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Abstract

Foehn winds have a substantial impact on forest fires all over the world.
However, two questions have remained unanswered to the foehn com-
munity over the last years. First, while accurate forecasts are viable
at the timescale of numerical weather prediction, the long-term evolu-
tion of monthly foehn occurrence is still open to debate. Second, while
many studies cited the importance of foehn winds on forest fires in sin-
gle case studies, a definite quantitative link between foehn winds and
forest fires prevailed missing. Hence, the scientific contribution of this
work is divided into two parts.

In the first part, we explored the possibilities of employing machine
learning algorithms to predict foehn within Switzerland from its syn-
optic fingerprint in climate simulations. Here, we used variables from
the ERA-Interim reanalysis and the CESM simulation as inputs for our
models. We trained on ERA-Interim data to recognize foehn, then ver-
ified the results on a CESM simulation of present-day climate, and
finally, predicted foehn on a future warming climate CESM simulation.
The best generalization between ERAI and CESM was obtained by in-
cluding the present-day simulation in the training procedure and simul-
taneously optimizing two objective functions, namely the negative log
loss and squared mean loss, on both datasets, respectively. The model
verification showed validity of our approach for most of the months.
Finally, we found that south foehn in Altdorf is expected to become
more common during spring, while north foehn in Lugano is expected
to become more common during two summer months.

In the second part, we analyzed forest fires of the past 40 years and
linked them with foehn occurrence from a climatological perspective.
We found that foehn duration and foehn strength substantially increase
both the number and the severity of forest fires. In detail, we observed
that if a day showed foehn presence, it was associated with a 3.4-fold
increase in numbers of fires in contrast to a day without foehn presence.
Furthermore, if a foehn wind set in during the six hours after fire igni-
tion, it increased the median burned area of such fires by a significant
factor of three compared to fires without foehn occurrence.

While we developed and tested both methodologies within Switzer-
land due to the vast availability of foehn and forest fire data, we ex-
tensively documented our approaches. Therefore, we encourage other
researchers to apply these frameworks also to foehn winds in other
regions of the world.
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Chapter 1

Introduction

Forest fires impose a considerable potential threat to humans, animals, and
the environment. Although fires are an integral element for many ecosys-
tems and their biodiversity (Robinne et al., 2018), single events might have
tremendous consequences for local communities. Often it is argued that
fires are associated with occurrences of exceptional weather conditions, e.g.,
droughts or heatwaves (Littell et al., 2016; Turco et al., 2017; Fink et al., 2004).
In order to influence fires, such an event must affect at least one of the fol-
lowing pillars: fuel, oxygen, or temperature (Thomas et al., 2010).

For this reason, in mountainous regions (e.g., the Alps), an additional impact
upon forest fires is imposed by another, more local meteorological condition:
foehn winds. In short, foehn winds are strong, warm, and dry downslope
winds (Richner and Hächler, 2013). Consequently, foehn winds can act upon
fires by drying out entire forest areas (Pezzatti et al., 2016) or driving the
fire spread itself (Sharples et al., 2010). Many studies and books so far have
stressed the impact of foehn on fires in Switzerland (Richner and Hächler,
2013; Zumbrunnen et al., 2009; Sprenger et al., 2016; Pezzatti et al., 2016).
However, also in other parts of the world, foehn or foehn-like winds have
been shown to affect fires. For example, Schroeder et al. (1964), Keeley
(2004), Westerling et al. (2004) and Guzman-Morales et al. (2016) stressed
the influence of the Santa Ana winds in California on several severe wildfire
events and Sharples et al. (2010) have linked foehn winds in south-eastern
Australia to bush fires.

It becomes apparent that an accurate foehn forecast and knowledge about
the expected impact of foehn on forest fires are crucial factors for early risk
mitigation. For this reason, this work is structured in two parts.

In the first part, we assessed the expected long-term evolution of foehn
winds. Currently, it is viable to forecast foehn at the timescale of numeri-
cal weather prediction, which is usually limited to several days (Drechsel
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1. Introduction

and Mayr, 2008). However, in the long-term, it remained unclear which in-
fluence the current warming climate will have on the frequency of foehn
winds. With this work, we attempted to close this gap for foehn winds in
Switzerland. Moreover, we propose a methodological approach that could,
in principle, be applied worldwide. For this part, we aim to give an intro-
duction to foehn and its current way of being forecasted under Section 1.1.

In the second part, we investigated the tangible impact of foehn winds on
forest fires. The literature has often cited the impact of foehn in single case
studies (Richner and Hächler, 2013; Sprenger et al., 2016; Carrega, 1991).
However, it remained unresolved how foehn winds influence forest fires
from a climatological perspective. For this reason, we quantified how foehn
winds affected the number of forest fires and their severity in Switzerland
over the last 40 years. Therefore, we introduce the current fire situation in
Switzerland and potential foehn-fire interaction mechanisms in Section 1.2.

Lastly, this work follows a modular structure for both parts. In Chapter 1, we
introduce the main concepts about foehn winds and fires. In Chapter 2, we
explain the conceptual idea behind each part’s analysis and present the used
algorithms. In Chapter 3, we present the data and necessary preprocessing
steps for our analysis. In Chapter 4, we explain the implementation of our
algorithms in detail. In Chapter 5, we present our results and discuss them
extensively. In Chapter 6, we conclude by summarizing our main findings
and giving an outlook to future work.

1.1 Future development of foehn winds

Since humans have started to settle in the Alps, foehn winds have affected
their lives. Foehn is a phenomenon that occurs in mountainous regions
worldwide, for example, in the European Alps or the Rocky Mountains.
Here, the word ”foehn” is often referred to as a generic term for a strong,
warm, and dry downslope wind (Richner and Hächler, 2013). A more for-
mal definition can be found in WMO (1992) as ”wind [which is] warmed
and dried by descent, in general on the lee side of a mountain”. Depend-
ing on the location, foehn winds may be known under a different name
like Chinook in North America (Oard, 1993), Nor’wester in New Zealand
(Mcgowan and Sturman, 1996; Simpson et al., 2014) or Puelche in South
America (Beusch et al., 2018). Even local nicknames like ”snow eater” or
”grape cooker” have been given to the phenomenon.

Those nicknames originate from the typical characteristics of foehn winds,
which are shown for an exemplary case in Figure 1.1. The rapid increase in
temperature and wind speed, accompanied by the drop in relative humidity
and orientation of the wind direction along the valley axis, characterize a
typical foehn event (Richner and Hächler, 2013).
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1.1. Future development of foehn winds

Figure 1.1: Shown are the development of the temperature (TT), relative humidity (UU), wind
speed (FF), and wind direction (DD) during a foehn event, which was prevalent in Altdorf from
the 04/03/2013 19:00 until 07/03/2013 5:00. Figure taken from Richner et al. (2014).
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1. Introduction

For these characteristics, foehn is known to not only to have an impact on
fires but also on the aviation industry, snowmelt in spring, agriculture, and
air pollution (Steinacker, 2006; Richner and Hächler, 2013). Due to its poten-
tially destructive nature, in the next step, we try to develop a better under-
standing of the mechanisms and causes of foehn.

1.1.1 Mechanisms and causes of foehn

In this section, we first look at the mesoscale mechanisms observed during
foehn before moving on to the synoptic situation which causes foehn1. Here,
we aimed to briefly summarize the last decades’ findings while referring to
more in-depth literature in the process.

Mesoscale characteristics

At the mesoscale, foehn is divided into two different types, depending on
the most prominent warming mechanism of the air (Richner and Hächler,
2013). On the one hand, for ”Foehn Type I” (also ”Swiss foehn”), wet air
rises on the windward side of the mountain through forced convection.
Here, the air cools dry-adiabatically due to the ascent. As soon as satu-
ration is reached, condensation and precipitation set in, and the air gains
latent heat. After reaching crest height, the air begins to descend on the lee
side. Due to the descent, the air begins to heat dry-adiabatically. Over time,
the strong and warm flow erodes the colder air, often present in the valley
(referred to as ”cold pool”). As soon as the cold pool is eroded at a station,
the typical foehn characteristics shown in Figure 1.1 emerge (Sprenger et al.,
2016). On the other hand, for ”Foehn Type II” (also ”Austrian foehn”), air in
the lower levels of the windward side is blocked orographically. Then, only
dry air from the higher levels descends into the lee, heats dry-adiabatically,
and replaces the cold pool in the valley. Both types are depicted in Figure 1.2.
Most of the time, Austrian foehn is the main warming mechanism behind
foehn (Steinacker, 2006; Miltenberger et al., 2016). A more in-depth discus-
sion of both types and more potential warming mechanisms can be found
in Richner and Hächler (2013), Ólafsson (2005) and Elvidge and Renfrew
(2016).

For a long time, it has been unclear why foehn descends into the valley, and
many theories have emerged over the last century (Sprenger et al., 2016). All
described different physical processes that eventually happen in the moun-
tain lee. Despite the efforts to find a unified framework to describe the
descent, those studies lead to the conclusion that depending on the exact
weather situation, different mechanisms must be responsible. Thus, the

1The term ”meso” usually refers to a scale range from a few kilometers up to 100 kilo-
meters. Everything above is usually referred to as ”synoptic”.
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1.1. Future development of foehn winds

Figure 1.2: a) Shown is a schematic representation of Foehn Type I, which is associated with
precipitation and the gain of latent heat on the windward side. b) Shown is a schematic rep-
resentation of Foehn Type II, which associated with orographic blocking on the windward side.
Figures taken from Steinacker (2006).

reductionist view for an all-encompassing foehn descent theory has been
largely abandoned (Sprenger et al., 2016). For additional information on the
different descent theories, it is referred to Steinacker (2006).

Synoptic causes

Now, we move on to the synoptic situation of foehn. Even though foehn
areas are mainly confined to mountain valleys, Richner and Hächler (2013)
argued that foehn is a mesoscale phenomenon that derives from a synoptic
weather condition (i.e., the weather condition over Europe). Foehn is ob-
served on both sides of the Alps. South foehn refers to foehn on the north-
ern side of the Alps. Similarly, north foehn refers to foehn on the southern
side of the Alps (Richner and Hächler, 2013). Since both types are of interest
for this work, we briefly explain their respective synoptic situations in the
next paragraphs.

The most important condition to produce foehn is a difference in the pres-
sure of air masses on both sides of the Alps (Zweifel et al., 2016). The
typical synoptic pressure field present during south foehn can be seen in
Figure 1.3. Most of the time, we observe a high-pressure system over Italy
and a low-pressure system over the British islands, which cause the neces-
sary (but not sufficient) strong pressure gradient over the Alps. The iso-
bars show their foehn-typical s-curvature (called ”foehn-knee”). Usually, a
south/south-westerly flow over the Alps is measured. Furthermore, often
an additional hydrostatic gradient, caused by a temperature difference be-
tween the air masses, is prevalent (Gerstgrasser, 2017). Note that this is only
the primary synoptic situation for so-called deep foehn. For example, shal-
low foehn, where the foehn flow is not necessarily aligned with the flow
of the air masses aloft, is driven by a different mechanism. An in-depth
summary of different synoptic conditions leading to foehn can be found in
Gerstgrasser (2017). For a detailed discussion of a foehn case study and its
synoptic development, see Hächler et al. (2011).

Compared to south foehn, north foehn shows precisely the opposite pres-
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1. Introduction

Figure 1.3: Typical synoptic pressure field during south foehn. Figure taken from Richner and
Hächler (2013).

sure pattern, i.e., the prevalence of a high-pressure system over the Atlantic/
British Islands and a low-pressure system over south-eastern Europe/Italy
(Cetti et al., 2015). Furthermore, due to the break-in of cold air masses to the
north of the Alps and the orographic blocking of these by the Alps, a strong
hydrostatic gradient develops. For a more detailed north foehn case study,
see Kljun et al. (2001).

Due to this synoptic-mesoscale cause-effect relationship, in general, it is pos-
sible to deduct foehn from its large-scale fingerprint over Europe (Drechsel
and Mayr, 2008). Thus, in the next step, we look at the current state of foehn
diagnosis and forecast.

1.1.2 Current state of foehn diagnosis and forecast

In the past, there was a lack of an objective definition of foehn, and often
subjective criteria were applied (Zweifel et al., 2016). Thus, in the first sec-
tion, we introduce different foehn diagnosis techniques, which ”nowcast”
(compared to forecast) foehn. As a next step, we then outline how foehn
is forecasted in the following section. Lastly, based on the former sections,
we present what currently is known about the occurrence of foehn from a
climatological point of view.
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1.1. Future development of foehn winds

Foehn diagnosis

Measuring foehn has a long tradition in the Alps. In Altdorf, the first mea-
surements date back to 1864, when foehn got diagnosed three times a day
by subjectively defined criteria for temperature, humidity, and wind speed
(Richner et al., 2014).

Until the mid of the 20th century, a common approach for foehn identifi-
cation was the (subjective) three-criteria definition introduced by Conrad
(1936) and used by Obenland (1956). Here, foehn is defined by abrupt tem-
perature, humidity, and wind speed changes, and the wind direction must
adjust along the valley axis (as seen in Figure 1.1). However, as Vergeiner
(2004) criticized, this definition is purely phenomenological and does not
capture the physical processes in the lee side of the mountain. Furthermore,
he argued that this method would cause misjudgments due to the required
subjective rating of a human scientist. Mostly, the similar properties of weak
foehn events and radiatively driven downslope flows are hard to distinguish
even for experts (Plavcan et al., 2014; Vergeiner, 2004).

Gutermann (1970) was the first one to develop an objective and automated
classification. In his work, he utilized Fisher’s (linear) discriminant analy-
sis to define an objective index based on wind, temperature, and humidity
anomalies at the valley station. However, this method still did not rely upon
or capture the physical foehn processes which Vergeiner (2004) discussed.

To compensate for the physical shortcomings, Vergeiner (2004) developed
an objective foehn classification for the Wipp valley in Austria. In detail, he
included criteria for the potential temperature difference ∆θ between a crest
and the valley station and wind direction dd at both stations. With this, he ex-
panded the work of Schuetz and Steinhauser (1955), which first included the
former potential temperature difference. In his summary, Vergeiner (2004)
concluded that the results with his technique are comprehensible and repro-
ducible and can potentially be adapted to other foehn locations in the world.
However, as Plavcan et al. (2014) annotated, the main draw-back for this
method is still having to manually determine a threshold for ∆θ for each
location individually.

Another approach was developed by Duerr (2008), which allowed to uti-
lize real-time data from the Swiss automatic weather stations for automatic
classification of south foehn at various locations all over Switzerland. This
method relied on objective thresholds, which were derived from a statistical
analysis of ten years of automatic weather station data. These thresholds
included the potential temperature difference ∆θ between the alpine crest
station Gütsch and the valley station, the wind direction DD at Gütsch and
the valley station, and relative humidity UU and wind speed FF at the val-
ley station. Since 2008, MeteoSwiss operationalized Duerr’s method to auto-
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1. Introduction

matically classify foehn for every ten-minute interval (Richner and Hächler,
2013). In addition, Cetti et al. (2015) utilized the same method to derive an
objective index for north foehn in the Swiss canton Ticino.

Plavcan et al. (2014) aimed to remove the need for manually determining
hard thresholds by moving from a deterministic model to a probabilistic
method. By utilizing a Gaussian mixture model, they managed to not only
derive a foehn index but also assign an uncertainty to each measurement.
This method is thought to be location independent, and thus their most sim-
ple model is applicable even in the absence of a crest station at the cost
of a few wrongly classified observations (Plavcan et al., 2014). They con-
clude that for the Wipp valley, one year of measurement data sufficed to
achieve satisfactory diagnosis results after fitting the model - compared to
a decade in Duerr (2008). Later, Plavcan and Mayr (2015) have shown that
their method also generalizes well to other locations in the Alpine region.

Lastly, Sprenger et al. (2017) also used a probabilistic approach by leveraging
the potential of current state-of-the-art machine learning algorithms. They
trained an AdaBoost algorithm on common foehn predictors (for example,
pressure differences or wind speeds) to recognize patterns that cause foehn
in Altdorf. For this, they used three years of data from the Consortium for
Small-Scale Modeling’s (COSMO-7) numerical weather prediction (NWP)
model. Their target variable, i.e., a binary variable describing whether foehn
is prevalent in Altdorf, got derived from Duerr (2008)’s method described
above. Finally, with their method, they were able to achieve good scores
and showed that it is possible to derive foehn from larger-scale conditions
in NWP data. Furthermore, they were especially interested in the most
important predictors for the model. Those turned out to be pressure differ-
ences over the alps and wind speeds at various measurement stations. Like
Plavcan et al. (2014), in principle, their algorithm is also applicable to other
locations, given that already a few years of observational foehn data exists.

Reaching beyond the Alpine region, foehn detection is also used in other
parts of the world. For example, Laffin et al. (2019) used an XGBoost model
to classify different foehn strengths related to the ice melt in Antarctica.

After describing how foehn can be objectively and automatically classified
on past and present data, one might now impose the more challenging ques-
tion of forecasting foehn.

Foehn forecasting

Foehn is traditionally forecasted from the output of NWP models (Zweifel
et al., 2016). However, due to the insufficient representation of the topogra-
phy in NWP models, the direct output of such models has been shown not
to accurately represent foehn flows. The horizontal grid resolution of cur-
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1.1. Future development of foehn winds

rent operational NWP models is about one kilometer, and foehn valleys are
only coarsely represented. Burri et al. (2007) did show in a case study that
the COSMO-2 model overestimates the area affected by foehn and underes-
timates its wind speeds and temperature. Wilhelm et al. (2012) concluded in
his more systematic review of the COSMO model that the foehn frequency
is estimated best for Alpine stations but overestimated for fore-alpine and
plateau stations. The wind speed of foehn events was found to be under-
estimated close to the alpine ridge and overestimated further away from it.
Lastly, the errors for the wind variables and temperature during foehn were
large, which agrees with the findings in Hächler et al. (2011). The relative
humidity was represented as the worst of all variables. To sum up, due to
the insufficiency of NWP models in accurately capturing foehn, one is still
heavily dependent on the skill of experienced meteorologists (Richner and
Hächler, 2013).

For this reason, in the past years, model output statistics (MOS) gained more
popularity (Glahn and Lowry, 1972). Instead of exclusively looking at the
raw output of NWP models, with MOS, one further processes this data by
applying statistical techniques to achieve more accurate predictions. The
gain in accuracy is achieved by looking at the known synoptic causes for
foehn instead of the poorly resembled foehn itself.

