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Embedding cyclic causal structures in acyclic spacetimes:
no-go results for process matrices
V. Vilasini and Renato Renner

Institute for Theoretical Physics, ETH Zurich, 8093 Zürich, Switzerland

Causality can be defined in terms of a space-time structure or based on information-
theoretic structures, which correspond to very different notions of causation. When analysing
physical experiments, these notions must be put together in a compatible manner. The
process matrix framework describes quantum indefinite causal structures in the information-
theoretic sense, but the physicality of such processes remains an open question. At the
same time, there are several experiments in Minkowski spacetime (which implies a definite
spacetime notion of causality) that claim to have implemented indefinite information-theoretic
causal structures, suggesting an apparent tension between these notions. To address this,
we develop a general framework that disentangles these two notions and characterises their
compatibility in scenarios where quantum systems may be delocalised over a spacetime. The
framework first describes a composition of quantum maps through feedback loops, and then
the embedding of the resulting (possibly cyclic) signalling structure in an acyclic spacetime.
Relativistic causality then corresponds to the compatibility of the two notions of causation.
We reformulate the process matrix framework here, establishing a number of connecting
results as well as no-go results for physical implementations of process matrices in a spacetime.
These reveal that it is impossible to physically implement indefinite causal order processes
with spacetime localised systems, and also characterise the degree to which they must be
delocalised. Further, we show that any physical implementation of an indefinite order process
can ultimately be fine-grained to one that admits a fixed acyclic information-theoretic causal
order that is compatible with the spacetime causal order, thus resolving the apparent paradox.
Our work sheds light on the operational meaning of indefinite causal structures which we
discuss in detail.
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Renato Renner: renner@phys.ethz.ch

1

ar
X

iv
:2

20
3.

11
24

5v
1 

 [
qu

an
t-

ph
] 

 2
1 

M
ar

 2
02

2

https://quantum-journal.org/?s=Embedding%20cyclic%20causal%20structures%20in%20acyclic%20spacetimes:%20no-go%20results%20for%20process%20matrices&reason=title-click
https://quantum-journal.org/?s=Embedding%20cyclic%20causal%20structures%20in%20acyclic%20spacetimes:%20no-go%20results%20for%20process%20matrices&reason=title-click
mailto:vilasini@phys.ethz.ch
mailto:renner@phys.ethz.ch


Contents
1 Introduction 3

2 Composition of quantum maps and signalling structure 8
2.1 Composition of maps through feedback loops . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Signalling structure of maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Compatibility of a signalling structure with a causal structure . . . . . . . . . . . . . . . . 13
2.4 Fine-graining causal structures, systems and maps . . . . . . . . . . . . . . . . . . . . . . 14

3 Spacetime structure and relativistic causality 19
3.1 Implementing quantum maps in a spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Relativistic causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Review of the process matrix framework 22
4.1 Assumptions and framework preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Different classes of processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Reformulating the process framework in terms of composition 25
5.1 The process map, extended local maps and their composition . . . . . . . . . . . . . . . . 25
5.2 Probabilities and reduced processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Equivalence of device dependent and independent notions of signalling . . . . . . . . . . . 29

6 Characterising physical implementations of process matrices 29
6.1 No-go results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Unravelling indefinite order processes into fixed order processes . . . . . . . . . . . . . . . 32

7 Causality in the quantum switch 34
7.1 The quantum switch as a process matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2 No-go result for the quantum switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Consequences for experimental implementations . . . . . . . . . . . . . . . . . . . . . . . . 37
7.4 Minkowski quantum switch with time localised systems . . . . . . . . . . . . . . . . . . . 39
7.5 Gravitational quantum switch vs fixed spacetime implementations . . . . . . . . . . . . . 40

8 Demystifying indefinite causation 43

9 Conclusions 47

A Loop composition 48

B QS as a higher-order transformation 49

C An implementation of QS with a definite acyclic causal structure 49

D Proofs of all results 51

2



1 Introduction
The notion of causality in physics has a striking resemblance to that of entropy : Everyone uses the
term, but no one knows what it really is.1 And like entropy, causality doesn’t have a single definition.
Rather, depending on the branch of physics, the definitions that are commonly used highlight different
aspects. In the context of relativity theory, causality is a property of the geometry of spacetime and
thus ultimately determined by Einstein’s field equations. To distinguish it from other notions, we will
call it spacetime causality. In the context of quantum theory, for instance, the notion of causality is
more commonly used to describe how interventions, such the choices of parameters by an experimenter,
influence observations. Since this is related to how information flows between these values, we refer to
it as information-theoretic causality. Note that this information-theoretic notion does not refer to the
structure of spacetime. Conversely, spacetime causality can be defined without referring to information
theory. Nonetheless, like in the case of entropy, whose use in thermodynamics is deeply connected to the
— a priori rather different — information-theoretic definition, the two notions of causality are related
to each other. This distinction and connection has also been highlighted and studied in a recent work
involving one of us [2].

Both spacetime causality and information-theoretic causality define a relation between certain events.
That is, they assert whether or not an event B lies in the causal future of an event A. In the case of
spacetime causality, the events are points (or regions) in spacetime, and the relation is specified by
the metric tensor together with a time direction.2 Conversely, for information-theoretic causality, the
events are associated to random variables (or, more generally, quantum systems) and the order relation
is specified by information-thoretic channels connecting them, which can generate correlations between
them.

In any real physical experiment, these two notions of causality play together. For a concrete example,
consider an experiment where a source emits particles whose properties can be measured by a detector,
the property to be measured being specified by the position of a knob As that is turned at a particular
time. The detector measures the property of the incoming particles according to the knob setting As
and displays the result as a position of a pointer Ao at a certain time. As and Ao can be regarded as
random variables and thus give raise to an information-theoretic notion of causality. But As and Ao are
also associated to locations in spacetime, and they thus inherit the causality relation that is specified by
the spacetime metric. Naturally, we would require that these two notions of causal order are compatible
with each other, in the sense that any information-theoretic causality relation implies a corresponding
spacetime causality relation. Concretely, Ao can only lie in the information-theoretic future of As if Ao
lies in the spacetime future of As.

These considerations hint at a more general principle, which one may regard as an instance of Lan-
dauer’s famous slogan that “information is physical” [3]. Landauer was referring to thermodynamics and
what he meant is that any realistic information-processing system is also a physical system and hence
has to obey the laws of thermodynamics. This principle plays a key role in the modern understand-
ing of the notion of entropy that we alluded to above. It emphasises that information-theoretic and
thermodynamic entropy are unavoidably related. Repurposing Landauer’s slogan, we may say that any
processing of information takes place in a spacetime.3 In particular, there must be an association between
information-theoretic events and spacetime events. Consequently, the information-theoretic causal struc-
ture is embedded in the spacetime causality structure. This leads us back to the compatibility requirement
mentioned above.

The interplay between spacetime and information-theoretic causality can however be quite subtle,
especially when one considers quantum experiments. The probably most famous example that illustrates
this point is Einstein-Podolski-Rosen (EPR) experiment [4], where two agents, Alice and Bob, carry out

1According to a widely circulated story, Claude Shannon, who was looking for a name for his measure of information,
received the following advise from his close friend John von Neumann: “Why don’t you call it entropy? [...] no one
understands entropy very well, so in any discussion you will be in a position of advantage” [1].

2Considering the fact that the metric tensor can be recovered from the causal structure up to a scaling factor, one can
basically identify the causal relation with the spacetime geometry.

3By this we do not mean that there must exist a background spacetime on which physics is embedded, the notion
of spacetime may very well be given solely by physical reference systems such as rods and clocks possessed by agents
participating in the protocol. The point is that we must instantiate our information-processing protocols with some notion
of spacetime and characterise the compatibility of the two causal notions, in order to analyse physical experiments.
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measurements on two separate quantum systems, which are mutually entangled. The analysis of the
experiment relies on both notions of causality. Let As and Bs be the choices of measurements made
by Alice and Bob, and let Ao and Bo be the corresponding outcomes they observe. For the spacetime
causality, this means that Ao must lie in the causal future of As and, similarly, Bo must lie in the causal
future of Bs. In addition, EPR demand that the two measurements are spacelike separated, i.e., that Bo
does not lie in the spacetime future of As, and that Ao does not lie in the spacetime future of Bs. The
compatibility requirement described above now implies that Bo cannot lie in the information-theoretic
future of As, nor can Ao lie in the information-theoretic future of Bs. The compatibility requirement
thus immediately leads to the important question whether quantum theory satisfies such an information-
theoretic criterion. And it was precisely this question that Einstein answered very colorfully when he
wrote to Max Born that there should be no “spooky action” at a distance [5].

Recall that information-theoretic causality relates to the flow of information. That is Bo lies in the
causal future of As if information could be transmitted from As to Bo. Whether this is the case for
the EPR experiment ultimately depends on the theory that one uses to describe it. According to stan-
dard quantum theory, the information-theoretic and spacetime causal futures coincide, and Bo does not
causally depend on the choice of As. Consequently, we may say that within the EPR experiment quan-
tum theory satisfies the compatibility criterion between spacetime and information-theoretic causality.
Conversely, as shown by Bell [6], any classical, deterministic theory that correctly4 describes the EPR
experiment with As and Bs chosen independently of the parameters specifying the states of particles,
cannot possibly satisfy this information-theoretic criterion, and consequently Bo must causally depend
on the choice of As. An example of such a theory is Bohmian mechanics [7, 8]. This theory thus violates
the compatibility criterion between spacetime and information-theoretic causality.5

We have thus seen that some of the key claims surrounding the EPR experiment and Bell’s theorem
can be understood as instances of the compatibility requirement between spacetime and information-
theoretic causality. This also shows, as highlighted in previous works [2, 9], that disentangling these
notions is key to analysing the different causal explanations of quantum correlations, in light of Bell’s
theorem, which tells us that in order to preserve the free choice of settings and the compatibility with
spacetime causality and still explain the results of quantum experiments, the information theoretic
notion of causality cannot be entirely classical. In the case of standard quantum theory, free choice and
compatibility are preserved by generalising the information-theoretic notion of causation from a classical
to a quantum information theoretic formulation. The relatively recent but seminal advancements in
developing genuinely quantum frameworks for causal modelling, provide a compatible description of
causation in quantum experiments (even beyond the EPR and Bell experiments) where information-
theoretic events are localised in spacetime, and quantum operations occur in a fixed acyclic causal order
[10–23]. Within this modern formulation, Bell’s theorem can be simply seen as showing that within a
given information-theoretic causal structure (that accounts for free choice and compatibility), classical
causal models [24] cannot possibly explain quantum correlations. This non-classicality of the causal
model can be certified by observing that the correlations between the settings and outcomes in the
experiment violates a Bell inequality.

More generally, in quantum relativistic experiments, quantum systems may be delocalised over a
spacetime or travel in a superposition of different trajectories through spacetime. Further, in quantum
gravitational settings, the assumption of a fixed background spacetime structure might be too restrictive,
and one can envisage thought-experiments where the spacetime causal structure is in a quantum superpo-
sition, leading to the concept of indefinite causal structures [25–27]. Motivated by this, the process matrix
framework [28] was proposed for defining indefinite causal structures in a purely information-theoretic
manner, by considering information processing protocols where parties act within local quantum labo-
ratories in the absence of a global definite acyclic causal order connecting their local operations. For
instance, like in the case of the EPR experiment, consider two parties, Alice and Bob, who receive quan-
tum systems AI and BI , apply a local operation (such as a measurement) on these systems depending
on a choice of classical setting As and Bs, and obtain the corresponding classical outcome Ao and Bo,
along with a final quantum system AO and BO after the operation is applied. Unlike the EPR case,
they are allowed to communicate and can send the final quantum system AO and BO out of the labs.

4Correctness means here that the description is in agreement with the observations of actual quantum experiments.
5This problem can be rectified by changing the notion of spacetime causality: If one replaces special relativistic spacetime

by the Newtonian notion of space and time, compatibility is reestablished.
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The outside environment of these labs (modelled by a process matrix) may contain quantum channels
that route the outputs of one party to the input of another. This means that there is a well defined
information-theoretic order of local events, Ao and AO lie in the causal future of As and AI , while Bo
and BO lie in the causal future of Bs and BI . For such a process to be compatible with a fixed order
A ≺ B or B ≺ A over Alice and Bob, would mean that it is possible to simulate the resulting correlations
by one-way communication, either from Alice to Bob (A ≺ B) or from Bob to Alice (B ≺ A). This
would exclude causal relations where Ao lies in the future of Bs and Bo lies in the future of As. A typical
example of a process without fixed order between Alice and Bob’s operations is the quantum switch [29].
Here a quantum system is either first routed to Alice and then to Bob or vice versa, and the decision of
the route is also controlled by a quantum system.

In the process matrix framework, analogous to Bell inequalities, so-called causal inequalities have
been proposed to certify the non-classicality of the causal order itself and there exist theoretical indefinite
causal order processes that violate these causal inequalities [28]. The causal separability of a process
matrix (analogous to separability of a quantum state) [30, 31] is considered another indication of the
indefiniteness of its causal structure and can be certified through so-called causal witnesses. The quantum
switch (QS) motivated above is an example of a causally non-separable processes that does not violate
causal inequalities [29, 30]. Further theoretical examples of causally non-separable processes that do
violate causal inequalities have also been obtained in the process matrix framework [28, 32]. Causally
non-separable processes have also been shown to provide significant advantages over processes admitting
a definite causal order in several information processing tasks in the fields of quantum communication
complexity [33, 34], quantum channels [35], quantum metrology [36], quantum computing [37] as well as
quantum thermodynamics [38, 39].

Again in the spirit of Landauer’s slogan, a natural question in the study of processes with indefinite
causal order is whether they can be implemented physically. In the language developed here, the question
is whether there exists an embedding of the given information-theoretic causal structure into a spacetime
causal structure such that the compatibility requirement described above is satisfied. Indeed, while
indefinite causal order processes are intriguing in theory, there are several longstanding open questions
and debates regarding the their physicality. Here we aim to address such questions with our approach.
We describe these open questions, challenges and previous works in more detail below.

A first open question is regarding the set of process matrices that can be implemented in a lab
using quantum systems in Minkowski spacetime, whether causal inequality violating processes can be
physically implemented and what this would imply for our understanding of causality in quantum theory.
A general class of quantum circuits modelling quantum controlled suerpositions of orders such as the
quantum switch have been proposed and shown to not violate causal inequalities [67, 68], however, it
remains unclear whether these are the largest set of physically realisable process matrices as these are
constructed through a bottom-up approach of starting with simple fixed order processes and building up
generality. A top down approach that starts with general processes and imposes conditions for compatibly
embedding the process in a spacetime is needed for fully addressing this question.

On the other hand, there are numerous experiments and experimental proposals that claim to physi-
cally implement indefinite causal structures such as the quantum switch in Minkowski spacetime [37, 40–
49]. This leads to an apparent paradox– while Minkowski spacetime implies a definite acyclic spacetime
notion of causality, indefinite causal order processes imply an indefinite information-theoretic notion
of causality, but we expect these notions to be compatible in any physical experiment. How can we
consistently describe both notions of causality as well as the results of such experiments, as quantum
causal models do for Bell experiments? What does this consistent description imply for the physical
meaning of indefinite causal order processes? What does this tell us about the resource responsible for
the information-theoretic advantages offered by causally non-separable processes?

There has been a longstanding and continuing debate on these matters (see for instance [50]) but a
clear answer to the above questions would require a general framework for quantum causality that has
the following features.

1. The framework must clearly disentangle the information-theoretic and spacetime notions of causal-
ity, and characterise both under minimal but operational assumptions. This means that the
information-theoretic causal structure can in general be cyclic.

2. While the disentangling offers a vast generality, it does not tell us about physical experiments, for
which we must relate the two notions by embedding one in the other and imposing a compatibility
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condition.

3. The embedding must be general enough to allow for a description of experiments with spacetime
delocalised quantum systems.

4. The framework should offer the ability of analysing the causal structure at different levels of detail,
as the cyclicity or acyclicity of a causal structure (under both notions of causation) can depend on
the information captured by the nodes of the causal structure.

Here we develop a framework that meets all these criteria, and apply it to characterise physical
implementations of process matrices. We briefly describe previous works in this direction.

In recent work [51], it has been shown that a large class of process matrices (unitary processes) can
be described using cyclic quantum causal models. This provides significant insights into the information-
theoretic causal structure of such processes, this along with previous works relating indefinite and cyclic
causation [29, 52] provide useful insights for achieving the first criterion above. However, these works
focus on the details of the information-theoretic notion and do not consider spacetime causality or
compatibility between these notions as required by the second criterion. For compatibility, we would not
need a full framework for cyclic information-theoretic causal models and will formulate it under rather
minimal operational assumptions.

In a recent work involving one of us [2], a framework that meets both the first and second criteria
has been developed. This allows for modelling a general class of cyclic and non-classical (quantum or
post-quantum) causal models and conditions for characterising whether or not a causal model leads to
signalling outside the future with respect to an embedding in a spacetime structure have been proposed.
However, this framework mainly focusses on a more device independent notion of signalling between
classical settings and outcomes (even if these may be generated by measuring quantum or post-quantum
systems), and the criteria 3 and 4 were not considered there, which are necessary for analysing process
matrix implementations.

Cyclic causal models are often used in classical data sciences for modelling physical scenarios with
feedback [53], for instance the demand for a commodity may causally influence the price of the commod-
ity which may in turn causally influence the demand. The cyclic causal structures modelling physical
feedback and those modelling exotic closed-time like curves comes from analysing the spacetime embed-
ding. In the former case, we know that we ultimately have an acyclic causal structure where the demand
Dt1 at time t1 influences the price P t2 at time t2 > t1 which in turn influences the demand Dt3 at
time t3 > t2 and so on. If we coarse grain over the time information in this acyclic causal structure,
we recover the original cyclic causal structure. This coarse-graining corresponds to combining multiple
nodes Dt1 , Dt3 of the acyclic causal structure into a single node D, and this example illustrates point
number 4 above, that the cyclicity or acyclicity of the causal structure depends on the level of detailed
information encoded in its nodes. Notice that this scenario can also be described in terms of a more
general spacetime embedding of the variables D and P of the information-theoretic structure, one where
each information-theoretic event is assigned a set of spacetime events and not a single spacetime event.

Here we adopt a similar approach to [2], in that we characterise the operational causal structure
through minimal assumptions, by analysing the effect of interventions on physical systems to infer the
possibilities for signalling offered by the underlying causal structure and impose conditions on the space-
time embedding based these signalling possibilities. Here we go a step further and allow for signalling
at the level of quantum systems in addition to classical settings and outcomes, and also allow for more
general spacetime embeddings where systems may be delocalised over the spacetime. Further, apart from
the spacetime embedding, we also define the general notion of fine-graining which allow for an analysis
of causal structures, quantum channels and systems and their properties at different levels of detail. As
illustrated by the above example with demand and price (and further intuitive Examples 1, 2 and 3 of
the main text), both the embedding and fine-graining are crucial to gaining physical insights about the
causal structure.

Applying this framework, we provide an answer to the question regarding the physicality of indefinite
causal order processes in terms of no-go theorems. They assert that certain assumptions, which one
would naturally want to make about such an embedding, are mutually contradictory. Concretely, a first
assumption concerns the information-theory side and demands that the process has no fixed order. This
assumption restricts our attention to genuinely indefinite-order processes. Another assumption concerns
the spacetime side and demands that there are no closed timelike curves, i.e., the spacetime causality
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relation has no cycles. This restricts our attention to considering compatibility with spacetimes of
physical interest (Minkowski spacetime being a particular example). Finally, a third assumption concerns
the embedding of the information-theoretic causal structure into the spacetime causal structure. It limits
the degree to which information-theoretic events can be delocalised in the spacetime. For instance, a
particular embedding that satisfies this would be one where information-theoretic events also correspond
to well localised spacetime events. Our main no-go theorem now asserts that these three assumptions
are contradictory. As corollaries, it implies that it is impossible to physically implement indefinite causal
order processes in an acyclic spacetime, solely using spacetime localised systems, or using systems that
are time-localised in a global reference frame if we wish to preserve relativistic causality in the spacetime.

This no-go theorem sheds light on recent experiments which claim to have implemented processes with
indefinite causal order, such as the quantum switch. Here, the first assumption holds by construction, the
second is also satisfied for any presently feasible lab experiment (it is safe to assume that the spacetime
within the lab is well-behaved). The no-go theorem thus implies that, in any physical implementation,
the information-theoretic events are spread out in spacetime.

A second result that we are going to present deals with exactly this situation. It asserts that any
process satisfying the first two assumptions above can be fine-grained into a process over a larger number
of parties such that the new process has a fixed order. Further, in the new process, the information-
theoretic events are also well localised spacetime events, even though this was not the case in the original
coarse-grained process. This means that any experiment that implements an indefinite-order process
can, according to a sufficiently fine-grained description, again be regarded as a fixed-order process. We
note that such a result was first suggested in [50] where they showed this for the special case of the
quantum switch processes, and for certain types of spacetime implementations of this processes. Our
result generalises this to arbitrary processes and arbitrary spacetime implementations. This is analogous
to our simple example with demand and price where we fine-grained the cyclic causal structure into an
acyclic one by adding time information and demanding compatibility of the two notions. Our results show
that physical implementations of indefinite causal order processes follow the same intuition, and we can
resolve the apparent tension between the definite spacetime causal structure and indefinite information-
theoretic causal structure once we look at a sufficiently fine-grained description. Our results also reveal
a tight connection between non fixed order processes and cyclic signalling structures. Consequently,
our results imply that none of these experiments truly implement an indefinite causal structure, the
fine-grained description is acyclic while the coarse-grained description is cyclic.

We now summarise the main results of the paper that were alluded to in the above, along with the
cross references to the relevant sections and theorems, before diving into the technical part of the paper.
This long introduction and summary of contributions can be treated as a coarse-grained version of the
more fine-grained results of the main paper.

Summary of contributions We summarise the main contributions and results of this paper below.

• We first develop, in Section 2, a general and purely information-theoretic framework for describing
cyclic quantum networks formed by composition of quantum CPTP maps. We characterise causa-
tion in such networks by focussing on the operationally verifiable property of signalling. We define
two new concepts, an embedding and a fine-graining, which allows us to embed quantum networks
and their signalling relations in an abstract causal structure (modelled as a directed graph) and to
analyse the compatibility between these at different levels of detail.

• In Section 3 we apply these concepts to particular case of a relativistic causal structure correspond-
ing to a spacetime, and define what it means for a cyclic quantum network to be implemented in
a spacetime, and for it to satisfy relativistic causality therein. This also includes implementations
where quantum systems are classically or quantumly delocalised over multiple spacetime locations.

• In Theorem 3.6 we show that any signalling structure (possibly cyclic) can be embedded in an
acyclic spacetime without violating relativistic causality, if we allow for the quantum systems of
the network to be associated with sufficiently large spacetime regions. We then show in Lemma 3.9
that such set of spacetime embedded signalling relations can be ultimately fine-grained to a set of
acyclic signalling relations, whose edges flow from past to future in the spacetime.

• We review the process matrix framework in Section 4 and in Section 5, we reformulate the process
matrix framework in terms of the more general framework developed here and derive a number
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of connecting results (Lemmas 5.2 and 5.3) that enables the expression of processes in terms of
composition through feedback loops.

• A key ingredient in our reformulation is the notion of an extended local map, which is a single
quantum map that captures all possible interventions an agent can potentially perform, the different
choices being encoded in the values of a classical setting. We use this to establish an equivalence
between device dependent and device-independent notions of signalling in Theorem 5.4, where the
former is at the level of quantum states and the latter at the level of observed probabilities over
classical settings and outcomes of the parties.

• In Section 6.1 we derive a number of no-go results for physical implementations of process matrices
in a fixed spacetime. We show in Theorem 6.2 that any implementation of a non-fixed order process
that does not violate relativistic causality in a spacetime, will necessarily violate a certain condition
on the spacetime embedding that limits the degree to which the systems of the information-theoretic
causal structure are spread out in the spacetime. Corollary 6.3 establishes that the signalling
structure of a process is cyclic if and only if it is not a fixed order process. Corollaries 6.4 and 6.6
of this theorem imply that it is impossible to physically implement non-fixed order processes in
a fixed spacetime using spacetime localised systems or using systems that are time-localised in a
global reference frame.

• In Section 6.2, we show that physical implementations of all process in a fixed spacetime can be
ultimately fine-grained to a fixed order process over a larger number of parties. This result captures
the fact that even in scenarios where quantum systems take a superposition of different trajectories
through spacetime, an agent has the potential to intervene at any of the spacetime locations to
verify the probability of detecting the particle there (even if they may choose to not do so in a
particular experiment where they wish to main the coherence). Further, if agents choose to perform
such interventions, this will not enable them to signal outside the future of the spacetime.

• Our results have implications for several table-top experiments in Minkowski spacetime that claim
to implement an indefinite causal order process, the quantum switch. In Section 7 we analyse this
process in detail and discuss these implications. We also analyse theoretical proposals for quantum
gravitational implementations of the quantum switch, and outline properties of this gravitational
implementation that might differ from physics in a fixed spacetime. In this regard, we find that the
property of events being time-localised for each agent is not special to the quantum gravitational
implementation, we show this by constructing an explicit quantum switch protocol in Minkowski
spacetime with this property in Section 7.4.

• Our framework and results shed light on several open questions and debates surrounding the
meaning of indefinite causal structures, the notion of events in these settings and their relation to
cyclic causal structures. We discuss these points in detail in Section 8, while analysing implicit
assumptions of the process framework more explicitly in the language of our framework. We
conclude with the main take home messages in Section 9.

2 Composition of quantum maps and signalling structure
As motivated in the introduction, it is desirable to describe causation, spacetime and their relationships in
an operational manner, and using minimal assumptions. The operational formulation of quantum theory
modelling quantum states and operations in terms of density matrices and completely positive maps
suggests a way to describe causation operationally, without reference to a spacetime. When we combine
such quantum maps together to form quantum circuits/networks, we are forming a causal structure that
enables the in/output of one map to causally influence the in/output of another. However, in standard
operational quantum theory, only combinations of operations resulting in an acyclic causal structure
are considered. This means that every circuit singles out a direction of “time” even though no notion of
spacetime was alluded to in the construction and we can always describe such a circuit as being immersed
in a background spacetime (see for instance [50]). More generally, from a purely operational perspective,
there is no reason to restrict to acyclic causal structures. We often have physical scenarios with feedback
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where the output of a physical device is looped back and fed in to its input which are modelled by cyclic
causal structures even in classical settings [53].

Here, we describe how quantum maps can be composed together through feedback loops to form
a network of maps that can in general be associated with a cyclic causal structure. Noting that it is
not possible to fully characterise causation under minimal assumptions, in the interest of generality,
we consider the more operational notion of signalling which enables certain causal influences to be
operationally detected. This allows us to talk about the signalling structure of any network of quantum
maps, which too can in general be cyclic.

2.1 Composition of maps through feedback loops
To model composition of completely positive and trace preserving (CPTP) quantum maps, we adapt a
definition proposed in [54]. While [54] describes a different framework (the causal box framework) that
alludes to spacetime in its very construction and explicitly ensures that feedback loops only connect
outputs at earlier spacetime locations to inputs in their future, their definition of composition for causal
boxes can be formulated independently of spacetime, referring only to the in and output Hilbert spaces
associated with quantum maps. Here we extract this purely operational part of this definition, applying
it to the case of finite-dimensional Hilbert spaces. In later sections we will separately define a spacetime
structure and then relate the operational and spacetime notions by characterising what it means for such
cyclic compositions of maps to be compatible with relativistic causality in a spacetime.

Given two CPTP maps Φ̂ and Ψ̂, we can consider three types of composition operations: parallel
composition, sequential composition and loop composition. The second can be defined entirely in terms
of the other two. The parallel composition of Φ̂ and Ψ̂ is given in the obvious way, by their tensor
product Φ̂ ⊗ Ψ̂, then the set of input/output systems of the parallel composition is simply the union
of the input/output systems of the individual maps. Loop composition is an operation on a single
CPTP map Φ̂ where an output system O of the map is looped back and connected to an input system
I of the same map that has matching dimensions, and is denoted as Φ̂O↪→I . In a slight, but harmless
abuse of notation, we will, in the rest of the paper use the system label, e.g., I to also denote the state
space of the system i.e., the set of all linear operators on the Hilbert space HI associated with the
system I. Then sequential composition Φ̂2 ◦ Φ̂1 of two maps Φ̂1 : I1 7→ O1 and Φ̂2 : I2 7→ O2 with
the former applied before the latter corresponds to first composing the maps in parallel to obtain the
map Φ̂1 ⊗ Φ̂2 : I1 ⊗ I2 7→ O1 ⊗ O2 followed by a loop composition connecting the output system O1 to
the input system I2 to obtain Φ̂2 ◦ Φ̂1 := (Φ̂1 ⊗ Φ̂2)O1↪→I2 , as shown in Figure 1. More formally, we
have the following definition. In the rest of the paper, whenever we refer to a CPTP map, it should
be understood that this is a linear CPTP map, which is the case with all valid, normalised quantum
operations. Furthermore we work with finite dimensional Hilbert spaces and assume that each Hilbert
space H of dimension d has a well defined computational basis {|i〉}i∈{0,...,d−1} consisting of orthonormal
vectors |i〉. In the following, when we say an orthonormal basis, we typically mean such a computational
basis.

