory hash join implementa-
tions build upon the findings of Shatdal et al. [7] and Manegold
et al. [4], [8]. While the principle of hashing—direct positional
access based on a key’s hash value—is appealing, the resulting
random access to memory can lead to cache misses. Thus,
the main focus is on tuning main-memory access by using
caches more efficiently, which has been shown to impact query
performance [9]. Shatdal et al. [7] identify that when the hash
table is larger than the cache size, almost every access to the
hash table results in a cache miss. Consequently, partitioning
the hash table into cache-sized chunks reduces cache misses
and improves performance. Manegold et al. [4] refined this
idea by considering as well the effects of translation look-
aside buffers (TLBs) during the partitioning phase. This led
to multi-pass partitioning, now a standard component of the
radix join algorithm.

Partitioned Hash Join. The partitioning idea is illustrated in
Figure 3. In the first phase of the algorithm the two input
relations R and S are divided into partitions ri and sj ,
respectively. During the build phase, a separate hash table is
created for each ri partition (assuming R is the smaller input
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Fig. 4. Radix join (as proposed by Manegold et al. [4]).

relation). Each of these hash tables now fits into the CPU
cache. During the final probe phase, sj partitions are scanned
and the respective hash table is probed for matching tuples.

During the partitioning phase, input tuples are divided up
using hash partitioning (via hash function h1 in Figure 3) on
their key values (thus, ri on sj = ∅ for i 6= j) and another
hash function h2 is used to populate the hash tables.

While avoiding cache misses during the build and probe
phases, partitioning the input data may cause a different
type of cache problem. The partitions will typically reside
on different memory pages with a separate entry for virtual
memory mapping required for each partition. This mapping is
cached by TLBs in modern processors. As Manegold et al. [4]
point out, the partitioning phase may cause TLB misses if the
number of created partitions is too large.

Essentially, the number of available TLB entries defines an
upper bound on the number of partitions that can be created
or accessed efficiently at the same time.

Radix Partitioning. Excessive TLB misses can be avoided by
partitioning the input data in multiple passes. In each pass j,
all partitions produced by the preceding pass j−1 are refined,
such that the partitioning fan-out never exceeds the hardware
limit given by the number of TLB entries. In practice, each
pass looks at a different set of bits from the hash function h1,
which is why this is called radix partitioning. For typical in-
memory data sizes, two or three passes are sufficient to create
cache-sized partitions, without suffering from TLB capacity
limitations.

Radix Join. The complete radix join is illustrated in Figure 4.
1© Both inputs are partitioned using two-pass radix partition-

ing (two TLB entries would be sufficient to support this toy
example). 2© Hash tables are then built over each ri partition
of input table R. 3© Finally, all si partitions are scanned and
the respective ri partitions probed for join matches.

In radix join, multiple passes have to be done over both
input relations. Since the maximum “fanout” per pass is fixed
by hardware parameters, log |R| passes are necessary, where R
again is the smaller input relation. Thus, we expect a runtime
complexity of O ((|R|+ |S|) log |R|) for radix join.

Hardware Parameters. Radix join needs to be tuned to a
particular piece of hardware essentially via two parameters:
(i) the maximum fanout per radix pass is primarily limited by
the number of TLB entries of the hardware; (ii) the resulting
partition size should roughly be the size of the system’s
CPU cache. Both parameters can be obtained in a rather
straightforward way, e.g., with help of benchmark tools, such
as Calibrator [4]. As we shall see later, radix join is not overly
sensitive to a potential mis-configuration of either parameter.

D. Parallel Radix Join

Radix join can be parallelized by subdividing both input
relations into sub-relations that are assigned to individual
threads [1]. During the first pass, all threads create a shared set
of partitions. As before, the number of partitions in this set
is limited by hardware parameters and typically small (few
tens of partitions). They are accessed by potentially many
execution threads, creating a contention problem (the low-
contention assumption of Section II-B no longer applies).

To avoid this contention, for each thread a dedicated range
is reserved within each output partition. To this end, both input
relations are scanned twice. The first scan computes a set of
histograms over the input data, so the exact output size is
known for each thread and each partition. Next, a contiguous
memory space is allocated for the output and, by computing a
prefix-sum over the histogram, each thread pre-computes the
exclusive location where it writes its output. Finally, all threads
perform their partitioning without any need to synchronize.

After the first partitioning pass, there is typically enough
independent work in the system (cf. Figure 4) that workers can
perform work on their own. Load distribution among worker
threads is typically implemented via task queueing (cf. [1]).

III. EXPERIMENTAL SETUP

In this section we describe the experimental setup used for
the evaluation of the algorithms.

A. Workload

For the comparison, we use machine and workload configu-
rations that mimic scenarios where in-memory join processing
is most relevant. In particular, all systems where the compo-
nent truly matters assume a column-oriented storage model.
We thus deliberately choose very narrow 〈key , payload〉 tuple
configurations, where key and payload are four or eight bytes
wide. As a side effect, narrow tuples better pronounce the
effects that we are interested in, since they put more pressure
on the system’s caching system.2

We adopted the particular configuration of our workloads
from existing work, which also eases the comparison of our
results with those published in the past.

As illustrated in Table I, we adopted workloads from Blanas
et al. [2] and Kim et al. [1] and refer to them as A and B here,
respectively. All attributes are integers, and the keys of R and
S follow a foreign key relationship. That is, every tuple in S
is guaranteed to find exactly one join partner in R. Most of

2The effect of tuple widths was studied, e.g., by Manegold et al. [10].



TABLE I
WORKLOAD CHARACTERISTICS

A (from [2]) B (from [1])

size of key / payload 8 / 8 bytes 4 / 4 bytes
size of R 16 · 220 tuples 128 · 106 tuples
size of S 256 · 220 tuples 128 · 106 tuples
total size R 256 MiB 977 MiB
total size S 4096 MiB 977 MiB

TABLE II
HARDWARE PLATFORMS USED IN OUR EVALUATION

Intel Intel AMD Sun
Nehalem Sandy Bridge Bulldozer Niagara 2

CPU
Xeon Xeon Opteron UltraSPARC
L5520 E5-2680 6276 T2

2.26 GHz 2.7 GHz 2.3 GHz 1.2 GHz
Cores/Threads 4/8 8/16 16/16 8/64
Cache sizes 32 KiB 32 KiB 16 KiB 8 KiB

(L1/L2/L3) 256 KiB 256 KiB 2 MiB 4 MiB
8 MiB 20 MiB 16 MiB -

TLB (L1/L2) 64/512 64/512 32/1024 128/-

Memory 24 GiB DDR3 32 GiB DDR3 32 GiB DDR3 16 GiB
1066 MHz 1600 MHz 1333 MHz FBDIMM

VM Page size 4 KiB 4 KiB 4 KiB 8 KiB

our experiments (unless noted otherwise) assume a uniform
distribution of key values from R in S.

