
System-on-Chip Architectures for Event-Driven Com-
puting

Diss. ETH No. 28578

System-on-Chip
Architectures for

Event-Driven Computing

A dissertation submitted to
ETH ZURICH

for the degree of
Dr. sc. ETH Zürich

presented by
ALFIO DI MAURO

MSc Politecnico Di Torino DET
born April 9th, 1992

citizen of Carlentini, Italy

accepted on the recommendation of
Prof. Dr. Luca Benini, examiner

Prof. Dr. Luciano Lavagno, co-examiner

2022

Abstract

The number of electronic devices deployed around us has followed
a steadily increasing trend over the last decade. As the transistor
miniaturization and integration processes improved year after year,
integrated circuits (IC) became increasingly more energy-efficient and
computationally capable. In the Internet-of-Things (IoT) era, the
number of interconnected electronic devices is destined to increase
at the fast pace of a tenth of billions of new interconnected nodes
per year. It is evident that the management of the enormous
amount of data being transferred to centralized, highly powerful cloud
computing nodes for semantically rich information extraction poses
new challenges. Among the most relevant is the need for increasingly
higher network bandwidth, lower data transmission latency, and
higher energy efficiency and storage capacity. With such a present
and future scenario in mind, research communities are exploring
innovative solutions to tackle such challenges and reduce the need for
a massive, energy-hungry, raw data transmission to cloud computing
services. A promising approach that has been established over the
last years is to move part of the semantic information extraction
as close to the IoT sensor as possible by processing the raw data
collected by sensors on-site. To fully achieve this goal, with a
synergic effort, sensors must become more intelligent and provide less
redundant information; simultaneously, the processing devices must
efficiently collect such a stream of rich information and parsimoniously
process it on-demand in a low energy budget. This thesis will tackle
the quest for energy-efficiency information extraction at the edge
from two different sides. On the one hand, we will explore novel
event-based audio and video sensors, and we will show how such

v

vi ABSTRACT

devices can be used to achieve an energy-proportional, sparse data
transfer to conventional, digital system-on-chips (SoC) architectures.
On the other hand, we will investigate innovative brain-inspired
event-driven machine learning (ML) computing frameworks, such
as Spiking Neural Networks (SNN), to build an end-to-end energy-
proportional computing pipeline that can profit from the inherently
sparse nature of the data acquired from such sensors, and that
is deployable at the extreme edge. Throughout the thesis, we
will demonstrate, on an ASIC manufactured in a 22nm technology
node, how a non Von Neumann data-driven accelerator for SNNs
can be efficiently integrated into a more standard RISC-V-centric
ML-task-oriented SoC. Eventually, we will conclude our exploration
by showing how brain-inspired error-resilient ML algorithms allow
operating highly integrated digital processing engines in the notably
more energy-efficient near-threshold regime, paving the way for more
computationally capable, energy-efficient edge-computing nodes of the
future.

Riassunto

Il numero di dispositivi elettronici distribuiti intorno a noi ha seguito
una tendenza in costante aumento nell’ultimo decennio. La minia-
turizzazione dei transistors e’ migliorata anno dopo anno, e i circuiti
integrati (IC) sono diventati sempre più efficienti dal punto di vista
energetico e computazionalmente capaci. Nell’era dell’Internet delle
cose ”Internet of Things (IoT)”, il numero di dispositivi elettronici
interconnessi è destinato ad aumentare ad un ritmo di circa dieci
miliardi di nuovi dispositivi interconnessi per anno. È evidente, che
la gestione dell’enorme quantità di dati che vengono trasferiti su
infrastrutture di cloud computing centralizzate, al fine di estrarne
informazioni rilevanti, pone nuove sfide. Tra le più rilevanti c’è la
necessità, sempre più elevata, di un’adeguata capacita’ di trasmissione
dei dati (banda di trasmissione), minore latenza nel trasmettere
questi dati e maggiore efficienza energetica e capacità di archiviazione.
Tenendo a mente lo scenario presente, ed immaginando, in prospettiva
futuri sviluppi dello scenario corrente, le comunità di ricerca stanno
esplorando soluzioni innovative per affrontare tali sfide e ridurre la
necessità di trasmettere dati grezzi, operazione che richiede ingenti
quantita’ di energia, ai servizi di cloud computing. Un approccio
promettente, che si e’ affermato negli ultimi anni, è quello di
“portare” parte dell’estrazione di informazioni semantiche il più vicino
possibile ai sensori che raccolgono dati dall’ambiente circostante. Per
raggiungere pienamente questo obiettivo, con uno sforzo sinergico, c’e’
la necessita’ che i sensori distribuiti attorno a noi diventino sempre più
“intelligenti”, e quindi capaci di fornire flussi di dati poco ridondanti, e
con un alto contenuto informativo; contemporaneamente, i dispositivi
di elaborazione devono essere in grado di sfruttare, in modo efficiente,

vii

viii RIASSUNTO

tali flussi di informazioni poco ridondanti ed elaborarle, solo quando
necessario, utilizzando un budget energetico ridotto.

Questa tesi affronterà il tema dell’estrazione efficiente di informa-
zioni provenienti da sensori distribuiti nell’ambiente circostante da due
angolazioni diverse. Da un lato, esploreremo nuove categorie di sensori
audio e video capaci di produrre eventi asincroni in corrispondenza
di stimoli esterni, e mostreremo come tali dispositivi possono essere
utilizzati per ottenere un trasferimento di dati sparso, ed un consumo
di energia proporzionale al numero di eventi trasmessi. D’altra parte,
esploreremo algoritmi innovativi di “machine learning” capaci di
processare singoli eventi, come Spiking Neural Networks (SNN), al fine
di costruire un flusso di elaborazione dei dati (dal sensore al dispositivo
di elaborazione) proporzionale al numero di eventi acquisiti. In questa
tesi, dimostreremo, su un circuito integrato progettato per questo
specifico scopo, ”Application Specific Integrated Circuit” o ASIC,
fabbricato in tecnologia a 22nm, come un acceleratore basato su
architettura non-Von Neumann per SNN può essere integrato, in modo
efficiente, in un “System on Chip” (SoC) per machine learning piu’
classico, basato su processori RISC-V.

Alla fine, concluderemo la nostra esplorazione mostrando come
alcuni algoritmi di machine learning, siano particolarmente resilienti
ad errori introdotti dall’utilizzo dei circuiti integrati, al di fuori delle
loro specifiche nominali di funzionamento, e nello specifico in un
regime operativo chiamato “near-threshold”, che consente ai circuiti
integrati di essere più efficienti dal punto di vista energetico.

Contents

Abstract v

Riassunto vii

1 Introduction 1
1.1 Motivation . 2
1.2 Energy efficient edge-computing devices 3
1.3 Next generation applications requirements 6
1.4 Brain-inspired edge-computing 8
1.5 Outline . 9
1.6 Contributions . 11
1.7 List of publications . 12

2 Energy-proportional data acquisition 17
2.1 Introduction . 17
2.2 Related work . 20
2.3 Architecture . 22

2.3.1 Silicon Cochlea Interface 22
2.3.2 Silicon Cochlea Sensor node 26
2.3.3 Dynamic Vision Sensor Interface 28
2.3.4 Dynamic Vision Sensor Node 32
2.3.5 System-on-chip integration 35

2.4 Experimental Results 37
2.4.1 DASI FPGA standalone sensor node results . . 37
2.4.2 DVSI FPGA standalone sensor node results . . 42
2.4.3 Silicon implementation results 45

ix

x CONTENTS

2.5 Conclusion . 49

3 Overcoming Reliability Boundaries 53
3.1 Introduction . 53
3.2 Related work . 57

3.2.1 IoT End-Node Architectures 57
3.2.2 Heterogeneous and Error Resilient Memory Ar-

chitectures . 59
3.2.3 Dedicated Hardware Accelerators for DNNs and

BNNs . 60
3.3 Architecture . 61

3.3.1 Quentin chip 61
3.3.2 BNN accelerator 62
3.3.3 Memory partitioning 63
3.3.4 BNN error resilience 65

3.4 Results . 67
3.4.1 Experimental setup 68
3.4.2 Bit Error Rate analysis 70
3.4.3 Power and energy consumption 71
3.4.4 Power accuracy trade-off 76

3.5 Conclusion . 78

4 Energy-proportional data processing 81
4.1 Introduction . 81
4.2 Related work . 83

4.2.1 Analog and mixed-signal neuromorphic platforms 84
4.2.2 Digital neuromorphic platforms 84

4.3 Architecture . 85
4.3.1 Spatial and temporal data representation . . . 86
4.3.2 Execution model and mapping 87
4.3.3 Data transfer 88
4.3.4 Interconnect 90
4.3.5 Computing engines 91
4.3.6 SNE neuron model 94

4.4 Experimental results 99
4.4.1 Physical implementation 99
4.4.2 Area breakdown 100
4.4.3 Experimental setup 101

CONTENTS xi

4.4.4 Power consumption and performance 101
4.4.5 Energy consumption 105
4.4.6 Comparison with the state of the art 107

4.5 Conclusion . 110

5 Kraken: An event-driven Brain-Inspired edge comput-
ing device 113
5.1 Introduction . 113
5.2 Related work . 116
5.3 Architecture . 117

5.3.1 Power and clock domains 118
5.3.2 Fabric controller 118
5.3.3 IO subsystem 120
5.3.4 Compute cluster 120
5.3.5 Accelerator domain 121

5.4 Physical implementation 121
5.5 Results . 123

5.5.1 General purpose computing engines 124
5.5.2 Frequency and Power consumption 125
5.5.3 Performance and Energy consumption 126
5.5.4 Event-driven application scenario 127

5.6 Conclusion . 133

6 Event-driven SNN deployment 135
6.1 Introduction . 135
6.2 Related work . 138

6.2.1 applications for SNNs 139
6.2.2 Unsupervised SNN training 139
6.2.3 Supervised SNN training 140
6.2.4 Fake quantization 141
6.2.5 True-quantization and integerization 142

6.3 Vertical software stack 143
6.3.1 Neural network quantization-aware training . . 143
6.3.2 PULP RISC-V toolchain 147
6.3.3 SNE software primitives 149
6.3.4 Automatic code generation 153

6.4 End-to-end application deployment to Kraken 157
6.4.1 results . 158

xii CONTENTS

6.5 Conclusion . 159

7 Summary and Conclusion 161
7.1 Main results . 161
7.2 Future Work and Outlook 164

7.2.1 Future Work 164
7.2.2 Outlook . 165

A Chip gallery 167
A.1 Kraken . 168
A.2 Marsellus . 169
A.3 Vega . 170

B Notation and Acronyms 171
Acronyms . 171

Bibliography 175

Curriculum Vitae 203

Chapter 1

Introduction

The number of connected electronic devices being deployed around
us is rapidly increasing, and this trend is expected to accelerate in
the near future. Nowadays, billions of sensing devices are being
employed to collect and analyze various data types. For example,
electronic devices collect environmental data like temperature and
humidity in our homes and offices to provide helpful information about
the environment where we live. Also, electronic devices are used to
monitor health parameters like our heart rate, level of oxygen in the
blood, or stress level to provide helpful insight about our health state
or track and record statistics about our sports activities. Moreover,
sensors are distributed in our cities to monitor the traffic situation and
air quality in real-time, collect information related to water levels of
lakes and rivers or monitor critical infrastructures maintenance state
[1]. Connected electronic devices are also a fundamental component
of any modern industrial manufacturing equipment, tracking critical
production line parameters to detect malfunctioning equipment. We
can safely state that electronic devices, and more specifically electronic
sensors, are very pervasive and are now deeply embedded in our lives
and part of our daily routines.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

As electronic devices become more portable, better interconnected,
and consume lower power, the number of fields where such devices
are employed will rapidly increase. One aspect deeply related to the
pervasiveness of electronic devices, which is already posing complex
challenges today, is the treatment, namely processing, of large volumes
of data such devices collect from the environment. Indeed, the
ultimate goal of any such device is to extract meaningful information
from raw non-Human-readable data, interpret them, and expose them
to a user or another machine at a higher abstraction level.

The current approach to extracting semantically meaningful infor-
mation from raw sensor data streams is to use complex and powerful
machine learning (ML) algorithms. Over the last years, thanks to
the scientific communities’ research efforts, artificial neural networks
(ANNs) significantly improved their performances, easily surpassing
human ones in tasks like object detection or image classification [2].
This groundbreaking milestone was achieved thanks to the increasing
size of the models, which allowed ANNs to reach supreme cognitive
capabilities. We started to refer to neural network models as deep
neural networks (DNNs) because of their many hidden computing
layers.

We can identify two fundamental costs associated with extracting
information from raw data streams. The first is the cost of transferring
raw data streams from the sensor node to the computing engines where
the processing algorithm is executed. Sensors were connected initially
over wired data links to centralized host machines. However, because
of the high number of interconnected devices, today’s preferred com-
munication channel is represented by wireless connections. Despite
significant improvements in the field of wireless communication [3],
the data transfer still represents a significant fraction of the energy
spent to extract information from sensor data [4].

The second aspect is the required computing power to execute
ML algorithms. As we mentioned before, DNNs have shown excellent
capabilities in solving complex tasks. However, the number of FLOPS
required by such algorithms is typically very high. Most of those
algorithms can only execute on remote cloud computing facilities or,

1.2. ENERGY EFFICIENT EDGE-COMPUTING DEVICES 3

in the best case, on powerful host machines equipped with dedicated
graphics process units (GPUs) or tensor process units (TPUs).

To deploy increasingly complex cognitive tasks, we must design
more efficient, smarter, autonomous edge devices that extract seman-
tically meaningful content from raw sensor data streams, process them
efficiently on-site, and deliver distilled semantically rich information.
In this thesis, this challenge will be tackled from two converging
directions. On one side, we will investigate the process of acquiring
raw data from emerging sensing devices efficiently. On the other side,
we will explore promising data processing algorithms to design more
intelligent and efficient edge-computing devices.

1.2 Energy efficient edge-computing de-
vices

The quest to achieve high energy efficiency has profoundly influenced
industrial and academic research in digital integrated circuits. As
new application fields have emerged, the variety of different platforms
operating at the edge has considerably increased over the last decade.
Almost all industrial and academic institutions operating in such field
nowadays propose edge-computing solutions [5–8] to address one or
more market segments. Depending on the application context, which
typically enforces constraints in terms of power budget, latency and
throughput, edge computing platforms might feature very different
architectures.

Low-power applications like near sensor analytic application
(NSAA), biosignal, audio/vibration, low-resolution imaging, indoor
localization [9] are typically deployed on low-end, resource-constrained
devices such as the one presented in [10]. Such platforms often exploit
aggressive power consumption reduction techniques to effectively use
the limited amount of available energy for active computational phases
[11–14]. When sensors are not providing stimuli to be processed, such
devices try to reduce as much as possible the power consumption,
leading to extremely low energy consumption [15]. Low-power idle
capabilities become crucial when edge-computing nodes are supplied

4 CHAPTER 1. INTRODUCTION

by small batteries, with limited or no possibility to replace them
during the device life-cycle [16].

Low-end processors operating in these scenarios typically feature a
low number of pipeline stages and a 32bit instruction set architecture
(ISA). Typical workloads for such platforms involve control tasks or
lightweight processing [17]. In some cases, such platforms might
be specialized to accelerate low-footprint DNN models through the
introduction of dedicated ISA extensions to reduce the energy of
frequently executed instructions [18]. Low-end processors can typi-
cally provide hardware support to execute low-complexity real-time
operating systems [19] that have a reduced set of useful features
and application programming interface (API) libraries to support
real-time tasks and, at the same time, minimize the firmware code size;
this represents one of the main requirements of real-time applications
[20].

In more complex, high-performance application scenarios, like
high frame-rate visual application, or accurate ML algorithms like
deep learning algorithms, computing nodes are typically equipped
with high-end processors [21, 22]. Such nodes typically feature
64bits, dedicated high throughput FPU to sustain intense floating
point workloads, virtual memory management capabilities, and the
possibility to boot complex operating systems like Linux [21].

Edge-computing platforms have experienced a profound transfor-
mation in the last two decades. The miniaturization of the transistors
has closely followed a well-known trend known as Moore’s law [23],
which has served as a reference for all semiconductor foundries and
EDA tool companies. In the last decade, such a technological
scaling has introduced new opportunities for devices’ energy efficiency
improvements, but that has forced researchers and designers to
confront new and unforeseen challenges.

Highly scaled devices have started using supply voltages close to
the transistors’ threshold voltages. This phenomenon, known as near-
threshold computing (NTC), has led to a tremendous reduction in the
energy consumption of digital processors. However, it forced devices
to operate in a regime where the maximum achievable frequency
was significantly reduced because of the lower supply voltage of the
transistors [23]. For example, other collateral effects, the temperature
effect inversion (TEI), were observed when devices operate near the

1.2. ENERGY EFFICIENT EDGE-COMPUTING DEVICES 5

threshold. To counteract detrimental effects, e.g., performance or
energy efficiency loss due to environmental conditions variations,
solutions like the adaptive body-biasing (ABB) [24], sophisticated
circuit logic delay-related clock adaptations [25,26] were put in place
to reduce sign-off margins and optimize the power consumption and
performance of digital circuits.

To compensate for the overall frequency reduction in favor of a
higher energy efficiency caused by the modern digital circuits’ lower
operating voltage, system-on-chip (SoC) architectures have evolved
toward the so-called parallel computing framework [15]. The idea
behind this approach is straightforward yet very effective, and it con-
sists of executing sections of code whose data have no interdependence
on multiple central process units (CPUs). As a result, the entire
program executes faster, as multiple parts can run in parallel. The
effectiveness of this approach is demonstrated by the large number of
parallel processing devices that have reached state-of-the-art (SoA)
performance in the application, and high-performance computing
domains [27–29] as well as the internet of things (IOT) domain [13,30].

In the same regard, a consensus has built on the fact that
hardware specialization typically leads to higher energy efficiency
[31]. Modern IOT nodes often feature dedicated accelerators to
execute specific workloads efficiently, for example, DNN accelerators
[32–34]. Having a dedicated accelerator hosted by a SoC is not,
per se, a novel concept. However, thanks to the accessibility to
cheaper manufacturing technologies and EDA tools, as well as a richer
ecosystem of open-source hardware IPs, like the ones developed in the
context of the PULP project1, research communities and industrial
institutions have devoted an increasing effort in deploying specific
computational kernel to custom hardware blocks; eventually reducing
devices energy consumption.

1https://pulp-platform.org/

6 CHAPTER 1. INTRODUCTION

The advances in the ML research community have been a strong
incentive for adopting dedicated DNN accelerators. Training envi-
ronments like Pytorch2 or Tensorflow3, combined with Quantization-
aware training frameworks that are built on top of those like Quant-
lab 4 or NEMO5, have allowed achieving remarkable classification
accuracy results on complex datasets like CIFAR10 or Imagenet
with constrained resources, hardware-friendly DNN models [35–37]
running on low-power resource-constrained resources devices. Such
devices implement relatively simple low arithmetic precision hardware
computing primitives [38].

1.3 Next generation applications require-
ments

We expect an increasing number of complex applications to be
deployed on edge devices in the following years. Here we provide a
representative, non-exhaustive list of application fields developed by
research communities that require energy-efficient, highly-specialized
edge computing platforms, which will directly benefit from more
efficient edge computing devices. Wearable and healthcare-connected
devices aim to assist users by extracting and summarizing helpful
information and statistics related to daily activities. Such devices
can implement applications that range from connected step counters
to complex heart rate or oxygen concentration monitoring. Other
connected devices like smart assistants can interact with a user
through natural language-based voice exchanges or gesture-encoded
commands. Recent wearable devices target innovative prosthetic
applications to recover lost functionalities through non-invasive EMG
muscle signals recording. Also, more recent research on smart
glasses aims to implement eye-tracking algorithms for brain-machine
interfaces or smart field-of-view rendering for virtual or augmented
reality applications.

2https://pytorch.org/
3https://www.tensorflow.org/
4https://github.com/pulp-platform/quantlab
5https://github.com/pulp-platform/nemo

1.3. NEXT GENERATION APPLICATIONS REQUIREMENTS 7

Robotics is another very active application field where edge-
computing platforms will play a significant role, especially on nano
and pico-sized robots, where the energy consumed by the actuators
is on the same order of magnitude as the one allocated to computing
resources. Over the last years, significant interest has built on new
generation sensor types like artificial skins capable of reproducing a
vast range of human touch feelings. Additionally, steadily growing
communities are building around event-based sensors for audio and
video applications like silicon cochleas [39], which are devices that
reproduce the inner mechanics of the human ear, and silicon retinas
[40], reproducing most of the functions of biological mammalian
retinas. Such devices have distinguished themselves from their more
conventional counterparts for their lower power, higher dynamic
range, low information encoding redundancy, and required commu-
nication bandwidths. Among robotic applications, a fast-developing
field is unmanned vehicles, specifically those focusing on unmanned
aerial vehicles (UAVs). Such devices are particularly useful in many
real-life scenarios [41]. For example, nano and pico-size drones can
provide easy access to critical infrastructures that are difficult to
inspect and maintain, like duct or narrow enclosures. Moreover, small
autonomous devices can ensure low-risk post-disaster inspection or
intervention and critical military applications. Moreover, such devices
can also be employed for entertainment applications like aerial footage.

Industrial applications may represent the most prominent field
for next-generation sensor and edge-computing platforms. A smart
industrial plant can use connected distributed devices to monitor
the maintenance state of production lines and promptly detect
malfunctioning equipment, reduce the accident rate, track stored
manufactured parts, and collect statistics to increase productivity.

Based on the application fields we have listed in this section, we
can identify a few common requirements that characterize most of
them. On the one hand, there is the need to efficiently combine infor-
mation arriving from multiple sensors to a single computing platform.
Sophisticated cognitive applications often rely on a combination of
data streams coming from multiple complementary sensors [42, 43].
This approach, often referred to as “multi-sensor fusion”, allows to
combine the data acquired from each connected sensor to achieve

8 CHAPTER 1. INTRODUCTION

better application performance in terms of latency or classification
accuracy [43,44].

A second requirement, directly related to the high amount of
collected data, is to distill the information acquired from each sensor
to feed cognitive algorithms already with semantically rich data
streams. A promising approach going in this direction is to exploit,
both at the sensor edge and on the computing engine, the high level
of redundancy, or conversely, the high information sparsity, that often
characterizes raw data streams, to reduce the sensor data transfer [45]
and processing energy cost [46] at the edge.

1.4 Brain-inspired edge-computing
To provide adequate computational support to the applications men-
tioned above, we need edge devices capable of efficiently connecting
with a vast set of peripherals and multiple sensor communication
protocols. At the same time, they have to be capable of performing the
computation in a highly optimized way without sacrificing flexibility
and applicability to yet unforeseen scenarios. A promising strategy to
balance such requirements is to use highly efficient platforms equipped
with dedicated accelerators optimized to execute model-free brain-
inspired algorithms, e.g., ANNs. Such algorithms have become very
popular for their high versatility and delivered quality of service; in
many tasks, for example, object classification, ANNs, and specifically
DNNs, have surpassed human performance.

Modern platforms have been equipped with dedicated hardware
accelerators targeting highly regular DNN workloads. However, to
efficiently process sparse heterogeneous sensor data streams acquired
from next-generation sensors, e.g., silicon cochleas or retinas, we
need a significant paradigm shift in how computing engines targeting
ML applications are designed. Current accelerators primarily target
frame-based inspired computation. Moreover, to profit from the high
degree of sparsity that already arises in conventional DNNs [46], and
which characterizes novel promising algorithms like spiking neural
networks (SNNs), we need hardware accelerators that efficiently
handle sparse computation without necessarily relying on the specific
model of data sparsity [47] to deliver high energy efficiency; such

1.5. OUTLINE 9

sparsity model is hardly predictable in many scenarios, and difficult
to foresee at design time.

This thesis addresses the energy efficiency challenge at the edge
from the technological, hardware, and algorithmic angle.

1.5 Outline

Figure 1.1: Block diagram representation of the structure of the thesis

In the following, we provide an outline of the thesis and give a
short overview of the content of the following chapters. The content
presented throughout the chapters of this thesis has already been
published in conference proceedings and journal papers.

Chapter 2

The second chapter discusses a promising approach for SoA event-
sensor data collection. It provides contributions that allow overcoming
bandwidth limitations and achieving high data-to-information acqui-
sition and transmission proportionality. The approach presented in
this chapter is demonstrated on two event-based sensors acquiring
audio and video data, respectively.

10 CHAPTER 1. INTRODUCTION

Chapter 3

This chapter demonstrates how inherently error-resilient applications
like binary neural networks (BNNs) can be effectively deployed on
carefully memory-partitioned IOT nodes operating in the NTC regime
to achieve high energy efficiency at a negligible quality of service cost.

Chapter 4

The fourth chapter presents a dedicated SNN accelerator meant to be
integrated into a system analogous to the one presented in the third
chapter and capable of performing energy proportional SNN inference
on event streams like those produced by the sensors in chapter two.
The proposed accelerator is implemented on silicon in an advanced
22nm technology node.

Chapter 5

This chapter presents Kraken, a complete SoC implemented in a 22nm
technology node hosting one of the peripherals presented in chapter
two and the accelerator presented in chapter four. The IOT node
presented in this chapter represents the first complete SoC featuring
a dedicated neuromorphic accelerator targeting low-power embedded
applications and an energy-efficient, SoA general-purpose computing
cluster of 8 RISC-V cores.

Chapter 6

This chapter discusses and illustrates the complete software stack
required to deploy neuromorphic applications on the system presented
in chapter five. Chapter six explains the main challenges of training
quantized SNNs, showing how such challenges can be effectively
addressed to deploy complete end-to-end applications on advanced
neuromorphic embedded edge-computing platforms like Kraken.

Chapter 7

Chapter seven provides a concluding discussion and an outlook on the
possible future evolution of edge-computing platforms.

1.6. CONTRIBUTIONS 11

1.6 Contributions

The main contributions of this thesis, as well as the related publica-
tions, can be summarised as follows:

1. The design of a digital, ultra-low power, asynchronous interface
for a novel event-based audio sensor and its field-programmable
gate array (FPGA) implementation and characterization in
connection with the real sensor. Silicon estimations of the
proposed peripheral in an advanced 22nm technology (chapter 2,
[45])

2. The design of a digital, ultra-low power interface for a novel
visual event-based camera sensor, FPGA implementation, and
characterization in a wireless connected visual sensor node.
Silicon estimations of the proposed event-based visual sensor
interface in an advanced 22nm technology (chapter 2, [48])

3. A study on the energy-efficiency gain opportunities of using
error-resilient BNN applications deployed to advanced 22nm
ultra-low-power computing node featuring heterogeneous mem-
ory subsystems (chapter 3, [49]).

4. The design and silicon prototyping of a SoA novel ultra-efficient
event-driven SNN accelerator for 4bit-quantized embedded neu-
romorphic applications (chapter 4, [50]).

5. The design and silicon prototyping of Kraken; an advanced SoC
with power management capabilities integrating an embedded
neuromorphic accelerator, a dedicated peripheral for event-
based vision sensor, and a SoA general purpose ultra-efficient
8 core RISC-V cluster (chapter 5).

6. A training flow for quantized SNNs, and the related deploy-
ment flow for producing code executable on ultra-low power-
constrained resources platforms like Kraken (chapter 6).

12 CHAPTER 1. INTRODUCTION

1.7 List of publications
Most of the content of the thesis has been published in the following
international conferences and journals:

[51] A. Di Mauro, M. Scherer, D. Rossi and L. Benini, ”Kraken:
A Direct Event/Frame-Based Multi-sensor Fusion SoC for
Ultra-Efficient Visual Processing in Nano-UAVs,” 2022 IEEE
Hot Chips 34 Symposium (HCS), 2022, pp. 1-19, doi:
10.1109/HCS55958.2022.9895621.

[45] A. Di Mauro, F. Conti, and L. Benini, “An ultra-low power
address-event sensor interface for energy-proportional time-
to-information extraction,” in 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2017, pp. 1–6.

[49] A. D. Mauro, F. Conti, P. D. Schiavone, D. Rossi, and L.
Benini, “Always-on 674uw@4gop/s error resilient binary neural
networks with aggressive SRAM voltage scaling on a 22-nm
IoT end-node,” IEEE Transactions on Circuits and Systems
I:Regular Papers, pp. 1–14, 2020.

[52] A. D. Mauro, F. Conti, P. D. Schiavone, D. Rossi, and L.
Benini, “Pushing on-chip memories beyond reliability bound-
aries in micropower machine learning applications,” in 2019
IEEE International Electron Devices Meeting (IEDM), 2019, pp.
30.4.1–30.4.4.

[48] A. Di Mauro, M. Scherer, J. F. Mas, B. Bougenot, M.
Magno, and L. Benini, “Flydvs: An event-driven wireless ultra-
low power visual sensor node,” in 2021 Design, Automation
Test in Europe Conference Exhibition (DATE), Feb 2021, pp.
1851–1854.

[50] A. Di Mauro, A. Suravi Prasad, Z. Huang, M. Spallanzani,
F. Conti, and L. Benini, “Sne: an energy-proportional digital
accelerator for sparse event-based convolutions,” 2022, design,
Automation and Test in Europe Conference (DATE 2022);
Conference Location: Online; Conference Date: March 14-23,
2022; Conference lecture held on 22 March 2022

1.7. LIST OF PUBLICATIONS 13

The following works published by the author provide additional
contributions on topics partially covered in this thesis:

[24] A. Di Mauro, D. Rossi, A. Pullini, P. Flatresse, and L. Benini,
“Temperature and process-aware performance monitoring and
compensation for an ulp multi-core cluster in 28nm utbb fd-
soi technology,” in 2017 27th International Symposium on
Power and Timing Modeling, Optimization and Simulation
(PATMOS), 2017, pp. 1–8.

[53] A. Di Mauro, F. Zaruba, F. Schuiki, S. Mach, and L. Benini,
“Live demonstration: Exploiting body-biasing for static corner
trimming and maximum energy efficiency operation in 22nm fdx
technology,” in 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), 2020, pp. 1–1.

[54] A. Di Mauro, D. Rossi, A. Pullini, P. Flatresse, and L. Benini,
“Live demonstration: Body-bias based performance monitoring
and compensation for a near-threshold multi-core cluster in
28nm fd-soi technology,” in 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), 2018.

[55] A. Di Mauro, D. Rossi, A. Pullini, P. Flatresse, and L. Benini,
“Performance-aware predictive-model-based on-chip body-bias
regulation strategy for an ulp multi-core cluster in 28 nm utbb
fd-soi,” Integration, vol. 72, pp. 194–207, 2020.

[56] A. Di Mauro, H. Fatemi, J. P. de Gyvez, and L. Benini,
“Idleness-aware dynamic power mode selection on the i.mx
7ulp iot edge processor,” Journal of Low Power Electronics and
Applications, vol. 10, no. 2, 2020.

The author also contributed to the following publications:

[13] A. Pullini, D. Rossi, I. Loi, A. D. Mauro, and L. Benini, “Mr.
Wolf: A 1 GFLOP/s Energy-Proportional Parallel Ultra Low
Power SoC for IOT Edge Processing,” in ESSCIRC 2018 - IEEE
44th European Solid State Circuits Conference (ESSCIRC), Sep.
2018, pp. 274–277.

14 CHAPTER 1. INTRODUCTION

[17] P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti,
and L. Benini, “Quentin: an ultra-low-power pulpissimo soc in
22nm fdx,” in 2018 IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S3S), 2018, pp. 1–3.

[15] D. Rossi, F. Conti, M. Eggimann, A. D. Mauro, G. Tagliavini, S.
Mach, M. Guermandi, A. Pullini, I. Loi, J. Chen, E. Flamand,
and L. Benini, “Vega: A ten-core soc for iot endnodes with dnn
acceleration and cognitive wake-up from mram-based statere-
tentive sleep mode,” IEEE Journal of Solid-State Circuits, pp.
1–1, 2021.

[57] D. Rossi, F. Conti, M. Eggiman, S. Mach, A. D. Mauro,
M. Guermandi, G. Tagliavini, A. Pullini, I. Loi, J. Chen,
E. Flamand, and L. Benini, “4.4 a 1.3tops/w @ 32gops fully
integrated 10-core soc for iot end-nodes with 1.7µ w cognitive
wake-up from mram-based state-retentive sleep mode,” in 2021
IEEE International Solid- State Circuits Conference (ISSCC),
vol. 64, 2021, pp. 60–62.

[58] P. D. Schiavone, D. Rossi, A. Di Mauro, F. K. G¨urkaynak,
T. Saxe, M. Wang, K. C. Yap, and L. Benini, “Arnold: An
efpga-augmented risc-v soc for flexible and low-power iot end
nodes,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 29, no. 4, pp. 677–690, 2021.

[59] H. Okuhara, A. Elnaqib, D. Rossi, A. Di Mauro, P. Mayer,
P. Palestri, and L. Benini, “An energy-efficient low-voltage
swing transceiver for mw-range iot end-nodes,” in 2020 IEEE
International Symposium on Circuits and Systems (ISCAS),
2020, pp. 1–5.

[60] M. Hersche, E. M. Rella, A. Di Mauro, L. Benini, and A. Rahimi,
“Integrating event-based dynamic vision sensors with sparse
hyperdimensional computing: A low-power accelerator with
online learning capability,” in Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design,
ser. ISLPED ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 169–174.

1.7. LIST OF PUBLICATIONS 15

[18] A. Garofalo, G. Ottavi, A. Di Mauro, F. Conti, G. Tagliavini,
L. Benini, and D. Rossi, “A 1.15 tops/w, 16-cores parallel ultra-
low power cluster with 2b-to-32b fully flexible bit-precision and
vector lockstep execution mode,” in ESSCIRC 2021 - IEEE 47th
European Solid State Circuits Conference (ESSCIRC), 2021, pp.
267–270.

Chapter 2

Energy-proportional
data acquisition

2.1 Introduction
Over the last decade, we have observed a dramatic increase in
complex “smart” applications based on multi-sensor data streams on
ultra-low power, resource-constrained edge devices. In such a context,
computing devices like micro-controller units (MCUs) have to extract
high-level information from noisy, high-bandwidth, heterogeneous
data streams. The information content of such date streams is often
very sparse or is encoded redundantly. Therefore, to be able to extract
relevant information for the designed task, computing devices need
to execute computationally intense data analytic algorithms such as
principal component analysis [61] for dimensional reduction, k-means
[62] for clustering, support-vector machines [63], or neural networks
[64] for classification. In many scenarios where a small battery powers
the MCU, the desired cognitive task is too complex to be deployed on
the same edge-computing device. Therefore, the only alternative is
to send raw data streams to a higher-level computing infrastructure
in the cloud, which has an enormous energy overhead and requires
relatively high-bandwidth communication over a wireless channel. A
promising solution to the problem mentioned above is to adopt more

17

18CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

intelligent sensors capable of filtering, already at the sensor edge, most
of the redundant information contained in raw data streams. With
this approach, part of the semantic information extraction burden can
be moved to the sensor, directly producing an output data stream that
extracts the desired information for the specific application.

Among the “smart” sensors presented in the last years, a partic-
ularly interesting class is that of event-based spiking devices [65–67].
Such sensors mimic the functioning of biological neurons in the human
retina and cochlea. The output of event-based sensors is often a
stream of asynchronous events that are transmitted whenever the
content of the underlying sensed analog signal has sufficient energy
contained within a set of narrow frequency bands, in the case of silicon
cochleas; or spatial coordinates (pixels) in the case of silicon retinas.

Unfortunately, event-based spiking sensors often use asynchronous
interfaces to communicate with the external world. This behavior
originates from the fact that the information content of the spike
stream is contained not only in the spike “address” (i.e., position
or frequency) but also in the relative inter-spike time delta [68].
Therefore, an asynchronous representation is naturally suited to
encapsulate this information implicitly without adding the cost of
converting this information into an explicit form, e.g., synchronization
clocks or event timestamps. Indeed, many of these sensors were
initially designed to couple with custom-made brain-like interfaces
that are inherently asynchronous [69,70]. When such a class of sensors
is used in combination with digital, synchronous, off-the-shelf MCUs,
the implicit nature of this essential component of the information,
which is embedded in a spike stream, makes the combination of
these two categories of devices very challenging, and potentially,
the information transfer towards ultra-low power edge computing
devices very inefficient. Among the issues that can arise when
such a class of devices is used in conjunction with synchronous
devices, there is a fundamental one: crossing the border between
the digital asynchronous and synchronous domains. This operation
translates into requirements that need to be satisfied not to lose
information. First, it is necessary to sample the spike stream with
a sufficiently small sampling period to adequately represent short
inter-spike times, as time in synchronous systems is quantized by
definition; i.e., a synchronous clock frequency is used to time all

2.1. INTRODUCTION 19

the operations. More specifically, to account for the worst-case
scenario, the shortest possible inter-spike time forces a high sampling
frequency choice even if the average spike rate is low. Moreover,
apart from fully streaming ASICs, most synchronous systems (such
as off-the-shelf MCU) require temporary data storage in temporary
memory to process any data. To this end, data must be transformed
in a latency-insensitive form, i.e., all time-related information must
be explicit to be stored indefinitely. For these reasons, building a
link between an asynchronous event-based sensor and a commercial
off-the-shelf MCU or a similar synchronous device can be considered a
time measurement problem, with the additional constraint that power
consumption must be kept within a very low-power envelope.

Even in those cases where the sensor already exposes a digital
synchronous interface [71], the inherently sparse nature of the data
produced by the sensor and the short period at which the active
events can be potentially “dumped” from the sensor require a carefully
crafted data acquisition pipeline. In such scenarios where the
MCU can control the acquisition process, the main challenge is to
preserve the proportionality between the information content being
transmitted from the sensor and the energy spent to transfer each
event, avoiding unnecessary too frequent requests to the sensors.

This chapter will explore two different event-based sensors, and we
will propose two digital interfaces to perform energy-to-information
proportional event acquisition from event-based sensors. The main
goal of both architectures proposed in this chapter is to overcome
the inefficiencies when event-based sensors need to be interfaced with
commercial MCUs. The key contributions of this chapter can be
summarized as follows:

• A fully digital architecture to acquire events from an event-based
silicon cochlea in an energy-proportional way. We propose an
ultra-low-power FPGA implementation of the circuit for such
architecture, showing how silicon cochleas can be efficiently
interfaced with off-the-shelf MCU, building a low-power smart
audio sensor node.

