
ETH Library

EcoFlow: Efficient Convolutional
Dataflows for Low-Power Neural
Network Accelerators

Working Paper

Author(s):
Orosa, Lois; Koppula, Skanda; Umuroglu, Yaman; Kanellopoulos, Constantinos ; Gómez Luna, Juan ; Blott, Michaela; Vissers,
Kees; Mutlu, Onur

Publication date:
2022-02-04

Permanent link:
https://doi.org/10.3929/ethz-b-000595578

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
arXiv, https://doi.org/10.48550/ARXIV.2202.02310

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-5637-6088
https://orcid.org/0000-0002-6514-1571
https://doi.org/10.3929/ethz-b-000595578
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/ARXIV.2202.02310
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

EcoFlow: Efficient Convolutional Dataflows
for Low-Power Neural Network Accelerators

Lois Orosa, Skanda Koppula, Yaman Umuroglu, Konstantinos Kanellopoulos,
Juan Gómez-Luna, Michaela Blott, Kees Vissers, Onur Mutlu

Abstract—Dilated and transposed convolutions are widely used in modern convolutional neural networks (CNNs). These kernels are
used extensively during CNN training and inference of applications such as image segmentation and high-resolution image generation.
Although these kernels have grown in popularity, they stress current compute systems due to their high memory intensity, exascale
compute demands, and large energy consumption.
We find that commonly-used low-power CNN inference accelerators based on spatial architectures are not optimized for both of these
convolutional kernels. Dilated and transposed convolutions introduce significant zero padding when mapped to the underlying spatial
architecture, significantly degrading performance and energy efficiency. Existing approaches that address this issue require significant
design changes to the otherwise simple, efficient, and well-adopted architectures used to compute direct convolutions.
To address this challenge, we propose EcoFlow, a new set of dataflows and mapping algorithms for dilated and transposed
convolutions. These algorithms are tailored to execute efficiently on existing low-cost, small-scale spatial architectures and requires
minimal changes to the network-on-chip of existing accelerators. At its core, EcoFlow eliminates zero padding through careful dataflow
orchestration and data mapping tailored to the spatial architecture. EcoFlow enables flexible and high-performance transpose and
dilated convolutions on architectures that are otherwise optimized for CNN inference.
We evaluate the efficiency of our dataflows on CNN training workloads and Generative Adversarial Network (GAN) training workloads.
Experiments in our new cycle-accurate spatial architecture simulator show that EcoFlow 1) reduces end-to-end CNN training time
between 7-85%, and 2) improves end-to-end GAN training performance between 29-42%, compared to state-of-the-art CNN inference
accelerators.
[Open-Source Artifact] We open-source both our Spatial Architecture Simulator for Machine Learning (SASiML) and the SASiML
compiler to help enable the development of new dataflows and high-accuracy simulation environments for new spatial architectures
and dataflows. This can be freely found at https://github.com/CMU-SAFARI/sasiml.

Index Terms—Neural Network Accelerators, Dataflow, Machine Learning, Hardware/Software Co-Design, Neural Network Training,
Generative Adversarial Networks, Deep Learning.

F

1 INTRODUCTION

Deep convolutional neural networks (CNNs) have been
widely adopted to solve hard problems in computer vision,
natural language understanding, speech processing, medi-
cal applications, and more [1–37]. Transposed and dilated
convolutions are the two key workhorses used to train
CNNs, and run a variety of other deep learning models [38].
For example, both kernels are employed in applications
requiring significant upsampling or downsampling to pro-
cess high-resolution media such as image generation (using
Generative Adversarial Networks (GANs) and Variational
Auto-encoders (VAEs) [7, 39]), image super-resolution [40–
42], and image segmentation [43, 44]. Additionally, more
emerging machine learning works in text-to-speech gen-
eration [45], speech recognition [46], and audio synthe-
sis [47] use dilated convolutions. Other experimental ma-
chine learning models, such as hierarchical capsule net-
works [48] and dilated residual networks [49] for improved
image modeling, use both these convolution types.

• Lois Orosa, Konstantinos Kanellopoulos, Juan Gómez-Luna and
Onur Mutlu are with ETH Zurich.

• Skanda Koppula is with DeepMind.
• Yaman Umuroglu, Michaela Blott, and Kees Vissers are with Xilinx.

Meanwhile, specialized architectures for CNN inference
have gained traction to support the demand for low-cost
deep learning on a variety of devices [50, 51]: Internet-
of-Things devices (IoT) [52–55], phones, wearables [56],
servers, and various embedded electronics [57, 58]. While
these works demonstrate efficient execution of direct con-
volutions (i.e., regular or ‘standard’ convolutions), we find
that existing dataflows for transposed and dilated convo-
lutions are poorly tailored for these architectures, causing
significant bottlenecks for emerging edge workloads that
use transpose and dilated convolutions. Despite this issue,
these workloads are of growing interest to manufacturers,
because they can enable: (1) on-device model training for
improved user data privacy [59–61], (2) high-resolution
image generation critical for augmented reality [62, 63], (3)
real-time speech recognition and generation [42, 45], and
many other applications employing dilated and transposed
convolutions [40, 41, 46, 47, 49, 64–72, 72–77].

To address this issue, we introduce EcoFlow, a new set
of dataflows and data mappings designed to efficiently
perform transposed and dilated convolutions on low-cost,
small-scale spatial architectures that are already widely
in-use for regular CNN inference. We identify key bot-
tlenecks introduced by these operations, originating from
padding and zero-insertions required to up- and down-

1

ar
X

iv
:2

20
2.

02
31

0v
1

 [
cs

.L
G

]
 4

 F
eb

 2
02

2

https://github.com/CMU-SAFARI/sasiml

sample feature maps. EcoFlow circumvents these bottle-
necks by meticulously orchestrating the data mapping and
dataflows onto the target spatial architecture. By eliminating
unnecessary operations, EcoFlow achieves significant im-
provements in performance and energy consumption, with
minimal changes to the spatial array of a common CNN
inference accelerator.

We improve on several prior works that propose spe-
cialized accelerators that target specifically either trans-
posed convolutions [78–81], dilated convolutions [80, 81],
or general sparsity [82–89]. We generalize, simplify, and
significantly reduce the required architectural changes to
support exactly the structured sparsity of these convolu-
tional kernels. Our design goal is to avoid highly-specialized
accelerator architectures that are markedly different from
common and well-understood spatial architectures (i.e., a
matrix of processing elements working in a systolic array
fashion) optimized for direct convolutions. Re-use of exist-
ing hardware architectural designs permits lower testing
and manufacturing costs. EcoFlow could also inspire the
optimization of dataflows for spatial architectures designed
to accelerate other applications such as genome sequence
analysis [90–96].

We make the following key contributions:
• We propose EcoFlow, a new set of dataflows and data

mappings that enable efficient execution of transpose
and dilated convolutions on CNN inference accelera-
tors by introducing minimal hardware changes (Sec-
tion 4).

• We develop a cycle-accurate spatial architecture simu-
lator to evaluate EcoFlow. Our architectural simulator
includes TPU [97], Eyeriss [50], and EcoFlow models,
and it supports efficient execution of transposed, di-
lated, and direct convolutions (Section 5).

• We comprehensively evaluate the performance and
energy efficiency of EcoFlow. Our evaluation shows
that EcoFlow: 1) reduces end-to-end CNN training time
between 7-85%, and 2) improves end-to-end GAN train-
ing performance between 29-42%, compared to state-of-
the-art CNN inference accelerators.

2 BACKGROUND

A deep convolutional neural network (CNN) is a neural
network with one or more convolutional layers. A convo-
lutional layer in a CNN applies a sliding filter to a 2D or 3D
matrix that represents the input image or intermediate layer
input. The input and output matrices to a convolutional
layer are referred to as the input feature map (ifmap) and
output feature map (ofmap), respectively. The filter (or kernel)
is the sliding filter that is applied to the ifmap to calculate
the ofmap. In each convolutional layer, there are usually
multiple filters applied in parallel to the ifmap, producing
multiple output matrices that compose the ofmap. The
stride of a convolution refers to the size of the step that the
convolutional filter takes while sliding through the ifmap.
The core operation of a CNN is a multiply-and-accumulate
(MAC) operation. Modern CNNs may have up to 1018

MACs performed during one forward evaluation [98]. Most
of these MAC operations are performed in the convolutional
layers [99].

Inference is the production phase where the CNN clas-
sifies unknown images. Before performing inference in pro-
duction, the network is trained with and algorithm called
backpropagation, that includes the calculation of input gra-
dients and filter gradients. For a detailed treatment of CNN
operation and gradient computation, we refer the reader to
[4, 100–110].

2.1 Different Types of Convolutions in CNNs

Figure 1 illustrates the three main types of convolutions we
can find in convolutional neural networks. This examples
shows the case for the CNN training phase of a convolu-
tional neural network, where we find direct convolutions in
the forward pass, and transposed and dilated convolutions
in the backward pass.

Transposed
Convolution

2

Dilated
Convolution

3 i00 i01 i02 i03

i10 i11 i12 i13

i20 i21 i22 i23

i30 i31 i32 i33

i00 i01 i02 i03

i10 i11 i12 i13

i20 i21 i22 i23

i30 i31 i32 i33

o00 o01

o10 o11

o00 o01

o10 o11

o00 o01

o10 o11

w11 w10

w01 w00

w11 w10

w01 w00

w11 w10

w01 w00

δi00 δi01 δi02 δi03

δi10 δi11 δi12 δi13

δi20 δi21 δi22 δi23

δi30 δi31 δi32 δi33

δi00 δi01 δi02 δi03

δi10 δi11 δi12 δi13

δi20 δi21 δi22 δi23

δi30 δi31 δi32 δi33

δi00 δi01 δi02 δi03

δi10 δi11 δi12 δi13

δi20 δi21 δi22 δi23

δi30 δi31 δi32 δi33

δi00 δi01 δi02 δi03

δi10 δi11 δi12 δi13

δi20 δi21 δi22 δi23

δi30 δi31 δi32 δi33

δw01

δw11

δw01

δw11δw10

δw00 δw01

δw11δw10

δw00

Direct
Convolution

1
w00 w01

w10 w11

w00 w01

w10 w11

i00 i01 i02 i03
i10 i11 i12 i13

i20 i21 i22 i23

i30 i31 i32 i33

i00 i01 i02 i03
i10 i11 i12 i13

i20 i21 i22 i23

i30 i31 i32 i33

o00 o01

o10 o11

o00 o01

o10 o11

w00 w01

w10 w11

i00 i01 i02 i03
i10 i11 i12 i13

i20 i21 i22 i23

i30 i31 i32 i33

o00 o01

o10 o11

o00 o01

o10 o11

o00 o01

o10 o11

input filter output

Fig. 1: Different types of convolutions with an example 4x4
input, 2x2 filter, and stride 2 used in the CNN training
phase.

2.1.1 Direct Convolution
A direct convolution (also known as convolution, standard
convolution, or regular convolution) is one of the most
common operations in convolutional neural networks (in
both inference and training), and other variants of CNNs [7,
39, 45–49, 64, 65, 111, 112]. A direct convolution is performed
by sliding the filter (Wxy) over the input (ixy) with a specific
stride (stride 2 in the example 1 in Figure 1), generally
starting at the top left corner, so as to move the filter to
the boundary of the input (1 in Figure 1).

2.1.2 Transposed Convolution
A transposed convolution operation forms the same connec-
tivity as a direct convolution but in the backward direction,
which requires upsampling the input into an output of
larger dimensions. Transposed convolutions are commonly
used in CNN training and in emerging CNN workloads [40,
41, 46, 47, 49, 64, 65, 67–72]. Figure 1 2 shows an example
that calculates the input gradients (δixy) in the backward
propagation pass of CNN training. A transposed convo-
lution is computed by convolving the error matrix (Oxy)
with the forward pass filter (Wxy) rotated 180◦. Transposed
convolutions introduce zero padding into the error matrix
to produce an output of larger dimensions, up-sampling

2

the backpropagated errors. The error matrix might require
zero-padding in the borders, as in Figure 1 2 . If the stride
is greater than one (the example Figure 1 2 has stride 2),
the error matrix also require internal zero padding as zero-
valued rows and columns.

2.1.3 Dilated Convolution
Dilated convolutions are commonly used in CNN training
and in emerging CNN workloads [40, 41, 46, 47, 49, 64, 65,
73–77]. Figure 1 3 shows a dilated convolution example
that calculates the filter gradients (δWxy) with dilation rate
= 2 (i.e., stride 2) in the backward propagation pass of CNN
training. A dilated convolution is computed by convolving
the input (ixy) with a padded filter (Oxy) to augment its
dimensions. This convolution inserts zero padding as rows
and columns in the filter when the dilatation rate (i.e., the
stride of the convolution when training a CNN) is greater
than one. A dilation rate of 1 does not introduce any
padding in the filter.

2.2 Spatial Architectures for CNN Inference
A spatial compute array is the key component in many
popular low-cost CNN accelerators [50, 58, 97, 113–123].
A spatial architecture consists of a matrix of simple pro-
cessing elements (PEs), interconnected with one or sev-
eral internal networks. Each PE is able to perform a
MAC operation. By orchestrating data into and out of
the PE network, spatial architectures can efficiently im-
plement either matrix multiplications or convolutions. Ex-
amples of spatial architectures include Eyeriss V1/V2 [50,
113], Google’s TPU [97, 117], NVIDIA’s CUDA Tensor
Cores [124], Nanofabrics [125], TRIPS [126], RAW [127],
SmartMemories [128], FlexFlow [114–116], SCNN [129], and
Morph [130].

Figure 2 illustrates the core elements of a common spatial
architecture for CNN inference. At the core is an array
of interconnected PEs. Data is cached on a global on-chip
buffer, which utilizes various network-on-chips (NoCs) to
exchange data with the PE array. In common designs [50,
114], this network enables data transfer between vertically
adjacent PEs, simultaneous broadcast to all PEs, and multi-
casting values to individual sets of PEs. On the left of Fig-
ure 2 we can see the off-chip memory that stores temporary
data that overflows the global buffer, and the complete set of
ifmaps, filters, and final ofmaps. The internal architecture of
the PEs (right side of Figure 2) can differ slightly, based on
the chosen dataflow, accelerator function (e.g. sparse/non-
sparse CNN acceleration), and other optimizations (e.g.
reduced precision, clock-gating). PEs generally store small
amounts of weight or partial sum data which is reused
during dataflow [50, 131].

