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Abstract

In 1947 the first field-effect-transistor was invented, since then the miniaturisa-
tion of semiconductor electronics has enabled the sustained exponential growth in
the density of transistors in integrated circuits, know as Moore’s law. The advent
and refinement of the transistor is arguably one of, if not the most, important
inventions of the past century. So far the challenges in reducing transistors’ di-
mensions were mostly related to fabrication techniques, rather than fundamental
physics. However, as the industrial transistors approach the atomic limit, with
industrial designs at the 5 nm scale, quantum physical effects become dominant,
making conventional electronics inadequate. Thus, it becomes indispensable to
understand and take advantage of the quantum effects governing nano-scale elec-
tronics. This considerable task encompasses a wide variety of research directions,
from developing quantum computing to discovering and understanding quan-
tum effects in new low-dimensional materials (i.e. materials that are confined
to less than three-dimensions). A central long-standing problem in the field of
low-dimensional conductors is the metal-to-insulator transition (MIT). It was ob-
served in a wide variety of materials, that are conductive at high carrier densities
and insulating at low carrier densities (in the limit of 0 K). The existence and
the understanding of such a transition in two-dimensional materials is the focus
of many research centres and remains an open question.

The main focus of this work was on low-temperature magneto-transport ex-
periments on novel two-dimensional (2D) arsenic-doped silicon δ-layers, which
are proposed as a platform for silicon-based quantum technologies. The dop-
ing density was controlled to create a series of samples ranging from metallic to
almost insulating, allowing for studies of the two-dimensional MIT in a highly
disordered half-filling Hubbard model. Owing to the unprecedented thinness and
low density of our arsenic δ-layers, we had access to an unexplored regime of
strong electron-electron interaction in a highly disordered 2D electron liquid. We
showed that the enhanced interaction strength reduces the weak-localisation ef-
fects typically observed in doped silicon δ-layers, and causes the Zeeman effect
to become dominant in the low temperature magneto-transport. In light of these
effects, we developed a procedure to distinguish the two effects, and to extract
the relevant electron characteristics. Furthermore, we found that the low tem-
perature phase in dilute dopant layers is that of an inhomogeneous conductor.
This phase manifests anomalous transverse voltages Vxy with an even response
to the applied magnetic field, and hysteresis in the longitudinal and transverse
magneto-resistance. We argue that the inhomogeneous phase is characterised by
percolation of insulating and conducting regions that can be tuned by a magnetic
field, in which the current is forced into meandering conduction channels result-
ing in the observed anomalous transverse voltages Vxy. Moreover, we argue that
the electron localisation length, responsible for the conductivity’s temperature
dependence, is cut-off by inelastic scattering in the insulating regions causing
the conductivity to saturate at low temperatures; offering an explanation to the
general inability to thermalise disordered 2D electron layers at low temperatures.
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In order to confirm the structure of our samples we developed X-ray imaging
methods and showed that they are non-destructive. Specifically, we used X-ray
fluorescence to detect the position and element-species of the atoms in our sam-
ples, and verified with magneto-transport that the dopants’ position remained
unmoved within 0.2 Angstroms. To obtain the depth distribution and thickness
of the buried dopant atom layers in silicon, we showed that resonant X-ray reflec-
tometry measurement can be used for atom specific nanometer resolution depth
measurements.

The findings of this research should stimulate further investigation of dilute-
doping layers near the MIT in semiconductors to elucidate the exact mechanisms
driving the inhomogeneous phase and its associated anomalous Hall effect and
hysteresis.
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Résumé

En 1947, le premier transistor à effet de champ a été inventé. Depuis lors,
la miniaturisation de l’électronique a permis une croissance exponentielle de la
densité des transistors dans les circuits intégrés, connue sous le nom de la loi de
Moores. L’avènement et le perfectionnement du transistor peuvent être considérés
comme l’une des inventions les plus importantes, voir la plus importante, du siècle
dernier. Jusqu’à présent, les défis posés par la réduction de la taille des transistors
étaient principalement liés aux techniques de fabrication, plutôt qu’à la physique
fondamentale. Cependant, comme la taille des transistors industriels actuels se
rapproche de la limite atomique, avec des transistor à l’échelle de 5 nm, les effets
physiques quantiques deviennent dominants, rendant l’électronique convention-
nelle inadéquate. Il devient donc indispensable de comprendre et de tirer parti
des effets quantiques qui régissent l’électronique à l’échelle nanométrique. Cette
tâche considérable englobe une grande variété de directions de recherche, allant
du développement des technologies quantiques à la découverte et à la compréhen-
sion des effets quantiques dans les nouveaux matériaux de basse dimensionnalité
(c’est-à-dire des matériaux qui sont confinés à moins de trois dimensions). Un
problème central de longue date pour les conducteurs de basse dimensionnalité
est la transition métal-isolant (TMI). Elle a été observée dans une grande variété
de matériaux, qui sont conducteurs à des densités de porteurs de charge élevées
et isolants à de faibles densités de porteurs de charges (dans la limite de 0 K).
L’existence et la compréhension d’une telle transition dans les matériaux bidi-
mensionnels sont un sujet de recherche principal dans de nombreux centres et
restent une question ouverte.

L’objectif principal de ce travail est de réaliser des expériences de magnéto-
transport à basse température sur de nouvelles couches bidimensionnelles (2D)
de silicium dopé à l’arsenic, qui sont considérées comme une plateforme promet-
teuse pour les technologies quantiques dans les semi-conducteurs. La densité de
dopage a été contrôlée pour créer une série d’échantillons allant de métallique
à presque isolant, ce qui a permis d’étudier la TIM à deux dimensions dans un
modèle de Hubbard bidimensionnel à demi-remplissage et désordonné. Grâce à
la minceur et à la basse densité sans précédent de nos couches d’arsenic, nous
avons eu accès à un régime inexploré de forte interaction électron-électron dans
un liquide de Fermi 2D hautement désordonné. Nous avons montré que la force
d’interaction accrue réduit les effets de localisation faible typiquement observés
dans les couches de silicium dopées et que l’effet Zeeman devient dominant dans
le magnéto-transport à basse température. À la lumière de ces effets, nous avons
développé une procédure permettant de distinguer les deux effets et d’extraire
les caractéristiques électroniques pertinentes. En outre, nous avons découvert
que la phase à basse température associée aux couches de dopants à basse den-
sitée est celle d’un conducteur inhomogène. Cette phase manifeste des tensions
transversales Vxy anomales avec une réponse isotrope au champ magnétique ap-
pliqué, et une hystérèse dans la magnétorésistance longitudinale et transversale.
Nous soutenons que la phase inhomogène est celle d’une percolation de régions
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isolantes et conductrices qui peuvent être contrôlées par un champ magnétique,
dans laquelle le courant est forcé dans des canaux de conduction sinueux, ce qui
cause les tensions transversales Vxy anomales observées. De plus, nous soutenons
que la longueur de localisation des électrons, qui est responsable de la dépendance
de la conductivité vis-à-vis de la température, est limitée par les chocs inélastique
sur les régions isolantes, ce qui entraîne la saturation de la conductivité à basse
température. Cet effet explique l’incapacité générale à thermaliser les couches
électroniques 2D désordonnées à basse température.

Afin de confirmer les dimensions structurelles de nos échantillons, nous avons
développé des méthodes d’imagerie par rayons X et montré qu’elles sont non de-
structives. En particulier, nous avons utilisé la spectrométrie de fluorescence des
rayons X pour détecter la position et l’espèce chimique atomique des atomes dans
nos échantillons, et nous avons vérifié par magnéto-transport que la position des
dopants n’a pas bougé de plus que 0.2 Angström. Afin d’obtenir la distribution
et l’épaisseur des couches d’atomes de dopants dans le silicium, nous avons en
outre montré que la réflectométrie résonnante des rayons X peut être utilisée afin
de mesurer la distribution verticale d’une espèce chimique atomique choisit avec
une résolution nanométrique.

Les résultats de cette travail devraient stimuler la poursuite de la recherche sur
les couches à basse densité de dopage proche de la TIM dans les semi-conducteurs,
afin d’élucider les mécanismes exacts à l’origine de la phase inhomogène et de
l’effet Hall anomal et de l’hystérèse qui lui sont associés.
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1 Introduction

The main objective of this PhD thesis is to study two-dimensional dopants layers
in silicon and particularly to study the consequences of replacing the commonly
used phosphorus dopant by arsenic. Greater precision is obtained in the fabri-
cation of donor devices with arsenic, as explained in section 3, motivating the
project to use arsenic donors to define quantum devices in silicon. Additionally,
the two-dimensional arsenic layers used in this work are thinner than their phos-
phorus counterparts and more dilute than previously fabricated dopant layers in
silicon, motivating the study of the two-dimensional metal-to-insulator transition
in our arsenic layers. It is natural to start by fabricating and characterising two-
dimensional arsenic δ-doped layers in silicon and compare their low-temperature
electronic characteristics to phosphorus δ-layers. As a consequence of having ac-
cess to the thinner and more dilute dopant layers, we observed unexpected physics
near the MIT in an otherwise well-studied system.

The layout of this thesis is the following: we start with an introduction to the
physics of two-dimensional conductors, followed by an introduction to silicon δ-
doped samples in section 3, then by a section about X-ray imaging of the dopants
in our samples in section 4, and finally by a section about the magneto-transport
measurements of the electrons in the dopant layers in section 5.
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2 Physics of two-dimensional disordered conduc-
tors

2.1 Localisation in two-dimensional disordered conductors

In the classical Drude model, when an electric field is applied on a disordered
conductor, the electrons undergo diffusive motion. The assumption is that the
electrons do not interact with each other and are only deviated on scattering cen-
tres, resulting in a random walk. The mean distance between scattering centres
is noted as L and corresponds to the electron’s mean free path. In this picture
the mean displacement of the electrons under an electric field is given by the
normalised sum of all the possible electron trajectories and results in the well
know Drude formula for the conductivity:

σD =
ne2L

vm
(1)

Where n is the electron density, e is the electron charge, v is the velocity of the
electrons and m is the electron mass. The assumptions of the Drude model are
reasonable for Fermi gases at high temperatures. A Fermi gas is a system of
non-interacting fermions, as can be the case for high density electron gases where
interactions can be neglected due to the screening effect. The quantum physical
treatment of the diffusive motion of the electrons requires to sum the quantum
amplitudes of the electron paths rather than the probabilities. Because of the
wave-like nature of the electrons, all different possible paths interfere with each
other. In particular an electron’s trajectory that forms a closed loop, as shown
in figure 1, results in the constructive interference at the origin of the loop of the
two counter-propagating paths around the loop, if the system has time reversal
symmetry. Because the interference at the origin of a loop is constructive, the
probability to find the electron there is increased: the electron is said to be
localised. This localisation effect leads to a quantum correction to the classical
Drude formula. Exact calculation of all the interferences in the random walk is
not tractable making the localisation problem notoriously difficult.

In order for localisation effects to be visible two ingredients are necessary: the
number of looped trajectories within all the possible trajectories must be large
and the mean distance between inelastic scattering events Lϕ (Lϕ is the electron
coherence length) must be at least as long as the loops. The first ingredient is an
intrinsic property of the material, related to the disorder strength, however it can
be greatly enhanced by making the conductor two-dimensional, because it reduces
the number of possible trajectories but not the number of looped trajectories.
The second ingredient, the electron coherence length Lϕ, is strongly temperature
dependent and enhanced at very low temperatures. For these reasons weak-
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Figure 1: Electron localisation. Illustration of a single electron localisation in
the diffusive regime. The arrows indicate possible paths taken by the electron
and the dots are scattering centres. The red arrows show a clockwise looped
trajectory originating on the scattering centre in green, the blue arrows show
the same trajectory but with an anti-clockwise direction. Both path interfere
constructively resulting in an increased probability for the electron to be at the
green scattering centre.

localisation effects were first observed in the 70s in 2D conductive layers in silicon
MOSFETs [2, 3]. The two main visible signatures of localisation in a conductor
are the temperature dependence of the conductivity, through the temperature
dependence of Lϕ, and a strong response of the conductivity to magnetic fields.
The presence of a magnetic field perpendicular to the loops’s plane breaks the
time reversal symmetry necessary for the constructive interferences to arise, thus
delocalising the electrons. The exact description and mechanism governing the
localisation of electrons in 2D conductive layers depends on various parameters,
such as disorder strength, interaction strength, electron density, electron mobility
and spin-orbit coupling.

In 1958, for the first time, Anderson proposed the concept of localisation [4],
for which he later won the Nobel prize. He predicted that in the presence of strong
disorder, large potential barriers form, and non-interacting electrons that can only
tunnel between neighbouring local minima become completely localised, turning
a conductor into an insulator. The effect is known as Anderson localisation.
However, at non-zero temperatures, tunnelling between localised sites in a highly
disordered system can be assisted via thermally excited lattice phonons [5], such
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that the conductivity has a stretched exponential dependence on the temperature,
known as the variable range hoping regime.

In intermediate disorder systems, the electrons are usually said to be weakly
localised. Weak-localisation (WL) is considered to be the precursor to Anderson
localisation and does not result in a total halt of the electrons. In this case,
the interference effects are usually strong enough that they result in detectable
temperature and magnetic field dependences, but weak enough that they can be
described perturbatively as a quantum correction to the Drude model.

In 1980, Hikami, Larkin and Nagaoka (HLN) [6] derived the first success-
ful equation to describe the effect of temperature and magnetic fields on 2D
weakly localised electron systems. In their theory the effect of weak spin-orbit-
interactions and magnetic scattering by impurity spins are described in random
potential scattering in 2D, by the one-loop perturbation in kFL and the renor-
malisation group method (kF is the fermi wave-vector and L the mean free path).
The weak-localisation correction to the Drude conductivity calculated by HLN in
a magnetic field B⊥ perpendicular to the conduction layer and a temperature T
is

∆σWL(B⊥) =

(
e2

2π2ℏ

)[
ψ

(
1

2
+

ℏ
4eL2

ϕB⊥

)
− ψ

(
1

2
+

ℏ
2eL2B⊥

)
+ ln

(
2L2

ϕ

L2

)]
,

(2)
where ℏ is the reduced Planck constant, e the electron charge, ψ(x) is the
digamma function, and Lϕ is the coherence length. Lϕ is the only temperature
dependent parameter in the HLN model. If the main source of phase breaking
processes is inelastic electron-electron interactions, as is the case in phosphorus
δ-layers [7], it is expected to be a power law of the temperature, Lϕ ∝ Tα with α
= -0.5 [8].

The last term of the HLN equation (2) is field independent, and shows that
in weakly-localised systems the temperature dependence of the conductivity is
logarithmic. The HLN equation is accepted as being the correct physical de-
scription for many 2D systems, including 2D dopant δ-layers in silicon [9] and
germanium [10], silicon MOSFETs [11], and silicon quantum wells [12]. However,
it is only valid under the condition that kFL≪ 1, i.e., that the localisation is not
strong. Note that in 2D, kF =

√
2πn which is close to the inverse of the average

distance between donors dn = 1/
√
n, such that kFL is a measure of the ratio

between the electron mean free path and the mean distance between donors. If
dn < L the electrons will be strongly localised on the donors.

There are a number of proposed localisation types, depending on sample char-
acteristics. An example of a phase diagram for the 2D quantum wells in GaAs/
InxGa1−xAs/ GaAs structures from [13] is shown in figure 2, where the coherence
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Figure 2: Theoretical phase diagram of the 2D metallic phase. Phase
diagram for a 2D electron gas in GaAs/InxGa1-xAs/GaAs single quantum well
structures from [13]. The electrons can be weakly localised (WL), weakly interact-
ing (WI), or strongly localised (SL), depending on the dimensionless conductance
g0 = kFL, where kF is the Fermi wavevector and L the electron mean free path.
The lines show the coherence length Lϕ and the localisation length ξO and ξU of
the disordered Hamiltonian in the orthogonal and unitary symmetry respectively.

length Lϕ and the localisation length ξ (typical length of a looped trajectory)
were calculated. The dimensionless conductance g0 = kFL is tuning the type of
electron transport (with kF ∝ √

n the Fermi wavevector, and L the electron mean
free path). At low density (low g0), the length ξ is much smaller than Lϕ, such
that all loops interfere constructively, the electrons are strongly localised (SL) and
believed to be in the hopping regime. At high density (high g0), ξ is larger than
Lϕ, such that only the smaller than average loops can interfere constructively, the
electrons are in the weakly localised (WL) regime well described by HLN theory
and equation (2). At intermediate density the electrons are weakly interacting
(WI) and the transport is poorly understood. The example in figure 2 consid-
ers the quantum corrections to the conductivity due to electron self-interference
and the mutual effect of WL and Coulomb interactions, it neglects other effects
such as spin-orbit coupling and strong interactions that can be present in other
materials.
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Based on the HLN weak-localisation calculation, additional effects were taken
into account. Notably, in the presence of strong spin-orbit coupling, the effect of
closed loop trajectories can be reversed: as the electron travels around a loop, it
can undergo spin-orbit scattering events which will rotate the spin by the same
amount in the opposite direction for electrons traveling in opposite directions.
Thus, it can happen that at the origin of a loop the interference is negative, such
that the electron is delocalised, the effect is called weak-anti-localisation [6]. The
effect always comes in combination with conventional weak-localisation, because
only in large loops are there enough spin-orbit scattering events to create the
negative interference, while the smaller loops still interfere constructively. Weak-
anti-localisation can be observed as a small positive magneto-resistance in many
materials, such as InxGa1−xAs quantum wells [14], InAs quantum structures [15],
GaAs inversion layers [16], ultrathin topological insulators [17] and graphene
[18], however it has never been observed in phosphorus δ-layers in silicon or
germanium. In 2D layers, if the confinement potential is asymmetric, a net spin-
orbit interaction ensues. The effect is known as the Rashba effect, it also results in
weak-anti-localisation [19]. Similarly the lack of an inversion centre in the crystal
structure also leads to spin-orbit interactions, through the Dresselhaus effect [20].
The effect of spin-orbit interactions stemming from both the Rashba effect and the
Dresselhaus effect was taken into account by Iordanskii, Lyanda-Geller, and Pikus
(ILP), who developed a successful extension of the HLN model [21]. The ILP
model takes into account spin-orbit interactions through the spin-orbit length,
Lso, representing the mean length for the spin to relax, and is given by

∆σILP (B) =
e2

4π2ℏ

{
1

a0
+

2a0 + 1 +Hso/B

a1(a0 +Hso/B)− 2Hso/B

+ 2 ln

(
H0

B

)
+ ψ

(
1

2
+
Hϕ

B

)
+ 3C

−
inf∑
n=1

[
3

n
− 3a2n + 2an(Hso/B)− 1− 2(2n+ 1)(Hso/B)

[an +Hso/B]an−1an+1 − 2Hso/B[(2n+ 1)an − 1]

]}
, (3)

where an = n+ 1
2
+

Hϕ

B
+ Hso

B
and Hϕ, Hso, and H0 are the characteristic fields of

the coherence time, spin-orbit time, and the mean free time respectively. The ILP
model is used for example to describe the magneto-resistance of InSb quantum
wells [22], Oxide Interfaces [23], and silicon-germanium quantum wells [24].

The above mentioned HLN and ILP models are derived for weak electron-
electron interactions, and as such they are well suited to describe dense 2D
electron layers where electrons experience only a short-range screened Coulomb
interaction.
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2.2 Electron-electron interactions in two-dimensional con-
ductors

The addition of electron-electron interactions to the 2D localisation problem can
generally be described by the Hubbard model [25]. It is a general Hamiltonian
describing interacting particles in a lattice. The particles can hop in-between
lattice sites, experience Coulomb interaction on the sites, and if screening is weak
they can experience electron-electron interactions with all (or only the n nearest
neighbours) other electrons, as shown on figure 3. Thus, the Hamiltonian 4 has
a kinetic hopping term t, an on-site interaction term U , and an electron-electron
interaction term J . The inclusion of the interaction term J is considered as an
extension to the 2D Hubbard model. The Hubbard Hamiltonian is given by

Ĥ = −t
∑
i,σ

(
ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ

)
+ U

∑
i

n̂i↑n̂i↓ +
∑
i ̸=j

Jijn̂in̂j, (4)

where n̂i,σ = ĉ†i,σ ĉi,σ is the spin-density operator for a spin σ on the site i, and
n̂i = n̂i↑ + n̂i↓ is the density operator. For electrons U is the electron repulsion
and it is positive.

1

J

U t

t

Figure 3: 2D Hubbard model. Sketch from Wikipedia of the 2D Hubbard
model. Electrons on the same site experience Coulomb repulsion U , and need
an hopping energy t to tunnel to a neighbouring site. The interaction between
neighbouring electrons is J .

The Hubbard model is used to describe any system of particles in a periodic
potential. In the case that there is disorder, the hopping energy t will depend
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on the site, as the tunnelling barriers will differ in size. If the model is consid-
ered for dimensions greater than 1, it cannot be efficiently simulated numerically.
Many different calculation methods have been used and lead to contradicting
results [26]. However, calculations agree that there is a rich phase diagram asso-
ciated with the 2D Hubbard model, for example it can predict the Mott insulator
transition, where at low electron density, strong repulsion between electrons leads
to an insulating state [27, 28]. The Hubbard model is considered of particular
interest, because it is believed to describe the physics of high temperature super-
conductivity of cuprates. A proposed solution to calculate the properties of the
2D Hubbard model is to use quantum simulation, where the idea is to obtain the
phase diagram of a specific Hubbard Hamiltonian by precise engineering, con-
trol, and measurement of a 2D system. Such quantum simulation schemes are
currently pursued with trapped atoms [29] and with donors in silicon [30].

