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Abstract

In this thesis, we develop new dynamic programming approaches for solving the
mean–variance portfolio selection (MVPS) problem in both discrete and con-
tinuous time. Let GT (θ) be the final wealth of a self-financing strategy θ in-
vesting in the underlying assets S. The MVPS problem consists of maximising
E[GT (θ)]− ξVar[GT (θ)] over a suitable set Θ of stochastic processes θ for a risk
aversion parameter ξ > 0.

Chapters I and II develop results for the market cloning technique in discrete
and continuous time, respectively. This approach consists of constructing inde-
pendent copies of the market, studying the auxiliary problem to maximise the
expectation of empirical mean minus ξ times empirical variance of L individual
copies of the final wealth, and passing to the limit as L goes to infinity. To
tackle these auxiliary problems, we use dynamic programming. In Chapter I, a
systematic backward recursive computation leads to both the value process and
an optimal strategy for each auxiliary problem in finite discrete time. In Chapter
II, with a continuum number of time steps, such a recursion is no longer avail-
able. We use a guess-and-verify procedure for solving the auxiliary problem for
continuous processes. In both chapters, our general framework allows us to go
beyond the i.i.d. innovations or Brownian-driven SDE models typically assumed
in the current literature for this kind of approach.

In Chapter III, we develop a deterministic dynamic programming principle
(DPP) for a general class of open-loop McKean–Vlasov control problems in finite
discrete time. We embed the original problem into a sequence of deterministic tail
problems whose criterion and optimisation at time t involve only an expectation,
not a conditional expectation, of variables from t + 1 onward. This works for
controlled processes without specifying any dynamics for the underlying process.
The resulting DPP gives in full generality a systematic backward recursion for
both the value and an optimal strategy for the MVPS problem in discrete time.
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Kurzfassung

In dieser Arbeit entwickeln wir neue Ansätze via dynamische Programmierung
zur Lösung des µ-σ-Portfoliooptimierungsproblems sowohl in diskreter als auch
in stetige Zeit. Sei GT (θ) das Endvermögen einer selbstfinanzierenden Strategie
θ, die in die zugrunde liegenden Anlagen S investiert. Das µ-σ-Problem besteht
dann aus der Maximierung von E[GT (θ)]−ξVar[GT (θ)] über eine geeignete Menge
Θ stochastischer Prozesse θ für einen Risikoaversionsparameter ξ > 0.

Kapitel I und II entwickeln Ergebnisse für die sogenannte Marktklontechnik
in diskreter bzw. stetiger Zeit. Dieser Ansatz besteht darin, unabhängige Kopien
des Marktes zu konstruieren, als Hilfsproblem dann Erwartung des empirischen
Mittelwerts minus ξ mal empirische Varianz von L einzelnen Kopien des End-
vermögens zu maximieren, und den Limes für L → ∞ zu betrachten. Um die
Hilfsprobleme anzugehen, verwenden wir dynamische Programmierung. In Kapi-
tel I führt eine systematische rückwärts rekursive Berechnung sowohl zum Wert-
prozess als auch zu einer optimalen Strategie für jedes Hilfsproblem in endlicher
diskreter Zeit. In Kapitel II, mit einer kontinuierlichen Anzahl von Zeitschritten,
ist eine solche Rekursion nicht mehr verfügbar. Wir verwenden stattdessen ein
“guess-and-verify”-Verfahren zur Lösung des Hilfsproblems für stetige Prozesse.
In beiden Kapiteln erlaubt uns unser allgemeiner Rahmen, über die Modelle hin-
auszugehen, die typischerweise in der aktuellen Literatur für diese Art von Ansatz
angenommen werden, nämlich i.i.d. Innovationen oder stochastische Differential-
gleichungen, die von einer Brownschen Bewegung getrieben werden.

In Kapitel III entwickeln wir ein deterministisches Prinzip der dynamischen
Programmierung (DPP) für eine allgemeine Klasse von open-loop-McKean–Vlasov-
Kontrollproblemen in endlicher diskreter Zeit. Wir betten das ursprüngliche Pro-
blem in eine Folge von deterministischen Endstück-Problemen ein, deren Kri-
terium und Optimierung zum Zeitpunkt t nur eine Erwartung, keine bedingte
Erwartung, von Variablen ab t+ 1 beinhaltet. Dies funktioniert für kontrollierte
Prozesse, ohne eine Dynamik für den zugrunde liegenden Prozess vorzugeben.
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Das resultierende DPP liefert in voller Allgemeinheit eine systematische Rück-
wärtsrekursion sowohl für den Wert als auch für eine optimale Strategie für das
µ-σ-Problem in diskreter Zeit.
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Chapter 0

Overview

1 Setup and motivation

Let T ∈ N be a time horizon and fix a time index set T ⊆ [0, T ] which contains
the terminal time T . Consider a financial market with d + 1 assets with d ∈ N,
among which there are d risky assets and one riskless asset. For simplicity, all
prices are discounted by the riskless asset and expressed by units of 1. Trading
in these assets with respect to a dynamic strategy yields cumulative profits and
losses at each time t ∈ T.

To convert the above concepts into mathematical terms, we consider an Rd-
valued stochastic process S = (St)t∈T defined on a probability space (Ω,F , P )

with a filtration F = (Ft)t∈T. The components of St represent the discounted
prices at time t of the d risky assets in the market. We denote by Θ a suitable
set of dynamic trading strategies θ = (θt)t∈T. For each strategy θ ∈ Θ, there is a
corresponding gains process G(θ) = (Gt(θ))t∈T recording the cumulative profits
and losses of the strategy θ at every time t ∈ T. For a risk aversion parameter
ξ > 0, the mean–variance portfolio selection (MVPS) problem is to

maximise E[GT (θ)]− ξVar[GT (θ)] over all θ ∈ Θ. (1.1)

Under mild assumptions, it is not difficult to obtain the existence and unique-
ness (in the sense that GT (θ̂) is unique) of an optimal strategy θ̂ for problem
(1.1). However, we are more interested in a dynamic description of θ̂. From this
perspective, the problem (1.1) is outside the scope of classic tools from standard
stochastic control theory, like dynamic programming or a stochastic maximum
principle, due to the variance term in (1.1). However, it turns out that one
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can construct a solution for (1.1) from a solution for the so-called pure hedging
problem to

minimise E
[(

1−GT (θ)
)2] over all θ ∈ Θ, (1.2)

which is a special case of the mean–variance hedging (MVH) problem to

minimise E
[(
H −GT (θ)

)2] over all θ ∈ Θ (1.3)

for a given contingent claim H (i.e., random variable H ∈ L2(FT , P )).
The MVH problem as formulated in (1.3) or similarly has been studied extens-

ively since the 1990s; see e.g. Duffie and Richardson [26], Schweizer [58, 59, 62],
Rheinländer and Schweizer [56], Gouriéroux et al. [31] for early developments of
the general theory, or Schweizer [63] for a survey of the early works. Since then,
there has been a lot of literature making progress from different aspects of the
general theory; see e.g. Kohlmann and Tang [42], Lim and Zhou [48], Lim [47]
and Arai [6], which culminates in a general description of the structure of the
solution to the MVH problem given by Černý and Kallsen [17]. Although this
storyline is complete to some extent, there are much fewer results which manage
to compute the optimal strategy explicitly. For some papers in this direction,
we refer to Schweizer [61], Bertsimas et al. [9], Gugushvili [32] and Černý [15] in
finite discrete time, and to Laurent and Pham [43], Biagini et al. [10], Hobson
[35] and Černý and Kallsen [18] in continuous time.

Our initial motivation is driven by the question whether one can do expli-
cit computations for the MVPS problem (1.1) systematically like for the MVH
problem (1.2). However, problems (1.1) and (1.2) are quite distinct from this
perspective. One can easily state, at least formally, a dynamic programming
principle for (1.2), whereas it is not obvious how to do so for the MVPS problem
(1.1). For a more detailed discussion of the problem, see for instance Björk and
Murgoci [13], Björk et al. [11] and Björk et al. [12, Chapters 8 and 18]. In this
thesis, we attempt to develop tools from a control perspective to tackle the MVPS
problem (1.1) in a general probabilistic framework. Since there is a deep corres-
pondence between dynamic programming and the stochastic maximum principle,
we focus on giving results based on the former and leave the latter for future
research.

The rest of this chapter is organised as follows. We first elaborate on the
connection between the MVPS problem and the pure hedging problem. Then
we give a quick review of the main existing results for the pure hedging problem
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(1.2). The chapter ends with a brief introduction to the approaches proposed in
this thesis.

2 An abstract mean–variance portfolio selection

(MVPS) problem

The idea of connecting the MVPS problem to an auxiliary linear–quadratic stoch-
astic control (LQSC) problem dates back at least to Li and Ng [45]. This tech-
nique is later improved by Sun and Wong [65], Xia and Yan [66] and Fontana and
Schweizer [30] to write the solution to the MVPS problem in terms of a solution to
the pure hedging problem (1.2). Following [30], we give a simple presentation of
this connection. The idea is to forget the temporal structure and look at problem
(1.1) statically.

Let (Ω,F , P ) be a probability space. Denote by L2 the space of all (equi-
valence classes of) real-valued square-integrable random variables. Consider a
non-empty subset Γ ⊆ L2. For a fixed risk aversion parameter ξ > 0, we consider
an abstract/static version of the MVPS problem, namely to

maximise E[g]− ξVar[g] over g ∈ Γ. (2.1)

Note that we have already abstracted away the temporal structure in the original
MVPS problem (1.1).

Assumption 2.1. 1) Γ is a closed linear subspace of L2.
2) Γ does not contain the constant (payoff) 1.

Under Assumption 2.1, we can write uniquely L2 = Γ⊕ Γ⊥, where Γ⊥ is the
orthogonal complement of Γ in L2. Thus we can decompose any random variable
Y ∈ L2 uniquely into

Y = gY + π(Y ) with gY ∈ Γ and π(Y ) ∈ Γ⊥. (2.2)

Now we argue that the solution to the abstract MVPS problem (2.1) can be read
off from the solution to the abstract pure hedging problem to

minimise E[(1− g)2] over g ∈ Γ. (2.3)

Note that using the notation (2.2), we have 1 = g1 + π(1), and thus the solution
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to (2.3) can be simply written as g1.

Theorem 2.2. Suppose that Assumption 2.1 is satisfied. Then problem (2.1) has
a unique solution gmv ∈ Γ, explicitly given by

gmv =
1

2ξ

1

E[1− g1]
g1. (2.4)

Proof. See Fontana and Schweizer [30, Proposition 3.4].

To study the abstract pure hedging problem (2.1), it turns out that an im-
portant quantity is the variance-optimal signed Γ-martingale measure defined as
follows.

Definition 2.3. A signed measure Q on (Ω,F) is called a signed Γ-martingale
measure if Q[Ω] = 1, Q� P with dQ

dP
∈ L2 = L2(P ) and

E

[
dQ

dP
g

]
= 0 for all g ∈ Γ.

The set of all signed Γ-martingale measures is denoted by P2
s(Γ). We call a signed

Γ-martingale measure P̃Γ variance-optimal for Γ if P̃Γ satisfies

P̃Γ = arg min
Q∈P2

s(Γ)

Var

[
dQ

dP

]
.

Whenever P2
s(Γ) is nonempty, a variance-optimal P̃Γ exists and is unique be-

cause it can be obtained by minimising the strictly convex functional Q 7→ ‖dQ
dP
‖2
L2

over the closed convex set P2
s(Γ) (where we identify elements of Q of P2

s(Γ) with
their density dQ

dP
∈ L2).

Lemma 2.4. Suppose that Assumption 2.1 is satisfied. Then

dP̃Γ

dP
=

1− g1

E[1− g1]
, (2.5)

where g1 is a solution to the abstract pure hedging problem (2.3).

In view of Lemma 2.4, it suffices to study the variance-optimal signed Γ-mar-
tingale measure. We end this subsection by translating the correspondence (2.4)
between the abstract random variables into a correspondence between strategies.
To proceed, we first need as a property for the gains process that

G(θ) is linear in θ, (2.6)
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without giving a precise definition of G(θ). If we want to apply the abstract result
in Theorem 2.2 to the case Γ = GT (Θ), Assumption 2.1 becomes a corresponding
(implicit) assumption on the set Θ of strategies.

Assumption 2.5. 1) Θ is a linear space, and GT (Θ) is closed in L2.
2) GT (Θ) does not contain the constant payoff 1.

Note that due to (2.6), Assumption 2.5, 1) implies that GT (Θ) is a closed
linear subspace of L2.

Corollary 2.6. Suppose that Assumption 2.5 is satisfied. Then problem (1.1)
has a solution θ̂mv ∈ Θ which can be written explicitly as

θ̂mv
t =

1

2ξ

1

E[1−GT (θ̂1)]
θ̂1
t , t ∈ T, (2.7)

where θ̂1 is a solution to the pure hedging problem (1.2). In consequence, the
gains process G(θ̂mv) satisfies

Gt(θ̂
mv) =

1

2ξ

1

E[1−GT (θ̂1)]
Gt(θ̂

1), t ∈ T. (2.8)

Proof. Because GT (Θ) is closed in L2, we can write

L2 = GT (Θ)⊕GT (Θ)⊥.

This yields 1 = g1 + π(1), where g1 and π(1) are the orthogonal projections of
1 onto GT (Θ) and GT (Θ)⊥, respectively. Because g1 ∈ GT (Θ), there exists a
strategy θ̂1 ∈ Θ such that GT (θ̂1) = g1, and thus θ̂1 is a solution to the pure
hedging problem (1.2). Inserting the above identity into (2.4) yields

gmv =
1

2ξ

1

E[1−GT (θ̂1)]
GT (θ̂1).

Defining θ̂mv as in (2.7), using the linearity of the gains process from (2.6) and
invoking the last display, we have

GT (θ̂mv) =
1

2ξ

1

E[1−GT (θ̂1)]
GT (θ̂1) = gmv.

Because θ̂mv is in Θ due to the linearity of Θ from Assumption 2.5, 1), this shows
that θ̂mv is a solution to the MVPS problem (1.1). Finally, the identity (2.8) is a
direct consequence of (2.7) and the linearity of the gains assumed in (2.6).
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3 Results for the pure hedging problem

As mentioned earlier, there is a lot of literature on the study of the MVH problem
(1.3). We refer to Schweizer [64] for a general overview. From a methodological
perspective, we can categorise these works as follows:

(a) Viewing problem (1.3) as an L2-projection problem, one obtains an optim-
ality criterion of projection-type for (1.3), which leads to the usual martin-
gale techniques. For works along this line, see e.g. Schweizer [58, 59, 61, 62],
Rheinländer and Schweizer [56] and Černý and Kallsen [17].

(b) Viewing problem (1.3) as a stochastic control problem, one uses tools from
standard stochastic control theory to tackle problem (1.3). For works us-
ing general tools like dynamic programming, see e.g. Bertsimas et al. [9],
Gugushvili [32], Černý [15], Laurent and Pham [43] and Jeanblanc et al. [38].
For works using more specialised results from LQSC and backward stoch-
astic differential equations (BSDEs), see e.g. Kohlmann and Tang [42], Lim
and Zhou [48] and Lim [47].

Although it is difficult to draw a clear boundary between (a) and (b), we hope this
crude classification sheds some light on the ideas used in the existing literature
to tackle the MVH problem.

Let us now discuss methods from (a) in some detail because they give a general
structure of the solution to the pure hedging problem (1.2) more efficiently. Recall
from Section 1 the basic setup: we have a time horizon T ∈ N, a time index set
T ⊆ [0, T ] and a filtered probability space (Ω,F ,F, P ). On that space, there
is an Rd-valued process S whose components model the discounted prices of d
risky assets in a financial market. In Section 1, we only verbally introduced
trading strategies and the associated gains processes. We now frame these in
mathematical terms. As a first assumption, the price process S is required to
be adapted to the filtration F. A trading strategy is a pair (v0, θ), where v0 ∈ R
is the initial capital and θ is an Rd-valued predictable process. We also want
our strategies (v0, θ) to be self-financing so that the wealth process of (v0, θ) is
given by

Vt(v0, θ) = v0 +

∫ t

0

θs dSs =: v0 +Gt(θ), t ∈ T. (3.1)

The process G(θ) is called the gains process of θ. Because (3.1) involves a
stochastic integral with respect to S, the presentation is different for discrete-
time and continuous-time processes. We only discuss the latter case here and
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refer to Section I.2 for the much simpler case of discrete time. For continuous
time T = [0, T ], we impose that S is a semimartingale with respect to the filtra-
tion F and that θ is S-integrable. This ensures that the (real-valued) stochastic
integral

∫
θ dS is well defined. For a precise definition, we refer to Jacod and

Shiryaev [37, Sections I.4 and III.6]. Thanks to (3.1), there is for fixed v0 a cor-
respondence between a trading strategy (v0, θ) and a process θ. Since v0 is always
fixed from now on, we use the term “trading strategy” to refer to an Rd-valued,
F-predictable, S-integrable process θ. We denote the set of all these θ by L(S).
To ease notation, we assume d = 1 throughout this section.

3.1 General structure

Černý and Kallsen [17] provide a complete description of the solution to the pure
hedging problem. To briefly present their results, we need some terminology. By
S2 = S2(P ), we mean the space of semimartingales admitting a decomposition
X = X0 +MX +AX withMX ∈M2

0,loc(P ) and AX of square-integrable variation
(and therefore predictable, so that X is special).

Assumption 3.1. 1) The price process S is in S2
loc.

2) There is some equivalent σ-martingale measure with square-integrable dens-
ity, i.e., some probability measure Q ≈ P with dQ

dP
∈ L2(P ) and such that S is a

Q-σ-martingale.

Next we specify the set of trading strategies. A process θ ∈ L(S) is said to
be admissible if there exists a sequence (θn)n∈N of simple (i.e., piecewise constant
on finitely many stochastic intervals) strategies such that

Gt(θ
n) −→ Gt(θ) in probability for any t ∈ [0, T ], and

GT (θn) −→ GT (θ) in L2.

(Note that this admissibility is different from the one used by Delbaen and Schach-
ermayer [24].) We consider

ΘCK = {θ ∈ L(S) : θ is admissible}. (3.2)

The pure hedging problem in this setup is to

minimise E
[(

1−GT (θ)
)2] over θ ∈ ΘCK. (3.3)
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Lemma 3.2. Suppose Assumption 3.1 is satisfied. Then GT (ΘCK) is equal to the
L2-closure of GT (ΘS), where

ΘS := {θ ∈ L(S) : G(θ) ∈ S2}. (3.4)

Proof. See Černý and Kallsen [17, Corollary 2.9].

Lemma 3.2 implies that GT (ΘCK) is closed in L2. Because GT (ΘCK) is already
linear by the definition of admissible strategies, we obtain that Assumption 2.1
holds with Γ = GT (ΘCK). In view of Lemma 2.4 with Γ = GT (ΘCK), it is therefore
enough to construct the variance-optimal signed GT (ΘCK)-martingale measure.
To this end, a central object is the so-called opportunity process which basically
records a family of optimal values for certain conditional problems, as follows. In
the rest of this subsection, Assumption 3.1 is imposed throughout.

For a stopping time τ , we define

ΘCK(τ) := {θ ∈ ΘCK : θ = 0 on J0, τK}

and call a strategy λ(τ) ∈ ΘCK τ -efficient if λ(τ) minimises θ 7→ E[(1 − GT (θ))2]

over θ ∈ ΘCK(τ). For any stopping time τ , such a τ -efficient strategy λ(τ) exists
as shown in Černý and Kallsen [17, Lemma 3.1]. For t ∈ [0, T ] and a t-efficient
strategy λ(t), we then define

qt = E
[(

1−GT (λ(t))
)2∣∣Ft], t ∈ [0, T ], (3.5)

and call q = (qt)t∈[0,T ] the opportunity process. Lemma 3.2 and Corollary 3.4
in [17] show that we can (and do) choose an RCLL version of q and that q is a
semimartingale (even a submartingale). It is shown in [17, Lemma 3.7] that there
exists a process ã ∈ L(S) such that

1−G(λ(τ)) = E
(
G(−ã1Kτ,T K)

)
= 1−G

(
ã1Kτ,T KE

(
G(−ã1Kτ,T K)

)
−

)
for any stopping time τ . We call this (possibly non-unique) process ã an adjust-
ment process. Then we can define a signed measure Q∗ by

dQ∗

dP
:=

E(G(−ã))T
E[E(G(−ã))T ]

. (3.6)

Theorem 3.3. Suppose Assumption 3.1 is satisfied. Then the signed measure Q∗

is a well-defined signed GT (ΘCK)-martingale measure and variance-optimal for
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GT (ΘCK) in the sense of Definition 2.3.

Proof. See Černý and Kallsen [17, Proposition 3.13].

To convert this result into a solution for the pure hedging problem (3.3), we
define a predictable process a as the solution of

at = −ãt
(
Gt−(a)− 1

)
, t ∈ [0, T ]. (3.7)

Theorem 3.4. Suppose Assumption 3.1 is satisfied. Then the equation (3.7) has
a unique solution a in L(S). Moreover, the process a is in ΘCK and is an optimal
strategy for the pure hedging problem (3.3).

Proof. See Černý and Kallsen [17, Lemma 4.9 and Theorem 4.10].

Finally, we convert the solution a for the pure hedging problem (3.3) to a
solution θ̂mv for the MVPS problem (1.1) with Θ = ΘCK. Because Assumption 3.1
implies that Assumption 2.5 is satisfied with Θ = ΘCK, we use Corollary 2.6, (2.7)
and (2.8) and the linearity of the gains process to obtain

θ̂mv
t =

1

2ξ

1

E[E(G(−ã))T ]
at, Gt(θ̂

mv) =
1

2ξ

1

E[E(G(−ã))T ]
Gt(a), t ∈ [0, T ],

and hence

θ̂mv
t = − 1

2ξ

1

E[E(G(−ã))T ]
ãt
(
Gt−(a)− 1

)
= −ãt

(
Gt−(θ̂mv)− 1

2ξE[E(G(−ã))T ]

)
, t ∈ [0, T ]. (3.8)

Example 3.5. We discuss a special case where the adjustment process ã can
be determined explicitly. Suppose Assumption 3.1 is satisfied. Schweizer [60,
Theorem 1] says that S satisfies the structure condition, meaning that

S = S0 +M + A = S0 +M +

∫
λ d〈M〉

with M ∈ M2
0,loc(P ) and λ ∈ L2

loc(M). If the entire mean–variance tradeoff
(MVT) process K :=

∫
λ d〈M〉 is deterministic, we can define a martingale meas-

ure P̂ via its density dP̂
dP

= E(
∫
−λ dM)T . This is called the minimal signed

martingale measure for S by Schweizer [60]. Moreover, [60, Theorem 8] there
shows that the variance-optimal local martingale measure for S coincides with P̂ .
It is not difficult to argue that a variance-optimal local martingale measure for
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S is the same as a variance-optimal GT (ΘCK)-martingale measure in this setup.
Therefore ã can be chosen as λ. From (3.8), we then obtain an optimal strategy
for the MVPS problem explicitly given by

θ̂mv
t = −λt

(
Gt−(θ̂mv)− 1

2ξE[E(G(−λ))T ]

)
, t ∈ [0, T ]. (3.9)

If in addition S is continuous, then we only need to assume that the final value
KT is deterministic to obtain ã = λ and hence the identity (3.9).

3.2 Results in discrete time

In finite discrete time, we have more explicit results about the solutions for the
pure hedging problem (3.3) and the MVH problem (1.3). Schweizer [61] first fully
worked out the explicit structure of the solutions for both problems with Θ = ΘS

given in (3.4). In discrete time, the requirement in (3.4) that G(θ) ∈ S2 trans-
lates into the condition that Gt(θ) ∈ L2 for t = 1, . . . , T . Later, various papers
including Gugushvili [32], Černý [15] and Melnikov and Nechaev [50] extended
the results to more general spaces of strategies. But the explicit structure of
the solutions for both problems remains the same as in Schweizer [61]. We first
follow the recent presentation given in Černý and Kallsen [17] and then discuss
the connections to other papers.

The opportunity process q and adjustment process ã are given more explicitly.
Indeed, we have from [17, Example 3.32] that

qt−1 = E[qt|Ft−1]− (E[qt4St|Ft−1])2

E[qt(4St)2|Ft−1]
, qT = 1,

ãt =
E[qt4St|Ft−1])

E[qt(4St)2|Ft−1]
, t = 1, . . . , T. (3.10)

Thanks to the discrete-time structure, the stochastic exponential reads

E
(
G(−ã)

)
t

=
t∏

s=1

(1− ãs4Ss), t = 1, . . . , T.

From (3.6), we also have an explicit expression for the variance-optimal signed
GT (ΘCK)-martingale measure.
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The signed measure Q∗ from (3.6) in finite discrete time has the density

dQ∗

dP
=
E(G(−ã))T

E[E(G(−ã))T ]
=

∏T
t=1(1− ãt4St)

E[
∏T

t=1(1− ãt4St)]
.

We translate (3.7) into a solution a for the pure hedging problem (3.3) in discrete
time via

at = −ãt
(
Gt−1(a)− 1

)
, t = 1, . . . , T,

where the adjustment process ã is given explicitly by (3.10). Similarly, we trans-
late (3.8) into a solution θ̂mv for the MVPS problem (1.1) with Θ = ΘCK in finite
discrete time via

θ̂mv
t = −ãt

(
Gt−1(θ̂mv)− 1

2ξE[E(G(−ã))T ]

)
, t = 1, . . . , T.

We now discuss the connections to earlier literature. First, Schweizer [61]
solved the pure hedging problem (3.3) with Θ = ΘS under the assumption that
the mean–variance tradeoff process is uniformly bounded. Melnikov and Nechaev
[50] considered the space

ΘMN = {θ = (θt)t=1,...,T : θ real-valued,F-predictable and GT (θ) ∈ L2} (3.11)

and solved the problem (3.3) with Θ = ΘMN. Note that we immediately have
ΘS ⊆ ΘMN. To compare ΘMN and ΘCK in finite discrete time, we need the result
below.

Lemma 3.6. Suppose that Assumption 3.1 is satisfied. Then in finite discrete
time, we have

ΘCK = ΘMN.

Proof. See Černý and Kallsen [19, Proposition 8.4].

3.3 A backward stochastic differential equation (BSDE) for

the opportunity process

Although (3.7) gives a general structure for the solution of the pure hedging
problem (3.3), the optimal strategy requires to calculate either the opportunity
process q or the adjustment process ã, both of which are notoriously difficult
to find explicitly. In this subsection, we present a BSDE approach proposed by
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Jeanblanc et al. [38], which gives a different characterisation of the opportunity
process q given in (3.5).

We denote by P2
e,σ(S) the set of all probability measures Q ≈ P on FT such

that S is a Q-σ-martingale and dQ
dP
∈ L2(P ), and we consider the spaces

ΘS := {θ ∈ L(S) : G(θ) ∈ S2(P )},

ΘS(τ) := {θ ∈ ΘS : θ = 0 on J0, τK}

of strategies, where τ is an F-stopping time. A basic relation between ΘS and
ΘCK in (3.2) is that GT (ΘCK) is the L2-closure of GT (ΘS), i.e.

GT (ΘS) = GT (ΘCK),

GT

(
ΘS(τ)

)
= GT

(
ΘCK(τ)

)
,

for any stopping time τ ; see for instance Černý and Kallsen [17, Corollary 2.9]
for a proof. In view of these identities, we can equivalently rewrite the definition
(3.5) of q as

qt = ess inf
θ∈ΘCK(t)

E
[(

1−GT (θ)
)2∣∣Ft] = ess inf

θ∈ΘS(t)
E
[(

1−GT (θ)
)2∣∣Ft]. (3.12)

A natural way to compute q is then to solve the family of conditional problems
given by the right-most expression in (3.12).

To proceed, we assume that Assumption 3.1 is satisfied, i.e., the process S
is in S2

loc and P2
e,σ(S) 6= ∅. The latter condition is one way of imposing absence

of arbitrage for the market. Moreover, this implies that S satisfies the so-called
structure condition, namely that S has the form

S = S0 +MS + AS = S0 +M +

∫
λ d〈M〉,

with M = MS ∈ M2
0,loc(P ) and λ being predictable and in L2

loc(M). Before
stating the BSDE, we recall some results and notations from the general theory
of processes. For any locally bounded process X, we denote by pX its pre-
dictable projection. If X is any process of locally integrable variation, then its
compensator Xp exists. Let Y = Y0 + NY + BY be a bounded (hence special)
semimartingale. The property (2.9) in Jeanblanc et al. [38] shows that if the pro-
cess [NY , [S]] is of locally integrable variation, then its compensator [NY , [S]]p is
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absolutely continuous with respect to 〈M〉 and has a predictable density

gt(Y ) :=
d[NY , [S]]pt

d〈M〉t
, t ∈ [0, T ].

Finally, we introduce the notation N (Y ) given by

Nt(Y ) := pYt(1 + λ2
t4〈M〉t) + gt(Y ), t ∈ [0, T ].

Now we consider the backward equation

dYt =
ψt + λt(

pYt)

Nt(Y )
d〈M〉t + ψ dMt + dLt, YT = 1. (3.13)

A solution to (3.13) is a triplet (Y, ψ, L), where L is a local P -martingale strongly
P -orthogonal to M , ψ is in L1

loc(M) and Y is a P -special semimartingale with
[NY , [S]] of locally integrable variation. For fixed t ∈ [0, T ], define the stochastic
exponential starting from time t of a semimartingale X by

tE(X)u = 1 +

∫ u

t

tE(X)r− dXr = E(X −X t)u, u ∈ [t, T ].

Theorem 3.7. Suppose that the process S is in S2
loc and P2

e,σ(S) 6= ∅. Then the
following two statements are equivalent:

1) For every t ∈ [0, T ], there exists an optimal strategy θ∗,t ∈ ΘS(t) for the
second conditional problem in (3.12).

2) There exists a solution (Y, ψ, L) to the BSDE (3.13) having L ∈M2
0,loc(P )

strongly P -orthogonal to M , ψ ∈ L2
loc(M), Y bounded and strictly positive and

such that for every t ∈ [0, T ], the process tE(G(−ψ+λ(pY )
N (Y )

)) is in S2(P ).

If either 1) or 2) holds, then for each t ∈ [0, T ] the optimal strategy θ∗,t for the
second conditional problem in (3.12) is given by

θ∗,tu = −ψu + λu(
pYu)

Nu(Y )
tE
(
G
(
− ψ + λ(pY )

N (Y )

))
u

, u ∈ [t, T ], (3.14)

and the opportunity process q is the unique bounded strictly positive solution Y of
(3.13).

If in addition there is some Q ∈ P2
e,σ(S) satisfying the reverse Hölder inequality

R2(P ), then q is the unique solution to (3.13) in the class of processes satisfying
c ≤ Y ≤ C for some c, C > 0.
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4 A brief introduction to our approach

In this thesis, we develop two types of dynamic programming techniques for the
MVPS problem.

4.1 Chapters I and II

The first method is inspired by the market cloning technique originally proposed
by Ankirchner and Dermoune [5] and extended by Fischer and Livieri [29]. For
convenience, by a financial market, we mean here a tuple (Ω,F ,F, P,Θ, S), where
(Ω,F ,F, P ) is a filtered probability space, Θ is a set of strategies and S is the
discounted price process. We recall from (1.1) that the MVPS problem in this
market is to

maximise E[GT (θ)]− ξVar[GT (θ)] over all θ ∈ Θ. (4.1)

Due to the variance term in (4.1), one cannot easily state a dynamic program-
ming principle for this problem. The idea to get around this issue relies on a
law of large numbers which formally says that the empirical mean 1

L

∑L
`=1 X` of

i.i.d. random variables (X`)`∈N converges to the expectation of the random vari-
able X1 as L→∞. Inspired by this observation, one then blows up the problem
by first constructing an extended market (Ω(L),F (L),G(L),P(L),Θ(L),S(L)) which
supports L i.i.d. copies of the original financial market (Ω,F , P,Θ, S), then de-
fining a vector gains process G(ϑ) whose `-th coordinate records the profits and
losses of investment in S`,(L) via ϑ`,(L) according to a vector ϑ(L) = (ϑ`,(L))`=1,...,L

of strategies, and finally replacing the expectation and variance in (4.1) by em-
pirical means and empirical variances. This leads us to consider the extended
problem to

maximise E(L)
[
em
(
GT (ϑ(L))

)
− ξevar

(
GT (ϑ(L))

)]
over all ϑ(L) ∈ Θ(L), (4.2)

where em(·) and evar(·) denote the empirical mean and variance, respectively.
The key observation is now that problem (4.2) is a standard stochastic control
problem with state variable G(ϑ(L)) and control ϑ(L). So we can state and prove
a dynamic programming principle for (4.2), which then gives a systematic way of
computing an optimal strategy ϑ̂(L) for the extended problem.

Having obtained an optimal ϑ̂(L) for each auxiliary problem (4.2), we then
pass to the limit as L → ∞ in order to solve the original problem (4.1). Let us
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introduce handy notations Jmv and J (L) by

Jmv(θ) := GT (θ)− ξ
(
GT (θ)− E[GT (θ)]

)2
, θ ∈ Θ, (4.3)

J (L)(ϑ(L)) := em
(
GT (ϑ(L))

)
− ξevar

(
GT (ϑ(L))

)
, ϑ(L) ∈ Θ(L), (4.4)

respectively, so that E[Jmv(θ)] = E[GT (θ)]− ξVar[GT (θ)]. Using (4.3) and (4.4),
we can equivalently write problems (4.1) and (4.2) as to

maximise E[Jmv(θ)] over all θ ∈ Θ,

maximise E(L)[J (L)(ϑ(L))] over all ϑ(L) ∈ Θ(L),

respectively. For any θ ∈ Θ, we now construct a vector strategy θ⊗L ∈ Θ(L)

consisting of L i.i.d. copies of θ, which in turn yields that the vector final gain
GT (θ⊗L) consists of L i.i.d. copies ofGT (θ). Because J (L) in (4.4) involves only the
empirical mean and variance of the i.i.d. random variables (G

`,(L)
T (θ⊗L))`=1,...,L,

we can use a law of large numbers argument to show that

E(L)[J (L)(θ⊗L)] −→ E[Jmv(θ)] as L→∞.

In view of θ⊗L ∈ Θ(L) and the optimality of ϑ̂(L) for the auxiliary problem, we
always have

E(L)[J (L)(θ⊗L)] ≤ E(L)[J (L)(ϑ̂(L))].

Combining the above two inequalities yields

E[Jmv(θ)] ≤ lim sup
L→∞

E(L)[J (L)(ϑ̂(L))] for all θ ∈ Θ.

Suppose that θmv is a solution to the original MVPS problem. We then have

E[Jmv(θmv)] ≤ lim sup
L→∞

E(L)[J (L)(ϑ̂(L))]. (4.5)

This can be used to construct a candidate θ̂ for the solution to the original
problem in the following manner. For the sake of argument, suppose that an
explicit formula for ϑ̂(L) can be obtained. By passing to the limit formally or
likewise, we can then construct a candidate θ̂ ∈ Θ for the original problem based
on that formula for ϑ̂(L). If we can show that E[Jmv(θ̂)] is equal to the right-hand
side of (4.5), we obtain E[Jmv(θmv)] ≤ E[Jmv(θ̂)], which yields the optimality of
θ̂ for the original problem (4.1).
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The market cloning technique as explained in the above paragraphs does not
seem to rely on the specific dynamics of the price process S. From a methodolo-
gical perspective, a unified mathematical framework is thus worth to be worked
out in detail and constitutes our first contribution to the existing literature.

In Chapter I, we construct the extended market and formulate the auxiliary
problem in finite discrete time. The DPP embeds the auxiliary problem for fixed L
into a temporal sequence of (conditional) stochastic control problems and asserts
that the (optimal) value of the conditional problem at time t−1 can be computed
in terms of the solution to the problem at time t. This gives us a systematic
approach for constructing an optimal strategy for the auxiliary problem, which
consists of solving the problem at time t by finding an optimiser, then plugging
that into the value of the time-t problem, and iterating this procedure backward
in time starting from t = T . Finally, we construct a candidate for the MVPS
problem by exploiting the just obtained strategy and passing to the limit.

In Chapter II, we develop this approach in continuous time with the same
basic idea as in Chapter I. But because we have a continuum of time steps,
we attack the auxiliary problem by guessing an affine–quadratic structure for
the value process and then constructing candidates for both the value process
and an optimal strategy based on a martingale optimality principle. In both
chapters, we manage to solve the auxiliary problem under the assumption that
the MVT process is deterministic. Although in these cases, an optimal strategy
for the MVPS problem can be alternatively obtained as in (3.9), the market
cloning technique exploits a completely different angle and has more the flavour of
McKean–Vlasov control problems which typically consider i.i.d. innovations and
Brownian-driven SDE models. Therefore, our results nicely extend this technique
and give our second contribution to the existing literature.

4.2 Chapter III

The second type of dynamic programming techniques for the MVPS problem is
inspired by recent progress in McKean–Vlasov control theory. Because the MVPS
problem belongs to a category of such problems, it is natural to use results from
that theory to tackle it. Andersson and Djehiche [4] propose a solution technique
based on a stochastic maximum principle for McKean–Vlasov control problems.
Pham andWei [52] develop a dynamic programming principle (DPP) for processes
driven by i.i.d. innovations and apply that DPP to solve the MVPS problem. The
market cloning technique proposed by Ankirchner and Dermoune [5] and extended
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by Fischer and Livieri [29] has some flavour of this type. But at present, it seems
that the current literature mostly considers processes driven by i.i.d. innovations
or Brownian-driven SDE models. This is an aspect worth some improvement.

We first describe the problem. Let (Ω,F , P ) be a probability space with a
filtration F = (Ft)t=0,1,...,T . Consider a family (Xθ

t )t=0,1,...,T of stochastic processes
controlled by an F-predictable process θ = (θt)t=1,...,T , meaning that Xθ

t depends
on θ only via θ1, . . . , θt. For a generic random quantity Y , we denote by PY

the distribution of Y under P . For the sake of argument, we suppose that all
random variables are real-valued and denote by P(R) the set of all probability
distributions on R. For a set Θ of controls θ, we are interested in a criterion j of
McKean–Vlasov type given by

j(θ) = E

[ T−1∑
t=0

f(t,Xθ
t , θt+1, PXθ

t ,θt+1
) + g(Xθ

T , PXθ
T
)

]
,

where f and g are real-valued (measurable) functions with appropriate domains.
The problem is to

maximise j(θ) over all θ ∈ Θ. (4.6)

Although the criterion j looks quite formidable, we can embed this problem into
a sequence of deterministic tail problems where both the value v(t, θ) and the
optimisation of v(t, θ) involve only an expectation, not a conditional expectation,
of variables from t + 1 onward. This then yields a DPP which asserts that the
(optimal) value at t−1 can be obtained in terms of the solution to the tail problem
at time t. Since the tail problem for t = 0 corresponds to the original problem
(4.6), we thus obtain a systematic approach via the above backward recursion
to compute both the value and an optimal strategy for (4.6). This idea already
appears in Pham and Wei [52, Lemma 3.1], but the authors work there with
closed-loop controls in an i.i.d. framework. We first extend their results to open-
loop controlled processes without specifying any dynamics for the underlying
process. Because the MVPS problem has a linear–quadratic (LQ) structure, we
study and obtain some structural results for a general class of single-period LQ
problems. We finally piece these one-step results together to solve the MVPS
problem (4.1) in full generality in finite discrete time.
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Chapter I

Mean field approach for MVPS –
discrete time

1 Introduction

Mean–variance portfolio selection is a classic problem in finance. In financial
terms, the goal is to maximise the expectation and minimise the variance of the
final wealth GT (θ) =

∫ T
0
θs dSs of a self-financing strategy θ investing in the

underlying assets S. Mathematically, this is formulated as

maximise E[GT (θ)]− ξVar[GT (θ)] over θ ∈ Θ,

for a suitable set Θ of stochastic processes and a risk aversion parameter ξ > 0.
Compared to its single-period version studied by Markowitz [49], the multi-period
mean–variance portfolio selection (MVPS) problem seems to have gained less
popularity over the decades. One reason is the fact that the variance term in the
mean–variance criterion makes the problem not amenable to a (Bellman-type)
dynamic programming principle or other standard tools from stochastic control
theory. The contribution of this chapter is to extend a novel solution technique
proposed by Ankirchner and Dermoune [5] and apply that to solve the MVPS
problem in finite discrete time.

While the toolbox for tackling the multi-period MVPS problem in generality
seems to be almost empty, there still has been some significant progress on this
problem. The connection to other literature is discussed in detail in Section
6. Roughly speaking, there are three approaches for the multi-period MVPS
problem:
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(a) One considers a time-consistent or equilibrium solution for the MVPS prob-
lem. This approach goes away from the original formulation and studies a
different type of optimality for which a solution enjoys a dynamic program-
ming principle.

(b) One exploits the connection of the MVPS problem to a class of auxili-
ary pure hedging problems which turn out to be standard linear–quadratic
stochastic control problems. Then one solves the latter and translates the
resulting solution into a solution for the original MVPS problem.

(c) One views the MVPS problem as a special case of a McKean–Vlasov control
problem and uses tools from there to tackle the MVPS it.

The market cloning technique of Ankirchner and Dermoune [5] seems to lie at
the intersection of (b) and (c) as explained in Section 0.2 in Chapter 0. The au-
thors also consider a class of auxiliary standard control problems. However, these
look more analogous to the original MVPS problem than the class of auxiliary
problems typically considered in (b). We extend the approach of [5] in two as-
pects. First, from a methodological perspective, there is a general mathematical
structure behind their technique which is worth developing systematically and
rigorously. Second, in this more general framework, we can apply their technique
to study the MVPS problem with an underlying price process S having non-
independent increments. Of course, some results for the MVPS problem with
a general underlying process S can be obtained by the approaches in (b). But
since the market cloning technique has more the flavour of (c) where one typically
studies processes driven by i.i.d. innovations, our results nicely complement the
current literature.

This chapter is structured as follows. In Section 2, we first introduce the
market and formulate the MVPS problem in precise terms. Then we introduce
the market cloning technique from Ankirchner and Dermoune [5] by constructing
an extended market which supports independent copies of the original market
and formulating in that market an auxiliary problem, with more care, rigour and
in unified form. The section ends with the classic martingale optimality principle
(MOP) tailored for the auxiliary problem and some results for martingales under
shrinkage of filtrations. The latter results allow us later to go beyond the case of
i.i.d. innovations. We keep the development in this section as general as possible
and impose only some mild assumptions.

In Section 3, we study the auxiliary problem in more detail. Using the ab-
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stract MOP in Section 2, we establish a dynamic programming result for the
extended problem and reformulate that into a sequence of single-period (condi-
tional) problems. Then we go away from the general presentation and provide the
necessary details for a concrete setup where we perform the actual computation
of an optimal strategy for the auxiliary problem backward in time in Section 4.

Section 4 proposes a recipe for the systematic computation of an optimal
strategy for the auxiliary problem based on the dynamic programming principle
from Section 3. Following that recipe, we first maximise a conditional problem at
time T and look for a structure that propagates backward in time. But a desired
simple affine–quadratic structure comes at the cost of the extra assumption that
the mean–variance tradeoff process for the price process S is deterministic; this
appears naturally along the computations. Assuming that condition, we present
in the main result of this section (Theorem 4.12) an affine–quadratic structure
for the entire value process and an optimal strategy for the auxiliary problem.

Finally, we explore in Section 5 the connection between the auxiliary and the
original MVPS problems. The connections are two-fold. First, with the help of
the optimal strategy from Theorem 4.12 for the auxiliary problem, we construct
a candidate for an optimal strategy for the original MVPS problem and present
a simple verification procedure. The verification step is new and can be easily
extended to a more general class of problems whose criterion involves a nonlinear
function of an expectation. Second, we show that the gains of the optimal strategy
for the auxiliary problem converge to the gains of the optimal strategy for the
original MVPS problem, as the number of copies in the extended market goes
to infinity, with a precise rate of convergence. This improves the corresponding
results in Ankirchner and Dermoune [5].

In Section 6, we discuss connections to the literature in detail.

2 Problem formulation and general preliminaries

2.1 Mean–variance portfolio selection (MVPS) in a finan-

cial market

Let us begin with some necessary preparation. We first introduce a financial
market and describe investment in this market, both in mathematical terms.
Then we formulate the MVPS problem in this financial market. Finally, we
study the existence and uniqueness of a solution to the MVPS problem under
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some natural assumptions.
Let T ∈ N be a time horizon and fix a time index set T ⊆ [0, T ]. The two

main examples are T = {0, 1, . . . , T} and T = [0, T ], which stand for the case of
discrete and continuous time, respectively.

Let (Ω,F , P ) be a probability space with a filtration F = (Ft)t∈T. We always
assume that F0 is P -trivial, meaning that F0 only contains events with probability
0 or 1. In continuous time, i.e. T = [0, T ], we additionally assume that F satisfies
the usual conditions of right-continuity and P -completeness.

Consider a financial market with d + 1 assets with d ∈ N. There are d risky
assets and one riskless asset. For simplicity, all prices are discounted by the
riskless asset and expressed by units of 1. In mathematical terms, the price of
the riskless asset is modelled by S0 = (S0

t )t∈T ≡ 1, and the (discounted) prices of
the risky assets are modelled by an Rd-valued stochastic process S = (St)t∈T. As
a first assumption, we impose that S is adapted to F.

Next, we mathematically describe trading behaviours in this market. A trad-
ing strategy is a pair (v0, θ), where v0 ∈ R is the initial capital and θ is an Rd-val-
ued predictable process. Because we want our strategies to be self-financing, the
wealth process of (v0, θ) is given by

Vt(v0, θ) = Vt = v0 +

∫ t

0

θs dSs =: v0 +Gt(θ), t ∈ T. (2.1)

The process G(θ) is called the gains process of θ. We also use θ ·S to denote the
stochastic integral process of θ with respect to S. Hence, θ ·S and

∫
θ dS are

used interchangeably.
Note that the self-financing condition involves a stochastic integral with re-

spect to S, which requires different assumptions for discrete-time and continuous-
time processes. Therefore, we divide the discussion into two cases.

Trading in discrete time: T = {0, 1, . . . , T}. This requires no additional
assumptions on either θ or S. We introduce the notation

4Xt := Xt −Xt−1, t ∈ N,

for increments of any discrete-time process X = (Xt)t∈N0 . Note that to make
sense of ∫ t

0

θs dSs :=
t∑

s=1

θ>s 4Ss, t = 0, 1, . . . , T,

we indeed do not need any further assumptions. Here we adopt the standard



2 Problem formulation and general preliminaries 25

convention that any sum over an empty set is equal to 0, which yields in particular∫ 0

0
θs dSs = 0.

Trading in continuous time: T = [0, T ]. We make a particular choice of
well-defined stochastic integration theories. That is, we impose that S is a se-
mimartingale with respect to the filtration F. Moreover, we require that θ is
S-integrable. This ensures that the (real-valued) stochastic integral

∫
θ dS is well

defined. For the precise definition, we refer to Jacod and Shiryaev [37, Sections
I.4 and III.6].

To summarise, we consider two classes of assumptions:

• In discrete time, S needs no further assumptions. A (self-financing) trading
strategy (v0, θ) satisfies that v0 ∈ R and θ is an Rd-valued, predictable
process.

• In continuous time, we assume further that S is a semimartingale with
respect to F. A (self-financing) trading strategy (v0, θ) satisfies that v0 ∈ R
and θ is an Rd-valued, predictable, S-integrable process.

Remark 2.1. In discrete time, any adapted Rd-valued process S is automatically
a semimartingale, and any Rd-valued process is automatically S-integrable.

Now we turn to formulating the MVPS problem. Let Θ be a set of processes
such that for any v0 ∈ R and any θ ∈ Θ, the pair (v0, θ) is a (self-financing)
trading strategy. Fix a risk tolerance parameter γ > 0 and an initial capital
v0 ∈ R. The MVPS problem is to

maximise E[VT (v0, θ)]−
1

2γ
Var[VT (v0, θ)] over all θ ∈ Θ, (2.2)

which by (2.1) is structurally equivalent to

maximise E[GT (θ)]− ξVar[GT (θ)] over all θ ∈ Θ, (2.3)

where ξ is a positive real number standing for a generic risk aversion parameter,
and we can choose ξ = 1

2γ
for consistency with (2.2) when necessary.

The remaining task is to make additional assumptions on S and Θ so that the
MVPS problem (2.3) is mathematically well defined.

Assumption 2.2. Θ satisfies the following:
1) GT (Θ) := {GT (θ) : θ ∈ Θ} is a closed subspace of L2 := L2(P ), i.e.,

GT (Θ) ⊆ L2 is a linear space and GT (Θ) is closed in L2.
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2) The constant (payoff) 1 is not in GT (Θ), the L2-closure of GT (Θ).

Remark 2.3. 1) Note that Assumption 2.2, 1) is not a specific choice of Θ.
Instead, it is a generic condition that Θ should satisfy. We shall make concrete
choices of Θ only in Section 3.

2) Assumption 2.2, 2) is a weak kind of no-arbitrage condition. If we also
have 1), it is of course equivalent to 1 /∈ GT (Θ).

We now show that under Assumption 2.2, the MVPS problem is indeed well
posed as follows.

Theorem 2.4. Under Assumption 2.2, the MVPS problem (2.3) has a maximiser
θ̂ ∈ Θ, and the corresponding GT (θ̂) is unique.

Proof. Consider the functional F : L2 → R given by

F (g) := E[g]− ξVar[g]. (2.4)

1) We first show that F is L2-coercive on GT (Θ), i.e., if (gn)n∈N is a sequence
in GT (Θ) with E[g2

n] → ∞, then F (gn) → −∞. To this end, we denote by π(1)

the L2-orthogonal projection of 1 onto GT (Θ)⊥, the orthogonal complement in
L2 of GT (Θ). Note that π(1) exists and is nonzero. Indeed, the linearity of
GT (Θ) from Assumption 2.2, 1) gives existence and uniqueness of π(1) by the
projection result in Hilbert spaces, and Assumption 2.2, 2) implies that π(1) 6≡ 0.
In particular, we have E[π(1)2] = infg∈GT (Θ)E[(1− g)2] > 0.

Let g ∈ GT (Θ). If E[g] 6= 0, then g/E[g] ∈ GT (Θ) by the linearity of GT (Θ),
and hence factoring out (E[g])2 and using E[π(1)2] = infg∈GT (Θ) E[(1−g)2] yields

Var[g] = E
[
(g − E[g])2

]
= (E[g])2E

[( g

E[g]
− 1
)2]
≥ (E[g])2E[π(1)2]. (2.5)

Of course, if E[g] = 0, (2.5) still holds simply because Var[g] ≥ 0.
Now take a sequence (gn)n∈N in GT (Θ) with E[g2

n] → ∞ as n → ∞ and let
(nk)k∈N be a subsequence. If (E[gnk ])k∈N is bounded (say by C), then

F (gnk) = E[gnk ]− ξVar[gnk ] ≤ C + ξC2 − ξE[g2
nk

] −→ −∞ as k →∞.

Suppose that (E[gnk ])k∈N is not bounded. By taking a further subsequence, we
may assume that E[gnk ]→∞ as k →∞. Then (2.5) with E[π(1)2] > 0 gives

F (gnk) = E[gnk ]− ξVar[gnk ] ≤ E[gnk ]− ξ(E[gnk ])
2E[π(1)2] −→ −∞ as k →∞.
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This establishes that every subsequence (F (gnk))k∈N of (F (gn))n∈N has a further
subsequence converging to −∞ and thus verifies F (gn)→ −∞ as n→∞. There-
fore the functional F is L2-coercive.

2) L2-coercivity of F implies that there exists C > 0 such that

sup
g∈GT (Θ)

F (g) = sup
g∈GT (Θ):‖g‖L2(P )≤C

F (g) =: c.

Note that due to F (g) = E[g]− ξVar[g] ≤ E[g] + ξE[g2], we have the inequality
c ≤ C + ξC2 <∞. Set

D := {g ∈ GT (Θ) : ‖g‖L2(P ) ≤ C} (2.6)

and take a sequence (gn)n∈N in D such that F (gn) ↑ c as n → ∞. From its
definition in (2.6), D is closed and bounded in L2. So by the Eberlein–Šmulian
theorem, see e.g. Bühler and Salamon [14, Theorem 3.4.1], there exists ĝ ∈ D such
that (gn)n∈N converges to ĝ in the weak topology of L2 as n → ∞. This implies
E[gn] = E[gn1] → E[ĝ] and hence (E[gn])2 → (E[ĝ])2 as n → ∞. Because
the norm is lower semicontinuous in the weak topology, we have in addition
E[ĝ2] ≤ lim infn→∞E[g2

n]. Combining this with F (gn) ↑ c and the definition of F
in (2.4), we obtain

c = lim sup
n→∞

F (gn) = lim sup
n→∞

(
E[gn] + ξ(E[gn])2 − ξE[g2

n]
)

= E[ĝ] + ξ(E[ĝ])2 − ξ lim inf
n→∞

E[g2
n]

≤ E[ĝ] + ξ(E[ĝ])2 − ξE[ĝ2] = F (ĝ).

This shows F (ĝ) ≥ c ≥ F (g) for all g ∈ GT (Θ). Because ĝ ∈ D ⊆ GT (Θ) and
hence there exists a corresponding θ̂ ∈ Θ such that ĝ = GT (θ̂), we conclude that
θ̂ is a maximiser to the MVPS problem.

3) We turn to the uniqueness of ĝ = GT (θ̂). By a perturbation argument, we
obtain that any optimiser ĝ satisfies

2ξCov(ĝ, g)− E[g] = 0, ∀g ∈ GT (Θ). (2.7)

Indeed, fix g ∈ GT (Θ) and ε > 0. By the linearity of GT (Θ), we have that ĝ± εg
is in GT (Θ). Then using that ĝ is an optimiser and the definition (2.4) of F , we
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get

0 ≤ F (ĝ)− F (ĝ ± εg)

= E[ĝ]− ξVar[ĝ]− E[ĝ ± εg] + ξVar[ĝ ± εg]

= ∓εE[g] + 2ξCov
(
ĝ,±εg

)
+ ξVar[±εg]

= ∓εE[g]± 2εξCov(ĝ, g) + ε2ξVar[g]. (2.8)

Dividing (2.8) by ε and sending ε→ 0 yields 0 ≤ ∓E[g]± 2ξCov(ĝ, g) and hence
(2.7).

Now let g1, g2 be two maximisers. Then (2.7) with ĝ ∈ {g1, g2} and g = g1−g2

gives

2ξCov(g1, g1 − g2)− E[g1 − g2] = 2ξCov(g2, g1 − g2)− E[g1 − g2] = 0,

which yields
0 = 2ξCov(g1 − g2, g1 − g2) = 2ξVar[g1 − g2]. (2.9)

Moreover, we have also by (2.7) that E[g2] = 2ξCov(g1, g2) = E[g1]. Combining
this with (2.9), we conclude that g1 = g2 P -a.s., which proves the uniqueness
of ĝ.

Having the abstract result in Theorem 2.4 is nice, but our main goal is to
obtain a dynamic description of the maximiser θ̂. In this regard, Problem (2.3)
is a well-known non-standard stochastic control problem. The non-standard part
of its cost criterion is a nonlinear (quadratic) function of an expected value. This
makes the problem not directly amenable to a dynamic programming principle,
and hence the solution is difficult to construct explicitly.

2.2 An auxiliary problem

To tackle the MVPS problem (2.3) beyond mere existence, we follow the idea
from Ankirchner and Dermoune [5] as explained in Chapter 0. This first requires
constructing a new probability space supporting independent copies of the original
filtration F and process S. Then, similarly to Section 2.1, we introduce a financial
market and discuss investments in that new market. Finally, we formulate in
that market a standard stochastic control problem which is closely related to the
original MVPS problem (2.3).

Fix L ∈ N ∪ {∞}. We construct a probability space (Ω(L),F (L),P(L)) that
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supports L independent copies of (F, S). The construction is fairly standard.
Nevertheless, we give details below for any L. To this end, consider the product
space (Ω(L),F (L)) defined by Ω(L) =

∏L
`=1 Ω, the L-fold Cartesian product of Ω,

and the σ-algebra F (L) generated by all finite rectangles with F -measurable sides,
i.e., by the family Z of all cylinders of the form

Z = {ω(L) = (ω1, . . . , ωL) : ω`j ∈ E`j for j = 1, . . . , k}

for some k ∈ N and E`j ∈ F , j = 1, . . . , k. For L =∞, the notation (ω1, . . . , ωL)

stands for (ω1, ω2, . . . ). Also for L =∞, we construct a product measure on F (∞)

by

P(∞)[E`1 × E`2 × · · · × E`k × Ω× · · · ] =
k∏
j=1

P [E`j ], E`j ∈ F , k ∈ N. (2.10)

By standard results from measure theory, (2.10) defines a unique probability
measure on F (∞). Having defined P(∞), we construct P(L) for L ∈ N as follows.
Consider the projection π(L) : Ω(∞) → Ω(L) onto the first L coordinates given by
π(L)(ω1, ω2, . . . ) = (ω1, . . . , ωL). Then we have or set

Ω(L) = π(L)(Ω
(∞)),

F (L) = {E ⊆ Ω : π−1
(L)(E) ∈ F (∞)},

P(L) := P(∞) ◦ π−1
(L),

where ◦ denotes the standard operation of functional composition. Indeed, the
first identity is straightforward by definition and the second involves a standard
measure-theoretic argument. From the third, by (2.10) and the definition of π(L),
we have explicitly

P(L)[E1 × E2 × · · · × EL] = P(L)[π−1
(L)(E1 × E2 × · · · × EL)]

=
L∏
`=1

P [E`], E` ∈ F , L ∈ N. (2.11)

The previous paragraph gives a new probability space (Ω(L),F (L),P(L)) for
L ∈ N∪{∞}. Let us make connections between the original space (Ω,F , P ) and
the new space. Consider the canonical projection π`,L : Ω(L) → Ω from Ω(L) onto
its `-th coordinate for ` = 1, . . . , L. In particular, by ` = 1, . . . ,∞, we mean that
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` ∈ N. Via (2.11), we can recover P from P(L) by

P [E] = P(L)[π−1
`,L(E)], E ∈ F , ` = 1, . . . , L. (2.12)

Thanks to (2.12), we can probabilistically identify any event E ∈ F with the
event π−1

`,L(E) ∈ F (L) for any L and ` = 1, . . . , L. More explicitly, we consider

F `,(L) := π−1
`,L(F) := {π−1

`,L(E) : E ∈ F} ⊆ F (L), ` = 1, . . . , L, (2.13)

and identify F with F `,(L).
Similarly to (2.13), we also consider for the filtration F and any L ∈ N∪{∞}

the collection (F`,(L))`=1,...,L of filtrations defined by

F `,(L)
t := π−1

`,L(Ft) = {π−1
`,L(E) : E ∈ Ft}, ` = 1, . . . , L, t ∈ T. (2.14)

From (2.12)–(2.14), it is easy to see that

the family (F `,(L))`=1,...,L is P(L)-independent and hence

(F `,(L)
t )`=1,...,L are P(L)-independent for any t ∈ T. (2.15)

Via (2.14) and (2.15), we can thus interpret each F`,(L) as a copy of F in the
product space (Ω(L),F (L),P(L)), and the individual copies are independent. Fi-
nally, we construct S(L) on Ω(L) from S as S

`,(L)
t = St ◦ π`,L for t ∈ T and

` = 1, . . . , L. More explicitly, we have

S
`,(L)
t (ω1, . . . , ωL) := St

(
π`,L(ω1, . . . , ωL)

)
= St(ω`), ` = 1, . . . , L, t ∈ T. (2.16)

Notice that the above identity for L = ∞ means S
`,(∞)
t (ω1, ω2, . . . ) = St(ω`) for

` ∈ N and t ∈ T. From (2.16), (2.14), and (2.15), it is clear that each process
S`,(L) is F`,(L)-adapted and that the processes (S`,(L))`=1,...,L are P(L)-independent.
Moreover, by (2.12) and (2.16), we see that each process S`,(L) has under P(L)

the same finite-dimensional distributions as S under P . Therefore, we can view
each (F`,(L),S`,(L)) as a copy of (F, S) on the space (Ω(L),F (L),P(L)), and the
individual copies are independent. However, it is unnatural to use a collection
(F`,(L))`=1,...,L of filtrations for recording the evolution of information. Instead, we
want to have a single filtration to which every S`,(L) is adapted for ` = 1, . . . , L.



2 Problem formulation and general preliminaries 31

To this end, we introduce a new filtration G(L) := (G(L)
t )t∈T via

G(L)
t := σ

( L⋃
`=1

F `,(L)
t

)
, t ∈ T. (2.17)

In analogy to (Ω,F , P,F), the resulting filtered space (Ω(L),F (L),P(L),G(L)) is
our desired space where we next discuss investments.

We pause here to introduce a generic way of “lifting” an object living on the
original space (Ω,F , P ) to the product space (Ω(L),P(L),F (L)). Given a process
X, we define X⊗L by

X`,⊗L := X ◦ π`,L, ` = 1, . . . , L, (2.18)

where π`,L is as above the canonical projection from Ω(L) onto its `-th coordinate.
Roughly speaking, each X`,⊗L is the same process X applied to coordinates on
Ω(L) which are independent because P(L) is the product measure. In view of the
above notation, (2.16) can be written as

S(L) = S⊗L.

In the remainder of this subsection, we assume L ∈ N. Recall that
in the original market, we have a set Θ standing for an abstraction of trading
strategies. Analogously, we define

Θ`,⊗L = {θ ◦ π`,L : θ ∈ Θ}. (2.19)

Like F `,(L) in (2.14), each Θ`,⊗L can be viewed as a direct analogue of Θ associated
with (S`,(L),F`,(L)) for each ` = 1, . . . , L, and in particular by (2.14) and (2.19),
every process in Θ`,⊗L is F`,(L)-predictable. However, because of that coordin-
atewise predictability restriction, we do not use processes from (Θ`,⊗L)`=1,...,L as
(part of) our trading strategies for a new problem that will be presented below
shortly. Instead, we consider

Θ(L) := {(ϑ(L)
t )t∈T : ϑ(L) is Rd×L-valued, G(L)-predictable, and

ϑ`,(L) satisfies the integrability condition

specified for Θ`,⊗L, for ` = 1, . . . , L}. (2.20)

The key point here is that while the coordinates of S(L) = S⊗L as well as of a
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generic element of (θ`,⊗L)`=1,...,L are independent, the coordinates of ϑ(L) ∈ Θ(L)

are not independent because each depends on G(L). Because we have not yet
specified any particular integrability condition on Θ or equivalently on Θ`,⊗L,
the third condition in (2.20) is only a formal description of the trading strategies,
which will turn into a precise definition after we give more details about S and Θ.
At the moment, let us work at this level of generality and proceed to introduce a
notation for the gains process on the new space. For each ϑ(L) ∈ Θ(L), we define
the vector gains process G(ϑ(L)) = (G`(ϑ(L)))`=1,...,L by

G`
t(ϑ

(L)) :=

∫ t

0

ϑ`,(L)
s dS`,(L)

s , ` = 1, . . . , L, t ∈ T. (2.21)

As a general (and vague) summary, we shall use strategies from Θ(L) to invest
in S(L) on the filtered space (Ω(L),F (L),P(L),G(L)). This motivates the following
definition.

Definition 2.5. For each L ∈ N, we call the tuple (Ω(L),F (L),P(L),G(L),S(L))

an L-extended market. For L = 1, the extended market coincides with the ori-
ginal market (Ω,F , P,F, S). When there is no need to mention the underlying
probability space, we also refer to the triple (P(L),G(L),S(L)) as the L-extended
market.

Note that in this L-extended market, all quantities are L-tuples of things we
know from the original market. To reduce from L-tuples to the original size, we
form averages. For x,y ∈ RL, we set

x� y := (x`y`)`=1,...,L, (x)2 := x� x, (2.22)

em(x) :=
1

L

L∑
`=1

x`, (2.23)

evar(x) := em
(
(x)2

)
−
(
em(x)

)2
= em(x� x)−

(
em(x)

)2
. (2.24)

This means that

evar(x) =
1

L

L∑
`=1

(x`)2 −
(

1

L

L∑
`=1

x`
)2

.

If b ∈ R, we mean by em(b) the average em(b) with b = (b, b, . . . , b) ∈ RL, so
that of course em(b) = b.

Now we are ready to present a standard stochastic control problem in the
L-extended market. This problem is closely related to (2.3) and forms the main
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subject of the next few sections. The idea is to replace (2.3) by

maximise E(L)
[
em
(
GT (ϑ(L))

)
− ξevar

(
GT (ϑ(L))

)]
over all ϑ(L) ∈ Θ(L), (2.25)

where E(L) denotes the expectation under the measure P(L) and ξ > 0 as before
is a positive real number. Here, we also assume L ≥ 2 to avoid the triviality that
evar(x) = 0 by (2.24) for any x ∈ R1.

The key point (as we argue in detail in Section 2.3 below) is that problem
(2.25) becomes a standard stochastic control problem with the state variable
G(ϑ(L)) and control ϑ(L). Then we can proceed via a dynamic programming
principle which leads to linear systems of equations derived from the first order
condition for optimality. Under appropriate conditions, a solution ϑ̂(L) to the
first order condition can be computed explicitly for every L ∈ N with L ≥ 2.

We end this section by outlining the remaining steps for solving the original
problem (2.3); their details are elaborated in Section 5. The idea is to make
comparisons between problems (2.3) and (2.25). Let us introduce handy notations
Jmv
T and J (L)

T by

Jmv
T (θ) := GT (θ)− ξ

(
GT (θ)− E[GT (θ)]

)2
, θ ∈ Θ, (2.26)

J
(L)
T (ϑ(L)) := em

(
GT (ϑ(L))

)
− ξevar

(
GT (ϑ(L))

)
, ϑ(L) ∈ Θ(L), (2.27)

respectively, so that E[Jmv
T (θ)] = E[GT (θ)] − ξVar[GT (θ)]. Using (2.26) and

(2.27), we can equivalently write problems (2.3) and (2.25) as to

maximise E[Jmv
T (θ)] over all θ ∈ Θ, (2.28)

maximise E(L)[J
(L)
T (ϑ(L))] over all ϑ(L) ∈ Θ(L), (2.29)

respectively. Viewing the original market as a coordinate of the extended market,
we consider analogously to (2.26) for any ϑ(L) ∈ Θ(L) the quantity

Jmv,`
T (ϑ`,(L)) = G`

T (ϑ`,(L))− ξ
(
G`
T (ϑ`,(L))− EP(L)

[G`
T (ϑ`,(L))]

)2
, (2.30)

for ` = 1, . . . , L. More specifically, for each L ∈ N and θ ∈ Θ, we can use the
lifting technique (2.18) to find a product-type strategy θ⊗L ∈ Θ(L) consisting
of (independent) copies of θ in the extended market. By construction, the fi-
nal gains G`

T (θ⊗L) are then P(L)-independent and have the same distribution as
GT (θ). Inserting GT (θ), G`

T (θ⊗L) into (2.26), (2.30) respectively and using the
i.i.d. property of GT (θ⊗L), then using some form of a law of large numbers, and
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finally using the optimality of a solution ϑ̂(L) for (2.29), we should get

E[Jmv
T (θ)] = E(L)[Jmv,`

T (θ⊗L)]

= lim
L→∞

E(L)[J
(L)
T (θ⊗L)]

≤ lim sup
L→∞

E(L)[J
(L)
T (ϑ̂(L))]. (2.31)

Finally, we go back to the original market and try to construct a strategy θ̂ ∈ Θ

such that E[Jmv
T (θ̂)] = lim supL→∞E(L)[J

(L)
T (ϑ̂(L))], by exploiting the formal limit

of the explicit expression for ϑ̂(L) as L→∞. Then (2.31) readily implies that θ̂
is an optimal strategy for (2.28).