2.3 CNN Dataflows on Spatial Architectures
We describe the most widely-used dataflows for perform-
ing convolutions in spatial architectures, used to evalu-
ate EcoFlow in Section 6. An in-depth discussion of each
dataflow can be found in [50].

Convolution Dataflows. Row stationary (RS) [50, 132] is
a state-of-the-art dataflow for performing convolutions in

p
su
mO

ff
-C

h
ip

D

R
A

M Global
SRAM
Buffer

Accelerator

PE ArrayPE Arrayifm

filter

ofm
psum

ifm

filter

PE

...

...

filter

ifm

0

out psum

Fig. 2: Common Spatial architecture for CNN inference
acceleration.

spatial architectures. The RS dataflow attempts to minimize
the overall energy consumed by off-chip data accesses by
re-using the convolutional filters and ifmaps. RS minimizes
data movement across all data types by effectively assigning
each PE a 1D convolution to perform. The results of these
1D convolutions (or partial sums) are accumulated with
other partial sums from other PEs to produce the final
ofmap. RS has been shown to be the most energy efficient
dataflow on spatial architectures [50], compared to Weight
Stationary (WS)[133–135] and Output Stationary (OS) [136–
138] dataflows.

Although previous works claim that the choice of
dataflow is not critical for direct convolutions [139], in
this work we demonstrate that this choice does matter for
transposed and dilated convolutions. Using direct convolu-
tion dataflows for transposed and dilated convolutions can
result into low performance and poor energy efficiency.

Matrix Multiplication Dataflows. Lowering a convolution
into a matrix multiplication is a well known technique that
is used today in many CNN frameworks and accelerators,
i.e., TPUs [97, 117]. For a detailed explanation of the lower-
ing process, we refer the reader to [140]. After lowering,
several dataflows can be used for the matrix multiplica-
tion [141]. A common approach uses an output stationary
dataflow in which partial sums are accumulated locally, and
inputs are forwarded to adjacent rows [50]. The matrices
are fed into the PE array from the top and left edges of
the array [113]. This is the approach used in our reference
implementation in Section 6.

3 MOTIVATION AND GOAL

We describe the main inefficiencies of transpose and dilated
convolutions, and how related works require a specialized
accelerators to solve this problem (Section 3.1). Our goal in
this paper is to introduce minimal changes to an existing
DNN inference accelerator to perform tranpose and dilated
convolutions (Section 3.2).

3.1 Inefficiencies of Transposed and Dilated Convolu-
tions

To understand the mechanics and bottlenecks of transpose
and dilated convolution, we analyze the backward pass of
CNN training on representative convolutional layers with
different strides from two common CNNs, ResNet-50 [2]
and AlexNet [101]. Figure 3 shows the percentage of mul-
tiplications by zero required to compute both transposed
and dilated convolutions. We observe that for strides larger
than 1, the zero multiplications dominate utilization by large

3

margins. For example, more than 70% of multiplications
for 2-stride convolutions are zero. The larger the stride, the
larger the number of zero multiplications.

8-stride 4-stride 2-stride 1-stride
0

25

50

75

100

M
ul

ti
pl

ic
at

io
ns

by

 Z
er

o
(%

)
Transpose convolution Dilated convolution

Fig. 3: Padding-induced zero multiplications in transpose
and dilated convolutions during input and filter gradient
calculation of representative CNN layers with different
strides.

We make two observations. First, the PEs that execute
zero operations cannot be used to perform useful operations,
which causes resource under-utilization. Second, although
the result of the multiplication is zero, inputs coming from
other PEs might need to be accumulated and transmitted
to the next node, which practically increases the latency of
useful computations and reduce performance.

3.1.1 Analyzing Transpose Convolutions
Performing a transposed convolution in a spatial archi-
tecture designed for CNN inference requires significant
padding to obtain the correct ofmap dimensions (i.e., up-
sampling). Figure 4 shows two examples of the required
padding in the input for obtaining the desired up-sampled
ofmap1. In the example, layer A requires 40 outer padding
elements in the inputs (81% of the matrix), and layer B
requires 40 outer padding elements and 5 inner padding
elements in the inputs (92% of the matrix).

Stride 1

A
e21

e12e10 e11

e01 e02

e20 e22

e00

e21

e12e10 e11

e01 e02

e20 e22

e00

C D

Stride 2

e01

e10 e11

e00 e01

e10 e11

e00
B

Stride 1

e01

e10 e11

e00 e01

e10 e11

e00 e01

e10 e11

e00

Stride 2

Filter padding
in a Dilated Convolution

Input padding
in a Transpose Convolution

e21

e12e10 e11

e01 e02

e20 e22

e00

e21

e12e10 e11

e01 e02

e20 e22

e00

e21

e12e10 e11

e01 e02

e20 e22

e00

Fig. 4: Example of the zero-padding required to calculate
transpose and dilated convolutions.

We can formulate the amount of padding required by
a particular transposed convolution by considering ifmap,
stride, filter sizes. For a N × N ifmap, K × K filter, and
stride S, the number of inner padding elements is given
by [S (N − 1) + 1]

2 − N2. The number of outer padding
elements is given by 4 (K − 1) [S (N − 1) + 1]+4 (K − 1)

2.
The total number of zero-padding elements increases lin-
early with the ifmap size, and quadratically with the stride.

Transposed convolutions are used for upsampling a in-
put to produce a high-resolution output feature map or me-
dia. For example, semantic segmentation [142] and super-
resolution [40] CNNs output images that are of the same or
higher resolution than their input. Generative Adversarial
Networks [10, 12, 143] use transposed convolutions for the
same purpose.

1. The higher the stride, the higher the up-sampling.

Existing proposals. There are several works that propose to
accelerate transposed convolutions with specialized GAN
accelerators [80–82, 144, 145]. Although these works achieve
significant performance and energy improvements, they do
it at the cost of designing a specialized accelerator for GANs
instead of maintaining a simple, efficient, and more general
spatial architecture optimized for CNN inference.

3.1.2 Analyzing Dilated Convolutions
Figure 4 illustrates two examples (C and D) of the re-
quired filter zero padding in a dilated convolution. Unlike
in transposed convolution, the error matrix is only padded
internally. In C , the stride is one, so the filter gradients can
be calculated without padding. When the stride is larger
than one, filter gradient calculation requires inner padding.
D shows an example of this, with stride 2. 56% of the
padded error matrix is zero. The amount of inner padding
follows the same trend as above, increasing linearly with the
ifmap size and quadratically with the stride.

Dilated convolutions are used in the forward pass of a
handful of emerging, state-of-art classification networks [49,
146, 147]. Dilated convolutions are also used for aiding
visual interpretation of CNNs [148].

Existing proposals. DT-CNN [81] proposes an specialized
hardware accelerator to perform both transposed and di-
lated convolutions using delay cells. Unlike EcoFlow, DT-
CNN is a specialized architecture customized for optimizing
image segmentation workloads.

3.2 Goal
Our proposal builds on two key observations: (1) the
padding required to perform transposed and dilated con-
volutions on spatial architectures has a very negative effect
on efficiency, and (2) the padding is strictly determined by
the characteristics of the convolution and the dimensions of
the feature maps and kernel, and thus the location of zero-
values is static and deterministic. Our goal in this work is to
exploit these two observations in order to (1) eliminate zero
padding to avoid low resource occupation, (2) minimize en-
ergy and memory requirements, (3) maximize throughput,
and (4) introduce minimal changes to the spatial architecture
of common CNN inference accelerators. To this end, we
develop EcoFlow.

4 ECOFLOW

We introduce EcoFlow, a new set of dataflows and data
mapping algorithms for calculating transpose convolutions
(Section 4.1) and dilated convolutions (Section 4.2) in spatial
architectures of CNN accelerators that are optimized for
executing direct convolutions.

The core idea of EcoFlow is to meticulously orchestrate
dataflow and map computation as to avoid zero padding
and occupy PEs with only useful operations. EcoFlow effi-
ciently reuses the spatial architecture used for direct convo-
lutions to execute both transpose and dilated convolutions
efficiently. One of the main characteristics of EcoFlow is
that it can be mapped to existing CNN inference spatial
architectures with minimal hardware changes, which al-
lows efficient execution of transposed, dilated, and direct

4

convolutions. EcoFlow requires small modifications in the
network-on-chip to enable efficient data movements with-
out wasting hardware resources.

The dataflow and mapping onto hardware is computed
at compile time. EcoFlow’s mapping is more complex than
other state-of-the-art dataflows, but this added complexity
is a one-time cost during the initial compilation step. The
compiler calculates a Finite State Machine (FSM) that is
loaded into the PEs to perform the convolutions at runtime.
We explain the details of the hardware architecture in Sec-
tion 4.4.

4.1 Transpose Convolutions

In this section, we explain the steps EcoFlow takes during
compilation time (Section 4.1.1) and runtime (Section 4.1.2)
to perform transposed convolutions.

Without loss of generality, we use an example of the
transposed convolution that calculates the input gradients
in the CNN training algorithm. In this context, the input
of the convolution is the padded error (the amount of
padding depends on stride in the forward pass), the filter
corresponds to the rotated filter from the forward pass,
and the output of the convolution are the calculated input
gradients.

4

Input Gradients

FilterR

w00

w10

w20

w01

w11

w21

w02

w12

w22

w00

w10

w20

w01

w11

w21

w02

w12

w22

e00

e01

e10

e11

e00

e01

e10

e11

Target Computation: Scheduling and mapping:

Ex
ec

ut
io

n
 o

rd
er

Target
Architecture:

PE00 PE01

PE10 PE11

PE00 PE01

PE10 PE11

PE array

Py

Px

PE00 PE01

PE10 PE11

PE array

Py

Px

PE00 PE01

PE10 PE11

PE array

Py

Px

1

2

 ❶ Matrix2Vec ❷ Outer Product ❸ Group Terms ❹ PE Mapping ❺ Data Reorganization

5 5

Same color accumulates together (except
white) to produce one output
(e.g.)δi01w00*e01 w01*e00 δi01w00*e01 w01*e00

3

c3 c4c1 c2

PE10 PE11PE00 PE01 PE10 PE11PE00 PE01

c3 c4c1 c2

δi32

δi00 δi01 δi02 δi03

δi10 δi11 δi13

δi20 δi21 δi22 δi23

δi30 δi31 δi33

δi12

δi40 δi41 δi42 δi43

δi04

δi14

δi24

δi34

δi44

w22 w21 w20
w12 w11 w10

w02 w01 w00

w22 w21 w20
w12 w11 w10

w02 w01 w00

w10*e00

w20*e00

w01*e00

w11*e00

w21*e00

w02*e00

w12*e00

w22*e00

w00*e01

w10*e01

w20*e01

w01*e01

w11*e01

w21*e01

w02*e01

w12*e01

w22*e01

w00*e10

w10*e10

w20*e10

w01*e10

w11*e10

w21*e10

w02*e10

w12*e10

w22*e10

w00*e11

w10*e11

w20*e11

w01*e11

w11*e11

w21*e11

w02*e11

w12*e11

w00*e00

w22*e11

w01*e00

w11*e00

w21*e00

w01*e01

w11*e01

w21*e01

w00*e00

w10*e00

w20*e00

w01*e10

w11*e10

w21*e10

w01*e11

w11*e11

w21*e11

w00*e01

w10*e01

w20*e01

w00*e01

w10*e01

w20*e01

w02*e01

w12*e01

w22*e01

w02*e01

w12*e01

w22*e01

w02*e00

w12*e00

w22*e00

w02*e00

w12*e00

w22*e00

w00*e10

w10*e10

w20*e10

w00*e10

w10*e10

w20*e10

w00*e11

w10*e11

w20*e11

w02*e10

w12*e10

w22*e10

w02*e11

w12*e11

w22*e11

w02*e11

w12*e11

w22*e11

Sh
ift

-1
Sh

if
t-

0
Sh

ift
-1

Sh
if

t-
0

Sh
if

t-
1

Sh
ift

-0
Sh

if
t-

1
Sh

ift
-0

Padded Error

e00 e01

e10 e11

e00 e01

e10 e11

Padded Error

e00 e01

e10 e11

Fig. 5: Example of transposed convolution for calculat-
ing the input gradients on CNN training algorithm using
EcoFlow. The symbol >> represents a column element
shift by one.

4.1.1 Compilation Time.
The EcoFlow compiler determines (1) the computation
scheduling required to compute the (transposed) convolu-
tion and (2) the mapping of computations onto the architec-
ture’s PEs array.

EcoFlow follows five steps to calculate the computation
scheduling and mapping. To improve clarity, we walk

through each step using the example in Figure 5: a trans-
posed convolution with stride 2, 5×5 output (i.e., input
gradients), 3×3 filter (i.e., rotated filter), and 7×7 input (i.e.,
padded error) reshaped using padding from the original
2×2 error):

1 The EcoFlow compiler converts the rotated filter and
the error matrix into symbolic vectors. In Figure 5, these
vectors have dimensions 9×1 and 4×1, respectively.

2 The compiler performs the symbolic outer product of
both vectors by multiplying all elements of the filter by all
elements of the error matrix. The resulting matrix contains
all multiplications required to perform the transposed con-
volution for input gradient calculation. Each gradient is the
sum of some subset of these products. Notably, this matrix
does not contain any zero multiplication due to padding. In
our example, this matrix has dimension 9×4.

3 EcoFlow determines which matrix elements have to
be accumulated together to produce a single input gradient,
and marks them with the same label. The labels are deter-
mined by doing a transposed convolution with placeholder
symbols. In the example, cells with the same color represent
matrix elements with the same label. The exception to this
are the white cells, which produce a single gradient by
themselves; white cells do not need to be accumulated with
other values.

4 The compiler assigns each column of symbolic compu-
tations to a different PE. The mapping assigns consecutive
columns to consecutive PEs, from top to bottom and from
left to right in the PE array. The number of PEs used by
EcoFlow is equal to the dimensions of the error matrix.
In the example, the PE array is composed by 2×2 array,
shown in the bottom left. This mapping can be reorganized
to reduce the number of required PEs (see Grouping).

