
Diss. ETH No. 28852

Extended Coverage
Synchronization and

Positioning for the Cellular
Internet of Things

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by
MAURO ANTONIO SALOMON

MSc ETH EEIT, ETH Zurich
born on 14.12.1990

citizen of Sierre VS, Switzerland

accepted on the recommendation of
Prof. Dr. Qiuting Huang, examiner

Prof. Dr. Andreas Burg, co-examiner
Prof. Dr. Matthias Korb, co-examiner

2022





Acknowledgments

This thesis would not have been possible without the support of many
people in my professional and private circle. Inevitably, I will not
mention everyone below, but they all deserve my sincere gratitude.
I would first like to thank Prof. Qiuting Huang for the opportunity
to work on such an exciting project and for his guidance throughout
my years at the Integrated Systems Laboratory (IIS) of ETH Zurich.
Special acknowledgments go to Prof. Andreas Burg from EPFL for
reading and co-examining my thesis. I valued the opportunity to
expose my work to his expertise in VLSI design and digital signal pro-
cessing. I also express my deepest gratitude to Prof. Matthias Korb
for co-supervising and examining the thesis. His extensive support and
advice have been priceless during my whole time as a doctoral student.
Furthermore, he was a key contributor to our research activities.

Among my academic colleagues, I would especially like to thank
my fellow doctoral student and J90 office mate Stefan Lippuner for his
feedback on the first draft of the thesis, his immense contributions to
the modem system-on-chips, and our countless and fruitful discussions
at the coffee corner. Special thanks also to Benjamin Weber, who
supervised my Master’s thesis, for the initial recommendation for the
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Abstract

The fast growth of the Internet of things (IoT) has triggered the
emergence of new needs in wireless communications. The require-
ments of applications that rely on autonomous embedded systems
differ from those of human-centric services that have traditionally
dominated data traffic. The urge for facilitated wireless connectivity
for small, low-cost, and energy-constrained devices has led to the rapid
development of low-power wide area networks (LPWAN) over recent
years. High connection density, low device complexity, low-power
operating modes, ubiquitous coverage, and positioning capabilities are
all essential features that LPWAN must support to satisfy the needs
of machine-type communications (MTC).

Legacy cellular networks offer a global infrastructure that can
fulfil the needs of all kinds of IoT use cases if it evolves to include a
specific set of features for MTC. The standardization of Narrowband
Internet-of-Things (NB-IoT) and enhanced Machine-Type Commu-
nication (eMTC) based on fourth-generation (4G) mobile technolo-
gies has provided cellular operators with sufficient tools to upgrade
their networks for present and future machine-centric applications.
However, the success of cellular IoT communications relies on the
availability of low-cost modems that can take full advantage of the
features included in the mentioned standards.

This thesis identifies the main challenges of developing such devices
and provides solutions that fit the constraints of integrated systems.
Amid the desired features, coverage extension is essential to achieve
global availability without increasing the density of the deployed base
stations. Specially tailored algorithms that deal with the reduced
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vi ABSTRACT

capabilities of IoT equipment while fully exploiting the allocated ra-
dio resources are crucial to expand the reach of communication and
positioning services. Repeated transmissions can compensate for the
additional path loss suffered in remote or underground locations and
increase signal coverage at the cost of higher latency and reduced
throughput, both of which are acceptable for MTC. However, accu-
rate synchronization is needed to minimize accumulation losses and
decrease the overhead of repetitions.

Synchronization to the network needs the precise evaluation of
errors in the local time and frequency references of devices to peri-
odically correct residual offsets. The estimation strategies developed
in this work and implemented on highly-integrated modem system-
on-chips (SoCs) allow the communication with eMTC at input power
levels as low as −136.8 dBm, the equivalent of −24.8 dB signal-to-noise
ratio (SNR). Furthermore, cellular networks supporting positioning
based on the observed time difference of arrival (OTDOA) provide
an alternative to the Global Navigation Satellite System (GNSS) and
extend the coverage of location services to indoor and deep urban
scenarios. The prototype modem SoC developed in this work showed
an OTDOA positioning accuracy below 70 m in a laboratory setup
using NB-IoT signals with cells at −15 dB SNR.



Résumé

La croissance rapide de l’Internet des objets (IdO) a mis en lumière
de nouvelles exigences en matière de communication. Les applications
basées sur des systèmes embarqués autonomes n’ont pas les mêmes
besoins que celles centrées sur les êtres humains qui ont traditionnel-
lement dominé le traffic de données. La nécessité de simplifier l’accès à
la connectivité sans fil pour des appareils de petite taille, à bas coût et
à l’utilisation d’énergie réduite est à l’origine du développement récent
de résaux étendus à basse consommation (LPWAN). Une haute den-
sité de connections, des terminaux simplifiés, des modes de consomma-
tion réduite, une couverture globale et la géolocalisation sont autant
d’éléments essentiels qui doivent être inclus dans les LPWAN pour
satisfaire les besoins de la communication intermachines.

Les réseaux mobiles conventionnels offrent une structure mondiale
qui peut remplir les exigences de toutes sortes de cas de figure dans
l’IdO, pour autant que certaines améliorations y soient apportées.
Avec l’introduction de Narrowband Internet-of-Things (NB-IoT) et
enhanced Machine-Type Communication (eMTC), tous deux basés
sur la technologie mobile de quatrième génération (4G), les dernières
normes de communication offrent aux opérateurs de réseaux suffisam-
ment d’outils pour adapter leur infrastructure aux besoins actuels et
futurs des applications centrées sur les machines. Cependant, le succès
des communications cellulaires pour l’IdO repose sur la disponibilité
de modems à faible coût qui peuvent tirer pleinement parti des fonc-
tionnalités permises par les standards nommés précédemment.

Cette thèse identifie les principaux défis de l’implémentation de
tels dispositifs et fournit des solutions adaptées aux contraintes de
systèmes intégrés. Parmi les caractéristiques souhaitées, l’extension
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de la couverture du signal radio est essentielle pour atteindre une
disponibilité globale sans augmenter la densité des stations de base
déployées. Afin d’étendre la portée des services de communication
et de localisation, il est crucial de concevoir des algorithmes qui ex-
ploitent pleinement les signaux reçus malgré les capacités réduites
des équipements pour l’IdO. Des transmissions répétées peuvent com-
penser l’affaiblissement supplémentaire subi par les signaux sans fil
pour atteindre des endroits éloignés ou souterrains. La couverture
peut ainsi être augmentée au prix d’une latence plus élevée et d’un
débit réduit, tous deux acceptables dans de nombreux cas de figure de
communication intermachines. Cependant, une synchronisation pré-
cise est indispensable pour minimiser les pertes lors de l’accumulation
de signaux et ainsi optimiser l’utilisation des répétitions.

La synchronisation au réseau nécessite l’évaluation précise de dé-
calages de temps et de fréquence dans les dispositifs pour corriger
périodiquement les erreurs résiduelles de leurs références. Les straté-
gies d’estimation développées dans ce travail et implémentées dans
des modems intégrès en tant que systèmes sur puce (SoC) permettent
de communiquer à l’aide d’eMTC à des niveaux de signal reçu aussi
bas que −136.8 dBm, soit l’équivalent d’un rapport signal sur bruit
(SNR) de −24.8 dB. En outre, les réseaux cellulaires qui supportent
le positionnement basé sur la différence de temps d’arrivée observée
(OTDOA) constituent une alternative au système mondial de navi-
gation par satellite (GNSS) et étendent la couverture des services
de localisation à des appareils déployés à l’intérieur de bâtiments ou
dans des zones hautement urbanisées. Des expériences en laboratoire
ont également démontré qu’une précision inférieure à 70 m peut être
atteinte en utilisant le positionnement OTDOA avec NB-IoT, malgré
des signaux de cellules à −15 dB SNR.
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Chapter 1

Introduction

Cellular networks are an essential component of the social and tech-
nological revolutions triggered by the advent of mobile phones. The
importance of wireless connectivity has led to the worldwide deploy-
ment of cellular systems, bringing the Internet into everyone’s hands.
Over the last decade, the broad cellular coverage has contributed to
the growth of the Internet of things (IoT) [1], an expanding network of
objects connected to the Internet. The increased number of device-to-
device links has highlighted the different requirements of machine-type
communications (MTC) compared to human-centric scenarios and has
driven the emergence of competing wireless communication standards.

With their global presence, cellular networks already provide a
viable solution for IoT connectivity in many cases. However, past
technologies target mainly personal use and miss the flexibility to
accommodate all emerging applications. The evolution of cellular
standards, from 2G to 4G, focused principally on improving user ex-
perience, e.g. by increasing data rates and reducing latencies. Never-
theless, these features are not always relevant for MTC. For example,
remote sensing and monitoring only need limited throughput and can
deal with long delays in data transfer. Instead, they would benefit
from increased battery life to reduce operational costs and extended
signal coverage to reach underground locations. 5G networks were
developed to fulfil such requirements but need performant devices
that fully exploit their features.
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2 CHAPTER 1. INTRODUCTION

1.1 5G Standards for the IoT
The International Telecommunication Union (ITU), an agency of the
United Nations that regulates communication and information tech-
nologies, decidedto group a set of protocols satisfying the needs of
future wireless communications into a family of standards called the
International Mobile Telecommunications-2020 (IMT-2020). The ITU
fixed the requirements to be part of the IMT-2020 specifications in
2017 [2]. The three classes of use cases depicted in Fig. 1.1 were
defined to cover the broad spectrum of target applications and to deal
with their conflicting requirements [3]:

• enhanced mobile broadband (eMBB),

• ultra-reliable and low-latency communication (URLLC),

• massive machine-type communication (mMTC).

Figure 1.1: Classes of use cases considered for 5G cellular technologies
as defined in the requirements for IMT-2020 [2].

The first scenario, eMBB, corresponds to the evolution of legacy
mobile broadband to support even higher data rates. Its characteris-
tics can also cover the needs of emerging applications, like virtual and
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augmented reality, that would benefit from higher throughputs than
supported by previous generations of mobile communication stan-
dards. The second, URLLC, was meant for so-called mission-critical
services with stringent requirements on reliability and latency. For
instance, traffic safety for autonomous cars and factory automation
could rely on this kind of communication. Finally, mMTC gathers use
cases where wireless connectivity should be accessible for numerous
low-cost devices that only need small data rates, like packet or asset
trackers, smart meters, and sensors for remote monitoring.

The 3rd Generation Partnership Project (3GPP) is the principal
organization developing specifications for mobile communications and
was already responsible for the third and fourth generations of cel-
lular technologies. To comply with the objectives set by ITU, the
3GPP proposed a set of radio access technologies (RATs) that form
its fifth-generation (5G) family of standards and were included in
the first IMT-2020 release in 2021 [4]. In 3GPP’s 5G portfolio, the
eMBB and URLLC scenarios are covered by a newly introduced RAT
named New Radio (NR) [3], while mMTC support is provided by
two solutions, namely Narrowband Internet-of-Things (NB-IoT) and
enhanced Machine-Type Communication (eMTC)1 [5], both based
on Long Term Evolution (LTE), the fourth-generation (4G) cellular
standard.

Besides remote sensing and control, many IoT applications rely on
tracking the geographical position of objects. In this case, knowing
the target device’s location is essential. Cellular networks facilitate
position estimations in different ways. For example, NB-IoT and
eMTC can serve as support for the Global Navigation Satellite System
(GNSS) with the transmission of assistance information to the end
device [6]. Furthermore, cellular signals received from different base
stations (BSs) allow the estimation of the location of modems by
multilateration. This last option uses the observed time difference
of arrival (OTDOA) technique and is already part of the LTE speci-
fications [7]. For IoT devices, OTDOA support was also included in
NB-IoT and eMTC with improvements to extend its coverage.

1eMTC is also called LTE-M or LTE category M (Cat-M).
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1.1.1 Challenges of Massive MTC
NB-IoT and eMTC have similar attributes and were designed to fulfil
the main requirements of mMTC. The main features that make them
suitable for such scenarios are:

• extending signal coverage,

• allowing low-power operation,

• enabling low-complexity devices, and

• supporting positioning services.

Notable differences between the two are an even lower complexity
for NB-IoT and higher data rates and better support for mobility
for eMTC. A new generation of cellular modems was needed to fully
exploit the specific characteristics of these standards and unlock the
potential of mMTC. Their development must focus on achieving a
high integration level to minimize cost, efficiently managing power
consumption to extend battery life, and ensuring ubiquitous connec-
tivity and positioning.

1.1.2 Adoption of NB-IoT and eMTC
In 2016, 3GPP introduced the first version of NB-IoT and eMTC in
Release 13 of LTE specifications. Since then, newer releases have up-
dated and expanded both technologies. By now, the two are commer-
cially available in numerous networks around the world, as depicted
in Fig. 1.2. Their inclusion in the IMT-2020 standards and their
compatibility with 4G and 5G networks are significant advantages
compared to older cellular technologies used for IoT applications in
the past. Furthermore, 2G and 3G support is being discontinued in
an increasing number of regions [8, 9].

However, the adoption of NB-IoT and eMTC was not immediate
and Fig. 1.2 also shows that many territories are not covered by
either of the two RATs, yet. Many countries in Latin America, Asia,
and Africa still rely on 2G for low-cost devices, without guarantees
of coming deployments. Furthermore, the new cellular IoT (cIoT)
standards had a fragmented adoption across countries, with some
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Figure 1.2: The GSMA’s map of NB-IoT and eMTC commercial
deployments as of February 2022 [10] © GSM Association 1999 - 2019.

networks supporting only one of the two solutions and providing ir-
regular regional coverage. Thus, true global connectivity can only be
achieved by multi-mode devices supporting NB-IoT, eMTC, and 2G
for fallback. The need to support several technologies combined with
high pressure on module size and cost is another constraint that has
to be considered for appropriate system design.

1.2 Previous and Related Work

In past years, extensive research toward fully integrated cellular modems
has been undertaken at the Integrated Systems Laboratory (IIS) of
ETH Zurich. Collaboration with the project partner ACP AG enabled
the implementation of a solution including radio frequency (RF) sub-
system and digital baseband (DBB) processing for 2G into a single
integrated circuit [11]. A step further was taken in [12] by also
including a microprocessor system into a combined 2G and NB-IoT
modem, integrated into a single dual-mode RF-system-on-chip (SoC)
caple of hosting the cellular protocol stacks and a user application.
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This work builds on the mentioned research and is the result of
a close collaboration with the industrial partner and fellow doctoral
students and researchers from the IIS. Among them, Stefan Lippuner
widely contributed to the development of the triple-mode modem SoC
presented in this thesis [13]. Besides his work on the architecture and
back-end implementation of the SoC, he was responsible for crucial
tasks in the digital baseband that are complementary to the material
presented in this work. Especially, he designed algorithms that dras-
tically improve cell search, initial synchronization, and data decoding
in extended coverage [14].

1.3 Contributions

Among the desired features of mMTC, coverage enhancement has a
significant impact on signal processing and imposes considerable chal-
lenges on the physical layer (PHY) implementation of modems [15].
In extended coverage conditions, when the power reaching the device
is well below the thermal noise floor, establishing and maintaining a
communication link requires special approaches that are not needed
for legacy mobile broadband. This work proposes solutions to develop
a multi-mode cIoT modem with extended coverage and positioning
support. The presented algorithms were integrated into a single SoC
while maintaining device complexity low. The performance gains
achieved with improved signal processing were further exploited to
reduce power consumption.

Time and frequency synchronization between the receiver and the
transmitter is essential in wireless positioning and communication
systems. The reception of cellular signals is especially sensitive to
synchronization errors and relies on the capability of mobile devices
to synchronize with base stations. This work proposes time and
frequency offset estimation algorithms that minimize the residual syn-
chronization errors in extreme coverage conditions. The proposed
solutions were efficiently implemented with the resources of the de-
veloped modem SoC. Compared to other approaches commonly men-
tioned in the literature, the required acquisition time could be signif-
icantly reduced with improved estimation accuracy.
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Cellular OTDOA positioning aims at expanding location-based
services (LBS) to areas that are not covered by the GNSS, like indoor
locations. The so-called time of arrival (TOA) measurements needed
for OTDOA are the main challenges of its support in low-cost modems.
In this thesis, approaches for TOA measurements in extended coverage
were explored and implemented with the help of dedicated hardware
acceleration. The impact of frequency offsets on measurement accu-
racy was also considered. The performance of the final solution was
evaluated in a laboratory setup with a fabricated SoC.

The computational requirements of embedded modems are mainly
dictated by the throughput and latency constraints imposed by cellu-
lar standards. Among the required signal processing, channel estima-
tion and equalization are in the receive chain of most critical tasks.
Thus, a hardware accelerator for channel estimation and equalization
that meets the tight latency requirements of eMTC was designed.
Time and frequency domain combination of channel estimations was
included in the implementation to improve decoding performance in
extended coverage. To minimize cost, hardware reuse within the block
was extensively applied.

The implemented algorithms were evaluated with measurements
on a prototype modem built around the developed SoC. The overall
performance of the receive chain was assessed by considering the
decoding performance of the main data channels. The impact of
time-domain channel estimation averaging on eMTC sensitivity was
analyzed and used to illustrate the importance of frequency synchro-
nization. Furthermore, modem power consumption was analyzed,
showing how sensitivity gains reduced energy usage when combined
with early termination of data reception.
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1.4 Outline
This thesis is organized as follows. Chap. 2 provides the background
needed to understand the PHY of NB-IoT and eMTC. Chap. 3 presents
algorithms to maintain fine time and frequency synchronization to the
base station while operating in extended coverage. Chap. 4 introduces
cellular OTDOA positioning and the signal processing solutions to
support it in cIoT modems. Chap. 5 gives an overview of the ar-
chitecture of the SoC jointly developed in this work and discusses
the implementation of selected digital baseband processing tasks us-
ing a combination of embedded software and hardware acceleration.
Chap. 6 presents measurements performed on the fabricated SoC,
with considerations on synchronization and positioning performance,
achievable sensitivity for communication, and power consumption.
Finally, Chap. 7 concludes the thesis.



Chapter 2

Cellular IoT
Background

Thanks to their global availability, cellular networks are commonly
used for IoT applications that require wireless connectivity across
large areas. For low-throughput use cases, 2G technology was often
preferred to its 3G and 4G counterparts due to its lower complexity.
However, to cope with the increasing number of connected devices
and the rise of new low-power wide area networks (LPWAN), new
alternatives were needed to improve the competitiveness of cellular
networks for machine-type communications (MTC). Therefore, the
3GPP developed two standards based on LTE, namely NB-IoT and
eMTC, to be part of its 5G portfolio for mMTC.

This chapter presents the physical layer (PHY) of NB-IoT and
eMTC. The basic concepts needed to understand cellular communica-
tions are introduced first. Then, an overall picture of the two PHYs
is given, before describing the specific features included to address
the needs of MTC. Finally, the most challenging tasks that must be
performed by the user terminals to fulfil the requirements of cIoT
applications are identified.

9
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2.1 Cellular Networks

Cellular networks are a kind of wireless access system where the
covered region is divided into cells, each served by a base station
(BS). The end devices, or user equipments (UEs), can communicate
with each other or access the Internet through their serving BS. An
ideal cellular grid with non-overlapping hexagonal cells is depicted
in Fig. 2.1. In real deployments the covered areas can have different
sizes and overlap. The UEs communicate with their serving BS with
radio waves sent over the air, the information is then forwarded to
a wired network that interconnects the BSs and allows the access
to external networks. Signals from BSs to UEs build the downlink
(DL) while those in the other direction the uplink (UL). Even though
DL and UL transmissions are separated in time or frequency domain
by time-division duplex (TDD) or frequency-division duplex (FDD),
respectively, UEs can still suffer from interference from neighbour
cells.

Figure 2.1: Example of a cellular grid.

The PHY of the radio access protocol defines how data packets
are encoded and modulated to be transmitted through the wireless
channel, setting, among others, the maximum throughput, the min-
imum latency, and the coverage that can be achieved. The real
performance of a wireless network depends on how it is deployed and
on the capabilities of the BSs and UEs that are used. The minimum
requirements for the different components of the network are set by a
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common standard. As cellular systems use licensed spectrum, efficient
use of the expensive resources is of major interest for operators.

2.1.1 The Digital Communication Link

To achieve reliable communication and high efficiency, modern wire-
less communication standards use digital modulation techniques. In
this case, the one-directional wireless link between two devices, e.g.
the DL transmission from a BS to a UE, can be depicted as in Fig. 2.2.

Figure 2.2: The wireless communication link.

On the transmitter side, the DBB signal generation includes the
encoding of data bits bi with forward error correction (FEC) codes,
the modulation into data symbols, and the generation of the digital
waveform s[n] that is passed to the digital-to-analog converter (DAC).
The analog signal s(t) is then filtered and amplified before being up-
converted to the RF fC generated with a local oscillator as reference.
Finally, the RF signal is amplified to the desired power level with
a power amplifier (PA) and converted to a radio wave through an
antenna.
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EPA EVA ETU
RMS delay spread 43 ns 357 ns 991 ns
Coherence bandwidth 4.5 MHz 460 kHz 100 kHz

Table 2.1: LTE channel models [16].

Wireless Channel Model

Besides suffering from interference, the radio wave is also subject
to various undesired effects in its way from the transmitter to the
receiver. One of the impacts of the radio channel is a power decay
dependent on the distance travelled by the radio wave, its carrying
medium, and the encountered obstacles. The larger the transmitted
power and the smaller the needed receive power level for a successful
transaction, the larger the covered area can be.

To model the effect of reflections and movement on the radio wave,
the 3GPP used the LTE channel models for NB-IoT and eMTC.
They are characterized by their delay profile, represented in the form
of a tapped-delay-line, and by their Doppler spectrum, defined by
the maximum Doppler frequency of the channel. Three multipath
channel delay profiles are used with different average and maximum
tap delays to cover various propagation models: extended pedestrian
A (EPA), extended vehicular A (EVA), and extended typical urban
(ETU) [16]. In the spectral domain, the multipath channels translate
into a frequency-dependent scaling and rotation of the signal. The
larger the delay spread of the channel, the faster its frequency response
changes across the considered spectrum. The frequency range over
which the effect of the channel can be considered to be almost con-
stant is called the coherence bandwidth of the channel, it is inversely
proportional to the time difference between the first and last tap with
significant energy [17]. The root-mean-square (RMS) delay spread and
the estimated coherence bandwidth for the different 3GPP channels
are summarised in Tbl. 2.1. The coherence bandwidth was estimated
by counting paths that are at most 10 dB below the strongest path.
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Analog Receiver Model

The analog receiver also affects the received signal. The analog front-
end and the low-noise amplifier (LNA) introduce thermal noise that
can be modelled as additive white Gaussian noise (AWGN).

Furthermore, a mismatch between the carrier frequencies gener-
ated at the transmitter and the receiver causes a frequency offset
ν = fC,TX − fC,RX in the down-converted baseband signal. The fre-
quency offset can reach tens of kilo Hertz when the device is switched
on for the first time and can vary strongly during operation due to
the temperature-dependent behaviour of digitally-controlled crystal
oscillators (DCXOs) commonly used for low-cost devices.

An inaccurate frequency reference also causes the time bases at
the two ends to drift. Therefore, to maintain synchronization, the UE
must periodically estimate its time offset (TO) to the BS and correct
its time reference accordingly. The time offset can be modelled with
a time delay τ in the received waveform.

Overall, the received baseband signal before sampling, including
the mentioned effects of the analog receiver and the radio channel can
be modelled as follows:

r(t) = Aej2πνt(s ∗ h)(t− τ) + n(t) . (2.1)

The term h(t) represents the channel impulse response and ∗ the
convolution between two functions. For the 3GPP channel models
that only have discrete taps hi at specific time delays ti, the impulse
response is of the form:

h(t) =
∑
i

hiδ(t− ti) .

The amplitude scaling factor A includes the various amplification
stages of the transmitter and the receiver, as well as the path loss
due to radio transmission. To match the experienced noise power,
the AWGN term n(t) must be scaled to include the amplified noise
introduced by the receiver.

Digital Signal Processing

The main goal of the digital signal processing in the receiver is to
recover the transmitted bits from the noisy and distorted digital signal
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r[n] = r(t)|t=nT delivered by the analog-to-digital converter (ADC).
Besides handling the equalization, demodulation, and decoding of the
received signal, the time and frequency synchronisation as well as
receive (RX) gain control are also managed by the PHY in cellular
communications.

While the higher protocol layers can be implemented in software,
the tight throughput and latency constraints and the complexity of
the PHY need dedicated hardware accelerators for DBB processing.
On the other hand, minimizing silicon area by sharing computational
resources across different tasks is highly desired in MTC devices to re-
duce cost. This work will focus on some of the digital signal processing
tasks that are critical for coverage extension in cIoT communications
and positioning, and on their implementation on low-cost SoCs.

2.2 The PHY of 5G Cellular LPWAN
Before discussing the challenges specific to cellular IoT systems, an
overview of the PHY of the two standards considered in the scope of
this work is given based on the more comprehensive description of [5].
Understanding the PHY helps specify the constraints that impose
latency and computational requirements on the UE. Furthermore,
it allows the analysis of the signals available to accomplish critical
tasks like cell detection, synchronization, and equalization. The new
challenges specific to MTC devices are identified highlighting the dif-
ferences to legacy LTE.

2.2.1 Transmission Scheme and Numerology
The DL of NB-IoT and eMTC uses orthogonal frequency-division
multiplexing (OFDM) with a subcarrier spacing of fδ = 15 kHz. In
the UL the two standards support single-carrier frequency-division
multiple access (SC-FDMA) also with 15 kHz subcarrier spacing. In
NB-IoT single-tone UL transmissions with either 15 kHz or 3.75 kHz
tones are possible as well. The resources in the frequency domain are
grouped into physical resource blocks (PRBs) containing 12 adjacent
subcarriers. The system bandwidth for NB-IoT excluding guard bands
is one PRB, i.e. 180 kHz. For eMTC, the UEs must support 1.08 MHz,
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i.e. 6 PRBs or a so-called narrowband (NB), of RX and transmit
(TX) bandwidth, but the cell can have up to 20 MHz bandwidth
including guard bands. Instead of performing the OFDM modulation
and demodulation at the full LTE sampling rate, eMTC UEs can
tune their carrier frequency to the center of the NB assigned to their
transmission and do the operations only on the targetted PRBs at
1.92 Msps. As for LTE, the time-domain structure of NB-IoT and
eMTC is divided into frames of 10 ms, periodically numbered from 0 to
1023 and composed of 10 one-millisecond subframes (SFs) containing
two slots. Each slot contains 7 OFDM symbols of approximately
71.4 µs for the normal cyclic prefix (CP), and 6 symbols of 83.3 µs
each for the longer extended CP. NB-IoT supports only normal CP.

OFDM signals are typically depicted with a two-dimensional re-
source grid where time is represented on the horizontal axis and
frequency on the vertical axis, as in Fig. 2.4. The smallest element of
this grid corresponds to one subcarrier within an OFDM symbol and is
called a resource element (RE) in 3GPP nomenclature. Their common
numerology with LTE allows NB-IoT and eMTC to operate within
LTE carriers in so-called in-band deployments without interfering with
legacy transmissions. Only such in-band deployments are possible for
eMTC while NB-IoT can also be deployed standalone or in the guard
bands of LTE.