Definition 2.1 (Loop composition of CPTP maps [54]) Consider a CPTP map Φ̂ : L(HAB) 7→ L(HCD)
with input systems A and B and output systems C and D, with HB ∼= HD, and where L(H) denotes
the set of linear operators on the Hilbert space H. Let {|k〉D}k and {|l〉D}l be orthonormal bases of HD,
and {|k〉B}k and {|l〉B}l denote the corresponding bases of HB i.e., for all k and l, |k〉D ∼= |k〉B and
|l〉D ∼= |l〉B. The action of the new map Ψ̂ = Φ̂D↪→B resulting from looping the output system D to the
input system B, on basis elements |i〉〈j|A of L(HA) is given as

Ψ̂(|i〉〈j|A) =
∑
k,l

〈k|D
(

Φ̂(|i〉〈j|A ⊗ |k〉〈l|B)
)
|l〉D. (1)

Note that the final map Ψ̂ obtained after loop composition need not be CPTP, see Remark 2.2. The
original definition of loop composition proposed in [54] is in terms of a Choi representation of CPTP maps
on infinite dimensional systems, which is modelled as a sesquilinear positive semidefinite form. Here we
restrict to the finite dimensional case and have therefore extracted a simpler but equivalent version of
this definition. The reduction from the original definition to the above one is given in Appendix A.
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Figure 1: Loop and sequential compositions (a) The output system D is loop composed with the input system B of
a map Φ̂ from A and B to C and D, to yield a new map Ψ̂ with input A and output C. (b) Sequential composition
of two maps, Φ̂1 followed by Φ̂2 can be obtained by first parallel composing them to obtain Φ̂1 ⊗ Φ̂2 and then using
loop composition, as explained in the main text and depicted here.

Networks of CPTP maps and causal structure Composing multiple CPTP maps together results
in what we will refer to as a network of CPTP maps, which in itself could be described by a single map.
The way in which we connect the in and output systems of a set of maps describes a causal structure
that one would associate with such a network. We will use squiggly arrows to denote the causal
arrows of such an underlying causal structure associated with a network of maps. We can also decompose
each map in the network in terms of maps on smaller subsystems, and thus uncover the internal causal
structure of each map. There are two ways to describe such a causal structure. For instance, sequentially
composing Φ̂1 : I1 7→ O1 and Φ̂2 : I2 7→ O2 by connecting O1 to I2 can be viewed as a network of two
maps, or a single map Φ̂ = (Φ̂1 ⊗ Φ̂2)O1↪→I2 . This allows inputs on I1 to causally influence the outputs
on O2 and we can view this scenario as a causal structure in two ways, either by taking the maps Φ̂1 and
Φ̂2 to be the nodes with a directed edge Φ̂1 Φ̂2 (denoting causal influence) or by taking the in/output
systems I1, O1, I2 and O2 to be the nodes, in which case we have O1 I2 and additionally I1 O1
and/or I2 O2 depending on whether or not each map allows its input system to causally influence the
output system (see the following paragraph for an example). Note that the latter view is in fact a more
detailed description of the former, since it splits each map further into all its in and output systems and
looks for causal dependences between these, while still containing all the causal dependences between
different maps in the former view. In this paper, we will therefore adopt the latter view where the
in/output systems form the nodes of a causal structure as this will allow us to formalise the existence of
a causal influence from input to output of a map operationally without making assumptions about
the internal structure of the maps.

Causation vs signalling The “causal structure” implied by a network of composed maps as described
above does not fully capture what is meant by causation . This is because the existence of a connecting
map between two systems I and O does not imply that I is a cause of O, the connecting map may be a
trivial one that discards the input on I and independently reprepares a state on O. Thus it is impossible
to define the meaning of causation (or the edge ) without getting into the internal structure of the
maps. However, we can consider a more operational way of detecting whether there is a causal influence–
if inputting different input states on I (while keeping all other inputs fixed), results in different output
states on O, then we can use I to signal to O, which we will denote as I → O and consequently we know
that I causally influences O, which would justify I O. Note crucially that while signalling implies
causation, the converse is not true. Imagine a classical channel from I to O (both carrying classical
bits), that takes a bit on I, internally generates a uniformly random bit K and outputs O = I ⊕ K
(where ⊕ denotes modulo 2 addition). This is operationally equivalent to the trivial channel above that
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discards I and reprepares a uniformly distributed O. However, here we have I O since I is indeed
used to produce O (along with K), while we did not have this for the implementation that discards and
reprepares. Further, I does not signal to O in both cases, since we have P (O|I) = P (O). More generally,
we may have signalling I → {O1, O2} from an input I jointly to a set of outputs O1 and O2 of a map
Φ̂ without having signalling from I to O1 or O2 individually [2, 51]. Such a signalling relation suggests
that we must have at least one of I O1 or I O2 even though we have neither I → O1 nor I → O2.
Therefore, signalling between two systems is sufficient but not necessary for causation between them and
while the causal structure may be a directed graph (with edges ) over the nodes I1, O2, I2, O2, ...,
the signalling structure is in general a directed graph (with edges →) over the set of all subsets of these
nodes. To rigorously define causation, one would need to go into a full causal modelling framework
such as [22]. In this paper, in the interest of generality, we aim to characterise causation under minimal
assumptions and without imposing any unnecessary constraints on the internal structure of the maps.
We will therefore focus our attention on signalling, instead of causation and this will be sufficient for all
the general results we wish to establish. We define this more formally in the following section.

Remark 2.2 (Closedness under composition and linearity) We note that linear CPTP maps are not closed
under arbitrary compositions in general, since arbitrary loop composition may not result in systems pro-
ducing valid normalised probabilities [54] and normalising them can introduce non-linearities.6 Surpris-
ingly, demanding that a composition of a set of linear CPTP maps results in a linear CPTP map does
not rule out cyclic dependences. In Section 5 we show that the general framework we develop here can
in particular be used to describe process matrices [28] which are regarded as high-order quantum maps
that act on the space of standard quantum maps. There, we will see that the action of a process ma-
trix on quantum maps can be described through a loop composition which in general results in a cyclic
causal/signalling structure. However, by definition of process matrices, they map valid linear CPTP
maps to valid linear CPTP maps [37] (or valid normalised probability distributions).7 Some interesting
(and not so easy) questions that we leave for future work are: given a set of linear CPTP maps, what
is the largest set of allowed compositions under which the result of composition is also a linear CPTP
map? What is the largest set of linear CPTP maps that is closed under arbitrary composition? We note
that linear CPTP maps can be viewed as a subset of more general multi-time operators which can act
non-linearly on quantum states (and other multi-time objects) and are closed under arbitrary composition
[56]. In case of compositions of linear CPTP maps that result in a non-linear or trace decreasing map,
the resulting object can be interpretted in the multi-time formalism (that involves measurements on pre
and post-selected quantum states). The formal connection between our framework and the multi-time
formalism is a subject of future work.

2.2 Signalling structure of maps
We now define what it means to have signalling from a set of input systems to a set of output systems
of a CPTP map. Consider a CPTP map Φ̂ with n input systems I = {I1, ..., In} and m output systems
O = {O1, ..., Om}, where we use the system label S ∈ I,O to also denote the state space associated with
the system i.e., the set of all linear operators on the Hilbert space HS of the system S. Then, we have
the following, where TrρSI

: SI → SI denotes the operation that traces out the input on the systems in
SI and replaces it with some fixed state ρSI

,

Definition 2.3 (Signalling structure of a CPTP map) We say that there is a signalling relation from a
set SI ⊆ I of input systems to a set SO ⊆ O of output systems of a CPTP map Φ̂ and denote it as
SI → SO if there exists a state ρSI

∈
⊗

Ii∈SI
Ii such that,

trO\SO
◦Φ̂ 6= trO\SO

◦Φ̂ ◦ TrρSI
. (2)

6For instance, the projector |0〉〈0| is a linear and completely positive but trace decreasing map. When applied to some
state α|0〉 + β|1〉, it produces an un-normalised state α|0〉. If we normalise this output state by dividing by its norm, the
resulting map (apply projector and then renormalise) is completely positive and trace preserving but it is non-linear.

7A related result is that process matrices are operationally equivalent to a special linear subset of closed time-like curves
[52] as well as a linear subset of pre and post-selected quantum states [55].
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6= Φ̂
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• • •
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ρ
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σ

σ

Figure 2: Diagrammatic representation of Definition 2.3 of signalling This figure represents the condition
I1 → O2 in the map Φ̂, whereby we require a global state σ on all inputs and a local state ρ on the input I1 such that
the two sides fail to be equal.

The set of all signalling relations of a CPTP map Φ̂ forms a directed graph GsigΦ̂ the nodes of which
correspond to arbitrary subsets of I ∪O, with an edge → between two nodes whenever there is signalling
between those sets. We refer to this graph as the signalling structure of Φ̂.

The above definition is illustrated diagrammatically in Figure 2. Conversely, if trO\SO
◦Φ̂ = trO\SO

◦Φ̂ ◦
TrρSI

for all choices of ρSI
then we say that SI does not signal to SO and denote it as SI 6→ SO. Wherever

the map Φ̂ being referred to is evident from context, or more generally when we refer to the signalling
structure of a network of maps (see below), we will simply use Gsig instead of GsigΦ̂ .

Signalling structure of a network of maps Consider a set {Φ̂i : Ii 7→ Oi}ni=1 of CPTP maps,
where Ii = {I1

i , I
2
i , ..., I

ni
i } and Oi = {O1

i , O
2
i , ..., O

mi
i } denote the set of all input and output systems

respectively of the map Φ̂i which has ni input systems and mi output systems. When we form a
network through arbitrary composition of such a set of maps, we allow the signalling structure of the
network to be general enough to include all signalling relations coming from each individual map, as well
as signalling relations indicating the connections specified by the composition (since the compositions
connect systems through identity channels). This is because, in the most general case, a set of agents
could potentially isolate a map from a network by discarding all the inputs to the map coming from
other parts of the network, and instead freely chose input states to send in to the map and verify
the signalling relations of the individual map. Thus, the signalling structure of a network that can be
accessed in any physical setting depends on what assumptions are made about the power of the agents
in that setting, whether they can make such “global interventions” on all inputs of a map or on multiple
maps, or are restricted to sending receiving states associated with only certain in/output systems of a
map/set of maps. The signalling structure of the network will in general be a directed graph over the
nodes Powerset[(

⋃n
i=1 Ii) ∪ (

⋃n
i=1Oi)] and can contain directed cycles. For instance, we may compose

two identity maps Î1 : I1 7→ O1 and Î2 : I2 7→ O2 (where all systems have the same dimension) by
connecting O1 to I2 and O2 to I1. Then we have I1 → O1 and I2 → O2 coming from the union of
individual signalling structures, and O1 → I2 and O2 → I1 coming from the composition, which gives
the directed cycle I1 → O1 → I2 → O2 → I1. The signalling structure can also include further direct
signalling relations. For instance, using the network, we can also directly signal from I1 to O2 and we can
also choose to separately include I1 → O2 in the network’s signalling structure, noting that signalling →
need not always be a transitive relation, even in classical causal networks [2]. In the interest of generality,
we allow all these possibilities in the signalling structure of the network. Note that the same network
may admit multiple decompositions in terms of individual maps, and it is important to specify the set
of all in and output systems over which the signalling structure is defined.
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2.3 Compatibility of a signalling structure with a causal structure
Imagine we are told that there exists a CPTP map where I ∪ O denotes the set of all in and output
systems of the map and Gsig is the signalling structure associated with that map. What can we then
infer about the causal influences associated with the map, given no further information about it?
While we have not fully and formally defined what means, we have motivated it with examples
in the previous section and we would expect any meaningful notion of causation associated with this
map to have the following necessary features. For a map Φ̂ with the set of input systems I and output
systems O, we would like this notion of causation to specify, given any pair of systems Ii ∈ I and
Oj ∈ O, whether or not Ii causally influences Oj through the map Φ̂ i.e., the causal structure GcausΦ̂ of
the map is a directed graph over the nodes I ∪O with the edges . Secondly, whenever we find that
a subset SI ⊆ I signals to a subset SO ⊆ O in Φ̂, then there must be at least one in and output pair,
Ii ∈ SI and Oj ∈ SO such that Ii Oj in this causal structure. More generally, given a set of signalling
relations over a set of systems S, we can consider its compatibility with any directed graph, which may
not necessarily be a directed graph over the nodes S. For instance, we may wish to consider a directed
graph corresponding to a spacetime, where nodes correspond to spacetime locations and the light cone
structure of the spacetime specify the directed edges. We can then consider an assignment of systems
in I ∪ O to the nodes of this causal structure in a one-to-one manner, which induces a causal structure
over I ∪O, and we can then ask whether this is compatible with a given signalling structure over these
systems.

With these minimal expectations, we propose the following definition of what it means for a signalling
structure (possibly arising from an unknown network of maps) to be compatible with an arbitrary causal
structure which we model as a directed graph. This allows us to consider whether the operational notion
of signalling is compatible with different notions of causality. In the next section, we will apply these
concepts to define relativistic causality in a spacetime.

Definition 2.4 (Causal structure) A causal structure is any directed graph Gcaus, where Nodes(Gcaus)
denotes the set of all nodes of this graph and Edges(Gcaus) denote the set of all edges. Unless specified
otherwise, we will denote the edges of a directed graph Gcaus as C−→.

Definition 2.5 (Embedding systems in a causal structure) An embedding E of a set of systems S in a
causal structure Gcaus is an injective map E : S 7→ Nodes(Gcaus). For each system S ∈ S, we will use
SNS to denote the system embedded on the node E(S) = NS of Gcaus, and refer to SNS as the Gcaus-
embedded system. The subgraph of Gcaus restricted to the nodes in the range of E is denoted as GcausS and
can be equivalently viewed as a graph over the node set {SNS}S∈S , we will then refer to such a causal
structure as a causal structure over systems.

Definition 2.6 (Implementing a CPTP map in a causal structure) An implementation of a CPTP map
Φ̂ (over a set S of in and output systems) in a causal structure Gcaus with respect to an embedding E is
a CPTP map Φ̂G,E that is equivalent to Φ̂ up to a relabelling of input/output systems S ⇔ SNS through
an embedding E of S in Gcaus, where E(S) = NS ∈ Nodes(Gcaus).

It is important to note that a CPTP map Φ̂ may come with its own causal structure GcausΦ̂ that specifes
the internal connections entailed in Φ̂, but the above definition defines what it means to implement the
map in any arbitrary causal structure Gcaus which is achieved by embedding the in/output systems of
Φ̂ in this new causal structure. Under such an implementation, two order relations come into play,

associated with the causal structure GcausΦ̂ of the map (some of which can be inferred by the

signalling structure of the map) and C−→ associated with the new causal structure Gcaus, which is a
priory independent of Φ̂ until further constraints relating them are imposed. For instance, we may
require that the signalling relations produced by Φ̂ are compatible with the causal structure Gcaus in
which it is implemented, which would in turn connect its internal causal structure GcausΦ̂ with the new
causal structure Gcaus. Such a compatibility condition is defined below.

Definition 2.7 (Compatibility of a signalling structure with a causal structure) Let Gsig be a signalling
structure associated with a network of maps where I and O denote the set of all input and output systems
appearing in the network, represented as a directed graph over Powerset(I ∪ O) with the directed edges
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→. Suppose that Gcaus is some causal structure and E is an embedding of the systems I ∪ O in Gcaus.
Then we say that the signalling structure Gsig is compatible with the causal structure Gcaus with respect
to the embedding E if the following holds.

∃ directed path from S1 to S2 in Gsig

⇓

∃S1 ∈ S1, S2 ∈ S2 such that there is a directed path from E(S1) to E(S2) in Gcaus.

Remark 2.8 We note that a recent work [2] involving one of the authors also proposes a condition for
compatibility between a set of (possibly cyclic) signalling relations and a causal structure (taken to be
acyclic). As a clarification, we briefly point out the distinctions between the definitions and conditions
of this and the present work. Firstly [2] adopts a causal modelling approach formulated under minimal
conditions that need not necessarily arise from a composition of valid quantum maps, consequently the
definition of signalling differs in these two works, even though they can be related (details left for future
work). Further, the compatibility condition between a set of signalling relations (in the framework of
[2], these are called affects relations) and a causal structure proposed in [2] are necessary and sufficient
conditions for avoiding signalling outside the future of the causal structure through the embedded signalling
relations. This is a weaker condition than our compatibility condition above which is not strictly necessary
for “no signalling outside the future” in Gcaus. This is because we may have A signals jointly to {B,C}
without signalling individually to B or C. Then the compatibility condition of [2] only requires that the
joint future of the locations of B and C in the causal structure is contained in the future of the location of
A as this is where the joint signalling can be verified. This is possible even when A’s location in Gcaus has
no directed paths to either of B or C’s locations i.e., A does not lie in the past of B or C with respect to
the causal structure Gcaus. The above condition requires that A’s location in the causal structure must be
in the past of at least one of B or C’s location if A signals to {B,C}, which is a stronger condition. This
is because here, we require a more physically motivated condition for compatibiity with a causal structure
while in [2] the goal was to identify the minimal conditions for avoiding signalling outside the future
of a causal structure. And in fact, [2] uses this to establish the surprising mathematically possibility of
causal loops embedded in Minkowski spacetime that do not lead to superluminal signalling, even though
the existence of the causal loop can be operationally verified through suitable interventions. Such loops
however violate the present definition of compatibility where Gcaus is taken to represent the locations and
lightcone structure of Minkowski spacetime.8

2.4 Fine-graining causal structures, systems and maps
We now introduce an important concept that will feature in many of our results, namely that of fine-
graining which can be applied to a causal structure, a set of systems, or a CPTP map. This captures
the idea that the same physical protocol can be analysed in different levels of detail depending on the
information that one wishes to capture (or has access to), which can in turn alter what we consider to
be the “nodes” of a causal structure associated with such a scenario. Thus one may describe the same
physical protocol through different causal structures, depending on the level of detail, and we will see
that this affects the structural properties of the causal structure such as is cyclicity or acyclicity. We
illustrate the concept with a few intuitive examples before proceeding to define it formally in the general
case.

One example of a causal structure is an operational one that arises in a causal modelling framework
[24] and provides a purely operational way of defining causation through the existence of connecting
functions/maps between variables/systems. In a classical, deterministic causal model, the nodes of the
causal structure are random variables and each variable X with a non-empty set of parents is obtained
by applying a deterministic function fX to the set of variables that are the parents of X in the causal
structure. For parentless variables X, a probability distribution P (X) is specified in the model. The

8These loops allow the causal influences of the operational causal structure to flow outside the future lightcone of
the spacetime even though signalling stays within the future. The present compatibility condition is necessary for ensuring
the edges of the underlying operational causal structure leading to the signalling relations also align with the edges
of the new causal structure Gcaus (which for instance could represent Minkowski spacetime).
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following two examples illustrate two ways of fine-graining a model associated with a cyclic causal
structure into an acyclic one. In the non-deterministic classical case, we have stochastic maps (from the
set of parents of each variable to that variable) instead of deterministic functions.

2.4.1 Fine-graining by splitting into smaller subsystems

Consider a classical channel P (Y |X) with input system X and output system Y which correspond to
random variables. Suppose the channel is used multiple times and Xn, Yn denote the input and output
of the nth use of the channel, and let Xn = {X1, ..., Xn} (and Y n = {Y1, ..., Yn}) denote the set of all
inputs (and outputs) until the nth round. If the channel is used with feedback, the input Xn of nth round
can in general depend on previous outputs Y n−1. When there is feedback, we can in general view the
cumulative in and outputs Xn and Y n as the nodes of a cyclic causal structure Xn Y n and Y n Xn

with Y n computed from Xn through a stochastic map (given by the channel) and Xn computed from
Y n through another map (given by the feedback mechanism). However, if we describe the same situation
through a causal model over the individual rounds’ in and outputs, {Xi}i and {Yi}i, we know that we
would have an acyclic causal structure X1 Y1 X2 Y2...Yn−1 Xn Yn. This shows that we
can describe the same protocol through two different causal structures, one cyclic and another acyclic
depending on the information captured by the nodes of the causal structure. The following example
illustrates this with a more concrete construction.

Example 1 Consider the cyclic causal structure over three random variables A, B and D shown in Fig-
ure 3a with A ∈ {0, 1, 2, 3} and B,D ∈ {0, 1}. A classical causal model over this causal structure would be
specified as A = fA(B,D), B = fB(A) and D distributed according to some distribution P (D). Suppose
fA sets A = 0, 1, 2, 3 depending on whether (D,B) = (0, 0), (0, 1), (1, 0), (1, 1) and fB sets B = 0 when-
ever A ∈ {0, 1} and B = 1 whenever A ∈ {2, 3}. If we now look carefully at the model, we can see that
we can map A into two bits A1, A2 by identifying A = 0, 1, 2, 3 with (A1, A2) = (0, 0), (0, 1), (1, 0), (1, 1).
Then D specifies the first bit A1 while B specifies the second bit A2, and in addition B is itself the first
bit A1. Thus we can obtain an equivalent acyclic model where the new causal structure would be that of
Figure 3b and the model would have A1 = D, B = A1 and A2 = B, with the same distribution P (D)
over the parentless D. Combining the two binary A1 and A2 into a single 4-valued variable A using the
above mentioned identification, we get back the original model.

2.4.2 Fine-graining through uncertainty in location

Suppose that Alice and Bob share a classical channel, local random number generators (RNGs) along
with a common source of randomness Λ ∈ {0, 1} distributed according to a distribution P (Λ) and they
execute the following protocol. Whenever Λ = 0, Alice gets a random bit RA from her RNG, sets her
output A = RA, and also forwards this value to Bob through the channel. Bob sets his output B to the
value received from Alice. Whenever Λ = 1, Bob obtains RB from his RNG, sets B = RB , forwards the
same to Alice who sets A to the value received from Bob. This can be modelled within a cyclic causal
structure over RA, RB , Λ, A and B with a directed cycle A B, B A, as shown in Example 2 below.

This is a physically plausible protocol, even though it corresponds to a cyclic causal model. Whenever
Λ = 0, Alice acts before Bob and whenever Λ = 1, Alice acts after Bob and whenever Λ is unknown,
Alice’s “location” with respect to Bob is uncertain. We can model the same protocol within an acyclic
causal structure A1 B A2 with Alice’s output A split into two nodes A1 and A2 corresponding to
the cases where she acts before or after Bob.

When Λ = 0, A1 = RA, B = A1 and A2 is trivial, we can denote this by a “vacuum state”, Ω
corresponding to the absence of a physical message. When Λ = 1, B = RB and A2 = B while A1 = Ω
is trivial. Thus the bit which was earlier denoted by A and related to B through a cyclic causal model
is now a bit that is “delocalised” in an acyclic structure over a greater number of nodes– there is a
non-trivial bit valued message only at A1 or at A2 (and a vacuum state Ω at the other), depending on
the value of Λ. Example 2 below describes this protocol first as a cyclic causal model over RA, A, Λ,
RB and B where A and B are causes of each other and then as an acyclic causal model where the bit
A ∈ {0, 1} from the original model is associated with an uncertain location (depending on Λ) in the new
acyclic causal structure.
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Figure 3: Causal structures of Examples 1 and 2 (a) and (b) illustrate the original and fine-grained causal
structures for the former while (c) and (d) illustrate the original and fine-grained causal structure for the latter example
respectively

Example 2 Consider the cyclic causal structure of Figure 3c and the following causal model over this
causal structure. The parentless nodes RA, RB and Λ are distributed according arbitrary, non-deterministic
distributions, A = (Λ ⊕ 1).RA ⊕ Λ.B and B = (Λ ⊕ 1).A ⊕ Λ.RB, where ⊕ denotes modulo-2 addition.
It is easy to check that this model implements the protocol described in the above paragraphs where the
order in which Alice and Bob act (to generate A and B respectively) is decided by Λ. We can view the
same situation as a scenario where the location of Alice’s bit A in an acyclic causal structure (Figure 3d)
is uncertain whenever Λ is unknown. A causal model describing this would be one where RA, RB and
Λ have the same distributions as before, B ∈ {0, 1} is still binary and the fine-grained nodes A1 and
A2 take values in {Ω, 0, 1} which represent the absence (A1, A2 = Ω) or presence (A1, A2 ∈ {0, 1}) of
a bit-valued message at these locations. The values of each node can calculated given the values of its
parents as A1 = (Λ⊕ 1).RA ⊕ Λ.Ω, B = (Λ⊕ 1).A1 ⊕ Λ.RB, A2 = (Λ⊕ 1).Ω⊕ Λ.B, where 0.Ω = 0 and
1.Ω = Ω. We can see that the acyclic causal structure coarse-grains to the original cyclic causal structure
when we combine A1 and A2 into a single node A while preserving the in and outgoing causal arrows
of this set. The original cyclic causal model is obtained from the fine-grained acyclic model by setting
A = i ∈ {0, 1} whenever (A1, A2) ∈ {(Ω, i), (i,Ω)} i.e., when we are not interested in the “location”
information but only in the “value” information of A. More explicitly, we can separately model the causal
structure representing the locations as a directed graph Gcaus containing a subgraph N1 C−→ N2 C−→ N3

and we can view the process of fine-graining above as a more general type of “embedding” of the system
A in the causal structure Gcaus whereby it is assigned an uncertain location in the causal structure, N1

or N2, depending on Λ), while assigning B a fixed location N2 in the new causal structure. Physically,
Gcaus might correspond to a spacetime structure (such as Minkowski spacetime) for instance, such that
N1 and N2 specify the spacetime location of the message A. We will formalise this in the following
sections.

Messages vs systems: Here as well, as in the previous example, we have fine-grained a cyclic causal
model for a protocol into an acyclic one describing the same protocol (or a particular implementation of
it), by splitting a node A into multiple nodes A1 and A2. The difference however lies in the cardinality or
size of the nodes. In Example 1, a system A of cardinality 4 was fine-grained into two systems A1 and A2
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Figure 4: Fine-grainings of a directed graph (color online) A directed graph G (a) and two possible fine-
grainings GF

1
(b) and GF

2
(c) of the same graph, both of which satisfy Definition 2.9. Each node Ni in G (with each

i ∈ {1, 2, 3, 4} shown in a distinct color) maps to a set of nodes Fj(Ni) (j ∈ {1, 2}) in the fine-grained graph GF
j

lying within a blob of the same color.

each of cardinality 2. In Example 2, a system A of cardinality 2 is fine-grained into two systems A1 and A2
that each carry either zero or one 2-dimensional message, with the case of zero messages being represented
by the vacuum state Ω. In such scenarios where there is uncertainty in location of a non-vacuum state
with respect to a causal structure, we will refer to the vacuum state as representing zero messages and a
d-dimensional non-vacuum state as a single d-dimensional message. In this case the systems A1 and A2
are associated with zero or one message of dimension 2. Notice that we can also take the view that each
of A1 and A2 are three dimensional systems if the vacuum state is viewed as just another possible value
of the variables. To avoid this ambiguity, we will interpret the vacuum state as “zero messages” in the
rest of the paper and model values of variables and basis elements of non-trivial quantum spaces using
natural numbers. In the above example, we had a classical bit A in a probabilistic mixture of different
locations N1 and N3 with respect to a causal structure Gcaus. More generally, we can consider a state
|ψ〉 of a dS-dimensional quantum system S being at a superposition of different locations N1 and N3 in
Gcaus. We can model this as a fine-graining of S into two systems SN1 and SN2 , and associate the state
α|ψ〉SN1 |Ω〉SN2 + β|Ω〉SN1 |ψ〉SN2 with the fine-grained description. Under the fine-graining, each basis
element |v〉 of HS , gets associated with the fine-grained state space Span{|v〉SN1 |Ω〉SN2

, |Ω〉SN1
, |v〉SN2}

that corresponds to the message |v〉 being in an arbitrary superposition of the locations N1 and N2.
This is similar to how temporal superposition states are modelled in previous frameworks such as [54].

State spaces under fine-graining: In both Examples 1 and 2, an original system S taking values in
{0, 1, ..., dS − 1} splits into multiple systems S1, S2,... where the allowed states on each Sk is a subset of
{Ω, 0, 1, ..., dS − 1}. Further, in both cases, we partition the state space of the fine-grained systems S1,
S2,.. into disjoint subspaces, each of which map back to a value in the state space of the coarse-grained
system S. More generally, nodes of a causal structure may be associated with quantum systems in which
case a system S associated with a dS-dimensional Hilbert space HS can be fine-grained to a set of systems
S = {Sk}k where the state-space HSk

of each Sk is isomorphic to |Ω〉 ⊕ HS and the overall state space
HS of all the fine-grained systems is some subspace HS ⊆

⊗
Sk∈S HSk

. We are now ready to define
fine-graining of a general causal structure, and induced notions of fine-graining on systems embedded in
this graph and on signalling relations over these embedded systems.