• A fully digital architecture to acquire events from a silicon retina
also called dynamic visual sensor (DVS). Also, for this sensor,

20CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

we propose a low-power FPGA implementation of the proposed
architecture. Additionally, we show how the full system can
be interfaced to a remote host device over a Bluetooth Low
Energy channel, surpassing the performance of conventional
frame-based visual sensor nodes.

• We show how both peripherals can be integrated into a MCU IO
peripheral subsystem. We provide power consumption estimates
for a silicon implementation of such an IO peripheral subsystem
in an advanced 22nm technology node.

2.2 Related work

Event cameras such as DVS are biologically-inspired vision sensors
that operate fundamentally differently from frame-based cameras, i.e.,
they capture light intensity changes from the scene in the field of
view [72]. Such delta brightness changes are asynchronously acquired
and transmitted as independent pixel-related events, also known as
spikes. The DVS events typically have a positive or negative polarity,
corresponding to a transition from high brightness intensity to low
brightness intensity and vice versa.

Event-based cameras present numerous advantages compared to
traditional cameras [73]. Specifically, a spike-based representation of
an image contains a high level of information content, reducing the
redundancy caused by the transmission of those pixels that did not
experience any change since the last frame transmission. Thanks to
this innovative approach, the event-frame transmission is considerably
more efficient in terms of required bandwidth and power consumption.
DVS cameras are inherently data-driven: they only transmit pixels
whose intensity variation has changed by a certain amount. Besides
the lower bandwidth required for transmitting the scene’s contained
information, event cameras show several more advantages over con-
ventional frame-based cameras due to their frame-less nature. Among
those, event cameras have much faster response times, i.e., they can
output single pixels with an inter-pixel time as accurate as a few µs,
resulting in an equivalent time granularity achievable only on high

2.2. RELATED WORK 21

frame-rate frame-based cameras. Additionally, they typically feature a
very high dynamic range (140 dB vs. 40 dB of standard cameras) [73].

Similarly to DVS cameras, audio sensors such as silicon cochleas
[74–76] typically work at tens/hundreds of kevt/s for typical speech
scenarios, within a power envelope of less than 15 mW, and down to
mere tens of µW for the latest sensor proposed by Yang et al. [39].

These unique features make event-based cameras, as well as
silicon cochleas, ideal sensors for a variety of low-power applications;
e.g., wearable image or sound acquisition, hand-gesture recogni-
tion, robotics, healthcare-oriented, and human-computer interaction
(HCI), where the latency and energy efficiency are dominant con-
straints [72, 77, 78]. In such operating scenarios, the most stringent
constraint is the limited energy budget available to acquire the data
from the sensor. Therefore, effective use of the energy drained by the
battery is consistently among the main concerns when designing such
systems, and it becomes the priority when we scale such applications
to the extremely low-energy budget application context [79].

Several interfaces for such a class of sensors have been proposed
over the last few years. For example, interfaces from AER to PCI
or USB have been developed both on FPGA [80–84], achieving
sustainable event rates up to 10 Mevt/s in a power envelope in the
order of hundreds of mW or more, and ASIC [85,86], with sustainable
event rates up to 20Mevt/s. However, the energy spent to acquire
the events produced by the sensor has not been investigated deeply.
Indeed, the primary goal of most event-based interfaces is to serve as a
testbench or debug interface for the sensor or perform the data readout
in the highest event-rate scenario. This aspect significantly limits the
use of these promising technologies on real application scenarios of
wearable and low-power devices for mobile applications and healthcare
when the energy budget is very limited [87].

This chapter will take inspiration from the interfaces already
presented in the literature. However, as opposed to those, as the main
objective, we will target a proportional power consumption scaling
with the event rate of the sensor. This behavior allows for a nearly
constant energy consumption per event, representing the ideal case
at which a proportional amount of energy is consumed per event,
regardless of the event rate. At the same time, no event is lost during
the acquisition process [45].

22CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

2.3 Architecture
This section will describe the architecture of two peripherals that
collect data from event-driven sensors. In the first part of the
exploration, we will focus on designing an interface for event-driven
audio sensors, specifically, a silicon cochlea. This sensor adopts an
asynchronous protocol to transmit single audio events. The analysis
conducted in this chapter will continue by focusing on a frame-less
event-driven visual sensor called Dynamic Vision Sensor (DVS). We
will start both investigations with the protocol description that such
peripherals might adopt to stream single-pixel activity or individual
energy quanta on a specific audio frequency range to a downstream
processing device. We will highlight the implications of such an
approach on the transmission bandwidth. Then, for both peripherals,
we will describe a suitable hardware architecture capable of efficiently
collecting the events from such types of sensors and exploiting the
energy proportionality between the information acquired from the
sensor and the data transferred to a downstream computing unit.
Eventually, we will show how such peripherals can be efficiently
integrated into the Input/Output peripheral subsystem of a digital
MCU-class processing device to design event-driven edge computing
nodes. The latter analysis will provide power estimates from post-
synthesis and post-silicon implementation for the audio and video
peripherals.

2.3.1 Silicon Cochlea Interface
As anticipated in the introduction, the first event-driven sensor we ex-
amine in this chapter is a silicon cochlea sensor, which asynchronously
emits audio events depending on the sound recorded by dedicated
low-power microphones.

The Event-based audio sensor

The energy-proportional audio sensor We targeted for our exploration
is the iniLabs DAS1 cochlea sensor1, which mounts the Cochlea
AMSC1c chip [76]. This sensor can mimic a human ear in silicon,

1http://inilabs.com/products/dynamic-audio-sensor

http://inilabs.com/products/dynamic-audio-sensor

2.3. ARCHITECTURE 23

reproducing various internal dynamics and functions of several groups
of cells with high fidelity. The data produced by such sensor relate to
two input stereo channels, and they are transmitted asynchronously
through an Address Event Representation (AER) protocol, which is
a digital, asynchronous 4 phases handshake Figure 2.1.

The activity on the AER bus is proportional to the activity at the
sensor’s input, i.e., the number of audio events produced on both the
sensor channels, depending on the intensity, frequency content, and
duration of a recorded sound. The input frequency spectrum goes
from 50 Hz to 20 kHz, which is approximately the frequency range of a
human ear. The events produced by the Cochlea AMSC1c are encoded
on 12 bits, and an additional polarity signal determines whether
an event belongs to the left or right audio channel. The Cochlea
AMSC1c can output a maximum of 10 Mevt/s, and the number of
events produced when recording a human speech is approximately
20 kevt/s.

req

ack

AER EVT 0 EVT 1

Figure 2.1: AER audio event transmission asynchronous protocol

Peripheral architecture

Three main macro-blocks form the hardware architecture of the
dynamic audio sensor interface (DASI): i) an AER front-end,
which acts as spike stream synchronization block and produces
the timestamp-augmented Address-Event-Timestamp Representation
(AETR) stream, ii) a buffer module, which can be configured to hold
the AETR data to create a batch of audio events to be transferred
in a block, iii) the Clock Generator, which provides the recursively
divided clock, based on an input reference clock. A point-to-point
combinational crossbar interconnects all the blocks that send or
receive AETR data, and the configuration values are set through a
register-based interface. Except for the request monitor inside the
AER front end, all blocks are clock-gated by default and activated
only when in active use. All modules use the same global variable

24CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

frequency clock generated by the clock generator. Figure 2.2 shows a
block diagram representation of the DASI peripheral.

ack
req

AER_data
10

AER_AETR
sampling

interrupt

AETR buffer

AETR data crossbar

DAS Interface

d
a
ta

v
a
li

d
re

a
d

y

d
a
ta

v
a
li

d
re

a
d

y

d
a
ta

v
a
li

d
re

a
d

y

data
valid
ready

a
d

a
p

ti
ve

cl
o

ck
g

e
n

e
ra

to
r

R
e
g

is
te

r
In

te
rf

a
ce

synch

Figure 2.2: High-level block diagram of the DASI peripheral

Adaptive clock relaxation

Every event collected by the DASI does not contain time information;
this means that, since the events are buffered in a local buffer, the
peripheral must apply a timestamp to each event to reconstruct
the exact event arrival time. The cochlea sensor and the DASI
operate in a streaming fashion. Therefore the events are transferred
in a continuous-time data transmission framework. To reduce the
footprint of the timestamp associated with the events and make sure
the timestamp has no upper bound, we decided to store only the time
difference to the last received events, i.e., only the time delta between
successive events is used as a timestamp. We only assume that two
events must not be time-separated by more than a specific time delta.
This value corresponds to the maximum time value represented in the
allocated number of bits. If this value is exceeded, we consider such
events as too distant in time to be correlated during any downstream
processing.

The DASI receives the events in an asynchronous streaming
fashion; therefore, it is impossible to know when and how many events

2.3. ARCHITECTURE 25

will be received from the silicon cochlea. To ensure the acquisition of
all events and still can timestamp such events with the appropriate
time granularity, the operating frequency of the DASI must be higher
than the maximum event rate produced by the sensor. At the same
time, it is evident that operating the DASI at the maximum frequency
is sub-optimal in case of low activity, as the events could be collected
by operating the interface at a lower frequency, thereby with lower
responsiveness.

Figure 2.3: Visual representation of the progressively divided clock,
along with the incremented timestamp increment, to keep the time
count consistent with the original reference, not divided, clock
frequency.

To balance both needs and reduce power consumption while
ensuring no event loss and accurate timestamping, we developed
a progressively-relaxed clock regime, where the operating clock
frequency is iteratively halved after a programmable number of
clock cycles. Note that the timestamp must be kept coherent with
the current clock frequency by doubling the increment step in this
operating regime. This approach automatically adjusts the average
operating clock frequency of the DASI to the input event rate.
The module responsible for generating the variable frequency clock
for the whole peripheral is called Self-adaptive Clock Generator A
finite state machine implements the internal control logic capable of
adapting the output clock. The number of clock cycles after which
the clock is progressively halved can be programmed via a register
interface. Figure 2.3 provides a visual representation of the clock
division operated by the Self-adaptive Clock Generator. Once a new
event is received, the maximum operating frequency is restored to

26CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

correctly timestamp, i.e., with enough time granularity, a potential
event arriving very close in time to the one that has been just acquired.

2.3.2 Silicon Cochlea Sensor node

IGLOOnano FPGA

AMSC1c

Cochlea

REQ

ACK

ADDR

microphone SPI

unit

clock

generator

AER to AETR

sampling unit

AETR buffer

(9.2 kB)

I2S

interface

SCK

CSN

MOSI

MISO

SCK

WS

SD

Micro

Controller

Unit

STM32-L476

configuration bus

data crossbar

10bit

INT

Figure 2.4: Block diagram of the DASI-based standalone FPGA
sensor node implementation

This section shows how the DASI architecture can be deployed
on a low-power FPGA to build a standalone event-driven energy-
proportional audio sensor node. Such a sensor node finds its appli-
cation in various fields, e.g., environmental audio monitoring, voice-
controlled home appliance, industrial equipment audio monitoring,
and voice activity detection (VAD) for human-machine interaction
(HMI).

To make the DASI operate as a standalone device and to interface
such a sensor node with an off-the-shelf MCU, we equipped the
DASI-based sensor node with two communication interfaces. The
audio event stream has been transferred to the downstream MCU
over an Inter-Integrated-Circuit Sound (I2S) protocol. This choice
has been motivated by the fact that the I2S is one of the de-facto
standard protocols to transmit audio streams, and primarily because
the I2S protocol already provides the capability of transferring two
parallel audio channels on the same stream of data, which in our

2.3. ARCHITECTURE 27

case we mapped to the left and right channel of the AETR. All the
configuration values of the DASI, accessible over the register-based
interface, were mapped to a configuration bus connected to a standard
slave SPI. As a MCU receiving the DASI audio streams, we choose
the STM32 L476 MCU, a low-power industrial state-of-the-art MCU
often adopted in such sensor nodes.

Figure 2.4 shows a high-level block diagram representation of the
DASI-based sensor node. The architecture we present here comprises
various submodules: i) the AER to AETR sampling and conversion
module described in the previous section. ii) an AETR transmission
buffer, which allows creating bursts of audio events and initiates
an I2S transfer only when a certain amount of audio events have
been received from the silicon cochlea. iii) The I2S interface that
is connected to the downstream MCU. iv) The SPI, which is used to
receive from the MCU the configuration values for the sub-modules of
the sensor node. The AETR data stream travels across a configurable
point-to-point crossbar, the main interconnection between the sub-
modules composing the sensor node. The crossbar can also bypass the
event buffer and directly forward the event stream from the AETR
module to the I2S peripheral.

Sensor node operation

The following steps characterize the DASI-based sensor node oper-
ation. Before starting the audio event acquisition, the DASI sensor
needs to be configured. During this phase, the configuration values
are transferred from the MCU to the DASI-based sensor node over
the SPI peripheral and routed to each destination module via the
configuration bus represented in Figure 2.4. Then, the audio event
acquisition can start. As a first step of the event acquisition, the
request coming from the sensor is synchronized by a series of cascaded
flip-flops. A clock cycle later, the request is received, and the data
lines are sampled and stored in a temporary data register. At the
same time the request is received, the counter which traces the
timestamp increment is sampled, and a time value is associated with
the incoming event sampled by the temporary data register, then the
counter is restarted. The reception of a request also triggers the
restoration of the maximum operating frequency, such that all the

28CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

operations above can be completed in the shortest amount of time
possible; this ensures that the event stored in the temporary data
register is promptly transferred to the AETR event buffer, and a new
event acquisition can be performed in the shortest amount of time
possible. Once a programmable number of events have been received
from the sensor and stored in the AETR buffer, the audio events are
transferred to the I2S peripheral to be transmitted in a burst mode.
The AETR buffer behaves like a FIFO; therefore, the order of the
events and the precise arrival time is preserved during the acquisition
process. The MCU must be configured to accept incoming I2S audio
stream such that the audio events can be stored in the MCU main
memory. The processing of the audio events is outside the scope of this
demonstration; therefore, we will not enter into the details of how such
events are processed once they have been stored in the MCU memory.

2.3.3 Dynamic Vision Sensor Interface
The second event-driven sensor we want to analyze in this chapter is
a video sensor. This section will describe how to efficiently acquire
video events from such sensors.

The Event-based vision sensor

We selected the DVS132S sensor described in [71] as a case study.
The circuit presented throughout the chapters of this thesis operates
in the embedded device domain; therefore, we selected the sensor to
use in combination with such a system according to the following
requirements: low resolution and low-power consumption. In the
case of the DVS132, the event camera sensor features a maximum
resolution of 132x104 pixels, each with a size of 10 µm × 10 µm. it
has a maximum event-rate of 180 Meps, and a minimum reported
power consumption of 250 µW at 100 keps. Before describing the
hardware architecture of the peripheral, we need to introduce the
DVS132 transmission bus protocol. Figure2.5 and Figure 2.6 report
the protocol used by the DVS sensor.

From Figure 2.5, it is evident that the sensor behaves like a
typical CMOS vision sensor. Indeed, pixels are synchronously read
out utilizing digital clocks and control signals to synchronize the rows

2.3. ARCHITECTURE 29

asa

asy

ynrst

yclk

sxy

xnrst

xclk

xy_bus[7:0] YR0 XC0 XC1 XE YE

evt_bus[7:0] D0 D1

Figure 2.5:
DVS event transmission protocol

asa

are

asy

Figure 2.6: DVS event-frame transmission protocol

and columns readout. However, compared to the classic rolling shutter
behavior often shown by conventional CMOS sensors, where the entire
frame content is streamed out by spanning all column and row pixels
of the sensor, the DVS explicitly provides the pixel address along with
its value. This modification allows implementing a mechanism where
the pixels with low brightness change do not stream out any event
while the active ones are explicitly referenced. Such an approach
drastically reduces the bandwidth required to transmit the equivalent
information content of a standard frame and the space required to
store the same information content in the memory.

Besides easy-to-solve technicalities like the higher pin count,
this mechanic poses new challenges to hardware designers. At the
peripheral level, the highly variable bandwidth requires low power
operation but a fast peripheral reaction not to lose any pixel or stop
the data stream transmission. At a system level, the data transfer
needs to be optimized to guarantee the data transfer towards the
main system memory, possibly without speculatively pre-allocating
the worst-case scenario occupied memory. This section will provide
insights into addressing the first challenge, specifically by providing
a detailed description of the architecture of the dynamic visual

30CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

asa
asy

ynrst
yclk
sxy

xnrst
xclk

xy_bus
evt_bus

8

8

Pixel control

DVS Interface

Frame control

R
e
g

is
te

r
In

te
rf

a
ce

C
ro

p
 f

il
te

r

Pixel buffer (FIFO)SAER control

reqdone

In
te

rr
u

p
t

g
e
n

e
ra

to
r

A
d

d
re

ss
 g

e
n

e
ra

to
r

X_px
Y_px

X_px
Y_px

done

evt_rate

addr

Y_px

full

interrupt

X_px
data
req (valid)
gnt (ready)

frame_req

Figure 2.7: DVS high-level block diagram

sensor interface (DVSI) peripheral. System-level optimizations will
be covered in a later section of this chapter.

Peripheral architecture

The peripheral architecture, reported in Figure2.7, is divided into two
main parts. The Synchronous Address Event Representation (SAER)
control, i.e., the protocol driver. This module is responsible for driving
the sensor bus to acquire the data. The pixel buffer, this module stores
a certain amount of event pixels while waiting for the system to be
ready to transfer them to the main memory.

The sensor behavior resembles the one of a standard frame-based
CMOS sensor. Therefore, the DVSI behaves as a CMOS sensor
controller at a higher abstraction level. However, the SAER Controller
is divided into two main sub-modules at a lower level. The first one
is in charge of supervising the entire event-frame acquisition. As soon
as an external frame request is set on the register interface, the Frame
controller initiates the event-frame readout. Then, once the sensor
is ready to stream out the event pixels, the Frame controller hands
off the control to the Pixel controller. The latter is the module
in charge of driving the sensor event pixel bus, acquiring the event
pixels, and transferring them to the downstream modules.

2.3. ARCHITECTURE 31

The pixels are linearly stored in a temporary buffer during the
acquisition, which acts as a first-in-first-out (FIFO) memory. The
buffer guarantees that the pixel acquisition continues without inter-
ruption when the output bus of the peripheral becomes unavailable,
for example, because it is serving the request of another module.
Before sending the data to the buffer, a crop filter can be used
to artificially reduce the sensor’s field of view. Additionally, the
peripheral can generate an interrupt when the buffer is full or when
the event rate exceeds a certain threshold.

Buffer content

Implicit addressing scheme explicit addressing scheme

Xc

Yc

Evt

2
4

1
3

6
3

5
1

4
2

2
3

1
1

6
6

9
9

2
4

1
3

6
3

5
1

4
2

2
3

1
1

6
6

10
15

Memory footprint

Memory footprint
Available memory Available memory

Figure 2.8: Memory footprint of an event-frame in case of explicit and
implicit addressing scheme

The address generator is the module that transmits the acquired
event pixels from the buffer to a downstream unit or the system
memory. Depending on the application’s requirements, two addressing
schemes can be chosen. In the first one, a starting address is
programmed into the address generator, and every time a pixel is
sent out, a fixed step increment the address. In this mode, the pixels
can be stored in the memory in the same order they are received from
the sensor. The memory footprint of this addressing scheme depends
on the sensor’s activity, i.e., how many active pixels are present in an
event frame collected from the DVS. In the second mode, the address
of each pixel is composed by adding the base address programmed
into the address generator and the X and Y coordinate of each event
pixel. The memory footprint of this addressing scheme is generally

32CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

higher, as potentially any pixel of the event frame is active; therefore,
a memory region as big as an entire frame needs to be provisioned.
Figure2.8 provide a graphical representation of the memory footprints
of the two addressing schemes.

2.3.4 Dynamic Vision Sensor Node
This section describes the architecture of the DVSI-based node we
used as a proof of concept to demonstrate the performance of the
DVSI in a real-life operating scenario. Such types of sensor nodes
find application in a plethora of use cases. For example, the sensor
node described in this section could be employed as a static battery-
operated surveillance camera. In that scenario, fast responsiveness
to an event happening in the scene is required. At the same time,
such a sensor node would need to feature extremely low power
consumption when nothing happens in the field of view to avoid
draining unnecessary energy from the battery. Other application
examples for such types of sensors with similar requirements could
be office occupancy monitoring, industrial machinery or production
lines monitoring, and traffic monitoring.

We selected a small, low-power, yet reasonably fast FPGA
device from the available off-the-shelf commercial Lattice devices to
implement an efficient, low-power, and responsive sensor node. The
challenging part of such an implementation is to find the right balance
between the number of look up tables (LUTs) available on the FPGA,
the maximum achievable frequency, and its power consumption. For
this demonstrator, we used the Lattice Semiconductor iCE40UP5K
2. The FPGA was supplied at its nominal voltages, i.e., 1.2 V for the
fabric (core), and 3.3 V for the FPGA IO banks. We describe the
complete sensor node circuit architecture implemented on the FPGA
in the following.

Sensor node architecture

The sensor node is composed of three main sub-blocks. The first
module of the proposed sensor node architecture is the DVSI. As
described in the previous sections, this module interfaces the physical

2http://www.latticesemi.com/view document?document id=51968

2.3. ARCHITECTURE 33

asa
asy

ynrst
yclk
sxy

xnrst
xclk

xy_bus
evt_bus

8

8

DVS Interface
QSPI master

SDIO_0

interrupt

SDIO_1
SDIO_2
SDIO_3
SCK
CS
enable

frame_req

Frame buffer

addr
data
req (valid)
gnt (ready)

addr
data
req (valid)
gnt (ready)

32 32

FPGA CLK source

FPGA

DVS
FPGA

Lattice
iCE40UP

MCU
Nordic
nRF52

MCU
Nordic
nRF52

SAER
protocol

SPI HOST
PC

UART

Bluetooth

ON/OFF
single
event-pixel
stream

132x104
event-frame
stream
transmission

DVSI sensor node Remote host

frame_req
interrupt

Figure 2.9: Block diagram of the DVSI-based sensor node imple-
mented on FPGA

DVS through the FPGA pads. The DVS driver reads an event frame
every time a new request comes from the downstream processing unit.
Note that an event-frame request can be generated on-demand, i.e.,
at a variable event frame rate, by the downstream processing unit, or
attached to a timer, i.e., at a fixed event frame rate.

The second module of the DVSI-based sensor node is called Frame
buffer. This element can be seen as a temporary storage memory
where to buffer the event frames read by the DVSI. The role of this
module is twofold. On the sensor side, it ensures that the DVSI can
continuously transmit an event frame read from the sensor. On the
output transmission interface side, it allows packing the data received
from the sensor into bursts, triggering size-optimized low-overhead
data transmissions. This module has been implemented by mapping

34CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

the memory element to the FPGA available embedded memories to
optimize resource usage.

The third module composing the DVSI-based sensor node is a
master quad-serial peripheral interface (QSPI). This module transmits
the data stored into the frame buffer over a standardized protocol
to a downstream processing unit. We chose to use a master QSPI
because we wanted to reduce the complexity at the processing unit
side. Indeed, the architecture in exam allows issuing an interrupt to
signal that the frame buffer has been written with sufficient data.
Therefore, a QSPI transaction will be triggered. The processing unit
can use this interrupt to exit a sleep or deep-sleep state, prepare the
slave QSPI peripheral to receive a known amount of data over the, and
activate the enable signal when ready to acknowledge the interrupt
reception. The maximum allowed size for the QSPI transfer is 256 B,
and it is limited by the maximum programmable QSPI transfer size
of the downstream processing unit.

We hard-coded the DVSI configuration signals to pre-defined
values in this implementation. The DVSI has been configured to store
the pixels in the same order they are received. This choice allows for
reducing the size of the frame buffer, as the probability of receiving
a number of active pixels equal to the size of the entire frame is
extremely low. DVSI configuration signals could also be connected
to QSPI-programmable configuration registers to change such values
at run-time. Also, the clock was generated on-chip by exploiting the
clock source available on the FPGA.

As peripheral MCU, we chose an nRF52 family SoC from Nordic
Semiconductor. The SoC is built around a 64 MHz ARM Cortex-M4F
microcontroller and hosts a 2.4 GHz Bluetooth transceiver specifically
targeted for low-power Bluetooth applications. this unit was used to
stream over a wireless channel to another nRF52 MCU, emulating
a central host MCU, the data collected from the DVS. Figure 2.9
shows a block diagram of the DVSI-based sensor node, connected to
the host nRF52 MCU, as well as the high-level block diagram of the
circuit implemented on the FPGA.

2.3. ARCHITECTURE 35

Sensor node operation

The operating principle of the DVSI-based sensor node is the fol-
lowing: i) the MCU request an event frame; this operation must
be explicitly triggered by raising frame req signal. In our case,
the frame read was triggered by one of the timers available on the
MCU; ii) the DVSI receives the frame request and triggers an event
frame acquisition on the DVSI. This operation repeats until enough
data have been read from the DVS and an interrupt is issued to
the MCU. iii) the MCU receives the interrupt, configures the slave
QSPI to receive a transaction, then the data are transferred from the
DVSI to the MCU. The DVSI-based sensor node behaves as a master
frame-based camera sensor; the only difference is that the event frames
are not continuously streamed. Instead, the data transfers happen
only when enough data have been received from the DVS; multiple
event frames can be stored in the frame buffer, depending on the
number of active event pixels when the event frame read was triggered.

2.3.5 System-on-chip integration
We presented two event-driven peripherals used to collect audio
and video data. This section describes how the two event-driven
peripherals presented so far can be integrated into a SoC. Before
entering into the implementation details, let us review how input
and output peripherals are integrated into a SoA microcontroller-class
system. for this example, we take the system presented in [12,15]. All
the output peripherals are part of the so-called uDMA. This module
can be seen as an autonomous subsystem equipped with two master
memory ports capable of streaming data from the peripherals to the
memory and vice versa. This module is programmed via a register
interface, accessible through a system bus. The advantage of using
this approach is that during data transfers from the peripherals to
the memory, all the parts of the system that are not involved in this
operation can be put in a low-power state.

The uDMA can host two types of peripherals: i) those who do not
provide an explicit address where to store the data in the memory.
In this case, the uDMA controller (uDMA core) generates the memory
addresses and stores the data linearly; this is the case, for example,

36CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

PW
Man.

P
ad

fr
am

e

APB

L2 Bank

L2 Bank

SoC
FLL

TIMERE
V

E
N

T

S
o

C

C
T

R
L

Cluster
FLL

Periph
FLL

R
O

M

Shared/Interleaved (1MB)

GPIO

RISC-V

DEBUG

INTC

CLK
RST

SoC

IO

SPI M

CAMIF

DASI

I2C

IO
 s

u
b

sy
st

e
m

 c
tr

l

UART

DVSI

L2 Bank

L2 Bank

EHWPE
FLL

Interconnect

L2
Bank

L2
Bank

Private

Figure 2.10: Block diagram representation of an SoC architecture
where both the DVSI and the DASI are integrated as conventional IO
peripherals.

for peripherals like QSPI or Inter-Integrated Circuit (I2C); these class
of peripheral is attached to the so-called linear channels. ii) the
peripherals that can provide an explicit address where to store the
data. In this case, this address is forwarded to the uDMA controller
and used as a memory store address; this class of peripherals is
connected to the so-called external channels. Since both peripherals
already provide the address generation capability, we connected both
peripherals to the external channels. Therefore the memory address
is generated by the peripheral itself and not by the uDMA controller.
Figure 2.10 shows a block diagram of the uDMA where both the DVSI
and the DASI peripherals have been integrated.

2.4. EXPERIMENTAL RESULTS 37

2.4 Experimental Results
To demonstrate the effectiveness of the sensor interfaces described in
section 2.3, as a first study, we deployed and validated both designs
on low-power FPGAs, and we connected each FPGA to a downstream
MCU over a standardized protocol to form a standalone sensor node
capable of acquiring audio and video sensor data and transfer them to
a downstream processing unit. Specifically, in the case of the DVSI,
we connected the FPGA to the MCU via a QSPI stream, while in
the case of the DASI, we transferred the acquired data from the
FPGA to the MCU over a standard I2S protocol. This preliminary
analysis validates the architectural solution described throughout
this chapter and serves as a proof of concept to demonstrate that
both architectures can be deployed on low-power resource-constrained
devices. This exploration also provides insights into the advantages
of such sensors, eventually motivating the integration of such sensor
interfaces in MCU-class devices IO peripheral subsystems. In the
latter part of the analysis, we will show post-synthesis silicon estimates
of a sample MCU IO subsystem integrating the DASI peripheral.
Then, we will present post-silicon estimates and results measured on
an actual silicon implementation of the same IO subsystem integrating
the DVSI.

2.4.1 DASI FPGA standalone sensor node results
As audio applications typically have low bandwidth and frequency
requirements and operate in an always-on regime, we selected one
of the lowest-power FPGAs commercially available. The proposed
peripheral has been implemented on an IGLOOnano AGLN250V2
FPGA device. The FPGA was supplied at the nominal 1.2 V core
voltage, and the IOs were supplied at the nominal 3.3 V. The DASI
design was synthesized using Synopsys Synplify Pro J2015.03M for
logic synthesis and Microsemi Libero SoC 11.7 for FPGA placement
& routing. The interface utilizes 31% of the resources available (∼ 600
equivalent logic gates). We constrained the design to work with
a 30 MHz clock reference frequency generated by a ring oscillator
synthesized on the FPGA. The sampling circuitry requires two clock
cycles to synchronize and acquire a request from the sensor. Therefore,

38CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

the highest frequency available for sampling the input audio event is
15 MHz. Thereby, an inter-spike time of 130 ns or more can be sensed
by the interface; this value is sufficient to respect the most commonly
used standard for the AER protocol, CAVIAR [88], which is used by
the silicon cochlea connected to the FPGA. Each audio event transfer
must be completed within a 700 ns time window.

 0

 1

 2

 3

 4

 5

 0.01 0.1 1 10 100

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

m
W

)

Event rate (kevt/s)

 t = 32
 t = 64
 t = 16

 No division
Ideal

Figure 2.11: Power consumption of the DASI-based sensor node versus
the input event rate. Θdiv represents the number of cycles to wait
before dividing the operating frequency by half. The ideal curve
represents the ideal proportionality between the power consumption
and the input event rate.

Figure 2.11 reports the total power consumption of the DASI-
based sensor node FPGA. To measure the power consumption at a
fixed rate, we fed the FPGA with a pseudo-random spike generator
producing from 10 evt/s to 800 kevt/s. We compared the power
consumption with our approach with a “näıve” constant frequency
sampling approach utilizing the same ring oscillator synthesized on

2.4. EXPERIMENTAL RESULTS 39

the FPGA; in both cases, we clock-gated the unused parts of the
circuit to highlight the efficiency improvement introduced by the sole
frequency division. In the FPGA implementation, we allocated 12 bits
to represent the timestamp value holding the time distance between
two successive events. We assumed that two events separated by
more than the maximum representable time delta could be considered
uncorrelated. Therefore, there is no need to track the time between
them. In this condition, the time delta, i.e., the timestamp applied to
the incoming event, is clipped to the maximum value, and the circuit
is clock-gated to save power.

As shown in Figure 2.11, the proposed solution is vastly more
efficient than the näıve clocking approach, at all event rates, except
for extremely high rates, when they are on par. Let us consider the
ideal power consumption of the interface as a linear function of rate
r, i.e.,

Pideal(r) = Espike · r + Pstatic, (2.1)

where Pstatic is the static power consumed by the FPGA (50 µW) and
Espike is the ideal dynamic energy per spike, which we estimated as
the one in the high-activity region.

We can see from Figure 2.11 that the power consumption gets
farther from ideality as the event rate decreases. However, the clock
division technique we propose in Section 2.3.1 drastically improves the
situation with respect to the baseline technique with no clock division.

Furthermore, when the event rate drops below ∼1 kevt/s the clock
is often shut down completely, boosting efficiency up to near-ideal
power consumption, particularly at event rates lower than 10 to
100kevt/s. When the sensor’s activity is low, the ring oscillator
switches off often, determining a steeper decrease in power con-
sumption when successive spikes are uncorrelated. Notice that the
switching off of the oscillator can be performed without significantly
worsening the acquisition time of the next incoming event since the
time to recover from the off state is in the order of 100 ns; which is
comparable with a single clock period at the max freq. Therefore,
with this clocking methodology, we measured a reduction in power
consumption up to 55% in the active region.

The maximum time interval the interface can measure depends
directly on the value of θdiv, i.e., the number of cycles to wait before

40CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

halving the operating frequency, as well as the bit-width of the counter
tracing the time delta between successive spikes. These parameters
can be used as different knobs to match the desired accuracy and
maximum time interval the interface can cover before entering the
clock-gating low-power state. This time can be computed from
Figure 2.11 as the inverse of the event rate in the flex point of the
power consumption trends.

Time-to-Information extraction accuracy

 0.001

 0.01

 0.1

 1

 100 1000 10000 100000 1x10
6

A
v
e
ra

g
e
 e

rr
o
r

Event rate (evt/s)

Timestamp error

θdiv = 16
θdiv = 32
θdiv = 64

Figure 2.12: Average relative error introduced by the AER-to-AETR
conversion.

To evaluate the time accuracy and the error introduced by the time
quantization with the adaptive frequency approach, we implemented
a Matlab model of the clock generation unit, which can be fed with a
configurable event rate Poisson distributed spike stream. This model
assumes a perfect clock with constant frequency and a 50% duty cycle.
The system has been simulated for different values of θdiv and in a

2.4. EXPERIMENTAL RESULTS 41

range of event rates between 100evt/s and 2Mevt/s. Figure 2.12 shows
that in the event rate range of interest (e.g., for θdiv = 64, from 1
kevt/s to 550 kevt/s), the average error caused by frequency division
can be kept significantly below the analytic 3% bound.

In the graph shown in Figure 2.12, we distinguish three different
regions (e.g. for θdiv = 64): inactive region, from 100 evts/s to 100
kevt/s, corresponding to a very low activity of the sensor; active
region, from 100 kevts/s to approximately 550 kevt/s, where the
divided clock methodology is applied; high-activity region, above ∼550
kevt/s, where the reference frequency is always the maximum one.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.03 0.06 0.09 0.12

P
ro

b
a

b
ili

ty

Timestamp error

θdiv = 16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.03 0.06 0.09 0.12

P
ro

b
a

b
ili

ty

Timestamp error

θdiv = 32

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.03 0.06 0.09 0.12

P
ro

b
a

b
ili

ty

Timestamp error

θdiv = 64

Figure 2.13: Distribution of timestamp errors at different θdiv.

In the inactive region, the error is high as the event rate is so low
that the interface is essentially always off; therefore, most spike events
are tagged with the saturated timestamp: this corresponds to a region
in which we are uninterested in the correlation between events. In the
high-activity region, the behavior is different: when the event rate
is very high, nearing the non-divided sampling frequency, the error
increases because an increasing fraction of the spikes are separated by
inter-spike times, which are below the Nyquist period, and therefore
are tagged incorrectly (this is a limit related to the choice of the
non-divided sampling frequency, and not to our frequency division
scheme).

In the active region, our main region of interest, the error
oscillates between two boundaries; the upper bound is given by a
time measurement of the inter-spike time, done just after an iterative
frequency division. The lower bound is given when the inter-spike
time is measured before a new iterative frequency division. In other

42CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

words, the peak and valleys in this region’s average error are related
to the Ndiv successive divisions of the clock. The timestamp error
distribution is shown in Figure 2.13

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

S
p
ik

e
 a

d
d
re

s
s

E
v
e
n
t
ra

te
 (

e
v
t/
s
)

Time (ms)

Event rate

Figure 2.14: Sample phoneme ”PULP” acquired with the DASI-based
sensor node

Figure 2.14 reports a phoneme acquired with the DASI-based
sensor node and transferred to the downstream MCU.

2.4.2 DVSI FPGA standalone sensor node results
This section presents the key results regarding FPGA resources, power
consumption, bandwidth, and energy per bit for the DVSI peripheral
when implemented as a standalone node. The results here refer to
a sample use case, where the sensor node has been used to record
data from a DVS in the context of data set acquisition for a gesture
classification task.

Table 2.1 reports the FPGA resources utilization. The table shows
that the DVSI circuitry occupies a small fraction of the available
resources. Specifically, the design occupies only 21% of the available
FPGA LUT. The data buffering instead occupy more resources;
indeed, 73% of the available memory is used to store the pixels received
from the DVSI.

From the static timing analysis (STA), the critical path of the
digital circuit implemented on the FPGA is 36 ns. Therefore, the
FPGA clock could run at a maximum frequency of 27 MHz. This

2.4. EXPERIMENTAL RESULTS 43

frequency would be enough to read a number of event frames per
second (efps) equal to 2360, considering the maximum amount of data
transmitted in a single event frame.

When the whole circuitry implemented on the FPGA is clocked
with the same clock source, the main bandwidth limitation through
the whole data collection pipeline, i.e., from the DVS through
the downstream MCU and eventually to the host MCU connected
over Bluetooth, is represented by this latter wireless communication
channel.

In the DVSI sensor node we presented here, the FPGA frequency,
from which the frequency used to drive the DVSI pixel clocks depends,
could be lowered until the input data rate at the DVSI side equals the
available bandwidth at the MCU side. Specifically, by accounting
for the bandwidth limitation introduced by the wireless channel, we
could lower the FPGA clock frequency to 6 MHz. This design choice
allows saturating the communication bandwidth at the MCU side
and, simultaneously, reducing the power consumption on the FPGA,
running the DVSI circuitry at the lowest possible operating frequency.

The maximum end-to-end worst-case sustained event-frame rate
that the DVSI-based sensor node can guarantee is 5.2 efps. This value
includes the streaming over Bluetooth, and it is obtained when all
pixels of an event frame are continuously activated. Each pixel’s active
events are transmitted through the whole data acquisition pipeline to
the host MCU.

Figure 2.15 illustrates the worst-case communication bandwidth
between each sub-module of the system. Note that each block, i.e.,

Element Total Utilized Util. %
LUT 5280 1154 21

Flip-Flop 5280 441 8
DSP 8 0 0
IOs 39 38 97

EBR RAM 30 22 73
SPRAM 4 0 0

Table 2.1: FPGA Resource utilization.

44CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

DVS FPGA MCU MCU
HOST

PC

36 Mbit/s

SAER

874 efps

3Mbit/s

SPI

72.8 efps

215 kbit/s

Bluetooth

5.2 efps

700 kbit/s

UART

16.9 efps

Figure 2.15: Minimum sustained communication bandwidth among
system modules in the worst-case operating scenario.

