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Abstract

Video streaming applications account for the majority of Internet traf-
fic nowadays. For this reason, video streaming system optimisation is
of utmost importance, with interesting new approaches proposed ev-
ery few months from both industry and academia. In this dissertation,
we identify new research opportunities for understanding, reconstruct-
ing, and optimising video streaming applications through network
measurements.

Understanding video streaming applications is critical, as little is
known about the behaviour of the streaming algorithms deployed
across large online streaming platforms. We thus study adaptive
bitrate streaming algorithms in use at 10 video platforms with diverse
target audiences. We find that deployed algorithms exhibit a wide
spectrum of behaviours across different optimization axes, indicating
the lack of a consensus one-size-fits-all solution.

Even with a qualitative understanding of video providers’ optimi-
sation goals, their implemented adaptation logic is still opaque. This
creates obvious hurdles for research on streaming algorithms and their
interactions with other network traffic and control loops like that of
transport and traffic throttling. To address this gap, in this dissertation
we tackle the reconstruction of unknown proprietary video streaming
algorithms in a human interpretable fashion through network obser-
vation. We find that, out of 10 popular streaming platforms, we can



produce easy-to-understand, and high-accuracy reconstructions for 7
of them.

Based on our analysis of academic and industrial video streaming
algorithms, we identify new opportunities for optimizing adaptive
bitrate streaming systems using network observations. Specifically,
we can tune offline video chunking depending on the expected online
playback behaviour and rate adaptation. Due to video’s varying com-
plexity over time, we observe that certain parts are more likely to cause
performance impairments during playback with a given rate adapta-
tion algorithm. We propose SEGUE, which uses variable-length
video segments, and augment specific segments with additional bi-
trate tracks. Our network behaviour aware methodology substantially
reduces rebuffering and quality fluctuations, while maintaining video
quality delivered; SEGUE improves QoE by 9% on average, and by
22% in low-bandwidth conditions.



Zusammenfassung

Videostreaming-Anwendungen machen heutzutage den Grossteil des
Datenverkehrs im Internet aus. Deshalb ist die Optimierung von
Videostreaming-Systemen von grosster Bedeutung und fast monatlich
werden neue interessante Ansitze aus Industrie und Wissenschaft vor-
geschlagen. In dieser Dissertation identifizieren wir neue Forschungs-
moglichkeiten fiir das Verstindnis, Rekonstruktion und Optimierung
von Videostreaming-Anwendungen durch Netzwerkmessungen.

Videostreaming-Anwendungen zu verstehen ist entscheidend, da
wenig liber das Verhalten der Streaming-Algorithmen bekannt ist, wel-
che in den grossen Online-Streaming-Plattformen verwendet werden.
Wir untersuchen daher adaptive Bitraten-Streaming-Algorithmen von
10 Videoplattformen mit unterschiedlichen Zielgruppen. Wir stel-
len fest, dass die eingesetzten Algorithmen ein breites Spektrum an
Verhaltensweisen iiber verschiedene Optimierungsachsen zeigen, was
darauf hindeutet, dass es keinen Konsens iiber eine Einheitslosung
gibt.

Selbst mit einem qualitativen Verstindnis der Optimierungsziele
von Videoanbietern ist ihre implementierte Anpassungslogik immer
noch undurchsichtig. Dies hindert die Erforschung von Streaming-
Algorithmen und deren Interaktionen mit anderen Netzwerkverkehrs-
und Kontrollschleifen wie der Flusskontrolle des Transportprotokolls
oder der Traffic-drosselung. Um diese Liicke zu schliessen, wird in



dieser Dissertation die Rekonstruktion von unbekannten proprietiren
Videostreaming-Algorithmen in einer fiir den Menschen interpretier-
baren Weise durch Netzwerkbeobachtung vorgestellt. Wir stellen
fest, dass wir von 10 populédren Streaming-Plattformen fiir 7 leicht
verstiandliche und hochprizise Rekonstruktionen erstellen konnen.

Auf der Grundlage unserer Analyse von akademischen und in-
dustriellen Video-Streaming-Algorithmen, identifizieren wir neue
Moglichkeiten zur Optimierung von adaptiven Bitraten-Streaming-
Systemen anhand von Netzwerkbeobachtungen. Insbesondere kon-
nen wir offline das Video-Chunking in Abhingigkeit des erwarteten
Online-Wiedergabeverhalten und der Bitratenanpassung abstimmen.
Aufgrund der im Laufe der Zeit variierenden Komplexitit von Videos
beobachten wir, dass bestimmte Teile eher zu Leistungseinbussen
bei der Wiedergabe mit einem bestimmten Algorithmus neigen. Wir
schlagen SEGUE vor, welches Videosegmente mit variabler Lin-
ge verwendet, und ergiinzen bestimmte Segmente mit zusétzlichen
Bitratenspuren. Unsere Methodik, die das Netzwerkverhalten beriick-
sichtigt, reduziert das Rebuffering und die Qualititsschwankungen
bei gleichzeitiger Beibehaltung der gelieferten Videoqualitit; SEGUE
verbessert die QOE im Durchschnitt um 9%, und um 22% unter Be-
dingungen mit geringer Bandbreite.
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Introduction

What do we use the Internet for?

In recent years, the answer to this question is non-trivial. A plethora
of Internet applications became embedded in our daily life. At the
same time, not all Internet applications are equally complex and
bandwidth hungry. Among all the possible services that the Internet
offers us, streaming video over the Internet has been, and still is, one
of the most popular and demanding applications. A recent report from
Sandvine [San22] states that, in the first half of 2021, 53.72% of the
overall Internet traffic was video.

Video streaming is an umbrella term that includes multiple different
applications, each of which poses different challenges and optimisation
opportunities under a system design perspective. For example, Video-
On-Demand (VOD) streaming systems require different encoding and
delivery strategies compared to live video streaming and conferencing.
Similarly, rising Virtual Reality video streaming applications [Tec22]
pose additional challenges compared to standard 2D streaming.
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Chapter 1 - Introduction

In this dissertation, we focus on understanding and optimising 2D
VOD streaming services. As [San22] reports, this is still the most
common video streaming service scenario, as the overall Internet
capacity usage is still dominated by YouTube and Netflix, which
account 16.37% and 10.61% of the downstream traffic respectively.

Video on Demand systems are usually split into two pipelines,
one offline, that involves mostly encoding operations, and one online,
which includes, for example, adaptive bitrate streaming algorithms.

Offline, the video is usually segmented into equal-length segments
(usually 4 to 6 seconds long), and each segment is encoded at multiple
quality levels.

During online playback, an adaptive bitrate algorithm (ABR)
chooses which quality to fetch the next segment, depending on
the client’s estimated bandwidth, playback buffer occupancy, and
features of upcoming video segments. ABR control loops are usually
implemented client side. This architecture is commonly developed
according to the Dynamic Adaptive Streaming over HTTP (DASH)
standard.

The goal of such adaptation is to improve the client’s quality of
experience (QoE) by delivering the highest quality video, without
pauses (referred usually as rebuffering events) and infrequent quality
switching. These metrics deeply affect user experience and, as a
consequence, streaming companies revenues. For example, a recent
study of Limelight [Akal9] suggests that, if experiencing rebuffering,
28% of the users abandon the streaming session.

During the past years, several high quality research proposals de-
scribed different strategies to optimise different parts of such pipelines.
Such trends cover various aspects of video streaming systems, ranging
from bitrate ladders optimisation ([Aar+], [Netl8a]), to ABR algo-
rithms implementation ([Qin+18; MNA17b; Mil+15]) and transport
layer ([Nat+19]) design.

In this dissertation, we tackle the problem from a different perspec-
tive. Rather than targeting the optimisation of a specific subsystem of
VOD pipelines, we show how network measurements and behaviour
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can be effectively utilised to understand, reconstruct and optimise
video streaming services.

Understanding video streaming is of pivotal importance, as little
is known about the behaviour of the streaming algorithms deployed
across large online streaming platforms. In-depth knowledge of major
providers deployed solutions can allow researchers into better tuning
their objective function depending on the type of service and users.
In Chapter 3 we study adaptive bitrate streaming algorithms in use
at 10 video platforms with diverse target audiences. To do so, we
rely on network observation: we collect traces of each video player’s
response to controlled variations in network bandwidth, and examine
the algorithmic behaviuor. We find that deployed algorithms exhibit a
wide spectrum of behaviours across different axes, indicating the lack
of a single one-size-fits-all solution. We also find evidence that most
deployed algorithms are tuned towards stable behavior rather than fast
adaptation to bandwidth variations, some are tuned towards a visual
perception metric rather than a bitrate-based metric, and many leave
a surprisingly large amount of the available bandwidth unused.

Even with the knowledge of providers’ optimisation goals, it can
be hard for academia to test innovative solutions against the already
deployed ones. In this context, reconstruction of (proprietary and
unknown) video streaming algorithms can be a valuable resource to fill
sucha gap. Also, instead of opaque reconstruction through, e.g., neural
networks, we seek reconstructions that are easily understandable
and open to inspection by domain experts. Such reconstruction, if
successful, would also shed light on the risk of competitors copying
painstakingly engineered algorithmic work simply by interacting with
popular services. We describe our reconstruction approach Chapter
4. Such approach makes extensive use of logs of player and network
state and observed player actions across a variety of network traces
and videos. The goal is to learn decision trees using streaming-
specific engineered features. We find that, of 10 popular streaming
platforms, we can produce easy-to-understand, and high-accuracy
reconstructions for 7 using concise decision trees with no more than
20 rules. In addition, we explain the limitations of our approach as
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Chapter 1 - Introduction

applied to the other 3.

Based on our analysis of streaming provider behaviour, we then
show how we can optimise video streaming service with the joint con-
sideration of offline video chunking and online rate adaptation. We
observe that, due to a video’s complexity varying over time, certain
parts of the videos are more likely to cause performance impairments
during playback with a particular rate adaptation algorithm. To ad-
dress such an issue, we propose SEGUE, a novel system that we
discuss in Chapter 5. SEGUE carefully uses variable-length video
segments, and augments specific segments with additional bitrate
tracks. The key novelty of our approach is in making such decisions
based on the video’s time-varying complexity and the expected rate
adaptation behavior over time. We propose and implement several
methods for such adaptation-aware chunking. Our results show that
SEGUE substantially reduces rebuffering and quality fluctuations,
while maintaining video quality delivered; SEGUE improves QoE by
9% on average, and by 22% in low-bandwidth conditions.

To summarise, this dissertation provides 3 main contributions:

* We show how network measurements and player behaviour can
offer precious hints on providers optimisation goals.

* We present a methodology for reconstructing unknown adap-
tive bitrate streaming algorithms in an interpretable fashion
via network and player state observation.

* We develop and discuss in details SEGUE, a systems that

optimise the offline part of VOD streaming pipeline depending
on the expected online network behavior.

1.0.1 Related publications

This dissertation is based on the following list of published papers
and thesis.

16
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Dimitri Wessels. “Quantifying and Explaining Unfairness in
Online Video Streaming”. Bachelor’s Thesis. Department of
Computer Science, ETH Zurich, 2018.

Melissa Licciardello, Maximilian Griiner, and Ankit Singla.
“Understanding video streaming algorithms in the wild”. In:
PAM. 2020.
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networked algorithms”. Master’s Thesis. Department of Com-
puter Science, ETH Zurich, 2019.
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Fabian Rohr. “CAVA on SEGUE and SEGUE in DASH: Veri-
fying Simulated ABR Behaviour on the DASH-IF Reference
Player”. Master’s Thesis. Department of Computer Science,
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Melissa Licciardello, Lukas Humbel, Fabian Rohr, Maximilian
Griiner, and Ankit Singla. “Prepare Your Video for Streaming
with Segue”. In: Journal of Systems Research 2.1 (July 2022).

In particular, Chapter 3 was originally inspired by the bachelor
thesis [Wes18] and then extended with the measurement work pub-
lished in [LGS20]. I am joint first author with Maximilian Griiner.
The measurement system was originally implemented by me, and
Maximilian extended it to support multiple services as a part of his
master thesis, that I co-supervised with Dr. Ankit Singla.

Chapter 4 is based on the master thesis [Grii19] that lead to the
publication [GLS20a]. This work was performed in collaboration
with Maximilian Griiner, whose master thesis I served as the primary
supervisor for. Besides guiding the development of the approach
we took, I also implemented the basic infrastructure for collecting
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Chapter 1 - Introduction

measurement data for the learning-based study, as well as experiments
with reconstructed models in the DASH player. I will be always
grateful of having had the honour of supervising such a brilliant
student like Maximilian. Writing this paper with him was one of the
happiest moments I spent during my PhD.

Chapter 5 is based on the publication [Lic+22a], and uses part of the
implementation discussed in the master thesis [Roh21]. I would like to
thank, from the bottom of my heart, my partner and colleague Lukas
Humbel for the infinite and meaningful discussion over the months
that helped finalise this work. I would also like to thank Fabian Rohr,
who trusted me to supervise his master thesis [Roh21], one of which
main core points is the dash.js implementation of SEcUE. Thanks,
again, to my friend and paper fellow Maximilian Griiner, whose inputs
have been fundamental. Last but not the least, thanks to Dr. Ankit
Singla, that supported me throughout the full SEGUE’s journey and
gave me full trust throughout my PhD.
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Background

In this chapter we will introduce the main concepts behind the disser-
tation. In Section 2.1 VOD adaptive streaming architecture is described.
In Section 2.2 we will focus on the description of the offline part of
the pipeline, while in Section 2.3 we will discuss the aspects that
involves the video online delivery.

2.1 VOD streaming: an architectural
overview

VOD adaptive streaming systems are usually split into two pipelines,
one offline and one online (Fig. 2.1). During the offline stage, the orig-
inal, ideally uncompressed, video content is rescaled and encoded at
different resolution-bitrate pairs and segmented into chunks. Chunks
are usually of equal length, and their length is usually between 4 to
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Chapter 2 - Background

Offline: video preparation Offline + Online: video distribution

Figure 2.1: VOD streaming architecture involve multiple steps. Video
preparation usually happens offline. In this stage, the
content is re-encoded at multiple bitrate-resolution pairs
and partitioned into few seconds long segments. The con-
tent then is distributed and replicated in Content Delivery
Networks (CDN).CDN’s optimisation strategies can involve
both offline and online content distribution algorithms.
These control loops are out of the scope of this disserta-
tion. Online, users’ then fetch video segments from the
closest CDN. An ABR algorithm decides the quality to fetch
the next segment at.

6 seconds. The degree of complexity and optimisation of the offline
stage highly depends on the video streaming providers use case.

Later, the video content is replicated and distributed across the
Content Delivery Networks (CDNs), with the twofold goal of fail-
ure resiliency and of pushing the content near the users to reduce
communication delays.

During online playback, the user web player requests via HTTP
each video segment. An adaptive bitrate algorithm (ABR), that usually
runs on the client side, decides the quality of each video segment
depending on network fluctuations and web player state. The goal
of such an adaptation is to download the highest video quality as
possible without incurring abrupt playback interruptions (also called
rebuffering events) and frequent quality switches.

20



2.2 Offline: Video preparation

In the upcoming sections of this dissertation we will focus in greater
details on the offline (Section 2.2) and online (Section 2.3) part of
such a pipeline.

2.2 Offline: Video preparation

While this dissertation mostly focuses on the online aspects of VOD
adaptive streaming, it is still useful to introduce some basic concepts
of video preprocessing. In Section 2.2.1 we will briefly discuss the
concept of video encoding, while in Section 2.2.2 we will describe the
most relevant encoding modes and parameters used in the streaming
context. In Section 2.2.3 we will then introduce to the reader the most
relevant metrics to measure video quality.

2.2.1 Video encoding

Video encoding is defined as the process of converting a digital
video from one format into another. Digital videos, in fact, exist into
different formats, that differ, for example, in codecs and containers.

A video codec is a software that compresses (and decompresses) the
bitstream in order to decrease the required storage space and to speed
up the transmission. A codec can be either lossless (i.e. the original
bitstream can be perfectly recovered from the compressed one) or
lossy (i.e. the bitstream recovered from the compressed one suffers
from distortion with respect to the original one). Due to the better
compression ratio, lossy codecs are more suitable for VOD streaming
use cases. Some example are H.264 [FFMb], H.265 [FFMc] and AV 1
[FFMal]. In this dissertation we will mostly work with H.264, a codec
that was published in 2004 but it is by far the most widely used video
format for the compression and distribution of video content (used by
91% of the video industry as of September 2019) [Bit19b].

The reason why H.264 is still so popular despite newer standards
with better encoding efficiency is because of the increased computa-
tional complexity of H.265 and AV 1, that leads to substantially higher

21



Chapter 2 - Background

encoding and decoding time [Sim21]. H.264 has also broad hardware

support.

Figure 2.2: Diagram of the prediction relationship between I-Frame,
P-Frame and B-Frame.

H.264 uses a differential compression technique: The current frame
is reconstructed based on one (or multiple) previous frames or differ-
ences between those frames in time (Fig. 2.2). The standard provides
three different types of frame:

e I-Frame: Referred also as key-frames, the frame is intra
predicted, in other words the frame can be reconstructed inde-
pendently on the others.

¢ P-Frame: The frame is created based on the information about
changes between subsequent P or I frames (inter predicted).

* B-Frame: The frame is coded using two reference frames,

one before and one after the current one in the video sequence
(inter predicted).
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2.2 Offline: Video preparation

A video container is a wrapper that stores the required metadata
and that can embed multiple bitstreams, for example video and audio,
into a single file. In this dissertation we will mostly work with the
MP4 container, but other notable examples, like MOV, TS or OGG,
exist and are widely used.

2.2.2 Encoding modes

Video encoding is a complex process that involves a plethora of
parameters. In this section we will discuss the most relevant ones in
the context of VOD adaptive streaming.

A fundamental difference in the pipeline for video on demand
adaptive streaming is whether the video is segmented into chunks
before or after the encoding stage. Both system choices are viable
and present different advantages.

Segmenting the original video before the encoding process and
encoding each segment separately allows better fine tuning of encoding
parameters depending on the specific (short) video sequence. Netflix
dynamic optimiser [Net18a] is an example of such design.

Encoding the video as a whole and then splitting it into segments
allows the encoder to have larger look ahead and then better optimise
certain parameters (e.g., the average target bitrate of the video stream).
This is the most common approach, and, as a consequence, is the one
that is described and used in the dissertation.

Invideo coding, a group of picture (GOP) is a collection of successive
frames within a coded video bitstream, and specifies the order in which
intra-predicted and inter-predicted frames are arranged. A GOP always
starts with an I-Frame, and then includes the subsequent P and B
frames. GOPs can be encoded into two different modes: open GOPs
and closed GOPs. In open GOPs B and P frames can use reference
frames in other GOPs for redundant blocks. Conversely, in closed GOPs,
B and P frame can reference frames only inside their GOP.

In adaptive bitrate streaming, each chunk needs to be independent
from the others, given that the player is allowed (and encouraged!)
to change bitrate track. For this reason, if the splitting into chunks
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Chapter 2 - Background

happens after the encoding process, the video should be encoded with
closed GOPs.

One of the most important parts of the encoding pipeline for video
streaming delivery systems is rate control. By rate control we mean
the control loop that decides how many bits to spend for a given frame
(and coding blocks in a frame), in order to find a balance between
the allocated resources and the frame distortion. This tradeoff is
fundamental for streaming applications, as video segments need to be
streamed across a capacity-constrained network.

There are several modes of rate control, that we describe in the
following paragraphs. First of all, it is important to stress the differ-
ence between Constant Bitrate encoding (CBR) and Variable Bitrate
encoding (VBR). While CBR allocates, within a certain frames’ win-
dow, the same amount of resources independently of the content, VBR
distributes the bits depending on how easy or hard it is to compress
certain parts of the video. In video streaming applications, usually
VBR is preferred over CBR, as the first ensures a better resource effi-
ciency (at the cost of less predictability of bitrate fluctuations during
the adaptive bitrate process).

A type of VBR encoding is Constant Quantisation Parameter (CQP).
The quantisation parameters controls the compression level of each
coding unit. In H.264 quantisation parameters vary from O to 51,
where higher quantisation value means higher level of compression.
This VBR mode is usually not used for adaptive bitrate streaming,
as the bitrate can largely vary depending on the complexity of the
scene. However, Netflix uses this rate control mode [Net18a] for their
per-shot encoding pipeline.

Constant Rate Factor (CRF) encoding takes as an input a value from
0 to 51 in H.264 and ensures a certain constant quality throughout
the video frames. Similarly to CQP, the bitrate can vary substantially
throughout the video, and it is usually not used for video streaming
applications.

1-Pass Average Bitrate (1-Pass ABR) encoding mode takes as an
input an average target bitrate. The encoder then tries to reach it, but
given the limited knowledge of the future frames it usually strives to
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2.2 Offline: Video preparation

optimally distribute the bitrate budget across the frames.

On the other hand, 2-Pass Average Bitrate (2-Pass ABR) scans
the whole video before starting the encoding process. Due to the
multiple pass, it is slower than 1-Pass ABR, but it ensures a better
quality under certain bitrate constraints. This is usually the preferred
choice for adaptive bitrate streaming, and it is the encoding technique
utilised throughout this dissertation.

For ABR modes, a maximum bitrate and a minimum bitrate given a
certain buffer size (i.e. the interval at which the bitrate is measured)
can also be passed as a parameter. The value of buffer size sets how
much variability is tolerated in the bitrate.

The target bitrate is a fundamental parameter for video streaming
applications. Deciding which target bitrate given a specific video
sequence is a widely explored area of research. Given a certain
resolution, the target bitrate can be specified statically, i.e. given
a conventional value, or it can be set according to a rate distortion
optimisation process. Rate distortion optimisation means trying to
find an optimal bitrate that reach a certain satisfactory video quality,
trading off the bitrate, and usually highly depends on the video (or
video portion) content and complexity. Several approaches construct
rate distortion curves and brute force the selection of the bitrate
given certain tradeoff criteria [Net18a] [Aar+]. This process can be
extremely slow and resource consuming, and it is usually utilised by
streaming providers that do not deal with user uploaded content.

In order to give an idea of the performance differences among
different rate control methodologies, Fig. 2.3 plots the rate distortion
curves of Blender Sintel Trailer [Ble10] encoded at 1920 x 1080
resolution with different target bitrates using the default H.264 library
of fimpeg (libx264).

2.2.3 Quality metrics

One of the main objectives of video streaming control loops is to
download the video at the highest quality possible. While the bitrate
of the videos correlates to the (perceived) video quality, the amount
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Figure 2.3: Blender Sintel Trailer [Ble10] rate distortion curves vary-
ing the target bitrate from 200 Kbit/s to 2 Mbit/s with
libx264 library for CBR, 1-Pass ABR and 2-Pass ABR
rate control modes. The quality metric under test is Netflix
VMAF [Nat+19; Li+16], described in section 2.2.3. Both
ABR rate control modes have been configuted to use, as
maximum rate, two times the target rate. 2-Pass ABR
is able to reach an higher perceptual quality for the same
target bitrate with respect to both 1-Pass ABR and CBR,
at the cost of higher encoding time (+35% in average for
the depicted benchmark).

of distortion perceived cannot be easily quantified by this value alone.
There are several different ways to measure the quality of a video.
They can be mainly classified as objective and subjective. While
the first class takes into account mostly mathematical formulation of
distortion, the latter tries to model subjective user experience. The
most common objective quality metric is Peak Signal to Noise Ratio
(PSNR). PSNR is defined via the mean squared error (MSE). Given a
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2.2 Offline: Video preparation

noise-free m X n monochrome image I and its distorted version K,
MSE is defined as:
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Then the PSNR is defined, in dB:
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PSNR =10 - loglo(

where M AX; is the upper bound of the possible pixel values.

While widely used to assess video quality, PSNR shows some limita-
tions in correlating with visual perception, as represented in Fig. 2.4.