5 The multiplications are reorganized with the goal of
leveraging local point-to-point network to accumulate par-
tial sums across connected, vertically-adjacent PEs. EcoFlow
maps multiplications that must accumulate together either
into the same PE, or across vertical PEs. The reorganization
consists of circular shifting of these multiplication blocks
across horizontal PEs. Each block shifts b w idx

Wx×stridec PEs
over, where Wx is one dimension of the filter (Wx = 3 in
the example) and w idx is the index of the computation
in the order of execution in each PE (e.g., w00 ∗ e00 has
w idx = 0, w10 ∗ e00 has w idx = 1, etc.). Since the shifting
is circular across horizontal PEs, computation blocks in the
upper row of PEs shift from PE00 to PE01 and from PE01 to
PE00 in the example. In the lower row, computation blocks
shift between PE10 and PE11.

In Figure 5, the first six computation blocks are not
shifted (bw idx

3×2 c = 0 for 0 ≤ w idx < 6), but the next
three blocks are shifted over to the horizontally adjacent
PE (bw idx

3×2 c = 1 for 6 ≤ w idx ≤ 9). As a result of this
reorganization, all the data that needs to be accumulated
together is placed vertically. For example, the light blue
multiply operations (w22 ∗ e01 and w02 ∗ e11) are shifted
so they accumulate across on vertically adjacent PEs, PE00
and PE10.

The EcoFlow compiler also performs optimization tech-
niques, called grouping and expansion, that allows to group

5

Dataflows for transpose and dilated convolutions:

Filter

PE04

PE00

PE05

PE01

PE06

PE02

PE07

PE03

Broadcast

Filter

PE04

PE00

PE05

PE01

PE06

PE02

PE07

PE03

Broadcast

Partial Sums

PE04

PE00

PE05

PE01

PE06

PE02

PE07

PE03

Accumulate Vertically
PE04

PE00

PE05

PE01

PE06

PE02

PE07

PE03

Accumulate Vertically

Partial Sums

PE04

PE00

PE05

PE01

PE06

PE02

PE07

PE03

Accumulate Vertically

Multicast:
color-coded
by receive
group

Input

PE02 PE03

PE04 PE05 PE06 PE07

PE00 PE01

i00 i01 i02
i10 i11 i12
i20 i21 i22
i30 i31 i32
i40 i41 i42

i03
i13
i23
i33
i43

i04
i14
i24
i34
i44

i00 i01 i02
i10 i11 i12
i20 i21 i22
i30 i31 i32
i40 i41 i42

i03
i13
i23
i33
i43

i04
i14
i24
i34
i44

Input

PE02 PE03

PE04 PE05 PE06 PE07

PE00 PE01

i00 i01 i02
i10 i11 i12
i20 i21 i22
i30 i31 i32
i40 i41 i42

i03
i13
i23
i33
i43

i04
i14
i24
i34
i44

Multicast:
color-coded
by receive
group

Input

PE02 PE03

PE04 PE05 PE06 PE07

PE00 PE01

i00 i01 i02
i10 i11 i12
i20 i21 i22
i30 i31 i32
i40 i41 i42

i03
i13
i23
i33
i43

i04
i14
i24
i34
i44

Fig. 6: Dataflow for each data type for transpose and dilated
convolutions used in CNN training to calculate the input
and filter gradients.

Ifmap
Dilated convolution for Filter Gradient Calculation:

1

2 3

Padded Error
e00 e01

e10 e11

e00 e01

e10 e11

δw00

δw12

δw01 δw02

δw10 δw11

δw20 δw21 δw22

δw00

δw12

δw01 δw02

δw10 δw11

δw20 δw21 δw22

i00 i01 i02
i10 i11 i12
i20 i21 i22
i30 i31 i32
i40 i41 i42

i03
i13
i23
i33
i43

i04
i14
i24
i34
i44

i00 i01 i02
i10 i11 i12
i20 i21 i22
i30 i31 i32
i40 i41 i42

i03
i13
i23
i33
i43

i04
i14
i24
i34
i44

Ex
ec

ut
io

n
 o

rd
er

Filter Gradient

Target
Architecture:
PE00 PE01

PE04 PE05

PE02 PE03

PE06 PE07

PE00 PE01

PE04 PE05

PE02 PE03

PE06 PE07

Target
Architecture:
PE00 PE01

PE04 PE05

PE02 PE03

PE06 PE07 PE01

i01*e00

i03*e01

i21*e10

i23*e11

i01*e00

i03*e01

i21*e10

i23*e11

PE00

i00*e00

i02*e01

i20*e10

i22*e11

i00*e00

i02*e01

i20*e10

i22*e11

PE02

i02*e00

i04*e01

i22*e10

i24*e11

i02*e00

i04*e01

i22*e10

i24*e11

PE05

i11*e00

i13*e01

i31*e10

i33*e11

i11*e00

i13*e01

i31*e10

i33*e11

PE04

i10*e00

i12*e01

i30*e10

i32*e11

i10*e00

i12*e01

i30*e10

i32*e11

PE06

i12*e00

i14*e01

i32*e10

i34*e11

i12*e00

i14*e01

i32*e10

i34*e11

PE06

i12*e00

i14*e01

i32*e10

i34*e11
PE03

i20*e00

i22*e01

i40*e10

i42*e11

i22*e00
i42*e10

PE03

i20*e00

i22*e01

i40*e10

i42*e11

i22*e00
i42*e10

PE07

i21*e00

i23*e01

i41*e10

i43*e11

i24*e01

i44*e11

PE07

i21*e00

i23*e01

i41*e10

i43*e11

i24*e01

i44*e11
❶ Symbolic Conv
❷ PE Mapping
❸ Reorganization

❶ Symbolic Conv
❷ PE Mapping
❸ Reorganization

Fig. 7: Dilated convolution using EcoFlow to calculate the
filter gradients in CNN training.

high-dimension convolutions into a small PE array, or to
expand small-dimension convolutions into a large PE array.

4.1.2 Runtime.

The dataflow in EcoFlow leverages existing connections
between vertically adjacent PEs and the on-chip multicast
network present in spatial architectures. In this section, we
describe data feeding and flow of the partial sums, weights,
and error maps through the PE array. Figure 6 summarizes
the dataflow of the three data types through the PE array.

Partial sums are accumulated locally and passed upward.
Each filter-error product is added to a PE-local accumulation
register. If a multiplication is the last one for a particular
label (i.e., a color group) in one PE, the accumulated result
is passed upward to the next PE in the same column. In
Figure 5, the calculation of gradient element δi22 needs
three steps. First, PE11 and PE01 compute w00 × e11 and
w20×e01, respectively. The results are stored in their internal
accumulation registers. Next, the PE’s compute w02 × e10
and w22×e00, adding the result to the accumulation register.
Third, PE11 passes the value in its accumulation register to
PE01, and PE01 adds the received value to its accumulation
register. The result is δi22, which is then stored into the off-
chip memory.

Filter weights are sequentially broadcast to all PEs and
consumed every cycle. In Figure 5, the first set of multipli-
cations usew00, which is used by all PEs (w00×e00,w00×e01,
w00× e10, w00× e11). The next broadcast weight is w10, and
so on.

Error matrix elements are sequentially multicast to the PE
array. Each PE maintains a list of multicast groups to which
it is subscribed, and receives the error elements required.
For example, in Figure 5, PE00 receives the multicast groups
{e00, e01}. Multicast groups are determined at compile time
and loaded into each PE as part of an FSM.

4.2 Dilated Convolution
A dilated convolution is a direct convolution with a modi-
fied kernel (i.e., padded kernel) to match the desired output
dimensions. Without loss of generality, we use an example
of dilated convolution that calculates the filter gradients in
the CNN training algorithm. In this context, the input of the
convolution is the ifmap from the forward pass, the filter
corresponds to the padded error (the amount of padding
depends on stride in the forward pass), and the output of
the convolution are the calculated filter gradients.

4.2.1 Compilation Time.
For a dilated convolution, EcoFlow performs computation
scheduling and data mapping using a three-step process.
For clarity, we walk through compilation using Figure 7
which illustrates filter gradient calculation with a 5×4
ifmap, 3×3 filter, and stride 2 convolutional layer.

1 EcoFlow performs a symbolic convolution between
the ifmap and the padded errors, determining the symbolic
computations required to produce the filter gradients. Dur-
ing this step, the compiler forms groups that accumulate
together to produce a single gradient element. In Figure 7,
multiplications of the same color accumulate together.

2 EcoFlow provisionally assigns the calculation of each
filter gradient to one PE, eliminating inter-PE communica-
tions. Based on the necessity to parallelize channels in a
filter, and to avoid potential slowdowns associated with
large error maps, the compiler automatically reorganizes
and re-distributes the compute schedule using assignment
expansion, as explained in Section 4.2.2.

3 Finally, the compiler determines multicast groups for
the ifmap for use during execution. In the next section, we
describe the dataflow for the partial sums, error matrix, and
ifmap.

4.2.2 Runtime.
EcoFlow uses a straightforward dataflow for calculating
the filter gradients. Similar to the calculation of the input
gradients, the calculation of the filter gradients adapts well
to the underlying on-chip network in state-of-art spatial
architectures. Figure 6 describes the three main dataflows.

Error matrix elements are broadcast to each PE simulta-
neously. In Figure 6, e00 is used by all PEs in their first cycle,
and is the first error to be broadcast.

The input matrix is distributed to the PEs using a mul-
ticast pattern determined by the compiler. Figure 6 illus-
trates the input matrix multicast used for the convolution
described in Figure 7. In Figure 6, we see that each PE is

6

part of at least four receive groups, corresponding to the
number input matrix elements required in its computation
schedule.

Finally, partial sums are accumulated within the PE.
Each PE is responsible for multiplying and accumulating
all the data it receives, and for storing the resulting filter
gradient into off-chip memory. With expansion, each PE
follows a similar procedure: it multiplies and accumulates
all the data mapped to it, and sends the final value to its
vertical neighbor. The top PE, after performing all the local
operations, accumulates any passed-in results, and writes
the final gradient to memory.

4.3 Memory Management

We describe EcoFlow’s data reuse using two concepts from
[50]. First, a PE set is the subset of PEs used to run a 2D
convolution. If the physical array is large enough, several
PE sets can be mapped concurrently in the array. Second,
a processing pass is the contained, simultaneous execution
of 2D convolutions in the PE array. In a single transpose
convolution processing pass, each input element is read
once from the global buffer, and the partial sums are stored
back to the global buffer only once.

For a transpose or a dilated) convolution, EcoFlow has
three types of reuse: 1) it reuses the input values by storing
them in the global buffer using them with different filters,
2) it reuses the filters by broadcasting and using them across
multiple PEs, and 3) it accumulates the partial sums within
the PE and across vertical PEs. The filters are streamed
from DRAM directly to the PE registers, and the inputs and
partial sums are stored in the global buffer for reuse between
processing passes.

To map PE sets into a processing pass, EcoFlow uses five
parameters: n, r, t, q and p. EcoFlow fits r× t PE sets. Every
t PE sets share the same inputs with t filters, and every r PE
sets that run on r channels accumulate their partial sums
within the PE array. Also, a processing pass can process
n inputs, p filters and q channels at the same time. These
parameters depend on the size of the internal PE registers.
EcoFlow exhausts reuse opportunities of inputs and partial
sum across different processing passes.

To optimize these parameters and allocate global buffer
space for inputs and partial sums, our compiler pass runs an
optimization procedure that finds parameters that minimize
energy consumption for a given hardware configuration.

4.4 Hardware Architecture

EcoFlow targets spatial architectures similar to those de-
scribed in Section 2.2. We use Eyeriss [50] as the baseline
architecture, and we incorporate changes to the on-chip
network and PE array to support EcoFlow.

On-Chip Network Requirements. The baseline architecture
uses four on-chip networks: 1) a filter broadcast network
to send filter weights to the PE, 2) an ifmap multicast
network to send a unique ifmap element to each PE (i.e., one
multicast group per PE) 3) an ofmap network that delivers
partial sums to the global buffer, and 4) a network of
local unidirectional point-to-point links that transmit partial
sums through PEs in a column.

EcoFlow requires an expansion of the multicast network,
so that each PE in the array can belong to several multicast
groups. For example, in Figure 7, PE02 belongs to these four
multicast groups: {i02, i04, i22, i24}. The multi-cast group i02
is consists of PE00 and PE02, and likewise for other groups.
To support this, we extend the original multicast network of
Eyeriss [50]. To support an R×C array of PEs, Eyeriss has a
vertical Y -bus consisting of R horizontal X-buses. Each X-
bus has a row ID, and each PE has a column ID. These IDs
are reconfigurable, allowing different layers to map onto the
same array.

We extend this network to have several row IDs per X-
bus, and several column IDs per PE. For a N ×N filter with
stride S, the total number of row IDs that each X-bus needs
to store is given by dNS e. The number of bits needed by
each row ID is d(log2 2N − S)e. 2N − S quantifies the total
number of groups in a row. The equations to calculate the
column ID requirements are exactly the same. We size the
ID registers to support the largest layers in the CNN. For
example, AlexNet requires five 5-bit row IDs per bus, while
ResNet-50 requires four 4-bit row IDs per bus.

We estimate the area overhead of our NoC modifications
by accounting for the additional logic gates and storage
elements required to support the worst case CNN evaluated
in this work. The extra IDs and comparison logic affect all
the PE multicast controllers within the PE array. Our results
show that the additional changes in the NoC introduce a
2.9% area overhead in the PE array.

EcoFlow also uses larger bandwidth to keep all PEs con-
tinuously utilized. Table 1 shows the maximum bus width
required by EcoFlow in the three networks to run at max-
imum throughput on all evaluated CNNs. First, EcoFlow
requires a 64+16 bits wide multicast global input network
(GIN) for filters+ifmaps (forward pass), for errors+filters
(input gradient calculation), and for ifmaps+errors (filter
gradient calculation). Second, EcoFlow requires a 64 bits
wide global output network (GON) for ofmaps (forward
pass), input gradients (input gradient calculation), and fil-
ter gradients (filter gradient calculation). Third, EcoFlow
requires a 64 bits wide local network (Local) for transmitting
psums between vertical PEs.

GIN GON Local

Eyeriss 64 + 16 bits 64 bits 64 bits
EcoFlow 80 + 32 bits 64 bits 64 bits

TABLE 1: Bus bit width of the multicast global input (GIN),
global output (GON), and local (Local) networks.

