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Extended abstract 
This paper documents a comparative application of algorithms to deal with the problem of missing 
values in higher frequency data sets. We refer to Swiss business tendency survey (BTS) data, in 
particular the KOF manufacturing surveys, which are conducted in both monthly and quarterly fre-
quency, where an information sub-set is collected at quarterly frequency only. This occurs in many 
countries, for example, the harmonised survey programme of the European Union also has this fre-
quency pattern. There is a wide range of ways to address this problem, comprising univariate and 
multivariate approaches. To evaluate the suitability of the different approaches, we apply them to 
series that are artificially quarterly, i.e., de facto monthly, from which we create quarterly data by 
deleting two out of three data points from each quarter. The target series for imputation of missing 
(deleted) observations comprise the set of time series from the monthly KOF manufacturing BTS 
survey. At the same time, these series are ideal to deliver higher frequency information for multi-
variate imputation algorithms, as they share a common theme, the Swiss business cycle. With this 
set of indicators, we conduct the different imputations. On this basis, we then run standard tests of 
forecasting accuracy by comparing the imputed monthly series to the original monthly series. Fi-
nally, we take a look at the congruence of the imputed monthly series from the quarterly survey 
question on firms’ technical capacities with existing monthly data on the Swiss economy. Due to 
the massive shock from the Covid-19 pandemic, we restrict the in-sample analyses to data from 
1967m2 to 2019m12 and at the end take a look at how well our imputations would have fared in 
real-time during the pandemic in 2020 and 2021. The results show that for our data corpus, algo-
rithms based on the approach suggested by Chow and Lin deliver the most precise imputations, 
followed by multiple OLS regressions. Of the multivariate methods that we consider, the EM algo-
rithm’s performance is disappointing, and amongst the univariate methods, simply carrying the last 
observation forward procedure proved superior to cubic spline imputations, and this in particular at 
the end of the time series. 
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1. Introduction 

Analyses of the present economic situation are all too often plagued by missing data for the current or 
even recent periods. Moreover, many economic indicators are available as time series with less than 
desirable frequencies. As economic activity is a continuous process, there is in principle no limit to the 
desirable frequency of the data to draw on. In practice, financial data are frequently of daily or even 
higher frequency, but amongst macroeconomic data such frequencies are mostly unavailable. For mac-
roeconomic assessments, typical series are annual and quarterly (relating to national accounting), or 
monthly (indices of production, inflation, unemployment statistics and business tendency data, amongst 
others), and publication lags are considerable and vary greatly. Given this, observers of the economic 
situation are faced with two related problems: mixed frequency and ragged edge. 

Temporal disaggregation denotes the process of imputing high frequency from low frequency data, ei-
ther from one and the same series or including information from higher frequency series that are infor-
mationally related to the target series. Temporal disaggregation can in principle address both mixed 
frequency and ragged edge, where the former problem calls for imputations between known data points 
in the past, while the latter amounts to forecasting higher frequency data points at the right margin. 

This paper documents an applied investigation into strategies and algorithms to deal with this in the case 
of Swiss business tendency survey (BTS) data. BTS data are generally some of the earliest available 
macroeconomic indicators; and they are commonly collected in both monthly and quarterly frequency, 
where the lower frequency aims at limiting the burden for the respondents. As a result, for Switzerland 
and elsewhere, some of the information is available at quarterly frequency only.  

Our data are mainly taken from the monthly KOF Swiss Economic Institute’s BTS in the Swiss manu-
facturing sector.1 Presently more than 1’000 firms are surveyed. The response rate is about 70 per cent. 
The latest questionnaire comprises 21 items. Due to changes to the questionnaire in the past, we have 
access to 11 complete series going back more than 50 years.2  

All underlying questions are qualitative, with three options to answer: down/too low (−), no 
change/about right (=), up/too high (+). For quantification, we resort to the traditional and simple but 
robust net balance indicator (percentage share + minus percentage share −). The balance should go up 
and down over the business cycle, and while the mean may not be exactly constant in the long run, the 
quantification has an upper bound of 100 per cent and a lower bound of −100, so these series cannot 
increase or decrease forever. We thus refrain from testing for stationarity, as test results pointing to 
nonstationary processes would be misleading due to specific short-term outcomes of processes that in 
the end must be mean stationary. 

The last observations at the time of finalising this paper relate to December 2021 or the fourth quarter 
of 2021, respectively. Obviously, the Covid-19 pandemic and its drastic impact on economies around 
the world pose a challenge to economic time series analyses unprecedented in the absence of wars, 
revolutions, or similar shocking disruptions. We therefore restrict the in-sample analysis to the period 

 
1 For the latest version of the questionnaire, including the quarterly BTS, refereed to later in this paper, see 
https://ethz.ch/content/dam/ethz/special-interest/dual/kof-dam/documents/FragebogenArchive/imt/inu_en_q.pdf. 
2 The 10 questionnaire items with shorter time series and hence omitted from the analyses are 2c (assessment of 
export order backlog), 4a (change of intermediate products inventory), 4b (assessment of intermediate products 
inventory), 6 (assessment of employment level), 7a to 7d (assessment of current business situation, assessment of 
future business situation, difficulty to predict future development of own business, uncertainty of future develop-
ment of own business) and 8b (expected export orders) and 8e to 8g (expectations regarding number of employ-
ees, selling prices and purchasing prices). 

https://ethz.ch/content/dam/ethz/special-interest/dual/kof-dam/documents/FragebogenArchive/imt/inu_en_q.pdf
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1967m2 to 2019m12. This notwithstanding, at the end of the paper, we will take a look at how well our 
imputations would have fared in real-time during the pandemic in 2020 and 2021. 

Table 1.1 lists the 11 KOF monthly manufacturing BTS questions that form the basis of our analyses. 

Table 1.1: Questions from the monthly KOF manufacturing BTS going back to 1967m2 

Questionnaire item Topic; answer options: up/too high, constant/about right, down/too low 
1a Incoming orders compared to previous month 
1b Incoming orders compared to 12 months ago 
2a Order backlog compared to previous month 
2b Assessment of order backlog 
3a Production compared to previous month 
3b Production compared to 12 months ago 
5a Inventories of final goods compared to previous month 
5b Assessment of final goods’ inventories 
8a Expected incoming orders in the following three months 
8c Expected production in the following three months 
8d Expected purchase of intermediary goods in the following three months 

 

Apart from this, the KOF quarterly manufacturing BTS, which is conducted during the first month of a 
quarter, address additional issues like bottlenecks, and potentially most interesting, as a micro founda-
tion of the macroeconomic output gap, numerical estimates of firms’ technical capacity utilisation.  

Facing situations like this, applied business cycle researchers have explored ways to transform quarterly 
into monthly time series. There is a wide range of ways to address the frequency imputation task.  

A first condition to be met is that the process that is only observed (measured) at the lower frequency is 
in fact occurring at the higher (target) frequency. This is evident for continuous processes like the pro-
duction of goods and services (GDP) or their use (consumption, investment). For genuinely discrete 
processes, however, the highest frequency to be estimated in sensible way is that of their occurrence. 
Retail trade sales preceding X-mas, for example, occur exactly once per year, and it would not make 
sense to construct quarterly or monthly Christmas sales series, although this may be possible in technical 
terms. Hence, before series are submitted to a procedure to generate a corresponding higher frequency 
series, a reality check must be performed to confirm that the process indeed occurs at the higher fre-
quency and the fact that there are missing data points is solely due to the lower measurement frequency. 
In our case, the processes (relating to the respondents’ firms’ situation) are clearly continuous, whilst 
measurement comes at discrete intervals, so that temporal disaggregation is justifiable. 

Another time series distinction to be aware of is between stock and flow variables. Temporal disaggre-
gation of flows is usually performed in ways ensuring that the higher frequency flows add up to the 
lower frequency values. For stock variables, the consideration is not so obvious. Should the higher fre-
quency values’ average correspond to the lower frequency one, or should the match rather correspond 
to the first or last the of the higher frequency values? This will depend on the time series process, so that 
a general answer cannot be given. As we are dealing with BTS items reflecting the assessment of con-
tinuous phenomena, given at a particular point in time, we do not find it mandatory to restrict the joint 
values of the monthly breakdowns to a corresponding value from the quarterly series. 
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With these considerations taken care of, a first procedural distinction is between univariate and multi-
variate approaches. The former ranges from equal distribution of quarterly outcomes to a monthly sub-
division to interpolations that implicitly assume a smooth evolution over the months of a quarter. Non-
parametric approaches which ground on such smooth evolution assumptions are for example spline 
methods or the so-called Denton method, which is a classical approach from temporal disaggregation. 
At the right margin, univariate methods either hold the last observation fixed (last observation carried 
forward) or try to exploit the momentum of the series either by simple extrapolation or by ARIMA or 
univariate state-space models.  

Yet, even if some of these approaches are technically quite sophisticated, the inherent shortcoming lies 
in the fact that missing observations are generated without resorting to any information except for the 
series itself. While the results may be satisfying when a time series evolves smoothly, these methods by 
construction cannot capture structural breaks (or economic shocks) before some time has passed. In 
other words, the resulting higher frequency breakdowns will be particularly flawed when the economic 
situation is changing, i.e., when valid data are particularly needed.  

In addition to this, univariate imputations are informationally inefficient when other data that could 
supply valid information on the true movement of the partially unobserved process are available but 
disregarded. Specifically, if there are variables that are directly or partially correlated with the lower 
frequency series of interest, this information can be exploited. To this end, the (sets of) time series have 
to be identified and thence pre-selections to be carried out regarding meaningful correlations with the 
series of interest, where meaningful refers to the expected signs and leads/lags of the associations to 
eliminate spurious correlations.  

We thus resort to a range of univariate and multivariate imputation algorithms. Obviously, the results 
from the monthly imputations will differ to some degree. Also, it is an established fact that no single 
imputation or forecasting algorithm beats all others under all circumstances. And with the “true” values 
of the imputed ones unknown, how shall we compare and evaluate the results?3  

A first step is to compare the statistical properties of the monthly series (for example the moments of 
the distribution) and perform visual checks of time series plots to assess the plausibility of the outcomes.  

Yet, with no monthly reference series at hand, the definitive yardstick for the identification of the most 
appropriate transformation is missing. We therefore resort to the following strategy to compare the suit-
ability of the different approaches for our survey data: Instead of attempting to evaluate the monthly 
imputations from genuinely quarterly data, we make sure that we do possess adequate reference series 
for the model selection stage. To this end, we create artificially quarterly data by deleting the two out of 
three data points from each quarter of our monthly BTS data. This essentially replicates the situation 
that one would face if the survey was quarterly rather than monthly in the first place.  