2.2.2 Physical Channels and Signals
All PHY transmissions can be categorized as physical channels or
signals. Physical channels are used to convey user data as well as
control information. The blocks of bits to be transmitted over phys-
ical channels are extended with cyclic redundancy checks (CRCs)
for error detection and protected with FEC before being modulated
on quadrature amplitude modulation (QAM) symbols and mapped
to REs. Physical signals are pilots known at the transmitter and
the receiver. They can be divided into synchronization signals and
reference signals. The former are typically used for the initial cell
search and the latter for channel estimation and equalization of data
symbols.

DL physical channels and signals can be transmitted over multiple
antennas using different antenna ports (APs). In the UL, eMTC
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Figure 2.3: Baseband signal generation.

and NB-IoT UEs only support single-antenna transmissions. Physical
transmissions can be assumed to experience the same channel only if
they use the same AP [18]. On the one hand, this property dictates
which reference signals must be used for the equalization of each data
channel. On the other, it limits the signals that can be accumulated
coherently to those belonging to the same AP. In some cases, this
coherency condition is further limited in the time and frequency do-
mains, allowing the BS to generate its signal with more flexibility. For
example, AP hopping or PRB-specific beamforming could be used to
better exploit the available degrees of freedom, but would at the same
time restrict the number of subframes and subcarriers that can be
combined coherently by the UE.

2.2.3 Overview of eMTC PHY

The DL OFDM resource grid of a 3 MHz FDD LTE cell supporting
eMTC is shown in Fig. 2.4. The primary synchronization signal (PSS)
and secondary synchronization signal (SSS) are the same as for LTE.
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Both are periodically mapped every 5 subframes and occupy the 62
subcarriers around the center of the LTE cell’s carrier frequency. The
direct current (DC) subcarrier is left empty to prevent interference
generated by leakage from the BS’s carrier frequency. Always the same
PSS out of three possible sequences, each corresponding to a different
sector identity (ID), is mapped on the 7th OFDM symbol of the SF.
Two different SSS sequences are mapped on the 6th OFDM symbol
of SF 0 and SF 5. For each sector ID, 168 pairs of SSS sequences
are possible, each corresponding to a group identity. The UE can
determine the physical cell identity (PCID) of the LTE cell out of
504 possible values by combining the sector and the group identities
after finding which sequences are mapped. Both PSS and SSS are
sent on the same AP only if they are located in the same subframe,
i.e. they cannot be assumed to be coherent across SFs. Besides PCID
acquisition, PSS and SSS allow the detection of the CP type used
in the cell, the acquisition of frame timing, and the initial frequency
synchronization with the BS.

The relevant reference signals in the DL of eMTC are the cell-
specific reference signals (CRS) and the demodulation reference sig-
nals (DMRS). CRS can be mapped on up to 4 APs. The number of
BS antennas depends on the deployment and the UE must support
all allowed configurations. In Fig. 2.4 they are depicted in blue for a
cell with a single CRS AP. On a given AP, the CRS are transmitted
coherently in each SF and across the full LTE cell bandwidth on every
sixth subcarrier. For APs 0 and 1 they are mapped on the first and
fifth symbol of each slot, and for APs 2 and 3 only on the second
symbol. The CRS sequence and the subcarrier offset of the mapping
in the frequency domain depend on the PCID, which is known only
after PSS and SSS acquisition. CRS have a frequency reuse factor of
six if a single AP is used and of three otherwise, as they are mapped
every third subcarrier on symbols carrying APs 0 and 1. CRS can
be used for time and frequency offset tracking because their presence
does not depend on other transmissions. On the other hand, DMRS
are always coupled to a physical channel and are only mapped if their
associated channel is present. In the example of Fig. 2.4, they are
only mapped in SFs 1 and 2. They are mainly used for the channel
estimation needed to equalize the data symbols of physical channels.



18 CHAPTER 2. CELLULAR IOT BACKGROUND

Figure 2.4: DL OFDM grid and resource allocation of eMTC in a
3 MHz LTE cell.

DMRS can only be assumed to be transmitted coherently within the
same PRB and SF.

The first physical channel that has to be decoded by the UE
is the physical broadcast channel (PBCH). It is mapped on the 6
central PRBs in the first SF of each frame and is transmitted on
the same APs as the CRS. The PBCH is backwards compatible with
legacy LTE and carries the so-called master information block (MIB)
which contains basic information about the cell. After successfully
decoding the PBCH, the UE can determine whether the cell supports
eMTC and acquire essential knowledge on its configuration and status,
like the DL system bandwidth, the up-to-date system frame number
(SFN) and the number of CRS antenna ports. For cells supporting
eMTC, the PBCH can be mapped with repetitions to extend the signal
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coverage, one of the main goals of cellular LPWAN. However, the
configuration of such repetitions is static and the decision to use them
is up to the network operator. Thus, critical UE features should not
rely only on PBCH repetitions.

As for legacy LTE, the default transmission duration of PHY
channels, or transmission time interval (TTI), is 1 ms. The main PHY
data channels are the physical downlink shared channel (PDSCH) and
the physical uplink shared channel (PUSCH). They carry user data
and higher-level control information in the DL and UL. Depending
on the transmission mode, the PDSCH uses either CRS or DMRS as
reference symbols. The empty REs in the first symbols of PDSCH SFs
are reserved for the legacy control channel of LTE [19]. For eMTC,
PDSCH and PUSCH had to be limited to occupy between one and
six adjacent PRBs to enable UEs with reduced RX and TX band-
widths. Both use turbo coding for FEC and can be modulated with
quadrature phase-shift keying (QPSK) or 16-QAM symbols. The rate
used for channel coding can be adjusted by puncturing part of the bits
generated by the FEC encoder. The selected combination of coding
rate and mapped QAM symbols, called the modulation and coding
scheme (MCS), is selected by the BS. For transmissions dedicated to
a specific UE, the MCS can be adapted to fit the conditions of the
radio link. For broadcast data, the configuration is static and should
be set by the operator depending on the area that must be covered by
a cell. To deal with the reduced sensitivity of low-cost single-antenna
UEs and to achieve the coverage extension goals that will be discussed
later in this chapter, eMTC allows all channels to be mapped with
repetitions, expanding the transmission across multiple TTIs. The
maximum number of repetitions that can be used for PDSCH and
PUSCH depends on the coverage enhancement (CE) mode in which
a device operates. CE mode A is mandatory and allows up to 32
repetitions for both channels, while CE mode B allows up to 2048
repetitions but its support is optional for the UE and the BS. Like the
MCS, the number of repetitions of data channels can be dynamically
adjusted by the BS.

Control information for the PHY is exchanged through dedicated
channels. The MTC physical downlink control channel (MPDCCH)
carries downlink control information (DCI) from the BS to the UE. It
includes scheduling and coding information needed by the end device
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to receive PDSCH and send PUSCH transmissions. In the UL, PHY
control information like the estimated strength and quality of the
signal received by the UE is conveyed through the physical uplink
control channel (PUCCH). These two control channels are also used
to report hybrid automatic repeat request (HARQ) feedback for data
channels in both directions, DL and UL.

The time relationship between control channels and their asso-
ciated data channels is imposed by the standard and they set hard
constraints on the latency of DL signal processing and UL signal
generation. As depicted in Fig. 2.4, the UE has 1 ms between the end
of the MPDCCH and the beginning of the PDSCH that it schedules.
Since the narrowband used for the transmission of the PDSCH is part
of the DCI carried by the MPDCCH, the UE has to successfully decode
the MPDCCH and extract the scheduling information early enough to
retune its frequency to the desired narrowband for the reception of the
PDSCH. A similar constraint arises from the timing of UL scheduling.
In this case, with the maximum timing advance (TA) applied to UL
channels to compensate for the round-trip delay of the radio waves,
the end of the MPDCCH and the beginning of the scheduled PUSCH
are separated by 2.3 ms at least. In this time interval, the PHY of
the UE must not only decode the DCI but also fetch the UL data
from higher protocol layers, generate the PUSCH, and start the RF
transmission. The latency requirement for PDSCH decoding is set by
the timing of the associated PUCCH for HARQ feedback. In this case,
the minimum delay to decode the PDSCH and start the transmission
of the PUCCH is again 2.3 ms.

2.2.4 Overview of NB-IoT PHY
NB-IoT has a set of physical signals and channels similar to eMTC,
but only supports up to two APs in the DL. An overview of possible
DL transmissions is shown in Fig. 2.5. The signals available for initial
cell search and synchronization are the narrowband PSS (NPSS) and
the narrowband SSS (NSSS). To compensate for the reduced signal
bandwidth of NB-IoT, the synchronization signals have a longer dura-
tion than their LTE and eMTC counterparts. NPSS and NSSS both
occupy 11 OFDM symbols, leaving the three first symbols of the SF
unused to avoid collisions with legacy LTE in in-band deployments.
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The former is mapped on 11 out of 12 subcarriers in subframe 5 of
each frame, while the latter occupies all 12 subcarriers of the last SF
in all even frames, i.e. with a periodicity of 20 ms. As opposed to the
three possible PSS sequences in LTE, only one NPSS is available in
NB-IoT. A single NPSS sequence has the advantage of reducing the
complexity of initial cell search and synchronization by limiting the
search space that has to be covered. However, it comes at the cost of
less flexibility for NPSS interference mitigation in network planning,
because all cells have to use the same signal. The PCID is fully
determined by the NSSS sequence. Like in LTE, NPSS and NSSS
can be assumed to be sent on the same antenna port only within a
subframe.

Figure 2.5: DL OFDM grid and resource allocation of an NB-IoT cell.

All NB-IoT downlink channels are associated with the same set
of pilots, the narrowband reference signals (NRS). These reference
signals can be sent on one or two antenna ports and are mapped on
two subcarriers of the last and second-last symbols of each slot, as
shown by the blue squares in the detailed resource grids of Fig. 2.5.
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The occupied subcarriers and the used sequence of QPSK symbols
depend on the PCID. NRS have a frequency reuse factor of six for one
AP, and three for two APs. Overall, they occupy 8 REs per antenna
port on the SFs where they are present. Unlike CRS, NRS are only
sent on a subset of subframes defined by the cell’s configuration. The
small number of SFs where NRS can be assumed to be always present
complicates the use of these pilot signals for radio link monitoring and
synchronization at a low signal-to-noise ratio (SNR).

The main broadcast channel, narrowband PBCH (NPBCH), as
well as the downlink control and data channels, narrowband PDCCH
(NPDCCH) and narrowband PDSCH (NPDSCH), are also depicted in
Fig. 2.5. They fulfil similar functions as their eMTC counterparts. All
DL physical channels rely on NRS for channel equalization and a con-
volutional code for FEC. In the UL, narrowband PUSCH (NPUSCH)
is used to carry user and higher layer control data as well as HARQ
feedback. For data transmission, NPUSCH is turbo encoded, while
for HARQ information repetition coding is used. To support large
payload block sizes despite a reduced signal bandwidth, data channels
can span across multiple SFs even without repetitions. Thus, NB-IoT
transmissions tend to have a longer duration and lower throughput
compared to eMTC. All DL and UL channels also support repetitions
with up to 2048 NPDSCH and NPUSCH repetitions mandatorily
supported by all UEs.

Besides lower peak data rates, NB-IoT also has higher delays
between control and data channels, relaxing the latency requirements
of PHY processing. In the UL, the minimum delay between the end
of the NPDCCH and its scheduled NPUSCH is 7.3 ms. As for the DL,
the delay between control and data channels is 4 ms, and the minimum
gap between the end of an NPDSCH and the start of its associated
HARQ NPUSCH is 11.3 ms.

2.3 Requirements of Cellular IoT
NB-IoT and eMTC were introduced to tackle the needs of cIoT ap-
plications. The main requirements that drove the development of
3GPP’s standards for MTC highlight the challenges faced in the design
of competitive UE modems that must deal with contradicting goals.
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2.3.1 Cost Reduction
One of the obstacles to using LTE to connect a massive number of
devices is the price of state-of-the-art modules common in high-end
mobile broadband applications. The minimum set of features that
must be supported by legacy LTE UEs already requires costly hard-
ware components that are prohibitive for applications with high cost-
pressure that only need small data rates. Cellular IoT standards allow
a considerable reduction in device price by enabling low-complexity
terminals [20,21].

Limiting the maximum RX and TX bandwidths reduces the com-
plexity of analog RF and baseband processing blocks at the cost of
smaller achievable peak data rates and reduced frequency diversity. It
also enables lower sampling rates and cheaper ADC and digital front-
end (DFE) designs. It can also simplify many DBB processing tasks
such as the fast Fourier transform (FFT) used for OFDM modulation
and demodulation. In Tbl. 2.2 the minimum RF bandwidth, sampling
rate, and OFDM FFT size of NB-IoT and eMTC are compared with
legacy LTE devices.

Furthermore, the smaller size of data packets in the targetted
mMTC use cases allows the reduction of the maximum block lengths
supported by the PHY. The shorter blocks combined with the lower
data rates result in relaxed requirements for the channel decoders, al-
lowing smaller implementations. Increasing the delay between control
and data channels for scheduling as well as for HARQ feedback also
reduces the latency requirement of the RX and TX chains, further
facilitating the complexity reduction of channel decoders. This is

LTE eMTC NB-IoT
RF bandwidth 20 MHz 1.4 MHz 200 kHz
Minimum sampling rate 30.72 Msps 1.92 Msps 240 ksps
OFDM FFT size 2048 128 16
Peak data rate DL/UL 10/5 Mbps1 300/375 kbps 25/62 kbps

Table 2.2: Comparison of bandwidth parameters.

1Maximum PHY throughput for LTE Category 1 UEs.
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particularly valid for NB-IoT, where at least 7.3 ms are available for
UL scheduling, and 11.3 ms for DL HARQ feedback. In the DL of
NB-IoT, data decoding was simplified further by using a convolutional
code instead of a turbo code for NPDSCH forward error correction
(FEC). For eMTC, the real-time requirement is more challenging,
especially for UL scheduling, because the minimum time between an
MPDCCH carrying an uplink schedule and the corresponding PUSCH
is approximately 2.3 ms. In that period, the PHY must decode all
MPDCCH candidates, fetch the data to be transmitted from higher
layers, and generate the PUSCH.

Enabling half-duplex FDD (HD-FDD) UEs with at least 1 ms
to switch from DL to UL and vice versa eliminates the need for a
duplexer and for separate local oscillators to generate RX and TX
frequencies. Another common choice made by module vendors to
reduce device cost is to use DCXOs instead of more expensive tem-
perature compensated crystal oscillators (TCXOs) as frequency ref-
erences. However, using less accurate DCXOs doesn’t only require
robust tracking algorithms for periodic frequency correction but also
drastically increases the frequency range that must be covered during
initial synchronization.

Both NB-IoT and eMTC UEs can operate with a single antenna
and save costs and space by avoiding multiple RX chains. The result-
ing losses of array gain and spatial diversity in the receiver translate
into a reduced DL coverage that must be compensated.

Overall a cost reduction of approximately 60− 70 % for eMTC
HD-FDD modems [5] compared to legacy LTE UEs should be achieved
by exploiting the relaxed requirements and the complexity reduction
techniques. For NB-IoT even lower complexity UEs are possible due
to its smaller bandwidth, lower throughput, simpler decoding, and
higher latency.

2.3.2 Low Power Consumption
In many applications the use of battery-powered systems is driven
by mobility requirements, but also for static devices, such as utility
meters, it may be impossible or too expensive to use the main grid as
a power source. The two use cases benefit from low-power operation
either allowing smaller batteries or increasing the lifetime of a single
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charge. To minimize maintenance costs and make install-and-forget
deployment models possible for products in remote areas, at least 10
years of battery life should be possible with a standard 5 W h battery
assuming infrequent transmission of small data packets [5].

The solutions introduced to optimize power consumption are ex-
tended discontinuous reception (eDRX) and power saving mode (PSM).
The former builds on top of legacy discontinuous reception (DRX) by
allowing longer inactivity periods. Once per eDRX cycle, the UE
should perform measurements and monitor control channels during
paging transmission windows containing at least one DRX cycle. The
latter allows the UE to completely skip measurements and to monitor
paging only during short periods after mobile-originated data transfers
or tracking area updates (TAUs), both involving uplink transmissions.
For PSM the TAU periodicity defines how often the UE is guaranteed
to be reachable while for eDRX it is the eDRX cycle length. If the
inactivity periods are long the UE has to synchronize again to the BS
when it wakes up.

As reachability comes at the cost of power-hungry TAUs in PSM,
this mode is intended for scenarios where devices can be unattainable
for long periods and data transfers are mainly initiated by the UE, as
for utility meters. In PSM, the main contributors to energy consump-
tion are the deep sleep current and the TX power of UL transmissions.
In eDRX, the power for paging monitoring and neighbour cell mea-
surements can become dominant for short eDRX cycles. For long
inactivity periods combined with extended coverage operation, cell
resynchronization after wake-up can also significantly impact battery
life because the UE will have to receive multiple SFs to accumulate
enough power to accurately estimate the time and frequency offsets.

Overall, when the device operates at low SNR, good receiver per-
formance can benefit energy efficiency by reducing the number of RX
SFs needed to decode DL control or data channels. The same applies
to cell search and time and frequency synchronization, if the UE can
perform them with a shorter received signal using efficient algorithms,
it will save power by switching off its receiver earlier than with less
performant algorithms. Tracking and measurements are important
because they have to be periodically done by the UE not only to set
up and maintain a connection but also to monitor paging after a long
idle time and measure neighbouring cells for reselection.
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2.3.3 Coverage Extension
Coverage extension is another important feature of new cellular IoT
standards. Not only do the losses introduced by some of the com-
plexity reduction techniques have to be compensated for, but the
coverage should also be significantly extended compared to legacy
LTE and Global System for Mobile Communications (GSM) devices to
enable deep indoor applications such as smart metering and building
monitoring where the devices may have to operate underground.

The coverage is measured as the maximum coupling loss (MCL) at
which a connection can be maintained with sufficient performance, i.e.
the UE should stay synchronized to the cell, and DL and UL physical
channels should operate with a reasonable block error rate (BLER),
e.g. 5− 10 %. The MCL of a physical channel is the difference between
the TX power across the spectrum occupied by the channel, and the
sensitivity of the receiver, which corresponds to the minimum RX
power level at which the targeted BLER can be achieved :

MCL [dB] = TX Power [dBm]− Sensitivity [dBm] . (2.2)

The sesitivity itself depends on the received signal bandwidth, the
noise figure (NF) of the analog receiver and the SNR required to
decode the channel with that BLER [5]:

Sensitivity [dBm] = Thermal Noise [dBm/Hz]
+ 10 log10 (Channel Bandwidth [Hz])
+ Receiver NF [dB]
+ Required SNR [dB] .

(2.3)

The 3GPP agreed on a target MCL of 164 dB to achieve a 20 dB
coverage enhancement over legacy cellular standards. The improve-
ment can come from the different terms that make up the MCL in
(2.2) and (2.3). One option would be to rely on reduced NFs in
analog receivers. However, modern devices only have a small margin
for improvement as they already have noise figures in the order of 3 dB
for base stations and 5 dB for UEs.

Another possibility to improve the MCL would be to increase the
overall TX power. But the maximum transmitted power is limited
to fulfil radiation regulations and to reduce PA complexity and peak



2.3. REQUIREMENTS OF CELLULAR IOT 27

power consumption. Instead, power spectral density (PSD) boosting
can be used. In the DL, this can be done by allocating more power to
the spectrum used by devices in poor coverage while keeping the total
power constant. For eMTC, a PSD boosting of up to 4 dB should be
possible in general [22] while for NB-IoT the BSs should support at
least 6 dB boosting [23] for in-band and guard-band deployments. For
standalone NB-IoT cells, no boosting is needed as the TX power of the
BS is already concentrated within 200 kHz. In the UL, PSD boosting
can be done by reducing the signal bandwidth for the same TX power.
The minimum transmitter bandwidth of eMTC UEs corresponds to
one PRB and does not provide any gain compared to legacy LTE.
On the other hand, NB-IoT supports UL transmission bandwidths as
low as 3.75 kHz with a better trade-off between energy consumption
and system capacity for extended coverage scenarios and small data
rates [24].

Two mechanisms that are available in legacy cellular standards to
reduce the SNR at which data can be decoded: flexible MCS and
HARQ repetitions. The former is already well exploited in LTE and
only has limited potential for improvements, while the latter is only
suited for a small number of repetitions due to the overhead of HARQ
signalling. To significantly increase coverage compared to LTE and
GSM, automatic repetitions were introduced for all PHY channels.
The number of repetitions is controlled by the BS. For data channels,
it is dynamically set in the DCI, and for control channels, it is part of
common or UE-specific configurations. At most 2048 repetitions are
supported by both NB-IoT and eMTC.

Ideally, the coverage should improve by 3 dB per doubling of the
number of repetitions. With that assumption, up to 33 dB could be
gained compared to the single-repetition case. However, repetitions
yield diminishing returns with decreasing SNR because the perfor-
mance is then limited by the accuracy of the channel estimation and
the residual time and frequency offsets. To achieve the targeted MCL
without DL PSD boosting, the UE must operate down to −18.5 dB
SNR [5]. Under these conditions, the coverage of a UE is limited
by the challenging tasks implicitly needed to set up and maintain a
connection, like cell search and time and frequency synchronization.
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2.3.4 Positioning

Positioning capabilities are the basis for a wide range of applications
covered by so-called location-based services (LBS). Typical massive
IoT (mIoT) use cases that require an estimation of the terminal’s
position span from smart wearables to emergency call systems and
asset trackers for logistics or delivery services. Depending on the
scenario, the required location accuracy can range from a few meters
to hundreds of meters. Thanks to its global availability and relatively
high precision, GNSS has established itself as the preferred positioning
technology for mainstream applications like automotive navigation
and smartphones. Thus, GNSS is also a natural choice for many
MTC applications.

However, applications that require indoor coverage cannot solely
rely on GNSS. To cover areas where satellite signals cannot penetrate,
Bluetooth and wireless local area network (WLAN) deployments can
be used as alternatives. Especially, Bluetooth Low Energy (BLE),
with its low device power consumption and cost, has attracted in-
creasing interest as an option for indoor positioning solutions based
on constellations of low complexity beacons [25]. However, the in-
frastructure needed for LBS with BLE is not globally accessible and
would have to be deployed locally where needed, inducing higher costs
than approaches based on already available networks.

Another option is to take advantage of the existing cellular frame-
work and employ it for positioning. For instance, assisted GNSS (A-
GNSS), where the cellular network is used to deliver assistance data
to the UE, helps reduce the acquisition time and power consumption
of GNSS positioning [6]. Furthermore, A-GNSS can be integrated
into cIoT modems at negligible cost, if the cellular receiver and other
available resources are reused efficiently [26]. Additionally, standalone
cellular positioning is also possible without the need for a separate
technology, thus avoiding hardware (HW) overhead like dedicated
antennas or additional modules. For example, enhanced cell ID (E-
CID) is a technique used in LTE that can be easily transposed to
eMTC and NB-IoT. It relies on measurements performed by the UE
and the BS to refine an estimation of the UE’s location based on
the position of its serving BS [27, Chap. 32]. However, the location
accuracy of E-CID is not always sufficient. Therefore, the 3GPP
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introduced observed time difference of arrival (OTDOA) position-
ing in LTE Release 9, with the original goal of complying with the
requirements of modern emergency services [28]. Even though it
is not as precise as GNSS, OTDOA positioning can also cover the
needs of a wide range of MTC applications, hence the effort made
by the 3GPP to include OTDOA support in the second release of
eMTC and NB-IoT. OTDOA relies on so-called reference signal time
difference (RSTD) measurements performed by the UE on signals
from different base stations. The implementation of precise time
delay measurements with the processing resources available on a low-
cost system is the main challenge faced to support OTDOA in cIoT
modems.

2.4 User Equipment Challenges

The mentioned requirements of mMTC applications modify the chal-
lenges of the development of cIoT terminals compared to typical mo-
bile broadband devices. While the latter require high throughput
decoders and complex multiple-input multiple-output (MIMO) pro-
cessing to achieve the highest data rates supported by the standard,
the main challenges of mMTC devices are to operate at extremely low
SNRs and to offer sufficient communication and positioning capabili-
ties while minimizing modem complexity and power consumption.

Indeed, specially tailored algorithms are needed to fully exploit
repetitions when the wanted signal is well below the noise floor, mak-
ing coverage extension the most challenging MTC-specific goal for
the UE. Among the different signal processing tasks that need to be
adapted to operate far below the noise floor, techniques for fine time
and frequency offset tracking, time delay measurement for OTDOA
positioning, and channel estimation for the equalization of received
signals will be discussed in the scope of this work. The preferred
methods will be analyzed and selected according to their performance
at low SNR and based on their suitability for implementations on
low-cost and highly integrated modem SoCs. Thus, special attention
will be focused on the system architecture and the execution of the
discussed algorithms with the available resources.
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2.4.1 Fine Synchronization

Accurate synchronization is of utmost importance for both positioning
and wireless communications. Like GNSS, the accuracy of cellu-
lar OTDOA positioning depends on the precision of the time delay
measurements performed by the end device, which corresponds to its
ability to synchronize in time with the received signals. In this case,
residual frequency offsets degrade the performance of the measure-
ment, also calling for accurately matched frequency. As for cellular
communications, even though synchronization is implicitly needed to
decode DL data channels, it is also essential to limit the interference
between the UL transmissions of different UEs. In 3GPP’s cellular
standards, the minimum synchronization requirements for UEs are
defined and verified in the UL. For eMTC and NB-IoT, the frequency
and timing of the UE must track the base station’s reference within
approximately 100 Hz and less than a few microseconds [16,29].

Although the synchronization requirements of eMTC and NB-IoT
are close to the ones of legacy LTE, or moderately less stringent in
some cases, the characteristics of cellular IoT communications impose
other challenges. To minimize cost, DCXOs are typically preferred to
more expensive and accurate TCXOs for cIoT modems. The higher
vulnerability to temperature variations of such references calls for
more frequent and larger timing and frequency corrections. Further-
more, to perform these adjustments in extended coverage scenarios,
the UE must be able to estimate the residual frequency offset of
its local oscillator at extremely low SNRs. Thus, performant al-
gorithms that fully exploit the available pilot signals are needed to
allow tracking in extended coverage and the minimization of the re-
quired measurement accumulation time to limit power consumption.
Furthermore, residual frequency offsets affect the coherency of the
received signal over time, limiting the SNR gain that can be achieved
with repetitions of physical channels. Therefore, it is advantageous
to keep the residual frequency offset as low as possible, well below
the standard requirements, to optimize data transmission in extended
coverage to allow even lower SNRs or power savings by reducing the
required accumulation time. These considerations highlight the need
for precise time and frequency offset estimation algorithms with high



2.4. USER EQUIPMENT CHALLENGES 31

accumulation gain and sufficient estimation range, a major topic of
this work.

2.4.2 Channel Estimation and Equalization
Coverage extension is also one of the main challenges of data transmis-
sion in cellular IoT communications. For the UE, it implies the need
to decode DL channels at least down to −18.5 dB SNR. As already
mentioned, the mechanism used to counter highly negative SNR is to
automatically repeat data channels. The repetitions are commonly
combined by adding the soft log-likelihood ratios (LLRs) obtained
from the equalized symbols before channel decoding [30]. Even though
the combination can also take place before the equalizer for a limited
amount of repetitions [31], the coherent modulation used for NB-IoT
and eMTC requires the equalization of received symbols at some point
to restore the phase information. The quality of the equalized symbols
is highly dependent on the channel estimation which becomes one of
the limiting factors of the decoding performance. Furthermore, when
the repetitions are combined in the LLR buffer, the accumulation gain
is highly dependent on the coherency of the equalized symbols which,
again, is limited by the channel estimation.

