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ABSTRACT

Randomized Smoothing (RS) is a promising method for obtaining robustness cer-
tificates by evaluating a base model under noise. In this work, we: (i) theoretically
motivate why ensembles are a particularly suitable choice as base models for RS,
and (ii) empirically confirm this choice, obtaining state-of-the-art results in multiple
settings. The key insight of our work is that the reduced variance of ensembles over
the perturbations introduced in RS leads to significantly more consistent classifi-
cations for a given input. This, in turn, leads to substantially increased certifiable
radii for samples close to the decision boundary. Additionally, we introduce key op-
timizations which enable an up to 55-fold decrease in sample complexity of RS for
predetermined radii, thus drastically reducing its computational overhead. Experi-
mentally, we show that ensembles of only 3 to 10 classifiers consistently improve
on their strongest constituting model with respect to their average certified radius
(ACR) by 5% to 21% on both CIFAR10 and ImageNet, achieving a new state-of-the-
art ACR of 0.86 and 1.11, respectively. We release all code and models required to
reproduce our results at https://github.com/eth-sri/smoothing-ensembles.

1 INTRODUCTION

Modern deep neural networks are successfully applied to an ever-increasing range of applications.
However, while they often achieve excellent accuracy on the data distribution they were trained on,
they have been shown to be very sensitive to slightly perturbed inputs, called adversarial examples
(Biggio et al., 2013; Szegedy et al., 2014). This limits their applicability to safety-critical domains.
Heuristic defenses against this vulnerability have been shown to be breakable (Carlini & Wagner,
2017; Tramèr et al., 2020), highlighting the need for provable robustness guarantees.

A promising method providing such guarantees for large networks is Randomized Smoothing (RS)
(Cohen et al., 2019). The core idea is to provide probabilistic robustness guarantees with arbitrarily
high confidence by adding noise to the input of a base classifier and computing the expected
classification over the perturbed inputs using Monte Carlo sampling. The key to obtaining high robust
accuracies is a base classifier that remains consistently accurate even under high levels of noise, i.e.,
has low variance with respect to these perturbations. Existing works use different regularization
and loss terms to encourage such behavior (Salman et al., 2019; Zhai et al., 2020; Jeong & Shin,
2020) but are ultimately all limited by the bias-variance trade-off of individual models. We show
first theoretically and then empirically how ensembles can be constructed to significantly reduce this
variance component and thereby increase certified radii for individual samples, and consequently,
certified accuracy across the whole dataset. We illustrate this in Fig. 1.

Ensembles are a well-known tool for reducing classifier variance at the cost of increased computational
cost (Hansen & Salamon, 1990). However, in the face of modern architectures (He et al., 2016; Huang
et al., 2017) allowing the stable training of large models, they have been considered computationally
inefficient. Yet, recent work (Wasay & Idreos, 2021) shows ensembles to be more efficient than single
monolithic networks in many regimes. In light of this, we develop a theoretical framework analyzing
this variance reducing property of ensembles under the perturbations introduced by RS. Further, we
show how this reduced variance can significantly increase the majority class’s prediction probability,
leading to much larger certified radii than evaluating more perturbations with an individual model.
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Figure 1: Illustration of the prediction landscape of base models F where colors represent classes.
The bars show the class probabilities of the corresponding smoothed classifiers Eε∼N (0,σεI)F (x+ ε),
i.e., the Gaussian weighted average around x (dashed circles show the level sets of N (x, σεI)). The
individual models in (a) and (b) predict the same class for x as their ensemble in (c). However, the
ensemble’s lower bound on the majority class’ probability pA is increased while its upper bound on
the runner-up class’ probability pB is decreased, leading to improved robustness through RS.

Certification with RS is computationally costly as the base classifier has to be evaluated many
thousands of times. To avoid exacerbating these costs by using ensembles as base models, we develop
two techniques: (i) an adaptive sampling scheme for RS, which certifies samples for predetermined
certification radii in stages, reducing the mean certification time up to 55-fold, and (ii) a special
aggregation mechanism for ensembles which only evaluates the full ensemble on challenging samples,
for which there is no consensus between a predefined subset of the constituting models.

Main Contributions Our key contributions are:

• A novel, theoretically motivated, and statistically sound soft-ensemble scheme for Random-
ized Smoothing, reducing perturbation variance and increasing certified radii (§4 and §5).

• A data-dependent adaptive sampling scheme for RS that reduces the sample complexity for
predetermined certification radii in a statistically sound manner (§6).

• An extensive evaluation, examining the effects and interactions of ensemble size, training
method, and perturbation size. We obtain state-of-the-art results on ImageNet and CIFAR10
for a wide range of settings, including denoised smoothing (§7).

2 RELATED WORK

Adversarial Robustness Following the discovery of adversarial examples (Biggio et al., 2013;
Szegedy et al., 2014), adversarial defenses aiming to robustify networks were proposed (Madry et al.,
2018). Particularly relevant to this work are approaches that certify or enforce robustness properties.
We distinguish deterministic and probabilistic methods. Deterministic certification methods compute
the reachable set for given input specifications using convex relaxations (Singh et al., 2019; Xu et al.,
2020), mixed-integer linear programming (Tjeng et al., 2019), semidefinite programming (Dathathri
et al., 2020), or SMT (Ehlers, 2017), to reason about properties of the output. To obtain networks
amenable to such approaches, specialized training methods have been proposed (Mirman et al., 2018;
Balunovic & Vechev, 2020; Xu et al., 2020). Probabilistic certification (Li et al., 2019; Lécuyer et al.,
2019) introduces noise to the classification process to obtain probabilistic robustness guarantees,
allowing the certification of larger models than deterministic methods. We review Randomized
Smoothing (RS) (Cohen et al., 2019) in §3 and associated training methods (Jeong & Shin, 2020;
Zhai et al., 2020; Salman et al., 2019) in App. G.3. Orthogonally to training, RS has been extended
in numerous ways (Lee et al., 2019; Dvijotham et al., 2020), which we review in App. B.

Ensembles Ensembles have been extensively analyzed with respect to different aggregation meth-
ods (Kittler et al., 1998; Inoue, 2019), diversification (Dietterich, 2000), and the reduction of gen-
eralization errors (Tumer & Ghosh, 1996a;b). Randomized Smoothing and ensembles were first
combined in Liu et al. (2020) as ensembles of smoothed classifiers. However, the method does not
retain strong certificates for individual inputs; thus, we consider the work to be in a different setting
from ours. We discuss this in App. A. While similar at first glance, Qin et al. (2021) randomly sample
models to an ensemble, evaluating them under noise to obtain an empirical defense against adversarial
attacks. They, however, do not provide robustness guarantees.
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3 RANDOMIZED SMOOTHING

Here, we review the relevant background on Randomized Smoothing (RS) as introduced in Cohen et al.
(2019). We let f : Rd 7→ Rm denote a base classifier that takes a d-dimensional input and produces
m numerical scores (pre-softmax logits), one for each class. Further, we let F (x) := arg maxq fq(x)

denote a function Rd 7→ [1, . . . ,m] that directly outputs the class with the highest score.

For a random variable ε ∼ N (0, σ2
εI), we define a smoothed classifier G : Rd 7→ [1, . . . ,m] as

G(x) := arg max
c

Pε∼N (0,σ2
εI)(F (x+ ε) = c). (1)

This classifier G is then robust to adversarial perturbations as follows:
Theorem 3.1 (From Cohen et al. (2019)). Let cA ∈ [1, . . . ,m], pA, pB ∈ [0, 1]. If

Pε(F (x+ ε) = cA) ≥ pA ≥ pB ≥ max
c6=cA

Pε(F (x+ ε) = c),

then G(x+ δ) = cA for all δ satisfying ‖δ‖2 < R with R := σε
2 (Φ−1(pA)− Φ−1(pB)).

Algorithm 1 Certify from (Cohen et al., 2019)

1: function CERTIFY(F, σε, x, n0, n, α)
2: cnts0← SAMPLEUNDERNOISE(F, x, n0, σε)
3: ĉA ← top index in cnts0
4: cnts← SAMPLEUNDERNOISE(F, x, n, σε)
5: pA ← LOWERCONFBND(cnts[ĉA], n, 1− α)
6: if pA > 1

2 then
7: return prediction ĉA and radius σεΦ−1(pA)
8: return �

Here, Φ−1 denotes the inverse Gaussian
CDF. Computing the exact probabilities
Pε(F (x+ ε) = c) is generally intractable. Thus,
to allow practical application, CERTIFY (Cohen
et al., 2019) (see Algorithm 1) utilizes sampling:
First, n0 samples to determine the majority class,
then n samples to compute a lower bound pA to
the success probability with confidence 1− α via
the Clopper-Pearson lemma (Clopper & Pearson,
1934). If pA > 0.5, we set pB = 1 − pA and
obtain radius R = σεΦ

−1(pA) via Theorem 3.1, else we abstain (return �). See App. F for exact
definitions of the sampling and lower bounding procedures.

To obtain high certified radii, the base model F has to be trained to cope with the added Gaussian
noise ε. To achieve this, several training methods, discussed in App. G.3, have been introduced.

We also see this in Fig. 1, where various models obtain different pA, and thereby different radii R.

4 RANDOMIZED SMOOTHING FOR ENSEMBLE CLASSIFIERS

In this section, we extend the methods discussed in §3 from single models to ensembles.

For a set of k classifiers {f l : Rd 7→ Rm}kl=1, we construct an ensemble f̄ via weighted aggregation,
f̄(x) =

∑k
l=1 w

l γ(f l(x)), where wl are the weights, γ : Rm 7→ Rm is a post-processing function,
and f l(x) are the pre-softmax outputs of an individual model. Soft-voting (where γ denotes identity)
and equal weights wl = 1

k perform experimentally well (see App. H.3.1) while being mathematically
simple. Thus, we consider soft-ensembling via the averaging of the logits:

f̄(x) =
1

k

k∑
l=1

f l(x) (2)

The ensemble f̄ and its corresponding hard-classifier F̄ (x) := arg maxq f̄q(x), can be used without
further modification as base classifiers for RS. We find that classifiers of identical architecture and
trained with the same method but different random seeds are sufficiently diverse to, when ensembled
with k ∈ [3, 50], exhibit a notably reduced variance with respect to the perturbations ε. As we will
show in the next section, this increases both the true majority class probability pA and its lower
confidence bound pA, raising the certified radius as per Theorem 3.1.

5 VARIANCE REDUCTION VIA ENSEMBLES FOR RANDOMIZED SMOOTHING

We now show how ensembling even similar classifiers f l (cf. Eq. (2)) reduces the variance over the
perturbations introduced in RS significantly, thereby increasing the majority class probability pA of
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resulting ensemble f̄ and making it particularly well-suited as a base classifier for RS. To this end, we
first model network outputs with general distributions before investigating our theory empirically for
Gaussian distributions. We defer algebra and empirical justifications to App. C and D, respectively.

Individual Classifier We consider individual classifiers f l : Rd 7→ Rm and perturbed inputs x+ ε
for a single arbitrary but fixed x and Gaussian perturbations ε ∼ N (0, σ2

εI). We model the pre-
softmax logits f l(x) =: yl ∈ Rm as the sum of two random variables yl = ylp + ylc. Here, ylc
corresponds to the classifier’s behavior on the unperturbed sample and models the stochasticity in
weight initialization and training with random noise augmentation. ylp describes the effect of the
random perturbations ε applied during RS. Note that this split will become essential when analyzing
the ensembles. We drop the superscript l when discussing an individual classifier to avoid clutter.

We model the distribution of the clean component yc over classifiers with mean c = El[f l(x)],
the expectation for a fixed sample x over the randomness in the training process, and covariance
Σc ∈ Rm×m, characterizing this randomness. We assume the distribution of the perturbation effect
yp to be zero-mean (following from local linearization and zero mean perturbations) and to have
covariance Σp ∈ Rm×m. While Σp might depend on the noise level σε, it is distinct from it. We do
not restrict the structure of either covariance matrix and denote Σii = σ2

i and Σij = σiσjρij , for
standard deviations σi and correlations ρij . As yc models the global training effects and yp models
the local behavior under small perturbations, we assume them to be independent. We thus obtain
logits y with mean c, and covariance matrix Σ = Σc + Σp.

A classifier’s prediction F l(x) = arg maxq yq is not determined by the absolute values of its logits
but rather by the differences between them. Thus, to analyze the classifier’s behavior, we consider the
differences between the majority class logit and others, referring to them as classification margins.
During certification with RS, the first step is to determine the majority class. Without loss of generality,
let the class with index 1 be the majority class, i.e.,A = 1 in Theorem 3.1, leading to the classification
margin zi = y1 − yi. Note that if zi > 0 for all i 6= 1, then the majority class logit y1 is larger than
the logits of all other classes yi. Under the above assumptions, the classification margin’s statistics
for an individual classifier are:

E[zi] = c1 − ci
Var[zi] = σ2

p,1 + σ2
p,i + σ2

c,1 + σ2
c,i − 2ρp,1iσp,1σp,i − 2ρc,1iσc,1σc,i.

