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Morphogen gradients can instruct cells about their po-
sition in a patterned tissue. Non-linear morphogen
decay has been suggested to increase gradient precision
by reducing the sensitivity to variability in the mor-
phogen source. Here, we use cell-based simulations to
quantitatively compare the positional error of gradients
for linear and non-linear morphogen decay. While we
confirm that non-linear decay reduces the positional
error close to the source, the reduction is very small
for physiological noise levels. Far from the source, the
positional error is much larger for non-linear decay in
tissues that pose a flux barrier to the morphogen at the
boundary. In light of this new data, a physiological role
of morphogen decay dynamics in patterning precision
appears unlikely.
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Introduction

According to Wolpert’s famous French flag model [1], mor-
phogen gradients encode readout positions xθ via concentration
thresholds Cθ = C(xθ), and differentiating cells base their fate
decisions on whether the local morphogen concentration lies
above or below such thresholds. Variations in the morphogen
profile thus result in variations in the readout position. The
accuracy of the spatial information carried by morphogen gradi-
ents can be quantified with the positional error, which is defined
as the standard deviation of the readout positions over different
gradient realizations [2]:

σx = stddev [xθ] . (1)

How the observed precision of tissue patterns arising from this
principle is achieved, in spite of natural molecular noise in mor-
phogen production, transport, decay, internalization, turnover
and other sources of variability, is a key question in develop-
mental biology [3, 2, 4].

Morphogen dynamics are often described by reaction-diffusion
equations of the form [5]

∂C

∂t
= D∆C − dCn/Cn−1

ref (2)

with morphogen concentration C, diffusion coefficient D, and
decay rate d. Cref is a constant reference concentration that we
introduce to make all units independent of n. The exponent
n models linear (n = 1) or non-linear (n > 1) decay of the
morphogen. Non-linear decay would for instance ensue in case
of cell lineage transport, when ligands interact with receptor

clusters, or if ligand binding results in receptor upregulation,
as is the case for several morphogens, most prominently for
Hedgehog (Hh) [6–9]. Most reported morphogen gradient pro-
files have been fitted assuming linear decay (n = 1) [10–17]. For
the FGF8 gradient in the developing mouse brain, n ≈ 4 has
been reported [18].

Differences in sensitivity to a changing morphogen influx from
the source into the patterned tissue have been argued to make
gradients more robust if morphogen decay is non-linear, because
they shift less when the morphogen influx is altered [6]. However,
the gradients that result from non-linear decay also possess
significantly shallower tails, relative to the higher concentration.
Their usefulness for patterning has therefore been questioned
[5], and it has remained unclear whether nonlinearity in the
decay would in fact help achieving higher positional accuracy.
Indeed, to first order, the positional error of variable gradients
is inversely proportional to the magnitude of their slope [10, 2]
according to

σx ≈
∣∣∣∂C

∂x

∣∣∣−1
σC , (3)

where σC is the standard deviation of local morphogen concen-
tration and x denotes the patterning axis. This suggests that for
patterning precision, the benefit of a smaller positional shift of
gradients with n > 1 might be offset or even overcompensated
by their flatter shape further from the source.

To investigate the physiological relevance of the mode of mor-
phogen degradation, we employ here a recently developed nu-
merical framework that allows us to analyse how physiological
molecular noise translates into gradient variability, and thus,
patterning precision [2, 19]. For reported molecular noise lev-
els, the simulated gradients have previously been found to be
sufficiently precise to yield the observed precision of develop-
mental boundaries in case of linear decay [2]. We now extend
the framework to analyse the impact of non-linear decay on
gradient precision and find that it leads to a marginally lower
positional error close to the source compared to linear decay.
With only a small fraction of a cell diameter, the improvement
is small and therefore hardly physiologically relevant. The effect
of zero-flux conditions at the tissue boundary on non-linear de-
cay, on the other hand, causes a drastically increased positional
error in the patterning domain in comparison to linear decay.

