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A B S T R A C T

Networked systems are tasked with processing large amounts of data and timely re-
sponding to requests coming in at high rates. These tasks involve the collaboration
and communication between many nodes to achieve high throughput and low latency.
Moreover, the system must communicate with any end-user to receive the request
and relay the response. The effective and efficient use of the network is of paramount
importance to good operation in both cases: within the data center and across the
Internet. Networked systems require network services both expressive enough and
with sufficient guarantees to enable performant communication of the system over the
network. Moreover, it is desirable for its network service to be continuously validated
by a monitoring system, to confirm it operates in accordance with its guarantees and
satisfies the application’s communication needs – even in challenging scenarios such as
in the presence of adversaries. Through the development of models and tools, we gain
understanding of the performance of networked systems. This enables us to identify
bottlenecks and effective improvements, as well as provision these networked systems
to deliver sufficiently good performance in a cost-efficient manner, eschewing intolerable
performance due to under-provisioning and excessive cost due to over-provisioning.

In this dissertation, we first consider a new network service primitive which permits
bounded degradation of delivery and performance in order to speed-up co-located
network flows. Second, we provide a novel perspective on performance by considering
how to make a networked system along with its monitoring system robust even in
the face of an in-network programmable adversary. Third, we develop a simulator
for low Earth orbit constellations of satellites which enables convenient performance
analysis of such highly dynamic and constantly evolving networked systems. Fourth, we
investigate the tradeoff of cost and performance, and build an advisor to cost-efficiently
provision a networked system of serverless functions designed to process interactive
queries on cold data. With this varied set of contributions, we improve the performance,
resilience, analyzability and efficiency of networked systems.

i





Z U S A M M E N FA S S U N G

Vernetzte Systeme haben die Aufgabe, große Datenmengen zu verarbeiten und zeitnah
auf Anfragen zu reagieren, die mit einer hohen Rate eingehen. Diese Aufgaben benöti-
gen die Zusammenarbeit und Kommunikation zwischen vielen Knoten, um einen hohen
Durchsatz und eine geringe Latenz zu ermöglichen. Darüber hinaus muss das System
mit jedem Endbenutzer kommunizieren, um die Anfrage zu erhalten und die Antwort
weiterzuleiten. Die effektive und effiziente Nutzung des Netzwerks ist in beiden Fällen
von größter Bedeutung für einen guten Betrieb: innerhalb des Rechenzentrums und über
das Internet. Vernetzte Systeme benötigen Netzwerkdienste, die sowohl ausdrucksstark
als auch ausreichend Garantien bieten, um eine performante Kommunikation des Sys-
tems über das Netzwerk zu ermöglichen. Darüber hinaus ist es wünschenswert, dass
dieser Netzwerkdienst kontinuierlich von einem Überwachungssystem validiert wird,
um zu bestätigen, dass er in Übereinstimmung mit seinen Garantien arbeitet und die
Kommunikationsanforderungen der Anwendung erfüllt – selbst in herausfordernden
Szenarien wie in der Gegenwart von Widersachern. Durch die Entwicklung von Mod-
ellen und Werkzeugen gewinnen wir Verständnis für die Leistungsfähigkeit vernetzter
Systeme. Dies ermöglicht es uns, Engpässe und effektive Verbesserungen zu identi-
fizieren und diese vernetzten Systeme so bereitzustellen, dass sie auf kosteneffiziente
Weise eine ausreichend gute Leistung erbringen und eine nicht tolerierbare Leistung
aufgrund von Unterversorgung und übermäßige Kosten aufgrund von Überversorgung
vermeiden.

In dieser Dissertation betrachten wir zuerst ein neues Netzwerkdienst-Grundelement,
das eine begrenzte Verschlechterung der Bereitstellung und Leistung zulässt, um den
Netzwerkfluss in der gleichen Umgebung zu beschleunigen. Zweitens bieten wir eine
neue Perspektive auf die Leistung, indem wir überlegen, wie ein vernetztes System
zusammen mit seinem Überwachungssystem selbst gegenüber einem programmier-
baren Widersacher im Netzwerk robust gemacht werden kann. Drittens entwickeln
wir einen Simulator für erdnahe Satellitenkonstellationen, welcher eine bequeme Leis-
tungsanalyse solch hochdynamischer und sich ständig weiterentwickelnder vernetzter
Systeme ermöglicht. Viertens untersuchen wir den Kompromiss zwischen Kosten und
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Leistung und erstellen einen Ratgeber zur kosteneffizienten Bereitstellung eines ver-
netzten Systems serverloser Funktionen, das zur Verarbeitung interaktiver Abfragen
auf kalten Daten entwickelt wurde. Mit den vielseitigen Beiträgen dieser Dissertation
verbessern wir die Leistung, Belastbarkeit, Analysierbarkeit und Effizienz vernetzter
Systeme.
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1
I N T R O D U C T I O N

Recent decades have witnessed a surge in demand for systems capable of handling
workloads at scale while achieving high quality of service. These systems are expected to
support high request rates to serve its many users while achieving low latency response
times, ranging from seconds (e.g., for interactive data analysis queries [147, 158]) to
tens or hundreds of milliseconds (e.g., serving web requests [4, 52, 151]) depending
on its use case. The processing of a request often requires the collaboration of many
compute and storage nodes to go over large amounts of data [130, 174] or to collect
the many components its response consists of [52, 96, 151]. Moreover, the system must
communicate with the end-user to receive the request and relay the response. The
effective and efficient use of the network is of paramount importance to good operation
in both cases (within the data center and across the Internet). Three aspects are of
particular importance to enable good operation. First, we must expose expressive
network services to the systems which enable them to communicate over the network
with performance guarantees, and in turn we must design systems which properly
make use of this interface with the guarantees in mind. Second, we need to monitor
deployed systems and their networks to validate that both the network quality of service
is being upheld, and that this service is sufficient for the application to meet its own
performance objectives. Third, we must understand the most important characteristics
of these systems, such that we can provision and further improve performance. The
development of analysis and modeling tools is a key enabler in this respect. We describe
the background of these topics and the research questions we pose in the upcoming
sections: network service primitives (§1.1), networked system monitoring (§1.2), and
the analysis tools vital to understanding the performance of networked systems (§1.3).
An overview of the thesis components and contributions is depicted in Fig. 1.1. We
conclude this introductory chapter with a description of the structure of this thesis and
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Chapter 1. Introduction

Expressive and performant
network service primitives 

(e.g., ReFlex) 

Understand performance 
Improve provisioning decisions 
(e.g., configuration advisor for

serverless query processing) 

Models capturing the most
important characteristics 

(e.g., Hypatia for LEO networks) 

Robust operation 
and monitoring 
(e.g., applying

 countermeasures 
 and being 

application-aware)

Model resultsMeasurements

Figure 1.1: Thesis overview.

its contributions (§1.4), and provide the list of related publications and preprints (§1.5).

1.1 Network service primitives

Applications make use of the network service primitives offered to it, and depend on
the guarantees associated to it such as reliability and performance through the use
of transport protocols. The default available options of either full reliability with fair
sharing (TCP) or no reliability (UDP) are not expressive enough to meet the demands of
applications, or, due to lack of middle ground, prevent better solutions, which similarly
holds for fixed prioritization. There is as such a demand for new network primitives
which provide better, more expressive service.

1.1.1 Enhanced performance guarantees

Research has recognized this need for network service with enhanced or specialized
performance. Foremost, there has been considerable work in providing data center
tenants with network performance guarantees via bandwidth reservation across the
network topology [25, 169, 199]. In addition, novel transport protocols have been pro-
posed, both simply incorporating congestion logic different to TCP (e.g., PCC [54]) as
well as some requiring certain (minimal) network support. For example, Data Cen-
ter TCP (DCTCP) [6, 27] makes use router ECN markings to reduce bufferbloat, thus
providing improved burst tolerance and lower latency for short flows. Furthermore,

2



1.1. Network service primitives

it has been proposed to extend the network service interface with the provision of ap-
plication knowledge. Several works make use of in-advance knowledge of flow sizes,
an assumption which recent work has shown to be "not necessarily prohibitive" [194].
pFabric [8] optimizes for average flow completion time, by assigning higher priority
to flows with lower remaining flow size combined with switches supporting a custom
priority queue. FastPass [159] makes use of a network-aware central scheduler in which
slots are allocated along the network path to achieve near-zero queueing. pHost [61]
obviates the need of a central scheduler like FastPass, but instead delegates the task of al-
location slots to the receivers. Other works have advocated for the application to specify
deadlines, and propose a variety of mechanisms for these deadlines to be met. D3 [203]
signals the router along the path of its desired rate, which changes over its lifetime
based on the remaining flow size and the approaching deadline – thus requiring custom
switch hardware to support this operation. D2TCP [195] instead increases its congestion
window scaling as the deadline approaches to achieve a higher rate by competing more
with other flows, thus obviating the need for custom hardware. Sincronia [2] does not
optimize for individual flows, instead optimizing for collection of flows of a particular
job ("coflows") to finish. These prior works show that there has been considerable work
on improved competition of flows by achieving faster and fairer convergence, reducing
queueing delay, and satisfying explicit strict guarantees based on application knowledge
such as deadlines.

1.1.2 Flexible guarantees rather than strict

In particular, we argue there is opportunity in flexible network service models. These
models behave according to the principle in which expressed flexibility can be used
to accelerate applications which have less or none. In their working, the governing
mechanism should abide by the flexibility bounds indicated by applications. Although
there are various other degrees of flexibility (e.g., in-order delivery), we believe there is
especially promise in exploring the (a) bounded partial delivery of data, and (b) bounded
deterioration of performance. Of the former, there has been work in the machine learning
community [210] which has found that network loss which is explicitly bounded to an
upper limit can have little to no impact on the performance (e.g., convergence rate) of
certain machine learning training tasks. With machine learning becoming an increasingly
important cloud workload [67], this is especially promising. Of the latter degree of

3



Chapter 1. Introduction

flexibility, bounded deterioration, viable use cases are background activity such as back-
ups and administrative tasks, or asynchronous machine learning. It is important to
note that for both degrees of flexibility, only partial degradation is permitted: too late
completion due to continuously being deprioritized or insufficient amount of delivery is
not acceptable to the aforementioned applications.

With the knowledge of the flexibility of flows, the network service can degrade the
quality of service of flexible flows in order to accelerate regular or less flexible network
flows. Ideally, the presence of these flexible flows should be an absolute boon: accelera-
tion of regular traffic with tolerable impact (within bounds) on the applications which
have expressed additional flexibility. Unfortunately, there are no network primitives
which provide this service. The default available network services of TCP (fully reliable)
and UDP (no reliability) do not provide the ability to express partial delivery bounds.
Similarly, network prioritization schemes or scheduling mechanisms do not provide the
notion of bounded deprioritization. The concept of applications with more flexible net-
work requirements ceding to more demanding applications has been partially explored.
LEDBAT [117] makes use of delay measurements to enforce it does not cause congestion
in the network and makes use of a congestion control procedure less aggressive than
TCP. The concept of loss flexibility similarly has been explored by Approximate Trans-
port Protocol (ATP) [129]. Under-explored however is the co-design of both loss and
deprioritization guarantees, and when data should be considered lost. We formulate the
following two research questions:

RQ1: What would be appropriate network service primitives to expose to applica-
tions such they can specify partial delivery and bounded degradation?

RQ2: How can partial delivery and bounded degradation primitives be implemented
in a data center network?

1.2 Networked systems monitoring

Contemporary networked systems are at a scale exceeding the manual monitoring
capability of human operators. Networked systems can comprise hundreds of servers,
connected through networks consisting of hundreds to thousands of switches, and an
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1.2. Networked systems monitoring

order of magnitude more interfaces and cables [182]. At this scale, in order to continue
to achieve high consistent performance, automatic monitoring systems are employed to
oversee networked systems and their network.

1.2.1 Network monitoring at scale

The devices that these networks comprise of, i.e., switches, transceivers and cables,
are not infallible: failures at that scale will occur. Moreover, in practice there is no
explicit dichotomy of working or not working: there is also partial failure. This category
of failures is referred to as gray failures [90]. For instance, hardware failures leading
to packet corruptions (e.g., connector contamination, bent or damaged cables [220]),
linecard faults [168], or software bugs or wrong routing configuration leading to black
holes [115].

Gray failures are notoriously difficult to detect, even in the scenario of a data center
which is in full control of a single party. This difficulty stems from a variety of factors.
First, data center networks encompass a large number of devices, with a bisection
bandwidth of multiple terabyte/s supporting thousands of hosts [182]. Second, isolating
and taking devices offline for inspection in production data center networks could
temporarily impact service [220]. Third, due to the nature of gray failure, pinpointing
the cause might be difficult. Gray failures can happen partially (i.e., affect a small
fraction of traffic) and possibly only in under certain conditions such as in particular
time windows [168]. Fourth, signs of failures such as packet loss, reduced bandwidth
or increased latency are not unambiguous. These indicators can similarly be caused by
transient congestion due to variance of traffic [168]. Detection of (gray) failures rests on
the ability to robustly statistically model what is normal behavior and what is abnormal
behavior of the network on fine enough time granularity.

In broad terms, network monitoring systems provide insight by having its resident
devices (e.g., end-hosts [23,76,168], switches [49,126,156,219,220]) log (parts of) network
traffic or aggregated statistics, which are reported to a central collector. The central
collector is responsible for analyzing the incoming data, detecting issues, and potentially
tracking down their causes. Subsequently, the system might take automatic actions
to fix or temporarily mitigate them (e.g., by disabling [220]), and a human operator is
notified with an incident report to facilitate further action (e.g., replacement [220]). It is
additionally possible to have an active component in the monitoring system, in which
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specific traffic can be generated or tracked for debugging purposes (e.g., by marking
traffic [219]).

The most basic network monitoring solutions are sFlow and NetFlow, both of which
make use of sampled packets. sFlow [156] directly mirrors samples packets to the central
collector, which provides general statistics such as the transport protocol distribution.
NetFlow [49] aggregates sampled packets on a per-flow basis, for which it maintains
a flow record containing information such as the 5-tuple and the number of observed
bytes. These flow records are sent on a regular basis to the central collector. Due to
their sampling approach, both sFlow and NetFlow are unable to track packets across
the network, as well as might miss important packets at the high sampling rates they
operate at [160]. FlowRadar [126] has looked into expansion of NetFlow to monitor
every packet such that it also accounts for short small flows, and has shown this to be
effective for black hole, switch fault and loop detection [126].

Active monitoring systems such as Pingmesh [76] and NetBouncer [189] actively send
out a proportionally small amount of probes into the network. The challenge of these
systems is that probes might receive special treatment, or problems might only arise at
higher volumes of traffic infeasible for probe traffic without being detrimental to the real
traffic. There thus is significant advantage to performing monitoring explicitly on the
real traffic. EverFlow [219] enables the matching of every packet, and mirrors packets
that it filters as important including TCP control packets, protocol packets, and packets
marked with a probe bit to enable manual debugging. Upon packet drop, EverFlow
actively injects probe packets over the hop it disappeared on to identify whether the
dropping is persistent. It is thus limited to detect gray failure which affected the filtered
packets, and might miss problems affecting other parts of the traffic.

Microsoft’s 007 [23] is an end-host based approach. Upon observing a retransmission,
a path discovery agent at the end-host is activated to perform a traceroute of the TCP
connection which encountered the retransmission. The system performs voting on the
paths normalized by expected load, and identifies links that are outliers as problematic.
Facebook’s passive realtime monitoring system [168] (FB-mon) identifies paths by having
the aggregation or core switch in their topology mark traversing packets. For each flow,
FB-mon gathers TCP state information such as cwnd, ssthresh, and retransmission, and
uses this to form equivalent groups based on their paths to identify whether flows going
over a particular link experience statistically significant worse performance than another.

To summarize, there is a wide variety of monitoring solutions, which vary on dimensions
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such as the mechanism to decide which passing packets (or all) to inspect, and how they
are mapped and interpreted to (statistically) infer network performance.

1.2.2 Monitoring robust to adversaries

Our computing ecosystem relies heavily on highly available and performant networks.
This critical role has meant that networked systems have long been a high-value target
for malicious actors, with high-profile attacks reported with alarming frequency and
increasing severity. While the most common attacks target end systems or services like
DNS, increasingly, networking devices themselves are coming under attack. The moti-
vation is transparent: compromising network routers and switches provides visibility
across large swathes of individual end devices.

Several high-profile attacks on network infrastructure have come to light in recent
times, using diverse attack vectors. The attacks tend to affect thousands of switches
deployed commonly at ISPs and enterprises [103, 148, 214], are found in certain cases to
be perpetrated by state actors [114, 213], and can be focused on particular infrastructure
such as data centers [124]. Vulnerabilities in network devices are reportedly frequently;
see for example, Cisco’s weekly advisories [44], which have disclosed several critical
bugs, including in their data center network management software [47], and in software
in a popular line of switches [46]. Whitebox devices running Linux variants have also
been found to be potentially vulnerable [161].

In summary, while perimeter defense and hardening devices are useful and necessary
measures, operators should also examine the question of “What if an attacker does gain
control devices in my network?” It is clear that industry leaders are actively considering
this possibility even in facilities with best-in-class security:

“... it’s not that a lot of people do encryption in the data center yet, but that’s changing. We’re
doing that, among other reasons, because if a malicious actor can break into one switch,
they can snoop on a lot of traffic ...”

— Jitu Padhye, Microsoft (HotNets-XVI Dialogue, 2017) [146]

While attacks on network devices are not new, they have typically focused on either
espionage or disruption. We explore a new type of threat on the horizon, posed by an
attacker who has obtained control over programmable switches in a target network:
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long-term deterioration in the network’s service that is hard to diagnose. While it should
be obvious that an attacker controlling powerful network devices can easily degrade
performance to the point of denial-of-service, the distinction from well known past
attacks is the ability to operate while preventing diagnosis. Preventing or encumbering
diagnosis is key to the attack’s longevity; if the network operator could easily identify
compromised devices, they would be removed or patched. We shall refer to such attacks,
conducted with the objective of application performance degradation while preventing
diagnosis by making use of programmability, as UNDERRADAR attacks.

RQ3: What are the characteristics of UNDERRADAR attacks?

RQ4: How resilient are networked systems to UNDERRADAR attacks, and what
steps can be taken in their design to even further improve their resilience?

Network operators can deploy a variety of monitoring systems that aid in identifying
anomalous network behavior and pinpointing faulty devices as is described in §1.2.1.
The easiest problems to find are ones involving the total failure of devices, while some
of the most difficult to identify, reproduce, and resolve, involve “gray” failures, whereby
devices continue to operate, but provide deteriorated functionality. Recent research,
particularly in the data center context, has developed increasingly sophisticated meth-
ods to detect both total and partial failures, e.g., Microsoft’s 007 [23], Everflow [219],
and Pingmesh [76], and the passive realtime monitoring system FB-mon tested in a
Facebook data center [168]. These systems are a natural adversary for an UNDERRADAR

attacker, whose goal is to cause the maximum degradation for applications using the
network, while avoiding diagnosis using any deployed monitoring systems. A success-
ful UNDERRADAR attack would result in long-term poor performance, and necessitate
time-consuming manual intervention and analysis to eventually fix. It is thus of utmost
importance to characterize UNDERRADAR attacks, and devise mitigations to detect and
render them ineffective.

RQ5: How effective are existing network monitoring systems in detecting UNDER-
RADAR attacks, and how can their detection capability be improved further?

8



1.3. The right tools for performance analysis

1.3 The right tools for performance analysis

The improvement of networked systems hinges on researchers having access to the
right tools. These tools enable the evaluation and optimization of existing approaches,
the identification of shortcomings, and the discovery of manners to improve them.
The level of abstraction of a tool depends on its intended use case and the level of
fidelity required to adequately model the key characteristics that impact performance:
for instance, it can range from direct calculations to simulation [152], emulation [207],
and testbed [43]. Besides their modeling capability, there are important user-oriented
constraints, namely usability and scalability. Firstly, researchers should be able to quickly
understand the underlying model and how they can implement their own research
methods for evaluation and comparison to others. Secondly, the tools must be able to
scale to sufficient system size and continue to return in reasonable time. In this section,
we describe two areas which could benefit from improved tools, namely low Earth orbit
satellite networks (§1.3.1) and provisioning for serverless query processing (§1.3.2).

1.3.1 Low Earth orbit (LEO) satellite network simulation

Fueled by technological advancements, recent years have witnessed a rising interest
in LEO satellite networks. This had led to the first large scale deployments, such as
the Starlink constellation by SpaceX [188], the Kuiper constellation by Amazon [119],
and the constellation by Telesat [190]. Amongst them, they have already deployed
hundreds of satellites and many more are scheduled to be launched in the foreseeable
future [74, 132]. LEO satellite networks are poised to supplement or be an alternative to
the terrestrial cable-oriented Internet [79]. Unlike their geo-synchronous counterparts,
LEO satellites operate at a significantly low enough altitude to provide both low latency
and high throughput communication to ground stations on Earth [28, 186]. Moreover,
this next generation of satellites are not solely intended to act as relay between two
ground stations, but are also set to form a true network in space by communicating with
one another through inter-satellite laser links [30, 79, 116].

To fulfill their full potential, LEO satellite networks come with a whole host of engineer-
ing challenges, some of which are well-understood whereas others are novel. Unlike
cabled networks, the satellite nodes (i.e., the "network switches") are constantly moving
at high velocity in their orbit [30]. Over time, their visibility as well as their distance
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relative to one another will differ, and the ground stations that connect to them changes.
As such, the resulting network is highly dynamic, with varying link properties such
as latency and bandwidth, and topological changes of links coming in and out of exis-
tence [30]. Faced with this emergent field, network researchers require tools to explore
additional questions including topology design, routing and congestion control [28].
Foremost, they want to evaluate to what extent existing methods work, identify incon-
gruity, and develop modifications or new methods to address these challenges. This is
additionally even more important as these networks are being deployed now, and as
such enhanced modeling capability could enable researchers to steer their deployment
to even greater performance heights.

RQ6: Can we build a usable and scalable simulator for low Earth orbit satellite net-
works which incorporates their highly dynamic topological nature causing varying
link properties and changes?

1.3.2 Provisioning for serverless query processing

Serverless computing, now a feature offered by all major cloud providers [15, 69, 139],
has been touted as a major step forward in terms of more efficient computing [37, 176].
In spite of the limitations of serverless platforms [85, 88, 200], recent results indicate
that analytical query processing over serverless is feasible but that it has a very narrow
window where it remains cost effective. The work on Starling [158] and Lambada [147]
show that, in current commercial offerings, the maximum throughput is a few tens of
queries per hour. Beyond that, it is better to use a fixed infrastructure as it costs less per
computation time unit. Nevertheless, these systems show that query processing over
serverless can be competitive for interactive, occasional use. For instance, it can be an
useful extension to data lakes such as Databrick’s Lakehouse [51], Microsoft Azure’s
Data Lake [138], or Amazon’s Redshift [10]. Over large swathes of the data in these large
repositories, analytical queries are run only infrequently resulting into what is referred
to as "cold" data. Loading such data into traditional databases for processing is costly
and impractical. Using a data lake infrastructure is more economical but still incurs too
high costs for only occasional use. This is where serverless query processing can be very
useful. Compared with using virtual machines, serverless functions have much lower
latency to start, are more scalable, and are charged at a smaller time granularity (e.g.,
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1 ms [14]).

Provisioning resources in the cloud for query processing is not easy [125]. For serverless,
the narrow effective window and the limited choices given to the user make the task
even more difficult [200]. However, for occasional use over the cold data, such provi-
sioning is critical to keep the system cost-effective. The two obvious extremes yield little
practical value to the user: the cheapest choice (small number of the smallest functions)
finishes too slow; the fastest (a large number of the largest functions) is too expensive.
It is thus desirable to have advisory tool that can recommend suitable configurations
for serverless query processing striking a good balance between completion time and
financial cost.

RQ7: Can we roughly estimate the performance and cost of serverless query pro-
cessing systems, and can we use this rough estimation to provision them striking a
good balance between completion time and financial cost?

1.4 Contributions and structure

We describe below the overall structure of this thesis. For each chapter, we outline the
contributions made therein.

In chapter 2, we look at a novel way to make the transport layer level more robust and
to satisfy heterogeneous workloads on the same networked system by considering a
new flexible network primitive.

• We identify two ways — partial delivery and bounded deprioritization — in which
a growing category of data center workloads can allow relaxations of traditional
network service expectations. Our approach, REFLEX, adds simple extensions to
the application-network interface such that the application can make the network
aware of this flexibility. We design a budgeting algorithm to provide guarantees
relative to their fair share, which is measured via probing. The requirement of
budgeting and probing limits the algorithm’s applicability to large flexible flows.

• We evaluate our algorithm with large flexible flows and for three workloads of reg-
ular flows of small size, large size and a distribution of sizes. Across the workloads,
our algorithm achieves less speed-up of regular flows than fixed prioritization,
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especially for the small flows workload. Our algorithm provides better guarantees
in the workload with large regular flows. However, it provides not much better or
even slightly worse guarantees for the other two workloads.

• We find that the ability to enforce guarantees is influenced by flow fair share
interdependence, measurement inaccuracies and dependency on convergence. We
observe that priority changes to probe or to deprioritize causes queue shifts which
deteriorate guarantees and limit possible speed-up, especially of small flows. We
find that mechanisms to both prioritize traffic and track guarantees should be as
non-disruptive as possible.

In chapter 3, we identify the characteristics of attacks orchestrated by programmable
network devices to covertly deteriorate network performance. We explore methods to
detect, mitigate and prevent such UNDERRADAR attacks.

• We bring awareness to the notion of UNDERRADAR attacks, which attempt to cause
application performance degradation while remaining hard to diagnose through
the use of programmability.

• We show that particularly impeding identification of key packets and flows is im-
portant, as UNDERRADAR attacks can specifically target transport-layer protocols
as well as use knowledge of application structure, such as that of large “coflows”,
to degrade application performance with fewer interactions. Techniques such as
encryption of payload and header, as well as obfuscation of timing and size, we
posit to be effective countermeasures in this aspect albeit could limit other network
functionality.

• We find that network monitoring systems which continuously monitor real traffic
are most effective at detecting such attacks. They should be finely tuned to not
only detect distribution shifts which indicate network failure but also outliers that
could have been the result of targeted interference.

• We highlight the benefits of making network monitoring systems application-
aware, such that degradation in application performance can directly be diagnosed
whether it is caused by disproportionally degraded network service.

In chapter 4, we describe low-earth orbit (LEO) satellite networks, the research demand
to model their highly dynamic characteristics, and the implementation of a usable,
scalable and expressive simulator to address this need.
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• We develop the simulation framework HYPATIA which models the highly dynamic
topological nature of LEO networks, and provide insight into its scalability.

• We show through packet-level experiments the effect LEO network dynamics such
as path and base latency changes on network operation, which shows HYPATIA’s
usability for areas such as congestion control, routing and traffic engineering.

In chapter 5, we examine serverless query processing systems, which excel at cost
efficiently and in a timely manner answering infrequent analytical queries on large
quantities of cold data. We investigate how to provision these systems in a cost-efficient
and performant manner.