Ensemble Now, we construct an ensemble of k such classifiers. We use soft-voting (cf. Eq. (2))
to compute the ensemble output ȳ = 1

k

∑k
l=1 y

l and then the corresponding classification margins
z̄i = ȳ1 − ȳi. We consider similar classifiers, differing only in the random seed used for training.
Hence, we assume that the correlation between the logits of different classifiers has a similar structure
but smaller magnitude than the correlation between logits of one classifier. Correspondingly, we
parametrize the covariance between yic and yjc for classifiers i 6= j with ζcΣc and similarly between
yip and yjp with ζpΣp for ζc, ζp ∈ [0, 1]. Note that, as we capture the randomness introduced in the
training process with Σc, we use the same Σc,Σp for each individual model. With these correlation
coefficients ζc and ζp, this construction captures the range from no correlation (ζ = 0) to perfect
correlation (ζ = 1). By the linearity of expectation and this construction, respectively, we obtain:

E[z̄i] = E[zi] = c1 − ci

Var[z̄i] =
k + 2

(
k
2

)
ζp

k2
(σ2
p,1 + σ2

p,i − 2ρp,1iσp,1σp,i)︸ ︷︷ ︸
σ2
p(k)

+
k + 2

(
k
2

)
ζc

k2
(σ2
c,1 + σ2

c,i − 2ρc,1iσc,1σc,i)︸ ︷︷ ︸
σ2
c(k)

.

Variance Reduction We can split Var[z̄i] into the components associated with the clean prediction
σ2
c (k) and the perturbation effect σ2

p(k), both as functions of the ensemble size k. We now compare
these variance terms independently to the corresponding terms of an individual classifier dropping
the subscripts p and c from σ2

c (k)/σ2
c (1) and σ2

p(k)/σ2
p(1) as they follow the same structure:

σ2(k)

σ2(1)
=

(1 + ζ(k − 1))(σ2
1 + σ2

i − 2ρ1iσ1σi)

k(σ2
1 + σ2

i − 2ρ1iσ1σi)
=

1 + ζ(k − 1)

k

k→∞−−−−→ ζ (3)

We observe that both variance component ratios go towards their corresponding correlation coeffi-
cients ζc and ζp as ensemble size grows. As we now proceed to show (see Fig. 2a, explained later),
this corresponds to an increase in success probability p1 and thereby certified radius.

4
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Figure 2: Comparison of the (a) modeled distribution over the classification margin zi to the runner-
up class as a Gaussian, (b) the resulting success probability p1 of predicting the majority class 1
for a given perturbation ε modeled via Gaussian and observed via sampling ("real"), and (c) the
corresponding distribution over certified radii for ensembles of different sizes.

Our modeling approach is mathematically closely related to Tumer & Ghosh (1996a), which focuses
on analyzing ensemble over the whole dataset. However, we condition on a single input to study the
interplay between the stochasticity in training and random perturbations encountered in RS.

Effect on Success Probability We can compute the probability of an ensemble of k classifiers
predicting the majority class by integrating the probability distribution of the classification margin
over the orthant1 z̄i > 0 ∀i ≥ 2 where majority class 1 is predicted:

p1 := P(F̄ (x+ ε) = 1) = P (z̄i > 0 : ∀ 2 ≤ i ≤ m) =

∫
z̄s.t.z̄i>0,
∀ 2 ≤i≤m

P(z̄) dz̄. (4)

Assuming Gaussian distributions for z, we observe the increase in success probability shown in
Fig. 2b. Without assuming a specific distribution of z, we can still lower-bound the success probability
using Chebyshev’s inequality and the union bound. Given that a mean classification yields the majority
class and hence c1 − ci > 0, we let ti = c1−ci

σi(k) and have:

p1 ≥ 1−
m∑
i=2

P
(
|z̄i − c1 + ci| ≥ ti σi(k)

)
≥ 1−

m∑
i=2

σi(k)2

(c1 − ci) 2
(5)

where σi(k)2 = σc,i(k)2 + σp,i(k)2 is the variance of classification margin z̄i. We observe that
as σi(k) decreases with increasing ensemble size k (see Eq. (3)), the lower bound to the success
probability approaches 1 quadratically. The further we are away from the decision boundary, i.e., the
larger ci, the smaller the absolute increase in success probability for the same variance reduction.

Given a concrete success probability p1, we compute the probability distribution over the certifiable
radii reported by CERTIFY (Algorithm 1) for a given confidence α, sample number n, and perturbation
variance σ2

ε (up to choosing an incorrect majority class ĉA) as:

P
(
R = σεΦ

−1
(
p1(n1, n, α)

))
= B(n1, n, p1), for R > 0 (6)

where B(s, r, p) is the probability of drawing s successes in r trials from a Binomial distribution with
success probability p, and p(s, r, α) is the lower confidence bound to the success probability of a
Bernoulli experiment given s successes in r trials with confidence α according to the Clopper-Pearson
interval (Clopper & Pearson, 1934). We illustrate the resulting effect assuming Gaussian distributions
in Fig. 2c.

Empirical Analysis via Gaussian Assumption To investigate our theory, we now assume ylc
and ylp and hence also z̄i to be multivariate Gaussians. This choice is empirically well-fitting (see
App. D) and follows from the central limit theorem for ylc and from Gaussian perturbations and local

1An orthant is the n-dimensional equivalent of a quadrant.
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linearization for ylp. To estimate the free parameters c, Σc, Σp, ζc, and ζp, we evaluate ensembles of
up to k = 50 GAUSSIAN trained ResNet20 (for details, see §7) at σε = 0.25. We obtain c and Σc as
the mean and covariance of the output on a randomly chosen sample x. Subtracting the clean outputs
from those for the perturbed samples, we estimate the covariance matrix Σp. We determine ζc ≈ 0
and ζp ≈ 0.82 as the median ratio of the inter- and intra-classifier covariance. ζc ≈ 0 implies that our
models can be treated as independent conditioned on a single fixed and unperturbed input.

102 103 104 105

# Samples n

0.0

0.2

0.4

0.6

0.8

1.0
Expected certified radius

pA = 0.60

pA = 0.80
pA = 0.90
pA = 0.95

pA = 0.99

pA = 1.00

Figure 3: Expected certified radius
over the number n of samples for
the true success probabilities pA.

Plugging these estimates into our construction under the Gaus-
sian assumption, we observe a significant decrease in the vari-
ance of the classification margin to the runner-up class as ensem-
ble size k increases (see Fig. 2a). This generally leads to more
polarized success probabilities: the majority class’ probability
is increased, while the other classes’ probabilities are decreased
because the probability mass concentrates around the mean,
and consequently on one side of the decision threshold z̄ = 0,
which determines the success probability via Eq. (4). An in-
crease, as in our case for a correct mean prediction (see Fig. 2b),
leads to much larger expected certified radii (see Fig. 2c) for
a given number of sampled perturbations (here n = 103) via
Eq. (6). In contrast, sampling more perturbations will, in the
limit, only recover the true success probability. In our example,
going from one classifier to an ensemble of 50 increases the ex-
pected certified radius by 191%, while drawing 50 times more
perturbations for a single model only yields a 28% increase (see Fig. 2c). As illustrated in Fig. 3,
these effects are strongest close to decision boundaries (pA � 1), where small increases in pA impact
the certified radius much more than the number of samples n, which dominated at pA ≈ 1.

6 COMPUTATIONAL OVERHEAD REDUCTION

To avoid exacerbating the high computational cost of certification via RS with the need to evaluate
many models constituting an ensemble, we propose two orthogonal and synergizing approaches to
reduce sample complexity significantly. First, an adaptive sampling scheme reducing the average
number of samples required for certification. Second, a more efficient aggregation mechanism for
ensembles, reducing the number of models evaluated per sample, also applicable to inference.

Adaptive Sampling We assume a setting where a target certification radius r is known a priori, as
is the standard in deterministic certification, and aim to show R ≥ r via Theorem 3.1. After choosing
the majority class ĉA as in CERTIFY, CERTIFYADP (see Algorithm 2) leverages the insight that
relatively few samples are often sufficient to certify robustness at radius r. We perform an s ≥ 1 step
procedure: At step i, we evaluate ni fresh samples and, depending on these, either certify radius r as
in CERTIFY, abort certification if an upper confidence bound suggests that certification will not be
fruitful, or continue with ni+1 � ni. After s steps, we abstain. To obtain the same strong statistical
guarantees as with CERTIFY, it is essential to correct for multiple testing by applying Bonferroni
correction (Bonferroni, 1936), i.e., use confidence 1− α

s rather than 1− α. The following theorem
summarizes the key properties of the algorithm:

Theorem 6.1. For α, β ∈ [0, 1], s ∈ N+, n1 < · · · < ns, CERTIFYADP:

1. returns ĉA if at least 1− α confident that G is robust with a radius of at least r.

2. returns � before stage s only if at least 1− β confident that robustness of G at radius r can
not be shown.

3. for ns≥dn(1−logα(s))e has maximum certifiable radii at least as large as CERTIFY for n.

We provide a proof in App. E. For well-chosen parameters, this allows certifying radius r with, in
expectation, significantly fewer evaluations of F than CERTIFY as often ni � n samples suffice to
certify or to show that certification will not succeed. At the same time, we choose ns in accordance
with (3) in Theorem 6.1 to retain the ability to certify large radii (compared to CERTIFY) despite the
increased confidence level required due to Bonferroni correction. For an example, see Fig. 4.

6
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Algorithm 2 Adaptive Sampling

1: function CERTIFYADP(F, σε,x, n0, {nj}sj=1, s, α, β, r)
2: cnts0← SAMPLEUNDERNOISE(F,x, n0, σε)
3: ĉA ← top index in cnts0
4: for i← 1 to s do
5: cnts← SAMPLEUNDERNOISE(F,x, ni, σε)
6: pA ← LOWERCONFBND(cnts[ĉA], ni, 1− α

s )
7: If σε Φ−1(pA) ≥ r then return ĉA
8: pA ← UPPERCONFBND(cnts[ĉA], ni, 1− β

s−1 )
9: If σε Φ−1(pA) < r then return �

10: return �

sample with
n1 = 1000

sample with
n2 = 10000

sample with
n3 = 125000

ĉA �

else

else

cnts[ĉA] < 795cnts[ĉA] ≥ 880

cnts[ĉA] < 8270cnts[ĉA] ≥ 8538

elsecnts[ĉA] ≥ 105607

Figure 4: CERTIFYADP with β =
0.0001 obtains similar guarantee as
CERTIFY at n = 100′000 while being
more sample efficient for most inputs.
Both use α = 0.001, σε = r = 0.25.

K-Consensus Aggregation To reduce both inference and certification times, we can adapt the
ensemble aggregation process to return an output early when there is consensus. Concretely, first,
we order the classifiers in an ensemble by their accuracy (under noisy inputs) on a holdout dataset.
Then, when evaluating f̄ , we query classifiers in this order. If the first K individual classifiers agree
on the predicted class, we perform soft-voting on these and return the result without evaluating the
remaining classifiers. Especially for large ensembles, this approach can significantly reduce inference
time without hampering performance, as the ratio k

K can be large.

We note that similar approaches for partial ensemble evaluation have been proposed (Inoue, 2019;
Wang et al., 2018; Soto et al., 2016), and that this does not affect the mathematical guarantees of RS.

7 EXPERIMENTAL EVALUATION

In line with prior work, we evaluate the proposed methods on the CIFAR10 (Krizhevsky et al., 2009)
and ImageNet (Russakovsky et al., 2015) datasets with respect to two key metrics: (i) the certified
accuracy at predetermined radii r and (ii) the average certified radius (ACR). We show that on both
datasets, all ensembles outperform their strongest constituting model and obtain a new state-of-the-art.
On CIFAR10, we demonstrate that ensembles outperform individual models even when correcting
for computational cost via model size or the number of used perturbations. Further, we find that using
adaptive sampling and K-Consensus aggregation speeds up certification up to 55-fold for ensembles
and up to 33-fold for individual models.

Experimental Setup We implement our approach in PyTorch (Paszke et al., 2019) and evaluate on
CIFAR10 with ensembles of ResNet20 and ResNet110 and on ImageNet with ensembles of ResNet50
(He et al., 2016), using 1 and 2 GeForce RTX 2080 Ti, respectively. Due to the high computational
cost of CERTIFY, we follow previous work (Cohen et al., 2019) and evaluate every 20th image of the
CIFAR10 test set and every 100th of the ImageNet test set (500 samples total).

Training and Certification We train models with GAUSSIAN (Cohen et al., 2019), CONSISTENCY
(Jeong & Shin, 2020), and SMOOTHADV (Salman et al., 2019) training and utilize pre-trained
SMOOTHADV and MACER (Zhai et al., 2020) models. More details are provided in App. G. If not
declared differently, we use n0 = 100, n = 100′000, α = 0.001, no CERTIFYADP or K-Consensus
and evaluate and train with the same σε.

7.1 MAIN RESULTS

Results on CIFAR10 In Table 1, we compare ensembles of 10 ResNet110 against individual
networks at σε = 0.50 w.r.t. average certified radius (ACR) and certified accuracy at various radii.
We consistently observe that ensembles outperform their constituting models by up to 21% in ACR
and 45% in certified accuracy, yielding a new state-of-the-art at every radius. Improvements are more
pronounced for larger ensembles (see Fig. 5) and at larger radii, where larger pA are required, which
agrees well with our theoretical observations in §5. We present more extensive results in App. H.1,
including experiments for σε = 0.25 and σε = 1.0 yielding new state-of-the-art ACR in all settings.
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Table 1: CIFAR10 average certified radius (ACR) and certified
accuracy at different radii for ensembles of k ResNet110 (k = 1
are individual models) at σε = 0.5. Larger is better.