We observe that EcoFlow does not require additional
bandwidth for GON and Local networks, and it requires
40% more bandwidth for the GIN network.

PE Requirements. Like a typical PE design, EcoFlow needs
an FSM to orchestrate loads and stores to registers, accu-
mulations, stores to the global buffer, and communication
with its neighboring PE. The compiler generates these FSMs.
EcoFlow accumulates in each PE a variable amount of
partial sums before the PE sends the result to the above PE
or to memory, and it needs to accumulate the correspond-
ing partial sums together (e.g., the same colors needs to
accumulated together in Figure 5). This requires a slightly

7

more complex FSM in the PE, compared to row-stationary
dataflow.

Memory Requirements. EcoFlow does not require a dif-
ferent memory hierarchy than other spatial architecture
accelerators. We use commodity DRAM chips and a highly
banked global buffer.

5 SASIML: THE SPATIAL ARCHITECTURE SIMU-
LATOR

To evaluate EcoFlow, we develop SASiML, a new cycle-
accurate simulator that mimics the hardware of a spatial
architecture. SASiML models all the components of the PEs,
the network, and the memory hierarchy. Each component of
SASiML can be fully microprogrammed, and all the latency
and energy parameters are fully parametrizable. SASiML
can estimate the latency and energy consumed by direct,
transpose and dilated convolutions of a particular layer;
many other metrics such as PE utilization and bandwidth
can be measured. We also develop a new compiler that
automatically generates the signals required by SASiML to
execute a particular CNN layer. We open-source both the sim-
ulator and the compiler to help enable the development of
new dataflows and high-accuracy simulation environments
for new spatial architectures and dataflows. This can be
freely found at https://github.com/CMU-SAFARI/sasiml.

5.1 The Simulator

SASiML models the on-chip hardware of a spatial architec-
ture and off-chip DRAM memory. SASiML contains archi-
tecture models for Eyeriss [50] and TPU [97]. SASiML is ex-
tensible and fully programmable. The level of abstraction of
SASiML is similar to RTL: we model a synchronous digital
circuit in terms of the flow of digital signals (data) between
hardware registers, and the logical operations performed on
those signals. In addition to a timing simulator, SASiML
is a functional simulator that propagates the input values
through the PE array to get the output, which allows to
validate that the implementation of the dataflow at micro-
programming level is correctly implemented.

The simulator has three main components: (1) a PE array,
each of which has a global buffer, local registers, pipelined
multiply-and-accumulate unit, and input/output queues
connected to neighbouring PEs (2) a network on chip that
interconnects neighboring PEs and PEs to the global buffer,
and (3) a highly banked global buffer (e.g., 27 banks in our
evaluation in Section 6). All components update their state
at every clock cycle.

The basic organization of the simulator is simple: 1)
the components connect together according to the specific
design of the PEs and networks, 2) all components are
controlled through input and output signals that are mi-
croprogrammed, and 3) all components update their state
cycle by cycle. All components of SASiML are configurable,
including memory sizes, network bandwidth, energy pa-
rameters. We support two variants of PEs, one tailored for
convolutions (e.g., Eyeriss) and one for tailored for matrix
multiplications (e.g., TPUs).

5.2 The Compiler

For simplifying the generation of the microprogramming
control signals for SASiML, we implement a compiler. The
inputs to the compiler are all the characteristics of the
hardware and the CNN layers (e.g., feature map and filter
dimensions). SASiML can perform inference and training
with row-stationary, TPU, or EcoFlow dataflows.

5.3 Validation

We validate SASiML by analyzing that the output values
match the expected golden results, and that the timings and
power consumption are similar to the results reported by
a real chip Eyeriss accelerator [50]. We configure SASiML
with the same row-stationary dataflow parameters and the
same accelerator configuration as reported in [50]. Table 2
shows the execution time, power, total size of global buffer
accesses, and total size of all DRAM accesses for both Eye-
riss and SASiML while running inference on AlexNet [101].
We expect some variations because the Eyeriss paper [50]
does not provide full detail about their exact procedure for
measuring timing, and about their memory management
mechanisms for convolutions with high filter/channel count
that overflow the global buffer. We calculate the power
based on the energy parameters for a 45nm technology
node reported by Horowitz [149]. There are two challenges
for validating the power. First, the technology node of the
Eyeriss chip is 65nm, not 45nm. We address this by scaling
the energy consumption up by a factor of 1.4, based on
estimations obtained from previous studies [150]. Second,
SASiML does not model the energy of many details that
have a large influence in the energy consumption, such as
the clock network, which consumes between 33-45% of the
power [50]. We address this issue by using the Amdahl’s
law to estimate the total power consumption, so we are able
to compare our results with the power consumed by the real
chip [50].

CONV5 CONV4 CONV3 CONV2 CONV1

SA
Si

M
L Exec. Time 12.5ms 18.8ms 25ms 39.5ms 15.2ms

Power 207mW * * * 273mW
GB acc. 23.8MB 35.6MB 66MB 74MB 16.8MB

DRAM acc. 1.5MB 2.1MB 2.6MB 4.11MB 3.6MB

Ey
er

is
s Exec. Time 11ms 16ms 21.8ms 39.2ms 16.5ms

Power 236mW 235mW 266mW 288mW 332mW
GB acc. 24.9MB 37.4MB 50.2MB 77.6MB 18.5MB

DRAM acc. 1.3MB 2.1MB 3.0MB 4.0MB 5.0MB
* Eyeriss [113] does not report the detailed power breakdown of

these layers, so it is not possible to cross-verify these particular
results.

TABLE 2: Comparison of execution time, global buffer (GB)
accesses and DRAM accesses of SASiML and Eyeriss [50].

We observe that the results of SASiML are similar to
the real chip Eyeriss measurements, and follow the same
trends across layers. We make three key observations. First,
the reported SASiML execution time is within 0.07% to
10% of the real Eyeriss accelerator. Second, the amount
of data accessed in memory (GB and DRAM) by SASiML
has a deviation of 0% to 24% from real measurements.
Third, the power consumption reported by SASiML shows a
good approximation, and the results are relatively accurate,

8

https://github.com/CMU-SAFARI/sasiml

despite the fact we could not model many details that are
missing in the real Eyeriss chip paper.

We conclude that SASiML is an cycle accurate simulator
that allows to model different spatial arrays with different
NoCs and PE configurations at a microprogramming level
of detail, which enables to functionally verify the correctness
of dataflows and its implementation.

6 EVALUATION

We evaluate transpose and dilated convolutions using
workloads that contain both types of convolutions: CNN
training (Section 6.2) and GAN training (Section 6.3).

6.1 Experimental Setup
We use the SASiML simulator and the SASiML compiler
(Section 5) to evaluate EcoFlow. We model the energy of the
accelerator with values obtained from a 45nm process [149].
We model DRAM energy using DRAMPower [151]. We
compare EcoFlow to the row-stationary (RS) dataflow [50]
used in Eyeriss and to a lowering-based convolutional
dataflow used in TPUs [97, 117]. Table 3 shows the con-
figuration of the target architecture used in evaluation. We
chose an array of 13×15 PE elements, matching prior work
and tuned with RS and TPU dataflows to fit the dimensions
of the evaluated layers.

PE Array 13 x 15 PEs
PE Array Clock 200 MHz

PE Register File (ifmap, filter, psum) 75, 224, 24
PE Register Latency 1 cycle

Global Buffer 108KB / 27 banks
DRAM 4GB DDR4 1866MHz

Clock Gating Zero Operations
Multiplier/Accumulator 2-stage/1-stage

I/O Queues 8 entries
On-chip Network Latency 1 cycle

TABLE 3: Configuration of the base CNN accelerator.

We implement a clock-gating mechanism that activates
when the PE receives a zero value [50]. This is included in all
our baselines. The NoC of Eyeriss and EcoFlow are similar,
implementing dedicated networks for each data type. We
use the on-chip networks described in Table 1. The TPU
uses a much simpler NoC with only two uni-directional
connections between neighbour PEs (for propagating input
and filter values), while the partial sums are accumulated
locally. We evaluate CNN training in Section 6.2 and GANs
in Section 6.3.

To estimate the execution time of the end-to-end CNN
training algorithm (i.e., execution time of all layers), we
first profile the evaluated models in GPU and CPU to get
the average breakdown of the execution time per layer, and
we apply the Amdahl’s law to calculate the expected total
performance gains.

6.1.1 Optimizing CNN Training for EcoFlow
To get the maximum benefit from EcoFlow on CNN train-
ing, we need to replace pooling layers with larger strides
when possible. Prior work demonstrates that pooling can
be replaced by a convolutional layer with increased stride
without loss in accuracy [152]. The authors show that for

the tested CNNs, when they replace pooling with a con-
volutional layer with 2-stride, there is no accuracy loss. We
corroborate and extend these results with experiments of
our own on six larger, more recent CNNs. We train two
variants of each CNN topology: one with pooling layers and
one with pooling layers replaced with larger stride. We use
the CIFAR-10 [153] and ImageNet [104] training and test
datasets, and retain the default learning hyper-parameters
given in [154, 155].

Table 4 summarizes our results. We observe that using
a larger stride (Stride) instead of pooling layers marginally
reduces accuracy (<2%), and in some cases, improves ac-
curacy. This can be an acceptable trade-off in some applica-
tions, given the performance advantages.

CIFAR-10 ImageNet
CNN Original Stride Diff. Original Stride Diff.

ResNet-18 [2] 94.6% 94.2% -0.4% 69.6% 69.5% -0.1%
ResNet-101 [2] 94.6% 93.7% -0.9% 77.6% 76.9% -0.7%

DenseNet-201 [156] 94.0% 93.7% -0.3% 78.6% 76.8% -1.8%
VGG-19 [102] 92.5% 92.1% -0.4 74.5% 74.6% +0.1%

MobileNet-v2 [157] 90.7% 90.7% +0.0% 74.7% 73.14% -1.56%

TABLE 4: Accuracy comparison of CNNs that downsample
using pooling layers (original) versus a larger stride (Stride).

6.2 CNN Training Evaluation
Table 5 details characteristics of 8 sample layers that we
evaluate from six representative and widely-used CNNs,
namely AlexNet [101], ResNet-50 [2], Shufflenet [158], In-
ception [103], Xception [159], and MobileNet [157].

Our complete evaluation tested 72 layers in total. These
layer topologies and networks encompass a most of the lay-
ers used in popular networks, and include recent winning
topologies of the ILSVRC competitions [104]. We use a batch
size of four in our evaluations. We also evaluate the variant
of each layer that includes the larger stride optimization
described in Section 6.1.1. We denote these layers with a
suffix of opt.

CNN Layer# IFM OFM Filter # Filts Str. Opt.

AlexNet CONV1 3x224x224 55x55 11x11 64 4 Yes
AlexNet CONV2 64x31x31 27x27 5x5 192 1 Yes

ResNet-50 CONV3 128x57x57 28x28 3x3 128 2 No
ShuffleNet CONV2 58x57x57 28x28 3x3 58 2 No
ShuffleNet CONV5 232x7x7 7x7 1x1 232 1 No

Inception CONV3 192x17x17 8x8 3x3 320 2 No
Xception CONV3 728x29x29 14x14 3x3 1 2 No

MobileNet CONV5 512x15x15 7x7 3x3 1 2 No

TABLE 5: Eight of the 72 evaluated layers from three CNNs.

We train using 16 bits instead of the 32 bits used in
typical training algorithms. A previous work [160] demon-
strates, training with BFLOAT16 can achieve the same accu-
racy as training with FP32.

6.2.1 Performance results.
Figure 8 shows the speedup of input gradient calculation
through each layer in TPU, RS and EcoFlow dataflows,
normalized to TPU. Similarly, Figure 9 shows the speedup
of the filter gradient calculation for the three dataflows. The

9

numbers on top of the TPU bars indicate the absolute exe-
cution time of TPU in milliseconds. The layers starting with
the letter ”o” (e.g., Alexnet o-CONV1) are the optimized
versions of the layers (Section 6.1.1).

We make two main observations. First, the speedup of
EcoFlow for calculating the input gradients compared to
TPU and RS is very high for strides larger than 1. As
shown in the figure, the speedup is close to 4x for stride 2
(e.g, resnet50 CONV3), 11x for stride 4 (Alexnet CONV1),
and 52x for stride 8 (Alexnet opt CONV1). For stride 1,
the speedup is from 0% (e.g., resnet50 CONV2) to 10%
(Alexnet CONV3). Second, the speedup of EcoFlow for
calculating the filter gradients compared to TPU and RS
is also very large for stride larger than 1. The speedup is
more than 3x for stride 2 (e.g., resnet50 CONV3), 15.6x for
stride 4 (Alexnet CONV1), and 60.1x for stride 8 (Alexnet o-
CONV1). We conclude that EcoFlow performs the backward
pass much more efficiently than RS and TPUs, especially for
strides larger than 1.

Table 6 shows the speedup of the evaluated end-to-end
CNN networks.

Speedup Energy savings

TPU Eyeriss EcoFlow TPU Eyeriss EcoFlow

Alexnet 1 0.94 1.83 1 0.97 1.38
ResNet-50 1 0.99 1.07 1 1.02 1.06
ShuffleNet 1 0.98 1.08 1 1 1.07

Inception 1 1.01 1.08 1 0.99 1.08
Xception 1 1.01 1.11 1 1.00 1.10

Mobilenet 1 1.01 1.09 1 1.00 1.08

TABLE 6: Speedup and energy savings of end-to-end CNN
training of convolutional layers in different architectures,
normalized to TPU (larger is better).

We make two observations. First, Alexnet greatly bene-
fits from EcoFlow, because more than 80% of the execution
time is dedicated to execute convolution layers following by
pooling layers, or convolutional layer with stride larger than
one. Second, ResNet-50, ShuffleNet, Inception, Xception and
Mobilenet have smaller benefits because many of their con-
volutional layers have stride 1. We conclude that EcoFlow
has very significant end-to-end benefits in networks that use
strides in convolutional or pooling layers. Notice that other
modern networks with larger strides, like EfficientNet [161],
would also greatly benefit from EcoFlow.

6.2.2 Energy Results
In this section, we evaluate the energy consumption of
EcoFlow. PEs are clock gated when idle, and all other
parameters are defined in Table 3.

