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Abstract

Effective climate change mitigation necessitates swift societal transformations. Social
tipping processes, where small triggers initiate qualitative systemic shifts, are potential
key mechanisms instigating societal change. With large shares of the world’s popula-
tion coastally concentrated, sea-level rise is among the most severe impacts of climate
change. Here we combine future sea-level rise estimates, social survey data, and a social
activation model to exemplify a transformative pathway where climate change concern
increases the social tipping potential, and extended anticipation time horizons shift the
system towards an alternative sustainable state of climate action. We find that in many
countries, climate change concern is sufficient, such that opportunities for social acti-
vation towards this tipped state already exist. Further, drawing upon the interrelation
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between climate change concern and anticipation of SLR, we find evidence of three
qualitative classes of tipping potential that are regionally clustered, with greatest poten-
tial for tipping in Western Pacific rim and East Asian countries. These findings propose
a transformative pathway, where increased climate change concern shifts tipping poten-
tial upwards and extended anticipation time horizons lowers the required size for critical
interventions necessary to kick a social system into a more sustainable state.

Teaser

Anticipation of SLR and concern form cross-national pathways for social tipping to-
wards rapid climate transformations
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MAIN TEXT

Introduction

With increasing greenhouse gas emissions and resultant global warming, the Earth’s climate sys-
tem is becoming more vulnerable to irreversible and abrupt changes (1). The urgency of pro-
jected climate impacts is accentuated by interacting tipping elements in the Earth system that,
once initiated, carry the potential for cascading ‘domino effects’ (2–4). Consequently, rapid so-
cietal transformations to strongly reduce greenhouse gas emissions are necessary to stabilize the
Earth’s climate system (5, 6).

Sea-level rise (SLR) presents one of the greatest potential impacts of climate change. With ap-
proximately 40% of the world’s population residing within 100km of the coastline, SLR poses a
global threat to coastal cities, infrastructure, and cultural heritage sites (7–10). The impacts of SLR
are already manifesting today (e.g. increased storm surges, flooding, groundwater salination, and
harm to marine ecosystems), and the expected future impacts vary by region (11, 12) For exam-
ple, densely populated urban centers in Japan, India, and China are among those potentially most
affected by future SLR (12) (Fig. 1b,c). Depending on the RCP emission scenario, future SLR
estimates range between 1m and 5m (13) by the year 2300 (Fig. 1a), where up to 15m SLR by
2300 cannot be ruled out under high emission scenarios (14).

Figure 1: Projected global mean sea-level rise and affected world regions. (a) Projected
SLR from MAGICC v2.0 in response to greenhouse gas emissions under different RCP scenar-
ios with low (blue), medium (orange) and high emissions (red). Thick lines indicate the median
projected SLR, shaded areas indicate the range that includes 66% of all ensemble runs. (b) Re-
gions affected by future SLR in the five countries with the largest share of global greenhouse
gas emissions. Lines indicate the areas that are directly affected by future global mean SLR
within one (red), four (orange) to seven generations (yellow). (c) Average shares of population
of the largest national emitters China, United States of America, India, Russia and Japan that is
estimated to be directly affected by projected SLR. Shaded areas again indicate the 66% range.

The problem of future sea-level rise thus presents a unique socioecological dilemma, the severe
clash of time scales. The most serious potential direct impacts of SLR likely manifest on the or-
der of centuries and more (15, 16), but mitigation of these impacts necessitates rapid countering
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societal actions within the next few years to decades (17). However, people tend to discount fu-
ture problems (18), and human forethought for the future becomes limited beyond the order of
decades (6, 19). People who do not consider distant future consequences are more likely to have
climate skeptical views (20), and are less likely to engage in mitigating behaviors (21,22). Indeed,
the dilemma of climate change presents not only a classic tragedy of the commons, but also a
tragedy of the horizon (23).

Social tipping as transformative mechanism for climate actions

Social tipping has been proposed as a mechanism for bringing about necessary sustainability trans-
formations and mitigate climate impacts (5, 6, 24–29). Social tipping is exemplified by qualitative
systemic changes resultant from comparatively small changes within the social system, or the
broader environment in which the system is embedded (6). Similar to the notion of climate tip-
ping processes (30), social tipping dynamics are internally self-amplifying via positive feedback
mechanisms such that rapid movements from one qualitative state into another become possible,
resulting in sudden large-scale structural, behavioral or attitudinal changes (5,24,31). Specifically,
social tipping dynamics can develop through gradual changes (shifts) in specific control parame-
ters such as the price of renewable energy production and storage (5, 26), or because of sensitive
interventions (kicks) such as the sudden prominence of a political issue (26). Moreover, social
tipping processes can be favored and or triggered by forces initiating from both natural or social
systems (6), providing grounds for sudden large-scale behavioral or attitudinal changes that emerge
from individual-level changes (5, 24).

Within natural systems, experienced climate impacts (32,33), e.g. floods and heat waves (34), have
the potential to shift attitudes and behaviors toward climate change and instigate social tipping
processes (35). Behavioral changes are more likely if extreme weather events elicit an emotional
response, increase the salience of climate change, or when people directly attribute the event to
climate change (36).

Within social systems, extensive empirical studies have focused on identifying drivers of engage-
ment in climate actions (37–39). Specifically, heightened climate change concerns provide a nec-
essary foundation for individual-level engagement in climate actions (37), even though not neces-
sarily serving as an ultimate trigger (40) as concerns are often moderated by other characteristics
(such as increased costs (41), perceptions of individual efficacy (42), and trust (39, 43)). Notably,
the likelihood to engage in mitigating action varies in relation to the perceived psychological dis-
tance of climate risks (44) such that those perceived to be more culturally, spatially, or temporally
proximate increase the likelihood of climate action (18, 45, 46).

Anticipation of SLR can activate climate actions

In the case of SLR, immediate climate actions for mitigation are required, as even 5-year de-
lays in reaching peak GHG-emissions can each affect a future commitment of ⇠+0.2m in SLR
by 2300 (47). Yet, the most severe immediate impacts of SLR are unlikely to be experienced
within current lifetimes, likely between +0.3-1.0m by 2100 (48). Accordingly, direct experiences
of SLR impacts are unlikely to trigger necessary societal changes on time scales required for mit-
igation (49), within the remaining ’intervention time horizon’ (the period within societal actions
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can influence whether a natural system tips) (6).

