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Abstract

This Ph.D. thesis was prepared under the supervision of Prof. Ch. Schwab, ETH Ziirich. Support by
the Swiss NSF Grant No. 127034 and the ERC AdG No. 247277 is gratefully acknowledged. The main
contributions of the thesis are summarized in the following.

The minimal residual Petrov-Galerkin framework

A Petrov-Galerkin framework for the stable solution of linear operator equations is developed. The main
feature is the admissibility of discrete test subspaces that have larger dimension than the trial subspaces.
This renders stable discrete trial and test subspaces (i.e. that satisfy the discrete inf-sup condition) easier
to design for well-posed non-symmetric problems. The discrete solution is then defined as the minimizer
of the functional residual. The discrete inf-sup condition is shown to imply quasi-optimality of the
discrete solution. Following a choice of bases on the discrete trial and test subspaces, the minimization
procedure can be equivalently formulated as an algebraic minimization problem by transporting the norm
on the continuous test space to the discrete test subspace, or as the corresponding generalized normal
equations. The latter can be efficiently preconditioned by transporting a norm on the continuous trial
space to the discrete trial subspace.

Space-time Petrov-Galerkin discretizations of parabolic evolution equations

A space-time variational formulation for abstract linear parabolic evolution equations is considered.
Lower bounds on the discrete inf-sup constant for general discrete trial and test subspaces equipped
with certain subspace-dependent norms are derived. These lower bounds are in terms of a parameter
describing compatibility of the discrete trial and test subspaces.

Using these results, it is then found that continuous Galerkin time-stepping methods may be interpreted
as stable space-time Petrov-Galerkin methods, provided a CFL condition — a restriction on the time step
size — is satisfied. Novel families of discrete trial and test subspaces of space-time sparse tensor product
type which do not suffer from this restriction are constructed. Using the latter in the minimal residual
Petrov-Galerkin framework leads to stable, fully parallellizable, space-time compressive algorithms. Such
algorithms are of significant interest in e.g. optimal control with parabolic PDE constraints.

Parabolic BPX preconditioners

In addition to the stable discrete trial and test subspaces discussed in the previous paragraph, norm
inducing operators on the continuous trial and test spaces are needed in the minimal residual Petrov-
Galerkin framework. These should be such that their algebraic counterparts are easily invertible. To
that end, a pair of operators, called “parabolic BPX preconditioners”, is constructed. These are based on
multilevel norm equivalences (in the temporal, as well as in the spatial domain) that are already known
to play a central role in the multilevel and multigrid methods for elliptic problems.






Zusammenfassung

Diese Dissertation wurde unter der Leitung von Prof. Ch. Schwab erstellt. Der Author bedankt sich
fiir die Unterstiitzung durch den Swiss NSF Grant No. 127034 und den ERC AdG No. 247277. Die
Hauptbeitriage dieser Dissertation sind im Folgenden zusammengefasst.

Residuum-minimierende Petrov-Galerkin Verfahren

Es wird ein Petrov-Galerkin Verfahren zur Losung wohlgestellter abstrakter linearer Operatorgleichun-
gen, das auf der Minimierung des Residuums iiber einen diskreten Testraum basiert, vorgestellt. Das
Hauptmerkmal des Verfahrens ist die Zulédssigkeit von Testrdumen mit grosserer Dimension als der
Ansatzraume. Fiir nicht symmetrische Probleme wird dadurch die diskrete inf-sup Bedingung, die
die Quasioptimalitét der diskreten Losung impliziert, wesentlich leichter erfiillbar. Sind Basen auf
den Ansatz- und Testrdumen gegeben, kann das Minimierungsproblem unter Beriicksichtigung der Nor-
men auf den diskreten Ansatz- und Testrdumen in ein dquivalentes algebraisches Minimierungsproblem
umgeschrieben werden, was schliesslich auf ein gutkonditioniertes verallgemeinertes Gauf’sches System
von Normalengleichungen fiihrt.

Raum-Zeit Petrov-Galerkin Diskretisierung parabolischer Evolutionsgleichungen

Es wird eine variationelle Formulierung fiir abstrakte lineare parabolische Evolutionsgleichungen in
Bochner Rdumen untesucht und es werden Abschétzungen fiir die diskrete inf-sup Konstante fiir all-
gemeine diskrete Ansatz- und Testrdume hergeleitet, wenn diese mit unterraumabhingigen Normen
versehen sind.

Mithilfe dieser Resultate wird gezeigt, dass sogenannte “continuous Galerkin” Zeitschrittverfahren als
stabile Raum-Zeit Petrov-Galerkin Verfahren interpretiert werden koénnen, sofern eine CFL Bedingung
erfiillt ist. Neuartige stabile Familien von diskreten Ansatz- und Testrdumen fiir das Residuum-mini-
mierende Petrov-Galerkin Verfahren, die keine solche Bedingung voraussetzen und zudem auf diinnen
Gittern in Raum und Zeit basieren, werden eingefiithrt. Das fithrt auf stabile, parallelisierbare, Raum-Zeit
komprimierende Losungsalgorithmen. Anwendungen finden sich etwa bei Optimierung mit parabolischen
Evolutionsgleichungen als Nebenbedingung.

Parabolischer BPX Vorkonditionierer

Zusétzlich zu den stabilen diskreten Ansatz- und Testrdumen sind fiir das eingefiihrte Residuum-mini-
mierende Petrov-Galerkin Verfahren norminduzierende Operatoren auf diesen Rdumen, fiir welche die
zugehorige Gram-Matrix moglichst leicht invertiert werden kann, notwendig. Zu diesem Zweck werden
soganannte parabolische BPX Operatoren eingefiihrt. Diese bauen auf Norméquivalenzen gewisser hier-
archischer Zerlegungen in Sobolevraumen auf, gleichzeitig in Raum und in Zeit, die bereits fiir Multilevel-
und Multigrid-Verfahren fiir elliptische Differentialgleichungen von zentraler Bedeutung sind.
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1 Introduction

1.1 Overview

The central objective of this thesis is the derivation of novel algorithms for the solution of parabolic
evolution equations. Such equations may describe for instance the heat conduction in a component or
the distribution of bacteria in the liver. Given the ubiquity of the problem, the spectrum of existing
numerical methods algorithms is rather broad. The novelty of the methods proposed here is that they
are compressive simultaneously in space and time, practical, fully parallelizable, and possess interesting
mathematical optimality properties that can be summarized by saying that a stable family of discrete
linear projectors in the natural space-time solution space is obtained. By consequence, the discrete
solution is quasi-optimal in that space, the regularity requirements on the input data are extremely
low, there is no restriction on the mesh resolution in the temporal direction, and non-linear problems
can be analysed in a space-time Galerkin setting. Such methods may further be used as an integral
part in parabolic evolution equations depending on a possibly very large, or even countable number of
parameters, and optimization problems constrained by such parametric evolution equations.

The thesis is structured as follows. In Chapter 2, the essential notation is established and several notions
required subsequently in the study of abstract parabolic evolution equations are recapitulated. The
main contributions of the thesis are contained in chapters 3, 4, 5 and 6, and are summarized below.
Chapter 7 contains several admissible temporal discretizations that can be used in a modular fashion
for the abstract theory of stable space-time discretizations developed in Chapter 5. In Chapter 8 we
discuss one application to the solution of semi-linear parabolic evolution equations. Finally, Chapter 9
concludes by summarizing the results of this thesis, identifying further applications, and exposing some
open questions. The essential material of chapters 4 and 5 is also contained in [And10; And12].

The support by the Swiss NSF Grant No. 127034 and the ERC AdG No. 247277 is gratefully acknowl-
edged.

1.2 Summary of main contributions

Chapter 3: Linear parabolic evolution equations

This chapter introduces the abstract linear parabolic evolution equation as a problem posed in “space-
time”. The purpose of the chapter is twofold. The first purpose is to recapitulate some important
notions of a solution and to put the subsequent developments into context. The approaches given here
are the energy method of J.-L. Lions, semigroup theory, maximal regularity, and self-dual Lagrangians.
Three different space-time variational formulations of the abstract linear parabolic evolution equation
are presented, and in the thesis we will focus on the variational formulation given in [SS09]. The
second purpose is to discuss regularity of solutions that comes from the smoothing property of the flow,
which is a characteristic property for parabolic equations. As was shown in [Sch99; SS00], the resulting
high regularity for positive times allows the development of high-order numerical methods. This type
of regularity can be concisely formulated as membership of the solution to certain countably normed
spaces that are used in the study of problems (usually, elliptic) with local singularities. Based on the
framework of maximal regularity in weighted Sobolev spaces we show this membership for problems with
time-dependent coefficients with smooth/analytic time-dependence of the input data.



Chapter 4: Minimal residual FEM for operator equations

The parabolic evolution equation has rarely been considered in the numerical analysis literature as a
well-posed equation between Hilbert spaces in a space-time variational form. This, however, seems
necessary in order to obtain space-time compressive numerical solution algorithms that possess certain
optimality properties and are fully parallelizable. Such algorithms, in turn, are necessary in e.g. parabolic
PDE constrained optimization, and the solution of high-dimensional parametric parabolic evolution
equations.

Two noticeable exceptions, which partly motivated this thesis, are the publications [BJ89; BJ90| and
[SS09]. In [BJ89; BJ90|, space-time discretizations of hp type in time are constructed and shown to
satisfy the discrete inf-sup condition, leading to a quasi-optimality property (Céa’s lemma). However,
the stability constant obtained there is not uniform in the structure of temporal discretization and
precludes the use of low-order splines in the temporal direction; the same reason makes the scheme
unsuitable for problems with low temporal regularity or non-linear problems. Moreover, the main proofs
rely in an essential way on the existence of a time-invariant spectral basis of the generator. Rather
differently, in [SS09], stability of compressive space-time discretizations is achieved by adaptivity in the
framework of so-called adaptive wavelet methods [CDD02]. However, considerable practical difficulties
in the construction of suitable wavelet bases are associated with the implementation of this scheme,
especially for parabolic partial differential equations posed on non-trivial domains.

These disadvantages are circumvented if the requirement of a standard a priori Petrov-Galerkin dis-
cretization is relaxed: we allow discrete test spaces of dimension larger than that of the trial space. This
aspect is, in fact, similar to [CDDO02| where the discrete test space is chosen adaptively to resolve the
action of the operator on a given vector sufficiently well. Thus, the discrete test space is merely required
to approximate the “optimal” test functions up to some relative tolerance. In this chapter we therefore
develop a conforming “minimal residual Petrov-Galerkin” discretization framework for abstract linear op-
erator equations where the said standard requirement is not present. We show that the discrete inf-sup
condition, which is now far easier to achieve due to the freedom gained in the choice of the discrete test
space, still implies the essential properties of a standard Galerkin discretization, namely quasi-optimality
of the discrete minimal residual solution in the trial space and its continuous dependence on the input
data. We then address the derivation, the effective preconditioning, and the iterative solution of the
corresponding algebraic equations. Given the importance of the discrete inf-sup condition, we elaborate
on several characterizations of it and derive a stability result for trial and test spaces of sparse tensor
type, which will subsequently be used in the construction of a priori stable sparse space-time trial and
test spaces for parabolic evolution equations in a space-time variational form. This will lead to a priori
stable, compressive space-time discretizations and fully parallelizable solution algorithms.

Chapter 5: Stability of space-time Petrov-Galerkin discretizations

This chapter contains the core contributions of the thesis on stable compressive space-time discretizations
of parabolic evolution equations. Throughout this chapter we work with the space-time variational
formulation given in [SS09]. The main results are derived as follows. First, we equip the abstract discrete
trial and test subspaces with certain subspace-dependent (i.e., mesh-dependent) norms and derive lower
bounds on the discrete inf-sup constant in terms of structural parameters of the discrete trial and test
subspaces. Here, two slightly different sets of subspace-dependent norms and corresponding structural
parameters are suggested, which differ in the way non-symmetric generators are treated. These subspace-
dependent norms are defined so as to simplify the proofs of stability and to obtain sharper bounds. In
the second step, we investigate how the structural parameters and the subspace-dependent norms behave
for more concrete discrete trial and test subspaces. These comprise a) the known family of continuous
Galerkin time-stepping schemes (including Crank-Nicolson time-stepping, interpreted as a space-time
method), for which we show that their stability is coupled to the validity of a CFL condition, and b)
novel families of stable sparse space-time discrete trial and test spaces, see Theorem 5.2.18. The latter,
however, are to be used within the minimal residual framework of Chapter 4, since we admit test spaces
of dimension larger than that of the trial spaces.



Chapter 6: Parabolic BPX preconditioning

The minimal residual framework of Chapter 4 depends on the availability of norm-inducing operators
on the trial and test spaces. This is no restriction in theory, and, in fact, is an integral part of the
wavelet adaptive methods, where such operators are given by isomorphisms of the trial /test spaces with
sequence spaces via the Riesz basis property of wavelets. To circumvent the already mentioned difficulties
in the construction of such wavelets for parabolic evolution problems, we elaborate in this chapter on
space-time multilevel subspace splittings that give rise to computationally accessible norm-generating
operators. We call the resulting operator the parabolic BPX preconditioner for its relation with the
so-called BPX preconditioner, known for its optimality for a certain class of elliptic problems [BPX90;
BY93].






2 Preliminaries

The first purpose of this chapter is to establish the notation in Section 2.1. The second purpose is to
provide some reference material that will be useful in the study of parabolic evolution equations (but can
be skipped on first reading). Hence, the subsequent subsections briefly address vector valued functions
and the Bochner integral; tensor product spaces and their relations to Bochner spaces and linear maps;
the real method of interpolation for Banach spaces; Bochner-Sobolev spaces, i.e., vector valued functions
with weak derivatives, which are the natural spaces for solutions of parabolic evolution equations; notions
of analytic functions between real or complex Banach spaces; several results, in particular on embeddings
into spaces of continuous functions, for Bochner-Sobolev spaces; countably normed Bochner-Sobolev
spaces which we will use to describe high-order regularity of solutions of parabolic evolution equations.

2.1 Notation

For a function f mapping an element x € X to an element y € Y we write f : X = Y, v — y = f(x),
sometimes f : X 3z — y € Y. If ¥ C Y are topological spaces we write X — Y if the natural
embedding X 3 x — x € ) is continuous; this embedding is linear if X and ) are vector spaces. We

d
write X — ) if, in addition, X is a dense subset of ). We write Idy for the identity on X', or simply
Id; the latter may also denote the natural embedding mapping or the unit matrix, when clear from the
context.

For two Banach spaces X and Z over a field K, the space of continuous linear operators X — Z is
denoted by L(X, Z). It is endowed with the operator norm |[|-||z(x,z). We set L(&X) := L(X,X) and
X' = L(X,K). We will have K = R unless specified otherwise. The space of continuous n-linear
maps X X -+ X X, = Z between Banach spaces is denoted by £, (X; X --- x X,, Z), and L, (X, Z) if
X=X =...4,. Welet

Iso(X, 2) := {B € L(X,Z): Bis bijective and B~ € L(Z,X)} (2.1.1)

denote the space of isomorphisms between the Banach spaces X and Z (the condition B~! € L(Z, X) is
redundant by the Banach open mapping theorem, [Yos95, Section I1.5] or [Rud73, Corollary 2.12]), and
set Iso(X) :=Iso(X, X'). We let D(B) denote the domain of definition of an operator B.

The complexification of a real Banach space X' is X = {z +iy: 2,y € X} with the norm ||z +iy[| 5 =
SUPg<g<ay || cos + ysind| x, which turns & into a complex Banach space [MST99]. The complexi-
fication of an operator B : D(B) C X — X is the operator B : x+iy — Bz + iBy with domain

D(B) = D(B)+iD(B). The tildes are dropped in the notation. The resolvent set of (the complexification
of) an operator B: D(B) C X — X is defined by

p(B):={z€C: (21d-B)"! € L(X)}. (2.1.2)
The duality pairing on X x X’ i.e., (z, f) — f(z), is denoted by (-, ) xxx or ({-, ) xxx for (f,z) — f(x)).

A linear operator M : X — X’ is called symmetric if it satisfies (Mx,Z)x xx = (x, MT) xxx for all
x,Z € X; it is called positive semi-definite if (Mz, z) xx 1+ > 0 for all z € X, in which case ||-|| s denotes

the map
v X =R,z o= (M, 2)xscar



A symmetric positive semi-definite (s.p.semi-d.) linear operator M is called symmetric positive definite
(s.p.d.) if |z|m =0« =0 for any x € X. If X is a Hilbert space, its scalar product is denoted by
(-, Yxxax, or by (-,-)x; if two subspaces Xy, X1 C X are orthogonal w.r.t. the scalar product on X, we
may write Xy Ly X7; the orthogonal complement in X is denoted by XOJ‘X .

We write N := {1,2,...} for the positive integers and Ny := {0} UN. If ¥ = RM where M € NU {co},
and M € X x X is a symmetric matrix with x"Mx > 0 for all finitely supported x € X, then for
all x € X we define ||x||p = Vx Mx if the convergence of the double sum x' Mx is absolute, and
|Ix||v := oo otherwise. For M € Ny U {oo} we define

0, M =0,
M]:=<¢{1,...,M}, 1<m < oo, (2.1.3)
N, M = 0.

For M € NU {co} we set 2, := (?([M]) for the space of square summable sequences indexed by [M]
with the natural norm and ¢3; := (3,;([M]) := {x € RM : ||x|m < oo} with the norm lIllez, (iary = [I-llvas
the support of a vector u € RM is the set of indices defined by suppu := {m € [M]: u,, # 0} and
u € RM is said to be finite if M < oo, infinite if M = oo and finitely supported if # suppu < oo; if
A € Tso({3y, (34) then the condition number of A is defined by r2(A) := [|All g2, 2 ) |A™ 22,2, bY
definition, r2(A) < oo for some A : (2, — 3, if and only if A € Iso(£3;, (3;). For 0 < p < oo, the space
of p-summable sequences indexed by a set S of at most countable cardinality #S is denoted by ¢P(.S).

We write |D| for the Lebesgue measure of a measurable (w.r.t. the Lebesgue measure) set D C R

2.2 The Bochner integral

For the following measure theoretic notions we refer to [Loe78, Vol. I, Chapter I], [Hal50] or to the
references given in this section: a o-finite complete measure space (S, F, i), where F is a o-algebra of
measurable subsets of S, and 1 is a (positive, extended-real valued) measure; the Banach space L'(S, dpu)
of Lebesgue p-measurable and p-integrable scalar(-valued) functions on S; the Borel o-algebra B(S)
generated by open subset of S if S of a topological space; the product measure of o-finite measures.

Let (S, F, p) be a o-finite complete measure space. Let X be a Banach space. A function f:S — X is
called p-measurable if the two conditions are fulfilled

1. the scalar function (g, f(-))x'xx is Lebesgue py-measurable for every ¢ € X',
2. f(A) is contained in a separable subspace of X for some A € F with u(S\ A) =0,

cf. [Gra08, Section 4.5.3] for this direct approach. The first condition can be replaced by the requirement
f71(0) € F for any open O C X |[Rya02, Proposition 2.15]. A p-measurable function f : & — X is called
Bochner p-integrable if the scalar function ||f(-)||x is Lebesgue p-integrable. Two such functions f
and g are identified if ||(f — ¢)(-)[|x = 0 p-a.e. For 1 < p < oo the space LP(S,du; X) of (equivalence
classes of) Bochner p-measurable functions f : & — X is equipped with the norm

1A 2o s,a) = MLFO N 2o 5,0y - (2.2.1)

The space of simple functions span{xax : x € X, A € F}, where x4 is the indicator function of A C S,
is dense in LP(S,du; X) by the theorems going back to Pettis [Pet38] and Bochner [Boc33]. It follows
that LP(S,du; X) is a Banach space and that there exists a unique linear continuous map, called the
Bochner integral,

LS, dp; X) — X, f»—>/3fdu, (2.2.2)



such that [ xazdp = p(A)z for any A € F, x € X. Further, we set [, fdu := [gxafdpforany A e F.
For more on the Bochner integral see e.g. [DU77, Chapter 11|, [Yos95, Chapter V, Section 4 and 5] or
[Rya02, Section 2|, as well as [Hil53] for an overview.

The following theorem is specific to integration of vector-valued functions.

Theorem 2.2.1 (Hille). Let X and Y be Banach spaces and (S, F,u) be a o-finite complete measure
space. Let f € LY(S,du; X). Let T : X —Y be a closed linear operator. Then:

1. If T € L(X,Y) then Tf € LY (S,dw;Y).
2. If Tf € LYS,du;Y) then TfAfd,u:fAdeu for any A e F.

Corollary 2.2.2. Let f,g: S — X be p-measurable. Then f = g p-a.e. if and only if for all X' € X'
there holds (f(-), X ) xxx = {9(*), XY xxx’ p-a.e.

Proof of Theorem 2.2.1 and Corollary 2.2.2. For Theorem 2.2.1 see either [DU77, Chapter 11, Theorem
6] or [Rya02, Proposition 2.18] or [Yos95, Section V.5, Corollary 2]. For Corollary 2.2.2 see [DU77,
Chapter II, Corollary 7]. O

2.3 Tensor product spaces

Let X and Y be Banach spaces. For any x € X and y € Y, the linear functional z ® y on the space of
bilinear mappings is defined by (z ® y)(B) := B(x,y) for all bilinear B : X x Y — R. A functional of
the form z ® y is called a simple tensor. The algebraic tensor product space X ®Y is the space
of functionals u having the form v = Y | (z; ® y;) with {(z;,y;)}l~; C X x Y, n € N. Then, the
expression

7(u) := inf {Z ||| x Nlyilly = w= le ® yl} , uEXQY, (2.3.1)
i=1 i=1

defines a norm on X ®Y, called the projective norm [Rya02, Chapter 2|. It satisfies 77@ ®y) =
|zl xlly|ly for all z € X, y € Y. The Banach space X ®, Y is defined as the completion of X ® Y w.r.t.
the projective norm . We will use the following canonical isometric identifications [Rya02, Section 2.2]
Lo(X xYR) = (X®,Y) 2L(X,Y)=L(Y,X) (2.3.2)
and [Rya02, Section 2.3]
LS, p) © X = LN(S, p; X) (2.3.3)

where (S, F, p) is any o-finite complete measure space. If X and Y are Hilbert spaces then the bilinear
mapping (-, -) xgy, given by

<$®ya%®@X®Y = <$75>X<y727>Y7 $75€X7 y7§€}/7 (234)
defines an inner product on X ®Y [LCS85, Lemma 1.31 - Lemma 1.33]. We write X®Y for the completion
of X ®Y w.r.t. this inner product, which makes X ® Y again a Hilbert space. If both, L?(S, ) and X
are separable Hilbert spaces, then [RS72, Chapter II, Theorem 10|

L3S, p) @ X = L%(S, i1; X). (2.3.5)

More on tensor product spaces can be found in e.g. [Sch50], [DU77, Chapter VIII], [LC85|, [DF93].