Related to this is the problem that for multivariate approaches there is no general procedure to determine 
which indicators to consider. For our purposes, however, the answer is straight-forward: The candidate 
series are the ones listed in Table 1.1. We thus resort to a set 11 of indicators that share a common theme, 
which is the reflection of the Swiss business cycle. They result from the same data generating process. 
Finally, they have the same publication dates, so the ragged edge problem does not occur. 

In particular, we first construct the 11 artificially quarterly series. We then generate imputed monthly 
values for the (seemingly) missing ones, where for each series the other 10 monthly series form the pool 
of potential high frequency indicator variables. We then conduct the different imputations. On this basis, 

 
3 For a detailed discussion, see Eurostat (2018). 



4 

we can then run standard tests of forecasting accuracy by comparing the imputed monthly values to the 
original ones. We refer to this as internal validation. It will deliver the first pieced of information, the 
algorithms recommended to apply re-establish erased monthly values within out monthly BTS data set. 

We will extend this by an external validation, where we evaluate the congruence of genuinely imputed 
monthly values from the quarterly survey question about firms’ technical capacity utilisation in per cent 
with existing monthly time series that can be expected to be related to technical capacity utilisation. 
There are not many such series for the Swiss economy, but we can resort to six important ones: the KOF 
Economic Barometer, the KOF/FGV Leading and Coincident Global Barometers, the Swiss National 
Bank’s Business Cycle Index, the Unemployment Rate and Inflation. 

The remainder of our paper is structured as follows. The next Section will look in more detail at some 
related work on the topic of temporal disaggregation. Section 3 will present the imputation methods to 
be evaluated, their implementations and the outcomes. Section 4 will look at the different outcomes in 
terms of descriptive statistics as well as statistically significantly differences. Section 5 summarises, 
concludes, makes some careful on recommendations for temporal disaggregation of series like ours and 
identifies promising lines for further investigations into this topic. 

2. Review of the literature 

A common difficulty faced by practitioners is missing high-frequency data, or transformation of low-
frequency time series into a high-frequency time series, respectively.4  

In general, temporal disaggregation can be done with either univariate or multivariate approaches. The 
former type ranges from equal distribution of quarterly outcomes to monthly subdivision or interpola-
tion, assuming a smooth evolution. Non-parametric approaches like spline methods or the methods 
based on the quadratic function minimisation like that of Boot et al. (1967) or Denton (1971) also belong 
to this category. At the right margin, univariate methods either hold the last observation fixed (last ob-
servation carried forward) or try to exploit the momentum of the series either by simple extrapolation or 
by modelling ARIMA processes or univariate state-space models, like in Harvey and Pierce (1984).  

Practitioners can refer to various statistical packages to perform some of the most common univariate 
und multivariate implementations of temporal disaggregation.5  

Feijoó et al. (2003) evaluate the performance of several most popular univariate temporal disaggregation 
procedures. They confirm that univariate higher frequency transformations are informationally ineffi-
cient when other data are disregarded that could supply valid information on the true movement of the 
process through time at points that are unobserved in the target series. This information inefficiency can 
be successfully addressed by employing one or several auxiliary high-frequency variables that are re-
lated to the low-frequency time series in question.  

Let 𝑦𝑦𝑡𝑡𝑙𝑙 be a low-frequency variable that we intend to temporally disaggregate to a higher frequency. The 
most popular methods for temporal disaggregation assume a linear relationship between an unknown 
high-frequency representation of the low-frequency variable 𝑦𝑦𝑡𝑡ℎ and a related high-frequency variable 
xt in the following form: 

 
4 A recent example relating to Swiss data is the annual to quarterly imputation for GDP data from the 1960s and 
1970s performed by Stuart (2018). 
5 See for example Sax and Steiner (2013). 
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𝑦𝑦𝑡𝑡ℎ=α+ βxt + εt , 

where various assumptions are made on the nature of the disturbance term εt. For example, Chow and 
Lin (1971) assume an AR(1) process. Fernández (1981) assumes that εt follows an I(1) process and in 
Litterman (1983) an ARIMA(1,1,0) process is suggested. Proietti (2006) proposes a general state-space 
model that encompasses the three aforementioned temporal disaggregation approaches. The main ad-
vantage of formulating the temporal disaggregation procedures in a general state-space modelling 
framework is that several previously unattended inferential issues can be addressed in a straightforward 
manner. Another approach to multivariate temporal disaggregation, based on structural time series mod-
els, is suggested by Moauro and Savio (2005). In a Monte Carlo simulation, their approach compares 
favourably with several traditional methods. They conclude (p. 230) that “…, what this limited experi-
ment seems to indicate that the choice of the method for time aggregation can be even more relevant 
than the use of a good reference series, even if the use of this series can substantially add in terms of 
accuracy when an appropriate framework for time aggregation is chosen”. 

The multivariate methods for temporal disaggregation mentioned above employ one, or at most, a hand-
ful of high-frequency indicators. When more high-frequency indicators are available, possibly exceed-
ing the number of observations, of model over-fitting becomes likely. Hence, some kind of variable 
selection procedure is required that retains only the most informative high-frequency variables regarding 
the dynamics of the low-frequency variable of interest. In this respect, imputation procedures based on 
regression are commonly applied. In these procedures, the missing values of the low-frequency variables 
are substituted with the predicted values from regressions of the original low-frequency variables on a 
selection of high-frequency variables. Several variable selection procedures, like forward, backward or 
stepwise, are common. Alternatively, penalised regressions can be used for variable selection. An ex-
ample of the latter is Tibshirani’s (1996) Lasso (Least Absolute Shrinkage and Selection Operator).  

An approach to impute values in larger data panels involving variables sampled at heterogeneous fre-
quencies is proposed by Stock and Watson (2002b). This is based on the Expectation-Maximization 
(EM) algorithm, which typically consist of stepwise iterations. In the first step, the missing values are 
substituted with the best guess for some given initial parameter values defining the common factors, 
which are extracted from the data set by means of principal components analysis. In the second step, the 
imputed values are updated, conditional on the specified parameter values. Then the missing values are 
imputed again, conditional on the new parameter values. The iterating procedure is continued until some 
convergence criteria are met. This approach is used, for example, in Schumacher and Breitung (2008) 
for imputation of missing values in monthly and quarterly German economic data. Since September 
2015, the EM procedure is applied for temporal disaggregation of the quarterly components of the com-
posite leading economic indicator (KOF Economic Barometer) for the Swiss economy (see Abberger et 
al., 2018) and since January 2020 for the Global Barometers (see Abberger et al., 2022). 

Labonne and Weale (2020) also conduct temporal disaggregation, but for a different data environment. 
They derive monthly estimates of business sector output in the UK from rolling quarterly value-added 
tax (VAT) based turnover data. The VAT data exhibit substantial noise. When observed data are noisy, 
the authors suggest that the interpolants should not be restricted to the data themselves, but to the un-
derlying “clean” signal. Therefore, the authors choose an unobserved components approach, where the 
VAT observations are modelled as the sum of latent components, one of which is an observation error. 
Zult et al. (2020) also analyze VAT data, but for their purposes, from the Netherlands. They also face 
the problem of “noisy” VAT data, as firms declare VAT at different frequencies. The majority declares 
VAT at quarterly rhythm (a minority monthly or annually), and the aim is to dispose of monthly figures. 
The authors use classical temporal disaggregation methods (Chow/Lin, Denton) within gaps of available 
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quarterly data. They augment these with nowcasting methods (ARIMA, bridge models, structural time 
series models) for the most recent months, where quarterly data are not yet available. Quenneville et al. 
(2013) deal with the problem of calendarization. Calendarization is the process of transforming the val-
ues of a flow time series that is observed over varying time intervals into values that cover calendar 
intervals such as day, week, month, quarter and year. This problem involves temporal distribution of the 
reported values into, say, daily values and aggregation of the resulting daily interpolations into the de-
sired frequency (monthly, quarterly or annual). An application at Statistics Canada deals with their 
monthly business surveys. They have collection agreements with some respondents that allow them to 
report periods other than the standard calendar month. The authors propose an innovative spline ap-
proach to address the calendarization problem. Although these papers fall broadly within the same field 
as ours, the objectives and the data situation are very different, so that we do not derive any practical 
conclusions from them at this stage. 

Mosley et al. (2021), similarly to what we undertake in this paper, adapt the Chow/Lin procedure to a 
data-rich environment. After demonstrating that the traditional Chow/Lin procedure has shortcomings 
when used with a large number of high frequency indicators, they introduce an approach, which they 
call “generalized regularized M-estimation framework for temporal disaggregation”. In particular, they 
add a penalty term (“regularizer”) to the Chow/Lin cost function. The approach used in our paper can 
be seen as a special case of this general approach. Also, our data situation is special since the quarterly 
data are observed in the first month of each quarter. 

3. Methods and results 

In this section, we present the methods evaluated in this paper, their implementation, and some descrip-
tive statistics. We first evaluate two univariate imputations of monthly data points, the last observation 
carried forward procedure and the cubic spline. As the former is an implementation of a random walk 
without drift and hence the most “conservative” estimate, it will also serve as our benchmark, which the 
competing methods have to outperform in order to be considered as serious alternatives. 

We then evaluate the following multivariate imputations: multiple regression, the EM algorithm, the 
Chow/Lin estimator and, as our theoretically preferred algorithm, a combined implementation of 
Chow/Lin with Lasso and first-order autoregressive term (AR1). The traditional Chow/Lin method does 
not directly address the problem of variable selection. However, in a more and more data-rich environ-
ment, data selection is becoming increasingly important. We address this with a new approach combin-
ing Lasso regression with the explicit error structure of the Chow/Lin approach. This combination allows 
the Chow/Lin approach to be applied to a large number of high frequency indicators. 

The data corpus and the steps of computations are the same for all methods. We refer to seasonally 
adjusted data only, as otherwise we would have to impute seasonality, which unnecessarily complicates 
the task. First, we compute artificially quarterly series Q from the 11 monthly KOF manufacturing BTS 
questions M presented above, where we delete two out of three data points in a row. Numbering the 
months of a year from 1 to 12 we arrive at a theoretical maximum of three quarterly series from each 
monthly series with the following monthly origins: 

1-4-7-10, 2-5-8-11 and 3-6-9-12. 

However, for our imputation problem, due to the chronology of the data generating process in our sur-
veys, we can disregard the second and third options, as for our monthly and quarterly surveys, the release 
and reference period coincide. Monthly results for Mi are released before end of month i and quarterly 
results are released for Qj before end of the first month of quarter j; accordingly, the first month of each 
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quarter delivers two observations (M and Q). Imputations of missing monthly values are thus needed for 
the second and third months of a quarter. The series of deleted data points to be imputed hence has the 
following monthly sequence: 

2-3-5-6-8-9-11-12. 