Results & Discussion

Before studying the effect of physiological variability, we start
off with some theoretical considerations about the consequences
of nonlinear decay for noise-free morphogen gradients.
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Figure 1: Comparison of linear and non-linear mor-
phogen gradients. A Linear decay leads to exponential gradi-
ents. Changes in the gradient amplitude C0 (different colours)
lead to a shift ∆x that is independent of the amplitude. B
Non-linear decay (n = 2) leads to power-law gradients. The
shift ∆x due to a change of C0 is amplitude-dependent. A,B
With zero-flux conditions at the distal boundary, the shift is uni-
form in the patterning domain only away from that boundary.
Cell boundaries are denoted by black ticks along the patterning
axis. C,D Molecular kinetic noise and cell area variability leads
to noisy gradients. For a fixed readout threshold Cθ, variable
gradients result in different readout positions xθ,i (inset plots).
Non-linear decay (D) leads to shallower gradients further in the
patterning domain compared to linear decay (C).

Qualitative difference between linear and
non-linear morphogen decay

On one-dimensional, infinite patterning domains (C(x) → 0 as
x → ∞), linear morphogen decay (n = 1) results in exponential
steady-state gradient profiles (Fig. 1A) of the form [20]

C(x) = C0e−x/λ, λ =
√

D

d
(4)

with C0 either the Dirichlet boundary condition at the source,
or C0 = j0λ/D in case of a flux boundary condition at the
source (−D∂C/∂x|x=0 = j0). With linear decay, influx and
amplitude are thus proportional.

Non-linear decay (n > 1), on the other hand, results in shifted
power-law gradients [6] (Fig. 1B) that can be written as

C(x) = C0

(
1 + x

mλm

)−m

, m = 2
n − 1 , (5)

where

λm = λ

√
1 + 1

m

(
Cref

C0

) 1
m

(6)

is a length scale determining the shift in the power law, and
C0 = C(0) is the amplitude analogous to Eq. 4. As the linear
decay is approached (n → 1), m diverges (m → ∞), the power-
law length scale approaches the exponential length scale (λm →
λ), and Eq. 5 converges to Eq. 4. For a flux boundary condition

at the source, the morphogen amplitude is

C0 = j0λm

D
=

(
λ

√
1 + 1

m

j0

D
C

1
m

ref

) m
m+1

.

Amplitude and influx at the source boundary are thus not pro-
portional for non-linear morphogen decay, unlike in the linear
case. If one were to locally fit an exponential to the power-law
gradient [6], x−m ∼ exp[−x/λ(x)], one would observe the “gra-
dient length” λ(x) to increase with the distance from the source
according to λ(x) = x/(m ln x) (Fig. 1B).

The readout position at concentration threshold Cθ follows
for linear decay from Eq. 4 as

xθ = λ ln C0

Cθ
.

and for non-linear decay from Eq. 5 as

xθ = mλm

((
C0

Cθ

) 1
m

− 1
)

.

Real morphogen gradients are not deterministic but variable,
and hence readout positions xθ,i vary between different gradient
realisations i for both linear and non-linear morphogen decay
(Fig. 1C,D). Before we turn to the positional error this entails,
we consider first the effect of a change on morphogen production
levels on idealised, deterministic gradients. In response to a
change in the morphogen amplitude from C0 to C∗

0 , the readout
position shifts along the patterning axis. For linear decay, this
shift ∆x is independent of the absolute gradient amplitude C0
and depends only on the relative amplitude change, C∗

0 /C0, and
the characteristic gradient length λ:

∆x = x∗
θ − xθ = λ ln C∗

0
C0

. (7)

For non-linear decay, the shift is given by

∆x = mλm

(
1 −

(
C0

C∗
0

) 1
m

)
. (8)

Since ∆x ∝ λm ∝ C
−1/m
0 , the shift increases with decreasing

amplitude (Fig. 2A,B). This qualitatively distinguishes linear
from non-linear decay. Alternatively, the shift may be expressed
as a function of a change in morphogen influx from the source
from j0 to j∗

0 . For linear decay, it simply reads

∆x = λ ln j∗
0

j0
,

because flux and amplitude are proportional, making the shift
again independent of morphogen levels. For non-linear decay,
however, amplitude and influx are related as(

C0

C∗
0

) 1
m

=
(

j0

j∗
0

) 1
m+1

.