Rather, the anticipation of the impacts of SLR presents a crucial potential pathway towards bridg-
ing the inter-generational gap. Increases to SLR are among the most prominent frames from which
people learn about and understand climate impacts (50). Concern about future SLR can activate
desires to leave a positive legacy for the descendants of one’s homeland, facilitating engagement
in climate actions (23). Recent empirical evidence suggests that concerns about future SLR con-
stitutes a unique form of societal climate risk perceptions, increasing support for climate change
policies and willingness to engage in pro-climate behaviors by ⇠ 15 � 30% (51, 52). Simulation
modeling approaches have further noted the importance of anticipation of future climate impacts,
where extended time horizons can foster social tipping dynamics towards stabilizing the environ-
ment, and potentially preventing socio-ecological collapse (35).

Here, we explore the interrelated role of anticipation of SLR and concern for climate change in
triggering social tipping processes towards climate action via adoption of a complex contagion
social activation model of social tipping.

Complex contagion modeling of social tipping

Models of complex social behavioral contagions (53, 54) have explored thresholds for individual
action, whereby a Pareto effect of ⇠ 25% of the population becoming activated can result in social
tipping-like processes of cascading behaviors (55). In such cases, changes in individual preference
factors (28) and network structures (56) can trigger rapid shifts in social norms and behaviors.
Complex contagion is commonly simulated using thresholds models (57), social learning and dif-
fusion models, adaptive network models (58, 59), or agent-based voter models (60).

Recent advancements have further modeled social tipping dynamics (35) – notably, behavioral
economic experimental approaches have investigated the difficulty in overcoming perceived costs
associated with adopting new norms (61), agent-based models have identified conditions for rapid
adoption of environmental behaviors (62), and coupled social-climate models have explored emis-
sions reduction pathways (63). Yet, modeling social tipping dynamics, and environmental behav-
ioral change more broadly, remains challenging, as the drivers of human behavior and preference
formation are non-deterministic, and are rather the product of an interrelated web of factors (e.g.
risk perceptions, costs, social norms, perceived efficacy, trust, political and cultural tastes). Such
modeling endeavors are further complicated within cross-cultural settings, as the drivers of cli-
mate attitudes and behaviors can vary greatly even between cultural and geographically similar
locales (64, 65).

Given these uncertainties and hetereogenities, we adopt a low-dimensional approach to model-
ing the interrelated role of concern and anticipation of SLR impacts that is theoretically-based and
driven by empirically-derived parameters. We extend a recently developed refinement of Granovet-
ter’s threshold model (66) for social tipping processes (67) that explores engagement in climate
actions from cascading contagious dynamics on social networks (68). Climate actions are those
taken with the intentionality of mitigating- or adapting to- anticipated, perceived or experienced
climate impacts (69). These can encompass a broad range of individual or social behaviors, such as
changing consumption patterns, participating in environmental collective actions, and supporting
climate change-focused policies and political actors (70).
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This approach divides populations into three distinct groups (71,72): (I) certainly active instigators
of climate actions (e.g. opinion shifts, social movements, or adoption of new technologies) , (II)
contingently active individuals whose characteristics (e.g. norms, beliefs, social identity) broadly
align with those of the certainly active population, but who have yet to join these climate actions,
and (III) certainly inactive individuals who are unlikely to ever join climate actions (e.g. those
with norms, values or identities in opposition, or those who lack the capacity to change). Specifi-
cally, we adopt a one-dimensional macroscopic approximation of an emergent threshold function
which incorporates microscopic network dynamics accounting for the interrelation of behavioral
contagion and network structures (see Materials and Methods for details).

Model design

We apply the complex contagion social activation model of social tipping to the case of SLR, ex-
amining how national-level projections of SLR impacts at varying temporal scales (2100, 2220,
2300) and climate change concern affect the share of certainly and contingently active popula-
tions across different states world-wide (Fig. 2). For this purpose we use multiple data sources to
estimate the necessary parameters and input quantities: (i) future sea-level projections from the
MAGICC climate model (13) (Fig. 1a), (ii) global high-resolution topographic (73) and popula-
tion distribution (74) data, and (iii) pooled social survey data on climate change concern from 81
different countries.

Population distribution

Elevation distribution

Survey data

MAGICC climate model

Sea level rise

A�ected population

Certainly active population

Social tipping model

Tipping potential

Anticipation time horizon

Average degree

Threshold fraction Potentially active 
population

Figure 2: Visualization of modeling approach. The tipping potential in a country (green box)
is estimated from sea-level projections (based on climate model emulator MAGICC) and the
extended Granovetter model of social tipping dynamics. Blue shading indicates external data
sources (see Material & Methods). Yellow shading indicates parameters to the model. Core
components of the model are marked with grey boxes.

We consider people who live in an area that is likely directly impacted by SLR within a certain
anticipation time horizon as certainly active (Group I, Fig. 1c). A country’s potentially active
population (the sum of Groups I and II) with share p is estimated from cross-national survey data
on climate change concern (see Tables S1–S3), assuming that higher levels of concern correspond
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to larger population shares that can potentially be mobilized for collective climate action. Based
on both group sizes, our model simulates the population share that ultimately participates in an
action (see Fig. 5 in Materials & Methods).

The more parsimonious design incorporates a similar level of qualified complexity across all model
components and analytical interpretations, with the goal of minimizing sources of error originating
from increased assumptions regarding additional parameters which remain unknown, or are poten-
tially even unknowable. Similar approaches have further adopted survey data and low-dimensional
modeling designs to explore cross-national social tipping dynamics, particularly in the case of
groundwater management (75). Accordingly, the modeling goal is to provide grounded, inter-
pretable, qualitative assessments of the cross-national role of concern and anticipation of SLR,
providing a foundation for further exploratory research in the emerging research on social tipping
dynamics.

For every simulation, we expect to find the population share that ultimately engages in climate
action in either of three regimes: (i) an uncritical regime where only the untipped state exists and a
large share of the population remains passive, (ii) a critical bi-stable regime where event-induced
tipping (76) can move the system into an alternative state (i.e. potentially active population can be
either active or passive, depending on initial conditions), and (iii) the tipped regime that is reached
via bifurcation-induced tipping (76), i.e. where a large share of the potentially active population
is active (see Fig. 5 in Material and Methods). By using a Monte-Carlo approach, we compute
the likelihoods to enter either of the three regimes and denote those as the respective per-country
tipping potentials. To ensure the robustness of our results, all respective quantities are computed as
averages over an ensemble of simulations for random choices of unknown parameters that govern
the specific structure of the social tipping model (see Fig. 2 and Materials & Methods).

Results

Anticipation and concern foster complementary forms of social tipping

The tipping potentials are first estimated for the five countries with the largest greenhouse gas emis-
sions (China, US, India, Russia and Japan) (77) for varying anticipation time horizons (e.g. 100,
150 or 200 years into the future) and potentially active population shares. We then further assess
the corresponding tipping potentials for the fixed potentially active population share according to
the estimated level of climate change concern in each country (see also Material & Methods).