FPGA Total

IO BANK 1 IO BANK 0

Fabric

Lattice iCE40UP

DVSI

MCU

Figure 2.16: System power consumption breakdown. On the left is
the power consumption of the Lattice iCE40UP. On the right, the
FlyDVS sensor node’s total power consumption, including wireless
transmission at 200 efps.

each group of 4 pixels, can transmit up to 8 events. However, this
represents the worst case, as all the event pixels would be active
simultaneously. From the figure, it is evident that the Bluetooth
communication channel introduces the main theoretical bandwidth
limitation.

The DVSI implemented on the FPGA alone can sustain a worst-
case 874 efps from the DVS, which is more than one order of
magnitude higher than what conventional cameras can provide in a
comparable power budget, enabling on-FPGA event processing when
the application needs high responsiveness to the scene change. If
we consider the bandwidth limitation introduced by the QSPI, the
worst-case efps decreases to 72.8 efps, which is comparable with what

2.4. EXPERIMENTAL RESULTS 45

is provided by commercial frame-based cameras. The bottleneck of
our system is the Bluetooth communication channel, which limits the
end-to-end event-frame transmission rate. In the worst-case scenario,
the system can still sustain 5.2 efps end-to-end transmission.

In our experiments, we measured the power consumption of the
FPGA at 6 MHz, reporting 17.62 mW in the presence of high activity
of the DVS, and when the QSPI is transmitting 200 efps. The power
consumption of the FPGA decreases to 14.5 mW when no QSPI data
transmission is happening, i.e., we are not transmitting event-frames
over the QSPI. However, we are still driving the DVSI and receiving
event pixels. Note that this power is also including level-shifters to
convert the signals from 3.3 V, that is, the nominal voltage to supply
the FPGA IO banks, to 1.2 V, that is, the nominal voltage of the
DVS IO pads. The system’s total power consumption is reported in
Figure2.16.

2.4.3 Silicon implementation results
As anticipated in the introduction of this chapter, the last part of
this exploration will focus on the silicon implementation of both
peripherals. This section aims to show the advantages in terms of
power consumption reduction and bandwidth when such sensors are
integrated into a MCU-class devices. Therefore, we will report a power
performance analysis (PPA) of the IO peripherals subsystem architec-
ture presented before. Both peripherals have been implemented in an
advanced silicon technology node. Specifically, in our experiments, we
synthesized the peripherals with Synopsys Design Compiler 2020.09,
in GlobalFoundries 22nm FDX process. Specifically, we used 8T,
20, 24, 28, L, and SL voltage threshold cells, SSG corner, 0.72V
nominal supply voltage, -40C, 250MHz target clock frequency. Power
consumption estimates have been performed at target 250MHz clock
frequency, TT corner, 0.8V supply voltage, 25C, using Synopsys
Prime-Power 2019.12.

DVSI results

This section will show the results for the DVSI peripherals. Specifi-
cally, present post-synthesis power estimates for the DVSI peripheral.

46CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

Compared to frame-based cameras, the DVSI shows a variable
event-frame rate (e-FPS) which depends on the number of active
pixels in each event frame. At the maximum target frequency of
250MHz, the DVSI can read a maximum of 9100 event-frames per
second (e-FPS) when the activity of each event-frame is 100%; this
represents the worst-case scenario. If the frame activity is low, the
DVSI reads the frame at the maximum speed and then enters a
clock-gated mode, where the power consumption is constituted by
only leakage. Figure 2.17 shows the power consumption of the DVSI
versus the activity of each event frame.

1 10 20 30 40 50 60 70 80 90 100
Frame Activity [%]

0

200

400

600

800

Po
w

er
 @

 9
10

0
e-

FP
S

[u
W

] uDMA core
DVSI

Figure 2.17: Power consumption of the DVSI peripheral versus event-
frame activity

As a direct consequence of the result presented in Figure 2.17, it
can be noted that the variable event-frame-rate determines the total
energy spent by the DVSI to acquire an event frame when the DVSI
is requesting frames to the DVS at a fixed rate. Figure 2.18 shows the
energy spent to acquire a frame, normalized by the number of events
active in a single frame.

As expected, the plot in Figure 2.18 shows that the higher the
frame activity, the lower the energy spent to acquire a single event;
because an increasing fraction of the fixed frame acquisition period
is used to perform useful operations, i.e., acquiring events. On the

2.4. EXPERIMENTAL RESULTS 47

1 10 20 30 40 50 60 70 80 90 100
Frame Activity [%]

10 12

10 11

10 10

En
er

gy
/e

vt
 @

 9
10

0
e-

FP
S

[J/
ev

t]

1.
25

 M
ev

t/
s

12
.5

 M
ev

t/
s

25
.0

 M
ev

t/
s

37
.5

 M
ev

t/
s

50
.0

 M
ev

t/
s

62
.5

 M
ev

t/
s

75
.0

 M
ev

t/
s

87
.5

 M
ev

t/
s

99
.9

9
M

ev
t/

s

11
2.

49
 M

ev
t/

s

12
4.

99
 M

ev
t/

s

uDMA core
DVSI

Figure 2.18: Event energy consumption versus event frame pixel
activity

contrary, when the frame activity is low, most of the energy spent in
a frame acquisition period is constituted by leakage energy. Only a
tiny fraction of the period is occupied by the event acquisition. Since
it is impossible to know a priori how many pixels will be active in
an event frame, the readout frequency can not be lowered to reduce
power consumption. Otherwise, the desired frame rate acquisition can
not be guaranteed in case of high pixel activity.

DASI results

In this section, we show the results related to the DASI. From the
plot in Figure 2.19, it can be noted that the power consumption
of the DASI is proportional to the input event activity. The clock
relaxation methodology proposed in section 2.3.1 allows mitigating the
effect of the high-frequency operation needed to ensure no event loss.
Indeed, the DASI is a slave asynchronous interface. Therefore, it is
impossible to know when and how many events have to be acquired by
the interface in advance. The DASI implementation proposed in this
chapter shows a power consumption that decreases by approximately
one order of magnitude when the activity decreases from 50 Mevt/s

48CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

to a few kHz. This result is achieved by adopting a carefully crafted
clock gating scheme on the sub-modules of the DASI.

10 2 10 1 100 101 102

Event Rate [Mevt/s]

0

50

100

150

200

Po
w

er
 [u

W
]

uDMA core
DASI

Figure 2.19: Power consumption of the DASI peripheral versus the
event rate of the sensor

It is important to note that the average event rate of a DASI
peripheral can be as low as a few tens of kevt/s during human speech
recording, making it a suitable candidate to be employed in ultra-low
power smart sensor nodes.

Similar to what has been done for the DVSI, we analyze the
energy per event consumption here. Figure 2.20 shows the energy
consumed to acquire a single audio event from a silicon cochlea.
Also, in this case, the energy per event decreases as the event rate
activity of the sensor increases. This result is expected because the
operating frequency of the DASI peripheral has to be high enough
to guarantee no event loss. Thanks to the aforementioned adaptive
clock regime, the power consumption reduction at a low event rate
counterbalance this trend; in the case of the DASI, the activity rate
span five orders of magnitude, while the energy consumed per event
changes by approximately two orders of magnitude.

2.5. CONCLUSION 49

10 2 10 1 100 101 102

Event Rate [Mevt/s]

10 12

10 11

10 10

10 9

10 8

10 7

En
er

gy
/e

vt
 [J

/e
vt

]

uDMA core
DASI

Figure 2.20: Energy consumption per input event of the DASI
peripheral versus the sensor event-rate

2.5 Conclusion
This chapter opened the discussion on event-driven data treatment
that will develop throughout this thesis by proposing two IO pe-
ripheral architectures capable of collecting external data generated by
connected sensors in an efficient and energy-proportional way. Energy
proportionality is an aspect that becomes crucial when a device is
connected to a sensor that is already capable of producing relevant
information in a non-redundant way. Therefore, Preserving such
proportionality during the data acquisition pipeline becomes crucial
when small batteries supply such devices, making effective use of the
available energy becomes relevant. The main contributions and results
presented in this chapter can be summarized as follows:

• We have observed that event-based sensors, like silicon retinas
(DVSI) and silicon cochleas (DASI), pose new challenges in
terms of data transfer toward a digital computing device.
Despite the significant benefits that come from the lower
bandwidth which characterizes this type of sensor, the traffic
towards event-based sensing devices is highly irregular and,
therefore, complicated to predict. The data retrieval becomes

50CHAPTER 2. ENERGY-PROPORTIONAL DATA ACQUISITION

even more challenging when the interface exposed by the sensor
is asynchronous. For these reasons, IO peripherals interacting
with such sensors need to implement a specific architectural
solution that keeps the energy consumption proportional to the
sensor data rate.

• Such circuital solutions are effective if the receiving device can
directly orchestrate the data reading from the sensor, e.g.,
in the case of the DVSI. When this is not the case, as we
have seen for the DASI, the IO peripheral needs to collect a
continuous asynchronous event stream; in this scenario, it is
possible to mitigate the energy spent for the data acquisition
by dynamically adjusting the frequency of the receiving device
in a very fine-grained way, proportionally to the data rate.
Specifically, we have seen how the adaptive clock relaxation
approach ensures a fast reaction to short event bursts but, at
the same time, significantly reduces energy consumption in the
absence of input events.

• We have proven on two standalone FPGA implementations
that the proposed circuital solutions could effectively exploit
the nature of event-based sensors to perform energy-efficient
information transfer, thereby demonstrating a complete and
effective event acquisition pipeline that can be integrated into a
conventional digital microcontroller subsystem.

• In the case of the DVSI, we could demonstrate on a low
power “Lattice” FPGA how such peripheral can achieve a
high event-frame acquisition rate of 874 event − framepersecond
while consuming only 17.62 mW of power. The whole sensor
node consumed 35.5 mW, including the wireless event-frame
streaming at 200 efps.

• In the case of the DASI, we could show how the power con-
sumption for time-to-information extraction scales from 4.5 mW
at a 550kevt/s rate down to slightly more than 50 µW at rates
lower than 10evt/s (a 90× factor) while a näıve constant clock
methodology is stuck to the same 4.5 mW power regardless of
the event rate.

2.5. CONCLUSION 51

• In the second part of the results, we have continued the
discussion by showing how the proposed IO peripherals can be
efficiently integrated into a digital microcontroller autonomous
IO subsystem. In this way, we have proven with silicon
estimates performed into an advanced technology node that
an event-driven energy-proportional data acquisition peripheral
is amenable to modern SoCs and that the semantically rich
information streams produced by event-based sensors can be
easily combined with synchronous digital processing devices.

• In such exploration, we analyzed the energy consumption of both
peripherals versus the input event rate. In the case of the DVSI,
we observed that the energy spent to acquire an event stays
within the same order of magnitude when the sensor event-rate
changes from 1% to 100% active pixels. In the case of the DASI,
we demonstrate how the peripheral can practically reduce the
power consumption by two orders of magnitude when the rate
becomes very low (few kevt/s).

This section concludes the analysis we started in the first chapter
of this thesis. The discussion carried on throughout the following
chapters will start from these findings and build on the ideas presented
here.

Chapter 3

Overcoming Reliability
Boundaries

3.1 Introduction
In the previous chapters, we have seen how the architecture of modern
SoCs can be improved to enable event-driven data processing and
interaction with low-power event-driven sensors. As we have seen
throughout this thesis, the latest advances in the IOT are changing
the nature of edge-computing devices. End nodes have to support,
in place, an increasing range of functionality, for example, video and
audio sensory data processing and complex systems control strategies.
These new capabilities will enable applications such as an entirely new
class of biomedical devices [89], autonomous insect-sized drones [90],
and cheap smart sensors [91] to continuously monitor the status
of bridges, tunnels, and other infrastructures. Machine learning
algorithms and DNNs have demonstrated outstanding performance
in performing highly complex cognitive tasks. However, deploying
such compute-intensive algorithms on battery-powered IoT end-node
platforms, characterized by heavily constrained power budgets (typi-
cally 100 µW to 100 mW), still constitutes a considerable challenge, as
they are expected to be deployed into the operating environment, and
process information for time intervals in the orders of few months to

53

54 CHAPTER 3. OVERCOMING RELIABILITY BOUNDARIES

several years or even decades without further human intervention.
As such, recent research efforts from both industry and academia
have focused on enabling the deployment of deep inference on devices
operating in the 10 mW to 100 mW power range [30,34,92–97].

Duty cycling is a common approach to reducing the average power
consumption, widely used in commercial microcontrollers and IoT end
nodes. According to this paradigm, the system stays in a deep-sleep,
low-power state for most of the time, featuring a power consumption
in the range of 100 nW to 10 µW, and wakes up to perform the
acquisition and classification task (e.g., with a CNNs) only when
explicitly triggered by an external event. Various strategies can be
implemented to “wake up” the system and trigger the cognitive task
execution. A simpler strategy to determine when the system has to
leave the deep-sleep state is to use a time-based triggering mechanism.
The applicability of this approach depends on the energy cost of the
cognitive task; for example, the computing cost of an accurate CNNs
is so high that the active energy becomes rapidly dominant even at
low duty cycling rates. As a result, this strategy is highly inefficient
whenever a fast reaction time is required at the sensor edge, as it
would force a too frequent system activation. A popular strategy
for dealing with all those use cases where the cognitive task is very
energy hungry is to use the result of lightweight always-on processing
as a triggering mechanism. However, this approach requires trigger
fine-tuning to reduce the number of false-positive activation, which
could be fairly challenging to achieve in a real scenario and would
have poor generalization capabilities when the same system is used in
other contexts. Alternatively,

Research on semiconductor devices has shown that a common
technique to reduce the active power of digital circuits is to operate
them near-threshold [23], i.e., by applying a supply voltage slightly
higher than the transistor threshold voltage. Scaling voltage and
frequency significantly improve digital circuits’ energy efficiency by
exploiting the quadratic dependency of dynamic power with supply
voltage. However, too aggressive voltage scaling significantly impacts
the operating frequency of the logic and the reliability of the memory
elements of the system, especially those based on SRAMs. To
mitigate the performance degradation caused by maximum frequency
reduction, modern SoCs can be equipped with a very energy-efficient

3.1. INTRODUCTION 55

hardware accelerator [32]. However, the SRAM reliability issue at low
voltages remains an unsolved problem, preventing aggressive voltage
scaling on all those devices featuring a relatively large on-chip memory
needed to execute complex algorithms based on DNNs [95, 98]. A
very effective approach is to replace 6T-SRAMs with more resilient,
custom solutions such as SRAMs composed of 8T or 10T bitcells
supported by reading and writing assist circuits [99,100]. Additionally,
among the approaches adopted to improve the resiliency of memory
elements at low voltage, usage of standard cell memories (SCM) is
particularly convenient since such memory elements are built on top
of standard library cells such as flip-flop or latches, which are much
more resilient than SRAMs when operating close to the threshold
voltage of transistors [101,102].

In the last years, BNNs [37, 103, 104] showed remarkable per-
formance in terms of both accuracy and memory footprint when
executing complex classification tasks. As the gap that separates
them from the state-of-the-art fixed point or floating point CNNs
narrowed, new and more complex cognitive tasks could be deployed
on resource-constrained embedded devices operating at the very
edge. BNN implementations show several computational advantages
over fixed or floating-point CNN implementations. While the latter
relies on convolutions on multiply and accumulate (MAC) operations
performed on complex hardware primitives, BNNs are characterized
by a very lightweight hardware implementation of the data path.
Indeed, when we reduce the multiplication operation to a single bit,
this can be performed by a simple logic element such as an XNOR
gate. In terms of hardware complexity, BNNs are very convenient, as
they do not require multipliers but only a minimal amount of area-
hungry adders for partial sum accumulation. Moreover, as opposed
to CNNs, BNNs consume and produce single-bit input and output
feature maps, reducing the required bandwidth requirements on the
interconnection subsystem that allows for communication with the on-
chip and off-chip memories, as well as the overall energy consumption
of memory load and store operation. These features make BNNs a
good candidate for operating scenarios where power consumption is a
significant concern. However, at the same time, high responsiveness
to the sensor stimuli needs to be ensured (e.g., pico-sized autonomous
navigation robots or surveillance nodes). Thanks to their ability to

56 CHAPTER 3. OVERCOMING RELIABILITY BOUNDARIES

execute reasonably complex cognitive tasks in extremely low-power
envelopes, BNNs can be employed in always-on scenarios [105], where
the simple triggering mechanisms mentioned before would fail. In this
scenario, BNNs would be a suitable algorithm to execute as the first
stage of an increasingly more capable staged inference pipeline [106].
As the memory footprint of BNNs is significantly lower than CNNs,
larger topologies can be supported in the same power/performance
budget, enhancing the generalization capability of the early stages
and thereby lowering the false positive triggering occurrence.

A significant advantage of DNNs-like algorithms, specifically
BNNs, is the high robustness to noise injected into the input feature
maps [107]. An essential aspect of BNNs is that no bit in their
activations and weights is inherently more significant than any other.
Conversely, no bit is inherently more vulnerable than any other:
information processing is spread equally among all bits, and only a
very high error rate can bring a dramatic loss in quality-of-results
[49]. This chapter will demonstrate how to leverage this intuition
to enable a very aggressive energy consumption reduction when an
SoC is executing such highly error-resilient algorithms. Moreover,
we will demonstrate how an SoC can still operate reliably in such
a highly scaled voltage regime by providing architectural guidelines
on protecting crucial sub-modules of the SoC from random error
occurrence.

The main contribution of this chapter could be summarized as
follows:

• We propose a strategy to execute noisy BNNs at ultra-low
voltage on a SoC built around a RISC-V core and equipped
with a dedicated BNN hardware accelerator.

• We describe and demonstrate a hybrid memory architecture
on silicon composed of big SRAMs for error-resilient data
and smaller (Standard Cell-based Memories) SCMs to hold
vulnerable data such as microcontroller instructions and stacks.
This work also provides a methodology to exploit such memory
architecture efficiently.

• We present a self-test strategy for Bit Error Rate measurement
performed on large SRAM. This approach characterizes SRAM

3.2. RELATED WORK 57

memories at ultra-low voltages, estimating the amount of noise
injected into the executed algorithm.

• We demonstrate the validity of this architectural concept on
an advanced prototype manufactured in GlobalFoundries 22nm
FDX technology, using the safe SCMs to hold a microcontroller
program testing SRAM bit error rates with millions of random
reads/writes, operating down to 420 mV (50% of the nominal
supply voltage) for both logic and memories.

3.2 Related work
In this section, we will review the type of devices and the algo-
rithmic approaches that researchers of machine learning communi-
ties have developed to deploy sophisticated artificial intelligence on
edge-computing nodes. In this context, the fast-growing TinyML
research community [108] has introduced significant contributions
in the direction of shrinking DNN topologies [109], reducing the
amount [110] and numerical precision of network parameters [111],
moving from floating-point down to highly quantized numerical
representations, e.g., 8 or 4 bits, and ultimately to BNNs [37].
All those improvements have provided a solid theoretical ground
to build on for developing lower-power and more energy-efficient
hardware computing platforms. Indeed, edge computing platforms
have specialized to efficiently accelerate such types of machine learning
workloads [98,112]. In this section, we start our review by describing
the newest software-programmable architectures targeting the IoT’s
end-nodes, going through specialized heterogeneous and error-resilient
hardware architectures, and ending with dedicated architectures for
CNN inference exploiting extreme quantization and error resiliency.

3.2.1 IoT End-Node Architectures
A desirable feature that ensures high versatility to an IoT end-
node is the capability to execute general-purpose operations, i.e.,
programmable code. Almost all MCU vendors, such as TI [8],
STMicroelectronics [7], NXP [6], and Ambiq [5] have commercialized
IoT end-nodes based on ARM Cortex-M class processors. Among the

58 CHAPTER 3. OVERCOMING RELIABILITY BOUNDARIES

various features proposed by such systems, the most appealing for
the IoT application domain is the aggressive sleep-walking capability
enabled by the sub-10 µW deep-sleep modes, leading to an extremely
small average power consumption. On top of this, research commu-
nities have demonstrated how the operation in the near-threshold
voltage regime further improves the energy efficiency and reduces
power consumption during the active computation phase [14, 113–
116]. An efficient IoT processor architecture, Mr. Wolf, has been
demonstrated by Pullini et al. [13]. The IC comprises an always-on
autonomous I/O subsystem coupled with a parallel accelerator with
eight floating-point capable RISC-V cores. In [13], it is shown
how to combine aggressive deep-sleep capabilities with an energy-
proportional architecture, ultimately exceeding the computational
capabilities of ULP microcontrollers by two orders of magnitude while
offering a competitive energy efficiency also at low and sporadic
workloads.

A valid approach is to target specific computation domains such as
CNNs. In this scenario, some commercial architectures give up some
flexibility to leverage lightweight SW acceleration and optimized DSP
libraries to improve performance. A well-known example is CMSIS
developed by ARM, a set of libraries to optimize DSP applications on
Cortex-M architectures, and CMSIS-NN [117], tuned to the deploy-
ment of embedded neural networks. An extension to these libraries
has been proposed by Rusci et al. [118] targeting highly quantized
networks such as 4-bit, 2-bit, and binarized networks [119]. The main
drawback of the approaches based on SW acceleration is represented
by the 32-bit parallelism of the IoT nodes where such optimized
software libraries are executed. Indeed, while the memory footprint
significantly reduces in aggressively quantized embedded deployment,
several additional operations are required to pack/unpack activation
and weights to arithmetic formats suitable for software processing
(e.g., 16-bit or 8-bit) [118], degrading the overall performance. A
viable approach is to introduce dedicated ISA extensions to perform
sub-word, sub-byte, and SIMD operations efficiently [120, 121], and
mitigate such performance degradation.

More specialized approaches have been proposed over the last
few years. IoT end node architecture has evolved towards more
heterogeneous SoCs, often integrating dedicated hardware processing

3.2. RELATED WORK 59

units to accelerate certain classes of workloads. For example, Intel
presented an IoT edge node integrating an x86 processor accelerated
by dedicated functional units for CNN cryptography workloads [122].
Conti et al. proposed Fulmine [112], a heterogeneous SoC coupling
four general-purpose processors with a convolutional accelerator.
While convolutional layers of CNNs run on the accelerator, other
functions, such as activations and pooling, execute on the software
processing cluster. GAP-8 [123] includes a specialized accelerator
for convolutional neural networks supporting 16-bit precision for
activations and 16-bit, 8-bit, and 4-bit precision for weights, achieving
up to 600 GMAC/s/W within 75 mW of power envelope. Qualcomm
Technologies propose a low-power vision sensor node that performs
end-to-end always-on visual detection tasks thanks to an ultra-
low power QVGA CMOS sensor and a complete digital processor
subsystem integrated as a single device [124].

3.2.2 Heterogeneous and Error Resilient Memory
Architectures

Memory architecture plays a crucial role in modern IoT nodes operat-
ing near-threshold. The power consumption associated with such part
of the SoC is typically non-negligible. Therefore, a carefully thought
memory architecture can significantly affect the energy efficiency of an
IoT node [114,125,126]. While many approaches rely on the custom
design of low-voltage memories [100,127], which typically come at the
cost of a higher area and power consumption (e.g., 8T or 10T bitcells,
read and write assist circuits) [99], an alternative approach relies on
approximate SRAMs, often combined with the precision/performance
tunability, or in some cases with a heterogeneous memory architecture
featuring error-free and error-prone memory regions. A promising
approach proposed by Frustaci et al. [128] is to use approximated
SRAMs for error-tolerant applications. In this context, energy is saved
at the cost of reading/writing errors by exploiting voltage scaling,
selective error correction code (SECC), and selective write assist
techniques (SNBB). Compared to the voltage scaling at iso-quality,
the joint adoption of these techniques can provide more than 2×
energy reduction at a negligible area penalty. Other works propose

60 CHAPTER 3. OVERCOMING RELIABILITY BOUNDARIES

adopting emerging technologies to realize approximate memory cells,
such as RRAM [129] and memristors [130].

The main drawback of the abovementioned approaches is that a
custom SRAM design is required. In modern technology nodes, SRAM
macros can be auto-generated by providing high-level specifications
to the memory generators provided with the process development kits
(PDK). Therefore, any custom modification to the SRAM circuitry
not supported by the toolchain requires a significant additional
engineering effort, with a detrimental effect on a potential prod-
uct time-to-market and total cost. Alternative approaches exploit
heterogeneous memory architectures mixing standard SRAMs and
latch-based Standard Cell Memories (SCM). While SRAMs can not
be considered reliable at relatively low voltages (e.g., below 0.8V
or 0.65V in a modern technology node), SCMs can operate in the
same operating range as the rest of the logic, which is typically much
wider [101]. Tagliavini et al. [131] proposed A memory partitioning-
aware HW/SW methodology design energy-efficient ULP systems that
can exploit an error-aware allocation strategy. Starting from this
intuition, the analysis presented in this chapter leverages standard
6T-SRAM cells memory macros and SCM based on industrially
qualified standard cells developed with a conventional digital design
flow.

3.2.3 Dedicated Hardware Accelerators for DNNs
and BNNs

A very effective approach to maximizing the energy efficiency of
specific highly specialized workloads is to execute them on dedicated
hardware accelerators. Most such accelerators, especially the ones
designed to accelerate machine learning tasks at the extreme edge,
employ fixed-point representation, for example, for weights and
activations (e.g., Orlando [132] achieving up to 2.9 Top/s/W). As
we mentioned before, Binary Neural Networks [37, 103] constitute
a particularly interesting niche application due to their properties,
as they can be trained to achieve similar results to full-precision
counterparts [133] while keeping a smaller footprint, a more scalable
structure, and higher resilience to errors. Proof of the effectiveness
of BNNs has been provided by FINN architecture [134], which can

3.3. ARCHITECTURE 61

achieve more than 200 Gop/s/W on an FPGA. Reviewing highly
specialized architecture implementing BNNs on silicon, remarkable
energy efficiencies in the range of 10-50 TOP/s/W have been achieved
by BRein [135], XNOR-POP [136], Conv-RAM [93], as well as the
BTNN accelerator proposed by Yin et al. [137], the BNN accelerator
presented by Wang et al. [138], and Khwa et al. [139]. Similar results
have been reported by more “traditional” ASICs such as UNPU [34]
and XNORBIN [140]. Mixed-signal [92], and in-memory mixed-signal
approaches [141–144] can achieve up to 10-100× higher efficiency,
but paying a very high cost in terms of design time, verification,
and scalability to real systems. Yang et al. [107] exploits one such
system in their work, where similarly to what we propose, SRAM is
aggressively voltage-scaled to achieve a power consumption reduction,
with the fundamental difference that the approach proposed in this
chapter relies on a fully programmable IoT end node, augmented with
a dedicated hardware accelerator [38].

3.3 Architecture
This section will present the Quentin SoC platform we will use as a
test bench to demonstrate how to deploy error-resilient applications
at aggressively scaled voltage operating corners. The first part of
the discussion will describe Quentin’s general SoC architecture and
memory partitioning. Then we will briefly describe the hardware
accelerator where the BNN workload is executed. Eventually, we will
provide key insights on the BNN error resilience by evaluating the
impact of artificially injected noise on the final accuracy of a sample
network topology.

3.3.1 Quentin chip
Quentin is a RISC-V-based microcontroller manufactured in Glob-
alFoundries 22nm technology node, presented by Schiavone et al.
in [125]. The key component of the SoC is a RISC-V processor
(RI5CY) [120] optimized for energy-efficient digital signal processing,
the core’s pipeline features four stages, floating-point and it is fully
compliant with the RV32IMFC ISA [145]. The core operates as a

62 CHAPTER 3. OVERCOMING RELIABILITY BOUNDARIES

“fabric controller” for all the other units of the “pulpissimo” SoC. “The
pulpissimo” SoC is publicly available as an open-source open-hardware
project1, part of the Parallel Ultra-Low-Power (PULP) platform2.
Moreover, Quentin features a complete set of peripherals which
include Quad-SPI (QSPI) supporting up to two external devices,
I2C, 2x I2S, a parallel camera interface, UART, GPIOs, JTAG, and
a DDR HyperBus interface to connect off-chip up to 64 Mbytes of
external Dynamic RAM (DRAM) or FLASH memory, and a small
ROM used to store the boot-code, as well as an I/O DMA (µDMA
[146]) to manage data transfers through peripherals autonomously.
The Quentin chip is representative of many IoT nodes implemented
in a similar technology node. Therefore, the principles and results
demonstrated on such a device also apply to many other IoT edge
devices in the same class.

3.3.2 BNN accelerator

Quentin is a heterogeneous architecture device; the SoC is equipped
with a dedicated hardware accelerator to execute BNN workloads
efficiently. The specific hardware accelerator is called XNOR Neural
Engine (XNE), and it has been presented by Conti et al. [38]. Such
accelerators often feature high data parallelism towards the memory;
XNE is connected to the main interconnect through four memory
ports. This design choice optimizes the accelerator data throughput,
achieving a sustained data rate of 128 bits per cycle. From a system
perspective, the accelerator behaves as an autonomous DMA engine.
Specifically, the configuration registers of the accelerator can be
accessed for programming by the core through a memory-mapped
register interface. Once XNE is programmed, it can autonomously
fetch the data from the main data memory (L2) and execute
convolutional and linear neural network layers. Figure 3.1 schematizes
the internal architecture of the XNE.

1https://github.com/pulp-platform/pulpissimo
2https://pulp-platform.org

3.3. ARCHITECTURE 63

CTRL FSM

UCODE
PROC

REG FILE
SLAVE

INPUT
LOAD UNIT

WEIGHT
LOAD UNIT

ACTIVATION
STORE UNIT

ST
AT

IC
 M

UX
IN

G

INPUT BUFFER
TP-bit

XNOR & POPCOUNT
128 xnor + reduction tree to 16-bit

POPCOUNT ACCUMULATORS
128 x 16-bit

THRESHOLD
128-bit

4 x
 32

-b
it

128-bit 32-bit

128-bit

128-bit

a)

b)

for i in output_height:
for j in output_width:

for ko in nb_output_chan:
acc[i,j,k_out] = 0 # acc is 16-bit int
for ui in filter_height:

for uj in filter_width:
for ki in nb_input_chan:

* is a binary mult (using XNOR gates)
acc[ko,i,j] += W[ko,ki,ui,uj] * x[ki,i+ui,j+uj]

y[i,j,k_out] = binarize(acc[i,j,k_out]

STREAMER

DATAPATH CTRL

Figure 3.1: a) XNE internal architecture, showing the streamer (green
shades), control (orange) and datapath (blue) submodules; b) BNN
layer execution pseudo-code highlighting microcoded loops (orange)
and datapath execution (blue).

3.3.3 Memory partitioning

As we have introduced in the first section of this chapter, the
memory hierarchy can significantly impact the energy efficiency of
an IoT end node. The Quentin SoC presents a highly flexible,
heterogeneous, error-resilient, and error-prone partitioned memory
architecture. Figure 3.2 shows a block diagram representation of the
main Quentin L2 memory architecture. The figure also reports the
different supply nets at which each memory region is connected and
the specific physical implementation flavor, i.e., whether a memory
block has been implemented with conventional SRAM macros or
implemented with logic standard cells. The various memory regions
of Quentin reported in Figure 3.2 serve different purposes. The
Interleaved L2 memory region is meant to host data that the RISC-V,

64 CHAPTER 3. OVERCOMING RELIABILITY BOUNDARIES

...

BANK 0

...

BANK 1

...

BANK 2

...

BANK 3

...

PRIVATE
BANK

SCM SCM SCM SCM SCM

SRAM 0 SRAM 0 SRAM 0 SRAM 0 SRAM 0

SRAM 3 SRAM 3 SRAM 3 SRAM 3 SRAM 3

PERIPHERY PERIPHERY PERIPHERY PERIPHERY PERIPHERY

ARRAY ARRAY ARRAY ARRAY ARRAY

PERIPHERY PERIPHERY PERIPHERY PERIPHERY PERIPHERY

ARRAY ARRAY ARRAY ARRAY ARRAY

CORE LOGIC

VDD QUENTIN VDD MPVDD MA

INTERLEAVED REGION

Figure 3.2: Quentin chip memory partitioning

or the BNN accelerator, i.e., XNE core, will process. The Private
64kB memory space is dedicated to the RISC-V core program, stack,
and core-private data. From a performance viewpoint, this memory
partitioning enables transparent sharing of the L2, increasing by 4x
the system memory bandwidth compared to the traditional single-port
memory architecture typical of AHB-based MCUs [7], without the
usage of power-hungry dual-port memories.

A peculiar feature of the Quentin memory architecture is that the
memory banks are internally subdivided into two heterogeneous parts,
i.e., they are implemented as a hybrid mix of SRAM and standard-
cell-based memory cuts (SCM). Each interleaved bank has 112 kB of
SRAM and 2 kB of SCM, while the private banks have 8 KB of SCM
as shown in Figure 3.2; the rest is implemented as SRAM macros.
The advantage of such a memory partitioning is that the portion
of the memory implemented as an SCM-based memory can operate

3.3. ARCHITECTURE 65

reliably at a much lower operating voltage than an SRAM macro.
Moreover, such memories typically feature significantly smaller read
and write energy than traditional SRAMs, up to 4X, depending on the
configuration (i.e., leakage dominated vs. dynamic dominated) [147].
Such flexibility and higher voltage operating range of the SCM-based
memories comes at the cost of a significantly higher memory area.
Therefore, finding the right balance between the amount of memory
implemented as an SCM and SRAM becomes a crucial optimization
known to improve the system-level energy efficiency.

3.3.4 BNN error resilience
As described in this chapter’s introductory section, BNN has proven
to be an algorithm class relatively robust to noise injected into the
input and intermediate features. Yang et al. [107] used a statistical
model to quantify the accuracy drop of an application-specific BNN
architecture when bit errors occur. In their work, the highest accuracy
drop reported by the authors is approximately 5% in the presence of a
bit error rate (BER) of 10−4, which is significantly higher than what is
commonly reported for SRAM manufactured in advanced technology
nodes.

This section presents the results of a similar analysis performed
on three different BNNs. To ensure consistency among the results
presented for different neural network topologies, we trained three
BNNs using the PyTorch 1.0.1 framework. The network we used for
our experiments was inspired by those presented by Hubara et al.
in [103], and from Yang et al in [107]. We also proposed a size-
scaled version of the well-known “VGG” network topology; in the
following sections, we will refer to such network topology as “uVGG”.
The network topology is shown in Figure3.3. Table 3.1 reports the
salient characteristics of the three networks.

Similar to what is shown by Yang et al. [107], this experiment
aims to evaluate the final BNN classification under various conditions
of BER. The “uVGG” network was trained on the CIFAR-10 clas-
sification data set, widely considered the smallest one with enough
complexity to provide meaningful error results. To model the noise
injected into the BNN, we identified the possible noise source when
a BNN is executed on the dedicated BNN hardware accelerator. We

66 CHAPTER 3. OVERCOMING RELIABILITY BOUNDARIES

64
x1

6x
16

12
8x

16
x1

6
12

8x
8x

8

25
6x

8x
8

3x
32

x3
2

38
4x

8x
8

38
4x

4x
4 12

8

Conv 3x3
Pool 2x2
Conv 3x3 + Pool 2x2

12
8x

16
x1

6

12
8 10

Fully Connected

Figure 3.3: uVGG BNN topology.

identified three possible sources of errors potentially degrading the
final classification accuracy:
i) A bit flipping during the weights reading from the main memory.
ii) A bit flipping during the input features reading.
iii) A bit flipping during the activations storage into the main memory.
In the Quentin SoC, we assume all errors injected into the BNN
occur during memory transactions because the logic standard cells
can operate reliably at a significantly lower voltage than the SRAM
macros. Additionally, no SRAM macros are present inside the XNE
accelerator; therefore, we assume that all the operations performed
inside the accelerator do not introduce errors. The BNN activations
are binarized by comparing the final accumulation value y with a safe
8-bit threshold value τ , stored in the error-free internal register. In
our tests, we added uniformly distributed errors to input, weights, and
activations of all network layers according to the target BER values
to evaluate. The noise was added to the network only at inference
time. Therefore no noise injection was experienced by the network
at training time. We repeated the same experiments by using two
additional network topologies, i.e., the network topology presented
by Hubara et al. in [103], and from Yang et al [107], achieving
comparable results. Table 3.1 reports the nominal classification
accuracy obtained without any bit-error injected noise.

We report, in Figure 3.4, the plot of the BNN classification
accuracy for the same networks under different levels of noise
(BER) injected into the network. Each result point represents the
classification accuracy over the CIFAR-10 test set, averaged for 100

3.4. RESULTS 67

BNN topology Nominal
accuracy

Mem.
footprint

Based on
Yang et al. [107]

78.6%a 319 kB

Hubara et al. [103], 90.9% 4545 kB
uVGG 85.6% 312 kB

a Including both activations and weights.

Table 3.1: Parameters of BNNs used in the resilience experiment.

randomized experiments. We observed that the standard deviation
of the results over this sample is always less than 1% of the reported
value. Note that the same experiments were repeated with errors
occurring without recurring patterns. In this scenario, we did not
observe any significant difference in the final classification accuracy
with respect to the case where errors were uniformly distributed.

The exploration presented in this section serves as a reference
for the analysis shown in the result section, where the BER will be
correlated to the voltage scaling. Thanks to the evaluation of several
BNN network topology error resilience, it is possible to establish a
relationship between the tolerable classification accuracy drop that a
specific BER introduces and the energy saving that can be achieved by
operating an SoC beyond its reliability boundaries, i.e., significantly
below the nominal voltage conditions for its SRAM memories.

3.4 Results
This section presents the error resilience results collected on the
Quentin SoC when the supply voltage is scaled significantly below the
nominal operating conditions. Such results allow us to directly link
the energy saving achieved through the very low voltage operation
of the chip to the final classification accuracy of a BNN, which is
operating in a bit error-prone framework.

We performed two different evaluations. First, we measured the
BER on the SRAM memories caused by operating such memories at

68 CHAPTER 3. OVERCOMING RELIABILITY BOUNDARIES

10 6 10 5 10 4 10 3 10 2 10 1 100

BER

0

20

40

60

80

100

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

 [%
]

uVGG
Based on [23]
HUBARA

Figure 3.4: Classification accuracy under different levels of bit-error
injected noise on input features, weights, and output features.

very low voltages. Then, we measured the current drained by each
power domain of the Quentin SoC. Finally, we computed the energy
efficiency of the SoC. We evaluated the power saving when the supply
voltage of the SRAM is scaled, and the quality of results (i.e., top1
network accuracy) is degraded by less than 1%.