• We develop a parameterized model which accounts for the key characteristics of
serverless query processing (namely, start-up, network, processing, and overhead)
which enables the rough estimation of performance and cost;

• We build an advisory model which makes use of these rough estimations to
recommend a configuration which achieves a good balance (close to the “Pareto
knee”) between completion time and financial cost;

• In our evaluation using TPC-H, we show that the model chooses a configuration
21 out of 24 times with less than 15% distance of the comparison metric.

Finally, in chapter 6, we conclude the thesis by going over its key takeaways and describe
the possible directions for future work. We find there are many more opportunities to
further improve networked systems and their monitoring, with better performance at
reduced cost in the prospect, and their performance evaluation, with increased ease of
insight, scalability and usability.

1.5 Publications and preprints

This dissertation incorporates parts of works which have already been published, which
are as follows (in order of appearance in this thesis):

• Simon Kassing, Vojislav Dukic, Ce Zhang, and Ankit Singla. New primitives for
bounded degradation in network service. arXiv:2208.08429, 2022. [107]
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• Simon Kassing, Hussain Abbas, Laurent Vanbever, and Ankit Singla. Order P4-66:
Characterizing and mitigating surreptitious programmable network device exploitation
arXiv:2103.16437, 2021. [105]

• Simon Kassing*, Debopam Bhattacherjee*, André Baptista Águas, Jens Eirik Saethre,
and Ankit Singla. Exploring the "Internet from space" with Hypatia. ACM IMC,
2020. [106]

• Simon Kassing, Ingo Müller, and Gustavo Alonso. Resource Allocation in Serverless
Query Processing. arXiv:2208.09519, 2022. [108]

Additionally, during my doctoral studies I was involved in several other works which
are not directly covered in this thesis:

• Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael Schapira, and Ankit Singla.
Beyond fat-trees without antennae, mirrors, and disco-balls. ACM SIGCOMM, 2017. [110]

• Chen Yu, Hanlin Tang, Cedric Renggli, Simon Kassing, Ankit Singla, Dan Alistarh,
Ce Zhang, and Ji Liu. Distributed learning over unreliable networks. ICML, 2019. [210]

• Debopam Bhattacherjee*, Simon Kassing*, Melissa Licciardello, and Ankit Singla.
In-orbit computing: An outlandish thought experiment? ACM HotNets, 2020. [29]

• Simon Kassing and Ankit Singla. CodeBind: tying networking papers to their experi-
ment code. 2021. [109]

* Shared first author.
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2
N E W P R I M I T I V E S F O R

B O U N D E D D E G R A DAT I O N I N

N E T W O R K S E RV I C E

We pose that there is value in further exploring network primitives which are flexible
rather than strict. The principle idea is that applications which have less strict require-
ments can cede their quality of service to improve or accelerate those which are less
flexible. We consider in particular two dimensions of interest: partial delivery and
bounded deprioritization. First, in terms of partial delivery, current common network
primitives are insufficient: TCP offers only fully reliable transmission whereas UDP
provides no guarantees. Recent work in the ML research community [210] has shown for
instance that network loss to a certain extent has minimal effect for many types of ML
training. Another work, ATP [129], has explored partial delivery, but not the co-design
of both loss and deprioritization guarantees, and rigorously defining when data should
be considered lost. Second, although network level mechanisms such as prioritization
and scheduling provide a way to assign quality of service, they do not offer bounded
deterioration. There do already exist approaches to enable non-competing background
traffic such as LEDBAT [117], which however similarly do not provide any guarantees
to its deprioritized traffic.

We set out to design network primitives capable of both (a) ensuring that regular traffic is
serviced preferentially, and (b) the extent of this preferential treatment is bounded such
that the corresponding deterioration in network service for flexible traffic is controlled,
thus only causing only negligible or acceptable application-level performance impact.
In particular, we explore the co-design of both loss and deprioritization guarantees, and

15



Chapter 2. New primitives for bounded degradation in network service

when data should be considered lost.

We take the first steps in this direction by: (a) introducing primitives describing partial
delivery and bounded degradation goals; and (b) designing mechanisms for the network
that implement these primitives. We propose a simple extension to the application-
network interface: an application sending data can specify what fraction of it must be
reliably delivered, and/or what degradation in performance is acceptable compared
to the default fair-sharing of the network. Using this interface, different applications
(e.g., different ML training approaches and workloads) can specify arbitrarily different
degrees of acceptable degradation in the same network. We also design and implement
algorithms for the network to exploit the headroom these relaxations of the network
service objectives provide, by dropping or deprioritizing flexible traffic in favor of
regular traffic, while ensuring that the specified (relaxed) guarantees for flexible traffic
are indeed met.

We have evaluated our approach, REFLEX, using packet-level simulation. We show
that by allowing (guaranteed) partial delivery and bounded deprioritization for flexible
traffic, the performance of regular traffic can be improved. We compare our approach
with standard prioritization methods, and investigate the extent to which both are able
to bound degradation as well as speed-up workloads.

Chapter outline. In this chapter, we first motivate the need for new network primitives
and formalize the reliability and aggressiveness factor in §2.1. Second, we introduce
the abstract design of our algorithm in §2.2. Third, we describe the practical probing
algorithm design in §2.3. Fourth, we describe the implementation in §2.4. Fifth, we
evaluate our approach in a diverse set of setting using packet-level simulation in §2.5.
Finally, we discuss future work in §2.6, related work in §2.7, and provide an overall
summary in §2.8.

Contributions. Text and figures from the following publication were included in this
chapter and its corresponding introduction and conclusion:

• Simon Kassing, Vojislav Dukic, Ce Zhang, and Ankit Singla. New primitives for
bounded degradation in network service. arXiv:2208.08429, 2022. [107]

In the collaboration, both I and Vojislav Dukic worked on the conceptual idea and theory,
with me having an additional focus on the experimental evaluation.
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2.1 Why new networking primitives?

Network traffic for a growing class of applications offers two degrees of flexibility that
cannot be exploited by today’s networks: (a) such traffic does not need the predominant
reliable delivery of TCP; and (b) such traffic can be deprioritized in favor of more
other time-critical traffic. However, providing no network service assurance is also
unacceptable, as that can lead to substantial application-level performance degradation.
We next discuss each of these potential relaxations to the network service model in
greater detail.

2.1.1 Guaranteed partial delivery

Traditionally, networking has provided only two extremes: (1) a fully reliable in-order
data delivery primitive, using TCP or its derivatives; and (2) entirely best-effort data
delivery using UDP, with no reliability guarantees. While many existing applications
depend on one of these service models, new emerging workloads can benefit from
guaranteed partial reliability. For instance, in certain types of distributed machine learn-
ing training, losing some fraction, e.g., 20% of each model update transferred between
workers, or between workers and a parameter server, has no or negligible impact on the
ML training task [210]. Note that this is different from adaptive applications like video
streaming, where there is first a compromise in application performance by picking
lower video quality, and then data for the lower quality still needs to be delivered reliably
using TCP, or is entirely best-effort, again with additional observable degradation.

To characterize flexible traffic that only requires guaranteed partial delivery, we define a
reliability factor as follows:

Definition 1. Each flow f has a reliability factor r ∈ [0, 1], which is a lower bound on the
fraction of its data that must be delivered reliably by the transport protocol. For regular, inflexible
traffic, and more broadly, for any traffic for which r is not explicitly specified, r = 1 by default.

A naive way of exploiting the flexibility specified using r < 1 would be to simply
trim the payload before each transfer, for instance, transfer the first 80% bytes for each
model update reliably using TCP, and then drop the last 20% bytes. While this is indeed
“partially reliable” delivery, this is a poor strategy: what if the network was congested
earlier in the transfer, but is under-utilized later? In this case, sending less data does not
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have much upside in terms of improving network multiplexing. Thus, we would like
to use this flexibility adaptively, dropping data when the network is busy with regular,
inflexible traffic, while delivering it when the network is less congested. The knowledge
of payload size in advance is fundamental to partial delivery: if the control mechanism
only knows the final payload size once the transfer is complete, it is unable to finish
early before delivering the entire payload.

Unfortunately, today’s binaries of reliable and unreliable transfer do not accommodate
such sophisticated, adaptive switching between reliable and unreliable transmission.
Interpreted in light of the above definition, using UDP effectively implies r = 0, while
using TCP enforces r = 1. Note that our definition does not enforce that only r fraction
of traffic is delivered, rather r is a lower bound, with at least r fraction of traffic sought
to be reliably delivered. The need for a new partially-reliable transport protocol has
been recognized by a parallel work available as an online manuscript in which the Ap-
proximate Transmission Protocol (ATP) has been proposed [129]. ATP defines a similar
reliability factor and provides guarantees for the data delivered. The key distinction is
that ATP decides partial delivery based on actual packets being lost, which differs from
our approach which defines partial delivery based on bandwidth loss relative to fair
share (§2.2). More distinctions to ATP are further explained in §2.7.

2.1.2 Bounded deprioritization

Many applications, such as backup or administrative tasks, non-interactive analytics, and
ML training workloads where real-time model freshness is not critical, can be bandwidth-
hungry, but do not necessarily need to compete fairly with more time-sensitive traffic
such as user-facing Web search or ML inference queries. Networking does offer three
broad types of primitives to benefit regular traffic by exploiting such flexibility, but as
we discuss in the following, none of these provides any bounds on how much worse the
performance of the flexible traffic can be.

Background transport: LEDBAT [117] attempts to capture unused network bandwidth,
and is commonly used over the Internet today for transfers like software updates.
However, LEDBAT does not compete fairly with TCP traffic at all, and thus, if used for
flexible traffic, cannot bound the degree to which flexible traffic is deprioritized: if the
network is seeing a large volume of regular traffic, flexible traffic using LEDBAT would
be completely starved.
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Prioritization: Superficially, running flexible traffic at low priority using multiple queues
available in most commodity switches today is a natural way of favoring regular traffic
over flexible traffic. A variety of more sophisticated scheduling schemes are also known
that allow multiple degrees of low priority [8] for different degrees of flexibility in traffic,
or weighted prioritization (instead of absolute) with configurable weights [48]. However,
regardless of the details of how prioritization is implemented, it offers no guarantees:
the performance of deprioritized traffic can be arbitrarily worse than its fair-share of
network bandwidth. If there is a surge in high priority traffic, low priority traffic suffers
starvation. While starvation can be somewhat reduced using “aging”, whereby a flow’s
priority increases over time [41], this is a heuristic with no guarantees. A broader issue is
that priorities are meaningful only relative to other network-wide traffic’s priorities and
volume, which an individual sender does not know. Thus, even weighted prioritization
results in no guarantees: if traffic with many different degrees of flexibility co-exists in a
network, each class of flexible traffic has no knowledge of what share of bandwidth its
weight will translate to, given that other weights are unknown to it.

Deadline-aware networking: In a similar vein to priorities, one can also specify explicit
deadlines for different traffic flows to finish [195]. Deadlines exhibit some of the same
problems as noted for priorities above. In addition, setting deadlines is especially
difficult for flows that have soft deadlines, where the performance degrades gradually
with time, and it is unclear what to do when a deadline is not met. The flexible workloads
we describe are of this type, e.g., even if there is no explicit deadline of when an ML
model must finish an update, delaying updates gradually increases staleness, and
degrades performance. While one can potentially set deadlines for other traffic and use
leftover bandwidth for flexible traffic [41], this provides no guarantees to flexible traffic.
As work on deadline-aware scheduling notes, such workloads must be managed using
heuristics [203], with no guarantees.

Thus, none of the existing networking primitives allow the specification of a bounded
degree of deprioritization, where a guarantee can be specified such that it holds in-
dependent of other traffic. Further, primitives to bound starvation can actually cause
flexible traffic to not back off appropriately (e.g., with weighted prioritization) or worse,
increase in aggressiveness (e.g., with aging) at unfortunate times when the network is
most congested.

Given the above discussion on the limitations of existing primitives, one may even
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ponder whether any guarantee on bounded deprioritization is possible to frame and
achieve at all without explicit reservations, which are unsuitable for our purposes of
degraded service. We find that while absolute guarantees are unachievable simply
because other traffic is variable and can congest the network, a guarantee can be framed
relative a flow’s fair-share bandwidth. To do so, we define how aggressive a flexible
flow is as follows.

Definition 2. Each flow f has an aggressiveness factor α ∈ [0,∞), which specifies the fraction
of f ’s max-min fair-share bandwidth that will be guaranteed for f over its transmission. For
regular, inflexible traffic, and more broadly, for any traffic for which α is not explicitly specified,
α = ∞ by default.

Like our discussion of the reliability factor above, α is only a lower bound, with a flow
seeking at least that fraction of its fair-share bandwidth. TCP, by targeting (but not
always achieving) max-min fair-share bandwidth, effectively enforces α = 1. Flexible
flows with α < 1 thus cede capacity to regular flows, as well as flexible flows with higher
α values. In certain cases with other flexible flows present, a flow might actually achieve
a rate higher than their max-min fair share. An α value greater than 1 specifies how
much rate speed-up a flexible flow permits. Regular flows want the maximum amount
of rate speed-up fairly available, as such for them by default α is set to ∞. In practice an
α > 1 is generally unable to be guaranteed as it depends on other flows ceding their fair
share (i.e., having their α less than 1).

Note that our above framing allows flexible flows to specify a bounded degree of de-
prioritization compared to their default TCP-driven fair-share state. This is particularly
attractive for applications with soft deadlines — there is no explicit notion of a hard
deadline, but performance degrades with time, so specifying an α < 1 allows specifying
how much degradation compared to the default case is acceptable. Indeed, the fair-share
depends on other network traffic and varies over time, but it can be independently
estimated by regularly probing the network (such a mechanism is described §2.3.1).

2.2 Abstract algorithm design

2.2.1 Budgeting algorithm for bounded degradation

The key challenges in enforcing bounded degradation stem from the lack of information:
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Figure 2.1: The algorithm is based upon collecting budget and once it has been built
up (O1), having the budget be spent to prioritize regular (more time-critical) flows
(U1). Budget can be built up through α by having a rate > α×Rfair or through r in a
similar way.

1. A flow’s size may not always be known at its start, and as it may finish anytime,
we must ensure that it has delivered at least r fraction of its data at every instant.

2. As flows arrive and finish, a flexible flow’s fair share bandwidth continually
evolves, and it is unclear when to incur deprioritization such that the α-bound
holds.

REFLEX addresses these challenge by building up a budget for degradation of flexible
flows and then exploiting it. Flexible flows receive normal service for a period such that
they run ahead of their performance goals (growing the budget), and then are degraded
opportunistically when needed to speed up regular flows (depleting the budget). For
now, we assume that the fair share for each flow is known to it at all times. We shall
later incorporate probing to estimate the fair share.

In the following, we shall illustrate this budget buildup and exploitation in the context
of flexible flows that seek fully reliable delivery (r = 1), but can tolerate bounded depri-
oritization (α < 1). The logic for flows that allow partial delivery but not deprioritization
(r < 1, α = 1) is similar. For flows that allow both, deprioritization is used first because
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in any case, low-priority flows cede capacity to regular flows; loss is invoked after the
deprioritization budget is fully depleted.

Regardless of the number of different flows with different degrees, αi, of deprioritization
permissible, REFLEX uses two priority queues at each switch. Commodity switches used
today typically provide at least 8 priority queues [45].

We explain the algorithm for switching between high (default, used for regular flows)
and low priorities visually using Fig. 2.1. A flexible flow starts by fairly competing with
other flows at high priority, and receives its fair-share rate Rfair. Until time T1, it sends
S1 bytes at this rate. Since we need only guarantee α ·Rfair bandwidth, this implies that
(1− α) · S1 more bytes than needed to meet the guarantee are delivered by T1. This is
the area marked O1 in Fig. 2.1. These “overdelivered” bytes represent the accumulated
budget.

Once sufficient budget is accumulated, the flow switches to low priority, ceding capacity
to other flows, until time T2. At low priority, the flow may potentially receive less than
its fair share of bandwidth, thus sending fewer bytes than it could have at the fair share.
These “underdelivered” bytes, shown in area U1 in Fig. 2.1, are a depletion of the budget.
Given our assumption of knowing the fair share at any time, we can always calculate the
depletion in the budget and ensure that the budget is always non-negative. When the
budget is completely drained, the flow is switched back to high priority for rebuilding
its budget.

Note that in the above, the time when the flow switches back to high priority, T2, is
obvious: whenever the budget reaches zero. However, T1 is a design parameter: how
much budget to accumulate before switching to low priority? If T1 is small, a flow will
switch more frequently, as it builds up and expends buffer. In our abstract description
thus far, this is immaterial, but in a practical system, there is a convergence period in
which a flow arrives at its new bandwidth allocation each time such a switch takes place,
and T1 must be set such that it is several times the convergence time. We provide a
detailed evaluation of this parameter in §2.5.4.

We make several remarks about this simple algorithm:

1. Budget building must only use past history, as any assumptions on future band-
width can be mistaken, and violate the guarantee of α.

2. For partial delivery, a flow can finish anytime, and must have sent r fraction of its
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Figure 2.2: A max-min fair allocation system in which removing one flow between A
and B will degrade the performance of the orange flow between C and D.

data at every instant. As flow size being known in advance is fundamental to partial
delivery, the loss budget is known too, and can be used to improve performance
(§2.5.3).

3. Low priority can, but does not always drain the budget; the budget is drained only
while a flow receives bandwidth smaller than α ·Rfair.

2.2.2 Max-min guarantee in multi-hop

Up until now, we have primarily considered the scenario of flows sharing a single link,
in which max-min fairness is straight-forward to calculate and reason about. However,
in a max-min fair allocation system, downstream changes have upstream effects. More
specifically, removing some traffic (or moving it to low priority) on one path can cause
performance degradation on another.

Consider an example with 4 hosts attached to a switch, as shown in Fig. 2.2. Two flows
are going from A to B, one from A to D and one from C to D. If all the flows are at the
same priority (default), flows that originate from A have 1/3 units of bandwidth, while
the orange C-D flow utilizes 2/3 units of bandwidth. If one flow from A to B switches to
low priority, e.g. the top (green) flow, it will receive 0 units, while all other flows would
get 1/2, including the (orange) one between C and D. This further implies that, the
regular C-D flow experiences a slowdown of 0.25 compared to the default, just because
a flexible flow on another path switches to low priority.

Note however, that the above is not a violation of our bounded deprioritization guar-
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antee: for any flow, it gets α fraction of its fair-share bandwidth, but due to the nature
of max-min fair allocation, the fair share can itself change as other flows shift their
priorities. This is precisely why we do not state (and cannot fulfill) guarantees framed
in terms of flow completion time. The above discussion is meant to highlight that the
fair-share-degradation guarantee is weaker than an FCT-degradation guarantee, and
REFLEX only provides the former. The fair-share-degradation guarantee of a flow is only
as strong as the fair share it can achieve given the priorities of other flows, which thus
can be less than its fair share when all flows are of equal priority.

2.3 Practical algorithm design

The abstract budgeting algorithm as described in §2.2 suffices to achieve guaranteed
partial delivery regardless of a real transport implementation’s quirks, as long as fully
reliable delivery is correctly implemented using acknowledgments and retries. How-
ever, the bounded deprioritization guarantee relies on two assumptions: (a) each flow
knowing its fair share at all times; and (b) the transport protocol converging to fair
share instantly after flow arrivals, departures, and priority switches. In practice, these
assumptions do not hold. For (b), the transport protocol’s degree of divergence from
fair share is, of course, inherited by REFLEX. For (a), in our approach we choose to have
each flow probe the network periodically to approximately estimate its fair share, as
we describe next. Having only approximate estimates for fair-share bandwidth, and
incurring some time for convergence to the fair share, both lead to imprecision in the
α-bound, which we later explore experimentally.

2.3.1 Probing mechanism

We propose the usage of regular probing for each flexible flow to determine its fair share.
The key challenge is estimating a flow’s fair share through probing is that all flows must
operate approximately in synchronous fashion at high priority in the probing period,
such that each flow can independently arrive at its fair share estimate. We rely on a
data center wide synchronization primitive for this purpose. While recent work has
claimed data center wide synchronization within tens of nanoseconds [63, 123], for our
purposes, microsecond-scale synchronization using PTP [128] is sufficient. Note that
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while such synchronized probing may sound aggressive, it is merely a brief return to
today’s default behavior, with more operational time spent using the results of probing.

Each flexible flow operates in a (synchronized) cyclic fashion with three phases: (a)
warmup, with all flexible flows at high priority; (b) measure, with all flexible flows at high
priority; and (c) exploit, where each flow individually decides whether to switch to low
priority. The warmup phase allows time for convergence to fair share, before a fair-share
estimate is made from the measure phase. We define the following parameters:

• Tint: interval duration (ms)

• Dwarmup: warmup phase duration (no. intervals)

• Dmeasure: measure phase duration (no. intervals)

• Dexploit: exploit phase duration (no. intervals)

Once the fair share estimate is available after the measure phase, each flow calculates
the amount of potential expense (i.e., budget loss) of going low priority in the upcoming
phase. This expense amounts to α×Rfair ×Dexploit × Tint. Only if the current budget is
larger than the expense, does the flexible switch to low priority for the exploit phase.

The fair share estimate which is established in the measure phase is used throughout all
subsequent intervals to accumulate or drain budget. As such, although a flexible flow
can only switch to low priority during the exploit phase, it collects budget in all phases
(with the exclusion of the first partial cycle it needs to synchronize up).

Note that explicit coordination is not required across flows: the lengths of the warmup,
measure, and exploit phases are set network-wide. A newly started flexible flow starts
at high priority until the next synchronized cycle starts, for which its uses its own
(network-wide synchronized) clock. It can calculate at any time which part of the
cycle is currently active using one simple modulo operation. If the timesteps are on
the order of hundreds of microseconds or more, microsecond-scale synchronization is
clearly sufficient. Additionally note that if transport protocol convergence were faster,
e.g., by approximating RCP in modern programmable switches [180] or implementing
PERC [101], we could eschew the warmup phase entirely, thus increasing the fraction of
time flows can operate in the exploit phase.
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2.3.2 Algorithm

Budget adjustment algorithm. The core of the algorithm is the manner in which it
accounts budget, which is abstractly described in §2.2. The algorithm requires a fair
share estimate Rfair to account for the budget accumulation or drain. The budget must
be updated at a time granularity fine enough to (a) incorporate the frequency at which
the fair share estimate is renewed, and (b) before a priority decision is made. In the
probing mechanism, this is performed at Tint interval granularity, which meets both
criteria. In the adjustment algorithm, two budgets are maintained:

• Rate degradation budget Bα. It increases each update when the actual rate Ractual

is higher than α×Rfair.

• Reliable delivery degradation budget Br. With the assumption that the flow size
F is known in advance, Br starts at the (1− r)× F . Only if r < 1 is the flow size
required in the algorithm. We leave exploration of other (later) signaling of flow
size to future work.

The budget is decreased by first draining the rate degradation budget Bα, and only if
that is empty, draining Br. The reasoning behind this is that draining Br results in less
flow data being sent out, which is undesirable if the targeted fair share portion is still
being achieved. The Bα can become negative if consistently we achieve lower rate than
intended – which in turn will trigger going at high priority to remedy this (see next
section). The budget algorithm pseudo-code is depicted in Alg. 1.

Control algorithm with probing. The control algorithm has four tasks: (1) it determines
whether the flow is finished earlier due to reduced reliability, (2) it awaits to be synchro-
nized with the other flexible flows, (3) after a complete warmup and measure phase, it
calculates the fair share which is used in the next cycle, and (4) it decides whether to go
at low or high priority during the exploit phase. In each update, the current interval is
identified with IDint, which is determined using a modulo operation of the clock and
the interval duration Tint. The control algorithm pseudo-code is depicted in Alg. 2.
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Algorithm 1 Budget adjustment logic for each elapsed time period of the flow in which
the fair share rate Rfair is known.

Initial state:
F : flow size (known if r < 1, else ∞), Ssent = 0, Bα = 0, Br = (1− r)× F

1: function ADJUST_BUDGET(ACKbyte, Telapsed)
2: Ractual = ACKbyte / Telapsed

3: Ssent = Ssent + ACKbyte

4: Bα = Bα − Telapsed ∗ (α×Rfair −Ractual)
5: if Bα < 0 then
6: Br,before = Br

7: Br = Br +Bα

8: if Br >= 0 then
9: Bα = 0

10: else
11: Bα = Br

12: Br = 0
13: end if
14: Ssent = Ssent + (Br,before −Br) ▷ Br drainage reduces how much to send
15: end if
16: end function

2.3.3 Probing consequences and limitations

The introduction of probing to periodically determine the fair share has certain conse-
quences and limitations.

What is the effect of an inaccurate fair share estimate? An inaccurate fair share estimate
can either be too low or too high. In the former (too low estimate), the budget will
increase too much as the gap Ractual − α × Rfair is larger than in actuality, leading
potentially to an inflated budget and thus a rate which can deteriorate beyond the
theoretical guarantee. In the latter (too high estimate), the budget will not build up as
much, thus resulting in less flexibility. An inaccurate estimate can be due to several
factors. Firstly, it takes time for a congestion control protocol to converge, which can
lead to inaccuracies. This can be ameliorated by having large enough phases, as well as
the choice of a quickly converging congestion control protocol. Secondly, the measured
fair share can be out of date because new flows can arrive or existing ones depart. This
is especially the case when there are flows present whose completion time last shorter
than a full cycle, which would lead to a reduced rate during whichever phase it is active.
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Algorithm 2 Control algorithm with probing. The update is called at the Tint inter-
val with an incremented IDint each time. The IDint is determined using the global
synchronized clock each flexible-capable host maintains.

Initial state:
Rfair = not set, Pprev = NONE, SYNC = false, Dprobe = 0, Tprobe = 0, Iexploit low = false

1: function UPDATE(IDint, ACKbyte, Telapsed)
2: if Rfair is set then
3: ADJUST_BUDGET(ACKbyte, Telapsed)
4: end if
5: if Ssent ≥ F then
6: return FINISHED
7: end if
8: if Pprev == MEASURE and SYNC then
9: Dprobe = Dprobe + ACKbyte

10: Tprobe = Tprobe + Telapsed

11: end if
12: Pupcoming = DETERMINE_PHASE(IDint, Dwarmup, Dmeasure, Dexploit)
13: if Pprev == EXPLOIT and Pupcoming == WARMUP then
14: SYNC = true
15: Iexploit low = false
16: end if
17: if Pprev == MEASURE and Pupcoming == EXPLOIT and SYNC then
18: Rfair = Dprobe/Tprobe

19: Dprobe = 0, Tprobe = 0
20: end if
21: Lpotential = α×Rfair ×Dexploit × Tint

22: if Pprev == MEASURE and Pupcoming == EXPLOIT and Rfair is set then
23: Iexploit low = true if Bα +Br > Lpotential else false
24: end if
25: Pprev = Pupcoming

26: return LOW if Iexploit low else HIGH
27: end function

Flexibility limited to relatively large flows. We acknowledge that our service degrada-
tion primitives are only meaningful for relatively large flows, which run for at least tens
of milliseconds. We believe this to be reasonable: there is, after all, little advantage from
degrading service for short flows that don’t consume most of the network’s capacity.
However, by degrading service for a few such large flows, we can benefit a large number
of short flows, which typically have more stringent service requirements.
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Speed-up limited to exploit phase. In the warmup and measure phases the flexible
flow is unable to be at low priority. As a consequence, the maximum fraction of time
a flexible flow can be at low priority is Dexploit/(Dwarmup + Dmeasure + Dexploit). This is
especially impactful if there are short regular flows, as if they occur in the first two
phases they will receive only fair share rather than be sped up. This can be ameliorated
with a relatively longer exploit phase, which in turn however would reduce the fair
share estimate accuracy.