As we can see from the presentation so far, the superscript (L) makes the
notations quite heavy. For ease of notation, we drop the superscript (L)

whenever we are working only with the extended market and L is fixed. In
particular, we still write Ω,F , but use P, (F`)`=1,...,L,S = (S`)`=1,...,L instead of
P(L), (F`,(L))`=1,...,L and S(L) = (S`,(L))`=1,...,L, respectively. Note the difference
between P,P and S,S, respectively.

Convention 2.6. When L is clear from the context, we write the L-extended
market in Definition 2.5 as (Ω,F ,P,G,S) or simply (P,G,S). Moreover, the
expectation E(L) is written as E. We also use Lp to denote the equivalence
classes of p-integrable random variables when the reference probability measure
is clear. For consistency, we use letters in boldface only to refer to quantities in
the extended market.

2.3 Martingale optimality principle

We have claimed above that (2.25) is a standard stochastic control problem. Let
us argue this in this subsection and therefore collect some general results on
the martingale optimality principle (MOP) for the optimisation problem (2.25),
whose assumptions will be verified later. In particular, these results hold both in
discrete and continuous time and do not need a specific choice of Θ or Θ.

First, we fix L ∈ N with L ≥ 2. Recall the extended market (P,G,S) from
Definition 2.5 and Convention 2.6, as well as the filtration G from (2.17). We
introduce the notation Θ standing for an abstraction of a set of trading strategies
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in the extended market. For any T-valued G-stopping time τ and ϑ ∈ Θ, define

Θ(τ,ϑ) := {ϑ̃ ∈ Θ : ϑ̃ = ϑ on K0, τK ∩ T}, (2.32)

Jτ (ϑ̃) := E
[
em
(
GT (ϑ̃)

)
− ξevar

(
GT (ϑ̃)

)∣∣Gτ]. (2.33)

The latter is consistent with (2.27) (without the superscript (L)) when τ = T .
Also, we define the value family V(ϑ) to problem (2.25) for ϑ ∈ Θ and any
T-valued G-stopping time τ by

Vτ (ϑ) := ess sup{Jτ (ϑ̃) : ϑ̃ ∈ Θ(τ,ϑ)}. (2.34)

For Jτ (ϑ̃) to be well defined, given that

Jτ (ϑ̃) = E[JT (ϑ̃)|Gτ ] (2.35)

in view of (2.33), we need

JT (ϑ̃) ∈ L1, ∀ϑ̃ ∈ Θ,

which gives a first condition on Θ. Here we adopt Convention 2.6 to write L1(P)

as L1. To compute VT (ϑ), we use (2.34), then Θ(T,ϑ) = {ϑ} by (2.32) and
(2.33) to obtain

VT (ϑ) = ess sup{JT (ϑ̃) : ϑ̃ ∈ Θ(T,ϑ)}

= JT (ϑ)

= em
(
GT (ϑ)

)
− ξevar

(
GT (ϑ)

)
. (2.36)

For the other boundary case V0(ϑ), we similarly use (2.34), then Θ(0,Θ) = Θ

and (2.35) plus the P-triviality of G0 to deduce that

V0(ϑ) = ess sup
ϑ̃∈Θ(0,ϑ)

J0(ϑ̃) = sup
ϑ̃∈Θ

E[JT (ϑ̃)] =: V0 (2.37)

is the value of the optimisation problem (2.25) and that this expression is inde-
pendent of ϑ.

Before we state the MOP, we add more conditions and list all of them below.

Condition 2.7. 1) JT (ϑ̃) ∈ L1 for all ϑ̃ ∈ Θ.
2) The family {Jτ (ϑ̃) : ϑ̃ ∈ Θ(τ,ϑ)} is upward directed for any ϑ ∈ Θ and
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any T-valued G-stopping time τ .
3) Θ(τ,ϑ) ⊆ Θ(σ,ϑ) for any ϑ ∈ Θ and any T-valued G-stopping times σ, τ

with σ ≤ τ P-a.s.
4) V0 = supϑ̃∈Θ E[JT (ϑ̃)] <∞.

Now fix ϑ ∈ Θ and consider the value family

V(ϑ) = {Vτ (ϑ) : τ is a T-valued G-stopping time}

of random variables. Recall that V(ϑ) is called a supermartingale system (resp.,
a martingale system) if V(ϑ) ⊆ L1 and

E[Vτ (ϑ)|Gσ] ≤ Vσ(ϑ)
(
resp. E[Vτ (ϑ)|Gσ] = Vσ(ϑ)

)
(2.38)

for any T-valued G-stopping times σ, τ with σ ≤ τ P-a.s.

Lemma 2.8. Suppose that Condition 2.7 is satisfied. Then the following state-
ments hold:

1) For any ϑ ∈ Θ, the family V(ϑ) is a supermartingale system in the filtra-
tion G.

2) Suppose that ϑ∗ ∈ Θ. Then ϑ∗ is optimal for (2.25) if and only if V(ϑ∗)

is a martingale system in the filtration G.

Proof. Fix ϑ ∈ Θ and a stopping time τ . Because ϑ ∈ Θ(τ,ϑ) and JT (ϑ) is in
L1 by Condition 2.7, 1), we obtain by (2.35) that Jτ (ϑ) = E[JT (ϑ)|Gτ ] ∈ L1 and
hence

Vτ (ϑ) ≥ Jτ (ϑ) > −∞ P-a.s. (2.39)

This implies that the conditional expectation in (2.38) is well defined with values
in (−∞,+∞]. Now we argue the two statements separately.

1) Let σ be a stopping time with σ ≤ τ P-a.s. By Condition 2.7, 2) and due
to (2.39), there exists a sequence (ϑ

n
)n∈N in Θ(τ,ϑ) such that Jτ (ϑ

n
) ↑ Vτ (ϑ)

P-a.s. as n→∞. Again using Condition 2.7, 2), we can find ϑn ∈ Θ(τ,ϑ) such
that max(Jτ (ϑ), Jτ (ϑ

n
)) ≤ Jτ (ϑ

n) for each n ∈ N. This clearly yields a sequence
(ϑn)n∈N in Θ(τ,ϑ) such that Jτ (ϑn) ↑ Vτ (ϑ) and Jτ (ϑ

n) ≥ Jτ (ϑ) ∈ L1. Thus
we can use the monotone convergence theorem, then (ϑn)n∈N ⊆ Θ(τ,ϑ), next
Condition 2.7, 3), and finally (2.34) and E[Jτ (ϑ̃)|Gσ] = Jσ(ϑ̃) from the definition
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(2.35) to obtain the supermartingale property

E[Vτ (ϑ)|Gσ] = E
[

lim
n→∞

Jτ (ϑ
n)
∣∣∣Gσ]

= lim
n→∞

E[Jτ (ϑ
n)|Gσ]

≤ ess sup{E[Jτ (ϑ̃)|Gσ] : ϑ̃ ∈ Θ(τ,ϑ)}

≤ ess sup{E[Jτ (ϑ̃)|Gσ] : ϑ̃ ∈ Θ(σ,ϑ)}

= Vσ(ϑ). (2.40)

We now show Vτ (ϑ) ∈ L1 with the help of (2.40) and in particular that both
V +
τ (ϑ), V −τ (ϑ) are in L1. For the negative part, the inequality (2.39) readily

implies that V −τ (ϑ) ≤ J−τ (ϑ) ∈ L1. For the positive part, using the identity
V +
τ (ϑ) = Vτ (ϑ) + V −τ (ϑ), then the supermartingale property (2.40), and finally

Condition 2.7, 4) with V −τ (ϑ) ∈ L1, we get

E[V +
τ (ϑ)] = E[Vτ (ϑ)] + E[V −τ (ϑ)] ≤ V0 + E[V −τ (ϑ)] <∞.

This completes the proof of 1).
2) Because V(ϑ∗) is a supermartingale system due to 1), it is a martingale

system if and only if it has constant expectation, which is in turn equivalent
to E[VT (ϑ∗)] = E[V0(ϑ∗)] = V0 thanks to P-triviality of G0. We then write
this equivalent equality E[VT (ϑ∗)] = V0, using VT (ϑ∗) = JT (ϑ∗) by (2.36) and
V0 = sup{E[JT (ϑ̃)] : ϑ̃ ∈ Θ} by (2.37), as

E[JT (ϑ∗)] = E[VT (ϑ∗)] = V0 = sup
ϑ̃∈Θ

E[JT (ϑ̃)],

which is equivalent to the optimality of ϑ∗ for problem (2.25) by (2.33).

Lemma 2.8 may look slightly different from well-known forms of the martingale
optimality principle, due to the presence of the family V(ϑ) and the concept of
supermartingale systems. However, this formulation is entirely classical; see for
instance the masterful presentation in El Karoui [27, Chapter I]. Moreover, the
formulation in Lemma 2.8 gives a unified presentation that holds both for discrete
and continuous time.

In discrete time, Lemma 2.8 directly reduces to the following statement.

Lemma 2.9. Suppose that Condition 2.7 is satisfied and T = {0, 1, . . . , T}. Then
the following statements hold:
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1) For any ϑ ∈ Θ, the process (Vt(ϑ))t=0,1,...,T is a supermartingale in the
filtration G.

2) Suppose that ϑ∗ ∈ Θ. Then ϑ∗ is optimal for (2.25) if and only if
(Vt(ϑ

∗))t=0,1,...,T is a martingale in the filtration G.

In continuous time, when working with a supermartingale or martingale X,
one usually wants to have (at least a version such) that the path t 7→ Xt is
RCLL P-a.s. But the process given by V (ϑ) = (Vt(ϑ))t∈[0,T ] is just a collection of
random variables contained in V(ϑ) and a priori has no path regularity properties
for t 7→ Vt(ϑ). We devote the rest of this subsection to this delicate issue occurring
only in continuous time. The reader may jump directly to the next subsection if
he/she is only interested in results in discrete time.

Condition 2.10. For each ϑ ∈ Θ, there exists an adapted RCLL process Ṽ (ϑ)

such that for each T-valued G-stopping time τ , we have Ṽτ (ϑ) = Vτ (ϑ) P-a.s.

The process Ṽ (ϑ) in Condition 2.10 aggregates the family V(ϑ) into an RCLL
process, which is also a version of V (ϑ). If Condition 2.10 is satisfied, we fix such
a Ṽ (ϑ) and work with it. For ease of notation, we then also still write V instead
of Ṽ . Combining Conditions 2.7 and 2.10 with Lemma 2.8, we finally present the
following version of a martingale optimality principle.

Lemma 2.11. Suppose that Conditions 2.7 and 2.10 are satisfied and choose
V (ϑ) to be an RCLL aggregation of V(ϑ) if necessary. Then the following state-
ments hold:

1) For any ϑ ∈ Θ, the process (Vt(ϑ))t∈T is a supermartingale in the filtration
G.

2) Suppose ϑ∗ ∈ Θ. Then ϑ∗ is optimal for (2.25) if and only if (Vt(ϑ
∗))t∈T

is a martingale in the filtration G.

We end this subsection with a sanity check — Condition 2.10 automatically
holds when T = {0, 1, . . . , T} because we can then choose Ṽt(ϑ) = Vt(ϑ) for
t = 0, 1, . . . , T and use that any path t 7→ Xt is continuous in discrete time.
Hence Lemma 2.11 reduces to Lemma 2.9 when T is discrete.

2.4 Some technical results on shrinkage of filtration

To use Lemma 2.11, we need to verify in later sections that some process is a
supermartingale/martingale in the filtration G. In this subsection, we prepare
some tools that can be used to reduce conditional expectations with respect to
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the filtration G given in (2.17) to simpler filtrations like F` for ` = 1, . . . , L. All
results below refer to an abstract probability space (Ω,A, P ).

Lemma 2.12. Suppose Ã and B̃ are two independent σ-algebras and X, Y are
Ã- resp. B̃-measurable integrable random variables with XY ∈ L1. Then

E[XY |σ(A,B)] = E[X|A]E[Y |B] (2.41)

for all σ-algebras A ⊆ Ã and B ⊆ B̃. In particular, for Y ≡ 1, we have

E[X|σ(A,B)] = E[X|A]. (2.42)

Proof. The RHS of (2.41) is clearly σ(A,B)-measurable. To check the averaging
property, fix A ∈ A and B ∈ B. We use the independence of Ã and B̃, the
definition of the conditional expectations E[X|A] and E[Y |A] and again the
independence of A and B to obtain

E[XY 1A1B] = E[X1A]E[Y 1B]

= E
[
E[X|A]1A

]
E
[
E[Y |B]1B

]
= E

[
E[X|A]E[Y |B]1A1B

]
. (2.43)

Because D := {D ∈ σ(A,B) : E[XY 1D] = E[E[X|A]E[Y |B]1D]} is a λ-system
and contains by (2.43) the π-system {A ∩ B : A ∈ A, B ∈ B}, we see from
Dynkin’s π-λ theorem that D = σ(A,B). The definition of D then yields that
(2.41) is true.

Lemma 2.13. Let A and B be two filtrations with BT independent of AT . If
(Xt)t∈T is a martingale with respect to A, then it is also a martingale in the fil-
tration A∨B given by (A∨B)t = σ(At,Bt). Conversely, if (Xt)t∈T is a martingale
in the filtration A ∨ B and adapted to A, it is also a martingale in the filtration
A.

Proof. Since the adaptedness, integrability and (if needed) path regularity of
(Xt)t∈T are all clear, we only check the martingale properties. Let s, t ∈ T with
s < t. Because Xt ∈ L1 for t ∈ T, and AT and BT are independent and hence also
As, Bs are independent, we can use (2.42) with (Ã, B̃,A,B) = (AT ,BT ,As,Bs)
and the martingale property of (Xt)t∈T with respect to the filtration A to obtain
E[Xt|σ(As,Bs)] = E[Xt|As] = Xs. This verifies the martingale property for
the first statement. For the second statement, we only check the martingale
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property of (Xt)t∈T with respect to the filtration A. Using the tower property, the
martingale property of (Xt)t∈T with respect to A∨B, and that (Xt)t∈T is adapted
to A, we obtain E[Xt|As] = E[E[Xt|σ(As,Bs)]|As] = E[Xs|As] = Xs.

Lemma 2.14. Suppose that (Xt)t∈T and (Yt)t∈T are martingales in the filtrations
A and B, respectively, with AT independent of BT . Then the process (XtYt)t∈T is
a martingale in the filtration A ∨ B.

Proof. The adaptedness and path regularity of (XtYt)t∈T are again clear. For
each t, Xt is At-measurable and Yt is Bt-measurable. Because AT ⊇ At and
BT ⊇ Bt are independent, this implies that Xt and Yt are independent, and so
XtYt ∈ L1 as E[|XtYt|] = E[|Xt|]E[|Yt|] < ∞. Hence it remains to check the
martingale property. Because Xt, Yt, XtYt are all in L1 for t ∈ T and AT ,BT
are independent and hence As,Bs are independent, we can use (2.41) with the
choice (Ã, B̃,A,B) = (AT ,BT ,As,Bs) and the martingale properties of (Xt)t∈T

and (Yt)t∈T with respect to the filtrations A and B, respectively, to obtain

E[XtYt|σ(As,Bs)] = E[Xt|As]E[Yt|Bs] = XsYs.

This completes the proof.

We need the following result to apply Lemmas 2.13 and 2.14 to multiple
independent σ-algebras.

Lemma 2.15. Let (F i)i∈I be a family of arbitrarily many independent σ-algebras
and let I be an arbitrary disjoint partition of I. Then the family (F I)I∈I of
σ-algebras given by F I = σ(F i, i ∈ I) is also independent.

Proof. See Kallenberg [40, Corollary 4.7].

3 The auxiliary problem in finite discrete time

In this section, we elaborate on the auxiliary problem (2.25) to

maximise E
[
em
(
GT (ϑ)

)
− ξevar

(
GT (ϑ)

)]
over all ϑ ∈ Θ,

specifically in finite discrete time. Throughout this section, L ∈ N with L ≥ 2

is fixed and T = {0, 1, . . . , T}. From (2.36), we recall that

JT (ϑ) = em
(
GT (ϑ)

)
− ξevar

(
GT (ϑ)

)
.
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Using this equality, the corresponding dynamic value process V (ϑ) in (2.34) is

Vt(ϑ) = ess sup{E[JT (ϑ̃)|Gt] : ϑ̃ ∈ Θ(t,ϑ)}, t = 0, 1, . . . , T, (3.1)

and the value of the auxiliary problem (2.25) is V0 = V0(ϑ) by (2.37). Because we
want to obtain both V0 and an optimal strategy ϑ̂, we need to compute the entire
process (Vt(ϑ))t=0,1,...,T for any ϑ ∈ Θ. As a first step, we present an abstract tool
for reducing the computation of the family of complicated essential suprema in
(3.1) to a sequence of one-step problems by exploiting the martingale optimality
principle in Lemma 2.9. Next, we go away from the abstract presentation and
provide a concrete setup where we can ultimately solve the auxiliary problem
(2.25) in the next section.

3.1 Dynamic programming in discrete time

We start by rewriting the global result in Lemma 2.9 as a sequence of local results.

Lemma 3.1. Suppose that Condition 2.7, 1)–3) are satisfied. For any ϑ ∈ Θ

and any t = 1, . . . , T , we then have

Vt−1(ϑ) = ess sup
{
E[Vt(ϑ̃)|Gt−1] : ϑ̃ ∈ Θ(t− 1,ϑ)

}
. (3.2)

Proof. We argue analogously to Lemma 2.8. Fix ϑ and ϑ̃ ∈ Θ(t− 1,ϑ). For “≤”
in (3.2), we observe that (2.35) and (2.34) yield E[JT (ϑ̃)|Gt] = Jt(ϑ̃) ≤ Vt(ϑ̃),

and hence again by (2.35)

Jt−1(ϑ̃) = E[JT (ϑ̃)|Gt−1] ≤ E[Vt(ϑ̃)|Gt−1]. (3.3)

Note that we use here Condition 2.7, 1) to ensure that all the conditional expect-
ations are well defined. Taking essential suprema over ϑ̃ ∈ Θ(t − 1,ϑ) on both
sides of (3.3) and using the definition (2.34) of Vt−1(ϑ) yields “≤” in (3.2).

For “≥” in (3.2), we fix ϑ ∈ Θ and ϑ̃ ∈ Θ(t− 1,ϑ). By its definition in (3.1),
we have

Vt(ϑ̃) = ess sup{E[JT (ϑ)|Gt] : ϑ ∈ Θ(t, ϑ̃)},

and thus we can use Condition 2.7, 2) as in the proof of Lemma 2.8, 1) to find
a sequence (ϑ̃n)n∈N in Θ(t, ϑ̃) such that Jt(ϑ̃) ≤ Jt(ϑ̃

n) = E[JT (ϑ̃n)|Gt] ↑ Vt(ϑ̃)

with Jt(ϑ̃) ∈ L1. Next, we observe ϑ̃n ∈ Θ(t, ϑ̃) ⊆ Θ(t − 1, ϑ̃) = Θ(t − 1,ϑ),
where the last equality uses that ϑ̃ is in Θ(t− 1,ϑ) and the definition (2.32) of
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Θ(t− 1,ϑ) so that the restrictions on a process imposed up to t− 1 by ϑ̃ and by
ϑ are the same. Then we use monotone convergence and ϑ̃n ∈ Θ(t− 1,ϑ) for all
n ∈ N to obtain

E[Vt(ϑ̃)|Gt−1] = lim
n→∞

E
[
E[JT (ϑ̃n)|Gt]

∣∣Gt−1

]
= lim

n→∞
E[JT (ϑ̃n)|Gt−1] ≤ Vt−1(ϑ).

Since ϑ̃ ∈ Θ(t − 1,ϑ) is arbitrary, we take essential suprema over ϑ̃ on the
left-hand side of the above inequality to obtain “≥” in (3.2).

Neither stating nor proving Lemma 3.1 requires Lemma 2.9 or Lemma 2.11.
In finite discrete time, we can therefore just rely on Lemma 3.1 to proceed. This
is, however, not possible in continuous time, which is why we still presented the
two lemmas in Section 2. Note also that Lemma 3.1 does not need Condition 2.7,
4).

One important consequence of (3.2) is that Vt−1(ϑ) depends only on the
restriction of ϑ to K0, t − 1K ∩ T, or, more explicitly, on ϑ1, . . . ,ϑt−1, for any
t = 1, . . . , T and any ϑ ∈ Θ. Now fix ϑ ∈ Θ. To get Vt−1(ϑ) from (3.2), we need
to consider Vt(ϑ̃), where ϑ̃ ∈ Θ(t − 1,ϑ). Since ϑ̃s = ϑs for all s = 1, . . . , t − 1

and the latter variables are fixed, the value of Vt(ϑ̃) depends on ϑ̃ only through
ϑ̃t. As a result, it is sufficient to optimise over random variables ϑ̃t rather than
over stochastic processes ϑ̃. This observation allows us to simplify (3.2). For
ϑ ∈ Θ and for any Gt−1-measurable Rd-valued δt, define

Θ[t](ϑ) := {ϑ̃t : ϑ̃ ∈ Θ(t− 1,ϑ)}, ϑ(t, δt) := (ϑ1, . . . ,ϑt−1, δt). (3.4)

Then (3.2) can be rewritten as

Vt−1(ϑ) = ess sup
{
E
[
Vt
(
ϑ(t, δt)

)∣∣Gt−1

]
: δt ∈ Θ[t](ϑ)

}
(3.5)

for any ϑ ∈ Θ and t = 1, . . . , T . (Note the slight abuse of notation — Vt should
be a function of some ϑ = (ϑ1, . . . ,ϑT ), whereas ϑ(t, δt) has only length t. But
this is no problem because Vt only depends on the first t coordinates of ϑ anyway.)
This is now a recursive sequence of one-step (conditional) problems that we can
tackle backward in time, starting with VT (ϑ) = JT (ϑ), to find (Vt(ϑ))t=0,1,...,T as
well as the optimal strategy ϑ̂.
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3.2 A concrete setup in dimension 1

The presentation so far is still very abstract. To give more concrete results for
the MVPS problem (2.3), we now turn to a specific setup. The goal of this
subsection is to give conditions on Θ and S such that Assumption 2.2 is satisfied.
We assume from now on that d = 1 so that S is one-dimensional.

To make a specific choice of Θ, we consider

ΘS := {θ := (θt)t=1,...,T : θ is real-valued,F-predictable and

θt4St ∈ L2 for all t = 1, . . . , T}. (3.6)

Note that ΘS is non-empty because it contains the constant process 0. But beyond
this, it is not clear whether ΘS contains other nonzero processes without knowing
anything about the integrability of S. To proceed, we introduce the following
assumption.

Assumption 3.2. S is square-integrable, meaning that for t = 0, 1, . . . , T we
have St ∈ L2.

Remark 3.3. Because T is finite, Assumption 3.2 is equivalent to saying that
supt∈T |St| ∈ L2. In continuous time, these two assumptions become different.

We use Assumption 3.2 and apply Doob’s decomposition in the filtration F
to obtain a square-integrable martingale M and a square-integrable predictable
process A, both null at 0 and both with respect to F, such that S = S0 +M +A.
Explicitly, for t = 1, . . . , T , we have

Mt =
t∑

s=1

(Ss − E[Ss|Fs−1]), At =
t∑

s=1

(E[Ss|Fs−1]− Ss−1). (3.7)

To give more structure on the process S and ensure that ΘS defined in (3.6)
satisfies Assumption 2.2, we need to introduce some definitions and notations. For
a square-integrable process (Xt)t=0,1,...,T adapted to the filtration F, we introduce
the two processes [X] and 〈X〉 via

[X]0 := 0, 4[X]t := (4Xt)
2, t = 1, . . . , T, (3.8)

〈X〉0 := 0, 4〈X〉t := E
[
4[X]t

∣∣Ft−1

]
= E[(4Xt)

2|Ft−1], t = 1, . . . , T. (3.9)

From (3.9), the predictability of A and (3.8), we have 4〈A〉t = (4At)2 = 4[A]t,
and using E[4Mt4At|Ft−1] = 0 due to the predictability of A, the martingale
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property of M and the integrability property from Assumption 3.2 additionally
yields

4〈S〉t = E[(4St)2|Ft−1] = E[(4Mt)
2|Ft−1]+(4At)2 = 4〈M〉t+(4At)2. (3.10)

Note also that by (3.9) and (3.7),

4〈M〉t = E[(4Mt)
2|Ft−1] = Var[4St|Ft−1]. (3.11)

Assumption 3.4. The process S satisfies the structure condition, meaning that
the process A is absolutely continuous with respect to the process 〈M〉. We write
A� 〈M〉.

Because (3.10) always gives 〈M〉 � 〈S〉, Assumption 3.4 implies that we have
〈S〉 ≈ 〈M〉 and can thus define the predictable processes

λ =
dA

d〈M〉
, λ̃ =

dA

d〈S〉
. (3.12)

Assumption 3.4 also says that A =
∫
λ d〈M〉 =

∑
λ4〈M〉 and therefore implies

both that
4At = 4At1{4〈M〉t 6=0}, t = 1, . . . , T, (3.13)

and, using (3.7) and (3.11),

4At = E[4St|Ft−1] = 0 on {Var[4St|Ft−1] = 0}. (3.14)

As a consequence of (3.13), we get

At =
t∑

s=1

4As =
t∑

s=1

4As1{4〈M〉s 6=0} =
t∑

s=1

4As
4〈M〉s

1{4〈M〉s 6=0}4〈M〉s.

The uniqueness of the Radon–Nikodým derivatives in (3.12) therefore implies
that

λt =
4At
4〈M〉t

1{4〈M〉t 6=0}, t = 1, . . . , T. (3.15)

Similarly, we use additionally that {4〈S〉t 6= 0} = {4〈M〉t 6= 0} to obtain

λ̃t =
4At
4〈S〉t

1{4〈S〉t 6=0} =
4At

4〈M〉t + (4At)2
1{4〈M〉t 6=0}, t = 1, . . . , T. (3.16)

Note that λt = 0 on {4〈M〉t = 0}. With the convention 0
0

:= 0, we can write
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(3.15) and (3.16) more compactly as

λt =
4At
4〈M〉t

, λ̃t =
4At

4〈M〉t + (4At)2
, t = 1, . . . , T. (3.17)

Definition 3.5. We define the mean–variance tradeoff (MVT) process of S to be

Kt :=

∫ t

0

λs dAs, t = 1, . . . , T, (3.18)

and the extended mean–variance tradeoff (EMVT) process of S to be

K̃t :=

∫ t

0

λ̃s dAs, t = 1, . . . , T. (3.19)

From (3.17)–(3.19), we get explicit expressions for the increments of the MVT
and EMVT processes for t = 1, . . . , T as

4Kt = λt4At =
(4At)2

4〈M〉t
, 4K̃t = λ̃t4At =

(4At)2

4〈M〉t + (4At)2
. (3.20)

Moreover, (3.20) also yields 1+4Kt = 4〈M〉t+(4At)2
4〈M〉t and 1−4K̃t = 4〈M〉t

4〈M〉t+(4At)2 ,

which implies that

4Kt =
4K̃t

1−4K̃t

, 4K̃t =
4Kt

1 +4Kt

, t = 1, . . . , T. (3.21)

Note that writing (3.21) assumes implicitly that4K̃t < 1 P -a.s. This is evidently
true on {4〈M〉t 6= 0} by (3.20). But using Assumption 3.4, we also have4K̃t = 0

on {4〈M〉t = 0}, which is consistent with (3.20) and our convention that 0
0

= 0.

The above notations provide handy tools which can be used to impose con-
ditions on S so that ΘS fulfils Assumption 2.2. In view of Theorem 2.4, we then
know that ΘS is at least not a bad place to look for a maximiser to the MVPS
problem (2.3).

Lemma 3.6. Suppose Assumptions 3.2 and 3.4 are satisfied. If the MVT process
K in (3.18) is bounded, then ΘS in (3.6) satisfies Assumption 2.2, i.e., GT (ΘS)

is closed in L2 and 1 /∈ GT (ΘS).

Proof. For Assumption 2.2, 1), we refer to Schweizer [61, Theorem 2.1]. Note that
K̂ there is the same as K here and that (ND) there is equivalent to boundedness
of K̂ there.
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For 2), we want to show that GT (ΘS), or equivalently here GT (ΘS), does not
contain the constant payoff 1. To this end, we recall from Schweizer [63] that a
signed GT (ΘS)-martingale measure is a signed measure Q such that Q[Ω] = 1,
Q� P with dQ

dP
∈ L2 and

E

[
dQ

dP
g

]
= 0 for all g ∈ GT (ΘS), (3.22)

and we denote by Q the set of all signed GT (ΘS)-martingale measures. Also from
Schweizer [63, Lemma 4.1], we recall that GT (ΘS) does not contain the constant
payoff 1 if and only if Q 6= ∅. We now show that the latter is true by constructing
an element in Q directly, using that the MVT process K is bounded. Define

Z0 = 1, Zt := Zt−1(1− λt4Mt) =
t∏

s=1

(1− λs4Ms), t = 1, . . . , T. (3.23)

We claim that the measure Q given by dQ
dP

= ZT is an element of Q. The proof
of this claim is divided into four parts as follows.

a) We first argue that Zt ∈ L2 for t = 1, . . . , T . Because λ2
t and (4Mt)

2

are nonnegative, we use Ft−1-measurability of λ2
t and the explicit expressions of

4〈M〉t, λt,4Kt in (3.9), (3.17) and (3.20), respectively, to obtain for t = 1, . . . , T

that

E[(λt4Mt)
2|Ft−1] = λ2

t4〈M〉t =
(4At)2

(4〈M〉t)2
4〈M〉t = 4Kt. (3.24)

Taking expectations in (3.24) and using boundedness of the MVT process K by
assumption yields

λt4Mt ∈ L2, t = 1, . . . , T. (3.25)

We now use the integrability in (3.25), the martingale property of M and (3.24)
to obtain for t = 1, . . . , T that

E[(1− λt4Mt)
2|Ft−1] = E

[(
1− 2λt4Mt + (λt4Mt)

2
)∣∣Ft−1

]
= 1 +4Kt. (3.26)

Because Z2
t−1 and (1−λt4Mt)

2 are nonnegative, we next use Ft−1-measurability
of Zt−1 from its definition in (3.23) and then (3.26) to get for t = 1, . . . , T that

E[Z2
t |Ft−1] = E

[
Z2
t−1E[(1− λt4Mt)

2|Ft−1]
]

= Z2
t−1(1 +4Kt). (3.27)
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Taking expectations in (3.27) and using induction and boundedness of the MVT
process K, we obtain E[Z2

t ] = E[
∏t

s=1(1 +4Ks)] < ∞ and hence Zt ∈ L2 for
t = 1, . . . , T .

b) We next show that (Zt)t=1,...,T is a martingale and hence E[ZT ] = Z0 = 1

by its definition in (3.23). The adaptedness is clear and the integrability is given
by part a). For the martingale property, fix t ∈ {1, . . . , T}. Note that both Zt

and 1 − λt4Mt are in L2 by part a) and (3.25), respectively. We combine this
observation with Ft−1-measurability of Zt−1 and the martingale property of M
to obtain

E[Zt|Ft−1] = Zt−1E[1− λt4Mt|Ft−1] = Zt−1, t = 1, . . . , T.

This shows that (Zt)t=1,...,T is a martingale. Hence by (3.23), we also get that
E[ZT ] = E[Z0] = 1.

c) We now argue that (ZtSt)t=0,1,...,T is also a martingale. The adaptedness is
clear. Fix t ∈ {1, . . . , T}. Because Zt, 1− λt4Mt and St are all in L2 by part a),
(3.25) and Assumption 3.2, respectively, we also get that ZtSt and the product
(1−λt4Mt)4St are both in L1. We use this observation and Ft−1-measurability
of Zt−1, then 4St = 4Mt +4At, next Ft−1-measurability of λt and 4At, that
λt4Mt4At, λt(4Mt)

2 are both in L1 due to (3.25) and Assumption 3.2, and
finally the explicit expressions for λt and 4〈M〉t in (3.17) and (3.9) to obtain
that

E[Zt4St|Ft−1] = Zt−1E[(1− λt4Mt)4St|Ft−1]

= Zt−1

(
4At − E[λt4Mt4At|Ft−1]

+ E[4Mt|Ft−1]− E[λt(4Mt)
2|Ft−1]

)
= Zt−1

(
4At − λt4AtE[4Mt|Ft−1]

+ E[4Mt|Ft−1]− λtE[(4Mt)
2|Ft−1]

)
= Zt−1

(
4At −

4At
4〈M〉t

4〈M〉t
)

= 0, t = 1, . . . , T. (3.28)

This yields E[Zt(St − St−1)|Ft−1] = 0 and therefore

E[ZtSt|Ft−1] = E[ZtSt−1|Ft−1] = Zt−1St−1

because Z is a martingale by part b).
d) Lastly, we turn to verifying (3.22) based on parts a)–c). For g ∈ GT (ΘS),
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we know by definition that g =
∑T

t=1 θt4St for some θ = (θt)t=1,...,T ∈ ΘS.
Using dQ

dP
= ZT with this equality, then Ft-measurability of θt4St with part b)

and ZT θt4St ∈ L1 by part a) and θt4St ∈ L2 from the definition (3.6) of ΘS,
next Ft−1-measurability of θt with Ztθt4St ∈ L1 similarly as ZT θt4St ∈ L1 and
Zt4St ∈ L1 by part c) and finally (3.28), we write (3.22) as

E

[
dQ

dP
g

]
=

T∑
t=1

E
[
E
[
E[ZT θt4St|Ft]

∣∣Ft−1

]]
=

T∑
t=1

E
[
E[Ztθt4St|Ft−1]

]
=

T∑
t=1

E
[
θtE[Zt4St|Ft−1]

]
= 0.

This verifies (3.22). Together with ZT ∈ L2 from part b) and Q � P by con-
struction, we conclude that Q ∈ Q. This completes the proof.

3.3 A concrete setup for the auxiliary problem

The previous subsection provides a setup to study the MVPS problem (2.3).
Analogously, we give in this subsection a concrete setup for studying the auxiliary
problem (2.25). Recall the extended market (P,G,S) from Definition 2.5 and
Convention 2.6. Although Lemma 3.6 gives sufficient conditions in terms of the
model (Θ, S) such that the MVPS problem (2.3) is well-posed by Theorem 2.4,
we do not seek a similar result in the extended market (P,G,S). Instead, our
strategy is to use the dynamic programming result from Lemma 3.1 to directly
construct an optimiser for the auxiliary problem (2.25). To do this, we still need
to choose a good space Θ which satisfies the premises of Lemma 3.1, and this is
of course motivated by (2.20).

In analogy to ΘS given in (3.6), we set

ΘS := {ϑ := (ϑt)t=1,...,T : ϑ` is real-valued, G-predictable and

ϑ`t4S`t ∈ L2 for t = 1, . . . , T, ` = 1, . . . , L}. (3.29)

Next, note that Assumption 3.2 and (2.16) imply that S` is square-integrable
under the measure P for ` = 1, . . . , L. It immediately follows that in this extended
market, we can write S` = S0 + M` + A`, where M`,A` are from the Doob



3 The auxiliary problem in finite discrete time 49

decomposition of S` in the filtration G given in (2.17), and explicitly like Doob’s
decomposition (3.7) for S,

M`
t =

t∑
s=1

(S`s − E[S`s|Gs−1]), A`
t =

t∑
s=1

(E[S`s|Gs−1]− S`s−1), (3.30)

for t = 1, . . . , T and ` = 1, . . . , L. Recall for ` = 1, . . . , L the filtration F` from
(2.14). The two decompositions (3.7) (in F) and (3.30) (in G) are related in the
following way.

Lemma 3.7. Suppose that Assumption 3.2 is satisfied. Then the following state-
ments are true:

1) For each ` = 1, . . . , L, the Doob decomposition of S` in the filtration G is
the same as in the filtration F` given in (2.14).

2) For `,m = 1, . . . , L and ` 6= m, the process (M`
tM

m
t )t=0,1,...,T is a martingale

in the filtration G. Equivalently, for t = 1, . . . , T , we have

E[4M`
t4Mm

t |Gt−1] = 0 for ` 6= m, (3.31)

which also means that the martingales M` and Mm for ` 6= m are strongly ortho-
gonal (under P with respect to G).

Proof. 1) We first argue that (M`
t)t=0,1,...,T is a martingale in the filtration F`.

From (2.17), we can write Gt = σ(F `t ,B`t) with B`t := σ(∪j 6=`F jt ) for t = 1, . . . , T .
Because (F `t )`=1,...,L are independent by (2.15), we get from Lemma 2.15 that F `t
and B`t are also independent for t = 0, 1, . . . , T . Then applying Lemma 2.13 with
A = F`, B = (B`t)t=0,1,...,T gives that (M`

t)t=0,1,...,T is a martingale in F`. Inserting
(2.42) with (Ã, B̃,A,B) = (F `T ,B`T ,F `s−1,B`s−1) for s = 1, . . . , t into (3.30), we
obtain

A`
t =

t∑
s=1

(
E[S`s|F `s−1 ∨ B`s−1]− S`s−1

)
=

t∑
s=1

(E[S`s|F `s−1]− S`s−1).

Together with the fact that (S`t)t=0,1,...,T is F`-adapted by the constructions (2.14)
and (2.16), we see that (A`

t)t=0,1,...,T is F`-predictable. By the uniqueness of
the Doob decomposition, we finally get that S` = S0 + M` + A` is the Doob
decomposition of S` in the filtration F`.

2) The adaptedness is clear. For integrability, we use Assumption 3.2 and
the Cauchy–Schwarz inequality to obtain that M`

tM
m
t ∈ L1 for t = 0, 1, . . . , T .

By part 1), (M`
t)t=0,1,...,T and (Mm

t )t=0,1,...,T are martingales in the filtrations F`
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and Fm, respectively. Because F `T and FmT are independent by (2.15), we obtain
first by Lemma 2.14 with A = F`, B = Fm that (M`

tM
m
t )t=0,1,...,T is a martingale

in the filtration F` ∨ Fm given by F `t ∨ Fmt = σ(F `t ,Fmt ). Because σ(F `T ,FmT )

and σ(F jT , j 6= `, j 6= m) are independent, we can then apply Lemma 2.13 with
A = F`∨Fm and B given by Bt = σ(∪j 6=`,j 6=mF jt ) to conclude that (M`

tM
m
t )t=0,1,...,T

is also a martingale in the filtration G. The rest is then obvious from the ab-
stract result that for any two square-integrable martingales M,N with respect
to a filtration H, we have E[4Mt4Nt|Hs] = E[4[M,N ]t|Hs] = E[4(MN)t|Hs]

because MN − [M,N ] is an H-martingale. This completes the proof.

Remark 3.8. Fix ` ∈ {1, . . . , L}. We remark that by Lemma 3.7, 1), the decom-
position in (3.30) agrees with M` = M ◦ π`,L and A` = A ◦ π`,L, where M,A are
from (3.7) and π`,L is the canonical projection onto the `-th coordinate. There-
fore M` and A` have the same distributions as M and A, respectively. Indeed,
using (2.42) with (Ã, B̃,A,B) = (F `T , σ(∪j 6=`F jT ),F `t−1, σ(∪j 6=`F jt−1)), we obtain
E[S`t|Gt−1] = E[S`t|F `t−1] for t = 1, . . . , T . By (2.12), (2.14) and (2.16), the last
expression is equal to E[St|Ft−1] ◦ π`,L. Combining this identity with (2.16), we
get S`t−E[S`t|Gt−1] = (St−E[St|Ft−1])◦π`,L. We use this identity and the explicit
formula for M in (3.7) to write (3.30) for t = 1, . . . , T and ` = 1, . . . , L as

M`
t =

t∑
s=1

(S`s − E[S`s|Gs−1]) =

( t∑
s=1

(Ss − E[Ss|Fs−1])

)
◦ π`,L = Mt ◦ π`,L.

The identity A` = A◦π`,L holds because A` = S`−S`0−M` and A = S−S0−M .
In view of the notation X`,⊗L(ω(L)) = X(ω`) for ` = 1, . . . , L from (2.18), we can
simply write M = M⊗L and A = A⊗L. In other words, M and A simply consist
of independent copies of M and A, respectively.

Now we translate the main notations from (3.8) to (3.21) into corresponding
quantities in the extended market (P,G,S). While (3.8) remains the same, the
filtration used in (3.9) is changed accordingly in the extended market. For a
square-integrable process X = (X`)`=1,...,L, meaning that X`

t ∈ L2 for t = 1, . . . , T

and ` = 1, . . . , L, we set

4〈X`〉0 = 0, 4〈X`〉t = E
[
4[X`]t

∣∣Gt−1

]
= E[(4X`

t)
2|Gt−1]. (3.32)

By Remark 3.8, M` and A` have the same distributions asM and A, respectively.
Moreover, using (3.32) and (2.42) in the same way as in Remark 3.8, we obtain
4〈M`〉t = E[(4M`

t)
2|Gt−1] = E[(4M`

t)
2|F `t−1]. Again in view of the argument in
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Remark 3.8, we get 〈M`〉 = 〈M〉◦π`,L, and hence 〈M`〉 has the same distribution
as 〈M〉. Therefore, Assumption 3.4 carries over to S`, i.e. A` � 〈M`〉 and hence
〈M`〉 ≈ 〈S`〉 for ` = 1, . . . , L. In view of (3.32), (3.10) corresponds to

4〈S`〉t = 4〈M`〉t + (4A`
t)

2, t = 1, . . . , T, ` = 1, . . . , L. (3.33)

For ` = 1, . . . , L, define

λ` =
dA`

d〈M`〉
, λ̃` =

dA`

d〈S`〉
, K` =

∫
λ` dA`, K̃` =

∫
λ̃` dA`. (3.34)

The proofs of (3.15) and (3.16) and the definition (3.34) translate (3.17) into

λ`t =
4A`

t

4〈M`〉t
, λ̃`t =

4A`
t

4〈M`〉t + (4A`
t)

2
, t = 1, . . . , T, ` = 1, . . . , L. (3.35)

In view of (3.34) and (3.35), (3.20) reads for t = 1, . . . , T and ` = 1, . . . , L as

4K`
t = λ`t4A`

t =
(4A`)2

4〈M`〉
, 4K̃`

t = λ̃`t4A`
t =

(4A`)2

4〈M`〉+ (4A`)2
. (3.36)

Remark 3.9. 1) We see from Remark 3.8 and the subsequent discussion that
we have M` = M ◦ π`,L, A` = A ◦ π`,L and 〈M`〉 = 〈M〉 ◦ π`,L for ` = 1, . . . , L.
This implies that the processes λ, λ̃, K and K̃ in (3.34) agree with the vector
processes λ⊗L, λ̃⊗L, K⊗L and K̃⊗L, respectively. Thus each coordinate of these
processes has the same distributions as λ, λ̃, K and K̃, respectively. Moreover,
due to (2.15), the processes Y` and Ym are independent for ` 6= m and for any
Y ∈ {M,A,λ, λ̃,K, K̃}.

2) Because M` and Mm are independent for ` 6= m, we have 〈M`,Mm〉 ≡ 0

for ` 6= m; see Lemma 3.7, 2). Therefore the matrix-valued process 〈M〉 has a
diagonal form, and so it is enough to look only at 〈M`〉 for ` = 1, . . . , L.

Finally, we show that ΘS in (3.29) is indeed a good choice for dynamic pro-
gramming in the sense that Θ = ΘS satisfies the assumptions of Lemma 3.1.

Lemma 3.10. Suppose Assumptions 3.2 and 3.4 are satisfied. If the MVT process
K is bounded, then Condition 2.7, 1), 2) and 3) hold with the choice Θ = ΘS

given in (3.29).

Proof. Fix ϑ ∈ ΘS. For Condition 2.7, 1), we show JT (ϑ) ∈ L1. By the definition
of ΘS in (3.29), we have G`

T (ϑ) ∈ L2 for ` = 1, . . . , L. Using this integrability



52 I Mean field approach for MVPS – discrete time

and 0 ≤ evar(x) = em((x)2)− (em(x))2 ≤ em((x)2) from (2.24), we obtain

0 ≤ evar
(
GT (ϑ)

)
≤ em

(
GT (ϑ)2

)
∈ L1

and hence from the explicit expression (2.36) for JT (ϑ) that

JT (ϑ) ≤
∣∣em

(
GT (ϑ)

)∣∣+ ξ
∣∣evar

(
GT (ϑ)

)∣∣ ∈ L1.

Next, we prove Condition 2.7, 3). For T-valued stopping times σ, τ with
σ ≤ τ , we observe from the definition (2.32) of ΘS(τ,ϑ) that any element in
ΘS(τ,ϑ) agrees with ϑ on K0, τK ∩ T and thus agrees with ϑ on K0, σK ∩ T since
K0, σK ⊆ K0, τK. Because elements of ΘS(σ,ϑ) and of ΘS(τ,ϑ) have the same
measurability and integrability conditions, we obtain ΘS(τ,ϑ) ⊆ ΘS(σ,ϑ).

To argue Condition 2.7, 2), we first show that ΘS is stable under bifurcation,
i.e., that for any ϑ ∈ ΘS, T-valued G-stopping time τ , ϑ̃ ∈ ΘS(τ,ϑ) and event
F ∈ Gτ , the process ϑ̃F := 1Fϑ+ 1F cϑ̃ is again in ΘS. In view of the definition
(3.29) of ΘS, we first show that ϑ̃F is G-predictable. Indeed, because τ is a
G-stopping time, both 1K0,τK and 1Kτ,T K are G-predictable processes. Moreover,
F ∈ Gτ implies that 1F1Kτ,T K is G-predictable. Therefore, using ϑ̃1K0,τK = ϑ1K0,τK

from ϑ̃ ∈ ΘS(τ,ϑ) yields ϑ̃F = 1Fϑ+ 1F cϑ̃ = 1K0,τKϑ+ 1F1Kτ,T Kϑ+ 1F c1Kτ,T Kϑ̃,

which readily shows the G-predictability of ϑ̃F . For the integrability condition
in (3.29), we use (ϑ̃F,`t 4S`t)

2 ≤ (ϑ`t4S`t)
2 + (ϑ̃`t4S`t)

2 ∈ L1 for t = 1, . . . , T and
` = 1, . . . , L. This proves that ϑ̃F is in ΘS.

We now turn to verifying Condition 2.7, 2), which says that for any T-valued
G-stopping time τ and ϑ̃(1), ϑ̃(2) ∈ ΘS(τ,ϑ), there exists ϑ̃ ∈ ΘS(τ,ϑ) such that
max{Jτ (ϑ̃(1)), Jτ (ϑ̃

(2))} ≤ Jτ (ϑ̃). We take such ϑ̃(1), ϑ̃(2), set

F := {Jτ (ϑ̃(1)) ≥ Jτ (ϑ̃
(2))} ∈ Gτ

and define ϑ̃ := 1F ϑ̃
(1) + 1F cϑ̃

(2) ∈ ΘS by the stability under bifurcation proved
above. Using the definition of F , then the definition (2.33) of Jτ with F ∈ Gτ ,
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next the definition of ϑ̃ and finally (2.33) again, we write

max{Jτ (ϑ̃(1)), Jτ (ϑ̃
(2))} = 1FJτ (ϑ̃

(1)) + 1F cJτ (ϑ̃
(2))

= E[1FJT (ϑ̃(1)) + 1F cJT (ϑ̃(2))|Gτ ]

= E[1FJT (ϑ̃) + 1F cJT (ϑ̃)|Gτ ]

= E[JT (ϑ̃)|Gτ ]

= Jτ (ϑ̃),

which shows Condition 2.7, 2). This completes the proof.

4 Recursive computation of the value process for

dimension 1

In this section, we solve the auxiliary problem (3.5) with the choice of Θ = ΘS.
This will need an extra assumption in addition to Assumptions 3.2 and 3.4. In
view of the discussion at the end of Section 3.1, the idea is to compute the value
process (Vt(ϑ))t=0,1,...,T in (3.5) backward in time. Let us begin with rewriting
(3.5) for t = 1, . . . , T as

Vt−1(ϑ) = ess sup
{
E
[
Vt
(
ϑ(t, δt)

)∣∣Gt−1

]
: δt ∈ Θ

[t]
S (ϑ)

}
, t = 1, . . . , T, (4.1)

with ϑ(t, δt) = (ϑ1, . . . ,ϑt−1, δt) from (3.4) and VT (ϑ(T, δT )) of the general form

VT
(
ϑ(T, δT )

)
= aT em

(
GTϑ(T, δT )

)
− bT evar

(
GTϑ(T, δT )

)
+ cT ,

where aT , bT , cT are nonrandom constants with bT > 0. (4.2)

While (4.2) may look like spurious generality because we actually have aT = 1,
bT = ξ, cT = 0, it turns out to be useful to write things in this generality.
Moreover, using the definitions of Θ(τ,ϑ) and ΘS from (2.32) and (3.29), re-
spectively, we write Θ

[t]
S (ϑ) in (3.4) more explicitly as

Θ
[t]
S (ϑ) = {ϑ̃t : ϑ̃ ∈ ΘS(t− 1,ϑ)}

= {δt : δ`t is real-valued, Gt−1-measurable

and δ`t4S`t ∈ L2, ` = 1, . . . , L}. (4.3)

In the rest of this section, we present a solution technique for (4.1) in two
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parts. First, we consider (4.1) for t = T for a fixed ϑ ∈ ΘS and note that
(4.1) says that VT−1(ϑ) is obtained by maximising the conditional expectation
E[VT (ϑ(T, δT ))|GT−1] =: F (δT ) over δT . Because of (4.2), F (δT ) is an affine–
quadratic function of δT , and hence the first-order condition (FOC) for the op-
timisation of F (δT ) over δT is affine. Plugging its solution back in should yield
that VT−1(ϑ) is an affine–quadratic function of GT−1(ϑ), like VT (ϑ) of GT (ϑ).
Moreover, it seems plausible that this reasoning can be iterated backwards until
we obtain V0. In the first part, we analyse the above programme rigorously and
argue that this solution technique is indeed iteratable under an extra assump-
tion. In the second part, we state the main result of this section — a recursive
description of the entire value process and the optimal strategy for (4.1).

We first give a step-by-step recipe that will be implemented below.

Recipe 4.1. 1) Compute E[VT (ϑ(T, δT ))|GT−1] =: F (δT ) as a function of δT
explicitly.

2) Maximise δT 7→ F (δT ) via solving an FOC for the optimality.
3) Verify that the candidate maximiser obtained in 2) is in Θ

[T ]
S (ϑ) and is

indeed a maximiser for (4.1). Plug it back into F to obtain an explicit formula
for VT−1(ϑ).

4) Argue carefully how and why steps 1)–3) can be extended to general t < T

under an extra assumption.

4.1 Step 1: Computing F (δT ) := E[VT (ϑ(T, δT ))|GT−1]

In this subsection, we embark on the programme described in Recipe 4.1 and
implement its step 1), from which we recall F (δT ) = E[VT (ϑ(T, δT ))|GT−1]. This
relies on the Doob decomposition of S in the filtration G. As we can see from
(4.4) and (4.5) below, the conditional expectation F (δT ) is indeed an affine–
quadratic function in δT . Recall from (2.22) the notation � for the coordinatewise
multiplication.

Lemma 4.2. Suppose that Assumptions 3.2 and 3.4 are satisfied. If ϑ ∈ ΘS and
VT (ϑ(T, δT )) is given by (4.2) for δT ∈ Θ

[T ]
S (ϑ), then we have

E
[
VT
(
ϑ(T, δT )

)
|GT−1

]
= aT em

(
GT−1(ϑ)

)
− bT evar

(
GT−1(ϑ)

)
+ cT

+RT (δT ), (4.4)
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where

RT (δT ) := aT em(δT �4AT )− 2bT em
(
GT−1(ϑ)� δT �4AT

)
+ 2bT em

(
GT−1(ϑ)

)
em(δT �4AT )

− bT em
(

(δT )2 �
(
(1− L−1)4〈M〉T + (4AT )2

))
+ bT

(
em(δT �4AT )

)2
. (4.5)

Remark 4.3. In analogy to the empirical variance evar, we define for x,y ∈ RL

the empirical covariance between x and y by

ecov(x,y) = em(x� y)− em(x) em(y). (4.6)

Using (4.6), we can write the identity (4.5) more compactly and suggestively as

RT (δT ) = aT em(δT �4AT )− 2bT ecov
(
GT−1(ϑ), δT �4AT

)
− bT em

(
(δT )2 �

(
(1− L−1)4〈M〉T + (4AT )2

))
+ bT

(
em(δT �4AT )

)2
. (4.7)

Proof of Lemma 4.2. Let us recall from (2.24) that

evar(x) = em(x2)−
(
em(x)

)2
. (4.8)

Taking conditional expectations in (4.2) and using (4.8) and the non-randomness
of aT , bT , cT gives

E
[
VT
(
ϑ(T, δT )

)
|GT−1

]
= aTE

[
em
(
GT

(
ϑ(T, δT )

))∣∣∣GT−1

]
− bTE

[
evar

(
GT

(
ϑ(T, δT )

))∣∣∣GT−1

]
+ cT

= aTE
[
em
(
GT

(
ϑ(T, δT )

))∣∣∣GT−1

]
− bTE

[
em
(
GT

(
ϑ(T, δT )

)2
)∣∣∣GT−1

]
+ bTE

[(
em
(
GT

(
ϑ(T, δT )

)))2∣∣∣∣GT−1

]
+ cT . (4.9)
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To expand the terms in (4.9), we recall from (2.21), (3.4) and (2.23) the equalities

GT

(
ϑ(T, δT )

)
= GT−1(ϑ) + δT �4ST , (4.10)

em(x + y) = em(x) + em(y), em(x) =
1

L

L∑
`=1

x`. (4.11)

Next, we recall from Assumption 3.2 and (3.30) for ` = 1, . . . , L that

4S`T = 4M`
T +4A`

T , E[4M`
T |GT−1] = 0, E[4S`T |GT−1] = 4A`

T . (4.12)

We also recall the angle bracket notation from (3.32) and (3.33) as

4〈X`〉T = E[(4X`
T )2|GT−1], 4〈S`〉T = 4〈M`〉T + (4A`

T )2. (4.13)

Finally, we recall from Assumption 3.2, (3.29) and (4.3) that for ` = 1, . . . , L,

4S`T ,4M`
T ,4A`

T ,G
`
T−1(ϑ), δ`T4S`T , δ

`
T4M`

T , δ
`
T4A`

T are all in L2. (4.14)

For the first term in (4.9), we now use (4.10), (4.11) and4ST = 4MT +4AT ,
then GT−1-measurability of em(GT−1(ϑ)) and em(δT � 4AT ) and the identity
E[em(δT�4MT )|GT−1] = 0, which follows from GT−1-measurability of δ`T , (4.11),
(4.12) and (4.14), to obtain

aTE
[
em
(
GT

(
ϑ(T, δT )

))∣∣∣GT−1

]
= aTE

[
em
(
GT−1(ϑ)

)∣∣GT−1

]
+ aTE[em(δT �4ST )|GT−1]

= aT em
(
GT−1(ϑ)

)
+ aT em(δT �4AT ). (4.15)

The last equality also uses that em(GT−1(ϑ)) and em(δT �4ST ) are in L2 ⊆ L1

thanks to (4.11) and the integrability property in (4.14).
For the second term in (4.9), we use (4.10) and (4.11) successively, then the
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GT−1-measurability of G`
T−1(ϑ), (4.12) and (4.13) to obtain

bTE
[
em
(
GT

(
ϑ(T, δT )

)2
)∣∣∣GT−1

]
= bTE

[
em
(
GT−1(ϑ)2

)∣∣GT−1

]
+ 2bTE

[
em
(
GT−1(ϑ)� δT �4ST

)∣∣GT−1

]
+ bTE

[
em
(
(δT )2 � (4ST )2

)∣∣GT−1

]
= bTE

[
em
(
GT−1(ϑ)2

)∣∣GT−1

]
+ 2bT

1

L

L∑
`=1

E[G`
T−1(ϑ)δ`T4S`T |GT−1]

+ bT
1

L

L∑
`=1

E[(δ`T4S`T )2|GT−1]

= bT em
(
GT−1(ϑ)2

)
+ 2bT em

(
GT−1(ϑ)� δT �4AT

)
+ bT em

(
(δT )2 �

(
4〈M〉T + (4AT )2

))
. (4.16)

The last equality also uses (4.11), the integrability property in (4.14) directly and
that (G`

T−1(ϑ))2, G`
T−1(ϑ)δ`T4S`T and (δ`T4S`T )2 are in L1 for ` = 1, . . . , L due

to (4.14).
For the third term in (4.9), we need several steps. First, we again use (4.10)

and (4.11), then GT−1-measurability of G`
T−1(ϑ) and that, as argued in (4.15),

E[em(δT �4ST )|GT−1] = em(δT �4AT ), to write the third term as

bTE

[(
em
(
GT

(
ϑ(T, δT )

)))2∣∣∣∣GT−1

]
= bTE

[(
em
(
GT−1(ϑ)

))2∣∣∣GT−1

]
+ 2bTE

[
em
(
GT−1(ϑ)

)
em(δT �4ST )

∣∣GT−1

]
+ bTE

[(
em(δT �4ST )

)2∣∣GT−1

]
= bT

(
em
(
GT−1(ϑ)

))2

+ 2bT em
(
GT−1(ϑ)

)
em(δT �4AT )

+ bTE
[(

em(δT �4ST )
)2∣∣GT−1

]
. (4.17)

The second equality also uses that both the terms em(GT−1(ϑ))em(δT �4ST )

and (em(GT−1(ϑ)))2 are in L1 due to (4.11) and (4.14). Then we expand the last
term in (4.17). Using 4ST = 4MT +4AT , (4.11) and GT−1-measurability of
(em(δT �4AT ))2, we write that last term in (4.17) as

bTE
[(

em(δT �4ST )
)2∣∣GT−1

]
= bTE

[(
em(δT �4MT )

)2∣∣GT−1

]
+ 2bTE[em(δT �4MT )em(δT �4AT )|GT−1]

+ bT
(
em(δT �4AT )

)2
. (4.18)
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For the first term in (4.18), we use (4.11), then GT−1-measurability of δ`T , (4.13)
and E[4M`

T4Mm
T |GT−1] = 0 for ` 6= m by (3.31), and finally (4.11) again to

obtain

E
[(

em(δT �4MT )
)2∣∣Gt−1

]
=

L∑
`=1

1

L2
E[(δ`T4M`

T )2|Gt−1]

+
L∑

`6=m

1

L2
E[δ`Tδ

m
T 4M`

T4Mm
T |Gt−1]

=
L∑
`=1

1

L2
(δ`T )2E[(4M`

T )2|Gt−1]

=
1

L
em
(
(δT )2 �4〈M〉T

)
. (4.19)

The second equality in (4.19) also uses (4.14) and its consequence that the
terms 4M`

T4Mm
T and δ`tδmt 4M`

t4Mm
t are in L1 for `,m = 1, . . . , L. For

the second term in (4.18), we argue similarly as in the computation of the
conditional expectation E[em(GT−1(ϑ))em(δT � 4ST )|GT−1] in (4.17) and use
E[em(δT �4MT )|GT−1] = 0 as argued in (4.15) to obtain

E[em(δT �4MT )em(δT �4AT )|GT−1]

= E[em(δT �4MT )|GT−1]em(δT �4AT ) = 0. (4.20)

Inserting (4.18) with (4.19) and (4.20) into (4.17) yields

bTE
[(

em(δT �4ST )
)2∣∣GT−1

]
= bT

1

L
em
(
(δT )2 �4〈M〉T

)
+
(
em(δT �4AT )

)2
. (4.21)

Finally, plugging (4.15), (4.16) and (4.21) back into (4.9) and reordering the terms
yields (4.4) and (4.5).

4.2 Step 2: Maximising δT 7→ F (δT )

In this subsection, we implement Recipe 4.1, step 2). Let us consider the map
δT 7→ F (δT ) = E[VT (ϑ(T, δT ))|GT−1]. We maximise F over δT without any
constraint. Formal differentiation of F with respect to δT yields a (formal) first
order condition (FOC) for optimality. Then solving that FOC gives a candidate
δ̂T for the maximiser. Finally, we verify that the candidate δ̂T is a true maximiser
for F by completing the square.
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Proposition 4.4. Suppose that Assumptions 3.2 and 3.4 are satisfied. If ϑ ∈ ΘS

and VT (ϑ(T, δT )) is given by (4.2), then a maximiser δ̂T for δT 7→ F (δT ) is a
solution to the system of linear equations

δ`T =
λ`T

(1− L−1) +4K`
T

(
aT
2bT
−G`

T−1(ϑ) + em
(
GT−1(ϑ)

)
+ em(δT �4AT )

)
, ` = 1, . . . , L. (4.22)

Moreover, a solution δ̂T to (4.22) exists and satisfies

em(δ̂T �4AT ) =
em(4K̃

(L)
T � ( aT

2bT
−GT−1(ϑ) + em(GT−1(ϑ))))

1− em(4K̃
(L)
T )

, (4.23)

where

4K̃
`,(L)
T :=

4K`
T

(1− L−1) +4K`
T

, ` = 1, . . . , L. (4.24)

Explicitly, we have for ` = 1, . . . , L that

δ̂`T =
λ`T

(1− L−1) +4K`
T

(
aT
2bT
−G`

T−1(ϑ) + em
(
GT−1(ϑ)

)
+ e

)
, (4.25)

where e is the right-hand side of (4.23). The solution δ̂T given in (4.25) is indeed
a maximiser for δT 7→ F (δT ), and the resulting RT (δ̂T ) from (4.5) satisfies

RT (δ̂T ) =
aT
2

em(δ̂T �4AT )− bT ecov
(
GT−1(ϑ), δ̂T �4AT

)
. (4.26)

Here we use the notation ecov defined in (4.6).

Proof. 1) Lemma 4.2 shows that δT 7→ E[VT (ϑ(T, δT ))|GT−1] depends on δT only
through RT (δT ) given in (4.5). So formally differentiating RT (δT ) in (4.5) with
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respect to δT = (δ`T )`=1,...,L yields a formal FOC for optimality as

0 =
∂

∂δ`T
RT (δT )

=
∂

∂δ`T

(
aT em(δT �4AT )− 2bT em

(
GT−1(ϑ)� δT �4AT

)
+ 2bT em

(
GT−1(ϑ)

)
em(δT �4AT )

− bT em
(

(δT )2 �
(
(1− L−1)4〈M〉T + (4AT )2

))
+ bT

(
em(δT �4AT )

)2
)
, ` = 1, . . . , L. (4.27)

Computing the RHS of (4.27) explicitly and multiplying on both sides by L gives

0 = aT4A`
T − 2bTG`

T−1(ϑ)4A`
T + 2bT em

(
GT−1(ϑ)

)
4A`

T

− 2bTδ
`
T

(
(1− L−1)4〈M〉`T + (4A`

T )2
)

+ 2bT em(δT �4AT )4A`
T . (4.28)

Moving −2bTδ
`
T

(
(1− L−1)4〈M〉`T + (4A`

T )2
)
to the other side and dividing on

both sides of (4.28) by 2bT
(
(1− L−1)4〈M〉`T + (4A`

T )2
)
yields (4.22).

2) We now construct a solution to (4.22). For this, we first recall from (3.35)
and (3.36) that for ` = 1, . . . , L,

λ`T =
4A`

T

4〈M`〉T
, 4K`

T =
(4A`

T )2

4〈M`〉T
, λ`T4A`

T = 4K`
T . (4.29)

We multiply (4.22) by 4A`
T and use (4.29) and then average over ` to obtain the

equation

em(δT �4AT ) = em

(
4K̃

(L)
T �

( aT
2bT
−GT−1(ϑ) + em

(
GT−1(ϑ)

)
+ em(δT �4AT )

))
, (4.30)

where 4K̃
(L)
T is given in (4.24). For (4.23), moving em(4K̃

(L)
T )em(δT � 4AT )

to the left side of (4.30), we see that (4.30) has a solution given by (4.23) if and
only if 1 − em(4K̃

(L)
T ) 6= 0. But the latter is readily verified because we have

4K̃
`,(L)
t < 1 P-a.s. for ` = 1, . . . , L due to (4.24) and our convention 0

0
= 0. Now

we construct δ̂T by inserting the right side of (4.23) into (4.22) to replace the
term em(δT �4AT ) (with δT replaced by δ̂T ). This yields the explicit expression
for δ̂T given in (4.25). To show that the constructed δ̂T solves (4.22), we multiply
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both sides of (4.25) by 4A`
T and average over ` to obtain again (4.23). This

implies that we can replace the term e in (4.25) by em(δ̂T �4AT ), which says
exactly that δ̂T solves (4.22).

3) Let us argue that a solution δ̂T to (4.22) is indeed a global maximiser for
(4.1) at time t = T . It is sufficient to prove that δ̂T is a global maximiser for
δT 7→ RT (δT ) with RT given in (4.5). We show this by completing the square.
Let δT ∈ Θ

[T ]
S . We write δT = δT − δ̂T + δ̂T , insert the latter into (4.7) and

expand and reorder the terms as expressions involving δT − δ̂T and δ̂T separately
to obtain

RT (δT )

= RT (δT − δ̂T + δ̂T )

= aT em((δT − δ̂T )�4AT )− 2bT ecov
(
GT−1(ϑ), (δT − δ̂T )�4AT

)
(4.31)

− bT em
(

(δT − δ̂T )2 �
(
(1− L−1)4〈M〉T + (4AT )2

))
+ bT

(
em
(
(δT − δ̂T )�4AT

))2

+ aT em(δ̂T �4AT )− 2bT ecov
(
GT−1(ϑ), δ̂T �4AT

)
− bT em

(
(δ̂T )2 �

(
(1− L−1)4〈M〉T + (4AT )2

))
+ bT

(
em
(
δ̂T �4AT

))2

− 2bT em
(

(δT − δ̂T )� δ̂T �
(
(1− L−1)4〈M〉T + (4AT )2

))
(4.32)

+ 2bT em
(
(δT − δ̂T )�4AT

)
em(δ̂T �4AT ). (4.33)

Using (4.11) and that δ̂T satisfies (4.22) and

λ`T
(1− L−1) +4K`

T

(
(1− L−1)4〈M`〉T + (4A`

T )2
)

= 4A`
T
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by (4.29), we unravel the definition of the term in (4.32) as

2bT em
(

(δT − δ̂T )� δ̂T �
(
(1− L−1)4〈M〉T + (4AT )2

))
= 2bT

1

L

L∑
`=1

(δ`T − δ̂`T )
λ`T

(1− L−1) +4K`
T

×
(
aT
2bT
−G`

T−1(ϑ) + em
(
GT−1(ϑ)

)
+ em(δ̂T �4AT )

)
×
(
(1− L−1)4〈M〉T + (4AT )2

)
= 2bT

1

L

L∑
`=1

(δ`T − δ̂`T )

×
(
aT
2bT
−G`

T−1(ϑ) + em
(
GT−1(ϑ)

)
+ em(δ̂T �4AT )

)
4A`

T

= aT em
(
(δT − δ̂T )�4AT

)
− 2bT em

(
(δT − δ̂T )�GT−1(ϑ)�4AT

)
+ 2bT em

(
GT−1(ϑ)

)
em
(
(δT − δ̂T )�4AT

)
+ 2bT em

(
(δT − δ̂T )�4AT

)
em(δ̂T �4AT )

= aT em
(
(δT − δ̂T )�4AT

)
− 2bT ecov

(
GT−1(ϑ), (δT − δ̂T )�4AT

)
+ 2bT em

(
(δT − δ̂T )�4AT

)
em(δ̂T �4AT ).