3.4.1 Experimental setup

The results presented in this section have been obtained by testing the
Quentin SoC on an Advantest SoC hp93000 integrated circuit testing
device. The experimental setup is reported in Figure Figure3.5,
the internal tester voltage supply channels have precisely regulated

3.4. RESULTS 69

supply voltages; such channels can also precisely measure the current
delivered to each power domain with an error lower than 1%.

Testing the BER in a microcontroller featuring several hundreds of
kB of system memory, e.g., the Quentin SoC described in this chapter,
can require a significant testing time. The main bottleneck in such
systems is represented by the relatively low bandwidth provided by
the debug interfaces, e.g., the Quentin JTAG test access port (TAP),
which requires serializing the data to observe. To detect a single
bit-error on the SRAM operating at nominal voltage, we observed
that up to 109 bits need to be written and successively read from
the SRAM memory under test. When the JTAG is operating at
1MHz, which is a reasonable operating frequency for a debug interface,
observing a single data point can require a time in the order of several
thousand seconds. To overcome this limitation and speed up by
approximately 100X the data BER acquisition process, we composed
a dedicated software test running on the host RISCY microprocessor.
To ensure the correctness of the instructions executed on the core, the
microprocessor program was stored in the error-free section of the L2
memory (i.e., the SCM memory banks).

UART Connector

Tester Board

Quentin Chip

Quentin Board
JTAG Connector

Advantest SoC Tester Host PC

COM Port

Test result

IC Tester software

- Quentin binary load

- Chip Boot

- Return check

Figure 3.5: High-level block diagram of the experimental setup.

70 CHAPTER 3. OVERCOMING RELIABILITY BOUNDARIES

3.4.2 Bit Error Rate analysis

The BER analysis was performed by issuing a writing memory trans-
action with randomized, uniformly distributed 1 and 0 valued bits to
the SRAM memory banks. Since a single data point measurement
was repeated approximately 1800 times, data were generated with a
software-implemented 32 bits Linear Feedback Shift Register (LFSR).
The test application sequentially covers the entire SRAM shared
address space. Errors are counted by comparing, bit-wise, the data
read at each memory location with the ground-truth value generated
by the LFSR generator using the same initial seed. The test is
repeated multiple times at each supply voltage point to have a reliable
measurement of the BER. Note that this approach could generate
artifacts in the error statistics when a memory location is filled in
successive iterations with the same test vector. To avoid this problem
and make our measurement more robust, the software LFSR uses a
different seed to generate test data at each new iteration.

In our tests, we measured only the BER related to SRAM banks.
SCM, which is hosted by the same power domain as the circuit
logic, was reserved for storing the core instructions of the self-test
application and test results (i.e., the number of errors). Note that
the storage of the software instruction on an error-free memory
space is mandatory for the application to be able to run. In SoCs
featuring single-power-domain memory subsystems (i.e., not having
the possibility to store core instructions in a separate error-free
memory), SRAM errors could also affect core instructions – making
aggressive voltage scaling infeasible, as a single corrupted bit on a
core instruction could cause errors in the core control flow, making the
entire SoC entering unpredictable states, and ultimately the system
to fail. For each operating point in our experiments, we performed
1800 on-chip test runs, writing 448kB at each iteration.

Figure 3.6 reports the BER at each SoC operating voltage. By
construction, our test could not observe more than 8 ∗ 108 bits.
Therefore, the reciprocal of this value represents the lower bound of
the on-chip test application, i.e., 1.25 ∗ 10−9. The results of the BER
analysis versus the supply voltage are reported in Figure3.6. When
the supply voltage is higher than 0.6 V, no BER is observable by our
tests.

3.4. RESULTS 71

0.40 0.45 0.50 0.55
VDD [V]

10 7

10 6

10 5

10 4

10 3

10 2

BE
R

[%
]

Exponential fit
Bit Error Rate

Figure 3.6: Bit Error Rate.

Below a supply voltage of 0.6 V, as expected, we observed a BER
increasing with the memory supply voltage decrease, reaching a BER
of 10−2 at the lowest supply voltage point where the memory was
still accessible. The BER measurements confirm that SRAM supply
voltage can be scaled at the cost of a higher number of errors. Noise-
tolerant applications can be deployed on Quentin SoC; there is enough
margin for trading off the amount of noise injected into the data and
the potential energy efficiency gain deriving from the voltage scaling.

3.4.3 Power and energy consumption
In this section, we report the power consumption of the Quentin
SoC. Moreover, we show the maximum frequency characterization of
the Quentin SoC. Both results allow calculating the overall energy
efficiency of the system. The system’s critical path is in the paths
going from the core to the memory system. Power measurements were

72 CHAPTER 3. OVERCOMING RELIABILITY BOUNDARIES

performed during the execution of a sample test application exercising
both the RISC-V core of the system and the XNE hardware accelera-
tor. To precisely control the supply voltages and clock frequencies of
the SoC, therefore, to measure the energy consumption of individual
SoC power domains with enough accuracy, all the measurements were
performed on the Advantest SoC IC tester mentioned in 3.4.1.

The application we used as a benchmark was designed to emulate
realistic working conditions, using the XNE accelerator over a random-
ized pattern of bits. By using a synthetic uniformly distributed and
uncorrelated set of binary inputs, we maximized the switching activity
both on the XNE input circuitry and the XNOR-based datapath,
practically obtaining a worst-case power consumption. The core
executes the main application while the XNE accelerates the BNN
layer output computation. At the same time, the accelerator is active,
the core is in clock-gating, and it wakens up at the end of each XNE
job. Instruction code was stored in the error-free SCM, supplied at
the same voltage as the core. Data (i.e., binary weights, activation,
and partial results) were stored in the error-prone SRAM supplied at
the scaled voltage, except for critical 8-bit threshold data stored in
the interleaved SCM. Table 3.3 reports more details on how data are
stored in memory.

The measurements reported in this section refer to three relevant
operating conditions of the SoC. The nominal operating point (namely
Nominal) refers to a supply voltage of 0.8 V. This is the operating
point for which we performed the Static Timing Analysis (STA). The
High Efficiency (HEFF) point is the operating condition at which the
chip reported the highest energy efficiency. The Ultra-Low Power

OP mode V ddma/mp/quentin Freq.

Nominal 0.8V 565 MHz
HEFF 0.5V 145 MHz
ULP 0.42V 18 MHz

Table 3.2: Supply voltage range of Memory Array (MA), Memory
Periphery (MP) and Quentin power domains at Nominal, High
Efficiency (HEFF) and Ultra-Low Power (ULP) modes.

3.4. RESULTS 73

0.4 0.5 0.6 0.7 0.8
VDD [V]

0

100

200

300

400

500

600

700

800
F m

ax
 [M

Hz
]

Linear fit
Maximum Frequency

Figure 3.7: SoC maximum operating frequency.

(ULP) point is the operating condition where the chip reported the
minimum power consumption. Table 3.2 provides more details about
those three points.

Figure 3.8 reports the power consumption breakdown of the
Quentin SoC. We measured contributions from the three power
domains by observing each power domain’s total current drained
from the power supply. We performed all power measurements at
three different frequencies (fmax, fmax/2, 10 MHz) and used a simple
least-squares model to detect static and dynamic power. As shown by
the plot in Figure3.8, in ULP mode (i.e., at a supply voltage of 0.42 V),
leakage power dominates the dynamic power. In this operating point,
the SoC reliably works at its lowest power consumption, 674 µW, yet
achieving a sustainable frequency of 18 MHz, and energy efficiency of
6.2 Tops/s/W, which is not lower than the one reported at the nominal
operating condition. In ULP mode, the leakage power contributes to
approximately 80% of the total power consumption. In this operating

74 CHAPTER 3. OVERCOMING RELIABILITY BOUNDARIES

Weights Activation
thresholds

Input
features

Output
features

Instructions
and Stack

SRAM
Exec. SRAM SCM SRAM SRAM SCM

SCM
Exec. SCM SCM SCM SCM SCM

Table 3.3: Network parameters and core instruction memory storage

point, Quentin can perform 15.4 Inference/s, reaching an energy
efficiency of 22.8 Inference/s/mW. Compared to the same workload
executed on the embedded RI5CY core, hardware-accelerated execu-
tion achieves 21.6× better energy efficiency in the Nominal operating
point (167 fJ/op using the XNE, 3.6 pJ/op performing it in software
at VDD=0.8V). Whereas the overall power consumption drops when
using the core, the performance achieved is significantly lower (6.6
op/cycle) [119]. Note that the software baseline used as a comparison
already represents a significant improvement (more than 10X) to the
performance reported by leading microcontroller architecture (e.g.,
arm cortexM4).

Overall, we observed that the most significant leakage contribution
originates from the SRAM arrays, working 380 mV below the nominal
specifications. In HEFF mode (i.e., at a supply voltage of 0.5 V), the
SoC can sustain a clock frequency of 145 MHz, consuming 2.5 mW.
We report the highest energy efficiency achieved by the system in
this operating point, i.e., 12.7 Tops/s/W (49.2 Inference/s/mW). The
leakage represents 32% of the total power consumption in the HEFF
operating mode. Figure3.7 reports the SoC maximum frequency used
for the energy efficiency computation.

Figure3.9 shows the energy per binary operation when the SoC
is executing either from SCMs only or SCMs plus SRAMs; The
absolute lowest energy per binary operation is 76 fJ OP, which is
achieved at 0.46 V when executing from SCM only. Note that to
execute a complete neural network from SCM only is unrealistic
since those memories are generally too small because of the low
area density. The lowest energy per operation achievable when

3.4. RESULTS 75

0.4 0.5 0.6 0.7 0.8
VDD [V]

0

5000

10000

15000

20000

Po
w

er
 [u

W
]

MA
MP
QUENTIN

LEAKAGE
DYNAMIC

Figure 3.8: Breakdown of independent power contributions when
operating from supply voltage scaled SRAM.

executing from SCMs and SRAMs is 78 fJ OP and is reached at
0.5 V. This plot demonstrates that our approach achieves comparable
energy per operation on SCMs and SRAMs. The aggressive voltage
scaling performed in our experiments, together with a carefully
crafted memory partition, significantly improves the energy efficiency
when executing from dense SRAMs, ultimately relaxing the memory
constraints for error-resilient application deployment. The energy
per operation reached at 0.5 V represents an improvement of 2.2X
compared to the energy per operation measured at nominal condition
170 fJ.

Table 3.4 compares our work to BNN accelerator implementations
that, similarly to our case, exploit BNN error-resilience to maximize
energy efficiency. To our best knowledge, this work represents the
first complete general-purpose microcontroller architecture capable of

76 CHAPTER 3. OVERCOMING RELIABILITY BOUNDARIES

0.4 0.5 0.6 0.7 0.8
VDD [V]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

En
er

gy
/O

P
[p

J]

MA
MP

QUENTIN (SRAM EXEC)
QUENTIN (SCM EXEC)

Figure 3.9: SoC energy efficiency comparison when operating with
supply voltage scaled SRAM, and when executing from SCM.

exploiting a heterogeneous memory hierarchy to execute error-resilient
applications at the highest achievable energy efficiency.

3.4.4 Power accuracy trade-off

From the analysis discussed in the previous section, we concluded
that the final classification accuracy could be traded in spite of higher
energy efficiency or lower power. Figure3.10 shows the accuracy loss
versus the supply voltage on both memories and core logic. Figure3.11
reports the accuracy loss versus the power consumption reduction
enabled by the supply voltage scaling.

We did not observe any accuracy loss when the SoC operates in
HEFF mode. Thereby, we can conclude that if performance (e.g., in
terms of inference per second) is not a critical constraint, the energy
efficiency can be improved by 2.2X (from 170 fJ OP to 78 fJ OP)

3.4. RESULTS 77

0.4 0.5 0.6 0.7 0.8
VDD

101

2 × 101

Cl
as

sif
ica

tio
n

er
ro

r [
%

]

uVGG
Based on [23]
HUBARA

Figure 3.10: SoC supply voltage / Accuracy tradeoff.

without any appreciable penalty on the quality of the result, i.e., the
classification accuracy of a BNN.

Furthermore, suppose the application can tolerate a small classi-
fication accuracy loss, smaller than 1% in our sample target network
topologies analysis. In that case, the power consumption can be
further pushed down, reducing it by 3.7X with respect to the HEFF
operating mode. In this operating condition, the energy efficiency
degrades compared to the HEFF operating point. This is caused by
the fact that the total power consumption becomes leakage-dominated
as the supply voltage is reduced (Figure3.8). A proportional power
reduction does not follow the performance reduction caused by voltage
scaling. The ULP mode, where the chip consumes 674 µW, is suitable
for always-on operating scenarios or IoT end-node with an expected
lifetime in the order of months or years, as well as applications where
the peak power dissipation is a critical concern (e.g., implantable
devices).

78 CHAPTER 3. OVERCOMING RELIABILITY BOUNDARIES

0 5000 10000 15000 20000
Power [uW]

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

 [%
]

uVGG

Figure 3.11: Power accuracy tradeoff evaluation for the uVGG BNN
topology.

3.5 Conclusion

This chapter presents a methodology to achieve high energy efficiency
on edge-computing devices by exploiting the bit-error resilience of
cognitive applications like BNNs. Such a strategy relies on a strategic
partitioning of the SoC memory into error-free and error-prone regions
when the chip is operated under extremely low voltage conditions.
The contributions of this chapter can be summarized as follows:

• Our analysis and results demonstrated on actual silicon how to
trade-off the energy consumption of an FDX 22nm SoC with the
final classification accuracy of Binary Neural Networks, executed
on a dedicated hardware accelerator. The proposed approach
exploits the intrinsic noise robustness of BNN, i.e., the fact that
a significant amount of noise on network parameters, quantified

3.5. CONCLUSION 79

in terms of BER, marginally degrades the final classification
accuracy.

• Our measurements show that thanks to a wise L2 memory
partitioning, the system can operate reliably at very low voltages
(i.e., down to 0.42 V). Therefore, we show that by over scaling
the supply voltage of the SRAMs of the SoC significantly below
the nominal specifications, the energy per binary operation can
be reduced by a factor of 2.2X compared to the nominal supply
voltage. In this voltage over-scaled regime, we demonstrate that
the reported energy efficiency gain does not affect the end-to-end
classification accuracy of the BNN when the voltage is scaled
down to 0.5 V.

• We show that if a small penalty on the final classification
accuracy is tolerable, e.g., within 1%, the SoC can be operated
in an ultra-low power mode, further reducing the overall power
consumption (674 µW at 18 MHz, 0.42 V) without exceeding the
energy consumption per binary operation shown at nominal
operating conditions.

80 CHAPTER 3. OVERCOMING RELIABILITY BOUNDARIES

N
am

e
T

ec
hn

ol
og

y
C

or
e

ar
ea

[m
m

2]
P

ow
er

[m
W

]
E

ne
rg

y
eff

.
[T

O
P

/s
/W

]
O

n-
ch

ip
m

em
or

y
[k

B
y
te

]
P

ea
k

pe
rf

.
[G

O
P

/s
]

T
yp

e
B

N
N

B
Re

in
[1

35
]

65
nm

(D
ig

ita
l)

3.
9

60
0

6
-

13
80

D
N

N
A

SI
C

C
on

fig
ur

ab
le

U
N

PU
[3

4]
65

nm
(D

ig
ita

l)
16

7.
37

51
25

6
73

72
D

N
N

A
SI

C
C

on
fig

ur
ab

le

Ba
nk

m
an

et
al

.[
92

]
28

nm
(M

ix
ed

sig
na

l)
4.

84
0.

09
4

77
2

32
9

72
D

N
N

A
SI

C
Fi

xe
d

to
po

lo
gy

Bi
na

rE
ye

[1
48

]
28

nm
(D

ig
ita

l)
1.

4
2.

2
23

0
32

8
90

D
N

N
A

SI
C

C
on

fig
ur

ab
le

Y
in

et
al

.[
13

7]
28

nm
(D

ig
ita

l)
4.

8
3.

4-
20

.8
76

5
22

4
32

70
D

N
N

A
SI

C
C

on
fig

ur
ab

le

T
hi

s
wo

rk
(0

.8
V

)
22

nm
(D

ig
ita

l)
2.

3

21
.6

a
5.

98
a
/1

4b

52
0

12
9a

H
et

er
og

.
So

C
co

re
+

pe
rip

h
+

m
em

+
BN

N
ac

c.
SW

de
fin

ed
T

hi
s

wo
rk

(0
.8

V
)

SW
Im

pl
.

16
a

0.
27

6a
3.

73
b

T
hi

s
wo

rk
(0

.5
V

)
2.

52
a

13
a
/2

3.
9b

33
a

T
hi

s
wo

rk
(0

.4
2V

)
0.

67
4a

6.
2a

/1
4b

4a

Table 3.4: Comparison of silicon-proven Application-Specific ICs for
Binary Neural Networks. a - full SoC, b - core domain

Chapter 4

Energy-proportional
data processing

4.1 Introduction
In the previous chapter, we could observe that A key advantage
introduced by event sensors is the proportionality between the primary
sensor input and the number of output events generated by it [48].
Specifically, we have seen how to efficiently acquire data from such a
class of sensors thanks to two dedicated digital peripheral interface
architectures. Such architectures achieve high energy proportionality
when receiving data from the sensor, eventually enabling the con-
nection between event sensors and conventional MCU devices. The
energy to information proportionality needs to be preserved across
the whole processing pipeline to efficiently exploit event-based data
streams’ inherently sparse nature.

Over the last years, we have seen the tendency to move more
and more computation towards the extreme edge. Indeed, many
applications are nowadays deployed on embedded IoT nodes operating
at the sensor edge. The main challenge of processing data produced
by event sensors is represented by the high degree of unstructured
sparsity. CPU and GPU class devices can not profit from unstructured
data sparsity, as they often target very regular workloads. Similarly,

81

82CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

several works have shown how to design deep neural networks (DNN)
accelerators operating on sparse data; however, to be able to exploit
the data sparsity, they often rely on dedicated architectural features
tailored to the specific type of data sparsity [47]. To overcome
this limitation, we need a significant paradigm shift in processing
time distributed sparse data featuring a high degree of unstructured
sparsity.

Neuromorphic algorithms, i.e., algorithms inspired by how the
biological nervous system work, are promising candidates to solve the
unstructured data processing problem. Such algorithms have been
developed to target “asynchronous” time-distributed data streams as
a primary algorithmic input. Neuromorphic systems ultimately try to
emulate how the information propagates from the peripheral nervous
system to a biological brain, where semantically rich information is
extracted efficiently.

Among neuromorphic algorithms, Spiking Neural Networks
(SNNs) represent the leading model-free algorithmic approach for
EVSs data processing [149]. Like many artificial neural networks
(ANNs), SNNs rely on elementary computational units, i.e., neurons.
Such neurons can be arranged into clusters to form neural network
“layers”. The interconnection between neurons belonging to different
layers and between neurons of the same layer is implemented through
synaptic weights. Since SNNs often operate on time-distributed data
streams, synaptic connections between neurons can also show a time
behavior, i.e., introduce a time delay. Similar to what happens for
conventional DNNs, a layer of spiking neurons can be concatenated
to form computational networks [150]. A distinctive feature of SNN
neurons is the presence of a neuron internal state, which evolves
over the entire inference process. Spiking neurons, therefore, show a
“memory” behavior similar to what can be observed on other neural
networks’ elementary computational units, e.g., LSTM units [151].

Recent advances in SNNs show that such a class of networks
can achieve accuracy levels comparable to state-of-the-art (SoA) deep
learning networks while significantly reducing the number of required
computational operations [152], therefore making them a suitable
candidate to process highly sparse data and to ultimately achieve
high energy-to-information processing proportionality.

4.2. RELATED WORK 83

This chapter will go through the steps required to design a
hardware processing engine to accelerate the SNN execution at the
extreme edge. The discussion will focus on designing a fully digital
hardware accelerator for SNNs workloads. We will start our discussion
by listing the main challenges introduced by the nature of the data
to be processed. Then, we will present the architectural solutions for
addressing such challenges. Moreover, we will see how to efficiently
make such a design modular and capable of executing various SNN
processing-related jobs in parallel. Eventually, we will show silicon
results, demonstrating the inherent energy-proportionality of the
proposed architecture and the fact that such architecture approaches
classical DNN accelerators’ energy efficiencies [153]. The key contri-
butions of this chapter are:

• A data framework to efficiently represents sparse data on edge
devices. We show that such data representation facilitates data
processing in streaming data-driven computing engines.

• The design of SNE: a dedicated modular fully digital hardware
accelerator for spiking neural networks.

• Experimental results form an actual silicon implementation
in GlobalFoundries 22nm technology node of the proposed
architecture, demonstrating the inherent energy-proportionality
of the accelerator.

4.2 Related work
Over the last years, research and industry have proposed various
deep learning engines to accelerate inference at the edge, achieving
extreme energy efficiencies [154]. Thanks to the progress made at
the algorithmic level, novel low-precision, highly-quantized yet very
accurate networks were proposed [155]. The hardware platform
kept the pace by proposing new processing architectures capable
of efficiently exploiting low memory footprints and performing low-
precision operations [49,156].

As mentioned previously, neuromorphic algorithms have been
attracting increasing attention as a more energy-efficient alternative

84CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

to conventional deep learning approaches [157], especially in those
contexts where input feature maps are produced at a non-constant
rate and are also characterized by high unstructured sparsity [158].

As for conventional DNN tasks, the most efficient strategy to
deploy SNNs at the edge is to execute them on dedicated hardware
engines. We will refer to hardware platforms capable of accelerating
neuromorphic algorithms as “neuromorphic platforms”. Neuromor-
phic platforms can be classified into two main categories: Analog
or mixed-signal and digital accelerators. Both classes of accelerators
implement a certain number of SNN elementary computational units.

4.2.1 Analog and mixed-signal neuromorphic plat-
forms

A key advantage of analog and mixed-signal implementation over
digital implementation is the typically higher energy efficiency that
they can achieve. Such energy efficiency is often achieved by operating
individual transistors in the sub-threshold regime to form complex
analog computing primitives. This approach allows us to achieve a
very small neuron area footprint for complex neuron models [159].
However, these designs require a significant engineering effort to
scale, as their functionality is often technology-dependent, requiring
laborious tuning to the technology node. Additionally, analog and
mixed-signal computational primitives require many biases generated
on-chip, often degrading the system-level energy efficiency.

4.2.2 Digital neuromorphic platforms
Digital neuromorphic platforms implement SNN computational primi-
tives on digital hardware data paths. To reduce the circuit complexity,
such platforms typically adopt less complex neuron models [160–162].
This is due to the fact that non-linear functions that are often
required to implement the elementary neuron dynamic are more
difficult to implement with digital hardware [163]. On the other hand,
digital neuromorphic platforms do not require a significant re-design
when moving to a more scaled technology node. Therefore, digital
neuromorphic platforms enable fast integration into newly designed
efficient digital edge computing platforms.

4.3. ARCHITECTURE 85

4.3 Architecture

The accelerator we present in this chapter takes inspiration from
the architectures mentioned in the previous sections. This section
will go through the key features that allowed us to achieve high
energy efficiency and enable the integration of our accelerator into
an embedded edge computing device.

The SNE architecture (Figure 4.1) is composed of a set of inde-
pendent parallel processing engines called slices (SLs). Each SL is
connected to a synaptic crossbar (C-XBAR), which also connects two
autonomous direct memory access engines (DMA) used to transfer
events from the memory to the SLs and vice versa. Output event
streams produced by the SLs are joined in a single stream using a
collector, which is also connected as a master to the C-XBAR. SNE can
be integrated as a memory-mapped peripheral into a system on chips
(SoC) and programmed through a register interface. The following
subsections provide a more detailed description of each SNE top-level
module.

Streamer

Streamer

SL

Collector

c-
X

b
a
r

Memory ports

SL SL SL

SL SL SL SL

APB
Node Conf reg & Reg IF

APB port

S

M
M
M
M

M
M
M
M

M S

S
M

Figure 4.1: SNE accelerator top-level architecture

86CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

4.3.1 Spatial and temporal data representation

In sparse neural engine (SNE), we took inspiration from well-known
SoA methodologies to efficiently represent sparse data. We adopted
a similar data representation for the highly sparse data traversing
the internal accelerator modules; specifically, we used the coordinate
list (COO) representation. Compared to even more compact data
representations like CSR or CSC, the COO results in lower hardware
complexity as no computation is required to extract the absolute
coordinates of each event, and each active event is referenced inde-
pendently from the whole matrix. Therefore, this choice allows for
representing the active events that need to be processed selectively.
Therefore, computational operations are parsimoniously performed to
update only the output neuron whose receptive field includes a specific
input event.

A peculiarity of SNNs is that the membrane potential of each
output neuron decays over time. Therefore, theoretically, each output
neuron needs to update its value at every step regardless of the fact
that an input event falls into each output neuron’s receptive field.
In SNE, we also adopted the same approach to represent the active
events in time. By explicitly representing the timestamp of each event
and by storing the “last update” time of each output neuron, we
could postpone each output neuron membrane potential update to
the time when a new event falls into the output neuron receptive field.
To calculate the correct membrane potential value, it is sufficient to
compute a cumulative decay based on the current time of the input
event and the time of the last update of each output neuron. In other
words, from the data representation point of view, in SNE, the time
information associated with each active event is considered simply as a
fourth coordinate. Equation (4.2) reports the SNE representation for
the sample stream of events distributed over four timesteps, presented
in equation (4.1).

4.3. ARCHITECTURE 87

1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0

(4.1)

row = [0, 0, 2, 2, 3]
col = [0, 3, 1, 2, 2]

time = [0, 0, 2, 3, 3] (4.2)

Combining the “compressed” spatial and temporal event represen-
tation allows for efficiently consuming a highly sparse stream of input
data and processing them with a computationally “dense” sequence
of operations executed by the output neuron data paths where nearly
optimal utilization is achieved.

4.3.2 Execution model and mapping
The SNE accelerator can be considered a non-von Neumann data flow
architecture. During the computation phase, the input feature maps
are fetched from the main memory and streamed inside the engines of
the accelerator. Specifically, SNE implements the so-called “output
stationary” computational model. Indeed, the output neurons of a
neural network layer or a smaller patch (tile) are statically mapped
on the available computing engines. Weights are statically loaded
into local buffers, and input features are fetched from memory and
dispatched to all engines in a broadcast fashion.

The SNE can be used in two modes. If the neurons of an SNN can
be mapped entirely on the SNE available Clusters along the spatial
dimensions, each SLcan be used to implement a different layer of the
network, and the synaptic connections between neurons of consecutive
layers are achieved through the C-XBAR. In this mode, events from the
collectorcan be redirected to any SL. Output events are produced
simultaneously with the input event processing, and all the network
layers can execute in parallel. Alternatively, if the network needs to

88CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

1 # SW managed loops ---------------------------------
2 for k_o in range (0, C_o): # output Ch events
3 program_sne (W) # change weights
4 # ---
5 # SNE managed loops ------------------------------
6 for t in range (0,T): #time dimension
7 for evt_i in events_in [t] # explicit evt repr
8 k_i ,e_x ,e_y = get_address (evt_i)
9 for i in range (0, H_o): # output h neurons

10 for j in range (0, W_o): # output v neurons
11 w_ij = weight (i,j,k_i ,e_x ,e_y ,W) # weight calc
12 evt_o = neuron_dynamics (i,j,w_ij)
13 events_out [t]. append (evt_o) #push evt out
14 # ---

Listing 4.1: spiking neural network layer execution.

allocate more neurons than available in the SNE, intermediate feature
maps (output events) must be stored in the external memory. In this
case, the SNEcan be used in a time-multiplexed way to execute only a
tile of the network. In this operating mode, synaptic connections are
implemented by both the C-XBARand the DMAsthrough the external
memory.

Listing 4.1 reports the SNE input event processing pseudo-code.
Figure4.2 shows the execution pipeline of operations to compute

an SNN layer. An input event is fetched and made available to all
Clusters. Then, the SNE updates all the neurons of each Cluster that
are sensitive to the current input event, this operation is performed
in 48 clock cycles. The state of each output neuron is held across
multiple input event processing, and as soon as a firing operation is
received, all the neurons having the membrane potential above the
threshold fire an output event.

4.3.3 Data transfer

SNE autonomously transfers the input feature maps and the weights
needed for computation. This task is offloaded to two DMAs that
behave as direct memory accesss (DMAs) on the main interconnection

4.3. ARCHITECTURE 89

w02

w12

w22

w02

w12

w22

w02

w12

w22

w12

w22

Time

x

y

k

x'

y'

Sp
a
�

a
l r

eu
se

 (
B

ro
a

d
ca

st
)

Cluste
r 0

Temporal reuse

LIF

St
a

te

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

Th

Th

Th

Th

Temporal reuse

Time

Time

Time

Time

Time
k

Cluste
r 1

Cluste
r 2

Cluste
r 3
Input channels

Output channels
St

a
te

St
a

te
St

a
te

St
a

te
St

a
te

St
a

te
St

a
te

St
a

te
St

a
te

St
a

te
St

a
te

St
a

te
St

a
te

St
a

te
St

a
te

St
a

te
St

a
te

St
a

te
St

a
te

St
a

te
St

a
te

St
a

te
St

a
te

Opera�on

Cycle

UPDATE_OP UPDATE_OP UPDATE_OP FIRE_OP FIRE_OP FIRE_OP

0 1 2 65 66 67

Th

Th

Th

Th

Th

Th

Th

Th

Figure 4.2: SNE convolution operation execution: an input event is
sent to all Clusters in parallel, weights are stored in the kernel buffer
inside the SL, and fetched depending on the input address and output
neuron position. The yellow and red events belong to the same time
step, therefore the first event (yellow) updates the neuron state, while
the second (red) allows the neurons to fire.

bus. As SNE is a streaming architecture, the most efficient configu-
ration is obtained when one of the streamers is configured to fetch
data from the main memory while the other is in charge of storing the
output events produced by the accelerator back to the main memory.
In this configuration, SNE can implement a streaming computing
pipeline.

Because of the explicit event encoding used for the event to be
processed in SNE, the input feature maps can be stored in the main
memory as a simple linear sequence of 32bits-wide data. Therefore,
DMAs implement a simple 1D data movement scheme. SNE implements

90CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

an “output stationary” computing scheme. In this situation, the
weight can be stored in the main memory and loaded into SNE as a
deterministic linear sequence of data. Therefore, the same streamers
are also used to load the weights inside the accelerator.

Memory requests are granted by the main interconnect bus with
a non-deterministic latency. Therefore, to mitigate the impact of
delayed memory load grants and avoid stalls caused by a delayed
memory store operation, the DMA contains a 16-words First-In-First-
Out (FIFO) event memory. In other words, the FIFO allows for
absorbing memory latency cycles (e.g., due to memory banks access
contention) and does not propagate such latency cycles inside the
accelerator pipeline.

Output data are produced in parallel by each processing engine of
the accelerator. A module, the collector, allows packing the output
event streams from each SL into a single time-synchronized stream and
sending it to the output streamer through the main C-XBAR. Since the
activity of the SLs is sparse, a single DMA can provide significantly
more bandwidth than required on a single SL output port. Therefore,
the collector arbitrates between the SLs output ports and multiplexes
them into a single event stream toward the memory.

4.3.4 Interconnect
The SNE accelerator is composed of multiple engines. Input events
need to be efficiently transferred from the main memory to each
engine and vice versa by the streamers. To provide high flexibility,
the main interconnect of SNE is implemented as an all-to-all com-
binational crossbar (C-XBAR). Such configuration allows reconfiguring
the interconnection scheme between the input and output ports of
the crossbar very easily. The configuration of the C-XBARis controlled
through a memory-mapped register interface. Such an interconnection
scheme represents a good trade-off between the latency introduced
by the interconnect, which is a single cycle, and the possibility to
implement a broad spectrum of interconnection schemes, few possible
interconnection scheme examples are provided here:

• Broadcast connection from a DMA to all SLs, the event stream
is replicated for each destination port.

4.3. ARCHITECTURE 91

• Broadcast connection from a DMA to a subset of the available
SLs.

• Loop-back connection from a DMA to the other DMA .

• Chained connection from one DMA to a single SL, and from the
output of such SLto all the remaining ones.

Figure 4.3: SNE internal data representation for events and weights

The data format used for the internal event representation is
described in Figure 4.3. Such event representation is used for all the
streams traversing the interconnection C-XBAR. Each SL is connected
to the C-XBAR with communication protocol using a ready-valid (RV)
handshake for flow control. To implement the configuration listed
before, the C-XBAR can operate in two distinct modes: i) single master
to single slave port (point-to-point); this configuration is also used to
both transfer events and load configuration parameters. ii) single
master to multiple slave ports (broadcast); in this configuration, the
C-XBAR can perform flow control and pause the transaction until all
slave ports have received the event.

4.3.5 Computing engines
The entire SNE accelerator is built around a computing engine called
SL. The number of SLs is parametric, i.e., the number of internal
computing engines can be configured at design time. This section will
describe the internal architecture of a single SL. Figure 4.4 provides
a block diagram representation of an SNE SL ,where all the main
components are highlighted.

92CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

S
e
q

u
e
n

ce
r

D
e
co

d
e
r

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

CollectorParams.

In
p

u
t

e
v
e
n

ts
C

o
n

f.
L
IF

 p
a
ra

m
s

O
u

tp
u

t
e
v
e
n

ts

Weights

Figure 4.4: SNE slice architecture

SNE has been designed to perform parallel computation. To
achieve this goal, each SLis further divided into sub-units. Specifically,
Each SL instantiates 16 parallel computational units, called Clusters.
A Cluster is the elementary computing element of SNE, and it
contains a single adaptive leaky-integrate and fire (ALIF) neuron data
path. The Cluster data-path is designed to compute a neuron state
update in a single clock cycle: the implementation of multiple neurons
in Cluster is achieved by time-domain multiplexing (TDM) such data
path. The data associated with each output neuron mapped on that
Clusteris retrieved from a local latch-based memory element and
stored at the next cycle; once that output neuron update is finished.

In section 4.3.4 we listed the possible configuration modes imple-
mented by the crossbar. As the input events are transferred from
the DMA to one or multiple SLs, each SL internally implements a
filtering mechanism to react only on those input events directed to
the output neuron mapped on that SL. At a lower level, i.e., the
Cluster unit level, the filtering mechanism allows to clock-gate all the

4.3. ARCHITECTURE 93

Clusters that do not need to update the state of any of the mapped
output neurons. Each Cluster implements 64 TDM neurons using 4
bits for synaptic weights and 8 bits for the internal state computation.
Figure 4.5 shows a block diagram representation of a neuron Cluster.

Addr. filter

Addr. shift

Memory

LIF data path

S
e
q

u
e
n

ce
r

a
d

d
rInput events

Event addr w
e
ig

h
ts

wij

O
u

tp
u

t
e
v
e
n

ts

Figure 4.5: SNE cluster architecture

Execution on all Clusters happens simultaneously, and the TDM
sequence of operations are orchestrated by a module called Sequencer.
The Sequencer provides the relative address of the current TDM
neuron being currently updated on each Cluster. Based on this
relative address and the input event address, the correct weight is
retrieved from a local weight buffer at each successive neuron update.
Note that all the 64 TDM neurons of each Cluster can potentially
produce an output event that needs to be written to the main
memory or redirected toward a different SLduring the output neuron
update. During this process, a stall caused by the unavailability of
the C-XBAR to accept an output event would have a detrimental effect
on the energy efficiency of the accelerator. Therefore, o avoid stalling
the TDM neurons update, each Cluster is connected to an output
event FIFO, and all FIFOs are connected to a collector module
which can redirect the stream of events towards a C-XBAR input
port. This mechanism is similar to the one implemented for absorbing

94CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

the main memory latency possibly occurring at the DMAs. It allows
guaranteeing to perform the neuron updated with the maximum
throughput achievable by each Clusters.

All computed output neurons across the various Clusters of a
SL have the same relative position, i.e., the same triplet of output
coordinates (x,y, and output channel position). The absolute spatial
mapping of the output neurons is achieved by shifting each address
with respect to a Cluster base address. To summarize, to achieve
high throughput and energy efficiency, the following measures were
put in place at the SL and Cluster architectural level:

• The ALIF neuron dynamic data path is combinational; this
allows to perform a complex set of operations in a single cycle.

• Multiple neurons, 64, are implemented by TDM on a single data
path.

• To overcome the high memory bandwidth that characterizes
SNN inference, the states of all the neurons implemented by
a Cluster are stored locally into a dedicated state memory.

• Output event write stalls are mitigated by introducing output
first-in first-outs (FIFOs), ensuring maximum throughput dur-
ing the TDM output neuron update.

4.3.6 SNE neuron model
In SNE, we implemented an ALIF neuron model [164]. Such a model is
a variant of the simple leaky-integrate and fire (LIF) neuron commonly
adopted in many digital accelerators for SNNs [160, 161]. The main
difference between the LIF and the ALIF is that the second can adapt
the firing threshold whenever a spike is generated. This mechanism
introduces more complex dynamics, which reduces the probability of
firing an output spike in the presence of high activity of the neuron.

The elementary neuron membrane potential update is given by
the equation 4.3. In this equation, V t represents the output neuron
membrane potential at time t. The e

−δt
τ term is the iterative

formulation of the exponential decay, which is multiplied by the
membrane potential at each time step, the

∑
j WijSi[t] represent

4.3. ARCHITECTURE 95

the synaptic contribution added by each input event directed to the
receptive field of the output neuron.

V t+1 = V t · e
−δt

τ +
∑

j

WijSi[t] (4.3)

Membrane potential exponential decay

As we mentioned in the previous section, SNE parsimoniously per-
forms the minimum operation of operations to update an output
neuron’s membrane potential. To efficiently implement such a feature
at the neuron data path level, we observed that the output neuron
membrane update does not need to be performed recursively at every
time step t. It is possible to combine the iterative decay performed
across multiple times steps t into a single operation. Such an idea
is proven in the following discussion. We start by calculating the
membrane potential at time t = 0.

V t|t=0 = V0 (4.4)

By replacing this term into equation 4.3, and assuming, for simplicity,
that no synaptic contribution is added to the membrane potential, we
obtain that the membrane potential at time t = t+1 can be computed
with the following formula.