As this sequence reflects the information that our imputation methods have to recover, we will refer to 
the 11 series of this type as “out of sample”. They are the same for all imputation approaches to be 
evaluated. The monthly BTS series from 1967m2 to 2021m12 that we will look at in this paper cover 
659 monthly observations, the quarterly series Q derived from them cover 219 data points, 440 data 
points can hence be imputed per series, amounting to a total of 4,840 data pints for the 11 series. 

The following Figure illustrates the data generating processes of the KOF BTS and the terminology that 
we apply in this paper, assuming the perspective of the third month of the third quarter (m9). “Symmet-
ric” relates to imputations for months lying between observed values in the past, whereas “asymmetric” 
imputations are “nowcasts” for months two and three of the current quarter, i.e. technically forecasts. 

Figure 1: Timeline and terminology 

 

The targets for our simulations are the seasonally adjusted balance indicators. For this, we can either 
directly impute the missing observation of this series. Alternatively, we can impute the seasonally ad-
justed positive and negative shares and compute the imputed target values indirectly from the difference 
of the two. A priori, it is not evident which approach should be superior. The indirect imputation in-
creases the number of observations to be imputed by 100%, but it is informationally more efficient, as 
the same value for the balance can result from greatly different positive and negative shares. Accord-
ingly, we let the data speak and proceed along both paths.6 

We compute simulated pseudo real-time (simulated real-time) values based on a rolling window of 20 
years up to 2019. Stored values of monthly balance indicator series in the KOF data base start at 1967m2. 
However, the data base records negative and positive shares from 1971m4 only, so that including these, 
which is required for the indirect approach, the first rolling 20 years window ends in 1991m3. Accord-
ingly, out-of-sample imputations can be calculated starting 1991m3, yielding 231 imputations per sur-
vey item and series and a total of 2,541 imputations for our 11 series.  

 
6 Notice that the target series, against which the imputations for the two approaches have to be evaluated, are not 
exactly the same. The direct target series is the seasonally adjusted balance from the differences of the unadjusted 
positive and negative shares, whereas the indirect target series is the difference of the seasonally adjusted positive 
and negative shares. 

Observer

monthly series m1 m2 m3 m4 m5 m6 m7 m8 m9
quarterly series new new new
last obs. c. forw. new as m1 as m1 new as m4 as m4 new as m7 as m7

interpolation new symmetric symmetric new symmetric symmetric new
spline new symmetric symmetric new symmetric symmetric new asymmetric asymmetric

multivariate new symmetric symmetric new symmetric symmetric new forecast forecast

reference reference reference
in sample

Ex post real time

simulated real time
out of sample out of sample out of sample

q1 q2 q3
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An additional data restriction applies for comparisons of real-time and ex-post imputations, given that 
our imputations are performed in 20 years rolling windows. This implies that consistent ex-post series 
cover exactly 20 years. The vintage that ends before the Covid-19 pandemic hit the Swiss economy thus 
ranges from 2000m1 to 2019m12, comprising 160 imputations per survey item and series and a total of 
1,760 imputations for our 11 series. 

Finally, to shed light on the performance of our imputations in 2020 and 2021, when the economy op-
erated in crises modus and BTS data may not reflect the same as under normal conditions, our Covid-
19 period ranges from 2020m1 to 2021q12, the ex-post imputations are taken from the 2002–2021 vin-
tage. The number of imputations for these two years is 8 per series, amounting to 88 for the 11 indicators. 

The observation periods and their characteristics are summarised in Table 3.1. 

Table 3.1: Observation periods 

Range Imputations Evaluations 
1967m2–2021m12 4,840 Entire data base 
1991m3–2019m12 2,541 Real-time, direct & indirect imputations 
2001m1–2019m12 1,760 Real- time & ex-post, direct & indirect imputations 
2020m1–2021m12 88 Sensitivity check for Covid-19 pandemic 

 

For descriptive statistics and comparisons based thereon, we first look at the root mean squared error 

. 

We can discriminate between RMSE statistics referring to asymmetric estimations (real-time out-of-
sample total, real-time out-of-sample second months and real-time out-of-sample third months) as well 
as to the corresponding RMSE referring to symmetric ex-post imputations.  

The RMSE measures the overall precision of the imputations, penalising larger deviations. To evaluate 
the precision of the different measures against our benchmark (last observation carried forward), we 
compute the relative RMSE (RRMSE), defined the ratio of the RMSE imputation method under consid-
eration against the RMSE of the benchmark. Ratios above one indicate superiority of the method under 
consideration, ratios below one indicate that the benchmark is superior. 

Our second descriptive statistics addresses turning points. In particular, quarterly series as well as im-
puted monthly series with the last observation carried forward are silent on changes of directions for the 
unobserved/imputed months. Yet, economic observers may be particularly interested in upward or 
downward movements at the right margins of economic time series. Our monthly imputations provide 
this information, and with the actual values at hand for comparison, it is straightforward to compute the 
percentage of corresponding up and down direction changes of the first and second imputed values 
within each quarter or for both taken together. For these statistics, values above 50% indicate that the 
imputations are reflecting direction changes better than simple guessing. 

Notice that with chronological distance of the imputed value from the last observation increasing, asym-
metric imputations for the third month of a quarter can be expected to be inferior to those of the second. 
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3.1 Last observation carried forward 

Linear interpolation and carrying the last observed value forward until new information becomes avail-
able are the simplest imputation methods. The former, however, is impossible when real-time values 
have to be imputed at the end of a series, in our case for the second and third months of the current 
quarter. The last observation carried forward procedure (henceforth: locf) copies the latest available 
observation of the same series, in our case the first month of the quarter (see Figure 1). Notice that with 
chronological distance of the imputed value from the last observation increasing, locf imputations for 
the third month of a quarter should be expected to be particularly inferior to those of the second month, 
as no new information is taken into account. 

The RMSE for the 11 real-time out-of-sample imputations, broken down by total, first month out-of-
sample (m2) and second month out-of-sample (m3), are shown in Table 3.1. 

Table 3.1: Descriptive statistics for the last value carried forward (locf) imputations 

Period 1991–2019 2000–2019 2020–2021 

Imputation direct indirect direct indirect direct indirect 

RMSE all 6.98 6.78 7.26 7.05 10.25 9.94 

RMSE m2 6.93 6.72 7.11 6.91 9.03 8.76 

RMSE m3 7.02 6.85 7.40 7.19 11.34 11.00 

 

Table 3.1 shows that the RMSE for the locf imputations in the pre-Covid-19 periods range from 6.7 to 
7.4. For the longer period from 1991 as well as for the shorter period from 2000, two regularities stand 
out: (1) the RMSE are larger for m3 compared to m2, and (2) larger for the direct comparted to the 
indirect imputations. This holds without exception, and also for the two Covid-19 years. For the latter, 
however, the errors are remarkably larger (9.0–11.3) than for the pre-Covid-19 years. Turning points 
are not computed, as locf imputations do not have direction changes by construction.  

What we can take from this table alone is that the imputation errors are higher on average for the third 
months of a quarter compared to the seconds months, which is in line with expectations, as the lag to 
the last recorded observation increases. The finding that the indirect imputations via imputed positive 
and negative shares turn out to be slightly but consistently more precise than the direct imputations of 
the balance can only be attributed to the seasonal adjustment procedure. 

3.2 Cubic spline 

With our specification of the cubic spline procedure, missing monthly values of a quarterly series are 
imputed with natural cubic spline interpolation. A cubic spline is natural if the bending moment (the 
second derivative of the spline function) at the end points is equal zero and the slope (the first derivative 
of the spline function) is constant. Consequently, natural cubic spline ends in a straight line at the end 
points. Missing monthly values at the end of the series are extrapolated by continuing the straight line 
at the end point. The descriptive statistics are shown in Table 3.2. 

Table 3.2 shows that the real time RMSE for the cubic spline imputations in the pre-Covid-19 periods 
range from 7.7 to 10.4, which is considerably higher than for locf (6.7–7.4). The RMSE for the Covid-
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19 years 2020–2021 (19.7–23.5) are again much higher than for the preceding periods, about twice as 
high as for locf (9.0–11.3). Regarding the turning points, the percentage of hits in real time is close to 
50% (and even below this for the Covid-19 period), so that random guessing would have about the same 
expected outcome.  

Table 3.2: Descriptive statistics for the cubic spline imputation 

Period 1991–2019 2000–2019 2020–2021 

Imputation direct indirect direct indirect direct indirect 

real time 

RMSE all 8.91 8.61 9.41 9.11 19.07 18.74 

RMSE m2 7.98 7.71 8.30 8.04 13.16 12.92 

RMSE m3 9.75 9.42 10.40 10.07 23.54 23.14 

Direction change 50.5% 51.6% 49.4% 51.5% 47.7% 46.0% 

ex post 

RMSE all n/a n/a 6.87 6.66 8.98 8.75 

RMSE m2 n/a n/a 6.73 6.54 9.11 8.92 

RMSE m3 n/a n/a 7.00 6.78 8.85 8.57 

Direction change n/a n/a 60.9% 60.6% 61.9% 60.2% 

 

The ex-post performance is somewhat better than real-time in terms of RMSE for 2000–2019, and con-
siderably better for 2020–2021. Also, the ex-post direction changes record about 60% hits. 

The two regularities that were observed for locf also hold for the cubic spline imputations, and this both 
in real time and ex post: the RMSE are larger for m3 compared to m2, and larger for the direct comparted 
to the indirect imputations.  

What we can take from this is that our implementation of the cubic spline imputation is clearly inferior 
to locf in real time, the variance created by the imputations is misleading, and this hold especially for 
the dramatic Covid-19 years. Ex post, the RMSE still do not recommend the cubic spline as an alternative 
to locf, but the direction changes are captured a bit better. 

3.3 EM algorithm 

We adopt an approximate static factor model like the one presented by Stock and Watson (2002a) that 
allows modelling the co-movement of numerous variables in terms of a few latent factors. The approx-
imate static factor model given a 𝑇𝑇 × 𝑁𝑁 matrix 𝑋𝑋 of 𝑁𝑁 time series assumes the following factor model 
representation: 

𝑋𝑋 = 𝐹𝐹𝐹𝐹 + 𝜖𝜖 

Where 𝐹𝐹 is a 𝐾𝐾 ×𝑁𝑁 matrix of the factor loading coefficients, and 𝐹𝐹 is a 𝑇𝑇 × 𝐾𝐾 matrix of 𝐾𝐾 common 
factors. The idiosyncratic error term 𝜖𝜖 is variable-specific and has the corresponding dimension 𝑇𝑇 ×𝑁𝑁. 
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The idiosyncratic disturbances can be serially and cross-sectionally correlated. The approximate static 
factor model relaxes restrictive assumptions of the classic factor analysis that requires cross-sectional 
and temporal independence of the idiosyncratic disturbances. Stock and Watson (2002a) showed that 
under fairly general conditions on the error terms the latent factors can be consistently estimated using 
the principal components (PC) analysis. Observe that in order to rule out scale effects, we perform the 
principal components extraction referring to the correlation matrix rather than to the covariance matrix 
of the selected indicator variables. This is mandatory, as the variances of our transformed indicators 
series differ greatly for purely technical reasons that should not affect the weight given to a particular 
variable. 