Widmer (1966) was the first one to predict foehn in Altdorf. For this pur-
pose, he used Fisher’s discriminate analysis to establish an index (nowa-
days referred to as Widmer index) based upon the forecasted surface level
pressure difference and geopotential height difference over the Alps. If this
index surpasses a certain threshold, foehn will set in the next 12-36h with a
probability of 70%. Later, Courvoisier and Gutermann (1971) were able to
further refine and simplify this index. Until today, the Widmer index is used
operationally as one of the measures to forecast foehn at MeteoSwiss.

Drechsel and Mayr (2008) analyzed European Centre for Medium-Range
Weather Forecasts (ECMWF) model data with MOS. They focused on the
cross-alpine pressure difference and potential temperature difference to fore-
cast foehn in the Wipp Valley. They found that, even up to three days, a reli-
able forecast can be established. Furthermore, they stated that their work is
essentially expandable to other locations, as long as the obstacle (i.e., moun-
tain) responsible for foehn is represented at least in a coarse way. The only
limitation comes from the existence of observational foehn data. However,
with suitably located automated weather stations, this shortcoming can be
circumvented.

Lastly, Zweifel et al. (2016) used a standard machine learning technique
(namely logistic regression) to forecast foehn in Altdorf 15 and 39 hours
in advance upon to data from two NWP models (namely COSMO-2 and
ECMWF). Furthermore, they applied the same technique to forecast north

9



1. Introduction

foehn in Piotta. Also, they achieve considerably good results. Again the
limitation of this technique comes down to the existence of reliably labeled
foehn data.

Note, there have also been efforts in other parts of the world to forecast
foehn (although it may not necessarily be called foehn there), which shall
briefly be mentioned here. Oard (1993) used a multiple linear regression
model to forecast the Chinook in the Rocky Mountains. Mercer et al. (2008)
used several machine learning methods (namely linear regression, neural
networks, and support vector machines) to forecast downslope windstorms
in the Rocky Mountains.

Combining all of the findings above, one can conclude that, in general, it
is possible to diagnose and predict foehn from its larger scale fingerprint
instead of having to rely on NWP models. In order to verify the results,
almost all techniques were tested to reproduce the existing foehn climatol-
ogy at a given location. Thus, before we move to the final objectives of this
part in Subsection 1.1.3, we briefly discuss the climatology of south foehn in
Altdorf and north foehn in Lugano.

Climatology

An aggregated foehn time series for Altdorf can be seen in Figure 1.4. Guter-
mann et al. (2012) showed that there is no long-term trend discernible in the
foehn time-series. On average, 483 hours of foehn are observed in Altdorf
per year (Gutermann et al., 2012).

Even though the foehn frequency does not show a trend over the years, it
yet proves to have an almost constant, strong intra-annual variability. The
typical monthly distribution is shown in Figure 1.5. One can observe the
annual cycle, with a maximum frequency during spring and a minimum
during summer. Gutermann et al. (2012) did show that this pattern is fairly
stable across the whole foehn time series, only in the past the frequency of
foehn was higher in March than it is today. A mechanism for that could not
be identified.

A climatology for several north foehn stations has been created by Cetti
et al. (2015). For Lugano, on average, 620 hours of foehn are observed in
the analyzed period from 1993 until 2014. Here, no long-term trend could
be discovered, too. However, as the south foehn, north foehn shows a pro-
nounced intra-annual cycle shown in Figure 1.6. As we obtain from the
figure, the winter/spring months (FMA) show the highest frequency, while
the summer/autumn months (ASO) present the lowest frequency.

There have also been efforts in other parts of the world to establish a foehn
climatology for the respective region. For example, also within the Alps,
Ortner (2010) created a south foehn climatology for Innsbruck. On a more
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1.1. Future development of foehn winds

Figure 1.4: Foehn time series from 1864 until 2008 in Altdorf. The left y-axis and the black
bars indicate the number of foehn observations each year. Here, one observation is defined as
foehn being present at a specific time in the morning, noon, or evening. The right y-axis and the
yellow bars display the number of total foehn hours within each year. Note that the foehn hours
before 1955 were calculated from the observations as described in Gutermann et al. (2012). The
red line marks a Gauss low pass filter with a range of 20 years. Figure taken from Gutermann
et al. (2012).
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Figure 1.5: Monthly distribution of observed foehn frequency in Altdorf from 1981 until 2019.
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Figure 1.6: Monthly distribution of observed foehn frequency in Lugano from 1983 until 2019.

global scale, Norte (2015) established a climatology for the Zonda winds in
the Andes and links it to air quality and wind damage. Cape et al. (2015)
investigated a foehn climatology in Antarctica to estimate ice shelf evolu-
tion better. Guzman-Morales et al. (2016) calculated the climatology for the
foehn-like Santa Ana winds in North America to better understand the in-
fluence on the yearly forest fires.

1.1.3 Objectives

Even though no long-term trend seems to be discernible, one might still
ask whether the (monthly) foehn frequency would change under a warm-
ing climate. We have seen that the synoptic fingerprint of foehn appears
to be a good predictor. In the context of this work, we wanted to automat-
ically identify foehn from its large-scale fingerprint from reanalysis data,
where observational foehn data exists. Afterward, we wanted to transfer
this knowledge to a freely running climate simulation. Subsequently, we
compare the occurrence of foehn in simulations of present-day and future
climate conditions. Thus, the main questions of this part of the thesis were
formulated the following way:

1. Can the synoptic situation which leads to south foehn objectively be
identified from coarse NWP reanalysis data? What are the most rele-
vant features on the synoptic-scale?

2. With which level of skill can south foehn be diagnosed from coarse
synoptic NWP reanalysis data?
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1.1. Future development of foehn winds

3. Is it possible to generalize the findings from reanalysis data to a freely-
running climate simulation?

4. If so, how will the monthly frequency of south foehn differ between
present-day climate and a warming future climate?

5. Can we apply the same methodology also for north foehn?
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1. Introduction

1.2 Impact of foehn on forest fires

Many studies did emphasize the outbreak of fires or severely increased fire
damage due to foehn winds. Both, Richner and Hächler (2013) and Sprenger
et al. (2016), stated that foehn was responsible for 600 houses burning down
in the Swiss canton Glarus in 1861, or, more recently in 2001, for 15 houses in
Balzers (Liechtenstein). Carrega (1991) referred back to the two catastrophic
fires in France in 1986, where the influence of foehn led to the destruction of
several thousands of hectares and several hundred injured people, despite
the combined efforts of thousands of firefighters. Zumbrunnen et al. (2009)
researched and stressed the importance of foehn winds on forest fires in the
Swiss region Valais by comparing foehn and non-foehn areas. For studies
relating foehn winds with forest fires also in other parts of the world, see
Schroeder et al. (1964), Keeley (2004), Westerling et al. (2004), Sharples et al.
(2010), Simpson et al. (2014), and Sharples (2018).

All studies emphasize the importance of foehn for fire outbreak or damage,
however, mostly for single events or in a qualitative way. Thus, to our knowl-
edge, no study so far has quantitatively linked foehn winds to forest fires
spatially and temporally on the large basis of past fires in the Alps. Actually,
Switzerland experiences about 100 forest fires with a total burned area of
300 hectares per year (Pezzatti et al., 2016). Due to this large availability of
both foehn wind and forest fire data, Switzerland proves as an ideal study
area to determine the quantitative effect of foehn winds on forest fires.

1.2.1 Fire distribution in Switzerland

In Figure 1.7, the spatial distribution of fires in Switzerland is shown. By
separating the fires in our fire data set through the main Alpine crest line,
approximately 77,4% of all fires are located south of the Alps. Here, the
majority is located in the Swiss canton Ticino.

The fires can not only be separated spatially but also temporally into three
different fire regimes: winter anthropogenic, summer anthropogenic, and
summer natural (De Angelis et al., 2015). Here, the winter anthropogenic
fires are confined by the vegetation rest period from December to April and
show their maximum during March and April. Note how this coincides
with the maximum north foehn occurrence from Figure 1.6. During the win-
ter period, all fire ignitions are due to anthropogenic influence, and the fire
events mainly consist of rapidly spreading (surface) fires (De Angelis et al.,
2015). In contrast, summer fires instead show a slow-spreading pattern and
are of human as well as natural (i.e., lightning) origin. In fact, in July and
August, a fire is equally likely to be induced by lightning and humans (Pez-
zatti et al., 2016). The lighting-induced underground fires occur on a higher
elevation and at steeper slopes than anthropogenic fires and thus are more
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1.2. Impact of foehn on forest fires

Figure 1.7: Spatial distribution of the number of fires (a) and the burned area (b) of all forest
fires within Switzerland from 1990-2014. Figure taken from Pezzatti et al. (2016).

Figure 1.8: Monthly distribution of the number of fires in Ticino, disaggregated by fire regime.
The diagram includes fire data from 1991-2012. Figure taken from De Angelis et al. (2015).

challenging to extinguish (Conedera et al., 2006). The monthly distribution
of fires, disaggregated by the fire regimes, is shown in Figure 1.8.

1.2.2 Foehn-Fire interaction

As already briefly stated in the introduction, foehn winds can influence for-
est fires in two different ways. We investigate both mechanisms in this sec-
tion and will correspondingly formulate the objectives in the next section.
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First, we look at the period before a potential fire ignition. Due to its dry
and warm nature (i.e., air humidity as low as 20%), foehn can quickly dry
out ignitable material (Pezzatti et al., 2016; Sharples et al., 2010; Reinhard
et al., 2005). Measures that can be used to assess the potential daily danger
of a fire are the so-called Fire Weather Indices (FWIs). Essentially, FWIs are
functions that map meteorological variables to the corresponding fire danger
and are tuned for a specific type of forest. A common characteristic of all
FWIs is that almost all depend on the meteorological variables temperature
TT, humidity UU, precipitation P, and wind speed FF as input parameters.
The exact composition for all twelve relevant FWIs is nicely summarized in
Pezzatti et al. (2016). Just from the definition of a foehn wind, one sees how
its characteristics in TT, UU, and FF (see Figure 1.1) are directly linked to
the FWIs. Sharples (2018) demonstrates how the onset of a foehn wind in
2008 significantly increased the Forest Fire Danger Index, which is one of
the twelve relevant FWIs, by a factor of six. Consequently, we hypothesized
that foehn severely improves ignition conditions, thus potentially leading to
an increased number of fires.

Second, foehn winds can impact the fire spread when it coincides with the
fire ignition or an already burning fire. As Byram (1959) and Carrega (1991)
stated, is air movement one of the major fire behavior factors. Wind does
affect the burning rate through constant oxygen influx, and fire spread by
tilting the flames forward, leading to increased heat advection. Both mecha-
nisms are essential for small fires to build up their intensity (Byram, 1959).
By doing so, the onset of foehn can amplify wildfires (Sharples, 2018) and
drastically impact the containment of fires and firefighters’ safety (Sharples
et al., 2010). Moreover, if a fire has not been completely extinguished, ac-
cording to Sharples et al. (2010), it has significant potential to flare up again.
Lastly, the longer it takes to extinguish a fire, the more likely it will be im-
pacted by foehn.

1.2.3 Objectives

In accordance with the last section, we investigated the impact of foehn for
two different time frames: before and during a fire. In the former case, we
wanted to know how much foehn fosters improved ignition conditions and
thus increases the resulting number of fires. In the latter case, we deter-
mined how foehn during the ignition period influences the size of a forest
fire. The objectives were formulated in the following way:

1. How do foehn winds influence the outbreak of forest fires?

• Are longer foehn periods associated with an increased number of
fires?
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1.2. Impact of foehn on forest fires

• Are warmer foehn winds associated with an increased number of
fires?

2. How do foehn winds influence the severity of forest fires?

• Are longer foehn periods during the ignition phase of a fire asso-
ciated with a larger burned area?

• Are higher foehn wind speeds during the ignition period associ-
ated with a larger burned area?
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Chapter 2

Methodology

In Section 2.1, we first outline our approach to answer the given objectives
described in the introduction. In Section 2.2, we explain the different algo-
rithms used during this thesis.

2.1 Conceptual methods

2.1.1 Future development of foehn winds

The basic concept was to train a statistical model (i.e., a machine learning
model) on past synoptic weather data to predict (i.e., diagnose) foehn at a
given location and make it recognize the distinct synoptic fingerprint for
foehn. Here, we interpreted this set-up as a binary classification problem,
where we wanted to identify whether foehn is prevalent or not. Then, we
employed this model on freely running climate simulations to study the
development of foehn. Note that this approach implicitly assumed that the
causes for foehn do not vary over the next decades.

For south foehn, we chose Altdorf due to its unique position. The valley
of Altdorf is utterly perpendicular to the Alpine crest and a long and ho-
mogeneous foehn time series exists (see Subsection 3.1.3). Furthermore, as
argued in Gutermann et al. (2012), local effects like cold pools play a smaller
role compared to the synoptic situation. Thus, Altdorf was determined as a
suitable candidate for our south foehn analysis.

For north foehn, the location of Lugano was chosen. Again, this is due
to the perpendicular orientation of the valley. Furthermore, Lugano shows
even slightly more foehn events than Altdorf, making it easier to train an
algorithm. Besides, as a separate analysis has shown, most forest fires in
Switzerland are located in the area of Lugano.

For the purpose of identifying foehn, we trained and tested a model on

19



2. Methodology

I. Train & Test

ERA-Interim data

Statistical model

Goal: Train & test accuracy of 

model on reanalysis data

II. Verify

CESM present-day data

Trained statistical model

Goal: Verify model predictions on 

present-day simulation data

III. Predict

CESM future data

Trained & verified statistical 

model

Goal: Make model predictions on 

future simulation data

Figure 2.1: Conceptual methodological outline used to evaluate the future development of foehn.

data from the ERA-Interim reanalysis (see Subsection 3.1.1). Afterward, we
utilized the model to make predictions on CESM simulation data (see Sub-
section 3.1.2) of the present-day climate to ensure a viable transition from
reanalysis data to a freely running climate simulation. The latter cannot
be compared to observational data via coincidence in time; thus, we could
not directly train on CESM data. However, to make the model generalize
better, in a later approach, we indirectly also utilized the CESM samples in
the training procedure. Finally, we used the model to make predictions on
CESM simulation data for a warming future climate. Figure 2.1 shows a
schematic representation of this procedure. At all steps, we utilized various
techniques to learn from the model and tried not to treat it as a black-box.
For technical details regarding the implementation, refer to Section 4.1.

2.1.2 Impact of foehn on forest fires

We investigated the objectives for this part from the viewpoint of descriptive
statistics. Conceptually, the idea was to spatially map each forest fire to the
closest meteorological station and control for foehn presence.

For this aim, we were provided with forest fire data in Switzerland in the
past 40 years (for details, see Pezzatti et al. (2010)). Figure 2.2 shows all
forest fires for this period and stations where foehn data is available.

Next, we retrieved foehn data from the closest station for the relevant period
of each fire. After aggregating, cleansing, and merging this data with the fire
data (e.g., the burned area), we were able to make quantitative statements
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Figure 2.2: Shown are all forest fires from 1980 until 2019 (blue). Meteorological stations where
foehn data is available are depicted with their name (red).

about how foehn statistically influenced the number of fires and the burned
area. For implementation details, see Section 4.2.

2.2 Machine Learning Algorithms

In this section, we describe the inner workings of the algorithms which we
used for our analysis. Since all of them deal with the topic of machine
learning, we first introduce some necessary terminology.

Machine learning is often clustered into three different segments: Super-
vised machine learning, unsupervised machine learning, and reinforcement
learning (Mehta et al., 2019). As described above, we approached the prob-
lem as a binary classification task and thus dealt with a supervised learning
problem. Under such circumstances, especially tree-based models have been
shown to yield good performance on structured data sets while requiring lit-
tle preprocessing and allowing for more interpretability (Mehta et al., 2019;
Hastie et al., 2009).

In the next subsections, we describe the range of tree-based algorithms uti-
lized in this thesis. We will slowly increase complexity from simple decision
trees in Subsection 2.2.2 over random forests in Subsection 2.2.3 to gradient
boosted trees in Subsection 2.2.4. Each time we explain the inner-workings
of the algorithm and their advantages and disadvantages. Lastly, we fin-
ish by describing several model-agnostic evaluation techniques in Subsec-
tion 2.2.5.
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2.2.1 Notation

The typical problem set-up for any supervised learning problem presents
itself as follows: First, we are given N observations or samples (x, y), which
are assembled in a dataset D = {(x(i), y(i))}N

i=1. Hereby, each sample vector
x(i) = (x1, ..., xM) ∈ RM combines M different features xm. The sample vec-
tor represents one point of the feature space X = (X1, ..., XM), where the Xm
denote random variables which are distributed with a generally unknown
probability. Hence, x is one possible realization within X. Next, each obser-
vation (x, y) usually also includes an (observed) target label y ∈ R. From
now on we will use the indexed version (x(i), y(i)) whenever we talk about
an observation in D and (x, y) when we talk about a general observation
(which could be in D but also new data).

The goal of the model is to find (i.e., fit) a function f (x; θ) : RM → R on D
in such a way, that

y = ŷ = f (x; θ) (2.1)

Hereby, θ represents the weights or parameters of f , which are determined
by fitting the model on D. When we write ŷ, we do mean the predicted
value f yields for x.

For the fitting process, we need a scalar metric which tells us how well our
model is already approximating the observed label. Usually, this metric is
called the loss function l(y, ŷ) = l(y, f (x; θ)) and measures the deviation of
the prediction ŷ = f (x; θ) from the observed label y. We can now find the
optimal weights θ∗ by minimizing the loss function for all observations in
D

θ∗ = arg min
θ

N

∑
i=1

l(y(i), f (x(i); θ)) (2.2)

This problem set-up is very general and can be applied to a wide range
of problems. For example, X could represent various variables describing
the state of the atmosphere (e.g., pressure or wind flow). Consequently, x
would describe one observation of those variables at a given point in time.
In accordance, the target label y could determine whether foehn is prevalent
in Altdorf. For binary classification, the only restriction on this general setup
is that y ∈ {0, 1}. This means, that y tells us whether x belongs to class 0
(y = 0; no foehn) or class 1 (y = 1; foehn).