V t+1 = V t · e− δt
τ = V0 · e− δt

τ (4.5)

Suppose we iteratively unroll the exponential decay up to t = 2. In
that case, we observe that the membrane potential at this time can
be expressed as a function of the initial membrane potential V0 and a
new decay coefficient e− 2δt

τ that can be calculated as a function of t.

V t+2 = V t+1 · e− δt
τ = (V0 · e− δt

τ) · e− δt
τ = V0 · e− 2δt

τ (4.6)

therefore, we can express equation 4.6 in a more general form, where
αN = e− Nδt

τ .
V t+N = V0 · αN (4.7)

From the equation (4.7) we can derive two generic values of V t

calculated at t = t + N and t = t + M respectively.

96CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

V t+N = V t · αN N > 0 (4.8)
V t+M = V t · αM M > N (4.9)

(4.10)

We can express the time difference between M and N as ∆t, and
derive M as a function of N .

M − N = ∆t (4.11)
M = ∆t + N (4.12)

Therefore, we can write equation 4.7 at the time step M as a function
of N :

V t+M = V t · αM = V t · α∆t+N (4.13)

From the equation 4.8 we calculate V t as a function of N :

V t = V t+N · α−N (4.14)

Eventually, we can substitute equation 4.14 in equation 4.13. In this
way we can calculate V t+M as a function of V t+N , and the time
difference between N and M , namely, ∆t:

V t+M = V t+N · α∆t (4.15)

Figure 4.6 shows the ideal exponential decay and the one calculated
since the first membrane potential update.

Neuron data path implementation

The SNE ALIF data path implements the exponential decay em-
ploying a LUT. The LUT stores the pre-computed fixed-point decay
coefficient for the exponential decay for 32 successive time steps since
the last update of the membrane potential. Figure 4.7 shows a block
diagram representation of the neuron data path.

The data path is divided into 5 main parts:

4.3. ARCHITECTURE 97

Figure 4.6: Membrane potential exponential decay. The red curve
shows the step-by-step iterative calculation, blue dots are calculated
by knowing the initial membrane potential value, and the time delta
since the beginning (a special case of eq. (4.15))

• The synaptic contribution calculation. This part allows receiv-
ing the input synaptic contribution, adding it to the current
membrane potential value, and saturating the output value if it
exceeds the representable range.

• The spike generation circuitry. This part performs the adaptive
threshold calculation and compares the up-to-date value of the
membrane potential to determine whether an output spike can
be generated.

• The membrane potential decay. Such circuitry includes the
LUT with the pre-computed decay coefficients multiplied by

98CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

>>

spike_i

syn_weight_scale_i

syn_weight_i

time_i

timestamp_last_update_i

refractory_time_i

>

mem_voltage_ps

scaled_mem_voltage

sat

rest_voltage_i

>

0

>
0 1 0 1

0 1

+

0 1

0

-128 127

threshold_voltage_i

>

0 1

0

cfg_i

h
o
ld
_
s
p
ik
e

mem_voltage_nsspike_o

adaptive_threshold_factor_ps

+

adaptive_threshold_factor_ns

a
d
a
p
ti
v
e
_
th
_
in
c
r

Adaptive thresholdMembrane potential

S
y
n

a
p

ti
c
 c

o
n

tr
ib

u
ti

o
n

S
p

ik
e
 g

e
n

R
e
fr

a
c
to

r
in

e
s
s

Present state

Next state

1
 c

y
c
le

8

9

Figure 4.7: SNE ALIF neuron data path combinational block diagram.
At the top the current state inputs are fetched from the state memory
and fed into the data path, signals at the bottom are the outputs that
are stored in the state memory. signals on the side represent the
neuron data path memory mapped configuration values.

the current state value of the membrane potential to produce
the next state value.

• The adaptive threshold decay. Similar to the membrane poten-
tial update sub-circuitry, such circuitry includes the LUT with
the pre-computed decay coefficients multiplied by the current
state value of the adaptive threshold to produce the next state
value.

4.4. EXPERIMENTAL RESULTS 99

• The sub-circuitry that compares the last pike’s time with the
current time to determine whether the neuron is in its refractory
period and spike generation has to be inhibited.

4.4 Experimental results
This chapter will present the results related to the SNE accelerator
implemented in the Kraken chip. A more extensive description of the
Kraken chip, as well as the results that are not directly related to
SNE, will be presented and discussed in chapter 5.

4.4.1 Physical implementation

The SNE accelerator presented in this chapterhas been implemented
in the GlobalFoundries 22nm technology process. To synthesize the
RTL description of the SNE accelerator, which was instantiated inside
the Kraken chip architecture, into the respective gate netlist, we
used the “Synopsys Design Compiler 2020.09” tool. The design’s
physical implementation has been performed with the “Cadence
Innovus Implementation System 19.1” tool. We used 8T, 20, 24, 28,
L, and SL voltage threshold cells for the proposed design. The setup
time has been optimized for the slow (SSG) 0.59 V −40 °C process
corner, while the hold time has been optimized for the (FFG) 0.72 V
125 °C and −40 °C process corners. The SNE has been constrained to
operate at a maximum clock frequency of 200 MHz in the slow process
corner.

The SNE accelerator has been placed on a 1.8 mm2 floorplan area.
The standard cell area density of the design in such an area is 39.9%.
A switchable power domain hosts SNE. Therefore, when not in use,
the voltage supplying the accelerator standard cells can be switched off
to reduce the leakage power consumption of the chip. Moreover, SNE
is clocked by an independent on-chip clock generator, clock domain
crossings (CDCs) FIFOs are placed at the boundaries between the
SNE DMAs, which operate at the system clock frequency and the
C-XBAR interconnect. The SNE accelerator is not connected to any
external pad, and all accelerator configurations are applied through

100CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

the main system bus. Figure 4.8 highlights the SNE accelerator in the
Kraken chip floorplan.

Engines (x8)

CFG registers

State SRAM

Weight SRAM

Synaptic xbar

Streamers

SNE

Figure 4.8: On the right, the SNE accelerator placement in the Kraken
chip floorplan. On the left, a zoom in into the SNE accelerator
floorplan which highlights the various sub-modules of the accelerator.

4.4.2 Area breakdown

The plot presented in figure 4.9 reports the area breakdown of the SNE
accelerator. The numbers reported in the plots have been estimated
by the actual physical layout of the Kraken chip implemented with the
“Cadence Innovus Implementation System 19.1” tool. The SNE slices
occupy the main part of the area. Inside each slice, most of the area is
occupied by the state memories, where the state of 8192 neurons can
be stored, 1024 per SL. The remaining area of the SNE top module
is occupied by the configuration registers and the interconnection
subsystem, the C-XBAR. Inside each SL, the remaining area is occupied
by the ALIF neuron data path, 16 per SL, and 16 output FIFOs that
store the output event produced by each neuron data path.

4.4. EXPERIMENTAL RESULTS 101

weights neuron states

SNE

slice 0 slice 1 slice 2 slice 3 slice 4 slice 5 slice 6 slice 7

co
n

fi
g

input crossbar output crossbar arbiters

S
y
n

ch

data
path memory subsystemFIFOs

In
te

rc
o

n
n

e
ct

0 20 40 60 80 100 120 140

0 50 100 150 200 250 300 350 400

1000 2000 30000

0 50 100 150 200 250 300
Area [kGE]

D
M

A
s

Figure 4.9: Area breakdown of internal components of the SNE
accelerator.

4.4.3 Experimental setup
The results presented in this section have been obtained by testing
the Kraken SoC on an “Advantest SoC hp93000” integrated circuit
testing device. The internal tester voltage supply channels have
precisely regulated supply voltages; such channels can also precisely
measure the current delivered to each power domain with an error
lower than 1%. The results presented in this section will refer to
the SNE accelerator domain only. All the measurements have been
performed at an ambient temperature of 25 °C.

4.4.4 Power consumption and performance
This section reports the maximum achievable frequency versus the
supply voltage and the power consumption of SNE at such frequency
and voltage operating points. The power consumption of SNE
depends mainly on the number of active SLs. To provide an upper

102CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

bound for the power consumption, we executed a sample application
capable of exercising all the SLs simultaneously, emulating the case
where a workload occupies all the available resources of the SNE
accelerator. We built the sample workload as a spiking convolutional
neural network layer patch of 14x14 input pixels, 64 input channels,
and 32 output channels. This workload can fully saturate the
resources of the SNE accelerator, computing, in parallel, the output of
6272 output neurons when SNE is configured in convolutional mode.
All the SLsare active, and each slice is computing 4 different output
channels related to the same input convolutional layer patch. In each
SL, 196 output neurons are mapped on 4 of the available 16 clusters.
Therefore, each SLimplements up to 784 output neurons. We emulated
an infinite time dimension on the input layer patch to measure a
sustained steady state, performance, power consumption, and energy
efficiency. SNE performed the computation mentioned above in an
infinite loop to achieve this goal.

0.5 0.6 0.7 0.8 0.9
Supply Voltage [V]

0.0
12.5
25.0
37.5
50.0
62.5
75.0
87.5

100.0
112.5
125.0
137.5
150.0
162.5
175.0
187.5
200.0
212.5
225.0
237.5
250.0
262.5
275.0

M
ax

im
um

 F
re

qu
en

cy
 [M

Hz
]

@Fmax
@Fmean

Figure 4.10: SNE maximum frequency when executing a spiking
neural network convolutional workload with average 5% output
activity

4.4. EXPERIMENTAL RESULTS 103

0.5 0.6 0.7 0.8 0.9
Supply Voltage [V]

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150

Po
w

er
 [m

W
]

@Fmax
@Fmean
@F=40MHz

Figure 4.11: Power consumption of SNE at the same voltage and
operating frequency points for the spiking convolutional benchmark

The first plot, presented in Figure 4.10, reports the maximum
achievable frequency of the SNE accelerator versus the supply voltage
when executing the sample computation. From the STA performed
during the physical implementation, we know that SNE critical path
for the sub-circuitry clocked with the main system clock resides in the
connection that goes from the DMAsto the main system interconnect.
Moreover, as SNE is a data-driven architecture, the number of outputs
produced by the accelerator significantly depends on the accelerator
input. In our tests, the benchmark is producing an output event
at an average firing rate that is consistent with an actual spiking
neural network workload [152]. To write the output events to the main
memory without stalling the internal data paths, the ratio between the
system clock and the internal SNE clock frequency needs to be higher
than 0.3, assuming no contention caused by other agents interacting
with the same system memory banks. In the second plot presented
in Figure 4.11, we report the power consumption associated with the
voltage and frequency measurement points reported in 4.10, as well as

104CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

the power consumption versus the supply voltage when the frequency
remains constant at 40 MHz.

0.5 0.6 0.7 0.8 0.9
Supply Voltage [V]

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0
47.5
50.0
52.5
55.0
57.5
60.0

Pe
rfo

rm
an

ce
 [G

SO
P/

s]

@Fmax

Figure 4.12: Maximum performance of SNE when executing the
spiking convolutional benchmark reported in terms of number of
synaptic operations per second

The plot shown in Figure 4.12 reports the maximum number of
operations per second (SOP/s) that SNE can perform when clocked
at the highest achievable frequency. These points represent the
maximum performance achievable by SNE. The performance reported
in Figure 4.12 refers to a “sustained” input event stream processing,
as well as the continuous output event storage in the main memory
in the condition reported at the beginning of this section. Note that
the performance reported in Figure 4.12 is deterministic and does not
depend on the input’s ” sparsity ” SNE. The time to acquire and
process an input event is fixed by design. Suppose a spiking neural
network produces less than 5% output spikes on average. In that case,
the measured performance reported in the plot can be used to estimate
the inference time of a SNN layer, or a layer patch, depending on the
number of active input events that need to be processed by SNE. SNE
can sustain higher output activity for a short time without stalling the

4.4. EXPERIMENTAL RESULTS 105

internal data path; this condition occurs if the internal output FIFOs
reach their maximum capacity. Alternatively, to mitigate the effect of
the output bandwidth bottleneck, the DMAscan be clocked at a higher
frequency, reaching a clock ratio between the SNE internal clock and
the system clock of 1.

4.4.5 Energy consumption
Another critical aspect of a digital SoC, other than the maximum
performance and power consumed by the circuit, is the amount of
energy required to perform a certain number of operations. Indeed,
making effective use of the available energy becomes crucial when a
battery provides such energy; this is true in most of the IOT devices
deployed around us. In this section we present the SNE related energy
metrics. Based on the results of maximum frequency and performance
reported in Figure 4.11, 4.10 and Figure 4.12 respectively.

0.5 0.6 0.7 0.8 0.9
Supply Voltage [V]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

En
er

gy
 e

ffi
cie

nc
y

[T
SO

P/
s/

W
]

@Fmax

Figure 4.13

Figure 4.13 shows the number of synaptic operations per second,
normalized by the total power consumption of SNE. This metric
indicates how efficiently the power consumed by the accelerator is used

106CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

to perform a useful operation. This metric drastically degrades as the
static power consumption of a digital circuit increases; for example,
static contributions caused by the circuit leakage or any other
dynamic power consumption that can not be removed, e.g., the power
consumption associated with on-chip clock frequency generators or
always-on control logic. As observed many times in all highly scaled
technology nodes, as it is the GlobalFoundries 22nm in which SNE
has been manufactured, the highest energy efficiency, i.e., the highest
number of operations per unit of power and time, is achieved at low
operating voltages, in the so-called NTC regime. This phenomenon is
well explained by [49]. In our experiments on SNE, we could confirm
this trend, reaching the highest energy efficiency at 0.5 V.

0.5 0.6 0.7 0.8 0.9
Supply Voltage [V]

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000

En
er

gy
/S

OP
 [f

J]

@Fmax

Figure 4.14: Energy per synaptic operation of SNE when executing
the spiking convolutional neural network workload.

Figure 4.14 reports the energy cost of a single synaptic operation
(SOP), By SOP, we intend the total number of operations that a data
path performs in a single cycle, initiated by an input event falling
into the receptive field, i.e., the 3x3 kernel in the case of convolutional
mode, of an output neuron. Specifically, it refers to:

• Retrieval of the membrane potential from the state memory.

4.4. EXPERIMENTAL RESULTS 107

• Extraction of the coefficient from the LUT and multiplication
of the membrane potential by such coefficient to perform the
decay.

• Extraction of the weight corresponding to the synaptic con-
nection between the input event and the output neuron and
accumulation of such synaptic contribution to the decayed
membrane potential.

• Comparison of the membrane potential value to the firing
threshold and spike generation if the value exceeds such thresh-
old.

• Reset of the membrane potential to a known value in the case
of a spike generation.

• Storage of the up-to-date membrane potential, “the time of the
last update” and “time of the last spike” to the state memory.

To obtain the energy per synaptic operation consumed by SNE,
we calculated the total energy consumed by the accelerator in a single
clock cycle. We then divided this value by the number of operations
performed in the same clock cycle. Note that the amount of operation
can not be directly observed on the actual chip, as SNE is not
equipped with performance counters that can trace this information.
However, the total number of operations can be easily computed
by simulating, with a cycle-accurate simulator, the same sample
application benchmark on the description of the SNE accelerator,
i.e., the same RTL description used to synthesize the circuit. The
same trend we have observed for the energy efficiency reported in
Figure 4.13 is also confirmed in the case of the energy per synaptic
operation. SNE reaches the lowest energy per synaptic operation at
0.5 V.

4.4.6 Comparison with the state of the art
Table4.1 reports a comparison between SNE and the SoA digital archi-
tectures implementing comparable accelerators for SNNs. Compared
to the architecture presented by Akopyan et al. in [161], SNE shows
lower power and higher energy efficiency. A similar consideration can

108CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

be done for the platforms presented by Deng et al. in [165]. Compared
to the accelerator presented by Davies et al. in [160], Kim et al.
in [166] and Höppner et al. in [167], SNE shows the lowest energy per
synaptic operation and the highest absolute performance.

Overall, we can summarize this comparison among the neuromor-
phic platforms presented in the comparison table by stating that
SNE shows the lowest energy consumption (sub-pJ) per synaptic
operation, approaching the energy consumption of conventional neural
network digital accelerators [153] while maintaining or even improving
the power consumption, as well as the operating frequency and the
absolute performance against other accelerators.

4.4. EXPERIMENTAL RESULTS 109

ne
ur

on
ty

pe
ne

ur
on

s
sy

na
ps

es
ne

tw
or

k
ty

pe
im

pl
em

en
ta

tio
n

te
ch

no
lo

gy
[n

m
]

bi
ts

vo
lta

ge
[V

]
fre

qu
en

cy
[M

H
z]

po
we

r
[m

W
]

en
er

gy
effi

ci
en

cy
[G

SO
P/

s/
W

]

op
er

at
io

n
en

er
gy

[p
J/

SO
P]

pe
rfo

rm
an

ce
[G

SO
P/

s]

Tr
ue

no
rt

h
[1

61
]

LI
F+

10
00

00
0

-
SN

N
D

ig
ita

l
28

9
0.

75
[0

.7
-1

.0
5]

N
/A

65
[4

2-
32

3]
40

0
-

58

Lo
ih

i[
16

0]
LI

F
10

24
10

00
00

0
SN

N
D

ig
ita

l
14

1-
9

-
N

/A
-

-
23

-

Sp
in

na
ke

r2
[1

67
]

Pr
og

25
0

20
00

0
SN

N
C

N
N

D
ig

ita
l

22
Va

r
0.

45
[0

.4
5-

0.
6]

20
0

-
32

60
17

00
-

T
ia

nj
ic

[1
65

]
LI

F
-

-
SN

N
C

N
N

D
ig

ita
l

28
8

0.
9

30
0

95
0

64
9

-
-

K
im

et
al

.[
16

6]
-

25
6

83
00

0
SN

N
D

ig
ita

l
65

4-
14

0.
45

[0
.4

5-
1]

40
3.

65
[3

.6
5-

26
8]

-
5.

7
10

.1

C
he

n
et

al
.[

16
8]

LI
F

40
96

10
00

00
0

SN
N

D
ig

ita
l

10
7

0.
52

[0
.4

5-
0.

9]
10

5
-

-
3.

8
5.

2

SN
E

[5
0]

A
L

IF
81

92
18

43
2

SN
N

D
ig

it
al

22
4

0.
52

[0
.5

2-
0.

9]
17

5
[9

0
-

26
2]

17
[1

7-
14

7]
11

00
0.

9
19

Ta
bl

e
4.

1:
St

at
e

of
th

e
ar

t
co

m
pa

ris
on

110CHAPTER 4. ENERGY-PROPORTIONAL DATA PROCESSING

4.5 Conclusion
In this chapter, we presented a novel, fully digital accelerator for spik-
ing neural network workloads. SNE has been designed to inherently
exploit the unstructured sparsity of data produced by event-based
sensors by performing a number of operations proportional to the
input stream activity. The most important contribution of this
chapter can be summarized as follows:

• The unstructured sparsity, which characterizes data produced
by event-driven sensors, or that can also arise in the inter-
mediate features of an ANN, can be tackled at the circuital
and architectural level. To efficiently process such data, we
can design accelerators that can profit from such an irregular
data sparsity to reduce the number of operations that, for
example, characterize the inference process in artificial neural
networks. This was the case in SNE, where the computing
engine explicitly consumes spatial and temporal-encoded input
events to selectively update the internal output neuron states
of those output neurons having a particular input event in their
receptive field.

• Accelerator architectures like the one presented for SNE are
not specific to a small subset of ANNs, for example, SNNs;
instead, the proposed architecture can find applicability in all
those contexts where the input data feature a high unstructured
sparsity. Indeed, the SNE architecture can be easily re-purposed
to perform a different type of sparse computation simply by
changing the specific function implemented by the data path
sub-module, which, in the case of SNE, is theALIF neuron
dynamics.

• We could demonstrate how digital neuromorphic platforms, no-
tably less energy efficient than digital accelerators for CNNs that
perform very regular computation, can be improved to achieve a
consumed energy per operation that approaches the one shown
by more conventional SoA digital accelerator architectures. This
result narrows the gap between neuromorphic platforms and
classical DNN accelerators [153].

4.5. CONCLUSION 111

We want to conclude our discussion by remarking that the SNE
accelerator presented throughout this chapter can be easily integrated
into any digital SoC featuring a main interconnect subsystem with
direct memory access and the possibility to memory-map a register-
based interface. SNE was successfully integrated on a real SoC
manufactured in 22nm advanced technology node and achieved the
lowest energy per synaptic operation reported on a flexible digital
neuromorphic platform.

Chapter 5

Kraken: An
event-driven
Brain-Inspired edge
computing device

5.1 Introduction
The Internet of Things, e-Health, Smart Sensors, and wearable
consumer gadgets are expected to drive the electronic market in the
following decades. These applications rely on the capability of the
research community to provide devices that couple ultra-low-power
(ULP) behavior with a reasonable level of performance. Indeed, these
applications are characterized by an increasingly tighter power budget
and an increasing demand for computation capabilities. Traditional
low-end IoT devices have been designed to serve as the main comput-
ing device in low-bandwidth sensor analytic applications, i.e., inertial
measurement unit (IMU) data processing, ambient temperature or
humidity monitoring, and low rate control tasks. However, the
emerging trend is to embed more and more cognitive capabilities into
edge computing platforms. Such devices nowadays have to be able to

113

114 CHAPTER 5. KRAKEN

execute small to medium size [169] deep learning tasks on sensor data
to limit the data transfer towards cloud computing infrastructure.

Technological advances have driven the quest for energy efficiency.
However, the pace dictated by Moore’s law has slowed down, and
CMOS scaling, which drove semiconductor growth during the past
decades, is now delivering only modest energy gains [23]. Therefore,
researchers have redirected their efforts towards alternative solutions,
taking a step forward from mere technological advances and improving
electronic devices at higher abstraction levels.

In this “Moore’s law twilight era”, further energy gain can be
achieved by moving to the near-threshold computing (NTC) domain
[170]. In chapter 3, we have observed that operating a digital
device in the NTC domain can lead to significant energy efficiency
improvements. However, such energy efficiency improvement comes
at the cost of lower absolute performance of the device; indeed, high
energy efficiency is often achieved at low operating voltages, where a
digital circuit is notably slower. This approach needs to be combined
with more architectural solutions capable of restoring the desired
level of performance, especially in those contexts where significant
computational capabilities are required, e.g., when executing DNN
workloads.

A viable solution, which exploits the very regular nature of
the computation typically performed on such IOT platforms, is to
parallelize the application on multiple computing engines. This
approach has demonstrated to be highly effective [15] and has opened
the way to a significantly more “intelligent” class of applications to be
deployed on battery-powered IOT nodes. The platforms that perform
edge computation are typically CPU-centric general-purpose “Von
Neumann” architectures. Researchers have improved the performance
of those devices by increasingly specializing, at a minimal hardware
complexity increase cost, the ISA to favor those operations that are
repeated many times [119].

The dynamic management of the performance and power con-
sumption of a SoC represents another effective knob that allows
meeting the requirements in terms of power budget and desired level
of performance [171]. In the past years, approaches like dynamic
voltage and frequency scaling (DVFS) and ABB have shown their
potential mostly on complex high-end systems. However, their general

5.1. INTRODUCTION 115

applicability to almost any digital circuit made it possible to employ
such techniques to reduce the power consumption of a broad spectrum
of digital devices [56], including low-end ultra-low power (ULP)
devices [24].

A big energy efficiency improvement step has been introduced by
adopting dedicated computing engines to accelerate specific opera-
tions. As we have already observed in chapter chapter 4 and 3, there
are significant advantages, in terms of energy consumption, in highly
specializing a computing engine for the execution of a reduced set of
operations. In this regard, we can observe that the co-existence of
general-purpose computing engines, i.e., CPUs and workload-specific
accelerators, is nowadays a well-consolidated architectural solution to
design energy-efficient SoC [172].

In chapter 2 we have demonstrated how an emerging category
of sensors, i.e., the event-based ones, can significantly improve the
energy efficiency of extracting semantically meaningful information
from environmental stimuli and effectively transfer them to a digital
SoC for further data analysis and processing. In chapter 4 we have
shown that emerging computing frameworks like the event-drive one
are a viable alternative to deal with such highly sparse sensor data.
In this chapter, we present “Kraken”, an event-driven SoC capable of
directly interacting with event-based sensors and efficiently processing
them in an event-driven way. The main contribution of this chapter
can be summarized as follows:

• We present a SoC manufactured in Globalfoundries 22nm
technology which integrates a small microcontroller subsystem
to execute lightweight control tasks, a general-purpose RISC-V
based computing cluster for intense machine learning workloads,
and a dedicated SoA neuromorphic accelerator for low-precision
event-driven computation.

• We describe how to compose an event-driven computing pipeline
by outlining a possible staged inference strategy where the
system is progressively switched on, depending on the input data
to process.

116 CHAPTER 5. KRAKEN

5.2 Related work
Research communities and industries have tackled the challenge of
achieving high energy efficiency at the extreme edge from many
directions over the last years. Among the most promising strategies
to reduce the energy consumption of cognitive tasks deployed at the
extreme edge, we could identify two general trends that showed the
best results. The first approach goes in the direction of parallel
workload executed on energy-efficient computing clusters composed
of general-purpose cores [15,173]. Such an approach has proven to be
particularly effective when the final application is difficult to foresee
at design time.

The second approach goes more toward a high specialization of
the modules composing the SoC. This goal is achieved by integrating
highly energy-efficient fixed-function accelerators [34] to compose het-
erogeneous systems [174]. This approach is particularly effective when
the type of workload can be predicted at design time, e.g., in the case
of DNN-oriented edge computing devices. Some architecture moved
a step forward, cleverly combining both strategies [123], thereby
achieving a well-balanced trade-off between application generality and
overall system energy efficiency.

Throughout this thesis, we have seen that SNNs could provide
significant advantages in terms of energy consumption because of
their inherent sparse nature, especially when combined with sensors
that can represent information with sparse streams [158]. The
aforementioned architectural solutions are designed to deal with a
very regular type of workloads, which characterize previous and
current generations of DNNs. Therefore such architectures are not
efficient when performing sparse computation, like in the case of SNNs
workloads.

Several neuromorphic SoCs have been proposed to address this
challenge and efficiently execute brain-inspired cognitive tasks [160–
162]. Despite the outstanding performance achieved by those
solutions, they did not provide the same level of flexibility and
“programmability” as shown by the SoA DNNs-oriented platforms
presented before. We believe that to facilitate the adoption of
neuromorphic platforms at the embedded level and fully express their
potential as a next-generation artificial intelligence (AI) platforms,

5.3. ARCHITECTURE 117

we need to move a step forward and integrate such class of device
into ULP SoCs that embedded developers are more inclined to use as
a deployment platform for their applications. In this work, we aim
to achieve this goal by proposing a heterogeneous microcontroller-
like SoC equipped with a dedicated neuromorphic accelerator and a
multi-core general-purpose RISC-V-based computing cluster, which
can operate on a power budget of 10-100mW. The ultimate goal of
Kraken is to bring neuromorphic computing into the digital embedded
computing domain, combining it with a more traditional general-
purpose approach.

The following sections of the chapter are organized as follows: In
section 5.3 we will describe the architecture of the Kraken SoC [51].
Specifically, we will provide details related to the memory hierarchy
and interconnection among the various component, as well as system-
level aspects like clock domains and power domains. In section 5.5
we will describe the results related to system-level performance and
energy consumption, and we will compare such results with the SoA.
Eventually, we will provide concluding remarks and an outlook for
future development directions.

5.3 Architecture

The architecture of the Kraken chip has been derived from the base
“Quentin” SoC architecture presented in 3. The system is divided
into multiple clock and power domains. Figure 5.1 shows a block
diagram representation of such domains. Compared to the Quentin
chip, Kraken features two additional power and clock domains. The
first is the esternal hardware processing engine (EHWPE), which hosts
two dedicated accelerators, SNE and CUTIE. The former has been
already presented in chapter 4, while the latter will not be discussed
in this thesis, as it is outside the scope of the analysis presented here.
The second domain is a general-purpose accelerator domain called
“cluster”, a subsystem composed of eight RISC-V cores.

118 CHAPTER 5. KRAKEN

Figure 5.1: Kraken SoC block diagram

5.3.1 Power and clock domains
To carefully control the chip’s overall power consumption and enable
a versatile application-specific power management scheme, Kraken is
subdivided into three independent power domains. Such power do-
main partitioning allows to switch off unused parts of the system that
the running application might not require. The power-up/down of
the controllable domains can be performed at runtime. Figure 5.1 also
shows the chip power domain partitioning, SoC, Cluster, and EHWPE
respectively. The fabric controller (FC) domain is always on because
it hosts essential components needed for SoC management tasks, for
example, the boot procedure, the clock generators initialization, or
the accelerator reset and programming.

5.3.2 Fabric controller
The Kraken FC is built around a 32bits RISC-V core which acts as
a main programmable control unit for the whole SoC. The FC hosts
the main interconnection busses towards the main L2 memory and
the advanced peripheral bus (APB) bus, which controls all the SoC
peripherals. As part of the FC domain, we also find a compliant RISC-
V debug unit accessible via joint test action group (JTAG), the event

5.3. ARCHITECTURE 119

unit, which collects interrupt events generated by the peripherals and
redirects them toward the core interrupt controller, and four real-time
counters (timers) that can be used to generate pulse width modulation
(PWM) signals or internal time references. Moreover, the FC hosts
the power management unit, accessible through a memory-mapped
register interface by the FC core.

Memory subsystem

The main L2 memory of the FC domain is divided into a small core-
private section and a bigger shared section. The first one is reserved
for storing the RISC-V executable binary and all the core-private
variables, e.g., the core stack or critical application variables. The
private memory is divided into two 32 KiB memory banks that are
accessible through the main interconnect with a linear addressing
scheme. The L2 shared memory has a 1 MiB capacity, and it is
composed of eight banks. The interleaved section is also accessible
through the same main interconnection, and the data stored in this
memory are organized in an interleaved fashion. More specifically, a
linear 4-byte-wide word memory access is mapped to successive banks
of the L2 memory. This interleaved addressing scheme has been chosen
to minimize the memory access contention during parallel memory
access from different peripherals of the SoC.

Clock generators

The Kraken chip hosts four internal frequency locked loop (FLL) clock
generators [175]. Such clock generators use an external 32.768 kHz
clock reference, which is provided through an external pad. To
configure the frequency output of each FLL, the FC core can access the
configuration registers through a memory-mapped register interface
via the APB. The FLLs allow generating a clock frequency in a range
from a few tenths of kHz to approximately 1.5 GHz, covering both the
ULP and high-performance application scenarios. The first two FLLs
provide the clock for the FC domain; one is dedicated to the RISC-V
core and the interconnection and memory subsystems. The other one
provides the reference clock for the IO peripheral subsystem. Such a
choice has been made to decouple the internal FC operating frequency

120 CHAPTER 5. KRAKEN

from the one used to clock the IO peripherals, which operate at much
lower clock frequencies. The third FLL is used to generate the clock
frequency of the general-purpose accelerator domain, while the fourth
one is dedicated to the EHWPE accelerator domain.

5.3.3 IO subsystem
The FC domain hosts a vast set of IO peripherals commonly adopted
on microcontroller-like SoC. Specifically in Kraken, we find the
following programmable IO peripherals:

• (4X) I2C

• (4X) QSPI

• (4X) universal asynchronous receiver transmitter (UART)

• (1X) camera parallel interface (CPI)

• (1X) DVSI

• (44X) general purpose input output (GPIO)

The chip features 76 digital pads, 44 of which can be used to arbitrarily
map any pin of the peripherals mentioned above to a chip pad
in an all-to-all crossbar configuration, providing high IO mapping
flexibility. The pin mapping is configurable via a memory-mapped
register interface connected to the APB. Each peripheral can generate
interrupts depending on data transmission events; such events can
then be routed to the interrupt controller of the RISC-V core. The
GPIOs can be programmed as either input or output, and their
value can be set or read by the software running on the FC. An
autonomous IO subsystem, the “uDMA” [12], hosts all the peripherals.
Such a system can be programmed to autonomously orchestrate data
transfers from the peripherals to the L2 memory and vice versa, freeing
the RISC-V core from micro-managing such data transfers.

5.3.4 Compute cluster
The cluster domain hosts eight RISC-V cores that implement dedi-
cated extensions like hardware loops, multiply and accumulate, and

5.4. PHYSICAL IMPLEMENTATION 121

vectorial instructions for low-precision ML workloads. Each RISC-V
core of the cluster accelerator is equipped with a private floating
point unit (FPU) implementing common floating-point operations,
including FMAC, an essential operation for near-sensor tasks such as
filtering and neural networks. The cluster also features a 128 KiB L1
tightly coupled data memory (TCDM). The L1 memory can serve
all memory requests in parallel with single-cycle access latency and
a low average contention rate (¡10% even on the most data-intensive
kernels). Fast event management, parallel thread dispatching, and
synchronization are supported by a dedicated hardware block (HW
Sync), enabling very fine-grained parallelism and high energy effi-
ciency in parallel workloads. The cluster can be clock-gated with
a single core granularity, reducing the dynamic power consumption
while waiting for cores synchronization.

5.3.5 Accelerator domain
The EHWPE domain hosts two accelerators. One is the SNE
neuromorphic accelerator presented in chapter 4, and the other one is
a ternary weight neural network accelerator. Both accelerators can be
independently power-gated to reduce the leakage current when not in
use. The EHWPE domain operates on two clock domains. One clock
is the frequency generated by the FC FLL, which is used to clock the
interface logic at the boundary between the accelerators and the main
system interconnect. The other clock is generated by a dedicated
EHWPE FLL, which is used to clock the accelerator’s computing
engines. Like many peripherals of the SoC, also the accelerators are
programmed via memory-mapped register interfaces.

5.4 Physical implementation
In this section, we provide the physical implementation details of the
Kraken chip. Table 5.1 reports the salient characteristics.

The Kraken chip presented in this chapterhas been implemented
in the GlobalFoundries 22nm FDX technology process. We used the
“Synopsys Design Compiler 2020.09” tool to synthesize the design.
The design’s physical implementation has been performed with the

122 CHAPTER 5. KRAKEN

Technology GlobalFoundries 22nm FDX

Chip area 9mm2

L2 memory 1MiB (SRAM) + 64kiB

L1 Memory 128KiB (SRAM)

VDD Range 0.5V - 0.9V

Cluster Frequency 380MHz

EHWPE Frequency 330MHz

FC Frequency 380MHz

Power Range 2mW-200mW

Table 5.1: Physical implementation details

“Cadence Innovus Implementation System 19.1” tool. We used 8T,
20, 24, 28, L, and SL voltage threshold cells for the proposed design.
The setup time has been optimized for the slow (SSG) 0.59 V −40 °C
process corner, while the hold time has been optimized for the (FFG)
0.72 V 125 °C and −40 °C process corners.

The FC domain has been constrained to operate at 160 MHz in
the “worst-case” process corner. At the same process corner, the SNE
domain and the CLuster domain have been constrained to operate at
a maximum clock frequency of 200 MHz. Figure 5.2 shows the chip
micrographs where the different power domains have been highlighted.
Moreover, the figure also shows the memory and core area occupation.

Power switching

As mentioned in the previous sections, the Cluster, SNE, and CUTIE
domains can be independently power-switched to reduce leakage
consumption. This functionality has been implemented by exploiting
dedicated power switching cells provided with the GlobalFoundries
22nm process development kit (PDK). Each switchable domain hosts
power switched, placed on the standard cell’s row, and supplied from
an always-on power supply, allowing disconnecting of the domain-
specific cells from the power supply. Only the power switches leakage
current contributes to the static consumption of a switched-off power
domain. Power switches are controlled by the power management
unit (PMU) hosted in the FC domain. Figure 5.3 shows the Kraken

5.5. RESULTS 123

L2 Memory
Shared

State
Memory

SNE

SoC Cluster

L
1

 M
e
m

o
ry

L2 Memory PrivateFLLs

CUTIE

IO Pads

IO Pads
IO

 P
a
d

s

IO
 P

a
d

s

CORE

CORE

CORE

CORE

CORE CORE

CORE

CORE

CORE

I$
PULPO

Interconnect
IO uDMA

E
n

g
in

e
E

n
g

in
e

E
n

g
in

e
E

n
g

in
e

E
n

g
in

e
E

n
g

in
e

E
n

g
in

e
E

n
g

in
e

Crossbar

D
M

A

D
M

A

Figure 5.2: Kraken micrograph

power distribution scheme, the power grid structure, and the power
switching components.

5.5 Results
In this section, we will complete the discussion on the SNE accelerator
performance and energy metrics initiated in chapter 4 by analyzing
the performance of the general-purpose cores of the Kraken chip. We
will start the presentation of our results by showing the maximum

124 CHAPTER 5. KRAKEN

Figure 5.3: Kraken chip power distribution scheme

frequency and power consumption for both the FC and cluster
domains. Then we will present a characterization of the event-driven
peripheral hosted by the Kraken SoC. Eventually, we will combine
those results to provide insights on the total consumption of a
complete event-driven pipeline.

5.5.1 General purpose computing engines

The computing engines described in this section are optimized to exe-
cute regular, general-purpose intense workloads. To achieve this goal,
we identified a few benchmarks representing real-world workloads on
the general-purpose RISC-V computing cores. Precisely, we executed
a matrix-to-matrix multiplication as a computing primitive capable
of simultaneously stressing the interconnect towards the memory and
the arithmetic logic unit (ALU) of the cores by performing multiply-
accumulate (MAC) operations. To increase the generality of the cores
benchmarking operation presented in this section, we executed the
matrix-to-matrix multiplication benchmark in a 32bits integer and
32bits floating point variant to cover multiple scenarios. A detailed
overview of the benchmarks executed to characterize the power and
performance of the Kraken general-purpose cores are reported in
Table 5.2.

5.5. RESULTS 125

benchmark number of operation CPU cycles cores

MMUL int32 256*16 1024 8
MMUL fp32 256*16 1192 8
MMUL int8 18*64*4 280 8
MMUL int4 18*64*8 590 8
MMUL int2 18*64*16 1180 8

Table 5.2: Benchmarks executed on the Kraken PULP chip cores

5.5.2 Frequency and Power consumption

This section shows the maximum frequency of the Kraken chip
when executing the benchmarks presented in the previous section.
We identified the maximum frequency as the frequency at which
10/10 matrix-to-matrix multiplication is executed correctly, at 25 °C.
To validate the operation’s correctness, the operation results are
compared against a reference pre-computed result matrix, pre-loaded
into the SoC memory. The maximum frequency of the Kraken chip is
reported in Figure 5.4 for different operating voltage points.