Training k ACR
Radius r

0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75

GAUSSIAN
1 0.535 65.8 54.2 42.2 32.4 22.0 14.8 10.8 6.6

10 0.648 69.0 60.4 49.8 40.0 29.8 19.8 15.0 9.6

CONSISTENCY
1 0.708 63.2 54.8 48.8 42.0 36.0 29.8 22.4 16.4

10 0.756 65.0 59.0 49.4 44.8 38.6 32.0 26.2 19.8

SMOOTHADV
1 0.707 52.6 47.6 46.0 41.2 37.2 31.8 28.0 23.4

10 0.730 52.4 48.6 45.8 42.6 38.8 34.4 30.4 25.0

MACER 1 0.668 62.4 54.4 48.2 40.2 33.2 26.8 19.8 13.0

1 3 5 10 50
Ensemble size

0.50

0.55

0.60

0.65

0.70

0.75

ACR

Consistency RN110

Consistency RN20

Gaussian RN110

Gaussian RN20

Figure 5: ACR over ensemble
size k for σε = 0.5 on CIFAR10.

Table 2: ImageNet average certified radius (ACR) and certified
accuracy at different radii for ensembles of k ResNet50 (k = 1
are individual models) at σε = 1.0. Larger is better.

Training k ACR
Radius r

0.0 0.50 1.00 1.50 2.00 2.50 3.00 3.50

GAUSSIAN
1 0.875 43.6 37.8 32.6 26.0 19.4 14.8 12.2 9.0
3 0.968 43.8 38.4 34.4 29.8 23.2 18.2 15.4 11.4

CONSISTENCY
1 1.022 43.2 39.8 35.0 29.4 24.4 22.2 16.6 13.4
3 1.108 44.6 40.2 37.2 34.0 28.6 23.2 20.2 16.4

SMOOTHADV
1 1.011 40.6 38.6 33.8 29.8 25.6 20.6 18.0 14.4
3 1.065 38.6 36.0 34.0 30.0 27.6 24.6 21.2 18.8

MACER † 1 1.008 48 43 36 30 25 18 14 -
† As reported by Zhai et al. (2020).

0 1 2 3 4
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20
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40

50
Certified accuracy [%]
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3 Consistency

1 SmoothAdv

3 SmoothAdv

Figure 6: Certified acc. over ra-
dius r for σε = 1.0 on ImageNet.

Results on ImageNet In Table 2, we compare ensembles of 3 ResNet50 with individual models at
σε = 1.0, w.r.t. ACR and certified accuracy. We observe similar trends to CIFAR10, with ensembles
outperforming their constituting models and the ensemble of 3 CONSISTENCY trained ResNet50
obtaining a new state-of-the-art ACR of 1.11, implying that ensembles are effective on a wide range
of datasets. We visualize this in Fig. 6 and present more detailed results in App. H.2, where we also
provide experiments for σε = 0.25 and σε = 0.5, yielding new state-of-the-art ACR in both cases.

Table 3: Adaptive sampling and K-Consensus
aggregation on CIFAR10 for 10 CONSISTENCY
trained ResNet110.

Radius σε acccert [%] SampleRF KCR [%] TimeRF

0.25 0.25 70.4 55.24 39.3 67.16
0.50 0.25 60.6 18.09 57.3 25.07
0.75 0.25 52.0 5.68 87.8 10.06
1.00 0.50 38.6 14.79 78.3 24.01
1.25 0.50 32.2 8.14 92.7 15.06
1.50 0.50 26.2 6.41 97.5 12.31

Computational Overhead Reduction We eval-
uate CERTIFYADP in conjunction with K-
Consensus aggregation using β = 0.001, {nj} =
{100, 1′000, 10′000, 120′000}, and K = 5 in Ta-
ble 3 and report KCR, the percentage of inputs for
which only K classifiers were evaluated and Sam-
pleRF and TimeRF, the factors by which sample
complexity and certification time are reduced, re-
spectively. We observe up to 67-fold certification
speed-ups and up to 55-fold sample complexity
reductions for individual predetermined radii, without incurring any accuracy penalties. This way,
certifying an ensemble of k = 10 networks with CERTIFYADP can be significantly faster than
certifying an individual model with CERTIFY while yielding notably higher certified accuracies. We
observe that adaptive sampling and K-Consensus aggregation complement each other well: At larger
radii r, more samples pass on to the later stages of CERTIFYADP, requiring more model evaluations.
However, only samples with high success probabilities reach these later stages, making it more likely
for K-Consensus aggregation to terminate an evaluation early. We provide extensive additional
experiments in App. H.4.

7.2 ABLATION STUDY

Ensemble Size and Model Size Ablation In Fig. 5, we illustrate the effect of ensemble size on
ACR for various training methods and model architectures, providing more extensive results in
App. H.3.2. We observe that in all considered settings, even relatively small ensembles of just 3-5
models realize most of the improvements to be made. In fact, as few as 3 and 5 ResNet20 are enough
to outperform a single ResNet110 under GAUSSIAN and CONSISTENCY training, respectively, while
only having 47% and 79% of the parameters.
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Table 4: Adaptive sampling for different {nj} on CIFAR10 at σε = 0.25. SampleRF and TimeRF
are the reduction factors compared to standard sampling with n = 100′000 (larger is better). ASRj is
the portion of certification attempts returned in phase j.

r Training {nj} acccert [%] ASR1 [%] ASR2 [%] ASR3 [%] ASR4 [%] SampleRF TimeRF

0.25
GAUSSIAN

1′000, 110′000 60.0 92.2 7.8 - - 10.34 10.45
1′000, 10′000, 116′000 60.0 91.6 5.0 3.4 - 17.01 17.21

100, 1′000, 10′000, 120′000 60.0 75.4 16.0 5.6 3.0 20.40 21.22

CONSISTENCY 100, 1′000, 10′000, 120′000 66.0 84.8 10.8 2.6 1.8 33.91 34.67

0.75 GAUSSIAN 100, 1′000, 10′000, 120′000 30.2 48.8 11.6 29.4 10.2 5.92 6.10
CONSISTENCY 100, 1′000, 10′000, 120′000 46.4 32.4 8.2 49.4 10.0 5.32 5.40

0.0 0.5 1.0 1.5 2.0
Radius r

0

10

20

30

40

50

60

70

80
Certified accuracy [%]

1 Gaussian (n = 105)

1 Gaussian (n = 106)

10 Gaussian (n = 105)

Figure 7: Comparing an
ensemble and an individual
model at an equal number of
total inferences on CIFAR10.

Equal Number of Inferences In Fig. 7, we compare the effect
of evaluating a larger number of perturbations n for an individual
model compared to an ensemble at the same computational cost. We
observe that increasing the sample count for a single model only
enables marginal improvements at most radii and only outperforms
the ensemble at radii, which can mathematically not be certified
using the smaller sample count. See also Fig. 3 for a theoretical
explanation and App. H.3.4 for more experiments.

Other Base Classifiers While our approach works exceptionally
well when ensembling similar classifiers, it can also be successfully
extended to base models trained with different training methods (see
App. H.3.5) and denoised classifiers (see App. H.3.6), yielding ACR
improvements of up to 5% and 17% over their strongest constituting
models, respectively. This way, existing models can be reused to
avoid the high cost of training an ensemble.

Adaptive Sampling Ablation In Table 4, we show the effectiveness of CERTIFYADP for certifying
robustness at predetermined radii using β = 0.001, different target radii, training methods, and
sampling count sets {nj}. We compare ASRj , the portion of samples returned in stage j, SampleRF,
and TimeRF. Generally, we observe larger speed-ups for smaller radii (up to a factor of 34 at r = 0.25).
There, certification only requires small pA, which can be obtained even with few samples. For large
radii (w.r.t σε), higher pA must be shown, requiring more samples even at true success rates of
pA = 1. There, the first phase only yields early abstentions. The more phases we use, the more often
we certify or abstain early, but also the bigger the costs due to Bonferroni correction. We observe
that exponentially increasing phase sizes and in particular {nj} = {100, 1′000, 10′000, 120′000}
perform very well across different settings. See App. H.4.1 for additional results.

Table 5: K-Consensus aggregation at
σε = 0.25 on CIFAR10.

Architecture K ACR TimeRF KCR

CONSISTENCY
ResNet110

1 0.546 10.0 100.0
2 0.576 3.25 85.8
5 0.583 1.59 74.2

10 0.583 1.00 0.0

CONSISTENCY
ResNet20

1 0.528 50.0 100.0
2 0.544 6.50 87.7

10 0.551 2.01 69.8
50 0.551 1.00 0.0

K-Consensus Aggregation Ablation In Table 5, we
compare ACR and certification time reduction for ensem-
bles of 10 ResNet110 and 50 ResNet20 using K-Consensus
aggregation in isolation across different K. Even when us-
ing only K = 2, we already obtain 81% and 70% of the
ACR improvement obtainable by always evaluating the full
ensembles (k = 10 and k = 50), respectively. The more
conservative K = 10 for ResNet20 still reduces certifica-
tion times by a factor of 2 without losing accuracy. See
App. H.4.2 for more detailed experiments.

8 CONCLUSION

We propose a theoretically motivated and statistically sound approach to construct low variance base
classifiers for Randomized Smoothing by ensembling. We show theoretically and empirically why
this approach significantly increases certified accuracy yielding state-of-the-art results. To offset
the computational overhead of ensembles, we develop a generally applicable adaptive sampling
mechanism, reducing certification costs up to 55-fold for predetermined radii and an ensemble
aggregation mechanism, complementing it and reducing evaluation costs on its own up to 6-fold.
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9 ETHICS STATEMENT

Most machine learning techniques can be applied both in ethical and unethical ways. Techniques to
increase the certified robustness of models do not change this but only make the underlying models
more robust, again allowing beneficial and malicious applications, e.g., more robust medical models
versus more robust weaponized AI. As our contributions improve certified accuracy, certification
radii, and inference speed, both of these facets of robust AI are amplified. Furthermore, while we
achieve state-of-the-art results, these do not yet extend to realistic perturbations. Malicious actors
may aim to convince regulators that methods such as the proposed approach are sufficient to provide
guarantees for general real-world threat scenarios, leading to insufficient safeguards.

10 REPRODUCIBILITY STATEMENT

We make all code and pre-trained models required to reproduce our results publicly available at
https://github.com/eth-sri/smoothing-ensembles. There, we also provide detailed instructions
and scripts facilitating the reproduction of our results. We explain the basic experimental setup in
§7 and provide exact experimental details in App. G, where we extensively describe the datasets
(App. G.1), model architectures (App. G.2), training methods (App. G.3), hyper-parameter choices
(App. G.4), and experiment timings (App. G.5). We remark that the datasets, architectures, and
training methods we use are all publicly available. Section §7 and App. H contain numerous
experiments for various datasets, model architectures, training methods, noise levels, and ensemble
compositions. The consistent trends we observe over this wide range of settings highlight the general
applicability of our approach. In App. H.3.3, we analyze the variability of our results, reporting
standard deviations for a range of metrics, find that our ensembling approach reduces variability,
and note that our results are statistically significant. We include complete proofs of all theoretical
contributions (§5 and §6) in App. C and E. In App. D, we theoretically motivate the modelling
assumptions made in §5 and validate them empirically.
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A COMPARISON TO LIU ET AL. (2020)

Liu et al. (2020) introduce Smoothed Weighted Ensembling (SWEEN), which are weighted ensembles
of smoothed base models. They focus on deriving optimal ensemble weights for generalization rather
than on analyzing the particularities of ensembles in the RS setting. As they do not consider multiple
testing correction and the confidence of the applied Monte Carlo sampling, they obtain statements
about empirical, distributional robustness of their classifiers, rather than individual certificates with
high confidence. Due to this difference setting, we do not compare numerically.

B ADDITIONAL RELATED WORK

Extensions As outlined in §3, Cohen et al. (2019) focuses on the addition of Gaussian noise to
drive `2-robustness results. However, various extensions with other types of noise and guarantees
have been proposed.

By using different types of noise distributions and radius calculations, Yang et al. (2020); Zhang et al.
(2020) derive recipes to determine certificates for general `p-balls and specifically showcase results
for p = 1, 2,∞.

Numerous works have shown extensions to discrete perturbations such as `0-perturbations (Lee et al.,
2019; Wang et al., 2021; Schuchardt et al., 2021), graphs (Bojchevski et al., 2020; Gao et al., 2020),
patches Levine & Feizi (2020) or manipulations of points in a point cloud Liu et al. (2021).

Dvijotham et al. (2020) provide theoretical derivations for the application of both continuous and
discrete smoothing measures.

Mohapatra et al. (2020) improve certificates by considering gradient information.

Beyond norm-balls certificates, Fischer et al. (2020); Li et al. (2021) show how geometric operations
such as rotation or translation can be certified via Randomized Smoothing.