Another common video quality metric is structural similarity index
(SSIM). SSIMisametric for predicting the perceived quality of a video,
and it quantifies the similarity of frames. SSIM can be calculated on
various windows of images and it is based on three main components:
luminance (1), contrast (c) and structure (s). The individual formulas
of these components are, given an equal size window of N X N pixels:

2. pepy + €1

l(x,y) =
W3+ 5+ e
20,0y + 2
c(xy)=—"5—

ci+ol+o
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Figure 2.4: Two different video contents have been encoded at differ-
ent CRF values. The content on the left represent a video
of a vase of flower with a static white background, while
the video on the right records a slowly moving crowd.
We encoded these video at various CRF values and we
then extracted the first frame of each video at two equal
values of PSNR, one high (56dB, top) and one low (41dB,
botton). The drop in quality from 56dB to 41dB is much
more noticeable in the video content on the left, while it
is barely noticeable on the content on the right.

Oxy T €3
s(x,y) = —————
Ox0y + C3
where:

* u, is the average of x

* (y is the average of y
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e o, is the variance of x

* 0y is the variance of y

* Oy is the covariance of x and y

ccr=(ki-L)?cr=(ka- L)

s =%

+ L is the dynamic range of the pixel values (usually 2#27sPP _ 1)

* k; =0.01 and kp = 0.03

The SSIM weights then these components as:
SSIM(x, y) = [I(x, y)* - e(x. y)P - 5(x, y)"]
Setting the exponents A, 8 and y to 1 leads to the formulation:

'ﬂx'ﬂy+c1)'(2'0-xy+c2)

(2
SSIM(x, y) =
(13 + 3 +c2) - (0F + 07 +c2)

One of the most widely used perceptual quality metric to measure
video distortion is the Emmy Awards winning Video Multi-Method
Assessment Fusion (VMAF) [Nat+19; Li+16]. VMAF is an objective full-
reference video quality metric developed by Netflix and University
of Southern California. Given its huge popularity, VMAF will be
predominantly used throughout this dissertation.

VMAF is based on a machine learning model. For training purposes,
a dataset of user observations is used. Specifically, users were asked
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to rate distorted video sequence in a living room-like environment on
a scale to 1 (very annoying) to 5 (not noticeable). The scores then
were combined to generate Differential Mean Opinion Score (DMOS)
on a scale from 0 to 100. VMAF predicts the video distortion per frame
compared to the reference using the following features:

* Visual Information Fidelity (VIF): accounts the information
fidelity loss at four different spatial scales.

¢ Detail Loss Metric (DLM): measures details losses and noises
that can affect viewer attention.

¢ Mean Co-Located Pixel Difference (MCPD): measures the tem-
poral difference between frames on the luminance component.

The features are then fed into a Support Vector Machine (SVM)
regressor. VMAF models are intrinsically bounded on the DMOS retrieval
methodology, i.e. the viewing conditions. In this dissertation we are
going to use mainly three different versions: the standard model, the
VMAF 4K model and the VMAF mobile model.

The standard VMAF model operates under the assumption that the
viewer sits in front of a 1080p TV with the viewing distance of 3 times
the screen height. This differentiate from the VMAF 4K model, where
the subjective quality of video is predicted based on the assumption
that the content is displayed on a 4K TV and viewed from a distance
of 1.5 times the screen height. For training the phone model, the
viewer where instead instructed to position the 1080p phone screen
at a distance in which they felt comfortable. Compared to both the
standard and 4K model, the phone model has been shown to be less
sensitive to the differences in term of delivered video quality between
720p and 1080p.

2.3 Online: Video delivery

In this section, we will introduce the reader to the main concepts
of online video delivery. In Section 2.3.1 we will briefly describe
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the Dynamic Adaptive Streaming over HTTP (DASH) standard. In
Section 2.3.2 we then describe which metrics are usually identified
as important for video streaming delivery. Finally, in Section 2.3.3,
we describe briefly the adaptive bitrate streaming algorithms utilised
throughout this thesis.

2.3.1 DASH

MPEG-DASH is an application level standard for video streaming.
DASH is similar to Apple HLS, with some major differences [Clo19]:

* DASH is codec agnostic, while HLS only supports H.264 and
H.265.

* HLS is only supported by Apple devices.

» Before 2016 HLS only supported a segment length of 10 sec-
onds, while DASH allowed segments length variability. Today
HLS default segments length is 6 seconds, but it can be adjusted.

e MPEG-DASH is an international standard, while HLS has been
developed by Apple and has never been published, although it
is widely supported.

Atahigh level, the major steps of DASH architecture are the encoding
and the segmentation (discussed in section Section 2.2), the distribu-
tion and replication of the content into CDNs, and online delivery. To
communicate to the video players all the information concerning a
specific video content, DASH architecture relies on Media Presentation
Description (MPD) files. Usually MPDs are delivered and standardised
in an XML file, but custom implementations of DASH architecture can
rely on different formats, like JSON.

In the standardised DASH XML format, video representation usually
consists of one or more periods, portions of media with a given start
time and a duration. The division of a specific video content into
periods is used, for example, for advertisement insertion or changes
in the codec configurations.
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Within a single period, one or more adaptation sets are described.
We could have, for example, a single adaptation set for the video
content, and multiple adaptation sets for different languages.

The adaptation set is then divided into different representations.
This different representation indicates the bitrate tracks at which a
specific content, being it audio or video, is made available. For the
video representation, some basic information (like resolution and
average bitrate) are presented.

Each representation is then subdivided into media segments. Media
segments can be represented in various ways, but in general they all
point to the actual URL of the segment to be fetched. They can
provide additional information that are useful to the adaptation logic,
like segment duration and bitrate values.

When a video client starts the playback of a video, the video MPD is
immediately downloaded and the video information is made available
to the adaptive bitrate streaming algorithm, that will decide which
representation of a specific segment to download depending on the
network variations and player state.

One of the reference implementations of a DASH client is the dash.js
player [DAS12]. This implementation is provided by the DASH
Industry Forum (DASH-IF) with a BSD-3 license, a permissive license
that allows extensions and modifications.

2.3.2 Quality of Experience

The main goal of adaptive streaming is to improve the users so-
called perceived Quality of Experience (QoE). While the concept
of QoE is context and user dependent, some common optimisation
metrics can be identified and mathematically formulated:

* Quality gain: let V be a video stream session composed by
a sequence of N video chunks. Let R, be the set of available
resolutions and bitrate pairs of each level of V. Let ¢(-) :
Ry — R, be anon-decreasing function mapping each segment
representation to a user perceived level of satisfaction (e.g.
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VMAF score). Let R, ; be the downloaded quality level for the
i-th segment. The quality gain of V can be defined as:

R
—-a- ) q(R})
N i=1

Quality switching penalty: The non-smoothness penalty tar-
gets the magnitude of the quality variation between one chunk
to another. This impairment can be formulated as follow:

N-1
1 N ‘
v_1# Z la(Ry;1) — a(Ry)
i=1

Rebuffer penality: A rebuffer event happens whenever the
video chunk that has to be played has not been downloaded
yet. Let K be the number of rebuffer events during the video
stream session V. Let A4 1 be the duration in time of the
k-th playback stall. The rebuffer penalty is then defined as:

K
- Z Atsiair i
=1

Startup delay penalty: Let 7 be the time needed by the video
player to start the playback of the video stream session. The
startup delay penalty can be then formulated as:

Y- Ts
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A common weighted linear formulation of the user QoE [Mil+15]
is then defined as:

N N-1
1 1
N * *
QoE” = N El q(RbJ-)——N_1 B El la(Ry;, 1)

K
~q(Rp )| = - Y Atgarg =y - Ty
k=1

The weighting parameters «, 8, u and y define the importance of
a component with respect of the other. This QoE formulation does
not depend on users study, and for such reason it cannot be used as a
subjective users satisfaction assessment. Nevertheless, it usually has
a twofold goal:

* As the metrics previously listed are usually in tradeoff, it
provides a quantitative assessment on how a specific adaptation
logic balances the different optimisation goals.

* During optimisation time, by carefully tuning the weighting
parameters, it can be used as the objective function in order to
maximise (or minimise) certain optimisation metrics.

In this work, this formulation will be extensively used, both for
evaluation and for optimisation. The different weighting parameters
will be set depending on the specific problem.

2.3.3 Adaptive bitrate algorithms

Adaptive bitrate algorithms (ABR) are an integral and fundamental
part of DASH architecture. The ABR main task is to decide which quality
to fetch the next segment at depending on the client’s fluctuating
network capacity and player state. The goal of such adaptation is
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Figure 2.5: The main concept behind rate adaptation algorithm is to
download the best quality possible depending on varying
network conditions. The red shaded area of the pictures
highlight a very simple adaptation approach: when the
capacity of the network decreases, a lower quality level is
picked.

to maximise users’ perceived QoE. A simple diagram of ABR main
concept is depicted in Fig 2.5.

Different ABRs can use different parameters to estimate the best
choice in terms of quality to download. Some of them are designed to
base their decision solely on network bandwidth, i.e. they estimate the
current network capacity based on the download history and pick the
next chunk quality accordingly. Other approaches can also take into
account the player buffer behaviour, i.e. the number of seconds of the
video that have been downloaded but not yet played. Other parameters
that the ABR might account for are, for example, the future segments’
properties (i.e. their perceptual quality value and their bitrate). In the
following subsections we will describe a small set of ABRs that are
used in this work.

2.3.3.1 Rate Based approaches

Rather than a specific ABR, rate based approaches (RB) are a class of
ABR implementations. The decision of the next quality to donwload is
taken depending only on the estimate of the network bandwidth. How
to estimate the network bandwidth given the past download samples
is fundamental design parameter. A common and straightforward way
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to estimate the bandwidth is a weighted mean over a certain number of
samples, where most recent samples are given more importance. The
implementation of a rate based approach that is used in this dissertation
is the one described by Bitmovin [Aya+18]. In this implementation,
given a certain bandwidth estimate, the adaptation algorithm chooses
the track with the highest bitrate that is not larger than the estimate.
During the startup phase, a default (low) quality is downloaded for the
first 10 seconds of playback. This conservative startup design choice
is implemented in order to safely build up the buffer and to collect
bandwidth samples.

2.3.3.2 Buffer based approaches

Buffer based approaches (BB) base their decision mainly on the
player buffer occupancy. Buffer based, as rate based, can be identified
as a class of ABR algorithms. The buffered amount of video, i.e. the
amount of video that has been downloaded but not yet played, can
indicate how much safety is present before incurring in a rebuffering
event.

An example of buffer based approach is the one described in
[Hua+14]. In this implementation, the buffer size b is mapped to
a track level, and two parameters, the reservoir r and the cushion ¢
indicate the boundaries of this mapping. Specifically, if b < r, the
lowest track is used, and if b > r + ¢ the highest track is used. The
intermediate tracks are then mapped linearly in the range [r, r+c]
(Fig 2.6).

To prevent frequent track changes, the discrete boundaries of the
tracks act as thresholds, so that the track is only changed if it passes
the threshold of the next higher or next lower bitrate level, introducing
an hysteresis to the track selection.

Another example of buffer based algorithm is the Buffer Occupancy
based Lyapunov Algorithm (BOLA)[SUS16]. However, BOLA takes a
more sophisticated approach than the previous one, using Lyapunov
optimization techniques to achieve a near-optimal QoE.
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Figure 2.6: Graphical representation of a buffer based approach de-
scribed in [Hua+14]. The red shaded area of the 2D plane
identifies the risky buffer health-rate mapping, in which
rebuffering events are more likely to happen. Conversely,
the green shaded area identifies the safe area of the map-
ping, in which rebuffering events are unlikely to happen, at
the cost of being too conservative with the chosen quality.

2.3.3.3 MPC

Model predictive control (MPC), described in [Mil+15], solves the
optimisation problem with a control-theoretic approach. It uses the
bandwidth estimate, current buffer size, and features of upcoming
segments to plan a sequence of requests based on the expected reward.
The reward is usually formulated in the linear form described in
Section 2.3.2. Specifically, all the possible sequence of downloads
are simulated within a certain horizon, and the best performing first
option is picked. A version of it, Robust MPC, makes use of a more
conservative bandwidth estimate in order to perform safer choices,
and it is the version of MPC widely used in this dissertation.
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2.3.3.4 Pensieve

Pensieve [MNA17b] uses the A3C reinforcement learning model in
order to learn the best performing choices in terms of track selection.
It does so by capturing the environment’s state in terms of buffer oc-
cupancy, past bandwidth samples, and future video chunks properties.
The reward is usually expressed in the form described in Section 2.3.2.

In this Chapter we introduced to the reader the basic concepts behind
VOD streaming system. Specifically, in Section 2.2, we detailed the
main variables involved into video preparation, while in Section 2.3
we described DASH architecture and the concept of ABR optimisation
algorithms. In Chapter 3 and Chapter 4 we will discuss in detail how
network measurements and active manipulation can be effectively
utilised to better understand and reconstruct ABR behaviours. Finally,
in Chapter 5, we will show how to optimise the offline part of VOD
streaming systems depending on the expected flow of the online one.
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Understanding video
streaming algorithms

In this Chapter, we evaluate and compare the behavior of 10 different
large video platforms’ ABRs. In particular, by manipulating the net-
work bandwidth and carefully analysing the players’ logs, we focus on
understanding which optimisation goals these providers are targeting.

3.1 Introduction

Video streaming now forms more than 50% of downstream Internet
traffic [San22]. Thus, methods of delivering video streams that provide
the best user experience despite variability in network conditions are an
area of great industry relevance and academic interest. As explained in
Section 2.3, the problem is to provide a client with the highest possible
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video quality, while minimizing pauses in the video stream. There
are other factors to consider, of course, such as limiting the number
of distracting resolution changes. These considerations are typically
rolled into one quality-of-experience score. Streaming services then
use adaptive bitrate algorithms, which attempt to maximize QoE by
dynamically deciding at what resolution to fetch video segments, as
network conditions fluctuate.

While high-quality academic work proposing novel ABR is plentiful,
the literature is much more limited (Section 3.2) in its analysis of
widely deployed ABRs, their target QOE metrics, and how they compare
to recent research proposals. This chapter is designed to precisely
address this gap. Understanding how video platforms serving content
to large user populations operate their ABR is crucial to framing future
research on this important topic. For instance, we would like to know
if there is a consensus across video platforms on how ABR should
behave, or whether different target populations, content niches, and
metrics of interest lead to substantially different ABR behavior. We
would also like to understand whether ABR research is optimising
for the same metrics as deployed platforms, which are presumably
tuned based on operator experience with real users and their measured
engagement.

Towards addressing these questions, we present a study of ABR
behavior across 10 video streaming platforms (Table 3.1) chosen for
coverage across their diverse target populations: some of the largest
ones in terms of overall market share, some regional ones, and some
specialized to particular applications like game streaming (not live,
archived). Our methodology is simple: we throttle download band-
width at the client in a time-variant fashion based on throughput traces
used in ABR research, and monitor the behavior of streams from differ-
ent streaming platforms by analyzing jointly their browser-generated
HTTP Archive (HAR) files and properties exposed by the video players
themselves. By doing so, we show how network measurements can
be use to understand video streaming, which is indeed the first goal
of this dissertation. For robust measurements, we collect data for
several videos on each platform, with our analysis based on 6 days of
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continuous online streaming. Our main findings are as follows:

1. Deployed ABRs exhibit a wide spectrum of behaviors in terms
of how much buffer they seek to maintain in their stable state,
how closely they try to match changing bandwidth vs. operat-
ing more smoothly, how they approach stable behavior after
stream initialization, and how well they use available network
bandwidth. There is thus not a consensus approach in wide
deployment.

2. Several deployed ABRs perform better on a QoE metric based
on visual perception rather than just video bitrate. This lends
support to the goals of recent work [Qin+18], indicating that at
least some of the industry is already optimizing towards such
metrics rather than the bitrate-focused formulations in most
prior ABR research.

3. Most deployed ABRs eschew fast changes in response to band-
width variations, and thus exhibiting stable behavior. In con-
trast, research ABRs follow bandwidth changes more closely.
It is unclear whether this is due to (a) a mismatch in target
metrics used in research and industrial ABR; or (b) industrial
ABR being sub-optimal.

4. Several deployed ABRs leave substantial available bandwidth
unused. For instance YouTube uses less than 60% of the
network’s available bandwidth on average across our test traces.
Similar to the above, it is unclear whether this is due to ABR
sub-optimality, or a conscious effort to decrease bandwidth
costs.

3.2 Related Work

There is a flurry of academic ABR proposals [Akh+18; Sun+16;
SUS16; Mil+15; MNA17b; WRZ16; Qin+17; JSZ14; De +13; Li+14;
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SSS18; Qin+18], but only limited study of the large number of de-
ployed video streaming platforms catering to varied video types and
audiences.

YouTube itself is relatively well studied, with several analyses
of various aspects of its behavior [Mon+17; Afo+18; Wam+16],
including video encoding, startup behavior, bandwidth variations
at fixed quality, a test similar to our reactivity analysis, variation of
segment lengths, and redownloads to replace already fetched segments.
There is also an end-end analysis of Yahoo's video streaming platform
using data from the provider [Gha+16].

Several comparisons and analysis of academic ABR algorithms [ Yan+20);
TMR16; Sto+17] have also been published, including within each of
the several new proposals mentioned above. In particular, [Sto+17]
compares three reference ABR implementations, showing that the
configuration of various parameters has a substantial impact on their
performance.

Facebook published [Mao+19] their test of Pensieve [MNA17b] in
their video platform, reporting small improvements (average video
quality improvement of 1.6% and average reduction of 0.4% in re-
buffers) compared to their deployed approach.

However, a broader comparative study that examines a large num-
ber of diverse, popular streaming platforms has thus far been missing.
Note also that unlike ABR comparisons in academic work and head-to-
head comparisons of methods in Facebook’s study, QoE comparisons
across platforms are not necessarily meaningful, given the differences
in their content encoding, content type, and audiences. Thus, in con-
trast to prior work, we define a set of metrics that broadly characterize
ABR behavior and compare the observed behavior of a large, diverse
set of streaming providers on these metrics. Where relevant, we also
contrast the behavior of these deployed ABRs with research proposals.
To the best of our knowledge the work [LGS20], upon which this
Chapter is based, is the only work to compare a large set of deployed
ABRs and discuss how their behavior differs from academic work in
this direction.
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Figure 3.1: (a) Player behaviour is influenced through bandwidth throt-
tling, and is recorded from multiple sources. (b) The proxy
has little impact on player behavior as measured in terms
of average linear QOE (Q0Ejineqr); the whiskers are the
95% confidence interval.

To understand a target platform’s ABR, we must collect traces of its
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behavior, including the video player’s state (in terms of selected video
quality and buffer occupancy) across controlled network conditions
and different videos.

3.3.1 Experimental setup

Fig. 3.1a shows our architecture for collecting traces about player
behaviour. Our Python3 implementation (available at [GL]) uses
the Selenium browser automation framework [Hug] to interact with
online services. For academic ABR algorithms, trace collection is
simpler, and uses offline simulation, as suggested in [MNA17b].

While playing a video, we throttle the throughput at the client (1)
using tc (Traffic control, a Linux tool).! The state of the client browser
(e.g., current buffer occupancy) is captured by the Monitor (5) every
a seconds. All requests sent from the client (1) to the server (3) are
logged by a local proxy (2). Beyond the final browser state, the proxy
allows us to log video player activity such as chunks that are requested
but not played. We also obtain metadata about the video from the
server (e.g., at what bitrate each video quality is encoded). Metadata
is obtained through offline analysis by downloading the video at all
different qualities. All information gathered from the three sources —
the proxy, the browser and the server — is aggregated (4).

Certain players replace chunks previously downloaded at low qual-
ity with high quality ones (“redownloading”) in case there is later
more bandwidth and no immediate rebuffer risk. Using the proxy’s
view of requests and responses and the video metadata, we can map
every chunk downloaded to a play-range within the video, and use
this mapping to identify which chunks / how many bytes were redown-
loaded.

How do we add a platform to our measurements? Most video
platforms (all except YouTube, for which we use [Ami]) use chunk-
based streaming. To evaluate such platforms, we use developer tools

LAt the bandwidth levels seen in our traces, bottlenecks are at our client — our
university’s connectivity to large services is otherwise high-bandwidth, consistently
resulting in the highest-quality playback available on each service.
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in Chrome to understand how the player obtains the download links for
the chunks. Typically, a .m3u8 [PM15] file downloaded by the player
contains the locations for all chunks at all qualities. This allows us to
write code that fetches all chunks for the test videos at all qualities,
such that we can use these videos in our offline simulation analysis
of the academic Robust MPC approach (which implementation is
described in section Section 2.3.3).2 Having all chunks available also
enables calculation of their visual perceived quality (VMAF [Li+16]).
We also need to map each chunk to its bitrate level and time in the
video stream, by understanding how video content is named in the
platform (e.g., through “itags” in YouTube).

For online experiments through the browser, we need to instrument
the platform’s video player. We do this by automating the selection of
the HTMLS5 video player element, and having our browser automation
framework use this to start the video player and put it in full screen
mode. We can then access the current buffer occupancy and current
playback time using standard HTMLS attributes. We use a proxy to
log the remaining statistics (e.g., resolution played/fetched) because
relying on the player alone would have required painstaking code
injection specialized to each provider.

YouTube does not follow such chunked behavior (as past work has
noted [Mon+17]). It can request arbitrary byte ranges of video from
the server. We use an already available tool [Ami] to download the
videos, and then learn the mapping from the byte ranges to play time
from the downloaded videos.

3.3.2 The proxy’s impact on measurements

Some of our measurements (e.g., redownloads) use an on-path
proxy, so we verify that this does not have a meaningful impact by
comparing metrics that can be evaluated without the proxy. For
this, we use traces with constant bandwidth » € [0.5,0.8,1.2,2.5]

2To avoid the unintended use of our scripts for downloading copyright-protected
content, we refrain from publishing code for this part of our pipeline.
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Mbps, repeating each experiment 5 times for the same video. For
our comparison, we calculate QoE using the linear function from
MPC [Mil+15] with and without the proxy. For every video-network
trace combination, we calculate the mean QoE and show the mean
across these, together with its 95% confidence interval with whiskers
in Fig. 3.1b.

As the results show, for most platforms the proxy has a minimal
impact: across providers, the average difference in QoE with and
without the proxy is 7%. For YouTube and ZDF, the differences are
larger, but still within the confidence bounds: for these providers,
there are large variations across experiments even without the proxy,
indicating differing behaviour in very similar conditions in general.

3.3.3 Metrics of interest

Different video platforms serve very different types of content, and
target different geographies with varied client connectivity character-
istics. It is thus not particularly informative to compare metrics like
bitrate-based QoE across platforms. For instance, given the different
bitrate encodings for different types of content, bitrate-QoE is not
comparable across platforms. We thus focus on comparisons in terms
of the following behavioral and algorithm design aspects.

Initialization behavior: We quantify how much wait time a video
platform typically incurs for streams to start playback, and how much
buffer (in seconds of playback) it builds before starting. We use traces
with a fixed bandwidth of 3 Mbps until player’s HTMLS5 interactions
are available, thus always downloading items like the player itself at
a fixed bandwidth. This is done to avoid failure at startup: some plat-
forms cause errors if network conditions are harsh from the beginning.
After this, we throttle using only the high-bandwidth traces from the
Oboe [Akh+18] data set, which have a mean throughput of 2.7 Mbps.
We start timing from when the first chunk starts downloading (per
the HAR files; the player HTMLS interactions may become available
earlier or later).
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Convergence: During startup, an ABR may have little information
about the client’s network conditions. How do different ABRs approach
stable behavior starting from this lack of information? Stablility in
this sense refers to fewer bitrate switches. Thus, to assess convergence
characteristics, we quantify the bitrate changes (in Mbps per second)
across playback, i.e., a single switch from 3 Mbps to 4 Mbps bitrate
over a total playback of 5-seconds amounts to 0.2 Mbps/sec on this
metric. We chose not to compare the raw number of switches/sec —
one switch at YouTube is very different from one switch at TubiTV,
due to the differing discreteness of their bitrate ladders.