Figure 10 shows the energy comparison of TPU, RS
and EcoFlow for the input gradient and filter gradient
calculation. The breakdown of the energy includes DRAM
(DRAM), global buffer (GBUFF), internal scratchpad mem-
ories (SPAD), the multipliers and the adders (ALU), and all
on-chip networks (NoC). We make four main observations.
First, the energy consumption of EcoFlow is much lower
than TPU and RS for strides larger than 1. For example, the
maximum energy savings of EcoFlow is 26x for Alexnet-opt-
CONV1 compared to TPU. For the filter gradients, EcoFlow
saves up to 8.3x energy. Second, the energy savings of

EcoFlow are coming mainly from SPAD and NoC, whereas
the energy consumed by DRAM is maintained. Third, for
some layers with stride 1, EcoFlow consumes more energy
than TPU and RS, caused by an increased DRAM energy
consumption. Four, the energy of the filter gradient calcula-
tion is dominated by DRAM in some layers, e.g., resnet50-
CONV4, resnet50-CONV2, since the errors in these layers
have little reuse and are memory bound. This happens when
the kernel size is small. EcoFlow is most energy efficient for
layers that have stride and kernel larger than one.

6.3 GAN Evaluation
In this section, we evaluate GAN convolutional layers ex-
ecuted in the spatial architecture described in Table 3. We
compare EcoFlow to GANAX [144], a hardware GAN ac-
celerator that optimizes the execution of GANs by avoiding
unnecessary zero computations. The key idea introduced
by GANAX is to identify repeated patterns in the GAN
computation and create different microprograms to execute
each of this patterns. GANAX requires significant changes
over an Eyeriss architecture, a new SIMD-MIMD execution
model, a new ISA, a new global buffer to store instructions,
and decoupling of the PEs into execution units and access
units.

Table 7 shows the properties of the evaluated GAN
layers. The layers are used by two representative GANs,
namely CycleGAN [11], and pix2pix [9]. The layers of the
discriminator (Disc) are regular convolutional layers, and
the layers of the generator (Gen) are transposed convolu-
tions. EcoFlow accelerates the backward pass of the discrim-
inator and the forward pass of the generator.

CNN Layer# IFM OFM Filter # Filts Str.

CycleGAN Disc-CONV3 64x114x114 56x56 4x4 128 2
CycleGAN Gen-TCONV1 256x56x56 113x113 3x3 128 2

pix2pix Disc-CONV6 128x130x130 64x64 4x4 256 2
pix2pix Gen-TCONV41 512x64x64 130x130 4x4 128 2

TABLE 7: Evaluated layers from two widely-used GANs.

6.3.1 Performance Results
Figure 11 shows the speedup of the backward (Input, Filter)
and the forward passes of selected GAN layers, for RS, TPU,
GANAX, and EcoFlow dataflows, normalized to RS. We
make two observations. First, EcoFlow performs on the or-
der of 4x better than RS and TPU. Because GANs use strides
larger than 1 instead of pooling layers, EcoFlow accelerates
most convolutional layers. Second, EcoFlow performs 3-4x
times better than GANAX in the filter gradient calculations,
because GANAX does not provide a dataflow to accelerate
gradient calculation. However, GANAX performs very sim-
ilar to EcoFlow in the forward pass of the generative layers,
and in the calculation of the input gradients.

Table 8 shows the speedup of the evaluated end-to-end
GAN networks.

We make the key observation that EcoFlow has large
benefits in end-to-end training of GAN networks. The train-
ing performance of EcoFlow outperforms even specialized
GAN architectures like GANAX, because EcoFlow can ac-
celerate filter gradient calculations.

10

Fig. 8: Speedup of input gradient calculation, normalized to the TPU dataflow, and absolute TPU execution time.

Fig. 9: Speedup of the filter gradient calculation, normalized to the TPU dataflow.

Speedup Energy savings

TPU Eye. GANAX EcoFlow TPU Eye. GANAX EcoFlow

pix2pix 1 0.95 1.34 1.39 1 0.93 1.11 1.29
CGAN 1 0.94 1.37 1.42 1 1.04 1.32 1.37

TABLE 8: Speedup and energy savings (higher is better) of
end-to-end training of two GANs, normalized to TPU.

6.3.2 Energy Results
Figure 12 shows the energy breakdown of the backward (In-
put,Filter) and the forward passes of selected GAN layers,
for TPU, RS and EcoFlow dataflows, in absolute values. We
could not compare to GANAX because some implementa-
tion details are missing in the paper (e.g., data reuse in each
memory).

We make two main observations. First, the energy con-
sumption of EcoFlow is much lower than the energy con-
sumption of TPU and RS. For example, for the cyclegan-
disc-CONV3 layer the energy savings of EcoFlow are in the
order of 4x compared to TPU and RS. Second, similar to the
results in CNN training (Section 6.2), the energy savings of
EcoFlow are coming from reducing the energy in the SPADs,
NOC and ALUs, whereas the DRAM energy consumption
is very similar in all dataflows.

A key property of GANs is that they use larger strides
instead of pooling layers, so most of the layers of state-of-
the-art GANs benefit from EcoFlow.

7 RELATED WORK

To our knowledge, this is the first work to design efficient
dataflows to perform transpose and dilated convolutions

on low-power CNN inference accelerators. We have already
extensively compared EcoFlow to the Google TPU [97, 117],
Eyeriss [50] and GANAX [144]. In this section, we describe
other related works.

Specialized Inference Accelerators. Most existing spe-
cialized CNN accelerators are optimized for direct con-
volutions commonly used on CNN inference (e.g. Eye-
riss [50], DaDiannao [162], Tetris [131], and Minerva [163]).
WaveCore [164] and Google’s TPUv2 [97] support CNN
training, but suffer from challenges highlighted in Section 3.
EcoFlow solves these issues, while introducing minimal
changes to the CNN inference accelerator architecture.

Specialized Training Accelerators. Cambricon-Q [165] pro-
poses a hybrid architecture consisting of an ASIC accelera-
tion core and a near-data-processing (NDP) engine with the
goal of improving the efficiency of statistic-based quantiza-
tion. Equinox [166] proposes a custom inference accelera-
tor that has the main goal of interleaving training during
idle inference cycles. FPRaker [167] proposes a processing
element that can perform MAC operations concurrently
to accelerate DNN training. Unlike these works, EcoFlow
targets a different problem, which is the inefficiency of
convolutional dataflows used in DNN training and other
DNN workloads.

Sparse Accelerators. Sparse accelerators [84, 129, 168–176]
address the inefficiencies caused by zeros contained in
sparse matrices, which is a fundamentally different problem
than padding introduced by transpose and dilated convolu-
tions. EcoFlow can be incorporated to these accelerators to
obtain aggregated benefits.

11

0

2

4

6

En
er

gy
 (

J)

TPU RS ECO TPU RS ECO

Input Filter

Alexnet-CONV5

DRAM GBUFF SPAD NOC ALU

0

5

10

TPU RS ECO TPU RS ECO

Input Filter

Alexnet-CONV2

0

10

20

30

40

TPU RS ECO TPU RS ECO

Input Filter

Alexnet-CONV1

0

2

4

TPU RS ECO TPU RS ECO

Input Filter

Alexnet-opt-CONV5

0.0

2.5

5.0

7.5

10.0

TPU RS ECO TPU RS ECO

Input Filter

Alexnet-opt-CONV2

0

10

20

30

TPU RS ECO TPU RS ECO

Input Filter

Alexnet-opt-CONV1

0

10

20

En
er

gy
 (

J)

TPU RS ECO TPU RS ECO

Input Filter

resnet50-CONV5

0.0

2.5

5.0

7.5

10.0

TPU RS ECO TPU RS ECO

Input Filter

resnet50-CONV4

0

10

20

TPU RS ECO TPU RS ECO

Input Filter

resnet50-CONV3

0

10

20

30

TPU RS ECO TPU RS ECO

Input Filter

resnet50-CONV2

0.0

0.2

0.4

TPU RS ECO TPU RS ECO

Input Filter

Shufflenet-CONV5

0

2

4

TPU RS ECO TPU RS ECO

Input Filter

Shufflenet-CONV2

0

2

4

6

8

En
er

gy
 (

J)

TPU RS ECO TPU RS ECO

Input Filter

Inception-CONV3

0

2

4

6

TPU RS ECO TPU RS ECO

Input Filter

Inception-CONV2

0.0

0.1

0.2

0.3

0.4

TPU RS ECO TPU RS ECO

Input Filter

Xception-CONV4

0.00

0.25

0.50

0.75

1.00

TPU RS ECO TPU RS ECO

Input Filter

Xception-CONV3

0.00

0.05

0.10

0.15

0.20

TPU RS ECO TPU RS ECO

Input Filter

Mobilenet-CONV5

0.0

0.1

0.2

0.3

TPU RS ECO TPU RS ECO

Input Filter

Mobilenet-CONV4

Fig. 10: Energy consumption of the evaluated layers.

Input Filter
0

50

100

150

200

Ti
m

e
(m

s)

Cyclegan-Disc-CONV3
TPU RS GANAX Ecoflow

Input Filter
0

200

400

600

800

1000

Pix2pix-Disc-CONV6

Forward
0

100

200

300

400

500

Cyclegan-Gen-CONV1

Forward
0

500

1000

1500

2000

Pix2pix-Gen-CONV47

Fig. 11: Execution time of the evaluated GAN layers.

Input Filter
0

20

40

60

80

En
er

gy
 (

J)

TP
U RS

Ec
of

lo
w

Cyclegan-Disc-CONV3
DRAM GBUFF SPAD NOC ALU

Input Filter
0

100

200

300

400

500
Pix2pix-Disc-CONV6

Forward
0

50

100

150

Cyclegan-Gen-CONV1

Forward
0

200

400

600

Pix2pix-Gen-CONV47

Fig. 12: Energy breakdown of the evaluated GAN layers.

GAN Accelerators. Prior works focus on accelerating GANs
by performing transposed convolutions on new memory
technologies [78, 79], FPGAs [177], and significantly mod-
ified spatial architectures [80, 81, 144]. Our work is unique
in that 1) it focuses on both transposed and dilated convolu-
tions, 2) it requires fewer hardware changes, 3) it proposes
a multicast network that is able to effectively distribute the
input data into the corresponding PEs, and 4) it evaluates
GAN training and CNN training.

Winograd and Frequency-Domain Algorithms. Winograd
is an alternative algorithm to perform matrix multiplica-
tions [178–180] that reduces the number of computations in
CNNs via a series of data transformations. GradFlow, how-
ever, targets the orthogonal problem of the zero padding

introduced by the training algorithm to upscale and back-
propagate the errors through the network. Frequency do-
main backpropagation [181] replaces convolutions with sim-
ple point-wise multiplications, which avoids the inefficien-
cies of transposed and dilated convolutions. However, this
approach requires computationally-intensive Fast Fourier
Transforms (FFTs) and Inverse FFTs (IFFTs) at the boundary
of every layer, and it requires a larger memory footprint.

Other Algorithms. Direct convolutions [182, 183] can avoid
zero padding in the backward pass of some layers that
meet some specific and restricted parameters. In contrast,
EcoFlow is a general dataflow that can apply to the back-
ward pass of any convolutional layer.

Other Techniques to Improve the Efficiency of DNN
Workloads. There are other techniques to improve per-
formance and reduce energy consumption in DNN work-
loads [131, 184–226]. For example, EDEN [187] reduces
energy consumption by reducing the timing parameters
and the voltage of DRAM, while [188] improves energy
efficiency by reducing the voltage of SRAM in a DNN
accelerator. Mensa [189, 190] tackle the problem of hetero-
geneity in ML workloads by considering several aspects
(e.g., off-chip memory, on-chip buffers, compute-centric vs.
data-centric acceleration, dataflow, etc.) to propose a family
of accelerators where each accelerator tackles a different
ML workload or layer. FloatPIM [203] is a Processing-in-
Memory (PIM) [227, 228] approach that natively supports
floating-point representation in resistive memories for CNN
training workloads. Unlike EcoFlow, these approaches do
not fundamentally re-design the dataflow of dilated and
transposed convolutions to avoid inefficiencies in low-cost
accelerators with limited hardware resources.

12

8 CONCLUSION

In this work, we aim to accelerate transpose and dilated
convolutions in energy-efficient spatial architectures de-
signed for CNN inference. We observe that a main source of
inefficiencies of state-of-the-art CNN inference accelerators
when executing transpose and dilated convolutions is the
large amount of required zero padding, which diminishes
the overall energy efficiency and performance.

To address this issue, we propose EcoFlow, a new set
of mapping and dataflows for transpose and dilated convo-
lutions. EcoFlow eliminates zero-padding by meticulously
orchestrating the scheduling, dataflow, and data mapping
to fit the characteristics of the target CNN inference ac-
celerator. We show that, by introducing minimal changes
to the CNN inference hardware, EcoFlow can significantly
improve the energy efficiency and performance of common
CNN training workloads. We conclude that EcoFlow en-
ables commonly-used low-power CNN inference accelera-
tors to efficiently perform CNN training, GAN training and
other workloads that use transpose and dilated convolu-
tions, with minimal hardware changes. We hope EcoFlow
inspires future works on ML acceleration that take into
account such important training workloads.

ACKNOWLEDGMENTS

We thank the anonymous reviewers of ISCA'21/20/19, AS-
PLOS'20, and MICRO'20/19 for feedback, and the SAFARI
Research Group members for valuable feedback and the
stimulating intellectual environment they provide. We thank
Taha Shahroodi for his feedback on earlier versions of this
paper. We acknowledge the generous gifts provided by
our industrial partners: Google, Huawei, Intel, Microsoft,
VMware, and the Semiconductor Research Corporation.

REFERENCES

[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, and T. N. Sainath, “Deep
neural networks for acoustic modeling in speech recognition:
The shared views of four research groups,” IEEE Signal processing
magazine, 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016.

[3] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolu-
tional neural network for modelling sentences,” arXiv preprint
arXiv:1404.2188, 2014.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
2015.

[5] N. Ramachandran, S. C. Hong, M. J. Sime, and G. A. Wilson,
“Diabetic retinopathy screening using deep neural network,”
Clinical & experimental ophthalmology, 2018.

[6] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,”
arXiv preprint, 2017.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adver-
sarial nets,” in NIPS, 2014.

[8] C. Han, K. Murao, S. SATOH, and H. Nakayama, “Learning more
with less: GAN-based medical image augmentation,” Medical
Imaging Technology, 2019.