Besides the need for accurate channel estimations for coverage ex-
tension, the limited memory space and processing capabilities of cIoT
UEs also need to be considered in the choice of the used algorithms.
Moreover, channel estimation and equalization have stringent latency
requirements because they are part of the signal processing path for
the scheduling of DL and UL data channels and the transmission of DL
HARQ feedback. A solution that seeks the right compromise between
complexity and channel estimation quality will be discussed in this
work.

2.4.3 OTDOA Positioning
Either as a low-cost standalone solution or as a fallback of GNSS for
indoor scenarios, OTDOA positioning is a valuable feature for cIoT
devices. Its precision relies mainly on the accuracy of the RSTD mea-
surements used to estimate the distance difference between the UE and
different BSs. To allow indoor applications, the measurements should
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work well below the noise floor, with standard requirements specified
down to −15 dB SNR. Furthermore, the reduced signal bandwidth
of eMTC and, especially, NB-IoT deteriorate the precision of timing
measurements. Thus long signal accumulation periods are needed to
cope with the small bandwidth and the targeted coverage regime.

Thus, performant implementation of the RSTD measurements with
the available pilot signals is crucial to support OTDOA positioning
on low-cost UEs. Furthermore, to limit the memory required to
combine many signal periods, the accumulation needs to be computed
on-the-fly. A measurement strategy, as well as its implementation with
hardware acceleration, will be presented in the scope of this work.

2.4.4 System Design and Hardware Acceleration
The variety of applications and the heterogeneous adoption of emerg-
ing standards across the world, combined with the high pressure on
cost and form factor for mIoT devices, make the design of one-fits-all
solutions almost impossible. In this context, integrated multimode
UEs are most likely to provide truely global coverage at minimum
cost and size. Considering mIoT scenarios with relaxed latency re-
quirements and long idle periods, it is possible to support multiple
standards on the same system with minimum overhead by sharing
HW components. For instance, a cellular modem and a GNSS receiver
could share the same processing system and part of the analog receive
chain [26].

The same applies to the PHY processing for cellular communica-
tions, where computing and memory resources can be shared for differ-
ent standards. However, dedicated hardware accelerators are needed
to compensate for the limited capabilities of low-power processing
systems and meet the tight latency constraints of cellular standards.
Furthermore, performing computational intensive tasks on dedicated
HW also provides an advantage in terms of power efficiency compared
to a software (SW) implementation. Special attention will be devoted
to the architecture that was developed to integrate various commu-
nication and positioning technologies into a single SoC, highlighting
the chosen partitioning between HW and SW for the implementation
of time and frequency offset tracking, channel estimation and equal-
ization, and OTDOA positioning.



Chapter 3

Fine Synchronization in
Extended Coverage

Accurate synchronization is essential to wireless communication and
positioning systems. Widely used OFDM signals suffer particularly
from time and frequency mismatches between transmitter and re-
ceiver because synchronization errors introduce inter-symbol interfer-
ence (ISI) and inter-carrier interference (ICI) [32]. Furthermore, time
and frequency offsets tend to be worse in low-cost IoT modems, com-
pared to high-end terminals, due to the highly temperature-dependent
frequency of DCXOs commonly used for such devices. Additionally,
any residual frequency offset (FO) limits the gain of coherent accu-
mulation over long periods, needed for coverage extension. Hence,
to achieve coverage extension in cIoT networks, end devices must
minimize their residual FO to optimize accumulation gains. When op-
erating below the noise floor, the coherency loss has typically a higher
impact on the link performance than the aforementioned ISI and ICI
terms. Maintaining accurate synchronization in coverage extension
is itself a challenging task that has only recently gained attention in
the literature [15,33] with the emergence of cIoT standards and needs
specially tailored algorithms to fully exploit the available resources for
time and frequency offset estimation.

33
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This chapter describes the general problem of fine synchronization
and presents practical solutions that can be applied in cIoT systems.
First, the operation of the tracking loop in the considered system is ex-
plained and the estimation of time and frequency offsets is highlighted
as the limiting factor of synchronization performance. Then, an exact
model of the effect of time and frequency offsets on the demodulated
OFDM signal is derived. Following, the Cramer-Rao lower bound
(CRLB) of the achievable estimation accuracy in AWGN channels is
investigated. The rest of the chapter is devoted to the investigation of
different algorithms for fine synchronization. The proposed solutions
are discussed in the context of eMTC, but they are also applicable for
coverage extension in other OFDM systems like NB-IoT and 5G NR.

3.1 Synchronization in Cellular Systems

Wireless data transmission typically relies on some kind of synchro-
nization between the two ends of a communication link. In cellular
networks, mobile terminals must synchronize their local time and
frequency references to BSs to be able to decode DL data and transmit
UL signals without interfering with other devices. This is commonly
done in different steps, starting with a coarse synchronization followed
by one or more fine correction stages. Not only do the residual
offsets after initial coarse acquisition have to be corrected, but syn-
chronization must be maintained as long as the UE is connected
or is actively monitoring DL channels. For cIoT devices in low to
medium mobility applications, frequency offsets are mainly caused by
inaccurate references and can be directly corrected by recalibrating
their local oscillators. Time offsets can be caused by changes in the
path delay if the terminal is moving, but they can also gather for
static scenarios due to residual sampling frequency offsets. Especially,
low-power UEs typically operate with low duty cycles, i.e. with long
inactivity periods between short activity bursts. Examples of such
operating modes are eDRX and PSM, already described in Chap. 2.
In these configurations, the UE must resynchronize after waking up
from idle cycles to be ready for active phases. Long sleep times allow
time offsets to build up even with small residual sampling offsets.
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A UE structure as depicted in Fig. 3.1 is considered, where the
carrier frequency used to down-convert the radio signal, the sampling
clock of the ADC, and the time-keeping clock are derived from the
same frequency reference. A tracking loop is built by estimating and
correcting the synchronization mismatches of the received signal.

Figure 3.1: Illustration of considered receiver chain with time and
frequency tracking loop.

The residual FO is corrected directly by tuning the DCXO. Thus,
carrier, sampling, and time-keeping frequencies are adjusted together.
As long as the range and the granularity of the DCXO tuning are suf-
ficient, the residual frequency offset is not impacted by the correction
step. Time offsets are compensated by adapting the starting time of
the ADC, or by dropping or padding samples.

The most important step to ensure small residual impairments
is the estimation of the TO and FO that have to be corrected. To
estimate these offsets, the UE relies on the signals periodically trans-
mitted by the BS. The choice of the estimation method and how the
UE exploits the available pilots impact the performance of the system.
The computational requirements of certain algorithms can be pro-
hibitive for low-cost devices. On the other hand, complex algorithms
may need less accumulation time to reach the target accuracy, limiting
the required RX time of the transceiver and therefore reducing the
power consumption of the terminal. Finally, minimizing the residual
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synchronization errors improves the coherency of the received signals
and allows a better usage of the repetitions of data transmissions.
Thus, accurate estimation of time and frequency offsets at low SNR
is crucial for coverage extension.

3.2 Effects of Time and Frequency Offsets
Understanding the effects of synchronization mismatches on the re-
ceived digital baseband signal and on the elements of the OFDM
resource grid after demodulation is crucial to developing time and
frequency offset estimation algorithms. A TO in the local time refer-
ence of the UE results in a misalignment between the receive window
and the actual time window of the OFDM symbol. In [34] the TO
is shown to introduce ISI, ICI, and a rotation of the demodulated
OFDM symbols with a phase proportional to the subcarrier index.
The ISI caused by the TO results from the overlap of the shifted
receive window of the lth OFDM symbol with the next symbol, as
depicted in Fig. 3.2. The subcarrier-dependent phase shift introduced
by the TO is also highlighted in the figure. It can be visualized as
the changing phases at the beginning of the receive window on the
sinusoid of each subcarrier, marked with coloured crosses.

A residual offset in the local oscillator’s frequency causes both a
carrier frequency offset (CFO) and a sampling frequency offset (SFO).
As the two frequencies are derived from the same reference, the offsets
are linearly dependent in the considered system. The SFO can be
modelled as an offset in the sampling period, while the CFO results
in an FO in the down-mixed baseband signal. A detailed derivation
of the joint effects of small SFO and CFO on OFDM signals can
be found in [35], for the general case where they are independent.
The introduced ICI and phase rotation across OFDM symbols are
shown to depend on both, the CFO and the SFO, while the rotation
across subcarriers depends only on the SFO. The ICI due to a CFO
is illustrated on the left-hand side of Fig. 3.2, where the received
subcarriers are plotted in the frequency domain. When subcarrier
k is demodulated with the correct frequency, it is sampled where the
contribution of all other subcarriers is equal to zero. On the other
hand, when the kth subcarrier is sampled with a CFO, as shown by
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the dotted blue arrow, ICI from other subcarriers is introduced. The
contribution of the neighbouring subcarriers to the ICI is highlighted
on the left plot of the figure with coloured dots.

Figure 3.2: Visualization of the effects of TO and CFO on OFDM
signals.

ICI and ISI only have a limited impact on the system when the UE
is tracking and the residual offsets are kept small. In most scenarios,
the performance is mainly limited by noise or interference. Concerning
the effects of synchronization mismatches, the focus will be set on the
phase rotations across subcarriers and OFDM symbols. These are
relevant because they can be used to estimate time and frequency
offsets and because they limit the coherency of the signal. The exact
influence of the CFO and TO on the demodulated REs will be inves-
tigated to derive a quantitative formula for the phase rotations. The
results will then be compared with the effect of the SFO investigated
in previous works to show that the SFO can be neglected.
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3.2.1 Mathematical Model
A mathematical model for the effects of the CFO and TO on the
OFDM demodulated symbols can be derived starting with the formula
of the transmitted waveform and then following the same steps as
in [35]. The continuous-time signal for the lth OFDM symbol is
generated as follows:

sl(t) = 1√
NFFT

NFFT
2 −1∑

k=−NFFT
2

Xk,le
j2πfδk(t−TCP−lTSB) . (3.1)

Xk,l is the QAM symbol that modulates the kth subcarrier. The pa-
rameter TCP is the duration of the cyclic prefix, TSB is the duration of
one OFDM symbol including the CP, and fδ is the subcarrier spacing.
(3.1) holds for lTSB ≤ t < (l + 1)TSB, while sl(t) = 0 otherwise.

The digital OFDM signal before analog conversion is usually gen-
erated with an inverse fast Fourier transform (IFFT) of size NFFT
at a sampling frequency fs = fδNFFT. Guard bands at the edge of
the signal’s spectrum are normally included by mapping zeros to the
corresponding subcarriers.

After upconversion to the carrier frequency, transmission through
the radio channel with impulse response hl(t′), downconversion back
to baseband with a CFO of ν Hertz, and delay by a TO of τ seconds,
the received baseband signal is:

rl(t) = ej2πνt(sl ∗ hl)(t− τ) + n(t) . (3.2)

The symbol received at the kth subcarrier after sampling at fre-
quency fs, i.e. rl[m] = rl(t)|t= m

fs
, and OFDM demodulation with an

FFT of size NFFT can be approximated as in [35] for small offsets1:

Yk,l = Xk,lHk,le
jφ(k,l,ν,τ) +W (k, l, ν, τ) +Nk,l . (3.3)

Nk,l is a noise term resulting from n(t) in (3.2) after sampling and
OFDM demodulation. W (k, l, ν, τ) is the ICI introduced by the CFO
and can be neglected as long as the FO is small compared to the

1Derivations can be found in App. A.1.
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subcarrier spacing fδ. The exact formula of the ICI term can be
found in App. A. The term Hk,l is the radio channel experienced by
the RE at the lth OFDM symbol and the kth subcarrier. The complex
exponential ejφ(k,l,ν,τ) results in phase rotations across subcarriers
and symbols. The rotations are undesired because they affect the
coherency across the OFDM resource grid, but they can be used to
estimate the time and frequency offsets in the frequency domain, i.e.
after OFDM demodulation. The phase of the exponential is given by:

φ(k, l, ν, τ) = 2π(lTSBν + kfδτ) . (3.4)

To compare the effect of the TO and CFO on the phase term
φ(k, l, ν, τ) of (3.4) with the one of the SFO described in [35] and
[36], the sampling period Ts = 1

fs
is assumed to have an offset ∆Ts.

Assuming a common frequency reference, the relative errors on the
sampling frequency ξ and the carrier frequency fc are proportional
and relate to the offset of the sampling period:

ξ = ν

fc
≈ ∆Ts

Ts
. (3.5)

Using the notation introduced in this chapter to rewrite the phase
of the complex exponential of Equation (6) in [36] yields:

φ(k, l, ν, ξ) = 2πlTSB(ν + kfδξ) . (3.6)

The effect of the CFO ν and the SFO ξ on the phase shift across
symbols can be compared for the highest subcarrier index k = NFFT/2
using (3.6), ν = ξfc from (3.5), and fs = fδNFFT:

εν = ν

kfδξ
= ξfc

NFFT
2 fδξ

= 2fc
fs

.

Assuming values fc = 1 GHz and fs = 1.92 MHz commonly used
in NB-IoT and eMTC, the effect of the CFO on the rotation across
OFDM symbols is about 1000 times larger than the one of the SFO
and can be neglected.

The effect of the TO τ and the SFO on the rotation across sub-
carriers can be compared similarly with the respective terms in (3.4)
and (3.6):

ετ = kfδτ

kfδlTSBξ
= τ

lTSBξ
.
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The accumulated TO due to the SFO after a tracking period of TT
seconds is τ = ξTT . Assuming a tracking period of 500 ms, enough
to track temperature-driven timing and frequency changes in low
mobility scenarios, the effect of the TO on the 10th OFDM symbol is
700 times larger than the one of the SFO and has a negligible impact.

3.3 CRLB for Time and Frequency Offset
Estimation

The mathematical model for the effect of synchronization mismatches
on OFDM signals can be used to derive the Cramer-Rao lower bound
(CRLB) on the variance of the estimated TO and CFO for a given set
of pilot signals. The CRLB is a lower bound on the variance of any
unbiased estimator of a set of signal parameters and is generally valid
for deterministic signals in AWGN [37]. For the considered problem,
it gives an insight into the achievable synchronization performance
and allows the comparison of different pilot signals according to their
expected estimation accuracy.

Assuming a static channel Hk,l = Aejα with amplitude A and
phase α, and neglecting the ICI term in (3.3), the signal after matched
reception for known modulation symbols with unity power |Xk,l|2 = 1
simplifies to:

S(k, l;θ) = X∗k,lYk,l = Aej(φ(k,l,ν,τ)+α) +Nk,l . (3.7)

For complex white gaussian noise Nk,l with variance σ2, the SNR can
be defined as SNR = A2

σ2 and the time and frequency offset estimation
problem can be handled as the estimation of the unknown signal
parameters θ = [A,α, ν, τ ]T in AWGN. In this case, the CRLB is given
by the diagonal elements of the inverse of the fisher information matrix
J [38]:

Ji,j = 1
σ2

∑
k,l

[
∂SI
∂θi

∂SI
∂θj

+ ∂SQ
∂θi

∂SQ
∂θj

]
(3.8)

SI = SI(k, l;θ) and SQ = SQ(k, l;θ) represent the real and imaginary
parts of S(k, l;θ), respectively. The partial derivatives needed to
determine the elements of J can be calculated by straightforward
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derivation, as shown for the real part SI in App. A. With the corre-
sponding results for SQ, the fisher information matrix and its inverse
can be calculated numerically for any set of pilots mapped to the
OFDM resource grid by setting to zero the terms corresponding to
REs that do not carry pilot symbols in the sum of (3.8).

In OFDM systems, pilot signals are commonly distributed in so-
called comb-type arrangements where symbols are not mapped to
a block of adjacent subcarriers and symbols, but rather distributed
to occupy a larger area of the resource grid without filling all REs.
This kind of mapping reduces the signalling overhead needed for the
characterization of the whole OFDM grid in the time and frequency
domains, at the cost of a reduced granularity in the observations
that can be made with the pilot signals. In the example mapping
depicted in Fig. 3.3, LK pilot signals are evenly distributed every ∆k

subcarriers and ∆l symbols.

Figure 3.3: Example mapping of pilot symbols to an OFDM grid.
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For the regular mapping of Fig. 3.3, the CRLBs on the estimation
of time and frequency offsets can be approximated in closed form for
relatively large values of K and L as in [38]2:

CRLBν(K,L) ≈ 1
SNR

3
2π2T 2

SB∆2
lKL

3 (3.9)

CRLBτ (K,L) ≈ 1
SNR

3
2π2f2

δ∆2
kLK

3 . (3.10)

With these closed forms, the impact of signal bandwidth and du-
ration on the CRLBs can be easily identified. The lower bound for the
FO in (3.9) decays linearly with the number of occupied subcarriers
K in the frequency domain and cubically with the number of used
symbols L in the time domain, while for the TO in (3.10) the decay
is cubic with the number of subcarriers and linear with the number
of symbols. Increasing the subcarrier and symbols spacing between
pilot signals quadratically reduces the lower bound of the time and
frequency offset estimation, respectively. However, increasing the
distance between pilot signals comes at the cost of reduced estimation
ranges. In general, for the estimation of the FO longer pilot signals
are more performant, while for the TO pilot signals that occupy a
larger bandwidth are better. Similar conclusions can be found in
literature where time and frequency offset estimation are considered
independently [37].

3.3.1 Evaluation of Cellular IoT Pilot Signals
The general formula of (3.8) can be used to evaluate the lower bounds
of the residual time and frequency offset errors when estimated with
different sets of pilot signals mapped to at least two different OFDM
symbols. The resulting RMS error bounds, i.e. the square root of
the CRLB, are shown in Fig. 3.4 for synchronization and reference
signals available in cellular IoT standards. The plots were generated
considering a single subframe and the maximum UE receiver band-
width for each set of pilots. For NB-IoT, the values for NSSS and
NRS are plotted, while for eMTC, the lower bounds for PSS and
SSS combined and for CRS are shown. PSS and SSS are considered
2Derivations can be found in App. A.2.
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Figure 3.4: Expected lower bound of the RMS error of the frequency
(left) and time (right) offset estimation with unknown phase.

together because they can be used jointly since they are mapped to
the same antenna port within a subframe. For NB-IoT, NSSS and
NPSS can both be used for tracking. The two sequences have similar
properties in AWGN. Only NSSS is discussed here because it occupies
more subcarriers, offering slightly better performance. Furthermore,
NSSS is a better choice in interference-limited scenarios due to its
higher resilience to interference from neighbouring cells. As suggested
by their lower RMS error (RMSE) on the TO plots on the right, eMTC
signals yield better time estimation accuracy than NB-IoT due to their
larger bandwidth. On the other hand, NSSS provides a smaller FO
RMS error than PSS and SSS in the left plots of Fig. 3.4 due to its
longer duration.

To maintain the performance of the radio link and to ensure that
the synchronization of the UL signal stays within the limits specified
by 3GPP, the FO should be kept lower than 100 Hz and the UE
timing should be synchronized within approximately one sample at
1.92 MHz. To reflect these requirements, RMSE lower bounds of 50 Hz
and 0.25 µs are targeted in the subsequent analysis for the FO and
TO estimation, respectively. These limits are illustrated by the black
dotted lines in Fig. 3.4. Since all CRLBs exceed the mentioned values
at the target −18.5 dB SNR, signal accumulation is needed. As the
bandwidth of the received signal is either imposed by the standard
or limited by the UE’s receiver, accurate estimation at low SNRs can
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only be achieved by accumulating over time. Especially, precise time
offset estimation is particularly challenging in NB-IoT and requires
very long accumulation periods. This is partially compensated by a
relaxed time synchronization requirement for UL transmissions, but
cannot be completely avoided in applications that rely on the accuracy
of time offset estimation like OTDOA.

To estimate the accumulation time needed to reach the targeted
estimation accuracy, a formula for the RMSE CRLB depending on
the number of combined subframes is needed. If nSF different SFs
are handled as independent observations, the lower bound is inversely
proportional to nSF and can be calculated from the value for a single
subframe [37] which can be calculated numberically with (3.8):

CRLBν(nSF) = 1
nSF

CRLBν(1) (3.11)

CRLBτ (nSF) = 1
nSF

CRLBτ (1) (3.12)

However, if the nSF subframes are received coherently, the Fisher
information matrix must be calculated as formulated in (3.8) for
the whole received signal and inverted to determine the CRLBs. To
simplify the analysis, the formulas from (3.9) and (3.10) can be used
instead when subframes are received consecutively. Even though the
mappings used for NRS and CRS are slightly different than the one
depicted in Fig. 3.3 and NRS use a rather small number of subcarriers,
(3.9) and (3.10) yield valid approximations for these two types of
reference signals. However, the formulas do not apply for PSS, SSS,
NPSS and NSSS because these pilot signals can be transmitted on
different antenna ports across SFs and because they are not located
in consecutive SFs, de facto limiting the rate at which the sinusoid
in (3.7) is sampled if considered coherently and reducing the FO
estimation range.

Fig. 3.5 depicts the number of SFs required to achieve RMSE lower
bounds of 50 Hz for the FO and 0.25 µs for the TO. The number of
SFs was estimated using (3.9) and (3.10) with K = 12, ∆k = 6,
L = 4nSF, ∆l = 3.5 for CRS, and with K = 4, ∆k = 3, L = 2nSF,
∆l = 7 for NRS. For the other signals (3.11) and (3.12) were used. The
number of SFs needed for time and frequency offset estimation directly
impacts the power consumption of the UE during a tracking attempt,
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Figure 3.5: Required number of SFs to achieve RMS estimation errors
below 50 Hz for the FO (left) and 0.25 µs for the TO (right).

mainly because its receiver has to be switched on for all accumulated
SFs. Furthermore, the UE has to stay in an active state during the
whole accumulation period and, even if the receiver is switched off,
other parts of the system also contribute to the power consumption.
Thus, the total acquisition time is also relevant, besides the number
of received SFs.

For NB-IoT, fine synchronization with NSSS or NPSS requires tens
of SFs for both time and frequency offset detection at low SNRs. As
the signals are mapped every 10 ms or 20 ms, the resulting acquisi-
tion time is in the order of hundreds of milliseconds. Even though
the impact on the acquisition time is compensated by the larger
number of SFs carrying NRS, NSSS and NPSS are better suited for
time synchronization. As for FO estimation in NB-IoT, NRS are
advantageous compared to synchronization signals when more than
two SFs are accumulated. This advantage comes from the different
behaviour between coherent and non-coherent combination described
in (3.9) and (3.11), respectively. This observation is only valid if the
accumulated NRS subframes are consecutive. However, not all NB-
IoT SFs contain NRS and the mapping depends on the configuration
of the cell. Considering the crossing point between NSSS and NRS
curves in the FO plot of Fig. 3.5, NRS are better than NSSS for
FO estimation if they can be grouped in blocks of three or more
consecutive SFs.
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For eMTC, TO estimation with CRS and with PSS and SSS com-
bined needs almost the same amount of accumulated SFs, shown by
the superimposed red and blue curves in the right plots of Fig. 3.5.
The CRS have the advantage of a smaller acquisition time because
they are mapped in every SF while PSS and SSS are only mapped
every 5 SFs. Regarding FO estimation, CRS outperform PSS and SSS
because they can be combined coherently across SFs and exploit the
cubic dependence of the CRLB on the accumulation length, providing
a considerable advantage in terms of both power consumption and
acquisition time at low SNRs.

3.4 Fine Synchronization in eMTC

In the remainder of this chapter, practical solutions for fine time
and frequency synchronization in extended coverage are investigated.
The presented algorithms are assessed specifically for eMTC with
Monte Carlo simulations and their estimation performance is com-
pared with theoretical lower bounds like the ones analyzed in Sec. 3.3.
An overview of the different approaches available in the literature
for OFDM and LTE systems is given first. Then, the simulation
environment used for the evaluations is briefly introduced. The first
considered algorithm uses cross-correlations of the received samples
with different time- and frequency-shifted replicas of the expected
signal for maximum likelihood (ML) estimation with the combination
of the PSS and the SSS. As already suggested by the analysis of the
CRLB for the different pilots, these synchronization signals provide
limited FO estimation accuracy. The framework developed in Sec. 3.2
is used to derive TO and FO estimation techniques using the received
symbols after OFDM demodulation. The legacy approach based on
phase differences between REs containing CRS proposed for state-
of-the-art LTE receivers [39] is extended to support TO estimation.
Even though this solution provides sufficient accuracy at low SNRs,
it provides diminishing returns for long accumulation periods. Thus,
an ML approach for fine synchronization with CRS is presented and
combined with complexity reduction techniques to allow its usage on
low-cost modem SoCs.
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3.4.1 Overview of Tracking Algorithms

As already mentioned in Sec. 3.1, time and frequency offsets of OFDM
signals can be estimated in the time domain (TD), on the samples
rl[n] coming from the ADC, or in the frequency domain (FD), on the
symbols Yk,l after OFDM demodulation. TD techniques can be used
to estimate large time and frequency offsets while FD approaches need
preliminary coarse time synchronization for the OFDM demodulation
to work well. The supported ranges of FD estimators, limited by
subcarrier and symbol spacings, are generally smaller than the ones
of TD estimators that are mainly limited by the used sampling rate
and the periodicity of the received signal.

Widely used TD tracking techniques, which are also applicable for
initial acquisition, use the CP to estimate time and frequency offsets as
described in [40]. CP-based TO and FO estimation has the advantages
of being a blind estimation technique, which does not need any known
pilot signals; supporting large time and frequency offsets; and allowing
low-complexity autocorrelation (AC) based implementations. It was
also adopted for LTE receivers showing sufficient performance for
coarse synchronization at moderate SNR levels [41,42]. However, the
accuracy of CP AC estimators drops quickly with decreasing SNR
and can only be partially recovered with averaging [33]. Furthermore,
the performance of these estimators depends on the number of DL
resources used by the BS [14]. To save power, most REs are only used
by the BS when they are needed [43]. Thus, the estimation accuracy
deteriorates in cells with low data traffic due to the reduced total
signal power in the DL.

Another class of TD estimators use the available pilot signals to
achieve an ML estimation based on the cross-correlation (CC) of the
incoming signal with different time and frequency shifted replicas
of a known pilot signal. In [44] an ML method for NB-IoT coarse
synchronization using the NPSS is presented. Similar estimators can
be implemented for fine synchronization by increasing the density
of the tested grid of offsets. For eMTC, it is possible to use the
combination of the PSS and SSS to implement a similar PSS-SSS
ML fine estimation method [13]. Even though the range of searched
TOs and FOs is smaller for tracking than for initial acquisition, TD
CC-based approaches have a high computational complexity due to
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the density of the search grid required to achieve high accuracy. Fur-
thermore, sample-based processing is not efficient for pilot signals that
are scattered in a comb-type arrangement in the frequency domain,
like CRS for eMTC or NRS for NB-IoT. In this case, it is better to
operate on the symbols after OFDM demodulation when possible.