The resulting readout shift is therefore

∆x = mλm

(
1 −

(
j0

j∗
0

) 1
m+1

)
with a power-law length scale λm that can be expressed in terms
of the influx j0 as

λm = λ

(√
1 + 1

m

(
jref

j0

) 1
m

) m
m+1

, jref = DCref

λ
.

2

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2022. ; https://doi.org/10.1101/2022.11.04.514993doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.04.514993
http://creativecommons.org/licenses/by-nc/4.0/


∆x=–

A

Constant decay
length – (n = 1)

Increasing decay
length along the patter-

ning domain (n = 4)

0 2 4 6 8 10
10−5

10−4

10−3

10−2

10−1

100

101

Relative position x=–

R
el

.c
on

ce
nt

ra
tio

n
C
(x
)=
C
re
f

j0–=DCref
e
1

− 1

m

e-fold
amplitude
change

B

0:1 1 10
0:1

1

10

Relative amplitude C0=Cref

R
el

at
iv

e
sh

ift
∆
x
=–

n = 1
n = 1:5
n = 2
n = 3
n = 4

− 1

m + 1

e-fold
influx

change

C

0:1 1 10
0:1

1

10

Relative influx j0=jref

R
el

at
iv

e
sh

ift
∆
x
=–

n = 1
n = 1:5
n = 2
n = 3
n = 4

Figure 2: A Comparison of noise-free gradients arising from linear (blue) and non-linear (green) decay. A fold-change in the
influx j0 from the source shifts the gradients by ∆x. B Positional shift of the morphogen gradient as a function of the amplitude
and degree of non-linearity, for a fold-change in the amplitude, C∗

0 /C0 = e. C Positional shift as a function of the influx and
degree of non-linearity, for a fold-change in the influx, j∗

0 /j0 = e.

Therefore, since ∆x ∝ λm ∝ j
−1/(m+1)
0 , the shift also increases

with decreasing influx (Fig. 2A,C), albeit slower than with the
amplitude.

It has previously been argued [6] that the circumstance that
the power-law shift vanishes at sufficiently large influx values
(∆x → 0 as j0 → ∞ for n > 1) would lead to more robust
patterning, because the readout position becomes independent
of the influx in this limit when the morphogen decay is non-
linear. In this discussion, molecular noise was included only in
the form of a fold-change in the amplitude or influx. We now
extend this deterministic view by taking molecular variability
of the gradients into account, and demonstrate numerically that
the positional error of noisy morphogen gradients does not sig-
nificantly improve with non-linear decay. In the contrary, if the
morphogen cannot leave the patterning domain opposite of the
source, the power-law gradients become shallow in a substantial
part of the domain, leading to reduced positional accuracy with
non-linear decay.

Noisy gradient model
To study the impact of decay non-linearity on the precision of
noisy morphogen gradients, we simulated steady-state diffusion
on a one-dimensional cellular domain composed of a source of
length Ls and a patterning region of length Lp (Fig. 1C,D).
Eq. 2 was extended by a morphogen production term in the
source, resulting in

0 = D
∂2C

∂x2 − dCn/Cn−1
ref + pH(−x). (9)

Here, H(x) is the Heaviside function, ensuring that production
at rate p only occurs in the source (x < 0). No-flux boundary
conditions were used at both outer ends of the domain:

∂C

∂x
(−Ls) = 0 = ∂C

∂x
(Lp).

