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Abstract

This thesis is concerned with physical layer signal processing and fundamental perfor-
mance limits in wireless multiple-input multiple-output (MIMO) multihop networks.
Such networks consist of a stage of source antennas, one or several stages of relay an-
tennas and a stage of destination antennas. Signals traverse all these stages (one at a
time) from source to destination antennas on the same physical channel. The schemes
proposed in this work aim for transferring performance gains that are well known to be
enabled by multiple transmit and receive antennas in point-to-point channels to this
more general topology. Particular interest is on

• capacity scaling in the number of antennas per stage,

• spatial multiplexing and diversity gain.

Besides the topology (i) the amount of cooperation among antennas within a stage
and (ii) the channel state information (CSI) that is accessible by the individual an-
tennas must be specified in order to fully characterize a network configuration. In the
special case that all antennas in the network possess the full CSI of their preceding
hop each, and cooperation within stages is unconstrained, the above mentioned trans-
fer is trivial: transmission can be decoupled into independent point-to-point MIMO
transmissions, i.e., code-words are decoded and re-encoded in each stage (decode &
forward). This thesis focuses on two selected network configurations that should not
be decoupled in such fashion, since this straightforward approach does not suffice for
realizing the desired multiple-antenna gains. Both these network configurations share
the property that both cooperation among relay antennas and among source antennas
is fully disabled as far as the exchange of information about the transmit signals is
concerned.

The first considered configuration allows for full cooperation among antennas in the
destination stage and assumes the relay antennas to possess the full CSI of the MIMO
channel corresponding to the preceding hop each. The setting is referred to as multihop
multiple access channel in this work. The simplest approach that comes to mind for
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Abstract

coping with the spatial inter-symbol interference at the relay antennas is to have them
perform a simple amplify & forward operation. However, under the assumption of an
equal number of antennas in each stage, prior work has shown that this approach does
not suffice for sustaining linear capacity scaling in the limit of infinitely many hops.
More precisely, the constant of proportionality that relates the number of antennas per
stage and sum-capacity tends to zero as the number of hops grows large. This thesis
devises two approaches for coping with this issue.

• The first approach drops the amplify & forward strategy and resorts to a quanti-
zation based forwarding strategy. The presented scheme which applies Slepian &
Wolf compression on top of the quantization of the received signals at the relay
antennas succeeds in enabling linear sum-capacity in the limit of infinitely many
hops, as long as the number of antennas in each relay stage grows linearly with
the number of source and destination antennas.

• The second approach sticks to the amplify & forward strategy, but allows for
increasing the ratio of relay antennas per stage to source and destination antennas
per stage with the number of hops. As a key finding, it is proven, that this increase
must be at least linear in the number of hops in order to sustain a linear sum-
capacity scaling in the number of source and destination antennas in the limit of
large numbers of hops.

The second considered configuration disables every cooperation even in the desti-
nation stage and assumes dedicated source-destination antenna pairs. The setting is
referred to as multihop interference channel in this work. In contrast to the above mul-
tiple access scenario, the CSI of the full network is assumed to be known to each relay
antenna. A decoupling of the network into point-to-point transmissions, e.g. through
interference alignment and a decode & forward strategy, cannot yield a spatial mul-
tiplexing gain larger than n/2 for n source-destination antenna pairs (neglecting the
pre-log) due to the lack of antenna cooperation. The contribution of this work in this
context is summarized as follows:

• This thesis proposes a distributed zero-forcing scheme that achieves the optimal
(given a sufficiently large number of relay antennas) spatial multiplexing gain,
which is equal to the number of source-destination antenna pairs. The scheme is
based on a coherent amplify & forward strategy.

• The optimization problem of maximizing the achievable rate of the weakest
source-destination pair with respect to the relay gain coefficients in the coherent
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amplify & forward framework is studied. For two hop-networks, the problem is
turned into a quasi-convex problem. Such problems can be solved by standard
optimization methods.

• An upper-bound on the achievable diversity-multiplexing tradeoff (DMT) curve
is provided. The bound is based on the assumption of full relay cooperation
within relay stages.

• Coherent amplify & forward relaying schemes are proposed, which – according
to numerical evidence – achieve the derived DMT upper-bound, whenever the
network topology allows for the full multiplexing gain.
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Kurzfassung

In dieser Arbeit werden Verfahren zur Signalverarbeitung in der Bitübertragungs-
schicht sowie fundamentale Performance-Grenzen für drahtlose Multiple-Input
Multiple-Output (MIMO) Multi-Hop-Netzwerke behandelt. Solche Netzwerke beste-
hen aus einer Gruppe von Quellenantennen, einer Gruppe oder mehreren Gruppen von
Relaisantennen und einer Gruppe von Zielantennen. Signale durchlaufen Relaisgrup-
pen von Quellen- zu Zielgruppe durch den selben physikalischen Übertragungskanal.
Die Verfahren, die in dieser Arbeit vorgeschlagen werden, zielen darauf ab, Effi-
zienzsteigerungen, die im Zusammenhang von Punkt-zu-Punkt-Übertragungen bereits
wohlbekannt sind, auf diese verallgemeinerte Netzwerktopologie zu transferieren. Die
Schwerpunkte liegen dabei auf

• der Skalierung der Kapazität mit der Antennenanzahl pro Quellen-, Relais- und
Zielantennengruppe,

• räumlichem Multiplexgewinn (“Spatial Multiplexing Gain”) und Diversitäts-
gewinn (“Diversity Gain”).

Neben der Netzwerk-Topology müssen (i) der Umfang der Kooperation zwischen
Antennen innerhalb einer Gruppe und (ii) die an den Antennen bekannte Information
über den Kanalzustand spezifiziert werden, um die Netzwerkkonfiguration vollständig
zu charakterisieren. Im Spezialfall, dass alle Antennen im Netzwerk den Kanalzu-
stand ihres vorhergehenden Hops perfekt kennen und Antennen innerhalb der gleichen
Gruppe unbeschränkt kooperieren können, ist die oben erwähnte Verallgemeinerung
der Effizienzsteigerungen von Punkt-zu-Punkt-Netzwerken auf Multi-Hop-Netzwerke
trivial. Die Übertragung kann in diesem Fall in unabhängige Punkt-zu-Punkt-MIMO-
Übertragungen entkoppelt werden, d.h. Codewörter können in jeder Antennengruppe
decodiert und dann erneut encodiert und weitergeleitet werden (“Decode & Forward”).
Diese Arbeit konzentriert sich auf zwei ausgewählte Netzwerkkonfigurationen, in denen
diese Entkopplung nicht vorgenommen werden sollte, da ein solch einfacher Ansatz
nicht ausreicht, um die gewünschten MIMO-Gewinne zu erzielen. Die beiden un-
tersuchten Netzwerkkonfigurationen teilen die gemeinsame Eigenschaft, dass sowohl
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Quellenantennen als auch Relaisantennen keinerlei Informationen über ihre Sende- und
Empfangssignale austauschen können.

Die erste betrachtete Konfiguration lässt unbeschränkte Kooperation in der
Zielantennengruppe zu und nimmt an, dass Relaisantennen vollständige Information
über den Kanalzustand des jeweils vorhergehenden Hops besitzen. Diese Anordnung
wird als Multi-Hop-Vielfachzugriffskanal bezeichnet. Der naheliegendste Ansatz, mit
der auftretenden Intersymbol-Interferenz an den Relaisantennen umzugehen, ist eine
einfache Verstärkung und Weiterleitung des Empfangssignals (“Amplify & Forward”).
Allerdings hat eine frühere Arbeit gezeigt, dass dieser Ansatz unter Annahme gleich
grosser Antennengruppen nicht ausreicht, um eine lineare Skalierung der Kapazität
mit der Antennenanzahl im Grenzwert unendlich vieler Hops aufrecht zu erhalten.
Genauer gesagt, konvergiert die Proportionalitätskonstante, die die Anzahl Antennen
pro Gruppe und die Summen-Kapazität verbindet, für eine wachsende Anzahl von Hops
gegen Null. Diese Arbeit schlägt zwei Ansätze vor, dieses Problem zu lösen.

• Der erste Ansatz sieht vor, statt der “Amplify & Forward”-Strategie eine quan-
tisierungsbasierte Methode anzuwenden. Das vorgestellte Verfahren, das zusätz-
lich zur Quantisierung eine Slepian & Wolf Komprimierung vornimmt, erlaubt
eine lineare Skalierung der Summen-Kapazität im Grenzwert unendlich vieler
Hops, solange die Anzahl Antennen in jeder Relaisantennengruppe zumindest
linear mit der Anzahl Quellen- und Zielantennen wächst.

• Der zweite Ansatz hält an der “Amplify & Forward”-Strategie fest, erlaubt
allerdings, das Verhältnis der Anzahl Relaisantennen pro Gruppe zu der An-
zahl Quellen- und Zielantennen mit der Anzahl Hops im Netzwerk zu erhöhen.
Ein Kernresultat dieser Arbeit ist der Beweis, dass dieses Verhältnis zumind-
est linear mit der Anzahl Hops anwachsen muss, um eine lineare Skalierung der
Summen-Kapazität in der Anzahl Quellen- und Zielantennen auch im Grenzwert
unendlich vieler Hops aufrecht zu erhalten.

Die zweite in dieser Arbeit betrachtete Netzwerkkonfiguration unterbindet jegliche
Kooperation in der Zielantennengruppe des Netzwerks und nimmt an, dass Quellen-
und Zielantennen in Kommunikationspaare gruppiert sind. Diese Anordnung wird als
Multi-Hop-Intereferenzkanal bezeichnet. Im Gegensatz zum obigen Vielfachzugriff-
Szenario wird hier angenommen, dass jede Relaisantenne den Kanalzustand des
gesamten Netzwerks kennt. Eine Entkopplung des Netzwerks in Punkt-zu-Punkt-
Übertragungen, z.B. durch “Interference Alignment”-Verfahren in Kombination mit
einer “Decode& forward”-Strategie, lässt für n Quellen-Ziel-Antennenpaare aufgrund
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der unterbundenen Antennenkooperation keinen grösseren räumlichen Multiplexgewinn
als n/2 (Pre-log vernachlässigt) zu.

Die Beiträge dieser Arbeit in diesem Zusammenhang lassen sich wie folgt zusam-
menfassen:

• Es wird ein Verfahren zur Interferenzunterdrückung vorgeschlagen, dass für eine
hinreichend grosse Anzahl von Relaisantennen den optimalen räumlichen Multi-
plexgewinn erreicht. Dieses Verfahren basiert auf einer kohärenten “Amplify &
Forward”-Strategie.

• Es wird das Optimierungsproblem der Maximierung der erreichbaren
Rate des schwächsten Quellen-Ziel-Antennenpaares bezüglich der Relais-
Verstärkungskoeffizienten untersucht. Für Zweihop-Netzwerke wird dieses
Problem in ein quasikonvexes Problem überführt, das durch Standartopti-
mierungsmethoden gelöst werden kann.

• Es wird eine obere Schranke auf den erreichbaren “Diversity-Multiplexing Trade-
off” (DMT) hergeleitet. Die Schranke basiert auf der Annahme voller Koopera-
tion zwischen Relaisantennen innerhalb der gleichen Relaisantennengruppe.

• Es werden kohärente “Amplify & Forward”-Verfahren vorgeschlagen, die gemäss
numerischer Indizien an die hergeleitete obere Schranke für den DMT heranrei-
chen, solange die Netzwerktopologie das Erreichen des vollen Multiplexgewinns
erlaubt.
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1. Introduction

1.1. Background & Motivation

In the last decade, technical development in the field of wireless communications has
experienced a humongous boost. The driver of this development is found in the ever-
growing demand for high data rates and the corresponding need for a more efficient use
of the radio spectrum, which went along with the beginning of the age of multimedia.
From that time on, academic research has provided a plethora of fundamentally new
insights, which in turn have triggered a vast number of technical innovations and
inventions. As a result, the wireless industry is one of the most dynamic of its kind
and constantly undergoes far-reaching changes.

One of the most prominent examples for the rapid evolution of wireless technology
is the area of mobile cellular networks (e.g. [1]). In the recent past, Switzerland’s lead-
ing telecommunication provider Swisscom has recorded a doubling of the bandwidth
requirements in its mobile networks every seven months [2]. And forecasts of mobile
data requirements predict this massive growth to continue in the next years. A current
world-wide forecast of Cisco Systems is shown in Fig. 1.1. The key to meeting these
demands is the utilization of recent academic findings and the rapid realization of the
corresponding signal processing algorithms in faster and faster very-large-scale integra-
tion (VLSI) technologies. The first commercial digital mobile communication system,
GSM, was launched in the early 1990s and provided data rates up to 10 kbit/s at that
time. Since then, new technologies have led to an explosive growth of supported data
rates. The most promising candidate for the next generation of mobile communication
systems, LTE Advanced, promises peak data rates up to 1 Gbit/s in the near future.
An overview of the evolution of mobile communication systems is provided in Tab. 1.1.

Current wireless research is mainly attracted by two types of networks as far as rising
of throughput is concerned. These are wireless ad-hoc networks on the one hand and
radio access networks on the other hand. A wireless ad-hoc network (e.g. [3]) is usually
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Figure 1.1.: Forecast of mobile data traffic per month. Source: Cisco.

Generation Standards Year Introduced Peak Data Rates (Downlink)
2G GSM 1992 9.6 kbit/s

GPRS 2001 40 kbit/s
EDGE 2005 200 kbit/s

3G UMTS 2004 350 kbit/s
HSDPA 2006 1.8 Mbit/s
HSPA+ 2009 28 Mbit/s
LTE 2011 150 Mbit/s

4G LTE Advanced ? 1 Gbit/s

Table 1.1.: Mobile network generations as introduced and operated by Swisscom.
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1.1. Background & Motivation

Core

Network

Figure 1.2.: Sketch of a typical present-day radio access network.

defined as a collection of mobile nodes that form a temporary wireless network without
the aid of any centralized administration. Ad-hoc networks are typically symmetric in
the sense that all nodes have equal rights and thus equal transmission capabilities. A
radio access network (e.g. [4]) is the part of a mobile telecommunication system between
mobile devices and base stations that connect to a core network. In such networks,
base stations serve as central coordination units, and the base-station-to-mobile link
(downlink) customarily supports larger data rates than the mobile-to-base-station link
(uplink). Radio access networks are thus asymmetric in the sense that nodes have
different functionality and that higher data rates are supported in one or the other
direction.

Up to the time this writing, ad-hoc networks and radio access networks that have
been brought to market have rather simple topologies. Traditional radio access net-
works are organized in “star topology”, that is, all mobile nodes are in radio range of a
base station and communicate to no other than this node (cf. Fig. 1.2). Wireless ad-hoc
networks, such as WLAN in ad-hoc mode, have a fully connected mesh structure, that
is, it is required that all terminals are in radio range of each other and communicate
to each other directly (cf. Fig. 1.3).

From a physical layer engineering perspective, the understanding of radio access net-
works in this basic form is significantly more advanced than that of the basic wireless
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Figure 1.3.: Sketch of a typical present-day wireless ad-hoc network.

ad-hoc network. It is commonly accepted that the key to further leaps in data rates in
future technologies is the use of multiple antennas at base stations and even in mobile
devices. The revolutionary concept behind this approach is multiple-input multiple-
output (MIMO) communication ( [5–8]). While classical uplink and downlink schemes
use the dimensions time or frequency or a combination of both for interference mitiga-
tion, the MIMO concept provides a “spatial” dimension for interference equalization.
Using this new dimension thus facilitates higher spectral efficiency, which is defined
as the number of transmitted bits per second and Hertz. In contrast to time and fre-
quency, this dimension can be used “for free” in the sense that the only limiting factor
is the area or volume of the antenna arrays. Luckily, for making the MIMO principle
work, it is only essential to have multiple antennas either on the transmit or on the
receive side. On the respective other side, the multiple antennas can be distributed,
i.e., integrated into different devices. That is, a multi-antenna base station can exploit
MIMO gains in up- and downlink, even if mobile devices are single-antenna terminals.
This characteristic is important, since a base station is easily equipped with multi-
ple antennas, while space constraints are more severe in mobile terminals. Recently
launched radio access networks, such as LTE, WiMAX or WLAN 802.11n, are the first
of their kind that realize the advantages of MIMO communication.

4



1.1. Background & Motivation

The fundamental limits of the basic wireless ad-hoc network of Fig. 1.3 are con-
siderably less explored. In particular, it has remained unclear for a long time, to
which extend the spatial dimension can be taken advantage of. A surprising and very
recent finding is the following. Under the assumption that there are multiple source-
destination node pairs (all with an equal number of antennas) that wish to exchange
private messages each, the number of utilizable spatial dimensions is half the total
number of transmit (or receive) antennas [9]. This insight is remarkable and implies
that the spatial dimension can be gained access to, even if both transmit and receive
antennas are distributed and unable to cooperate. The key concept behind this result is
interference alignment – a novel scheme in communication engineering that currently
attracts a lot of research activity. Needless to say, current wireless ad-hoc network,
such as WLAN in ad-hoc mode, ZigBee or Bluetooth, do not make use of these spatial
dimensions yet.

Future wireless networks are likely to have more complex structures than the two
aforementioned basic networks. Recent advances in the area of cooperative communica-
tion (e.g. [10]) have revealed great potentials of cooperation among nodes in a wireless
network. A wireless network is said to be cooperative, if there are nodes that not only
act as either a source or a destination, but also as a helper for the communication of
other nodes. An example of cooperative communication, which might soon be applied
in practice, is cooperation among base stations in a cellular communication system
(e.g. [11, 12]). The upcoming LTE-Advanced standard envisions this approach for in-
creasing throughput both in up- and downlink [13]. The idea is to have base stations
exchange information about their respective transmit or receive signals. This shall
enable distributed MIMO communication (aka. coordinated multi-point transmission)
through virtual antenna arrays and thus a significantly improved interference man-
agement. Cooperation among base stations is likely to occur over a wired backbone
network for this application. However, in more distant future also wireless cooperation
among mobile nodes is likely to come into play. In fact, such cooperation is the key to
sustaining reasonable per-user throughput in large wireless ad-hoc networks [14,15].

Multihopping is known as an efficient means for increasing the coverage of a network.
In particular, when path loss is high, large wireless ad-hoc networks should make
use of this option in order to achieve optimal throughput scaling in the number of
nodes [14, 16]. It is highly relevant for future design both of wireless ad-hoc networks
and of radio access networks. The lack of available spectrum will force wireless networks
to higher and higher carrier frequencies, where unfavorable antenna and propagation
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properties lead to severe coverage limitations. The upcoming LTE-Advanced standard
will be the first to apply relay nodes in a cellular network. Relays shall be operated
by the provider and thus be part of the fixed network infrastructure. Multihopping in
ad-hoc networks is significantly more challenging than in radio access networks due to
the mobility of the relay nodes, and for implementation in commercial networks, there
is still a long road to go.

The simplest form of multihopping bases upon the a forwarding technique known
as decode & forward. In this scheme, a relay node decodes the message of the source
node, re-encodes it, and forwards it either to another relay node or to the destination.
This technique is probably the first that comes to mind, and, indeed, it is known to
be optimal in many situations. However, it shows severe limitations in many aspects
of cooperative communication. This thesis starts with one such aspect, namely the
issue of distributed forwarding in wireless networks, which has its roots in the concept
of cooperative relaying [17, 18] in the broadest sense. Distributed forwarding refers
to the technique of having signals relayed not only via a single path from source to
destination, but via several of them. The limitation of the decode & forward strategy
is evident in this case: if any relay node on any path incurs a decoding error, the whole
transmission is likely to be affected in a negative way. There are forwarding strategies
that do not require relays to decode their receive signal. Thereby, they enable a relay
node to effectively contribute to the transmission from source to destination, even if
its link quality to adjacent nodes is weak. Such schemes are typically referred to as
non-regenerative. The most prominent members of this family of schemes are amplify
& forward and quantize (compress) & forward. These schemes are often superior to
decode & forward, if interfering signals of multiple sources are relayed over multiple
paths through a multihop network. An example of a three-hop radio access network
with two user nodes and two parallel relay stations per stage is provided in Fig. 1.4.
Likewise, Fig. 1.5 shows an example of a three-hop chain in a wireless ad-hoc network.
Networks of this kind are in the center of this thesis.

Generally, the whole field of cooperative communication is a cutting-edge topic in
wireless communication research. Although the potentials of many important building
blocks have become evident in the recent past, it is still far from being fully understood
and even further away from showing its full impact in practice. This thesis aims for
shedding further light on the “multihop component” in cooperative communication,
and focuses on two fundamental properties of it. An overview of the contributions is
provided in the following section.
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Core

Network

Figure 1.4.: Sketch of a multihop radio access network with infrastructure relays.

source 1

source 2

destination 1

destination 2
relay

relay

relay

relay

Figure 1.5.: Sketch of a multihop chain in a wireless ad-hoc network.
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1.2. Contribution and Outline

The results of this thesis are formulated on the basis of data rates that are achieved
in the information theoretic sense of Shannon [19, 20], which nowadays is a standard
performance measure for physical layer signal processing schemes. In the notion of
Shannon, a source node can transmit reliably to a destination node at rate R, if there
exists a family of block codes with block-length n and 2nR codewords, such that the
average probability of a decoding error at the destination node tends to zero as n tends
to infinity. Although the concept of achievable rates was introduced in the 1940s, its
tremendous importance did not become evident until 1993. At that time, the advent
of iterative decoding [21] enabled the realization of transmission close to the Shannon
capacity with reasonable decoding complexity.

In contrast to wired communication channels, the wireless channel is often modeled as
a random object. Multipath propagation, shadowing and the mobility of nodes cause
variation in a wireless channel over time that are unpredictable without exhaustive
geographic side-information. This phenomenon is referred to as fading. Fading is
classified as either slow or fast according to the temporal variation of the channel
gains and as either flat or selective according to the spectral variation of the channel
gains. This work focuses on slowly and frequency selective fading channels.

As a consequence of the random nature of the wireless channel, also achievable rates
are random quantities. A physical layer signal processing scheme is thus fully charac-
terized by the joint statistical distribution of the respective achievable rates. Unfor-
tunately, for most channels there is no analytical access to this distribution. Instead,
studies attempt to gain insights into the performance of a scheme by a characteriza-
tion of the distribution in asymptotic regimes. Also this thesis follows this approach.
Specifically, two network structures are considered.

Chapter 2 studies multihop interference networks. Such a network consists of a
cluster of n source nodes, a cluster of n destination nodes, and L relay node clusters
with n(l)

R relay nodes in the lth relay cluster. Source and destination nodes are grouped
into n communication pairs. Source nodes simultaneously transmit their signals to the
first relay cluster. Likewise, each relay cluster with index l ∈ {1, . . . , L} simultaneously
forwards its signals either to the relay cluster with index l + 1 or to the destination
cluster (if l = L). All nodes in the network are assumed to have a single antenna and
each relay node is assumed to know the channel state information (CSI) of the full
network. This thesis proposes a scheme that guarantees under certain requirements

8



1.2. Contribution and Outline

on the network topology with probability one the existence of a set of achievable rates
(R1, . . . , Rn), Ri the rate corresponding to the ith source-destination pair, that as a
function of the per-cluster transmit power P 1

lim
P→∞

∑n
i=1Ri

logP
= n. (1.1)

This sum-rate is achieved through a diagonalization of the network in the sense that all
interference among source signals is eliminated (zero-forced) at the destination nodes.
The proposed scheme is based on a coherent amplify & forward technique. Schemes that
fulfill 1.1 are said to achieve a spatial multiplexing gain of n. This result is interesting
in the sense that over single-hop interference networks without relay clusters no more
than spatial multiplexing gain n/2 can be achieved [22].

In a second step, the proposed scheme is refined to design the relay gain coefficients
for the amplify & forward operation to minimize the probability of an outage event.
An outage event refers to the scenario that not all source-destination pairs are able
to reliably communicate at a given target rate simultaneously due to poor channel
conditions. This optimization corresponds to maximizing the achievable rate of the
weakest source-destination pair with respect to the relay gain coefficients. For two
hop-networks, this thesis turns the problem into a quasi-convex problem, which can be
solved by standard methods.

A further contribution is the derivation of an upper-bound on the achievable
diversity-multiplexing tradeoff (DMT) curve [23] in the case of identically and inde-
pendently distributed (i.i.d.) circularly symmetric complex Gaussian (CSCG) channel
coefficients. In the context of this work, the DMT curve characterizes the joint cu-
mulative distribution function (CDF) of maximally achievable source-destination pair
rates, FR1,...,Rn(r1, . . . , rn), at the point r1 = . . . = rn = r for large per-cluster transmit
power P , where r is a function of P . The bound is based on the assumption of full
relay cooperation within relay stages. Thereupon, coherent amplify & forward relaying
schemes are proposed, which – according to numerical evidence – achieve the derived
DMT upper-bound, whenever the network topology facilitates the full multiplexing
gain.

Chapter 3 studies multihop multiple access networks. Such a network differs form
a multihop interference channel in that it allows full cooperation among the nodes

1It is assumed here that all clusters can transmit and receive simultaneously, and that clusters receive
signals only from the preceding cluster.
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1. Introduction

in the destination cluster. That is, the n single-antenna source nodes transmit their
messages to a single n-antenna destination via the multihop network. Again, the
network comprises L relay stages, each of which is assumed to contain nR single-antenna
relay nodes. Schemes that are considered for this network in this thesis require nodes
to have at most CSI of their respective preceding hop. The central assumption of this
chapter is that all channel coefficients in the network are i.i.d. with zero mean and
finite second and fourth moments. This class of channel distributions is quite broad in
the sense that there are no further requirements on higher moments of the distribution.
The quantity of interest in our setting is the following deterministic limiting value2 of
the random sum of rates that are achieved by the n source nodes:

c , lim
n→∞

∑n
i=1Ri

n
. (1.2)

This limit is evaluated for a constant value of the per-cluster transmit power P . It
would be desirable to have this quantity nonzero, which is well known to be the case for
the respective single-hop multiple access channels [6]. However, the question, whether
or not this nice scaling behavior carries over to multihop networks, is nontrivial to
answer in the context of distributed forwarding. Research on achievable rate scaling of
multihop networks has so far focused on the amplify & forward relaying strategy. Two
important prior results on this forwarding technique are the following. If nR grows
linearly with n, the quantity c is nonzero, if the number of hops is finite [24], but tends
to zero3, if L tends to infinity [25]. These results are the starting point for our studies,
which aim for finding strategies that sustain a nonzero c, even in the limit of large L.
The analysis of the corresponding schemes relies on results from large random matrix
theory (e.g. [26]).

Our first approach drops the amplify & forward strategy and resorts to a quantiza-
tion based forwarding strategy. The presented scheme, which applies Slepian & Wolf
compression on top of the quantization of the received signals at the relay antennas,
succeeds in keeping c bounded away from zeros in the limit of infinitely many hops, if
nR grows linearly with n. It is shown that the Slepian & Wolf compression step is not
required for linear sum-rate scaling, however, it helps to reduce the required per-cluster
transmit power P from exponential to linear in L.

Our second approach sticks to the amplify & forward strategy, but introduces an
increasing ratio nR/n with the number of hops. As a key finding, it is proved, that

2Convergence will be shown to be in the almost sure sense.
3This result is for noiseless relay nodes.
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1.2. Contribution and Outline

this increase must be at least linear in the number of hops in order to sustain a linear
sum-rate scaling in n and thus a nonzero c in the limit of large numbers of hops.

In principle the results of Chapters 2 and 3 can find application both in future wireless
ad-hoc and future radio access networks. Still, the symmetric setup of the multihop
interference network in Chapter 2 is closer to wireless ad-hoc networks, while the
asymmetric scenario with a multiple-antenna destination node in the multiple access
network is closer to the classic scenario of a radio access network.

Chapter 4 finally provides concluding remarks and an outlook on future research
on multiuser multihop networks.
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2. Spatial Multiplexing in Multihop
Interference Networks

2.1. Introduction & Related Work

The control of interference in communication networks that consist of multiple source-
destination pairs is a crucial difficulty on the way towards an efficient utilization of
the radio spectrum in future wireless ad-hoc networks. Accordingly, a lot of research
has been pursued on this topic in recent years. A basic form of a wireless ad-hoc
network network leads to the model of the interference channel. The interference
channel models transmission between n single-antenna source-destination pairs over the
same physical channel, where each destination is in radio range of all sources in general.
Natural schemes for communication over this channel are time division multiple access
(TDMA), frequency division multiple access (FDMA) or code division multiple access
(CDMA). These schemes schedule source-destination pairs over orthogonal resources
in time and/or frequency. Since the resources need to be shared among n source-
destination pairs, the maximally achievable per-source-destination-pair data-rate scales
like

1/n logP + o(1/n log(P )),

where P denotes the per-node transmit power. That is, in large networks, source-
destination pairs communicate at unacceptable data-rates.

Recent research has discovered two fundamentally different approaches that overcome
this severe limitation. Both methods use the spatial dimension as an additional resource
and result into per-source-destination-pair data-rates that scale like

d · logP + o(log(P )),

where d = 1/2 is independent of n, and the quantity d · n is typically referred to as
spatial multiplexing gain or degrees of freedom. This result is remarkable: In the regime
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2. Spatial Multiplexing in Multihop Interference Networks

of high signal-to-noise ratio (SNR), each source-destination pair can, irrespective of the
size of the network, operate at about half the capacity that would result, if there were
no interfering nodes. In the following, a brief overview over these schemes is provided.

• Interference alignment : Interference alignment is a technique that introduces
linear dependence among interference signals at each destination. That is, in-
terference is at each destination concentrated in a subspace of small dimension.
The idea of interference alignment goes back to the 1990s [27], where it has been
used in the context of source coding. It has been rediscovered in [28] and [29]
in the context of the so-called MIMO X channel. This channel is a generalized
interference channel, where each source has messages for each destination. In-
terference alignment has finally been applied to the interference channel in [9]
with the result that a spatial multiplexing gain n/2 is achieved in a sufficiently
time- or frequency-selective channel. That is, the achievable data-rate of each
source-destination pair is bounded away from zero, as the network grows large.
Compared to the classical scenario of fully cooperating transmit and receive an-
tenna arrays with n elements each, this corresponds to a loss of half the multi-
plexing gain. A major drawback of the interference alignment scheme of [9] are
the considerable requirements on channel selectivity. In particular, the number of
required fading realizations that a codeword must undergo, and thus the length of
the codewords, grows rapidly with n. However, an interference alignment method
has recently been proposed which even achieves the spatial multiplexing gain n/2
over a static channel [30].

• Ergodic interference alignment : Ergodic interference alignment [31] is a con-
cept that applies to certain ergodic fading processes, in particular, also to i.i.d.
(in space and time) Rayleigh fading. The basic idea is the matching of comple-
mentary channel realizations whose channel matrices add up to (almost) identity
matrices. If the sources apply repetition coding with rate 1/2 over two com-
plementary channels, destinations can add up their receive signals in order to
eliminate all interference. Also this scheme results into a spatial multiplexing
gain of n/2, where the factor 1/2 is an immediate consequence of the repetition
code. Ergodic interference alignment involves significantly simpler coding than
regular interference alignment. However, its restriction to very specific channel
models limits its practical applicability. It is important to keep in mind that also
regular interference alignment achieves a spatial multiplexing gain of n/2 over
almost all ergodic channels.
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This work goes beyond the basic model of the interference channel, and considers
multihop interference networks. We expand the basic interference channel by an ar-
bitrary number of relay stages, L, and assume that the lth relay stage comprises n(l)

R

single-antenna relay nodes (see sketch in Fig. 2.1). A straightforward approach for
communication over a multihop interference network decouples the network into a cas-
cade of single-hop interference networks. Such a decoupling is achieved, if all messages
are decoded in every relay stage (decode & forward). It is then a straightforward con-
clusion that a spatial multiplexing gain of min(n/2,minl n

(l)
R /2) is achievable1 by the

interference alignment technique of [9].

However, this is not the end of the story. Consider the following example of a two-hop
network with two source-destination pairs and two relays. The two-hop interference
channel can be turned into a concatenation of two X networks. In the first hop, each
source transmits two messages to the relays (one to each), and, in the second hop, each
relay has one message for each of the destinations. Even for non-selective channels,
this approach allows for a spatial multiplexing gain of 4/3 [33,34], which is larger than
n/2. Still, the approach of decoupling the multihop network into a concatenation of
X networks through decode & forward relaying is suboptimal in general. The spatial
multiplexing gain of an X network with n source nodes andm destination nodes is given
bymn/(m+n−1) [33] for sufficiently selective channels. That is, the achievable spatial
multiplexing gain is strictly smaller than min(m,n). For our multihop network, this
implies that the spatial multiplexing gain is strictly smaller than min(n,minl n

(l)
R ). We

conclude that the approach cannot be optimal in general, since there is the following
method for two-hop networks, which does not decouple the network, and allows for the
full spatial multiplexing gain of n for a sufficiently large number of relay nodes.

Distributed zero-forcing : Consider a two-hop network with n(1)
R ≥ n2 − n+ 1 single-

antenna relay nodes. For this network, it is known from [35] that all multiuser interfer-
ence at the destination nodes can be canceled by the relays through a coherent amplify
& forward architecture with a specific relay gain allocation. That is, each relay ampli-
fies and phase-rotates its receive signal in a specific way before re-transmission, such
that interference terms at the destination nodes add up destructively. Complexity is
completely transferred to the relay nodes, and the individual source-destination pairs
can perform standard single-input single-output (SISO) coding and decoding. Thus,
n data streams are conveyed to the destination nodes over n parallel additive white

1At this point we ignore the facts that (i) relays typically cannot transmit and receive at the same
time (half-duplex constraint, see [32] for a mitigation technique), and (ii) relay stages might pose
interference to each other.
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2. Spatial Multiplexing in Multihop Interference Networks

Gaussian noise (AWGN) channels, which results into a spatial multiplexing again of
n. This distributed zero-forcing approach does not require the channels to be time or
frequency selective and applies for generic channel coefficients.

This result on two-hop networks is the starting point for the contribution of this
chapter. In the first instance, we aim for a generalization of distributed zero-forcing
from two-hop networks to arbitrary multihop networks. A proof is provided that the
generalized distributed zero-forcing scheme achieves the full spatial multiplexing gain
2 in multihop interference networks with n = 2, L ≥ 2, n(l)

R ≥ 2 for all l ∈ {1, . . . , L},
and non-selective channels for generic channel coefficients. Moreover, the evidence is
provided that the considerable constraint on the required number of relay nodes in the
two-hop network can be significantly relaxed in “longer” networks. In particular, it is
conjectured that n(l)

R = n relay nodes in all stages stage l ∈ {1, . . . , L} suffice to enable
distributed zero-forcing in networks with L ≥ n, non-selective channels and generic
channel coefficients.

There are very recent results on distributed spatial multiplexing in multiuser inter-
ference networks with ergodic channels [36–38]. These contributions propose a scheme
that resembles the ergodic interference alignment approach for single-hop interference
networks. It achieves full multiplexing gain n in multihop interference networks with
L = n − 1 and n

(l)
R ≥ n for all l ∈ {1, . . . , L} for a class of ergodic fading processes,

in particular, also for i.i.d. (in space and time) Rayleigh fading. The corresponding
approach matches (in the L+ 1 hops) channel realizations whose corresponding chan-
nel matrices multiply to (almost) diagonal matrices. If relay stages properly delay and
permute their receive signals, this allows for (almost) interference free communication
over n parallel AWGN channels.

In a second step, we focus not only on the spatial multiplexing capabilities of the
coherent amplify & forward architecture in multihop interference networks, but, con-
sider also optimization of the relay gain coefficients with respect to link reliability. In
particular, the relay gain allocation is optimized with respect to the smallest signal-to-
interference-plus-noise ratio (SINR) among the source-destination pairs, which mini-
mizes the outage probability. We succeed in turning this novel problem into a quasi-
convex problem in the case L = 1. There is an efficient interior point method for the
resulting problem. For L > 1, methods for finding local optima are devised. Among
these local optima we identify a significantly smaller subset that contains potential
candidates for the global optimum. Finally, two two types of low-complexity relay gain
allocation methods are proposed.
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For an evaluation of the optimized gain allocations, the standard approach of the
DMT framework [23] is followed, which fully captures the relation between data-rate
and outage probability in the regime of large SNR. An upper-bound on the achievable
DMT curve is provided, which is essentially based on full cooperation among relay
nodes within the same stage. Interestingly, numerical evidence suggests that the DMT
upper-bound is achievable, whenever distributed zero-forcing is feasible. This would
imply that the lack of cooperation among relay nodes within the same stage comes
with no penalty in these cases as far as the DMT is concerned. A result of this flavor is
known from [39] for two-hop networks with a single source-destination pair and multiple
relays. If our observations are correct, the result of [39] can be generalized in the sense
that it carries over both to multiple hops and multiple source-destination pairs.

There is, to our knowledge, no other work on the DMT of multihop interference
networks. For the single-hop interference channel with two source-destination pairs,
the DMT is studied in [40,41]. There are also a variety of works that are related to the
DMT of multihop networks with a single source-destination pair (also with multiple-
antenna nodes) [42–45].

It is finally important to note that our concept of coherent amplify & forward re-
laying assumes all relay nodes to possess the CSI of the full network (“global CSI”).
Whether or not the assumption of global CSI at the relay nodes, as it is made in our
contribution, is reasonable in real-world networks certainly depends on the coherence
time of the channel. Major progress in reducing the CSI dissemination overhead for
coherent amplify & forward in two-hop interference networks has recently been made
in [46, 47]. These contributions propose to determine interference suppressing relay
gain coefficients through a gradient descent with respect to the SINRs of the source-
destination pairs. Remarkably, the respective gradients can be computed based on
limited feedback from the destination nodes that does not depend on the number of
relay nodes in the network. Ongoing work shows that these findings also extend to
networks with an arbitrary number of hops [48].

Organization of the chapter: Section 2.2 formally introduces the concept of coherent
amplify & forward relaying and mathematically formulates the constraints on the relay
gain coefficients that guarantee interference free communication in multihop interfer-
ence networks. Necessary and sufficient conditions on the network topology that allow
for meeting these constraints and the achievable spatial multiplexing gain are subject
of Section 2.3. Section 2.4 is a brief excursus to single-hop interference networks. Sec-
tion 2.5 provides an upper-bound on the achievable DMT curve of coherent amplify
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2. Spatial Multiplexing in Multihop Interference Networks

& forward relaying in multihop interference networks. Optimal relay gain allocations
with respect to the minimal SINR among the source-destination pairs and the DMT
are subject of Section 2.6. Section 2.7 provides concluding remarks.