The power consumption of the Kraken chip has been measured
at the corresponding maximum frequency points. Such frequency
operating condition represents the chip’s most efficient operating
point achievable. By operating the chip at the maximum achievable
frequency related to each operating voltage, the constant leakage
constitutes the smallest fraction of the total power consumption.
the kraken power consumption is presented in Figure 5.5. Both
benchmarks show comparable operating frequencies; this result is
expected, as the system’s critical path does not involve the ALU of the
chip; instead, it is identified in the circuitry transmitting the address
and data to the memory through the main interconnect. Therefore,
there is no fundamental dependency of the maximum frequency with
the type of workload executed on the RISC-V cores.

126 CHAPTER 5. KRAKEN

0.5 0.6 0.7 0.8 0.9
Supply Voltage [V]

150

200

250

300

350

400

M
ax

im
um

 F
re

qu
en

cy
 [M

Hz
]

@Fmax_32b
@Fmax_fp32
@Fmax_8b
@Fmax_4b
@Fmax_2b

Figure 5.4: Cluster maximum frequency when executing a matrix-to-
matrix multiplication for both int32 and float32 benchmarks

5.5.3 Performance and Energy consumption

In this section, we combine previous results to obtain insights into
the actual performance of the chip, which are often expressed in
terms of the number of operations delivered in a second (OP/s).
Such a result is obtained by counting the number of cycles that the
cores spend to compute the whole matrix-to-matrix multiplication
benchmark, composed of 256x256 MAC operations, and by taking
the ratio between the two quantities. Normalizing the result by the
time duration of a single cycle makes it possible to derive the number
of operations normalized by a reference time of a second. Such metric
is reported in Figure 5.6. These results can be interpreted as a proxy
to estimate the execution time of a specific application by knowing
the total number of operations that compose the application.

Figure 5.7 reports the chip energy efficiency, expressed in terms of
the number of operations per second, per unit of power. This metric
provides insights on the delivered computational capabilities per unit
of power. This metric can be used as a reference to calculate the

5.5. RESULTS 127

0.5 0.6 0.7 0.8 0.9
Supply Voltage [V]

20

40

60

80

100

120

140

160

Po
w

er
 [m

W
]

@Fmax_32b
@Fmax_fp32
@Fmax_8b
@Fmax_4b
@Fmax_2b

Figure 5.5: Cluster power when executing a matrix-to-matrix multi-
plication for both int32 and float32 benchmarks

approximate power consumption of an application, starting from the
total number of operations.

The last result related to the general-purpose core characterization
is the energy per operation (32bit integer of floating-point MAC).
Such a result is reported in Figure 5.8 and provides an indication of
the total energy cost of a single operation executed on the general-
purpose computing cluster. Note that this result includes the cost of
the L1 scratchpad memory accesses performed during the benchmark
execution.

5.5.4 Event-driven application scenario

In this section, we propose a general application scenario where
the various components of the Kraken chip are used to achieve an
increasingly higher level of cognitive/computational capabilities to
form a “staged inference pipeline”. Thanks to the power management
capabilities of the chip, the various sub-modules of Kraken can be
dynamically turned off to save energy.

128 CHAPTER 5. KRAKEN

0.5 0.6 0.7 0.8 0.9
Supply Voltage [V]

0

20

40

60

80

Pe
rfo

rm
an

ce
 [G

OP
/s

]

@Fmax_32b
@Fmax_fp32
@Fmax_8b
@Fmax_4b
@Fmax_2b

Figure 5.6: Cluster maximum performance when executing a matrix-
to-matrix multiplication for both int32 and float32 benchmarks

A typical requirement for many IOT nodes deployed in real
application scenarios is the always-on sensor monitoring capability.
The Kraken chip can be put in a mode that we call “Always-on
energy-proportional” (AOEP) to address this use case. In this mode,
the Kraken chip operates in an always-on mode to autonomously
collect data from the IO peripherals. As we have seen in chapter 2,
in this mode, an IO subsystem like the one hosted by Kraken can
consume power in the order of a few hundreds of µW, and the entire
FC domain can consume less than 2 mW. In this mode, all the domains
of the chip are power-gated, the FC domain is active, but the core
spends most of the time in a “wait-for-interrupt” state, where it is
clock gated.

The autonomous IO subsystem, i.e., the uDMA, can generate
interrupts based on complex conditions. For example, in the case of
visual event acquisition from the DVSI, interrupts can be generated
if events occur in a specific region of interest of the input event frame
or if a specific event rate is exceeded in a programmable time interval.
If such conditions occur, the RISC-V core of the FC domain exits

5.5. RESULTS 129

0.5 0.6 0.7 0.8 0.9
Supply Voltage [V]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

En
er

gy
 e

ffi
cie

nc
y

[T
OP

/s
/W

]

@Fmax_32b
@Fmax_fp32
@Fmax_8b
@Fmax_4b
@Fmax_2b

Figure 5.7: Cluster energy efficiency when executing a matrix-to-
matrix multiplication for both int32 and float32 benchmarks

the clock-gated state and handles the interrupt. In this mode, which
we will call “Smart trigger” (ST), lightweight cognitive algorithms
can be executed at the FC domain in a power budget of 15 mW.
This architecture allows a smart triggering mechanism to power
up the accelerator domains (Cluster and EHWPE) and to offload
complex cognitive tasks to both SNE and the RISC-V-based compute
cluster. Algorithms running at the level of the FC, serving as smart
triggering mechanisms, aim to reduce the false positive rate, avoid the
unnecessary accelerator domain power-up, and the consequent energy
consumption overhead.

If the smart triggering criteria are met, the complex cognitive task
can be executed on the incoming data by offloading a more powerful
algorithm, e.g., DNNs or SNNs inference, on the accelerator domains.
We named this mode “On-demand Cognitive Computing” (ODCC).
In this power mode, the Kraken chip can execute complex DNN, SNN,
or a combination of them in a power budget of 320 mW. This mode
aims at performing highly accurate and energy-hungry predictions, or
more generally, high quality of service. Figure 5.9 reports a visual

130 CHAPTER 5. KRAKEN

0.5 0.6 0.7 0.8 0.9
Supply Voltage [V]

0

10

20

30

40

50

En
er

gy
/O

P
[p

J]

@Fmax_32b
@Fmax_fp32
@Fmax_8b
@Fmax_4b
@Fmax_2b

Figure 5.8: Cluster energy per operation when executing a matrix-to-
matrix multiplication for both int32 and float32 benchmarks

representation of the modes described in the proposed application
scenario

Voltage and frequency scaling considerations

It is important to remark that across the whole “staged cognitive
pipeline”, conventional power reduction techniques like DVFS can
be easily adopted. All the domains are equipped with CDC logic
and clocked by independent on-chip clock generators. Moreover, the
Kraken chip is equipped with IO peripherals that can be employed
to control external I2C voltage regulators. Therefore it is possible to
couple the cognitive pipeline stages activation with software-controlled
power management strategies to carefully tailor the power profile of
a deployed application to the desired one.

Comparison with the state of the art

In this section, we compare the Kraken chip with similar IoT
platforms. Table 5.3 reports SoA chips that target the same

5.5. RESULTS 131

100μW

1mW

10mW

100mW

DVSI +
FC(WFI)

DVSI +
FC (Active) Cluster / SNE

IO
 t

ri
gg

er

Jo
b

of
fl
oa

d

Always-on
energy-prop
(AOEP)

Smart trigger
(ST)

On-demand
cognitive comp
(ODCC)

16mW
6.9GOPs
(8bit)

150mW
22GOPs
(8bit)

145mW
58GSOPs

17mW
19GSOPs

DNN SNN

D
V

F
S

 +
 P

o
w

e
r

sw
it

ch
in

g

Staged cognitive pipelineData
acquisition

Information
extraction

Lightweight
cognitive
algorithms

uDMA
transfers

Figure 5.9: Kraken staged inference pipeline

application space. Among those architectures, Kraken shows the
highest floating-point energy efficiency. Also, the reported integer
energy efficiency is comparable with the SoA devices having a very
similar architecture. Additionally, compared to all the presented
architectures, Kraken natively supports a direct connection with
event-based cameras, enabling high energy saving opportunities in
video applications. Moreover, Kraken is equipped with an embedded
neuromorphic accelerator, SNE. To the best of our knowledge,
Kraken represents the first general-purpose IoT prototype hosting a
SoA neuromorphic low-precision computing engine on the side of a
powerful general-purpose computing cluster, practically enabling the
highly efficient execution of both DNN workloads and neuromorphic
tasks like SNNs at the edge.

132 CHAPTER 5. KRAKEN

R
IS

C
-V

V
P

Sc
hm

id
t

et
al

.
IS

SC
C

20
21

Sl
ee

pR
un

ne
r

Bo
le

t
al

.
JS

SC
20

21

Sa
m

ur
A

I
M

iro
-P

an
ad

es
et

al
.

V
LS

I2
02

0

M
r.

W
ol

f
Pu

lli
ni

et
al

.
JS

SC
20

19

Ve
ga

R
os

si
et

al
.

IS
SC

C
20

21
K

ra
ke

n
(T

hi
s

w
or

k)

Te
ch

no
lo

gy
Fi

nF
ET

16
nm

C
M

O
S

28
nm

FD
-S

O
I

C
M

O
S

28
nm

FD
-S

O
I

C
M

O
S

40
nm

C
M

O
S

22
nm

FD
-S

O
I

C
M

O
S

22
nm

FD
-S

O
I

A
re

a
24

m
m

2
0.

68
m

m
2

4.
5m

m
2

10
m

m
2

12
m

m
2

9m
m

2

Ty
pe

Ve
ct

or
pr

oc
es

so
r

M
C

U
H

et
er

.
M

C
U

Pa
ra

lle
lM

C
U

Pa
ra

lle
l+

H
et

er
.

M
C

U
Pa

ra
lle

l+
N

eu
ro

m
or

ph
ic

M
C

U

A
pp

lic
at

io
ns

D
SP

Io
T

G
P

Io
T

G
P,

N
SA

A
,D

N
N

Io
T

G
P,

N
SA

A
Io

T
G

P,
D

N
N

,N
SA

A
Io

T
G

P,
N

SA
A

,M
ix

ed
-p

re
c.

D
N

N
,

E
D

C
,

SN
N

C
PU

/I
SA

RV
64

G
C

C
M

0D
S

T
hu

m
b-

2
su

bs
et

1x
R

IS
C

Y
RV

C
32

IM
FX

pu
lp

1x
R

IS
C

Y
+

8x
R

IS
C

Y
RV

C
32

IM
FX

pu
lp

1x
R

IS
C

Y
+

9x
R

IS
C

Y
RV

C
32

IM
FX

pu
lp

+
SF

1x
R

IS
C

-V
+

8x
R

IS
C

-V
-N

N
RV

C
32

IM
FX

pu
lp

N
N

SR
A

M
4.

5M
B

64
kB

46
4

kB
40

kB
s.r

.
64

kB
(L

1)
51

2
kB

s.r
.

(L
2)

12
8

kB
(L

1)
16

00
kB

s.r
.

(L
2)

12
8

kB
(L

1)
1M

iB
(L

2)

Vo
lta

ge
0.

55
V

-1
V

0.
4V

-0
.8

V
0.

45
V

-0
.9

V
0.

8V
-1

.1
V

0.
5V

-0
.8

V
0.

5V
-0

.9
V

M
ax

fre
qu

en
cy

1.
44

G
H

z
80

M
H

z
35

0M
H

z
45

0M
H

z
45

0M
H

z
39

0M
H

z

Po
we

r
ra

ng
e

n.
a

-4
W

5.
4-

32
0u

W
6.

4u
W

-9
6m

W
72

uW
-1

53
m

W
1.

7u
W

-4
9.

4m
W

2m
W

-3
20

m
W

FC
(W

FI
)

to
C

lu
st

er
+

SN
E

(A
ct

iv
e)

in
t

Pe
rf.

in
t

Eff
@

Pe
rf.

-

31
M

O
PS

97
M

O
PS

/m
W

@
18

.6
M

O
PS

1.
5

G
O

PS

23
0

G
O

PS
/W

@
11

0
M

O
PS

12
.1

G
O

PS

19
0

G
O

PS
/W

@
3.

8
G

O
PS

15
.6

G
O

PS
(8

b)

61
4

G
O

PS
/W

(8
b)

@
7.

6
G

O
PS

(8
b)

21
.5

G
O

P
S

(8
bi

t)
@

0.
9V

/3
90

M
H

z

38
0

G
O

PS
/W

(8
bi

t)
@

6.
9

G
O

PS
(8

bi
t)

@
0.

52
V

/1
20

M
H

z
15

58
G

O
P

S/
W

(2
bi

t)
@

87
G

O
P

S
(2

bi
t)

@
0.

52
V

/1
20

M
H

z

flo
at

32
Pe

rf.

flo
at

32
Eff

.
@

Pe
rf.

n.
a

92
.3

G
FL

O
PS

/W
n.

a

-
-

1
G

FL
O

PS

18
G

FL
O

PS
/W

@
35

0
M

FL
O

PS

2
G

FL
O

PS

79
G

FL
O

PS
/W

@
1

G
FL

O
PS

2.
7

G
F

L
O

P
S

(0
.9

V
/3

90
M

H
z)

50
G

FL
O

PS
/W

@
1

G
FL

O
PS

(0
.5

2V
/1

20
M

H
z)

Ta
bl

e
5.

3:
St

at
e

of
th

e
ar

t
co

m
pa

ris
on

ta
bl

e

5.6. CONCLUSION 133

5.6 Conclusion
This chapter presented Kraken, a SoC targeting cognitive application
at the edge. We showed how to integrate successfully, in the
same SoC architecture, a general-purpose computing cluster, and a
neuromorphic computing accelerator. Moreover, the Kraken chip
also hosted the DVSI peripheral presented in chapter 2, enabling
an end-to-end energy proportional event-driven computing pipeline
when using the accelerator presented in chapter 4. Our analysis
characterized the general-purpose computing core capabilities in terms
of integer and floating-point performance and energy efficiency at
multiple operating points. Kraken showed a floating-point and integer
energy efficiency and performance comparable with the SoA. In a
further analysis, we used the results of the first part of the analysis
to outline a possible application scenario where Kraken is used to
implement an event-driven computing pipeline, practically showing
how the different parts of the system can be dynamically switched on
to execute energy-efficient applications.

Chapter 6

Event-driven SNN
deployment

6.1 Introduction
This chapter represents the last piece of the puzzle toward a full event-
driven digital platform utilization at the extreme edge. It aims to walk
the reader through the required software abstraction layers that need
to be developed to build a ”vertical software stack” that allows to
deploy a complete application. Specifically, throughout this chapter,
we will discuss how an application can be deployed on the target
hardware platform that we presented in chapter5 and that hosts a
dedicated event-driven computing engine like the one presented in
chapter4.

In the previous chapters, we have seen that a few peculiar features
characterize the data produced by event-driven sensors, namely the
high data sparsity coupled with the extremely low data redundancy
when encoding useful information [45]. As we have demonstrated in
chapter2 and 4, exploiting such data sparsity could lead to significant
advantages in terms of system-level energy efficiency; however it posed
new challenges both from the point of view of the data acquisition from
event-based sensors and the event-driven data processing hardware
architecture. This thesis has proposed a few architectural solutions

135

136 CHAPTER 6. SNN DEPLOYMENT

for data acquisition and data processing that can efficiently solve such
challenges.

Similar to what we have presented in terms of hardware archi-
tectural solutions, this chapter will go through the challenges of
deploying event-driven applications from a software point of view.
Our analysis will be restricted to deploying SNNs operating on sparse
input data streams. We will start our analysis by discussing the
general challenges associated with training SNNs. The first step
of deploying a machine learning application on any platform starts
with selecting a specific neural network model and training such
a model on a data set that represents the actual target task to
be solved. Notably, SNNs require a set of mathematical measures
to circumvent the non-differentiable nature of the spiking neuron
membrane potential expression. In this regard, machine learning
communities have made significant progress in the very last few years.
Therefore, we will explore the most promising approaches to train
SNNs, ideally achieving the performance of the DNN counterpart.

Then, we will continue our discussion on constructing a vertical
software stack for event-driven applications by focusing on those
data precision reduction strategies commonly adopted when deploying
machine learning applications on embedded platforms. On such
platforms, similar to what we have seen in chapter5, the amount of
memory is limited to several hundreds of kilobytes or a few megabytes.
Therefore it is crucial to reduce the memory footprint of the deployed
algorithms, both in the trained parameters and intermediate results,
that ideally should be kept on-chip to reduce the energy associated
with the algorithm execution. To tackle this challenge, we will discuss
a possible quantization approach suitable for application based on
SNNs. Reducing the data representation precision of the deployed
algorithm is a well-known yet very effective approach adopted in most
embedded applications deployed on low-power hardware platforms.
The main goal of such a low-precision data representation is to reduce
the memory footprint of the parameters and the intermediate results
of the algorithm while ideally preserving the same “quality of service”
or, possibly, degrading it by an acceptable margin which depends on
the application; we have discussed this aspect in more in-depth in
chapter3.

6.1. INTRODUCTION 137

The main challenging aspect when a quantization strategy is ap-
plied to SNNs is represented by the complex internal neuron dynamic,
as opposed to the simple accumulation resulting from the convolution
performed in classical DNNs. Besides the usual synaptic weight and
output features quantization, in SNNs, the internal neuron dynamics
need to be also represented in low arithmetic precision. As we have
seen in chapter4, the arithmetic precision of the synaptic weights
and the neuron dynamics are not necessarily the same; in SNE, we
had 4 bits represented synaptic weights and 8 bits to represent the
internal neuron membrane potential. As can be observed for classical
DNNs, also in the case of SNNs, we expect better results in final
classification accuracy when the network is trained in a quantization-
aware training framework. To achieve this goal and preserve the
original classification accuracy of an SNN through the quantization
process, it is essential to try to accurately model, already at training
time, the exact low precision dynamics of the neural network neurons.
This aspect is key to minimizing the mismatch between the algorithm
execution performed at training time to evaluate the accuracy of the
low-precision network and the one executed on the actual platform.
The ultimate goal of accurate modeling of the low-precision algorithm
execution is to give the optimization process the chance to compensate
for the accuracy degradation caused by the reduced numeric precision.

After discussing the strategy for reducing the data precision, we
will examine how to exploit the current available deep learning frame-
work to perform quantization-aware training of SNNs. Specifically,
we will describe how to use the existing deep learning libraries and
training framework running GPUs, e.g., PyTorch1., for the purpose
mentioned above. Then, we will discuss the remaining steps for
exporting a trained and quantized SNN into a standardized format
and deploying it on the target embedded platform through executable
code auto-generation. Eventually, we will present a sample SNN
deployment to the Kraken platform presented in 5, as well as a short
analysis of the inference energy and latency on such a platform.

The main contribution presented in this chapter can be summa-
rized as follows:

1Open-source framework primarily developed at Facebook’s AI labs
(www.pytorch.org).

138 CHAPTER 6. SNN DEPLOYMENT

• We developed a complete supervised training framework for
quantized SNNs, by combining a SoA back-propagation learning
strategy and SoA quantization approaches like PACT [111].
Moreover, we integrated into such a framework a bit-accurate
model of the quantized neuron dynamics implemented by the
SNE accelerator, such that quantization-aware training target-
ing the platform presented in chapter4 could be performed.
Such training framework relies on existing open-source, well-
established training frameworks for conventional DNNs like
PyTorch.

• We developed the toolchain that allows deploying quantized
SNNs on the embedded platform presented in chapter5 and
equipped with the dedicated accelerator presented in chapter4.
Such deployment SNN toolchain builds on top of an open-
source RISC-V compiling toolchains and hardware abstraction
layer (HAL) publicly available, and auto-generates code for the
Kraken platform.

• We evaluated the energy consumption and latency of an SNN
trained with the methodology presented in this chapter and
deployed on the Kraken platform.

6.2 Related work
Over the last years, SNNs have emerged as a potential low-energy
model-free algorithm candidate to solve complex tasks [176]. Indeed,
such ANN category has often been depicted as the “third generation”
AI. Among the most relevant features that make such neural network
class a viable substitute for current DNN algorithms is the intrinsic
sparse nature of SNNs [177]. As we have already discussed throughout
this thesis, data sparsity represents one of the most appealing features
whose exploitation promises to reduce the energy consumption of a
data processing algorithm by several orders of magnitude [46]. To
be able to deploy SNNs to solve a real-world problem, we need
to establish a portfolio of robust training strategies, optimization
methodologies, as well as a series of sparse benchmarks to be used

6.2. RELATED WORK 139

as a reference to evaluate SNN performance [178], similarly to what
has happened for conventional DNNs on well-known problems [2].

6.2.1 applications for SNNs

When discussing potential applications for SNNs, we have to dis-
tinguish between what we will call “conventional” well-known DNN
problems and a series of “emerging” problems where pioneering studies
have shown that SNNs could deliver significant improvement in terms
of energy efficiency and latency against the SoA algorithmic approach.
In the first category, we can undoubtedly mention classification
problems like MNIST, CIFAR10/100, and ImageNet and the more
event-based oriented like IBM-DVSGesture, NMNIST NCIFAR10,
and many others. In the second category, we can mention simultane-
ous localization and mapping (SLAM) least absolute shrinkage and
selection operator (LASSO), and fast iterative shrinkage-thresholding
algorithm (FISTA).

This chapter will focus on the first category of problems for which
well-established performance assessment metrics are already available.
Rather than achieving SoA performance in solving such algorithms
employing SNNs, this chapter aims to demonstrate how to compose an
end-end deployment pipeline for SNN on a fully custom event-driven
platform.

6.2.2 Unsupervised SNN training

A popular way of training SNNs is to follow the “unsupervised
training” approach. A well-known algorithm to perform unsupervised
learning is the spike time dependent plasticity (SDBP) [179, 180],
and many variants of such algorithms have been proposed over
time [181, 182]. Such strategies often rely on neural networks’ self-
organizing principles [183, 184]. Despite the effort made by research
to emulate and reproduce biologically plausible learning strategies,
such approaches do not reach the same SoA performance reported
when supervised approaches are used.

140 CHAPTER 6. SNN DEPLOYMENT

6.2.3 Supervised SNN training

Training CSNNs in a supervised way poses new challenges compared
to standard DNNs like feedforward CNNs. In DNNs, the information
is conveyed from one layer to the next using differentiable activation
functions. This differentiability property enables the application of
a gradient descent-based algorithm to perform supervised learning.
Instead, in SNNs, the information is described by temporal distri-
butions of spikes, which are inherently non-differentiable due to the
spike generation dynamics, which prevents the application of gradient
descend-based learning.

This subsection will describe some of the most known training
frameworks for SNNs that use backpropagation. This discussion
generally highlights the main feature of each framework and has not
aimed to extensively cover all the details of each framework.

The spike layer error reassignment (SLAYER) [185] algorithm has
shown promising results in overcoming the non-differentiability issue
featured by SNNs. Weights are updated by exploiting a gradient
surrogate that enables back-propagation for SNNs. Therefore, such
a framework would be an excellent candidate for training SNNs in a
supervised way. However, the neuron dynamics adopted in SLAYER
is the spike response model (SRM), which is considerably complex to
be implemented on an embedded hardware platform. Hence, despite
the good performance of the SLAYER approach, its applicability as a
training framework for SNNs to deploy on ultra-low-power computing
platforms remains limited.

An interesting alternative is represented by the “Nengo” frame-
work, a simulation and training framework for SNNs composed of
various sub-modules. This feature makes “Nengo” very interesting in
terms of versatility. Indeed the “Nengo” framework is composed of
a front-end module, which exposes the API to describe the structure
of the network and its parameters, and a back-end module, which
is the module in charge of practically running the SNN simulation
on the actual platform. Such structure is very effective, as it allows
to transparently run the same network on a plethora of different
hardware platforms in a transparent way and with minimal changes.
However, the main limitation of the “Nengo” framework is the strategy
to circumvent the non-differentiability of the SNN neuron dynamics.

6.2. RELATED WORK 141

In such a framework, at the training phase, the neurons are converted
into rate-based neurons [186], practically restricting the application
field to those cases where such spike encoding can be adopted.
Moreover, such a strategy has several other limitations, as correctly
demonstrated by [187].

A more generalized strategy to overcome the limitation originating
from the LIF spiking neuron non-differentiability is the spatio-
temporal back propagation (STBP) algorithm proposed by Shi et
al. in [188]. Such an approach uses a gradient surrogate around the
non-differentiable point of the neuron membrane potential. These
mathematical artifacts practically allow using commonly adopted
gradient-descent-based optimization techniques to train a neural
network and feed-forward SNNs with convolutional or linear synaptic
connections. By far, the approach presented by Shi seems the
most effective and promising to ultimately solve the SNN supervised
training issue, practically making SNN training not very different from
conventional DNN training.

In the framework proposed in this chapter, we will adopt the
gradient surrogate proposed in [188], and we will build on top of this
approximation to construct an end-end training framework capable of
training quantized SNNs.

6.2.4 Fake quantization
The second ingredient for deploying a quantized neural network
is a quantization strategy. Current neural network topologies can
feature billions of parameters typically represented as single-precision
floating-point values. This choice is notably dictated by the need
to achieve the numerical stability of the algorithms used to train
the network. In this framework, the memory footprint of the neural
network might not be compatible with the usual amount of memory
with which embedded platforms are typically equipped. Contrarily to
TPUs or GPUs, the embedded platform has low available memory,
i.e., typically a few hundred of kB or a few MB.

To reduce the memory footprint of DNNs deployed to the embed-
ded platform, quantization is a common technique that leads to a low
or zero quality of result degradation. Quantization can be performed
in many different flavors; more straightforward approaches can reduce

142 CHAPTER 6. SNN DEPLOYMENT

Floating point representation

Desired quantization levels

Fake quantized representation

Integer representation

Figure 6.1: graphical representation of a fake quantized value interval
range

the precision from a 32bits or 64bits floating-point representation to
a smaller 16bits float representation. More aggressive quantization
strategies can start from the full precision representation of the
network parameters and target a final 32bits or even lower bitwidth
integer representation. As we have seen in chapter3, the extreme case
is represented by BNNs.

In this process, “fake quantization” represents a transitional step
between the full precision parameter representation and an integer
representation of the desired bit-width. In the “Fake quantized”
representation, the network parameters are still represented by full
precision values. However, each parameter is rounded to a discrete
number of values corresponding to the representable integer values in
the target bitwidth. Such representation allows quantization-aware
training by employing the same optimization algorithms to train full
precision networks.

6.2.5 True-quantization and integerization

Once the network has been trained in the “fake-quantized” regime,
parameters, i.e., the weights and neuron threshold values, can be
converted into true integer values, ideally with no loss with respect to
the fake quantized representation of the network parameters.

6.3. VERTICAL SOFTWARE STACK 143

6.3 Vertical software stack
This section describes the steps required to enable quantization-aware
training for SNNs. Our focus is to deploy neural networks to SNE.
A block diagram representation of the deployment flow for such
platforms is reported in figure 6.2.

Figure 6.2: block diagram representation of the vertical deployment
software stack for SNNs

6.3.1 Neural network quantization-aware training
The first component of the vertical software stack is a quantization-
aware training engine. The ultimate goal of this module is to produce
a trained network in a standard format like “ONNX” where the
weights and the neuron dynamic parameters are represented with
fake-quantized values. Here we need to remark that, contrarily to
what happens for conventional DNNs, where the accumulation process
is trivial, and the inference reduces to a fixed amount of “MAC”
operations, in the case of SNNs, the neuron dynamic is considerably

144 CHAPTER 6. SNN DEPLOYMENT

more complex; it involves non-linear operations such as exponential
decay. Therefore it is crucial to model, as accurately as possible, the
neuron dynamic of the chosen elementary neuron, the ALIF in our
case, such that the final network behaves ideally in the same way when
executed on a GPU and the actual target neuromorphic platform.

The main challenge when accurately modeling the ALIF neuron
dynamic is represented by the different ways operations are performed
in the GPU running the SNN software implementation used during
training and how operations will be executed on the real accelerator.
The most convenient and PyTorch-compatible way of performing the
SNN “forward pass” during the training phase is to represent the time-
distributed input, intermediate, and output features as binary-valued
4-dimensional tensors (T,C,H,W). This representation is not different
from a canonical features representation used in DNNs, with the only
exception that in SNNs, we find an additional time dimension. In
this representation, each non-zero value represents a spike occurring
at a specific position in the H, W, and C dimensions and a specific
time in the T dimension. In the case of a convolutional synaptic
input connection, we can consider the NxN convolutional kernel,
which in the case of the SNE accelerator is limited to 3x3 kernels,
as the receptive field of each output neuron. The convolutional
kernel is repeated and applied for each 1-time step-wide 2D plane
of the input tensor along the T dimension. From one step to the
successive one, the membrane potential of the neurons is retained, and
synaptic contribution is added to the previous value. This algorithm
limits the possibility of parallelizing the computation over the T
dimension, as the order of the time steps is relevant and can not be
changed. Therefore the “forward pass” of an SNN remains a sequential
calculation over the time dimension.

Convolutional layer

The “inference” process operations happen radically differently on the
SNE accelerator. Specifically, in SNE, there is no fundamental notion
of tensor. Instead, single events are broadcasted to all output neurons
and, utilizing a filtering mechanism in front of each output neuron,
each input event is weighted with the corresponding kernel weight and
accumulated on the target output neurons membrane potential. No

6.3. VERTICAL SOFTWARE STACK 145

multiplication operations are executed, as the corresponding weight
is already the total synaptic contribution associated with an input
event, and the event is represented with a binary value. Moreover,
unneeded operations are skipped in the SNE accelerator, and a LUT
is used to compute the aggregated delay factors related to multiple
time steps. The PyTorch implementation of the inference process
accurately reproduces the LUT-based decay mechanism implemented
in the real accelerator. This is achieved by storing an additional
tensor to trace the time of the last update of each neuron, such that
the correct aggregated decay coefficient is retrieved for each output
neuron.

Linear layer

The considerations we have done so far for the PyTorch convolutional
layer implementation also hold for the linear (fully connected) layers.
The neuron dynamic implementation used for this layer is the same
as the one used for the convolutional layer. The only difference is the
synaptic connection scheme.

Pooling layer

A third layer commonly constituting a neural network is the Pooling
layer. Because of the binary nature of input and output feature maps
of SNNs, the more straightforward implementation is represented by
a ”Max Pooling” layer. This layer can be implemented by simply
performing a step-wise boolean “OR” operation between the output
feature maps falling into the boundaries of the pooling kernel size.

Fake-quantized implementation

All the building blocks presented so far were designed so that fake
quantization could be applied to both the neuron dynamic and the
weights. The neuron dynamics of the SNE ALIF neurons use 8bits
signed integer values to represent the membrane potential variable
and 4bits signed integers for the synaptic weights. The quantization
interval for both the neuron membrane potential and the weights is
obtained by enforcing an almost-symmetric interval of representable

146 CHAPTER 6. SNN DEPLOYMENT

values centered around 0. 255 intervals bounded by floating-point
numbers can be defined for the membrane potential. Similarly, for
the synaptic weight, 16 values are defined

Network training

Once all the building blocks that compose an SNE compliant imple-
mentation of the SNN inference are defined, the SNN network training
can be implemented by exploiting the functionalities exposed by the
PyTorch framework for conventional DNNs training. For example, an
important one is the flexible data loading capability and the automatic
differentiation of most of the tensor operators used to compose the
neuron dynamics. The algorithm followed for the training essentially
reproduced what was presented by presented in the work of Wu et
Al. [188].

Neural network integerization

Thanks to the simplicity of the constraints enforced during the
quantization-aware training, i.e., the almost symmetric range of
values, the integerization process is trivial. It can be performed
by simply linearly scaling the floating-point interval range obtained
during the fake-quantized training to the integer bounds representable
on the accelerator. In the case of the membrane potential, this
translates into an interval of [-128, 128). Similarly, the floating-point
bounded range translates to [-8,8) for the synaptic weight.

The quantization-aware training was validated on several network
topologies and data sets. In figure List of Figures6.3 we provide
an example of a simple network topology trained and quantized
with the proposed approach. The plot compares the floating-point
implementation, the fake quantized network, and the integer-valued
parameters network after the integerization process.

The data set we used as a proof of concept for this experiment is
the IBM-DVS-Gesture data set2. We used 80% and 20% of samples for
the training and test set. The goal of this experiment was not to reach
the SoA performance on such a dataset but rather to demonstrate the
feasibility of the proposed approach.

2https://www.research.ibm.com/dvsgesture/

6.3. VERTICAL SOFTWARE STACK 147

Figure 6.3: Accuracy comparison of a floating point, fake quantized
and true quantized implementation of a sample 5-layers convolutional
neural network topology SNN

6.3.2 PULP RISC-V toolchain

As we have observed in the chapter5, all the operations of the
Kraken chip are orchestrated by the RISC-V processor around which
the SoC is built. This module is the main controller for all the
peripherals, including the RISC-V-based general-purpose computing
cluster and the accelerator subsystem that hosts the SNE accelerator.
The deployment of any application somehow relies on the platform’s
capability to execute general-purpose tasks like data acquisition from
external peripherals, data pre, post-processing, or data movement.
A common approach to deploying a hardware-accelerated application
is to rely on a low-level HAL, which allows abstracting some of the
complexity introduced by dedicated hardware platforms and providing
simple and intuitive functions to the user or higher layers of the
software stack.

148 CHAPTER 6. SNN DEPLOYMENT

In the Kraken platform, this task is offloaded to the “pulp-
runtime”3, which can be considered a minimal set of low-level API
which allows governing the entire SoC. A user can compose a complex
application manually by explicitly describing the desired algorithm
in the “C” language, which calls the aforementioned API functions.
Similarly, the very same API functions can be used as an interface for
an auto-generated application, like in the case of the deployment flow
described in this chapter.

Figure 6.4: visual representation of the low-level modules composing
the software stack SNNs

The programming code, which constitutes the “firmware” ap-
plication executed by the RISC-V core, is automatically compiled
into executable machine instruction using a compile toolchain, i.e.,
the “PULP RISC-V toolchain”. Figure6.4 shows a representation of

3link to the PULP runtime

6.3. VERTICAL SOFTWARE STACK 149

the software stack executed on the Kraken platform. This module
represents the lowest layer of the vertical stack for deploying SNNs on
the Kraken platform.

The conjunction point between the upper layers of the software
stack, i.e., the ones in charge of training and quantizing the network,
and the lower layers, i.e., the ones in charge of converting the appli-
cation into a set of executable machine instructions, is constituted by
two intermediate software layers that expose a dedicated SNE software
interface.

The first intermediate software layer, the “SNE HAL”, contains
the definition of all the accessible configuration registers of the SNE
accelerator and the wrapper function to program, i.e., read and
write the content of such registers. This layer directly uses the
“pulp-runtime” API function calls to access the system bus and
physically perform the accelerator register configuration. The second
intermediate software layer builds on top of the previous one to
compose a set of SNE specific primitives that allow configuring the
accelerator in the desired mode.

6.3.3 SNE software primitives
This section provides a few relevant examples of such SNE primitive
functions. This section aims to show the reader some practical
examples of the SNE programming. The SNE software primitives can
be divided into three categories described in the following sections.

DMAs API

Each DMAcan be configured to move data from/to Kraken’s L2
memory. The streamers can load both the layer’s weights and inputs
and store the events generated by the engines back in the memory.
Listing 6.3.3 reports a sample function that allows setting up a
memory transfer. The function serves as a wrapper for a series of
“pulp-runtime” register write function calls, configuring the registers
of the SNE accelerator.

1 static inline void hal_sne_init_streamer (
2 uint32_t streamer ,
3 uint32_t l2saddr ,

150 CHAPTER 6. SNN DEPLOYMENT

4 uint32_t l2step ,
5 uint32_t l0saddr ,
6 uint32_t l0step ,
7 uint32_t transize) {
8

9 pulp_write (SNE_SYSTEM_BASE_ADDR +
SNE_SYSTEM_CLOCK_CFG_MAIN_CTRL_I_0_OFFSET + (
streamer) * 4, 0);

10

11 pulp_write (SNE_SYSTEM_BASE_ADDR +
SNE_SYSTEM_CLOCK_CFG_TCDM_START_ADDR_I_0_OFFSET + (
streamer) * 4, l2saddr);

12 pulp_write (SNE_SYSTEM_BASE_ADDR +
SNE_SYSTEM_CLOCK_CFG_TCDM_ADDR_STEP_I_0_OFFSET + (
streamer) * 4, l2step);

13 pulp_write (SNE_SYSTEM_BASE_ADDR +
SNE_SYSTEM_CLOCK_CFG_TCDM_END_ADDR_I_0_OFFSET + (
streamer) * 4, 0 x00000000);

14 pulp_write (SNE_SYSTEM_BASE_ADDR +
SNE_SYSTEM_CLOCK_CFG_TCDM_TRAN_SIZE_I_0_OFFSET + (
streamer) * 4, transize);

15

16 pulp_write (SNE_SYSTEM_BASE_ADDR +
SNE_SYSTEM_CLOCK_CFG_SRAM_START_ADDR_I_0_OFFSET + (
streamer) * 4, l0saddr);

17 pulp_write (SNE_SYSTEM_BASE_ADDR +
SNE_SYSTEM_CLOCK_CFG_SRAM_ADDR_STEP_I_0_OFFSET + (
streamer) * 4, l0step);

18 pulp_write (SNE_SYSTEM_BASE_ADDR +
SNE_SYSTEM_CLOCK_CFG_SRAM_END_ADDR_I_0_OFFSET + (
streamer) * 4, 0 x00000000);

19

20 }

C-XBAR API

The C-XBARconnects SNE SLs with the two DMAs. Functions like
the one reported in Listing 6.3.3 configure the internal configuration
scheme among the various modules of SNE. For example, in this
case, the crossbar configures the two internal sub-crossbars to redirect
the output of one streamer to the input of all the SNE SLs. This
function is handy during weights loading, where, for example, the two
streamers can be used simultaneously to load two different sets of
weights to the engines.