Before training the model, D is split up into a training dataset Dtrain and a
test dataset Dtest. The idea is to optimize the parameters θ on Dtrain (often
referred to as ”training”). Afterward, the model’s performance is evaluated
on the before unseen Dtest (referred to as ”testing”). This is done to avoid
overfitting and to ensure transportability of results. Several techniques for
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the model evaluation will be explained in Subsection 2.2.5. One often trains
the model on randomly selected 80% of the data and then evaluates it on
the remaining 20% (Mehta et al., 2019). This usually serves as a good first
indication and can be adjusted to the problem at hand.

In the next steps, we will put the above theory into a more detailed context
by explaining various models used for the analysis.

2.2.2 Decision Trees

A decision tree is a very simple machine learning model often used for
regression or classification (Louppe, 2014; Hastie et al., 2009). Note that
from here on, we mainly deal with the concept of two-class classification
trees since that is what we use in this thesis. However, in the end, we
also describe the necessary modifications to turn a classification tree into
a regression tree since we indirectly utilize them in gradient boosted trees
later. Multi-class classification with classification trees is a straightforward
generalization, and an excellent description can be found in Hastie et al.
(2009).

Classification trees

A classification tree works by partitioning the observations (x(i), y(i)) ∈
Dtrain into J mutually disjoint regions R1, ..., RJ ⊂ X and assigning a value pj
to each region Rj. In case of binary classification, pj denotes the probability
of a x ∈ Rj belonging to class 1. Likewise, with probability 1− pj it belongs
to class 0. Mathematically, we can write a classification tree as

f CT(x; θ) =
J

∑
j=1

pj I(x ∈ Rj) (2.3)

where θ = {Rj, pj}J
j=1 resembles the weights and

I =

{
1 if x ∈ Rj

0 otherwise
(2.4)

is the indicator function. After one has decided upon the partition regions
Rj, the calculation of pj is naturally determined by

pj =
1
Nj

∑
x(i)∈Rj

y(i) (2.5)

where Nj is the sum of observations in Rj. We calculate the final prediction
ŷ by controlling if the result of Equation 2.3 is larger than a certain threshold
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c ∈ [0, 1]. We define

ŷ = Θ( f CT(x; θ)− c) =

{
1 if f CT(x; θ) ≥ c
0 otherwise

(2.6)

with the Heaviside function Θ. The threshold c can be set manually and
differs between applications. Instead of manually choosing a threshold, we
could have also predicted the more likely class, which corresponds to a
fixed threshold of c = 0.5. However, Equation 2.6 gives us more flexibility
in tuning an already trained model in hindsight, depending on the metric
of interest.

Now that we have explained how a classification tree makes a prediction for
already given Rj’s, we are left with the more difficult part, which is how we
can calculate the Rj’s from Dtrain.

Classification trees partition Dtrain by recursively splitting X into a set of
several rectangular subregions Rj in a binary way (Hastie et al., 2009). Let
us consider a tree which only performs one split. It divides X into two
subregions R1 and R2, by splitting feature m at a split point s

R1(m, s) = {X|Xm ≤ s} and R2(m, s) = {X|Xm > s}. (2.7)

where we have made explicit the dependence of the Rj on the corresponding
feature m and split-point s. It is obvious, that we want to find the optimal
values for m∗ and s∗ in order to achieve better discrimination between classes
in R1 and R2 than in X. We can do so by calculating

m∗, s∗ = arg min
m,s

N1 2p1(1− p1)︸ ︷︷ ︸
Q(p1)

+N2 2p2(1− p2)︸ ︷︷ ︸
Q(p2)

 , (2.8)

where

Qj = Q(pj) = 2pj(1− pj) (2.9)

denotes the so-called ”Gini impurity” for two classes. Nj weights the im-
purity according to the amount of observations in Rj. In general, the Gini
impurity Q measures the probability of an observation being miss-classified
within Rj if it would be labeled randomly with probability pj. Q is a concave
function and as one can easily obtain from Equation 2.5, it becomes zero, if
and only if there is only one class present in Rj (i.e., if Rj is ”pure”). Conse-
quently, for a good separation between classes, we want to minimize Q for
both subregions R1 and R2 weighted by their corresponding Nj. Note how
Q corresponds closely to the loss function mentioned above, and ∑j NjQj is
the objective we want to minimize to obtain θ∗ (compare Equation 2.2).
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Figure 2.3: Shown is a graphical interpretation of fitting a classification tree to data. a) Plotted
is an exemplary dataset D with two features X1 and X2. Each dot represents an observation

x(i) = (x(i)1 , x(i)2 ) ∈ D. The blue color indicates that the sample belongs to class 0 (e.g., no
foehn), the red color indicates class 1 (e.g., foehn). b) First split of the data, where s∗1 and
m∗1 = 1 are determined by minimizing Equation 2.8. c) Second split on X2 in the subspace
obtained from the first split. The values of s∗2 and m∗2 = 2 are again determined by Equation 2.8.
d) If the data is not separable under the given features, the model will still be able to determine
optimal values for s∗j and m∗j , however, for the price of miss-classifications.

Computationally, one can determine s∗ easily for each feature m. Thus, by
scanning through all inputs, the best values for m and s can quickly be
found (Hastie et al., 2009). This is also called the ”greedy” algorithm since
it considers all possible choices.

Usually, one does not perform a single split (which results in a so-called
”decision-stump”), but recursively repeats the procedure described in Equa-
tion 2.7 and Equation 2.8 with the new subsets which are generated in each
split. This training procedure can also be illustrated graphically (see Fig-
ure 2.3).

However, repeating the training procedure infinitely would result in a heav-
ily overfitted algorithm1. Hence, one would stop the recursion on a region
Rj as soon as

• Q(pj) = 0 or

• d = dmax or

• Nj ≤ Nmin.

1Consider the case where J equals N − 1. Here, each x(i) falls into a different Rj.
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Hereby, d describes the depth (i.e., amount of consecutive splits on Dtrain to
reach Rj) of the tree and dmax and Nmin mark certain fixed thresholds (often
called hyperparameters). An pseudo-code implementation of the training
procedure can be seen in Algorithm 1.

Lastly, not only the fitting procedure but also the whole tree can be visual-
ized for easier interpretation (see Figure 2.4). Often, the splits are referred
to as ”Nodes”. The ends of a tree which are associated with a prediction via
Equation 2.3 and Equation 2.6 are called ”Leaves”.

Algorithm 1: Classification tree algorithm for two classes

Training

1. Set R1 = X

2. While (Q(pj) 6= 0) ∧ (Nj > Nmin) ∧ (d < dmax) for a Rj:

a) Calculate optimal split parameters m∗ and s∗ for this Rj
according to Equation 2.8 and split the node

b) Update Rj’s and pj’s

3. Output θ∗ = {Rj, pj}J
j=1

Prediction

1. Calculate f CT(x; θ∗) = ∑J
j=1 pj I(x ∈ Rj)

2. Calculate final prediction via ŷ = Θ( f CT(x; θ∗)− c)

Regression trees

Regression trees work almost in the same manner as classification trees.
However, y is now no longer a binary variable, but a continuous one. We
can write a regression tree by

f RT(x; θ) =
J

∑
j=1

cj I(x ∈ Rj) (2.10)

where θ = {Rj, cj}J
j=1 again resembles the weights. In a similar fashion to

classification trees, the calculation of cj given Rj is determined by

cj =
1
Nj

∑
x(i)∈Rj

y(i), (2.11)
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Figure 2.4: Shown is an exemplary structure of an already grown binary two-class classification
tree of depth two. At every ”Node” it is being decided whether feature xm of an observation is
greater than the learned value s∗n (n numbering the nodes). As soon as the algorithm reaches a
”Leaf”, the predicted class ŷ for this observation x will be determined according to Equation 2.6
from the previously calculated pj.

which is simply the mean over all target labels within a region Rj. Since
y is a continuous variable, a threshold becomes redundant and the final
prediction of the regression tree as given by

ŷ = f RT(x; θ∗) (2.12)

Thus, for every x ∈ Rj the regression tree does nothing but predicting the
mean cj, which got learned during training. The training follows the same
procedure described above, we only need to replace Equation 2.8 with

m∗, s∗ = arg min
m,s

[c1(m, s) + c2(m, s)] , (2.13)

as it is derived in Hastie et al. (2009) assuming a mean squared loss.

Feature importance in a decision tree

Instead of manually inspecting a decision tree, one can utilize the informa-
tion available about the splits and their contribution to the final prediction
in order to construct a single-value metric called feature importance. This
allows to compare single features against each other. Breiman et al. (1984)
originally proposed to use

Tm =
J−1

∑
t=1

τ2
t I(m(t) = m), (2.14)
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where the sum goes over all J − 1 internal nodes. m(t) returns the optimal
feature m∗ which was identified for the split in node t and I is again an indi-
cator function. τt measures the squared weighted reduction in error in node
t which was achieved with the identified optimal split (see Equation 2.8).
For two-class classification, τt can be written as

τt = NtQ(pt)− (Nt+1Q(pt+1) + Nt+2Q(pt+2)) (2.15)

In words, τt tells us by how much we can reduce the impurity Q(pt) in node
t by splitting it into the two child nodes which correspond to the impurities
Q(pt+1) and Q(pt+2). Afterward, the formula weights the impurities by
their corresponding amount of samples Nt+1 and Nt+2. Equation 2.14 then
simply attributes this impurity reduction to each feature m and aggregates
it over the whole tree.

For a regression tree Equation 2.15 becomes

τt = Nt+1(ct − ct+1)
2 + Nt+2(ct − ct+2)

2 (2.16)

as one can show in a rather lengthy derivation assuming again mean squared
loss.

Advantages and disadvantages of decision trees

Advantages In the following, we want to outline the benefits of using deci-
sion trees.

• Interpretability. A decision tree is straightforward to read, and pre-
dictions can be made transparent by simply tracing the decision path
(compare Figure 2.4). Decision trees are often referred to as white-box
models and have a logic easily understandable even by non-statistically
advanced users (Louppe, 2014).

• Fast inference. For the classification of a new x, a maximum time of
o(d) is required. That is especially helpful when there are many ob-
servations to classify. Furthermore, they are also relatively fast to con-
struct, with a training time of order o(MN log(N)) for a fully-grown
tree (Hastie et al., 2009).

• Immune to correlated/irrelevant features. Due to their design, de-
cision trees automatically select the features with the most predic-
tive power (Louppe, 2014; Hastie et al., 2009) and will ignore highly-
correlated or irrelevant features after that (since those do not contain
additional information).

• Very little data-preprocessing. They do not require feature normaliza-
tion/scaling (in fact, they are invariant under strict monotone transfor-
mations) or treatment of outliers. Furthermore, missing training data
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does not strictly hinder the training. Thus, according to Hastie et al.
(2009) decision trees come closest to an ”off-the-shelf” procedure for
data-mining.

Disadvantages Before leaving this section, having presented the various
advantages of decision trees, we will now discuss their limitations. By doing
so, we motivate the next section, which deals with a possible extension of
decision trees: Random Forests.

• Overfitting. Decision trees easily overfit and generalize bad to new
unseen data. Recall that for this reason, decision trees are usually
regularized by setting dmax or Nmin.

• Only single feature splits. If the data is not oriented in the right way,
a decision tree will need many splits to capture even simple relation-
ships (e.g., linear) in the data. Removing this shortcoming and allow-
ing linear combinations of splits can improve performance, however, it
hurts interpretability (Hastie et al., 2009).

• Bias towards high cardinality categorical features. It is argued in
Hastie et al. (2009) that the partitioning algorithm tends to favor cate-
gorical features with a high cardinality (i.e., a high number of possible
categories). Thus, it is recommended to discard such features.

• Robustness. It has been shown that decision trees are susceptible to
details in the dataset, and little changes in Dtrain will lead to a highly
different structure of the tree (Mehta et al., 2019; Hastie et al., 2009).

• Accuracy. Lastly, perhaps the largest disadvantage is, as Hastie et al.
(2009) states, that unfortunately, a decision tree seldom achieves an
accuracy that is comparable with other machine learning techniques.
However, by combining trees in an ensemble (through bagging or
boosting), this accuracy can often dramatically be improved (at the
cost of interpretability).

2.2.3 Random Forests

Random forests are a more sophisticated algorithm than normal decision
trees and were first proposed in Breiman (2001). They work by combining
several trees together through a procedure called bagging (which we will
discuss below), and further improving accuracy through randomization of
the trees. We can write a binary classification random forest with B trees as

f RF
B (x) =

1
B

B

∑
b=1

f CT
b (x; θb) (2.17)
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where f CT
b (x; θb) is the prediction of the b-th classification tree as in Equa-

tion 2.3. Again, in order to keep flexibility, the final prediction is determined
by passing Equation 2.17 through the shifted Heaviside function

ŷ = Θ( f RF
B (x)− c) =

{
1 if f RF

B (x) ≥ c
0 otherwise.

(2.18)

As one can imagine, growing several trees on the same data set yields the
same tree multiple times and does not improve prediction. Thus, a proce-
dure called ”bagging” (which is short for ”bootstrap aggregation”) is used
for growing distinct trees. In bagging, we fit each tree not with Dtrain, but
a bootstrapped version D′train ⊆ Dtrain (i.e., a randomly, with-replacement
sampled subset of same size) and then combine the trees in an ensemble.
In general, bagging can be used for any low-bias, high-variance (see below)
estimator and not only for decision trees.

To further improve the predictive power of a random forest, the resulting
trees should be decorrelated as much as possible (Hastie et al., 2009). As
Breiman (2001) has shown, an effective way of further improving decorre-
lation is by considering a random subset of M′ features at each split. For
classification, usually one would choose M′ =

√
M (Hastie et al., 2009). A

pseudo-code implementation can be found in Algorithm 2. In the next step,
we examine an explanation for the improvement the described procedure
yields. For that, we introduce the bias-variance-decomposition of random
forests.

In machine learning, the generalization error Eout (i.e., the error on the test
set) of the model can be written in the form of a bias-variance-decomposition
(Mehta et al., 2019)

Eout = Bias2 + Variance + Noise

The Bias measures the deviation of the expectation value of the model (in
the infinite data limit) from the true value. Variance measures how much the
model fluctuates due to finite sample effects. The Noise is due to intrinsic
noise in the data and can not be overcome by any statistical model. Since
we want to minimize Eout, we can reduce either the Bias or the Variance. For
bagging, it can be shown that the Bias-Term in the ensemble of classifiers is
the same as the bias of any individual classifier (Hastie et al., 2009; Mehta
et al., 2019). Thus, the benefit a random forest brings over a decision tree
stems solely from reducing Variance. Mehta et al. (2019) shows that for
bagging the Variance can be written as

Variance = ρσ2 +
1− ρ

B
σ2, (2.19)
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Algorithm 2: Random forest algorithm for two-class classification
(adopted from Hastie et al. (2009))

Training

1. For b=1 to B:

a) Draw a bootstrapped sample D′train of size N from Dtrain.

b) Grow a classification tree f CT
b on D′train, by recursively repeating

the following steps for each node of the tree, until stopping
criteria is reached

i. Select random M′ < M features.
ii. Calculate optimal m∗ and s∗ for the split.

iii. Split the node into two child nodes.

2. Output { f CT
b }B

b=1

Prediction

1. Calculate f RF
B (x) = 1

B ∑B
b=1 f CT

b (x; θ∗b )

2. Calculate final prediction via ŷ = Θ( f RF
B (x)− c)

where σ2 denotes the variance of a single classifier and ρ the positive pair-
wise correlation between classifiers in the ensemble. By increasing the num-
ber of classifiers B in the ensemble (i.e., the amount of trees in the forest), we
can bring down the second term. The benefit a random forest has over an
ensemble of bagged decision trees is, as already described above, through
reducing ρ by only splitting the data on a random subset of features.

As one can imagine, even though we are able to reduce Eout, it comes at the
cost of interpretability. Especially for large B, it may not be clear how the
random forest arrives at its final prediction. Thus, in the next section, we
investigate how we can aggregate the feature importance of single decision
trees for random forests.

Feature importance of random forests

As we have seen in Equation 2.14, in a decision tree we can attribute the
improvement in the split-criterion to a corresponding feature. We can now
generalise this equation to random forests by calculating the feature impor-
tance Tm( f CT

b ) for each of the B trees in the ensemble and then averaging
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over the results by

T RF
m =

1
B

B

∑
b=1
Tm( f CT

b ) (2.20)

Naturally, T RF
m now gives us the feature importance for the m-th feature

determined by the random forest.

Advantages and disadvantages of random forests

Advantages Random forests inherit many advantages which stem from the
design of decision trees discussed above. Furthermore, they build on some
disadvantages and substantially improve them.

• Accuracy & Robustness. The predictions of random forests are more
accurate and robust than for single decision trees and are comparable
to that of boosted trees (Hastie et al., 2009).

• Low complexity. The hyperparameters dmax and Nmin are the same as
for all trees in the forest; only B and M′ are additional parameters that
can be tuned.

• Overfitting is seldom. Breiman (2001) argues, that a random forest is
immune to overfitting, when increasing B. Hastie et al. (2009) counters
that, in general, overfitting is possible with fully grown trees. However,
this occurs very seldom and at minimal cost of accuracy.

• Parallelizability. Since the trees in a random forest are independent
from another, a random forest algorithm is highly parallelizable.

• Usage of the OOB score. One can calculate the so-called out-of-bag
(OOB) score, which uses the observations not included while growing
a tree due to the bagging procedure. That eliminates the need for set-
ting aside a test set. The OOB score is almost identical to that obtained
by cross-validation (Hastie et al., 2009).

Disadvantages In contrast, some advantages of using a decision tree are
lost for random forests.

• Resource consumption. Although random forests are parallelizable,
they still require larger computational resources for the training if
BM′ > M. Since all trees need to be evaluated for a prediction, in-
ference time is with o(Bd) also longer for non-parallelized code.

• Lower interpretability. Perhaps the greatest drawback compared to
decision trees is the loss of interpretability. As Hastie et al. (2009)
states, a bagged decision tree is no longer a tree.
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2.2.4 Gradient Boosted Trees & XGBoost

Another method to combine trees into an ensemble is called boosting. In
contrast to bagging, where the ensemble members are build independently
from each other, in boosting, we build them sequentially. Here, each classi-
fier is trained to reduce the errors of the previous ensemble members. This
method was first implemented by Friedman (2001) in gradient boosted trees.
The computational performance is pushed to its limits by Chen and Guestrin
(2016) in their more sophisticated implementation named Extreme Gradient
Boosting (XGBoost). First, we will explain the mechanism behind gradient
boosted trees and then move on to the benefits of XGBoost.