2.2. Signal Model and Communication Protocol

We consider a network that consists of L + 2 stages: a source stage S = {S1, . . . , Sn}
and a destination stage D = {D1, . . . ,Dn} with n nodes Sk and Dk each, as well as L
relay stages Rl = {R(l)

1 , . . . ,R
(l)

n
(l)
R
}, l = {1, . . . , L}, with n(l)

R nodes R
(l)
k in the lth relay

stage. All nodes are equipped with a single antenna, and nodes within the same stage
are assumed not to exchange any information about their transmit or receive signals.
We consider the transmission of n SISO codewords — one per source-destination pair
{Sk,Dk} — over the same physical channel. Transmissions are divided into L+ 1 time
slots and initiated by the source nodes simultaneously and in the same frequency band
in the first time slot. In time slot l, nodes in relay stage Rl receive interfering signals
from relay stage Rl−1, if l > 1, or the source stage S, if l = 1. Each relay R

(l)
k ∈ Rl

scales the amplitude and rotates the phase of its receive signal. That is, before re-
transmission in time slot l + 1, it performs a complex multiplication in equivalent
base-band (amplify & forward). In time slot L+ 1, the nodes of the destination stage
D receive the signals that are transmitted by the nodes of stage RL. A graph of the
considered network is depicted in Fig. 2.1.

After at most L+ 1 time slots, the source stage can inject new narrow-band signals
into the network without interfering transmissions of previous codewords. This interval
can be reduced under certain circumstances. Let us, for instance, assume that nodes
receive signals only from their adjacent stages. That is, channel coefficients between
nodes that are located in nonadjacent stages are zero. Then, the source stage can
inject new signals into the network in every third time slot (“reuse factor 1/3”) without
causing any temporal interference. The corresponding interference situations for reuse
1, 1/2 and 1/3 are sketched in Fig. 2.2. Note that such temporal interference is not an
issue in two-hop networks. Thus, depending on whether relay nodes are full- or half-
duplex, reuse 1 or 1/2 is feasible. The reuse factor is denoted by p−1 in the following.

We assume a slow and frequency flat fading channel model and denote the multi-
plicative equivalent base-band fading coefficient that corresponds to the transmission

18



2.2. Signal Model and Communication Protocol

(1)

(1)
R

n

(1)

1
R

(1)

2
R

1
S

2
S

S
n

(2)

1
R

1
D

2
D

( )

1
R

L

(2)

2
R

( )

2
R

L

( 2)

(2)
R

n

( )

( )
R

L

L

n

D
n

(1)

(1)
R

n

(1)

1
R

(1)

2
R

(2)

1
R

(2)

2
R

( 2)

(2)
R

n

( )

1
R

( )( )

( )

2
R

( )( )

( )

( )
R ( )( )

( )( )

n

1
D

2
D

D
n

L

Figure 2.1.: Graph of the considered multihop interference network with source stage S,
destination stage D, and relay stages R1, . . . ,RL.

Figure 2.2.: Interference situation in a multihop chain for reuse 1 (top), 1/2 (middle) and
1/3 (bottom). Nodes with interfering receive signals are shaded. Channel coef-
ficients between nodes that are located in nonadjacent stages are zero.
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from node X to node Y by hYX ∈ C. The symbol-discrete input-output (IO) relations
from sources to destinations are fully described by the set of equations

yY =hYX · xX + wY,

(X,Y) ∈ (S ×R1) ∪ (R1 ×R2) ∪ . . . ∪ (RL ×D), (2.1)

xY =gX · yY, Y ∈ R1 ∪ . . . ∪RL. (2.2)

Here, xX ∈ C and yY ∈ C denote the equivalent base-band representations of transmit
and receive signal, wY ∈ C AWGN of variance σ2, and gX ∈ C the relay gain coefficient.
The effective multiplicative fading coefficient dDiSj that corresponds to the transmission
from source node Sj to destination node Di is obtained as the superposition of all∏L

l=1 n
(l)
R paths that connect these nodes in the network graph:

dDiSj =
∑

(R
(1)
k1
,...,R

(L)
kL

)∈R1×...×RL

h
R

(1)
k1

Sj
h

R
(2)
k2

R
(1)
k1

· · ·h
R

(L)
kL

R
(L−1)
kL−1

h
DiR

(L)
kL

g
R

(1)
k1

· · · g
R

(L)
kL

. (2.3)

Likewise, we obtain for the relay-to-destination and source-to-relay links:

d
DiR

(l)
j

=
∑

(R
(l+1)
kl+1

,...,R
(L)
kL

)∈Rl+1×...×RL

h
R

(l+1)
kl+1

R
(l)
j
· · ·h

DiR
(L)
kL

h
R

(L)
kL

R
(L−1)
kL−1

g
R

((l+1))
kl+1

· · · g
R

(L)
kL

, (2.4)

d
R

(l)
i Sj

=
∑

(R
(1)
k1
,...,R

(l−1)
kl−1

)∈R1×...×Rl−1

h
R

(1)
k1

Sj
h

R
(2)
k2

R
(1)
k1

· · ·h
R

(l)
i R

(l−1)
kl−1

g
R

(1)
k1

· · · g
R

(l−1)
kl−1

. (2.5)

For notational convenience, we define the following matrices:

Hl =



(
h

R
(1)
i Sj

)
i=1,...,n

(1)
R ;j=1,...,n

if l = 1,(
h

R
(l)
i R

(l−1)
j

)
i=1,...,n

(l)
R ;j=1,...,n

(l−1)
R

if 1 < l ≤ L,(
h

DiR
(L)
j

)
i=1,...,n,j=1,...,n

(L)
R

if l = L+ 1,

(2.6)

Gl = Diag (gl) , with gl =
(
g

R
(l)
k

)n(l)
R

k=1
, l ∈ {1, . . . , L}, (2.7)

Dl =


(
dDiSj

)
i=1,...,n;j=1,...,n

= HL+1GLHL · · ·G1H1, if l = 0(
d

DiR
(l)
k

)
i=1,...,n;k=1,...,n

(l)
R

= HL+1GLHL · · ·Hl+1Gl, if l ∈ {1, . . . , L}.
(2.8)

With this notation, the vector of received signals at the destination antennas, yD, is
obtained from the vector of source transmit signals, xS , through the affine transforma-
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tion

yD = D0 · xS + wD +
L∑
l=1

Dl ·wRl , (2.9)

where wD and wRl , l ∈ {1, . . . , l}, denote the additive noise vectors of the respective
stages.

Let PX denote the average transmit power of node X. The assumptions on the power
allocation are as follows:

• All source nodes transmit with equal power:

PSi =
PS
n

for all Si ∈ S. (2.10)

• The average sum-power of each relay stage Rl, PRl , l ∈ {1, . . . , L}, is subject to
the constraint:

PRl ,

n
(l)
R∑

k=1

P
R

(l)
k
≤ P̄Rl . (2.11)

We address achievable spatial multiplexing and diversity gains in the course of this
chapter, and thereby take the quantities P̄S and P̄Rl to infinity. In this context, we
make the essential assumption that PRl as a function of PS fulfills

lim
PS→∞

PRl
PS

= γl for all l ∈ {1, . . . L}, (2.12)

where the γl fulfill 0 < γl <∞.

2.3. Spatial Multiplexing Gain

This section is concerned with the spatial multiplexing gain (also referred to as de-
grees of freedom) that can be achieved in the considered network. We use the stan-
dard definition of the spatial multiplexing gain [8]. Let Ri be an achievable rate of
the ith source destination pair {Si,Di}. A spatial multiplexing gain of r is said to
be achievable, if there exists a rate vector (R1, . . . , Rn) that fulfills as a function of
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P , PS = PR1 = . . . = PRL :

r , lim
P→∞

∑n
i=1Ri

logP
. (2.13)

If n(l)
R ≥ n for all l ∈ {1, . . . , L}, an upper-bound on the achievable spatial multi-

plexing gain is given by

r ≤ n/p, (2.14)

where we assume that the source stage injects new signals into the network in every pth
time slot, and p is sufficiently large such that consecutive codewords do not interfere
with each other. The upper-bound is established by allowing for full cooperation within
all stages of the network. The network is then turned into a single-user MIMO network
with a single multi-antenna node in each relay stage. Let us denote the sequences of

random transmit and receive signal vectors of a stage X by
(
x

(j)
X

)N
j=1

and
(
y

(j)
X

)N
j=1

,

respectively, where N denotes the length of the sequences. Achievable (sum-) rates are
then upper-bounded by [49]

n∑
i=1

Ri <
1

p
· lim
N→∞

1

N
· I
((

x
(j)
S

)N
j=1

;
(
y

(j)
D

)N
j=1

)
. (2.15)

Due to the Markov chain(
x

(j)
S

)N
j=1
→
(
y

(j)
R1

)N
j=1
→
(
x

(j)
R1

)N
j=1
→ . . .→

(
y

(j)
RL

)N
j=1
→
(
x

(j)
RL

)N
j=1
→
(
y

(j)
D

)N
j=1

,

(2.16)

the data-processing inequality [20] yields the upper-bound

I

((
x

(j)
S

)N
j=1

;
(
y

(j)
D

)N
j=1

)
≤ min

(
I

((
x

(j)
S

)N
j=1

;
(
y

(j)
R1

)N
j=1

)
, I

((
x

(j)
RL

)N
j=1

;
(
y

(j)
D

)N
j=1

)
,

min
l∈{1,...,L−1}

I

((
x

(j)
Rl

)N
j=1

;
(
y

(j)
Rl+1

)N
j=1

))
(2.17)

≤ N ·min

(
I
(
x

(j)
S ; y

(j)
R1

)
, min
l∈{1,...,L−1}

I
(
x

(j)
Rl ; y

(j)
Rl+1

)
, I
(
x

(j)
RL ; y

(j)
D

))
. (2.18)
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For limP→∞ PRl/P = γl, 0 < γl <∞, l ∈ {1, . . . , L}, we thus obtain [6]:

lim
P→∞

I
(
x

(j)
S ; y

(j)
D

)
logP

≤ min{n, n(1)
R , . . . , n

(l)
R }, (2.19)

which establishes (2.14).

In the following, we are interested in sets of relay gain coefficients that achieve this
upper-bound. Specifically, we show that it suffices to choose the relay gain coefficients
in a way, such that each destination node Di receives no other signals than those of
its associated source node Si. We refer to this technique, which suppresses all spatial
interference between the n source-destination pair, as distributed zero-forcing. In this
context, “distributed” refers to the constraint that beamforming must be performed
solely based on a multiplication of the received signal by a complex scalar at each
relay. This is in contrast to a matrix multiplication of the receive signal vector of
a relay stage, as it is enabled by full relay cooperation. In mathematical terms, the
network is zero-forced, if both the following conditions are fulfilled:

dDiSj = 0 for all (i, j) ∈ {1, . . . , n}2 such that i 6= j, (2.20)

dDiSi 6= 0 for all i ∈ {1, . . . , n}. (2.21)

or, equivalently,

D0 −D0 � In = 0n×n, (2.22)

diag(D0) ∈ (C\{0})n. (2.23)

The first condition ensures that all interference in the network is eliminated, while
the second condition ensures that the desired signals are sustained. The dDiSj are
multivariate polynomials in the g

R
(l)
k
. Zero-forcing of the network is thus possible,

whenever the polynomials dDiSj , i 6= j, have at least a single common root that is not
a root of any of the polynomials dDiSi . Note that solving the system (2.20) for the g

R
(l)
k

requires global CSI.

In the following two subsections, we study the requirements on the network
topology for the feasibility of distributed zero-forcing, or, equivalently the solv-
ability of the system of equations (2.20) and inequations (2.21). In this con-
text, we make the essential assumption that the vector of all elements hYX,
(X,Y) ∈ (S ×R1) ∪ (R1 ×R2) ∪ . . . ∪ (RL ×D) is a realization of a random vector

23



2. Spatial Multiplexing in Multihop Interference Networks

whose joint distribution is continuous and nondegenerate. This assumption is reason-
able, if the spacing between all pairs of nodes in the network is large compared to
the carrier wavelength. We first consider the special case n = 2 in Subsection 2.3.1,
where we prove a necessary and sufficient condition on the network topology for the
feasibility of distributed zero-forcing. In Subsection 2.3.2, we consider the general case
and devise a condition on the network topology that we conjecture to be necessary and
sufficient for the feasibility of distributed zero-forcing for arbitrary n. Note that the
feasibility of distributed zero-forcing is studied independently of all power constraints
in the first instance. In Subsection 2.3.4, it is then shown that the power constraints
can be enforced a posteriori through an appropriate scaling of the relay gain coefficients
in each stage.

2.3.1. Topology Requirements for Distributed Zero-Forcing in

Networks with Two Source-Destination Pairs

We consider the special case of two source-destination pairs (n = 2). From [35] it
is known that a zero-forcing gain allocation in a two-hop network (L = 1) with two
source-destination pairs exists with probability one, if and only if2 n(1)

R ≥ 3. In this
subsection, we show that the corresponding necessary and sufficient condition for the
case L ≥ 2 is given by

n
(l)
R ≥ 2 ∀ l ∈ {1, . . . , L}. (2.24)

From conditions (2.22) and (2.23), it is clear that the rank of D0 must be two. Hence,
the necessity of condition (2.24) follows from the inequality

rk(D0) ≤ min

(
min

l∈{1,...,L}
(rk{Gl}), min

l∈{1,...,L+1}
(rk{Hl})

)
≤ min

l
(rk{Gl}) ≤ min

l
(n

(l)
R ),

(2.25)

where we use that the rank of the matrix product D0 (see (2.8)) is smaller than or
equal to the rank of each involved matrix.

In order to prove sufficiency, we can restrict ourselves to the case n(l)
R = 2 for all

l ∈ {1, . . . , L}. Once this case is established, the generalization to cases with n(l)
R ≥ 2

2This condition is only claimed to be necessary in [35]. Under our assumptions on the fading
distribution it is also sufficient.
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2.3. Spatial Multiplexing Gain

is straightforward: If there are more than two relay nodes in a stage, one can choose
an arbitrary subset of two relay nodes and assign zero gain coefficients to all remaining
relay nodes in the network. Thus, one obtains a reduced network that fulfills (2.24)
with equality. If L ≥ 3, we set the gain coefficients of both relay nodes in each of
the stages R3, . . . ,RL to one. Likewise, we fix g

R
(1)
1

= g
R

(2)
1

= 1. With the above
substitutions, the effective fading coefficients (2.3) simplify and (2.20) reduces to

dD2S1 =h
R

(1)
1 S1

h
R

(2)
1 R

(1)
1
h̃

D2R
(2)
1

+ h
R

(1)
1 S1

h
R

(2)
2 R

(1)
1
h̃

D2R
(2)
2
g

R
(2)
2

+ h
R

(1)
2 S1

h
R

(2)
1 R

(1)
2
h̃

D2R
(2)
1
g

R
(1)
2

+ h
R

(1)
2 S1

h
R

(2)
2 R

(1)
2
h̃

D2R
(2)
2
g

R
(1)
2
g

R
(2)
2

= 0, (2.26)

dD1S2 =h
R

(1)
1 S2

h
R

(2)
1 R

(1)
1
h̃

D1R
(2)
1

+ h
R

(1)
1 S2

h
R

(2)
2 R

(1)
1
h̃

D1R
(2)
2
g

R
(2)
2

+ h
R

(1)
2 S2

h
R

(2)
1 R

(1)
2
h̃

D1R
(2)
1
g

R
(1)
2

+ h
R

(1)
2 S2

h
R

(2)
2 R

(1)
2
h̃

D1R
(2)
2
g

R
(1)
2
g

R
(2)
2

= 0, (2.27)

where

h̃
DiR

(2)
j

=


h

DiR
(2)
j
, if L = 2,∑

(R
(3)
k3
,...,R

(L)
kL

)∈R3×...×RL
h

R
(3)
k3

R
(2)
j
· · ·h

DiR
(L)
kL

, if L ≥ 3.
(2.28)

The unknowns g
R

(1)
2

and g
R

(2)
2

are isolated as follows:

0 = a1 + b1gR
(1)
2

+ c1g
2

R
(1)
2

(2.29)

0 = a2 + b2gR
(2)
2

+ c2g
2

R
(2)
2

, (2.30)

where a1, b1, c1, a2, b2 and c2 are functions of all fading coefficients hYX and h̃YX. The
equations have the solution(s) g(1,2)

R
(i)
2

= (−bi ±
√
b2
i − 4aici)/(2ci), i ∈ {1, 2}, if c1 and

c2 are non-zero. This is the case, if and only if(
h

R
(1)
2 S1

, h
R

(1)
2 S2

, h
R

(2)
1 R

(1)
2
, h

R
(2)
2 R

(1)
1
, h

R
(2)
2 R

(1)
2
, h̃

D2R
(2)
2
, h̃

D1R
(2)
2

)
∈ (C\{0})7 (2.31)

and both the following conditions are fulfilled:

h
R

(1)
1 S1

h
R

(1)
2 S2
6= h

R
(1)
2 S1

h
R

(1)
1 S2

(2.32)

h̃
D1R

(2)
1
h̃

D2R
(2)
2
6= h̃

D2R
(2)
1
h̃

D1R
(2)
2
. (2.33)

These conditions are equivalent to det(H1) 6= 0 and det(H̃3) 6= 0. That is, the channel
matrices H1 and H̃3 need to have full rank. Since by assumption the channel coefficients
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2. Spatial Multiplexing in Multihop Interference Networks

are drawn from a nondegenerate continuous distribution, these conditions hold with
probability one.

It remains to verify that condition (2.21) is fulfilled for the obtained solutions. Sub-
stitution of a solution into (2.21) yields that dD1S1 6= 0 and dD2S2 6= 0, if and only
if (

h
R

(1)
1 S1

, h
R

(1)
1 S2

, h
R

(2)
1 R

(1)
1
, h̃

D1R
(2)
1
, h̃

D2R
(2)
1

)
∈ (C\{0})5 (2.34)

and

h
R

(2)
1 R

(1)
1
h

R
(2)
2 R

(1)
2
6= h

R
(2)
1 R

(1)
2
h

R
(2)
2 R

(1)
1
. (2.35)

The first condition interestingly involves all channel coefficients that have not been
involved in (2.31). The second condition is equivalent to det(H2) 6= 0. That is, the
channel matrix H2 needs to have full rank. Again, these conditions are fulfilled with
probability one.

In summary, the network can be zero-forced, if and only if all channel matrices have
full rank, and none of the channel coefficients is zero.

We have thus proven, that a multiplexing gain r = 2/p is achievable for n = 2 with
probability one, if (2.24) is fulfilled.

2.3.2. Topology Requirements for Distributed Zero-Forcing in

Networks with More Than Two Source-Destination Pairs

In this subsection, we consider the general case of an arbitrary number of source-
destination pairs, n. For two-hop networks (L = 1), the system of equations and
inequations (2.20) and (2.21) is linear, and therefore well analyzable by standard linear
algebra methods [35]. A zero-forcing relay gain allocation in a two-hop network with n
source-destination pairs exists with probability one, if and only if n(1)

R ≥ n2−n+1 relay
nodes are available in the relay stage. If L ≥ 2, the polynomial system of equations and
inequations (2.20) and (2.21) becomes multi-linear. Whether or not solutions to such
systems do exist, is well understood in the case that the coefficients of the involved
polynomials are generic:

Definition 1. A property is said to hold generically for polynomials p1, . . . , pm, if there
exists a non-zero polynomial in the coefficients of the pi, such that the property holds
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2.3. Spatial Multiplexing Gain

for all p1, . . . , pm for which the polynomial is non-vanishing. Moreover, coefficients of
the pi for which this polynomial is non-vanishing are said to be generic.

That is, for all coefficients except for a subset of measure zero, the solvability of a
system of polynomial equations and inequations is fully determined by the structure of
the involved monomials [50,51]. Unfortunately, the coefficients in (2.20) and (2.21) are
not necessarily generic in spite of the randomness of the involved channel coefficients.
There are n2

∏
l n

(l)
R monomials in (2.20) and (2.21). However, the respective coefficients

depend on n · n(1)
R +

∑L−1
l=1 n

(l)
R n

(l+1)
R + n

(L)
R · n fading coefficients only. Thus, they are

subject to a certain structure and therefore potentially non-generic. For this reason,
it is difficult to prove general conditions on sets {n(1)

R , . . . , n
(L)
R } that guarantee the

existence of a zero-forcing gain allocation.

In this thesis, we restrict ourselves to stating the following conjecture, which is in
line with numerical evidence (see Subsection 2.3.3 and Tab. 2.1).

Conjecture 1. The subsequent conditions are necessary and sufficient (both conditions
together) for the existence of a zero-forcing relay gain allocation in a multihop network
with n source-destination pairs and L relay stages with probability one:

L∑
l=1

n
(l)
R ≥ n(n− 1) + L, (2.36)

n
(l)
R ≥ n ∀l ∈ {1, . . . , L}. (2.37)

For L = 1, condition (2.36) reduces to the well-known necessary and sufficient condi-
tion n(1)

R ≥ n(n− 1) + 1 for two-hop networks, while condition (2.37) is redundant [35].
Likewise, for n = 2 the condition (2.37) coincides with (2.24), while (2.36) is redundant.
In full generality, we can neither prove sufficiency of both conditions nor necessity of
the first condition. The necessity of the second condition is provable. From conditions
(2.22) and (2.23) it is clear that the rank of D0 must be n. Hence, the necessity of
condition (2.37) follows from inequality (2.25).

In the following, we illuminate a motivation for condition (2.36). Suppose the
system (2.20) has a solution (g1, . . . ,gL) = (g∗1, . . . ,g

∗
L) that fulfills (2.21). Then,

there must exist infinitely many such solutions that constitute an L-dimensional
affine variety: Let c1, . . . , cL be arbitrary non-zero complex scalars. Then, also
(g1, . . . ,gL) = (c1g

∗
1, . . . , cLg∗L) fulfills (2.20) and (2.21). This is seen by inspection
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of (2.3), which reveals

dDiSj

∣∣
(g1,...,gL)=(c1g∗1 ,...,cLg∗L)

= c1 · · · cL · dDiSj

∣∣
(g1,...,gL)=(g∗1 ,...,g

∗
L)
∀ (Sj,Di) ∈ S × D.

(2.38)

The left hand side of this equation is zero/non-zero, if and only if dDiSj

∣∣
(g1,...,gL)=(g∗1 ,...,g

∗
L)

is zero/non-zero. Due to property (2.38) the considered system (2.20) and (2.21) is said
to be L-homogeneous (homogeneous in the L groups of gain coefficients) or also L-linear
(since the cl occur to the first power on the right hand side of (2.38)). While such
systems have either no or infinitely many solutions in Cn

(1)
R × . . .×Cn

(L)
R , they can have

a finite number of solutions in the product of projective spaces3 Pn
(1)
R −1 × . . .× Pn

(L)
R −1

(e.g. [52]).

For the consideration of the solvability of (2.20) and (2.21) we can fix without loss
of generality g

R
(l)
1

= 1 for all l ∈ {1, . . . , L}. This dehomogenization reduces varieties
of solutions to the original system to unique solutions in the dehomogenized problem.
From [50], the following is known about the solvability of such dehomogenized system
with generic coefficients :

• If condition (2.36) holds, there is one or several solutions to the dehomogenized
system of equations (2.20) in4 (C\{0})(n

(1)
R −1) × . . . ,×(C\{0})(n

(L)
R −1). That is,

the system is exactly determined.

• The solutions to the dehomogenized system of equations (2.20) cannot violate
the dehomogenized system of inequations (2.21): If (2.21) contained equations
rather than inequations, the resulting dehomogenized system of n2 equations
would be overdetermined [50]. We conjecture that also our coefficients render
this system overdetermined in (C\{0})(n

(1)
R −1)× . . . ,×(C\{0})(n

(L)
R −1), if condition

(2.37) holds.

• Clearly, a reduction of the number of unknowns (total number of relay nodes)
renders the dehomogenized system (2.20) overdetermined and does not allow for
any solution in (C\{0})(n

(1)
R −1)× . . . ,×(C\{0})(n

(L)
R −1). Vice versa, if the number

of relay nodes is increased, the system is underdetermined and there are infinitely
many solutions.

Thus, for generic coefficients, condition (2.36) would provably be necessary and suffi-
3The projective space Pk is the set of all k dimensional lines in Ck+1 that pass through the origin.
4For the original system, there is in this case a solution in the product of projective spaces Pn

(1)
R −1×

. . .× Pn
(L)
R −1 (allows for zero components) for arbitrary non-zero coefficients [53].
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cient for the existence of a solution to (2.20) that does not violate (2.21). According
to this, we implicitly assume in our conjecture that this generic property carries over
to the specific structure of the coefficients in (2.20) and (2.21), whenever (2.37) holds.

Generally, a necessary and sufficient condition for the existence of a solution is given
by the projective weak Nullstellensatz [52]. The problem with this approach is the
requirement of a reduced Groebner basis, which is difficult to obtain for general net-
works.

2.3.3. On the Number of Zero-Forcing Solutions

If condition (2.36) holds with equality, the dehomogenized system (2.20) has as many
unknowns as equations. Suppose our conjecture is true, and the dehomogenized system
(2.20) is exactly determined in (C\{0})(n

(1)
R −1) × . . . ,×(C\{0})(n

(L)
R −1). Then, there is

an upper-bound on the number of solutions. This bound is due to D.N. Bernstein [50],
who linked the number of solutions of a system of polynomial equations to the structure
of the Newton polytopes of the polynomials. A Newton polytope is defined as follows:

Definition 2. Consider a polynomial p(z1, . . . , zm) =
∑

α cα
∏m

i=1 z
αi
i . The Newton

polytope of p, denoted by ∆p, is the convex hull of the set of exponents α, considered
as vectors in Zm.

By inspection of (2.3), we realize that all dDiSj share the same Newton polytope.
Such systems are said to be unmixed and allow to use a corollary to Bernsteins’ general
result [54]:

Theorem 1 (Kushnirenko). If m polynomials p1, p2, . . . , pm with identical Newton poly-
tope have a finite number of joint zeros in (C\0)m, their number is upper-bounded by
m!Volume(∆p). The bound holds with equality for generic coefficients.

For our problem this upper-bound is evaluated as follows [55,56]:

#solutions ≤ (n2 − n)!∏L
l=1(n

(l)
R − 1)!

. (2.39)

An important conclusion from this theorem is the following. The number of solutions to
a system of polynomial equations is fully determined by the structure of the monomials
for generic coefficients. As discussed in the previous section, the coefficients in (2.3)
depend on a number of parameters which is significantly smaller than the number

29



2. Spatial Multiplexing in Multihop Interference Networks

Table 2.1.: Number of zero-forcing gain allocations for various network topologies.

(n, n
(1)
R , . . . , n

(L)
R ) solutions upper-bound

(n, n2 − n+ 1) 1 1
(2, 2, 2) 2 2
(3, 5, 3) 6 15
(3, 3, 5) 6 15
(3, 4, 4) 12 20

(3, 3, 3, 3) 18 90
(4, 7, 7) ≥ 528 924

(4, 5, 5, 5) n/a 34650
(4, 4, 4, 4, 4) n/a 369600

of coefficients. According to the theorem, this lack of genericity can only lead to a
reduction of the number of solutions.

In Tab. 2.1, we show for a couple of network topologies, how the actual number of
solutions (as numerically identified by means of Newton’s method and random initial-
izations) compares to the upper-bound. We observe that both the actual number of
solutions and the upper-bound increase rapidly both in the number of relay stages L
and the number of source-destination pairs n. The upper-bound holds with equality
in the cases L = 1 and (n, L) = (2, 2). For larger L, the bound is loose in general. A
comparison of the networks (3, 4, 4), (3, 3, 5) and (3, 5, 3) suggests that uniform relay
allocations over the stages yield more solutions than asymmetric allocations.

2.3.4. Achievability of Full Spatial Multiplexing Gain

In this subsection, we establish that the maximal spatial multiplexing gain n/p is
achievable through distributed zero-forcing with probability one, whenever the network
topology allows for an enabling relay gain allocation. The effective IO-relation between
the n sources and n destinations under distributed zero-forcing decouples into n parallel
AWGN channels:

yDi = dDiSixSi +
L∑
l=1

n
(l)
R∑

k=1

d
DiR

(l)
k
g

R
(l)
k
w

R
(l)
k

+ wDi , i = {1, . . . , n}. (2.40)

The maximum rate that is achievable over the ith of these parallel channels under
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the source power constraint is given by

R̄i =
1

p
· log

1 +
P

n
· |dDiSi|

2

/σ2 +
L∑
l=1

n
(l)
R∑

k=1

∣∣∣g
R

(l)
k
· d

DiR
(l)
k

∣∣∣2 · σ2

 , (2.41)

where the g
R

(l)
k

are subject to the sum-power constraints (2.11) with P̄Rl = P . We
fulfill all power constraints with equality, which yields

gl =

√
P

P̃
· g̃l for all l ∈ {1, . . . , L}, (2.42)

with

P̃ =
P

n
· Tr

[
G̃lHl · · · G̃1H1H

H
1 G̃H

1 · · ·HH
l G̃H

l

]
+ σ2 · Tr

[
G̃l

(
I
n

(l)
R

+ HL

(
G̃l−1

(
I
n

(l−1)
R

+ . . .Hl′G̃l′G̃
H
l′ H

H
l′ . . .

)
G̃H
l−1

)
HH
L

)
G̃H
l

]
,

(2.43)

where (g̃1, . . . , g̃L) is a solution to the dehomogenized system (2.20) and (2.21) and
G̃l = Diag(g̃l). Due to property (2.38), it is clear that the relay gain allocation (2.42)
zero-forces the network.

We conclude from (2.41) that a multiplexing gain n/p is achieved in the network, if
for each of the parallel channels

lim
P→∞

|dDiSi |
2 > 0 and lim

P→∞

L∑
l=1

n
(l)
R∑

k=1

∣∣∣g
R

(l)
k
· d

DiR
(l)
k

∣∣∣2 <∞. (2.44)

Both these conditions hold, if all relay gain coefficients converge to positive constants
as P →∞. For the first relay stage, this follows immediately from (2.42):

lim
P→∞

gl = g̃1

/√
Tr

[
1

n
· G̃1H1HH

1 G̃H
1

]
. (2.45)

Now, it follows by induction that also the relay gain coefficients in all other relay
stages converge to positive constants. If all relay gain coefficients in the stages Rl′ ,
l′ < l, converge to positive constants, so do the gain coefficients in Rl. From (2.42) we
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conclude:

lim
P→∞

gl = g̃l

/√
Tr

[
1

n
· G̃lHl · · · G̃1H1HH

1 G̃H
1 · · ·HH

l G̃H
l

]
. (2.46)

This establishes that distributed zero-forcing achieves the full multiplexing gain n/p in
the network with probability one, whenever it is feasible with probability one for the
network topology.

2.3.5. Experimental Insights into Distributed Zero-Forcing

In this subsection, the sensitivity of the distributed zero-forcing performance to the
choice of the zero-forcing solution in a network with a finite number of solutions is
studied by means of simulations. Let us denote the maximally achievable rate (2.41)
of source-destination pair {Si,Di} under zero-forcing solution j (for p = 1) by R̄

(j)
i .

We are particularly interested in the sum-rate R̄(j)
Σ ,

∑
i R̄

(j)
i and in the rate of the

weakest source-destination pair R̄(j)
min , mini R̄

(j)
i (referred to as minimum-rate). Re-

alizations of the fading coefficients hYX are generated independently from a CSCG
random variable of unit variance. We consider a network with three source-destination
pairs and two relay stages containing four relay nodes each. This network exhibits
twelve different zero-forcing solutions. We conduct the following experiment: For 1000
channel realizations, we determine all twelve zero-forcing solutions numerically, and
thereupon evaluate the corresponding rates R̄(j)

Σ and R̄
(j)
min, j ∈ {1, . . . , 12}. Average

transmit powers are set to PS = PR1 = PR2 = 1000, and the noise variance to σ2 = 1.
We obtain empirical CDFs of the order statistics of R̄(j)

Σ and R̄(j)
min. The respective plots

are shown in Fig. 2.3. The key conclusion to be drawn from these plots is that both
for R̄(j)

Σ and R̄(j)
min there are tremendous differences in performance. The average rate

for the best solution is around five times larger than the one for the worst solution in
terms of minimum-rate and still more than twice larger in terms of sum-rate. While
the identification of the best zero-forcing solution based on a brute force search is man-
ageable for the case at hand with only twelve solutions, such an approach seems to
be hopeless for larger networks, when the number of solutions grows rapidly (cf. Tab.
2.1).
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Figure 2.3.: Empirical CDFs of order statistics of sum-rates (R̄
(1)
Σ , . . . , R̄

(12)
Σ ) and minimum-

rates (R̄
(1)
min, . . . , R̄

(12)
min ) for the three-hop network with n = 3, n(1)

R = 4, and
n

(2)
R = 4. The pre-log is set to p−1 = 1, the SNR to P/σ2 = 1000.
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2. Spatial Multiplexing in Multihop Interference Networks

2.4. Excursus: “Ping-Pong” in Single-Hop

Interference Networks

Distributed zero-forcing in multihop interference networks inspires a new approach to
communication in single-hop interference networks. A set of n source-destination pairs
can communicate in an interference free fashion over the same physical channel, if both
sets of nodes transmit their signals forth and back several times. This is illustrated on
the left hand side of Fig. 2.4.

Let us define the matrix of channel coefficients H = (hDiSj)i,j=1,...,n. If channels
are reciprocal, the fading matrix for the backward transmission from destination to
source nodes is given by HT . Conditions (2.36) and (2.37) suggest that a multihop
interference network with n relay stages with n relay nodes each can be zero-forced.
Both conditions are fulfilled with equality for such a network. Accordingly, we ask
the question, whether or not zero-forcing is also feasible in a single-hop interference
network with n (even number) source-destination pairs by transmitting n + 1 times
forth and back. This strategy yields an equivalent (n + 1)-hop network with effective
fading matrix (cf. (2.8))

D0 = HGnH
TGn−1 · · ·HG2H

TG1H, (2.47)

where all matrices Gl with odd indexes correspond to amplify & forward operations at
the destination nodes and those with even indexes to amplify & forward operations at
the source nodes. The Gl, l ∈ {1, . . . , n}, need to be chosen to zero-force the equivalent
(n + 1)-hop network. For this particular setting, numerical experiments suggest that
zero-forcing is indeed feasible. Also, the numbers of obtained solutions are in line with
those obtained in the equivalent multihop networks. This is not evident, because the
coefficients in (2.3) exhibit even more structure in this “ping-pong” scenario than in
the case of a true multihop network.

The above example is of little practical value. In total, n data streams are trans-
mitted over n + 1 channel uses. This corresponds to a spatial multiplexing gain of
n/(n+1) < 1. A simple time-division multiple access scheme outperforms this scheme.
Nevertheless, the approach can be rendered useful. In order to achieve spatial mul-
tiplexing gains larger than one, the source and/or the destination stage need to be
assisted by additional relay nodes. This is illustrated on the right hand side of Fig. 2.4.
In doing so, we achieve zero-forcing with a reduced number of forth and back transmis-
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2.4. Excursus: “Ping-Pong” in Single-Hop Interference Networks

Figure 2.4.: “Ping-pong” in a single-hop network without (left) and with (right) assisting
relay nodes.

sions K (an odd number ≥ 3). The respective spatial multiplexing gain is then given
by n/K. Consider for example a network of four source-destination pairs, where source
and destination stage are assisted by three additional relay nodes each. Indeed, this
network can be zero-forced through three forth and back transmissions, which turns
the network into an equivalent three-hop network with n(1)

R = n
(2)
R = 7. Hence, a spatial

multiplexing gain of 4/3 is achieved.

If additional relay nodes are allocated uniformly over source and destination stage
(nR per stage), our approach achieves a spatial multiplexing gain of n/K according to
(2.36), if

nR ≥
n2 − n
K − 1

+ 1− n. (2.48)

Numerical evidence suggests that for symmetric relay allocations the number of solu-
tions to the system of equations (2.20) and inequations (2.21) is sustained despite of
the added structure in the coefficients of the polynomials. This observation is food for
the following thought:

Consider a single-hop interference network with n′ = n2 source-destination pairs.
Apply the following time-division multiplexing scheme. The source-destination pairs
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2. Spatial Multiplexing in Multihop Interference Networks

(n, n
(1)
R , n

(2)
R ) solutions

(3, 4, 4) 12
(3, 5, 3) 0
(3, 3, 5) 0

Table 2.2.: Ping-Pong

are grouped into n disjoint sets Pi, i ∈ {1, . . . , n}, of cardinality n each. There are n
periods of K = 3 time slots each. In period i, the source-destination pairs in Pi are
active, while all pairs in

⋃
j 6=iPj act as additional relay nodes. Thus, (2.48) is fulfilled,

and in each period i, the multiplexing gain is n/3 or, equivalently
√
n′/3. After n

periods, all source-destination pairs have been scheduled for transmission exactly once.
Thus, the spatial multiplexing gain per source-destination pair is 1/(3

√
n′), while the

spatial multiplexing gain in the network scales with the square root of the number of
source-destination pairs.

Let us finally consider an asymmetric relay node allocation of additional relay nodes
over source and destination stage. For simplicity, we assume a network of three source-
destination pairs with two additional relay nodes in the destination stage, and no
additional relay nodes in the source stage. Again, condition (2.36) is fulfilled with
equality, and also condition (2.37) holds. In this example, however, we observe that
no solution is found by our numerical solver. Here, the effect of added structure in the
coefficients of the polynomials kicks in. Note that this problem is circumvented, if the
forth and back transmissions are performed over different subcarriers in a frequency
selective environment. Then, each transmission is associated with a different fading
matrix, and the solvability conditions coincide with those for multihop networks.

Remark : A similar “ping-pong” technique with different purpose has been proposed
in [57]. The scheme called time reversal mirroring bounces signals forth and back
between a source and a mirror array for focusing signals in time and/or space. The
technique has its origin in acoustics, and has also been applied to electromagnetic
waves [58].
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2.5. An Upper-Bound on the Achievable

Diversity-Multiplexing Tradeoff

So far, we have been interested in the pure spatial multiplexing capabilities of the
coherent amplify & forward architecture. In this section, we also shed light on the
diversity performance and investigate the achievable DMT under the assumptions that
the channels between any two nodes in adjacent stages are quasi-static and the channel
matrices have i.i.d. entries hYX ∼ CN (0, 1). We provide an upper-bound that —
according to numerical evidence — appears to be achievable, whenever distributed
zero-forcing is feasible.