We generated large numbers of variable morphogen gradients
by numerically solving Eq. 9 with kinetic parameters p, d and
D, and cell areas A independently drawn from log-normal distri-
butions for each cell in the domain, as described before [2, 19].
The diffusion coefficient, D, and the degradation rate, d, set the
steady-state patterning length scale, λ =

√
D/d, and we report

positional quantities relative to the average λ or the average cell
diameter, which in turn is chosen to be a fixed multiple of the
average λ. Thus, our results are independent of the absolute
values chosen for D and d.

We express the mean value and standard deviation of a pa-
rameter q by µq and σq, respectively. Based on measurements of
the Hedgehog morphogen gradient in the Drosophila wing disc

and mouse neural tube [12, 15, 2], we used µD = 0.033 µm2/s,
µλ = 20 µm. Other specific values would not change the results
reported here, which are for the steady state, but would only
alter the timescale it takes for the steady state to be reached.
We furthermore set µd = µD/µ2

λ, µp = µdCref , as average ki-
netic parameters, where Cref = 1 arb. units to normalise the
concentrations.

The noise-to-signal ratio in each quantity q is given by the
corresponding coefficient of variation, CVq = σq/µq. Reported
physiological noise levels in morphogen production, decay, and
transport differ between morphogens and tissues, but are around
CVp,d,D ≈ 0.3 [2], which we use to define the distribution widths
of the kinetic parameters.

The widths and cross-sectional areas of cells vary in all layers
along the apical-basal axis [21]. Most quantifications have been
carried out on the apical surface. One of the highest reported
values for the apical area CV is found in the vertebrate neural
tube (CVA ≈ 0.9) [22–24], but most values are considerably
lower [25]. We therefore used CVA = 0.5 in all simulations
unless specified otherwise. Random cell areas were drawn from
a log-normal distribution with the specified CVA and mean cell
area [19]

µA = π
(

µδ

2

)2
4
√

1 + CV2
A,

allowing us to control the mean cell diameter µδ. The individual
random cell areas A were then transformed to cell diameters δ
according to δ = 2

√
A/π, and the spatial axis was discretized

into cellular sub-intervals accordingly. We used a patterning
domain length of 200 cells (Lp = 200µδ) and a source domain
length of 5 cells (Ls = 5µδ), unless otherwise stated.

Whether cells average the morphogen signal over their entire
cell surface, beyond their cell surface via a cilium, or read out the
signal at a single point, has little effect on the readout precision
[19]. We therefore only analysed the case where cells average
the morphogen signal over their cell surface (their diameter in
the 1D model here).

Impact of non-linear decay on gradient precision
We previously showed that in case of linear decay, there is
a negligible impact of cell area variability as long as CVA <
1 [19]. We now find that this holds similarly for non-linear
decay (Fig. 3A), justifying the use of a fixed CVA = 0.5 in the
remainder of our analysis.

Much as for linear decay [19], the positional error scales with
the square root of the mean cell diameter also for non-linear
decay (Fig. 3B). Small cell diameters, as observed in all known
tissues that employ gradient-based patterning [19], are therefore
important for high spatial precision also in case of non-linear
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Figure 3: Impact of non-linear decay on gradient precision. A Physiological variability in the cross-sectional cell areas
has no significant impact on gradient precision. The positional error σx is plotted in units of the mean cell diameter µδ at different
readout positions in the patterning domain (symbols), and for different degrees of non-linearity (colours). B The positional error
increases with the square root of the cell diameter, irrespective of n. Dotted lines show σx/µλ = α

√
µδ/µλ for α = 0.6, 1.2 for

reference. Lp = 100µδ. C Non-linear decay leads to a marginally lower positional error close to the morphogen source. Inset plot
shows σx/µδ at a distance of two cells from the source as a function of decay non-linearity. With a no-flux boundary at x = Lp,
the shallowness of gradients from non-linear decay lets the positional error increase strongly far from the source. D Variability
in the production rate alone has no effect on the positional error along the domain for linear decay (blue). The stronger the
non-linearity, the smaller the positional error close to the source (inset). Far from the source, the positional error increases rapidly
with non-linear decay. E Difference between the positional error for n > 1 and for n = 1 relative to the mean cell diameter, at
fixed readout positions (colours). F Effect of finite patterning domain size. The positional error increases close to the distant
zero-flux boundary in case of non-linear decay (shades of blue, n = 2). Patterning remains precise across a larger distance in
the case of linear decay (black, n = 1). In all panels, each data point represents the mean from 103 independent simulations.
Standard errors are smaller than the symbols.