In a very similar manner to Equation 2.17, we construct the boosted tree
ensemble by

f BT
B (x) =

B

∑
b=1

f RT
b (x; θb). (2.21)

Here, the f RT
b (x; θb) are regression trees due to the sequential architecture of

the algorithm, even for classification tasks. To convert this into a probability,
the logistic function

p(z) =
1

1 + exp(−z)
(2.22)

is used. Then, the final prediction is again determined via the threshold c as
in Equation 2.6 by

ŷ = Θ(p( f BT
B (x))− c) =

{
1 if p( f BT

B (x)) ≥ c
0 otherwise.

(2.23)

Thus, the goal is to maximize f BT
B (x) for y(i) = 1 and minimize it for y(i) = 0

and map it to its corresponding probability afterwards. We can do so by
minimizing the loss function l. One possible choice for binary classification
is the (negative) logistic loss or binary cross-entropy

lLL(y(i), p(i)) = −(y(i) log(p(i)) + (1− y(i)) log(1− p(i))). (2.24)

We calculate the sum over l on Dtrain for all f BT
b−1(x(i)) and then add the

b-th tree to the ensemble in such a way that it further minimizes the loss.
Formally, we can write the determination of θ∗b by

θ∗b = arg min
θb

N

∑
i=1

l
(

y(i), f BT
b−1(x(i)) + f RT

b (x(i); θb)
)

(2.25)
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Usually, l is minimized by gradient descent, hence the name gradient boost-
ing. For the logistic loss, the negative gradient for each observation in Dtrain
can be written as residual

−
[

∂lLL(y(i), f BT
b−1(x(i)))

∂ f BT
b−1(x(i))

]
= y(i) − p( f BT

b−1(x(i))) = r(i)b . (2.26)

The residuals measure the errors of f BT
b−1(x(i)). Now, we fit the b-th decision

tree f RT
b (x(i); θ) with r(i)b as the target label and hereby determine the regions

{Rjb}Jb
j=1. Afterward, the optimal weights for each region are calculated

through

cjb =
∑x(i)∈Rjb

r(i)b

∑x(i)∈Rjb
|r(i)b |(1− |r

(i)
b |)

(2.27)

as it is shown in Friedman (2001). With those parameters we can construct
the b-th tree f RT

b (x; θb) with θb = {cjb, Rjb}Jb
j=1. Finally, we add this tree to the

ensemble and repeat the procedure until we reach B trees. A pseudo-code
implementation of this can be found in Algorithm 3.

Next, in the same manner as we generalized the concept of bagged trees to
random forests, we will now build upon gradient boosted trees and (briefly)
introduce XGBoost.

XGBoost (Chen and Guestrin, 2016) is an open-source library that imple-
ments gradient boosted trees in a computationally highly-efficient way. The
XGBoost model has been used with high success in many past applica-
tions achieving state-of-the-art performance (Chen and Guestrin, 2016). In
physics, the XGBoost model was used to detect signals from Higgs boson re-
lated events from vasts amount of data (Chen and He, 2015). Also, XGBoost
has already been applied to classify foehn strength in the Antarctic (Laffin
et al., 2019).

XGBoost performs better due to algorithmic and system optimizations of
gradient boosted trees. We will briefly summarize some of the main im-
provements XGBoost offers over other gradient boosted trees libraries. For
more details, the reader is referred to Chen and Guestrin (2016).

• Regularization. The loss function is expanded to include regulariza-
tion terms, forcing the model to find an accuracy vs. simplicity trade-
off and hence allowing to minimize overfitting. Here, XGBoost builds
on the work of Johnson and Zhang (2013).

• Partially parallelized. Although the building of sequential trees can-
not be parallelized, XGBoost parallelizes the splitting of nodes within
a tree.
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Algorithm 3: Gradient boosted algorithm for two-class classifica-
tion (adopted with variations from Friedman (2001) and Hastie et al.
(2009))

Training

1. Initialize f BT
0 (x(i)) = 0

2. For b=1 to B:

a) Set p(i)b = p( f BT
b−1(x(i))) = 1

1+exp(− f BT
b−1(x(i)))

.

b) Compute residuals r(i)b = y(i) − p(i)b .

c) Fit a regression tree to r(i)b and obtain the regions {Rjb}Jb
j=1

d) Compute cjb =
∑x(i)∈Rjb

r(i)b

∑x(i)∈Rjb
|r(i)b |(1−|r

(i)
b |)

.

e) Construct f RT
b (x; θ∗b ) with θ∗b = {cjb, Rjb}Jb

j=1

f) Update f BT
b (x) = f BT

b−1(x) + f RT
b (x; θ∗b )

3. Output { f RT
b (x; θ∗b )}B

b=1

Prediction

1. Calculate f BT
B (x) = ∑B

b=1 f RT
b (x; θ∗b )

2. Calculate final prediction via ŷ = Θ(p( f BT
B (x))− c)

• Early stopping. An early-stopping module allows training to be fin-
ished prematurely after the loss reduction falls below a certain thresh-
old for subsequent boosting rounds.

• Improved split algorithm. An approximate and sparsity-aware algo-
rithm for finding the best split in each node (see Equation 2.8) outper-
forms the greedy algorithm described in Subsection 2.2.2 in terms of
computation time.

• Learning rate. The introduction of a learning rate which shrinks the
contribution of each tree heavily increases the accuracy (Hastie et al.,
2009). This idea was already introduced by Friedman (2001).
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Feature importance of gradient boosted trees

The feature importance for gradient boosted trees is calculated in the same
way as for random forests (see Equation 2.20)

T BT
m =

1
B

B

∑
b=1
Tm( f RT

b ) (2.28)

In contrast to random forests, the variable-split selection for boosted trees
does not include a single feature by chance, thus leading to more sparse
feature selection (Hastie et al., 2009). While a random forest would rank all
features according to their importance and allow several correlated features
to be ranked high, a boosted tree model would ignore correlated features in
the importance after selecting the most powerful ones.

Advantages and disadvantages of gradient boosted trees/XGBoost

Advantages Again, XGBoost (and a gradient boosted tree model in gen-
eral) inherits many advantages from the design of decision trees, which
were already discussed in Subsection 2.2.2. However, they also have some
more benefits.

• Accuracy. In comparison to the other methods, the performance of
gradient boosted trees is rated best. However, the deviation from a
random forest is quite small (Hastie et al., 2009).

• Customizability. The model complexity can be controlled through
many hyperparameters, and regularization is easily applicable (Chen
and Guestrin, 2016; Johnson and Zhang, 2013).

• Performance. Although different trees cannot be grown in parallel,
XGBoost achieves a major speedup by parallelizing within a single
tree achieving lower training times than comparable implementations
(Chen and Guestrin, 2016).

Disadvantages In contrast, some advantages of decision trees are lost in a
XGBoost model.

• Complex to understand. An XGBoost model has many hyperparam-
eters that have to be tuned and usually are optimized through cross-
validation. For beginners, it might not be clear how each parameter
influences the outcome of the model.

• Interpretability. Of all models, XGBoost is the least interpretable
model. That is because single trees are fit to the residuals, and thus
inspection of them has no valid meaning anymore.
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2.2.5 Model evaluation

After understanding how these algorithms work, it is nevertheless still im-
portant to evaluate the output of such models. Thus, in this section, we
introduce common model-agnostic methods to interpret models and their
predictions.

Confusion matrix

The confusion matrix and metrics which can be derived from it are fre-
quently used to evaluate a model (Hoens and Chawla, 2013). Table 2.1 shows
an exemplary confusion matrix for binary classification.

Table 2.1: Exemplary binary confusion matrix. TP are true positives, FN are false negatives,
FP are false positives and TN are true negatives.

Predicted label ŷ
1 0 Total

Observed label y 1 TP FN TP+FN
0 FP TN FP+TN

Total TP+FP FN+TN TP+FP+FN+TN

Many different metrics can be computed from the confusion matrix, all look-
ing at different aspects and having different benefits and drawbacks. Mur-
phy (1996) discussed how crucial it is to choose a suitable metric for the
verification of forecasts. Naively, a typical metric one would look at is the

Accuracy =
TP + TN

TP + FP + FN + TN
.

However, especially for imbalanced datasets, Accuracy is not a suitable met-
ric since it puts too much emphasis on the major class (Hoens and Chawla,
2013). A model that solely predicts ŷ = 0 achieves an Accuracy of 99% if
each class-1 observation faces a hundred class-0 ones. Thus, for imbalanced
datasets, one would instead consider the

Precision =
TP

TP + FP
,

which measures how many of all positively predicted cases were correct.
Second, the

Recall =
TP

TP + FN
,

measures how many of all class-1 observations were correctly predicted. Fi-
nally, the F1-score combines both metrics into one

F1 =
2 · Precision · Recall
Precision + Recall

,
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and is nothing but the harmonic mean between Precision and Recall. Here,
we followed the convention and defined class-1 to be the rare class.

Depending on the problem, a different metric might be of interest (e.g., in
pandemics, higher Recall might be preferable since fewer false negatives
will be made). Since all metrics depend on the threshold c, one usually
optimizes c for the specific metric of interest. Also note, that each metric
might be known under a different name in different fields. In meteorology,
one would translate Precision to the Correct-Alarm-Ratio (CAR) and Recall
to the Probability-Of-Detection (POD).

Another popular measure is the so-called Receiver-Operator-Characteristic
curve (ROC curve) because it aggregates the confusion matrix for all thresh-
olds. A ROC curve can be constructed with the false positive rate

FPR =
FP

FP + TN
(2.29)

on the x-axis and the true positive rate (an alias for Recall)

TPR =
TP

TP + FN
(2.30)

on the y-axis of a diagram (Hoens and Chawla, 2013). One point (FPR(c),
TPR(c)) is added to the diagram for an uniformly distributed set of thresh-
olds c ∈ [0, 1]. Several potential ROC curves are shown in Figure 2.5. Thus,
with a single plot one can evaluate a model for all potential thresholds c.

Another widely used metric, which in contrast to the metrics above is thresh-
old independent, is the so-called ROC Area Under Curve (AUC). The AUC
integrates the area under the ROC curve. A perfect model would follow
a curve which which passes through the points (0, 0), (0, 1) and (1, 1) and
thus score AUC = 1. A model which just guesses randomly will passes only
through the points (0, 0) and (1, 1) and consequently score AUC = 0.5.

Again, since the FPR includes true negatives, Davis and Goadrich (2006)
have argued that ROC curves (and the AUC correspondingly) present an
overly optimistic view on the model’s performance in the case of large class
imbalance. Instead, they suggested to rely on Precision, Recall, and the
corresponding Precision-Recall curve. In our case, the interest in the ROC
and AUC stemmed from the ability to compare our model to other scientists
work.
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Figure 2.5: Shown are several exemplary ROC curves. The closer a curve gets to (0, 1) the
better the model. The AUC can be determined by integrating over the curve. Figure taken from
Hoens and Chawla (2013).
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Chapter 3

Data

3.1 Future development of foehn winds

In the next sections, we describe the data which was employed during our
analysis. In Subsection 3.1.1, we look at the ERA-Interim reanalysis data.
In Subsection 3.1.2, the structure of the CESM simulation data is described.
In Subsection 3.1.3, the preprocessing of the observational foehn time series
will be explained.

3.1.1 ERA-Interim data

The ERA-Interim (ERAI) reanalysis (Dee et al., 2011) was produced by com-
bining observational data of the past decades with an NWP model by means
of data assimilation. ERAI describes the state of the atmosphere with a spa-
tial horizontal grid resolution of one-degree (approximately 80 km in our
area of interest) on 60 vertical levels and a temporal resolution of six hours
(i.e., at 0:00, 6:00, 12:00, and 18:00). All features which were used for the
training and testing are derived from the ERAI reanalysis. In our case, we
used data from January 1981 until the end of March 2019.

Since, for our analysis, the synoptic conditions in the Alpine region were
relevant, we decided to limit the area of interest to a number of grid points
over Europe. Those grid points would lie in the interval [42◦, 50◦]× [0◦, 15◦]
latitude and longitude, respectively. This choice is also motivated by the
relevant variables in the Widmer test (Widmer, 1966; Courvoisier and Guter-
mann, 1971). However, since we would make predictions on the CESM data,
we interpolated the variables from the ERAI grid to the CESM grid (see Fig-
ure 3.1). We interpolated this way (and not from CESM to ERAI) due to the
more coarse CESM grid resolution. In total, this procedure left us with 104
horizontal grid points per variable.

Due to the enormous amount of variables in ERAI, we needed to limit our-
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Figure 3.1: Grid Points of the CESM Grid (blue). While the ERAI grid is defined on full degrees
(intersection of the lines), CESM is slightly more coarse and shifted. The locations of Altdorf
(ALT) and Lugano (LUG) are marked in red. The olive points indicate the grid points in the
Alps which we removed to achieve better generalization to CESM (see Section 4.1 for details).

Table 3.1: Selected raw variables and their corresponding chosen pressure levels.

Variable Description Pressure levels [hPa]
SLP Sea level pressure sea level

Z Geopotential height 850, 700
T Temperature 900, 850, 700
U Zonal wind component 700, 500
V Meridional wind component 700, 500

selves to the essential. Thus, we used a physically-motivated approach and
selected variables that are known to be relevant for foehn. Sprenger et al.
(2017), Richner and Hächler (2013), Zweifel et al. (2016) and Gerstgrasser
(2017) defined sea level pressure differences ∆SLP, geopotential height dif-
ferences ∆Z, potential temperature differences ∆θ and wind flow U&V to
be important. The raw variables read from the ERAI data are described in
Table 3.1. We decided to look at variables at sea level, 900 hPa, 850 hPa,
700 hPa and 500 hPa. Here, 900 hPa resembles a layer close to the surface,
850 hPa resembles a layer about halfway to the Alpine crest, 700 hPa is at
the Alpine crest layer, and 500 hPa is a layer high above the Alpine crest.
A topography plot of ERAI is shown in Figure 3.2. Note how the Alps are
represented as an obstacle smaller than in reality. However, the synoptic-
scale conditions which cause foehn (i.e., pressure systems) are unlikely to
be affected by this.

The calculation of the final variables was straightforward and can be found
in Appendix A. Finally, we were left with the variables shown in Table 3.2.
Each row in the final dataset represented one observation (i.e., state of the
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Figure 3.2: Topography of ERAI in terms of an averaged surface pressure. The locations of
the south foehn station Altdorf (ALT) and the north foehn station Lugano (LUG) are shown in
white. The black dotted frame indicates the area within which we would remove the features for
the CESM prediction (see Section 4.1 for details).

Table 3.2: The final features. The raw SLP, T and Z values got removed, after the more
important variable differences got calculated.

Variable Description Pressure levels [hPa] # features
∆SLP Sea level pressure diff. sea level 5356

∆Z Geopotential height diff. 850, 700 10712
∆θhor Hor. pot. temperature diff. 850 5356
∆θver Ver. pot. temperature diff. 850, 700 208

U Zonal wind comp. 700, 500 208
V Meridional wind comp. 700, 500 208

atmosphere) at a given date-time (e.g., 29/11/1985 6:00). Each column in the
final dataset represented one feature at a specific grid point (or difference)
and pressure level (e.g., V at 48.53◦N and 10◦E on 700 hPa).

3.1.2 CESM data

In contrast to the ERAI reanalysis, the CESM model (Kay et al., 2015) does
not rely on past observational data and is a freely running climate simula-
tion with a slightly different horizontal grid (see Figure 3.1) on 30 vertical
levels and six-hour temporal resolution. The CESM simulation was applied
to two scenarios. First, for a present-day climate (CESM-p), keeping param-
eters like CO2 concentration fixed at a present level. Second, for a future
climate (CESM-f), external forcing is adjusted to the expected future levels.
Here, we relied on the RCP8.5 scenario discussed in Van Vuuren et al. (2011).
Each simulation (CESM-p and CESM-f) consisted out of 35 ensemble mem-
bers, each of them one possible realization of the weather conditions during
the ten-year period from 1991 until 2000 for present-day climate and 2091
until 2100 for future climate. Here, each ensemble member was initialized
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Figure 3.3: Topography of CESM in terms of an averaged surface pressure. The locations of
the south foehn station Altdorf (ALT) and the north foehn station Lugano (LUG) are shown in
white. The black dotted frame indicates the area within which we would remove the features for
the CESM prediction (see Section 4.1 for details).

with slightly different initial conditions and then integrated forward. Thus,
even though the ensemble members of a given period represent the same
climate, the exact weather conditions will differ. For more details regarding
the implementation, see Röthlisberger et al. (2020).

The CESM model data for both scenarios was retrieved similarly to the ERAI
data. Apart from the different grid (see Figure 3.1), the CESM data was not
already available at pressure levels. Thus, we used the pressure values at the
30 model levels to linearly interpolate the raw variables given in Table 3.1 to
their corresponding pressure levels. In case interpolation was not possible
(i.e., if the pressure level was below the lowest model level), we decided
against extrapolating this variable for this pressure level and grid point. That
is because, in this case, the pressure level is very likely to intersect with the
topography.

A topography plot for CESM can be found in Figure 3.3. Note how the
Alps are more coarsely resolved compared to ERAI. In the end, the derived
variables were calculated in the same way as for ERAI (see Appendix A).

3.1.3 Foehn data

For the training, we needed a label for the foehn target variable y(i). Since
we dealt with a binary classification problem, we needed to associate each
ERAI observation (i.e., each state of the atmosphere at 0:00, 6:00, 12:00, and
18:00) with its target variable

y(i) =

{
1 if foehn is prevalent
0 else.

(3.1)
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The foehn time series was gratefully made available by the Swiss national
weather service (MeteoSwiss; www.meteoswiss.ch). For south foehn, the
time series contained the Duerr-Index (Duerr, 2008) at Altdorf from January
1981 until December 2019 in ten-minute intervals. Duerr (2008) separates
between foehn, mixed-foehn and non-foehn cases.