Chiang et al. (2020); Fischer et al. (2021) show how the certificates can be extended from the setting of
classification to regression (and object detection) and segmentation, respectively. In the classification
setting, Jia et al. (2020) extend certificates from just the top-1 class to the top-k classes. Similarly,
Kumar et al. (2020a) certify the confidence of the classifier not, just the top class prediction.

Beyond the inference-time evasion attacks, Rosenfeld et al. (2020) showcase RS as a defense against
data poisoning attacks.

Many of these extensions are orthogonal to the standard Randomized Smoothing approach and thus
orthogonal to our improvements. We showcase that these improvements carry over from the `2 case
to other `p norms in App. H.3.7.

Limitations Recently, some works also have investigated the limitations of Randomized Smoothing:
Mohapatra et al. (2021) point out the limitations of training for Randomized Smoothing as well as
the impact on class-wise accuracy. Kumar et al. (2020b); Wu et al. (2021) show that for p > 2, the
achievable certification radius quickly diminishes in high-dimensional spaces.

C MATHEMATICAL DERIVATION OF VARIANCE REDUCTION FOR ENSEMBLES

In this section, we present the algebraic derivations for §5, skipped in the main part due to space
constraints.

Individual Classifier In §5 define f l(x) =: yl ∈ Rm as the sum of two random variables
yl = ylp + ylc.

The behavior on a specific clean sample x is modeled by ylc with mean c ∈ Rm, the expectation of
the logits for this sample over the randomization in the training process, and corresponding covariance
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Σc:

E[ylc] = c

Cov[ylc] = Σc =

 σ2
c,1 · · · ρc,1mσc,1σc,m

. . .
...

σ2
c,m


We note that: (i) we omit the lower triangular part of covariance matrices due to symmetry, (ii) c and
Σc are constant across the different f l for a fixed x and (iii) that due to (ii) and our modelling assump-
tions all means, (co)variances and probabilities are conditioned on x, e.g., E[ylc] = E[ylc | x] = c.
However, as we define all random variables only for a fixed x, we omit this.

Similarly, we model the impact of the perturbations ε introduced during RS by ylp with mean zero
and covariance Σp:

E[ylp] = 0

Cov[ylp] = Σp =

 σ2
p,1 · · · ρp,1mσp,1σp,m

. . .
...

σ2
p,m


That is, we assume cl to be the expected classification a model learns for the clean sample while the
covariances Σc and Σp encode the stochasticity of the training process and perturbations, respectively.
As ylp models the local behavior under small perturbations and ylc models the global training effects,
we assume them to be independent:

E[yl] = c

Cov[yl] = Σ = Σc + Σp =

 σ2
p,1 + σ2

c,1 · · · ρp,1mσp,1σp,m + ρc,1mσc,1σc,m
. . .

...
σ2
p,m + σ2

c,m

 .
The classifier prediction arg maxq yq is determined by the differences between logits. We call the
difference between the target logit and others the classification margin. During certification with RS,
the first step is to determine the majority class. Without loss of generality, we assume that it has been
determined to be index 1, leading to the classification margin zi = y1 − yi. If zi > 0 for all i 6= 1,
the majority class logit y1 is larger than those of all other classes yi. We define z := [z2, .., zn]T ,
skipping the margin of y1 to itself. Under the above assumptions, the statistics of the classification
margin for a single classifier are:

E[zi] = c1 − ci
Var[zi] = σ2

p,1 + σ2
p,i + σ2

c,1 + σ2
c,i − 2ρp,1iσp,1σp,i − 2ρc,1iσc,1σc,i

Ensemble Now, we construct an ensemble of k of these classifiers. Using soft-voting (cf. Eq. (2)) to
compute the ensemble output ȳ = 1

k

∑k
l=1 y

l. We assume the yip and yjp to be correlated with ζpΣp
for classifiers i 6= j and similarly model the correlation of ylc with ζcΣc for ζp, ζc ∈ [0, 1]. Letting
y∗ := [y1>, ...,yk

>
]> denote the concatenation of the logit vectors of all classifiers, we assemble

their joint covariance matrix in a block-wise manner from the classifier individual covariance matrices
as:

Cov[y∗] = Σ∗ =

 Σp + Σc · · · ζpΣp + ζcΣc
. . .

...
Σp + Σc


We then write the corresponding classification margins z̄i = ȳ1 − ȳi. or in vector notation z̄ :=
[z̄2, .., z̄m]T , again skipping the margin of ȳ1 to itself. By linearity of expectation we obtain E[z̄i] =
E[zi] = c1 − ci or equivalently

E[z̄] = µ̄ =

(
c1
...
c1

)
− c[2:m].
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We define the ensemble difference matrixD ∈ Rm−1×mk with elements di,j such that z̄ = Dy∗:

Dij =


1
k , if jmodm = 1
−1
k , else if jmodm = imodm

0, else
, j ∈ [1, ...,mk], i ∈ [2, ...,m].

This allows us to write the covariance matrix of the ensemble classification margins

Cov[z̄] = Σ̄ = DΣ∗D>.

Now we can evaluate its diagonal elements or use the multinomial theorem and rule on the variance
of correlated sums to obtain the variance of individual terms:

Var[z̄i] =
k + 2

(
k
2

)
ζp

k2
(σ2
p,1 + σ2

p,i − 2ρp,1iσp,1σp,i)︸ ︷︷ ︸
σ2
p(k)

+
k + 2

(
k
2

)
ζc

k2
(σ2
c,1 + σ2

c,i − 2ρc,1iσc,1σc,i)︸ ︷︷ ︸
σ2
c(k)

.

Variance Reduction We can split Var[z̄i] into the components associated with the perturbation
effect σ2

p(k) and the clean prediction σ2
c (k), all as functions of the ensemble element number k.

Now, we analyze these variance components independently by normalizing them with the correspond-
ing components of an individual classifier:

σ2
p(k)

σ2
p(1)

=
(1 + ζp(k − 1))(σ2

p,1 + σ2
p,i − 2ρp,1iσp,1σp,i)

k(σ2
p,1 + σ2

p,i − 2ρp,1iσp,1σp,i)
=

1 + ζp(k − 1)

k

k→∞−−−−→ ζp

σ2
c (k)

σ2
c (1)

=
(1 + ζc(k − 1))(σ2

c,1 + σ2
c,i − 2ρc,1iσc,1σc,i)

k(σ2
c,1 + σ2

c,i − 2ρc,1iσc,1σc,i)
=

1 + ζc(k − 1)

k

k→∞−−−−→ ζc

We observe that both variance components go towards their corresponding correlation coefficients ζp
and ζc as ensemble size grows, highlighting the importance of non-identical classifiers.

Especially for samples that are near a decision boundary, this variance reduction will lead to much
more consistent predictions, in turn significantly increasing the lower confidence bound p

1
and

thereby the certified radius as per Theorem 3.1.

D THEORY VALIDATION

In this section, we present experiments validating the modeling assumptions made in §5 to derive
the reduced variance over perturbations in RS resulting from using ensembles of similar classifiers.
There are three main assumptions we make:

• The (pre-softmax) output of a single model can be modeled as f l(x) = yp + yc, where yc
captures the prediction on clean samples and yp the effect of perturbations with mean zero.

• The clean and perturbation components yc and yp are independent.

• The covariance of ylp and ylc between different classifiers i 6= j can be parametrized as
Cov(yip,y

j
p) = ζpΣp and similarly Cov(yic,y

j
c) = ζcΣc.

To show that these assumptions are valid, we additionally assume multivariate Gaussian distributions
and evaluate an ensemble of k = 50 ResNet20 on 100 clean samples x, each perturbed with n = 1000
different error terms ε, and compare the obtained distributions and covariance matrices with our
modeling. We generally observe excellent agreement between observation and model at low noise
level σε = 0.25 and good agreement at a high noise level of σε = 1.0.

Individual classifier predictions We model the predictions of individual classifiers f : Rd 7→ Rm
on perturbed inputs x+ ε for a single arbitrary but fixed x and Gaussian perturbations ε ∼ N (0, σ2

εI)
with f l(x) = yp + yc.
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Figure 9: Comparison of modeled and true distributions of clean prediction (left), perturbation effect
(middle), and mean perturbation effect (right) for σε = 0.25 (top) and σε = 0.5 (bottom).
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Figure 8: Comparison of the true
and modelled distribution of clean
predictions yc = f(x).

We can interpret the clean component yc in two different ways:
either as the prediction yc := f(x) on the clean sample x
or as the mean prediction over perturbations of this sample
yc := Eε∼N (0,σ2

εI)[f(x + ε)]. In both cases, we assume yc
to be distributed with mean c ∈ Rm and covariance Σc. The
first case is illustrated in Fig. 8, where we rescale both our
model and the predictions with the sample-wise mean and vari-
ance over classifiers and observe excellent agreement between
model and observed distribution. The second case is illustrated
in the leftmost column in Fig. 9 for two different σε, where
we again observe excellent agreement between the true distri-
bution and our model. Here we denote with µf(x′) the mean
prediction over perturbed samples Eε∼N (0,σ2

εI)[f(x+ε)], cor-
responding to the setting of yc := Eε∼N (0,σ2

εI)[f(x+ ε)] and
similarly with denote with µf(x) the mean prediction over clas-
sifiers for an unperturbed sample El[f l(x)], corresponding to
the setting of yc := f(x).

The perturbation effect yp is assumed to be mean zero, either following from local linearization
and zero mean perturbations when defining the clean component as yc := f(x) or directly from
the definition of the clean component as yc := Eε∼N (0,σε)[f(x + ε)]. For small perturbations
(σε = 0.25), the assumption of local linearity holds, and we observe a mean perturbation effect
distributed very tightly around 0 (see top right pane in Fig. 9). For larger perturbations (σε = 1.00),
this assumption of local linearity begins to break down, and we observe a much wider spread of
mean perturbation effect (see bottom right pane in Fig. 9). At both perturbation levels, we observe an
excellent agreement of the perturbation effect model with the observed data when using the definition
of yc := Eε∼N (0,σε)[f(x+ ε)] (green in the middle column in Fig. 9). Using yc := f(x), we still
observe great agreement at the lower perturbation magnitude but a notable disagreement at high
perturbation levels. While both definitions for yc are fully compatible with our derivation in §5, we
choose to present a version based on yc := f(x) as it allows for a better intuitive understanding.
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(a) Cov(yc := µf (x
′),yp) (b) Cov(yc := f(x),yp)

Figure 10: Covariance Cov(yc,yp) of clean and perturbation components yc and yp, respectively,
for σε = 0.25 using yc := µf (x′) (left) or yc := f(x) (right). The upper diagonal block corresponds
to Cov(yc,yc) and the lower one to Cov(yp,yp)‘.

True covariance Delta Modeled covariance

(a) Cov(yic,yjc) and ζc = 0.0051

True covariance Delta Modeled covariance

(b) Cov(yip,yjp) and ζp = 0.8519

Figure 11: Comparison of modeled (right) and true (left) covariance matrix between the clean and
perturbation components ylc (top) and ylp (bottom), respectively, of different classifiers for σε = 0.25
using yc := f(x).

Correlation between clean and error component We model yc and yp separately to distinguish
between randomness over perturbations, which are introduced during RS, and over the models
introduced during training with different random seeds. As yc models the large scale effects of
training and yp the smaller local scale local effects of inference time perturbations, we assume them
to be independent, corresponding to a covariance Cov(yp,i, yc,j) ≈ 0 ∀i, j. Depending on which
definition of yc we use, we obtain either of the two covariance matrices in Fig. 10, where the upper
left-hand block is the covariance of yc, the lower righthand block the covariance of yp and the
off-diagonal blocks Cov(yp,i, yc,j). In the setting of yc := µf (x′), the two components yc and yp
are perfectly independent as can be seen by the 0 off-diagonal blocks in the covariance matrix shown
in Fig. 10a. In the setting of yc := f(x), very small terms can be seen in the off-diagonal blocks
shown in Fig. 10b. Overall, the agreement with our model is excellent in both cases.
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Inter classifier correlation structure In our analysis, we consider ensembles of similar classifiers
which are based on the same architecture and trained using the same methods, just using different
random seeds. Hence, we assume that the correlation between the logits of different classifiers has a
similar structure but smaller magnitude than the correlation between the logits of the same classifier.
Correspondingly, we parametrize the covariance between yip and yjp for classifiers i 6= j with ζpΣp
and similarly between yic and yjc with ζcΣc for ζp, ζc ∈ [0, 1]. To evaluate this assumption, we
consider all

(
50
2

)
pairings of classifiers and compute the resulting pairwise covariance matrices for

the clean components ylc := f l(x) and perturbation effects ylp. In Fig. 11 we show the resulting
covariance matrices (left column), our model (right column), and the delta between the two (center
column). Again we observe excellent agreement to the point that even given the delta maps, it is hard
to spot the differences in the covariance matrices.

Model fit conclusion We conclude that our model is able to capture the relevant behavior even of
deep networks (here ResNet20) with great accuracy that goes beyond what is required for a theoretical
analysis to allow for interesting insights into the underlying mechanics.

E PROOF OF THEOREM 6.1

We first restate the theorem:

Theorem (Theorem 6.1 restated). For α, β ∈ [0, 1], s ∈ N+, n1 < · · · < ns, CERTIFYADP:

1. returns ĉA if at least 1− α confident that G is robust with a radius of at least r.