Thus, FD methods are often preferred for tracking if the ini-
tial acquisition step provides sufficient synchronization. Even though
blind estimation on the OFDM demodulated symbols is possible, e.g.
assuming independent and identically distributed (IID) phase-shift
keying (PSK) modulated symbols as in [45], pilot-based approaches
are more commonly used for cellular communications, where known
pilot signals are periodically available [35,36]. Since in LTE the same
pilots are used for channel estimation as for tracking, the authors
of [39] and [46] propose estimators based on the phase difference (PD)
across received CRS symbols, for which prior channel knowledge is not
required. CRS PD estimators work well for legacy LTE UEs that do
not operate below −10 dB SNR but are not well suited for NB-IoT
and eMTC UEs that have to support extended coverage because they
suffer from noise enhancement and cannot fully exploit accumulation
at low SNRs.

To overcome the limitations of legacy CP AC and CRS PD es-
timators at low SNRs while avoiding the high computational cost
of an ML approach, PBCH repetitions are used in [33] for fine FO
estimation in eMTC. The PBCH estimator is shown to outperform
CP AC and CRS PD methods at low SNRs. However, this approach
is only applicable when PBCH repetitions are available, and these are
not mandatory for the BS. Furthermore, PBCH is only present on the
center narrowband. An eMTC UE that supports only the minimum
receive bandwidth of 1.4 MHz may not be able to receive it if it must
switch to another narrowband to decode control or data channels.

In this work, the PSS-SSS ML and the CRS PD approaches are
evaluated and serve as a baseline for the analysis of the proposed
CRS reduced-complexity (RC) ML-based method introduced in the
next section.
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3.4.2 Simulation Environment

All the considered algorithms were evaluated with a MATLAB© [47]
simulation framework including the steps depicted in Fig. 3.6. The
digital baseband (DBB) signal of the base station (BS) is generated
at fs = 1.92 Msps with a 128-FFT. The digital signal for the lth

symbol is:

sl[m] = 1√
NFFT

NFFT
2 −1∑

k=−NFFT
2

Xk,le
j2π k(m−NCP−lNSB)

NFFT . (3.13)

Compared to (3.1) the CP and symbol lengths were replaced by the
corresponding number of samples NCP = fsTCP and NSB = fsTSB.
Again, sl[m] = 0 for time indices outside of the lth symbol. The overall
transmit signal is the sum of all symbols throughout the simulated
period:

s[m] =
∑
l

sl[m] .

For multipath fading channels, the signal is first passed through
the MATLAB© channel simulator lteFadingChannel [48] which sup-
ports the three 3GPP LTE channel delay profiles, namely EPA, EVA,
and ETU. Otherwise, for static channel simulations, the signal is

Figure 3.6: Overview of the simulation environment for performance
evalutions.
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forwarded without modifications, s2[m] = s1[m], to the additive noise
introduction step:

s2[m] = s1[m] + n[m]
The noise is modelled as a series of complex white Gaussian IID
random variables with variance σ2, i.e. n[m] ∼ CN (0, σ2). The taps
of the fading channel are scaled so that they do not alter the expected
power of the signal. The SNR is defined as 1

σ2 , which is equal to
the transmit signal power divided by the noise power if all the QAM
symbols Xk,l in (3.13) are modulated with unity average power. As
specified, the SNR corresponds to the definition used in 3GPP spec-
ifications, the average received power per RE carrying CRS or other
unity power symbols divided by the power spectral density of the noise
normalized to the subcarrier spacing of 15 kHz [16].

Finally, the effects of the time and frequency offsets are introduced
on the noisy signal. Neglecting the drift introduced by the simulated
sampling frequency offset (SFO) ξ, the signal received by the UE is:

r[m] = s2[m− θ]e
2πν(m−θ)

fs + n[m− θ] .

The sample TO and the carrier frequency offset (CFO) are drawn
from uniform distributions in the open intervals θ ∈]− θMAX, θMAX[
and ν ∈]− νMAX, νMAX[ for selected maximum absolute time and fre-
quency offset values. The SFO is derived from the CFO assuming a
given carrier frequency fc as described in Sec. 3.2:

ξ = ν

fc
.

The time offset τ in seconds can be calculated using the sample offset
with τ = θ

fs
. The integer part of θ is introduced by cyclically shifting

the signal. The edge effects caused by this method do not affect the
evaluation of tracking algorithms because the simulated time offsets
are smaller than the CP and the last OFDM symbols are not used.
For larger offsets, a sufficient margin has to be left unused at the
beginning and at the end of the simulated time interval. The fractional
part of the TO is achieved by a combination of upsampling and linear
interpolation of the signal.

The DBB signal processing algorithms to be implemented on the
UE operate on the received signal modelled by r[m]. Among others,
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the described framework can be used to simulate BLER performance
on data channels, initial cell acquisition, or fine synchronization for
tracking, which is discussed in this section. The different evaluated
algorithms generate estimations τ̂ and ν̂ of the time and frequency
offsets, respectively. The estimated values are evaluated by comparing
them to the actually introduced offsets. The set of TO and FO
estimation errors Eτ and Eν obtained after repeated iterations of the
simulation process, with different realizations of the involved random
variables, are used to generate RMSE and hit or miss rate curves.

3.4.3 ML Synchronization with PSS and SSS
Time and frequency offsets can be estimated with any known signal
sequence s[n] of length Ns using a cross-correlation detector on the
received samples r[n] = r(t)|t=nTs . The correlation metric for the ith
signal period with FO and TO candidates of ν̃ hertz and τ̃ = θ̃Ts
seconds, respectively, is [44]:

Ci(ν̃, θ̃) =
Ns−1∑
n=0

r[n+ θ̃]s∗[n]e−j2πν̃nTs .

An improved metric is achieved by accumulating the correlations across
Ni signal periods non-coherently:

C(ν̃, θ̃) =
Ni−1∑
i=0
|Ci(ν̃, θ̃)|2 .

The joint ML estimator of the time and frequency offsets is then
given by the pair of candidates ν̃ and θ̃ that yields the highest corre-
lation value:

(ν̂, θ̂) = arg max
ν̃,θ̃

C(ν̃, θ̃) . (3.14)

In practice, this estimator can be implemented by testing a finite set
of candidate pairs. Its computational complexity increases with the
number of tested candidates and with the length of the correlation
sequence.

The simulated performance of the FO and TO estimator in (3.14)
applied to eMTC using the combination of PSS and SSS as the correla-
tion sequence is shown in Fig. 3.7. The RMS FO and TO estimation
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errors are plotted in different colours for varying numbers of accu-
mulated subframes NSF, and compared to the corresponding CRLBs
represented with dashed lines. Since PSS and SSS are mapped every
5 ms the actual acquisition time in milliseconds is five times higher
than NSF. The FO and TO are simulated with maximum values of
νMAX = 1600 Hz and θMAX = 3.5 samples to cover the offsets expected
during tracking and to allow a fair comparison with the methods
presented later in this chapter that support smaller ranges. The search
grid was chosen to cover the mentioned offsets. The TO candidates
θ̃ are equally spaced every sample from −5 to 5 samples. The FO
candidates ν̃ are uniformly distributed every 25 Hz from −1900 to
1900 Hz.

The gain of increasing the number of subframes used for the esti-
mation can be quantitatively evaluated in Fig. 3.7 by comparing the
SNRs at which the lines cross a reference RMSE value, curves with
better performance being located left.

The accuracy of the TO estimation in the lower plot of Fig. 3.7
never reaches the CRLB, even at high SNRs, because it is limited
by the one-sample resolution of the TO search grid. Furthermore,
as SNR decreases, there is a threshold after which the RMSE curve
quickly deviates from the low error floor and tends to the performance
of a random estimator. This threshold effect was studied in [38] for
the parameter estimation of a single-tone sinusoid but it applies to
ML estimators in general. The threshold effect appears when the
RMSE is dominated by outliers in the FO estimation. Nevertheless,
the target TO estimation accuracy of ∼ 0.25 µs, depicted by the black
dotted line, can already be achieved with one SF at −10 dB SNR. Even
though each doubling of the number of accumulated signal periods
provides less than 3 dB gain, sufficient accuracy can be achieved down
to −20 dB SNR when 128 SFs are accumulated.

On the other hand, the FO estimation performance in the upper
plot of Fig. 3.7 is not accurate enough for tracking in eMTC, even if it
closely follows the CRLB and almost achieves an ideal accumulation
gain. The simulated performance is slightly better than the CRLB
because the cross-correlation sequence in the time domain includes
the CP which is not considered in the CRLB that was calculated on
the received signal after OFDM demodulation, i.e. after CP removal.
With 128 accumulated subframes the target accuracy of ∼ 50 Hz,
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Figure 3.7: FO (top) and TO (bottom) estimation performance of
ML PSS and SSS algorithm for different numbers of accumulated sub-
frames compared to corresponding CRLBs in dashed lines. Simulated
with 5000 iterations per SNR point.
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highlighted with a black dotted line as well, can only be reached down
to −6 dB SNR. Assuming the accumulation gain stays constant, at
least 4000 SFs would be needed at −20 dB SNR, corresponding to an
unaffordable FO acquisition time of 20 s.

The PSS and SSS FO estimation performance also suggests that
it is beneficial to relax the accuracy requirement of the initial coarse
FO acquisition, using fine estimation algorithms that support larger
offsets. As the cell ID-dependent SSS sequence is not known when
the initial synchronization is performed, only PSS or blind estimation
techniques can be used for this step. In both cases, reducing the
residual FO estimation error has a high penalty on the accumulation
time, and may even be impossible at low SNR. Taking the PSS-SSS
ML method as an example, at −10 dB SNR an accuracy of 100 Hz
requires the accumulation of 32 SFs while 200 Hz can already be
achieved with 8 SFs.

Overall, as already suggested by the considerations on the CRLB
in Sec. 3.3, ML estimation with PSS and SSS can be used for fine TO
estimation, but only provide limited accuracy for fine FO tracking.
Furthermore, PSS and SSS are only present in the center narrowband
and cannot be received by a UE with minimum receive bandwidths,
if the UE must receive a physical channel on another narrowband at
the same time. CRS-based methods can be used instead, because
they provide better SF accumulation gain for the accuracy of the
FO estimation, and because CRS are available across the whole cell
bandwidth. ML estimation with PSS and SSS can still be used as
an intermediate step after the acquisition of the cell ID, if the initial
synchronization error is not within the range supported by CRS-based
algorithms, or after long sleep periods for the reacquisition of time and
frequency synchronization.

3.4.4 CRS Phase Difference Algorithm
Time and frequency offsets can be estimated by considering phase dif-
ferences between channel estimations on REs containing pilot signals.
The least squares (LS) channel estimation Ĥk,l can be obtained from
the received symbols Yk,l in (3.3) when the modulating symbol Xk,l

is known [49], as it is the case for REs containing CRS. Neglecting
the ICI and noise terms and using the fact that CRS REs have unity
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power |Xk,l|2 = 1 (i.e. X−1
k,l = X∗k,l) the LS channel estimation for the

lth symbol and the kth subcarrier is:

Ĥk,l = X∗k,lYk,l = Hk,le
2πj(lTSBν+kfδτ) . (3.15)

Assuming a static single tap channel, the channel impulse response
in the frequency domain simplifies to a constant factor Hk,l = H.
Then, the only variation between the channel estimations on different
REs is the rotation due to the time and frequency offsets. In Fig. 3.8
the LS channel estimations on REs carrying CRS are highlighted in
blue on a partial OFDM grid of two PRBs and two SFs.

Figure 3.8: Phase drifft across symbols and subcarriers due to
frequency and time offsets, respectively.
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The phase difference between two LS channel estimations at sym-
bol indices l and λ and subcarrier indices k and κ is composed of two
terms, the effects of the FO ν and the TO τ , respectively:

ϕ = Arg
(
Ĥ∗k,lĤκ,λ

)
= 2πTSBν(λ− l) + 2πfδτ(κ− k) . (3.16)

The varying phase across subcarriers for a fixed symbol index,
depicted in the upper inset of Fig. 3.8, is the effect of the TO, while
the variation across symbols for a fixed subcarrier, shown in the lower
inset, is due to the FO. The two synchronization impairments can be
estimated based on the phase difference between neighbour channel
estimations with the same symbol or subcarrier index [39, 46]. The
phase differences ϕτ and ϕν can simply be accumulated for all pairs
of adjacent CRS to fully exploit the available information because
CRS are evenly distributed over frequency and time, every ∆SC = 6
subcarriers and ∆SB = 7 symbols, respectively. The resulting time
and frequency offset estimations τ̂ and ν̂ are:

ν̂ = 1
2π∆SBTSB

Arg

 ∑
(k,l)∈Iν

Ĥ∗k,lĤk,l+∆SB

 ,

τ̂ = 1
2π∆SCfδ

Arg

 ∑
(k,l)∈Iτ

Ĥ∗k,lĤk+∆SC,l

 .

The sum for the FO estimation runs over the set of symbol and
subcarrier index pairs Iν that carry CRS on all the accumulated
SFs, only excluding the last symbols for which l + ∆SB would be
outside of the considered time interval. The phase between CRS
across consecutive SFs is also exploited, assuming that coherency is
maintained, i.e. the receiver is not switched off and no frequency
hops occur. Similarly, Iτ contains all index pairs for which (k, l) and
(k + ∆SC, l) contain CRS.

The ranges of these estimators are limited by the distance between
CRS to −ν̂MAX < ν < ν̂MAX and −τ̂MAX < τ < τ̂MAX where:

ν̂MAX = 1
2∆SBTSB

= 1 kHz ,

τ̂MAX = 1
2∆SCfδ

= 5.56 µs .
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To relax the requirements of the initial synchronization it would be
beneficial to also support higher frequency offsets. The time distance
between the CRS pairs used to extract the phase change caused by the
FO can be reduced by allowing the CRS to be on different but close
subcarriers. The frequency range increase with this method comes at
the cost of a higher sensitivity of the FO estimator to time offsets.

The RMSE of the legacy CRS tracking algorithm is shown in
Fig. 3.9, where the reference RMSE values are highlighter with dotted
lines, again. When one or two subframes are used, the FO estima-
tion gets close to the CRLB between 0 and 10 dB SNR, but when
the number of repetitions increases, accumulation yields diminishing
returns due to the noise enhancement caused by the multiplication
used to extract the phase between channel estimations. At low SNRs,
the improvement of both TO and FO estimation when the number
of accumulated subframes is doubled saturates to 1.5 dB, while an
SNR gain of 3 dB per doubling of repetitions is expected for coherent
accumulation in AWGN.

Noise enhancement can be explained by taking into account the
noise term Nk,l of (3.3) contained in Yk,l and inserting it into (3.15).
The product of channel estimations in (3.16) is then:

Ĥ∗k,lĤκ,λ =
(
X∗k,lYk,l

)∗ · (X∗κ,λYκ,λ)
=|H|2e2πj(TSBν(λ−l)+fδτ(κ−k))

+HN∗k,le
2πj(λTSBν+κfδτ)

+H∗Nκ,λe
−2πj(lTSBν+kfδτ)

+N∗k,lNκ,λ .

(3.17)

Assuming a constant channel with unity gain and IID normally dis-
tributed complex noise terms with variance σ2, Nk,l ∼ CN (0, σ2), the
SNR of the received symbols Yk,l simplifies to SNR = 1

σ2 and the
variance of the product in (3.17) is:

Var
[
Ĥ∗k,lĤκ,λ

]
= 2σ2 + σ4 ≈

{
2σ2, if SNR� 1
σ4, if SNR� 1

. (3.18)

At low SNR the variance in (3.18) is dominated by the noise product
N∗k,lNκ,λ resulting in a squared noise variance σ4. The noise enhance-
ment problem arises whenever the multiplication of two noisy terms
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Figure 3.9: FO (top) and TO (bottom) estimation performance of
CRS phase difference-based (CRS PD) algorithm for different numbers
of accumulated subframes compared to corresponding CRLBs in
dashed lines. Simulated with 5000 iterations per SNR point.
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is used, which is also the case for CP AC approaches and for the
estimator that uses PBCH repetitions proposed in [33]. In terms of
SNR, this can be interpreted as negative SNRs being doubled, e.g. if
the SNR before the product is −10 dB, after the product it becomes
−20 dB. In Fig. 3.9 this can be seen from the slopes of the RMSE
curves for 128 SFs, both TO and FO estimation errors decay by one
decade for a 10 dB increase in SNR, and not 20 dB like the CRLB, or
from the gain saturating to 1.5 dB instead of 3 dB when the number
of SFs is doubled. To overcome this limitation an ML approach has
to be considered also for CRS-based tracking.

3.5 ML-Based Estimation with CRS
Two approaches with different limitations were discussed so far. The
performance of the ML-PSS-SSS method for fine synchronization is
restricted by the used pilots and the corresponding CRLB on the
FO estimation, while the legacy CRS algorithm fails at exploiting
accumulation due to noise enhancement. The solution discussed below
aims at taking the best of both worlds with an ML estimation using
CRS.

3.5.1 2D-FFT Algorithm
The sequence of LS channel estimations of (3.15) can be considered
as a two-dimensional complex sinusoid across subcarriers and OFDM
symbols. To highlight this behaviour the real parts of the channel
estimations are depicted on the OFDM resource grid in the left-hand
part of Fig. 3.10, where the REs that do not contain CRS were filled
with linearly interpolated values. Thus, the FO and TO estimation
can be simplified to a sinusoidal parameter estimation problem. It is
well known that the frequency of a single-tone signal can be estimated
considering the bin with the highest power of its DFT [38]. In this
case, the time and frequency offsets can be estimated by finding the
peak of the two-dimensional PSD of the grid of channel estimations.

The PSD can be approximated by the power of a 2D DFT across
subcarriers and symbols, illustrated in the right part of Fig. 3.10.
There, a 2D DFT of size 512 in both directions was taken on the
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grid of LS channel estimations on CRS for 8 SFs and the eMTC UE
bandwidth of one narrowband. The REs that do not contain CRS
and that are outside of the considered grid were padded with zeros
to fill the input of the DFT. The regular peaks that appear in the
approximation of the PSD are aliases introduced by the zero padding
between CRS locations. The supported TO and FO ranges of an
algorithm based on this metric are limited by the output ranges of the
2D DFT or by the distance between the actual peak and the closest
secondary peaks. The resolution of the estimated values depends on
the FFT size and the distance between the grid elements at the input
of the FFT. If the REs containing CRS are equally spaced in one
direction, the input of the DFT can be packed along this dimension
reducing the required zero padding and DFT size without impacting
the performance. For instance, the input can be packed along the
frequency axis because CRS are present every 3rd subcarrier, but not
along the time axis because CRS are alternatively mapped every 3
and 4 symbols.

Figure 3.10: Effect of an FO of 500 Hz and a TO of 0.5 µs on the 2D
grid of LS channel estimation Hk,l. The real part of the interpolated
values of Hk,l is shown left and the power of the 2D 512-DFT across
symbols and subcarriers right.
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Using the symbol FNk,Nl{·}(u, v) to represent the Nk by Nl 2D
DFT of a zero-padded grid of channel estimations, with discrete out-
put frequencies u ∈ {−Nk2 , ...,

Nk
2 − 1} and v ∈ {−Nl2 , ...,

Nl
2 − 1}, the

maximum search can be expressed as:

(û, v̂) = arg max
(u,v)

∣∣∣FNk,Nl{Ĥk,l}(u, v)
∣∣∣2 .

The FO and TO estimations in hertz and seconds are then:

ν̂ = v̂

NlTSB∆l
(3.19)

τ̂ = û

Nkfδ∆k
. (3.20)

In this case, ∆l and ∆k are the numbers of symbols and subcarriers
that separate the grid elements of the DFT input along time and
frequency, respectively.

This ML estimation algorithm was simulated with DFT dimen-
sions Nl = Nk = 2048 and grid spacings ∆l = 1 and ∆k = 3. The
mentioned parameters result in FO and TO estimation resolutions of
∆ν = 6.8 Hz and ∆τ = 0.011 µs, respectively, enough for the targeted
accuracy without the need for further interpolation. The results for
different numbers of accumulated SFs are shown in Fig. 3.11. As
opposed to the legacy PD algorithm the curves follow now the CRLB
for both TO and FO, even for negative SNR. Three different operating
conditions can be identified from the FO RMSE plots. At sufficiently
high SNRs, the performance is limited by the resolution provided by
the DFT dimensions and the RMSE saturates to a constant

√
3

6 ∆ν . In
the intermediate SNR range, the estimation error follows the CRLB.
As SNR decreases, there is a point after which the RMSE curve quickly
deviates from the CRLB due to the same threshold effect described
in Sec. 3.4.3 for the PSS-SSS ML estimator, i.e. because errors are
dominated by outliers in the FO estimation [38].

The SNR at which performance collapses is improved by 2 to 3 dB
when the number of received SFs is doubled, e.g. on the FO plot,
the cut-off SNR level is improved from −10 dB with 8 SFs to −13 dB
with 16 SFs. Furthermore, the FO estimation exploits the advantage
of coherent accumulation that was expected from the analysis of the
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Figure 3.11: FO (top) and TO (bottom) estimation performance of
2D FFT algorithm for different number of accumulated subframes
compared to corresponding CRLBs in dashed lines. Simulated with
5000 iterations per SNR point.
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CRLB, providing a significant improvement to the estimation accu-
racy. The accumulation gain starts to saturate between 64 and 128
SFs where the FFT size starts to be a limiting factor. As described
in [38], the FFT must be at least twice as long as the considered signal
to avoid excessive misdetections of the PSD peak at low SNRs. In this
case, a 2048-FFT can contain up to 146 SFs with 14 symbols each,
limiting the capture range without accumulation gain degradation due
to the FFT size to 73 SFs.

3.5.2 Reduced Complexity ML Algorithm

Even though the 2D DFT can be efficiently implemented using FFTs,
the ML algorithm of Sec. 3.5 fully exploits the potential of CRS for TO
and FO estimation at very high computational and memory costs. For
example, to accumulate 128 SFs the DFT size across symbols should
be at least Nl = 2048, considering only powers of 2 for FFT sizes for
implementation purposes. To cover all subcarriers containing CRS,
24 FFTs of this size are needed. Then, FFTs across subcarriers of
minimum size Nk = 64 are needed to provide sub-sample resolution.
To cover a search range of ±1800 Hz, 526 FFTs across subcarriers are
needed. Without considering the power calculation and the maximum
search, assuming 5N log2(N) real operations to compute an FFT
of size N, and 4 bytes (B) per stored complex value, this requires
∼ 3.7 MOP and at least 147 kB of memory.

To reduce the number of operations and the storage requirement,
channel estimations can be combined as depicted in Fig. 3.12. Chan-
nel estimations corresponding to CRS located in the same box are
added before estimating the offsets on the accumulated values. The
underlying assumption is that the time and frequency offsets are small
enough not to alter the coherency of the combined channel estima-
tions. This simplification reduces the number of FFTs that have to
be computed and the amount of data that has to be stored. However,
the supported estimation ranges are also reduced because performance
deteriorates for large offsets when the accumulation across subcarriers
or symbols is damaged by the TO or the FO, respectively. The
larger the section covered by the accumulation box, the smaller the
supported estimation ranges. Denoting the set of subcarrier and
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symbol indices of the combined channel estimations by Cm,n, the mth

and nth DFT input in frequency and time domain is:

H̃m,n =
∑

(k,l)∈Cm,n

Ĥk,l . (3.21)

Figure 3.12: Complexity reduction by combination of CRS channel
estimations. In the padded version, each time domain FFT input
bin corresponds to one OFDM symbol, in the packed version it
corresponds to one slot. The mapping is repeated of 6 PRBs.

Two options are considered in Fig. 3.12. The first, denoted as
padded and shown in green at the top of the figure, only combines
channel estimations that are on the same symbol and the same PRB
by groups of two. It only needs M = 6 FFTs across symbols and
divides the required memory to store the DFT input by two. The FO
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estimation range is not affected by the simplifications compared to the
2D-FFT algorithm, because channel estimations are only combined
across subcarriers. The supported frequency range is about ±1.7 kHz,
limited by the larger of the two regular spacings between consecutive
OFDM symbols carrying pilots, i.e. 4 symbols for CRS. On the other
hand, the supported TO range is divided by two compared to the 2D
DFT approach to approximately ±2.5 µs. In the packed alternative,
depicted in violet at the bottom of Fig. 3.12, groups of four channel
estimations within the same slot and PRB are combined. The memory
requirement is divided by two compared to the first option for the
same number of accumulated SFs. If the FFT size across symbols is
kept constant this solution also allows longer accumulation times of
up to 1024 SFs instead of 146. The TO estimation range is the same
as for the solution in green, but the FO estimation range is reduced to
±1000 Hz due to the increased distance between the DFT input bins
in the time domain.

Another approach to further reduce the computational complexity
is to perform the search in two steps, finding first the FO and then the
TO. Like this, the full 2D DFT grid does not have to be computed. Six
FFTs are first performed across symbols, but then only one FFT on
the bin with maximum power accumulated over the first six FFTs is
needed across subcarriers. Representing the one-dimensional DFT of
sizeNn of a signal by FNn{·}(v) the two-step algorithm with combined
grid elements is:

H̃m(v) = FNn{H̃m,n} ,

v̂ = arg max
v

M−1∑
m=0
|H̃m(v)|2 ,

H̃(u, v̂) = FNm{H̃m(v̂)} ,
û = arg max

u
|H̃(u, v̂)|2 .

(3.22)

To adapt this algorithm for multiple antenna ports (APs), the
DFTs must be calculated for the channel estimations on each AP and
all the DFT powers added before the maximum searches.

The performance of the described two-step approach was evaluated
for a single antenna port and the two combination strategies depicted
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in Fig. 3.12. The same FFT size NFFT = Nm = Nn = 2048 was used
across time and frequency domains. It was chosen to match the size
of the FFT hardware accelerator used for initial synchronization de-
scribed in [13], allowing the reuse of the same accelerator for tracking.
The performances of the packed and padded versions for a static
AWGN channel are shown in Fig. 3.13 and compared with the results
of the 2D-FFT algorithm. The estimation miss rate with 64 accumu-
lated SFs is shown for the three options, while the performance for the
packed version of the reduced-complexity (RC) ML CRS estimation is
also plotted for 512 SFs because it can accommodate more subframes
with the same FFT size. For all FO and TO miss rate plots throughout
this chapter, an estimation is counted as a miss if the absolute FO
estimation error is larger than 100 Hz or the absolute TO estimation
error is larger than one sample, i.e. 0.52 µs. The simulated TO was
uniformly distributed with a maximum absolute value of θMAX = 3.5
samples. For the packed RC ML algorithm, the maximum absolute FO

Figure 3.13: Comparison of FO and TO miss rates of different ML-
based estimation algorithms. Simulated with 5000 iterations per SNR
point.
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was νMAX = 800 Hz due to its reduced estimation range, while for the
other methods a maximum value of νMAX = 1600 Hz was used. Due to
the high penalty of a wrong correction following a misdetection, the
time and frequency offset estimation should be operated at almost
zero error rates if no condition for hit detection is used. However, the
results are evaluated at 1% miss rates for which sufficient sample sizes
can be reached with acceptable simulation time.