For any arbitrary number of common factors 𝐾𝐾 (𝐾𝐾 < min(𝑁𝑁,𝑇𝑇)) estimates of 𝐹𝐹 and 𝐹𝐹 are obtained as a 
solution to the following nonlinear least squares minimisation problem: 

𝐹𝐹�,𝐹𝐹� = argmin
𝐹𝐹,𝐿𝐿

�(
𝑇𝑇

𝑡𝑡=1

𝑋𝑋𝑡𝑡 − 𝐹𝐹𝑡𝑡𝐹𝐹)′(𝑋𝑋𝑡𝑡 − 𝐹𝐹𝑡𝑡𝐹𝐹),    subject to 𝐹𝐹𝐹𝐹′ = 𝐼𝐼𝑘𝑘 

The optimisation problem is solved by setting 𝐹𝐹 equal to the eigenvectors corresponding to the 𝐾𝐾 largest 
eigenvalues of the sample correlation matrix of 𝑋𝑋. The estimator of the common factors is given by 
𝐹𝐹� = 𝑋𝑋𝐹𝐹�′. 

Alternatively, the first principal component can be defined as the linear combination of variables with 
maximal variance. The subsequent principal components are similarly defined with an additional re-
striction that their loadings must be orthogonal to all previously calculated principal components. For-
mally, 

𝐹𝐹�𝑘𝑘 = argmax 
𝐿𝐿𝑘𝑘

𝑣𝑣𝑣𝑣𝑣𝑣(𝐹𝐹𝑘𝑘),      subject to  𝐹𝐹𝑘𝑘𝐹𝐹𝑘𝑘′ = 1 and  𝐹𝐹𝑘𝑘𝐹𝐹𝑗𝑗′ = 0  for all  𝑗𝑗 < 𝑘𝑘. 

Factors are estimated as before by 𝐹𝐹�𝑘𝑘 = 𝑋𝑋𝐹𝐹�𝑘𝑘′, where 𝐹𝐹𝑘𝑘 is the 𝑘𝑘-th column of 𝐹𝐹 and 𝐹𝐹𝑘𝑘 the 𝑘𝑘-th row of 
𝐹𝐹. Hence principal components analysis has the following interpretation. The first principal component 
explains as much variation in the data as possible. The second explains as much of the remaining vari-
ation in the data PC as possible after extraction of the first, and so on. In this way principal component 
analyses reduces the dimensionality of a large set of interrelated variables, while retaining as far as 
possible the information (variation) present in the data set. 

Our panel always contains one quarterly series whose non-quarter months are missing and 𝑁𝑁 − 1 
monthly indicators. We employ the Expectation-Maximisation (EM) algorithm following Stock and 
Watson (2002b) to estimate the common factors and missing observations simultaneously. 

The steps of this algorithm are: 

• Fill the missing values in 𝑋𝑋 with their initial estimates (mean imputation is commonly used, 
i.e. the missing values in variable 𝑋𝑋𝑖𝑖 are filled with the mean of 𝑋𝑋𝑖𝑖). 

• Repeat the following steps until convergence is reached: 
1. Compute the factors 𝐹𝐹� and factor loadings 𝐹𝐹� (M-step). 
2. Reconstruct 𝑋𝑋 with 𝑋𝑋� = 𝐹𝐹�𝐹𝐹� (E-step). 
3. If the absolute differences between the missing values from the first imputations in 𝑋𝑋� 

and the corresponding values in 𝑋𝑋 are below a certain threshold, stop. 
4. Update the initial iterations in 𝑋𝑋 with the new estimates in 𝑋𝑋� and go to step 1. 
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In the above procedure, we limit ourselves to 2 principal components, because the quality of the impu-
tation in terms of RMSE did not improve with a higher number of components. 

The RMSE for the real-time out-of-sample imputations, broken down by total, first month out-of-sample 
and second month out-of-sample, are shown in Table 3.3. 

Table 3.3: Descriptive statistics for the EM algorithm 

Period 1991–2019 2000–2019 2020–2021 

Imputation direct indirect direct indirect direct indirect 

real time 

RMSE all 8.50 8.57 8.76 8.70 11.78 11.40 

RMSE m2 8.35 8.42 8.60 8.57 11.94 11.77 

RMSE m3 8.65 8.72 8.91 8.83 11.62 11.02 

Direction change 64.3% 65.6% 63.5% 65.9% 64.2% 65.9% 

ex post 

RMSE all n/a n/a 8.35 8.23 11.59 11.14 

RMSE m2 n/a n/a 8.04 7.93 11.83 11.61 

RMSE m3 n/a n/a 8.64 8.52 11.34 10.65 

Direction change n/a n/a 62.8% 63.7% 66.5% 66.5% 

 

Table 3.3 shows that the real time RMSE for the EM algorithm imputations in the pre-Covid-19 periods 
range from 8.4 to 8.9, which is considerably higher than for locf (6.7–7.4). The RMSE for the Covid-19 
years 2020–2021 (11.0–11.9) are again much higher than for the preceding periods and somewhat higher 
than for locf (9.0–11.3). For direction changes, the percentage of hits in real time is about 65%, irrespec-
tively of the period, so that in this respect, the EM algorithm performs better than random guessing. 

The ex-post performance is only slightly better than real-time in terms of RMSE for 2000–2019, and the 
same holds for 2020–2021. Ex-post imputed direction changes are not better than in real time, with the 
exception of the Covid-19 period. 

Of the two regularities that were observed for locf, only one also holds for the EM algorithm imputations 
and this only for the pre-Covid-19 periods (RMSE larger for m3 compared to m2). The second regularity 
(RMSE larger for direct than indirect imputations) is reverted for the 1991–2019 real-time imputations. 

What we can take from this is that the EM algorithm imputation does not hold the promise to outperform 
the naïve locf, and this applies to all periods considered as well as to real time and ex post. The only 
improvement is for directions changes, where this approach comes close to two thirds hit ratio. 

3.4 OLS regression 

The missing monthly values of a quarterly series are imputed with the help of the remaining 10 available 
monthly indicators. For this purpose, the following multiple regression is estimated:  
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𝑦𝑦𝑙𝑙 = 𝐶𝐶𝑋𝑋𝐶𝐶 + 𝐶𝐶𝐶𝐶 

𝑦𝑦𝑙𝑙 is the 𝑇𝑇 × 1 quarterly target series, 𝑋𝑋 the 3𝑇𝑇 × 𝑁𝑁 matrix of monthly indicators, 𝐶𝐶 a 𝑁𝑁 × 3𝑇𝑇 conver-
sion matrix that converts the monthly matrix 𝑋𝑋 to a 𝑇𝑇 × 𝑁𝑁 quarterly matrix by extracting the quarter 
months and 𝐶𝐶 ~ 𝑁𝑁(0, Σ) is a 3𝑇𝑇 × 1 vector of errors with Σ = 𝜎𝜎2𝐼𝐼. In section 3.5 we drop the require-
ment of i.i.d. errors 𝐶𝐶𝑡𝑡 and assume they follow an AR-process. The ordinary least squares (OLS) solution 
is given by 

�̂�𝐶 = (𝑋𝑋′𝐶𝐶′𝐶𝐶𝑋𝑋)−1𝑋𝑋′𝐶𝐶′𝑦𝑦𝑙𝑙. 

If 𝑁𝑁 > 𝑇𝑇, the matrix 𝑋𝑋′𝐶𝐶′𝐶𝐶𝑋𝑋 is singular and no unique solution for �̂�𝐶 exists. When 𝑁𝑁 ≤ 𝑇𝑇 but 𝑁𝑁 is large 
relative to 𝑇𝑇, OLS is prone to overfitting, such that the model fits the in-sample data and its noise well 
but fails to give good out-of-sample predictions. Since 𝑁𝑁 = 10 and our in-sample window is 𝑇𝑇 = 80 
quarters long, overfitting might prove to be an issue. 

We then estimate the 𝑇𝑇 × 1 monthly series 𝑦𝑦ℎ with 𝑦𝑦�ℎ = 𝑋𝑋�̂�𝐶 and replace the missing monthly values in 
𝑦𝑦ℎ with 𝑦𝑦�ℎ to arrive at the imputed monthly series. 

The RMSE for the real-time out-of-sample imputations, broken down by total, first month out-of-sample 
and second month out-of-sample, are shown in Table 3.4. 

Table 3.4: Descriptive statistics for the OLS regression imputation 

Period 1991–2019 2000–2019 2020–2021 

Imputation direct indirect direct indirect direct indirect 

real time 

RMSE all 4.79 4.75 4.94 4.92 6.02 6.01 

RMSE m2 4.88 4.77 5.01 4.91 6.10 6.35 

RMSE m3 4.71 4.73 4.87 4.92 5.95 5.65 

Direction change 74.8% 73.7% 75.3% 74.2% 72.7% 71.6% 

ex post 

RMSE all n/a n/a 4.62 4.72 5.84 5.76 

RMSE m2 n/a n/a 4.65 4.71 6.06 6.41 

RMSE m3 n/a n/a 4.59 4.73 5.62 5.02 

Direction change n/a n/a 74.4% 73.9% 75.0% 72.7% 

 

Table 3.4 shows that the real time RMSE for the OLS regression in the pre-Covid-19 periods range from 
4.7 to 5.9, which is clearly lower than for locf (6.7–7.4). The RMSE for the Covid-19 years 2020–2021 
(5.7–6.4) are somewhat higher than for the preceding periods, but again clearly lower than for locf (9.0–
11.3). For direction changes, the percentage of hits in real time comes up to 75%, so that in this respect, 
OLS performs much better than random guessing. 



14 

The ex-post performance is only slightly better than real-time in terms of RMSE for 2000–2019, and the 
same holds for 2020–2021. Ex-post imputed direction changes are not better imputed than in real time 
for 2020–2021, but they are for Covid-19 years. 

The two regularities that were observed for locf, largely hold for OLS, too, with a few exceptions: RMSE 
are not larger for m3 compared to m2 for the direct real time imputations as well as direct ex-post for 
2000–2019. Also RMSE are not larger for any of the pre-Covid-19 direct real-time imputations com-
pared to indirect, and the same holds for ex-post 2000–2019. 

What we can take from this is that for our data the OLS regression imputations consistently outperform 
the naïve locf. This applies to all periods considered as well as to real time and ex post. 