Definition 2.9 (Fine-graining of a directed graph) A directed graph GF is called a fine-graining of an-
other directed graph G if there exists a map F : Nodes(G) 7→ Powerset

(
Nodes(GF )

)
that maps each node

N ∈ Nodes(G) to a set of nodes F(N) ⊆ Nodes(GF ) such that the following property holds. For any pair
of distinct nodes Ni, Nj ∈ Nodes(G), if there exists a directed path from Ni to Nj in G then there exists
at least one pair of nodes ni ∈ F(Ni) and nj ∈ F(Nj) with a directed path from ni to nj in GF .

If the above definition is satisfied, we will refer to F as the fine-graining map and G as a coarse-
graining of GF . The concept is illustrated in Figure 4. Based on the motivation set out by the above
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examples, we now define the fine-graining of quantum systems, with ⊆ below to be read as “is a subspace
of” and ∼= as “is isomorphic to”.

Definition 2.10 (Fine-graining of quantum systems) A set of quantum systems SF is called a fine-graining
of another set S of quantum systems if there exists a map Fsys : S 7→ Powerset(SF ) that maps each
S ∈ S to a set of systems Fsys(S) ⊆ SF where the joint state-space HFsys(S) associated with the systems
Fsys(S) is given as follows.

HFsys(S) ⊆
⊗

fS∈Fsys(S)

HfS
,

HfS
∼= |Ω〉 ⊕ HS .

(3)

Furthermore, for every orthonormal basis {|v〉}v∈{0,1,...,dS−1} of HS there exists a partition of HFsys(S) =⊕
v∈{0,1,...,dS−1}HvFsys(S) into corresponding orthogonal subspaces, where the subspace H

v
Fsys(S) of HFsys(S)

is the fine-graining of the basis element |v〉 of HS. For any R ⊆ S, Fsys(R) will be used as short form
for {Fsys(R)}R∈R

In particular, let E : S ∈ S 7→ NS ∈ Nodes(G) be an an embedding of S in a causal structure Gcaus
(Definition 2.5). Any fine-graining GcausF of Gcaus associated with a fine-graining map F induces the
following fine-graining SF of S by associating a fine-grained system SnS with each fine-grained node
nS ∈ F(NS) ⊆ Nodes(GcausF ) through Fsys(S) := {SnS}nS∈F(NS).

SF := {SnS}nS∈F(NS),S∈S = Fsys(S).

We now define the fine-graining of a map, after setting out some notation. Let Φ̂ be a CPTP map
with a set I = {I1, ...In} of input and a set O = {O1, ..., Om} of output systems with S = I ∪ O, and
{|vi〉Ii}vi and {|uj〉Oj}uj be orthonormal bases of HIi and HOj for i ∈ {1, ..., n} and j ∈ {1, ...,m}. Then
{|v〉I =

⊗n
i=1 |vi〉Ii

}v1,...,vn
and {|u〉O =

⊗m
j=1 |uj〉Oj

}u1,...,um
are orthonormal bases of HI and HO. For

a fine-graining of S associated with the fine-graining map Fsys, we will useHv
Fsys(I) =

⊗n
i=1H

vi

Fsys(Ii) and
Hu
Fsys(O) =

⊗m
j=1H

uj

Fsys(Oj) to denote the cumulative fine-grained spaces of I and O and |ψv〉 ∈ HFsys(I)

should be read as |ψv〉 =
⊗n

i=1 |ψvi〉, and similarly for the output space.

Definition 2.11 (Fine-graining of quantum maps) We say that the CPTP map Φ̂F is a fine-graining of
Φ̂ if there exists a fine-graining Fsys of the in/output systems S of Φ̂ such that the set of all in/output
systems of Φ̂F is given by Fsys(S), and Φ̂F has a set Fsys(S) of in/output systems corresponding to
each in/output system S of Φ̂. Further, for each basis state |v〉I of HI

Φ̂ : |v〉〈v| 7→ ρO

for some ρO =
∑

u,u′ pu,u′ |u〉〈u′|O expressed in an orthonormal basis {|u〉O}u of HO if and only if for
all states |ψv〉 ∈ Hv

Fsys(I) in the fine-grained subspace of |v〉I

Φ̂F : |ψv〉〈ψv|Fsys(I) 7→ ρFsys(O)

where ρFsys(O) =
∑

u,u′ pu,u′ |ψu〉〈ψu′ |Fsys(O) for some |ψu〉 ∈ Hu
Fsys(O) and |ψu′〉 ∈ Hu′

Fsys(O) be-
longing to the corresponding fine-grained subspaces of |u〉O and |u′〉O.

Note that the signalling structure associated with a CPTP map or a network of such maps is also a
directed graph, over the set of all subsets of all the in and output quantum systems associated with the
map/network. The notion of fine-graining for signalling structures hence follows from Definition 2.9. In
particular, if Gsig is a signalling structure over the set of systems S, then Nodes(Gsig) = Powerset(S)
as we can consider signalling (cf. Definition 2.3) between arbitrary subsets of quantum systems. Under
a fine-graining, S transforms into a larger set SF := {Fsys(S)}S∈S of systems and we would then be
interested in a fine-grained signalling structure GsigF where Nodes(GsigF ) = Powerset(SF ). We then have
the following lemma that relates the signalling structure of a CPTP map with that of its fine-graining,
showing that signalling relations in a map are preserved under fine-graining of the map.
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Lemma 2.12 [Fine-graining a map preserves its signalling relations] Given a map Φ̂ and a fine-graining
Fsys of its in/output systems S, for every signalling relation SI → SO in Φ̂ between some subsets
SI ⊂ S and SO ⊂ S of its input and output systems, there exists a corresponding signalling relation
Fsys(SI)→ Fsys(SO) in the fine-grained map Φ̂F . Consequently, the signalling structure GsigF associated
with Φ̂F is a fine-graining of the signalling structure Gsig associated with Φ̂.

The converse of the above lemma does not hold in general, as illustrated by the following simple,
classical example. In general, there can be additional signalling relations at a fine-grained level that may
get washed out under sufficient coarse-graining.

Example 3 Let Φ̂ be a classical channel from an input bit I ∈ {0, 1} to an output bit O ∈ {0, 1} that
discards the input I and deterministically prepares O = 0 as the output, then we immediately have
I 6→ O in Φ̂. We now construct a fine-graining of Φ̂ where Fsys(I) → Fsys(O) holds. Consider
the channel Φ̂F with the input systems I1, I2 ∈ {0, 1} and output systems O1, O2 ∈ {0, 1} acting as
Φ̂F : (I1, I2) 7→ (O1 = I1⊕I2, O2 = I1⊕I2) (where ⊕ denotes modulo-2 addition). Let Fsys(I) = {I1, I2}
and Fsys(O) = {O1, O2} be a fine-graining of the systems I and O, where the input value I = 0 in Φ̂
is identified with the subspace (I1, I2) ∈ {(0, 0), (1, 1)} of possible input values in Φ̂F and I = 1 with
the orthogonal subspace (I1, I2) ∈ {(0, 1), (1, 0)}, and the output values O = 0 and O = 1 are similarly
identified with the orthogonal subspaces (O1, O2) ∈ {(0, 0), (1, 1)} and (O1, O2) ∈ {(0, 1), (1, 0)} in the
fine-grained map. In other words the coarse grained variables encode the parity of the corresponding two
fine-grained variables. We can see that Φ̂F is indeed a fine-graining of Φ̂, since Φ̂ maps every I ∈ {0, 1}
to O = 0 while Φ̂F maps every input to outputs in the fine-grained subspace (O1, O2) ∈ {(0, 0), (1, 1)}
associated with O = 0. Further, we can see that {I1, I2} → {O1, O2} in Φ̂F since Φ̂F (I1 = 0, I2 = 0) 6=
Φ̂F (I1 = 0, I2 = 1).

In the next section, we will apply these general concepts to define the implementations of CPTP
maps and networks of maps in a fixed spacetime where Equation (3) will be used to explicitly define the
state-spaces of quantum systems embedded in a spacetime.

3 Spacetime structure and relativistic causality
Definition 3.1 (Fixed acyclic spacetime) We model a fixed acyclic spacetime by a partially ordered set
T associated with the order relation �, without assuming any further structure/symmetries. P � Q is
denoted as P ≺ Q whenever P,Q ∈ T are distinct elements. Then P ≺ Q, P � Q and P ⊀� Q represent
P being in the past of, future of and neither in the past nor future of Q respectively, with respect to this
order relation.

Spacetime as an abstract causal structure Modelling spacetime as an abstract partially ordered
set means that we can regard T as a directed graph with the order relation ≺ playing the role of the
directed edges and this would define a causal structure (as in Definition 2.7). By virtue of being a partial
order relation, this would correspond to a directed acyclic graph. For example, in the particular case
of Minkowski spacetime, the partial order would correspond to the lightcone structure. More generally,
one may also consider spacetime structures that are not partially ordered such as those arising from
exotic closed timelike curve solutions to Einstein’s equations, here ≺ would be a pre-order relation. Our
framework and definitions would easily generalise to this case. However, we focus on the case of partially
ordered spacetimes in this paper, as our goal is to apply this framework to consider the properties of
networks of maps that can be experimentally implemented in a physical spacetime, such as Minkowski
spacetime. Once the operational and spacetime notions of causation are disentangled as done here,
the question of how cyclic signalling structures can be embedded compatibly in an acyclic spacetime
becomes a much more interesting question than the case of a cyclic spacetime. Understanding what kind
of tasks are fundamentally impossible to implement in definite acyclic spacetimes (even when allowing
for quantum systems to be delocalised in space and time), would also shed light on how physics can
differ in more exotic spacetimes, be it cyclic spacetimes or quantum indefinite spacetimes. This will be
the aim of this paper, and we therefore focus on fixed acyclic spacetimes. While the causal structure
with spacetime locations as nodes is a directed acyclic graph in this case, we can also consider a causal
structure with spacetime regions as the nodes and naturally define an order relation on these, which will
in general not be a partial order.
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Ordering and fine-graining spacetime regions: We formally define the order relation on space-
time regions below, this will help in understanding how a set of cyclic signalling relations can be imple-
mented in an acyclic spacetime.

Definition 3.2 (Order relation on spacetime regions) Let P1,P2 ⊆ T be two distinct subsets of locations
(or “regions”) in a spacetime T . We say that P1 R−→ P2 if there exists at least one pair of locations
P 1 ∈ P1 and P 2 ∈ P2 such that P 1 ≺ P 2. More generally, we will refer to a directed graph GRT as a
region causal structure of T if Nodes(GRT ) ⊆ Powerset(T ) and its edges are given by R−→.

Remark 3.3 Note that R−→ is neither a pre-order nor a partial order relation as it is non-transitive and we
can in general have P1

R−→ P2 as well as P2
R−→ P1 for any two spacetime regions. Further, any partition

of each spacetime region P ⊆ T into mutually disjoint sub-regions P = ∪iPi defines a fine-graining of
GRT (Definition 2.9) since it follows from Definition 3.2 that P = ∪iPi

R−→ Q = ∪jPj implies that there
exist Pi and Qj such that Pi

R−→ Qj. The spacetime T itself when represented as a directed acyclic graph
corresponds to a fine-graining of any such GRT which we will refer to as the maximal fine-graining of
GRT . This simply corresponds to writing each region P ∈ Nodes(GRT ) in terms of the individual spacetime
locations in T that comprise it P = ∪P∈PP . While GRT can in general be cyclic, its maximal fine-graining,
with nodes corresponding to elements of T , would always be acyclic since T is a partially ordered set.

3.1 Implementing quantum maps in a spacetime
The spacetime structure itself is devoid of any operational meaning until we embed physical systems in
it, until this point, it is simply an abstract causal structure by virtue of being a directed graph. An
agent may assign physical meaning to a spacetime point P only when it can be associated with some
operational event (one that can in principle be operationally verified) such as “I received message from
Bob at the spacetime location P ”. In our case, the physical systems are the in and output Hilbert spaces
of the quantum maps. When we implement a CPTP map in a spacetime structure, we are associating
spacetime regions with the in and output systems of the map i.e., we are embedding the systems in a
causal structure GRT whose nodes are subsets of T and edges R−→ are given by Definition 3.2, as formalised
below.

Definition 3.4 (Fixed spacetime implementation of a CPTP map) A fixed spacetime implementation of
Φ̂ in a spacetime T with respect to an embedding E is an implementation Φ̂GR

T ,E of Φ̂ in the causal
structure GRT over spacetime regions in T (cf. Definition 2.6), which we will denote as Φ̂T ,E for short.

The same CPTP map Φ̂ can have different implementations Φ̂T ,E , Φ̂T ,E′ in the same spacetime T ,
corresponding to different choices of spacetime embeddings E , E ′.

Fine-graining fixed spacetime implementations We can now use the concepts previously defined
to consider the fine-graining of a spacetime implemented map. Each partition of the regions forming
the nodes of GRT into subregions, defines a fine-graining GRT ,F of GRT (cf. Remark 3.3), which defines a
corresponding fine-graining Φ̂T ,EF of the spacetime implemented map Φ̂T ,E . Explicitly, expressing a region
P ⊆ T in terms of disjoint subregions Pi ⊆ T as P = ∪iPi induces a fine-graining Fsys(S) = {SPi}i
of the systems S ∈ S which in turn defines a fine-graining Φ̂T ,EF of the map Φ̂T ,E (or equivalently of the
original map Φ̂ since this acts equivalently upto relabelling of the in/output systems as S ⇔ SP

S

), as
per Definition 2.10. The state-spaces of the fine-grained systems are given according to Equation (3).
In particular, when we maximally fine-grain each region in terms of the individual spacetime points,
PS = {PS ∈ T }PS∈PS , each system S is correspondingly fine-grained to a set of systems Fsysmax(S) =
{SPS}PS∈PS , such that each spacetime location PS ∈ PS becomes associated with a Hilbert space
HSP S

∼= |Ω〉⊕HS . This means that whenever a system S is embedded in a spacetime region PS ⊆ T , when
we sufficiently fine-grain, we can associate a copy of the state space of the original system (augmented
with a vacuum state) at each spacetime location in PS . We will refer to each such system SP

S

associated
with a single spacetime location PS ∈ T as an elemental subsystem of the implementation Φ̂T ,E . The
set of all elemental subsystems is then given as Fsysmax(S) = {Fsysmax(S)}S∈S .
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3.2 Relativistic causality
Once we implement a map in a spacetime as described above, we can then use the signalling relations
associated with the map to signal between different spacetime regions. Now two order relations come into
play, one is the order relation between in/output systems of the map implied by the signalling relations
→, and the other is the order relation � of the spacetime T and the induced order R−→ on spacetime
regions. A priory, these order relations are completely independent of each other, and it is the notion of
relativistic causality that connects the two by demanding compatibility of the signalling relations of a
map with the abstract causal structure of a spacetime. This can be seen as a special case of the more
general Definition 2.7 which defines compatibility of a signalling structure with a causal structure. But
we state it below explicitly for completeness, and for the ease of cross referencing.

Definition 3.5 (Relativistic causality (special case of Definition 2.7)) Let Gsig be a set of signalling rela-
tions over a set S of systems and E : S 7→ SPS

be an embedding of the systems S ∈ S in the region causal
structure GRT associated with a spacetime T . Then, we say that the signalling structure Gsig does not
violate relativistic causality with respect to the embedding E in the spacetime T if the signalling relations
in Gsig are compatible with the causal structure GRT under the embedding E, according to Definition 2.7.

The above relativistic causality condition is necessary for insuring that the causal dependencies given
by the information-theoretic causal structure of the CPTP map(s) flow from past to future in the space-
time in which it is implemented. It need not be sufficient, since we are working under minimal assump-
tions for characterising causation. The following theorem shows that it is possible to embed any set
of (possibly cyclic) signalling relations in a partially ordered spacetime, such as Minkowski spacetime
without violating the relativistic causality condition.

Theorem 3.6 [Embedding arbitrary, cyclic signalling relations in spacetime] For every signalling struc-
ture Gsig, there exists a fixed acyclic spacetime T and an embedding E of Gsig in a region causal structure
GRT of T that respects relativistic causality.

Remark 3.7 We note that Definition 3.1 is a very minimal definition of spacetime that does not assume
any of the symmetries or differentiable manifold structure that is usually associated with spacetime in
relativistic physics. This means that according to this definition, we would regard two distinct partially
ordered sets T and T ′ are two different spacetimes. However, if we model spacetime instead as globally
hyperbolic manifold, then we could sample a finite number of points from the same spacetime to form
different partially ordered sets T and T ′ from the same manifold. And indeed, if we model the spacetime
as a globally hyperbolic manifold, the statement of the above theorem becomes a stronger one, we will
instead have that for every signalling structure and every spacetime manifold, there exists an embedding
with the said properties, and the region causal structure in this case will have nodes that correspond to a
finite collection of points in the manifold. The proof of this statement is also included in the proof of the
above theorem.

For the spacetime implementation Φ̂T ,E of a map Φ̂ to respect relativistic causality, we would naturally
require the signalling relations at each level of fine-graining to respect relativistic causality and this
naturally extends to a network of maps, as formalised below.

Definition 3.8 (Relativistic causality for a network of spacetime embedded maps) A fixed spacetime im-
plementation of a network of maps is said to satisfy relativistic causality only if every map Φ̂T ,Ei in the
spacetime implemented network is such that under every fine-graining Φ̂T ,E,Fi of the map, the correspond-
ing signalling relations GT ,E,F satisfy the relativistic causality condition of Definition 3.5.

For example, suppose we have a map Φ̂ : A 7→ B with the signalling relation A→ B and the systems A
and B are embedded in spacetime such that PA = {P1, P2} and PB = {P} for some spacetime locations
P1, P2 and P . This defines a fixed spacetime implementation Φ̂T ,E of the map and its maximal fine-
graining ΦT ,E,Fmax which has the elemental subsystems Fsysmax(A) = {AP1 , AP2} as the input systems and
the elemental subsyste, Fsysmax(B) = {BP } as the output system. Then, since we have A→ B, relativistic
causality would require that PA R−→ PB which is equivalent to saying that either P1 ≺ P or P2 ≺ P must
hold. In the fine-grained map, the corresponding signalling structure must now specify whether or not
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there is signalling between the elemental subsystems. We could have AP1 → BP , AP2 → BP or both in
this signalling structure. All three cases would coarse-grain to give back the original signalling relation
A → B (when we combine AP1 and AP2 to a single node A and relabel BP to B while preserving the
edge structure), but notice that we would in general have more relativistic causality constraints on the
embedding, from each level of the fine-graining. The following lemma then immediately follows from the
above definitions.

Lemma 3.9 [Fine-graining to an acyclic signalling structure] Every network of CPTP maps that admits
an implementation in a fixed spacetime T that does not violate relativistic causality in that spacetime
admits a fine-graining that has a definite acyclic signalling structure, whose edges→ align with the partial
order relation ≺ of the spacetime.

Composition of fixed spacetime implementations As fixed spacetime implementations of CPTP
maps are themselves CPTP maps, we can consider compositions of these. Let Φ̂1 : I1 7→ O1 and
Φ̂2 : I2 7→ O2 be two CPTP maps and let Φ̂ = Φ̂2 ◦ Φ̂1 be their sequential composition obtained by
connecting O1 to I2. Then we can describe the fixed spacetime implementation Φ̂T ,E of Φ̂ in terms of
the fixed spacetime implementations Φ̂T ,E1

1 and Φ̂T ,E2
2 of its components Φ̂1 and Φ̂2 by requiring that

the embeddings E1 : I1 7→ IP
I1

1 , O1 7→ OP
O1

1 and E2 : I2 7→ IP
I2

2 , O2 7→ OP
O2

2 assign the same spacetime
region to the systems being connected i.e., PO1 = PI2 := P and setting Φ̂T ,E := Φ̂T ,E2

2 ◦ Φ̂T ,E2
2 where the

composition now connects each elemental system OP1 , P ∈ P associated with O1 to the corresponding
elemental system IP2 . In this manner, we can define the spacetime implementation of any network formed
by arbitrary composition of another set of maps, in terms of the fixed spacetime implementations of its
constituent maps.

Remark 3.10 (Single vs multiple uses of a map in spacetime) When we implement a CPTP map Φ̂ in a
spacetime by assigning regions to its in/output systems, do we allow the map the be used multiple times
in the assigned spacetime regions or is the map used only once on a non-vacuum state, that may be in
a superposition of different spacetime locations? A priory, Definition 3.4 does not forbid multiple uses.
For example, suppose that Φ̂ : I 7→ O is an identity channel with HI = HO = |Ω〉 ⊕ C2. Consider a
fixed spacetime implementation of this map where PI := {(r, ti)}i∈{1,3,5,...} and PO := {(r, tj)}j∈{2,4,6,...}
are the spacetime regions assigned to I and O in Minkowski spacetime, expressed in spatial temporal
co-ordinates with respect to some inertial frame. Now the spacetime implementation Φ̂T ,E could apply
the identity map independently at each spacetime location, such that a state arriving in I at (r, ti) is
mapped to the same state on O at (r, ti+1). When we input a non-vacuum state at each of the possible
input locations, this would appear as though the map is used multiple times, once between each pair (r, ti)
and (r, ti+1) of in and output locations. On the other hand, if we wish to restrict to a single use of the
map on a non-vacuum state, we can simply restrict state space of each in/output system of the map to
be a suitable subspace of the space defined in Equation (3). In particular, we would have the following
subspace that models a dS dimensional quantum message in a superposition of spacetime locations in
PS ⊆ T .

Span{|v〉S
P ⊗
R∈PS\{P}

|Ω〉S
R

}v∈{0,1,...dS−1},P∈PS
.

Restricting to this subspace would mean that whenever a system S of the original map Φ̂ carries a
single dS dimensional state, then the corresponding system E(S) of the spacetime implementation Φ̂T ,E
would also carry exactly a single dS dimensional state, but the state may be delocalised (classically or
quantumly) over spacetime locations in the region PS specified by the embedding E.

4 Review of the process matrix framework
The process matrix framework [28] describes multi-partite scenarios where the parties act within local
quantum laboratories compatible with a local ordering of events within each laboratory, in the absence of a
global order or spacetime structure conneting different laboratories. The global behaviour is characterised
by a process matrix, which models the “outside environment” of these local labs (which the parties
cannot access) and encodes information about how the local labs interact. Each party is associated
with a corresponding local quantum laboratory and there are certain setup assumptions made about
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the operations implemented in these local laboratories, which justify the mathematical definitions of the
framework. Here we briefly review the process matrix framework, starting with these assumptions and
then moving onto the formal definition of process matrices, and different classes of process matrices.

4.1 Assumptions and framework preliminaries
Assumptions: There are three relevant events associated with each party (or corresponding local
laboratory), AI which corresponds to the local input event at which the party receives a quantum
system from the outside environment, AU which is the event at which they apply their local operation to
this system and AO which is the local output event at which they send a quantum system to the outside
environment. It is assumed that there is an ordering between these local events (even in the absence of
a global order between events corresponding to different parties), each party receives an input system to
their lab, then applies their local operation and then sends an output to the environment i.e, the input
event AI precedes the operation event AU which precedes the output event AO for each party A. We will
refer to this as the local order (LO) assumption. Further, the labs are assumed to be closed to external
in/outputs otherwise, that is AI and AO are the only events through which the lab interacts with the
outside environment. This is called the closed lab (CL) assumption. Note that no spacetime information
is explicitly considered but even in the absence of information about the absolute time of occurrence
of these operational events, it is in principle possible to ensure that they are ordered in a certain way.
Finally, it is assumed that the parties can freely chose the local operation performed in their lab, this
choice can be encoded in a classical setting as we will see later. This corresponds to the free choice (FC)
assumption.

Local behaviour: local quantum experiments. Each party A acts within their respective local
laboratory, performing a local quantum experiment associated with the input Hilbert space HAI

of
dimension dAI

and output Hilbert space HAO
of dimension dAO

.9 The operations performed by agents
during the course of their local experiments are described by quantum instruments J A = {MA

x }mx=1 with
MA

x : AI → AO [28, 30]. Here, x parametrizes the possible local measurement outcomes, and AI and AO
represent the set of all linear operators over HAI

and HAO
respectively. A classical setting a can be used

to specify the choice of operation implemented on the input Hilbert space, for instance, this can act as a
measurement setting. Then the corresponding instrument is denoted as J Aa = {MA

x|a}
m
x=1 (for some set

{1, ...,m} of possible outcome values). Quantum instruments being a set of CP maps have a corresponding
Choi-Jamiołkowski representation [30], and a quantum instrument J Aa = {MA

x|a}
m
x=1 can be equivalently

represented by the set of Choi-Jamiołkowski states {MAIAO

x|a =
[
I⊗MA

x|a

(
|1〉〉〈〈1|

)]T
}mx=1, where |1〉〉 :=∑

j |j〉AI |j〉AI and T denotes matrix transposition with respect to the chosen orthonormal basis |j〉AI of
HAI

.

Global behaviour: process matrices. The probability P (x1, ..., xN |a1, ..., aN ) that the N agents
{Ai}i observe the outcomes (x1, ..., xN ) for a choice of measurement settings (a1, ..., aN ) is a function
of the corresponding local mapsMA1

x1|a1
, ...,MAN

xN |aN
and a global behaviour, called the process matrix.

This can be expressed using the Choi-Jamiołkowski representation of the maps as follows [28, 30],

P (x1, ..., xN |a1, ..., aN ) = P
(
MA1

x1|a1
, ...,MAN

xN |aN

)
= tr

[(
M

A1
IA

1
O

x1|a1
⊗ ...⊗MAN

I A
N
O

xN |aN

)
W
]
, (4)

for a Hermitian operatorW ∈ A1
I⊗A1

O⊗ ...⊗ANI ⊗ANO , known as the process matrix. The above equation
plays the role of the Born rule in these general scenarios, with W playing the role of the quantum state
(or a density matrix). The set of valid process matrices is characterised by the set of all such Hermitian
operators W that yield positive normalised probabilities for all possible CP maps {MAk

xk|ak
}Nk=1. This is

required to hold also for CP maps that act on ancillary quantum systems (in addition to the in/output
systems AkI and AkO associated with the process), where the ancillas between multiple labs may be
entangled [28]. This imposes certain conditions on W , such as non-negativity [30] and implies that an
N -partite process matrix W = I ⊗Ŵ

(
|1〉〉〈〈1|

)
can be viewed as the Choi representation of a completely

9These Hilbert spaces are assumed to be finite dimensional.
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positive and trace preserving map Ŵ from the input systems A1
O,...,A

N
O (corresponding the outputs of

the parties) to the output systems A1
I ,...,A

N
I (corresponding to the inputs of the parties), where |1〉〉

corresponds to the unnormalised maximally entangled state over two copies of the input Hilbert space
of Ŵ . Note that the Choi representation of Ŵ and that of the local operations defined in the previous
paragraphs differs by a transpose, this is a choice of convention made in the process matrix framework,
that makes the notation and calculations more convenient.

4.2 Different classes of processes
Fixed order processes Process matrices in general need not be compatible with a global (acyclic)
ordering between the operations of the parties. It is therefore useful to identify the subset of processes
that are compatible with a definite acyclic causal order. Here we review a formal definition of such
processes, that is adapted from [30, 31].

Definition 4.1 (Fixed order processes) An N -partite process matrix W is said to be a fixed order process,
if there exists a partial order K(SI/O) on the set SI/O = {A1

I , A
1
O, ..., A

N
I , A

N
O } of the input and output

systems of the N parties and associated with the binary relations ≺K (first element precedes the second),
�K (first element succeeds the second) and ⊀�K (the elements are unordered) such that the following
conditions are satisfied

1. For any i ∈ {1, ..., N}, AiI ≺K AiO.

2. For any party Ai and a subset AS of the remaining parties, such that AiO ⊀K ASI , ∀AS ∈ AS (which
is denoted in short as AiO ⊀K ASI ) with respect to the partial order K(SI/O), the joint probability
distribution P (x1, ..., xN |a1, ..., aN ) (cf. Equation (4)) obtained from W for any choice of local
measurements of the N parties does not allow the outcome of any of the parties in AS to depend
on the setting of party Ai. That is, taking xS to denote the set of outcomes {xS}S∈S of the parties
in AS , we have the following whenever AiO ⊀K ASI with respect to K(SI/O)

P (xS |a1, ...ai−1, ai, ai+1, ..., aN ) =
∑

x1,...,xj−1,xj+1,...,xN

P (x1, ..., xN |a1, ..., aN )

=P (xS |a1, ..., ai−1, ai+1, ..., aN ).
(5)

Not all processes are compatible with a fixed partial order (in the above sense), or a probabilistic mixture
thereof. This incompatibility can be witnessed at a device-dependent manner (at the level of the process
matrix) or a device-independent manner (at the level of the probabilities produced by a process matrix)
leading to two distinct notions of causality in the process framework— causal separability and causal
inequalities. Below, we review these concepts for the bipartite case with the parties A and B and refer
the reader to [30, 31] for more general definitions.