We start out with the definition of the tradeoff between diversity and multiplexing
gain according to [23] tailored to our network. Assume that each of the n source-
destination pair makes use of the same set of SISO codes and that the average per-stage
transmit powers fulfill PS = PR1 = . . . = PRL , P . For a specific value of P , each
source node chooses the same code, such that the code rate R as a function of P fulfills

lim
P→∞

R(P )

logP
,
r

n
. (2.49)

The quantity r/n is referred to as the multiplexing gain of the set of codes. The
diversity that is achieved by such a set of codes is defined as

− lim
P→∞

logP
[⋃n

i=1 Ei
∣∣ r]

logP
, d(r),

where Ei denotes the event of a maximum likelihood decoding error at the ith des-
tination. That is, an error at a single destination node suffices to declare the whole
network to be in outage. We refer to the function d(r) as DMT curve. If capacity
achieving codebooks are used, a decoding error occurs either due to a suboptimal relay
gain allocation or due to an outage of the channel. In this case, the probability of a de-
coding error as a function of the SINRs at the destination nodes SINRi, i ∈ {1, . . . , n},
is written as

P

[
n⋃
i=1

Ei
∣∣ r] = P

[
n⋃
i=1

{
1

p
log (1 + SINRi) < R(P )

}]
. (2.50)

Again, the pre-log factor 1/p stems from the fact that new signals are injected into the
network by the source stage in every pth time slot only.
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2. Spatial Multiplexing in Multihop Interference Networks

We construct an upper-bound on the achievable DMT curve of an L+1-hop network
with n(l)

R ≥ n relay nodes in the lth stage, l ∈ {1, . . . , L}. To this end, we develop L+1

upper-bounds d̄l(r), l ∈ {1, . . . , L+1}, on the achievable DMT curve d(r). Each bound
d̄l(r) is obtained through a specific isolation of the l-th hop in the network. Eventually,
we combine all these bounds into the bound

d(r) ≤ min
l
d̄l(r) , d̄(r). (2.51)

In order to obtain the individual bounds d̄l(r), l ∈ {1, . . . , L+1}, we apply the following
relaxations, which for each value of the multiplexing gain r can only increase the DMT
curve of the network d(r):

• We neglect all noise in the network except for the noise that is introduced in the
respective receive stage of hop l, which is Rl, if l ≤ L, and D, if l = L+ 1.

• If l > 1, we replace the IO-relation of the subnetwork from source stage S
to relay stage Rl−1 by an arbitrary linear map that is defined by the matrix
G

(l−1)
t ∈ Cn

(l−1)
R ×n and fulfills the sum-power constraint on Rl−1.

• Likewise, if l ≤ L, we replace the IO-relation of the subnetwork from relay stage
Rl to the destination stage D by an arbitrary linear map that is defined by the
matrix G

(l)
r ∈ Cn×n(l)

R .

The second and third relaxations yield an upper-bound on the DMT, since we allow
for an arbitrary linear processing on the transmit and/or receive side of the hop. That
is, neither G

(l)
r needs to follow the structure HL+1GL · · ·H2Gl nor G

(l)
t needs to follow

the structure GlHl · · ·G1H1. Note that in the physical network only the diagonal
elements of the Gl can be varied.

For the evaluation of the resulting upper-bounds, it turns out that three cases have
to be distinguished. These are (i) l = 1, (ii) l = L+ 1 and (iii) 2 ≤ l ≤ L.

Case l = 1: This case corresponds to the bound that is obtained through the
isolation of the hop between S and R1. The IO-relation of the subnetwork from R1 to
D is replaced by an arbitrary linear map that is defined by the matrix G

(1)
r ∈ Cn×n(1)

R .
The IO-relation of the modified network is then given by

yD = G(1)
r · (H1xS + wR1) . (2.52)

Thus, a single-hop network is obtained. It corresponds to a MIMO multiple access
scenario with a linear receiver, where the n users are constrained to an average power
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P/n each. A sketch of this network is depicted in Fig. 2.5 (a).

Proposition 1. The optimal DMT curve of this network is achieved through receive
zero-forcing and given in terms of the function x+ , max(0, x) by (taking into account
the pre-log 1/p)

d̄1(r) =
(
n

(1)
R − n+ 1

)
·
(

1− p · r
n

)+

. (2.53)

Proof. The proposition is proved in [59]. �

Case 2 ≤ l ≤ L: This case corresponds to bounds that are obtained through the
isolation of the hop between any two adjacent relay stagesRl−1 andRl. The IO-relation
of the subnetwork from S to Rl−1 is replaced by a linear map that is determined by
the matrix G

(l−1)
t ∈ Cn

(l−1)
R ×n and fulfills the sum-power constraint on Rl−1. Likewise,

the IO-relation of the subnetwork from Rl to D is replaced by a linear map that is
determined by the matrix G

(l)
r ∈ Cn×n(l)

R . The IO-relation of this modified network is
given by

yD = G(l)
r ·
(
Hl ·G(l−1)

t xS + wRl

)
. (2.54)

Thus, a single-hop channel is obtained. It corresponds to a point-to-point MIMO link
with joint linear transmit and receive beamforming and n parallel spatial streams. A
sketch of this channel is depicted in Fig. 2.5 (b). Note that due to the fixed number of
n spatial streams, the optimal DMT curve from [23] of the general MIMO channel is
not achievable.

Proposition 2. The optimal DMT curve of this channel is achieved by channel diag-
onalization via singular value decomposition, parallel transmission over the n strongest
eigenmodes and equalization of the receive SNRs through power loading. It is given by

d̄l(r) =
(
n

(l)
R − n+ 1

)
·
(
n

(l−1)
R − n+ 1

)
·
(

1− p · r
n

)+

. (2.55)

Proof. From [60, Theorem 2], we know that the joint linear transmit-receive beam-
forming that maximizes the minimum SINR among n parallel symbol streams subject
to an average transmit-power constraint, decouples the MIMO channel into its eigen-
modes and applies an equal receive power policy to the n strongest eigenmodes. That
is, the IO-relation (2.54) can be written in terms of the non-zero eigenvalues of HlH

H
l ,
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Figure 2.5.: Receive (a), joint transmit/receive (b), transmit (c) beamforming.
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λ1 ≥ λ2 ≥ . . . ≥ λ
min(n

(l−1)
R ,n

(l)
R )

, as

yDi =
√
λi · xSi + w̃Di , i ∈ {1, . . . , n}, (2.56)

where the noise vector w̃Rl = (w̃
R

(l)
1
, . . . , w̃

R
(l)

n
(l)
R

)T follows the same distribution as wRl ,

the power allocation fulfills

n∑
i=1

PSi = P (2.57)

and

SINR1 = PS1 · λ1 = . . . = SINRn = PSn · λn. (2.58)

Thus, we have the following inequality for the average transmit power of the weakest
subchannel:

P

n
≤ PSn ≤ P. (2.59)

We obtain the following lower- and upper-bounds on the outage probability (2.50) for
a set of codes whose rates fulfill R(P ) = r/n logP +O(logP 1−ε) for arbitary ε > 0:

P

[
n⋃
i=1

Ei
∣∣ r] = P

[
1

p
log

(
1 +

PSn

σ2
· λn
)
<
r

n
logP +O(logP 1−ε)

]
(2.60)

≥ P

[
1

p
log

(
1 +

P

σ2
· λn
)
<
r

n
logP +O(logP 1−ε)

]
(2.61)

= P
[
λn < σ2 · P−(1− p·r

n ) +O(P−ε)
]

(2.62)

P

[
n⋃
i=1

Ei
∣∣ r] = P

[
1

p
log

(
1 +

PSn

σ2
· λn
)
<
r

n
logP +O(logP 1−ε)

]
(2.63)

≤ P

[
1

p
log

(
1 +

P

nσ2
· λn
)
<
r

n
logP +O(logP 1−ε)

]
(2.64)

= P
[
λn < nσ2 · P−(1− p·r

n ) +O(P−ε)
]
. (2.65)
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For large P both upper- and lower-bound are of the form

P
[
λn < cup/low · P−(1− p·r

n )
]
. (2.66)

If 1− p · r/n < 0, it is obvious, that (2.66) tends to one for large P , and thus d̄l(r) = 0.
In the following, we study the case 1 − p · r/n > 0. For notational convenience, we
define nmin = min{n(l−1)

R , n
(l)
R }. From [23, Eq. (15)]5, we know that for the nonnegative

vector (bi)
n
i=1, bi ∈ R+,

lim
x→∞
−
P
[
∩nmin
i=1

{
λi < x−bi

}]
log x

(2.67)

=

nmin∑
i=1

(∣∣∣n(l−1)
R − n(l)

R

∣∣∣− 2 · (nmin − i+ 1)− 1
)
· bi. (2.68)

We define the sets B1 = {1, . . . , n − 1} and B2 = {n, . . . , nmin}. We can now show
that the upper- and lower-bound on the DMT curve of the considered channel are
independent of cup/low and thus coincide:

d̄l(r) = lim
P→∞

−
logP

[
λn < cup/low · P−(1−p·r/n)

]
logP

(2.69)

= lim
P→∞

−
logP

[⋂
i∈B2

{
λi < cup/low · P−(1−p·r/n)

}]
logP

(2.70)

= lim
P→∞

−
logP

[⋂
i∈B2

{
λi < cup/low · P−(1−p·r/n)

}]
logP

+ lim
P→∞

−
logP

[⋂
i∈B1
{λi < 1}

∣∣⋂
i∈B2

{
λi < cup/low · P−(1−p·r/n)

}]
logP

(2.71)

= lim
P→∞

−
logP

[{⋂
i∈B1
{λi < 1}

}⋂{⋂
i∈B2

{
λi < cup/low · P−(1−p·r/n)

}}]
logP

(2.72)

= lim
P→∞

−
logP

[{⋂
i∈B1
{λi < 1}

}⋂{⋂
i∈B2

{
λi < P−(1−p·r/n)

}}]
logP

(2.73)

=

nmin∑
i=n

(∣∣∣n(l−1)
R − n(l)

R

∣∣∣+ 2 · (nmin − i+ 1)− 1
)
· (1− p · r/n) (2.74)

= (n
(l)
R − n+ 1) · (n(l−1)

R − n+ 1) · (1− p · r/n) . (2.75)

Note that the added term in (2.71) is zero, since the probability therein is independent
of P . In (2.74), we apply (2.68) with bi = (1− p · r/n) for all i ∈ B2 and bi = 0 for all

5Note that the eigenvalues are ordered in reversed order in [23]. Therefore, (2.68) is modified ac-
cordingly.

42



2.5. An Upper-Bound on the Achievable Diversity-Multiplexing Tradeoff

i ∈ B1. Thus, the proof is complete. �

Case l = L + 1: This case corresponds to the bound that is obtained through the
isolation of the hop between RL and D. The IO-relation of the subnetwork from S to
RL is replaced by an arbitrary linear map that is defined by the matrix G

(L)
t ∈ Cn

(L)
R ×n

and fulfills the sum-power constraint on RL. The IO relation of this modified network
is then given by

yD = HL+1 ·G(L)
t xS + wD. (2.76)

Thus, a single-hop network is obtained. It corresponds to a MIMO broadcast scenario
with a linear transmitter, where the n spatial streams are constrained to an average
sum-power P . A sketch of this network is depicted in Fig. 2.5 (c).

Proposition 3. The optimal DMT curve of this network is achieved through transmit
zero-forcing and given by

d̄L+1(r) =
(
n

(L)
R − n+ 1

)
·
(

1− p · r
n

)+

. (2.77)

Proof. We know the following from the uplink-downlink duality [61]: Every set of
SINRs (SINR1, . . . , SINRn) which is achievable in the dual multiple access (uplink) net-
work with linear receiver is achievable in our average sum-power constrained broadcast
(downlink) network with linear transmitter. In particular, every set (SINR1, . . . , SINRn)

that is achievable through receive zero-forcing in a dual uplink network is achievable
through transmit zero-forcing in our downlink network. Therefore, the achievability
of the DMT curve (2.77) is an immediate consequence of the DMT curve for the dual
uplink network with linear receiver [59] (cf. (2.53)) and the uplink-downlink duality.

Note that the [59] constrains each user to transmit with power P/n in the uplink
network. Therefore, our downlink network with sum-transmit power P and arbitrary
power-allocation could potentially achieve a better DMT curve, and we need a converse
to establish the proposition. Again, we consider the dual uplink problem. We upper-
bound the optimal DMT curve of a sum-power constrained dual uplink network with
sum-power P by a per-user-power constrained uplink network with transmit power P
per user. Now, we can repeat the original proof of [59] with the modified constraint of
an n-fold transmit power. As P is taken to infinity, this modification has no impact
on the result. �

In the following two sections, we attempt to come up with relay gain allocations that
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might achieve this upper-bound. Specifically, we study optimization of the SINR of the
weakest source-destination pair in Section 2.6 and distributed zero-forcing with relay
set selection in Section 2.6.3.

2.6. Max-Min Rate Optimization

This section is concerned with the following constrained optimization problem in the
complex gain coefficients of the relay nodes:

maximize min
i∈{1,...,n}

SINRi (2.78)

subject to PRl ≤ P̄Rl for all l ∈ {1, . . . , L}, (2.79)

where SINRi denotes the SINR of source-destination pair i. As in the previous sections,
the transmit power of each relay stageRl, P̄Rl , is constrained not to exceed a maximum
sum-power P̄Rl . Maximization of the weakest SINR corresponds to maximization of
the rate R̄min that can be achieved by each of the n source-destination pairs. This rate
is given by

R̄min = min
i∈{1,...,n}

log2 (1 + SINRi) = log2

(
1 + min

i∈{1,...,n}
SINRi

)
. (2.80)

This objective is motivated by the outage probability (2.50): The choice of an R̄min

maximizing gain allocation ensures that an outage occurs only due to poor channel
realizations and not due to suboptimal gain allocations. In this sense, the scheme
is optimal with respect to outage probability, and, in particular, with respect to the
DMT.

The following proposition states that the above optimization problem can be turned
into an unconstrained problem in the complex vectors g̃l, l ∈ {1, . . . , L}, which are
related to the gl’s according to

gl =

√
P̄Rl
P̃Rl
· g̃l. (2.81)

Here, P̃Rl denotes the transmit power of relay stage Rl that would result, if g̃l was
applied as the gain vector of stage Rl. Thus, the g̃l’s inherently lead to gl’s that fulfill
the power constraints with equality.
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Proposition 4. The constrained optimization problem in (g1, . . . ,gL) can be turned
into an unconstrained optimization problem in (g̃1, . . . , g̃L) that for any l ∈ {1, . . . , L}
can be written as

maximize min
i∈{1,...,n}

g̃Hl Al,ig̃l
g̃Hl Bl,ig̃l

, (2.82)

where for all i ∈ {1, . . . , n}

SINRi =
g̃Hl Al,ig̃l
g̃Hl Bl,ig̃l

, (2.83)

and the matrices Al,i and Bl,i are functions of all vectors {g̃1, . . . , g̃l−1, g̃l+1, . . . , g̃L},
but not of g̃l. Moreover, Al,i = AH

l,i, Al,i � 0, Bl,i = BH
l,i, Bl,i � 0 for all l and i.

Proof. The proof of Proposition 4 is provided in Appendix A.1.

The problem in the complex vectors (g̃1, . . . , g̃L) is easily translated into a problem
in the real vectors (z1, . . . , zL), where zl , (<{g̃l}T , ={gl}T )T . To this end, the
following real and symmetric matrices are introduced:

Āl,i ,

(
<{Al,i} −={Al,i}
={Al,i} <{Al,i}

)
and B̄l,i ,

(
<{Bl,i} −={Bl,i}
={Bl,i} <{Bl,i}

)
.

With this notation, the SINRs are rewritten for any l ∈ {1, . . . , L} as

SINRi =
g̃Hl Al,ig̃l
g̃Hl Bl,ig̃l

=
zTl Āl,izl
zTl B̄l,izl

. (2.84)

Assumption: Throughout the remainder of this section, it is assumed that the gen-
eralized Rayleigh quotients SINRi, i ∈ {1, . . . , n}, are expanded in a way such that

zT1 B̄1,iz1 = . . . = zTLB̄L,izL. (2.85)

This assumption is obviously without loss of generality.

Our optimization problem falls into the class of maximin (or minimax) problems. A
comprehensive theory of minimax optimization is provided in [62]. For general network
topologies the problem is a nonlinear programming problem. Necessary conditions for a
local maximum of mini∈{1,...,L} SINRi are given as follows [62]. Let A (typically referred
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2. Spatial Multiplexing in Multihop Interference Networks

to as “active set”) be defined as

A ,

{
i ∈ {1, . . . , n}

∣∣∣∣∣ SINRi = min
j∈{1,...,L}

SINRj

}
. (2.86)

If mini∈{1,...,L} SINRi has a local maximum in the point (z
(0)
1 , . . . , z

(0)
L ), there are γi ≥ 0,

i ∈ {1, . . . , n}, such that

∑
i∈A

γi ·∇z1,...,zLSINRi

∣∣∣∣
(z1,...,zL)=(z

(0)
1 ,...,z

(0)
L )

= 0 and
∑
i∈A

γi = 1. (2.87)

These conditions can be interpreted geometrically: The zero vector must be contained
in the convex hull of the set of gradients {∇z1,...,zLSINRi | i ∈ A}. They are straightfor-
wardly derived as the Karush-Kuhn-Tucker (KKT) conditions [63,64] for the following
constrained optimization problem in (z1, . . . , zL):

maximize λ (2.88)

subject to SINRi − λ ≥ 0 for all i ∈ {1, . . . , n}. (2.89)

Problem (2.89) is equivalent to problem (2.82), and the optimal λ fulfills
λ = minj∈{1,...,n}{SINRj}. This re-formulation is a common trick that allows for the
elimination of the non-differentiable minimum-function. The Lagrangian of this prob-
lem is given by

L(λ, z1, . . . , zL, γ1 . . . , γn) = λ+
n∑
i=1

γi · (SINRi − λ) . (2.90)

Thus, the KKT conditions are summarized as:

n∑
i=1

γi ·∇z1,...,zLSINRi = 0, (2.91)

n∑
i=1

γi = 1, (2.92)

SINRi − λ ≥ 0 for all i ∈ {1, . . . , n}, (2.93)

γi ≥ 0 for all i ∈ {1, . . . , n}, (2.94)

γi · (SINRi − λ) = 0 for all i ∈ {1, . . . , n}. (2.95)
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2.6. Max-Min Rate Optimization

Since λ = minj∈{1,...,n} SINRj, condition (2.93) is redundant. Moreover, condition (2.95)
implies that Lagrange multipliers that correspond to inactive constraints are zero, i.e.,
γi = 0 for all i /∈ A. Hence, the KKT conditions are equivalent to (2.87).

The gradient vectors for condition (2.87) are given for i ∈ {1, . . . , n} by

∇z1,...,zLSINRi =
(
∇T

z1
SINRi, . . . ,∇T

zL
SINRi

)T
, (2.96)

where

∇zlSINRi =
2

zTl B̄l,izl
·
(
Āl,izl − SINRi · B̄l,izl

)
. (2.97)

Since each multiplicative term 2/zTl B̄l,izl corresponds just to a scaling of the ith gra-
dient, condition (2.87) is equivalent to the existence of positive γi, i ∈ {1, . . . , n}, such
that∑

i∈A

γi ·
(
Ā1,iz1 − SINRi · B̄1,iz1

)
= 0 ∀ l ∈ {1, . . . , L} and

∑
i∈A

γi = 1. (2.98)

Suppose there was a set of positive γ′i, i ∈ {1, . . . , n}, that fulfills (2.87). Then, (2.98)
is fulfilled by the following positive γi, i ∈ {1, . . . , n}:

γi =
1∑

j∈A
2

zTl B̄l,jzl
· γ′j
· 2

zTl B̄l,izl
· γ′i, (2.99)

where it is required, that zT1 B̄1,iz1 = . . . = zTLB̄L,izL, in order to obtain the same set
of γi, i ∈ A, for all l ∈ {1, . . . , L}. This is guaranteed by assumption (2.85).

Note that only SINRi that correspond to source-destination pairs in the active set
are involved in (2.98). Thus, all of them fulfill SINRi = minj∈A SINRj = λ by definition.
The conditions (2.98) can thus be rewritten as∑

i∈A

γi ·
(
Āl,izl − λ · B̄l,izl

)
= 0 for all l ∈ {1, . . . , L}, (2.100)∑

i∈A

γi = 1, (2.101)

SINRi = λ for all i ∈ A. (2.102)

The focus of the next subsection is on two-hop networks, i.e., the case L = 1. In
this case, we can turn the optimization problem (2.82) into a quasi-convex problem
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2. Spatial Multiplexing in Multihop Interference Networks

that can be solved by standard algorithms. Moreover, for the special case L = 1 and
n = 2, a customized optimization method is proposed that allows for a nice geometric
interpretation.

2.6.1. Two-Hop Networks (L = 1)

If the network is restricted to two hops, the necessary condition for a local maximum
reduces to the existence of positive γi, i ∈ A, such that∑

i∈A

γi ·
(
Ā1,iz1 − λ · B̄1,iz1

)
= 0, (2.103)∑

i∈A

γi = 1, (2.104)

SINRi = λ for all i ∈ A, (2.105)

where (2.103) is a generalized eigenvalue problem in the matrices
∑

i∈A γi · Ā1,i and∑
i∈A γi · B̄1,i with eigenvalues λj{

∑
i∈A γi · Ā1,i,

∑
i∈A γi · B̄1,i}, j ∈ {1, . . . , 2n(1)

R },
which are ordered in descending order.

Remark: A given set of γi, i ∈ A, that fulfills (2.103)-(2.105) for one of the eigenvalues
of
∑

i∈A γi · Ā1,i and
∑

i∈A γi · B̄1,i, will not fulfill (2.105) for any of the remaining
2 · n(1)

R − 1 eigenvalues in general.

For two-hop networks, we do not attempt to solve equations (2.100)-(2.102) directly.
Instead, we succeed in turning the optimization problem (2.82) into a quasi-convex
problem. The key to this is the following chain of identities. For any z ∈ R2·n(1)

R , we
have

min
i∈{1,...,n}

SINRi = min
i∈{1,...,n}

zT1 Ā1,iz1

zT1 B̄1,iz1

(2.106)

= min
(γ1,...,γn)∈[0,∞)n∑n

i=1 γi>0

∑n
i=1 γi · zT1 Ā1,iz1∑n
i=1 γi · zT1 B̄1,iz1

(2.107)

≤ min
(γ1,...,γn)∈[0,∞)n∑n

i=1 γi>0

max
z1∈R2·n(1)

R

zT1
(∑n

i=1 γi · Ā1,i

)
z1

zT1
(∑n

i=1 γi · B̄1,i

)
z1

(2.108)

= min
(γ1,...,γn)∈[0,∞)n∑n

i=1 γi>0

λ1

{
Ā1(γ), B̄1(γ)

}
, (2.109)

where Ā1(γ) ,
∑n

i=1 γi · Ā1,i, B̄1(γ) ,
∑n

i=1 γi · B̄1,i and γ , (γ1, . . . , γn). In order to
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2.6. Max-Min Rate Optimization

understand the equality between (2.106) and (2.107), it is helpful to note the following:

(i) At the minimum of (2.107) all source-destination pairs with index i, i /∈ A, are
assigned zero weights, i.e., γi = 0.

(ii) If γi = 0 for all i /∈ A, (2.107) is obviously equal to (2.106) and independent of
the values {γi|i ∈ A}.

Inequality (2.108) follows, since maximization of the generalized Rayleigh-quotient for
every fixed (γ1, . . . , γn) with respect to z1 cannot decrease the minimum value with
respect to (γ1, . . . , γn). Finally, (2.108) coincides with the largest generalized eigenvalue
of the matrices Ā1(γ) and B̄1(γ), which yields (2.109). The above inequality holds with
equality, if and only if z1 is the principal generalized eigenvector of Ā1(γ) and B̄1(γ).
That is, the problem (2.82) is equivalent to the following problem in γ:

minimize λ1

{
Ā1(γ), B̄1(γ)

}
(2.110)

subject to
n∑
i=1

γi > 0,

γi ≥ 0 for all i ∈ {1, . . . , n}.

The largest generalized eigenvalue λ1{A,B} is quasi-convex in the symmetric matrices
A = AT and B = BT [65]. Thus, problem (2.110) is a quasi-convex problem in
standard form [66]. Accordingly, it is has a more desirable structure than the original
problem (2.82). An efficient algorithm for this problem has been proposed in [65]. It
is based on the barrier method and accepts any problem of the form

minimize λ1 {M(γ),N(γ)} (2.111)

subject to N(γ) � 0
2n

(1)
R ×2n

(1)
R
,

P(γ) � 0(n+2)×(n+2),

where the matrices depend linearly on γ ∈ Rn as follows:

M(γ) =
n∑

m=i

γi ·Mi, Mi = MT
i for all i ∈ {1, . . . , n}, (2.112)

N(γ) =
n∑

m=i

γi ·Ni, Ni = NT
i for all i ∈ {1, . . . , n}, (2.113)

P(γ) = P0 +
n∑

m=i

γi ·Pi, Pi = PT
i for all i ∈ {1, . . . , n}. (2.114)
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2. Spatial Multiplexing in Multihop Interference Networks

In the sequel, the problem (2.110) is fit into this framework. For reasons that will
become evident, the constraint

∑n
i=1 γi > 0 in (2.110) is replaced by the two constraints

n∑
i=1

γi < 1.1 and
n∑
i=1

γi > 0.9. (2.115)

This modification does not change the optimization problem, since the co-domain of the
generalized eigenvalue in (2.110) would be unchanged, even if

∑n
i=1 γi was constrained

to a fixed positive value. Next, the following matrices are associated with each other:

M(γ) = Ā(γ) and Mi = Ā1,i, i ∈ {1, . . . , n}, (2.116)

N(γ) = B̄(γ) and Ni = B̄1,i, i ∈ {1, . . . , n}. (2.117)

The matrices Pi, i ∈ {0, 1, . . . , n}, capture the constraints and are defined as follows:

poµν =


−1.1, if µ = ν = n+ 1,

0.9, if µ = ν = n+ 2,

0, else.

for i = 0, (2.118)

piµν =



1, if µ = ν = i,

−1, if µ = ν = n+ 1,

1, if µ = ν = n+ 2,

0, else,

for i ∈ {1, . . . , n}. (2.119)

Note that the constraints γi ≥ 0 are replaced by γi > 0 here. In the case that |A| < n

at the optimum γ, the optimum thus corresponds to the infimum of the objective
function in the feasibility region.

The algorithm of [65] for the above problem (2.111) is subject to the following as-
sumptions:

1. N(γ) is bounded away from singularity on the feasible set, i.e., there is c > 0,
such that P(γ) � 0(n+2)×(n+2) implies N(γ) � c · I

2n
(1)
R
.

2. The feasible set is bounded, i.e., there is some c such that P(γ) � 0(n+2)×(n+2)

implies ‖γ‖2 < c.

3. There is a pair (λ(0),γ(0)), such that N(γ(0)) � 0
2n

(1)
R ×2n

(1)
R
, P(γ(0)) � 0(n+2)×(n+2)

and λ(0)N(γ(0))−M(γ(0)) � 0
2n

(1)
R ×2n

(1)
R
.

For the problem at hand these assumptions are verified as follows:
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2.6. Max-Min Rate Optimization

1. Due to the constraint
∑n

i=1 γi > 0.9 and the positive-definiteness of all B̄1,i,
i ∈ {1, . . . , n}, the following holds for the smallest eigenvalue:

λ
2n

(1)
R

{
n∑
i=1

γiB̄1,i

}
≥ 0.9 · min

i∈{1,...,n}
λ

2n
(1)
R

{
B̄1,i

}
> 0.

We conclude that det(B̄1(γ) − c · I
2n

(1)
R

) ≥ 0 and thus B̄1(γ) � c · I
2n

(1)
R

for all
c < 0.9 ·mini∈{1,...,n} λ2n

(1)
R

{
B̄1,i

}
.

2. The feasible set is obviously bounded, since 0 < γi < 1.1 for all i ∈ {1, . . . , n}.
Here, the upper-bounds are due to the constraint

∑n
i=1 γi < 1.1.

3. By definition, P(γ(0)) � 0(n+2)×(n+2) for every feasible γ(0). We
know that B̄1(γ(0)) � 0

2n
(1)
R ×2n

(1)
R
, and thus that λ

2n
(1)
R
{B̄1(γ(0))} >

0 for all γ(0). Since λ1

{
Ā1(γ)

}
is finite for every feasi-

ble γ(0), any choice λ(0) > λ1{Ā1(γ(0))}/λ
2n

(1)
R
{B̄1(γ(0))} fulfills

λ(0) · B̄1(γ(0))− Ā1(γ(0)) � 0
2n

(1)
R ×2n

(1)
R
.

Next, the special case n = 2 is considered. We device a particularly simple and
insightful optimization method for this case.

Case n = 2: Consider the necessary conditions (2.103) - (2.105). For n = 2, the
active set A at the global optimum is either {1}, {2} or {1, 2}. If A = {1} at the
global optimum, the necessary conditions (2.103) - (2.105) imply that the optimum is
given by the largest generalized eigenvalue λ1{Ā1,1, B̄1,1}, and the optimum z1 is given
by the corresponding principal eigenvector. We thus have

max
z1∈R2·n(1)

R

min
i∈{1,2}

SINRi = max
z1∈R2·n(1)

R

SINR1 < SINR2

∣∣
z1=argmaxSINR1

. (2.120)

Likewise, if A = {2} at the global optimum, the necessary conditions (2.103) - (2.105)
imply that the optimum is given by the largest generalized eigenvalue λ1{Ā1,2, B̄1,2},
and the optimum z1 is given by the corresponding principal eigenvector. We thus have

max
z1∈R2·n(1)

R

min
i∈{1,2}

SINRi = max
z1∈R2·n(1)

R

SINR2 < SINR1

∣∣
z1=argmaxSINR2

. (2.121)

Lastly, if at the optimum A = {1, 2}, the necessary conditions (2.103) - (2.105) simplify
to the existence of γ1 ∈ [0, 1], such that

(
(1− γ1)Ā1,1 + γ1Ā1,2

)
z1 = λ ·

(
(1− γ1)B̄1,1 + γ1B̄1,2

)
z1, (2.122)
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2. Spatial Multiplexing in Multihop Interference Networks

λ = SINR1 = SINR2. (2.123)

From (2.106) - (2.109), we know that λ is given by the generalized eigenvalue
λ1{(1− γ1)Ā1,1 + γ1Ā1,2, (1− γ1)B̄1,1 + γ1B̄1,2} and z1 by the corresponding princi-
pal eigenvector v1(γ1) in the global optimum. We fix z1 = v1(γ1) in the following.
Then, a γ1 ∈ [0, 1] that fulfills SINR1 − SINR2 = 0 must exist. This follows due to the
intermediate value theorem, since

SINR1|z1=v1(0) − SINR2|z1=v1(0) = max
z1∈R2·n(1)

R

SINR1 − SINR2|z1=v1(0) ≥ 0, (2.124)

SINR1|z1=v1(1) − SINR2|z1=v1(1) = SINR1|z1=v1(1) − max
z1∈R2·n(1)

R

SINR2 ≤ 0. (2.125)

If one of these two inequalities did not hold, the active set at the global optimum
could not be given by A = {1, 2} (cf. (2.120) and (2.121)). The problem is thus
reduced to a root finding problem on the interval [0, 1]. It remains to show that there
exists exactly one root on this interval. Let γ(0)

1 be a root. There exists a unique
root, if for any δ > 0 the inequalities SINR2|z1=v1(γ

(0)
1 +δ)

> SINR1|z1=v1(γ
(0)
1 +δ)

and
SINR2|z1=v1(γ

(0)
1 −δ)

< SINR1|z1=v1(γ
(0)
1 −δ)

hold, i.e.,

zT1 Ā1,2z1

zT1 B̄1,2z1

∣∣∣∣∣
z1=v1(γ

(0)
1 +δ)

>
zT1 Ā1,1z1

zT1 B̄1,1z1

∣∣∣∣∣
z1=v1(γ

(0)
1 +δ)

, (2.126)

zT1 Ā1,2z1

zT1 B̄1,2z1

∣∣∣∣∣
z1=v1(γ

(0)
1 −δ)

<
zT1 Ā1,1z1

zT1 B̄1,1z1

∣∣∣∣∣
z1=v1(γ

(0)
1 −δ)

. (2.127)

Eq. (2.126) — and (2.127) analogously — is proved through contradiction:

max
z1∈R2·n(1)

R

zT1

(
(1− γ(0)

1 − δ) · Ā1,1 + (γ
(0)
1 + δ) · Ā1,2

)
z1

zT1

(
(1− γ(0)

1 − δ) · B̄1,1 + (γ
(0)
1 + δ) · B̄1,2

)
z1

(2.128)

=
zT1

(
(1− γ(0)

1 − δ) · Ā1,1 + (γ
(0)
1 + δ) · Ā1,2

)
z1

zT1

(
(1− γ(0)

1 − δ) · B̄1,1 + (γ
(0)
1 + δ) · B̄1,2

)
z1

∣∣∣∣∣
z1=v1(γ

(0)
1 +δ)

(2.129)

≤
zT1

(
(1− γ(0)

1 ) · Ā1,1 + γ
(0)
1 · Ā1,2

)
z1

zT1

(
(1− γ(0)

1 ) · B̄1,1 + γ
(0)
1 · B̄1,2

)
z1

∣∣∣∣∣
z1=v1(γ

(0)
1 +δ)

(2.130)
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Figure 2.6.: The quantities SINR1, SINR2 and ρ are plotted versus γ1 ∈ [0, 1] for a sample
channel with A = {1, 2} at the optimum.

<
zT1

(
(1− γ(0)

1 ) · Ā1,1 + γ
(0)
1 · Ā1,2

)
z1

zT1

(
(1− γ(0)

1 ) · B̄1,1 + γ
(0)
1 · B̄1,2

)
z1

∣∣∣∣∣
z1=v1(γ

(0)
1 )

(2.131)

=
zT1

(
(1− γ(0)

1 − δ) · Ā1,1 + (γ
(0)
1 + δ) · Ā1,2

)
z1

zT1

(
(1− γ(0)

1 − δ) · B̄1,1 + (γ
(0)
1 + δ) · B̄1,2

)
z1

∣∣∣∣∣
z1=v1(γ

(0)
1 )

. (2.132)

Inequality (2.130) holds under the hypothesis

zT1 Ā1,2z1

zT1 B̄1,2z1

∣∣∣∣∣
z1=v1(γ

(0)
1 +δ)

≥ zT1 Ā1,1z1

zT1 B̄1,1z1

∣∣∣∣∣
z1=v1(γ

(0)
1 +δ)

, (2.133)

which is to be contradicted. Finally, (2.132) follows, since for equal generalized Rayleigh
quotients zT1 Ā1,1z1/z

T
1 B̄1,1z1 and zT1 Ā1,2z1/z

T
1 B̄1,2z1, the expression is independent of

δ. A comparison of (2.128) and (2.132) reveals the contradiction.

An illustration of the SINRs SINR1 and SINR2 as they evolve for varying γ1 ∈ [0, 1] is
provided in Fig. 2.6. Indeed, there is a unique intercept point of the curves for SINR1

and SINR2. Moreover, we have plotted the quantity

ρ , λ1{(1− γ1)Ā1,1 + γ1Ā1,2, (1− γ1)B̄1,1 + γ1B̄1,2}.
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This quantity corresponds to the upper-bound on the smaller of the two SINRs in
(2.109). As it was predicted, the upper-bound is met at the intercept point of the
SINR curves. The gap to this upper-bound can nicely be used for the following stopping
criterion in any iterative optimization method. For a given tolerance ε > 0, terminate
an algorithm, if

λ1

{∑
i∈A

γi · Ā1,i,
∑
i∈A

γi · B̄1,i

}
− min

i∈{1,...,n}
SINRi < ε, (2.134)

that is, in our case if

ρ−min{SINR1, SINR2} < ε. (2.135)

In Algorithm 1, we solve the root finding problem in γ1 by means of the method of
bisection [66]. Thus, we obtain a method for the solution of the optimization problem
(2.82) that provably converges to the global optimum of the problem. Bisection is well
known to converge linearly [66].

In order to obtain a rough impression of the number of iterations that is typically
required by Algorithm 1, we consider Fig. 2.7. Two sets of empirical CDFs of iteration
numbers for ε = 10−3 are shown. They are obtained from 104 sample channels each.
Realizations of the fading coefficients hYX are generated independently from a CSCG
random variable of unit variance. Moreover, the per-stage transmit powers are fixed
to PS = PR1 = . . . = PRL = P . In the upper plot, a network with n

(1)
R = 10 is

considered for different SNR = P/σ2. It is observed that the number of iterations
increases for increasing SNRs, which is not surprising. In the lower plot, networks are
considered for different n(1)

R and fixed SNR P/σ2 = 10. It is observed that the number of
iterations increases for increasing numbers of relay nodes. Also this effect is expected,
since more relay nodes typically result into larger SINRs. Generally, the number of
iterations is very moderate. Still, one should keep in mind that each iteration requires
the computation of a principal generalized eigenvalue/eigenvector pair.

2.6.2. General Multihop Networks

In this subsection, general networks with an arbitrary number of relay stages, L, are
considered. We do not have a method to turn the optimization problem (2.82) into a
quasi-convex problem for L > 1. Therefore, we focus on iterative method for finding
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Algorithm 1 Bisection-based optimization algorithm for special case L = 1 and n = 2.
given l = 0, u = 1, tolerance ε > 0.
if (2.120) holds, i.e., A = {1} then

z1 = v1(0).
return z1.

else if (2.121) holds, i.e., A = {2} then
z1 = v1(1).
return z1.

else
loop
γ1 ← (l + u)/2.
ρ← λ1{(1− γ1)Ā1,1 + γ1Ā1,2, (1− γ1)B̄1,1 + γ1B̄1,2} .
z1 ← v1(γ1).
∆← SINR1|z1 − SINR2|z1 .
if ρ−min{SINR1, SINR2} < ε then

break;
else if ∆ > 0 then
l← γ1;

else
u← γ1.

end if
end loop
return z1.

end if
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Figure 2.7.: Empirical CDF of iterations that are required by Algorithm 1 for ε = 10−3. 104

sample channels are considered each. For each channel, realizations of the fading
coefficients hYX are generated independently from a CSCG random variable
of unit variance. In the upper plot, a network with n

(1)
R = 10 is considered

for different SNR P/σ2. In the lower plot, networks with different n(1)
R are

considered for a fixed SNR P/σ2 = 10.
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local optima in the following. An application of the developed method is, for instance,
the tracking a global optimum in time-variant channels. As a basis for the applied
optimization methods, we compute gradients and Hessians of the n source-destination
pair SINRs. To this end, we recall from (2.84) that the ith source-destination pair
SINR is a generalized Rayleigh quotient in every zl, l ∈ {1, . . . , L}:

SINRi =
zTl Āl,izl
zTl B̄l,izl

. (2.136)

The gradient of the ith source-destination pair SINR, i ∈ {1, . . . , n}, is thus given by

∇z1,...,zLSINRi =
(

(∇z1SINRi)
T · · · (∇zLSINRi)

T
)T

, (2.137)

where

∇zlSINRi =
2

zTl B̄l,izl
·
(
Āl,izl − SINRi · B̄l,izl

)
. (2.138)

The Hessians are constructed from the matrices ∇2
zl1zl2

SINRi, (l1, l2) ∈ {1, . . . , L}2, as
the block matrix

∇2
zSINRi =

(
∇2

zl1zl2
SINRi

)
l1=1,...,L;l2=1,...,L

, (2.139)

where ∇2
zl1zl2

SINRi is the matrix in the l1th “block row” and l2th “block column”. The
expression for the ∇2

zl1zl2
SINRi on the block-diagonal, i.e., for l1 = l2 = l, is readily

obtained as the Hessian of the generalized Rayleigh quotient:

∇2
zlzl

SINRi =
2

zTl B̄l,izl

(
Āl,i − SINRi · B̄l,i − (∇zlSINRi) zTl B̄l,i − B̄l,izl∇T

zl
SINRi

)
.