2.4 Notions from Banach space interpolation theory

Let (X, |]-|x) and (Y, ||-|]|ly) be Banach spaces such that ¥ < X, both real or both complex. We require
a few results from the theory of real interpolation for intermediate spaces ¥ C (X,Y)g, C X in this
particular situation. Details and proofs may be found [Tri78; BL76; DL93| in a comprehensive form;
see e.g. [Ama95, Chapter I, Section 2] or [Lun09, Chapter 1] for a concise exposition. The intermediate
spaces Y C (X,Y)g, C X are defined by means of the K-functional,

K(t,z):=inf{||lr —y||x +t|ylly :y €Y}, t>0, zeX. (2.4.1)

For any x € X set

oo pdt\'”
||x||(X,Y)9,p = (A (t*eK(t,I)) t) , 0< 0 < 1, 1<p<oo, (242)

with the modification [|z[|(x,y), , := esssup,-qt K (t,z) for p = co. Define the subspace (X,Y )y, C X
as

(X,Y)op = {2 € X : 2]l (xv),, <0}, (2.4.3)

which is a Banach space with the norm ||'H(X,y)9,p. For 0 < <1land 1 < p; < py < oo one has

the continuous inclusions ¥ — (X,Y)g,, — (X, Y)op, — VH'HX, and for 0 < 6; < 6 < 1 also
(X,Y)o,,00 = (X,Y)g,,1. For any 0 < § < 1 and 1 < p < oo, there holds the interpolation inequality

Izl x, )0, < copllally *lzllf Vo ey, (2.4.4)

where ¢y, > 0, see [BL76, Theorem 3.1.2] and [Lun09, Theorem 1.6 and Corollary 1.7].

2.5 Bochner-Sobolev spaces

For the definition of Bochner-Sobolev spaces we follow [DL92, Chapter XVI, §2]. Let X be a real
Banach space and J C R an open interval. The space of functions J — X having all continuous
derivatives and with compact support in J is denoted by C§°(J; X). If X is the scalar field R or C,
then C§°(J) := C5°(J; X). The topology on C§°(J; X) is that of uniform convergence on compacta.
The space L(C§°(J); X) of continuous linear mappings C§°(J) — X is called the space of X-valued
distributions over J. For any such distribution f € L£(C§(J); X) and k& € N we define its k-th
distributional derivative f(*) € L£(C5°(J); X) by fF)(p) := (=1)Ff(¢), ¢ € C3°(J), where )
denotes the (classical) k-th derivative of go To any u 6 L”(J X), 1 <p< o0, and any k € Ny we may
associate an X-valued distribution @ by () := [, u t)dt, p € C§°(J). If there exists a (necessarily
unique) v € LP(J; X) such that 7 = a® then we set u(k) := v and write u®) € LP(J; X). We will
usually write dyu := u®. For 1 < p < oo and k € Ny we define the Bochner-Sobolev space

WkP(J: X) :={ue LP(J; X) :u® e LP(J; X),0=1,...,k}. (2.5.1)

For 1 < p < o0, the expression

||uH€V’€‘IJ(JX : Z Hu ||LT’(JX u € ka(‘]?X)v (2'5'2)

defines a norm on W*?(.J; X) with the usual modification for p = oo, and renders W*?(.J; X) a Banach
space. As usual, we write H*(J; X) := Wk2(J; X).



2.6 Analyticity in Banach spaces

The notions of analyticity or holomorphy of a function f : X — Z between real or complex Banach
spaces, as well as their origins are sketched in [Tay43, Section 8]. A more general theory of analytic
functions in locally convex spaces is available [Her89], but will not be required here. For the proof of
regularity of solution to parabolic evolution equations in Theorem 3.3.6 we will require the case where
both, X and Z, are (real) Banach spaces. There are two main approaches to the definition of analyticity:
via the power series expansion and via the Fréchet derivative. The main results using the first approach
can be formulated without reference to the dimension or the scalar field [Whi65|. This requires some
preparation.

In this section, X, Y and Z will denote Banach spaces over the same scalar field R or C, and F denotes
an open subset of X. Unless explicitly stated otherwise, the results in this section hold in either case.
The following definition generalizes the notion of a monomial.

Definition 2.6.1. A continuous, n-linear map a,, € £,(X, Z) is called symmetric if a,(z1,...,2,) =
an(Zo(1), -+ To(n)) for any x1,..., 2, € X and any permutation o of {1,...,n}. For convenience of
notation we set Lo(X,Z) := Z, and any element ay € Lo(X, Z) shall be symmetric by definition. For
any ¢ € X, h € X, and non-negative integers p + g = n € N we abbreviate

an2Ph? = an(z1,...,2p, h1,..., he). (2.6.1)

Before defining analyticity and weak analyticity in Banach spaces, we state the following theorem.

Theorem 2.6.2. Let X and Z be Banach spaces over K € {R,C}, and E C X a ball. Let f: EC X —
7. Equivalent are

1. there exist symmetric a, € L, (X, Z), n € Ny, such that the series ZneNo anh™ converges to f(h)
forallh e E,

2. for each z' € Z' there exist symmetric b, € L,(X,K), n € Ny, such that the series ZnENo b, h™
converges to (z', f(h))z'xz for all h € E.

Proof. Let {zn}nen C Z and assume that sup,. (2, z,)z'xz < oo for all n € N, where the supremum
is over all 2/ € Z’ with ||2/||z < 1. Viewing z, as an element of the bidual Z”, the Banach-Steinhaus
theorem implies that sup,,cy ||2n|lz < co. Thus, the set B' := {2’ € Z’ : ||2'||z < 1} is strictly funda-
mental in the sense of [AO53|. It suffices to consider B’ instead of Z’ in the claim, since any 2z’ € Z’ may
be rescaled to satisfy 2’ € B’. Therefore, the claim follows from [AO53, Theorem 6.5] (some necessary
definitions are in Section 3 of that article, where it is also argued that the qualifier “symmetric” in the
claim is redundant). O

It is typical for a characterization like Theorem 2.6.2; cf. Theorem 2.6.6, to rely in a fundamental way
on the Hahn-Banach extension theorem or the Banach-Steinhaus theorem, i.e., the principle of uniform
boundedness (see e.g. [Bré83, Chapter I and Theorem IL.1] for those theorems). Consequently, similar
characterizations exist in locally convex spaces, cf. [Tay72]|, [Her89, Proposition 3.1.2]. Note that neither
separability nor reflexivity is required.

Remark 2.6.3 (Adapted from [Whi65]). Consider the formal series

f(z)= Z anz"” (2.6.2)

neN

for 2 € X, where a,, € £,(X,Z). Let h € X. Assume that C' := sup,,cy, ||a,h"||z is finite; this is e.g.
the case if the series f(h) converges. Let 0 < r < 1, set B := {z € X : ||z]|x < r|h||x}. Then the series
f(z) converges absolutely (indeed, for all z € B we have ||a,z™|z < r"||anh™||z < Cr™) and uniformly
on the closed ball B. Therefore, f : B — Z is continuous.



Definition 2.6.4. Let f: E C X — Z, where E C X is open and xg € E. Then f is is called

L. analytic at x if there exist symmetric a,, € £,,(X, Z), n € Ny, such that f(zo+h) =3y, anh™
whenever - oy llanllz, (x,2)|hll% converges for h near 0 and zo + h € E. It is called analytic
on F if it is analytic at every z¢ € E.

2. weakly analytic at zy (on FE) if the function (', f(-))z/xz is analytic at zp (on E) for each
2 eZ.

By Theorem 2.6.2, analyticity and weak analyticity in Banach spaces are equivalent.

Definition 2.6.5. Let X and Z be Banach spaces and g € X. A map f: X — Z is called Fréchet
differentiable at x if there exists A € £(X, Z) such that

lim | f(zo +h) — f(zo) — Ah| 7
X3ho0 1]l x

=0. (2.6.3)

In this case we may write D, f(xo) = Df(z0) = f'(z0) = fM(20) = A, and f’(x) is called the Fréchet
derivative of f at 9. Let E C X open. For k € N, the spaces C*(E;Z) of k times continuously
Fréchet differentiable functions are defined by induction, i.e.,

CHYE; X):={feCFE;X): Df® e C°E; Li(X, Z))} (2.6.4)

where f(*) denotes the k-th Fréchet derivative, f(¥) := DfU¢=V ¢ =1,... k. Further, C*(E;Z) :=
Nien CF(E; Z).

For a function f : X x Y — Z, the partial Fréchet derivative w.r.t. the i-th variable (or w.r.t. z) is
denoted by D; (or D,). For instance, D1 f(zo,y0) = D.f(x0,y0) is the Fréchet derivative of the map
f o) : X = Z at xo.

On finite dimensional spaces we have the following characterization of (real-)analytic functions. We recall
the multi-index notation |a| = Y"1 | a; and a! =[], a;! for a € N, n € N.

Theorem 2.6.6. Assume X = R", n € N, and Z a real Banach space. Let E C X be open. For
f € C®(E; Z) the following are equivalent

1. f is analytic on F,

2. for each xoy € E there exists an open ball B C E with xo € B, and constants C,d > 0 such that

|Df(x)|, < Cd*la! Vo e B VaeNg. (2.6.5)
3. for each xg € E and each h € X of unit norm, the function t — f(xo+th) is analytic around zero.

Proof. We prove 1. < 2., for 1. < 3. see [Sic70; Boc70]. If Z = R then [KP02, Proposition 2.2.10] is
what is claimed here. The case of a general Banach space Z follows by means of the Banach-Steinhaus
theorem: let B C FE be an open ball, d > 0; then we have (2.6.5) if and only if

sup sup (2, D*f(2)d™1 /a)givz < 00 Vi € Z'. (2.6.6)
z€B aeNg

Indeed, (2.6.5) obviously implies (2.6.6), while the converse follows from the Banach-Steinhaus theorem
applied to the family D f(x)d~1®l/a! € Z” of linear functionals on Z’ indexed by z € B and a € Nj.
Recalling from Theorem 2.6.2 that the mapping f is analytic if and only if it is weakly analytic, the
claim thus reduces to the scalar-valued case of [KP02, Proposition 2.2.10]. O

For the following theorem, known as the implicit function theorem, see [Whi65, p. 1081] and references
therein.
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Theorem 2.6.7. Let X, Y and Z be Banach spaces, all real or all complex. Let F': X XY — Z and
(xo,y0) € X X Y. Assume

1. (z0,y0) € X XY satisfies F(xo,y0) =0,

2. (z,y) — F(x,y) is analytic in an open neighborhood N of (xo,yo),

3. the Fréchet derivative D, F(xo,yo) (w.r.t. the first component x) exists,
4. Dy F(xo,y0) : X — Z is an isomorphism.

Then there exists an open neighborhood E C'Y of yo and a unique continuous map & : E CY — X
satisfying T(yo) = xo and F(Z(y),y) =0 for ally € E. Moreover, T is analytic on E, and the chain rule
Dz(y) = — [D.F(2(y),y)] " o DyF(Z(y),y) holds for all y € E.

If N 3 (z,y) = F(z,y) is merely of class C*, k € NU {00}, then so is 7.

2.7 More on function spaces

Let X be a real Banach space. Let J C R be a non-trivial interval. Recall the definition of the Bochner
space LP(J; X) from Section 2.2, where J is understood to be equipped with the Borel o-algebra B(J)
and the Lebesgue measure | - |.

Proposition 2.7.1. For 1 < p < oo, |J| < 00, any of the following are dense in LP(J; X):
1. {x € LP(J, X) : #x(J) < o0},
2. {x € LP(J;X) : x is pw. constant w.r.t. an equidistant partition of J},
3. {x € C*°(J;X) : x has compact support in the interior of J}.

Proof. The first property is the statement on density of simple functions, see Section 2.2. The second is
[Rou05, Proposition 1.36], and follows from the first. The third may be obtained by mollification. O

If J C (0,00) is an interval, for 1 < p < co and v € R we define the weighted LP space

LP(J;X):={g:J = X with t"g = (¢t = t"g(t)) € LP(J; X)} (2.7.1)
with the natural norm ||g|l .z (s, x) = [tV 9|l e (;x), and
WEP(J; X) = {z € L2(J; X) : O € LE(J; X)} (2.7.2)

with the norm given by ||| = ||:z:H’L’5(J;X) + ||3tx||i€(J;X). We will often consider the case

P
Wy P(J5X)
0<wv<1/p, wherep' :=p/(p—1) is the dual index of p.

We collect here several useful results.

Lemma 2.7.2. Let 1 < p < oo, let J = (0,b) C R be a bounded non-trivial interval. For any g €
LP(J;X), ¢ € L (J; X') and v € R set

<g’g/>L€(J;X)XL€/V(J;X’) = /J<g(t)?g/(t)>X><X’dt (273)

If X' is reflexive and/or separable then, for any v € R, (LE(J; X))’ can be identified with Li,(J;X’)
with (2.7.3) as the duality pairing.
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Proof. Set ¢ = p’. For v = 0, this is a standard result, see the account of [DU76; DUT7|, more
precisely [DU77, Section IV.1, Theorem 1|: if X’ has the Radon-Nikodym property then there exists
an isomorphism I : (L?(J; X)) — L%(J; X') such that (I7'¢')(g9) = [,{g(t), ¢’ (t)) x xx-dt; the Radon-
Nikodym property for X’ holds if X' is reflexive or if X’ is separable [DU77, Section IIL.3, Corollary 4 and
Theorem 1], also [Rya02, Section 5.4]. To pass to the case v € R note that I, : LP(J; X) — LE(J; X),
g t™7Vg,and I_, : LY(J;X") — L7 (J;X"), ¢ — g, are isometric isomorphisms. The desired
isomorphism is now given by the composition I_, o I o I/,. O

Lemma 2.7.3. Let J = (0,b) C R be an interval. Let Y — X be Banach spaces. Let 1 < p,q < oo
with 1/p+1/q = 1. Set W(t) := (vp + 1)"1#"P*! for t > 0, where v > —1/p. Then the map & + z,
x(t) == &(W(t)) (a.e.) t € J, is an isomorphism

from {£€ LP(W(J);Y):0,£ € LAW(J); X)} onto {xe€Ll(J;Y): e L, (J;X)}. (2.7.4)

Proof. We use the variable substitution 7 = W (t). Then 47 = 7. Thus,

Jwsiga= [ jenigererar= [ el 2.75)
J W (J) W(J)
and
190 oy = [ 6 elwp+ DEPO DI o = [l0,¢]l (27.6)
A R p T Xewp+1)  NSlLawnxy A
where the relation ¢(p — 1) = p was used in the last step. Hence the claim. O

Lemma 2.7.4. Let J = (0,b) C R be an interval, 1 < p,q < co with 1/p+1/q=1. Letv > —1/p. Let
V— H=H <V’ be a Gelfand triple of densely embedded Hilbert spaces, where H is identified with
its dual H' via the scalar product on H. Then

{z e LE(J;V): 0z € LY, (J;V')} — C°(J; H), (2.7.7)

i.e., for any x in the space on the left there exists a continuous function J — H which agrees with x
almost everywhere on J. Moreover, for any x,x € LP(J; V) with distributional derivatives in LY ,(J; V'),

and any s,t € J, s <t, there holds the integration-by-parts formula
t
(x(t), (t) g — (z(s),Z(s))m = / {(0(t), Z())vrxv + (@(t), 0 () v v } dt. (2.7.8)

Proof. The embedding (2.7.7) and the formula (2.7.8) hold in the unweighted case v = 0, see e.g. [Rou05,
Lemma 7.3]. The weighted case follows by means of the isomorphism of Lemma 2.7.3. O

Remark 2.7.5. Let V < H = H' < V' be a Gelfand triple of densely embedded Hilbert spaces. Lemma
2.7.4 with p = ¢ = 2 and v = 0 implies that the trace x(0) € H of a function x € H*(J; V') N L3(J; V)
is well-defined in H and the trace map x — z(0) is continuous.

In the remainder of the section, given Banach spaces Y < X, we define the space

XD(J;X,Y) = Wy P(J; X) N LE(J;Y)

and endow it with the norm [[[-|75 ., + \|8t~HI£§(J;X)]1/p

Remark 2.7.6. Let J = (0,b) C R a nonempty interval. Let Y < X be Banach spaces, 1 < p,q < oo
with 1/p+1/¢=1. Let 0 < v < 1/q. Then X?(J; X,Y) is precisely the set of (equivalence classes of)
functions z : J — X such that x € WHP((a, 8); X) for every inf J < a < 8 < sup J, and

tHPe(t)y € LP(J,t7YdtY)  and v PYPO(t) € LP(J, ¢ dt; X). (2.7.9)
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The following lemma concerning the characterization of the trace space of X?(J; X,Y') as the interpola-
tion space (X,Y)g, was motivated by [PS04, Proposition 3.1].

Lemma 2.7.7. Let J = (0,b) C R be a nonempty interval. Let X andY be Banach spaces with Y — X.
Let 1 <p,q<oowithl/p+1/¢g=1, and 0 <v < 1/q. Then

(X, Y)1/g-vp = {2(0) : 0 € XI(J; X,V)} (2.7.10)

and, moreover, X + inf{[|z| xrsx,v): X = 2(0),z € XL(J; X,Y)} defines a norm that is equivalent to
(RIS SIMP.

Proof. This follows from the trace method of interpolation: observing Remark 2.7.6, the proof of [Lun09,
Proposition 1.13] for J = Ry is valid mutatis mutandis if J = (0,b) is a nonempty interval. O

The following Theorem 2.7.9 is a characterization that will be important in our applications, see Lemma
8.1.1 and Remark 8.1.2, and requires a definition of certain Banach valued function spaces that are
different from Bochner spaces. The proof of Theorem 2.7.9 may also be found in [Fat99, Theorem
12.2.11], cf. the remarks in [Fat05, Section 4.1].

Definition 2.7.8. For any Banach space X let LS° (J; X') denote the space of functions = : J — X’
such that

1. Jo ¢~ (x(t),X)x xx is measurable for every x € X,
2. the norm [|z||pe (7;x7), given by
inf{C >0:VxeX:|{teJ: [{z(t),)xxx| > Clxlx} =0}, (2.7.11)
is finite,

3. two such functions x and 7 are identified if and ouly if ||z — Z[| L (7,x7) = 0.

Theorem 2.7.9. Let X be a Banach space, J CR a bounded interval. Then the map ® : LY, (J; X') —
LYNT; XY, g [1{(g(t), ) x:xxdt is an isometric isomorphism, i.e., L'(J; X) = L, (J; X'). Further, if
X is reflexive then LP(J; X) =2 LYU(J; X') for all1 <p < oo, 1/p+1/q¢=1.

Proof. [TT69, Chapter VII, Theorem 7, Theorem 8, Theorem 10]. O

Corollary 2.7.10. If (S, F,u) is a o-finite measure space then

L®(J x S,dv) = LY(J x 8,dv)’ = LY(J; L' (S, dp)) = L (J; L (S, du)), (2.7.12)
where v = |- | ® p denotes the the natural product measure on J x S.
Proof. Let B(J) denote the Borel o-algebra generated by the open subsets of J. Then (J xS, B(J)®F,v)
is a o-finite measure space [Lo¢78, Vol. I, Section 8.2]. Therefore we have L'(J xS, dv)’ = L*°(J xS, dv),

see e.g. [WZ77, Theorem 10.44]. The second identification is due to the Fubini-Tonelli theorem, and the
third follows using Theorem 2.7.9 with X’ = LY(S,du)’ = L>=(S, du). O
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2.8 Countably normed spaces

Let J = (0,b) C RY, b > 0, be an interval. Let X be a Banach space. For any v € R we define the weight
function @, : (0,00) = R, ®,(t) := 7. For all 0 < § < 1, integers £,m,k € Np, and 1 < p < oo, we
introduce the seminorm

|$\Wg>g(J;x) = PO ] Lo (aix) = ||(I)kaf+éx”L§(J;X) (2.8.1)

for all z € C*(J; X). By Wngn(J; X) we denote the completion of the set of functions in C*°(J; X)
having finite norm

" 0, =0,
2.8.2
||x||Wlp(JX) Z|I|W2p JX {” ||Wé 1p(JX)7 52 1’ ( 8 )

w.r.t. this norm. On the “countably normed space”

WP (1 X):= [ Wgt, (2.8.3)
m&ENy
the expression

— inf g 00 2.8.4
el ) = 0 00— (28.4)

defines a seminorm. The countably normed space Bé’p (J; X) is then defined as

4o (7. — L, . .

BYP(J; X) = {x € WL (I3 X) 2l oo gy < oo} . (2.8.5)

For the case k = 0 we write Wé’p = W[%' If p = 2 then we write Hf, := Wé:i, Hf = Wé’z and
Bé = 32’2. These definitions largely follow [BD81; GB86a; GBS86b)].

The following is an “almost characterization” of the spaces Bg’p (J; X) that will be used in the proof of
higher order regularity of solutions to parabolic evolution equations in Theorem 3.3.6.

Proposition 2.8.1. Let £ € Ny, 0 < < 0,1 <p< oo and J = (0,b) an interval, X a real Banach
space. Let x € Wé:g(J;X), sety:= Ol € LE(J;X). For any 0 <4 <1 define

1. As:i=(1-6,149),

2. Js:={reJ:7As QJ}:(O,%),

3. ya(7) :=y(A\1) for T € Js.
Then, for any 0 < § < 1, the following are equivalent

1. x € Bé’p()\J(;;X) for all A € Ay,

2. the map As > A — yx € LY (Js; X) is analytic.
Proof. Let 0 < 6 < 1. In the following, the value of the constants C,d > 0 may change from one
statement to another. We have the equivalences: x € Bg’p (AJ5; X) for all A € A

& for all A € As there exist constants C,d > 0 such that

[lwep arpix) < Cd"k! Vk € Ny, (2.8.6)
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& for all A\g € As there exist an open interval B C As with \g € B, and constants C,d > 0 such that

[lerasgx) < Cd°k VE €Ny VA€ B, (2.8.7)

& for all A\g € As there exist B as above, and constants C,d > 0 such that

_ H‘I’kafy||Lg(,\J5;X) _ |x‘W§:£(>\J§;X

k ) k
18| yix) = ——rmrare— = arkrs < Cd°R! (2.8.8)

holds for all k € Ny and \ € B,
& the map As > A yx € L (J5; X) is analytic.

The last equivalence is due to Theorem 2.6.6. This shows the claim. O
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3 Linear parabolic evolution equations

In this chapter we give a brief overview on the theory of abstract linear parabolic evolution equations in
Banach spaces. We start by formulating the problem in Section 3.1. In Section 3.2 we discuss existence
and uniqueness of solutions from different perspectives: the variational (energy) approach, semigroup
theory, the framework of maximal regularity, and finally by means of a symmetric variational formulation
of the problem derived from the theory of self-dual Lagrangians. Some interrelations between those will
be established. We subsequently address in Section 3.3 the temporal regularity of solutions, first using
the semigroup theory, then using the framework of maximal regularity; the primary objective there is to
show the membership of the solution to certain (countably normed) weighted Bochner-Sobolev spaces of
vector valued functions introduced in Section 2.8. In Section 3.4 we briefly address semi-linear evolution
equations using the general notions of Section 3.2.3.

3.1 Problem statement

For the following let 0 < T < co. We set J := (0, T) C R!. Let X be a real Banach space. We consider the
following abstract evolutionary equation, also called abstract initial value problem or abstract
Cauchy problem,

u(0) 0

{atu(t)_Jr (Au)(t) = g(t), (ae) ted, (3.1.1)

Here,
e the source term g(t) € X, (a.e.) t € J, and the initial datum u° € X are given;

o for (a.e.) t € J, A(t) : D(A(t)) € X — X are linear, closed operators with a common domain
D(A) = D(A(t)) for (ae.) t € J; it is endowed with the norm |[|-[[pc4) such that |-||pcay ~
IA() | x + ||-[|x for (a.e.) ¢t € J. We recall that an operator B : D(B) C X — X is closed if and
only if D(B) is a Banach space for the graph norm ||-||p(g) = [|B-||x + ||| x;

e we identify A(-) with the superposition mapping u +— (t — A(t)u(t));

e the (total) derivative d;u w.r.t. the temporal variable ¢ denotes the distributional derivative. It
may be interpreted as the X-valued linear operator which is continuous for the weak topology on
X and satisfies

(Brn) (9), X ) xx0 = — /J 92 0) ulr) XY ' € X (3.1.2)

for all ¢ € C*°(J) with compact support in the interior of J;
e the meaning of «(0) will be clarified later.