The last line uses the definition (4.6) of ecov. The above equation brings a
significant cancellation in (4.33); indeed, it shows that the three lines (4.31),
(4.32) and (4.33) sum up to 0. We exploit this cancellation, then reorder terms
according to the involvement of δ̂T and δT− δ̂T and use the alternative expression
(4.7) for RT (δT ) to further simplify (4.33) to

RT (δT ) = aT em(δ̂T �4AT )− 2bT ecov
(
GT−1(ϑ), δ̂T �4AT

)
− bT em

(
(δ̂T )2 �

(
(1− L−1)4〈M〉T + (4AT )2

))
+ bT

(
em
(
δ̂T �4AT

))2

− bT em
(

(δT − δ̂T )2 �
(
(1− L−1)4〈M〉T + (4AT )2

))
+ bT

(
em
(
(δT − δ̂T )�4AT

))2

= RT (δ̂T )− bT
(

em
(

(δT − δ̂T )2 �
(
(1− L−1)4〈M〉T + (4AT )2

))
−
(

em
(
(δT − δ̂T )�4AT

))2
)
. (4.34)
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By part 1), δ̂T also satisfies (4.28). Hence we multiply both sides of (4.28) by
δ̂`T , average over ` and use the definition (4.6) of ecov to write (4.28), with δT
replaced by δ̂T , as

0 = aT em(δ̂T �4AT )− 2bT ecov(GT−1, δ̂T �4AT

)
− 2bT em

(
(δ̂T )2 �

(
(1− L−1)4〈M〉T + (4AT )2

))
+ 2bT

(
em
(
δ̂T �4AT

))2

. (4.35)

In view of (4.35), (4.7) becomes

RT (δ̂T ) = bT em
(

(δ̂T )2 �
(
(1− L−1)4〈M〉T + (4AT )2

))
− bT

(
em
(
δ̂T �4AT

))2

(4.36)

=
aT
2

em(δ̂T �4AT )− bT ecov(GT−1(ϑ), δ̂T �4AT

)
+ bT em

(
GT−1(ϑ)

)
em(δ̂T �4AT ). (4.37)

Inserting (4.36) into (4.34) and using (4.8) gives

RT (δT ) = bT

(
em
(

(δ̂T )2 �
(
(1− L−1)4〈M〉T + (4AT )2

))
−
(

em
(
δ̂T �4AT

))2
)

− bT
(

em
(

(δT − δ̂T )2 �
(
(1− L−1)4〈M〉T + (4AT )2

))
−
(

em
(
(δT − δ̂T )�4AT

))2
)

= bT

(
em
(
(δ̂T )2 � (1− L−1)4〈M〉T

)
+ evar(δ̂T �4AT )

)
− bT

(
em
(
(δT − δ̂T )2 � (1− L−1)4〈M〉T

)
+ evar

(
(δT − δ̂T )�4AT

))
. (4.38)

This is clearly a quadratic form in δT , and the sum of the last two lines of (4.38)
is always nonpositive because bT > 0 from (4.2), 4〈M〉T ≥ 0 by (4.13) and
evar(·) ≥ 0. So we obtain a maximum over δT in (4.38) if and only if that term
is 0, which happens if and only if δT = δ̂T . Finally, (4.26) is given by (4.37).

We end this subsection by summarising the key aspects of Recipe 4.1, steps
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1) and 2) or, more precisely, Lemma 4.2 and Proposition 4.4, because similar
structures will appear later recursively. First, writing (4.1) allows us to consider
a single-step optimisation with one single variable (here, δT ). Differentiating the
one-step objective function with respect to that variable yields a first-order con-
dition (4.22) which can be solved explicitly as in (4.25). Moreover, the optimiser
δ̂T has the (feedback) form f(T,GT−1(ϑ)) for a function f(T,x) (see the expres-
sion from (4.25)) which does not explicitly depend on ϑ itself. From an abstract
perspective, Lemma 4.2 and Proposition 4.4 can be viewed as a (partial) solution
technique for (4.1) at the level of (4.2). The partialness is due to that we have
not yet shown that the maximiser δ̂T for the map F lies in Θ

[T ]
S (ϑ). This is the

content of Recipe 4.1, step 3) and is done in the next subsection.

4.3 Step 3: The candidate maximiser δ̂T is in Θ
[T ]
S

In this subsection, we implement Recipe 4.1, step 3) by showing that δ̂T is in
Θ

[T ]
S (ϑ) for ϑ ∈ ΘS and deriving an explicit formula for VT−1(ϑ).

Proposition 4.5. Suppose that Assumptions 3.2 and 3.4 are satisfied and that
ϑ ∈ ΘS and VT (ϑ(T, δT )) is given by (4.2). If the MVT process K is bounded,
then δ̂T given in (4.22) is in Θ

[T ]
S (ϑ) and hence is a maximiser for (4.1) at time

t = T . Moreover, VT−1(ϑ) from (4.1) has the form

VT−1(ϑ) = aT em
(
GT−1(ϑ)

)
− bT evar

(
GT−1(ϑ)

)
+ cT +RT (δ̂T ), (4.39)

where RT (δ̂T ) is given by (4.23). Explicitly, we have

RT (δ̂T ) = aT em

(
em(4K̃

(L)
T )−4K̃

(L)
T

1− em(4K̃
(L)
T )

�GT−1(ϑ)

)
+ bT em

(
4K̃

(L)
T �GT−1(ϑ)2

)
+ bT

1

1− em(4K̃
(L)
T )

(
em
(
(1−4K̃

(L)
T �GT−1(ϑ)

))2

− bT
(

em
(
GT−1(ϑ)

))2

+
a2
T em(4K̃

(L)
T )

4bT
(
1− em(4K̃

(L)
T )
) , (4.40)
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and hence

VT−1(ϑ) = aT em

(
1−4K̃

(L)
T

1− em(4K̃
(L)
T )
�GT−1(ϑ)

)

− bT
(
1− em(4K̃

(L)
T )
)(

em
( 1−4K̃

(L)
T

1− em(4K̃
(L)
T )
�GT−1(ϑ)2

)
−
(

em
( 1−4K̃

(L)
T

1− em(4K̃
(L)
T )
�GT−1(ϑ)

))2
)

+
a2
T em(4K̃

(L)
T )

4bT
(
1− em(4K̃

(L)
T )
) . (4.41)

Proof. 1) We first prove that δ̂T given by (4.22) is in Θ
[T ]
S (ϑ), which shows the

optimality of δ̂T for (4.1) at time t = T by Proposition 4.4. The explicit definition
in (4.25) readily shows that δ̂T is GT−1-measurable; note that λ,K and K̃ are all
G-predictable. In view of the definition (4.3) of Θ

[T ]
S (ϑ), we thus only need to

show that δ̂`T4S`T ∈ L2 for ` = 1, . . . , L. To this end, we use GT−1-measurability
of δ̂`T with (δ̂`T4S`T )2, (4S`T )2 ≥ 0, then the explicit expression for δ̂`T from (4.22)
and the angle bracket identity in (4.13) and its consequence

(λ`T )2
(
4〈M`〉T + (4A`

T )2
)

= 4K`
T + (4K`

T )2

to obtain

E[(δ̂`T4S`T )2] = E
[
(δ̂`T )2E[(4S`T )2|GT−1]

]
= E

[
4K`

T + (4K`
T )2

((1− L−1) +4K`
T )2

×
(
aT
2bT
−G`

T−1(ϑ)

+ em
(
GT−1(ϑ)

)
+ em(δ̂T �4AT )

)2]
. (4.42)

We note in (4.42) that because L ≥ 2 and 4K`
T ≥ 0 by (4.29), we obtain for

` = 1, . . . , L the inequality ((1 − L−1) +4K`
T )2 ≥ (1 − L−1)2 ≥ 1

4
. Using this

lower bound and that 4KT and hence 4K`
T is bounded (say by C), we obtain

4K`
T + (4K`

T )2

((1− L−1) +4K`
T )2
≤ 4(C + C2). (4.43)

This bound implies that we only need to show that each term in the large round
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parenthesis in (4.42) is in L2. The first three terms are evidently in L2 by the
nonrandomness of aT and bT , due to ϑ ∈ ΘS, and by the definition of ΘS in
(3.29). For the last term em(δ̂T �4AT ), by (4.11), it is sufficient to show that
δ̂`T4A`

T ∈ L2 for ` = 1, . . . , L. By (4.23), we see that

δ̂`T4A`
T =

4K̃
`,(L)
T

1− em(4K̃
(L)
T )

(
aT
2bT
−G`

T−1(ϑ) + em
(
GT−1(ϑ)

))
. (4.44)

We claim that the factor 4K̃
`,(L)
T

1−em(4K̃
(L)
T )

is bounded uniformly over ` and ω ∈ Ω.

Then from the explicit expression in (4.44) and the fact that each term in the
parenthesis in (4.44) is in L2, it is evident that δ̂`T4A`

T ∈ L2 for ` = 1, . . . , L.

For the boundedness of 4K̃
`,(L)
T

1−em(4K̃
(L)
T )

, we observe by (4.24) and 4K`
T ≤ C that

1−4K̃
`,(L)
T =

1− L−1

(1− L−1) +4K`
T

≥ 1− L−1

1− L−1 + C
, ` = 1, . . . , L. (4.45)

Using (4.11) with em(1) = 1 and (4.45), we obtain the two inequalities

1

1− em(4K̃
(L)
T )

=
1

em(1−4K̃
(L)
T )

=

(
1

L

L∑
`=1

(1−4K̃
`,(L)
T )

)−1

≤ 1− L−1 + C

1− L−1
, (4.46)

4K̃
`,(L)
T ≤ 1− 1− L−1

1− L−1 + C
=

C

(1− L−1) + C
, ` = 1, . . . , L. (4.47)

Hence by combining (4.46) and (4.47), we find that

4K̃
`,(L)
T

1− em(4K̃
(L)
T )
≤ C

1− L−1
≤ 2C, ` = 1, . . . , L, L ≥ 2.

This completes the proof that δ̂T ∈ Θ
[T ]
S (ϑ).

2) Next, we turn to verifying (4.40). Using (4.26) with the definition (4.6) of
ecov, then (4.11), (4.22) and λ`T

(1−L−1)+4K`
T
4A`

T = 4K
`,(L)
T by (4.29) and (4.24),
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we obtain

RT (δ̂T )

=
aT
2

em(δ̂T �4AT )− bT em
(
GT−1(ϑ)� δ̂T �4AT

)
+ bT em

(
GT−1(ϑ)

)
em(δ̂T �4AT )

=
aT
2

em(δ̂T �4AT )

− bT
L

L∑
`=1

G`
T−1(ϑ)4K̃

`,(L)
T

(
aT
2bT
−G`

T−1(ϑ)

+ em
(
GT−1(ϑ)

)
+ em(δ̂T �4AT )

)
+ bT em

(
GT−1(ϑ)

)
em(δ̂T �4AT )

=
aT
2

em(δ̂T �4AT )− aT
2

em
(
4K̃

(L)
T �GT−1(ϑ)

)
+ bT em

(
4K̃

(L)
T �GT−1(ϑ)2

)
− bT em

(
4K̃

(L)
T �GT−1(ϑ)

)
em
(
GT−1(ϑ)

)
− bT em

(
4K̃

(L)
T �GT−1(ϑ)

)
em(δ̂T �4AT )

+ bT em
(
GT−1(ϑ)

)
em(δ̂T �4AT ). (4.48)

Then using the explicit expression for em(δ̂T �4AT ) from (4.23) in (4.48) yields
(4.40) after a tedious but straightforward computation. Finally, (4.41) follows
from the optimality of δ̂T proved in part 1) and by inserting (4.40) into (4.4).

4.4 Step 4: Adding an assumption to allow iteration

The first three steps give a complete solution for (4.1) at time t = T . Naturally,
we hope to extend this technique to all earlier times t < T . In this subsection,
we first give an overview of Recipe 4.1, steps 1)–3) and argue why this solution
technique cannot be directly applied. Next, we introduce an extra assumption
that makes the problem (4.1) more tractable at times t < T , and simplify the
results from previous steps accordingly.

If we look carefully at Lemma 4.2 and Propositions 4.4 and 4.5, we can see a
clear structure. We start with an affine–quadratic objective

VT (ϑ) = em
(
GT (ϑ)

)
− ξevar

(
GT (ϑ)

)
= aT em

(
GT (ϑ)

)
− bT evar

(
GT (ϑ)

)
+ cT (4.49)
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with aT = 1, bT = ξ and cT = 0. Then we try to maximise

δT 7→ E
[
VT
(
ϑ(T, δT )

)∣∣GT−1

]
(4.50)

over δT ∈ Θ
[T ]
S , where ϑ(T, δT ) is given by (3.4). It turns out, see (4.25), that

the optimiser has the form

δ̂T = f
(
T,GT−1(ϑ)

)
, (4.51)

where the function f(T,x) is affine in x ∈ RL and em(x), and thus δ̂T is affine
in GT−1(ϑ) and em(GT−1(ϑ)). Using the recursion (4.1) for (Vt(ϑ))t=0,1,...,T and
plugging that δ̂T into (4.50) then yields, see (4.39), that

VT−1(ϑ) = em
(
GT−1(ϑ)

)
− ξevar

(
GT−1(ϑ)

)
+RT (δ̂T ),

where the term RT (δ̂T ), see (4.26), is an explicit affine–quadratic expression in-
volving δ̂T . In view of the affine structure in (4.51), we therefore obtain for
VT−1(ϑ) an affine–quadratic function of the variables GT−1(ϑ) and em(GT−1(ϑ)).
Comparing this to (4.49) suggests that we should be able to iterate Lemma 4.2
and Propositions 4.4 and 4.5 by simply replacing T everywhere by t.

Unfortunately, this does not work as easily as one would hope. When looking,
in analogy to (4.49), at the conditional expectation δt 7→ E[Vt(ϑ(T, δt))|Gt−1], one
can still pull out the Gt−1-measurable quantity δt. But what remains inside the
conditional expectation, see (4.41), is no longer – in contrast to the case t = T

in (4.49) – a simple affine–quadratic expression in Gt−1(ϑ) and em(Gt−1(ϑ)).
It also involves conditional expectations of random quantities measurable with
respect to Gt,Gt+1, . . . ,GT in a way that stacks up recursively and hence cannot
be managed in a transparent manner. At present, we can only make further
progress if each Vt(ϑ) has the form

Vt(ϑ) = atem(Gt(ϑ)
)
− btevar

(
Gt(ϑ)

)
+ ct, (4.52)

with nonrandom real-valued coefficients at, bt, ct and bt > 0. (4.53)

If we have (4.52) and (4.53), the coefficients can then be taken out of conditional
expectations which makes the computation from t to t− 1 completely analogous
to the one from T to T − 1. Thus Recipe 4.1, steps 1)–3) or, more precisely,
Lemma 4.2 and Propositions 4.4 and 4.5, can be applied to all earlier times t < T

with only purely mechanical modifications.
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We now take a closer look at VT−1(ϑ) in (4.41). A careful inspection of that

expression reveals that the random vector 1−4K̃
(L)
T

1−em(4K̃
(L)
T )

appears in all coefficients

of the terms involving GT−1(ϑ) and hence makes VT−1(ϑ) fail to satisfy (4.52)
and (4.53). We thus get a first natural condition to eliminate this unpleasant
consequence.

Condition 4.6. The vector4K̃
(L)
T in (4.24) has coordinates which do not depend

on `, so that 4K̃
`,(L)
T = 4KT

(1−L−1)+4KT
=: 4K̃(L)

T for ` = 1, . . . , L.

If Condition 4.6 holds, we can simplify in (4.41) the terms

em(4K̃
(L)
T ) = 4K̃(L)

T ,
1−4K̃

`,(L)
T

1− em(4K̃
(L)
T )

=
1−4K̃(L)

T

1−4K̃(L)
T

= 1, ` = 1, . . . , L.

Plugging these back into (4.41) and using the definition of 4K̃(L)
T from Condi-

tion 4.6 yields

VT−1(ϑ) = aT em
(
GT−1(ϑ)

)
− bT (1−4K̃(L)

T )

(
em
(
GT−1(ϑ)2

)
−
(

em
(
GT−1(ϑ)

))2
)

+
a2
T4K̃

(L)
T

4bT (1−4K̃(L)
T )

= aT em
(
GT−1(ϑ)

)
− bT

1− L−1

(1− L−1) +4KT

(
em
(
GT−1(ϑ)2

)
−
(

em
(
GT−1(ϑ)

))2
)

+
a2
T4KT

4bT (1− L−1)
. (4.54)

This readily gives VT−1(ϑ) the form (4.52) for t = T − 1. However, like 4KT ,
the coefficients can still be random so that (4.53) need not hold.

Let us look at Condition 4.6 from a different perspective. Note that the
random variables (4K̃

`,(L)
T )`=1,...,L are independent because each random variable

4K̃
`,(L)
T is F `T -measurable by the explicit formula (3.34) for4KT and (F `T )`=1,...,L

are independent σ-algebras by their constructions (2.15). So Condition 4.6 implies
that the random variable4K̃(L)

T is independent of itself and hence4K̃(L)
T must be

deterministic. Because4K̃(L)
T = 4KT

(1−L−1)+4KT
, we see that4K̃(L)

T is deterministic
if and only if 4KT is deterministic and this motivates the following.

Condition 4.7. The increment 4KT of the MVT process of S is deterministic.
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Remark 4.8. The paragraph above Condition 4.7 shows that Condition 4.6 im-
plies Condition 4.7. By the definition 4K̃

`,(L)
T =

4K`
T

(1−L−1)+4K`
T

in (4.24) and
because 4K`

T has the same distribution as 4KT (see Remark 3.9), we immedi-
ately see that Condition 4.7 implies Condition 4.6, and hence Conditions 4.6 and
4.7 are equivalent. We use in the sequel Condition 4.7 because this is formulated
directly in terms of the original model.

We summarise below the decisive simplification of Proposition 4.5 brought by
Condition 4.7.

Proposition 4.9. Suppose that Assumptions 3.2, 3.4 and Condition 4.7 are sat-
isfied. If ϑ ∈ ΘS, then the remainder term RT (δ̂T ) from (4.26) simplifies to

RT (δ̂T ) =
a2
T4KT

4bT (1− L−1)
+ bT

4KT

(1− L−1) +4KT

evar
(
GT−1(ϑ)

)
, (4.55)

and the value VT−1(ϑ) for (4.1) at time t = T simplifies to

VT−1(ϑ) = aT em
(
GT−1(ϑ)

)
− bT (1−4K̃(L)

T )evar
(
GT−1(ϑ)

)
+

a2
T4K̃

(L)
T

4bT (1−4K̃(L)
T )

. (4.56)

In particular, VT−1(ϑ) is also of the form

VT−1(ϑ) = aT−1em
(
GT−1(ϑ)

)
− bT−1evar

(
GT−1(ϑ)

)
+ cT−1 (4.57)

as in (4.52) and (4.53), with the coefficients satisfying the recursive relations

aT−1 = aT , (4.58)

bT−1 = bT (1−4K̃(L)
T ) = bT

1− L−1

(1− L−1) +4KT

, (4.59)

cT−1 = cT +
a2
T4K̃

(L)
T

4bT (1−4K̃(L)
T )

= cT +
a2
T4KT

4bT (1− L−1)
. (4.60)

With aT−1, bT−1 defined in (4.58), (4.59) respectively, the maximiser δ̂T is given
explicitly, for ` = 1, . . . , L, by

δ̂`T =
λ`T

(1− L−1) +4K`
T

(
aT−1

2bT−1

−G`
T−1(ϑ) + em

(
GT−1(ϑ)

))
. (4.61)

Proof. We have already seen (4.56) in (4.54) which readily gives (4.57). Now
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(4.55) follows from (4.56) and (4.4). The relations (4.58)–(4.60) can be read
off directly by comparing (4.2) to (4.57). For (4.61), we first note the identity
4K̃

`,(L)
T = 4K(L)

T for ` = 1, . . . , L, which follows from Condition 4.7 and Re-
mark 4.8. In consequence, 4K̃

(L)
T can be taken out of empirical averages, then

em(4K̃
(L)
T ) = 4K(L)

T , and finally the additivity of the empirical average in (4.11)
with em(b) = b for b ∈ R allows us to simplify (4.23) as

em(δ̂T �4AT ) =
em(4K̃

(L)
T � ( aT

2bT
−GT−1(ϑ) + em(GT−1(ϑ))))

1− em(4K̃
(L)
T )

=
4K̃(L)

T

1−4K̃(L)
T

em

(
aT
2bT
−GT−1(ϑ) + em

(
GT−1(ϑ)

))
=

aT
2bT

4K̃(L)
T

1−4K̃(L)
T

. (4.62)

Inserting (4.62) into (4.25) and using (4.58) and (4.59) yields

δ̂`T =
λ`T

(1− L−1) +4K`
T

(
aT
2bT
−G`

T−1(ϑ) + em
(
GT−1(ϑ)

)
+

aT
2bT

4K̃(L)
T

1−4K̃(L)
T

)
=

λ`T
(1− L−1) +4K`

T

(
aT

2bT (1−4K̃(L)
T )

−G`
T−1(ϑ) + em

(
GT−1(ϑ)

))
=

λ`T
(1− L−1) +4K`

T

(
aT−1

2bT−1

−G`
T−1(ϑ) + em

(
GT−1(ϑ)

))
, ` = 1, . . . , L.

Under the extra Condition 4.7, the results in Lemma 4.2 and Propositions 4.4,
4.5 and 4.9 can be used as a generic solution technique to be applied iteratively
backward in time; the simple affine–quadratic structure (4.52) and (4.53) is passed
from any t to t−1 provided that4Kt is deterministic. Therefore, we only need to
state formally the entire recursive structure. This is done in the next subsection.

4.5 Complete recursion for the computation of the value

process V (ϑ)

In this subsection, we state our main results about the solution to (4.1). As
argued in the previous subsection, we do not need to give explicit proofs to any
of the results. It is enough to replace T by t in Condition 4.7, and then state the
analogues of the results in Lemma 4.2 and Propositions 4.4, 4.5 and 4.9.



72 I Mean field approach for MVPS – discrete time

Lemma 4.10. Suppose that Assumptions 3.2 and 3.4 are satisfied. Let ϑ ∈ ΘS

and t ∈ {1, . . . , T}. If 4Kt is deterministic and Vt(ϑ) is of the form (4.52) and
(4.53), then the following statements hold:

1) We have

E
[
Vt
(
ϑ(t, δt)

)∣∣Gt−1

]
= atem

(
Gt−1(ϑ)

)
− btevar

(
Gt−1(ϑ)

)
+ ct +Rt(δt), (4.63)

where

Rt(δt) = atem(δt �4At)− 2btem
(
Gt−1(ϑ)� δt �4At

)
+ 2btem

(
Gt−1(ϑ)

)
em(δt �4At)

− btem
(

(δt)
2 �

(
(1− L−1)4〈M〉t + (4At)

2
))

+ bt
(
em(δt �4At)

)2
. (4.64)

2) A maximiser δ̂t for δt 7→ E[Vt(ϑ(t, δt))|Gt−1] exists. It is given explicitly,
for ` = 1, . . . , L, by

δ̂`t =
λ`t

(1− L−1) +4Kt

(
1

2b
(L)
t−1

−G`
t−1(ϑ) + em

(
Gt−1(ϑ)

))
. (4.65)

The remainder Rt(δ̂t) satisfies

Rt(δ̂t) =
a2
t4K̃

(L)
t

4bt(1−4K̃(L)
t )

+ bt4K̃(L)
t evar

(
Gt−1(ϑ)

)
, (4.66)

and hence by inserting (4.66) into (4.63),

Vt−1(ϑ) = atem
(
Gt−1(ϑ)

)
− bt(1−4K̃(L)

t )evar
(
Gt−1(ϑ)

)
+

a2
t4K̃

(L)
t

4bt(1−4K̃(L)
t )

. (4.67)

In particular, Vt−1(ϑ) is also of the form (4.52) and (4.53), namely

Vt−1(ϑ) = at−1em
(
Gt−1(ϑ)

)
− bt−1evar

(
Gt−1(ϑ)

)
+ ct−1 (4.68)
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with the coefficients satisfying the recursive relations

at−1 = at, (4.69)

bt−1 = bt
1− L−1

(1− L−1) +4Kt

, (4.70)

ct−1 = ct +
a2
t4Kt

4bt(1− L−1)
. (4.71)

Proof. 1) The identity (4.63) with (4.64) is obtained like Lemma 4.2, simply with
T replaced by t.

2) The identities (4.66)–(4.71) are formal restatements of (4.55)–(4.60), and
(4.65) corresponds to (4.61), all with T replaced by t.

In view of Lemma 4.10, the entire structure of (4.52) is maintained if all the
4Kt are deterministic. This motivates the following assumption.

Assumption 4.11. The mean–variance tradeoff process K is deterministic.

Combining Assumption 4.11 with Lemma 4.10, we can state the main result
of this section, which is effectively just a formality. For later reference, we also
reinstate the superscript (L) to stress the dependence of the solution on L.

Theorem 4.12. Suppose that Assumptions 3.2, 3.4 and 4.11 are satisfied, mean-
ing that S is square-integrable and satisfies the structure condition (SC), and the
MVT process K is deterministic. Then:

1) For any ϑ(L) ∈ Θ
(L)
S , the entire value process (V

(L)
t (ϑ(L)))t=0,1,...,T of (3.5)

is of the form (4.52) and (4.53), i.e., for t = 0, 1, . . . , T ,

V
(L)
t (ϑ(L)) = a

(L)
t em

(
Gt(ϑ

(L))
)
− b(L)

t evar
(
Gt(ϑ

(L))
)

+ c
(L)
t , (4.72)

with deterministic coefficients satisfying the recursions, for t = 1, . . . , T ,

a
(L)
t−1 = a

(L)
t , a

(L)
T = 1, (4.73)

b
(L)
t−1 = b

(L)
t

1− L−1

(1− L−1) +4Kt

, b
(L)
T = ξ, (4.74)

c
(L)
t−1 = c

(L)
t +

(a
(L)
t )24Kt

4b
(L)
t (1− L−1)

, c
(L)
T = 0. (4.75)
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Explicitly, (4.73)–(4.75) can also be written as

a
(L)
t = 1, t = 0, 1, . . . , T, (4.76)

b
(L)
t = ξ

T∏
u=t+1

1− L−1

(1− L−1) +4Ku

, t = 0, 1, . . . , T, (4.77)

c
(L)
t =

T∑
u=t+1

4Ku

4b
(L)
u (1− L−1)

, t = 0, 1, . . . , T, (4.78)

and (4.77) can be written with the help of the stochastic exponential E as

b
(L)
t = ξ

E( K
1−L−1 )t

E( K
1−L−1 )T

, t = 0, 1, . . . , T. (4.79)

2) For every ϑ(L) ∈ Θ
(L)
S , the solution to the conditional problem (3.1) at time

t is given, for ` = 1, . . . , L, by

ϑ̂`,(L)
u = ϑ(L)

u , u = 1, . . . , t,

ϑ̂`,(L)
u =

λ
`,(L)
u

(1− L−1) +4Ku

×
(

1

2b
(L)
u−1

−G`
u−1(ϑ̂(L)) + em

(
Gu−1(ϑ̂(L))

))
, u = t+ 1, . . . , T.

In particular, the solution to (3.1) at time 0 and hence to the global problem (2.25)
is given, for ` = 1, . . . , L, by

ϑ̂`,(L)
u =

λ
`,(L)
u

(1− L−1) +4Ku

×
(

1

2b
(L)
u−1

−G`
u−1(ϑ̂(L)) + em

(
Gu−1(ϑ̂(L))

))
, u = 1, . . . , T. (4.80)

Proof. We use in both parts the equivalence between (3.1) and (4.1) which follows
from Lemma 3.1, the abstract rewriting in the discussion after Lemma 3.1 and
the concrete specification in the beginning of Section 4.

1) The recursions (4.73)–(4.75) are (4.69)–(4.71) with the terminal conditions
a

(L)
T = 1, b(L)

T = ξ and c(L)
T = 0 from (4.1). Also (4.73)–(4.75) immediately yield

the explicit expressions in (4.76)–(4.78). The expression (4.79) is a re-writing of
(4.77).

2) We only need to show that ϑ̂(L) given by (4.80) is in Θ
(L)
S . The G-pre-
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dictability of ϑ̂(L) follows from its definition (4.80) and the G-predictability of λ
by (3.34). To establish the integrability requirement in (3.29), we need to show
that ϑ̂`,(L)

t 4S
`,(L)
t is in L2 for t = 1, . . . , T and ` = 1, . . . , L. Let us argue this

claim inductively. In view of the definition (4.3) of Θ
[t]
S , part 1) of the proof of

Proposition 4.5 with T replaced by t indeed shows that if G`
t−1(ϑ(L)) ∈ L2 for

` = 1, . . . , L, then δ̂(L)
t =: f(t,Gt−1(ϑ(L))) given in (4.65) (with the superscript (L)

added) satisfies δ̂`,(L)
t 4S

`,(L)
t ∈ L2 for ` = 1, . . . , L. Comparing the definitions of

ϑ̂
(L)
t with δ̂(L)

t in (4.80) and (4.65), respectively, gives ϑ̂(L)
t = f(t,Gt−1(ϑ̂(L))) and

hence yields the induction step for the claim. Because G`
0(ϑ̂(L)) = 0 is obviously

in L2, the base case is also true by the previous reasoning.

5 Taking limits and verification

Having obtained from Theorem 4.12 a complete description of a solution ϑ̂(L)

to the auxiliary problem (2.25), we aim to construct an optimal strategy to the
original MVPS problem (2.3) with the help of ϑ̂(L). To this end, we elaborate on
the steps sketched earlier in (2.26)–(2.31) to construct an optimal strategy θ̂ for
the MVPS problem (2.3), or equivalently (2.28), with Θ = ΘS given in (3.6).

5.1 Embedding the finite-L results

Before delving into the details in (2.26)–(2.31), we devote this subsection to some
formalities for ease of notation. Readers only interested in the construction and
verification of an optimal strategy to the MVPS problem (2.3) may skip this
subsection and jump directly to the next subsection.

Recall that for each L ∈ N with L ≥ 2, we solve the auxiliary problem
(2.25) in the L-extended market (Ω(L),F (L),P(L),G(L),S(L)) and obtain an op-
timal strategy ϑ̂(L) as in (4.80). This in particular implies that the strategies
(ϑ̂(L))L∈N,L≥2 live on different probability spaces. However, for studying their
convergence behaviour, it is more natural to lift them to one common probability
space. Let us recall from the beginning of Section 2.2 the (sequence) probability
space (Ω(∞),F (∞),P(∞)), where Ω(∞) is the infinite Cartesian product of Ω, F (∞)

is the σ-algebra generated by all finite rectangles with F -measurable sides, and
P(∞) is the infinite product measure of P on F (∞), defined by

P(∞)[E`1 × E`2 × · · · × E`k × Ω× · · · ] =
k∏
j=1

P [E`j ], E`j ∈ F , k ∈ N,
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and (Ω(L),F (L),P(L)) for L ∈ N is constructed so that it depends only on the first
L coordinates. Given a (possibly vector-valued) function f (L) defined on Ω(L) for
L ∈ N, we always identify it with F f (L) on Ω(∞) defined by

F f (L)

(ω1, ω2, . . . ) := f (L)(ω1, . . . , ωL) (5.1)

and write F f (L) as f (L) for ease of notation. In the infinite product space con-
text, the superscript (L) then means that the identification (5.1) is used, unless
a different meaning is pointed out. We remark that (5.1) can also be written
more formally as F f (L)

= f (L) ◦ π(L) by pre-composing f (L) with the canonical
projection π(L) of Ω(∞) onto Ω(L). However, using projections adds only formality
rather than clarity and hence (5.1) is preferred.

Given an RL-valued process X(L) initially defined on Ω(L) for L ∈ N, we adopt
(5.1) to lift it to Ω(∞) and then extend it to be R∞-valued by setting

X`,(L) ≡ 0 for ` > L. (5.2)

Finally, let us translate Section 3.3 to this infinite product space setting.
Recall that the construction of (F`,(L))`=1,...,L and (S`,(L))`=1,...,L in (2.14)–(2.16) for
L =∞ gives now infinite sequences (F`)`∈N and (S`)`∈N of independent filtrations
and processes, respectively. Moreover, all the S` have the same distribution as
S. For each L ∈ N ∪ {∞}, the construction of G(L) in (2.17) formally yields
in this context a filtration, still written as G(L), given by G(L)

t = σ(∪L`=1F `t ) for
t = 1, . . . , T . We can repeat the construction in Section 3.3 to first obtain the
Doob decomposition of S` with respect to G(L). A priori, this depends on L; but
Lemma 3.7, 1) implies that it agrees with the Doob decomposition with respect
to F` as long as ` ≤ L. So by S` = S0 + M` + A`, we always refer to the Doob
decomposition of S` with respect to some G(L) with L ≥ `, or, equivalently, with
respect to F`. This then yields for ` = 1, . . . , L and L ≥ ` that

4S`t = 4M`
t +4A`

t, E(∞)[4M`
t|G

(L)
t−1] = 0, E(∞)[4S`t|G

(L)
t−1] = 4A`

t. (5.3)

Translating the strong orthogonality between M` and Mm for `,m = 1, . . . , L

and ` 6= m in (3.31) into the current setup, we also have

E(∞)[4M`
t4Mm

t |G
(L)
t−1] = 0, `,m = 1, . . . , L, ` 6= m. (5.4)

For a square-integrable process X = (X`)`∈N such that each X` is F`-adapted, we
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define and we have for ` ∈ N and ` ≤ L that

4〈X`〉0 = 0, 4〈X`〉t = E(∞)[(4X`
t)

2|F `t−1] = E(∞)[(4X`
t)

2|G(L)
t−1]. (5.5)

The last equality uses the F`-adaptedness of X` and the proof of Lemma 3.7, 1)
or more precisely (2.42) with (Ã, B̃,A,B) = (F `T , σ(∪j 6=`F jT ),F `t−1, σ(∪j 6=`F jt−1)).
This then gives the process 〈M`〉 and allows us to repeat (3.34) to define

λ` =
dA`

d〈M`〉
, K` =

∫
λ` dA`, ` ∈ N. (5.6)

Moreover, Remark 3.9, saying that functions in the L-extended market like λ`,(L)

and K`,(L) agree with the corresponding functions applied to the `-th coordinate,
more precisely translates into

Y`(ω1, ω2, . . . ) = Y (ω`), ` ∈ N, (5.7)

for Y` ∈ {M`,A`, 〈M`〉,λ`,K`} and Y ∈ {M,A, 〈M〉, λ,K}. Let ϑ(L) be any
strategy in Θ

(L)
S . Applying the identification and extension from (5.1) and (5.2)

to both ϑ(L) and G(ϑ(L)), we can write G(ϑ(L)) from (2.21) in the current setting
as

G`(ϑ(L)) =

∫
ϑ`,(L) dS`, ` ≤ L, G`(ϑ(L)) ≡ 0, ` > L. (5.8)

In particular, because ϑ`,(L) ≡ 0 for ` > L by (5.2), the definition (5.8) can be
consistently written as

G`(ϑ(L)) =

∫
ϑ`,(L) dS`, ` ∈ N. (5.9)

For x(L) ∈ R∞ with x`,(L) = 0 for ` > L, we still write

em(x(L)) =
1

L

L∑
`=1

x`,(L)

L
. (5.10)

With the above preparation, we can write ϑ̂(L) from (4.80) in this setup as

ϑ̂
`,(L)
t =

λ`t
(1− L−1) +4Kt

(
1

2b
(L)
t−1

−G`
t−1(ϑ̂(L)) + em

(
Gt−1(ϑ̂(L))

))
for ` = 1, . . . , L, t = 1, . . . , T,

ϑ̂`,(L) ≡ 0 for ` > L. (5.11)
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The first formula of (5.11) uses (4.80), (5.1), (5.9) and (5.10). It also uses (5.7)
and (5.1) to obtain λ`,(L)(ω(L)) = λ(ω`) = λ` for ` = 1, . . . , L. The second formula
of (5.11) uses (5.2).

5.2 Verification – preparation

In the next two subsections, we construct an optimal strategy θ̂ for the MVPS
problem (2.28). Recall from (2.26) and (2.27) with Θ = ΘS and Θ(L) = Θ

(L)
S that

Jmv
T (θ) = GT (θ)− ξ

(
GT (θ)− E[GT (θ)]

)2
, θ ∈ ΘS, (5.12)

J
(L)
T (ϑ(L)) = em

(
GT (ϑ(L))

)
− ξevar

(
GT (ϑ(L))

)
, ϑ(L) ∈ Θ

(L)
S , (5.13)

respectively. Note that (5.12) and (5.13) are defined on the spaces (Ω,F , P )

and (Ω(L),F (L),P(L)), respectively. However, all the quantities involving L are
lifted to (Ω(∞),F (∞),P(∞)) as discussed in Section 5.1 and can equivalently be
considered there. Also recall from (2.28) and (2.29) that we can equivalently
write the MVPS problem (2.3) and the auxiliary problem (2.25) as

maximise E[Jmv
T (θ)] over all θ ∈ ΘS, (5.14)

maximise E(L)[J
(L)
T (ϑ(L))] over all ϑ(L) ∈ Θ

(L)
S , (5.15)

respectively. We summarise below the programme sketched in (2.26)–(2.31).

Recipe 5.1. 1) Let L ∈ N. For X on (Ω,F , P ), we recall from (2.18) that
X`,⊗L(ω(L)) = X ◦π`,L(ω(L)) = X(ω`) for ` = 1, . . . , L, where π`,L is the canonical
projection of Ω(L) onto its `-th coordinate. Note that (X`,⊗L)`=1,...,L are always
(under P(L)) independent and have the same distribution as X because of the
identity P = P(L) ◦ π−1

`,L by (2.12). Applying this lifting technique to θ and G(θ)

gives two processes θ⊗L and G(θ⊗L) both with i.i.d. coordinates. Moreover, this
technique maps ΘS into a subset of Θ

(L)
S .

2) Given θ ∈ ΘS, Step 1) or, more precisely, the i.i.d. property of the coordin-
ates of GT (θ⊗L) ∈ GT (Θ

(L)
S ), allows us to prove a form of law of large numbers

(LLN). Because J (L)
T from (5.13) involves empirical averages and variances, the

LLN and the optimality of ϑ̂(L) for the auxiliary problem (5.15) obtained in The-
orem 4.12 then yield

E[Jmv
T (θ)] = lim

L→∞
E(L)[J

(L)
T (θ⊗L)] ≤ lim sup

L→∞
E(L)[J

(L)
T (ϑ̂(L))]. (5.16)
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Based on (5.16), we get an abstract verification result stating that θ̂ ∈ ΘS is
optimal for the original MVPS problem (5.14) if E(L)[J

(L)
T (ϑ̂(L))]→ E[Jmv

T (θ̂)] as
L→∞.

3) We construct θ̂ ∈ ΘS explicitly such that the last condition in step 2) is
satisfied.

We close this subsection with two preparatory results.

Lemma 5.2. Let L ∈ N and X be a random quantity defined on (Ω,F , P ). Then
(X`,⊗L)`=1,...,L defined on (Ω(L),F (L),P(L)) is a family of independent random
variables each of which has the same distribution as X. Moreover, if θ ∈ ΘS

(resp. g ∈ GT (ΘS)), then the corresponding θ⊗L is in ΘS (resp. g⊗L is in
GT (Θ

(L)
S )), and g⊗L = GT (θ⊗L).

Proof. Let L ∈ N. For each ` = 1, . . . , L, we recall from (2.18) that

X`,⊗L = X ◦ π`,L, ` = 1, . . . , L, (5.17)

where π`,L is the canonical projection of Ω(L) onto its `-th coordinate. In view of
P = P(L) ◦ π−1

`,L from (2.12), we immediately obtain that (X`,⊗L)`=1,...,L are under
P(L) independent and have the same distribution as X under P .

Next assume that θ is in ΘS given in (3.6). This means that θ is F-predictable
and θt4St ∈ L2 for t = 1, . . . , T . To show θ⊗L is in Θ

(L)
S given in (3.29), we claim

that θ`,⊗L is F`,(L)-predictable (and hence G(L)-predictable) and θt
`,⊗L4S

`,(L)
t is

in L2 for ` = 1, . . . , L and t = 1, . . . , T . Indeed, both the measurability and
integrability properties are carried over from θ to θ⊗L via (5.17) because of the
equalities F `,(L)

t = {π−1
`,L(E) : E ∈ Ft} and P = P(L) ◦π−1

`,L from (2.14) and (2.12),
respectively.

Finally, let g = GT (θ). To show that g⊗L is in GT (Θ
(L)
S ), we claim that

g`,⊗L is equal to G`
T (θ⊗L) for ` = 1, . . . , L. This then yields the assertion be-

cause we know that θ⊗L ∈ Θ
(L)
S from the previous paragraph. Writing (5.17) as

X`,⊗L(ω1, . . . , ωL) = X(ω`) for ` = 1, . . . , L and using the definitions of G(θ) and
G`(θ⊗L) from (2.1) and (2.21) respectively, we obtain

g`,⊗L(ω1, . . . , ωL) = GT (θ)(ω`)

=

(∫ T

0

θ dS

)
(ω`)

=

(∫ T

0

θ`,⊗L dS`,(L)

)
(ω1, . . . , ωL) = G`

T (θ⊗L)(ω1, . . . , ωL)
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for ` = 1, . . . , L. This establishes the claim and hence completes the proof.

Proposition 5.3. If there exists θ̂ ∈ ΘS such that E(L)[J
(L)
T (ϑ̂(L))]→ E[Jmv

T (θ̂)]

as L → ∞, then GT (θ̂) is the optimal final gain for (5.14) and θ̂ is an optimal
strategy for (5.14).

Proof. Let θ ∈ ΘS, g = GT (θ) and L ∈ N. By Lemma 5.2, the random variable
g⊗L is in GT (Θ

(L)
S ) and (g`,⊗L)`=1,...,L is a family of independent random variables

each having the same distribution as g. Next, we establish a version of the law
of large numbers. Let us recall from (2.23) that

em(x(L)) =
1

L

L∑
`=1

x`,(L). (5.18)

Because (g`,⊗L)`=1,...,L are identically distributed according to g (we write this as
g`,⊗L

d
= g), we use (5.18) in the next two lines to obtain

E(L)[em(g⊗L)] =
1

L

L∑
`=1

E(L)[g`,⊗L] =
1

L

L∑
`=1

E[g] = E[g] −→ E[g], (5.19)

E(L)
[
em
(
(g⊗L)2

)]
=

1

L

L∑
`=1

E(L)[(g`,⊗L)2]

=
1

L

L∑
`=1

E[g2] = E[g2] −→ E[g2] (5.20)

as L→∞. Similarly, we use (5.18), then that (g`,⊗L)`=1,...,L are P(L)-independent
and finally g`,⊗L d

= g for ` = 1, . . . , L to obtain

E(L)
[(

em(g⊗L)
)2]

=
1

L2

L∑
`=1

E(L)[(g`,⊗L)2] +
1

L2

∑
` 6=m

E(L)[g`,⊗Lgm,⊗L]

=
1

L2

L∑
`=1

E(L)[(g`,⊗L)2] +
1

L2

∑
` 6=m

E(L)[g`,⊗L]E(L)[gm,⊗L]

=
1

L
E[g2] +

L2 − L
L2

(E[g])2 −→ (E[g])2 as L→∞. (5.21)

Using (5.12) and (5.13), we can write (5.19)–(5.21) more compactly as

E[Jmv
T (θ)] = lim

L→∞
E(L)[J

(L)
T (θ⊗L)]. (5.22)
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But for every L ≥ 2, we get by the optimality of ϑ̂(L) from Theorem 4.12 that

E(L)[J
(L)
T (θ⊗L)] ≤ E(L)[J

(L)
T (ϑ̂(L))]. (5.23)

Now by assumption, we have E(L)[J
(L)
T (ϑ̂(L))] → E[Jmv

T (θ̂)] for some θ̂ ∈ ΘS.
Using (5.22), (5.23) and the last property, we get for all θ ∈ ΘS that

E[Jmv
T (θ)] = lim

L→∞
E(L)[J

(L)
T (θ⊗L)] ≤ lim

L→∞
E(L)[J

(L)
T (ϑ̂(L))] = E[Jmv

T (θ̂)].

This proves the proposition.

5.3 Verification – construction

In view of Proposition 5.3, the main task is to implement Recipe 5.1, 3) by showing
that there exists a strategy θ̂ ∈ ΘS satisfying the assumptions of Proposition 5.3.
This can be done in two steps:

Recipe 5.4. 1) Using the explicit formula for ϑ̂(L) from (4.80) and taking limits
formally as L → ∞, we construct a candidate θ̂ ∈ ΘS according to the limiting
formula of ϑ̂(L).

2) For L ≥ 2, we combine J (L)
T = V

(L)
T from (2.36), that V (L)(ϑ̂(L)) is mar-

tingale by the martingale optimality principle (see Lemmas 2.9 and 3.1) and
V0(ϑ̂(L)) = c

(L)
0 by the explicit expression for the process V (L)(ϑ(L)) in (4.72)

to obtain E(L)[J
(L)
T (ϑ̂(L))] = E(L)[V

(L)
T (ϑ̂(L))] = V

(L)
0 (ϑ̂(L)) = c

(L)
0 . In view

of this equality and Proposition 5.3, we then only need to show that we have
limL→∞ c

(L)
0 = E[Jmv

T (θ̂)], where θ̂ is from step 1).

Let us implement Recipe 5.4. First, recall from (4.73)–(4.75) that

a
(L)
t−1 = a

(L)
t , a

(L)
T = 1,

b
(L)
t−1 = b

(L)
t

1− L−1

(1− L−1) +4Kt

, b
(L)
T = ξ,

c
(L)
t−1 = c

(L)
t +

(a
(L)
t )24Kt

4b
(L)
t (1− L−1)

, c
(L)
T = 0.
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Sending L→∞ formally in the above three recursions gives the recursions,

a
(∞)
t−1 = a

(∞)
t , a

(∞)
T = 1, (5.24)

b
(∞)
t−1 = b

(∞)
t

1

1 +4Kt

, b
(∞)
T = ξ, (5.25)

c
(∞)
t−1 = c

(∞)
t +

(a
(∞)
t )24Kt

4b
(∞)
t

= c
(∞)
t +

4Kt

4b
(∞)
t

, c
(∞)
T = 0, (5.26)

or explicitly, either formally sending L→∞ in the explicit formulas for a(L), b(L),
c(L) in (4.76)–(4.78) or directly solving (5.24)–(5.26),

a
(∞)
t = 1, t = 0, 1, . . . , T, (5.27)

b
(∞)
t = ξ

T∏
u=t+1

1

1 +4Ku

, t = 0, 1, . . . , T, (5.28)

c
(∞)
t =

T∑
u=t+1

4Ku

4b
(∞)
u

, t = 0, 1, . . . , T. (5.29)

From the explicit expressions in (4.76)–(4.78) and (5.27)–(5.29), it is easy to see
that

x
(L)
t −→ x

(∞)
t as L→∞ for x ∈ {a, b, c}. (5.30)

Indeed, a(L)
t = 1 and c(L)

t =
∑T

u=t+1
4Ku

4b
(L)
u (1−L−1)

for t = 0, 1, . . . , T by (4.76) and

(4.78). By (5.27), we have a(L)
t = a

(∞)
t = 1 for t = 0, 1, . . . , T . By (5.29), we have

c
(L)
t → c

(∞)
t provided that b(L)

t → b
(∞)
t as L → ∞ for t = 0, 1, . . . , T . The latter

convergence can also be directly read off from the formulas in (4.77) and (5.28)
because

b
(L)
t = ξ

T∏
u=t+1

1− L−1

(1− L−1) +4Ku

−→ ξ

T∏
u=t+1

1

1 +4Ku

= b
(∞)
t for t = 0, 1, . . . , T , as L→∞. (5.31)

This completes the justification of the claim (5.30). In particular, we note that
limL→∞ c

(L)
0 = c

(∞)
0 .

Note at this point that the only formal aspect up to here is the “derivation” of
(5.24)–(5.26) from (4.73)–(4.75). Once we have guessed how the “limit quantities”
a(∞), b(∞), c(∞) should behave, we can (and did) rigorously solve for them and
deduce the convergence in (5.30).
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Next we try to construct a candidate for the MVPS problem (5.14). Recall
from (4.80) that the optimal strategy for the L-extended problem is given by

ϑ̂
`,(L)
t =

λ
`,(L)
t

(1− L−1) +4Kt

×
(

1

2b
(L)
t−1

−G`
t−1(ϑ̂(L)) + em

(
Gt−1(ϑ̂(L))

))
, ` = 1, . . . , L, t = 1, . . . , T.

Fix ` ≤ L. Let us formally analyse the limiting behaviour of the above expression
as L → ∞. For the factor in the first line, we recall from (3.35) the explicit
expression λ`,(L)

t =
4A

`,(L)
t

4〈M`,(L)〉t
. But by Remark 3.9, we have A

`,(L)
t (ω(L)) = At(ω`)

and 4〈M`,(L)〉t(ω(L)) = 〈M〉t(ω`); hence their dependence on L is artificial and
the limit of the first factor formally reads

λ
`,(L)
t (ω1, . . . , ωL)

(1− L−1) +4Kt

−→ λt(ω`)

1 +4Kt

as L→∞.

For the factor in the second line, the convergence 1

2b
(L)
t−1

→ 1

2b
(∞)
t−1

is evident from

(5.31). We then expect that the empirical mean converges to the expectation, say
et−1, as L→∞ by a law of large numbers effect. Suppose this is true and denote
the formal limit of ϑ̂`,(L) by θ̂`,⊗∞. Because the dependence on other coordinates
via the empirical average disappears in the limit, we expect that θ̂`,⊗∞ and hence
G`(θ̂⊗∞) depend only on ω`. The symmetry of ϑ̂(L) among ` = 1, . . . , L also
suggests that the expectation et−1 does not depend on ` and is equal to the
expectation of G`

t−1(θ̂⊗∞) for any ` = 1, . . . , L. Summarising the above analysis
and using that θ̂`,⊗∞ can be written as a function of ω` so that we replace ω` by
ω motivates us to consider in the original space (Ω,F , P ) the candidate

θ̂t :=
λt

1 +4Kt

(
1

2b
(∞)
t−1

−Gt−1(θ̂) + E[Gt−1(θ̂)]

)
, t = 1, . . . , T. (5.32)

Note that because Gt−1(θ̂) depends on θ̂1, . . . , θ̂t−1 but not on θ̂t, (5.32) gives a
well-defined predictable process θ̂. To finish the implementation of Recipe 5.4,
1), we now argue that θ̂ from above belongs to ΘS. We frequently use below the
identities, resulting from the explicit expressions λt = 4At

4〈M〉t ,4Kt = (4At)2
4〈M〉t and

4〈S〉t = 4〈M〉t + (4At)2 in (3.20) and (3.10), that

λt4At = 4Kt, (λt)
24〈S〉t = 4Kt + (4Kt)

2, t = 1, . . . , T. (5.33)
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Lemma 5.5. Suppose that Assumptions 3.2 and 3.4 are satisfied. If the MVT
process K is bounded, then θ̂ from (5.32) is in ΘS.

Proof. From its recursive definition, the process θ̂ is clearly F-predictable. In
view of the definition of ΘS from (3.6), we only need to show that θ̂t4St ∈ L2 for
t = 1, . . . , T . To this end, we use first (5.32) and 4〈S〉t = 4〈M〉t + (4At)2 from
(3.10), then the Cauchy–Schwarz inequality and (5.33), and finally that 4Kt is
bounded (say by C) and hence 4Kt+(4Kt)2

(1+4Kt)2 = 4Kt
1+4Kt ≤ C as well as Jensen’s

inequality to get for t = 1, . . . , T that

E[(θ̂t4St)2] = E

[(
λt

1 +4Kt

)2(
1

2b
(∞)
t−1

−Gt−1(θ̂) + E[Gt−1(θ̂)]

)2

4〈S〉t
]

≤ 3E

[
4Kt + (4Kt)

2

(1 +4Kt)2

(( 1

2b
(∞)
t−1

)2

+
(
Gt−1(θ̂)

)2
+
(
E[Gt−1(θ̂)]

)2
)]

≤ 3CE

[(
1

2b
(∞)
t−1

)2

+ 2
(
Gt−1(θ̂)

)2
]
. (5.34)

Using the explicit formula (5.28) for b(∞)
t and that K is increasing and bounded,

we also obtain that

0 ≤ 1

2b
(∞)
t−1

=
1

2ξ

T∏
u=t

(1 +4Ku) ≤
1

2ξ

T∏
u=1

(1 +4Ku) ≤
1

2ξ
(1 +KT )T

is bounded. This implies that with a new constant, we can rewrite (5.34) as

E[(θ̂t4St)2] ≤ C + CE
[(
Gt−1(θ̂)

)2]
, t = 1, . . . , T. (5.35)

The claim θ̂t4St ∈ L2 for t = 1, . . . , T now follows easily by induction. Indeed,
setting t = 1 in (5.35) and using G0(θ̂) = 0 gives the base case. The induction
step follows directly from (5.35).

Lemma 5.5 finishes the implementation of Recipe 5.4, 1). The next step is to
show that

c
(∞)
0 = E[Jmv

T (θ̂)] = E[GT (θ̂)]− ξVar[GT (θ̂)]. (5.36)

To this end, we define a sequence (Ṽt)t=0,1,...,T by

Ṽt := a
(∞)
t E[Gt(θ̂)]− b(∞)

t Var[Gt(θ̂)] + c
(∞)
t , t = 0, 1, . . . , T. (5.37)

Lemma 5.6. Suppose that Assumptions 3.2, 3.4 and 4.11 are satisfied. Then the
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sequence (Ṽt)t=0,1,...,T given in (5.37) is constant.

Proof. We first find recursive formulas for the quantities (E[Gt(θ̂)])t=0,1,...,T and
(Var[Gt(θ̂)])t=0,1,...,T . Let us recall that Assumption 3.2 says that 4St ∈ L2.
Lemma 5.5 shows that θ̂ ∈ ΘS, and then the definition of ΘS in (3.6) implies that
θ̂t4St and Gt−1(θ̂) are in L2. We summarise these properties as

4St, θ̂t4St, Gt−1(θ̂) are all in L2. (5.38)

Conditioning on Ft−1 with (5.38), then using the explicit expression (5.32) for θ̂t
and λt4At = 4Kt from (5.33) and finally observing that 4Kt is deterministic
and so is thus 1

2b
(∞)
t−1

, we get

E[θ̂t4St] = E[θ̂t4At]

= E

[
4Kt

1 +4Kt

(
1

2b
(∞)
t−1

−Gt−1(θ̂) + E[Gt−1(θ̂)]

)]
=
4Kt

1 +4Kt

1

2b
(∞)
t−1

, t = 1, . . . , T, (5.39)

and hence

E[Gt(θ̂)] = E[Gt−1(θ̂)] +
4Kt

1 +4Kt

1

2b
(∞)
t−1

, t = 1, . . . , T. (5.40)

The recursion for the variance term (Var[Gt(θ̂)])t=0,1,...,T is found to satisfy, for
t = 1, . . . , T , that

Var[Gt(θ̂)] =

(
1− 4Kt

1 +4Kt

)
Var[Gt−1(θ̂)] +

4Kt

(1 +4Kt)2

(
1

2b
(∞)
t−1

)2

, (5.41)

which will be verified later. To show the main assertion, we now use (5.41) and
the recursion (5.25) for b(∞) to obtain

b
(∞)
t Var[Gt(θ̂)] = b

(∞)
t

1

1 +4Kt

Var[Gt−1(θ̂)] + b
(∞)
t

4Kt

(1 +4Kt)2

(
1

2b
(∞)
t−1

)2

= b
(∞)
t−1 Var[Gt−1(θ̂)] +

4Kt

4b
(∞)
t−1 (1 +4Kt)

, t = 1, . . . , T. (5.42)

Inserting (5.40) and (5.42) into (5.37), then using the recursions (5.25), (5.26) for
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b(∞), c(∞) and (5.37) gives

Ṽt = E[Gt−1(θ̂)] +
4Kt

1 +4Kt

1

2b
(∞)
t−1

− b(∞)
t−1 Var[Gt−1(θ̂)]− 4Kt

4b
(∞)
t−1 (1 +4Kt)

+ c
(∞)
t

= E[Gt−1(θ̂)]− b(∞)
t−1 Var[Gt−1(θ̂)] + c

(∞)
t +

4Kt

4b
(∞)
t−1 (1 +4Kt)

= E[Gt−1(θ̂)]− b(∞)
t−1 Var[Gt−1(θ̂)] + c

(∞)
t +

4Kt

4b
(∞)
t

= E[Gt−1(θ̂)]− b(∞)
t−1 Var[Gt−1(θ̂)] + c

(∞)
t−1

= Ṽt−1, t = 1, . . . , T.

This proves the main assertion.
It remains to verify (5.41). Expanding the variance term as

Var[Gt(θ̂)] = Var[Gt−1(θ̂)] + 2Cov
(
Gt−1(θ̂), θ̂t4St

)
+ Var[θ̂t4St], (5.43)

we need to compute the second and third terms in (5.43) more explicitly. We
condition on Ft−1, then use (5.32) and that 4Kt is deterministic from Assump-
tion 4.11, and finally (5.39) to compute

Cov
(
Gt−1(θ̂), θ̂t4St

)
= E[Gt−1(θ̂)θ̂t4At]− E[Gt−1(θ̂)]E[θ̂t4At]

= E

[
Gt−1(θ̂)

4Kt

1 +4Kt

(
1

2b
(∞)
t−1

−Gt−1(θ̂) + E[Gt−1(θ̂)]

)]
− E[Gt−1(θ̂)]E[θ̂t4At]

=
4Kt

1 +4Kt

(
E[Gt−1(θ̂)]

1

2b
(∞)
t−1

− E[Gt−1(θ̂)2]

+
(
E[Gt−1(θ̂)]

)2
)
− E[Gt−1(θ̂)]E[θ̂t4At]

=
4Kt

1 +4Kt

(
E[Gt−1(θ̂)]

1

2b
(∞)
t−1

− Var[Gt−1(θ̂)]

)
− E[Gt−1(θ̂)]

4Kt

1 +4Kt

1

2b
(∞)
t−1

= − 4Kt

1 +4Kt

Var[Gt−1(θ̂)]. (5.44)

The conditioning step in the first equality of (5.44) is ensured thanks to (5.38) and
its consequence Gt−1(θ̂)θ̂t4St ∈ L1. For the third term in (5.43), we condition
on Ft−1, then use the first line in (5.34) with (5.33) and finally combine the fact
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that as 4Kt is deterministic, so is b(∞)
t−1 , with (5.39) to get

Var[θ̂t4St] = E[(θ̂t4St)2]− (E[θ̂t4At])2

= E

[
4Kt + (4Kt)

2

(1 +4Kt)2

(
1

2b
(∞)
t−1

−Gt−1(θ̂) + E[Gt−1(θ̂)]

)2]
− (E[θ̂t4At])2

=
4Kt + (4Kt)

2

(1 +4Kt)2

(( 1

2b
(∞)
t−1

)2

+ Var[Gt−1(θ̂)]

)
−
(
4Kt

1 +4Kt

1

2b
(∞)
t−1

)2

=
4Kt

1 +4Kt

Var[Gt−1(θ̂)] +
4Kt

(1 +4Kt)2

(
1

2b
(∞)
t−1

)2

. (5.45)

The conditioning step in (5.45) uses directly (5.38). Inserting (5.44) and (5.45)
into (5.43) yields (5.41).

Lemma 5.6 implies that c(∞)
0 = Ṽ0 = ṼT = E[Jmv

T (θ̂)] by (5.24)–(5.26). This
proves (5.36) and finishes Recipe 5.4, 2), and hence we can state our main veri-
fication result below.

Theorem 5.7. Suppose that Assumptions 3.2, 3.4 and 4.11 are satisfied, mean-
ing that S is square-integrable and satisfies the structure condition (SC) with a
deterministic MVT process K. Then θ̂ defined in (5.32) and given explicitly by

θ̂t :=
λt

1 +4Kt

(
1

2b
(∞)
t−1

−Gt−1(θ̂) + E[Gt−1(θ̂)]

)
, t = 1, . . . , T, (5.46)

is an optimal strategy for the MVPS problem (5.14).

5.4 Convergence of strategies – preparation

Starting from this subsection, we turn to study the convergence behaviour of ϑ̂(L)

which is given explicitly in (5.11). We follow the convention described in Section
5.1 and try to argue that ϑ̂(L) converges in some sense to the optimal strategy θ̂
for the MVPS problem given in (5.46). In this subsection, we do some preliminary
work by collecting some identities and inequalities that will be used for proving
the main assertion.

Let us briefly recap some consequences of Section 5.1. In the next two sections,
we only work with the infinite product space. For a quantity X(L), the superscript
(L) indicates that it is originally defined on (Ω(L),F (L),F (L)) for L ∈ N and is
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lifted to the infinite product space via

X(L)(ω1, ω2, . . . ) = X(L)(ω1, . . . , ωL) (5.47)

as in (5.1). We also make X(L) R∞-valued by setting X`,(L) ≡ 0 for ` > L as
in (5.2), with the first L components unchanged. Now note that ϑ̂`,(L) lives on
(Ω(∞),F (∞),P(∞)) while θ̂ lives on (Ω,F , P ). To make a comparison possible, we
first recall from (2.18) that we have defined X⊗L for any L ∈ N ∪ {∞} by

X⊗L := X ◦ π`,L, ` = 1, . . . , L.

So we can use the process θ̂⊗∞ given by

θ̂`,⊗∞(ω(∞)) = θ̂ ◦ π`,∞(ω(∞)) = θ̂(ω`), ` ∈ N, (5.48)

to lift θ̂ to (Ω(∞),F (∞),P(∞)) and obtain by the explicit formula for θ̂ in (5.46)
and (5.48) that

θ̂`,⊗∞t =
λ`t

1 +4Kt

(
1

2b
(∞)
t−1

−G`
t−1(θ̂⊗∞) + E(∞)[G`

t−1(θ̂⊗∞)]

)
(5.49)

for t = 1, . . . , T and ` ∈ N. Thanks to (5.48) and P = P(∞) ◦ π`,∞ in (2.12), we
easily see that (θ̂`,⊗∞)`∈N are independent and each has the same distribution as
θ̂. This link between θ̂`,⊗∞ and θ̂ is further exploited below. From now on, we
write E instead of E(∞) for ease of notation. In all what follows below, we
have L <∞.

Lemma 5.8. Suppose Assumptions 3.2, 3.4 and 4.11 are satisfied. Then for
L ≥ 2 and each t = 0, 1, . . . , T , the random variables (G`

t(ϑ̂
(L)))`=1,...,L have the

same first two moments.

Proof. We first use (5.7), the explicit expressions λt = 4At
4〈M〉t ,4Kt = (4At)2

4〈M〉t and
4〈S〉t = 4〈M〉t + (4At)2 in (3.20) and (3.10) and that 4Kt is deterministic so
that 4K`

t = 4Kt for ` ∈ N to obtain for ` ∈ N that

λ`t4A`
t = 4Kt, (λ`t)

24〈M`〉t = 4Kt, (λ`t)
24〈S`〉t = 4Kt + (4Kt)

2. (5.50)
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This is used repeatedly in the proof below. We also use the two properties that

the random variables 4S`t, ϑ̂
`,(L)
t 4S`t and G`

t(ϑ̂
(L)) are all in L2, (5.51)

the random variables 4Kt and hence b(L)
t and b(∞)

t are deterministic. (5.52)

Via S`(ω(∞)) = S(ω`) = S`,(L)(ω(L)) and (5.47) with X(L) = ϑ̂(L), property
(5.51) can be translated from a statement in the L-extended market that S

`,(L)
t ,

ϑ̂
(L)
t 4S

`,(L)
t and G`

t(ϑ
(L)) are in L2. Note that the latter statement refers to

the L-extended market, while (5.51) is a property in the infinite product space.
Recall that the first property in (5.51) is a direct consequence of St ∈ L2 by
Assumption 3.2, and the other two follow from ϑ̂(L) ∈ Θ

(L)
S by Theorem 4.12

and the integrability requirement in the definition of Θ
(L)
S in (3.29). Property

(5.51) is frequently used below for taking out G(L)
t−1-measurable quantities from

conditional expectations. The statement (5.52) uses that 4Kt is deterministic by
Assumption 4.11 and the explicit formulas of b(L)

t and b(∞)
t in (4.77) and (5.28).

We now separately show that for t = 1, . . . , T , all coordinates of the random
vector (G`

t(ϑ̂
(L)))`=1,...,L have the same first two moments.

1) For the first moment, we condition on G(L)
t−1, then use the explicit formula

(5.11) for ϑ̂(L), (5.50) and (5.52) to compute, for ` = 1, . . . , L,

E[ϑ̂
`,(L)
t 4S`t] = E[ϑ̂

`,(L)
t 4A`

t]

=
4Kt

(1− L−1) +4Kt

×
(

1

2b
(L)
t−1

− E[G`
t−1(ϑ̂(L))] + E

[
em
(
Gt−1(ϑ̂(L))

)])
. (5.53)

The conditioning step in (5.53) also uses (5.51). Then (5.53) yields by induction
(forward in time), used for the empirical mean, that E[ϑ̂

`,(L)
t 4S`t] does not depend

on ` and is given by

E[ϑ̂
`,(L)
t 4S`t] =

4Kt

(1− L−1) +4Kt

1

2b
(L)
t−1

, ` = 1, . . . , L, t = 1, . . . , T. (5.54)

Because G`
t(ϑ̂

(L)) =
∑t

s=1 ϑ̂
`,(L)
s 4S`s for ` = 1, . . . , L by (2.21), we obtain that

E[G`
t(ϑ̂

(L))] = E[Gm
t (ϑ̂(L))] for `,m = 1, . . . , L. Note that this also gives

E[G`
t(ϑ̂

(L))] = E
[
em
(
Gt(ϑ̂

(L))
)]
, ` = 1, . . . , L. (5.55)
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2) For the second moment, we claim for `,m = 1, . . . , L and t = 0, 1, . . . , T

that

E
[(

G`
t(ϑ̂

(L))
)2]

= E
[(

Gm
t (ϑ̂(L))

)2]
, (5.56)

E
[
G`
t(ϑ̂

(L))em
(
Gt(ϑ̂

(L))
)]

= E
[
Gm
t (ϑ̂(L))em

(
Gt(ϑ̂

(L))
)]
. (5.57)

We prove these equalities by induction. The base case t = 0 is evident. Suppose
the claim is true for t− 1. Below we use from (2.21) and (2.23) the identities

G`
t(ϑ̂

(L)) = G`
t−1(ϑ̂(L)) + ϑ̂

`,(L)
t 4S`t, t = 1, . . . , T, ` ∈ N, (5.58)

em(x + y) = em(x) + em(y). (5.59)

We use (5.58), then condition on G(L)
t−1 and use the G(L)

t−1-measurability of both ϑ̂(L)
t

and G`
t−1(ϑ̂(L)), the identity E[4S`t|G

(L)
t−1] = 4A`

t from (5.3) and the definition of
4〈S`〉 in (5.5) to obtain

E
[(

G`
t(ϑ̂

(L))
)2]

= E
[(

G`
t−1(ϑ̂(L))

)2]
+ 2E[G`

t−1(ϑ̂(L))ϑ̂
`,(L)
t 4S`t]

+ E[(ϑ̂
`,(L)
t 4S`t)

2]

= E
[(

G`
t−1(ϑ̂(L))

)2]
+ 2E[G`

t−1(ϑ̂(L))ϑ̂
`,(L)
t 4A`

t]

+ E[(ϑ̂
`,(L)
t )24〈S`〉t]. (5.60)

The conditioning step uses (5.51) as well. For the second term on the right-hand
side of (5.60), we insert the explicit formula for ϑ̂`,(L) in (5.11) into that second
term and use (5.50) with (5.52) to obtain

E[G`
t−1(ϑ̂(L))ϑ̂

`,(L)
t 4A`

t] =
4Kt

(1− L−1) +4Kt

×
(

E[G`
t−1(ϑ̂(L))]

2b
(L)
t−1

− E
[(

G`
t−1(ϑ̂(L))

)2]
+ E

[
G`
t−1(ϑ̂(L))em

(
Gt−1(ϑ̂(L))

)])
. (5.61)

Similarly plugging the explicit formula for ϑ̂`,(L) in (5.11) into the third term
in (5.60) and using again (5.50) with (5.52) gives together with the equality
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E[G`
t−1(ϑ̂(L))] = E[em(Gt−1(ϑ̂(L)))] from (5.55) that

E[(ϑ̂
`,(L)
t )24〈S`〉t] =

4Kt + (4Kt)
2

((1− L−1) +4Kt)2
E

[(
1

2b
(L)
t−1

−G`
t−1(ϑ̂(L))

+ E
[
em
(
Gt−1(ϑ̂(L))

)])2]
=

4Kt + (4Kt)
2

((1− L−1) +4Kt)2

(( 1

2b
(L)
t−1

)2

+ E
[(

G`
t−1(ϑ̂(L))

)2]
− 2E

[
G`
t−1(ϑ̂(L))em

(
Gt−1(ϑ̂(L))

)]
+
(
E
[
em
(
Gt−1(ϑ̂(L))

)])2
)
. (5.62)

Inserting (5.61) and (5.62) into (5.60) and using the induction hypotheses for
(5.56) and (5.57), we get E[(G`

t(ϑ̂
(L)))2] = E[(Gm

t (ϑ̂(L)))2] for `,m = 1, . . . , L.
This completes the induction step for (5.56).