Causal non-separability and causal inequalities: Consider a bipartite fixed causal order process
compatible with the order A ≺ B (cf. Definition 4.1) and denote it as WA≺B . Then [31] shows that
WA≺B must be such that tracing out the output system of B leaves the process invariant i.e.,

WA≺B = WAIAOBI ⊗ 1BO
,

where WAIAOBI ≥ 0 (with TrWAIAOBI = dAO
) is a valid process matrix for the case where Bob has a

trivial output dBO
= 1. Similarly, we can define WB≺A to be a fixed order process that is compatible

with the order B ≺ A.

Definition 4.2 (Bipartite causally separable process [30]) A bipartite process matrixW is said to be causally
separable iff it decomposes as

W = qWA≺B + (1− q)WB≺A, (6)

for some q ∈ [0, 1], where WA≺B and WB≺A are process matrices compatible with the fixed ordering
between parties indicated in the respective superscripts. W is said to be causally non-separable otherwise.
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Definition 4.3 (Bipartite causal process/distribution [28]) A bipartite process matrix W is said to be
causal iff for all choices of local operations, the joint probability P (xy|ab) generated by W (for out-
comes x and y and settings a and b of parties A and B respectively) decomposes as follows for some
q ∈ [0, 1]

P (xy|ab) = qPA≺B(xy|ab) + (1− q)PB≺A(xy|ab), (7)

where PA≺B is a probability distribution compatible with the causal order A ≺ B by disallowing signalling
from B to A i.e., PA≺B(x|ab) = PA≺B(x|a), and similarly for PB≺A. The processW is called non-causal
otherwise. Similarly, distributions P (xy|ab) are said to be causal/non-causal depending on whether they
can be decomposed as above.

[28] derives a linear inequality constraint on the joint probabilities P (xy|ab) under four assumptions,
this is referred to as a causal inequality and is shown to be a necessary constraint on causal distributions
(analogous to Bell inequalities which are necessarily satisfied by local-causal distributions). The first
three assumptions are the set-up assumptions LO, CL and FC of the process matrix framework. The
fourth is an additional assumption referred to as causal structure (CS) which states that the input and
output events of the parties are localised in a fixed partial order such as spacetime that prohibits signalling
outside the future. Imposing these assumptions implies that the underlying process is compatible with a
fixed order between the parties’ operations, in the sense of Definition 4.1. This is because localisation of
events in a partial order allows us to view the events as elements of the partial order, the LO assumption
then implies that AiI ≺ AiO for each party Ai and the rest ensure that Ai can signal to Aj only if AiO ≺ A

j
I

in the partial order. Hence, correlations produced by bipartite fixed order processes necessarily satisfy
the causal inequality of [28]. Since this inequality is linear in the probabilities, probabilistic mixtures of
such correlations also satisfy them, such mixtures correspond to causal distributions as we have seen in
Definition 4.3.

Definition 4.3 formalises what it means for in/output events of parties to be localised in a partially
ordered causal structure (Minkowski spacetime being an example). However, physical implementations
of causally non-separable processes such as the quantum switch involve spacetime delocalised systems
in Minkowski spacetime. We therefore require a way to formalise what it means for in/output events
to be delocalised in a fixed, partially ordered spacetime structure. Such a formalisation is lacking in
the previous literature, and in the following, we develop a framework that enables us to describe such
scenarios by disentangling the operational aspects of the process framework (such as in/output events
in the local labs) from the spacetime structure. We will revisit these assumptions in Section 9 where we
discuss in detail the operational meaning of causal inequality violations, in light of our results.

Remark 4.4 The set of causal processes is a strict superset of the set of causally separable processes,
which is in turn a strict superset of the set of fixed order processes. For example, the quantum switch
process (reviewed in Section 7) is causally non-separable but causal [30] and the classical switch, WCS :=
1
2W

A≺B + 1
2W

B≺A is causally separable by definition but is not a fixed order process.

5 Reformulating the process framework in terms of composition
5.1 The process map, extended local maps and their composition
The process matrix is typically viewed as a higher-order map that acts on the space of CPTP maps i.e.,
it maps the local operations of the parties into another channel (from some states in the global past to
those in the global future of all parties [57]) or to the joint probabilities over the settings and outcomes
of all the parties (See Figure 5). In this section, we show that this action of the process matrix on
the local operations can be described through yet another view— as a composition of CPTP maps that
involves feedback loops. We then derive the generalised Born rule (4) of the process matrix framework
in this picture, derive reduced processes from partial composition of the process with local operations
of a subset of parties, and prove the equivalence between two notions of signalling (one at the level of
probabilities and the other at the level of the underlying map and quantum states).

As mentioned before, any process matrix W over N parties {A1, ..., AN} can be seen as the Choi
representation of a CPTP map Ŵ from the set of all output systems of the parties {A1

O, ..., A
N
O } to the

set of all their input systems {A1
I , ..., A

N
I } [28, 30]. We will refer to Ŵ as the process map, in the rest
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Ŵ

PO

AO BO

FI

AI BI

∼= Ŵ

PO AO BO

FI AI BI

Figure 5: A process as a higher order transformation and a CPTP map: A process matrix W can be seen
as the Choi representation of a CPTP map Ŵ from the output systems (green) of all parties to the input systems
(red) of all parties (right side). The process shown here involves four parties A, B, P and F with P having a trivial
input and F having a trivial output (hence not pictured) i.e., none of the parties can signal to P and this party can
be seen as preparing states on the system P in the global past of the rest and similarly F can be seen as acting in the
global future of the rest, possibly measuring the final states on F . Ŵ can also be seen as a higher order transformation
maps the local transformations of the parties A and B (acting between the systems AI and AO, and BI and BO

respectively) to a channel between the systems P and F . Given the preparation of P and measurement of F , it can
also be seen as higher order transformation acting on the operations of all four parties, and mapping them to a joint
probability distribution.

of the paper. As before, for each in/output system S of a CPTP map we will use the same label S to
denote the state space of S i.e. the set of linear operators on the Hilbert space HS .

The local operation of each party A in the process framework is modelled as a map from their input
system AI to their output system AO, possibly labelled by a classical setting a and outcome x. Here we
extend the set of in and output systems of the local map to explicitly include the setting and outcome.
We model the local operationMA of a party A as a CPTP map from the input systems AI and As to the
output systems AO and Ao, where AI and AO are the quantum in/output systems we have seen before,
As and Ao model the local in/output systems carrying the classical setting a (that specifies the choice
of operation to be applied on the input system AI) and a possible measurement outcome x of the party.
In other words,MA

a (·) :=MA(|a〉〈a|As
⊗ ·) acts as a CPTP map from AI to AO and Ao for each choice

of classical setting a.10 If the map does not implement a measurement but implements a transformation
from AI to AO depending on a setting choice a on As, the output state on Ao will correspond to the
deterministic outcome represented by a fixed state | ⊥〉, and the output system Ao can simply be ignored
in this case. We will say that an outcome is non-trivial if it does not equal ⊥. Then the action of each of
the CP mapsMA

x|a (defining the quantum instrument J Aa in the process framework) on an input state
ρAI

can be described as

MA
x|a(ρAI

) := trAo

[(
|x〉〈x|Ao

⊗ IAO

)[
MA(|a〉〈a|As

⊗ ρAI
)
]]
. (8)

We will then refer to the map MAk : AkI ⊗ Aks 7→ AkO ⊗ Ako for each party Ak as the extended local
map or extended local operation of that party.

Remark 5.1 Note that the set of all possible local operations {MA
a }a : AI 7→ AO ⊗ Ao for each party A

is captured by a single extended mapMA : AI ⊗As 7→ AO ⊗Ao by considering arbitrary classical initial
states |a〉〈a| on As, through the correspondenceMA

a (·) =MA(|a〉〈a|As
⊗ ·).

10The classical setting and outcome, a and x are encoded as quantum states |a〉 and |x〉 in the computational basis.
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Figure 6: Probabilities through composition of process map and local operations In the process matrix
framework, the joint probability of Alice and Bob obtaining measurement outcomes x and y upon measuring the
settings a and b on their respective input systems AI and BI is associated with the CP (but trace decreasing) maps
MA

x|a andMB
y|b, and is given by Equation (4). This is illustrated in the top left. The probability rule of Equation (4)

can also be obtained by viewing the action of the process map Ŵ on the local operations are a composition operation,
as shown on the top right: where the three maps are composed by connecting the output systems AI and BI of Ŵ
to the corresponding input systems of the local maps, and the output systems AO and BO of the local maps to the
corresponding input systems of Ŵ , through loop composition (Definition 2.1). The local maps of Alice and Bob are
given additional input and output systems associated with their setting and outcome choices. This composition then
leads to a new map P̂Ŵ ,M (bottom middle) that encodes the joint probability distribution as shown in Lemma 5.2.

Ŵ acts on the local maps {MAk}Nk=1 through composition, as shown in Figure 6: first the local maps
and the process map Ŵ are sequentially composed by connecting the output systems AkI of Ŵ to the input
system of the corresponding local mapMAk

, then the output system AkO of each local map is connected
back to the corresponding input system of Ŵ through loop composition. Note that the systems being
connected through loops will always have isomorphic state spaces of the same dimension, by construction.
Explicitly, distinguishing the isomorphic state spaces associated with Ŵ and the local operations by
adding a bar on top of the external in/output spaces of the local operations, the action of the process
map Ŵ :

⊗N
k=1A

k
O 7→

⊗N
k=1A

k
I on a set of local operations {MAk}Nk=1, MAk : ĀkI ⊗ Aks 7→ ĀkO ⊗ Ako

corresponds to the following composition

C(Ŵ , {MAk

}Nk=1) := (Ŵ ⊗MA1
⊗ ...⊗MAN

)(A1
I ↪→Ā

1
I ,...,A

N
I ↪→Ā

N
I ,Ā

1
O↪→A

1
O,...,Ā

N
O ↪→A

N
O ).
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We will refer to C(Ŵ , {MAk}Nk=1) as the complete composition of the process with the local operations.
This corresponds to a new map, with the classical input systems {Aks}k carrying the measurement setting
choices of all parties and classical output systems {Ako}k carrying the measurement outcomes of the
parties. It is also useful to define the partial composition of Ŵ with the local maps {MAk}lk=1 of the
first l < N parties, which is given as

C(Ŵ , {MAk

}lk=1) := (Ŵ ⊗MA1
⊗ ...⊗MAN

)(A1
I ↪→Ā

1
I ,...,A

N
I ↪→Ā

N
I ,Ā

1
O↪→A

1
O,...,Ā

l
O↪→A

l
O ).

Note that the partial composition C(Ŵ , {MAk}lk=1) is a map with the input systems {AkO}Nk=l+1
along with {Aks}Nk=1 and output systems {AkI}Nk=l+1 and {Ako}Nk=1. In particular, we denote the com-
plete composition C(Ŵ , {MAk}Nk=1) in short as P̂Ŵ ,M since this map encodes the probabilities of local
measurements– if we input a choice {ak}k for settings to P̂Ŵ ,M and post-select on a set {xk}k of outcomes
on the output of P̂Ŵ ,M, we get the joint probability of obtaining those outcomes given those setting
choices as the success probability of that post-selection. Explicitly, Given an N -partite process map Ŵ
and a set {MAk

}Nk=1 of extended local maps, the joint probability of obtaining a set {xk}k of outcomes
given a choice {ak}k of the settings is obtained from the complete composition P̂Ŵ ,M as follows

P (x1, ..., xN |a1, ..., xN ) =
tr
[
Πx1 ⊗ ...⊗ΠxN

(
P̂Ŵ ,M(|a1〉〈a1| ⊗ ...⊗ |aN 〉〈aN |)

)]
∑
x1,...,xN

tr
[
Πx1 ⊗ ...⊗ΠxN

(
P̂Ŵ ,M(|a1〉〈a1| ⊗ ...⊗ |aN 〉〈aN |)

)] , (9)

where the projector Πxk
= |xk〉〈xk| projects the state on the system Ako to |xk〉. Notice that in the

general case, the denominator is needed to ensure that we get normalised probabilities, since a map
such as P̂Ŵ ,M formed by loop composition of CPTP maps could in general be trace decreasing (cf.
Remark 2.2) and considering the numerator alone may not result in a valid normalised distribution. In
the special case where the denominator of the above expression is unity, we would have the following,
which we explicitly state below, as we show in the next section that this expression is equivalent to the
process matrix probability rule (4).

P (x1, ..., xN |a1, ..., xN ) = tr
[
Πx1 ⊗ ...⊗ΠxN

(
P̂Ŵ ,M(|a1〉〈a1| ⊗ ...⊗ |aN 〉〈aN |)

)]
. (10)

5.2 Probabilities and reduced processes
The following lemma illustrates that this formulation of process matrices in terms of composition recovers
the probability rule of the process matrix framework, and by construction, process matrices lead to valid
probabilities under this probability rule.

Lemma 5.2 [Probabilities from composition] For every process map Ŵ , the joint probabilities obtained
through the complete composition P̂Ŵ ,M as in Equation (10) are equivalent to those obtained in the
process matrix framework through Equation (4).

In the following lemma, we relate the partial composition with the notion of a reduced process [30].
Given an N -party process matrix W and a CPTP mapMAj

aj
for the jth party with Choi representation

M
Aj

I
Aj

O
aj , the reduced process matrix [30] for the remaining N − 1 parties is given as

W̄ (MAj
I
Aj

O
aj ) := TrAj

I
Aj

O

[(
1A

1
IA

1
O ⊗ ...⊗MAj

I
Aj

O
aj ⊗ ...⊗ 1A

N
I A

N
O

)
.W

]
, (11)

Lemma 5.3 [Partial composition and reduced process] Consider an N -partite process map Ŵ and the
local operations {MAk

ak
}lk=1 for the first l < N parties for a fixed set of settings {ak}lk=1. Then the

partial composition C(Ŵ , {MAk

ak
}lk=1) corresponds to a CPTP map whose Choi representation is the

reduced process matrix W̄ (MA1
IA

1
O

a1 , ...,M
Al

IA
l
O

al ).
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5.3 Equivalence of device dependent and independent notions of signalling
In the present paper, we focus on CPTP maps that correspond to process maps Ŵ and local operations
and on the network P̂Ŵ ,M corresponding to the complete composition of a process map Ŵ with a set
of local operations. The partial compositions of Ŵ with a subset of local operations will be useful for
defining signalling relations between different parties in such a network. For example, in a tripartite fixed
order process with the parties A, B and C and causal order A ≺ B ≺ C, there would be no signalling
from AO to CI in Ŵ but there would be signalling from AO to CI in the partial composition C(Ŵ ,MB)
of Ŵ with some local operationMB of B, indicating that the party C indeed acts after the party A in
the network. More generally, when we want to check for signalling from a party Ai to another party Aj
in the network P̂Ŵ ,M, we can check whether AiO → AjI in the partial composition of Ŵ with the local
maps of the remaining N − 2 parties.

The following theorem shows that signalling relations between in/output quantum systems in partial
compositions are in fact equivalent to signalling between classical settings and outcomes at the level of
the joint probabilities that are obtained from the complete composition (cf. Lemma 5.2), which shows
that the signalling relations in the different partial compositions indeed fully capture all the ways in
which the parties can signal in such a network. This establishes a tight connection between a device-
dependent (at the level of the underlying quantum maps and states) and device-independent (at the
level of the observed probabilities) notions of signalling. The key to this equivalence lies in encoding all
possible choices of the local operations for a party within the setting of that party, by extending the local
operations (see also Remark 5.1).

Consider an N -partite process map Ŵ involving the parties A := {A1, ..., AN} and the extended
local maps {MAk}Nk=1. Let Ai ∈ A be a party, AS ⊆ A\Ai be a subset of the remaining parties,
and C(Ŵ , {MAk}k=N

k=1,k 6∈i∪S) denote the partial composition of Ŵ with the local maps of parties in
A\(Ai ∪ AS), which, in the case where Ai ∪ AS = A is defined to be C(Ŵ , {MAk}k=N

k=1,k 6∈i∪S) = Ŵ .
Then, taking ASI to denote the set of all (quantum) input systems of parties in AS , we have the following
theorem.

Theorem 5.4 [Equivalence of two notions of signalling] AiO does not signal to ASI in
C(Ŵ , {MAk}k=N

k=1,k 6∈i∪S) if and only if the set of outcomes xS := {xS}S∈S of the parties in AS do not
depend on the setting ai of the party Ai i.e., the corresponding joint probability distribution satisfies
Equation (5).

Remark 5.5 (Non-unitary processes) One might wonder why we need to consider signalling relations in
the partial composition instead of considering a directed graph of signalling relations in Ŵ . For instance,
if we say that party Ai signals to party Aj whenever AiO → AjI in Ŵ , then doesn’t the absence of a
directed path of signalling relations from Ai to Ak imply that Ai’s setting cannot be correlated with Ak’s
outcome in any network that the agents implement using Ŵ? While this might seem intuitive, this need
not be true in non-unitary processes where it is possible to have signalling relations from one party A to
a set of parties {B,C} without any signalling relation from A to B or from A to C. Then A could signal
to D through the set {B,C}. The partial composition already takes into account these possibilities, and
therefore our results apply to all processes, not just unitary ones.

6 Characterising physical implementations of process matrices
6.1 No-go results
Using the general framework developed here along with the above results connecting this framework to
process matrices, we establish a number of related no-go results for fixed spacetime implementations of
process matrices. In Theorem 3.6, we have already seen that any signalling structure can be embedded
in a spacetime consistently with relativistic causality. This means that in order to make any non-trivial
statements, we must impose some constraints on the spacetime embeddings. Our no-go results below
reveal the constraints on the embeddings that are necessary for implementing non-fixed order processes
consistently with relativistic causality in a spacetime. These results also show the necessity of spacetime
or time localisation of the in/output events of parties in physical implementations of non-fixed order
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processes. Before stating the theorem and corollaries, we explicitly define the condition on the spacetime
embedding that will appear there.

Definition 6.1 (Cycle-free spacetime regions) We say that a region causal structure GRT of a spacetime
T is cycle-free if there is no sequence PS1 ,PS2 , ...,PSn of nodes in GRT such that PS1 R−→ PS2 R−→ ...

R−→
PSn

R−→ PS1 , where R−→ is the order relation of Definition 3.2.

Let P̂Ŵ ,M be a network formed by the composition of an N -partite process map Ŵ with the extended
local maps {MAk}Nk=1, we then have the following no-go theorem for such a process network.

Theorem 6.2 [No-go theorem for physical implementations of processes] No fixed spacetime implemen-
tation (Definition 3.4) P̂ T ,E

Ŵ ,M of the process network P̂Ŵ ,M within a fixed spacetime structure T (Defi-
nition 3.1) can simultaneously satisfy the following three assumptions.

1. W is not a fixed order process (Definition 4.1).

2. P̂ T ,E
Ŵ ,M satisfies the relativistic causality condition of Definition 3.5.

3. The region causal structure given by the embedding E with Nodes(GRT ) := {E(S)}S∈S is cycle-free.

Relativistic causality and free choice of local operations Note that the network P̂Ŵ ,M in the
theorem allows for arbitrary choices of local operations to be implemented, as it allows for arbitrary
choices of settings on the input systems {Aks}Nk=1 (cf. Remark 5.1) of the local maps {MAk}k being
composed with Ŵ . Hence assumption 2 captures the condition that relativistic causality is not violated
in the spacetime implementation of the process Ŵ with respect to the given spacetime embedding E ,
irrespective of the choice of local operations that it is composed with. If we required no violation of
relativistic causality to hold only for a particular set of local operations, then one can trivially implement
any process Ŵ by restricting to local operations of the formMAi = ρAi

O
◦ TrAi

I
i.e., those that discard

the input system and independently reprepare an output. This allows parties to send out a system from
their lab before they receive a system into their lab, without violating relativistic causality. A spacetime
embedding that would enable such an implementation would be one where all the outputs A1

O, ..., A
N
O are

associated with a spacetime location P and all the inputs A1
I , ..., A

N
I with a spacetime location Q � P ,

then Ŵ is quantum CPTP map that evolves spacetime localised quantum states at P to spacetime
localised quantum states at Q � P and can always be implemented.

Non-fixed order processes must have a cyclic causal structure A useful corollary that follows
from Theorem 5.4 and the proof of the above theorem is given below. It characterises the causal structure
of the process network P̂Ŵ ,M associated with any process Ŵ , and is irrespective of any spacetime
embedding. It follows because the proof of the above theorem only uses the fact that {E(S)}S∈S together
with the order relation R−→ defines a directed graph (i.e., a causal structure according to Definition 2.7)
and the third assumption implies that this is a directed acyclic graph.

Corollary 6.3 Let P̂Ŵ ,M be a network as defined in Theorem 6.2. The signalling relations of this network
are compatible with an acyclic causal structure (Definition 2.7) if and only if Ŵ is a fixed order process.
Moreover, if Ŵ is not a fixed order process, there exists a cyclic causal structure that the signalling
relations of P̂Ŵ ,M are compatible with.

The above corollary establishes a tight connection between non-fixed order processes and cyclicity
of signalling relations, and can be seen as a generalisation of a result from [51] which shows that for all
unitary processes, causal non-separability and cyclicity of the causal structure are equivalent notions.
This is established within a full causal modelling framework, which describes the causal structure of
processes in much more detail but is difficult to formalise for non-unitary processes (see their paper
for discussions on this point). In contrast, we have here characterised causal structures under very
minimal assumptions which has allowed us to show that more generally it is the non-fixed orderedness of
a process that is equivalent to cyclicity of the causal structure, causal non-separability is sufficient but

30



not necessary in this case. For instance, process matrices that can be expressed as a non-deterministic
probabilistic mixture of fixed order processes (such as the classical switch) are causally separable by
definition but also have a cyclic causal structure.

Fine-graining of spacetime regions It follows from Lemma 3.9 that any set of spacetime regions
can be fine-grained such that the order relation R−→ acts as a partial order over the fine-grained set of
regions. The most fine-grained description is in terms of individual spacetime locations, in which case R−→
reduces to the spacetime partial order ≺, and we immediately have Corollary 6.4 for this extreme case.
But often, we do not need to fine-grain all the way to single spacetime locations to reduce R−→ to a partial
order and the above theorem is therefore more general, and still allows for systems to be delocalised in
spacetime.

Corollary 6.4 (Spacetime localisation) For every process Ŵ that is not a fixed order process, it is im-
possible to implement the corresponding network P̂Ŵ ,M in a fixed spacetime without violating relativistic
causality through an embedding that localises all the in/output systems in the spacetime.

Note that all the above statements hold irrespective of the choice of reference frame used to describe
the spacetime, since they only depend on the order relation between spacetime points which is an
agent/frame independent notion according to Definition 3.1. We can also obtain a frame-dependent
statement by considering the spatial and temporal coordinates of all the spacetime locations from the
perspective of a single agent. For this, we must first add some more structure to our definition of
spacetime to include details about spacetime co-ordinates.

Definition 6.5 (spacetime co-ordinates and time localisation) Let T be a spacetime structure according
to Definition 3.1. Each agent A can express every point P ∈ T in terms of a spatial co-ordinate rAP ∈ Rn
and temporal co-ordinate tAP ∈ R as (rAP , tAP ). We require that agents always agree on the order relations
even if they disagree on the co-ordinate assignment. Explicitly, the order relation � must be such that
whenever P ≺ Q for some P,Q ∈ T , tAP < tAQ for all agents A. We say that a set of spacetime points
P ⊆ T are time localised with respect to an agent A if tAP = tAP ′ for any P, P ′ ∈ P.

We then have the following corollary.

Corollary 6.6 [Time localisation in a global frame] Under the same notation as Theorem 6.2, no fixed
spacetime implementation P̂ T ,E

Ŵ ,M of the network P̂Ŵ ,M within a fixed spacetime structure T can simul-
taneously satisfy the following three assumptions,

1. W is not a fixed order process (Definition 4.1).

2. P̂ T ,E
Ŵ ,M satisfies the relativistic causality condition of Definition 3.5.

3. The spacetime embedding E has the property that each of the spacetime regions PS ⊆ T are time-
localised from the perspective of some agent A.

We note that the above theorem no longer holds if we replace the requirement that all in/output
systems are time-localised in a single global frame with the weaker requirement that the in/output
systems AkI , A

k
O of each agent Ak are time-localised in their own frame. This is because spacetime

localisation is an absolute (i.e., agent independent) notion in a fixed spacetime, but time localisation is
an agent-dependent notion even in a fixed spacetime. For instance, consider two space-tike separated
locations P1 ⊀� P2 in Minkowski spacetime which are simultaneous (i.e, have the same time co-ordinate)
in one frame (say that if agent A) but not in another (that of agent B). Then a quantum state arriving
at a superposition of P1 ad P2 would be time-localised (but spatially delocalised) from A’s perspective
but time delocalised (and also spatially delocalised) from B’s perspective. Using this observation, in
Section 7.4 we propose an explicit protocol for realising the quantum switch (a causally non-separable
process) using two agents in relative motion in a fixed spacetime where the agents perceive their respective
in/output systems to be time-localised in their own frame.
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Remark 6.7 (Cyclic signalling relations, correlations and composability) The present work focusses on
the signalling relations in a CPTP map, which indicate the presence of absence of signalling but we have
not considered the nature or strength of the correlations associated with those signalling relations here. It
can be the case that once we also take into account the correlations, then certain scenarios can no longer
be implemented in accordance with relativistic causality even though their signalling relations alone may
not indicate this. Indeed, we can have cyclic signalling relations arising both from causally separable
processes (such as the classical switch), causally non-separable but causal processes (such as the quantum
switch) as well as non-causal processes (such as the Lugano process [32]), but these processes lead to
very different correlations. In the present work, we have characterised how the signalling relations of the
process behave when the process is implemented in a spacetime, to characterise how the correlations should
behave under spacetime embeddings, further work is required in formalising the assumptions required to
rule out trivial causal inequality violations in situations with spacetime delocalised systems and addressing
issues regarding the composability of physical systems. It has been shown [58] that process matrices are
not closed under composition, for instance the parallel composition of two bipartite, fixed order processes
is no longer a valid bipartite process as the composition can lead to a paradoxical causal loop. On the
other hand, composability is fundamental to how we understand physics, we would expect to be able to
compose physically implementable processes in an arbitrary manner and use them as sub-routines in other
physical protocols. How is this familiar notion of composability restored in physical implementations of
process matrices? These questions are a subject of upcoming works which are based on the current work
and results presented in the extended abstract/talk [59], which suggests that once these assumptions are
formalised, non-trivial causal inequality violations might be ruled out by relativistic causality in a fixed
spacetime. Composability is also recovered by noting that paradoxical causal loops that assign contradicting
values to a single outcome simply translate into agents acting at multiple times to produce two different
outcomes, in physical implementations. Modelling this requires an extension of process matrices and
quantum circuits to allow for multiple messages or a superposition of different number of messages to be
exchanged between agents such that the in and output spaces are Fock spaces and not just Hilbert spaces.
The details will be formalised follow-up works.

6.2 Unravelling indefinite order processes into fixed order processes
Theorem 6.2 characterises the necessary condition on the spacetime regions required for implementing
non-fixed order processes compatibly with relativistic causality in a fixed spacetime, which corresponds
to the region causal structure being cycle-free. In the following, when we say physical implementation, we
mean a fixed spacetime implementation that satisfies our relativistic causality condition of Definition 3.8.
Now suppose that we have physically implemented a process protocol corresponding to a non-fixed order
process in a region causal structure that is not cycle-free, i.e., we resolve Theorem 6.2 by giving up the
third assumption. What can we say about such an implementation? In this section, we show that such
an implementation of a non-fixed order process can always be unravelled into a physical implementation
of a fixed order process (but over a larger number of parties) under fine-graining of the implementation.
For this, the following property of spacetime regions will be useful.

Definition 6.8 (Pairwise correspondence of regions) Given two spacetime regions P1,P2 ⊆ T , we say
that there exists a pairwise correspondence from P1 to P2 if there exists an invertible map O : P1 7→ P2

such that for every P 1 ∈ P1, O(P 1) = P 2 is such that P 1 ≺ P 2.

Now consider an N -partite process Ŵ and a fixed spacetime implementation Ŵ T ,E of this process
in a spacetime T with respect to an embedding E . Suppose that each party A involved in this process
is assigned the spacetime regions PAI and PAO under the embedding such that there is a pairwise
correspondence OA : PAI 7→ PAO from the input to the output region. Consider the maximal fine-
graining of the regions which induces the maximal fine-graining Ŵ T ,Emax of Ŵ T ,E . Under the maximal
fine-graining, each in/output system S of Ŵ transforms into a set of |PS | systems, with one system
SP

S

associated with each spacetime location PS ∈ PS (cf. Definition 3 and Section 3.1). That is,
Fsys : S 7→ {SPS}PS∈PS is a fine-graining of the in and output systems S ∈ {A1

I , A
1
O, ..., A

N
I , A

N
O } of Ŵ .

Denoting Fsys(S) explicitly as SP
S
, this means that each SP

S ∈ SPS is associated with a Hilbert space
HSP S

∼= |Ω〉⊕HS where HS is the Hilbert space of S in Ŵ and |Ω〉 is the vacuum state. The joint state
space of the fine-grained systems SP

S
is some subspace
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HSPS ⊆
⊗

SP S∈SPS

HSP S .