We find that the overall tipping potential increases strongly with greater potentially active popula-
tion shares. A notable dependency of this tipping potential on the time horizon can especially be
observed for countries where a larger part of the population lives at or close to sea-level, as in the
case of Japan or China (Fig. 3 (a)).

With extended anticipation time horizons, the bifurcation-induced tipping potential, i.e. those cases
where the system shifts into the tipped regime, increases most significantly if the potentially active
population is larger than at least approximately 20% (see Fig. 3 (b)) – a level that is surpassed
in all five considered countries. For the estimated values of the potentially active population, our
model suggests increased bifurcation-induced tipping potential in countries with large near-sea-
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Figure 3: Social tipping potential for the five highest-greenhouse gas emitting countries

China, USA, India, Russia and Japan (in terms of CO2 equivalents). (a) Total tipping
potential and (b) bifurcation-induced tipping potential for varying shares of concerned popula-
tion p and anticipation time horizon T , from zero (blue) to more than 50% (red). Black lines
indicate the estimated country-specific climate change concern pC with a shaded interval of
±5% deviation, indicating that variations in the level of concern do not qualitatively alter the
results. (c) Total, utot, and bifurcation-induced tipping potential, ubif , for the estimated levels
of country-specific climate change concern. Shaded areas indicate variations of utot and ubif
within the ±5%-band of concern. (d) Size I of necessary interventions to tip a given share X
of simulations once a country’s social system reaches the critical regime. The temporal axis
reflects the anticipation time horizon of T years prior to 2020, i.e. T = 0 implies that individu-
als do not anticipate any future impacts while the maximum possible value, T = 280, assumes
individuals to anticipate sea-level impacts up to 2300, the penultimate year in the MAGICC
projections (see also Fig. 1).

level population density, particularly China and Japan (Fig. 3 (c)). This implies that while the
overall tipping potential is relatively similar across contexts, bifurcation-induced tipping becomes
more likely in regions which are more vulnerable to future SLR.

However, compared with the overall large potential, bifurcation-induced tipping remains compar-
atively unlikely (cf. Fig. 3 (a) and (b)). This implies that even though an alternative stable state of
collective climate action may exist, the system is unlikely to reach this state by mere crossing of a
single critical threshold or tipping point. This is because in most cases, the share of certainly active

8



population directly affected by SLR is not sufficient to trigger such bifurcation-induced tipping.
Instead, the system is mostly found in a critical, yet not tipped, state where interventions then carry
the potential to kick the system into its alternative stable state via event-induced tipping. The re-
quired intervention size, measured in terms of the contingent population share, generally decreases
as the anticipation time horizon grows, moving the system closer towards the tipped state (see Fig.
5). Comparatively small intervention sizes (less than 10%) of spontaneously activated populations
can suffice to trigger transitions to the alternative state with 5% chance, indicating a potential for
event-induced tipping (see black lines in Fig. 3 (d)).

Additionally, our model indicates that countries with larger potentially active population shares
have correspondingly lower required intervention sizes for initiating event-induced tipping (as for
instance India and Japan, see Fig. 3 (d)), as the gap is lowered between an untipped stable state and
the basin of attraction of the tipped state (cf. last row of Fig. 3 and Fig. 5 in Material & Methods).
But, even in cases of the highest climate change concern, such as in India, our model indicates that
a non-zero intervention size is needed when the anticipation time horizon is shorter, implying that
at least some intervention is necessary to trigger tipping processes. Increasing the anticipation time
horizon translates into substantially smaller required intervention sizes, eventually even reaching
zero for the modeled cases of Japan and, in parts, China (Fig. 3 (d)).

Three global classes of tipping processes

Drawing upon a broader comparative analysis covering 81 countries with access to the sea, we find
that concern for climate change and the total tipping potential are strongly correlated (Fig. 4 (a)
and (b)). Accordingly, we identify three qualitative classes of tipping processes facilitating climate
action that vary by the country-specific values of total and bifurcation-induced tipping potentials
(Tab. 1).

Tipping Class I – Large total and high bifurcation-induced tipping potential: In these coun-
tries, the emergence of social tipping processes is fostered by heightened levels of climate change
concern and SLR-sensitive elevation-population profiles. In this case, an increase in the anticipa-
tion time horizon or a relatively small intervention size can trigger a transition to an alternative
state of increased climate action. Therefore, such social systems can be considered to already be
in a rather critical state.

Examples for this Class I primarily include countries along the Pacific Ocean, such as Indonesia,
Japan, Vietnam, as well as China. Here, SLR is likely to affect large population shares due to
large metropolitan areas located near the coast (78). Combined with overall heightened climate
change concern in these countries (cf. Fig. 4 (a)), individual events and expanded anticipation time
horizons both have the potential to instigate social tipping processes in our model (Tab. 1).

Tipping Class II – Large total and low bifurcation-induced tipping potential: Countries in
this class are characterized by high levels of concern and low population shares likely to be affected
by projected SLR. This indicates that the corresponding countries might be sufficiently close to or
already in a critical state, where relatively small interventions would suffice to induce transitions
towards an alternative state via event-induced tipping. However, bifurcation-induced tipping path-
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Figure 4: Cross-national potential for social tipping towards increased climate action. (a)

Estimated country-specific potentially active population share. (Total) tipping potential (b) and
bifurcation-induced tipping potential (c) for the estimated values of climate change concern
from social survey data and the largest possible anticipation time horizons. Countries are geo-
graphically clustered according to their tipping classes I-III, i.e. countries with large total and
bifurcation-induced tipping potential (Tipping Class I) in the Indo-Pacific, countries with large
total and low bifurcation-induced tipping potential (Tipping Class II) in the remaining South-
ern Hemisphere, and low total and bifurcation-induced tipping potential (Tipping Class III) in
Europe and North America.

ways resulting from expanded anticipation time horizons are comparatively unlikely due to less
SLR-sensitive elevation-population profiles.

Class II mostly covers countries in South America, Africa and along the Indian Ocean. Climate
change concern in those countries can often be attributed to more short-term impacts than those
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Table 1: Countries tend to cluster regionally with respect to their total and bifurcation

tipping potentials in response to anticipated sea level rise.