B. Hardware Platforms

We evaluated the algorithms on four different multi-core
machines. Three are recent multi-core platforms, ranging from
the older Intel Nehalem architecture to the newer Sandy Bridge
architecture and including a recent AMD Bulldozer system
(cf. Table II). Sun UltraSPARC T2 dates back to 2007 and
provides eight thread contexts per core where eight threads
share the L1 cache with a line size of 16 bytes. The two Intel
machines support SMT with two thread contexts per core. Sun
UltraSPARC T2 comes with two levels of cache, where cores
share the L2 cache with line size of 64 bytes. On the Intel
machines, cores use a shared L3 cache and a cache line size
of 64 bytes. The AMD machine has a different architecture
than the others where two cores are packaged as single module
and share some resources such as instruction fetch, decode,
floating point unit and L2 cache. Accordingly, the effective
L2 cache available per core is reduced to half, i.e., 1 MiB.

The Intel and AMD systems run stock Ubuntu Linux
(kernel version 2.6.32) and Sun UltraSPARC T2 runs a
Debian Linux (kernel version 3.2.0-3-sparc64-smp). For the
results we report here, we used gcc 4.4.3 on Ubuntu and
gcc 4.6.3 on Debian and the -O3 and -mtune=niagara2
-mcpu=ultrasparc command line options to compile our
code. Additional experiments using Intel’s icc compiler did
not show any notable differences, qualitatively or quantita-
tively. For the performance counter profiles that we report,
we instrumented our code with the Intel Performance Counter
Monitor [11].

TABLE III
EFFECT OF SORTED INPUT ON THE BUILD PHASE (CODE BY [2] VS. OUR

OWN CODE; PERFORMANCE COUNTERS IN MILLIONS; WORKLOAD A)

Cycles L3 miss Instr. TLB load miss

Code of [2], sorted input 322 2 2215 1
Code of [2], unsorted input 1415 45.3 2263 52.7
Our code, unsorted input 966 25 572 56
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Fig. 5. Cycles per output tuple for hardware-oblivious no partitioning strategy
(Workload A; Intel Xeon L5520, 2.26 GHz).

IV. HARDWARE-OBLIVIOUS JOINS

In this section we first study and optimize the no partition-
ing strategy. To make our results comparable, we use similar
hardware to that in earlier work, namely a Nehalem L5520
system (cf. Table II).

A. Build Cost

The overall cost of hardware-oblivious no partitioning join
is given by

cost = cput · |R|︸ ︷︷ ︸
build cost

+ cget · |S|︸ ︷︷ ︸
probe cost

,

where cput and cget denote the (constant) cost of adding or
reading an entry to/from the hash table (respectively). Writing
to the hash table is generally more expensive, since it involves
the acquisition of a bucket latch, hence, cput & cget .

No partitioning was proposed and evaluated by Blanas et
al. in [2]. Surprisingly, in their experiments—based on what
we call Workload A in our work—the build phase accounts
for only 2 % of the overall execution time. In this workload,
|R| = 1/16 · |S|, so we would expect the build phase to take
at least ≈ 6% of the overall cost.

The code used to obtain these results is publicly avail-
able [12]. Analysis of this code reveals that their results are
based on experiments where R is pre-sorted. As a result,
as data items are hashed using a modulo hash function,
they map to consecutive hash buckets, leading to strictly
sequential memory accesses. The sorted input also removes
any contention for the bucket latch.

Re-running the experiments with randomly permuted input
(i.e., the general case) results in build costs of about 6 %,
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consistent with our assumption stated above. To confirm that
our assessment is correct, we collected cache profile data.
Table III illustrates how sorted input essentially eliminates
all TLB and L3 cache misses. Otherwise, we could basically
reproduce other performance results (cf. Figure 5, dark bars).

B. Cache Efficiency

The cache profile information in Table III also indicates
hash table build-up incurs a very high number of cache and
TLB misses. Processing 16 million tuples results in 45.3/52.7
million L3/TLB misses, or about three misses per input tuple.

The reason for this inefficiency becomes clear as we look at
the code of [2]. The hash table in this code is implemented as
illustrated in Figure 6. That is, the hash table itself is an array
of head pointers, each of which points to the head of a linked
bucket chain. Each bucket is implemented as a 48-byte record.
A free pointer points to the next available tuple space inside
the current bucket. A next pointer leads to the next overflow
bucket, and each bucket can hold two 16-byte input tuples.

Since the hash table is shared among worker threads, latches
are necessary for synchronization. As illustrated above, they
are implemented as a separate latch array position-aligned
with the head pointer array.

In this table, a new entry can be inserted in three steps
(ignoring overflow situations due to hash collisions): (1) the
latch must be obtained in the latch array; (2) the head pointer
must be read from the hash table; (3) the head pointer must
be dereferenced to find the hash bucket where the tuple can
be inserted. In practice, each of these three steps likely results
in a cache miss.

Optimized Hash Table Implementation. To improve the cache
efficiency of no partitioning, in our re-implementation we
directly combined locks and hash buckets to neighboring
memory locations. More specifically, in our code we im-
plemented the main hash table as a contiguous array of
buckets, as shown in Figure 7. The hash function directly
indexes into this array representation. For overflow buckets,

0 8 24 40 48
hdr tuple 1 tuple 2 next

Fig. 7. Our hash table implementation.

we allocate additional
bucket space outside the
main hash table. Most
importantly, the 1-byte
synchronization latch is
part of the 8-byte header
that also contains a counter
indicating the number of
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Fig. 8. Speedup of no partitioning algorithm on SMT hardware. First four
threads are “native” threads; threads 5–8 are “hyper threads.”

tuples currently in the bucket. In line with the original study
[2], for Workload A, we configured our hash table to two
16-byte tuples per bucket, and an 8-byte next pointer chains
hash buckets in the case of overflows.

The effect of this modified hash table representation is
significant. As listed in Table III, it cuts by half the number of
cache misses in the build phase (and also in the probe phase,
though not shown in Table III) and speeds up join processing
by a fair margin.