The miss rate of the ML estimator follows closely its theoretical
outlier probability plotted with a grey solid line. The outlier proba-
bility was calculated as described in [38], replacing the length of the
signal N with the number of REs carrying CRS in the observed period.
The results for the two RC ML methods are slightly worse than for
the 2D-FFT approach, with 1.3 dB and 3.1 dB performance loss at
a 1% miss rate for the padded and the packed version, respectively.
The non-coherent combination of FFT power across PRBs for the
FO estimation slightly reduces the accumulation gain compared to
the 2D-FFT method, where the coherent accumulation of all PRBs
is ensured by the DFTs in the frequency domain. Additionally, the
two RC methods suffer from degradation due to the TO, because
REs on different subcarriers are directly added in (3.21) even though
their phases are different due to the TO. For the packed approach,
the performance is also affected by the FO, due to the accumulation
of REs located on different OFDM symbols. On the other hand, the
packed RC ML algorithm allows longer accumulation times, achieving
a 1% miss rate down to−25.8 dB SNR with 512 SFs. This performance
corresponds to an improvement of 7.8 dB compared to the accumula-
tion of 64 SFs out of the 9 dB that would be expected from an ideal
accumulation gain.

3.5.3 Non-Coherent Accumulation

One limitation of the discussed CRS ML estimators is that they
require the accumulated SFs to be coherent, meaning that the UE
must continuously receive on the same frequency during the whole
observation period. This can be ensured during the fine correction
step following initial synchronization or for reacquisition after wake-up
from a sleep period. However, in other cases, the coherent reception
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could need to be interrupted for uplink transmissions or frequency
jumps.

The two-step RC ML algorithms can be adapted to deal with P
non-coherent blocks of data of length N by applying separate FFTs to
each signal segment. The FO is then estimated by searching for the
bin with maximum power accumulated across all FFTs, while the TO
is given by the maximum of the accumulated power of P FFTs across
M = 6 PRBs. The procedure can be summarized in mathematical
notation as in (3.22):

H̃(p)
m (v) = FNn{H̃m,pN+n} ,

v̂ = arg max
v

P−1∑
p=0

M−1∑
m=0
|H̃(p)

m (v)|2 ,

H̃(p)(u, v̂) = FNm{H̃(p)
m (v̂)} ,

û = arg max
u

P−1∑
p=0
|H̃(p)(u, v̂)|2 .

(3.23)

The index n runs from 0 to N−1 to only include the elements located
within the same coherent burst in each FFT across the time domain.

The FO and TO estimation miss rates for the padded RC ML
estimator with 64 received subframes and different numbers of non-
coherently accumulated signal blocks are depicted by the solid lines
of Fig. 3.14. The best results are achieved when all SFs are accumu-
lated coherently in one block. The performance loss when halving
the number of coherently combined SFs increases for small coherent
accumulation times.

The smaller gain of non-coherent combination can be further in-
vestigated by considering the impact of coherent and non-coherent
accumulation on the outlier probability of the FO estimator of (3.23)
in AWGN, following a similar analysis as in [38]. Assuming that the
combination of channel estimations in (3.21) is lossless, that no zero
padding is needed at the input of the DFT, that a DFT of the same
size as the input vector is used, and that the FO corresponds exactly
to the frequency of one DFT output bin, the estimation metric for
û can be shown to have a chi-squared distribution with κ = 2PM
degrees of freedom on the noise bins, and a non-central chi-squared
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Figure 3.14: Comparison of combined FO and TO miss rates for the
CRS ML RC padded estimator with 64 received SFs separated into
different numbers of non-coherently accumulated blocks P . Simulated
with 10000 iterations per SNR point.

distribution with the same degrees of freedom and a non-centrality
parameter λ = 2NcPM

σ2 on the signal bin, where σ2 is the noise power,
and Nc = 8NSF,coh the number of coherent REs included in each DFT
input. The outlier probability can then be obtained by replacing
the probability density functions (PDFs) of Equation (57) in [38]
with the ones of the distributions mentioned here. The resulting
outlier probabilities are plotted in dashed lines in Fig. 3.14 for the
same numbers of coherently accumulated SFs as the miss rate plots.
The PDFs and the final integral form of the outlier probability are
discussed in App. A.3.

The differences between the outlier probabilities and the corre-
sponding FO and TO estimation miss rate plots are due to the loss
caused by the TO in the accumulation of (3.21). Considering the
relative difference between the curves when NSF,coh is doubled, the
dashed and solid lines have similar behaviour, for example, increasing
the number of coherently accumulated subframes from 8 to 16 yields
an SNR improvement of 0.86 dB for an outlier probability of 1% and
0.84 dB for the corresponding miss rate.
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The performance difference between coherent and non-coherent
combinations can be understood by comparing the underlying mecha-
nisms with which the two approaches improve the outlier probability
with accumulation. Considering the probability distributions of the
simplified model used to calculate the outlier probabilities, the ex-
pected value of the signal bin Es and the expected value of the noise
bins En are:

Es = 2PM
(

1 + Nc
σ2

)
,

En = 2PM .

Their ratio Es
En

= 1 + Nc
σ2 increases with Nc, the number of coherently

accumulated REs, but is independent of the number of non-coherent
accumulated blocks P . In other words, the ratio between the expected
value of the desired peak and the expected value of the noise bins is
improved with coherent accumulation, therefore increasing the proba-
bility of selecting the correct peak. However, the ratio is not affected
by non-coherent accumulation.

To understand how non-coherent accumulation can also help re-
duce the outlier probability, the variance of the estimation metric
relative to the expectation of the peak value squared has to be taken
into account. Denoting the variance of the signal bin by Vs and the
variance of the noise bins by Vn, their ratios to the expected peak
value squared are:

Vs
E2
s

= 1
P

1 + 2Nc
σ2(

1 + Nc
σ2

)2 ,

Vn
E2
s

= 1
P

1(
1 + Nc

σ2

)2 .

In this case, increasing the number of non-coherently combined blocks
P reduces the variance of the estimation metric compared to the
expected peak value, also reducing the outlier probability, but to a
smaller extent than coherent accumulation, as shown by Fig. 3.14.

Even though coherent accumulation yields better results under
static channel conditions, non-coherent accumulation combined with
frequency hopping could be used to exploit the diversity of frequency
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selective fading channels. This could potentially lead to a different
balance in the performance gains of coherent and non-coherent accu-
mulation, depending on the number of available independent channel
realizations throughout the cell’s bandwidth.

3.5.4 Hit Detection

The supported SNR ranges of all the approaches discussed in this
chapter were extended by accumulating signals over longer periods.
The required accumulation times are highly dependent on the SNR
of operation. Using excessive RX times in good channel conditions
unnecessarily increases the power consumption of the device. On the
other hand, if the UE corrects wrongly estimated errors it may lose
connection and need to trigger a connection reestablishment proce-
dure at high power and latency costs. Thus, the tracking algorithms
must be operated with sufficient accumulation margin to avoid large
estimation errors. The desired trade-off for the accumulation time can
be set based on an estimation of the SNR. However, SNR estimation
may be tedious in extended coverage and a hit condition that can
be easily integrated into the algorithms’ flow is preferable. For the
RC ML algorithms, the peak-to-average and peak-to-second-peak of
the metric used for FO estimation provide sufficient information on
the reliability of the detected peak. The mentioned metric was intro-
duced in (3.23) of Sec. 3.5.3 as part of the maximum search for FO
estimation:

Cν(v) =
P−1∑
p=0

M−1∑
m=0
|H̃(p)

m (v)|2 . (3.24)

The estimated FO ν̂ is given by the discrete frequency v̂ with the
highest metric and the peak, second peak and average values that can
be used to calculate the ratios for hit detection can be derived from
the same metric for a symmetrical FO search range of size Nv:

Cmax = Cν(v̂) ,
Csnd = max

|v̂−v|>δv
Cν(v) ,
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Cavg = 1
Nv

Nv
2 −1∑

v=−Nv2

Cν(v) .

For the second peak search, an exclusion range of size δv = NFFT
Nbins

around the maximum is needed to compensate for the width of the
main peak caused by the difference between the used FFT size and
the number of occupied FFT input bins Nbins. The peak-to-average
and peak-to-second-peak ratios obtained from these three values can
be compared with predefined thresholds to generate hit conditions:

Cmax
Cavg

> η1 and

Cmax
Csnd

> η2 .

The ideal values of the thresholds vary depending on which of the
RC ML algorithms is used and on the number of antenna ports, sub-
frames, and non-coherent blocks that are considered. In this analysis,
the two conditions were combined and the same thresholds were used
for the padded and packed versions and all numbers of accumulated
SFs from 16 to 1024, considering only coherent accumulation in time,
i.e. P = 1 coherent block, and a single antenna port. For smaller
numbers of SFs higher thresholds are needed due to the smoother and
broader peaks of the resulting metrics. The thresholds were set such
that no false positive hits were observed in SNR regions with miss rates
smaller than 10%. The same thresholds η1 = 4 and η2 = 1.74 were
used for the RF measurements presented in Chap. 6. The simulated
miss rates obtained with these thresholds for the padded RC ML
method with 64 SFs and the packed RC ML method with 512 SFs
are depicted in Fig. 3.15.

The plots generated including the detection thresholds are com-
pared with miss rate curves based only on the estimated FO and TO
without hit conditions. Again, 100 Hz and one sample serve as error
limits for hits. If the thresholds are not met when a hit condition is
used, the FO and TO correction steps can be skipped, and a new
estimation attempt can be started or the number of accumulated
subframes increased. Therefore, the algorithms can be operated at
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Figure 3.15: FO and TO miss rate using thresholds for hit detection
against miss rate based only on the estimated offsets. Simulated with
a static AWGN channel and with 10000 iterations per SNR point.

a 10% miss rate. At this error level, the losses of 3.3 dB and 2.8 dB
compared to the true miss rates are highlighted in Fig. 3.15 for the
padded and packed ML RC algorithm, respectively. The hit detection
thresholds are also suited for early termination.
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3.6 Performance Evaluation
To conclude this chapter, the overall performance of the proposed
ML-based reduced complexity (ML RC) algorithms for fine time and
frequency offset estimation will be evaluated and compared with the
legacy solutions discussed in previous sections.

3.6.1 Comparison of Algorithms
The miss rates of the different approaches using CRS or a combination
of PSS and SSS discussed so far are shown in Fig. 3.16. The solid
lines correspond to algorithms evaluated with 64 accumulated SFs and
the dashed lines with 512. All methods were evaluated with a single
antenna port (AP). The simulated TO was uniformly distributed with
a maximum absolute value of θMAX = 3.5 samples. For the CRS ML
RC packed and the legacy CRS phase difference (PD) algorithms
the maximum absolute FO was νMAX = 800 Hz due to their reduced
estimation ranges. For the other CRS ML RC padded and PSS-SSS
ML algorithms a maximum value of νMAX = 1600 Hz was used. The
same distributions of the time and frequency offsets were used for all
the ramaining plots of this chapter.

The performance of the ML RC algorithms includes the hit detec-
tion step discussed in Sec. 3.5.4 and was evaluated for coherent accu-
mulation in the time domain which performs better than non-coherent
accumulation in static conditions. For the other algorithms, the miss
rate was evaluated based only on the estimated offsets. The thresholds
for FO and TO misses are 100 Hz and one sample, respectively.

The results for the ML estimation with PSS and SSS show the
limits of these pilots for fine synchronization. The performance of this
approach is limited by the FO estimation due to the short duration
of the considered signal, even when PSS and SSS are combined. On
the other hand, the results of Sec. 3.4.3 showed that accurate time
synchronization is possible with PSS and SSS at acceptable accumu-
lation times even in extended coverage. Results with PSS alone would
lead to similar conclusions. As discussed in the CRLB considerations,
the performance difference between time and frequency offset estima-
tion would even be amplified, because the PSS alone has the same
bandwidth but reduced length compared to the combined PSS-SSS
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Figure 3.16: Comparison of FO and TO miss rate for different
estimation algorithms. Simulated with a static AWGN channel and
with 5000 iterations per SNR point.

sequence. Thus, frequency synchronization is harder to achieve than
time synchronization during the initial cell acquisition which relies
only on the PSS. As mentioned in Sec. 3.4.3, the time needed for the
initial synchronization can be reduced by relaxing the requirements
on the FO error after the initial acquisition. Higher residual frequency
offsets can be supported by increasing the supported frequency range
of the tracking algorithm. Therefore, the need to support high FO
estimation ranges was taken into account in the development of the
CRS ML RC algorithms.

Two versions of the CRS PD algorithm are shown in Fig. 3.16.
The first is a straightforward extension of the algorithms available
in the literature to support coverage extension of the accumulated
complex phases measured in each subframe [39,46]. This version was
also implemented on the SoC and used as a reference point for the
RF performance measurements of Chap. 6. The second, CRS PD
cross-SF, yields a 1.9 dB gain by also considering the phase differences
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of reference symbols across subframes. The best of the two methods
is plotted for 64 and 1024 accumulated subframes. Even though CRS
PD cross-SF does not include hit detection, it loses 8.2 dB and 9.5 dB
at a 10% miss rate compared to the padded and packed RC ML
algorithms with the same number of accumulated subframes. The
better performance of ML RC algorithms also translates into a reduced
acquisition time at the same SNR level as shown in Fig. 3.17.

Figure 3.17: Comparison of FO and TO acquisition time to achieve a
10% miss rate for different estimation algorithms with CRS. Simulated
with a static AWGN channel and 10000 iterations per SNR point.

The figure shows the accumulation time required to achieve a miss
rate of 10% in FO and TO estimation with CRS. The curve was
generated by verifying the hit condition after different numbers of
received subframes and interpolating between the numbers of SFs that
yield the error rates closest to 10%. The ML RC algorithms were
evaluated with and without hit detection based on peak-to-average
and peak-to-second-peak ratios, while the PD cross-SF algorithm was
evaluated with the miss rate of the estimated offsets. The hit detection
condition can be used for the early termination of the FO and TO
estimation. At −15 dB SNR, the PD algorithm needs 595 ms to reach
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a miss rate of 10% while the padded version of the ML RC approach
only needs 25.2 ms, 23.6 times less. The difference even increases to
44 times if the ML RC algorithm is considered without hit detection,
showing how algorithmic improvements contribute to reducing the
power consumption. As already shown in Sec. 3.5.2, the padded ML
RC approach yields better performance at the same accumulation level
and has a higher FO estimation range compared to the packed one.
However, packed ML RC estimation allows longer accumulation times
bringing the covered SNR down to −26 dB.

3.6.2 Performance in Fading Channels

So far, only static AWGN channels have been considered because
they yield representative results and allow simpler theoretical analysis
than more sophisticated channel models. However, radio propagation
conditions are often better modelled by multipath fading channels. As
already mentioned in Chap. 2, the 3GPP defined three channel models
for the performance evaluation of LTE devices and the same are used
for NB-IoT and eMTC. In Fig. 3.18, the separated time and frequency
offset estimation miss rates of the ML RC padded and the PD cross-SF
estimators, both without hit detection, are plotted for the EPA and
ETU channels, the ones with lowest and highest delay spread, respec-
tively. The propagation conditions represent low-mobility scenarios
with Doppler frequencies of 5 Hz for the EPA channel and 1 Hz for
the ETU case.

For a single antenna port and 64 accumulated SFs, the RC ML
algorithm reaches a 10% FO hit rate at an SNR of −16.5 dB for the
EPA model and −17.3 dB for the ETU one, instead of −21.6 dB for
the static AWGN case. Even though the difference is approximately
3 dB smaller than for static channels, the ML RC algorithm still clearly
outperforms the PD approach by at least 8.5 dB for FO estimation for
the two fading channels. As for the TO estimation, the conclusions
are similar for the EPA channel. But for the ETU channel, the two
approaches have a high residual miss rate. With an RMS delay spread
of approximately 2 samples, ETU channels have strong taps with
large delays that can have higher power than the first tap for some
realizations. In this case, first path detection is needed to discriminate
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EPA 1 Hz

ETU 5 Hz

Figure 3.18: FO (left) and TO (right) estimation miss rates without
hit detection for the ML RC padded and PD estimators with CRS in
EPA 5 Hz (top) and ETU 1 Hz (bottom) fading channels. Simulated
with 10000 iterations per SNR point.
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the different channel taps and improve the estimation of the time
offset.

If the cell uses multiple antenna ports, the TO estimation can
be improved by taking advantage of diversity. The estimation per-
formance for two CRS APs is also depicted in Fig. 3.18. An accu-
mulation time of 32 SFs was chosen to evaluate the results with the
same received energy as with a single antenna port and 64 SFs. For
the FO estimation, the two methods can exploit the diversity gain
and improve performance by approximately 1 dB. But for the TO
estimation, the residual miss rate is reduced to 4% with the ML RC
algorithm while it remains in the order of 40% for the PD approach.

The results for the combined FO and TO miss rate and including
the hit detection for the ML RC algorithm are shown in Fig. 3.19. Hit
detection comes at the cost of 1.8 dB at a 10% miss rate, but allows
the correction of wrongly detected frequency offsets to be skipped.
Overall, the target −18.5 dB SNR mentioned in the MCL evaluations
of Chap. 2 can already be achieved with 128 SFs for the EPA channel,

Figure 3.19: FO and TO estimation miss rate for the ML RC padded
and PD estimators with and without hit detection, respectively. The
two methods use 128 SFs and 2 APs. Simulated with EPA 5 Hz (solid
lines) and ETU 1 Hz (dashed lines) channels and 10000 iterations per
SNR point.



80 CHAPTER 3. FINE SYNCHRONIZATION

while higher accumulation numbers are possible with the packed ver-
sion of the algorithm at the cost of a reduced estimation range. On
the other hand, the ETU channel does not only cause a residual miss
rate of 4%, but it also produces a similar rate of false time offset hits
that could lead to wrong corrections.

In future work, some of the intermediate results of the ML RC
algorithms could be reused to improve the TO estimation performance
with limited impact on computational complexity. The estimation
metric of the discrete time offset û described in (3.23) of Sec. 3.5.3
could be used for first path detection in a post-processing step. The
same metric could also be used to generate additional conditions for
the hit detection, instead of relying only on the FO metric, to filter out
the miss detected time offsets. If needed, the range of the TO estima-
tion could also be extended by skipping the combination of CRS REs
belonging to the same OFDM symbol described in Sec. 3.5.2, doubling
the memory requirement and the complexity of the algorithm. Finally,
the performance of the FO estimation for the high mobility channels
with up to 200 Hz Doppler frequency specified for eMTC conformance
testing in LTE Release 15 [16] should be assessed.

3.6.3 Summary
The different options for fine synchronization evaluated in this work
or found in the literature and listed in Sec. 3.4.1 are:

• CP AC: cyclic-prefix autocorrelation in the time domain [41,42].

• PSS-SSS ML: maximum likelihood estimation with PSS and SSS
cross-correlations [13].

• CRS PD: phase difference between CRS [39,46].

• PBCH: phase difference between PBCH repetitions [33].

• CRS ML RC: reduced complexity maximum likelihood estima-
tion with CRS presented in this work.

The properties of these estimators are summarized in Fig. 3.20 for
a qualitative comparison. The methods are based on their FO esti-
mation features, following the conclusions of [33] and the evaluations
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of this chapter. The axes are labelled to represent better scores on
the outer ticks, e.g. computational complexity has the lowest values
at the boundary. The focus is set on the FO estimation because it
usually limits the synchronization performance in eMTC and because
not all approaches include TO estimation.

Figure 3.20: Qualitative comparison of fine FO estimation methods.

The CP AC, CRS PD, and PBCH algorithms have the lowest
computational complexities. However, for all three, increased accu-
mulation time yields diminishing returns at low SNR due to the noise
enhancement effect discussed for the CRS PD method. Besides its
complexity, the main drawback of the PSS-SSS-ML fine synchroniza-
tion is its low FO estimation accuracy. Even at moderate SNR levels
accumulation over multiple signal periods is required to cope with
the reduced length of the correlation sequence and reach RMSE levels
below 100 Hz.

The presented CRS ML RC estimator is the only solution that
yields sufficient accumulation gain and FO estimation accuracy to
fulfil the requirements of extended coverage operation in cellular IoT
networks. Furthermore, thanks to the availability of CRS, this method
applies to all cell configurations, does not depend on cell traffic, and
can be used throughout the whole cell bandwidth, the criteria used for
the data dependency ranking of Fig. 3.20. The two main drawbacks
of this approach were addressed by applying techniques to reduce



82 CHAPTER 3. FINE SYNCHRONIZATION

computational complexity and to achieve a sufficient FO estimation
range. Therefore, the CRS ML RC algorithm was selected for eMTC
fine synchronization in the developed modem SoC. The relevant im-
plementation details and the performance measured on the fabricated
chip are presented in subsequent chapters.



Chapter 4

OTDOA Positioning1

Observed time difference of arrival (OTDOA) positioning capabilities
in LTE were introduced with 3GPP Release 9 in 2009 as a tool to com-
ply with location accuracy requirements of emergency call systems like
enhanced 911 (E-911) [28]. Targeting an accuracy of approximately
fifty to a hundred meters, OTDOA has not yet established itself in
other mainstream applications where GNSS positioning is dominant.
The common OTDOA procedure requires timing range measurements
to be sent to a location server where the actual position is calculated
and sent back to the UE if it needs the information, inducing ad-
ditional data transfers and privacy concerns in most human-centric
applications where the location information is mostly used locally.
However, the rise of the IoT has paved the way for use cases that
do not require a high precision position estimation and where the
information is not needed by the device itself but uploaded to a server.

In this context, the 3GPP made a point of maintaining OTDOA
support in its cIoT standards. As a standalone solution, cellular
positioning can provide a ubiquitous and low-cost alternative in case of
widespread adoption, benefiting from the global availability of cellular
networks and the relatively small overhead required to upgrade UEs
with OTDOA capabilities, compared to adding the support of other
positioning technologies. When used as a complement to GNSS,

1Part of this chapter was adapted from [50] published in 2020 IEEE/ION PLANS.
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OTDOA can help expand location coverage to indoor and urban
scenarios, and improve the robustness of the system against attacks
by adding redundancy to the positioning information.

The focus of this chapter is the theoretical and algorithmic back-
ground to support OTDOA positioning, while SoC implementation
and measurements are discussed in subsequent chapters. First, the
general OTDOA positioning procedure and working principle are in-
troduced in the scope of NB-IoT and eMTC. Then, the so-called posi-
tioning reference signals (PRS), designed to improve the hearability of
neighbour cells, are presented before discussing the TOA measurement
itself, the core part of the positioning procedure. Finally, the effect
of frequency offset on the coherent accumulation of PRS subframes is
investigated, showing the importance of fine synchronization.

4.1 OTDOA in Cellular IoT
OTDOA is a DL positioning method where the location of the UE is
estimated using pseudo-range multilateration from different base sta-
tions. The pseudo-ranges are obtained with measurements performed
by the UE on the signals received from different BSs. Assuming
synchronized transmitters, the difference in the TOA of the signals is
caused by their distinct propagation delays, which are proportional to
the distances between the UE and the base stations. Only differential
measurements of the propagation delays are possible for the UE be-
cause it does not have any information on the absolute transmission
time of the signals. The differential time delay measurements are
obtained by subtracting the estimated TOA of the signal of a reference
cell from the TOAs of the signals transmitted by neighbour cells. Con-
verting the time measurements into distance differences, the possible
positions of the UE referenced to a pair of neighbour and reference
cells are given by a hyperbola as illustrated in Fig. 4.1. A planar
position fix can be obtained with at least two range measurements
and is graphically represented by the crossing of two hyperbolas. If
more neighbour cells are available, the redundant information can be
used to improve the location accuracy.

OTDOA positioning in cellular IoT systems is similar to its LTE
counterpart. For eMTC, OTDOA support was inherited from LTE
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Figure 4.1: Multilateration and OTDOA working principle based on
RSTD measurement.

but enhanced in a second standardization stage with improvements in
Release 14 [51], like adding performance requirements and increasing
the repetitions of the available reference signals for eMTC devices. As
to NB-IoT, OTDOA positioning was not supported in its first version,
but the standard was upgraded to support OTDOA in Release 14 [52].

NB-IoT and eMTC reuse the network architecture of LTE where
location-based services (LBS) are managed by a location server [7].
In this setting, the interactions and communication between a UE
and its location server are governed by the LTE Positioning Protocol
(LPP) [53]. The different steps of the common OTDOA positioning
procedure are depicted in Fig. 4.2. After establishing a connection and
registering to the network, the UE informs its location server about its
positioning capabilities. Then, the UE is provided with the assistance
data needed for the time difference of arrival (TDOA) measurements,
like the relevant configuration of the reference and neighbour cells that
should be used, and expected values of the time differences to reduce
the search space that must be covered. With this information the UE
can perform the actual TDOA measurements, also called reference
signal time difference (RSTD) measurements, and include the results
in a location information transfer sent to the server that estimates the
position of the device.
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Figure 4.2: OTDOA procedure [50].

The two main challenges faced to support OTDOA in cIoT net-
works are the targeted coverage extension and the limited capabilities
of devices [54]. Especially, NB-IoT was designed to restrict the num-
ber of connected mode procedures to reduce the number of parallel
tasks performed by UEs and minimize device complexity. Therefore,
RSTD measurements are performed in the idle state. The connection
of the UE has to be released and reestablished before and after the
measurements, as depicted by the arrows with dashed lines in Fig. 4.2.
For eMTC and LTE, RSTD measurements belong to connected mode
procedures. The reduced RX bandwidth of NB-IoT and eMTC UEs
impacts the achievable accuracy of RSTD measurements and has
to be considered, along with the reduced signal-to-interference-plus-
noise ratio (SINR) in extended coverage scenarios, in the definition of
minimum measurement accuracy and reporting delay requirements.
The accuracy requirements of intra-frequency RSTD measurements
and the assumed operating conditions are summarized in Tbl. 4.1
as specified by the 3GPP [29]. The UE must fulfil the defined re-
quirements in 90% of measurement iterations. Two different LTE
scenarios are considered in the table, one assumes a 1.4 MHz cell and
the other a 5 MHz one, both with reference signals occupying the
full resource grid in the frequency domain. For NB-IoT and eMTC
two scenarios are included, normal coverage (NC) with similar SINR
conditions for the reference (ref.) and neighbour (neigh.) cells as
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LTE eMTC NB-IoT
5 MHz 1.4 MHz NC EC NC EC

Signal BW [MHz] 4.5 1.08 1.08 1.08 0.18 0.18
SF number 2 6 12 30 320 320
Ref. SINR [dB] -6 -6 -6 -15 -6 -15
Neigh. SINR [dB] -13 -13 -13 -15 -13 -15
Accuracy [ns] 195 488 488 488 651 1040
Accuracy [m] 59 146 146 146 195 312

Table 4.1: Summary of operating conditions and RSTD measurement
requirements for OTDOA positioning support [29].

LTE, and extended coverage (EC) with more challenging conditions.
The relevant parameters for the reference signals are their bandwidth
(BW) and the number of SFs that are available for the measurements.
The accuracy requirements are specified in LTE 30.72 MHz samples
but were translated into nanoseconds and meters in the table for easier
interpretation.