(2.140)

The case l1 6= l2 is more tricky. We start out by rewriting the gradient ∇zl1
SINRi as

∇zl1
SINRi =

2

zTl1B̄l1,izl1
·




eT1 Āl1,izl1

eT2 Āl1,izl1
...

eT
2n

(l1)
R

Āl1,izl1

− SINRi ·


eT1 B̄l1,izl1

eT2 B̄l1,izl1
...

eT
2n

(l1)
R

B̄l1,izl1



 (2.141)

=
2

zTl2B̄l2,izl2
×
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.

(2.142)

The first equality follows directly from (2.138). The expression (2.142) is due Propo-
sition 4. It implies that both the nominator and the denominator are generalized
Rayleigh quotients in all g̃l, l ∈ {1, . . . , L}, and thus also in all zl, l ∈ {1, . . . , L}. The
g̃Hl1 in (2.142) explicitly refer to variables that appear in complex conjugated form. That
is, all g̃l1 that are not complex conjugated are not substituted. Note that assumption
(2.85) is required for the second equality to hold. Let the kth row of ∇2

zl1zl2
SINRi be

denoted by
(
∇2

zl1zl2
SINRi

)
k
. It is obtained from (2.142) as

(
∇2

zl1zl2
SINRi

)
k

=
2

zTl2B̃l2,izl2

(
2 · zTl2Ãl2,l1,i − 2 · SINRi · zTl2B̃l2,l1,i

−zTl2B̃l2,l1,izl2∇T
zl2
SINRi + 2 ·

(
∇zl1

SINRi
)
k
· zTl2B̃l2,i

)
,

(2.143)
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where
(
∇zl1

SINRi
)
k
denotes the kth element of ∇zl1

SINRi and

Ãl2,l1,i =
1

2
·





Āl2

∣∣
g̃Hl1

=eT1
...

Āl2

∣∣
g̃Hl1

=eT
n
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R
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...
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=ı·eT
n

(l1)
R


+
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...
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=eT
n

(l1)
R
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=ı·eT
n
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R



T

, (2.144)

B̃l2,l1,i =
1

2
·
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=eT
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...
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=eT
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=ı·eT1
...

B̄l2
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g̃Hl1

=ı·eT
n

(l1)
R



T

. (2.145)

Here, the fact is used that a quadratic form xTKx solely depends on the even symmetric
part 1/2(K + KT ) of the matrix K.

Below, two optimization schemes are applied to the problem (2.82). The first method
has been introduced in [62] and requires only first order information, i.e., the gradi-
ents of the source-destination pair SINRs. The second method requires second order
information, i.e., also the corresponding Hessians, and applies Newton’s method [66].

Optimization based on first order information: Since the minimum function is not
differentiable, the classic method of steepest descent cannot be applied to the problem
(2.82). An alternative optimization method based on first order information has been
proposed in [62]. It is a generalization of the method of steepest descent and provably
converges to a local maximum. As the method of steepest descent, the two main
building blocks of the algorithm are the computation of a search direction and a line
search along this direction. The identification of the search direction requires the
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concept of an ε-active set. This set is defined in the style of (2.86) as

A(k)
ε ,

{
i ∈ {1, . . . , n}

∣∣∣∣∣ SINRi
∣∣
z=z(k) − min

j∈{1,...,n}
SINRj

∣∣
z=z(k) < ε

}
, (2.146)

where z(k) denotes the value of z , (zT1 , . . . , z
T
L)T in iteration k. Let (γ

(0)
i )i∈Aε be the

minimizer of the optimization problem:

minimize

∥∥∥∥∥∑
i∈Aε

γi ·∇zSINRi
∣∣
z=z(k)

∥∥∥∥∥
2

, (2.147)

subject to
∑
i∈A(k)

ε

γi = 1,

γi ≥ 0 for all i ∈ A(k)
ε .

The search direction is then given by

∆(k) =

∑
i∈A(k)

ε
γ

(0)
i ·∇zSINRi

∣∣
z=z(k)∥∥∥∑

i∈A(k)
ε
γ

(0)
i ·∇zSINRi

∣∣
z=z(k)

∥∥∥ . (2.148)

The problem (2.147) is a quadratic programming problem and efficiently solved by
standard methods [66]. Geometrically, the search direction corresponds to the point
on the surface of the convex hull of all ∇zSINRi, i ∈ A(k)

ε , that is closest to the origin in
Eukledian distance. At this point, all inner products ∆T ·∇zSINRi, i ∈ A(k)

ε , are equal.
Intuitively, all source-destination pairs that are in the ε-active set can thus expect the
same “gain” for small step-sizes. Moreover, the search-direction is non-zero, unless z(k)

fulfills the necessary conditions for a local optimum (2.87).

The conventional update equation

z(k+1) = z(k) + µ
(k)
0 ·∆(k), (2.149)

with corresponding line-search

µ
(k)
0 = argmax

µ>0
min

i∈{1,...,n}
SINRi

∣∣∣∣
z=z(k)+µ·∆(k)

(2.150)

has a problem in the case at hand. An important assumption in the convergence proof
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of the considered algorithm is the boundedness of the set

M(z(k)) ,

{
z ∈ R2·

∑L
l=1 n

(l)
R

∣∣∣∣max
z

min
i∈{1,...,n}

SINRi > SINRi
∣∣
z=z(k)

}
. (2.151)

This condition would ensure that the maximizing µ in (2.150) can be attained. How-
ever, since all SINRi are invariant under scaling of z,M(z(k)) cannot be bounded. This
issue is avoided by the update-equation

z(k+1) =
(1− µ(k)

0 ) · z(k) + µ
(k)
0 ·∆(k)

‖(1− µ(k)
0 ) · z(k) + µ

(k)
0 ·∆(k)‖

(2.152)

with corresponding line-search

µ
(k)
0 = argmax

0<µ≤1
min

i∈{1,...,n}
SINRi

∣∣∣∣
z=

(1−µ)·z(k)+µ·∆(k)

‖(1−µ)·z(k)+µ·∆(k)‖

. (2.153)

Here, the search interval is bounded, and

max
µ>0

min
i∈{1,...,n}

SINRi

∣∣∣∣
z=z(k)+µ·∆(k)

= max
0<µ≤1

min
i∈{1,...,n}

SINRi

∣∣∣∣
z=

(1−µ)·z(k)+µ·∆(k)

‖(1−µ)z(k)+µ·∆(k)‖

. (2.154)

The method as proposed in [62] is summarized in Algorithm 2. Unfortunately, we
do not have an upper-bound on the gap between current minimum SINR and the true
optimum, and thus no reliable stopping criterion for the case L > 1.

Algorithm 2 Optimization algorithm based on first order information [62]
given z(0), k = 0, ε0 > 0, ρ0 > 0.
loop

determine A(k)
ε .

for all i ∈ A(k)
ε compute gradients ∇zSINRi

∣∣
z=z(k) .

determine search direction ∆(k).
obtain z(k+1) through line search.
if min

i∈A(k)
ε

∆(k) ·∇T
z SINRi

∣∣
z=z(k) < ρk then

εk ← ε0/2
k;

ρk ← ρ0/2
k.

end if
k ← k + 1.

end loop
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Optimization based on second order information: All of the above optimization algo-
rithms are well suited for obtaining a rough estimate of the locally optimal z. However,
none of them shows good convergence properties in the immediate vicinity of the opti-
mum, since they converge only linearly in the best case. Therefore, we introduce here
Newton’s method, which converges quadratically. This method is particularly desirable
as a complement to Algorithm 2, since fast convergence near the optimum is of special
importance, when no proper stopping criterion is known. It should be emphasized that
Newton’s method converges only locally in general [66]. Therefore, it requires a good
initialization, which is assumed to be achieved through K iterations in Algorithm 2 in
the following.

We propose a method which in first the instance assumes that A(K)
ε , as obtained by

Algorithm 2, is the true active set A at the local maximum. Under this assumption, we
can consider the following equality constrained optimization problem in (z1, . . . , zL):

maximize SINRj, (2.155)

subject to SINRi = SINRj for all i ∈ A(K)
ε \{j},

where j ∈ A(K)
ε . The local optimum is then found by solving the following system of(∑L

l=1 n
(l)
R

)
+ |A(K)

ε | − 1 equations in just as many unknowns (cf. (2.100)-(2.102)):

∇zSINRj +
∑

i∈A(K)
ε \{j}

γ̃i ·∇zSINRi = 0, (2.156)

SINRi − SINRj = 0 for all i ∈ A(K)
ε \{j}. (2.157)

This system is obtained by taking derivatives in the Lagrangian of (2.155), where the γ̃i
are the respective Lagrangian multipliers. A comparison of (2.156) and (2.87) reveals
that the γ̃i and γi, i ∈ A(k)

ε \{j}, are related as follows:

γ̃i =
1

γj
· γi. (2.158)

A solution of the system is thus a local optimum (for a sufficiently good initialization),
if γ̃i ≥ 0 for all i ∈ A(K)

ε . If any of the involved γi is negative, the assumption that
A(K)
ε coincides with the active set at the true local optimum is wrong. In this case,

either the initialization has to be refined or the assumed active set needs to be reduced.

Let us define the vector γ̃(k) , (γ̃
(k)
i )

i∈A(K)
ε \{j}, where the γ̃(k)

i correspond to the
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values of the γ̃i in iteration k. The Newton update-equation is then given by

z(k+1) = z(k) + ∆(k)
z , (2.159)

γ̃(k+1) = γ̃(k) + ∆
(k)
γ̃ , (2.160)

where the update vectors ∆
(k)
z̃ and ∆

(k)
γ̃ in iteration k are given by the solution to the

linear equation system(
A

(k)
11 A

(k)
12

A
(k)
21 A

(k)
22

)
︸ ︷︷ ︸

A(k)

·

(
∆

(k)
z̃

∆
(k)
γ̃

)
︸ ︷︷ ︸

∆(k)

= −

(
b

(k)
1

b
(k)
2

)
︸ ︷︷ ︸

b(k)

, (2.161)

with

A
(k)
11 = ∇2

zSINRj
∣∣
z=z(k) +

∑
i∈A(K)

ε \{j}

γ̃
(k)
i ·∇2

zSINRi
∣∣
z=z(k) , (2.162)

A
(k)
12 =

((
∇T

z SINRi
∣∣
z=z(k)

)
i∈A(K)

ε \{j}

)T
, (2.163)

A
(k)
21 =

(
∇TSINRi

∣∣
z=z(k) −∇TSINRj

∣∣
z=z(k)

)
i∈A(K)

ε \{j} , (2.164)

A
(k)
22 = 0

(|A(K)
ε |−1)×(|A(K)

ε |−1)
(2.165)

and

b
(k)
1 = ∇zSINRj

∣∣
z=z(k) +

∑
i∈A(K)

ε \{j}

γ̃
(k)
i ·∇zSINRi

∣∣
z=z(k) , (2.166)

b
(k)
2 =

(
SINRi

∣∣
z=z(k) − SINRj

∣∣
z=z(k)

)
i∈A(K)

ε \{j} . (2.167)

A problem of the method outlined so far, is the fact that the matrix A(k) in (2.161) is
singular in the optimum. Thus, an important assumption that is required in standard
proofs for quadratic convergence of Newton’s method is violated. This problem is
circumvented by a dehomogenization of the problem as discussed in Section 2.3.2.
That is, the first and the (n

(l)
R +1)st element of each zl, l ∈ {1, . . . , L}, i.e., the real and

imaginary part of the first element of g̃l, need to be fixed to arbitrary values that are
not both zero. If the vector of remaining unknowns is denoted by z̃, the corresponding
update-equation is obtained from (2.159) and (2.161) by deleting all lines and columns
in A(k) and elements in ∆(k) and b(k) that correspond to derivatives with respect to
any of the 2L eliminated variables. The insight that the resulting matrix in (2.165) is
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full rank in the optimum point for the modified update-equation stems from numerical
experiments and is not proved in this thesis.

An algorithm that uses Newton’s method for the polishing of an estimate of a local
optimum, which is obtained by Algorithm 2, is outlined in Algorithm 3. The basic idea
is to run this algorithm after a fixed number K of iterations in Algorithm 2. Newton’s
method will

• either confirm the choice of the active set and polish the optimum,

• or contradict the assumption of the active set, since either

– one or more Lagrange multipliers are negative

– or ∃j /∈ A(K)
ε , such that SINRj < min

i∈A(K)
ε

SINRi,

• or it will not converge.

In the latter two cases, Algorithm 2 is run for another K iterations, until eventually
Newton’s method converges and confirms the assumed active set.

Algorithm 3 Optimization algorithm based on second order information
given K ∈ N+.
run Algorithm 2 for K iterations with random initialization z(0).
z(0) ← z(K).
loop

run Newton’s method under assumption of active set A(K)
ε .

if Newton’s method converged to z = z∗ and γ̃i = γ̃∗i
and min

i∈A(K)
ε

γ̃∗i ≥ 0 and min
j /∈A(K)

ε
SINRj

∣∣
z=z∗
≥ min

i∈A(K)
ε

SINRi
∣∣
z=z∗

then
return z∗;

else
run Algorithm 2 with initialization z(0);
z(0) ← z(K).

end if
end loop

Note that this algorithm could potentially converge to a local minimum or a saddle
point, since conditions (2.156) and (2.157) are only necessary and not sufficient for
a local maximum. Both events are unlikely to occur, since very poor initializations
through Algorithm 2 are required. In the following, we identify the class of stationary
points that we are actually interested in. If we choose an arbitrary l′ ∈ {1, . . . , L} and
fix all zl, l ∈ {1, . . . , L}\{l′}, we obtain an equivalent two-hop network with a single
relay stageRl′ . We know from Subsection 2.6.1 that zl′ is suboptimal, if (2.106)-(2.109)
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does not hold with equality. Therefore, the global maximum must fulfill

λ1

{∑
i∈A

γi · Āl,i,
∑
i∈A

γi · B̄l,i

}
= min

i∈{1,...,n}
SINRi for all l ∈ {1, . . . , L}. (2.168)

Whether or not an identified stationary point does fulfill this condition, is straightfor-
ward to check. There are, in general, multiple of such stationary points, and computer
simulations suggest that their number depends for a given channel realization on the
ratio P/σ2. For an illustration consider the plots of Fig. 2.8. We show for a three-hop
network with n = n

(1)
R = n

(2)
R = 2, fixed channel and various random initializations

the evolution of the minimum SINR with the iterations in Algorithm 2. The two plots
correspond to the cases P/σ2 = 50 (top) and P/σ2 = 100 (bottom), and we show only
curves whose corresponding stationary point fulfills (2.168). We observe (also based on
larger sets of sample curves than shown here) that the number of stationary points in
this network is either one or two for this (and also every other generic) channel. Gener-
ally, observations from computer experiments suggests the following about stationary
points that fulfill (2.168) in generic channels:

(i) Their number is one for all network topologies in the regime of sufficiently small
P/σ2, and increases up to a certain limit for increasing P/σ2.

(ii) This limit on the number of solutions in the regime of large P/σ2 grows rapidly
for n and L.

The second point might be related to the fact that also the number of zero-forcing
solutions (see Tab. 2.1) grows rapidly with the network size.

2.6.3. Is the DMT Upper-Bound Achievable?

The upper-bound on the DMT curve of Section 2.5 is very “optimistic” in fact. Not
only does it ignore most of the noise introduced in the network, it also assumes full
cooperation among relay nodes that are within the same stage. Accordingly, it is an
obvious question, whether this upper-bound is meaningful in any sense. Although we
are not able to answer this question in a rigorous way, we provide some evidence that
the upper-bound might be achievable, whenever distributed zero-forcing is feasible.

For our outage simulation results, realizations of the fading coefficients hYX are
generated independently from a CSCG random variable of unit variance. Moreover,
the per-stage transmit powers are fixed to PS = PR1 = . . . = PRL = P and the noise
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Figure 2.8.: Evolution of the minimum SINR with the iterations in Algorithm 2 for a three-
hop network with n = n

(1)
R = n

(2)
R = 2, fixed channel and various random

initializations. The two plots correspond to the cases P/σ2 = 50 (top) and
P/σ2 = 100 (bottom), and only curves whose corresponding stationary point
fulfills (2.168) are shown.
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variance is set to σ2 = 1. Moreover, we assume a constant code rate R = 1 bit per
channel use, which corresponds to a multiplexing gain r = 0.

2.6.3.1. Two-Hop Networks (L = 1)

In this case, we can apply the methods of Subsection 2.6.1 in order to globally maximize
the SINR of the weakest source-destination pair. Thus, we can simulate the maximal
achievable diversity. Results are shown in Fig. 2.9. Remarkably, numerical evidence
suggests that the diversity upper-bound (2.51), which evaluates to d(0) ≤ n

(1)
R − n+ 1,

is achieved with equality, whenever distributed zero-forcing is feasible. The upper
plot shows performance results for two-hop networks with two source-destination pairs
for various numbers of relay nodes. In the case n(1)

R = 2, it is not surprising that
outage probability does not tend to zero as the SNR is increased. This is due to the
fact, that the two relay nodes are not able to completely eliminate interference in the
network. Therefore, the error floor is a result of interference limitation. For three
relay nodes, the observed diversity is d(0) = 2, which coincides with the upper-bound
(2.51). The same observation applies for larger relay numbers. This means, that each
additional relay provides a diversity increment of one order. The plot on the right-hand
side of Fig. 2.9 shows the corresponding curves for networks with two, three and four
source-destination pairs and the minimum number of relay nodes that is required for
distributed zero-forcing, i.e., topologies with n

(1)
R = n · (n − 1) + 1. Also for these

networks the upper-bound (2.51) appears to be met according to numerical evidence.

2.6.3.2. Long Networks (L ≥ n)

For networks with L ≥ 2, we do not have methods to find the global maximum (except
for an exhaustive search over all local maxima). For this reason, we consider less
complex relay gain allocation strategies to achieve the maximal diversity.

We consider a network with n source-destination pairs and at least n relay stages with
n

(l)
R ≥ n for all l ∈ {1, . . . , L}. According to conditions (2.36) and (2.37), the existence

of a zero-forcing gain allocation in such a network is guaranteed with probability one. In
particular, it suffices to use only n relay nodes in each stage for distributed zero-forcing.
This motivates the concept of relay set selection. The method tests different relay sets
with respect to the maximal rate that is achievable for the weakest source-destination
pair and schedules the best set for data transmission.
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Figure 2.9.: Outage probability vs. SNR for a constant code rate R = 1 and various two-hop
networks. The pre-log is set to p−1 = 1.
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The key issue with such a selection algorithm is the assembling of the relay sets for
the individual test cycles. The number of relay sets that contain n relay nodes of each
stage is given by

L∏
l=1

(
n

(l)
R

n

)
.

Therefore, an exhaustive search over all these sets is feasible only for very small numbers
of excess relay nodes. It would be desirable, if tests of only d̄(0) sets were sufficient for
achieving a diversity order d̄(0).

Algorithm 4 Relay Set Selection Algorithm for L ≥ n

given d̄(0), n, n(1)
R , . . . , n

(L)
R , n(L+1)

R , n, SNR∗ = 0, k = 0L×1.
for m = 1 to d̄(0) do
for l = 1, 3, 5, ... do
kl ←

(
(m− 1) mod (n

(l)
R − n+ 1)

)
+ 1.

R(m)
l ←

{
R

(l)
kl
, . . . ,R

(l)
kl+n−1

}
.

end for
for l = 2, 4, 6, ... do
kl ←

⌈
m/min(n

(l−1)
R − n+ 1, n

(l+1)
R − n+ 1)

⌉
.

R(m)
l ←

{
R

(l)
kl
, . . . ,R

(l)
kl+n−1

}
.

end for
Compute an arbitrary zero-forcing gain allocation for R(m)

1 , . . . ,R(m)
L .

for j = 1 to n do
SNRj ← SNR at Dj for current gain allocation.

end for
if minj SNRj ≥ SNR∗ then
SNR∗ ← minj SNRj.
R∗ ←

{
R(m)

1 , . . . ,R(m)
L

}
.

end if
end for
return R∗, SNR∗.

With this objective in mind, we propose the following heuristic relay set selection
algorithm. The relay set for test cycle m is given by ∪Ll=1R

(m)
l , where R(m)

l ⊆ Rl and
|R(m)

l | = n for all l ∈ {1, . . . , L}. We distinguish relay stages with odd and even index
l. For stages with odd indexes, we choose

R(m)
l =

{
R

(l)

(m−1)
(

mod(n
(l)
R −n+1)

)
+1
,R

(l)

(m−1)
(

mod(n
(l)
R −n+1)

)
+2
, . . . ,R

(l)

(m−1)
(

mod(n
(l)
R −n+1)

)
+n

}
.
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2. Spatial Multiplexing in Multihop Interference Networks

Figure 2.10.: Relay set selection algorithm applied to three different sample topologies with
diversity order four: 2×5×5×2 (top), 2×5×2×5×2 (middle), 2×5×3×3×5×2
(bottom). Relay nodes as selected in cycles 1 to 4 are marked in the respective
column within a relay stage each. Bounds d̄l(0) are indicated between relay
stages.
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Figure 2.11.: Outage probability vs. SNR for a constant code rate R = 1 and various
three-hop networks. The pre-log is set to p−1 = 1.

For stages with even indexes, we define ml , min(n
(l−1)
R − n + 1, n

(l+1)
R − n + 1) and

choose
R(m)
l =

{
R

(l)
dm/mle,R

(l)
dm/mle+1, . . . ,R

(l)
dm/mle+n−1

}
,

where n(L+1)
R , n. Since d̄(0)/ml ≤ n

(l)
R −n+1, we change the candidate set n(l)

R −n+1

times at most in relay stages with even index. This relay set selection algorithm ensures
by construction that, in each cycle m, there is at least a single pair of transmit and
receive antennas in each hop that has not been jointly tested in any prior cycle.

In every test cycle, the zero-forcing gain allocation is obtained by assigning equal gain
coefficients to the n tested relay nodes in each of the stages R1, . . . ,RL−n and by using
the gain coefficients of the n relay nodes in each of the stages RL−n+1, . . . ,RL to solve
the resulting system of equations (2.20) and inequations (2.21). We randomly pick any
out of the finitely many solutions in the product of projective spaces as potential relay
gain allocation and test it, subject to the sum-power constraints, with respect to the
maximum rate that is achievable by the weakest source-destination pair.

A pseudo-code formulation of the whole relay set selection method is provided in
Algorithm 4. Moreover, we provide illustrations for three sample networks in Fig. 2.10.

In the following, we apply the algorithm to several network topologies and numeri-
cally evaluate the corresponding diversity performance. We start out with a three-hop
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Figure 2.12.: Outage probability vs. SNR for a constant code rate R = 1 and various
four-hop networks. The pre-log is set to p−1 = 1.
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Figure 2.13.: Outage probability vs. SNR for a constant code rate R = 1 and various
five-hop networks. The pre-log is set to p−1 = 1.
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network of topology 2× nR × nR × 2, nR ∈ {2, 3, 4, 5}. The upper-bound on diversity
at r = 0 is d̄(0) = nR−1. For the case nR = 5, the relay sets that are tested in the four
test cycles of the relay set selection algorithm are depicted in Fig. 2.10a). The outage
probability versus SNR curves are shown in Fig. 2.11. We observe, that the asymptotic
slope of the curve in log-log scale indeed tends to −(nR− 1), which corresponds to the
upper-bound.

We repeat the experiment for four-hop networks of topology 2 × nR × 2 × nR × 2

for nR ∈ {2, 3, 4, 5}. The upper-bound on diversity at r = 0 is d̄(0) = nR − 1. For
the case nR = 5, the relay sets that are tested in the four test cycles of the relay set
selection algorithm are depicted in Fig. 2.10b). The corresponding performance plots
are shown in Fig. 2.12. Again, the upper-bound is nR−1, and the slopes of the outage
probability curves suggest that this upper-bound is met.

As a last example, we consider five-hop networks of topology 2×nR×3×3×nR×2

for nR ∈ {3, 4, 5}. The upper-bound on diversity at r = 0 is d̄(0) = nR − 1. For
the case nR = 5 the relay sets that are tested in the four test cycles of the relay set
selection algorithm are depicted in Fig. 2.10c). The corresponding plots are shown in
Fig. 2.13. Although there is a clear trend of an increasing slope for increasing nR, a
clear identification of the diversity order is not possible. In order to observe the full
slope −(nR− 1), (most likely) larger values of SNR need to be considered in this case.

2.6.3.3. Short Networks (2 ≤ L ≤ n− 1)

In the previous subsection, we have assumed that the network consists of n relay stages
at least. For such networks, it was possible to identify d̄(0) relay sets that in each hop
differ at least in a single relay node (either on transmit or receive side). This is not
feasible, when the network has less than n relay stages. Consider the extreme case of a
3× 4× 4× 3-network. The DMT upper-bound for this network evaluates to d̄(0) = 2.
Since all relay nodes in both relay stages are indispensable for zero-forcing the network,
relay set selection is not an option for meeting the upper-bound. However, we can resort
to another means for inducing diversity, namely the multiple solutions to the system
of equations (2.20) and inequations (2.21). Our approach is thus to test any two (out
of the twelve, cf. Tab. 2.1) different solutions with respect to the maximal achievable
rate of the weakest of the three source-destination pairs, and to choose the best of
these solutions for data transmission. A respective numerical experiment shows that
the outage probability versus SNR curve in log-log scale (not shown) exhibits slope −2

for large values of SNR.
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2. Spatial Multiplexing in Multihop Interference Networks

We could imagine in fact (and all our numerical performance results support this
conjecture) that the above discussed means for inducing diversity, namely relay set
selection and selection from finite sets of solutions to (2.20) (or combinations of both)
suffice for meeting the upper-bound on the DMT curve, whenever L ≥ 2 (there is only
a single solution in projective space for L = 1) and distributed zero-forcing is feasible.

2.7. Concluding Remarks

We have generalized the concept of distributed zero-forcing in interference networks
from two-hop networks to networks with an arbitrary number of hops. Interestingly, our
conjecture on the topology requirements for the feasibility of distributed zero-forcing
suggests that the required number of relay nodes per stage decreases significantly with
increasing numbers of hops, and is given by n for sufficiently long networks. The
second major insight, which is conveyed by this work, is the fact that the lack of
cooperation among relay nodes within the same stage appears not to result into a loss
of performance in terms of the DMT that is achievable by coherent amplify & forward
schemes.
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3. Capacity Scaling of “Long”
Multihop MIMO Multiple Access
Networks

3.1. Introduction & Related Work

Consider wireless transmission from n transmit antennas to an n-antenna receive ter-
minal over a random static and frequency-flat channel. Assume that each transmit
antenna transmits with power P/n, where P corresponds to the sum-transmit power.
If the channel coefficients between all pairs of transmit and receive antennas are i.i.d.
random variables with zero mean and nonzero variance, (sum-)capacity scales linearly
in n almost surely. This result does not depend on whether transmit antennas can
cooperate or not [6], since the capacity of an n×n point-to-point MIMO channel with
white transmit covariance matrix, coincides with the sum-capacity of an MIMO multi-
ple access channel with n single-antenna transmit terminals and an n-antenna receive
terminal [67].

Envision the scenario that the transmit antennas are shadowed from the receive ter-
minal. Wireless connectivity can then be sustained through the installation of properly
positioned intermediate nodes that relay the source signals to the destination via multi-
ple hops (see Fig. 3.1). We refer to this modified network as multihop MIMO multiple
access network. If the number of antennas in each relay stage, nR, grows linearly with
n, then also the sum-capacity of the network scales linearly in n for any fixed number
of relay stages, L. This result holds even for non-cooperative relay stages1 [24]. This
establishes the generalization of the result that transmit antenna cooperation is not

1The term non-cooperative relay stage refers in this work to the scenario that joint processing of
receive signals of antennas within a stage is disabled, i.e., each relay antenna is associated with a
single-antenna node. Likewise, a cooperative relay stage can be viewed as a single multi-antenna
node.
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crucial in multi-antenna single-hop networks, neither source nor relay antenna cooper-
ation is crucial for linear sum-capacity scaling in multi-antenna multihop networks.

The above statement says nothing about the asymptotic constant of proportionality
cXF
L that fulfills almost surely

cXF
L = lim

n→∞

RXF
L

n
, (3.1)

where RXF
L denotes the supremum of the set of sum-rates that are achievable through

a certain relaying scheme “XF” in an L + 1-hop network, except for the fact that it
is strictly positive for every L. In particular, it does not preclude the scenario that
cXF
L → 0 as L→∞.

Accordingly, the central question of this work is, how cXF
L evolves1 for increasing L

under various relaying strategies. The provided answers reveal fundamental differences
in this asymptotic behavior with respect to L not only between cooperative and non-
cooperative relaying strategies, but also between different non-cooperative strategies.
Specifically, the following four relaying strategies are investigated:

• Decode & forward (DF): For this strategy, full cooperation among antennas within
relay stages is assumed. Relay stages can then decode message(s) from their
preceding stage efficiently, and re-encode them prior to the forwarding. Thus,
messages are regenerated in every stage of the network and propagate from stage
to stage until they reach the destination. This strategy is optimal in multihop
networks according to the cut-set bound (or the data-processing inequality) [20].

• Pure quantize & forward (QF): This strategy can be executed in a completely
decentralized fashion, i.e., without any relay antenna cooperation. The receive
signal of each relay antenna is quantized. The index of the quantization code-
word is then encoded and forwarded. For decoding, the destination successively
recovers the quantized relay receive signals of each stage, until it can decode the
source messages based on the quantized receive signals of the first relay stage.

• Quantize & forward with Slepian & Wolf compression (CF): The above quantize
& forward strategy QF can be enhanced through Slepian & Wolf compression [68]
in each relay stage. However, this extra step requires additional dissemination of
CSI.

1In this work, the focus is not on the pre-log factor that is obviously incurred, if the source stage
does not inject new signals into the network in every time slot. Accordingly, it is not taken into
account in RXF

L and set to one.
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• Amplify & forward : (AF) This strategy operates in a completely decentralized
fashion, too. The receive signal of each relay antenna is amplified by a constant
gain factor prior to transmission to the succeeding relay or destination stage.
Thus, end-to-end transmission from source to destination stage occurs over an
equivalent single-hop channel. The strategy is particularly appealing due to its
simplicity and low complexity.

In order to ensure a fair comparison, the sequence (cXF
L )∞L=0 must be considered

together with a second sequence (PL)∞L=0, whose Lth element corresponds to the per-
stage transmit power that is allocated to the source antenna stage and each of the relay
stages in an L+ 1-hop network.

The results of this work are outlined as follows (see also Tab. 3.1):

• Decode & forward: For nR = n, cDF
L is constant with respect to L, if also PL is

constant with respect to L.

• Quantize & forward with Slepian & Wolf compression: For nR = n, there exists
a linearly increasing sequence (PL)∞L=0, such that cCF

L is constant with respect to
L. Moreover, for every PL ∝ L, cL converges to a positive constant as L → ∞.
This is the best among the non-cooperative strategies.

• Amplify & forward: The convergence cAF
L → 0 as L→∞ is avoided for PL ∝ L,

if and only if the ratio β = nR/n grows at least linearly with L.

• Pure quantize & forward: For nR = n, there exists an exponentially increasing
sequence (PL)∞L=0, such that cCF

L is constant with respect to L. Moreover, for
every PL ∝ expL, cL converges to a positive constant as L→∞.

Remarks: It is not surprising, that a constant PL does not suffice for a constant cXF
L , if a

non-cooperative strategy is applied. This is an immediate consequence of the inherent
noise accumulation, which needs to be compensated by an increased transmit power.
Moreover, the obtained results do not allow for a fair comparison between amplify &
forward and pure quantize & forward. No statement is made about cAF

L for nR = n

and an exponential growth of PL. Vice versa, no statement is made on how cQF
L can

benefit from more than n relay nodes per stage.

Related Work: Multihop MIMO multiple access networks currently receive a lot of
attention in the wireless research community. The work [24] establishes linear sum-
capacity scaling in n (the number of antennas per stage) of amplify & forward multihop
MIMO multiple access networks for finite numbers of hops. This work is a generaliza-
tion of a result on two-hop MIMO multiple access networks in [69, 70]. The work [25]

77



3. Capacity Scaling of “Long” Multihop MIMO Multiple Access Networks

PL cL

DF (nR = n) PL = const limL→∞ c
DF
L = const > 0

CF (nR = n) PL ∝ L limL→∞ c
CF
L = const > 0

QF (nR = n) logPL ∝ L limL→∞ c
QF
L = const > 0

AF (nR/n = β) PL ∝ L limL→∞ c
AF
L =

{
const > 0, ifL ∈ O(β)

0, ifL ∈ Ω(β1+ε), ε > 0

Table 3.1.: Summary of results.

considers a system that corresponds to an amplify & forward multihop MIMO multiple
access network with noiseless relays. For this network, it is shown that the asymptotic
constant of proportionality between sum-capacity and n tends to zero as the number
of hops grows large. The work [71] studies the same setting for a finite number of hops
with correlated fading and cooperative relay antennas that not only amplify, but also
linearly combine the receive signals within a stage. In contrast to the above works, the
work [72] studies multihop MIMO multiple access networks for finite n in terms of the
achievable spatial multiplexing gain (degrees of freedom) in the limit of infinitely many
hops. Moreover, the works [73] (decode & forward) and [42–44] (amplify & forward)
study the DMT of multihop MIMO networks under various assumptions on the level
of cooperation in the source and relay stages.

Organization of the chapter: Section 3.2 introduces the signal model and the applied
multihop communication protocol. Section 3.3 presents in detail the relaying strate-
gies that are considered. Section 3.4 constitutes the core of this work and provides
four theorems that characterize the capacity scaling of each relaying strategy. Finally,
Section 3.5 provides concluding remarks.

In the following, the standardO(·),Ω(·),Θ(·) notation is used for the characterization
of the asymptotic behavior of some function f(·) according to

f(n) ∈ O(g(n)), if ∃M,n0 > 0 : M |g(n)| > |f(n)|,∀n ≥ n0,

f(n) ∈ Ω(g(n)), if ∃M,n0 > 0 : M |g(n)| < |f(n)|, ∀n > n0,

f(n) ∈ Θ(g(n)), if f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).
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H
L+1 H2 H1

L cooperative/non-cooperative

relay stages

cooperative

destination stage
non-cooperative

source stage

Figure 3.1.: nS non-cooperating source antennas transmit to a destination terminal with nD
antennas via L stages of nR relay antennas. Relay antennas are cooperative or
non-cooperative depending on the relaying strategy.

3.2. Signal Model & Communication Protocol

A stage of nS single-antenna source nodes S aims to transmit data to a destination
node that has access to the receive signals of a cluster D of nD antennas. Communi-
cation is assisted by L relay stages of nR antennas each (see Fig. 3.1). Two cases are
distinguished:

• Fully cooperative relay stages: All relay antennas in a stage are connected to a
central node. This central node has access to the receive signals of all antennas
in the stage, and, based on this knowledge, determines the transmit signals of
the relay antennas.

• Non-cooperative relay stages: Each relay antenna corresponds to a single node
that has to determine its transmit signal solely based on the knowledge of its own
receive signal.

The relay stages are labeled by Rl, l ∈ {1, . . . , L}. Moreover, the kth antenna in
source, relay and destination stage is labeled by Sk, R

(l)
k and Dk, respectively. The

network employs a multihop protocol. More precisely, source signals traverse all relay
stages in descending2 order of indexes, i.e., RL,RL−1, . . . ,R1, before they are received
by the destination stage. Transmission is divided into L+ 1 time slots, one dedicated
to each hop, of N symbol durations each. That is, the transmissions of the stages are

2Note that the order is reversed in comparison to Chapter 2 for notational convenience.
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orthogonal in time. Specifically,

• stage S transmits to stage RL in time slot j = 1,

• stage RL−j+2 transmits to stage RL−j+1 in time slot j, where j ∈ {2, . . . , L},

• stage R1 transmits to stage D in time slot j = L+ 1.

Channels between any two antennas are quasi-static and frequency-flat over the band-
width of interest. The channel coefficient that corresponds to the link between transmit
node A and receive node B is denoted by hBA. With this notation, the channel matrices
are written as

Hl =



(
h

R
(L)
k Sk′

)
k=1,...,nR,k′=1,...,nS

, if l = L+ 1,(
h

R
(l)
k R

(l−1)

k′

)
k=1,...,nR,k′=1,...,nR

, if l ∈ {2, . . . , L},(
h

DkR
(1)

k′

)
k=1,...,nD,k′=1,...,nR

, if l = 1.

(3.2)

Furthermore, the sequence of signals that is transmitted by antenna A in its dedicated
transmit time slot is denoted by (x

(i)
A )Ni=1. The vector of transmit signals of antennas

in a stage A = {A1, . . . ,A|A|} is denoted by

x
(i)
A =

(
x

(i)
A1
, . . . , x

(i)
A|A|

)T
. (3.3)

Likewise, the sequences of receive and additive noise signals, as they are observed by
antenna B in its dedicated receive time slot, are denoted by (y

(i)
B )Ni=1 and (w

(i)
B )Ni=1,

respectively. The receive signal and noise vectors of a stage B = {B1, . . . ,B|B|} are
denoted by

y
(i)
B =

(
y

(i)
B1
, . . . , y

(i)
B|B|

)T
, (3.4)

w
(i)
B =

(
w

(i)
B1
, . . . , w

(i)
B|B|

)T
. (3.5)

The transmission in time slot j is thus described by the IO relation

y
(i)
RL = HL+1x

(i)
S + w

(i)
RL , if j = 1, (3.6)

y
(i)
RL−j+1

= HL−j+2x
(i)
RL−j+2

+ w
(i)
RL−j+1

, if j ∈ {2, . . . , L}, (3.7)

y
(i)
D = H1x

(i)
R1

+ w
(i)
D , if j = L+ 1. (3.8)
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Note that transmit antennas within the same stage are assumed to be symbol-
synchronized.