6.3. VERTICAL SOFTWARE STACK 151

1 static inline void hal_sne_crossbar_all_engine (){
2

3 // configuration for the crossbar stage 0
4 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_STAGE_0_0_OFFSET , 0 x03def7bc);
5 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_STAGE_0_1_OFFSET , 0 x7bdef7bc);
6 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_STAGE_0_2_OFFSET , 0 x7bdef10c);
7 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_STAGE_0_3_OFFSET , 0 x214c7424);
8 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_STAGE_0_4_OFFSET , 0 x84653a54);
9 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_STAGE_0_5_OFFSET , 0 x7bdef7bc);
10 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_STAGE_0_6_OFFSET , 0 x7bdef7bc);
11 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_STAGE_0_7_OFFSET , 0 x7bdef7bc);
12

13 // configuration for the crossbar stage 1
14 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_STAGE_1_0_OFFSET , 0 x7d800000);
15 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_STAGE_1_1_OFFSET , 0 x000007bc);
16 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_STAGE_1_2_OFFSET , 0 x7bdef844);
17 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_STAGE_1_3_OFFSET , 0 x94e957bc);
18 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_STAGE_1_4_OFFSET , 0 x7bdef7bc);
19 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_STAGE_1_5_OFFSET , 0 x7bdef7bc);
20

21 // config barrier and synch
22 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_BARRIER_I_OFFSET , 0 x00001555);
23 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_XBAR_SYNCH_I_OFFSET , 0 x3FFF);
24 }

PE API

API functions like the one reported in Listing 6.3.3 control the
configuration of the number of channels or neurons, firing threshold,

152 CHAPTER 6. SNN DEPLOYMENT

resting voltages, time scaling, and other configurable parameters of
the engines.

1 static inline void hal_sne_init_sequencer (
2 uint32_t slice ,
3 uint32_t saddr ,
4 uint32_t eaddr){
5

6 pulp_write (SNE_BASE_ADDR +
SNE_ENGINE_CLOCK_CFG_ADDR_STEP_I_0_OFFSET + slice * 4,

0x1);
7 pulp_write (SNE_BASE_ADDR +

SNE_ENGINE_CLOCK_CFG_ADDR_START_I_0_OFFSET + slice * 4,
saddr);

8 pulp_write (SNE_BASE_ADDR +
SNE_ENGINE_CLOCK_CFG_ADDR_END_I_0_OFFSET + slice * 4,

eaddr);
9

10 }
11

12 static inline void hal_sne_init_engine (
13 uint32_t engine ,
14 volatile uint32_t cids [4] ,
15 uint32_t channels ,
16 uint32_t layer ,
17 uint32_t kernel_mode) {
18

19 pulp_write (SNE_BASE_ADDR +
SNE_ENGINE_CLOCK_CFG_CID_I_0_OFFSET + 4 * engine , (((
cids [0]) <<24) +((cids [1]) <<16) +((cids [2]) <<8)+((cids [3])
<<0))); // engine cids

20 pulp_write (SNE_BASE_ADDR +
SNE_ENGINE_CLOCK_CFG_SLICE_I_0_OFFSET + 4 * engine , (
kernel_mode << 12) | (channels << 3) | (layer)); //
slice config , layer , number of channels etc

21 pulp_write (SNE_BASE_ADDR +
SNE_ENGINE_CLOCK_CFG_ERROR_I_0_OFFSET + 4 * engine , 0
x06);

22 }

With a function like the one reported in Listing 6.3.3, the input
event address filtering modules of each Clusterare configured; this
function allows to map each engine to a specific portion of the network.

1 static void hal_sne_set_filter (
2 uint32_t slice ,
3 uint32_t group ,
4 uint32_t left ,

6.3. VERTICAL SOFTWARE STACK 153

5 uint32_t right ,
6 uint32_t bottom ,
7 uint32_t top ,
8 uint32_t xoffset ,
9 uint32_t yoffset){

10

11

12 uint32_t reg_val ;
13 uint32_t lbound ;
14 uint32_t ubound ;
15 uint32_t offsets ;
16 uint32_t address_offset ;
17

18 lbound = (left) | (bottom << 16);
19 ubound = (right) | (top << 16);
20

21 offsets = (xoffset << 1) | (yoffset << 4) | 0x1;
22

23 // address computed manually for each group :
24 // clusters have a unique ID , that can be calculated as

slice_id * CLUSTERS + group_id
25 // The registers are mapped to consecutive addresses

(32 bit aligned) for consecutive clusters .
26 address_offset = 4*(slice *(SNE_CLUSTERS)+ group);
27

28 pulp_write (SNE_BASE_ADDR +
SNE_ENGINE_CLOCK_CFG_FILTER_MAIN_I_0_OFFSET +
address_offset , offsets);

29 pulp_write (SNE_BASE_ADDR +
SNE_ENGINE_CLOCK_CFG_FILTER_LBOUND_I_0_OFFSET +
address_offset , lbound);

30 pulp_write (SNE_BASE_ADDR +
SNE_ENGINE_CLOCK_CFG_FILTER_UBOUND_I_0_OFFSET +
address_offset , ubound);

31

32 }

6.3.4 Automatic code generation
API functions like the ones presented in the previous section constitute
the building blocks for composing an application capable of executing
a SNN network on the SNE accelerator. As we have mentioned in
the introductory section of this chapter, the ultimate goal of the
deployment toolchain is to facilitate the execution of an SNN workload
on a platform like the Kraken chip. Ideally, to achieve this goal,

154 CHAPTER 6. SNN DEPLOYMENT

we want to hide as many low-level hardware-related technicalities as
possible from the user.

A fair assumption would be to consider a full network inference
as the lowest level of detail that we want to expose to the user. This
assumption sets the goal for that part of the toolchain that is in charge
of generating the code to perform such an operation. For convenience,
from now on, we will call this module “snn-code-generator”.

Several challenges are associated with the automatic code gen-
eration for executing a neural network inference pass. A prevalent
scenario is where a single neural network layer already needs to
allocate more neurons than the available ones executable on the target
accelerator. To still be able to run a full inference in this scenario,
a viable strategy is to “tile” the network layer and execute only a
portion of it. In this case, the accelerator can be used in a time-domain
multiplexed way to compute the output of a “tile” at the time. The
intermediate features can be temporarily stored in the system memory.

The same approach is used to deploy SNN on the SNE accelerator.
It is important to note that the accelerator architecture assumes
an “output stationary” execution of the SNN. Moreover, the SNN
additional time dimension poses strict constraints to how input feature
maps, i.e., spike events, are processed by the accelerator. As the
neuron state is held inside the accelerator, to avoid unnecessary
memory traffic that would be caused by the membrane potential
storage and retrieval from the main memory, it is convenient to feed
all the output neurons of a tile with the entire input stream of events
and produce, simultaneously, the complete output stream of event
related to such output neurons. This section does not have the aim to
cover the optimal mapping on the SNE accelerator extensively, as this
was outside the scope of demonstrating a vertical software deployment
stack; however, such investigation is left for future work and definitely
would contribute to a more efficient system memory utilization and
lower inference latency.

To achieve a good mapping, we identified a balanced yet efficient
accelerator configuration, which suits the network topology presented
before. Such a configuration is the one that uses all the engines to
compute a 14x14 pixels patch of the input and computes four different
output channels in parallel on each engine. This configuration of
the SNE is used as a target configuration for the snn-code-generator.

6.3. VERTICAL SOFTWARE STACK 155

Note that in this scenario, such configuration allows achieving a full
occupation of the data path when computing all the layers of the
sample network.

The generated code is organized as per-layer execution ANSI C
auto-generated functions. The inference process then calls all the
generated functions sequentially from the main application code. Each
layer execution is sub-divided into a layer tile execution series on SNE.
A sample “tiled” layer execution is reported in listing 6.3.4.

1 int conv1_layer (){
2

3 uint32_t channels = 2;
4 uint32_t layer = SNE_LAYER_OPT_CONV ;
5 uint32_t kernel_mode = SNE_ENGINE_4x4MODE ;
6

7 // network hyperparameters
8 uint8_t refractory_time = 0;
9 uint8_t timescale_shift = 4;

10 uint8_t adaptive_threshold = 0;
11 uint8_t threshold = 16;
12 int8_t rest_voltage = 0;
13

14 uint32_t streamer_done ;
15

16 // write network specific hyperparameters to
configuration registers

17 sne_config_network_params (timescale_shift ,
adaptive_threshold , refractory_time , threshold ,
rest_voltage);

18

19 // write engines configuration registers
20 sne_init_engines (cids[i], 256 , layer , 0);
21

22 // load weights from L2 to engines ’ SRAMs
23 load_weights (i);
24

25 // set kernel mode reflect the SNE_ENGINE_4x4MODE
configuration

26 for(uint32_t j = 0; j < SNE_ENGINES ; j++){
27 pulp_write (SNE_BASE_ADDR +

SNE_ENGINE_CLOCK_CFG_SLICE_I_0_OFFSET + (4 * j), (
channels << 3) | (layer) | (kernel_mode << 12));

28 }
29

30 // connect streamers to engines (broadcast)
31 hal_sne_crossbar_all_engine ();

156 CHAPTER 6. SNN DEPLOYMENT

32 printf (" Weights loaded \n");
33

34 // iterate over the tiles dimension
35 for(uint8_t i = 0; i < TILES ; ++i){
36

37 printf (" Starting tile %d\n", i);
38

39 // map engines and clusters wrt input
40 sne_set_params (crops [i], overlaps [i]);
41

42 // configure streamers for execution
43

44 // set streamer 1 for output
45 pulp_write (SNE_BASE_ADDR +

SNE_BUS_CLOCK_CFG_COMPLEX_I_OFFSET , 0x4);
46 pulp_write (SNE_BASE_ADDR +

SNE_SYSTEM_CLOCK_CFG_MAIN_CTRL_I_1_OFFSET , 0x00); //
reset ?

47 hal_sne_init_streamer (1, (uint32_t) spikes_out , 4, 0,
1, 0 xEFFFFFFF);

48 pulp_write (SNE_BASE_ADDR +
SNE_SYSTEM_CLOCK_CFG_MAIN_CTRL_I_1_OFFSET , 0x03); //
streamer 1, assert : arm , trigger

49

50 // trigger inputs loading
51 pulp_write (SNE_BASE_ADDR +

SNE_SYSTEM_CLOCK_CFG_MAIN_CTRL_I_0_OFFSET , 0x04);
52 hal_sne_init_streamer (0, (uint32_t) spikes_in , 4, 0, 1,

N_SPIKES);
53 pulp_write (SNE_BASE_ADDR +

SNE_SYSTEM_CLOCK_CFG_MAIN_CTRL_I_0_OFFSET , 0x07); //
streamer trigger

54

55 printf (" Loading inputs ...\n");
56

57 // wait for streamer 0 to finish to load the inputs
58 streamer_done = 0;
59 while (! streamer_done){
60 streamer_done = sne_streamer_done (0);
61 }
62

63 printf (" Waiting ...\n");
64

65 // wait end of computation
66 waitc (2000) ;
67

68 for(uint32_t j = 0; j < 100; ++j){

6.4. END-TO-END APPLICATION DEPLOYMENT TO KRAKEN157

69 printf ("%08X\n", spikes_out [j]);
70 spikes_out [j] = 0;
71 }
72 }
73

74 pulp_write (SNE_BASE_ADDR +
SNE_SYSTEM_CLOCK_CFG_TCDM_END_ADDR_I_1_OFFSET , (
uint32_t) spikes_out);

75 pulp_write (SNE_BASE_ADDR +
SNE_SYSTEM_CLOCK_CFG_MAIN_CTRL_I_1_OFFSET , 0x08); //
streamer 1, assert : arm , trigger

76

77 printf ("DONE !\n");
78 return 0;
79 }

The executable code is generated by a “Python4 3.8” command-
line tool which internally adopts a popular “templating” strategy
for easy code auto-generation. Specifically, the tool relies on the
features exposed by the “mako 5” library to compose the ANSI C
layer execution functions.

6.4 End-to-end application deployment to
Kraken

This section provides a conclusive study that evaluates the end-to-end,
i.e., sensor-to-algorithm result, energy consumption, and latency of an
SNN executed on the Kraken platform. The network was trained on
the IBM DVS Gesture event data set [72], which contains 11 hand
gestures from 29 subjects under three illumination conditions from a
DVS128 event camera. Six subjects’ data are used for testing and the
remaining for training. The SNN used for such example deployment is
reported in Table 6.1. The network is composed of two convolutional
layers and two fully-connected layers. We used the training flow
described in the first part of this chapter to train the network.

We break down the results of our study into two distinct parts:
data acquisition on the FC through the dedicated DVSI interface,
and data processing, which consists of a spike preprocessing step in

4https://www.python.org
5https://www.makotemplates.org/

158 CHAPTER 6. SNN DEPLOYMENT

the cluster and a spike train inference step in the SNE. An embedded
application typically has the ultimate goal of controlling actuators, in
this context, based on the output of the SNN processing the sensor
data. Note that the main system clock of Kraken can vary from a
few kHz to 200 MHz, and the typical operating frequency is 50 MHz.
In typical operating conditions, the latency of changing an output
actuation signal, e.g., a PWM signal, is a few system clock cycles, i.e.,
below 1 µs. Therefore, we considered this latency negligible compared
to data acquisition and processing.

Table 6.1: DVS Gesture Network Parameters

Type Size Feature Size Features Stride
0 Input 128x128x2 - - -
1 Pool 32x32x2 4x4x1 2 4
2 Conv 32x32x16 3x3x2 16 1
3 Pool 16x16x16 2x2x1 16 2
4 Conv 16x16x32 3x3x1 32 1
5 Pool 8x8x32 2x2x1 32 2
6 Full 512 2048 512 -
7 Full 11 512 11 -

6.4.1 results
For advanced processing tasks, e.g., when the neural networks exceed
SNE output neuron capacity, like in this case, the inference is
executed on the accelerator in a tiled way, and the SNE is used in a
time-domain-multiplexing fashion. This process requires a software-
based inter-layer spike manipulation performed on the Kraken cluster.
Specifically, such a preprocessing step performed on the cluster is
necessary to assemble a single input event stream from multiple output
tiles and create the tiled input streams for the tiles of the successive
layer.

6.2 reports Kraken’s energy and latency metrics for a complete
gesture recognition task execution. Using a 300 milliseconds window
input, Kraken requires 164.5 ms and 7.7 mJ to perform a DVS-to-label

6.5. CONCLUSION 159

prediction, meeting real-time processing constraints. The inference
execution on SNE takes only 32 ms and 1.4 mJ.

Table 6.2: Performance metrics of Kraken on DVS-HandGesture
Dataset with an accuracy of 83%

Proc. Stage Time (ms) Power (mW)a
Energy (mJ)c

Idle Active
Data Acquisition
(FC)

1.5 3.5 3.8 0.006

Preprocessing
(Cluster)c,

131 6.5 34 4.6

SNN Inference
(SNE)

32 7.7 44 1.4

Total 164.5 17.7 35.6 c 7.7
All power numbers measured at VDD = 0.65 V

a Idle power measured with respective components clock-gated.
b Total energy is computed as the sum of active energy contributions

and idle energy of inactive components.
c Average total power consumption during inference

6.5 Conclusion
In this chapter, we have presented the required components to build
a complete SNN deployment vertical software stack for a custom
RISC-V-based hardware SoC which features a dedicated hardware
accelerator, like SNE, capable of executing event-driven energy pro-
portional computation. We can summarize the contribution of this
chapter as follows:

• We proposed a viable approach to tackle the challenges posed
by the non-differentiable nature of SNNs, practically employing
SoA techniques like STBP to circumvent the LIF neuron model
non-differentiable formulation. Then, we have shown that SNNs
can be effectively trained like conventional DNNs, using the
same software substrate, i.e., the Pytorch framework running

160 CHAPTER 6. SNN DEPLOYMENT

on CPU or GPU, to perform the neural network training.
Combining these two elements constitutes the first layer of the
proposed vertical software stack.

• We have shown that the SNNs execution is characterized by
a significant reduction in the number of required operations,
demonstrating that a hardware architecture that can profit from
data and operation sparsity significantly benefits from event-
driven computing algorithms like SNNs.

• We indicated how a trained network must be treated to be
efficiently executed on an embedded platform. We adopted
SoA precision reduction techniques, like PACT, to quantize the
network parameters and reduce the overall memory footprint to
achieve this goal. The quantization process was embedded into
the SNN deployment toolchain to perform quantization-aware
training of the network. We empirically show that the quality
of the result is only marginally affected by the quantization
process, practically showing the validity of the approach in the
embedded context.

• We listed the required additions to the open-source “PULP
runtime” to support the execution of SNNs on SoC like the
one presented in chapter 5. We then used such API function
calls as a substrate interface on which the SNN application
can build. We demonstrated how SNN layer execution code
could be auto-generated and compiled into an executable binary
application.

• We presented preliminary accuracy, energy, and latency results
of an SNN trained with the abovementioned supervised learn-
ing and quantization framework and deployed to the Kraken
platform with the code auto-generation flow described in this
chapter.

Chapter 7

Summary and
Conclusion

7.1 Main results
This section summarizes the main results achieved in this thesis.

Efficient, energy-proportional event-based sensor interfaces

We have presented two IO peripheral architectures capable of collect-
ing external data generated by connected sensors in an efficient and
energy-proportional way. Energy proportionality is an aspect that
becomes crucial when a device is connected to a sensor that is already
capable of producing relevant information in a non-redundant way.
The two interfaces exploit specific circuital solutions to mitigate the
energy spent during sparse event stream acquisition. Both peripherals
were demonstrated on ULP FPGA devices, in real working scenarios.
In the case of the DVSI, we could demonstrate on a low power
“Lattice” FPGA that such peripheral can achieve a high event-frame
acquisition rate of 874 event − framepersecond while consuming only
17.62 mW of power. The whole sensor node consumed 35.5 mW,
including the wireless event-frame streaming at 200 efps. In the
case of the DASI, we could show that the power consumption for

161

162 CHAPTER 7. SUMMARY AND CONCLUSION

time-to-information extraction scales from 4.5 mW at a 550kevt/s rate
down to slightly more than 50 µW at rates lower than 10evt/s (a
90× factor) while a näıve constant clock methodology would consume
4.5 mW power regardless of the event rate. In the second part of
the results, we have continued the discussion by showing how the
proposed IO peripherals can be efficiently integrated into a digital
microcontroller autonomous IO subsystem.

Improving edge-devices energy efficiency on error-resilient
applications

We have shown that, by relying on a strategic partitioning of the
SoC memory into error-free and error-prone regions, an error-resilient
application like BNNs can be efficiently deployed on edge computing
devices operated under extremely low voltage conditions. Our analysis
and results demonstrated on real silicon how to trade-off the energy
consumption of an FDX 22nm SoC with the final classification accu-
racy of Binary Neural Networks, executed on a dedicated hardware
accelerator. We demonstrate that the reported 2.2X energy efficiency
gain does not affect the end-to-end classification accuracy of the BNN
when the voltage is scaled down to 0.5 V. Additionally, we show that,
if a small penalty on the final classification accuracy is tolerable, e.g.
within 1%, the SoC can be operated in an ultra-low power mode,
further reducing the overall power consumption (674 µW at 18 MHz,
0.42 V)

An Energy-proportional, Sparse, Event-Driven accelerator
architecture for SNNs

We presented a novel fully digital accelerator for spiking neural
network workloads capable of inherently exploiting the unstructured
sparsity of data produced by event-based sensors. In SNE, we
demonstrated how an efficient input encoding can be exploited to
reduce the total number of engine operations during the inference
process. SNE inherently handles sparsity by consuming explicitly
spatial and temporal-encoded input events to selectively update the
internal output neuron states of those output neurons having a
certain input event in their receptive field. with SNE, we could

7.1. MAIN RESULTS 163

demonstrate how digital neuromorphic platforms, notably less energy
efficient than a digital accelerator for CNNs that perform very regular
computation, can be improved to achieve a consumed energy per
operation that approaches the one shown by more conventional SoA
digital accelerator architectures. This result narrows the gap between
neuromorphic platforms and classical DNNs.

An event-driven prototype manufactured in FDX22nm tech-
nology

As a conclusive study, we presented Kraken, a SoC targeting event-
driven cognitive application at the edge. In Kraken, we successfully
demonstrated how to integrate, in the same SoC architecture, a
general-purpose computing cluster, a neuromorphic computing accel-
erator, and event-based peripherals, enabling an end-to-end energy-
proportional event-driven on-chip computing pipeline. In our analysis,
we characterized the general-purpose computing core capabilities in
terms of integer and floating-point performance and energy efficiency
at multiple operating points. Kraken showed a floating point and
integer energy efficiency and performance comparable with the SoA.
Silicon characterization of the neuromorphic engine also showed SoA
results.

A complete framework for SNN deployment on edge neuro-
morphic devices

A software environment is a key element in enabling the deployment of
applications on any hardware platform. Therefore, we have presented
a complete SNN deployment vertical software stack for the Kraken
prototype chip. we presented a viable strategy to train and quantize
SNNs, practically employing SoA techniques like STBP to circumvent
the LIF neuron model non-differentiable formulation, PACT quanti-
zation algorithm, and commonly adopted software substrate like the
Pytorch framework running on CPU or GPU. Moreover, we showed
the required additions to the open-source “PULP runtime” supporting
the execution of SNNs on Kraken. We then used such API function
calls as a substrate interface on which the SNN application can build
on, practically demonstrating how SNN layer execution code can be

164 CHAPTER 7. SUMMARY AND CONCLUSION

auto-generated and compiled into an executable binary application.
Moreover, we showed preliminary results of an SNN inference deployed
to Kraken by using the methodology described in the second part of
this thesis.

7.2 Future Work and Outlook
In the following sections, we give an overview of possible future work
based on the results achieved in this thesis. At the end of this section,
we also provide a concluding outlook.

7.2.1 Future Work
A smarter integration of event-based sensors

The two event-based peripheral interfaces presented in this thesis
are simply integrated into an autonomous IO subsystem, already
providing great energy savings at the sensor edge. To enable further
energy savings at a system level, better integration of such peripherals
with the power management unit can be explored, such that a system
can autonomously enter and exit low-power states depending on the
sensor activity.

The execution of a broader set of neural network families

The SNE accelerator has been designed to execute SNN inference.
However, the architecture has no intrinsic limitation that prevents the
execution of other neural network families, e.g., conventional DNNs.
We believe that an evolution of SNE can target a broader set of neural
networks with minor adjustments to the design.

A more effective memory usage

The accelerator proposed in this thesis uses a significant amount of
local memory to hold the states of the neuron. An improvement
that would make the architecture even more scalable would be to
reduce such local memories and let SNE fetch and store data from
the main system memory as the computation happens. How to feed

7.2. FUTURE WORK AND OUTLOOK 165

a large number of parallel computational elements in presence of high
unstructured sparsity remains very challenging, and it is partially an
open question.

The support for low-precision neuromorphic computing

Neuromorphic computing is a relatively new field, and currently, there
is rather limited support for SNN training. When such a computing
framework is adopted in the embedded domain, it becomes crucial
to adopt all the “standard” memory footprint and computational
complexity reduction techniques, e.g. quantization. We believe
that similarly to what has been observed for conventional DNNs,
SNNs can also provide very good accuracy end energy efficiency,
at very low precision. Therefore, there is a need for SNN training
frameworks supporting quantization-aware training to unlock the full
SNN potential at a large scale, as happened for conventional DNNs.

7.2.2 Outlook
In the next step, we aim at addressing the open points presented above
and design an SoC which features better cooperation of event-based
sensors and the power management unit, more flexible and scalable,
sparse computational engines. We believe also that more extensive
software support for automatic application deployment will favor the
development of novel, embedded, event-driven efficient applications.

Appendix A

Chip gallery

This appendix lists all chips that have been fabricated and are related
to this thesis. A complete, up-to-date list can be found online at:
http://asic.ethz.ch/authors/Alfio Di Mauro.html

167

168 APPENDIX A. CHIP GALLERY

A.1 Kraken

Type IoT processor
Technology GlobalFoundries FDX 22nm
Dimensions 3000 µm × 3000 µm
Gate count 25MGE
Supply voltage [0.5V-0.8V]
Clock frequency 300 (Typical) MHz

Figure A.1: Kraken chip layout and main details

Description: Kraken is a PULP-based IoT processor. It features
one fabric controller (a 32bit RI5CY/CV32E40P core) and a
computing cluster with eight 32b RISC-V cores. Kraken has a
dedicated accelerator domain hosting SNE and CUTIE.

Designed and tested by: Alfio Di Mauro, Moritz Scherer, Arpan
Prasad, Tim Fischer, Oscar Castaneda, Manuel Eggimann, Matteo
Spallanzani, Georg Rutishauser.

A.2. MARSELLUS 169

A.2 Marsellus

Type IoT processor
Technology GlobalFoundries FDX 22nm
Dimensions 4000 µm × 3000 µm
Gate count 25MGE
Supply voltage 0.8V
Clock frequency 400 (Typical) MHz

Figure A.2: Marsellus chip layout and main details

Description: Marsellus is a co-operation between ETH Zurich and
Dolphin Design and includes a PULPopen instantiation as well as a
low power PLL from the Energy Efficient Circuits and IoT Systems

Designed and tested by: Davide Rossi, Alfio Di Mauro, Francesco
Conti, Gianna Paulin, Angelo Garofalo, Gianmarco Ottavi, Georg
Rutishauser, Hayate Okuhara, Manuel Eggimann.

170 APPENDIX A. CHIP GALLERY

A.3 Vega

Type IoT processor
Technology GlobalFoundries FDX 22nm
Dimensions 4000 µm × 3000 µm
Gate count 100MGE
Supply voltage [0.5V-0.8V]
Clock frequency 450 (Typical) MHz

Figure A.3: Vega chip layout and main details

Description: Vega is a 10 (9+1) RISC-V cores, PULP-based,
always-on IoT end-node SoC capable of scaling from a 1.7uW fully
retentive COGNITIVE sleep mode up to 32.2GOPS (@49.4mW)
peak performance. It features 1.6MB of state- retentive SRAM, and
4MB of non-volatile MRAM.

Designed and tested by: Davide Rossi, Francesco Conti, Manuel
Eggimann, Stefan Mach, Alfio Di Mauro, Marco Guermandi,
Giuseppe Tagliavini, Antonio Pullini, Igor Loi, Jie Chen, Eric
Flamand.

Appendix B

Notation and Acronyms

Acronyms

ABB adaptive body-biasing
AER Address Event Representation
AETR Address-Event-Timestamp Representation
AI artificial intelligence
ALIF adaptive leaky-integrate and fire
ALU arithmetic logic unit
ANN artificial neural network
APB advanced peripheral bus
API application programming interface

BNN binary neural network

CDC clock domain crossing
CPI camera parallel interface
CPU central process unit

171

172 Acronyms

DASI dynamic audio sensor interface
DMA direct memory access
DNN deep neural network
DVFS dynamic voltage and frequency scaling
DVS dynamic visual sensor
DVSI dynamic visual sensor interface

EHWPE esternal hardware processing engine

FC fabric controller
FIFO first-in first-out
FISTA fast iterative shrinkage-thresholding algorithm
FLL frequency locked loop
FPGA field-programmable gate array
FPU floating point unit

GPIO general purpose input output
GPU graphics process unit

HAL hardware abstraction layer

I2C Inter-Integrated Circuit
I2S Inter-Integrated-Circuit Sound
IMU inertial measurement unit
IOT internet of things
ISA instruction set architecture

JTAG joint test action group

LASSO least absolute shrinkage and selection operator
LIF leaky-integrate and fire
LUT look up table

MAC multiply-accumulate

Acronyms 173

MCU micro-controller unit
ML machine learning

NSAA near sensor analytic application
NTC near-threshold computing

PDK process development kit
PMU power management unit
PPA power performance analysis
PWM pulse width modulation

QSPI quad-serial peripheral interface

SLAM simultaneous localization and mapping
SNE sparse neural engine
SNN spiking neural network
SoA state-of-the-art
SoC system-on-chip
SOP synaptic operation
SRM spike response model
STA static timing analysis
STBP spatio-temporal back propagation
SDBP spike time dependent plasticity

TCDM tightly coupled data memory
TEI temperature effect inversion
TPU tensor process unit

UART universal asynchronous receiver transmitter
ULP ultra-low power

Bibliography

[1] A. Arif, F. A. Barrigon, F. Gregoretti, J. Iqbal, L. Lavagno,
M. T. Lazarescu, L. Ma, M. Palomino, and J. L. L. Segura,
“Performance and energy-efficient implementation of a smart
city application on FPGAs,” Journal of Real-Time Image
Processing, vol. 17, no. 3, pp. 729–743, jun 2018. [Online].
Available: https://doi.org/10.1007%2Fs11554-018-0792-x

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C.
Berg, and L. Fei-Fei, “Imagenet large scale visual recognition
challenge,” CoRR, vol. abs/1409.0575, 2014. [Online]. Available:
http://arxiv.org/abs/1409.0575

[3] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, “Device-to-
device communication in 5g cellular networks: challenges, solu-
tions, and future directions,” IEEE Communications Magazine,
vol. 52, no. 5, pp. 86–92, 2014.

[4] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and
X. Yang, “A survey on the edge computing for the internet of
things,” IEEE Access, vol. 6, pp. 6900–6919, 2018.

[5] “Ambiq Apollo Data Brief.”

[6] “NXP LPC185x/3x/2x/1x Datasheet.”

[7] “STMicroelectronics STM32L476xx Datasheet.”

175

https://doi.org/10.1007%2Fs11554-018-0792-x
http://arxiv.org/abs/1409.0575

176 BIBLIOGRAPHY

[8] “Texas Instruments MSP430 Low-Power MCUs,”
http://www.ti.com/lsds/ti/microcontrollers 16-bit 32-bit/
msp/overview.page.

[9] O. B. Tariq, M. T. Lazarescu, and L. Lavagno, “Neural networks
for indoor human activity reconstructions,” IEEE Sensors
Journal, vol. 20, no. 22, pp. 13 571–13 584, Nov 2020.

[10] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini,
D. Rossi, E. Flamand, F. K. Gurkaynak, and L. Benini, “Near-
Threshold RISC-V Core With DSP Extensions for Scalable IoT
Endpoint Devices,” IEEE TVLSI, vol. 25, no. 10, pp. 2700–2713,
2017.

[11] P. Prabhat, B. Labbe, G. Knight, A. Savanth, J. Svedas,
M. J. Walker, S. Jeloka, P. M.-Y. Fan, F. Garcia-Redondo,
T. Achuthan, and J. Myers, “27.2 m0n0: A performance-
regulated 0.8-to-38mhz dvfs arm cortex-m33 simd mcu with
10nw sleep power,” in 2020 IEEE International Solid- State
Circuits Conference - (ISSCC), 2020, pp. 422–424.

[12] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini,
“Mr.wolf: An energy-precision scalable parallel ultra low power
soc for iot edge processing,” IEEE Journal of Solid-State
Circuits, vol. 54, pp. 1970–1981, 7 2019.

[13] A. Pullini, D. Rossi, I. Loi, A. D. Mauro, and L. Benini, “Mr.
Wolf: A 1 GFLOP/s Energy-Proportional Parallel Ultra Low
Power SoC for IOT Edge Processing,” in ESSCIRC 2018 - IEEE
44th European Solid State Circuits Conference (ESSCIRC), Sep.
2018, pp. 274–277.

[14] A. D. Mauro, D. Rossi, A. Pullini, P. Flatresse, and L. Benini,
“Independent body-biasing of p-n transistors in an 28nm utbb
fd-soi ulp near-threshold multi-core cluster,” in 2018 IEEE
SOI-3D-Subthreshold Microelectronics Technology Unified Con-
ference (S3S), Oct 2018, pp. 1–3.

[15] D. Rossi, F. Conti, M. Eggimann, A. D. Mauro, G. Tagliavini,
S. Mach, M. Guermandi, A. Pullini, I. Loi, J. Chen, E. Flamand,

http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/overview.page
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/overview.page

BIBLIOGRAPHY 177

and L. Benini, “Vega: A ten-core soc for iot endnodes with
dnn acceleration and cognitive wake-up from mram-based state-
retentive sleep mode,” IEEE Journal of Solid-State Circuits, pp.
1–1, 2021.

[16] P. Mayer, M. Magno, and L. Benini, “Self-sustaining acoustic
sensor with programmable pattern recognition for underwater
monitoring,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 68, no. 7, pp. 2346–2355, 2019.

[17] P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti,
and L. Benini, “Quentin: an ultra-low-power pulpissimo soc in
22nm fdx,” in 2018 IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S3S), 2018, pp. 1–3.

[18] A. Garofalo, G. Ottavi, A. di Mauro, F. Conti, G. Tagliavini,
L. Benini, and D. Rossi, “A 1.15 tops/w, 16-cores parallel ultra-
low power cluster with 2b-to-32b fully flexible bit-precision and
vector lockstep execution mode,” in ESSCIRC 2021 - IEEE 47th
European Solid State Circuits Conference (ESSCIRC), 2021, pp.
267–270.

[19] N. Bruschi, G. Haugou, G. Tagliavini, F. Conti, L. Benini, and
D. Rossi, “Gvsoc: A highly configurable, fast and accurate full-
platform simulator for risc-v based iot processors,” in 2021 IEEE
39th International Conference on Computer Design (ICCD),
2021, pp. 409–416.

[20] B. Forsberg, M. Solieri, M. Bertogna, L. Benini, and
A. Marongiu, “The predictable execution model in practice:
Compiling real applications for cots hardware,” ACM Trans.
Embed. Comput. Syst., vol. 20, no. 5, jul 2021. [Online].
Available: https://doi.org/10.1145/3465370

[21] F. Zaruba and L. Benini, “The cost of application-class process-
ing: Energy and performance analysis of a linux-ready 1.7-ghz
64-bit risc-v core in 22-nm fdsoi technology,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 11,
pp. 2629–2640, 2019.

https://doi.org/10.1145/3465370

178 BIBLIOGRAPHY

[22] R. Christy, S. Riches, S. Kottekkat, P. Gopinath, K. Sawant,
A. Kona, and R. Harrison, “8.3 a 3ghz arm neoverse n1 cpu
in 7nm finfet for infrastructure applications,” in 2020 IEEE
International Solid- State Circuits Conference - (ISSCC), 2020,
pp. 148–150.

[23] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-threshold computing: Reclaiming moore’s law
through energy efficient integrated circuits,” Proceedings of the
IEEE, vol. 98, no. 2, pp. 253–266, Feb 2010.

[24] A. Di Mauro, D. Rossi, A. Pullini, P. Flatresse, and L. Benini,
“Temperature and process-aware performance monitoring and
compensation for an ulp multi-core cluster in 28nm utbb
fd-soi technology,” in 2017 27th International Symposium on
Power and Timing Modeling, Optimization and Simulation
(PATMOS), 2017, pp. 1–8.

[25] J. Cortadella, L. Lavagno, P. López, M. Lupon, A. Moreno,
A. Roca, and S. S. Sapatnekar, “Reactive clocks with variability-
tracking jitter,” in 2015 33rd IEEE International Conference on
Computer Design (ICCD), Oct 2015, pp. 511–518.

[26] M. Cannizzaro, S. Beer, J. Cortadella, R. Ginosar, and
L. Lavagno, “Saferazor: Metastability-robust adaptive clock-
ing in resilient circuits,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 62, no. 9, pp. 2238–2247, Sep.
2015.

[27] F. Zaruba, F. Schuiki, and L. Benini, “Manticore: A 4096-
core risc-v chiplet architecture for ultraefficient floating-point
computing,” IEEE Micro, vol. 41, no. 2, pp. 36–42, 2021.

[28] P. Vivet, E. Guthmuller, Y. Thonnart, G. Pillonnet, G. Moritz,
I. Miro-Panadès, C. Fuguet, J. Durupt, C. Bernard, D. Varreau,
J. Pontes, S. Thuries, D. Coriat, M. Harrand, D. Dutoit, D. Lat-
tard, L. Arnaud, J. Charbonnier, P. Coudrain, A. Garnier,
F. Berger, A. Gueugnot, A. Greiner, Q. Meunier, A. Farcy,
A. Arriordaz, S. Cheramy, and F. Clermidy, “2.3 a 220gops 96-
core processor with 6 chiplets 3d-stacked on an active interposer

BIBLIOGRAPHY 179

offering 0.6ns/mm latency, 3tb/s/mm¡sup¿2¡/sup¿ inter-chiplet
interconnects and 156mw/mm¡sup¿2¡/sup¿@ 822020 IEEE In-
ternational Solid- State Circuits Conference - (ISSCC), 2020,
pp. 46–48.

[29] S. Davidson, S. Xie, C. Torng, K. Al-Hawai, A. Rovinski,
T. Ajayi, L. Vega, C. Zhao, R. Zhao, S. Dai, A. Amarnath,
B. Veluri, P. Gao, A. Rao, G. Liu, R. K. Gupta, Z. Zhang,
R. Dreslinski, C. Batten, and M. B. Taylor, “The celerity
open-source 511-core risc-v tiered accelerator fabric: Fast archi-
tectures and design methodologies for fast chips,” IEEE Micro,
vol. 38, no. 2, pp. 30–41, 2018.

[30] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg,
and L. Benini, “GAP-8: A RISC-V SoC for AI at the Edge
of the IoT,” in 2018 IEEE 29th International Conference
on Application-Specific Systems, Architectures and Processors
(ASAP). Milano, Italy: IEEE, Jul. 2018, pp. 1–4.

[31] D. C. Daly, L. C. Fujino, and K. C. Smith, “Through the looking
glass-2020 edition: Trends in solid-state circuits from isscc,”
IEEE Solid-State Circuits Magazine, vol. 12, no. 1, pp. 8–24,
2020.

[32] F. Conti and L. Benini, “A ultra-low-energy convolution en-
gine for fast brain-inspired vision in multicore clusters,” in
2015 Design, Automation Test in Europe Conference Exhibition
(DATE), 2015, pp. 683–688.

[33] M. Scherer, G. Rutishauser, L. Cavigelli, and L. Benini, “Cutie:
Beyond petaop/s/w ternary dnn inference acceleration with
better-than-binary energy efficiency,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 41, no. 4, pp. 1020–1033, 2022.

[34] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. Yoo,
“UNPU: An Energy-Efficient Deep Neural Network Accelerator
With Fully Variable Weight Bit Precision,” IEEE Journal of
Solid-State Circuits, vol. 54, no. 1, pp. 173–185, Jan 2019.