In terms of absolute join performance, our re-written code
is roughly three times faster than the code of Blanas et al. [2],
as shown in Figure 5. Yet, our code remains strictly hardware-
oblivious: no hardware-specific parameters are needed to tune
the code.

C. The Role of SMT Threads
Blanas et al. [2] argue that no partitioning draws its true

benefit from its good interplay with simultaneous multi-
threading (SMT) hardware. Simply speaking, SMT provides
the illusion of an extra CPU by running two threads on
the same CPU and cleverly switching between them at the
hardware level. This gives the hardware the flexibility to
perform useful work even when one of the threads is stalled,
e.g., because of a cache miss.

To study the interaction between no partitioning and SMT,
we repeated the original SMT experiment [2] on comparable
hardware. Our Nehalem system contains four cores with two
hardware contexts each. As in the original study, we start
by assigning threads to different physical cores. Once the
physical cores are exhausted, we assign threads to the available
hardware context in a round-robin fashion.

Figure 8 illustrates the performance of no partitioning
relative to the performance of a single-threaded execution
of the same algorithm (“speedup”). Our experiment indeed
confirms the scalability with SMT threads on the un-optimized
code of [2]. However, once we run the same experiment with
our optimized code (with significantly better absolute perfor-
mance, cf. Figure 5), SMT does not help the no partitioning
strategy at all or only brings negligible improvement when
using all thread contexts.

As the result shows, SMT can only remedy cache miss
latencies if the respective code contains enough cache misses
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and enough additional work for the second thread while the
first one is waiting. For code with less redundancy, SMT brings
only negligible benefit. These results raise questions about a
key hypothesis behind the hardware-oblivious no partitioning
strategy.

V. HARDWARE-CONSCIOUS JOINS

We perform a similar analysis for the parallel radix join.
Blanas et al. [2] also provide an implementation for this
hardware-conscious join execution strategy.

A. Configuration Parameters

The key configuration parameter of radix join is the number
of radix bits for the partitioning phase (2 # radix bits partitions are
created during that phase). Figure 9 illustrates the effect that
this parameter has on the runtime of radix join.

The figure confirms the expected behavior that partitioning
cost increases with the partition count, whereas the join phase
becomes faster as partitions become smaller. Configurations
with 14 and 11 radix bits are the best trade-offs between these
opposing effects for the Nehalem and AMD architectures,
respectively. But even more interestingly, the figure shows
that radix join is fairly robust against a parameter mis-
configuration: within a range of configurations, the perfor-
mance of radix join degrades only marginally.

B. Hash Tables and Cache Efficiency

Following the partitioning of the input tables, hash tables
are very small and always fully cache resident. Thus, our
assessment about cache misses for hash table accesses in the
previous section no longer holds for the hardware-conscious
join execution strategy.

Various implementations have been proposed for radix join.
Manegold et al. [4] use a rather classical bucket chaining
mechanism, where individual tuples are chained to form a
bucket. Following good design principles for efficient in-
memory algorithms, all pointers are implemented as array
position indexes (as opposed to actual memory pointers).

Kim et al. [1] build their hash table analogously to the
parallel partitioning stage. The input relation is first scanned
to obtain a histogram over hash values. Then, a prefix sum
is used to help re-order relation R (to obtain R′), such that
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tuples with the same hash value appear contiguously in R′.
The prefix sum table and the re-ordered relation now together
serve as a hash table as shown in Figure 10.

The advantage of this strategy is that contiguous tuples
can now be compared using SIMD instructions. In addition,
software prefetching mechanisms can be applied to bring
potential matches to the L1 cache before comparisons.

Evaluation. We evaluated the impact of different hash table
implementation strategies on the join phase of radix join.
Figure 11 shows the join phase cost in cycles per output tuple
for three different strategies.

As can be seen, the Manegold et al. implementation [4]
still has an edge over the more recent one by Kim et al. [1],
in spite of the potential for SIMD optimization in the latter
implementation. The graph also confirms that the join cost
generally decreases as the input data is partitioned in a more
fine-granular way. In practice, there is a sweet spot, because
the partitioning cost (which has to be invested before joining)
increases with the number of partitions (cf. Figure 9).

Since the Manegold et al. approach comes out best in this
comparison, we will use it for all following experiments. We
note that the choice we are making here does not depend on
hardware parameters (this is a hardware-oblivious optimiza-
tion). As we shall see in a moment, the impact of our choice
is limited, however, since the cost of partitioning adds to either
of those implementation techniques.



TABLE IV
CPU PERFORMANCE COUNTER PROFILES FOR DIFFERENT RADIX JOIN

IMPLEMENTATIONS (IN MILLIONS); WORKLOAD A

code from [2] our code

Part. Build Probe Part. Build Probe

Cycles 9398 499 7204 5614 171 542
Instructions 33520 2000 30811 17506 249 5650
L2 misses 24 16 453 13 0.3 2
L3 misses 5 5 40 7 0.2 1
TLB load misses 9 0.3 2 13 0.1 1
TLB store misses 325 0 0 170 0 0
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Fig. 12. Overall join execution cost (cycles per output tuple) for hardware-
conscious radix join strategy (Workload A; Intel Xeon L5520, 2.26 GHz).

C. Overall Execution Time

The overall cost of join execution consists of the cost for
data partitioning and the cost for computing the individual
joins over partitions. To evaluate the overall cost of join
execution (and to prepare for a comparison with the hardware-
oblivious no partitioning algorithm), we measured our own,
carefully tuned implementation, as well as those reported in
earlier work.

We had two implementations of radix join available. For
the code of Blanas et al. [12], we found one pass and
2,048 partitions to be the optimal parameter configuration
(which matches the configuration in their experiments [2]).
Partitioning in that code turns out to be rather expensive. We
attribute this to a coding style that leads to many function calls
and pointer dereferences in critical code paths. Partitioning
is much more efficient in our own code. This leads to a
situation where two-pass partitioning with 16,384 partitions
becomes most efficient. Table IV illustrates how the different
implementations lead to significant differences in the executed
instruction count. Our code performs two partitioning passes
with 40 % fewer instructions than Blanas et al.’s code [2] that
needs to perform only one pass.