3.5 Chow and Lin 

The Chow and Lin (1971) methodology is a least-squares optimal solution for temporal disaggregation 
on the basis of a linear regression model. In that respect it formalises and generalises the above-described 
ad-hoc OLS solution. Notwithstanding that is has been suggested close to half a century ago, it is argu-
ably still the most popular imputation method when high frequency indicators are at hand.7 

The main idea of the Chow/Lin approach is that indicator and target variable satisfy a regression model 
that is valid both for high and low frequency, with the exception of the error structure. From the available 
low frequency, the procedure derives the estimates of the parameters of the regression model. These 
parameters are then applied to the high frequency model to derive the high frequency figures, including 
the extrapolation for the periods after the last low frequency value.  

The Chow/Lin procedure seeks to exploit a statistical relationship between low frequency data and 
higher frequency indicator variables through a high frequency regression equation  

𝑦𝑦ℎ = 𝑋𝑋𝐶𝐶 + 𝐶𝐶 

Where 𝑋𝑋 are high frequency indicators and 𝐶𝐶 is an error term with variance covariance matrix 𝑉𝑉. With 
𝐶𝐶 the conversion matrix which includes the distribution or interpolation restrictions the low frequency 
regression equation is similar to the OLS expression  

𝑦𝑦𝑙𝑙 = 𝐶𝐶𝑦𝑦ℎ = 𝐶𝐶𝑋𝑋𝐶𝐶 + 𝐶𝐶𝐶𝐶 

In contrast to the OLS solution the regression coefficients are calculated using the Generalised Least 
Squares (GLS) estimator 

�̂�𝐶 = [𝑋𝑋′𝐶𝐶(𝐶𝐶𝑉𝑉𝐶𝐶′)−1𝐶𝐶𝑋𝑋]−1𝑋𝑋′𝐶𝐶′(𝐶𝐶𝑉𝑉𝐶𝐶′)−1𝑦𝑦𝑙𝑙 

The high frequency values can then be calculated by 

𝑦𝑦ℎ� = 𝑋𝑋�̂�𝐶 + 𝐷𝐷(𝑦𝑦𝑙𝑙 − 𝐶𝐶𝑋𝑋�̂�𝐶) 

Where 𝐷𝐷 is the distribution matrix (distributing the low frequency residuals to the high frequency values) 

 
7 See, amongst many others, Bagzibagli (2014), Čižmešija et al. (2018) and Stuart (2018), 
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𝐷𝐷 = 𝑉𝑉𝐶𝐶′(𝐶𝐶𝑉𝑉𝐶𝐶′)−1 

The part 𝐶𝐶𝑉𝑉𝐶𝐶′ is the low frequency variance covariance matrix. 

In the context of this article the low frequency is quarterly, and the high frequency is monthly. The 
problem is an interpolation problem where the value of the quarter is identical to the value of the first 
month in the respective quarter. So, the conversion matric 𝐶𝐶 is 

𝐶𝐶 =  �

1 0 0   ⋯ 0 0
0 0 1 0 0 ⋯  0
    ⋮    
0 ⋯    1 0 0

� 

This case was also discussed in the original paper of Chow and Lin (1971). The simplest case is to 
assume that the monthly regression residuals are serially uncorrelated.  In that case 𝐷𝐷 = 𝐶𝐶′ so that the 
distribution matrix assigns the quarterly residual fully to the first month of the quarter. 

Chow and Lin assume for the high frequency residuals an AR(1) process, that is  

𝐶𝐶𝑡𝑡 =  𝜌𝜌𝐶𝐶𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 

Where 𝜖𝜖𝑡𝑡is white noise with variance 𝜎𝜎𝜖𝜖2. In this case V is of the form 

𝑉𝑉 =  
𝜎𝜎𝜖𝜖2

1 − 𝜌𝜌
⎣
⎢
⎢
⎡ 1 𝜌𝜌 ⋯ 𝜌𝜌𝑛𝑛−1

𝜌𝜌 1 ⋯ 𝜌𝜌𝑛𝑛−2
 ⋮ ⋮  

𝜌𝜌𝑛𝑛−1 𝜌𝜌𝑛𝑛−2 ⋯ 1 ⎦
⎥
⎥
⎤
 

So, for the procedure one needs an estimate of 𝜌𝜌. For this, the first order autocorrelation of the quarterly 
(the low frequency) residuals is estimated. With the AR(1) assumption for the monthly residuals the 
first order auto-correlation of the quarterly residuals is 𝜌𝜌3. The estimates are then plug into the distribu-
tion matrix 𝐷𝐷 to estimate the high frequency values.  

This approach is used to address the problem presented in this article. Quarterly data where we observe 
the quarterly value in the first month of the quarter are interpolated with other monthly indicators. 

The RMSE for the real-time out-of-sample imputations, broken down by total, first month out-of-sample 
and second month out-of-sample, are shown in Table 3.5 

Table 3.5 shows that the real-time RMSE for the Chow/Lin algorithm in the pre-Covid-19 periods range 
from 3.8 to 4.0, which is remarkably lower than for locf (6.7–7.4). The RMSE for the Covid-19 years 
2020–2021 (5.1–5.8) are somewhat higher than for the preceding periods, but again remarkably lower 
than for locf (9.0–11.3). For direction changes, the percentage of hits in real time comes up to 77% 
before Covid-19 and up to 72% for 2020–2021 so that in this respect, Chow/Lin also performs much 
better than random guessing. 

The ex-post performance is consistently better than in real time, and this holds for RMSE as well as 
direction changes. 

What we take from this is that for our data – comparable to OLS – the Chow/Lin imputations consist-
ently outperform the naïve locf. This applies to all periods considered as well as to real time and ex post.  
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Table 3.5: Descriptive statistics for the Chow/Lin algorithm 

Period 1991–2019 2000–2019 2020–2021 

Imputation direct indirect direct indirect direct indirect 

real time 

RMSE all 3.93 3.80 3.99 3.91 5.64 5.19 

RMSE m2 4.00 3.84 3.95 3.83 5.49 5.14 

RMSE m3 3.85 3.76 4.02 3.98 5.79 5.24 

Direction change 75.9% 75.0% 77.1% 76.0% 70.5% 72.2% 

ex post 

RMSE all n/a n/a 3.79 3.74 5.31 4.68 

RMSE m2 n/a n/a 3.74 3.64 5.49 5.16 

RMSE m3 n/a n/a 3.84 3.84 5.13 4.15 

Direction change n/a n/a 77.7% 76.1% 75.6% 72.7% 

 

3.6 Chow and Lin with Lasso 

Our last approach is a combination of Chow/Lin and Lasso, which we refer to based on the assumption 
that it has a potential to improve the traditional Chow/Lin approach by targeting the reference series 
more directly. The Lasso (least absolute shrinkage and selection operator) was introduced by Tibshirani 
(1996). Although, it can be used for estimation as shrinkage estimator it also can be used as model 
selection technique. The Lasso method estimates the linear regression coefficients by minimizing the 
sum of least squares subject to a l1 penalty function: 

��𝑦𝑦𝑖𝑖 − 𝐶𝐶0 −�𝐶𝐶𝑗𝑗

𝑝𝑝

𝑗𝑗=1

𝑥𝑥𝑖𝑖𝑗𝑗�

2𝑛𝑛

𝑖𝑖=1

+ 𝜆𝜆��𝐶𝐶𝑗𝑗�
𝑝𝑝

𝑗𝑗=1

 

The use of the l1 penalty in conjunction with the squared objective function leads to many corner solu-
tions for which the parameter estimates are zero. This behaviour leads to the model selection behaviour 
of the Lasso.  

λ is a tuning parameter that captures the relative weight on the penalty function. Selecting a value for λ 
is crucial for Lasso. James et al. (2013) suggest cross-validation as a simple way to tackle this problem. 
We follow their approach and also use cross-validation for the selection of lambda in our calculations. 

In this paper, the Lasso approach is used as selection method. Having selected a model by Lasso, a post-
Lasso step is added which means that after model selection the parameters of the model are estimated 
by ordinary least squares without shrinkage.  

The Chow and Lin methodology relies on a regression model to make use of high frequency indicators 
for temporal disaggregation. As always in regression models the problem of variable selection arises. 
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Regressing on all available high frequency series is likely to lead to overfitting. To avoid this, repeated 
combinations of a limited number of regressors can by chosen with the results subsequently submitted 
to model averaging (potentially along with other imputations as in Stuart, 2018). For our purposes, how-
ever, comparing specific imputation results is more informative (which of course does not rule out that 
in a practical implementation, model averaging may be appropriate). Accordingly, we would rather se-
lect variables by ordinary low frequency regression, where the usual variable selection methods can be 
applied. The elected variables can then be submitted to the Chow/Lin disaggregation algorithm.  

In this two-step procedure, however, the two problems can also be linked more closely.8 Based on the 
work of Wang et al. (2007) we combine the Chow and Lin procedure with Lasso shrinkage. Wang, Li 
and Tsay introduce Lasso for regressions with autoregressive errors. They obtain estimators by mini-
mizing the Lasso criterion (for the present context the equation adapted to use the low frequency values) 
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+ 𝑛𝑛�𝛾𝛾�𝜌𝜌𝑗𝑗�
𝑞𝑞

𝑗𝑗=1

 

Here (𝜆𝜆, 𝛾𝛾) are the shrinkage parameters. The authors allow for two different shrinkage parameters, one 
for the regression coefficients and one for the autoregressive coefficients. In our implementation, the 
problem is simplified. An AR(1) term is introduced for which no shrinkage is required. Penalty terms 
are computed only for the other regression parameters.  

To solve the optimization problem Wang, Li and Tsay propose an iterative algorithm. This algorithm 
simplifies in the present context to: 

In step 𝑖𝑖 of the iteration: 

1. Use Lasso with fixed 𝜙𝜙�(𝑖𝑖): 

�̂�𝐶(𝑖𝑖 + 1) = min
𝛽𝛽
∥∥(𝑦𝑦𝑡𝑡𝑙𝑙 − 𝑋𝑋𝑡𝑡𝐶𝐶) − 𝜙𝜙�(𝑖𝑖)(𝑦𝑦𝑡𝑡−1𝑙𝑙 − 𝑋𝑋𝑡𝑡−1𝐶𝐶)∥∥2

2 + 𝜆𝜆∥∥𝐶𝐶∥∥2 

2. Use �̂�𝐶(𝑖𝑖 + 1) to estimate 𝜙𝜙�(𝑖𝑖 + 1) with OLS 

Steps 1 and 2 are repeated until convergence. �̂�𝐶(0) is estimated with standard Lasso, 𝜙𝜙�(0) with OLS. 
The shrinkage parameter 𝜆𝜆 is chosen according to BIC, as proposed by Wang, Li, Tsay. 

After convergence, the estimates �̂�𝐶 and 𝜌𝜌� =  𝜙𝜙�3 are again plugged into the Chow and Lin estimation 
equation for 𝑦𝑦ℎ� =  𝑋𝑋�̂�𝐶 + 𝐷𝐷(𝑦𝑦𝑙𝑙 − 𝐶𝐶𝑋𝑋�̂�𝐶)   to obtain high frequency estimates. 