Since we were interested in the synoptic situation of foehn, we treated mixed-
foehn as normal foehn. For mixed-foehn cases, foehn is eventually prevalent.
However, local conditions like not completely eroded cold pools prevent the
foehn from completely breaking through (Duerr, 2008). Due to the coarse
grid resolution, these local conditions are not captured in ERAI or CESM.

In the next step, we used the values in the ten-minute time series to create
the label y(i) for each ERAI time step (i.e., at 0:00, 6:00, 12:00, and 18:00). In
Gutermann et al. (2012) it has been shown that the best transition from ten-
minute intervals to hourly observations in the morning, noon, and evening
can be achieved if at least 4 out of 6 intervals indicate foehn. Moreover, it
is argued that this 4-out-of-6 rule is invariant under a 30-minute shift to the
past or future. Since we possibly wanted to look at the situation amid foehn,
we defined that foehn is prevalent at 0:00, 6:00, 12:00, and 18:00 if at least 40
out of 60 minutes, which are centered symmetrically around the given time,
showed the occurrence of a foehn wind.

The mean foehn duration for all foehn events in the dataset was approxi-
mately 5.5 hours. That coincided with Orlanski (1975), who found that syn-
optic situations (e.g., pressure systems or fronts) are usually persistent from
hours to days. Thus, even though we dealt with only four measurements
per day, we had a good chance of capturing a foehn event.

For north foehn, we followed the same approach as for south foehn, only
here we had data available from January 1983 until December 2019. The data
was generated by Cetti et al. (2015), who followed the same methodology as
Duerr (2008).
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3. Data

3.2 Impact of foehn on forest fires

3.2.1 Forest fire data

The forest fire data was gratefully made available by the Swiss Institute for
forest, snow, and landscape (WSL, www.wsl.ch). For details regarding the
database, see Pezzatti et al. (2010). The database included all forest fires
in Switzerland from January 1980 until December 2019. In total, 4599 fires
were recorded during this period. The spatial distribution of fires can be
seen in Figure 2.2.

Each fire in the dataset was further specified by 36 characteristics. Amongst
the most important ones were the burned area, the start and end timestamp,
the accuracy of those timestamps, the coordinates, municipality, and the
most probable cause. Since many values showed themselves to be missing,
we first had to cleanse the data and hence make some assumptions described
in the next paragraph.

First, we decided to keep only fire data where we knew the start and end
timestamp of a fire at least to an accuracy of an hour. Second, in collabora-
tion with the experts from WSL, we learned that entries with missing values
in the burned area resembled small fires. Thus, we imputed the missing
burned area fields with a value of 0.01 ha. Lastly, where the exact coordi-
nates of the fire were missing, we imputed the values with the center coordi-
nates of the municipality. Here, we retrieved the coordinates automatically
via the Nominatim API and performed a coordinate transformation from
WGS84 coordinates to the Swiss LV03 coordinates (see Swisstopo (2016)).

3.2.2 Foehn data

In total, foehn data from 39 meteorological stations was available to us in
form of the Duerr index (Duerr, 2008) at ten-minute resolution (see Sub-
section 3.1.3). Furthermore, measurement data was available for the wind
speed FF, wind gust peak FFX, and temperature TT, which we used to as-
sess foehn strength. The location of all foehn observation stations is shown
in Figure 2.2.

Again, for each station, we preprocessed the data, e.g., cleansed missing
values. In contrast to the above section about foehn development (Subsec-
tion 3.1.3), we treated mixed-foehn as non-foehn cases. The reason for this
was that now we were concerned with the mesoscale conditions of foehn.
For mixed-foehn cases, the probable existence of a cold pool in the valley
prevents the foehn from breaking through and showing its typical character-
istics (see Figure 1.1).
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Chapter 4

Implementation

4.1 Future development of foehn winds

We divided this chapter and the corresponding ones in the Results and
Discussion (see Chapter 5) into multiple parts. Note how each part corre-
sponds closely to an objective described in Subsection 1.1.3. First, we look at
the most important features to identify south foehn from coarse NWP data.
Then, we describe the set-up and evaluation of a statistical model on ERAI
data. In the next step, we focus on generalizing the model’s predictions to
CESM data. In the fourth part, we compare the predictions on all datasets,
making sense of a potential future development of south foehn. Lastly, we
discuss the same for the analysis of north foehn.

Synoptic-scale foehn conditions

To identify the most relevant features for foehn, we investigated feature im-
portances on the variables listed in Table 3.2. For ∆SLP, ∆Z, ∆θhor, ∆θver,
and U&V, we separated the variables into five different datasets, respec-
tively. Now we trained a random forest with B = 1000 and dmax = 7 on
each dataset and selected the 30 most important variables according to the
feature importance (see Equation 2.20). The advantage of this method lies
in the fact that the selected variables (e.g., SLP differences) can directly be
compared to the theory. In order to do so, we plotted the selected features
over a composite plot of the mean conditions prevalent during foehn (i.e.,
where y(i) = 1 as defined in Equation 3.1).

Foehn predictability on ERAI

First, we split the ERAI data DERA into training set Dtrain and test set Dtest.
We decided to use the years from 1991 until 2000 for Dtest since CESM-p
simulates the same period. Consequently, the remainder of the data, which
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originated from the years 1980 until 1990 and 2001 until 2019, was used for
Dtrain.

Next, we trained a range of machine learning algorithms on Dtrain and
evaluated their performance on Dtest. In detail, we utilized the following
models: Random Forests, Gradient Boosted Trees (i.e., XGBoost, LightGBM,
CatBoost), Deep Neural Networks (DNNs), K-Nearest Neighbors (KNN)
with Principal Component Analysis (PCA) preprocessing, and an Elastic
Net. Furthermore, due to the spatial nature of the data, we also employed
a Convolutional Neural Network (CNNs) to the data. The hyperparameter
optimization was done using a three-fold cross-validation on Dtrain. We opti-
mized over the various individual hyperparameters of the algorithms (such
as depths, learning rates, or regularization parameters). The best model
was determined using the summed logistic loss for all samples (compare
Equation 2.24).

In the end, the best performance was obtained by the XGBoost algorithm,
even though the results of some other algorithms were not substantially
worse. Primarily the CNN approach also worked considerably well. Nev-
ertheless, the benefits of XGBoost models over CNNs originate from less
resource-intense training procedures and more straightforward interpretabil-
ity due to the intrinsic feature importance (see Equation 2.28). Finally, the
results of XGBoost on the whole dataset would serve as our baseline, against
which we could compare the following steps.

Generalization to CESM

After removing the features, which were not available in CESM (due to a
likely intersection with the topography; see Subsection 3.1.2), we used a
straightforward approach and applied a trained XGBoost model to CESM
data. However, as it turned out, this approach worked only in very limited
ways since we generally predicted very little foehn occurrence on CESM-
p. We wondered whether this could stem from overfitting to ERAI data
and hence having poor generalization to CESM data. For this reason, we
employed a range of additional preprocessing measures.

Quantile rescaling To compensate for any bias or deviation in the represen-
tation of features between ERAI and CESM-p (induced by different model
topography and necessary grid interpolations), we separately rescaled both
datasets. Here, we chose a non-parametric approach and transformed a fea-
ture to its quantile representation. That would not affect the results within
ERAI since the quantile function q : R → [0, 1] is strictly monotone, and
trees are invariant under such a transformation. Moreover, to avoid model
leakage, the samples in Dtest were rescaled with the q, which was fitted and
applied to Dtrain. For CESM-f, we must rescale each feature with the func-

48



4.1. Future development of foehn winds

tion q we obtained from the corresponding feature in CESM-p because we
wanted to investigate a shift in the feature distribution between CESM-p and
CESM-f. Hence, if we had rescaled CESM-f with its own q̃, we would have
eliminated part of what we liked to measure. Then, CESM-p and CESM-f
would have a very similar feature distribution.

Disregarding local features We wanted our model to classify the synoptic-
scale weather situation. Thus, we decided to exclude features in the Alpine
region, which are likely to be represented differently due to the deviating
topography between ERAI and CESM. In particular, we excluded the 21 grid
points inside the rectangle between [44.76◦N, 3.75◦E] and [48.53◦N, 13.75◦E]
from DERA, DCESMp, and DCESM f (see Figure 3.1, Figure 3.2, and Figure 3.3).

Monthly models We moved from employing one XGBoost model for the
whole year to utilizing twelve XGBoost models, one for each month, respec-
tively. This allowed us to adjust the threshold so that Precision and Recall
would be balanced (i.e., false positives and false negatives occurred with
the same frequency). Furthermore, this also allowed for inspection of the
individual models for potentially varying feature importances over the year.

Constrained optimization of the loss function Lastly, as the potentially
most impactful step, we adjusted the loss function l for the XGBoost mod-
els. For ERAI samples, we continued to use the standard logistic loss from
Equation 2.24

lLL(y(i), p(i)) = −(y(i) log(p(i)) + (1− y(i)) log(1− p(i))).

Now, we introduced an additional term, which would be optimized on the
CESM-p samples during the training procedure. Since we did not have any
labels available on CESM directly, we formulated this term as

lSME = λ

(
∑DCESMp

p(i)

∑DCESMp

− ∑Dtrain
y(i)

∑Dtrain

)2

= λ
(
µCESMp − µtrain

)2 , (4.1)

where p(i) = 1/(1 + exp (−z(i))) = 1/(1 + exp (− f BT
b−1(x(i)))) is again the

prediction for sample i after applying the logistic function (Equation 2.22).
We will call this term Squared Mean Error from here. This term acted as
a form of constraint to the optimization procedure (similarly as regulariza-
tion) to make the mean of DCESMp as close to the mean on Dtrain for each
month. With the parameter λ, we could control how strong we wanted to
enforce this constraint. For λ = 0, we would completely disregard the con-
straint. Thus, the XGBoost models were forced into a trade-off. On the one
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hand, they were forced to select features which allowed for an accurate pre-
diction on Dtrain through Equation 2.24. On the other hand, the models were
penalized for selecting features which made the predicted mean on DCESMp
too unequal compared to the observed mean on Dtrain through Equation 4.1.
Hence, we manged to reduce overfitting on Dtrain and enforced better gener-
alization to DCESMp.

For the training procedure, we required the gradient and trace of the hessian
of Equation 4.1 with respect to the prediction of the regression trees z(i) (see
Equation 2.26). After some calculation, the gradient was determined as

∂lSME

∂z(i)
=

2λ

NCESMp
p(i)
(

1− p(i)
)

︸ ︷︷ ︸
(∗)

(
µCESMp − µtrain

)
︸ ︷︷ ︸

(∗∗)

. (4.2)

The trace of the hessian can be written as

∂2lSME

(∂z(i))2
=

2λ

NCESMp
p(i)

(
1− p(i)

) [ (
1− p(i)

) (
µCESMp − µtrain

)
+ p(i)

(
µtrain − µCESMp

)
+

1
NCESMp

p(i)
(

1− p(i)
)]

.

(4.3)

The different factors in the gradient and hessian allowed for deeper in-
sight into what we optimized. On the one hand, we find that (∗) → 0
for p(i) → {0, 1}. Consequently, the gradient vanishes for samples where
the algorithm is certain about its prediction. On the other hand, we find
that (∗∗) → 0 for µCESMp → µtrain. Thus, the gradient also disappears if
we approximate the observed mean on DCESMp. Furthermore, (∗∗) flips
the sign of the gradient depending on whether we over- or underpredict
foehn on DCESMp. A similar interpretation can be found for the second-
order correction terms in the hessian. Here, the first term makes the model
correct its prediction for samples with p(i) slightly smaller than 0.5. The
second term affects samples with p(i) slightly larger than 0.5. The direc-
tion of the second-order corrections are again determined by the sign of
µCESMp − µtrain. The third term is negligible in our case due to its small
magnitude 1/NCESMp ≈ 10−4.

Finally, we employed the XGBoost models on CESM data. First, we selected
the most important 250 features from an XGBoost model trained on all fea-
tures of Dtrain via three-fold cross-validation. Then, we used those features
to retrain the monthly models. Here, the monthly models had B = 200
and dmax = 4. To utilize also information from other months and having al-
ready some predictive skill on CESM (often called a ”warm-start”), the first
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ten trees were trained on the yearly Dtrain without the constraint condition.
In contrast, the next 190 trees are trained only on monthly data under the
constraint condition with λ = 60000. Afterward, we employed the models
to make predictions for all 35 ensemble members of CESM-p and CESM-f.
Then, we generated the same composite plot for CESM-p and CESM-f as for
ERAI. However, this time, we used the predicted label to determine a foehn
situation (i.e., where ŷ(i) = 1). The feature importances were generated by
summing the 30 highest ranked features importances from each monthly
model.

Comparison of monthly foehn frequencies

Finally, we compared the monthly aggregated data for the different datasets.
To do so in a structured approach, we contrasted the data stage-wise for
their statistical significance:

1. Observational data vs. ERAI predictions. Since in this case, we knew
the correct label at each observation, we used a forecast verification
approach. Here, we relied on the confusion matrix and derived metrics
(see Subsection 2.2.5).

2. ERAI predictions vs. CESM-p predictions. Due to the fact that CESM-
p contained 350 years of data, ERAI however only 10, this transition
was more challenging. Nevertheless, so we argue, can ERAI be viewed
as one potential ensemble member of CESM-p, i.e., one potential re-
alization of the weather. Thus, we randomly sampled a month from
each of the ten years in the CESM-p data and calculated the mean
foehn frequency. Then, we repeated this procedure 1000 times and
compared the resulting Gaussian distribution with the mean foehn fre-
quency of ERAI. Of course, due to the constraint optimization, the
ERAI frequency should, by design, be close to the CESM-p frequency.
However, the chance existed that the XGBoost models failed to find
meaningful features that would generalize well. If the ERAI value fell
outside the second standard deviation of the distribution, we rejected
the hypothesis that they follow the same underlying distribution. In
this case, a meaningful transition from ERAI to CESM-p was not pos-
sible.

3. CESM-p predictions vs. CESM-f predictions. In the last test, we dealt
with the same amount of data points. Thus, we used a Wilcoxon rank-
sum test and calculated a p-value for each month to judge whether
the distributions differ significantly. As global rate of error we used
α = 0.05. Since we dealt with a multiple testing scenario, we further
applied the Bonferroni correction, thus reducing the effective rejection
level for each month to α̃ = 0.0042. If the p-value fell below α̃, we
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rejected the null-hypothesis that the two samples follow the same un-
derlying distribution and conducted statistical significance.

North foehn development

For the north foehn analysis, we could fully utilize the beauty of our ap-
proach. The ERAI, CESM-p, and CESM-f data stayed utterly untouched.
The only thing we needed to change were the target labels y(i). We then
applied the same steps in the same order as for the south foehn analysis.
Here, we selected the 250 most important features for the training of the
monthly XGBoost models, and used the parameters B = 200, dmax = 4, and
λ = 90000.

4.2 Impact of foehn on forest fires

The implementation for this work package mainly consisted of the data pre-
processing, which is extensively described in Section 3.2. After both data
sets were prepared, we mapped each fire to the spatially closest meteoro-
logical station. If the next station was further away than 20 km, we refused
to associate this fire with any station. Visually, this procedure is depicted
in Figure 4.1. That left us with about 3300 fires, which can be evaluated
regarding their foehn activity.

Note, however, that even if a fire could be mapped to a meteorological sta-
tion spatially, this did not imply that we could associate the fire with foehn
temporally. Most stations started to record foehn relevant parameters sev-
eral years after 1980 and showed missing values eventually. If any foehn
values were missing during the fire duration or the period before (see be-
low), this fire would not count into the statistic. On average, this left us with
around 2300 fires, depending on the objective.

Following the objective questions from Subsection 1.2.3, we investigated two
different time periods.

Prior fire ignition

We calculated the accumulated foehn minutes 24 and 48 hours prior to ig-
nition. Then, we counted how often fires are associated with a particular
duration of foehn and binned the results by foehn minutes. Further, we
normalized each bin with the overall occurrence of the bin-specific foehn
minutes due to the rarer prevalence of longer foehn events. Here, this occur-
rence was calculated with a sliding window operation for each measurement
station and then averaged over all stations. For readability, the axis was then
rescaled with the minimum of the resulting values.
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Figure 4.1: Each forest fire from 1980 until 2019 (blue) within a 20 km radius around a mete-
orological station (red) was mapped to the closest station. Note how this distance is distorted
to an ellipse due to the WGS84 projection. The actual distance calculation was performed in
LV03 coordinates, however, due to readability this plot is depicted in WGS84 coordinates. See
Swisstopo (2016) for details.

Afterward, we repeated the same procedure for foehn temperature increase
∆Tf oehn. We counted how often fires are associated with specific binned
foehn temperature increases, again normalizing with the general occurrence
of such a temperature increase. Here, ∆Tf oehn is defined as the mean over all
temperature values in the last 24 or 48 hours which showed foehn activity
minus the mean over all temperature values in the last 24 or 48 hours which
did not show foehn activity

∆Tf oehn = µ f oehn(T)− µnon− f oehn(T) =
∑y(i)=1 T(i)

∑y(i)
−

∑y(i)=0 T(i)

∑y(i)
. (4.4)

Post fire ignition

After the start of a fire, we calculated the accumulated foehn minutes for
the next six and twelve hours. Here, it is vital to watch out for a potential
confounder/mediator fallacy shown in the causal diagram in Figure 4.2.

If a fire is shorter than six hours, it would make sense to only count the
foehn minutes during this period. However, in this case, we would intro-
duce an edge in our graph from Fire duration to Foehn duration, since Fire
duration limits the maximum minutes of Foehn duration. That introduces a
confounder bias to the causal effect from Foehn duration to Burned area: A
short fire duration limits the foehn minutes, while at the same time, it is
likely associated with a small burned area. Usually, one would now control
for Fire duration to eliminate this bias.
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Figure 4.2: Causal diagram showing the relation between the Foehn duration and the Burned
area for the first six or twelve hours after ignition, when capping the maximum Foehn duration
at the Fire duration.

Unfortunately, however, in our case Fire duration might also be a mediator
between Foehn duration and Burned area: More foehn minutes during the
ignition period lead to a longer fire duration, which in turn increases the
burned area. In this case, we cannot control for the mediator since it poten-
tially eliminates part of the effect we want to measure.