Risk-tolerance: ABRs can hedge against rebuffer events by building
a larger buffer, thus insulating them from bandwidth drops. Thus,
how much buffer (in seconds of video) an ABR builds during its stable
operation is indicative of its risk tolerance.

Reactivity: ABRs must react to changes in network bandwidth. How-
ever, reacting too quickly to bandwidth changes can result in frequent
switching of video quality, and cause unstable behavior when network
capacity is highly variable. To quantify reactivity of an ABR, we use
synthetic traces with just one bandwidth change after convergence, and
measure the evolution of bitrate difference in the video playback after
the change over time (with the number of following chunk downloads
used as a proxy for time).

Bandwidth usage: ABR must necessarily make conservative decisions
on video quality: future network bandwidth is uncertain, so fetching
chunks at precisely the estimated network bandwidth would (a) not
allow building up a playback buffer even if the estimate were accurate;
and (b) cause rebuffers when bandwidth is overestimated. Thus,
ABR can only use some fraction of the available bandwidth. We
quantify this behavior in terms of the fraction of bytes played to
optimally downloadable, with “optimally downloadable” reflecting
the minimum of (a posteriori known) network capacity and the bytes
needed for highest quality streaming.

For better bandwidth use and to improve QoE, some ABRs are known
to redownload and replace already downloaded chunks in the buffer
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with higher quality chunks. We quantify this as the fraction of bytes
played to bytes downloaded. Fractions <1 reflect some chunks not
being played due to their replacement with higher quality chunks.

QoE goal: Academic ABR work has largely used a QoE metric that
linearly combines a reward for high bitrate with penalties for rebuffers
and quality switches [Mil+15; MNA17b]. This linear formulation has
been presented in Section 2.3.2. More recent work has suggested for-
mulations of QoE that reward perceptual video quality rather than just
bitrate [Qin+18]. One such metric of perceptual quality, VMAF [Li+16],
combines several traditional indicators of video quality. While it is
difficult, if not impossible, to determine what precise metric each
platform’s ABR optimizes for, we can evaluate coarsely whether this
optimization is geared towards bitrate or VMAF-like metrics by examin-
ing what video chunks an ABR tries to fetch at high quality: do chunks
with higher VMAF get fetched at a higher quality level? To assess this,
we sort chunks by VMAF (computed using [Li+16]) and quantify for
the top n% of chunks, their (average) playback quality level compared
to the (average) quality level of all chunks, Q;op-ng — Qan- A large
difference implies a preference for high-VMAF chunks.

3.3.4 Measurement coverage

We evaluate multiple videos on each of 10 platforms across a large
set of network traces.

Target platforms: Table 3.1 lists the platforms we analyze (with their
Alexa popularity rank, as of January 2020). While by no means ex-
haustive, these were chosen to cover a range of content types and a few
different geographies. Note that Netflix, Amazon Prime Video, and
Hulu were excluded because their terms of service prohibit automated
experiments or/and reverse-engineering [Net; Hul; Ama]. For Twitch,
which offers both live streams and video-on-demand of archived live
streams, we only study the latter, as live streaming is a substantially
different problem, and a poor fit with the rest of our chosen platforms.
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Provider Description Alexa rank # Resolutions
Arte Cultural 270, France 4.0+0.0
Fandom Pop-culture 91, Global 5.0+£0.0
SRF Public Service 45, Switzerland 5.7 +0.48
TubiTV Movies/Series 1330, USA 3.0+0.0
Twitch Gaming 39, Global 5.9+0.32

Vimeo Artistic content 188, Global 4.2+0.92
YouTube Broad coverage 2, Global 6.5+ 1.08
ZDF Public Service 47, Germany 5.3+£0.48
Pornhub  Pornographic 46, Global 4.0+0.0

XVideos Pornographic 67, Global 4.4 +0.52

Table 3.1: We test a diverse set of large video platforms.

Different platforms encode content at varied resolutions and number
of resolutions, ranging from just 3 quality levels for TubiTV to 6.5 on
YouTube (on average across our test videos; YouTube has different
numbers of resolutions on different videos.)

When comparing the behavior of deployed ABRs with academic
ones, we test the latter in the offline environment made available by
the Pensieve authors [MNA17b]. For each tested video on each plat-
form, we pre-download all its chunks at all available qualities. We then
simulate playback using the same network traces up until the same
point offline for academic ABRs as we do for the deployed ones. We pri-
marily rely on Robust MPC [Mil+15] (referred to throughout as MPC)
as a stand-in for a recent, high-quality academic ABR approach. While
even newer proposals are available, they either use data-dependent
learning techniques [MNA17b; Akh+18] that are unnecessary for our
purpose of gaining intuition, or do not have available, easy-to-use
code.

Videos: The type of content can have substantial bearing on stream-
ing performance, e.g., videos with highly variable encoding can be
challenging for ABR. We thus used a set of 10 videos on each plat-
form. Where a popularity measure was available, we used the most
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popular videos; otherwise, we handpicked a sample of different types
of videos. Videos from each platform are encoded in broadly similar
bitrate ranges, with most differences lying at higher qualities, e.g.,
some content being available in 4K.

It would, of course, be attractive to upload the same video content
to several platforms (at least ones that host user-generated content)
to remove the impact of videos in the cross-platform comparisons.
However, different platforms use their own encoding pipelines, making
it unclear whether this approach has much advantage over ours, using
just popular videos across platforms.

Network traces: Our experiments use synthetic and real-world traces
from 3 datasets in past work [Akh+18; Rii+13a; Fed]. Unfortunately,
a full cross-product of platform-video-trace would be prohibitively
expensive — the FCC traces [Fed] alone would require 4 years of
streaming time. To sidestep this, we rank traces by their throughput
variability and pick traces with the highest and lowest variability
together with some randomly sampled ones.

Our final network trace collection consists of the 5 least stable,
5 most stable, and 5 random traces from the Belgium trace collec-
tion [Hoo+16], and 10 in each of those categories from the Nor-
way [Rii+13a], the Oboe [Akh+18] and the FCC datasets3. We also
use 15 constant bandwidth traces covering the range from 0.3 to 15
Mbps uniformly. Lastly we add 10 step traces: after 60 seconds of
streaming we suddenly increase/drop the bandwidth from/to 1 Mbps
to/from 5 values covering the space from 1.5 to 10 Mbps uniformly.

In total, we use 130 traces with throughput (average over time for
each trace) ranging from 0.09 to 41.43 Mbps, with an average of
6.13 Mbps across traces. Note that we make no claim of our set of
traces being representative; rather our goal is to test a variety of traces
to obtain insight into various ABR behaviors. If a trace does not cover
the whole experiment we loop over it.

For quantifying reactivity, we only use the synthetic traces men-
tioned above, with a single upward step change in bandwidth. For

3Specifically, the stable collection from September 2017 [Fed].
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quantifying startup delay, we use traces with a bandwidth of around
3 Mbps as noted in Section 3.3.3.

Ethics: We are careful to not generate excessive traffic or large bursts
to any platform, measuring at any time, only one stream per service,
typically at a low throttled rate.

3.4 Measurement results

Overall, we see diverse behavior on each tested metric across
platforms. We attempt to include results across all platforms where
possible, but for certain plots, for sake of clarity, we choose a subset
of platforms that exhibits a range of interesting behaviors.

Initialization behavior, Fig. 3.2a: We find that most platforms’ ABR
simply waits for one chunk download to finish before beginning
playback. This is reflected in the buffer occupancy at playback. Some
players like ZDF and SRF use a larger chunk size (10 seconds), which
is why they pre-load more seconds of buffer.

As one might expect, building a larger buffer before playback
starts generally incurs a higher start time. Twitch stands out in this
regard, as it downloads nearly 20 seconds of buffer before start. Some
players, whilst downloading the same number of buffer seconds as
others, do so at much higher resolution — e.g., SRF downloads its
first 10 seconds with 6x as many pixels as Arte. This is reflected
in the disparity between their start times, despite both populating
the buffer with 10 seconds of playback. More broadly, all such
“discrepancies” are difficult to explain because startup is hard to
untangle from other network activity, e.g., some players already start
downloading video chunks while the player itself is still downloading,
thus complicating our notion of timing. (We start timing from the point
the first chunk starts downloading. For most platforms, this provides a
leveling standard that excludes variation from other downloads on their
Web interface. It also helps reduce latency impacts that are mainly
infrastructure driven, as well as effects of our browser automation
framework.)
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Figure 3.2: (a) Initialization: most providers start playback after one
chunk is downloaded. (b) Convergence is measured in
terms of changes in bitrate switching, i.e., the (absolute)
sum of bitrate differentials across all switches from the
start, divided by the thus-far playback duration. As ex-
pected, switching is more frequent during startup, but the
degree of switching varies across providers both in startup

and later.

Convergence, Fig. 3.2b: As expected, during startup and early play-
back, every player attempts to find a stable streaming state. This
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results in many track switches followed by much smoother behavior
with more limited switching. Nevertheless, there are large differences
across players, e.g., Pornhub switches more than twice as much as
Fandom and SRF in the beginning. In stable state, Fandom switches
substantially more than SRF. We also evaluated the academic (Ro-
bust) MPC algorithm [Mil+15] on the same network traces and over
the SRF videos. The MPC algorithm would use more than twice as
much switching both in startup and later, compared to SRF’s deployed
ABR. Consequently, SRF scores lower than MPC on the default linear
QoE model used in MPC. However, this does not necessarily imply
that SRF’s design is sub-optimal; it could also be optimizing for a
different metric that values stability more.

For clarity, we only picked a few platforms as exemplars of behavior
towards convergence instead of including all 10 tested platforms. The
behavior is broadly similar with more switching early on, but the
precise stabilization differs across platforms.

Risk-tolerance, Fig. 3.3: We observe widely different buffering be-
havior across the players we tested. Of course, every player uses early
playback to download lower quality chunks and accumulate buffer,
but some, like YouTube, settle towards as much as 80 seconds of
buffer, while others like Fandom operate with a much smaller buffer
of around 20 seconds. Testing MPC’s algorithm on the same traces
across the YouTube videos reveals that it falls towards the lower end,
stabilizing at 20 seconds of buffer.

Note that for approaches that allow redownloads (including
YouTube), larger buffers are a reasonable choice: any chunks that
were downloaded at low quality can later be replaced. This is likely
to be a more robust strategy in the face of high bandwidth variability.
However, for approaches that do not use redownloads, a larger buffer
implies that all its content must be played out at whatever quality
it was downloaded at, thus limiting the possibilities to benefit from
opportunistic behavior if bandwidth later improves. Thus operating
with a smaller buffer of higher-quality chunks may be preferable to
filling it with lower-quality chunks. In the absence of redownloads,
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Figure 3.3: Risk-tolerance: YouTube operates with nearly 4x the
buffer for Fandom. The shaded regions show the 95%
confidence interval around the mean.

there is thus a tradeoff: a larger buffer provides greater insurance
against bandwidth drops, but reduces playback quality. At the same
time, redownloads are themselves a compromise: if better bitrate
decisions could be made to begin with, redownloads amount to
inefficient bandwidth use.

Reactivity, Fig. 3.4: We find that most deployed ABRs are cautious
in reacting to bandwidth changes. This is best illustrated through
comparisons between deployed and academic ABRs. Fig. 3.4(right)
shows such a comparison between TubiTV and MPC evaluated on the
same traces and videos. After the bandwidth increases (at x-axis=0
in the plot), TubiTV waits for tens of chunk downloads before it
substantially ramps up bitrate. In contrast, MPC starts switching to
higher bitrates within a few chunk downloads. (The large variations
around the average arise from the varied sizes of the step-increases in
the used network traces and variations in the tested videos.)

While we have not yet evaluated a large number of mobile ABR
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Figure 3.4: We measure reactivity in terms of bitrate evolution after
a bandwidth increase, i.e., difference in average playback
bitrate after and before the bandwidth change over time (in
terms of chunk downloads). The plots show the reactivity
differences between: (left) mobile and desktop versions
of Vimeo; and (right) TubiTV and MPC.

implementations (see Section 3.5), we were able to experiment with
Vimeo’s mobile and desktop versions, shown in Fig. 3.4(left). They
exhibit similar ramp-up behavior in terms of how many downloads it
takes before Vimeo reacts, but show very different degrees of bitrate
change. The desktop version increases bitrate in several steps after the
bandwidth increase, while the mobile one settles at a modest increase.
This is along expected lines, as the mobile player, targeting the smaller
screen, often does not use the higher-quality content at all.

A comparison between TubiTV and Vimeo (desktop) across the
two plots is also interesting: Vimeo ramps up faster than TubiTV.
(MPC ramps us even faster on the Vimeo videos.) One potential reason
is the difference in encoding — TubiTV serves each video in only
3 resolutions, compared to Vimeo’s 4-5. This implies that over the
same network traces, TubiTV must necessarily see a larger change in
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bandwidth to be able to jump from one bitrate to the next, given its
larger differential in bitrate levels.

Bandwidth usage, Fig. 3.5a: Different platforms use bandwidth very
differently. Arte discards a surprisingly large 23% of its downloaded
bytes in its efforts to replace already downloaded low-quality chunks
with high-quality ones. Some platforms, including YouTube, SRF,
and Vimeo, show milder redownload behavior, while several others,
including XVideos, Fanrom, Pornhub, and ZDF, do not use redown-
loads at all.

ZDF and TubiTV are able to use 80% of the network’s available
bytes for fetching (actually played) video chunks, while all others use
the network much less effectively. While the uncertainty in future
bandwidth and the desire to maintain stable streaming without many
quality switches necessitates some bandwidth inefficiencies, we were
surprised by how large these inefficiencies are. In particular, XVideos,
YouTube, Twitch, and Fandom all use less than 60% of the network’s
available capacity on average across our trace-video pairs*. This
low usage is particularly surprising for YouTube, which uses several
strategies — variable chunk lengths (as opposed to fixed-size chunks
in other providers), larger number of available video resolutions, and
redownloads — that allow finer-grained decision making, and thus
should support more effective bandwidth use. Given these advanced
features in their ABR design, it is more likely that their optimization
goals differ from academic ABR work than their algorithm simply
being poorly designed. While we cannot concretely ascertain their
optimization objectives, one could speculate that given the large
global demands YouTube faces while operating (largely) as a free, ad-
based service, a profit maximizing strategy may comprise providing
good-enough QoE with a limited expense on downstream bandwidth.

4Note that these inefficiencies cannot be blamed on transport / TCP alone, as on the
same traces, other players are able to use 80% of the available capacity. We also
carefully account for non-video data to ensure we are not simply ignoring non-chunk
data in these calculations. For instance, audio data is separately delivered for Vimeo
and YouTube, but is accounted for appropriately in our bandwidth use analysis.
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Figure 3.5: (a) Bandwidth usage: many players use surprisingly little
of the available network bandwidth (Played / Download-
able) despite the potential to improve quality with more
bandwidth, e.g., XVideos uses only 50% of it; and some
players, like Arte, spend a large fraction of their used band-
width on redownloads. (b) QoE goal: we measure how
much a player prefers high-VMAF chunks by quantifying
the average quality-level difference between all chunks
and only the top-x% of chunks by VMAF (i.e., Qo...%Top])-
Some players, like Twitch, show a large preference for
high-VMAF chunks.
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QoE goal, Fig. 3.5b: We find that some providers fetch high-VMAF
chunks at higher quality than the average chunk. In particular, Twitch
fetches the chunks in the top 20" percentile by VMAF at a mean quality
level 0.79 higher than an average chunk. If instead of Twitch’s ABR, we
used a VMAF-unaware, simple, rate-based ABR> that uses an estimate
of throughput to decide on video quality, this difference in quality
level between high-VMAF and the average chunk would reduce to
0.46.

Note that given the correlation between higher quality and higher
VMAF, high-VMAF chunks are more likely to be fetched at high quality;
what is interesting is the degree to which different players prefer them.
Vimeo, for instance, shows a much smaller difference of 0.27 between
the quality level of chunks in the top 20 percentile and an average
chunk. If MPC’s ABR were used to fetch chunks from Vimeo, this
difference increases to 0.534, because MPC is willing to make more
quality switches than Vimeo.

Our results thus indicate diversity in optimization objectives in
terms of bandwidth use and QoE targets across deployed video plat-
forms. It is at least plausible that academic ABRs produce different
behavior over the same traces not because they are much more effi-
cient, but rather the optimization considerations are different. While
algorithms like MPC are flexible enough to be used for a variety of
optimization objectives, it is unclear how performance would compare
across a suitably modified MPC (or other state-of-the-art ABR) when
evaluated on operator objectives.

3.5 Limitations and future work

Our first broad examination of a diverse set of widely deployed
ABRs reveals several interesting insights about their behavior, but also

SThis ABR estimates throughput, 7', as the mean of the last 5 throughput measurements.
For its next download, it then picks the highest quality level with a bitrate < T'. It
thus downloads the largest chunk for which the estimated download time does not
exceed the playback time.
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raises several questions we have not yet addressed:

1. Does ABR behavior for the same platform vary by geography
and client network? Such customization is plausible — there
are likely large differences in network characteristics that a
provider could use in heuristics, especially for startup behavior,
where little else may be known about the client’s network
bandwidth and its stability. However, addressing this question
would require running bandwidth-expensive experiments from
a large set of globally distributed vantage points.

2. How big are the differences between mobile and desktop
versions of ABR across platforms? Unfortunately, while the
browser provides several universal abstractions through which
to perform monitoring on the desktop, most platforms use their
own mobile apps, greatly increasing the per-platform effort for
analysis.

3. If we assume that the largest providers like YouTube and Twitch
are optimizing ABR well, based on their experience with large
populations of users, can we infer what their optimization
objective is? While there are hints in our work that these
providers are not necessarily optimizing for the same objective
as academic ABR, we are not yet able to make more concrete
assertions of this type.

4. Does latency have a substantial impact on ABR? ABR is largely
a bandwidth-dependent application, but startup behavior could
potentially be tied to latency as well. We have thus far not
evaluated latency-dependence.

3.6 Conclusion

In this Chapter, we conducted a broad comparison of adaptive bi-
trate video streaming algorithms deployed in the wild across 10 large
video platforms offering varied content targeted at different audiences.

59



Chapter 3 - Understanding video streaming algorithms

Specifically, we analysed different providers’ ABRs behavior, identify-
ing various key metrics, such as stability and reactivity to bandwidth
changes.

In the following Chapter we will take a step forward in the analysis
of propertary video streaming algorithms. While this Chapter focused
on a quantitative analysis of ABRs’ behaviours, Chapter 4 will focus
on the reconstruction of such algorithms in an human-interpretable
way.
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streaming algorithms

In this Chapter, we take a further step in the analysis of proper-
tary video streaming algorithms. In particular, we produce human-
interpretable reconstructions of the 10 video streaming platforms’s
ABRs analysed in Chapter 3.

4.1 Introduction

The problem of maximizing QoE in video streaming is clearly
defined, intellectually interesting, and practically valuable. Thus,
numerous ABR algorithms have been suggested in recent work to tackle
it, e.g., Oboe [Akh+18] and MPC [Yin+15]. As previously discussed,
little is known about the proprietary algorithms actually deployed in
widely used video streaming services such as YouTube, TwitchTV and
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Netflix.! While Chapter 3 focused on the qualitative understanding
of different deployed approaches of ABR, in this chapter, we attempt
to address this gap by exploring whether it might be possible to learn
such algorithms by controlled observation of video streams.

Our goal is to produce ABR controllers that: (a) mimic the observed
behavior of ABR logic deployed in target online video services across a
wide range of network conditions and videos; and (b) are open to easy
manual inspection and understanding. Note that the latter precludes
the direct use of blackbox machine learning techniques like neural
networks.

We are motivated by three factors. First, this effort helps understand
the risk of competitors copying painstakingly-engineered algorithmic
work simply by interacting with popular, public-facing front-ends.
Second, being able to reconstruct widely deployed algorithms would
allow head-to-head comparisons between newly proposed research
ABRs and industrial ABRs, something lacking in the literature thus far.
Third, given that video is the majority of Internet traffic, this traffic
being controlled by unknown proprietary algorithms implies that we
do not understand the behavior of most Internet traffic. This makes
it difficult to reason about how different services share the network,
and interact with other control loops such as congestion control and
traffic shaping.

The above use cases help sharpen the goals for our reconstruction
effort. Simplifying our task is the fact that instead of exact algorithm
recovery, we need functional equivalence of a reconstruction with its
target algorithm over a large, varied set of inputs — Note that the same
set of outcomes could be arrived at by two substantially different al-
gorithms, making exact recovery of a particular algorithm impossible.
However, our use cases also impose a difficult additional requirement:
our reconstructions must be human-interpretable, allowing not only

IResearchers at Netflix published, in 2014, work on this problem [Hua+14], including
tests on their commercial deployment. Per our conversations with them, their
current deployment incorporates some features of this published work, but they
are unwilling to share more details, including the differences from this published
approach.
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the mimicking of observed behavior, but also manual inspection and
understanding. A competitor seeking to copy the ABR logic of an
online service needs interpretability to be able to modify it as neces-
sary for their use.? They would also like to ensure the robustness of
the obtained logic, something that is difficult with blackbox learning
— prior work has shown corner cases with undesirable behavior in
blackbox learning methods applied to networking [Kaz+19]. Like-
wise, in terms of comparisons between industrial and academic ABRs,
we would not only like to observe the performance differences empir-
ically, but also understand where these differences stem from. Lastly,
reasoning about interactions with other network control loops and
competing services also requires having a richer understanding of the
control logic under study than blackbox learning can provide.
Algorithmic reconstruction of this type is an ambitious goal, with
the current tools available for general-purpose program synthesis still
being fairly limited. However, there are two reasons for optimism
if we can suitably narrow our scope: (a) the core of ABR algorithms
involves a small set of inputs and has a limited decision space; and
(b) it is easy to collect large amounts of curated data for analysis.
Our approach automatically generates concise, human-interpretable
rule-sets that implement ABR by learning from an existing target ABR
algorithm. These rule-sets map the client and network environment,
video features, and state over the connection, to a video quality
decision for the next video chunk. To obtain generalizable, succinct,
and interpretable pseudocode in a reconstruction, we find that it is
insufficient to directly use sophisticated techniques from imitation
learning [BPS18; RGB11]. As we shall show later, such methods
can either mimic the behavior of a target accurately with a large
set of complex rules, or, when limited to a small set of rules, lose
accuracy. Our approach sidesteps this tradeoff by embedding suitable
domain knowledge in the learning mechanism: framing intuitive
primitives familiar to domain experts, and making them available to

2Qur work enables an understanding of whether this risk exists: “Can a competitor
reconstruct an ABR in a meaningfully beneficial, robust way?” We leave the question
of how this risk may be tackled to followup work.
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the learning mechanism, results in rule-sets that are accurate, concise,
and meaningful.

We use our approach to obtain concise reconstructions that can
successfully mimic the decision-making of several target academic
and industry ABR algorithms, achieving high agreement with their
decisions and similar video QoE behavior. Of the 10 online streaming
services we evaluate across, our reconstruction achieves behavior
similar to its target for 7 services. In each case, we produce a concise
decision-tree with 20 or fewer short rules, using primitives that are
intuitive and easy to understand. We also explain the reasons for
failure for the remaining 3 services.

In this chapter we make the following contributions:

* We describe an approach for deriving accurate and concise
rule sets for ABR, using a corpus of decision outcomes over
network traces and videos. Our approach handles the complex
output space corresponding to diverse video encodings, as well
as noise in the data.

* We apply our method to the reconstruction of algorithms de-
ployed in 10 popular streaming services. For 7 services, we
successfully achieve high agreement with their decisions and
closely similar streaming behavior.

e The rule sets we obtain are concise, with 20 or fewer rules
in each case. Our code also generates a loose natural lan-
guage translation, which we used extensively in understanding
problems and improving performance.