The RMSE for the real-time out-of-sample imputations, broken down by total, first month out-of-sample 
and second month out-of-sample, are shown in Table 3.6. 

Table 3.6 shows that the real time RMSE for the Chow/Lin-Lasso algorithm in the pre-Covid-19 periods 
range from 3.7 to 4.0, which is again remarkably lower than for locf (6.7–7.4). The RMSE for the Covid-
19 years 2020–2021 (5.3–5.8) are somewhat higher than for the preceding periods, but again remarkably 
lower than for locf (9.0–11.3). For direction changes, the percentage of hits in real time comes up to 

 
8 For a comprehensive discussion of the underlying principles, see Di Fonzo (2003). 
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77% before Covid-19 and up to 73% for 2020–2021 so that in this respect, Chow/Lin-Lasso also per-
forms much better than random guessing. 

Table 3.6: Descriptive statistics for the Chow/Lin-Lasso selection algorithm 

Period 1991–2019 2000–2019 2020–2021 

Imputation direct indirect direct indirect direct indirect 

real time 

RMSE all 3.96 3.75 3.98 3.85 5.73 5.38 

RMSE m2 4.00 3.79 3.92 3.78 5.64 5.28 

RMSE m3 3.91 3.70 4.04 3.92 5.82 5.48 

Direction change 75.2% 75.6% 76.2% 77.4% 73.3% 72.7% 

ex post 

RMSE all n/a n/a 3.76 3.68 5.14 4.68 

RMSE m2 n/a n/a 3.66 3.59 5.27 4.96 

RMSE m3 n/a n/a 3.85 3.78 5.00 4.39 

Direction change n/a n/a 77.5% 76.8% 77.8% 74.4% 

 

The ex-post performance is consistently better than in real time, and this again holds for RMSE as well 
as direction changes. 

The two regularities that were observed for locf, largely hold for Chow/Lin-Lasso too, with a few ex-
ceptions: RMSE are not larger for m3 compared to m2 for the direct real time imputations covering the 
1991–2019 period as well as the ex-post imputations for 2021–2022. Also, RMSE are larger for direct 
compared to compared to indirect imputations without exception. 

What we take from this is that for our data – comparable to OLS and Chow/Lin without Lasso – the 
Chow/Lin-Lasso imputations consistently outperform the naïve locf. This applies to all periods consid-
ered as well as to real time and ex post.  

In the next section, we will take a closer look at the relative performance of the different imputations. 

4.1 Which approach is statistically significantly superior? 

4.1 Comparative internal validation 

In the previous section, we reported the results of standard forecasting accuracy evaluation, based on 
comparisons of the imputed monthly values with the known (true) ones. We refer to this as internal 
validation, as it is based solely on our 11 monthly BTS data series that underly the imputations. To 
facilitate the evaluation the relative performance of the different imputation algorithms, we report rela-
tive root mean square errors (RRMSE), defined as 

RRMSE = RMSEk / RMSElocf  , 
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where k is the evaluated method and locf (last value carried forward) is the “naïve” benchmark model. 
A RRMSE above 1 indicates that method k fares worse than the benchmark across the 11 imputed survey 
items. Values below 1 signal the opposite, and the lower the value, the more promising the method.  

As before, we also look at descriptive statistics regarding turning points. However, as the benchmark 
locf by construction does not impute turning points, we refer to the same statistics as above, which we 
show again in this statistical summary to ease comparison. Recall that values above 50% indicate that 
the imputations are reflecting direction changes better than simple guessing, and the higher the better. 

The RRMSE for the real-time (out-of-sample imputations), broken down by total (first and second 
month), first month and second month, and direct imputation of the seasonally adjusted balance are 
versus indirect via separate imputations of the seasonally adjusted positive and negative shares, from 
which the balance is subsequently computed, are shown in Table 4.1.1. The statistics for the best results 
are highlighted in bold, and in italics where this applies to more than one imputation method. 

Table 4.1.1 shows that the real-time RRMSE for the cubic spline imputations without exception clearly 
exceed one. As, in addition to this the direction change predictions are not superior to random guessing, 
it is clearly preferable for our data corpus to freeze the last observations (locf) than to create out-of-
sample variance within quarters with the cubic spline.  

The EM algorithm could be expected to outperform the cubic spline, as it refers to the entire data corpus 
rather than projecting univariate dynamics into the future. For our data corpus, however, this expectation 
is disappointed when it comes to the RRMSE, which do not really look better. Even if they are somewhat 
less disastrous for the 2020–2021 Covid-19 years in comparison to the cubic spline, where without a 
clue of the pandemic delivered by real-time data, the forecast errors are going through the roof, they still 
all exceed one. The percentage of direction change hits, on the other hand, is about 65% and thus better 
than guessing, so that there is some ambivalence in the outcome of this imputation method. 

Turning to OLS regression, our results show that this imputation is preferable to locf in all respects 
considered here. The RRSME are all clearly below one, and the percentage of direction change hits 
reaches up to 75%. Exploiting the information from 10 BTS series via multiple regression to impute 
monthly values of the eleventh works well in our data corpus and provides improved timely estimates 
for the second a third months of a quarter at the right margins of our series. 

The findings for Chow/Lin and the Chow/Lin-Lasso algorithms are qualitatively the same as for the 
OLS based imputations, but while the percentage of direction change hits falls in the vicinity of 75% 
and is on the whole only slightly better than with OLS, the RRMSE drop from above 0.65 to below 0.55. 
The latter result is unambiguous, not even a single RRMSE from the OLS imputation is lower than any 
of the two counterparts from Chow/Lin or Chow/Lin-Lasso. Accordingly, for the real-time imputations 
within our data corpus, the two Chow/Lin based methods deliver the most accurate results. 

The picture that emerges from the descriptive statistics thus shows that Chow/Lin and Chow/Lin-Lasso 
are unambiguously superior to the other imputation methods considered here. Also, it appears that nei-
ther of the two favourites clearly outperforms the other. Yet, two regularities become evident under 
closer inspection. Firstly, up to 2019, Chow/Lin without Lasso tends to score lower on RRMSE for the 
direct imputations, whereas Chow/Lin-Lasso performs superior in this respect for the indirect approach. 
Moreover, the percentage of direction change hits up to 2019 reveals the same pattern. Given that the 
indirect approach delivers more precise results than the direct one, superior performance with the indi-
rect approach can in practice be especially useful. 
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Table 4.1.1: Comparative statistics with respect to benchmark, real-time imputations 

Period 1991–2019 2000–2019 2020–2021 

Imputation direct indirect direct indirect direct indirect 

Cubic spline 

RRMSE all 1.28 1.23 1.30 1.26 1.86 1.83 

RRMSE m2 1.14 1.10 1.14 1.11 1.28 1.26 

RRMSE m3 1.40 1.35 1.43 1.39 2.30 2.26 

Direction change 50.5% 51.6% 49.4% 51.5% 47.7% 46.0% 

EM algorithm 

RRMSE all 1.22 1.23 1.21 1.20 1.15 1.11 

RRMSE m2 1.20 1.21 1.18 1.18 1.17 1.15 

RRMSE m3 1.24 1.25 1.23 1.22 1.13 1.08 

Direction change 64.3% 65.6% 63.5% 65.9% 64.2% 65.9% 

OLS regression 

RRMSE all 0.69 0.68 0.68 0.68 0.59 0.59 

RRMSE m2 0.70 0.68 0.69 0.68 0.60 0.62 

RRMSE m3 0.67 0.68 0.67 0.68 0.58 0.55 

Direction change 74.8% 73.7% 75.3% 74.2% 72.7% 71.6% 

Chow/Lin 

RRMSE all 0.56 0.54 0.55 0.54 0.55 0.51 

RRMSE m2 0.57 0.55 0.54 0.53 0.54 0.50 

RRMSE m3 0.55 0.54 0.55 0.55 0.56 0.51 

Direction change 75.9% 75.0% 77.1% 76.0% 70.5% 72.2% 

Chow/Lin-Lasso 

RRMSE all 0.57 0.54 0.55 0.53 0.56 0.53 

RRMSE m2 0.57 0.54 0.54 0.52 0.55 0.52 

RRMSE m3 0.56 0.53 0.56 0.54 0.57 0.54 

Direction change 75.2% 75.6% 76.2% 77.4% 73.3% 72.7% 

 

For the Covid-19 years, Chow/Lin scores slightly better in terms of RRMSE, and Chow/Lin-Lasso out-
performs Chow-Lin regarding direction changes. This pattern is different from the one of the pre-Covid-
19 years, but one should keep in mind that the Covid-19 results are based on eight observations only. 
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What we take from this is that our expectation that Chow/Lin-Lasso should in real time prove superior 
to the other imputation methods is strongly confirmed regarding all alternatives except Chow/Lin, where 
a difference is detectable, but it appears too small to allow strong conclusions.  

The remaining evidence from the internal validation is the comparative performance of the ex-post im-
putations. The results are shown in Table 4.1.2. As above, the statistics for the best results are highlighted 
in bold, and in italics where this applies to more than one imputation method. Also notice that for the 
pre-Covid-19 years, due to data availability, the table refers to the 2000–2019 period only. 

Table 4.1.2 shows that the ex-post RRMSE for the cubic spline imputations are without exception clearly 
below one. In contrast to real time (out of sample), this method apparently works, when it comes to 
impute missing observation between known values. In addition, the direction change predictions are 
now somewhat superior to random guessing. Accordingly, while it is preferable for our data corpus to 
freeze the last two observations out of sample, past values (in sample) imputed with the cubic spline are 
superior to the locf benchmark.  

Again, the EM algorithm could be expected to outperform the cubic spline, as it not univariate but re-
ferring to the entire data corpus. However, this expectation is again disappointed when it comes to the 
ex-post RRMSE, which are all exceeding one. The percentage of direction change hits, on the other hand, 
is somewhat better than with the cubic spline, but the fact that the errors with locf are lower than for EM 
does not even recommend this method for ex-post imputations of values from the past. 

Ex post OLS regression imputations are preferable to locf in all respects considered here. All RRMSE 
are clearly below one and they tend to be slightly lower than their real-time counterparts. The percentage 
of direction change hits reaches up to 75% and is comparable to the real-time equivalents. Multiple 
regression imputations of monthly values thus work well in our data corpus, providing timely estimates 
for the second a third months of a quarter at the right margins and also between observed values. 