We can now consider a local mapMA : AI ⊗ As 7→ AO ⊗ Ao of an agent A, that can be composed
with Ŵ . This map can be physically implemented and fine-grained accordingly to Ŵ T ,Emax, by assigning
the region PAI to the input systems AI and As and the region PAO to the output systems AO and Ao of
this map. We can similarly define the maximal fine-grainingMA,T ,E

max ofMA under the same spacetime
embedding and this can compose with Ŵ T ,Emax by connecting each input elemental system AP

AI

I of the
two maps MA,T ,E

max and Ŵ T ,Emax, and each elemental output system AP
AO

O of the two maps. Notice that
the pairwise correspondence from PAI to PAO , ensures that the implementations of the local maps will
also satisfy relativistic causality.

Then a natural way to describe the action of MA,T ,E
max is to say that it independently applies the

original map MA between each pair of in and output locations PAI ≺ PAO where PAO = OA(PI) is
given by the pairwise correspondence between regions. This is a special case of a more general map that
acts independently between the pairs of locations, but applies a possibly different map at each location.
That is a map of the form

MA,T ,E
max =

⊗
PAI∈PAI

MA
PAI

, (12)

where eachMA
PAI

: APAI

I ⊗APAI

s 7→ AP
AO

O ⊗APAO

o can in principle be any valid quantum CPTP map.
In specific implementations, we may need to impose further constraints on these maps (e.g., for them
to apply the original map M̂A at each location, independent of the location at which it is applied), and
we may also need to specify how these maps act on vacuum states as this is not specified in the process
matrix framework. However, we already obtain the following general theorem under these minimal
requirements. We explain the further constraints after the theorem, in relation to previous works.

Theorem 6.9 [Unravelling physical process implementations into fixed order processes] Let Ŵ T ,Emax be a
maximally fine-grained physical implementation of an N -partite process Ŵ in a spacetime, where each pair
of in and output regions PAk

I and PAk
O have a pairwise correspondence OAk : PAk

I 7→ PAk
O . Then Ŵ T ,Emax

acts as an Ñ -partite fixed order process with Ñ =
∑N
k=1 |PA

k
I |, upon composition with corresponding

maximally fine-grained local maps {MAk,T ,E
max }Nk=1, where each MAk,T ,E

max acts independently between the
pairs of points PA

k
I ∈ PAk

I and OAk (PAk
I ) ∈ PAk

O , as described by Equation (12).

The above theorem shows that if a process network can be physically implemented in a fixed space-
time, then it can always be fined grained to a fixed order process with a larger number of parties. In other
words, any process implementation satisfying assumptions 1 and 2 but not 3 of our no-go theorem 6.2
can be fine-grained into an process implementation satisfying assumptions 2 and 3 but not 1, but with
a larger number of parties.

This generalises a result of [50] where they show that for the particular case of the quantum switch
process which is a causally non-separable process (which we discuss in the next section), certain types of
physical implementation of the quantum switch process can be described by a fixed order process matrix
over a larger number of parties, with a further assumption that parties act trivially on vacuum states.
In our framework, this assumption corresponds to requiring that each mapMA

PAI
maps a vacuum state

|Ω〉 at the input AP
AI

I , for any setting a on AP
AI

s to a vacuum state on the output AP
AO

O , while leaving
the outcome variable in AP

AO

o to denote the rest state | ⊥〉 of the measurement device (denoting the
absence of a non-trivial measurement outcome),

MA
PAI

(|Ω〉A
P AI
I ⊗ |a〉A

P AI
s ) = |Ω〉A

P AO
O ⊗ | ⊥〉A

P AO
o , ∀a (13)

This condition ensures that any non-vacuum output sent by a party A at PAO must necessarily
be preceeded by a non-vacuum input at the corresponding PAI ≺ PAO i.e., a party must receive a
non-vacuum input before sending out a non-vacuum output. This is the local order condition that is
implicit in the process matrix framework. In the absence of this condition, we can easily construct
classical protocols with a definite time order, that cannot be regarded as fixed order processes and which
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trivially generate correlations that violate causal inequalities (as pointed out in [59]). Note that further
assumptions are also required, for instance that each local map is only used once. Multiple rounds of
communication can also be used to trivially violate a causal inequality. This assumption can be imposed
in our framework as described in Remark 3.10.

Our framework is not restricted to process matrices and can therefore model more general physical
scenarios where the implicit assumptions of the process framework are not satisfied, therefore our main
theorem above does not make these additional assumptions. In a follow up work based on [59], we further
characterise the correlations realisable in physical process implementations, for which it is necessary to
impose these constraints to make any interesting statements about non-causal correlations.

In the case of general networks of maps, not necessarily associated with process matrices, we have
already shown in Lemma 3.9 that any signalling structure arising in such a network, once physically
implemented in a spacetime can be fine-grained to a set of acyclic signalling relations. These results
have consequences for several table-top experiments in Minkowski spacetime that claim to physically
implement an indefinite causal order process, the quantum switch. We discuss our results for the quantum
switch in the following section.

Physical meaning of the fine-grained maps Our results show that ultimately, any physical imple-
mentation of non-fixed order processes in a definite spacetime must necessarily involve quantum systems
taking a superposition of different trajectories through a fixed spacetime. Physically, we always have
the potential to intervene at any location in spacetime to check for the presence of a quantum system
there. This potential is captured by the maximally fine-grained process and local maps, since we now
have an “agent” associated with each possible spacetime location in the implementation, who can choose
to perform any measurement or operation at that location. Physical processes are such that even under
arbitrary interventions that could potentially be performed at any of the spacetime locations over which
our quantum systems are delocalised, we can still not signal outside the future in the spacetime. This
means that we ultimately have a fixed order process over all these “agents”. The maximally fine-grained
process and local map implementations in our framework capture this idea. Note that in a physical
experiment, a single experimentalist may play the role of the multiple parties/agents associated with
the process map. This is indeed the case with physical implementations of processes through table-top
experiments which are performed in a single lab, which we will discuss in the next section. The maximal
fine-graining also establishes a one-to-one connection between operational and spacetime events even in
experiments involving highly spacetime delocalised quantum system.

7 Causality in the quantum switch
We now apply our framework to the particular example of the quantum switch (QS), which is a particu-
larly popular example of an indefinite causal order and has been repeatedly claimed to be experimentally
implemented [40, 42, 60] in Minkowski spacetime. What does it physically mean to implement an indef-
inite causal order process (in particular, one that is causally non-separable) in a fixed spacetime, which
itself implies a notion of a fixed acyclic causal structure? Here, we address and clarify this question by
analysing information-theoretic and relativistic notions of causality in various fixed spacetime implemen-
tations of the quantum switch and show that all physical implementations of the quantum switch can
indeed be explained within a definite acyclic operational causal structure that is compatible with the
light-cone structure of Minkowski spacetime (as one would expect). The quantum switch corresponds to
a unitary, causally non-separable process, and we can therefore make stronger statements for this case
than Theorem 6.2 which applies to general processes.

7.1 The quantum switch as a process matrix
The quantum switch is originally defined as a supermap QS that maps a pair of quantum channels
UA and V B to a new channel W (UA, V B) that implements a coherently controlled superposition of the
orders of UA and V B on a target system (details of the original definition can be found in Appendix B).
In the process matrix framework, the quantum switch can be represented as a four party process matrix
[57] between the labs A, B, C and D. Here, C prepares the control and target subsystems in her lab
and outputs it to the process matrix WQS , which acts as follows: if the control is in state |0〉, it sends
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Figure 7: 4 party process matrix for the quantum switch: A lab C in the past of all others (with trivial input space)
prepares the control and target states and sends the target to A if the control is in state |0〉 and to B if the state is
|1〉. After A and B have operated on the target in an order depending on the control state, a lab D in the future
of all others (with trivial output space) receives the target from A or B and control directly from C (gray path). D
therefore holds the final state of the control and target where the order of A’s and B’s operation on the target is
entangled with the control state. The process matrix, W for the quantum switch in this case represents a controlled
superposition of the orders C ≺ A ≺ B ≺ D (blue path) and C ≺ B ≺ A ≺ D (orange path) of operations on the
target system.

only the target subsystem (prepared in a state |ψ〉) to A and then to B (after A’s operation) and finally
to D (after B’s operation), and if the control is in state |1〉, it sends the target (prepared in a state
|ψ〉) to B first, then to A (after B’s operation) and finally to D. Further, WQS also sends the control
subsystem unchanged, directly from C to D. Note that C lies in the global past of all parties and cannot
be signalled to by any of them while D lies in the global future of all parties and cannot signal to any of
them; thus C has a trivial input space and D has a trivial output space. Further, C and D send or receive
both the control and target systems, while A and B only receive, operate on and send out the target
system. So it is convenient to decompose the output space of C and input space of D as CO = CCO ⊗CTO
and DI = DC

I ⊗ DT
I corresponding to the control and target systems. When the local operations of

A and B are qubit channels, the dimensions of input and output systems of the local laboratories are
dAI

= dAO
= dBI

= dBO
= dCT

O
= dDT

I
= dCC

O
= dDC

I
= 2, dCI

= dDO
= 1. The corresponding process

matrix is pure i.e., is rank one and given as WQS = |WQS〉〈WQS | where

|WQS〉 = |1〉〉C
T
OAI |1〉〉AOBI |1〉〉BOD

T
I |00〉C

C
OD

C
I + |1〉〉C

T
OBI |1〉〉BOAI |1〉〉AOD

T
I |11〉C

C
OD

C
I (14)

The situation is illustrated in Figure 7. If the lab C prepares the suitable input state, labs A and B
perform the respective operations UA and V B , the final state arriving at lab D is given as follows.(

(α〈0|+ β〈1|)C
C
O ⊗ 〈ψ∗|C

T
O ⊗ 〈〈UA

∗
|AIAO ⊗ 〈〈V B

∗
|BIBO

)
· |WQS〉

=α|0〉D
C
I ⊗ (V BUA|ψ〉)D

T
I + β|1〉D

C
I ⊗ (UAV B |ψ〉)D

T
I ,

(15)

where 〈ψ∗| denotes the complex conjugate of 〈ψ| = |ψ〉† in the computational basis {|0〉, |1〉}, such that
〈ψ∗|i〉 = 〈i|ψ〉, i ∈ {0, 1}. |UA∗〉〉AIAO = (I ⊗ UA∗)|1〉〉AIAI and similarly for V B , where ∗ denotes the
complex conjugate in the chosen orthonormal basis.
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(b) Gravitational quantum switch

Figure 8: Definite and indefinite spacetime implementations of the quantum switch. (a) This is a schematic
of a linear optical experimental implementation of QS within a fixed spacetime structure. Here, the control qubit is
encoded in the polarisation of a photon and the target qubit is encoded in a different degree of freedom of the same
photon e.g., angular momentum modes. Then a horizontally polarized photon is transmitted by the all the polarizing
beam splitters (PBSs) and takes the path where the unitary UA is applied first and then UB while a vertically polarized
photon is reflected by all PBSs and follows the path where UB is applied before UA. The unitaries UA and UB act
on the target degrees of freedom. This was proposed in [37] and implemented in [40, 60]. (b) This is a theoretical
proposal [27] for implementing the QS transformation using a quantum superposition of gravitating masses, which
results in a superposition of spacetime structures. Here, the two parties Alice and Bob are each in possession of their
own clock CA and CB which are initially synchronised. A gravitating mass is prepared in a quantum superposition
of macroscopically distinguishable (relative to the agents) spatial configurations depending on the state of a control
qubit. If the control is in the state |0〉, the mass is placed closer to Bob such that the clock CB ticks slower that CA

due to gravitational time dilation enabling Alice to send a physical system (the target) to Bob at a proper time tA = 3,
such that it is received by Bob at his proper time tB = 3. This mass configuration is labelled as κA≺B . If the control
is in the state |1〉, the mass is placed closer to Alice, enabling Bob to send a physical system to Alice at tB = 3 in
his local reference frame, with the system being received by Alice at tA = 3 in her local reference frame. This mass
configuration is labelled as κB≺A. That is, irrespective of the control, both parties receive the target system in their
lab at the same local time, but due to the mass superposition, their clocks are experiencing a superposition of different
time dilations and consequently ticking at a superposition of different rates. The co-ordinate axes are in the frame of a
distant observer Charlie for whom the effect of the gravitational field is negligible. Notice that Charlie’s time intervals
(small gray dots) are unaffected by the mass configuration, and this observer would perceive a fixed spacetime.

The process matrix WQS is known to be causally non-separable (i.e., cannot be decomposed as
in Equation (6)) but nevertheless causal (i.e., always produces probabilities that decompose as per
Equation (7)) [30].

Physical implementations of QS We discuss two implementations of the quantum switch trans-
formation that indeed query each operation not more than once (on a non-vacuum state), the optical
and the gravitational implementations. The former corresponds to experiments that claim to implement
the supermap QS and these are performed through table-top optical interferometric setups within a
fixed spacetime structure (which can be safely approximated to be a Minkowski spacetime). The latter
corresponds to a theoretical proposal for implementing QS through a quantum superposition of gravi-
tating masses [27], which would in turn result in a superposition of spacetime geometries i.e., it involves
an indefinite spacetime structure. The main features and intuition behind these implementations are
illustrated and explained in Figure 8.

7.2 No-go result for the quantum switch
We now derive a slightly stronger version of our general no-go result, theorem 6.2 for the particular case
of the quantum switch, which corresponds to a causally non-separable process (and hence not a fixed
order process) that nevertheless does not violate causal inequalities [37]. In the following, we will call a
local operationMAk of some party Ak non-trivial if AkI → AkO inMAk .
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Lemma 7.1 [No-go result for the quantum switch] Consider the process map ŴQS whose Choi represen-
tation is the process matrix WQS of the quantum switch. Let P̂QS,U,V be the quantum switch network
where WQS acts on two non-trivial local operations UA : AI 7→ AO and V B : BI 7→ BO of Alice and
Bob. Then any fixed spacetime implementation P̂ T ,EQS,U,V of this network cannot simulataneously satisfy
both of the following assumptions

1. P̂ T ,EQS,U,V satisfies relativistic causality

2. The subgraph of the region causal structure given by the embedding E with Nodes(GRT ) := {E(S)}S∈S ,
restricted to S ∈ {AI , AO, BI , BO} is cycle-free.

The above is a stronger statement than that of Theorem 6.2 applied to this process because the
theorem deals with the extended local maps that include all possible choices of local operations for each
party. On the other hand, the above statement follows for any fixed (but non-trivial) choice of local
operations for A and B.11

7.3 Consequences for experimental implementations
Due to Lemma 7.1, we know that any physical implementation of the quantum switch protocol satisfying
relativistic causality in Minkowski spacetime must be such that Alice and Bob’s in/output systems are
delocalised within large enough spacetime regions to enable bidirectional signalling between these regions.
Several experiments [37, 40–43, 45–49] claim to physically implement the quantum switch process and
therefore an indefinite causal structure in Minkowski spacetime. Our general results of Theorem 6.9
and Lemma 3.9 can be applied to provide further insights into the causal structure of such experiments.
They tell us that these experiments, if we believe that they do not violate relativistic causality in the
spacetime, can be ultimately described in terms of a fixed order process over a larger number of agents,
and they necessarily admit an acyclic causal structure, even though they aim to implement a causally
non-separable process matrix. This means that the causal structures of the process map of QS and that
of a fixed spacetime implementation of this map compatible with relativistic causality are distinct, as
shown in Figure 9. The following corollary formalises this.

While the rest of the paper focuses on the more operational notion of signalling, rather than causation
(as motivated in Section 2), in the case of the quantum switch which corresponds to a unitary process,
these two notions coincide [51]. We can therefore make statements about the causal structure of the
quantum switch based on our framework and results. The equivalence between causation and signalling
in this case is further explained in Appendix C. Applying Lemma 3.9, it follows that, by virtue of being
a network of CPTP maps implemented in a fixed spacetime (which happens to be Minkowski spacetime
in all these experiments) that does not violate relativistic causality, all these implementations must
necessarily admit a signalling structure that is ultimately acyclic and compatible with the spacetime
partial order. Since signalling and causation are equivalent in the case of the quantum switch, this
implies that all these implementations admit an explanation in terms of a definite acyclic quantum
causal structure as stated in the corollary below.

Corollary 7.2 [Experimental implementations] Any implementation of the quantum switch process map
ŴQS in a fixed spacetime that does not violate relativistic causality in the spacetime admits an explanation
in terms of a fixed order process matrix Ŵ T ,EQS,max that is associated with a definite acyclic causal structure
whose edges flow from past to future in the spacetime in which it is implemented.

A possible acyclic causal structure capable of explaining a fixed spacetime implementation of QS is
illustrated in Figure 9, Section 7.4 and Appendix B describe an explicit protocol for for QS that yields
this acyclic causal structure but nevertheless implements the QS transformation with only one query (on
a non-vacuum state) to each local operation.

11This is because, for general processes, whether or not agent Ai can signal to an agent Aj can depend on the choice
of local operations of Aj as well as those of the remaining agents. In the quantum switch, signalling from A to B can be
verified by A by suitable local choices of operations alone, for any choice of operation for B (and symmetrically for B),
whenever the control qubit is in a non-trivial superposition state α|0〉C + β|1〉C with α, β 6= 0.
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Figure 9: Causal structure of the quantum switch protocol and that of its fixed spacetime implementation Black
arrows denote signalling relations coming from the process matrix WQS , while blue and orange arrows are signalling
relations coming from Alice and Bob’s (non-trivial) local operations. (a) The signalling relations of the process WQS

acting on non-trivial local operations yields a cyclic causal structure shown here. Here, the input CO and DI denote
the combined output CC

O ⊗ CT
O of C and input DC

I ⊗ DT
I of D respectively. Being a unitary process, causation

and signalling are equivalent notions in this case and this gives the causal structure of the process [51]. (b) The
causal structure of a fixed spacetime implementation of QS satisfying relativistic causality must necessarily involve
spacetime delocalised systems (cf. Corollary 6.4). This causal structure would therefore involve more nodes than that
of (a), where the nodes in this case correspond to elemental subsystems, each elemental subsystem SP is a quantum
system S (with a Hilbert space HS = |Ω〉 ⊕ CdS ) associated with a fixed spacetime location P ∈ T . This causal
structure must be acyclic if the implementation does not violate relativistic causality in the spacetime, and we have
that whenever there is an edge → from one node to other in this graph, the spacetime location of the first precedes
the spacetime location of the second with respect to the order relation ≺ i.e., the edges of the information theoretic
causal structure flow from past to future with respect to the spacetime causal structure. For an explicit description
of an implementation of QS corresponding to this causal structure see Appendix C. The causal structure of (a) is
essentially identical to the causal structure of WQS obtained in the framework of [51] with the distinction that the
in/output systems of each party are associated with a single node such that only the black arrows are relevant.

On the notion of agents and interventions Let us briefly comment upon the notion of an “agent”
or “party” in the theoretical process description is comparison to the physical observer or experimentalist.
All these experiments are performed on a table-top within a single laboratory, even though they aim to
implement the quantum switch with is modelled as a 4 partite process matrix.12 In particular, the main
agents Alice and Bob who are part of the superposition in the theoretical description simply correspond
to circuit elements that implement the operations UA and V B in the experiment. Furthermore, in the
theoretical model, the process matrix is supposed to describe an outside environment that is inaccessible
to the parties in the “local laboratories”, while in the physical implementation, the whole process takes
place on a table-top and the experimentalist can in principle intervene upon and control any part of
the experiment (in fact they must do so in order to set up the very experiment). Therefore, we argue
that the more appropriate theoretical model for such experiments is the fine-grained fixed order process
over the larger number of parties as this captures the ability of the physical experimenter to control or
intervene at any location within the experiment (even if they may choose not to do so in certain runs of

12Or a tripartite process if the initial preparation is encoded within the process.
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experiment that they wish to report). However in this theoretical model of the experiment, the process
being implemented is no longer causally non-separable, it is a fixed order process as we have shown in
Theorem 6.9.

Remark 7.3 (Local distinguishability of the order) The fixed spacetime implementation of QS described
in Figure 9 as well that of [54] (explained in Appendix B) are such that the spacetime location at which
Alice or Bob’s operation is applied is perfectly correlated with the control: if the control is |0〉, the Alice’s
operation is applied (to a non-vacuum state) arriving at the location P 1

I and Bob’s at is applied at
Q2
I � P 1

I , while if the control is |1〉, Bob’s operation is applied on the (non-vacuum) state arriving at the
location Q1

I and Alice’s at P 2
I � Q1

I . In the experimental implementation of [42, 46], this is not the case
and local measurements by Alice and Bob of the (space)time location at which they receive a non-vacuum
state would not reveal significant information about the control since there is a large uncertainty in this
spacetime location even when the operations are applied in a fixed order (i.e., where the control is in one of
the computational basis states). Our results are general and apply to both these type of implementations.
In the former case, the in/output systems of Alice and Bob each split into two elemental systems in
the spacetime implementation while in the latter case, there can be many more elemental systems since
the in/output systems can be delocalised over many more spacetime points. This means that we would
need to consider a larger number of parties in the latter case in order to describe the experiment using
a fixed order processes (cf. Theorem 6.9), which changes the number of nodes one would consider in the
fine-grained causal structure, but does not alter the fact that the causal structure would still be a definite
acyclic one once we finegrain and look in sufficient level of detail. Further, we also note that while the
order of operations may not be locally indistinguishable in [42, 46], they are globally distinguishable. If
Alice and Bob, in addition to applying their local operations choose to send a photon to a friend as soon
as they apply these operations, then it is possible for the friend to distinguish the orders in which the
operations were applied, by measuring the arrival times of the photons [50]. This protocol and its use
in distinguishing between such physical optical implementations and theoretical, quantum gravitational
implementations in discussed in Section 7.5.

7.4 Minkowski quantum switch with time localised systems
Here, we propose a new quantum switch protocol in Minkowski spacetime with the property that the
in and output events are time localised for both Alice and Bob in their respective frames. The protocol
requires Alice and Bob to be in relative motion with respect to each other, at a constant velocity. Previous
quantum switch protocols typically involve spatial localisation and time delocalisation, in contrast, ours
will involve spatial delocalisation and time localisation (with respect to the local reference frames). It
also demonstrates that Corollary 6.6 no longer holds when only requiring time localisation with respect
to each local frame, instead of time localisation with respect to a single global reference frame. Consider
the following protocol where the spacetime T is taken to be Minkowski spacetime and the partial order
corresponds to the light cone structure. In this spacetime implementation of the process map ŴQS , we
have the following embedding.

1. Charlie prepares the initial state of the control and target system (α|0〉C + β|1〉C) ⊗ |ψ〉T at a
spacetime location PC and sends the target to Alice at spacetime location P 1

I � PC (and a
vacuum state |Ω〉 to Bob at spacetime location Q1

I � PC) or the target state to Bob at spacetime
location Q1

I (and the vacuum to Alice at P 1
I ) depending coherently on the control being |0〉 or |1〉.

2. Alice and Bob apply their local operations U and V on the state arriving at P 1
I and Q1

I respectively,
mapping it to a state on their output wires at the spacetime location P 1

O � P 1
I and Q1

O � Q1
I

respectively. We assume that U and V act trivially on the vacuum i.e., U |Ω, P 1
I 〉 = |Ω, P 1

O〉 and
similarly for V .

3. The state on Alice’s output at P 1
O is forwarded to Bob’s input at another spacetime location

Q2
I � P 1

O and the state on Bob’s output is forwarded to Alice’s input at some spacetime location
P 2
I � Q1

O.

4. Alice and Bob again apply their local oerations U and V to the states incoming at P 2
I and Q2

I

mapping it to a corresponding state on their output systems at spacetime locations P 2
O � P 2

I and
Q2
O � Q2

I respectively, again while acting trivially on the vacuum state.
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5. Finally, depending on the control, either the state from Bob’s output at Q2
O or the state from

Alice’s output at P 2
O is forwarded to Danny’s input at PF � P 2

O, Q
2
O, along with the control.

That is, the above protocol corresponds to a Minkow spacetime implementation of the process map
ŴQS associated with the following spacetime embedding.

E(CCO ) = E(CTO) = PC := {PC}
E(AI) = PAI := {P 1

I , P
2
I },

E(AO) = PAO := {P 1
O, P

2
O},

E(BI) = PBI := {Q1
I , Q

2
I},

E(BO) = PBO := {Q1
O, Q

2
O},

E(DC
I ) = E(DT

I ) = PD := {PD}.

(16)

The explicit CPTP maps for this protocol are given in Appendix C. There, it is also shown that in this
protocol each party acts exactly once on a non-vacuum state and that it admits the definite acyclic causal
structure of Figure 9 (b) that respects relativistic causality in Minkowski spacetime.

Figure 10 shows that we can arrange the situation such that P 1
I = (rAI

1 , tAI ) and P 2
I = (rAI

2 , tAI )
have the same time co-ordinate tAI in Alice’s frame, similarly P 1

O and P 2
O have the same time co-ordinate

tAO > tAI in Alice’s frame, Q1
I and Q

2
I have the time co-ordinate tBI while Q1

O and Q2
O have the time co-

ordinate tBO > tBI in Bob’s frame, where Alice and Bob’s frames are related by a Lorentz transformation.
This establishes the claim.

7.5 Gravitational quantum switch vs fixed spacetime implementations
In this paper, we have focused our attention on process implementations in a fixed spacetime. As we have
seen in Figure 8, the gravitational switch is a theoretical proposal for a quantum switch implementation
in an “indefinite spacetime structure” achieved through a quantum superposition of gravitating masses. It
is then natural to ask, what, if at all, are the operational differences between these two implementations
of the same process? Are there some features of the gravitational switch that are impossible to achieve
in a fixed spacetime?

Some properties that are impossible to achieve in fixed spacetime implementations At first
sight, it might seem that the property of Alice and Bob receiving the target system at the same time
(in their local reference frames) irrespective of the order in which they act is unique to the gravitational
implementation. However, our protocol of Section 7.4 (in particular, Figure 10) illustrates that this
property can also be achieved in fixed spacetime implementations with classical agents who are in relative
motion with a constant relative velocity. Our results also reveal that a property that is impossible to
achieve in fixed spacetime implementations is where Alice and Bob receive the target system at the same
spacetime location irrespective of the order in which they act (cf. Corollary 6.4). While it is possible
to have two types of QS implementations in Minkowski spacetime a) where the in/output events are
spatially localised but time delocalised b) where they are temporally localised but spatially delocalised,
a further observation that we can make is that it is impossible for a single implementation to have
both these properties (depending on the choice of reference frame used to describe the spatio-temporal
co-ordinates), if spacetime co-ordinates in different frames are related as described in Definition 6.5.
For this, notice that whenever we have temporal localisation of A’s input event AI in some frame, it
means that the spacetime region PAI associated with that event consists of spacetime locations that are
pairwise space-like separated (as they have the same time co-ordinate but different spatial co-ordinates
in some frame). Then there can exist no other frame in which all locations in PAI have the spatial
co-ordinate and different time co-ordinates as this would allow us to order certain points in this region
in the future of others, which violates the condition that the order relation between spacetime points
must be frame independent in a fixed spacetime (cf. Definition 6.5). On the other hand, consider the
gravitational implementation in indefinite spacetime [27]. Here, the in/output events of Alice are time
localised in her own frame, as are Bob’s events in his frame. However, when described in the reference
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Figure 10: Minkowski spacetime diagram for new quantum switch protocol with time localised
systems Alice labels her spacetime locations with respect to the co-ordinate system associated with the black axes
and Bob with respect to the gray axes. Alice and Bob’s reference frames are related by a Lorentz transformation.
Here, the 45 degree line (with respect to Alice’s axes) would correspond to a light-like surface. The black spacetime
points are associated with Alice’s in and output events and gray ones are associated with Bob’s in and output events.
The green points PC and PD are associated with the parties in the global past and future respectively, PC is in the
past light cone of P 1

I and Q1
I while PD in the future light cone of P 2

O and Q2
O. When the control is in the state zero,

the target follows the blue path through the spacetime, going to Alice first and then to Bob and when the control is in
the state |1〉, the target follows the orange path through spacetime going to Bob first and then to Alice. Irrespective
of the order, Alice’s in and output events are localised at times tAI and tAO in her frame and Bob’s in and output
events are localised at time tBI and tBO in his frame. However, depending on the order, Alice and Bob apply their
local operation to a non-vacuum target state are two different space-like separated locations on the same time-slice.

frame of a distant party, Charlie, Alice’s events are localised in space but delocalised in time, and the
same for Bob’s events [61].

Another relevant aspect in above comparison is the number of “elemental events” (i.e., quantum
in/output events associated with a single spacetime locations) in each perspective. Note that this is
preserved in fixed spacetime implementations as defined in our framework, even when spacetime delocal-
isation is involved. This is because spacetime localisation/delocalisation is an agent-independent concept
in our framework. A physical assumption that can be associated with this property is that the reference
frames of different agents share a common origin (e.g., the agents agree on a common event that is taken
to be localised in all their frames and describe spacetime distances relative to this event) with respect to
which all agents can measure spacetime distances using their respective spatio-temporal reference frames.
If there was no common origin, agents would naturally make the choice of localising their own events at
their “origin” and describing other agents’ events relative to this, such that each event would be localised
in spacetime with respect to the corresponding agent, but may be delocalised with respect to another
agent.