decay. For the remainder of this study, we fix the average
cell diameter at a fourth of the exponential gradient length,
µδ/µλ = 1/4, as found in the developing mouse neural tube
[26, 15].

The positional error increases from less than one cell diameter
close to the source to about two cell diameters at a distance
of 75 cell diameters away from the source (Fig. 3C). Close to
the distant domain boundary opposite of the source, where
a no-flux condition was imposed, the positional error rapidly
increases for non-linear decay, while remaining relatively low
for linear decay. If only the production in the source is varied
(CVp = 0.3, CVd,D = 0), the positional error remains constant
as the readout distance from the source increases, but increases
again sharply close to the distant end in case of non-linear
decay (Fig. 3D). But even for strong non-linearity (n = 4), the
positional error remains in the sub-cellular range when only
production noise is considered, as long as the readout position
is further than about λ away from the distal end.

Independent of whether all parameters are varied or only
the production rate, the positional error drops in close vicinity
to the source with stronger non-linearity in the decay (insets
of Fig. 3C,D). However, with less than 20% of a single cell
diameter from n = 1 to n = 4, the effect is likely too small to be
physiologically relevant. Further away from the source, linear
decay yields a smaller positional error than non-linear decay
(Fig. 3D–E). No matter how long the patterning domain is, non-

linearity always increases the positional error as the distal tissue
boundary is approached (Fig. 3F).

What then causes the increased positional errors with non-
linear decay near the distal domain boundary? A zero-flux
boundary condition there implies shallower gradients than on
infinite domains: C′(x) → 0 as x → Lp. This effect occurs
irrespective of n, but the spatial range over which the gradient
flattens (and thus deviates from the pure exponential and shifted
power-law forms for infinite domains, Eqs. 4 and 5) increases
with n. By virtue of Eq. 3, non-linear decay thus leads to greater
positional errors at readout positions in the vicinity of the distal
boundary compared to linear decay.

In summary, our computer simulations of noisy morphogen
gradients suggest that it is insufficient to quantify gradient ro-
bustness and patterning precision by considering variability in
the morphogen production alone. Moreover, if the morphogen
cannot exit the patterning domain opposite of the source, shifted
power-law gradients that result from non-linear morphogen de-
cay flatten over a significantly larger range than exponential
gradients, leading to increased positional errors. The gain in
positional accuracy close to the source for non-linear decay is
negligible and therefore barely physiologically relevant. Overall,
exponential gradients lead to more robust patterning.
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No-flux BC were imposed at at the far end of the tissue (at x = Lp). D–F Positional error as a function of morphogen abundance
variability, at different readout positions (symbols) and degrees of non-linearity (colours). Greater variability in the morphogen
production rate (D), influx (E), and gradient amplitude (F) leads to a larger positional error above a certain threshold variability
CV ⪆ 0.1–0.3. Kinetic variability was fixed at CVp,d = 0.3 (except for CVp in D). Further parameters: µj0 = µDCref/µλ (E),
µC0 = Cref (F). In panels D–F, each data point represents the mean from 103 independent simulations. Standard errors are
smaller than the symbols.

Impact of boundary condition at the source

Given the impact of the distal domain boundary, we wondered
whether the representation of the morphogen source by either
a spatial production domain (Fig. 4A), by a flux boundary
condition −DC′(0) = j0 (Fig. 4B) as used by Eldar et al. [6], or
by a fixed gradient amplitude C(0) = C0 (Fig. 4C) would affect
the positional error predicted by the model. While there are
small quantitative differences, the gradient shapes (Fig. 4A–C)
and positional errors (Fig. 4D–F) are overall very similar.