Class I Class II Class III

Total Tipping Potential Large Large Small
Bifurcation Tipping Potential High Low Low
SLR Exposure/Anticipation Greater Lower Lower
Climate Change Concern High High Lower
Regional Clusters West Pacific rim countries,

China, Indonesia, Japan,
Vietnam

South America,
Africa, Indian

Ocean rim

North America,
Europe

related to SLR, such as water scarcity, more frequent extreme weather events, or shifts in precip-
itation variability (79). This is also reflected within the scope of our model, as the total tipping
potential (driven by climate change concern) and the bifurcation-induced potential (driven by an-
ticipated SLR impacts) are largely uncorrelated (Fig. 4 (b) and (c)). We suggest that such tempo-
rally more immediate climate impacts could potentially trigger a rapid short-term mobilization of
a large population share, thereby acting as a (non-deliberate) social tipping intervention, which can
effectively kick the respective social systems into an alternative state of increased climate action
via event-induced tipping processes.

Tipping Class III – Small total and small bifurcation-induced tipping potential: This class
is exemplified by cases where both the elevation profile and low climate change concern effec-
tively hinder social tipping. Accordingly, only large intervention sizes potentially push the system
towards an alternative state of increased climate action. Further increasing concern could lower the
baseline of the required intervention sizes, thereby rendering the system more critical (moving it
towards Tipping Class II). However, due to the country-specific elevation profiles, increased antic-
ipation time horizons are expected to only have minor influences on the intervention sizes required
for triggering social tipping, as the projected impacts of SLR remain comparatively small.

Class III covers North America and parts of Europe. Here, immediate threats from SLR are com-
paratively small since large population shares live further inland. Likewise, climate change concern
is comparatively lower (cf. Fig. 4(a)), potentially due to larger perceived psychological distances
to these risks (44). Such psychological distances can result from comparatively higher economic
development, larger perceived preparedness for the impacts of climate change (44) and decreased
vulnerability (80). Thus, according to our model, social tipping in these counties is fostered largely
through elevating climate change concern (46). Then, once concern reaches a sufficiently high
level, other events or interventions would have the potential to kick the system into an alternative
state of increased climate action.

Notably, a fourth tipping class with low total tipping potential and a large bifurcation-induced
tipping potential cannot exist since by definition the former exceeds the latter (see Materials and
Methods).
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Discussion

Here, we adopt a model for social tipping to explore transformative pathways towards an alternative
state of increased climate action resultant from climate change concern and anticipated impacts of
projected sea-level rise across 81 countries with access to the sea. We find that in many countries,
climate change concern has reached a point where the system can be considered critical, such that
an alternative stable tipped state exists (where a large population share engages in climate actions),
and sensitive interventions (e.g. policy regime changes or social movements) or stochastic events
(e.g. storm surges or floods) have the potential to push the system towards that tipped state.

Our model suggests that climate change concern has reached sufficiently high levels in many coun-
tries such that social tipping processes towards increased climate action could be instigated. How-
ever, concern alone is insufficient to trigger such social tipping processes. Rather, concern func-
tions to create critical conditions under which a system becomes more susceptible to social tipping
interventions (such as by political or civil society actors). Expanded anticipation time horizons can
directly lower the required intervention size, thereby increasing the likelihood for social tipping
dynamics to emerge.

As such, the two factors, climate change concern and anticipation time horizons, are of a comple-
mentary yet mutually beneficial nature. Increases in concern make tipping dynamics more likely
to occur following external influences or interventions (event-induced tipping), while the more de-
terministic process (bifurcation-induced tipping) largely manifests through increased anticipation
time horizons. As the anticipation time horizons necessary to trigger tipping are often on a centen-
nial timescale, event-induced tipping (76) via interventions presents a comparatively more likely
pathway towards instigating social tipping processes in the near future.

In this way, social tipping processes largely differ from those in climate systems (see also (6)),
which often focus on identifying scenarios where a (single) control parameter crosses a critical
threshold, e.g., in global mean surface temperature, as the instigator of systemic transgression into
an alternative stable state (30). Instead, the notion of sensitive intervention (26) and event-induced
tipping becomes ever more important for social tipping processes, as critical thresholds of control
parameters might be infeasible to reach or impossible to predict.

A key finding from our modeled results is the emergence of three qualitative classes of social
tipping. Here we identify a transformation pathway towards increased potential for social tipping
towards climate action. While the tipping potential within a Class III-state is comparatively low it
increases with climate change concern such that the possibility for tipping processes begins to exist
(i.e. leading to a Class II-state). Then, extended anticipation time horizons reduces the intervention
sizes necessary to trigger tipping processes (Tipping Class I), such that a comparatively smaller
kick within the system or it’s environment carries the potential to instigate social tipping processes.

Given the increasing social relevance of anthropogenic climate change, identifying social systems
that are in more critical states can guide strategic policy entrepreneurs (81). Targeted interventions
can amplify critical conditions or can even provide a substantial enough kick to instigate climate
actions. For example, climate change social movements can play a crucial role, providing a mech-
anism to develop new political coalitions (82), thereby increasing the salience of climate change
as a political issue. Such increased salience can effectively open a policy window, allowing climate
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policy advocates to promote their agendas (81). Further large shift in public opinion can punctuate
sticky environmental regulatory regimes (83) and political-institutional lock-ins (84), resulting in
the adoption of new public policies, such as carbon taxation (85) or incentivizing development of
alternative energy supplies (86).

In contrast to common behavioral contagion modeling approaches (87,88), our country-specific es-
timations of social tipping potentials are uniquely based on real-world observations (i.e., projected
SLR impacts, measured elevation-population distributions and a comprehensive review of social
survey data on climate change concern). We thereby contribute a novel perspective to the grow-
ing field of socio-ecological systems modeling that aims to specifically account for the dynamic
interactions between natural and social systems (89–91).

Additionally, our modeling exercise expands upon previous studies of threshold dynamics and
social tipping that have largely focused on social systems in isolation, either theoretically (66, 92),
in controlled laboratory experiments (55, 56) or via network-based numerical simulations (68, 93,
94).

Overall, we find that concern for climate change increases the criticality and likelihood for social
tipping processes, and expanded anticipation time horizons and growing shares of active population
move the system closer towards a critical threshold, effectively reducing the required intervention
size needed to ultimately kick the system into a alternative state where climate action becomes
the social norm. Our study highlights the potential that lies in the combination of these factors,
pushing social systems closer towards positive tipping points, and is thus a first step towards truly
closing the loop from climate impacts to substantive societal transformation (95).

Limitations

We acknowledge that social tipping processes can be triggered by a variety of distinct external
factors such as in the aftermath of extreme events (32, 33) or in response to large-scale environ-
mental changes (96). However, our model simulates the potential for social tipping solely resultant
from anticipation of projected SLR. We find that, on its own, SLR is comparatively unlikely to
result in bifurcation-induced tipping. However, our approach does not yet account for other po-
tential impacts that are directly related to SLR, such as increased flood risks, coastal erosion, or
increased vulnerability to storm surges (78). These impacts are comparatively more likely to af-
fect even larger population shares in coastal areas, and are likely to occur in coming years and
decades (97–99). As such, our modeling approach can be considered rather conservative in esti-
mating potentials for tipping processes triggered by SLR-related impacts.