2. returns � before stage s only if at least 1− β confident that robustness of G at radius r can
not be shown.

3. for ns≥dn(1−logα(s))e has maximum certifiable radii at least as large as CERTIFY for n.

Proof. We show statements 1, 2, and 3 individually.

Proof of 1. If a phase in CERTIFYADP returns ĉA, then via Theorem 3.1, G will be not robust with
probability at most α/s. Via Bonferroni correction (Bonferroni, 1936), if CERTIFYADP returns ĉA,
then G is robust with radius at least r with confidence 1− s(α/s) = 1− α.

Proof of 2. If CERTIFYADP returns� in phase s, we have pA < p′A = Φ(r/σε) the minimum success
probability for certification at r. By the definition of the UPPERCONFIDENCEBOUND the true success
probability of G will be pA ≤ pA with confidence at least β/(s− 1). Hence, if phase j returns �,
robustness of G cannot be shown at radius r with confidence 1− β/(s− 1), even with access to the
true success probability or infinitely many samples. Again with Bonferroni correction (Bonferroni,
1936), the overall probability that G is robust at r despite CERTIFYADP abstaining early is at most
(s− 1)(β/(s− 1)) = β.

Proof of 3. Finally, to prove the last part, we assume cnts[ĉA] = n, yielding the largest certifiable
radii for any given n and α. Now, the largest radius provable via Theorem 3.1 with n samples at α is

α1/n (Cohen et al., 2019). Similarly, for ns samples at α/s, it is
(
α
s

) 1
ns . Then we have the following

equivalences:

(α)
1
n =

(α
s

) 1
ns ⇔ αns =

(α
s

)n
⇔ ns logα = n(logα− log s)⇔ ns = n(1− n logα(s))

Hence, if we choose ns = dn(1− logα(s))e, then we can certify at least the same maximum radius
with ns samples at α/s as with n samples at α. Thus, overall, we can certify the same maximum
radius at α.

F ADDITIONAL RANDOMIZED SMOOTHING DETAILS

This section contains definitions needed for the standard certification via Randomized Smoothing,
CERTIFY, proposed by Cohen et al. (2019).
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SAMPLEUNDERNOISE(F, x, n, σε) first samples n inputs x1, . . . , xn with x1 = x+ ε1, . . . , xn =
x + εn for ε1, . . . , εn ∼ N (0, σε). Then it counts how often F predicts which class for these
x1, . . . , xn and returns the corresponding m dimensional array.

UPPERCONFBND(k, n, 1 − α) returns an upper bound on p with confidence at least 1 − α where
p is an unknown probability such that k ∼ B(n, p). Here, B(n, p) is a binomial distribution with
parameters n and p.

LOWERCONFBND(k, n, 1 − α) is analogous to UPPERCONFBND but returns a lower bound on p
instead of an upper bound with confidence 1− α.

We point the interested reader to Cohen et al. (2019) for more details about Randomized Smoothing.

G EXPERIMENTAL DETAILS

In this section, we provide greater detail on the datasets, architectures, and training and evaluation
methods used for our experiments.

G.1 DATASET DETAILS

We use the MNIST, CIFAR10, and ImageNet datasets in our experiments.

MNIST (Deng, 2012) contains 60’000 training and 10’000 test set images partitioned into 10 classes
for the 10 digits. We evaluate all images from the test set.

CIFAR10 (Krizhevsky et al., 2009) (MIT License) contains 50’000 training and 10’000 test set
images partitioned into 10 classes. We evaluate every 20th image of the test set starting with index 0
(0, 20, 40, ..., 9980) in our experiments, following previous work (Cohen et al., 2019).

ImageNet (Russakovsky et al., 2015) contains 1’287’167 training and 50’000 validation images,
partitioned into 1000 classes. We evaluate every 100th image of the validation set starting with index
0 (0, 100, 200, ..., 49900) in our experiments, following previous work (Cohen et al., 2019).

G.2 ARCHITECTURE DETAILS

Table 6: Parameter count of the
used network architectures

Dataset Architecture Parameter count

CIFAR10 ResNet20 272’474
ResNet110 1’730’714

ImageNet ResNet50 25’557’032

We use different versions of ResNet (He et al., 2016) for our
experiments. Concretely, we evaluate ensembles of ResNet20
and ResNet110 on CIFAR10 and ensembles of ResNet50 on
ImageNet.

ResNet110 has about 6.35 times as many parameters as
ResNet20 (see Table 6). ResNet50 instantiated for ImageNet
has substantially more parameters than ResNet110 instantiated
for CIFAR10 because of the significantly larger input dimension
of ImageNet samples.

G.3 TRAINING METHODS

To obtain high certified radii via RS, the base model F must be trained to cope with the added
Gaussian noise ε. To this end, Cohen et al. (2019) propose data augmentation with Gaussian
noise during training, referred to as GAUSSIAN in the following. Building on this, Salman et al.
(2019) suggest SMOOTHADV, a combination of adversarial training (Madry et al., 2018; Kurakin
et al., 2017; Rony et al., 2019) with the data augmentation from GAUSSIAN. (Here, we always
consider the PGD version.) While improving accuracy, this training procedure is computationally
very expensive. MACER (Zhai et al., 2020) achieves similar performance with a cheaper training
procedure, adding a loss term directly optimizing a surrogate certification radius. Jeong & Shin
(2020), called CONSISTENCY in the following, replace this term with a more easily optimizable
loss, further decreasing training time and improving performance. Depending on the setting, the
current state-of-the-art results are either achieved by SMOOTHADV, MACER, CONSISTENCY, or a
combination thereof.
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Further, Salman et al. (2020) present denoised smoothing, where the base classifier f = h ◦ f ′ is
the composition of a denoiser h that removes the Gaussian noise from the input and an underlying
classifier f ′ that is not specially adapted to Gaussian noise, e.g., accessed via an API.

G.4 TRAINING DETAILS

All models are implemented in PyTorch (Paszke et al., 2019) (customized BSD license).

For GAUSSIAN training (No license specified), we use the published code by Cohen et al. (2019). For
each network, we chose a different random seed, otherwise using identical parameters. Overall, we
trained 50 ResNet20 and 10 ResNet110 for each σε ∈ {0.25, 0.5, 1.0} on CIFAR10. For ImageNet,
we trained 3 ResNet50 for σε = 1.0, and took the results for σε ∈ {0.25, 0.50} from their GitHub.

For CONSISTENCY training (MIT License), we use the code published by Jeong & Shin (2020) and
CONSISTENCY instantiation built on GAUSSIAN training. Similarly to GAUSSIAN, we use a different
random seed and otherwise identical parameters for all networks. We chose the parameters reported
to yield the largest ACR by Jeong & Shin (2020) for any given σε, except for σε = 0.25 on ImageNet,
for which no parameters were reported. In detail, for CIFAR10 we generally use η = 0.5, using
λ = 20 for σε = 0.25 and λ = 10 for σε = 0.5 and σε = 1.0 (all for both ResNet20 and ResNet110).
In this way, we train 50 ResNet20 and 10 ResNet110 for each σε ∈ {0.25, 0.5, 1.0}. For ImageNet,
we use η = 0.1 and λ = 5 for σε = 1.0. For σε = 0.25 and σε = 0.5, we use η = 0.5 with λ = 10
respectively λ = 5.

For SMOOTHADV training (MIT License), we use the PGD based instantiation of the code published
by Salman et al. (2019). Note that due to the long training times, we only train SMOOTHADV models
ourselves on CIFAR10. The individual models we train only differ by random seed, all using PGD
attacks. For σε = 0.25, we train with T = 10 steps, an ε = 255/255, 10 epochs of warm-up, and
mtrain = 8 noise terms per sample during training. For σε = 0.5, we train with T = 2 steps, an
ε = 512/255, 10 epochs of warm-up, and mtrain = 2 noise terms per sample during training. Finally,
σε = 1.0, we train with T = 10 steps, an ε = 512/255, 10 epochs of warm-up, and mtrain = 2 noise
terms per sample during training.

We use the same training schedule and optimizer for all models, i.e., stochastic gradient descent
with Nesterov momentum (weight = 0.9, no dampening), with an `2 weight decay of 0.0001. For
CIFAR10, we use a batch size of 256 and an initial learning rate of 0.1, reducing it by a factor of 10
every 50 epochs and training for a total of 150 epochs. For ImageNet, we use the same settings, only
reducing the total epoch number to 90 and decreasing the learning rate every 30 epochs.

All single MACER (No license specified) trained models for CIFAR10 are taken directly from Zhai
et al. (2020).

For our experiments on denoised smoothing, we use the 4 white box denoisers with DNCNN-WIDE
architecture trained with learning schedules 1, 3, 4, and 5 for STAB ResNet110, and the ResNet110
trained on unperturbed samples for 90 epochs from Salman et al. (2020) (MIT License).

To rank the single models for CIFAR10, we have evaluated them on a disjunct hold-out portion of
the CIFAR10 test set. Concretely, we use the test images with indices 1, 21, 41, ..., 9981 to rank the
single models for GAUSSIAN, CONSISTENCY, and SMOOTHADV trained models. The performances
of individual models values we report are those of the models with the best score on this validation
set for CIFAR10 and the best score on the test set for ImageNet (favoring individual models in
this setting). For ensembles of size k < 10 and k < 50 for ResNet110 and ResNet20, respectively,
we ensemble the k models according to their performance on the hold-out set. We note that other
combinations might yield stronger ensembles, but an exhaustive search of all combinatorially many
possibilities is computationally infeasible.

CIFAR10 models were trained on single GeForce RTX 2080 Ti and ImageNet models on quadruple
2080 Tis. We report the epoch-wise and total training times for individual models in Table 7 (when
trained sequentially one at a time).
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Table 7: Reference training times for individual models on GeForce RTX2080 Tis

Dataset Training Architecture #GPUs time per Epoch [s] total time [h]

CIFAR10

GAUSSIAN
ResNet110 1 41.8 1.74
ResNet20 1 9.6 0.40

CONSISTENCY
ResNet110 1 79.5 3.31
ResNet20 1 18.5 0.77

SMOOTHADV (σε = 0.25) ResNet110 1 2471 102.96
SMOOTHADV (σε ∈ {0.5, 1.0}) ResNet110 1 660 27.5

ImageNet CONSISTENCY ResNet50 4 3420 85

G.5 EXPERIMENT TIMINGS

To evaluate the ensembles of ResNet20 and ResNet110 on CIFAR10, we use single GeForce RTX
2080 Ti, and to evaluate ensembles of ResNet50 on ImageNet, we use double 2080 Tis.

For both datasets, 500 samples are evaluated per experiment as discussed in App. G.1. Below we list
the time required for certification using CERTIFY and no K-Consensus aggregation:

• ResNet110 on CIFAR10 (1 GPU): 4.12h per single model; 41.2h per ensemble of 10

• ResNet20 on CIFAR10 (1 GPU): 0.825h per single model; 41.3h per ensemble of 50

• ResNet50 on ImageNet (2 GPUs): 8.75h per single model; 26.2h per ensemble of 3

The timing for different ensemble sizes scales linearly between full size and individual model timings.
The time required for certification using CERTIFYADP or K-Consensus aggregation or both can be
obtained by dividing the timings reported above with the speed-up factor TimeRF reported for the
corresponding experiments.

H ADDITIONAL EXPERIMENTS

In the following, we present numerous additional experiments and more detailed results for some of
the experiments presented in §7.

H.1 ADDITIONAL RESULTS ON CIFAR10

In this section, we present more experimental results on CIFAR10. Concretely, Table 8 presents the
performance of ensembles of ResNet20 (k ∈ {1, 5, 50}) and ResNet110 (k ∈ {1, 10}) trained using a
wide range of of methods for σε = 0.25, σε = 0.5, and σε = 1.0. We again consistently observe that
ensembles significantly outperform their constituting models, implying that ensembles are effective
for various training methods and model architectures, as well as different σε. In particular, they lead
to a new state-of-the-art both in ACR and at most radii at σε = 0.25, σε = 0.5, and σε = 1.0.

Fig. 12 visualizes the evolution of ACR and certified accuracy with ensemble size for σε = 0.25. In
Fig. 13, we visualize the evolution of certified accuracy over radii for GAUSSIAN trained models.

H.2 ADDITIONAL RESULTS ON IMAGENET

Extending the results from §7, Table 9 also provides ensemble results on ImageNet for σε = 0.25, and
σε = 0.5 with CONSISTENCY trained ResNet50. Similarly to CIFAR10, we consistently observe that
ensembles significantly outperform their constituting models, implying that ensembles are effective
on various datasets. In particular, we achieve a new state-of-the-art both in ACR and certified accuracy
at most radii for σε = 0.25, σε = 0.50, and σε = 1.00.

Additionally, we report the performance of all individual classifiers which constitute the ensembles,
where k = 3 combines all three and k = 2 the first two for GAUSSIAN and CONSISTENCY, and the
last two for SMOOTHADV. Note that the SMOOTHADV models are taken directly from Salman et al.
(2019) and were trained with a different ε parameter (256, 512, and 1024). We observe that if there
is a large discrepancy between model performance at some radii (e.g., the SMOOTHADV models at
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Table 8: Average certified radius (ACR) and certified accuracy at various radii for ensembles of k
models (k = 1 are single models) for a various training methods and model architectures on CIFAR10.
Larger is better.