It remains to show E[G`
t(ϑ̂

(L))em(Gt(ϑ̂
(L)))] = E[Gm

t (ϑ̂(L))em(Gt(ϑ̂
(L)))]. To

this end, we use (5.58) and (5.59) to obtain

E
[
G`
t(ϑ̂

(L))em
(
Gt(ϑ̂

(L))
)]

= E
[
G`
t−1(ϑ̂(L))em

(
Gt−1(ϑ̂(L))

)]
+ E

[
ϑ̂
`,(L)
t 4S`tem

(
Gt−1(ϑ̂(L))

)]
+ E[G`

t−1(ϑ̂(L))em(ϑ̂
(L)
t �4St)] + E[ϑ̂

`,(L)
t 4S`tem(ϑ̂

(L)
t �4St)]. (5.63)

We now argue that each term on the RHS of (5.63) does not depend on `. For
the first term, this is true by the induction hypothesis for (5.57). For the second
term in (5.63), we condition on G(L)

t−1, then invoke the G(L)
t−1-measurability of ϑ̂(L)

t

and em(Gt−1(ϑ̂(L))) and finally use the explicit formula for ϑ̂`,(L) in (5.11), (5.50)
and (5.52) to compute

E
[
ϑ̂
`,(L)
t 4S`tem

(
Gt−1(ϑ̂(L))

)]
=

4Kt

(1− L−1) +4Kt

× E

[(
1

2b
(L)
t−1

−G`
t−1(ϑ̂(L)) + em

(
Gt−1(ϑ̂(L))

))
× em

(
Gt−1(ϑ̂(L))

)]
. (5.64)

The conditioning step also uses (5.51). By the induction hypothesis for (5.57),
the last quantity is independent of ` for ` = 1, . . . , L. For the third term in (5.63),
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we argue similarly as in (5.64) and use (5.59) to get

E[G`
t−1(ϑ̂(L))em(ϑ̂

(L)
t �4St)]

= E

[
G`
t−1(ϑ̂(L))

4Kt

(1− L−1) +4Kt

× em

(
1

2b
(L)
t−1

−G`
t−1(ϑ̂(L)) + em

(
Gt−1(ϑ̂(L))

))]
= E

[
G`
t−1(ϑ̂(L))

4Kt

(1− L−1) +4Kt

1

2b
(L)
t−1

]
.

Because all coordinates of (G`
t(ϑ̂

(L)))`=1,...,L have by part 1) the same first mo-
ment for t = 0, 1, . . . , T (see (5.55)), the last expression in the above display is
independent of ` for ` = 1, . . . , L. For the fourth term in (5.63), we first use
4S`t = 4M`

t +4A`
t and (5.59) to expand

E[ϑ̂
`,(L)
t 4S`tem(ϑ̂

(L)
t �4St)]

= E[ϑ̂
`,(L)
t 4M`

tem(ϑ̂
(L)
t �4Mt)] + E[ϑ̂

`,(L)
t 4M`

tem(ϑ̂
(L)
t �4At)]

+ E[ϑ̂
`,(L)
t 4A`

tem(ϑ̂
(L)
t �4Mt)] + E[ϑ̂

`,(L)
t 4A`

tem(ϑ̂
(L)
t �4At)]. (5.65)

We then condition on G(L)
t−1 with the integrability property from (5.51) and use

the G(L)
t−1-measurability of ϑ̂`,(L)

t and E[4M`
t4Mm

t |G
(L)
t−1] = 0 for `,m = 1, . . . , L

and ` 6= m from (5.4) to obtain E[ϑ̂
`,(L)
t 4M`

tϑ̂
m,(L)
t 4Mm

t ] = 0 for `,m = 1, . . . , L

and ` 6= m. Using em(x(L)) = 1
L

∑L
`=1 x`,(L), the last identity and the definition

of 4〈M`〉t in (5.5) simplifies the first term in (5.65) to

E[ϑ̂
`,(L)
t 4M`

tem(ϑ̂
(L)
t �4Mt)] =

1

L
E[(ϑ̂

`,(L)
t )24〈M`〉t].

By a similar conditioning step and the identity E[4M`
t|G

(L)
t−1] = 0 from (5.3), we

get E[ϑ̂
`,(L)
t 4A`

tϑ̂
m,(L)
t 4Mm

t ] = 0 for all `,m = 1, . . . , L. Averaging this equality
over ` and m respectively, we obtain that

E[ϑ̂
`,(L)
t 4M`

tem(ϑ̂
(L)
t �4At)] = E[ϑ̂

`,(L)
t 4A`

tem(ϑ̂
(L)
t �4Mt)] = 0.

We insert the last two displays into (5.65) and then use (5.11), (5.50) and (5.52)
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to compute

E[ϑ̂
`,(L)
t 4S`tem(ϑ̂

(L)
t �4St)] =

1

L
E[(ϑ̂

`,(L)
t )24〈M`〉t]

+ E[ϑ̂
`,(L)
t 4A`

tem(ϑ̂
(L)
t �4At)]

=
1

L

(4Kt)
2

((1− L−1) +4Kt)2

× E

[(
1

2b
(L)
t−1

−G`
t−1(ϑ̂(L)) + em

(
Gt−1(ϑ̂(L))

))2]
+

4Kt

(1− L−1) +4Kt

1

2b
(L)
t−1

E[ϑ̂
`,(L)
t 4A`

t]. (5.66)

Getting the last quantity in the second equality in (5.66) also uses

em(ϑ̂
(L)
t �4At) =

4Kt

(1− L−1) +4Kt

× em

(
1

2b
(L)
t−1

− em
(
Gt−1(ϑ̂(L))

)
+ em

(
Gt−1(ϑ̂(L))

))
=

4Kt

(1− L−1) +4Kt

1

2b
(L)
t−1

,

obtained by multiplying 4A`
t in the explicit formula (5.11) for ϑ̂`,(L), averaging

over ` and using (5.50). Expanding the square in the second-to-last line in (5.66),
we can see that it depends on ` through the expectations of G`

t−1(ϑ), (G`
t−1(ϑ))2

and G`
t−1(ϑ)em(Gt−1(ϑ)). All of these terms are independent of ` for ` = 1, . . . , L

by part 1), see (5.55), and the induction hypotheses for (5.56) and (5.57). The
last term in (5.66) is also independent of ` by E[ϑ̂

`,(L)
t 4A`

t] = E[ϑ̂
`,(L)
t 4S`t] and

(5.54). We can now conclude that all terms in (5.63) are independent of ` for
` = 1, . . . , L. This finishes the induction step for (5.57).

Lemma 5.9. Suppose Assumptions 3.2, 3.4 and 4.11 are satisfied. Then the
following statements hold:

1) For each t = 0, 1, . . . , T , we have

sup
L∈N

(
1

b
(L)
t

)
≤ 1

ξ

T∏
u=t+1

(1 + 2KT ) <∞. (5.67)

2) There exists a constant C > 0 such that for t = 1, . . . , T and ` = 1, . . . , L,
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we have

sup
L∈N,L≥2

E[(ϑ̂
`,(L)
t 4S`t)

2] ≤ 3C sup
L∈N,L≥2

(
1

2b
(L)
t−1

)2

+ 6C sup
L∈N,L≥2

E
[(

G`
t−1(ϑ̂(L))

)2]
, (5.68)

and hence, for each ` ∈ N

sup
L∈N

E
[(

G`
t(ϑ̂

(L))
)2]

<∞, t = 0, 1, . . . , T. (5.69)

Here we use the convention (5.8) so that G`(ϑ̂(L)) ≡ 0 for ` > L.
3) For t = 1, . . . , T ,

L∑
6̀=m

CovP(ϑ̂
`,(L)
t 4S`t, ϑ̂

m,(L)
t 4Smt )

L2

= − 1

L

(
4Kt

(1− L−1) +4Kt

)2

E
[
evar

(
Gt−1(ϑ̂(L))

)]
. (5.70)

Proof. 1) Because all the 4Kt are deterministic by Assumption 4.11, we use the
explicit formula (4.77) for b(L), 1 − L−1 ≥ 1

2
for L ≥ 2 and 4Ku ≤ KT for

u = 1, . . . , T from (3.20) to get

sup
L∈N

(
1

b
(L)
t

)
= sup

L∈N

(
1

ξ

T∏
u=t+1

(1− L−1) +4Ku

1− L−1

)
≤ 1

ξ
(1 + 2KT )T <∞.

2) Let us show (5.68). First, we obviously get (as in (4.43)) that

4Kt + (4Kt)
2

((1− L−1) +4Kt)2
≤ 4Kt + (4Kt)

2

(1− L−1)2
≤ 4(KT +K2

T ) =: C. (5.71)

Recall that we have computed E[(ϑ̂
`,(L)
t 4S`t)

2] in (5.62). We insert (5.71) into
the first line of (5.62), then apply Cauchy–Schwarz successively and finally use
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(5.56) to get

E[(ϑ̂
`,(L)
t 4S`t)

2] ≤ CE

[(
1

2b
(L)
t−1

−G`
t−1(ϑ̂(L)) + em

(
Gt−1(ϑ̂(L))

))2]
≤ 3C

(( 1

2b
(L)
t−1

)2

+ E
[(

G`
t−1(ϑ̂(L))

)2]
+ E

[(
em
(
Gt−1(ϑ̂(L))

))2])
≤ 3C

(( 1

2b
(L)
t−1

)2

+ E
[(

G`
t−1(ϑ̂(L))

)2]
+ E

[
em
(
Gt−1(ϑ̂(L))2

)])
= 3C

(( 1

2b
(L)
t−1

)2

+ 2E
[(

G`
t−1(ϑ̂(L))

)2])
.

This gives (5.68). We now prove (5.69) by induction. The claim for t = 0 is
trivial. Suppose (5.69) holds for t− 1. Then we use (5.68) to estimate

sup
L∈N,L≥2

E[
(
G`
t(ϑ̂

(L))
)2

] ≤ 2 sup
L∈N,L≥2

E
[(

G`
t−1(ϑ̂(L))

)2]
+ 2 sup

L∈N,L≥2
E[(ϑ̂

`,(L)
t 4S`t)

2]

≤ 6C sup
L∈N,L≥2

(
1

2b
(L)
t−1

)2

+ (2 + 12C) sup
L∈N,L≥2

E
[(

G`
t−1(ϑ̂(L))

)2]
.

The last quantity is finite thanks to (5.67) and the induction hypothesis. This
proves the induction step.

3) Let `,m ∈ {1, . . . , L} and ` 6= m. Conditioning on G(L)
t−1, then pulling out

G(L)
t−1-measurable quantities and using the martingale property in (5.3) and the

strong orthogonality in (5.4), we get

CovP(ϑ̂
`,(L)
t 4S`t, ϑ̂

m,(L)
t 4Smt ) = E[ϑ̂

`,(L)
t ϑ̂

m,(L)
t (4M`

t +4A`
t)(4Mm

t +4Am
t )]

− E[ϑ̂
`,(L)
t (4M`

t +4A`
t)]

× E[ϑ̂
m,(L)
t (4Mm

t +4Am
t )]

= CovP(ϑ̂
`,(L)
t 4A`

t, ϑ̂
m,(L)
t 4Am

t ). (5.72)

The conditioning step also uses the integrability properties in (5.51). Recall
4K̃(L)

t = 4Kt
(1−L−1)+4Kt from Condition 4.6, which is satisfied due to the equivalence

between Conditions 4.6 and 4.7 as argued in Remark 4.8, and that the MVT
process K is deterministic by Assumption 4.11. Using the formula (5.11) for ϑ̂(L)

with (5.50), then (5.52) and finally E[G`
t−1(ϑ̂(L)) − em(Gt−1(ϑ̂(L)))] = 0 from
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(5.55), we get

CovP(ϑ̂
`,(L)
t 4A`

t, ϑ̂
m,(L)
t 4Am

t )

= CovP

(
4K̃(L)

t

2b
(L)
t−1

,
4K̃(L)

t

2b
(L)
t−1

)
+ CovP

(
4K̃(L)

t

2b
(L)
t−1

,4K̃(L)
t

(
Gm
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

)))
+ CovP

(
4K̃(L)

t

2b
(L)
t−1

,4K̃(L)
t

(
G`
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

)))
+ CovP

(
4K̃(L)

t

(
G`
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

))
,

4K̃(L)
t

(
Gm
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

)))
= (4K̃(L)

t )2

× CovP
(
G`
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

)
,Gm

t−1(ϑ̂(L))− em
(
Gt−1(ϑ̂(L))

))
= (4K̃(L)

t )2E
[(

G`
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

))
×
(
Gm
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

))]
. (5.73)

Inserting (5.73) into (5.72), adding and subtracting the (diagonal, ` = m) term
1
L2

∑L
`=1(4K̃(L)

t )2E[(G`
t−1(ϑ̂(L))−em(Gt−1(ϑ̂(L))))2], and finally using the expan-
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sion (
∑L

`=1 x`)2 =
∑L

`,m=1 x`xm, we get

1

L2

L∑
6̀=m

CovP(ϑ̂
`,(L)
t 4S`t, ϑ̂

m,(L)
t 4Smt )

=
1

L2

L∑
` 6=m

(4K̃(L)
t )2E

[(
G`
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

))
×
(
Gm
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

))]
=

1

L2

L∑
` 6=m

(4K̃(L)
t )2E

[(
G`
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

))
×
(
Gm
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

))]
+

1

L2

L∑
`=1

(4K̃(L)
t )2E

[(
G`
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

))2]
− 1

L2

L∑
`=1

(4K̃(L)
t )2E

[(
G`
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

))2]
= (4K̃(L)

t )2E

[(
1

L

L∑
`=1

(
G`
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

)))2]

− 1

L2

L∑
`=1

(4K̃(L)
t )2E

[(
G`
t−1(ϑ̂(L))− em

(
Gt−1(ϑ̂(L))

))2]
= −(4K̃(L)

t )2

L
E
[
evar

(
Gt−1(ϑ̂(L))

)]
.

The last equality uses (5.18) and the definition of the empirical variance in (2.24).
This completes the proof.

5.5 Convergence of strategies – main results

We are ready to present the main result of these two subsections:

max
`=1,...,L

E
[

max
t=1,...,T

(
G`
t(ϑ̂

(L))−G`
t(θ̂
⊗∞)

)2
]

= O(L−1) −→ 0 as L→∞. (5.74)

As a byproduct, we obtain a second proof of Theorem 5.7, i.e., the optimality of
θ̂ for the MVPS problem (2.3).
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First, we adapt from the convergence of b(L) to b(∞) given in (5.31) to obtain

max
t=0,1,...,T

∣∣∣∣ 1

b
(L)
t

− 1

b
(∞)
t

∣∣∣∣ ≤ 1

ξ
max

t=0,1,...,T−1

T∏
u=t+1

∣∣∣∣ 4Ku

1− L−1
−4Ku

∣∣∣∣ = O(L−1) (5.75)

because b(L)
T = ξ = b

(∞)
T and each factor satisfies for u = 1, . . . , T that∣∣∣∣ 4Ku

1− L−1
−4Ku

∣∣∣∣ =
4Ku

L− 1
= O(L−1)

due to the fact that 4Ku is deterministic from Assumption 4.11. Next, we estab-
lish an L2-weak law of large numbers for the optimal final gains (G`

t(ϑ̂
(L)))`=1,...,L

as L→∞. Note that the empirical average em implicitly depends on L.

Proposition 5.10. Suppose Assumptions 3.2, 3.4 and 4.11 are satisfied. Then
for any ` ∈ N, we have for t = 0, 1, . . . , T that

E
[(

em
(
Gt(ϑ̂

(L))
)
− E[G`

t(ϑ̂
(L))]

)2]
= O(L−1) for L ∈ N \ {1}. (5.76)

Proof. We prove this result by induction over t. The statement is trivial for t = 0.
Suppose (5.76) holds for t−1. For the induction step, thanks to Cauchy–Schwarz,
we only need to prove that

max
`=1,...,L

E
[(

em(ϑ̂
(L)
t �4St)− E[ϑ̂

`,(L)
t 4S`t]

)2]
= O(L−1) for L ∈ N \ {1}.

First we recall from (5.55) that

E[ϑ̂
`,(L)
t 4S`t] = E[ϑ̂

`′,(L)
t 4S`

′

t ] for any `, `′ ∈ {1, . . . , L} (5.77)

and use this to obtain

max
`′=1,...,L

E
[(

em(ϑ̂
(L)
t �4St)− E[ϑ̂

`′,(L)
t 4S`t]

)2]
= E

[(
em(ϑ̂

(L)
t �4St)− E[ϑ̂

`,(L)
t 4S`t]

)2]
. (5.78)

Then we use (5.78) and the definition of the empirical average recalled in (5.18),
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expand (
∑L

`=1 x`)2 and finally invoke (5.77) to replace `′ by ` to write

max
`′=1,...,L

E
[(

em(ϑ̂
(L)
t �4St)− E[ϑ̂

`′,(L)
t 4S`t]

)2]
= E

[(
em(ϑ̂

(L)
t �4St)− E[ϑ̂

`,(L)
t 4S`t]

)2]
= E

[ L∑
`′=1

(
ϑ̂
`′,(L)
t 4S`

′
t − E[ϑ̂

`,(L)
t 4S`t]

L

)2]

= E

[ L∑
`=1

(
ϑ̂
`,(L)
t 4S`t − E[ϑ̂

`,(L)
t 4S`t]

L

)2]

=
L∑
`=1

VarP[ϑ̂
`,(L)
t 4S`t]

L2
+

L∑
`6=m

CovP(ϑ̂
`,(L)
t 4S`t, ϑ̂

m,(L)
t 4Smt )

L2
. (5.79)

For the variance term in (5.79), we use (5.68) and (5.69) to obtain

sup
L∈N,L≥2

VarP[ϑ̂
`,(L)
t 4S`t] ≤ sup

L∈N,L≥2
E[(ϑ̂

`,(L)
t 4S`t)

2] <∞

and hence

L∑
`=1

VarP[ϑ̂
`,(L)
t 4S`t]

L2
≤ supL∈N E[(ϑ̂

`,(L)
t 4S`t)

2]

L
= O(L−1) for L ∈ N \ {1}.

For the covariance term in (5.79), we use (5.70) and 4Kt
(1−L−1)+4Kt ≤ 1 with

evar(x) ≤ em(x2) from the definition of evar in (2.24) to obtain

∣∣∣∣ L∑
6̀=m

CovP(ϑ̂
`,(L)
t 4S`t, ϑ̂

m,(L)
t 4Smt )

L2

∣∣∣∣ =
1

L

(
4Kt

(1− L−1) +4Kt

)2

× E
[
evar

(
Gt−1(ϑ̂(L))

)]
≤ 1

L
sup

L∈N,L≥2
E
[
em
(
Gt−1(ϑ̂(L))2

)]
= O(L−1)

The last step uses that supL∈N,L≥2 E[em(Gt−1(ϑ̂(L))2)] < ∞, which follows from
(5.69) and the identity E[em(Gt−1(ϑ̂(L))2)] = E[(G`

t−1(ϑ̂(L)))2] for ` = 1, . . . , L

by (5.56). Since both terms in (5.79) are O(L−1) for L ∈ N \ {1}, the proof is
complete.

Now we control the L2-distance between ϑ̂`,(L)
t 4S`t and θ̂`,⊗∞t 4S`t in terms

of differences between ϑ̂`,(L)
t and θ̂`,⊗∞t . Note that both ϑ̂`,(L) and θ̂`,⊗∞ are
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defined on (Ω(∞),F (∞),P(∞)). In particular, each `-th coordinate of the process
θ̂⊗∞(ω(∞)) is simply equal to θ̂(ω`), where θ̂ is the optimal strategy from (5.46)
for the MVPS problem (5.14).

Lemma 5.11. Suppose that Assumptions 3.2, 3.4 and 4.11 are satisfied. Then
there exists a constant C > 0 such that for each t = 1, . . . , T and ` = 1, . . . , L,
we have

E[(ϑ̂
`,(L)
t 4S`t − θ̂

`,⊗∞
t 4S`t)

2]

≤ 6CE

[(
1

b
(L)
t−1

− 1

b
(∞)
t−1

)2

+
(
G`
t−1(ϑ̂(L))−G`

t−1(θ̂⊗∞)
)2

+
(

em
(
Gt−1(ϑ̂(L))

)
− E[G`

t−1(θ̂⊗∞)]
)2
]

+
2C

L2
E

[(
1

2b
(∞)
t−1

−G`
t−1(θ̂⊗∞) + E[G`

t−1(θ̂⊗∞)]

)2]
. (5.80)

Proof. First we introduce a few notations for some quantities in the definitions
of ϑ̂`,(L) and θ̂`,⊗∞, namely

U1 =
1

(1− L−1) +4Kt

, W1 =
1

2b
(L)
t−1

,

X1 = G`
t−1(ϑ̂(L)), Y1 = em

(
Gt−1(ϑ̂(L))

)
,

U2 =
1

1 +4Kt

, W2 =
1

2b
(∞)
t−1

,

X2 = G`
t−1(θ̂⊗∞), Y2 = E[G`

t−1(θ̂⊗∞)]. (5.81)

To obtain the bound (5.80), we use the affine structures of ϑ̂`,(L) and θ̂`,⊗∞ (see
(5.11) and (5.49)) and operate at the level of (5.81). Conditioning on G(L)

t−1 and
using (5.81), then invoking (λ`t)

24〈S`〉t = 4Kt + (4Kt)
2 in (5.50), we can write

the LHS of (5.80) as

E[(ϑ̂
`,(L)
t 4S`t − θ̂

`,⊗∞
t 4S`t)

2] = E
[(
U1(W1 −X1 + Y1)− U2(W2 −X2 + Y2)

)2

× (λ`t)
24〈S`〉t

]
= E

[(
U1(W1 −X1 + Y1)− U2(W2 −X2 + Y2)

)2

×
(
4Kt + (4Kt)

2
)]
. (5.82)

The conditioning step uses the G(L)
t−1-measurability of Ui,Wi, Xi, Yi for i ∈ {1, 2}

and the integrability property in (5.51). Thanks to the deterministic property in
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(5.52), we can write 4Kt + (4Kt)
2 ≤ C := KT +K2

T . Then we add and subtract
−U1(W2−X2 +Y2) on the RHS of (5.82) and use the Cauchy–Schwarz inequality
successively to get

E[(ϑ̂
`,(L)
t 4S`t − θ̂

`,⊗∞
t 4S`t)

2] ≤ CE
[(

(U1(W1 −X1 + Y1)− U1(W2 −X2 + Y2)

+ U1(W2 −X2 + Y2)− U2(W2 −X2 + Y2)
)2]

≤ 2C
(
E[U2

1 (W1 −W2 −X1 +X2 + Y1 − Y2)2]

+ E[(U1 − U2)2(W2 −X2 + Y2)2]
)

≤ 6CE
[
U2

1

(
(W1 −W2)2 + (X1 −X2)2

+ (Y1 − Y2)2
)]

+ 2CE[(U1 − U2)2(W2 −X2 + Y2)2]
)
. (5.83)

Because L ≥ 2 and 4Kt ≥ 0 by (3.20), we have

U2
1 =

1

((1− L−1) +4Kt)2
≤ 1

(1
2

+4Kt)2
≤ 4, (5.84)

(U1 − U2)2 =

(
1

(1− L−1) +4Kt

− 1

1 +4Kt

)2

=
L−2

((1− L−1) +4Kt)2(1 +4Kt)2
≤ 4L−2. (5.85)

Inserting (5.84) and (5.85) into (5.83) yields the desired bound (5.80).

Now we are ready to prove the main convergence result (5.74).

Theorem 5.12. Suppose that Assumptions 3.2, 3.4 and 4.11 are satisfied, mean-
ing that S is square-integrable and satisfies the structure condition (SC), and the
MVT process K is deterministic. Then for every t = 0, 1, . . . , T , we have

max
`=1,...,L

E
[(

G`
t(ϑ̂

(L))−G`
t(θ̂
⊗∞)

)2]
= O(L−1) for L ∈ N \ {1}. (5.86)

In consequence, (5.74) holds, i.e.

max
`=1,...,L

E
[

max
t=0,1,...,T

(
G`
t(ϑ̂

(L))−G`
t(θ̂
⊗∞)

)2]
= O(L−1) −→ 0 as L→∞.

Remark 5.13. Because the MVPS problem has an origin in finance, we provide
a financial interpretation of the above result. From an investment perspective,
it is natural to compare two strategies ϑ̂`,(L) and θ̂`,⊗∞ via their respective gains
processes. The above result then says that the difference of the gains processes
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between ϑ̂`,(L) and θ̂`,⊗∞ converges to 0 in the strong sense above as L→∞.

Proof of Theorem 5.12. We argue (5.86) by induction forward in time. The in-
duction basis for t = 0 is trivial. Suppose the statement is true for t − 1, i.e.,
max`=1,...,L E

[(
G`
t−1(ϑ̂(L)) − G`

t−1(θ̂⊗∞)
)2]

= O(L−1) for L ∈ N \ {1}. For the
induction step, we only need to show that

max
`=1,...,L

E[(ϑ̂
`,(L)
t 4S`t − θ̂

`,⊗∞
t 4S`t)

2] = O(L−1) for L ∈ N \ {1}.

Note that the constant C in the bound (5.80) is independent of `, L and t. So we
take the maximum over ` = 1, . . . , L on both sides of (5.80) to obtain

max
`=1,...,L

E[(ϑ̂
`,(L)
t 4S`t − θ̂

`,⊗∞
t 4S`t)

2]

≤ 6CE

[(
1

b
(L)
t−1

− 1

b
(∞)
t−1

)2]
+ 6C max

`=1,...,L
E
[(

G`
t−1(ϑ̂(L))−G`

t−1(θ̂⊗∞)
)2]

+ 6C max
`=1,...,L

E
[(

em
(
Gt−1(ϑ̂(L))

)
− E[G`

t−1(θ̂⊗∞)]
)2]

+
2C

L2
max
`=1,...,L

E

[(
1

2b
(∞)
t−1

−G`
t−1(θ̂⊗∞) + E[G`

t−1(θ̂⊗∞)]

)2]
=: D

(L)
1 +D

(L)
2 +D

(L)
3 +D

(L)
4 . (5.87)

For D(L)
1 , we use (5.75) to get

max
t=0,1,...,T

∣∣∣∣ 1

b
(L)
t

− 1

b
(∞)
t

∣∣∣∣ = O(L−1)

and henceD(L)
1 = O(L−1) for L ∈ N\{1}. ForD(L)

4 , note that θ̂`,⊗∞(ω(∞)) = θ̂(ω`)

and hence G`(θ̂⊗∞)(ω(∞)) = G(θ̂)(ω`) by (5.48). Then using P = P ◦ π−1
`,∞ and

Gt(θ̂) ∈ L2(P ) by Lemma 5.5, we have

D
(L)
4 =

2C

L2
max
`=1,...,L

E

[(
1

2b
(∞)
t−1

−G`
t−1(θ̂⊗∞) + E[G`

t−1(θ̂⊗∞)]

)2]
≤ 2C

L2
max
`=1,...,L

(
2
( 1

2b
(∞)
t−1

)2

+ 2VarP(∞)

[G`
t−1(θ̂⊗∞)]

)
=

4C

L2

(( 1

2b
(∞)
t−1

)2

+ Var[Gt−1(θ̂)]

)
= O(L−2).
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For D(L)
2 , we use the induction hypothesis to obtain

max
`=1,...,L

E
[(

G`
t−1(ϑ̂(L))−G`

t−1(θ̂⊗∞)
)2]

= O(L−1) (5.88)

for L ∈ N \ {1}. Now, for D(L)
3 , we obtain from (5.88) and Jensen’s inequality

that

max
`=1,...,L

((
E[G`

t−1(ϑ̂(L))]− E[G`
t−1(θ̂⊗∞)]

)2
)

≤ max
`=1,...,L

E
[(

G`
t−1(ϑ̂(L))−G`

t−1(θ̂⊗∞)
)2]

= O(L−1) (5.89)

for L ∈ N \ {1}. Next, we use (x+ y)2 ≤ 2x2 + 2y2, then (5.76) and (5.89) to get
for L ∈ N \ {1} that

max
`=1,...,L

E
[(

em
(
Gt−1(ϑ̂(L))

)
− E[G`

t−1(θ̂⊗∞)]
)2]

≤ 2 max
`=1,...,L

E
[(

em
(
Gt−1(ϑ̂(L))

)
− E[G`

t−1(ϑ̂(L))]
)2]

+ 2 max
`=1,...,L

(
E[G`

t−1(ϑ̂(L))]− E[G`
t−1(θ̂⊗∞)]

)2

= O(L−1). (5.90)

This shows that in (5.87), we have D(L)
1 + D

(L)
2 + D

(L)
3 + D

(L)
4 = O(L−1) for

L ∈ N \ {1} and thus completes the induction step.
For (5.74), we observe that

max
`=1,...,L

E
[

max
t=1,...,T

(
G`
t(ϑ̂

(L))−G`
t(θ̂
⊗∞)

)2
]

≤ max
`=1,...,L

E

[ T∑
t=1

(
G`
t(ϑ̂

(L))−G`
t(θ̂
⊗∞)

)2
]
.

The latter term is still O(L−1) as L→∞ because each summand is O(L−1). This
proves (5.74).

We end this chapter with an alternative proof of Theorem 5.7. In view of
Proposition 5.3, we again show that

lim
L→∞

E[J
(L)
T (ϑ̂(L))] = E[Jmv

T (θ̂)]. (5.91)
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Instead of using E[J
(L)
T (ϑ̂(L))] = V

(L)
0 and showing V (L)

0 → E[Jmv
T (θ̂)] as L→∞,

we directly argue that

E
[
em
(
GT (ϑ̂(L))

)]
−→ E[GT (θ̂)],

E
[
em
(
GT (ϑ̂(L))2

)]
−→ E

[(
GT (θ̂)

)2]
,

E
[(

em
(
GT (ϑ̂(L))

))2]
−→

(
E[GT (θ̂)]

)2

as L → ∞. This also shows (5.91) and hence provides a different proof of The-
orem 5.7.

Corollary 5.14. Suppose Assumptions 3.2, 3.4 and 4.11 are satisfied. Then

E
[(

em
(
GT (ϑ̂(L))

)
− E[G`

T (θ̂⊗∞)]
)2]
−→ 0 as L→∞. (5.92)

Proof. Estimate similarly as in (5.90) and use (5.76) and Theorem 5.12.

Corollary 5.15. Suppose Assumptions 3.2, 3.4 and 4.11 are satisfied. Then

E
[
em
(
GT (ϑ̂(L))

)]
−→ E[GT (θ̂)] as L→∞,

E
[
em
(
GT (ϑ̂(L))2

)]
−→ E

[(
GT (θ̂)

)2] as L→∞,

E
[(

em
(
GT (ϑ̂(L))

))2]
−→

(
E[GT (θ̂)]

)2 as L→∞.

In particular, (5.91) holds and thus θ̂ is an optimal strategy for the MVPS problem
(5.14).

Proof. Using G`(θ̂⊗∞)(ω(∞)) = G(θ̂)(ω`) and P = P ◦ π−1
`,∞ by (5.48) and (2.12)

respectively, we only need to show

E
[
em
(
GT (ϑ̂(L))

)]
−→ E[G`

T (θ̂⊗∞)] as L→∞,

E
[
em
(
GT (ϑ̂(L))2

)]
−→ E

[(
G`
T (θ̂⊗∞)

)2] as L→∞,

E
[(

em
(
GT (ϑ̂(L))

))2]
−→

(
E[G`

T (θ̂⊗∞)]
)2 as L→∞.

The first two convergence results follow from

E
[(

G`
T (ϑ̂(L))

)i] −→ E
[(

G`
T (θ̂⊗∞)

)i] for ` ∈ N, i ∈ {1, 2}, as L→∞

by Theorem 5.12 and a Cesàro-type statement that if an → a as n → ∞, then
1
N

∑N
n=1 an → a as N → ∞. For the last convergence, we use (5.92) and the
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generic bound

|E[x2 − y2]| = |E[(x− y)(x+ y)]| ≤
√

E[(x− y)2]
√

E[(x+ y)2]

with x = em(GT (ϑ̂(L))) and y = E[G`
T (ϑ̂(L))].

6 Connections to the literature

In this final section, we comment on related work in the literature. We give an
overview of papers that attack the MVPS problem in finite discrete time. The
first work on portfolio selection under a mean–variance criterion can be found in
the classic paper of Markowitz [49] in a single-period setting. Due to its variance
term, the multi-period formulation of the MVPS problem as in (2.3) is much
more difficult and a first breakthrough appears nearly 50 years later in Li and Ng
[45]. We recall from Section 1 the three approaches for the multi-period MVPS
problem:

(a) The equilibrium approach goes away from the original formulation and stud-
ies a different type of optimality for which a solution satisfies a dynamic
programming principle.

(b) The embedding approach connects the MVPS problem to a class of auxiliary
hedging problems which turn out to be standard linear–quadratic stochastic
control (LQSC) problems. One solves these LQSC problems and translates
the resulting solutions into a solution for the original MVPS problem.

(c) The mean-field approach views the MVPS problem as a special case of a
McKean–Vlasov control problem and uses tools from there to tackle it.

We do not discuss (a) here. For related work in (b), the pioneering paper
is Li and Ng [45] which embeds the original MVPS problem into a family of
auxiliary LQSC problems. This embedding technique is later used widely to
study generalised MVPS problems (e.g. including the running mean and variance)
whose underlying dynamics is driven by i.i.d. innovations. These i.i.d. innovations
sometimes have parameters described by Markov chains. For various levels of
generalisation along this line, we refer to Costa and de Oliveira [21] and He et
al. [34] and references therein. Sun andWang [65] and Fontana and Schweizer [30],
with slightly different formulations, later show that one can write the solution to



106 I Mean field approach for MVPS – discrete time

the MVPS problem in terms of the solution to the pure hedging problem to

minimise E
[(

1−GT (θ)
)2] over θ ∈ Θ, (6.1)

which has a lot of results to invoke. The hedging problem (6.1) in finite discrete
time is first fully worked out by Schweizer [61] with Θ = ΘS given as in (3.6)
even before Li and Ng [45]. Various papers later, e.g. Gugushvili [32], Černý [15],
Melnikov and Nechaev [50], Černý and Kallsen [19] extended the results to more
general spaces of strategies than ΘS. But the explicit structure of the solution for
(6.1) with various spaces Θ remains the same as in [61]. Note that this represents
one end of the spectrum, i.e. a complicated recursive expression of an optimal
strategy for the pure hedging problem (6.1). The other end of the spectrum is
that we also know the explicit results for the pure hedging problem (6.1) from
e.g. Schweizer [61] when the mean–variance tradeoff process is deterministic (This
covers the case considered in Theorem 5.7.) However, there seem to be much fewer
results in the middle. For an attempt in this direction in finite discrete time, we
refer to Černý and Kallsen [16] and Hubelak et al. [36] for results that refine the
general theory by expressing all exogenous coefficients of the solution in closed
form in a Lévy-type setup, and to Kallsen et al. [41] where the authors obtain
semi-explicit results for general affine stochastic volatility models.

This chapter is inspired by the market cloning approach proposed by Ankirch-
ner and Dermoune [5]. A simple Google Scholar search reveals that this approach
seems to remain almost unknown to the community, although it has a continuous-
time extension by Fischer and Livieri [29]. Our results seem to be among the first
attempts to further develop this approach in finite discrete time. Because this
approach has more the flavour of (c), we round off this section with a brief dis-
cussion of some related work there. Andersson and Djehiche [4] first obtain and
use a stochastic maximum principle from McKean–Vlasov control theory to solve
the MVPS problem (in continuous time). In finite discrete time, Pham and Wei
[52] develop a dynamic programming principle (DPP) for McKean–Vlasov con-
trol problems whose controlled process is driven by i.i.d. innovations, and apply
the resulting DPP to solve the MVPS problem in this restricted setup. A similar
result to our work is Basei and Pham [8] whose verification result in Lemma 3.1
is analogous to our Lemma 5.6.



Chapter II

Mean field approach for MVPS –
continuous time

1 Introduction

This chapter studies the mean–variance portfolio selection (MVPS) problem in
continuous time. A mathematical formulation of this problem is as follows. Let
GT (θ) =

∫ T
0
θs dSs be the final wealth of a self-financing strategy trading in

underlying price processes S from initial capital 0. We are interested in the
problem to

maximise E[GT (θ)]− ξVar[GT (θ)] over θ ∈ Θ

for a suitable set Θ of stochastic processes and a risk aversion parameter ξ >
0. We have studied this problem in finite discrete time in Chapter I and now
replace the temporal structure T = {0, . . . , T} by the interval T = [0, T ]; so the
present chapter is a natural sequel to Chapter I. Our main contribution here is to
further develop the market cloning technique originally proposed by Ankirchner
and Dermoune [5] and extended by Fischer and Livieri [29], and to apply that to
solve the MVPS problem in continuous time.

As in finite discrete time, the main idea is to attack the problem by con-
structing an extended market which supports i.i.d. copies of the original finan-
cial market, then solve in that extended market an auxiliary but now standard
stochastic control problem, and finally pass to the limit as the number of copies
goes to infinity, to obtain an optimal strategy for the original MVPS problem.
This approach, due to Ankirchner and Dermoune [5] and Fischer and Livieri [29],
is further extended to continuous time in two aspects. First, we build a basic
framework within which the market cloning technique can be performed for gen-
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eral semimartingales in S2
loc. Second, in this more general framework, we apply

the market cloning technique to study the MVPS problem with a continuous price
process S, hence going beyond the Brownian-driven stochastic differential equa-
tion (SDE) models. In fact, we adopt a top-down approach and do not specify any
dynamics for S. Because the market cloning technique has more the flavour of
McKean–Vlasov-type control problems which often study Brownian-driven SDE
models, this chapter is a nice addition to the current literature.

This chapter is structured as follows. Section 2 consists of results recalled and
adapted from Chapter I for the market, the MVPS problem and the market clon-
ing technique. We first recall the market and the MVPS problem from Chapter I.
Then we recall the construction of an extended market which supports i.i.d. cop-
ies of the original market and the auxiliary problem in that extended market.
We modify the filtration from Chapter I to obtain a filtration G for the extended
market in order to invoke standard results from stochastic calculus in continu-
ous time. The section ends with a version of the martingale optimality principle
(MOP) which is used in Section 4 as a verification tool for solving the auxiliary
problem.

In Section 3, we present a concrete setup where we solve the auxiliary prob-
lem later in Section 4. First we recall from Schweizer [59] a classic framework
for studying the original MVPS problem. Based on the results for shrinkage of
filtrations from Chapter I, we translate this framework into the extended market
with the modified filtration G. This allows us later to study the auxiliary problem
with more general processes than Brownian-driven SDE models.

Section 4 proposes and implements a recipe for the construction of a candidate
for the value process family for the auxiliary problem. This programme is different
from Chapter I because solving a sequence of one-step (conditional) problems is
no longer possible in continuous time. We first make the educated guess that the
value process has the same affine–quadratic structure as in finite discrete time.
Assuming that the underlying price process S is continuous, we then compute the
canonical decomposition for the value process. Using the MOP from Section 2 as a
tool, we heuristically derive from the martingale/supermartingale properties some
differential equations for the coefficients in the affine–quadratic expression for
the value process. While these differential equations can always be solved under
mild assumptions, proving that the guessed affine–quadratic structure satisfies
the martingale/supermartingale properties can at present only be done under the
extra assumption that the mean–variance tradeoff process for the price process S
is deterministic. Assuming this extra condition, we give in the main result of this
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section (Theorem 4.14) an explicit optimal strategy for the auxiliary problem.
In Section 5, we construct an optimal strategy θ̂ for the MVPS problem with

the help of the optimal strategies from Theorem 4.14 for the auxiliary problems,
and we study the convergence behaviour of the latter strategies as the number
of copies go to infinity. We formally take the limit of the expressions for the
optimal strategies from Theorem 4.14 to obtain a formula for θ̂ and show that
the values of these auxiliary problems converge to the time-0 value of the MVPS
criterion of θ̂. Thanks to the verification result from Chapter I, this already
shows the optimality of θ̂ for the MVPS problem. Then we show that the gains
of the optimal strategy for the auxiliary problems converge to the gains of θ̂ as
the number of copies goes to infinity, with a precise rate of convergence. This
extends and improves the corresponding results in Fischer and Livieri [29].

Finally in Section 6, we discuss the connection to other literature in detail.

2 Problem formulation and preliminaries

2.1 MVPS problem in continuous time

In this section, we recall and adapt (in continuous time) the financial market, the
mean–variance portfolio selection (MVPS) problem and the result for existence
and uniqueness of its solution, as developed in Section I.2.1.

Let (Ω,F ,F, P ) be a filtered probability space with a finite time horizon T > 0

and such that F0 is P -trivial. As a standard assumption in continuous time, we
assume that the filtration F = (Ft)t∈[0,T ] satisfies the usual conditions of right-
continuity and P -completeness.

Consider a financial market with d risky assets and 1 riskless asset. All prices
are discounted by the riskless asset and expressed by units of 1. The price of the
riskless asset is given by S0 = (S0

t )t∈[0,T ] ≡ 1, and the discounted prices of the
risky assets are given by an Rd-valued stochastic process S = (St)t∈[0,T ] adapted
to the filtration F.

To mathematically discuss trading activities in this financial market, we as-
sume that S is a semimartingale. A (self-financing) trading strategy is a pair
(v0, θ), where v0 ∈ R is the initial capital and θ is an Rd-valued predictable
process with respect to F such that the wealth process of (v0, θ) is given by

Vt(v0, θ) = v0 +Gt(θ) := v0 +

∫ t

0

θs dSs, t ∈ [0, T ].
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Note that this includes the requirement that θ is S-integrable so that the (real-
valued) stochastic integral process

∫
θ dS is well defined.

Let Θ be a set of processes such that for any v0 ∈ R and θ ∈ Θ, the pair
(v0, θ) is a self-financing strategy. Fix a generic risk aversion constant ξ > 0. We
recall from (I.2.3) an equivalent form of the MVPS problem in continuous time
as to

maximise E[GT (θ)]− ξVar[GT (θ)] over all θ ∈ Θ. (2.1)

Assumption 2.1. Θ satisfies the following properties:
1) GT (Θ) := {GT (θ) : θ ∈ Θ} is a closed subspace of L2, i.e., GT (Θ) is a linear

space and GT (Θ) is closed in L2.
2) The constant payoff 1 is not in the L2-closure of GT (Θ). In view of 1), this

is equivalent to 1 /∈ GT (Θ).

We recall from Theorem I.2.4 the result about the existence and uniqueness of
a solution to the MVPS problem. Note that it holds irrespective of the underlying
temporal structure and hence requires no additional proof.

Theorem 2.2. Suppose that Assumption 2.1 is satisfied. Then the MVPS prob-
lem (2.1) has a maximiser θ̂ ∈ Θ, and the resulting GT (θ̂) is unique.

2.2 An auxiliary problem in continuous time

As in the previous chapter, we are interested in a dynamic description of a max-
imiser θ̂ to the MVPS problem (2.1). To this end, we recall the extended market
and the auxiliary problem discussed in Section I.2.2 and adapt those constructions
accordingly in continuous time.

Fix L ∈ N ∪ {∞}. Following the construction in Section I.2.2, we can con-
struct a probability space (Ω(L),F (L),P(L)) supporting L independent filtrations
(F`,(L))`=1,...,L and processes (S`,(L))`=1,...,L such that each S`,(L) = (S

`,(L)
t )t∈[0,T ] is

adapted to F`,(L) and has the same law as S. For L =∞, we mean by ` = 1, . . . , L

that we consider a sequence indexed by ` ∈ N.
So far, all the ingredients require only formal adjustments of notations from

Chapter I. A first technical issue is brought by the filtration G(L) used in Chapter
I; see (I.2.17). We relabel G(L) there by G̃(L) here, which is given explicitly by

G̃(L)
t := σ

( L⋃
`=1

F `,(L)
t

)
, t ∈ [0, T ]. (2.2)
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To invoke standard results from stochastic calculus in continuous time, we wish to
work with a filtration that satisfies the usual conditions. Although the filtration
F is assumed to have this property, we argue below that the usual conditions are
not automatically carried over to the filtration G̃(L) as long as the underlying
probability space is rich enough.

Lemma 2.3. Suppose that L ∈ N is finite. If there exists F ∈ F0 such that
P [F ] > 0 (and because F0 is P -trivial, this means P [F ] = 1) and F contains a
nonmeasurable set F̃ , then the filtration G̃(L) is not complete.

Proof. We first show that G̃(L)
t is equal to the L-fold product σ-algebra ⊗L`=1Ft

formed by Ft. Indeed, let C be the class of finite intersections of sets in ∪L`=1F
`,(L)
t ;

then clearly G̃(L)
t = σ(C) by (2.2). Recall F `,(L)

t = {π−1
`,L(E) : E ∈ Ft} from

(I.2.14), where π`,L : Ω(L) → Ω is the canonical projection onto the `-th coordin-
ate. We then use

L⋂
`=1

π−1
`,L(E`) = E1 × E2 × · · · × EL, E` ∈ Ft,

to obtain C = {E1 × · · · × EL : E` ∈ Ft, ` = 1, . . . , L}. This then yields by
definition σ(C) = ⊗L`=1Ft and hence the claim.

Now we show that ⊗L`=1F0 is not complete. Without loss of generality, we
assume L = 2. For Λ ⊆ Ω × Ω, we consider Λx := {y ∈ Ω : (x, y) ∈ Λ}. A
standard result from measure theory states that

Λx ∈ F0 for all Λ ∈ ⊗2
`=1F0 = F0 ⊗F0 and x ∈ Ω; (2.3)

see e.g. Salamon [57, Lemma 7.2]. Suppose for a contradiction that F0 ⊗ F0 is
complete. Let N ⊆ Ω be a nonempty P -null set and F̃ a nonmeasurable set
contained in F . Then from N × F̃ ⊆ N × F and P(2)[N × F ] = P [N ]P [F ] = 0

because P(2) is the product measure, we get that N × F̃ ∈ F0 ⊗ F0 due to
the completeness of F0 ⊗ F0. By (2.3) and because F̃ = (N × F̃ )x for any
x ∈ N , we obtain F̃ ∈ F0. But F̃ is nonmeasurable by assumption, and this is
a contradiction. Note that we need P [F ] > 0 because if P [F ] = 0, then F̃ ⊆ F

must be in F0 because F0 if P -complete.

Because of the above result, we work with G(L) — the standard augmented
filtration of G̃(L). To give a precise definition of that, we introduce some notations.
For two classes A,B of sets, we set A∨ B := σ(A,B). For a filtration (Ht)t∈[0,T ],
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we denote its right-continuous version by H+
t :=

⋂
ε>0Ht+ε. The augmented

filtration G(L) of G̃(L) is given by

G(L)
t = (G̃(L)

t ∨N (L))+, (2.4)

where N (L) is the class of P(L)-null sets in the underlying σ-algebra G̃(L)
T . Once

the filtration G(L) is fixed, the rest of this subsection goes completely in parallel to
Chapter I thanks to the general presentation given in Section I.2.2. For conveni-
ence, we recall the necessary notations in order to present the auxiliary problem
(I.2.25). Defined as in (I.2.19), Θ(L) consists of all Rd×L-valued, G(L)-predictable
processes ϑ(L) such that each coordinate ϑ`,(L) satisfies the integrability condition
of Θ. Strategies from Θ(L) are used to make investments in S(L) = (S`,(L))`=1,...,L.
Given ϑ(L) ∈ Θ(L), its (vector) gains process is given by

G`
t(ϑ

(L)) =

∫ t

0

ϑ`,(L)
s dS`,(L)

s , ` = 1, . . . , L, t ∈ [0, T ]. (2.5)

In view of Definition I.2.5, by an L-extended market, we still mean the tuple
(Ω(L),F (L),P(L),G(L),S(L)) and write (P(L),G(L),S(L)) whenever the underlying
probability space is clear from the context. Recall from (I.2.23) and (I.2.24) for
x(L),y(L) in RL the operations

x(L) � y(L) = (x`,(L)y`,(L))`=1,...,L, (x(L))2 = x(L) � x(L), (2.6)

em(x(L)) =
1

L

L∑
`=1

x`,(L), (2.7)

evar(x(L)) = em
(
(x(L))2

)
−
(
em(x(L))

)2
. (2.8)

The auxiliary problem — a standard stochastic control problem — of interest in
the L-extended market is still to

maximise E(L)
[
em
(
GT (ϑ(L))

)
− ξevar

(
GT (ϑ(L))

)]
over ϑ(L) ∈ Θ(L), (2.9)

where E(L) denotes the expectation under the measure P(L) and ξ > 0 as before
is a risk aversion parameter. As we argued in Section I.2.3, the auxiliary problem
(2.9) is a standard stochastic control problem and enjoys a martingale optimality
principle as in Lemma I.2.11 provided that (I.2.10) for aggregation is satisfied.
In contrast to Chapter I, solving (2.9) via a sequence of one-step (conditional)
problems is no longer possible because we have a continuum of time steps in
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continuous time. Instead, we proceed by guessing and deriving conditions on
the value process from the martingale optimality principle, and then construct-
ing candidates for both the value process of the auxiliary problem (2.9) and its
optimal strategy directly based on our guess and derived conditions. Finally, we
use the martingale optimality principle as a tool to verify that our candidates are
the true value process and optimal strategy.

After an optimal strategy ϑ̂(L) to the auxiliary problem (2.9) is obtained, the
programme becomes again parallel to Chapter I. We prefer to give only a high-
level overview here and refer the interested reader to Section I.5.2 for results in
detail. Let us recall from (I.2.26)–(I.2.29) the handy notations

Jmv
T (θ) := GT (θ)− ξ

(
GT (θ)− E[GT (θ)]

)2
, θ ∈ Θ, (2.10)

J
(L)
T (ϑ(L)) := em

(
GT (ϑ(L))

)
− ξevar

(
GT (ϑ(L))

)
, ϑ(L) ∈ Θ(L), (2.11)

respectively. Using (2.10) and (2.11), we can equivalently write the MVPS and
auxiliary problems as to

maximise E[Jmv
T (θ)] over all θ ∈ Θ, (2.12)

maximise E(L)[J
(L)
T (ϑ(L))] over all ϑ(L) ∈ Θ(L), (2.13)

respectively. The idea is to build a link between the MVPS and the auxiliary
problem. As a first step, we construct quantities so that the MVPS criterion
Jmv makes sense in the L-extended market. For this, we can simply define, for
` = 1, . . . , L,

Jmv,`
T (ϑ(L)) := G`

T (ϑ(L))− ξ
(
G`
T (ϑ(L))− E(L)[G`

T (ϑ(L))]
)2
.

Now we recall from (I.2.18) the generic lifting operation for a process X given by
X⊗L = (X`,⊗L)`=1,...,L with

X`,⊗L := X ◦ π`,L, ` = 1, . . . , L. (2.14)

Below we use the notation ω(L) for an sample element of Ω(L) and ω` for the `-th
coordinate of ω(L). For any strategy θ ∈ Θ and L ∈ N, we can always use (2.14)
to “lift” θ to the L-extended market via θ⊗L given by

θ`,⊗L(ω(L)) = (θ ◦ π`,L)(ω(L)) = θ(ω`)
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for ` = 1, . . . , L. It turns out that the resulting gains also satisfy

G`
T (θ⊗L)(ω(L)) =

(
GT (θ) ◦ π`,L

)
(ω(L)) = GT (θ)(ω`). (2.15)

Using this and P = P(L) ◦ π−1
`,L, we then have E[Jmv

T (θ)] = E(L)[Jmv,`
T (ϑ(L),θ)] for

` = 1, . . . , L.
Since θ⊗L lives in the L-extended market, we can of course also evaluate

it against the auxiliary criterion by considering E(L)[J
(L)
T (θ⊗L)]. The key point

here is to observe that the above lifting technique, or more precisely the identity
G`
T (θ⊗L)(ω(L)) = GT (θ)(ω`), produces i.i.d. random variables (G`

T (θ⊗L))`=1,...,L,
where each has the same distribution as GT (θ), so that E(L)[G`

T (θ⊗L)] = E[GT (θ)]

and VarP(L)

[G`
T (θ⊗L)] = Var[GT (θ)] for ` = 1, . . . , L. Thus using some form of a

law of large numbers and the fact that the auxiliary criterion J (L)
T only involves

the empirical averages and variances, we should obtain

E(L)[J
(L)
T (θ⊗L)] −→ E[GT (θ)]− ξVar[GT (θ)] = E[Jmv

T (θ)] as L→∞.

The final piece for the link between the MVPS and the auxiliary problem
comes from the observation that θ⊗L lives in the L-extended market and hence
we have the bound E(L)[J

(L)
T (θ⊗L)] ≤ E(L)[J

(L)
T (ϑ̂(L))] for any L ∈ N with L ≥ 2

by the optimality of ϑ̂(L) for the auxiliary problem. Sending L → ∞ and using
the convergence result in the above display, we obtain

E[Jmv
T (θ)] ≤ lim sup

L→∞
E(L)[J

(L)
T (ϑ̂(L))] for all θ ∈ Θ.

This bound gives a clue to both the construction and verification for an optimal
strategy θ̂ to the MVPS problem. Again from the perspective of the law of
large numbers and the symmetry of the auxiliary problem (2.11), the quantity
E(L)[J

(L)
T (ϑ̂(L))] should converge to a mean–variance expression as L→∞. If we

can construct θ̂ ∈ Θ such that E[Jmv
T (θ̂)] equals that limit, we can already claim

that θ̂ is an optimal strategy to the MVPS problem. To construct such a process
θ̂, we rely on the explicit formula for ϑ̂(L) and formally take limits as L→∞.

2.3 Martingale optimality principle: a verification tool

In this subsection, we present a version of the martingale optimality principle
for the auxiliary problem (2.11) so that it can be used as an abstract tool to
verify that a candidate for the value process of the auxiliary problem is the true
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value process. As we work only with the L-extended market below, we drop the
superscript (L) for ease of notation.

We first recall from (I.2.32)–(I.2.34) some necessary notations to define the
dynamic value process associated to the auxiliary problem (2.11). Fix Θ which
stands for an abstraction of a set of trading strategies in the extended market.
For any [0, T ]-valued G-stopping time τ and ϑ ∈ Θ, recall

Θ(τ,ϑ) = {ϑ̃ ∈ Θ : ϑ̃ = ϑ on J0, τK}, (2.16)

Jτ (ϑ̃) = E
[
em
(
GT (ϑ̃)

)
− ξevar

(
GT (ϑ̃)

)∣∣Gτ], (2.17)

Vτ (ϑ) = ess sup
{
Jτ (ϑ̃) : ϑ̃ ∈ Θ(τ,ϑ)

}
. (2.18)

Note that GT (ϑ) does not depend on ϑ0, and hence neither do Jτ (ϑ) nor Vτ (ϑ).
The verification result that we use to solve the auxiliary problem (2.9) is the
version below of a martingale optimality principle.

Lemma 2.4. Suppose that (Ṽ (ϑ))ϑ∈Θ is a family of processes with the following
properties:

1) For any ϑ ∈ Θ, we have ṼT (ϑ) = JT (ϑ) and Ṽt(ϑ) = Ṽt(ϑ̃) whenever
ϑ̃ ∈ Θ(t,ϑ); so Ṽ0(ϑ) is independent of ϑ. This common value is denoted by Ṽ0.

2) For any ϑ ∈ Θ, the process (Ṽt(ϑ))t∈[0,T ] is a G-supermartingale.
3) There is ϑ∗ ∈ Θ such that the process (Ṽt(ϑ

∗))t∈[0,T ] is a G-martingale.

Then ϑ∗ is optimal for the auxiliary problem (2.9). In particular, Ṽt(ϑ∗) = Vt(ϑ
∗)

for each t ∈ [0, T ], and Ṽ0 = V0.

Proof. First, let us note from (2.18) or recall from (I.2.36) that

VT (ϑ) = JT (ϑ) for all ϑ ∈ Θ. (2.19)

Moreover, 1) gives

ṼT (ϑ) = JT (ϑ) = VT (ϑ) for all ϑ ∈ Θ. (2.20)

Let ϑ ∈ Θ. By (2.20) and the supermartingale property of Ṽ (ϑ) from 2), we get

E[JT (ϑ)] = E[ṼT (ϑ)] ≤ E[Ṽ0(ϑ)] = Ṽ0.

This inequality holds for all ϑ ∈ Θ, with equality attained at ϑ∗ ∈ Θ because of
3). So we take the supremum above over ϑ ∈ Θ and use the martingale property
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of Ṽ (ϑ∗) in 3) and ṼT (ϑ∗) = JT (ϑ∗) in 1) to obtain

sup
ϑ∈Θ

E[JT (ϑ)] = sup
ϑ∈Θ

E[ṼT (ϑ)] = Ṽ0 = E[ṼT (ϑ∗)] = E[JT (ϑ∗)].

This shows that ϑ∗ is optimal. For the last statement, observe that Ṽ (ϑ∗) and
V (ϑ∗) are G-martingales due to 3) and Lemma I.2.11, respectively. They share
the same terminal value JT (ϑ∗) by (2.20). Taking conditional expectations with
respect to Gt for t ∈ [0, T ] yields the claim.

3 The auxiliary problem in continuous time

In this section, we elaborate on the auxiliary problem (2.9) to

maximise E
[
em
(
GT (ϑ)

)
− ξevar

(
GT (ϑ)

)]
over all ϑ ∈ Θ

in continuous time. Throughout this section, L ∈ N with L ≥ 2 is fixed. We
present below a concrete setup where we can ultimately solve (2.9) in the next
section.

3.1 A concrete setup in continuous time

To give concrete results for the MVPS problem (2.1) in continuous time, we
present a continuous-time framework analogous to the one in Chapter I. This
setup was first introduced in Schweizer [59]. We first present this in detail and
choose a space Θ of strategies. Then we collect some basic properties of Θ and
show that it is indeed a good choice for studying (2.1) in the sense that Θ satisfies
Assumption 2.1 under which the existence and uniqueness result in Theorem 2.2
for the MVPS problem holds. All this is on (Ω,F ,F, P ).

Let S2 be the space of Rd-valued semimartingales admitting a special se-
mimartingale decomposition X = X0 + MX + AX , where MX ∈ M2

0,loc is a
square-integrable martingale and AX is a predictable process of square-integrable
variation, both null at 0. Denote by S2

loc the localised class of S2.
To make a specific choice of Θ, we consider

ΘS :=

{
θ = (θt)t∈[0,T ] : θ is Rd-valued, F-predictable,

S-integrable and G(θ) =

∫
θ dS ∈ S2

}
. (3.1)
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Assumption 3.1. S is an Rd-valued semimartingale in S2
loc.

The continuous-time analogue of the structure condition in Assumption I.3.4
needs a bit more preparation. Using Assumption 3.1, we write

Si − Si0 = (MS)i + (AS)i =: M i + Ai

for i = 1, . . . , d for the canonical decomposition of Si with respect to the filtra-
tion F, and we use the abbreviation to M i, Ai for ease of notation whenever the
reference process is clear from the context. Thanks to Assumption 3.1 and in
particular because M i are locally square-integrable local martingales, the angle
brackets 〈M i〉 of M i exist for i = 1, . . . , d; see e.g. Jacod and Shiryaev [37, The-
orem I.4.2].

Assumption 3.2. For i = 1, . . . , d, we have Ai � 〈M i〉 with predictable density
αi = (αit)0≤t≤T .

Fix an increasing predictable RCLL process B = (Bt)t∈[0,T ] with 〈M i〉 � B

for i = 1, . . . , d, e.g. B =
∑d

i=1〈M i〉. By the Kunita-Watanabe inequality, this
implies 〈M i,M j〉 � B for i, j = 1, . . . , d. Define predictable processes σ and γ
by

σijt =
d〈M i,M j〉t

dBt

, i, j = 1, . . . , d, t ∈ [0, T ], (3.2)

γit = αitσ
ii
t =

dAit
dBt

, i = 1, . . . , d, t ∈ [0, T ]. (3.3)

Definition 3.3. We say that S satisfies the structure condition (SC) if Assump-
tions 3.1 and 3.2 are satisfied and there exists a predictable Rd-valued process
λ = (λt)t∈[0,T ] such that

σtλt = γt P -a.s. for all t ∈ [0, T ] (3.4)

and

KT :=

∫ T

0

λ>s γs dBs =

∫ T

0

(λs)
>σsλs dBs <∞, (3.5)

where σ and γ are defined in (3.2) and (3.3), respectively. We then call the
increasing (and finite-valued) process K :=

∫
λ>γ dB =

∫
λ>σλ dB the mean–

variance tradeoff (MVT) process of S.

We can equivalently describe ΘS given in (3.1) via some integrability condi-
tions, which are easier to verify.



118 II Mean field approach for MVPS – continuous time

Definition 3.4. The space L2
(loc)(M) consists of all Rd-valued F-predictable pro-

cesses θ such that the integral process
∫
θ>σθ dB is (locally) integrable. The

space L2
(loc)(A) consists of all Rd-valued F-predictable processes θ such that the

integral process
∫
|θ>γ| dB is (locally) square-integrable.

We use the following observations made in Schweizer [59].

Lemma 3.5. Suppose that Assumptions 3.1 and 3.2 are satisfied. Then the fol-
lowing statements hold:

1) If θ ∈ L2
(loc)(M), then the stochastic integral

∫
θ dM is well defined, in

M2
0(,loc), and for ψ ∈ L2

(loc)(M),

〈∫
θ dM,

∫
ψ dM

〉
t

=

∫ t

0

θ>s σsψs dBs, t ∈ [0, T ]. (3.6)

In particular, if θ ∈ L2(M), then

E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

θs dMs

∣∣∣∣2] ≤ 4E

[(∫ T

0

θs dMs

)2]
= 4E

[ ∫ t

0

θ>s σsθs dBs

]
. (3.7)

2) If θ ∈ L2
(loc)(A), then the process

∫
θ> dA :=

∑d
i=1

∫
θi dAi is well defined as

a Lebesgue–Stieltjes integral, (locally) square-integrable, predictable and satisfies∫ t

0

θ>s dAs =

∫ t

0

θ>s γs dBs, t ∈ [0, T ]. (3.8)

Proof. 1) The statement that the stochastic integral
∫
θ dM is well defined and in

M2
0(,loc) for θ ∈ L2

(loc)(M) is standard and can be found in Jacod and Shiryaev [37,
Section I.4]. The equality (3.6) follows from Itô’s isometry, see e.g. [37, (I.4.6)],
and (3.2). Because

∫
θ dM ∈M2

0 for θ ∈ L2(M), we can apply Doob’s inequality
(see [37, I.1.43]) to obtain the first inequality in (3.7). Using Itô’s isometry and
inserting (3.6) into (3.7) yields the second equality in (3.7).

2) The statement that the process
∫
θ> dA is a well-defined Lebesgue-Stieltjes

integral and (locally) square-integrable and predictable is again standard. The
equality (3.8) follows from the definition that

∫
θ> dA =

∑d
i=1

∫
θi dAi and (3.3).

Lemma 3.6. If Assumptions 3.1 and 3.2 are satisfied, then

ΘS = L2(M) ∩ L2(A). (3.9)
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If in addition S satisfies (SC) and the MVT process is bounded, then ΘS = L2(M).

Proof. See Schweizer [59, Lemma 2]. Note that because K is increasing, it is
bounded if and only if KT is.

Assumption 3.7. S satisfies the structure condition (SC) given in Definition 3.3.

We end this section with the result that the space ΘS satisfies the premises
of the existence and uniqueness result in Theorem 2.2, which is analogous to
Lemma I.3.6 in the discrete time case.

Lemma 3.8. Suppose that Assumption 3.7 is satisfied. If the MVT process K is
bounded, then ΘS satisfies Assumption 2.1.

Proof. For Assumption 2.1, 1) that the space GT (ΘS) is closed in L2, we refer to
Monat and Stricker [51, Theorem 4.1].

For Assumption 2.1, 2) that the constant payoff 1 is not in GT (ΘS), the idea
is similar to the proof of Lemma I.3.6 in discrete time. Again, we recall that a
signed GT (ΘS)-martingale measure is a signed measure Q such that Q[Ω] = 1,
Q� P with dQ

dP
∈ L2 and

E

[
dQ

dP
g

]
= 0 for all g ∈ GT (ΘS), (3.10)

and we call Q the set of all signed GT (ΘS)-martingale measures. Looking at
the proof of Lemma I.3.6, we see that we only need to show Q 6= ∅. For that,
we consider Z = E(−

∫
λ dM), where λ is given in (3.4), and claim that Q

defined by dQ
dP

= ZT is in Q under the assumption that the MVT process K
is bounded. The proof of the last claim can be found below Corollary 16 in
Schweizer [59]. We nevertheless give a proof here for completeness. Because KT

is bounded, Théorème II.2 of Lepingle and Mémin [44] shows that Z is a square-
integrable martingale. This gives Q[Ω] = E[ZT ] = 1 and dQ

dP
= ZT ∈ L2 and

hence establishes the first two properties in the definition of a GT (ΘS)-martingale
measure. It is left to check (3.10). To this end, we use the product formula, then
dZ = −Z−λ dM from the definition of Z and finally (3.6), (3.8) and (3.4) to get
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〈Z,
∫
θ dM〉 = −〈

∫
Z−λ dM,

∫
θ dM〉 = −

∫
Z−θ

> dA and

ZG(θ) =

∫
Z−θ dS +

∫
G−(θ) dZ +

[
Z,

∫
θ dM

]
+

[
Z,

∫
θ> dA

]
=

∫
Z−θ dS +

〈
Z,

∫
θ dM

〉
+

∫
G−(θ) dZ

+

[
Z,

∫
θ dM

]
−
〈
Z,

∫
θ dM

〉
+

[
Z,

∫
θ> dA

]
=

∫
Z−θ dM +

∫
G−(θ) dZ

+

[
Z,

∫
θ dM

]
−
〈
Z,

∫
θ dM

〉
+

[
Z,

∫
θ> dA

]
.

Because the first term can be written as
∫
Z− d(

∫
θ dM) and

∫
θ dM is a local

martingale due to θ ∈ ΘS ⊆ L2(M) by Lemma 3.6, the first two terms are
both stochastic integrals of a locally bounded integrand with respect to a local
martingale and thus are local martingales themselves. The difference of the third
and fourth terms is a local martingale by the definition of the angle bracket.
Yoeurp’s lemma (see Dellacherie and Meyer [25, Theorem VII.36]) implies that the
last term is a local martingale. Therefore ZG(θ) is inM0,loc for any θ ∈ ΘS. Next
we claim that E[supt∈[0,T ] |ZtGt(θ)|2] <∞, which readily shows that ZG(θ) ∈M2

0

and hence yields (3.10) as ZT = dQ
dP

. For proving that claim, we apply the Cauchy–
Schwarz inequality to get(

E
[

sup
t∈[0,T ]

|ZtGt(θ)|
])2

≤ E
[

sup
t∈[0,T ]

|Zt|2
]
E
[

sup
t∈[0,T ]

|Gt(θ)|2
]
.