More details will be specified at a later stage. We speak of the constant generator case if A(-) in
(3.1.1) is a constant operator-valued map, and non-constant generator case if this restriction is not
present. Different notions of solution of (3.1.1) are available and their presentation will require some
preparation. Equation (3.1.1) characterizes a possibly unique solution in a given sense by means of
additional continuity or smoothness assumptions on g, A and also u°, e.g. u® € D(A). This, and related
questions, is discussed in this chapter. We remark that we consider here evolution equations of parabolic
type, that is we will assume that for (a.e.) ¢ € J, the operator —A(¢) is sectorial (see Definition 3.2.14)
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and densely defined in X, which implies D(A) < X densely, see Section 3.2.2. Allowing the domains
of A(t) to vary or not be dense in X incurs technical difficulties beyond the scope of this work, see e.g.
[Yagl0, Chapter 3] and [Ama95, Chapter IV] for more on those topics.

Remark 3.1.1. The following observation will be useful. For (a.e.) t € J we have
Owu(t) + A(t)u(t) = g(t) (3.1.3)
if and only if, with @(t) := e~ %nittly(t) and §(t) := e~ nitetg(¢),
0u(t) + (A(t) + asnigId)a(t) = g(t). (3.1.4)

The equalities are understood in the sense of distributions, cf. (3.1.2).

3.2 Existence and uniqueness

The abstract Cauchy problem (3.1.1) subject to the restrictions stated in Section 3.1 was first investigated
by Tanabe [Tan60| and Sobolevskii [Sob61], cf. the historical reviews in [Kat61; LM72; Yagl0; Paz83|.
Previously, semigroup theory, developed by Hille [Hil48] and Yosida [Yos48], was used in [Sol58; HP57]
to study the constant generator case. In the Hilbert space setting, a remarkably general variational
method for the abstract Cauchy problem (3.1.1) can be found in [LM72, Volume I, Chapter 3, Section
4.4] or [DL92, Chapter XVIII, §3, Section 2-4|, cf. the earlier usage of the “Faedo-Galerkin” method of
proof in [Lio56]. The “operational” method of Da Prato and Grisvard [DG75] was used to study abstract
parabolic equations, see also [AT87; DV87], and [Prii02] for more recent developments.

As already indicated, several notions of solutions to (3.1.1) can be found in the literature, and the fol-
lowing list is necessarily partially redundant and ambiguous: strong, strict, classical, almost everywhere,
weak, hyperweak, very weak, generalized, variational, mild solutions, or simply solutions. Two particu-
larly important concepts in our context are genmeralized solutions (Definition 3.2.11) and mild solutions
(Definition 3.2.16). These are the central subjects of Section 3.2.1 and Section 3.2.2, respectively. Subse-
quently, in Section 3.2.3 we elaborate on the notion of maximal regularity, where some results of Section
3.2.1 are generalized. Sections 3.2.2 and 3.2.3 also set the stage for additional regularity results given
in Section 3.3. In Section 3.2.4 we derive a symmetric variational formulation of the abstract Cauchy
problem (3.1.1) based on notions from convex analysis.

3.2.1 The variational method

Let H be a Hilbert space over R, and V C H be a dense subspace which is continuously embedded in H.
Identifying H with its dual H’ via the scalar product (-, )z on H, by means of the Riesz representation
theorem we obtain the Gelfand triple (a.k.a. evolution triple)

vida=g Sy (3.2.1)

Then (-, )g = (", )vxyr on V x V and (-,-)yxy is in fact the unique continuous extension of (-, )y by
linearity. Therefore, unless for purposes of emphasis, we drop the subscript in the notation and simply
write (-, ) to refer to either.

Remark 3.2.1. Since V is a Hilbert space, in particular reflexive, with Lemma 2.7.2 we have the
canonical identification (L2(J;V))" = L2(J; V).

Assumption 3.2.2. For (a.e.) t € J we are given a bilinear form a(¢; -, -) and a linear map A(t),
a(t;,):VxV —=-R and A(t):V =V’ (3.2.2)

such that a(t;v,v) = (A(t)v,v) for all v, v € V.
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Of course, each can be defined in terms of the other, and we will use whichever is convenient. For the
symmetric and the the anti-symmetric part of A we set

(A(t) + At)Y) and A(t) = = (A(t) — A®t)), (ae) tel, (3.2.3)

DN | =

and abbreviate
P(t)u(t) := —0pu(t) — /I(t)u(t), (ae.) t€J. (3.2.4)
We will frequently drop the dependence on ¢ for convenience of notation.

Example 3.2.3. Examples for the spaces V and H that we have in mind are (closed subspaces of)
Sobolev or Bochner spaces, such as V = Hg(D) and H = L?(D) for the archetypal diffusion problem in
a bounded domain D C R? with homogeneous Dirichlet boundary condition; or V = L?(2, dP; H3 (D))
and H = L?(Q,dP; L?(D)) for diffusion problems subject to a parameter w €  in a probability space
(Q,%,P).

Assumption 3.2.4. There exist 0 < @min < Gmax < 00 and agpie > 0 such that for all v, € V and
(a.e.) t € J there hold

1. |a(t; v, )| < amax||¥|Iv 7]V, (boundedness)
2. a(t;v,v) + asnite|V]|% > amin|lV||%, (Garding inequality)
3. J3 s+ a(s;v, V) € R is measurable. (measurability)

An example of a(t;-,-) satisfying Assumption 3.2.4 is given in (8.1.5). Using Remark 3.1.1, we may
w.l.o.g. assume agpisy = 0. Note that the Garding inequality in Assumption 3.2.4 is equivalent to

((A(t) + amiee 1), v) = ((A(t) + asniee 1), v) > amil V|2 Vv €V, (3.2.5)

since the anti-symmetric part satisfies (A(t)v,v) = 0 for all v € V. Here, Id denotes the embedding
V < V', Consider now the formal mapping

(A,0,0) /J (A(t)o(t), B(t))dt, v,5 € L2(J; V). (3.2.6)

We can interpret the family of operators {A(t)}:cs as a mapping
1. Ay : LY(J;V ® V) — R linear,
2. Ay L?(J;V) x L%(J; V) — R bilinear,
3. Az : L*(J; V) — L?(J; V') linear.
Using Remark 3.2.1 and (2.3.2), As is bounded if and only if Aj is.
Proposition 3.2.5. Boundedness and measurability in the sense of Assumption 3.2.4 hold if and only

if A,A' A Ae (LY VeV)).

Proof. Since (L'(J; V ®V)) is a vector space, it suffices to consider A and A’. Using Theorem 2.7.9 and
the tensor product identification (2.3.2) observe that

(LALV @ V)Y = L3 (V & V)) = 12,5 £V, V). (3.2.7)
Now A € L, (J;L(V,V')) is merely a restatement of boundedness and measurability in Assumption

3.2.4. Further, these hypotheses hold for A if and only if they hold for the adjoint A’. This completes
the proof. O
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Similarly, the boundedness and measurability hypotheses of Assumption 3.2.4 imply
YveV: [t alt;y,-)] € LS (5 V) = (L (V). (3.2.8)

Therefore, for all v € L?(J; V), the integral [, a(t; v(t), v(t))dt is declared for ¥ = y; ® v with arbitrary
J C J measurable and v € V, and with this, for all elements v € L?(J) ® V by linearity and continuity.
If V is separable, we have the identification L*(J) ® V = L2(J; V), see (2.3.5), and therefore (3.2.6) is
well-defined. This (together with applications in partial differential equations) motivates to the following
assumption.

Assumption 3.2.6. V is separable.

V being separable implies that also H and V' are separable by density of V in H. These considerations
result in the following Proposition 3.2.7.

Proposition 3.2.7. Assumption 3.2.4 and Assumption 3.2.6 imply

(A + agnigs Id), (A + agniee 1d) € Iso(L2(J; V), L2(J; V')). (3.2.9)

Proof. Both are well-defined, L?(J; V)-elliptic and bounded. The claim is due to the Lax-Milgram lemma
(Theorem 4.1.2). O

Anticipating the following well-posedness results (Theorem 3.2.9 and Theorem 3.2.10) for the abstract
Cauchy problem (3.1.1) we define

X :=L*V)NnHY LV and Y:=L*;V) x H. (3.2.10)
The norms ||-||x and ||-]|]y that we use here are given by
lull% = llullZzvy + 10ulliz vy YueX (3.2.11)
and

[0l = ol Zo vy + lo2llf - Vo = (v1,02) € Y. (3.2.12)

Note that ||~H%2(J_V) + ||-||%11(J_V,), which is sometimes used in place of ||-||%,, yields an equivalent norm
on X. Only slightly more generally, we have the following result.

Lemma 3.2.8. Let J = (0, T). Let Assumption 5.2.6 and Assumption 3.2.4 hold with asnis, = 0. Let
0<to, 7 <T and B,y > 0 be arbitrary. Define for all w € C°(J; V)

ull 6.5+ ::/J”u(t)H%/dt"'/J{Hatu(t)”\QW+/BHU(t)”\Q//}dt-i-’Y”U(T)H%h

[[ul

2, = /J (A(tyult), u(t))dt + /J (A P(t)u(t), P(E)u(t))dt + ulto) |-
Then ||| x,8,4.7 ~ lIlle,to are norms on X equivalent to ||-||x.

Proof. We first note that the integrals are well-defined by Proposition 3.2.7. By the continuity of the
embedding V' — V' and Lemma 2.7.4 the expression ||-||x := ||-||x,0,0,~ is @ norm, equivalent to ||-||x 3,,~-
Therefore it suffices to verify ||-||x ~ ||‘||&,t,- Since |||le.to S |-|lx is straightforward, we concentrate on
showing [|-||x < ||'lle;to- Assume to the contrary that there exists a sequence {x,}nen C C®(J;V)
(with V' < V' densely, this space is dense in X' by [LM72, Volume 1, Chapter I, Theorem 2.1]|) with
l|lznllet, — 0 as n — oo, yet ||xn||x > 1 for all n € N. Then, as n — oo, we have z,, — 0 in L?(J; V),
thus also Az, — 0 in L?(J;V’), as well as d;x,, + Ax,, = —Px,, + Az, — 0in L?(J;V'). This implies
Oyxy, — 0 in L?(J; V') which is a contradiction to ||z, |+ > 1. O
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We will call a norm on X or ) defined in terms of the operator A(t), such as ||-||¢ .+, 2 parabolic energy
norm. For consistency of notation we define the spaces

Vy:=L*;V) and Yy :=H, (3.2.13)
thus J/ = yl X yz.
We now state the announced well-posedness results.

Theorem 3.2.9. Let Assumption 3.2.4 hold. Then for all (g,u’) € V' there exists a unique u € X such
that Oyu(t) + A(t)u(t) = g(t), (a.e.) t € J and u(0) = u® hold; the solution u € X depends continuously
on the data (g,u’) € V'.

Proof. [DL92, Chapter XVIII, §3, Theorem 2]. O

For our purposes it is useful to formulate this result in terms of operators between Hilbert spaces. We
recall first that the trace map X > u — u(0) € H is continuous, and there holds

[u(0) | i < [ w(0)|| cmullx for all u e X, (3.2.14)

see [LM72, Chapter 1] or Remark 2.7.5. We define the space-time parabolic operator B: X — )’ as
the linear mapping given by

u€e X,

3.2.15
v = (v1,v2) € Y. ( )

(Bu by = {01+ A©)ult), w1 ()it + (u(0), ), {
J
Under Assumption 3.2.4, indeed B € £(X,)"). In fact, B € Iso(X,)’):
Theorem 3.2.10. For any F € )V’ there exists a unique solution u € X of the variational problem
(Bu,v)yryy =Fv Yve). (3.2.16)

Moreover, the solution map F +— u is continuous.

Proof. See [SS09, Theorem 5.1]. O

Definition 3.2.11. Let (g,u%) € )’ be given, define F:)Y — R by
Fo e (w0, vo) -|-/<g(t),vl(t)>dt Yo = (u1,0) € V. (3.2.17)
J
We call u € X a generalized solution of (3.1.1) if (3.2.16) holds.

By Theorem 3.2.10, a generalized solution of (3.2.16) exists and is unique. We remark that our terminol-
ogy follows [Ama95, Section I11.1.3]. Observe that in the equation Bu = F € ), which is a restatement
of (3.2.16) by reflexivity of Hilbert spaces, the initial condition w(0) = u" is enforced by means of a
Lagrange multiplier v, € H.

Remark 3.2.12. An alternative variational formulation is used in e.g. [BJ90; CS11]: integrating (3.1.1)

against a test function v; € C*°(J; V) with v1(T) = 0 we obtain

/(u, —Opy + A'vy)dt 4 (u(T),v1(T)) = (u®,v1(0)) —|—/<g,v1>dt. (3.2.18)
J

J
=0 =(u(0).v1(0))

This leads to the definition of trial and test spaces as
X =L*%V) and Y =L*(J;V)nHy sV (3.2.19)

where the subscript indicates vanishing trace at t = T. In this formulation the initial value enters the
formulation naturally; it is neither incorporated in the trial space, nor is it enforced by an additional
equation via a Lagrange multiplier. A function v € X satisfying (3.2.18) for all admissible v; is called a
weak solution in [Ama95, Section V.2.6|, cf. [Rou05, Definition 8.2] (which is different from the “weak
solutions” of [Bal77; Eva98|).
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3.2.2 Semigroup theory

The semigroup approach is naturally suited to study abstract evolution equations in the constant gen-
erator case, but has been extended to the non-constant generator case. The pertinent notions here are
given in the following definitions, followed by a result on existence of solutions to the abstract Cauchy
problem (3.1.1).

Definition 3.2.13. Let u° € X.
e Let (A,g) € C([0, T]; L(D(A), X) x X). A function
u € CH([0,T); X) N C°([0, T|; D(A)) (3.2.20)

is said to be a strict solution of (3.1.1) in the interval [0, T] if dyu(t) + A(t)u(t) = g(t) for all
t € [0, T] and u(0) = u°.
e Let again (A, g) € C°([0, T]; £L(D(A), X) x X). A function u € CY([0, T]; X) is said to be a strong
solution of (3.1.1) in the interval [0, T] if there exists
{zn}nen € CH([0,T]; X) N C([0, T); D(A)) (3.2.21)
such that z,, — v and 9z, + Az, — f in C°([0,T]; X) and z,,(0) — u® in X as n — .
e Let now (A, g) € CO(0,T]; L(D(A), X) x X). A function
u e CH(0,T|; X) N C°((0, T); D(A)) N CO([0, T]; X) (3.2.22)
is said to be a classical solution of (3.1.1) in the interval [0, T] if dyu(t) + A(t)u(t) = g(t) for all
t € (0, T] and u(0) = u°.

Definition 3.2.14 (Following Definition 2.0.1 in [Lun95]). Let X be a Banach space. An operator
B :D(B) C X — X is called sectorial if there exist agniry € R, 5 <0 <mand M > 0 such that

1. A€ p(B),

2. A =B) "l £(x) 1A — asnire| < M,
hold for all A € {\ € C\ {asnitt} : | arg(X — agnie)| < 0}.
The classical treatise [Paz83] does not contain a definition of a “sectorial operator”, but characterizes
a densely defined operator which is sectorial in the sense of Definition 3.2.14 with agniee = 0 as the
infinitesimal generator of an analytic semigroup, see [Paz83, Chapter 2, Theorem 5.2] and the foregoing
remarks therein. In turn, such an operator B is necessarily closed and densely defined, see [Paz83,
Chapter 1, Theorem 5.3]. In particular, a sectorial operator with agpise = 0 is a sectorial operator in X
in the sense of [EN06; YaglO]. Let us remark that Assumption 3.2.2 and Assumption 3.2.4 lead to a

family of sectorial operators as in Assumption 3.2.15, see [Sch99, Proposition 2.3] or [Yagl0, Chapter 2,
Section 1.1], and Section 3.3.2.

A notion of solution to the abstract Cauchy problem (3.1.1) is obtained using the following assumption.

Assumption 3.2.15. We assume that A(t) : D(A) — X, 0 <t < T, is family of linear operators
1. with a common domain D(A) C X,
2. such that —A(t) is sectorial, 0 <t < T,

3. and D(A) <5 X, i.e., A(t) is densely defined, 0 < ¢ < T.
Definition 3.2.16 (Adapted from Definition 6.0.1 in [Lun95]). A family
{G(t,s):0<s<t<T}C LX) (3.2.23)

is said to be a parabolic evolution operator for the problem (3.1.1) if
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1. G(t,s)G(s,r) = G(t,r), G(s,s) =Idforal 0 <r < s <t < T,
2. G(t,s) € L(X,D(A)) forall 0 < s <t <T,
3. (s, T] 3t — G(t,s) is differentiable with values in £(X), and

0G(t,s) = —A(t)G(t,s), 0<s<t<T. (3.2.24)

If g € L'(J; X) and u° € X, the mild solution of (3.1.1) is defined by the variation-of-constants formula
t

u(t) = G(t, 0y + / Glt, s)g(s)ds, 0<t<T. (3.2.25)
0

Remark 3.2.17. A parabolic evolution operator in the sense of Definition 3.2.16:

1. is a parabolic evolution operator with regularity subspace D(A) in the sense of the definition given
in [Ama95, Chapter II, Section 2].

2. is unique, if it exists [Ama95, Chapter II, Remark 2.1.2].
One has to impose some smoothness on the map ¢ — A(t) for the parabolic evolution operator G(-, -), also
called “fundamental solution” or “propagator”; to exist. Its existence is desirable, as typically any solution,
be it strict or classical, etc., satisfies the variation-of-constants formula (3.2.25), also called “Duhamel’s
formula”, from which a number of properties of the solution (in a given sense) can be deduced [Lun95,
Section 6], [Tan97, Section 6.10], [Yagl0, Chapter 3, Section 6|; there exist, however, other representation
formulas, see e.g. [AT87], the survey [Acq93], and references in those works. One of the technically easier

possibilities for obtaining a parabolic evolution operator is to assume that A(-) is Holder continuous
(more general conditions are discussed in e.g. [DG84; But92; PS01; MTO01]).

Assumption 3.2.18. There exists 0 < a < 1 such that A € C¥([0, T]; L(D(A4), X)).

Theorem 3.2.19. Under Assumption 3.2.18 there exists a parabolic evolution operator G(-,-). Let
u® € X. The function u defined by the variation-of-constants formula (3.2.25)

1. coincides with any strict solution of problem (3.1.1) if g € C°([0,T]; X) and u°® € D(A),
2. is the unique strong solution of problem (3.1.1) if g € C°([0, T]; X),

3. is, if such emists, the classical solution of problem (3.1.1) if g € C°((0,T]; X) N L(J; X).
Proof. See [Lun95, Definition 6.1.7] and [Lun95, Corollary 6.2.2, Corollary 6.2.3 and Corollary 6.2.4]. O

Properties of G(-,-) can be found in [Lun95, Corollary 6.1.10 and Proposition 6.2.6], e.g. for every
t € (0, T] we have G(t,-) € C*([0,t); L(X,D(A))), and
0:G(t,s)u = —G(t,s)A(s)u YueD(A), 0<s<t<T. (3.2.26)

In the case a = 0, a parabolic evolution operator was constructed in [PS01], cf. Theorem 3.2.21.
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3.2.3 Maximal regularity

"Maximal regularity’ is studied in a framework which deemphasizes the temporal dimension, thus consid-
ering problem (3.1.1) as an operator equation of the form Au = (g, u°) between suitable Banach spaces,
where A = (9; + A, u — u(0)). This allows to avoid a loss of regularity, where the temporal derivative of
the solution is less regular than the right-hand side, as observed in analytic semigroups [Ama95, Intro-
duction to Chapter III], and to obtain the 'maximal regularity’ that is possible in general for the given
class of right hand sides.

Recall that D(A) denotes the common domain of the family of linear operators A(t) : D(4) C X — X,
t € J. Assume that for (a.e.) t € J

1. A(t) is a closed operator,
2. A(t) is densely defined.

Then D(A) equipped with the norm ||A(t)-||x is a Banach space densely embedded in X for (a.e.) t € J.
We assume that all these norms are uniformly equivalent to a norm denoted by ||-||p(a), hence

D(A) % X. (3.2.27)

If A€ C°(J; L(D(A), X)) then this is necessarily so [PS01, p. 409]. Forany 1 < p < ooand 0 <v < 1/p/,
where p’ :=p/(p — 1) is the index dual to p, we define the spaces (cf. Section 2.7)

XP

v

= WhP(J; X) N LE(J; D(A)) (3.2.28)
with the norm ||-|| y» given by

%z == 112 gipeay T 196 1T ) (3.2.29)

Let 0 < v < 1/p’. Recall from Lemma 2.7.7 that the trace u(0) € X, , is well-defined for functions
u € X7, where
XV,P = (va(A))l/p’—u,m (3230)

and the map v — u(0) is continuous. The interpolation space (X, D(A))g,, is also denoted by D4 (0, p)
in the literature. When X2 is defined w.r.t. a different interval, say J, we write X2(J), etc. We further
define the data spaces

Vo =Y0 x V0, = L0(J; X) x X, (3.2.31)
with the norm given by |15, = 1%, + 112, =17, + 1%, .
We remark that X and Y2 depend on the (sometimes subjective) choice of D(A) and the norm on D(A)
in applications.
The central notion of this section is the following.

Definition 3.2.20. Let 1 < p < co and 0 < v < 1/p’. We say that A has maximal L? regularity (or

L? if v = 0), if there exists a constant ¢, ,(A4) > 0 such that for all (g,u") € VP there exists a unique
u € XP satisfying

1. Qu+ Au =g in 5)1;71,
2. u(0) =l in 57572,

3. Jullar < cvp(A)l(g, w5
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Maximal LP regularity can accommodate solutions with “rough” initial datum, i.e., belonging to the
intermediate space (X,D(A))1/p—y,p, With regularity in weighted Sobolev-Bochner spaces X'D. In ap-
plications, the intermediate space usually captures a degree of differentiability, for instance in the case
X = L%(D), D(A) = HY(D)N H3(D), A(t) = —A on a bounded convex domain D C R%, cf. Example
3.3.5 and Example 3.3.8. Note that Theorem 3.2.10 is a statement on maximal L? regularity of A for
X :=V"and D(A) := V. Another early maximal regularity result in the Hilbert space setting is [Sim64].
The following generalizations are more recent.

Theorem 3.2.21 (Non-constant generator case, v = 0). Assume
1. A€ C°%J; L(D(A), X)),
2. the constant mapping A : t — A(s) has mazimal LP regularity for all s € J.

Then A has mazximal LP regularity.

Proof. See [PS01, Theorem 2.5] or [Ama04, Theorem 7.1, Remark 7.1]. O

Theorem 3.2.22 (Constant generator case, v > 0). Let 1 < p < oo and 0 < v < 1/p’. Assume that
A(-) is constant. Then A has maximal LP regularity if and only if it has mazimal LP regularity.

Proof. See [PS04], in particular Remark 3.3 therein. O

We are, however, interested in the non-constant generator case with v > 0. It may be derived from
the local result for quasi-linear parabolic equations [KPW10, Theorem 2.1]. Instead, we show that
among operators with maximal L? regularity, the property of maximal L? regularity is stable under
perturbations.

Proposition 3.2.23. Let 1 <p<oo and 0 <v < 1/p'. Let A,A € L=(J; L(D(A), X)). Assume that A
has maximal LY reqularity. Assume further that

p = CU7P(A)||A — AHLOO(J;‘C(’D(A)‘X)) < 1. (3.2.32)

If A has mazimal L? regularity then it also has mazimal LY regularity.