For now, we assume a straightforward conversion of SLR into certainly active populations as a
probable scenario of subjective risk assessment, in which individuals simply compare official pro-
jections with their knowledge of the elevation profile of their local region. However, SLR is pro-
jected to vary regionally, with coastal areas around the Indian Ocean and Western Pacific being
affected more severely than other locales (100). Since these are also regions where climate change
concern is highest, such regional SLR differences could result in even greater potential for social
tipping.

Observation-based research have noted how social contagion varies by geographic factors, such
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as the physical distance an actor has to travel to participate (101), individual propensity for be-
havioral change (102), as well as the complexity in contagion spreading across social network
structures (103) and forms of social interaction (104). Given the potentially heterogeneous so-
cial network structures across the 81 countries, we assessed the robustness of our results using
numerical Monte Carlo simulations of cascading dynamics across a diverse set of common net-
work topologies. We found that in most cases, there is parametrization of the emergent threshold
function F that is similar to what one would expect from certain other, non-trivial, network topolo-
gies. In that sense, our modeling approach can not only be interpreted as an ensemble of different
Erdős–Rény networks, but an ensemble of different network topologies itself (see Supplementary
Materials for detailed further discussion).

We ultimately note that, while illustrative, neither the mechanism we explore here nor the under-
lying model results should be interpreted in an overly-deterministic manner. For example, tipping
can in fact occur in any of the three identified classes, as concern is large enough for most countries
so that they might have already entered into a critical regime. Rather, our findings suggest that as
countries transition towards Tipping Class I, the tipping potential increases and the intervention
size necessary to trigger social tipping decreases correspondingly.

Outlook

In addition to natural drivers, deliberate interventions by policy makers and climate actors carry the
potential to instigate social tipping processes (29), for instance via financial disclosure (26), infor-
mation feedbacks (5), or climate movements (105). To assess the potential for deliberately initiated
societal transformations, i.e. positive social tipping (27,106), future research should focus on iden-
tifying processes and mechanisms that lower the intervention sizes needed to kick the system into,
or increase the potential to shift the system closer towards, an alternative state of increased climate
action. Thus, the actual type of events instigating social tipping processes can emerge from an
array of sources (e.g. natural or social) across varying scales (e.g. macro or micro). For now, our
model is agnostic to the specific form of the instigating event, but rather aims to identify factors
affecting the tipping potential of systems.

The individual likelihood to engage in climate actions results from an interplay of internal (i.e. con-
cern, values, attitudes and beliefs) and external (contextual, political, economic) factors, as well
as a multitude of potential barriers (i.e. current behaviors, adaptive capacity, social norms) (40).
Our proposed model currently assumes that behavioral change is not associated with costs to the
individual. Moreover, there are unique factors within each context, many of which may even be
unobservable or unknowable, that affect the capacity for tipping processes in a given social system.
Still, our idealized scenario shows that due to the inherent complexity of social systems (107,108)
tipping processes arise from multiple intertwined and mutually co-dependent factors which poten-
tially lead to alternative future trajectories, for example in energy, financial, or socio-political sys-
tems (5, 26, 27, 29, 109). Future research should therefore factor in relevant heterogeneities within
and between countries, such as different forms of agency (110, 111), shifting social norms (28),
cultural dimensions (112), the susceptibility of the country (or region) to a broader range of climate
impacts, or the ability to participate in social movements or civil society.

We explore one mechanism for social tipping processes, noting a potential transformative pathway
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resulting from the interrelation of climate change concern and anticipation of SLR via adoption
of a social activation model. Given the necessity for rapid societal transformations (113), and the
potential for social tipping processes to instigate such changes (5,6), we encourage further research
in this field. Future work can explore global conditions instigating social tipping, highlight unique
mechanisms within country or region-specific case studies, explore the role of short-term shocks
(such as extreme events or rapid political mobilization) as triggers (34), and identify the distinct
circumstances under which diverse social tipping elements are likely to experience transformative
changes.

Materials and Methods

Social tipping model. We adopt a recently developed framework for explaining processes and
mechanisms behind social tipping through a network-based microfoundation of Granovetter’s thresh-
old model of collective behaviour (66, 67). The model explains collective action from cascading
contagious dynamics (68) of social activation in a complex social network, exploring the inter-
relation of individual behavioral dynamics and network structures. In alignment with resource
mobilization theory it assumes that a considered population can be divided into three distinct
groups (71, 72): (i) A small fixed population share a consisting of certainly active individuals,
such as instigators of a climate action, that deliberately act upon a certain issue. (ii) A fixed pop-
ulation share c consisting of contingently active individuals whose opinions and norms align with
the behaviour of the instigators but who did not join the climate action yet. (iii) A remaining popu-
lation share consisting of certainly inactive individuals who, due to opposing opinions and values,
will never join a respective climate action. The first two groups taken together then form the fixed
potentially active population share p = c + a. Actors in those groups are connected along ties in
a social network with an average number of such ties per individual, K, commonly referred to as
the ‘average degree’ of the social network (114). Actors become active via cascading dynamics
if at least a fixed share % of their neighbors is active as well (68). The model’s dynamics can be
described by a one-dimensional discrete-time difference equation that computes the share of acting
individuals, r(t+ 1), at a given time t+ 1 as

r(t+ 1) = a+ (p� a)F (r(t)). (1)

Here, a denotes the certainly active population share and p the potentially active population share,
i.e. those that can be mobilized via social activation. F is the cumulative distribution function of
the actors’ activation thresholds, refereed to as the emergent macroscopic threshold function. In
other words, F (r(t)) represents the fraction of the contingent population (with relative size p� a)
that take part in a given climate action once that movement has reached a relative size of r(t). It has
been first suggested (66) and then shown (67) that such a threshold distribution F with typically
assumed properties, such as being broad-shaped and similar to a normal distribution, emerges from
pairwise social interactions between individuals in their underlying social network. In particularly,
assuming a random network topology given by the Erdős–Rényi model as a first approximation
for the unknown underlying social network (115) yields the following analytical expression for
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F (67):

F (r) = 1� exp(�K)
1X

bi=0

(K �Kr)bi

bi!

b %bi
1�%cX

ai=0

(Kr)ai

ai!
(2)

Note that, the emergent threshold function (F (r(t))) integrates information from individual behav-
ioral thresholds and network structures and acts as a parsimonious tool for modelling social tipping
processes, but, the threshold function itself is rather an outcome of these processes, and should not
be treated as a social construct with causal effect in its own right. Also note that even though the
approximation assumes the topology of an Erdős–Rényi random network, the emergent threshold
function F also represents other, less trivial, network structures sufficiently well (see below for
details and SI for numerical simulations).