The resulting overall execution times are reported (as cycles
per output tuples) in Figure 12. This chart confirms that
partitioning is rather expensive in the code of Blanas et al. Ulti-
mately, this results in a situation where the resulting partition
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Fig. 13. Speedup of radix algorithm on SMT hardware. First four threads are
“native” threads; threads 5–8 are “hyper threads” (Workload A; Xeon L5520).

count is sub-optimal for the subsequent join phase, causing
their join code to be also expensive. With optimized code,
partitioning becomes the dominant cost, which is consistent
with the findings of Kim et al. [1] that showed comparable
cost at similar parameter settings. Overall, our code is about
three times faster than the code of Blanas et al. for all shown
configurations.

Performance Counters. We also instrumented the available
radix join implementations to monitor CPU performance coun-
ters. Table IV lists cache and TLB miss counts for the three
tasks in radix join.

The table shows a significant difference in the number of
cache and TLB misses between the implementation of Blanas
et al. and ours. The idea behind radix join is that all partitions
should be sufficiently small to fully fit into caches, so one
should expect a very low number of misses, which is true for
our implementation, but not for the one of Blanas et al.

The reason for the difference is an unfortunate execution or-
der of hash building and probing in the latter code. Their code
performs radix join strictly in three phases. After partitioning
(first phase), hash tables are created for all partitions (second
phase). Only then, in the third algorithm phase, are those hash
tables probed to find join partners. Effectively, created hash
tables will long be evicted from CPU caches, before their
content is actually needed for probing. Our code avoids these
unnecessary memory round-trips by running build and probe
for each partition together.

D. Speedup from SMT Threads

Figure 13 shows that neither of the two radix join imple-
mentations that we evaluated can significantly benefit from
SMT threads. Up to the number of physical cores, both
implementations scale linearly, and in the SMT threads region
both suffer from the sharing of hardware resources (i.e.,
caches, TLBs) between threads. These results are also in line
with the results of Blanas et al. [2]. As pointed out before,
cache-efficient algorithms cannot benefit from SMT threads
to the same extent since there are not many cache misses
to be hidden by the hardware. The results are also useful in
validating our code against that of Kim et al. [1]. With our
optimized implementation, we achieve a speedup of 4.6, very
close to the 4.4 factor reported by Kim et al. on a similar Intel
Nehalem processor (at comparable absolute performance).



VI. HARDWARE-CONSCIOUS OR NOT?
In this section we compare the algorithms above under a

wide range of parameters and hardware platforms.

A. Effect of Workloads

The results of extended experiments over all workloads and
hardware platforms are summarized in Figure 14. Figure 14(a)
shows the performance of our own implementation using
Workload A on several hardware platforms (this workload is
the one used by Blanas et al. [2]).

While Blanas et al. [2] reported only a marginal perfor-
mance difference between no partitioning and radix join on
x86 architectures, in our results the hardware-conscious radix
join is appreciably faster when both implementations are
equally optimized. Only on the Sun Niagara the situation looks
different. We look into this architecture in the next sub-section.

The results in Figure 14(a) may still be seen as a good ar-
gument for the hardware-oblivious approach. An approximate
25 % performance advantage, e.g., on the two Intel platforms
might not justify the effort needed for parameter tuning in
radix join.

Running the same experiments with our second workload,
Workload B (Figure 14(b)), however, radically changes the
picture. Radix join is approximately 3.5 times faster than no
partitioning on Intel machines and 2.5 times faster on AMD
and Sun machines. That is, no partitioning only has compara-
ble performance to radix join when the relative relation sizes
are very different. This is because in such a situation, the
cost of the build phase is minimized. As soon as table sizes
grow and become similar, the overhead of not being hardware-
conscious becomes clearly visible (see the differences in the
build phases for no partitioning).

B. Scalability

To study the scalability of our two join variants, we re-ran
our experiments with a varying number of threads, up to the
maximum number of hardware contexts available on each of
our architectures. Figure 15 illustrates the results.

Besides the SMT issues that we already discussed in Sec-
tions IV-C and V-D, all platforms and both join implemen-
tations show good scalability. Thanks to this scalability, our
radix join implementation reaches a throughput of 196 million
tuples per second. As far as we are aware, this is the highest
throughput reached for in-memory hash joins so far.

On the AMD machine, no partitioning shows a clear bump
around 8–10 threads. This is an artifact of the particular AMD
architecture. Though the Opteron is marketed as a 16-core
processor, the chip internally consists of two interconnected
CPU dies [13]. It is likely that such an architecture requires a
tailored design for the algorithms to perform well, removing an
argument in favor of hardware-conscious algorithms as, even if
it is parameter-free, some multi-core architectures may require
specialized designs anyway. NUMA would create significant
problems for the shared hash table used in no partitioning
(let alone future designs where memory may not be coherent
across the machine).

TABLE V
LATCH COST PER BUILD TUPLE IN DIFFERENT MACHINES

Nehalem Sandy Bridge Bulldozer Niagara 2

Used instruction xchgb xchgb xchgb ldstub

Reported instruction
latency in [14], [15] ∼20 cycles ∼25 cycles ∼50 cycles 3 cycles
Measured impact
per build tuple 7-9 cycles 6-9 cycles 30-34 cycles 1-1.5 cycles

C. Sun UltraSPARC T2 “Niagara”

On the Sun UltraSPARC T2, a totally different architecture
than the x86 platforms, we see a similar result with Work-
load B. Hardware-conscious radix join achieves a throughput
of 50 million tuples per second (cf. Figure 15(d)), whereas no
partitioning achieves only 22 million tuples per second.

However, when looking to Workload A, no partitioning be-
comes faster than radix join on the Niagara 2 (shown in Figure
14(a)). One could attribute this effect to the highly effective on
chip multi-threading functionality of the Niagara 2. However,
there is more than that. First, the virtual memory page size
on UltraSPARC T2 is 8 KiB and the TLB is fully associative,
which are significant differences from other architectures.

Second, the Niagara 2 architecture turns out to have ex-
tremely efficient thread synchronization mechanisms. To il-
lustrate that, we deliberately disabled the latch code in the no
partitioning join. We found out that the ldstub instruction
which is used to implement the latch on UltraSPARC T2 is
very efficient compared to other architectures as shown in
Table V. These special characteristics of Sun UltraSPARC T2
also show the importance of architecture-sensitive decisions in
algorithm implementations.