Time synchronization required among flexible hosts. Participating hosts which wish
to participate in the starting of flexible flows must be time synchronized. As such, the
deployability of REFLEX is limited to those settings.

2.4 Implementation

For ease of understanding, we have thus far described REFLEX at an abstract, algorithmic
level. Implementing it requires small changes at multiple levels of the networking stack,
which we discuss in a top-down manner.

Application changes: Applications that wish to send flexible traffic must correctly use
an extended sockets API to specify the degradation parameters for their traffic. An
application using only deprioritization does not see any change in terms of transport
behavior, except performance. However, applications allowing partial delivery might
see data loss, and thus must prepare data correctly such that partial deliveries are usable.

REFLEX must be able to discard data if reduced reliability is permitted. When REFLEX

decides to discard some data segments, it will remove these data segments from the send
buffer. As such, application have to ensure that any data segment transmitted over a
flexible socket can be removed from the flow without hindering the receiver from being
able to make use of the rest of the data segments. REFLEX must similarly be informed
of the application data segmentation strategy, which could range from a static constant
(e.g., every B bytes is an individual data segment) to dynamically informed strategies.
This would incur a header overhead for each data segment. In this work, we assume
that data is segmentable at the byte level. We leave investigation of data segmentation
and discard decision strategies to future work.

Application-transport interface changes: The sockets API has to be extended to support
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the creation of flexible flows. For every flexible flow, the application must be able to
specify the parameters α and r through the socket API. By default, α is set to ∞ and r is
set to 1, such that legacy applications do not need to change, and can continue operating
as regular traffic, while benefiting from flexible traffic’s behavior.

Transport level changes at hosts: Our design requires that the transport implementation
be extended with the REFLEX state machine. For each flexible flow, it must track the
budget and the time slots (warmup, probe, exploit) using a system time synchronization
protocol like PTP, perform fair-share measurements, decide on whether to operate in low
or high priority or / and discard or retransmit data, and tag packets with the appropriate
priority levels.

REFLEX benefits if the transport protocol converges fast to fair-share bandwidth. Thus,
in our implementation, we use DCTCP instead of TCP. DCTCP, by making use of
congestion markings (ECN), can make more accurate rate adjustment decisions than
TCP. We use DCTCP because it is already commonly used in data centers, but if RCP or
PERC were implemented to achieve even faster convergence, REFLEX’s performance
would improve further.

Network-level changes at switches: REFLEX’s bounded deprioritization uses 2 priority
queues, while commodity data center switches commonly support 8 queues. The
remaining available priority levels can still be utilized for explicit prioritization outside
the domain of REFLEX, e.g., to prioritize network control messages.

An alternative to such in-network prioritization is to simply have “wimpier” congestion
control logic kick in when flows are operating in degraded mode, e.g., back off by a
larger multiplicative decrease factor on packet loss than regular flows. We have not
explored such a strategy yet.

2.5 Evaluation

We evaluate REFLEX using packet-level simulations. We first explain the experimental
setup including network devices, congestion control, and default parameterization in
§2.5.1. Next, we show the motivation of REFLEX by comparing it in a simple scenario
against other prioritization schemes in §2.5.2, and showcase how partial delivery works
in §2.5.3. We explore the parameterization of the probing mechanism in §2.5.4. Finally,
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we run REFLEX for larger workloads to examine the utility that flexible flows offer and
compare it to the performance of fixed weighted prioritization in §2.5.5.

2.5.1 Experimental setup

For the packet-level simulations we make use of ns-3 [152] with the basic-sim module [1,
60, 104, 106]. The default setup is as follows (unless otherwise specified in the upcoming
sections). The network consists of 10 Gbit/s links with a delay of 1 µs. Each network
device has two traffic control queue discipline queues, with a weighted scheduling
mechanism which it draws from using deficit round robin. The high priority queue has
90% of bandwidth, and the low priority 10% of bandwidth. Both traffic control queues
are configured with Random Early Detection (RED) as its queue discipline, with a hard
marking threshold of 65 packets and a maximum size of 466 packets (both following
recommendation from [6]). Each network device finally has a simple tail drop queue of
20 packets. Network devices use an MTU of 1500 byte.

We use DCTCP as the congestion control protocol. The various timeout values have been
adjusted to be effective in a low latency (2-4 µs base RTT), high throughput (10 Gbit/s)
environment, in particular the minimum RTO is set to 1 ms, the initial RTT measurement
to 2 ms, the connection timeout to 2 ms, the delayed ACK timeout to 1 ms, the persist
timeout to 8 ms and the maximum segment lifetime to 8 ms. The clock granularity is set
to 1 ms. The segment size is set to 1380 byte. It is not possible to have the throughput
match the theoretical line rate due to the overhead of the point-to-point, IP and TCP
(with TS option) headers. As a result, approximately 96% of line rate is the maximum
throughput. The send and receive buffers are set to 1 MiB.

REFLEX is by default configured with Tint = 5 ms, and with Dwarmup : Dmeasure : Dexploit

set to 1 : 1 : 3. This matches the low latency and relatively high throughput setting.
Parameterization is further explored in §2.5.4.

2.5.2 Prioritization scheme comparison

Use cases. The difference of REFLEX to the prioritization alternatives described in §2.1.2
is best illustrated by an example. Consider a single link with a bandwidth of 10 Gbit/s
over which two flows are started. We bring forward two scenarios, the first to showcase
speed-up and the second to showcase starvation. In both cases, the flexible flow wants
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its performance to be degraded by at most 10% of its fair share (α = 0.9). The regular
flow expects usual performance and thus does not want its performance degraded.

• Case 1: 40 Gbit flexible flow starts at T=0 s, and a 2 Gbit regular flow starts at T=2 s

• Case 2: 40 Gbit regular flow starts at T=0 s, and a 2 Gbit flexible flow starts at T=2 s

Results. In the baseline setting (i.e., without any prioritization scheme), the flows
compete fairly and thus in both cases the flexible and regular flow achieve 5 Gbit/s
when both are active. When using absolute prioritization, the flexible flow achieves
0 Gbit/s when both are active, and the regular flow 10 Gbit/s. Thus, in Case 2 this result
in the flexible flow being finished only after the regular flow is done. For weighted
prioritization, we consider three variants for comparison: regular flows having 9x more
weight, 2x more weight, and 11

9
x more weight. Among these three variants, either there

is little speed-up of the regular flow in Case 1, or starvation of the flexible flow in Case
2. In Case 1, REFLEX builds up budget in the first 20 s which means that it can be on
low priority when the regular flow arrives, giving it all the high priority bandwidth.
However, because of the presence of probing with 1:1:3 phases, the high priority can
only be consumed 60% of the time. This is shown in Fig. 2.5 in the changing between
the fair share at high priority and the reduced rate at low priority. Thus, the regular
flow rate calculated rate is 7.4 Gbit/s. In Case 2, REFLEX make sure the flexible flow to
maintain the α = 90% guarantee, therefore not permitting the regular flow to degrade
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Figure 2.3: Calculation of different prioritization schemes for the two cases.
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Figure 2.4: Packet-level simulation results of different prioritization schemes for the
two cases.

the flexible flow’s rate too much. This yields a rate of 4.5 Gbit/s for the flexible flow.
An overview of the average rates achieved is shown in Fig. 2.3 for calculation. Barring
the header overhead, the calculation results match those of the simulation in Fig. 2.4.
Note that in Fig. 2.5 there is a small rate fluctuation for the flexible flow, which is caused
by retransmission due to reordering. Among the compared prioritization schemes,
REFLEX is able to (a) achieve a significant speed-up of the regular flow in Case 1, and
(b) prevent starvation of the flexible flow in Case 2 comparable to the baseline. This is
evidently workload dependent: if flexible flows are not starved, other fixed (weighted)
prioritization schemes perform better.

It is possible to achieve better speed-up in Case 1 through either increasing weight of
the high priority queue, or, more effectively, by changing the ratio of the probing phases
to have a relatively longer exploit phases. The former has as a side effect that congestion
control protocols do not respond well to complete starvation, as they will be deprived of
any network signals. The effects of the latter are further explored in §2.5.4.

Different from deadlines. The most distinguishing characteristic of REFLEX is that it
defines its guarantees in relation to the network state, in particular the fair share each
flow should achieve. This is distinctly different from explicit deadlines, which are set
agnostic to network state. Indirectly, an absolute time deadline corresponds to a certain
desired rate provided the data transfer size. A simple approach would be to set these
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Figure 2.5: For Case 1, REFLEX yields considerable speed-up for the regular flow,
although it its effect is reduced due to the warmup and measure phases.

absolute time deadlines based on the line rate. With this approach, for Case 1 one would
set the deadline of the flexible to T=4.4 s (4 s + 10% for flexibility) and of the regular to
T=2.2 s, and in Case 2 of the flexible to T=2.22 s (0.2 s + 10% for flexibility) and of the
regular to T=4 s. Case 1 would be possible for the deadlines to be met, however in Case
2 it is not feasible. Of course, one can also have or set more relaxed deadlines, which still
nevertheless is based on an assumption of the number of present flows and their target
rate. The deadline-aware mechanism, both centralized scheduler such as FastPass [159]
and decentralized such as D2TCP [195], must decide how to handle infeasible deadlines
as well as how to accommodate the non-deadline-aware traffic.

Priority scheme comparison takeaways: REFLEX makes use of probing to prevent
a flexible flow from being starved. It is in low priority as long as it cumulatively
receives the portion of fair share it requires. The potential benefit of REFLEX is (a)
workload dependent because it requires flexible flows to be starved to outperform
other prioritization schemes, and (b) objective dependent as it is useful only if it is
desirable in moment of high utilization to not fully prioritize regular flows.

2.5.3 Decision of partial delivery

In this section, we turn our focus to partial delivery. For flexible flows which permit
partial delivery, REFLEX makes the decision whether to not deliver part of data in the
same manner it drains the budget: through the difference between the actual rate and
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the fair share rate multiplied with aggressiveness factor α. Through going at low priority,
the algorithm permits other (regular) flows if present to reduce the budget and in turn
the portion of data delivered by the flexible flow. Unlike α, a flow actually immediately
starts with a budget with the flow size known in advance.

We showcase with a single flexible flow of 8 Gbit competing against a regular flow of the
same size. We vary the reliability factor r from 0 (no reliability guarantee) to 1 (complete
reliability guarantee). The results are shown in Fig. 2.6. The competitive period lasts
until the regular flow finishes. Up until around r = 0.6, the lower the reliability factor r
the less data of it is delivered (Fig. 2.6a), and thus simultaneously the faster the flexible
completes itself (blue line in Fig. 2.6b). Similarly, the regular flow is significantly sped
up as the flexible yields the bandwidth to it (orange line in Fig. 2.6b). The ability of the
flexible flow to degrade is limited by the bandwidth it achieves at low priority, which is
at most 10% of bandwidth in the current setting if there is competition, as well as the
bandwidth it achieves at high priority during the warmup and measure phases, which
is 50%. Once the regular flow finished, there is no competition, as such the flexible at
that moment will perform full delivery. For these reasons, at r < 0.6 there is no further
degradation of the flexible flow. At r = 0.0, the flexible flow completes 65%. The fastest
rate of the regular flow is similarly limited, to around 7.1 Gbit/s on average, which
corresponds to an FCT of 1.12 s – which we approximately observe in Fig. 2.6b with
6.9 Gbit/s and an FCT of 1.17 s.

Another interesting case is for when the regular flow would continue for the entire
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Figure 2.6: Results for a single flexible flow of different reliability factor r competing
with a single regular flow. The flexible flow discards data in order to speed-up the
regular flow.
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duration of the flexible flow. In that case, it would complete at a rate of 2.5 Gbit/s and
drain budget at a rate of 2.3 Gbit/s. As such it would finish after 1.66 s with a completion
percentage of around 52%, which means that reducing r beyond 0.52 would not yield
any speed-up or further partial delivery.

Partial delivery takeaways: REFLEX trades off data loss proportional to its reduced
rate over time. Only if there is competition will it complete partially. The amount it
can discard is determined by parameter r as well as the probing parameterization:
the longer the exploit phase, the more data it can potentially discard.

2.5.4 Challenge of probing

The probing mechanism is parameterized by the interval duration Tint and the balance
between phases ( Dwarmup : Dmeasure : Dexploit ). These probing parameters impact (a)
the maximum possible speed-up REFLEX can fundamentally offer, and (b) the ability to
fulfill its guarantees.

Interval granularity ( Tint ). We set out to have Tint be the minimum interval needed to
acquire a measurement of the fair share rate. As such, it is desirable for it to be at least
one full RTT (including queueing delay), such that its measurement captures at least
a full in-flight congestion window. Likely, several RTTs are required for a consistently
accurate fair share estimate. In our simulated network, the RTT over a single link is in the
order of several microseconds when empty, and 100s of microseconds when queues are
filled. To investigate this granularity, we perform Case 1 from §2.5.2 for three different
Tint: 1 ms, 2 ms, 5 ms, and 10 ms. For each parameterization, we plot the Rfair which
was found during the period of competition between approximately the 1.95 s and 2.4 s
timestamps in Fig. 2.7. At Tint = 1 ms, the estimate is considerably lower than the actual
fair share rate of half. This is caused by the congestion control protocol taking time to
converge. At a Tint of 2 ms, 5 ms and 10 ms, the fair share rate is correctly maintained
around 50% of the line rate. As a new flow starts exactly at T = 2 s, the initial estimate
is a bit higher as the flows take time to balance their congestion window especially with
slow start. There is a fine balance between the interval duration and the responsiveness
of REFLEX: the lower the interval duration, the quicker a flow can decide if it can become
flexible, as well the more recent and thus accurate it is. However, if it fails to converge
and obtain an accurate measurement, the fair share estimate will be inaccurate and lead
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Figure 2.7: Fair share estimated rates for Case 1 for different interval duration. A too
low interval duration leads to too low (or incorrect) fair share estimates.

to guarantee violations. As a balance between these two effects, we set the interval
duration to Tint = 5 ms as default. It is important to note that in settings where RTTs are
higher, convergence rates will similarly be slower, as such in such networks the interval
would need to be higher. Conversely, it could be set lower in networks with even lower
latency (and higher throughput).

Phase balance ( Dwarmup : Dmeasure : Dexploit ). The ratio between the phases has a
profound impact on the speed-up that REFLEX can deliver, as only during the exploit
phase can other flows be sped up. We have earlier set the interval duration Tint to be
high enough to achieve a good enough estimate, and low enough to not cause outdated
estimates by itself. With this in consideration, we set both the warmup Dwarmup and
Dmeasure to be 1 in the phase balance. Thus, only the configuration of Dexploit remains:
the lower, the fresher the fair share estimate is, and the higher, the more speed-up a
flexible flow can provide. The speed-up is due to the base proportion of exploit phase
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Figure 2.10: Calculation for two flow competing, one regular and one flexible. The
longer the exploit phase, the larger portion if it time it can use to speed up other
flows. The limits are determined by the time spent in warmup and measure phases
(1:1), as well as the underlying priority scheme (which is 9-1 weighted priority in our
experiments).

(as is depicted in Fig. 2.10a), as well as the probability of a (short) flow starting and
completing wholly in the exploit phase. To showcase the latter, we run 1 long flexible
flow with α = 0.9 (which is active the entire duration) and short regular flows of 100 kB
at a Poisson arrival rate of 1000 flows/s for 5 s with 1 s experiment warmup and 1 s
cooldown. We vary Dexploit ∈ [1, 2, ..., 10].
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We show in Fig. 2.8 the FCT of the regular flows as we increase the length of the exploit
phase. The longer the exploit phase, the better higher percentiles perform. This is as
expected: for example at Dexploit = 3, approximately 60% of the time the flexible flow
can operate at low priority as the remainder it spends on (preparing) estimation of the
fair share. As such, it is especially effective for the median. A longer exploit phase in
general improves even the percentiles which fall out of it, as flows finish quicker thus
lessening chance of competition, as well as it reduces the frequency at which the queue
size changes suddenly due to the flexible flow switching priorities. However, conversely,
it increases how much budget must be accumulated as well as increases the lower flow
size bound of flows that can react. We plot this need for accumulation in Fig. 2.9. The
exploit phase duration influences the amount of fraction of fair share that can be spent
as well, which is shown in Fig. 2.10a and 2.10b. Based on these various tradeoff, we
set Dexploit to 3 by default. This enables REFLEX in our experiments to spend 48% of its
fair share in a two-flow competition (Fig. 2.10a) thus providing benefit for α and r that
are greater than or equal to 0.6 (Fig. 2.10b). This parameter value provides a positive
impact on the mean, median and the higher percentiles as is shown in Fig. 2.8. REFLEX

with Dexploit = 3 is able to accumulate enough budget for α = 0.9 in 175 ms (Fig.2.9).
By adding on a cycle (25 ms) for accumulated budget to be spent, we set our flexible
flow size in the larger experiments to last 200 ms at perfect line rate (10 Gbit/s) which
equates to 250 MB.

The fair share estimate operates at a set granularity, which is based on the convergence
rate of the congestion control protocol given the network conditions (in particular,
bandwidth and latency). As a first consequence, flows that are potentially flexible but
are too short are unable to achieve estimates before finishing. A second consequence
is that frequent short flows, which by definition do not have time to fully compete or
convergence before completing, will proportionally reduce the fair share estimated by
a long flexible flow. This is demonstrated most clearly in Fig. 2.11, which plots for the
Dexploit = 3 the achieved rate and the fair share estimate – in the periods where it is
low priority, it still experiences the fair share estimate, as such not resulting in budget
reduction

Convergence dependency. We show the convergence behavior of REFLEX by starting
a long flexible flow every 200 ms for 4 seconds. The REFLEX convergence ability
is dependent on ability of the underlying transport protocol (in this case, DCTCP)
to converge when changing queue. We observe the achieved rates as well as their
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Figure 2.11: Achieved rate and fair share estimate for Dexploit = 3. Due to the arrival of
many short flows, the achieved rate at low priority is the same as at high priority, and
as such the estimate is as well.
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Figure 2.12: Actual rate and fair share estimate for the scenario over a single link
in which flexible flows arrive every 200 ms for 4 seconds. As the number of flows
increases, the variation of the fair rate estimate increases.

estimation of the fair rate. In the presence of many flows, arriving flows are able to
achieve a rate similar to their fair share rate. However, at larger number of flows (in
particular, beyond 10 flows at T = 2 s), there is increased variance and fairness is more
difficult to achieve (depicted in Fig. 2.12a). This also reflects in the fair share rate estimate,
which exhibits similarly exhibits variation. Although the estimate hovers around the
expectation (see Fig. 2.12b), this will result in excessive draining (in case of a too high
estimate) or build-up (in case of a too low estimate) of the budget. The ability of REFLEX
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to upholds its guarantees is tied to the ability to estimate fair share and thus the ability
to quickly converge.

Probing parameterization takeaways: The interval duration must be long enough
for the flows to converge and achieve an accurate fair share estimate. This depends
on both the throughput as well as latency of the network. The finer grained the
interval duration and the shorter the exploit phase, the less time is required for a
flexible flow to accumulate enough budget to go at low priority. The longer the
exploit phase, the more budget can be spent and as such the more regular flows can
be sped up, however the less recent its fair share estimate is.

2.5.5 Utility of increased flexibility

Beyond the configuration of probing, the potential improvement in regular flow per-
formance that is achievable with REFLEX is determined by its parameters, namely α

and r. We consider a single ToR network with 20 servers underneath, connected by
10 Gbit/s links. The large flexible flows are set to 250 MB, which is the smallest flow size
for the chosen REFLEX parameterization for flexibility to provide benefit, as explained
in §2.5.4. This size is both considered a large flow for data centers [6, 7] as well as in the
order of magnitude of medium-sized ML models such as ResNet [84, 212]. As [8], we
make use of Poisson arrival of flows which achieves a target average utilization while
also providing varying low and high utilization of the network (e.g., also described
as microbursts [217]). In the workloads, we aim for 40% average utilization, which is
higher than the 25% indicated by [182] as yielding increased drop rate. Half of the target
utilization we set to come from regular flows, and the other half from flexible flows. It is
thus representing a period of higher than usual utilization in which there is significant
probability of flow competition. The 250 MB flexible flows arrive at an average Poisson
arrival rate of 20 flows per second, thus providing on average utilization of 20%.

The experiment is run for 16 s (1 s warm-up, 10 s measure, 5 s cool-down) and is repeated
three times with different random seeds for its workload generation. In the figures
the mean values are plotted with errors bars representing minimum and maximum
across the three repetitions. We run REFLEX with full reliability (r = 1) but a varying
aggressiveness factor α ∈ [0, 0.1, ..., 1], as well as with reduced reliability (r ∈ [0, 0.1, ..., 1])
but fair share aggressiveness (α = 1). For comparison, we additionally run the baseline
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strategy without prioritization and the fixed 9-1 weighted prioritization. We consider
three workloads for the regular flows.

Workload 1: large flow competition. In this first workload, the regular flows are
similarly large (250 MB) and arrive at the same Poisson arrival rate of 20 flows per
second. This achieves a utilization of around 40%. The resulting mean and 90/99th %-
tile FCT for both regular and flexible flows are shown in Fig. 2.13. Without prioritization,
no flows receive special priority, as such the mean FCT of regular flows (460 ms) and
flexible flows (465 ms) as well as the 99th %-tile (respectively 1215 ms and 1227 ms) are
similar. With the 9-1 weighted prioritization, flexible flows are degraded significantly
(speed-up mean: 0.80×, 99th: 0.67×) to accelerate the regular flows (mean: 1.35×, 99th:
1.64×). REFLEX due to the probing phases is unable to provide as much speed-up as
weighted priority. However, with both reduced reliability and reduced aggressiveness
yields a speed-up for regular flows. At α or r less than 0.5, REFLEX does not yield much
additional speed-up as with the network load it is able to consistently be at low priority
during exploitation phases. This is in line with prior parameterization observations in
§2.5.4. At α = 0.8, REFLEX achieves a mean FCT of 513 ms for flexible flows (speed-up:
0.91×) and 441 ms for regular flows (speed-up: 1.04×), with 99th %-tiles of 1390 ms and
1178 ms respectively (speed-ups: 0.88× and 1.04×). In terms of achievable speed-up, the
9-1 weighted prioritization yields significantly more which comes at the cost of being
worse for the flexible flows.

We next investigate the ability of REFLEX to uphold its guarantees by using the FCT
for each flow in the baseline without prioritization. We observe how much the effect of
going at low priority either due to REFLEX or due to weighted prioritization. We plot the
CDF of the FCT and speed-up for both REFLEX at α = 0.8 and 9-1 weighted prioritization
for workload 1 in Fig. 2.14. As noted earlier in §2.2.2, in multi-hop networks a portion
of flows will inevitably experience slowdown even if they remain at high priority. This
is shown in Fig. 2.14a, where a small tail of around 24% experience a worse FCT for
the fixed weighted prioritization scheme – a tail is observed for REFLEX as well of 45%.
Weighted prioritization causes a portion of the flexible flows to be starved, which is
shown by the long tail in Fig. 2.14d. In contrast, REFLEX does not exhibit such a long tail,
which however does go at the cost of significantly less speed-up of regular flows as is
shown in Fig. 2.14a. REFLEX guarantees are regarding the fair share rate, not achieving a
particular FCT or rate. Nevertheless, it is interesting as a proxy to observe how many of
the flexible flows experience a speed-up of less than 0.8 in Fig. 2.14b: around 14.5% has
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Figure 2.13: Workload 1: large flow competition. Speed-up for the mean and 90th/99th
%-tile (higher speed-up is better). REFLEX provides a tradeoff between no and full
prioritization, configurable by α and r.

a speed-up less than 0.8. In contrast, the fixed weighted prioritization has 32.5% with a
speed-up less than 0.8. The cause why REFLEX is unable to uphold a speed-up of 0.8 is
(a) fundamental, as the fair share is interdependent as such a flow going high does not
guarantee an Ractual greater than the fair share, and (b) practical due to inaccuracies in
measurements and the dependency on fast convergence.

Takeaways from workloads with large regular flows: For large flows competing,
REFLEX provides a tradeoff between prioritizing the flexible flows and regular flows.
Due to its efforts to maintain the guarantees of flexible flows, it provides less speed-
up than the fixed weighted prioritization scheme. Its ability to enforce guarantees is
influenced by the flow fair share interdependence, measurement inaccuracies and
dependency on convergence.

Workload 2: many small flows. In this second workload, we run small regular flows of
100 kB at an Poisson arrival rate of 5000 flows/s. This similarly achieves a utilization of
around 40%. This setup mimics a scenario where an α-flexible workload sending a small
number of large messages is colocated with a latency-sensitive workload with a large
number of short messages, e.g., ML training colocated with Web search. The resulting
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Figure 2.14: Workload 1: large flow competition. For one repetition, the distribution
of FCT and corresponding speed-up relative to baseline of equal priority. REFLEX
limits the slow-down of flexible flows as it strives to uphold its guarantees at the cost
of achieving less speed-up for regular flows.

mean and 99th %-tile FCT for both regular and flexible flows are shown in Fig. 2.15. The
9-1 fixed weighted prioritization achieves a large speed-up in both the mean FCT (2.10×)
and the 99th FCT (6.82×). Even for the flexible flows a speed-up is achieved in both
the mean and 99th of around 1.04×. By separating the short flows from the large flows,
queueing is significantly improved, and both performed better. For REFLEX, the probing
has significant impact on the speed-up, as queues are particularly slowing for small
flows. As a consequence, REFLEX similarly achieves a lesser speed-up, for example at
α = 0.8 a speedup of 1.19× in the mean and 1.25× in the 99th %-tile is achieved. In
the 99th %-tile of the short regular flows (Fig. 2.15c), REFLEX experiences significant
amount of variance likely caused by the probing’s shifting of queues – even in some
cases performing worse than the baseline. The flexible flows are affected with a mean
speed-up of 0.99× in the mean and 0.95× in the 99th percentile. For fixed prioritization,
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Figure 2.15: Workload 2: many small flows. REFLEX is able to provide speed-up to
the short flows, configurable by α and r, however the fixed weighted priority offers
significantly more speed-up especially at higher percentiles.

the flexible mean speed-up was 1.04× and 1.04× at the 99th – actually providing a slight
speed-up. Our algorithm had 1.2% of flexible flows have a speed-up worse than 0.8×,
versus 0.2% for fixed prioritization. Because the many short flows finish in less than the
probing phase duration, they become part of the fair share estimate and as such their
continuously renewed presence yields little drain of budget. Thus, the point at which
reducing α or r further is higher (around 0.7) than for the previous workload (around
0.5). In this workload where many short flows arrive, weighted prioritization yields a
better speed-up in FCT for regular flows, while even resulting in a small improvement
in flexible flow performance.

Takeaways from workload with many small regular flows: Flexible flows must be
of relatively large size, first accrue budget to be able to go at lower priority, and can
only be at lower priority for limited time due to probing. Short regular flows finish
in the order of 10s or 100s of microseconds, ideally completing only a few round-
trips before completing. As such, they are heavily impacted when queued behind
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large flows or when receiving congestion signals such as reorder, loss and explicit
notifications. REFLEX by frequently switching queues both incurs additional reorder,
as well as the instantaneous move of large queues. This particularly negatively
impacts the highest percentiles, which are especially important for short flows.
Fixed prioritization schemes do not have these effects as flows do not change queue
over their lifetime, and as such perform better for this workload.