In 1982 Lee and Ramakrishnan calculated the first order of the dynamically
screened Coulomb interaction effect on the conductivity of a magnetic field cou-
pling to electron spins in 2D [31]. In the presence of a magnetic field B, the
spin-up and spin-down energy bands are split by gµBB by the Zeeman effect,
where g ≈ 2 is the g factor, µB is the Bohr magneton and B the magnetic
field. The energy gap reduces the interaction between electrons of opposite spins,
resulting in the change in conductivity calculated by Lee and Ramakrishnan:

∆σZ(h) = −e
2

ℏ
F

4π2
ln

(
h

1.3

)
, for h≫ 1

∆σZ(h) = −e
2

ℏ
F

4π2
0.084h2, for h≪ 1

(5)

where h = gµBB
kBT

is the reduced field and F is a constant between 0 and 1.
The constant F is the averaged Coulomb interaction, which gives the strength
of the Zeeman effect, as such it is large when the electron density and screen-
ing are low. The calculated effect scales as ln(B/T ), meaning that it becomes
strong for low temperatures. Such scaling with the reduced field h ∝ B/T of
the magneto-conductance was seen in In-Ga-Zn oxide films [32], at surface of
hydrogen-terminated diamond [33], and in high-mobility silicon MOSFETs [34],
for a magnetic field parallel to the 2D layer. The Zeeman effect is isotropic in field
in the limit that spin-orbit interaction is weak. Nonetheless, it is mostly observed
in planar fields, because in perpendicular fields it tends to be dominated by the
effect of localisation breaking.

Electron-electron interactions also lead to a logarithmic temperature depen-
dent correction to the Drude conductivity in the absence of magnetic field [35],
similarly to the weak localisation effect. In most systems with electron-electron
interactions, the correction to the conductivity is due to both the interaction
and the weak localisation effects, such that the temperature dependence in the

9



absence of magnetic field is given by [13]

δσ0 =
e2

2π2ℏ
ln
τ

τϕ
+

e2

2π2ℏ
κee lnT, (6)

where τ is the mean free time, τϕ the coherence time, and κee = 1 − F/2 is the
electron-electron interaction strength. The first term in equation (6) comes from
the magnetic field independent term in the HLN weak-localisation correction in
equation (2), and the second term is due to the electron-electron interactions.
Both terms give a logarithmic temperature dependence of the conductivity. In
the case that the coherence time has the temperature dependence T−1 as is the
case in silicon δ-layers [36], equation (6) takes the from δσ0 = G0(1 + κee) lnT ,
such that it is straightforward to extract the interaction parameter F from the
conductivity’s temperature dependence.

In addition, the interaction effect leads to a changed Hall factor [35,37],

δRH/RH = 2δRee/R, (7)

where δRH and δRee are the change in the Hall factor and the longitudinal re-
sistance from the high temperature value before localisation effects become im-
portant. In this case, δRee only includes the interaction part proportional to κee
of equation (6) and excludes the weak-localisation contribution. This effect was
first observed in silicon inversion layers [38].

2.3 Two-dimensional metal-to-insulator transition

In 1979, Abrahams, Anderson, Licciardello, and Ramakrishnan, theoretically pre-
dicted that in the absence of electron-electron interactions, all two-dimensional
systems with any amount of disorder necessarily had to be insulating because of
localisation effects [39], i.e., the resistivity of all 2D systems becomes infinitely
large as the temperature goes to 0 K. This was commonly accepted until the mid
90s, when novel 2D systems were discovered that had a resistance that diminished
with decreasing temperatures [40]. The systems were ultrahigh-mobility MOS-
FETs, with mobilities up 7.1×104 cm2/Vs. Figure 4 shows the first evidence of
a metallic phase in a 2D system, where the main plot is the scaled temperature
dependence of the sample’s resistivity, with the scaling parameter T0 plotted in
the inset. Such a scaling behaviour was argued to be indicative of a phase tran-
sition, in agreement with the zero field mobility edge predicted by Azbel [41]. In
their work [40], samples with higher disorder (and lower mobility) never became
conductive, already indicating the important role of order in the MIT. Since then
it was found that 2D systems with strong correlations between carriers tend to be
metallic when the free carrier density is high enough. These systems all exhibit a
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similar metal-to-insulator transition (MIT) behaviour from high density metal to
low density insulator. The MIT is observed in a wide range of materials, includ-
ing graphene [42], Van der Walls heterostructures [43], SiGe heterostructures [44],
GaAs/AlGaAs heterostructures [45], AlAs heterostructures [46], ZnO-related het-
erostructures [47], WTe2 monolayers [48] and more. However the mechanisms that
drive the transition and the respective phases remain poorly understood.

Figure 4: First observation of the 2D MIT. Data from [40] showing the
2D MIT in silicon MOSFET devices. The plot shows the temperature depen-
dence of the resistivity in the absence of a magnetic field. For densities above
0.89×1011 cm−2 the samples are conducting. The resistivity for all densities scales
as T/T0 with T0 shown in the inset.

In silicon there are multiple ways of creating 2D electron gases. Two systems
that have been extensively studied are silicon MOSFETs and silicon quantum
wells. In these systems many parameters are different, while the electron con-
finement is typically of the order of 10 nm in quantum wells and in MOSFETs,
the disorder is lower and the electron mobility can be 100 times larger in quan-
tum wells. Nonetheless, the MIT is observed under similar interaction parameter
strength rs ≈ 20, defined as the ratio of the Coulomb energy and the Fermi energy
(rs = gv/(πns)

1/2aB, where ns is the electron density, aB the effective Bohr radius
and gv the valley degeneracy) [49]. The critical electron density nc at which the
system stops being metallic can differ by orders of magnitude depending on the
system.

The critical density nc associated with the MIT in a material can be increased
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by applying an external magnetic field. A typical example of the effect of a
magnetic field is shown in figure 5, where measurements of the temperature de-
pendence of the resistivity for the same ultralow-disorder SiGe/Si/SiGe quantum
well are shown in the absence of a magnetic field (5a), and in the presence of
a spin polarising planar magnetic field B∗ (5b). In this example the disorder is
very low and the change in conductivity between the insulator and conductor is
more than six orders of magnitude. Polarising the electron spin with a field B∗

shifts the critical transition density from nc(B=0) = 0.88×1010 cm−2 to nc(B∗)
= 1.11×1010 cm−2. It is argued that spins in a single-valley 2D system should
become insulating when fully polarised by an external field, because the metallic
phase is linked to the spin and valley degrees of freedom of the electrons [50,51]. In
2D silicon the electron energy spectrum has two degenerate valleys, such that the
metallic state can exist for spinless electrons as is shown in figure 5b. However, if
disorder is strong, strong inter-valley scattering results in an effective single valley
at low temperatures. The effect of such inter-valley scattering can be seen in Si
MOSFETs, where disorder is higher than in ultra-clean SiGe/Si/SiGe quantum
well and polarising the electrons always results in an insulating state [52].

To determine the critical transition density nc different criteria exist. The most
directly visible criterion is to define nc to be the density at which the derivative
of the resistivity’s temperature dependence dρ/dT changes sign. However the
temperature derivative criterion can be ill defined because of non-monotonic de-
pendences near the MIT, as is visible in figure 5a, and it can be argued that it is
not certain that the dependence would remain monotonic to the limit of 0 K.

Alternatively, nc can be determined by looking at the non-linear I-V character-
istics on the insulating side of the transition: in the insulating phase a sufficiently
high voltage allows electrons at the Fermi level to reach the mobility edge, result-
ing in the breakdown of the insulating phase, as is visible in figure 6 in the top
inset. The breakdown threshold voltage Vth becomes smaller when the sample is
less insulating and extrapolates to zero at nc, as seen in the plotted red dots in
figure 6. This criterion is temperature independent such that the value obtained
for nc should be valid at 0 K.

On the insulating side of the transition, the resistivity of ultra-clean quantum
wells has an activated form, evidenced in an 1/T Arrhenius plot in the bottom
inset of figure 6, in which the offset corresponds to the activation energy ∆. The
activation energy has an electron density dependence shown on the main plot of
figure 6, where the blue data are the activation energy ∆ as a function of the
density. At nc ∆ becomes zero, naturally leading to the metallic phase. Both
criteria shown in figure 6 lead to the same critical density nc and agree with the
derivative criterion in the absence of magnetic field. This has been observed in
ultra-clean SiGe/Si/SiGe quantum well and in more disordered silicon MOSFETs
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(a) (b)

Figure 5: MIT in ultra-low disorder electron layers. Temperature de-
pendence of the resistivity of an ultra-low disorder SiGe/Si/SiGe quantum well
from [53]. Each curve is at a different electron density ns marked on the right.
The coloured region indicates the region at the MIT where the temperature de-
pendence is non-monotonic. The data in (a) is taken with no magnetic field and
the inset is a close up of the curve at ns = 3.01× 1010 cm−2, showing a resistivity
drop of a factor 12. The critical density is nc(B=0) = 0.88×1010 cm−2. The data
in (b) is taken with a field B∗ sufficiently strong to polarise the electron spins
and the insets is a close up of the curve at ns = 2.09 × 1010 cm−2, showing a
resistivity drop of a factor 2. The critical density is nc(B∗) = 1.11×1010 cm−2.

[52]. However in the case that the electrons in a silicon MOSFET are polarised by
a magnetic field, the activation energy and the breakdown voltage give the same
nc and associated MIT, while the derivative criterion determines all densities to
be insulating. Because of this discrepancy it is not clear whether 2D metals exist
for spinless electrons in a single valley (high disorder). In dopant δ-layers in
silicon, disorder is much larger and the derivative criterion always determines the
samples to be insulating, and no activation energy can be determined because
the weak-localisation effect gives a logarithmic temperature dependence to the
resistivity. However, in sufficiently dense silicon δ-layers the I-V characteristics
are found to be linear, an observation which is taken as an indication of the
metallic phase.

There are good explanations for the temperature dependences of the metallic
phase of various systems, depending on their disorder strength. The metallic be-
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Figure 6: Activation energy and non-linear I-V density dependence in an
ultra-clean electron layer. Data from the ultra-clean SiGe/Si/SiGe quantum
wells in [49]. Determination of the critical density nc by two methods. The red
circles in the main panel are the threshold voltage Vth (shown in the top inset) as
a function of density. The blue squares are the activation energy ∆ as a function
of the density, obtained from Arrhenius plots of the temperature dependence of
the resistivity shown in the bottom inset. The extrapolation to zero activation
energy and threshold voltage give nc.

haviour in the clean systems can be described by coherent scattering of ballistic
electrons by Friedel oscillations [54], while in the disordered systems the diffusive
electrons are analysed by an interplay of strong interaction and disorder [50].
In both cases a spin-polarising magnetic field diminishes the interaction effect,
resulting in an increased localisation and in a giant positive magneto-resistance.
However there is no consensus on the MIT itself and whether it is driven by
the same mechanism for clean and disordered systems [55]. There is a density
range for which the phase is not well defined. It is shown for the ultra-clean
case on figure 5 (coloured area): at high densities the sample is metallic and the
resistivity drops monotonically with lowering temperature (a factor 12 drop for
the highest density is seen in the inset), at low densities the sample is insulating
and the resistivity increases monotonically, at intermediate densities the tem-
perature dependence of the resistivity is non-monotonic indicating an ill defined
phase in the MIT. In ultra-clean samples, it has recently been suggested that the
cross-over phase is a quantum Wigner crystal [49], i.e., the interaction between
electrons forms a periodic crystal-like structure. However, such a Wigner crystal
is not possible for high disorder systems and a number of hypotheses exist such
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as Efros–Shklovskii variable range hopping [56], strong localisation crossover [57],
or percolation [58].

Another problem that lacks an adequate explanation is the saturation of the
conductivity at low temperatures. In most cases, there is an apparent "freezing"
of the conduction parameters at hundreds of milli-kelvin temperatures [12,59–63].
The simplest explanation for the saturation would be that the system is not
thermalising below the saturation temperature, i.e., its temperature is not the
same as measured on a nearby thermometer. However, if the systems are believed
to be well thermalised, then there is no consensus on the physical effect leading
to a conductivity saturation [64].

In order to understand the 2D MIT, extensive calculation of Hubbard models
has been undertaken, with results highlighting the wealth of possible 2D phases
around the transition.

2.4 Phase diagram at the 2D metal-to-insulator transition

In very low disorder 2D systems, it is likely that the insulating phase near the
MIT is that of a lightly pinned electron crystal. In the case of the ultra-clean
SiGe/Si/SiGe quantum wells from [49], the depinning of a Wigner crystal is de-
duced from the observation of two threshold voltages Vth1 and Vth2 in the V-I
characteristics, visible in figure 7. Initially, a small voltage has no effect, the state
is an insulator, then at the voltage Vth1 the electron crystal starts unpinning
at some pinning centres, resulting in a small noisy thermally activated current
I ∝ exp(−U(V )/kBT ), where U(V ) is the activation energy . At a higher voltage
Vth2, all pinning centres of the crystal unpin, the crystal moves with friction and
the current is a linear function of the voltage. Thus, the insulating phase near
the MIT might be a Wigner crystal for ultra-clean systems. For systems with
higher disorder an electron crystal would not be able to unpin, leaving the ques-
tion of whether near the MIT there are different phases depending on disorder
strength, or if another explanation is needed. Systems with only electronic repul-
sion might experience the Mott-Hubbard MIT, while disordered noninteracting
systems might have a MIT driven by Anderson localisation, the phases related to
both types of systems would most likely be different. While the Mott-Hubbard
MIT is caused by electronic repulsion, the Anderson MIT is due to coherent
backscattering of noninteracting particles from randomly distributed impurities.

The phase diagram at the MIT is considered to entail many quantum phases.
Figure 8a shows a sketch of a proposed density-disorder phase diagram [65]. At
very high disorder, electrons are strongly localised (Anderson localisation) such
that the system is always an insulator. For low disorder, at high interaction
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Figure 7: Unpinning of a Wigner crystal in an ultra-clean 2D electron
layer. Data from the ultra-clean SiGe/Si/SiGe quantum wells in [49]. V-I char-
acteristics in the insulating phase. Two threshold voltages are visible Vth1 when a
current appears and Vth2 when the response becomes linear. The top inset shows
a close up of a V-I curve. The bottom inset shows the density dependence of the
activation energy.

strength rs ≈ 35 (low density) a Wigner crystal can be expected, as already pre-
dicted in 1989 for two-dimensional electron gases by Monte Carlo simulations [66].
At slightly lower rs the electrons can form a strongly correlated ferromagnetic
Fermi liquid (FFL) [67], before reaching a paramagnetic Fermi liquid phase at
high densities (low rs).

The phases of a 2D electron system are influenced by the temperature and
external magnetic fields. Figure 8b shows the phase diagram in the density ns

and temperature T or magnetic field B plane for Si-MOSFETs [68]. The phase
diagram is derived from measuring low-frequency resistance noise as a function
of density, field, and temperature [69]. The measurements show that the electron
dynamics is suddenly slowed down upon heating the electrons or polarising the
electron spins with a planar magnetic field. The change happens at densities ng

slightly above the critical MIT density nc, indicating an intermediate metallic
glass phase or amorphous metal (yellow region in figure 8b) between the metallic
(white region) and insulating (yellow region) phase. The width of the density
interval in which the metallic glass phase exists is dependent on the disorder:
in strongly disordered samples the density range can be large such that (ng −
nc)/nc ≈ 0.5 [70], while in clean samples it can be as low as (ng − nc)/nc ≈ 0.01
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Figure 8: Examples of proposed MIT phase diagrams. (a) Schematic
disorder-vs-density phase diagram from [65] showing an Anderson insulator at
high disorder, Wigner crystal (WC), ferromagnetic Fermi liquid (FFL) and para-
magnetic Fermi liquid at lower disorder. The high-disorder region is shaded.
(b) Density ns-temperature T - magnetic field B phase diagram in Si-MOSFETs
from [68]. The blue square are the measured boundary between the metallic
(white region) and amorphous (yellow region) phase, the red dots and black tri-
angles are the measured boundary between the amorphous and insulating (blue
region) phase.

[71]. An important observation is that the amorphous metal is present in high and
low magnetic fields, indicating that it is not due to the spins which are polarised,
but to the electron-electron interactions.

Of particular interest to this work is the half-filled Hubbard model, because it
describes the physics of group V substitutional dopants in silicon. As mentioned
earlier, the model is intractable and different techniques to calculate the phase
diagrams of the Hamiltonian lead to different and sometimes contradicting results
[26]. The results of a dynamical mean-field theory calculation using geometrically
averaged typical local density of states [72] are shown in figure 9a, in a U − ∆

phase diagram, where U is the on-site interaction strength and ∆ is a measure
of the disorder strength. The calculations show a rich phase diagram. At low
disorder ∆ there is a transition from a metallic state to an interaction driven
Mott insulator state (Mott-Hubbard MIT). The transition happens at a different
U depending whether it is approached from the metallic side (circles in figure 9a)
or from the insulating side (full dots): it is hysteretic and entails a coexistence
regime. For large interactions U (low densities), increasing the disorder ∆ changes
continuously the Mott insulator into a strong disorder driven Anderson insulator,
while for low interactions U the metallic state becomes strongly localised by
increasing the disorder ∆ (Anderson MIT). At intermediate interaction strength
U and disorder ∆, the transition is less clear, in particular there can be a crossover
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Figure 9: 2D half-filled Hubbard models phase diagrams. (a) Phase di-
agram from [72], calculated for a 2D half-filled Hubbard model with disorder
strength ∆ and interaction strength U . Squares indicate the Anderson MIT
and circles indicate the Mott-Hubbard MIT for U increasing (open circles) and
decreasing (full circles). (b) Thermodynamic phase diagram of the ordered 2D
half-filled Hubbard model from [73]. Lines with full triangles mark the spin-
odal lines Uc1 and Uc2, indicating the boundary of the insulating and metallic
phase, respectively. The dotted line with crosses indicates the thermodynamic
transition. The coexistence disappears at the Mott endpoint (full circle). The
dashed line with open circles marks the Widom line, at which the phase changes
continuously.

regime from metallic to insulating upon increasing U .

A study from 2019 derived the temperature interaction strength T − U phase
diagram for the half-filled 2D Hubbard model in the absence of disorder [73], based
on thermodynamic calculations of the charge compressibility, entropy S, kinetic
energy, potential energy, and free energy. The resulting phase diagram is shown
in figure 9b. It qualitatively agrees with the phase diagram on figure 9a, in that a
Mott-Hubbard MIT is predicted (though at a very different U). Close to the MIT
the entropy of the metallic phase is found to be higher than that of the insulating
phase, because in the Mott insulator there is less double occupancy of lattice
sites. A higher entropy S results in a lower energy and thus a favourable state, as
can be seen from the Helmholtz free energy F = U −TS (where U is the internal
energy). At low temperatures, the difference in entropy results in the hysteretic
behaviour visible in figure 9b, where the downwards pointing triangle indicate
the transition Uc1 coming from high U and the upwards pointing triangles the
transition Uc2 coming from low U . The hysteresis shows that it is a first-order
transition, with an increasingly small coexistence region as the temperature is
increased. In fact, at high temperatures the entropy of both systems becomes
dominated by thermal fluctuation rather than interaction effects. At a critical
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temperature Tc there is an interaction strength Uc termed critical Mott endpoint
(full circle), where the transition (triangles) becomes a crossover (open circles)
following the Widom line (line of maximum correlation length starting at the
Mott endpoint).

Altogether it can be said that, despite intense research and progress since the
50s, the 2D Hubbard model and the MIT in 2D materials remains one of the
important questions of modern condensed matter physics. Progress in the field
is made excruciatingly slow by the wealth of possible physical effects, the inabil-
ity to perform their exact calculation, and the experimental difficulties linked to
measuring 2D systems at extremely low temperatures: most studies are based on
non-local conductivity measurements in electric and magnetic fields, giving a lim-
ited amount of information on the exact nature of the phases. In order to speed up
the research on 2D materials, it will be important to create and utilise new exper-
imental techniques, such as for example low temperature microwave-impedance
microscopy (MIM) [74], and to develop quantum computing and simulation to
solve the 2D Hubbard models. The motivations for tackling these difficult chal-
lenges go beyond curiosity for fundamental physics; the foreseen applications
range from faster, more energy-efficient memory [75, 76], and computing [77], to
enhanced sensitivity in sensing [78].

2D system L [nm] Lϕ [nm] ns×1014 [cm−2] d [nm] rs
Current work 3 70 0.12-1.9 0.4-1.5 0.8-3

Ge:P δ-layers [36] 20 400 0.3-1.4 1.49 0.2-0.6
Si MOSFET [11] 48 252 0.4-0.8×10−4 10 10-20
QW 2DHG [65] 26 61 0.4-3.8×10−4 0.5 10-20
Graphene [79] 50 900 0.005 0.5-1 ∼ 6-30

Table 1: Characteristics of various 2D electron gases. The systems in bold
are half-filled. L is the mean free path, Lϕ is the coherence length, ns is the
2D sheet electron density, d is the electron layer thickness and rs the interaction
strength.