Our resolution for this was to always consider the full six (twelve) hours
after ignition. For example, a fire extinguished after three hours could still
have a value of six (twelve) hours for Foehn duration. This way, Fire duration
no longer limits Foehn duration, and we can delete this edge in our graph.
However, this also leads to underestimating the total effect, since the foehn
minutes after fire extinguishment no longer influence the fire causally, yet
are attributed to a long Foehn duration bin. For this reason, the results depict
a lower bound.

We evaluated the effect from Foehn duration on Burned area by visualizing the
results in the form of a boxplot. Furthermore, we disaggregated the data and
looked at them from the viewpoint of different fire regimes, foehn locations,
and decades. Lastly, we performed a statistical Wilcoxon rank-sum test to
evaluate significance in the different distributions, i.e., between fires without
foehn occurrence (non-foehn fires) and fires with foehn occurrence (foehn
fires). Here, we used a global rate of error α = 0.05. Whenever we faced a
multiple testing scenario, we applied the Bonferroni correction.

Again, we repeated the same analysis for the mean foehn strength, i.e., wind
speed FF and gusty wind peaks FFX, during the first six or twelve hours
of a fire as measured by the closest meteorological station. Here, we took
only the foehn fires into account. FF was defined by the mean of all wind
measurement values, which showed foehn occurrence

FF = µ f oehn(FF) =
∑y(i)=1 FF(i)

∑y(i)
. (4.5)

FFX is defined analogously.
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Chapter 5

Results & Discussion

5.1 Future development of foehn winds

Recall, that every part in this chapter is aimed at answering one particular
question raised in the objectives (see Subsection 1.1.3).

5.1.1 Results

Synoptic-scale foehn conditions

As stated in Section 4.1, we identified the most important features on ERAI
by training a random forest on each variable type. This allowed us to ob-
tain first insight into the data. Figure 5.1 shows the 30 most important sea
level pressure differences, which were plotted over a composite plot of all
observed foehn events (i.e., where y(i) = 1). We also performed the same
analysis for ∆Z (see Figure 5.2), ∆θhor (see Figure 5.3), ∆θver (see Figure 5.4),
and the wind components U and V (see Figure 5.5). Lastly, we also inves-
tigated the composite plot for predicted foehn cases (i.e., where ŷ(i) = 1),
however, almost no difference was discernible.

Although all shown features are amongst the features which have the high-
est predictive power on ERAI, these plots have to be taken with a grain of
salt. First, the shown important features do not imply that foehn cannot
be identified from other features that are not shown. However, using these
other features will come at the cost of more miss-classified samples. Sec-
ond, due to the high spatial correlation of the features, one cannot identify
”the” most crucial feature. If excluding this feature from the training, the
algorithm will select another spatially close feature at little cost of accuracy.
Furthermore, the spatial correlation also implies that after having used a
feature during training, other spatially close features will likely contain lit-
tle additional information. Consequently, it is vital to view the plots as a
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Figure 5.1: Shown are the 30 most important sea level pressure differences ∆SLP over the mean
SLP weather condition in ERAI for all observed foehn events. The more opaque the blue line,
the more important is the specific difference according to the random forest feature importance.
The green dot marks the location of Altdorf.
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Figure 5.2: Same as Figure 5.1 but for ∆Z on 850 hPa.
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Figure 5.3: Same as Figure 5.1 but for ∆θhor on 850 hPa.

56



5.1. Future development of foehn winds

0° 1°E 2°E 3°E 4°E 5°E 6°E 7°E 8°E 9°E 10°E 11°E 12°E 13°E 14°E 15°E
43°N

44°N

45°N

46°N

47°N

48°N

49°N

5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0

K

Figure 5.4: Same as Figure 5.1 but for ∆θver between 900 and 700 hPa. The more opaque the
blue cross, the more important is the specific difference according to the random forest feature
importance. The higher the value ∆θver, the more stably stratified is the atmosphere at this
point.
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Figure 5.5: Same as Figure 5.4 but for U and V on 700 hPa.

collection of most important features, however, only under the implications
of their spatial correlation.

Foehn predictability on ERAI

Optimizing the hyperparameters via three-fold cross-validation on Dtrain fi-
nally yielded an XGBoost model which consisted of B = 200 and dmax = 4.
Table 5.1 shows the resulting confusion matrix of the XGBoost model after
adjusting the threshold to balance false positives and false negatives. The
different metrics to evaluate model performance (for calculation see Subsec-
tion 2.2.5), can be seen in Table 5.2. The selected features and their impor-
tance (see Equation 2.28) in the final model are shown in Table 5.3.
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Table 5.1: Confusion matrix for Dtest with a threshold of c = 0.91.

Predicted label ŷ
Foehn No-foehn Total

Observed label y Foehn 605 165 770
No-foehn 165 13601 13766

Total 770 13766 14536

Table 5.2: Scoring results on Dtest with a threshold of c = 0.91.

Accuracy Precision Recall F1-Score AUC Log loss
0.977 0.786 0.786 0.786 0.991 0.099

Table 5.3: Shown are the most important features and their importance of the final XGBoost
model fitted to Dtrain.

feature location/s height importance
∆SLP 45.7, 8.75 - 47.59, 8.75 sea level 0.3783

∆Z 45.7, 11.25 - 45.7, 7.5 850 hPa 0.0744
∆θhor 43.82, 3.75 - 47.59, 8.75 850 hPa 0.0568
∆SLP 45.7, 11.25 - 47.59, 8.75 sea level 0.0545
∆SLP 45.7, 10.0 - 47.59, 8.75 sea level 0.0190

∆Z 45.7, 12.5 - 46.64, 7.5 850 hPa 0.0168
∆θhor 45.7, 11.25 - 47.59, 10.0 850 hPa 0.0144
∆SLP 46.64, 11.25 - 47.59, 10.0 sea level 0.0132

∆Z 46.64, 15.0 - 46.64, 8.75 700 hPa 0.0129
∆θhor 46.64, 10.0 - 47.59, 11.25 850 hPa 0.0118

Generalization to CESM

After conducting the fitting process as described in Section 4.1, we obtained
the following metrics on Dtest (see Table 5.4). Here, the metrics were calcu-
lated after aggregating the predictions for all months.

Then, we went on to apply the model on CESM-p and CESM-f data. Since
we wanted to ensure that the model actually captures the synoptic condi-
tion for foehn, we visualized composite plots in the same manner as for
the ERAI (compare Figure 5.1 to Figure 5.5). Only this time, we used sam-
ples for which the algorithms predicted foehn. Exemplary, the results for
the geopotential height in CESM-p are shown in Figure 5.6 and for CESM-
f in Figure 5.7. For readability, the plots for all variables were moved to
Appendix B.

Table 5.4: Scoring results on Dtest under constraint optimization.

Accuracy Precision Recall F1-Score AUC Log loss
0.975 0.766 0.766 0.766 0.988 0.067

58



5.1. Future development of foehn winds

0° 1°E 2°E 3°E 4°E 5°E 6°E 7°E 8°E 9°E 10°E 11°E 12°E 13°E 14°E 15°E
43°N

44°N

45°N

46°N

47°N

48°N

49°N

1370

1390

1410

1430

1450

1470

1490

1510

1530

1550

m
et

er
s

Figure 5.6: Shown are the most important geopotential height differences ∆Z over the mean Z
weather condition on 850 hPa in CESM-p for all predicted foehn events. The more opaque the
blue line, the more important is the specific difference. Due to the large feature importance of
one feature, the other ones are barely visible. We kept this scaling to underline the fact that one
feature appears to be enough to identify south foehn to the largest extent. The green dot marks
the location of Altdorf.
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Figure 5.7: Same as Figure 5.6 but for CESM-f.

Comparison of monthly foehn frequencies

First, we compared the frequency of foehn in each dataset. Note that fre-
quency was defined as the number of samples which showed/predicted
foehn divided by the number of all samples within a specified data range
(i.e., overall or in a specific month)

f =
∑y(i)=1

∑y(i)
or f =

∑ŷ(i)=1

∑ŷ(i)
(5.1)

The overall frequencies of foehn in the observational, predicted ERAI, CESM-
p, and CESM-f datasets were 5.4%, 5.4%, 5.1%, and 5.1%, respectively. Here,
for CESM, this number resembled the mean frequency averaged over all
ensemble members.
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Figure 5.8: Shown is the distribution of predictions for all 35 CESM-p ensemble members for
the month January.

Second, we visualized the foehn frequency for different ensembles mem-
bers in CESM since we were interested if foehn differs between them. In
Figure 5.8, this is exemplarily shown for CESM-p in the month January.

Finally, Figure 5.9 summarizes the monthly frequencies of all datasets. Here,
one data point resembled one foehn frequency within a month grouped by
year, and additionally, for CESM, by ensemble member. This resulted in
ten data points for observational data and Dtest (one for each year), and 350
data points for CESM-p and CESM-f (one for each year in each ensemble
member). We did observe deviations, which will be evaluated for statistical
significance in the next step.

Remember that we are going to follow the three steps which were described
in Section 4.1. The results for the first test were calculated from the con-
fusion matrix for every month and can be seen in Figure 5.10. Performing
the second test yielded Figure 5.11. The third test (Wilcoxon rank-sum sig-
nificance test) allowed us to calculate the p-values, which can be seen in
Table 5.5.
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Figure 5.9: Shown are the mean observed/predicted monthly south foehn frequencies. First,
the observational data of the period 1991-2000 is shown in blue. Second, the predictions of the
XGBoost model for Dtest are shown in yellow. Third, the predictions for all 35 ensemble members
in CESM-p are shown in green. Lastly, the predictions for all 35 ensemble members for CESM-f
are shown in red.
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Figure 5.10: Shown are Recall, Precision and F1-score on a monthly resolution. For each month
the threshold was adjusted to balance false positives and false negatives.
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Figure 5.11: Shown are the predicted foehn frequency values aggregated over ten years for ERAI
and CESM-p data. Here, we sampled ten-year periods of CESM-p as described in Section 4.1 and
plotted the resulting Gaussian distribution together with mean and second standard deviation.

Table 5.5: Shown are the p-values from the Wilcoxon rank-sum test for different months and
their significance under the global α = 0.05. Note that we applied the Bonferroni correction due
to multiple testing.

Month p-value Significant?
Jan 0.07539 No
Feb 0.0 Yes
Mar 0.00024 Yes
Apr 0.0026 Yes
May 0.00074 Yes
Jun 0.52486 No
Jul 0.0 Yes

Aug 0.01904 No
Sep 0.0 Yes
Oct 0.0 Yes
Nov 0.5774 No
Dez 0.08729 No
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5.1. Future development of foehn winds

North foehn development

The selected most important features for north foehn are shown in Fig-
ure 5.12 until Figure 5.16.
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Figure 5.12: Same as Figure 5.1 but for ∆SLP for north foehn.
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Figure 5.13: Same as Figure 5.2 but for ∆Z on 850 hPa for north foehn.

Optimizing the hyperparameters via three-fold cross-validation on Dtrain fi-
nally yielded a XGBoost model with B = 250 and dmax = 4. Table 5.6
shows the resulting confusion matrix of the XGBoost model after adjusting
the threshold to balance false positives and false negatives. The different
metrics to evaluate model performance can be seen in Table 5.7. The ten
most important features are shown in Table 5.8.
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Figure 5.14: Same as Figure 5.3 but for ∆θhor on 850 hPa for north foehn.
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Figure 5.15: Same as Figure 5.4 but for ∆θver between 900 and 700 hPa for north foehn.
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Figure 5.16: Same as Figure 5.5 but for U and V on 700 hPa for north foehn.
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Table 5.6: Same as Table 5.1 but for north foehn with c = 0.92.

Predicted label ŷ
Foehn No-foehn Total

Observed label y Foehn 734 208 942
No-foehn 208 13412 13620

Total 942 13620 14562

Table 5.7: Same as Table 5.2 but for north foehn with c = 0.92.

Accuracy Precision Recall F1-Score AUC Log loss
0.972 0.779 0.779 0.779 0.989 0.129

Table 5.8: Same as Table 5.3 but for north foehn.

feature location/s height importance
∆Z 45.7, 10.0 - 46.64, 8.75 850 hPa 0.4166

∆SLP 45.7, 11.25 - 46.64, 8.75 sea level 0.0926
∆SLP 45.7, 10.0 - 46.64, 8.75 sea level 0.0457

∆Z 45.7, 11.25 - 46.64, 8.75 850 hPa 0.0340
∆Z 47.59, 13.75 - 47.59, 5.0 700 hPa 0.0306

∆SLP 45.7, 10.0 - 47.59, 8.75 sea level 0.0249
∆Z 45.7, 13.75 - 46.64, 8.75 850 hPa 0.0091
∆Z 43.82, 6.25 - 44.76, 6.25 700 hPa 0.0081

∆θhor 43.82, 0.0 - 48.53, 5.0 850 hPa 0.0078
∆Z 44.76, 13.75 - 46.64, 6.25 850 hPa 0.0075
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The metrics on Dtest after the constraint optimization are shown in Table 5.9.
The Z composite plots for predictions on CESM-p and CESM-f can be seen
in Figure 5.17 and Figure 5.18. Again, the remaining composite plots have
been moved to Appendix B.

Table 5.9: Same as Table 5.4 but for north foehn.

Accuracy Precision Recall F1-Score AUC Log loss
0.963 0.714 0.714 0.714 0.979 0.094
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Figure 5.17: Same as Figure 5.6 for ∆Z on 850 hPa in CESM-p but for north foehn.
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Figure 5.18: Same as Figure 5.7 for ∆Z on 850 hPa in CESM-f but for north foehn.

The frequencies of foehn in the observational, predicted ERAI, CESM-p, and
CESM-f data were 6.4%, 6.5%, 6.0%, and 5.9%, respectively. The ensemble
members still showed a large variability for north foehn (see Figure 5.19).
The final comparison for ERAI, CESM-p, and CESM-f can be obtained from
Figure 5.20.
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Figure 5.19: Same as Figure 5.8 but for north foehn.
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Figure 5.20: Same as Figure 5.9 but for north foehn.

The monthly scores on Dtest for north foehn can be seen in Figure 5.21. The
results of the statistical test, whether ERAI could be seen as a potential
CESM-p member, are shown in Figure 5.22. The results of the Wilcoxon
rank-sum test and the corresponding p-values can be found in Table 5.10.
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Figure 5.21: Same as Figure 5.10 but for north foehn.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dez
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

M
o

n
th

ly
 m

ea
n

 fo
eh

n 
fr

eq
u

en
cy

ERAI mean 1991-2000

CESM-p sampled ten-year periods

Figure 5.22: Sames as Figure 5.11 but for north foehn.
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Table 5.10: Same as Table 5.5 but for north foehn.

Month p-value Significant?
Jan 0.00069 Yes
Feb 0.1142 No
Mar 0.01063 No
Apr 0.93475 No
May 0.00023 Yes
Jun 0.80469 No
Jul 0.0 Yes

Aug 0.00013 Yes
Sep 0.0 Yes
Oct 0.30088 No
Nov 0.28967 No
Dez 0.05184 No
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5.1.2 Discussion

Synoptic-scale foehn conditions

The identification of the most important features yielded satisfactory and
physically meaningful results for the different variable categories. At first,
the random forest selected features that laid in the Alpine region (and not
somewhere far from it) and thus coincided with a naive expectation. In the
next paragraphs, we look into the different selected features in detail.

For the sea level pressure (see Figure 5.1), we observed a high-pressure sys-
tem over northern Italy and a low-pressure system to the north-west of the
Alps. Moreover, the typical ”foehn knee” in the isobars is discernible (Rich-
ner and Hächler, 2013; Sprenger et al., 2016). The selected ∆SLP differences
laid in the region of the largest gradient. This finding agrees with the liter-
ature (Drechsel and Mayr, 2008; Richner and Hächler, 2013; Plavcan et al.,
2014) that a strong pressure gradient is a necessary but not sufficient con-
dition for foehn. Next, we compared the selected pressure features to the
pressure component of the established Widmer index. However note that
the Widmer index has a slightly different purpose - namely forecasting. The
pressure component of the Widmer index looks at the pressure difference
between Venice and Tours (Courvoisier and Gutermann, 1971). In contrast
to this difference, we found that foehn can be diagnosed from even more
local features.

Second, the composite plot for the geopotential height Z on 850 hPa (see
Figure 5.2) showed a similar picture as the sea level pressure. As Gerst-
grasser (2017) noted, geopotential height differences are a suitable predictor
for foehn strength (especially for wind speed maxima). Again, the model
selected ∆Z’s, which showed a pronounced difference for foehn events. In-
terestingly, if we compared the selected features against the geopotential
height component of the Widmer index, which is the difference between
Rijeka and Valence (Courvoisier and Gutermann, 1971), we found that the
selected features align well with this component.

Third, the potential temperature θhor on 850 hPa showed an interesting pat-
tern in such a way that the air is on average up to 5 K potentially warmer
to the north of the Alps compared to the south of the Alps. This pattern is
also observed and described in Gerstgrasser (2017) and Hächler et al. (2011).
Advection of warm air north to the Alps and the existence of cold air to the
south of the Alps is typical for deep foehn events. The difference in tempera-
ture between the two air masses causes a local hydrostatic pressure gradient.
Apparently, these are also the differences the model considered.

Forth, we investigated the stability of the atmosphere through the vertical
potential temperature difference ∆θver between 700 hPa and 900 hPa. The
larger this difference, the more stably stratified is the atmosphere. In Fig-
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ure 5.4, we observed a stably stratified atmosphere to the south of the Alps
and a more unstable atmosphere to the north of the Alps. As discussed in
Steinacker (2006), the stable stratification is typical for Austrian foehn, when
air is blocked orographically to the south of the Alps. Apparently, a more
unstably stratified atmosphere to the north of the Alps is also typical during
foehn.

Lastly, the mean wind field on 700 hPa during foehn is depicted in Figure 5.5.
One can observe the typical southerly/southwesterly flow over the Alps
(Gerstgrasser, 2017). In our case, the most important wind features were
identified from the meridional flow V.

In conclusion, we can say that the most important features which character-
ize the large-scale fingerprint of foehn can be identified from the synoptic
conditions over the Alps in reanalysis data and observational foehn data.
Here, the identified features had a strong physical interpretation and re-
flected the current knowledge about foehn. In the next section, we assessed
which skill foehn can be identified from ERAI data.