The results for the ex-post Chow/Lin as well as the Chow/Lin-Lasso imputations are remarkably better 
than for all alternatives considered here, confirming the real-time findings. Moreover, the ex-post 
RRMSE are consistently below their real-time equivalents up to 2019, and better of equal for the two 
Covid-19 years. In addition, the percentages of direction change hits are consistently higher than the 
real-time equivalents. Accordingly, the two Chow/Lin based methods deliver the not only the most ac-
curate real-time results, but also ex post, and the ex-post results tend to be more precise than the out-of-
sample-forecasts. Also, like in real time, neither of the two favourites consistently outperforms the other, 
but ex post, the advantages of amending the Chow-Lin algorithm with Lasso and AR1 term appear 
somewhat more consistent, as they are now also showing up for the two Covid-19 years. 

What we take from this is that all imputation methods are delivering more precise results when it comes 
to impute missing values that lie between known ones in the past, compared to the same task in simulated 
real time, which technically amounts to forecasting. Moreover, as in simulated real time, Chow/Lin-
Lasso proves clearly superior to the other imputation methods except Chow/Lin, where the statistics for 
the preferred look slightly better, but appear too small to allow strong conclusions. Last but not least, it 
is not inconceivable that different algorithms could be superior for ex-post and real-rime imputations, 
which would recommend imputing (nowcast) the last two unobservable months at the right margin of a 
series with one method and all other missing observations (those that lie between known data points) 
with another method. For our data corpus and the methods under consideration here, however, this does 
not apply. The recommended method is Chow/Lin-Lasso for both tasks. On this basis, the next section 
will look at the performance of the recommended method when we move beyond out 11 BTS series and 
face truly missing monthly observations. 
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Table 4.1.2: Comparative statistics with respect to benchmark, ex-post imputations 

Period 2000–2019 2020–2021 

Imputation direct indirect direct indirect 

Cubic spline 

RRMSE all 0.95 0.92 0.88 0.85 

RRMSE m2 0.93 0.90 0.89 0.87 

RRMSE m3 0.96 0.93 0.86 0.84 

Direction change 60.9% 60.6% 61.9% 60.2% 

EM algorithm 

RRMSE all 1.15 1.13 1.13 1.09 

RRMSE m2 1.11 1.09 1.15 1.13 

RRMSE m3 1.19 1.17 1.11 1.04 

Direction change 62.8% 63.7% 66.5% 66.5% 

OLS regression 

RRMSE all 0.64 0.65 0.57 0.56 

RRMSE m2 0.64 0.65 0.59 0.63 

RRMSE m3 0.63 0.65 0.55 0.49 

Direction change 74.4% 73.9% 75.0% 72.7% 

Chow/Lin 

RRMSE all 0.52 0.52 0.52 0.46 

RRMSE m2 0.52 0.50 0.54 0.50 

RRMSE m3 0.53 0.53 0.50 0.40 

Direction change 77.7% 76.1% 75.6% 72.7% 

Chow/Lin-Lasso 

RRMSE all 0.52 0.51 0.50 0.46 

RRMSE m2 0.50 0.49 0.51 0.48 

RRMSE m3 0.53 0.52 0.49 0.43 

Direction change 77.5% 76.8% 77.8% 74.4% 

 

4.2 External validation 

The last step of our empirical analyses is an attempt of external validation. For this, we evaluate the 
congruence of a (truly) imputed series from the KOF quarterly BTS question about firms’ technical 
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capacity utilisation in per cent (CapU) with the following six external monthly time series that can 
theoretically be expected to be related to it: 

1. The KOF Economic Barometer, perhaps the most prominent monthly composite leading 
indicator for the Swiss economy.9 

2. The Leading Global Barometer, a monthly composite leading indicator for the Swiss econ-
omy, developed and published jointly be the KOF Swiss Economic Institute and the Bra-
zilian Fundação Getúlio Vargas (FGV).10 

3. The Coincident Global Barometer, which corresponds to the Leading Indicator with the 
exception that it does not target a lead to the world economy but instead a stronger con-
gruence with it. 

4. Swiss National Bank’s Business Cycle Index (SNB BCI), a monthly composite indicator 
designed to reflect the Swiss GDP growth cycle.11 

5. The official Unemployment Rate, a monthly series based on the number of registered un-
employed persons in Switzerland.12 

6. Consumer Price Inflation, measured as the year-on-year growth rate of the Swiss Con-
sumer Price Index.13 

These are our six monthly external reference series.14 Where the data sources offered the option, we 
took seasonally and calendar day adjusted data, unadjusted series otherwise. 

The (truly) missing values for CapU in the second and third months of each quarter are imputed as 
before, but now all eleven (and not ten out of eleven) monthly BTS series are used for the multivariate 
approaches. The imputation is conducted in simulated real time with our Chow/Lin-Lasso algorithm, 
the method that has proven superior in the internal validation process. The window ranges from 2000m1 
to 2019m12, which is right up to the pandemic and the same as the main period considered for the 
internal validations reported above, comprising 240 monthly values, of which 160 are imputed. Notice 
that CapU is one of the few quantitative KOF BTS series, so the imputations are direct only (as there 
are no positive- and negative shares).  

To allow for different types of associations between CapU and the six reference series, we refer to CapU 
alternatively in levels and in year-on-year (y-o-y) growth rates. The same applies for the six reference 
series, but here, we compute annual differences rather than growth rates, when the scale of a series 
mandates this. Then, we determine the strength and lead/lag relations between the different specifica-
tions of CapU and the external reference series by means of pairwise cross correlations, for which we 
allow 15-months windows. The analysed period ranges from 2000m1 to 2019m12, but we refer to all 
available data points of the six reference series to identify leads or lags.15 For each reference series, we 

 
9 For details, see https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-economic-barometer.html.  
10 For details regarding this and the next indicator on the list, see https://kof.ethz.ch/en/forecasts-and-indica-
tors/indicators/kof-globalbaro.html.  
11 For details, see https://data.snb.ch/en/topics/snb/chart/snbbcich.  
12 For details, see https://www.bfs.admin.ch/bfs/en/home/statistics/work-income/unemployment-underemploy-
ment.html.  
13 For details, see https://www.bfs.admin.ch/bfs/en/home/statistics/prices/surveys/lik.html.  
14 The external series are not part of the KOF BTS, i.e. they result from a different data generating process. We 
have resorted to regularly published and freely available data only. To ensure that they are meaningfully related 
to technical capacity utilisation, we carefully inspect whether the signs and leads/lags of the relations correspond 
to economic expectations and experience. 
15 At the time of writing, all reference series stretched well into 2022 and went back into the 1990s. 

https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-economic-barometer.html
https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-globalbaro.html
https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-globalbaro.html
https://data.snb.ch/en/topics/snb/chart/snbbcich
https://www.bfs.admin.ch/bfs/en/home/statistics/work-income/unemployment-underemployment.html
https://www.bfs.admin.ch/bfs/en/home/statistics/work-income/unemployment-underemployment.html
https://www.bfs.admin.ch/bfs/en/home/statistics/prices/surveys/lik.html
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identify the highest absolute cross correlation with CapU and determine the proper variable specifica-
tions (levels or growth rates/differences) and lead/lag structures accordingly. Table 4.2.1 summarises 
the findings, ordered according to the maximum absolute cross correlations. 

Table 4.2.1: Cross correlations between capacity utilisation and reference series 

Reference series CapU Max abs. cross correl. Lead/lag of ref. series 

KOF Economic Barometer 

Level y-o-y growth rate 0.86 7 months lead 

KOF/FGV Leading Global Barometer 

Level y-o-y growth rate 0.85 6 months lead 

KOF/FGV Coincident Global Barometer 

Level y-o-y growth rate 0.84 4 months lead 

SNB Business Cycle Indicator (BCI) 

y-o-y difference y-o-y growth rate 0.80 9 months lead 

Unemployment Rate 

y-o-y growth rate y-o-y growth rate -0.65 3 months lag 

Consumer Price Index (CPI) Inflation  

y-o-y growth rate Level 0.50 2 months lead 

 

The table shows that the highest absolute cross correlation (0.86) is between the y-o-y growth rate of 
CapU and the KOF Economic Barometer, where the latter has a lead of 7 months. This is according to 
expectations, as the KOF Economic Barometer is designed as a leading indicator for the Swiss economy. 

The second highest cross correlation (0.85) is between the y-o-y growth rate of CapU and the KOF/FGV 
Leading Global Barometer, where the latter has a lead of 6 months. This is also plausible, as the 
KOF/FGV Leading Global Barometer is designed as a leading indicator for the world economy, and the 
business cycle of Switzerland as a small open economy is largely driven by the world economy. 

The third highest cross correlation (0.84) is between the y-o-y growth rate of CapU and the KOF/FGV 
Coincident Global Barometer, where the latter has a lead of 4 months. The reduced lead makes sense, 
as it corresponds to the lead/lag relationship of the KOF/FGV Global Barometers. 

The fourth highest cross correlation (0.80) is between the y-o-y growth rate of CapU and the y-o-y 
difference of the Swiss National Bank’s BCI, where the latter has a lead of 10 months. The longer lead 
compared to the KOF Economic Barometer goes along with a lower correlation, reflecting the trade-off 
between lead and precision that has to be expected when designing leading indicators. 

The fifth highest absolute cross correlation (0.65) is between the y-o-y growth rate of CapU and the y-
o-y growth rate of the official Swiss Unemployment Rate. The correlation is negative, and CapU is 
leading unemployment by 3 months. This makes perfect sense, as unemployment is the inverse of labour 
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utilisation and it is known to react to changing conditions with a certain inertia, so that it is a lagging 
indicator of the business cycle. 

The sixth and last highest cross correlation (0.50) is between CapU and the y-o-y growth rate of the 
Swiss CPI, i.e. the annual inflation rate, where the latter has a lead of only 3 months. As pressure on 
technical capacity utilisation can be expected to go along with rising output prices, this also makes sense, 
even as theory would have capacity lead inflation rather than the other way round, but the empirical lead 
is so small that it is coming close to reflecting a coincident association. 

What we can take from this is that CapU is indeed a key indicator for the Swiss business cycle, and 
accordingly, we find it to correlate highly with the other six series that are also directly or indirectly 
reflecting the state of the Swiss economy.  

What remains to be seen is whether the intra-quarter variance created by the imputation of monthly 
CapU strengthens the associations or not. Our criterion for this is that the preferred Chow/Lin-Lasso 
algorithm must be “superior” to the naïve locf approach, but since we do not know what would have 
been the true observed monthly values, had a monthly survey been conducted, we define superiority as 
beating locf in predicting (forecasting) the external reference series. In particular, we let the Chow/Lin-
Lasso imputation of CapU compete with the internal benchmark locf in predicting the six reference 
series, which amounts to comparisons of non-nested models, for which the J-test is adequate.16 

Let H1 and H2 denote two rival models Y = X1 g and Y = X2 h. Then the J-test will evaluate whether the 
predicted values of an alternative model (X2 ĥ or X1 ĝ) significantly improve the fit of the rival model 
in the two following regressions: 

Y = X1 g + φ (X2 ĥ), 

Y = X2 h + τ (X1 ĝ). 