Here, we study the 2D MIT in arsenic-doped δ-layers (described in more details
in section 3). Table 1 shows examples of typical parameters of 2D electron gases
exhibiting the MIT. As can be seen in the table, our arsenic doped δ-layers have
very different characteristics to other 2D systems, specifically they are highly
disordered half-filled 2D systems with a large interaction parameter rs. Note
that systems with larger rs have low disorder, are not half-filled, and have been
extensively studied. The variation of the interaction parameter rs in single layer
graphene comes from the uncertainty on the Bohr radius which can vary from
0.5 nm to 2.5 nm depending on the substrate [80]. The δ-layers in germanium have
similar characteristics to our δ-layers in silicon and are also half-filled, however
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their interaction parameter is three times lower because the Bohr radius of the
donor electrons is three times lagrer in germanium than in silicon. Thus, the
samples used in this work represent a unique opportunity to investigate the MIT
in a highly disordered, dilute, and thin 2D system with relatively strong electron-
electron interactions.
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3 Silicon δ-doped samples

The scope of this thesis is to investigate the physics of 2D group V δ-doped
silicon, with a view towards quantum computing and low-dimensional electronics,
by means of low-temperature magneto-transport experiments and X-ray imaging
techniques. The research project is made particularly relevant by the fact that
the samples are unique in three ways: it is the first time that arsenic δ-layers are
studied electrically, the doping layer thicknesses have unprecedented thinness,
and layers with unprecedented low densities are fabricated. The lower densities
cause electron-electron interactions to be stronger, resulting in the observation
of non-conventional effects in silicon, namely an anomalous transverse voltage,
hysteresis, and inhomogeneous conduction.

3.1 Fabrication

The samples used for this work on the 2D MIT are fabricated at the London
Centre for Nanotechnology (LCN), at University College London (UCL), by the
groups led by Prof. Neil Curson and Prof. Steven Schofield. The samples are fab-
ricated by gas-phase dosing of hydrogen passivated silicon, much like phosphorus
δ-layers are fabricated [81,82]. The fabrication process is illustrated in figure 10.

Figure 10: Schematic illustration of arsenic δ-layer fabrication. From left
to right: flash annealing leaves the surface atomically flat, (1) AsH3 gas forms a
monolayer on the silicon surface, (2) annealing at 350 ◦C lets the arsenic migrate
into the silicon, (3) epitaxial silicon is grown in the surface, (4) the final result is
a 2D layer of dopants buried under the silicon. These schematics were made by
Procopios Constantinou.

For the fabrication process, Si(001) wafers with a bulk arsenic doping density
of 3×1014 cm−3 (resistivity >15 Ω cm) are used. After ultrasonically cleaning the
samples, they are set in ultra-high vacuum and let to degas at 600 ◦C. The light
background doping enables the passage of a current for flash annealing at 1200 ◦C
by Joule heating. The purpose of the flash annealing in vacuum is to remove any
surface contamination and let the silicon arrange in an atomically flat surface,
as is illustrated in figure 10 on the leftmost panel. The subsequent step is to
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Figure 11: Arsenic Hall bar samples. (a) STM height map of the sample’s
surface after arsenic incorporation, for an arsenic density n=1×1013 cm2. The
bright dots are silicon atoms ejected to the surface by arsenic atoms penetrating
into the silicon. The image was taken by Procopios Constantinou. (b) Schematic
of the Hall-bar dimensions. The orange represents the doped region. There are 8
contacts.

expose the clean silicon surface to AsH3 gas. The gas forms a monolayer on the
surface, as visible in figure 10 in image (1), and heating at 350 ◦C for 2 minutes
makes the arsenic diffuse into the silicon (figure 10, image (2)). The amount of
arsenic in the sample is controlled by choosing the total dose of AsH3 gas. The
incorporation of an arsenic atoms leads to the ejection to the surface of a silicon
atom, such that, at this stage, a scanning tunnelling microscope (STM) can be
used to estimate the amount of arsenic incorporated into the silicon. Figure 11a)
shows an example of an STM height map, where the bright dots are dimers of
silicon that were ejected to the surface. The number of dimers on the surface
gives the incorporated arsenic density. Thereafter, 2 nm of silicon are deposited
on the surface without heating. The function of these 2 nm of silicon, called
locking-layer, is to avoid unwanted arsenic diffusion in the next annealing steps.
The arsenic atoms initially find themselves in interstitial positions, where their
donor electron does not contribute to the conduction band, they are not active.
To activate the donors the sample is heated to 500 ◦C for 15 seconds, so that
the atoms can move to find their energetically-favourable substitutional position,
where they are active [82,83]. Thanks to the locking-layer excessive spreading of
the atoms towards the surface is avoided. Finally, epitaxial silicon overgrowth at
250 ◦C is used to obtain the buried active 2D layer of dopants in silicon (figure 10,
image (3) and (4)).
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For the magneto-conductance experiments, the fabricated samples were etched
into Hall bars using optical lithography and reactive ion etching. The dimensions
of the Hall-bars are shown in figure 11b, where the orange represents the arsenic-
doped region. The Hall bars are 200 by 20 µm2. Ohmic contacts were established
by deposition of aluminium or palladium into arrays of etched holes extending
through the δ-layer [84]. Each global δ-layer was etched into two identical Hall-
bars, and a region was left unetched to be used for secondary ion mass spec-
troscopy (SIMS) measurements. Each Hall-bar was mounted on a chip carrier,
and electrically connected to the carrier by aluminium wire bonds.

The change from phosphorus to arsenic dopants does not alter the fabrication
procedure, except that the diffusion during steps 2 and 3 in figure 10 is reduced,
because of the larger size and mass of arsenic compared to phosphorus, result-
ing in better-confined dopant layers. In bulk-doped silicon the electrons occupy
one energy level scattered across the six degenerate silicon valleys. Vertical con-
finement of the dopants in δ-doped silicon causes the valleys to split into two
types of multiply quantised sub-bands: the valleys in the kx and ky directions,
and second with the two valleys in the kz direction, where the electrons in sam-
ples with higher P or As densities occupy the 1Γ and 2Γ states, as shown by
angle-resolved photon-emission spectroscopy in section 5.2.1. Thus the electron
in thinner δ-layers have three distinct "flavours", with distinct effective masses.

3.2 Physical characteristics and dimensionality

The 2D electron gases created by sharp group V dopant layers have the particular-
ity that the number of free electrons is simply given be the number of substitional
donors, as each donor gives one electron to the conduction band. This is in con-
trast to many 2D electron layers, that are formed in inversion layers or trapping
potential, where the number of free electrons usually depends on some gating
potential.

Each donor electron is initially bound to its dopant atom. Figure 12 shows
a sketch of the situation in a perfectly ordered 1D chain of donors in silicon:
from top to bottom the dopant density is increased, with each arsenic atom
being represented by an orange dot and the 1s orbital of its outermost electron
is represented by the black circle. A sketch of the trapping potential v(r) across
the 1D chain is show in black for each density. The extent of the 1s orbital is
2.125 nm for a single arsenic donors in silicon [85], and the distance d between
donors in a 2D layer is given by the inverse of the square root of the density
(d2D =

√
n−1). In the top sketch, the dopant density is low, there is no overlap of

the electron orbitals and no conduction band is formed, such that each electron
is bound to the arsenic atom. In this case conduction could only happen by
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Figure 12: Ordered donor chain. Sketch of the arsenic donors (orange dots)
and their outer electrons’ 1s orbitals in silicon, for two different densities of an
ordered 1D chain. v(r) is the potential along the 1D chain.

thermally assisted hopping or tunnelling from one site to the other through the
large potential barriers: the layer is an insulator. In the middle sketch, the
density is large enough for a continuous conduction band to form, however, the
electrons are still more likely to be found near the dopant atom, and the hopping
energy t required for an electron to move from one site to another is such that
upon cooling the electrons might become strongly bound to the dopants and the
layer will become insulating. In the bottom sketch, the density is very high,
such that the conduction band has only very small potential barriers between
sites, allowing the electrons to move almost freely from a donor to another: the
layer is metallic. An important point to this simplified image of the conduction
in a dopant layer is that the electrons are always more likely to be found near
the dopant trapping potential, and there are always two important parameters
to describe the electron inter-site motion: the hopping energy t that depends
on the potential barrier between dopant atoms, and the Coulomb repulsion U

experienced when two electrons are on the same dopant. In essence, the electrons
in an ordered 2D array of group V donors in silicon realise a perfect simulation of
a 2D Hubbard model, given by the Hamiltonian (4), and illustrated in figure 3.
Each donor contributes one electron and can host a maximum of two electrons,
because of Pauli’s exclusion principle, hence the Hubbard model is exactly half-
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Figure 13: Disorder in a 2D donor layer. Sketch of the arsenic donors’
electrons 1s orbitals in silicon for two different disorder strength of a 2D donor
array with a fixed density. v(r) is the potential along the sample.

filled. Note that in this simple picture the density required for the 1s orbitals to
overlap is n ≈ 2.2×1013 cm−2, very close to the critical density nc = 1×1013 cm−2

calculated by Hwang and Das Sarma [86] for phosphorus donors.

In silicon δ-layers there is a large amount of disorder, because of the random
nature of doping by exposure to a precursor gas (illustrated in figure 10). The
effect of disorder is illustrated for two chains of 1D arsenic atoms in figure 13,
where the effect of increasing disorder at a fixed density is shown from top to bot-
tom. The top sketch shows an ordered insulator, in which the electron orbital do
not overlap. The bottom sketch shows the situation where, for the same density,
disorder creates conducting islands separated by potential barriers. Depending
on the exact configuration of the disorder, the conductivity might be increased,
because fewer tunnelling events are required for an electron to move across the
sample. The Hamiltonian associated to such a disordered system will still be a
Hubbard Hamiltonian, similar to equation (4), but now the hopping energy t is
different between each site, making the simulation of such a system even more
challenging. In the case of very strong disorder, the electrons are not able to hop
from an island to another, they are in the strong Anderson localisation regime.
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Figure 14: Arsenic donors in a quasi-2D layer. Representation of the arsenic
atoms in the silicon with disorder in the plane and perpendicularly to the plane.

Currently it is not possible to fabricate dopant layers in silicon that are re-
stricted to a single crystal plane, because of the diffusion of the dopant atoms
during the necessary annealing steps shown in figure 10. The thinnest arsenic
δ-layer measured to date has a thickness equivalent to three crystal planes, i.e.,
∼0.4 nm. The result is that there is both disorder in the δ-layer’s plane and in
the vertical plane, as illustrated in figure 14. The vertical disorder results in a
finite thickness of the layer, and a reduction of the effective density. If the vertical
spread of the dopants is larger than the electron orbitals, the layer starts to be
3D or quasi-2D instead of 2D, and the mean distance between donors becomes
larger (d3D = n

−1/3
3D instead of d2D = n

−1/2
2D ). For arsenic and phosphorus donors

in silicon, this limit is at the 1s orbital extent of ≈ 2 nm. The δ-layer samples
studied here have a thickness lower than 1 nm, making them 2D materials on the
scale of the electron orbitals.

3.3 Localisation in phosphorus δ-doped samples

Phosphorus δ-layers have been the subject of many low temperature magneto-
transport studies. While in 2018 their thickness determined by magneto-resistance
was around 10 nm [59], in 2020 it was already as small as 1.3 nm [87]. In this
work, the thinnest phosphorus δ-layer was 1.3 nm thick, and the thinnest arsenic
δ-layer was considerably thinner at 0.4 nm, corresponding to the thickness of only
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three Si(100) crystal planes.

There is a general agreement that the low-temperature conductivity of phos-
phorus δ-layers with a doping density close to the MIT is dominated by the elec-
trons’ weak localisation, as is highlighted by the conductivity being a logarithmic
function of the temperature (equation (6)), and the positive magneto-conductance
being well fitted to the usual weak-localisation equations (13) [59, 87, 88]. It has
to be pointed out that as the δ-layers become thinner and less dense, the weak-
localisation fits become less good, and often a free global pre-factor to the whole
equation (13) has to be used to obtain satisfying fits [36]. In addition, for thin
and dilute layers, the magneto-conductance for planar magnetic fields has a neg-
ative part to it [36,88] that cannot be described by weak-localisation, and is due
to the Zeeman effect, as we show in section 5.2.2.

The electron mean free path L and coherence length Lϕ are typically of the
order 10 nm and 100 nm, respectively, implying that in terms of the observed lo-
calisation effects the samples can be considered 2D already at 10 nm. The exact
values of L and Lϕ depend on the sample’s electron density and disorder (and
temperature for Lϕ). Reducing the density has been shown to reduce the mean
free path L and the coherence length Lϕ, as might be qualitatively expected if a
larger number of strong potential barriers forms (as illustrated in figure 12 and 13)
from which the electrons undergo inelastic scattering. The result of reducing the
two characteristic lengths is to reduce the strength of the weak-localisation (equa-
tion (13)). Note that the weak-localisation equations are derived as an expansion
in small (kFL)−1, where in 2D kF =

√
2πn, such that for very low densities they

might not be valid [89, 90]. At low densities, not only the dominant localisation
effect is diminished, but also the Coulomb interaction screening. Therefore, it
is to be expected that the electron diffusion gradually becomes dominated by
electron-electron interaction effects and might crossover to a different regime.

The change in conductance as a function of temperature in phosphorus δ-
layers is a logarithmic function, as mentioned earlier. As a result of the electron
coherence length Lϕ increasing with lowering temperature, the localisation be-
comes stronger, and the conductance lower. In terms of the derivative criterion
dρ/dT from section 2.3, the phosphorus δ-layers would be considered as insulat-
ing. However, they are considered to be metallic as they have a density above the
critical density calculated without taking the localisation effects into account [86],
and because they have linear (Ohmic) I-V characteristics. Finally, it is notewor-
thy that in all dopant δ-layers the conductivity saturates at temperatures lower
than ∼500 mK [59, 91], and such a saturating behaviour is observed in many
other materials [12, 59–63]. So far this observed conductivity saturation remains
unexplained [64].
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Altogether, based on previous studies of phosphorus δ-layers in silicon, we
can expect our arsenic δ-layers to have weakly-localised diffusive conductivity at
high densities, and interaction effects at low densities. The fact that the layers are
thinner makes it easier to detect interaction effect when a magnetic field is applied
parallel to the layer. In addition, the heavier dopants should make the spin-orbit-
coupling stronger, such that weak-anti-localisation effect or Rashba-Dresselhaus
effects might be visible, however this is not the case in our samples.

3.4 Arsenic for one-and zero-dimensional devices in silicon

In 1998 the idea to use donors in silicon for quantum computing was first for-
mulated by Kane [92]. It has led to the development of scanning tunnelling
microscopy (STM) lithography, where single donor atoms can be positioned with
atomic precision within the silicon lattice [88,93]. The technique has successfully
been used with phosphorus atoms to fabricate a wide variety of devices, ranging
from two-dimensional dopant structures [94], to one-dimensional wires [95], and
zero-dimensional devices such as single electron transistors [96]. The unique ca-
pability to make all these different structures within the silicon lattice has, for
example, led to the demonstration of single qubit control and operation [97], and
two-qubit gates and devices [98].

STM lithography is very similar to the technique used to fabricate global
δ-layers (section 3.1), the main difference being that the clean silicon surface
is exposed to hydrogen gas containing no dopant, instead of the phosphine or
arsine gas. In this way, the silicon surface is terminated by a layer of hydrogen,
from which single hydrogen atoms can be removed by applying local electrical
pulses with an STM. Subsequently, the surface is exposed to phosphine or arsine
gas which can bond only where the hydrogen was removed, and the rest of the
fabrication is the same as for the global δ-layers. Importantly, the same annealing
steps are necessary for dopant incorporation and activation, thus, the unwanted
diffusion is the same in both fabrication methods. Therefore, improving global
δ-layer thickness directly translates to an improved vertical placement precision
in single atom devices fabricated by STM lithography.

Despite the impressive demonstration of all fundamental operations required
for quantum computing in silicon, progress to larger qubit count in silicon devices
is likely hindered by insufficient dopant placement precision in STM lithography.
A main difficulty comes from the inability to tune the exchange coupling strength
J between neighbouring donor, by precisely defining the inter-donor distance. The
strength is not simply a smoothly decaying function of the inter-donor distance, as
one could expect from the diminishing wave-functions’ overlap, but has a strong
cosine oscillation due to the six degenerate valleys [99]. The wave-functions tend
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to concentrate around each valley, and the coupling strength J varies by orders
of magnitude with a spatial period of the order of the crystal lattice constant,
a0 ≈ 0.5 nm, as was calculated by Pica and Lovett [100], and shown in figure 15.

Figure 15: Exchange coupling between phosphorus donor electrons in
silicon. Density plot of the exchange coupling J between neighbouring donors
as a function of misplacements dr1 and dr2 in the orthogonal plane to the nominal
donor separation d0 = 20 nm. From [100].

The STM lithography fabrication process relies on the diffusion of the dopant
atoms for incorporation and activation, and it has so far not been possible to
control the final position with less than 1 nm placement precision [93]. To make
matters more complicated, the number of incorporated phosphorus atoms per site
is stochastic, and single phosphorus incorporation happens only with a 63± 10%

likelihood of success [101]. While it is possible to partly mitigate these issues by
building qubits based on clusters of multiple donor atoms, it remains necessary to
improve donor-device fabrication precision, or to relax the fabrication constraints,
e.g., by increasing the coupling strength J .

In order to relax fabrication constraints in STM lithographically defined donor
devices, there are two obvious approaches. One is to change the dopant species,
the other is to change the semiconductor host material. Both approaches have
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their benefits, and a combination of both could increase the benefits.

The interaction strength between neighbouring atoms has a strong lattice-
constant sized oscillation due to the sixfold valley degeneracy in silicon, as shown
in figure 15. This effect could be reduced by fabricating devices in germanium
instead of silicon. In germanium there are only four degenerate valleys, leading
to reduced oscillations in J , and the donor’s electron effective mass is lower,
leading to larger wave-functions and inter-donor coupling J . Calculations show
that in germanium the same interaction J can be obtained at a three times
larger distance [100]. While the move to germanium is a promising way to relax
fabrication constraints for single-donor qubits, it will necessitate to adapt the
STM lithography recipe and might not improve the precision in dopant placement.

The other possibility, to use a heavier group V dopant species, is pursued in
this work. It is of interest because a larger and heavier atom will have a lower
diffusivity, such that it can be annealed with less diffusion. Here we use arsenic,
the next group V atom after phosphorus. Arsenic has been shown to have a lower
diffusivity and a higher solid solubility in bulk silicon [102], two characteristics
that imply better placement precision. Additionally, because of its larger atomic
number, its 1s valence electron has a slightly larger Bohr radius rAs = 115 pm
(compared to rP = 100 pm for phosphorus) [103], its spin-orbit interaction is
larger (ZAs = 33, ZP = 15), and its nuclear spin is larger (IAs = 3/2, IP = 1/2).
The larger spin-orbit interaction and nuclear spin can be viewed to be additional
channels for quantum computing schemes, and the larger Bohr radius implies
increased coupling strength J between donors. For arsenic the STM lithography
fabrication parameters are completely compatible with the ones for phosphorus.
Finally, while the main advantage of using arsenic is the anticipated increase in
fabrication precision, it will not solve the valley interference issue. However it
will undoubtedly be useful to have the possibility to design multi-species donor
devices in silicon, allowing, for example, to independently address each donor
species [82].

In summary, it is of interest to develop the STM lithography technique with
heavier group V donors, in particular arsenic, to improve fabrication accuracy,
and to open the way to multi-species quantum devices. The first step towards
replacing arsenic with phosphorus is to study the characteristics of 2D arsenic δ-
layers in silicon to determine the vertical diffusion by measuring the dopant layer
thickness, and to understand the physical mechanisms that govern the electrons
in the new type of devices. A logical subsequent step will be to use germanium
instead of silicon to reduce valley interference effects and further relax the spatial
constraints.
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4 Imaging of buried dopants

The development of atomic-sized buried structures in silicon for quantum appli-
cations relies on the continuous improvement of fabrication accuracy and char-
acterisation methods. An important advantage of using donors in silicon is that
the crystal lattice acts as a protection from external noise and unwanted interac-
tions. However, the protection offered by the silicon lattice also poses a challenge
in terms of the ability to image the devices non-destructively, a necessary ability
for quality control and feedback for fabrication improvements. In effect, the STM
lithography method described in section 3.1 does not allow for exact dopant place-
ment measurement after the silicon overgrowth. Here, we explore the possibility
to use synchrotron X-ray light to characterise the buried dopant devices, and
importantly, show that X-ray fluorescence and reflectivity can give a full image
of the sample without altering the dopants’ position or electrical properties.

4.1 Resonant-contrast X-ray reflectometry for nm resolu-
tion depth-profiling of specific atomic-species dopant
layers in silicon (paper manuscript)

Abstract

In the past decades, the miniaturisation of silicon-based electronics has
been so successful that devices can now be made so small, that it has become
a challenge to measure them. Here we demonstrate that resonant-contrast
X-ray reflectometry (RCXR) can determine the depth-profile of a single
sub-nanometer-thick dopant layer in silicon. The technique takes advantage
of the large resonant change in reflectance of atoms at X-ray absorption
edges. The specular angle-dependent reflection measured at energies on
either side of an elemental resonance energy differs, which is used to obtain
an atom-specific contrast. We show that this makes it possible to selectively
measure the thickness of an arsenic-doped silicon layer within pure silicon,
yielding a thickness of a ≳1 nm layer of silicon doped with less than 5%
of arsenic, and we compare the results to values obtained with destructive
secondary-ion mass spectroscopy.

With the advent of scanning tunneling microscopy (STM) lithography in the
nineties [104, 105], it became possible to fabricate dopant-based nano-electronic
structures within semiconductors [106], as is, for example, commonly done with
phosphorus donors in silicon [107]. In the meantime, industrially fabricated tran-
sistors have reached a 7 nm scale [108].

Imaging techniques have been lagging behind in terms of spatial resolution,
however a number of methods are being developed or improved to obtain nanome-
ter resolution. Some of those methods are destructive, such as atom-probe to-
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mography [109] and secondary-ion mass spectroscopy (SIMS) [110], making them
unsuitable for device inspection. Examples of non-destructive imaging tech-
niques are X-ray fluorescence [1], X-ray diffraction [111], as well as, microwave
impedance [74] and broadband electrostatic force [112] microscopy. Most of these
techniques give two-dimensional information whilst with X-ray methods it is also
possible to obtain three-dimensional images by tomography [113, 114] at the ex-
pense of time. X-ray reflectometry [115] on the other hand allows to measure the
depth-profile of dopant layers in a reasonably short time of order ∼10 minutes
per scan.