* We also expose a likely fundamental compromise necessary
for interpretable and effective learning: the time-consuming
encoding of domain knowledge.

* Our code and reconstructed ABRs are open-source [GLS20b].

Beyond the above results, our ambitious effort raises several exciting
areas for future exploration, such as: (1) on the tradeoffs between the
effort invested in embedding domain knowledge, and the quality of the
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inferred pseudocode; (2) to what extent such domain knowledge may
itself be learnt from a corpus of hand-designed algorithms broadly
from the networking domain; (3) applying our approach to other
networking problems, like congestion control, and newer problems
where we have more limited experience, such as multipath transport;
(4) and how online service providers may obscure their logic against
reconstruction, if so desired.

4.2 Related work

Numerous high-quality ABR proposals have appeared just within
the past few years [Yeo+18; Akh+18; Qin+18; EA19; SSS18], but
relatively little is known about widely deployed industrial ABR algo-
rithms.

There is a large body of work on reconstructing unknown algo-
rithms. One may approach this using code analysis, like Ayad et al.’s
analysis of Javascript code for some online video services [Ibr+18].
However, some targets can be too large and obfuscated for such anal-
ysis — YouTube, for instance, comprises 80,000+ lines of obfuscated
Javascript. We used JS NICE [SL18], the state-of-the-art in Javascript
deobfuscation, but even coupled with a step-through debugger and
with help from the authors of JS NICE, this provided little insight —
ultimately, manually examining such a large piece of code with mean-
ingless variable names to reconstruct its functionality seems futile. It
also has the downside of potentially requiring substantial rework for
even small changes in the target. Even more fundamentally, the code
may not be available at the client at all, with decision-making residing
on the server side.

Several prior efforts have used manual experimentation and analysis
for dissecting the behavior of a variety of online services [Xu+13;
ABD11; Ibr+18; DM10; Mon+17; LS10; LGS20]. For instance, Mon-
dal et al. [Mon+17] used network traces to experimentally study the
behavior under changing network conditions, and then manually draw
coarse inferences, such as that YouTube’s requested segment length
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varies with network conditions. An earlier effort on inferring Skype’s
adjustment of its sending rate [LS10], was based on the researchers
making experimental observations, then manually hypothesizing a
control law, and finally tuning its parameters to fit the data. Our own
parallel measurement study [LGS20], described in Chapter 3, experi-
mentally examined the behavior of several deployed ABR algorithms in
terms of metrics like stability of playback and convergence time after
bandwidth changes. In concurrent work, Xu et al. [XSM20] propose
a method for inferring the quality of video chunks downloaded within
encrypted streams, and apply it to experimentally study the streaming
outcomes in response to different traffic throttling schemes. In con-
trast to all the above efforts, our goal here is to automatically generate
logic that mirrors a target ABR algorithm’s behavior by observing the
target ABR’s actions in response to variations in the environment and
inputs.

There are also efforts in networking to inspect the internals of
learning-based networked systems. This work is not directly applica-
ble to our goal of reconstructing arbitrary ABRs, which are most likely
non-ML, and more importantly, are not available to us. However, one
could first train a blackbox-ML algorithm to mimic any reconstruction
target, and then use such tools. Recent work on inspecting [DCK19]
or verifying [Kaz+19] systems built using ML has examined Pen-
sieve [MNA17b]. The authors frame hypotheses/questions about the
system’s behavior, and then evaluate them. However, this (a) requires
knowing what hypotheses to examine, and (b) does not yield a recon-
struction. Among efforts in this vein, the most closely related are
the concurrent TranSys [Men+19b] and PiTree [Men+19a] studies.
PiTree focuses on converting ABR algorithms to decision trees, and
TranSys broadens this approach to NN-based strategies in networking.
Both are networking applications of a broader paradigm in ML, which
we discuss next.

Beyond networking efforts, imitation learning is a rich discipline in
its own right. Most work in this direction uses (uninterpretable) neural
networks [Wan+19; BK19; HE16], but recent work has also developed
model-free approaches to approximate the learned neural network via,
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e.g., a decision tree [RGB11; BPS18]. As we show later in Section
4.6.2, directly using this approach (like TranSys and PiTree) does not
meet both of our accuracy and interpretability goals simultaneously,
instead requiring the sacrifice of one or the other. While complex
decision trees, with a large number of rules with many literals, can
robustly imitate a target algorithm, they are difficult, if not impossible,
for even domain experts to understand and work with. On the other
hand, restricting the complexity of the generated trees results in a
loss of imitation accuracy and robustness. While the expressiveness
and compactness of these approaches can be improved by employing
genetic algorithms to craft features for use therein [GZNO7], this often
leads to both overfitting, and complex, non-intuitive features.

Lastly, program synthesis is a rich and growing field. While we use
one particular strategy for ABR reconstruction, there are other tools we
plan to examine in future work. The most promising perhaps is recent
work combining learning with code templates [Ver+18], where the
core idea is to modify templates to minimize the distance from a target
learning algorithm.An alternative “deductive synthesis” approach, as
employed in Refazer [Rol+17], could also be fruitful.

To the best of our knowledge, our work [GLS20a], upon which this
chapter is based, is the first to attempt an interpretable reconstruction
of unknown deployed ABRs.

4.3 Data preparation

We extend a trace collection harness that we built for the measure-
ment study described in Chapter 3, where we used manual analysis
to comment on the behavior of deployed ABR algorithms across 10
streaming platforms [LGS20].

We launch a video stream on a target service, and according to an
input network trace, shape the throughput at the client using Linux
tc. We record the current client buffer occupancy, the video chunk
qualities played out, video metadata, etc. The client buffer occupancy
is directly measured through the instrumentation of the HTMLS player

67



Chapter 4 - Reconstructing video streaming algorithms

element. If the HTMLS player element were not available, we could
instead use the captured HTTP chunk requests (locally at the client,
making encryption irrelevant) to reconstruct the buffer occupancy
— this strategy may be of use for future work exploring mobile ABR
implementations. This alternative can be less accurate though, as
“redownloading” (e.g., to replace already downloaded low-quality
chunks in the client player buffer by higher-quality ones) introduces
an ambiguity into which chunk is actually played.

For each platform, by appropriate tailoring of HTTP requests, we
also fetch all chunks for the test videos at all qualities, such that we
can use these videos in an offline simulation, allowing the learned
ABR to make choices different from those in our logs, as well as to
enable us to study the behavior of academic ABRs. Ultimately, we
obtain the following measurements:

» C, : segment size (Mb) downloaded for request ¢

* R, : segment bitrate (Mbps) for request ¢

* V, : segment VMAF3 for request ¢

* D, : download time for request ¢

* Qy : quality level requested in request ¢

* S; : segment length (seconds) downloaded for request ¢
* P, : Percent of the video played at request ¢

* B, : buffer size (seconds) when requesting ¢

* RB; : rebuffer time (seconds) when requesting ¢

¢ C;-'Fﬂ
* R2+n
o Vi

t+n

: segment size of quality i for n'" chunk after ¢
: segment bitrate of quality i for n'" chunk after ¢
: segment VMAF of quality i for n' chunk after

4.4 Rule-set based inference

We shall first consider a motivating example for why rule-sets are
a simple and potent representation for our type of target algorithms,

3VMAF is a video perceptual quality metric [Li+16], described in 2.2.3.
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quality 0 — Tpn_; <4.99
quality 1 > Ty_1 >4.99& Ty_1 <6.97
quality 2 — Ty-_; > 6.97

Figure 4.1: Minimal rule-set for a reservoir-based algorithm, which
uses only the last chunk’s throughput estimate to pick a
quality level.

and then present our recipe for constructing succinct rule-sets that
capture the target algorithm’s behavior.

4.4.1 Motivating example

Let us examine a simple throughput-based ABR algorithm, similar
to that described in prior work [Hua+14]. It uses only the throughput
estimate for the last video chunk fetched, Tn_;, and two thresholds:
reservoir and cushion. If Tn_; < reservoir, the lowest quality is
served. If Ty_; > reservoir + cushion, the highest quality is served.
For other values of Ty_1, quality is linearly interpolated between
these levels.

This algorithm, regardless of its specific instantiation with particular
values of the thresholds, can be easily expressed as a set of rules. For
a simple instantiation with only 3 quality levels, and both reservoir
and cushion set to 4 Mbps, this rule-set is shown in Fig. 4.1.# The
rule-set is inferred (which is why the rules contain imprecise values
like 6.97) by the process we shall describe shortly.

We caution the reader against concluding from this small motivating
example that only simple, stateless, “templates with parameters /
thresholds” type of algorithms can be expressed in this way. Rule

4Readers may expect the rule-set in Fig. 4.1 to mean that reservoir = 5 and
cushion = 2. The discrepancy stems from the discreteness of the interpolation:
for some T _; > reservoir ie, Tn_1 €[4, 5], quality O will be chosen.
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sets are capable of capturing complex stateful behavior, as long as
primitives encoding this state are made available for their use.

4.4.2 Decision trees and rules

We first learn binary decision trees [L+84] that encode conditions
for specific outputs, e.g., the video quality levels requested. Further,
in such a decision tree, each path from the root to a leaf can be
naturally interpreted as a descriptive rule capturing the conditions for
the outcome at the leaf to be reached.

Consider a single-threshold decision: “If throughput < 5 Mbps,
pick low quality; otherwise, pick high quality.”. This can be captured
in a 3-node tree with the conditional at its root, and the two outcomes
as leaves. In this case, the rule-lengths, i.e., the path lengths from the
root to the leaves, are 1; and so is the number of “splits” in the tree.

Fig. 4.2 shows a more complex target decision plane with two
inputs (along the x and y dimensions), where there are still only two
outcomes (labels), but the data samples that map to these labels are
separated by more complex logic. If we constrain the decision tree
that approximates this decision plane to use rules of only length one,
we can use only one line separating the labels, as shown in the top-
left smaller figure. Allowing more and more complex (longer) rules,
allows a tighter representation of the target decision plane. Of course,
using too many rules risks overfitting, especially under noisy data
that is typical in networking. Fortunately, our goal to obtain concise
rule sets aligns well with that of avoiding overfitting and preserving
generalization.

Framing the output space: A key design consideration in using
decision trees is the framing of the output decision space. Suppose
we frame decision outcomes in terms of the video quality level that
the client should fetch the next video chunk at. If all the videos being
served were encoded with the same quality levels, both in terms of
number and their bitrates, e.g., 6 video qualities at bitrates of {200,
450, 750, 1200, 2350, 4300} Kbps, this would be easy: there are 6 a
priori known outcomes that we can train decision trees for.
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Max 2 splits Max 4 splits

Target Decision Plane rules of length 1 rules of length 2
Bl label=1

H Label =0

Max 8 splits Max 16 splits
rules of length 3 rules of length 4

Figure 4.2: The big image is the target decision plane, with 2 labels.
On the right are its approximations with decision trees of
different rule-lengths, going from 1 to 4.

However, this is clearly overly restrictive: in practice, ABR algo-
rithms must tackle a variety of videos encoded at different bitrates.
The set of different bitrates at which a video is encoded in is referred
to as its “bitrate ladder”. Providers like Netflix even use per-video
customization of bitrate ladders, varying the number and separation
of bitrate levels [Aar+]. This diversity in the output space is a chal-
lenge for learning approaches: what should we present as the potential
output decision space? It is noteworthy that Pensieve [MNA17b] does
not fully tackle this challenge, instead restricting the video bitrate
levels to a small pre-defined set.

To overcome this issue, we formulate the decision process in terms
of video quality being upgraded or downgraded relative to the current
video quality. With one decision, a maximum of n quality shifts are
permitted in either direction, with n being a tunable parameter. Of
course, this prevents us from capturing some algorithms, where larger
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quality changes (than n) may be enforced in a single step. However,
this is atypical, as video streaming typically targets smooth output.
Even if some algorithm involves such decision making, our approach
only differs from such a target’s decisions transiently. This small
compromise allows us to generalize to arbitrarily diverse video bitrate
ladders.

4.4.3 Feature engineering

Applying textbook decision-tree inference, with the above framing,
one can already infer simple algorithms. However, as we shall see,
appropriate customization based on domain expertise is crucial to
obtain concise and generalizable rules.

Consider, for instance, a target algorithm that uses the mean through-
putacross the last 2 video chunks fetched. Naively learntrules will then
contain complex conditionals across both Tx_; and Ty_,. Fig. 4.3
shows this for rules of increasing length, up to 20. The target decision
plane uses the mean, w to decide between three video quali-
ties. Rules of length 2 and 5 yield poor accuracy, necessitating much
longer (complex) rules.

Of course, if we knew that the building block for throughput es-
timation is the mean, we could simplify such rules substantially by
expressing them in terms of the mean. Thus, we can consider adding
common estimators, based on our domain knowledge, to the feature-
set available to our learning pipeline. Then, instead of only learning
across primitive literals (like each individual chunk’s throughput),
more compact representation across these non-primitive literals be-
comes possible. We thus explore three classes of such non-primitive
features that are intuitive and likely commonplace in ABR, and even
more broadly, other networking algorithms.

Throughput estimators: Clearly, having the most accurate estimate
of network throughput is advantageous in deciding on video qual-
ity. As such, throughput estimators are potentially useful building
blocks. We consider two types of estimators. The first type is only
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Target Decision Plane
for estimator = n;x: Rules of length 2 Rules of length 5

12 . v 12 12 ,
j//% :;now_Quality ) 9 % 9 %%
edium Quality ~ ~
. « N\ High Quality }5‘ 6 }5‘. 6 %
3 3 7

0 3 6 9 12 0 3 6 9 12
Tn-1 In-1
Rules of length 10 Rules of length 20

Figure 4.3: Here, the target decision plane (big, left) is governed by
the mean of T _; and Ty _,. The smaller figures show
that we need long rules to approximate this if we are
restricted to using individual literals (T _; and Tx_7) in
our rules.

parametrized by the number of past throughput measurements it aggre-
gates using a mean, median, harmonic mean, etc., while the second
type involves additional tunable parameters, such as the weight de-
crease, «, in an exponential weighted moving average (EWMA), which
sets the relative weight of a new measurement compared to old mea-
surements.

Encoding these estimators with a range of different parameter
choices gives us a large set of features ranging from nearly stateless
(e.g., using only the last chunk’s throughput) to those with long-term
state (e.g., a moving average). In addition to throughput, we also
construct features capturing the variation across recent throughput
measurements as it characterizes the stability of the network.

Comparisons: Decisions often depend on not just thresholding of
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Figure 4.4: A decision plane comparing the throughput estimate to
the chunk bitrate is difficult to capture without long rules
if rules can only be framed in terms of the individual
literals.

certain primitive or non-primitive features, but also on comparisons
among features. For instance, generalizing even a simple rate-based
algorithm to work for arbitrary videos encoded with different bitrate
ladders requires a comparison: is the throughput larger than a particu-
lar step in the bitrate ladder? Unfortunately, while decision trees can
capture such comparisons using only primitive features, they require
a large number of rules to do so. This is shown in Fig. 4.4, where the
decision trees with rules of length 2 and 5 do not accurately represent
a simple comparison-based target decision plane.

Thus, we must encode potential comparisons of this type as non-
primitive features. These can also be parameterized in a similar
manner to the throughput estimators discussed above, e.g., by what
factor should one feature exceed another.

Planning ahead: ABR, like many other control tasks, is not only about
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making one decision in isolation, but also considering its longer-
term influence. For instance, it might be interesting to estimate the
max, min, or mean rebuffering one should expect given the decision
to download a chunk at a certain quality, assuming the throughput
stays the same. We design features along these lines, such as QoE in
MPC [Yin+15].

More features? Over time more features can be added to enhance our
approach without having to reason about their mutual interactions, as
would be the case with incorporating new ideas into human-engineered
routines. One could also extend this approach by adding automatically
engineered features [GZNO7]. However, maintaining interpretability
would require limiting the complexity of auto-generated features.

4.5 Implementation

We implement the rule inference pipeline in Python3. For the
decision tree, we use the standard implementation provided by the
scikit-learn library [Ped+11]. If not otherwise mentioned we use
a maximum of 20 rules and limit one-step changes in quality to
upgrading or downgrading by at most 2 quality levels. The 20-rule
limit is somewhat arbitrarily chosen as a quantitative threshold for
interpretability, but we also find that for our approach, more rules do
not improve performance substantively in most cases. This threshold
is essentially a hyperparameter that could be tuned by practitioners
based on where they seek to operate in the tradeoft space involving
interpretability, avoiding overfitting, and performance.

Baselines: To put our results in context, we compare them against three
neural network approaches, both as-is (blackbox approaches, always
represented by a recursive neural network with GRU cells [Cho+14]),
and translated to decision trees. The first blackbox approach is the
simplest, attempting to directly copy the decisions in a supervised
learning setting. The other two use more sophisticated imitation
learning methods [Wan+19; HE16].
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For translating the blackbox approaches into decision trees, we test
two state-of-the-art methods [RGB11; BPS18]. One of these [BPS18]
needs a reward function. In the vein of other imitation learning
approaches, we use a clustering algorithm to assign a similarity
reward to every sample. In our implementation we use an isolation
forest [LTZ08] implemented in scikit-learn [Ped+11] with the standard
parameters as our clustering approach. At every training step, we
sample 3000 samples (as this gave the best results) according to the
cluster weighting. We also tried changing the weighting function to
a more agnostic divergence measure as the proposed decision by the
blackbox approach might not always be what the original algorithm
had in mind. This makes the sampling approach more robust.

For each reconstruction, when we compare results to our approach,
we use the best blackbox approach and the best tree-translation. Thus,
we invested substantial effort in implementing sophisticated baselines
from the ML literature.

We also test whether our approach benefits from learning from the
blackbox, instead of directly from the data. We find that this yields only
minor improvements for 2 of our 10 reconstruction targets. We also
explore learning in two passes, where in the first pass, we learn a tree
over engineered features, and use a classifier to label its decisions in
terms of their similarity to decisions made by the reconstruction target.
In the second pass, we re-learn across weighted data samples, such
that samples corresponding to more similar decisions are weighted
higher. This approach also results in only minor improvements for
one of our ten reconstruction targets.

Feature engineering: We instantiate our features (Section 4.4.3)
with appropriate parameter ranges as below. ‘Action’ refers to quality
decisions, such as maintaining quality, or increasing or decreasing it
by up to n quality levels. The ‘any’ operator instantiates all options
for a parameter or primitive.

1. Standard deviation, mean, harmonic mean, EWMA, and qth per-
centile over the last 7 chunks, with n € {1...10}. Additionally,
for EWMA, @ € {0.15,0.35,0.55,0.75,0.95}.
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2. For ¢ percentile, ¢ € {15, 35,55,75,95}.

3. Reward R achievable by planning ahead 3 steps for any action
with any throughput estimate. The ‘any’ operators here imply
that we have numerous reward features, each of which combines
one of the many available throughput estimators (from 1. and 2.
above) with one of the possible actions. As the reward function,
we use the linear QoE function introduced by Yin et al. [Yin+15],
which converts bitrate, buffering and bitrate change per chunk
downloaded into a score. Note that this is not necessarily what
any of our reconstruction targets is optimizing for — each provider
may have their own reward goals. We use this feature simply as a
compact representation of QOE components.

4. Fetch time for any action, any throughput estimate.

5. Bitrate gained weighted by the buffer filling ratio for any action,
any throughput estimate. Intuitively, this captures the gain in
bitrate relative to its cost, i.e., how much the buffer is drained by
an action if throughput stays the same.

6. VMAF gained weighted by the buffer filling ratio for any action,
any throughput estimate. Same as above, but with VMAF.

Ultimately we make ~ 1300 features available to the learner. Note
the multiplicative effect of the any operator above.

Throughout, we use a standard training, validation, and testing
methodology. The test set contains two videos combined at random
with 60 traces randomly sampled from the overall set; these 60 traces
are neither in the training nor in the validation set. We only discuss
results over the test set.

Automated Feature Engineering: As a comparison and future out-
look on the possibility of automated feature engineering, which has
shown promise in other applications [GZNO7], we also coarsely im-
plement an automated feature generator. This generator recombines
the raw features in an iterative fashion so that the most used features
“survive” and get recombined and the others “die” out. We use the
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library gplearn [Ste17] with basic mathematical operators as usable
functions. We limit the iterations to s € [50, 100, 150] seconds to
avoid overfitting.

4.6 Evaluation

We summarize below the experiments we conducted as well as
their top-line conclusions:

1. How well can we reconstruct target algorithms? We can mimic
the decision-making of 7 of 10 targets to a high degree, and obtain
high similarity scores.

2. What influence does domain knowledge have? Certain engi-
neered features are crucial to obtain rules that generalize beyond
training data, are concise, and achieve similar QoE as the target
algorithms.

3. How interpretable and generalizable are the output rule sets? We
find that we can easily spot flaws in the learned algorithm and
propose ways to adapt it. Further, trees with only 20 leaves suffice
in most cases.

4. How do deployed ABRs compare to academic ones? We find
that academic ABRs generally outperform industrial ones, with
the caveat that our evaluation uses metrics from academic work.
Interestingly, we observe that one provider’s algorithm shows
behavior closely matching the well known BOLA algorithm, indi-
cating potentially that this provider uses BOLA or a derivative of
it.

4.6.1 Experimental methodology

Target platforms: We use the same 10 popular streaming platforms
we used in our measurement study of deployed ABRs [LGS20]. While
certainly not exhaustive, this is a diverse set of platforms, including
some of the largest, such as Twitch and YouTube; some regionally
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focused, such as Arte, SRF, and ZDF; and some serving specific
content verticals, such as Vimeo (artistic content), TubiTV (movies
and TV), and Pornhub and XVideos. We exclude Netflix, Hulu,
and Amazon Prime because their terms of service prohibit robotic
interaction with their services [LGS20].

Different platforms encode content at varied resolutions and number
of resolutions, ranging from 3 quality levels for TubiTV to 6.5 on
YouTube (on average across our test videos; YouTube has available
resolutions for different videos.) For Twitch, which offers both live
streams and video-on-demand of archived live streams, we only study
the latter, as live streaming is a substantially different problem, and
a poor fit with the rest of our chosen platforms. For several of the
providers we study, there are multiple implementations, such as for
desktop browsers, mobile browsers, or mobile apps; we only attempt
reconstruction for the desktop versions.

We also evaluate our ability to emulate well-known academic
approaches for ABR. We use the Robust MPC (henceforth, just MPC
throughout) and Multi-Video Pensieve (henceforth, NN , because it
uses a neural network approach) implementation provided by the
authors of the Pensieve paper [MNA17a]. We train and test these
approaches on the Twitch video data set. To speed up our experiments,
for MPC, we use a lookahead of 3 chunks instead of 5, finding that this
did not make a large difference in performance.

Videos: The type of content can have a substantial bearing on stream-
ing performance, e.g., videos with highly variable encoding can be
challenging for ABR. We thus used a set of 10 videos on each plat-
form. Where a popularity measure was available, we used the most
popular videos; otherwise, we handpicked a sample of different types
of videos. Videos from each platform are encoded in broadly similar
bitrate ranges, with most differences lying at higher qualities, e.g.,
some content being available in 4K.

Network traces: Our experiments use synthetic and real-world traces
from 3 datasets in past work [Akh+18; Rii+13a; Fed]. Unfortunately,
a full cross-product of platform-video-trace would be prohibitively
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expensive — the FCC traces [Fed] alone would require 4 years of
streaming time. To sidestep this while still testing a diversity of traces,
we rank traces by their throughput variability, and pick traces with the
highest and lowest variability, together with some randomly sampled
ones.