Proof. Let (g,u®) € V? be given. Assume that A has maximal L? regularity. Then there exists a unique
u, € X% satisfying

1. Opuy + Auy = tYg, 2. u(0)=0, and 3. |uillxr < cop(A)llglleux)-
Since the maps
{ue X} : |u(0)]|x =0} = {ueX?:|u0)]|x =0}, ur—t"u (3.2.33)
and
{ue X8 : ||u(0)]x =0} = LE(J; X), u—t"u (3.2.34)
are continuous [PS04, Proposition 2.2|, there exists a C' > 0 independent of g and u° such that
max { [t w | v £ | p o) b < Cllgllze x)- (3.2.35)
We claim that there exists a unique Au € X, which solves
OAu + AAu = vt™" Ty, + (A — A)Au € LE(J; X),  Au(0) = u°. (3.2.36)
To see this, define the mapping ® : X2 — XP by ®(u) = u, the solution of

Ot + At = vt~ tuy + (A — A)u,  u(0) = u°. (3.2.37)
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Then & is well-defined, since t %~ tu, € LE(J; X) and (A — A)u € LE(J; X) for all u € XE. Moreover, ®
is a strict contraction:

10(w) = 2(0) |l < cop(A (A= A)u =)z < pllu— vz (3.2.38)

with p < 1. Therefore, the Banach fixed point theorem ensures the existence of a unique fixed point
Au = ®(Au), and

(1 =) Aullxr < e p (Dt s, w®)ll5p < Cll(g,u”) 50 (3.2.39)
holds with C' > 0 independent of (g,u®). By construction, u := t~“u, + Au satisfies
1. Jwu+ Au=g, 2. u(0)=u", and 3. [ullxr < C’||(g,u0)||3~,€, (3.2.40)

with C' > 0 independent of (g, u"). This shows the claim. O

3.2.4 Self-dual Lagrangians

In this section we obtain an alternative variational formulation for the abstract Cauchy problem (3.1.1) in
the Hilbert space setting and establish a connection to the generalized solutions in the sense of Definition
3.2.11. This formulation is coercive on X and symmetric on L?(J; H) (with domain X < L2(J; H)),
where the space X' is defined in (3.2.46). Hence, given any finite-dimensional subspace of X to serve
as a trial and test space, the resulting Galerkin system will be stable. This variational formulation
derives from a general variational principle exposed in [Gho07], which is formulated in the language of
convex analysis and, in particular, is not restricted to the linear, Hilbert space setting. For parabolic
problems, this has been known as the Brézis-Ekeland principle [BET76], cf. the bibliographical remarks
in [Rou05, Section 8.11]. This variational formulation reveals some of the structure of the parabolic
evolution equation. Unfortunately (for numerical computations), it involves the inverse of the spatial
operator A and in the simple case of the heat equation, A = —A, the inverse A~ is a non-local operator.
Efficient algorithms based on this formulation using an approximate realization of the inverse A~ may
still be possible.

Let V. H= H — V' bea Gelfand triple of separable real Hilbert spaces with dense embeddings.
Recall from (3.2.3)—(3.2.4) that A and A denote the symmetric and the anti-symmetric part of A, resp.,

and Pw := —0yw — Aw. We need the following basic notion from convex analysis [ET76].

Definition 3.2.24. The Legendre-Fenchel dual of a function ¢ : V' — R U {oco} is given by

P* V' > RU{oo}, pr>9*(p) = sup P X)vixv — ()} (3.2.41)
X

Let Assumption 3.2.4 hold with agpir; = 0. Let g € L?(J; V') and u® € H be given. Define for (a.e.) t € J
the potential functional

0(t:X) = 2 (A X)vxy — (00) v, X EV, (3242)

which is a strictly convex function of x. The Legendre-Fenchel dual of ¢ (t; -) is computed as follows: for
p € V' and (a.e.) t € J we have

Y (t;p) = sgg{m X)vixv — ¥t x)} (3.2.43)
= sup{{p — (3A(1)x ~ (1), X)v'xv} (3.2.44)

xXEV
= (P, At) " (g(t) + p))vixv — V(A " (g(t) + 1)) (3.2.45)
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since the supremum is realized at y = A(t)~(g(t) + p). We work with the space
X =L*EV)nHY (V) (3.2.46)

with the norm ||-[|x defined as in (3.2.11) by [[w]|3 := [[w[|72().v) + [0cwl|72 5.y Motivated by [Gho07,
Corollary 6.4], we define the functionals (Lagrangians)

L(t;x,p) :=¥(t;x) + "t —A{t)x +p), xeVipeV, (3.2.47)
f(w) == |Ju® — w(0)||% + /(@w(t),w(t))v/xvdt, we X, (3.2.48)
J
which are combined to the action

S(w) = /JL(t;w(t), —opw(t))dt +l(w), weX. (3.2.49)

For completeness we cite from [Gho07, Corollary 6.4] the following result.

Theorem 3.2.25. For any w € X
1. S(w) >0,
2. S(w) =0 if and only if w satisfies (3.1.1) for (a.e.) t € J.

We now derive a symmetric variational formulation for the abstract Cauchy problem (3.1.1). First, for
the (Fréchet) derivative of S we obtain by a direct computation

dS(w)(v) = /J {(Aw, v) + (A~ P, Po)} di - /J (g0 — A= Py)dt + (3.2.50)
+/J{<8tw,v> + (Ov,w)} dt — (u® — w(0),v(0)). (3.2.51)

By means of the integration-by-parts formula (2.7.8), the condition of stationarity, dS(w)(-) = 0, is
equivalent to

<BAw,v>X/Xx =Fv We X, (3.2.52)

where B: X — X’ and F : X — R are defined by
(Bw, v) sy 1= /{(1&1},1}) + (A~ Puw, Pv)} dt + (w(T),v(T)), w,veEX, (3.2.53)
J

Fv = /J{(g,v> - <g,ﬁflpv>} dt + (u®,0(0)), veX. (3.2.54)

~

Observe that (B-, ) x/xx is a symmetric bilinear form on X x X'. The symmetric variational formulation
(3.2.52) is indeed well-posed.

Proposition 3.2.26. B € Iso(X, X").

Proof. The operator B:Xx - X'is obviously linear and continuous. It follows from Lemma 3.2.8 that
the parabolic energy norm ||-||¢, defined by

|2 = /(/Alw,w>dt+/<ﬁ’1Pw,Pw>dt+||w(T)||§{, we X, (3.2.55)

J J
satisfies the norm equivalence [|||¢ ~ ||-||x on X. Thus, (B-,Yxrxx = [-|2 ~ ||-|%. The Lax-Milgram
lemma (Theorem 4.1.2) shows the claim. O

27



We now provide a link to the abstract Cauchy problem (3.1.1).
Proposition 3.2.27. If u € X is a generalized solution of (3.1.1) (in the sense of Definition 3.2.11)
then it satisfies the symmetric variational formulation (3.2.52).
Proof. Let u € X satisfy (3.1.1) in the sense of Definition 3.2.11. Owing to —Pu + Au= g we then have
1. (A=1Pu, Pv) + (g, A='Pv) = (A=Y (Pu + g), Pv) = (u, Pv),
2. (Au,v) — (g,v) = (Pu,v).

Observing the anti-symmetry of A and the integration-by-parts formula (2.7.8),

(Bu—F ) g = /J{(u, Pv) + (Pu,v)} dt + (w(T),v(T)) — (u°, v(0)) (3.2.56)

=— /J{(u, o) + (Opu, v) } dt + (u(T),v(T)) — (u°,v(0)) (3.2.57)

= (u(0),v(0)) — (u°,v(0)) = 0, (3.2.58)

for any v € X, as claimed. O

3.3 Regularity

It is a known feature of parabolic evolution equations that the initial datum is promoted to spaces
of higher smoothness (e.g. in terms of intermediate spaces between X and D(A)) by the flow. This
“smoothing effect” has been been exploited to obtain numerical methods with exponential accuracy in
terms of the number of unknowns (degrees of freedom), e.g. in discontinuous Galerkin time-stepping
methods [Sch99; SS00]. To quantify this, we will express the temporal regularity of solutions to the
abstract Cauchy problem (3.1.1) in terms of its membership to countably normed weighted Bochner
spaces Bg(J;X ) introduced in Section 2.8. This is the subject of the present Section 3.3, first using
semigroup theory (only for the constant generator case), then using the framework of maximal regularity
(for the non-constant generator case).

The rationale for this approach is the following: just like analytic functions (0,1) — R can be approx-
imated by polynomials with exponentially decaying coefficients, functions in Bf;(J; X), £ =1,2, can be
approximated in H*~!(J; X) by piecewise polynomials J — X with exponential accuracy in terms of the
number of degrees of freedom. Thus, membership of the solution in a space like Bé LY)n Bg(J;X ),
where Y < X, concisely explains the exponential accuracy of methods that are of hp-type in the temporal
direction, such as the discontinuous Galerkin time-stepping method.

3.3.1 Regularity results based on semigroup theory

In this section we will restrict ourselves to the constant generator case of the abstract Cauchy problem
(3.1.1) and postpone the non-constant generator case to Section 3.3.2. First, we recall some pointwise
estimates on the temporal derivative of the solution to (3.1.1) given in [Sch99, Section 2.2]. These are
based on the semigroup theory and the variation of constants formula (3.2.25). We find that the solution
belongs to spaces of the type Bg (J; X). For the remainder of the section recall from Section 3.2.1 the
definition of the Gelfand triple of real Hilbert spaces

Ve HH V. (3.3.1)

We assume that V is a separable Hilbert space and that the embeddings are dense. We proceed under
the following assumption.
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Assumption 3.3.1. t — A(t) is a constant map, itself denoted by A € L(V,V’), and there exists
amin € (0,00) such that (Ax, X)v/xv > aminl|x||# for all x € V.

Under Assumption 3.3.1 the operator (—A) is sectorial in the sense of Definition 3.2.14 by means of the
following lemma.

Lemma 3.3.2. Let B € L(V, V') satisfy the Gédrding inequality

<BX7X>V’><V + ashift“XH%{ Z amin”X”%/ VX S Vv (332)
for some agpigy € R and amin € (0,00). Then the operator (—B) is sectorial in the sense of Definition

3.2.1/.

Proof. Assuming agpisy = 0, this is shown in [Sch99, Proposition 2.3|, cf. [Yagl0, Chapter 1, Theorem
2.1] and [Lun09, Lemma 4.31]. If agnige # 0, just consider (B + agpir, Id) instead. O

Since the embedding D(A) =V — V'’ =: X is dense by assumption, the (constant) family ¢ — A satisfies
all the hypotheses of Assumption 3.2.15 and Assumption 3.2.18. By Theorem 3.2.19 therefore there exists
a parabolic evolution operator G(-,-), see Definition 3.2.16. Moreover, it has the form G(¢,s) = G(t —s),
0 < s <t <T, and the variation of constants formula (3.2.25) for the mild solution reduces to

u(t) = GO + /0 Gt — S)g(s)ds, 0<t<T. (3.3.3)

The derivatives of G at ¢t € (0, T) may be computed from the integral representation via the resolvent of
G(t), see [Sch99, Section 2.2]. These may be used to estimate the derivatives of the mild solution (3.3.3)
which results in the following.

Proposition 3.3.3. Let u° € (V’7V)%+%72 for 0 < s < 1, with the convention (V',V)12 := V. Let
g € L?(J; H) be sufficiently smooth (e.g. analytic with values in H). Then u € C*(J; V) and there exist
C >0 and d > 0 such that

[u™ ()2, < Ct=CnFD+sgn(2p) < Ct~@n+D+s((2d)"n!)2,  n e Ny, (3.3.4)

for anyn € Ng and 0 <t < T, where u is given by (3.3.3).

Proof. The first estimate is shown in [Sch99, Proposition 2.11]. The second inequality is due to

(2n)! ~ V272n (2:)2” ~ jj% ( o (%)”)2 ~ 47%( N2, neN, (3.3.5)

using the Stirling’s approximation of n!. O

Corollary 3.3.4. Under the assumptions of the previous proposition there exist C > 0 and d > 0 such
that

20 max{ [ D (@), |u* TP @)} < O(dFRPIT (3.3.6)
holds for all k € Ny and 0 <t < T. Moreover, if 28 + s > 2 then

ue By, V)N B3 V). (3.3.7)

Proof. From (3.3.6) the second claim follows by integration over J. Thus, only (3.3.6) is to be shown. To
that end we use (3.3.4) with n = k 4+ 1, k € Ny, to obtain the estimate for |[|u**1)(¢)||y,. The estimate
for |u*+2)(t)|y follows by differentiating the equation dyu(t) = —Au(t) 4+ g(t) w.r.t. t once.

The second statement of Corollary 3.3.4 may be reformulated as follows: if s > 0 then there exists
0 < < 1such that u € B5(J; V) N B3(J; V).
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Example 3.3.5. Let D = (—1,1) C R'. Set H := L?(D), V := H}(D) and A := (—=0,.) € L(V, V).
Let u® € H be the function

—r—1 for —1<z<0,
—x+1 for O0<x<1.

The Fourier series expansion shows

2
0_ .
u = E o sin(km) €[] (H,V)s2.

keN 0<s<1/2

From Corollary 3.3.4 we conclude that u € Bg(J; V) N B3(J; V') for any 3/4 < § < 1.

3.3.2 Higher order regularity from maximal regularity

In this section we obtain a regularity result for the solution of (3.1.1) based on the framework of maximal
regularity for parabolic equations in weighted LP spaces. The proof of Theorem 3.3.6 below is an
adaptation of the unweighted case from [Prii02, Theorem 5.1] (cf. [Lun95, Section 8.3.2-3]), where the
claims i) and iii) are shown; the idea to use the implicit function theorem in this context is attributed
to [Ang90]. In addition, we verify that the solution to the abstract evolution equation (3.1.1) belongs to
certain weighted Bochner spaces of vector valued functions defined in Section 2.8.

Theoren} 3.3.6. Letl <p < andp <v<1/p'. Assume ud e X, p. For some fized m € NU{oo}, let
AeC™(J;L(D(A), X)) and g € C™(J; X). Assume that A has mazimal LY, regularity. Assume u € X
satisfies Oyu + Au = g in LP(J; X) and u(0) = u® in X, . Let 0 < T < T, set J :=(0,T'). Then

i) t'0fu € XB()) for each £ =0,...,m,
ii) u € WOB(Jy D(A) N WEE (V5 X)),
Assume further that A :J — L(D(A),X) and g : J — X are analytic. Then
iit) u: (0,T) = D(A) is analytic,
iv) for any 0 < § <1 we have u € Bifa(J’; (X,D(A))ap)-

Proof. The proof is given in several steps.

Preparations. For all 6 > 0 define Ay := (1 —9,146). For 0 < e < 1 arbitrary, set J. := %_HJ. For \ € A,

and 7 € J. write ux(7) := uw(A7), Ax(7) := A(AT), A\ (T) := [0:A](A7), etc. Consider now the map
H:Ax X2(J) = YP(J), H(Mu) = (dpu+ Myu — Agx, u(0) — u). (3.3.8)

Since A and g are of class C™ by hypothesis, so is H. For the partial Fréchet derivatives we compute

DyH(\,u) = (Ayu — g + A\ (A\u — g4),0), (3.3.9)
Do H(\ u)i = (9,7 + AT, 7(0)) Vit € XP(J,). (3.3.10)

Let now u € X2(J) be as in the hypothesis. Then we have H(A,uy) = 0 for A = 1. By assumption, A
has maximal L? regularity, and thus D, H(1,u1) : X2(J.) — YP(J.) is an isomorphism.

Proof of i). By the implicit function theorem (Theorem 2.6.7) there exists 0 < § < e and ¢ €
C™(As; X2(Je)) such that ¢(1) = uy and H(A, ¢(A)) = 0 for each A € As. Observe that ¢(A) = uy, hence
the map A — wy is in C™(As; X2 (Je)). Given that (05uy)(7) = 78(0Fu) (A7), we may set A = 1 to obtain
[t — tFOFu(t)] € AP(J,) for each k = 0,...,m. Since 0 < € < 1 may be arbitrary small, i) follows.

Proof of ii). By definition, we have X2(J') — LE(J;D(A)) with continuous embedding. Thus, using
i) we have || ®,0full1z(y.pay < oo for all k = 0,...,m, ie., u € WP ();D(A)). In order to show
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uwe Wb (); X) we verify that [|®x0fdyul| sy, x) is finite for all k = 0,...,m. Note that this holds for
k = 0 by hypothesis. Observing that

DLOFOu = 0y(PrOFu) — k®)_10F 1O, k=1,...,m, (3.3.11)

the claim follows by induction over k usmg [|0:®rOF ul| Lz (y;x) < 00, which is valid due to XD(J) —
WLP(J)'; X) and i) for each k = 0,.

Proof of 4ii). Assume now additionally that A and g are analytic on J. Then the map H, defined in
(3.3.8), is analytic (with domain and range as in (3.3.8)), and therefore ¢, given in the proof of i), is also
analytic by the implicit function theorem (Theorem 2.6.7). Let I CC J. be an open interval with I C J..
Given the embedding W1P(I; D(A)) < C°(I; D(A)), the function u can be shown to be analytic in a
sufficiently small neighborhood of any ¢ € I with values in D(A) using Theorem 2.6.6. The technical
details are skipped here (cf. [Prii02, Proof of Theorem 5.1]). Since I CC J. and 0 < € < 1 were arbitrary,
u is analytic on the whole open interval J = (Jj_..; Je.

Before continuing with the proof of iv) we give a lemma.

Lemma 3.3.7. Let Y — X be real Banach spaces, v € R, 1 < p < co. Let A C R be an open set,
J C (0,00) an interval. Let i : A — LP(J; X) N LY (J;Y) be such that both, ¢ : A — LP(J; X) and
VA= LY, (J;Y), are analytic. Then o : A — LY (J;(X,Y)g,) is analytic for any 0 < 6 < 1.

Proof. Let A € A. By Theorem 2.6.6 there exists a neighborhood A C A with A € A and constants
C,d > 0 such that

1850Vl o ix) < Cd¥k! and |05y (X ez, vy < Cd*kl Yk €Ny VA € A. (3.3.12)

Now, for any 0 < 6 < 1, the interpolation inequality (2.4.4) and the Holder inequality with exponents
1/(1 —6) and 1/6 yield

||u||1£5 J(XY)e ) /”twre ”(XY)ep (3.3.13)
<&, / (a5} (P () )t (33.14)

(1-0)
H ||i!’ J;X) [|u H (3.3.15)

for any u € L2(J; X)NLY ,(J;Y). Hence, we obtain |04 e )||Lﬁ+9 Ji(X. V), < CopCdFE! for all k € Ny

and A € A. Since A € A was arbitrary, the claim follows from Theorem 2.6.6. O

Proof of w). We show that the map A — t(X) := [Opu](\-) is analytic on As with values in L?_ | (J; D(A))
and in L2(Je; X). To that end recall that A — ¢(\) € XB(Je) is analytic on As and that [0¥p(N)](7)
TE[OFu](AT) for all A € As, 7 € J.. For k = 1 and A = 1 this immediately implies that ¢ : As —
L}, 1(Je; D(A)) is analytic. It remains to check analyticity of ¢ with values in L(Jc; X). Since X —
#(\) € XP(J.) is analytic on As, so is A — O:[¢p(N\)] € LB(Je; X), hence, also X — X710 [p(N)] €
L2 (Je; X). But, 0:[¢p(N)](7) = AOw](A1) = Aw(N)](7), 7 € J.. Therefore, ¢ : As — LP(J; X) is
analytic. An application of the foregoing lemma and Proposition 2.8.1 shows v). O

Example 3.3.8. Returning to Example 3.3.5 with the time-constant generator A (—0zg) on D =
(—1,1) we have with X := L?(D), V := H}(D) and D(A) = V N H?(D) that u° € (X D(A))1 /21,2
for all 1/4 < v < 1/2. With 6 := 1/2 and § := 6 + v, Theorem 3.3.6 implies v € Bj(J; V) for any
3/4 < B < 1. Further, using dyu = —Au and u € H'(J; V') it follows

u€ By(;V) = Auc By(l;V') = due By V') (3.3.16)
= w€ By(J; V)N B34 V) (3.3.17)

for any 3/4 < 8 < 1. This precisely recovers the conclusion of Example 3.3.5.
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3.4 Semi-linear equations with small data

We use solution techniques for the abstract linear Cauchy problem (3.1.1) to study semi-linear evolution
equations of the form

(3.4.1)

)

{Btu(t)—i- (Au)(t) + (G(w)(t) = g(t), (ae) t e,
u(0) = u

where the non-linear mapping G is assumed to satisfy suitable growth and/or Lipschitz conditions. We
work under smallness assumptions on the input data. The notation and assumptions of Section 3.2.3 on
maximal regularity are retained here.

Proposition 3.4.1. Let 1 < p,p’ <oo, 1/p+1/p' =1, and 0 <v < 1/p’. Assume that A has mazimal

L? reqularity (see Definition 3.2.20), let 0 < a < 1/c,,(A). Assume that G : XP — 5)’;1 satisfies
G(0) = 0 and the local Lipschitz condition

1G(u) = Gw)llgr | < nlmax{flullxz, [wllxpDllv = wlay Vu,we X7, (3.4.2)

where n € C°([0, 00)) with n(0) = 0.
Then there exists & > 0 such that for all input data F := (g,u) € VP with |Fllge < & the problem

(3.4.1) has a unique solution u € X7,

Proof. Define the mappings A,G : X2 — 575 by Aw := (Gyw + Aw,w(0)) and G(w) := (G(w),0). By
assumption of maximal LP regularity on A, the linear operator A is an isomorphism and the norm of
A~1 is bounded above by ¢, ,(A). Let 0 < a < 1/¢,,,(A), and choose p > 0 such that

1G(u) = G(w)llgy < allu—wllxy Vu,we By :={we X} : [|w]lxy < p}.
Being a closed subset of X%, the set B, is complete. Assume that || |5, <6 := p(1/cyp(4) — ).

Defining ® : X2, — X2, w — ®(w) := A~Y(F — G(w)), equation (3.4.1) is equivalent to the fixed point

v

equation ®(u) = u. Since for any u,w € B, there holds
1D (w)llxp < cop(A)IFl5p + allwlag) <p

and
[®(u) — @(w)|xr < acyp(A)|lu —wllyr,

the Banach fixed point theorem applied to ®|p, shows that there exists a unique fixed point u = ®(u) €
B,, hence of a unique solution to (3.4.1). O
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4 Minimal residual FEM for operator
equations

A variational solution strategy for well-posed operator equations, which deviates from the finite element
method as presented in the standard text books of numerical analysis, is discussed. It is based on
the minimization of the residual of the continuous operator equation on suitable conforming trial and
test spaces, where the dimension of the test space is allowed to be larger than that of the trial space.
This leads to a possibly rectangular, overdetermined linear system of equations when the equation is
reformulated as a matrix vector equation for given bases on the trial and test spaces, rather than a
square one. However, the freedom gained renders the inf-sup condition, which is crucial for the stable
resolution of the problem, much easier to achieve for non-symmetric problems.

In this framework, it is natural to transport the norms of the continuous problem to the discrete problem.
This has the following important consequences: the discrete solution satisfies a quasi-optimality error
estimate analogous to Céa’s lemma and, with slightly more effort, the discrete equations can be efficiently
preconditioned, making the approach amenable to fully parallelizable iterative solvers. In the context of
parabolic problems these features are particularly interesting, since they seem to be difficult to obtain
with conventional methods.