σε Training Architecture k ACR
Radius r

0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.25

GAUSSIAN

ResNet110
1 0.450 77.6 60.0 45.6 30.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.541 83.4 70.6 55.4 42.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ResNet20
1 0.434 77.4 63.4 43.6 26.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.500 80.2 65.4 50.4 36.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 0.517 80.4 68.6 52.8 38.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CONSISTENCY

ResNet110
1 0.546 75.6 65.8 57.2 46.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.583 76.8 70.4 60.4 51.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ResNet20
1 0.528 71.8 64.2 55.6 45.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.547 73.0 65.4 57.6 47.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 0.551 73.0 64.8 57.0 50.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SMOOTHADV ResNet110
1 0.527 70.4 62.8 54.2 48.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.560 71.6 64.8 57.8 52.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MACER ResNet110 1 0.518 77.4 69.0 52.6 39.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50

GAUSSIAN

ResNet110
1 0.535 65.8 54.2 42.2 32.4 22.0 14.8 10.8 6.6 0.0 0.0 0.0
10 0.648 69.0 60.4 49.8 40.0 29.8 19.8 15.0 9.6 0.0 0.0 0.0

ResNet20
1 0.534 65.2 55.0 43.0 33.0 22.4 16.2 9.6 5.0 0.0 0.0 0.0
5 0.615 67.6 58.4 47.4 38.8 27.4 19.8 13.2 7.0 0.0 0.0 0.0
50 0.630 67.2 59.4 48.6 39.2 29.0 21.6 14.6 8.2 0.0 0.0 0.0

CONSISTENCY

ResNet110
1 0.708 63.2 54.8 48.8 42.0 36.0 29.8 22.4 16.4 0.0 0.0 0.0
10 0.756 65.0 59.0 49.4 44.8 38.6 32.0 26.2 19.8 0.0 0.0 0.0

ResNet20
1 0.691 62.6 55.2 47.4 41.8 34.6 28.4 21.8 16.8 0.0 0.0 0.0
5 0.723 62.2 55.0 48.6 42.6 36.4 29.8 23.4 20.6 0.0 0.0 0.0
50 0.729 61.6 55.8 49.2 43.0 37.8 30.6 24.2 20.0 0.0 0.0 0.0

SMOOTHADV ResNet110
1 0.707 52.6 47.6 46.0 41.2 37.2 31.8 28.0 23.4 0.0 0.0 0.0
10 0.730 52.4 48.6 45.8 42.6 38.8 34.4 30.4 25.0 0.0 0.0 0.0

MACER ResNet110 1 0.668 62.4 54.4 48.2 40.2 33.2 26.8 19.8 13.0 0.0 0.0 0.0

1.00

GAUSSIAN

ResNet110
1 0.532 48.0 40.0 34.4 26.6 22.0 17.2 13.8 11.0 9.0 5.8 4.2
10 0.607 49.4 44.0 37.6 29.6 24.8 20.0 16.4 13.6 11.2 9.4 6.8

ResNet20
1 0.538 48.0 41.2 35.0 27.8 21.6 17.8 14.8 12.0 9.0 5.6 3.4
5 0.590 49.2 42.8 37.8 30.4 24.0 19.4 16.2 13.8 11.2 8.2 5.0
50 0.597 49.6 43.0 37.4 30.4 23.6 18.6 15.8 13.6 11.2 9.0 5.0

CONSISTENCY

ResNet110
1 0.778 45.4 41.6 37.4 33.6 28.0 25.6 23.4 19.6 17.4 16.2 14.6
10 0.809 46.4 42.6 37.2 33.0 29.4 25.6 23.2 21.0 17.6 16.2 14.6

ResNet20
1 0.757 43.6 39.8 34.8 30.8 27.6 24.6 22.6 19.4 17.4 15.4 13.8
5 0.779 43.4 40.0 35.6 32.2 28.0 24.8 22.2 20.4 17.4 15.8 13.8
50 0.788 45.2 40.6 36.4 32.4 28.2 24.6 22.0 20.2 17.8 16.0 14.6

SMOOTHADV
ResNet110 1 0.844 45.4 41.0 38.0 34.8 32.2 28.4 25.0 22.4 19.4 16.6 14.8
ResNet110 10 0.855 44.8 40.6 38.2 35.6 32.6 29.2 25.8 22.0 19.8 15.8 14.8

MACER ResNet110 1 0.797 42.8 40.6 37.4 34.4 31.0 28.0 25.0 21.4 18.4 15.0 13.8
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Figure 12: Evolution of average certified radius (ACR), certified accuracy at r = 0.25, and r = 0.75
with ensemble size k for various underlying models and σε = 0.25 on CIFAR10.
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Figure 13: CIFAR10 certified accuracy over certified radius r for GAUSSIAN trained models.

small radii), the ensemble might perform worse than the strongest constituting model. Overall and
when performance is homogenous, however, ensembles once again obtain significant performance
increases over individual models.

H.3 ADDITIONAL ABLATION STUDY OF ENSEMBLES

This section presents a range of experiments on different different aspects of variance reduction
through ensembles for Randomized Smoothing. In particular, we cover aggregation approaches, the
effect of ensemble size, the variability of our results, certifications with an equal number of inferences,
ensembles of differently trained models, and ensembles of denoisers.

H.3.1 AGGREGATION APPROACHES

We experiment with various instantiations of the general aggregation approach described in §4. In
particular, we consider soft-voting, hard-voting, soft-voting after softmax, and weighted soft-voting.

Soft-voting We simply average the logits to obtain

f̄(x) =
1

k

k∑
l=1

f l(x).

Hard-voting We process the outputs of single models with the post-processing function γHV (yl) =
1j=arg maxi(y

l
i)

that provides a one-hot encoding of the arg max of f l(x) before averaging to obtain

f̄(x) =
1

k

k∑
l=1

1j=arg maxi(f
l(x)i).

Soft-voting after softmax We process the outputs of the single models by applying the softmax
function as post-processing function γsoftmax to obtain

f̄(x) =
1

k

k∑
l=1

exp(f l(x))∑
i exp(f l(x)i)

.

Weighted soft-voting We consider soft-voting with a classifier-wise weights wl learned on a
separate holdout set and obtain

f̄(x) =
1

k

k∑
l=1

wlf l(x).

We compare these approaches in Table 10 and observe that the two soft-voting schemes perform very
similarly and outperform the other approaches. We decide to use soft-voting without soft-max for its
conceptual simplicity for all other experiments.
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Table 9: Average certified radius (ACR) and certified accuracy at various radii for ensembles of k
models (k = 1 are single models) for a various training methods on ImageNet. Larger is better.

σε Training k ACR
Radius r

0.0 0.50 1.00 1.50 2.00 2.50 3.00 3.50

0.25

GAUSSIAN 1 0.477 66.7 49.4 0.0 0.0 0.0 0.0 0.0 0.0

CONSISTENCY

1 0.512 63.0 54.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.516 64.8 54.2 0.0 0.0 0.0 0.0 0.0 0.0
1 0.509 64.4 53.8 0.0 0.0 0.0 0.0 0.0 0.0

2 0.538 65.0 56.2 0.0 0.0 0.0 0.0 0.0 0.0
3 0.545 65.6 57.0 0.0 0.0 0.0 0.0 0.0 0.0

SMOOTHADV † 1 0.528 65 56 0 0 0 0 0 -

MACER † 1 0.544 68 57 0 0 0 0 0 -

0.5

GAUSSIAN 1 0.733 57.2 45.8 37.2 28.6 0.0 0.0 0.0 0.0

CONSISTENCY

1 0.793 56.0 48.0 39.6 34.0 0.0 0.0 0.0 0.0
1 0.806 55.4 48.8 42.2 35.0 0.0 0.0 0.0 0.0
1 0.799 54.0 48.0 41.2 35.2 0.0 0.0 0.0 0.0

2 0.851 58.6 51.6 43.6 37.0 0.0 0.0 0.0 0.0
3 0.868 57.0 52.0 44.6 38.4 0.0 0.0 0.0 0.0

SMOOTHADV † 1 0.815 54 49 43 37 0 0 0 -

MACER † 1 0.831 64 53 43 31 0 0 0 -

1.0

GAUSSIAN

1 0.849 42.4 35.6 30.0 25.2 20.2 15.4 12.2 10.0
1 0.856 42.4 37.2 31.4 25.8 19.6 15.4 12.0 8.4
1 0.839 40.8 35.6 29.4 25.8 20.4 15.6 12.2 8.0

2 0.944 45.0 37.6 33.4 29.8 22.8 18.0 14.6 11.0
3 0.968 43.8 38.4 34.4 29.8 23.2 18.2 15.4 11.4

CONSISTENCY

1 1.022 43.2 39.8 35.0 29.4 24.4 22.2 16.6 13.4
1 0.990 42.0 37.2 34.4 29.6 24.8 20.2 16.0 13.4
1 1.006 41.6 38.6 35.2 29.6 25.4 21.2 17.6 13.8

2 1.086 44.8 41.0 36.6 32.4 27.4 22.4 19.4 15.6
3 1.108 44.6 40.2 37.2 34.0 28.6 23.2 20.2 16.4

SMOOTHADV

1 1.011 40.6 38.6 33.8 29.8 25.6 20.6 18.0 14.4
1 1.002 39.4 35.4 32.0 29.2 25.6 22.2 20.0 16.4
1 0.927 32.0 30.8 28.6 26.0 23.6 21.0 19.2 18.6

2 1.022 37.4 33.4 31.4 29.4 26.6 23.8 21.0 18.6
3 1.065 38.6 36.0 34.0 30.0 27.6 24.6 21.2 18.8

MACER † 1 1.008 48 43 36 30 25 18 14 -
† As reported by Zhai et al. (2020).
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Table 10: Comparison of various aggregation methods for ensembles of 10 ResNet110 at σε = 0.25
on CIFAR10. Larger is better.

Training Aggregation method ACR
Radius r

0.00 0.25 0.50 0.75

GAUSSIAN

soft-voting 0.541 83.4 70.6 55.4 42.0
hard-voting 0.529 83.8 69.4 53.2 40.6

soft-voting after softmax 0.540 84.0 70.8 55.2 41.8
weighted soft-voting 0.538 83.4 70.4 54.6 41.8

CONSISTENCY

soft-voting 0.583 76.8 70.4 60.4 51.6
hard-voting 0.574 77.2 69.6 60.0 50.6

soft-voting after softmax 0.584 77.0 70.4 60.6 51.8
weigthed soft-voting 0.579 76.4 70.6 59.6 51.2

Table 11: Effect of ensemble size k on ACR and certified accuracy at different radii, for GAUSSIAN
and CONSISTENCY trained ResNet20. Larger is better.

Training σε k ACR
Radius r

0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

GAUSSIAN

0.25

1 0.434 77.4 63.4 43.6 26.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.486 79.6 66.0 49.6 34.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.500 80.2 65.4 50.4 36.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.510 80.4 67.4 51.8 37.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 0.517 80.4 68.6 52.8 38.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0

1 0.538 48.0 41.2 35.0 27.8 21.6 17.8 14.8 12.0 9.0 5.6 3.4
3 0.579 49.2 42.8 36.4 30.2 23.0 18.8 15.6 13.0 10.8 7.4 4.4
5 0.590 49.2 42.8 37.8 30.4 24.0 19.4 16.2 13.8 11.2 8.2 5.0
10 0.592 48.8 42.8 37.0 30.4 23.6 19.0 16.2 13.6 11.0 9.2 5.0
50 0.597 49.6 43.0 37.4 30.4 23.6 18.6 15.8 13.6 11.2 9.0 5.0

CONSISTENCY

0.25

1 0.528 71.8 64.2 55.6 45.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.544 73.2 65.2 57.6 47.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.547 73.0 65.4 57.6 47.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.547 72.2 65.0 57.4 48.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 0.551 73.0 64.8 57.0 50.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0

1 0.757 43.6 39.8 34.8 30.8 27.6 24.6 22.6 19.4 17.4 15.4 13.8
3 0.777 44.2 39.6 36.8 31.8 28.4 25.0 22.4 19.8 17.6 15.6 14.0
5 0.779 43.4 40.0 35.6 32.2 28.0 24.8 22.2 20.4 17.4 15.8 13.8
10 0.784 44.4 40.6 36.4 32.2 29.2 24.2 22.2 20.4 17.6 16.0 14.2
50 0.788 45.2 40.6 36.4 32.4 28.2 24.6 22.0 20.2 17.8 16.0 14.6

H.3.2 ENSEMBLE SIZE

In Table 11, we present extended results on the effect of ensemble size for different training methods
and σε. Generally, we observe that ensembles of sizes 3 and 5 already significantly improve over the
performance of a single model, while further increasing the ensemble size mostly leads to marginal
gains. This aligns well with our theory from §5.

H.3.3 VARIABILITY OF RESULTS
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Figure 14: Mean and ±3σ inter-
val of certified accuracy over ra-
dius r computed over 50 GAUS-
SIAN trained ResNet20.

In Table 12, we report mean and standard deviation of ACR and
certified accuracy for 50 GAUSSIAN and CONSISTENCY trained
ResNet20 with different random seeds, either combined to 10
ensembles with k = 5 or evaluated individually. Generally, we
observe a notably smaller standard deviation of the ensembles
compared to individual models. We visualize this in Fig. 14,
where we show the ±3σ region.