Here we show that X-ray reflectometry can be made more sensitive to a specific
atom-species by measuring resonantly at energies around the respective X-ray ab-
sorption edge. Additionally the data analysis becomes model independent which
is particularly interesting for dopant-defined devices in silicon, where the metallic
structures typically contain less than 5% of dopant atoms.

Resonant-contrast reflectometry

X-ray reflectometry has first been used back in 1954 [116] and since then has
become a prevalent technique at synchrotron light sources to study a wide variety
of layered materials, ranging from surfaces to thin films and multilayers [117].
Reflectometry is based on measuring the specular reflection of a sample’s surface,
i.e., the reflection at an angle π−θ for an incident beam at an angle θ with respect
to the sample surface (θ = 0 is parallel to the surface), as illustrated in Fig. 16b.
In the simple case of a single interface between two materials, the reflectance Rs

for sigma polarised light is given by the Fresnel equation

Rs =

⏐⏐⏐⏐n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

⏐⏐⏐⏐2 , (8)

where θi and θt are the beam incidence and transmission angles, and n1 and n2 the
refractive indices of the surface and buried material, respectively. The reflectance
Rs is related to the material’s atomic scattering factors f1 and f2 through the
refractive index [118]

n = 1− 1

2π
Nr0λ

2(f1 + if2),

where r0 is the classical electron radius, λ the photons wavelength, and N the
average density of atoms. In the case of multiple layers, the reflection at different
interfaces interfere. Depending on the beam’s incident angle θ and the layers’
thicknesses, this interference can be destructive or constructive. For a system with
two interfaces, as shown in Fig. 16b, the condition for constructive interference
is given by Bragg’s law 2d sin(θ) = mλ, with m an integer, and is periodic as a
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Figure 16: Schematic of the resonant-contrast X-ray reflectometry mea-
surement. (a) Schematic of the sample’s layer structure. The surface consists
of SiO2 and Si with a combined thickness of d. Within the Si lattice there is an
As-doped delta layer of thickness δ. (b) Schematic of the measurement geometry.
X-rays shone on the sample with an incidence angle θ (with respect to its surface)
and the specular reflection is detected with a photodetector placed at an angle 2θ
(with respect to the incident beam). Positive interference occurs at 2d sin θ = nλ
for two interfaces separated by a distance d, where n an integer and λ the X-ray
wavelength.

function of Q = 4π/λ sin(θ). For three interfaces the interferences is modulated
by a cardinal sine, analogously to the double-slit experiment.

Data collected with X-ray reflectometry is traditionally analysed with pro-
grams that solve Maxwell’s equations throughout the material [119, 120]. To
obtain good fits to the reflectometry data it is necessary to take into account
each layer’s atomic-species, density, thickness and roughness, resulting in a high
number of fitting parameters. Moreover, in the case that one of the layers is very
thin and has a low material contrast, for example a layer of Si doped with < 5%

of As as in our samples, the signal becomes indiscernible and the fit becomes
insensitive to that specific layer. This is an issue expected in silicon-based nano-
electronics, where dopant structures are typically buried under two layers, i.e.,
the Si and the SiO2 surface.

To circumvent X-ray reflectometry’s low sensitivity to dopant δ-layers in Si, we
explore the possibility of using the dopant’s L absorption edge as an amplifier of
the dopant signal. The principle is simply to take two reflectivity measurements,
one at an energy just below the dopant’s L-edge and the other just above, and
look at the difference between the two. This difference will primarily be a result
of the dopant, because the material’s scattering factors f1 and f2 undergo a large
change at resonance, as is visible in the bottom inset in Fig. 17a, and because
other atom-species have their resonances at different energies. In this way the
signal from a specific atom-species can be isolated and its analysis is simplified. In

33



particular, no modelling is required and yet both the thickness and the species of
a layer can be determined, unlike traditional reflectometry measurements where
the data needs to be fitted to multi-variable models.

Experiment

Here we perform resonant-contrast X-ray reflectometry (RCXR) on As-doped Si
δ-layers (Si:As) at the RESOXS station of the SIM beamline at the Swiss Light
Source (SLS) of the Paul Scherrer Institut (PSI) [121, 122]. The sample is kept
in high vacuum at 1e-8 mbar and at room temperature. It is mounted on a
rotatable holder such that the incident angle θ of the beam can be swept from 0
to 90 degrees. The beam energy is set between 1200 eV and 1400 eV, with a spot
size of 500 and 120 µm.

A schematic of the sample composition is shown in Fig. 16a. It is composed
of Si with an As dopant δ-layer and an inevitable oxidised SiO2 layer of about
2 nm on the surface. The doped layer has a density n ≈1014cm−2, as determined
by secondary-ion mass spectroscopy (SIMS) and during sample growth [82]. To
fabricate the samples, a clean Si surface in ultra-high vacuum is exposed to arsine
gas, which is integrated into the Si lattice by a rapid thermal anneal process and
finally buried below the surface by epitaxial Si overgrowth. Four such samples
were fabricated with the δ-layers buried at different depths between 15 and 75 nm,
and one sample with a buried SiO2 layer instead of As. All sample dimensions
were 6×2 µm2.

Arsenic L-edge resonance

The samples consist of three distinct layers, where the As-doped layer only con-
tains about 5% of substitutional As, while the SiO2 contains twice as many O
atoms as Si. Because of this, the optical contrast between the Si and Si:As is small
compared to that between SiO2 and Si. Nonetheless, the As L-edge resonance is
visible when measuring the reflected X-ray intensity as a function of X-ray energy
at a fixed angle, as shown in Fig. 17a. The resonance can be attributed to the As,
because its atomic scattering factors f1 and f2 change abruptly at the resonance
energy, as can be seen in the figure’s inset, while the Si and O atomic scattering
factors remain a smooth function of the energy.

In the case that the exact two-dimensional density n2D of dopant is known, it
is possible to extract the layer thickness δ directly from the relative intensity of
the As resonance (Fig. 17a). Indeed, the refractive index of the layers and the
resonance intensity are determined by the the three-dimensional dopant density
n3D = n2D/δ and the Fresnel equation at each interface (eq. 8), respectively. The
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Figure 17: Reflectometry contrast across the As L-edge. (a) Example
data of the sharp edge at the As L-edge resonance at 1324eV, measured with an
incidence angle of θ = 10◦. The reflected signal is normalised by the beam current
I0 to take into account incident photon flux fluctuations. The top inset shows a
sketch of the resonant process in which an X-ray photon is absorbed and excites
an electron from the L-shell to an unoccupied M - or N -shell. The bottom inset
depicts the energy dependence of the As scattering factors, f1 in red and f2 in
black, as they undergo a large change at at the L-edge. (b) In black, calculated
∆R/R for an As 2D density n2D = 2.77×1014 cm−2. In red ∆R/R extracted from
the data in Fig. 17a, the grey area is the standard deviation. The intersection of
the data and the calculation (gray line and light blue region) gives the As layer
thickness δ = 1.55± 0.09 nm, in agreement with Fig. 19.

relative change in reflection ∆R/R = (R(1330 eV ) − R(1320 eV ))/R(1320 eV )

depends mostly on the three-dimensional dopant density n3D of the layer that
undergoes the resonance, here the arsenic doped layer, but it’s absolute value
also depends on all the other layers characteristics. As a consequence, if the
dopant layer’s n2D and its depth are known, it is possible to obtain its thickness
δ from its resonance spectrum.

The two-dimensional dopant density n2D is readily obtained by X-ray fluo-
rescence [1]. In principle it is straightforward to record the X-ray fluorescence
and reflectometry simultaneously, as the fluorescence photons have an isotropic
distribution, however n2D was only measured for one sample in this work, and
was found to be n2D = 2.77× 1014 cm−2 for the sample shown in Fig. 17, Fig. 18,
and Fig. 19. For this sample, the expected relative change in reflection ∆R/R at
the As resonance as a function of the dopant layer thickness was calculated with
the DYNA program [120] and shown in Fig. 17b in black. The layer depth used
for this calculation was obtained in Fig. 18a, as explained in the next section. As
expected, decreasing the dopant layer thickness (and density at fixed n2D), re-
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Figure 18: As contribution to the reflectometry for photon energies be-
low and above the As L-edge.
(a) Example of an X-ray reflectometry curve with an X-ray energy below (red,
1300 eV) and above the As L-edge (black, 1335 eV). The data is obtained by
rotating the sample and the photodetector such as to measure the specular reflec-
tion. The horizontal axis shows the projection of the wave-vector perpendicular
to the surface normal, such that interference occurs are at the same values for
both X-ray energies. The inset shows the fast Fourier transform (FFT) of the
reflectometry curves, yielding the thickness d of the Si plus the SiO2 on top of
the As-doped delta layer. The fast oscillations are more apparent above the As
L-edge. (b) Difference between the logarithm of a reflectometry curve measured
at an energy lower and higher than the As L-edge. The black curve is obtained
from the experimental data on the left, whereas the red curve shows a simulation
of a 0.9 nm thick dopant layer (offset vertically by +0.4 for clarity). The arrows
indicate the location of beatings in the envelope modulation of the signal and is
associated with the As-dopant δ-layer thickness.

sults in an increased relative change in resonance intensity ∆R/R. In figure 17b,
the experimental value of 0.10±0.01 for ∆R/R extracted from Fig. 17a is drawn
in red, with the grey shaded area representing its standard deviation. From the
intersection between the data (red) and the calculation (black), the As layer’s
thickness can be deduced to be 1.55±0.09 nm. This result is in agreement with
the wavelet transform analysis developed in the next sections, however it relies on
fitting the resonance with each layer’s thickness, density, and roughness, resulting
in a large fitting parameter space and the necessity to have knowledge about all
layers.
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Enhancing the Arsenic signal

Typical reflectometry data for our samples are shown in the main plot of Fig. 18a.
The data in black is taken at an energy of 1335 eV, above the As L-edge at 1324eV,
and the data in red is taken at an energy of 1300 eV, below the As L-edge. The
data show distinct fast oscillations that come from the reflection on the Si to
Si:As interface. The periodicity of the oscillations is related to the layer thickness
d through the Bragg condition d = nλ/2 sin θ, such that a smaller d implies a
larger period, and corresponds to a thickness d = 10 nm, as is obtained by taking
the Fourier transform (see inset of Fig. 18a). The data also contain a much
slower oscillation due to the top SiO2 surface. Moreover, the fast oscillations are
modulated by an envelope function with an even longer period due to the thin
Si:As layer. The nodes of this modulation give the thin As δ-layer thickness δ. At
very small angles no signal-structure is visible, because some of the light directly
goes to the detector, while at high angles the roughness determines the overall
signal intensity and oscillations fall-off [123].

To extract the modulation of the fast oscillations in the reflectometry data,
we look at the reflectometry measured below and above the As L-edge resonance
energy, at 1300 eV and 1335 eV, respectively. Figure 18b, shows the difference
of the logarithm of both energies. The logarithm is used for clarity, since the
reflected intensity decays exponentially. This subtraction removes the effect of
the SiO2 layer and keeps that of the As-doped layer because the scattering factors
of the former are almost constant at those energies while they change drastically
for the latter. The arrows indicate the apparent position of the nodes of the
envelope modulation of the fast oscillations, where the distance between the two
nodes corresponds to a Si:As layer thickness of δ = 0.9 nm. For comparison, the
same procedure is shown for a simulation (from [124]) of a 0.9 nm Si:As layer
buried 10 nm into Si (with no oxide). At first glance, the experimental data and
the simulation might look qualitatively in agreement, however, the oscillations in
the data are not largest at the centre of the envelope and they decay abruptly at
high and low angles (sin θ/λ), indicating a possible cutoff to the data. The fast
decay of the signal at high angles originates from the roughness of the sample’s
surface and the noise limit at the largest incident angle where signal can be
detected [118,125,126]. The roughness causes the signal at high angles to vanish
because of increased noise, thus it acts as a cutoff and can misleadingly look like
a modulation node of the signal. Similarly, at low angles the signal is limited
by total internal refraction and by direct light reaching the detector, creating a
lower cutoff. Both cutoffs limit the minimum measurable layer thickness, i.e., the
minimum thickness detectable with RCXR measurements depends on the surface
roughness and is 0.9 nm for the sample shown in Fig. 18b. Therefore, it is not
sufficient to find the modulation nodes by eye, but it is necessary to extract the
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Figure 19: Dopant layer thickness extraction from the signal modulation.
(a) Wavelet-transform of the simulated data for a layer thickness of 1.8 nm (top)
and of the experimental data from Fig. 18b (bottom). The red line indicates the
cut shown on right figure. (b) Wavelet-transform amplitude obtained along the
red line shown on the left. The obtained data (black) is fitted to two Gaussians
(red). The peak to peak (PP) distance corresponds to an As layer thickness of
1.8±0.5 nm.

fast oscillations’ amplitude as a function of angle and determine the modulation
period.

A more sophisticated approach to estimate the modulation frequency is shown
in Fig. 19, is to take the wavelet-transform [127] of the data resulting from the
resonant-contrast. The wavelet transform is similar to the Fourier transform, in
that the signal is decomposed into a reciprocal frequency space, however instead
of being a projection onto sine functions of different frequencies, it is a projection
onto the orthonormal Morse wavelet basis [128]. Because the wavelets are peri-
odic oscillations that quickly decay in time, the wavelet transform retains both
time and frequency information. In our case, the frequency domain is converted
to the corresponding thickness and the time domain is the sine of the angle over
the wavelength (∝Q-vector). The colour scale of the wavelet transforms shown in
Fig. 19a represents the intensity of the signal at a given angle and frequency, for
the experimental data on the bottom, and for a simulation of a 10 nm deep and
1.8 nm thick As layer on top. The yellow regions indicate a large oscillation am-
plitude. The vertical position of the high amplitude region indicates the detected
frequency corresponding to the sample’s Si:As layer depth of d = 10 nm. To ex-
tract an estimate of the Si:As layer thickness δ, we take a horizontal cut through
the yellow region of the wavelet-transform, as shown with a red line in Fig .19a
and displayed in Fig. 19b, and fit the amplitude peaks to Gaussian distributions.
This cut corresponds to the amplitude of the oscillations at the As doped-layer
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Figure 20: Dopant layer thickness and depth measured by RCXR and
SIMS. Comparison of thicknesses obtained by RCXR and SIMS, highlighting
that SIMS over-estimates the Si:As layer thickness. (a) and (b) show the thick-
ness δ of the Si:As layer and the depth d of the As layer below the surface,
respectively. The values obtained by RCXR denote an upper bound and so no
error is associated with them.

depth, here 10 nm. Each peak in Fig. 19b corresponds to a maximum modulation
of the fast oscillations, and the peak-to-peak distance is the envelope modulation
period, which is converted to a layer thickness of 1.8±0.5 nm using the Bragg
condition. Note that the wavelet transform of the simulated data in Fig .19a
has the same peak-to-peak distance corresponding to 1.8 nm as obtained from
the data in Fig .19b, however the envelope function is a sine function and not
Gaussian. This is because in the simulation the dopant layer has a step function
distribution (of which the Fourier transform is a sine), while in the samples the
real dopant distribution at the layer interface is Gaussian [] (of which the Fourier
transform is a Gaussian). It should also be emphasised that in the presence of a
low- and high-angle cutoff due to noise and roughness, the peak-to-peak period
extracted in Fig. 19b gives a lower-bound estimate of the As layer’s thickness. As
mentioned before, the main advantage of this technique is that it determines the
thickness of a chosen atomic-species layer without the need of any modelling and
model-specific fitting.

Results

The RCXR experiment was performed on five different samples, of which four
contained Si:As δ-layers and one reference sample contained only a SiO2 layer.
These samples were also measured with SIMS, a destructive technique commonly
used to characterise Si δ-layers samples. The results for both techniques are shown
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in Fig. 20. The measured depths d for the shallower samples coincide, whereas
SIMS underestimates the depth of more buried Si:As layers. This discrepancy
might originate from the variability of the SIMS sputter rate [129]. The measured
Si:As layer thickness δ is found to be lower when measured with RCXR, as can
be expected since SIMS is known for not being able to resolve thicknesses smaller
than 2 nm [87]. The values for δ measured with RCXR are given with no error
bar as they denote an upper bound. Nevertheless, the RCXR results show that
our As δ-layer samples are as thin as 1 nm. This finding is consistent with a
study based on angle-resolved photoemission spectroscopy (not published yet),
where the thickness δ of Si:As samples fabricated in the same way was measured
to be between 0.4 and 0.7 nm, suggesting that the value obtained here by RCXR
is limited by the noise at large incidence angles which could be improved by
reducing the surface roughness.

In conclusion, the sensitivity of X-ray reflectometry to specific elements can be
improved in a layered sample by performing a differential measurement above and
below a resonance edge of the element. With this technique it is possible to isolate
the signal from one specific element with an increased sensitivity, without needing
to model the material. RCXR yields an upper-bound of 1 nm on the thickness
of As-doped δ-layer buried in Si containing < 5% of As (≈1014cm−2). A lower
upper-bound could be obtained by increasing the X-ray source fluence, or by re-
ducing the sample surface roughness. Combining RCXR with X-ray fluorescence
measurements will make it possible to fully and non-destructively characterise a
sample in three-dimensions at the same beamline. In future experiments it will
be possible to use this technique, combined with nano-X-ray beams of less than
10 nm spot-size [130] to measure the thickness of STM-patterned dopant struc-
tures, such as nano-wires and conduction leads in single-electron transistors and
quantum bits.
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4.2 Non-destructive X-ray imaging of patterned delta-layer
devices in silicon (paper submitted [1])

Abstract

The progress of miniaturisation in integrated electronics has
led to atomic and nanometre-sized dopant devices in silicon. Such
structures can be fabricated routinely by hydrogen resist lithog-
raphy, using various dopants such as phosphorous and arsenic.
However, the ability to non-destructively obtain atomic-species-
specific images of the final structure, which would be an indis-
pensable tool for building more complex nano-scale devices, such
as quantum co-processors, remains an unresolved challenge. Here
we exploit X-ray fluorescence to create an element-specific image
of As dopants in silicon, with dopant densities in absolute units
and a resolution limited by the beam focal size (here ∼ 1 µm),
without affecting the device’s low-temperature electronic proper-
ties. The As densities provided by the X-ray data are compared
to those derived from Hall-effect measurements as well as the
standard non-repeatable, scanning tunnelling microscopy and sec-
ondary ion mass spectroscopy, techniques. Before and after the
X-ray experiments, we also measured the magneto-conductance,
dominated by weak localisation, a quantum interference effect
extremely sensitive to sample dimensions and disorder. Notwith-
standing the 1.5×1010 Sv (1.5×1016 Rad/cm−2) exposure of the de-
vice to X-rays, all transport data were unchanged to within exper-
imental errors, corresponding to upper bounds of 0.2 Angstroms
for the radiation-induced motion of the typical As atom and 3%
for the loss of activated, carrier-contributing dopants. With next
generation synchrotron radiation sources and more advanced op-
tics, we foresee that it will be possible to obtain X-ray images of
single dopant atoms within resolved radii of 5 nm.

The ability to build nanometre-scale dopant structures buried in silicon has led
to great progress in classical and quantum technologies [131]. As the patterned
structures become increasingly small and complex, it becomes indispensable to
develop techniques to image the dopant structures non-destructively for device
inspection and quality control [113,132,133].

Scanning tunnelling microscopy (STM) can be used to pattern acceptors and
donors into silicon with atomic resolution using hydrogen resist lithography [93,
134]. The technique has been used to create complementary metal-oxide-semiconductor
compatible structures, including two-dimensional conductive sheets [135], three-
dimensional structures [136], nano-wires [106], and quantum dots [137]. Precisely
measuring the location of buried dopants patterned by STM is challenging and
can only be accomplished with STM itself for patterns extremely near to the
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surface [138, 139]. Techniques capable of imaging such nano-scale structures are
typically destructive, such as secondary-ion mass spectrometry (SIMS) [110] and
atom probe tomography [109], making them unsuitable for device quality con-
trol [140]. Two techniques that can image the dopants non-destructively are
broadband electrostatic force microscopy (bb-EFM) [112] and infrared ellipsom-
etry [141], however both come with limitations. In particular, bb-EFM can only
measure the polarity of the dopant but not its elemental species, whereas infrared
ellipsometry can, in principle, obtain information regarding the species and den-
sity of atoms, but it is model-dependent and requires elaborate fits to the data.

Here we show that X-ray fluorescence (XRF) can be used to create non-
destructive atomic-species specific images of dopants in silicon with a resolution
only limited by the beam-size, in our case of order one micron. This technique uses
synchrotron X-rays to locally ionise the atoms in the investigated device, leading
to the emission of photons via fluorescence. The measurements are conducted at
ambient temperature and pressure, and the photon spectrum is analysed to obtain
the species and densities of the atoms in the device. Low-temperature magneto-
transport on the two-dimensional Hall-bar device before and after imaging with
the X-ray fluorescence demonstrates that the technique does not alter the elec-
trical characteristics of the device, namely the free carrier density, electron mean
free path, coherence length, and vertical confinement. We conclude therefore that
the technique is non-destructive. As an extension of the principle demonstrated
here, by rotating the sample in the X-ray beam it will be straightforward to ob-
tain a tomographical three-dimensional reconstruction of the atoms’ positions in
the device [113,114].