The elements of the vectors w
(i)
Rl , l ∈ {1, . . . , L}, and w

(i)
D represent the thermal

noise that is introduced at the receiver front-ends. They are i.i.d. (both in space and
time) CSCG random variables of variance σ2

w. The elements of the channel matrices
Hl, l ∈ {1, . . . , L+ 1}, are i.i.d. random variables that follow an arbitrary distribution
with zero-mean, unit variance and bounded fourth moment.

The transmit signals of all antennas in source and relay stages are subject to an
average power constraint3. Specifically, source and relay signals must fulfill almost
surely

PSk , lim
N→∞

1

N

N∑
i=1

∣∣∣x(i)
Sk

∣∣∣2 ≤ PL/nS , for all k ∈ {1, . . . , nS}, (3.9)

P
R

(l)
k
, lim

N→∞

1

N

N∑
i=1

∣∣∣∣x(i)

R
(l)
k

∣∣∣∣2 ≤ PL/nR, for all l ∈ {1, . . . , L}, k ∈ {1, . . . , nR}, (3.10)

where PL corresponds to the sum-power that is transmitted by each stage. The pa-
rameter PL will be treated as a sequence in L.

It remains to specify, how each relay stage determines its transmit signals from its
receive signals, i.e., a map

gRl : CN×nR −→ CRl :
(
y

(i)
Rl

)N
i=1
−→

(
x

(i)
Rl

)N
i=1

, (3.11)

where CRl denotes the set of transmit signal vector sequences of relay stage Rl. In
the case of non-cooperative relay stages, the transmit signal sequence of each antenna
must solely depend on the corresponding receive signal sequence of the antenna. That
is, the map gRl decouples into the following maps:

g
R

(l)
k

: CN −→ C
R

(l)
k

:

(
y

(i)

R
(l)
k

)N
i=1

−→
(
x

(i)

R
(l)
k

)N
i=1

, k ∈ {1, . . . , nR}, (3.12)

where C
R

(l)
k

denotes the set of transmit signals of relay R
(l)
k . Three fundamentally differ-

ent relaying techniques are investigated: (i) decode & forward, (ii) quantize & forward
(with an optional Slepian & Wolf compression) and (iii) amplify & forward. While

3This power constraint will be slightly relaxed in the case of amplify & forward relaying (see Section
3.3.3).
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Relay Stages Destination Node
DF preceding hop channel matrix preceding hop channel matrix
CF receive signal powers all channel matrices
QF receive signal powers all channel matrices
AF receive signal powers all channel matrices

Table 3.2.: Receive Channel State Information

Source Nodes Relay Stages
DF channel code rates channel code rates
CF channel code rates channel code and compression rates
QF channel code rates channel code rates
AF channel code rates no requirements

Table 3.3.: Rate Feedback

the decode & forward strategy is optimal in terms of sum-capacity, it requires fully
cooperative relay stages. The other forwarding strategies are known to be suboptimal,
but do not require cooperative relay stages. For all relaying strategies, transmitting
nodes are assumed not to possess any transmit CSI. The amount of receive CSI in
the relay stages and at the destination node is specified in Table 3.2 for each scheme.
Moreover, transmitting nodes require certain rate feedback, which is provided through
perfect feedback links from the destination. This rate feedback is summarized in Table
3.3 for each scheme. The three relaying techniques and corresponding achievable rates
are revisited in the context of the considered multihop network in the next section.

3.3. Multihop Relaying Techniques

In the following, each source node Sk chooses randomly according to a uniform distribu-
tion a message mSk out of the message setMSk with 2NR

(0)
k messages for transmission.

The channel codebook of node Sk has rate R(0)
k and is denoted by CSk . Furthermore,

for each node Sk an encoding function is defined:

fSk :MSk −→ CSk : mSk −→
(
x

(i)
Sk

)N
i=1

. (3.13)

3.3.1. Decode & Forward Relaying

Although decode & forward relaying can be applied to networks with arbitrary nS , nR
and nD, attention is restricted to the case nS = nR = nD , n in this work. Decode &
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forward relaying refers to the technique of decoding and re-encoding messages in each
relay stage. For this approach, fully cooperative relay stages are assumed. That is,
the antennas in each relay stage are connected to a central node. In order to enable
coherent decoding in all relay stages and at the destination node, each relay stage as
well as the destination node is assumed to possess perfect CSI of its preceding hop.
The maps (3.11) can be split into two parts each, i.e., gRl = ĝRl ◦ g̃Rl . First, the nS
messages — one corresponding to each source node — as transmitted by the preceding

stage are decoded based on the observed sequence
(
y

(i)
Rl

)N
i=1

and the knowledge of the
channel matrix Hl+1. The corresponding decoding function is

g̃Rl : CN×nR −→MS1 × . . .×MSnS
:
(
y

(i)
Rl

)N
i=1
−→

(
m̂

(l)
S1
, . . . , m̂

(l)
SnS

)
. (3.14)

Then, the decoded messages are re-encoded:

ĝRl :MS1 × . . .×MSnS
−→ CRl :

(
m̂

(l)
S1
, . . . , m̂

(l)
SnS

)
−→

(
x

(i)
Rl

)N
i=1

, (3.15)

where CRl denotes the channel codebook of relay stage Rl. The rate of this channel
codebook is given by Rl =

∑n
k=1R

(0)
k , RΣ

S .

A sum-rate RΣ
S is achievable with the decode & forward strategy, if it is supported

by each individual hop. For the first hop between the source stage S and the fully
cooperative relay stage RL, transmission occurs over an equivalent uplink channel with
n single-antenna transmit terminals and an n-antenna receive terminal. A sum-rate
RΣ
S is achievable over the first hop channel [67], if

RΣ
S < log det

(
In +

PL
n · σ2

w

HL+1H
H
L+1

)
. (3.16)

Note that this work focuses on the achievable sum-rate RΣ
S and does not care about the

individual rates R(0)
k . For all following hops, transmission occurs over equivalent point-

to-point channels, since both transmit and receive stage are fully cooperative. For the
following hops, relay stage Rl, l ∈ {1, . . . , L}, can transmit reliably to its succeeding
stage at a rate Rl, if [6]

Rl < log det

(
In +

PL
n · σ2

w

HlH
H
l

)
. (3.17)

Here, a spatially white transmit covariance matrix is used due to the absence of transmit
CSI. In order to achieve RΣ

S over the end-to-end channel, (3.16) and (3.17) need to be
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fulfilled for RΣ
S = RL = . . . = R1. This corresponds to the condition

RΣ
S < min

l∈{1,...,L+1}
log det

(
In +

PL
n · σ2

w

HlH
H
l

)
, RDF

L . (3.18)

3.3.2. Quantization Based Relaying

Although quantization based relaying can be applied to networks with arbitrary nS ,
nR and nD, attention is restricted to the case nS = nR = nD , n in this work. In
this non-cooperative relaying scheme, the maps g

R
(l)
k
, k ∈ {1, . . . , n}, as defined in

(3.12), are implemented in two steps, i.e., g
R

(l)
k

= ĝ
R

(l)
k
◦ g̃

R
(l)
k
. In a first step, each relay

R
(l)
k quantizes its receive sequence, i.e., approximates its receive signal by the sequence(
ŷ

(i)

R
(l)
k

)N
i=1

∈ C̃
R

(l)
k
, where C̃

R
(l)
k

denotes the quantization codebook of the relay. The

sequence of additive quantization noise is defined as(
q

(i)

R
(l)
k

)N
i=1

=

(
ŷ

(i)

R
(l)
k

− y(i)

R
(l)
k

)N
i=1

, (3.19)

and the quantization noise vector of stage Rl is given by

q
(i)
Rl =

(
q

(i)

R
(l)
1

, . . . , q
(i)

R
(l)
n

)T
. (3.20)

The corresponding map is

g̃
R

(l)
k

: CN −→ C̃
R

(l)
k

:

(
y

(i)

R
(l)
k

)N
i=1

−→
(
ŷ

(i)

R
(l)
k

)N
i=1

, (3.21)

where the quantization codebook C̃
R

(l)
k

has rate R̃(l)
k .

In a second step, the index of the quantized sequence is encoded by the channel
coder, i.e., mapped onto a codeword of the channel codebook C

R
(l)
k

whose rate is larger

than or equal to R̃(l)
k :

ĝ
R

(l)
k

: C̃
R

(l)
k
−→ C

R
(l)
k

:

(
ŷ

(i)

R
(l)
k

)N
i=1

−→
(
x

(i)

R
(l)
k

)N
i=1

. (3.22)

The decoding in the destination stage is then performed in a successive fashion. In a
first step, the messages sent by the relay stage R1 are decoded based on the sequence
of receive vectors (y

(i)
D )Ni=1 and the knowledge of H1. Note that the transmission from
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R1 to D occurs over an uplink channel with n single-antenna transmit terminals and a
receive terminal with n antennas. Since the functions g

R
(1)
k

are not injective, and thus
not invertible, it is impossible to obtain a perfect reconstruction of the sequence of
receive vectors (y

(i)
R1

)Ni=1. This ambiguity is accounted for by the sequence of additive
quantization noise vectors (q

(i)
R1

)Ni=1. The ith element in the sequence of quantized
receive vectors ŷ

(i)
R1

is then written in terms of the ith element in the corresponding
sequence of transmit vectors x

(i)
R2

as

ŷ
(i)
R1

= H2x
(i)
R2

+ w
(i)
R1

+ q
(i)
R1
. (3.23)

With the knowledge of the sequence (ŷ
(i)
R1

)Ni=1 and H2, the destination proceeds with
decoding the messages of the nodes in R2. These messages can be considered as being
transmitted over a virtual uplink with n single-antenna transmit terminals and a receive
terminal with n antennas.

Proceeding this way iteratively allows for tracing back through the relay chain stage
by stage based on the sequences of quantized receive vectors and the knowledge of the
respective channel matrix. In the lth iteration, the decoder obtains the sequence of
quantized receive vectors (ŷ

(i)
Rl)

N
i=1 by decoding the messages of Rl. These messages

are transmitted over a virtual uplink channel with n single-antenna transmit terminals
and a receive terminal with n antennas. The effective IO relation between Rl+1 and D
can thus be written as

ŷ
(i)
Rl = Hl+1x

(i)
Rl+1

+ w
(i)
Rl + q

(i)
Rl , (3.24)

where q
(i)
Rl is the ith element in the respective sequence of quantization noise vectors. In

the (L+ 1)-st iteration the decoder finally arrives at the source stage, whose messages
are transmitted over a virtual uplink channel with n single-antenna transmit terminals
and a receive terminal with n antennas. They are decoded based on the effective IO
relation

ŷ
(i)
RL = HL+1x

(i)
S + w

(i)
RL + q

(i)
RL (3.25)

and the knowledge of HL+1 and ŷ
(i)
RL .

The channel and quantization codebooks that are used later on render the quan-
tization noise vectors q

(i)
Rl , l ∈ {1, . . . , L}, i.i.d. (both in space and time) CSCG

with variance σ2
l . Thus, for the end-to-end channel from S to D, a sum-rate rate
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RΣ
S =

∑n
k=1R

(0)
k , where R(0)

k denotes the rate of the channel codebook of Sk, is achiev-
able, if it fulfills

RΣ
S < log det

(
In +

PL
n · (σ2

w + σ2
L)
·HL+1H

H
L+1

)
, R

QF/CF
L . (3.26)

The rate of the channel codebook of relay node R
(l)
k is denoted by R(l)

k in the following.
In this work, rates of channel codebooks are required to coincide within each stage Rl,
i.e., R(l)

1 = . . . = R
(l)
n , Rl. The rate Rl will in each case determine the quantization

noise variance σ2
l . For given quantization noise variances σ2

l−1, l ∈ {1, . . . , L}, where
σ2

0 = 0, the rate Rl is achievable, if [6, 67]

|R̃l|Rl < log det

(
In +

PL

n ·
(
σ2

w + σ2
l−1

) · (Hl)R̃l (Hl)
H
R̃l

)
for all R̃l ⊆ Rl. (3.27)

Here, (Hl)R̃l denotes the n×|R̃l|matrix, that collects all columns of Hl that correspond
to the nodes that are contained in R̃l. Moreover, the supremum of the set of rates Rl

that fulfill (3.27) is denoted by Rl in the sequel.

In order to achieve these rates, the source and relay nodes need to generate their
channel codebooks by choosing the entries x(i)

Sk
and x(i)

R
(l)
k

as independent realizations of
CSCG random variable xS and xR, respectively. The variances of these random variable
are chosen to fulfill the average power constraints (3.9) and (3.10) with equality, i.e.,
ExS [|xS |2] = PL/n and ExR [|xR|2] = PL/n.

In the following, the quantization codebooks of the relay nodes and the resulting
quantization noise variances are specified. In this context, “pure quantization” and
“quantization with Slepian & Wolf compression” is distinguished.

3.3.2.1. Pure Quantization

Pure quantization refers to a receive signal quantization method that does not exploit
the statistical correlation among receive signals of relay nodes within the same stage.
Each relay node R

(l)
k generates a quantization codebook C̃(l)

k of rate R̃(l)
k . The elements

of the quantization noise vector q
(i)
Rl are rendered i.i.d. (both in space and time) CSCG

with variance σ2
l by choosing the entries of the quantization codebook as statistically

independent realizations of a CSCG random variable ŷ of variance Q(l)
k +σ2

w +σ2
l . Here,

Q
(l)
k denotes the average power of the desired part of the receive signal at node R

(l)
k . A

codeword is declared to be the quantization of the observed sequence, if both are jointly
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typical. In order to ensure that a quantization codeword for the observed sequence is
found based on a joint typicality check with probability one as N → ∞, the mutual
information between original and quantized observation of node R

(l)
k must fulfill

R̃
(l)
k > I

(
y

(i)

R
(l)
k

; ŷ
(i)

R
(l)
k

)
= log

(
1 +

Q
(l)
k + σ2

w

σ2
l

)
, (3.28)

or equivalently

σ2
l >

Q
(l)
k + σ2

w

2R̃
(l)
k − 1

. (3.29)

This inequality must be fulfilled for all nodes inRl. Moreover, the rates of the quantiza-
tion codebooks R̃(l)

k must be smaller than or equal to the rate of the channel codebook,
Rl. For a given Rl < Rl a quantization noise variance σ2

l is achievable, if it fulfills

σ2
l > max

R
(l)
k ∈Rl

Q
(l)
k + σ2

w

2Rl − 1
. (3.30)

3.3.2.2. Quantization with Slepian & Wolf Compression

A more efficient relaying method performs a Slepian & Wolf compression of the receive
signal upon quantization. Thus, the correlation in the receive signals of relay nodes
within the same stage can be efficiently exploited. As in the case of pure quantization,
the elements of the quantization noise vector q

(i)
Rl are rendered i.i.d. (both in space and

time) CSCG with variance σ2
l . The rate of the compressed quantization codebook of

relay node R
(l)
k is denoted by R̃(l)

k in the sequel. Rates of quantization codebooks are
chosen to coincide within each stage Rl, i.e., R̃

(l)
1 = . . . = R̃

(l)
n , R̃l. The compression

problem at hand has been studied in [74] in the context of a two-hop setup with
orthogonal second hop. The quantized observation vector can be reconstructed with
probability one as N →∞, if

|R̃l|R̃l > I

((
y

(i)

R
(l)
k

)
R

(l)
k ∈R̃l

;

(
ŷ

(i)

R
(l)
k

)
R

(l)
k ∈R̃l

∣∣∣∣ (ŷ(i)

R
(l)
k

)
R

(l)
k ∈R̃

C
l

)
for all R̃l ⊆ Rl. (3.31)

87



3. Capacity Scaling of “Long” Multihop MIMO Multiple Access Networks

For a given quantization noise variance, the conditional mutual information expression
can be written as (refer to the proof of Lemma 3 in Appendix B.1 for a derivation)

I

((
y

(i)

R
(l)
k

)
R

(l)
k ∈R̃l

;

(
ŷ

(i)

R
(l)
k

)
R

(l)
k ∈R̃l

∣∣∣∣ (ŷ(i)

R
(l)
k

)
R

(l)
k ∈R̃

C
l

)
(3.32)

= log det

(
In +

PL
(σ2

w + σ2
l ) · n

Hl+1H
H
l+1

)
− log det

(
In +

PL
(σ2

w + σ2
l ) · n

(
(Hl+1)R̃Cl

)H
(Hl+1)R̃Cl

)
+
∣∣∣R̃l

∣∣∣ log

(
1 +

σ2
w

σ2
l

)
. (3.33)

Here, (Hl)R̃Cl
denotes the |R̃C

l |×n matrix that collects all rows of Hl which correspond
to the nodes contained in R̃C

l . Again, the rate of the quantization codebook of each
node is required to be smaller than or equal to the rate of the channel codebook of the
node, i.e., R̃l ≤ Rl. For a given Rl < Rl, a quantization noise variance σ2

l is achievable,
if it fulfills (3.31) for

R̃l = Rl. (3.34)

3.3.3. Amplify & Forward Relaying

Amplify & forward refers to the technique of deriving a transmit signal from the receive
signal through simple amplification. This work focuses on the case that each relay
within stage Rl applies the same gain factor

√
α/nR, α > 0 and sufficiently small,

such that (3.10) is fulfilled. That is, g
R

(l)
k

as defined in (3.12) is given by

g
R

(l)
k

: CN −→ CN :

(
y

(i)

R
(l)
k

)N
i=1

−→
(√

α/nR · y(i)

R
(l)
k

)N
i=1

. (3.35)

Equivalently, the relay receive and transmit vectors are related as follows:

x
(i)
Rl =

√
α

nR
y

(i)
Rl =


√

α
nR

(
Hl+1x

(i)
Rl+1

+ wRl

)
, if l ∈ {1, . . . , L− 1},√

α
nR

(
Hl+1x

(i)
S + wR1

)
, if l = L,

(3.36)

where the second equality follows from (3.6) and (3.7), respectively. The effective IO
relation from source to destination stage is then obtained through recursive derivation
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of x
(i)
Rl+1

from x
(i)
Rl according to (3.36), and given by

y
(i)
D =

αL/2

n
L/2
R

H1 · · ·HL+1x
(i)
S + w

(i)
D +

L∑
l=1

αl/2

n
l/2
R

H1 · · ·Hlw
(i)
Rl . (3.37)

This IO relation represents an nS-user uplink channel with nD receive antennas. The
sum-capacity for a fixed channel realization is achieved by a Gaussian codebook, i.e.,
the x(i)

S(k)
are i.i.d. CSCG with variance PL/nS . Under this input-distribution a sum-rate

RΣ
S is achievable, if it fulfills [6]

RΣ
S < log det

(
InD + RsR

−1
n

)
, RAF

L , (3.38)

where Rs and Rn denote the covariance matrices of desired receive signal and accumu-
lated noise at the destination, respectively:

Rs =
PLα

L

nSnLR
H1 · · ·HL+1H

H
L+1 · · ·HH

1 , (3.39)

Rn = σ2
w ·

(
InD +

L∑
l=1

αl

nlR
H1 · · ·HlH

H
l · · ·HH

1

)
. (3.40)

In the sequel, α is chosen as α = PL/(PL + σ2
w). This choice does not fulfill the power

constraints (3.10) exactly, but in the following sense:

Proposition 5. Let H2, . . . ,HL ∈ CnR×nR and HL+1 ∈ CnR×nS be statistically inde-
pendent random matrices, each with i.i.d. elements of zero-mean, unit-variance and
bounded fourth moment, and fix the ratios nR/nD and nR/nS . If α = PL/(PL + σ2

w),
then

• the sum-transmit power of each stage Rl fulfills

lim
nR→∞

nR∑
k=1

P
R

(l)
k

= PL almost surely, (3.41)

• for every fixed γ < 1 and every stage Rl

Pr

[
∀ε > 0 ∃n0 :

1

nR

nR∑
k=1

1
{∣∣∣nRPR

(l)
k
− PL

∣∣∣ < ε ∀nR ≥ n0

}
> γ

]
= 1. (3.42)
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Remark: Note that this proposition does not imply for a given l that

lim
nR→∞

max
k∈{1,...,nR}

∣∣∣nR · PR
(l)
k
− PL

∣∣∣ = 0 almost surely. (3.43)

The proof of the proposition is provided in Appendix B.3. Since it relies on notation and
concepts introduced in Section 3.4.3, it is recommended to return to this proposition
and its proof later.

3.4. Capacity Scaling

This section establishes for each of the introduced relaying schemes the capacity scaling
result as outlined above. Four theorems, one for each relaying scheme, are provided
and proved. Decode & forward is examined in Subsection 3.4.1, quantize & forward
without and with Slepian & Wolf compression in Subsections 3.4.2.1 and 3.4.2.2, and
amplify & forward in Subsection 3.3.3.

3.4.1. Decode & Forward Networks

The following theorem characterizes the scaling of the supremum of achievable sum-
rates in decode & forward multihop MIMO networks:

Theorem 2. Let H1, . . . ,HL+1 ∈ Cn×n be statistically independent random channel
matrices, each with i.i.d. elements of zero-mean, unit-variance and bounded fourth
moment. Then, the supremum of the set of sum-rates that are achievable by the decode
& forward strategy, RDF

L , fulfills for all L ∈ N0

lim
n→∞

1

n
RDF
L = ψ

(
PL
σ2

w

)
, cDF

L almost surely, (3.44)

where

ψ (x) , 2 log

(
1 + x− 1

4

(√
4x+ 1− 1

)2
)
− log e

4x

(√
4x+ 1− 1

)2

. (3.45)

Note that the constant of proportionality that asymptotically relates RDF
L and n is

constant with respect to L, if PL is constant with respect to L.
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Proof of Theorem 2. Under the assumptions of the theorem the following holds for
every l ∈ {1, . . . , L} according to [75,76] (see also [26, p. 10]):

lim
n→∞

1

n
· log det

(
In +

PL
n · σ2

w

HlH
H
l

)
= ψ

(
PL
σ2

w

)
almost surely. (3.46)

Thus, there exists almost surely for every ε > 0 and arbitrary L an n0(L), such that
for all n ≥ n0(L)

max
l∈{1,...,L+1}

∣∣∣∣ 1n · log det

(
In +

PL
n · σ2

w

HlH
H
l

)
− ψ

(
PL
σ2

w

)∣∣∣∣ < ε. (3.47)

For the supremum of the set of achievable sum-rates (3.18), this implies

lim
n→∞

1

n
RDF
L = lim

n→∞
min

l∈{1,...,L+1}

1

n
log det

(
In +

PL
n · σ2

w

HlH
H
l

)
= ψ

(
PL
σ2

w

)
almost surely.

(3.48)

This establishes the theorem. �

3.4.2. Quantize & Forward Networks

3.4.2.1. Quantize & Forward without Slepian & Wolf compression

The following theorem characterizes the scaling of the supremum of achievable sum-
rates in quantize & forward multihop MIMO multiple access networks that do not
apply Slepian & Wolf compression:

Theorem 3. Let H1, . . . ,HL+1 ∈ Cn×n be statistically independent random channel
matrices, each with i.i.d. elements of zero-mean, unit-variance and bounded fourth
moment. Then, the supremum of the set of sum-rates that are achievable by the quantize
& forward strategy, RQF

L , fulfills for all L ∈ N0

lim
n→∞

1

n
RQF
L = ψ (snrD) , cQF

L almost surely, (3.49)

where snrD = PL/(σ
2
L + σ2

w), and ψ(·) is defined in (3.45). Moreover, the per-stage
transmit power PL that is required for rendering snrD constant with respect to L grows
exponentially with L.
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Note that the constant of proportionality that asymptotically relates RQF
L and n is

constant with respect to L, if the SNR at the destination stage, snrD, is constant with
respect to L.

Proof of Theorem 3. In order to prove that the supremum of the set of achievable
end-to-end sum-rates scales linearly in n in the limit L → ∞, it is sufficient to show
that there exists a sequence (PL)∞L=0, such that the SNR at the destination antennas,
given by snrD = PL/(σ

2
w+σ2

L), is kept constant and bounded away from zero as L→∞.
Then, the supremum of the set of achievable sum-rates as given by (3.26) fulfills [75,76]

lim
n→∞

1

n
·RQF

L = ψ(snrD) almost surely, (3.50)

independently of L. Since snrD > 0, this limit is strictly positive.

First, a result on the MIMO uplink channel with n single-antenna sources and an
n antenna destination is stated. Under the assumptions on the fading distributions of
the theorem, all sources can, in the limit of large n, simultaneously achieve a fraction
1/n of the supremum of achievable sum-rates. More precisely, the following lemma,
whose proof is given in Appendix B.1, holds:

Lemma 1. Consider an uplink channel with n single-antenna transmit terminals with
transmit power P/n each, and an n-antenna receive terminal with spatial noise co-
variance matrix σ2In. The elements of the channel matrix H ∈ Cn×n are distributed
according to the assumptions of Theorem 3. Let

ξ = ψ

(
P

σ2

)
. (3.51)

Then, there exists almost surely for every rate R < ξ an n0, such that for all n ≥ n0

the rate tuple (R(1), R(2), . . . , R(n)) = (R,R, . . . , R), where R(i) denotes the rate of the
ith transmit terminal, is achievable.

This lemma implies that in the limit of large n the set of achievable Rl is fully
determined by the constraint in (3.27) that corresponds to the set R̃l = Rl, since [75,76]

lim
n→∞

1

n
log det

(
In +

PL
n(σ2

l−1 + σ2
w)

HlH
H
l

)
= ξl almost surely, (3.52)
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where

ξl , ψ

(
PL

σ2
w + σ2

l−1

)
. (3.53)

Thus, there is for every fixed L and given sequence (σ2
l )
L−1
l=0 almost surely an n0(L),

such that for all n ≥ n0(L) all rates Rl, l ∈ {1, . . . , L}, are achievable simultaneously,
if Rl < ξl for all l.

The next step, relies on the fact that as n → ∞, the receive power of all receive
antennas in the various relay stages converges almost surely to PL + σ2

w. To make this
precise, the following lemma, whose proof is given in Appendix B.1, is stated:

Lemma 2. Let H ∈ Cn×n be a random matrix whose elements are distributed according
to the assumptions of Theorem 3 and P > 0. Denote by hTk the kth row of H. Then,

lim
n→∞

max
k∈{1,...,n}

∣∣∣∣Pn · ‖hTk ‖2 − P
∣∣∣∣ = 0 almost surely. (3.54)

Thus, the Q(l)
k in (3.30) fulfill for every every fixed L

lim
n→∞

max
l∈{1,...,L}

max
k∈{1,...,n}

∣∣∣Q(l)
k − PL

∣∣∣ = 0 almost surely. (3.55)

From the conclusions of Lemmata 1 and 2, we infer that there is for every fixed L
almost surely an n0(L), such that for all n ≥ n0(L) the sequence of quantization noise
variances (σ2

l )
L
l=1 is achievable according to (3.30), if for all l ∈ {1, . . . , L}

σ2
l >

PL + σ2
w

2ξl − 1
,
(
σ

(inf)
l

)2

, (3.56)

where the
(
σ

(inf)
l

)2

, l ∈ {1, . . . , L}, denote the infima of achievable noise variances.
Substitution of the asymptotic suprema of achievable rates (3.53) into (3.56) yields a
first order difference equation in σ2

l with σ2
0 = 0. This difference equation is the starting

point for the proof that any SNR value, snrD, can be sustained at the destination
antennas for increasing L by increasing PL appropriately.

93
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We apply the inequality4

2ξl − 1 >
PL

e · (σ2
l−1 + σ2

w)
, (3.57)

which holds for ξl > 0, to upper-bound
(
σ

(inf)
l

)2

in (3.56) as follows:

(
σ

(inf)
l

)2

=
PL + σ2

w

2ξl − 1
<

(
1 +

σ2
w

PL

)
· e · (σ2

l−1 + σ2
w). (3.58)

Hence, we conclude that the sequence of quantization noise variances (σl)
L
l=0 that is

characterized by the following difference equation is achievable almost surely in the
limit n→∞:

σ2
l =

(
1 +

σ2
w

PL

)
· e · (σ2

l−1 + σ2
w) with σ2

0 = 0. (3.59)

The solution to this first order difference equation is given by

σ2
l = σ2

w ·
(

1 +
σ2

w

PL

)
· e ·

1−
((

1 + σ2
w

PL

)
· e
)l

1−
(

1 + σ2
w

PL

)
· e

. (3.60)

Thus, for sustaining a certain SNR, snrD = PL/(σ
2
L+σ2

w), PL and L need to be coupled
as follows:

PL = snrD · σ2
w ·

(1 +
σ2

w

PL

)
· e ·

1−
((

1 + σ2
w

PL

)
· e
)L

1−
(

1 + σ2
w

PL

)
· e

+ 1

 . (3.61)

This implicit equation corresponds to an exponential growth of PL with L, since

lim
L→∞

PL
eL

= snrD · σ2
w ·

e

e− 1
. (3.62)

In order to show that an exponential growth of PL with L is necessary for sustaining a

4This inequality follows, since both sides evaluate to zero for x , PL
σ2
l−1+σ2

w
= 0, and the slope of the

left hand side is strictly larger than the slope of the right hand side for all x > 0:

∂

∂x
(2ξl − 1) = exp

(
− (−1 +

√
1 + 4x)2

4x

)
> e−1 =

∂

∂x
(e−1x).
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constant destination SNR, a lower-bound on
(
σ

(inf)
l

)2

, as defined in (3.56), is developed.
There exists for every destination SNR value snrD = PL/(σ

2
L + σ2

w) a c > 1, such that
for arbitrarily large L

2ξl − 1 ≤ 1

c
· ρl for all l ∈ {1, . . . , L}, (3.63)

where ρl , PL/(σ
2
l−1 + σ2

w). In order to prove this, c is chosen as5

c = min
l∈{1,...,L}

ρl
2ξl − 1

=
ρL

2ξL − 1
=

snrD
2ξL − 1

. (3.66)

This c is larger than one for positive snrD, since c takes on values on the interval (1, e):

lim
snrD→0

c = 1, (3.67)

lim
snrD→∞

c = e, (3.68)

∂c

∂snrD
> 0 for all snrD > 0. (3.69)

Hence, we conclude that

(
σ

(inf)
l

)2

=
PL + σ2

w

2ξl − 1
≥ PL

1
c
· ρl

= c · (σ2
l−1 + σ2

w) for all l ∈ {1, . . . , L}. (3.70)

With
(
σ

(inf)
0

)2

= 0, this yields the following lower-bound on
(
σ

(inf)
L

)2

:

(
σ

(inf)
L

)2

> σ2
w · c ·

1− cL

1− c
, (3.71)

5Here, l = L is the minimizer, since ρl > ρL for every l < L, and ρl/(2
ξl − 1) is monotonically

increasing in ρl:

∂

∂ρl

ρl
2ξl − 1

=

2e
(−1+

√
1+4ρl)

2

4ρl

(
1 + 4ρl −

√
1 + 4ρl

(
2e

(
√

1+4ρl−1)2

4ρl − 1

))
√

1 + 4ρl

(
1− 2e

(−1+
√

1+4ρl)
2

4ρl + 2ρl +
√

1 + 4ρl

)2 > 0. (3.64)

The positiveness of the derivative follows, since ex < (1− x)−1 for x < 1, and thus

2e
(
√

1+4ρl−1)2

4ρl − 1 <
2

1− (
√

1+4ρl−1)
2

4ρl

− 1 =
√

1 + 4ρl. (3.65)
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That is, the power PL that is required for sustaining a constant SNR, snrD, is lower-
bounded according to

PL = snrD ·
(
σ2
L + σ2

w

)
> snrD · σ2

w ·
(
c · 1− cL

1− c
+ 1

)
. (3.72)

This lower-bound implies an exponential growth of the required PL with L. �

3.4.2.2. Quantization with Slepian & Wolf Compression

The following theorem characterizes the scaling of the supremum of achievable sum-
rates in quantize & forward multihop MIMO multiple access networks that apply
Slepian & Wolf compression:

Theorem 4. Let H1, . . . ,HL+1 ∈ Cn×n be statistically independent random channel
matrices, each with i.i.d. elements of zero-mean, unit-variance and bounded fourth
moment. Then, the supremum of the set of sum-rates that are achievable by the quantize
& forward strategy with additional Slepian & Wolf compression, RCF

L , fulfills for all
L ∈ N0

lim
n→∞

1

n
RCF
L = ψ (snrD) , cCF

L almost surely, (3.73)

where snrD = PL/(σ
2
L + σ2

w), and ψ(·) is defined in (3.45). Moreover, the per-stage
transmit power PL that is required for rendering snrD constant with respect to L grows
linearly with L.

That is, the constant of proportionality that asymptotically relates RCF
L and n is

constant with respect to L, if the SNR at the destination stage, snrD, is constant with
respect to L.

Proof of Theorem 4. The proof is along the lines of the proof of Theorem 3. In order
to prove that the supremum of the set of achievable end-to-end sum-rates scales linearly
in min{nS , nR, nD} in the limit L→∞, it is sufficient to show that there is for every
L a PL, such that the SNR at the destination antennas, given by snrD = PL/(σ

2
w +σ2

L),
is kept constant and nonzero. Then, the supremum of the set of achievable sum-rates,
as defined in (3.26), fulfills [75,76]:

lim
n→∞

1

n
·RCF

L = ψ (snrD) almost surely, (3.74)
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independently of L. This limit is strictly positive for positive snrD > 0.

Again, Lemma 1 implies that for every fixed L and given sequence (σ2
l )
L−1
l=0 there

exists almost surely an n0(L), such that for all n ≥ n0(L) all rates Rl, l ∈ {1, . . . , L},
are achievable simultaneously, if Rl < ξl for all l.

Next, the quantization noise variances are evaluated. The following lemma serves as
a starting point:

Lemma 3. Let y be a Gaussian random vector with zero-mean and covariance matrix
Ky = σ2

wIn + P
n
HHH , where H ∈ Cn×n is distributed according to the assumptions of

Theorem 4 and P > 0. Let ŷ be the quantization of y, which is obtained as ŷ = y + z,
where the quantization noise vector z is a Gaussian random vector with zero-mean and
covariance matrix Kz = σ2

qIn. Let

ζ = ψ

(
P

σ2
w + σ2

q

)
+ log

(
1 +

σ2
w

σ2
q

)
, (3.75)

where ψ(·) is defined in (3.45). Then, there exists for every tuple of rates of compressed
quantization codebooks (R(1), R(2), . . . , R(n)) = (R,R, . . . , R) with R > ζ almost surely
an n0, such that for all n ≥ n0 the quantization noise variance σ2

q is achievable in the
sense of (3.31).

This lemma implies that, in the limit of large n, the set of achievable σ2
l is fully

determined by the constraint in (3.31) that corresponds to the set R̃l = Rl, since [75,76]

lim
n→∞

1

n
log det

((
1 +

σ2
w

σ2
l

)
In +

PL
n(σ2

l + σ2
w)

Hl+1H
H
l+1

)
= ζl almost surely, (3.76)

where

ζl = ψ

(
PL

σ2
w + σ2

l

)
+ log

(
1 +

σ2
w

σ2
l

)
. (3.77)

Thus, there is for every fixed L and given sequence (R̃l)
L
l=1, where R̃l > ζl for all l,

almost surely an n0(L), such that for all n ≥ n0(L) all quantization noise variances σ2
l ,

l ∈ {1, . . . , L}, that fulfill (3.77) are achievable simultaneously.

The conclusions of Lemmata 1 & 3 allow to infer that there exists for every fixed L
almost surely an n0(L), such that for all n ≥ n0(L) the sequence of quantization noise
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variances (σ2
l )
L
l=1 is achievable according to (3.34), if for all l ∈ {1, . . . , L}

ζl < R̃l = Rl < ξl. (3.78)

For a given σ2
l−1 the infimum of the achievable quantization noise variances in stage

Rl is denoted by
(
σ

(inf)
l

)2

. It is convenient to define

∆
(inf)
l ,


(
σ

(inf)
l

)2

− σ2
l−1, if l > 1,(

σ
(inf)
l

)2

, if l = 1.
(3.79)

The quantities
(
σ

(inf)
l

)2

, or, equivalently ∆
(inf)
l , l ∈ {1, . . . , L}, are determined by the

equations ζl = ξl, l ∈ {1, . . . , L}:

ψ

(
PL

σ2
l−1 + σ2

w

)
= ψ

(
PL

σ2
l−1 + ∆

(inf)
l + σ2

w

)
+ log

(
1 +

σ2
w

σ2
l−1 + ∆

(inf)
l

)
. (3.80)

Theorem 4 is established by showing that there exist constants c > 0 and d > 1, such
that σ2

l = (l + 1)c and PL = Ld fulfill (3.78) for all l ∈ {1, . . . , L}, where L can grow
arbitrarily large. To this end, ∆

(inf)
l is upper-bounded by reducing the transmit power

of relay stage Rl from PL = Ld to PL = ld. This yields the upper-bound ∆
(inf)
l < ∆

(inf)

l ,
since

(i) ∆
(inf)
l can only increase for a fixed σ2

l−1, when the transmit power both of Rl and
Rl+1 are reduced from Ld to (l + 1)d in a first step6.

6Proof: The derivative ∂∆
(inf)
l /∂PL is obtained according to the implicit function theorem:

∂∆
(inf)
l

∂PL
=
[
−2
(

4PL + σ2
w + ∆

(inf)
l + σ2

wβ −∆
(inf)
l β − σ2

l−1β + σ2
l−1

)
×
(
σ4
l−1 (β − α) + σ2

w(σ2
w + ∆

(inf)
l ) (β − α) + σ2

l−1(4PL + 2σ2
w + ∆

(inf)
l ) (β − α)

+PL

(
4σ2

w (β − α) + 4∆
(inf)
l β

))]/
[
PL(σ2

l−1 + σ2
w)α (1 + α) (σ2

l−1 + ∆
(inf)
l )

×(σ2
l−1 + σ2

w + ∆
(inf)
l )(σ2

l−1 + 4PL + σ2
w + ∆

(inf)
l ) (1 + β)

2
/ (log e)

2
]
,

where α =
√

1 + 4PL
σ2
w+σ2

l−1
and β =

√
1 4PL
σ2
w+σ2

l−1+∆
(inf)
l

. This derivative is nonpositive for positive PL,

∆
(inf)
l , σ2

w, and σ2
l−1. This is seen as follows. The denominator is obviously positive. The numerator
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(ii) the upper-bound on ∆
(inf)
l from (i) can again only increase for a fixed a transmit

power (l + 1)d of stage Rl+1 and fixed σ2
l−1, when the transmit power of Rl is

reduced from (l + 1)d to ld in a second step.