The table shows that the accuracy requirement was relaxed and
the number of measurement subframes increased for decreasing band-
width and SINR. For narrowband signals, the bottleneck of the po-
sitioning performance is the RSTD measurement, even though the
synchronization between BSs as well as the size and geometry of the
constellation of visible cells also have an impact. The RSTD mea-
surement is similar to the time offset estimation part of the problem
discussed in Chap. 3, but applied to multiple cells. In this case, the
lower bound on the mean squared error (MSE) of the TO estimate was
shown to be inversely proportional to the signal bandwidth cubed, i.e.
the number of REs carrying reference signals K in (3.10), but only
inversely proportional to the number of SFs nSF. In other words,
narrowband signals offer less TOA estimation accuracy and require
longer accumulation times to compensate for the loss due to their
reduced bandwidth. In principle, any reference signal could be used
for the RSTD measurement. However, to improve the quality of the
measurements, dedicated reference signals were introduced specially
for OTDOA. Their structure and properties are discussed next.
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4.2 Positioning Reference Signals

For eMTC, positioning reference signals (PRS) were inherited from
LTE, while for NB-IoT a new set of reference signals had to be intro-
duced, namely narrowband PRS (NPRS). In both cases, a pseudo-
random sequence of QPSK symbols is mapped every six resource
elements on symbols that do not carry other mandatory channels or
signals, such as synchronization signals, broadcast channels, or legacy
LTE control channels. The sequence of QPSK symbols depends on
the cell-specific PRS ID and the SF number of the transmitted signals.
When represented on the OFDM resource grid, the mapping follows a
diagonal pattern as shown in Fig. 4.3. PRS and NPRS have separate
antenna ports and are only mapped on specific subframes. For LTE
and eMTC, the set of SFs containing PRS is defined by the periodicity
of the mapping, the offset of the starting position within that period,
and the number of consecutive subframes that contain PRS, building a
positioning occasion. One of the improvements introduced for eMTC
allows the definition of more flexible mappings, e.g. by increasing
the maximum length of a positioning occasion to 160 instead of 6
SFs. For NB-IoT, two mapping definitions are possible, and they can
be used standalone or combined. One option also uses periodicity,
starting position, and length of a positioning occasion, while for the
other one the valid PRS subframes are defined with a bitmask of
length 10 or 40, where each bit indicates whether the corresponding
SF contains NPRS. In NB-IoT, a positioning occasion can have up to
1280 consecutive SFs, allowing longer accumulation times.

Positioning occasions consist of low interference subframes, with-
out data transmission on any cell to make sure that positioning signals
are not covered by other channels. To further reduce inter-cell in-
terference on positioning occasions, selected positioning SFs can be
transmitted with zero power, i.e. muted. The muting pattern is
chosen by the network operator to fit its deployment. Overall, PRS
and NPRS have three layers of isolation. In the frequency domain,
the mapping to resource elements allows a reuse factor of six with low
interference as long as the orthogonality of subcarriers is maintained,
i.e. the FO of the UE and the TO between the different cells are small
enough, in the order of a few hundred hertz and tens of microseconds,
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Figure 4.3: Example of OTDOA PRS and NPRS mapping [50].

respectively. In the time domain, isolation can be introduced with
muting. Finally, PRS-ID-dependent sequence generation ensures that
the signals can still be separated in the code domain if they overlap
in time and frequency.

4.2.1 CRLB Comparison

The CRLB on the TOA estimation with PRS and NPRS allows the
comparison of the accumulation time needed to achieve the RSTD
measurement accuracy requirements stated in Tbl. 4.1 for eMTC and
NB-IoT. Recalling the signal model of (3.2) for a static AWGN chan-
nel, without frequency offset, and assuming only the ith cell with a
delay τi is active, the received signal for the lth symbol is :

rl(nTs) = s
(i)
l (nTs − τi) + wl(n) . (4.1)



90 CHAPTER 4. OTDOA POSITIONING

For eMTC, the baseband signal modulation is described in (3.1).
NB-IoT has a similar signal with a half-subcarrier shift and only the
Nsc = 12 center subcarriers occupied [18]:

s
(i)
l (nTs − τi) = 1√

NFFT

Nsc/2−1∑
k=−Nsc/2

X
(i)
k,le

2πj(k+ 1
2 )(nTs−τi)∆f . (4.2)

With these signal definitions, assuming a noise term with variance
σ2 and unity power modulation symbolsX(i)

k,l , the SNR per RE is equal
to 1

σ2 , which is the standard SNR definition assumed throughout this
work, and corresponds to the one used for the 3GPP’s normative
requirements. Furthermore, the CRLB of the TOA τi for eMTC is
the same as for LTE given in [28]. For NB-IoT only a small adaption
is needed to account for the half subcarrier shift [50]. For a single
subframe and without taking into account the CP the CRLB is:

CRLB(τ̂i) = σ2

8π2∆2
f

Nsymb−1∑
l=0

Nsc/2−1∑
k=−Nsc/2

(k + δk)2|X(i)
k,l |2

, (4.3)

where δk = 0 for eMTC and δk = 1
2 for NB-IoT. When accumulating

multiple SFs the achievable estimation variance is divided by the
number of combined subframes nSF [50]:

CRLB(τ̂i, nSF) = CRLB(τ̂i)
nSF

. (4.4)

Thus, the ratio of the CRLB for NB-IoT and eMTC can be used
to compare the number of subframes required to achieve similar per-
formance in both. Assuming the same SNR per RE and the mapping
depicted in Fig. 4.3 for both, 221 times more SFs are needed in NB-
IoT:

nSF,NB-IoT
nSF,eMTC

= CRLBNB-IoT(τ̂i)
CRLBeMTC(τ̂i)

= 221 .

When assuming the same received power instead of the same SNR
per RE the difference reduces to approximately 37 times. These
results have also been shown in [50] where a compensation term for
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the different number of occupied subcarriers is taken into account.
The difference in TOA estimation performance is due to the smaller
signal bandwidth supported in NB-IoT and is compensated with up to
26 times longer accumulation times compared to eMTC. However, the
number of available SFs is not sufficient to fully recover the estimation
performance, and the target accuracy requirements had to be relaxed
to avoid excessively long accumulation times.

4.3 TOA Estimation

The TOA of the signal transmitted by the ith cell can be estimated
using the correlation of the received signal rl(n) with a replica of the
original signal sl(n). The correlation function over one SF for a given
time delay τ can be calculated as the sum of symbol correlations in
the time domain:

R(i)
m (τ̃) =

Nsymb−1∑
l=0

NFFT−1∑
n=−NCP,l

rl(n+ τ̃)(s(i)
l (n))∗ .

The ML TOA estimation in AWGN is then given by the delay that
maximizes the correlation power for a given search window defined by
−W ≤ τ̃ < W [28]:

τ̂i = arg max
τ̃

∣∣∣R(i)
m (τ̃)

∣∣∣2 .

Excluding noise, interference, and cross-correlation from adjacent
SFs, the correlation output with zero time delay is the power of
the autocorrelation function of the PRS or NPRS subframe, both
plotted in Fig. 4.4 for 1.92 Msps sampling rate. Due to their smaller
bandwidth, NPRS yield a much wider and flatter peak, making the
estimation of its location less accurate in noisy conditions, as shown
by the CRLB comparison.

The estimator can be extended to use nSF subframes by accu-
mulating their correlations. The cross-subframe combination can be
coherent, adding the cross-correlations before calculating the power
of the accumulated values, or non-coherent, adding the power of the
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Figure 4.4: PRS and NPRS autocorrelation power at 1.92 Msps. The
values are normalized to the peak of each curve.

correlation of each SF. The correlation function can be modified to
coherently accumulate blocks of nc SFs, while combination across
blocks is non-coherent, to obtain the following estimation metric also
presented in [50]:

R(τ̃) =
nb−1∑
p=0

∣∣∣∣∣
nc−1∑
m=0

Rpnc+m(τ̃)
∣∣∣∣∣
2

, nbnc = nsf . (4.5)

This formula applies in general for OTDOA estimation with multiple
received subframes. The remainder of this section will focus on the
special case of NB-IoT.

4.3.1 Quadratic Interpolation
The lower sampling rate of NB-IoT and eMTC devices reduces the
complexity of the cross-correlation used to estimate the TOA but
comes at the cost of a reduced granularity of the estimation metric.
To restore resolution, an additional interpolation stage is required
after performing the maximum detection on the correlations of (4.5).
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A simple quadratic fitting scheme was chosen instead of the sinc-
based interpolation described in [55] to keep the complexity as low as
possible with a negligible impact on the interpolation accuracy. With
the mentioned sampling rate, the NB-IoT signal is still oversampled
by roughly a factor of ten. Thus, the wide peak of R(τ), shown in
the NPRS autocorrelation of Fig. 4.4, can be well approximated by a
quadratic function. The interpolated maximum can be obtained by
fitting a parabola on the maximum bin of R(τ) and its two neighbours.
The estimated TOA is then given by [50]:

∆τ̂ = R(τ̂ + 1)−R(τ̂ − 1)
2(2R(τ̂)−R(τ̂ + 1)−R(τ̂ − 1)) . (4.6)

4.3.2 Interference from Neighbour Cells
Under static AWGN channel conditions and without synchronization
mismatches, the coherent combination yields better performance than
the non-coherent because it allows ML estimation. Furthermore,
coherent accumulation is also more resilient to the interference of PRS
from neighbouring cells. When estimating the TOA of a given cell,
e.g. the reference cell, the interference from other cells results in an
unwanted cross-correlation term in the estimation metric of (4.5). If
the interfering cell is much stronger than the wanted cell, the peak
of the interfering term may exceed the peak of the autocorrelation
function of the wanted signal, leading to the miss-detection of the
actual maximum. For NB-IoT, the cross-correlation of NPRS from a
reference cell with NPRS ID 0 and a neighbour cell with NPRS ID 6
is depicted in Fig. 4.5. The NPRS of the two cells are mapped to the
same subcarriers, leading to high cross-correlation values at low time
offsets, where the signals are only separated in code domain by the
pseudo-random sequence of QPSK symbols that build the reference
signals. The correlation power for nsf = 4 consecutive SFs with the
coherent accumulation of blocks of one, two or four SFs are shown.
The values are normalized to the peak power of the autocorrelation of
the serving cell with the same accumulation strategy, i.e. 0 dB would
mean that the interfering cross-correlation has the same power as the
wanted peak. The dotted lines highlight the maximum of each curve,
which represents the margin of the wanted peak on the interference
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Figure 4.5: NPRS cross-correlation power of neighbour and reference
cell signals accumulated over nsf = 4 SFs with different numbers of
coherently accumulated SFs. The values are normalized to the peak
of the reference cell’s autocorrelation for the same configuration.

term. If the maximum of a curve in Fig. 4.5 is at −12 dB, the TOA
of the wanted cell can be correctly detected even if its power is up
to 12 dB lower than the neighbour cell. In the illustrated example,
increasing the number of coherently accumulated SFs helps reduce
the interfering peak’s amplitude compared to the wanted maximum.

The amplitude of the interfering cross-correlation and the benefits
of coherent combination depend on the sequences used to generate the
NPRS and on their mapping to resource elements. To verify that co-
herent accumulation generally increases resilience to interference and
to quantify this improvement, the maximum cross-correlation value
was calculated for all possible neighbour NPRS IDs. The maximum
cross-correlation power relative to the corresponding autocorrelation
peak averaged over all IDs is shown in Tbl. 4.2. When accumulating
320 NPRS SFs, coherent accumulation of all SFs allows on average
2.6 dB higher interferers than coherently accumulating groups of two
SFs, and another 2.1 dB higher than the non-coherent accumulation
of SFs, confirming the benefits of the coherent combination shown
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Number of coherently
accumulated subframes nc

Average maximum
cross-correlation

1 SF −13 dB
2 SFs −15.6 dB
4 SFs −17.7 dB

Table 4.2: Average maximum NPRS cross-correlation power over 160
accumulated SFs for a reference cell with NPRS ID 0 and all possible
neighbour cell IDs. The power value is given in decibel relative to the
autorcorrelaion peak of the reference cell.

in the example of Fig. 4.5. For similar reasons, coherent combination
across subframes can help mitigate interference also for other reference
signals that rely on separation in code domain, like NRS, CRS or
DMRS.

However, this advantage relies on the phase coherency between
subsequent subframes and is vulnerable to residual frequency offsets
and changes in the radio channel. Thus, the number SFs nc that
can be coherently accumulated without losing performance is limited
by frequency mismatches and channel Doppler spread. Successive
interference cancellation, as presented in [55], can also improve per-
formance in interference-limited scenarios. However, the achieved
improvements come at a high computational cost and the extension of
this approach for large numbers of accumulated subframes for coverage
extension would significantly increase its complexity. Therefore, it was
not considered a viable solution for the developed cellular IoT SoC.

4.4 NB-IoT Performance Evaluation
The performance of the described TOA estimation algorithm was
evaluated with Monte-Carlo simulations, assuming an AWGN channel
as defined in (4.1) and with 2000 channel realizations for each SNR
point. To reflect the conditions of a real-world scenario, the virtual
positions of the UE and the simulated cells were chosen based on a
real location at the institute and the position of four neighbouring
base stations, corresponding to an irregular urban deployment with
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Distance
to UE

Distance
difference

RX power
difference

Reference cell 340 m 0 m 0 dB
Neighbour cell 1 691 m 351 m −11.6 dB
Neighbour cell 2 615 m 273 m −9.7 dB
Neighbour cell 3 882 m 546 m −15.6 dB

Table 4.3: The geometrical arrangement of cells for OTDOA simula-
tions and resulting signal parameters [50].

an inter-cell distance of up to 1 km. Tbl. 4.3 summarizes the distances
between the UE and the base stations, as well as the resulting power
ratios and relative time delays of the signals received from different
cells. The power differences were calculated based on the distance
differences using the same path loss model as in [55]:

L[dB] = 120.9 + 37.6 log10(d[km]) .

The closest cell was chosen as the reference cell, while the three
others were defined as neighbour cells. The RSTD for each neighbour
cell was calculated as the difference between the TOA of its signal and
the TOA of the reference cell’s signal, where the TOA was measured
as described in previous sections, with nc = 4 coherently accumulated
subframes. The NB-IoT cells were set to operate in standalone mode
with 320 NPRS SFs available for the RSTD measurement, without
muting. The cell IDs were set such that the NPRS of all cells were
mapped on different subcarriers. Fig. 4.6 shows the miss rate of the
simulated measurements for each neighbour cell. The measurement
was considered a miss when the absolute error |ERSTD| compared to
the expected RSTD value was larger than 651 ns, i.e. the accuracy
requirement for normal coverage defined in Tbl. 4.1. To ensure a
sufficient margin on the specification, a miss rate of 5%, highlighted
by the black dotted line in Fig. 4.6, was considered instead of the
normative 10%.

When expressed relative to the SNR of the corresponding neigh-
bour cell instead of the reference cell, the three curves show almost
the same performance, achieving a 5% miss rate at SNRs between
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Figure 4.6: RSTD measurement miss rate in a static AWGN channel
for 320 accumulated NPRS subframes. Simulated with 2000 iterations
per SNR point.

−19.3 and −19.4 dB. Thus, in AWGN conditions, the performance
of the RSTD measurement has a margin of at least −4.3 dB on the
extended coverage SNR requirement for the three neighbour cells.
However, this result can be influenced by other non-idealities that
affect the behaviour of a real UE. In particular, the residual FO can
heavily impact the TOA estimation performance when NPRS SFs are
accumulated coherently. This effect is investigated next.

4.4.1 Effect of Frequency Offset
To assess the impact of a residual frequency offset (FO) of fo Hz on
the RSTD measurement, the model of (4.1) was extended [50]:

yl(n) = sl(n− τi)e2πjnTsfo + wl(n) . (4.7)

The simulations of Fig. 4.6 were repeated with this additional ef-
fect for different numbers of coherently accumulated SFs nc ∈ {1, 2, 4}
and still a total of nsf = 320 NPRS SFs. To emulate the behaviour of
real systems, where the local oscillator’s frequency varies in time, the
FO was assumed to be equally distributed in ]− Fo,max, Fo,max[ for
different values of Fo,max. The results are plotted in Fig. 4.7, where
the maximum FO value for a given simulation point is represented on
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the horizontal axis. The vertical axis indicates the 5 % RSTD miss
rate SNR point of the strongest neighbour cell, i.e. neighbour cell 2
in Tbl. 4.3. The SNR is relative to the considered neighbour cell.

Figure 4.7: Effect of frequency offset on RSTD measurement perfor-
mance [50]. Simulated in a static AWGN channel for 320 accumulated
NPRS subframes and with 2000 iterations per SNR point.

As expected, at zero FO the correlations with more coherently
accumulated SFs perform better, indeed considering the origin of the
x-axis nc = 4 performs best. However, its performance degrades
quickly with increasing FO. FOs in the order of 50 Hz to 100 Hz
are common in real-world scenarios due to the temperature-sensitive
low-cost oscillators used in cIoT modems. Thus, the benefits of co-
herent accumulation can only be realized with accurate frequency
synchronization for which solutions have already been presented.

Time-varying fading channels also limit the coherency of reference
signals over time. The maximum Doppler frequency of a channel
influences the number of subframes that should be combined coher-
ently. Furthermore, multipath channels introduce uncertainty in the
measured TOA and considerably impact the accuracy of RSTD mea-
surements. First-path detection helps reduce the degradation due to
fading channels at the cost of additional post-processing on the time-
domain correlations of (4.5). The effects of multipath on OTDOA
positioning and the possible solutions to tackle them were not studied
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in the scope of this thesis. Nevertheless, they can be implemented
incrementally on the presented measurement strategy in future work.





Chapter 5

System-on-Chip
Architecture and
Operation

A high integration level is crucial to meet the stringent requirements
of mIoT applications in terms of cost, form factor, and power con-
sumption. In this setting, RF SoCs, including analog radio frequency
transceivers and processor systems, are the best-suited platforms to
meet the needs of a variety of use cases and increase the number of de-
ployed devices. The benefits of integration outweigh the inconvenience
of coupling the technology used for the RF and digital sub-systems,
which may slow the migration of the latter to newer processes.

Processor systems typically included in such SoCs do not provide
sufficient resources for a purely software-defined radio (SDR) imple-
mentation of the digital PHY, even for the reduced complexity of cIoT
standards. Moreover, coverage extension increases the complexity of
algorithms needed to set up and maintain a connection, and to support
additional services like OTDOA positioning. Therefore, hardware
acceleration is required, at least for a subset of the signal processing
tasks. Tight integration of digital baseband blocks in the proces-
sor system enables fine partitioning and smooth transitions between
software and hardware, allowing trade-offs between the advantages

101
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of hardware acceleration, regarding power consumption and perfor-
mance, against the additional silicon cost of dedicated processing
blocks. Furthermore, flexible and modular systems are highly ben-
eficial to facilitating the incremental development of multimode plat-
forms supporting various communication and positioning technologies
with shared resources.

In this chapter, the architecture of state-of-the-art modem SoCs
supporting NB-IoT and eMTC is presented, highlighting the need
for hardware acceleration in digital signal processing, and presenting
trade-offs in HW-SW co-design. The performance requirements that
drive the digital system design are investigated first. Then, a system
overview of the modem SoCs where the developed signal processing
blocks were integrated is given. Following, the digital hardware in-
volved in the implementation of tracking for eMTC and in OTDOA
measurements for NB-IoT positioning is described along with the
interactions between HW and SW.

5.1 System Requirements
The choice in partitioning between HW and SW processing depends
mainly on the complexity of the tasks and the time available to per-
form them. Even if a dedicated hardware implementation provides
better power efficiency for specific functionality, the benefits are atten-
uated when the power consumption of the whole system is considered.
Many mIoT use cases are characterized by sporadic activity domi-
nated by UL data traffic. During active bursts, energy consumption
is mainly driven by the PA, while sleep power is the most relevant
during idle periods. Instead, using SW where possible and building
accelerators that can be reused for different tasks is preferred for
low-cost devices to minimize area.

The digital signal processing steps directly involved in the recep-
tion and transmission of physical channels are summarized in Fig. 5.1.
Operations like OFDM demodulation in the RX path and signal gen-
eration in the TX chain must operate at the sampling rate, here
1.92 Msps. Generally, they need dedicated hardware because they
require online processing to avoid buffering large amounts of samples
and because they have strict deadlines imposed by the standard. At
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(a) RX

(b) TX

Figure 5.1: Digital signal processing steps of RX (a) and TX (b)
chains.

the other end of the chain, bit operations like channel encoding for
signal generation can be implemented very efficiently in HW, while
channel decoders in the RX path are too complex to be implemented
in SW and meet the latency and throughput requirements for both
NB-IoT and eMTC. Whether the intermediate steps, like channel
estimation and equalization for the DL and DFT precoding for the UL,
can be implemented in SW depends on the number of REs that must
be processed per symbol and on the available time to complete the
operations. The timing relations between control and data channels
defined by the standard impose latency constraints on these tasks.

Fig. 5.2 shows the minimum delays between control and data chan-
nels in the transmission and reception of data in NB-IoT and eMTC.
Besides having a six times smaller bandwidth, NB-IoT also has la-
tencies between three and four times longer. The combination of
these properties substantially relaxes the computational requirements
of NB-IoT, allowing more operations to be performed in software.
For example, the channel estimation on REs that contain reference
signals and the equalization of REs that carry control information
must be performed approximately 24 times faster in eMTC compared
to NB-IoT. This number holds if the time allocated to each stage
of the RX path is proportionally the same for the two standards
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(a) DL

(b) UL

Figure 5.2: Timing diagram of the dynamic scheduling of DL (a) and
UL (b) data channels.

and if in both cases the performance is constrained by latency and
not throughput. A factor of four comes from the difference in the
1 ms delay between MPDCCH and PDSCH and the 4 ms between
NPDCCH and NPDSCH, and a factor of six is due to the bandwidth
difference resulting in a larger number of REs processed per subframe.
Furthermore, for eMTC, the MPDCCH carries the narrowband index
of the NPDSCH. Thus, the control channel must be fully decoded
early enough to allow a frequency hop in time to decode the scheduled
PDSCH. The increased complexity combined with the strict deadline
requires all the RX steps involved in MPDCCH decoding to be per-
formed in HW for eMTC while some of them could be shifted to SW
for NB-IoT.

The small latency between control and data channels in uplink
scheduling is also challenging because it involves fetching data from
higher protocol layers besides the full completion of all the steps
depicted in Fig. 5.1 of both RX and TX paths. Again, the lower
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latency and higher complexity of eMTC make HW accelerators needed
for the whole RX and TX chains.

Coverage extension support also influences the computational re-
quirements of the system. On the one hand, operation at low SNRs
impacts the complexity of the algorithms needed for synchronization
and data transmission. On the other hand, real-time processing is
needed to avoid the usage of large memory buffers for offline process-
ing. If no explicit deadline is imposed by the standard, the complexity
of the algorithm and the signal periodicity determine the computa-
tional requirements. For example, there is no stringent requirement
on the time needed for cell search. However, coverage extension needs
ML detection with a large number of signal periods. To allow online
accumulation, the needed cross-correlations must be computed within
a signal period and need a high-throughput hardware implementation
as described in [13].

5.2 Overall Architecture
Fig. 5.3 shows an overview of the architecture of the multimode SoCs
presented in [56] and [13], for which contributions were done in the
scope of this work. The considered systems include RF and central
processing unit (CPU) subsystems, as well as digital accelerators for
compute-intensive tasks.

The RF transceiver subsystem, in the top-left part of the block
diagram, was designed by a partner company. Its RX chain includes
LNA, down-mixer, filtering, and ADC stages. It supports all GSM and
LTE frequency bands up to 2.2 GHz, including those needed for GNSS.
An NF below 5 dB and operation without surface acoustic wave (SAW)
filters under strong adjacent channel interferers are among its most
important characteristics. The TX chain includes DAC, filter, mixer,
and preamplification stages. Integration of the PA was demonstrated
for NB-IoT in other works, like [57,58]. However, it was not considered
in this project due to the additional complexity of also supporting
GSM and eMTC while maintaining the high PA efficiency needed to
minimize energy consumption.

The backbone of the processor system is a quad-core RISC-V
cluster clocked at up to 100 MHz. The four cores host a multi-threaded
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Figure 5.3: Overview of system architecture [13].

real-time operating system, the protocol stack, and part of the PHY
processing. They have two levels of common instruction caches and
share an 8-bank static random-access memory (SRAM) scratchpad
tightly coupled data memory (TCDM). The TCDM is interfaced over
a logarithmic interconnect that allows up to eight parallel accesses
and automatically serializes conflicting transactions. The number of
units with direct access to the TCDM interface can be higher than
the number of memory banks. However, the bandwidth and latency
of each link deteriorate if many of them are active at the same time.
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Furthermore, adding TCDM ports increases the complexity of the
interconnect and can impact the achievable clock frequency. Thus, the
TCDM ports are a critical resource and should be used sparingly. The
SoC communication system is built around an Advanced eXtensible
Interface (AXI) [59] bus while peripherals are accessed and controlled
through a simpler Advanced Peripheral Bus (APB) [60] interface and
can trigger events and interrupt requests (IRQs) through dedicated
interrupt lines when needed.

The DFE, at the interface between the RF transceiver and digital
systems, allows digital signal scaling, filtering and DC suppression
before forwarding the samples to the DBB accelerators for further
processing. The RF subsystem is controlled by the time manage-
ment unit (TMU), which is also responsible for the timekeeping for
cellular communications and makes sure that the configuration of
the transceiver is applied at the right time. For example, timing
corrections and DCXO tuning are applied by the TMU, which can
itself be controlled via APB and send IRQs to the processors to keep
the SW synchronized to the PHY timing.

A variety of DBB accelerators are included in the system. Like
most peripherals, they are configured by SW through an APB inter-
face and can have dedicated IRQ lines. They can fetch their data from
the DFE, from other accelerators, or directly from the TCDM over the
low-latency interface. Direct memory access facilitates data exchange
between accelerators as well as between HW and SW processing tasks.
Data stored in the main processor memory can also easily be accessed
from SW for debugging purposes. Furthermore, the same memory
space on the TCDM can be easily shared for operations that cannot
run at the same time, like initial synchronization and decoding of
control channels. To fully exploit single-cycle accesses to the shared
memory and to avoid the overhead generated by clock domain cross-
ings, the accelerators that have access to the TCDM have the same
clock as the processor system. The TCDM being a shared resource,
conflicts in the transactions are possible, e.g. when the same memory
bank is being accessed by two entities at the same time. To cope
with this uncertainty, a stall probability of 20 % was assumed when
assessing the performance of blocks with direct memory access.

The hardware accelerators that are relevant for the implementa-
tion of tracking for eMTC and OTDOA positioning for NB-IoT are
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highlighted in pink in Fig. 5.3. The sample direct memory access
(DMA) simply forwards the IQ samples from the DFE to a config-
urable location in the TCDM where they are buffered before further
processing. The OFDM FFT also operates on the DFE output. It
performs the CP removal, an FFT for the extraction, and the selection
of the subcarriers that are then stored in the TCDM. The shared
correlation accelerator (SCA) computes correlations in the frequency
domain using the overlap and save method as described in [13]. It
was designed to allow the implementation of cross-correlation-based
ML PSS detection for initial synchronization, but can also correlate
samples from the DFE or the TCDM with arbitrary sequences stored
in the memory. It is built around a 2048-FFT that can also be used
standalone on data stored in the TCDM. The channel estimation and
equalization accelerator, and the OTDOA time domain correlator will
be described in detail in the scope of the implementation of tracking
and RSTD measurements for positioning, respectively.

5.3 Channel Estimation and Tracking

The tracking algorithm described in Chap. 3 can be realized using
a combination of accelerators, originally designed for other tasks,
and software for operations that do not have dedicated hardware.
Before discussing the implementation of the time and frequency off-
set estimation, the channel estimation and equalization accelerator,
also involved in tracking, is presented to highlight the importance of
accurate synchronization in the decoding performance at low SNRs.