Due to Z ∈ M2 and Doob’s inequality, we get E[supt∈[0,T ] |Zt|2] ≤ 4E[Z2
T ] < ∞

and thus only need to show E[supt∈[0,T ] |Gt(θ)|2] < ∞. Using Cauchy–Schwarz,
then (3.7) and (3.8) and that B is increasing, and finally (3.9) from Lemma 3.6
and Definition 3.4, we obtain

E
[

sup
t∈[0,T ]

|Gt(θ)|2
]
≤ 2E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

θs dMs

∣∣∣∣2]+ 2E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

θ>s dAs

∣∣∣∣2]
≤ 8E

[ ∫ T

0

θ>s σsθs dBs

]
+ 2E

[∣∣∣∣ ∫ T

0

|θ>s γs| dBs

∣∣∣∣2]
<∞.

This completes the proof.
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3.2 A concrete setup for the auxiliary problem

The previous subsection sets up a good framework for studying the MVPS prob-
lem (2.1) in continuous time. In this subsection, we provide a suitable setup for
studying the auxiliary problem (2.9). First, we specify a space of strategies in
the extended market similarly to ΘS. Then we study how the structure condition
(SC) for the process S from Assumption 3.7 and Definition 3.3 as well as various
other quantities translate into the extended market with respect to the filtration
G(L).

We start by recalling from Section I.2.2 some basic components of the exten-
ded market. Fix L ∈ N. The underlying probability space (Ω(L),F (L),P(L)) is
obtained by taking the L-fold product of the original probability space (Ω,F , P ).
Indeed, Ω(L) =

∏L
`=1 Ω is the Cartesian product of Ω, the σ-algebra F (L) is gen-

erated by all finite rectangles with F -measurable sides, and the measure P(L) is
the standard L-fold product measure of P . More importantly, we construct from
the filtration F a family (F`,(L))`=1,...,L of filtrations via

F `,(L)
t := {π−1

`,L(E) : E ∈ Ft}, ` = 1, . . . , L, t ∈ [0, T ], (3.11)

where π`,L : Ω(L) → Ω is the canonical projection of Ω(L) onto its `-th coordinate.
The process S(L) is defined by

S
`,(L)
t := St ◦ π`,L = S`,⊗L, ` = 1, . . . , L, t ∈ [0, T ]. (3.12)

The last equality uses the lifting operation introduced in (2.14). Because P(L) is
the product measure (or see (I.2.15)), we get that

the σ-algebras (F `,(L)
t )`=1,...,L are P(L)-independent for any t ∈ [0, T ]. (3.13)

From (3.11) and (3.12), we immediately see that each S`,(L) is F`,(L)-adapted, and
thus S(L) satisfies that

(S`,(L))`=1,...,L are P(L)-independent and each has the same law as S. (3.14)

Finally, we recall from (2.2) that the filtration G̃(L) is given by

G̃(L)
t := σ

( L⋃
`=1

F `,(L)
t

)
, t ∈ [0, T ], (3.15)
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and G(L) is the augmented filtration of G̃(L) defined in (2.4) and given explicitly
by

G(L)
t = (G̃(L)

t ∨N (L))+, t ∈ [0, T ]. (3.16)

In the rest of this subsection, we drop the superscript (L) as usual.
We turn to give a suitable setup for studying the auxiliary problem. Let us

first specify a space of strategies in the extended market. In analogy to ΘS given
in (3.1), we define

ΘS := {ϑ = (ϑ`)`=1,...,L :ϑ` is Rd-valued, G-predictable, S-integrable and

G`(ϑ) ∈ S2 for ` = 1, . . . , L}. (3.17)

Because each S` is an independent copy of S under the measure P from (3.14),
we expect that Assumption 3.7 implies that S` satisfies (SC) with respect to
the filtration G for ` = 1, . . . , L. However, this is not immediate because G
is larger than F`. To argue in detail, we need to collect some results on how
semimartingale and martingale properties change from F` to G and vice versa.
We cite the following result from Aksamit and Jeanblanc [3, Proposition 1.12].

Lemma 3.9. If H and I are two right-continuous filtrations such that HT and
IT are independent, then the filtration (σ(Ht, It))t∈[0,T ] is also right-continuous.

Recall from (3.16) that G is the augmented filtration of the filtration G̃ and is
given by Gt = (G̃t∨N )+ for t ∈ [0, T ]. A standard result from measure theory (see
e.g. Kallenberg [40, Lemma 9.8]) further gives Gt = G̃+

t ∨N . Because (F`)`=1,...,L

are right-continuous like F and (F `T )`=1,...,L are independent from (3.13), we apply
Lemma 3.9 to obtain

Gt = G̃t ∨N , t ∈ [0, T ]. (3.18)

Lemma 3.10. The sigma-algebras F1
t ,F2

t , . . . ,FLt , σ(N ) are P-independent for
t ∈ [0, T ].

Proof. Let F ` ∈ F `t for ` = 1, . . . , L and N ∈ N . Consider the class D of sets D
such that we have the identity

P[F 1 ∩ F 2 ∩ · · · ∩ FL ∩D] = P[F 1]P[F 2] · · ·P[FL]P[D].

We claim σ(N ) ⊆ D. Note that this already implies that the sigma-algebras
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F1
t ,F2

t , . . . ,FLt , σ(N ) are independent. Because (∩L`=1F
`) ∩N ⊆ N , we have

P

[( L⋂
`=1

F `

)
∩N

]
= 0 = P[F 1]P[F 2] · · ·P[FL]P[N ]

and hence N ⊆ D. Obviously N is a π-system and D is a Dynkin system. From
Dynkin’s lemma, we conclude that σ(N ) ⊆ D. This completes the proof.

Recall from (I.2.42) the identity

E[X|σ(A,B)] = E[X|A] (3.19)

whenever X is independent of B. We first summarise and translate the results in
Lemmas I.2.13–I.2.15 using the current notation.

Lemma 3.11. 1) Any F`-martingale is a G̃-martingale.
2) If X` and Xm are F` and Fm-martingales, respectively, then the product

process X`Xm is a G̃-martingale.

Next, we show that the above results can be extended to local martingales.

Lemma 3.12. Any local G̃-martingale is a local G-martingale, and any local
F`-martingale is a local G-martingale for ` = 1, . . . , L.

Proof. Let X be a local G̃-martingale. The path property of X is not affected by
a change of filtration. We take a G̃-localising sequence (τn)n∈N for X, meaning
that (τn)n∈N is a sequence of G̃-stopping times such that Xτn is a G̃-martingale for
n ∈ N (i.e., both with respect to the filtration G̃). Because G̃t ⊆ Gt for t ∈ N, we
get that each τn is still a stopping time in the larger filtration G, and the stopped
process Xτn is still adapted to G. Now we check the martingale property for Xτn

with respect to the filtration G. Let s ∈ [0, t]. Because each Xτn is adapted to G̃,
we get by Lemma 3.10 that Xτn

t is independent of N for all t ∈ [0, T ]. So we can
use (3.18) and (3.19) with (A,B) = (G̃s,N ) and finally the martingale property
of Xτn with respect to G̃ to obtain

E[Xτn
t |Gs] = E[Xτn

t |σ(G̃s,N )] = E[Xτn
t |G̃s] = Xτn

s .

Combining the same localisation argument with Lemma 3.11, 1) yields that any
local F`-martingale is a local G̃-martingale. So the second statement follows from
the first.
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Lemma 3.13. Suppose that Assumption 3.1 is satisfied. Then the following state-
ments hold:

1) For each ` = 1, . . . , L, the special semimartingale decomposition of S` in
the filtration G is the same as in the filtration F` given in (3.11).

2) For `,m = 1, . . . , L with ` 6= m and i, j = 1, . . . , d, the processes M`,i and
Mm,j are strongly orthogonal, meaning that 〈M`,i,Mm,j〉 = 0, in the filtration G.

Proof. 1) In view of Lemma 3.12, the proof of part 1) is the same as in discrete
time. We start with the canonical decomposition of S` = S0 + MF` + AF` in the
filtration F`. Because MF` is still a local martingale in the filtration G and AF`

is still predictable in G, we get by the uniqueness of the canonical decomposition
that S` = S0 + MF` + AF` is the canonical decomposition of S` in the filtration
G.

2) We claim that the product M`,iMm,j is a local martingale in G. This
then yields the assertion by the definition of the angle bracket. We first use
part 1) and Assumption 3.1 to view M`,i and Mm,j as elements in M2

0,loc(F`)
and M2

0,loc(Fm), respectively. Thus we may choose localising sequences (τn)n∈N

and (σn)n∈N (in the filtrations F` and Fm, respectively) such that for n ∈ N, the
stopped processes (M`,i)τn and (Mm,j)σn are in M2

0(F`) and M2
0(Fm), respect-

ively, and hence are still independent. So we can apply Lemma 3.11 to obtain
that the product (M`,i)τn(Mm,j)σn is a martingale in the filtration G̃, and then
so is the process (M`,iMm,j)τn∧σn = ((M`,i)τn(Mm,j)σn)τn∧σn . Here we use that
(τn ∧σn)n∈N is a sequence of stopping times in the filtration G̃. Indeed, using the
definitions of τn and σn and (3.15), we get

{τn ∧ σn ≤ t} = {τn ≤ t} ∪ {σn ≤ t} ∈ σ(F `t ,Fmt ) ⊆ G̃t, t ∈ [0, T ].

This shows that τn∧σn is indeed a stopping time with respect to G̃ and hence the
process M`,iMm,j is a local martingale in the filtration G̃. Finally by Lemma 3.12,
the process M`,iMm,j is a local martingale in the filtration G, as desired.

Corollary 3.14. Suppose that Assumption 3.7 is satisfied. Then S` satisfies the
structure condition (SC) with respect to the filtration G for ` = 1, . . . , L, meaning
that:

1) S` is an Rd-valued G-semimartingale in S2
loc for ` = 1, . . . , L.

2) For i = 1, . . . , d and ` = 1, . . . , L, we have A`,i � 〈M`,i〉 with a G-pred-
ictable density α`,i.
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3) For B` =
∑d

i=1〈M`,i〉 and

σ`,ij =
d〈M`,i,M`,j〉

dB`
, i, j = 1, . . . , d, ` = 1, . . . , L, (3.20)

γ`,i = α`,iσ`,ii =
dA`,i

dB`
, i = 1, . . . , d, ` = 1, . . . , L, (3.21)

there exist G-predictable Rd-valued processes λ` such that

σ`tλ
`
t = γ`t P-a.s. for all t ∈ [0, T ], (3.22)

K`
T :=

∫ t

0

(λ`s)
>γ`s dB`

s =

∫ t

0

(λ`s)
>σ`sλ

`
s dB`

s <∞ P-a.s. (3.23)

Moreover, the key quantities in the structure condition can be constructed expli-
citly by

X`(ω(L)) = X(ω`), ` = 1, . . . , L, (3.24)

for X ∈ {M,A, 〈M〉,α,B,σ,γ,λ,K} and X ∈ {M,A, 〈M〉, α, B, σ, γ, λ,K}.

Proof. Due to S`(ω(L)) = S(ω`) from (3.12) and the relation (3.11) between F and
F`, we immediately see that S` satisfies the structure condition (SC) in the filtra-
tion F` for ` = 1, . . . , L. For X ∈ {MF` ,AF` , 〈MF`〉,αF` ,BF` ,σF` ,γF` ,λF` ,KF`},
which denote the key quantities describing (SC) for S` with respect to the filtra-
tion F`, and for X ∈ {M,A, 〈M〉, α, B, σ, γ, λ,K}, we have

X`(ω(L)) = X(ω`), ` = 1, . . . , L (3.25)

This then yields that S` satisfies the structure condition (SC) in the filtration G.
Indeed, because of the fact from Lemma 3.13, 1) that the special semimartingale
decomposition of S` in the filtration G is the same as in the filtration F`, we
obtain (M`,A`) = (MF` ,AF`). This also establishes 1).

For 2), due to the uniqueness characterisation of the angle bracket, we obtain
〈M`〉 = 〈MF`〉. For i = 1, . . . , d, we can choose α`,i = αF`,i because αF`,i is also
G-predictable and satisfies

A`,i = AF`,i =

∫
αF`,i d〈MF`,i〉 =

∫
αF`,i d〈M`,i〉.

So far we have proved that

(M`,A`, 〈M`〉,α`) = (MF` ,AF` , 〈MF`〉,αF`).
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Using this identity and the definitions of B,σ,γ in 3) yields

(B`,σ`,γ`) = (BF` ,σF` ,γF`).

Because λF` is also G-predictable, we can choose λ` = λF` so that the require-
ments (3.22) and (3.23) are satisfied. In summary, we obtain that

(M`,A`, 〈M`〉,α`,B`,σ`,γ`,λ`,K`)

= (MF` ,AF` , 〈MF`〉,αF` ,BF` ,σF` ,γF` ,λF` ,KF`).

Combining the above display with (3.25) yields (3.24).

Definition 3.4 about L2
(loc)(M) and L2

(loc)(A) corresponds to the following defin-
ition.

Definition 3.15. The space L2
(loc)(M) consists of all Rd×L-valued G-predictable

processes (ϑ`)`=1,...,L such that the process
∫

(ϑ`)>σ`ϑ` dB` is (locally) integrable
for ` = 1, . . . , L. The space L2

(loc)(A) consists of all Rd×L-valued G-predictable
processes (ϑ`)`=1,...,L such that the process

∫
|(ϑ`)>γ`| dB` is (locally) square-

integrable for ` = 1, . . . , L.

Comparing (3.17) with (3.1), we obtain the following results corresponding to
Lemmas 3.5 and 3.6, respectively.

Lemma 3.16. Suppose that Assumption 3.7 is satisfied. Then the following state-
ments hold:

1) If ϑ ∈ L2
(loc)(M), then the stochastic integral

∫
ϑ` dM` is well defined, in

M2
0(,loc) for ` = 1, . . . , L, and satisfies for ψ ∈ L2

(loc)(M) that

〈∫
ϑ` dM`,

∫
ψ` dM`

〉
t

=

∫ t

0

(ϑ`s)
>σ`sψ

`
s dB`

s, t ∈ [0, T ], ` = 1, . . . , L.

(3.26)
In particular, if ϑ ∈ L2(M), then

E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

ϑ`s dM`
s

∣∣∣∣2] ≤ 4E

[ ∫ t

0

(ϑ`s)
>σ`sϑ

`
s dB`

s

]
, ` = 1, . . . , L. (3.27)

2) If ϑ ∈ L2
(loc)(A), then the process

∫
(ϑ`)> dA` :=

∑d
i=1

∫ t
0
ϑ`,is dA`,i

s is
well defined as a Lebesgue–Stieltjes integral for ` = 1, . . . , L, (locally) square-
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integrable, predictable and satisfies∫ t

0

(ϑ`s)
> dA`

s =

∫ t

0

(ϑ`s)
>γ`s dB`

s, t ∈ [0, T ], ` = 1, . . . , L. (3.28)

Lemma 3.17. Suppose that Assumption 3.7 is satisfied. Then

ΘS = L2(M) ∩ L2(A), (3.29)

and E[sups∈[0,t] |G`
s(ϑ)|2] < ∞ for ϑ ∈ ΘS and ` = 1, . . . , L. If in addition the

MVT process K is bounded, then

ΘS = L2(M).

Proof. The property E[sups∈[0,t] |G`
s(ϑ)|2] < ∞ follows from the same argument

as for E[sups∈[0,t] |Gt(θ)|2] < ∞ for θ ∈ ΘS in the last part of the proof of
Lemma 3.8.

4 Construction of a value process in dimension 1

In this section, we construct a candidate (Ṽ (ϑ))ϑ∈ΘS
for the value process family

for the auxiliary problem (2.9). The main idea is to use Lemma 2.4 as follows.

Recipe 4.1. 1) From the discrete-time result (I.4.72), we first make the educated
guess that Ṽ has the same affine–quadratic form in continuous time. We then
apply Itô’s lemma to find the canonical decomposition of Ṽ (ϑ) for ϑ ∈ ΘS.

2) If we want to apply Lemma 2.4, then each Ṽ (ϑ) should satisfy certain
supermartingale or martingale properties. Using heuristic arguments, we derive
from these desired supermartingale/martingale properties some differential equa-
tions for the coefficients in the affine–quadratic expression of Ṽ .

3) Finally, we solve those differential equations explicitly, possibly with addi-
tional assumptions, and we verify that the resulting candidate family (Ṽ (ϑ))ϑ∈ΘS

indeed satisfies the supermartingale/martingale conditions in Lemma 2.4.

Before we embark on the above programme, let us restrict ourselves to
d = 1 so that the notations are simpler. To avoid the technical difficulties brought
by processes having jumps, we only consider the case where the process S is
continuous. For convenience, let us state this additional assumption together
with Assumption 3.7. We can omit Assumption 3.1 because S is locally bounded
by continuity and hence in S2

loc.



128 II Mean field approach for MVPS – continuous time

Assumption 4.2. The process S is a real-valued continuous semimartingale
satisfying the structure condition (SC).

4.1 Implementing Recipe 4.1, 1) – canonical decomposition

of the value process

In this subsection, we implement Recipe 4.1, 1). We first recall several notations
in the extended market from (2.5)–(2.8), namely

G`
t(ϑ) =

∫ t

0

ϑ`s dS`s, ` = 1, . . . , L, (4.1)

x� y =
L∑
`=1

x`y`, x2 = x� x,

em(x) =
1

L

L∑
`=1

x`, (4.2)

evar(x) = em(x2)−
(
em(x)

)2
. (4.3)

Inspired by the discrete-time formula (I.4.72), we guess and here assume that Ṽ
takes the form

Ṽt(ϑ) = atem
(
Gt(ϑ)

)
− btevar

(
Gt(ϑ)

)
+ ct, t ∈ [0, T ],

where the processes a = (at)t∈[0,T ], b = (bt)t∈[0,T ], c = (ct)t∈[0,T ]

are adapted, continuous and of finite variation. (4.4)

As in Lemma 2.4, we also assume that ṼT (ϑ) = JT (ϑ) for all ϑ ∈ ΘS. So from
(2.20) and (2.17), we have

ṼT (ϑ) = JT (ϑ) = em
(
GT (ϑ)

)
− ξevar

(
GT (ϑ)

)
, ϑ ∈ ΘS.

Comparing the last expression with (4.4), we obtain for the processes a, b, c the
terminal conditions

aT = 1, bT = ξ, cT = 0. (4.5)

With d = 1, the processes S` and M`, A` from the canonical decomposition of
S` in the filtration G,

S` = S0 + M` + A`, (4.6)
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are all 1-dimensional for ` = 1, . . . , L. The quantities describing (SC) are simpli-
fied as follows. Setting B` = 〈M`〉, we get from the expressions (3.20) for σ` and
(3.21) for γ` that for ` = 1, . . . , L,

σ`t =
d〈M`〉t
d〈M`〉t

= 1, γ`t = α`tσ
`
t = α`t P-a.s. for all t ∈ [0, T ]. (4.7)

Hence (3.22) for λ` yields λ` = α` for ` = 1, . . . , L. We obtain from this and
(3.23) for K` that

A`
t =

∫ t

0

λ`s d〈M`〉s P-a.s. for all t ∈ [0, T ], ` = 1, . . . , L, (4.8)

K`
t =

∫ t

0

(λ`s)
2 d〈M`〉s P-a.s. for all t ∈ [0, T ], ` = 1, . . . , L. (4.9)

Lemma 4.3. Suppose that Assumption 4.2 is satisfied and assume (4.4). Then
for ϑ ∈ ΘS, the canonical decomposition of Ṽ (ϑ) in the filtration G is

Ṽt(ϑ)

= Ṽ0 + M̃t(ϑ) +
1

L

∫ t

0

as

L∑
`=1

ϑ`sλ
`
s d〈M`〉s

− 1

L

L∑
`=1

∫ t

0

bs

(
2
(
G`
s(ϑ)− em

(
Gs(ϑ)

))
ϑ`sλ

`
s + (1− L−1)(ϑ`s)

2

)
d〈M`〉s

+

∫ t

0

em
(
Gs(ϑ)

)
das −

∫ t

0

evar
(
Gs(ϑ)

)
dbs + ct, t ∈ [0, T ], (4.10)

where (M̃t(ϑ))t∈[0,T ] is a continuous local martingale in G.

Proof. The proof is mainly to apply Itô’s lemma to (4.4) in the filtration G. Let
ϑ ∈ ΘS and note that (4.4) implies that Ṽ (ϑ) is continuous. Using (4.1) and
(4.3), we get

d
(

em
(
G(ϑ)

))
=

1

L

L∑
`=1

ϑ` dS`. (4.11)

We then use the product formula with (4.1) and (4.6) with the continuity of S`
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for ` = 1, . . . , L from Assumption 4.2 to obtain

d
(

em
(
G(ϑ)2

))
=

1

L

L∑
`=1

(
2G`
−(ϑ) dG`(ϑ) + d[G`(ϑ)]

)
=

1

L

L∑
`=1

(
2G`(ϑ)ϑ` dS` + (ϑ`)2 d〈M`〉

)
. (4.12)

Applying the product formula again with the continuity of S` and then using
(4.11), we also obtain

d

((
em
(
G(ϑ)

))2
)

= 2em
(
G(ϑ)

)
d
(

em
(
G(ϑ)

))
+ d
[
em
(
G(ϑ)

)]
=

1

L

L∑
`=1

2em
(
G(ϑ)

)
ϑ` dS` +

1

L2

L∑
`,m=1

ϑ`ϑm d[S`,Sm]

=
1

L

L∑
`=1

2em
(
G(ϑ)

)
ϑ` dS` +

1

L2

L∑
`=1

(ϑ`)2 d〈M`〉. (4.13)

The last line of (4.13) uses (4.6) and 〈M`,Mm〉 = 0 for ` 6= m by Lemma 3.13,
2). Now combining (4.12) and (4.13) with the definition (4.3) of evar(x) yields

d
(

evar
(
G(ϑ)

))
= d
(

em
(
G(ϑ)2

))
− d

((
em
(
G(ϑ)

))2
)

=
1

L

L∑
`=1

(
2
(
G`(ϑ)− em

(
G(ϑ)

))
ϑ` dS`

+ (1− L−1)(ϑ`)2 d〈M`〉
)
. (4.14)

Then we apply the product formula to (4.4) and use the continuity of S` and that
the processes a, b and c are of finite variation to obtain

〈
a, em

(
G(ϑ)

)〉
=
〈
b, evar

(
G(ϑ)

)〉
= 0.

Using the above identity and d(em(G(ϑ))), d(evar(G(ϑ))) from (4.11) and (4.14),
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respectively and finally A` =
∫
λ` d〈M`〉 from (4.8) yields

dṼ (ϑ) = a d
(

em
(
G(ϑ)

))
+ em

(
G(ϑ)

)
da− b d

(
evar

(
G(ϑ)

))
− evar

(
G(ϑ)

)
db+ dc

=
1

L

L∑
`=1

aϑ` dS` + em
(
G(ϑ)

)
da

− 1

L

L∑
`=1

(
2b
(
G`(ϑ)− em

(
G(ϑ)

))
ϑ` dS` + b(1− L−1)(ϑ`)2 d〈M`〉

)
− evar

(
G(ϑ)

)
db+ dc

=
1

L

L∑
`=1

aϑ` dM` − 1

L

L∑
`=1

2b
(
G`(ϑ)− em

(
G(ϑ)

))
ϑ` dM`

+
1

L

L∑
`=1

aϑ`λ` d〈M`〉+ em
(
G(ϑ)

)
da

− 1

L

L∑
`=1

b

(
2
(
G`(ϑ)− em

(
G(ϑ)

))
ϑ`λ` + (1− L−1)(ϑ`)2

)
d〈M`〉

− evar
(
G(ϑ)

)
db+ dc. (4.15)

Writing (4.15) in integral form, we obtain (4.10). It remains to show that

M̃t(ϑ) =
1

L

L∑
`=1

∫ t

0

asϑ
`
s dM`

s

− 1

L

L∑
`=1

∫ t

0

2bs

(
G`
s(ϑ)− em

(
Gs(ϑ)

))
ϑ`s dM`

s, t ∈ [0, T ],

is a local martingale. Because (at)t∈[0,T ] is continuous and ϑ ∈ L2(M) by (3.29),
we get a� ϑ = (aϑ`)`=1,...,L ∈ L2

loc(M), and hence 1
L

∑L
`=1

∫ t
0
asϑ

`
s dM`

s is a local
martingale by Lemma 3.16, 1). By the same reasoning, we only need to show that
the process

∫
(G`(ϑ) − em(G(ϑ)))ϑ` dM` is a local martingale for ` = 1, . . . , L.

In view of (4.2), it suffices to show that
∫

Gm(ϑ)ϑ` dM` is a local martingale for
`,m = 1, . . . , L. This simply follows from ϑ ∈ L2(M) and Lemma 3.16, 1) and
because Gm(ϑ) is continuous by Assumption 4.2 and hence locally bounded.
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4.2 Implementing Recipe 4.1, 2) – a heuristic derivation of

equations

In this subsection, we implement Recipe 4.1, 2) – to derive from the desired
(super)martingale conditions in Lemma 2.4 equations for the processes a, b, and
c in the assumed representation (4.4) of Ṽ .

As a first simplification, we assume

at = 1, t ∈ [0, T ].

This is also suggested by the discrete-time formula (I.4.72). Then (4.10) becomes

Ṽt(ϑ) = Ṽ0 + M̃t(ϑ)

− 1

L

L∑
`=1

∫ t

0

((
2bs

(
G`
s(ϑ)− em

(
Gs(ϑ)

))
− 1

)
ϑ`sλ

`
s

+ bs(1− L−1)(ϑ`s)
2

)
d〈M`〉s

−
∫ t

0

evar
(
Gs(ϑ)

)
dbs + ct

=: Ṽ0 + M̃t(ϑ) + Ãt(ϑ) (4.16)

where (M̃t(ϑ))t∈[0,T ] is a local martingale. The (super)martingale conditions on
Ṽ (ϑ) then translate into the statement that

Ã(ϑ) is decreasing for all ϑ ∈ ΘS, and Ã(ϑ∗) ≡ 0 for some ϑ∗ ∈ ΘS. (4.17)

We apply the identity αx2 + βx = α(x+ β
2α

)2− β2

4α
to the integrand in the second

and third line of (4.16) to complete the square and reorder the terms to obtain,
with α = bs(1− L−1), β = (2bs

(
G`
s(ϑ)− em

(
Gs(ϑ)

))
− 1)λ`s, x = ϑ`s,(

2bs

(
G`
s(ϑ)− em

(
Gs(ϑ)

))
− 1

)
ϑ`sλ

`
s + bs(1− L−1)(ϑ`s)

2

= bs(1− L−1)

(
ϑ`s +

2bs(G
`
s(ϑ)− em(Gs(ϑ)))− 1

2bs(1− L−1)
λ`s

)2

− (2bs(G
`
s(ϑ)− em(Gs(ϑ)))− 1)2

4bs(1− L−1)
(λ`s)

2, s ∈ [0, t].

Inserting the last equality into (4.16) and using K` =
∫

(λ`)2 d〈M`〉 from (4.9)
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yields

Ãt(ϑ) = − 1

L

L∑
`=1

∫ t

0

bs(1− L−1)

×
(
ϑ`s +

2bs(G
`
s(ϑ)− em(Gs(ϑ)))− 1

2bs(1− L−1)
λ`s

)2

d〈M`〉s

+
1

L

L∑
`=1

∫ t

0

(2bs(G
`
s(ϑ)− em(Gs(ϑ)))− 1)2

4bs(1− L−1)
dK`

s

−
∫ t

0

evar
(
Gs(ϑ)

)
dbs + ct. (4.18)

The monotonicity of the first term in (4.18) completely depends on the sign of
the process b. To analyse the other terms in (4.18), we introduce the following
condition.

Condition 4.4. The process K` is independent of `, meaning that K`,Km are
indistinguishable for ` 6= m.

In view of Lemma 3.13 and under Condition 4.4, each K` is indistinguishable
from the MVT process K. We use that fact, then square out and finally use the
definitions of em(x) and evar(x) from (4.2) and (4.3), respectively, to write the
second line in (4.18) as

1

L

L∑
`=1

∫ t

0

(2bs(G
`
s(ϑ)− em(Gs(ϑ)))− 1)2

4bs(1− L−1)
dK`

s

=
1

L

L∑
`=1

∫ t

0

(2bs(G
`
s(ϑ)− em(Gs(ϑ)))− 1)2

4bs(1− L−1)
dKs

=
1

L

∫ t

0

L∑
`=1

4b2
s(G

`
s(ϑ)− em(Gs(ϑ)))2 + 1

4bs(1− L−1)
dKs

−
∫ t

0

1

4bs(1− L−1)

L∑
`=1

4bs(G
`
s(ϑ)− em(Gs(ϑ)))

L
dKs

=

∫ t

0

4b2
sevar(Gs(ϑ)) + 1

4bs(1− L−1)
dKs

=

∫ t

0

(
bsevar(Gs(ϑ))

1− L−1
+

1

4bs(1− L−1)

)
dKs. (4.19)

The last expression in (4.19) significantly simplifies the middle line in (4.18).
Since this is an integral with respect to the MVT process K, it is convenient to
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introduce the following condition so that we can write the last two lines in (4.18)
as a single expression to conduct further analysis. Recall from the definition
(3.3) of (SC) that the process B is chosen such that 〈M〉 � B when d = 1. For
simplicity, we take B = 〈M〉.

Condition 4.5. The processes b, c in (4.4) are absolutely continuous with respect
to the process 〈M〉.

Plugging (4.19) back into (4.18) and using Condition 4.5, we get

Ãt(ϑ) = − 1

L

L∑
`=1

∫ t

0

bs(1− L−1)

×
(
ϑ`s +

2bs(G
`
s(ϑ)− em(Gs(ϑ)))− 1

2bs(1− L−1)
λ`s

)2

d〈M`〉s

+

∫ t

0

((bsevar(Gs(ϑ))

1− L−1
+

1

4bs(1− L−1)

) dKs

d〈M〉s
− evar

(
Gs(ϑ)

) dbs
d〈M〉s

+
dcs

d〈M〉s

)
d〈M〉s

= − 1

L

L∑
`=1

∫ t

0

bs(1− L−1)

×
(
ϑ`s +

2bs(G
`
s(ϑ)− em(Gs(ϑ)))− 1

2bs(1− L−1)
λ`s

)2

d〈M`〉s

+

∫ t

0

evar
(
Gs(ϑ)

)( bs
1− L−1

dKs

d〈M〉s
− dbs

d〈M〉s

)
d〈M〉s

+

∫ t

0

1

4bs(1− L−1)

dKs

d〈M〉s
+

dcs
d〈M〉s

d〈M〉s. (4.20)

Now the (super)martingale property in (4.17), which should hold for any ϑ, sug-
gests that we make the last two integrals vanish. Using

dKt

d〈M〉t
= λ2

t , t ∈ [0, T ], (4.21)

from (3.5) when d = 1 and B = 〈M〉 together with the terminal conditions from
(4.5), we obtain the system of backward random differential equations

db

d〈M〉
− λ2 b

(1− L−1)
= 0, bT = ξ,

dc

d〈M〉
+

1

4b(1− L−1)
= 0, cT = 0. (4.22)
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If the processes b, c are solutions to (4.22), then the last two lines in (4.20) vanish,
and inserting the resulting simplified (4.20) back into (4.16) yields

Ṽt(ϑ) = Ṽ0 + M̃t(ϑ)

− 1

L

L∑
`=1

∫ t

0

bs(1− L−1)

×
(
ϑ`s +

2bs(G
`
s(ϑ)− em(Gs(ϑ)))− 1

2bs(1− L−1)
λ`s

)2

d〈M`〉s. (4.23)

By (4.22), the process b is given by a continuous (stochastic) exponential and
hence positive; so we readily see that the process Ṽ (ϑ) is a local supermartingale
in the filtrationG for any ϑ ∈ ΘS because it is a local martingale plus a decreasing
process by (4.23). Moreover, (4.23) suggests that Ṽ (ϑ) is a local martingale if
and only if ϑ makes the integrand in (4.23) vanish and hence formally satisfies

ϑ`s = −2bs(G
`
s(ϑ)− em(Gs(ϑ)))− 1

2bs(1− L−1)
λ`s, s ∈ [0, T ], ` = 1, . . . , L. (4.24)

(4.24) also gives a candidate for a solution of the auxiliary problem (2.9).
Let us briefly recap this subsection. We assume (4.4) and start with a (sim-

plified) canonical decomposition of Ṽ (ϑ) as in (4.16). Then we manipulate the
terms (mainly by completing a square) and introduce some additional condi-
tions so that we arrive at a system of integral equations (4.22) as a (promising)
sufficient condition for the (super)martingale property of Ṽ (ϑ). The simplified
expression (4.23) also suggests a candidate (4.24) for the optimal strategy to the
auxiliary problem (2.9). We now end this heuristic subsection with more detailed
instructions to implement Recipe 4.1, 3).

Recipe 4.6. 1) Construct processes b, c by solving the system (4.22) of random
ODEs. Note that this also a posteriori verifies Condition 4.5.

2) Verify that Condition 4.4 is true, possibly under additional assumptions.
3) Prove that the resulting Ṽ (ϑ) has the properties desired in Lemma 2.4.

Note that up to here, we make guesses and assumptions and used heuristic
arguments. In the sequel, we now provide rigorous results.
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4.3 Implementing Recipe 4.6 – construction and verifica-

tion

In this subsection, we fix L ∈ N with L ≥ 2 and follow Recipe 4.6 to construct,
based on the explicit formula (4.24), a candidate ϑ̂(L) for the optimal strategy to
the auxiliary problem (2.9). First, we solve the system (4.22) explicitly, derive
from (4.24) a system of affine SDEs and study the existence and uniqueness of
a solution to that system, which rigorously yields a candidate ϑ̂(L). Next, we
argue that Condition 4.4 is equivalent to the assumption that the MVT process
K is deterministic, as in discrete time. Finally, we verify that ϑ̂(L) is indeed
optimal for the auxiliary problem (2.9) by proving that ϑ̂(L) ∈ ΘS and that the
conditions in Lemma 2.4 are satisfied. Throughout this subsection, we keep
the superscript (L).

Recall that Assumption 4.2 says that S is a continuous semimartingale satis-
fying the structure (SC). We now implement Recipe 4.6, 1) and solve the system
(4.22) of ODES

db

d〈M〉
− λ2 b

(1− L−1)
= 0, bT = ξ,

dc

d〈M〉
+

1

4b(1− L−1)
= 0, cT = 0. (4.25)

Lemma 4.7. Suppose that Assumption 4.2 is satisfied. Then the system (4.25)
has a unique strong solution (b(L), c(L)) in the space of F-adapted continuous pro-
cesses on (Ω,F , P ). Explicitly, the processes b(L), c(L) are continuous and given
by

b
(L)
t = ξ

E( K
1−L−1 )t

E( K
1−L−1 )T

= ξ exp

(
Kt −KT

1− L−1

)
, t ∈ [0, T ], (4.26)

c
(L)
t = − 1

4ξ

(
1− ξ

b
(L)
t

)
= − 1

4ξ

(
1− exp

(
− Kt −KT

1− L−1

))
, t ∈ [0, T ]. (4.27)

Consequently, both b(L) and 1
b(L) are positive and bounded on [0, T ] (uniformly in

ω) whenever K is bounded.

Proof. It is straightforward to differentiate (4.26) and (4.27) and verify that they
indeed solve the system (4.25) with dK = λ2 d〈M〉 as in (4.21). For uniqueness of
b(L), it is enough to observe that its equation in (4.25) is a P -a.s. linear (random)
ODE and thus has a unique solution. The uniqueness of c(L) is obtained from the
uniqueness of b(L). The last assertion follows from (4.26).
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We translate this result into the L-extended market. Recall from (4.8) and
(4.9) with the superscript (L) reinstated that

A
`,(L)
t =

∫ t

0

λ`,(L)
s d〈M`,(L)〉s P-a.s. for all t ∈ [0, T ], ` = 1, . . . , L, (4.28)

K
`,(L)
t =

∫ t

0

(λ`,(L)
s )2 d〈M`,(L)〉s P-a.s. for all t ∈ [0, T ], ` = 1, . . . , L. (4.29)

The system (4.25) translates into a corresponding system of ODEs

db`,(L)

d〈M`,(L)〉
− (λ`,(L))2 b`,(L)

(1− L−1)
= 0, b

`,(L)
T = ξ,

dc`,(L)

d〈M`,(L)〉
+

1

4b`,(L)(1− L−1)
= 0, c

`,(L)
T = 0, (4.30)

for ` = 1, . . . , L.

Lemma 4.8. Suppose that Assumption 4.2 is satisfied. Then for ` = 1, . . . , L,
the system (4.30) of ODEs has a unique strong solution (b`,(L), c`(L)) in the space
of G(L)-adapted continuous processes defined on (Ω(L),F (L),P(L)). Explicitly, the
processes b`,(L), c`,(L) are continuous and given, for t ∈ [0, T ], by

b
`,(L)
t = ξ

E( K`,(L)

1−L−1 )t

E( K`,(L)

1−L−1 )T
= ξ exp

(
K
`,(L)
t −K

`,(L)
T

1− L−1

)
, (4.31)

c
`,(L)
t = − 1

4ξ

(
1− ξ

b
`,(L)
t

)
= − 1

4ξ

(
1− exp

(
− K

`,(L)
t −K

`,(L)
T

1− L−1

))
. (4.32)

Consequently, both b`,(L) and 1
b`,(L) are positive and bounded on [0, T ] (uniformly

in ω(L)) whenever K is bounded.

Proof. This is directly translated from Lemma 4.7. The last statement follows
from the fact that the boundedness of K implies the boundedness of K`,(L) for
` = 1, . . . , L due to the relation K`,(L) = K`,⊗L from (3.24), using the lifting
notation (2.14).

Given (4.26) and (4.27), we now study (4.24) rigorously. Consider the system
of affine SDEs

dX
`,(L)
t = −2b

`,(L)
t (X

`,(L)
t − em(X

(L)
t ))− 1

2b
`,(L)
t (1− L−1)

λ
`,(L)
t dS

`,(L)
t , X

`,(L)
0 = 0, (4.33)

for ` = 1, . . . , L.
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Lemma 4.9. Suppose that Assumption 4.2 is satisfied. Then the system (4.33)
has a unique strong solution in the class of G(L)-adapted continuous processes. If
in addition the MVT process K is absolutely continuous with respect to a determ-
inistic and increasing process D, with density κ = dK

dD
bounded by a constant C0,

then there exist C1, C2 > 0 such that

E
[

sup
s∈[0,t]

|X(L)
s |2

]
≤ C1 exp

(
C2(C2

0 + C0)
)
.

Proof. The function

f
`,(L)
t (x) :=

1− 2b
`,(L)
t (x` − em(x))

2b
`,(L)
t (1− L−1)

λ
`,(L)
t (4.34)

is well defined thanks to b`,(L)
t > 0 from the last assertion in Lemma 4.8, and affine

in x ∈ RL and hence Lipschitz (with a time-dependent G(L)-adapted coefficient).
The existence and uniqueness of a strong solution to (4.33) therefore follows from
standard theory; see e.g. Protter [55, Theorem V.6]. Note that (4.33) can be
written more compactly using (4.34) as

dX
`,(L)
t = f

`,(L)
t (X

(L)
t ) dS

`,(L)
t , X

`,(L)
0 = 0. (4.35)

Now suppose that Assumption 4.2 is satisfied and K � D for a determin-
istic and increasing process D such that κ = dK

dD
is bounded by a constant C0.

The identity K`,(L)(ω(L)) = K`,⊗L(ω(L)) = K(ω`) from (3.24) then implies that
K`,(L) � D with κ`,(L) := dK`,(L)

dD
= κ`,⊗L bounded again by C0. We summarise

this as
sup
s∈[0,T ]

|κ`,Ls | ≤ C0, uniformly on Ω(L), (4.36)

for future reference. From the explicit expressions (4.28) for A`,(L) and (4.29) for
K`,(L), we obtain

dK`,(L) = (λ`,(L))2 d〈M`,(L)〉 = λ`,(L) dA`,(L) = κ`,(L) dD. (4.37)

Define g(L)
t (x) by

g
`,(L)
t (x) =

1− 2b
`,(L)
t (x` − em(x))

2b
`,(L)
t (1− L−1)

, ` = 1, . . . , L. (4.38)
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Comparing (4.38) with (4.34) for f `,(L)
t yields f `,(L)

t = g
`,(L)
t λ

`,(L)
t . We use the

elementary inequality (x + y)2 ≤ 2x2 + 2y2, then the above identity and finally
the Cauchy–Schwarz inequality and (4.37), (4.36) to get from (4.35) that

(X`,(L)
s )2 ≤ 2

(∫ s

0

f `,(L)
r (X(L)

r ) dA`,(L)
r

)2

+ 2

(∫ s

0

f `,(L)
r (X(L)

r ) dM`,(L)
r

)2

= 2

(∫ s

0

g`,(L)
r (X(L)

r ) dK`,(L)
r

)2

+ 2

(∫ s

0

f `,(L)
r (X(L)

r ) dM`,(L)
r

)2

≤ 2C2
0

∫ s

0

(
g`,(L)
r (X(L)

r )
)2

dDr + 2

(∫ s

0

f `,(L)
r (X(L)

r ) dM`,(L)
r

)2

. (4.39)

Using (4.39), the identity sups∈[0,t] |
∫ s

0
(g
`,(L)
r (X

(L)
r ))2 dDr| =

∫ t
0
(g
`,(L)
r (X

(L)
r ))2 dDr

and the BDG inequality yields

E
[

sup
s∈[0,t]

(X`,(L)
s )2

]
≤ E

[
2C2

0

∫ t

0

(
g`,(L)
s (X(L)

s )
)2

dDs

+ 8

∫ t

0

(
f `,(L)
s (X(L)

s )
)2

d〈M`,(L)〉s
]

= E

[
2C2

0

∫ t

0

(
g`,(L)
s (X(L)

s )
)2

dDs

+ 8

∫ t

0

(
g`,(L)
s (X(L)

s )
)2
κ`,(L)
s dDs

]
= (2C2

0 + 8C0)

∫ t

0

E
[(
g`,(L)
s (X(L)

s )
)2]

dDs. (4.40)

The first equality uses f `,(L)
t (x) = g

`,(L)
t (x)λ

`,(L)
t and dK`,(L) = κ`,(L) dD from

(4.37), and the second uses the bound on κ`,(L) from (4.36) and Fubini’s theorem
due to the non-randomness of the increasing process D. Denote

g0
t := g

`,(L)
t (0) =

1

2b
`,(L)
t (1− L−1)

≥ 0.

Because g`,(L)
t is Lipschitz-continuous, we use the triangle inequality to get

|g`,(L)
t (x)| ≤ g

`,(L)
t (0) + |g`,(L)

t (x)− g`,(L)
t (0)|

= g0
t +
|x` − em(x)|

1− L−1

≤ g0
t + C`,(L)|x| (4.41)
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for some constant C`,(L) > 0. By the symmetry from

g
`,(L)
t (x)− g`,(L)

t (0) = −x` − em(x)

1− L−1
, ` = 1, . . . , L,

the constant C`,(L) can be chosen independent of `; so we denote this common
value by C(L). Inserting (4.41) with C`,(L) = C(L) and (x + y)2 ≤ 2x2 + 2y2 into
(4.40), we get

E
[

sup
s∈[0,t]

|X(L)
s |2

]
= E

[
sup
s∈[0,t]

L∑
`=1

(X`,(L)
s )2

]

≤ (2C2
0 + 8C0)

∫ t

0

L∑
`=1

E
[(
g`,(L)
s (X(L)

s )
)2]

dDs

≤ L(2C2
0 + 8C0)

∫ t

0

(
2E[(g0

s)
2] + 2C2

(L)E[|X(L)
s |2]

)
dDs

≤ L(2C2
0 + 8C0)

∫ t

0

(
2E[(g0

s)
2] + 2C2

(L)E
[

sup
r≤s
|X(L)

r |2
])

dDs.

It follows from Gronwall’s lemma that

E
[

sup
s∈[0,t]

|X(L)
s |2

]
≤ C exp

(
LC2

(L)(4C0 + 16)C0

)
<∞

for C = L(2C2
0 + 8C0)DT supt∈[0,T ] E[2(g0

t )
2]. This completes the proof.

Lemma 4.9 rigorously justifies the system (4.24) of formal equations because
it allows us to define ϑ̂(L) for t ∈ [0, T ] by

ϑ̂
`,(L)
t = −2b

`,(L)
t (X

`,(L)
t − em(X

(L)
t ))− 1

2b
`,(L)
t (1− L−1)

λ`t = f
`,(L)
t (X

`,(L)
t ), ` = 1, . . . , L. (4.42)

Then (4.42) and (4.35) yield the identity

G`(ϑ̂(L)) =

∫
ϑ̂`,(L) dS`,(L) =

∫
f `,(L)(X(L)) dS`,(L) = X`,(L) (4.43)

because X
`,(L)
0 = 0 = G

`,(L)
0 (ϑ̂(L)). Replacing X`,(L) by G`(ϑ̂(L)) in (4.42) thus

gives for ` = 1, . . . , L that

ϑ̂
`,(L)
t = −2b

`,(L)
t (G`

t(ϑ̂
(L))− em(Gt(ϑ̂

(L)))− 1

2b
`,(L)
t (1− L−1)

λ`t, t ∈ [0, T ]. (4.44)
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This gives a rigorous formulation for (4.24).

Corollary 4.10. Suppose that Assumption 4.2 is satisfied. If the MVT process
K is absolutely continuous with respect to D for a deterministic and increasing
process D with a density κ = dK

dD
bounded by a constant C0, then the process

G`(ϑ̂(L)) is in S2 for each ` = 1, . . . , L. In particular, ϑ̂(L) ∈ Θ
(L)
S .

Proof. Because KT =
∫ T

0
κt dDt ≤ C0DT , the MVT process K is bounded. So

we can apply Lemma 3.17 to get Θ
(L)
S = L2(M(L)). Now we only need to show

that ϑ̂(L) ∈ L2(M). Using Definition 3.15 with σ` ≡ 1 and B`,(L) = 〈M`,(L)〉 for
` = 1, . . . , L in dimension 1 by (4.7) and the line above it, we compute

E

[ ∫ T

0

ϑ̂`,(L)
s σ`,(L)

s ϑ̂`,(L)
s dB`,(L)

s

]
= E

[ ∫ T

0

(ϑ̂`,(L)
s )2 d〈M`,(L)〉s

]
≤ 2C0

∫ T

0

E

[(
(X

`,(L)
s − em(X

(L)
s ))

1− L−1

)2]
dDs

+ 2C0

∫ T

0

E

[(
1

2b
`,(L)
s (1− L−1)

)2]
dDs

≤ 2C0

(1− L−1)2
DTE

[
sup
s∈[0,T ]

(
X`,(L)
s − em(X(L)

s )
)2
]

+ 2C0

∫ T

0

E

[(
1

2b
`,(L)
s (1− L−1)

)2]
dDs

<∞.

The first inequality uses the explicit formula (4.44) for the candidate ϑ̂(L), the
identity (λ`,(L))2 d〈M`,(L)〉 = κ`,(L) dD from (4.37) and the bound on κ`,(L) from
(4.36) as well as Fubini’s theorem because D is non-random. The last inequality
uses E[sups∈[0,T ] |X

`,(L)
s |2] <∞ for ` = 1, . . . , L from Lemma 4.9 and that 1

b`,(L) is
bounded due to the boundedness of K; see Lemma 4.8.

We now discuss Condition 4.4. Due to Lemma 3.13, 1), each process K`,(L)

is also F`,(L)-adapted, and hence (K`,(L))`=1,...,L are independent. Then Condi-
tion 4.4 implies that each K`,(L) is indistinguishable from Kj,(L) for ` 6= j and is
also independent of Kj,(L). Thus it is independent of itself and therefore must
be deterministic. We remarked below Condition 4.4 that K`,(L) and the MVT
process K are indistinguishable, and so the previous reasoning implies that K
is deterministic. Conversely, if the MVT process K is deterministic, then Con-
dition 4.4 is automatically satisfied. Therefore, the following assumption is an
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equivalent restatement of Condition 4.4, which is also needed in discrete time (see
Assumption I.4.11).

Assumption 4.11. The mean–variance tradeoff process K is deterministic.

An immediate consequence of Assumption 4.11 is that K`,(L) = K and thus
the processes b(L) and c(L) are deterministic. Moreover, in Lemma 4.9 and Corol-
lary 4.10, we can take D ≡ K and κ ≡ 1.

Corollary 4.12. Suppose that Assumptions 4.2 and 4.11 are satisfied. Then
b(L), c(L) given by (4.26) and (4.27) are deterministic and thus b`,(L) = b(L) and
c`,(L) = c(L) for b`,(L), c`,(L) from Lemma 4.8.

Proof. The first claim directly follows from the explicit formulas

b
(L)
t = ξ exp

(Kt −KT

1− L−1

)
, c

(L)
t = − 1

4ξ

(
1− exp

(KT −Kt

1− L−1

))
given in (4.26) and (4.27). The second follows from comparing formula (4.31) for
b`,(L) and (4.32) for c`,(L) with the above display and using that K`,(L) = K for
` = 1, . . . , L when K is deterministic.

Inspired by the guess (4.4) with the process a there chosen equal to constant
1, we consider Ṽ(L)(ϑ) with coordinates

Ṽ`,(L)(ϑ) := em
(
Gt(ϑ)

)
− b`,(L)

t evar
(
Gt(ϑ)

)
+ c

`,(L)
t , ϑ ∈ Θ

(L)
S , t ∈ [0, T ],

where the coefficient processes (b
`,(L)
t )t∈[0,T ], (c

`,(L)
t )t∈[0,T ] satisfy (4.30).

When the MVT process K is deterministic, we have b`,(L) = b(L) and c`,(L) = c(L)

due to Corollary 4.12 and thus Ṽ`,(L)(ϑ) = Ṽ (L)(ϑ) for ` = 1, . . . , L, with Ṽ (L)(ϑ)

given by

Ṽ
(L)
t (ϑ) := em

(
Gt(ϑ)

)
− b(L)

t evar
(
Gt(ϑ)

)
+ c

(L)
t , ϑ ∈ Θ

(L)
S , t ∈ [0, T ],

where the coefficient processes (b
(L)
t )t∈[0,T ], (c

(L)
t )t∈[0,T ] satisfy (4.22). (4.45)

Let us now work with Ṽ (L) given above. The canonical decomposition obtained
in Lemma 4.3 under the assumption (4.4) can be further simplified if we look at
Ṽ (L)(ϑ).

Lemma 4.13. Suppose that Assumptions 4.2 and 4.11 are satisfied. Then for
any ϑ ∈ Θ

(L)
S , the canonical decomposition of Ṽ (L)(ϑ) defined in (4.45) is given
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by

Ṽ
(L)
t (ϑ)

= Ṽ
(L)

0 + M̃
(L)
t (ϑ) + Ã

(L)
t (ϑ)

= Ṽ
(L)

0 + M̃
(L)
t (ϑ)

− 1

L

L∑
`=1

∫ t

0

b(L)
s (1− L−1)

×
(
ϑ`,(L)
s +

2b
(L)
s (G

`,(L)
s (ϑ)− em(Gs(ϑ)))− 1

2b
(L)
s (1− L−1)

λ`,(L)
s

)2

d〈M`,(L)〉s,

(4.46)

where M̃ (L)(ϑ) is a local martingale in the filtration G(L).

Proof. For this argument, we repeat the computation from (4.16) to (4.23). First,
we insert a(L)

t = 1 for t ∈ [0, T ] into the canonical decomposition (4.10) for Ṽ (L)(ϑ)

to obtain Ṽ (L)
t (ϑ) = Ṽ0 +M̃

(L)
t (ϑ)+ Ã

(L)
t (ϑ), where M̃ (L)(ϑ) is a local martingale

in the filtration G(L) and the process Ã(L)(ϑ) is given as in (4.16) and (4.18) by

Ã
(L)
t (ϑ)

= − 1

L

L∑
`=1

∫ t

0

((
2b(L)
s

(
G`,(L)
s (ϑ)− em

(
Gs(ϑ)

))
− 1

)
ϑ`,(L)
s λ`,(L)

s

+ b(L)
s (1− L−1)(ϑ`,(L)

s )2

)
d〈M`,(L)〉s

−
∫ t

0

evar
(
Gs(ϑ)

)
db(L)

s + c
(L)
t

= − 1

L

L∑
`=1

∫ t

0

b(L)
s (1− L−1)

(
ϑ`,(L)
s +

2b
(L)
s (G

`,(L)
s (ϑ)− em(Gs(ϑ)))− 1

2b
(L)
s (1− L−1)

λ`,(L)
s

)2

d〈M`,(L)〉s

+
1

L

L∑
`=1

∫ t

0

(2b
(L)
s (G

`,(L)
s (ϑ)− em(Gs(ϑ)))− 1)2

4b
(L)
s (1− L−1)

dK`,(L)
s

−
∫ t

0

evar
(
Gs(ϑ)

)
db(L)

s + c
(L)
t . (4.47)

The second equality is derived exactly as in (4.18) by using the elementary identity
αx2 +βx = α(x+ β

2α
)2− β2

4α
and dK`,(L) = (λ`,(L))2 d〈M`,(L)〉 from (4.29). Because
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K is deterministic by Assumption 4.11, we have K`,(L) = K for ` = 1, . . . , L. As
calculated in (4.19), we then obtain the crucial simplification

1

L

L∑
`=1

∫ t

0

(2b
(L)
s (G

`,(L)
s (ϑ)− em(Gs(ϑ)))− 1)2

4b
(L)
s (1− L−1)

dK`,(L)
s

=

∫ t

0

(
b

(L)
s evar(Gs(ϑ))

1− L−1
+

1

4b
(L)
s (1− L−1)

)
dKs. (4.48)

Now because b(L), c(L) by construction satisfy the system (4.22) of ODEs, we can
insert (4.48) into (4.47) and use the equation for b(L) in (4.22) to write the last
two terms in (4.47) as integrals with respect to 〈M〉 to obtain as in (4.23) that
the last two lines in (4.47) cancel out. This yields

Ã
(L)
t (ϑ)

= − 1

L

L∑
`=1

∫ t

0

b(L)
s (1− L−1)

×
(
ϑ`,(L)
s +

2b
(L)
s (G

`,(L)
s (ϑ)− em(Gs(ϑ)))− 1

2b
(L)
s (1− L−1)

λ`,(L)
s

)2

d〈M`,(L)〉s

and hence (4.46).

We are now ready to implement Recipe 4.6, 3) and present the main result of
this section.

Theorem 4.14. Suppose that Assumptions 4.2 and 4.11 are satisfied, meaning
that the price process S is a real-valued continuous semimartingale satisfying the
structure condition (SC) and the MVT process K is deterministic. Then Ṽ (L)(ϑ)

given by (4.45) satisfies Ṽ (L)
T (ϑ) = JT (ϑ) = em(GT (ϑ)) − ξevar(GT (ϑ)) and is

a supermartingale for any ϑ ∈ Θ
(L)
S . It is a martingale for ϑ∗ = ϑ̂(L) defined by

(4.42), and we have explicitly for ` = 1, . . . , L that

ϑ̂
`,(L)
t = −2b

(L)
t (G`

t(ϑ̂
(L))− em(Gt(ϑ̂

(L)))− 1

2b
(L)
t (1− L−1)

λ`t, t ∈ [0, T ]. (4.49)

In particular, ϑ̂(L) is an optimal strategy for the auxiliary problem (2.9).

Proof. Let ϑ ∈ Θ
(L)
S . We recall from Lemma 3.17 the property

sup
t≤T
|Gt(ϑ)| ∈ L2. (4.50)
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Thanks to Assumptions 4.2 and 4.11, we can use Lemma 4.13, (4.46) to obtain
the local martingale M̃ (L)(ϑ) = Ṽ (L)(ϑ)− Ṽ (L)

0 − Ã(L)(ϑ) for

Ã
(L)
t (ϑ)

= − 1

L

L∑
`=1

∫ t

0

b(L)
s (1− L−1)

×
(
ϑ`,(L)
s +

2b
(L)
s (G

`,(L)
s (ϑ(L))− em(Gs(ϑ

(L))))− 1

2b
(L)
s (1− L−1)

λ`,(L)
s

)2

d〈M`,(L)〉s

=: − 1

L

L∑
`=1

R
`,(L)
t (ϑ), t ∈ [0, T ]. (4.51)

From the first equality in (4.51) and b(L) > 0 by Lemma 4.7, we observe that
Ã(L)(ϑ) is a decreasing process for all ϑ ∈ Θ

(L)
S . Because ϑ = ϑ̂(L) satisfies

(4.49), we get that the integrand in the first equality of (4.51) vanishes and thus
Ã(L)(ϑ̂(L)) ≡ 0. So Ṽ (L)(ϑ) is always equal to a local martingale M̃ (L)(ϑ) plus
a decreasing process Ã(L)(ϑ), and Ṽ (L)(ϑ) is equal to a local martingale when
ϑ = ϑ̂(L). To deduce the first assertion of the theorem from this, we now prove
that M̃ (L)(ϑ) is a true martingale. To this end, it is sufficient to show that
supt∈[0,T ] |M̃

(L)
t (ϑ)| ∈ L1. But Ṽ (L)

t (ϑ) is an affine–quadratic transformation of
Gt(ϑ) by (4.45), and so we can use (4.50) with evar(x) ≤ em(x2) by its defini-
tion (4.3) and that b(L) and c(L) are bounded due to (4.26) and (4.27) to obtain
supt∈[0,T ] |Ṽ

(L)
t (ϑ)| ∈ L1. Note that together with the integrability of M̃ (L)(ϑ),

this implies that also supt∈[0,T ] |Ã
(L)
t (ϑ)| ∈ L1, and so the local supermartingale

Ṽ (L)(ϑ) is a true supermartingale. For the term in the last equality of (4.51), we
use the elementary inequalities (x+ y)2 ≤ 2x2 + 2y2, 1 ≥ 1− L−1 ≥ 1

2
for L ≥ 2

and K`,(L) =
∫

(λ`,(L))2 d〈M`,(L)〉 from (4.29) with K`,(L) = K by Assumption 4.11
to get

1

L

L∑
`=1

R
`,(L)
t (ϑ)

≤ 1

L

L∑
`=1

2

∫ t

0

b(L)
s (ϑ`s)

2 d〈M`,(L)〉s

+
1

L

L∑
`=1

2

∫ t

0

1

b
(L)
s

(
2b(L)
s

(
G`,(L)
s (ϑ)− em

(
Gs(ϑ)

))
− 1

)2

dKs. (4.52)

For the second term in (4.52), we use the explicit expressions em(x) = 1
L

∑L
`=1 x`,
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evar(x) = 1
L

∑L
`=1(x`− em(x))2 and the property evar(x) ≤ em(x2) all from (4.2)

and (4.3) to compute

1

L

L∑
`=1

∫ t

0

1

b
(L)
s

(
2b(L)
s

(
G`,(L)
s (ϑ)− em

(
Gs(ϑ)

))
− 1

)2

dKs

=
1

L

L∑
`=1

∫ t

0

4b(L)
s

(
G`,(L)
s (ϑ)− em

(
Gs(ϑ)

))2

dKs

− 1

L

L∑
`=1

∫ t

0

4
(
G`,(L)
s (ϑ)− em

(
Gs(ϑ)

))
dKs +

∫ t

0

1

b
(L)
s

dKs

= 4

∫ t

0

b(L)
s evar

(
Gs(ϑ)

)
dKs +

∫ t

0

1

b
(L)
s

dKs

≤ 4

∫ t

0

b(L)
s em

(
Gs(ϑ)2

)
dKs +

∫ t

0

1

b
(L)
s

dKs. (4.53)

Inserting (4.53) into (4.52), we get

1

L

L∑
`=1

R
`,(L)
t (ϑ) ≤ 1

L

L∑
`=1

2

∫ t

0

b(L)
s (ϑ`s)

2 d〈M`〉s + 4

∫ t

0

b(L)
s em

(
Gs(ϑ)2

)
dKs

+

∫ t

0

1

b
(L)
s

dKs

=: F 1
t + F 2

t + F 3
t . (4.54)

Due to supt∈[0,T ] |Gt(ϑ)| ∈ L2 by (4.50) and because K and b(L) are bounded, it is
obvious that supt∈[0,T ] |F 2

t | ∈ L1. The terms supt∈[0,T ] |F 1
t | and supt∈[0,T ] |F 3

t | are in
L1 because both terms supt∈[0,T ] |b

(L)
t | and supt∈[0,T ] | 1

b
(L)
t

| are bounded as pointed
out in Lemma 4.7, KT is bounded (even deterministic) by Assumption 4.11 and
finally ϑ ∈ L2(M(L)) by Lemma 3.17. Therefore combining (4.54) and (4.51)
gives

sup
t∈[0,T ]

|M̃ (L)
t (ϑ)| ≤ 2 sup

t∈[0,T ]

|Ṽ (L)
t (ϑ)|+ sup

t∈[0,T ]

|F 1
t |+ sup

t∈[0,T ]

|F 2
t |+ sup

t∈[0,T ]

|F 3
t | ∈ L1.

This shows that M̃ (L)(ϑ) is a martingale as desired. As we pointed out below
(4.51) that Ã(L)(ϑ) is decreasing, Ṽ (L)(ϑ) = Ṽ

(L)
0 (ϑ) + M̃ (L)(ϑ) + Ã(L)(ϑ) is a

supermartingale. Moreover, (4.44) implies Ã(L)(ϑ̂(L)) = − 1
L

∑L
`=1 R

`,(L)
t (ϑ̂(L)) = 0

and hence Ṽ (L)(ϑ̂(L)) = Ṽ
(L)

0 + M̃(ϑ̂(L)) is a martingale. In view of Lemma 2.4,
this completes the proof.
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5 Taking limits and verification

Having obtained from Theorem 4.14 a complete description of a solution ϑ̂(L)

for the auxiliary problem (2.9), we aim to construct an optimal strategy for the
original MVPS problem with the help of ϑ̂(L) and study the convergence behaviour
of ϑ̂(L) as L → ∞. Note that both the verification and convergence require an
analysis of various limits as L→∞.

Let L ∈ N ∪ {∞} with L ≥ 2. A basic relation is that for any ` = 1, . . . , L,

Ω = π`,L(Ω(L)), F = {E : π−1
`,L(E) ∈ F (L)}, P = P(L) ◦ π−1

`,L, (5.1)

where π`,L : Ω(L) → Ω is the canonical projection of Ω(L) onto its `-th coordin-
ate. Thanks to Lemma 3.13, 1), the process S`,(L) has the same special semi-
martingale decomposition with respect to the filtrations F`,(L) and G(L). Re-
call from (3.11) and (3.12) that we have F `,(L)

t = {E : π−1
`,L(E) ∈ Ft} and

S`,(L)(ω(L)) = S`,⊗L(ω(L)) = S(ω`), respectively. By the uniqueness of X` for
X ∈ {M(L),A(L), 〈M(L)〉}, we then also obtain

Y`(ω(L)) = Y `,⊗L(ω(L)) = Y (ω`)

for Y ∈ {M(L),A(L), 〈M(L)〉} and Y ∈ {M,A, 〈M〉}. For the quantities describ-
ing (SC) in (3.20)–(3.23) in dimension 1, we recall from the definition (3.3) and
(4.28), (4.29) that we only require the existence of a predictable RCLL process
λ` such that A`,(L) =

∫
λ`,(L) d〈M`,(L)〉 and K

`,(L)
T =

∫ T
0

(λ
`,(L)
s )2 d〈M`,(L)〉s is

P(L)-a.s. finite. Due to the identity in the above display, we can and do choose
λ` = λ`,⊗L for ` = 1, . . . , L to obtain

A
`,(L)
t = A`,⊗Lt =

∫ t

0

λ`,⊗Ls d〈M `,⊗L〉s =

∫ t

0

λ`,(L) d〈M`,(L)〉,

K
`,(L)
t =

∫ t

0

(λ`,(L)
s )2 d〈M`,(L)〉s =

∫ t

0

(λ`,⊗Ls )2 d〈M `,⊗L〉s <∞,

both P(L)-a.s. for all t ∈ [0, T ]. This yields ultimately

Y`(ω(L)) = Y `,⊗L(ω(L)) = Y (ω`) (5.2)

for Y ∈ {S(L),M(L),A(L), 〈M(L)〉,λ(L),K(L)} and Y ∈ {S,M,A, 〈M〉, λ,K}.
We emphasize that both (5.1) and (5.2) hold with L = ∞ as well. Hence we
can view (Ω,F , P ) as a coordinate of both finite-L and infinite product spaces
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(Ω(L),F (L),P(L)).

5.1 Verification

In this subsection, we aim to construct an optimal strategy θ̂ for the MVPS
problem (2.1) in continuous time. We begin by recalling from Section I.5.1 some
formal connections between the original and extended markets.

Let us write as in (2.10) and (2.11)

Jmv
T (θ) = GT (θ)− ξ

(
GT (θ)− E[GT (θ)]

)2
, θ ∈ ΘS, (5.3)

J
(L)
T (ϑ(L)) = em

(
GT (ϑ(L))

)
− ξevar

(
GT (ϑ(L))

)
, ϑ(L) ∈ Θ

(L)
S , (5.4)

and recall the result from Proposition I.5.3. As that result is abstract, it holds
equally well in discrete and continuous time.

Proposition 5.1. If there exists θ̂ ∈ ΘS such that E(L)[J
(L)
T (ϑ̂(L))]→ E[Jmv

T (θ̂)]

as L → ∞, then GT (θ̂) is the optimal final gain for the MVPS problem (2.12)
and θ̂ is an optimal strategy for (2.12).

In view of Proposition 5.1, we want to construct a strategy θ̂ ∈ ΘS satisfying
a certain limit property. As in discrete time, this candidate θ̂ can be found
by formally sending L → ∞ in the solution of the auxiliary problem in the
L-extended market. We recall from (4.49) the explicit formula giving ϑ̂(L) for
` = 1, . . . , L as

ϑ̂
`,(L)
t = −2b

(L)
t (G`

t(ϑ̂
(L))− em(Gt(ϑ̂

(L))))− 1

2b
(L)
t (1− L−1)

λ
`,(L)
t , t ∈ [0, T ], (5.5)

which is well defined due to the existence of a unique solution to the system (4.33)
of SDEs explicitly given by

dX
`,(L)
t = −2b

(L)
t (X

`,(L)
t − em(X

(L)
t ))− 1

2b
(L)
t (1− L−1)

λ
`,(L)
t dS

`,(L)
t , X

`,(L)
0 = 0, (5.6)

for ` = 1, . . . , L. In order to define a candidate ϑ̂(∞), we need to identify a limit
of the above system as L→∞. In view of the explicit expression (4.26) for b(L)

t ,
the convergence b(L)

t = ξ exp(Kt−KT
1−L−1 )→ ξ exp(Kt −KT ) =: b

(∞)
t is clear. Because

λ`,(L)(ω(L)) = λ`,⊗L(ω(L)) = λ(ω`) and S`,(L)(ω(L)) = S`,⊗L(ω(L)) = S(ω`), their
dependence on L is artificial and their limits should still be λ(ω`) and S(ω`),
respectively. Now we expect by a law of large numbers effect that the empirical
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mean em(X
(L)
t ) converges to an expectation, say et, as L → ∞. Suppose this

is true and denote the formal limit of X`,(L) by X`,(∞) for ` ∈ N. Because the
dependence on other coordinates Xm,(L) for m 6= ` via the empirical average
disappears in the limit, we expect that X`,(∞) depends only on ω`. The symmetry
of X(L) among ` = 1, . . . , L from (5.6) also suggests that the expectation et does
not depend on ` and is equal to the expectation of X

`,(∞)
t for any `. Summarising

the above analysis and using that X`,(∞) depends only on ω` motivates us to
replace ω` by ω and consider instead of (5.6) on the original space (Ω,F , P ) the
affine McKean–Vlasov SDE

dX̂t = −2b
(∞)
t (X̂t − E[X̂t])− 1

2b
(∞)
t

λt dSt, X̂0 = 0. (5.7)

Suppose that (5.7) can be solved uniquely. We then define, in analogy to (5.5),

θ̂t := −2b
(∞)
t (X̂t − E[X̂t])− 1

2b
(∞)
t

λt = −λt
(
X̂t−E[X̂t]−

1

2b
(∞)
t

)
, t ∈ [0, T ], (5.8)

so that we get

G(θ̂) =

∫
θ̂ dS =

∫
−2b(∞)(X̂ − E[X̂])− 1

2b(∞)
λ dS = X̂ (5.9)

due to (5.7) and G0(θ̂) = 0 = X̂0. Plugging this back into (5.10) shows that θ̂
satisfies

θ̂t = −2b
(∞)
t (Gt(θ̂)− E[Gt(θ̂)])− 1

2b
(∞)
t

λt, t ∈ [0, T ], (5.10)

and gives a well-defined process which is F-predictable due to the continuity of
G(θ̂). So to argue that θ̂ ∈ ΘS, it is enough to prove θ̂ ∈ L2(M) by the identity
ΘS = L2(M) from (3.9). We now summarise what precisely needs to be done.