Our final network trace collection consists of the 5 least stable, 5
most stable, and 20 random traces from the Belgium trace collec-
tion [Hoo+16]; and 10 most/least stable ones plus 25 random traces
from each of the Norway [Rii+13a], the Oboe [Akh+18] and the FCC
datasets.> We also use 15 constant bandwidth traces covering the range
from 0.3 to 15 Mbps uniformly. Lastly we add 10 step traces: after
60 seconds of streaming we suddenly increase/drop the bandwidth
from/to 1 Mbps to/from 5 values covering the space from 1.5 to 10
Mbps uniformly. If a trace does not cover the whole experiment, we
loop over it.

In total, we use 190 traces with throughput (average over time for
each trace) ranging from 0.09 to 41.43 Mbps, with an average of
6.13 Mbps across traces. Note that we make no claim of our set of
traces being representative; rather our goal is to test a variety of traces.

Evaluation metrics: For training our approach and evaluating its
accuracy in a manner standard in learning literature, we use two
metrics: one measures agreement, and another the similarity of sets
of decisions. We train towards maximizing the harmonic mean of
these. Additionally, for our ABR-specific use-case, we evaluate the
video quality of experience [Nat+19].
Agreement, F| score: For each output decision, we compute the
precision and recall of the inferred algorithm against its target. The
Fj score is the harmonic mean of these. F; € [0, 1], with 1.0 being
optimal. We compute an average over the Fj scores across the labels
in an unweighted fashion.

What is high/low agreement? If we were not interested in in-
terpretability, we could obtain a procedure that mimics any target
algorithm by using blackbox learning. We can think of the agreement

3Specifically, the stable collection from September 2017 [Fed].
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such a blackbox approach achieves with its target as a baseline free
of our conciseness constraint. On the other end of the spectrum, if
the inferred rules do not achieve substantially higher agreement with
the target than a generic ‘reasonable’ algorithm, then they are useless:
this implies any reasonable algorithm would make at least that many
decisions similar to the target. We use the simple rate-based approach
as the concrete stand-in for this generic reasonable algorithm.

Similarity: As we cannot assume anything about how each provider
designs their algorithm, we must use an agnostic approach in evalu-
ating whether the experience under our reconstruction and the actual
ABR is the same. Thus, we choose, as is typical in imitation learning,
to learn whether the experience of two streaming sessions is “similar”.
Similarity measures whether a set of samples (our reconstruction’s
decisions) is likely to be from a given distribution (the actual ABR’s
decisions). To classify whether a particular decision looks like it has
been taken by the actual ABR or by our reconstruction, we choose an
isolation forest [LTZ08].

Each of these two metrics is insufficient on its own. High agree-
ment is useful, but making a few important decisions differently can
substantially change a video stream’s behavior. Thus the need for simi-
larity. However, there’s a benign solution to achieving high similarity:
most commercial providers tend to keep the quality stable, so, by just
keeping the same quality one can get high similarity. Conversely,
agreement solves this problem: to get high agreement, we must match
alarge fraction of each decision type, matching only the “keep quality”
decisions will result in poor agreement because of low matches on
quality changes.

QoE: Agreement and similarity can be thought of as “micro-
benchmarks” — these are standard measures in imitation learning, and
are useful both for training our approach, and evaluating its learning
accuracy. But ultimately, we also want to know: “How different is
the user experience from an ABR versus from our reconstruction of
it?”. We thus directly compare how well different components of a
visual QOoE metric used in earlier work [Nat+19] match up between
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a target and its reconstruction. As we show below, agreement and
similarity correlate well with QoE: when a reconstruction achieves
high agreement and similarity, it typically also performs like the
target algorithm in terms of different QOE components.

Finally, we also comment on the role of domain knowledge in
achieving good results with our approach, and the interpretability of
our reconstructions.

4.6.2 Results

Agreement and similarity, Fig. 4.5: We compare the agreement
and similarity achieved by our rule-set approach against the (best)
blackbox approach and the simple rate baselines across all 10 online
providers.We also include MPC and Pensieve (NN) evaluated on the
Twitch videos.

The rule-sets achieve nearly the same or better agreement than the
blackbox approach achieves for a reconstruction target in each case
— in the worst case (NN), the rule-set’s agreement score is 8% lower.
Note that in many cases, we achieve higher agreement than even the
blackbox approach. This is due to the imitation learning approaches
trying to achieve higher similarity in terms of behavior rather than
matching each individual quality decision.

The rule-sets also achieve high similarity in most cases, in the
worst case (Twitch), achieving a #20% lower similarity score than the
best blackbox approach, and in the mean, 5% higher. In contrast, the
rate-based approach achieves not only very low agreement, but also
very poor similarity.

Some readers may interpret the “low” absolute numbers in Fig. 4.5,
e.g., F1 ~ 50%, as a negative result. However, note that F differences
often don’t cause appreciable video session quality differences, e.g., if
an ABR switches two quality levels in one step, and its reconstruction
switches them in two successive steps, the F| score is lowered twice,
but the video stream behavior changes negligibly. Also, rare labels
(e.g., increase quality by three levels) contribute equally to F; as
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Figure 4.5: The generated rule-sets are never worse by more than
8% and 20% than the blackbox approach on agreement
and similarity respectively. In contrast, the rate-based
approach achieves extremely poor results.

common ones (e.g., retain quality), so a few errors on rare labels have
out-sized effect.

Video session quality metrics, Fig. 4.6: We compare metrics used
to quantify video playback quality — VMAF [Li+16], VMAF switches,
and rebuffers — as seen in the actual algorithm (hatched points in the
plot) and its rule-set reconstruction (solid points) across the same set
of ABRs as in Fig. 4.5. For 9 of 12 targets, we achieve a very good
match: the mean VMAF (x-axis in Fig. 4.6) for these 9 reconstructions
is within 6% of the target ABR’s on average; the maximum VMAF
difference is 12%. These good matches include Twitch, SRF, Arte,
ZDF, TubiTV, XVideos, Vimeo, MPC, and Pensieve (NN). On the
other hand, for the other 3, YouTube, PornHub, and Fandom, there
are large discrepancies, with quality metrics being very different for
the reconstruction compared to the target. That our reconstruction
does not yield good results on these targets is also supported by
exactly these ABRs being in the low-agreement-low-similarity part of
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Figure 4.6: For all but 3 of the 12 targets, the reconstruction matches
the target algorithm very closely. For YouTube, Fandom,
and PornHub, there is a substantial difference in perfor-
mance; these are the same 3 providers in the bottom-left
of Fig. 4.5, for which we achieve the lowest agreement
and similarity scores as well.

Fig. 4.5(bottom-left in the rightmost plot). We further investigated
these 3 negative results:

1. YouTube, in addition to making quality decisions, varies its seg-
ment length and can also redownload low-quality chunks to replace
them with high-quality ones [Mon+17]. Ultimately, learning ap-
proaches will not frame new decision spaces, only logic for arriving
at the asked-for decisions — in essence, YouTube is solving a dif-
ferent problem than we expected. This is a fundamental gap for
efforts like ours: if the decision space is not appropriately encoded,
outcomes will be sub-optimal. We could add the relevant primi-
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tives to achieve better results, but we resist such modifications that
use the benefit of hindsight.

2. In asimilar vein, we find that PornHub often switches to a progres-
sive download, disabling video quality adaptation altogether. Our
approach ends up overfitting to the progressive behaviour as we
see few switches. If we exclude data where adaptation is disabled,
we’re able to match PornHub to within 4%, 0%, and 5% difference
in terms of mean VMAF, rebuffering, and switching respectively.

3. For Fandom, we find that the issue is the limited complexity of
our tree. A rule-set with a somewhat higher complexity (31 rules)
performs substantially better, diverging from the target algorithm
by 5%, 11%, and 22% in terms of mean VMAF, rebuffering, and
switching respectively. Note that rebuffering and switching, being
infrequent events are extremely difficult to a/lways match, so a
somewhat larger difference there is expected. As noted earlier, the
rule-count is a hyperparameter that may need tuning for certain
providers.

Role of domain knowledge, Fig. 4.8, 4.7: We already discussed in
Section 4.4 why the use of domain knowledge is critical for inter-
pretation: without simple primitives like moving averages, rules are
framed in terms of various basic literals, resulting in complex and
incomprehensible rules. Besides interpretation, we find that there
is also substantial impact on agreement from adding useful domain
knowledge.

We used our modified version of the DASH player to evaluate how
the different trees emulating MPC generalize to other videos. We
selected a mixed subset of 60 traces, that both include challenging and
stable throughput measure and generated the distribution across them
of linear QoE used in the MPC work [Nat+19]. Results are normalized
to the mean QoE for the ground-truth MPC implementation across the
same video-trace set.

Fig. 4.7 shows how the rule-set reacts to additional building blocks
being available for reconstruction in the form of engineered features.
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Figure 4.7: Domain knowledge helps the rule-set (Bitrate-QoE).
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Figure 4.8: Domain knowledge helps the rule-set (VMAF-QoE).
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The ‘Basic’ rule-set is framed directly on the data features listed in
Section 4.3, without any feature engineering. The ‘Unaware’ and
‘Aware’ approaches use several engineered features, as described in
Section 4.4. The difference between them stems from the ‘Unaware’
approach only using engineered features related to buffer filling and
draining in addition to the primitive data features. The ‘Aware’ ap-
proach with the benefit of all engineered features matches MPC the
closest. ‘Aware’ improves average QoE over ‘Unaware’ by ~5x. Thus,
encoding domain knowledge helps not only with conciseness, but
also performance and generalization. Also of note is the ‘Automated’
approach, which starts with the ‘Basic’ features, but can recombine
them in the fashion described in Section 4.5. While promising for
future exploration, it presently performs worse than manually engi-
neering features, and does not produce features that are meaningful
to humans.

Fig. 4.8 repeats the above experiment, but for a VMAF-based QoE
function. The results are similar to those for bitrate -QoE. The
average QoE of the ‘Aware’ reconstruction is within 10% of that of the
target MPC algorithm, the median being within 2%. This is especially
significant because we did not engineer any explicit features similar
to this QoE function.

Interpretability: Across our efforts on reconstruction, the generated
rule sets are concise, with no more than 20 rules. We realized early
that being able to read and understand the generated trees would make
debugging and improvements easier, and thus wrote a small, simple
utility to translate the predicates in trees loosely into natural language.
Fig. 4.9 shows an illustration of a tree generated for SRF. This version
is hand-drawn for aesthetic reasons, but there is no fundamental reason
it could not be auto-generated. Due to space constraints, this version
is a compressed tree which was allowed to have at most 10 leaves
instead of 20. We extensively examined and used our natural-language
trees ourselves throughout this work, as we describe in a few instances
in Section 4.7.

We also understand, to some extent, why small rule-sets suffice:

87



Chapter 4 - Reconstructing video streaming algorithms

o—e oe P
Stz Complkic: Ropsorae (T T P4, W) < 0049 =" Fetehtime (08,7 <45 T
e -
Rretative (oD T, P, W) < 0.6 Startup beyond 50%  wwe-e » Statupbeyond25%
e
tict! u t buffe A -
(o Buffer (o®, T-) < 0.847

th

Figure 4.9: The core of the decision tree generated by learning from
the SRF example data. The green (solid) and red (dashed)
arrows are the “True” and “False” evaluations of the pred-
icates at the nodes. The video quality of the last fetched
chunk is denoted by © and the next chunk’s by e . Poten-
tial decisions and decision outcomes are coded in terms
of the relationships between these qualities: e.g., o de-
notes that the next chunk is requested at one higher video
quality level. The predicates are in terms of expected
buffer size after a certain potential decision, based on
throughput estimates (e.g., T* is an aggressive/optimistic
estimator); or on a reward (R, ¢asive) calculated relative
to the other obtainable rewards involving throughput, re-
buffering penalty (), the lookahead horizon over which
these are estimated (%), etc.

(a) a single rule has implications capturing more than is plainly
visible, e.g., if the buffer is running too low, the best recourse is to
lower quality, and not much new will be learnt from a long planning
horizon; and (b) the domain-specific primitives are a dense encoding
of useful knowledge. We caution readers against generalizing these
observations to imply that small rule-sets will necessarily suffice for
other problems where learning is effective — our exploration and
results are limited to ABR. That small rule-sets would suffice for many
ABRs, is also supported by prior work [DCK19] showing, for instance,
that the neural network ABR approach, Pensieve, largely depends on
only 3 features.

Comparing academic and industry ABRs, Fig. 4.10: For targets we
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Figure 4.10: Reconstructing commercial ABR algorithms allows us to
uniformly compare them to both other commercial and
academic ones under the same test conditions.

can reconstruct well, having a reconstruction enables us to compare
them to each other and academic ABRs in the same test harness. This is
non-trivial without a reconstruction, as each video platform has a very
different streaming setup in terms of encoding, server architecture,
and player design. For instance, if one platform uses more encoding
levels than another, then the same ABR algorithm can make more
fine-grained decisions on this platform than on the one with coarser
encoding. Therefore the same algorithm on the same video would
perform differently across video platforms, making it difficult to
compare ABRs across providers without removing such confounding
factors in a common test harness.

To this end, we extend the DASH architecture [SSS18] with imple-
mentations of the (rule-set) reconstructions for the 6 targets we are able
to match most closely. The same setup has ground truth implemen-
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tations for BOLA [SUS16], MPC [Yin+15], and Pensieve [MNA17b].
We evaluate VMAF-QoE [Nat+19] using the Envivio video typically
used in academic work, and normalize the results to the mean QoE for
Pensieve.

As the results in Fig. 4.10 show, Pensieve and MPC generally out-
perform the deployed ABRs’ reconstructions, although, for a subset of
traces, R-Twitch achieves the same or better performance as MPC. This
is perhaps not unsurprising: we are evaluating all providers with QoE
functions used in academic literature, while the providers may, in fact,
be optimizing for a different goal. Amongst the providers, R-Arte’s
ABR achieves the worst performance on this QoE metric.

But perhaps most striking is the distribution-wide extremely close
match between R-ZDF and BOLA — except for a few outliers at the tails,
for most video-trace pairs, their performance is virtually identical.
Thus, it is likely that ZDF is using BOLA, or a derivative of it.

4.7 The utility of interpretability

Human insight can be crucial to robust solutions that account for
gaps and unanticipated changes in the data that drives the behavior
of learned control procedures. We discuss several ways in which
preserving the ability of expert designers to understand the decision
procedure helps.

Tracing the input-output mapping: With concise decision trees,
human experts can easily trace the decision process used for particular
inputs or sets of inputs. For any input conditions, a path can be traced
to a leaf (decision output), and for any output, how it was arrived at
can be understood as well. Such tracing can allow easy debugging
— “Why were bad outcomes seen for these traces?”. This also opens
the door to more rigorous analyses of the outcomes for sets of inputs,
based on methods like symbolic execution [Bal+18].

Identifying potential issues: Experts can often identify overfitting
and other problems a priori if they understand the procedure, as is
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the case with the concise decision trees we produce. Our experience
itself revealed three such instances:

(1) One feature we encoded for use in our decision trees was a prospec-
tive reward from fetching the next chunks at different bitrates. This
worked for most videos, giving good average performance. However,
for some videos with much higher/lower average bitrate than most
other videos, results were inferior. This is due to the reward func-
tion using absolute bitrates, and thus not being meaningful across
videos. Defining reward in relative terms, i.e., normalized to the
maximum possible reward, addresses this issue. A blackbox method,
by hiding from human experts the logic used in the rules, makes such
improvements more challenging.

(2) We noticed that even after training across the sizable network
traces used in past work, our rule sets largely depended on optimistic
estimators for throughput, unlikely to work well in more challenging
environments, e.g., new geographies a video service expands to where
connectivity is more limited and variable. To force more conservative
behavior, we can either add such traces to the training data, or restrict
the learning approach to use only conservative throughput estimators
leading to more stable behavior. Another possibility is to add new
features to detect situations where conservative or optimistic behavior
would be appropriate. Note that while given enough appropriate data
blackbox solutions would also potentially overcome such problems,
this requires noticing the problem in the first place. Also, such data
may not always be available: e.g., if the video service performs poorly
in a geography, users may self-select themselves out by dropping the
service, thus further skewing the data.

(3) Early in our experiments, we observed a peculiar learned rule that
translates to “Never fetch the lowest quality after 45 video chunks.”
This stemmed from overfitting due to training on one video with 49
chunks (on which most other academic ABR work is also evaluated),
where even over a sizable set of traces, typically a large enough
buffer was built such that the lowest quality was ruled out for the
last few chunks. While this particular artifact would be unlikely to
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arise in a large provider’s pipeline given enough diverse training data,
similar problems may occur and go undetected in blackbox methods,
especially when the underlying data changes, e.g., if a short-form
video service introduces longer videos.

Across these examples, blackboxes can hide problems that might
otherwise have been obvious to human experts. Prior work [Kaz+19]
has found problems of this type, e.g., Pensieve, even if conditions are
highly favourable, does not always download the last chunk of a video
at the highest quality.

Finally, when such problems do present themselves, the recourse
with blackboxes, depending on the problem’s nature, can involve
blindly tinkering with the inputs to the blackbox approach until the
outcomes improve, or adding extraneous safeguards for each discov-
ered problem.

4.7.1 Examining two reconstructions

We next give a view of two reconstructions of different complexity:
SRF (simplified, same as in Fig. 4.9) and Twitch.

Simplified SRF: The output tree reveals an intuitive structure and
highlights obvious flaws as we discuss below. (These are only present
in the simplification, and not SRF’s full tree.)

Fig. 4.9’s caption explains how to read the tree. First it checks the
point in playback, concluding that it is in a startup phase if playtime is
below a threshold. In the startup phase, it checks if the possible gain
in Reward is large enough to warrant the leveling up by two levels.
This is only done if we deplete the buffer by not too much when
doing so; etc. Of course, behind these loose statements are concrete,
parametrized features which describe what the particular throughput
estimator is, what reward function is used, etc.

An interesting characteristic of the simplified-SRF tree is that
there are no quality changes beyond the startup phase. This is clearly
unsuitable in practice, and would be an obvious red flag to any domain
expert examining this tree. The full tree does, in fact, use adaptation
after startup too, although it is infrequent. We have verified this
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behavior experimentally as well, where SRF makes frequent quality
switches during startup, and much fewer later.

Twitch: Having examined a small simplified tree, we discuss the (full)
reconstruction for a more complex target, Twitch.

Twitch’s tree visually reveals 3 “branches” of activity, which we
call panic, cautious, and upbeat. The panic mode is entered when the
throughput is very low. Here the tree is most likely to downgrade the
quality by two levels to try to build up buffer, regardless of current
buffer occupancy. An example trace captured online shows such
behavior at roughly 100 s in playback in Fig. 4.11.

The cautious mode is entered at mediocre connection quality and,
unlike the panic mode, examines the buffer level. In this mode, the
most likely action is to either keep the quality or, if buffer-level is low,
downgrade it. Downgrading can also be induced by high throughput
variance, which indicates uncertain networking conditions.

If throughput is above mediocre, the tree enters the upbeat mode.
Here the most common action is upgrading the quality, or if we ap-
proach higher quality levels (and therefore, longer download times
even with good network conditions), the decision to upgrade is
weighted against the buffer drain it would incur, and the current
buffer occupancy.

Unlike several other providers, Twitch’s reconstruction reveals a
willingness to switch qualities often. This is in line with our ex-
perimental observation that Twitch and MPC make similar number of
switches in the same conditions, while other providers switch much
less frequently compared to MPC. Based on this analysis, if a switching-
averse provider wanted to adopt Twitch’s approach by reconstructing
it, they would have to suitably tweak it to reduce switching.

To summarize, with interpretability, we can catch problems before
they occur, reason about generalization and behavior across sets of
operating conditions instead of just point testing, and methodically
discover and fix encountered problems.
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Figure 4.11: Twitch shows only marginally more reluctance towards
switching when compared to MPC

4.8 Limitations & future work

Over the course of this work, unsurprisingly, we uncovered several

shortcomings of our approach, which offer interesting avenues for
future exploration:

* Accurate and concise trees require intuitive primitives, e.g., moving
averages, which must be manually encoded (Section 4.4). Perhaps
such primitives can be automatically captured from a corpus of

available hand-designed networked algorithms. But this is likely a
challenging task.

We explored a limited set of features, some across only a small part
of their possible parameter ranges, e.g., only 5 discrete values for
the @ parameter in moving averages. A potentially highly effective
avenue of improvement lies in tuning the features using a black

box optimizer, e.g., a Gaussian Process Optimizer [OGR09], to
suggest useful values.

We can only train for an appropriately specified decision space,
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as is clear from the failure of our approach for YouTube (Section
4.6.2). We can expand the decision space with the benefit of
manually-drawn observations from experiments, but automatically
discovering it seems difficult.

We do not expect our approach to always be able to match a target
algorithm. However, failures of our approach also help: they often
flag “atypical” ABR designs for manual analysis, like for YouTube
and Pornhub, and could help uncover unknown (proprietary) in-
sights.

We used an intuitive but subjective definition of “interpretable’:
trees with under 20 leaves on domain-specific literals. Our own
experience with understanding the results was positive, but we
hope feedback from other researchers will help sharpen the inter-
pretability goal for future work.

For providers that customize their ABR for different regions and
sets of clients, we can only reconstruct the behavior we observe
from our test clients. For future work, this opens an interesting
opportunity: observing differently-tuned versions of the same ABR,
it may be possible to achieve higher-quality reconstructions, which
also identify the parameters whose tuning varies across regions.

4.9 Conclusion

In this Chapter we took a first step towards an ambitious goal:

reconstructing unknown proprietary streaming algorithms in a human-
interpretable manner. While promising, our results also expose what
is likely a fundamental limitation — we need to encode and make
available suitable domain knowledge to the learning approach.

So far, this dissertation focused on understanding and reconstructing

propertary video streaming algorithms deployed by large streaming
providers. Our analysis and algorithm synthesis extensively used
network and player traces.
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Based on what we learned with our explorations, the next Chapter
tackles how to optimise the offline part of VOD pipeline depending on
the expected interaction between ABRs algorithms and network flow.
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Optimising video streaming
systems with SEGUE

In this Chapter we propose SEGUE, a system that, based on the
online video streaming session flow, optimises the offline part of VOD
pipeline. Specifically SEGUE identifies the parts of the video stream
that are more likely to suffer from streaming-related impairments, and
tunes video chunking accordingly.

5.1 Introduction

While Chapter 3 and Chapter 4 focused on the understanding and
reconstruction of propertary video streaming algorithms, in this Chap-
ter we will exploit the knowledge gained during our past analysis in
order to optimise users’ experience. Specifically, we will show how
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offline video preparation can be tuned to follow the expected flow
of the network and player state, in order to maximise the average
delivered QoE.

The traditional problem framing in past literature is that of using a
provider’s given QoE function to construct an ABR algorithm that will
result in high QoE, as much as possible, when operating online across
a range of network conditions and video content.

However, this framing leaves out the offline, provider-side phase
of ABR: video chunking. We use the term “chunking” to refer to
cutting a video into segments, and determining what set of bitrates
each segment will be encoded in. Most prior works and deployed
streaming platforms use constant-length segmentation, typically 4-
6 seconds, and the same number of bitrate tracks across each video
segment within one video. While some prior work (Section 5.2.2) has
explored relaxing these constraints, we posit that there are new and
unexplored opportunities at the intersection of the offline and online
phases of ABR streaming. Specifically, offline chunking can be tuned
based on the expected playback behavior of a video given a provider’s
online adaptation algorithm.

Video complexity varies over time. Indeed, we observe that some
parts of a video are more likely to suffer from performance impair-
ments such as lower quality, rebuffering, and frequent bitrate track
switches during playback. Even two similarly complex segments of
a video may differ in their vulnerability to performance impairments
due to their surrounding context, e.g., a complex segment preceded by
many low-complexity segments differs from one preceded by many
high-complexity ones. Finally, using different rate adaptation algo-
rithms for the same video and network conditions can also change the
same segment’s vulnerability to impairments.