As we increase the variability in the production rate via CVp

(Fig. 4D), in the influx from the source via CVj0 (Fig. 4E),
or in the gradient amplitude at the source boundary via CVC0

(Fig. 4F), we find the smallest increase in the positional error for
the production rate and the largest increase for the gradient am-
plitude. Neumann or Dirichlet boundary conditions thus over-
estimate the positional error when the variability in the source
is high. Instead of using such boundary conditions, a spatial
source domain should explicitly be modeled, where applicable.
With the physiological values CVp ≈ 0.3 and CVC0 ⪅ 0.3 [2],
however, variability in the morphogen production plays merely
a subordinate to moderate role in the overall gradient variabil-
ity. Molecular noise in morphogen degradation and diffusivity
dominates the patterning precision.

Impact of the morphogen source strength

As the gradient amplitude determines the sensitivity of the read-
out position to amplitude changes for non-linear decay (Eqs. 6

and 8) but not for linear decay (Eq. 7), the average morphogen
production rate is expected to affect the patterning accuracy
in the case of non-linear decay, but not for linear decay. We
put this theoretical prediction to the test by varying the mean
relative production rate, the mean influx from the source, and
the mean morphogen amplitude in the three different simulated
morphogen production models. Changes in these parameters
have no effect on the positional error if morphogen degrada-
tion is linear, which is consistent with the theory (Fig. 5A–F,
blue lines). With non-linear decay, on the other hand, we in-
deed observe the positional error to be highly dependent on
morphogen abundance. This dependency, however, is not well
approximated by simple power laws σx ∝ µα

C0 ∝ µβ
j0

, such as
for the shift ∆x ∝ C

−1/m
0 ∝ j

−1/(m+1)
0 discussed in the context

of noise-free gradients above. Precision arguments previously
brought forward for deterministic morphogen gradients [6] do
not appear to directly quantitatively translate to the positional
error in settings where cell-to-cell variability is included, and
where morphogen production remains at physiological levels.

For high morphogen supply levels, non-linear decay leads to
a smaller positional error close to the source (Fig. 5A–C). The
effect is, however, substantially less pronounced in the model
that includes a spatial morphogen source domain (Fig. 5A) than
in those that do not (Fig. 5B,C), highlighting once again the
limitations of the latter. With an explicit source domain, non-
linear decay yields only marginally more spatial accuracy, when
production is high (p/dCref ⪆ 0.4). Lower production levels
increase the positional error close to the source substantially
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Figure 5: Impact of the morphogen source strength. Numerically obtained spatial patterning accuracy in units of average
cell diameters µδ at different positions in the tissue (symbols) and for different degrees of non-linearity (colours). A–C Readout
close to the source, at xθ = 5µδ; D–F Readout far from the source, at xθ = 150µδ. Morphogen production scenarios are identical
to Fig. 4: Production in a source domain with morphogen-secreting cells (A,D), with a morphogen influx from the source at the
source boundary (B,E), and with a specified morphogen concentration at the source boundary (C,F). Very low (high) influxes or
amplitudes lead to flat (steep) gradients at strong decay non-linearity, limiting the parameter range over which the positional
error can be reliably determined for n = 4 (B,C,E,F). In all panels, each data point represents the mean from 103 independent
simulations, with standard errors smaller than the symbols.

in all three models, reaching several cell diameters, for n > 1.
The gradients effectively flatten out at low production, reducing
their usefulness for spatial tissue patterning. The stronger the
non-linearity in the degradation, the more pronounced this loss
of patterning precision.

Further away from the source, the benefit of non-linear decay
is lost entirely, and exponential gradients remain more precise
than shifted power-law gradients also at high morphogen supply
levels (Fig. 5D–F).