Recipe 5.2. 1) Establish the existence and uniqueness of a solution to the SDE
(5.7), as well as the integrability property of the solution. Moreover, show that
θ̂ ∈ L2(M).

2) Show that E(L)[J (L)(ϑ̂(L))]→ E[Jmv
T (θ̂)] as L→∞.

Let us implement this programme now. Suppose Assumption 4.2 is satis-
fied. This means that S is a real-valued continuous semimartingale satisfying the
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structure condition (SC). We begin by recalling from (3.2)–(3.5) that

At =

∫ t

0

λs d〈M〉s, Kt =

∫ t

0

λs dAs =

∫ t

0

λ2
s d〈M〉s, t ∈ [0, T ], (5.11)

when d = 1, and from (4.26) and (4.27) that for L ∈ N \ {1}

b
(L)
t = ξ

E( K
1−L−1 )t

E( K
1−L−1 )T

= ξ exp

(
Kt −KT

1− L−1

)
, t ∈ [0, T ],

c
(L)
t = − 1

4ξ

(
1− ξ

b
(L)
t

)
= − 1

4ξ

(
1− exp

(
− Kt −KT

1− L−1

))
, t ∈ [0, T ].

Sending L→∞ in the above two identities yields the candidate limits

b
(∞)
t := ξ exp(Kt −KT ), t ∈ [0, T ], (5.12)

c
(∞)
t := − 1

4ξ

(
1− ξ

b
(∞)
t

)
, t ∈ [0, T ]. (5.13)

It is easy to verify that (b(∞), c(∞)) is a solution to the system

db
(∞)
t

dKt

− b(∞)
t = 0, b

(∞)
T = ξ, (5.14)

dc
(∞)
t

dKt

+
1

4b
(∞)
t

= 0, c
(∞)
T = 0, (5.15)

and satisfies

sup
t∈[0,T ]

|b(L)
t − b

(∞)
t |+ sup

t∈[0,T ]

|c(L)
t − c

(∞)
t |+ sup

t∈[0,T ]

∣∣∣∣ 1

b
(L)
t

− 1

b
(∞)
t

∣∣∣∣ −→ 0 (5.16)

as L→∞ under the assumption that the MVT process K is bounded.

Lemma 5.3. Suppose that Assumptions 4.2 and 4.11 are satisfied. Then there
exists a unique strong solution X̂ to the SDE (5.7) in the class of F-adapted
continuous processes. It satisfies E[supt∈[0,T ] X̂

2
s ] <∞ and has the expectation

E[X̂t] =

∫ t

0

1

2b
(∞)
s

dKs, t ∈ [0, T ]. (5.17)

Moreover, the process θ̂ defined in (5.8) is in ΘS and satisfies G(θ̂) = X̂ and
(5.10).

Proof. 1) If we have a solution X̂ to (5.7), we can formally take expectations
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in (5.7) and use (5.11) and the non-randomness of K from Assumption 4.11 to
obtain

E[X̂t] =

∫ t

0

−E
[

2b
(∞)
s (X̂s − E[X̂s])− 1

2b
(∞)
s

]
dKs =

∫ t

0

1

2b
(∞)
s

dKs.

To make this rigorous, let us define the process m = (mt)t∈[0,T ] by

mt =

∫ t

0

1

2b
(∞)
s

dKs ≥ 0, t ∈ [0, T ], (5.18)

and consider the standard SDE

dXt = −2b
(∞)
t (Xt −mt)− 1

2b
(∞)
t

λt dSt, X0 = 0. (5.19)

Because the map

ft(x) := −2b
(∞)
t (x−mt)− 1

2b
(∞)
t

λt (5.20)

is Lipschitz in x with a time-dependent Ft-measurable coefficient λt, the SDE

dXt = ft(Xt) dSt, X0 = 0, (5.21)

has a unique strong solution X (see Protter [55, Theorem V.6]) in the space
of F-adapted continuous processes. Because (5.21) is equivalent to (5.19), X
is of course a solution to (5.19). We now argue that E[supt∈[0,T ] |Xt|2] < ∞
by collecting some similar estimates as in the proof of Lemma 4.9. Writing
gt(x) = −2b

(∞)
t (x−mt)−1

2b
(∞)
t

and g0
t := gt(0) = mt + 1

2b
(∞)
t

≥ 0, we see that gt is affine
in x with Lipschitz constant 1, which yields

|gt(x)| ≤ gt(0) + |gt(x)− gt(0)| ≤ g0
t + |x|. (5.22)

Using (x + y)2 ≤ 2x2 + 2y2 in (5.21), then ft(x) = gt(x)λt and dKt = λt dAt by
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(5.11) and finally the Cauchy–Schwarz inequality, we obtain

X2
s ≤ 2

(∫ s

0

fr(Xr) dAr

)2

+ 2

(∫ s

0

fr(Xr) dMr

)2

= 2

(∫ s

0

gr(Xr) dKr

)2

+ 2

(∫ s

0

fr(Xr) dMr

)2

≤ 2Ks

∫ s

0

(
gr(Xr)

)2
dKr + 2

(∫ s

0

fr(Xr) dMr

)2

. (5.23)

We use sups∈[0,t] |Ks

∫ s
0

(gr(Xr))
2 dKr| ≤ Kt

∫ t
0
(gs(Xs))

2 dKs with λ2 d〈M〉 = dK

and the BDG inequality in (5.23) and then (5.22) to get

E
[

sup
s∈[0,t]

X2
s

]
≤ E

[
2Kt

∫ t

0

(
gs(Xs)

)2
dKs + 8

∫ t

0

(
gs(Xs)

)2
dKs

]
≤ (2Kt + 8)E

[ ∫ t

0

2
(
(g0
s)

2 +X2
s

)
dKs

]
≤ (4Kt + 16)

∫ t

0

(
(g0
s)

2 + E
[

sup
r∈[0,s]

X2
r

])
dKs.

Note that the last step uses that K is deterministic so that we can apply Fubini’s
theorem. In view of Gronwall’s lemma, the above bound yields that

E
[

sup
t∈[0,T ]

X2
t

]
≤ (4KT + 16)

(∫ T

0

(g0
s)

2 dKs

)
exp

(
(4KT + 16)KT

)
. (5.24)

Because supt∈[0,T ]
1

2b
(∞)
t

< ∞ by the explicit expression in (5.12), we use the

definitions of g0
t = gt(0) = mt + 1

2b
(∞)
t

≥ 0 and mt ≥ 0 and Assumption 4.11 to
obtain

sup
t∈[0,T ]

g0
t = sup

t∈[0,T ]

(
mt +

1

2b
(∞)
t

)
= sup

t∈[0,T ]

(∫ t

0

1

2b
(∞)
s

dKs +
1

2b
(∞)
t

)
<∞. (5.25)

Inserting (5.25) into (5.24) gives E[supt∈[0,T ] X
2
t ] <∞ as desired.

2) Next we show that the solution X of (5.19) indeed solves (5.7). For this, in
view of the uniqueness of the solution to (5.7), it suffices to show that mt = E[Xt]

for t ∈ [0, T ]. Consider Dt := Xt − mt; then we argue that E[Dt] = 0 for all
t ∈ [0, T ]. Applying Itô’s lemma to D, then using formulas (5.19) and (5.18) for
dX and dm, respectively, and finally using λ dA = dK and the definition (5.20)
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of ft yields

dDt = −2b
(∞)
t (Xt −mt)− 1

2b
(∞)
t

λt dSt −
1

2b
(∞)
t

dKt

= −2b
(∞)
t (Xt −mt)− 1

2b
(∞)
t

λt dMt −
2b

(∞)
t (Xt −mt)− 1

2b
(∞)
t

dKt −
1

2b
(∞)
t

dKt

= −ft(Xt) dMt −Dt dKt. (5.26)

We again use ft(x) = gt(x)λt, dK = λ2 d〈M〉 by (5.11) and thatK is deterministic
by Assumption 4.11, then (x+y)2 ≤ 2x2 + 2y2 with (5.22), and finally (5.25) and
E[supt∈[0,T ] X

2
t ] <∞ to obtain

E

[ ∫ T

0

(
ft(Xt)

)2
d〈M〉t

]
=

∫ T

0

E
[(
gt(Xt)

)2]
dKt

≤ 2KT

(
sup
t∈[0,T ]

(g0
t )

2 + E
[

sup
t∈[0,T ]

X2
t

])
<∞.

This shows that (ft(Xt))t∈[0,T ] ∈ L2(M) and hence the process
∫
f(X) dM is a

martingale by Lemma 3.5, 1). So taking expectations in (5.26) and using Fubini’s
theorem with the non-randomness of K from Assumption 4.11 yields

E[Dt] = E

[ ∫ t

0

(−Ds) dKs

]
= −

∫ t

0

E[Ds] dKs, t ∈ [0, T ]. (5.27)

Note that using Dt = Xt −mt and supt∈[0,T ](mt)
2 < ∞ and supt∈[0,T ]

1

2b
(∞)
t

< ∞
from (5.18) and (5.12), respectively, we obtain

sup
t∈[0,T ]

|Dt| ≤ sup
t∈[0,T ]

|Xt|+ sup
t∈[0,T ]

mt.

Then the fact that supt∈[0,T ] |Xt| ∈ L2 obtained in part 1) and L2 ⊆ L1 implies
that supt∈[0,T ] |Dt| is in L1 and

E

[ ∫ T

0

|Dt| dKt

]
≤ E

[
sup
t∈[0,T ]

|Dt|
]
KT <∞.

In view of dP ⊗dK as a measure on Ω× [0, T ], this ensures that Fubini’s theorem
can be applied. Because E[D0] = X0 −m0 = 0, the only solution to the integral
equation (5.27) is the constant process 0 and hence E[Dt] = 0 for all t ∈ [0, T ].
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3) By parts 1) and 2), the equation (5.7) has a unique strong solution X̂ which
is given by the solution X to (5.19). Thus we can define θ̂ by (5.8). Because
θ̂ = f(X), the fact that θ̂ ∈ L2(M) is just a restatement of f(X) ∈ L2(M)

which has been obtained in part 2). In view of ΘS = L2(M) by Lemma 3.6
and Assumption 4.11, we obtain θ̂ ∈ ΘS. As pointed out in (5.9), we also have
G(θ̂) = X̂. Using this in (5.8) yields finally (5.10).

We shall see later that θ̂ is a solution to the MVPS problem (2.1). We also
have from Lemma 5.3 that G(θ̂) = X̂ and therefore

E[Gt(θ̂)] = E[X̂t] =

∫ t

0

1

2b
(∞)
s

dKs, t ∈ [0, T ].

It is interesting to note that this is always nonnegative and actually like K null
at 0 and increasing, because b(∞) ≥ 0. In other words, the expected gains from
the optimal strategy θ̂ increase over time.

Lemma 5.3 summarises the implementation of Recipe 5.2, 1). We proceed to
the next step. Define a process (V̂

(∞)
t )t∈[0,T ] by

V̂
(∞)
t = E[Gt(θ̂)]− b(∞)

t Var[Gt(θ̂)] + c
(∞)
t , t ∈ [0, T ]. (5.28)

Note the analogy of (5.28) and Lemma 5.5 below to (I.5.37) and Lemma I.5.6 in
finite discrete time. We prove below that the process V̂ (∞) is constant. Before
doing that, let us recall a sufficient condition under which a stochastic integral
with respect to a local martingale is a martingale.

Lemma 5.4. If θ, ψ are predictable processes such that
∫
θψ dM is a continuous

local martingale and we have supt∈[0,T ] |θt| ∈ L2 and
∫ T

0
(ψt)

2 d〈M〉t ∈ L1, then
the process

∫
θψ dM is a continuous martingale.

Proof. Since
∫
θψ dM is a continuous local martingale, we apply the BDG in-
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equality, Itô’s isometry and Cauchy–Schwarz to obtain

E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

θsψs dMs

∣∣∣∣] ≤ CE

[〈∫
θψ dM

〉 1
2

T

]
= CE

[(∫ T

0

(θtψt)
2 d〈M〉t

) 1
2
]

≤ CE

[(
sup
t∈[0,T ]

|θt|
)(∫ T

0

(ψt)
2 d〈M〉t

) 1
2
]

≤ CE
[

sup
t∈[0,T ]

|θt|2
] 1

2
E

[ ∫ T

0

(ψt)
2 d〈M〉t

] 1
2

<∞.

This yields the assertion.

Lemma 5.5. Suppose that Assumptions 4.2 and 4.11 are satisfied. Then V̂ (∞) is
constant.

Proof. First, we know by the last assertion in Lemma 5.3 that G(θ̂) = X̂, where
X̂ satisfies (5.7). To ease notation, we work with X̂. Observe from (5.17) that
the expectation process E[X̂] satisfies

E[X̂t] =

∫ t

0

1

2b
(∞)
s

dKs, t ∈ [0, T ]. (5.29)

Also by Itô’s lemma, we get from X̂ = G(θ̂) and dA = λ d〈M〉 in (5.11) that

X̂2
t =

∫ t

0

2X̂s dX̂s + [X̂]t

=

∫ t

0

2X̂sθ̂s dAs +

∫ t

0

2X̂sθ̂s dMs +

∫ t

0

θ̂2
s d〈M〉s

=

∫ t

0

2X̂sθ̂sλs d〈M〉s +

∫ t

0

2X̂sθ̂s dMs +

∫ t

0

θ̂2
s d〈M〉s. (5.30)

We want to take expectations in (5.30) to eliminate the (local) martingale term.
So we need to show that the process (

∫ t
0

2X̂sθ̂s dMs)t∈[0,T ] is a true martingale.
This immediately follows from supt∈[0,T ] |X̂t| ∈ L2 and θ̂ ∈ L2(M) together with
Lemma 5.4. Therefore, using (5.30), the explicit formula (5.8) for θ̂ and Fubini’s
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theorem with dK = λ2 d〈M〉 from (5.11), we get that

E[X̂2
t ] = E

[ ∫ t

0

(
2X̂sθ̂sλs + θ̂2

s

)
d〈M〉s

]
= E

[ ∫ t

0

(θ̂s + X̂sλs)
2 d〈M〉s

]
− E

[ ∫ t

0

(X̂sλs)
2 d〈M〉s

]
= E

[ ∫ t

0

(
E[X̂s] +

1

2b
(∞)
s

)2

λ2
s d〈M〉s

]
− E

[ ∫ t

0

(X̂sλs)
2 d〈M〉s

]
=

∫ t

0

(
1

2b
(∞)
s

+ E[X̂s]

)2

dKs −
∫ t

0

E[X̂2
s ] dKs. (5.31)

Here Fubini’s theorem is applicable because the integrands are positive. Of course,
from the explicit formula (5.29) for E[X̂t] and Itô’s lemma, we have

(E[X̂t])
2 =

∫ t

0

E[X̂s]

b
(∞)
s

dKs. (5.32)

Combining (5.31) and (5.32), we get

Var[X̂t] = E[X̂2
t ]− (E[X̂t])

2

=

∫ t

0

(
1

2b
(∞)
s

+ E[X̂s]

)2

dKs −
∫ t

0

E[X̂2
s ] dKs −

∫ t

0

E[X̂s]

b
(∞)
s

dKs

=

∫ t

0

(
1

(2b
(∞)
s )2

− Var[X̂s]

)
dKs. (5.33)

Applying Itô’s product rule to b(∞)
t Var[X̂t] and using (5.33) and the differential

equation (5.14) for b(∞), we get

b
(∞)
t Var[X̂t] =

∫ t

0

Var[X̂s] db(∞)
s +

∫ t

0

b(∞)
s dVar[X̂s]

=

∫ t

0

Var[X̂s]b
(∞)
s dKs +

∫ t

0

b(∞)
s

(
1

(2b
(∞)
s )2

− Var[X̂s]

)
dKs

=

∫ t

0

1

4b
(∞)
s

dKs. (5.34)

Therefore, we can use the explicit form (5.28) for V̂ (∞) and then combine the
integral representations (5.29), (5.34) and (5.15) for E[X̂], b(∞)Var[X̂] and c(∞),
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respectively, to obtain

V̂
(∞)
t = E[X̂t]− b(∞)

t Var[X̂t] + c
(∞)
t

=

∫ t

0

1

2b
(∞)
s

dKs −
∫ t

0

1

4b
(∞)
s

dKs + c
(∞)
0 −

∫ t

0

1

4b
(∞)
s

dKs

= c
(∞)
0 ,

which is constant as desired.

Our first main result now gives an optimal strategy for the MVPS problem in
explicit form.

Theorem 5.6. Suppose that Assumptions 4.2 and 4.11 are satisfied, meaning
that the price process S is a real-valued continuous semimartingale satisfying the
structure condition (SC) and the MVT process K is deterministic. Then the
process θ̂ defined in (5.10) is an optimal strategy for the MVPS problem (2.1).

Proof. By the optimality of ϑ̂(L) shown in Theorem 4.14, the process Ṽ (L)(ϑ̂(L))

is a martingale. Thus using the explicit form (4.45) for Ṽ (L)(ϑ̂(L)), c(L)
0 → c

(∞)
0

from (5.16), the constancy of V̂ (∞) from Lemma 5.5 and finally the explicit form
(5.28) for V̂ (∞)

T , we have

E(L)[Ṽ
(L)
T (ϑ̂(L))] = Ṽ

(L)
0 = c

(L)
0 −→ c

(∞)
0 = V̂

(∞)
0 = V̂

(∞)
T = E[Jmv

T (θ̂)].

We then conclude the proof by Proposition 5.1.

5.2 Convergence of strategies – preparation

From now on, we turn to the study of the convergence behaviour of the sequence
(ϑ̂(L))L∈N of processes as L → ∞. In this subsection, we do some preparation
work by recalling from Section I.5.1 some formalities of lifting/embedding quant-
ities from L-extended markets to a single infinite product space and collecting
some basic properties of the lifted optimal strategy (still written as) ϑ̂(L) for the
auxiliary problem (5.4).

Below we work only with the probability space (Ω(∞),F (∞),P(∞)) which sup-
ports infinite sequences (F`,(∞))`∈N and (S`,(∞))`∈N of filtrations and processes.
The processes S`,(∞) are independent and all distributed according to S. For
L ∈ N, the filtration G̃(L) given in (2.2) changes to G̃t = σ(∪L`=1F

`,(∞)
t ), and the

filtration G(L) as in (3.18) is now given by G(L)
t = G̃(L)

t ∨N (∞), where N (∞) is the



158 II Mean field approach for MVPS – continuous time

class of P(∞)-null sets in G̃(∞)
T . The properties (5.1) and (5.2) for L =∞ are

Ω = π`,∞(Ω(∞)), F = {E : π−1
`,∞(E) ∈ F (∞)}, P = P(∞) ◦ π−1

`,(∞), (5.35)

Y`(ω(L)) = Y `,⊗∞(ω(L)) = Y (ω`), (5.36)

for Y ∈ {S(∞),M(∞),A(∞), 〈M(∞)〉,λ(∞),K(∞)} and Y = {S,M,A, 〈M〉, λ,K}.
Recall from (2.14) that we have defined X⊗L for both L ∈ N and L =∞ by

X`,⊗L = X ◦ π`,L, ` = 1, . . . , L. (5.37)

In the rest of this chapter, we drop the superscript (∞) and write

F`,(∞) = F`, ` ∈ N, (5.38)

(S(∞),M(∞),A(∞), 〈M(∞)〉,λ(∞),K(∞)) = (S,M,A, 〈M〉,λ,K). (5.39)

Following the above convention, we use a slight modification of the arguments
in Lemma 3.13, 1) and the F`-adaptedness of S` to obtain that the canonical
decompositions of S` with respect to G(L) and F` are the same as long as ` ≤ L.
We always refer to S` = S0 + M` + A` as the canonical decomposition of S` with
respect to any G(L) such that ` ≤ L or equivalently with respect to F`.

For a quantity X(L) and L ∈ N, the superscript (L) indicates that it is originally
defined on (Ω(L),F (L)),P(L)) and is identified with a quantity still written as X(L)

on (Ω(∞),F (∞),P(∞)) via

X(L)(ω1, ω2, . . . ) = X(L)(ω1, ω2, . . . , ωL). (5.40)

We also make X(L) R∞-valued by setting X`,(L) ≡ 0 for ` > L. These two practices
are always assumed in the rest of the chapter so that we can use results from
Section 4 in the current setting and thus safely work with the probability space
(Ω(∞),F (∞),P(∞)) alone. For ease of notation, we write P and E for P(∞) and
E(∞), respectively.

Now we lift θ̂ which lives on (Ω,F , P ) to the infinite product space via (5.37)
as in discrete time to obtain θ̂⊗∞. Using the explicit expression (5.10) for θ̂ and
P = P ◦ π−1

`,∞ from (5.35), we get explicitly

θ̂`,⊗∞t = −2b
(∞)
t (G`

t(θ̂
⊗∞)− E[G`

t(θ̂
⊗∞)])− 1

2b
(∞)
t

λ`t, ` ∈ N, t ∈ [0, T ]. (5.41)
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As in (5.9), we also get

G`(θ̂⊗∞)(ω(∞)) =
(
G(θ̂)

`,⊗∞)
(ω(∞)) = G(θ̂)(ω`), ` ∈ N. (5.42)

For convenience, we also recall from (4.49) the explicit expression for ϑ̂(L) that
for ` = 1, . . . , L,

ϑ̂
`,(L)
t = −2b

(L)
t (G`

t(ϑ̂
(L))− em(Gt(ϑ̂

(L))))− 1

2b
(L)
t (1− L−1)

λ`t, t ∈ [0, T ], (5.43)

and ϑ̂`,(L) ≡ 0 for ` > L. The explicit definitions

em(x) =
1

L

L∑
`=1

x`, evar(x) = em(x2)−
(
em(x)

)2 (5.44)

are frequently used, and so is the property in Lemma 4.7 that

sup
t∈[0,T ]

b
(L)
t and sup

t∈[0,T ]

1

b
(L)
t

are bounded uniformly in ω ∈ Ω, (5.45)

whenever Assumption 4.2 is satisfied and the MVT process K is bounded. Fi-
nally, due to dK = λ dA = (λ)2 d〈M〉 from (5.11), the relation (5.36) between
(A`, 〈M`〉,λ`,K`) and (A, 〈M〉, λ,K), and the fact that K is deterministic by
Assumption 4.11, we have

dK = λ` dA` = (λ`)2 d〈M`〉, ` ∈ N. (5.46)

Lemma 5.7. Suppose that Assumptions 4.2 and 4.11 are satisfied. Then we have
for L ∈ N and ` = 1, . . . , L that

E[G`
t(ϑ̂

(L))] = E
[
em
(
Gt(ϑ̂

(L))
)]
, (5.47)

E[G`
t(ϑ̂

(L))2] = E
[
em
(
Gt(ϑ̂

(L))2
)]
. (5.48)

In particular, the random variables (G`
t(ϑ̂

(L))`=1,...,L all have the same first two
moments for t ∈ [0, T ].

Proof. Let us prove (5.47) and (5.48) separately.
1) For (5.47), we directly use the explicit expression (5.43) for ϑ̂(L), then

dK = λ` dA` from (5.46), and finally Fubini’s theorem with deterministic K to
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compute

E[G`
t(ϑ̂

(L))]

= E

[ ∫ t

0

ϑ̂`,(L)
s dA`

s +

∫ t

0

ϑ̂`,(L)
s dM`

s

]
= E

[ ∫ t

0

ϑ̂`,(L)
s dA`

s

]
= −

∫ t

0

E

[
G`
t(ϑ̂

(L))− em(Gt(ϑ̂
(L)))

1− L−1
− 1

2b
(L)
s (1− L−1)

]
dKs. (5.49)

The second equality uses that
∫
ϑ̂`,(L) dM` are martingales for ` = 1, . . . , L in

the infinite product space due to ϑ̂(L) ∈ Θ
(L)
S = L2(M) which follows from

Corollary 4.10, Lemma 3.17 and the embedding (5.40) of the L-extended market
into the infinite product space. The application of Fubini’s theorem uses∫ t

0

E

[∣∣∣∣G`
t(ϑ̂

(L))− em(Gt(ϑ̂
(L)))

1− L−1

∣∣∣∣+
1

2b
(L)
s (1− L−1)

]
dKs <∞ (5.50)

due to supt∈[0,T ] |G`
t(ϑ̂

(L))| ∈ L2 for ` = 1, . . . , L, hence by Cauchy–Schwarz also
supt∈[0,T ] |em(G`

t(ϑ̂
(L)))| ∈ L2, and finally the boundedness of supt∈[0,T ]

1

b
(L)
t

from
(5.45) and the boundedness of K implied by its non-randomness from Assump-
tion 4.11. Then inserting the definition (5.44) of em(x) into (5.49) and using that
definition again yields

E
[
em
(
Gt(ϑ̂

(L))
)]

= − 1

L

L∑
`=1

∫ t

0

E

[
G`
t(ϑ̂

(L))− em(Gt(ϑ̂
(L)))

1− L−1

− 1

2b
(L)
s (1− L−1)

]
dKs

=

∫ t

0

1

2b
(L)
s (1− L−1)

dKs. (5.51)

Set Dt = E[G`
t(ϑ̂

(L))−em(Gt(ϑ̂
(L)))] for t ∈ [0, T ]. We then subtract (5.51) from

(5.49) to obtain

Dt = −
∫ t

0

Ds

1− L−1
dKs.

Because D0 = 0, we obtain by the uniqueness of the solution (in the class of
continuous (or even RCLL) processes) to this integral equation that Dt = 0 for
all t ∈ [0, T ]. This implies the desired identity E[G`

t(ϑ̂
(L))] = E[em(Gt(ϑ̂

(L)))]
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for all ` = 1, . . . , L.
2) To prove (5.48), we first establish the identities

E
[(

G`
t(ϑ̂

(L))− em
(
Gt(ϑ̂

(L)
))2]

= E
[
evar

(
Gt(ϑ̂

(L))
)]
, (5.52)

E
[
G`
t(ϑ̂

(L))em
(
Gt(ϑ̂

(L))
)]

= E
[(

em
(
Gt(ϑ̂

(L))
))2]

, (5.53)

for ` = 1, . . . , L and t ∈ [0, T ] in order. The desired identity (5.48) is a direct
consequence of (5.52) and (5.53).

Like in part 1), we consider the difference between the left- and right-hand
sides in (5.52). We show that it satisfies a linear integral equation starting from 0
and thus must be identically 0. This gives (5.52). For this, we need to find integral
representations for E[(G`

t(ϑ̂
(L)))2],E[G`

t(ϑ̂
(L))em(Gt(ϑ̂

(L)))],E[(em(Gt(ϑ̂
(L))))2]

and E[evar(Gt(ϑ̂
(L)))].

First, we apply Itô’s lemma and use the explicit formula (5.43) for ϑ̂(L), the
identity dK = λ` dA` from (5.46) and Fubini’s theorem to compute

E
[(

G`
t(ϑ̂

(L))
)2]

= 2E

[ ∫ t

0

G`
s(ϑ̂

(L))ϑ̂`,(L)
s dS`s

]
+ E

[ ∫ t

0

(ϑ̂`,(L)
s )2 d〈M`〉s

]
=: 2I`a +Q`

= 2

∫ t

0

(
− E[(G`

s(ϑ̂
(L)))2 −G`

s(ϑ̂
(L))em(Gs(ϑ̂

(L)))]

1− L−1

+
E[G`

s(ϑ̂
(L))]

2b
(L)
s (1− L−1)

)
dKs +Q`, (5.54)

where I`a and Q` are defined by

I`a := E

[ ∫ t

0

G`
s(ϑ̂

(L))ϑ̂`,(L)
s dS`s

]
, (5.55)

Q` := E

[ ∫ t

0

(ϑ̂`,(L)
s )2 d〈M`〉s

]
. (5.56)

The third equality in (5.54) also uses that
∫

G`(ϑ̂(L))ϑ̂`(L) dM` are martingales
for ` = 1, . . . , L by Lemma 5.4 because supt∈[0,T ] |G`

t(ϑ̂
(L))| ∈ L2 and ϑ̂(L) is in

L2(M). These integrability properties are also used to verify that the integrand
of the first integral in the last equality of (5.54) is in L1(P ⊗ K) so that Fu-
bini’s theorem can be applied. The term Q` defined in (5.56) can be computed
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similarly as

Q` = E

[ ∫ t

0

(ϑ̂`,(L)
s )2 d〈M`〉s

]
=

∫ t

0

E

[(
G`
s(ϑ̂

(L))− em(Gs(ϑ̂
(L)))

1− L−1

)2

− G`
s(ϑ̂

(L))− em(Gs(ϑ̂
(L)))

b
(L)
s (1− L−1)2

+

(
1

2b
(L)
s (1− L−1)

)2]
dKs

=

∫ t

0

E

[(
G`
s(ϑ̂

(L))− em(Gs(ϑ̂
(L)))

1− L−1

)2

+

(
1

2b
(L)
s (1− L−1)

)2]
dKs. (5.57)

The last line also uses that the expectations of G`
t(ϑ̂

(L)) and em(Gt(ϑ̂
(L))) are

the same by (5.47). Averaging over the formulas (5.54) and (5.57) for I`a and Q`,
respectively, and using evar(x) = em(x2)− (em(x))2 from (5.44), we also obtain

1

L

L∑
`=1

I`a =

∫ t

0

−E[evar(Gs(ϑ̂
(L)))]

1− L−1
+

E[em(Gs(ϑ̂
(L)))]

2b
(L)
s (1− L−1)

dKs, (5.58)

1

L

L∑
`=1

Q` =

∫ t

0

E

[
evar(Gs(ϑ̂

(L)))

(1− L−1)2
+

(
1

2b
(L)
s (1− L−1)

)2]
dKs, (5.59)

respectively. These identities are used multiple times later.
Second, we use the product rule with the continuity of the processes from

Assumption 4.2, and the definition (5.44) of the empirical average, and finally
〈M`,Mm〉 ≡ 0 for ` 6= m from Lemma 3.13, 2) to get

E
[
G`
t(ϑ̂

(L))em
(
Gt(ϑ̂

(L))
)]

= E

[
1

L

L∑
m=1

∫ t

0

G`
s(ϑ̂

(L))ϑ̂m,(L)
s dAm

s

]
+ E

[ ∫ t

0

em
(
Gs(ϑ̂

(L))
)
ϑ̂`,(L)
s dA`

s

]
+ E

[
1

L

∫ t

0

(ϑ̂`,(L)
s )2 d〈M`〉s

]
=: I`b + I`c + L−1Q`, (5.60)
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where

I`b = E

[
1

L

L∑
m=1

∫ t

0

G`
s(ϑ̂

(L))ϑ̂m,(L)
s dAm

s

]
, (5.61)

I`c = E

[ ∫ t

0

em
(
Gs(ϑ̂

(L))
)
ϑ̂`,(L)
s dA`

s

]
(5.62)

and Q` = E[
∫ t

0
(ϑ̂`,(L))2

s d〈M`〉s] is from (5.56). The first equality also uses that all
the integral terms with respect to Mm are martingales for m = 1, . . . , L due to a
similar reasoning as for (5.54). For the first term I`b , we use the explicit formula
(5.43) for ϑ̂(L), then dK = (λm)2 d〈Mm〉 for m = 1, . . . , L from (5.46), next the
definition (5.44) of the empirical average and finally Fubini’s theorem to obtain

I`b = E

[
1

L

L∑
m=1

∫ t

0

(
−G`

s(ϑ̂
(L))

× 2b
(L)
s (Gm

s (ϑ̂(L))− em(Gs(ϑ̂
(L)))− 1

2b
(L)
s (1− L−1)

(λms )2

)
d〈Mm〉s

]

= E

[
1

L

L∑
m=1

∫ t

0

G`
s(ϑ̂

(L))
1

2b
(L)
s (1− L−1)

dKs

]
=

∫ t

0

E[G`
s(ϑ̂

(L))]

2b
(L)
s (1− L−1)

dKs.

The applicability of Fubini’s theorem is ensured because supt∈[0,T ] |G`
t(ϑ̂

(L))| is in
L2, similarly as in (5.50). For the second term I`c , we analogously obtain

I`c =

∫ t

0

(
− E[em(Gs(ϑ̂

(L)))G`
s(ϑ̂

(L))− (em(Gs(ϑ̂
(L))))2]

1− L−1

+
E[em(Gs(ϑ̂

(L)))]

2b
(L)
s (1− L−1)

)
dKs.

Averaging in the above display yields

1

L

L∑
`=1

I`c =

∫ t

0

E[em(Gs(ϑ̂
(L)))]

2b
(L)
s (1− L−1)

dKs. (5.63)

We insert I`b and I`c from above into E[G`
t(ϑ̂

(L))em(Gt(ϑ̂
(L)))] = I`b + I`c +L−1Q`

due to (5.60) and use that the expectations of G`
t(ϑ̂

(L)) and em(Gt(ϑ̂
(L))) are the
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same from (5.47) to obtain

E[G`
t(ϑ̂

(L))em
(
Gt(ϑ̂

(L))
)
]

=

∫ t

0

(
E[G`

s(ϑ̂
(L))]

b
(L)
s (1− L−1)

− E[em(Gs(ϑ̂
(L)))G`

s(ϑ̂
(L))− (em(Gs(ϑ̂

(L))))2]

1− L−1

)
dKs + L−1Q`. (5.64)

Third, we seek an integral representation for E[(em(Gt(ϑ̂
(L))))2]. Recall from

(4.13) that

d

((
em
(
G(ϑ̂(L)

))2
)

=
1

L

L∑
`=1

2em
(
G(ϑ̂(L)

)
ϑ̂`,(L) dS` +

1

L2

L∑
`=1

(ϑ̂`,(L))2 d〈M`〉.

Using the definitions (5.62) and (5.56) for I`2 and Q`, respectively, we obtain

E
[(

em
(
Gt(ϑ̂

(L)
))2]

=
1

L

L∑
`=1

2I`c +
1

L2

L∑
`=1

Q`. (5.65)

Now we can get an integral formula for E[(G`
t(ϑ̂

(L))− em(Gt(ϑ̂
(L))))2] in (5.52).

Using (5.54) for E[(G`
t(ϑ̂

(L)))2], (5.64) for E[G`
t(ϑ̂

(L))em(Gt(ϑ̂
(L)))] and (5.65)

for E[(em(Gt(ϑ̂
(L))))2] yields

E
[(

G`
t(ϑ̂

(L))− em
(
Gt(ϑ̂

(L)
))2]

= E
[(

G`
t(ϑ̂

(L))
)2]− 2E[G`

t(ϑ̂
(L))em

(
Gt(ϑ̂

(L))
)
] + E

[(
em
(
Gt(ϑ̂

(L)
))2]

= 2

∫ t

0

(
− E[(G`

s(ϑ̂
(L)))2 −G`

s(ϑ̂
(L))em(Gs(ϑ̂

(L)))]

1− L−1
+

E[G`
s(ϑ̂

(L))]

2b
(L)
s (1− L−1)

)
dKs

+Q`

− 2

∫ t

0

(
E[G`

s(ϑ̂
(L))]

b
(L)
s (1− L−1)

− E[em(Gs(ϑ̂
(L)))G`

s(ϑ̂
(L))− (em(Gs(ϑ̂

(L))))2]

1− L−1

)
dKs

− 2L−1Q` +
1

L

L∑
m=1

2Imc +
1

L2

L∑
m=1

Qm

= −
∫ t

0

E[G`
s(ϑ̂

(L))]

b
(L)
s (1− L−1)

dKs − 2

∫ t

0

E[(G`
s(ϑ̂

(L))− em(Gs(ϑ̂
(L)))2]

1− L−1
dKs

+ (1− 2L−1)Q` +
1

L

L∑
m=1

2Imc +
1

L2

L∑
m=1

Qm. (5.66)
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Fourth, we look for an expression for E[evar(Gt(ϑ̂
(L)))]. Recall from (4.14)

that the dynamics of evar(G(ϑ̂(L))) is given by

d
(

evar
(
G(ϑ̂(L))

))
=

1

L

L∑
m=1

(
2
(
Gm(ϑ̂(L))− em

(
G(ϑ̂(L))

))
ϑ̂m,(L) dSm

+ (1− L−1)(ϑ̂m,(L))2 d〈Mm〉
)
.

Using the definitions (5.55) and (5.56) of I`a and Q`, respectively, yields

E
[
evar

(
Gt(ϑ̂

(L))
)]

=
1

L

L∑
m=1

2(Ima − Imc ) +
1− L−1

L

L∑
m=1

Qm. (5.67)

This ends the preparation; we now prove the desired formula (5.52). We set
Ft = E[(G`

t(ϑ̂
(L))−em(Gt(ϑ̂

(L))))2−evar(Gt(ϑ̂
(L)))]. Subtracting the expression

(5.67) for E[evar(Gt(ϑ̂
(L)))] from (5.66) for E[(G`

t(ϑ̂
(L)) − em(Gt(ϑ̂

(L))))2], we
obtain

Ft = −
∫ t

0

E[G`
s(ϑ̂

(L))]

b
(L)
s (1− L−1)

dKs − 2

∫ t

0

E[(G`
s(ϑ̂

(L))− em(Gs(ϑ̂
(L)))2]

1− L−1
dKs

+ (1− 2L−1)Q` +
1

L

L∑
m=1

2Imc +
1

L2

L∑
m=1

Qm − 1

L

L∑
m=1

2(Ima − Imc )

− 1− L−1

L

L∑
m=1

Qm

= −2

∫ t

0

E[(G`
s(ϑ̂

(L))− em(Gs(ϑ̂
(L)))2 − evar(Gs(ϑ̂

(L))]

1− L−1
dKs

+ (1− 2L−1)Q` +
1

L2

L∑
m=1

Qm − 1− L−1

L

L∑
m=1

Qm. (5.68)

In the second equality, we use the formulas (5.58) and (5.63) for 1
L

∑L
m=1 I

m
a and
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1
L

∑L
m=1 I

m
c , respectively, to derive the identity

1

L

L∑
m=1

(4Imc − 2Ima ) = 2

∫ t

0

E[em(Gs(ϑ̂
(L)))]

b
(L)
s (1− L−1)

dKs

+ 2

∫ t

0

E[evar(Gs(ϑ̂
(L)))]

1− L−1
− E[em(Gs(ϑ̂

(L)))]

2b
(L)
s (1− L−1)

dKs

=

∫ t

0

E[em(Gs(ϑ̂
(L)))]

b
(L)
s (1− L−1)

dKs + 2

∫ t

0

E[evar(Gs(ϑ̂
(L)))]

1− L−1

and then invoke the identity E[G`
s(ϑ̂

(L))] = E[em(Gs(ϑ̂
(L)))] for s ∈ [0, t] asserted

in part 1). Using the expressions (5.57) forQ` and (5.59) for 1
L

∑L
m=1Q

m simplifies
the last line to

(1− 2L−1)Q` +
1

L2

L∑
m=1

Qm − 1− L−1

L

L∑
m=1

Qm

= (1− 2L−1)

(
Q` − 1

L

L∑
m=1

Qm

)
= (1− 2L−1)

∫ t

0

E[(G`
s(ϑ̂

(L))− em(Gs(ϑ̂
(L))))2 − evar(Gs(ϑ̂

(L)))]

(1− L−1)2
dKs. (5.69)

Inserting (5.69) into (5.68) yields

Ft = − 1

(1− L−1)2

∫ t

0

Fs dKs, t ∈ [0, T ].

Because F0 = 0, we get that Ft = 0 for all t ∈ [0, T ] is the unique solution to the
above integral equation. This proves (5.52).

We use a similar technique to prove (5.53). Set

Ht = E
[
G`
t(ϑ̂

(L))em
(
Gt(ϑ̂

(L))
)
−
(

em(G`
t(ϑ̂

(L))
))2]

, t ∈ [0, T ].

Note that due to (5.52) proved just above, we deduce from the third equality of
(5.69) that

Q` − 1

L

L∑
m=1

Qm =

∫ t

0

E[(G`
s(ϑ̂

(L))− em(Gs(ϑ̂
(L))))2 − evar(Gs(ϑ̂

(L)))]

(1− L−1)2
dKs

= 0.
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Subtracting E[(em(Gt(ϑ̂
(L))))2] given in (5.65) from E[G`

t(ϑ̂
(L))em(Gt(ϑ̂

(L)))]

given in (5.64), and then using 1
L

∑L
m=1 2Imc =

∫ t
0

E[em(Gs(ϑ̂(L)))]

b
(L)
s (1−L−1)

dKs from the
explicit formula (5.63) and finally the above display, we obtain

Ht =

∫ t

0

(
E[G`

s(ϑ̂
(L))]

b
(L)
s (1− L−1)

− E[em(Gs(ϑ̂
(L)))G`

s(ϑ̂
(L))− (em(Gs(ϑ̂

(L))))2]

1− L−1

)
dKs

+ L−1Q` − 1

L

L∑
m=1

2Imc −
1

L2

L∑
m=1

Qm

= −
∫ t

0

Hs

1− L−1
dKs + L−1

(
Q` − 1

L

L∑
m=1

Qm
)

= −
∫ t

0

Hs

1− L−1
dKs.

Again because H0 = 0, the unique solution to the above integral equation is
Ht = 0 for t ∈ [0, T ]. This proves (5.53).

5.3 Convergence of strategies – main results

We are ready to prove the main result of these two subsections: for ` ∈ N,

max
`=1,...,L

E
[

sup
t∈[0,T ]

(
G`
t(ϑ̂

(L))−G`
t(θ̂
⊗∞)

)2
]
−→ 0 as L→∞.

Suppose that Assumptions 4.2 and 4.11 are satisfied so that S is a continuous
semimartingale satisfying the structure condition (SC) and the MVT process K
is deterministic. Define the process m(L) by m(L)

t := E[G`
t(ϑ̂

(L))] for t ∈ [0, T ].
By Lemma 5.7, (5.47), this quantity is equal to E[em(Gt(ϑ̂

(L)))] and thus does
not depend on `. Using the explicit formula (5.51) for E[em(Gt(ϑ̂

(L)))], we obtain
for t ∈ [0, T ] that

m
(L)
t = E[G`

t(ϑ̂
(L))] = E

[
em
(
G`
t(ϑ̂

(L))
)]

=

∫ t

0

1

2b
(L)
s (1− L−1)

dKs. (5.70)

Because θ̂`,⊗∞(ω(∞)) = θ̂(ω`), (G`(θ̂⊗∞))(ω(∞)) = G(θ̂)(ω`) and P = P ◦ π−1
`,∞

from (5.37), (5.42) and (5.35), respectively, the expectation E[G`
t(θ̂
⊗∞)] is also

independent of `. Hence we can define m(∞) as below and use the identity
G`(θ̂⊗∞)(ω(∞)) = X̂(ω`) from Lemma 5.3 and the explicit expression (5.17) for
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E[X̂t] to obtain

m
(∞)
t := E[G`

t(θ̂
⊗∞)] = E[Gt(θ̂)] = E[X̂t] =

∫ t

0

1

2b
(∞)
s

dKs, t ∈ [0, T ]. (5.71)

The elementary inequality | exp(x)−1| = O(x) as x→ 0 yields with x = ±Kt−KT
L−1

that

sup
t∈[0,T ]

∣∣∣∣ exp

(
± Kt −KT

1− L−1

)
− exp

(
± (Kt −KT )

)∣∣∣∣
= sup

t∈[0,T ]

{
exp

(
± (Kt −KT )

)(
exp

(
± Kt −KT

L− 1

)
− 1

)}
= O(L−1).

Then using b(L)
t = ξ exp(Kt−KT

1−L−1 ) from (4.26), b(∞)
t = ξ exp(Kt −KT ) from (5.12)

and the above display, we recall and refine the convergence of b(L) to b(∞) given
in (5.16) as

sup
t∈[0,T ]

|b(L)
t − b

(∞)
t |+ sup

t∈[0,T ]

∣∣∣ 1

b
(L)
t

− 1

b
(∞)
t

∣∣∣ = O(L−1) as L→∞. (5.72)

This in turn yields

sup
t∈[0,T ]

|m(L)
t −m

(∞)
t | ≤ KT

(
1

1− L−1
sup
s∈[0,T ]

∣∣∣∣ 1

2b
(L)
s

− 1

2b
(∞)
s

∣∣∣∣
+

∣∣∣∣ 1

1− L−1
− 1

∣∣∣∣ sup
s∈[0,T ]

1

2b
(∞)
s

)
= O(L−1) as L→∞. (5.73)

Proposition 5.8. Suppose that Assumptions 4.2 and 4.11 are satisfied. Then

E
[

sup
t∈[0,T ]

(
em
(
Gt(ϑ̂

(L))
)
−m(L)

t

)2]
= O(L−1), (5.74)

E
[

sup
t∈[0,T ]

(
em
(
Gt(ϑ̂

(L))
)
−m(∞)

t

)2]
= O(L−1). (5.75)

as L→∞.

Proof. The second property (5.75) immediately follows from (5.74) and the es-
timate supt∈[0,T ] |m

(L)
t −m

(∞)
t | = O(L−1) given in (5.73); so we only need to prove

(5.74). We use the product rule and that m(L) has finite variation by its explicit
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formula (5.70) to obtain

(m
(L)
t )2 = 2

∫ t

0

m(L)
s dm(L)

s =

∫ t

0

m
(L)
s

b
(L)
s (1− L−1)

dKs. (5.76)

On the other hand, using the definition (5.44) of em(x), then (x+y)2 ≤ 2x2 +2y2,
the formulas for ϑ̂(L) from (5.43) and m(L) from (5.70), respectively, and finally
dK = λ` dA` from (5.46) yields(

em
(
Gt(ϑ̂

(L))
)
−m(L)

t

)2

=

(
1

L

L∑
`=1

∫ t

0

ϑ̂`,(L)
s dM`

s +
1

L

L∑
`=1

∫ t

0

ϑ̂`,(L)
s dA`

s −m
(L)
t

)2

≤ 2

(
1

L

L∑
`=1

∫ t

0

ϑ̂`,(L)
s dM`

s

)2

+ 2

(
1

L

L∑
`=1

∫ t

0

(
− 2b

(L)
s (G`

s(ϑ̂
(L))− em(Gs(ϑ̂

(L))))− 1

2b
(L)
s (1− L−1)

− 1

2b
(L)
s (1− L−1)

)
dKs

)2

= 2

(
1

L

L∑
`=1

∫ t

0

ϑ̂`,(L)
s dM`

s

)2

.

The last equality again uses the definition (5.44) of the empirical average. Hence
due to the above inequality, the BDG inequality and 〈M`,Mm〉 ≡ 0 for ` 6= m

from Lemma 3.13, 2), we obtain

E
[

sup
t∈[0,T ]

(
em
(
Gt(ϑ̂

(L))
)
−m(L)

t

)2]
≤ 2E

[
sup
t∈[0,T ]

(
1

L

L∑
`=1

∫ t

0

ϑ̂`,(L)
s dM`

s

)2]

≤ 8E

[
1

L2

L∑
`=1

∫ T

0

(ϑ̂`,(L)
s )2 d〈M`〉s

]
.

We now claim that

sup
L∈N,L≥2

(
E

[
1

L

L∑
`=1

∫ T

0

(ϑ̂`,(L)
s )2 d〈M`〉s

])
<∞. (5.77)

Suppose (5.77) is true. Then inserting this bound into the inequality just before
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gives

E
[

sup
t∈[0,T ]

(
em
(
Gt(ϑ̂

(L))
)
−m(L)

t

)2]
≤ 8

L
sup

L∈N,L≥2

(
E

[
1

L

L∑
`=1

∫ T

0

(ϑ̂`,(L)
s )2 d〈M`〉s

])
= O(L−1)

as L→∞ as desired. Now let us prove (5.77). By the definition (5.56) of Q` and
the formula (5.59) for 1

L

∑L
`=1Q

`, we get

E

[
1

L

L∑
`=1

∫ T

0

(ϑ̂`,(L)
s )2 d〈M`〉s

]

=
1

L

L∑
`=1

Q`

=

∫ T

0

E

[
evar(Gs(ϑ̂

(L)))

(1− L−1)2
+

(
1

2b
(L)
s (1− L−1)

)2]
dKs.

Because supt∈[0,T ] | 1

b
(L)
t

− 1

b
(∞)
t

| = O(L−1) by (5.72), we have obviously

sup
L∈N,L≥2

sup
t∈[0,T ]

1

2b
(L)
t

<∞. (5.78)

Using this observation in the equation above and also that KT is bounded (even
deterministic), we obtain that a sufficient condition for (5.77) is

sup
L∈N,L≥2

sup
t∈[0,T ]

E
[
evar

(
Gt(ϑ̂

(L))
)
] <∞. (5.79)

To prove the latter, we insert the explicit formulas (5.58) for 1
L

∑L
m=1 I

m
a , (5.63)

for 1
L

∑L
m=1 I

m
c and (5.59) for 1

L

∑L
m=1Q

m into the identity

E
[
evar

(
Gt(ϑ̂

(L))
)]

=
1

L

L∑
m=1

(
2Ima − 2Imc − (1− L−1)Qm

)
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from (5.67) and due to the nonnegativity of E[evar(Gt(ϑ̂
(L)))] obtain

E
[
evar

(
Gt(ϑ̂

(L))
)]

= −2

∫ t

0

E[evar(Gs(ϑ̂
(L)))]

1− L−1
dKs

+ (1− L−1)

∫ t

0

E

[
evar(Gs(ϑ̂

(L)))

(1− L−1)2
+

(
1

2b
(L)
s (1− L−1)

)2]
dKs

≤
∫ t

0

(
1

2b
(L)
s (1− L−1)

)2

dKs.

The last line also uses that b(L) is non-random by Corollary 4.12 because the MVT
process K is deterministic due to Assumption 4.11. Thus using the elementary
fact that (1− L−1)2 ≥ 1

4
for L ≥ 2 and (5.78) in the above inequality yields

sup
L∈N,L≥2

sup
t∈[0,T ]

E
[
evar

(
Gt(ϑ̂

(L))
)]
≤ KT sup

L∈N,L≥2
sup
t∈[0,T ]

(
1

b
(L)
t

)2

<∞.

This proves (5.79) and completes the proof.

Theorem 5.9. Suppose that Assumptions 4.2 and 4.11 are satisfied, meaning
that S is square-integrable and satisfies the structure condition (SC) with a de-
terministic MVT process K. Then ϑ̂(L) → θ̂⊗∞ uniformly in ` in the sense that

max
`=1,...,L

E
[

sup
t∈[0,T ]

(
G`
t(ϑ̂

(L))−G`
t(θ̂
⊗∞)

)2]
= O(L−1) −→ 0 as L→∞. (5.80)

Remark 5.10. As in discrete time, we again take a look at (5.80) from a fin-
ancial perspective. Because the processes G`(ϑ̂(L)) and G`(θ̂⊗∞) represent the
gains of the two strategies, the convergence (5.80) simply says that the maximum
difference between the profits and losses of the two strategies vanishes in the limit
(in the above sense).

Proof. The idea of the proof is analogous to that of Proposition 5.8. We start
by writing the gains process as a stochastic integral and use the Cauchy–Schwarz
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inequality to obtain

(
G`
t(ϑ̂

(L))−G`
t(θ̂
⊗∞)

)2
=

(∫ t

0

(ϑ̂`,(L)
s − θ̂`,⊗∞s ) dS`s

)2

≤ 2

(∫ t

0

(ϑ̂`,(L)
s − θ̂`,⊗∞s ) dM`

s

)2

+ 2

(∫ t

0

(ϑ̂`,(L)
s − θ̂`,⊗∞s ) dA`

s

)2

= 2Iat + 2Ibt . (5.81)

We claim for i ∈ {a, b} that for some constant C > 0 not depending on `,

E
[

sup
s∈[0,t]

I is

]
≤ O(L−1) +

∫ t

0

CE
[

sup
r∈[0,s]

(
G`
r(ϑ̂

(L))−G`
r(θ̂
⊗∞)

)2
]

dKs (5.82)

as L → ∞. Then the main assertion (5.80) follows from combining (5.81) and
(5.82), taking the supremum over ` and using Gronwall’s inequality.

Let us discuss the cases i ∈ {a, b} separately. For i = 1, we apply the BDG
inequality, then use the formulas (5.43) for ϑ̂`,(L) and (5.41) for θ̂`,⊗∞, and finally
invoke K =

∫
(λ`)2 d〈M`〉 from (5.46) and Fubini’s theorem to estimate

E
[

sup
s∈[0,t]

Ias

]
≤ 4E

[ ∫ t

0

(ϑ̂`,(L)
s − θ̂`,⊗∞s )2 d〈M`〉s

]
= 4

∫ t

0

E

[(
− 2b

(L)
s (G`

s(ϑ
(L))− em(Gs(ϑ

(L))))− 1

2b
(L)
s (1− L−1)

+
2b

(∞)
s (G`

s(θ̂
⊗∞)−m(∞)

s )− 1

2b
(∞)
s

)2]
dKs

≤ 12

(∫ t

0

E

[(
− G`

s(ϑ̂
(L))

1− L−1
+ G`

s(θ̂
⊗∞)

)2
]

+ E

[(em(Gs(ϑ̂
(L)))

1− L−1
−m(∞)

s

)2
]

+
( 1

2b
(L)
s (1− L−1)

− 1

2b
(∞)
s

)2

dKs

)
. (5.83)

Above, we have grouped the right-hand side in the equality as a sum of three
terms and then used the Cauchy–Schwarz inequality to obtain the last inequality.
The convergence results from Proposition 5.8, (5.75) and from (5.72) imply that
the sum of the last two terms in the last inequality of (5.83) is O(L−1). But due
to the appearance of the factor 1

1−L−1 , we nevertheless show this claim. Using
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first m(∞)
s = 1

1−L−1m
(∞)
s − L−1

1−L−1m
(∞)
s and (x+y)2 ≤ 2x2 + 2y2, then the fact that

1
1−L−1 ≤ 2 for L ≥ 2, and finally the convergence result in Proposition 5.8, (5.75)
and supt∈[0,T ] m

(∞)
t <∞ from (5.71) gives

∫ t

0

E

[(
em(Gs(ϑ̂

(L)))

1− L−1
−m(∞)

s

)2]
dKs

≤ 2

∫ t

0

E

[(
em(Gs(ϑ̂

(L)))−m(∞)
s

1− L−1

)2]
dKs + 2

∫ t

0

(
L−1

1− L−1
m(∞)
s

)2

dKs

≤ 8KT

(
E
[

sup
t∈[0,T ]

(
em
(
Gt(ϑ̂

(L))
)
−m(∞)

t

)2]
+ L−2 sup

t∈[0,T ]

(m
(∞)
t )2

)
= O(L−1) as L→∞. (5.84)

Similarly, we use supt∈[0,T ] | 1

b
(L)
t

− 1

b
(∞)
t

| = O(L−1) as L→∞ from (5.72) to obtain

∫ t

0

(
1

2b
(L)
s (1− L−1)

− 1

2b
(∞)
s

)2

dKs ≤ 2

∫ t

0

(
1

2b
(L)
s

− 1

2b
(∞)
s

)2
1

(1− L−1)2
dKs

+ 2

∫ t

0

(
L−1

2b
(∞)
s (1− L−1)

)2

dKs

≤ 8KT

(
sup
t∈[0,T ]

(
1

2b
(L)
s

− 1

2b
(∞)
s

)2

+ L−2 sup
t∈[0,T ]

(
1

b
(∞)
s

)2
)

= O(L−2) as L→∞. (5.85)

With the same trick applied to the first term in (5.83), we obtain

∫ t

0

E

[(
− G`

s(ϑ̂
(L))

1− L−1
+ G`

s(θ̂
⊗∞)

)2]
dKs

≤ 2

∫ t

0

E

[(
G`
s(ϑ̂

(L))−G`
s(θ̂
⊗∞)

1− L−1

)2]
dKs + 2

∫ t

0

E

[(
L−1G`

s(θ̂
⊗∞)

1− L−1

)2]
dKs

≤ 8

∫ t

0

E
[

sup
r∈[0,s]

(
G`
s(ϑ̂

(L))−G`
s(θ̂
⊗∞)

)2
]

dKs + 8KTL
−2 sup

t∈[0,T ]

E
[(

G`
t(θ̂
⊗∞)

)2]
= 8

∫ t

0

E
[

sup
r∈[0,s]

(
G`
s(ϑ̂

(L))−G`
s(θ̂
⊗∞)

)2
]

dKs +O(L−2) as L→∞. (5.86)

The difference here is that we bound the first term in the first inequality by
the running supremum process rather than the supremum over [0, T ]. The last
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equality uses that max`=1,...,L E[supt∈[0,T ](G
`
t(θ̂
⊗∞))2] = E[supt∈[0,T ](Gt(θ̂))

2] <∞
due to Lemma 5.3 and the identity G`

t(θ̂
⊗∞)(ω(∞)) = Gt(θ̂)(ω`) from (5.42).

Inserting (5.84)–(5.86) into (5.83) yields (5.82) for i = a.
It is completely analogous to prove (5.82) for i = b. We use the formulas for

ϑ̂`,(L) from (5.43) and θ̂`,⊗∞ from (5.41), then K =
∫
λ` dA` from (5.46), and

finally the Cauchy–Schwarz inequality to get

sup
s∈[0,t]

Ibs = sup
s∈[0,t]

(∫ s

0

(ϑ̂`,(L)
r − ϑ̂`,(L)

r ) dA`
r

)2

= sup
s∈[0,t]

(∫ s

0

(
− 2b

(L)
r (G`

r(ϑ
(L))− em(Gr(ϑ

(L))))− 1

2b
(L)
r (1− L−1)

+
2b

(∞)
r (G`

r(θ̂
⊗∞)−m(∞)

r )− 1

2b
(∞)
r

)
dKr

)2

≤ Kt

∫ t

0

(
− 2b

(L)
s (G`

s(ϑ
(L))− em(Gs(ϑ

(L))))− 1

2b
(L)
s (1− L−1)

+
2b

(∞)
s (G`

s(θ̂
⊗∞)−m(∞)

s )− 1

2b
(∞)
s

)2

dKs.

Taking expectations, using that K is deterministic by Assumption 4.11, and
comparing the resulting expression with (5.83) for E[sups∈[0,t] I

a
s ] reduces the proof

to that for i = a.

As a byproduct, we also give an alternative proof for Theorem 5.6. The
argument is completely identical to the discrete-time case in Corollary I.5.15 and
therefore omitted.

Corollary 5.11. Suppose Assumptions 4.2 and 4.11 are satisfied meaning that S
is square-integrable and satisfies the structure condition (SC) with a deterministic
MVT process K. Then

E
[
em
(
GT (ϑ̂(L))

)]
−→ E[GT (θ̂)] as L→∞,

E
[
em
(
GT (ϑ̂(L))2

)]
−→ E

[(
GT (θ̂)

)2] as L→∞,

E
[(

em
(
GT (ϑ̂(L))

))2]
−→

(
E[GT (θ̂)]

)2 as L→∞.

In particular, E[Ṽ
(L)
T (ϑ̂(L))] → E[GT (θ̂)] − ξVar[GT (θ̂)] as L → ∞, and θ̂ is an

optimal strategy for the MVPS problem (2.1).
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6 Connections to the literature

In this final section, we discuss the related work in the literature. The same
approach as in Li and Ng [45] for finite discrete time is used in Zhou and Li
[67] to embed the MVPS problem into a family of auxiliary linear–quadratic
control (LQSC) problems for diffusion models with deterministic coefficients and
later extended to random coefficients in complete and incomplete markets by
Lim and Zhou [48] and Lim [46], respectively. The authors use a completion of
squares to obtain a stochastic Riccati equation (SRE). The optimal strategy for
the auxiliary problem can then be written in terms of a solution to the SRE.
It turns out that the SRE can be associated with the so-called variance-optimal
martingale measure. This kind of connection is furthermore explored by Sun and
Wang [65], Xia and Yan [66] and later by Fontana and Schweizer [30] to link
the MVPS problem and the variance-optimal martingale measure (or the mean–
variance hedging problem). These results allow one to write the solution to the
MVPS problem in terms of the solution to the mean–variance hedging (MVH)
problem to

minimise E
[(

1−GT (θ)
)2] over θ ∈ Θ.

The MVH problem in continuous time has been studied since the early 1990s.
We refer to Duffie and Richardson [26], Schweizer [58, 59, 62], Rheinländer and
Schweizer [56], Gouriéroux et al. [31] for early developments of the general the-
ory. Černý and Kallsen [17] provide a characterisation of the optimal hedging
strategy in terms of the so-called opportunity-neutral measure for general semi-
martingales. Stochastic control methods for the MVH problem are thoroughly
analysed in Jeanblanc et al. [38]. Among these works, [56] and [31] focus more
concretely on continuous processes. Studying particular classes of models often
leads to more explicit expressions of the optimal strategy for the MVH problem.
First, when the entire mean–variance tradeoff (MVT) process K is deterministic,
or when the final value KT is deterministic and the underlying price process is
continuous, the optimal strategy for the MVH problem is given explicitly in Sch-
weizer [59]. As explained in Example 0.3.5, we can then exploit the connection
between the MVPS and MVH problems to recover our optimal strategy θ̂ in (5.8)
for the MVPS problem. Beyond this, Biagini et al. [10], Hobson [35], Černý
and Kallsen [18] and Chiu and Wong [20] give more explicit results on the MVH
problem for stochastic volatility model with or without correlation. More re-
cently, MVPS and MVH problems have been considered for affine and quadratic
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rough volatility models in Han and Wong [33] and Abi Jaber et al. [1].
This chapter is inspired by the market cloning approach proposed by Ankirch-

ner and Dermoune [5] for finite discrete time and its continuous-time extension by
Fischer and Livieri [29]. Our results seem still to be among the first attempts to
further develop this approach in continuous time. Because this approach has more
the flavour of McKean–Vlasov control theory, we end this section with a brief dis-
cussion of some related work there. Andersson and Djehiche [4] first obtain and
use a stochastic maximum principle from McKean–Vlasov control theory to solve
the MVPS problem for the Black-Scholes model. Pham and Wei [53, 54] develop
a dynamic programming principle (DPP) for McKean–Vlasov control problems
for diffusion models with deterministic coefficients (in some cases with common
noise) and apply the resulting DPP to solve the MVPS problem in this setup.
An analogue of the martingale optimality principle for McKean–Vlasov control
problem for diffusion models appears in Basei and Pham [8].



Chapter III

A deterministic dynamic
programming principle for
McKean–Vlasov control problems
in finite discrete time

1 Introduction

This chapter studies the so-called McKean–Vlasov control problems in finite dis-
crete time with a view towards the mean–variance portfolio selection (MVPS)
problem in full generality. Roughly speaking, given a class of control processes θ
and controlled processes Xθ, a McKean–Vlasov-type criterion is an expectation
of functions that involve a direct dependence on the probability distribution of
Xθ. Mathematically, we study the problem to

maximise E
[ T∑
u=1

f(u,Xθ
u, θu, PXθ

u,θu
) + g(Xθ

T , PXθ
T
)

]
over θ ∈ Θ

for a suitable set Θ of control processes, where f and g are appropriate determ-
inistic functions and the notation PY denotes the law of a random object Y . Our
main results include a deterministic dynamic programming principle (DPP) for
this type of problems and an application of this to solve the MVPS problem in
full generality in finite discrete time.

The basic idea to obtain a DPP is inspired by Pham and Wei [52]. Namely,
we embed the McKean–Vlasov control problem into a family of deterministic
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instead of stochastic control problems. Our contribution to the current literature
has two aspects. First, we notice that the DPP in [52, Lemma 3.1] uses neither
the i.i.d. structure for the innovations driving the controlled processes nor the
restriction to the class of closed-loop controls imposed throughout the paper, and
thus can be extended to open-loop controlled processes without specifying any
dynamics. Second, we apply the corresponding DPP to solve the general MVPS
problem in finite discrete time. Along the way, we also obtain a structural result
for general linear–quadratic McKean–Vlasov problems.

This chapter is structured as follows. In Section 2, we first introduce the
setup and formulate a McKean–Vlasov control problem in mathematical terms.
Then we state and prove a deterministic DPP which embeds the original problem
into a sequence of deterministic tail problems for t = 0, 1, . . . , T , where both the
criterion and the optimisation are restricted onto variables from t + 1 onward.
Finally, we rewrite the sequence of tail problems into a sequence of single-period
problems which we can attack backward in time starting at t = T . In this
section, we keep the presentation as general as possible; this allows us later to
study general controlled processes in finite discrete time.

In Section 3, we study a general class of McKean–Vlasov problems whose
criterion has a linear–quadratic (LQ) structure. More precisely, we present a
solution technique for the single-period problems obtained by the rewriting in
Section 2 for any time t by assuming that the time-t criterion has a particular LQ
structure and that the controlled process depends linearly on the control. First,
we express the LQ criterion explicitly in terms of the control variable at time t
and derive a first order condition for optimality in that control variable. Second,
due to the LQ dependence of the criterion on the control variable, the resulting
FOC is linear and can be explicitly solved under some extra conditions, which
yields an optimal strategy for the one-step problem at time t and shows that
the optimal value of the time-t problem preserves the LQ structure with some
yet-to-be verified properties of the appearing coefficients. This section ends with
a review of the main steps and a discussion of the still missing ingredients.

We turn to solving the MVPS problem in Section 4. First, we formulate the
problem in precise terms, show that the MVPS problem fits into the framework
of the LQ problems discussed in Section 3, and present a recipe to provide the
missing ingredients mentioned in Section 3. All missing conditions depend on the
properties of a crucial process Z̃. Following the recipe, we first show that this
process Z̃ is well defined. Then we translate the structural results for LQ problems
in Section 3 into corresponding properties for the MVPS problem. For each one-
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step problem induced by the MVPS problem, this yields a simplified expression
for the criterion, a first order condition (FOC) for optimality in the single-period
control, and a solution for that FOC which provides an optimiser for the one-step
problem. Based on the missing ingredients for general LQ problems, we verify
that most of the missing conditions are satisfied for the MVPS problem and leave
one last condition as the extra assumption that the solution to the FOC lies in
the proposed space of strategies. Under that extra assumption, we piece together
the one-step optimisers over time to obtain in the main result (Theorem 4.11) an
affine–quadratic structure for the value function and a recursion for the optimal
strategy for the MVPS problem. The next subsection consists of the verification
of the just mentioned extra assumption in concrete cases. Finally, we work with
the most general space ΘMN of strategies, show that the strategy obtained in the
previous subsections is again well defined and optimal in the space ΘMN, and
finish the storyline for the MVPS problem in finite discrete time.

In Section 5, we discuss connections to the literature in detail.

2 A deterministic DPP in finite discrete time

2.1 Formulation of a stochastic control problem

We first introduce a general stochastic control problem of mean-field type in finite
discrete time and its setup, motivated by the so-called mean–variance portfolio
selection (MVPS) problem studied in the earlier chapters. This class of problems
refers to maximising or minimising the expectation of (deterministic) mean-field
type functions over a class of controlled random objects Xθ. The mean-field type
functions can depend directly on the law of Xθ, e.g. via a nonlinear function of
E[Xθ].