The test statistics are the t-values for φ and τ. Significance of φ along with insignificance of τ implies 
rejection of H1 by H2. Significance of τ only means that H2 is rejected by H1. When neither φ nor τ are 
significant, the test does not result in any particular model selection. When both φ and τ are significantly 
different from zero, both models must be considered as partly useful, but ultimately deficient, given the 
available information. Since our rival models are the different estimates of the known data points from 
the original monthly reference series Rt, so that X1 and X1 are not bundles of time series (vectors) but 
two single time series, CapUChow/Lin-Lasso

t–L and CapUlocf
t–L

 , the J-test is here identical with the simpler 
encompassing test (E-test), which consists of running the regression  

Rt = g CapUChow/Lin-Lasso
t–L + h CapUlocf

t–L + µt, 

and submitting g and h to t-tests. The superscripts to CapU denote the imputation methods, L is the 
lead/lag applied to synchronise the series according to Table 4.2.1 and µ is white noise. The decision 
rule equals that of the J-test. As above, we refer to the out-of-sample imputations of CapU, since 
this is what matters most when economic observers try to understand what is happening in real-time 
as long as their preferred quarterly data are not updated. The results are shown in Table 4.2.2. 

 
16 See Davidson and MacKinnon (1981) and Mizon  and  Richard (1986). 
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Table 4.2.2: Encompassing tests (2000–2019) 

 Chow/Lin-Lasso locf  

Series/statistics ß t-stat. p-value ß t-stat. p-value R² 

Economic Barometer 2.06 4.36 < 1% 0.57 1.26 0.21 0.74 

Leading Global Barometer 1.89 4.46 < 1% 0.38 0.94 0.35 0.72 

Coincident Global Barometer 1.84 4.50 < 1% 0.16 0.40 0.69 0.68 

SNB BCI 0.19 2.81 < 1% 0.10 1.67 0.12 0.64 

Unemployment Rate -0.10 -2.90 < 1% -0.002 -0.06 0.95 0.44 

CPI Inflation 0.20 7.50 < 1% -0.01 -0.84 0.41 0.25 

 

The table shows that the E-test statistics are unambiguously in favour of the Chow/Lin-Lasso imputa-
tions for all six reference series. The regression coefficients ß all have the expected sign, and the t-
statistics are all high in absolute terms so that the associated p statistics clearly pass the 1-percent-sig-
nificance hurdle. For the competing locf imputation, the ß-coefficients, are all considerably smaller and 
none of the t-statistics comes even close to indicate statistical significance. In other words, the external 
validation confirms that Chow/Lin-Lasso imputations of CapU are significantly superior to the locf se-
ries in predicting the six reference series, so that we can conclude that the variance created by the 
Chow/Lin-Lasso imputation is meaningfully related to the monthly dynamics of the Swiss economy. 

The last step of our analyses is to conduct the same six E-tests for the Covid-19 years 2020–2021. While 
the number of observations (24, of which 16 are imputed for CapU) is very small for statistical inference, 
we can at least see if the pre-Covid-19 results are not reverted, which might cause concerns. The results 
are shown in Table 4.2.3. 

Table 4.2.3: Encompassing tests, Covid-19 years (2020–2021) 

 Chow/Lin-Lasso locf  

Series/statistics ß t-stat. p-value ß t-stat. p-value R² 

Economic Barometer 1.00 1.80 < 10% 1.52 2.08 < 1% 0.63 

Leading Global Barometer 1.29 2.84 < 1% 1.01 2.29 < 5% 0.67 

Coincident Global Barometer 1.23 2.63 < 1% 0.78 1.71 < 10% 0.68 

SNB BCI 0.24 0.62 0.54 -0.004 -0.009 0.99 0.27 

Unemployment Rate -1.24 -2.21 < 5% -0.02 -0.40 0.41 0.70 

CPI Inflation 0.26 4.75 < 1% -0.01 -0.35 0.73 0.84 

 

The table shows that of the six E-tests, three are unambiguously and in favour of the Chow/Lin-Lasso 
imputations (for predictions of the Leading Global Barometer, the Coincident Global Barometer and 
CPI inflation). The regression coefficients have the expected sign, the t-statistics are all high in absolute 
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terms and the associated p statistics clearly pass the 1-percent-significance hurdle. Lowering the signif-
icance hurdle to 5 percent gets the Unemployment Rate on the same side. Unless we lower the signifi-
cance hurdle even more to 10 per cent, when the result for predictions the KOF Economic Barometer 
become inconclusive, the E-test for this reference series is in favour of locf. Also, the KOF barometer 
regression is the only one where the regression coefficients ß is higher for locf than for Chow/Lin-Lasso. 
For the sixths and last reference series, the Swiss National Bank’s BCI, neither of the two competing 
imputation contributes to a significant prediction, where the question must remain open whether this is 
due distorted BCI signals during the pandemic or to insufficient precision of the Chow/Lin-Lasso pro-
cedure for these two years.  

In this context, notice the differences between the R² for the pre-Covid-10 period and the Covid-19 years 
(Tables 4.2.2 and 4.2.3). For the three Barometers, they are equal or somewhat smaller for 2020–2021, 
for unemployment and inflation, they are markedly higher, and it is only for the BCI that we observe a 
sizable drop (from 0.64 to 0.27). The fact that the BCI proves to be an outlier in this respect point to the 
interpretation that during the pandemic, the signals from the BCI were more distorted than those of the 
other reference series for the economic situation in Switzerland. 

Taken together, we would argue that the final look at how the variance created by the Chow/Lin-Lasso 
imputation is by and large meaningfully related to the monthly dynamics of the Swiss economy, alt-
hough we do not have an explanation for the observation that for 2020–2021, the dynamics of the KOF 
Economic Barometer in the second and third months of the eight quarters concerned is better reproduced 
by carrying the first months forward. 

5. Summary and conclusions 

In this paper, we compare algorithms to deal with the problem of missing values in higher frequency 
data sets. To this end, we refer to the Swiss KOF business tendency surveys amongst manufacturing 
firms. They are conducted in both monthly and quarterly frequency, where an information sub-set is 
collected at quarterly frequency only.  

From these data, we construct artificially quarterly series. We then impute monthly values for the (seem-
ingly) missing ones. On this basis, we run standard tests of forecasting accuracy by comparing the im-
puted monthly values to the original ones. We refer to this as internal validation. All analyses are per-
formed alternatively in simulated real time (out of sample) and ex post (in sample) 

For the simplest imputation method, the last value carried forward procedure, we find that that the im-
putation errors are higher on average for the third months of a quarter compared to the seconds months, 
which is in line with expectations, as the distance to the last recorded observation increases. Also, the 
indirect imputations via imputed seasonally adjusted positive and negative shares turn out to be slightly 
but consistently more precise than the direct imputations of the seasonally adjusted balance, which 
shows up repeatedly and also for the more sophisticated imputation algorithms. 

The last value carried forward procedure serves as our benchmark against which we evaluate the per-
formance of the more sophisticated imputation algorithms. The other univariate imputation method that 
we look at is the cubic spline. It is clearly inferior to the benchmark in real time, the variance created by 
the imputations is misleading, and this holds especially for the dramatic Covid-19 years. Ex post, the 
precision of the imputations still does not recommend the cubic spline as an alternative to the bench-
mark, although direction changes are captured a bit better. 
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Of the multivariate approaches, the EM algorithm imputation does not hold the promise to outperform 
the benchmark, and this applies to real time and ex post. The only improvement is for directions changes. 
Multiple OLS regression imputations, on the other hand, consistently outperform the benchmark, both 
in simulated real time and ex post. The same holds for imputations following Chow and Lin. Moreover, 
the latter consistently outperform the OLS regression approach.  

The last and most sophisticated algorithm is our own specification, a combined implementation of 
Chow/Lin with Lasso and a first-order autoregressive term. These imputations do not differ greatly from 
those of the traditional Chow/Lin approach, but taken together, they tend to slightly outperform the 
latter. Interestingly, traditional Chow/Lin imputations tend to be more precise for the direct imputations 
of the seasonally adjusted balance indicators, whereas our amended Chow/Lin algorithm performs su-
perior with the indirect approach, which first imputes seasonally adjusted positive and negative shares 
and computes the imputed target values as the difference between the two. Notice that the indirect im-
putation is informationally more efficient, as the same value for the balance can result from greatly 
different positive and negative shares. Given that the indirect approach delivers more precise results 
than the direct one, superior performance with the indirect approach can in practice be especially useful. 

The internal validation is amended by an external validation, where we evaluate the congruence of 
genuinely imputed monthly values from the quarterly survey question about firms’ technical capacity 
utilisation in per cent with existing monthly time series that can be expected to be related to technical 
capacity utilisation: the KOF Economic Barometer, the KOF/FGV Leading and Coincident Global Ba-
rometers, the Swiss National Bank’s Business Cycle Index, the Swiss unemployment rate and inflation. 

For the pre-Covid-19 years, the statistics are unambiguously in favour of our amended Chow/Lin-Lasso 
imputations for all six reference series. In particular, the external validation confirms that our preferred 
imputations of technical capacity utilisation are significantly superior to the benchmark series in pre-
dicting the six reference series, so that we can conclude that the variance created by the imputations is 
meaningfully related to the monthly dynamics of the Swiss economy. 

For the Covid-19 years 2020–2021, the number of observations (24, of which for capacity utilisation 16 
are imputed) is uncomfortably small for statistical inference, and the results are not unambiguous, but 
we find that the variance created by the imputations is by and large still meaningfully related to the 
monthly dynamics of the Swiss economy, although we do not have an explanation for the observation 
that for 2020–2021, the dynamics of the KOF Economic Barometer in the second and third months of 
the eight quarters concerned is better reproduced by carrying the first months forward. 

It is in order to stress that our findings and generalisations are based on our particular data corpus, which 
are Swiss BTS and other economic data relating to Switzerland spanning roughly the last three decades. 
It remains to be seen whether our generalisations can be replicated with data from other countries, but 
we feel confident enough to argue that cubic spline extrapolations are likely to create misleading signals 
in real time, that the wide-spread trust in the EM algorithm should be questioned, that traditional OLS 
regressions may still be very useful for imputations, both in real time and ex post, and finally, the most 
promising direction for future research as well as practical applications may be to work on refining the 
Chow/Lin imputation algorithm.  

Last but not least, future research should address the unexpected finding that the difference between the 
widely used balance indicator computed from the seasonally adjusted balance of the unadjusted plus- 
and minus-shares and the difference of the seasonally adjusted plus- and minus-shares does has system-
atic effects on the reproducibility of the series, which may have consequences for the nature of the 
signals that they are giving.  
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Appendix: Latest version of KOF the manufacturing business tendency surveys 
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