To be more precise, let B : X — )’ be a linear map between a real Hilbert space, X, and the dual
of another, ). For instance, B could be the linear parabolic operator defined in (3.2.15). For a given
F €Y' we aim at approximating the solution u € X of the linear equation Bu = F. For reasons already
sketched we rewrite this equation as the functional residual minimization problem

Bw — F,v)y
u = argmin sup (B vl LRy

(4.0.1)
weX wveY\{0} [vlly

The minimal residual Petrov-Galerkin method is the following: let X, C X and YV, C Y, Vi, # {0},
be a pair of closed subspaces (not necessarily finite-dimensional), let ||-||a- ~ ||-||yy be an equivalent norm
on Y, and consider the (discrete) functional residual minimization problem

(Bwp — F,vn)y xy

up r=argmin  sup (4.0.2)
wrE€Xn vy €YR\{0} ||UhH/\/
This method relies on the validity of the so-called discrete inf-sup condition
Buwyp,, /
V8 (X, Vi) = (Bun, vn)y oy (4.0.3)

inf sup S
wn€X\ {0} v, ey 0} lwnllxllvnlly

Such a pair of spaces X}, x )V, C X x Y will be called stable for 5. Assuming this stability condition,
in Section 4.1 we show that the discrete residual minimization problem is uniquely solvable and the
minimizer is quasi-optimal in the discrete trial space &}, (i.e., the error wy, — ||u — wp ||+ is the minimal
possible up to a multiplicative constant proportional to 1/v5(Xp,Vs)). In Section 4.2 we reduce the
problem to a possibly overdetermined matrix vector equation, for which we also propose a generic pre-
conditioner. An iterative solver for this linear system is formulated in Section 4.3. Given the significance
of the discrete inf-sup condition, we elaborate in Section 4.4 on several characterizations of similar con-
ditions, some of particular importance to parabolic problems; the notation introduced there is relevant
to later sections.

Most results of Sections 4.1-4.4 have appeared in [And10; And12].
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4.1 Solution of linear equations via residual minimization

Typically, the conforming finite element method proceeds as follows: given B € Iso(X,)’) and F € ),
we look for an approximate solution uj, € Xj in a discrete trial space A} C X as the solution of the
discrete variational problem

find up € Xh . <Buh7’l)h>yl><y = ]—'vh V’Uh € yh, (411)

where ), is a suitable discrete test space of the same dimension as Aj,. Choosing suitable bases on
Xy and Y, leads to a square system of linear algebraic equations Bu = f for the coefficients u of wy,.
Due to Theorem 4.1.1, a necessary (and, if dim X} = dim )}, < oo, also sufficient) condition for the
unique solvability of this system is the discrete inf-sup condition (4.0.3). Note that if the bilinear form
(B-,-)y7xy is continuous on X x ), then it is also continuous on X} X Yy, but, in general, the same
conclusion fails to hold for the inf-sup condition!" This renders the construction of a suitable discrete
test space Yy, difficult for non-symmetric B such as the parabolic operator (3.2.15). Hence, we abandon
the requirement dim ); = dim A} in favor of dim})), > dim A&},. This generalization of the standard

conforming finite element method to what we call the minimal residual Petrov-Galerkin method
is the subject of Section 4.1.2.

4.1.1 Well-posed linear operator equations

The following well-known theorem due to [Nir55; Nec62; Bab71], see also [Bra07, Satz 3.6] or [EG04,
Theorem 2.6], provides necessary and sufficient conditions on a linear continuous operator B for the
well-posedness (= the solution mapping is continuous) of the linear operator equation Bu = F.

Theorem 4.1.1. Let X and Y be real Hilbert spaces. Let B € L(X,)"). Then B € Iso(X,)’) if and
only if the following two conditions are satisfied:

. (Bu,v)y <y o
v = in sup ~———= 22 > (), (injectivity) (4.1.2)
ueX\(0} veyrqop llullxlvlly
Vo e Y\{0}: JueX: (Bu,v)yxy#0. (surjectivity) (4.1.3)

In that event we have the bound ||B™| zr 2y < Vg

The following special case of Theorem 4.1.1 is known as the Lax-Milgram lemma.

Theorem 4.1.2. Let X be a real Hilbert space. Let B € L(X,X’) be X -elliptic, i.e.,
Jag >0:  (Bu,u)xrxx > agllull3 Yu € X. (4.1.4)

Then B € Iso(X, X') and || B~ cxr.x) < ag '

The proof of the related results in [Nir55; Ne¢62; Bab71] used the implication “2. = 1.” of the following
lemma, cited here from [EG04, Lemma A.36]. It will be used on several occasions, and we therefore
detail the proof.

Lemma 4.1.3. Let X and Y be Banach spaces and A € L(X,Y). Equivalent are:
1. the image A(X) of A is a closed subspace of Y,

2. there exists y4 > 0 such that for ally € A(X) there exists x € X with Az =y and val||lz||x < |ylly-

I Consider X = ¥ = R? and let B be the diagonal matrix diag(1, —1). Then B satisfies the inf-sup condition on X = Y
but not on the subspace spanned by (1,1)T.
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Proof. Assume that R := A(X) C Y is a closed subspace, hence a Banach space. The Banach open
mapping theorem implies that the surjective operator A € £(X, R) maps the open unit ball Bx C X onto
an open set A(Bx) C R. Hence, there exists 74 > 0 such that for any y € R we have § := yay/||y|lv €
A(Bx), which implies the existence of an element & € Bx with AZ = y. Now, z := Z||y||y /y4 satisfies
Az =y and yallalx = IFx lylly < lylly-

Conversely, take v4 > 0 as in the second hypothesis. To show that R := A(X) is a closed subspace
of Y, let {yn}neny C R be a (Cauchy) sequence converging to, say, y € Y. By assumption, there
exists a sequence {x, }peny C X with Az, = y, and valzn — Zmllx < |ym — Unllx — 0 as n,m — co.
Hence, {z,}nen C X is a Cauchy sequence with limit, say, ¢ € X. But, A being continuous implies
Y < Yn = Az, — Az as n — oo, hence y = Az € R. This shows that R is closed. O

The following standard theorem that we quote from [Bra07, Satz 3.7], cf. [Bab71, Theorem 2.2], addresses
the well-posedness of the discrete variational problem (4.1.1). It should be contrasted with Theorem 4.1.9,
where we construct a quasi-optimal approximate solution with the sharper constant v, ! |Bl|z(x,y7) under
slightly relaxed requirements as the minimizer of the functional residual.

Theorem 4.1.4. Let X and Y be real Hilbert spaces, and F € Y'. Let B € L(X, y’) satisfy the conditions
of injectivity and surjectivity stated in Theorem 4.1.1. Let X C X and Y, C Y be closed subspaces such
that these two conditions still hold if X and Y are replaced by Xy, and Yy, respectively (possibly with a
different constant, say vn, > 0). Then there exists a unique solution up € X}, of the discrete variational
problem (4.1.1). Moreover, there holds quasi-optimality estimate

lu = unllx < (143 1Bl eeyn) | inf, (e —wnllx. (4.1.5)

4.1.2 Residual minimization

In this subsection we introduce the minimal residual Petrov-Galerkin solution for the linear operator
equation Bu = F and show that it satisfies a quasi-optimality estimate. To that end, let X and ) be
real Hilbert spaces. Let N € Iso(),)’) and M € Iso(X, X”) be s.p.d. operators. We set

I lelly _, ¢ (4.1.6)
ve\{o} [lvlly ~ veyroy lIvlly
and
M = inf IR < sup lull v =: Cpm. (4.1.7)

we\{0} [[ullx ~ uexvgoy llullx

It follows that car|||ly < |l < Cwll-|ly on Y and cp||-|lx < [|'llm < Cumll||x on X in the sense of
equivalent norms. We give two examples of such operators.

Example 4.1.5. Let M : X — X’ be the Riesz map, defined by (Mw, W)y xx = (w,0)x, w,w € X.
Then cpg =1 = Cpq and ||| = ||| m-

Example 4.1.6. Let D C R? be a bounded domain with Lipschitz boundary. Set X := Y := H(D).
A possible choice for M = N is the Laplace operator M := N := —A.
Theorem 4.1.4 has already highlighted the crucial role of the discrete inf-sup condition, for which we now

introduce some terminology.

Definition 4.1.7. A pair of subspaces X}, x V), C X x Y is called non-trivial if X}, # {0} and ), # {0}.
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Definition 4.1.8. Let B: X — ) and &), x V), C X x Y be a pair of subspaces. We define

v8(Xn, Vp) = inf (Bun,vn)y xy

sup (4.1.8)
un€Xn\ {0} v, ey, {0} Iunllxllvnlly

if A, x Yy, is non-trivial and vp(Xp,Vs) = 0 otherwise. A given non-trivial pair X, x YV, C X x Y
is said to satisfy the discrete inf-sup condition for B if we have v5(Xp,YV)) > 0. A family of
subspaces {X}, X YV, C X x YV}, indexed by h is called stable for B if there exists 79 > 0 such that
v8(Xn, Yn) > 7o > 0 for each h.

The following theorem is the basis for the minimal residual Petrov-Galerkin method. The quasi-
optimality estimate obtained here is analogous to (4.1.5). The proof uses [XZ03, Lemma 5] to remove
the classical “14+” from the discrete inf-sup constant.

Theorem 4.1.9. Let
1. X and Y be real Hilbert spaces and B € L(X,)).

2. Xy xYp CX XY be a non-trivial pair of subspaces that satisfies the discrete inf-sup condition for
B, i.e., VB(X;L,));L) >0 in (418)

3. N €1Is0(Y,)") be an s.p.d. operator.

Then for any u € X there exists a unique up € Xp, which satisfies

|(Bwy, — Bu,vp)y «yl

Ru(up) = inf Rp(wp), Rp(wp):= sup (4.1.9)
wnEX, vn €V \{0} llvn [

Moreover, there holds the quasi-optimality estimate

lu—upllxy <Cr inf |lu—wpl|x (4.1.10)
wp €Xp,
with
Cy ||B /

Gy = v IBlleyn o0, (4.1.11)

en V8(Xn, Vn)

where 0 < cxr < Cyr < 00 are given by (4.1.6).

Proof. For the proof we abbreviate v, := v5(Xh, Vi). Suppose, we have constructed a linear projector
Py, : X — A}, such that for any w € &’ the element wy, := Pyw € &), satisfies (4.1.9), and || Pp| (x,x) <
Ch, where C}, is the constant in (4.1.10). Then (we can w.l.o.g. assume that P, # Idy and Pj, # 0), by
[XZ03, Lemma 5] we have [[Idx — Ppl|z(x,x) = | Prllz(x,x), and the quasi-optimality estimate (4.1.10)
is due to

Hu — Uh”X = ||(IdX - Ph)(u - wh)HX S Ch||u - ’u)”;g Yw € Xh. (4112)

The remainder of the proof is devoted to the construction of this projector. Let (-, )nr := (N, -)yrxy
denote the scalar product on ) generated by N. For each w € X let @ € )}, denote the unique element
which satisfies

(W, vp)n = (Bw,vp)y <y Yo € V. (4.1.13)

This element exists and is unique by the Riesz representation theorem on the Hilbert space (Vn, (-, )ar),
since ), C Y is a closed subspace w.r.t. |||y by assumption, hence also w.r.t. ||-||ar. It is obvious that the
map w — W is linear on X. Choosing v;, := W in the above formula we find ||w||x < CX/1||BH£(X7);/) |lw]| 2
for all w € X, and by definition of vy, we have ||wp||n > folvhHwhHX for all wy, € &X},. Thus, the linear
map wy, — Wy, is continuous and injective on &j. By Lemma 4.1.3, the image of &} under this map,
which is the subspace X}, := {wy, : wy, € X} C Wy, is a closed (w.r.t. ||||») subspace of V.
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Now, let w € X be arbitrary. By closedness of the subspace 5(; C Vp there exists exactly one wy, € &},
with the unique corresponding wy, € X}, which minimizes ||wy, — @||xr on Xp, i.e., wy, is the N-orthogonal
projection of w onto X},. Hence, it is the unique minimizer of

—~ = Wy, — W B(wy, — :
(T — Bl = sup e @uin o [(Blwn = w) vn)y o

v €Vn\{0} HU}L”N B v, €VR\{0} ||U’1HN

, (4.1.14)

which is just the statement of (4.1.9). Let us call P, : X — Aj the map which takes w € X to
Pyw := wy, € X in this fashion. Since P,w is the composition w — W — wj, — wy, it is linear and
idempotent, i.e., P? = P,.

To obtain a bound on the norm of P, we note that wy, wp_ € X;L is alternatively characterized as the unique
element in Xh with (wp, vp) v = (W, vp) n for all vy, € Xh C Yp,. This implies,
CitmllPanlly € sup  SDRUIN gy DN gy (4.1.15)
vn€XN\{0} llvnlla vn€Xn\{0} lvnllar

where injectivity of wj, — wy on Xj, was used in the first inequality. The continuity of B yields the
desired bound. O
This theorem motivates the following definition.

Definition 4.1.10. Let X and ) be real Hilbert spaces. Let B € E(X,y’) and F € )’ be given. Let
N € Is0(),)") be an s.p.d. operator. Assume that &}, x V; C X x ) is a stable pair for B. We then
define the minimal residual Petrov-Galerkin solution of Bu = F (for the pair A}, x )} and the
operator A') as the minimizer of the functional residual,

|(Bwp — F, vn)y <yl

up ;= argmin  sup (4.1.16)

wh€X vR€VA\{0} llvnllar

If there exists u € X such that Bu = F then by Theorem 4.1.9 the minimal residual Petrov-Galerkin
solution up € X is unique and satisfies the quasi-optimality estimate (4.1.10). Moreover, the solution
map is continuous by the following corollary to (4.1.15).

Theorem 4.1.11. In addition to the hypotheses of Theorem 4.1.9, assume that B € Iso(X, y) Then

the solution map F +— uy, given by (4.1.16), is continuous with continuity constant ﬁ Ve

4.2 Operator preconditioning

Operator preconditioning [Hip06| or canonical preconditioning [MW10] is a methodology for obtaining a
well-posed system of linear equations from a Petrov-Galerkin or a finite element method discretization
of a well-posed operator equation. We generalize this idea to problems of residual minimization (4.1.9).
Hence, in this section we analyze the spectral properties of the (preconditioned) Petrov-Galerkin system
matrix and describe how the residual minimization equation (4.1.16) can be formulated as an equivalent
generalized linear least squares system. Most importantly, the discrete solution obtained from this least
squares system coincides with the minimal residual Petrov-Galerkin solution (4.1.16), and in particular
inherits the quasi-optimality bound (4.1.10).

Throughout this subsection, we assume that we are given
e rcal Hilbert spaces X and ),
e operators B € L(X,)') and F € ),
e s.p.d. operators M € Iso(X, X’) and N € Iso(),)’),
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e a fized nontrivial pair of closed subspaces X}, x V, C X x ) of dimensions M := dim &), € NU {co}
and N :=dim}Y), € NU {c0},

e bases ® = {dpm tmeim) C X for Xy, and W = {9y, }ren) € Vi for Vi,
We then define the matrices N € RV*¥ B € RVXM and M € RM*M pby

N := <N\IJ, \I/>y/><y, B .= <Bq),\:[f>y/><y, M := <M(I), @>X’><X; (421)

i.e., the components are By, = (Bom, ¥n)y <y, n € [N], m € [M], and similarly for N and M. The
vector f € RY is the vector with the components f,, = (F, 1)y xy, n € [N], for which we also write

f=(F, Ty «y. (4.2.2)
We call B the system matrix and f the load vector. Given vectors u € RM and v € RV, we write
w®:i= > wpdm €A and v U= Y vuh, €V (4.2.3)
me([M] n€[N]
if the respective sum converges in norm. The following observation requires no proof.

Observation 4.2.1. Given finitely supported vectors u,u € RM and v,v € RY set uj, :=u'® € A},
and vy, := v V¥ € ), and similarly for u;, and vj,. Then

1. (Bup,vp)y xy = v Buand (F,vp)yxy =v'f,

2. (Mup, up)xrxx =1u Mu and (Nvp,, v5)yrxy = v Nv.
Let ® denote the analysis operator, defined by CT)(uTCI)) = u for any u € RM with #suppu < oo.
Since ® is a basis for A}, the subspace of u' ® with u € RM finitely supported is dense in &}. Therefore,

® extends uniquely by continuity to an isometric isomorphism @ : (X, ||| m) — £3; and the identities
in Observation 4.2.1 extend to all u,u € £3; and v, v € £%;. Immediate consequences are:

e Mis s.p.d. on £3; and N is s.p.d. on ¢%,
o fc EQN,l and B € E(Z%,I,KQN,I),
if B € Iso(X,Y) then B € Iso({3;, (31),

for all u € £3; and v € (%, the products v Bu and v 'f are finite,

there holds

, T =u'deX
(Bun, vp)yr«y _ Vv Bu for all {uh u € A\ {0}, (4.2.4)

lunlladllvnlla— Tullnlvin v =vI¥e Y, \ {0}

The identity (4.2.4) is the essence of the operator preconditioning methodology.

Proposition 4.2.2. Assume that vg(Xn, V) > 0 holds in (4.1.8). Then B is injective.

Proof. Let u € ¢3; be arbitrary, u # 0. Then uy, := u' ® € A&}, is non-zero. Since v5(Xp, V) # 0 by
assumption, there exists v, = v' ¥ € ), # 0 such that (Buy,vs)y/xy # 0, and hence also v Bu # 0,
i.e., Bu # 0. This shows that B is injective. O

Since N is s.p.d., there exists a non-singular square matrix R such that RTR = N. This may be the
Cholesky factor or the matrix square root [GV96, Section 4.2.10|. We write N/2.=R, N2 :.=RT,
N-"/2:= R~! and N~/ := (R~!)T. Similar notation is adopted for M. Now, we obtain bounds on
the singular values of the preconditioned system matrix N~ /2BM~"2. To simplify the argument, we
assume that X}, and ), are finite-dimensional.
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Proposition 4.2.3. Assume that X, x YV, C X x Y is a non-trivial pair of finite-dimensional subspaces
that satisfy the discrete inf-sup condition, i.e., yg(Xn,Vn) > 0 holds in (4.1.8). Then:

1. The matriz BTN~B is s.p.d.
2. Bvery singular value o of the matriz B:=N-"/:BM~"/? satisfies the bounds

v8(Xn, V) . 1Bl cex,y)

4.2.
CnCm CNCM (4.2:5)

3. The matrit BTB is s.p.d. Its condition number /{2(]§T]§) s bounded by

o B '
mg CnCOm |IBll (v (4.2.6)

envenm vB(Xn Vn)

Here, 0 < ey < Cpn <00 and 0 < cpy < Cpq < 00 are as in (4.1.6)—(4.1.7).

Proof. By Proposition 4.2.2, B € RV*M is injective, and we necessarily have N > M. Moreover, M and
N being s.p.d. matrices, the matrices B'TN"'B € RV*Y and B'B € RM*M are s.p.d. The condition
number of B'B is therefore the ratio of the largest to the smallest singular value of B, hence (4.2.6)
follows from (4.2.5).

To prove (4.2.5), let 0 < amin(]A?;) < amax(]:a;) denote the minimal and the maximal singular value of ]§,
respectively. From (4.2.4) we obtain

v Bu v Bu (Bup,vp)yrxy

[allez, [Vllez,  Nalle Iviig,  lunlladllonllv

for all up, = u'® € &), \ {0} and v, = v ¥ € V), \ {0} with @ = M"?>u and v = N"/?v. Inserting this
into the variational characterization of singular values,

~ JTBu
Omin(B) = inf sup %, (4.2.7)
GeRM\{0} germ\ {0y [Ullez, [IVIlez,
~ JTBu
O'Irxax(B) = sup sup #, (428)
UERM\ {0} VERN\{0} ||u||fz?v,||VHe$\,
the claim (4.2.5) is immediate from the definition of v5(Xp, V) and (4.1.6)—(4.1.7). O

Discrete variational problems of the type discussed in Theorem 4.1.4 readily lead to a linear algebraic
equation Bu = f. Since we have B € RV*M with possibly N # M or M = N = oo, we discuss the linear
algebraic system corresponding to the discrete residual minimization (4.1.16). The following proposition
provides several options.

Proposition 4.2.5. Let up =u' ® € X},. Equivalent are:
i) The vector up € Xy, is the minimal residual Petrov-Galerkin solution (4.1.16),

i) The vector u € (3, minimizes the discrete algebraic residual:

IBu—flx = inf |Bw—fln 1, (4.2.9)
wel,

iii) The vector u € {3, solves the generalized Gauss normal equations:

B'N"'Bu=B'N'f, (4.2.10)
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iv) The vector u € £3, solves the preconditioned generalized Gauss normal equations:
B'Bu=B'f, (4.2.11)
where B := N~ "2BM~"2, @ := M"?u, f := N~ /2¢.

Proof. The equivalence i) < ii) is due to the identity

sup (Bun = F, vn)yxy = sup v (Bw—f) = ||Bw — f||jn—1 (4.2.12)
on€Vn\{0} l|vnlla vez\foy IV
for all w, =w'® € X),.
To obtain ii) <> iii) note that for all w € £3; the map
R—R, e |Butew)—f|%- (4.2.13)

is differentiable and convex, and the derivative vanishes at ¢ = 0 for all w € ¢3; if and only if u satisfies
(4.2.10). Hence, ii) = iii). Since the map (3; — R, u > ||Bu — f||3_, is strictly convex, it possesses at
most one (local) minimum. This shows iii) = ii).

The equivalence iii) < iv) is clear. O

Corollary 4.2.6. Let u € X and F := Bu € Y'. Let the discrete inf-sup condition v5(Xp, Vy) > 0 hold.
Let u € 634 be a solution of either equation, (4.2.9), (4.2.10) or (4.2.11). Then uy :=u' ® € X}, is the
unique minimal residual Petrov-Galerkin solution satisfying (4.1.16).

Proof. By Proposition 4.2.5, the element u; := u'® € X), satisfies (4.1.9). Since y5(X%, Vn) > 0,
Theorem 4.1.9 shows that such a uj € X}, is unique, and hence uniquely solves (4.1.16). O

4.3 lterative solution

Proposition 4.2.5 and Theorem 4.1.9 can be summarized by saying that the optimization problem

find uec/fi; st [Bu—f|n - min (4.3.1)

has a unique solution if the discrete inf-sup condition v5(Xp, Vs) > 0 is satisfied. The solution is given
by the corresponding Gauss normal equations (4.2.10) or, in preconditioned form, by (4.2.10). Efficient
iterative Krylov subspace methods for such problems are known [Cho06]. One option is the LSQR
algorithm due to Paige and Saunders [PS82| applied to the normal equations. We formulate it in such a
way that only the the preconditioners M~! and N~! need to be applied, but not the square roots, cf.
[Ben99]. We refer to [CPT09] for the discussion of stopping criteria for the LSQR algorithm.

Algorithm 4.3.1 (Generalized least squares). For B € RN*M N M € Ny, M < N < oo, of full rank,
M € RM*M and N € RV*N sp.d., f € RY, compute an approximate solution u;» ~ u € RM to

B'N'Bu=B'N'f (4.3.2)
using M as a preconditioner.
1. a) (v1,Vy,01) := NORMALIZE(f, N)
b) (w1, W1, 1) ;= NORMALIZE(B T v{, M)
¢) di :=wi, ug:=0, ¢1 = f1, p1 = a1

2. For i =1,2,...,7* do the following steps (until convergence)
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a) (Vi+17 Qi—&-la ,Bi+1) = NORMALIZE(BW@ — aﬁi, N)

b) (WZ‘+17 \/i\ViJrh ai+1) = NORMALIZE(BTViJrl — ﬁiJrl\/?\Vi, M)

) pii= [P+ B2 cii=pi/pin 8= Biva/pi

d) 041 = siqiy1,  Pir1 = —CiQir1, G i= g Gig1 = Sid
e) u; = w1+ (d%‘/ﬁi)di, di+1 = Wil — (0i+1/,0i)di
NORMALIZE : RE x REXK 5 (5,S) - (7,2,2) € RE x RE x R, with S s.p.d.