X-ray fluorescence

When an X-ray photon impinges on an atom it can be absorbed by the atom
that will, in turn, be ionised. Inner orbital electrons are expelled from the atom
and replaced by outer orbital electrons. In this process photons are emitted with
wavelengths corresponding exactly to the energy difference between the electrons’
orbitals. Therefore, the resulting energy spectrum of the fluorescence photons will
uniquely identify the atomic species of the ionised atom. In the presence of many
different atoms the fluorescence spectrum will be the sum of the different spectral
lines. As each atomic spectrum is well known, it is straightforward to decompose
an arbitrary fluorescence spectrum into element-specific components [142].

XRF experiments reported here were conducted at the microXAS beamline
of the Swiss Light Source (SLS) synchrotron [143]. The beamline produces high
brightness X-rays in the energy range from ∼ 4 to 22 keV. At the photon energy
of 11.88 keV used here, the delivered photon rate is approximately I0=1010 pho-
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Figure 21: Schematic of the X-ray fluorescence measurement. From left to
right: Electron bunches from the synchrotron are directed through the undulator
magnets emitting highly collimated photons on account of the repeated electron
beam bending. The X-ray beam with a photon energy of 11.88 keV from the
synchrotron is focused to 1 µm with the help of a Kirkpatrick-Baez (KB) mirror
system. Fluorescence photons from the sample that is illuminated by the X-ray
beam are emitted in all directions and a photodetector is placed at d = 2 cm away
from the sample, collecting the photons from a solid-angle Ω = 2π(1 − cos θ) =
2π(1 − d/

√
d2 + r2) = 0.04π. The inset shows an STM image of the sample’s

doped silicon surface before silicon overgrowth; the short bright lines are rows of
Si dimers ejected from the surface plane due to the incorporation of As atoms.

tons/sec when the beam is focused to 1× 1 µm using a Kirkpatrick–Baez mirror
system, and an energy resolution of ∆E/E < 10−4 is chosen. The beam was set
to normal incidence. An X-ray energy of 11.88 keV is sufficiently high to dislodge
core electrons from the As K-edge, without exciting the gold atoms found in parts
of the sample holder.

Measurements are conducted in air at room temperature, with a gentle flow
of helium gas into a 15 mm long pinhole cavity that encapsulates the silicon drift
detector (SDD), with the exit gas flow located 2 mm from the sample position.
A silicon drift detector with an active area of 50 mm2 is placed in close proximity
of the sample to maximise fluorescence photon collection. Figure 21 shows a
schematic of the experiment; the solid angle captured by the detector is Ω =

0.04π. The detector not only measures the intensity of the fluorescence photons
but also resolves their energy spectrum, i.e., it counts the number of photons
reaching the detector as a function of photon energy, as shown in Fig. 22e. The
collected spectrum is then decomposed into the sum of the individual atom-
specific spectra with the PyMca software [144]. To determine the atom density
from the detected fluorescence, it is compared to an arsenic containing reference
sample from nanoXRF standards

¯
[145] with a known density under the same X-

ray beam illumination and placed at the same position as the measured device.
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nSTM nXRF nHall nSIMS tSIMS tMR

Device (1014 cm−2) (1014 cm−2) (1014 cm−2) (1014 cm−2) (nm) (nm)
#1 1.6± 0.3 1.40± 0.07 1.31± 0.03 1.8± 0.2 2.7± 0.2 0.97± 0.02
#2 0.10± 0.03 0.06± 0.01 ––– 0.21± 0.02 3.6± 0.4 –––

Table 2: Dopant density and layer thicknesses. As density n of the two
devices measured with STM, XRF, Hall effect and SIMS. Additionally the As
layer thickness t is given as measured by SIMS and MR. Device #2 was not
conductive and, therefore, Hall measurements were not possible.

The intensity of each fluorescence peak in the spectrum depends not only on
the density of atoms participating in the fluorescence process, but also on the
ionisation cross-section. Note that these X-ray ionisation cross-sections are well-
known and do not depend on factors such as the atom’s depth or environment.
In XRF the measured density corresponds to the absolute number of atoms,
unlike other non-destructive imaging techniques which measure only electrically
activated dopants [132]. By comparing the atomic density to the free carrier
density (obtained from magneto-transport, see Magneto-Conductance section) it
is thus possible to deduce the activation percentage in a given device. Knowing
the dopant electrical activation is important for optimising device fabrication; in
particular when making atomic-scale devices it is important to have an activation
percentage close to 100% to ensure that all donors contribute an electron to the
conduction band.

At the microXAS beamline, the beam position is fixed and the sample was
swept across the beam with a step size of 500 nm, and for each position a full
spectrum of the fluorescence was recorded. The data collected in this way contain
the information of the atomic concentrations at each position of the scan, from
all elements that are excited with the chosen X-ray energy. By decomposing the
full spectrum at each position into a sum of spectra from each possible element,
a two-dimensional elemental density map is obtained.

Subsurface imaging

Structures consisting of atomically thin layers of As (‘As δ-layers’) buried 30 nm
below the Si(100) surface were patterned into 20 × 200 µm2 Hall-bars and con-
tacted with aluminium as detailed in the methods. The As layer is made by
exposing atomically flat silicon to a dose of arsine, annealing the wafer to in-
corporate the As into the surface layers, then overgrowing with epitaxial silicon.
The As density is simply controlled by the total As dose. Two such structures
are studied here, one with a nominal As density of nAs = 1.6× 1014 cm−2 and the
other with nAs = 1× 1013 cm−2. The dopant density is determined with the STM
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Figure 22: X-ray fluorescence image of an As Hall-bar device. a-c Al,
Fe, and As distribution of device #1 with a density of nAs = 1.4 × 1014 cm−2

for a photon energy of 11.88 keV, a beam size of 1 × 1 µm2 and a step-size of
0.5 µm. At each step a spectrum is recorded during 200 ms. d Sketch of the
top view of the samples with the As Hall-bar structure shown in orange. e Sum
of the fluorescence spectra taken at each scan point within the highlighted area
in a-c. The black line represent the measured data and the coloured lines are
fits to individual elements. See Fig. 52 in the methods section for details on the
elemental contributions.

before the silicon overgrowth by counting Si atoms ejected by the incorporated
As, as seen on the inset in Fig. 21 and explained in [82] and the methods. The
same devices were used for the XRF and the magneto-resistance (MR) measure-
ments. Table 2 summarises the devices’ density and thickness as measured by
STM, XRF, SIMS and MR. Additionally, to quantify the background As dopant
density a reference sample was measured.

Figure 22d shows a sketch of the studied devices, where the orange colour
illustrates the two-dimensional As layer. Figures 22a-c depict the higher density
Hall-bar structure #1 as imaged by XRF for Al, Fe, and As, respectively. For
each pixel of the image a spectrum is recorded for a duration of 200 ms. The
sum of many such spectra is shown in Fig. 22e with fitted peaks to deduce the
elemental origin. Note that each element’s fluorescence spectrum has peaks at
unique energies (see methods), such that fitting the data is straightforward.
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Figure 23: Fluorescence contrast across the Hall-bars. a As fluorescence
image of the high density Hall-bar device #1, taken with a beamsize of 1×1 µm2

and an averaging time of 200 ms. The image is obtained by scanning the beam
across the sample, with the x-axis parallel and the y-axis perpendicular to the
Hall-bar, respectively. The yellow line denotes the line trace. b Line traces in
counts per dwell time measured across the Hall-bars of the high-density (black,
1×1 µm2 spotsize and photon flux I0 = 1010 photons/sec) and the low-density
device (red, 3×1 µm2 spotsize, with 3 µm horizontal width and photon flux
I0 = 1011 photons/sec). The As fluorescence signal clearly resolves the 20 µm
width of the Hall-bar and features a signal/noise ratio of ∼ 7 and ∼ 2 for the
high- and low-density Hall-bars, respectively.

The As image in Fig. 22c clearly shows the conductive layer of interest, which
defines the Hall-bar and its contact leads. The unique possibility to distinguish
different atomic species makes it possible to verify whether there is contamination
in the device. Here the spectrum contains traces of many elements (see methods
section for element identification), which originate from the lead-less chip-carrier,
the glue used to fix the sample and the He gas that is blown on the sample
(traces of Ar in Fig. 52). We also see that the Al contact pads and bonding
wires contain not only aluminium, but also a very small quantity of Fe. The
exact density is obtained by comparing the intensity of the fluorescence to the
reference sample. While the Fe density is only nFe = 1 × 1013 cm−2 in the Al
contacts, it provides a stronger XRF signal than the aluminium whose density is
nAl = 6.0× 1015 cm−2. This is due to the larger (107.3 cm2/g) absorption cross-
section of iron, compared to aluminium (14.76 cm2/g), and the considerably larger
absorption of the low energy Al fluorescence by the air/He atmosphere and by
the detector window . The As density is uniform across the entire Hall-bar and is
found to be nAs = 1.4×1014 cm−2 and nAs = 5.6×1012 cm−2, for the two devices
measured. For both the values obtained with XRF and STM agree within the
uncertainty (see Tab. 2). The uncertainty in XRF measurements is low because
atomic cross-sections are well-known, such that the reference sample yields an
uncertainty of less than 5%. By comparing the atomic density to the free carrier
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density obtained from Hall measurements we find that the dopant activation in
the high-density Hall-bar device #1 is 94± 5%. The low-density device #2 was
not conductive and no Hall density could be measured.

The low-density device #2 was also measured in an identical fashion except
that the beam size was increased to 1 × 3 µm2 yielding a photon flux of I0 =

1011 photons/sec. That way, in the low- and high-density device there were
1.7× 105 and 1.4× 106 As atoms within the spot size, respectively. Taking into
account the As cross-section, the number of photons absorbed collectively by
the As atoms in 200 ms was 1.9 × 105 and 4.8 × 105 photons for the low- and
high-density device, respectively. Figure 23 shows the contrast obtained when
measuring the As fluorescence peak intensity across the Hall-bar structures. The
contrast in the fluorescence signal when moving the beam on and off the dopant
layer has a signal/noise ratio of ∼ 2 and ∼ 7 for the low- and high-density
device, respectively. Through the use of focusing elements, e.g. Fresnel zone
plates, the X-rays can be focused beyond the beam size of ∼ 1 µm used here.
In this way, it will be possible to obtain fluorescence images of buried structures
reaching a resolution better than tens of nanometres, while still maintaining the
demonstrated sensitivity to low densities [130,146–148].
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5 Electrons in buried dopant layers

5.1 Localisation and confinement at saturation density

5.1.1 Weak-localisation in the metallic phase to measure the electron
displacement induced by X-rays (continuation of X-ray fluores-
cence paper)

Weak localisation

The XRF images obtained from the two-dimensional As Hall-bars show that the
technique is highly sensitive and directly discriminates atomic species without
requiring any modelling of the sample. We measure the low-temperature electrical
characteristics of the high-density Hall-bar devices #1 in magnetic fields up to
B = 9 T before and after exposure to the X-rays. At T = 1.8 K electrons move
diffusively, resulting in a conductivity σ0 > e2/ℏ and are in the so-called weakly
localised regime, as evidenced by a logarithmic temperature dependence of the
zero-field conductivity [6,8,11,149]. Weak localisation is a quantum interference
effect that occurs for electrons in a medium with time-reversal symmetry, such
as silicon, so long as the electrons’ coherence length is longer than their mean
free path. In that case an electron’s trajectory can form a loop and interfere
constructively with itself—it is weakly localised. This interference effect and
particularly its behaviour in external magnetic fields depends strongly on the
disorder and dimensions of the electron channel and so is an ideal diagnostic of
radiation damage.

In the weakly localised regime, the conductance can be described by the
Hikami-Larkin-Nagaoka theory [6], in which the conductivity change resulting
from an applied magnetic field depends only on the electron mean free path L, the
coherence length Lϕ, and the applied magnetic field B. If the conductive medium
is purely two-dimensional and there are no spin-orbit or electron-electron interac-
tion effects, only field components B⊥ perpendicular to the conductive plane can
couple to the electrons’ orbital degree of freedom. The corresponding conductivity
change is then given by

∆σ(B⊥) = σ0

[
ψ

(
1

2
+
Bϕ

B⊥

)
− ψ

(
1

2
+
BL

B⊥

)
+ ln

(
2L2

ϕ

L2

)]
, (9)

where ψ(x) is the digamma function, σ0 = e2

2π2ℏ , e is the charge of an electron, and
ℏ is the reduced Planck constant. The phase breaking field is given by Bϕ = ℏ

4eL2
ϕ

and the elastic characteristic field BL = ℏ
2eL2 .

Our samples have a finite thickness, meaning that electron orbitals can have
a small perpendicular component that can couple to a field B|| parallel to the
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conductive plane, the effect is described by [150]

∆σ(B∥) = σ0 ln(1 + γB2
∥), (10)

where γ is obtained by fitting the equation to the data and depends on the
sample thickness t and roughness. By fitting ∆σ(B⊥) and ∆σ(B∥) we can derive
this thickness as [151]

t =

(
1

4π

)1/4
[(

ℏ
eLϕ

)2

(
√
nLγ)

]1/2
, (11)

where n is the free carrier density as measured by the Hall effect. Finally, for
tilted magnetic fields the change in conductance can be described by the phe-
nomenological expression [59]

∆σ(B)p = ∆σ(B⊥)
p +∆σ(B∥)

p, (12)

where p is obtained by fitting the data and is sample and temperature-dependent.

Magneto-conductance

To establish whether the XRF imaging technique is non-destructive, we measure
the magneto-transport at T = 1.8 K of high-density device #1 before and af-
ter the exposure to the X-rays. During the X-ray imaging the sample absorbs
2′000 photons/nm2 at an energy of 11.88 keV, corresponding to a radiation dose
of 1.5×1010 Sv (1.5×1016 Rad/cm−2 or 1.7×10−14 J/nm3). Taking into account
the absorption lengths of Si and the As atoms doped into silicon, as well as the
As atom cross-section, we find that each As atom absorbs on average 0.3 photons
during the measurement.

Figure 24a shows the Hall effect measured in a magnetic field of up to B = 9 T,
before and after the X-ray measurement shown in red and black, respectively.
The transverse resistance Rxy is linear in the field and crosses zero with no signs
of quantised, non-linear, or anomalous Hall effects. Combining the Hall effect
with the device’s zero-field conductivity gives a mean free path L =

√
2πnµℏe =

4.8 ± 0.1 nm and L = 4.9 ± 0.2 nm before and after the XRF measurements,
respectively, where µ is the electron mobility. The derived Hall electron density
is n = 1.31± 0.03× 1014 cm−2 before and n = 1.27± 0.06× 1014 cm−2 after the
XRF measurements. Comparing the free carrier density to the dopant density
obtained from the X-ray florescence shows that the activation percentage for
this device amounts to 94 ± 5%. Figure 24b shows the magneto-conductance at
T = 1.8 K with a field up to B = 9 T applied perpendicular and parallel to the
conductive plane. Fitting the data to Eq. (9) and (10) yields the electron channel’s
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Figure 24: Magneto-transport of the Hall-bar device before and after
XRF measurements. a Hall effect measured at T = 1.8 K, before (red) and
after (black) the XRF imaging. b Magneto-conductance for a magnetic field
perpendicular (dots) and parallel (stars) to the conductive layer. The lines are
fits to Eq. (9) and (10). c Change of conductance in square per Ohm, as a
function of the magnetic field angle with respect to the conductive layer at an
external field of B = 9 T (0◦ ≡ in-plane field). The green line is a fit to Eq.(12).

characteristic parameters. Before the XRF, the magneto-conductance yields a
coherence length of Lϕ = 73.6±0.4 nm and δ layer thickness of t = 0.98±0.02 nm.
After the XRF measurement we obtain Lϕ = 74.2±0.3 nm and t = 0.97±0.02 nm.
Finally, Fig. 24c shows the change in conductivity as a function of the out-of-plane
angle of a 9 T magnetic field before and after the X-ray measurement. According
to the Eq. (12) the field direction-dependent data contains information of both
∆σ(B⊥) and ∆σ(B∥). Fitting the data to Eq. (12), we obtain p = 1.9± 0.3 and
p = 2.3±0.5 before and after the XRF, respectively. Combining this with Eq. (9)
and (10), as well as the Hall measurements implies that, within error bars, none
of the device’s electronic characteristics were altered by the X-ray measurement.
In particular, it is important to note that the determination of the thickness by
the weak-localisation measurements has a precision of 0.2 Å, which sets a strict
bound to the extent X-rays could have displaced the atoms.

We have shown that X-ray fluorescence imaging is a technique well-suited for
non-destructive investigation of dopant-based devices in silicon. This approach
has the unique capability of directly identifying dopant species without relying
on sample modelling, making it an attractive alternative to bb-EFM and infrared
ellipsometry. X-ray scattering techniques can be used in parallel to fluorescence
imaging to obtain complementary information, such as strain fields [111] and over-
all device layout and morphology [113,133]. Additionally, with magneto-transport
measurements, we confirm that the technique does not affect the electronic prop-
erties of the measured devices, i.e., it is non-destructive for Si:As, an important
condition for useful device characterisation. This is in contrast to common in-
spection techniques such as electron microscopy and SIMS which always entail
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sample destruction. Finally, with the three orders of magnitude enhancements to
brilliance expected for beamlines, including focusing optics, as well as improve-
ments both to detector solid angle and signal/noise, it is reasonable to anticipate
the ability to locate single As atoms in devices to within several nm over time
scales of order seconds per imaging pixel. Radiation effects will then need to
be mitigated via the same strategies already exploited for X-ray ptychography
today [152,153] and diagnosed exploiting the single electron transistor character-
istics of such atoms [96,154].

5.2 Soft X-ray ARPES and magneto-resistance

In the previous sections, we used X-rays to non-destructively image the dopant
distribution in our samples. The results show that our arsenic doped δ-layers are
sub-nanometer thin, making them the thinnest 2D dopant layers fabricated in
a semiconductor. Moreover, we determined that the doping density is homoge-
neous across the sample, with no sign of changes near the edges induced by the
reactive ion etching. Having the ability to implant a new type of dopant (ar-
senic), to control its density, and to have unprecedented layer thinness, motivates
the systematic study of our samples’ low-temperature conduction properties. As
explained in section 2 and 3, the interplay between the dopant density, disorder,
and interaction effects can lead to multiple different phases around the density
driven MIT.

Dopant species, n µ σ0 n−1/2
2D

n−1/3
3D

L Lϕ d kF L
depth (1013 cm−2) (cm2V−1s−1) (10−4□/Ω) (nm) (nm) (nm) (nm) (nm) ( )

P, 15 nm 18.73±0.06 51.8±0.2 15.556±0.005 0.7 1.7 11.7±0.04 86±6 10±1 40.1±0.2
As, 20 nm 12.23±0.08 27.3-±0.2 5.3516±0.0004 0.9 1.1 4.98±0.04 75±1 1.46±0.08 13.8±0.1
As, 20 nm 10.18±0.09 22.4±0.2 3.649±0.002 0.99 1.1 3.72±0.04 57.6±0.3 1.26±0.03 9.4±0.1
As, 20 nm 9.15±0.09 15.4±0.2 2.2511±0.0006 1.05 0.77 2.42±0.03 41.9±0.2 0.41±0.04 5.80±0.09
As, 20 nm 8.47±0.03 34.4±0.1 4.67±0.01 1.1 1.1 5.23±0.02 77.4±0.5 1.04±0.04 12.07±0.06
As, 15 nm 2.82±0.05 42.4±0.9 1.92±0.02 1.9 1.9 3.72±0.09 27.5±0.3 1.82±0.07 4.9±0.1
As, 20 nm 2.3±0.3 29.7±0.1 1.0879±0.0002 2.1 1.01 2.3±0.01 31.75±0.01 0.24±0.06 2.8±0.4
As, 20 nm 2.14±0.02 38.9±0.3 1.3314±0.0008 2.2 1.3 2.97±0.02 35.5±0.2 0.42±0.06 3.44±0.04
As, 20 nm 1.70±0.04 44.5±0.1 1.210±0.005 2.4 1.7 3.03±0.07 23.2±0.2 0.88±0.06 3.1±0.1
P 15 nm 1.61±0.02 34.5±0.5 0.891±0.008 2.5 2.0 2.29±0.04 20.5±0.5 1.3±0.1 2.30±0.05

As, 20 nm 1.18±0.01 35.6±0.3 0.6708±0.0002 2.9 1.8 2.01±0.02 22.4±0.2 0.65±0.05 1.73±0.02

Table 3: Characteristics of the electron layers in this work. All values
are extracted from magneto-conductance measurements taken at 2 K. n is the
2D electron density, µ the electron mobility, σ0 the conductivity at 2 K, n−1/2

2D

the average distance between donors in 2D, n−1/3
3D the average distance between

donors in 3D, L the electron mean free path, Lϕ the electron coherence length, d
the δ-layer thickness, and kF the Fermi wave-vector.

In this section, we look at the low temperature magneto-conduction and photo-
emission of the electrons in arsenic and phosphorus δ-layers. Both techniques
probe the conduction electrons directly and not the dopant atoms, as was the case
in the previous section. Therefore, the photo-emission measurements give relevant
information for the magneto-transport experiments. The most striking results are
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the appearance of a low temperature inhomogeneous phase in low density samples,
which is evidenced by an even in magnetic field transverse voltage Vxy, hysteresis
in both longitudinal Vxx and transverse Vxy voltages. The magneto-transport
results are discussed in section 5.2.2. A summary of the samples used for the
experiments is given in table 3.

5.2.1 Soft X-ray ARPES

In a work lead by Procopios Constantinou [155] on the same 2D δ-layer samples
used here, soft X-rays (300–1600 eV) were used to measure angle-resolved pho-
toemission spectroscopy (ARPES). In ARPES experiments, monochromatic light
dislodges electrons from a material of interest, and the angle-dependent kinetic
energy distribution of the emitted electron is analysed to obtain the electrons’
energy distribution and thus the energy band structure (in reciprocal space). The
technique, can be used with ultra-shallow devices, as the soft X-rays penetrate a
few nanometres beneath the silicon surface [156]. The scope of the experiment
was to precisely determine the vertical confinement of the dopants’ electrons in
the δ-layers, by looking at the effect of confinement on the electron conduction
band.