[9] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” in CVPR,
2017.

[10] C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio
synthesis,” arXiv preprint arXiv:1802.04208, 2018.

[11] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial networks,”
in ICCV, 2017.

[12] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos
with scene dynamics,” in NIPS, 2016.

[13] A. I. Khan, J. L. Shah, and M. M. Bhat, “CoroNet: A deep neural
network for detection and diagnosis of COVID-19 from chest x-
ray images,” Computer Methods and Programs in Biomedicine, 2020.

[14] W. Shen, M. Zhou, F. Yang, C. Yang, and J. Tian, “Multi-scale
convolutional neural networks for lung nodule classification,” in
IPMI, 2015.

[15] J.-Z. Cheng, D. Ni, Y.-H. Chou, J. Qin, C.-M. Tiu, Y.-C. Chang, C.-
S. Huang, D. Shen, and C.-M. Chen, “Computer-aided diagnosis
with deep learning architecture: applications to breast lesions in
us images and pulmonary nodules in CT scans,” Scientific reports,
2016.

[16] J. Kim, V. D. Calhoun, E. Shim, and J.-H. Lee, “Deep neural
network with weight sparsity control and pre-training extracts
hierarchical features and enhances classification performance:
Evidence from whole-brain resting-state functional connectivity
patterns of schizophrenia,” Neuroimage, 2016.

[17] R. Li, W. Zhang, H.-I. Suk, L. Wang, J. Li, D. Shen, and S. Ji,
“Deep learning based imaging data completion for improved
brain disease diagnosis,” in MICCAI, 2014.

[18] S. Feng, H. Zhou, and H. Dong, “Using deep neural network with
small dataset to predict material defects,” Materials & Design,
2019.

[19] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in ICSE, 2018.

[20] R. Lindsey, A. Daluiski, S. Chopra, A. Lachapelle, M. Mozer,
S. Sicular, D. Hanel, M. Gardner, A. Gupta, R. Hotchkiss et al.,
“Deep neural network improves fracture detection by clinicians,”
PNAS, 2018.

[21] A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison,
C. Bourn, M. P. Turakhia, and A. Y. Ng, “Cardiologist-level
arrhythmia detection and classification in ambulatory electrocar-
diograms using a deep neural network,” Nature medicine, 2019.

[22] K. Sharma, A. Aggarwal, T. Singhania, D. Gupta, and A. Khanna,
“Hiding data in images using cryptography and deep neural
network,” arXiv preprint arXiv:1912.10413, 2019.

[23] J. Hermann, Z. Schätzle, and F. Noé, “Deep-neural-network so-
lution of the electronic schrödinger equation,” Nature Chemistry,
2020.

[24] C. Tian, J. Ma, C. Zhang, and P. Zhan, “A deep neural network
model for short-term load forecast based on long short-term
memory network and convolutional neural network,” Energies,
2018.

[25] K. T. Schütt, M. Gastegger, A. Tkatchenko, K.-R. Müller, and
R. J. Maurer, “Unifying machine learning and quantum chem-
istry with a deep neural network for molecular wavefunctions,”
Nature communications, 2019.

[26] W. Lu, G. Wan, Y. Zhou, X. Fu, P. Yuan, and S. Song, “DeepVCP:
An end-to-end deep neural network for point cloud registration,”
in ICCV, 2019.

[27] L. Gao, X. Li, D. Liu, L. Wang, and Z. Yu, “A bidirectional
deep neural network for accurate silicon color design,” Advanced
Materials, 2019.

[28] L. Li, L. G. Wang, F. L. Teixeira, C. Liu, A. Nehorai, and T. J. Cui,
“DeepNIS: Deep neural network for nonlinear electromagnetic
inverse scattering,” IEEE Transactions on Antennas and Propagation,
2018.

[29] H. Su, W. Qi, C. Yang, J. Sandoval, G. Ferrigno, and E. De Momi,
“Deep neural network approach in robot tool dynamics identifi-
cation for bilateral teleoperation,” IEEE Robotics and Automation
Letters, 2020.

[30] N. Lubbers, J. S. Smith, and K. Barros, “Hierarchical modeling of
molecular energies using a deep neural network,” The Journal of
chemical physics, 2018.

[31] W. Zhu and G. C. Beroza, “PhaseNet: a deep-neural-network-
based seismic arrival-time picking method,” Geophysical Journal
International, 2019.

[32] A. Kaya, A. S. Keceli, C. Catal, H. Y. Yalic, H. Temucin, and
B. Tekinerdogan, “Analysis of transfer learning for deep neural
network based plant classification models,” Computers and elec-
tronics in agriculture, 2019.

[33] D. K. Jain, P. Shamsolmoali, and P. Sehdev, “Extended deep neu-
ral network for facial emotion recognition,” Pattern Recognition
Letters, 2019.

13

[34] Z. Zhang, D. Robinson, and J. Tepper, “Detecting hate speech on
twitter using a convolution-GRU based deep neural network,” in
European semantic web conference, 2018.

[35] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng,
J. Ni, B. Zong, H. Chen, and N. V. Chawla, “A deep neural
network for unsupervised anomaly detection and diagnosis in
multivariate time series data,” in AAAI, 2019.

[36] K. D. Julian, M. J. Kochenderfer, and M. P. Owen, “Deep neural
network compression for aircraft collision avoidance systems,”
Journal of Guidance, Control, and Dynamics, 2019.

[37] M. Shafique, M. Naseer, T. Theocharides, C. Kyrkou, O. Mutlu,
L. Orosa, and J. Choi, “Robust machine learning systems: Chal-
lenges, current trends, perspectives, and the road ahead,” IEEE
Design & Test, 2020.

[38] Y. Bengio, “Practical recommendations for gradient-based train-
ing of deep architectures,” in Neural networks: Tricks of the trade.
Springer, 2012.

[39] D. P. Kingma and M. Welling, “Auto-encoding variational
Bayes,” arXiv preprint arXiv:1312.6114, 2013.

[40] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep
convolutional network for image super-resolution,” in ECCV,
2014.

[41] W. Shi, F. Jiang, and D. Zhao, “Single image super-resolution
with dilated convolution based multi-scale information learning
inception module,” in ICIP, 2017.

[42] Z. Zhang, X. Wang, and C. Jung, “DCSR: Dilated convolutions
for single image super-resolution,” IEEE Transactions on Image
Processing, 2018.

[43] R. Girshick, “Fast R-CNN,” in ICCV, 2015.
[44] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards

real-time object detection with region proposal networks,” in
NIPS, 2015.

[45] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” arXiv preprint
arXiv:1609.03499, 2016.

[46] K. J. Han, R. Prieto, and T. Ma, “State-of-the-art speech recogni-
tion using multi-stream self-attention with dilated 1d convolu-
tions,” in ASRU, 2019.

[47] J. Pons, S. Pascual, G. Cengarle, and J. Serrà, “Upsampling arti-
facts in neural audio synthesis,” arXiv preprint arXiv:2010.14356,
2020.

[48] S. Srivastava, P. Agarwal, G. Shroff, and L. Vig, “Hierarchical cap-
sule based neural network architecture for sequence labeling,” in
IJCNN, 2019.

[49] F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,”
in CVPR, 2017.

[50] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deeooli convolutional neu-
ral networks,” JSSC, 2017.

[51] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in
ISCA, 2016.

[52] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi,
“Scaling for edge inference of deep neural networks,” Nature
Electronics, 2018.

[53] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object
detection for mobile augmented reality,” in MobiCom, 2019.

[54] N. D. Lane and P. Warden, “The deep (learning) transformation
of mobile and embedded computing,” Computer, 2018.

[55] R. Hadidi, J. Cao, Y. Xie, B. Asgari, T. Krishna, and H. Kim,
“Characterizing the deployment of deep neural networks on
commercial edge devices,” in IISWC, 2019.

[56] A. Mathur, N. D. Lane, S. Bhattacharya, A. Boran, C. Forlivesi,
and F. Kawsar, “DeepEye: Resource efficient local execution of
multiple deep vision models using wearable commodity hard-
ware,” in MobiSys, 2017.

[57] N. D. Lane, S. Bhattacharya, A. Mathur, P. Georgiev, C. Forlivesi,
and F. Kawsar, “Squeezing deep learning into mobile and em-
bedded devices,” IEEE Pervasive Computing, 2017.

[58] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “YodaNN: An ar-
chitecture for ultralow power binary-weight CNN acceleration,”
TCAD, 2017.

[59] S. Choi, J. Sim, M. Kang, and L.-S. Kim, “TrainWare: A memory
optimized weight update architecture for on-device convolu-
tional neural network training,” in ISLPED, 2018.

[60] J. J. Stubbs, G. C. Birch, B. L. Woo, and C. G. Kouhestani,
“Physical security assessment with convolutional neural network
transfer learning,” in ICCST, 2017.

[61] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed
deep neural networks over the cloud, the edge and end devices,”
in ICDCS, 2017.

[62] R. Ranjan and W.-S. Gan, “Natural listening over headphones in
augmented reality using adaptive filtering techniques,” TASLP,
2015.

[63] J. Donahue and K. Simonyan, “Large scale adversarial represen-
tation learning,” in NIPS, 2019.

[64] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in CVPR, 2015.

[65] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethink-
ing atrous convolution for semantic image segmentation,” arXiv
preprint arXiv:1706.05587, 2017.

[66] S. Ö. Arık, H. Jun, and G. Diamos, “Fast spectrogram inversion
using multi-head convolutional neural networks,” IEEE Signal
Processing Letters, vol. 26, no. 1, pp. 94–98, 2018.

[67] Y. Li, J. Chang, Z. Wang, and C. Kong, “Inversion and reconstruc-
tion of supersonic cascade passage flow field based on a model
comprising transposed network and residual network,” Physics
of Fluids, 2019.

[68] J. Linmans, J. Winkens, B. S. Veeling, T. S. Cohen, and M. Welling,
“Sample efficient semantic segmentation using rotation equiv-
ariant convolutional networks,” arXiv preprint arXiv:1807.00583,
2018.

[69] J. Gu and H. C. Kang, “Facial landmark detection by stacked
hourglass network with transposed convolutional layer,” Journal
of Korea Multimedia Society, 2021.

[70] S. Yang, Z. Quan, M. Nie, and W. Yang, “Transpose: Keypoint
localization via transformer,” in ICCV, 2021.

[71] C. Zhang, Y. Zheng, B. Guo, C. Li, and N. Liao, “SCN: A novel
shape classification algorithm based on convolutional neural
network,” Symmetry, 2021.

[72] L. A. Lim and H. Y. Keles, “Foreground segmentation using
convolutional neural networks for multiscale feature encoding,”
Pattern Recognition Letters, 2018.

[73] L. Zhou, C. Zhang, and M. Wu, “D-LinkNet: LinkNet with
pretrained encoder and dilated convolution for high resolution
satellite imagery road extraction,” in CVPR Workshops, 2018.

[74] B. Wang, Y. Lei, S. Tian, T. Wang, Y. Liu, P. Patel, A. B. Jani,
H. Mao, W. J. Curran, T. Liu et al., “Deeply supervised 3D
fully convolutional networks with group dilated convolution for
automatic MRI prostate segmentation,” Medical physics, 2019.

[75] J.-Y. Liu and Y.-H. Yang, “Dilated convolution with dilated GRU
for music source separation,” arXiv preprint arXiv:1906.01203,
2019.

[76] D. Deb and J. Ventura, “An aggregated multicolumn dilated
convolution network for perspective-free counting,” in CVPR
Workshops, 2018.

[77] S.-Y. Chang, B. Li, G. Simko, T. N. Sainath, A. Tripathi, A. van den
Oord, and O. Vinyals, “Temporal modeling using dilated convo-
lution and gating for voice-activity-detection,” in ICASSP, 2018.

[78] F. Chen, L. Song, H. H. Li, and Y. Chen, “ZARA: A novel zero-
free dataflow accelerator for generative adversarial networks in
3D ReRAM,” in DAC, 2019.

[79] H. Mao, M. Song, T. Li, Y. Dai, and J. Shu, “LerGAN: A zero-
free, low data movement and PIM-based GAN architecture,” in
MICRO, 2018.

[80] D. Im, D. Han, S. Choi, S. Kang, and H.-J. Yoo, “DT-CNN: An
energy-efficient dilated and transposed convolutional neural net-
work processor for region of interest based image segmentation,”
IEEE Transactions on Circuits and Systems I: Regular Papers, 2020.

[81] D. Im, D. Han, S. Choi, S. Kang, and H.-J. Yoo, “DT-CNN: Dilated
and transposed convolution neural network accelerator for real-
time image segmentation on mobile devices,” in ISCAS, 2019.

[82] M. Song, J. Zhang, H. Chen, and T. Li, “Towards efficient
microarchitectural design for accelerating unsupervised GAN-
based deep learning,” in HPCA, 2018.

[83] C. Zhu, K. Huang, S. Yang, Z. Zhu, H. Zhang, and H. Shen, “An
efficient hardware accelerator for structured sparse convolutional
neural networks on FPGAs,” arXiv preprint arXiv:2001.01955,
2020.

[84] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen,
and Y. Chen, “Cambricon-X: An accelerator for sparse neural
networks,” in MICRO, 2016.

14

[85] K. Kanellopoulos, N. Vijaykumar, C. Giannoula, R. Azizi, S. Kop-
pula, N. M. Ghiasi, T. Shahroodi, J. G. Luna, and O. Mutlu,
“Smash: Co-designing software compression and hardware-
accelerated indexing for efficient sparse matrix operations,” in
MICRO, 2019.

[86] A. K. Mishra, E. Nurvitadhi, G. Venkatesh, J. Pearce, and D. Marr,
“Fine-grained accelerators for sparse machine learning work-
loads,” in ASP-DAC, 2017.

[87] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng,
C. Chakrabarti, H.-S. Kim, D. Blaauw, T. Mudge, and R. Dres-
linski, “OuterSPACE: An outer product based sparse matrix
multiplication accelerator,” in HPCA, 2018.

[88] Y. Umuroglu and M. Jahre, “An energy efficient column-major
backend for FPGA SpMV accelerators,” in ICCD, 2014.

[89] J. Cui and Q. Qiu, “Towards memristor based accelerator for
sparse matrix vector multiplication,” in ISCAS, 2016.