Workload 3: WS flows. As a continuation of the second workload, we now use the Web
Search flow size distribution of pFabric [8] and DCTCP [6] which consists of flow sizes
varying between 4 kB and 30 MB, with a majority of its flows under 100 kB. The mean
flow size is 1.7 MB, as such to target 20% utilization we configure a Poisson arrival rate of
2921 flows/s. Similar to [7], we separate the statistics of regular flows into four categories
of tiny (0, 10 kB], small (10 kB, 100 kB], medium (100 kB, 10 MB], and large (10 MB,
∞]. The results are shown in Fig. 2.16 and Fig. 2.17. We use the 99th percentile as key
metric for the tiny and small flows. REFLEX performs especially not well for the tiny and
small flows (Fig. 2.16b and Fig. 2.16c), in which it experiences both slower FCT and large
variance at lower α. For medium and large flows it does yield speed-up although not as
much as fixed weighted prioritization (Fig. 2.16d, Fig. 2.16e, Fig. 2.16f). Flexible flows
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Figure 2.16: Workload 3: regular flows.
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Figure 2.17: Workload 3: flexible flows.

are slowed down to bring this speed-up to the regular flows (Fig. 2.17a and Fig. 2.17b).
Across all flow size categories, reduced reliability performs well as its reduced delivery
reduces general utilization of the network. The fraction of the flows actually delivered
before being completed does not exceed the reliability factor r (by design), and lowering
the r beyond 0.6 does not yield further reduced delivery as it cannot drain the budget
due to the phase balance of 1:1:3 (as explained in §2.5.3). At α = 0.8, REFLEX had 1.7% of
flexible flows experience a speed-up worse than 0.8× versus 2.2% for fixed prioritization.
For the same configuration, REFLEX achieved across all regular flow size categories
significantly less speed-up as well, with 1.00×, 1.11×, 1.33× and 1.44× (REFLEX) versus
1.07×, 1.78×, 2.02× and 2.53× (weighted prioritization) for the 99th %-tile FCT speed-up
of regular tiny, small, medium and large flows respectively. For Workload 3 as for
Workload 2, the fixed prioritization scheme provided better speed-up across the regular
flows at less slow-down of the flexible flows.

Takeaways from WS workload: Confronted by a mix of small and large regular
flows, REFLEX mostly provides benefit to the relatively large regular flows. The
frequent changing of queues of REFLEX combined with the presence of the other
larger regular flows led to worse flow completion times of small flows with in-
creased variance at low alpha values. REFLEX performed less well than the fixed
prioritization scheme for such workloads in those regular flow size categories while
not providing better guarantees for the flexible flows.
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2.6 Discussion & future work

REFLEX exposes degradation primitives to applications, thus substantially changing an
application-network interface that has remained largely stable for three decades. This
new approach raises several threads for further investigation.

Customizing transport: We attempted to minimally change the current network stack to
add support for bounded degradation. As a result, our approach inherits the limitations
of today’s transport. TCP (and its derivatives) are well known to not always converge
to fair-share bandwidth, exhibiting various types of divergences from it, e.g., for short
flows and flows with different network round-trip times. In practice, our bounded
deprioritization guarantee thus is not strict versus the actual fair-share of a flow, but
only with respect to what today’s transport could achieve. There would thus be value
in considering what a clean-slate approach to supporting bounded degradation might
look like, and then seeking a suitable pragmatic middle ground between that and our
minimal changes. For instance, in a data center setting, it may even be possible to
estimate fair-share bandwidth quickly [101, 180, 221]. This would greatly enhance our
bounded deprioritization’s performance.

Incentivizing applications: Clearly, unless there are appropriate incentives, applications
will not ask for degraded service. The simplest incentive in a cloud setting might be cost,
i.e., offering slightly cheaper network data transmission for applications in proportion to
their accepted service degradation. There is precedent for similar price differentiation for
cloud storage offerings with different service guarantees, e.g., for long-term storage [26].

Malicious behavior: Malicious applications could potentially degrade the performance
of flexible traffic. Consider an application that splits its large regular flows into many
small flows. This can distort the fair-share estimate for flexible traffic, leading it to send
at a lower rate. However, this is a problem that exists in today’s network stack already:
it represents a fundamental limitation of flow fairness, as Bob Briscoe argued [36].
Potential solutions are the same as those that apply to today’s transport: instead of
flow-fairness enforced at the granularity of transport flows, impose application-level
fair sharing using network-level mechanisms.

Coflow support: REFLEX’s primitives apply to individual flows. However, for many
applications a “coflow” abstraction of their network traffic is more appropriate, whereby
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their performance depends on a collection of flows finishing [42]. Extending our primi-
tives to such coflows could potentially increase their benefit, as the degradations could
be used more flexibly across large flow collectives instead of in a more restricted manner
at a flow granularity. However, extending REFLEX in this manner will require substantial
effort, as it implies that the coflow traffic coflow-wide performance rather than local
tracking at each flow. Exploring this is thus left to future work.

Other dimensions of service degradation: While we have only explored bounded loss
and bounded deprioritization as yet, there may be additional dimensions of degradation
worth investigation. One such example is nearly-in-order packet delivery. Instead of
TCP’s fully ordered delivery, are there ways of benefiting from most data being delivered
in order? What’s the right framing for a bound on such nearly ordered delivery, and
how might be exploit it to benefit other traffic? There is likely some potential in this
due to the multipath nature of data center topologies: if some traffic can tolerate nearly-
ordered delivery, this traffic could potentially be used for load balancing by suitably
packet spraying it, while traffic that needs fully ordered delivery still uses traditional
flow-affinity primitives like ECMP-per-flow and can incur link utilization imbalance.
However, given the availability of flowlet switching [196], it is unclear how much
additional value adding such a primitive brings.

2.7 Related work

In our discussion on the need for new primitives (§2.1), we already contrast our work
against standard transport protocols like TCP, UDP, and LEDBAT, as well as work
on prioritization and deadline-awareness. Besides these primitives, there is also rich
literature on differentiated quality of service [25, 169, 199], which also does not offer
guarantees to degraded traffic.

Parallel work available as an online manuscript [129] describes ATP, which provides
partial delivery but with the goal of aggressively finishing lossy-flows even faster, draw-
ing on the rationale of approximate computing. Unlike ATP, our work is targeted at
workloads that instead of aggressively competing for the network, cede ground to time-
critical traffic. ATP has loss-tolerant flows behave aggressively which leads to partial
delivery through actual packets being lost. In contrast, our approach determines partial
delivery based on rate loss relative to the fair share. Further, ATP’s complex design
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combines packet spraying, separately configured queue sizes for ATP and non-ATP
traffic, and a new rate controller. In contrast, REFLEX exploits existing primitives with
small changes to how applications transmit data. ATP also does not address bounded
deprioritization.

Recent work [206] explored speeding up ML training tasks at the tail by not retrans-
mitting packets that take a long time to be detected as lost, e.g., after a retransmission
timeout. This is different from our approach of actively degrading service quality for
certain workloads to benefit more critical traffic.

There is extensive work on adaptive bitrate video streaming [133, 209], whereby the
video player adjusts its playback quality to network conditions. Note that in this case,
application-level quality degradation is a built-in primitive that is tolerated due to the
real-time nature of the application: the only alternative to reducing video quality is to
suffer pauses in streaming. The applications we consider do not have such real-time
constraints and do not accept application-level quality degradation. Thus, the design
goals of REFLEX and its implementation share little in common with adaptive video.

The area of streaming analytics has also generated work studying how to best adapt the
streamed data to network bandwidth fluctuations [164, 215]. This work takes available
network bandwidth as a given, and attempts to find the most suitable way of degrading
the streaming data such that the analytics task consuming it suffers the least possible im-
pairment. However, our goals are different: we seek to allow certain flexible workloads
to compete less aggressively for network resources by dropping or deprioritizing their
traffic. These different goals lead to different design decisions: the streaming analytics
work focuses on minimizing application-level degradation, given bandwidth changes,
while REFLEX takes application goals as given in terms of degradation bounds, and
adapts network-level behavior.

There is also work on approximate network protocols in different contexts, e.g., SAP [165]
allows applications to accept partially damaged network data that would otherwise be
thrown out by integrity checks like checksum failure. CoAP [181] is a UDP-extension
that allows tunable tolerance to network failures in high error rate environments. While
philosophically similar, these efforts share little in common with REFLEX in its use cases,
the bounded degradations it allows, and its design to enforce guarantees.

50



2.8. Summary

2.8 Summary

We make the case that emerging workloads present opportunities for superior net-
work multiplexing by being tolerant of degraded network service. However, to ensure
that such applications still get satisfactory performance instead of being excessively
penalized for being tolerant, we should offer primitives for bounded degradation. We
explore two dimensions of such bounded degradation: guaranteed partial delivery and
bounded deprioritization. We show that unlike the no-guarantees degradation provided
by traditional networking approaches like unreliable transport and various types of
prioritization primitives, it is possible to implement bounded degradation to achieve
both: (a) improved performance for traffic with strict network service requirements; and
(b) assurances that tolerant traffic meets its specified reduced performance requirements.

However, there are practical considerations on (a) the mechanism to actually achieve
benefit, and (b) how to achieve awareness of the baseline against which the deteriora-
tion is defined. These practical considerations both limit the maximum performance
improvement that can be achieved, as well as the ability to fulfill meaningful guarantees.
In our work, the continuous probing, frequent convergence of flows and the switching
of queues by flows were those practical considerations which impacted performance
and guarantees. The two primitives discussed in this chapter are (1) workload dependent
because they require flexible flows to be starved to outperform other prioritization
schemes, and (2) objective dependent as they are useful only if it is desirable in moments
of high utilization to not fully prioritize regular flows.

By taking first steps in framing bounded degradation for networking, our work opens
up several interesting directions worthy of future exploration, including (a) how faster-
converging transport can improve the performance of bounded deprioritization; (b)
how one might assess and exploit the stability of the workload distribution to configure
probing appropriately; (c) in what other dimensions, e.g., nearly in-order delivery, is
bounded degradation potentially useful; and (d) how to incentivize good use of bounded
degradation for applications that can tolerate it.
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3
C H A R A C T E R I Z I N G A N D

M I T I G AT I N G P R O G R A M M A B L E

I N - N E T W O R K A DV E R S A R I E S

Computer networks are a key infrastructure upon which systems rely for communication
to fulfill their function. The central role network infrastructure plays unfortunately has
seen it become the target of malicious actors from a variety of attack vectors. These
attacks impact large quantities of thousands of switches and span across many entities
including ISPs and enterprises [103, 148, 214], and data centers [124]. Vulnerabilities in
network devices are frequently reported [44], in which critical vulnerabilities in both
management software [47] and the switch software itself [46] are disclosed. For these
reasons, beyond necessary measures such as perimeter defense and hardening devices,
operators should examine the case in which an attack does actually manage to fully
take over network switches (e.g., [146], see §1.2.2 for the full quote). There is a growing
concern especially regarding espionage and denial of service, however there is another
type of threat which we should proactively consider in this scenario: one in which an
attacker rather than espionage or outright denial of service, instead makes use of the
available programmability to surreptitiously degrade performance while preventing or
impeding diagnosis.

In this chapter, we frame the notion of UNDERRADAR attacks, in which rather than
espionage or complete disruption, the aim is to achieve maximum possible degradation
of network service, while preventing quick diagnosis and countermeasures by the
network operator. We set out to model the role programmable network devices play
within this notion. We examine how it expands the capabilities of attackers on one side
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as in particular it increases their targeting ability, and on the other side how it impacts
existing network monitoring solutions as well how it can be used to improved their
detection and mitigation ability. We formulate and evaluate UNDERRADAR attacks
targeted at network-, transport-, and application-level. Unless detected and mitigated,
these attacks would result in the degradation of applications. We find that existing
network monitoring systems have difficulty detecting such programmable attacks,
which stems from two insights. Firstly, only a very small portion of packets need to be
targeted, at transport-level for instance handshake packets and at application-level due
to interdependence of flows for the success of the entire “coflow” [42]. Secondly, the
capabilities which enable programmable switches and routers to monitor the network in
detail can similarly be used by an adversary to specifically avoid detection. Techniques
such as impeding classification of key packets through encryption and obfuscation, and
application-aware network monitoring are especially promising to facilitate detection
and mitigation.

Chapter outline. In this chapter, we first outline the attacker and operator model in §3.1,
in which we characterize their knowledge and capabilities. Second, we characterize UN-
DERRADAR attacks on the transport layer in §3.2. Third, we characterize UNDERRADAR

attacks which are application-aware and as such are aiming to target traffic specifically
critical to application performance in §3.3. Fourth, we briefly describe UNDERRADAR

targeting towards the network layer and monitoring system in §3.4. Fifth, we look into
the ways to mitigate UNDERRADAR attacks in §3.5. Sixth, we look into the related work
in §3.6. Finally, we conclude the chapter with a brief summary in §3.7.

Contributions. Text and figures from the following publication were included in this
chapter and its corresponding introduction and conclusion:

• Simon Kassing, Hussain Abbas, Laurent Vanbever, and Ankit Singla. Order P4-66:
Characterizing and mitigating surreptitious programmable network device exploitation.
arXiv:2103.16437, 2021. [105]

Notices concerning differentiation of author contributions are made where applicable.
In particular, §3.4 references and briefly describes findings made by Hussain Abbas in
his Master’s thesis [1] in the context of this project.
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3.1 Modeling attackers and operators

We start with characterizing both the attacker and the network operator, which forms
the basis for our reasoning and examination of effective defenses. We model the goals,
knowledge and capabilities of the attacker in §3.1.1. We continue in §3.1.2 with describing
the same aspects for network operators, and describe the tools they have at their disposal
to identify and remove misbehaving devices.

3.1.1 Attacker model

The UNDERRADAR attacker wants to cause large and obvious degradation in application
performance, while making it difficult for the network operator to identify compromised
devices and perform diagnosis. More specifically, it makes use of programmability to
limit or tailor its interference to prevent network monitoring systems from detecting
and localizing its presence.

Operating environment. Networks at scale consists of hundreds if not thousands of
switches, cables and servers [182], over which massive amounts of network traffic is sent
at any point in time. Network monitoring systems are tasked with detecting problems
in these large scale networks and identify devices which misbehave, such that they
can be diagnosed and either fixed or replaced. The attacker would like to prevent the
operator from diagnosing that some network devices are misbehaving, leaving open
the possibility of external causes (e.g., application layer problems; or problems rooted
in external networks) for any performance problems experienced by users, tenants,
application owners, etc. This scenario is applicable to both the Internet context of
ISPs, as well as data centers or enterprise networks. The former is more difficult, as
application and network generally fall under different administrative domains. We make
the assumption that the attacker has gained control over one or more programmable
devices within a network. As discussed in §1.2.2, attackers often can and do take control
of network devices. With the likely future spread of programmable hardware, it is
reasonable (and important) to examine the setting where these compromised devices
are programmable.

Effect of programmability. Devices which have programmable data planes with P4 [34]
or equivalent capability are able to perform simple per packet operations at line rate.
These packet operations include matching packets, taking actions based on observed
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packet (header) data (including editing, dropping and rerouting, as well as generating
a limited amount of new packets), and read/write access to memory for stateful be-
havior. Although the amount of actions are limited as well as their complexity (e.g., no
loops, constant time complexity operations), past work has shown they are sufficient
for a broad range of applications, including key-value stores [99], in-network aggrega-
tion [172, 173] and network monitoring systems [126]. Unfortunately conversely, these
capabilities enable an attacker to target important packets and perform more complicated
(e.g., statistical or tailored) types of interference which together make UNDERRADAR

attacks potentially more difficult to diagnose than those conducted with traditional
compromised devices.

Effect of knowledge. The ability of an attacker is tightly coupled to its knowledge of the
network, as it enables them to identify important packets or flows, and perform tailored
actions. Certain characteristics are common knowledge, such as the high level operation
of TCP flows (see §3.2). However, other knowledge will be specific to the network,
including its present devices and the topology they form (see §3.4), its monitoring
system (see §3.4), and the applications which use it (see §3.3). Some of these can be
inferred by the attacker through the controlled devices, e.g., the topology through routing
state, or the network monitoring system by what information is logged or at what rate
packet samples are collected, etc. Moreover, beyond the most sophisticated operators,
relatively simple and standard monitoring systems tend to be ubiquitous. It imperative
to limit the knowledge known about the network as much as possible.

3.1.2 Operator model

The network operator wants to provide the best possible service for applications running
in or across their network. They want to detect when the network is not performing as
expected, and if so, to identify which devices are responsible, and fix or replace them.
Operators with different capabilities may draw from a range of monitoring and diagnosis
methods. There is a large body of work on detecting faulty devices and anomalous
network behavior, ranging from the simplest sampling and probing techniques to more
recent work focused on detecting “gray” failures, where devices remain operational, but
at degraded functionality [90, 168]. Detecting even benign gray failures is tricky because
signals of such failure, such as packet loss and reduced bandwidth, are ambiguous,
and can also result from normal congestion. Detection thus often rests on statistically
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separating normal and abnormal behavior by processing large amounts of network
traces. We discuss below the categories of potential diagnosis approaches, and what
they are specifically useful for in general as well as their potential role in countering
UNDERRADAR attacks.

Coarse-grained sampling: Widely deployed monitoring systems are largely primitive.
For instance, ISPs commonly depend on sampling packets, typically at the rate of one in
thousands [160], using tools like NetFlow [49] and sFlow [156]. These (ubiquitous) tools
stand out in providing distribution-level information about network traffic, such as the
proportion of IPv4 vs. IPv6, or diurnal utilization patterns. However, such solutions
under-represent small flows, and can’t track packets through the network, making even
simple metrics like drop rate hard to infer. Thus, these are mostly ineffective to detect or
localize adverserial devices, albeit they do detect large changes in network traffic.

Targeted mirroring makes use of improvements in hardware (in particular, improved
programmability) to inspect and decide whether to mirror for every packet at line
rate [219], thus not having to rely on random sampling such as sFlow [156]. Mirroring
involves cutting the payload, and sending the header to a central collector for broader
analysis. EverFlow [219] mirrors TCP packets with important flags (including setup and
teardown) and protocol traffic (BGP, PFC, RDMA), and additionally allows operators to
set a debug bit on any packet for it to be mirrored. It is important however that only
a portion of traffic is mirrored, as else provisioning the network monitoring system
network will become prohibitively expensive. Targeted mirroring is useful to safeguard
the traffic it targets. In normal operation, it is effective at detecting a broad range of
network issues, including silent drops, black holes, load imbalance, unusually high
latency, routing loops and protocol bugs [219] as their negative effects are similarly
applied to the smaller portion of mirrored traffic. Targeted mirroring significantly
reduces the actions a programmable adversary can take to interfere, as for example
interference with TCP handshake packets can be easily diagnosed with Everflow. The
active component, which allows operators to set a debug bit on packets to explicitly
trace certain traffic, is only able to be used for diagnosis if the in-network programmable
adversary is not aware of the marks which indicate targeted mirroring.

Active probing is the continuous frequent sending of a small amount of probing traffic
between end hosts in order to detect network problems. Microsoft’s Pingmesh [76] is
one such system, and is able to successfully measure latency as well as estimate packet
drops through latency increases due to TCP probe retransmission. By combining the
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information collected for many end hosts pairs, Pingmesh is able to pinpoint if reduced
network performance (e.g., higher drop rates, increased latency) is local to a particular
rack, pod, data center or across all data centers – exact pinpointing subsequently is
performed through manual traceroutes. Other approaches such as source routing [75]
would obviate the latter, although requiring advanced knowledge of paths. For adverse-
rial devices to be diagnosed through active probing, they must be unable to distinguish
between normal traffic and probes.

Path-aware flow statistics systems collects statistics of all flows in the network while
being aware of their paths [23, 168]. These statistics can then be aggregated to pinpoint
switches and links that underperform – either in absolute or relatively compared to
others. The relative comparison is possible because load is expected to be uniformly
spread through mechanisms such as ECMP [23, 168]. Microsoft’s 007 [23] specifically
focuses on packet retransmissions, for which it triggers traceroutes to identify the path. It
maps these path observations to individual links, and applies a voting mechanism with
threshold to identify links which are exhibiting an outlying amount of drops. Facebook’s
FB-mon [168] instead collects TCP state statistics such as cwnd, ssthresh, srtt, retx and
select duration. FB-mon compares the distribution of these statistics for a link to the
aggregate distribution of links which should be experience similar load. If they differ
significantly, a link is marked as faulty. They succeed in differentiating from normal
congestion drops, anomalous drop rates as low as 0.05% [23] and 0.1% [168] in their
respective test environments. There are also other research proposals promising per-
packet or per-flow visibility [65, 126, 184]. We expect these to need similar thresholding
as discussed above to distinguish anomalous behavior from normal congestion. Such
systems, being explicitly aimed at finding partial or gray failures, are poised to be
significantly more effective against UNDERRADAR attackers, as they track all traffic
(unlike targeted mirroring or active probing).

Traffic validation explicitly focuses on detecting malicious devices [144, 145], by model-
ing the expected input-output behavior and queueing in the devices, and verifying that
traffic observations fit these models. These approaches are tailored to defend against
UNDERRADAR attackers, verifying that the behavior of compromised devices fits within
its purview, and explicitly comparing reports. However, it is unclear whether such
details can be captured for large modern devices, with high port counts, line rates, and
shared-buffers.

These different monitoring systems constitute important tools on expanding the range
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of interference that is detected as well as limiting the amount of degradation possible.
We expand more in later section §3.5 how they fit into an effective mitigation model.
First however, we highlight in §3.2 and §3.3 how the programmability that is at the
disposal of UNDERRADAR attackers makes it more challenging for the aforementioned
monitoring systems to detect them, as it significantly reduces the amount of interactions
required to degrade application performance. In addition, in §3.4 we briefly describe
the findings for the scenario in which the compromised devices work in consort or
specifically interfere with the path detection ability of monitoring systems in order to
cast blame on innocuous devices.

3.2 Transport layer targeting

Transport protocols make use of packets to transmit data between endpoints (the pay-
load) as well as information and metadata regarding the connection and the network
in which it operates. Depending on the state in which it finds itself (e.g., setup, conges-
tion state, data transmission progress, teardown), certain packets and their respective
content can be more important than others. In this section, we will focus on TCP as
our prototypical example, variants of which are the most widely deployed transport,
both in the wide area and within data centers. We identify two possible outcomes of
interference with TCP:

(a) Immediate error. TCP is designed to provide reliable data transfer which safeguards
data integrity. Generating new or editing existing packets with certain fields will result
in the data transfer to fail, e.g., handshake sequence number disagreement, causing
acknowledgment of data which has not yet been delivered, or sending early termination
(FIN) signals. The diagnosis of such interference is straightforward as it will result in
application errors which directly point at network service failure. In addition, some of
these, such as handshake packet interference, can be detected through targeted mirroring
approaches such as EverFlow [219].

(b) Performance degradation. Rather than directly causing failure, interference can
alternatively affect the underlying congestion control mechanism. This can happen by
enabling, editing or disabling TCP options, such as window scaling and timestamp, or
by affecting flow control parameters by changing the advertised receiver window size to
be small. Similarly, the signals the congestion control uses can be unnecessarily evoked
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by dropping, reordering or delaying packets (for delay-based congestion control), or
editing congestion markers such explicit congestion notifications (ECN). The editing
of options and parameters, can be diagnosed by comparing network logs to system
configurations, and highlighting any mismatches. For instance, EverFlow [219] could
be used to detect these types of attacks as it mirrors handshake packets, among others.
On the other hand, congestion signal interference such as induced loss, reordering,
delays and marking are more difficult to diagnose, as they occur occasionally inside the
network as well due to queueing and congestion. End-host monitoring can periodically
collect and aggregate flow characteristics such as loss [23], or TCP state such cwnd and
ssthresh [168]. These characteristics are then projected on the on-path network devices.
It is then decided if flows going over a certain network device are performing worse
than others to a certain degree of statistical significance. In a production environment
with many flows and noise, these methods cannot detect a single flow experiencing
bad performance over a particular link, but only that of a significant portion of flows.
Detection requires finely tuned monitoring and analysis which focuses on detecting
outliers as well as distribution changes as a whole.

There has been several past network security works that focus on performance degrada-
tion attacks, from both the vantage point of third party senders as well as misbehaving
receivers. [121] presents a low-rate attack in which a third party sender causes short
bursts of congestion timed exactly during retransmissions. [175] explores how a misbe-
having receiver can modify how it acknowledges packets, e.g., forcing the sender to ramp
up its sending rate faster by splitting each ACK into multiple ACKs for smaller byte
ranges. In-network adversaries can also conduct these attacks with minor modifications:
for [121] if on the path, it can directly drop packets rather than depending on approxi-
mate timing, and if not it could similarly cause such bursts. For [175], programmable
switches can parse TCP headers and generate packets (in this case, acknowledgements)
as necessary dependent on parsed values. However, the goals and capabilities of in-
network attacker differ, as due to their in-network vantage point in-network attackers
have direct access to the target traffic going over it, rather than depending on approxi-
mate timing [121] or only affecting senders for which it is the receiver [175]. It is thus
important for countermeasures to make packets as indistinguishable as possible from
another.

We demonstrate the performance degradation interference type by emulating a single TCP
connection between two hosts over a virtual P4 switch modeled with BMV2 [154] within
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Mininet [122, 142] based on [155]. The virtual machine has as operating system Ubuntu
16.04.4 LTS with Linux kernel 4.4.0-119-generic. We use the default configuration [127],
which has RTOmin set to 200 ms, RTOmax to 120 s and RTOinitial to 1 s. For each run we
perform five repetitions. We implement a P4 program for several variants of attacks
which repeatedly dropping key packets in a TCP connection (results are depicted in
Fig. 3.1 and 3.2):

• SYN drops: The P4 switch consistently drops SYN packets for the target flow.
Successive retrieves follow exponential-backoff until the maximum amount of
SYN retries (6) is reached, after which the connection timeout.

• Sequence drops: The P4 program arbitrarily selects a sequence number from a
target TCP flow, and repeatedly drops packets (retransmissions) with that sequence
number (in this experiment the 5000th). Exponential backoff is observed, until
the maximum amount of retries (15) is reached, after which the connection times
out. In this case, the maximum is reached at 18 drops due to initial packet (1), fast
re-transmits (3) and the retries (14).

• PSH drops: There is also a different vector in standard TCP implementations that
can be used for an attack similar to the one above storing the sequence number.
We observed that retransmitted packets are often marked with the PSH flag. In
this experiment after the 5000th packet, packets with the PSH flag are dropped.
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This is a slightly noisier signal than explicitly storing sequence numbers, but is
nearly as effective. This requires to store less state per flow.

• Many successive or random drops: For comparison, we also evaluate the effec-
tiveness of two more naive attacks, one where the attacker merely drops random
packets, and one where they drop a large number of consecutive packets. Random
drops are nearly ineffective. Dropping several consecutive packets (in this experi-
ment, starting at the 2000th) can indeed cause similar slowdown as more informed
strategies (as expected), but it requires a larger number of packets to be dropped
to achieve this, because a large number of packets are dropped that do not impact
retransmission behavior.