The fixed points r⇤ of (1) can be estimated by setting

r⇤ = a+ (p� a)F (r⇤) (3)

and solving for r⇤ numerically. The model shows two saddle-node bifurcations with respect to
both a and p (67), which is the typical form of stability landscape for a tipping element, Fig. 5 (a).
For sufficiently large p and small values of a, i.e. a = 0 in the extreme case, the model displays
an uncritical regime where no tipped state exists, Fig. 5 (a). Increasing a pushes the system closer
towards a bi-stable critical regime in which external influences, such as shocks or events, can
lift the system onto an alternative stable state (yellow area in Fig. 5 (a)). Further increasing a
eventually triggers the commonly studied form of social tipping, i.e. bifurcation-induced tipping,
where the untipped fixed point r⇤ vanishes and the system enters the tipped regime (green area
in Fig. 5 (a)). Notably, similar dynamics and a distinction into three qualitative regimes can be
observed for increasing p from low to large values, thereby giving rise to a cusp catastrophe (67).
In particular, for each value of p there is a critical value of a (given by the boundary between the
red and yellow shaded area in Fig. 5) at which the system first enters the bi-stable critical regime.
In that sense, increasing values of p move the boundary between the uncritical and critical regime
closer towards smaller values of a.

Given that the social network structure within the 81 countries that are included in our simulation
are likely largely heterogeneous, and in many cases undetermined, we adopt a Monte-Carlo ap-
proach to check for the robustness of our results, numerically estimating the potential for social
tipping and resultant instantiations of emergent threshold functions by randomly sampling un-
known parameter values for K and %. We observed that the resulting ensemble of threshold func-
tions (F (r)) then not only resembles simple network topologies such as the Erdős–Rényi random
network, but also sufficiently covers other, more realistic, network topologies. In particular, we
perform robustness checks using an array of topologies (real-world empirical data about Facebook
friendships, Barabási–Albert (116), Watts–Strogatz (117), ring topologies, and random geometric
networks) (118), finding that in most cases, the ensemble threshold function fits estimates emerg-
ing from micro-simulation models, except in cases where the certainly active nodes are heavily
clustered in modular networks (See Figs. S1 and S2 in Supplementary Information). This is to be
expected, since in networks where the certainly active population is clustered within a highly mod-
ularized network structure, it is unlikely for the network to exhibit cascading processes resulting in

16



Figure 5: a) Exemplary bifurcation diagram of the social tipping model w.r.t. one of several
influencing factors: the certainly active population share a. For low shares a of certainly active
individuals the system is in the uncritical regime (red shaded area) where no tipping is possi-
ble since only the lower branch exists. With increasing a the system enters the critical regime
(yellow shaded area) and event-induced tipping becomes possible if large enough shocks kick
the steady state into the tipped state’s basin of attraction (orange shaded area). With further in-
creasing a the model reaches its critical threshold for bifurcation-induced tipping above which
only the upper branch exists (green shaded area).b) The tipping potential computed as the rel-
ative size of the basin of attraction of the upper branch.

social tipping across a broader population, as tipping would be contained to specific clusters and
not through the network as a whole. However, we suggest that in the case of anticipation of SLR,
real-world social networks are less likely to have such highly modularized network structures as
for many countries, SLR affects broad sections of coastlines, stretching across diverse social and
geographic groupings.

Estimation of certainly active population from SLR. We estimate the certainly active popu-
lation share a(T ) per country by the proportion of individuals that are projected to be affected
by sea-level rise (SLR) at a given anticipation time horizon T after 2020. Here, we assume in-
dividuals to be affected if they live at an elevation X that lies at or below projected SLR at time
T . Particularly, we use median SLR projections until 2300 obtained from the MAGICC climate
model v2.0 (13) for the RCP8.5 scenario that provides an upper bound of the RCPs (119) (solid red
line in Fig. 1(a)). Generally, the MAGICC climate model emulator estimates approximately 1m
sea-level change for low-emission scenario RCP2.6 ranging up to approximately 5m sea-level rise
for high-emission scenario RCP8.5 by the year 2300 (Fig. 1a). These projections are consistent
with process-based models in IPCC AR6 (14), which further note that even more severe SLR of
more than 15m by 2300 cannot be excluded under high emission scenarios (120).

17



In order to estimate the population-elevation distribution (Fig. 6) we combine country-specific grid-
ded population data from the Socioeconomic Data and Applications Center (SEDAC) (74) with
SRTM30 near-global digital elevation data (73), both provided at an angular resolution of 1/120�.
Since entries in the SRTM30-data are truncated to full meters, we add uniformly distributed ran-
dom noise of magnitude 1 meter to the entry of each grid cell. The median SLR projections are
then combined with the country-specific population-elevation distributions to obtain a time series
of population shares that are affected by SLR until 2300. Software-packages to parse and process
both the gridded population and elevation data are available online at https://zenodo.org/
record/4268015 and https://github.com/marcwie/srtm30-parser.

Figure 6: Cumulative distributions of country-specific population shares living at or be-

low an elevation level of X above sea-level for the five largest emitters of greenhouse gas

that are considered in this study.

Estimation of potentially active population from social survey data. We estimate the poten-
tially active population share pC in a country C from subjects’ expressed concern for climate
change in six different recent cross-national social survey programs: European Social Survey
(2016, Wave 8), PEW Global Attitudes Survey (Spring 2015), International Social Survey Pro-
gramme (2010, Environment III), Eurobarometer (2017, EB 87.1; 2019, EB 91.3), and Life in
Transition Survey (2010, II), see Tab. S1. We assume that subjects that are not concerned at all
are not potentially active. In contrast, subjects with the highest level of concern are counted as
surely belonging to the potentially active population share. For subjects with intermediate levels
of concern we assume a certain share of them is potentially active, using the following approach
to estimate this share: Each survey s contains an item capturing individual perceptions of climate
change concern across multiple countries C. These items are given on an ordinal scale, with vary-
ing numbers of outcomes ns. We rescale those outcomes to take integer values is = 0, 1, . . . , ns�1
such that pi,C,s gives the relative frequency of response i in country C and survey program s. We
then estimate the potentially active population share pC,s in country C as

pC,s =
1

ns

X

ns

pi,C,s
i

ns � 1
2 [0, 1], (4)

such that pC,s = 0 if all participants were to respond is = 0 and pC,s = 1 if all participants
were to respond is = ns � 1. In total, we compile data for 81 countries with access to the sea.
Some countries, especially in the European Union, are covered by all six surveys, while other
countries only appear in a single instance with an average coverage of 2.36 survey programs per
country. In cases where multiple survey programs available for a particular country, we then adopt
the median value of concern over all survey programs for that country as the estimated potentially
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active population share pC in Fig. 3 and Fig. 4. An overview for estimated levels of concern across
countries is given in Tab. S2 and Tab. S3.