1. Solve Ss* = s for s*. Set z := Vs's* and (z,2) := (27 's*, 27 !s)

4.4 On the inf-sup condition

We will formulate and verify results concerning the stability of pairs of subspaces using the following
notation.

Definition 4.4.1. Let X and Y be normed real vector spaces. Let (-,-)xxy : X XY — R be a map.
For any pair of subspaces U x V C X x Y we define

Kxxy(U,V):= inf  sup {u, vy (4.4.1)

weU\{0} yev\ (o} lullx vy

if U x V is a non-trivial pair, and KXxxy (U, V) := 0 if otherwise.

A frequent situation will be X =Y or Y = X, as the following examples illustrate.

Example 4.4.2. If X is a Banach space and Y = X’ is its dual, then (-, ) xxy will mean the duality
pairing (-, ) xx x. In this case we have 0 < KXxxy (U, V) < 1 for any pair of subspaces U x V C X x Y.

Example 4.4.3. Let X = Y be a Hilbert space. In this case (-, ) xxy will mean the scalar product
on X =Y. Owing to the Cauchy-Schwarz inequality we have Ky xy (V,V) = 1 for any subspace
{0} #V C X.

Example 4.4.4. Let X, Y be Banach spaces, and B € L(X,)"). Set (-, ")xxy = (B, )yxy on X x V.
Then, tautologically, v5(+, ) = Kxxy (-, ).

4.4.1 General properties

Several useful characterizations for the quantity Kxxy (U, V) are stated and discussed. The proofs are
given at the end of this subsection.

Proposition 4.4.5. Let X =Y be a Hilbert space. Let {0} #U C X and W C X be closed subspaces.
Let further Wt C X be any closed subspace such that U C W @& W (direct sum) and W Lx W
(orthogonal subspaces in X ). Let Q : X — W be the X-orthogonal projector onto W. Then for any
0 < k <1 the following are equivalent:

Kxxx (U, W) > &, (4.4.2)

sup {u, w)x > k|lullx Yu € U, (4.4.3)
wew\foy lwllx

|Qu|lx > &l|lu|lx Yu € U, (4.4.4)

[lu — Qullx < V1—r2|ullx Yu e U, (4.4.5)

(u,wh)x < V1 — w&2||lul|x||w’||x VueUwt e Wt. (4.4.6)
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The inequality (4.4.5) may be interpreted as a statement on the quality of the approximation of elements
in U by elements in W. If U and V are finite-dimensional then Kx xx (U, V) = cos 6, where 0 < 0 < /2
is the largest principal angle between the subspaces U and V, cf. [GV96, Section 12.4.3]. An inequality
of the form (4.4.6) is called a strengthened Cauchy-Schwarz inequality.

If Uy, Uy, W C X are subspaces, then not necessarily Kxxx (U, W) > 0 for U = U; + Us, even if this
holds for U = Uy and U = Us. Indeed, consider Uy := R x {0}, Uz := {0} x R and W := {(r,r) : r € R}
as subsets of X := R2. However, we may state the following as a consequence of Proposition 4.4.5.

Corollary 4.4.6. Let U, Uy, W C X be closed subspaces such that either Uy CW or Uy C W. Then

fKXXx(Ul + Us, W) > min{fKXXX(Ul, W),fKXXx(UQ, W)} (447)

We are going to generalize some of the equivalences in Proposition 4.4.5. Consider two Hilbert spaces X
and Y and a continuous bilinear form (-, ) xxy : X XY — R. Let U x V C X XY be a pair of subspaces.
By the Riesz representation theorem on the Hilbert space (V,||-||y) there exists a unique I' € £(X,V)
such that

(Tz,v)y = (z,v)xxy V(z,v) € X xV. (4.4.8)
In the following we will simply write
Iy = (,)xxy on X xV (4.4.9)
to define I' € L(X, V).

Proposition 4.4.7. Let X and Y be Hilbert spaces, and U x V. C X XY a pair of closed subspaces.
Let {-,-)xxy be a continuous bilinear form on X xY and define T’ € L(X,V) by (T, )y := (-, ) xxy on
X x V. Then for any k > 0 the following are equivalent:

i) |Tully > kl|ul|x for allu e U,
ZZ) fKXXy(U, V) > K,
1) Kxxy (U, ‘N/) > kKyxy(V, YN/) for any closed subspace VCy,
w) there exists 2 € L(T(U), X) with |Z||zrw),x) < £7F such that EoT = Idy.
The equivalence i) < ii) < iv) is related to the statement of [Bre74, Theorem 0.1]. By setting k :=

Kxxy (U, V), and exchanging the roles of V and V', we obtain an important consequence from Proposition
4.4.7, ii) = iii): for arbitrary closed subspaces U C X and V,V CY we have

Kxxy (U, V) > Kxxy (U, V)Kyxy(V,V). (4.4.10)

This estimate means that, in order to obtain Xx«y (U, V) > 0, we may first identify an “optimal” space
V for which X xxy (U, ‘7) is positive, and then pass to a more “practical” space V which approximates
1% well, see Proposition 4.4.5 for several characterizations of the latter event, Section 4.4.3 for further
discussion, and Theorem 5.2.18 for an application.

In a Gelfand triple V — H = H' < V' we have the following characterization for Ky v (U, U).

Proposition 4.4.8 ([And12]). Let V — H = H' — V' be a Gelfand triple of Hilbert spaces. Let @) be
the H-orthogonal projector onto a closed subspace U C V. Then, for any k > 0, t.f.a.e.:

a) Ky (U,U) > &,
b) |Qully < kY vllv for allveV.

Remark 4.4.9. The inequality ||Qu|lv < C||lu|lv, i.e., the stability of the H-orthogonal projector onto
U in V, has been investigated for finite element spaces, see [Car02]| and references therein. Note that
any finite-dimensional non-trivial subspace U C V satisfies Ky (U, U) > 0.
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We now give the proofs for the statements of this subsection.

Proof of Proposition 4.4.5. We will use several times the fact that (Qu,u)x = [|Qu||% for all u € U. Let
now u € U be arbitrary.

e The equivalence (4.4.2) & (4.4.3) is clear from the definition.

o (4.4.3) & (4.4.4): using (Qu,w)x = (u,w)x for all w € W we have
U, w U, w
IQuix = sup {9urlx o w)x,
wew {0y Nlwllx  wew\ioy lwlx
o (44.4) = (445): [lu— Qul% = [lulk — IQul% < (1 —&*)ul%-
o (444) & (445) full <l — e - Qulk = I Qul-
o (4.4.5) = (4.4.6): (u,wT)x <|lu— Qulx|lwT|x < V1 — r2|u|x||wT|x for all wt € WT.
o (4.4.5) < (4.4.6): setting w := u — Qu, we have |wt||% = (u,w")x < V1 — K2|Jul|x||wT]x.

The proof is complete. O

Proof of Corollary 4.4.6. Assume w.l.o.g. that Us C W. Set k1 := Kxxx(U;,W). Define P : X —
Uy NWEx and Q : X — W as the X-orthogonal surjective projectors. For any u = u; 4+ us with
(u1,u2) € Uy x Uz we have

lu = Qull% = [[Pur — QPusr[% < (1 — #1)[| Purll% (4.4.11)

and we obtain (4.4.5) using || Puy||x = ||Pul|x < |Ju||x. Since Xxxx (U2, W) = 1, the implication (4.4.5)
= (4.4.2) shows the claim. O

Proof of Proposition 4.4.7. Let k > 0. We show i) < ii) < iii) and i) < iv). Let u € U\ {0} be arbitrary.

e i) & ii): is seen from

Tr Tr

Ky (U,V) = inf  sup %0y [Tully (4.4.12)

weU\{0} yev\(oy [[ullxllvlly  wet\{o}y [ullx

e ii) = iii): observing the valid implication ii) = i), we have for any subspace V C Y
- r bl
Kxxy (U, V)= inf ICully sup M (4.4.13)
wetoy | Tl s, Mol ol

Tu, ¥ -

Sk oinf sup WO S e (VD). (4.4.14)

P =~
weU\0} e oy ITully [17]ly

e iii) < ii): is immediate with V := V.

e i) = iv): First, I is injective on U due to i). By Lemma 4.1.3, the image R := T'(U) is a
closed subspace of Y, hence a Banach space. Hence, I'|y € L(U, R) is a bijection. The Banach
open mapping theorem implies I'|y € Iso(U, R), ie., E = I‘|,}1 € L(R,U). Using i) we find
IETw)|x = ||ullx < &7 Y|Tully, and u € U being arbitrary implies |Zr|x < &~!|r|y for all
r€ R=T(U), hence ||Z| zpu) < w1

e i) < iv): using 2ol =1Idy and ||E||zrw),x) < 671 we obtain sl|ul|x < &[|E| 2@y, x)|Tully <
ITully-

This finishes the proof. O
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Proof of Proposition 4.4.8. To check a) = b), let (I',-)y := (-, )yrxv on V' x U. The operator T'| :
U — U has a closed range by Proposition 4.4.7, ii) = iv). Moreover, it is surjective, since the mapping
v = (Tu, Qu)y = (u, Qu)yrxyv = {(u,v)y/xy does not vanish on V regardless of v € U \ {0}. Thus, for
all v € V'\ {0} there exists u € U C V', u # 0, such that T'u = Qu, and

sllullvlQully < [Tullv|Qully = (T, Qu)v = (u, v)vixv < lullv-|vllv,

where the implication ii) = i) of Proposition 4.4.7 was used. Canceling ||u|y+ shows b).

Conversely, assume b). Let v € U \ {0} be arbitrary. Then, using (u, v)y/xv = (u,v)g = (u,Qu)g =
(u, Qu)y/xv, v € V, we obtain
(u,v)vixy (u, Qu)vrxv (u, v) v/ xv

kllullv: = sup —~ = — < sup
vevvioy KVl weviguro KTVl vernioy  llvllv

where k7 1||v|ly > ||Qu|lv was used in the last step. Dividing on both sides by |ju||y and taking the

infimum over u € U \ {0} shows k < Ky v (U,U), which is a). O

4.4.2 Case of sums and tensor products of subspaces

Some further properties of the quantity Xxxy (-,-) in the case that X and Y are Hilbert spaces, them-
selves composed of several Hilbert spaces are reproduced here from [And12]. These are motivated by
applications to parabolic problems: there, we consider spaces such as X = [L2(0,1)®@ V]N[H(0,1)® V']
and Y = [L?(0,1) ® V] x H, where V and H are Hilbert spaces.

Lemma 4.4.10. Let X and Y be Hilbert spaces. Let U; C X, 1 € N, and V CY be closed subspaces.
Let (-,)xxy be a continuous bilinear form, set k; := Xxxy(U;,V), i € N. Definel' : X = V by
<F'a '>Y = <', '>X><Y on X xV. If

<’LL7;,Uj>X =0= <Fui,F'LLj>y V(’LLZ',’LLJ') eU; x Uj with 1 7&] (4415)
then
L
Kxxy (U, V) > infr; for U= ;U L € Ny. (4.4.16)

Proof. Set k := inf;cy k4, let L € Ny. For any u = ZiLZO u;, where u; € U;, Proposition 4.4.7, ii) = i),
implies

L L L
ITul3 =Y ITwl > D willwillz > &Y llwillkx = &*[lullk-
i=0 i=0 i=0
Proposition 4.4.7, 1) = ii), shows KXxxy (U, V) > k&, as claimed. O

If X; and Y; are Hilbert spaces, and (-,-)x,xy, : X; X ¥; — R are continuous bilinear maps, then we
define (-, )xxy : X XY > Ron X := X; ® X5, Y := Y] ® Y5 as the unique continuous bilinear map
which satisfies

(1 @ T2, 51 @ Y2) xxy = (1, Y1) X1 xv1 (T2, Y2) Xax Vo (4.4.17)
for all (x;,y;) € X; X Y;, i = 1,2. This is the setting for the following lemma.

Lemma 4.4.11. Let X; and Y; be Hilbert spaces and (-,-)x,xy, a continuous bilinear form on X; x Y,
1=1,2. Let U; C X; and V; CY;, i = 1,2, be closed subspaces. Set X := X1 ® Xo andY =Y, ® Y5, as
well as U :=U; QU and V =V, ® Vo. Then

Kxxy (U, V) = Kx,xv, (U1, V1)Kx, x v, (Ua, V2). (4.4.18)
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Proof. We set k; := Kx,xy, (Ui, Vi), i = 1,2, and proceed with the nontrivial case £1x2 > 0. Define
1—‘1‘ : Xz — V;‘, i = 1,2, by <F1,>y = <‘,‘>Xi><yi on Xl X V; Set X := X1 ®X2, Y = Yl ®}/2 and
' =T1®Ils: X — Y. We now use Proposition 4.4.7, i) = iv): the range R; := I';U; is closed in
Y;, and there exists Z; € L(R;, X;) with E; oI'; = Idy, and ||Z;]|z(r,,x,) < n;l. Hence, R := R1 ® R»
is closed in Y] ® Y5 and the operator = := Z1 ® Z5 : R — U := U; ® U, satisfies = o' = Idy and
IEl2er,x) < ki 'kyt. Since R = T'U and T is precisely the operator given by (I'-,-)y = (-,-)xxy, the
claim follows from Proposition 4.4.7, iv) = i). O

The following proposition combines the preparations of this section and specifically targets the construc-
tion of stable pairs of subspaces for linear parabolic evolution equations (cf. Proposition 5.2.14).

Proposition 4.4.12. Let F' and V be Hilbert spaces, set X :=FQ V' and Y:=FQV. Let

FCFE\\CF and F{CF.,,CF, keN,y, (4.4.19)
and

U CUp1 CV' and V,C Vi1 CV, £€Ng, (4.4.20)
be families of nontrivial nested closed subspaces. Set

T = kiengo Kpxr(FL FR) and n:= eieano Ky v (Up, Vo). (4.4.21)

Let L € Ny be arbitrary, fized. Define the pair of subspaces Ux V C X x Y as

U= |J FoU ad V= |J FoV, (4.4.22)
0<k+¢<L 0<k+¢<L

where k and £ range in Ng. Then

Kser (U, V) > 71, (4.4.23)
Proof. First, for the auxiliary subspace
Vi= |J FleVcy (4.4.24)
0<k+6<L

we show
i) 7= Kxuy (U, V) >,
ii) 7= Kyxy(V,V) > 7.
Then, the claim follows immediately from (4.4.10). Proof of i)-ii):

i) Define the closed subspaces
Gy=F!, GL:=F'n(F_)"" vkeN (4.4.25)

Using the nestedness Uy C Upyq and Vy C Viyq, there holds

L L
U=> Gi®Up and V=1 Gp® Vi (4.4.26)
k=0 k=0

Lemma 4.4.11 now ensures

Kxxy(Gr @ Up, Gt @ Vi) > Kpwr (G, GL) Kyrsv (Ue, Vi) > 1
—_—

=1
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for all k, ¢ € No. In order to extend this to U and V we use Lemma 4.4.10: observe that G}, Lp G},
when k # k', therefore also

Gl Uy Lx [Gi @Up] and [G}® V] Ly [Gh ® Vi] (4.4.27)

for all non-negative integers k # k', £ and ¢'. Define I' € £L(X, V) by (T, )y = (-, )xxy on X x V.
Since (u, ?)xxy = 0 for all w € G ® Uy and ¥ € G}, ® Vi with nonnegative integers k # &/, ¢ and
¢, there holds F(G,l~C ®Uy) C G,lC ® V, for all k, ¢ € Ny.

ii) Define closed subspaces Wy := Vy and Wy := V;N VEJ;‘{, £ € N. The property ii) follows in the same
fashion as i) by recognizing that

L L
V=Y F ,@W, and V=) F} ,@W, (4.4.28)
=0 =0

and that both sums are, in fact, orthogonal in Y.

This completes the proof. O

The type of subspaces U and V discussed in the preceding proposition is referred to as sparse tensor
product subspaces. As a particular, but important, example of a pair of subspaces U XV C X x Y we
single out the so-called full tensor product subspaces

U:=Fl®@U, and V:=F!®V, (4.4.29)

where (k,¢) € Ny x Ny is any fixed pair. Under the assumptions of Proposition 4.4.12, these satisfy
Kxxv(U,V) > 71, by renaming the subspaces, if necessary, and setting L = 0.

4.4.3 Robustness of stability
In this section we comment on the sensitivity of the constant vz(Xs, Vs) in (4.1.8) w.r.t. the test space
Y. This question plays a central role in some recent related discretization methods cited here.

Let X and ) be Banach spaces and B € £(X,)"). Suppose we are given a stable pair &} x 5/\; CXxx)y
of closed subspaces for B, i.e., fyB(Xh,j\i;:) > 0. Let V5, C ) be another closed subspace. If )} and 5271
are “close” we may expect that the pair A}, x ), is still stable for B. To quantify this, assume that there
exists a (not necessarily linear) mapping P : )}, — ), such that for some fixed § > 0 there holds

lon — P(w)|ly < 8llvnlly  Von € V. (4.4.30)

Observation 4.4.13. It holds

WB(thyh) = 0[1Bllz(x,yr

>
VB(Xn, Vn) > 5o

(4.4.31)

Proof. Let ¢ > 0 and uj, € A}, be arbitrary. Then there exists v, € 5771 such that (Bup,vp)y xy >
(’)/B(Xh,yh) — E)HuhH)(”Uth. With thiS, and (4430), we obtain

<Buh, P(’Uh)>y/><y = <Buh,1)h>yl><y - <Buh, Vp — P(’L)h)>y/><y (4432)
> ((18(Xn, V) — &) = 3l1Bll e ) lunllxlionly- (4.4.33)

Estimating ||vp|ly from below using ||P(vpn)lly < ||vnlly + [[P(vn) —vnlly < (1 4+ 6)||lvn|ly shows the
claim. O
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Thus, the property v5(Xn, V) > 0 is robust under certain perturbations of the test space. This obser-
vation suggests that we first identify a test space 5); C Y for which v (X, 572) > 0 holds, and then pass
to a possibly more “practical” test space ), C ). However, the conclusion seems suboptimal in the sense
that it requires ¢ to be small enough to guarantee yz(Xy,Ys) > 0. By choosing suitable norms on X
and ) involving the operator B itself we may assume y5(X,)) =1 = ||B||z(x,y7). Then any 0 <6 <1
can be chosen, and Observation 4.4.13 coincides with [Dah+11, Lemma 4.1], if the dimensions of X, M,
and 57h are all finite and equal.

A different route is to apply (4.4.10) with (-, ) xxy = (B-,)y'xy. Indeed, for any subspace Y CY we
have

V8(Xn, Vi) = Kywy (Vi Yi)18(Xn, Vi) (4.4.34)

A discrete test space 37;: which maximizes yg(X}, j);) and has the same dimension as X}, can always be
found (cf. the proof of Theorem 4.1.9) for which, in fact, ’YB(ij}Z) > v5(X,)). Such a discrete test
space j\);: was termed the space of “optimal test functions” in [DG11]. A discrete test space Y, of the same
(finite) dimension as V, was said to be é-proximal in [Dah-+11], provided inf,cy, |7 —vlly < d][v]ly for

all 5 € Y. But, due to (4.4.5) & (4.4.2), the latter condition is equivalent to Ky xy(Vn, Vn) > V1 — 62

Hence, the constant }—_T_g in [Dah+11, Lemma 4.1] may be improved to v/1 — 2.

Corollary 4.4.14. Let X} % 5\7; C X x Y be a nontrivial pair of closed subspaces. Let Y, C ) be a
closed subspace such that (4.4.30) holds for some P : Yy, — Yy and 0 <6 < 1. Then

18 (X, Vi) > V1 — 82 45( X, Vi) (4.4.35)

4.5 Extension to semi-linear equations with small data

Let us consider a generalization of minimal residual Petrov-Galerkin discretizations for the linear problem
Bu = F with B € Iso(X,)), to the non-linear problem

Bu+G(u) =F (4.5.1)

where G : X — ) is a non-linear mapping satisfying certain Lipschitz conditions specified below. We
think of G as being of lower order w.r.t. B. To discuss the key arguments, let us for the moment assume,
as in Section 4.2, that we are given a fixed pair of closed subspaces &}, X YV, C X x Y with M = dim A},
and N = dim)), and bases ® C A&}, resp. ¥ C Yy, as well as s.p.d. operators N € Iso(),)’) and
M € Tso(X, X'). Recall further from (4.2.1) the definitions of the matrices N, B and M. For simplicity
of notation we assume here that M < N < oco. Define the mapping G : RM — RV by

G(w) == (G(w), ¥)yrxy (4.5.2)

where w = w'®. We propose the following fixed point iteration for the approximate solution of the
non-linear equation (4.5.1):

1. Take an initial guess ug € RM.

2. For i =0,1,2,..., solve
|Buiy; — [f — G(w;)]||n-1 — min (4.5.3)

for u; 41 using one of the alternatives given in Proposition 4.2.5 with [f — G(u;)] in place of f.

In this section we show by adapting the proof of Proposition 3.4.1 that, for sufficiently small data F, this
iteration converges linearly, and the convergence rate may be estimated in terms of the discrete inf-sup
constant vz (Xp, V) defined in (4.1.8). Moreover, the so obtained discrete solution is quasi-optimal. To
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that end recall that for any u € X', the minimal residual Petrov-Galerkin solution to Bu = F with
F := Bu is defined by

(Bwh - Bu, vh>y/><y

up, = argmin R(wp), R(wp):= sup (4.5.4)

whEXs, vn €Y\ {0} l[onlla
In the proof of Theorem 4.1.9 we showed that the mapping P}, : u — uy, is a linear continuous projection

. B ’ . . . .
with norm bounded by Cj, := %% This will play a crucial role in the proof of convergence of

the iterates u

At the core of the proofs is the following fixed point argument. Assume that we are given o > 0 and
r > 0 such that

1G(w) = G(w)|ly < aljlw—wlx Yw,we By :={weX:|w|x <r}
For arbitrary w,w € B, let u,u € X be the unique solutions of
Bu=F—G(w) and Bu=F—Gw). (4.5.5)

By the Lipschitz assumption on G we have ||u — ul|x < mnw — w||x. The corresponding minimal
residual Petrov-Galerkin solutions uy,, uy, € X} then satisfy

— - - aCy,
lun — unllx = [|Pa(u —u)|lx < Chllu—ullx < @Y lw — wl|x (4.5.6)
and
Junlle < Cullulle < — P (1 + alhwll) € — s (1Fly ar). (45,7
rlle < Cpllullx < (X)) AY x 5. Y) Y 5.
In order to be able to apply the Banach fixed point theorem to the mapping w — up on B,, we need to
assume WBO(“C"),) < 1 and m (IF |y + ar) < r. These two conditions are satisfied if
X X
<BED) g Fly < 5= (BEX) LY (4.5.8)
Ch Ch

Now we assume

1. A family of pairs of closed subspaces X}, x Y, € X x ) indexed by h > 0 that is stable for B, i.e.,

Yo = }iLI;%'VB(Xhayh) >0

2. A fixed mapping G : X — )’ satisfying G(0) = 0 and the local Lipschitz condition
1G(w) = Gy < n(max{|wllx, [[w]x}llw —wlx Vw,weX, (4.5.9)
where 7 € C°([0, 00)) with 7(0) = 0.
3. A s.p.d. operator N € Iso(Y,)’).
For any F € Y’ and h > 0 we define the mapping

Bay, — Foon)yr
L X Xy, weswy, = argmin  sup (Bun +G(w) = F,vn)yrxy. (4.5.10)

@, €X), v, eVn\{0} lvnllar

The discrete algebraic iteration proposed at the beginning of this section is, of course, the algebraic
equivalent of the iteration wuy, ;41 := @}(um), i € No, up,0 € Xp.