In the gravitational implementation, the in/output events of Alice and Bob are typically regarded as
each being single “spacetime” events from the local perspective, even though these appear to be different
spacetime events from the perspective of a distant observer, Charlie who does not see the gravitational
field. Whether these must be regarded as single events from the local perspective also depends on whether
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or not the events appear to be spatially localised in these perspectives (as they are temporally localised
by construction) which in turn depends on how spatial co-ordinates are measured. For instance, if the
agents measure spatial distances with respect to the gravitating mass, then by construction, their spatial
co-ordinate would depend on the branch of the superposition they are in (cf. Figure 8) and they would
not be spatially localised. As Alice and Bob’s clocks are initially synchronised before they enter the
superposed gravitational fields, their temporal origin i.e, where tA = tB = 0 coincides with that of the
distance observer. The spatial origin is however unclear. A natural question would therefore be whether
there exists a common spatial and temporal origin for Alice and Bob in the gravitational scenario and
a physical way for them to measure spacetime distances from this origin event using their respective
reference frames such that they perceive their in/output events as being spacetime localised? This will
depend on how spatial distances can be measured in such quantum gravitational settings. If the answer is
yes in some model of measuring spatial distances in this gravitational scenario, we know from our results,
that this achieves a property that is not possible in fixed spacetime implementations (cf. Corollary 6.4).
If the answer is no, then, we have a set of events that are time localised and spatially delocalised in
Alice’s frame while the same events are time delocalised and spatially localised in Charlie’s frame, which
is also impossible in fixed spacetime implementations as we have argued above.

We note that even in classical general relativity, while the proper time is a well defined operational
concept, this is not always the case for spatial distance. In order to measure one’s spatial distance with
respect to an event, one would typically calculate the light crossing time in both directions between
oneself and that event, but this property is not locally defined at the observer’s location. We leave a
further investigation of the above questions for future work.

Protocol for distinguishing definite and indefinite spacetime implementations of QS In [50],
a protocol has been proposed for distinguishing between the physically realised optical implementations
and theoretically proposed gravitational implementations of QS in a manner that does not disturb the
coherence between the different branches of the superposition. For the definite spacetime case, [50]
focuses on a QS implementation in Minkowski spacetime described with respect to a single global frame
where the in/output events of Alice and Bob are spatially localised but temporally delocalised. Here we
recast their protocol in our framework and show that the core argument can be generalised to arbitrary
fixed spacetime implementations.

The main idea behind the protocol of [50] is to introduce an additional agent F , hereby known as
“Friend” to whom Alice and Bob send out photons in addition to performing their usual operations in
the QS scenario. F is assumed to be spatially localised and can measure information regarding the times
of arrival of the photons arriving from Alice and Bob to decide whether or not the local operation in
each lab was a single spacetime event. In the optical implementation of QS, Alice and Bob act (on
a non-vacuum state) either at an earlier or later time depending coherently on the control qubit. In
this case, each of their photons are in a coherent superposition of arriving to F at different times. In
gravitational implementations, the superposition of spacetime metrics can in principle be used to ensure
that any photon from Alice always arrives to F at the same time tA and any photon from Bob always
arrives to F at the same time tB . A non-demolition measurement is then performed by F to distinguish
these two scenarios without collapsing the superposition of orders (see [50] for details).

We can model this protocol by considering a new 5-partite process map ŴQS
F obtained from the 4-

party quantum switch map ŴQS by including the party F with input systems FAI and FBI and a trivial
output space. We can give additional outputs AFO and BFO to Alice and Bob for the photons being sent
to F and the process vector |WQS

F 〉 is then identical to |WQS〉 of Equation (14), but with the additional
factor |1〉〉A

F
OF

A
I |1〉〉B

F
OF

B
I in both terms of the superposition, representing the identity channels from AFO

to FAI and BFO to FBI . We can then see that any Minkowski spacetime embedding of this protocol
where FAI is assigned a single spacetime location (rF , tAF ) and FBI is assigned a single spacetime location
(rF , tBF ) would not satisfy relativistic causality if we require Alice’s outputs AFO and AO to be embedded
into the spacetime region PAO and Bob’s outputs BFO and BO to be embedded in the region PBO , such
that PAO and PBO belong to the past light-like surface of (rF , tAF ) and (rF , tBF ) respectively. Without
loss of generality, let tAF > tBF . Then the past light cone of (rF , tBF ) is fully contained in the past light
cone of (rF , tAF ), which implies that PAO 6 R−→ PBO . Now, in any fixed spacetime implementation of the
network consisting of the action of ŴF

QS on a set of local maps of the parties, we will have signalling
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from Alice’s output AO to Bob’s output BO (through Bob’s input BI) and this would therefore violate
relativistic causality in this embedding.

More generally, we can consider an arbitrary spacetime T , and assume that FAI is embedded at a
spacetime location PF

A
I and FBI at the location PF

B
I , taking PF

B
I ≺ PFA

I (the argument for PF
A
I ≺ PFB

I

is analogous). Denoting Past(P ) := {Q ∈ T |Q ≺ P} to be the past of a spacetime point P , we have
Past(PFB

I ) ⊆ Past(PFA
I ). Then, if we impose that the output spacetime locations PAO of Alice must

lie in Past(PFA
I )\Past(PFB

I ) and PBO ⊆ Past(PFB
I ), the implementation of the QS protocol would not

satisfy relativistic causality since have PAO 6 R−→ PBO even though AO → BO. However, in a gravitational
implementation where the spacetime locations are described with respect to local quantum reference
frames [61], it might nevertheless be possible to satisfy all these conditions in an implementation of QS,
the gravitational implementations proposed in [50] being particular examples.

8 Demystifying indefinite causation
The framework and results presented here can be used to provide a clearer operational interpretation of
the notion of indefinite causal structures. They allow for the analysis of several open questions relating
indefinite causation to cyclic causation, and quantum information processing in spacetime through new
tools and insights. Many of the possible future steps stemming from this work, relating to the compos-
ability of physical processes, physicality of causal inequality violations, and causal models for processes
have been outlined in the main text (cf. Remarks 2.2, 2.8, 6.7). Here we discuss the broader outlook
provided by our work, and also clarify the operational meaning of indefinite causation suggested by our
work, by explicitly analysing the assumptions behind causal inequalities and the process framework.

Disentangling the information-theoretic and spacetime causal structures Our results bring
clarity to the apparently paradoxical situation– while a fixed spacetime structure defines a fixed causal
structure in relativistic physics, there continue to be numerous claims [37, 40–43, 45–49] that indefinite
causal structures have been physically implemented in tabletop experiments within Minkowski space-
time. In the absence of a clear resolution to this apparent paradox, the operational meaning of an
indefinite or a cyclic causal structure remains obscured. By disentangling the information-theoretic and
spacetime notions of causation, and then characterising how they fit together we have shown that rela-
tivistic causality is indeed upheld in such experiments. On the other hand, it is the claim regarding the
indefiniteness of the implemented causal structure that is to be questioned (as also noted in previous
works such as [50]). Our results indicate that no experiment satisfying relativistic causality in a fixed
background spacetime can potentially implement an indefinite causal structure, any such implementa-
tion could ultimately be described by a fixed acyclic information-theoretic causal structure involving
(space-)time delocalised quantum systems that is compatible with the relativistic causal structure of the
spacetime. Therefore the notion of an indefinite causal structure could potentially only make sense in
quantum gravitational settings. No-go results characterising what is impossible to achieve in a fixed
spacetime are important also for understanding how physics in these more exotic scenarios may differ.
To this effect, we have applied our no-go results to discuss the similarities and differences between the
fixed spacetime and quantum gravitational implementations of the quantum switch in Section 7.5. This
disentangling of the two notions of causation also sheds light on the notion of events as discussed below.

Notion of events The operational notion of causality characterised through the possibility of signalling
between physical systems yields a definite (cyclic or acyclic) causal structure, even when it involves
quantum systems. On the other hand, with respect to a spacetime structure, causality is understood as
the condition that causes must be in the past of the corresponding effect with respect to this spacetime
structure (for any suitable definition of cause and effect). A key feature distinguishing the “causal
structure” associated with these two notions is what the nodes or the “events” in the causal structure
represent. For instance, in the operational causal structure, the nodes correspond to operational events
such as “Alice received a quantum system in her lab”, “Alice sent a quantum system out of her lab”,
“Alice set the knob of her measuring device to a certain position”. In the spacetime notion of causation,
the events may correspond to spacetime locations, which may apriori have no operational meaning until
we associate physical systems with these points (in the language of our framework, “embed systems in
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the spacetime”). Another spacetime related causal structure could be one where the nodes correspond
to spacetime regions, rather than individual spacetime locations. But we may not wish to regard this
as a separate notion of causation as we know that if we look at the latter in a sufficient level of detail,
we would get back the former description in terms of individual spacetime points. Therefore, what
constitutes an operational or spacetime event also depends on the level of detail at which one analyses
the situation. This is captured by the notion of a fine-graining introduced here, which can be applied to
operational, spacetime or any other abstract notion of causation that can be represented by a directed
graph, and also to systems and quantum maps that may give rise to such a causal structure. In physical
implementation of an indefinite causal order process, we associate spacetime regions with the quantum
in and output systems of the parties, and these systems may be delocalised over the associated region.
The fine-graining of spacetime regions into individual spacetime points induces a fine-graining of an
information theoretic causal structure embedded in the spacetime. Formalising this, allowed us to show
that any such implementation of an indefinite causal order process can be ultimately fine-grained to a
fixed order process over a larger number of information-theoretic events (in the process language, this
corresponds to a larger number of parties), where each information theoretic event is associated with a
single spacetime event. While we have established that such a fine-graining is always possible, and thereby
resolved the apparent tension between the two notions of causation at play in such experiments, further
work is needed in characterising the exact fine-graining map. It would be interesting to characterise how
correlations behave under fine-graining, we have only focussed on the possibility of signalling here and
not the strength of signalling or of correlations.

Indefinite vs cyclic causal structures In the process matrix framework, the lack of a definite acyclic
(information-theoretic) causal order is interpretted as indicating the indefiniteness of the causal structure.
However, the lack of a definite acyclic causal structure (according to any notion of causation) need not
imply that the causal structure is indefinite, but can also mean that the causal structure is definite
but cyclic. Our work (building upon previous insights on the relation between indefinite and cyclic
causal structures [29, 51, 52]) shows a tight correspondence between (classically or quantumly) indefinite
causal structures in the sense of the process framework and cyclic causal structures as characterised
by signalling relations. Interestingly, cyclic causal structures can capture both physical scenarios with
feedback as well model physics in the presence of exotic closed timelike curves (CTCs). Indeed, we
have derived the process matrix probability rule and construction under the former view while this
has been done using CTCs in previous works such as [52]. The physical distinction between these two
situations come from how the cyclic causal structure is instantiated with spacetime information. We have
shown that in the case that we view the cyclic causal structure as being implemented, compatibly with
relativistic causality in a fixed acyclic spacetime, then we can ultimately unravel the causal structure into
an acyclic one through a fine-graining, even if the spacetime implementation allows the quantum systems
in the causal structure to be delocalised in the spacetime. On the other hand, if we assign each node of
the cyclic (information-theoretic) causal structure a single location in a spacetime, then we would have
bidirectional causation between two spacetime locations which would correspond to a CTC.

Finally we note that there are several previous results linking indefinite and cyclic causal structures
[29, 51, 52]. While these results provide significant insights on the simulability of the former in terms
of the latter, they do not fully solve the problem regarding the operational meaning of a given process
matrix, its physical realisability in a spacetime or relativistic causality therein. In particular, they leave
open the questions of what it means to implement a process matrix in a spacetime, and which physical
implementations of a process matrix in a spacetime would violate relativistic causality in the spacetime,
which we have addressed here.

Quantum spacetime and quantum reference frames In Section 7.5, we have compared and
contrasted the physical Minkowski spacetime realisations of the quantum switch with the hypothetical
gravitational implementation in a quantum indefinite spacetime, in light of our framework and results.
We note that the very interpretation of a spacetime as being definite or indefinite can depend on the
choice of reference frames used to characterise spacetime information. For instance, spacetime as a
fixed partial order as we have done here only makes sense when the identity of locations in this partial
order and the corresponding order relations are preserved under reference frame transformations. This
is often the case with classical reference frame transformations, such as the Lorentz transformations
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in Minkowski spacetime. When describing spacetime co-ordinates using classical reference frames, a
spacetime point P that is assigned the co-ordinates (rA, tA) in agent A’s frame transforms to some
coordinates (rB , tB) in agent B’s frame, but A and B agree on the identity of P as a single spacetime
location and on the order relation P ≺ Q between any P and Q. This property need not be preserved in
scenarios (possibly classical) where for instance A and B do not share a common origin, in which case
agents would tend to regard different events as being localised at the origin of their co-ordinates and can
disagree on which events are localised or delocalised (see discussion in Section 7.5). This can also be the
case where agents use quantum reference frames, an event that is spacetime localised at some location
P with respect to one agent may appear to be a highly delocalised event with respect to another agent
[61–64]. Quantum versions of the equivalence principle [65] suggest a correspondence between definite
spacetime with quantum agents/reference frames (e.g., in a superposition of accelerations) and indefinite
spacetimes with possibly classical agents, and [66] explicitly demonstrates such a correspondence for the
quantum switch.

We believe that the framework introduced here can also be relevant to these more general scenarios
beyond fixed acyclic spacetimes and classical reference frames. The localisation/delocalisation properties
perceived by different agents could be modelled by considering different fine-grainings or spacetime
embeddings of the same operational causal structure. This way, one can distinguish between the physical
information (the coarse-grained operational causal structure) that all agents agree on, and the frame
dependent information (the fine-graining, and embedding) that may differ from agent to agent. For
instance, is it possible to formalise the condition that the order relations between “spacetime events”
is preserved for in all reference frames even though their localisation may be agent or reference frame
dependent? Such questions provide an interesting avenue for future research.

Operational meaning of causal inequality violations As discussed in Section 4, causal inequalities
are shown to be necessary conditions on correlations generated by protocols satisfying the assumptions:
free choice (FC), local order (LO), closed labs (CL) and causal structure (CS) i.e., a violation of causal
inequalities under FC, LO and CL implies a violation of CS. This is often interpreted as implying the
indefiniteness of the causal structure.

However, a more careful look reveals that CS is essentially two assumptions: (CS1) there exists
a global partial order such that signalling is only possible from past to future with respect to this
partial order (CS2) input/output events of every party in a multi-partite process are localised with
respect to this partial order. In our framework, (CS1) applied to a protocol implies the existence fixed
spacetime implementation of the protocol (Definitions 3.1 and 3.4) that satisfies the necessary condition
for relativistic causality (Definition 3.5). (CS2) then corresponds to a constraint on the spacetime
embedding, requiring the spacetime region PS assigned to each system S to be a single spacetime point.
FC and CL are implicit in the construction, as they are in the process framework: AI and AO are the
only external in/outputs of each party A and their input systems carrying settings are never composed
with other systems. Demanding relativistic causality for local maps ensures that the input spacetime
location precedes the output spacetime location and is a necessary (but not sufficient) condition for LO.
In the presence of spacetime delocalisation, we must also demand that the local maps act trivially on
vacuum states in order to preserve the LO condition (see Section 6.2 for an explanation). Our no-go
result of Corollary 6.4 therefore implies the following: under FC, LO, CL and CS (=CS1+CS2), the
only physical processes that can be implemented are fixed order processes. Theorem 6.2 makes a much
more general statement that establishes the above under a weaker assumption on the embedding that
CS2 which requires perfect spacetime localisation, this weaker assumption allows in/output events to
be delocalised in spacetime. These results rule out not only causal inequality violating processes, but
also causally non-separable ones and classical mixtures of causal orders and is thus a stronger statement
than the derivation of causal inequalities in [28] which rule out bipartite non-causal processes under the
assumptions FC, LO, CL and CS (=CS1+CS2).

An open question that is not fully answered by our results is whether it is possible to violate causal
inequalities in a fixed spacetime where events are delocalised over the spacetime i.e., where (CS2) is not
satisfied. Our results nevertheless provide insights into this question. The fixed spacetime corresponds
to a partial order (Definition 3.1) and relativistic causality (Definition 3.5) forbids signalling outside the
spacetime future, this formalises CS1 independently of CS2 in our framework. Then the above question
amounts to asking whether is it possible to violate causal inequalities whenever FC, LO, CL and CS1
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are satisfied. But such a violation, even if possible would not certify the indefiniteness of the causal
structure, but only the violation of CS2 i.e., that the in/output events are not localised in the relativistic
causal structure (i.e., the spacetime T ). But we have already shown in Theorem 6.2 that in order to
implement any process that is not a fixed order process, without violating relativistic causality in a fixed
spacetime, we must necessarily violate CS2, and any such implementation will ultimately have a definite
acyclic signalling structure by Theorem 6.2. This suggests that such a violation of causal inequalities,
even if possible, would not tell us much more than what we have already shown here. It is nevertheless
interesting to consider whether this is possible at all, as it would then correspond to asking whether the
fact that the information-theoretic events are not well localised spacetime events can be certified in a
device independent manner. Our Theorem 6.9 regarding the ability to fine-grain any physical process
into a fixed order process strongly suggests that the answer to this question is negative, it implies that
the initial non-fixed order process that we did physically implement in the spacetime is simply a coarse-
graining of a fixed order process (which by construction does not violate causal inequalities) and we
would not expect to be able to violate causal inequalities under coarse-graining. However proving this
requires a few more steps, such as the assumptions for ruling our trivial causal inequality violations in
the presence of spacetime delocalised systems, and connecting causality conditions for process matrices
over different numbers of parties. Formally showing that relativistic causality in a fixed spacetime rules
out non-trivial causal inequality violations, as indicated by our results here, is a subject of ongoing work.
Recent results [59, 67, 68] suggest that causal inequality violations are not possible for a general class of
protocols implementable in Minkowski spacetime with quantum systems, which corroborate with these
observations.

Finally, we note that there is a proposal for violating causal inequalities in Minkowski spacetime
(i.e., under CS1) using quantum fields [44]. Since these are infinite dimensional systems, our proofs do
not directly cover this case, but the overall intuition discussed above nevertheless does. A particular
problem in this case is that it is unclear how the closed lab assumption can be formulated since there is
no clear notion of subsystems. Therefore it is ambiguous if this causal inequality violation corresponds
to a violation of only of CS2 or also of CL (or LO), and whether it conflicts with the above intuition that
causal inequalities cannot be violated under FC, CL, LO and CS1. This remains to be further analysed.
In either case, this would not certify the indefiniteness of the causal structure since this would require
a violation of CS1 which is satisfied by construction as the proposed implementation is in Minkowski
spacetime with classical reference frames.

Non-causal processes, time delocalised systems and CTCs A recent work [69] describes a
method realise several process matrices using time delocalised systems and in particular shows that
there exist non-causal processes that admit realisations through quantum circuits on time-delocalised
systems. This might seem to be in apparent contradiction with our results and what was said in the
above discussions, and we clarify this here. While [69] considers time delocalised systems, they do not
consider a background causal structure with respect to which these systems are delocalised or relativistic
causality with respect to this causal structure. We have on the other hand modelled implementations
of processes in a fixed spacetime while allowing systems to be be delocalised over this fixed spacetime
structure as long as relativistic causality in this spacetime is not violated. In particular, the spacetime is
a partially ordered one and does not admit “closed timelike curves”. Then our related work [59] suggests
that it is impossible to physically implement non-causal processes compatibly with relativistic causality
in such a spacetime even if we allow for systems to be arbitrarily delocalised in space and in time.
Allowing the spacetime to be a pre-order rather than a partial order would evade such a result and
enable constructions such as those of [69] to be physically implemented in such a spacetime. However,
such a pre-ordered spacetime can only arise from exotic solutions in GR that include closed timelike
curves which may itself be considered unphysical. This distinction also depends on how the assumptions
for ruling out trivial causal inequality violations are formulated in the presence of spacetime delocalised
systems (such as: what does it mean to apply a local operation only “once”). For instance, [59] provides
such a set of assumptions. We leave a more detailed investigation of this point, along with a comparison
of the underlying assumptions to future work.
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9 Conclusions
We have developed a general framework for clearly distinguishing between and formulating different
notions of causality, which allows the analysis of their relationships at different levels of detail, and
meets the criteria outlined in the introduction. We have also shown that this approach sheds light on
the physicality of so-called indefinite causal order processes. This flexibility allows us to model physical
scenarios with feedback as cyclic causal structures, when we only care about the information-theoretic
properties, or fine-grain them using spacetime embeddings into acyclic causal structures compatible with
the spacetime, in scenarios where we are also interested in the spacetime information. The advantage
is that we can be very general, and model possibly post-quantum scenarios and but can also make a
connection to (in principle) physically realisable quantum experiments in a definite spacetime, as per our
need and interest. Our main results have been summarised in the introduction, so we will not repeat
that here. We conclude here with the main take home messages of this work.

Our work highlights the need to clearly distinguish between information-theoretic and spacetime
related notions of causation and events, which was also stressed in a recent paper involving one of us [2].
Even within each of these broad notions, there are further distinctions to be made, for instance even at
a purely information theoretic level, causation and signalling and not equivalent, and we can analyse a
causal structure at different levels of details and therefore draw different conclusions. Such a disentangling
of concepts provides a vast level of generality and flexibility as it involves minimal assumptions. However,
this disentangling alone is not enough, for it provides no insights into physical implementations. We must
therefore also establish formal connections between these different notions in order to be able to talk
about physical experiments.

In the natural process of science, we may often need to update our preconceived notions in light of new
experiments. For instance, Bell experiments pose a serious challenge to a classical description of cause
and effect at the operational level, while they are compatible with relativistic notions of causation such
as no superluminal signalling [16]. Consequently in light of Bell experiments, we are forced to update our
prior understanding of the interface between information-theoretic and spacetime notions of causality
and events. A theory of quantum gravity may further challenge our understanding of these notions and
their interface, but we cannot fully anticipate how. The approach of disentangling different notions and
carefully reconnecting them, as proposed in the present paper and in [2] would help us better prepare
for such challenges, as it would enable us to identify the notions of causation that are retained and those
which are challenged in light of new experiments. As we have seen, this also helped us reinterpret the
results and claims of existing experiments.

Bell’s theorem has set an unprecedented example in highlighting the power of no-go theorems both for
foundational and practical purposes— establishing what is impossible to achieve within certain physical
regimes, tells us how physics in new regimes deviates from our prior intuitions and how we can exploit
these new physical phenomena for useful practical tasks. Our work outlines a number of no-go results for
the characterisation of quantum causal structures and their interplay with a definite spacetime structure,
and we have discussed how hypothetical quantum gravitational scenarios without a definite spacetime
structure might deviate from some of these results. Apart from these foundational considerations, this
framework could have potential applications for the study of quantum information processing tasks
in spacetime that involve spacetime delocalised quantum systems. The methods developed here also
have applications for the study of cyclic quantum causal models, which can be used to describe both
physical quantum scenarios with feedback as well as more exotic closed timelike curves. There are several
fascinating questions that still remain open, as we have outlined throughout this text, many of which
could be addressed by building on the tools and ideas presented in this paper, and we leave this for
future work.
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Appendix

A Loop composition
Here we show how we obtain Definition 2.1 from the original definition of loop composition proposed
in [54] for CPTP maps on infinite dimensional systems. Given a CPTP map Φ̂ : L(HA) 7→ L(HB),
the Choi representation of Φ̂ is an operator on L(HA)⊗L(HB) are is given as

∑
i,j |i〉〈j|A ⊗ Φ̂(|i〉〈j|A),

which is a positive semi-definite operator and where {|i〉〈j|A}i,j is a basis of L(HA). If HA and HB are
infinite dimensional, the Choi operator can be unbounded, and the Choi representation is instead given
as a sesquilinear positive semi-definite form RΦ̂ on

HB ×HA = Span{ψB ⊗ ψA : ψB ∈ HB , ψA ∈ HA},

satisfying
RΦ̂(ψB ⊗ ψA;φB ⊗ φA) := 〈ψB |Φ̂(|ψA〉〈φA|)|φB〉, (17)

where |ψ〉 =
∑
i |i〉〈i|ψ〉 for some fixed basis {|i〉}i of HA.

Then the original definition of loop composition given in [54] is as follows. In this definition, it will
be more convenient to put system labels inside the bras and kets rather than using them as subscripts
outside the bras and kets as we have been doing so far, e.g., |kB〉 instead of |k〉B . The meaning is however
the same.

Definition A.1 (Loop composition of infinite dimensional CPTP maps [54]) Consider a CPTP map Φ̂ :
T(HAB) 7→ T(HCD) with input systems A and B and output systems C and D, of dimensions dA, dB, dC
and dD with dB = dD, and where T(H) denotes the set of trace class operators on the (possibly infinite
dimensional) Hilbert space H. Let {|kD〉}k and {|lD〉}l be any orthonormal bases of HD, and {|kB〉}k
and {|lB〉}l denote the corresponding bases of HB i.e., for all k and l, |kD〉 ∼= |kB〉 and |lD〉 ∼= |lB〉.
Then the Choi representation of the new map Ψ̂ = Φ̂D↪→B : T(HA) 7→ T(HC), resulting from looping the
output system D to the input system B in the map Φ̂ is given as

RΨ̂(ψC ⊗ ψA;φC ⊗ φA) =
∑
k,l

RΦ̂(ψC ⊗ kD ⊗ ψA ⊗ kB ;φC ⊗ lD ⊗ φA ⊗ lB), (18)

where |kB〉 =
∑
i |i〉〈i|k〉 for the basis {|iB〉}i of HB used in the Choi representation of Φ̂.

Using Equation (17), the right hand side of Equation (18) becomes

RΨ̂(ψC ⊗ ψA;φC ⊗ φA) = 〈ψC |Ψ̂(|ψA〉〈φA|)|φC〉.

The left hand side of Equation (18) is

∑
k,l

RΦ̂(ψC ⊗ kD ⊗ ψA ⊗ kB ;φC ⊗ lD ⊗ φA ⊗ lB) =
∑
k,l

〈ψC |〈kD|Φ̂
(
|ψA〉〈φA| ⊗ |kB〉〈lB |

)
|φC〉|lD〉.

Noting that both the side of the equation are of the form 〈ψC |(...)|φC〉, the expression corresponding
to the dots in the parenthesis must be the same, and we have

Ψ̂(|ψA〉〈φA|) =
∑
k,l

〈kD|Φ̂
(
|ψA〉〈φA| ⊗ |kB〉〈lB |

)
|lD〉,

Now, if |ψA〉 and |φA〉 happen to be two basis states |i1〉 and |i2〉 of the same basis {|i〉}i of HA, then we
have |ψA〉 =

∑
i |i〉〈i|ψA〉 =

∑
i |i〉〈i|i1〉 =

∑
i |i〉δi,i1 = |i1〉 and similarly |φA〉 = |i2〉. Then the action on

basis states is given as follows, which is the same as Equation (1) of the main text, where we now revert
to our original convention of putting system labels as subscripts outside the bras and kets and shorten
expressions such as |kB〉〈lB | ∼= |k〉B〈l|B to |k〉〈l|B .

Ψ̂(|i〉〈j|A) =
∑
k,l

〈k|DΦ̂
(
|i〉〈j|A ⊗ |k〉〈l|B)

)
|l〉D,

where |i〉 and |j〉 are elements of the same orthonormal basis of HA. The above is a convenient form for
calculating the Choi operator

∑
i,j |i〉〈j|A ⊗ Ψ̂(|i〉〈j|A) of the final map, in the finite dimensional case

(which is what we focus on in this paper).
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B QS as a higher-order transformation
Here we briefly review the quantum switch transformation as originally proposed in [29]. The quantum
switch is originally defined as a supermap QS, or higher-order transformation, that acts on the space
of quantum channels (which are themselves linear maps) mapping a pair of quantum channels UA and
V B to a new channel W (UA, V B). The channel W (UA, V B) thus obtained implements a coherently
controlled superposition of the orders of UA and V B on a target system. In particular, given two unitary
channels UA and V B that act on a target system T , the quantum switch maps them to the channel
W (UA, V B) acting on HC ⊗HT (the joint Hilbert space of a control qubit and the target system) and
given as

W (UA, V B) = |0〉〈0|C ⊗ V BUA + |1〉〈1|C ⊗ UAV B (19)

For example,W (UA, V B) acts on the initial state (α|0〉+ β|1〉)C⊗|Ψ〉T (where |Ψ〉T ∈ Cd is an arbitrary
pure state of the target qudit) as

W (UAV B) : (α|0〉+ β|1〉)C ⊗ |Ψ〉T −→ α|0〉C ⊗
(
V B UA|Ψ〉

)
T

+ β|1〉C ⊗
(
UA V B |Ψ〉

)
T
. (20)

More generally, one can consider the quantum switch operation on non-unitary local channels UA and
V B . In this case, the action of W (UA, V B) can be defined by constructing a set of Kraus operators
for the channel W (UA, V B) (which can be obtained given a set of Kraus operators for UA and V B)
and specifying the action of each of the Kraus operators of W (UA, V B) analogously to Equation (19).
Equation (20) remains the same in the non-unitary case. An interested reader may refer to [70] for
further details on the general definition. Importantly, it is required that each of the operations UA and
V B are queried only once. With this requirement, it is known that it is not possible to implement the
transformation QS using a standard quantum circuit acting on non-vacuum systems (this would require
at least one of the operations to be queried twice) [29].