Preprocessing, model setup and ensemble simulations. In alignment with earlier works (10),
we exclude countries with exceptionally low elevation profiles, i.e, The Netherlands, Azerbaijan
and Kazakhstan, that for large parts show elevation values even below present sea-level. We addi-
tionally exclude all countries that are not adjacent to any larger body of water and, thus, exclusively
lie inland, e.g. Mongolia or Austria.

In a first step we vary the potentially active population share p across its entire valid value range p 2
[0, 1] in order to obtain comprehensive statistics about the model’s dynamics. We draw N = 2000
random combinations of parameters % 2 (0, 1) and K 2 (0, 100) and compute r⇤ numerically from
Eq. (3) for every combination of p 2 [0, 1] and a(T ), for T = 0, 1, . . . , 280. In a second analysis,
we then fix the potentially active population share in each country, pC , according to the estimated
levels of concern (see above).

Tipping potential and intervention sizes. The tipping potential in Fig. 3 and Fig. 4 is computed
as the average basin stability (121) of the tipped fixed point r⇤u (subscript u for upper branch) in
Fig. 5 taken over an ensemble of N = 2000 simulations with randomly drawn values of K and %
(see above). For a single simulation s we define the tipping potential utot(s) as

utot(s) =

8
><

>:

0 if only untipped lower branch exists
p�r⇤m
p�a if unstable middle branch exists
1 if only tipped upper branch exists

(5)

Here, r⇤m (subscript m for middle branch) is the location of the fixed point corresponding to the
unstable branch of the model’s bifurcation diagram (dashed line in Fig. 5(a)), p is the potentially
active population share and a is the certainly active population share. The average tipping potential
utot is then given as

utot = hutot(s)is (6)

=
1

N

X

s|utot(s)2(0,1)

utot(s) +
1

N

X

s|utot(s)=1

1 (7)

=
1

N

X

s|utot(s)2(0,1)

utot(s) + ubif . (8)

The average tipping potential utot measures the combined effects of event-induced (first term in
the rhs. of Eq. (8)) and bifurcation-induced tipping (second term in the rhs. of Eq. (8)) Each con-
tribution to utot is thus either 0 < utot(s) < 1 if the system is in the critical regime and utot(s) = 1
if the system is in the tipped regime (Fig. 5(b)). When aggregated over all simulations s, the
bifurcation-induced tipping potential ubif computes the share of simulations in which bifurcation-
tipping occurred (depicted in Fig. 3 third row) and forms a direct contribution to utot.

For all simulations s where the model’s steady state falls into the critical regime (yellow shaded
area in Fig. 5), we compute the required intervention size I(s) to tip the equilibrated system from
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the stable untipped state r⇤l (subscript l for lower branch) into the stable tipped state. Specifically,
we express I(s) as the minimum contingent population share c = p� a required to lift the system
from r⇤l over the middle branch r⇤m. This yields

I(s) =

(
r⇤m�r⇤l
p�a if 0 < utot(s) < 1

0 otherwise
(9)

The required intervention sizes I depicted in Fig. 3 are then computed as the respective percentiles
of the set of all ensemble members s for which we obtain positive values of I(s).
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Supplementary Text

Robustness Checks of Macroscopic Approximation

Within this study, we utilize a macroscropic approximation of the threshold function, F (r(t)),
representing the fraction of the contingent population (with relative size p � a) that takes part in
a climate action. This approximation is derived analytically (67), assuming a Erdős–Rényi model
for the unknown underlying social network (115).

Given that the true social network structure in any of the 81 countries simulated in this modeling
exercise is unknown, we follow a logic akin to bayesian non-informative priors and use a Monte
Carlo simulation approach, choosing a random average degree (K) and threshold value (%) for
the macroscopic approximation, which results in an ensemble of sigmoid-shaped curves for the
emergent threshold distribution (F ) varying broadly in both the location and steepness of their
inflection points. This approach thereby generates an ensemble of different shapes of F utilized
in our simulations, including for example: (i) a step function (for large K and % = 1), (ii) an
S-shaped curve (for intermediate K and %), (iii) a monotonic increase above the main diagonal
for small%, and (iv) a monotonic increase below the main diagonal for large %. Hence different
parameterizations are already considered when computing the average tipping potentials displayed
in Figs. 3 and 4 of the paper. In that way, our approach is conservative in that it integrates
widely across even qualitatively distinct forms of threshold functions as we do not make strong
assumptions about any specific such form.

Notably, the Erdős–Rényi model is comparatively parsimonious and may not well represent more
highly clustered network structures (55, 103). Accordingly, we engaged a series of robustness
checks, comparing how well the ensemble of threshold functions emergent from our Monte Carlo
simulations cover microscopic network dynamics across a range of network topologies: Barabasi-
Albert (BA) (116), Watts-Strogatz (WS) with rewiring probability � = 0.25 (117), a ring topology
(Watts-Strogatz with � = 0), a Random Geometric Network (RGG) (118) and real-world data
from Facebook ( 63k nodes, avg. degree 26).

In general, we find that for all random topologies (Fig. S1), the ensemble of macroscopic ap-
proximations covers the empirical results from the above-mentioned additional micro-simulation
models rather well when the certainly active nodes are sufficiently dispersed across the network.
In other words, in most cases, there is a combination of % and K in the Erdős–Rényi network that
produces an emergent threshold function F that is similar to what one would expect from certain
other network topologies. In that sense, our Monte-Carlo approach can not only be interpreted as
an ensemble of different Erdős–Rény networks, but an ensemble of different network topologies
itself.

But, of particular note, when the certainly active nodes are closely clustered, we are less likely to
observe tipping-like processes exemplified by this macroscopic approximation (esp. lower panel
of Fig. S2). When the certainly active population is clustered within a highly modularized network
structure, it is unlikely for the network to exhibit cascading processes resulting in social tipping
across a broader population, as tipping would be contained to specific clusters and not penetrate
through the network as a whole.

We suggest that in the case of anticipation of SLR, real-world social networks are less likely to have
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such highly modularized network structures. For many countries, SLR affects broad sections of
coastlines, stretching across diverse social and geographic groupings. Furthermore, the effects of
SLR are unlikely to be only observed and experienced by those directly impacted, rather these are
likely to spill-over to broader geographic regions and social groups (e.g. through climate induced
migration, mass media coverage) even though these are not specifically considered in the present
manuscript. In such cases, we assume that a high clustering of the certainly active population
within a modularized network structure is less likely to be representative of the actual network
structure of the 81 countries simulated in this modeling exercise.