While prior work has explored time and space variability on a per
segment granularity, to the best of out knowledge there is no prior
work that accounts for playback context dependence and adaptation
algorithm dependence in tuning video chunking. With SEGUE, we
account for these factors in exploring the tuning of chunking along
two axes: (a) segmentation, i.e., deciding the lengths and boundaries
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of video segments that a client can fetch; and (b) augmentation, i.e.,
adding additional bitrate tracks for a small fraction of segments to the
provider’s current bitrate track design, such that more bitrate options
are available to online adaptation for these segments.

SEGUE uses a simulation-based method, exploring and evaluating
segmentations and augmentations of a video across a broad set of
network traces. In such simulations, the provider’s ABR adaptation
algorithm is used to make decisions, and their QoE function is used
rank the candidate chunkings. We compare SEGUE’s chunking per-
formance to several heuristics drawn from intuition, revealing how
the inability of the latter to account for context and adaptation leads
to significantly worse performance than our proposal. While some of
these heuristics still improve over constant-length segmentation and
a constant set of bitrate tracks, the improvements are smaller than
SEGUE’s.

We implement SEGUE atop an unmodified H.264 video encoding
pipeline. Ourimplementation uses ffmpeg with the libx264 library. We
modify the reference DASH player implementation [SSS18] to support
SEGUE, but like past work [MNA17b], we use this implementation
only to demonstrate the high fidelity of a simulator that is orders of
magnitude faster. We then use the simulator to extensively evaluate
the performance with SEGUE’s chunkings across a diverse set of
videos and network traces, and four adaptation algorithms from past
work.

We show that especially in low-bandwidth conditions, SEGUE
yields large improvements in QoE, 9% on average across traces and
videos (Section 5.7.8).

To summarize, this Chapter makes the following contributions:

* We propose to optimize offline chunking, considering both the
playback context and the adaptation algorithm.

¢ In this framework, we explore various methods for segmentation
of a video into variable-length segments.

* We explore the augmentation of parts of a video with additional
bitrate tracks to help adaptation make finer-grained decisions and
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improve QoE.

* We evaluate SEGUE extensively, showing how its improvements
depend on video content and adaptation algorithms. We also
comment on the provider-side costs of SEGUE.

Perhaps equally valuable to SEGUE’s optimization methods and re-
sults, are the questions it sets up for future work, on how we might
co-design the offline and online phases on ABR streaming. For
the benefit of future research along this path, we release SEGUE’s
implementation, together with our high-fidelity simulator [Lic+22b].

5.2 Background and related work
5.2.1 Video streaming 101

Adaptive bitrate video streaming comprises two pieces, video en-
coding, which runs offline at the content provider, and video adaptation,
which runs online, typically at the client. Together, these optimize for
improving quality of experience for clients, while limiting resource
usage for the provider.

Encoding: Offline, a video is encoded into multiple tracks, each of a
different bitrate. The bitrate describes compression, i.e., the bits per
second used to encode the content. Different tracks are described by
their average bitrate, with substantial variation around this average
due to variable bitrate encoding; this allows complex scenes to benefit
from a higher than average bitrate, while reducing bitrate for simple
scenes. The bitrates of different tracks are chosen for different target
viewing resolutions. If a bitrate targeted at a lower resolution is
delivered to a higher-resolution client viewing screen, the video can
be scaled up, with some “pixelation”. Video may be encoded such that
for the same target resolution, multiple tracks with different bitrates
are available.

Typically, each track is broken into fixed-length segments. For
continuity when playback switches from one track to another, this
segmentation must meet two constraints: (C1) segment boundaries
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of different tracks must be aligned in terms of content; and (C2) each
segment starts with a key frame, i.e., one encoded without reference
to previous frames.

Adaptation: Online, an adaptive bitrate adaptation algorithm de-
cides on which video bitrate-track to use. If the network provides
consistently high bandwidth, the highest-bitrate track that makes a
perceivable difference for a particular screen size can be used; other-
wise, as bandwidth varies over time, lower-bitrate tracks may be used
dynamically. A client-side buffer is used to absorb some bandwidth
variability by storing video segments for future playback, but large or
persistent bandwidth changes require shifting to a lower-bitrate track;
otherwise, the playback buffer will empty out, and the client will see
a pause or rebuffer.

Client QoE: Quality of experience metrics assess viewer satisfaction
with video streaming. The relevant metrics include:

* The sum of bitrates across segments played;
* The sum of pause or rebuffer times; and

* The sum of bitrate differences from track switching.

Typically, a weighted sum of these metrics is used as a QoE function
(carefully described in 2.3.2), with the weights drawn from past
measurement work [Yin+15]. In line with newer work driven by
industry shifts, instead of just bitrate, we use Netflix’s VMAF score for
perceptual quality [Nat+19; Li+16], which uses a learning model to
assign a score to a segment’s playback at a certain bitrate in line with
what a human would rate its quality as on a certain screen size. The
raw video has VMAF, V,,, = 100, with different bitrates leading to
VMAF scores from 0 to 100. We use the VMAF mobile, HDTYV, and 4K
models.

If V; is the VMAF of the i segment at the track used for it, and R;
is the rebuffering time incurred during the i segment being played,
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then for a video with N segments in all, QoE is calculated as:

N N N
QoE =) Vi=B Y Ri—y) Vi=Viul. (D
i=0 0 1

A, B, and y are weights reflecting the value of each metric.
Provider resource usage: While client QoE is the determinant for
many provider decisions, providers also want to contain infrastructure
costs. Encoding video is compute intensive, and storing the segments
for a large number of different tracks consumes storage at distributed
caches. Thus, providers also attempt to limit the complexity of the
encoding pipeline, and the number of tracks per video.

5.2.2 Related work

Adaptive bitrate video streaming is a broad research area; we only
discuss the work closest to SEGUE’s ideas.

Industry efforts: Netflix’s per-scene encoding [Net18a] exploits the
relative homogeneity of content comprising one scene within a video,
to refine encoding decisions. The outcome of this process is still
a fixed number of tracks per video. In a subsequent blog [Net18b]
Netflix lays out how to merge shots into streamable segments, using
a strategy that is very close to SEGUE’s Time heuristic, explained in
Section 5.4.

The innovation is rather in what specific bitrate is being used at
each encoding point. Per-scene encoding, by selecting appropriate
bitrates for each scene on each track, could potentially increase bitrate
variations across scene boundaries, and thus provide more opportu-
nities for SEGUE’s methods. Absent an available implementation of
Netflix’s ideas, we have not quantified the impact of this yet.

Measurement work on YouTube [Mon+17] observed variable-
length segments, with some evidence that during adaptation, YouTube
uses shorter segments in response to bandwidth fluctuations. Unfor-
tunately, no details are publicly known on how these are encoded or
used. For instance: is each video coded with multiple equal-length
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segmentations? If so, how are the lengths decided, and how many
different lengths are encoded? Alternatively, if segment lengths
are indeed non-uniform like SEGUE, with only some parts of a
video available in shorter segments, how are these parts chosen?
Even if YouTube is pursuing a SEGuUE-like method, that would only
underscore the value in an open investigation of these ideas.

Segmentation: Prior work [VH13; IWG16; ZS18] has explored align-
ing scene boundaries and segmentation to improve coding efficiency
by grouping homogeneous content together. As noted above for per-
scene encoding, SEGUE’s ideas are orthogonal to this, and address
grouping which scene fragments into segments will result in beneficial
rate adaptation behavior. Other work has attempted to optimize the
(fixed) size of segments with the goal of improving transport [LBG11]
or HTTP protocol efficiency [LBE16]. SEGUE’s constraints like avoid-
ing “too small” segments also address some of these problems, but
its primary objectives and methods are very different: producing a
variable-length segmentation that results in desirable rate adaptation
behavior and high QoE.

The closest prior work [Sch+20] simply uses video group of picuters
(GOP) as segments. This approach is prone to performance pitfalls, as
discussed in Section 5.7.5.1. Another prior effort [Hoo+18] suggests
segmenting the same video multiple times with different (fixed) seg-
ment lengths, to allow the client greater flexibility during adaptation.
SEGUE’s approach naturally inherits this property when it is desir-
able, without the expense of multiple redundant segmentations, as
discussed in Section 5.3.2. SEGUE also allows more flexibility by not
being restricted to a small set of fixed-length segmentations, allowing
natural keyframe boundaries to determine segment length.

Augmentation: The closest prior works [Qin+19; Rai+17] pursue
the opposite of SEGUE’s strategy, i.e., removing redundant segments
to reduce storage costs or to improve bandwidth utilization. For
instance, in Fig. 5.2, few segments across different tracks encode a
near-identical perceptual quality; one could keep only the lower bitrate
version, removing the higher bitrate ones, without much performance

103



Chapter 5 - Optimising video streaming systems with SEGUE

impact.

In contrast, SEGUE’s optimization for improvements in QoE re-
quires a completely different methodology, where accounting for
playback context and rate adaptation algorithm is useful, as we show
later. In Section 5.7.5.2 we compare the performance of [Qin+19;
Rai+17] to SEGUE’s approach, and we elaborate on how we could
merge them, in order to both account for playback context and optimize
for bandwidth utilization and storage.

Other work: Salsify [Fou+18] closely integrates the video codec and
congestion control for real-time video like in video conferencing. In-
stead of fixed discrete encoding schemes and fixed frame-rates, Salsify
sets each frame’s quality and the time it is sent out, based on transport
protocol signals. SEGUE is designed for video-on-demand, where
live encoding per client is unnecessary and would be prohibitively
expensive.

5.3 New opportunities in streaming

We draw out SEGUE’s motivating observations using a running
example of a video encoded using H.264 with variable bitrate encoding.
The video is encoded into constant-length segments of 5 seconds each,
across multiple bitrate tracks. (The details of the encoding are left to
Section 5.5.) Using two rate adaptation algorithms, we evaluate the
streaming behavior aggregated across a large set of traces. To avoid
the effects of startup behavior, we show results starting at the 25
segment, i.e., 125 seconds into playback.

Fig. 5.1(a) shows the variability of the video bitrate across segments
for 3 tracks. As expected, variations for different tracks are in close
alignment. Segment S37, S35, and S30 are the most complex, with
the encoder using the highest bitrates, while S29, S33, and S39 are
the simplest segments.

We partition our traces into bandwidth buckets, each bucket contain-
ing traces with average-over-time bandwidth in a certain range: 0.5-
1 Mbps, 1-1.5 Mbps, 1.5-2 Mbps, etc. Details concerning the utilized
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a) Figure 5.1: Fig. (a) shows the
variability in bitrate for three dif-
ferent resolutions (480p, 360p
and 240p). Fig. (b) shows the
observed probability of rebuffer-
ing for the segments plotted in
b) Fig. (a) for a buffer-based al-
gorithm for three different traces
buckets (blue line: Slow, orange
line: Medium, green line: Fast).
Fig. (c) shows the correspondent
average buffer occupancy. We
highlight that higher observed re-
buffering probability correspond
to drops into the average buffer
occupancy (red shaded in the pic-
ture). Conversely, drops into the
observed rebuffering probabil-
ity correspond to higher average
buffer occupancy. Fig. (d) plots
the average buffer occupancy for
the same segments for a rate-
based algorithm for the same
traces buckets. The buffer be-
26 28 30 32 3 3 3 a0 haviourvaries substantially with

Chunk index respect to a buffer-based algo-

rithm.

Track bitrate, Mbps

P(rebuffer), %

Average buffer occupied, sec

Average buffer occupied, sec

trace sets can be found in Section 5.6. We then tested the behaviour
of two adaptation algorithms, a rate-based (RB) and a buffer-based
(BB) (which are described in Section 5.5). For both rate adaptation
algorithms, we compute the (observed) probability of rebuffering at
any point in playback across traces in each bucket. Fig. 5.1(b) shows
the probability distributions for three trace buckets (S — slow, M —
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medium, F — Fast) for a buffer-based (BB) adaptation algorithm from
past work. Fig. 5.1(c) shows the corresponding average seconds of
playback available in the client’s buffer.

Playback context dependence: We observe from Fig. 5.1(a) and (b),
that the probability of rebuffering of segments of similar complexity
(bitrate) differs substantially depending on their placement in the
stream. For instance, particularly for the lower-bandwidth bucket,
even though S30 has lower bitrate than S37, S30 is substantially
likelier to incur rebuffering. Thus, the playback context of a segment
impacts its likelihood of suffering from performance impairments.

Adaptation algorithm dependence: Fig. 5.1(d) shows the average
buffer occupancy for a rate-based adaptation algorithm, showing the
stark contrast with BB in Fig. 5.1(c). Thus, for the same video and
network traces, the same segment’s vulnerability to performance
impairments depends on the adaptation algorithm in use. (This is
indeed obvious, our contribution is in accounting for and using this
dependence.)

Network trace dependence: While ABR algorithms handle instanta-
neous bandwidth fluctuations, SEGUE finds common patterns among
streaming sessions which lead to the determination of vulnerable
parts of the video. These vulnerabilities depend not only on the ex-
pected playback state but also on the ABR adaptation logic. SEGUE
uses a large number traces to minimize the effect of a single trace’s
fluctuation. The different trace sets are discussed in Section 5.6.

5.3.1 What levers can we tune?

Online rate adaptation must cope with highly unpredictable network
bandwidth changes. However, the other time-varying determining
factor, i.e., video complexity variation and its interaction with rate
adaptation, is more predictable, and can be accounted for in offline
video chunking. We use two levers to adjust chunking to this end:

* Segmentation: we can adjust the lengths and boundaries of the
video segments a client can later fetch.
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* Augmentation: for select segments, we can add bitrate tracks to
provide greater flexibility to online adaptation.

We next describe why these levers are interesting to tune, and some
intuitions on how this might be done.

Segmentation: Fig. 5.2 shows the instantaneous bitrate per frame over
playback time. The video is encoded using ffinpeg and H.264, with
two-pass encoding. The red dashed lines show the key frames, with
the rest of the frames encoded with reference to these. The maximum
interval between successive key frames is passed as an argument to the
encoder, and is 5 seconds in this instance. As Fig. 5.2(a) shows, key
frames are not distributed uniformly across time: typically, relatively
static parts of a video will feature larger gaps between successive
key frames, while in complex, motion rich parts, key frames will
occur more frequently. This property enables the use of key frames to
group parts of the video with similar characteristics together. Recall
constraint C2 from Section 5.2.1: video segments must each start with
a key frame. We can thus collect such sets of adjacent key frames to
form segments, but this will result in segments of non-uniform length.
In contrast, a fixed-segment length setup forces the encoder to add
key frames at fixed intervals corresponding to segment length, with
additional key frames within each segment, as necessary. By carefully
shaping segments of non-uniform length, we can let the client fetch
shorter segments during parts of a video more vulnerable to streaming
impairments, thus allowing finer-grained rate adaptation decisions.
For less vulnerable parts, longer segments can be used.

Another aspect where variable-length segments help relates to
the stability of perceived playback quality. Fig. 5.2(b) shows the
perceptual quality (VMAF) computed per frame for a few constant-
length segments of an action movie. For the segments highlighted
in pink, there is a huge fluctuation in VMAF within the segment
boundaries, perhaps due to a scene change. There can also be value in
synchronizing these change points with segmentation, allowing more
informed adaptation decisions that account for such changes.

Augmentation: Fig. 5.2(c) shows another aspect of temporal variabil-
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Figure 5.2: (a) The violet (solid) line is the bitrate per frame, while the
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red (dashed) line marks the keyframes. (b) Breaking the
video into fixed length segments produce segments with
high internal perceptual quality instability. (c) Average
bitrate for a video encoded at 4 resolutions: due to VBR
encoding, the bitrate per segment varies.
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Figure 5.3: The distribution of QoE per second of playback (normal-
ized to max. possible QoE) across our test network traces
for video A with BB and RMPC rate adaptation, and video
D with BB adaptation. The box-plot shows the quartiles,
with whiskers for 20" and 80" percentiles.

ity using a video segmented into 5-second segments, with the average
bitrate of each segment plotted across 4 tracks. Due to variable bitrate
coding, the per-segment bitrate within each track varies substantially.
In particular, the segment from 15-20 sec uses a much higher bitrate,
so much so, that its bitrate at any track is comparable to the the rest
of the video’s bitrate at one higher track. This is because the encoder
decides that the scenes of high complexity in this duration warrant
higher bitrate for sufficient video quality.

Unfortunately, even with the freedom of variable bitrate coding, it
is sometimes either hard to achieve sufficient perceptual quality for
complex segments, or higher-than-necessary bitrate is “wasted” on
simple segments.

For this problem, and the bitrate peaks illustrated in Fig. 5.2(c),
instead of using the same number of tracks throughout, we could
augment the encoding of segments vulnerable to streaming impair-
ments with more tracks. These added choices would enable more
fine-grained decisions during adaptation.
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5.3.2 The need of variability

Before delving into SEGUE’s design, we first illustrate the perfor-
mance problems with baselines that do not account for variability in
segments length and number of tracks.

We evaluate the QoE with different constant-length segmentations,
ranging from 1 to 5 seconds (C1, C2, .. ., C5). Fig. 5.3 shows the QoE
achieved across a set of test network traces for video A, using two rate
algorithms (BB and RMPC) and for video D with BB. Comparing
A-BB to A-RMPC, we see that for A-BB, C3 achieves a higher QoE
than C5 especially at the lower tail, while C5 is better for A-RMPC.
Similarly, comparing A-BB and D-BB reveals that for the same BB
rate algorithm, C3 achieves better tail performance than C5 for video
A, while for video D, C5 is marginally superior.

Note that just encoding multiple different constant-length segmen-
tations and making them available to clients to choose from adaptively,
as suggested in past work [Hoo+18], can address some of the above
issues, but at huge expenses: if all of C1-C5 were made available, the
content provider’s storage and caching expense would be 5x larger.

In contrast to the above approaches, SEGUE consistently achieves
higher QoE, as shown in Fig. 5.3, with only modest (under 10%)
overhead in terms of additional bytes encoded.

5.4 SEGUE design

SEGUE tunes variable segment length and variable numbers of
tracks across a video’s segments to improve streaming quality. It does
so in a manner that accounts for each segment’s playback context and
the rate adaptation algorithm. SEGUE uses the following inputs:

* A raw video whose encoding SEGUE will modify.

* The bitrate ladder the provider has designed for the video. This
specifies the average bitrates of the different tracks.

* A target QoE function to optimize for.
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Figure 5.4: We can segment vulnerable parts of the video into shorter
segments, and augment them with additional tracks.

 The rate adaptation algorithm the provider uses.

Given these inputs, SEGUE segments the video into variable-length
segments, and augments some segments with added bitrate tracks.
Fig. 5.4 shows a schematic of SEGUE’s outputs.

5.4.1 Segmentation

Segmentation of a video must produce variable-length segments
that should improve client QoE for the given ABR. SEGUE must output
a segment sequence for every bitrate track specified in the input bitrate
ladder. Further, the segments must obey the constraints C1 and C2
from Section 5.2.1.

Problem formulation: We first describe the problem ignoring the
multi-track aspect. In this setting, segmentation involves first running
a standard video encoder implementing the provider’s codec of choice.
We run the encoder on three inputs: the raw uncompressed video, the
average bitrate to encode a track for, and a maximum gap between key
frames. The encoder outputs a compressed video track of (roughly)
the input average bitrate. We use this compressed track’s key frame
positions as an input for segmentation.

Each pair of successive key frames contains between them a video
fragment. Our task is to decide which video fragments to combine
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together into segments for streaming. As we scan the video track from
left to right and encounter a key frame, should this key frame demarcate
the start of a new segment, or should we merge the video fragment
between this key frame and the next into our current segment?

For certain simple optimization criteria, e.g., minimize the num-
ber of segments while limiting the maximum segment length, the
problem of finding the optimal segmentation can be framed elegantly
as a dynamic program. However, this is not the case for the more
sophisticated optimization criteria SEGUE uses to improve QOE, as
we discuss below. Thus, we use brute-force search over a limited
horizon, k, of future key frames: we allow each binary decision for
each key frame, i.e., merge with the previous segment or not. Each of
the 2% outcomes is a candidate segment sequence. SEGUE then uses
one of two broad methods for assigning value to each segmentation,
and choosing the best.

Intuitive heuristics: Segments that are too long or too short, or have
too many bytes or too few bytes are undesirable. For instance, seg-
ments with too many bytes will increase the likelihood of rebuffering
while they are fetched. Similarly, segments that are too short in their
playback time will cause too many requests to the video server, and
incur larger transport and application-layer protocol overheads. Thus,
to prevent our segmentation from producing such undesirable frames
frequently, we can penalize it for such segments. We frame three
heuristics that penalize deviations from target values, where the target
is defined in terms of:

e Time: Segments that are too long or too short in terms of their
playback time in seconds are penalized.

* Bytes: Segments that have too few or too many bytes are penalized.
The target number of bytes must be set based on the track and the
video.

* Time + Bytes: Segments that are too long or too short are penalized,
but there is an additional penalty if a segment exceeds a byte
threshold.
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In each case, we evaluate the 2F segmentations and pick the one that
minimizes the penalty for deviating from its target in terms of time,
bytes, or a combination, as noted above. Only the first segment of the
chosen segmentation is final; the procedure continues from the first
key frame after it, in a sliding window manner, until all key frames
are processed.

To extend to multiple tracks, we run the above process for the
highest-bitrate track. With the segment boundaries known, we encode
all the other tracks by asking the encoder to impose key frames at the
segment boundaries.

Simulation-based assessment: Instead of applying heuristics derived
from our intuitions, we can also just evaluate each of our candidate
segmentations for our target QoE function and ABR adaptation algo-
rithm, across a set of diverse test traces, and pick the one that performs
the best.

Besides the philosophical distinction from the intuitive heuristics
approach, a simulation-based approach requires a change in method-
ology. We can no longer start with a single-track approach and later
use the segment boundaries to inform segmentation of other tracks.
Instead, we need all tracks to be segmented simultaneously in progres-
sion, because the simulation will involve switching between tracks.

To this end, we again have the encoder encode the highest-bitrate
track in the same manner as before. However, instead of optimizing
segmentation using only this track, we also ask the encoder to encode
all the other tracks enforcing all the key frames to be the same as those
in the highest-bitrate track.!

We thus have all the tracks available simultaneously to perform
segmentation on using a simulation.

For any candidate sequence of segments, 8, out of the 2¥ options,
the simulation, Sim, runs as follows:

IThe impact of this imposition of keyframes on encoding efficiency compared to a
standard GOP method is small: for our settings, the VMAF loss and the bytes overhead
are negligible, both changing by under 0.03%.
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1. For a set of network traces, we run the ABR on 8.2

2. For each trace, we compute the QoE, considering 8’s segments
and all segments fetched preceding S.

3. Across traces, QoE is aggregated based on a desired function, e.g.,
the mean or an arbitrary specified percentile.

Across candidate sequences, the one that achieves the highest aggre-
gated QoE across traces is selected, and its first decision — merge or
not — is used. A merge decision results in the video fragment being
added to the previous segment. If the decision is to not merge, the
previous segment is closed. The simulation continues over the next k
key frames, in the same sliding window manner as for the heuristics.

The above Sim approach is effective in many settings, but it can
be myopic due to its limited lookahead, ignoring long-term effects
of a segmentation strategy. However, a longer lookahead, &, is
computationally expensive. We thus also test a WideEye strategy
that combines Sim with the preceding intuitive heuristics: we use a
longer lookahead, but we: (a) filter out candidate sequences using the
Time and bytes heuristic; and (b) slide the window forward by multiple
keyframes, thus freezing multiple decisions in each step instead of
just one decision.

5.4.2 Augmentation

Augmentation aims to identify parts of a video vulnerable to stream-
ing impairments, and add more bitrate tracks for their segments at
appropriate bitrates.