With the above assumptions and notation we obtain the following proposition.
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Proposition 4.5.1. There exists r > 0 such that for any o > 0 and F € Y with

1. 0 < a < vg(X,Y)/Co, where Cy := C—Nm,

N Yo
2. 1Fllyr < 6:=r(ys(X,Y)/Co - a),

the mapping <I>§L_- 18 a strict contraction on the complete set B,.NAX), where its Lipschitz constant L satisfies

0400
L<p=—7—+—=<<1. 4.5.11
=7 WB(va) ( )

The constant p < 1 s, in particular, independent of h and F.

Proof. With the above arguments, the proof is a straightforward modification of the proof of Proposition
3.4.1. O
This proposition allows us to construct discrete solutions for small data:

Corollary 4.5.2. With any F as in the previous proposition, there exists a unique sufficiently small
solution up, € Xy to the discrete fized point equation @’}:(uh) = uyp. It is obtained as the limit in X}, of
the fized point iteration up; = @}(uhﬂ-), i € Ng, with the initial guess up o := 0. The iterates satisfy

||uh — uh,i”X < pi||uh||;g Vi € Np. (4512)
More generally, for any two such F, FeY and any initial guesses up o, un.o € ByNXy,, the corresponding
iterates up,; := [®%] (un,0) and up, ; = [@%}‘(Ufﬁ)) satisfy, for alli € No,

a
1—

|wn,: — unillx < T, 7 (Uh,o — unollx — ) where  a:= ———||F — Fl[y.
- P P Yo CN

Proof of corollary. Let us prove the second, more general, statement. It follows by induction over ¢ from

[ ®% (wp) — ®(wn)||x < a+ pllwn — whllx  Ywn,wh € B, N &, (4.5.13)
f

where a = %g—jf\\[f |F — ]T'Hy/, and hence we only show the latter estimate: for arbitrary wp, wy, € B, N A&}

we have

195 (wn) — @%@ )l < (|5 (wn) — @ (wn) [l + 1| @ (wn) — P (wh) |- (4.5.14)

The claimed estimate follows by applying the continuity of the (linear) minimal residual Petrov-Galerkin
solution mapping (Theorem 4.1.11) to the first term and the contraction property of <I>f¢__ to the second. [

Thus, the discrete solution uy, to the non-linear problem (4.5.1), which we define as the limit of the fixed
point iteration <I>'Lj_- with zero initial guess, depends Lipschitz continuously on F with Lipschitz constant

< 1%;;«%0%\[/ This will be used in the next step to show that uj indeed approximates the exact solution
U.

Theorem 4.5.3. Letr >0, a > 0 and § > 0 be as in Proposition 4.5.1. Take F € V' with || F|ly < 4.
Let uw € X be the unique sufficiently small solution to (4.5.1). Assume that

limsup inf |lu—wy| =0. (4.5.15)
h\0 wp EXp

For all h > 0 let uy, be limit of the fized point iteration <I>§- with zero initial guess. Then there exist C' > 0
and hg > 0 such that the quasi-optimality estimate

lu —upllxe <C Hele lu —wrllx  forall 0<h<hg (4.5.16)
Wh h

holds.
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Proof. Let F € V' satisty || F|ly» < d. Fix eg > 0 such that for any w € X' the implication
lu—wly <eo = |Fllyr <8 for F:=F+Bw—u)+[G(w)—G(u)] (4.5.17)

is valid. Let hg > 0 be such that inf,,, cx, ||v — wn|| < € for all 0 < A < hg. For any 0 < h < hg take
wp € A with ||u —wyp|lx < €. Setting Fp, := F + B(wp, — u) + [G(wr) — G(u)], the vector wy, is the
unique solution to Bwy, + G(wy) = Fj, in the minimal residual sense (i.c., wy, = lim;_,[®% 17(0)), the
residual being, in fact, zero. Therefore, by the Lipschitz continuous dependence of u, on F we have

|un —wnllx S IIF = Frlly S llw—wn| x, (4.5.18)

where the implied constants are independent of h and F. Estimating [u —upllx < ||u—wplx +

|lup, —wnllx and taking the infimum over wy that satisfy ||lu —wp||lx < € yields the desired quasi-
optimality estimate. O
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5 Stability of space-time Petrov-Galerkin
discretizations

For the parabolic operator (3.2.15) we develop and discuss criteria for stability of families of trial and test
spaces, in particular of space-time sparse tensor product type. This is one of the main contributions of the
thesis. We proceed as follows. First, to motivate the subsequent development, we briefly review selected
numerical methods for the solution of parabolic evolution equations in Section 5.1 (a thorough survey,
if possible at all, is beyond the scope of this work). In a series of examples in Section 5.2.1 we highlight
some aspects of stability for certain space-time trial and test spaces and use explicit techniques to show
their stability. In Section 5.2.2 we give stability results for abstract trial and test spaces w.r.t. certain
subspace-dependent norms. The implications are discussed for some concrete types of space-time trial
and test spaces in Section 5.2.3, where we first show that continuous Galerkin time-stepping schemes are
not stable, in general, unless a CFL condition is satisfied. This motivates the subsequent construction of
stable space-time trial and test spaces of space-time sparse tensor product type. With this, we obtain an
a priori stable, fully parallelizable, space-time compressive Petrov-Galerkin discretization scheme
for parabolic evolution equations.

5.1 Discretization schemes for parabolic equations

In this section we give a very brief overview of selected discretization schemes for parabolic equation with
focus on stability, parallelism, and space-time compressivity. We consider the linear abstract evolution
equation in the setting of Section 3.2.1

wu(t) + Au(t) = g(t), tel, u(0)=u’, (5.1.1)

in a Gelfand triple of real separable Hilbert spaces V «— H = H’ — V' with initial datum «® € H. To
avoid unnecessary generality we assume for this overview, if not indicated otherwise, that g € C°(J; V)
and A € L(V, V) is a constant-in-time and V-elliptic (i.e., Ja > 0: (Av,v)v/xy > a|lv||} Vv € V).

5.1.1 Time-stepping methods

The traditional numerical recipes for the solution of parabolic equations collect under the name time-
stepping or time marching. These are schemes that approximately compute the solution iteratively on
successive temporal subintervals, i.e., purely “upwind” in the positive temporal direction, and conse-
quently are inherently difficult to parallelize to full scalability (some attempts are mentioned below).
Time-stepping algorithms for parabolic (partial integro-differential) evolution equations may be roughly
grouped into two categories. In Rothe’s method, semi-discretization in time leads to a sequence of sta-
tionary (elliptic) problems. Vice versa, in the method of lines, semi-discretization in space reduces the
problem to a system of coupled ordinary differential equations. Besides their importance in numeri-
cal computations, both were used to show existence of solutions to parabolic problems, in particular
non-linear ones, see e.g. [Rou05, Section 8.2] and [DL92, Chapter XVIII, §2-3].

Elementary time-stepping procedures for the (semi-)discretization in time comprise single step, e.g.
Runge-Kutta, and multi-step methods, e.g. backward differentiation formulae. These collocate the ap-
proximate solution at a number of discrete time points on successive subintervals in time, and may be
explicit or implicit. Explicit methods are usually computationally fast (per time-step) but are associated
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with a restriction, called the CFL condition, on the time-step size to ensure the convergence of the
method. This restriction may be severe for stiff evolution equations, such as many parabolic evolution
equations (after semi-discretization in space). Implicit methods are required to remove this restriction,
usually at the cost of the solution of a large linear or non-linear system of equations at each time step.
In this context, the model ordinary differential equation

y(t) = Ay(t), t>0, (5.1.2)

for any y(0) € R, and any A € C with large negative real part, is of interest. A method is called A-stable
if it yields a bounded solution to this model problem for any A in the left complex plane, an example
is the Crank-Nicolson (CN) time-stepping method. We will see in Section 5.2.3, however, that the CN
method is not stable as a space-time method in the sense of this thesis, in general, unless indeed a CFL
condition is observed (otherwise, the CN method is known to be “too energy conservative” for parabolic
evolution equations).

Contrary to collocation methods, the so-called continuous Galerkin (cG) and discontinuous Galerkin
(dG) implicit time-stepping methods, to our knowledge originally developed for ordinary differential
equations in [Hul72b; Hul72a|, seek the approximate solution in a particular subspace of, say, L?(J; V),
by constructing a suitable projector on successive subintervals in time. We shall briefly discuss the lowest
order cG, for its interpretation as a space-time method and for its relation with the CN scheme. Assume
that we are given a family of nested finite-dimensional subspaces

Ve C ‘/g+1 cV, le Np, (513)

such that | ven, Ve is dense in V. For instance, V; could comprise the piecewise polynomial continuous
functions on an /-times uniformly refined simplicial mesh. Suppose further we have at hand a sequence
of linear continuous operators Py : V! — V, C V, £ € Ny, say defined by (P, )vixyv = (-, )vixv
on V' x Vy. The adjoint P; : V; — V thereof is then the (unique linear continuous) operator that
satisfies (-, P)-)v:xv = (Pr-,-)vixv on V' x Vi Now we set Ay := PyAP] : V; — V; and constrain
the original evolution equation to the finite-dimensional subspace Vp. More precisely, we look for the
solution wuy : J — V4 of the evolution equation dzue(t) + Ague(t) = g(t), t € J, with the initial condition
ue(0) = Ppul. We set g = 0 for simplicity. Choosing a basis on V, this leads to a linear system
of ordinary differential equations which may be solved approximately by means of any time-stepping
method of choice.

Let us constrain the set of candidate solutions. Let Ej C H'(J) be the space of continuous piecewise
affine functions on a uniform partition {0 = tg < ¢, < tg, = T}f,%:ko of J into, say, 2¥*! subintervals, and
set Fy := O,F, i.e., as the space of piecewise constant functions on the same partition. For given
k,? € Ng, we now look for an approximate solution uy ¢ € E ® V. To that end, we require uy ¢ to satisfy
(we suppress the dependence on t of the integrands)

/<atuk,z + Aoug ¢, V)yrxydt =0 Yv € Fi, @ Vg, (5.1.4)
J

(ur,0(0), xe)visv = (U, Xe)vixv Vxe € Vi (5.1.5)

Formally, this is a space-time variational formulation. However, any test function v € Fj, ® V} is piecewise
constant in time, and (5.1.4) is equivalent to

tr
/ <atuk,g + Aguk,g,Xg>V/det =0 Vxe€eV, Vr=1,... Ry. (5.1.6)

tr—1

Discretizing the temporal integral (5.1.6) by means of the trapezoidal rule, which is exact in this case, we
precisely obtain the CN scheme for the computation of ug ¢(t,) € Vi, given ug ¢(tr—1) € Vo, 7 =1,2,....
The correspondence still holds for piecewise affine (on the given mesh) functions ¢ — g(t).

Exponential integrators [HO10] are time-stepping methods that derive from various explicit represen-
tation formulas of the solutions to (5.1.1), e.g. such as the variation of constants formula (3.2.25) with
G(t,s) = e 41=1=%) where Als 4 is a suitable approximation of A(-) on the interval [s, ], or such as the
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Magnus expansion [GOT06; IN99; Magb4]. Consequently, in the constant generator case (with a suitable
right hand side), the equation is, in principle, solved exactly. For a practical method, usually Krylov
subspace iterative methods for the approximate computation of the matrix exponential are suggested
[HO10]. In line with the theory of semigroups sketched in Section 3.2.2, the cited publications assume
different types of Lipschitz or Holder regularity on the family A(-), e.g. [GOTO06, Hypothesis 2]. In this
respect, numerical methods that we obtain based on the space-time variational theory of Section 3.2.1
(or Section 3.2.4) are more general, at least in the Hilbert space setting. Other methods based on the
integral representation formula were presented in [SST00; GHKO5].

Details on time-stepping methods may be found in [HNW93; HW96; Tho06; HO10].

5.1.2 Space-time discretization methods

Let us reconsider the ¢cG formulation (5.1.4). Let O, = {#¥ :r =0,1,..., Ry} denote the basis for Ej,
consisting of the standard piecewise affine nodal interpolants that satisfy 6F(¢,.) = Oy, . Expanding uy, ¢

we obtain uy, = Zf:ko 9,’? ® u,(fz with coefficients u,(fz e V,. We set At := t, — t,._1 for the time step
size, which we assume to be the same for each . The sequence of equations (5.1.6) may now be written

as a single block diagonally implicit linear system of equations
1 : © (1) (RNT _ ¢, (0) T
(Id—5)®1d+§At(S+SS)®Ag (Up ps g ps -y ) = (U, 0,0,...) (5.1.7)

where S is the right shift operator (u(®,u™,.. )T = (0,u®,u®, .. )T with its adjoint left shift opera-
tor §’, and ® denotes the Kronecker product. The iterative solution of the above system simultaneously
for the full vector of coefficients can be parallelized. This approach (in various related formulations)
has therefore attracted some attention in the literature, we mention the so-called waveform relaxation
method [VH95; JV96; Hal08], dating back in its essentials at least to [Pic93], as well as the low rank ten-
sor approximation ansatz [DKO11|. The “parareal” method [LMTO01; GV07] is an iterative method that
corrects the solution all temporal subintervals simultaneously. Analysis and numerics for a parallelizable
space-time multigrid method were presented in [HV95], cf. the references therein.

None of the numerical approaches mentioned above exploits the essential fact that the parabolic evolution
equation is a well-posed operator equation in space-time Banach spaces, as discussed in Section 3. This is
a crucial difference to [SS09] (as well as this work), where the applicability of adaptive wavelet methods
in space-time to parabolic evolution equations was shown. This approach is parallelizable, space-time
compressive, and is of optimal complexity, i.e., the work is proportional to the minimal number of degrees
of freedom that is needed to represent the solution up to the given accuracy in the chosen Riesz basis.
However, the necessary construction of space-time tensor product wavelet bases that can be rescaled to
be Riesz bases in certain spaces is intricate, cf. [Stall; CS11; CS12a]. By means of a reduction to a
boundary integral equation suggested in [Cos90], space-time compressive algorithms for the heat equation
(with constant coefficients) based on sparse tensor product subspaces were constructed in [CS12b].

A parallelizable and space-time compressive approach using simpler hierarchical tensor bases of wavelet
type on a sparse grid in space-time and a heuristic space-time adaptive algorithm were previously pre-
sented in [GOV06; GOO07]. There, however, the question of stability and well-posedness was not answered
satisfactorily; indeed, we will show in Section 5.2.3 that the Crank-Nicolson method is not a stable
space-time method, in general, and therefore, the best approximation rates derived in [GO07] may not
be achieved even for the exact solution to the discrete system.

5.2 Stability of space-time discretizations: main results

Throughout this section we work in the setting of Section 3.2.1. We assume we are given a Gelfand
triple of separable real Hilbert spaces V<—H = H’—V’ where the embeddings are dense; the “pivot”
space H is identified with its dual H’ via the scalar product (-,-)y on H; the duality pairing (-,-) on
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V x V' coincides with the unique continuous extension of {-,-)g : V" x V — R. The spaces X and )
are X = L2(J; V)N HY(J; V') and Y = L?(J; V) x H with norms given by (3.2.11) and (3.2.12). Here,
J=(0,T) is a non-trivial bounded temporal interval. For a family of operators a(t;-,-), (a.e.) t € J, on
V x V that satisfy Assumption 3.2.4, the parabolic operator B € £(X,)") is defined as in (3.2.15) by

(Bu, v)yryy = /J((@t + A(t))u(t),vi(t))dt + (u(0),v2), (u,v) € X x Y, (5.2.1)

where (A(t)-,-) :==a(t;-,-) on V x V for (a.e.) t € J.

In view of Theorem 4.1.9, in order to construct a sequence of approximations {uy}pso C X to u, we
look for a sequence of non-trivial pairs of (finite-dimensional) subspaces X}, x V), C X x ), increasing as
h N\ 0, such that Up~oX}, is dense in X and infy,~o v5(Xn, Yn) > 0 in (4.1.8). Then, the quasi-optimality
estimate (4.1.10) implies up, — w in X, as h N\, 0. The present section is therefore concerned with the
identification of conditions on the subspaces X}, x YV, C X x ) such that the discrete inf-sup constant
v8(Xn, Vp) in (4.1.8) can be bounded away from zero in terms of these conditions.

5.2.1 Examples

In a series of examples we study the discrete inf-sup condition for the parabolic operator B : X — )
defined by (3.2.15). Some explicit techniques for obtaining a lower bound on the discrete inf-sup constant
are indicated. We set, unless specified otherwise, T := 1, D C R? a bounded domain with a Lipschitz
boundary, V := H}(D), H := L?*(D), and let A= —A : V — V' denote the Laplace operator. The space
V is equipped with the energy norm, such that A : V' — V' is an isometry. We argue that polynomials
and trigonometric polynomials may be used in the temporal direction to define stable pairs of subspaces,
provided we are given a (finite-dimensional) subspace U C V that itself satisfies the stability condition
Kvi«v(U,U) > 0. A pathological example is also given. See also Example 5.2.11 and Example 5.2.12.

Example 5.2.1. Let D := (—7/2,7/2) C Rl. The one-dimensional subspaces A}, := span{l ® cos} and
Vh := {0} x span{cos} then satisfy yg(Xp, Vy) > 0.

Example 5.2.2. For a fixed k € Ny consider the space of trigonometric polynomials
E}, := span{sin;(t) := sin(jwt), cos;(t) := cos(jwt) : j =0,...,k},

where w := 27/T. Then {sin;,cos; : j =0,...,k} is an orthogonal basis for Ej in L?(J). Let U C V be a
non-trivial finite-dimensional subspace. Set X}, := E, QU C X and V), = V1 X Wh,2 = [ExQU|xU C V.
By construction, functions in X}, are time-periodic. We show that v5(Xp, Vi) > Ky xv (U, U).

Take any uj, € X. We can expand uy into the Fourier series u; = Zfzo(sinj ®u§ + cos; ®u‘;)7 where
uj,u; € U for each j = 0,...,k. The Fourier series coefficients of uj, := O;u;, + Auy, are then

T = —iouS s ¢ = qwud c
u; = —jwuj + Au and u; = jwui + Auj.

If we defined vy := Z?ZO(Sinj ®v; + cos; ®v§) via the Fourier series coefficients
v} = fijflu;‘f +uj and 0f:= ijflu; + uj,
and set vg 1= up(0) € Y2, we would obtain for v := (v1,v2) the (optimal) result

(Bun, v)yrxy = lunllz + lun(TE and  (Bup,v)yrxy = [[v]3. (5.2.2)

However, v = (v1, v2) is not necessarily in )}, because of the first component. To project it to ), we first
define w; € U and wj € U by

(Awf, x)vixv = (uj, x)vixy Vx €U, a=s,c (5.2.3)
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Note that w} € U approximates A’lu;‘. This definition implies

o <Awq7X>V/ \4 <Uan>V' \%4 -
[AwS |y > sup 2T = sup D > wud |y (5.2.4)
xeonfoy  lIxllv xeonfoy  Ixllv

for a = s, ¢, where we abbreviate k := Ky /v (U, U). Consequently,
(u, wi)vixv = (Aws, wivicy = Wi} > [Awd 3 > w2 ug]f, (5.2.5)

for a = s,c. The fact that A : V — V' is an isometry was invoked in some of the inequalities, which still
hold up to constants if A is merely an isomorphism. Now, the function vy, ; := Z?ZO(sinj ®vj +cos; ®v5)
with the Fourier series coefficients

vj = —jwwi +uj and 0f = tjww] + uj (5.2.6)

is in Yy 1, and so we have vy, := (vp1,vn,2) € Yy for vy 2 := up(0) € Vp 2. Employing the Fourier series
expansions of up and vy, and using mutual orthogonality of sin; and cos;, we find

k

(Bup,vn)yrxy =Y {||Sinj||%2u)<ﬂ§7U§>V'xv + [[cos |72y <ﬂ§a?f§>v'xv} + (un(0),vn2) - (5.2.7)
=0

Using the definition of w, two types of estimates follow for each term in the sum ) {...}.

1. First, letting (-, -) denote the duality pairing on V' x V for brevity,

(U3, v;) = (—jwu§ + Auj, —jww§ + uj) (5.2.8)
= [jwl®(u§, w§) — jw ((uf, uf) + (Auf, w$)) + (Aus, us) (5.2.9)
= |jw|2<Aw§-,w§-> — jw ((Aw§, u3) + (Auf, ws)) + (Auf, u3) (5.2.10)
= (Av}, v5) = |45 (5.2.11)

Similarly, (uj,v5) = [[v§|[3. Hence, (Bun,vn)yxy = [[vall3-

2. Second,
(uj,v5) = \jw|2<uj,w§-> — jw ((u§, uf) + (Aus, ws)) + (Aus, uf) (5.2.12)
> 2R 3 — 2jeofu ) + 53 (5213

Together with a similar computation for (ﬂ;, vj}, this leads to

(Bun, vn)y <y > K2[|0vunl|72 (g + 2/J<5tuh’uh>dt + lunlZz ) + lun(0)]|7
= 52“‘3tuh||%2(J;V/) + ||uh||%2(J;V) + lun (M7
Owing to k < 1, we have (Buy, vp)y xy > K? (||uh||2X + Huh(T)H%) > K52 |up||%-

In summary, we obtain vz(Xp, Vr) > Ky xv (U, U). From the proof it is also clear that, due to orthogo-
nality of the Fourier modes, we could choose a different subspace U; C V for each mode j, and x then
has to be replaced by the infimal Ky v (U;,U;) over those subspaces U;.

Example 5.2.3. For a fixed k € N let Ej, := span{t/ : j =0,...,k} be the space of polynomials on
J of degree at most k. Let {0} # U C V be a finite-dimensional subspace. Set &} := E; ® U and
W= [Ek ® U] x U. Then vg(Xk,yk) > KV’XV(Uv U)

To see this, we first consider a function ¢ € V which is an eigenfunction of A such that Ay = A2y for
some X\ > 0, with |||z = 1. Note that ||¢|[v = A and ||¢|[v» = A™!. Let p € E be any polynomial and
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set wg :==p® p. Set ¢ := A"2(p' + A?p), and define vy 1 :=q®@ ¢ € Y1 and vg 2 := p(0)p € Vo. Then

(Bwg, vg)yrxy = /(@wk + Aug, vi1) v xvdt + (Wi (0), vk 2) 1 (5.2.14)
J

= /(p’ + X’p) (A% + p)dt + |p(0)? (5.2.15)
J

= A2 12y + NPl T2y + (TP > flukl% (5.2.16)

where the last inequality is due to ||¢||?- = A? and ||¢||2,, = A=2. On the other hand,

(Bu, v)y <y = Az/JIQIth +1pO) = llalZ2 ) lell + pO)* = [lve]3- (5:2.17)

These estimates combine to (Bug, vi)yr«y > ||uk || x||vk|y-

For a more general function uy, € X}, one can show similarly to [BJ89, Section B] (by expanding uy(t) into
the discrete eigenbasis of A, i.e., those pairs (¢, \?) € U x (0, 00) which satisfy (Ap, )y xv = A2{p, ) g
on U) that there exists vy € YV with

(Bug, vi)yrxy > Kyrsey (U, U)[Jug]| x| vk ||y (5.2.18)

The details are omitted here, since this claim follows from the more general approach of Section 5.2.2,
see Example 5.2.16.