Our packet significance analysis as well as the experimental results highlight the impor-
tance of impeding the identification of key packets of transport protocols. Moreover,
in order for monitoring systems to detect this type of interference, it must operate at
fine granularity, match system parameters with observed values in packets, and detect
performance outliers as well as distribution shifts as a whole.

3.3 Application-aware targeting

In the same way that the ability to identify key packets must be thwarted (§3.2), the
identification of the importance of flows to the underlying application must similarly
be prevented. The reason for this is that if the attacker has knowledge of application
structure, the hampering of specific target flows rather than randomly can amplify
the effect of UNDERRADAR attack, making them application-aware. This prevention
is particularly important in settings with fine-grained monitoring, especially in data
centers, where it is challenging for an UNDERRADAR attacker to degrade large fractions
of flows without being detected by recent, highly sensitive monitoring systems [23, 168].

Many applications in such environments have a large dependency set, and slowing
communication between components can slow down the application. This means that
network flows are often part of a multi-flow application-level task: a “coflow” [42]. For
instance, MapReduce jobs result in data shuffles whereby the map tasks communicate
with the reduce tasks, and the job awaits the termination of the last reducer to finish
or to start the next iteration. Thus, the progress of compute tasks and the freeing of
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their resources necessitates that the last communication flows finish quickly. Similarly,
user-level responses in Web applications (e.g., search results) often use data requested
from hundreds [151] to thousands [95] of components in a “partition aggregate” man-
ner. Given that user-experience in terms of response time is critical to the application
providers’ revenue and reputation, it is desirable that such coflows (and hence, the last
flows within them) finish as quickly as possible.

The completion of such coflows being dependent on the last few straggler flows opens
up substantial opportunity for an attacker to degrade performance for a large number of
coflows while targeting only a small set of flows. An illustration of this effect is shown in
Fig. 3.3. Even if the attacker is constrained by advanced monitoring systems to only cause
a slowdown for less than 0.1% of flows, if each coflow comprises 1000 flows that depend
on the last finishing flow, fully 63% of coflows experience slowdown1. Thus, monitoring
systems in networks under such attacks may find that only an insignificant number of
flows are impacted, a situation largely indistinguishable from normal congestion. But at
the application layer, the large impact would be clearly visible. This is likely to cause a
wild goose chase into the myriad of other possible causes such as application software
bugs, misconfiguration, resource contention, or faulty hardware. The problem could be
exacerbated if the network operator and the application owner are different parties, as is
the case in popular cloud infrastructure providers with their customers.

How much the slowdown of constituent flows slows down coflows depends on applica-

1This effect is well-studied in prior work [52] in the context of failures; our contribution here is in
exploiting this natural characteristic of such systems from an attacker’s perspective.
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tion structure. For example, MapReduce has a hard barrier which causes the slowest
flow to determine the coflow completion time. On the other hand, a Web page could
potentially be partially returned and still be useful enough. As we shall see later, tech-
niques for straggler mitigation, such as request “hedging” [52], can further soften this
dependence, and weaken an attacker.

To illustrate the capabilities of an attacker in such a setting, we simplify the context to a
minimal example. Nevertheless, such application structures as modeled, are common in
use today.

Application model. We will assume we have n uni-directional coflows going through a
single switch, e.g., a top-of-rack switch which hosts the server responsible for user-level
jobs or queries. The failure of user-level requests ("coflows") is assumed to impact
revenue linearly. (This is likely to be a conservative assumption.) Even failures of small
fractions (1-5%) of user queries is disastrous: imagine Amazon’s customers experiencing
a 1% probability of experiencing a timeout (or missing thumbnails, etc.) on pages they
want to load.

Each coflow is modeled as a fan out of m requests to different backend servers going
over this switch; m = 500 is close to the 521 (average) reported by Facebook for building
a popular user-facing page [151], but Web search backends can involve m values in
thousands [95]. For simplicity, each request is assumed to be a single-packet UDP flow.
We vary the number F = {1, 2, 5, 10} of the m requests that have to fail for a coflow to
fail.

Hedging. With 500 requests and the failure of only one being enough for the coflow to
fail, i.e., m = 500 and F = 1, even a random drop rate of merely 0.01% will cause 4.9%

coflows to fail. This is already unacceptably high, so a request replication technique
is commonly used for such applications, called “hedging”. For each request sent out,
we sent out an additional redundant request, so that the replication factor, r = 2. Such
hedging’s use at Google, together with techniques that eliminate most of its overhead,
has been detailed in prior work [52]. Hedging is extremely effective in addressing
random drops, leading to a nearly 0% coflow failure rate, because both the original
query and its replica query must incur a random drop for the query (and the coflow) to
fail.

Misclassification model. To be effective, an attacker needs to be able to classify con-
stituent flows into their coflows, and thus track hedged flows. A request packet is
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(m = 500, F = 1, B = 0.01%).

identified by the tuple (idcoflow ∈ {1, ..., n}, idreq ∈ {1, ...,m}). The classification ability
of the attacker, who has obtained control of the switch, is modeled as a Bernoulli distri-
bution with pmc, the probability of misclassification. Thus, the attacker can successfully
map a request to its request and coflow identifiers with probability 1− pmc. Otherwise,
the desired observation of the real (idcoflow, idreq) is replaced by a uniform random pick.

Budget model. For illustration, we use an overall packet drop rate budget D = 0.01%,
which is lower than the detection threshold of state-of-the-art monitoring systems.
The total drop budget across all n coflows is then B = n · r · m · D packets. Without
hedging the budget is thus 0.05n and with hedging 0.1n. Per coflow, this translates (with
D = 0.01%, m = 500) to 0.05 or 0.1 packets allowed to be dropped on average. With
perfect knowledge about which flows belong to which coflows and which requests are
hedged versions of which others (i.e., matching request identifiers), we could fail 5% of
the coflows (with or without hedging) by dropping only 1 in 10000 packets (D = 0.01%).

What is the effect of misclassification? We vary the pmc ∈ [0, 1] with or without hedging,
assuming F = 1 request must fail to fail the entire coflow (shown in Fig. 3.4). Without
hedging, even random classification will cause coflows to fail (4.87%, σ = 0.05%) at
a nearly equal rate to perfect knowledge (5%, σ = 0). The small difference stems
from multiple requests from the same flow being dropped on occasion, leading to no
additional negative impact. With hedging, the reduced ability to classify requests causes
significantly fewer coflows to fail. With completely random loss (pmc = 1), zero coflows
failed in our tests, confirming analysis in previous work [52] showing the effectiveness
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of hedging against random loss. However, as the attacker becomes more capable, i.e., pmc

decreases, hedging becomes less effective; an attacker with 55% classification accuracy
(pmc = 0.45) can cause 1% of coflows to fail.

How vulnerable can the coflow be? We vary the pmc ∈ [0, 1] with hedging, for a range
of F = {1, 2, 5, 10} requests needing to be failed to fail the entire coflow (shown in Fig.
3.5). The more requests that must fail to fail the coflow, the less coflows will fail. This
is caused by the increased budget spent to fail the necessary amount of requests. By
increasing F , the amplification effect of the attack is reduced. Because F requests must
fail, it is necessary for the attacker to drop at least F hedged requests, which becomes
exponentially more difficult as the probability to classify correctly decreases linearly.
Typically it is not possible to make the coflow more or less vulnerable, as this is decided
by the application’s nature.

What is the effect of fan-out? We vary the pmc ∈ [0, 1] with hedging and F = 1, for a
range of m ∈ {250, 500, 1000, 2000} requests are sent (shown in Fig. 3.6). With a linear
decrease in fan-out, the available budget also decreases linearly. It is important to note
that for m = 250 in Fig. 3.6 is always higher than F = 2 in Fig. 3.5, as decrease in budget
is of linear effect, whereas the decreasing of F has an exponential effect as pmc increases.
Increasing the fan-out to large numbers but keeping the number of requests needed to
fail for the coflow to fail (F ) the same will result in merely giving additional budget for
the attacker.

What would a practical coflow attack need? Our model of coflow-based applications is
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not entirely realistic. First, it assumes there is only coflow related traffic. There can also
be non-coflow background traffic, but this can only help an attack focused on coflows, by
allowing the use of budget acquired from other traffic on the coflow attack, where this
budget is most useful. Second, the attacker is most effective when in control of a device
through which most or all requests for a coflow transit; in particular, with hedging,
the attacker needs to be able to see both the request and its replica. This is plausible,
for example, if the attacker gains control of the top-of-rack switch under which a user-
facing server resides that issues the many backend requests. Third, the attacker needs
to achieve reasonable accuracy in classifying packets. Past work [216] has shown that
heuristics using only the source and destination addresses and port numbers, and the
flow start time, can be effectively used to map flows to coflows with over 90% accuracy.
Identifying hedged requests is also plausible if packets are unencrypted, allowing at
least exact matches sent within a certain small time threshold of each other to be easily
identified, e.g., with the use of bloom filters in P4 switches. The attacker could compare
both entire packets, as well as only the payloads, in case the replicated queries are sent
to different servers, and thus have different headers. In the presence of encryption, the
attacker would need to rely on timing to identify hedged requests; this could also work
because a common approach is to simply retry after a short, fixed timeout.

3.4 Network layer and monitoring system as target

An additional evaluation was performed in the context of this work which examined
more closely how well the existing monitoring systems are able to detect UNDERRADAR

attacks and additionally investigates network-layer targeted attacks as well as several
additional transport-layer attacks [1]. As this analysis was conducted by co-author
Hussain Abbas, it is not directly included in this thesis. Additional information can be
found in the respective Master thesis [1] and our publication [105]. For completeness,
we briefly describe the key findings. As the network monitoring systems depend on
path information provided by interacting with the network (e.g., [23, 168]), it was found
that they could be misdirected to wrongly identify non-compromised devices as culprits.
The topological location of the compromised device can limit which other devices it can
cast blame on. Several additional other transport layer attacks including SYN flood, RST
tinker, ACK and drop, ECN tinker, and CWND tinker as well as coordinated incast were
experimentally evaluated. It was found that none of the monitoring systems as-is are
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able to effectively mitigated the attacks if their inherent analysis ability (in particular,
path identification) is interfered with.

3.5 Mitigation

Prevention is certainly better than cure, and to that end, standard best practices for
network security are certainly helpful. These include safeguarding against physical
intrusion [100], using responsible distribution of access and authorization, replacement
of default device credentials with strong, private credentials2, keeping device software
up to date, using a network intrusion detection system [32] etc. However, as is known
from past experience, from time to time, such measures will fail, especially in the face
of determined adversaries. At least some operators are thus considering the threat of
compromised devices even in facilities secured with state-of-the-art security measures
(e.g., Microsoft, as noted in §1.2.2). Thus, a defense-in-depth approach is warranted.
Based on our analysis of what enables an UNDERRADAR attacker to maximize damage,
we frame recommendations for mitigating such attacks.

3.5.1 Impede classification of key packets

The success of UNDERRADAR attacks is reliant on two factors: (a) the existence of packets
which are disproportionately valuable; and (b) the ability of new hardware to identify
and operate on such packets selectively.

If either of these two factors is absent, the impact of a UNDERRADAR attack reduces
drastically. Unfortunately, to some extent, both are fundamentally hard to entirely
remove – the first stems from application and transport structures that are hard to
change; and the second is also key to extracting the benefits of such devices, such as
in-network telemetry for debugging. We discuss in the following, countermeasures that
are increasingly limiting for both the attacker and (as an unfortunate side-effect) the
operator:

• Encrypt the payload: Access to the payload would restrict the application-layer
knowledge available to an attacker. For instance, directly identifying redundant
or hedged queries by matching payload hashes (§3.3) is no longer possible. The

2Sometimes, unfortunately, even industry leading vendors leave no possibility for this [46].
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attacker would have to resort to likely more inaccurate inferences based on meta-
characteristics (i.e., timing, size), and as we have seen, limiting the ability of an
attacker to classify packets in this way, sharply reduces the attack’s effectiveness.
This method also imposes minimal additional burden on the operator, at least in
the data center or enterprise context.

• Encrypt the transport header: By encrypting the transport header, selecting packets
based on seqno, PSH, and SYN flags is no longer possible (§3.2). Not having access
to the source and destination port numbers can also limit identification of coflows
(§3.3). However, such changes also limit the operator’s view; if the attacker cannot
identify retransmissions, the operator may no longer be able to do so either, and
thus not be able to characterize losses.

• Obfuscate timing and size: Both the workload (e.g., “partition aggregate” of §3.3)
and the transport protocol state machine can result in predictable sequences and
sizes of packets, both in-flow and across flows. By randomly varying timing (e.g.,
as proposed by [121] for RTOmin) and/or padding of packets, this predictability
can be reduced. However, this could potentially increase latency for services.

3.5.2 Application-aware network monitoring

As we have seen, in their default configuration, existing systems are not able to detect
UNDERRADAR attacks sufficiently. Pushing these systems for greater visibility, e.g., by
reducing the monitoring interval or increasing sensitivity would in fact limit an attacker,
but opens up the risk of more benign false positives as well. Ultimately, the network is a
noisy environment, with benign transient congestion, often due to microbursts [217],
and this noise limits how the extent to which carefully tuned malicious behavior can be
distinguished. A possible improvement is for network monitoring systems that depend
on path-aware flow statistics [23, 168] to not only consider comparison of distributions
to detect faulty links or devices, but also focus on identifying flows which exhibit
particularly unusual performance degradation. Additionally, the deployment of strategic
targeted packet mirroring [219] can be used to limit the types of possible interference.

The other challenge that current monitoring systems face is if the in-network adversary is
aware of their presence. Path discovery for instance (which lets such systems ultimately
pinpoint which links are faulty) in many approaches [23, 168, 219] itself relies on packet
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information which can be altered by the attacker if it is aware of the network monitoring
system. Similarly probes [76] or mirrored traffic [219] can become non-representative of
the performance of the real traffic if the adversary actively avoids interference with those.
These deficiencies are not because these systems are poorly designed – to the contrary,
these are the highest resolution approaches known, in many cases backed by theoretical
analysis, with substantial testing and deployment effort behind them. Rather, they are
focused on failures, and not as suited for detecting deliberately malicious activity. We
believe a promising approach to address the latter problem is to monitor directly the
attacker’s target: applications.

The UNDERRADAR attacker’s goal is to cause large and obvious deterioration in the per-
formance networked applications see. Unfortunately, this does not mean that bringing
these problems to light is easy. In most cases, the infrastructure will be run by a provider
(ISP or cloud data center) for users and application providers. Today, the latter have only
slow, manual means for reporting problems they experience. At least in some settings,
it would be possible to develop an API that lets applications automatically report their
experience of network services to the operator. For instance, an application can raise an
alarm to a cloud operator if its flow or coflow completion time changes substantially.
This approach can be viewed as an application of the end-to-end argument [171] – only
the application or tenant knows whether the network is working well.

There are also opportunities for the operator to fix the problem in a blackbox fashion:
does tunneling this client’s traffic (which could make an attacker’s targeting harder, or
with ECMP, automatically change paths) improve the metrics reported by the client?
Such an approach can, incidentally, also work against gray failures. Exploring this
possibility, including its potential benefit and its challenges in terms of implementation
and stability, is left to future work.

For ISPs, the problem is easier in some dimensions, and much harder in others. It’s
easier in the sense that the vulnerable coflow structure is largely absent, or manifests
with much smaller and less easily detectable coflows (e.g., different objects fetched
from different servers to compose a Web page). But it’s harder in the sense that an
ISP (with the exception of stub ISPs) typically has no direct interaction with most end
users. Although it is somewhat harder due to the absence of host capabilities, the ISP
however can focus on deploying more fine grained network monitoring at flow level
rather than merely coarse bandwidth statistics across aggregates. Similarly the approach
of evaluating multiple paths could be applied to find out if e.g., RTT or rate improves
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across flows. Most ideal would be the introduction of a feedback mechanism between
end user and ISP such that application performance can be provided, combined with
the possibility of source routing by end users to compare performance across different
paths.

3.6 Related work

We have already discussed recent work on detecting partial failures in §3.1.2. We thus
focus the following discussion on literature related to network attacks and their defenses.

Malicious routers: Prior work (e.g., [144, 145]) has analyzed scenarios in which a non-
partitioning subset of routers is malicious. This work suggest that each device self
report fingerprints of its input-output behavior to the other network devices. These
fingerprints are validated to detect inconsistencies. However, this work does not reason
about inherent uncertainty in the network (e.g., due to congestion or benign failures). It
is also unclear whether the model proposed could be translated to practice for today’s
high port-count, high line-rate devices.

Network anomaly detection: While there is a large body of work on anomaly detec-
tion [32], this chapter largely focuses on the attacks like denial of service, network
scans, the spread of viruses and worms, etc., rather than on detecting the performance
degradation of legitimate traffic by adversaries who attempt to make their impact as
indistinguishable from congestion as possible.

TCP attacks: Several attacks on TCP are well known, such as denial-of-service by
targeting TCP retransmissions [121], SYN floods that exhaust TCP connect slots [57],
and malicious receivers forcing altering the sender’s behavior [175]. Our work differs
from these attacks in: (a) its goal of making diagnosis hard by budgeting the attack such
that it avoids detection by state-of-the-art monitoring systems; (b) its use of in-network
programmable devices; and (c) amplifying the effects using application-layer structure.

Detecting on-path network misbehavior: There is also substantial work on detect-
ing which entity on a network path is misbehaving (e.g., Network Confessional [22]).
However, work in this direction also does not consider a careful attacker who drops or
modifies packets at a low enough rate to resemble normal congestive losses. Further,
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such an attacker, by modifying packet TTLs, can actually blame other on-path entities
for packet drops.

3.7 Summary

We bring awareness to the possibility of UNDERRADAR attacks, which attempt to cause
application performance degradation while remaining hard to diagnose through the use
of programmability. UNDERRADAR attackers tread a delicate balance between causing
service degradation and getting their compromised devices detected. These types of
attacks aim to minimize their amount of interference as well as tailor it to specific sce-
narios. We make recommendations towards mitigating these attacks. First and foremost,
we highlight the importance of impeding the classification of key packets through the
use of encryption and obfuscation, which should strongly diminish targeting ability.
Most effective network monitoring systems are those which continuously monitor all
real traffic rather than depending on probing traffic or selective mirroring. They should
be finely tuned to detect not only distribution shifts which indicate faulty links in their
pursuit to find gray failure, but also to identify outliers that could have been the result
of targeted interference. In particular, we note the importance of making network moni-
toring systems application-aware, such that any application performance degradation
can be directly diagnosed whether it is related to disproportionally degraded network
service.
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4
A N A LY S I S A N D S I M U L AT I O N

T O O L S F O R DY N A M I C L E O

N E T W O R K S

So far, we have focused on the modeling of computer networks, in both the context of
improving performance (Chapter 2) and monitoring to obviate performance degradation
in operation (Chapter 3). For the conventional static networks asserted in those chapters,
there exists a wide variety of tools available (e.g., [152]). In recent years, there has been
an emergent new type of computer networks which are set to see global large-scale
deployment [74, 132] for which there does not yet exist as extensive set of tooling: low
Earth orbit satellite networks. The networks these satellite form are poised to offer
Internet services on a global scale [79]. By operating at low orbit, these widely deployed
satellites are able to provide unprecedented coverage, latency and bandwidth [28, 186].
However, unlike their geosynchronous counterpart, low Earth orbit satellites move at
large velocity relative to the Earth’s surface, and consequently also exhibit dynamic
connectivity between one another [30]. The latter is especially impactful for the case
of inter-satellite links [30, 79, 116], which form a true network of satellites rather than
treating them purely individually as relays between ground stations [81].

Computer network research requires tools which are able to model this highly dynamic
network. In particular, the research community needs a tool to better model routing,
traffic engineering and congestion control [28]. In this chapter, we describe HYPATIA,
an analysis, visualization and packet-level simulation framework which makes use
of the network simulator ns-3 [152]. We show through application to three different
constellations (namely, SpaceX Starlink [188], Amazon Kuiper [119], and Telesat [190])
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the usability and scalability of HYPATIA, and its ability to provide valuable insights
into congestion control and traffic engineering in LEO satellite networks. HYPATIA

was developed with the aspiration to contribute to increased understanding, improved
modeling, better use and easier development of LEO satellite networks.

Chapter outline. In this chapter, we first describe the background and motivation in §4.1.
Second, we continue with a description of HYPATIA’s architecture in §4.2. Third, we
explain the experimental setup in §4.3. Next, in §4.4 we evaluate the value of HYPATIA

by demonstrating the utility of both the packet-level simulation and standard flow- and
path-level analysis it enables. Finally, we provide a summary in §4.5.

Contributions. Text and figures from the following publication were included in this
chapter and its corresponding introduction and conclusion:

• Simon Kassing*, Debopam Bhattacherjee*, André Baptista Águas, Jens Eirik Saethre,
and Ankit Singla. Exploring the "Internet from space" with Hypatia. ACM IMC,
2020. [106]

In the publication, Debopam Bhattacherjee and I contributed equally and are joint first
author. While both Debopam and I are responsible for the engineering and system
architecture aspects of Hypatia, I focused more on its usability and scalability, and
Debopam was in charge of design decisions and incorporating LEO dynamics and
visualizations. André Baptista Águas [3] and Jens Eirik Saethre [170] (Master and
Bachelor thesis students supervised by Debopam) performed the initial engineering
work and experiments. The experimental results and corresponding figures in this
chapter are the result of all our joint collaborative effort. My contributions are in
improving the usability and scalability of the simulator, and the experimental evaluation,
particularly improving the TCP and UDP scalability assessment, the comparison of loss-
and delay-based transport protocols combining latency, bandwidth-delay product and
internal state (e.g., cwnd, RTT), the general distribution analysis of endpoint pair paths,
and the timestep granularity analysis.

* Shared first author.

74



4.1. Background and motivation

4.1 Background and motivation

Recent LEO satellite networks differ significantly from both terrestrial static and geosyn-
chronous satellite networks (e.g., [91, 197]) in various aspects due to which existing
simulation tools intended for the latter two are insufficient. The most important distinc-
tion is the constantly changing core of the network due to the speed required to maintain
low Earth orbit, which is made up out of a very large number of satellites which move in
predictable orbital patterns relative to each other [30]. This core is connected internally
through the use of inter-satellite laser links (inter-satellite links, or ISL) [30, 79, 116], and
to surface ground stations through the use of radio communication (ground-station-to-
satellite links, or GSL). These links are formed and dissolved with parties coming in and
going out of range [30], as well as their properties change during their lifetime (e.g.,
latency, bandwidth, loss). Satellites are expected to be able to establish several ISLs
simultaneously [30, 79, 116], and ground stations to connect to one or more satellites
depending on their antenna type [118]. The constellations are set to consists of thousands
of satellites, with potentially as many or more ground stations. In contrast to past LEO
satellite networks focused on telephony [92, 93], these constellations will offer Internet
service on a global scale [132].

We poise that current tools are insufficient for a variety of reasons for the network
research community to investigate congestion control, traffic engineering and routing.
These are relevant to answering open research questions for contemporary LEO satellite
networks in congestion control [30], as well routing spanning multiple constellations [79]
and between different domains (i.e., between terrestrial autonomous systems and the
dynamic LEO satellite networks) [66, 113]. The closest work to ours is [86], which
investigates the Iridium and Teledesic polar orbit LEO constellations using a predecessor
of ns-3. Although we could have built upon this work directly, instead we opt to
use the actively developed ns-3 in combination with an existing ns-3 satellite mobility
module [157], which we complement with GSL and ISL connectivity (§4.2). In addition,
[86] does not provide experiments analyzing congestion control or traffic engineering
impact, and does not have an integrated visualization component. There is also another
set of tools which provide useful visualizations and analyses, but do not provide packet-
level simulation: (i) [30] analyses LEO topologies in terms of latency and hop counts,
(ii) [79, 80] visualizes a recently proposed LEO constellation (Starlink) and gives several
selected RTT analyses between ground station pairs, (iii) SaVi [204, 205] visualizes the
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movement of an individual satellite and its coverage, (iv) NASA GMAT [150] provides
models for objects related to space missions and generates relevant visualizations and
plots, (v) [38] visualizes the Starlink constellation and shows the orbits of individual
satellites, (vi) [56] visualizes the progressive deployment of the Starlink constellation,
(vii) [53] estimates the total throughput of LEO constellations and optimizes number
ground stations to support that throughput, and (viii) [66] only simulates latency and
evaluates possible Internet routing schemes for LEO constellations. What sets us apart
from these related works can be summarized as follows: we set out design a tool which
supports packet-level simulation over large LEO satellite networks with both ISLs and
GSLs, combined with helpful analysis and visualization components.

4.2 Architectural design

We built HYPATIA in order to meet the research needs stipulated in §4.1. By modeling
at packet-level granularity instead of flow- or path-level, packet level interactions can
be researched. The design of HYPATIA models static link bandwidth and varying
latency. ISLs are modeled solely as point-to-point with varying latency with a fixed
bandwidth. GSL interfaces are modeled to be able to send to any other GSL interface
within range (from satellite to ground station or vice versa) with a limited sending
bandwidth, but an unlimited receiving bandwidth. This simplified model does not
model link layer concerns such as frequency assignment and medium access control,
which would more stricter bound transmission rates. The primary motivation behind
this is that this simplified model already encompasses many interesting use cases (as
we explore in §4.4). As such, additional engineering effort would have to take place
to integrate such low lower level mechanisms to HYPATIA. HYPATIA consists out of
three main components. First, static and dynamic state of the satellite network over
time (in particular, forwarding state) is calculated (§4.2.1). Second, this generated state
is used as input for the packet-level simulation (§4.2.2). Finally, there is the analysis
and visualization component (§4.2.3), which takes the dynamic state and/or logs of the
packet simulator to produce analyses, plots and visualizations of interest.
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4.2.1 State generator

The state generator takes as input the parameters which define the ground surface and
satellite constellation, including but not limited to the number of orbits, satellites per
orbit, altitude, eccentricity, constants including maximum ISL and GSL length, and
ground station locations. It uses these parameters together with algorithmic choices
(e.g., routing algorithm, ISL and GSL connectivity constraints) to calculate fixed (e.g., ISL
topology, satellite movement descriptors (TLEs [111])) and dynamic state (which varies
across time). The dynamic state generator is designed to speed-up later simulation by
pre-computing state which can be repeatedly reused across different runs over the same
network. As an additional benefit, by having this state pre-computed, it also enables
analysis of itself. For geometrical and orbital calculations we make use of a range of
Python modules, including pyephem [166], sgp4 [167], astropy [24], and geopy [64]. We
make use of networkx [78] for path calculations (in particular, Floyd-Warshall) over a
graph constructed with calculated link lengths (both between satellites, and to ground
stations). It calculates at a fixed time interval granularity (e.g., 100ms) the routing
through the topology of ground stations and satellites, and outputs forwarding state
changes (and GSL bandwidth changes, optionally) for each time moment.