Augmentation treats the video tracks and segmentation as inputs.
The input bitrate ladder comprises a set B of tracks. The segment set S
can be comprised of segments as today, equal-length, or be the output
of our above segmentation. A video can be concisely described as
a set B x S of segments across tracks. We define an augmentation

2Some algorithms, like Robust MPC [Yin+15], plan their decisions by looking ahead
at several future segments. If this lookahead goes beyond the segments in S, our
simulation uses the future video fragments for this lookahead.
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technique, A, as a function 1 : B X S — A, with A being the set of
new tracks added, with each element a € A describing the position
of a in the video and the average bitrate of a. We describe four
augmentation functions, A,, Ap, Ap, and oy, Which use different
heuristics to identify segments to augment.

A, based on VMAF drops: Despite the freedom afforded by VBR coding,
complex scenes can end up with lower bitrate than needed to maintain
perceptual quality. Our A,, heuristic attempts to augment such parts
of a video. Consider the i video segment on the j bitrate track, Sij-
If the VMAF of s, ; falls below the median VMAF across segments in
track j by a tolerance threshold, then s; ; is marked for augmentation.
We add an additional encoding for the i video segment, using the
average of the bitrates of s; ; and s; ;1.

Ap based on bitrate peaks: Recall from Fig. 5.2(c) that segments
corresponding to complex video scenes can be encoded at much
higher bitrate than the average, with large gaps between the bitrates of
successive tracks. This can make streaming these segments difficult,
often requiring ABR adaptation to either switch to a lower track, or
increase the risk of rebuffering.? By augmenting such segments with
additional bitrates, we can offer greater flexibility in ABR adaptation.
Consider the i segment on the j track, s; ;. If the bitrate of s; ;
is above the average for track j by more than a tolerance threshold,
s;,j is marked for augmentation. We then add an additional encoding
for the i segment, with the bitrate corresponding to the average for
track j. The VMAF of this newly added segment will lie between that
of Sij-1 and Si,j
Apy using both bitrate and VMAF: Not all segments chosen by A
are challenging to stream in the same way. For instance, s; ; may have
a high bitrate compared to track j’s average, and would be augmented
by A;. However, if the VMAF loss from downloading s; j_1 instead of
s; j isrelatively small then s; ; does not necessarily need augmentation.

3CAVA [Qin+18], which is designed to carefully account for variable bitrate, also
experiences this trade-off, but it is better at navigating it than non-VBR-optimized
algorithms (Section 5.8). Our goal is to improve the trade-off itself.
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This is what our A, heuristic does: s; ; is only augmented if its bitrate
is large relative to track j and there is a substantial difference in the
VMAF of Si,j and Si,j—1-

by, based on simulation: Like for segmentation, we design an aug-
mentation approach based on simulation. Unfortunately, the search
space for augmentation is even larger than segmentation: each seg-
ment in our lookahead horizon can be augmented between every pair
of its successive bitrate tracks. With just 6 bitrate tracks and a looka-
head of 5 segments, the search space expands to ~1 billion iterations
per simulation step. We limit this scope substantially by using the A,
heuristic as the basis: at each simulation step, we limit augmentation
candidates to ones suggested by Aj,,. Each parameter configuration of
Apy (in terms of the VMAF difference and bitrate difference thresholds)
yields one candidate augmented segment sequence. We simulate
ahead with each candidate sequence, as well as with the unaugmented
(default) sequence. For each candidate, we quantify its QOE improve-
ment compared to the default normalized by the overhead in terms of
bytes added by that augmentation sequence. We pick the top scoring
candidate, and continue this process from the next segment.

5.5 Implementation

We implement both the offline video chunking and online rate
adaptation components to evaluate SEGUE.

5.5.1 Offline video chunking

SEGUE’s chunking pipeline is implemented in Python3, and makes
use of ffmpeg and libraries for standard codecs. Note that we are
not devising new codecs, compression algorithms, or video formats;
instead it is our explicit goal to stick to current, widely used codecs,
as their implementations are heavily optimized, with mature provider-
side pipelines, and client-side decoding often offloaded to hardware.
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Rather, we use the same codecs in a manner different from that in ABR
video streaming today, as described in Section 5.4.

Since the availability of raw video data sets of sufficient length for
interesting ABR adaptation is limited, we instead use 4K compressed
video as a stand in for raw video, and then limit our work to resolutions
1440p and lower. The bitrate ladders we adopt throughout are from
Bitmovin [Bit19a], but arbitrary other bitrate ladders, including those
customized per title [Aar+] could be used as input. We also follow
the guidance in that reference for encoding, using the recommended
maximum bitrate of a track, i.e., 1.75X its average. Throughout, we
use two-pass encoding, as is typical in the industry [Oze19].

Segmentation: We implement the constant-length segmentation strat-
egy common today as the baseline. We use ffinpeg-libx264, which
allows us to specify certain key frame locations precisely, with the
encoder potentially inserting additional key frames as necessary. This
enables straightforward implementation of both the constant-length
segmentation, as well as our segmentation heuristics (Section 5.4.1).
We use the following configuration parameters:

* The constant-length baseline uses 5s segments.

* The lookahead of video fragments for all our segmentation methods
except WideEye is k = 5, such that each iteration evaluates all 2°
segmentations of these fragments.

* For Time, the target segment length is 5s, with a penalty of 20%
per second for deviations.

 For Byte, the bytes-per-segment target is the average bytes in 5s of
video; excess bytes incur 20% penalty.

* For Time+Bytes, besides the time penalty, the byte penalty is also
imposed for segments with too many bytes.

* For Sim, the QoE of a candidate sequence is aggregated as the mean
QoE across traces.
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» WideEye has a lookahead of 10 keyframes instead of 5, and a
decision window of 5 instead of 1. We only simulate the 32 best
candidate sequences as ranked by Time+Bytes.

The penalties thresholds have been tuned to better work with our
encoding settings, while the simulation lookaheads have been picked
to keep reasonable computational time.

Augmentation: Our augmentation strategies are simple to implement
as described in Section 5.4.2 using ffinpeg-libx264: regardless of the
particular augmentation function, we merely need to encode a specific
time range of video at a particular average bitrate, as a standalone
segment. The different augmentation strategies are configured as
follows:
* A, : segments are augmented when their average VMAF is > 8 points
lower than the median for their track (a value that corresponds to a
bump from 720p to 1080p on a 4k TV [Nat+19]).

e Ap : segments are augmented when their bitrate is > 10% above
than the average bitrate for their track. This leads to an aggressive
augmentation strategy, intended to provide an upper bound QoE
gain of this general method.

e Apy : We tested A, for several different configurations. Segments
are augmented when their bitrate is > B% above the average for
their track and the VMAF difference between their track and the
one below exceeds V points, being V in {5,6,7,...,14} and B in
{5%, 10%, 15%}.

* 0py, : We generate 30 candidate sequences by running A, with
these thresholds — VMAF difference in {5, 6,7, ..., 14} and bitrate
difference in {5%, 10%, 15%}.

For augmentation, as well as for later evaluation, we need to compute
the perceptual quality score, VMAF, for a video segment. We use the
code made available by Netflix [Nat+19; Li+16]. For computing
our augmentation strategies, we use the VMAF 4K model, while for
our evaluation, we additionally evaluate the VMAF HDTV and VMAF
Mobile models.

118



5.5 Implementation

5.5.2 Online playback and rate adaptation

The approach we explore deliberately steps outside the DASH stan-
dard [SSS18], with constant-length segments and a fixed number of
bitrate tracks per segment. We thus modified the DASH player to sup-
port SEGUE. However, we use this implementation only to verify the
fidelity of an orders-of-magnitude faster simulator, which we use for
extensive experimentation. The simulator is implemented following
the methodology described by the Pensieve authors [MNA17b]. Sec-
tion 5.7.7 details the DASH player implementation, demonstrating that
it achieves results near-identical to the simulator.

We simulate both the network and the player state. The network
environment takes as an input a trace of bandwidth over time, and
simulates the download of segments. The link RTT is set to 80ms
in our experiments. The player simulator interacts with the network
environment by requesting the download of a certain video segment
from a certain track (as decided by the adaptation algorithm), and adds
the segment’s playback duration to the playback buffer. Meanwhile,
it also drains the buffer. The maximum playback buffer size is limited
to 60s; if the buffer is full, the player waits before downloading
additional video segments. The number of seconds of buffered video
needed before the player starts playback is set to 10s, following prior
work [Qin+18].

The simulator logs rebuffering time and the downloaded tracks,
allowing us to calculate QoE metrics in hindsight.

We evaluate SEGUE on four different ABR algorithms:

Rate-based adaptation (RB) tries to fetch the next segment at a bitrate
matching the estimated network bandwidth. We adapt the simple,
demo implementation of this strategy provided by Bitmovin [Aya+18].
This approach requires no modification to use SEGUE’s modified
encoding.

Buffer-based adaptation (BB) makes decisions entirely based on
the player buffer state [Hua+14]. Briefly, BB uses two parameters:
reservoir, r, and cushion, c. If the buffer size, b, is smaller than r, the
lowest-bitrate track is used. If b > r + ¢, the highest bitrate is used.
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For b € [r,r + c], bitrate tracks are (roughly) linearly matched to the
buffer sizes.

BB requires modest changes with SEGUE. Besides changing r
dynamically to adapt to variable bitrate coding as suggested in the
original paper [reservoir_basedl], we also bound » by a minimum
of 8 seconds to account for variable-length segments. Further, when
b € [r, r+c], we firstmap b to a bitrate range based on the unaugmented
bitrate tracks available, but if additional tracks were made available by
SEGUE, we further linearly match within this range to the appropriate
track. These minor implementation tweaks substantially improve
performance compared to a naive implementation.

Robust MPC (RMPC) uses control theory [Yin+15]. It uses the
bandwidth estimate, current buffer size, and features of upcoming
segments, to plan a sequence of requests based on the expected
reward. It is flexible enough to incorporate knowledge about varying
segment lengths and augmented bitrates. We tested two versions
of RMPC: (a) RMPC-oblivious, where, as in [Qin+18], we modified
the RMPC reward function to work with the instantaneous segments
bitrates (rather than fixed weights); and (b) RMPC-aware, where we
modified the reward function to account for VMAF score rather than
bitrate. For both versions, to accommodate segments of different
length, we weigh each segment’s bitrate gain by its length.

5.6 Evaluation methodology

We evaluate our approach across network traces used in past work
on ABR streaming, and test several videos.

Network traces and VMAF: We use a mix of ~600 traces across
broadband 4G, HSDPA, and 3G networks [Akh+18; Rii+13b; Unil6].
The mean throughput of these traces spans from 350 Kbps to 60 Mbps.
We divide the evaluation traces into three buckets:

* SLOW, containing traces with mean throughput <1.5 Mbps.

* MEDIUM, with mean througput between 1.5 and 4 Mbps.
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¢ FAST, with mean througput >4 Mbps.

Train and test separation: Our simulation-based methods are data-
driven. We use only 20% of the above ~600 traces to make segmen-
tation and augmentation decisions.

For robustness, we test not only on the unseen 80% of traces from
the above set, but also on an entirely different trace distribution from
the Puffer project [Uni20]. We sampled Puffer traces from Dec. 2020
to May 2021, arbitrarily using data from the 5" of each month. We
retain only those traces that are longer than 2 minutes, corresponding
to 64% of Puffer traces. 3.1% of these traces fit the SLOW class, 5.6%
MEDIUM and 91.3% FAST. Our test set uses an equal number of
Puffer and non-Puffer traces, e.g., half of the SLOW test setis arandom
sample of SLOW-class Puffer traces, while the other half is from the
80%-unseen data from the other trace distributions mentioned above.
Note again that this implies that none of the test data has been used in
decision-making, and that half of it comes from an entirely different
data source. (Limiting our evaluation to only the Puffer trace dataset
only makes the results more favorable to SEGUE.)

Unless noted otherwise, we evaluate SLOW traces on the VMAF
mobile model, MEDIUM on HDTYV, and FAST on 4K.

Videos: We use a set of 11 videos with different content, downloaded
from YouTube, listed in Table 5.1. These videos are available in 4K,
which we use as “raw” (Section 5.5.1), and then run experiments for
240p, 360p, 480p, 720p, 1080p and 1440p.

QoE function: Unfortunately, with variable-length segments, we
cannot use the QoE function used in past work as is, because it
aggregates QoE metrics across equal-length segments (Section 5.2.1).
Instead, we adapt the formulation to sum QoOE per unit time, at a
granularity of 1s. This is small enough to capture any impact from
our use of smaller segments.

This implies that we have to adjust the weights A, 8, and y for
the QoE components corresponding to VMAF, rebuffering, and VMAF
switches respectively: the original weights used in past work, are for
4 second segments, and using that same formulation on 1s intervals
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ID Duration [mm:ss] FPS Content type

A 3:21 24 3D cinematic

B 3:25 25  Music video

C 6:34 25  Comedy

D 3:51 25  Festival

E 4:42 30  Action movie

F 5:49 30  Cooking tutorial
G 2:33 30  Sports (long-take-shot)
H 2:40 30  Sports (highlights)
I 2:39 24 Underwater

L 3:16 30  Drone footage

M 2:40 30  Video game

Table 5.1: An overview of our video dataset. Videos C and D lie
at the extremes of highly stable and unstable in terms of
perceptual quality over time within one track.

would effectively assign 4x the importance to VMAF. We thus scale A
by %. Further, as we compare schemes with different segment lengths,
we cannot ignore the startup phase: doing so would benefit schemes
that fetch longer segments, as they would build up more buffer. We
simply account for the initial phase in the same manner as any other
segment, incurring a rebuffering penalty until the first segment is
downloaded and played.

To use VMAF instead of bitrate as in the Robust MPC work [Yin+15],
we also need to adapt the weight for rebuffering. MPC’s QoE function,
drawn from measurement work, penalizes each second of rebuffering,
i.e., B, as equivalent to losing 4s of full-resolution bitrate. For VMAF,
full-resolution translates to a value of 100. Thus we use 8 = 100.

We decrease the switching penalty, y, from 2.5 to 1. With a
1 sec cadence for QoE evaluation, we measure switching more often
than prior work. This accounts for intra-segment changes in VMAF,
and penalizes any additional switching caused by our potentially
shorter segments. (Using prior work’s ¥ = 2.5 setting only improves
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https://www.youtube.com/watch?v=aR-KAldshAE
https://www.youtube.com/watch?v=bJtRONVWC08
https://www.youtube.com/watch?v=23yQPhyZ_u8
https://www.youtube.com/watch?v=dQBzxGJ7YQ4
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https://www.youtube.com/watch?v=39d6dWSdpLY
https://www.youtube.com/watch?v=ALJvavVvve4
https://www.youtube.com/watch?v=HMmQu4zn1KQ
https://www.youtube.com/watch?v=eoGx5GRbSfM
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Figure 5.5: Segment characteristics for different schemes — video
A, RB. Boxes show mean and quartiles, whiskers are
5/95-percentile.

SEGUE’s results.)
In any case, SEGUE can be run with arbitrary QoE functions.

5.7 Results

We first describe the improvements from SEGUE for video A and
RB adaptation. This helps draw out intuition in detail. Later, we eval-
uate SEGUE across 11 videos, 4 adaptation algorithms, hundreds of
network traces, and 3 VMAF models. We then compare SEGUE’s per-
formance with the closest related works, and discuss its computational
cost.

5.7.1 SEGUE’s segmentation

Fig. 5.5 shows the characteristics of the segments produced by
different approaches. Time and Bytes, by design, produce segments
of similar duration and bytes respectively to Constant. However, by
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Figure 5.6: VMAF fluctuations: video A, RB adaptation, SLOW traces.

constraining only one factor, they introduce large variations in the
other. Time+Bytes constrains both, and is thus conservative in its
segmentation. Sim, with no direct constraints, naturally produces seg-
ments with the greatest variability. Consider, e.g., a low-complexity
credits scene, for which Sim may produce a very long segment to pre-
vent RB from incurring switching penalties in QOE. WideEye strikes a
balance, allowing greater freedom in segmentation than 7ime+Bytes,
but trimming out Sim’s extreme, myopic choices. Time and Bytes
are the least performant schemes, with obvious reasons, so we omit
further discussion of these.

We measure VMAF fluctuation as the average change in VMAF per
second of playback. We normalize this by the average VMAF fluctuation
experienced by Constant across our full cross product of videos, traces,
and rate adaptation algorithms. We calculate rebuffer ratio as the sum
of seconds of rebuffering experienced during playback divided by
video duration, and reported in seconds per minute (s/m).

Fig. 5.6 shows VMAF fluctuations across the SLOW traces. Sim
achieves the most stable streaming, at the cost of higher rebuffer ratio
(by 1 s/m) compared to Constant.
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Figure 5.7: Rebuffer ratio: video A, RB adaptation, SLOW traces.

Time + Bytes improves VMAF stability modestly, while simultane-
ously improving rebuffer ratio by 0.7 s/m compared to Constant.

Sim’s numerous overly long segments, which help drive RB away
from the frequent track switching it is prone to, result in an increased
risk of rebuffering (Fig. 5.7). This is a consequence of its short-term,
myopic decision making, which does not account for future risk of
rebuffering. WideEye strikes the more favorable tradeoff here, not
only improving stability substantially, but also limiting rebuffering to
only 0.1 s/m higher than Constant, compared to Sim’s 1 s/m.

Changes in delivered VMAF are modest, with WideEye improving
over Constant by ~0.8% for SLOW/MEDIUM traces.

Takeaway: Intuitive heuristics like Time+Bytes conserva-
tively perform segmentation, avoiding risks like overly long
or large segments. On the other hand, a short-term simulation
approach can be overly aggressive, and increase longer-term
rebuffering risk. Merging intuition with a longer-term simu-
lation horizon strikes a favorable tradeoff.
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Figure 5.8: oy, improves QoE with only small byte overheads, as
does Ap, with appropriate parameters. Ap, is shown with
V e {56,7,...,14} for both B = 15% and B = 10%.
(B = 5% is similar to B = 10%.)

5.7.2 SEGUE’s augmentation

We next examine QoE improvements for video A with RB, by com-
paring Constant to SEGUE with WideEye segmentation coupled with
each of our 4 augmentation heuristics in Fig. 5.8.

A, (bottom-left, yellow) and A (top-right, cyan) show extreme
points: the former augments too few segments and results in negli-
gible improvements, while the latter augments too many segments
(incurring more than additional bytes for encoding) to achieve its
substantial QoE gains.

Our simulation-based strategy, o, , (top-left, large red dot) achieves
both high QoE improvement and low overhead in terms of bytes, due
to its careful choices of which segments to augment. Mean QoE
improvements compared to Constant are 24.9%, 4.1% and 1.4% for
SLOW, MEDIUM, and FAST traces respectively, at the cost of 5.5%
of more bytes encoded.

We also find that for our QoE reward and byte overhead definitions,

126



5.7 Results

Apy achieves similar results as o, if 4, ’s parameters are appropri-
ately tuned (specifically, using a bitrate threshold, B = 10%, and a
VMAF threshold, V = 13 or 14).

We find that a small additional amount of bytes encoded for aug-
mentation improve VMAF stability and reduces rebuffering, together
with modest improvements on the average VMAF delivered. It is worth
noting that augmentation is not as simple as “augment more bytes
for higher QoE”; in fact, there are several heuristics that incur higher
overhead, with lower QoE benefit, e.g., compare several of the Ap,,
B = 15% results in Fig. 5.8 to op,,.

Takeaway: The simulation approach, by explicitly trading off
QoE improvements with their cost, appreciably improves QoE
at low overhead in terms of additional encoding and storage.
At the same time, a careful tuning of parameters for a static
policy can produce comparable results.

Takeaway: More augmentation does not always improve QoE;
rather segments to be augmented need careful choice.

5.7.3 The impact of the adaptation algorithm

Segmentation: Across our experiments, the largest improvements
from segmentation come from VMAF stability during playback, typi-
cally with some improvements in rebuffering, and negligible changes
in VMAF. However, the details differ across rate adaptation algorithms
as we discuss next.

Fig. 5.9 shows the improvement in VMAF stability. For each adap-
tation algorithm, we compute the VMAF switching penalty term of
the QoE aggregated across the cross-product of videos and traces; we
then show the mean and 95"-percentile in the table cells. The largest
improvements are seen for RB, followed by BB, and the two versions
of RMPC. For RMPC-oblivious we even see a deterioration, i.e., higher
VMAF switching by 4.6% at the 95"-percentile. It is worth noting
that our segmentation simulations always use the VMAF 4K model to
make decisions, while the evaluation uses different VMAF models for
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SLOW MEDIUM FAST
ABR

Mean | 95% | Mean | 95% | Mean | 95%

BB [52% t[12.20% %5.3% t5.7% t4.7% t103%*%
RB  [5.6% % 18.4% 47% 18.3% % |45% t7.8% %
RMPC-0(1.2% 4 -4.6% V1% 1|-1.1%V |-1.3% ¥/7.4% ¢
RMPC-A (4% 419.6% 43.2% 117% 1 -1.5% ¥/-0.5% ¥

Figure 5.9: VMAF stability improvements divided by trace set and ABR.
As expected, improvements are more significant for RB,
given that no stability policy is implemented in the ABR.

different trace buckets. If we evaluate using the VMAF 4K model, the
result for RMPC-0 is also positive, with 6.7% improvement. Using
different VMAF models during segmentation tuning results in different
weights for rebuffering, VMAF, and VMAF switching (e.g., the mobile
model is the most permissive for VMAF, weighting rebuffering more),
S0 it is an open question as to how to optimize robustly against these
differences.

For rebuffering, the differences from SEGUE’s segmentation are
smaller, with meaningful differences only at the tail. This is inherent
to rebuffering: it is a corner case, as most rate adaptation approaches
are conservative enough to avoid it in the typical case. For BB and RB,
the number of traces for which rebufters occur is cut by 1.3% for both,
while for RMPC-0 and -A, 0.2% and 1.3% more traces see rebuffers
with SEGUE’s segmentation compared to Constant.

We dissected the tail rebuffering and switching of SEGUE’s seg-
mentation with RMPC more deeply. RMPC plans for a limited lookahead
of segments (5 in that paper), and when S EG UE produces several short
segments, the lookahead becomes more and more myopic in terms of
time, thus causing poor long-term planning. Thus, RMPC’s implicit as-
sumption that a certain number of segments comprises a long-enough
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future planning horizon is contradicted in SEGUE. Unfortunately,
increasing RMPC’s lookahead is computationally expensive, so if the
algorithm is not modified, there are two solutions: (a) disallowing
series of short segments; and (b) instead of optimizing for the mean
in SEGUE’s segmentation, as we currently do, optimizing for higher
percentiles (see §5.4.1). That Time+Bytes rebuffers on 1.9% and
2.1% fewer traces for RMPC-0 and RMPC-A shows promise for strategy
(a).

We also briefly illustrate the specificity of SEGUE’s segmentation
to different rate algorithms with experiments on video A: tuning
segmentation using WideEye for RB and then using RMPC-0 adap-
tation online actually degrades QoE by 7% compared to Constant,
while correctly tuning segmentation for RMPC-0 improves QoE by 6%
compared to Constant.

Takeaway: A mismatch in what rate algorithm segmentation
is tuned for versus used with can degrade QoE

Takeaway: Segmentation’s interactions with rate adaptation
algorithms that implicitly or explicitly assume constant length
segments require additional effort to either modify such rate
algorithms, or SEGUE’s interaction with them.

Augmentation: Augmentation typically improves all three QoE met-
rics, at the cost of a small provider-side compute and storage overhead.
The gains are largest for rebuffering and switching, with smaller
improvements for VMAF.

We compare WideEye with and without o3, augmentation. For
each of our 11 videos, we calculate the changes in the average metric
across traces, i.e., rebuffer ratio (in sec per min), VMAF stability (in
percentage). The results shown in Fig. 5.10 are the distribution of these
improvements from adding o, across the 11 videos. For the SLOW
traces, rebuffering is reduced on average by >3 s/m for all algorithms.
The improvements stem primarily from augmentation enabling finer-
grained quality decisions especially at low-bitrate tracks. Even for
RMPC, this compensates for the shorter lookahead. The differences are
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Figure 5.10: Improvements from adding o, to WideEye. We average
metrics across traces, and show their distribution across
videos. Boxes show mean and quartiles, whiskers are
5/95-percentile.

smaller for FAST traces (as expected), which are omitted in the plot.