H.3.4 EQUAL NUMBER OF INFERENCES

In Table 13, we compare the certified accuracy of an ensemble
of k = 10 ResNet110 obtained with n = 100′000 samples
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Table 12: Mean and standard deviation of ACR and certified accuracy for CIFAR10 at various radii
for 50 ResNet20 with different random seeds either evaluated as 10 ensembles with k = 5 or as
individual models at σε = 0.25.

Training k ACR
Radius r

0.25 0.50 0.75

GAUSSIAN
1 0.4350 ± 0.0046 61.08 ± 1.08 43.74 ± 0.86 27.58 ± 0.88
5 0.4994 ± 0.0025 66.58 ± 0.62 51.04 ± 0.76 36.38 ± 0.42

CONSISTENCY
1 0.5202 ± 0.0049 63.57 ± 0.86 54.22 ± 1.03 44.30 ± 0.89
5 0.5445 ± 0.0017 64.90 ± 0.66 56.86 ± 0.49 47.94 ± 0.68

Table 13: Comparing and ensemble and an individual model at an equal number of total inferences
on CIFAR10: average certified radius (ACR) and certified accuracy at various radii for ensembles of
k models (k = 1 are single models) for a various sampling sizes n. Larger is better.

Training k n ACR
Radius r

0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

GAUSSIAN
1 100’000 0.535 65.8 54.2 42.2 32.4 22.0 14.8 10.8 6.6 0.0
1 1’000’000 0.552 65.8 54.6 42.2 32.6 22.4 15.2 11.0 7.0 3.8
10 100’000 0.648 69.0 60.4 49.8 40.0 29.8 19.8 15.0 9.6 0.0

CONSISTENCY
1 100’000 0.708 63.2 54.8 48.8 42.0 36.0 29.8 22.4 16.4 0.0
1 1’000’000 0.752 63.2 54.8 48.8 42.0 36.4 30.4 23.0 17.8 14.6
10 100’000 0.756 65.0 59.0 49.4 44.8 38.6 32.0 26.2 19.8 0.0

on CIFAR10 with that of an individual model obtained with n = 1′000′000, i.e. at the same
computational cost.

For both GAUSSIAN and CONSISTENCY training, we observe that at all radii which can mathemati-
cally be certified using n = 100′000 samples the ensemble it significantly outperforms the individual
model at equal computational cost. Note that the individual models with n = 1′000′000 samples
have the same or just a marginally larger certified accuracy at all radii ≤ 1.75 than the same indi-
vidual model with n = 100′000 samples. Only at radius 2.00 where certification is mathematically
impossible with n = 100′000 samples does using additional samples increase the certified accuracy.
Note however, that, in contrast to our ensembles, this does not influence the actual accuracy of the
underlying model in any way, but simply allows to derive tighter confidence bounds. Table 14 shows
similar results for ImageNet and ensembles of k = 3 ResNet110, implying that these observations
hold for various datasets.

H.3.5 ENSEMBLES OF DIFFERENTLY TRAINED MODELS

In Table 15 we show how ensembles built from differently trained base models (SMOOTHADV,
MACER, and CONSISTENCY) perform. We observe that the ensemble of all three models is strictly
better than any individual model, suggesting that ensembles also work for models trained with differ-
ent training methods. However, the improvements are significantly smaller than the improvements of
ensembling similar classifiers in the same setting (see also Table 8 for comparison). This is again due
to a very heterogeneous model performance at some radii, where the strongest models are weighed
down by weaker ones.

H.3.6 ENSEMBLES OF DENOISERS

Table 16: Denoised smoothing en-
sembles on CIFAR10 at σε = 0.25

k ACR
Radius r

0.0 0.25 0.50 0.75

1 0.378 76.4 56.6 36.8 19.2
4 0.445 75.2 62.2 45.8 29.0

It was shown (Salman et al., 2020) that standard neural networks
can be robustified with respect to Gaussian noise by training
a suitable denoiser and evaluating the original model on the
denoised sample. Here, we aim to overcome the drawback of
any ensemble, the need to train multiple diverse models, by
instead training different denoisers and building an ensemble by
combining these denoisers with a single underlying model. We
show the general applicability of our ensembling approach by
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Table 14: Comparing and ensemble and an individual model at an equal number of total inferences
on ImageNet: average certified radius (ACR) and certified accuracy at various radii for ensembles of
k models (k = 1 are single models) for a various sampling sizes n. Larger is better.

Training k n ACR
Radius r

0.0 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

CONSISTENCY
1 100’000 1.022 43.2 39.8 35.0 29.4 24.4 22.2 16.6 13.4 0.0
1 300’000 1.060 43.2 39.6 35.2 29.6 24.6 22.4 16.8 14.2 11.4
3 100’000 1.108 44.6 40.2 37.2 34.0 28.6 23.2 20.2 16.4 0.0

Table 15: Building ensembles with differently trained base models: average certified radius (ACR)
and certified accuracy at various radii for ensembles and their constituting models. Larger is better.

Model ACR
Radius r

0.0 0.25 0.50 0.75

SMOOTHADV 0.542 74.4 65.4 56.2 48.0
MACER 0.518 77.8 69.0 52.6 39.0

CONSISTENCY 0.546 75.2 66.0 57.0 46.6

Ensemble (SMOOTHADV and CONSISTENCY) 0.572 75.6 68.6 59.8 50.6
Ensemble (SMOOTHADV, MACER and CONSISTENCY) 0.567 78.4 69.4 58.8 48.0

applying it to the setting of denoised smoothing (Salman et al., 2020). We consider 4 pre-trained
denoisers and combine them with a single standard ResNet110 (see App. G.3 for details). Comparing
the strongest resulting model with an ensemble of all 4 at σε = 0.25, we observe a 17% ACR
improvement. Training strong denoisers with current methods is challenging. However, based on
these results we are confident that advances in denoiser training combined with ensembles can present
an efficient way to obtain strong provable models.

H.3.7 ADDITIONAL NORMS

Below, we demonstrate that our approach generalizes beyond the `2-norm setting and generalizes
well to improve the robust accuracy against `0-, `1- and `∞-norm bounded attacks.

`∞-norm robustness is typically derived directly from `2-norm bounds (Yang et al., 2020; Salman
et al., 2019), and hence our results for the `2-norm are directly applicable.

In Table 17 and Table 18, we show the effectiveness of our approach for `0-norm bounded perturba-
tions using the training and certification method from Lee et al. (2019). For both, we use the default
hyper-parameter α (which is not the same as the α in standard Randomized Smoothing from Cohen
et al. (2019)), i.e. α = 0.8 for MNIST and α = 0.2 for ImageNet. We observe that even an ensemble
of just 3 models outperforms the individual models in every setting.

In Table 19, we similarly show the effectiveness of our approach for `1-norm bounded perturbations
using training with uniform noise and the uniform noise based certification method from Yang et al.
(2020) with σε = λ = 1.0. We observe again that even an ensemble of just 3 models outperforms the
single model in every setting.

H.4 ADDITIONAL COMPUTATIONAL OVERHEAD REDUCTION EXPERIMENTS

This section contains additional experiments for the computational overhead methods introduced in
§6. Whenever we use CERTIFYADP, we set β = 0.001.

Adaptive sampling and K-consensus Table 20 is an extensive version of Table 3. In Table 21, we
show the effect of adaptive sampling andK-Consensus aggregation for GAUSSIAN trained ResNet110
on CIFAR10, analogously to Table 20. Certifying an ensemble with CERTIFYADP and K-Consensus
aggregation achieves approximately the same certified accuracy as CERTIFY while the certification
time is up to 67 times faster. In particular, for both training methods and for each radius, the certifying
the ensemble of k = 10 networks with CERTIFYADP and K-Consensus aggregation is faster than
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Table 17: Effect of ensemble size k on ACR and certified accuracy at different radii for l0 norm on
MNIST. Larger is better.

k ACR
Radius r

0 1 2 3 4 5 6 7 8 9

1 3.231 97.8 90.0 73.7 49.9 48.5 23.6 17.3 7.9 1.6 1.6
3 3.575 98.4 92.5 79.0 56.1 54.7 38.2 21.6 10.7 2.4 2.4

10 3.612 98.4 92.5 79.1 57.0 55.6 38.9 22.1 11.1 2.4 2.4

Table 18: Effect of ensemble size k on ACR and certified accuracy at different radii for l0 norm on
ImageNet. Larger is better.

k ACR
Radius r

0 1 2 3 4 5 6 7 8 9

1 2.340 53.8 48.8 42.0 30.8 25.2 24.6 23.6 22.2 16.8 0.0
3 2.986 57.4 53.6 50.4 39.0 33.8 33.0 32.8 30.0 26.0 0.0

certifying an individual model with CERTIFY while the certified accuracy is significantly improved
in most cases. In addition, we confirm our previous observation that the sample reduction is most
prominent for small radii (for a given σε) while KCR increases with radius.

H.4.1 ADDITIONAL ADAPTIVE SAMPLING EXPERIMENTS

This section contains other experiments with CERTIFYADP, highlighting various aspects of adaptive
sampling for ensembles and also individual models.

Adaptive sampling for ensembles on CIFAR10 For comparison with Table 3 (respectively Ta-
ble 20 and Table 21), where we show the combined effect of K-Consensus aggregation and adaptive
sampling, we show the results for just applying adaptive sampling to the same setting in Table 22,
using {nj} = {100, 1′000, 10′000, 120′000}, σε = 0.25, and ensembles of 10 CONSISTENCY
trained ResNet110. We observe that the speed-ups for small radii are comparable to applying both
K-Consensus aggregation and adaptive sampling, as only a few samples have to be evaluated. The
additional benefit due to K-Consensus aggregation grows as the later certification stages are entered
more often for larger radii, highlighting the complementary nature of the two methods. Note that for
radius r = 0.75, 100 samples, and even 1′000 are never sufficient for certification but can still yield
early abstentions.

Adaptive sampling for ImageNet ensembles In Table 23, we demonstrate the applicability of
our adaptive sampling approach to ensembles of ResNet50 on ImageNet. In particular, we achieve
sampling reduction factors of up to 42 without incurring a significant accuracy penalty. For a fixed
σε, we empirically observe larger speed-ups at smaller radii. This effect, however, depends on the
underlying distribution of success probabilities and would be expected to invert for a model that has
true success probabilities close to pA ≈ 0.5 for most samples.

Effect of sampling stage sizes Additionally, in Table 24, we investigate how the choice of the
number of phases and the number of samples in each phase influence the sampling gain for various
radii and models. We observe that as few as 100 samples can be sufficient to certify or abstain
from up to 80% of samples, making schedules with many phases attractive. However, when the
true success probability is close to the one required for certification, many samples are required to
obtain sufficiently tight confidence bounds on the success probability to decide either way. This
leads to many samples being discarded for schedules with many phases. Additionally, the higher per
phase confidence required due to Bonferroni correction requires more samples to be drawn to be able
to obtain the same maximum lower confidence bound to the success probability. This latter effect
becomes especially pronounced for larger radii, where higher success probabilities are required.
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Table 19: Effect of ensemble size k on ACR and certified accuracy at different radii for l1 norm on
CIFAR10 for models with ResNet20 architecture. Larger is better.

k ACR
Radius r

0.0 0.25 0.50 0.75

1 0.571 71.2 65.4 60.2 51.6
3 0.610 72.4 68.6 63.4 56.0

10 0.622 72.4 69.6 64.8 57.2

Table 20: Adaptive sampling ({nj} = {100, 1′000, 10′000, 120′000}) and 5-Consensus agg. on
CIFAR10 for 10 CONSISTENCY ResNet110. SampleRF and TimeRF are the reduction factors in
comparison to standard sampling with n = 100′000 (larger is better). ASRj is the % of certification
attempts returned in phase j. KCR is the % of inputs for which only K classifiers were evaluated.

Radius σε acccert [%] ASR1 [%] ASR2 [%] ASR3 [%] ASR4 [%] SampleRF KCR [%] TimeRF

0.25 0.25 70.4 84.8 10.2 4.2 0.8 55.24 39.3 67.16
0.50 0.25 60.6 20.8 69.8 6.4 3.0 18.09 57.3 25.07
0.75 0.25 52.0 27.4 8.8 55.2 8.6 5.68 87.8 10.06
1.00 0.50 38.6 41.2 47.0 7.8 4.0 14.79 78.3 24.01
1.25 0.50 32.2 46.6 9.8 37.6 6.0 8.14 92.7 15.06
1.50 0.50 26.2 50.0 11.2 29.6 9.2 6.41 97.5 12.31
1.75 1.00 20.8 57.6 32.0 7.4 3.0 89.1 19.02 33.14
2.00 1.00 17.6 61.8 27.4 8.0 2.8 91.0 19.93 35.26
2.25 1.00 16.2 68.2 21.2 7.8 2.8 93.4 20.27 36.66
2.50 1.00 14.6 69.6 7.8 20.6 2.0 91.4 19.38 34.45

Ablation of α and β In Fig. 15, we illustrate the effect of different α and β on the first phase
of certification with CERTIFYADP where we consider just 100 perturbations. Increasing α reduces
the confidence 1− α required for certification and hence makes early certification more likely for
the same underlying true success probabilities (see Fig. 15a). Increasing β reduces the confidence
1 − β that certification will not be possible required for early termination and hence makes early
termination more likely for the same underlying true success probabilities (see Fig. 15b). Overall, we
observe that evaluating even only 100 perturbations allows us to, with high probability, abstain from
or certify samples with a wide range of true success probabilities. We only have to continue with the
costly certification process for samples in a narrow band of true success probabilities (see Fig. 15c),
greatly reducing the expected certification cost.