Foehn predictability on ERAI

By looking at the metrics, the final XGBoost model can be compared to
previous work of other scientists who predicted or nowcasted foehn with
machine learning models (Sprenger et al., 2017; Zweifel et al., 2016). The
comparison can be obtained from Table 5.11. Note that the raw values are
only comparable to some extent due to the different purposes of the other
projects. Nevertheless, being aware of this caveat, we see that our model
showed similar if not increased performance compared to prior models. This
is remarkable because our model is based on very coarse ERAI data with
a spatial resolution of approximately 80 km. In contrast, the COSMO-7,
COSMO-2, and ECMWF models have a resolution of 7 km, 2.2 km, and 16
km, respectively. Nevertheless, we managed to achieve similar scores. That
also supports the claim from Drechsel and Mayr (2008) and Plavcan et al.
(2014) that foehn is, in general, predictable from its synoptic fingerprint in
NWP data, as long as the obstacle is resembled sufficiently.

Let us now consider the most important features selected by the model in
Table 5.3. As one would expect from Sprenger et al. (2017), Zweifel et al.
(2016), and Gerstgrasser (2017), the XGBoost model did select pressure and
geopotential height differences as its most important features. In addition,
also the hydrostatic gradient induced by the difference in potential temper-
ature discussed in Gerstgrasser (2017) appears to have played an important
role. Including these synoptic-scale features might enhance the performance
of other models in the future.

Hence, we can conclude the second objective of this thesis: In general, it is
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Table 5.11: Score comparison between different models from previous scientific work. All
algorithms were applied to the location of Altdorf. Sprenger et al. (2017) used an AdaBoost
algorithm to nowcast foehn based upon the COSMO-7 model. Zweifel et al. (2016) used logistic
regression with L1-regularization to predict foehn on ECMWF and COSMO-2 data. However
note that they forecasted foehn 15 hours in advance. Furthermore, they also used observational
data from several weather stations in addition to the NWP model data.

Accuracy Precision Recall F1-Score AUC
Our model 0.977 0.786 0.786 0.786 0.991
AdaBoost 0.965 0.662 0.882 0.756 NA

Log. Regr. COSMO-2 0.960 0.800 0.627 0.703 0.974
Log. Regr. ECMWF 0.969 0.841 0.725 0.779 0.986

possible to infer the existence of foehn from synoptic conditions on a grid as
coarse as 80 km. The skill is highly comparable to using NWP models with
higher resolution.

Generalization to CESM

Now, we discuss the transition from ERAI to CESM data. From Table 5.4
we obtain that we only lost little skill compared to the baseline model that
was fitted solely on ERAI (see Table 5.2). Interestingly, the log loss even
decreased. This could be due to the fact that the model now predicted
less samples completely off (e.g., y(i) = 1 but p(i) ≈ 0) since these are the
mistakes the log loss punishes the harshest. For this reason, we further
compared the composite maps for foehn cases in ERAI (Figure 5.2), CESM-
p (Figure 5.6) and CESM-f (Figure 5.7), here only exemplary for Z. In all
three cases, we were able to observe the typical foehn pattern that we have
discussed above. The same holds for the other variables whose plots can be
found in Appendix B.

One fact that could surprise is that we reconstructed the whole weather
conditions for foehn over Europe well, even though the model appeared to
mainly look at a single feature within a variable category. This suggests
that the synoptic foehn situation is in principle identifiable from a set of
few, well-selected parameters only. Further, this agrees with the findings of
Widmer (1966) and Courvoisier and Gutermann (1971), who also achieved
high foehn predictability from four and two parameters, respectively.

We conclude that, in principle, it is possible to transition from ERAI data
to CESM data and identify the same synoptic foehn situation in both mod-
els. Surprisingly, for south foehn, only very few, well-selected parameters
sufficed to capture the whole synoptic situation.
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Comparison of monthly foehn frequencies

First, we compared the raw frequency of foehn between ERAI and CESM-p.
With foehn being observed on average 5.1% of the time in CESM-p, for the
same period, we found 5.4% in ERAI. As we argue later also for the monthly
data, ERAI data resembles a potential realization of the weather in the pe-
riod 1991 to 2000. CESM-p spans a space of potential weather realizations
(i.e., 35 of them). Thus, we compared the means of each ensemble mem-
ber against the ERAI mean frequency. We found that the ERAI data laid
at the 75% quantile of the foehn frequency distribution from the CESM-p
ensemble members. Therefore, we argue that the ERAI frequency is within
the range of what has also been simulated by CESM-p. However, we do not
want to exclude other sources of error like small biases in producing enough
foehn situations due to the different topography between ERAI and CESM
(compare Figure 3.2 and Figure 3.3).

Second, also notable is the spread between the ensemble members for spe-
cific months, as shown in Figure 5.8. Depending on which ensemble mem-
ber one looks at, a substantially varying foehn frequency could be observed.
Due to this variability, we will only be able to make statistical conclusions
for all ensemble members combined.

Third, investigating the monthly distribution of foehn in Figure 5.9, we ob-
served that we approximated the annual cycle of foehn in CESM-p quite
well despite the large variance between ensemble members. However, some
larger deviations between observational data and CESM-p could be spotted
in September. Also notable is that in spring (FMA), the CESM-p and CESM-
f scenarios showed some larger differences, i.e., during these months more
years in more ensemble members showed a larger foehn frequency in CESM-
f. In the next step, we controlled whether those differences were significant.
Here, we followed the structure outlined in Section 4.1.

1. Observational data vs. ERAI predictions. First, from Figure 5.10
we obtained that prediction worked best during spring, autumn, and
winter. Here, our skill ranged from 0.71 to 0.85 as measured by the
Precision, Recall, and F1-score. During summer (JJ), our prediction
skill was worst, residing around 0.65 in Precision, Recall, and F1-score.
These findings also agree with Sprenger et al. (2017), who found the
best predictability in winter/spring and the worst during summer. Fur-
ther, they explained that during summer, mechanisms like increased
solar irradiance lead to a local heat low in the Alpine region. The
resulting pressure field and thermally-driven valley circulation coun-
teracts the foehn flow (Lotteraner, 2009). Consequently, this may have
lead to a loss in predictive power of the features the model has learned
and explains the reduced scores.
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Note that each month was treated with a different threshold such that
all three metrics coincided. The idea of applying a different threshold
for every month to compensate for potential external factors the model
fails to capture has also already been applied in the Widmer index
(Widmer, 1966).

We conclude with the result that foehn is predictable from coarse NWP
data with varying skill over the months. In most months, we found
good predictability, while it was worst during summer. However, in
principle, each false negative should be compensated by a false posi-
tive and hence not affect the final frequency. Also, it should be noted
that we still were far from random prediction. In this case, we would
find Precision = Recall ≈ 0.02, which is the true observed frequency
during summer. Nevertheless, since in June and July we had very few
positive samples (approximately 15 on Dtest), we rejected to trust in
the model during these months.

2. ERAI predictions vs. CESM-p predictions. In Figure 5.11, we com-
pared how likely it would be to observe the same predictions during
a month in a CESM-p ensemble member as in ERAI. Here, we relied
on the second standard deviation of the sampled Gaussian distribu-
tion. For this reason, the ERAI representation laying outside these
intervals would only happen by a random chance of 5%. Under these
circumstances, a transition from ERAI to CESM-p would be rejected
since apparently, the model failed to generalize well. In our case, this
only happened for September. In all other cases, ERAI coincided with
what one would expect under the CESM-p ensemble. Consequently,
we only rejected a viable transition from ERAI to CESM-p for Septem-
ber. Note however that the random chance for one or more months
falling outside the second standard deviation for twelve months is at
46% as calculated with the Bernoulli formula.

3. CESM-p predictions vs. CESM-f predictions. Lastly, we used a
standard Wilcoxon rank-sum test with Bonferroni correction to check
whether the samples from CESM-p and CESM-f followed the same
distribution. As we conclude from Table 5.5, we found a statistical
significant difference for the months February, March, April, May, July,
September, and October.

Putting everything together left us with the following conclusion for the
fourth objective: We observed a significant increase in the monthly mean
foehn frequency from the CESM-p to the CESM-f ensemble for the win-
ter/spring months February, March, and April. Furthermore, for May and
October, we found a significant decrease in foehn frequency. Which ensem-
ble member will become a reality we can not say since we only can make a
statistical estimate for all ensemble members combined. Thus, considering
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Table 5.12: Score comparison between our model and the model from Zweifel et al. (2016), who
used logistic regression with L1-regularization to predict north foehn on ECMWF and COSMO-2
data in Piotta. However note that they forecasted foehn 15 hours in advance and also used
observational data from several weather stations in addition to the NWP model data. One can
clearly see the misleading effect of the more severe class imbalance in Lugano in the Accuracy.

Accuracy Precision Recall F1-Score AUC
Our model 0.972 0.779 0.779 0.779 0.989

Log. Regr. COSMO-2 0.904 0.854 0.824 0.839 0.961
Log. Regr. ECMWF 0.912 0.864 0.839 0.851 0.960

all ensemble members, we expect foehn to become more common during the
late-winter/early-spring months and less common during May and October.

North foehn development

First, we briefly looked at the most important features in ERAI from Fig-
ure 5.12 to Figure 5.16. As we can obtain from the composite plots, the
model again considered physical relevant features to identify north foehn
from the synoptic situation. Again, the identified features coincided well
with the synoptic situation described in previous literature (Cetti et al., 2015;
Kljun et al., 2001).

When it comes to the model training and evaluation in Table 5.6 and Ta-
ble 5.7, the results were highly comparable to those of south foehn. Again,
the most important features in Table 5.8 were mainly geopotential height
and pressure differences over the Alps. We tried to compare our model
against other north foehn prediction models. Zweifel et al. (2016) attempted
to predict north foehn in Piotta, which shows foehn occurrence more fre-
quently than Lugano. Thus, once more, the results in Table 5.12 have to
be taken with a grain of salt. Nevertheless, in the feature importances of
their model, they also identified sea level pressure differences to be of great
importance, which agreed with our findings.

When moving on to the CESM generalization, we observed that the skill
dropped somewhat more substantially (compare Table 5.9 with Table 5.7).
Thus, again we compared the different composite plots for ERAI, CESM-
p and CESM-f (exemplary shown for Z in Figure 5.12, Figure 5.17, and
Figure 5.18; see Appendix B for all plots). We see that the model mostly
captured the typical conditions for north foehn. The slight differences are
potentially linked to the different topography of the Alps in Figure 3.2 and
Figure 3.3. Also, we recognized that apparently more features had similar
importances to the models, which agrees with Zweifel et al. (2016), who also
found that more parameters are needed to describe north foehn accurately.
This could resemble an explanation for the decreased prediction scores.

Lastly, we captured the transition from ERAI to CESM for north foehn in
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statistical terms. In total, we observe foehn 6.0% of the time in CESM-p
compared to 6.5% in ERAI. Here, ERAI laid at the 90% percentile of the dis-
tribution from all CESM-p ensemble members, i.e., four members showed
a larger foehn frequency. Thus, we found that ERAI could resemble one
potential CESM-p member. When looking at the monthly frequencies in Fig-
ure 5.20 we again observed the intra-annual cycle from Figure 1.6. Next, we
evaluated these distributions within each month by employing the statistical
tests described in Section 4.1.

1. Observational data vs. ERAI predictions. First, from Figure 5.21 we
obtained that in general on Dtest we managed to capture the foehn
quite well. For most months, the metrics were greater than 0.67. Only
during the months August, September, and October they dropped to
approximately between 0.61 and 0.66. Again, it could be that during
those months, certain features lose their predictive power. However,
each false negative should be compensated by a false positive and
hence not affect the frequency. Furthermore, the models still showed
some skill (> 0.6) with a reasonable amount of positive foehn samples
(> 40). Thus, we did not reject any model for its suitability to diagnose
foehn.

2. ERAI predictions vs. CESM-p predictions. In Figure 5.22, we see that
we could accept the hypothesis that ERAI represents a possible real-
ization of CESM-p for all months. Therefore, we say that our models
predicted foehn on CESM-p reasonably well for each month.

3. CESM-p predictions vs. CESM-f predictions. Lastly, we used the
Wilcoxon rank-sum test with Bonferroni correction also for the pre-
dicted distributions of north foehn on CESM-p and CESM-f. As we
conclude from Table 5.10, we found significant differences for January,
May, July, August, and September.

The conclusion left us with the following regarding the fifth objective: We
observed a significant increase in the monthly mean foehn frequency from
CESM-p to CESM-f for the months May and July. Additionally, for January,
August, and September, we found a significant decrease in foehn frequency.
Again, there is a large variance associated with the predictions between the
ensemble members, thus we only make statistical statements for all ensem-
ble members combined. For this reason, we expect north foehn to become
more common during the two late-spring/summer months May and July
and less common during January and the two late-summer/early-autumn
months August and September.
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5.2 Impact of foehn on forest fires

5.2.1 Results

Prior fire ignition

First, we investigated the 24-hour period. The resulting plot for the normal-
ized count of fires can be seen in Figure 5.23. Furthermore, we contrasted
non-foehn with foehn situations in Figure 5.24. For readability, we rescaled
the y-axis with the minimum value for the following plots.
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Figure 5.23: Normalized count of fires over the foehn minutes for the 24-hour period. As
described in Section 4.2, we normalized the count of fires by the general occurrence of a certain
foehn length.

The results regarding the effect of foehn temperature increase can be seen
in Figure 5.25. Note that here, we only included fires associated with north
foehn. For south foehn, the number of fires was too little to provide mean-
ingful insight.

The results for the 48-hour period look similar and can be found in Ap-
pendix C.
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Figure 5.24: Normalized count of fires not linked (left) and linked (right) to foehn for the
24-hour period.
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Figure 5.25: Normalized count of fires over the foehn temperature increase for the 24-hour
period for north foehn fires. As described in Section 4.2, we normalized the count of fires by the
general occurrence of a certain foehn temperature increase.
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Post fire ignition

In the next step, we looked at the period six hours after fire ignition. In
Figure 5.26, it is shown how foehn influenced the burned area. Again, we
opposed non-foehn versus foehn fires in Figure 5.27. Please note the loga-
rithmic scale.
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Figure 5.26: Burned area distribution over foehn minutes in the six hours after ignition.
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Figure 5.27: Burned area distribution for fires not linked (left) and linked (right) to foehn in
the six hours after ignition.
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Next, we investigated the data disaggregated by fire regime, foehn location,
and decade. Since the results look similar to Figure 5.26, we only show
the non-foehn versus foehn contrast plots here and moved the remainder to
Appendix C.
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Figure 5.28: Burned area distribution for fires not linked (light-blue) and linked (dark-blue) to
foehn in the six hours after ignition, here disaggregated by fire regime.
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Figure 5.29: Same as Figure 5.28 but disaggregated by foehn location.

Table 5.13 shows the median burned area increases and their statistical sig-
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Figure 5.30: Same as Figure 5.28 but disaggregated by decade.

nificance for each foehn versus non-foehn fire plot for the six hour period
after fire ignition.

Table 5.13: Shown is the median burned area increase between fires not linked (non-foehn fires)
and linked (foehn fires) to foehn in the six hours after ignition. For each result the corresponding
statistical significance is shown as determined by a Wilcoxon rank sum test with α = 0.05 and
Bonferroni correction within each category.

median increase p-value Significant?
All fires 3.0 5.2 · 10−8 Yes
Fire regime

Winter anthropogenic 4.1 2.4 · 10−5 Yes
Summer anthropogenic 1.7 3.5 · 10−1 No
Summer natural 5.0 4.0 · 10−1 No

Foehn location
North foehn 3.2 1.2 · 10−5 Yes
South foehn 2.0 2.7 · 10−3 Yes

Decade
[1980, 1989] 0.5 7.5 · 10−1 No
[1990, 1999] 4.2 4.1 · 10−5 Yes
[2000, 2009] 2.0 4.0 · 10−4 Yes
[2010, 2019] 1.6 6.6 · 10−3 Yes

Lastly, we investigated the foehn strength impact on the burned area. We
divided wind speed FF and wind speed gusts FFX into three categories,
ordered by their value: low, medium, and high. The plots and concrete
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values for each bin are shown in Figure 5.31 and Figure 5.32. The tests for
statistical significance can be found in Table 5.14.
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Figure 5.31: Burned area distribution over foehn wind speed FF in the six hours after ignition.
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Figure 5.32: Burned area distribution over foehn wind speed gusts FFX in the six hours after
ignition.

All plots and tables shown here can also be found for the twelve-hour period
in Appendix C.
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Table 5.14: Same as Table 5.13 but for FF and FFX.

median increase p-value Significant?
Wind speed FF

low-medium 4.0 6.8 · 10−3 Yes
low-high 10.0 5.1 · 10−3 Yes
medium-high 2.5 1.4 · 10−1 No

Wind speed gusts FFX
low-medium 4.0 1.4 · 10−3 Yes
low-high 16.0 8.5 · 10−5 Yes
medium-high 4.0 2.3 · 10−2 No

5.2.2 Discussion

Prior fire ignition

In Figure 5.23, we observed a monotonically increasing relationship between
the normalized count of fires and the observed amount of foehn minutes for
the 24-hour period. Fires appeared approximately three to seven times more
often on days that showed at least four hours of foehn. Also, in the direct
comparison between non-foehn and foehn situations in Figure 5.27, fires
occurred 3.4 times more often on days where foehn was present. Similar
values were obtained for the 48-hour period in Appendix C.

The former paragraph is further underlined by Figure 5.25, where we ob-
served a similar increasing relationship with the temperature increase of a
foehn wind. Here the effect was especially pronounced for higher foehn
temperature increases and ranged from 1.1 to 1.8. The 48-hour period in
Appendix C showed an even more striking increase ranging from 1.1 to 2.5.

Both findings coincide well with the statements from Pezzatti et al. (2016),
Audelan (2018), and Sharples (2018) that foehn quickly dries out forests and
thus hugely increases the risk of ignition. Hence, we conclude the first objec-
tive with the answer that the number of observed fires grows substantially
with both the foehn duration and foehn temperature increase.