Let us start with some necessary mathematical basics. Fix a probability
space (Ω,F , P ) with a filtration F = (Ft)t=0,1,...,T . Suppose that there is a family
Xθ = (Xθ

t )t=0,1,...,T of stochastic processes controlled by a family θ = (θt)t=1,...,T

of F-predictable processes, meaning that Xθ
t depends on θ only through θ1, . . . , θt

for t = 1, . . . , T . The two processes Xθ and θ take values in two measurable
spaces (X ,B(X )) and (U ,B(U)), where B(·) denotes the Borel σ-algebra on the
underlying space.

For a generic Y-valued random variable Y , we denote by PY = P ◦ Y −1 the
distribution on (Y ,B(Y)) induced by Y . For simplicity, we slightly abuse the
notation to denote the space of probability distributions on (Y ,B(Y)) by P(Y).
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Let f and g be (measurable) functions on {0, . . . , T−1}×X×U×P(X×U) and
X ×P(X ), respectively, taking values in R. The performance criterion associated
to a control θ is of mean-field type given by

j(θ) = E

[ T∑
u=1

f(u,Xθ
u, θu, PXθ

u,θu
) + g(Xθ

T , PXθ
T
)

]
. (2.1)

Here PXθ
u,θu

means the joint distribution of (Xθ
u, θu) for u = 1, . . . , T . The criterion

(2.1) has a continuous–time analogue studied in Acciaio et al. [2], which has the
form

jc(θ) = E

[ ∫ T

0

f(t,Xθ
t , θt, PXθ

t ,θt
) dt+ g(Xθ

T , PXθ
T
)

]
for a continuous-time process Xθ = (Xθ

t )t∈[0,T ]. In finite discrete time, a similar
criterion has been considered in Pham and Wei [52]. Although the authors also
develop a dynamic programming approach for solving that kind of problem, they
assume that the controlled process Xθ is driven by i.i.d. innovations and work at
the more abstract level of probability distributions.

Now our task is to

maximise j(θ) over all θ ∈ Θ, (2.2)

where Θ is a suitable set of F-predictable processes. Note that the functions
f and g in the criterion (2.1) depend explicitly on the laws PXθ

u,θu+1
and PXθ

T
,

respectively, and can be nonlinear. This makes the control problem (2.2) time-
inconsistent in the sense that the standard dynamic programming principle from
stochastic control does not apply. Our goal is to develop a method so that one
can still calculate an optimal strategy for problem (2.2) recursively. We end this
subsection with two examples.

Example 2.1. 1) Suppose that f(u, x, y, z) ≡ f(u, x, y) and g(y, z) ≡ g(y). Then
(2.1) reads

E

[ T∑
u=1

f(u,Xθ
u, θu) + g(Xθ

T )

]
.

This recovers the standard stochastic control problem.
2) A specific example of an explicit dependence of f via PXθ

u,θu
is given by

f(u,Xθ
u, θu, PXθ

u,θu
) = h(θuX

θ
u − E[θuX

θ
u])
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for a function h, e.g. h(x) = −|x|p for p ≥ 1 or h(x) = r(x+) for a “reward
function” r.

2.2 A deterministic dynamic programming principle

We state and prove here a deterministic dynamic programming principle (DPP)
for problem (2.2). The idea is to introduce and study a tail problem and relevant
quantities for each time t = 0, . . . , T − 1, where both the criterion and the op-
timisation involve only variables from t+ 1 onward for t = 0, . . . , T − 1. We then
establish the promised deterministic DPP which asserts that the (optimal) value
of the tail problem at t− 1 can be computed in terms of the solution to the tail
problem at t. If we can find an optimiser for the tail problem at t, then plugging
that into the value of the tail problem at t yields the value of the tail problem
at t− 1. Because the tail problem for t = 0 corresponds to our original problem
(2.2), the deterministic DPP yields in particular a systematic approach to com-
pute both the value, via the above backward recursion, and the optimal strategy,
by piecing together the above one-step optimisers, for the original problem (2.2).

To proceed, we follow Pham and Wei [52] and extend Lemma 3.1 from there
by allowing open-loop controls and working without an i.i.d. structure. For t =

0, 1, . . . , T , define

Θ(t, θ) := {θ̃ ∈ Θ : θ̃ = θ on K0, tK ∩ N}, (2.3)

j(t, θ̃) := E

[ T∑
u=t+1

f(u,X θ̃
u, θ̃u, PX θ̃

u,θ̃u
) + g(X θ̃

T , PX θ̃
T
)

]
, (2.4)

v(t, θ) := sup
θ̃∈Θ(t,θ)

j(t, θ̃). (2.5)

Note that (2.4) is an expectation, not a conditional expectation. Fix θ ∈ Θ and
t ∈ {1, . . . , T}. The quantity j(t, θ̃) on the right-hand side in (2.5) is affected
directly by θ̃ only via θ̃t+1, . . . , θ̃T ; this explains the name “a tail problem”. For
t = T , we use (2.5), Θ(T, θ) = {θ} by (2.3) and the convention that any sum over
an empty set is 0 to get

v(T, θ) = sup
θ̃∈{θ}

j(T, θ̃) = j(T, θ) = E[g(Xθ
T , PXθ

T
)]. (2.6)
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For t = 0, we use (2.5), (2.4) and Θ(0, θ) = Θ to deduce that

v(0, θ) = sup
θ̃∈Θ

E

[ T∑
u=1

f(u,X θ̃
u, θ̃u, PX θ̃

u,θ̃u
) + g(X θ̃

T , PX θ̃
T
)

]
=: v0 (2.7)

is the value of the (original) optimisation problem (2.2) and that v0 is independent
of θ.

To state and prove a dynamic programming principle, we collect a few abstract
conditions.

Condition 2.2. 1) The random variables f(t,Xθ
t , θt, PXθ

t ,θt
) and g(Xθ

T , PXθ
T
) are

in L1, and consequently j(t, θ) <∞, for all θ ∈ Θ and t = 1, . . . , T .
2) Θ(s, θ) ⊇ Θ(t, θ) for any θ ∈ Θ and s, t ∈ {0, . . . , T} with s ≤ t.

Proposition 2.3. Suppose that Condition 2.2 is satisfied. Then for any θ ∈ Θ,
we have

v(t− 1, θ) = sup
θ̃∈Θ(t−1,θ)

(
v(t, θ̃) + E[f(t,X θ̃

t , θ̃t, PX θ̃
t ,θ̃t

)]
)

(2.8)

for t = 1, . . . , T .

Proof. We argue analogously to Lemma I.3.1. Fix θ and θ̃ ∈ Θ(t− 1, θ). For the
inequality “≤” in (2.8), we first use Condition 2.2, 1), (2.4) and then (2.5) with
θ̃ ∈ Θ(t, θ̃) to obtain

j(t− 1, θ̃) = E

[
f(t,X θ̃

t , θ̃t, PX θ̃
t ,θ̃t

)

+
T∑

u=t+1

f(u,X θ̃
u, θ̃u, PX θ̃

u,θ̃u
) + g(X θ̃

T , PX θ̃
T
)

]
≤ E[f(t,X θ̃

t , θ̃t, PX θ̃
t ,θ̃t

)] + v(t, θ̃).

Taking suprema on both sides over θ̃ ∈ Θ(t− 1, θ) and using the definition (2.5)
of v(t− 1, θ) yields “≤” in (2.8).

For the inequality “≥”, let us denote by h(t, θ̃) the quantity inside the su-
premum on the right-hand side of (2.8). We use v(t, θ̃) = sup{j(t, θ) : θ ∈ Θ(t, θ̃)}
from (2.5) to find a sequence (θ

n
)n∈N in Θ(t, θ̃) such that j(t, θn) ↑ v(t, θ̃) as n goes

to infinity. Because θ̃ ∈ Θ(t−1, θ) and θn ∈ Θ(t, θ̃) ⊆ Θ(t−1, θ̃) = Θ(t−1, θ) for
n ∈ N by Condition 2.2, 2), we see that θn is in Θ(t− 1, θ) for n ∈ N. Moreover,
because Xθ

n

t depends on θn only via θn1 , . . . , θ
n

t and θn ∈ Θ(t, θ̃) so that θn and θ̃
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agree up to time t, we also obtain

f(t,X θ̃
t , θ̃t, PX θ̃

t ,θ̃t
) = f(t,Xθ

n

t , θ
n

t , PXθ
n

t ,θ
n
t
).

Using these facts, (2.4) and (2.5), we get

h(t, θ̃) = lim
n→∞

(
j(t, θ

n
) + E[f(t,X θ̃

t , θ̃t, PX θ̃
t ,θ̃t

)]
)

= lim
n→∞

(
j(t, θ

n
) + E[f(t,Xθ

n

t , θ
n

t , PXθ
n

t ,θ
n
t
)]
)

= lim
n→∞

j(t− 1, θ
n
)

≤ v(t− 1, θ).

Since θ̃ ∈ Θ(t − 1, θ) is arbitrary, we can take the supremum over θ̃ to deduce
“≥” in (2.8).

Proposition 2.3 shows that recursively solving the single-period problems given
on the right-hand side in (2.8) yields a solution to the original problem (2.2).
Because of the one-step nature of the problem (2.8), this represents an important
simplification which mirrors an analogue in (I.3.5) in Chapter I. By the definition
(2.3) of Θ(t − 1, θ), each θ̃ ∈ Θ(t − 1, θ) agrees with θ on K0, t − 1K ∩ N. Then
the term inside the supremum in (2.8), denoted by h(t, θ̃), only depends on the
restriction of θ to {1, . . . , t− 1}, and hence so does the left-hand side v(t− 1, θ).
Now fix θ ∈ Θ. To compute v(t − 1, θ), we still need to optimise the right-hand
side of (2.8) which depends on θ̃ ∈ Θ(t−1, θ). Because θ̃s = θs for s = 1, . . . , t−1

and θ is fixed, the value of h(t, θ̃) depends on θ̃ only through θ̃t. Consequently,
it is enough to optimise over random variables θ̃t rather than over stochastic
processes θ̃. We then are able to simplify (2.8), as follows.

For t = 1, . . . , T , θ ∈ Θ and any Ft−1-measurable random variable δt, we
define

Θ[t](θ) := {θ̃t : θ̃ ∈ Θ(t− 1, θ)}, θ(t, δt) := (θ1, . . . , θt−1, δt). (2.9)

The last paragraph points out that v(t, θ) depends on θ only through its first t
elements. We can then extend the definition of v by identifying v(t, θ(t, δt)) with
any v(t, ψ), where ψ ∈ Θ agrees with θ(t, δt) on K0, tK ∩ N, i.e., ψ ∈ Θ(t, θ(t, δt)).
This extended definition is always assumed in the rest of this chapter. Since
the notation v(t, θ(t, δt)) is clear enough, we do not make a separate definition.
Next, because Xθ is controlled by θ, Xθ

t depends on θ only via θ1, . . . , θt for
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t = 1, . . . , T . As a result, we can define

Xθ(t,δt)
s := Xθ

s , s = 0, . . . , t− 1 (2.10)

and rewrite the deterministic DPP (2.8) as

v(t− 1, θ) = sup
δt∈Θ[t](θ)

(
v
(
t, θ(t, δt)

)
+ E[f(t,X

θ(t,δt)
t , δt, PXθ(t,δt)

t ,δt
)]
)
. (2.11)

Here we use the extended definition of v introduced before (2.10). The above is
now a sequence of single-period problems that we can solve backward in time,
starting with v(T, θ) = j(T, θ) = E[g(Xθ

T , PXθ
T
)]. More precisely, we need to

compute an optimiser for the one-step problem at t and then plug that in to obtain
the value function at t − 1. Repeating this step yields v(t, θ) for t = 1, . . . , T as
well as an optimal strategy θ∗, by piecing together the one-step optimisers over
time.

Remark 2.4. For ρ ∈ P(X × U) and µ ∈ P(X ), we set

f̂(t, ρ) :=

∫
X×U

f(t, x, u, ρ) dρ(x, u), t = 0, . . . , T − 1,

ĝ(µ) :=

∫
X
g(x, µ) dµ(x).

Using (2.1) and the notations introduced above, we can rewrite problem (2.2) as

maximise
T∑
t=1

f̂(t, PXθ
t ,θt

) + ĝ(PXθ
T
) over θ ∈ Θ,

and the dynamic programming principle (2.8) reads

v(T, θ) = ĝ(PXθ
T
),

v(t− 1, θ) = sup
θ̃∈Θ(t−1,θ)

(
v(t, θ̃) + f̂(t, P

X θ̃
t ,θ̃t

)
)

= sup
δt∈Θ[t](θ)

(
v
(
t, θ(t, δt)

)
+ f̂(t, P

X
θ(t,δt)
t ,δt

)
)

for t = 1, . . . , T.

Note that both f̂ and ĝ are deterministic. If we define pθ = (pθt )t=1,...,T by
pθt = PXθ

t ,θt
for t = 1, . . . , T , then viewing pθ as a (measure-valued) controlled pro-

cess turns (2.2) into a deterministic (measure-valued) control problem admitting
deterministic state variables (but not control variables). This is the perspective
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from Pham and Wei [52].

We end this section by presenting a deterministic version of the martingale
optimality principle. This is not used in the rest of the chapter; so the reader
may safely jump to the next section.

Corollary 2.5. Suppose that Condition 2.2 is satisfied. Then the following state-
ments hold:

1) For any θ ∈ Θ, the function t 7→ v(t, θ) + E[
∑t

s=1 f(s,Xθ
s , θs, PXθ

s ,θs
)] is

decreasing.
2) Suppose that θ∗ ∈ Θ. Then θ∗ is optimal for problem (2.2) if and only if

the function t 7→ v(t, θ∗) + E[
∑t

s=1 f(s,Xθ∗
s , θ

∗
s , PXθ∗

s ,θ∗s
)] is constant.

Proof. 1) Due to the dynamic programming relation (2.8) and because θ ∈ Θ(t, θ)

from the definition (2.3), we obtain

v(t, θ) = sup
θ̃∈Θ(t,θ)

(
v(t+ 1, θ̃) + E[f(t+ 1, X θ̃

t+1, θ̃t+1, PX θ̃
t+1,θ̃t+1

)]
)

≥ v(t+ 1, θ) + E[f(t+ 1, Xθ
t , θt+1, PXθ

t+1,θt+1
)].

Adding E[
∑t

s=1 f(s,Xθ
s , θs, PXθ

s ,θs
)] on both sides justifies the claim.

2) For notational convenience, we set

h(t, θ) = v(t, θ) + E

[ t∑
s=1

f(s,Xθ
s , θs, PXθ

s ,θs
)

]
, t = 1, . . . , T.

Recall from (2.7) that v0 := v(0, θ) is the value of the original optimisation
problem (2.2) and is independent of θ. This yields v0 = h(0, θ) for any θ. So the
optimality of θ∗ is equivalent to

h(0, θ∗) = v0 = E

[ T∑
u=1

f(u,Xθ∗

u , θ
∗
u, PXθ∗

u ,θ∗u
) + g(Xθ∗

T , PXθ∗
T

)

]
= h(T, θ∗).

By part 1), we already know that h(t, θ∗) is decreasing in t. The above is then
equivalent to the constancy of h(t, θ∗) in t. This completes the proof.
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3 Some results for linear–quadratic (LQ) prob-

lems

In this section, we study a specific class of problems like (2.2). Let us start by
providing a specific setup. Suppose that S = (St)t=0,1,...,T is an Rd-valued and
F-adapted stochastic process representing the discounted prices of d risky assets
in a financial market. This market contains in addition a traded riskless asset
whose discounted price at all times is 1. Let Θ be a suitable subspace of the set
of all Rd-valued, F-predictable processes. The notation

4Xt := Xt −Xt−1, t ∈ N,

is used to denote increments of any discrete-time process X = (Xt)t∈N0 . For
θ ∈ Θ, we define the gains process to be

Gt(θ) =

∫ t

0

θs dSs =
t∑

s=1

θ>s 4Ss, t = 0, . . . , T.

We use the standard convention that the sum over an empty set is always 0 so
that G0(θ) = 0 for any θ ∈ Θ.

In the control problem (2.2) to

maximise E
[ T∑
u=1

f(u,Xθ
u, θu, PXθ

u,θu
) + g(Xθ

T , PXθ
T
)

]

over a set Θ of predictable processes, we let the controlled process Xθ be the
gains process G(θ) and impose that f is identically 0 and g has a special linear–
quadratic structure

g(x, µ) = aTx+ bTx
2 + cT

(∫
X
z dµ(z)

)2

+ dT

for deterministic quantities aT , bT , cT , dT . This leads more simply to

maximise E
[
aTGT (θ) + bT

(
GT (θ)

)2]
+ cT

(
E[GT (θ)]

)2
+ dT (3.1)

over a suitable class Θ of predictable processes. Throughout this section, we
take the dimension d = 1 for simplicity.
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3.1 Overview of ideas

In this section, we give an overview of the ideas we use here for solving the LQ
problem (3.1). We start by introducing a specific set Θ of strategies. Define

ΘS := {θ := (θt)t=1,...,T : θ is real-valued,F-predictable and

θt4St ∈ L2 for all t = 1, . . . , T}. (3.2)

Note that θ ∈ ΘS is equivalent to saying that Gt(θ) ∈ L2 for t = 0, 1, . . . , T or
also to sup0≤s≤t |Gs(θ)| ∈ L2 for t = 0, 1, . . . , T . Let us consider the problem
(3.1) with Θ = ΘS. To avoid abuse of notation, we reserve the notation v(t, θ)

for the value function of the general problem (2.2), whereas we denote by w(t, θ)

the value function of the LQ problem (3.1). The basic idea is to employ the
deterministic DPP to compute both w and an optimal strategy recursively.

Lemma 3.1. Condition 2.2 holds for problem (3.1) with the choice Θ = ΘS.

Proof. Fix θ ∈ ΘS. For Condition 2.2, 1), because of the explicit LQ expression
in (3.1), it is enough to show that aTGT (θ) + bT (GT (θ))2 + cT (E[GT (θ)])2 is in
L1. This evidently follows from GT (θ) ∈ L2 thanks to the definition (3.2) of ΘS.
Next we show Condition 2.2, 2). For s, t ∈ {1, . . . , T} with s ≤ t, we observe
from the definition (2.3) that any element in ΘS(t, θ) agrees with θ up to t and
thus agrees with θ up to s as well. Because ΘS(s, θ) and ΘS(t, θ) have the same
measurability and integrability conditions, we obtain ΘS(s, θ) ⊇ ΘS(t, θ).

Lemma 3.1 justifies that the deterministic DPP in Proposition 2.3 indeed
applies to the problem (3.1) with Θ = ΘS. Moreover, the rewriting (2.11) (with
v replaced by w everywhere) yields a sequence of one-step problems

w(t− 1, θ) = sup
δt∈Θ

[t]
S (θ)

w
(
t, θ(t, δt)

)
, t = 1, . . . , T, (3.3)

with θ(t, δt) = (θ1, . . . , θt−1, δt) from (2.9), Θ
[t]
S (θ) given explicitly by

Θ
[t]
S (θ) = {δt : δt is real-valued, Ft−1-measurable and δt4St ∈ L2} (3.4)

for t = 1, . . . , T , and w(T, θ(T, δT )), thanks to (2.6) and (3.1), given by

w(T, θ(T, δT )) = aTE
[
GT

(
θ(T, δT )

)]
+ bTE

[(
GT

(
θ(T, δT )

))2]
+ cT

(
E
[
GT

(
θ(T, δT )

)])2

+ dT . (3.5)
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Lemma 3.2. The set Θ
[t]
S (θ) given in (3.4) is a linear space for all t = 0, . . . , T

and θ.

Proof. This is immediate from its expression (3.4).

We first sketch the idea for solving problem (3.3) for t = T . Given θ ∈ ΘS,
the value function w(T − 1, θ) is obtained by maximising w(T, θ(T, δT )) over δT .
Note that in the expression (3.5) for w(T, θ(T, δT )), the term GT (θ(T, δT )) is
linear in δT . Thus the quantity w(T, θ(T, δT )) is an affine–quadratic expression of
GT (θ(T, δT )) = GT−1(θ) + δT4ST , and hence the first order condition (FOC) for
the optimisation of w(T, θ(T, δT )) over δT is affine. Plugging its solution back in
should yield that w(T − 1, θ) is again an affine–quadratic functional of GT−1(θ),
like w(T, θ) of GT (θ), possibly with more complicated coefficients.

To gain more flexibility and yet focus on the one-step nature in (3.3), we next
present a solution technique instead of giving a general theory for (3.3). From
this perspective, we assume that w(t, θ(t, δt)) has the general form

w
(
t, θ(t, δt)

)
= atE

[
ZtGt

(
θ(t, δt)

)]
+ btE

[
Zt

(
Gt

(
θ(t, δt)

))2]
+ ct

(
E
[
ZtGt

(
θ(t, δt)

)])2

+ dt, (3.6)

where at, bt, ct, dt are deterministic with bt 6= 0, (3.7)

and Zt is bounded, nonnegative and Ft-measurable. (3.8)

For t = T , this looks like a spurious rewriting due to the terminal condition (3.5).
But it turns out that under extra assumptions, the affine–quadratic functional
form in (3.6)–(3.8) propagates back from w(t, θ) to w(t − 1, θ). Therefore, the
programme described above for t = T should in principle be applicable to all
t ∈ {1, . . . , T} and yield an iteration backward in t. Now we end this subsection
with a concrete programme for solving problem (3.3) at a fixed t = 1, . . . , T ,
assuming that w(t, θ(t, δt)) has the structure in (3.6)–(3.8).

Recipe 3.3. 1)t Write w(t, θ(t, δt)) =: Ft(δt) as a functional of δt explicitly and
derive a first order condition for optimality.

2)t Possibly under extra conditions, solve the first order condition to obtain
a candidate maximiser δ̂t. Then verify its optimality and plug it back into Ft to
obtain an explicit formula for w(t− 1, θ).
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3.2 Step 1)t: Computing w(t, θ(t, δt)) and deriving a first

order condition

Let t ∈ {1, . . . , T} be a generic fixed time index. We implement Recipe 3.3, Step
1)t. This requires a patient organisation of the terms in w(t, θ(t, δt)), based on
which we derive a first order condition (FOC) for optimality.

We start with a natural assumption on the process S.

Assumption 3.4. The increment 4St is in L2.

Because of the condition (3.7) and (3.8) on the quantities Zt, at, bt, ct, As-
sumption 3.4 and the definitions (3.2) and (3.4) of ΘS and Θ

[t]
S (θ), respectively,

we have that

Y is bounded for Y ∈ {atZt, btZt, ctZt}, (3.9)

Gt−1(θ), 4St and δt4St are in L2. (3.10)

These two points are used frequently. In a first step, we express w(t, θ(t, δt)) in
terms of Gt−1(θ) (instead of Gt(θ)) and δt.

Lemma 3.5. Suppose that Assumption 3.4 is satisfied. For θ ∈ ΘS, δt ∈ Θ
[t]
S (θ)

and w given by (3.6)–(3.8), we then have

w
(
t, θ(t, δt)

)
= E

[
atZtGt−1(θ) + btZt

(
Gt−1(θ)

)2]
+ ct

(
E[ZtGt−1(θ)]

)2
+ dt

+ rt(δt), (3.11)

where

rt(δt) = E[atZtδt4St + 2btZtGt−1(θ)δt4St + btZt(δt4St)2]

+ 2ctE[ZtGt−1(θ)]E[Ztδt4St] + ct(E[Ztδt4St])2. (3.12)

Proof. We first use the definition (3.4) of θ(t, δt) and the expression of the gains
process G(θ) to obtain

Gt

(
θ(t, δt)

)
= Gt−1(θ) + δt4St.

Inserting this identity into the formula (3.6) for w(t, θ(t, δt)) and squaring out
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yields

w
(
t, θ(t, δt)

)
= E

[
atZtGt−1(θ) + atZtδt4St
+ btZt

(
Gt−1(θ)

)2
+ 2btZtGt−1(θ)δt4St + btZt(δt4St)2

]
+ ct

(
E[ZtGt−1(θ)]

)2
+ 2ctE[ZtGt−1(θ)]E[Ztδt4St]

+ ct(E[Ztδt4St])2 + dt. (3.13)

Thanks to (3.9), (3.10) and the Cauchy–Schwarz inequality, we obtain that all
random variables inside the expectations in (3.13) are in L1. Therefore, we can
define rt(δt) as in (3.12) and group the terms in (3.13) according to the dependence
on δt to get (3.11).

In view of the decomposition in (3.11), maximisation of δt 7→ Ft(δt) reduces to
that of δt 7→ rt(δt). Based on this observation, we derive an FOC for maximisation
of the latter.

Lemma 3.6. Suppose that Assumption 3.4 is satisfied and (3.6)–(3.8) hold. If
θ ∈ ΘS and rt is given by (3.12), then any maximiser δ̂t for δt 7→ rt(δt) is a
solution to the linear equation

δt = − E[Zt4St|Ft−1]

E[Zt(4St)2|Ft−1]

×
(
at
2bt

+Gt−1(θ) +
ct
bt
E
[
Zt
(
Gt−1(θ) + δt4St

)])
. (3.14)

Proof. Let ηt ∈ Θ
[t]
S (θ) be arbitrary. Using the optimality of δ̂t and (3.12) and

expanding the terms, we compute

0 ≥ rt(δ̂t + ηt)− rt(δ̂t)

= E[atZtηt4St + 2btZtGt−1(θ)ηt4St + 2btZtδ̂tηt(4St)2 + btZt(ηt4St)2]

+ 2ctE[ZtGt−1(θ)]E[Ztηt4St] + 2ctE[Ztδ̂t4St]E[Ztηt4St] + ct(E[Ztηt4St])2.

Because Θ
[t]
S (θ) is a linear space by Lemma 3.2, the random variable ± 1

n
ηt is in

Θ
[t]
S (θ) for every n ∈ N. So replacing ηt by ± 1

n
ηt in the above display, multiplying

by n and using the dominated convergence theorem (which applies because of
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(3.9), (3.10) and the Cauchy–Schwarz inequality) gives

0 = E[atZtηt4St + 2btZtGt−1(θ)ηt4St + 2btZtδ̂tηt(4St)2]

+ 2ctE[ZtGt−1(θ)]E[Ztηt4St] + 2ctE[Ztδ̂t4St]E[Ztηt4St]

= E
[
Ztηt4St

(
at + 2btGt−1(θ) + 2btδ̂t4St

+ 2ctE
[
Zt
(
Gt−1(θ) + δ̂t4St

)])]
. (3.15)

The second equality in the above display uses that ct is deterministic by (3.7).
Because (3.15) holds for all ηt ∈ Θ

[t]
S (θ), we can take ηt = 1H for H ∈ Ft−1 (this

uses that 4St ∈ L2 by Assumption 3.4) to obtain

0 = E
[
Zt4St

(
at + 2btGt−1(θ) + 2btδ̂t4St + 2ctE

[
Zt
(
Gt−1(θ) + δ̂t4St

)])∣∣∣Ft−1

]
.

Using (3.9), (3.10) and the Cauchy–Schwarz inequality, we obtain that each in-
dividual summand inside the above conditional expectation is in L1 and has a
well-defined conditional expectation. So moving E[2btδ̂tZt(4St)2|Ft−1] to the
left, taking out the Ft−1-measurable δ̂t and dividing by 2bt thanks to bt 6= 0 by
(3.7) yields

−E[Zt(4St)2|Ft−1]δ̂t = E[Zt4St|Ft−1]

×
(
at
2bt

+Gt−1(θ) +
ct
bt
E
[
Zt
(
Gt−1(θ) + δ̂t4St

)])
.

By (3.8), Zt is nonnegative and bounded, and the Cauchy–Schwarz inequality
yields (E[Zt4St|Ft−1])2 ≤ E[Zt|Ft−1]E[Zt(4St)2|Ft−1]. These two points in par-
ticular imply {E[Zt(4St)2|Ft−1] = 0} ⊆ {E[Zt4St|Ft−1] = 0}. Hence we can use
the convention 0

0
= 0 and divide by the term −E[Zt(4St)2|Ft−1] on both sides

above to obtain that δ̂t is a solution to (3.14).

3.3 Step 2)t: Maximising δt 7→ w(t, θ(t, δt)) =: Ft(δt) by solv-

ing a linear equation

In this subsection, we implement Recipe 3.3, 2)t. In view of Lemma 3.6, max-
imising δt 7→ rt(δt) amounts to solving the linear equation (3.14). Because the
right-hand side of (3.14) involves an expectation of (a function of) the unknown
δt, we multiply on both sides by Zt4St and take expectations to get an auxiliary
equation now for the unknown E[Ztδt4St]. Solving that equation and plugging
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its solution back in (3.14) gives a candidate for a solution to the original equation
(3.14). However, carrying out the computation rigorously needs extra conditions.

Lemma 3.7. Suppose that Assumption 3.4 is satisfied and (3.6)–(3.8) hold.
1) If

E[Zt4St|Ft−1]

E[Zt(4St)2|Ft−1]
Zt4St ∈ L2, (3.16)

1 +
ct
bt
E

[
(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

]
6= 0, (3.17)

then a solution δ̂t to (3.14) exists and satisfies

E[Ztδ̂t4St] = −
(

1 +
ct
bt
E

[
E[Zt4St|Ft−1]

E[Zt(4St)2|Ft−1]
Zt4St

])−1

× E
[
E[Zt4St|Ft−1]

E[Zt(4St)2|Ft−1]
Zt4St

×
(
at
2bt

+Gt−1(θ) +
ct
bt
E[ZtGt−1(θ)]

)]
= −

(
1 +

ct
bt
E

[
(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

])−1

× E
[

(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

(
at
2bt

+Gt−1(θ)

+
ct
bt
E[ZtGt−1(θ)]

)]
. (3.18)

Explicitly, we have

δ̂t = − E[Zt4St|Ft−1]

E[Zt(4St)2|Ft−1]

(
at
2bt

+Gt−1(θ) +
ct
bt

(
E[ZtGt−1(θ)] + et

))
, (3.19)

where et is given by the right-hand side of the last equality in (3.18).
2) If, in addition,

bt + ctE[Zt] ≤ 0 and the solution δ̂t to (3.14) is in Θ
[t]
S (θ), (3.20)

then δ̂t maximises δt 7→ rt(δt).
3) If the conditions (3.16), (3.17) and (3.20) are satisfied, then the resulting

value function w(t − 1, θ) = w(t, θ(t, δ̂t)) from (3.3) has a similar structure as
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w(t, θ(t, δt)) given in (3.6) in the sense that

w(t− 1, θ) = E
[
at−1Zt−1Gt−1(θ) + bt−1Zt−1

(
Gt−1(θ)

)2]
+ ct−1

(
E[Zt−1Gt−1(θ)]

)2
+ dt−1, (3.21)

where

Zt−1 = E[Zt|Ft−1]− (E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]
, (3.22)

at−1 = at

(
1 +

ct
bt
E

[
(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

])−1

, (3.23)

bt−1 = bt, (3.24)

ct−1 = ct

(
1 +

ct
bt
E

[
(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

])−1

, (3.25)

dt−1 = dt −
(

1 +
ct
bt
E

[
(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

])−1

,

× a2
t

4bt
E

[
(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

]
. (3.26)

Proof. 1) First we show that the right-hand side et of (3.18) is well defined.
Indeed, the denominator in (3.18) is nonzero due to the condition (3.17). Also, the
right-hand side in the first equality of (3.18) is finite thanks to (3.16) and because
Gt−1(θ) is in L2 by (3.10). This also allows us to take conditional expectations
with respect to Ft−1 to obtain the second equality of (3.18). So we can construct
δ̂t by inserting the right-hand side et of (3.18) into (3.14) to replace the term
E[Ztδt4St]. This gives the explicit expression (3.19) for δ̂t. To verify that the
constructed δ̂t indeed solves (3.14), we multiply both sides of (3.19) by Zt4St.
Then (3.16) again allows us to take expectations on both sides and organise the
terms to obtain again (3.18). Therefore we can replace the term et in (3.19) by
E[Ztδ̂t4St], which shows that δ̂t solves (3.14).

2) Let us now argue that rt(δ̂t) ≥ rt(δt) for all δt ∈ Θ
[t]
S (θ). To that end, we

write δt = δt − δ̂t + δ̂t and note by (3.20) that δt − δ̂t is in Θ
[t]
S (θ) like δt and δ̂t

due to the linearity of Θ
[t]
S (θ) from Lemma 3.2. So we insert this rewriting into

the expression (3.12) for rt(δt), square out and reorder the terms as expressions
involving δt − δ̂t and δ̂t only and use the first equality in the FOC (3.15) (with
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ηt = δt − δ̂t) to obtain

rt(δt) = rt(δt − δ̂t + δ̂t)

= E
[
atZt(δt − δ̂t)4St + atZtδ̂t4St + 2btZtGt−1(θ)(δt − δ̂t)4St
+ 2btZtGt−1(θ)δ̂t4St + btZt

(
(δt − δ̂t)4St

)2
+ 2btZt(δt − δ̂t)δ̂t(4St)2

+ btZt(δ̂t4St)2
]

+ 2ctE[ZtGt−1(θ)]E[Zt(δt − δ̂t)4St]

+ 2ctE[ZtGt−1(θ)]E[Ztδ̂t4St] + ct
(
E[Zt(δt − δ̂t)4St]

)2

+ 2ctE[Zt(δt − δ̂t)4St]E[Ztδ̂t4St] + ct(E[Ztδ̂t4St])2

= E
[
atZt(δt − δ̂t)4St + 2btZtGt−1(θ)(δt − δ̂t)4St
+ 2btZt(δt − δ̂t)δ̂t(4St)2

]
+ 2ctE[ZtGt−1(θ)]E[Zt(δt − δ̂t)4St]

+ 2ctE[Zt(δt − δ̂t)4St]E[Ztδ̂t4St] + E
[
btZt

(
(δt − δ̂t)4St

)2]
+ ct

(
E[Zt(δt − δ̂t)4St]

)2
+ rt(δ̂t)

= E
[
btZt

(
(δt − δ̂t)4St

)2]
+ ct

(
E[Zt(δt − δ̂t)4St]

)2
+ rt(δ̂t)

≤ (bt + ctE[Zt])E
[
Zt
(
(δt − δ̂t)4St

)2]
+ rt(δ̂t)

≤ rt(δ̂t).

The third equality also uses that the terms in the second equality involving only
δ̂t indeed sum to rt(δ̂t) by the expression (3.12) for rt. The second-to-last line
uses the Cauchy–Schwarz inequality applied to the term

(
E[Zt(δt − δ̂t)4St]

)2
=
(
E[
√
Zt

√
Zt(δt − δ̂t)4St]

)2

and the non-randomness of bt, ct from (3.7). The last line uses bt + ctE[Zt] ≤ 0

from (3.20). Because δ̂t ∈ Θ
[t]
S (θ) by (3.20) again, this verifies the optimality of

δ̂t for δt 7→ rt(δt).
3) By (3.3) and the optimality of δ̂t from 2), we have w(t−1, θ) = w(t, θ(t, δ̂t)).

So we prove that the latter quantity has the functional form in (3.21), where the
quantities Zt−1, at−1, bt−1, ct−1, dt−1 are given in (3.22)–(3.26). First we use the
FOC (3.15) to simplify the expression for rt(δ̂t). Indeed, we set ηt = δ̂t in the
FOC (3.15) to obtain

E
[(
at + 2btGt−1(θ) + 2ctE[ZtGt−1(θ)]

)
Ztδ̂t4St]

= −E[2btZt(δ̂t4St)2]− 2ct(E[Ztδ̂t4St])2.

Then we organise the terms and factor out Ztδ̂t4St in the expression (3.12) for
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rt(δ̂t) and use the above identity to replace the quadratic terms to get

rt(δ̂t) = E
[(
at + 2btGt−1(θ) + 2ctE[ZtGt−1(θ)]

)
Ztδ̂t4St

]
+ E[btZt(δ̂t4St)2] + ct(E[Ztδ̂t4St])2

= E

[(
1

2
at + btGt−1(θ) + ctE[ZtGt−1(θ)]

)
Ztδ̂t4St

]
= E

[
bt

(
at
2bt

+Gt−1(θ) +
ct
bt
E[ZtGt−1(θ)]

)
δ̂tE[Zt4St|Ft−1]

]
.

The last step uses bt 6= 0 by (3.7) and iterative conditioning on Ft−1 thanks to
δ̂t4St ∈ L2, Gt−1(θ) ∈ L2, and the boundedness of Zt from (3.20), (3.10) and
(3.8), respectively. Using the explicit expressions (3.19) for δ̂t and then (3.18) for
the deterministic quantity et yields

rt(δ̂t) = E

[
− bt

(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

(
at
2bt

+Gt−1(θ) +
ct
bt
E[ZtGt−1(θ)]

)2]
− E

[
ct

(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

(
at
2bt

+Gt−1(θ) +
ct
bt
E[ZtGt−1(θ)]

)
et

]
= E

[
− bt

(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

(
at
2bt

+Gt−1(θ) +
ct
bt
E[ZtGt−1(θ)]

)2]
+ ct

(
1 +

ct
bt
E

[
(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

])−1

×
(
E

[
(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

( at
2bt

+Gt−1(θ) +
ct
bt
E[ZtGt−1(θ)]

)])2

.

Note from the above display that rt(δ̂t) is a sum of two squares. To make the
expressions lighter, we introduce the shorthand notations

x = E[ZtGt−1(θ)], (3.27)

y = E

[
(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]
Gt−1(θ)

]
, (3.28)

z = E

[
(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

]
. (3.29)
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Using the notations (3.27)–(3.29) to square out the terms in rt(δ̂t) yields

rt(δ̂t) = − a
2
t

4bt
z − E

[
bt

(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

(
Gt−1(θ)

)2
]
− c2

t

bt
zx2 − aty −

atct
bt
zx

− 2ctyx

+ ct

(
1 +

ct
bt
z

)−1(
a2
t

4b2
t

z2 + y2 +
c2
t

b2
t

z2x2 +
at
bt
zy +

atct
b2
t

z2x+
2ct
bt
yzx

)
.

We now use the explicit expression (3.11) for w(t, θ(t, δ̂t)), then the shorthand
notations (3.27)–(3.29) again and finally the above display to obtain

w
(
t, θ(t, δ̂t)

)
= E

[
atZtGt−1(θ) + btZt

(
Gt−1(θ)

)2]
+ ct

(
E[ZtGt−1(θ)]

)2
+ dt

+ rt(δ̂t)

= atx+ E
[
btZt

(
Gt−1(θ)

)2]
+ ctx

2 + dt −
a2
t

4bt
z

− E
[
bt

(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

(
Gt−1(θ)

)2
]
− c2

t

bt
zx2 − aty −

atct
bt
zx− 2ctyx

+ ct

(
1 +

ct
bt
z

)−1(
a2
t

4b2
t

z2 + y2 +
c2
t

b2
t

z2x2 +
at
bt
zy +

atct
b2
t

z2x+
2ct
bt
yzx

)
= atx− aty −

atct
bt
zx+ ct

(
1 +

ct
bt
z

)−1(
at
bt
zy +

atct
b2
t

z2x

)
+ E

[
btZt

(
Gt−1(θ)

)2]− E[bt (E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

(
Gt−1(θ)

)2
]

+ ctx
2 − c2

t

bt
zx2 − 2ctyx+ ct

(
1 +

ct
bt
z

)−1(
y2 +

c2
t

b2
t

z2x2 +
2ct
bt
yzx

)
+ dt −

a2
t

4bt
z + ct

(
1 +

ct
bt
z

)−1
a2
t

4b2
t

z2

= wa + wb + wc + wd (3.30)

where wa, wb, wc, wd each denotes one of the four lines in the third equality, re-
spectively. In the third equality, we use the fact from (3.27)–(3.29) that both
x and y are linear in Gt−1(θ) and z does not depend on Gt−1(θ) to reorder the
terms. More precisely, wa contains terms that are linear in Gt−1(θ), wb contains
terms that are linear in (Gt−1(θ))2, wc contains terms that involve products of
expectations of linear functions of Gt−1(θ), and wd does not depend on Gt−1(θ).

Now we simplify the terms in (3.30) for wa, factor out the term (1 + ct
bt
z)−1

and reinstate the explicit expressions (3.27)–(3.29) for x, y, z to obtain explicitly
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that

wa = atx− aty −
atc

2
t

bt
zx+ ct

(
1 +

ct
bt
z

)−1(
at
bt
zy +

atct
b2
t

z2x

)
= atx

(
1− ct

bt
z +

(
1 +

ct
bt
z
)−1(ct

bt
z
)2
)
− aty

(
1−

(
1 +

ct
bt
z
)−1 ct

bt
z

)
=

(
1 +

ct
bt
z

)−1(
atx
(

1− c2
t

b2
t

z2 +
c2
t

b2
t

z2
)
− aty

(
1 +

ct
bt
z − ct

bt
z
))

= at

(
1 +

ct
bt
z

)−1

(x− y)

= E

[
at

(
1 +

ct
bt
E
[(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

])−1

×
(
Zt −

(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

)
Gt−1(θ)

]
= E

[
at

(
1 +

ct
bt
E
[(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

])−1

×
(
E[Zt|Ft−1]− (E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

)
Gt−1(θ)

]
. (3.31)

The iterative conditioning in (3.31) is allowed thanks to the boundedness of Zt
from (3.8) and Gt−1(θ) ∈ L2 from (3.10). Similarly, we obtain

wb = E
[
btZt

(
Gt−1(θ)

)2]− E[bt (E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

(
Gt−1(θ)

)2
]

= E

[
bt

(
E[Zt|Ft−1]− (E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

)(
Gt−1(θ)

)2
]
. (3.32)

In wc, we factor out the term (1 + ct
bt
z)−1ct, reinstate the shorthand notations

x, y, z from (3.27)–(3.29) and use the tower property thanks to the boundedness
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of Zt and Gt−1(θ) ∈ L2 by (3.8) and (3.10) to obtain

wc = ctx
2 − c2

t

bt
zx2 − 2ctyx+ ct

(
1 +

ct
bt
z

)−1(
y2 +

c2
t

b2
t

z2x2 +
2ct
bt
yzx

)
=
(

1 +
ct
bt
z
)−1

ct

×
(
x2 +

ct
bt
x2z − ct

bt
zx2 − c2

t

b2
t

z2x2 − 2yx− 2
ct
bt
yxz

+ y2 +
c2
t

b2
t

z2x2 + 2
ct
bt
yzx

)
=
(

1 +
ct
bt
z
)−1

ct(x− y)2

=
(

1 +
ct
bt
E
[(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

])−1

ct

×
(
E
[(
Zt −

(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

)
Gt−1(θ)

])2

=
(

1 +
ct
bt
E
[(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

])−1

ct

×
(
E
[(
E[Zt|Ft−1]− (E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

)
Gt−1(θ)

])2

. (3.33)

Finally, we simplify the terms in wd and insert the explicit expression (3.29) for
z to obtain

wd = dt −
a2
t

4bt
z + ct

(
1 +

ct
bt
z

)−1
a2
t

4b2
t

z2

= dt +

(
1 +

ct
bt
z

)−1(
− a2

t

4bt
z − a2

t

4bt

ct
bt
z2 + ct

a2
t

4b2
t

z2

)
= dt −

(
1 +

ct
bt
z

)−1
a2
t

4bt
z

= dt −
(

1 +
ct
bt
E

[
(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

])−1

× a2
t

4bt
E

[
(E[Zt4St|Ft−1])2

E[Zt(4St)2|Ft−1]

]
. (3.34)

Inserting the expressions (3.31)–(3.34) for wa, wb, wc, wd into (3.30) yields the
expressions (3.21)–(3.26) for w(t−1, θ), Zt−1, at−1, bt−1, ct−1, dt−1, respectively.
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3.4 Summary and the missing ingredients

Lemmas 3.5–3.7 in the previous subsection finish the implementation of Re-
cipe 3.3. We now summarise the key aspects.

The problem of interest is to

maximise E
[
aTGT (θ) + bT

(
GT (θ)

)2]
+ cT

(
E[GT (θ)]

)2
+ dT over θ ∈ ΘS,

where aT , bT , cT , dT are deterministic and ΘS is the space of all F-predictable pro-
cesses such that the associated gains processes have square-integrable increments.
The deterministic DPP in Proposition 2.3 and its rewriting (2.11) yield that it
is sufficient to solve the sequence of single-step problems (3.3)–(3.5). We then
develop a technique in Recipe 3.3 to optimise a general affine–quadratic objective

δt 7→ w
(
t, θ(t, δt)

)
= E

[
atZtGt

(
θ(t, δt)

)
+ btZt

(
Gt

(
θ(t, δt)

))2]
+ ct

(
E
[
ZtGt

(
θ(t, δt)

)])2

+ dt,

where at, bt, ct, dt are deterministic with bt 6= 0,

and Zt is bounded, nonnegative and Ft-measurable,

with respect to a single (random) variable δt. Indeed, formal calculus of vari-
ations yields a first order condition (3.14) which can be solved explicitly as
in (3.19) and gives an affine–quadratic objective w(t − 1, θ) with coefficients
Zt−1, at−1, bt−1, ct−1, dt−1 completely analogous as in the above display. Moreover,
these coefficients satisfy recursive relations given in (3.22)–(3.26). Therefore,
Recipe 3.3 or more precisely Lemmas 3.5–3.7 can be viewed provisionally as a
solution technique for our problem (3.3) by iterating Recipe 3.3 backward in
time.

However, there are several missing ingredients. The implementation of Re-
cipe 3.3, Step 2)t requires the conditions (3.16), (3.17) and (3.20) for t = 1, . . . , T .
In addition, the coefficients Zt−1, at−1, bt−1, ct−1, dt−1 in w(t− 1, θ) need to satisfy
analogous properties as in (3.7) and (3.8), namely that

at−1, bt−1, ct−1, dt−1 are deterministic with bt 6= 0, (3.35)

and Zt−1 is bounded, nonnegative and Ft−1-measurable. (3.36)

These conditions and properties should be verified in principle by backward in-
duction and so depend specifically on the terminal conditions ZT , aT , bT , cT , dT .
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Since the present section focuses on demonstrating the methodology, we study
the verification of these conditions later in a concrete application.

4 Application to the MVPS problem

4.1 Problem formulation

A classic example of problem (2.2) and (3.1) is the mean–variance portfolio selec-
tion (MVPS) problem. We briefly present this problem below and refer to Section
I.2.1 for a detailed exposition.

Let (Ω,F , P ) be a probability space with a filtration F = (Ft)t=0,1,...,T . Sup-
pose that S = (St)t=0,1,...,T is an F-adapted and Rd-valued stochastic process
representing the discounted prices of d risky assets in a financial market. We
take d = 1 for notational simplicity. Results in higher dimensions only in-
duce more notations, but do not need substantially new ideas. Let Θ be a suitable
set of F-predictable processes standing for investment strategies. For a generic
risk tolerance parameter ξ > 0, the MVPS criterion is

jmv(θ) = E
[
GT (θ)− ξ

(
GT (θ)− E[GT (θ)]

)2]
, (4.1)

and the MVPS problem is to

maximise jmv(θ) over all θ ∈ Θ. (4.2)

Note that problem (4.2) is not a standard stochastic control problem due to the
appearance of a quadratic term in the expected final gains, as pointed out in the
earlier chapters. Instead, the criterion jmv is of the form (2.1). Indeed, define the
functional gmv : R× P(R)→ R by

gmv(x, µ) = x− ξ
(
x−

∫
R
z dµ(z)

)2

.

Then comparing with (4.1) leads to jmv(θ) = E[gmv(GT (θ), PGT (θ))].
Let us now give more details for problem (4.2). Recall from (3.2) the space of

strategies

ΘS := {θ := (θt)t=1,...,T : θ is real-valued,F-predictable and

θt4St ∈ L2 for all t = 1, . . . , T}. (4.3)
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Our goal is to obtain a dynamic description of the globally optimal strategy θ̂mv

for problem (4.2) with Θ = ΘS.

4.2 Applying the results for the LQ problem

In this subsection, we discuss the problem (4.2) with the choice of Θ = ΘS and
connect it to the general results obtained for LQ problems in Section 3.

Comparing the MVPS problem (4.2) with the general LQ problem in (3.1)
both with Θ = ΘS leads to the observation that the MVPS problem is a special
case of the latter with aT = 1, bT = −ξ, cT = ξ, dT = 0. We recall the structural
properties (3.3)–(3.5) for the value function w there and relabel w here as vmv to
deduce a sequence of one-step problems

vmv(t− 1, θ) = sup
δt∈Θ

[t]
S (θ)

vmv
(
t, θ(t, δt)

)
, t = 1, . . . , T, (4.4)

with vmv(T, θ(T, δT )) having the form (3.6) as

vmv
(
T, θ(T, δT )

)
= E

[
ãtZ̃TGT

(
θ(T, δT )

)
+ b̃T Z̃T

(
GT

(
θ(T, δT )

))2]
+ c̃T

(
E
[
Z̃TGT

(
θ(T, δT )

)])2

+ d̃T , (4.5)

where
Z̃T = 1, ãT = 1, b̃T = −ξ, c̃T = ξ, d̃T = 0. (4.6)

To use the results from Section 3, we introduce some relevant quantities. In view
of the recursive formulas (3.22)–(3.26) and the terminal condition (4.6), we define
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processes Z̃, ã, b̃, c̃, d̃ by

Z̃t−1 = E[Z̃t|Ft−1]− (E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]
, Z̃T = 1, (4.7)

ãt−1 = ãt

(
1 +

c̃t

b̃t
E

[
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

])−1

, ãT = 1, (4.8)

b̃t−1 = b̃t, b̃T = −ξ, (4.9)

c̃t−1 = c̃t

(
1 +

c̃t

b̃t
E

[
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

])−1

, c̃T = ξ, (4.10)

d̃t−1 = d̃t −
(

1 +
c̃t

b̃t
E

[
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

])−1

× ã2
t

4b̃t
E

[
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

]
, d̃T = 0. (4.11)

Now we need to implement Recipe 3.3 or Lemmas 3.5–3.7 in our special case
and provide the missing ingredients pointed out in Section 3.4. Specifically, trans-
lating Lemmas 3.5 and 3.6 needs that every 4St is in L2 and the quantities
Z̃t, ãt, b̃t, c̃t, d̃t are well defined. If we can prove this, then we can immediately state
the corresponding results for Lemmas 3.5 and 3.6 by replacing (Zt, at, bt, ct, dt)

there with (Z̃t, ãt, b̃t, c̃t, d̃t) given in (4.7)–(4.11). Finally, we need to verify the
conditions (3.16), (3.17), (3.20), (3.35) and (3.36) all with (Zt, at, bt, ct, dt) re-
placed by (Z̃t, ãt, b̃t, c̃t, d̃t). Observe from (4.7)–(4.11) that the processes ã, b̃, c̃, d̃
depend crucially on the process Z̃. So we analyse this process first. These tasks
are summarised in the following recipe.

Recipe 4.1. 1) Show that the process Z̃ is well defined.
2) Show that the processes ã, b̃, c̃, d̃ are well defined and translate Lemmas 3.5

and 3.6 accordingly.
3) For each t = 1, . . . , T , verify conditions (3.16), (3.17), (3.20), (3.35) and

(3.36) with (Zt, at, bt, ct, dt) = (Z̃t, ãt, b̃t, c̃t, d̃t).

4.3 Step 1): Well-definedness of the process Z̃

In this subsection, we implement Recipe 4.1, Step 1). Namely, we prove that the
process Z̃ recursively defined in (4.7) is well defined. Assumption 3.4 requires
that 4St for a fixed t is in L2. It is natural to impose that the entire process S
is square-integrable.

Assumption 4.2. The process S is square-integrable, meaning that St ∈ L2 for
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t = 0, 1, . . . , T .

We first give some properties of Z̃ from the recursion (4.7). To simplify the
exposition, we define

Ũt,T :=
T∏
u=t

(
1− E[Z̃u4Su|Fu−1]

E[Z̃u(4Su)2|Fu−1]
4Su

)
, (4.12)

with the usual convention that a product over an empty set is 1. In particular,
ŨT+1,T = 1.

Lemma 4.3. Suppose Assumption 4.2 is satisfied. Then we have for t = 1, . . . , T

that

Z̃t−1 is well defined and has values in [0, 1], (4.13)

Ũt,T is well defined and in L2, (4.14)

Ũt+1,T
E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4St ∈ L2, (4.15)

Z̃t−1 = E[Ũt,T |Ft−1] = E[(Ũt,T )2|Ft−1]. (4.16)

In consequence, Condition (3.16) is satisfied with Zt = Z̃t for t = 1, . . . , T .
Explicitly, this means that we have

E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
Z̃t4St ∈ L2, t = 1, . . . , T. (4.17)

Proof. This result is formulated differently in Schweizer [62, Lemma 3]. For
completeness, we give a proof here. Let us argue (4.13)–(4.16) by backward
induction. Recall the convention that 0

0
= 0. For t = T , using Z̃T = 1 and the

Cauchy–Schwarz inequality in the recursive definition (4.7) for Z̃ yields that

Z̃T−1 = 1− (E[4ST |FT−1])2

E[(4ST )2|FT−1]
has values in [0, 1].

This establishes (4.13) for the base case t = T and also shows (4.14) for t = T ,
i.e. ŨT,T is well defined and in L2. Now we consider

YT :=
E[Z̃T4ST |FT−1]

E[Z̃T (4ST )2|FT−1]
4ST =

E[4ST |FT−1]

E[(4ST )2|FT−1]
4ST = 1− ŨT,T (4.18)

and claim that E[Y 2
T |FT−1] ≤ 1. This then yields (4.15) for t = T ; note that
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ŨT+1,T = 1. To justify the claim, we use the fact that the conditional expectation
of a nonnegative random variable always exists and take out the FT−1-measurable
quantity to get

E[Y 2
T |FT−1] =

(E[4ST |FT−1])2

(E[(4ST )2|FT−1])2
E[(4ST )2|FT−1] =

(E[4ST |FT−1])2

E[(4ST )2|FT−1]
. (4.19)

The Cauchy–Schwarz inequality then yields the desired claim. Next, because both
YT and 4ST are in L2, a similar conditioning argument gives that E[YT |FT−1] is
equal to the right-hand side in (4.19) and hence is equal to E[Y 2

T |FT−1]. In view
of (4.18), the fact that E[YT |FT−1] is equal to the right-hand side in (4.19), and
the recursion (4.7) for t = T with Z̃T = 1, we get

E[ŨT,T |FT−1] = E[1− YT |FT−1] = 1− (E[4ST |FT−1])2

E[(4ST )2|FT−1]
= Z̃T−1.

This yields the first equality in (4.16) for t = T . Using (4.18) and the identity
E[YT |FT−1] = E[Y 2

T |FT−1] from (4.18) and (4.19), we get

E[(1− ŨT,T )2|FT−1] = E[Y 2
T |FT−1] = E[YT |FT−1] = E[1− ŨT,T |FT−1].

Squaring out the terms yields the second equality in (4.16) for t = T , namely
E[ŨT,T |FT−1] = E[(ŨT,T )2|FT−1].

Suppose now that (4.13)–(4.16) are satisfied for t+1. We justify the induction
step for (4.15), (4.14), (4.16) and (4.13) all for t in order. Consider

Yt := Ũt+1,T
E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4St, (4.20)

and note that Yt is not Ft-measurable. Similarly to the base case, we use the tower
property, (4.16) for t + 1 from the induction hypothesis and the tower property
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again to get

E[Y 2
t |Ft−1] = E

[
E[Y 2

t |Ft]
∣∣Ft−1

]
= E

[
E[Ũ2

t+1,T |Ft]
(

E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4St

)2∣∣∣∣Ft−1

]
= E

[
Z̃t

(
E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4St

)2∣∣∣∣Ft−1

]
=

(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]
. (4.21)

Applying the Cauchy–Schwarz inequality and (4.13) for t+ 1 to (4.21) gives

E[Y 2
t |Ft−1] =

(E[Z̃
1
2
t Z̃

1
2
t 4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]
≤ E[Z̃t|Ft−1] ≤ 1. (4.22)

In particular, this implies E[Y 2
t ] ≤ 1 and hence gives (4.15) for t. The definition

(4.12) for Ũt,T yields the identity

Ũt,T = Ũt+1,T − Ũt+1,T
E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4St = Ũt+1,T − Yt. (4.23)

In particular, this shows that Ũt,T is well defined because Ũt+1,T and Yt are. The
additional property Ũt,T ∈ L2 in (4.14) for t then follows from the middle equality
in (4.23), the just proved property (4.15) for t, and the induction hypothesis (4.14)
for t+ 1.

The recursion (4.7) for Z̃t−1 and (4.21) yield Z̃t−1 = E[Z̃t|Ft−1]−E[Y 2
t |Ft−1],

and thus Z̃t−1 is well defined. We also obtain that Z̃t−1 ≤ E[Z̃t|Ft−1] ≤ 1 due to
the induction hypothesis (4.13) for t+ 1. The remaining assertion in (4.13) for t
is that Z̃t−1 ≥ 0, which is a consequence of (4.16) for t.

We turn to proving (4.16) for t. Due to (4.22) and Assumption 4.2, both Yt
and 4St are in L2. So we can repeat the steps in (4.21) to compute (with now
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Yt instead of Y 2
t )

E[Yt|Ft−1] = E
[
E[Yt|Ft]

∣∣Ft−1

]
= E

[
E[Ũt+1,T |Ft]

E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4St

∣∣∣∣Ft−1

]
= E

[
Z̃t

E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4St

∣∣∣∣Ft−1

]
=

(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

= E[Y 2
t |Ft−1]. (4.24)

The conditioning in the second equality uses that Ũt+1,T ∈ L2 from (4.14) for
t + 1, and the conditioning in the second-to-last equality uses that Z̃t4St ∈ L1

by Z̃t ∈ [0, 1] and 4St ∈ L2. The first equality in (4.16) for t is now a direct
consequence of (4.23), the second-to-last equality in (4.24), (4.16) for t + 1 and
finally the recursion (4.7) for Z̃t−1 via

E[Ũt,T |Ft−1] = E[Ũt+1,T |Ft−1]− E[Yt|Ft−1]

= E[Z̃t|Ft−1]− (E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

= Z̃t−1.

Using (4.23) repeatedly, then iterative conditioning and finally invoking (4.16)
for t+ 1 and (4.24) yields

E[Ũ2
t,T |Ft−1] = E[(Ũt+1,T − Yt)2|Ft−1]

= E
[
E[Ũ2

t+1,T |Ft]
∣∣Ft−1

]
− 2E

[
E[Ũt+1,TYt|Ft]

∣∣Ft−1

]
+ E[Y 2

t |Ft−1]

= E[Ũt+1,T |Ft−1]− 2E[Yt|Ft−1] + E[Yt|Ft−1]

= E[Ũt,T |Ft−1].

This gives the second equality in (4.16) for t. The second-to-last line uses the
tower property and the identity

E[Ũt+1,TYt|Ft] = E[Ũ2
t+1,T |Ft]

E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4St = E[Yt|Ft]

due to the definition (4.20) for Yt, the second equality in (4.16) for t + 1 and
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(4.20) again. This completes the proof of (4.13)–(4.16).
Finally, Condition (3.16) for Zt = Z̃t reads explicitly in (4.17) as

E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
Z̃t4St ∈ L2.

But because 0 ≤ Z̃t ≤ 1 by (4.13) for t+ 1, we obtain as in (4.22) that

E

[(
E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
Z̃t4St

)2∣∣∣∣Ft−1

]
≤ E

[(
E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]

)2

Z̃t4S2
t

∣∣∣∣Ft−1

]
=

(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

≤ 1.

The next result immediately follows from the construction of Z̃. It has appar-
ently not been noticed in Schweizer [62], but analogous results appear for instance
in Černý and Kallsen [17, Corollary 3.4] or Jeanblanc et al. [38, Lemma 1.5].

Corollary 4.4. Suppose that Assumption 4.2 is satisfied. Then the process Z̃
defined by (4.7) is a submartingale.

Proof. Due to (4.13), we have Z̃t ∈ L1. Moreover, the recursive formula (4.7)
yields Z̃t−1 ≤ E[Z̃t|Ft−1] for t = 1, . . . , T .

4.4 Step 2): Translating the results for the LQ problem

In this subsection, we implement Recipe 4.1, Step 2). Namely, we show that the
deterministic processes ã, b̃, c̃, d̃ are well defined and then translate the results in
Lemmas 3.5 and 3.6 to the present setting.

To make the expressions in (4.14)–(4.16) lighter, we introduce a process β via

βt :=
E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
, t = 1, . . . , T. (4.25)

Note that if Z̃ is deterministic, this would coincide with the process λ̃ from
Chapter I; see (I.3.17), (I.3.10) and (I.3.9). Under Assumption 4.2, the process
β is also well-defined with the convention 0

0
= 0 because Z̃ is well defined by
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Lemma 4.3 and as in (4.22),

(E[Z̃t4St|Ft−1])2 ≤ E[Z̃t|Ft−1]E[Z̃t(4St)2|Ft−1]

due to the Cauchy–Schwarz inequality. Using (4.25) and (4.17), we get

Z̃tβt4St ∈ L1 and E[Z̃tβt4St|Ft−1] =
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]
. (4.26)

The property (4.26) allows us to write the recursive definitions (4.7)–(4.11) more
lightly as

Z̃t−1 = E[Z̃t(1− βt4St)|Ft−1], Z̃T = 1, (4.27)

ãt−1 = ãt

(
1 +

c̃t

b̃t
E[Z̃tβt4St]

)−1

, ãT = 1, (4.28)

b̃t−1 = b̃t, b̃T = −ξ, (4.29)

c̃t−1 = c̃t

(
1 +

c̃t

b̃t
E[Z̃tβt4St]

)−1

, c̃T = ξ, (4.30)

d̃t−1 = d̃t −
(

1 +
c̃t

b̃t
E[Z̃tβt4St]

)−1
ã2
t

4b̃t
E[Z̃tβt4St], d̃T = 0. (4.31)

Moreover, we also write (4.12) as

Ũt,T =
T∏
u=t

(1− βu4Su) =
E(−

∫
β dS)T

E(−
∫
β dS)t−1

=: Et,T
(
−
∫
β dS

)
.

Now we show that ãt, b̃t, c̃t and d̃t are well defined for t = 0, 1, . . . , T . By the
definitions in (4.8)–(4.11) of these quantities, it suffices to show for t = 1, . . . , T

that
1 +

c̃t

b̃t
E[Z̃tβt4St] 6= 0. (4.32)

Note that this is simply the condition (3.17) in our special case which needs to
be shown anyway in view of the discussion in Section 3.4. To establish (4.32), we
need a further assumption.

Assumption 4.5. 1) The space ΘS satisfies Assumption I.2.2, 2) which says that
the L2-closure of GT (ΘS) does not contain the constant payoff 1.

2) The process S satisfies the structure condition (SC), meaning that the
process (E[4St|Ft−1])t=1,...,T is absolutely continuous with respect to the process
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(Var[4St|Ft−1])t=1,...,T .

We recall from (I.3.14) that Assumption 4.5, 2) implies for t = 1, . . . , T that
E[4St|Ft−1]� Var[4St|Ft−1] in the sense that

E[4St|Ft−1] = 0 on {Var[4St|Ft−1] = 0}. (4.33)

Lemma 4.6. Suppose Assumptions 4.2 and 4.5 are satisfied. Then the following
statements hold:

1) E[Z̃t] > 0 for t = 0, 1, . . . , T .
2) c̃t

b̃t
= − 1

E[Z̃t]
for t = 0, 1, . . . , T , and (4.32) holds for t = 1, . . . , T .

3) The quantities ãt, b̃t, c̃t and d̃t are well defined for t = 0, 1, . . . , T .

Proof. 1) Delbaen and Schachermayer [23, Lemma 2.1] asserts that Assump-
tion 4.5, 1) is equivalent to the statement that the set of signedGT (ΘS)-martingale
measures (see (I.3.22) for the definition) is nonempty, under which the result
E[Z̃t] > 0 for t = 0 is deduced from Corollary 4 and Theorem 5 in Schweizer [62].
For t = 1, . . . , T , we use the submartingale property of Z̃ from Lemma 4.3 to get
E[Z̃t] ≥ E[Z̃0] > 0.

2) For convenience, we introduce a process h by ht = c̃t
b̃t

for t = 0, 1, . . . , T ,

which by the recursions (4.29) for b̃t−1 and (4.30) for c̃t−1 satisfies

ht−1 =
c̃t−1

b̃t−1

=
c̃t

b̃t

(
1 +

c̃t

b̃t
E[Z̃tβt4St]

)−1

= ht(1 + htE[Z̃tβt4St])−1 (4.34)

whenever 1 + c̃t
b̃t
E[Z̃tβt4St] 6= 0. We prove that ht = − 1

E[Z̃t]
for t = 0, 1, . . . , T

and (4.32) for t = 1, . . . , T by backward induction. For t = T , the identity
hT = − 1

E[Z̃T ]
immediately follows from

hT =
c̃T

b̃T
=

ξ

−ξ
= −1 = − 1

E[Z̃T ]

thanks to the terminal conditions Z̃T = 1, b̃T = −ξ, c̃T = ξ in (4.27), (4.29) and
(4.30). Note that E[4ST |FT−1] = 0 on {Var[4ST |FT−1] = 0} from (4.33) and
the convention 0

0
= 0 yield

(E[4ST |FT−1])2

E[(4ST )2|FT−1]
=

(E[4ST |FT−1])2

Var[4ST |FT−1] + (E[4ST |FT−1])2
< 1 P -a.s.
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Combining the above with Z̃T = 1, b̃T = −ξ, c̃T = ξ, we get

1 +
c̃T

b̃T
E

[
(E[Z̃T4ST |FT−1])2

E[Z̃T (4ST )2|FT−1]

]
= 1− E

[
(E[4ST |FT−1])2

E[(4ST )2|FT−1]

]
> 0.

This proves condition (4.32) for t = T .
Suppose now that ht = − 1

E[Z̃t]
and (4.32) holds for t. Then the identity

(4.34) for ht−1 is true. Using (4.34), the identity ht = − 1

E[Z̃t]
from the induction

hypothesis and the new recursion (4.27) for Z̃t−1, we get

ht−1 = ht(1 + htE[Z̃tβt4St])−1

= − 1

E[Z̃t]

1

1− 1

E[Z̃t]
E[Z̃tβt4St]

= − 1

E[Z̃t(1− βt4St)]

= − 1

E[Z̃t−1]
.

Next, we use the definition ht = c̃t
b̃t
, plug the above equality back into the left-

hand side of (4.32) for t and use the new recurrence relation (4.27) for Z̃t−1 and
E[Z̃t] > 0 from part 1) to obtain

1 +
c̃t

b̃t
E[Z̃tβt4St] = 1 + htE[Z̃tβt4St]

= 1− 1

E[Z̃t]
E[Z̃tβt4St]

=
E[Z̃t(1− βt4St)]

E[Z̃t]

=
E[Z̃t−1]

E[Z̃t]
> 0.

This proves (4.32) for t− 1.
3) This is an immediate consequence of part 2) and the definitions (4.28)–

(4.31) for ã, b̃, c̃, d̃.

Corollary 4.7. Suppose Assumptions 4.2 and 4.5 are satisfied. Then the process
ã given in (4.28) satisfies for t = 0, 1, . . . , T that

ãt = − c̃t
b̃t

=
1

E[Z̃t]
. (4.35)
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Proof. The second equality in (4.35) is obtained in Lemma 4.6, 2). We prove
the first equality in (4.35) by backward induction. The base case for (4.35) reads
ãT = − c̃T

b̃T
, which is clear from ãT = 1, b̃T = −ξ, c̃T = ξ given in (4.28), (4.29)

and (4.30). Now suppose that ãt = − c̃t
b̃t
is true for t. Then the well-definedness of

ã, b̃, c̃ from Lemma 4.6, 3) allows us to use the recursions (4.29) for b̃t−1 and (4.30)
for c̃t−1, the induction hypothesis (4.35) for t and finally the recursion (4.28) for
ãt−1 to obtain

c̃t−1

b̃t−1

=
c̃t

b̃t

(
1 +

c̃t

b̃t
E[Z̃tβt4St]

)−1

= −ãt
(

1 +
c̃t

b̃t
E[Z̃tβt4St]

)−1

= −ãt−1.