Eqs. (3.80) are rewritten in a first step as

log e
4ld

lc+∆
(inf)
l +σ2

w

(√
4ld

lc+ ∆
(inf)

l + σ2
w

+ 1− 1

)2

+ φ(∆
(inf)

l ) = 0, l ∈ {1, . . . , L}, (3.81)

where

φ(∆
(inf)

l ) = −2 log

1 +
ld

lc+ ∆
(inf)

l + σ2
w

− 1

4

(√
4ld

lc+ ∆
(inf)

l + σ2
w

+ 1− 1

)2


− log

(
1 +

σ2
w

lc+ ∆
(inf)

l

)
+ ξl

∣∣∣∣
PL=ld,σ2

l−1=lc

, (3.82)

and in a second step as

∆
(inf)

l = − ld log e

φ(∆
(inf)

l )
− σ2

w − cl − 2ld− ldφ(∆
(inf)

l )

log e
, l ∈ {1, . . . , L}. (3.83)

We take limits on both sides (Bernoulli l’Hospital) and obtain:

lim
l→∞

∆
(inf)

l =
2d
(
c+ 4d+ c

√
1 + 4d

c

)
liml→∞∆

(inf)

l − σ2
w(c+ 4d)

(
c+ 2d+ c

√
1 + 4d

c

)
2cd
√

1 + 4d
c

.

(3.84)

This equation is solved for liml→∞∆
(inf)

l as follows:

lim
l→∞

∆
(inf)

l = σ2
w ·

1 +
1 +

√
1 + 4d

c

2d
c

 . (3.85)

has zeros only at ∆
(inf)
l = 0, ∆

(inf)
l = −σ2

w−σ2
l−1−4PL and ∆

(inf)
l = −σ2

l−1−
σ2
wPL

PL+σ2
w
, which implies

that PL, ∆
(inf)
l , σ2

w, and σ2
l−1 cannot be positive simultaneously at a zero, and, therefore, the

numerator has the same sign for all positive tuples (PL,∆
(inf)
l , σ2

w, σ
2
l−1). It thus remains to show

that the numerator is negative for an arbitrary choice of the positive tuple (PL,∆
(inf)
l , σ2

w, σ
2
l−1),

e.g., for PL = 6, σ2
w = 1, σ2

l−1 = 2, ∆
(inf)
l = 5, it evaluates to −5760.
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Thus, there is for every ε > 0 an l0, such that for all l ≥ l0∣∣∣∣∣∣∆(inf)

l − σ2
w ·

1 +
1 +

√
1 + 4d

c

2d
c

∣∣∣∣∣∣ < ε. (3.86)

In order to ensure that

σ2
l − σ2

l0−1 = (l − l0 + 1)c (3.87)

≥ (l − l0 + 1) max
l∈{l0,...,l}

{
∆

(inf)

l

}
(3.88)

≥
l∑

k=l0

∆
(inf)

k >

l∑
k=l0

∆
(inf)
k , (3.89)

for all l ∈ {l0, . . . , L}, we fix

c = σ2
w ·

1 +
1 +

√
1 + 4d

c

2d
c

+ ε, (3.90)

which for small ε leads to the coupling (d > 1 by assumption)

c ≈ σ2
w ·
√
d√

d− σw

. (3.91)

Thus, we have shown that

∆
(inf)
l < σ2

w ·

1 +
1 +

√
1 + 4d

c

2d
c

+ ε for all l > l0. (3.92)

It remains to show that there exists an L0, such that for all L > L0

∆
(inf)
l < σ2

w ·

1 +
1 +

√
1 + 4d

c

2d
c

+ ε for all l ≤ l0. (3.93)

To this end, we substitute PL = dL and σ2
l−1 = cl in (3.81) and take L to infinity. This

results for 1 ≤ l ≤ l0 into the first order difference equation (with σ2
0 = 0)

lim
L→∞

(
σ

(inf)
l

)2

= σ2
l−1 + σ2

w, (3.94)
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or, equivalently,

lim
L→∞

∆
(inf)
l = σ2

w. (3.95)

Thus, we conclude that there is for every ε > 0 an L0, such that for all L ≥ L0 there
exists almost surely an n0(L), such that for all n ≥ n0(L)

σ2
L = L · c = L ·

σ2
w ·

1 +
1 +

√
1 + 4d

c

2d
c

+ ε

 >
L∑
l=1

∆
(inf)
l (3.96)

is achievable. In order to sustain a certain value of snrD in the large n limit, it is thus
sufficient that

PL = snrD · (σ2
L + σ2

w) = snrD · σ2
w ·

1 + L ·

1 +
1 +

√
1 + 4d

c

2d
c

+ ε

 . (3.97)

Since d/c→ snrD as L→∞, this leads to the following asymptotically linear coupling
between PL and L:

lim
L→∞

PL
L

= σ2
w ·
(

(1 + ε) · snrD +
1

2
+

√
1 + 4snrD

2

)
. (3.98)

For the converse, i.e., the proof that any PL that scales slower than linearly with L
cannot sustain a constant SNR at the destination stage, (3.80) serves as the starting
point, again:

ψ

(
PL

σ2
l−1 + σ2

w

)
= ψ

(
PL

σ2
l−1 + ∆

(inf)
l + σ2

w

)
+ log

(
1 +

σ2
w

σ2
l−1 + ∆

(inf)
l

)
. (3.99)

The inequality7

log

(
1 +

PL
σ2
l−1 + σ2

w

)
− log

(
1 +

PL

σ2
l−1 + ∆

(inf)
l + σ2

w

)
7Proof: Rewrite the inequality as

log

(
1 +

PL
σ2
l−1 + σ2

w

)
− ψ

(
PL

σ2
l−1 + σ2

w

)
≥ log

(
1 +

PL

σ2
l−1 + ∆

(inf)
l + σ2

w

)
− ψ

(
PL

σ2
l−1 + ∆

(inf)
l + σ2

w

)
. (3.100)
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≥ ψ

(
PL

σ2
l−1 + σ2

w

)
− ψ

(
PL

σ2
l−1 + ∆

(inf)
l + σ2

w

)
. (3.102)

implies the inequality

log

(
1 +

PL
σ2
l−1 + σ2

w

)
≥ log

(
1 +

PL

σ2
l−1 + ∆

(inf)
l + σ2

w

)
+ log

(
1 +

σ2
w

σ2
l−1 + ∆

(inf)
l

)
,

(3.103)

which leads to the following lower-bounds on ∆
(inf)
l and

(
σ

(inf)
L

)2

:

∆
(inf)
l ≥ σ2

w, (3.104)(
σ

(inf)
L

)2

≥ L · σ2
w. (3.105)

Thus, the power required to sustain a constant SNR, snrD, must fulfill

PL = snrD · (σ2
L + σ2

w) ≥ snrD · (L+ 1) · σ2
w. (3.106)

3.4.3. Amplify & Forward Networks

The following theorem characterizes the scaling of the supremum of achievable sum-
rates in amplify & forward multihop MIMO multiple access networks.

Theorem 5. Let H1 ∈ CnD×nR, H2, . . . ,HL ∈ CnR×nR and HL+1 ∈ CnR×nS be sta-
tistically independent random matrices, each with i.i.d. elements of zero-mean, unit-
variance and bounded fourth moment, and fix nS

nD
, βS and nR

nD
, βR. Let snrD

(signal-to-noise ratio at destination stage) be a positive constant. Fix

PL = σ2
w ·
(

L+1

√
snrD + 1

snrD
− 1

)−1

and α =
PL

PL + σ2
w

. (3.107)

This inequality holds, since ∆
(inf)
l ≥ 0 and log(1 + x) + ψ(x) is monotonously increasing in x:

∂ (log (1 + x)− ψ (x))

∂x
=

log e
√

1 + 4x
(
(1 + 2x)−

√
1 + 4x

)
x(1 + x)

√
1 + 4x

(
1 +
√

1 + 4x
) > 0 for all x > 0. (3.101)
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Let (cAF
L )∞L=0 be the sequence, such that cAF

L = limnD→∞
RAF
L

nD
almost surely. Then,

lim
L→∞

cAF
L =



βS log
(
1 + snrD − 1

4
χ(snrD, βS)

)
+ log

(
1 + snrDβS − 1

4
χ(snrD, βS)

)
− log e

4snrD
χ(snrD, βS) , c0, if βR ∈ Ω (L1+ε) ,

0, if βR ∈ O (L1−ε) ,

(3.108)

where χ(x, z) =
(√

x(1 +
√
z)2 + 1−

√
x(1−

√
z)2 + 1

)2

. Moreover, if βR ∈ Θ (L),

lim sup
L→∞

cAF
L ≤ c0 and lim inf

L→∞
cAF
L > 0. (3.109)

Remark 1: The per-stage transmit power PL is chosen such that the destination
SNR, snrD, is constant with respect to L. It scales linearly with L:

lim
L→∞

PL
L

=
σ2

w log e

log
(

1 + 1
snrD

) . (3.110)

Remark 2: Theorem 5 allows to conclude the following:

• RAF
L scales linearly in min{nS , nD}, if and only if the ratio βR scales at least

linearly with L.

• The asymptotic sum-capacity of a single-hop multiple access channel with nS

single-antenna sources and an nD-antenna destination (cf. [6, 76]) is approached
for faster than linear growth of βR with L.

For the proof of the theorem the following notation is introduced. The empirical
eigenvalue distribution (EED) of some Hermitian matrix A ∈ Cn×n is defined in terms
of the indicator function 1{·} as F (γ1,...,γK)

A (x) , 1
n

∑n
i=1 1{λi{A} < x}. The super-

scripts γ1, . . . , γK indicate parameters the EED depends on. Whenever one of these
parameters is taken to infinity, the respective superscript is dropped. The expression
for RAF

L in (3.38) can be expressed in terms of the EED of RsR
−1
n as follows:

RAF
L = nD ·

∞∫
0

log(1 + x) · dF (nD,βR,L,βS)

RsR
−1
n

(x). (3.111)
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Moreover, the Stieltjes transform of some EED F (·) is defined as

G(s) ,

∞∫
−∞

1

s+ x
· dF (x). (3.112)

This definition is adopted from [25] here, while it is generally more common to define
the Stieltjes transform with a minus sign in the denominator. The EED is uniquely
determined by its Stieltjes transform. Moreover, the proof of Theorem 5 relies on the
property that F (γ)

A (x) converges to FA(x) pointwise with respect to γ, if and only if
G

(γ)
A (s) converges to GA(s) pointwise [77, Corollary 1].

The Marčenko-Pastur law [75,78] is a fundamental result in large random matrix the-
ory. Let X ∈ Ck0×k1 be a random matrix whose entries are i.i.d. zero-mean distributed
and of unit-variance. If both k0 →∞ and k1 →∞, but β = k1/k0 is kept finite, then
the EED F

(k1β)
1
k1

XXH (x) converges uniformly and almost surely to an asymptotic EED

F
(β)
1
k1

XXH (x) whose Stieltjes transform is given by

G
(β)
MP(s) =

β−1 − 1− s±
√
s2 + 2 (β−1 + 1) s+ (β−1 − 1)2

2sβ−1
. (3.113)

Moreover, if, in addition, the elements of X have finite fourth moments, the maximum
eigenvalue of 1

k1
XXH converges almost surely to [79]

lim
k1→∞

λmax

{
1

k1

XXH

}
=

(
1 +

1√
β

)2

. (3.114)

Two transform pairs that appear frequently in the course of this section are the follow-
ing:

F
(β)
MP(x)� G

(β)
MP(s), (3.115)

σ(x− x0)�
1

s+ x0

. (3.116)

The following Propositions 6 & 7

(i) state that the EEDs of Rs and R−1
n , F (nD,βR,L,βS)

Rs
(x) and F (nD,βR,L)

R−1
n

(x), conver-
gence in the limit nD → ∞ uniformly and almost surely to asymptotic EEDs
F

(βR,L,βS)
Rs

(x) and F (βR,L)

R−1
n

(x).

(ii) characterize the asymptotic EEDs F
(βR,L,βS)
Rs

(x) and F
(βR,L)

R−1
n

(x) in the limit
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L→∞ for the different couplings between βR and L.

Rather than Rs and Rn, the following normalized matrices are considered:

R̃s = P−1
L α−L ·Rs and R̃n = σ−2

w ·
1− α

1− αL+1
·Rn. (3.117)

Note that due to the particular choice of α and PL in the theorem, the relation RsR
−1
n =

snrD · R̃sR̃
−1
n holds.

Proposition 6. Given the assumptions of Theorem 5, the EED of R̃s converges uni-
formly as nD →∞. That is, there is an asymptotic EED F

(βR,L,βS)

R̃s
(x), such that

lim
nD→∞

sup
x

∣∣∣F (nD,βR,L,βS)

R̃s
(x)− F (βR,L,βS)

R̃s
(x)
∣∣∣ = 0 almost surely. (3.118)

Moreover, the following statements hold:

• If βR ∈ Ω(1+ε), the asymptotic EED of R̃s converges in the limit L→∞ point-
wise to

F
(βS)

R̃s
(x) = F

(βS)
MP (x) (3.119)

• If βR ∈ Θ(L), there exists an a > 0, such that the asymptotic EED of R̃s fulfills

lim inf
L→∞

1− F (βS ,βR,L)

R̃s
(a) > 0. (3.120)

• If βR ∈ O(L1−ε), the asymptotic EED of R̃s converges in the limit L→∞ point-
wise to

F
(βS)

R̃s
(x) = σ(x). (3.121)

Proof of Proposition 6. The uniform and almost sure convergence of F (nD,βR,L,βS)

R̃s
(x)

to F
(βR,L,βS)

R̃s
(x) as nD → ∞ and the respective implicit equation for the Stieltjes

transform G
(βR,L,βS)

R̃s
(s) follows from a result in [25]. It is obtained by means of the

S-transform [80,81], and repeated in the following lemma:

Lemma 4. Let M1 ∈ Ck0×k1 , . . . ,MN ∈ CkN−1×kN be statistically independent random
matrices that fulfill the conditions for the Marčenko-Pastur law and have elements of
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unit-variance. Define βn = kn
k0
. Then, the EED of

A , 1/ (k1 · · · kN) M1 · · ·MNMH
N · · ·MH

1 (3.122)

converges uniformly and almost surely as k0 → ∞: there exists an asymptotic
F

(β1,...,βN )
A (x), such that

lim
k0→∞

sup
x

∣∣∣F (k0,β1,...,βN
A (x)− F (β1,...,βN )

A (x)
∣∣∣ = 0 almost surely. (3.123)

Moreover, the Stieltjes transform of this asymptotic EED fulfills the implicit equation

G
(β1,...,βN )
A (s)

βN

N−1∏
n=0

sG
(β1,...,βN )
A (s)− 1 + βn+1

βn
+ sG

(β1,...,βN )
A (s) = 1. (3.124)

Note that A is normalized with respect to kN here, while it is normalized with respect
to k0 in [25]. The Stieltjes transform G̃(s) therein relates to G(s) as G(s) = βNG̃(βNs).

For the setting considered in this work, N is identified with L + 1, Mn with Hl,
kN with nS , and kn, with nR for all n < N . This yields for our setting the implicit
equation

ΨR̃s
·
G

(βR,L,βS)

R̃s
(s)

βS
·
sG

(βR,L,βS)

R̃s
(s)− 1 + βS

βR
·
(
sG

(βR,L,βS)

R̃s
(s)− 1 + βR

)
+ sG

(βR,L,βS)

R̃s
(s) = 1. (3.125)

where

ΨR̃s
=

sG(βR,L,βS)

R̃s
(s)− 1

βR
+ 1

L−1

. (3.126)

For the asymptotic analysis L → ∞, the following lemma, whose proof is provided in
Appendix B.2, is used:

Lemma 5. Let ε > 0 and g be some function g : N −→ Q+ : κ −→ g(κ).

• Then, for all c ∈ C and g(κ) ∈ Ω(κ1+ε)

lim
κ→∞

(
c

g(κ)
+ 1

)κ
= 1. (3.127)
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• Then, for all negative c and g(κ) ∈ Θ(κ) there exist finite constants M1 and M2,
M2 ≥M1 > 0, such that

lim inf
κ→∞

(
c

g(κ)
+ 1

)κ
≥ ecM2 , (3.128)

lim sup
κ→∞

(
c

g(κ)
+ 1

)κ
≤ ecM1 . (3.129)

• Then, for all negative c and g(κ) ∈ O(κ1−ε),

lim
κ→∞

g(κ) ·
(

c

g(κ)
+ 1

)κ
= 0. (3.130)

Lemma 5 is applied to ΨR̃s
, where L is identified with κ and βR with g(κ). In the

limit L→∞, the implicit equation (3.125) simplifies as follows:

1. If βR ∈ Ω(L1+ε), then ΨR̃s
→ 1, and thus

β−1
S sG

(βS)

R̃s

2
(s) +

(
s+ 1− β−1

S
)
G

(βS)

R̃s
(s) = 1. (3.131)

The solution to this equation is the Stieltjes transform of the Marčenko-Pastur
law with parameter βS .

2. If βR ∈ O(β1−ε
R ), then ΨR̃s

→ 0 for s > 0. Lemma 5 applies, since 0 ≤
sG

(βR,L,βS)

R̃s
(s) < 1 for s > 0. Note that the Stieltjes transform is positive for

positive s, and thus the left hand side of (3.125) would be larger than one, if
sG

(βR,L,βS)

R̃s
(s) > 1, cf. proof of [25, Theorem 4]). Thus,

G
(βS)

R̃s
(s) =

1

s
. (3.132)

Since the Stieltjes transform is an analytic function on its full domain, (3.132)
holds for all s. The corresponding asymptotic EED is F (βS)

R̃s
(x) = σ(x).

3. If βR ∈ Θ(L), then there exist according to Lemma 5 M1 and M2, 0 < M1 ≤M2,
such that for all s > 0 (again 0 ≤ sG

(βS ,βR,L)

R̃s
(s) < 1):

lim inf
L→∞

ΨR̃s
(βR, L) ≥ e

M2(sG
(βS ,βR,L)

R̃s
(s)−1)

> 0, (3.133)

lim sup
L→∞

ΨR̃s
(βR, L) ≤ e

M1(sG
(βS ,βR,L)

R̃s
(s)−1)

< 1. (3.134)
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Moreover,

lim
L→∞

∣∣∣∣∣∣G(βS ,βR,L)

R̃s
(s)− 1

s+ ΨR̃s
(βR, L) ·

(
β−1
S

(
sG

(βS ,βR,L)

R̃s
(s)− 1

)
+ 1
)
∣∣∣∣∣∣ = 0.

(3.135)

Since ΨR̃s
(βR, L) > 0, the denominator is equal to s, if and only if sG(βS ,βR,L)

R̃s
(s)−

1 = −βS . This choice, however, leads to the contradiction

G
(βS ,βR,L)

R̃s
(s) = (−βS + 1)s−1 6= s−1. (3.136)

This proves that for every positive s

lim inf
L→∞

∣∣∣∣G(βS ,βR,L)

R̃s
(s)− 1

s

∣∣∣∣ > 0. (3.137)

Since the Stieltjes transform is an analytic function on its full domain, (3.137)
holds for all s. For the asymptotic EED, this implies that there is a positive x
for which

lim inf
L→∞

∣∣∣F (βS ,L,βR)

R̃s
(x)− σ(x)

∣∣∣ = lim inf
βR→∞

1− F (βS ,L,βR)

R̃s
(x) > 0. (3.138)

�

Proposition 7. Given the assumptions of Theorem 5, the EED of R̃−1
n converges

uniformly as nD →∞: there is an asymptotic EED F
(βR,L)

R̃−1
n

(x), such that

lim
nD→∞

sup
x

∣∣∣F (nD,βR,L)

R̃−1
n

(x)− F (βR,L)

R̃−1
n

(x)
∣∣∣ = 0 almost surely. (3.139)

Moreover, the following statements hold:

• For βR ∈ Ω(L1+ε) and L → ∞, the asymptotic EED of R̃−1
n , F (L,βR)

R̃−1
n

(x), con-
verges pointwise to

FR̃−1
n

(x) = σ(x− 1). (3.140)
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• For any pair (L, βR), the following inequality holds for x < 1:

1− F (L,βR)

R̃−1
n

(x) > x. (3.141)

Proof of Proposition 7. The matrix Rn,l is defined as Rn,l , αl

nlR
H1 · · ·HlH

H
l · · ·HH

1 ,
where l ∈ {1, . . . , L}. The EED of Rn,l converges uniformly and almost surely to
an asymptotic EED. This and the corresponding implicit equation for the Stieltjes
transform of the asymptotic EED of Rn,l follows again from Lemma 4, where N is
identified with l, Mn with Hl and kn with nR. Thus, we obtain the following equation
for the Stieltjes transform:

G
(βR,l)
Rn,l

(s) ·
(
ΨRn,l

+ s
)

= 1, (3.142)

with

ΨRn,l
=

(
sG

(βR,l)
Rn,l

(s)− 1

βR
+ 1

)l

. (3.143)

Again, we assume s > 0. Once more, the obtained limiting Stieltjes transform gener-
alizes to its full domain, since it is an analytic function. Since 0 < sG

(βR,l)
Rn,l

(s) < 1, the
following statements apply:

• For every fixed βR and L, the following inequality holds for all l ∈ {1, . . . , L} and
s > 0:

∣∣ΨRn,l
− 1
∣∣ < ∣∣∣∣∣

(
− 1

βR
+ 1

)L
− 1

∣∣∣∣∣ . (3.144)

• If βR ∈ Ω (L1+ε), then

lim
L→∞

(
− 1

βR
+ 1

)L
= 1. (3.145)

This implies that the L terms converge uniformly as L and βR tend to infinity:

lim
L→∞

max
l∈{1,...,L}

∣∣ΨRn,l
− 1
∣∣ = 0, (3.146)
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which in turn yields

lim
L→∞

max
l∈{1,...,L}

∣∣∣∣G(βR,l)
Rn,l

(s)− 1

s+ 1

∣∣∣∣ = 0. (3.147)

In a next step, it is concluded that also FR̃n
(x) = σ(x − 1), if βR ∈ Ω

(
β1+ε
R
)
. To

this end, the following Lemmata 6 and 7, whose proofs are provided in Appendix B.2,
are stated. They allow to consider the nuclear norm of the difference between R̃n and
the identity matrix.

Lemma 6. Let A(n)(γ) ∈ Cn×n be a sequence of positive semidefinite random ma-
trices with parameter γ whose EED converges uniformly to the asymptotic EED
F

(γ)
A (x) almost surely. Assume for all γ i) limn→∞

1
n
Tr[A(γ)] = 1 and ii) λ(γ)

max ,

limn→∞ λmax{A(γ)} < ∞ almost surely. Then, the following types of convergence are
equivalent8:

1. limγ→∞ d(γ) = 0, where d(γ) fulfills for every γ:

lim
n→∞

1

n
‖In −A(γ)‖∗ = d(γ) almost surely.

2. limγ→∞ |F (γ)
A (x)− σ(x− 1)| = 0 for all x.

3. limγ→∞
∫∞

0
|F (γ)

A (x)− σ(x− 1)| · dx = 0.

Lemma 7. R̃n fulfills the assumptions of Lemma 6 when the parameter γ is identified
with L.

As a consequence of that, there exists for every ε > 0 an L0, such that there exists
for all L ≥ L0 almost surely an n(0)

D (L0), such that for all nD ≥ n
(0)
D (L0)

1

nD

∥∥∥InD − R̃n

∥∥∥
∗

=
1

nD

∥∥∥∥InD − 1− α
1− αL+1

·Rn

∥∥∥∥
∗

(3.148)

=
1

nD

∥∥∥∥∥ 1− α
1− αL+1

L∑
l=0

(
αl · InD −Rn,l

)∥∥∥∥∥
∗

(3.149)

=
1

nD

∥∥∥∥∥ 1− α
1− αL+1

L∑
l=0

αl
(

InD −
1

nlR
H1 · · ·HlH

H
l · · ·HH

1

)∥∥∥∥∥
∗

(3.150)

8‖M‖∗ =
∑
i σi{M} denotes the nuclear norm.
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≤ 1− α
1− αL+1

L∑
l=0

αl

nD

∥∥∥∥InD − 1

nlR
H1 · · ·HlH

H
l · · ·HH

1

∥∥∥∥
∗

(3.151)

=
1− α

1− αL+1

L∑
l=0

αl
∞∫

0

∣∣∣F (nD,βR,l)
Rn,l

(x)− σ(x− 1)
∣∣∣ dx (3.152)

≤ 1− α
1− αL+1

L∑
l=0

αl
( ∞∫

0

∣∣∣F (βR,l)
Rn,l

(x)− σ(x− 1)
∣∣∣ dx

+

∞∫
0

∣∣∣F (nD,βR,l)
Rn,l

(x)− F (βR,l)
Rn,l

(x)
∣∣∣ dx) (3.153)

≤ max
l∈{1,...,L}


∞∫

0

∣∣∣F (βR,l)
Rn,l

(x)− σ(x− 1)
∣∣∣ dx


+ max
l∈{1,...,L}


∞∫

0

∣∣∣F (nD,βR,l)
Rn,l

(x)− F (βR,l)
Rn,l

(x)
∣∣∣ dx
 (3.154)

<
ε

2
+
ε

2
= ε. (3.155)

Expression (3.151) is obtained by applying the triangle inequality and using the ho-
mogeneity of the nuclear norm. Equality between (3.151) and (3.152) is established by
the following chain of identities for a positive semidefinite matrix A ∈ Cn×n (σi and λi
denote ith singular- and eigenvalue, respectively):

1

n
‖In −A(γ)‖∗ =

1

n

n∑
i=1

σi{In −A(γ)}

=
1

n

n∑
i=1

|λi{In −A(γ)}| = 1

n

n∑
i=1

|1− λi{A(γ)}| (3.156)

=
1

n

∑
i:λi{A(γ)}≤1

(1− λi{A(γ)}) +
1

n

∑
i:λi{A(γ)}>1

(λi{A(γ)} − 1) (3.157)

=

1∫
0

|F (n,γ)
A (x)|dx+

∞∫
1

|F (n,γ)
A (x)− 1|dx (3.158)

=

∞∫
0

|F (n,γ)
A (x)− σ(x− 1)|dx. (3.159)

Eq. (3.153) follows by adding and substracting F (βR,l)
Rn,l

(x) and repeated application of
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the triangle inequality. In (3.154), the individual integrals are upper-bounded by the
largest ones. In the final step, both terms in (3.154) are upper-bounded by ε/2. For
the first term, one can fix an L0, such that this upper-bound holds for all L ≥ L0 by
(3.147) and Lemma 6. For fixed L (and thus βR), one can finally choose an n(0)

D (L) large
enough, such that for all nD ≥ n

(0)
D (L) the second term is smaller than ε/2. Note that

limnD→∞ λmax{R̃n} < ∞ for fixed L almost surely according to Lemma 7. Therefore,
the limit can be taken inside the integral due to the uniform convergence of F (nD,βR,L)

R̃n

to F (βR,L)

R̃n
). We have thus shown that F (βR,L)

Rn
(x) converges pointwise to σ(x− 1) as

L→∞. Since the eigenvalues of the inverse of R̃n are the inverse eigenvalues of R̃n,
i.e., λk{R̃−1

n } = λ−1
k {R̃n}, one can conclude that also F (βR,L)

R̃−1
n

(x) converges pointwise
to σ(x− 1).

The last part of the proposition is established as follows. For every pair (βR, L), we
have

lim
nD→∞

1

nD

nD∑
i=1

λi

{
R̃n

}
= lim

nD→∞

1

nD

nD∑
i=1

λi

{
1− α

1− αL+1
Rn

}
(3.160)

= lim
nD→∞

1

nD
Tr

[
1− α

1− αL+1
·Rn

]
(3.161)

=
1− α

1− αL+1

L∑
l=0

αl lim
nD→∞

1

nD
Tr

[
1

nlR
H1 · · ·HlH

H
l · · ·HH

1

]
(3.162)

=
1− α

1− αL+1

L∑
l=0

αl = 1. (3.163)

The evaluation of the limit follows from the following lemma, which is proved in Ap-
pendix B.2.

Lemma 8. Let the matrices H2,H3, . . . ,HL+1 be as in Theorem 5. Moreover, let H1 be
an arbitrary nD×nR random matrix that fulfills limnR→∞ n

−1
D Tr

[
n−1
R HH

1 H1

]
= 1 for ev-

ery fixed ratio nR/nD almost surely. Define Al , 1
nSn

L
R

H1H2 · · ·Hl+1H
H
l+1 · · ·HH

2 HH
1 .

Then, for every pair of fixed ratios nR/nS and nD/nS and any l ∈ {1, . . . , L}

lim
nD→∞

n−1
D Tr [Al] = 1 almost surely. (3.164)

Eq. (3.163) implies for x > 1 that

1− F (βR,L)

R̃n
(x) <

1

x
, (3.165)
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or, eqivalently, for x < 1 that

1− F (βR,L)

R̃−1
n

(x) < x, (3.166)

which proves the claim. �

With Propositions 6 & 7 ready to hand, the theorem can be proved.

Proof of Theorem 5. We consider each of the three cases separately in the following.

Case βR ∈ O (L1−ε): It has to be shown that limL→∞ c
AF
L = 0. Since n−1

D R
AF
L is known

to converge to a nonrandom constant for every L [24] almost surely as nD → ∞, this
is implied by limL→∞ limnD→∞ n

−1
D E

[
RAF
L

]
= 0.

First, the following lemma is stated:

Lemma 9. The supremum of the set of ergodically achievable sum-rates E
[
RAF
L

]
is for

all L0 ∈ {1, . . . , L} upper-bounded according to

E
[
RAF
L

]
≤

E

[
log det

(
InD+

PLs1 · · · sL0α
L

σ2
wnSn

L−L0
R

∑L0

l=0 s1 · · · slαl
ṼH
L0

HL0+1 · · ·HL+1H
H
L+1 · · ·HH

L0+1ṼL0

)]
,

(3.167)

where ṼH
L0

is an nD × nR matrix with orthonormal rows that is obtained through the
following sequence of singular value decompositions:

H̃1 = H1 = U1S1V
H
1 = U1S̃1Ṽ

H
1 (3.168)

H̃2 = ṼH
1 H2 = U2S2V

H
2 = U2S̃2Ṽ

H
2 (3.169)

H̃3 = ṼH
2 H3 = U3S3V

H
3 = U3S̃3Ṽ

H
3 (3.170)

...

The matrices S̃k and Ṽk correspond to the first nD columns of Sk and Vk, respectively.
Furthermore, sk , n−1

R Tr
[
H̃kH̃

H
k

]
for k ∈ {1, . . . , L0} and E[sk] = nD for all k.

Remark : This upper-bound corresponds to the capacity of an equivalent network with

• noiseless relay stages RL0+1, . . . ,RL,
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• the relay stageRL0 replaced by an equivalent destination stage with nD antennas,
whose preceding hop has a channel matrix ṼH

L0
HL0+1,

• white noise of power σ2
w ·
∑L0

l=0 α
l at the equivalent destination stage (corresponds

to the average receive power at the destination stage as it would have been
introduced by the removed relay stages RL0 , . . . ,R1).

This lemma is applied for L0 = bL/2c to obtain

E
[
RAF
L

nD

]
≤ 1

nD
E [log det (InD + ρL ·A)]

=
1

nD
E

 ∑
i:λi{A}≤δ1

log (1 + ρLλi {A})


+

1

nD
E

 ∑
i:λi{A}>δ1

log (1 + ρLλi {A})

 , (3.171)

where

A ,
1

nSn
dL/2e
R

ṼH
bL/2cHbL/2c+1 · · ·HL+1H

H
L+1 · · ·HH

bL/2c+1ṼbL/2c (3.172)

and

ρL ,
PLs1 · · · sbL/2cαL

σ2
w ·
∑bL/2c

l=0 s1 · · · slαl
, (3.173)

with Ṽk and sk constructed as in Lemma 9.

Fix ε > 0 arbitrarily small, and fix δ1 > 0 sufficiently small, such that

log(1 + 2 · snrD · δ1) <
ε

2
. (3.174)

Next, fix δ2 > 0 sufficiently small, such that

δ2 · log

(
1 + 2 · snrD

δ2

)
<
ε

2
. (3.175)

The two sums in (3.171) are considered individually. The first sum fulfills independently
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of L

lim
nD→∞

1

nD

∑
i:λi{A}≤δ1

log (1 + ρLλi {A}) ≤ log (1 + 2 · snrD · δ1) <
ε

2
almost surely.

(3.176)

This bound is obtained in two steps:

• Since the sum comprises no more than nD terms that are upper-bounded by
log (1 + ρL · δ1) each, one obtains

1

nD

∑
i:λi{A}≤δ1

log (1 + ρLλi {A}) ≤ log (1 + ρL · δ1) . (3.177)

• Since limnD→∞ sk = 1 almost surely for all k, one obtains

lim
nD→∞

ρL =
PLα

L

σ2
w ·
∑bL/2c

l=0 αl
=

PLα
L

σ2
w · 1−αbL/2c+1

1−α

(3.178)

= snrD ·
1− αL+1

1− αbL/2c+1
≤ snrD ·

1− αL

1−
√
αL

< 2 · snrD almost surely.

(3.179)

The last inequality follows, since 0 ≤ αL = (PL/(σ
2
w + PL))

L
< 1.

For the second sum, there exists for every ε > 0 an L0, such that for all L ≥ L0

lim
nD→∞

1

nD

∑
i:λi{A}>δ1

log (1 + ρLλi {A}) ≤ δ2 · log

(
1 + 2 · snrD

δ2

)
≤ ε

2
almost surely.

(3.180)

For establishing this upper-bound, the following lemma is used:

Lemma 10. Let H2, . . . ,HL+1 be as in Theorem 5. Moreover, define
an nD × nR random matrix X whose elements follow a distribution in-
dependent of the elements of H2, · · · ,HL+1 and must fulfill 1

nS
XXH =

InD . Then, the EEDs of A , 1
nLRnD

XH2 · · ·HL+1H
H
L+1 · · ·HH

2 XH and

B , 1

nL−1
R nD

H̃2H3H4 · · ·HL+1H
H
L+1 · · ·HH

4 HH
3 H̃H

2 converge, as nD → ∞ and βS and

βR are fixed, uniformly and almost surely to the same asymptotic EED, where H̃2 is
the matrix that contains the first nD rows of H2.

The bound (3.180) is obtained in four steps:
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• Due to the concavity of the log-function, Jensen’s inequality can be invoked to
establish:

n

nD

1

n

n∑
i=1

log (1 + ρLλi{A}) ≤
n

nD
log

(
1 + ρL

1

n

n∑
i=1

λi{A}

)
(3.181)

≤ n

nD
log

(
1 + ρL

1

n

nD∑
i=1

λi{A}

)
=

n

nD
log

(
1 + ρL

nD
n

1

nD
Tr[A]

)
,

(3.182)

where we choose n as the maximal i that fulfills λi{A} > δ1.

• From Lemma 10, we know that Proposition 6 applies also, if R̃s is replaced by
the random matrix A. Note that βR ∈ O (L1−ε), if and only if also bL/2c ∈
O (L1−ε). Thus, there exists by Proposition 6 an L0, such that there exists for
all L ≥ L0 almost surely an n(0)

D (L0), such that for all nD ≥ n
(0)
D (L0) the fraction

of eigenvalues of A larger than δ1 fulfills

n

nD
= 1− F (nD,βR,L)

A (δ1) < δ2. (3.183)

• Moreover, Lemma 8 implies limnD→∞ n
−1
D Tr [A] = 1 almost surely.

• Finally, we use again that limnD→∞ ρL < 2 · snrD almost surely.

Thus, by combining (3.176) and (3.180), we have shown that there exists an L0, such
that there exists for all L ≥ L0 almost surely an n(0)

D (L), such that for all nD ≥ n
(0)
D (L0)

(3.171) fulfills

E
[
RAF
L

nD

]
<
ε

2
+
ε

2
= ε. (3.184)

Case βR ∈ Ω (L1+ε): Define the Hermitian matrix

Θ , R̃n − InD , (3.185)

and rewrite it in terms of its eigenvalue decomposition:

Θ =

nD∑
i=1

λi{Θ}uiuHi =
∑

i:λi{Θ}>0

λi{Θ}uiuHi︸ ︷︷ ︸
Θ+

+
∑

i:λi{Θ}≤0

λi{Θ}uiuHi︸ ︷︷ ︸
Θ−

, (3.186)
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where ui denotes the eigenvector that corresponds to the ith eigenvalue. Let A be
an arbitrary positive semidefinite matrix with an asymptotic EED that depends on L
and βR and fulfills limL→∞ F

(L,βR)
A (x) = FA(x). We show that the asymptotic EEDs

F
(L,βR)
A+Θ (x) and F (L,βR)

A (x) coincide in the limit L→∞:

∞∫
0

∣∣∣F (L,βR,nD)
A+Θ (x)− F (L,βR,nD)

A (x)
∣∣∣ · dx =

1

nD

nD∑
i=1

|λi{A + Θ} − λi{A}| (3.187)

=
1

nD

∑
i:λi{A+Θ}>λi{A}

(λi{A + Θ} − λi{A})

+
1

nD

∑
j:λj{A+Θ}≤λj{A}

(λj{A} − λj{A + Θ}) (3.188)

≤ 1

nD

∑
i:λi{A+Θ}>λi{A}

(
λi{A + Θ+} − λi{A}

)
+

1

nD

∑
j:λj{A+Θ}≤λj{A}

(
λj{A} − λj{A + Θ−}

)
(3.189)

≤ 1

nD

nD∑
i=1

(
λi{A + Θ+} − λi{A}

)
+

1

nD

nD∑
j=1

(
λj{A} − λj{A + Θ−}

)
(3.190)

=
1

nD

nD∑
i=1

(
λi{A + Θ+} − λi{A + Θ−}

)
(3.191)

=
1

nD
Tr[A + Θ+ −A−Θ−] (3.192)

=
1

nD
Tr[Θ+ −Θ−] =

1

nD

nD∑
i=1

|λi{Θ}| =
1

nD
‖Θ‖∗. (3.193)

The first inequality follows, since removing the negative/positive definite part of Θ

can only increase/decrease each individual eigenvalue of A+Θ. The second inequality
follows, since all added terms are nonnegative. With Proposition 7 and the equivalence
of 1. and 2. in Lemma 6 we can thus conclude that there exists for every ε > 0 an L0,
such that for all L ≥ L0

lim
nD→∞

∞∫
0

∣∣∣F (L,βR,nD)
A+Θ (x)− F (L,βR,nD)

A (x)
∣∣∣ · dx
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≤ lim
nD→∞

1

nD
‖InD − R̃n‖∗ < ε almost surely, (3.194)

which implies that FA+Θ(x) converges pointwise to FA(x).