Example 5.2.4. The space Ej, in the previous example may be replaced by the span of e Yt j =
0,...,k, for any A € £°(Np).
The following is a pathological example: although both components under the integral [ )+ -+ dt contribute

non-trivially, they cancel out. Thus, the discrete inf-sup condition fails to hold.

Example 5.2.5. Set D := (—n/2,7/2) C R'. Let e(t) = 2t and f(t) =5 — 9t. Then [ € fdt =1 and
fJ efdt = —1. Set up := e ® cos and vp,,1 := f ® cos, take any vy, » € H. Then

(Bup, vp)y xy = /J{(e' cos, f cos) + (—eA cos, f cos) }dt + (e(0) cos, vy 2) = 0.

2e’ f 2ef 0

It follows that (Buy,vp)yxy = 0 for all up € A), := span{e ® cos} and vy, € V), := span{f ® cos} x H.
It is clear that the “optimal” function f is f = ¢’ 4 e, and no test function is required for the initial
datum. However, the resulting “optimal test space” ), := span{ f ® cos} x {0} is precisely orthogonal in
Y to our pathological test space V.

5.2.2 Stability for subspace-dependent norms

This section contains the core statements of the thesis: introducing certain subspace-dependent norms
on the trial space X}, we obtain lower bounds on the stability constant of the parabolic operator B for
abstract families of pairs of subspaces X} x ); w.r.t. those norms. In the following two subsections
we derive two slightly different results, using two slightly different techniques, which differ in the way
the anti-symmetric part of the generator A is handled. The first generalizes the main result of [And12]
to non-symmetric generators A(-), the second adopts the proof of [SS09, Theorem 5.1] to the discrete
setting. The introduction of subspace-dependent norms was motivated by [UP11], where stability for
the subspace-dependent norms was shown for the Crank-Nicolson method for the heat equation with
reference to [SS09, Theorem 5.1]. However, we regard stability for the subspace-dependent norms as an
intermediate abstract step: the stability bounds that we obtain are in terms of the quantities defined
later in (5.2.26) and (5.2.48), which need to be bounded from below in a subsequent step for particular
instances of X}, x )V, see Section 5.2.3.
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A. Estimates for the parabolic energy norms

Let Assumption 3.2.4 hold with agnirr = 0. Recall the notation A= %(A + A’) for the symmetric part,

and A = %(A — A’) for the anti-symmetric part of A. We shall work with the scalar products and the
corresponding induced norms

<U17{)v1>+ = /<A\U1a{71>dt7 ||1)1||3_ = <U17U1>+7 vlaquvl € 1, (5219)
J
(2,3 = [(A 23, 22 o= (2,2, nFeV, (5.2.20)
J
and
(0,T) = (01,54 + (v B, ol = (o, o), nTEV. (5.221)

Assume that we are given a family of pairs of non-trivial closed subspaces X}, x V), € X x ) indexed by
h > 0. For each h define the operator

P": X =Y, ww Plw=(Plw,Plw) €V, CV x Vs (5.2.22)
by

(PMw,vp)) = ((w, w(0)),0n)  Y(w,vp) € X x V. (5.2.23)

Introducing the abbreviation
GMw = dyw + APlw, we X, (5.2.24)

we define the mapping ||-||» : X = R by
lwll? = [|G"w||% + || P w]|* + 2/<8tw,w>dt, we X. (5.2.25)
J

Whether this defines a norm on X}, depends on the structure of the subspaces &} x Vp,, and we will either
assume or prove this for each occasion below. We note that setting G"w := d;w + Aw would not affect
the statement of the following theorem (Theorem 5.2.6). Finally, we define X?(X},,),) > 0 by

6 L+AV 1y 1 dt
KM (X, V) = inf sup J3(0cwn W, Vh,1)

, (5.2.26)
wn€Xnv,ey,  |Ghwnllllvnll+

where the infimum and the supremum are taken w.r.t. all elements such that the denominator is non-
Zero.

Theorem 5.2.6. Let Assumption 3.2.4 hold with agnirs = 0. With the above definitions assume further
that a) ||-|ln is a norm on Xj,, and b) the operator P} satisfies

/(&wh,wh)dt = /<8twh + th,Plhwwdt Ywy, € Xp,. (5227)
J J
Then

(Bwp, vn)y <y

inf up > min{X" (X, Vi), 1} (5.2.28)
wi€X\{0} ey {0y llwallnllvnll '
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Proof. Fix h > 0 and X}, x V, C X x Y, and let wy, € X}, be arbitrary. Define I'* € L(X,);) by
(T, ) := (B-,-) on X x Wy, (5.2.29)

i.e., for each w € X, the element I'"w € )}, is the Riesz representative of the linear continuous map (Bw, -)
on the Hilbert space (Y, (-, -))). Using (5.2.29) for the pair (wy, Phwy,) € X, x Yy, the hypothesis (5.2.27)
and the definition (5.2.22)-(5.2.23) of P", we obtain

((I‘hwh,Phwh» = <Bwh,PhU)h>y/><y (5230)
= /((%wh +A’th7P1h’wh>dt+ (wh(O),chwh>H (5231)

J
_ / (Dywon, wadt + | P2 (5.2.32)

J

This and the properties of the scalar product (-, -)) imply
IT w2 — T wp — Pruwnl = 207wy, Phwp)) — [Py (5.2.33)
— 1Pl + 2 | 0w, wn)ar. (5:2:34)
J

By definition, I'"w;, — Phwy, € Yy, hence, using (5.2.29), the definition (5.2.22)—(5.2.23) of P and the
definition (5.2.26) of K% (X}, ), we can estimate

<<I‘hwh — Phwh, ’Uh>>

IT"wy, — Phwy|| = sup (5.2.35)
v, €V \{0} mvh ”|
vy — (P
= sup (B, o)y xy = (P wn, vn)) (5.2.36)
v €V \{0} lonll
Opwp, + Awp, vy, 1 )dt
= sup Ly (@reon Why V1) (5.2.37)
v €V \{0} l[on,1ll
> K (X, V)| G wn | - (5.2.38)
This, combined with the previous identity, shows
T wp 1 > [ (X, V)P IG wn |2 + 1P wn|* + 2/<3twh7wh>dt- (5.2.39)
J
We conclude that [|[I"wy,]] > min{I} (X, Vi), 1} |wn||n for any wy, € &), and from
B ’ " T
sup < wh/7vh>y XY — << wh,’Uh>> _ ||| whm V’Ujh c X, \ {O},
vevafoy  Nwallallonll v, evinioy lwnllallvall  llwnlln
the claim (5.2.28) follows. O

By the aforegoing theorem, we obtain a lower bound on the discrete inf-sup constant yg(Xp, V) for
a family of subspaces X}, x Y, if we can verify the norm equivalence ||-||n ~ ||-||x on A%, and bound
from below the quantity K?(X},)), defined in (5.2.26). We will see later for subspaces of space-time
tensor product type that ||-||n ~ ||-||x is essentially a condition on the temporal discretization, while the
requirement K% (X}, )) > 0 describes a certain stability of the spatial discretization.

Corollary 5.2.7. Let Assumption 3.2.4 hold with agpiry = 0. With the above definitions assume further
that the projector Pl satisfies (5.2.27), and that for each h > 0 there are constants 0 < dj, < Dj, < 00
such that

dh”’wh”,\/ S ||\wh||\h S DhHwhHX th € Xh. (5240)
Then there exists vo > 0, independent of Xy, X Yy, such that
v5(Xn, Vi) > yodp min{XK" (X, V1),1}  Vh > 0. (5.2.41)
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B. Alternative estimates
In this subsection, we obtain in Theorem 5.2.9 below a stability bound which is slightly less sharp than
that of Theorem 5.2.6. However, the assumptions will be easier to check (cf. Corollary 5.2.13).

Assume again that we are given a family of pairs of non-trivial closed subspaces X}, x Y, C X x ) indexed
by h > 0, such that ), has the form V5, = V.1 X V2. We replace the definition of the scalar product
{(-,-)) by the continuous (not necessarily symmetric) bilinear form

(v, v) := /J(Avl, 01)dt + (v2,V2) g, v,V E€ Y. (5.2.42)

Let Assumption 3.2.4 hold with agirz = 0. The operator P" : X — YV, w + Phw = (PPw, Plw) is
defined analogously to (5.2.22)—(5.2.23) (well-defined by Proposition 3.2.7), namely

(Phw,vp)) = ((w,w(0)),0n))  V(w,vp) € X X V. (5.2.43)
We define the norm ||-||p : X — R by
lwllf = 10ewllEa gy + 1PF w2 gy + l0(TF, - w e X. (5.2.44)

Note, this norm may not be equivalent to ||-||x. The following lemma motivates the term ||w(T)||y in
the definition of ||-||.

Lemma 5.2.8. For any w € X there holds the implication

/<6tw,w>dt:/<8tw,P1hw)dt = )]s < [l (5.2.45)
J J

Proof. Assume w € X satisfies the premise of the implication. Then the integration-by-parts formula
(2.7.8), the continuity of the duality pairing, and the inequality [2ab| < a? + b? yield

() < (T3 + ] / 2<atw,w>dt| (5.2.46)
< oM+ [ {10l + I Pllfy ) = ol (5.2.47)
hence the assertion. O

Finally, let us recall the definition (4.4.1), adapted to the present situation,

) f(z,vh 1)dt
Ky 0t Xn, Y = inf su A 5.2.48
o O Vha) = b o) S0P Tl oo (5.2.48)

The following stability theorem is analogous to Theorem 5.2.6.

Theorem 5.2.9. Let Assumption 3.2.4 hold with agnirs = 0. With the above definitions assume further
that a) the inclusion {w,(0) : wy, € Xn} C Vo is valid, b) the operator P} € L(X, V1), defined by
(5.2.43), satisfies

/<8twh, wh>dt = /(&wh, Plhwh)dt Ywy, € Xp. (5249)
J J

Then

inf  sup (Bun, vn)y <y > Y172, (5.2.50)

WhEXR 4, €V ”wh”hHUth

where the infimum and the supremum are taken over all elements such that the denominator is non-zero,
and

~1 := min{amin, 1}/\/2 max{1,a2 .} +1, (5.2.51)
Y2 = min{amina;lix [:K:)/{ X V1 (atXha yh,l)]27 Amin, 1} (5252)
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Proof. Consider one particular pair of subspaces X, x YV, C X x Y. Define I'* € L(X, V) by

(vp, Thw)) = /J(@tw,vhll)dt + (v, Phw),  (w,vp) € X X V. (5.2.53)

Let I and T'% be such that (I'w,Thw) = T"w for all w € X. The linear operator I'* is indeed
continuous, since (5.2.43) implies

min{amin7 1}Hrhwh”§) S <<Fhwharhwh,>>
and (5.2.53) implies
(T wp, TMwp ) < V2max{1, amax } lwa |nITFwhl 2 05v) + [Py wnl | T wn |

< /2max{1,a2,,.} + jws|n T wn |y,

where, in addition, the fact ||Plw|| g < ||w(0)|/x, w € X, and Lemma 5.2.8 were used. Hence,

Nl wnlly < wplln Vwn € X, (5.2.54)
for v1 defined in (5.2.51).
Further, by definition of the operator I'", of the bilinear form (-, -)), and of P", for any w € X we have

(Bw,T"w)yryy = /(atw,l'"fw>dt + ((w, w(0)), Thw))
J

(1w, Thw)) — (T"w, Phw) + (P"w, T w))
(Thw — PMw, Thw — Phw)) 4 2((P"w, Thw)) — (Phw, Phw))

(rr — PMyw, (0" — PMyw) + (P"w, Phw) + 2 /(@w, Phw)dt,
J

T
Ts

and we can estimate the terms from below if w € X}, as follows. For first term T3, the identity (5.2.53)
yields (note that I'fw = Plw)

{wn, (" — P")wp)

| A" (T = PMywn)|ly; > sup (5.2.55)
vn €V \{0} v lly
(Opwp, vp,1)dt
_ syup\{o}fJHU“”y > Ky (O Vi) Oy, (5:2.56)
Vh,1€EVh,1 s 1

which we use to estimate

QAmi QAmi
Ty > Gmin|(T} = PPYwnf3, > 5 1A'} = P yw|3; > (K (0, Y1) 0on 3

max max

For the second term T», we use the hypothesis (5.2.49), the integration-by-parts formula (2.7.8), and the
hypothesis wp,(0) € V2, to obtain

T2 = <<Phwh7phwh>> + 2/<8twh,wh)dt
J

- /J (APwy, Plawy)dt + [wn (T3 + | PRwnlly — [wn(0)]%

=0
> min{agin, 1} (1P wn 32, + lon (M)
Thus, Ty 4+ T2 > 72||wp |7 for 72 defined in (5.2.52).
This last observation and continuity (5.2.54) of I'" yield
(Bwn, PMwp)y xy = T1 + To 2 v2llwally = yvellwnln|Mrwnlly  Ywn € X

In particular, |Jwy||n # 0 implies T"wy, # 0. Thus, dividing by ||wp||x||[T*w |y and taking the infimum
over wy, € X, with ||wp]||n # 0 shows the claim. O
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Corollary 5.2.10. Let Assumption 3.2.4 hold with agsnig, = 0. With the above definitions assume further
that a) {wy(0) : wy, € X} C Vna, b) the projector PJ satisfies (5.2.49), ¢) for each h > 0 there are
constants 0 < dp, < Dj, < oo such that

dh||wh||X < ||wh||h < DhHwhHX Ywy, € Xj,. (5257)
Then there exists vo > 0, independent of Xy, X Yy, such that

V8(Xn, Vi) > yodn min{[Ky: «y, (0:Xn, Yu1)1, 1} Vh > 0. (5.2.58)

5.2.3 Applications: conditionally and unconditionally stable pairs

Using the stability results of the previous subsection w.r.t. subspace-dependent norms we discuss particu-
lar constructions of pairs of subspaces X x YV, C X x Y for which stability w.r.t. the natural space-time
norms holds

A) conditionally: the family of continuous Galerkin time-stepping schemes (e.g. Crank-Nicolson) is
shown not to be stable, in general, unless a CFL condition is observed;

B) unconditionally: families of space-time sparse tensor product trial and test spaces “of inclusion
type” are constructed and shown to be stable (irrespective of the mesh-width in the temporal
direction);

C) unconditionally: the stabilized Crank-Nicolson scheme.

A. Continuous Galerkin time-stepping: CFL condition

Continuous Galerkin (henceforth, ¢G) time-stepping schemes, see [SW10] and references therein, may be
interpreted as Petrov-Galerkin schemes for the space-time variational formulation (3.2.16) with space-
time trial and test spaces that are piecewise polynomial in time, time-continuous in the trial space and
time-discontinuous in the test space.

Using the discrete inf-sup estimate (5.2.28) for subspace-dependent norms, we show that stability in the
natural space-time norms infy,~ov5(Xn, V) > 0 is coupled to a CFL condition (5.2.65). We will show
this in the simpler situation that Assumption 3.2.4 holds with agnise = 0 and that ¢ — A(¢) is constant,
equal to a self-adjoint operator (i.e., A= 0). Let us assume this for the remainder of the subsection.
The CFL condition is of the well-known form, e.g. for the heat equation in one dimension with a fixed
spatial discretization it reads At/Az? < C < oo, where At is the maximal time step and 1/Az? is (of
the order of) the maximal eigenvalue of the discretized spatial operator. This can be expected from the
fact that the space-time norm X includes the first temporal derivative.

To set up the notation, for a temporal mesh 7 = {0 =:t; <t; < ... <ty :=T} C[0,T] and a vector of
polynomial degrees p = (p1,Dp2,--.,pn) € N} we introduce the spline spaces

S"P(T):={feH"(J): fltn 1ty EPP",n=1,...,N} (5.2.59)

of global Sobolev smoothness r € Ny, where P? denotes polynomials (real-valued, of one real variable)
of degree d € Ng. If p = (p,p,...,p), we may write S™P := S™P_and p + 1 will denote the vector
(p1+1,...,pn +1). The maximal time step size of the temporal mesh 7T is denoted by

max AT = max [t — tn_1]. (5.2.60)

n=1,...,

Suppose now that we are given families of a) closed non-trivial subspaces V;, C V| b) temporal meshes
Tr C [0, T], and c) vectors of polynomial degrees p;, € N# Th=1 indexed by h > 0. We then define the
continuous Galerkin subspaces

Xy = SPPrY T @V, c X and Yy, = [SUPH(TR) @ Vi] x Vi C V. (5.2.61)
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By counting the degrees of freedom one finds that dim A}, = dim )}, whenever either is finite. We define
the CFL number (finite if dim Vj, < o0)

CFLj := max A7, sup v

. h>0. (5.2.62)
xnevi\{0} [Ixnllv

Since A(-) = A(-)’ is constant, the operator P", given by (5.2.22)—(5.2.23) for the cG subspaces (5.2.61)
is easily seen to satisfy (5.2.27). Here, we focus on the norm equivalence |||, ~ ||||x, see (5.2.25) for
the definition of ||-||5. We will show that there exists a constant C' > 0 independent of the parameters
appearing in the definition (5.2.61) of the ¢G subspaces X}, x V), such that

[lwnllx < Cmax{1, CFL, }Hwp|n Ywn € X Vh > 0. (5.2.63)
Then, Corollary 5.2.7 implies that there exists 7y > 0 such that
v8(Xn, Vi) > Fo min{1, K (A, V) } min{1, CFL, '} Vh >0, (5.2.64)

and consequently, under the assumptions of this subsection, and assuming that infy~q iK’f(Xh, Vp) >0
holds in (5.2.26), a sufficient condition for the stability of ¢G schemes is the CFL condition

sup CFL;, < co. (5.2.65)
h>0

Proof of (5.2.63). Let wy, € X}, be arbitrary. Fix one subinterval, say I := (t,,_1,t,) of length k :=
|tn, — tn—1|. On this subinterval, we have wy|; = Efié LJI- ® X?' with some X;L € V,, and p € Ny, where

Li(t) == Lj(2k™" (t — tn—1) — 1), tel, (5.2.66)

is the Legendre polynomial L; on the reference interval (—1,1) of degree j € Ny transported to I. The
normalization is such that f_ll L;(s)Lj(s)ds = 6;;, and L;(1) = ++/4 + 1/2. Thus, by definition of P"

we have (Pwy)|r = r o0 Li® x". The identity f_ll L, 1(s)Ly(s)ds = /4(p+1)2 — 1 implies that
Ly =A(p+1)2 =1L, +aL, 1 + -+, which we use to estimate
2
p+1
185w 2 gy = 2k~ Z L@ X}
=t L2(~1,1)V)
. 2
terms in
=2k |[\/4(p+1)2 - 1L ®Xh+1+{ - }
o Pt V! e crnv

> 2k~ (4(p + 1) = Dlixgallf = 65 xgall3

Using the mutual L? orthogonality of the Legendre polynomials, and the last estimate, we compute

k
lwnllZz ey = 5 gl + 1P wnl 72y (5.2.67)
K2 gl ) L
= ﬁWHatwh”LQ(I;V’) + PP wnllz21v) (5.2.68)
Xp+1 ’
1
< 3 CFLA 0w 22 vy + | PRwnlFa - (5.2.69)

Adding [|0ywh |72 (1.1 on both sides, the claim (5.2.63) follows by summation over all subintervals. [J

The following two examples study numerically and analytically the inf-sup condition for the cG method
of lowest order (Crank-Nicolson) on an equidistant temporal mesh. We observe that the CFL condition
(5.2.65) can not be removed, in general (it could, however, be refined).
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Figure 5.2.1: Stability of the Crank-Nicolson scheme. Left, from top to bottom: discrete continuity

constant I'y , &~ 1 and discrete inf-sup constant v, ,, for A = 2!,..., 28 as a function of the
number of time steps N = h~!T. Right: the same, for an over-refined test space with 2V
time steps.

Example 5.2.11. On J = (0, T) = (0,2) consider the scalar ODE u' + \?u = g, u(0) = u° € R, with
the corresponding bilinear form

we X = H()),

vey:=IL(J) xR (5.2.70)

(Baw, v)yrxy = /(w’ + XN2w)vydt + w(0)vg, {
J

The spaces X and ) are endowed with the norms
lwl3 y = A2 1w |22y + A NlwllZa ) + w1, (loll3n = A loill7egy + o2

The motivation for these definitions is sketched in Example 5.2.3, cf. [BJ89; BJ90]. We compute numer-
ically the discrete continuity constant I'y ; and the discrete inf-sup constant vy p,

(Bxwh, vn)yr <y

Iyp:= sup sup (Brwn, Un)yry in sup = mT
’ wn€X\{0} v, v\ {0} lwnllxallvallyn’

e s e PR
wnexn\{0} vnevi{oy 1wnllallvnllyn’

for Xp, x YV, C X x Y given by the c¢G scheme of lowest order (Crank-Nicolson) based on an equidistant
temporal mesh 75, with 1+ 21T < #7, <2+ h™'T for 0 < h < T. The results for a range of h and X
are shown in Figure 5.2.1 (left). We observe the following behavior:

VA>0: ~n /' Tapnx=1 as h\,0, (5.2.71)
and
Yan ~min{l,max{A~", CFL;}}} VYA>1 Vh >0, (5.2.72)
where CFLy j, :== hA2. Thus, the discrete variational problem
find wup € X (Baup,vn)yrxy = ((g,uo),vh>ylxy Yon, € Vp (5.2.73)

becomes well-conditioned for the above choice of norms as h N\, 0, cf. (5.2.64). However, the pair X} X Y,
of continuous Galerkin trial and test spaces is not stable uniformly in A (cf. Example 5.2.12). This
behavior is in sharp contrast to what can be observed in Figure 5.2.1 (right) when we refine the test
space, i.e., for the pair X}, X )}, /5. This family is unconditionally stable for By, i.e., uniformly in A and
h (cf. Proposition 5.2.20).

Example 5.2.12. We show that the behavior of (5.2.63) and (5.2.72) w.r.t. CFLj, cannot be improved,
in general. The hidden positive constants in the following statements are understood to be independent
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of h > 0. Consider a sequence of equidistant temporal meshes 7; with #7;, ~ h~! for the lowest
order discontinuous Galerkin scheme with pp, = 0 € Ng—h_l. Let A = —A be the Laplace operator
H}(D) =: V < V' on a bounded domain/interval D, with compact inverse as a mapping H' = H —

H := L?(D). Assume that ¢j, € V}, satisfies |||z = 1 and (App, xn) = A7 (pn, xn) for all xp, € V3, with

(@n,Xxn)
Ixnllv =

m,;l)\fH(thV. Consequently, CFL;, > hA? > h™l. Let wy, € &) be of the form wy, = e, ® ¢, with
en € H'(J), e,(0) = 0, to be specified. We have ||wy|% > )\;2||6;LH%2(J) + A]27,||eh|‘%2(_])' Then, using an
analogous construction for ej, as in the counter-example [BJ90, pp. 353-354] (namely, with time reversed
such that e, (0) = 0), and with an analogous proof, we find

An ~ h™1. Assume further sp, := Kyryy (Vi, Vi) 2 1; this implies |jpp |y < K;l SUDPy, e v\ {0}

B / el + Ae dt
Sup < wh7vh>y XYy _ Sup f_]( h h h)fh §h||1Uh||X7

wevnfoy  llonlly " peesorn(mngoy  Anllfallze

and hence, v5(Xy, V) < h < CFL;* for all b > 0.

B. Stable space-time sparse tensor product trial and test spaces
Let us focus on the particular situation that A