D. TLB and Virtual Memory Page Sizes

In-memory hash joins are known to be sensitive to the vir-
tual memory subsystem of the underlying system, in particular
to the caching of address translations via translation look-aside
buffers (TLBs). The virtual memory setup of modern systems
is, to a small extent, configurable. By changing a system’s
page size, every address mapping (potentially cached in the
TLB) covers a different amount of main memory, and with a
large page size, fewer TLB entries might be needed for the
operations on a given memory region.

Intel Nehalem hardware can essentially be operated in either
of two modes with the support of the OS [16]: (i) with a page
size of 4 KiB (the default), the level 1 data TLB can hold up to
64 memory mappings; (ii) alternatively, when the page size is
set to 2 MiB, only 32 mappings can be cached in TLB1. Here
we study the effect of these two options on join performance.

No Partitioning Joins. During the hash table build and probe
phases, the hardware-oblivious no partitioning join algorithm
randomly accesses an element in the hash table that is created
for the smaller join relation R. For our workload configuration
A, this hash table is 384 MiB in size (tuples plus latches and
bucket structure). Consequently, the chance to hit a memory
page that is cached in TLB1 is 64/98304 (= 1/1536) or 32/192

(= 1/6), depending on whether the system is configured for
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Fig. 14. Cycles per output tuple for hardware-oblivious no partitioning and hardware-conscious radix join algorithm, for different hardware architectures and
workloads. Experiments based on our own, optimized code. Using 8 threads on Nehalem, 16 threads on Sandy Bridge and AMD, and 64 threads on Niagara.
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(c) AMD Bulldozer Opteron
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Fig. 15. Throughput comparison of algorithms on different machines using Workload B. Computed as input-size/execution-time where input-size = |R| = |S|.

TABLE VI
PERFORMANCE OF NO PARTITIONING JOIN WHEN USING LARGE PAGES

No Partitioning Join (Workload A) 4 KiB pages 2 MiB huge pages

Build cycles per build tuple 57.92 49.74
Probe cycles per output tuple 26.10 22.88
Overall cycles per output tuple 29.72 25.99

a 4 KiB or 2 MiB page size (respectively). The latter config-
uration might significantly reduce the number of TLB misses
and thus improve execution performance. Additionaly, modern
processors contain paging-structure caches, which become far
more effective with a smaller number of total pages.

As listed in Table VI, we could indeed observe a perfor-
mance improvement for no partitioning with larger pages.
The dominating cost of no partitioning are actual data cache
misses, however, which are unaffected by the page size con-
figuration. This is why the performance improvement remains
limited to about 15 % in our configuration.

Radix Join. Our hardware-conscious algorithm, radix join, is
more sensitive to TLB behavior. In fact, the TLB size is often
considered the limiting factor that determines the maximum
number of partitions that can be created per partitioning pass.
Since the 64-entry TLB1 of our system is assisted by a 512-
entry shared TLB2, our Nehalem system actually achieved best
join performance with two 128-way passes (cf. Section V-A).

Changing the system page size now may have opposing

TABLE VII
PERFORMANCE OF RADIX JOIN WHEN USING LARGE PAGES

Radix Join 4 KiB pages 2 MiB huge pages 2 MiB huge pages
(Workload A) (2 pass / 14 bits) (2 pass / 14 bits) (1 pass / 12 bits)

Partitioning cycles 19.73 21.71 15.54
per input tuple
Join cycles 2.77 2.75 3.64
per output tuple
Overall cycles 23.74 25.81 20.15
per output tuple

effects. On the one hand side, a 2 MiB page size reduces the
number of available TLB entries (only 32 TLB1 entries). But
on the other hand side, the in-memory page table structure
of the system’s virtual memory setup becomes smaller; fewer
page tables have to be traversed for every TLB miss. In effect,
the cost of a single TLB miss gets reduced.

Table VII illustrates what these opposing effects mean to the
join performance of our Nehalem system. For the workload
we used, changing the system page size to 2 MiB shifted
the optimal radix join configuration to a single-pass 12-bit
partitioning phase (with a throughput improvement of ≈ 15 %).

Large Pages or Not? The above measurements indicate a
performance advantage of systems that use a large page size
configuration. But we note that this is a two-edged sword.
Large pages generally increase the memory footprint of pro-
cesses in the system, which in productive systems might be
more problematic than in our micro-benchmarks.
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Fig. 16. Barrier synchronization cost in radix join (Workload A; foreign key distribution in S skewed with Zipf parameter z = 1.5; tasks that make progress
are indicated using shades of gray; wait time for barrier synchronization indicated as ). Simple task queueing leaves many tasks under-utilized (leading to
significant wait times in (a)). Fine-granular task decomposition in (b) (similar to of [1]) improves load distribution and increases join throughput by 25 %.

In our benchmarks, both join strategies equally benefit
from large pages, leaving the “hardware-conscious or not?”
question unchanged. As already mentioned above, the small
benefit from large pages might also disappear as input data
sizes are scaled up in future systems.

Large pages may have a more significant effect on the per-
formance of no partitioning—but only if their use is combined
with hardware-conscious optimizations such as explicit data
prefetching. We detail this combination in Appendix A.

E. Barrier Synchronization and Load Balancing

In the two join variants that we consider in this work,
parallel execution threads synchronize in two ways: (i) write
accesses to the shared hash table in no partitioning are
protected by latches; (ii) both join variants operate in multiple
phases which are separated by barriers. While barrier synchro-
nization allows threads to perform a lot of work independently,
there is a risk for wasted idle time when work is distributed
unevenly over threads, so threads have to wait for each other.

Barrier synchronization is not a problem for the no parti-
tioning join execution strategy since, by construction, tuples
are distributed evenly across threads and per-tuple cost is
basically independent of the tuple values.

Radix join, by contrast, is more vulnerable to penalties due
to barrier synchronization whenever tasks are not scheduled
properly over available worker threads (we discussed a related
issue, the cache locality problem of the radix join implementa-
tion of [2], already in Section V-C). In total, radix join consists
of five processing stages (assuming a two-pass partitioning
scenario): 1© compute local histogram for R; 2© compute local
histogram for S; 3© partitioning pass 1; 4© partitioning pass
2; 5© join phase (partition-wise build and probe). And while
threads are guaranteed to receive an equal share of input data
in the first three stages, partition sizes produced by stage 4©
depend on the distribution of values in R and S.

To study the potential load imbalance, we modified our data
generator to produce a heavily skewed input data set. Foreign
keys in S no longer reference keys in R with a uniform
likeliness, but according to a Zipf distribution law with Zipf
factor z = 1.5. Figure 16(a) illustrates, for each of the eight

threads in our system (x axis), the type of work it is doing as
time progresses (along the y axis).