C An implementation of QS with a definite acyclic causal structure
Here we describe the fixed spacetime QS protocol of Section 7.4 more explicitly in terms of the underlying
CPTP maps and their composition, and show that it implements a definite acyclic causal structure
compatible with relativistic causality in Minkowski spacetime, even though each agent perceives events
to be time localised in their own reference frame. For this, we employ the causal box framework [54]
which models information processing protocols involving systems and operations that may be delocalised
in a fixed spacetime that are compatible with relativistic causality in that spacetime.

We will not review the CB framework here as this is quite involved. For our purposes, it will suffice
to say that a CB can be viewed as a fixed spacetime implementation of a CPTP map (Definition 3.4)
that satisfies relativistic causality (Definition 3.5), it also takes into account vacuum and spacetime
information. In general, causal boxes can have a larger state space (allowing for superpositions of
different numbers of physical systems of a given dimension), and are closed under composition with
arbitrary protocols involving multiple rounds of communication between parties, and not just protocols
that can be viewed as the action of a process on local operations where each party acts once on a physical
system. A more precise comparison and mapping between these frameworks is a subject of a follow-up
work. Here, we present the causal box representation of the QS protocol of Section 7.4, as an example
of a definite spacetime implementation of the process WQS that admits a fixed acyclic causal structure.

Our quantum switch protocol of Section 7.4 is described by a maximally fine-grained fixed space-
time implementation ŴQS,T ,E

max of the quantum switch process matrix ŴQS , where the embedding
E is as given in Equation (16), which means that the in and output systems of ŴQS,T ,E

max are
{CC,P

C

O , CC,P
C

O , A
P 1

O

O , A
P 2

O

O , B
Q1

O

O , B
Q2

O

O } and {D
C,PD

I , DC,PD

I , A
P 1

I

I , A
P 2

I

I , B
Q1

I

I , B
Q2

I

I } respectively. ŴQS,T ,E
max

corresponds to a causal box as it is a CPTP map respecting relativistic causality in the spacetime (we
also explicitly show this below by describing its sequence representation, which is a defining feature of a
causal box). We will there refer to it as the causal box Q̂S for short.

The local operations UA and V B are similarly implemented in spacetime and fine-grained to give
UA,T ,Emax and V B,T ,Emax which also correspond to causal boxes, which we denote as ÛA and V̂B for short.
ÛA has the inputs AP

1
I

I and AP
1
I

I , and outputs AP
1
O

O and AP
1
O

O and applies UA independently between the
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Q̂S

UA
P 1
I

UA
P 2
I

ÛA

V B
Q1

I
V B
Q2

I

V̂B

Ĉ D̂

(α|0〉+ β|1〉)CC
O

|ψ〉CT
O

α|0〉DC
I
⊗ VBUA|ψ〉DT

I

+β|1〉DC
I
⊗ UAVB |ψ〉DT

I

CC,PC

O

CT,PC

O

DC,PD

I

DC,PD

I

A
P1

I

I A
P1

O

O A
P2

I

I A
P2

O

O

B
Q1

I

I B
Q1

O

O B
Q2

I

I B
Q2

O

O

Figure 11: The quantum switch protocol of Figure 10 as a composition of maximally fine-grained maps: Q̂S
models the maximal fine-graining of the spacetime implemented process map of the protocol, the input and output
systems of Q̂S are depicted in green and red respectively. ÛA and V̂B correspond to the maximally fine-grained
spacetime implementations of the local operations UA and V B . These act independently between the respective pairs
of in and output systems, and trivially on vacuum states (cf. Equation (21). A party C in the global past can prepare
input states of the control and target systems, while a party D in the global future can receive the final state of the
control and target from Q̂S and perform measurements on it. The composition of Q̂S with ÛA and V̂B yields the
desired transformation (Equations (19) and (20)) from the global past to the global future. Furthermore, Q̂S acts as a
fixed order process over 6 parties, in contrast to the original process ŴQS (of which Q̂S is a physical implementation)
which was an indefinite causal order process over 4 parties. This is also witnessed by the fact that causal structure of
this physical protocol with Q̂S corresponds to the directed acyclic graph given in part (b) of Figure 9 while that of a
protocol involving the process map ŴQS would be the cyclic graph given in part (a) of Figure 9.

input-output pairs AP
i
I

I and AP
i
O

O for i ∈ {1, 2} whenever a non-vacuum state is received and acts trivially
on the vacuum state i.e., ÛA = UA

P 1
I
⊗ UA

P 2
I
, where the following holds for i ∈ {1, 2}.

UAP i
I
|Ω〉

A
P i

I
I

= |Ω〉
A

P i
O

O

UAP i
I
|ψ〉

A
P i

I
I

= |UA(ψ)〉
A

P i
O

O

(21)

The description of V̂B is analogous. The composition of the causal boxes Q̂S, ÛA and V̂B is a causal
box that implements the channel of Equation (19) from an initial state of control and target on CC,P

C

O

and CT,P
C

O to a corresponding final state on DC,PD

I and DT,PD

I , which may be prepared and measured
by parties C and D in the global past and global future (associated with the local maps Ĉ and D̂). This
composition is depicted in Figure 11. Note that the quantum switch QS itself cannot be described as a
standard quantum circuit, while it is a causal box [54].

The action of each of the causal boxes, Q̂S, ÛA, V̂B as well as their composition is can then
be specified by a sequence of operations that the box implements at each time-step (i.e., through a
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QS1

QS2

QS3

Q̂S

CC,P
C

O

CT,P
C

O

A
P 1

O

O

B
Q1

O

O

A
P 2

O

O

B
Q2

O

O

M

A
P 1

I

I

B
Q1

I

I

A
P 2

I

I

B
Q2

I

I

DC,PD

I

DT,PD

I

M

Figure 12: Sequence representation of the causal box Q̂S of Figure 11: If valid control and target states (non-
vacuum qubit states) are sent in systems CC,P C

O and CT,P C

O respectively, QS1 sends the control on the quantum
memory system M and the target on AP 1

I
I (and |Ω〉 on BQ1

I
I ) if the control was |0〉, and on BQ1

I
I (and |Ω〉 on AP 1

I
I )

if the control was |1〉. QS2 merely connects AP 1
O

O to BQ2
I

I and BQ1
O

O to AP 2
I

I as shown. QS3 takes in the quantum
memory M connects BQ2

O
O to DT,P D

I (ignoring AP 2
O

O ) if the memory was |0〉 and AP 2
O

O to DT,P D

I (ignoring BQ2
O

O )
if it was |1〉 and forwards M to DC,P D

I . If we consider composition of Q̂S with causal boxes ÛA and V̂B , where
the output systems AP 1

I
I and AP 2

I
I will connect to the input of ÛA and the input systems AP 1

O
O and AP 2

O
O connect

to its output (and analogously for V̂B), and we assume that these boxes satisfy Equation (21), we get the desired
transformation on the joint state of the control and target that corresponds to a quantum controlled superposition of
orders of UA and V B .

“sequence representation” of the causal box). The causal structure of this network corresponds to the
directed acyclic graph given in part (b) of Figure 9. The decomposition of the causal box Q̂S (Figure 11)
in terms of its action on these elemental systems is illustrated in Figure 12, this corresponds to the
sequence representation [54] of the causal box Q̂S.

One can then easily verify that the causal box described in the figure indeed implements the desired
transformation (Equations (19) and (20)) (see also [54]). Further, to check that the operations UA and
V B are indeed only queried once each in this implementation of the quantum switch, the corresponding
boxes ÛA and V̂B can be provided with (internal) quantum counters each of which increment their value
by one every time the corresponding operation UA or V B is applied to a non-vacuum state as explicitly
shown in [54].13

Figure 12 also illustrates the causal structure of the causal box Q̂S. We can see that the output
CP

C

O = (CC,P
C

O , CT,P
C

O ) of Charlie is a cause of the first inputs AP
1
I

I and BQ
1
I

I of Alice and Bob through
the map QS1. Further, AP

1
O

O causally influences BQ
2
I

I , and B
Q1

O

O causally influences AP
2
I

I through the
map QS2, and both AP

2
O

O and BQ
2
O

O causally influence Danny’s input DPD

I = (DC,PD

I , DT,PD

I ) through
the map QS3. One can easily check that the signalling relations corresponding to each of these causal
influences also holds.

D Proofs of all results
Lemma 2.12 [Fine-graining a map preserves its signalling relations] Given a map Φ̂ and a fine-graining
Fsys of its in/output systems S, for every signalling relation SI → SO in Φ̂ between some subsets
SI ⊂ S and SO ⊂ S of its input and output systems, there exists a corresponding signalling relation
Fsys(SI)→ Fsys(SO) in the fine-grained map Φ̂F . Consequently, the signalling structure GsigF associated
with Φ̂F is a fine-graining of the signalling structure Gsig associated with Φ̂.

13The action of the unitaries on the vacuum state |Ω〉 is not counted since it represents “nothing" being given as input
to the black-boxes and remains invariant under all operations.
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Proof: Let us denote the set of all inputs I as {I1, ..., In}, and without loss of generality, take SI ⊆ I
to be the set of the first |SI | subsystems.

Firstly, we show that SI signals to SO in Φ̂ implies that there exists a basis state |v〉I =
⊗n

i=1 |vi〉Ii
be-

longing to an orthonormal basis {|v〉I}v of HI and another element |v′〉SI
=
⊗

Ii∈SI
|v′i〉Ii

of the same or-
thonormal basis restricted to the subset of inputs SI such that TrO\SO

◦Φ̂(|v〉〈v|I) 6= TrO\SO
◦Φ̂(|v′〉〈v′|SI

⊗
TrSI

(|v〉〈v|I)). This follows readily from linearity of the map Φ̂. SI signals to SO in Φ̂ implies that there
exist states σI and ρSI

such that TrO\SO
◦Φ̂(σI) 6= TrO\SO

◦Φ̂(ρSI
⊗ TrSI

(σI)). But if we cannot detect
signalling in a linear map at the level of a complete orthonormal basis of the input space of the map,
then we cannot do so using any pure states which are a linear combination of these, and consequently,
we cannot do so using any mixed states which are convex mixtures of pure states, which contradicts the
above equation for the existence of signalling.

Noting that |v′〉〈v′|SI
⊗ TrSI

(|v〉〈v|I) can simply be expressed as a new basis element

|ṽ〉 :=
⊗
Ii∈SI

|v′i〉Ii

⊗
Ij∈I\SI

|vj〉Ij
∈ HI ,

we have that
TrO\SO

◦Φ̂(|v〉I〈vI |) 6= TrO\SO
◦Φ̂(|ṽ〉I〈ṽI |). (22)

Using Definitions 2.10 and 2.11 (and the paragraph in between these definitions, setting out the
notations therein), we know that for each basis state vI =

⊗n
i=1 |vi〉Ii

, we have a corresponding fine-
grained subspace Hv

Fsys(I) consisting of states of the form |ψv〉 =
⊗

i |ψvi〉. Then it follows from applying
Definition 2.11 to Equation (22) that in the fine-grained map Φ̂F , there exists |ψv〉 ∈ Hv

Fsys(I) and
|ψṽ〉Fsys(I) such that

TrFsys(O\SO) ◦Φ̂F (|ψv〉〈ψv|Fsys(I)) 6= TrFsys(O\SO) ◦Φ̂F (|ψṽ〉〈ψṽ|Fsys(I)), (23)
where |ψv〉 =

⊗
i |ψvi〉 ∈ Hv

Fsys(I) and

|ψṽ〉Fsys(I) =
⊗
Ii∈SI

|ψv
′
i〉Fsys(Ii)

⊗
Ij∈I\SI

|ψvj 〉Fsys(Ij) ∈ Hṽ
Fsys(I)

Using the above in Equation (23) shows that we have Fsys(SI) signals to Fsys(SO) in Φ̂F .
�

Theorem 3.6 [Embedding arbitrary, cyclic signalling relations in spacetime] For every signalling struc-
ture Gsig, there exists a fixed acyclic spacetime T and an embedding E of Gsig in a region causal structure
GRT of T that respects relativistic causality.

Proof: In our framework, a signalling structure Gsig is in general a directed graph where the nodes
belong to Nodes(Gsig) := Powerset[I ∪O], where I and O denote the set of all input and output systems
in some network of CPTP maps. An embedding E of Gsig in a spacetime T corresponds to an assignment
of spacetime regions to each system in I ∪O. This immediately implies an embedding for all systems in
Powerset[I ∪ O], for any subset SI/O of I ∪ O the corresponding spacetime region is simply the union
PSI/O =

⋃
S∈S PS of all the spacetime regions assigned to the individual elements S ∈ SI/O under the

embedding E . Thus, in order to establish the theorem statement, we first find an embedding for systems
in I∪O, such the signalling relations in Gsig over these subset of nodes respects relativistic causality. We
will later see that this immediately implies an embedding of all the nodes of Gsig such that relativistic
causality is still preserved. So for the purpose of the next few paragraphs, we will treat Gsig as a directed
graph over the nodes I ∪O and generalise the result at the end, and we will refer to it as G for short.

We first need set out some nomenclature. For every node N of a directed graph G, the set Par(N) :=
{N ′ ∈ Nodes(G) : N ′ → N ∈ G} denotes the set of all parents of the node N , the set Ch(N) := {N ′ ∈
Nodes(G) : N → N ′ ∈ G} denotes the set of all children of the node N , the set Anc(N) := {N ′ ∈
Nodes(G) : ∃ directed path N ′ → ... → N ∈ G} denotes the set of all ancestors of N in G and the set
Desc(N) := {N ′ ∈ Nodes(G) : ∃ directed path N → ... → N ′ ∈ G} denotes the set of all descendants of
N in G. Then the set of all nodes in G that are involved in at least one “loop” is defined as

Loop(G) = {N ∈ Nodes(G) : N ∈ Anc(N) ∩Desc(N)}.
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That is, every node N that is both its own ancestor and its own descendant belongs to the set
Loop(G)). Note that whenever G is a directed acyclic graph Loop(G) = ∅.

We now show that we can fine-grain any signalling structure G into a directed acyclic graph G′ by
“splitting” nodes in Loop(G), such that when the split nodes in G′ are recombined, we get back the
original graph G i.e., G is a coarse-graining of G′. Once we have a directed acyclic graph G′, we can
always embed it in a partially ordered spacetime T though an embedding E ′ that respects relativistic
causality. We can then coarse-grain the embedding E ′ of G′ to an embedding E of the original structure
G that also respects relativistic causality. We explicitly carry out these steps below.

We obtain the directed acyclic graph G′ from the directed graph G as follows. If Loop(G) = ∅,
set G′ = G. If Loop(G) 6= ∅, then we split every node N ∈ Loop(G) into two nodes N1 and N2
such that Par(N1) = Par(N)\Loop(G) and Ch(N1) = Ch(N) and Par(N2) = Par(N) and Ch(N2) =
Ch(N)\Loop(G) i.e., N1 contains no incoming arrows from nodes in Loop(G) but all the same outgoing
arrows asN does in G whileN2 contains no outgoing arrows to nodes in Loop(G) but all the same incoming
arrows as N does in G. Nodes that do not belong to Loop(G), and other edges not featuring in the above
construction remain unaffected. This fully defines G′. Then two things are clear. Firstly that when we
recombine N1 and N2 back into a single node N , for each pair of split nodes and without altering the
edge structure, we recover the original graph G since Par(N1∪N2) = Par(N) and Ch(N1∪N2) = Ch(N)
for every loop node, and the non-loop nodes were not split or altered in going from G to G′. Secondly,
G′ is an acyclic graph since every node that was part of a loop in G is now split such that no single node
contains both incoming and outgoing arrows from another node in a loop.

In our case, each node N corresponds to a quantum Hilbert spaces HN , and splitting a node cor-
responds to creating two copies of the Hilbert space HN1

∼= HN and HN2
∼= HN . Note that this can

always be done also at the level of the network of CPTP maps that gives rise to the signalling relations.
Going back to our simple example with Φ̂2 : I2 7→ O2 sequentially composed after Φ̂1 : I1 7→ O1, we have
the signalling structure {I1 → O1, O1 → I2, I2 → O2}. We can for instance split the node O1 into two
nodes O1

1 and O2
1 giving the signalling structure {I1 → O1

1, O
2
1 → I2, I2 → O2} where we have the map

Φ̂1 acting between I1 and O1
1, while O2

1 is directly connected to I2 (through an identity channel) and I2
to O2 through the map Φ̂2 as before.

Getting back to the main proof, since G′ is a directed acyclic graph, there exists an embedding
E ′ : Nodes(G′) 7→ T of G′in a partially ordered set T (associated with the order relation ≺) such that
Ni → Nj in G ⇔ E ′(Ni) ≺ E ′(Nj). By virtue of being a partial order, T satisfies our minimal definition of
spacetime structure, according to Definition 3.1. Then the required embedding E of G in the spacetime
T simply associates two spacetime locations with each node N ∈ Loop(G), the two locations being
precisely those assigned by E ′ to each of the split nodes i.e., E(N) := {E ′(N1), E ′(N2)}. For all nodes
N 6∈ Loop(G), E(N) = E ′(N) noting that these nodes never got split. Then it is clear that the embedding
E of G respects relativistic causality whenever the embedding E ′ of G′ respects relativistic causality, which
it does by construction.

We now explain how the proof generalises to case where Nodes(G) = Powerset[I ∪O]. For this, note
that our above proof covers all cases where G has the property that S1 → S2 for two subsets S1,S2 of
I ∪ O, then there exists S1 ∈ S1 and S2 ∈ S2 such that S1 → S2. However, suppose that we have a
signalling relation S1 → S2 in G such that there is no signalling relation between individual elements of
these two sets. The relativistic causality condition implied by this signalling relation on the corresponding
spacetime embedding is that PS1 R−→ PS2 (cf. Definition 3.5). Since PS1 =

⋃
S1∈S1

PS1 (and similarly
for S2), this is equivalent to saying that there exists S1 ∈ S1 and S2 ∈ S2 such that the corresponding
spacetime regions satisfy PS1 R−→ PS2 . In other words, the relativistic causality constraints on the
spacetime embedding of G are the same irrespective of whether or not G satisfies the aforementioned
property. Thus the above proof also applies to establish the theorem statement for signalling structures
G not satisfying this property i.e., hence it applies to all signalling structures.

Finally, we note that according to Definition 3.1 any partially ordered set corresponds to a spacetime.
This rather minimal definition allows us to derive general results that only depend on the order relation
between spacetime points and does not require the spacetime to have any further symmetries, or a smooth
differentiable structure. However, under this minimal definition, one might regard two different partially
ordered sets T and T ′ as two different “spacetimes”. On the other hand, if we consider the more standard
method of modelling spacetime as a differentiable manifoldM, as done in relativistic physics, we could

53



sample different sets of points on the same manifold to generate different partially ordered sets14 T and
T ′ from the same spacetime. If we model spacetime as a globally hyperbolic manifold that ensures the
absence of closed timelike curves, then the statement of the present theorem would instead become “For
every signalling struc- ture Gsig and every globally hyperbolic manifoldM, there exists an embedding E
of Gsig in a region causal structure GRM ofM that respects relativistic causality, where each node of GRM
is a finite set of points inM.” This can be shown as follows. If G is a directed acyclic graph, then it can
be embedded in any globally hyperbolic manifold M through an embedding E : Nodes(G) 7→ M that
assigns a point inM to each node of G (see [50] for an explicit construction of such an embedding for the
acyclic case). This is because the graph has a finite number of nodes and we can always sample a suitable
set of points in the manifold having the required order relations. One can apply this embedding to the
acyclic graph G′ constructed in the proof above, this would define the embedding E ′ : Nodes(G) 7→ M.
The rest of the proof will be the same as the above case for partially ordered sets T . �

Lemma 3.9 [Fine-graining to an acyclic signalling structure] Every network of CPTP maps that admits
an implementation in a fixed spacetime T that does not violate relativistic causality in that spacetime
admits a fine-graining that has a definite acyclic signalling structure, whose edges→ align with the partial
order relation ≺ of the spacetime.

Proof: A spacetime implementation of any map can be maximally fine-grained in terms of its elemental
subsystems which are quantum systems S associated with a spacetime location PS ∈ T . Relativistic
causality (cf. Definition 3.5) then requires that whenever S1 → S2 for two elemental subsystems, then
PS1 ≺ PS2 must hold. Then the signalling structure of any network of such maps that satisfy relativistic
causality cannot contain a directed cycle of signalling relations between elemental systems as ≺ is a
partial order and therefore the signalling structure over the elemental subsystems of any network of
spacetime implemented maps that satisfy relativistic causality must be acyclic. �

Lemma 5.2 [Probabilities from composition] For every process map Ŵ , the joint probabilities obtained
through the complete composition P̂Ŵ ,M as in Equation (10) are equivalent to those obtained in the
process matrix framework through Equation (4).

Proof: We first construct the complete composition P̂Ŵ ,M step by step to make explicit how it can be
obtained from the process and the local operations. Denoting the quantum input and output spaces of
the local operations MAk

with a bar on top (ĀkI and ĀkO) to distinguish them from the corresponding
input and output spaces of Ŵ before composition, we first compose these N + 1 CPTP maps in parallel
to obtain the CPTP map

MA1
⊗ ...⊗MAN

⊗ Ŵ .

This map has the 3N input systems {Ā1
I , A

1
s, ..., Ā

N
I , A

N
s , A

1
O, ..., A

N
O } and the 3N output systems

{Ā1
O, A

1
o, ..., Ā

N
O , A

N
o , A

1
I , ..., A

N
I }. We now loop each of the output systems ĀkO to the corresponding

inputs AkO, and similarly the output systems AkI get looped back to the inputs ĀkI and this is possi-
ble since by construction, the “barred” systems are copies of their “unbarred” versions with the same
state-spaces. Performing this loop composition yields a map P̂ with the uncontracted input and out-
put systems, namely the inputs {A1

s, ..., A
N
s } and outputs {A1

o, ..., A
N
o }, which as we will now show,

encodes the joint probabilities of possible measurements implemented by the local maps. In the fol-
lowing, for brevity, we detail the proof for the bipartite case. However, the proof readily generalises to
the N party case.In the bipartite case, taking the parties to be A and B with local settings associated
with input systems As, Bs and outcomes associated with output systems Ao, Bo, the parallel composi-
tion yields the map MA ⊗MB ⊗ Ŵ with input systems {ĀI , As, B̄I , Bs, AO, BO} and output systems
{ĀO, Ao, B̄O, Bo, AI , BI}. Applying the loop formula of Equation (1) to describe the final map P̂Ŵ ,M
(with classical inputs As and Bs and classical outputs Ao ad Bo), we obtain

14That is, if the manifold is globally hyperbolic, in more exotic spacetimes with closed timelike curves, we can also obtain
pre-ordered sets from sampling suitable points.
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P̂Ŵ ,M(|a〉〈a|As
⊗ |b〉〈b|Bs

)

=
∑
k...r

〈k|AI
〈m|ĀO

〈o|BI
〈q|B̄O

(
MA

a

(
|k〉〈l|ĀI

)
⊗MB

b

(
|o〉〈p|B̄I

)
⊗ Ŵ

(
|mq〉〈nr|AOBO

))
|l〉AI

|n〉ĀO
|p〉BI

|r〉B̄O

=
∑
k...r

〈k|AI
〈n|ĀO

〈o|BI
〈r|B̄O

([
MA

a

(
|k〉〈l|ĀI

)]T ⊗ [MB
b

(
|o〉〈p|B̄I

)]T ⊗ Ŵ (|mq〉〈nr|))|l〉AI
|m〉ĀO

|p〉BI
|q〉B̄O

,

where we have used the notation MA
a

(
|k〉〈l|ĀI

)
:= MA

(
|a〉〈a|As

⊗ |k〉〈l|ĀI

)
(and similarly for B’s

operation). Denoting the factor

([
MA

a

(
|k〉〈l|ĀI

)]T ⊗ [MB
b

(
|o〉〈p|B̄I

)]T ⊗ Ŵ (|m〉〈n|AO
⊗ |q〉〈r|BO

))
by

(...), introducing factors of the identity I =
∑
j |j〉〈j|, and then rearranging the resultant inner products

we have

P̂Ŵ ,M(|a〉〈a|As
⊗ |b〉〈b|Bs

)

=
∑
ijst

∑
k...r

〈k|AI
〈n|j〉〈j|ĀO

〈o|BI
〈r|s〉〈s|B̄O

(
...

)
|i〉AI

〈i|l〉AI
|m〉ĀO

|t〉BI
〈t|p〉BI

|q〉B̄O

=
∑
ijst

∑
k...r

〈i|AI
|l〉〈k|AI

〈j|ĀO
〈t|BI

|p〉〈o|BI
〈s|B̄O

(
...

)
|i〉AI

|m〉〈n|ĀO
|j〉ĀO

|t〉BI
|q〉〈r|B̄O

|s〉B̄O

= trAIĀOBIB̄O

[∑
k...r

|l〉〈k|AI
⊗ |p〉〈o|BI

⊗

(
...

)
⊗ |m〉〈n|ĀO

⊗ |q〉〈r|B̄O

]

= trAIĀOBIB̄O

[(∑
kl

|l〉〈k|AI
⊗
[
MA

a

(
|k〉〈l|ĀI

)]T)⊗(∑
op

|p〉〈o|BI
⊗
[
MB

b

(
|o〉〈p|B̄I

)]T)

⊗

( ∑
mnqr

|mq〉〈nr|ĀOB̄O
⊗ Ŵ

(
|mq〉〈nr|AOBO

))]

Now, we wish to calculate the probability that the output of P̂Ŵ ,M(|a〉〈a|As⊗|b〉〈b|Bs) is |x〉Ao⊗|y〉Bo i.e.,
the outcome x obtained by Alice upon measuring the setting a and outcome y for Bob upon measuring

the setting b. This is simply P (xy|ab) = tr
[(
|x〉〈x|Ao

⊗ |y〉〈y|Bo

)(
P̂Ŵ ,M(|a〉〈a|As

⊗ |b〉〈b|Bs
)
)]

, which

is the probability that the projection of the output space into |x〉〈x|Ao ⊗ |y〉〈y|Bo succeeds. Combining
this with the above equation for P̂ (|a〉〈a|As

⊗ |b〉〈b|Bs
) and using Equation (8) to absorb the outcome

projectors into the definition of the mapsMA
x|a andMB

y|b, we immediately obtain the required result.

P (xy|ab) = tr
[(
MAIAO

x|a ⊗MBIBO

y|b

)
W
]
, (24)

where W = I ⊗ Ŵ |1〉〉〈〈1| is the process matrix and MAIAO

x|a =
[
I ⊗ MA

x|a

(
|1〉〉〈〈1|

)]T
is the Choi

representation of the local mapMA
x|a (and similarly for B’s operation) as defined in Section 4.

�

Lemma 5.3 [Partial composition and reduced process] Consider an N -partite process map Ŵ and the
local operations {MAk

ak
}lk=1 for the first l < N parties for a fixed set of settings {ak}lk=1. Then the

partial composition C(Ŵ , {MAk

ak
}lk=1) corresponds to a CPTP map whose Choi representation is the

reduced process matrix W̄ (MA1
IA

1
O

a1 , ...,M
Al

IA
l
O

al ).

Proof: The proof method is very similar to that of Lemma 5.2 but we provide it here for completeness
and follow the same notation as the previous proof. Again, we restrict to the bipartite case for simplicity
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and brevity but the proof easily generalises to the multipartite case. Consider a bipartite process map
Ŵ with input systems AO, BO and output systems AI , BI . LetMB

b : B̄I 7→ B̄O be a local operation of
the party B labelled by the setting b, where the barred systems are isomorphic to the corresponding un-
barred ones. We now show that for every choice of setting b, the Choi representation of the corresponding
partial composition C(Ŵ ,MB

b ) is the reduced process matrix W̄ (MBIBO

b ) (cf. Equation (11)). Denoting
C(W,MB

b ) as ĈW,b for short and noting that ĈW,b is a map from AO to AI , the Choi representation of
ĈW,b is given as

CW,b =
∑
m,n

|m〉〈n|AO
⊗ ĈW,b(|m〉〈n|AO

).