H.4.2 ADDITIONAL K-CONSENSUS EXPERIMENTS

In Table 25, we present a more detailed version of Table 5. We emphasize that forK = 5 andK = 10
for ResNet110 and ResNet20, respectively, we achieve the same ACR as with the full ensemble while
reducing the certification time by a factor of 1.59 and 2.01, respectively.
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Table 21: Adaptive sampling with {nj} = {100, 1′000, 10′000, 120′000} and K-consensus early
stopping with K = 5 on CIFAR10 with an ensemble of 10 GAUSSIAN trained ResNet110. Sample
and time gain are the reduction factor in comparison to standard sampling with n = 100′000 (larger
is better). ASRj is the percentage of samples returned in phase j. KCR is the percentage of samples
for which only K classifiers were evaluated.

Radius σε acccert [%] ASR1 ASR2 ASR3 ASR4 SampleRF KCR [%] TimeRF

0.25 0.25 70.6 76.4 17.2 4.4 2.0 28.80 26.8 32.63
0.50 0.25 55.4 30.4 59.2 7.8 2.6 19.80 63.5 28.73
0.75 0.25 42.0 39.4 10.2 41.8 8.6 6.19 89.7 11.14
1.00 0.50 30.2 53.4 31.6 10.8 4.2 13.89 77.5 22.60
1.25 1.00 20.2 74.4 16.4 7.0 2.2 24.93 71.4 38.31
1.50 1.00 16.6 66.8 26.0 5.4 1.8 29.34 75.7 45.80
1.75 1.00 13.8 73.0 20.6 4.6 1.8 30.61 84.5 51.18
2.00 1.00 11.2 78.4 14.6 5.4 1.6 32.97 88.5 56.80
2.25 1.00 9.4 82.4 8.0 6.8 2.8 21.32 92.7 38.60
2.50 1.00 6.4 82.4 6.4 6.8 4.4 14.77 95.4 27.63

Table 22: Effect of adaptive sampling with {nj} = {100, 1′000, 10′000, 120′000} for ensembles of
10 GAUSSIAN respectively CONSISTENCY trained ResNet110 on CIFAR10 with σε = 0.25. ASAj

and ASCj are the percentages of samples abstained from and certified in phase j, respectively

Radius Training acccert [%] ASA1 ASC1 ASA2 ASC2 ASA3 ASC3 ASA4 ASC4 SampleRF TimeRF

0.25 GAUSSIAN 70.6 62.4 13.2 10.0 7.6 3.8 1.2 0.4 1.4 30.48 31.30
CONSISTENCY 70.4 73.6 10.4 7.0 4.8 3.0 0.6 0.0 0.6 66.73 67.93

0.75 GAUSSIAN 42.2 0.0 39.0 0.0 9.8 37.8 4.8 5.6 3.0 6.16 6.32
CONSISTENCY 52.0 0.0 27.4 0.0 8.8 51.8 3.4 4.8 3.8 5.68 5.83

Table 23: Adaptive sampling with {nj} = {100, 1′000, 10′000, 120′000} on ImageNet with an
ensemble of 3 CONSISTENCY trained ResNet50. SampleRF and TimeRF are the reduction factor
in comparison certification with CERTIFY with n = 100′000. ASRj is the percentage of samples
returned in phase j.

Radius σε acccert [%] ASR1 ASR2 ASR3 ASR4 SampleRF TimeRF

0.50 0.25 56.8 21.2 75.0 3.0 0.8 43.00 42.32
1.00 0.50 44.8 31.0 59.4 7.0 2.6 20.14 20.31
1.50 0.50 38.4 40.2 7.6 46.2 6.0 7.57 7.74
2.00 1.00 28.6 48.6 39.4 9.2 2.8 18.98 19.19
2.50 1.00 23.2 55.8 8.0 31.8 4.4 10.49 10.70
3.00 1.00 20.2 58.6 11.4 24.4 5.6 9.69 9.88
3.50 1.00 16.4 65.4 7.4 3.2 24.0 3.12 3.20
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Figure 15: Expected probability of certifying (a), abstaining (b) or continuing to the next phase
(c) of CERTIFYADP after the first phase, conditioned on the underlying probability of the majority
class. We consider various α and β. We are in the setting with r = σε = 0.25 with stage sizes
nj = {100, 1′000, 10′000, 120′000}, i.e. the first phase whose simulated outcomes we observe here
has 100 samples.
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Table 24: Effect of adaptive sampling for individual ResNet110 on CIFAR10 at σε = 0.25. ASAj

and ASCj are the percentages of samples abstained from and certified in phase j, respectively. We
compare multiple sampling count progressions {nj}.

Radius Training {nj} acccert [%] ASA1 ASC1 ASA2 ASC2 ASA3 ASC3 ASA4 ASC4 ASA5 ASC5 SampleRF TimeRF

0.25

GAUSSIAN

100, 110’000 60.0 52.0 22.6 13.2 12.2 0.0 0.0 0.0 0.0 0.0 0.0 3.56 3.70
1’000, 110’000 60.0 62.0 30.2 3.2 4.6 0.0 0.0 0.0 0.0 0.0 0.0 10.34 10.45

10’000, 110’000 60.0 63.6 33.6 1.6 1.2 0.0 0.0 0.0 0.0 0.0 0.0 7.59 7.90
50’000, 110’000 60.2 64.8 34.0 0.4 0.8 0.0 0.0 0.0 0.0 0.0 0.0 1.95 1.98

100, 1’000, 116’000 60.0 51.8 21.4 10.2 9.2 3.0 4.4 0.0 0.0 0.0 0.0 11.06 11.18
100, 10’000, 116’000 60.2 53.2 21.0 10.6 12.4 1.4 1.4 0.0 0.0 0.0 0.0 16.61 16.77

1’000, 10’000, 116’000 60.0 61.4 30.2 1.8 3.2 2.0 1.4 0.0 0.0 0.0 0.0 17.01 17.21
30’000, 60’000 ,116’000 60.0 64.4 33.6 0.4 0.6 0.4 0.6 0.0 0.0 0.0 0.0 3.08 3.21

100, 1’000, 10’000, 120’000 60.0 53.6 21.8 7.8 8.2 2.0 3.6 1.8 1.2 0.0 0.0 20.40 21.22
30’000, 60’000, 90’000, 120’000 60.0 64.6 34.0 0.6 0.0 0.0 0.2 0.0 0.6 0.0 0.0 3.09 3.22
100, 800, 6’400, 24’000, 123’000 60.0 53.2 21.6 8.2 7.8 2.0 3.4 1.2 0.8 0.6 1.2 24.32 24.67

CONSISTENCY

100, 110’000 66.0 68.6 16.2 8.0 7.2 0.0 0.0 0.0 0.0 0.0 0.0 5.92 6.05
1’000, 110’000 66.0 75.0 20.8 1.6 2.6 0.0 0.0 0.0 0.0 0.0 0.0 17.50 17.95
10’000 110’000 66.0 75.8 22.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 8.29 8.50
50’000, 110’000 66.0 76.2 22.6 0.4 0.8 0.0 0.0 0.0 0.0 0.0 0.0 1.95 1.99

100, 1’000, 116’000 66.0 68.0 14.8 7.0 6.0 1.6 2.6 0.0 0.0 0.0 0.0 19.09 19.57
100, 10’000, 116’000 66.0 67.8 15.4 8.2 6.8 0.6 1.2 0.0 0.0 0.0 0.0 25.23 25.85

1’000, 10’000, 116’000 66.0 74.8 20.6 1.2 1.6 0.6 1.2 0.0 0.0 0.0 0.0 27.44 28.02
30’000, 60’000, 116’000 66.0 76.0 22.4 0.2 0.4 0.4 0.6 0.0 0.0 0.0 0.0 3.11 3.19

100, 1’000, 10’000, 120’000 66.0 69.0 15.8 5.6 5.2 1.4 1.2 0.6 1.2 0.0 0.0 33.91 34.67
30’000, 60’000, 90’000, 120’000 66.0 76.0 22.4 0.4 0.4 0.2 0.2 0.0 0.4 0.0 0.0 3.10 3.19
100, 800, 6’400, 24’000, 123’000 66.0 68.0 14.8 6.6 6.0 1.2 1.4 0.6 0.0 0.2 1.2 35.32 36.18

0.75

GAUSSIAN

100, 110’000 30.6 0.0 51.2 30.8 18.0 0.0 0.0 0.0 0.0 0.0 0.0 1.86 1.88
1’000, 110’000 30.4 0.0 61.0 30.6 8.4 0.0 0.0 0.0 0.0 0.0 0.0 2.27 2.34

10’000, 110’000 30.4 24.6 65.4 6.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 4.74 4.89
50’000, 110’000 30.4 30.2 66.8 0.4 2.6 0.0 0.0 0.0 0.0 0.0 0.0 1.87 1.93

100, 1’000, 116’000 30.4 0.0 53.8 0.0 7.4 30.6 8.2 0.0 0.0 0.0 0.0 2.19 2.25
100, 10’000, 116’000 30.8 0.0 51.6 25.0 13.4 6.0 4.0 0.0 0.0 0.0 0.0 6.02 6.02

1’000, 10’000, 116’000 30.4 0.0 60.8 25.6 3.8 5.0 4.8 0.0 0.0 0.0 0.0 6.11 6.14
30’000, 60’000, 116’000 30.6 30.2 66.2 0.4 0.8 0.2 2.2 0.0 0.0 0.0 0.0 2.86 2.87

100, 1’000, 10’000, 120’000 30.2 0.0 48.8 0.0 11.6 25.6 3.8 4.8 5.4 0.0 0.0 5.92 6.10
30’000, 60’000, 90’000, 120’000 30.4 29.2 66.0 1.0 0.8 0.2 0.6 0.2 2.0 0.0 0.0 2.61 2.69
100, 800, 6’400, 24’000, 123’000 30.2 0.0 48.8 0.0 10.8 21.2 3.6 7.2 2.8 2.0 3.6 7.24 7.49

CONSISTENCY

100, 110’000 46.0 0.0 34.6 48.8 16.6 0.0 0.0 0.0 0.0 0.0 0.0 1.39 1.42
1’000, 110’000 46.2 0.0 41.2 49.0 9.8 0.0 0.0 0.0 0.0 0.0 0.0 1.52 1.55

10’000, 110’000 46.2 43.8 45.8 5.2 5.2 0.0 0.0 0.0 0.0 0.0 0.0 4.65 4.70
50’000, 110’000 46.4 48.6 48.2 0.6 2.6 0.0 0.0 0.0 0.0 0.0 0.0 1.87 1.89

100, 1’000, 116’000 46.4 0.0 33.8 0.0 8.8 49.2 8.2 0.0 0.0 0.0 0.0 1.48 1.50
100, 10’000, 116’000 46.2 0.0 34.4 43.6 12.2 5.4 4.4 0.0 0.0 0.0 0.0 5.52 5.61

1’000, 10’000, 116’000 47.0 0.0 41.0 44.2 5.2 5.6 4.0 0.0 0.0 0.0 0.0 5.52 5.60
30’000, 60’000, 116’000 46.4 47.6 47.8 1.2 0.4 0.4 2.6 0.0 0.0 0.0 0.0 2.75 2.79

100, 1’000, 10’000, 120’000 46.4 0.0 32.4 0.0 8.2 44.2 5.2 5.0 5.0 0.0 0.0 5.32 5.40
30’000, 60’000, 90’000, 120’000 46.8 47.6 47.0 1.0 1.4 1.0 0.0 0.0 2.0 0.0 0.0 2.60 2.64
100, 800, 6’400, 24’000, 123’000 46.4 0.0 33.6 0.0 7.2 41.0 4.4 6.0 1.4 2.2 4.2 6.37 6.47

Table 25: Effect of K-Consensus aggregation on CONSISTENCY trained ensembles of 10 ResNet110
and 50 ResNet20 on CIFAR10 at σε = 0.25.

Architecture K ACR
Radius r

TimeRF KCR [%]
0.0 0.25 0.50 0.75

ResNet110

2 0.576 77.2 70.2 60.0 50.4 3.25 85.8
3 0.581 77.0 70.0 60.6 51.6 2.29 79.7
5 0.583 76.8 70.4 60.4 51.6 1.59 74.2
10 0.583 76.8 70.4 60.4 51.6 1.00 0.0

ResNet20

2 0.544 72.2 65.2 57.0 48.4 6.50 87.7
3 0.549 72.6 65.0 57.4 50.0 4.41 82.4
5 0.550 72.8 65.0 57.0 50.2 2.99 76.4
10 0.551 73.0 64.8 57.0 50.2 2.01 69.8
50 0.551 73.0 64.8 57.0 50.2 1.00 0.0
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