As can be seen in the figure, all threads perform useful work
near the beginning of each execution stage (indicated through
different gray shades). But some finish their stage earlier than
others, meaning that they have to wait until their last peer
finishes the stage (threads 7 and 4 in the figure). The resulting
idle times, indicated as , waste CPU resources without any
real thread progress.

Fine-Granular Task Decomposition. The barrier synchroniza-
tion problem in Figure 16(a) is a result of the task queueing
mechanism that we adopted from [2] to distribute load. This
mechanism is insufficient to adapt to skewed input data.

To combat the problem, we modified our radix join im-
plementation to perform task decomposition, similar to the
strategy proposed by Kim et al. [1]. In a nutshell, whenever a
partition after stage 3© significantly exceeds its expected size
(as it would result from a uniform distribution), we break up
the partition into smaller chunks that are handled by all threads
in concert. This avoids such partitions that can “hog” one of
the execution threads and affect overall throughput.

Figure 16(b) illustrates the effect on the execution progress.
The modification successfully avoids load imbalances and
speeds up join execution by about 25 %. Though the improved
scheduling mechanism applies mainly to the radix join algo-
rithm, we note that its realization is actually parameter-free
(and not in itself a hardware-conscious optimization).

F. Skewed Data

In this section, we study the effects of skew following the
same methodology of Blanas et al. [2]. More specifically, we
populate the foreign key column (table S) of our data sets
such that the probability of referencing individual key values
(of R) follows a Zipf distribution law (we varied the Zipf
factor between z = 0 and z = 1.75).

Figure 17 illustrates how no partitioning and radix join react
to skew. The graphs confirm that skew helps the performance
of the hardware-oblivious no partitioning join, which was
observed already by Blanas et al. [2] and claimed “a big
advancement over state-of-the-art” methods. Ultimately, no
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Fig. 17. Join performance when foreign key references follow a Zipfian data distribution (Intel Xeon L5520, 2.26 GHz).

partitioning surpasses radix join in join throughput when using
Workload A.

The observation does not come as a surprise, however, and
only happens for data that is heavily skewed. For instance, in
the “low skew” case of [2] (z = 1.05), the most frequent value
in S occurs with a probability of 8.4 %; the chance to hit one
of the 600 most frequent join keys (out of 16 million) already
exceeds 50 %. For the “high skew” case of [2] (z = 1.25),
more than 22 % of all S tuples carry the same value and the
chance to hit one of the top-600 values is more than 83 %.
Effectively, even a small L1 cache is sufficient to hold the
small hot set of R that is relevant during the probe phase.

Our results indicate that the benchmark configuration of [2]
(very high skew, suitable relation sizes) hits a sweet spot of
the no partitioning algorithm. This can be seen also in Fig-
ure 17(b), where the same experiment with Workload B does
not help no partitioning as much as the previous configuration.

Performance improvement with increasing skew can be seen
as an advantage of no partitioning. The effect also means,
however, that the runtime characteristics of the algorithm
becomes dependent on the input data distribution and thus
difficult to predict (e.g., by a cost-based query optimizer).
Radix join, by contrast, offers predictable performance over
a wide range of skew, a characteristic that is desirable in the
context of robust query processing, an important and active
criterion especially for productive query processors [17].

G. Effect of Relation Size Ratio

The experiments above show that relative sizes of the tables
to join play a big role in the behavior of the algorithms. In
the following set of experiments, we explore the effect of
varying relation cardinalities on join performance. For these
experiments, we use the Intel Xeon L5520 and fixed the
number of threads at 8. We varied the size of the primary
key build relation R in the non-equal data set from 1 · 220 to
256 ·220 tuples. The size of the foreign key relation S is fixed
at 256 · 220. However, as we changed the size of R, we have
also adjusted the distribution of values in S accordingly.

Figure 18 shows the cycles per output tuple for each phase
as well as the entire run for different R sizes in a log-log plot.

The results confirm the observation made so far and pro-
vide a clearer answer to the controversy between hardware-
conscious and hardware-oblivious algorithms. No partitioning
does very well when the build relation is very small compared
to the large relation. Performance goes down as the size of R
increases because of the cost of the build phase (Figure 18(a)).
Radix join is much more robust to different table sizes and
offers almost constant performance across all sizes of R. More
importantly, the contribution of the partitioning phase is the
same across the entire range, indicating that the partitioning
phase does its job regardless of table sizes.

In other words, no partitioning join is better that radix join
only under skew and when the sizes of the tables being joined
significantly differs. In all other cases, radix join is better
(and significantly better in fact) in addition to also being more
robust to different parameters like skew or relative table sizes.

VII. RELATED WORK

After Manegold et al. [8] and Ailamaki et al. [9] both
demonstrated the importance of memory and caching effects
on modern computing hardware, soon new algorithm variants
emerged to run classical database problems efficiently on
modern hardware.

One of the design techniques to achieve this goal is the
use of partitioning, which we discussed extensively also in
this work. Besides a use for in-memory joins, partitioning
is relevant also, e.g., to perform aggregation, as investigated
recently by Ye et al. [18]. And while the aggregation problem
differs from join computation in many ways, the observations
made by Ye et al. about different hardware architectures are
very consistent with ours.

While here we mainly looked at local caching and memory
latency effects, we earlier demonstrated how the topology of
modern NUMA systems may add additional complexity to the
join problem [19]. Handshake join is an evaluation strategy
on top of existing join algorithms to make those algorithms
topology-aware.

With a similar motivation, Albutiu et al. [3] proposed to use
sort-merge algorithms to compute joins, leading to a hardware-
friendly sequential memory access pattern. It remains unclear,
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Fig. 18. Cycles per output tuple with varying build relation cardinalities in Workload A (Intel Xeon L5520, 2.26 GHz, Radix join was run with the best
configuration in each experiment where radix bits varied from 13 to 15).

however, whether the switch to a parallel merge-join is enough
to adequately account for the topology of modern NUMA
systems.

Similar in spirit to the no partitioning join is the recent
GPU-based join implementation proposed by Kaldewey et al.
[20]. Like in no partitioning, the idea is to leverage hardware
SMT mechanisms to hide memory access latencies. In GPUs,
this idea is pushed to an extreme, with many threads/warps
sharing one physical GPU core.