Due to the 1 ms latency between the end of an MPDCCH and its
scheduled PDSCH, and to leave enough time for the other operations
of the digital RX chain, a time budget of 100 µs was allocated to
the eMTC channel estimation and equalization part. In that time,
the channel estimation of up to four antenna ports, with at most
72 reference symbols each, must be calculated. Then, a maximum
of 816 payload REs must be equalized for each AP with the final
channel estimation of up to 72 subcarriers each. Assuming that one
RE can be equalized per 100 MHz clock cycle, the equalization alone
would require approximately 33 µs, a considerable portion of the time
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budget. Thus, channel estimation and equalization cannot rely on SW
and need a dedicated HW accelerator.

5.3.1 Hardware Accelerator for Channel Estima-
tion and Equalization

The operations implemented in hardware are illustrated in Fig. 5.4 as
presented in [13]. The circled numbers represent the order of the steps.
First, the received REs Yk,l carrying reference signals on the lth symbol
and kth subcarrier, and the expected reference symbols, Xk,l, are used
to calculate the LS channel estimation Ĥk,l, which is written back to
the TCDM to be reused for the time and frequency offset estimation.
To improve the channel estimation, the results are then combined in
the time and frequency domains. Channel estimations for the same
subcarrier are first averaged over one subframe and then combined
with the values stored from the previous subframe with a configurable
update rate α. The latter cross-subframe combination step can only
be applied if the concerned subframes are coherent, i.e. if they are
received consecutively and on the same narrowband. Following, the
channel estimations are averaged in the frequency domain over a
window of configurable size and interpolated on the subcarriers that
do not carry reference symbols. The noise power is estimated from
the difference of neighbour channel estimations before cross-subframe
averaging. Finally, the interpolated values and the noise estimation
are combined to obtain an inverted channel Hinv(k) that is used for
the minimum mean squared error (MMSE) equalization of the data
symbols.

The accelerator supports equalization for channels with DMRS as
well as CRS for up to four antenna ports. Besides the equalized sym-
bols, the accelerator also generates estimations of noise and reference
symbol powers, which are used for reference signal measurements and
radio link monitoring.

To keep the overall latency within the defined constraints, the
equalization stage must be able to process one RE per clock cycle.
Since the payload symbols must be read and written back to the
TCDM, at least two memory ports are needed to achieve the desired
throughput. To avoid additional access to the memory interface,
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the inverted channel estimations, used to equalize the data symbols,
are stored in a local SRAM. The steps of the overall channel esti-
mation and equalization procedure are serialized to allow hardware
reuse. Thus, only one local data memory and two TCDM ports are
needed overall. Furthermore, all complex and real multiplications
were implemented with a set of 14 shared fixed-point multipliers. The
fixed-point format was chosen to have a negligible impact on perfor-
mance, compared to a double-precision floating-point implementation.
The accelerator needs 98.8 µs to equalize MPDCCH mapped on four

Figure 5.4: Diagram of channel estimation and equalization hardware
accelerator [13].
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antenna ports, closely meeting the timing constraints while keeping its
hardware complexity and the impact on the overall system resources
low.

The equalized data symbols are converted to LLRs by another
accelerator and stored in the TCDM to serve as input for the channel
decoders. The unit that prepares the LLR buffer is named RE to
LLR in the system overview of Fig. 5.3. Besides QAM demodulation,
deinterleaving and inverse rate matching, it also performs the accumu-
lation of data repetitions across SFs in the LLR buffer. The coherency
of the accumulated values depends mainly on the accuracy of the
channel estimation. Even though time and frequency averaging help
improve the channel estimation at low SNR, even for multipath fading
channels, their benefits are limited by the Doppler frequency and
delay spread of the channel. Furthermore, coherency across subframes
and subcarriers is worsened by residual time and frequency errors,
respectively. Especially, frequency offsets limit the gains of data
channel repetitions and affect the achievable coverage extension.

5.3.2 Impact of Frequency Offset on Decoding Per-
formance

To assess the impact of the frequency offset (FO) on the link budget,
the PDSCH decoding performance was simulated for different configu-
rations of the cross-SF channel estimation and different residual FOs.
The corresponding results are depicted in Fig. 5.5. The lowest MCS
and the highest number of repetitions in CE mode A were used for the
evaluation, i.e. MCS 0 and 32 repetitions. The channel estimation was
configured to operate without cross-SF combination or with cross-SF
combination and an update rate of 0.5 or 0.25. The residual FO was
assumed to be equally distributed with a given maximum absolute
value, as for the simulations in Chap. 3. The SNR on the y-axis
corresponds to the 5% BLER point which serves as the reference
BLER for the sensitivity requirements of 3GPP specifications. The
x-axis corresponds to the maximum frequency used to generate the
residual FO.

Without frequency offset, the best performance is achieved with
the smallest evaluated update rate which corresponds to a running
average of 4 SFs. The performance is 0.8 dB better than with an
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Figure 5.5: PDSCH decoding performance with MCS 0 and 32
repetitions for different configurations of the cross-subframe channel
estimation and different maximum residual frequency offsets. Simu-
lated with static AWGN channel and 10000 iterations per SNR point.

update rate of 0.5 which corresponds to a running average of 2 SFs
and 2.4 dB better than simulations without the cross-SF combination.
However, the smaller the update rate is, the faster the performance
degrades with increasing frequency offsets. With a maximum FO of
34 Hz, the running average over 2 SFs performs already better than
over 4 SFs. With an FO of 59 Hz, the performance with the running
average over 4 SFs drops below the performance without cross-SF
channel estimation. Therefore, accurate and robust frequency syn-
chronization is crucial to improve channel estimation and fully exploit
data repetitions in extended coverage.

5.3.3 Implementation of Time and Frequency Off-
set Tracking in eMTC

As discussed in Chap. 3, various approaches are possible for fine time
and frequency synchronization in eMTC. Algorithms based on CRS
were chosen because they provide higher accuracy and can be used
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across the whole bandwidth of cells. Among these, phase difference-
based methods can be easily implemented with the LS channel es-
timation provided by the previously presented hardware accelerator.
However, the FFT-based ML approach for time and frequency offset
estimation was chosen instead, despite its higher computational com-
plexity and memory requirements, due to its superior performance in
extended coverage. Even though no hard constraint on the available
time for TO and FO correction is imposed by the standard, tracking
must run in parallel to other procedures and can impact the load of
the processor system, especially in connected mode. Furthermore,
TCDM space is limited and the memory used for FO and TO estima-
tion cannot be reused by other connected mode procedures, because
tracking must run regularly together with other tasks to maintain
the connection. Hence, the available resources have to be efficiently
used in the implementation of fine synchronization, to avoid excessive
memory usage and system load.

The different steps of the time and frequency offset estimation for
tracking are summarized in the flow chart of Fig. 5.6. The configura-
tion of the relevant hardware accelerators is controlled by a dedicated
software thread that also runs part of the signal processing. Tracking
is started by other tasks, e.g. after successful initial synchronization
or at wake-up from a sleep period, and is periodically triggered by a
timer to maintain synchronization. When a tracking event is initiated,
the thread schedules a continuous reception of DL subframes including
OFDM demodulation.

At the beginning of a subframe, the software configures the channel
estimation accelerator to perform LS channel estimations on CRS and
write them to a specific TCDM location. The channel estimation is
started as soon as the OFDM demodulation of all symbols within the
SF is completed. An IRQ is triggered when the channel estimation
terminates. Following, the software thread combines the channel esti-
mations in groups of two or four depending on the desired frequency
estimation range, as described in Sec. 3.5.2. To reduce the compu-
tational load and energy consumption, FO estimation attempts are
not performed after every received SF, but when selected SF numbers
are reached. The stream of received subframes can be interrupted by
frequency hops or UL transmissions if the UE is active. In that case,
only bursts of consecutive subframes received on the same narrowband
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Figure 5.6: Flowchart of time and frequency offset tracking.

can be coherently accumulated within the same FFT. To accumulate
the FO results of non-coherent bursts, their FFT powers are added
instead of concatenating them within the same FFT, as described in
Chap. 3.

If enough subframes were received, the SCA is used to calculate
the 2048-FFT of the combined channel estimations, each input bin
corresponding to a symbol or a slot, for the six available resource
blocks. The software thread successively prepares the input buffer
and configures the SCA. After each FFT, it calculates the power
of the output and accumulates it with the previous results. Even
though the signal processing steps implemented in software have a
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small complexity compared to the computation of the FFTs and can
be efficiently implemented using some of the RISC-V instruction set
architecture (ISA) extensions, like the dot products used for the power
calculation, they increase the usage of processor resources. Further-
more, the processing must be done in time to allow the next SF to
be handled, the first deadline being the configuration of the channel
estimation. Thus, an improved SCA capable of zero padding at the
input and power accumulation is scheduled for the next version of the
SoC.

The peak-to-second-peak and peak-to-average ratios of the accu-
mulated FFT outputs are computed and used as stop conditions for
the FO estimation. On the one hand, hard thresholds are needed
for the hit criteria to prevent the correction of misestimated offsets
that could break the communication link. On the other hand, more
relaxed conditions allow shorter receiver-on times and lower energy
consumption. The thresholds were set empirically such that no false
hits are observed during the system’s operation. If the stop conditions
are not met, the software waits for the reception of the next SF and
starts the estimation process again. If they are fulfilled, the reception
of subframes for tracking is stopped and the FO is estimated from the
bin index with maximum power.

The next step, TO estimation, requires the complex-valued out-
puts of the FO FFT of each resource block at the bin corresponding to
the estimated frequency offset. At this point, the values have already
been calculated with the SCA during FO estimation. However, storing
the full FFT output for all resource blocks requires almost 50 kB
of memory, 32 bits or 4 bytes are needed for each complex value.
Since no further SFs must be received, there are not any latency
constraints left for the remaining calculations. Thus, instead of storing
them, the values are calculated again for each PRB, and only the bin
corresponding to the estimated FO is stored for the input of the TO
FFT across PRBs. The accumulation buffer of the FO FFTs can be
reused as the output buffer of the SCA for all remaining FFTs, saving
50 kB of memory at the cost of additional latency and energy needed
to calculate the FFTs again. The TO FFT’s bin with maximum power
is then searched and its index is converted into the final time offset
estimation in software. Finally, the TMU is configured to correct the
estimated offsets.
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5.4 OTDOA Implementation1

OTDOA positioning requires the implementation of the LPP on the
UE. The LPP is an additional layer on top of the cellular protocol
stack and is also hosted by the RISC-V processor system. The LPP
OTDOA positioning procedure relies on RSTD measurements that
must be performed by the PHY. The most computationally intensive
part of the RSTD measurement algorithm, implemented on the SoC
as presented in Chap. 4, is the subframe-wise cross-correlation of the
incoming samples with the expected reference signals.

To compute the correlations offline, the received samples for the
whole accumulation period would have to be buffered. For NB-IoT,
if the UE uses all 320 NPRS subframes that are available in standard
conformance tests, almost 2.5 MB of memory would be required to
store the input signal for post-processing, well beyond the memory
available on the system. Thus, the UE must be able to correlate and
accumulate the results on-the-fly.

Counting four real operations for each complex multiplication, the
correlations need a throughput of 7.68 million real multiply-accumulate
(MAC) operations per second for each time offset candidate of a
single cell. If the correlations are computed for four cells and 50
time-offset candidates, this already results in over 1 GMAC/s. As
this throughput could not be achieved with the embedded processor
system, a dedicated hardware accelerator was designed.

5.4.1 OTDOA Hardware Accelerator
The OTDOA correlator reads the received samples from the main
processor memory, correlates them with the automatically generated
NPRS waveform, and writes the result back to the memory. A sketch
of the dedicated correlator’s architecture is shown in Fig. 5.7.

The reference signal generator reads an NPRS configuration vector
for each OFDM symbol directly from the memory and generates the
corresponding waveform. It takes advantage of the structure of NPRS
by building the OFDM symbols as a superposition of two sinusoids
modulated with a reference symbol Sk,l each. This can be done

1This section was adapted from [50] published in 2020 IEEE/ION PLANS.
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Figure 5.7: Architecture of the OTDOA hardware correlator [50].

because NPRS only occupy two out of twelve subcarriers. The si-
nusoids can be easily generated by cyclically reading a lookup table
(LUT) of twiddle factors at equally spaced intervals. With its 13
parallel complex MAC units, the accelerator can perform up to 5.2
GMAC/s and handle up to 660 time-offset candidates in real-time.
This requires only two subframes to be stored at a time, reducing
the memory requirement for the sample buffer down to 16 kB which
can be easily allocated in the main processor memory. The whole
correlator occupies only approximately 1.6% of the overall SoC area
and could be reused for neighbour cell measurements which require
similar correlations.

5.4.2 HW/SW Codesign for RSTD Measurement
Unlike the cross-correlation, the other steps of the RSTD estimation
algorithm have low complexity and can be handled by the RISC-V
cores. Fig. 5.8 depicts the activity of different blocks during an RSTD
measurement using N subframes.

The measurement starts when the connection to the base station is
released and the device is in the idle state. The receiver is switched on
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Figure 5.8: HW/SW scheduling for RSTD measurements [50].

at the beginning of the closest positioning occasion and is kept on until
the last NPRS SF is received. Thus, the phase across subframes is
maintained except for the drift caused by residual sampling frequency
offsets. As long as the receiver is turned on the DFE outputs a
stream of IQ samples at 1.92 MSamples/s. The sample DMA writes
the incoming samples directly to the main processor memory where
they are buffered until being processed by the OTDOA correlator.
The RISC-V cores are mainly responsible for keeping track of the
system’s state and consequently configuring and starting the accel-
erators. The only online processing performed by the cores is the
accumulation of the correlator’s output after each subframe. For the
example where the correlation is performed for four cells and 50 time
offsets each the accumulation only needs approximately 400 kMAC/s,
orders of magnitude less than the correlation itself. Software-based
accumulation allows the developer to freely choose the combination
strategy without affecting the complexity of the OTDOA accelerator.
The maximum detection and the interpolation as described in (4.6)
use the accumulated correlation after all SFs have been processed.
The interpolation is rounded to a resolution of 30.72 MSamples/s,
approximately equivalent to 10 meters. At this point a high-resolution
TOA estimate for the reference and the neighbour cells is available.
The last step is to subtract the TOA of the reference cell from the
ones of the neighbour cells. The RSTD estimation for each neighbour
cell is finally reported to higher-layer software that handles the LPP
information transfers.



Chapter 6

Modem Measurements

Along with a high integration level, extended coverage and long bat-
tery life are among the most valuable features of cellular IoT (cIoT)
devices. For the UE, coverage enhancement is associated with strin-
gent requirements on the signal levels at which reliable communica-
tion and accurate measurements for positioning should be possible.
Furthermore, reducing the power consumption needs the efficient use
of sleep states to fully exploit the duty cycling enabled by extended
discontinuous reception (eDRX) and power saving mode (PSM). En-
ergy saving is made even more difficult when combined with extended
coverage operation. The measurements presented in this chapter
demonstrate the influence of the algorithmic and implementation de-
cisions introduced previously on cellular OTDOA positioning at low
input power levels and the achievable RX sensitivity of DL data
channels. It is also shown how improvements in decoding performance
can translate into power saving at low input signal levels.

The first section of this chapter presents the evaluation board and
the measurement setup used for sensitivity and power evaluations.
The second section introduces NB-IoT OTDOA performance measure-
ments, while the third one evaluates the FO tracking performance in
eMTC. In the fourth and fifth sections, the sensitivity and the power
consumption of the modem presented in this work are discussed and
compared with measurements performed on commercially available
state-of-the-art devices.

119
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6.1 Evaluation Board and Measurement
Setup

The overall system architecture described in Chap. 5 is common to
the multimodal RF SoCs presented in [56] and [13], with additional
hardware accelerators included in the latter to extend the supported
functionalities. The two SoCs were fabricated in a standard 110 nm
complementary metal-oxide semiconductor (CMOS) technology and
have an area of 32.5 mm2 and 37.2 mm2, respectively. The OTDOA
measurements hereafter were performed on the first published SoC
[56], which supports legacy GSM, EC-GSM and NB-IoT for cellular
communication as well as Global Positioning System (GPS) and OT-
DOA positioning. While the chip depicted in Fig. 6.1 with additional
eMTC communication and Beidou positioning support, as presented
in [13], was used for the eMTC FO synchronization, decoding per-
formance, and power consumption measurements discussed in this
chapter.

Figure 6.1: Die micrograph and evaluation board of the RF SoC
presented in [13].

The evaluation board used for the software development and the
different measurements is also shown in Fig. 6.1. The board, designed
by a partner company, includes a modem module as well as different
interfaces for debugging and standard inputs and outputs. Besides the
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multimode RF SoC, the module sub-system also includes an antenna
switch module (ASM), PAs, and crystal oscillators. Integrating RF,
DBB processing, and CPU subsystem into a single SoC allowed the de-
velopment of a compact modem module fitting within 320 mm2. This
solution supports three RATs, namely NB-IoT, eMTC and GSM while
having a form factor similar to state-of-the-art dual-mode modems
supporting only NB-IoT and eMTC [13].

Figure 6.2: RF performance measurement set-up.

The RF measurement set-up for the performance evaluation in
OTDOA positioning and cellular communication modes is shown in
Fig. 6.2. The evaluation board is connected via USB to a controlling
computer for UART interfacing. The measurements were done with
a communication tester connected to the RF SMA connector of the
board. The test equipment was operated either as a signalling unit or
as an arbitrary waveform generator (ARB). In signalling mode, the
communication tester emulates the behaviour of an NB-IoT or eMTC
base station, including the higher protocol layers. The ARB mode,
employed to generate cyclic RF signals carrying configurable baseband
waveforms, provides additional flexibility to evaluate configurations
that are not supported by the signalling modes.
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6.2 NB-IoT OTDOA Performance1

The OTDOA performance was assessed by sweeping the RMS signal
power at the antenna connector and evaluating the RSTD measure-
ment hit rate using 1000 iterations for each power level. For this
measurement, the test equipment was used in ARB mode with a
waveform including the overlaid signals of four base stations. Constant
relative delays between the signals of different cells were used for all
measurements. The delays were set according to the same geometry
assumed for the simulations in Chap. 4. Fig. 6.3 shows the achieved
RSTD hit rate for the weakest cell using groups of nc ∈ {1, 2, 4}
coherently accumulated subframes and a total of nsf = 320 NRS SFs
accumulated for each measurement. An RSTD measurement is con-
sidered a hit if it is within the equivalent of 195 m of its actual value,
in which case it meets the accuracy requirement specified for normal
coverage conditions listed in Tbl. 4.1.

Figure 6.3: Measured RSTD miss rate for different numbers of
coherently accumulated SFs [50].

The best results are achieved with nc = 2 which shows approx-
imately 0.7 dB improvement compared to nc = 1, i.e. non-coherent
SF combination. As already mentioned in Chap. 4, the performance

1This section was adapted from [50] published in 2020 IEEE/ION PLANS.
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degradation for nc = 4 can be caused by a residual FO. Thus, im-
proving the FO tracking of the modem can help enhance the per-
formance when higher coherent accumulation levels, like nc = 4, are
used. However, FO mismatches between the base stations, which are
not emulated in the presented setup, and other non-idealities of real
conditions in the field can also limit the phase coherency over periods
longer than a few milliseconds.

Figure 6.4: Measured RSTD miss rate for for all three neighbour
cells [50].

Fig. 6.4 shows the measured RSTD hit rate for all three neighbour
cells using nc = 2 coherently accumulated subframes. Measurement
results (solid lines) are plotted along with simulated data (dashed
lines) in the same figure. The simulations were run with equally
distributed frequency offsets between ±100 Hz. The simulated FO
range was chosen based on the results presented in Chap. 4 to ap-
proximately match the relative performance difference seen in the
RF measurements with different values of nc. The curves of Fig. 6.3
show better measurements with nc = 1 than with nc = 4, while in the
simulations shown in Fig. 4.7 this was only the case for maximal FOs
greater or equal to 100 Hz. The SNR values of simulation results were
converted into RX power levels assuming a noise figure (NF) of 4 dB
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and taking into account the power level corresponding to each cell in
the final waveform used for the RF signal generation.

Thus, a total RX power of −116 dBm results in SNR levels of
0.6 dB for the reference cell, and −11 dB, −9.1 dB and −15 dB for the
three neighbour cells. At this power level, the SNR of the weakest cell
corresponds to the minimum specified for extended coverage opera-
tion. Results at this power level show RSTD measurement hit rates
of 100% for the two stronger neighbour cells and above 99% for the
weakest neighbour cell, meeting the accuracy requirement for normal
coverage while being at lower SNR than specified. Thus, the specified
accuracy requirements of 195 m for normal coverage and 312 m for
extended coverage are both met.

Figure 6.5: Scatter plot of position estimation at -116 dBm RX power
[50].

To evaluate the expected positioning accuracy that can be achieved
with the developed testbed, the RSTD measurements were exported
to MATLAB and used to estimate a 2D position. The scatter plot of
Fig. 6.5 depicts position estimates resulting from 100 measurements
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performed at −116 dBm RX power. The RMS positioning estimation
error of all 1000 measurements at this power level is 65.5 m. At
−114 dBm RX power, where the SNR of the weakest cell is at the
minimum requirement for normal coverage, i.e. −13 dB, the measured
RMS positioning error is reduced to 48.5 m.

6.3 eMTC Tracking Performance
The padded and the packed version of the ML reduced-complexity
(RC) time and frequency offset estimator using CRS presented in
Sec. 3.5.2 were both implemented as described in Sec. 5.3.3. Their
performance was assessed by sweeping the signal power of an LTE
cell, emulating a static (ST) channel. For comparison, the phase
difference (PD) frequency offset estimation with CRS, as proposed
in [39], was also implemented in software using the output of the
channel estimation accelerator. The FO estimation miss rates for
the different variants are plotted in Fig. 6.6 against the RX power
level. Again, measurements are depicted with solid lines and simu-
lations with dashed lines. The NF of the analog receiver in eMTC
measurements is 2.4 dB, the difference compared to OTDOA mea-
surements comes from an improvement in board design. For the
ML RC estimators all SFs were accumulated coherently and without
early termination, using the maximum number of SFs allowed by the
2048-FFT of the SCA, i.e. 146 SFs for the padded version and 1024
SFs for the packed version. The performance of the PD algorithm was
evaluated for the same numbers of accumulated SFs.

For the ML RC algorithms, thresholds for the peak-to-average and
peak-to-second-peak power ratios were used as hit conditions. A miss
was counted when one of the two ratios was lower than its specified
threshold. The thresholds were chosen empirically and with the help
of simulation results such that no false hits would be observed. The
peak-to-average threshold was set to 4 and the peak-to-second-peak
to 1.74. If the hit thresholds are met, the two ML RC algorithms
provide a very accurate estimation of the frequency offset that can
be used as a verification for the other algorithms. Thus, for the PD
approach, a miss was counted when the estimated FO was more than
100 Hz away from the value estimated by the ML RC algorithm in
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Figure 6.6: Measured (1000 iterations per SNR point) and simulated
(10000 iterations per SNR point) FO estimation performance in a ST
channel as partially presented in [13].

the same iteration. Iterations, where the ML RC algorithms did not
fulfil the hit condition, were not counted in the evaluation of the PD
algorithm.

The curves in Fig. 6.6 show comparable results between simula-
tions and measurements. Furthermore, the measurements confirm the
SNR gain of the ML RC algorithms compared to PD-based approaches
commonly used for synchronization with CRS. The ML RC algorithms
proposed in this work allow time and frequency tracking with at least
a 10 % hit rate at RX power levels as low as −137 dBm [13]. When op-
erated with higher input levels they also need significantly less signal
accumulation to accurately estimate the time and frequency offsets.
For instance, the padded ML RC algorithm with 146 SFs performs
much better than the PD algorithm with 1024 SFs, almost 7 times
more. Simulations show that the difference in performance would even
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be larger with more stringent requirements on the frequency error, the
ML RC algorithms providing more accurate estimations at low SNR.
The threshold of 100 Hz was chosen to fulfil the standard requirements
for UL transmissions. However, an even lower residual frequency error
is advantageous to improving DL decoding performance.

6.4 Receiver Sensitivity

To extend their coverage compared to legacy GSM and LTE net-
works, cellular IoT (cIoT) standards target a 20 dB increase in their
achievable MCL. As discussed in Chap. 2, most of the required gain
must come from receiver sensitivity improvements achieved by using
automatic repetitions of transmitted signals. The ability to fully
exploit the available repetitions to reach the best sensitivity is a crucial
feature of cIoT devices aiming to fulfil the coverage extension goal.
The sensitivity of the NB-IoT and eMTC data channel was measured
with different configurations for the modem presented in this work
and for different commercially available devices [13]. The measured
sensitivities relevant to this discussion are summarized in Tbl. 6.1.
The results are compared only with the best commercial device for
conciseness.

The measurements, except for eMTC coverage enhancement (CE)
mode B, were performed in signalling mode with the evaluated de-
vice attached to the test equipment, the data channels scheduled

(N)PDSCH configuration Presented in
this work [13]

Commercial
device [61]

eMTC 1 rep. MCS 4 −112.3 dBm −111.3 dBm
eMTC 32 rep. MCS 0 (CE A) −128.5 dBm −125.0 dBm
eMTC 512 rep. MCS 0 (CE B) −136.8 dBm not supported
NB-IoT 1 rep. MCS 6 −117.1 dBm −115.5 dBm
NB-IoT 512 rep. MCS 0 −137.7 dBm −136.9 dBm

Table 6.1: Measured 5% miss rate of eMTC PDSCH and NB-IoT
NPDSCH for different coverage level scenarios as presented in [13].
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through the corresponding control channels, and the block error rate
(BLER) determined based on the UEs’ HARQ feedback. The attach
procedure was carried out with a high input level, and then the
power was progressively decreased to measure the BLER at different
RX power levels. The CE mode B measurements, i.e. for more
than 32 repetitions in eMTC, were carried out in ARB mode with
periodically mapped PDSCH transmissions due to missing support
by the test equipment. In both cases, the synchronization to the
BS was maintained only through the UEs’ time and frequency offset
tracking. The sensitivity values listed in Tbl. 6.1 are defined as the
input power levels at which the BLER is 5%, where only the power
over the relevant RX bandwidth is considered. The measurements in
signalling mode were done with 128 MPDCCH repetitions for eMTC,
and 512 NPDCCH repetitions for NB-IoT. If the performance was
limited by the ability of UEs to maintain the connection, the lowest
power before connection loss was used as the sensitivity value.

The single repetition configurations correspond to the reference
sensitivity with standard requirements of −103 dBm and −108.2 dBm
for eMTC and NB-IoT, respectively [16]. The 3GPP specifications
do not define reference sensitivity levels for any configuration with
repetitions. For eMTC CE mode A, the configuration with the highest
redundancy was chosen for the scope of this evaluation. Even though
NB-IoT and eMTC CE mode B support up to 2048 repetitions, the
increased redundancy yields diminishing returns at extremely low
input levels. Thus, the sensitivity was evaluated for a maximum of
512 repetitions.

The modem presented in this work showed best-in-class sensitivity
in all measured NB-IoT and eMTC modes and was the only one to
support eMTC CE mode B when it was published in [13]. Especially,
in eMTC CE mode A the presented modem shows the highest margin
compared to the other evaluated devices, performing 3.5 dB better
than the second-best. The tracking and channel estimation algorithms
presented in this work and implemented on the SoC largely contribute
to its better performance in the low SNR regime. This can be further
investigated by considering the sensitivity for different numbers of
repetitions depicted in Fig. 6.7.