In summary, simplified models without explicit representa-
tion of morphogen-secreting cells overestimate the beneficial
impact of non-linear decay on patterning precision. In all mod-
els considered here, the benefit of non-linear morphogen decay
is restricted to a close vicinity of the morphogen source, where
patterning precision is high anyway [2] and may thus not be as
critical for robust development, and to a regime of very strong
morphogen production. Further into the tissue, and at moder-
ate morphogen abundance, linear decay yields more accurate
patterning.

Conclusion

Non-linear morphogen decay was proposed as a potential
precision-enhancing mechanism for tissue patterning in the sem-
inal theoretical work by Eldar et al. [6] in a deterministic setting,
where morphogen gradients are devoid of noise. Here we have
explored this idea with a stochastic model, taking noisy gradi-
ents into account, as they arise from cell-to-cell variability in
morphogen kinetics. The surprising outcome of our quantitative
analysis is that, while a small advantageous effect indeed exists

near the morphogen source, this gain is outweighed by a substan-
tial loss of precision in the spatial information that signalling
gradients provide to cells in the interior and distal parts of a
patterned tissue when morphogen decay is non-linear. In tissues
that pose a diffusion barrier to the signalling molecule at their
boundary, shifted power-law gradients that emerge with self-
enhanced degradation, flatten out over a substantial portion of
the spatial domain, whereas exponential gradients remain more
graded (Fig. 1). This leads to greater spatial precision with
linear decay (Fig. 3), and is contrary to the original expectation
[6].

This long-range boundary effect is not the only reason why
linear morphogen decay is favourable for precise pattern forma-
tion. The positional error, which is the decisive quantity that
measures the spatial accuracy with which cells can determine
their location in the pattern, and ultimately their fate in differ-
entiation, is highly sensitive to morphogen supply levels when
morphogen decay is non-linear, but largely insensitive when de-
cay is linear (Fig. 5). This implies that patterning is more robust
to variations in the size and strength of the morphogen-secreting
source, if decay is linear. These results challenge the established
view that power-law gradients buffer fluctuations in morphogen
production [6]. We find that the positional error behaves in
the opposite way, buffering production fluctuations only with
linear, but not with non-linear decay. From an evolutionary
perspective, the linear case may be favoured, as patterning pre-
cision is unaffected by changes in the size and kinetics of the
morphogen-secreting source only if n = 1.

Our study demonstrates that a stochastic approach is re-
quired to quantify patterning precision of real noisy gradients.
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Moreover, we find the positional error to be overestimated in
simplified models that replace the morphogen-secreting cells by
a Neumann or Dirichlet boundary condition (Fig. 4). Based on
this, we recommend to include an explicit representation of the
source in future theoretical or numerical work on the subject,
as we did with Eq. 9.

Distinguishing exponential gradients from shifted power laws
can be very difficult in practice, as they can appear similar
over the short distances over which they can be reliably mea-
sured with classical imaging techniques. The FGF8 gradient
in the developing mouse brain is the only case we are aware
of where n > 1 has been reported robustly [18], and whether
this is linked to patterning precision in any way remains un-
clear. Available gradient data in other systems, such as Sonic
Hedgehog and Bone Morphogenetic Protein in the neural tube
[16], is too variable to confidently reject the hypothesis that
n = 1. Most further reports of morphogen gradient shapes
[10–17] are consistent with exponentials within measurement
accuracy. New measurement techniques are needed to deter-
mine whether non-linear decay is at work in the formation of
known morphogen gradients during development. In light of
our findings, a physiological role of non-linear ligand decay in
patterning precision appears implausible. If anything, our data
suggest an overall advantage of linear decay, also considering
the evolutionary aspect of tissue size and protein synthesis rate
differences between species.
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Code Availability
The source code is released under the 3-clause BSD li-
cense. It is available as a public git repository at
https://git.bsse.ethz.ch/iber/Publications/2022_
adelmann_vetter_nonlinear_decay.
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