This completes the induction step and hence proves (4.35).

In view of the discussion before Recipe 4.1 and the well-definedness of the
quantities Z̃, ã, b̃, c̃, d̃ from Lemmas 4.3 and 4.6, we can now mechanically imple-
ment Recipe 3.3, Step 1)t for t = 0, 1, . . . , T .

Proposition 4.8. Suppose Assumptions 4.2 and 4.5 are satisfied. Fix a time
t ∈ {1, . . . , T}. If θ ∈ ΘS, δt ∈ Θ

[t]
S (θ) and vmv satisfies

vmv
(
t, θ(t, δt)

)
= E

[
ãtZ̃tGt

(
θ(t, δt)

)
+ b̃tZ̃t

(
Gt

(
θ(T, δt)

))2]
+ c̃t

(
E
[
Z̃tGt

(
θ(T, δt)

)])2

+ d̃t, (4.36)

where Z̃t, ãt, b̃t, c̃t, d̃t are given by (4.7)–(4.11), (4.37)

then the following statements hold:
1) We have

vmv
(
t, θ(t, δt)

)
= E

[
ãtZ̃tGt−1(θ) + b̃tZ̃t

(
Gt−1(θ)

)2]
+ c̃t

(
E[Z̃tGt−1(θ)]

)2
+ d̃t

+ rmv
t (δt), (4.38)

where

rmv
t (δt) = E

[
ãtZ̃tδt4St + 2b̃tZ̃tGt−1(θ)δt4St + b̃tZ̃t(δt4St)2

+ 2c̃tE[Z̃tGt−1(θ)]E[Z̃tδt4St] + c̃t(E[Z̃tδt4St])2
]
. (4.39)
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2) Any maximiser for δt 7→ rmv
t (δt) is a solution to the linear equation

δt = − E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]

×
(
ãt

2b̃t
+Gt−1(θ) +

c̃t

b̃t
E
[
Z̃t
(
Gt−1(θ) + δt4St

)])
. (4.40)

A solution δ̃t to the linear equation (4.40) is explicitly given by

δ̃t = − E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]

(
ãt

2b̃t
+Gt−1(θ) +

c̃t

b̃t

(
E[Z̃tGt−1(θ)] + ẽt

))
, (4.41)

where ẽt is given by

ẽt = −
(

1 +
c̃t

b̃t
E

[
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

])−1

× E
[

(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

(
ãt

2b̃t
+Gt−1(θ)

+
c̃t

b̃t
E[Z̃tGt−1(θ)]

)]
(4.42)

and satisfies ẽt = E[Z̃tδ̃t4St].

Proof. Parts 1) and 2) are translated from Lemmas 3.5–3.7. Indeed, (4.38)–(4.40)
are translated from (3.11), (3.12) and (3.14), respectively. To do the translation
properly, we need to verify that the proposed form (4.36), (4.37) of vmv satisfies
(3.6)–(3.8). Obviously, the affine–quadratic structure in (4.36) is the same as
(3.6). To verify (3.7) and (3.8), we observe from the recursive relations (4.7)–
(4.11) for Z̃t, ãt, b̃t, c̃t, d̃t that ãt, b̃t, c̃t, d̃t are deterministic, b̃t = b̃T = −ξ 6= 0 and
Z̃t is Ft-measurable. By (4.16), Z̃t also has values in [0, 1] so that it is nonnegative
and bounded.

Finally, we apply Lemma 3.7, 1) with (Zt, at, bt, ct, dt) = (Z̃t, ãt, b̃t, c̃t, d̃t) to
solve the linear equation (4.40) and obtain (4.41) and (4.42). Thanks to (4.17),
we have (3.16) with Zt = Z̃t. By (4.32) argued in Lemma 4.6, we also have
(3.17). Therefore, Lemma 3.7, 1) can be applied as desired; (4.41) and (4.42) is
then translated from (3.19) and (3.18).
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4.5 Step 3): Fulfilling the missing requirement

Having Proposition 4.8, we can complete the implementation of Recipe 4.1, Steps
1) and 2). To implement Recipe 4.1, Step 3), what needs to be done is to verify
the conditions (3.16), (3.17), (3.20), (3.35) and (3.36) with (Zt, at, bt, ct, dt) there
equal to (Z̃t, ãt, b̃t, c̃t, d̃t). These conditions are explicitly given by

E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
Z̃t4St ∈ L2, (4.43)

1 +
c̃t

b̃t
E

[
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

]
6= 0, (4.44)

b̃t + c̃tE[Z̃t] ≤ 0 and the solution δ̃t to (4.40) is in Θ
[t]
S (θ), (4.45)

ãt−1, b̃t−1, c̃t−1, d̃t−1 are deterministic with b̃t 6= 0, (4.46)

Z̃t−1 is bounded, nonnegative and Ft−1-measurable, (4.47)

for t = 1, . . . , T . Note that (4.43) is already given by (4.17) and (4.44) is proved
by Lemma 4.6, 2). In Corollary 4.7, we also obtained ãt = − c̃t

b̃t
= 1

E[Z̃t]
which

yields the first half of the condition (4.45) because

b̃t + c̃tE[Z̃t] = b̃t(1− ãtE[Z̃t]) = 0.

Moreover, the conditions (4.46) and (4.47) have been established in the proof of
Proposition 4.8. So among the conditions (4.43)–(4.47), it only remains to prove
the second half of (4.45).

Let us take a quick look at this condition. We recall from (4.41) that

δ̃t = − E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]

(
ãt

2b̃t
+Gt−1(θ) +

c̃t

b̃t

(
E[Z̃tGt−1(θ)] + ẽt

))
for a constant ẽt given in (4.42). So the second half of (4.45) for t = T reads
equivalently (

E[Z̃T4ST |FT−1]

E[Z̃T (4ST )2|FT−1]
4STGT−1(θ)

)2

∈ L1.

This is satisfied because E[( E[Z̃T4ST |FT−1]

E[Z̃T (4ST )2|FT−1]
4ST )2|FT−1] ≤ 1, as argued in (4.18)

and (4.19), and GT−1(θ) ∈ L2 due to θ ∈ ΘS. For a general t, we have no control
over the factor E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4St, while the other factor Gt−1(θ) is only known

to be in L2 due to the arbitrariness of θ. At present, we can only proceed in
implementing Recipe 4.1, Step 2) by leaving the above condition (i.e., the second
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half of (4.45)) as an extra assumption.

Proposition 4.9. Suppose Assumptions 4.2 and 4.5 are satisfied. Fix θ ∈ ΘS

and t ∈ {1, . . . , T}. If vmv(t, ·) is of the form (4.36) and (4.37), then the following
statements hold:

1) Suppose that

the solution δ̃t given in (4.41) and (4.42) satisfies δ̃t4St ∈ L2. (4.48)

Then a maximiser for δt 7→ rmv
t (δt) exists and is in Θ

[t]
S (θ). It is a solution to

(4.40) and given explicitly by δ̃t in (4.41) and (4.42).
2) If (4.48) is satisfied, then the resulting

vmv(t− 1, θ) = sup
δt∈Θ

[t]
S (θ)

v
(
t, θ(t, δt)

)
= vmv

(
t, θ(t, δ̃t)

)
from (4.4) is also of the form (4.36) and (4.37). Precisely, we have

vmv(t− 1, θ) = E
[
ãt−1Z̃t−1Gt−1(θ) + b̃t−1Z̃t−1

(
Gt−1(θ)

)2]
+ c̃t−1

(
E[Z̃t−1Gt−1(θ)]

)2
+ d̃t, (4.49)

where Z̃t−1, ãt−1, b̃t−1, c̃t−1, d̃t−1 are given by (4.7)–(4.11), namely

Z̃t−1 = E[Z̃t|Ft−1]− (E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]
, (4.50)

ãt−1 = ãt

(
1 +

c̃t

b̃t
E

[
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

])−1

, (4.51)

b̃t−1 = b̃t, (4.52)

c̃t−1 = c̃t

(
1 +

c̃t

b̃t
E

[
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

])− 1
2

, (4.53)

d̃t−1 = d̃t −
(

1 +
c̃t

b̃t
E

[
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

])−1

× ã2
t

4b̃t
E

[
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

]
. (4.54)

Proof. Thanks to the extra assumption (4.48), the conditions (3.16), (3.17) and
(3.20) with (Zt, at, bt, ct, dt) = (Z̃t, ãt, b̃t, c̃t, d̃t) are satisfied. So Lemma 3.7,
2) and 3) can be applied and translated into the desired results. The iden-
tity (4.49) is from (3.21). The recursions (4.50)–(4.54) are (3.22)–(3.26) with
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(Zt, at, bt, ct, dt) = (Z̃t, ãt, b̃t, c̃t, d̃t), which obviously agrees with the definitions
(4.7)–(4.11) of Z̃t, ãt, b̃t, c̃t, d̃t.

4.6 Complete recursion and solution for the MVPS prob-

lem

In this subsection, we apply the results from the previous two subsections to solve
the MVPS problem (4.2) with Θ = ΘS.

We first recall from (2.5) with v = vmv, j = jmv,Θ(t, θ) = ΘS(t, θ) and the
expression (4.1) for jmv that

vmv(t, θ) := sup
θ̃∈ΘS(t,θ)

E
[
GT (θ̃)− ξ

(
GT (θ̃)− E[GT (θ̃)]

)2] (4.55)

for t = 0, 1, . . . , T . Combining this with (4.4), we need to solve the sequence of
problems

vmv(t, θ) = sup
δt+1∈Θ

[t+1]
S (θ)

vmv
(
t+ 1, θ(t+ 1, δt+1)

)
, (4.56)

for t = 0, . . . , T − 1 with vmv(T, θ) = jmv(θ). In view of Proposition 4.9, the
entire linear–quadratic structure (4.36) and (4.37) for vmv is maintained if (4.48)
is satisfied for all t = 1, . . . , T . This motivates a final assumption, which is studied
later in special cases.

Assumption 4.10. For all t = 1, . . . , T and θ ∈ ΘS, the solution δ̃t to (4.40)
satisfies δ̃t4St ∈ L2.

We piece everything together to state the main result of this entire section,
which is effectively a formality.

Theorem 4.11. Suppose that Assumptions 4.2, 4.5 and 4.10 are satisfied. Then:
1) For any θ ∈ ΘS and any t = 0, 1, . . . , T , the value function vmv(t, θ) is of

the form (4.36) and (4.37), i.e.

vmv
(
t, θ(t, δt)

)
= E

[
ãtZ̃tGt

(
θ(t, δt)

)
+ b̃tZ̃t

(
Gt

(
θ(t, δt)

))2]
+ c̃t

(
E
[
Z̃tGt

(
θ(t, δt)

)])2

+ d̃t, (4.57)
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where Z̃t, ãt, b̃t, c̃t, d̃t are given by

Z̃t−1 = E[Z̃t|Ft−1]− (E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]
, Z̃T = 1, (4.58)

ãt−1 = ãt

(
1 +

c̃t

b̃t
E

[
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

])−1

, ãT = 1, (4.59)

b̃t−1 = b̃t, b̃T = −ξ, (4.60)

c̃t−1 = c̃t

(
1 +

c̃t

b̃t
E

[
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

])−1

, c̃T = ξ, (4.61)

d̃t−1 = d̃t −
(

1 +
c̃t

b̃t
E

[
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

])−1

× ã2
t

4b̃t
E

[
(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

]
, d̃T = 0. (4.62)

Explicitly, with the help of the process β defined by

βt =
E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
, t = 1, . . . , T, (4.63)

and the stochastic exponential E, the identities (4.58)–(4.62) can be written as

Z̃t = E[Z̃t+1(1− βt+14St+1)|Ft]

= E

[
E(−

∫
β dX)T

E(−
∫
β dX)t

∣∣∣∣Ft]
= E

[ T∏
u=t+1

(1− βu4Su)
∣∣∣∣Ft], t = 0, 1, . . . , T, (4.64)

ãt =
1

E[Z̃t]
, t = 0, 1, . . . , T, (4.65)

b̃t = −ξ, t = 0, 1, . . . , T, (4.66)

c̃t =
ξ

E[Z̃t]
= ξãt, t = 0, 1, . . . , T, (4.67)

d̃t =
1

4ξ

(
1

E[Z̃t]
− 1

)
=

1

4ξ
(ãt − 1), t = 0, 1, . . . , T. (4.68)

2) For every θ ∈ ΘS, the solution to the problem (4.55) at time t is given by
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θ̃u = θu for u = 1, . . . , t and

θ̃u = − E[Z̃u4Su|Fu−1]

E[Z̃u(4Su)2|Fu−1]

(
ãu

2b̃u
+Gu−1(θ̃) +

c̃u

b̃u

(
E[Z̃uGu−1(θ̃)] + ẽu

))
(4.69)

= −βu
(
Gu−1(θ̃)− (2ξ)−1 + E[Z̃u−1Gu−1(θ̃)]

E[Z̃u−1]

)
, u = t+ 1, . . . , T, (4.70)

where ẽu is given by

ẽu = −(1− ãuE[Z̃uβu4Su])−1

× E
[
Z̃uβu4Su

(
ãu

2b̃u
+Gu−1(θ̃)− ãuE[Z̃uGu−1(θ̃)]

)]
. (4.71)

In particular, the solution to the problem (4.55) at time 0 and hence to the MVPS
problem (4.2) with Θ = ΘS is given by

θ̃mv
u = − E[Z̃u4Su|Fu−1]

E[Z̃u(4Su)2|Fu−1]

×
(
Gu−1(θ̃mv)− (2ξ)−1 + E[Z̃u−1Gu−1(θ̃mv)]

E[Z̃u−1]

)
(4.72)

= −βu
(
Gu−1(θ̃mv)− 1

2ξE[Z̃0]

)
, u = 1, . . . , T. (4.73)

Proof. We use in both parts the equivalence between (4.55) and (4.56) which
follows from the dynamic programming result in Proposition 2.3, the abstract
rewriting in (2.11) after that result and the concrete specification in the beginning
of Section 4.2.

1) Assumptions 4.2, 4.5 and 4.10 allow us to apply Propositions 4.8 and 4.9
repeatedly backward in t, starting from t = T , at which the structure (4.57)–
(4.62) of the value function vmv(T, θ) = jmv(θ) is exogenously given by the MVPS
problem as in (4.5) and (4.6). This yields the structure (4.57)–(4.62) of vmv

for all t = 0, 1, . . . , T . The explicit expressions (4.64)–(4.68) for Z̃, ã, b̃, c̃, d̃ are
derived from their recursive counterparts (4.58)–(4.62). Indeed, the expressions
(4.64) and (4.65) for Z̃ and ã have been obtained in (4.16) and Lemma 4.6, 2),
respectively. The explicit expression b̃ ≡ −ξ for b̃ is immediate from its recursive
definition (4.60). For c̃, we recall from (4.35) that c̃t

b̃t
= −ãt for all t = 1, . . . , T .

Then inserting the explicit formulas for ã and b̃ into that identity yields (4.67).
Finally, we use c̃t

b̃t
= −ãt, ã2t

4b̃t
=

ã2t
4ξ

by (4.66) and finally the recursion (4.58) for
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Z̃t−1 to compute for t = 1, . . . , T that

d̃t−1 − d̃t =
1

4ξ
ãt
ãtE[ (E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]
]− 1 + 1

1− ãtE[ (E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]
]

=
1

4ξ

1

E[Z̃t]

(
1

1− 1

E[Z̃t]

E[(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]]

− 1

)

=
1

4ξ

(
1

E[Z̃t]− E[(E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]]

− 1

E[Z̃t]

)

=
1

4ξ

(
1

E[Z̃t−1]
− 1

E[Z̃t]

)
.

Summing both sides of this display from t + 1 to T and using d̃T = 0 as well as
E[Z̃T ] = Z̃T = 1 yields the explicit expression (4.68) for d̃.

2) For t = 1, . . . , T and θ ∈ ΘS, we use Assumptions 4.2 and 4.5 to apply
Proposition 4.8, 2) and Proposition 4.9, 1) repeatedly from t to T . This yields
a strategy θ̃ whose expression in (4.69) and (4.71) is obtained by repeatedly
translating (4.41) and (4.42) again starting from t + 1 to T . More precisely, the
expression (4.41) for δ̃t allows us to write δ̃t =: f(t, Gt−1(θ)) and θ̃ is obtained
by setting θ̃s = θs for s = 1, . . . , t and θ̃u = f(u,Gu−1(θ̃)) for u = t + 1, . . . , T .
Assumption 4.10 says that f(u,Gu−1(θ))4Su ∈ L2 for any u = 1, . . . , T and
θ ∈ ΘS. We now argue θ̃ ∈ ΘS(t, θ) by induction. First, we have θ̃s = θs

for s = 1, . . . , t by construction. Comparing (4.41) for δ̃t+1 with (4.69) for θ̃t+1

yields θ̃t+1 = δ̃t+1 = f(t+ 1, Gt(θ)) and thus θ̃t+14St+1 ∈ L2 due to Assumption
4.10. Suppose next that θ̃s4Ss ∈ L2 for s = t + 1, . . . , u − 1. Consider the
strategy ϕu−1 := (θ1, . . . , θt, θ̃t+1, . . . , θ̃u−1, 0, . . . , 0) ∈ ΘS. Because θ̃s = ϕu−1

s for
s = 1, . . . , u − 1 by construction, we have Gu−1(θ̃) = Gu−1(ϕu−1), and therefore
θ̃u = f(u,Gu−1(θ̃)) = f(u,Gu−1(ϕu−1)) satisfies θ̃u4Su ∈ L2 due to ϕu−1 ∈ ΘS

and Assumption 4.10. This completes the induction step and shows that θ̃ is in
ΘS(t, θ).

Due to the optimality of δ̃u = f(u,Gu−1(θ)) for the one-step problem (4.56)
for u = t + 1, . . . , T , we get by the equivalence between (4.55) and (4.56) that θ̃
is optimal for the problem (4.55) at time t.

To get (4.70), we first use c̃u
b̃u

= −ãu from (4.35), then factor out ãu and
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1− ãuE[Z̃uβu4Su] and finally use the expression (4.71) for ẽu to obtain

ãu

2b̃u
+
c̃u

b̃u

(
E[Z̃uGu−1(θ̃)] + ẽu

)
= ãu

(
1

2b̃u
− E[Z̃uGu−1(θ̃)]− ẽu

)
=

ãu

1− ãuE[Z̃uβu4Su]

(
1− ãuE[Z̃uβu4Su]

2b̃u
− E[Z̃uGu−1(θ̃)]

+ ãuE[Z̃uβu4Su]E[Z̃uGu−1(θ̃)]

+ E

[
Z̃uβu4Su

( ãu
2bu

+Gu−1(θ̃)− ãuE[Z̃uGu−1(θ̃)]
)])

=
ãu

1− ãuE[Z̃uβu4Su]

(
1

2b̃u
− E[Z̃uGu−1(θ̃)] + E[Z̃uβu4SuGu−1(θ̃)]

)
=

1

E[Z̃u−1]

(
− 1

2ξ
− E[Z̃u−1Gu−1(θ̃)]

)
.

The second-to-last equality cancels out the terms involving ãuE[Z̃uβu4Su]

2b̃u
and

ãuE[Z̃uβu4Su]E[Z̃uGu−1(θ̃)]. The last equality uses ãu = 1

E[Z̃u]
from (4.65) and

E[Z̃t−1] = E[Z̃t(1 − βt4St)] from the first equality in (4.64) twice as well as
b̃u = −ξ from (4.66). Inserting the above equality into (4.69) yields (4.70).

The expression (4.72) follows from (4.70). To show (4.73), we next argue for
t = 0, 1, . . . , T that

(2ξ)−1 + E[Z̃tGt(θ̃
mv)]

E[Z̃t]
=

1

2ξE[Z̃0]
. (4.74)

Denote by z the right-hand side. For t = 0, (4.74) is clear because G0(θ̃mv) = 0.
Suppose the above is true for t − 1. We then use the explicit formula (4.72) for
θ̃mv
t with E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
replaced by βt due to (4.63) and the induction hypothesis
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(4.74) for t− 1 to get

E[Z̃tGt(θ̃
mv)] = E

[
Z̃t
(
Gt−1(θ̃mv) + θ̃mv

t 4St
)]

= E

[
Z̃t

(
Gt−1(θ̃mv)

− βt4St
(
Gt−1(θ̃mv)− (2ξ)−1 + E[Z̃t−1Gt−1(θ̃mv)]

E[Z̃t−1]

))]
= E

[
Z̃t

(
Gt−1(θ̃mv)− βt4St

(
Gt−1(θ̃mv)− z

))]
= E[Z̃t(1− βt4St)Gt−1(θ̃mv)] + zE[Z̃tβt4St]

= E[Z̃t−1Gt−1(θ̃mv)] + zE[Z̃tβt4St].

The last line uses the recursion in the first equality of (4.64) for Z̃t−1 and the tower
property thanks to the boundedness of Z̃ and Gt−1(θ̃mv) ∈ L2. This integrability
property plus Z̃tβt4St ∈ L1 from (4.26) also ensures that the decomposition
in the third line is allowed. Now inserting the above display into (4.74) for t,
then using the identity (2ξ)−1 + E[Z̃t−1Gt−1(θ̃mv)] = zE[Z̃t−1] deduced from the
induction hypothesis (4.74) for t−1 and finally invoking from (4.64) the recursion
E[Z̃t−1] = E[Z̃t(1− βt4St)] yields

(2ξ)−1 + E[Z̃tGt(θ̃
mv)]

E[Z̃t]
=

(2ξ)−1 + E[Z̃t−1Gt−1(θ̃mv)] + zE[Z̃tβt4St]
E[Z̃t]

=
zE[Z̃t−1] + zE[Z̃tβt4St]

E[Z̃t]

= z.

This completes the induction step and justifies the claim (4.74) for t = 0, 1, . . . , T .
Finally, the MVPS problem (4.2) is the same as the problem (4.55) at time

0 thanks to ΘS(0, θ) = ΘS. The strategy θ̃mv is simply θ̃ in (4.69) starting from
u = 1.

4.7 Discussion and special cases

In this subsection, we provide some concrete examples for the MVPS problem with
Θ = ΘS. To this end, we need to verify (in these examples) the assumptions for
Theorem 4.11, among which Assumption 4.10 is the main focus. The presentation
below is divided into three parts. The first is a bottom-up and technical discussion
of Assumption 4.10, while the second is more top-down and abstract. In the last



4 Application to the MVPS problem 221

part, we give examples where some explicit computations are possible.
For the sake of the argument, let us suppose that Assumptions 4.2 and 4.5 are

satisfied, meaning that S is square-integrable and satisfies the structure condition
(SC), and the L2-closure of GT (ΘS) does not contain the constant (payoff) 1.
Recall that Assumption 4.10 says that the solution δ̃t to the linear equation
(4.40) satisfies δ̃t4St ∈ L2 for all t = 1, . . . , T and θ ∈ ΘS. For convenience, we
recall from (4.41) that δ̃t is given explicitly by

δ̃t = − E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]

(
ãt

2b̃t
+Gt−1(θ) +

c̃t

b̃t

(
E[Z̃tGt−1(θ)] + ẽt

))
, (4.75)

where ẽt is a real number given explicitly in (4.42). Because all quantities in-
side the large parenthesis except for Gt−1(θ) in (4.75) are deterministic, we need
E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4StGt−1(θ) ∈ L2. Due to Gt−1(θ) ∈ L2 by θ ∈ ΘS, we might expect

that we need E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4St or E[( E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4St)2|Ft−1] to be in L∞. We

can give some partial results in this direction.

Lemma 4.12. Suppose that Assumption 4.2 is satisfied and U is a bounded ran-
dom variable. If U ≥ ` for some ` > 0, then we have

E

[(
E[U4St|Ft−1]

E[U(4St)2|Ft−1]
4St

)2∣∣∣∣Ft−1

]
≤
(
‖U‖∞
`

)2

, t = 1, . . . , T. (4.76)

Proof. First we note that E[U4St|Ft−1]
E[U(4St)2|Ft−1]

is well defined by the positivity of U , the
Cauchy–Schwarz inequality and the convention 0

0
= 0. Because U is bounded and

satisfies U ≥ `, we have(
E[U4St|Ft−1]

E[U(4St)2|Ft−1]
4St

)2

≤
(
‖U‖∞
`

)2(
E[4St|Ft−1]

E[(4St)2|Ft−1]
4St

)2

.

Taking conditional expectations with respect to Ft−1 on both sides and using the
tower property and the Cauchy–Schwarz inequality yields the desired bound.

Lemma 4.13. Suppose that Assumptions 4.2 and 4.5 are satisfied. If the pro-
cess Z̃ given by (4.7) is uniformly bounded below by a positive real number, then
Assumption 4.10 is satisfied.

Proof. Thanks to the explicit formula (4.75) for δ̃t, we only need to show that(
E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4StGt−1(θ)

)2

∈ L1.
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We write Z̃t ≥ z̃ > 0 by the assumption that Z̃ is uniformly lower bounded
by a positive real number. Then using (4.76) with (U, `) = (Z̃t, z̃) and taking
expectations yields

E

[(
E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4StGt−1(θ)

)2]
= E

[
E
[( E[Z̃t4St|Ft−1]

E[Z̃t(4St)2|Ft−1]
4St

)2∣∣∣Ft−1

]
×
(
Gt−1(θ)

)2
]

≤
(
‖Z̃t‖∞
z̃

)2

E
[(
Gt−1(θ)

)2]
<∞.

The last inequality uses that Gt−1(θ) ∈ L2 by θ ∈ ΘS, the definition (4.3) of ΘS

and 0 ≤ Z̃t ≤ 1 from Lemma 4.3.

Next, we turn to giving a concrete example such that Z̃ is uniformly bounded
from below. We first introduce some terminology. Let P2

e(S) be the set of all
probability measures Q equivalent to P on FT such that the Radon–Nikodým
derivative dQ

dP
is in L2(P ) and S is a Q-martingale. The density process of Q with

respect to P is denoted by ZQ := (ZQ
t )t=0,1,...,T .

Lemma 4.14. If there exists Q ∈ P2
e(S) which satisfies the reverse Hölder in-

equality R2(P ), meaning that there exists a constant C > 0 such that

E[(ZQ
T )2|Ft] ≤ C(ZQ

t )2, t = 0, 1, . . . , T, (4.77)

then the process Z̃ is uniformly bounded from below by a positive real number,
and Assumption 4.10 is satisfied.

Proof. This is shown in Lemma 2.1 in Jeanblanc et al. [38]. Our process Z̃ cor-
responds to the process q there. Indeed, that process q is shown in [38, Theorem
2.4] to be equal to a solution Y to the BSDE (2.18) in [38]. Later in the last
displayed equation in [38, Section 5.2], the authors work out the recursion for Y
in finite discrete time. That recursion is the same as the recursion (4.58) for our
process Z̃.

The above result is not completely satisfactory because its assumption is not
described explicitly in terms of the price process S. To improve this, we use
Assumption 4.2 and apply Doob’s decomposition for S in the filtration F to obtain
a square-integrable martingale M and a square-integrable predictable process A,
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both null at 0 and both with respect to F, such that S = S0 + M + A. For an
explicit expression, we refer to (I.3.7). Also recall from (I.3.8) and (I.3.9) the two
bracket notations for any square-integrable process X, namely

[X]0 := 0, 4[X]t := (4Xt)
2, t = 1, . . . , T,

〈X〉0 := 0, 4〈X〉t := E
[
4[X]t

∣∣Ft−1

]
= E[(4Xt)

2|Ft−1], t = 1, . . . , T.

The mean–variance tradeoff (MVT) process K ≥ 0 of S defined in Definition I.3.5
has its increments explicitly given by

λt =
4At
4〈M〉t

, 4Kt = λt4At =
(4At)2

4〈M〉t
, t = 1, . . . , T. (4.78)

Using this definition and the identity E[(4St)2|Ft−1] = 4〈M〉t + (4At)2 for
t = 1, . . . , T , we can also write for t = 0, 1, . . . , T that

E[4St|Ft−1]

E[(4St)2|Ft−1]
=

λt
1 +4Kt

,
(E[4St|Ft−1])2

E[(4St)2|Ft−1]
=
4Kt

1 +4Kt

. (4.79)

Lemma 4.15. Suppose Assumptions 4.2 and 4.5, 2) are satisfied. If the MVT
process K is uniformly bounded and λt4Mt < 1 for t = 1, . . . , T , then Assumption
4.10 is satisfied.

Proof. In view of Lemma 4.14, we construct a measure Q ∈ P2
e(S) that satisfies

the reverse Hölder inequality R2(P ). Define Q via dQ
dP

:= ZQ
T with

ZQ
0 = 1, ZQ

t = ZQ
t−1(1− λt4Mt) =

t∏
s=1

(1− λs4Ms), t = 1, . . . , T.

The proof of Lemma I.3.6 shows that Q is a signed measure such that Q[Ω] = 1,
Q� P with dQ

dP
∈ L2 and E[ZQ

T GT (θ)] = 0 for all θ ∈ ΘS. The equality (I.3.27)
proved there also shows for t = 1, . . . , T that

E[(ZQ
t )2|Ft−1] = E

[
(ZQ

t−1)2E[(1− λt4Mt)
2|Ft−1]

]
= (ZQ

t−1)2(1 +4Kt).

Iterative conditioning and using the above identity together with 0 ≤ 4Ku ≤ Ku

repeatedly yields

E[(ZQ
T )2|Ft] ≤ (ZQ

t )2

T∏
u=t+1

(1 + ‖Ku‖∞)
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and hence the desired inequality (4.77).

Now we begin the second part of this subsection. Let us look at the role of the
L2-integrability of δ̃t4St from a different angle. Fix θ ∈ ΘS. In Proposition 4.9
or Lemma 3.7, that integrability is used to ensure that the candidate maximiser
δ̃t for the map δt 7→ rmv

t (δt), or equivalently for the map δt 7→ vmv
t (t, θ(t, δt)), is

still in Θ
[t]
S (θ), which is in turn used to argue that the map δt 7→ vmv

t (t, θ(t, δt))

has a maximiser in Θ
[t]
S (θ). But if the existence of an optimiser δ̃t (in Θ

[t]
S (θ)) for

the map δt 7→ vmv
t (t, θ(t, δt)) is known in advance, then it must solve the linear

equation (4.40) and yields δ̃t given by (4.75) again plus δ̃t4St ∈ L2.

Lemma 4.16. Suppose that Assumptions 4.2 and 4.5 are satisfied. Then the
following statements hold:

1) If the map δt 7→ vmv(t, θ(t, δt)) has a maximiser in Θ
[t]
S (θ) for t = 1, . . . , T ,

then Assumption 4.10 in Theorem 4.11 can be dropped.
2) If the MVT tradeoff process K is bounded, then the map δt 7→ vmv(t, θ(t, δt))

has a maximiser in Θ
[t]
S (θ) for t = 1, . . . , T .

Proof. a) Part 1) is clear from the discussion preceding Lemma 4.16. We only
argue part 2) here. Recall from the proof of Theorem I.2.4 that the functional
F (g) = E[g] − ξVar[g] has a maximiser in GT (ΘS) as soon as GT (ΘS) is closed
in L2 and does not contain the constant payoff 1. Fix θ ∈ ΘS. Recall by the
definitions (2.5) and (2.6) of vmv (which is there called v only; see the beginning
of Section 4.2) that we have

vmv(t, θ) = sup
θ̃∈Θ(t,θ)

jmv(θ̃) = sup
θ̃∈Θ(t,θ)

vmv(T, θ̃) = sup
θ̃∈Θ(t,θ)

F
(
GT (θ̃)

)
. (4.80)

For convenience, we also recall from (2.3) that

ΘS(t, θ) = {θ̃ ∈ ΘS : θ̃ = θ on J0, tK ∩ N}. (4.81)

The same proof as for Theorem I.2.4 implies that the functional F also has a
maximiser in the space

Ψt := Gt(θ) +Gt,T

(
ΘS(t, θ)

)
:=

{
Gt(θ) +

T∑
u=t+1

θ̃u4Su : θ̃ ∈ ΘS(t, θ)

}
,

because the space Ψt is also closed in L2 and does not contain the constant payoff
1. This is argued in step b) below. Using this observation and continuing from



4 Application to the MVPS problem 225

(4.80), we can write

vmv
(
t, θ(t, δt)

)
= sup

θ̃∈Θ(t,θ(t,δt))

F
(
GT

(
θ̃)
)

= F
(
Gt

(
θ(t, δt)

)
+

T∑
u=t+1

θ∗u4Su
)

= F
(
GT

(
θ∗(δt)

))
for a maximiser θ∗(δt) = (θ1, . . . , θt−1, δt, θ

∗
t+1, . . . , θ

∗
T ). So maximising the map

δt 7→ vmv(t, θ(t, δt)) is the same as maximising δt 7→ F (GT (θ∗(δt))). By a com-
pletely analogous argument as in step b) for fixed θ ∈ ΘS, t ∈ {1, . . . , T} and the
space Ψt = Gt(θ) +Gt,T (ΘS(t, θ)), we obtain that the space

{
GT

(
θ∗(δt)

)
: δt ∈ Θ

[t]
S (θ)

}
is closed in L2 and does not contain the payoff 1. So the same proof as for
Theorem I.2.4 yields the desired conclusion.

b) To argue that Ψt is closed in L2, take a sequence (gn)n∈N in Ψt which
converges in L2 to some g∞. We need to show that g∞ ∈ Ψt. Because the
MVT process K is bounded, the proof of Schweizer [61, Theorem 2.1] shows that
Gt,T (ΘS) = {

∑
u=t+1 θ̃u4Su : θ̃ ∈ ΘS} is closed in L2 for t = 0, 1, . . . , T . Because

gn ∈ Ψt ⊆ GT (ΘS) for n ∈ N and GT (ΘS) = G0,T (ΘS) is closed in L2, we get
g∞ ∈ GT (ΘS). We now claim that g∞ = g∞t + g∞t,T for g∞t = Gt(θ) and some
g∞t,T ∈ Gt,T (ΘS(t,Θ)). To see this, let us write gn = gnt + gnt,T for gnt = Gt(θ),
gnt,T ∈ Gt,T (ΘS(t, θ)), n ∈ N. Because gnt = Gt(θ) for all n ∈ N, we clearly have
gnt → g∞t = Gt(θ) in L2. Combining this with gn → g∞ in L2, we get that
gnt,T = gn − gnt → g∞ − Gt(θ) in L2. But gnt,T ∈ Gt,T (ΘS(t, θ)) = Gt,T (ΘS) and
Gt,T (ΘS) is closed in L2. Hence we get gnt,T → ht,T =

∑T
u=t+1 ϕu4Su for some

Fu−1-measurable ϕu with ϕu4Su ∈ L2 for u = t+ 1, . . . , T . Now

g∞ = lim
n→∞

(gnt + gnt,T ) = Gt(θ) + ht,T ,

and the strategy (θ1, . . . , θt, ϕt+1, . . . , ϕT ) is in ΘS(t, θ); see (4.81). This proves
that Ψt is closed in L2. Finally, the inclusion Ψt ⊆ GT (ΘS) shows that Ψt does
not contain the constant 1 due to Assumption 4.5, 1).

Corollary 4.17. Suppose that Assumptions 4.2 and 4.5 are satisfied. If the MVT
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tradeoff process K is uniformly bounded, then the conclusion of Theorem 4.11
holds without Assumption 4.10.

Proof. The result follows directly from Lemma 4.16.

Finally, we turn to some explicit examples. If the entire MVT process K is
deterministic, we obtain an explicit expression for Z̃ and the optimal strategy
θ̃mv. This also recovers the result in Theorem I.5.7 in Chapter I.

Theorem 4.18. Suppose Assumptions 4.2 and 4.5 are satisfied, meaning that S
is square-integrable and satisfies the structure condition (SC). If the MVT process
K is deterministic, then the following statements hold:

1) The process Z̃ is also deterministic and explicitly given, for t = 0, 1, . . . , T ,
by

Z̃t =
T∏

u=t+1

1

1 +4Ku

=
E(K)t
E(K)T

. (4.82)

2) The optimal strategy θ̃mv for the MVPS problem (4.2) with Θ = ΘS is given
by

θ̃mv
u = − E[4Su|Fu−1]

E[(4Su)2|Fu−1]

(
Gu−1(θ̃mv)− E[Gu−1(θ̃mv)]− 1

2ξZ̃u−1

)
(4.83)

=
E[4Su|Fu−1]

E[(4Su)2|Fu−1]

(
Gu−1(θ̃mv)− 1

2ξZ̃0

)
(4.84)

=
λu

1 +4Ku

(
Gu−1(θ̃mv)− 1

2ξZ̃0

)
, u = 1, . . . , T. (4.85)

3) The value function vmv(t, θ̃mv) is explicitly given, for t = 0, 1, . . . , T , by

vmv(t, θ̃mv) = E[Gt(θ̃
mv)]− ξZ̃tVar[Gt(θ̃

mv)] +
1

4ξ

(
1

Z̃t
− 1

)
. (4.86)

Consequently, the optimal strategy θ̃mv and the value function vmv coincide with
the strategy θ̂ and the process Ṽ given in (I.5.32) and (I.5.37), respectively.

Proof. 1) We prove this assertion by backward induction. For t = T , (4.82) is
clear because the product over an empty set is 1. Suppose that Z̃t is deterministic.
Then by the recursive formula (4.58) for Z̃, non-randomness of Z̃t and the second
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equality in (4.79), we obtain

Z̃t−1 = E[Z̃t|Ft−1]− (E[Z̃t4St|Ft−1])2

E[Z̃t(4St)2|Ft−1]

= Z̃t

(
1− (E[4St|Ft−1])2

E[(4St)2|Ft−1]

)
= Z̃t

1

1 +4Kt

.

Because 4Kt is deterministic by assumption, we get that Z̃t−1 is deterministic
as well. This finishes the induction step and also justifies the first equality in
(4.82). The second equality directly follows from the definition of the stochastic
exponential E that E(K)t =

∏t
u=1(1 +4Ku).

2) Because Z̃ is deterministic by part 1), the submartingale property of Z̃
from Corollary 4.4 implies that Z̃ is increasing. This in particular yields that
Z̃t ≥ Z̃0 > 0 and Assumption 4.10 is satisfied. We recall from Lemma I.3.6
that GT (ΘS) is closed in L2 and does not contain the constant payoff 1 whenever
the MVT process K is bounded. So the non-randomness of K implies that the
L2-closure of GT (ΘS) (equals GT (ΘS) and) does not contain the constant payoff
1, which means that Assumption 4.5, 1) is satisfied. Therefore, we can apply
Theorem 4.11 and use that Z̃ is deterministic to simplify the optimal strategy θ̃
given in (4.72) and (4.73) to obtain (4.83) and (4.84). The equality (4.85) is then
due to the first equality in (4.79).

3) Recall from Theorem 4.11 that the value function vmv(t, θ̃mv) is given by

vmv(t, θ̃mv) = E
[
ãtZ̃tGt(θ̃

mv) + b̃tZ̃t
(
Gt(θ̃

mv)
)2]

+ c̃t
(
E[Z̃tGt(θ̃

mv)]
)2

+ d̃t. (4.87)

We then use the explicit formulas for ãt, b̃t, c̃t, d̃t from (4.65)–(4.68) and the non-
randomness of Z̃t to obtain for t = 0, 1, . . . , T that

ãtZ̃t =
Z̃t

E[Z̃t]
= 1,

b̃tZ̃t = −ξZ̃t,

c̃tZ̃t =
ξ

E[Z̃t]
Z̃t = ξZ̃t

d̃t =
1

4ξ

(
1

Z̃t
− 1

)
.
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Inserting these expressions into (4.87) yields (4.86).
Finally, let us recall from (I.5.32) and (I.5.37) in Chapter I that

θ̂t =
λt

1 +4Kt

(
1

2b
(∞)
t−1

−Gt−1(θ̂) + E[Gt−1(θ̂)]

)
, t = 1, . . . , T, (4.88)

and

Ṽt = a
(∞)
t E[Gt(θ̂)]− b(∞)

t Var[Gt(θ̂)] + c
(∞)
t , t = 0, 1, . . . , T, (4.89)

where the coefficients a(∞), b(∞), c(∞) are given by

a
(∞)
t = 1, t = 0, 1, . . . , T, (4.90)

b
(∞)
t = ξ

T∏
u=t+1

1

1 +4Ku

, t = 0, 1, . . . , T, (4.91)

c
(∞)
t =

T∑
u=t+1

4Ku

4b
(∞)
u

, t = 0, 1, . . . , T. (4.92)

To prove that θ̃mv agrees with θ̂ given in (4.88), we use that E[4St|Ft−1]
E[(4St)2|Ft−1]

agrees

with λt
1+4Kt by (4.79) and from (4.82) and (4.91) that ξZ̃t agrees with b

(∞)
t . Then

a comparison of (4.83) with (4.88) yields that θ̃mv and θ̂ satisfy the same recursion
and start from G0(θ̃mv) = 0 = G0(θ̂). This yields the claim. To prove that vmv

agrees with Ṽ , we first note that their first two terms are the same. By using
b

(∞)
t = ξZ̃t and the explicit formula (4.82) for Z̃ repeatedly, we obtain in (4.92)
that

c
(∞)
t =

T∑
u=t+1

4Ku

4b
(∞)
u

=
1

4ξ

T∑
u=t+1

4Ku

Z̃u

=
1

4ξ

T∑
u=t+1

4Ku

T∏
v=u+1

(1 +4Kv)

=
1

4ξ

(
1

Z̃t
− 1

)
.
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The last equality uses the elementary identity

1 +
T∑

u=t+1

xu

T∏
v=u+1

(1 + xv) =
T∏

u=t+1

(1 + xu)

and again (4.82).

We end this subsection with a concrete example.

Example 4.19. Suppose that the price process S has independent returns. More
precisely, this means that it satisfies the dynamics

St = S0 E(R)t = S0

t∏
s=1

(1 +4Rs), t = 0, 1, . . . , T,

with all the4Rt > −1 and the random variables4R1, . . . ,4RT are independent.
Let us compute the MVT increment 4K for S. By independence, we get

E[4St|Ft−1] = E[St−1(1 +4Rt)− St−1|Ft−1] = St−1E[4Rt] (4.93)

and

E[(4St)2|Ft−1] = E[S2
t−1(1 +4Rt)

2 − 2S2
t−1(1 +4Rt) + S2

t−1|Ft−1]

= S2
t−1E[(4Rt)

2]. (4.94)

From the identity 4〈M〉t = E[(4St)2|Ft−1]− (E[4St|Ft−1])2 and the definition
(4.78) for 4Kt, we therefore obtain

4Kt =
(E[4St|Ft−1])2

E[(4St)2|Ft−1]− (E[4St|Ft−1])2
=
S2
t−1(E[4Rt])

2

S2
t−1Var[4Rt]

=
(E[4Rt])

2

Var[4Rt]
,

which is deterministic. Thus we can apply Theorem 4.18 to get an explicit formula
for θ̃mv. Let us set µt = E[4Rt] and σ2

t = Var[4Rt]. Using the explicit formula
(4.82), we get

Z̃t =
T∏

u=t+1

1

1 + µ2u
σ2
u

=
T∏

u=t+1

σ2
u

σ2
u + µ2

u

.

Inserting (4.93), (4.94) and the above formula into (4.84), we get that the optimal
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strategy θ̃mv is given by

θ̃mv
t = − µt

St−1(σ2
t + µ2

t )

(
Gt−1(θ̃mv)− 1

2ξ

T∏
u=1

σ2
u + µ2

u

σ2
u

)
, t = 1, . . . , T.

This agrees with (4.19) in Pham and Wei [52]. Indeed, Pham and Wei work with
i.i.d. returns so that we can set µt ≡ µ and σt ≡ σ and identify the relevant
parameters to recover their formula with initial wealth equal to 0.

4.8 More general strategies

In this subsection, we argue that the optimal strategy θ̃mv for the MVPS problem
(4.2) with Θ = ΘS obtained in Theorem 4.11 is also optimal in the larger set ΘMN

of strategies, which only imposes that the final gains are square-integrable. This
space has been considered in Melnikov and Nechaev [50]. The MVPS problem
(4.2) with Θ = ΘMN is to

maximise jmv(θ) = E[GT (θ)]− ξVar[GT (θ)] over all θ ∈ ΘMN, (4.95)

where

ΘMN = {θ := (θt)t=1,...,T : θ is real-valued, F-predictable

and GT (θ) ∈ L2}. (4.96)

Comparing (4.3) with (4.96), we immediately see that

ΘS ⊆ ΘMN. (4.97)

Remark 4.20. 1) Note that ΘMN is the most general set Θ of strategies such
that the MVPS criterion jmv(θ) in (4.95) is finite for θ ∈ Θ. Moreover, the space
GT (ΘMN) is closed in L2. Indeed, take a sequence (θn)n∈N in ΘMN such that
gn = GT (θn) converges to g in L2. We now argue that g = GT (θ∞) for some
θ∞ ∈ ΘMN. Consider the space

ΘA := {θ = (θt)t=1,...,T : θ is real-valued and F-predictable}.

We know from Remark 1 in Chapter 2 of Kabanov and Safarian [39] that GT (ΘA)

is always closed in the space L0 of all random variables equipped with the topology
of convergence in probability. This result (specific to finite discrete time) is known
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as Stricker’s lemma. Because GT (ΘMN) ⊆ GT (ΘA) and gn → g in L2 implies
gn → g in L0, we get from the L0-closedness of GT (ΘA) that g = GT (θ∞) for
some θ∞ ∈ ΘA. To show θ∞ ∈ ΘMN, we use gn ∈ L2 for all n ∈ N by (4.96) and
gn → g in L2 to obtain GT (θ∞) = g ∈ L2.

2) With the extra assumption that the L2-closure of GT (θMN), which of course
equals GT (ΘMN) by 1), does not contain the constant payoff 1, ΘMN satisfies
Assumption I.2.2 under which the MVPS problem always has an optimiser by
Theorem I.2.4. More precisely, that result tells us that the MVPS problem (4.95)
has a solution in ΘMN.

Recall that our optimal strategy θ̃mv is obtained by solving a linear equation
derived from the first order condition (FOC) with respect to a one-step variable
δt at each t = 1, . . . , T . The idea to prove the optimality of θ̃mv in ΘMN is to
obtain an FOC now with respect to the final gains GT (θ). By the linear–quadratic
structure of the MVPS criterion jmv(θ), satisfying that FOC is equivalent to being
an optimiser of the MVPS problem (4.95). So it is enough to verify that GT (θ̃mv)

satisfies that FOC. Moreover, we remove Assumption 4.10 because we only need
θ̃mv to lie in ΘMN rather than ΘS. This leads to a programme we implement in
the rest of this subsection.

Recipe 4.21. 1) Derive a first order equation for optimality of some GT (θ̂) in
GT (ΘMN) with respect to the final gains.

2) Show that the final gain GT (θ̃mv) of θ̃mv lies in L2 without Assumption 4.10
and satisfies the FOC in 1).

Lemma 4.22. Suppose that Assumption 4.2 is satisfied. If θ̂ ∈ ΘMN satisfies

E
[(

1− 2ξGT (θ̂) + 2ξE[GT (θ̂)]
)
GT (η)

]
= 0, ∀η ∈ ΘMN, (4.98)

or equivalently

E
[(

1− 2ξGT (θ̂) + 2ξE[GT (θ̂)]
)
4St

∣∣Ft−1

]
= 0, t = 1, . . . , T, (4.99)

then θ̂ is an optimal strategy for the MVPS problem with Θ = ΘMN.

Proof. We first show that (4.98) yields the optimality for the MVPS problem
(4.95). Let θ̂ ∈ ΘMN satisfy (4.98). For any θ ∈ ΘMN, we use the definition (4.95)
of jmv, the FOC (4.98) with η = θ − θ̂ and the Cauchy–Schwarz inequality to
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obtain

jmv(θ) = jmv(θ − θ̂ + θ̂)

= E
[
GT (θ − θ̂) +GT (θ̂)

− ξ
(
GT (θ − θ̂)

)2 − 2ξ
(
GT (θ − θ̂)

)
GT (θ̂)− ξ

(
GT (θ̂)

)2

+ ξ
(
E[GT (θ − θ̂)]

)2
+ 2ξE[GT (θ − θ̂)]E[GT (θ̂)] + ξ

(
E[GT (θ̂)]

)2]
= −ξE

[(
GT (θ − θ̂)

)2 −
(
E[GT (θ − θ̂)]

)2]
+ jmv(θ̂)

= −ξVar[GT (θ − θ̂)] + jmv(θ̂)

≤ jmv(θ̂).

This shows that θ̂ is optimal for the MVPS problem (4.95).
Now we show the equivalence between (4.98) and (4.99). For “⇒”, it is enough

to take η = 1H×{t} with H ∈ Ft−1 for t = 1, . . . , T and use that GT (θ̂) and 4St,
hence also GT (η) = 1H4St, are in L2 due to θ̂ ∈ ΘMN and Assumption 4.2,
respectively. To prove “⇐”, let η ∈ ΘMN and consider

Hn
t := {|ηs| ≤ n for s = 1, . . . , t} ∈ Ft−1

for n ∈ N and t = 1, . . . , T . Note that Hn
t ∈ Ft−1 uses that η is F-predictable.

To ease notation, we set F̂ := 1− 2ξGT (θ̂) + 2ξE[GT (θ̂)]. Note that GT (θ̂) ∈ L2

implies
F̂ ∈ L2. (4.100)

By the definition of Hn
t , we get

Y n
t := E[F̂ |Ft]Gt(η)1Hn

t
−→ E[F̂ |Ft]Gt(η) P -a.s. (4.101)

In view of (4.98), it is enough to show E[F̂GT (η)] = 0. To this end, we show for
t = 0, 1, . . . , T that

E[F̂ |Ft]Gt(η) = E[F̂GT (η)|Ft]. (4.102)

For t = T , (4.102) is trivial. Suppose (4.102) is true for t. For the induction
step, it is enough to show E[E[F̂ |Ft]Gt(η)|Ft−1] = E[F̂ |Ft−1]Gt−1(η). Now for
n ∈ N and s = 1, . . . , t, ηs1Hn

t
is bounded. Because S is square-integrable, this

implies that Gt(θ)1Hn
t
∈ L2, and F̂ ∈ L2 by (4.100). Hence we get for n ∈ N

that F̂Gt(η)1Hn
t
and F̂4St are in L1. This allows us to condition on Ft−1 in the

definition (4.101) of Y n
t , take out the Ft−1-measurable quantities Gt−1(η)1Hn

t
and



4 Application to the MVPS problem 233

ηt1Hn
t
and use the FOC (4.99), which reads E[F̂4St|Ft−1] = 0, to obtain

E[Y n
t |Ft−1] = E

[
E[F̂ |Ft]

(
Gt−1(η)1Hn

t
+ ηt1Hn

t
4St

)∣∣Ft−1

]
= E[F̂ |Ft−1]Gt−1(η)1Hn

t
+ E[F̂4St|Ft−1]1Hn

t

= E[F̂ |Ft−1]Gt−1(η)1Hn
t

−→ E[F̂ |Ft−1]Gt−1(η) P -a.s. as n→∞, (4.103)

for t = 1, . . . , T . Note that the induction hypothesis (4.102) also implies that
E[F̂ |Ft]Gt(η) = E[F̂GT (η)|Ft] ∈ L1. The definition (4.101) for Y n

t obviously
yields |Y n

t | ≤ |E[F̂ |Ft]Gt(η)| and so the dominated convergence theorem implies
Y n
t → E[F̂ |Ft]Gt(η) in L1 and that E[Y n

t |Ft−1] → E[F̂ |Ft−1]Gt−1(η) in L1 due
to (4.103). We therefore obtain

E
[
E[F̂ |Ft]Gt(η)

∣∣Ft−1] = lim
n→∞

E[Y n
t |Ft−1] = E[F̂ |Ft−1]Gt−1(η)

as desired.

To implement Recipe 4.21, Step 2), we now add the extra assumption men-
tioned in Remark 4.20, 2) that 1 /∈ GT (ΘMN) = GT (ΘMN). For convenience,
we modify Assumption 4.5, 1) by replacing ΘS with ΘMN and keeping Assump-
tion 4.5, 2) unchanged and refer it to Assumption 4.23 below. Although Assump-
tion 4.23, 1) is stronger than Assumption 4.5, 1) due to GT (ΘS) ⊆ GT (ΘMN) from
(4.97), we believe this is more natural because we work in this subsection with
ΘMN only.

Assumption 4.23. 1) The space ΘMN satisfies 1 /∈ GT (ΘMN).
2) The process S satisfies the structure condition (SC), meaning that the

process (E[4St|Ft−1])t=1,...,T is absolutely continuous with respect to the process
(Var[4St|Ft−1])t=1,...,T .

Recall the strategy θ̃mv and some related quantities from Theorem 4.11. The
strategy θ̃mv is given by

θ̃mv
u = − E[Z̃u4Su|Fu−1]

E[Z̃u(4Su)2|Fu−1]

×
(
Gu−1(θ̃mv)− (2ξ)−1 + E[Z̃u−1Gu−1(θ̃mv)]

E[Z̃u−1]

)
(4.104)

= −βu
(
Gu−1(θ̃mv)− 1

2ξE[Z̃0]

)
, u = 1, . . . , T. (4.105)
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Note that θ̃mv is well defined whenever β is well defined and E[Z̃t] > 0 for
t = 0, 1, . . . , T . Now if we look at Lemma 4.3 and the definition (4.25) of β, then
we see that β is well defined under Assumption 4.2. It remains to check that Z̃
has strictly positive expectations. In view of the proof of Lemma 4.6, 1), this
holds under the assumption that the L2-closure of GT (ΘS) does not contain the
constant payoff 1. But we have seen in the discussion above Assumption 4.23
that this follows from Assumption 4.23, 1). To sum up, we can safely proceed
by replacing Assumption 4.5 with Assumption 4.23. The quantities Z̃, ã, b̃, c̃ are
given by

Z̃t−1 = E

[
Z̃t

(
1− E[Z̃t4St|Ft−1]

E[Z̃t(4St)|Ft−1]
4St

)∣∣∣∣Ft−1

]
, Z̃T = 1,

ãt =
1

E[Z̃t]
, t = 0, 1, . . . , T, (4.106)

b̃t = −ξ, t = 0, 1, . . . , T, (4.107)

c̃t =
ξ

E[Z̃t]
, t = 0, 1, . . . , T. (4.108)

With the process β defined as in (4.25) by

βt =
E[Z̃t4St|Ft−1]

E[Z̃t(4St)|Ft−1]
, t = 1, . . . , T,

we can also write

Z̃t−1 = E[Z̃t(1− βt4St)|Ft−1] = E

[ T∏
u=t

(1− βu4Su)
∣∣∣∣Ft−1

]
(4.109)

for t = 1, . . . , T . After this preparation, we start to implement the second step
in Recipe 4.21.

Lemma 4.24. Suppose that Assumptions 4.2 and 4.23 are satisfied. Then we
have for t = 1, . . . , T that

Gt(θ̃
mv)− 1

2ξE[Z̃0]
= − 1

2ξE[Z̃0]

t∏
s=1

(1− βs4Ss), (4.110)

Z̃tGt(θ̃
mv) ∈ L2, (4.111)

E
[(

1− 2ξGT (θ̃mv) + 2ξE[GT (θ̃mv)]
)∣∣Ft]

= ãtZ̃t + 2b̃tZ̃tGt(θ̃
mv) + 2c̃tZ̃tE[Z̃tGt(θ̃

mv)]. (4.112)
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Proof. 1) We first prove (4.110). Using Gt(θ̃
mv) = Gt−1(θ̃mv) + θ̃mv

t 4St and the
explicit formula (4.105) for θ̃mv, we obtain

Gt(θ̃
mv)− 1

2ξE[Z̃0]
= Gt−1(θ̃mv)− βt4St

(
Gt−1(θ̃mv)− 1

2ξE[Z̃0]

)
− 1

2ξE[Z̃0]

= (1− βt4St)
(
Gt−1(θ̃mv)− 1

2ξE[Z̃0]

)

for t = 1, . . . , T . Iterating the above identity in t and using G0(θ̃mv) = 0 yields
(4.110).

2) To argue Z̃tGt(θ̃
mv) ∈ L2, we use the second formula in (4.109) for Z̃t, then

(x− y)2 ≤ 2x2 + 2y2 and (4.110) to obtain

(
Z̃tGt(θ̃

mv)
)2

≤
(

1

2ξE[Z̃0]

)2

E

[( T∏
u=t+1

(1− βu4Su)2

)(
1−

t∏
s=1

(1− βs4Ss)
)2∣∣∣∣Ft]

≤
(

1

2ξE[Z̃0]

)2

E

[( T∏
u=t+1

(1− βu4Su)2

)
2

(
1 +

t∏
s=1

(1− βs4Ss)2

)∣∣∣∣Ft]

=

( √
2

2ξE[Z̃0]

)2

E

[ T∏
u=t+1

(1− βu4Su)2 +
T∏
u=1

(1− βu4Su)2

∣∣∣∣Ft].
Taking expectations, using the explicit expression (4.109) for Z̃, Jensen’s inequal-
ity and the bound |Z̃t| ≤ 1 for t = 1, . . . , T from (4.16), we get

E
[(
Z̃tGt(θ̃

mv)
)2] ≤ ( √

2

2ξE[Z̃0]

)2

(E[Z̃2
t ] + E[Z̃2

0 ]) ≤
(

1

ξE[Z̃0]

)2

,

as desired. Note that directly using |Z̃t| ≤ 1 to estimate

(
Z̃tGt(θ̃

mv)
)2 ≤

(
Gt(θ̃

mv)
)2

does not help because without extra assumptions, we do not know whether
Gt(θ̃

mv) is in L2.
3) We establish (4.112) by induction. First by (4.111) for t = T and due

to Z̃T = 1, the quantity inside the conditional expectation is in L2 and so that
conditional expectation is well defined. Suppose the identity is true for t+ 1. To
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prove the induction step, we show that

E
[
ãt+1Z̃t+1 + 2b̃t+1Z̃t+1Gt+1(θ̃mv) + 2c̃t+1Z̃t+1E[Z̃t+1Gt+1(θ̃mv)]

∣∣Ft]
= ãtZ̃t + 2b̃tZ̃tGt(θ̃

mv) + 2c̃tZ̃tE[Z̃tGt(θ̃
mv)].

Using the explicit expressions (4.109) and (4.110) for Z̃ and G(θ̃mv), respectively,
and

∏T
u=t(1−βu4Su) = Ũt,T ∈ L2 for t = 1, . . . , T from (4.25), (4.14) and (4.12),

we obtain

Z̃uGu(θ̃
mv) =

1

2ξE[Z̃0]

(
Z̃u − Z̃u

u∏
s=1

(1− βs4Ss)
)

=
1

2ξE[Z̃0]

(
Z̃u − E

[ T∏
s=u+1

(1− βs4Ss)
∣∣∣∣Fu] u∏

s=1

(1− βs4Ss)
)

=
1

2ξE[Z̃0]
E

[
Z̃u −

T∏
s=1

(1− βs4Ss)
∣∣∣∣Fu] (4.113)

for u = 0, . . . , T . Subtracting the right-hand side of (4.113) for u = t from
u = t+ 1 and conditioning on Fu yields

E[Z̃u+1Gu+1(θ̃mv)− Z̃uGu(θ̃
mv)|Fu] =

1

2ξE[Z̃0]
E[Z̃u+1 − Z̃u|Fu] (4.114)

for u = 0, . . . , T − 1. Taking expectations in (4.113) and using the explicit
expression (4.109) for Z̃ leads to

E[Z̃uGu(θ̃
mv)] =

1

2ξE[Z̃0]
(E[Z̃u]− E[Z̃0]) (4.115)

for u = 0, . . . , T . Then we use the recursive definition (4.109) for Z̃t to obtain

E[4(ãt+1Z̃t+1)|Ft] = E[ãt+1Z̃t+1 − ãtZ̃t+1(1− βt+14St+1)|Ft]

= E[(ãt+1 − ãt)Z̃t+1 + ãtZ̃t+1βt+14St+1|Ft]. (4.116)
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Using (4.114) and b̃ ≡ −ξ from (4.107) as well as (4.109), we get

E
[
4
(
2b̃t+1Z̃t+1Gt+1(θ̃mv)

)∣∣Ft] = −2ξE[Z̃t+1Gt+1(θ̃mv)− Z̃tGt(θ̃
mv)|Ft]

= − 1

E[Z̃0]
E[Z̃t+1 − Z̃t|Ft]

= − 1

E[Z̃0]
E[Z̃t+1βt+14St+1|Ft]. (4.117)

Now we use the recursive definition (4.109) for Z̃t, then the expression (4.115)
for E[Z̃uGu(θ̃

mv)] with u ∈ {t + 1, t} and c̃t = ξãt from (4.106) and (4.108) and
finally ãt = 1

E[Z̃t]
from (4.106) to obtain

E
[
4(2c̃t+1Z̃t+1E[Z̃t+1Gt+1(θ̃mv)])

∣∣Ft]
= E

[
2c̃t+1Z̃t+1E[Z̃t+1Gt+1(θ̃mv)]− 2c̃tZ̃t+1(1− βt4St)E[Z̃tGt(θ̃

mv)]
∣∣Ft]

= E
[(

2c̃t+1E[Z̃t+1Gt+1(θ̃mv)]− 2c̃tE[Z̃tGt(θ̃
mv)]

)
Z̃t+1

+ 2c̃tZ̃t+1βt4StE[Z̃tGt(θ̃
mv)]

∣∣Ft]
= 2ξE

[(
ãt+1

E[Z̃t+1]− E[Z̃0]

2ξE[Z̃0]
− ãt

E[Z̃t]− E[Z̃0]

2ξE[Z̃0]

)
Z̃t+1

+ ãtZ̃t+1βt4St
E[Z̃t]− E[Z̃0]

2ξE[Z̃0]

∣∣∣∣Ft]
=

1

E[Z̃0]
E
[(
ãt+1(E[Z̃t+1]− E[Z̃0])− ãt(E[Z̃t]− E[Z̃0])

)
Z̃t+1

+ ãtZ̃t+1βt4St(E[Z̃t]− E[Z̃0])
∣∣Ft]

= E

[
(ãt − ãt+1)Z̃t+1 +

(
1

E[Z̃0]
− ãt

)
Z̃t+1βt+14St+1

∣∣∣∣Ft]. (4.118)

Adding (4.116)–(4.118), we obtain

E
[
4
(
ãt+1Z̃t+1 + 2b̃t+1Z̃t+1Gt+1(θ̃mv) + 2c2

t+1Z̃t+1E[Z̃t+1Gt+1(θ̃mv)]
)∣∣Ft] = 0

as desired. This completes the proof.

We now state the main result of this subsection.

Theorem 4.25. Suppose that Assumptions 4.2 and 4.23 are satisfied, meaning
that the price process S is square-integrable and satisfies the structure condition
(SC) and the space GT (ΘMN) does not contain the constant payoff 1. Then the
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final payoff GT (θ̃mv) satisfies (4.99), namely

E
[(

1− 2ξGT (θ̃mv) + 2ξE[GT (θ̃mv)]
)
4St

∣∣Ft−1

]
= 0, t = 1, . . . , T. (4.119)

Consequently, θ̃mv given in (4.104)–(4.108) is an optimal strategy for the problem
(4.95), i.e. the MVPS problem with Θ = ΘMN.

Proof. The second assertion follows from (4.119) and Lemma 4.22. So we only
need to show (4.119). To this end, we first use (4.112) and that GT (θ̃mv)4St and
Z̃tGt(θ̃

mv)4St are in L1 due to (4.111) and Assumption 4.2 to obtain

E
[(

1− 2ξGT (θ̃mv) + 2ξE[GT (θ̃mv)]
)
4St

∣∣Ft−1

]
= E

[
E
[(

1− 2ξGT (θ̃mv) + 2ξE[GT (θ̃mv)]
)∣∣Ft]4St∣∣∣Ft−1

]
= E

[(
ãtZ̃t + 2b̃tZ̃tGt(θ̃

mv) + 2c̃tZ̃tE[Z̃tGt(θ̃
mv)]

)
4St

∣∣Ft−1

]
= E

[(
Z̃t

E[Z̃t]
− 2ξZ̃tGt(θ̃

mv) + 2ξ
1

E[Z̃t]
Z̃tE[Z̃tGt(θ̃

mv)]

)
4St

∣∣∣∣Ft−1

]
. (4.120)

This last equality uses the explicit expressions (4.106)–(4.108) for ãt, b̃c, c̃t. In-
serting the expression (4.115) for E[Z̃tG̃t(θ̃

mv)] into (4.120), then using (4.113)
for Z̃tGt(θ̃

mv) and (4.109) for Z̃t and finally cancelling out terms yields

E

[(
Z̃t

E[Z̃t]
− 2ξZ̃tGt(θ̃

mv) + 2ξ
1

E[Z̃t]
Z̃tE[Z̃tGt(θ̃

mv)]

)
4St

∣∣∣∣Ft−1

]
= E

[(
Z̃t

E[Z̃t]
− 2ξZ̃tGt(θ̃

mv) +
1

E[Z̃t]E[Z̃0]
Z̃t(E[Z̃t]− E[Z̃0])

)
4St

∣∣∣∣Ft−1

]
= E

[(
Z̃t

E[Z̃t]
− 1

E[Z̃0]

(
Z̃t −

T∏
s=1

(1− βs4Ss)
)

+
1

E[Z̃t]E[Z̃0]
Z̃t(E[Z̃t]− E[Z̃0])

)
4St

∣∣∣∣Ft−1

]
= E

[
4St
E[Z̃0]

T∏
u=1

(1− βu4Su)
∣∣∣∣Ft−1

]
= 0.

The last step uses Schweizer [62, Corollary 4].
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5 Connections to the literature

In this final section, we discuss related work in the literature by giving an over-
view of papers that attack the MVPS problem via McKean–Vlasov control theory.
A first successful attempt is made by Andersson and Djehiche [4] who obtain a
stochastic maximum principle for McKean–Vlasov control problems for diffusion
models and use that to solve the MVPS problem for a (time-dependent) Black–
Scholes model. In finite discrete time, Elliott et al. [28] present a similar result for
a general linear–quadratic problem whose controlled system is linear and driven
by a martingale difference sequence. The present chapter is mainly inspired by
Pham and Wei [52] where the authors also adopt a dynamic programming (DP)
approach for solving McKean–Vlasov control problems. However, they work at
the level of probability distributions and assume that the controlled process Xθ

is driven by i.i.d. innovations. Cui et al. [22] and its extension by Barbieri and
Costa [7] propose a similar DP approach for a system Xθ driven by i.i.d. in-
novations, and they work more explicitly with the state variables E[Xθ] and
Xθ − E[Xθ]. A similar result to our deterministic version of the martingale op-
timality principle in Corollary 2.5 can be found in Basei and Pham [8, Lemma
3.1] for SDE models in continuous time.

The process Z̃ in the expressions (4.72) and (4.73) for the optimal strategy θ̃mv

turns out to be the opportunity process L in the sense of Černý and Kallsen [17]
or the process called q in Jeanblanc et al. [38]. This is not surprising because the
MVPS problem is closely connected to the pure hedging problem to

minimise E
[(

1−GT (θ)
)2] over θ ∈ Θ

as explained in Fontana and Schweizer [30]. For a general theory of the pure
hedging problem, we refer to Schweizer [61, 62] or more comprehensively to Černý
and Kallsen [17].
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Index

τ -efficient, 10

adjustment process, 10
admissible, 9
angle brackets, 117

empirical covariance, 55
EMVT process, 45
extended market, 32

gains process, 8, 24, 186

martingale system, 36
minimal martingale measure, 11
MVH problem, 4
MVPS problem, 3, 179, 200

MVT process, 45, 117

opportunity process, 10

pure hedging problem, 4

self-financing, 8
signed Γ-martingale measure, 6
structure condition, 14, 44
supermartingale system, 36

trading strategy, 8, 24, 109

value family, 35

wealth process, 8, 24
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