Rebuffering improvements for RB are more limited because having
more choices sometimes enables more aggressive behavior in RB,
where the estimated rate has greater chances of more closely matching
an available bitrate. For the same reason, VMAF switches improve more
for RB: it aggressively matches bitrate to rate estimates, and having
more choices makes the fluctuations smaller.

VMAF gains are small in the aggregate, but this is a bit misleading:
in many cases, augmentation improves VMAF noticeably (e.g., ~10%)
for parts of playback, but these ‘local’ gains are suppressed in the ag-
gregate, as VMAF does not change much for most segments. (Fig. 5.11
highlights the locality of these improvements.) It is unclear to us how
or if QoE functions should reward such local improvements.

The provider-side costs of 0}, augmentation are small across all 4
rate adaptation algorithm, with roughly 8% overhead in bytes encoded
on average across videos.
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Figure 5.11: Augmentation yields local VMAF improvements: average
VMAF/sec forvideo E using RMPC, Constant segmentation

Takeaway: Augmentation substantially improves rebuffering
and VMAF stability, especially in low-bandwidth conditions,
while incurring modest costs.

5.7.4 The impact of the video

How much a video’s complexity varies over time greatly affects
how much SEGUE benefits it. For instance, video C shows, on
each of its tracks, very little variation in VMAF and bitrate. This lack
of substantial temporal variation leaves little room for optimization
beyond constant-length segments with fixed tracks. For video C, our
segmentation’s improvements in VMAF stability are smaller than on
the rest of our data, and in some cases, there is even a degradation
in performance (3.1% and 2.4% on average over SLOW traces with
RMPC-A and -0 respectively).

The other extreme is video D, with frequent changes across scenes.
(Fig. 5.12 visually contrasts videos C and D.) For video D, even for
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Figure 5.12: VMAF and bitrate comparison between video C and video
D for the highest quality track of each. VMAF and bi-
trate are averaged per second, and shown for the first
100 seconds of playback. Video C exhibits much greater
stability than video D.

FAST traces, WideEye improves VMAF stability by 12% on average for
RB and BB.

For 3 videos in our dataset (video B, video G and video I), SEGUE’s
segmentation hurts the performance for both versions of RMPC. For
video B and video G we have a degradation in terms of delivered
VMAF, with average perceptual quality degradation of 3%. For video
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B, this degradation also appears in VMAF stability. (Augmentation
partially makes up for this deterioration.) This is due to the behavior
in the startup phase: for some videos, producing small segments at the
beginning greatly slows down the ramp-up of RMPC to higher bitrates.
Modifying the objective function in RMPC to account for startup would
likely ameliorate this issue.

For Video I, however, SEGUE with RMPC-A substantially degrades
performance, with a perceptual quality loss in FAST traces of 12%
and a loss in VMAF stability of 23%. This behavior is caused by a
quirk of the bandwidth estimation approach (which we left untouched
from prior work [MNA17b]), whereby the RTT is also incorporated
to the calculation of the bandwidth estimate. The impairment occurs
when, at the beginning of a video, there are one or more segments
comprising as little as a few kilobytes of data, e.g., a few seconds of
a completely black screen or title screen. In this case, the bandwidth-
dependent download time can be smaller than the RTT. Incorporating
the RTT in the bandwidth estimation thus substantially underestimates
bandwidth, and slows down the ramp up of video quality. A constant-
length segmentation is immune to this bug, while any segmentation
that allows smaller segments is affected by it.

Simply separating the RTT estimate from the download time would
eliminate this issue.

Takeaway: SEGUE’s benefits are larger for more complex
video content. This could be used to build a meta-heuristic to
decide whether or not to use SEGUE for a particular video.

5.7.5 Performance comparison with related works

We now compare SEGUE against the three closest related
works. First, we compare SEGUE’s WideEye segmentation strategy
to [Sch+20], in which videos are segmented and delivered following
GOP boundaries. Then, we compare SEGUE’s 0, augmentation
strategy to CBF [Qin+19] and SIVQ [Rai+17]. Both solutions aim to
remove redundant segments from the video representation. While
CBF removes segments in order to be as close as possible to a target
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quality, SIVQ focuses on keeping the ones that differs enough in terms
of perceptual quality.

5.7.5.1 Comparison with GOP delivery

VMAF Rebuffer

VMAF[%] | stability [%] | Ratio [s/min]

GOP-1 22% b -43.4% -06 ¥
GOP-2 04% 4| -30.2% ¢ -03
GOP-3 -0.06% ¢ | -21.8% v 024 |
GOP-4 01% 4| -194% V| -0.19 }
GOP-5 -0.02% { | -142% ¢ -0.20 |

Figure 5.13: Performance improvements of SEGUE’s segmentation
strategy WideEye over the delivery of single GOPs, vary-
ing the GOP size.

In order to compare SEGUE’s segmentation strategy to [Sch+20],
we encoded our full dataset of videos varying the maximum GOP
size from 1s to 5s, with a step of 1s. We then tested the streaming
performance of transmitting each GOP separately against SEGUE’s
WideEye segmentation strategy across the cross product of network
traces and ABRs. Results are summarised in Fig. 5.13.

Improvements in perceptual quality are significant only in the case
of GOP-1, where SEGUE delivers in average 2.2% better quality.

SEGUE consistently reduces perceptual quality fluctuations. This
is an intrinsic property of SEGUE: by deciding which GOPs to pack
together (or not) depending on the video flow and ABR behavior,
SEGUE is able to successfully stabilize the video stream compared to
a fully fragmented solution. These improvements are major against
a GOP length of 1s, where SEGUE reduces instabilities by 43.4%,
and become smaller, but still significant, when increasing the GOP
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size. VMAF instability reduction over the GOP-5 segmentation (that is,
indeed, the GOP size in which SEGUE’s WideEye is performed) is in
average 14.2%.

SEGUE also substantially improves rebuffering ratio. Shorter seg-
ments, in fact, do not necessarily reduce the likelihood of rebuffering
events, as they might mislead the ABR into poor buffer planning and, in
general, greedier choices. Again, by tracking the video flow and ABR
choices, SEGUE is able to reduce substantially the average rebuffering
ratio, by 0.6 s/m in the case of GOP-1, and by around 0.2 s/m in the
case of GOP-5.

Compared to GOP-5, SEGUE segmentation strategy’s improve-
ments in the linear QoE model utilised throughout this work are, in
average, 4.2%. In the case of GOP-1, these improvements increase to
14%.

5.7.5.2 Comparison with CBF and SIVQ

VMAF [%)] VMAF Instability [%] RR [s/min]
Mean Fast Traces Mean Fast Traces Mean

CBF-40 46.7% * | 1052% 4| -44.4% V| -117.7% ¥ 05 ¢
CBF-60 17.1% 4 448% *| -261% V| -85.3% ¥ 0.34 ¢
CBF-80 3.9% * 12.3% ¢ -72% V| -331% ¥ 0.15 ¢
sIvQ-5 04% * 1.5% * -07% V| -48% ¥ 01 ¢
SIVQ-10 1.3% 4 4.7% * 23% Vv -142% ¥ 0.15 4
SIVQ-15 2.3% * 8.3% * -46% V| -242% ¥ 0.18 4

Figure 5.14: Performance improvements and degradation of SEGUE’s
augmentation strategy op, compared to CBF [Qin+19]
and SIVQ [Rai+17]. Rebuffering ratio comparison for
FAST traces is neglibile, and thus it has been omitted.

We compare SEGUE’s augmentation strategy 0, to CBF [Qin+19]
and SIVQ [Rai+17]. All the approaches are applied to SEGUE’s
WideEye segmentation. We offer to CBF and SIVQ all the available
options, in other words the ones that SEGUE uses as standard (and
non removable) and the augmented ones. We test CBF under three
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VMAF thresholds (40, 60, 80). We also modified the SIVQ algorithm
to work with VMAF rather than PSNR, and we test it for three different
thresholds (5, 10, 15).

In Fig. 5.14 we show the comparison with SEGUE’s 0, aggregated
across our cross product of videos, ABRs and traces. Both SIVQ and
CBF substantially reduce rebuffering compared to SEGUE. This is
expected, as both approaches (CBF more aggressively than SIVQ)
almost entirely remove the 1440p track, and substantially cut down
the 1080p track. This forces all the ABRs to perform safer choices, as
the highest quality options are not available.

The removal of higher quality tracks has the drawback of reducing
the delivered quality, in particular for FAST traces. This is an expected
behaviour of both CBF and SIVQ, as they optimize for bandwidth and
storage savings. The severity of this reduction depends on the selected
threshold, with SIVQ-5 being the least affected: 0.4% degradation in
average, with 1.5% degradation in FAST traces and 4.3% in the 95-th
percentile of the best traces.

Compared to SIVQ-5, SEGUE improves the VMAF stability in FAST
traces by 4.8%, an improvement that is coherent with the one expe-
rienced by introducing augmentation. For SLOW and MEDIUM
traces, improvements in stability are not substantial. In any case, as
explained in section §5.6, despite our trace set being balanced, 91%
of traces in the analyzed Puffer set are classified as FAST. SEGUE’s
opy improves substantially in challenging scenarios without affecting
the user experience in the most common setting.

Compared to CBF-40 and SIVQ-15, SEGUE’s improvements in
average on FAST traces for the linear QoE formulation utilised in
this work are of 45% and 5.3% respectively. These improvements
are still substantial if compared to CBF-80 (5%), and become small
if compared to SIVQ-5 (>1%), due to the low weight on VMAF
instability in our linear QoE formulation. VMAF instability is indeed
the optimisation metric that SEGUE improves the most.

Last but not the least, SEGUE can be combined with both CBF
and SIVQ. In case of CBF, one could pre-filter both standard and
non standard options for a specific quality setting, and then run the
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SEGUE’s optimization. Similarly, for SIVQ we could just present to
SEGUE optimizer the video segments that are sufficiently different in
terms of perceptual quality performance. However, since adding CBF
or SIVQ to SEGUE would lead to a worse outcome on FAST traces,
we did not include such a combination in our evaluation.

5.7.6 SEGUE’s computational cost

Encode time VMAF time .

ABR STD AUG STD AUG WideEye | Op,
RB 2.9 3.2 12.6 14.9 10.2 2.9
BB 2.9 2.6 12.6 14.9 10.2 2.9

RMPC-A 2.9 3.5 12.6 14.9 26.3 31.3
RMPC-O 2.9 3.5 12.6 14.9 26.3 25.4

Figure 5.15: Benchmarking of SEGUE’s performance for video B as
a ratio between the computational time and the video
length. SEGUE’s brute force exploration time is heavily
affected by the ABR algorithm efficiency.

We benchmarked SEGUE’s computational performance for video B,
as it strikes a good tradeoff between bitrate variability and keyframes
frequency. The benchmark runs on an AMD Ryzen 9 3900x 12-
Core processor and Ubuntu 20.04.3 LTS. Results are presented in
Fig. 5.15 as a fraction of the total computation time and the video
length. SEGUE’s performance highly depends on the ABR algorithm’s
efficiency. SEGUE’s computation time using fast ABR algorithms like
rate or buffer based is comparable to the VMAF computation time.
Using slow ABRs, like both version of R-MPC, takes considerably
more time due to the state space exploration (a problem that has been
tackled by the authors in [Yin+15], and that lead to the formulation
of the more lightweight version Fast-MPC).

Compared to the H.264 encoding time, SEGUE’s segmentation
takes 3.5x more time with the fastest ABR. Nevertheless, SEGUE’s
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segmentation times are comparable to the computational time needed
by more recent codecs, like VP9 and AV 1, that take significantly more
time compared to H.264 ( 5x and 10x respectively [Sim21]), while
SEGUE’s approach and costs are independent on the codec of choice.

SEGUE’s current release is not optimized for runtime and written in
Python3 using the multiprocessing module. This module uses expen-
sive process based parallelism. A reimplementation in an unmanaged
language with better multithreading support (like C++ or Rust) would
likely offer at least an order of magnitude improvement in compute
times, as for example Numba [LPS15] discusses. Also, given the
substantial amount of time that is spent on VMAF calculations, SEGUE
could be extended to either work with computationally cheaper quality
metrics (like PSNR or SSIM), or approaches like the one in [KAB21]
could be used for VMAF rate distortion curves prediction.

5.7.7 dash.js player implementation

5.7.7.1 Using SEGUE in DASH

To confirm that the simulated results are comparable to real world
experiments we run a smaller number of real-time experiments on the
DASH JavaScript reference player.

Variable length segments are natively supported by DASH and there-
fore dash. js [DAS12] through the use of a SegmentTimeline block
in the MPEG-DASH Media Presentation Description (MPD). The
SegmentTimeline is generated alongside the DASH-compatible media
segments using the sigcues filter from GPAC [Le 20], which uses
the pre-segmented SEGUE chunks and creates the corresponding
DASH-playable segments (dashing). For augmented tracks, unavail-
able chunks are replaced by the corresponding chunks of the standard
track during this process, with all the placeholder segments getting
removed once dashing is complete.

Per-segment bitrate information is made available to the player
using an additional JSON file containing detailed information about
all segments. This file is generated as part of the preprocessing step
and is based on the simulator input data. During the startup phase of
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the player, this file is downloaded from a location specified within the
MPD.

The AbrController of dash.js has been adapted to provide
per-segment bitrate information supplied by the additional file instead
of the average bitrates reported in the MPD. It does so by updating the
bitrate (of the next segment) of all tracks to the corresponding values
whenever the bitrate list is assembled.

The same approach is used to introduce basic augmentation sup-
port: Since tracks cannot be removed or added unless the player
switches DASH-Periods - which was not a viable option in this
case - an unavailable track receives a bitrate of 1 Tbit/s instead. An
augmentation-oblivious ABR should not choose a track with such high
a bitrate under normal circumstances, while an augmentation-aware
ABR can check for this (constant) value to see whether an augmented
track is available or not.

The additional information contained in the JSON file can be
accessed by an ABR through the AbrController if needed, which
is used by non-myopic schemes like RMPC to get information about
future segments. The three ABRs, RB, BB and RMPC-0, have been
implemented in JavaScript based on their counterparts used in the
simulation.

Three modifications to the default behaviour of dash. js were
made for our experiments: First, only our custom ABR rule is active,
instead of the combination of rules used normally. Second, the start
of video playback is intercepted and triggered only once at least 10
seconds of video are in the buffer. Finally, the replacing of already
downloaded but not yet played segments (’fast-switching’) has been
disabled.

5.7.7.2 Experiment setup

The tests run locally on Ubuntu 18.04.5 LTS using Apache web-
server (version 2.4.29) to provide the website and video segments.
Selenium WebDriver [Con] launches Google Chrome (version 87) in
headless mode to load the page and play the video.
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This process is run from within a Mahimahi shell [Net+15] to
emulate different network conditions based on network traces. Metrics
from dash. js are output through JavaScript log messages, which are
retrieved and processed to generate the results.

A set of 100 traces is used to run experiments on video A in real-
time with dash. js, the results of which are then used to compare the
simulation results on the same set of traces to. All three ABRs were
run on three configurations: constant-length segments without aug-
mentation, the corresponding ABR-specific WideEye segmentations
without augmentation, and the ABR-specific segmentation with o,
augmentation. The quality metrics are then aggregated using the VMAF
4K model.

100 = Const, Sim —
= = Const, Dash /7
=== WideEye+oy,, Sim 4
80 | === WideEye+o),, Dash 7
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.—’U‘
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-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
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Figure 5.16: Comparison of resulting QoE between simulation and
dash. js implementation on the same set of 100 traces
for video A and RB. The QoE is normalized by the mean
of constant length.
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5.7.7.3 Results

Overall, results in the QoE distribution are similar. An example of
such a comparison is shown in Fig. 5.16. The figure shows the CDF of
the distribution of the QoE for video A and RB, evaluated using VMAF
4K. Lines are plotted for the video without Segue (using constant
length segments), and with Segue (WideEye+07y,), and each of those
once for simulation and execution in DASH.

Similar results are obtained for the ABRs BB and RMPC-0. In partic-
ular, the improvements in performance in the mean of WideEye+o7,,,
with respect to constant are of 5.3%, 6.7% and 5.6% in simulation for
BB, RB and RMPC, while in DASH we obtained 5.1%, 7.3% and 5.1%.
Improvements have been calculated following the formula expressed
in §5.7.8.

5.7.8 Summary of results

We evaluated SEGUE across 4 adaptation algorithms, 11 videos,
and 3 trace buckets. SEGUE typically maintains average VMAF, while
reducing switching and tail rebuffering, at the expense of reduced
VMAF for a small fraction of chunks. This is a highly favorable tradeoff
for the QoE function.

We calculate QoE improvements as: 100 - , Where
Omax is the maximum achievable QoE. Comparirﬁxg Osrgur and
Oconstant directly would only show larger numbers. Across our
result matrix, SEGUE’s mean QoE improvement is 8.6%, with 36.5%
improvement in the 5"-percentile. When limited to SLOW traces,
these numbers are 22.1% and 111% respectively. Full tables of results
are in Fig. 5.17 5.18 and Fig. 5.19 5.20.

For context on SEGUE’s QoE improvements, we can compare them
to those for algorithmic improvements in rate adaptation. Across our
traces, QoE for Constant improves by less than 2% when using R-MPC
instead of BB. (This is in line with experiments in the recent Puffer
work [Yan+20], providing validation for our evaluation.) Our improve-
ments are larger than what Facebook measured [Mao+19] in testing
reinforcement learning adaptation, where under 6% improvements

Osecve=QcConstant
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Figure 5.17: SEGUE’s results with WideEye segmentation and no

augmentation for BB and RB, compared to Constant.

for traces with sub-500 Kbps bandwidth (as much 3x slower than our

SLOW set) are reported as “substantial” for Facebook.

5.8 Discussion and Future Work

With SEGUE, we have only begun exploring new opportunities
that arise from accounting for the temporal variations in video content
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Figure 5.18: SEGUE’s results with WideEye segmentation and no
augmentation for RMPC-A and RMPC-O, compared to
Constant.

and their interactions with online adaptation.

Algorithmic work: Much like for rate adaptation, where new algo-
rithms continue to be devised, we fully expect SEGUE to set off a new
thread on how best to optimize chunking. A particularly promising op-
portunity for segmentation lies in doing chunking online, whereby the
client could adaptively request video in terms of keyframe boundaries,
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Video Traces
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Figure 5.19: SEGUE’s results with WideEye segmentation and opy,
augmentation for BB and RB, compared to Constant.

instead of being restricted to a particular offline chunking scheme.
This approach can adapt chunking to both video content and network
variations, without needing real-time reencoding.

Co-design of encoding and adaptation: While most ABR work treats
video as an uncontrolled input and focuses on adaptation, we take the
opposite perspective, treating rate adaptation as a given, and exploring
how to modify video chunking. This obviously raises the question of
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Figure 5.20: SEGUE’s results with WideEye segmentation and op,,
augmentation for RMPC-A and RMPC-O, compared to
Constant.

how closely we could integrate offline encoding and online adaptation.

As our results show, it is non-trivial to tweak algorithms like RMPC,
which bake in today’s typical constant-length segmentation in their
design, to work well with SEGUE. Going further, how would SEGUE
interact with an adaptation algorithm like CAVA [Qin+18], which
explicitly tackles variable bitrate encoding. Does either reduce the
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other’s utility? Or does CAVA’s non-myopic behavior benefit from
SEGUE’s offline preparation, resulting in even larger benefits?

Likewise, on the encoding side, does video for which bitrates are
tuned per scene, like Netflix has started doing [Net18a], reduce the
benefit of SEGUE’s augmentation? Does it increase the benefit of
SEGUE’s segmentation? How do the answers to these questions
depend on the adaptation algorithms used?

In the context of co-designing adaptation logic with SEGUE, the
most straightforward next step would be to modify SEGUE itself to
output a set of representations, both in space and time, and to modify
ABR logic to select (online) between these representations. We plan
to investigate this path in future work.

Deployment considerations: SEGUE requires rethinking some as-
pects of video delivery: (1) As different segments have different
numbers of tracks available, any user interface elements for manually
selecting a track (disabling adaptation) need to hide that difference and
make background decisions accordingly; (2) While we don’t expect
the potentially frequent and minor tweaks in a provider’s adaptation
algorithm to have large effects, large changes to adaptation will need
to be compatible with the video library’s chunking, although this is
not very different from today — constant length segmentation is just
one (implicit) choice.

5.9 Conclusion

SEGUE is the first work to investigate offline video chunking in a
manner that accounts for the interactions of online rate adaptation with
temporal variability in video complexity. Besides showing promising
performance improvements, especially for challenging settings involv-
ing complex videos or low-bandwidth conditions, it calls for closer
integration of offline and online phases. We discuss several exciting
open questions, and release our code to enable their exploration.
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Conclusions and suggested
future works

In this dissertation, we show how network measurements and sim-
ulation can be used to understand, reconstruct and optimise video
streaming applications.

In Chapter 3 we conduct a broad comparison of adaptive bitrate
video streaming algorithms deployed in the wild across 10 large video
platforms offering varied content targeted at different audiences. We
find large differences in player behavior, with a wide spectrum of
choices instantiated across virtually all metrics we examined. For
instance, our results show that: (a) some deployed ABRs are conscious
of perceptual quality metrics while others focused on bitrate; (b) no
deployed ABRs follow available bandwidth as closely as research ABRs;
and (c) several ABRs leave a large fraction of available network capac-
ity unused. Whether this diversity of design choices and behaviors
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stems from careful tailoring towards different use cases and optimiza-
tion objectives, or is merely a natural consequence of sub-optimal,
independent design is unclear. But if large, otherwise extremely
well-engineered platforms like YouTube differ so substantially from
state-of-the-art research ABRs, then it is at least plausible that ABR
research is more narrowly focused than desirable.

In Chapter 4 we take a further step into the analysis of propertary
video streaming algorithms. We pursue an ambitious goal: recon-
structing unknown proprietary streaming algorithms in a human-
interpretable manner. We customize and evaluate a rule-set approach,
achieving good results for reproducing the behavior of algorithms
deployed at several popular online services. Our approach produces
succinct output, open to expert interpretation and modification, and
we discuss through several examples the utility of this interpretabil-
ity. While promising, our results also expose a likely fundamental
limitation — we need to encode and make available suitable domain
knowledge to the learning approach. This can be interpreted as sug-
gesting that we should reconcile learning with our already acquired
human expertise, instead of starting afresh. We hope to apply this ap-
proach, suitably customized, to congestion control as well, where it is
unclear how much diversity there is in actual deployment of different,
unknown congestion control algorithms across popular Web services.

Based on what we learned throughout our investigations of ABR
algorithms, in Chapter 5 we propose SEGUE, one of the first works
to investigate offline video chunking in a manner that accounts for the
interactions of online rate adaptation with the temporal variability in
video complexity. To do so, SEGUE uses a simulation-based method,
exploring and evaluating segmentations and augmentations of a video
flow across a large set of network traces. In such a simulations an ABR
algorithm is used to make decisions, and a QoE function is used to
rank different chunking candidates. Besides showing promising per-
formance improvements, especially for challenging settings involving
complex videos or low-bandwidth conditions, it suggests many future
opportunities for research. In the current implementation, SEGUE’s
tries to find common patterns among different classes of traces, and
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adapts the video segmentation and quality levels to counteract impair-
ments. Given the promising results, an interesting further step in this
direction could be the co-design of adaptation logic with SEGUE. In
this context, SEGUE could be tuned to output a set of representations,
rather than a single one, and the ABR logic should be modified to select
(online) between these representations. We plan to investigate this
path in future works.
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