Past fire ignition

Next, we investigated the impact of foehn on the burned area for the period
after fire ignition. Again, in Figure 5.26, we observed an increase in the
burned area the longer foehn was prevalent during the six hours after fire
start. However, it appeared that a minimum threshold of foehn presence
was required to increase the burned area substantially. From the diagram,
this turned out to be between one to two hours. If measuring the effect of
the foehn duration on the burned area, we observed a two- to sevenfold in-
crease in median between the distribution of fires with no foehn occurrence
and the distribution of fires with two or more hours of foehn occurrence.
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By comparing non-foehn fires and foehn fires side-by-side in Figure 5.27,
we obtained a highly significant median increase of a factor of three (see
Table 5.13). These results transfer well when compared to the figures and
tables for the twelve-hour period in Appendix C. Here, we estimated a two-
to tenfold median increase for the binned diagram and a highly significant
twofold median increase for the contrast plot. These results agree well with
Sharples (2018), who also found a sixfold increase in the Forest Fire Danger
Index (FFDI) for an eight-hour-long foehn event. A sixfold increase in the
FFDI implies a concurrent increase in fire behavior characteristics like rate
of spread or flame height (Sharples, 2018).

In Figure 5.28, we plotted the results for the different fire regimes. The win-
ter anthropogenic regime (61.6% of all fires) stood out with a statistically
significant 4.1 times higher burned area for foehn fires. Summer anthro-
pogenic (25.6% of all fires) and summer natural (12.8% of all fires) did show
an increase, however, this turned out to be not significant (see Table 5.13).
The twelve-hour time window showed approximately the same results, only
here we observed a significant median burned area increase of 3.3 for the
winter anthropogenic regime. Again, the other regimes did not show any
significant increase. Our findings match with Pezzatti et al. (2016), who also
argued that north foehn has its greatest impact in the vegetation rest period
when it quickly dries out the litter layer of chestnut forests.

When looking at the different foehn locations in Figure 5.29, we observed a
median increase of 3.2 for north foehn fires (77.4% of all fires). For south
foehn fires (22.6% of all fires), we measured an increase of two. Again, for
both cases, we observed these results to be statistically significant. However,
investigating whether the distribution of north foehn fires is larger than the
distribution of south foehn fires was highly insignificant (p-value of 0.53).
Thus, one cannot conclude that north foehn is more severe than south foehn,
and the median deviance could result from statistical noise. An investiga-
tion of the twelve-hour time window yielded the same results (see Table C.1).
When comparing to the literature, Cetti et al. (2015) stated that the increase
in temperature is higher for south foehn than for north foehn due to more
poleward origin of north foehn air. If this were the case, one would expect
the south foehn to be more potent after adequately controlling for environ-
mental variables (e.g., difference in vegetation between southern and north-
ern Alps). However, no more sources are given in Cetti et al. (2015), and
thus we could not verify this statement.

In Figure 5.30, we checked whether there was a trend discernible over the
last decades. First, during the 1980 until 1989 period, we observed a non-
significant decrease between foehn and non-foehn fires. This is very likely
due to the fact that back then, the burned area was not documented well
and thus got imputed by 0.01 hectares far more often than the other periods
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(see Section 3.2). Second, foehn data started to get available at most stations
between 1983 and 1987. Thus, the little existence of foehn data could also
have affected this result. In the other decades, we calculated a significant
median increase by 4.2, 2.0, and 1.5. Similar values can be observed for
the twelve-hour period (see Table C.1), only the last decade did not show a
median increase. However, as we obtain from Figure 5.30, it might be useful
not only to consider the median but the distribution as a whole. The upper
and lower quartile mostly proved to be higher for foehn fires compared to
non-foehn fires. Furthermore, when comparing the distributions of foehn
fires for the last three decades, no statistically significant decrease can be
conducted. Hence, putting everything together, we can conclude that in the
last three decades, foehn fires have been significantly more severe than non-
foehn fires. However, we cannot conclude that foehn fires became less severe
over the same time. Also, De Angelis et al. (2015) stated that homogeneous
fire conditions regarding the burned area should have existed since 1978
due to a fire brigade reorganization. This would underline our finding that
we did not find any significant change in the burned area of foehn fires over
the decades.

In Figure 5.31 and Figure 5.32, we controlled for different foehn strengths
during the ignition period. First, we found a statistically significant increase
in the burned area between the low-medium and low-high categories for
both FF and FFX. If measured by the median, we found this increase to
be four and ten, or four and sixteen, respectively. When using the less
restrictive Bonferroni-Holm correction instead of the Bonferroni correction,
the medium-high increase for FFX would also be significant. However, for
consistency, we decided to stick with the Bonferroni correction here. Again,
these results agree well with what is expected from the foehn-fire-interaction
mechanism (see Subsection 1.2.2) that stronger wind and wind gusts cause
more severe flame spread (Byram, 1959).

Finally, we can also conclude the last objective. We found that foehn winds
impacted the burned area of forest fires in the past ignition period signifi-
cantly through their duration as well as exhibited wind speeds.
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Chapter 6

Conclusion & Outlook

6.1 Future development of foehn winds

In this part, we established a projection for the foehn frequency under a
warming future climate. For this reason, we identified foehn from coarse
reanalysis data, then generalized the algorithms to freely running climate
simulations, and tested our results extensively. We conclude by summariz-
ing our main findings related to the objectives stated in Subsection 1.1.3.

1. First, we investigated whether it is possible to infer the synoptic foehn
situation from coarse NWP data in the Alpine region. We found
that the synoptic situation identified by the model corresponds well
with what someone would expect from prior physical knowledge. The
features which were identified by the random forest are highly inter-
pretable. However, they have to be treated carefully due to their spatial
correlation.

2. Second, we scrutinized with which skill the model could identify foehn
from such NWP data. Averaged over a ten-year period, we managed
to achieve a Precision and Recall score of 0.786. This corresponds well
to the work of other researchers who obtained similar scores on higher-
resolution NWP data. Hence, this suggests that the information con-
tained in a coarse reanalysis suffices to predict foehn.

3. Third, we saw that with sufficient feature preprocessing to compensate
for biases (potentially due to a different model topography), the transi-
tion from a reanalysis to a freely-running climate simulation is feasible.
The identified synoptic fingerprint agrees well between reanalysis and
freely running climate simulations. For south foehn, the synoptic situa-
tion could be determined from a few, well-selected parameters. When
comparing the skill of the monthly models, we found the highest skill
during spring, autumn, and winter with a F1-score ranging from 0.71
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to 0.85. During the summer months, this skill degraded to approxi-
mately 0.65, where a possible explanation can be found in local-scale
mechanisms that counteract the archetypal synoptic fingerprint.

4. Fourth, we investigated the transition from a present-day climate to a
warming future climate. Besides a considerable ensemble spread, we
found a significant increase in the foehn frequency between CESM-p
and CESM-f during February, March, and April, and thus expect foehn
to become more common during those months. For May and October,
we obtained a significant decrease, and consequently anticipate foehn
to become less frequent.

5. Fifth, we employed the same methodology for north foehn, here achiev-
ing a comparable skill. We obtained a significant increase between
CESM-p and CESM-f for May and July. Moreover, we observed a sig-
nificant decrease in January, August, and September. For this reason,
we reckon foehn to become more or less common during those months,
respectively.

During our work, we applied many preprocessing steps in order to make
a viable transition from ERAI to CESM. The reason was the different to-
pography and grid between ERAI and CESM. In the future, applying our
methodology to a reanalysis and a climate simulation, which have a more
similar (potentially even the same) topography and grid, would decrease
the number of necessary assumptions to obtain a prediction.

Finally, the methodology we have described in this work is, in principle,
applicable also to other regions in the world (e.g., the Rocky Mountains)
since ERAI and CESM are global models. One simply has to specify the
area of interest and provide observational foehn data from a measurement
station. The described procedure will automatically and objectively select
the most important features and apply this knowledge to make a projection
for future climate. In addition, one can learn from the model which synoptic
features matter most for foehn in the specified area.

6.2 Impact of foehn on forest fires

In this part, we investigated which influence foehn winds impose on forest
fires from a climatological perspective. Thus, we spatially and temporally
linked past foehn and fire occurrence with each other, again testing the re-
sults rigorously for their significance. Here, we summarize the findings to
the objectives from Subsection 1.2.3.

1. First, we explored the period before a potential fire ignition. We found
that if the last 24 hours showed at least four foehn hours, these situ-
ations are associated with three to seven times more outbreaks com-
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6.2. Impact of foehn on forest fires

pared to days with less than four foehn hours. Contrasting foehn and
non-foehn situations directly, we observed a 3.4-fold increase in the
number of fires for days that exhibit foehn. Furthermore, we observed
a 1.1- to 1.8-fold increase in the number of fires for foehn winds, which
exhibit a stronger temperature increase. The 48-hour period showed a
similar, even slightly more pronounced, pattern.

2. Second, we investigated the influence of foehn on the fire severity after
the start of a fire. We found that depending on the foehn length, the
median burned area increased two to sevenfold if more than two foehn
hours were present. When comparing foehn and non-foehn fires, we
observed a statistically significant increase of a factor of three.

Additionally, by comparing different fire regimes, we found that this
increase stemmed primarily from the winter anthropogenic regime,
where foehn increased the median burned area by a significant fac-
tor of 4.1. Second, south and north foehn both increased the burned
area significantly. However, only an insignificant difference regarding
the severity could be observed between south and north foehn fires.
When comparing the trend over the decades, we observed that in each
of the last three decades, foehn fires have been significantly more se-
vere than non-foehn fires. However, we cannot conclude that foehn
fires changed in their severity over the decades.

Lastly, we also assessed the link between foehn strength, measured by
the wind speed FF and wind speed gusts FFX. Again, we found a sig-
nificant increase in the burned area between different foehn strengths
by a factor of four from low to medium foehn strength.

To conclude, we claim to have established a link between foehn and its im-
pact on forest fires in a quantitative manner. On the one hand, foehn severely
improves the ignition conditions leading to an increased number of fires. On
the other hand, during a fire, it also drives the fire and magnifies the burned
area.

One potential enhancement of our work would be to incorporate more con-
trol variables into the analysis. Here, in our view, Bayesian or Causal Net-
works offer an elegant way of introducing variables like soil moisture or
available burnable material. For example, we expect soil moisture as a me-
diator between foehn and the number of fires. Furthermore, the soil mois-
ture will also be impacted by other factors. The structure of such a Causal
Network should be constructible from expert knowledge, while the exact
relationships between variables can be obtained from data.

In the future, we hope that the results of this work can help to assess the fire
risk associated with specific foehn situations. Especially foehn situations,
which exhibit a long duration, a large temperature increase, or high wind
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6. Conclusion & Outlook

speeds severely impact forest fires. In addition, in the first part, we found
that foehn will become more common during the already nowadays fire-
prone spring and summer season for south and north foehn, respectively.
Consequently, we argue once more that an accurate foehn forecast is crucial.
Foehn unfolds its impact within a matter of hours, and immediate action is
essential to mitigate a potentially large number of fires or burned areas.
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Appendix A

Calculation of derived variables

Here, we quickly outline how the derived variables have been calculated.
The CESM grid included the latitudes

lat ∈ {42.87, 43.82, 44.76, 45.70, 46.64, 47.59, 48.53, 49.47} = Mlat

(in degrees North) and the longitudes

lon ∈ {0, 1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75, 10, 11.25, 12.5, 13.75, 15} = Mlon

(in degrees East).

The sea level pressure differences were calculated via

∆SLP = ∆SLPi,j,k,m = SLPi,j − SLPk,m

for i, k ∈ Mlat j, m ∈ Mlon k > i j > m

The geopotential height differences were calculated in the same manner for
the pressure levels 850 hPa and 700 hPa

∆Z = ∆Zi,j,k,m,h = Zi,j,h − Zk,m,h

for i, k ∈ Mlat j, m ∈ Mlon h ∈ {850, 700} k > i j > m

The potential temperature was calculated via

θ = T ·
(

p0

p

)κ

where p0 = 1000 hPa defines the reference pressure and κ = 0.286 is the
Poisson constant for dry air. The potential temperature simply describes the
temperature an air parcel would have if it would be brought to sea level.
Thus, it allows to adjust for the varying pressure at different heights.
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A. Calculation of derived variables

From the potential temperature, we calculated the horizontal potential tem-
perature differences for the pressure level on 850 hPa

∆θhor = ∆θi,j,k,m = θi,j − θk,m

for i, k ∈ Mlat j, m ∈ Mlon k > i j > m

Furthermore, we looked at the stability of the atmosphere, which is resem-
bled by the vertical potential temperature difference. In a stable stratified
atmosphere, foehn has a harder time reaching the ground. Thus, we ex-
amined the vertical potential temperature differences with reference to a
ground-near layer of 900 hPa

∆θver = ∆θi,j,h = θi,j,h − θi,j,900

for i ∈ Mlat j ∈ Mlon h ∈ {850, 700}
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Appendix B

Composite plots for CESM-p and
CESM-f

B.1 South foehn
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Figure B.1: Shown are the most important sea level pressure differences ∆SLP over the mean
SLP weather condition in CESM-p climate for all predicted foehn events. The more opaque the
blue lines, the more important are the specific differences. Due to the large feature importance
of one feature, the other ones are barely visible. We kept this scaling to underline the fact that
one feature appears to be enough to identify south foehn to the largest extent. The green dot
marks the location of Altdorf.
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B. Composite plots for CESM-p and CESM-f
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Figure B.2: Same as Figure B.1 but for CESM-f.
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Figure B.3: Same as Figure B.1 but for ∆Z on 850 hPa.
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Figure B.4: Same as Figure B.3 but for CESM-f. Note how the 850 hPa pressure level appears
to be shifted upward by about 40 meters compared to present climate.
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B.1. South foehn
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Figure B.5: Same as Figure B.1 but for ∆θhor on 850 hPa.
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Figure B.6: Same as Figure B.5 but for CESM-f. Note that we needed to adjust the scale
by shifting it up by 3.5 K compared to the composite plots for ERAI and CESM-p to retain
readability.
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Figure B.7: Same as Figure B.1 but for ∆θver from 900 to 700 hPa. The more opaque the blue
cross, the more important is the specific difference.
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B. Composite plots for CESM-p and CESM-f
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Figure B.8: Same as Figure B.7 but for CESM-f.
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Figure B.9: Same as Figure B.7 but for U and V on 700 hPa.
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Figure B.10: Same as Figure B.9 but for CESM-f.
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B.2. North foehn

B.2 North foehn
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Figure B.11: Same as Figure B.1 but for north foehn. Note how now more features appear to
have similar importance. The green dot marks the location of Lugano.
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Figure B.12: Same as Figure B.11 but for CESM-f.
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B. Composite plots for CESM-p and CESM-f
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Figure B.13: Same as Figure B.11 but for ∆Z on 850 hPa.
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Figure B.14: Same as Figure B.13 but for CESM-f. Note how again the 850 hPa pressure level
appears to be shifted upward by about 40 meters compared to present climate.
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Figure B.15: Same as Figure B.11 but for ∆θhor on 850 hPa.
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B.2. North foehn
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Figure B.16: Same as Figure B.15 but for CESM-f. Note that we needed to adjust the scale
by shifting it up by 3.5 K compared to the composite plots of ERAI and CESM-p to retain
readability.
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Figure B.17: Same as Figure B.7 but for north foehn. The green dot marks the location of
Lugano.
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Figure B.18: Same as Figure B.17 but for CESM-f.
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B. Composite plots for CESM-p and CESM-f
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Figure B.19: Same as Figure B.17 but for U and V on 700 hPa.
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Figure B.20: Same as Figure B.19 but for CESM-f.
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Appendix C

Impact of foehn on forest fires

C.1 Prior fire ignition
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Figure C.1: Same as Figure 5.23 but for the 48-hour period.
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Figure C.2: Same as Figure 5.24 but for the 48-hour period.
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Figure C.3: Same as Figure 5.25 but for the 48-hour period.

102



C.2. Post fire ignition

C.2 Post fire ignition

C.2.1 Six-hour period
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Figure C.4: Same as Figure 5.26 but disaggregated by fire regime.
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Figure C.5: Same as Figure 5.26 but disaggregated by foehn location.
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Figure C.6: Same as Figure 5.26 but disaggregated by decade.
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C.2. Post fire ignition

C.2.2 Twelve-hour period

Table C.1: Same as Table 5.13 but for the twelve hours after ignition.

median increase p-value Significant?
All fires 2.0 5.4 · 10−7 Yes
Fire regime

Winter anthropogenic 3.3 1.7 · 10−4 Yes
Summer anthropogenic 1.7 2.4 · 10−1 No
Summer natural 5.0 4.3 · 10−1 No

Foehn location
North Foehn 2.2 8.8 · 10−5 Yes
South Foehn 2.0 2.3 · 10−3 Yes

Decade
[1980, 1989] 0.5 7.8 · 10−1 No
[1990, 1999] 3.6 1.9 · 10−4 Yes
[2000, 2009] 2.0 5.4 · 10−4 Yes
[2010, 2019] 1.0 1.6 · 10−2 Yes
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Figure C.7: Same as Figure 5.26 but for the twelve hours after ignition.
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Figure C.8: Same as Figure 5.27 but for the twelve hours after ignition.
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Fire regime
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Figure C.9: Same as Figure C.7 but disaggregated by fire regime.
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Figure C.10: Same as Figure C.8 but disaggregated by fire regime.
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Foehn location
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Figure C.11: Same as Figure C.7 but disaggregated by foehn location.
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Figure C.12: Same as Figure C.8 but disaggregated by foehn location.
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C.2. Post fire ignition
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Figure C.13: Same as Figure C.7 but disaggregated by decade.

[1980, 1989] [1990, 1999] [2000, 2009] [2010, 2019]

10
2

10
1

10
0

10
1

10
2

Bu
rn

ed
 a

re
a 

[h
a]

Non-foehn fires
Foehn fires

Figure C.14: Same as Figure C.8 but disaggregated by decade.
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Figure C.15: Same as Figure 5.31 but for the twelve hours after ignition.
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Figure C.16: Same as Figure 5.32 but for the twelve hours after ignition.
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C.2. Post fire ignition

Table C.2: Same as Table 5.14 but for the twelve hours after ignition.

median increase p-value Significant?
Wind speed FF

low-medium 3.4 2.6 · 10−2 No
low-high 4.3 4.6 · 10−3 Yes
medium-high 1.3 1.3 · 10−1 No

Wind speed gusts FFX
low-medium 2.0 1.1 · 10−1 No
low-high 8.0 2.3 · 10−4 Yes
medium-high 4.0 1.1 · 10−1 Yes
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