4.2.2 Packet-level simulator

The packet-level component is implemented as a module for ns-3 [152], a widely used
network simulator. It makes use of an existing satellite mobility ns-3 module developed
by Pedro Silva [157] to calculate the satellite positions. These positions are then used to
calculate when relevant (i.e., upon transmission of a packet) the distance and thus the
latency. The forwarding state changes (and GSL bandwidth changes, optionally) are
executed as events in the packet-level simulation. It makes use of the basic-sim toolbox
ns-3 module [1, 60, 104], which was significantly extended in the context of this work, to
assist in routing and topology abstraction and construction, and running TCP and UDP
experiments. The packet-level simulation component outputs various logs regarding
applications (e.g., flow completion, ping outcomes), transport protocol internal state (e.g.,
cwnd, ssthresh) and link utilization.
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4.2.3 Analysis and visualization

HYPATIA offers various utilities to analyze, plot and visualize the various outputs of
both the state generator and the packet-level simulator. We make use of gnuplot [202]
for graphs, cartopy [134] for simple two-dimensional visualizations, and Cesium [39] for
two- and three-dimensional visualizations. numpy [83] and statsmodels [177] are used for
calculations. The analyses and visualizations are showcased in §4.4.

4.3 Experimental setup

The investigation into representative scenarios for LEO satellite networks was primarily
conducted by co-author Debopam Bhattacherjee. As such, we only present here the key
information relevant to the experiments. Further details concerning the constellations
and their parameterization based on public announcements and filings can be found in
the publication [106]. We consider the first shell of three satellite constellations: SpaceX
Starlink S1 comprises 1584 satellites arranged in 72 orbits of 22 satellites orbiting at a
height of 550 km [187], Amazon Kuiper K1 comprises 1156 satellites arranged in 34
orbits of 34 satellites orbiting at a height of 630 km [119], and Telesat T1 comprises of
351 satellites arranged in 27 orbits of 13 satellites orbiting at a height of 1015 km [191].
Of the three constellations, Telesat T1 has the lowest minimum angle of elevation to
communicate [191], which is the minimum required angle at which a ground station
is able to communicate to an overhead satellite (lower is better). The calculation of
the maximum GSL length is based on the cone shaped by the altitude and a flat min-
imum angle of elevation. This calculation used in the experiments does not take into
account Earth’s curvature, and as such yields a slightly shorter maximum GSL length
for Starlink (0.97×) (because cone radius was directly based on FCC filings values), a
longer maximum GSL length for Kuiper (1.12×), and especially a longer maximum GSL
length for Telesat (2.09×) compared to when Earth’s curvature is taken into account.
This affects the experimental results in the following way: the longer maximum GSL
length is, the more first and last hop candidates there are, thus yielding potentially
lower RTT, less hops and increased path stability. In particular in Fig. 4.4, Telesat would
have higher RTT and potentially more path changes. Accounting for Earth’s curvature
improves the calculation as it ensures that the angle from the ground station does not
go below the constellation minimum angle of elevation – which can result in line of
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sight through Earth’s surface if negative. We note the improvement of the maximum
GSL length calculation for future work. The default satellite network ISL topology is a
mesh-like structure [79, 116] also named +-Grid [30] for each constellation, which means
each satellite has four links, with two to the preceding and succeeding satellite in its own
orbit, and two to its positional neighbors in the adjacent orbits. We use shortest path
routing with distance as the edge weight, thus having between between each source and
destination the path with the lowest latency. The ground station location are set to those
of the hundred cities with the largest population across the world.

4.4 Utility evaluation

We conduct several experiments to evaluate the usefulness of HYPATIA across a variety of
important network research use cases. We first showcase its ability to tackle the scenarios
of interest (i.e., constellations and ground stations) at scale in §4.4.1. We proceed with
explaining how the model of packet-level interaction benefits investigation of end-to-
end congestion control, routing and traffic engineering in §4.4.2. In §4.4.3 we analyze
constellation-wide characteristics which underline the need to model the dynamics of
LEO satellite networks. Finally, we briefly describe the possible visualizations in §4.4.4.

4.4.1 Scalability

In order for HYPATIA to be useful for LEO satellite networks, it must be able to scale
to be able to support hundreds, if not thousands, of nodes in the topology. The state
generator performs routing and path finding algorithms at a time interval. It is able
for any given time moment using the orbital elements to calculate the topology the
satellites and ground stations form. This enables the state computation to be parallelized
by assigning each process a portion of time moments and merging them together to
calculate only the changes (which saves storage space as not as many changes happen
each time step, see Fig. 4.5a). The packet-level component uses discrete event simulation.
In discrete event simulation, the scalability is tied to the amount of events and the time
spent to execute events.

To showcase the scalability of HYPATIA, we run an experiment over Kuiper’s K1 shell
of a random permutation traffic matrix between the 100 most populated cities as the
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Figure 4.1: Scalability. Running experiments resulting in a 9.2 Gbit/s network-wide
goodput with TCP for 1 second takes ∼555 seconds. UDP simulations are faster, with
13.8 Gbit/s goodput in ∼269 seconds.

ground stations. In order to obtain several scaling data points, we vary the link rate of
network interface (both ISL and GSL) to change the amount of traffic, testing line rates
of 1, 10, 25, 100 and 250 Mbit/s, and 1 and 10 Gbit/s. Between each pair, for the UDP
scenario packets are transmitted at a paced constant rate, and for TCP scenario a long
running TCP connection. The experiment is run on a single core 2.26 Ghz Intel Xeon
L5520. We calculate the rate at which data is acknowledged (TCP) or delivered (UDP)
across all pairs. In Fig. 4.1 we plot this rate (i.e., representing amount of activity) against
slowdown: the amount of wallclock seconds it took for HYPATIA to simulate a single
simulation second. A logical tradeoff is present: for the same amount of wallclock time,
one can either choose to simulate a lower traffic rate for longer, or a higher traffic rate
for a shorter duration. By extrapolating the discrete points mentioned in the caption of
Fig. 4.1, we can approximately estimate that to simulate around 10 Gbit/s network-wide
TCP traffic for 1 simulation second takes around 10 minutes, and for UDP traffic around
3.3 minutes.

As traffic is segmented in packets (rather than aggregate, as for flow-level simulation),
scalability is tied to (a) the amount of events each packet generates and (b) how many
packets are generated. The events generated are both in the network through arrival,
forwarding and queueing, as well as at endpoints for transport protocol logic. In contrast
to for example data center networks, packets in satellite networks experience more hops
and as such generate more events. The difference between TCP and UDP slowdown
is caused by TCP warranting additional acknowledgements packets, as well as vastly
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more control logic (e.g., to handle reordering). Although LEO networks are extremely
large, inactive nodes (or interfaces) do not increase runtime in discrete event simulation
as they do not produce events. As such, besides initial (constant) setup cost, the size of
the network on its own is not prohibitive: the activity it generates however, is. On top of
ns-3’s network device and interface model, HYPATIA adds the calculation of variable
latency based on the mobility models on either side, which is a minor overhead. In
our design, we set out to pre-calculate and pre-fill as many components as possible, for
instance by calculating the forwarding state in advance and pre-filling MAC tables to
prevent resolution traffic. The largest potential lies in applying ns-3’s distributed mode,
which we are currently exploring.

4.4.2 Packet-level interaction

Our key motivation to incorporate packet-level simulation is to observe packet-level
interactions, which is not possible through path- or flow-level analysis. We find two
scenarios that can benefit from this modeling: end-to-end congestion control and traffic
engineering.

End-to-end congestion control. Transport protocols in particular are affected by packet-
level interactions, as they are used as signals to control rate and retransmission. For
example, out-of-order packets can be interpreted as loss, and loss or increased delay as
congestion. To showcase several interesting phenomena, we highlight one end-to-end
communication pair from Rio de Janeiro to London over the Kuiper K1 constellation.
We separately run a TCP flow between endpoints and a continuous UDP ping, and
complement them with expected latency, RTT and bandwidth-delay product – which
are calculated from the fixed and dynamic state files. The queue size is set to 100 packets,
which approximately equates to a bandwidth delay produce for 10 Mb/s at 100 ms
RTT with a segment size of 1380 byte. The TCP experiment is performed with a loss-
based congestion control protocol, NewReno [87], or a delay-based congestion control,
Vegas [35].

The resulting figures are shown in Fig. 4.2. NewReno exhibits the familiar sawtooth
pattern, which fills the queue until a drop is detected (typically through three duplicate
ACKs) and promptly drains it by halving the congestion window. In cases where there
is a sudden reduction in latency due to a path change, e.g., at T = 146.6 s, this will lead
to reordering which results in the same effect. Vegas on the other hand is unable to
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Figure 4.2: Rio de Janerio to London: end-to-end congestion control with 10 Mbit/s,
and queue size of 100 packets which is approximately 1 bandwidth-delay product
(BDP) for 10 Mb/s at 100 ms RTT.

sufficiently grow its congestion window, which is caused by an initially low base RTT
estimate (due to the small initial handshake packages) which it does not overcome as
base RTT is the minimum observed RTT across the entire lifetime. Through the addition
of such analysis and plots, we are able to gain insight into factors that congestion control
protocols need to take into account. For instance, delay-based congestion control must
be aware that the base RTT can vary over time, as such it is not always attainable during
their entire lifetime. Another insight is that due to path changes, it is possible for packets
to be reordered without it indicating loss, simply due to later packets traversing a faster
route. We note that the showcased congestion control protocols are mere examples, and
we believe HYPATIA can be of use to more broadly evaluate the performance of existing
and novel congestion control protocols in LEO satellite networks.
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Traffic engineering. As the end-to-end congestion experiments have indicated, unlike
static networks the flows going over LEO satellite networks can experience path, latency
and connectivity changes. This is in stark contrast with terrestrial network infrastructure,
in which generally the flows during their lifetime are not moved unless by design of
network (e.g., to load balance [196]). There is a significant body of work to optimize
utilization of terrestrial wide area networks, e.g., Google’s B4 [94], Microsoft’s SWAN [89]
or SMORE [120]. These works cannot be applied directly, as their constraints are vastly
different to those required by such dynamic networks as LEO satellite networks. Not
only are the links subject to continual latency and throughput change (primarily GSL,
but also ISL to lesser extent), but also there are continuous decisions regarding which
links should be formed [30]. Moreover, the objectives of LEO satellite network routing
might be different than those of terrestrial networks, for instance with additional weight
of consideration on path stability, minimization of latency, or maximization of through-
put, depending on the use case. [208] for instance proposes incorporation of link state
information (e.g., queueing, utilization) into the routing mechanism for LEO satellite
networks. Packet-level interaction is vital to understanding how such novel algorithms
would perform in these highly dynamic networks, because the continual changing of
paths results in the movement of queue packet build-up. This build-up will result in
congestion signals such as delay, marking, reordering or loss to the control protocol –
its ability to handle these signals quickly and effectively is important. This can include
both in-network mechanisms, as well as endpoint congestion control procedures. This
level of modeling is not possible with path- or flow-level simulation, which underlines
the utility of HYPATIA for this use case.

To provide an indication of these phenomena, we perform an experiment in which we
have the pair chosen before, Rio de Janeiro to London, supplemented with a random
permutation matching of the other ground stations in the Kuiper K1 constellation. We
remove all pairs which have the same destination satellite as our fixed pair, such that the
congestion is focused solely on the ISLs of the constellation. We perform a long living
uni-directional TCP flow between each pair. We are interested in whether the ISLs of
the paths between Rio de Janeiro and London are being used to their full potential, as
such we plot the maximum link utilization across the links used in each path over time
from Rio de Janeiro to London. We compare this against the case in which we “freeze”
the satellite network at T = 0, to have a comparison to a static network equivalent.
The results are shown in Fig. 4.3. The network of the moving constellation continually
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Figure 4.3: Unused bandwidth for path of the same pair as 4.2 with additional cross
traffic.

shifts, in which queues are moved, congestion signals are issued, and the endpoints
react. As a result, in a portion of time there is a certain amount of lost bandwidth, which
is not the case for the static comparison. The cause of this is both due to queueing of
acknowledgements behind data packets (which can also occur in static networks), as
well as congestion windows not recovering quickly enough due to the long RTT. The
congestion window recovery is necessary because congestion signals due to reordering
are continuously issued and the steady state changes as flows join and depart links.

4.4.3 General dynamics analysis

Although the primary contribution of HYPATIA is the enabling of packet-level simulation
over a moving LEO satellite network, we also pursued path- and flow-level analysis
based on the generated static and dynamic state to discover further underlying insights.
We are particularly interested in the significance of modeling the effect of dynamics
across all endpoints in order to underline the utility of HYPATIA over static network
packet-level simulation. Our first point of interest is the stability and latency of the paths
between the endpoints. We use the world’s 100 most populated cities as ground stations,
and between each possible endpoint pair combination determine the path over the
course of 200 seconds. For each pair, we calculate the amount path of changes (Fig. 4.4a),
and the ratio between the fastest and slowest RTT (path length) (Fig. 4.4b). We find
that at least for an algorithm which optimizes for shortest latency, the vast majority
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Figure 4.4: Endpoint path perspective. The paths between endpoint pairs experience
significant amount of path changes and to lesser extent RTT difference over their
lifetime.

experiences at least one path change (94% for Telesat, and 100% for Kuiper K1 and
Starlink S1), with many seeing significantly more. This indicates that the LEO satellite
network is highly dynamic, and that queue shifts are expected to happen not seldom
but regularly. The same applies to the need to adapt to a varying RTT. Although RTT is
relatively stable, which is expected given the path finding algorithm focus on latency
minimization, still 5% (Telesat T1), 14% (Kuiper K1) and 30% (Starlink S1) experiencing
an RTT 1.2× larger than their minimum RTT. This signifies that unlike static networks,
there is significant variation in base RTT (i.e., without congestion), thus highlighting the
need for protocols aware and able to handle such lifetime differences. The differences
between the constellations are due to their different operating height and their minimum
angle of elevation. Further discussion regarding constellation differences can be found
in the full publication [106].

The packet-level simulation makes use of dynamic state which is calculated on a certain
time interval granularity. In order to investigate the required granularity, we perform
the calculation at 50 ms, 100 ms and 1 s for Kuiper K1. For each timestep, we calculate
the number of path changes (i.e., from one time step to the other, how many paths
had one or more hops different) (Fig. 4.5a) and as well the number of path changes
missed compared to 50 ms granularity (Fig. 4.5b). The amount of path changes in each
respective time step approximately follows the factor one would expect from 50 m to
100 ms, namely 2×. However, at 1 s granularity, a substantial portion of path changes
were missed (6% missed one or more path changes), whereas at 100 ms only very few
were missed (0.4%). Based on these results, we find that 100 ms is a good compromise
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between computational duration and simulation granularity.

4.4.4 Visualization

The final component of HYPATIA is its utility to visualize LEO satellite networks, and
as such provide visual understanding to the network dynamics which occur. The
visualizations were primarily the contribution of co-author Debopam Bhattacherjee. For
completeness we provide a brief description of the types of offered visualizations. The
full details and corresponding images can be found in the publication [106], as well
as their interactive versions online [31]. There are four types of visualizations offered
by HYPATIA, which are as follows. (1) Satellite trajectories visualize how the satellites
move respective to one another in a constellation. (2) Views from the perspective of a
ground station regarding the satellites that are visible to it and how long they are able to
connect based on the minimum angle of elevation. (3) End-to-end paths which show the
chosen (shortest) paths of communication between to end points. (4) Link utilization
plots which show through color the utilization of (paths of) links.

4.5 Summary

To investigate the performance of networked systems, we require the right tools which
model the most important characteristics. In this chapter, we have identified the use
case of LEO satellite networks, for which existing tools are insufficient to capture its
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intricacies to model congestion control, routing and traffic engineering. We presented
the HYPATIA framework which addresses this need by enabling packet-level simulation
over these dynamic LEO satellite networks. Its primary utility lies in modeling packet-
level interaction, as well as its other two modules, general dynamics analysis and
visualization, which are of significant value as they quantify the dynamic behavior and
provide visual insight. We hope that HYPATIA can be used by network researchers
to evaluate the applicability of existing methods, and to support the development of
techniques able to tackle the many open challenges in LEO satellite networks.
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5
R E S O U R C E A L L O CAT I O N I N

S E RV E R L E S S Q U E RY

P R O C E S S I N G

Serverless computing provides fine granularity time-based billing, low startup delay
and rapid scaling. This is in stark contrast to more fixed infrastructure such as virtual
machines, which often is billed with minima, takes longer to startup and thus scales
slower. The works of Starling [158] and Lambada [147] show serverless to be an espe-
cially promising candidate to process interactive analytical queries (i.e., finish in several
to tens of seconds) on cold data (i.e., infrequently accessed). The coldness of the data
make it not worthwhile to be loaded into traditional databases, as that would lead to
under-utilization and thus large expense. These serverless processing systems must be
provisioned accordingly to achieve both good performance and cost-effectiveness. The
extremes of allocation are not useful to the user: the cheapest option (small number of
small functions) is too slow, and the fastest option (a large number of the largest func-
tions) is too expensive. Rather, we would like an allocation which makes a compromise.

In this work, we set out to develop an advisory tool that can recommend suitable config-
urations for serverless query processing striking a good balance between completion
time and financial cost. To do this, we propose a model similar to [125]’s approach for
VMs, that considers the major factors affecting completion time and cost in serverless
query data processing. It includes processing and network overheads (as [125], except
using data and rate rather than CPU hours for processing), and as well accounts for
startup time, exchange overhead, and request cost. The latter three factors are relevant
for serverless data processing due to (a) the large number of workers involved, (b) the
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brevity of interactive queries, and (c) communication through storage.

We use this model to augment an existing query data processing system, Lambada [147],
with an advisory tool to provision serverless functions: given a query workload, the tool
approximates the number of functions and their size to achieve a good balance between
query completion time and the cost incurred. It does so by choosing configurations close
to the "knee" of the Pareto frontier of these two dimensions. We show that obtaining
accurate predictions of the run time or cost on serverless is very difficult due to a variety
of system aspects that cannot be controlled by the user [88, 200]. However, we also show
that it is still possible to recommend a reasonable configuration, thereby significantly
simplifying the job of the user when using serverless for query processing over data
lakes and expanding the narrow cost effectiveness of serverless query processing.

Chapter outline. In this chapter, we first present the niche use case of serverless data
processing in §5.1. Second, we define the task of provisioning in §5.2. Third, we
outline the challenges towards estimating serverless data processing in §5.3. Fourth, we
describe the general estimation model in §5.4. Fifth, we describe the advisory tool and
its evaluation methodology in §5.5. Sixth, we apply the model to the serverless query
processing system Lambada [147] in §5.6. We then proceed onward with the evaluation
on small benchmarks in §5.7 and a large benchmark in §5.8. Finally, we conclude with
describing related work in §5.9 and briefly summarize the chapter in §5.10.

Contributions. Text and figures from the following publication were included in this
chapter and its corresponding introduction and conclusion:

• Simon Kassing, Ingo Müller, and Gustavo Alonso. Resource Allocation in Serverless
Query Processing. arXiv:2208.09519, 2022. [108]

5.1 Why serverless data processing?

Serverless has been proposed as an alternative to using virtual machines to process
interactive queries on cold data [147, 158]. Cold data is so infrequently accessed that it
is not cost-effective or practical to keep infrastructure on hot stand-by for processing
it. Yet, users still expect interactive response times which requires sufficient computing
power. For other query processing tasks, serverless might be too expensive. There are
two reasons for this:
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Billing method. Virtual machine instances are billed both at coarser time granularity
and with a minimum time across all cloud providers. Both AWS [11] and Google
Cloud [71] charge at a one second granularity, with a minimum of 60 seconds. Azure
bills at either second [135], or minute [137] granularity—we could not find whether
a minimum applies. Both factors substantially increase the cost of interactive queries
whose completion time is in seconds. Suppose a query takes 6.5 s to complete. This
would be billed 8% more expensive at one-second granularity, and 823 % more expensive
at a one-minute granularity. In contrast, serverless functions are billed at very fine
time granularity (AWS/Azure: 1 ms [14, 136], Google Cloud: 100 ms [70]) and with a
small minimum billing duration per invocation (AWS: 0 ms [14], Google Cloud/Azure:
100 ms [70, 136]).

Startup delay. Due to data coldness, when an interactive query comes in, workers must
be started as soon as possible in order to scale to process the data in a timely fashion.
VM instances take significantly longer to start up in comparison to serverless functions,
in the range of several tens of seconds to start up [82]. This is unacceptable for an
interactive query that takes seconds to run. In contrast, serverless functions can start
within a few hundred milliseconds [55] and a lot of effort is being invested in shortening
that even further [5, 55, 198].

5.2 Provisioning and configuration

A user must decide what type of serverless workers to start and how many, in the same
way as one would for a VM-based data processing system [77]. They differ however on
the range of available configurations. For traditional virtual machine instances, cloud
providers offer users the choice among a wide range of machine configurations, varying
four key parameters [125]: number of cores (compute), network bandwidth (network),
DRAM (memory), and SSD (local disk size). In contrast, serverless configurations are far
more limited. Users can only select the memory size, from which some of the other
properties are derived (Tab. 5.1).
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AWS GCP Azure

Memory Configurable
0.125-10 GiB [14]

Configurable
0.125-8 GiB [70]

Configurable
1.5-14 GiB [136]

Compute Based on memory
(1769

MiB/vCPU) [12]

Based on
memory [70]

Based on
memory [136]

Network
bandwidth

No information available [14, 70, 136]

Local
disk size
(scratch)

Constant
(512 MiB) [13]

Stored within the
memory itself [68]

Constant
(500 MiB) [140]

Table 5.1: Current serverless configuration offerings.

Based on the current cloud offering, in this chapter we define the provisioning
of serverless data processing systems as the choice of the number of serverless
workers (W ) and their memory size in mebibyte (M ).

5.3 Estimation challenges

To recommend a suitable configuration, we build a model (§5.4) encompassing key
characteristics of a serverless query execution system. The model does not try to make
an accurate prediction of running time or cost but to differentiate between configurations.
Estimating running time and cost in serverless is actually quite difficult (§5.7, §5.8) due to
the many uncertainties associated with serverless execution [179,200]. In this section, we
highlight both the fundamental prediction limitations and practical challenges inherent
to serverless data processing to define the problem space.

5.3.1 Data-processing-related limitations

At the core of query optimization is the need to predict the cost of an operation, for which
often metadata and statistics on the data (selectivity, distribution, etc.) are used. It is an
open question how to do this over the vast amounts of data stored in a data lake. There
have been considerable efforts, using zone maps [50] or gradual transformations of the
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data [131], as well as table formats to include cost-based optimization metrics [21]. Lack
of such data processing knowledge results in the first source of potential inaccuracies
when trying to guess the running time of a query. In our case, these are the two factors
that introduce the largest distortions:

• Query selectivity. The selectivity of an operator determines the amount of data the
following operators process. As a result, the cost of intermediate operators in the
query plan is difficult to gauge and can only be done on average or as a worst case.

• Data distribution. The performance of an operator (i.e., process rate) is affected by the
data distribution of the input. For instance, the population of internal data structures
can result in longer processing time in aggregation operators relying on hash tables. If
many input tuple keys are unique, the hash table will become full, causing collisions,
resizing overhead, no longer fitting in caches, etc. This makes it difficult to estimate the
cost of such operators even when they are on the leaves of the query plan. Moreover,
the size of each individual tuple can vary; e.g., 100 MiB of 10 byte tuples compared to
100 MiB of 100 byte tuples would result in 10× more operations.

We can account for these variances in two ways: (a) bounding the data size and effect on
complexity, or (b) with additional knowledge about the data. In this project we opt for
the former to avoid relying on functionality that is typically not available in data lakes.
Note that adding such information (e.g., as suggested by [131]) to the model will only
make it more accurate.

5.3.2 Serverless platforms related limitations

Serverless query processing systems make use of the many services a cloud provider
offers, in particular, storage and serverless functions. The experienced quality of service,
however, can vary: (a) the way the implementation and resource allocation of cloud
services are opaque to their users, and (b) the resources behind these services typically
are not reserved: they are shared among users and, thus, service quality can vary. The
following are side effects observed in Amazon AWS influencing run time and cost:

• Start-up time variance (starting stragglers). The time from invocation until the worker
is ready to start the computation is sometimes longer than usual, already creating
starting stragglers. We hypothesize this can be an effect of the caching strategy, as well
as temporarily contention due to high demand of the shared infrastructure.
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• Storage read/write variance (storage stragglers). Serverless query processing systems
make use of long-term storage (e.g., S3 [16]) to read input and potentially write output,
as well as to exchange data in-between computational stages. Infrequently, the read or
write requests to S3 take considerably longer than expected (by as much as one order
of magnitude). This can be due to a variety of reasons: e.g., S3 replication, S3 caching,
network packets being lost, or high demand (on either the function host or S3). Even if
it occurs only 1% of the time, if there are 100 workers, these tail failure probabilities
become significant [52, 158] and create large variations on the running time.

• Queueing service send/receive variance. Queuing services (e.g., SQS) can be used to
exchange small messages between workers, or to the driver, for example if the query
result is small enough. Infrequently, but especially with many simultaneous finishes,
the workers will simultaneously send their result message to the SQS queue. This can
lead to significant delay if the underlying application/transport stack starts timing
out. This is a known problem [9] in parallel processing when multiple parallel workers
finish at the same time and all try to communicate back with a centralized server.

• Computational contention. A worker is allocated computational power proportional
to its memory allocation. With limited computational power, in particular, less than
one vCPU, even a single-threaded system combined with background computation
can exhibit unpredictable computation patterns that can affect the observed network
bandwidth and, thus, the time needed to read/write data.

• Non-linear network performance. In line with previous work [201], we observe
that lambda functions in AWS can exhibit an increased network rate for a very short
period of time at the beginning of their execution. Whether this behavior is seen
or not depends on whether the storage (S3) can supply data at this increased rate
and whether the function has sufficient parallelism available to deal with the higher
incoming data rate (both in terms of vCPU and the need to download multiples files).
In practice, it greatly affects the ability to estimate how long a query will take.

• Polling requests. When awaiting for a file from another worker to become available, a
worker will poll to check when it is available. The more frequently the worker polls,
the faster it is made aware and can start reading; however, this affects the price since,
the more read requests, the higher the cost of the computation. The duration of waiting
(and thus polling) is influenced by stragglers.

Because of these intrinsic difficulties, in this project we do not aim to build a query cost
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predictor. Our model does accurately estimate running time and cost in many situations
but not always. However, the estimations are good enough to be able to differentiate
between configurations in terms of picking suitable ones in terms of balancing running
time and cost. This is the basis for the advisory tool we propose.

5.4 General estimation model

Rough estimations of cost/execution time on virtual machines have been recently pro-
posed [125]. However, such an approach does not directly translate to serverless func-
tions due to: (a) the difference in the number of workers involved (10s for virtual
machines, 100s for serverless functions), (b) the overhead incurred for data exchanges
(typically through storage), and (c) the difference in task duration. Serverless operates
in the few to tens of seconds range, whereas virtual machines in minutes to hours –
factors insignificant at a one hour scale become so at a one second scale [179, 200]. In
this section, we formulate an analytical model which incorporates the most important
factors in our understanding that effect the completion time and financial cost of query
processing using serverless functions. The model includes processing and network
overhead similar to [125] (using data and rate instead of CPU hours for processing),
but also incorporates the factors unique to serverless query processing systems, namely
startup time, exchange overhead and request cost. The model we present is directly
applicable to Lambada [147], and we posit models in a similar vein can be applied
to other systems to roughly estimate performance albeit with changes, for instance to
account for different number of workers per stage (e.g., for [112, 158]).