Silicon has six degenerate valleys, such that in reciprocal space there are six
minima along the <100> direction. When silicon is bulk-doped with group V
atoms, the donor electrons will occupy the six valleys, and the Fermi surface will
be an ellipsoidal shape around each minimum, as shown in figure 25b in green.
The electron effective mass in each minimum has two components: the longitudi-
nal and transverse effective mass, denoted m∗

L and m∗
t , respectively. However, in

the case that the doping is strongly two-dimensional, as in our δ-layers, the con-
finement in the two Γ valleys perpendicular to the the doping layer (kz direction)
causes quantisation of the electron energy levels in the kz direction. In the limit
that the confinement is arbitrarily small, the effective mass m∗

t in the Γ valleys
becomes infinitely large and the Fermi surface in the Γ valleys becomes a cylinder,
as shown in figure 25c in purple. In the more realistic case of a quasi-2D layer, the
Γ valleys will have a shape in-between the ellipsoidal and cylindrical shapes, with
the strength of the cylindrical character indicative of the confinement dimension.

The confinement well, illustrated in figure 25.a, causes the out-of-plane and
in-plane valleys to split into three sub-bands, denoted 1Γ and 2Γ for the two
out-of-plane valleys, and ∆ for the four in-plane valleys. As a result, strong 2D
confinement creates three distinct "flavours" of electrons with different effective
masses and populations.

The ARPES measurements conducted on shallow δ-layers reveal the elongation
of the Fermi surface in the Γ valleys. The results for a phosphorus and an arsenic
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Figure 25: Schematic of the samples and conduction valleys. (a) The
thin dopant layer (red) creates a vertical potential well. In the potential well the
electron energy levels are quantised into 1Γ, 2Γ and ∆. (b) In Bulk doped silicon
the donor electrons occupy six degenerate ellipsoidal valleys (in green on the
left). In 2D doped silicon, the Γ valleys in the kz direction deform into cylinders
(right). The colours of the valley indicated the energy level from (a) populating
it. Courtesy of Procopios Constantinou [155] .

sample are shown in figure 26, where the sketches on the left show the different
planes measured in the ARPES data (purple, green, and orange). The purple cuts
show the deformation of the Fermi surfaces in the +kz and −kz directions, and
highlight that in arsenic layers (figure 26.f) the surface is more cylindrical than
in phosphorus layers (figure 26.b), or in other words: the dopant confinement is
stronger with arsenic atoms. The exact dopant layer thickness δz is obtained by
the inverse of the difference of the Fermi surface’s extent in the kz direction in
the 3D case (δkz), and in the measured 2D case (δk∞) : δz = 1/(δkz − δk∞). It
was found that the arsenic layers are ∼0.5 nm thick and the phosphorus layers
are ∼1 nm thick (the exact results for arsenic are in table 4), showing that our
new arsenic δ-doped samples are the thinnest 2D electron liquids ever fabricated
in silicon.

The slices through the ∆ valleys displayed in figure 26.c and 26.g, show that
in the absence of confinement all valleys are equally populated. By measuring
the area enclosed by the Fermi surfaces in the kx − ky plane (figure 26.c, 26.g,
26.d and 26.h), the 2D electron density n is obtained. For these two samples we
find n = 0.81± 0.08× 1014 cm−2, close to the expected saturation density value
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of 1.4× 1014 cm−2, and in agreement with Hall measurements.

Figure 26: Fermi-surface measurements of the six conduction valleys in
doped silicon. (a,e) Schematic of the six conduction valleys and the Fermi sur-
faces ARPES slices shown in (b,f, c,g, d,h). (b,f) ARPES measurements of the
kx-kz plane, (c,g) ARPES measurements of the kx-ky plane, (d,h) ARPES mea-
surement in the kx-kz plane through the centre of the upper kz valley. Courtesy
of Procopios Constantinou [155].

The quantisation of the energy levels in the kz direction is observed with
ARPES in figure 27c-f for the four studied samples. The fitted energy distri-
butions of the two states, 1Γ and 2Γ, are shown on top of each plot for the
momentum, and on the right for the energy. In percentage of the electron den-
sity, the 2Γ state is more populated in the thinner arsenic layers than in the
phosphorus layers. The summary of the energy distribution of the electrons in
each sample is shown in figure 27.b, the thinner layers have a lower total electron
density, and a more even distribution of the electrons in the three states 1Γ, 2Γ,
and ∆. Figure 27 shows that the thinner the δ-layer is, the more the 1Γ and 2Γ

levels are split, as expected for confined electrons.

In table 4 we show the results obtained for the δ-layer thickness of four samples
using four different techniques. It stands out that SIMS is a technique that cannot
resolve features thinner than ∼2 nm, and that soft X-ray ARPES and magneto-
resistance have similar accuracy and concurring results to within 0.1 nm. The
X-ray reflectometry from section 4.1 cannot directly be compared to the soft X-
ray ARPES because it was only tested on deeper samples, however it gives a
slight over-estimate of the δ-layer thickness as explained in section 4.1. Note that
the 2 nm deep As layer has a thickness of 0.45 nm corresponding to three Si(100)
crystal planes.

Constantinou’s work showed that soft X-ray ARPES is an extremely sensitive
tool to measure electron layer thicknesses in silicon with Angstrom precision, and
that the use of arsenic leads to improved 2D confinement. The work showed
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Figure 27: Conduction band quantisation. (a) Energy of the 1Γ, 2Γ, and
∆ sub-bands as a function of the confinement width δz. (b) Measured electron
density and sub-band distribution for each sample. (c-f) ARPES data showing
the Γ band dispersion for each sample. The fitted electron momentum and en-
ergy distributions are shown on top and on the right of each plot, respectively.
Courtesy of Procopios Constantinou [155].

As δ-layer SIMS Magneto-resistance SX-ARPES XRR upper-bound
depth (nm) (nm) (nm) (nm) (nm)

2 2.0±0.2 - 0.45±0.04 -
3 2.2±0.2 0.4±0.1 0.6±0.1 -
18 3.0±0.1 - - 1
32 2.8±0.1 1.46±0.08 - 2.1

Table 4: δ-layer confinement. The thickness d of the As layers measured
by secondary-ion mass spectroscopy (SIMS), magneto-resistance, soft X-ray (SX)
ARPES, and X-ray reflectometry (XRR) for As δ-layers with various depths. The
XRR values are upper-bounds and as such are given without uncertainty.

that the vertical confinement causes the six-fold degenerate energy states to split
into three separate sub-bands, and the occupancy of each energy level can be
accurately measured. The results highlight that for strong confinement and low
density of the electrons, the three energy sub-bands have similar occupancy, im-
plying that for the analysis of 2D dopant electrons in silicon, at densities near the
MIT, it might be necessary to take into consideration the three distinct flavours
of electrons.
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5.2.2 Magneto-transport of variable density few-layers group-V dop-
ing in silicon

Abstract

We report on magneto-transport evidence of an inhomogeneous phase in
two-dimensional dopant layers in silicon, near the metal-to-insulator tran-
sition, associated with an anomalous Hall response and hysteresis. In this
work we use gas-phase dosing of dopant precursor molecules on silicon to
create arsenic and phosphorus δ-layers as thin as 0.4 nm and as dilute as
1013 cm−2. We show that for such low dopant densities electron-electron
interactions play an important role in the magneto-transport through the
isotropic (in magnetic field) Zeeman effect, and we show how the Zeeman
and conventional weak-localisation effects combine additively to yield the
net magnetoconductivity.. In addition, we show that when the δ-layers are
cooled below ≈ 300 mK, they cross over to an inhomogeneous state where
more conducting and more localised/insulating regions coexist. The asso-
ciated random anisotropy of the sample is reflected in a significant increase
of the transverse voltage Vxy response (even in magnetic field). Inelastic
scattering of the diffusive electrons on the insulating inclusions acts as a
temperature independent cut-off to the coherence length, and causes the
conductivity to saturate at low temperatures. For dilute layers, the low
temperature phase is marked by a hysteretic longitudinal and transverse
magneto-conductance, an anomalous even Vxy effect, and anisotropic con-
duction.

Introduction

The physics of two-dimensional (2D) electron gases has been the subject of ex-
tensive experimental and theoretical research efforts since the 60s, and has led
to some of the most remarkable discoveries in solid-state physics, including the
quantum Hall effect [157], and topological quantum states of matter [158]. De-
spite considerable advances, 2D materials remain the subject of intense ongoing
research because of the many possible consequences of combined disorder, inter-
site hopping, and Coulomb interaction effects. A problem that has proven to
be elusively difficult to solve is the nature of the metal-to-insulator transition
(MIT) in two-dimensions. It went from being widely thought to be nonexistent
in the 80s and 90s, because it was believed that localisation would turn any 2D
material into an insulator [39], to being observed in most 2D systems [42–48].
While the 2D MIT has been studied in many materials, the mechanisms driving
it and the phases associated with it remain an open question [49,159]. In silicon,
2D electron layers can be formed in a number of ways, for example with silicon
MOSFETs [40], silicon quantum wells [160], and silicon δ-doped layers [161]. In
these systems the electron mobility and the disorder strength are substantially
different, nonetheless they all exhibit the MIT at similar interaction parameter

57



strength rs ≈ 20 [53], defined as the ratio of the Coulomb energy and the Fermi
energy (rs = gv/(πns)

1/2aB, where ns is the electron density, aB the effective Bohr
radius, and gv the valley degeneracy of the host material). There is no agreement
on the mechanisms driving the MIT [68], but a number of insulating phases were
proposed for clean [49] and disordered systems [56–58].

Here we report on the low temperature magneto-conductance of arsenic- and
phosphorus-doped silicon δ-layers at various doping densities near the MIT. Ow-
ing to the unprecedented combination of low densities and thinness for such δ-
layers in silicon, we are able to access and highlight a new phase dominated by
strong Coulomb interactions, where the interaction parameter strength is rs ≈ 3.
In this system the number of free electrons corresponds to the number of donors,
and it is described by a highly disordered half-filled 2D Hubbard model. Recent
theoretical studies of the ordered half-filled 2D Hubbard model [73] predict that
at low temperature and low interaction strength there is a spinodal crossover from
the metallic to the insulating phase with a coexistence region. With the addition
of disorder the crossover can be expected to become a first order transition, in
agreement with our observation of hysteresis in dilute δ-layers.

Electron-electron interactions in dilute δ-layers
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Figure 28: Sketch of a sample. On the left, Hall-bar geometry of the con-
tacts allowing for 4 point measurements. On the right, schematic of the sample
composition, the arsenic donor layer is encapsulated in the silicon lattice.

The samples studied here are made by gas-phase dosing of dopant precursor
arsine (AsH3) molecules on a Silicon (001) flat surface, followed by homoepitaxial
overgrowth of crystalline silicon, then etched into Hall bars, and contacted with
aluminium, as shown in Fig. 28. The samples are measured in a dilution refriger-
ator with a 2 T 4π vector magnet and a 40 mK base temperature. To measure the
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longitudinal resistance Rxx and the transverse resistance Rxy a four-point scheme
is used, where a source applies a constant low frequency current (13.7 Hz) and
a lock-in amplifier measures the voltage drop across the sample, such that the
measured voltage is insensitive to the contact resistance. The arsenic δ-layers
have dopant densities ranging from 1×1013 to 2×1014 cm−2, and their thickness
lies between 0.4 and 1.8 nm, as determined by the magneto-conductance mea-
surements. At these dopant densities the δ-layers are metallic and very close to
the metal-insulator transition, which is estimated to be at 1 × 1013 cm−2 [86],
and the interaction strength parameter rs goes from 0.8 in the dense layers to 3
in the dilute layers.
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Figure 29: Logarithmic temperature dependence of the conductivity.
Conductivity of all the studied samples as a function of the temperature, in the
absence of magnetic fields, and normalised to the minimum conductivity. The
samples’ electron density n is indicated in the legend.

The temperature dependence of the samples’ longitudinal conductivity σ0 in
the absence of magnetic field, shown in Fig. 29, and Fig. 31b, exhibits two regimes.
The conductivity decreases logarithmically with decreasing temperature down
to about 300 mK, with a dependence σ0 ∝ lnT , but then saturates and stays
constant down to the base temperature of 40 mK, except for one sample with
electron density n = (1.61± 0.02)× 1013 cm−2. Such a temperature dependence
has been observed in many different materials [12,59–63], but the reasons for the
saturation remain a topic of discussion [64]. The logarithmic regime at higher
temperatures combined with the conductance being larger than the quantum
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of conductance σ0 > e2/h is an indication that the transport is diffusive, for
which weak-localisation (WL) effects can be expected [35]. Weak-localisation is
a quantum correction to the Drude conductivity that stems from the interference
of diffusive electrons with themselves through self-intercepting loops. For weak-
localisation to arise the electron coherence length Lϕ must exceed the mean free
path L, which sets the scale of the smallest loops, and it is strongest if time
reversal symmetry is not broken. When a magnetic field is applied, the time-
reversal symmetry is broken as the field couples to the electron’s orbital motion.
For a two-dimensional conduction layer with the field perpendicular to the layer,
the ensuing change in conductivity is given by the equation derived by Hikami,
Larkin and Nagaoka [6]:

∆σ(B⊥) =

(
e2

2π2ℏ

)[
ψ

(
1

2
+

ℏ
4eL2

ϕB⊥

)
− ψ

(
1

2
+

ℏ
2eL2B⊥

)
+ ln

(
2L2

ϕ

L2

)]
,

(13)
where ψ(x) is the digamma function, L is the mean free path, Lϕ is the coherence
length, ℏ is the reduced Planck constant, and e the electron charge. If the layer
has a finite thickness d, a magnetic field applied in the conduction plane will still
have a small orbital effect that depends on the thickness of the layer through a
single parameter γ [150],

∆σ(B∥) =

(
e2

2π2ℏ

)
ln(1 + γB2

∥). (14)

Where the thickness d is related to γ as γ = d2
√

4π
n

(
e
ℏ
Lϕ√
L

)2
.

Figure 30 shows the typical in-plane and out-of-plane magneto-conductance
obtained at 115 mK. At this temperature and sample density (n = (1.18± 0.01)
× 1013 cm−2) the magneto-conductance is negative. This cannot be explained
by weak-localisation, nor can the data be fit with weak-anti-localisation [162],
nor with Minkov et al.’s model which includes Rashba and Dresselhaus spin-orbit
interaction [14, 21, 22], as could be expected for samples with large spin-orbit
coupling. We find instead, that the magneto-conductance corrections are gov-
erned by two effects that add up in conduction, as two channels in parallel:
∆σtot

xx = ∆σWL
xx + σZeeman

xx [31, 163]. The first effect ∆σWL
xx is conventional weak-

localisation as described in Eq. (13) and Eq. (14). The second effect ∆σZeeman
xx is

the Zeeman effect on the conductivity as described in 1982 by Lee and Ramakr-
ishnan [31]:

∆σ(h) = −e
2

ℏ
F

4π2
ln

(
h

1.3

)
, for h≫ 1, (15)

where h = gµBB
kBT

is the reduced field, and F is a constant (the angular average
of the statically screened Coulomb interaction). The effect scales as ln(B/T ),
meaning that it becomes strong for low temperatures.
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Figure 30: Typical magneto-conductance measurements. At T = 115mK,
the magnetic field is set parallel to the plane of the δ-layer (black points -
with no dependence on the relative orientation to the current) and perpen-
dicular to it (green points). The red points are the difference between in
and out of plane magneto-conductance, the solid red line being a fit to weak-
localisation corrections Eq. (13) and Eq. (14). The sample’s electron density is
n = (1.18±0.01)×1013 cm−2. The blue data is a typical Hall measurement (Rxy)
taken at 1.75 K, with the solid line being a linear fit, consistent with the dopant
density.

The Zeeman effect couples the magnetic field to the spin of the electrons, and
thus (to the extent that spin orbit coupling does not interfere) is isotropic in
the direction of the magnetic field, unlike weak-localisation that couples to the
orbital motion [59]. We can isolate the anisotropic WL contribution by taking
the difference between the out-of-plane and in-plane magneto-conductance, as
shown in Fig. 30 (red dots), and Fig. 31a where the full lines are fits to the
weak-localisation expression Eq. (13) from which Eq. (14) has been subtracted.
In figure 31b the blue points are the coherence length obtained from the fits at
different temperatures, exhibiting the expected power law behaviour [13]. Note
that to fit these curves only the coherence length Lϕ and the thickness parameter
γ are free parameters. The mean free path L, the free carrier density and mobility
are all obtained from Hall measurements at high temperatures (2 K), as shown
in Fig. 30 in blue. In particular there is no need for a global free fitting pre-
factor to Eq. (13) as is often used but not justified for similar data [36, 135]
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Figure 31: Extracted weak-localisation contribution. (a) Difference be-
tween the magneto-conductance with the field out-of-plane and in-plane for vari-
ous temperatures in a sample with density n = (1.18±0.01)×1013 cm−2. The solid
lines are fits to the Eq. (13) minus Eq. (14). (b) Conductivity versus temperature
in black, displaying a logarithmic dependence as expected for weak-localisation
down to Tcrossover ≈300 mK. The coherence length Lϕ obtained from the fits in
(a) is shown in blue. It follows a power law T−0.31 down to T≈300 mK.

(though for σ0 ≲ 10G0 it can be justified by considering the two-loop localisation
correction [89,90]). We find that for thicker and denser samples, the out-of-plane
magneto-conductance data can erroneously be fitted only to weak-localisation if
one uses a free pre-factor, because the Zeeman effect is small. However, if one
removes the Zeeman effect one does not need to add an extra parameter to the
fit. From the parameters obtained from these fits it is possible to calculate the
thickness of the dopant layer [151], which is 0.65±0.05 nm for the sample shown
in Fig. 31, and between 0.4 and 1.8 nm for the arsenic δ-layers studied in this
work, thinner than what has been obtained in phosphorus doped Si [87, 164], as
is expected due to arsenic’s lower diffusion during annealing steps of the sample
fabrication. In the thinnest layer only three Si(100) crystal planes are conductive,
compared to thirteen in the thickest layer.

The weak-localisation effect calculated in Eq. (13) is given by an expansion
in kFL, where kF is the Fermi momentum of the electrons and is inversely pro-
portional to the square root of the dopant density. As such, for samples with
different densities, the parameters related to the weak-localisation effect scale
with kFL, as is the case for the perpendicular magneto-conductance and its in-
tensity at 2 T, shown in Fig. 32 and Fig. 33a. The Zeeman effect depends on
the Coulomb interaction, which is proportional to the ionisation energy over the
donors’ wave-functions overlap integral, such that it is stronger for lower free
carrier densities. For in-plane magnetic fields, when the δ-layer is thin enough
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Figure 32: Influence of density on the magneto-conductance. Magneto-
conductance at 600 mK for samples with different free carrier densities n. As
the density decreases the effect of the perpendicular magnetic field (full dots) be-
comes smaller, whereas the effect of the in-plane magnetic field (crosses) becomes
stronger.

and/or dilute enough, the Zeeman effect competes with the weak-localisation.
This is the case for our arsenic δ-layers, as is visible in Fig. 32.

To isolate the Zeeman effect we remove the weak-localisation’s contribution
to the magneto-conductance as determined by the fits shown in Fig. 30 and
Fig. 31a. The remaining magneto-conductance is found to follow Eq. (15), in
particular it scales as ln(gµBB/kBT ). Figure 33b shows that the absolute value
of the change to the conductivity due to the Zeeman effect at a field such that
ln(gµBB/kBT ) = 1 (black data) is a function of the sample’s dopant density.
This is expected because the term F in Eq. (15) depends on the average Coulomb
interactions, which depend on the density dependent electron screening effect. In
figure 33b on the right y-axis, kFL is shown as a function of sample density.
Note that if the roughness and disorder of the dopant layers does not vary much
from sample to sample, then kFL increases monotonically with the density and
makes it look like the weak-localisation effect is governed by density rather than
kFL, as is the case in [135]. In our samples kFL is not a monotonic function of
the density allowing us to distinguish the effects that scale with the density (the
Zeeman effect) from the effects that scale with kFL (the weak-localisation effect).
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Figure 33: Magnitude of the weak-localisation and Zeeman effects. (a)
Magnitude of the magneto-conductance at 600 mK in a 2 T perpendicular
magnetic field as a function of kFL, showing that the out-of-plane magneto-
conductance is governed by weak-localisation, the amplitude of which depends
on kFL rather than the density. (b) Magnitude of the Zeeman effect versus free
carrier density in black on the left y-axis. The magnetic field was adjusted such
that ln(gµBB/kBT ) = 1. The Zeeman effect scales with the free carrier density
rather than with kFL (shown in orange with labels on the right y-axis). In (a)
and (b) the dots correspond to arsenic δ-layers while the squares are from phos-
phorus δ-layers, showing that the magneto-conductance does not depend on the
dopant species.

The data shown in Fig. 33 also contains data from phosphorus δ-layers (squares),
showing that the effects depend predominantly on the dopant density or kFL,
but not on the dopant species.

The strength of the Zeeman effect depends on the interaction parameter F in
Eq. (15). The same parameter can be extracted from the conductivity’s temper-
ature dependence, shown in Fig. 29, which is of the form σ0 ∝ (1 + κee)G0 log T ,
with G0 = e2/(2π2ℏ) and κee = 1−F/2. Figure 34a shows κee as a function of the
electron density obtained from the conductivity’s temperature dependence and
the Zeeman effect. The two methods give very similar values and the same trend
of larger F (lower κee) for lower densities, as expected because of reduced screen-
ing. Nonetheless, as is visible in Fig. 34b, κee obtained from the magnetic field
dependence is consistently (with one exception) larger than when it is obtained
from the temperature dependence.