VIII. CONCLUSION

The results in this paper resolve the contradictions among
existing results conclusively: hardware-oblivious algorithms
only work well under a narrow parameter window (when the
table sizes significantly differ) and on one particular hardware
platform. Moreover, with the novel ideas introduced in the pa-
per, hardware-conscious algorithms can be made significantly
faster than what has been published so far and more robust
to a wider set of parameters. These algorithms can also be
easily tuned to the underlying hardware, as shown in the paper,
significantly reducing the argument that they are more difficult
to port than their hardware-oblivious counterparts.

Finally, all the code used to obtain results in this paper is
available at http://www.systems.ethz.ch/projects/paralleljoins.
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APPENDIX

We performed a very extensive evaluation of the two ap-
proaches to in-memory join processing. This appendix adds
a number of in-depth experiments that we performed, leaving
the main body of the paper concise.

Most importantly, we pick up the discussion on virtual
memory effects again and show how the join variants react
to changes in the virtual memory page size (Section A). In
Section B, we relate more performance counter measure-
ments to underlying implementation details and show how
prefetching can remedy some of the performance problems
of no partitioning. Finally, in Section C we show how the
partitioning stage of radix join can be further improved by
using software-managed buffering.

A. Large Virtual Memory Pages

In Section VI-D, we discussed the impact of virtual memory
page sizes on the performance of in-memory hash joins. Our
results showed that when running Workload A on our Intel
Nehalem machine, the use of larger pages slightly improved
the performance of both implementation strategies. It turns out,
this effect is quite sensitive to the used hardware architecture
(e.g., Intel or AMD) and to the input data characteristics.

Input Data Sizes

In Section VI-G, we studied the effect that the relative
sizes of R and S have on the runtime of our two join
alternatives. In Figure 19, we repeat the same experiment, but
add configurations where we used large virtual memory pages.
All measurements in this figure were performed on an Intel
Nehalem system.

The runtime characteristics that we see in Figure 19 is a
consequence of two somewhat opposing effects when the page
size is changed from 4 KiB to 2 MiB: (a) TLB1 in our Intel
Nehalem system can hold only 32 entries when configured for
2 MiB pages, but 64 entries for 4 KiB pages; (b) the page table
tree becomes less deep in the 2 MiB case, hence, a TLB miss
incurs a lower cost.

In case of the no partitioning join, a larger build relation
size leads to an increased number of TLB misses (for both
page size configurations). As can be seen in Figure 19(a),
this emphasises the latter of the above two effects. The
relative advantage of the 2 MiB configuration over the 4 KiB
configuration improves from 15 % for a small build relation
to 30 % for larger build relations.

The page size configuration might affect radix join in two
ways:
(a) the reduced number of TLB entries (32 vs. 64) may

reduce the fanout that can efficiently performed in each
partitioning phase;

(b) in the final radix pass, a single TLB entry might cover
multiple partitions (each of which should later fit into L1
caches) in a 2 MiB page size configuration.

Effectively, this might shift the sweet spot configuration that
minimizes the overall cost (partitioning cost plus probe cost).
In our benchmark setting (cf. Figure 19(b)) this favors 4 KiB
pages when the build relation is very small and large pages
when the build relation size increases.

Machine Architectures

The Intel Nehalem system discussed above features
64 TLB1 entries (plus 512 shared TLB2 entries) when the
page size is set to 4 KiB, but only 32 entries for a 2 MiB
page size configuration. In the AMD Bulldozer architecture,
the second test platform that we used, the number of TLB
entries does not depend on the configured page sizes. Our
AMD Bulldozer features a fully associative 32-entry TLB1
and an 8-way associative 1024-entry TLB2 [21].

As a consequence, page size configurations have less of an
effect on our AMD machine, as can be seen in Figure 20.
No partitioning (Figure 20(a)) can benefit from large pages
only when the size of the build relation grows very large.
Conversely, there is a slight improvement for small build
relation sizes in case of radix join (Figure 20(b)).

The exact behavior of both algorithms on this machine
is rather hard to model. We constrained our benchmark and
pinned all sixteen join threads to a single CPU package. This
CPU package, however, is internally divided into two NUMA
regions. The whole machine consists of four sockets (eight
NUMA regions) in total, so we see an interplay of NUMA
effects and the hybrid broadcast/directory-based coherency
model of the AMD architecture [13].

Overall, the effect of large pages on performance stays
within about 25 %, similar to what we observed also on the
Intel Nehalem machine.

B. Alignment and Prefetching

Following the argument of Blanas et al. [2], no partitioning
consciously accepts cache misses during the build and probe
phases, hoping that the SMT mechanism of the underlying
hardware can hide the resulting memory access latencies. Here
we study how the cache miss behavior of no partitioning
can be improved by cache alignment and prefetching. Both
techniques leave the strictly hardware-oblivious path of the
original algorithm, but require nevertheless only little param-
eter tuning.

Cache Alignment

As discussed in Section IV-B, the no partitioning implemen-
tation of Blanas et al. [2] uses an unfortunate hash table design
where up to three accesses to different memory locations are
needed to access a single hash bucket (latch array, pointer
array, and actual data buckets; cf. Figure 6). To avoid this
potential memory access bottleneck, in our own code we
wrapped the necessary latches into the bucket data structure
and removed the indirection caused by the pointer array of
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Fig. 19. Cycles per output tuple with varying build relation cardinalities in Workload A (Using 8 threads on Intel Xeon L5520, 2.26 GHz, Radix join was
run with the best configuration in each experiment).
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Fig. 20. Cycles per output tuple with varying build relation cardinalities in Workload A (Using 16 threads on AMD Bulldozer Opteron 6276, 2.3 GHz,
Radix join was run with the best configuration in each experiment).

TABLE VIII
No partitioning JOIN; CACHE MISSES PER TUPLE (ORIGINAL CODE OF

BLANAS ET AL. [2] VS. OUR OWN IMPLEMENTATION).

Code of [2] Our code Our code
(cache-aligned)

Build Probe Build Probe Build Probe

L2 misses 2.97 2.94 1.56 1.39 1.01 1.00
L3 misses 2.72 2.65 1.56 1.36 1.00 0.99

Blanas et al. In effect, only a single record needs to be accessed
per data tuple. Only true hash collisions will require additional
bucket fetches.