5.4.1 Start-up

The largest serverless function is equivalent to at most a medium-tiered virtual machine
instance (10 GiB of memory with 5.8 vCPUs for AWS). Thus, many serverless functions
must be spawned to be able to process large amounts of data. A single driver to start
the workers can only start workers at a limited rate. To speed up the start up phase, it
has been proposed to use a two-level broadcast tree where the first workers start other
workers [147]. We model the starting of serverless workers by an invocation rate R1-inv

and R2-inv (i.e., how many workers can be started per second) for the main driver and
a worker respectively. We define the invocation delay as Tinv. delay (i.e., how long from
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invocation till the worker is started). For each worker i ∈ 1..W , we estimate its startup
and ready time.

One-level invocation:
Tstartup(i) =

i

R1-inv
+ Tinv. delay

Tready(i) = Tstartup(i)

Two-level invocation:

Tstartup(i) =

 i
R1-inv

+ Tinv. delay i ≤
√
W

g
R1-inv

+ Tinv. delay +
h

R2-inv
+ Tinv. delay else

Tready(i) =

Tstartup(i) +
√
W

R2-inv
i ≤

√
W

Tstartup(i) else

g is the index of the worker that starts i and h the index within worker g’s start list (first√
W workers invoke W−

√
W√

W
others each). The startup time indicates when the worker

has started, and ready time when the worker can start its data processing tasks (both
since query epoch). This is different for some workers in the two-level invocation, as
they must first invoke other workers—which is part of the billed time.

5.4.2 Base overhead

Every worker performs a certain amount of base tasks that are independent of the
workload, including initializing its variables, extracting input, allocating memory, and
packaging its output. We model this (billed) overhead time as a single constant Tbase.

5.4.3 Process, compress, and network rates

We model the process, compress, and network rate as three constants (dependent on the
memory size chosen): Rnetwork, Rcompress, and Rprocess. We consider network and compress
rate as independent of the workload, whereas the process rate as dependent. These
constants can be attained through measurement (as is done in §5.6.3), by applying
some model (e.g., using Amdahl’s law) to account for the effect of more vCPU, or a
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combination of the two. Network rate is the rate at which both transfer of read and
written data takes place.

5.4.4 Input

The input is solely concerned with the reading and processing of the input:

Tinput = max(
Dinput

Rnetwork
,
Dinput

Rprocess
)

5.4.5 Exchange(s)

The purpose of an exchange operator is to partition data such that each function receives
all tuples with the same key. An exchange can be done in one or more levels, which for
two or more levels means that first functions exchange in a group, and then having the
groups exchange (and so forth depending on number of levels). An exchange operator
is used to accomplish join and reduce operations, among others. Its operation consists
of compressing and writing the data, and subsequently reading and processing the data
destined to the function. The number of the group size in an exchange level is defined
as Gex[j], a value we calculate based on the total number of workers and whether an
exchange is one or two levels. We define an additional penalty factor for each worker
participating in the exchange level, Toverhead[j]. For each exchange level j:

Tex[j] =
Dex[j]

Rcompress
+

Dex[j]

Rnetwork
+max(

Dex[j]

Rnetwork
,
Dex[j]

Rprocess
) +Gex[j] × Toverhead[j]

5.4.6 Output

The output is solely concerned with the amount of data to compress and subsequently
written to storage:

Toutput =
Doutput

Rcompress
+

Doutput

Rnetwork
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5.4.7 Postprocessing

The driver must receive the final results from the workers and process them to return a
final result to the user. We model this as a constant: Tpostprocess.

5.4.8 Requests costs

Unlike virtual machines, which almost exclusively communicate directly between each
other, most serverless data processing systems communicate through storage services
(e.g., S3 [147, 158]). In general, cloud providers charge for the access to the storage
service. In exchanges between many participants, the number of requests can become a
significant cost factor. When applying the advisory tool to a system, we assume we can
give a reasonable estimate of the request cost Crequests.

5.4.9 Overall Completion Time and Cost

The completion time is defined as the last worker completing and its result having been
collected by the driver:

Tcompletion = Tready(W ) + Tbase + Tinput +

(
∑
j

Tex[j]) + Toutput + Tpostprocess

The billable time of each worker does not directly equal the completion time. Instead, it
equals the sum of time the worker was alive:

Tbillable =
∑
i

Talive(i)

The alive (i.e., billable) time of a worker is only independent from other workers if there
no exchanges as else it has to pace with the slowest worker. We define the worker alive
time of a simple scan (without exchanges) as:

Talive(i) = Tready(i)− Tstartup(i) + Tbase + Tinput + Toutput
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Similarly, if there are exchanges, the workers have to wait until the last worker is ready.
Hence, we define the worker alive time for a query with exchanges as:

Talive(i) = Tready(W )− Tstartup(i) + Tbase + Tinput +
∑
j

Tex[j] + Toutput

The final cost is the sum of the worker runtime cost and the sum of the requests cost:

Ctotal = Tbillable × price/ms + Crequests

5.4.10 Model analysis

The general model has several parameters, each of which effects increase in completion
time and/or financial cost, the latter either through increased billed serverless time or
requests cost. The general tendencies are as follows. Firstly, increasing the number of
workers (W ) can have the following effects:

• increased completion time as more workers must be invoked and exchange over-
head is larger;

• decreased completion time as the amount of data each worker reads, writes and
exchange reduces;

• increased cost through billed time as there is base overhead and invocation;

• and increased cost through request cost as there are more exchange members.

The above effects are under the assumption of invocation and exchange levels remaining
the same. Increasing the worker memory size (M ) can have the following effects:

• decreased completion time as each worker can network send/receive, process and
compress at a higher rate;

• increased cost through billed time as each time unit is more expensive.

As these examples show, several effects on completion time and financial cost compete
against each other when increasing the number of workers (W ) and memory size (M ),
increasing the intrinsic difficulty of estimating either.
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Completion time

Cost

c cheapest

t fastest

Pareto 
frontier

0

Closest 
(normalized)

Figure 5.1: Pareto plot of completion time and cost. The circles are candidate configu-
rations (the coloring corresponds to Fig. 5.2). The knee-opt is the configuration closest
(normalized) to the optimum of cheapest cost and fastest completion time.

5.5 Advisory tool and its evaluation methodology

The advisory tool we propose uses the estimation model just presented. The tool aims to
select a configuration balancing completion time and cost as there is no configuration
(i.e., number of workers W and their memory size M ) that minimizes both. In the next
sections we describe how we define the best configuration (§5.5.1) and how we evaluate
the advice (§5.5.2).

5.5.1 The Pareto knee

The choice of configuration is a multi-objective optimization of completion time and cost,
and as such can be visualized as a two-dimensional Pareto plot (Fig. 5.1). We consider
as suitable configurations those closest to the "knee" of the Pareto frontier. We automate
the picking of this "knee" using the following method.

Let F be the set of candidate configurations. For each candidate configuration i ∈ F , we
define its completion time as ti and its cost as ci. We select as optimum the configuration
with the shortest distance to the origin, with its completion time and cost normalized by
the fastest and cheapest possible outcomes across all configurations:
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tfastest = mini∈F ti ccheapest = mini∈F ci

d(i) =

√
α(

ti
tfastest

)2 + β(
ci

ccheapest
)2

knee-opt = arg mini∈F di

The selection of this point is depicted visually in Fig. 5.1. In our work, we set the
weights α and β to one, which means that we value completion time and cost equally.
For example, a configuration with 2 × tfastest and 1 × ccheapest has the same score as a
configuration with 1.6× tfastest and 1.6× ccheapest approximately.1 A related work on multi-
objective optimization for cloud data analytics proposed a similar method, but instead
uses as metric the Euclidian distance directly to the idealized fastest and cheapest point
(the so-called “Utopia point”) [185] (further discussed in §5.9). We chose to use the
normalized distance to the origin such that the resulting distance metric is relatively
interpretable and comparable.

5.5.2 Advisory tool and evaluation

The advisory tool uses the procedure above to select a configuration. As it does not
know the actual completion times and costs, it instead uses the values supplied by the
estimation model.

In the later experiments, we run all configurations in the Cartesian product of two
reasonable candidate lists of number of workers and memory size based on the parti-
tioning and the query’s operators’ in-memory requirements, respectively. This provides
us the data to determine the experimentally best choice of configuration. We use this
as the baseline to compare the advice against. The primary comparison metric is the
relative difference between their distance metric. Two additional metrics we use are the
signed relative actual completion time and actual cost error of the advised configuration
to the optimal configuration. If the advisor chooses the actual optimal configuration,
both errors are zero. A negative relative error means that in that one dimension, the
configuration selected was better. At most one of the two dimensions (time or cost) can
have negative relative error as the optimal configuration is part of the Pareto frontier.

1As
√

5/2 ≈ 1.6
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Figure 5.2: The advisory tool’s possible outcomes. Because we compare actual out-
comes, it is not possible to outperform the optimal configuration simultaneously in
both dimensions as it is part of the Pareto frontier.

The possible outcomes of an advice issued by the configuration advisor are shown in
Fig. 5.2.

To illustrate, consider the following example. Suppose the best configuration has t =

1.1 × tfastest and c = 1.3 × ccheapest, whereas the advised configuration outcome has t =

1.4× tfastest and c = 1.2× ccheapest. The distances of the best and the advised configurations
1.70 and 1.84, respectively. The aforementioned metrics are in this case the following: the
advised configuration is overall 1.84−1.70

1.70
= 8% worse than the experimentally determined

best choice and it runs 1.4−1.1
1.1

× 100% = 27% slower at an 1.2−1.3
1.3

× 100% = −8% cheaper
cost.

5.6 Applying the model: Lambada

To test the tool, we use it on Lambada [147]. We first describe Lambada (§5.6.1), and
then explain the experiments conducted (§5.6.2). We apply the general model by filling
in the Lambada/AWS-specific parameters (§5.6.3) and finally analyze the effect of the
filled values in terms of overarching configuration preference (§5.6.4).
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5.6.1 Description

Lambada [147] takes as user input a computational DAG of operators, from which it
devises a distributed query execution plan. The driver starts the selected amount and
type of serverless workers (i.e., AWS Lambda) and passes on the (distributed) plan to
each worker. If many workers have to be started (if W > 100), the driver makes use of
"two-level invocation": workers started first are also in charge of starting other workers.
Once a worker is ready, it starts executing the plan: each worker reads its data partitions
from cloud storage (i.e., AWS S3). The partitioned tables are stored in Parquet format, to
take advantage of compression and the ability to only download the columns relevant
to the query. Each worker then goes through the same computations (albeit on different
data), and amongst them perform exchanges when data should be shared (e.g., join,
aggregation). Exchanges take place through S3: each worker writes to a file the data to
send to other workers. The exchanges can either be one-level ("all-to-all") or two-level (if
number of workers W > 32). Two-level exchanges double the amount to read and write,
while quadratically reducing the number of read and write requests (which is what the
cloud provider charges for). Once done, a workers returns its result by putting them in a
shared result queue which the driver monitors. The driver collects all results, performs
some last operations, and returns the result to the user.

5.6.2 Instrumentation

To capture runtime and cost information, we have augmented Lambada with the follow-
ing instrumentation:

• Query completion time. The completion time is measured by the driver from the
moment it starts the workers until it has returned the final result to the user.

• Query cost. Each worker keeps track of the time from when it started until it returns
the final result to the SQS queue, which constitutes the amount of billable time. Each
worker counts the number of HEAD, GET, and PUT requests and logs them.

We use worker logs to keep track of request counts but also for post-mortem analysis: to
know how long certain operations and functions within the workers take. This is vital
to identify bottlenecks and the occurrence of stragglers. The logs are not used by the
system itself, and as such the upload (by the workers) and download (by the driver)
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of worker logs are excluded from both the billable time of the workers and the final
completion time.

For network stability reasons, we use an AWS instance as the driver rather than a
machine in our local cluster. We chose a m5a.2xlarge instance as it is comparable to
a high-end laptop with its 8 vCPU and 32 GiB of memory. We deploy our instance in
the eu-west-1 region, where we also store the S3 data used for the experiments and
launch the workers.

In the running of (micro)benchmarks (§5.6.3, §5.7, §5.8), Lambada exhibited in a very
small set of the runs internal errors that caused the run to fail (in a probabilistic fashion),
among which: the lack of idempotency when handling SQS messages (i.e., failing in the
extremely rare case a message is received twice if a delete fails), SSL validation errors
due to too many concurrent invocations (i.e., the SSL request times out), and in some
rarer cases there were certain (likely network-related) exceptions that were not caught.
In the few cases in which any of these occurred, they were rerun.

There is another class of failure, which is to be expected: it is possible for Lambada to
fail because a worker ran out-of-memory or worker start-up reaching a time-out limit of
20s. We consider a run for which this happens (one or more times among its repeats;
generally it is for all instances) an infeasible configuration.

5.6.3 Applied model

In this section, we fill in the parameters of the general model (§5.4) except the data sizes,
which we fill in on a per-query basis in the experiments (§5.7, §5.8).

Invocation. The rate and delay at which a system can invoke workers depends on the
invocation implementation and the cloud. We use 128 concurrent threads for invocation
on the driver, and 32 on a worker. We perform a microbenchmark in which we start
512 workers using only the driver or only the worker, under either COLD start2 and
HOT start.3 Tab. 5.2 shows the mean invocation rates and the mean 99th percentile
invocation delay across three repetitions. The later experiments of this project all are
HOT started, in order to have the many runs finish in feasible time (as re-deployment to
achieve coldness takes long and is rate-limited by AWS).

2By re-deploying the function beforehand to ensure it is not cached.
3By performing another run with at least as many workers beforehand, which warms up the AWS

lambda caches.
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Figure 5.3: vCPU allocation on AWS (linear scaling with 1769 MiB/vCPU up to
10240 MiB).

Base overhead. We perform a simple benchmark in which each worker retrieves a single
small file. We subtract the scan duration from the total time the worker is deducted from
its alive time. The result, its mean across three repetitions, is made monotonic, and is
shown together with the measurements in Fig. 5.5.

Compress rate. Before writing data to storage, it must first be compressed into Parquet
format. We assume the compression rate is independent of the type of underlying
data. We perform an exchange microbenchmark with each of 32 workers reading
and compressing 32 MiB with two columns. The experiment outcome is shown in
Fig. 5.4(top). The mean compression rate (for all 96 samples across three repetitions)
made monotonic is used in the model, depicted in Fig. 5.4(bot). It scales proportionally
with vCPU allocation (Fig. 5.3) (single-core bound).

Network rate. Unlike VMs [125], there is no network bandwidth info available for
serverless functions (see Tab. 5.1). Although it is observed that there is an initial higher
network burst rate [147, 201], we model network rate at its sustained state. In the
microbenchmark, each worker reads in a 128 MiB file with eight columns. The mean
network (for all 96 samples across three repetitions) made monotonic is used in the
model, depicted in Fig. 5.4(bot). Note that especially network rates can have outliers,
we have observed very low rates every now and then (see minima in Fig. 5.4(top)).
Lambada has a small multi-threaded behavior in which, if it has two partitions to read in,
it does so simultaneously. If it has sufficient compute available to it (at least more than
768 MiB), it can achieve (temporarily) a network rate higher than the model predicts. We
consider these conditions too system-specific and as such are not captured in the general
model (in this microbenchmark, there is only a single input partition per worker).

Requests and exchange overhead. Lambada fetches the exact columns it needs from
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tonic model). Error bars in top bar plot are min-max.
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5.6. Applying the model: Lambada

Parameter Value

Driver invocation rate R1-inv 142.3 inv/s

Worker invocation rate R2-inv 93.6 inv/s

Invocation delay Tinv. delay COLD: 1263.4 ms,
HOT: 677.7 ms

Postprocess duration Tpostprocess 188.5 ms

Overhead per exchange member Toverhead[j] Scales linearly with
the number of GET
and HEAD requests

Table 5.2: Memory-independent cloud-/system-parameters.

each Parquet file. With the knowledge of tables/columns involved for each input scan
and exchange, we can calculate the exact number of GET requests. Due to availability
polling during exchanges, the number of HEAD requests can vary between runs. An
exchange microbenchmark yielded approximately 3 HEAD requests for each exchange
file. We use the number of requests and their duration to determine the exchange
overhead. Microbenchmark measurements indicate a HEAD and a GET request take
approximately 13.1 ms and 18.4 ms on average, though there were values of up to 215 ms
(HEAD) and 530 ms (GET). The exchange overhead per group member Toverhead[j] is set to
the multiplication of the requests to read its exchange files and the request type duration.
From the AWS documentation, we directly retrieve pricing for serverless function time
(0.0000166667 $ per GiB-second) [14], and read and write requests (respectively 0.0004 $
and 0.005 $ per 1000 requests) [17].

Post-processing. We have 128 workers each fetch a file of 32 MiB, and measure the
duration between the last worker having returned its result and the driver finishing.
Tab. 5.2 shows the mean duration across 10 repetitions.

Processing rate. The process rate of a query is the most difficult parameter to estimate,
as it is query dependent. As an admittedly imperfect solution, we use the reduction to
1 million unique values as the process operation; its internal data structure, the hash
table, is used across many common operations such as joins, reductions, and group-by’s.
The results are shown in Fig. 5.4(top). Note that Lambada’s operator execution model is
single-threaded and only marginally benefits from multiple vCPUs: it roughly scales
proportionally with vCPU allocation (Fig. 5.3) up until single core.
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5.6.4 Applied model analysis

The general model applied to Lambada (§5.6.3) preserves the general model influences
(§5.4.10) by monotonically modeling the rates and overhead. Its modeled sustained
network rate is capped out at 82.1 MiB/s, with 78.7 MiB/s being already reached at
M = 1024 (0.58 vCPU). In addition, due to its mostly single-threaded nature, its process
rate and compress similarly are capped at respectively 77.5 MiB/s and 86.0 MiB/s, with
75.2 MiB/s and 85.0 MiB/s being already reached at M = 2048 (1.16 vCPU). This means
that:

• if network is the bottleneck, increasing the memory size beyond M = 1024 has
little effect on completion time;

• if compute is the bottleneck, increasing the memory size beyond M = 2048 has
little effect on completion time.

5.7 Into practice

In this section, we describe the manner how to apply the model and the practical guide-
lines in terms of choosing the correct configuration that it implies. We first describe in
§5.7.1 how we apply the evaluation methodology of the advisor (§5.5) in our benchmarks.
In the context of serverless data processing tasks, we characterize workloads into two
categories: (1) workloads that solely scan data (§5.7.2), and (2) workloads that involve
one or more exchanges (§5.7.3). Either category has its own trend in the sweet spot in its
choice of number of workers and memory size. This section lays the groundwork for
the large scale benchmark in §5.8.

5.7.1 Methodology

The goal of our work is to characterize serverless data processing performance in general,
which implies some version of ideal circumstances. As such, we want to evaluate the
model’s rough estimation and advice using an ideal system. In particular, this means
we do not wish to compare to runs that are unfortunate enough to encounter stragglers
(§5.3), which are in particular present for network rates and requests (§5.6.3, §5.6.4). We
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similarly can only perform a limited number of repeated runs with a Cartesian product
of memory sizes and number of workers. In order to eliminate outliers, we opt to choose
the run best suited to be a kneepoint. We choose this by first performing the distance
metric using all data points, and for each configuration choose the run which had the
smallest distance metric. The chosen configuration is then the experimental best and
used as a reference for error calculation. As such, each point in any plotted actual Pareto
frontier (e.g., Fig. 5.6b) is not the mean across all repetitions, but the best run among them.
Note that although we do choose the representative data point for each configuration to
be the best, the normalization is done with the cheapest and fastest outcome across all
repetitions. This is done because the representative data point selection is to account for
outliers, whereas normalization should be done with the true lowest values. The theory
as presented in §5.5.2 is upheld, as the fastest and cheapest value can only be lower by
considering all repetitions.

It is possible that the advisor recommends a configuration which does not have an actual
experimental outcome (i.e., due to running out of memory or hitting the timeout limit),
as it is not always aware of this. In this case, which is exceedingly unlikely occur, the
advisor error would be set to infinite – though, in none of our experiments this was the
case as these are generally the extremes.

5.7.2 Scan workloads

In a scan workload, there is no communication between workers. Workers read in the
input partitions assigned to them, scan through their assigned data, and return their
result directly to storage or the driver in case of simple aggregation. The typical use
case for this workload type is to select tuples that fit certain criteria, or very simple
aggregations whose return value is a few tuples (e.g., counting, summing, reduction to
very few tuples). The associated computational requirement is as such not much. The
primary bottleneck is their reading of input over the network.

Based on the applied model analysis (§5.6.4), around a memory size of 768-1024 MiB
there starts to be diminishing returns on network rate when increasing further. Because
the workers do not exchange data in a scan, there is no strong penalty on the increase
of workers to large numbers. Only the relatively minor base overhead and invocation
increase the billed runtime, and only the latter to a small extent the completion time (as
more workers must be started).
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Figure 5.6: Scan benchmark: Pareto frontiers with the red lines pinpointing their
kneepoint (estimated = actual: W=256, M=768).

To study the scan workload, we perform the following experiment. We make use of a
32 GiB table of eight 64-bit columns filled with random values. It is partitioned into 256
Parquet files of 128 MiB each. The query counts the number of rows (which is 229). As
this operation is computationally simple, we set the model Rprocess to a value larger than
Rnetwork, which means it is of no consequence. As only the large number of workers are of
interest, we vary the number of workers W ∈ {86, 128, 256} (corresponding to 3, 2, and
1 partitions/worker respectively). We vary the memory size at steps between 384 MiB
and 4096 MiB. The configurations (W=86/128, M=384) did not make the 20 second
start-up time limit and as such did not finish. Decreasing the number of workers further
results in too long completion time, and decreasing the memory size further leads to
out-of-memory (i.e., infeasible) and too slow completion. Both of which are not part of
the regime of interest, which is the knee of the curve: achieving decent performance at a
cost-efficient price point. Each configuration run is repeated five times.

The estimated Pareto frontier is depicted in Fig. 5.6a: the maximum number of workers
W = 256 with a modest memory size of M = 768 is advised to achieve both good
completion time and cost. This advice matches the experimentally determined best
choice, as is seen in the actual Pareto frontier in Fig. 5.6b.

Note that the estimation does not always match the actual outcome. For W = 256 the
completion time and cost estimate is slightly lower: this is due to regular variance of
network rate. For W = 128 and W = 86 the estimates are consistently too high in
completion time and cost for memory sizes over 768 MiB: this is because W = 128 and
W = 86 have more than one input partition, such that Lambada can download two
input partitions simultaneously. With its dual download and sufficient compute to it, it
can make use of the temporary burst rate serverless functions on AWS have available to
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it [147]. Our model asserts only a sustained rate, which purposefully does not capture
such system-specific intricacies.

These results show that scan workloads are generally network-intensive, not compute-
intensive (unless the scan involves a computationally heavy operation e.g., a reduction-
by-key), and do not include exchanges. Their optimal configuration is to make use of
many workers with a memory size that provides high network bandwidth.

5.7.3 Exchange workloads

In an exchange workload, workers read in their respective input data, and then proceed
to perform one or more exchanges to facilitate certain global operations such as joining,
grouping, or sorting. The associated computation can be considerably intensive, and its
complexity can depend on the data (§5.3.1). An exchange workload has to not only read
input data and write output data, but also read and write for each exchange. As such, it
is network-intensive from a rate perspective. Besides rate limits, there is also a cost to an
increase in exchange members: there is a limit to the amount of outstanding requests and
ongoing connections. This is particularly important for Lambada, which communicates
through the writing and reading of files to storage (a practice not unique in serverless
data processing systems [158]) as inter-lambda communication is not (easily [201])
possible. For every exchange member, a worker has to read in all columns individually.

Following the applied model (§5.6.3), we expect the memory size with near-highest
network rate, process rate, and compress rate to be the best pick: around M=1769-2048
appears to be the best. We expect a number of workers that balances for completion
time the decreasing influence of more workers processing the amount of data (i.e., rate)
and the increasing influence of the extra overhead caused by more exchange members.
Another factor we must consider is out-of-memory: hash tables can grow to large sizes
with many unique keys for instance.

We examine the exchange workload through a benchmark. We use a 4 GiB table of one
column filled with 64-bit random values, partitioned into 256 Parquet files of 16 MiB each.
The query is to count the number of unique rows (which is in expectation 229) – which
requires a reduction operation. This is a rather compute-intensive operation: every tuple
processed will be inserted into the hash table that facilitates the reduction. We take the
1M-reduction (≈ 220) processing rate from Fig. 5.4, although the operation will likely be
slower. This is one of the fundamental limitations of estimating arbitrary compute: it is
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Figure 5.7: Exchange benchmark: Pareto frontiers with the red lines pinpointing their
kneepoint (estimated: W=64, M=1769, actual: W=90, M=1769).

as arbitrarily difficult. We vary the memory size between 1024 and 4096 MiB in several
steps. We choose a number of workers in the mid-range, with 1 to 5 partitions/worker:
W ∈ {54, 64, 90, 132, 256}. Reducing memory size or number of workers further results
in out-of-memory cases in the Cartesian product. The configurations (W=54/64, M=1024)
already ran out-of-memory and as such did not finish. Some of the number of workers
(54, 90, 132) are slightly higher than the partitions/worker requires: this is to have a
performant two-level exchange as we must divide the workers in two groups X, Y such
that X × Y = W exactly while minimizing X + Y to get good performance.

The estimated Pareto frontier (Fig. 5.7a) generally underestimates the completion time
and cost when compared to the actual Pareto frontier (Fig. 5.7b). This is caused by
the unexpectedly slower processing experienced in practice. Nevertheless, what is
important for the advisor is that the shape, the relative positioning of configurations to
each other in completion time and cost, is preserved. The advisor recommends the (W =
64, M = 1769) configuration as best, whereas the experimentally determined best choice
actually was the (W = 90, M = 1769) configuration. If the user would have followed the
advice (as in practice, the user would not explore the space), there would have been
a 32% increase in completion time with a -9% cost reduction. With additional prior
information (e.g., if the query is run repeatedly), this discrepancy could be adjusted and
the estimation (and as such, the advice) improved. For example, by simply reducing
the model process rate by one-third for all memory sizes in Fig. 5.4, the advisor would
elongate along the x-axis (completion time) and correctly pick the best configuration.

Unlike for scanning, an increase in workers leads also to an increase in the number of
requests (O(W

√
W ) [147]) and exchange overhead. These two factors cause the curve

to go up with the number of workers: for instance, at (W = 64, M = 1769) a mere 15%
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SF Parti-
tions

Total
size
(GiB)

Number
of work-
ers range

LINE-
ITEM
(MiB)

ORDERS
(MiB)

PART-
SUPP
(MiB)

CUS-
TOMER
(MiB)

PART
(MiB)

SUP-
PLIER
(MiB)

20 39 6.5 2, 3, 5, 10,
13, 20, 39

109.6 29.2 21.7 6.3 3.4 0.4

100 192 33.0 6, 12, 24,
48, 64, 96,
192

113.4 30.4 22.1 6.4 3.4 0.4

200 384 67.0 12, 24, 48,
96, 128,
192, 384

114.2 32.1 22.1 6.4 3.4 0.4

500 960 168.7 30, 60, 120,
240, 320,
480

115.0 32.6 22.1 6.4 3.4 0.4

Table 5.3: Large benchmark datasets of different scale factor (SF) used in the experiments:
for each table, the measured mean Parquet partition file size is stated. REGION and
NATION are omitted as their (small constant) size does not increase with SF.

of cost is requests, whereas at (W = 256, M = 1769) it is 38%. Note that the benchmark
exchange has a large amount of exchanged data (its entire input). In other exchanges
which exchange little data, throughput is likely to be less of a bottleneck, whereas the
exchange overhead can dominate the completion time.