[90] D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subrama-
nian, J. S. Kim, R. Ausavarungnirun, M. Alser, J. Gomez-Luna,
A. Boroumand et al., “GenASM: A high-performance, low-power
approximate string matching acceleration framework for genome
sequence analysis,” in MICRO, 2020.

[91] M. Alser, Z. Bingöl, D. S. Cali, J. Kim, S. Ghose, C. Alkan,
and O. Mutlu, “Accelerating genome analysis: A primer on an
ongoing journey,” IEEE Micro, 2020.

[92] D. Senol Cali, J. S. Kim, S. Ghose, C. Alkan, and O. Mutlu,
“Nanopore sequencing technology and tools for genome assem-
bly: computational analysis of the current state, bottlenecks and
future directions,” Briefings in bioinformatics, 2019.

[93] G. Singh, M. Alser, D. S. Cali, D. Diamantopoulos, J. Gómez-
Luna, H. Corporaal, and O. Mutlu, “FPGA-based near-memory
acceleration of modern data-intensive applications,” IEEE Micro,
2021.

[94] H. Xin, D. Lee, F. Hormozdiari, S. Yedkar, O. Mutlu, and C. Alkan,
“Accelerating read mapping with FastHASH,” in BMC genomics,
2013.

[95] M. Alser, H. Hassan, H. Xin, O. Ergin, O. Mutlu, and C. Alkan,
“GateKeeper: a new hardware architecture for accelerating pre-
alignment in DNA short read mapping,” Bioinformatics, 2017.

[96] J. S. Kim, D. S. Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan,
O. Ergin, C. Alkan, and O. Mutlu, “GRIM-Filter: Fast seed loca-
tion filtering in DNA read mapping using processing-in-memory
technologies,” BMC genomics, 2018.

[97] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, and A. Borchers, “In-
datacenter performance analysis of a tensor processing unit,” in
ISCA, 2017.

[98] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “Ima-
geNet training in minutes,” in ICPP, 2018.

[99] H. Zhu, B. Zheng, B. Schroeder, G. Pekhimenko, and A. Phan-
ishayee, “DNN-Train: Benchmarking and analyzing DNN train-
ing,” Training, 2018.

[100] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. E. Hubbard, and L. D. Jackel, “Handwritten digit recognition
with a back-propagation network,” in NIPS, 1990.

[101] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in NIPS, 2012.

[102] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[103] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR, 2015.

[104] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, “ImageNet
large scale visual recognition challenge,” IJCV, 2015.

[105] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural Networks, 2015.

[106] M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional networks,” in ECCV, 2014.

[107] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in NIPS, 2014.

[108] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep
learning. MIT press Cambridge, 2016.

[109] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[110] J. Bouvrie, “Notes on convolutional neural networks,” 2006.

[111] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine
translation,” arXiv preprint arXiv:1406.1078, 2014.

[112] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille,
“Deep captioning with multimodal recurrent neural networks
(m-RNN),” arXiv preprint arXiv:1412.6632, 2014.

[113] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A
flexible accelerator for emerging deep neural networks on mobile
devices,” JETCAS, 2019.

[114] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A
flexible dataflow accelerator architecture for convolutional neural
networks,” in HPCA, 2017.

[115] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling flexi-
ble dataflow mapping over DNN accelerators via reconfigurable
interconnects,” in ASPLOS, 2018.

[116] H. Kwon, M. Pellauer, and T. Krishna, “MAESTRO: an open-
source infrastructure for modeling dataflows within deep learn-
ing accelerators,” arXiv preprint arXiv:1805.02566, 2018.

[117] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma et al., “Ten lessons from
three generations shaped Google’s TPUv4i,” in ISCA, 2021.

[118] B. Khabbazan and S. Mirzakuchaki, “Design and implementation
of a low-power, embedded cnn accelerator on a low-end FPGA,”
in DSD, 2019.

[119] X. Wei, Y. Liang, X. Li, C. H. Yu, P. Zhang, and J. Cong, “TGPA:
tile-grained pipeline architecture for low latency CNN inference,”
in ICCAD, 2018, pp. 1–8.

[120] W. Choi, K. Choi, and J. Park, “Low cost convolutional neural
network accelerator based on bi-directional filtering and bit-
width reduction,” IEEE Access, 2018.

[121] M. Wang and A. P. Chandrakasan, “Flexible low power CNN
accelerator for edge computing with weight tuning,” in A-SSCC,
2019.

[122] X. Hu, Y. Zeng, Z. Li, X. Zheng, S. Cai, and X. Xiong, “A
resources-efficient configurable accelerator for deep convolu-
tional neural networks,” IEEE Access, 2019.

[123] S. Venkataramani, V. Srinivasan, W. Wang, S. Sen, J. Zhang,
A. Agrawal, M. Kar, S. Jain, A. Mannari, H. Tran et al., “RaPiD:
AI accelerator for ultra-low precision training and inference,” in
ISCA, 2021.

[124] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S.
Vetter, “NVIDIA tensor core programmability, performance &
precision,” in IPDPSW, 2018.

[125] S. Copen Goldstein and M. Budiu, “NanoFabrics: spatial comput-
ing using molecular electronics,” in ISCA, 2001.

[126] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
D. Burger, S. W. Keckler, and C. R. Moore, “Exploiting ILP, TLP,
and DLP with the polymorphous TRIPS architecture,” in ISCA,
2003.

[127] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar,
and S. Amarasinghe, “Space-time scheduling of instruction-level
parallelism on a raw machine,” in ASPLOS, 1998.

[128] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and
M. Horowitz, “Smart memories: A modular reconfigurable ar-
chitecture,” ISCA, 2000.

[129] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An ac-
celerator for compressed-sparse convolutional neural networks,”
in ISCA, 2017.

[130] K. Hegde, R. Agrawal, Y. Yao, and C. W. Fletcher, “Morph:
Flexible acceleration for 3D CNN-based video understanding,”
in MICRO, 2018.

[131] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3D mem-
ory,” in ASPLOS, 2017.

[132] B. Zhang, H. Gu, K. Wang, and Y. Yang, “A novel conv accel-
eration strategy based on logical pe set segmentation for row
stationary dataflow,” IEEE Transactions on Computers, 2021.

[133] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Dur-
danovic, E. Cosatto, and H. P. Graf, “A massively parallel copro-
cessor for convolutional neural networks,” in ASAP, 2009.

[134] H.-J. Yoo, S. Park, K. Bong, D. Shin, J. Lee, and S. Choi, “A 1.93
tops/w scalable deep learning/inference processor with tetra-
parallel mimd architecture for big data applications,” in ISSCC,
2015.

15

[135] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and
L. Benini, “Origami: A convolutional network accelerator,” in
GLSVLSI, 2015.

[136] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng,
Y. Chen, and O. Temam, “ShiDianNao: Shifting vision processing
closer to the sensor,” in ISCA, 2015.

[137] M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for convolutional neural networks,” in
ICCD, 2013.

[138] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep learning with limited numerical precision,” in ICML, 2015.

[139] X. Yang, M. Gao, J. Pu, A. Nayak, Q. Liu, S. E. Bell, J. O. Setter,
K. Cao, H. Ha, and C. Kozyrakis, “DNN dataflow choice is
overrated,” arXiv preprint arXiv:1809.04070, 2018.

[140] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “CuDNN: Efficient primitives
for deep learning,” arXiv preprint arXiv:1410.0759, 2014.

[141] H. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),” in
Sparse Matrix Proceedings, 1979.

[142] H. Noh, S. Hong, and B. Han, “Learning deconvolution network
for semantic segmentation,” in ICCV, 2015.

[143] A. Radford, L. Metz, and S. Chintala, “Unsupervised represen-
tation learning with deep convolutional generative adversarial
networks,” arXiv preprint arXiv:1511.06434, 2015.

[144] A. Yazdanbakhsh, K. Samadi, N. S. Kim, and H. Esmaeilzadeh,
“GANAX: A unified MIMD-SIMD acceleration for generative
adversarial networks,” in ISCA, 2018.

[145] F. Shi, Z. Xu, T. Yuan, and S.-C. Zhu, “HUGE2: a highly untangled
generative-model engine for edge-computing,” arXiv preprint
arXiv:1907.11210, 2019.

[146] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei,
“Deformable convolutional networks,” in ICCV, 2017.

[147] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

[148] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Decon-
volutional networks.” in CVPR, 2010.

[149] M. Horowitz, “1.1 computing’s energy problem (and what we
can do about it),” in ISSCC, 2014.

[150] S. Rodriguez and B. Jacob, “Energy/power breakdown of
pipelined nanometer caches (90nm/65nm/45nm/32nm),” in
ISLPED, 2006.

[151] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji,
B. Akesson, N. Wehn, and K. Goossens, “DRAMPower: Open-
source DRAM power & energy estimation tool,” URL: http://www.
drampower. info, 2012.

[152] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” arXiv preprint
arXiv:1412.6806, 2014.

[153] A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” Tech. Rep., 2009.

[154] K. Liu, “pytorch-cifar,” https://github.com/kuangliu/
pytorch-cifar, 2019.

[155] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic
differentiation in PyTorch,” 2017.

[156] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer, “Densenet: Implementing efficient convnet descriptor
pyramids,” arXiv preprint arXiv:1404.1869, 2014.

[157] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[158] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNET: An extremely
efficient convolutional neural network for mobile devices,” in
CVPR, 2018.

[159] F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” in CVPR, 2017.

[160] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee,
S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen
et al., “A study of bfloat16 for deep learning training,” arXiv
preprint arXiv:1905.12322, 2019.

[161] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for
convolutional neural networks,” arXiv preprint arXiv:1905.11946,
2019.

[162] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “DaDianNao: A machine-learning
supercomputer,” in MICRO, 2014.

[163] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva:
Enabling low-power, highly-accurate deep neural network accel-
erators,” in ISCA, 2016.

[164] S. Lym, A. Behroozi, W. Wen, G. Li, Y. Kwon, and M. Erez, “Mini-
batch serialization: CNN training with inter-layer data reuse,”
arXiv preprint arXiv:1810.00307, 2018.

[165] Y. Zhao, C. Liu, Z. Du, Q. Guo, X. Hu, Y. Zhuang, Z. Zhang,
X. Song, W. Li, X. Zhang et al., “Cambricon-Q: a hybrid architec-
ture for efficient training,” in ISCA, 2021.

[166] M. P. Drumond Lages De Oliveira, L. Coulon,
A. Pourhabibi Zarandi, A. C. Yüzügüler, B. Falsafi, and
M. Jaggi, “Equinox: Training (for free) on a custom inference
accelerator,” in MICRO, 2021.

[167] O. M. Awad, M. Mahmoud, I. Edo, A. H. Zadeh, C. Bannon,
A. Jayarajan, G. Pekhimenko, and A. Moshovos, “FPRaker: A
processing element for accelerating neural network training,” in
MICRO, 2021.

[168] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and
huffman coding,” arXiv preprint arXiv:1510.00149, 2015.

[169] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep
neural network,” in ISCA, 2016.

[170] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-
Morales, I.-A. Lungu, M. B. Milde, F. Corradi, A. Linares-
Barranco, and S.-C. Liu, “Nullhop: A flexible convolutional neu-
ral network accelerator based on sparse representations of feature
maps,” TNNLS, 2018.

[171] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally,
“Exploring the regularity of sparse structure in convolutional
neural networks,” arXiv preprint arXiv:1705.08922, 2017.

[172] A. Page, A. Jafari, C. Shea, and T. Mohsenin, “SPARCNet: A hard-
ware accelerator for efficient deployment of sparse convolutional
networks,” JETC, 2017.

[173] H. Nakahara, Y. Sada, M. Shimoda, K. Sayama, A. Jinguji, and
S. Sato, “FPGA-based training accelerator utilizing sparseness of
convolutional neural network,” in FPL, 2019.

[174] J.-W. Jang, S. Lee, D. Kim, H. Park, A. S. Ardestani, Y. Choi,
C. Kim, Y. Kim, H. Yu, H. Abdel-Aziz et al., “Sparsity-aware and
re-configurable NPU architecture for samsung flagship mobile
SoC,” in ISCA, 2021.

[175] H. Lu, L. Chang, C. Li, Z. Zhu, S. Lu, Y. Liu, and M. Zhang,
“Distilling bit-level sparsity parallelism for general purpose deep
learning acceleration,” in MICRO, 2021.

[176] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vijaykumar,
“SparTen: A sparse tensor accelerator for convolutional neural
networks,” in MICRO, 2019.

[177] A. Yazdanbakhsh, M. Brzozowski, B. Khaleghi, S. Ghodrati,
K. Samadi, N. S. Kim, and H. Esmaeilzadeh, “FlexiGAN: An end-
to-end solution for FPGA acceleration of generative adversarial
networks,” in FCCM, 2018.

[178] M. Kim, C. Park, S. Kim, T. Hong, and W. W. Ro, “Efficient
dilated-winograd convolutional neural networks,” in ICIP, 2019.

[179] F. Shi, H. Li, Y. Gao, B. Kuschner, and S. Zhu, “Sparse winograd
convolutional neural networks on small-scale systolic arrays,” in
FPGA, 2019.

[180] X. Liu, J. Pool, S. Han, and W. J. Dally, “Efficient sparse-winograd
convolutional neural networks,” arXiv preprint arXiv:1802.06367,
2018.

[181] J. H. Ko, B. Mudassar, T. Na, and S. Mukhopadhyay, “Design
of an energy-efficient accelerator for training of convolutional
neural networks using frequency-domain computation,” in DAC,
2017.

[182] J. Zhang, F. Franchetti, and T. M. Low, “High performance
zero-memory overhead direct convolutions,” arXiv preprint
arXiv:1809.10170, 2018.

[183] E. Georganas, S. Avancha, K. Banerjee, D. Kalamkar, G. Henry,
H. Pabst, and A. Heinecke, “Anatomy of high-performance deep
learning convolutions on SIMD architectures,” in SC, 2018.

[184] D.-T. Nguyen, N.-M. Ho, and I.-J. Chang, “St-DRC: Stretchable
DRAM refresh controller with no parity-overhead error correc-
tion scheme for energy-efficient DNNs,” in DAC, 2019.