The Zeeman effect on the conductivity, Eq. (15), is a logarithmic function of
the reduced field h = gµBB

kBT
. Therefore, when the Zeeman contribution to the

magneto-conductance is plotted against the reduced field h at different temper-
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Figure 34: Interaction effects on the temperature and magnetic field
dependence. (a) Electron-electron interaction parameter κee as a function of
sample electron density n. The parameter κee extracted from the conductivity’s
temperature dependence and the in-plane magneto-conductance is shown in black
and red, respectively. (b) κee extracted from the temperature dependence against
κee extracted from the magnetic field dependence.

atures, the data should collapse to a single curve. This is shown in Fig. 35a
for a sample with density n = (2.14 ± 0.02) × 1013 cm−2, where a clear collapse
of the data is seen down to 250 mK. In figure 35b the same data are shown,
but instead of the phonon temperature an effective electron temperature was
used to obtain a collapse down to the fridge’s base temperature. The effective
temperatures used for the various samples to obtain the collapse are shown in
Fig. 35d. Interestingly the conductivity σ0 and coherence length Lϕ in Fig. 31b
follow the same trend as the Zeeman effective temperature, namely at Tcrossover
≈ 250 mK they stop being temperature dependent, as if the samples stopped
thermalising. However, although Lϕ and σ0 are constant below Tcrossover, other
effects start to become visible as the samples are cooled even more, showing that
the sample temperature is still falling, at least in some part of the sample. In par-
ticular, at Tcrossover the transverse voltage response starts to become non-linear
as a B-symmetric transverse voltage Vxy emerges for all magnetic field directions
(Fig. 36a and Fig. 36b). At the same time hysteresis in the longitudinal and
transverse magneto-conductance (Fig. 42a) appears with a maximum amplitude
around Tcrossover. These effects can be qualitatively explained by the formation
of a phase with an inhomogeneous conductance, i.e., a mixture of insulating and
conductive regions.
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Figure 35: Zeeman effect B/T scaling. (a) Change in conductivity due to
the Zeeman effect in units of the conductance quantum e2/ℏ, as a function of the
logarithm of the reduced field h = gµBB/kBT . The data is shown for multiple
temperatures and is from a single sample with free carrier density n = (2.14 ±
0.02)×1013 cm−2. The data collapse down to 250 mK. (b) Same as in (a), except
that an effective temperature Teff is used to obtain a full collapse of the data. Teff

is plotted for all samples in (d). (c) Zeeman effect for all samples. The effect is
stronger for lower free carrier densities (darker colour). (d) Effective temperature
Teff determined for all samples to collapse the Zeeman effect as in (a) and (b).

Low temperature inhomogeneous phase: Transverse volt-
ages

Below the transition temperature Tcrossover two unexpected effects are visible for
low density samples. The first is a transverse voltage Vxy created by a magnetic
field in any direction. This anomalous Vxy effect only arises for temperatures
lower than Tcrossover as is seen in Fig. 36 and Fig. 37a for a sample with a density
n = (1.18± 0.01) × 1013 cm−2. It is even in magnetic field; its amplitude increases
by three orders of magnitude as kFL and the free carrier density decrease, and
is non-existent for high kFL and density, as is shown in Fig. 37b. In the lowest
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density sample (n = (1.18± 0.01) × 1013 cm−2), the transverse voltage Vxy in
the absence of magnetic field is non zero below Tcrossover, visible in Fig. 37a.
The appearance of a large transverse Vxy in the absence of noticeable changes in
longitudinal Vxx cannot be explained by lead misalignment (see appendix A.3).
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Figure 36: Anomalous transverse resistance in magnetic fields. Transverse
resistance (Rxy = Vxy/I) in presence of an in-plane magnetic field in (a) and
an out-of-plane magnetic field in (b) for a sample with a free carrier density
of n = (1.18± 0.01) × 1013 cm−2 at various temperatures. When the bath
temperature falls below Tcrossover ≈ 250 mK, a transverse voltage even in the
B-field appears. The y-scale on both (a) and (b) are the same to highlight the
weaker Rxy effect in the out-of-plane field.

The second unexpected effect visible below the transition temperature Tcrossover

is a hysteresis in the magneto-conductance with a butterfly shape, shown in
Fig. 42a. The area of the hysteresis loop as a function of temperature has a
maximum at Tcrossover and vanishes at higher and lower temperatures, as can be
seen for a sample with n = (1.18± 0.01) × 1013 cm−2 in Fig. 42a. Here again, the
density plays an important role to the anomalous Hall effect and the hysteresis,
which are stronger for lower density samples. The hysteresis is visible with the
same relative strength in both the longitudinal Vxx and transverse Vxy voltages
and for all field directions, already indicating a mixing of Vxx and Vxy due to the
formation of an inhomogeneous conductive phase.

The low-temperature effects might be explained similarly to Kapitulnik, Kivel-
son and Spivak’s failed superconductors theory [64], in which superconducting
grains form within a conductor and fail to establish global superconducting co-
herence. In our case it is a failed insulator, the idea being that for temperatures
below Tcrossover, the 2D metallic layers undergo a crossover to a state where there
are insulating puddles in a metal, as has often been suggested [58,165–167]. This
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Figure 37: Temperature and density dependence of the anomalous trans-
verse resistance. (a) Temperature dependence of Rxy and Rxx in a sample with
n = (1.18± 0.01)× 1013 cm−2: In black, the change in Rxy induced by a 1 T in-
plane magnetic field (Rxy(Bx = 1T )−Rxy(B = 0T )). In red, Rxy in the absence
of magnetic field. Both values show a strong increase at low temperatures. The
sign of Rxy is set such that the Hall effect at higher temperature has a negative
slope. In blue, Rxx in the absence of magnetic field, Rxx and Rxy do not have
the same temperature dependence. (b) Change in Rxy at B = 1 T (in plane) and
T = 40 mK as a function of kFL. The dots indicate data from arsenic samples
and the squares from phosphorus samples. The effect depends only on kFL (or
density), but does not depend on the dopant species.

is likely to happen because the samples are near the metal-insulator transition.
The metallic part is responsible for the conduction and is affected by weak local-
isation and the Zeeman effect, however the localisation strength becomes limited
by inelastic scattering on the insulating puddles, such that it saturates at low
temperatures. On the contrary, the insulating puddles do not participate directly
in transport, but rather act as highly resistive inclusions that force the current
to flow around them. In this picture, especially in the limit when the insulating
inclusions are relatively dense and thus nearly interrupt the percolation of metal-
lic parts, the conductivity becomes anisotropic, such that the current does not
necessarily follow a straight path, as was shown by Parish and Littlewood [168].
This leads to non-zero transverse voltages Vxy, which depend on the meandering
paths followed by the electrons. The transverse voltage Vxy is very sensitive to lo-
cal variations along Hall bar’s edges, while the longitudinal voltage Vxx depends
on the mean of all current paths and is much less sensitive to small changes.
This can explain why Vxy saturates at lower temperatures than Vxx. The insu-
lating inclusions are present even in denser samples because of the high disorder,
however their size and number is lower, such that they limit the the coherence
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times and lead to the observed temperature saturation without causing detectable
inhomogeneous conduction and perpendicular voltages.

The extreme case of such an inhomogeneous conductor would be that there
is only one 1D conducting wire within the dopant layer. In that case, pictured
on Fig. 38, the 1D conducting wire might follow a straight line across the layer
(Fig. 38a), or a random zigzag trajectory (Fig. 38b). In the former case, the
transverse voltage Vxy would be zero and the longitudinal voltage Vxx should be
quantised. If the wire were quasi-1D, no quantisation of the conduction would be
visible, but the magneto-resistance should reflect the anisotropy and be strongest
when the magnetic field is parallel to the wire, such that it can couple to the
electrons’ orbital motion. In the latter case, as illustrated in Fig. 38b, the trans-
verse voltage Vxy can be mixed with the longitudinal voltage Vxx, and be non-zero
even in the absence of magnetic fields. If the 1D wire follows a sufficiently ran-
dom path, the planar magneto-resistance might be isotropic, as electrons move
in all directions in the plane. However, in the case of a single wire, Vxy would be
exactly proportional to Vxx, simply by a factor determined by the length of the
wire in-between the contacts, which disagrees with our measurements (see also
appendix A.3).

An inhomogeneous conductor could also be composed of multiple 1D wires,
which might be short, i.e., constrictions between insulating islands could force the
electrons to pass through locally 1D regions. When the number of such 1D wires
(or quasi 1D) is not too large (at low densities), there can still be a mixing of Vxy
and Vxx such that Vxy is non-zero. A magnetic field increases the number and size
of insulating regions, leading to an increase of regions with constricted current
flow (1D wires), and consequently to an increased mixing of Vxy and Vxx. As a
result, when a magnetic field is swept, Vxy changes more than Vxx, although it is
always only a part of Vxx, i.e., Vxy = α(B)Vxx with α(B) ∝ B2 in our samples.

In the failed insulator picture, the inhomogeneity is linked to the disorder and
the varying local dopant distribution. At lower densities it is more likely that
a region becomes insulating. Thus, the inhomogeneity should be a continuous
function of the decreasing density, and it should have a random distribution. The
picture of a few current paths is certainly exaggerated, particularly at relatively
high densities. However, even in the case of a random array of resistors there are
preferential current paths, as shown by Parish and Littlewood [169]. Figure 39
shows a result from their simulation of an array of 20×20 2D resistors, in which
the arrows indicate the direction and the amplitude of the current flow, and the
colour-scale is the associated local voltage. They simulated a uniform resistor
network, Fig. 39.a, and a random resistor network, Fig. 39.b, in the presence
of a perpendicular magnetic field. In the random network, the current creates
loops and has a strong local variability, and the ensuing voltage displays strong
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Figure 38: Vxy in a 1D wire within a 2D layer. (a) The conducting part of
the dopant layer is limited to a straight 1D wire and the voltage Vxy = 0 V. (b)
The conducting part of the dopant layer is a zigzagging 1D wire and the voltage
Vxx = αVxx, with α given by the geometry.

anisotropy. It is visible in Fig. 39.b that there is an anomalous Vxy in the random
network due to the filamentary current flow. However the exact influence of the
inhomogeneity on Vxy could not be extracted from such small networks, because
Vxy has a too strong local variation. Nonetheless, these results are relevant to
our disordered electron layers near the MIT, as they show that a random local
variation of the resistance naturally leads to anomalous transverse voltages Vxy.

The proposed inhomogeneous phase can qualitatively explain the observed
magnetic-field-symmetric Vxy (Fig. 36), its dependence on the sample’s electron
density, and its temperature dependence (Fig. 37). In this scenario, the measured
Vxy should depend on the location it is measured at, and the sign of the voltage
Vxy should be random from location to another. In figure 40 we show results from
the sample with electron density n = (1.70±0.04)×1013 cm−2. In both plots, two
resistances, Rxy,1 (black) and Rxy,2 (red), are shown as a function of the magnetic
field out-of-plane (crosses) and in-plane (dots). Rxy,1 is measured on the centre
of the Hall bar (Fig. 28 contacts 2-6) and Rxy,2 on the side (Fig. 28 contacts
1-7). At 40 mK, Fig. 40a, the results on Rxy,1 and Rxy,2 are entirely different,
most notably the sign of the measured voltage in planar fields is opposite, and
the magnitude of the effect has a factor two difference. At 500 mK, Fig. 40b, the
results are much more alike for both Rxy,1 and Rxy,2, in particular the sign of the
effect is the same. These results are in line with an increasing inhomogeneity in
the sample for decreasing temperatures.

The change of sign of Rxy,2 observed in Fig. 40, is also shown in Fig. 41.
As mentioned, the effect of a planar magnetic field on Rxy,2 changed sign upon
warming the sample from 40 mK to 500 mK, as is visible in Fig. 41a. Under the
assumption that the effect is due to inhomogeneous resistance in the sample, we
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Figure 39: Inhomogeneous network of resistors simulation. Simulation
from [169]. A potential difference of 1 V is applied from the top left to the
bottom right corner of the sample. The current directions and amplitudes are
indicated by the arrows and their thickness, respectively. The colour-scale shows
the local voltage. (a) A uniform 20×20 network. (b) A random 20×20 network.

could suspect that the exact distribution of insulating and conducting regions is
history dependent, and specifically dependent on the applied magnetic field while
cooling or warming the sample. The events leading to the sign change of Rxy,2 are
shown in Fig. 41b, in an Hx-T plane, where Hx is the in-plane field parallel to the
current. Initially Hx was set to 2 T at 800 mK, whereupon the temperature was
lowered to 40 mK, and an Hx field sweep from 2 T to -2 T gave the negative effect
in Rxy,2. Subsequently, the temperature was raised to 500 mK with the field still
at -2 T, and Hx was swept from -2 T to 2 T, resulting in the positive Rxy,2 effect.
Thus, the direction of the Bx magnetic field while thermalising the sample could
have influenced the formation of the random low temperature phase. Here, we
need remind that while the effect of Hx on Rxy,2 changed sign, it remained the
same on Rxy,1, and we have to specify that such a change of sign was observed
only in one sample out of five. However, the experiments were not conducted
specifically to look for this effect; in particular we did not try to magnetise the
samples by cooling from high temperatures (>1 K) with a magnetic field, which
will be done in future experiments.

The sign of Vxy in planar magnetic fields has been observed to change upon
warming the n = (1.70± 0.04)× 1013 cm−2 sample from 40 mK to 500 mK, sug-
gestive of a random time reversal symmetry breaking in the sample. In the same
sample, the sign was seen to be different when measured on different Vxy contacts,
indicating a strong local variability, as can be expected in a strongly inhomoge-
neous conductor. However, these observations were only made in one sample,
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Figure 40: Local variability of the anomalous transverse resistance. (a)
The transverse resistance as a function of magnetic field at 40 mK measured
on two different pairs of contacts, Rxy,1 and Rxy,2, on the same sample (n =
(1.70± 0.04)× 1013 cm−2). At 40 mK Rxy,1 and Rxy,2 are very different because
of strong sample inhomogeneity. (b) The same as in (a) at 500 mK.

and the other four samples with noticeable planar Vxy effect had consistently the
same negative sign in Vxy (the same sign as in the Hall effect when a positive
perpendicular magnetic field is applied). The odds of seeing four times the same
Vxy sign in response to a magnetic field if it were random are of 12.5%. However,
if the sign were not random, to account for this observation it would be necessary
for the time reversal symmetry to be broken consistently in the same biased fash-
ion, namely such that it results in an effective upwards pointing magnetic field.
For example, one could suspect the Rashba spin-orbit effect originating from the
asymmetry of the donors’ vertical confinement (see appendix A.5) to contribute
to Vxy. Time reversal symmetry has been reported to be broken by Coulomb
interactions in low density phosphorus δ-layers in silicon and germanium [36], in
that case the direction is random as it is the case in inhomogeneous conduction
and would not explain the possibly consistent sign of Vxy. The measured voltage
in the doping layers is given by

Va =
∑
b

Rab(B)Ib, (16)

where, in two-dimensions, the indices a and b are the x and y axis and Rab is a
two-by-two matrix. The resistance matrix must satisfy Onsager’s reciprocity,

Rxy(B,M) = Ryx(−B,−M), (17)

where M is magnetisation. Onsager’s reciprocity implies that the symmetric
part of R, (Rxy +Ryx)/2, is even under inversion of the field and magnetisation,
(B,M) ⇔ (−B,−M), while the antisymmetric part, (Rxy − Ryx)/2, is odd and

72



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

B
x
 [T]

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400
R

x
y
, 

2
 [

]

40 mK

500 mK

(a)

40 mK

800 mK

H-T plane

1

Hx

T

2 T-2 T

Vxy < 0

500 mK
Vxy > 0

1

23

4

(b)

Figure 41: Transverse voltage sign in the Hx-T plane. (a) The transverse
resistance Rxy,2 as a function of planar magnetic field at 40 and 500 mK, from
the sample with n = (1.70± 0.04)× 1013 cm−2. The sign of Rxy,2 changed upon
warming. (b) Hx-T trajectory for the measurement in (a). The bold numbers
indicate the chronological order.

requires time reversal symmetry breaking. Thus, the observed even in magnetic
field Rxy is the symmetric part of R, or if there is a stable internal magnetisation
M breaking time reversal symmetry, it can be part of the Hall part of R. If time
reversal symmetry is not broken (M=0), and Rxy is even in B, Onsager’s relations
imply Rxy = Ryx, and the measured sign of Rxy has to depend on the directions
of the measurements. If instead time reversal symmetry is spontaneously broken,
the ensuing Hall effect (antisymmetric part of Rxy) is an even function of B, but
reflects the arbitrary sign of the spontaneous magnetisation and thus is again
random. Altogether, it seems most likely that the planar Rxy effect has a random
sign. If Rxy were the symmetric part of R caused by inhomogeneity it would be
resilient to thermal cycles, while if it were the Hall part due to a magnetisation
it should vary upon thermal cycling.

Low temperature inhomogeneous phase: Hysteresis

Recent calculations for the translationally invariant, non-disordered 2D Hubbard
model [73] predict that near the MIT the metallic phase has a higher entropy
than the insulating phase, such that, if the insulating phase has a lower internal
energy than the metallic phase, lowering the temperature or applying a magnetic
field in any direction favours the insulator and increases the number of insulating
inclusions. The isotropic response to magnetic fields explains the observed even
Vxy effect and hysteresis. If the transition is first order, as expected for high
disorder, then it takes a long time to nucleate the flip to the more stable insulat-
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ing phase, leading to hysteresis in the magneto-conductance. When a magnetic
field is applied, polarisation of the spins promotes the insulating phase, resulting
in an increase of insulating regions. When the field is removed, the newly cre-
ated insulating regions progressively re-become metallic, resulting in the observed
butterfly-shaped hysteresis.
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Figure 42: Magnetic field induced hysteresis. (a) Top: example of the
hysteresis in longitudinal magneto-conductance seen in low density samples at
Tcrossover = 250 mK for a sample density n = (1.18± 0.01)× 1013 cm−2. Bottom:
temperature dependence of the area of the hysteresis loop, showing that the hys-
teresis is most visible around Tcrossover. (b) Time traces taken immediately after
sweeping the magnetic field from B⊥ = 1.6 T to 0.1 T, for many temperatures
indicated in the legend. The points are data, and the lines are fits to an expo-
nential decay function exp−t/τ . The inset shows the decay rate τ as function of
the inverse temperature.

The hysteresis is due to a slow relaxation time from a more insulating state to
a more conductive state, as can be seen by sweeping the field from 1.6 T to 0.1 T,
and measuring the resistance as a function of time, as is done in Fig. 42b. At
temperatures higher but close to Tcrossover a fast decay to a constant resistance
is observed. As the temperature reaches Tcrossover the decay is slow and the final
resistance is not reached within 100 s. For even lower temperatures, the decay
time becomes very long, such that the change in resistance is barely detectable in
100 s, explaining the apparent disappearance of the hysteresis at low temperatures
in Fig. 42a. The decay rate τ is obtained by fitting the time traces with an
exponential decay of the form exp−t/τ . The temperature dependence of τ is
shown in the inset of Fig. 42b in an Arrhenius plot, highlighting that the dynamics
of the hysteric phase slows down with decreasing temperatures to the point that
it becomes a glassy metallic phase, as was also seen in Si MOSFETs near the
MIT [68,69].
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The observation of hysteresis is suggestive of a first order phase transition
tuned by the magnetic field. However, in the case of an inhomogeneous material,
one would rather expect a stretched exponential time decay composed of multiple
decay times, reflecting the multitude of regions with different activation energies.
The Arrhenius plot gives a single activation energy of the order of 600 mK,
which corresponds to the temperature at which the hysteresis starts to be visible,
and points to an energy barrier associated with spin-orbit coupling through the
antisymmetric Dzyaloshinskii–Moriya (DM) exchange interaction. In the case
of broken spatial inversion symmetry, neighbouring spins pointing in different
directions can interact through the antisymmetric DM interaction (of the form
HDM = αJ(Si × Sj)), with an interaction strength αJ , where J = t2/U is the
exchange constant, and α might be expected to be of the order 0.1 in silicon
[170]. Using U ∼ 40 meV for a single donor in silicon, and t = U/6 at the
MIT [73], we obtain an estimation for the DM interaction αJ ∼ 1.2 K, close
to the observed activation energy. The mechanism responsible for the hysteresis
could be the following: clusters with an odd number of sites have a ground
state with a net spin, because of the DM interactions the cluster’s spin has a
preferential direction. Thus, to rotate the cluster’s spin (after the magnetic field
was changed) an energy barrier has to be overcome, which is the activation energy
αJ . The mechanism requires a large number of clusters with an odd number of
spins, and inversion symmetry to be broken. Both requirements are enhanced
by larger inhomogeneity, and thus, are enhanced at low densities, in agreement
with our observations, and with experiments on similar silicon and germanium
δ-layers [36].