Further, for our research design, we explicitly chose a common level of complexity across all com-
ponents. That is, the emphasis of these findings should not be too heavily on either the individual
social, climate or network aspects, but rather the combined implementation of these factors. And
this level of complexity is set at a lower-level to specifically allow for exploring conceptual sce-
narios. By keeping the modelling components on a relatively simplified level, we aim to avoid the
tendency of assuming predictive capacity via the increased complexity of the modelling approach.
In this case, we chose a macroscopic approximation of network topology that is comparatively
simple, yet as we find, robust across a number of other potential structures.
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Figure S1: Robustness checks of macroscopic approximation - random network topolo-

gies. Each panel represents results from randomly chosen certainly active nodes across di-
vergent network topologies. Each dot represents micro-simulations results, while the lines
represent macroscopic approximations for nine exemplary combinations of the two parameters
% and K – the actual ensemble contains a wider range of combinations.
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Figure S2: Robustness checks of macroscopic approximation - clustered, segmented and

differential degrees in diverse network topologies.Each panel represents results from clus-
tered, segmented and varied degrees of certainly active nodes across divergent network topolo-
gies. Each dot represents micro-simulations results, while the lines represent macroscopic
approximations for nine exemplary combinations of the two parameters threshold rho and av-
erage degree K – the actual ensemble contains a wider range of combinations.
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Data Year Question Wording Item Coding
Number of

Mean
Std.

Outcomes ns Dev.

Eurobarometer 2017/ And how serious a problem do you 1 ‘Not at all serious’ 10 0.75 0.23(EB 87.1 / EB 91.3) 2019 think climate change is at this moment? to 10 ‘Extremely serious’

ESS 2016 How worried about climate change? 1 ‘Not worried’ to 5 0.50 0.235 ‘Extremely worried’

ISSP 2010
Do you think that a rise in the world’s 1 ‘Not dangerous’ to

5 0.69 0.25temperature caused by climate change 5 ‘Extremely dangerous’
is dangerous for the environment?

LITSII 2010 How concerned are you 1 ‘Not concerned’ to 5 0.58 0.30about climate change? 5 ‘Extremely concerned’

PEW2015 2015 In your view, is global 1 ‘Not a problem’ to 4 0.78 0.28climate change a problem? 4 ‘Very serious problem’

Table S1: Social Survey Data Sources, Question Wording, Items and Descriptive Statistics
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Country
EB 87.1 EB 91.3 PEW Global ISSP LITSII ESS

Median
2017 2019 Attitudes 2015 2010 2010 2016

Albania - - - - 0.49 - 0.49
Argentina - - 0.83 0.76 - - 0.80
Australia - - 0.71 0.58 - - 0.64
Belgium 0.72 0.73 - 0.60 - 0.55 0.66
Brazil - - 0.94 - - - 0.94
Bulgaria 0.77 0.80 - 0.74 0.63 - 0.75
Canada - - 0.76 0.68 - - 0.72
Chile - - 0.92 0.83 - - 0.88
China - - 0.65 - - - 0.65
Croatia 0.73 0.74 - 0.75 0.65 - 0.73
Cyprus 0.78 0.82 - - - - 0.80
Denmark 0.77 0.80 - 0.62 - - 0.77
Estonia 0.59 0.64 - - 0.48 0.41 0.54
Finland 0.71 0.72 - 0.63 - 0.51 0.67
France 0.78 0.80 0.82 0.62 0.50 0.55 0.70
Georgia - - - - 0.67 - 0.67
Germany 0.75 0.79 0.79 0.73 0.52 0.59 0.74
Ghana - - 0.86 - - - 0.86
Greece 0.81 0.84 - - - - 0.83
Iceland - - - 0.57 - 0.53 0.55
India - - 0.91 - - - 0.91
Indonesia - - 0.72 - - - 0.72
Ireland 0.71 0.77 - - - 0.44 0.71
Israel - - 0.63 0.70 - 0.42 0.63
Italy 0.80 0.80 0.82 - 0.68 0.55 0.80
Japan - - 0.76 0.79 - - 0.77
Jordan - - 0.76 - - - 0.76
Kenya - - 0.84 - - - 0.84
Latvia 0.62 0.66 - 0.59 0.51 - 0.60
Lebanon - - 0.85 - - - 0.85
Lithuania 0.74 0.73 - 0.67 0.62 0.47 0.67

Table S2: Estimated shares of potentially acting individuals from weighted averages over all
responses in the six survey programs. Dashes indicate that a country is not covered by the
specific survey program. Countries with initial letters K–Z are found in Tab. S3
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Country
EB 87.1 EB 91.3 PEW Global ISSP LITSII ESS

Median
2017 2019 Attitudes 2015 2010 2010 2016

Malaysia - - 0.76 - - - 0.76
Malta 0.77 0.86 - - - - 0.82
Mexico - - 0.86 0.79 - - 0.83
Moldova - - - - 0.74 - 0.74
Montenegro - - - - 0.47 - 0.47
New Zealand - - - 0.60 - - 0.60
Nigeria - - 0.85 - - - 0.85
Norway - - - 0.57 - 0.50 0.53
Pakistan - - 0.71 - - - 0.71
Palestine - - 0.71 - - - 0.71
Peru - - 0.90 - - - 0.90
Philippines - - 0.89 0.75 - - 0.82
Poland 0.68 0.74 0.64 - 0.53 0.43 0.64
Portugal 0.78 0.81 - 0.76 - 0.62 0.77
Romania 0.74 0.74 - - 0.61 - 0.74
Russia - - 0.67 0.72 0.61 0.44 0.64
Senegal - - 0.80 - - - 0.80
Slovenia 0.75 0.77 - 0.69 0.62 0.55 0.69
South Africa - - 0.74 0.72 - - 0.73
South Korea - - 0.79 0.73 - - 0.76
Spain 0.80 0.83 0.80 0.75 - 0.60 0.80
Sweden 0.77 0.78 - 0.63 0.62 0.46 0.63
Taiwan - - - 0.78 - - 0.78
Tanzania - - 0.80 - - - 0.80
Turkey - - 0.73 0.81 0.55 - 0.73
Ukraine - - 0.67 - 0.62 - 0.64
United Kingdom 0.67 0.76 0.70 0.62 0.52 0.48 0.65
United States - - 0.66 0.61 - - 0.64
Venezuela - - 0.89 - - - 0.89
Vietnam - - 0.88 - - - 0.88

Table S3: Same as Tab. S2 for countries with initial letters K–Z.
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