[185] D. T. Nguyen, H. Kim, H.-J. Lee, and I.-J. Chang, “An approx-
imate memory architecture for a reduction of refresh power
consumption in deep learning applications,” in ISCAS, 2018.

16

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar

[186] F. Tu, W. Wu, S. Yin, L. Liu, and S. Wei, “RANA: towards efficient
neural acceleration with refresh-optimized embedded DRAM,”
in ISCA, 2018.

[187] S. Koppula, L. Orosa, A. G. Yağlıkçı, R. Azizi, T. Shahroodi,
K. Kanellopoulos, and O. Mutlu, “EDEN: Enabling energy-
efficient, high-performance deep neural network inference using
approximate DRAM,” in MICRO, 2019.

[188] N. Chandramoorthy, K. Swaminathan, M. Cochet, A. Paidimarri,
S. Eldridge, R. V. Joshi, M. M. Ziegler, A. Buyuktosunoglu,
and P. Bose, “Resilient low voltage accelerators for high energy
efficiency,” in HPCA, 2019.

[189] A. Boroumand, S. Ghose, B. Akin, R. Narayanaswami, G. F.
Oliveira, X. Ma, E. Shiu, and O. Mutlu, “Google neural network
models for edge devices: Analyzing and mitigating machine
learning inference bottlenecks,” in PACT, 2021.

[190] A. Boroumand, S. Ghose, B. Akin, R. Narayanaswami, G. F.
Oliveira, X. Ma, E. Shiu, and O. Mutlu, “Mitigating edge machine
learning inference bottlenecks: An empirical study on accelerat-
ing Google edge models,” arXiv preprint arXiv:2103.00768, 2021.

[191] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and
V. Chandra, “Heterogeneous dataflow accelerators for multi-
DNN workloads,” in HPCA, 2021.

[192] G. Jeong, E. Qin, A. Samajdar, C. J. Hughes, S. Subramoney,
H. Kim, and T. Krishna, “RASA: Efficient register-aware systolic
array matrix engine for CPU,” in DAC, 2021.

[193] F. Muñoz-Martı́nez, J. L. Abellán, M. E. Acacio, and T. Krishna,
“A novel network fabric for efficient spatio-temporal reduction
in flexible DNN accelerators,” in NOCS, 2021.

[194] S. Rashidi, W. Won, S. Srinivasan, S. Sridharan, and T. Kr-
ishna, “Themis: A network bandwidth-aware collective schedul-
ing policy for distributed training of DL models,” arXiv preprint
arXiv:2110.04478, 2021.

[195] G. Jeong, G. Kestor, P. Chatarasi, A. Parashar, P.-A. Tsai, S. Raja-
manickam, R. Gioiosa, and T. Krishna, “Union: A unified hw-sw
co-design ecosystem in MLIR for evaluating tensor operations on
spatial accelerators,” in PACT, 2021.

[196] Y. Choi and M. Rhu, “PREMA: A predictive multi-task schedul-
ing algorithm for preemptible neural processing units,” in HPCA,
2020.

[197] P. Chatarasi, H. Kwon, A. Parashar, M. Pellauer, T. Krishna, and
V. Sarkar, “Marvel: A data-centric approach for mapping deep
learning operators on spatial accelerators,” TACO, 2021.

[198] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer
CNN accelerators,” in MICRO, 2016.

[199] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tan-
gram: Optimized coarse-grained dataflow for scalable NN accel-
erators,” in ASPLOS, 2019.

[200] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN accelera-
tor efficiency through resource partitioning,” in ISCA, 2017.

[201] S. M. Jafri, H. Hassan, A. Hemani, and O. Mutlu, “Refresh
triggered computation: Improving the energy efficiency of con-
volutional neural network accelerators,” TACO, 2020.

[202] B. Salami, E. B. Onural, I. E. Yuksel, F. Koc, O. Ergin, A. C. Kestel-
man, O. Unsal, H. Sarbazi-Azad, and O. Mutlu, “An experimental
study of reduced-voltage operation in modern FPGAs for neural
network acceleration,” in DSN, 2020.

[203] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-
memory acceleration of deep neural network training with high
precision,” in ISCA, 2019.

[204] H. Jiang, X. Peng, S. Huang, and S. Yu, “CIMAT: A compute-
in-memory architecture for on-chip training based on transpose
SRAM arrays,” IEEE Transactions on Computers, 2020.

[205] S. Zhang, K. Huang, and H. Shen, “A robust 8-bit non-volatile
computing-in-memory core for low-power parallel MAC opera-
tions,” IEEE Transactions on Circuits and Systems I: Regular Papers,
2020.

[206] B. Y. Cho, J. Jung, and M. Erez, “Accelerating bandwidth-bound
deep learning inference with main-memory accelerators,” in SC,
2021.

[207] Y. Long, E. Lee, D. Kim, and S. Mukhopadhyay, “Q-PIM: A
genetic algorithm based flexible dnn quantization method and
application to processing-in-memory platform,” in DAC, 2020.

[208] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC:
A convolutional neural network accelerator with in-situ analog
arithmetic in crossbars,” ISCA, 2016.

[209] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“PRIME: A novel processing-in-memory architecture for neural
network computation in reram-based main memory,” ISCA, 2016.

[210] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A pipelined
ReRAM-based accelerator for deep learning,” in HPCA, 2017.

[211] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, and M. Ghandi, “A
configurable cloud-scale DNN processor for real-time AI,” in
ISCA, 2018.

[212] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and
H. Esmaeilzadeh, “Bit fusion: Bit-level dynamically composable
architecture for accelerating deep neural network,” in ISCA, 2018.

[213] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S.
Williams, P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy
et al., “PUMA: A programmable ultra-efficient memristor-based
accelerator for machine learning inference,” in ASPLOS, 2019.

[214] T. Gokmen, M. Onen, and W. Haensch, “Training deep con-
volutional neural networks with resistive cross-point devices,”
Frontiers in neuroscience, 2017.

[215] M. Cheng, L. Xia, Z. Zhu, Y. Cai, Y. Xie, Y. Wang, and H. Yang,
“TIME: A training-in-memory architecture for memristor-based
deep neural networks,” in DAC, 2017.

[216] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Neurostream:
Scalable and energy efficient deep learning with smart memory
cubes,” IEEE TPDS, 2017.

[217] Y. Kwon, Y. Lee, and M. Rhu, “TensorDIMM: A practical near-
memory processing architecture for embeddings and tensor op-
erations in deep learning,” in MICRO, 2019.

[218] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-in-
memory for energy-efficient neural network training: A hetero-
geneous approach,” in MICRO, 2018.

[219] T.-H. Yang, H.-Y. Cheng, C.-L. Yang, I.-C. Tseng, H.-W. Hu, H.-S.
Chang, and H.-P. Li, “Sparse ReRAM engine: Joint exploration of
activation and weight sparsity in compressed neural networks,”
in ISCA, 2019.

[220] S. Angizi, Z. He, A. S. Rakin, and D. Fan, “CMP-PIM: an
energy-efficient comparator-based processing-in-memory neural
network accelerator,” in DAC, 2018.

[221] P. Wang, Y. Ji, C. Hong, Y. Lyu, D. Wang, and Y. Xie, “SNrram: an
efficient sparse neural network computation architecture based
on resistive random-access memory,” in DAC, 2018.

[222] F. Chen, L. Song, and Y. Chen, “ReGAN: A pipelined ReRAM-
based accelerator for generative adversarial networks,” in ASP-
DAC, 2018.

[223] D. Fan and S. Angizi, “Energy efficient in-memory binary deep
neural network accelerator with dual-mode SOT-MRAM,” in
ICCD, 2017.

[224] H. Ji, L. Song, L. Jiang, H. Li, and Y. Chen, “ReCom: An efficient
resistive accelerator for compressed deep neural networks,” in
DATE, 2018.

[225] C. Deng, F. Sun, X. Qian, J. Lin, Z. Wang, and B. Yuan, “TIE:
Energy-efficient tensor train-based inference engine for deep
neural network,” in ISCA, 2019.

[226] X. Chen, X. Yin, M. Niemier, and X. S. Hu, “Design and opti-
mization of FeFET-based crossbars for binary convolution neural
networks,” in DATE, 2018.

[227] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A
modern primer on processing in memory,” Emerging Computing:
From Devices to Systems - Looking Beyond Moore and Von Neumann,
2021.

[228] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu,
“Processing-in-memory: A workload-driven perspective,” IBM
Journal of Research and Development, 2019.

17

Lois Orosa is a senior researcher at SAFARI
Research group @ ETH Zürich, Switzerland. He
received his BS and MS degrees in Telecom-
munication Engineering from the University of
Vigo, Spain, his PhD degree from the University
of Santiago de Compostela, Spain, and he held
a postDoc position in the University of Camp-
inas, Brazil. He was a visiting researcher at mul-
tiple companies (IBM, Recore Systems, Xilinx
and Huawei) and universities (UIUC and Univer-
sidade Nova de Lisboa). His current research

interests are in computer architecture, hardware security, reliability,
memory systems, and machine learning (ML) accelerators. For more
information, please see his webpage at https://loisorosa.github.io/.

Skanda Koppula is currently a research engi-
neer at DeepMind. Previous to this, he worked
at ETH Zürich in the SAFARI research group
on memory systems, machine learning acceler-
ation, and computer architecture. He completed
his MEng and BSc from MIT in 2018.

Yaman Umuroglu received the PhD degree
from the Norwegian University of Science and
Technology (NTNU), Norway and a joint Eu-
ropean MSc on Embedded Systems from the
Erasmus Mundus EMECS programme. He is a
research scientist at Xilinx Research Labs, Ire-
land. His research takes a full-stack view of ma-
chine learning with neural networks with a focus
on highefficiency and high-performance imple-
mentations and spans hardware-network code-
sign, techniques for efficient arithmetic, sparsity,

and quantization.

Konstantinos Kanellopoulos is currently pur-
suing his PhD at ETH Zürich in the SAFARI
research group. He completed his MEng and
BSc at NTUA. His research interests lie at the
intersection of software and hardware.

Juan Gómez-Luna is a senior researcher and
lecturer at SAFARI Research Group @ ETH
Zürich. He received the BS and MS degrees
in Telecommunication Engineering from the Uni-
versity of Sevilla, Spain, in 2001, and the PhD
degree in Computer Science from the University
of Córdoba, Spain, in 2012. Between 2005 and
2017, he was a faculty member of the Univer-
sity of Córdoba. His research interests focus on
processing-in-memory, memory systems, het-
erogeneous computing, and hardware and soft-

ware acceleration of medical imaging and bioinformatics. He is the lead
author of PrIM (https://github.com/CMU-SAFARI/prim-benchmarks), the
first publicly-available benchmark suite for a real-world processing-in-
memory architecture, and Chai (https://github.com/chai-benchmarks/
chai), a benchmark suite for heterogeneous systems with CPU/GPU/F-
PGA.

Michaela Blott received the master’s degree
from the University of Kaiserslautern in Ger-
many and brings more than 25 years of com-
puter architecture, FPGA and board design, in
research institutions (ETH Zurich and Bell Labs)
and development organizations. She is a dis-
tinguished engineer at Xilinx Research, Dublin,
Ireland, where she heads a team of international
scientists driving exciting research to define new
application domains for Xilinx devices, such as
machine learning. She is heavily involved with

the international research community serving as the technical co-chair
of FPL’2018, workshop organizer (H2RC, ITEM’2020), and member of
numerous technical program committees (FPL, ISFPGA, DATE, etc.).

Kees Vissers graduated from Delft University in
the Netherlands. He worked at Philips Research
in Eindhoven, The Netherlands, for many years.
The work included Digital Video system design,
HW–SW co-design, VLIW processor design and
dedicated video processors. He was a visiting
industrial fellow at Carnegie Mellon University,
where he worked on early High Level Synthesis
tools. He was a visiting industrial fellow at UC
Berkeley where he worked on several models
of computation and dataflow computing. He was

a director of architecture at Trimedia, and CTO at Chameleon Sys-
tems. For more than a decade he is heading a team of international
researchers at Xilinx in the CTO office. The research topics include
machine learning applications and architectures, wireless applications,
image processing applications and new datacenter applications. These
applications drive next generation programming environments and ar-
chitectures. He is a Fellow at Xilinx.

18

https://loisorosa.github.io/
https://github.com/CMU-SAFARI/prim-benchmarks
https://github.com/chai-benchmarks/chai
https://github.com/chai-benchmarks/chai

Onur Mutlu is a Professor of Computer Science
at ETH Zürich. He is also a faculty member at
Carnegie Mellon University, where he previously
held the Strecker Early Career Professorship.
His current broader research interests are in
computer architecture, systems, hardware secu-
rity, and bioinformatics. A variety of techniques
he, along with his group and collaborators, has
invented over the years have influenced industry
and have been employed in commercial micro-
processors and memory/storage systems. He

obtained his PhD and MS in ECE from the University of Texas at Austin
and BS degrees in Computer Engineering and Psychology from the
University of Michigan, Ann Arbor. He started the Computer Architecture
Group at Microsoft Research (2006-2009), and held various product
and research positions at Intel Corporation, Advanced Micro Devices,
VMware, and Google. He received the IEEE High Performance Com-

puter Architecture Test of Time Award, the IEEE Computer Society Ed-
ward J. McCluskey Technical Achievement Award, ACM SIGARCH Mau-
rice Wilkes Award, the inaugural IEEE Computer Society Young Com-
puter Architect Award, the inaugural Intel Early Career Faculty Award,
US National Science Foundation CAREER Award, Carnegie Mellon Uni-
versity Ladd Research Award, faculty partnership awards from various
companies, and a healthy number of best paper or ”Top Pick” paper
recognitions at various computer systems, architecture, and security
venues. He is an ACM Fellow ”for contributions to computer architecture
research, especially in memory systems”, IEEE Fellow for ”contributions
to computer architecture research and practice”, and an elected member
of the Academy of Europe (Academia Europaea). His computer archi-
tecture and digital logic design course lectures and materials are freely
available on YouTube (https://www.youtube.com/OnurMutluLectures),
and his research group makes a wide variety of software and hardware
artifacts freely available online (https://safari.ethz.ch/). For more infor-
mation, please see his webpage at https://people.inf.ethz.ch/omutlu/.

19

https://www.youtube.com/OnurMutluLectures
https://safari.ethz.ch/
https://people.inf.ethz.ch/omutlu/