In the following, we use the identity

RAF
L = log det(InD + snrD · R̃−1

n R̃s) = log det(R̃n + snrD · R̃s)− log det(R̃n). (3.195)

We consider the first term on the right hand side and identify A with InD + snrD ·Rs.
Thus, we obtain

1

nD
log det

(
InD + Θ + snrD · R̃s

)
=

1

nD

nD∑
i=1

log(1 + λi{Θ + snrD · R̃s}) (3.196)

=

(
1+
√
β−1
S

)2∫
0

log (1 + x) · dF (nD,βS ,L,βR)

Θ+snrD·R̃s
(x)

+
1

nD

∑
i:λi{Θ+R̃s}>(1+

√
β−1
S )2

log(1 + λi{Θ + snrD · R̃s}), (3.197)

where the integration interval corresponds to the support of ∂F (βS)
MP (x)/∂x. We drop

the sum, use the fact F (βS)

Θ+R̃s
(x) converges pointwise to F (βS)

R̃s
(x) as L → ∞, and thus

obtain with Proposition 6 that there exists for every ε > 0 an L0, such that for all
L ≥ L0 almost surely

lim
nD→∞

1

nD
log det

(
InD + Θ + snrD · R̃s

)
>

(
1+
√
β−1
S

)2∫
0

log (1 + snrD · x) · dF (βS)
MP (x)− ε

2
.

(3.198)

Next, we investigate the second term in (3.195). Application of Jensen’s inequality
yields

− 1

nD
log det (InD + Θ) = − 1

nD

nD∑
i=1

log(1 + λi{Θ}) (3.199)

≥ − log

(
1 +

1

nD

∑
i

λi{Θ}

)
(3.200)
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= − log

(
1 +

1

nD
Tr[Θ]

)
. (3.201)

Since |Tr[Θ]| ≤ ‖Θ‖∗, we obtain with (3.194) that there exists for every ε > 0 an L0,
such that for all L ≥ L0

− lim
nD→∞

1

nD
log det (InD + Θ) > −ε

2
almost surely. (3.202)

We have shown that there exists for every ε > 0 an L0, such that for all L ≥ L0

lim
nD→∞

1

nD

(
log det

(
InD + Θ + snrD · R̃s

)
− log det (InD + Θ)

)

>

(
1+
√
β−1
S

)2∫
0

log (1 + snrD · x) · dF (βS)
MP (x)− ε almost surely. (3.203)

The integral evaluates to [76]

c0 = βS log

(
1 + snrD −

1

4
χ(snrD, βS)

)
(3.204)

+ log

(
1 + snrDβS −

1

4
χ(snrD, βS)

)
− log e

4snrD
χ(snrD, βS), (3.205)

which is the sum-capacity of a single-hop multiple access channel with nS single-antenna
sources and an nD-antenna destination.

It remains to prove that the single-hop sum-capacity cannot be exceeded. To this
end, we can consider the supremum of ergodically achievable sum-rates E[RAF

L ] first,
since cAF

L = limnD→∞ E[n−1
D R

AF
L ]. We apply Lemma 9 for L0 = L to obtain

1

nD
E
[
RAF
L

]
≤ 1

nD
E [log det (InD + ρL ·A)] , (3.206)

where

A =
1

nSnR
ṼH
L HL+1H

H
L+1ṼL (3.207)

and

ρL =
PLs1 · · · sLαL

σ2
w ·
∑L

l=0 s1 · · · slαl
, (3.208)
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with Ṽk and sk constructed as in Lemma 9.

Since limnD→∞ sk = 1 almost surely for all k, we obtain

lim
nD→∞

ρL = snrD almost surely. (3.209)

Moreover, according to Lemma 10, the asymptotic EED of A coincides with the asymp-
totic EED of 1

nS
HHH , where H contains the first nD rows of HL+1. Thus, we can write

lim
nD→∞

1

nD

nD∑
i=1

log (1 + snrDλi{A}) (3.210)

= lim
nD→∞

(
1+
√
β−1
S

)2∫
0

log(1 + snrD · x)dF
(βS ,nD)
A (x)

+ lim
nD→∞

1

nD

∑
i:λi{A}>

(
1+
√
β−1
S

)2

log (1 + snrD · λi{A}) (3.211)

=

(
1+
√
β−1
S

)2∫
0

log(1 + snrD · x)dFMP(x) almost surely, (3.212)

which is the sum-capacity of a single-hop multiple access channel. Here, we have taken
the limit inside the definite integral according to the bounded convergence theorem.
The second term in (3.211) evaluates to zero due to the concavity of the log-function and

Jensen’s inequality: we choose n as the maxmimal i, such that λi{A} > (1 +
√
β−1
S )2

and write

n

nD

1

n

n∑
i=1

log (1 + snrDλi{A}) ≤
n

nD
log

(
1 + snrD

1

n

n∑
i=1

λi{A}

)
(3.213)

≤ n

nD
log

(
1 + snrD

1

n

nD∑
i=1

λi{A}

)
=

n

nD
log

(
1 + snrD

nD
n

1

nD
Tr[A]

)
. (3.214)

From Lemma 8, we know that limnD→∞ n
−1
D Tr [A] = 1 almost surely. Since n/nD → 0 as

nD →∞ almost surely — note that ∂F (βS)
MP (x)/∂x is not supported for x > (1+

√
β−1
S )2

— the sum converges to zero almost surely. We have thus shown that an achievable
sum-rate cannot exceed the sum-capacity of a single-hop multiple access channel.

Case βR ∈ Θ (L): We start out with proving that lim infL→∞ c
AF
L > 0, or equivalently,
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that there is a δ > 0 and an L0, such that for all L > L0

cAF
L > δ for every pair (βR, L). (3.215)

Due to the positive semi-definiteness of R̃s and R̃−1
n the following lower-bound on the

eigenvalues of the product of both matrices holds [82, Theorem 5]:

λk{R̃sR̃
−1
n } ≥ λi{R̃s}λk+nD−i{R̃−1

n } for all i ∈ {k, . . . , nD}. (3.216)

We can fix i = dα1nDe, where α1 > 0 is sufficiently small, such that for a sufficiently
small a1 > 0

lim inf
L→∞

1− F (βS ,βR,L)

R̃s
(a1) > α1. (3.217)

This choice ensures that there is an L0, such that there is for all L > L0 almost surely
an n(0)

D (L), such that for all nD > n
(0)
D (L), we have λdα1nDe{R̃s} > a1. The existence

of such a pair (a1, α1) is guaranteed through Proposition 6. Next, we fix k = dα2nDe,
such that 0 < α2 < α1 and a2 = 1− α1 + α2. We can write according to Proposition 7
that

1− F (βR,L)

R̃−1
n

(a2) > a2 = 1− α1 + α2. (3.218)

Thus, there is an L0, such that there is for all L > L0 almost surely an n(0)
D (L), such

that for all nD > n
(0)
D (L), we have λdα2nDe+nD−dα1nDe{R̃−1

n } > a2. Substitution into
(3.216) yields that there is an L0, such that there is for all L > L0 almost surely an
n

(0)
D (L), such that for all nD > n

(0)
D (L)

λdα2ne{R̃sR̃
−1
n } ≥ λdα1nDe{R̃s}λdα2nDe+nD−dα1nDe{R̃−1

n } ≥ a1 · a2 > 0. (3.219)

Note that all λj{R̃sR̃
−1
n }, j < dα2nDe, are larger than λj{R̃sR̃

−1
n }. Since these

eigenvalues constitute a nonzero fraction (α2 > 0) of the nD eigenvalues, we conclude

lim inf
L→∞

cAF
L ≥ α2 log(1 + snrD · a1 · a2) > 0. (3.220)

The upper-bound on lim supL→∞ c
AF
L follows immediately from the upper-bound for

the case βR ∈ Ω(L1+ε), where we did not invoke any assumptions on the scaling of βR
with L. �
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3.5. Concluding Remarks

In this work, it was shown that the choice of the relaying scheme is crucial for achiev-
able capacity scaling in long multihop networks. While there is unsurprisingly an inher-
ent performance gap between decode & forward and the investigated non-regenerative
schemes due to noise accumulation, the key contribution of this work is the identi-
fication of the fundamental differences among the performances of non-regenerative
relaying schemes in the regime of long multihop networks.
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This last chapter provides some concluding remarks, which shall help to classify both
the theoretical results and highlight practical implications of this thesis. Moreover, it
states open problems both on the theoretical and on the practical side.

4.1. Results

Multihop communication is a means without alternative, when it comes to establishing
wireless connectivity between nodes whose radio link is shadowed by obstacles. Multi-
hopping in wireless networks has received a lot of attention in the research community
in the context of routing in the past (see e.g. [83, 84] for an overview). These studies
implicitly assume each relay node to decode its receive signals before the forwarding to
the next nodes in the multihop chain. From a physical layer perspective, this approach
is suboptimal in general. Performance is particularly diminished, if signals of multiple
users interfere with each other in a way, such that signals cannot be spatially resolved
through multiple antennas at a relay node. Such a relay node can then become the
bottleneck for the multihop transmission. This thesis has shown on the basis of two
exemplary scenarios, that cooperative distributed forwarding is an efficient means for
avoiding such bottleneck effects. In this spirit, the thesis contributes further examples
for the fundamental importance of physical layer cooperation in wireless networks.

Interestingly, the flavors of the results on distributed forwarding in the two example
networks are quite different:

• In the multihop interference network, distributed forwarding enables a gain that
is not achievable in a single-hop interference network: the multiplexing gain in a
single-hop interference network is limited to n/2, while it can be n (ignoring the
pre-log) in multihop interference network.

• In the multihop multiple access network, distributed forwarding is a tool that sus-
tains gains that are well known from single-hop multiple access networks: linear
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capacity scaling in the number of transmit/receive antennas is well known to be
achievable in single-hop multiple access networks. Proper distributed forwarding
guarantees this property in arbitrarily long multihop networks.

In summary, this thesis provides the insight that distributed forwarding in multiuser
networks is a challenging and nontrivial problem for system designers. Significant
MIMO gains are achievable. However, they are crucially dependent on the choice of
the applied forwarding scheme. It has been shown, that slightly different network
configurations can require fundamentally different approaches.

4.2. Open Aspects

The presented results of this thesis can be seen as two further building blocks towards an
understanding of the fundamental limits of wireless networks. However, it is evident
that very specific channel models and topologies are assumed. In the remainder of
this section we comment on the limitations of the scope of the analysis, and the key
generalizations that are desirable in order to cover the full class of generic multihop
wireless networks.

Channel Model

Both in the DMT considerations on the multihop interference network and the ca-
pacity scaling considerations on the multihop multiple access network, a central as-
sumption is an equal average path loss among all transmit and receive nodes of two
adjacent stages. This assumption is very popular in the research community and usu-
ally made for analytical tractability. It has all rights to exist, since it paves the way
towards important insights on the functioning and properties of a scheme. However,
the assumption of an equal average path loss becomes questionable as the “height” of a
relay stage (distance between R

(l)
1 and R

(l)

n
(l)
R
) is in the range of the distances to the ad-

jacent stages. It would thus be desirable to generalize the results of this thesis to more
general channel models that also cover heterogeneous average path loss distributions.
Our expectation is that the fundamental effects and properties of the studied schemes
carry over to many more general channel models.

It is important to note that different average path losses in different hops are not a
severe issue in the context of our work, as long as the average path losses within all
hops are equal. All results can be generalized in a straightforward fashion to hold true
in this generalized scenario.
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Network Topology

The considered network topologies are rather specific. In particular, the assumption
that source nodes (in the multihop interference network also the destination nodes) are
in proximate vicinity of each other is quite restricting. A natural next step in research
of wireless multihop networks is thus the transition to more general network structures.
In this context, key components are spectrally efficient cooperative physical layer signal
processing schemes for the following generalized multihop networks:

• Unclustered relay stages: Relay nodes are not clustered into stages. In particular,
the sets of relay nodes that assist the transmission of a certain source node in
a given time slot need not be identical for the transmissions of different source
nodes. See Fig. 4.1 for an illustration.

• Variable number of hops: Sources communicate over different numbers of hops
to their destination(s). In this setting, nodes potentially can have two functions:
they could act both as a source node and as a relay node for other nodes whose
transmission “passes by”. See Fig. 4.2 for an illustration.

• Bidirectional traffic: The terminal nodes are allowed to mutually exchange in-
formation. That is, nodes act as sources and destinations simultaneously. Spec-
trally efficient schemes might allow for simultaneous transmission of forward- and
backward-messages over the network1. See Fig. 4.3 for an illustration.

All signal processing principles that are used in this thesis can still be applied in these
generalized network structures with more or less modifications. We believe that also
many of the effects and properties of the schemes that are discovered in this thesis carry
over to them, and can give important insights into the design of respective physical
layer cooperation schemes.

4.3. Practical Challenges

From a practical perspective, there are still many open problems to solve until physical
layer cooperation schemes can be realized to their full effect. Generally, these issues are
less severe for networks with infrastructure relay nodes than for networks with mobile
relay nodes. In the following we dwell on those challenges that strike us as being the
most relevant ones in the context of distributed forwarding.

1For two-hop interference networks this scenario has been studied [85]. However, generalizations of
the multiplexing gain optimal scheme of this work to more hops are nontrivial.
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source 1

source 2

Figure 4.1.: An example of a multiuser multihop network without clustered relay stages.
Source nodes use different sets of relay nodes for their transmission. Relay
nodes may also serve as helper for different source nodes in different time slots.

source 2

source 1

Figure 4.2.: An example of a multiuser multihop network with different number of hops for
different transmissions. Source 2 serves both as a source and as a relay node in
this example.

1 2 3

2

4

14 3

terminal 1
terminal 2

terminal 4terminal 3

Figure 4.3.: An example of a multihop network with bidirectional traffic. In time slot 1 all
terminal nodes initiate a transmission. Signals arrive at the respective terminal
nodes at the other end of the network in time slot 4. In time slots 2 and 3,
forward and backward transmission interfere with each other.
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Coordination

A main challenge is the enormously increased need for coordination among wireless
nodes in multihop networks that apply distributed forwarding. Conventional forward-
ing requires no more than a single path in the network graph that connects a source
and a destination node. The identification of such a path might be complex enough
in a wireless mobile ad-hoc network, but is still significantly less demanding than the
requirements for distributed forwarding. Here, a set of sources, a set of destinations
and sets of relay stages as well as a path through the relay stages need to be identified.
Moreover, transmissions of nodes within the same stage need to be synchronized at
least with respect to the symbol timing. Without any topology knowledge, this is a
humongous challenge in a practical system.

Also medium access control (MAC) in the data link layer becomes significantly more
complex. Conventionally, a relay is only interested in the transmission of a single user
at a given time. It will decode and retransmit the signals of this user and treat all other
signals as interference. Thus, classical MAC approaches apply and an efficient decen-
tralized handling of the issue through standard schemes such as carrier sense multiple
access (CSMA) is possible. The necessary coordination for distributed forwarding is
significantly more demanding. In the multiuser scenarios of this thesis, it is obligatory
to have a sufficient number of relay nodes to simultaneously support a set of multi-
ple transmissions. This requires that all relay nodes within a network stage obtain
medium access simultaneously. Although the design of cooperative MAC schemes is a
hot research topic in the meanwhile (e.g. [86–91]), there are to our knowledge currently
no MAC schemes proposed that would allow for an efficient operation of a distributed
forwarding multihop chain in a mobile wireless ad-hoc network in the spirit of this
thesis.

Channel State Information

Some of the schemes that are considered in this thesis require relay nodes to have CSI
of channels between other nodes in the network. This CSI is not accessible for them
through training (estimation based on received pilot sequences). Thus, the respective
channel coefficients need to be locally estimated and then disseminated over the net-
work. This constitutes an overhead that might well be manageable in small and static
networks, but might become prohibitive in large and mobile networks. This overhead
can either be handled in-band or, more conveniently, through a secondary network that
connects the respective relay nodes in the network. Such a secondary network can ei-
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ther be a wired backbone network (for fixed infrastructure relays) or a wireless network
(e.g. WLAN). The CSI overhead problem is particularly severe in the coherent amplify
& forward approach of Chapter 2, which requires global CSI for the computation of
the relay gain coefficients. Recent research has aimed for reducing this CSI overhead in
such multihop interference networks [46, 48, 92]. Progress has been made to an extent
that the required CSI dissemination overhead has been rendered independent of the
number of relay nodes per stage. Still the overhead remains significant.

Phase Noise and Synchronization

In a multihop network that operates a distributed forwarding scheme, the oscillators
of the multiple relay nodes that simultaneously forward signals are subject to statis-
tically independent phase noise. Even if the propagation channel is perfectly static,
this imperfection renders the communication channels time-variant in a way such that
elements of the effective MIMO channel matrices are affected in different ways. This
is not an issue in a point-to-point MIMO channel, since antennas are connected to a
single oscillator on transmit and receive side each. Thus, all elements in the MIMO
channel matrix undergo the same phase shift, which can be compensated at the receiver
and thus has no impact on performance. The stability requirements on oscillators in
cooperative distributed forwarding are thus particularly stringent.

A fundamental question is, whether or not the carrier phase of relay nodes within a
stage need to be synchronized for a scheme to function properly in a multihop network.
For the proposed schemes for the multihop multiple access network, this issue is un-
critical, and synchronization not required. For the coherent amplify & forward scheme,
however, this question is nontrivial to answer, since relay nodes need to compute and
apply specific phase shifts in order to mitigate spatial interference at the destination
nodes. The problem has been studied in [93] for two-hop interference networks. The
findings therein carry over to arbitrary multihop networks in a one-to-one fashion.
The key result is the following: Phase synchronization is not required, if and only if
all channel coefficients are measured in the same direction. Typically, this would be
the forward direction, since this approach does not rely on channel reciprocity. This
means, however, the training sequence of a relay stage cannot be used both at the
preceding and the succeeding stage for channel estimation, but only at one of them
(typically the succeeding one). There are further situations that favor channel estima-
tion in opposite directions. Another example is a relay stage with lots of nodes that
is surrounded by two stages with only few nodes. Then, it is spectrally more efficient,
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to have the surrounding stages transmit the pilot sequences and have the middle stage
estimate the respective channel coefficients. Carrier phase synchronization schemes are
provided in [94,95] for this purpose.
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A.1. Proof of Proposition 4

For any l ∈ {1, . . . , L}, the SINR of source-destination pair i can be written as

SINRi =
gHl M

(l,i)
s gl

gHl M
(l,i)
i gl + gHl M

(l,i)
n,1 gl +m

(l,i)
n,2

, (A.1)

where

• gHl M
(l,i)
s gl corresponds to the power of the desired part of the received signal,

and

M(l,i)
s =

PS
n
· diag

(
h∗DiRl

)
h∗RlSih

T
RlSidiag (hDiRl) , (A.2)

with

hRlSi = HlGl−1 · · ·H2G1hR1Si , (A.3)

hTDiRl = hTDiRLGLHL · · ·Gl+1Hl+1, (A.4)

and hR1Si the ith column of H1, hTDiRL the ith row of HL+1,

• gHl M
(l,i)
i gl corresponds to the power of the interference part of the received signal,

and

M
(l,i)
i =

PS
n
·
∑
j 6=i

diag
(
h∗DiRl

)
h∗RlSjh

T
RlSjdiag (hDiRl)

=
PS
n
· diag

(
h∗DiRl

)
H∗RlS\{Si}H

T
RlS\{Si}diag (hDiRl) , (A.5)

with

HRlS\{Si} =
(
hRlS1 , . . . ,hRlSi−1

,hRlSi+1
, . . . ,hRlSn

)
, (A.6)
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• gHl M
(l,i)
n,1 gl corresponds to the power of the noise in the received signal that has

been introduced in relay stages Rk, k ∈ {1, . . . , l}, and

M
(l,i)
n,1 = σ2 · diag

(
h∗DiRl

)(
I
n

(l)
R

+
l−1∑
m=1

H∗RlRmG∗mGT
mHT

RlRm

)
diag (hDiRl) ,

(A.7)

with

HRlRm = HlGl−1 · · ·Gm+1Hm+1, (A.8)

• the power of the noise in the received signal that has been introduced in relay
stages Rk, k ∈ {l + 1, . . . , L}, and at the destination Di is given by

m
(l,i)
n,2 = σ2 ·

(
1 +

L∑
m=l+1

gHmdiag
(
h∗DiRm

)
diag (hDiRm) gm

)
. (A.9)

Moreover, for every l′ ≥ l the transmit power of relay stage Rl′ (for l′ < l the transmit
power of stage Rl′ is independent of gl) can be written as

P
n

(l′)
R

= gHl C(l′,l)gl + c(l′,l), (A.10)

where

C(l′,l) =

∑n
(l′)
R
k=1

∣∣∣g
R

(l′)
k

∣∣∣2(PS
n

diag

(
h∗

R
(l′)
k Rl

)
H∗RlSH

T
RlSdiag

(
h

R
(l′)
k Rl

)
+σ2diag

(
h∗

R
(l′)
k Rl

)
diag

(
h

R
(l′)
k Rl

)
+σ2

∑l−1
m=1 diag

(
h∗

R
(l′)
k Rl

)
H∗RlRmG∗mGT

mHT
RlRmdiag

(
h

R
(l′)
k Rl

))
, if l′ > l,(

PS
n

H∗RlSH
T
RlS + σ2

(
I
n

(l)
R

+
∑l−1

m=1 H∗RlRmG∗mGT
mHT

RlRm

))
� I

n
(l)
R
, if l′ = l,

(A.11)
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c(l′,l) =

σ2 · Tr
(
Gl′

(
I
n

(l′)
R

+
∑l′−1

m=l+1 HRl′RmGmGH
mHH

Rl′Rm

)
GH
l′

)
, if l′ > l,

0, if l′ = l,

(A.12)

with

hT
R

(l′)
k Rl

= hT
R

(l′)
k Rl′−1

Gl′−1 · · ·Gl+1Hl+1, (A.13)

HRlS = HlGl−1 · · ·G1H1, (A.14)

and hT
R

(l′)
k Rl′−1

the kth row of Hl′ .

In the following, we assume an arbitrary l ∈ {1, . . . , L}, and substitute (2.81) into
(A.1) for all l′ ∈ {1, . . . , L}. That is, the gain vectors of all relay stages are chosen to
fulfill the respective power constraint with equality each. The optimality of this choice
will be proved later on. After these substitutions, the SINR of source-destination pair
i is turned into a generalized Rayleigh quotient in g̃l.

Substitutions are performed iteratively. Iteration p is allocated to the substitution
of the gain vector of stage RL−p+1, gL−p+1. Before each substitution, the SINR of
source-destination pair i is written in terms of the parameters A(l,i,p), B

(l,i,p)
m , b(l,i,p)

m

and r(p), where the additive interference and noise terms are arranged according to the
gain vectors they depend on (indicated in brackets below):

SINRi =

gHl A(l,i,p)({g1, . . . ,gL−p+1}\{gl})gl∑l
m=1 gHl B

(l,i,p)
m ({gm, . . . ,gL−p+1}\{gl})gl +

∑
L−p+1

m=l+1 b
(l,i,p)
m ({gm, . . . ,gL−p+1}) + r(p)

.

(A.15)

In the first iteration p = 1, the parameters are immediately identified by inspection of
(A.1) and given by

A(l,i,p) = M(l,i)
s , (A.16)

B(l,i,p)
m =


M

(l,i)
i · δ[m− 1] + σ2 · diag

(
h∗DiRl

)
H∗RlRmG∗mGmHT

RlRmdiag (hDiRl) ,

if m ∈ {1, . . . , l − 1},

M
(l,i)
i · δ[m− 1] + σ2 · diag

(
h∗DiRl

)
diag (hDiRl) , if m = l,

(A.17)
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b(l,i,p)
m = σ2 · gHmdiag

(
h∗DiRm

)
diag (hDiRm) gm, for all m ∈ {l + 1, . . . , L}, (A.18)

r(p) = σ2. (A.19)

The transmit power of stage RL−p+1, P̃RL−p+1
, in (2.81) that would result, if g̃L−p+1

was used as gain vector of stage RL−p+1, can be written as (A.10)

P̃RL−p+1
=


∑l

m=1 gHl C
(L−p+1,l)
m ({gm, . . . ,gL−p+1}\{gl})

∣∣
gL−p+1=g̃L−p+1

gl

+
∑L−p+1

m=l+1 c
(L−p+1,l)
m ({gm, . . . ,gL−p+1})

∣∣
gL−p+1=g̃L−p+1

, if L− p+ 1 > l,∑l
m=1 g̃Hl C

(L−p+1,l)
m ({gm, . . . ,gl−1})g̃l, if L− p+ 1 = l,

(A.20)

where C
(L−p+1,l)
m ({gm, . . . ,gL−p+1}\{gl}) and c

(L−p+1,l)
m ({gm, . . . ,gL−p+1}) correspond

to the terms of (A.11) and (A.12) that depend on all these vectors each.

With the substitution gL−p+1 =
√
P̄RL−p+1

/P̃RL−p+1
· g̃L−p+1, the SINR of

source-destination pair i (after multiplication of numerator and denominator by
P̃RL−p+1

/P̄RL−p+1
) is given by

SINRi =

gHl A(l,i,p)({g1,...,gL−p+1}\{gl})gl
gHl

(∑l
m=1 B

(l,i,p)
m ({gm,...,gL−p+1}\{gl})

)
gl+

∑L−p+1
m=l+1 b

(l,i,p)
m ({gm,...,gL−p+1})+q(p)

∣∣∣∣∣
gL−p+1=g̃L−p+1

,

, if L− p+ 1 > l,

g̃Hl A(l,i,p)({g1,...,gl−1})g̃l
g̃Hl

(∑l
m=1 B

(l,i,p)
m ({gm,...,gl−1})

)
g̃l+q(p)

, if L− p+ 1 = l,

(A.21)

where

q(p) = r(p) ·
P̃
n

(L−p+1)
R

P̄RL−p+1

. (A.22)

The substitution yields this nice expression, since the numerator and of all terms of the
denominator except for r(p) in (A.15) depend quadratically on gL−p+1. Therefore, the
expansion of the fraction does not affect any of the terms except for r(p). The transmit
power of each relay stage Rk, k < L−p+1, and thus also each corresponding upcoming
substitution, is independent of g̃L−p+1. For this reason, the dependence of the matrices
A(l,i,p) and B

(l,i,p)
m on this vector is dropped for notational convenience subsequently.
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The terms in q(p) are distributed over the respective terms in the denominator of
(A.21) according to the gain vectors they depend on. If L − p + 1 > l, the SINR of
source-destination pair i is written analogously to (A.15) as

SINRi =

gHl A(l,i,p+1)({g1, . . . ,gL−p}\{gl})gl∑l
m=1 gHl B

(l,i,p+1)
m ({gm, . . . ,gL−p}\{gl})gl+

∑L−p
m=l+1 b

(l,i,p+1)
m ({gm, . . . ,gL−p})+r(p+1)

,

(A.23)

where

A(l,i,p+1) = A(l,i,p)
∣∣∣
gL−p+1=g̃L−p+1

, (A.24)

B(l,i,p+1)
m = B(l,i,p)

m

∣∣∣
gL−p+1=g̃L−p+1

+
r(p)

P̄RL−p+1

·C(L−p+1,l)
m

∣∣∣
gL−p+1=g̃L−p+1

for all m ∈ {1, . . . , l}, (A.25)

b(l,i,p+1)
m = b(l,i,p)

m

∣∣∣
gL−p+1=g̃L−p+1

+
r(p)

P̄RL−p+1

· c(L−p+1,l)
m

∣∣∣
gL−p+1=g̃L−p+1

for all m ∈ {l + 1, . . . , L− p}, (A.26)

r(p+1) =
r(p)

P̄RL−p+1

· c(L−p+1,l)
L−p+1

∣∣∣
gL−p+1=g̃L−p+1

+ b
(l,i,p)
L−p+1

∣∣∣
gL−p+1=g̃L−p+1

. (A.27)

Note that r(p+1) is independent of all gl′ that are not yet substituted. We are thus
back to an expression of the form (A.15), and (A.23) serves as the starting point for
the next (p+ 1st) iteration. If L−p+ 1 = l, the term q(p) in (A.21) is a quadratic form
in g̃l, such that the SINR of source-destination pair i can be written as

SINRi =
g̃Hl A(l,i,p)({g1, . . . ,gl−1})g̃l
g̃Hl B(l,i,p)({g1, . . . ,gl−1})g̃l

, (A.28)

where

B(l,i,p) =
l∑

m=1

(
B(l,i,L−l+1)
m +

r(p)

P̄RL−p+1

·C(L−p+1,l)
l

)
. (A.29)
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The remaining substitutions for l′ < l are independent of g̃l. Thus, the SINR of
source-destination pair i can finally be written as

SINRi =
g̃Hl Al,ig̃l
g̃Hl Bl,ig̃l

, (A.30)

where Al,i and Bl,i are functions of g̃1, . . . , g̃l−1, g̃l+1, . . . , g̃L, but not of g̃l. They are
given by

Al,i =


A(l,i,p)

∣∣∣
gl−1=

√
P̄Rl−1
P̃Rl−1

·g̃l−1

∣∣∣∣
gl−2=

√
P̄Rl−2
P̃Rl−2

·g̃l−2

· · ·

∣∣∣∣∣
g1=

√
P̄R1
P̃R1

·g̃1

, (A.31)

Bl,i =


B(l,i,p)

∣∣∣
gl−1=

√
P̄Rl−1
P̃Rl−1

·g̃l−1

∣∣∣∣
gl−2=

√
P̄Rl−2
P̃Rl−2

·g̃l−2

· · ·

∣∣∣∣∣
g1=

√
P̄R1
P̃R1

·g̃1

. (A.32)

It remains to prove that it is optimal to fulfill the sum-power constraints on the relay
stages with equality each. To this end, the SINR before the substitution in iteration
p = l − L+ 1 is studied. It is given by (cf. (A.23))

SINRi =
gHl A(l,i,L−l+1)({g1, . . . ,gl−1})gl∑l

m=1 gHl B
(l,i,L−l+1)
m ({gm, . . . ,gl−1})gl + r(L−l+1)

, (A.33)

where r(L−l+1) is independent of gl. Since the matrices A(l,i,L−l+1)({g1, . . . ,gl−1}) and
B

(l,i,L−l+1)
m ({gm, . . . ,gl−1}) are positive semidefinite, SINRi is for every gl = α · ĝl,

monotonically increasing in α. That is, it is optimal to allocate the maximum allow-
able transmit power to relay stage Rl, and the substitution (2.81) is without loss of
optimality. If this argument is invoked successively for l = L,L − 1, . . . , 1 optimality
is established for all relay stages. �
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B.1. Proofs of Lemmata for Theorems 3 and 4

Proof of Lemma 1. Consider the sum-capacity achieving minimum mean square
error (MMSE) successive interference cancellation (SIC) receiver structure [67]. We
modify this receiver as follows: rather than applying interference cancellation after each
decoded codeword, we decode codewords of multiple transmit terminals simultaneously
based on a given MMSE equalizer output signal. We group the transmit terminals into
the setsMm, m ∈ {1, . . . ,M}. Codewords of transmit terminals within the same set
Mm are decoded simultaneously based on the same MMSE equalizer output signal
each, i.e., there are M − 1 interference cancellation steps in total. Since n is not an
integer multiple of M in general, we choose the cardinality of these sets as

|Mm| =

dn/Me, if 1 ≤ m ≤ n mod M

bn/Mc, else.
(B.1)

We introduce the one-to-one map l : {1, . . . ,M} −→ {1, . . . ,M} : m −→ lm, where lm
corresponds to the position of setMm in the decoding order. E.g., l3 = 4 implies that
setM3 is decoded based on the MMSE output of the fourth “decoding phase”, when
the transmit signals of three other sets are already canceled.

Let us denote the number of mutually interfering streams in the decoding phase of
setMm by nm and consider the ratio

nm
n

=

∑M
k=lm

∣∣M(l−1)k

∣∣
n

. (B.2)

Here, we denote by (l−1)k the inverse function of lm. This ratio is upper- and lower-
bounded as follows:

nm
n
≤

(M − lm + 1) · d n
M
e

n
<

(M − lm + 1) ·
(
n
M

+ 1
)

n
, (B.3)
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nm
n
≥

(M − lm + 1) · b n
M
c

n
>

(M − lm + 1) ·
(
n
M
− 1
)

n
. (B.4)

Since both bounds converge to the same value as n grows large, we conclude

lim
n→∞

nm
n

=
M − lm + 1

M
, βlm . (B.5)

In the following, we assume that transmission is divided into M time slots of N
symbol durations each. Each transmit terminal transmits a sequence of M codewords
of length N , one in each time slot. We specify the decoding order for the codewords
of the set Mm that are transmitted in the jth time slot through the function l :

{1, . . . ,M}2 −→ {1, . . . ,M} : (m, j) −→ lm,j, where

lm,j = ((M −m+ j) mod M) + 1. (B.6)

This function is one-to-one in j for each fixed m and illustrated in Table B.1. The
codewords of the transmit terminals in setMm for the jth time slot are selected from
a common code whose rate R(lm,j) is fully determined by the value of lm,j, i.e., the
respective position in the decoding order for this time slot. The average code rate over
the M codebooks of the transmit terminals in setMm is given by

R(m) =
1

M

M∑
j=1

R(lm,j). (B.7)

Since (i) the codomain of lm,j with respect to j is the same for all m, and (ii) for each
fixed m the function lm,j is one to one in j, this average rate R(m) is the same for all
Mm, i.e.,

R(1) = R(2) = . . . = R(M). (B.8)

In the following, we use a result [96, Lemma 3.1] on the t signal-to-interference-plus-
noise ratios (SINRs), (SINRk)tk=1, at the output of an MMSE receiver in an r×tMIMO
channel with channel coefficients as assumed in this lemma. If t/r → β as n → ∞,
then there exists a constant SINR(∞) (β), such that almost surely

lim
n→∞

max
k∈{1,...,t}

∣∣∣SINRk − SINR(∞) (β)
∣∣∣ = 0. (B.9)

We apply this result, for each of the M time slots, to each of the M decoding phases
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set time slot 1 time slot 2 time slot 3 ... time slot M − 1 time slot M
M1 1 2 3 ... M − 1 M
M2 M 1 2 ... M − 2 M − 1
M3 M − 1 M 1 ... M − 3 M − 2
...

...
...

... . . . ...
...

MM−1 3 4 5 ... 1 2
MM 2 3 4 ... M 1

Table B.1.: Illustration of lm,j : position of setMm in the decoding order of the jth decoding
phase.

in the corresponding modified MMSE-SIC receiver. Specifically, since M is finite, we
conclude that almost surely

lim
n→∞

max
(j,m)∈{1,...,M}2

max
k∈Mm

∣∣∣SINRk,j − SINR(∞)
(
βlm,j

)∣∣∣ = 0, (B.10)

where SINRk,j denotes the SINR for the signal of transmit terminal k in time slot j, and
βlm,j is defined analogously to (B.5). Thus, in the limit of large n, R(lm,j) is achievable
for all transmit terminals inMm in time slot j almost surely, if

R(lm,j) < log
(

1 + SINR(∞)
(
βlm,j

))
. (B.11)

The average (over time slots) of the suprema of achievable rates for the transmit ter-
minals in setMm is given by

Rm =
1

M

M∑
j=1

log

(
1 + min

k∈Mm

SINRk,j

)
. (B.12)

According to (B.10), there exists for every ε > 0 almost surely an n0, such that for all
n ≥ n0

max
m∈{1,...,M}

∣∣∣Rm − ξ̃
∣∣∣ < ε

2
, (B.13)

where due to the choice of lm,j

ξ̃ =
1

M

M∑
j=1

log
(

1 + SINR(∞)
(
βl1,j

))
= . . . =

1

M

M∑
j=1

log
(

1 + SINR(∞)
(
βlM,j

))
.

(B.14)
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Next, we show that there is for each ε > 0 an M0, such that for all M ≥M0∣∣∣ξ − ξ̃∣∣∣ < ε

2
, (B.15)

where ξ fulfills [75]

lim
n→∞

1

n
log det

(
In +

P

n · σ2
HHH

)
= ξ almost surely. (B.16)

Let us fix j and denote by SINRk,j the SINR of the kth transmit terminal in time
slot j, when interference of each codeword is canceled individually, once it is decoded.
That is, we consider the SINRs as seen in the capacity achieving structure. Thus, the
following relation holds [67]:

log det

(
In +

P

n · σ2
HHH

)
=

n∑
k=1

log(1 + SINRk,j). (B.17)

We fix the decoding order in this case, such that the codewords of the transmit terminals
in setMm are decoded in the decoding phases∑

i<lm,j

∣∣∣M(l−1
j )

i

∣∣∣+ 1, . . . ,
∑
i≤lm,j

∣∣∣M(l−1
j )

i

∣∣∣
 . (B.18)

Here, we denote by
(
l−1
j

)
i
the inverse function of lm,j with respect to m. Since the

SINR of each transmit terminal signal becomes the larger the more interference signals
are canceled, we have SINRk′,j ≤ SINRk,j for all k, k′, such that k ∈Mm and k′ ∈Mm′

and lm,j > lm′,j. Thus, we conclude

n∑
k=1

log (1 + SINRk,j) =
M∑
i=1

∑
k∈M

(l−1
j )

i

log (1 + SINRk,j) (B.19)

≥
M∑
i=2

∑
k∈M

(l−1
j

)
i

log (1 + SINRk,j) (B.20)

≥

n−

∣∣∣∣∣M(l−1
j

)
M

∣∣∣∣∣∑
k=1

log
(
1 + SINRk,j

)
(B.21)
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≥ log det

(
In +

P

n · σ2
HHH

)
−
∣∣∣M(l−1

j )
M

∣∣∣ max
k∈M

(l−1
j

)
M

log
(
1 + SINRk,j

)
. (B.22)

Here, the last inequality follows from (B.17). Taking the limit with respect to n in
(B.19), normalized by n−1, yields almost surely

lim
n→∞

1

n

M∑
j=1

∑
k∈M

(l−1
j )

j

log (1 + SINRk,j) =
M∑
m=1

(
lim
n→∞

∣∣Mlm,j

∣∣
n

)
log
(

1 + SINR(∞)
(
βlm,j

))
(B.23)

=
1

M

M∑
m=1

log
(

1 + SINR(∞)
(
βlm,j

))
= ξ̃. (B.24)

Likewise, we obtain for (B.22) almost surely

lim
n→∞

1

n
log det

(
In +

P

n · σ2
HHH

)
−

∣∣∣M(l−1
i )

M

∣∣∣
n

max
k∈M

(l−1
i

)
M

log
(
1 + SINRk,j

)
(B.25)

= ξ − 1

M
log
(

1 + SINR(∞)(0)
)
. (B.26)

Since SINR(∞)(0) is finite almost surely according to [96, Lemma 3.1], there exists for
every ε > 0 an M0, such that for all M ≥ M0 we have 1

M
log
(

1 + SINR(∞)(0)
)
< ε/2.

Thus, we eventually conclude

ξ − ε

2
< ξ̃ < ξ, (B.27)

which establishes (B.15). The second inequality follows, since ξ is the normalized
asymptotic sum-capacity of the channel.