In exchange workloads, the optimal configuration makes use of a number of workers
that balances total rate and the overhead/cost of the enlarged exchange. Exchange
workloads are generally both network- and compute-intensive, and as such favors a
memory size which offers both at reasonable cost.

5.8 Large benchmark

A version of the TPC-H benchmark [192] that runs on Lambada is used to explore how
well the estimation performs for representative workloads [147]. Here we expect to
see larger errors in estimating running time and cost but what matters is how close the
suggested configuration is to the optimal.
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5.8.1 Dataset generation

For each scale factor (SF), we performed the following steps to prepare the dataset for
consumption by lambda workers. (a) We generated the raw text CSV files using the
Lambada [147] version of dbgen [193]. (b) We use LINEITEM as the base to decide how
to split all tables as it is the largest table. At SF=1, the size of LINEITEM is approximately
586.2 MiB uncompressed. After compression into a Parquet file, it is 193.3 MiB. We set
the divisor to achieve a size of ± 100 MiB per LINEITEM partition. We split each single
large CSV file (of the eight tables) into the smaller files. (c) We convert each raw text
CSV to Parquet format using Apache Arrow [20]. The final result for a subset of the
scale factors is depicted in Tab. 5.3. (d) The files are stored on AWS S3. Note that in
query execution, only the relevant columns are read: a worker retrieving a partition thus
only retrieves a fraction of the total size of each file. We did not sort the CSV files before
splitting, so the min/max column metadata in the Parquet files does not allow reads to
be skipped.

5.8.2 Query modelling

For each query, the model workload parameters must be determined to facilitate the
rough estimation. The selectivity in the data flow we manually determine by loading the
benchmark data (at SF=1) into a relational database, and manually executing selection
queries corresponding to each phase (input, exchange(s), output). For example for Q4,
approximately 63.2% of the LINEITEM tuples and 3.8% of ORDERS tuples pass the input
selection criteria. Q19 of TPC-H was altered using the correct REG AIR instead of AIR
REG. The compression ability of Parquet varies for each column, and the workers only
read in the columns relevant to the query. To determine the tuple data size of a read,
we determine the mean entry size of each column by inspecting the Parquet files. For
each table, we inspect the first partition at SF=100, which yields us the total byte size of
each column and the total number of records. We obtain the size of a column by simply
dividing the two. Using this method, we determined column l_extendedprice of
LINEITEM (size: SF × 6M tuples) has on average 5.26 byte per tuple. This is of use
during estimation: for example in a scenario of SF=200 with 384 partitions this means
retrieving the column from a single partition will result in 200×6M×5.26/384 = 15.7 MiB
the model expects to be retrieved. We use the 1M-reduction process rate from §5.6.3
for all except Q6, which is the only query of the six which does not have a join or
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reduce-by-key operation. For Q6, we set the model process rate to a value higher than
any possible network rate, which means it is of no consequence as the minimum of the
two rates is taken to calculate input duration in the model (§5.4.4).

5.8.3 Experimental setup

We evaluate across four scale factors SF ∈ {20, 100, 200, 500} (see Tab. 5.3) for six
queries (Q1, Q4, Q6, Q12, Q14, Q19). For each (SF,Q) combination, we perform
runs across 49 configurations: the Cartesian product of seven number of workers and
seven memory sizes (768, 1024, 1280, 1769, 2048, 2560, 4096). The seven numbers of
workers are determined via the targeted number of input partitions (F ) per worker:
F ∈ {1, 2, 3, 4, 8, 16, 32} For example, at SF = 100 with 192 partitions, the number of
workers is W ∈ {192

32
, 192

16
, 192

8
, 192

4
, 192

3
, 192

2
, 192

1
} = {6, 12, 24, 48, 64, 96, 192}. There is one

exception for SF = 500, at which we do not run F = 1 (W=960) as it is costly and clearly
not in the regime of interest. Any configuration for which any of its repeated runs results
in out-of-memory or reached time limit are considered infeasible (26 out of 1134, thus
we have 1108 total configurations). Each configuration is run three times, and the best
data point is chosen in accordance with §5.7.1.

5.8.4 Results

The main aspect to explore is how close the recommended configuration given by the
advisor is to the best configuration determined experimentally. For this, we use the
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Figure 5.8: Advice outcome performance. The bar height is the difference in the
distance metric value (which combines completion time and cost) between the advised
configuration and the experimentally determined best configuration.
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Figure 5.9: The choices made by the advisor and from the experiments. For each query,
the four scale factors are plotted left to right.

metric as defined in the evaluation methodology (§5.5.2): this distance metric combines
the achieved completion time and financial cost (absolute values for scale factor 500 and
100 are shown in Fig. 5.10 and Fig. 5.11 respectively), and produces a single distance
value. We normalize the distance by that of the experimentally chosen best configuration
distance (i.e., the best observed run). We show this value for all settings in Fig. 5.8. The
configurations determined best experimentally and the advisor choices are shown in
Fig. 5.9. The way to read this information is as follows:

For Q14 at SF=100, the advice is the same number of workers (Fig. 5.9a) but with more memory
(Fig. 5.9b) than the actual best configuration. This results in an outcome 2% worse overall
(Fig. 5.8) as it finishes 2% faster but at 9% higher cost.

Although the suggested configuration not always matches the best experimental run,
the advisor chooses a configuration that is within 15% off the best one determined
experimentally 21 out of 24 times. This is sufficiently accurate in practice given the large
amount of uncertainty inherent to cloud execution and the problem at hand (see below
for the noise inherent to the experimental runs). The larger differences observed for
some queries and scale factors have two main reasons.

The first reason is the inherent service variance of the cloud. Especially the start-up
time of workers and network rates when reading files exhibit large fluctuations and
can occasionally experience very low performance. This is influential because of (a) the
completion time being in the order of seconds where even a small delay immediately
causes a large delay in percentage, and (b) the dependency on the tail: the completion
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Figure 5.10: In comparison to a M=2048 MiB with F=2 baseline chosen based on [147],
the advice and experimental best achieve a better tradeoff for the exchange queries in
particular. (ratios above bars are relative to baseline, error bars are min-max across
repetitions for the chosen configuration)

time is determined by the last worker finishing and different forms of stragglers occur
often, especially at larger scales. To illustrate this effect, we compare in Fig. 5.12 the
distance metric for the best and the worst of the three runs of each of the 1108 configura-
tions (contiguous line) and the subset of kneepoints (dotted line). For the kneepoints
(the points we use as reference): half have a variance of more than 10% between best
and worst and almost a quarter of them have a difference of over 20%. This is why we
consider that an advice that is within 15% of the best observed run is a more than rea-
sonable approximation of a suitable configuration. In current systems, it is impossible to
get more accuracy but the advice is still valuable in automating the process of deploying
queries on serverless platforms.

The model limitations and assumptions are the second reason for differences between
estimation and actual runs. The goal of the model is to capture the relative performance
impact of the various components (i.e., start-up, input, exchanges, ...). Certain aspects
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Figure 5.11: Same comparison as Fig. 5.10 for SF=100. At lower scale factors, the
tradeoff gain is reduced as there are less workers involved in exchanges.

of the Lambada and AWS are difficult to estimate and are often not needed to capture
the overall trend. Yet, in some cases, these can have an impact in advice outcome.
In particular, issues such as the temporary bursty higher network rate when having
more than one vCPU, and the effect of concurrent processing and networking on their
respective rates cause unusual experimental results that are infeasible to model.

Although the first reason above is always present, the latter reason is of most interest to
explain the two cases in Fig. 5.8 which are more than 20% off.

In the first case, Q6 at SF=500 has a low completion time, with the best (kneepoint)
choice finishing in 2.7 s. This amplifies any delay in terms of relative outcome: the
advice outcome is 3.9 s (+43%) which is far from the best run but close to the other runs.
Secondly, the model overestimates network and process performance of low memory
workers, and as a result prefers the cheaper lower memory size. The preference for higher
number of workers stems from modeling the worker start-up as a constant (it actually
grows with the number of workers but it is difficult to predict by how much, introducing
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Figure 5.12: CDF comparing the performance of the worst and best repeated run of
each configuration.

variances in the order of hundreds of milliseconds), and with increased probability of
encountering stragglers at higher worker numbers (with stragglers being completely
unpredictable). The second case, Q12 at SF=200, has an advice whose outcome is 28%
off the best run with a completion time 12% slower and 41% more expensive. The
model underestimates the increased processing and network rate at higher memory size,
and is too optimistic regarding the additional overhead changing from a 1-level to a
2-level exchange (with 48 instead of 24 workers exceeding the threshold of 32), which
experimentally does not yield a sufficiently cost-effective decrease in completion time.

Some of these aspects can be corrected an accounted for by modifying the constants or
specializing the model even more for exchange heavy or scan heavy queries. We did not
think it was effective to do so given the level of noise that is inherent to the system. In
addition, if very many repetitions of the same query are run, a more realistic picture of
its actual performance emerges but the number of runs is very high and the variance
remains very high. For a system like Lambada, which targets occasional queries over
cold data, the average over many runs is not relevant because queries will be run only
once or twice and the probability that they run into the situations described is high as
our own experiments with three runs for each configuration indicate (Figure 5.12).
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Across the more representative workloads, we observe the following:

• There is significant variance in the outcome of configurations as serverless data
processing systems depend on the cloud for their start-up and communication
performance, yet it is still possible to give sound advice;

• The model is able to suggest a configuration with a good balance of completion
time and financial cost: in the vast majority of cases it was less than 15% off the
best choice a margin within the noise of the system.

5.9 Related work

There is a lot of work on resource allocation in the cloud for VMs [77] and containers [149].
Recent work from Microsoft has explored how to map serverless to the underlying VMs
running functions from the perspective of the cloud provider [218] but that is a different
problem from the one we address in this paper. There is also work in trying to explore
the properties of serverless systems [179, 200]. Existing serverless data processing
systems [147,158,201] show how to outperform alternatives in both completion and cost
in select configurations, but use manually selected configurations.

Existing work on rough estimation of execution time and cost for VMs [125] does
not directly translate to serverless functions due to: (a) the difference in the number
of workers involved (10s for virtual machines, 100s for serverless functions), (b) the
overhead incurred for data exchanges (typically through storage), and (c) the difference
in task duration. Serverless operates in the few to tens of seconds range, whereas virtual
machines in minutes to hours – factors insignificant at a one hour scale become so at a
one second scale [179, 200]. Similar to [125], we account for processing (albeit using data
and rate instead of CPU hours) and network overhead, but also incorporate the factors
unique to serverless query processing systems, namely startup time, exchange overhead
and request cost. Another related work is Astr(e)a [97, 98], which similarly proposes a
parameterized model to estimate and advise serverless configurations. However, their
model focuses on long running analytic queries and thus does not incorporate startup
time and exchange overhead. Their configuration advice minimizes completion time or
cost provided a user-defined budget or performance constraint respectively, rather than
a mechanism as ours which determines a tradeoff between completion time and cost.
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In the context of Apache Spark, Sparklens [163] is a tool which estimates completion time
and utilization given a certain number of compute nodes after inspecting a single run –
especially useful for repeated queries but not applicable in our use case. In the context
of Azure Synapse, [178] proposes the AutoExecutor framework, built upon SCOPE [40],
to automatically choose the number of executors for its Spark SQL queries. TASQ [162]
which similarly is built on top of SCOPE [40], trains and makes use of (graph) neural
networks to optimize the amount of tokens allocated to a job. Song et al. [185] proposes a
multi-objective optimization method to tune several Spark parameters including number
of executors and cores, as well as memory allocation. In the work, they ran a variety of
run configurations and used its resulting traces to train for each workload neural network
models for various objectives including latency and cost. Besides the different target
platform, these works differ from ours in the design of the model. Our goal is to provide
an advisory tool with a rough estimation model based on reasoning with parameters that
can be adjusted for any serverless query processing system or particular query, rather
than applying learning from traces with performance metrics to determine the best
allocation. Our model incorporates the most important dimensions for serverless query
processing in the cloud, namely start-up, compute, network and exchange overhead.
[185] similarly made use of Pareto set to determine the best configuration, although the
method at which the Pareto frontier is formed (via multi-objective optimization) differs
from ours (which simply estimates the entire Cartesian product of possibilities), as well
as the strategy of choosing the best configuration differs as they use direct distance to
the idealized fastest and cheapest point rather than using that point as normalization for
distance to the origin as we do.

5.10 Summary

We have presented an advisory tool for serverless data processing designed to pick a
configuration (i.e., number of workers and their memory size) striking a good balance
between performance (completion time) and cost. The advisory tool makes use of
a rough estimation model which incorporates processing and networking, start-up,
exchange overhead and request cost. We evaluated the advisor’s performance using
an existing serverless data processing system and show it is able to identify desirable
configurations. Automated configuration facilitates the job of the user and broadens the
scope at which serverless data processing is cost-effective.
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6
C O N C LU S I O N

In this final chapter we conclude the work presented in this thesis. We first provide an
overall summary of both the general thesis and individual chapters in §6.1. Secondly, we
consider interesting directions for future research and provide a general outlook in §6.2.

6.1 Summary

In this dissertation, we set out to make networked systems more performant, efficient,
resilient and analyzable. We posit that a networked system should have access and
make use of network access primitives which suit its application needs. Moreover, it is
important that (application-aware) network monitoring is deployed to evaluate whether
the network performance requirements are continuously being met, and diagnose (gray)
failures when present in the network. We highlight the usefulness of tools and models to
in their role to understand networked systems. This understanding enables both more
effective and efficient provisioning, as well as support research to improve their design.

In chapter 2 we put forward the idea of bounded degradation of both partial delivery and
performance as the premise for new network service primitives. In our work, we used
the fair share as the basis to determine the performance and permitted loss of flows. Our
proposed system achieves its guarantees through the concept of building up a budget,
which grows if they run ahead of their performance goal, and depletes when needed to
speed up other flows. The depletion either results in slower completion or a reduction in
amount of data being delivered. We identify the fair share through the implementation of
a regular probing mechanism, which requires time synchronization across participating
hosts as well as warrants the congestion control protocol to converge in a timely fashion.
Through packet-level simulations we evaluate the proposed mechanism. We find that
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it does enable speed-up of regular flows by trading off performance with the flexible
flows, especially when considering larger flows. However, due to the effect of the
probing mechanism, the amount of potential speed-up is limited, and it can slow the
tail completion of short flows. The key limiting factor to deployment is the need to
determine its fair share (which with the probing mechanism restricts settings), as well as
the limited set of scenarios in which bounded deterioration of flexible flows is desirable.

Chapter 3 characterized the concept of UNDERRADAR attacks aimed at degrading perfor-
mance surreptitiously while preventing diagnosis through the use of programmable in-
network devices. We identified several of such attacks, which show these programmable
devices with their targeting capability are able to inhibit the flow of data and application
performance as a whole with few interactions. Our work identifies several key mitigation
techniques. The first recommended countermeasure is outright reducing the ability to
identify key packets by restricting available information, both through the encryption of
packet payload and header, as well as indirect identification by obfuscating timing and
size. We note that network monitoring is most effective in mitigation if it continuously
monitors all real traffic rather than depending on probing traffic or selective mirroring.
These systems should be finely tuned to detect both distribution shifts which indicate
gray failure and identify outliers which could have been the result of targeted interfer-
ence. The second recommend countermeasure is the introduction of application-aware
network monitoring, which enables the application to indicate whether its network
communication requirements are being consistently met. This feedback can then be
directly coupled to network-level reports, in order to identify network failures and
potential UNDERRADAR attacks occurring. With this characterization and considera-
tion of mitigations, we provide directions towards making networked systems more
resilient towards such adversaries, alongside the wider benefit of improved monitoring
capability.

Chapter 4 presented a network simulator for LEO satellite networks named HYPATIA.
The simulator enables researchers to investigate the effect of the highly dynamic nature
of LEO satellite networks on transport protocols, routing and traffic engineering. We
find that the simulator is able to sufficiently scale to cover several use cases of network
research interest, and is able to capture the dynamic nature at sufficient granularity. We
demonstrated its utility through several experiments, which (a) show that transport
protocols experience gradual and sudden delay changes and additional loss, which
should be addressed in their design, and (b) brings forward the challenge to perform
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routing and traffic engineering in the face of constantly shifting traffic and the viable
paths they are able to take. HYPATIA constitutes a valuable effort towards enabling
researcher to evaluate existing techniques and develop novel ones.

Chapter 5 introduced a parameterized approach to provision serverless query process-
ing systems, designed to strike a good balance between completion time and financial
cost. We note that exact prediction is infeasible due to inherent data-processing-related
limitations such as query selectivity and data distribution, as well as due to serverless
cloud platforms which provide varying opaque service quality. We design a rough
estimation model, which takes into account start-up, processing, compressing, network
transfer and network overheads. The model incorporates constants such as network
rate, which we determine through the use of microbenchmarks. The advisor uses the
model to obtain completion time and financial cost estimates for possible configurations
(which we visualized in the form of a Pareto frontier), from which it picks the config-
uration normalized closest to the origin as the one which strikes a good balance. We
evaluated the advisor using a set of six TPC-H derived queries applied to the dataset
at different scales. Our automated advisor is able to pinpoint a configuration not far
off the best choice in most cases. We find that there is significant variance in the actual
outcome as the serverless data processing system depends on the cloud for their start-up
and communication performance. Certain aspects of serverless platforms which are
difficult to model additionally had an effect as the model did not incorporate them, such
as temporary bursty higher network rate and the effect of concurrent processing on
rates. Through automated provisioning, users are able to more efficiently make use of
serverless query processing systems. By modeling serverless query processing systems,
we can better understand their bottlenecks, and broaden the use case in which they are
cost-effective.

6.2 Research outlook

In the upcoming sections, we discuss several interesting research directions in the diverse
set of networked system topics presented in this dissertation. Lastly, we conclude with a
general outlook on networked systems as a whole.
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6.2.1 Improving and expanding bounded degradation primitives

Determining fair-share. The key limitation of our implementation is the determination
of the fair share of flows through probing. This approach reduces its overall potential
performance gain, short flows are unable to be captured, the accuracy of its fair share
estimate depends on convergence rates of the transport protocol and necessitates the use
of a shared timing mechanism. Rather than our approach of making use of the existing
network stack and the limitations that accompany it, we could explore building a stack
from the ground up which incorporates functionality to determine the fair-share (e.g.,
this is especially promising in the data center context [101, 180, 221]). There could even
be further exploration into the core definition of fairness, such that we can better define
the desired outcome in cases of competition, deprioritization and degradation.

Partial delivery with deadlines as basis. We based the bounded degradation on the fair
share a flow would receive. However, other bases for degradation are also conceivable.
Of particular interest are deadline-aware approaches [195,203], which inherently possess
a definition of what quality of service entails: whether a deadline is made. It would be
interesting to expand the mapping to quality of service to not solely include whether
a deadline is made, but also how much is delivered. This would expand the solution
space in both the decentralized approach as well as with an centralized scheduler, as it
obtains an additional degree of freedom. This can similarly be integrated in system-wide
optimization like Sincronia [2], maximizing value brought to the application. It could
also be generally applied to central scheduler systems such as FastPass [159], reducing
the number of requested slots as appropriate.

6.2.2 Cross-layer system performance tracing

The monitoring system of the application and that of the network are often deployed
to operate separately. On one side, the application-level metrics offer insight how well
a networked system overall is performing, such as 99th percentile response time or
throughput. On the other hand, network monitoring systems are tasked with mea-
surements related to the network health, identifying elevated levels of congestion or
loss, validating load balancing, ensuring correct routing, and pinpointing responsible
problematic nodes or links. This separation of monitoring is under the premise that the
two are causally related: if application-level performance degradation is experienced
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and the network monitoring is indicating good operation, then the problem must be else-
where (e.g., software bugs, under-provisioning). However, an in-network programmable
adversary could interfere with this relation.

An interesting future direction would be the creation of a tracing system which tracks
performance from the higher application-layer abstraction of a "user request" till the
drop of a packet at a particular switch. The idea is similar to that of Microsoft’s 007
monitoring system’s approach of performing a trace upon packet loss observation [23].
When a user request fails to meet a certain service-level objective (e.g., response time is
too high), a trace is initiated in which metrics from all used resources are collected and
combined. The resources could for instance span network tracing and performance logs
for all its connections, disk access times, queueing delay, and processing times. These
traces could then be combined to reveal specific application-level targeting, and enable
the identification of problematic devices. With the suspected presence of malicious
devices, these cross-layer measurements should in addition be cross-checked with one
another for inconsistencies. For example, [145] proposes various techniques to detect
routers reporting incorrect packet forwarding behavior.

Another more direct network-level approach would be to have stringent network ser-
vice guarantees (e.g., deadline-based), rather than best-effort. If these network service
guarantees are not met, an automated investigation can be launched in the network. The
difficulty to keep track of these guarantees will depend on the network service offered,
for example the coflow network service primitive in [2] will require multi-node tracking,
logging and identification of causes (e.g., losses).

6.2.3 Enhancing LEO network simulation further

The HYPATIA simulator introduced in chapter 4 is a first step towards enabling network
research for LEO satellite network simulation. It however can be improved even further
in two particular directions.

Higher fidelity. In particular, it models three useful aspects of the continuously changing
topology: the routing, the change of links and the varying latency of those links. There
are however other considerable characteristics that can furthermore be taken into account
in HYPATIA, albeit they require significant development effort. To name a few: (1) more
realistic modeling of radio GS-satellite communication; (2) the modeling of interference
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between connections through frequency management, which would impact which
ground stations and satellites can communicate and at what rate (first explorations
in this direction are done in [211]); (3) the impact of physical effects on both GSLs
and ISLs; or (4) routing strategies beyond shortest latency paths. These improvements
would increase the fidelity of the already existing experiments (e.g., congestion control
behavior) as well as enable research into various other fields, such as even more network-
aware adaptive routing and frequency management strategies. In addition, the fidelity
of the available experiments can be improved by accounting for Earth’s curvature
in the maximum GSL length calculation. Another (continuously) interesting future
work direction is the incorporation of the latest available constellation deployment
parameterization.

Increased scalability. HYPATIA in its current form is able to satisfy several use cases of
research interest. However, the addition of more modeled functionality to achieve higher
fidelity, higher link capacities, larger constellations, more sophisticated routing strategies
or longer simulations all will affect the perceived performance of HYPATIA. As such,
investigation in how to speed up HYPATIA even further is a worthwhile pursuit. The
preprocessing pipeline of HYPATIA, which calculates the routing and topology changes
in advance, can be sped up by writing more optimized code or implementing it in a
faster language. There is also speed-up possibility in the packet-level ns-3 simulation
component by enabling parallel processing, which requires careful consideration to
ensure correctness.

Of course, HYPATIA represents a single point in the space of LEO satellite networks
modeling. It can be used in conjunction with other simulation, emulation and testbed
tools with different modeling choices and limitations. Of particular interest is the
comparison to real-world deployments to validate outcomes and further understand
HYPATIA’s usage and limitations. With the recent commercial introduction of LEO
Internet service to the public, the creation of such testbeds has become viable [183].

6.2.4 Enhancing serverless query processing system modeling

The use case for serverless query processing is the niche of infrequent interactive analytic
queries on cold data. For queries that are done frequently, or take longer than at most a
few tens of seconds, alternatives such as virtual machines are likely more cost-effective
and performant [147]. A model for serverless query processing as such must make
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completion time estimations in the order of seconds. The estimation accuracy hinges
on the predictability of startup, compute, and communication of the functions. The
following would be interesting directions to improve their modeling further.

Improved QoS guarantees. The primary appeal of serverless (function-as-a-service)
is that the burden of server management, load balancing and scaling is placed upon
the cloud provider. Thus, by design, the infrastructure which underlies serverless
functions is opaque to the user. In practice, cloud providers offer mostly best-effort
rather than service-level guarantees, both in terms of start-up and serverless function
configuration (e.g., see Tab. 5.1). Similarly, serverless query processing systems make
heavy use of cloud services, such as storage to read in their input as well as perform
exchanges [147, 158], and message queueing systems (e.g., to communicate with the
driver). The introduction of service-level guarantees would significantly aid estimation
reliability. In particular, the provision of guarantees pertaining to (a) startup rate and
latency, (b) network rate and latency, and (c) cloud service guarantees (e.g., with regards
to file operation) is useful, as in our microbenchmarks they were observed to be most
varying. Beyond cloud provider guarantees, the serverless query processing system
itself can also incorporate additional techniques to improve its inherent performance
reliability. Topology-aware computation [33] accounts during the execution for topologi-
cal differences to achieve best performance for the targeted data processing task and its
algorithmic bottlenecks. In the context of serverless, one could initially spawn a larger
number of workers than intended, and quickly discard ones whose topological position
would inhibit the performance. Secondly, one could add a small amount of redundant
stand-by workers, which would take over for stragglers during the computation. More-
over, request success and tail response time could be improved through techniques such
as hedging [52].

More customizable function configuration. Based on current cloud provider offering,
in our work we limited the provisioning decision to the number of workers and their
respective memory size. The other resources (compute, network, disk) are generally
coupled to the chosen memory size or are constant. However, as a consequence (a) for
the former, to reach the sufficiently good performance in one dimension, there is over-
provisioned unused resources elsewhere (e.g., computer or memory), or (b) for the latter,
there is inability to increase a bottleneck resource at all (e.g., network and disk). As such,
increased independent customizability of the dimensions would enable the launching
of functions tailored to the intended function. This would lead to a speed-up if before
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the bottleneck resource dimension was constant, or improved cost-effectiveness by not
having unused resource dimensions. Together, these improvements would broaden the
niche use case of serverless query processing systems, and with it, the usability of the
provisioning model. However, a consequence of broadening the customizability is that
scheduling will involve more dimensions, which could lead to difficulty in scaling and
lower levels of utilization [62]. As such, it remains to be seen if this customizability is
desirable for cloud providers to make available to its users.

6.2.5 General outlook

The field of networked systems is constantly evolving to meet the requirements of in-
creasingly challenging workloads and make use of technological developments. Not
only are the existing building blocks improving (e.g., faster (multi-core) processing
speed, network bandwidth, and storage access rate), but also entirely new building
blocks are being introduced in recent years with novel capabilities (e.g., programmable
switches [34], FPGAs [59], TPUs [102]). There has similarly been a broadening in the
platforms and service abstractions that are offered, such as serverless [15,69,139], contain-
ers [153], QaaS [18, 73], and many others. Global network infrastructure is evolving as
well, with broader coverage, higher rates and lower latency through the deployment of
wider spread fiber [58], better telecommunication technology (e.g., 5G [143]), low Earth
orbit satellite networks [28], and computing infrastructure closer to the edge [19, 72, 141].
Networked systems will continue to be engineered to incorporate and take advantage
of these rapid developments to the fullest, enhancing their performance, resilience,
analyzability, and efficiency.
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