The red line corresponds to measurements without the cross-SF
combination of channel estimations, while the blue line was measured
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Figure 6.7: Measured eMTC sensitivity for different numbers of
PDSCH repetitions with and without cross-subframe channel estima-
tion (PDSCH, MCS 0).

with the cross-subframe combination and an update rate of α = 0.25.
The yellow dashed line represents the ideal performance based on
the single-repetition case, assuming an accumulation gain of 3 dB
per doubling of the number of repetitions. Cross-subframe channel
estimation provides larger gains for increasing repetitions, peaking at
3.2 dB improvement for 512 repetitions. Considering the case with 32
repetitions, the sensitivity improvement is already 2.2 dB, significantly
contributing to the performance margin compared to the other devices
shown in Tbl. 6.1. The PDSCH decoding performance simulations
presented in Sec. 5.3.2 showed that the gain of cross-SF channel esti-
mation, with an update rate of α = 0.25, was expected to be reduced
from 2.4 dB to 2.0 dB if the maximum residual FO would increase
from 0 Hz to 25 Hz, suggesting that the FO is kept below 20 Hz in the
measurements of Fig. 6.7. Thus, the FO tracking solution maintains
the residual frequency error in the order of ten to twenty hertz at
most, despite the extremly sensitive frequency reference of the system.
Even though the dashed line suggests that there is still room for
improvement of several decibels for the larger numbers of repetitions,
the UE would have to achieve even more accurate synchronization to
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reduce the gap to the ideal achievable gain. Furthermore, at such
SNR levels the performance is also limited by other tasks, like cell
search and serving or neighbour cell measurements.

6.5 Power Consumption
Low energy consumption is a critical feature needed for many mMTC
use cases. In cIoT systems, the high power consumption that char-
acterizes cellular communications is compensated by allowing the UE
to enter low-power modes where short activity bursts are separated
by longer idle periods during which the modem can enter sleep states.
To fully exploit the power-saving capabilities of cIoT standards, min-
imizing sleep power and modem activity are at least as important as
optimizing the active power consumption of the device. The modem
power consumption measured in [13] for different UE states is sum-
marized in Tbl. 6.2. Along with the ones of the presented modem,
the table also includes the results of the measured commercial UE
that showed the best overall energy consumption [62]. Despite its
higher power consumption when the transceiver is active, the pre-
sented device achieves similar or even better results in DRX and
eDRX, when compared to other UEs. The extremely low power con-
sumption achieved in sleep modes and the reduction of the RX-on time
to the minimum required to monitor paging allow the compensation
of its higher power consumption during RX. Similar results could be
shown for PSM where the power of the PA during TX comes also into
play for tracking area updates (TAUs). For longer inactivity periods,
the power consumption in the deepest sleep state, where only the
real-time clock (RTC) is active, plays an increasingly important role.
With its 5.76 µW of RTC power, the presented module is well-armed
to take full advantage of the long eDRX and PSM periods allowed by
eMTC and NB-IoT.

Saving energy is even more challenging in extended coverage. Since
repetitions are the main mechanism to increase the signal reach, CE is
achieved at the cost of longer RX and TX times that drain the UE’s

3Value from product specification [62].
3RX power during PDSCH subframes measured at −123 dBm RX power with 32
scheduled repetitions.
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Measurement Presented in
this work [13]

Commercial
device [62]

eMTC RX power 258 mW 162 mW
eMTC 18 dBm TX power 977 mW 589 mW
PSM power 5.76 µW 14.4 µW2

2.5 s DRX power 4.0 mW 4.8 mW
20 s eDRX power 0.5 mW 2.9 mW
eMTC CE PDSCH RX power 3 128 mW 142 mW

Table 6.2: Measured module power in different states as presented
in [13]. The power consumption was measured at the 3.6 V module
power supply.

battery. The UL transmit times are mainly linked to the decoding
performance of the BS and the limited TX power of mobile devices.
Therefore, only limited gains can be achieved with improvements in
the implementation of UEs, other than increasing the PA’s efficiency.
In the DL, however, the UE’s ability to minimize RX-on time can help
reduce power consumption. In this scope, the presented solutions
for channel estimation and time and frequency offset tracking play
a significant role. On the one hand, the reduced acquisition time
of the RC ML FO and TO estimation algorithms presented in this
work has the foreseeable advantage of allowing fine synchronization
with a lower number of RX SFs compared to legacy PD algorithms.
Especially, the UE always needs to restore its synchronization to the
BS before monitoring paging or starting an UL transmission after
long sleep cycles. In EC operation, this resynchronization step may
need long accumulation times, significantly impacting the UE’s power
consumption. On the other hand, a better UE sensitivity does not
only translate into higher coverage for the same number of repetitions
but also into lower required receive times when the device is operated
at higher powers.

To save power, UEs can switch off their receiver after successfully
decoding a DL control or data channel. To evaluate the potential gains
of such an early termination scheme, eMTC PDSCH reception in CE
mode A with 32 scheduled repetitions was considered. The number of
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received PDSCH subframes for successful decoding, i.e. to trigger a
CRC hit, is depicted in the histograms of Fig. 6.8. The measurements
were performed at −125 dBm RX power for both cases and with an
update rate α = 0.25 when the cross-subframe channel estimation was
active.

Figure 6.8: Required number of PDSCH SFs for successful decoding
at −125 dBm RX power (MCS 0, 32 scheduled repetitions, 312
iterations).

Using the cross-SF combination of channel estimations helps re-
duce the average number of received SFs from 21.1 to 12.8. The
gains in terms of power consumption during PDSCH subframes can
be retrieved from the measurements presented in the first and last
rows of Tbl. 6.2. While the power consumption of the presented
modem during RX is almost twice as large as the one of the com-
pared device, early termination allows a considerable reduction of the
average power consumption during PDSCH subframes, bringing it
slightly below the level of the commercial UE. Overall, the presented
approaches for tracking and channel estimation not only improve
sensitivity to reach higher coverage extension but also help reduce
power consumption when combined with early termination of data
reception. Additionally, more efficient usage of the available radio
resources can be achieved on top of the energy savings if the BS adapts
the number of scheduled repetitions to the needs of the UE.
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Conclusion

The emergence of low-power wide area networks (LPWAN) was ex-
pected to drive the exponential growth of MTC devices connected
to the Internet. However, even though IoT connections have been
steadily increasing, the evolution over the last few years did not keep
up with the initial projections. The standardization efforts of the
3GPP have equipped NB-IoT and eMTC with features that should
allow a massive number of connections and ubiquitous service cov-
erage while keeping device complexity and power consumption low.
But, as for other LPWAN technologies, the desired coverage enhance-
ments and energy savings compared to legacy cellular standards are
not straightforward to realize. The success of cellular IoT (cIoT)
standards relies on the implementation of cost-effective modems that
can fully exploit the allocated resources and take advantage of the
available low-power modes.

This thesis presented solutions to extend the coverage of com-
munication and positioning services through cellular networks and
described the implementation of the proposed algorithms on low-
cost integrated systems. The main contributions of this work are
summarized below.

133
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7.1 Extended Coverage Synchronization

Fine synchronization is crucial to communication and positioning sys-
tems, notably if they rely on OFDM signals. Furthermore, coverage
extension support exacerbates the accuracy requirements of the local
time and frequency references of cellular IoT modems while increasing
the complexity of the synchronization process itself. The choice of
time and frequency offset estimation algorithms impacts the achiev-
able accuracy and needed accumulation time for the synchronization
procedure of the UE. This thesis assessed different approaches for pre-
cise time and frequency offset estimation adapted to the pilot signals
available in cIoT standards. The studied solutions were evaluated and
compared in the scope of eMTC.

The ML-based reduced-complexity (RC) estimation developed dur-
ing this work showed the best estimation accuracy and accumulation
gain. The algorithm was implemented and tested on one of the
modem SoCs jointly designed in this project. The proposed solution
allowed the synchronization to be maintained down to −137 dBm
RX power, the equivalent of −25 dB SNR. Compared to a legacy
approach based on phase differences between reference signals, the
ML RC algorithm showed a 10 dB performance improvement for the
same accumulation period. At −15 dB SNR, simulations showed that
the ML RC approach could achieve the desired estimation accuracy
23.6 times faster than the legacy algorithm, considerably reducing the
power needed to synchronize to a known serving cell.

7.2 Cellular OTDOA Positioning

Positioning is an essential feature needed for a variety of IoT appli-
cations. Even though location services are already widely available
through GNSS, there is not a dominant solution for indoor and deep
urban scenarios yet. OTDOA positioning allows reusing the cellular
infrastructure to extend the reach of location services to areas not
covered by GNSS signals. This work has shown that low-cost cellu-
lar modems can support OTDOA with a minimal impact on device
complexity.
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The evaluation of OTDOA positioning with NB-IoT showed that
long accumulation periods are needed to compensate for the reduced
bandwidth of the reference signals used for the time of arrival (TOA)
measurements. Simulations to analyze the effect of residual frequency
offsets highlighted the importance of accurate synchronization with
the UE’s serving cell. The presented TOA measurement strategy was
implemented on a modem SoC with a dedicated hardware accelera-
tor. Performance assessments on a laboratory set-up showed an RMS
positioning error of 65.5 m at −116 dBm RX power and −15 dB SNR
for the weakest cell. The achieved accuracy is within the normative
requirements of the 3GPP and is sufficient for many applications.

7.3 Multimode SoCs for the Cellular IoT
The presented algorithms were evaluated on multi-mode RF SoCs
supporting different communication and positioning technologies. The
described SoC architecture facilitated sharing of memory and com-
puting resources across tasks. Furthermore, the deep integration of
accelerators into the processor system allowed a seamless transition
between hardware and software processing for hybrid implementa-
tions.

Power and sensitivity measurements allowed the comparison of
the developed SoCs with commercially available state-of-the-art de-
vices. Despite having an active power higher than other modems,
the presented solution achieves a lower average power consumption in
eDRX and PSM through optimized sleep states and minimized RX
time. In eMTC CE mode A, the developed SoC outperforms the best
competitor by 3.5 dB in PDSCH sensitivity with 32 repetitions. In
this configuration, cross-subframe channel estimation combined with
accurate frequency offset tracking yields a 2.2 dB gain out of the
2.4 dB that would be possible with perfect synchronization. With CE
mode B, the presented modem reaches an overall eMTC sensitivity
of −136.8 dBm, 11.8 dB better than the compared devices which do
not support this mode. At a fixed input power level, the sensitivity
advantage translates into reduced power consumption and more effi-
cient usage of the radio resources due to the smaller number of data
repetitions needed for successful decoding.
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7.4 Outlook
With appropriate UE enhancements, coverage extension through blind
repetitions allows the compensation of sensitivity losses caused by the
reduced number of receive antennas of low-cost MTC modems and
the expansion of cellular signals’ reach to remote or buried devices.
However, coverage enhancement features can only be exploited if op-
erators upgrade their infrastructure to support cellular IoT standards.
In places where LTE is already available, the networks can be updated
to support NB-IoT and eMTC with relatively low overhead. If new
infrastructure is required, the deployment cost may be prohibitive
for network operators. Therefore, communication over non-terrestrial
networks with 5G technology has gained interest in recent years to
use satellites and unmanned aerial vehicles (UAVs) to cover areas
that cannot be reached by conventional deployments [63].

For cIoT UEs, NB-IoT and eMTC can support non-terrestrial
communications with a relatively low standardization effort [64, 65].
The main challenges for the PHY lie in handling the increased propa-
gation delay, Doppler shift, and path loss suffered by the transmitted
signals. The time and frequency offset estimation methods presented
in this thesis can serve as a starting point for the synchronization
strategies needed to deal with the high Doppler frequency variations
and the tight link budget of the different scenarios covered by satellite
communications.



Appendix A

Derivations

A.1 Effect of Time and Frequency Offsets
This derivation follows the same steps as in [35], considering the
effect of time offset instead of sampling frequency offset. The starting
point is (3.1) from Chap. 2 for the transmitted OFDM signal in the
baseband:

sl(t) =

NFFT
2 −1∑

k=−NFFT
2

Xk,le
j2πfδk(t−TCP−lTSB) ,

where lTSB ≤ t < (l+1)TSB, and sl(t) = 0 otherwise. After upconver-
sion to the carrier frequency, transmission through the radio channel,
and downconversion back to baseband with a frequency offset ν, the
received signal is:

rl(t) = ej2πνtsl(t) ∗ hl(t) + n(t) .
After sampling with a sampling period T and a time offset τ and

removing the cyclic prefix the signal can be represented by:

yl(t) =
∑
n

∑
k

Xk,le
−j2πfδk(lTSB+TCP)ej2πνt

· δ(t− nT − lTSB − τ)
(
ej2πkfδt ∗ hl(t)

)
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+
∑
n

δ(t− nT − lTSB − τ)n(t)

where k runs from −NFFT
2 to NFFT

2 − 1 and n from 0 to NFFT − 1.
To approximate the FFT for OFDM demodulation performed at

the receiver the signal is first shifted by lTSB + TCP + τ and trans-
formed into the Fourier domain:

Yl(f) =
∑
n

∑
k

Xk,lH(kfδ)e−j2πfδk(lTSB+TCP)ej2πf(lTSB+TCP+τ)

· ej2π(nT+lTSB+τ)(kfδ−(f−ν)) +Nl(f)

=
∑
k

Xk,lH(kfδ)e−j2πfδk(lTSB+TCP)ej2πf(lTSB+TCP+τ)

· e−j2π(lTSB+τ)(f−kfδ−ν)
∑
n

e−j2πnT (f−kfδ−ν) +Nl(f)

Using the formula
N−1∑
n=0

ej2αn = ejα(N−1) sin(αN)
sin(α) , the summation over

the sample index n can be written in closed form:

Yl(f) =
∑
k

Xk,lH(kfδ)e−j2πfδk(lTSB+TCP)ej2πf(lTSB+TCP+τ)

· e−j2π(lTSB+τ)(f−kfδ−ν)e−jπT (f−kfδ−ν)(NFFT−1)

· sin(πT (f − kfδ − ν)NFFT)
sin(πT (f − kfδ − ν)) +Nl(f)

An estimation of the demodulated symbol is obtained by evaluating
the Fourier transform at the kth subcarrier Yk,l = Yl(f)|f=kfδ :

Yk,l = 1
NFFT

∑
κ

Xκ,lH(κfδ)ej2πfδ(k−κ)(lTSB+TCP)ej2πkfδτ

· e−j2π(lTSB+τ)(fδ(k−κ)−ν)e−jπT (fδ(k−κ)−ν)(NFFT−1)

· sin(πT (fδ(k − κ)− ν)NFFT)
sin(πT (fδ(k − κ)− ν)) +Nl(kfδ)
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Using Tfδ = 1
NFFT

shows that with zero frequency offset ν = 0 all
terms with k 6= κ disappear:

sin(πTfδ(k − κ)NFFT)
sin(πTfδ(k − κ)) = sin(π(k − κ))

sin(π(k−κ)
NFFT

)
=
{
NFFT if k = κ

0 otherwise.

Separating the desired subcarrier from the rest and approximating
sin(πTνNFFT)

sin(πTν) ≈ NFFT for small frequency offsets ν yields:

Yk,l =Xk,lH(kfδ)ej2π(kfδτ+ντ+νlTSB+ 1
2Tν(NFFT−1))

+ 1
NFFT

∑
κ 6=k

Xκ,lH(κfδ)ej2πfδ(k−κ)(lTSB+TCP)ej2πkfδτ

· e−j2π(lTSB+τ)(fδ(k−κ)−ν)e−jπT (fδ(k−κ)−ν)(NFFT−1)

· sin(πT (fδ(k − κ)− ν)NFFT)
sin(πT (fδ(k − κ)− ν)) +Nl(kfδ)

Finally, the constant terms of the complex phase can be included
in an equivalent channel impulse response to get the final form:

Yk,l = Xk,lHk,le
jφ(k,l,ν,τ) +W (k, l, ν, τ) +Nk,l (A.1)

where:

φ(k, l, ν, τ) = 2π(kfδτ + νlTSB) , and

W (k, l, ν, τ) = 1
NFFT

∑
κ6=k

Xκ,lH(κfδ)ej2πfδ(k−κ)(lTSB+TCP)ej2πkfδτ

· e−j2π(lTSB+τ)(fδ(k−κ)−ν)e−jπT (fδ(k−κ)−ν)(NFFT−1)

· sin(πT (fδ(k − κ)− ν)NFFT)
sin(πT (fδ(k − κ)− ν)) .
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A.2 Cramer-Rao Lower Bound
To derive the CRLB for the joint estimation of the time and fre-
quency offset when the transmitted symbols are known, the ICI term
W (k, l, ν, τ) in (A.1) is neglected:

Yk,l = Xk,lHk,le
jφ(k,l,ν,τ) +Nk,l .

Assuming a single tap constant channel Hk,l = Aejα and QPSK mod-
ulated symbols the signal after matched reception is:

S(k, l;A,α, ν, τ) = Aej(2π(kfδτ+ντ+νlTSB+ 1
2Tν(NFFT−1)+α) +Nk,l .

In this form time and frequency estimation can be handled as the
parameter estimation of a two-dimensional sinusoid. Defining the
parameter vector θ = [A,α, ν, τ ]T and assuming IID normally dis-
tributed complex noise Nk,l ∼ CN (0, σ2

N ), the elements of the Fisher
information matrix J are [38]:

Ji,j = 2
σ2

∑
k,l

[
∂SI
∂θi

∂SI
∂θj

+ ∂SQ
∂θi

∂SQ
∂θj

]
. (A.2)

The factor two difference compared to [38] is due to a different noise
definition. SI = SI(k, l;θ) and SQ = SQ(k, l;θ) represent the real
and imaginary parts of the symbols, respectively. The real part is
given by:

SI(k, l;θ) = A cos
(

2π(kfδτ + ντ + νlTSB + 1
2Tν(NFFT − 1) + α

)
,

and its partial derivatives are:

∂SI
∂A

= cos(φ(k, l;θ))

∂SI
∂α

= −A sin(φ(k, l;θ))

∂SI
∂ν

= −2πA(τ + lTSB + 1
2T (NFFT − 1)) sin(φ(k, l;θ))

∂SI
∂τ

= −2πA(kfδ + ν) sin(φ(k, l;θ))
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After similarly calculating the partial derivatives of SQ(k, l;θ), the
elements of the Fisher information matrix can be obtained as in [37]:

J1,1 = 2KL
σ2

J1,2 = 0
J1,3 = 0
J1,4 = 0

J2,2 = 2A2KL

σ2

J2,3 ≈
2πA2TSBKL(L− 1)

σ2

J2,4 ≈ 0

J3,3 ≈
4π2A2T 2

SBKL(L− 1)(2L− 1)
3σ2

J3,4 ≈ 0

J4,4 ≈
4π2A2f2

δLK(K + 2)(K − 1)
3σ2 .

The approximations assume L,K � 1, ν � fδ and τ � TSB. The
CRLBs of θ are the diagonal elements of J−1:

CRLBA = σ2

2KL

CRLBα = 2σ2(2L− 1)
A2KL(L+ 1) ≈

4σ2

A2KL

CRLBν = 3σ2

2π2A2T 2
SBKL(L− 1)(L+ 1) ≈

3σ2

2π2A2T 2
SBKL

3

CRLBτ = 3σ2

2π2A2f2
δLK(K − 1)(K − 2) ≈

3σ2

2π2A2f2
δLK

3

A.3 Outlier Probability in Additive White
Gaussian Noise

The miss rate of the estimator presented in Sec. 3.5.3 can be ap-
proximated with the outlier probability of the FO estimation metric
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following a procedure similar to [38]. The ML RC algorithm uses
the DFT across accumulated LS channel estimations as described by
(3.21) and (3.23):

H̃m,n =
∑

(k,l)∈Cm,n

Ĥk,l , (A.3)

H̃(p)
m (v) = FNn{H̃m,pN+n} =

Nn−1∑
n=0

H̃m,pN+ne
−2πj nvNn . (A.4)

Neglecting the effect of the time offset and the radio channel, the LS
channel estimations form a complex sinusoid in AWGN:

Ĥk,l = e2πjlTSBν +Nk,l (A.5)

Nk,l is complex Gaussian noise Nk,l ∼ CN (0, σ2). With the assump-
tions made in Sec. 3.5.3 and listed below, H̃(p)

m (v) can be easily char-
acterized.

• The combination of channel estimations into H̃m,n described by
(A.3) is lossless.

• No zero padding is needed at the input of the DFT used to
calculate H̃(p)

m (v).

• A DFT of the same size Nn as the input vector H̃m,pN+n is
used.

• The FO ν corresponds exactly to the frequency of one DFT
output bin H̃

(p)
m (v) in (A.4).

In this case, the signal bin H̃
(p)
m (v)|v=s has a mean Nc and variance

of Ncσ
2 and the noise bins H̃(p)

m (v)|v=s have zero mean and variance
of Ncσ

2. Nc corresponds to the number of LS channel estimations
accumulated through the combination of (A.3) and (A.4).

H̃(p)
m (s) ∼ CN (NcNcσ

2)
H̃(p)
m (r) ∼ CN (0, Ncσ

2)
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Using a scaled version of (3.24) yields an FO estimation metric
that can be characterized by central and non-central chi-squared dis-
tributions which correspond to the addition of the power of gaussian
distributions with unit variance [66]:

C ′ν(v) = 2
Ncσ2

P−1∑
p=0

M−1∑
m=0
|H̃(p)

m (v)|2 . (A.6)

P is the number of non-coherently accumulated time-domain blocks
and M is the number of combined physical resource blocks (PRBs)
in the frequency domain. The factor of two in the scaling constant
comes from the definition of the complex noise variance where the real
and imaginary components have σ2

2 variance each.
The PDFs of the estimation metric correspond to the addition of

the power of 2PM gaussian random variables, including the real and
imaginary parts of H̃(p)

m . Denoting by fs(x) the PDF of the signal
bin C ′ν(s) and by fr(x) the PDF of the noise bins C ′ν(r) the PDFs for
x > 0 are [66]:

fs(x) = 1
2

(x
λ

)κ−2
4
e−

1
2 (x+λ)Iκ

2−1

(√
λx
)

.

fr(x) = 1
2κ2 Γ

(
κ
2
)xκ2−1e−

x
2 .

The parameters of the distributions are κ = 2PM degrees of freedom
and a non-centrality parameter λ = 2NcPM

σ2 . Ia(z) is the modified
Bessel function of the first kind and order a and Γ(z) is the Gamma
function.

The outlier probability q of the FO estimation can then be calcu-
lated numerically with its integral form [38]:

q = 1−
∞∫

0

fs(x)

 x∫
0

fr(y)dy

Nn−1

dx . (A.7)





Appendix B

Acronyms

3GPP 3rd Generation Partnership Project
4G fourth-generation
5G fifth-generation

AC autocorrelation
ADC analog-to-digital converter
A-GNSS assisted GNSS
AP antenna port
APB Advanced Peripheral Bus
ARB arbitrary waveform generator
ASM antenna switch module
AWGN additive white Gaussian noise
AXI Advanced eXtensible Interface

BLE Bluetooth Low Energy
BLER block error rate
BS base station
BW bandwidth

CC cross-correlation

145



146 APPENDIX B. ACRONYMS

CE coverage enhancement
CFO carrier frequency offset
cIoT cellular IoT
CMOS complementary metal-oxide semiconductor
CP cyclic prefix
CPU central processing unit
CRC cyclic redundancy check
CRLB Cramer-Rao lower bound
CRS cell-specific reference signals

DAC digital-to-analog converter
DBB digital baseband
DC direct current
DCI downlink control information
DCXO digitally-controlled crystal oscillator
DFE digital front-end
DFT discrete Fourier transform
DL downlink
DMA direct memory access
DMRS demodulation reference signals
DRX discontinuous reception

EC extended coverage
E-CID enhanced cell ID
eDRX extended discontinuous reception
eMBB enhanced mobile broadband
eMTC enhanced Machine-Type Communication
EPA extended pedestrian A
ETU extended typical urban
EVA extended vehicular A

FD frequency domain
FDD frequency-division duplex
FEC forward error correction
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FFT fast Fourier transform
FO frequency offset

GNSS Global Navigation Satellite System
GPS Global Positioning System
GSM Global System for Mobile Communications

HARQ hybrid automatic repeat request
HD-FDD half-duplex FDD
HW hardware

ICI inter-carrier interference
ID identity
IFFT inverse fast Fourier transform
IID independent and identically distributed
IIS Integrated Systems Laboratory
IoT Internet of things
IRQ interrupt request
ISA instruction set architecture
ISI inter-symbol interference
ITU International Telecommunication Union

LBS location-based services
LLR log-likelihood ratio
LNA low-noise amplifier
LPP LTE Positioning Protocol
LPWAN low-power wide area networks
LS least squares
LTE Long Term Evolution
LUT lookup table

MAC multiply-accumulate
MCL maximum coupling loss
MCS modulation and coding scheme
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MIB master information block
MIMO multiple-input multiple-output
mIoT massive IoT
ML maximum likelihood
MMSE minimum mean squared error
mMTC massive machine-type communication
MPDCCH MTC physical downlink control channel
MSE mean squared error
MTC machine-type communications

NB narrowband
NB-IoT Narrowband Internet-of-Things
NC normal coverage
NF noise figure
NPBCH narrowband PBCH
NPDCCH narrowband PDCCH
NPDSCH narrowband PDSCH
NPRS narrowband PRS
NPSS narrowband PSS
NPUSCH narrowband PUSCH
NR New Radio
NRS narrowband reference signals
NSSS narrowband SSS

OFDM orthogonal frequency-division multiplexing
OTDOA observed time difference of arrival

PA power amplifier
PBCH physical broadcast channel
PCID physical cell identity
PD phase difference
PDCCH physical downlink control channel
PDF probability density function
PDSCH physical downlink shared channel
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PHY physical layer
PRB physical resource block
PRS positioning reference signals
PSD power spectral density
PSK phase-shift keying
PSM power saving mode
PSS primary synchronization signal
PUCCH physical uplink control channel
PUSCH physical uplink shared channel

QAM quadrature amplitude modulation
QPSK quadrature phase-shift keying

RAT radio access technology
RC reduced-complexity
RE resource element
RF radio frequency
RMS root-mean-square
RMSE RMS error
RSTD reference signal time difference
RTC real-time clock
RX receive

SAW surface acoustic wave
SC-FDMA single-carrier frequency-division multiple access
SCA shared correlation accelerator
SDR software-defined radio
SF subframe
SFN system frame number
SFO sampling frequency offset
SINR signal-to-interference-plus-noise ratio
SNR signal-to-noise ratio
SoC system-on-chip
SRAM static random-access memory
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SSS secondary synchronization signal
ST static
SW software

TA timing advance
TAU tracking area update
TCDM tightly coupled data memory
TCXO temperature compensated crystal oscillator
TD time domain
TDD time-division duplex
TDOA time difference of arrival
TMU time management unit
TO time offset
TOA time of arrival
TTI transmission time interval
TX transmit

UAV unmanned aerial vehicle
UE user equipment
UL uplink
URLLC ultra-reliable and low-latency communication

WLAN wireless local area network
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