We finally combine (B.13) and (B.15) in order to conclude that there exists for every
ε > 0 almost surely an n0, such that for all n ≥ n0

max
m∈{1,...,M}

|Rm − ξ| ≤
∣∣∣Rm − ξ̃

∣∣∣+
∣∣∣ξ − ξ̃∣∣∣ < ε

2
+
ε

2
< ε, (B.28)

where we used the triangle inequality. Thus, the rate tuple (R(1), R(2), . . . , R(n)) =

(R,R, . . . , R) is achievable almost surely in the limit n→∞, if R < ξ. �
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Proof of Lemma 2. We decompose the matrix H ∈ Cn×n into the matrices H̃m ∈
Cnm×n, m ∈ {1, . . . ,M}, where

nm =

dn/Me, if 1 ≤ m ≤ n mod M

bn/Mc, else.
(B.29)

The matrices H̃m contain disjoint sections of H, such that

H =
(
H̃T

1 . . . H̃
T
M

)T
. (B.30)

With this notation, we obtain the following bounds on ‖hTk ‖2:

1

n
λmin

{
H̃mH̃H

m

}
≤ min

k:dk/Me=m

1

n
‖hTk ‖2 ≤ max

k:dk/Me=m

1

n
‖hTk ‖2 ≤ 1

n
λmax

{
H̃mH̃H

m

}
.

(B.31)

Here, we used that the maximum/minimum Eucledian norm of any row of a matrix is
upper-/lower-bounded by the maximum/minimum singular value of the matrix.

From [79] it is known that almost surely

lim
n→∞

λmax
1

n

{
H̃mH̃H

m

}
= lim

n→∞
(1 +

√
nm/n)2 = (1 +

√
1/M)2, (B.32)

lim
n→∞

λmin
1

n

{
H̃mH̃H

m

}
= lim

n→∞
(1−

√
nm/n)2 = (1−

√
1/M)2. (B.33)

Since M is finite, we can conclude that also almost surely

lim
n→∞

max
m∈{1,...,M}

1

n
λmax

{
H̃mH̃H

m

}
= (1 +

√
1/M)2, (B.34)

lim
n→∞

min
m∈{1,...,M}

1

n
λmin

{
H̃mH̃H

m

}
= (1−

√
1/M)2. (B.35)

In the following, we choose M for a given ε > 0 sufficiently large, such that

P (1 +
√

1/M)2 < P +
ε

2
(B.36)

and

P (1−
√

1/M)2 > P − ε

2
. (B.37)
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Then, there exists for every ε > 0 almost surely an n0, such that for all n ≥ n0

max
k∈{1,...,n}

P

n
‖hTk ‖2 − P ≤ max

m∈{1,...,M}

P

n
λmax{HmHH

m} − P

< P (1 +
√

1/M)2 +
ε

2
− P <

ε

2
. (B.38)

The first inequality follows from (B.31), the second one from (B.34), and the third one
from (B.36). Likewise, there exists for every ε > 0 almost surely an n0, such that for
all n ≥ n0.

min
k∈{1,...,n}

P

n
‖hTk ‖2 − P ≥ min

m∈{1,...,M}

P

n
λmin{HmHH

m} − P (B.39)

> P (1−
√

1/M)2 − ε

2
− P > −ε

2
. (B.40)

Again, the first inequality follows from (B.31), the second one from (B.35), and the
third one from (B.37). The combination of the bounds (B.38) and (B.40) yields, that
there also exists for every ε > 0 almost surely an n0, such that for all n ≥ n0

max
k∈{1,...,n}

∣∣∣∣Pn ‖hTk ‖2 − P
∣∣∣∣ < ε, (B.41)

which establishes the Lemma. �

Proof of Lemma 3. We rewrite the considered conditional mutual information as
follows:

I(yS ; ŷS |ŷSC ) = h(ŷS |ŷSC )− h(ŷS |yS , ŷSC ) (B.42)

= h(ŷS |ŷSC )− h(ŷS |yS) (B.43)

= h(ŷS , ŷSC )− h(ŷSC )− h(ŷS |yS) (B.44)

= h(ŷ)− h(ŷSC )− h(ŷS |yS). (B.45)

Here, we used the fact that ŷS is independent of ŷSC when conditioned on yS in order
to obtain (B.43). The three entropy expressions are evaluated as follows:

h(ŷ) = n log
(
2πe(σ2

w + σ2
q)
)

+ log det

(
In +

P

(σ2
w + σ2

q) · n
HHH

)
, (B.46)

h(ŷSC ) =
∣∣SC∣∣ log

(
2πe(σ2

w + σ2
q)
)

+ log det

(
I|SC | +

P

(σ2
w + σ2

q) · n
(HSC )H HSC

)
(B.47)
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=
∣∣SC∣∣ log

(
2πe(σ2

w + σ2
q)
)

+ log det

(
In +

P

(σ2
w + σ2

q) · n
HSC (HSC )H

)
,

(B.48)

h(ŷS |yS) = h(z) = |S| log(2πeσ2
q). (B.49)

Here, HSC denotes the matrix that contains the |SC | columns of H whose indexes are
contained in SC . Thus, we obtain according to (B.45)

I(yS ; ŷS |ŷSC ) = log det

(
In +

P

(σ2
w + σ2

q) · n
HHH

)
− log det

(
In +

P

(σ2
w + σ2

q) · n
HSC (HSC )H

)
+ |S| log(1 +

σ2
w

σ2
q

).

(B.50)

Next, we use the following corollary that follows from Lemma 1:

Corollary 1. Let the elements of the random matrix H ∈ Cn×n be distributed according
to the assumptions of Theorem 3. Let P and σ2 be positive constants. Then, there exists
almost surely an n0, such that for all n ≥ n0:

|S|
n

(
1

n
log det

(
In +

P

n · σ2
HHH

))
≤ 1

n
log det

(
In +

P

n · σ2
HS (HS)H

)
for all S ⊆ {1, . . . , n} (B.51)

where HS denotes the matrix that contains the |S| columns of H whose indexes are
contained in S.

The proof of this corollary is provided subsequent to this proof. According to Corol-
lary 1, there exists almost surely an n0, such that for all n ≥ n0

1

n
log det

(
In +

P

(σ2
w + σ2

q) · n
HSC (HSC )H

)
≥
∣∣SC∣∣
n

(
1

n
log det

(
In +

P(
σ2

w + σ2
q

)
· n

HHH

))
for all S ⊆ {1, . . . , n}. (B.52)

We apply this result to (B.50), and conclude that there is almost surely an n0, such
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that for all n ≥ n0

1

n
I(y; ŷS |ŷSC ) ≤ 1

n
·

(
1−

∣∣SC∣∣
n

)
· log det

(
In +

P

(σ2
w + σ2

q) · n
HHH

)
+
|S|
n

log

(
1 +

σ2
w

σ2
q

)
(B.53)

=
|S|
n
· 1

n
log det

((
1 +

σ2
w

σ2
q

)
In +

P

n
HHH

)
for all S ⊆ {1, . . . , n},

(B.54)

where (B.54) converges to |S|
n
ζ almost surely as n→∞, i.e., there exists almost surely

for every tuple of rates of compressed quantization codebooks (R(1), R(2), . . . , R(n)) =

(R,R, . . . , R) with R > ζ an n0, such that for all n ≥ n0 the quantization noise variance
σ2

q is achievable in the sense of (3.31). �

Proof of Corollary 1. Lemma 1 implies that there is for all R < ξ almost surely an
n0, such that for all n ≥ n0

|S|R < log det

(
In +

P

n · σ2
·HS(HS)H

)
for all S ⊆ {1, . . . , n}. (B.55)

Since almost surely

ξ = lim
n→∞

1

n
log det

(
In +

P

n · σ2
HHH

)
, (B.56)

this is equivalent to (B.51). �
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Proof of Lemma 5. The lemma follows from the fact that the limit can be taken
inside a continuous function, which allows us to write

lim
κ→∞

(
c

g(κ)
+ 1

)κ
= exp

(
lim
κ→∞

Log

(
c

g(κ)
+ 1

)κ)
(B.57)

= exp

(
lim
κ→∞

κ log

∣∣∣∣ c

g(κ)
+ 1

∣∣∣∣+ lim
κ→∞

ı arg

{
c

g(κ)
+ 1

})
(B.58)

= exp

(
lim
κ→∞

κ log

∣∣∣∣ c

g(κ)
+ 1

∣∣∣∣) (B.59)
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= exp

(
lim
κ→∞
<
{
κLog

(
c

g(κ)
+ 1

)})
. (B.60)

From the rule of Bernoulli-l’Hospital, we know that

lim
κ→∞

κ · Log
( c

Mκγ
+ 1
)

= lim
κ→∞

cγκ

c+Mκγ
, (B.61)

where γ and M are positive constants.

If g(κ) ∈ Ω(κ1+ε), there exists by definition some M > 0, such that the absolute
value of the argument of the exponential function in (B.60) can be upper-bounded
according to

lim
κ→∞

∣∣∣∣κ · Log

(
c

g(κ)
+ 1

)∣∣∣∣ ≤ lim
κ→∞

∣∣∣κ · Log
( c

Mκ1+ε
+ 1
)∣∣∣ . (B.62)

Evaluating (B.61) for γ = 1 + ε renders this upper-bound zero, which establishes that
also the left hand side of (B.62) becomes zero and (B.60) evaluates to one in this case.

For the proof of the other two cases (note that c is real and negative now), we write
analogously to (B.60)

lim
κ→∞

(
c

g(κ)
+ 1

)κ
= exp

(
lim
κ→∞

κlog

(
c

g(κ)
+ 1

))
. (B.63)

If g(κ) ∈ Θ(κ), there exist constants M1 and M2, M1 ≥M2 > 0, and κ0, such that
for all κ ≥ κ0, the exponent in (B.63) is sandwiched between

c

M1

= lim
κ→∞

κ · log

(
c

M1κ
+ 1

)
(B.64)

≥ κ · log

(
c

g(κ)
+ 1

)
(B.65)

≥ lim
κ→∞

κ · log

(
c

M2κ
+ 1

)
=

c

M2

, (B.66)

where the limit is obtained by evaluating the right hand side of (B.61) for γ = 1. This
establishes the second case.

Since g(κ) ∈ O(κ1−ε), there exists some M > 0, such that the argument of the
exponential function in (B.63) can be upper-bounded according to

lim
κ→∞

κ · log

(
c

g(κ)
+ 1

)
≤ lim

κ→∞
κ · log

( c

Mκ1−ε + 1
)
. (B.67)

146



B.2. Proofs of Lemmata for Theorem 5

The limit (B.61) does not exist for γ = 1− ε, which implies that both sides of (B.67)
evaluate to minus infinity, and (B.60) to zero. �

Proof of Lemma 6. We establish the following chain of identities:

lim
n→∞

1

n

∥∥In −A(n)(γ)
∥∥
∗

= lim
n→∞

1

n

n∑
i=1

σi{In −A(n)(γ)} (B.68)

= lim
n→∞

1

n

n∑
i=1

∣∣λi{In −A(n)(γ)}
∣∣ (B.69)

= lim
n→∞

1

n

n∑
i=1

∣∣1− λi{A(n)(γ)}
∣∣ (B.70)

= lim
n→∞

1

n

 ∑
i:λi{A(n)(γ)}≤1

(
1− λi{A(n)(γ)}

)
+

∑
i:λi{A(n)(γ)}>1

(
λi{A(γ)} − 1

) (B.71)

= lim
n→∞

 1∫
0

∣∣∣F (n,γ)
A (x)

∣∣∣ · dx+

∞∫
1

∣∣∣F (n,γ)
A (x)− 1

∣∣∣ · dx
 (B.72)

= lim
n→∞

∞∫
0

∣∣∣F (n,γ)
A (x)− σ(x− 1)

∣∣∣ · dx (B.73)

=

∞∫
0

∣∣∣F (γ)
A (x)− σ(x− 1)

∣∣∣ · dx almost surely. (B.74)

In (B.69), we write the nuclear norm of the matrix In − A in terms of its singular
values σi. Since the matrix In −A(γ) is normal, i.e., (In −A(γ))H(In −A(γ)) = (In −
A(γ))(In−A(γ))H , its singular values coincide with the absolute values of its eigenvalues.
In (B.71), we arrange the terms, such that they can be related to the EED of A(γ).
In (B.74), we take the limit inside the integral. This is justified, since the maximum
eigenvalue of A(γ) converges to some bounded constant by assumption. Thus, the
integration is over the compact interval [0, λ

(γ)
max], where we integrate over a uniformly

convergent sequence (in n) of functions. This establishes the equivalence between 1)
and 3). It remains to establish that

lim
γ→∞

λ
(γ)
max∫

0

|F (γ)
A (x)− σ(x− 1)| · dx = 0
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⇐⇒ lim
γ→∞
|F (γ)

A (x)− σ(x− 1)| = 0 for all x. (B.75)

For the forward part, consider ε(x) , |F (γ)
A (x)− σ(x− 1)| for x ∈ [0, 1), i.e.,

ε(x) = |F (γ)
A (x)|. Fix any ∆ ∈ [−1, 0). Since ε(x) is monotonically increasing on the

interval of interest, we can write

1∫
1+∆

|F (γ)
A (x)− σ(x− 1)| · dx > |∆| · ε(1 + ∆). (B.76)

Thus, if ε(1 + ∆) does not tend to zero for all ∆, the integral cannot tend to zero. The
same reasoning can be applied for the interval ∆ ∈ [1, λ

(γ)
max].

For the backward part, we break the integration in (B.74) into two parts. The
first integral is from zero to some constant d, 1 < d < λ

(γ)
max. F (γ)

A (x) is a sequence of
Riemann integrable functions that is uniformly bounded and pointwise convergent. By
the bounded convergence theorem for the Riemann integral (e.g. [97]) we can take the
limit inside the integral. Thus, the limit of this first integral is zero. The second part
of the integral is from d to λ(γ)

max. Here, the limit cannot be taken inside the integral in
general (note that limγ→∞ λ

(γ)
max might be unbounded). However, we can write

lim
γ→∞

λ
(γ)
max∫
d

1− F (γ)
A (x) · dx = lim

γ→∞

λ
(γ)
max∫

0

1− F (γ)
A (x) · dx− lim

γ→∞

d∫
0

1− F (γ)
A (x) · dx = 0.

(B.77)

The second term on the right hand side of (B.77) evaluates to one, since the limit
can be taken inside the integral. Again, this is justified by the bounded convergence
theorem (e.g. [97]). The first integral on the right hand side evaluates to one for every
γ, since otherwise there would be a contradiction between the following two statements:

lim
n→∞

λ1{A(γ)}∫
0

1− F (n,γ)
A (x) · dx = 1 almost surely for each γ, (B.78)

lim
n→∞

λ1{A(γ)}∫
0

1− F (n,γ)
A (x) · dx =

λ
(γ)
max∫

0

1− F (γ)
A (x) · dx almost surely for each γ. (B.79)

148



B.2. Proofs of Lemmata for Theorem 5

The first statement corresponds to the assumption limn→∞ n
−1Tr[A(γ)] = 1 almost

surely for each γ, the second statement follows by taking the limit inside the integral,
which is fine for every fixed value of λ(γ)

max. �

Proof of Lemma 7 We go through each of the assumptions required for Lemma 6:

1. To show that the EED of R̃n converges uniformly to a nonrandom distribution
irrespective of the values of L and βR, we use a result from [98, 99] (also [26,
Theorem 2.39]):

Let Y = 1
k
XTXH , where

• T is an arbitrary nonnegative definite k × k random matrix whose EED
for every fixed ratio k/n converges uniformly to a nonrandom distribution
almost surely as n→∞,

• X is an n×k random matrix, independent of T, with i.i.d. elements of unit
variance.

Then, the EED of Y converges uniformly to a nonrandom distribution function
almost surely as n→∞. If X is identified with Hl+1 and T with

InD +
α

nR
Hl

(
InD + . . .+

α

nR
H2

(
InD +

α

nR
H1H

H
1

)
HH

2 · · ·
)

HH
l ,

uniform and almost sure convergence of the EED of R̃n follows by induction.

2. For the trace condition, we obtain for arbitrary L and βR by application of
Lemma 8 (see p. 112):

lim
nD→∞

1

nD
Tr

[
1− α

1− αL+1
·Rn

]
=

1− α
1− αL+1

L∑
l=0

αl lim
nD→∞

1

nD
Tr

[
1

nlR
H1 · · ·HlH

H
l · · ·HH

1

]
(B.80)

=
1− α

1− αL+1

L∑
l=0

αl = 1 almost surely. (B.81)

Note that βR and L are fixed here, and thus the sum is finite.

3. For the condition on the maximum eigenvalue, we use the triangle inequality and
the submultiplicativity of the spectral norm:

lim
nD→∞

λmax

{
1− α

1− αL+1
Rn

}
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=
1− α

1− αL+1
lim

nD→∞
λmax

{
L∑
l=0

αl · 1

nlR
H1 · · ·HlH

H
l · · ·HH

1

}
(B.82)

≤ 1− α
1− αL+1

L∑
l=0

αl · lim
nD→∞

λmax

{
1

nlR
H1 · · ·HlH

H
l · · ·HH

1

}
(B.83)

=
1− α

1− αL+1

L∑
l=0

αl · lim
nD→∞

λmax

{
1

nlR
H2 · · ·HlH

H
l · · ·HH

1 H1

}
(B.84)

≤ 1− α
1− αL+1

L∑
l=0

αl×

lim
nD→∞

λmax

{
1

nl−1
R

H2 · · ·HlH
H
l · · ·HH

2

}
lim

nD→∞
λmax

{
1

nR
H1H

H
1

}
,

(B.85)

where we used that the nonzero eigenvalues of the matrix products in (B.83) and
(B.84) coincide. Repeated application of steps (B.84) and (B.85) finally yields

lim
nD→∞

λmax

{
1− α

1− αL+1
Rn

}
≤ 1− α

1− αL+1

L∑
l=0

αl
l∏

l′=1

lim
nD→∞

λmax

{
1

nR
Hl′H

H
l′

}
(B.86)

=
1− α

1− αL+1

L∑
l=0

αl · 4l−1

(
1 +

√
nD
nR

)2

<∞ almost surely, (B.87)

where each of the multipliers in (B.86) is bounded according to (3.114). The
ratio nD/nR and L are fixed, such that also the resulting product is finite. �

Proof of Lemma 8. The proof relies on a result of [98,99] (also [26, Theorem 2.39]):
Let Y = 1

k
XTXH be a random matrix, where

• T is an arbitrary nonnegative definite k×k random matrix whose EED converges
uniformly to a nonrandom distribution almost surely as k → ∞ and satisfies
limk→∞ k

−1Tr [T] = T almost surely,

• X is an n × k random matrix, independent of T, with i.i.d. elements of unit
variance.

Then, for every fixed ratio k/n

lim
n→∞

1

n
Tr [Y] = lim

n→∞

1

k
Tr [T] = T almost surely. (B.88)

150



B.2. Proofs of Lemmata for Theorem 5

Since the trace of a product is invariant under cyclic permutation of the factors, we
can write

n−1
D Tr

[
1

n2
R

H1H2H
H
2 HH

1

]
= n−1

D Tr

[
1

nR
HH

2

(
1

nR
HH

1 H1

)
H2

]
. (B.89)

If n−1
R HH

1 H1 is identified with T, where n = k = nR and T = nD/nR, we obtain

lim
nD→∞

n−1
D Tr

[
1

nR
HH

2

(
1

nR
HH

1 H1

)
H2

]
= lim

nD→∞
n−1
D Tr

[
1

nR
HH

1 H1

]
= 1 almost surely.

(B.90)

Repeating the argument for

n−1
D Tr

[
1

n3
R

H1H2H3H
H
3 HH

2 HH
1

]
= n−1

D Tr

[
1

nR
HH

3

(
1

n2
R

HH
2 HH

1 H1H2

)
H3

]
(B.91)

with T = n−2
R HH

2 HH
1 H1H2 yields

lim
nD→∞

n−1
D Tr

[
1

nR
HH

3

(
1

n2
R

HH
2 HH

1 H1H2

)
H3

]
= lim

nD→∞
n−1
D Tr

[
1

n2
R

HH
2 HH

1 H1H2

]
(B.92)

= lim
nD→∞

n−1
D Tr

[
1

nR
HH

1 H1

]
= 1 almost surely. (B.93)

Finally, we obtain with T = n−LR HH
L · · ·HH

2 HH
1 H1H2 · · ·HL

lim
nD→∞

n−1
D Tr

[
1

nS
HH
L+1

(
1

nLR
HH
L · · ·HH

2 HH
1 H1H2 · · ·HL

)
HL+1

]
= 1 almost surely,

(B.94)

which completes the proof. �

Proof of Lemma 9. We define the matrices

Al ,

(
α

nR

)L−l+2

HlHl+1 · · ·HLHL+1H
H
L+1H

H
L · · ·HH

l+1H
H
l (B.95)
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and

Bl , InR +
α

nR
Hl

(
InR + . . .+

α

nR
HL0−1

(
InR +

α

nR
HL0H

H
L0

)
HH
L0−1 · · ·

)
HH
l .

(B.96)

Note that σ2
w · (InD + H1B2H

H
1 ) corresponds to the noise covariance matrix at the

destination antennas under the assumption of noiseless relay stages RL to RL−L0+1.
Therefore, we obtain the following upper-bound:

E
[
RAF
L

]
≤ E

[
log det

(
InD +

PL
σ2

w · nS
H1A2H

H
1 ·
(
InD + H1B2H

H
1

)−1
)]

= E
[
log det

(
InD +

PL
σ2

w · nS
U1S̃1Ṽ

H
1 A2Ṽ1S̃1U

H
1

×
(
InD + U1S̃1Ṽ

H
1 B2Ṽ1S̃1U

H
1

)−1
)]

(B.97)

= E
[
log det

(
InD +

PL
σ2

w · nS
ṼH

1 A2Ṽ1S̃
2
1 ·
(
InD + ṼH

1 B2Ṽ1S̃
2
1

)−1
)]

(B.98)

≤ E

log det

InD +
PL

σ2
w · nS

ṼH
1 A2Ṽ1

Tr[S̃2
1]

nR
·

(
InD + ṼH

1 B2Ṽ1
Tr[S̃2

1]

nR

)−1


(B.99)

= E
[
log det

(
InD +

s1αPL
σ2

w · nS
H̃2A3H̃

H
2 ·
(

(1 + s1α)InD + s1αH̃2B3H̃
H
2

)−1
)]

.

(B.100)

In (B.97), we use the singular value decomposition H1 = U1S1V
H
1 = U1S̃1Ṽ

H
1 , where

S̃1 is an nD × nD diagonal matrix with all nonzero singular values on its diagonal and
ṼH

1 an nD × nR matrix derived from Ṽ1 by deleting the rows that correspond to the
zero singular values.

Eq. (B.98) follows from the following chain of identities, where we define X , U1S̃1:

XÃ2X
H
(
InD + XB̃2X

H
)−1

= XÃ2X
HXX−1

(
InD + XB̃2X

H
)−1

(B.101)

= XÃ2X
HX

(
X + XB̃2X

HX
)−1

= XÃ2X
HX

(
InD + B̃2X

HX
)−1

X−1

(B.102)
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and the fact that

λi

{
XÃ2X

HX
(
InD + B̃2X

HX
)−1

X−1

}
= λi

{
Ã2X

HX
(
InD + B̃2X

HX
)−1

X−1X

}
.

(B.103)

Eq. (B.99) follows from the fact that log det
(
InD + Ã2S̃1(InD + B̃2S̃1)−1

)
is concave

on the set of positive definite matrices S̃1 according to Lemma 11 on p. 153, and, thus,
for a given trace maximized by the respective matrix proportional to the identity [6].
In (B.100), we introduce the matrix H̃2 = ṼH

1 H2, which fulfills

E
[
Tr
[
H̃2H̃

H
2

]]
=

1

nR
E
[
Tr
[
H2H

H
2

]]
= E

[
Tr
[
H1H

H
1

]]
.

We finally obtain by induction:

E
[
RAF
L

]
≤ E

[
log det

(
InD +

s1s2αPL
σ2

w · nS
ṼH

2 A3Ṽ2

×
(

(1 + s1α) · InD + s1s2α
2ṼH

2 B3Ṽ2

)−1
)]

(B.104)

= E
[
log det

(
InD +

s1s2α
2PL

σ2
w · nS

H̃3A4H̃
H
3

×
(

(1 + s1α + s1s2α
2) · InD + s1s2α

2H̃3B4H̃
H
3

)−1
)]

(B.105)

...

≤ E
[
log det

(
InD +

s1 · · · sL0α
L0−1PL

σ2
w · nS

ṼH
L0

AL0+1ṼL0

×

(
L0∑
l=0

s1 · · · slαl · InD

)−1
 (B.106)

= E

[
log det

(
InD +

PL

σ2
w · nSn

L−L0
R

s1 · · · sL0α
L0−1∑L0

l=0 s1 · · · slαl
ṼH
L0

AL0+1ṼL0

)]
(B.107)

= E

[
log det

(
InD +

PL

σ2
w · nSn

L−L0
R

s1 · · · sL0α
L∑L0

l=0 s1 · · · slαl

×ṼH
L0

HL0+1 · · ·HL+1H
H
L+1 · · ·HH

L0+1ṼL0

)]
. (B.108)
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Lemma 11. Let A and B be positive definite matrices. Then, the function

f(Q) = log det
(
I + AQ(I + BQ)−1

)
(B.109)

is concave on the set of positive semidefinite matrices Q.

Proof of Lemma 11. Define Q = Qa+ t ·Qb, where Qa is positive semidefinite, Qb is
Hermitian, and t ∈ C. We proof concavity of f(·) in Q by proving that f(Qa + t ·Qb)

is convex in t for all t such that Q is positive semidefinite. We compute the first and
second derivative of f(·) with respect to t as

∂

∂t
log det

(
I + A(Qa + tQb)(I + B(Qa + tQb))

−1
)

(B.110)

= Tr
[
[(A + B)(Qa + tQb) + I]−1 (A + B)Qb

]
− Tr

[
[B(Qa + tQb) + I]−1 BQb

]
(B.111)

and

∂2

∂t2
log det

(
I + A(Qa + tQb)(I + B(Qa + tQb))

−1
)

(B.112)

= −Tr
[(

[(A + B)(Qa + tQb) + I]−1 (A + B)Qb

)2
]

+ Tr
[(

[B(Qa + tQb) + I]−1 BQb

)2
]

(B.113)

= −Tr

[([
Qa + tQb + (A + B)−1

]−1
Qb

)2
]

+ Tr

[([
Qa + tQb + B−1

]−1
Qb

)2
]
≤ 0. (B.114)

This expression is nonpositive due to [100, Lemma 2.3], which states that for a positive
definite matrix Z, a positive semidefinite matrix W, and a Hermitian matrix X

Tr
[(

Z−1X
)2
]
≥ Tr

[(
(Z + W)−1 X

)2
]
. (B.115)

In (B.114), we identify X with Qb, Z with Qa + tQb + (A + B)−1 and
W with B−1 − (A + B)−1. �

Proof of Lemma 10. We prove the statement by showing that the S-transforms
of the asymptotic EEDs of A and B coincide. The S-transform of B is given by [25,
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Theorem 2]

SB(z) =


nD
nS(

1+
nD
nS

z
) , if L = 1,(

1
1+

nD
nR

z

)L−2 nD
nS(

1+
nD
nS

z
)(

nD
nR

z+1
) , if L ≥ 2.

(B.116)

We derive the S-transform of A in the following. First, we obtain the S-transform
of Ã , 1

nLR
H2H3 · · ·HL+1H

H
L+1 · · ·HH

3 HH
2 from [25, Theorem 2] as

SÃ(z) =

(
1

1 + z

)L−1
1

nS
nR

+ z
. (B.117)

Using that the S-transform of 1
nD

H̃H
1 H̃1 is given by S 1

nD
H̃H

1 H̃1
(z) = z+1

1+nR/nDz
(e.g. [26])

we obtain the S-transform of ˜̃A , 1
nLRnD

H2H3 · · ·HL+1H
H
L+1 · · ·HH

3 HH
2 H̃H

1 H̃1 as [25,
Theorem 1]

S ˜̃A
(z) = S 1

nD
H̃H

1 H̃1
(z)SÃ(z) =

z + 1

1 + nR
nD
z

(
1

1 + z

)L−1
1

nS
nR

+ z
. (B.118)

Finally, we obtain the S-transform of the asymptotic EED of A as [25, Eq. (15)] as

SA(z) =
z + 1

z + nR
nD

S ˜̃A

(
nD
nR

z

)
=


nD
nS

1+
nD
nS

z
, if L = 1,(

1
1+

nD
nR

z

)L−2 nD
nS(

1+
nD
nS

z
)(

nD
nR

z+1
) , if L ≥ 2,

(B.119)

which coincides with (B.116). �
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The sum-transmit power of stage Rl is given by

nR∑
k=1

P
R

(l)
k

=
PL
nS

αL−l+1

nL−l+1
R

Tr
[
Hl+1 · · ·HL+1H

H
L+1 · · ·HH

l+1

]
+ σ2

w ·
α

nR
·

(
1 +

L−1∑
l′=l

αl
′−l

nl
′−l
R

Tr
[
Hl+1 · · ·Hl′+1H

H
l′+1 · · ·HH

l+1

])
.

(B.120)
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Each of the traces converges to one almost surely. This follows by repeated application
of the following result from [98,99]: Let Y = 1

m
XRXH be a random matrix, where

• R is an arbitrary nonnegative definite m ×m random matrix whose EED con-
verges uniformly to a nonrandom distribution almost surely as m → ∞ and
satisfies limm→∞m

−1Tr [R] = 1 almost surely,

• X is an p×m random matrix, independent of R, with i.i.d. elements of zero-mean
and unit variance.

Then, for every fixed ratio m/p, limp→∞
1
p
Tr [Y] = 1 almost surely.

Due to the convergence of the traces, the following holds:

lim
nR→∞

nR∑
k=1

P
R

(l)
k

= PLα
L−l+1 + σ2

w ·
L−1∑
l′=l

αL−l (B.121)

= PLα
L−l+1 + σ2

w · α
1− αL−l+1

1− α
almost surely, (B.122)

where the right hand side fulfills for α = PL/(PL + σ2
w)

PLα
L−l+1 + σ2

w · α
1− αL−l+1

1− α
= PL for all l ∈ {1, . . . , L}. (B.123)

For the second part, the transmit power of relay R
(l)
k is written as

P
R

(l)
k

=
α

nR
h

(k)
l+1

H
Tl+1h

(k)
l+1, (B.124)

where h
(l)
k denotes the kth column of Hl and

Tl+1 =



PL
nS

InR , if l = L,

PL
nS

αL−l

nL−lR
Hl+2 · · ·HL+1H

H
L+1 · · ·HH

l+2

+σ2
w ·
(

InR +
∑L−2

l′=l
αl
′−l+1

nl
′−l+1
R

Hl+2 · · ·Hl′+1H
H
l′+1 · · ·HH

l+2

)
,

if l ∈ {1, . . . , L− 1}.

First, a result from [101, Theorem 1] yields, that for every k ∈ {1, . . . , nR}

lim
nR→∞

P
R

(l)
k

= lim
nR→∞

α

nR
E
[
h

(k)
l+1

H
Tl+1h

(k)
l+1

]
= PLα

L−l+1 + σ2
w ·

L−1∑
l′=l

αL−l
′+1 (B.125)
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= PLα
L−l+1 + σ2

w · α
1− αL−l+1

1− α
almost surely, (B.126)

where the right hand side fulfills

PLα
L−l+1 + σ2

w · α
1− αL−l+1

1− α
= PL for all l ∈ {1, . . . , L} (B.127)

for α = PL/(PL + σ2
w). Ref. [101, Theorem 1] requires the Tl+1 to be positive semi-

definite (obvious) and to fulfill almost surely limnR→∞
1
nR

Tr[Tl+1] <∞ (follows by the
almost sure convergence of the traces in Tl+1).

Thus, there exists for every relay R
(l)
k an n(k)

0 , such that for all nR ≥ n
(k)
0∣∣∣nRPR

(l)
k
− PL

∣∣∣ < ε. (B.128)

Next, consider for each relay R
(l)
k the smallest such n

(k)
0 as a random variable. The

distribution of these i.i.d. random variables fulfills for all k ∈ {1, . . . , nR}

lim
nR→∞

Pr
[
n

(k)
0 < nR

]
= 1. (B.129)

Now, fix for γ arbitrarily close to one, n(0)
R sufficiently large, such that Pr

[
n

(k)
0 < n

(0)
R

]
>

γ. Then, for all nR > n
(0)
R

Pr

[
1

nR

nR∑
k=1

1
{
n

(k)
0 < nR

}
> γ

]
> Pr

[
1

nR

nR∑
k=1

1
{
n

(k)
0 < n

(0)
R

}
> γ

]
. (B.130)

Consider now the inequality for all nR > n
(0)
R

1

nR

nR∑
k=1

1
{
n

(k)
0 < nR

}
>

1

nR

nR∑
k=1

1
{
n

(k)
0 < n

(0)
R

}
, (B.131)

where the lower-bound fulfills due to (B.130) and the strong law of large numbers

lim
nR→∞

1

nR

nR∑
k=1

1
{
n

(k)
0 < n

(0)
R

}
> γ almost surely. (B.132)

This establishes the proposition. �
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Acronyms

AF amplify & forward.
AWGN additive white Gaussian noise.

CDF cumulative distribution function.
CDMA code division multiple access.
CF compress & forward.
CSCG circularly symmetric complex Gaussian.
CSI channel state information.
CSMA carrier sense multiple access.

DCF distributed coordination function.
DF decode & forward.
DMT diversity multiplexing tradeoff.

EDGE Enhanced Data Rates for Global Evolution.
EED empirical eigenvalue distribution.

FDMA frequency division multiple access.

GPRS Gleneral Packet Radio Service.
GSM Global System for Mobile Communications.

HSDPA High Speed Downlink Packet Access.
HSPA High Speed Packet Access.
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Acronyms

i.i.d. identically and independently distributed.
IO input-output.

KKT Karush-Kuhn-Tucker.

LTE Long Term Evolution.

MAC medium access control.
MIMO multiple-input multiple-output.
MMSE minimum mean square error.

OFDM orthorgonal frequency division multiplexing.

PDF probability density function.
PMF probability mass function.

QF quantize & forward.

SIC successive interference cancellation.
SINR signal-to-interference-plus-noise ratio.
SISO single-input single-output.
SNR signal-to-noise ratio.

TDMA time division multiple access.

UMTS Universal Mobile Telecommunications System.

VLSI very-large-scale integration.

WLAN wireless local area network.
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Notation

a vector a.
a,A scalars a and A.
(a)N sequence (a1, . . . , aN).
[a, b) interval from a (including a) to b (excluding b).
A matrix A.
(aij)i=1,...m,j=1,...n m× n matrix A.
(a1, . . . , an) m× n matrix with vector ai in column i.
A set A.
a random variable a.
a random vector a.
A random matrix A.

Diag(a) diagonal matrix with the vector a on its diagonal.
diag(A) vector that contains the diagonal of matrix A.
‖a‖p p-norm of vector a.

rk{A} rank of matrix A.
‖A‖∗ nuclear norm of matrix A.
‖A‖p induced p-norm of matrix A.
Tr[A] trace of matrix A.
det(A) determinant of matrix A.
λi{A} ith ordered (decreasing) eigenvalue of matrix A.
λi{A,B} ith ordered (decreasing) generalized eigenvalue of matrices A and B.
σi{A} ith ordered (decreasing) singular value of matrix A.
AT transpose of matrix A.
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Glossary

AH Hermitian transpose of matrix A.
A∗ element-wise complex conjugate of matrix A.
<{A} real part of matrix A.
={A} imaginary part of matrix A.
A ≺ B B−A is positive definite.
A � B B−A is positive semi-definite.
A � B A−B is positive definite.
A � B A−B is positive semi-definite.
A�B element-wise (Hadamard) product of matrices A and B.

In n× n identity matrix.
ei ith unit vector.
0m×n m× n all zero matrix.
π Archimedes’ constant 3.14....
e Euler’s constant 2.71....
ı imaginary unit

√
−1.

A+ the set of positive elements in the set A.
A× B Cartesian product of sets A and B.
An nth Cartesian power of set A.
AC complement of set A.
A ∪ B union of sets A and B.
|A| cardinality of set A.
A ∩ B intersection of sets A and B.
A\B the set of elements in A that are not contained in B.
a ∈ A a is an element of A.
a /∈ A a is not an element of A.

N the set of natural numbers.
Q the set of rational numbers.
R the set of real numbers.
C the set of complex numbers.
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Glossary

Pn projective space corresponding to Cn+1.

∃ exists.
∀ for all.

fx(·) joint probability density function of the random vector x.
Fx(·) joint cumulative distribution function of the random vector x.
P[A] probability of event A.
P[A|B] probability of event A given even B.
Ex[·] expectation with respect to the random vector x.
x ∼ CN (µ,K) random vector x is circularly symmetric complex Gaussian distributed

with mean vector µ and covariance matrix K.
h(x) differential entropy of random vector x.
h(x|y) conditional differential entropy of random vector x given the random

vector y.
I(x; y) mutual information between random vectors x and y.
I(x; y|z) conditional mutual information between random vectors x and y given

the random vector z.
x→ y→ z the random vectors x, y and z form a Markov chain (in this order).

f : A → B : x→ y function y = f(x) with domain A and co-domain B.
f ◦ g composition of function f and g.
max maximum of a function or set of values.
min minimum of a function or set of values.
argmax maximizing argument of a function.
argmin minimizing argument of a function.
x ∝ y x is proportional to y.
(·)+ max(0, ·).
1{a < b} indicator function, 1, if a < b is true, 0 else.
Log(·) complex logarithm to the base e.
log(·) real logarithm to the base 2 unless stated explicitly.
δ(·) Dirac delta function.
δ[·] Kronecker delta function.
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Glossary

σ(·) Heaviside step function.
b·c floor function.
d·e ceiling function.
a mod b a modulo b.

O, o,Ω, ω,Θ Landau symbols.
∂/∂a partial derivative with respect to a.
∇a gradient vector with respect to vector argument a.
∇2

a Hessian matrix with respect to vector argument a.

L Lagrangian function.

F
(n)
A (·) empirical eigenvalue distribution of the Hermitian random matrix A.
G

(n)
A (·) Stieltjes transform of empirical eigenvalue distribution of the Hermitian

random matrix A.
S

(n)
A (·) S-transform of empirical eigenvalue distribution of the Hermitian ran-

dom matrix A.

Sk kth source node.
Dk kth destination node.
R

(l)
k kth relay node in stage l.
S set of source nodes.
D set of destination nodes.
R(l) set of relay nodes in stage l.
L number of hops.
nS number of source nodes.
nD number of destination nodes.
n

(l)
R number of relay nodes in R(l).
n number of sources and destinations when nS = nD.
nR number of relay nodes per relay stage when n(1)

R = . . . = n
(L)
R .
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