Using our profiling framework, we measured the number
of cache misses required per build/probe tuple in either
of the implementations (cf. Table VIII). Somewhat counter-
intuitively, the number of misses per tuple is considerably
higher, however. This is most noticeable during the build
phase of our own implementation, where we see more than
1.5 misses/tuple even though only a single hash bucket must
be accessed per tuple.

The reasons for this is the missing cache alignment of
both hash table implementations. As illustrated in Figures 6

and 7, both hash table implementations use a bucket size of
48 bytes. If such buckets are packed one after another, a
single bucket access may span over two cache lines and thus
cause more than a single cache miss on access. Specifically,
four 48-byte buckets will occupy three successive cache lines.
On average, each bucket intersects with 1.5 cache lines,
which well coincides with the cache miss numbers shown in
Table VIII.

Hash buckets can be forced to stay within a cache line
by aligning them all to 64-byte boundaries. As the last two
columns in Table VIII show, changing no partitioning in this
way reduces the cache miss rate to the expected one miss per
tuple.

Software Prefetching
Another way to avoid cache misses is the use of prefetching.

Chen et al. [22], for instance, described how hash table ac-
cesses like ours can be accelerated by issuing software prefetch
instructions. If those instructions are issued early enough, the
CPU can overlap memory accesses with instruction execution
and thus hide memory access latencies.

We applied the prefetching mechanisms of Chen et al. to our
no partitioning implementation. The proper prefetch distance
is a hardware-specific parameter, which we manually tuned to
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Fig. 21. Impact of different optimizations on cycles per output tuple for
no partitioning using Workload A (256 MiB on 4096 MiB); 8 threads, Intel
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Fig. 22. Impact of different optimizations on cycles per output tuple for
no partitioning using Workload A (256 MiB on 4096 MiB); 16 threads, AMD
Bulldozer Opteron 6276.

the behavior of our machine. The effect of this optimization is
illustrated in Figure 21 for Workloads A and B (bars labeled
“w/ prefetch”).

Figure 21 also illustrates the effect of cache alignment (bars
labeled “aligned”). Interestingly, cache alignment alone does
not significantly improve the performance of no partition-
ing. Both optimizations together, however, can improve the
throughput of no partitioning by more than 40 %. To achieve
this improvement, however, we had to give up the strictly
hardware-oblivious nature of no partitioning and introduce
tuning parameters such as prefetch distance and cache line
size.

Figure 22, in fact, illustrates how sensitive our code changes
are to the underlying hardware platform. When running the
same experiment on our AMD Opteron machine, aligning
hash buckets to the cache line size has a significant impact
on overall throughput. Software prefetching can improve only
little over that. Together, both optimizations again yield a
performance gain of ≈ 40 % over the baseline implementation.

C. Software-Managed Buffers

Conceptually, each partitioning phase of radix join takes all
input tuples one-by-one and writes them to their corresponding

destination partition (pos[·] keeps track of the current write
location within each partition):

1 foreach input tuple t do
2 k← hash(t);
3 p[k][pos[k]] = t; // copy t to target partition k
4 pos[k]++;

Generally, partitions are far apart and on separate VM pages.
Thus, if the fanout of a partitioning stage is larger than the
number of TLB entries in the system, copying each input tuple
will cause another TLB miss. Typically, the number of TLB
entries is considered an upper bound on the partitioning fanout
that can be realized efficiently.

This TLB miss count can be reduced, however, when writes
are buffered inside the cache first. The idea is to allocate a set
of buffers, one for each output partition and each with room
for up to N input tuples. Buffers are copied to their final
destination only when they are full:

1 foreach input tuple t do
2 k← hash(t);
3 buf[k][pos[k] mod N ] = t; // copy t to buffer
4 pos[k]++;
5 if pos[k] mod N = 0 then
6 copy buf[k] to p[k]; // copy buffer to partition k

Obviously, buffering leads to additional copy overhead.
However, for sufficiently small N , all buffers will fit into a
single memory page. Thus, a single TLB entry will suffice
unless a buffer becomes full and the code enters the copying
routine in line 6. Beyond the TLB entry for the buffer page, an
address translation is required only for every N th input tuple,
significantly reducing the pressure on the TLB system. And
as soon as TLB misses become infrequent, likely the CPU
can hide their latency with its usual out-of-order execution
mechanisms.

The buffering strategy mentioned above follows the idea
of Satish et al. [23], which employed the same technique to
reduce the TLB pressure of radix sort.

We added an implementation of such software-managed
buffers to our radix join code and configured N such that one
buffer will exactly fill one cache line (64 bytes); i.e., N = 4
for Workload A and N = 8 for Workload B. Configuring
the buffer size in this manner allows for another low-level
optimization. Since we are now always writing a full cache
line at once to global memory, the CPU can take advantage of
its write combining facilities, thus avoiding to read the cache
line before writing it back.

Figure 23 illustrates the effect of software-managed buffers
on the performance of partitioning. In both figures, we parti-
tion a 128 million-tuple data set with 8 bytes per tuple (Work-
load B) and measured the achievable throughput for single-
pass radix partitioning with and without software-managed
buffers.
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Fig. 23. Partitioning performance comparison when using 4 KiB and 2 MiB pages (Using a single core on Intel Xeon L5520, 2.26 GHz).

As can be seen in the figure, software-managed buffers in-
deed cause some copying overhead. But the investment clearly
pays off once the available TLB entries are exhausted. At
about 8 radix bits (Figure 23(a)) the performance of the naı̈ve
strategy begins to suffer from the growing TLB miss cost,3

whereas the implementation with software-managed buffers
handles the growing fanout much more gracefully. Essentially,
software-managed buffers shift the TLB exhaustion problem
to the configurations beyond 14 radix bits, where TLB entries
are not even sufficient to hold the “cache-local” buffer.

The effect is even more pronounced when we configure our
system to use a 2 MiB page size (cf. Figure 23(b)). With now

only 32 TLB entries available, conventional radix partitioning
seriously suffers from TLB misses already for five radix bits
(e.g., 32 partitions), while software-managed buffers can keep
partitioning speed almost constant even for very large fanouts.

In practice, the advantage of software-managed buffers is
two-fold: (i) for many situations, software-managed buffers
offer better absolute performance, since fewer passes can
usually achieve the same overall fanout; (ii) the optimization
is very robust toward the configured number of radix bits,
hence, it reduces the potential damage of ill-chosen algorithm
parameters.

3Note that the 64-entry TLB1 is assisted by a 512-entry TLB2.