Using the composition operation, we can write ĈW,b(|m〉〈n|AO
) as

ĈW,b(|m〉〈n|AO
) =

∑
o,p,q,r

〈o|BI
〈q|B̄O

(
MB

b ⊗ Ŵ
)(
|o〉〈p|B̄I

⊗ |mq〉〈nr|AOBO

)
|p〉BI

|r〉B̄O

=
∑
o,p,q,r

〈q|B̄O
MB

b

(
|o〉〈p|B̄I

)
|r〉B̄O

⊗ 〈o|BI
Ŵ
(
|mq〉〈nr|AOBO

)
|p〉BI

Plugging this back into the Choi representation, inserting factors of the identity and rearranging, we
have

CW,b =
∑

o,p,q,r,m,n

|m〉〈n|AO
⊗ 〈q|B̄O

MB
b

(
|o〉〈p|B̄I

)
|r〉B̄O

⊗ 〈o|BI
Ŵ
(
|mq〉〈nr|AOBO

)
|p〉BI

=
∑

o,p,q,r,m,n

|m〉〈n|AO
⊗ 〈r|B̄O

[
MB

b

(
|o〉〈p|B̄I

)]T
|q〉B̄O

⊗ 〈o|BI
Ŵ
(
|mq〉〈nr|AOBO

)
|p〉BI

=
∑

o,p,q,r,m,n,j,k

|m〉〈n|AO
⊗ 〈r|B̄O

|j〉〈j|B̄O

[
MB

b

(
|o〉〈p|B̄I

)]T
|q〉B̄O

⊗ 〈o|BI
|k〉〈k|BI

Ŵ
(
|mq〉〈nr|AOBO

)
|p〉BI

=
∑

o,p,q,r,m,n,j,k

|m〉〈n|AO
⊗ 〈j|B̄O

[
MB

b

(
|o〉〈p|B̄I

)]T
|q〉〈r|B̄O

|j〉B̄O
⊗ 〈k|BI

Ŵ
(
|mq〉〈nr|AOBO

)
|p〉〈o|BI

|k〉

=
∑
j,k

〈jk|BIB̄O

(
1AIAO ⊗

∑
o,p

|p〉〈o| ⊗
[
MB

b

(
|o〉〈p|

)]T)( ∑
m,q,n,r

|mq〉〈nr| ⊗ Ŵ
(
|mq〉〈nr|

))
|jk〉BIB̄O

= TrBIBO

((
1AIAO ⊗MBIBO

b

)
.W

)
= W̄ (MBIBO

b ),

where we have used the definition of the Choi representations of the local operations and the process
map (see Section 4) in the last line, along with that of the reduced process matrix (Equation (11)). This
completes the proof. �

Theorem 5.4 [Equivalence of two notions of signalling] AiO does not signal to ASI in C(Ŵ , {MAk}k=N
k=1,k 6∈i∪S)

if and only if the set of outcomes xS := {xS}S∈S of the parties in AS do not depend on the setting ai of
the party Ai i.e., the corresponding joint probability distribution satisfies Equation (5).

Proof: Sufficiency: Here, we establish that no signalling in the partial composition implies no sig-
nalling in joint probabilities. We first prove the result for the bipartite case where AS reduces to a
single party and the corresponding partial composition C(Ŵ , {MAk}k=N

k=1,k 6∈i∪S) reduces to the bipartite
process map Ŵ itself. The proof immediately generalises to the multipartite case with arbitrary AS ,
with C(Ŵ , {MAk}k=N

k=1,k 6∈i∪S) taking the place of Ŵ .
For the bipartite case with two parties A and B, the statement we need to prove is that AO does not

signal to BI in Ŵ implies that for all choices of settings a and b on the input systems As and Bs of the
local mapsMA andMB and corresponding outcomes x and y obtained on the output systems Ao and Bo
of these maps, the joint probability distribution (cf. Lemma 5.2) satisfies P (y|ab) = P (y|b). We establish
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Ŵ

AO BO

AI BI

= Ŵ

BO

AI BI

ρ

AO

Figure 13: Diagrammatic representation of Equation (25). The equality holds for all states ρ on AO.

below and show, and then explain how the argument readily generalises to the multipartite case where the
signalling relation under consideration is with respect to the partial composition C(Ŵ , {MAk}k=N

k=1,k 6=i,j).
Writing out the condition that AO does not signal to BI in Ŵ explicitly, we have the following, which

is illustrated diagrammatically in Figure 13

TrAI
◦Ŵ (σAOBO

) = TrAI
◦Ŵ (ρAO

⊗ TrAO
(σAOBO

)), ∀σAOBO
, ρAO

. (25)

This in turn implies that ∀σAOBO
, ρAO

,MB , b,

MB ◦ TrAI
◦Ŵ (σAOBO

⊗ |b〉〈b|Bs
) =MB ◦ TrAI

◦Ŵ (ρAO
⊗ TrAO

(σAOBO
⊗ |b〉〈b|Bs)),

where MB is a local map of B with inputs BI and Bs and outputs BO and Bo. Since, the above
statement holds for all σAOBO

, we could choose σAOBO
to be σAOBO

= (MA ⊗ 1BO )(σ̃AIBO
⊗ |a〉〈a|As)

for some mapMA (with inputs AI and As and outputs AO and Ao) and state σ̃AIBO
⊗ |a〉〈a|As . Then

noting that the order of MB and TrAI
does not matter as they act on different subsystems, we have

∀σ̃AIBO
, ρAO

,MB ,MA, b, a

TrAoAIBO
◦MB ◦ Ŵ

(
(MA ⊗ 1BO )(σ̃AIBO

⊗ |a〉〈a|As
⊗ |b〉〈b|Bs

)
)

= TrAoAIBO
◦MB ◦ Ŵ

(
ρAO
⊗ TrAO

(
(MA ⊗ 1BO )(σ̃AIBO

⊗ |a〉〈a|As ⊗ |b〉〈b|Bs)
))

.

(26)

This condition is illustrated in Figure 14. Note that the right hand side of the above equation is equal

to the expression TrBOAI
◦MB ◦ Ŵ

(
ρAO
⊗TrAoAO

(
(MA ⊗ 1BO )(σ̃AIBO

⊗ |a〉〈a|As ⊗ |b〉〈b|Bs)
))

, this

equality is much more apparent from the figure. Then writing out Equation (26) with |a′〉〈a′|As
instead

of |a〉〈a|As
and using the fact that for all a, a′,

TrAOAo

(
(MA⊗1BO )(σ̃AIBO

⊗|a〉〈a|As⊗|b〉〈b|Bs)
)

= TrAOAo

(
(MA⊗1BO )(σ̃AIBO

⊗|a′〉〈a′|As⊗|b〉〈b|Bs)
)
,

we have ∀σ̃AIBO
, ρAO

,MB
b ,MA, a, a′, b

TrAoAIBO
◦MB ◦ Ŵ

(
(MA ⊗ 1BO )(σ̃AIBO

⊗ |a〉〈a|As
⊗ |b〉〈b|Bs

)
)

= TrAoAIBO
◦MB ◦ Ŵ

(
(MA ⊗ 1BO )(σ̃AIBO

⊗ |a′〉〈a′|As ⊗ |b〉〈b|Bs)
)
.

(27)

The above is illustrated in Figure 15 and is simply the condition that As does not signal to Bo in
the map MB ◦ Ŵ ◦ MA. The sequential composition MB ◦ Ŵ ◦ MA has the input systems AI , As,
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ρ
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Figure 14: Diagrammatic representation of Equation (26). The equality holds for all states ρ on AO, |a〉 on As, |b〉
on Bs and for all mapsMA andMB .

BO and Bs and the output systems AI , Ao BO and Bo. In order to obtain the complete composition
C(Ŵ ,MA,MB) from the sequential composition MB ◦ Ŵ ◦ MA, we must connect the systems with
the same label through loop composition, this involves two loop compositions, one connecting the input-
output pair labelled AI and one for the pair labelled BO. We now show that the non-signalling relation
As 6→ Bo is preserved under these two compositions. The first composition connecting the input-output
pair AI inMB ◦ Ŵ ◦MA yields to mapMB ◦C(Ŵ ,MA), then connecting the input-output pair BO in
MB ◦ C(Ŵ ,MA) yields the complete composition P̂Ŵ ,M := C(Ŵ ,MA,MB).

The fact that the non-signalling relation As 6→ Bo is preserved under the first composition is apparent
from the condition established in Figure 14. From the right hand side of the figure, we can see that
irrespective of whether the output AI is connected back to the input AI or simply discarded, the output
on Bo is obtained by first applying Ŵ to ρAO

⊗ σBO
, then applying MB with the setting |b〉〈b|Bs

and
tracing out BO. This means that the output on Bo is independent of the choice of classical input on As
in bothMB ◦ Ŵ ◦MA andMB ◦ C(Ŵ ,MA), ∀MA,MB .

The fact that it is also preserved under the second composition, i.e., in going fromMB ◦ C(Ŵ ,MA)
to P̂Ŵ ,M := C(Ŵ ,MA,MB), can be shown as follows. From AO 6→ BI in Ŵ , we can establish that
As 6→ BO inMB ◦Ŵ ◦MA, ∀MA andMB , in exactly the same manner as we established that AO 6→ BI
in Ŵ implies As 6→ Bo inMB ◦ Ŵ ◦MA, ∀MA andMB (cf. Figure 16). We can then apply the same
argument of the previous paragraph to conclude that As 6→ BO also in MB ◦ C(Ŵ ,MA), ∀MA, MB .
Since the final loop composition of interest connects the output BO (which we have established to be
independent of inputs on As) to the corresponding input of the same name, we know that after the
composition, the set of allowed states that can flow on the output system BO ofMB is independent of
the choice of state |a〉 on As. These set of allowed states can be no larger than the set of possible states
on BO that we considered before the composition for establishing the non-signalling relation As 6→ Bo.
Therefore As 6→ Bo before the composition implies As 6→ Bo after this loop composition.

In the above, we have shown that AO 6→ BI in Ŵ implies that As 6→ Bo in the complete composition
P̂Ŵ ,M := C(Ŵ ,MA,MB) for all choices of local operationsMA andMB , this is illustrated in Figure 16.
Since C(Ŵ ,MA,MB) only has classical input system As and Bs and classical output systems, Ao and
Bo, it is a classical channel between these systems and the fact that As does not signal to Bo immediately
implies that

∑
x P (xy|ab) =

∑
x P (xy|a) or P (y|ab) = P (y|a) as required.

The proof for the multi-partite case with arbitrary AS proceeds in the same manner as the bipartite
case shown above. To see this, first note that the proof for the multipartite case with Ai ∪ AS = A is
identical to the bipartite case, where Ai plays the role of the party A and the set of parties AS jointly
play the role of the party B. In such cases, the partial composition C(Ŵ , {MAk}k=N

k=1,k 6∈i∪S) reduces to
Ŵ whose input systems are AiO, A

S
O (set of quantum outputs of parties in AS) and output systems are
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Figure 15: Diagrammatic representation of Equation (27). The equality holds for all states |a〉, |a′〉 on As, |b〉 on Bs

and for all mapsMA andMB .

AiI and ASI (set of quantum inputs of parties in AS).
For the case of a general AS such that Ai ∪ AS ⊂ A, we must use the partial composi-

tion C(Ŵ , {MAk}k=N
k=1,k 6∈i∪S) instead of the process map Ŵ in the proof. The partial composition

C(Ŵ , {MAk}k=N
k=1,k 6∈i∪S) has additional in and output systems {Aks}Nk=1,k 6∈i∪S and {Ako}Nk=1,k 6∈i∪S car-

rying the settings and outcomes of all the parties other than those in Ai∪AS . When applying the above
proof method to this general case, all the statement then apply for all choices of settings on the addi-
tional inputs {Aks}Nk=1,k 6∈i∪S i.e., for all choices of local operations of the remaining N − 1− |AS | parties,
and we must trace out the additional outputs {Ako}Nk=1,k 6∈i∪S when considering signalling between AiO
and ASI in the partial composition. Since these outputs carry classical measurement outcomes, the trace
can be performed in the basis in which they are encoded (the computational basis) and then simply
corresponds to marginalising over them in the resulting probability distribution. Noting these points,
the above proof readily generalises to the general multi-partite case where the bipartite no signalling con-
dition

∑
x P (xy|ab) =

∑
x P (xy|a) or P (y|ab) = P (y|a) established above generalises to the condition of

Equation 5.

Necessity: To establish that no signalling at the level of joint probabilities implies no signalling at the
level of the partial composition, we prove the contrapositive of the statement which is that AiO → ASI in
the partial composition C(Ŵ , {MAk}k=N

k=1,k 6∈i∪S) implies that the set of outcomes of parties in AS depends
on the setting of Ai i.e., the associated joint probability distribution does not satisfy the independence
of Equation (5). We again, for the sake of simplicity, demonstrate the proof for the bipartite case where
Ai = A, AS = B and C(Ŵ , {MAk}k=N

k=1,k 6∈i∪S) = Ŵ . The generalisation to multipartite case follows from
this in straight forward manner.

We first show that whenever there is a signalling relation AO → BI in the map Ŵ , this signalling
relation can be verified only using product states over the input wires AO and BO of the map. This
follows from linearity. Suppose that the signalling is undetectable using product states i.e., for all product
states ρAO

⊗ σBO
on AO and BO, and for all states ρ̃AO

on AO alone,

TrAI
◦Ŵ (ρAO

⊗ σBO
) = TrAI

◦Ŵ (ρ̃AO
⊗ σBO

).

In particular, we can consider a set of product states {|i〉AO
⊗ |j〉BO

}i,j that form a complete basis
for HAO

⊗ HBO
. This means that the map TrAI

◦Ŵ acts identically on the states |i〉AO
⊗ |j〉BO

and
|i′〉AO

⊗ |j〉BO
for all possible i, i′ and j, and in particular we can set i′ = 0. Then applying this

to each term in an arbitrary pure state |ψ〉 =
∑
i,j αij |i〉AO

⊗ |j〉BO
and invoking linearity, we know

that the action of the map TrAI
◦Ŵ on this state would be identical to its action on the product state

|0〉AO
⊗
∑
j(
∑
i αij)|j〉BO

. The argument immediately extends also to arbitrary mixed states on AO⊗BO,
as these are convex mixtures of pure states.
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P̂Ŵ ,M

As Bs

BoAo

|a〉 |b〉

= P̂Ŵ ,M

As Bs

BoAo

|a′〉 |b〉

Figure 16: A consequence of the condition of Equation (27) (or equivalently Figure 15). The equality holds for all
states |a〉, |a′〉 on As. P̂Ŵ ,M corresponds to the complete composition of the process with the two local operations,
as illustrated in Figure 6.

Using the above, we show that whenever AO → BI in the map Ŵ , it can be used to implement a
corresponding signalling relation from the classical input system As of A to the classical output system
Bo of B, in the complete composition of Ŵ with the parties’ local maps, which in turn implies signalling
at the level of the probabilities as these are encoded in the complete composition (cf. Lemma 5.2). We
have established that AO → BI in the map Ŵ implies that there exists a product state ρAO

⊗ σBO
on

AO and BO, and a state ρ̃AO
on AO alone such that TrAI

◦Ŵ (ρAO
⊗ σBO

) 6= TrAI
◦Ŵ (ρ̃AO

⊗ σBO
).

In other words, the state on BI when Ŵ acts on ρAO
⊗ σBO

is distinct from the state on BI when
it acts on ρ̃AO

⊗ σBO
and hence there exists a measurement {MB

y|b}y that B can perform to distinguish
these states with a non-zero probability. Similarly, we can define A’s local operation MA to be such
that whenever the setting a = 0 is input on As, it discards the input on AI and prepares the state ρAO

to send to Ŵ and whenever the setting a = 1 is input on As, it discards the input on AI and prepares
the state ρ̃AO

to send to Ŵ . This in turn implies that P (y|a, b) 6= P (y|b) i.e., that the outcome y of B
depends on the setting a of A, which establishes the claim.

�

Theorem 6.2 [No-go theorem for physical implementations of processes] No fixed spacetime implemen-
tation (Definition 3.4) P̂ T ,E

Ŵ ,M of the process network P̂Ŵ ,M within a fixed spacetime structure T (Defi-
nition 3.1) can simultaneously satisfy the following three assumptions.

1. W is not a fixed order process (Definition 4.1).

2. P̂ T ,E
Ŵ ,M satisfies the relativistic causality condition of Definition 3.5.

3. The region causal structure given by the embedding E with Nodes(GRT ) := {E(S)}S∈S is cycle-free.

Proof: Consider the following property that signalling relations associated with the network P̂Ŵ ,M
may satisfy– every signalling relation S1 → S2 between some subsets S1,S2 of {A1

I , A
1
O, ..., A

N
I , A

N
O } is

such that there exists S1 ∈ S1, and S2 ∈ S2 with a corresponding signalling relation S1 → S2. Notice
that for every network P̂Ŵ ,M that does not have this property, there exists network that does satisfy
the property such that the signalling relations of both networks impose the same relativistic causality
constraints on any spacetime embedding E . A proof of this statement can be found in the proof of
Theorem 3.6, and we will not repeat this here. This means that without loss of generality, we can
proceed with assuming that our network always leads to signalling relations satisfying this property.
This also means that, without loss of generality, we only need to consider signalling relations between
individual systems (and not subsets of systems) in {A1

I , A
1
O, ..., A

N
I , A

N
O }.

Now, notice that the network P̂Ŵ ,M can either be viewed as a complete composition of Ŵ with
the local maps, or equivalently, as a composition of the partial composition C(Ŵ , {MAk}k=1,Ak 6∈A∪AS )
(which itself is a composition of Ŵ with the local operations of the agents in A ∪ S), where A is some
agent and S is a subset of the N−1 agents excluding A, with the local maps of the remaining N−1−|S|
agents {A1, ..., AN}\{A ∪ S}. This means that all the signalling relations coming from these maps can
be exploited in an implementation of the network. Furthermore, since the “extended” local map MAk
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is also part of the network, we must also consider the signalling relations that it generates. Noting that
each extended map encodes all possible choices of local operations that could be implemented from AkI to
AkO (and not just maps that discard states on AkI and reprepare states on AkO), we will have a signalling
relation AkI → AkO for each k.

Keeping the above in mind, we construct a signalling structure Gsig over the systems
{A1

I , A
1
O, ..., A

N
I , A

N
O } as follows, which captures the signalling relations possible in the network P̂Ŵ ,M,

as we have argued above. The nodes of Gsig correspond to elements in {A1
I , A

1
O, ..., A

N
I , A

N
O }. Whenever

AO → ASI in the partial composition C(Ŵ , {MAk}k=1,Ak 6∈A∪AS ), where ASI denotes the set of all input
systems of agents in AS , we pick any individual system SI ∈ SI and include an edge → from AO to ASI
in Gsig. Further, we include AiI → AiO in Gsig for each i ∈ {1, ..., N}. The reason for not considering
Gsig to a directed graph over Powerset[{A1

I , A
1
O, ..., A

N
I , A

N
O }] and including an edge from AO to ASI is

that we only care about the relativistic causality constraints imposed by these signalling relations on a
spacetime embedding. And in both these cases, we have the same constraints (see proof of Theorem 3.6
for a more detailed explanation of this statement). By Theorem 5.4, we know that this is equivalent to
the procedure where we check whether the set of outcomes of agents in AS depends on the setting of
agent A through the joint probability distribution (i.e., whether Equation 5 fails when setting A := Ai)
and then picking S ∈ S and including an edge A→ AS in Gsig.

It is then easy to see that if W is not a fixed order process (as required by assumption 1), then
Gsig must contain a directed cycle i.e. a set of systems S1, S2, ...., Sn ∈ {A1

I , A
1
O, ..., A

N
I , A

N
O } such that

S1 → S2 → ... → Sn → S1. Suppose that Gsig does not contain a directed cycle, then it would be a
directed acyclic graph and we can define a partial order relation ≺K on the systems {A1

I , A
1
O, ..., A

N
I , A

N
O }

such that
S1 → S2 ∈ G ⇔ S1 ≺K S2.

It follows that W satisfies Definition 4.1 and is therefore a fixed order process.
We now impose relativistic causality (assumption 2) and show that assumption 3 must be violated

for any spacetime implementation P̂ T ,E
Ŵ ,M of the network P̂Ŵ ,M. This also follows readily. Relativistic

causality requires that whenever S1 → S2 we must have PS1 R−→ PS2 , where PS1 and PS2 are the
spacetime regions assigned to the systems S1 and S2 by the spacetime embedding E . Applied this to the
directed cycle S1 → S2 → ...→ Sn → S1 in Gsig (which we have proven to exist whenever assumption 1
is satisfied), we require PS1 R−→ PS2 R−→ ...

R−→ PSn
R−→ PS1 in order to satisfy assumption 2. However,

this is a direct violation of assumption 3, which establishes the claim.
�

Corollary 6.6 [Time localisation in a global frame] Under the same notation as Theorem 6.2, no fixed
spacetime implementation P̂ T ,E

Ŵ ,M of the network P̂Ŵ ,M within a fixed spacetime structure T can simul-
taneously satisfy the following three assumptions,

1. W is not a fixed order process (Definition 4.1).

2. P̂ T ,E
Ŵ ,M satisfies the relativistic causality condition of Definition 3.5.

3. The spacetime embedding E has the property that each of the spacetime regions PS ⊆ T are time-
localised from the perspective of some agent A.

Proof: This corollary follows from noting that the first two assumptions are identical to the first
two assumptions of Theorem 6.2, while the third assumption here implies the third assumption of the
theorem. More explicitly, assumption 3 here requires that for each system S, the corresponding spacetime
region PS assigned to S by the embedding E is such that all spacetime points in PS have the same time
coordinate, say tS in a global reference frame. Then, Definitions 3.1 and 3.2 tell us that PS1 R−→ PS2

implies tS1 < tS2 . Since we can never have a sequence of times in some global reference frame such that
tS1 < tS2 < ... < tSn < tS1 , it follows that the set of spacetime regions satisfying assumption 3 of this
corollary can never contain a sequence of regions such that PS1 R−→ PS2 R−→ ...

R−→ PSn
R−→ PS1 , i.e., the

regions satisfy assumption 3 of Theorem 6.2. �
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Theorem 6.9 [Unravelling physical process implementations into fixed order processes] Let Ŵ T ,Emax be a
maximally fine-grained physical implementation of an N -partite process Ŵ in a spacetime, where each pair
of in and output regions PAk

I and PAk
O have a pairwise correspondence OAk : PAk

I 7→ PAk
O . Then Ŵ T ,Emax

acts as an Ñ -partite fixed order process with Ñ =
∑N
k=1 |PA

k
I |, upon composition with corresponding

maximally fine-grained local maps {MAk,T ,E
max }Nk=1, where each MAk,T ,E

max acts independently between the
pairs of points PA

k
I ∈ PAk

I and OAk (PAk
I ) ∈ PAk

O , as described by Equation (12).

Proof: We prove the bipartite case here for simplicity, but the proof method readily generalises to the
N -partite case. Let Ŵ be a bipartite process matrix over the parties A and B, and Ŵ T ,E be a spacetime
implementation of Ŵ where the spacetime regions assigned by the embedding are PAI = {P 1

I , ..., P
n
I },

PAO = {P 1
O, ..., P

n
O}, PBI = {Q1

I , ..., Q
m
I } and PBO = {Q1

O, ..., Q
m
O } with the pairwise correspondence

OA(P iI ) = POi � P iI and OB(QjI) = QOi � Q
j
I . While Ŵ has the inputs {AO, BO} and outputs {AI , BI},

the maximal fine-graining Ŵ T ,Emax now has n + m input systems, {A1
O, ..., A

n
O, B

1
O, ..., B

m
O } and n + m

output systems {A1
I , ..., A

n
I , B

1
I , ..., B

m
I }, where AiO/I is short for AP

i
O

O/I , and similarly for B.
LetMA andMB be local maps andMA,T ,E

max andMB,T ,E
max be the maximal fine-graining of a spacetime

implementation of these maps with the same embedding E considered above i.e., the input systems of
MA,T ,E

max consist of n quantum inputs {A1
I , ..., A

n
I } and n classical inputs {A1

s, ..., A
n
s }, and outputs consist

of the n quantum outputs {A1
O, ..., A

n
O} and n classical outputs {A1

o, ..., A
n
o}, and similarly forMB,T ,E

max ,
which will have m quantum and m classical in and outputs. Given that these fine-grained local maps
to act according to Equations (12) and (13), MA,T ,E

max corresponds to a tensor product of n local maps
{MA

P i
I

}ni=1 andMB,T ,E
max corresponds to a tensor product of m local maps {MB

Qj
I

}mj=1.

Then composing MA,T ,E
max and MB,T ,E

max with Ŵ T ,Emax through loop composition of wires with iden-
tical labels is equivalent to composing the n + m local maps {MA

P i
I

}ni=1
⋃
{MB

Qj
I

}mj=1 with Ŵ T ,Emax

through loop composition. We can therefore regard this as an n + m-partite process over the par-
ties {A1, ..., An, B1, ..., Bm}. Now note that the spacetime implemented process network formed by the
composition of Ŵ T ,Emax with these n+m maps is one where the in and output systems of all n+m parties
is localised in spacetime. Then noting that we want this to be a physical implementation satisfying
relativistic causality, it immediately follows by Corollary 6.4 that Ŵ T ,Emax is a fixed order process over
these n+m parties.

�

Lemma 7.1 [No-go result for the quantum switch] Consider the process map ŴQS whose Choi represen-
tation is the process matrix WQS of the quantum switch. Let P̂QS,U,V be the quantum switch network
where WQS acts on two non-trivial local operations UA : AI 7→ AO and V B : BI 7→ BO of Alice and
Bob. Then any fixed spacetime implementation P̂ T ,EQS,U,V of this network cannot simulataneously satisfy
both of the following assumptions

1. P̂ T ,EQS,U,V satisfies relativistic causality

2. The subgraph of the region causal structure given by the embedding E with Nodes(GRT ) := {E(S)}S∈S ,
restricted to S ∈ {AI , AO, BI , BO} is cycle-free.

Proof: We first show that in ŴQS , when the initial state of the control and target systems is |ψC〉 :=
α|0〉+ β|1〉 and |ψT 〉 respectively where α and β are both non-zero amplitudes and |ψT 〉 is an arbitrary
qubit state, then we have AO → BI irrespective of the state input on BO and BO → AI irrespective of the
state input on AO, in Ŵ . This implies that both signalling relations can be realised in a single instance
of P̂QS,U,V , irrespective of the choice of local operations UA and V B , in contrast to the general case of
Theorem 6.2 where the signalling relation being realised may depend on the choice of local operations,
such that not all signalling relations allowed by Ŵ are realised when it is composed with a given set
of local operations (which is why the Theorem evokes the extended local maps which encode all these
choices).

We show that the network P̂QS,U,V gives rise to a directed cycle of signalling relations AO → BI →
BO → AI → AO for any non-trivial local operations UA and V B . Then this directed cycle of signalling
relations implies (by relativistic causality) that the spacetime regions must satisfy PAO

R−→ PBI
R−→
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PBO
R−→ PAI

R−→ PAO , which violates assumption 3. Therefore to complete the proof, we only need to
establish the statement about the directed cycle of signalling relations in ŴQS outlined at the beginning
of this paragraph, which we do below.

Consider the action of the process map ŴQS : PC ⊗ PT ⊗ AO ⊗ BO 7→ FC ⊗ FT ⊗ AI ⊗ BI on
the input state |Ψ〉PCPTAOBO

:= (α|0〉+ β|1〉)PC ⊗ |ψT 〉PT ⊗ |ψA〉AO
⊗ |ψB〉BO

, where |ψA〉 and ψB are
arbitrary qubits states. We have

ŴQS .|Ψ〉PCPTAOBO
= α|0〉FC |ψB〉FT |ψT 〉AI

|ψA〉BI
+ β|1〉FC |ψA〉FT |ψB〉AI

|ψT 〉BI
:= |Φ〉FCFTAIBI

.

Then

TrFCFTAI

[
ŴQS(|Ψ〉〈Ψ|PCPTAOBO

)
]

= |α|2|ψA〉〈ψA|BI
+ |β|2|ψT 〉〈ψT |BI

TrFCFTBI

[
ŴQS(|Ψ〉〈Ψ|PCPTAOBO

)
]

= |α|2|ψT 〉〈ψT |AI
+ |β|2|ψB〉〈ψB |AI

(28)

Notice that TrFCFTAI

[
ŴQS(|Ψ〉〈Ψ|)

]
which is the output on BI depends only on ψA i.e., the input

on AO and not on ψB , the input on BO and similarly TrFCFTBI

[
ŴQS(|Ψ〉〈Ψ|)

]
only depends on ψB .

This implies that given the knowledge of the initial control and target states, α|0〉+ β|1〉 and |ψT 〉 Alice
and Bob can signal to each other by suitable choices of ψA and ψB on their respective output systems
AO and BO, irrespective of the local operation of the other party. The above proof easily generalises to
arbitrary input states ρPCPTAOBO

:= |ψC〉〈ψC |PC ⊗ |ψT 〉〈ψT |PT ⊗ ρAOBO
, where the input state ρAOBO

on AO and BO may be an entangled state, TrFCFTAI

[
ŴQS(|Ψ〉〈Ψ|)

]
depends only on the marginal of

the initial state over AO which is unaffected by local operations on BO.
�
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