Low temperature inhomogeneous phase: Edge conduction

In the failed insulator picture, the transverse voltages are due to the samples’ con-
ductivity becoming anisotropic because of randomly emerging insulating regions.
It stands to reason that the lower the dopant density, the more regions become
insulating. This agrees with the planar-field transverse response and the hystere-
sis being stronger for lower density samples. When the density is sufficiently low,
the anisotropy can be such that the conduction is different along different edges
of a sample. To test this hypothesis, we made a special low density arsenic Hall
bar (n = (1 ± 3) × 1013 cm−2) inspired by [171], as shown in Fig. 43a, in which
the current can be passed through an edge and the voltage measured on the same
edge (VLat) or on the opposite edge (VHyb). If the conduction is isotropic (and
if source and drain contacts are sufficiently far from the contacts for the voltage
measurements), then both voltages VLat and VHyb must be the same, however if
the conduction is inhomogeneous, the voltage VHyb on the opposite edge becomes
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Figure 43: Evidence of inhomogeneous conduction. (a) Setup for edge
conduction measurements. Top: if the conduction is homogeneous in the sample
both voltages VLat and VHyb are the same. Bottom: if the conduction is only on
the edges of the sample the voltage VLat will be larger than VHyb. (b) Voltages
Vred and Vblack measured on the black and red leads (inset), respectively, as a
function of temperature for a sample with density n = (1 ± 3) × 1013 cm−2. At
T < Tcrossover ≈ 500 mK, Vred becomes different than Vblack, indicating that the
sample’s conductivity is inhomogeneous. The inset shows the geometry used for
the measurements, with It indicating the current being set from the top and
Ib from the bottom. The resistance measured with It and Ib is indicated with
circles and squares respectively. The colour of the contacts used to measure the
resistance corresponds to the colour of the data.

different to VLat, and in the case of edge-only conduction VHyb is smaller than
VLat. By looking at the temperature dependence of VLat and VHyb in Fig. 43b, it
is clear that for temperatures above Tcrossover the voltages are the same, indicat-
ing homogeneous conduction, while for temperatures below Tcrossover they differ,
proving that the conduction becomes highly inhomogeneous.

The inset in Fig. 43b shows the geometry used for the measurements shown
in Fig. 43b, the red data are measured on the leads coloured in red and the black
data on the leads coloured in black. Each voltage was measured twice, once for
the current source connected to the top edge (black arrow It) and once to the
bottom edge (black arrow Ib). The circles indicate the resistance measured with
It and the squares the resistance measured with Ib. We find that the measured
voltages are independent of the side on which the current was passed (It or Ib),
meaning that the sample’s conductivity is inhomogeneous but not limited to the
edge, i.e., it is not a topological insulator with edge-only conduction. In fact if
the conduction was limited to the edges, the measurement would be symmetric
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upon switching It to Ib and the black circle would be equal to the red squares
(and inversely).

A further indication that the sample changes phase to an inhomogeneous phase
is seen in Fig.44, in which the I-V characteristics are measured for VLat, along the
edge of the n = (1±3)×1013 cm−2 sample. For temperatures below Tcrossover, the
voltage VLat and VHyb show non-linear response to the applied current, indicating
a transition to a non-Ohmic state. The non-Ohmic response could indicate an
inhomogeneous glassy state, as also suggested by the hysteresis.
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Figure 44: Ohmic to non-Ohmic transition in the inhomogeneous phase.
Resistance on VLat as a function of current for multiple temperatures, in a sample
with density n = (1±3)×1013 cm−2. As the temperature drops below Tcrossover ≈
500 mK the sample becomes non-Ohmic, as shown by the non-linear response to
the current (non-constant resistance).

In conclusion we used magneto-transport measurements to show that for low
dopant density δ-layers in silicon there are two regimes. The first is a conventional
weakly localised disordered metal. While this regime has been extensively stud-
ied and described by localisation effects for silicon-based δ-layers, we find that
when the conduction layers are sufficiently thin and dilute it becomes necessary
to consider the Zeeman effect to describe the magneto-conductance. Moreover,
we find that the Zeeman effect is isotropic and adds up in conductivity to the
weak-localisation effect. The second regime is a failed insulator phase, for which
the δ-layer becomes a mosaic of insulating and metallic regions. In this regime a

77



number of exotic effects appear, linked to strong inhomogeneity and time reversal
symmetry breaking. In particular, at low electron densities we observe an anoma-
lous even transverse voltage response, hysteresis in the magneto-conductance, and
anisotropic conduction. It is interesting to note that in many cases planar-field
transverse response, hysteretic magneto-conductance, and edge conduction are
interpreted as proof of non-trivial topology [171,172], whereas our works suggests
that non-trivial topology is not necessary to explain such effects. Instead, we can
explain them by a regime of coexisting metallic and insulating regions, which is
a plausible picture for materials close to the metal-to-insulator transition.
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6 Conclusions

In this PhD work a number of observations are made about group-V doping
layers in silicon. First of all, we can make the general statement that using
arsenic instead of phosphorus for dopant-based quantum electronic devices is
beneficial, because the adsorption of arsenic in silicon can be achieved with less
donor diffusion and thus better precision. This claim is based on the fact that
two-dimensional layers fabricated with arsenic are thinner than their phosphorus
counterpart. The dopant layer thickness was measured by three methods: soft X-
ray angle-resolved photon-emission spectroscopy (ARPES), X-ray reflectometry,
and low temperature magneto-resistance. It is consistently found to be of the
order of half a nanometre for arsenic δ-layers, and one nanometre for phosphorus
δ-layers.

In addition to showing that X-rays can be used to measure two-dimensional
dopant layer thickness, we showed that a combination of X-ray fluorescence and
reflectometry can determine the three-dimensional distribution and atom-species
of buried dopant structures in silicon, without affecting any of the electron’s char-
acteristics. This is an important development for device inspection and quality
control, necessary for the fabrication of more complex structures, such as multi-
qubit devices.

By means of low-temperature magneto-transport experiments, we also found
that for low-dopant densities, electron-electron interactions effects become large,
such that the magneto-conductance cannot be described by weak-localisation
alone, but the Zeeman effect has to be taken into account. The Zeeman part of
the magneto-conductance is isotropic in magnetic field direction and can be sub-
tracted out by taking the difference between perpendicular and planar magnetic
field sweeps. We found that for very thin layers, even at high dopant densities,
omitting the Zeeman effect leads to a misestimation of the dopant layer thickness.

Finally, the reduced thickness and density of the conductive layers sets the con-
duction electrons in an unexplored regime; that of a highly disordered, half-filled,
interacting electronic Hubbard model. The access to this new regime revealed new
physical effects for doped silicon layers. Notably, we discovered that in low-density
doping layers there is a low-temperature phase characterised by inhomogeneous
conduction and slow spin relaxation dynamics. Because of the meandering of the
current in the inhomogeneous conductor, we observe an anomalous transverse
voltage that has an even response to magnetic fields. The inhomogeneous phase
is marked by the apparent freezing of the conduction parameters, which can be
due to the electron coherence length becoming limited by inelastic scattering on
insulating regions. In future experiments it will be important to study the effect
of cooling the conductive layers in the presence of magnetic fields, to determine
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whether the formation of the inhomogeneous phase is history dependent, and
whether the direction of the time reversal symmetry breaking can be controlled.

In conclusion, this work motivates the use of arsenic donors in silicon and
germanium for quantum devices, and should foster interest in the physics of
dilute, thin dopant layers in silicon. It is of particular interest to further explore
the intriguing properties of two-dimensional doped silicon when doped close to
the metal-insulator transition, in order to understand the exact nature of low
temperature electron transport in the world’s most common semiconductor.
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A Appendix

A.1 Electrical measurement setup

In order to reach sufficiently low temperatures for the conductivity to be sensi-
tive to quantum interference effects, we use a Triton 400 cryogen-free dilution
refrigerator from Oxford instruments with a base temperature of ∼25 mK. The
dilution system is equipped with a vector magnet operated at 4 K. The magnet
is composed of three superconducting coils placed orthogonally with respect to
each other, that can apply a magnetic field up to 2 T each. The sample holder is
placed in the centre of the magnets. By controlling the current in each coil, the
magnetic field can be rotated in any direction without moving the sample.

In the experiments the magnetic field is swept at 300 Gauss/min, slow enough
to avoid excessive heating by induced currents, and before measuring the voltages
we always wait for the temperature on the sample holder to have been stable for
at least 60 seconds. The temperature is considered to be stable if it is within 3%
of the set temperature, or within 60 mK when the temperature is set above 2 K.
The temperature was measured with a RuO2 thermometer attached on the puck
at ∼1 cm distance from the sample.

The samples were attached with silver paint into standard lead-less chip-
carriers and contacted with aluminium bonding wires. Most of the thermal con-
tact was through the thermalised wires.

The longitudinal voltage Vxx and the transverse voltage Vxy were measured
with a four-point scheme such as to be insensitive to the contact resistances, as
shown on figure 45. A small AC current was passed across the Hall bars, and the
voltage was measured with a lock-in amplifier on a pair of contact leads on one
side of the Hall bar for Vxx, and on opposing sides for Vxy. The samples have eight
contacts, of which two are used for passing the current, meaning that there are
six ways of measuring Vxx and three ways of measuring Vxy. For extremely low
temperature measurements, it is important to use low currents, in our case less
than 1 nA, to avoid heating the samples by Joule heating. The use of low currents
comes with the difficulty of extracting low voltages from the environment noise.
Firstly, all the measurement circuits have to be shielded from electromagnetic
radio-frequency interference from lab equipment, etc., and care is taken to not
create ground loops. The remaining noise mostly comes from the thermal electric
noise in the room-temperature part of the setup. Noise is reduced by limiting the
distance that the voltage signal and current have to travel at room-temperature
outside of the dilution refrigerator before being amplified. However, the voltage
signal often remains smaller than the background noise, making it necessary to
use a low frequency AC (13.7 Hz) current and lock-in amplifiers to amplify the
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Figure 45: Four-point setup for electrical measurements of a Hall bar. The red
region represents the electronics at ∼300 K, and the blue region represents the
part of the circuit in the dilution refrigerator.

voltage at the excitation frequency.

For our measurements we first used a Lakeshore 370, which contains the AC
current source and the lock-in amplifier. Later we changed to using a CS580
current source and a SR830 lock in from Stanford research instruments, and the
current source was controlled by the SX199 optical switch. While the latter
setup offered more experimental flexibility, the results were not influenced by the
instrumentation.

A.2 Sample alignment and Ohmic measurements

The vector magnet in the dilution system gives the possibility to align the field
very precisely to the device’s axis. In many measurement systems, the magnetic
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Figure 46: (a) Magnetic field alignments at 2 T and 800 mK. The maximum of
resistance is for the magnetic field in the Hall bar’s plane. (b) Resistivity as a
function of the current at 40 mK and 0 T.

field is fixed and the sample rotated around one axis, such that it is impossible
to correct field misalignment in all direction. Here, after having cooled down
a sample, we start by rotating the magnetic field around the Hall bar’s X and
Y axis. Because of the weak-localisation effect (equation (13)), the resistance
is maximum when the field is in the δ-layer’s plane. An example of alignment
measurements for a sample with electron density 1.2×1013 cm−2 is shown in fig-
ure 46a, by finding the angles at the maximum of resistance in the field rotations
around the X and Y axis we can define the orthonormal sample axis. The align-
ment is very precise, for example the uncertainty of the correction angles from
the measurements shown in figure 46a is ≈ 0.03 degrees.

A prerequisite to making magneto-transport measurements is to ensure that
the measurements are taken in the linear I-V regime, i.e., in the Ohmic regime.
Figure 46b shows a measurement of the resistivity as function of the current at
40 mK and in the absence of magnetic field, for the same sample. In practice, the
resistance is obtained from the measured voltage using Ohm’s law (R = V/I),
which implies a linear I-V relation for the resistance to be independent of the
current. In the case of our δ-layers, as is visible figure 46b, the resistivity is inde-
pendent of the current up to hundreds of pA. At higher currents, the sample is
heating, such that the resistance decreases as expected for weakly localised con-
duction (see equation (6)). The maximum current of the Ohmic regime depends
on the sample’s resistance, because the power from the Joules heating P = I2R

causes samples with higher resistance to experience significant heating at lower
currents. In our experiments we always make sure to be in the Ohmic regime.
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Figure 47: (a) I-V characteristics of the longitudinal voltage Vxx and transverse
voltage Vxy measured on three pairs of contacts, with no magnetic field, at 100
mK. (b) The resistance extracted from (a) with (crosses) and without (dots)
taking into account the I=0 voltage offset.

A.3 Anomalous Vxy effect and feedthrough

The anomalous transverse voltage Vxy shown in section 5.2.2, observed in low-
density δ-layers, is discussed here in more details. The I-V characteristics in
the absence of a magnetic field at 100 mK of our lowest density sample (which
has the strongest anomalous behaviour) are shown in figure 47a. The curves are
linear with a constant offset of the order of 10−7 V at zero current. The transverse
voltage Vxy measured on three separate pairs of contacts (see figure 11 for a sketch
of the sample) shows that Vxy is location dependent, as would be expected in an
inhomogeneous conductor. In section 5.2.2, the transverse resistances shown in
figure 36 are taken from the same contacts as Vxy,3 in figure 47a. The same I-V
data is converted to resistance using Ohm’s law in figure 47b, both by subtracting
the zero current offset (crosses) and not (dots). We see that not taking into
account the offset results on a non-constant resistance Rxy up to ∼1 nA for
Vxy,1 and Vxy,2, and makes no visible difference for Vxy,3. The lead misalignment
necessary to cause such spontaneous voltages at 100 mK would be of 16.6 µm,
7.8 µm, and 2.0 µm for Vxy,1, Vxy,2, and Vxy,3, respectively, much more than what
can be expected for lithographically etched devices.

A good way to look for the effect of lead misalignment to the transverse resis-
tance Rxy is to look at Rxy as a function of Rxx, because one expects

Rxy = Roffset + δRxx +RHall, (18)

where δ is the lead misalignment. Thus, in the absence of planar Vxy effects, the
data plotted as Rxy/Rxx, as in figure 48a for in-plane magnetic fields should, be
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Figure 48: (a) Rxy/Rxx as function of Bx for multiple temperatures, measured
in the the low density sample, n=1.2×1013 cm−2. (b) The same data as in (a),
shown in the from of Rxy as a function of Rxx, for multiple temperatures.

a constant, δ. Similarly, plotting the same data from figure 48a in the form Rxy

as a function of Rxx should give a linear function with slope δ. In figure 48b
the dependence is linear for temperatures down to 500 mK, with a realistic slope
δ=0.46µm. For lower temperatures, for which a non constant Rxy/Rxx effect is
seen in figure 48a, the relation becomes non linear, indicating that feedthrough
cannot explain the measured Rxy.

Finally, the anomalous transverse voltage was shown to be stronger for planar
fields in figure 36. Here, in figure 49a and 49b we show that in a dilute sample,
the effect at 250 mK of a planar field parallel to the current Bx and transverse
to the current By, is the same within error margins. In figure 49b we see that
the angle of the planar field with respect to the current in the sample has a small
influence, with the largest Rxy response when the field is parallel to the current.

A.4 Hall factor temperature dependence

The Hall factor RH is the slope of the antisymmetric piece of Rxy as a function of
magnetic field B⊥. RH is related to the electron density n as RH = 1/(ne), such
that the Hall slope is lower for higher density samples. The effect of electron-
electron interactions is to increase RH by an amount δRH at low temperatures,
proportionally to the increase of the longitudinal resistance δR. The expected
relation is δRH/RH = 2δR/R, however it is necessary to extract the part of
δR that stems from electron-electron interactions to verify the relation [87]. In
our case, the Hall effect in low density samples becomes indiscernible because of
the dominating anomalous effect, and taking the odd part of the effect does not
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Figure 49: (a) Measured Rxy in the sample with density n = 1.2× 1013 cm−2, at
250 mK as a function of a planar magnetic field parallel Bx to the current and
perpendicular By to the current. (b) Rxy in the same sample as a function of the
in-plane angle of a 2 T field. At 0 degrees the field is parallel to the current.

give a clear linear function. Thus, we can only look at the change of RH at low
temperatures in denser samples, as shown in figure 50. The sample with density
n = 8.5 × 1013 cm−2 has a Hall factor RH that increases at low temperatures
and saturates at the critical temperature for which the conductivity saturates.
This effect, along with the Zeeman effect, and the conductivity’s temperature
dependence, confirms that in the dilute δ-layers electron-electron interactions are
non negligible.

A.5 Dopant depth profile and transverse voltage

From SIMS measurements, shown in figure 51, we know that the dopant distri-
bution as a function of depth is not a symmetric gaussian function, but has a
stretched tail away from the surface. The asymmetric distribution is a result of
diffusion during sample growth. The gradient of donor electrons across the layer
causes an electric field E⊥ perpendicular to the dopant layer. When the electron
density is high, screening prevents the electrons from feeling E⊥. In the frame
of the moving electrons, the electric field is seen as an in-plane magnetic field
B||, this is the Rashba effect [19]. However, the Rashba magnetic field cannot be
responsible for the transverse voltage, as it is in-plane. For a transverse voltage
Vxy to be generated, there should be an effect that would couple the electric field
E⊥ and the electron current I with a cross product such that a transverse voltage
Vxy is generated, however such an effect would contradict the Onsager relation
ρxy(H) = ρyx(−H), without breaking time reversal symmetry, and is thus not
possible.
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Figure 51: Dopant distribution depth profile. Secondary-ion mass spec-
troscopy depth profile of four δ-layers, from Procopios Constantinou. (a) Is a
sketch of the sample. (b,c) As layers depth profiles. (d,e) P layers depth profiles.
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A.6 X-ray fluorescence methods

Sample preparation. Si(001) samples were diced to 2× 9 mm from a 0.5 mm
thick, Czochralski grown wafer, with bulk arsenic doping of density 3×1014 cm−3,
and resistivity >15 Ω cm. These samples were cleaned ultrasonically in acetone
followed by isopropyl alcohol. Each sample was thermally outgassed in vacuum
(base pressure <5×10−10 mBar) for >8 h at 600 ◦C, and flash annealed multiple
times at 1200 ◦C, using direct current resistive sample heating. Sample tempera-
ture was monitored using an infrared pyrometer (IMPAC IGA50-LO plus), with
a total estimated measurement uncertainty of ±30 ◦C.

The samples were dosed with AsH3 with varying total exposures to control the
dopant density. They were then heated at 350 ◦C for 2 minutes to incorporate
the dopants into the Si lattice [173]. Subsequently, samples were imaged with
STM, as shown in Fig. 21, and the density of ejected Si atoms was used to
estimate the density of incorporated As atoms nSTM . All STM measurements were
performed in an Omicron variable temperature series STM at room temperature
with a base pressure of <5×10−11 mBar. After incorporation, 2 nm of Si were
deposited on the samples with no resistive sample heating. The samples were then
resistively heated to 500 ◦C for 15 seconds. This procedure gives a well-confined,
electrically active dopant layer [82, 83]. A further 28 nm of Si was deposited
on the samples held at 250 ◦C. Si deposition was performed at a base pressure
of 2×10−10 mBar, using an all silicon, solid sublimation source (SUSI-40, MBE
Komponenten GmbH) operated at a deposition rate of 0.003 nm/s. During Si
deposition, the sample temperature was indirectly monitored by measuring the
sample resistance, while heating using a direct current resistive sample heater.

To measure the electrical properties of the dopant layers, the samples were
etched into Hall bars. This was done using optical lithography and reactive ion
etching. Ohmic contacts were established by deposition of aluminium into arrays
of etched holes extending through the δ layer [84]. On each sample, two Hall-bars
were produced, as well as an unetched region to be used for SIMS. The samples
were cleaved between the two Hall-bars. Each Hall-bar was mounted on a chip
carrier, and electrically connected to the carrier by aluminium wire bonds.

X-ray fluorescence spectrum. The fluorescence spectra obtained at each
pixel of the XRF images (see Fig. 22a-c) are decomposed into a sum of elemental
spectra with the help of the PyMca software [144]. An example of a decompo-
sition is presented in Fig. 52, where the fluorescence spectrum of each separate
atomic-species is shown. Scattering peaks are also shown as dotted lines; they are
the two peaks at highest energy, with the elastic scattering at the incident energy
11.88 keV and the inelastic Compton peak at slightly lower energy. Clearly vis-
ible in the spectrum is that each elemental spectrum contains at least one peak
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The black line is the data and coloured lines are fits to one element’s resonant
edge. Full lines indicate a K-edge, while dotted lines indicate L and M -edges as
well as the scattering peaks.

at a unique frequency, such that it is straightforward to identify the elements
contributing to the spectrum. Only elements that cannot be excited by the in-
cident X-ray energy cannot be detected by fluorescence. For the energy used
here, 11.88 keV, the heaviest detectable element is U. To obtain a single element
image, as shown in Fig. 22a-c, it suffices to isolate in each pixel the intensity of
one elemental fluorescence peak at its known energy.

X-ray fluorescence signal/noise ratio. To calculate the signal/noise ratio
(SNR) given in Fig. 23, we took two 30 µm traces, one on the doped region
(Ton) and one off the doped region (Toff ). The SNR was then simply defined as
SNR = (mean(TOn)− mean(Toff ))/std(TOn)).

Magneto-transport setup. For the electrical measurements we used a stan-
dard Physical Property Measurement System (PPMS) from Quantum Design. It
contains a cryostat with a superconducting magnet coil, and can control the tem-
perature down to T = 1.8 K and the magnetic field up to B = 9 T. The samples
were bonded on a standard lead-less chip carrier and inserted in a socket attached
to a horizontal rotator. The rotator is motor-controlled and the rotation axis is
such that the magnetic field can be set from parallel to perpendicular to the cur-
rent in the Hall-bar. The resistance is measured in a four-point geometry using
a resistance bridge and with a 5 Hz square wave 100 nA current. The current is
chosen to be in the linear I−V response regime, and such that the Joule heating
is negligible.

Secondary-ion mass spectrometry. Time-of-flight SIMS measurements were
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conducted using an IONTOF ToF-SIMS(5) system with a 25 keV Bi+ primary
ion beam in high current bunch mode, and a 500 eV, 35 nA Cs+ sputter beam.
Depth profiles were made with a 300 × 300 µm sputter crater, and the analytical
region was the central 50 × 50 µm of the sputter region. The measured As-ion
count rate was converted to a dopant density by measuring a sample of known
density with the same setup.
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