180 BIBLIOGRAPHY

[35] M. Courbariaux and Y. Bengio, “Binarynet: Training deep
neural networks with weights and activations constrained to +1
or -1,” CoRR, vol. abs/1602.02830, 2016. [Online]. Available:
http://arxiv.org/abs/1602.02830

[36] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental
network quantization: Towards lossless cnns with low-precision
weights,” CoRR, vol. abs/1702.03044, 2017. [Online]. Available:
http://arxiv.org/abs/1702.03044

[37] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: ImageNet Classification Using Binary Convolutional Neu-
ral Networks,” arXiv:1603.05279 [cs], Mar. 2016.

[38] F. Conti, P. D. Schiavone, and L. Benini, “XNOR Neural
Engine: A Hardware Accelerator IP for 21.6-fJ/op Binary
Neural Network Inference,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 11,
pp. 2940–2951, Nov. 2018.

[39] M. Yang, C.-H. Chien, T. Delbruck, and S.-C. Liu, “A 0.5V
55µW 64×2 Channel Binaural Silicon Cochlea for Event-Driven
Stereo-Audio Sensing,” in 2016 IEEE International Solid-State
Circuits Conference (ISSCC). IEEE, 2016, pp. pp. 388–389.

[40] C. Li, L. Longinotti, F. Corradi, and T. Delbruck, “A 132
by 104 10um-pixel 250uw 1kefps dynamic vision sensor with
pixel-parallel noise and spatial redundancy suppression,” in
2019 Symposium on VLSI Circuits, 2019, pp. C216–C217.

[41] A. Bachrach, “Skydio autonomy engine: Enabling the next
generation of autonomous flight,” in 2021 IEEE Hot Chips 33
Symposium (HCS), 2021.

[42] F. Alam, R. Mehmood, I. Katib, N. N. Albogami, and
A. Albeshri, “Data fusion and iot for smart ubiquitous envi-
ronments: A survey,” IEEE Access, vol. 5, pp. 9533–9554, 2017.

[43] X. Li, D. Neil, T. Delbruck, and S.-C. Liu, “Lip reading deep
network exploiting multi-modal spiking visual and auditory

http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1702.03044

BIBLIOGRAPHY 181

sensors,” in 2019 IEEE International Symposium on Circuits
and Systems (ISCAS), 2019, pp. 1–5.

[44] Z. Jiang, P. Xia, K. Huang, W. Stechele, G. Chen, Z. Bing,
and A. Knoll, “Mixed frame-/event-driven fast pedestrian de-
tection,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 8332–8338.

[45] A. Di Mauro, F. Conti, and L. Benini, “An ultra-low power
address-event sensor interface for energy-proportional time-
to-information extraction,” in 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2017, pp. 1–6.

[46] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste,
“Sparsity in deep learning: Pruning and growth for efficient
inference and training in neural networks,” 2021. [Online].
Available: https://arxiv.org/abs/2102.00554

[47] S. Dave, R. Baghdadi, T. Nowatzki, S. Avancha, A. Shrivastava,
and B. Li, “Hardware acceleration of sparse and irregular tensor
computations of ml models: A survey and insights,” Proceedings
of the IEEE, pp. 1–47, 2021.

[48] A. Di Mauro, M. Scherer, J. F. Mas, B. Bougenot, M. Magno,
and L. Benini, “Flydvs: An event-driven wireless ultra-low
power visual sensor node,” in 2021 Design, Automation Test
in Europe Conference Exhibition (DATE), Feb 2021, pp. 1851–
1854.

[49] A. D. Mauro, F. Conti, P. D. Schiavone, D. Rossi, and
L. Benini, “Always-on 674uw@4gop/s error resilient binary
neural networks with aggressive sram voltage scaling on a 22-nm
iot end-node,” IEEE Transactions on Circuits and Systems I:
Regular Papers, pp. 1–14, 2020.

[50] A. Di Mauro, A. Suravi Prasad, Z. Huang, M. Spallanzani,
F. Conti, and L. Benini, “Sne: an energy-proportional digital
accelerator for sparse event-based convolutions,” 2022, design,
Automation and Test in Europe Conference (DATE 2022);
Conference Location: Online; Conference Date: March 14-23,
2022; Conference lecture held on 22 March 2022.

https://arxiv.org/abs/2102.00554

182 BIBLIOGRAPHY

[51] A. Di Mauro, M. Scherer, D. Rossi, and L. Benini, “Kraken:
A direct event/frame-based multi-sensor fusion soc for ultra-
efficient visual processing in nano-uavs,” in 2022 IEEE Hot
Chips 34 Symposium (HCS), 2022, pp. 1–19.

[52] A. D. Mauro, F. Conti, P. D. Schiavone, D. Rossi, and L. Benini,
“Pushing on-chip memories beyond reliability boundaries in
micropower machine learning applications,” in 2019 IEEE In-
ternational Electron Devices Meeting (IEDM), 2019, pp. 30.4.1–
30.4.4.

[53] A. Di Mauro, F. Zaruba, F. Schuiki, S. Mach, and L. Benini,
“Live demonstration: Exploiting body-biasing for static corner
trimming and maximum energy efficiency operation in 22nm fdx
technology,” in 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), 2020, pp. 1–1.

[54] A. Di Mauro, D. Rossi, A. Pullini, P. Flatresse, and L. Benini,
“Live demonstration: Body-bias based performance monitoring
and compensation for a near-threshold multi-core cluster in
28nm fd-soi technology,” in 2018 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), 2018, pp. 1–1.

[55] A. Di Mauro, D. Rossi, A. Pullini, P. Flatresse, and L. Benini,
“Performance-aware predictive-model-based on-chip body-bias
regulation strategy for an ulp multi-core cluster in 28 nm
utbb fd-soi,” Integration, vol. 72, pp. 194–207, 2020. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0167926017307952

[56] A. Di Mauro, H. Fatemi, J. P. de Gyvez, and L. Benini,
“Idleness-aware dynamic power mode selection on the i.mx
7ulp iot edge processor,” Journal of Low Power Electronics
and Applications, vol. 10, no. 2, 2020. [Online]. Available:
https://www.mdpi.com/2079-9268/10/2/19

[57] D. Rossi, F. Conti, M. Eggiman, S. Mach, A. D. Mauro,
M. Guermandi, G. Tagliavini, A. Pullini, I. Loi, J. Chen,
E. Flamand, and L. Benini, “4.4 a 1.3tops/w @ 32gops fully
integrated 10-core soc for iot end-nodes with 1.7µ w cognitive

https://www.sciencedirect.com/science/article/pii/S0167926017307952
https://www.sciencedirect.com/science/article/pii/S0167926017307952
https://www.mdpi.com/2079-9268/10/2/19

BIBLIOGRAPHY 183

wake-up from mram-based state-retentive sleep mode,” in 2021
IEEE International Solid- State Circuits Conference (ISSCC),
vol. 64, 2021, pp. 60–62.

[58] P. D. Schiavone, D. Rossi, A. Di Mauro, F. K. Gürkaynak,
T. Saxe, M. Wang, K. C. Yap, and L. Benini, “Arnold: An
efpga-augmented risc-v soc for flexible and low-power iot end
nodes,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 29, no. 4, pp. 677–690, 2021.

[59] H. Okuhara, A. Elnaqib, D. Rossi, A. Di Mauro, P. Mayer,
P. Palestri, and L. Benini, “An energy-efficient low-voltage
swing transceiver for mw-range iot end-nodes,” in 2020 IEEE
International Symposium on Circuits and Systems (ISCAS),
2020, pp. 1–5.

[60] M. Hersche, E. M. Rella, A. Di Mauro, L. Benini, and
A. Rahimi, “Integrating event-based dynamic vision sensors
with sparse hyperdimensional computing: A low-power
accelerator with online learning capability,” in Proceedings
of the ACM/IEEE International Symposium on Low Power
Electronics and Design, ser. ISLPED ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 169–174.
[Online]. Available: https://doi.org/10.1145/3370748.3406560

[61] H. Abdi and L. J. Williams, “Principal component analy-
sis,” Wiley Interdisciplinary Reviews: Computational Statistics,
vol. 2, no. 4, pp. 433–459, 2010.

[62] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko,
R. Silverman, and A. Y. Wu, “An efficient k-means clustering
algorithm: Analysis and implementation,” IEEE transactions
on pattern analysis and machine intelligence, vol. 24, no. 7, pp.
881–892, 2002.

[63] C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for Support
Vector Machines,” ACM Transactions on Intelligent Systems
and Technology, vol. 2, no. 3, pp. 27:1–27:27, May 2011.

https://doi.org/10.1145/3370748.3406560

184 BIBLIOGRAPHY

[64] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Clas-
sification with Deep Convolutional Neural Networks,” in Ad-
vances in Neural Information Processing Systems 25, F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2012, pp. 1097–1105.

[65] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and
T. Delbruck, “Retinomorphic Event-Based Vision Sensors:
Bioinspired Cameras With Spiking Output,” Proceedings of the
IEEE, vol. 102, no. 10, pp. 1470–1484, Oct. 2014.

[66] M. Yang, C. H. Chien, T. Delbruck, and S. C. Liu, “A 0.5V
55 µW 64x2-channel binaural silicon cochlea for event-driven
stereo-audio sensing,” in 2016 IEEE International Solid-State
Circuits Conference (ISSCC), Jan. 2016, pp. 388–389.

[67] M. Gottardi, N. Massari, and S. A. Jawed, “A 100 µW 128x64
pixels contrast-based asynchronous binary vision sensor for
sensor networks applications,” IEEE Journal of Solid-State
Circuits, vol. 44, no. 5, pp. 1582–1592, May 2009.

[68] D. A. Butts, C. Weng, J. Jin, C.-I. Yeh, N. A. Lesica, J.-M.
Alonso, and G. B. Stanley, “Temporal precision in the neural
code and the timescales of natural vision,” 2007.

[69] S. Moradi and G. Indiveri, “An event-based neural network ar-
chitecture with an asynchronous programmable synaptic mem-
ory,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 8, no. 1, pp. 98–107, Feb. 2014.

[70] P. a. Merolla, J. V. Arthur, R. Alvarez-Icaza, a. S. Cassidy,
J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo,
Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy,
B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar,
and D. S. Modha, “A million spiking-neuron integrated circuit
with a scalable communication network and interface,” Science,
vol. 345, no. 6197, pp. 668–673, Aug. 2014.

[71] C. Li, L. Longinotti, F. Corradi, and T. Delbruck, “A 132
by 104 10um-pixel 250uw 1kefps dynamic vision sensor with

BIBLIOGRAPHY 185

pixel-parallel noise and spatial redundancy suppression,” in
2019 Symposium on VLSI Circuits, 2019, pp. C216–C217.

[72] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry,
C. Di Nolfo, T. Nayak, A. Andreopoulos, G. Garreau, M. Men-
doza et al., “A low power, fully event-based gesture recognition
system,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 7243–7252.

[73] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba,
A. Censi, S. Leutenegger, A. Davison, J. Conradt, K. Dani-
ilidis et al., “Event-based vision: A survey,” arXiv preprint
arXiv:1904.08405, 2019.

[74] B. Wen and K. Boahen, “A silicon cochlea with active coupling,”
IEEE Transactions on Biomedical Circuits and Systems, vol. 3,
no. 6, pp. 444–455, Dec. 2009.

[75] S. C. Liu, A. van Schaik, B. A. Mincti, and T. Delbruck, “Event-
based 64-channel binaural silicon cochlea with q enhancement
mechanisms,” in Proc. IEEE Int. Symp. Circuits and Systems,
May 2010, pp. 2027–2030.

[76] S. C. Liu, A. van Schaik, B. A. Minch, and T. Delbruck,
“Asynchronous Binaural Spatial Audition Sensor With 2 64 4
Channel Output,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 8, no. 4, pp. 453–464, Aug. 2014.

[77] W. Song, Q. Han, Z. Lin, N. Yan, D. Luo, Y. Liao, M. Zhang,
Z. Wang, X. Xie, A. Wang et al., “Design of a flexible wear-
able smart semg recorder integrated gradient boosting decision
tree based hand gesture recognition,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 13, no. 6, pp. 1563–1574,
2019.

[78] M. Vandersteegen, W. Reusen, K. Van Beeck, and T. Goedemé,
“Low-latency hand gesture recognition with a low-resolution
thermal imager,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, 2020,
pp. 98–99.

186 BIBLIOGRAPHY

[79] V. K. Sarker, M. Jiang, T. N. Gia, A. Anzanpour, A. M.
Rahmani, and P. Liljeberg, “Portable multipurpose bio-signal
acquisition and wireless streaming device for wearables,” in 2017
IEEE Sensors Applications Symposium (SAS), 2017, pp. 1–6.

[80] A. Linares-Barranco, R. Paz, A. Jimenez-Fernandez, C. D.
Lujan, M. Rivas, J. L. Sevillano, G. Jimenez, and A. Civit,
“Neuro-inspired real-time USB & PCI to AER interfaces for
vision processing,” in Proc. Int. Symp. Performance Evaluation
of Computer and Telecommunication Systems SPECTS 2008,
Jun. 2008, pp. 330–337.

[81] G. Garćıa, C. Jara, J. Pomares, A. Alabdo, L. Poggi,
and F. Torres, “A Survey on FPGA-Based Sensor Systems:
Towards Intelligent and Reconfigurable Low-Power Sensors for
Computer Vision, Control and Signal Processing,” Sensors,
vol. 14, no. 4, p. 6247–6278, Mar 2014. [Online]. Available:
http://dx.doi.org/10.3390/s140406247

[82] R. Berner, T. Delbruck, A. Civit-Balcells, and A. Linares-
Barranco, “A 5 Meps USB2.0 Address-Event Monitor-Sequencer
Interface,” 2006.

[83] R. Paz-Vicente, A. Linares-Barranco, D. Cascado, M. A. Ro-
driguez, G. Jimenez, A. Civit, and J. L. Sevillano, “PCI-AER
interface for neuro-inspired spiking systems,” in 2006 IEEE
International Symposium on Circuits and Systems, May 2006,
pp. 4 pp.–.

[84] S. O. Cisneros, J. J. R. Panduro, D. T. A. Bretón, and J. R. R.
Barón, “Space-time aer protocol receiver asynchronously con-
trolled on fpga,” Computing Science and Automatic Control
(CCE), 2014.

[85] M. Hofstätter, P. Schön, and C. Posch, “A SPARC-compatible
general purpose address-event processor with 20-bit l0ns-
resolution asynchronous sensor data interface in 0.18um
CMOS,” IEEE International Symposium on Circuits and Sys-
tems, 2010.

http://dx.doi.org/10.3390/s140406247

BIBLIOGRAPHY 187

[86] C. Brandli, R. Berner, M. Yang, S. C. Liu, and T. Delbruck, “A
240 × 180 130 dB 3 µs Latency Global Shutter Spatiotemporal
Vision Sensor,” IEEE Journal of Solid-State Circuits, vol. 49,
no. 10, pp. 2333–2341, Oct. 2014.

[87] A. Banerjee, C. Chakraborty, A. Kumar, and D. Biswas,
“Emerging trends in iot and big data analytics for biomedical
and health care technologies,” in Handbook of data science
approaches for biomedical engineering. Elsevier, 2020, pp.
121–152.

[88] CAVIAR Hardware Interface Standards, Version 2.01.

[89] H. Greenspan, B. van Ginneken, and R. M. Summers, “Guest
Editorial Deep Learning in Medical Imaging: Overview and
Future Promise of an Exciting New Technique,” IEEE Trans-
actions on Medical Imaging, vol. 35, no. 5, pp. 1153–1159, May
2016.

[90] D. Palossi, A. Loquercio, F. Conti, E. Flamand, and L. Benini,
“A 64mW DNN-based Visual Navigation Engine for Au-
tonomous Nano-Drones,” IEEE Internet of Things Journal,
vol. 6, no. 5, pp. 8357–8371, Oct. 2019.

[91] M. Manic, K. Amarasinghe, J. J. Rodriguez-Andina, and
C. Rieger, “Intelligent Buildings of the Future: Cyberaware,
Deep Learning Powered, and Human Interacting,” IEEE Indus-
trial Electronics Magazine, vol. 10, no. 4, pp. 32–49, Dec. 2016.

[92] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann,
“An Always-On 3.8µJ/86% CIFAR-10 Mixed-Signal Binary
CNN Processor with All Memory on Chip in 28nm CMOS,”
in Proceedings of 2018 IEEE International Solid-State Circuits
Conference.

[93] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An Energy-
Efficient SRAM with Embedded Convolution Computation for
Low-Power CNN-Based Machine Learning Applications,” in
Proceedings of 2018 IEEE International Solid-State Circuits
Conference.

188 BIBLIOGRAPHY

[94] A. A. Bahou, G. Karunaratne, R. Andri, L. Cavigelli, and
L. Benini, “XNORBIN: A 95 TOp/s/W Hardware Accelerator
for Binary Convolutional Neural Networks,” arXiv:1803.05849
[cs], Mar. 2018.

[95] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and
Y. Shi, “Scaling for edge inference of deep neural networks,”
Nature Electronics, vol. 1, no. 4, pp. 216–222, Apr. 2018.

[96] S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos,
“Loom: Exploiting Weight and Activation Precisions to Acceler-
ate Convolutional Neural Networks,” in Proceedings of the 55th
Annual Design Automation Conference, ser. DAC ’18. New
York, NY, USA: ACM, 2018, pp. 20:1–20:6.

[97] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
Energy-Efficient Reconfigurable Accelerator for Deep Convolu-
tional Neural Networks,” IEEE Journal of Solid-State Circuits,
vol. 52, no. 1, pp. 127–138, Jan. 2017.

[98] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient
Processing of Deep Neural Networks: A Tutorial and Survey,”
arXiv:1703.09039 [cs], Mar. 2017.

[99] N. Verma and A. P. Chandrakasan, “A 65nm 8T Sub-Vt SRAM
Employing Sense-Amplifier Redundancy,” in 2007 IEEE Inter-
national Solid-State Circuits Conference. Digest of Technical
Papers, Feb. 2007, pp. 328–606.

[100] N. Verma and A. P. Chandrakasan, “A 256 kb 65 nm 8T
Subthreshold SRAM Employing Sense-Amplifier Redundancy,”
IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 141–149,
Jan 2008.

[101] A. Teman, D. Rossi, P. Meinerzhagen, L. Benini, and A. Burg,
“Controlled placement of standard cell memory arrays for high
density and low power in 28nm FD-SOI,” in Design Automation
Conference (ASP-DAC), 2015 20th Asia and South Pacific, Jan.
2015, pp. 81–86.

BIBLIOGRAPHY 189

[102] D. Esposito, A. G. M. Strollo, and M. Alioto, “Power-precision
scalable latch memories,” pp. 1–4, May 2017.

[103] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Quantized Neural Networks: Training Neural Networks
with Low Precision Weights and Activations,” arXiv:1609.07061
[cs], Sep. 2016.

[104] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Binarized neural networks,” in Advances in Neural
Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran
Associates, Inc., 2016, pp. 4107–4115. [Online]. Available: http:
//papers.nips.cc/paper/6573-binarized-neural-networks.pdf

[105] M. Yang, C. Yeh, Y. Zhou, J. P. Cerqueira, A. A. Lazar, and
M. Seok, “A 1uW voice activity detector using analog feature
extraction and digital deep neural network,” in 2018 IEEE
International Solid - State Circuits Conference - (ISSCC), Feb
2018, pp. 346–348.

[106] K. Goetschalckx, B. Moons, S. Lauwereins, M. Andraud, and
M. Verhelst, “Optimized Hierarchical Cascaded Processing,”
IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 8, no. 4, pp. 884–894, Dec 2018.

[107] L. Yang, D. Bankman, B. Moons, M. Verhelst, and B. Murmann,
“Bit Error Tolerance of a CIFAR-10 Binarized Convolutional
Neural Network Processor,” in Proceedings - IEEE International
Symposium on Circuits and Systems, 2018.

[108] “tinyML Summit,” https://tinymlsummit.org/.

[109] S. Daniel and W. Pete, TinyML. O’Reilly Media, Inc., 2019.

[110] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights
and Connections for Efficient Neural Network,” in Advances in
Neural Information Processing Systems, 2015, pp. 1135–1143.

[111] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srini-
vasan, and K. Gopalakrishnan, “PACT: Parameterized Clipping

http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf
http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf

190 BIBLIOGRAPHY

Activation for Quantized Neural Networks,” arXiv:1805.06085
[cs], May 2018.

[112] F. Conti, R. Schilling, P. D. Schiavone, A. Pullini, D. Rossi,
F. K. Gürkaynak, M. Muehlberghuber, M. Gautschi, I. Loi,
G. Haugou, S. Mangard, and L. Benini, “An IoT Endpoint
System-on-Chip for Secure and Energy-Efficient Near-Sensor
Analytics,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 64, no. 9, pp. 2481–2494, Sep. 2017.

[113] J. Myers, A. Savanth, D. Howard, R. Gaddh, P. Prabhat,
and D. Flynn, “An 80nW retention 11.7pJ/cycle active sub-
threshold ARM Cortex-M0 subsystem in 65nm CMOS for WSN
applications,” in 2015 IEEE International Solid-State Circuits
Conference - (ISSCC) Digest of Technical Papers, Feb 2015, pp.
1–3.

[114] D. Bol, J. De Vos, C. Hocquet, F. Botman, F. Durvaux, S. Boyd,
D. Flandre, and J.-D. Legat, “SleepWalker: A 25-MHz 0.4-V
Sub-mm2 7-uW/MHz Microcontroller in 65-nm LP/GP CMOS
for Low-Carbon Wireless Sensor Nodes,” IEEE Journal of Solid-
State Circuits, vol. 48, no. 1, pp. 20–32, Jan. 2013.

[115] F. Frustaci, D. Blaauw, D. Sylvester, and M. Alioto, “Approx-
imate SRAMs With Dynamic Energy-Quality Management,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 24, no. 6, pp. 2128–2141, June 2016.

[116] A. Roy, P. J. Grossmann, S. A. Vitale, and B. H. Calhoun,
“A 1.3uW, 5pJ/cycle sub-threshold MSP430 processor in 90nm
xLP FDSOI for energy-efficient IoT applications,” in 2016
17th International Symposium on Quality Electronic Design
(ISQED), March 2016, pp. 158–162.

[117] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient Neural
Network Kernels for Arm Cortex-M CPUs,” arXiv:1801.06601
[cs], Jan. 2018.

[118] M. Rusci, A. Capotondi, F. Conti, and L. Benini, “Work-in-
Progress: Quantized NNs as the Definitive Solution for Inference

BIBLIOGRAPHY 191

on Low-Power ARM MCUs?” in 2018 International Con-
ference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Sep. 2018, pp. 1–2.

[119] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini,
“PULP-NN: Accelerating Quantized Neural Networks on
Parallel Ultra-Low-Power RISC-V Processors,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 378, no. 2164, p. 20190155,
2020. [Online]. Available: https://royalsocietypublishing.org/
doi/abs/10.1098/rsta.2019.0155

[120] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini,
D. Rossi, E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-
Threshold RISC-V Core With DSP Extensions for Scalable IoT
Endpoint Devices,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 10, pp. 2700–2713, Oct
2017.

[121] Y. Joseph, “Introduction to Armv8.1-M Architecture,” https:
//pages.arm.com/rs/312-SAX-488/images/Introduction{ }
to{ }Armv8.1-M{ }architecture-3.pdf.

[122] T. Karnik, D. Kurian, P. Aseron, R. Dorrance, E. Alpman,
A. Nicoara, R. Popov, L. Azarenkov, M. Moiseev, L. Zhao,
S. Ghosh, R. Misoczki, A. Gupta, M. Akhila, S. Muthuku-
mar, S. Bhandari, Y. Satish, K. Jain, R. Flory, C. Kantha-
panit, E. Quijano, B. Jackson, H. Luo, S. Kim, V. Vaidya,
A. Elsherbini, R. Liu, F. Sheikh, O. Tickoo, I. Klotchkov,
M. Sastry, S. Sun, M. Bhartiya, A. Srinivasan, Y. Hoskote,
H. Wang, and V. De, “A cm-scale self-powered intelligent and
secure IoT edge mote featuring an ultra-low-power SoC in
14nm tri-gate CMOS,” in 2018 IEEE International Solid - State
Circuits Conference - (ISSCC), Feb 2018, pp. 46–48.

[123] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg,
and L. Benini, “Gap-8: A risc-v soc for ai at the edge of the iot,”
in 2018 IEEE 29th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), July
2018, pp. 1–4.

https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2019.0155
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2019.0155
https://pages.arm.com/rs/312-SAX-488/images/Introduction{_}to{_}Armv8.1-M{_}architecture-3.pdf
https://pages.arm.com/rs/312-SAX-488/images/Introduction{_}to{_}Armv8.1-M{_}architecture-3.pdf
https://pages.arm.com/rs/312-SAX-488/images/Introduction{_}to{_}Armv8.1-M{_}architecture-3.pdf

192 BIBLIOGRAPHY

[124] R. Sivalingam, E. Park, and E. Gousev, “Ultra-low Power
Always-On Computer Vision,” https://rebootingcomputing.
ieee.org/images/files/pdf/iccv-2019{ }edwin-park.pdf.

[125] P. D. Schiavone, D. Rossi, A. Pullini, A. D. Mauro, F. Conti, and
L. Benini, “Quentin: An Ultra-Low-Power PULPissimo SoC in
22nm FDX,” in 2018 IEEE SOI-3D-Subthreshold Microelectron-
ics Technology Unified Conference (S3S), Oct. 2018, pp. 1–3.

[126] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gürkaynak,
A. Bartolini, P. Flatresse, and L. Benini, “A 60 GOPS/W,
-1.8V to 0.9V body bias ULP cluster in 28nm UTBB FD-SOI
technology,” Solid-State Electronics, vol. 117, pp. 170 –
184, 2016. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0038110115003342

[127] B. H. Calhoun and A. P. Chandrakasan, “A 256-kb 65-nm
Sub-threshold SRAM Design for Ultra-Low-Voltage Operation,”
IEEE Journal of Solid-State Circuits, vol. 42, no. 3, pp. 680–688,
March 2007.

[128] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester, and
M. Alioto, “SRAM for Error-Tolerant Applications With Dy-
namic Energy-Quality Management in 28 nm CMOS,” IEEE
Journal of Solid-State Circuits, vol. 50, no. 5, pp. 1310–1323,
May 2015.

[129] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang,
“RRAM-Based Analog Approximate Computing,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 34, no. 12, pp. 1905–1917, Dec 2015.

[130] B. Li, Y. Shan, M. Hu, Y. Wang, Y. Chen, and H. Yang,
“Memristor-based approximated computation,” in International
Symposium on Low Power Electronics and Design (ISLPED),
Sep. 2013, pp. 242–247.

[131] G. Tagliavini, D. Rossi, A. Marongiu, and L. Benini, “Syn-
ergistic Architecture and Programming Model Support for
Approximate Micropower Computing,” in VLSI (ISVLSI), 2015

https://rebootingcomputing.ieee.org/images/files/pdf/iccv-2019{_}edwin-park.pdf
https://rebootingcomputing.ieee.org/images/files/pdf/iccv-2019{_}edwin-park.pdf
http://www.sciencedirect.com/science/article/pii/S0038110115003342
http://www.sciencedirect.com/science/article/pii/S0038110115003342

BIBLIOGRAPHY 193

IEEE Computer Society Annual Symposium On. IEEE, 2015,
pp. 280–285.

[132] G. Desoli, N. Chawla, T. Boesch, S. P. Singh, E. Guidetti,
F. De Ambroggi, T. Majo, P. Zambotti, M. Ayodhyawasi,
H. Singh, and N. Aggarwal, “A 2.9TOPS/W deep convolutional
neural network SoC in FD-SOI 28nm for intelligent embedded
systems,” Digest of Technical Papers - IEEE International
Solid-State Circuits Conference, vol. 60, pp. 238–239, 2017.

[133] X. Lin, C. Zhao, and W. Pan, “Towards Accurate Binary Con-
volutional Neural Network,” in Advances in Neural Information
Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
Curran Associates, Inc., 2017, pp. 345–353.

[134] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “FINN: A Framework for Fast,
Scalable Binarized Neural Network Inference,” in Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’17. New York, NY,
USA: ACM, 2017, pp. 65–74.

[135] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato,
H. Nakahara, S. Takamaeda-Yamazaki, M. Ikebe, T. Asai,
T. Kuroda, and M. Motomura, “Brein memory: A single-chip
binary/ternary reconfigurable in-memory deep neural network
accelerator achieving 1.4 tops at 0.6 w,” IEEE Journal of
Solid-State Circuits, vol. 53, no. 4, pp. 983–994, April 2018.

[136] L. Jiang, M. Kim, W. Wen, and D. Wang, “XNOR-POP:
A processing-in-memory architecture for binary Convolutional
Neural Networks in Wide-IO2 DRAMs,” in 2017 IEEE/ACM
International Symposium on Low Power Electronics and Design
(ISLPED), Jul. 2017, pp. 1–6.

[137] S. Yin, P. Ouyang, J. Yang, T. Lu, X. Li, L. Liu, and S. Wei, “An
energy-efficient reconfigurable processor for binary-and ternary-
weight neural networks with flexible data bit width,” IEEE

194 BIBLIOGRAPHY

Journal of Solid-State Circuits, vol. 54, no. 4, pp. 1120–1136,
2019.

[138] Y. Wang, J. Lin, and Z. Wang, “An energy-efficient architecture
for binary weight convolutional neural networks,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 26,
no. 2, pp. 280–293, 2018.

[139] W.-S. Khwa, J.-J. Chen, J.-F. Li, X. Si, E.-Y. Yang, X. Sun,
R. Liu, P.-Y. Chen, Q. Li, S. Yu, and M.-F. Chang,
“A 65nm 4Kb Algorithm-Dependent Computing-in- Memory
SRAM Unit-Macro with 2.3ns and 55.8TOPS/W Fully Parallel
Product-Sum Operation for Binary DNN Edge Processors,”
in Proceedings of 2018 IEEE International Solid-State Circuits
Conference.

[140] A. A. Bahou, G. Karunaratne, R. Andri, L. Cavigelli, and
L. Benini, “XNORBIN: A 95 TOp/s/W hardware accelerator for
binary convolutional neural networks,” 21st IEEE Symposium
on Low-Power and High-Speed Chips and Systems, COOL Chips
2018 - Proceedings, pp. 1–3, 2018.

[141] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A
64-Tile 2.4-Mb In-Memory-Computing CNN Accelerator Em-
ploying Charge-Domain Compute,” IEEE Journal of Solid-State
Circuits, vol. 54, no. 6, pp. 1789–1799, June 2019.

[142] J. Zhang and N. Verma, “An In-memory-Computing DNN
Achieving 700 TOPS/W and 6 TOPS/mm2 in 130-nm CMOS,”
IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 9, no. 2, pp. 358–366, June 2019.

[143] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann,
“An Always-On 3.8 µ J/86% CIFAR-10 Mixed-Signal Binary
CNN Processor With All Memory on Chip in 28-nm CMOS,”
IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 158–172,
Jan 2019.

[144] A. Agrawal, A. Jaiswal, D. Roy, B. Han, G. Srinivasan,
A. Ankit, and K. Roy, “Xcel-ram: Accelerating binary neural

BIBLIOGRAPHY 195

networks in high-throughput sram compute arrays,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 66,
no. 8, pp. 3064–3076, 2019.

[145] A. Waterman, Y. Lee, D. A. Patterson, K. Asanovic, V. I. U.
level Isa, A. Waterman, Y. Lee, and D. Patterson, “The risc-v
instruction set manual,” 2014.

[146] A. Pullini, D. Rossi, G. Haugou, and L. Benini, “ µDMA:
An autonomous I/O subsystem for IoT end-nodes,” in 2017
27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS), Sept 2017, pp. 1–8.

[147] A. Teman, D. Rossi, P. Meinerzhagen, L. Benini, and A. Burg,
“Controlled placement of standard cell memory arrays for high
density and low power in 28nm FD-SOI,” in The 20th Asia and
South Pacific Design Automation Conference, Jan 2015, pp. 81–
86.

[148] B. Moons, D. Bankman, L. Yang, B. Murmann, and M. Verhelst,
“Binareye: An always-on energy-accuracy-scalable binary cnn
processor with all memory on chip in 28nm cmos,” in 2018 IEEE
Custom Integrated Circuits Conference (CICC), 2018, pp. 1–4.

[149] N. Rathi, A. Agrawal, C. Lee, A. K. Kosta, and K. Roy,
“Exploring spike-based learning for neuromorphic computing:
Prospects and perspectives,” in 2021 Design, Automation Test
in Europe Conference Exhibition (DATE), Feb 2021, pp. 902–
907.

[150] P. Panda, S. A. Aketi, and K. Roy, “Toward Scalable, Efficient,
and Accurate Deep Spiking Neural Networks With Backward
Residual Connections, Stochastic Softmax, and Hybridization,”
Frontiers in Neuroscience, 2020.

[151] K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink,
and J. Schmidhuber, “Lstm: A search space odyssey,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 28,
no. 10, pp. 2222–2232, 2017.

196 BIBLIOGRAPHY

[152] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going
Deeper in Spiking Neural Networks: VGG and Residual Archi-
tectures,” Frontiers in Neuroscience, 2019.

[153] D. C. Daly, L. C. Fujino, and K. C. Smith, “Through the looking
glass-2020 edition: Trends in solid-state circuits from isscc,”
IEEE Solid-State Circuits Magazine, vol. 12, no. 1, pp. 8–24,
2020.

[154] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi,
and J. Kepner, “Survey and benchmarking of machine learning
accelerators,” in 2019 IEEE High Performance Extreme Com-
puting Conference (HPEC), 2019, pp. 1–9.

[155] M. Spallanzani, G. P. Leonardi, and L. Benini, “Training
quantised neural networks with ste variants: the additive
noise annealing algorithm,” 2022. [Online]. Available: https:
//arxiv.org/abs/2203.11323

[156] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary
neural networks: A survey,” Pattern Recognition, vol. 105, p.
107281, 2020.

[157] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Rey-
boz, E. Vianello, and E. Beigne, “Spiking neural networks
hardware implementations and challenges: A survey,” J. Emerg.
Technol. Comput. Syst., vol. 15, no. 2, Apr. 2019.

[158] A. R. Young, M. Dean, J. S. Plank, and G. S. Rose, “A Review of
spiking neuromorphic hardware communication systems,” IEEE
Access, 2019.

[159] A. Rubino, C. Livanelioglu, N. Qiao, M. Payvand, and G. In-
diveri, “Ultra-low-power fdsoi neural circuits for extreme-edge
neuromorphic intelligence,” 2020.

[160] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H.
Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao,
C. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul,
J. Tse, G. Venkataramanan, Y. Weng, A. Wild, Y. Yang, and

https://arxiv.org/abs/2203.11323
https://arxiv.org/abs/2203.11323

BIBLIOGRAPHY 197

H. Wang, “Loihi: A neuromorphic manycore processor with
on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[161] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba,
M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk,
B. Jackson, and D. S. Modha, “Truenorth: Design and tool flow
of a 65 mw 1 million neuron programmable neurosynaptic chip,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 10, pp. 1537–1557, 2015.

[162] C. Frenkel, J.-D. Legat, and D. Bol, “A 28-nm convolutional
neuromorphic processor enabling online learning with spike-
based retinas,” in 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), 2020, pp. 1–5.

[163] E. M. Izhikevich, “Which model to use for cortical spiking
neurons?” IEEE Transactions on Neural Networks, vol. 15,
no. 5, pp. 1063–1070, 2004.

[164] G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj,
R. Legenstein, and W. Maass, “A solution to the learning
dilemma for recurrent networks of spiking neurons,” Nature
Communications, vol. 11, no. 1, jul 2020. [Online]. Available:
https://doi.org/10.1038%2Fs41467-020-17236-y

[165] J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang, S. Wu, G. Wang,
Z. Zou, Z. Wu, W. He, F. Chen, N. Deng, S. Wu, Y. Wang,
Y. Wu, Z. Yang, C. Ma, G. Li, W. Han, H. Li, H. Wu, R. Zhao,
Y. Xie, and L. Shi, “Towards artificial general intelligence with
hybrid Tianjic chip architecture,” Nature, 2019.

[166] J. K. Kim, P. Knag, T. Chen, and Z. Zhang, “A 640m pixel/s
3.65mw sparse event-driven neuromorphic object recognition
processor with on-chip learning,” in 2015 Symposium on VLSI
Circuits (VLSI Circuits), 2015, pp. C50–C51.

[167] S. Hoppner, Y. Yan, A. Dixius, S. Scholze, J. Partzsch,
M. Stolba, F. Kelber, B. Vogginger, F. Neumarker, G. Ellguth,
S. Hartmann, S. Schiefer, T. Hocker, D. Walter, G. Liu,

https://doi.org/10.1038%2Fs41467-020-17236-y

198 BIBLIOGRAPHY

J. Garside, S. Furber, and C. Mayr, “The spinnaker 2
processing element architecture for hybrid digital neuromorphic
computing,” 2021. [Online]. Available: https://arxiv.org/abs/
2103.08392

[168] G. K. Chen, R. Kumar, H. E. Sumbul, P. C. Knag, and R. K.
Krishnamurthy, “A 4096-neuron 1m-synapse 3.8-pj/sop spiking
neural network with on-chip stdp learning and sparse weights
in 10-nm finfet cmos,” IEEE Journal of Solid-State Circuits,
vol. 54, no. 4, pp. 992–1002, 2019.

[169] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
2017. [Online]. Available: https://arxiv.org/abs/1704.04861

[170] D. Markovic, C. C. Wang, L. P. Alarcón, T. Liu, and J. M.
Rabaey, “Ultralow-power design in near-threshold region,” Pro-
ceedings of the IEEE, vol. 98, no. 2, pp. 237–252, 2010.

[171] A. Alimonda, S. Carta, A. Acquaviva, A. Pisano, and L. Benini,
“A feedback-based approach to dvfs in data-flow applications,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 28, no. 11, pp. 1691–1704, 2009.

[172] F. Conti and L. Benini, “A Ultra-Low-Energy Convolution
Engine for Fast Brain-Inspired Vision in Multicore Clusters,”
2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 683–688, 2015.

[173] C. Schmidt, J. Wright, Z. Wang, E. Chang, A. Ou, W. Bae,
S. Huang, A. Flynn, B. Richards, K. Asanović, E. Alon, and
B. Nikolić, “4.3 an eight-core 1.44ghz risc-v vector machine in
16nm finfet,” in 2021 IEEE International Solid- State Circuits
Conference (ISSCC), vol. 64, 2021, pp. 58–60.

[174] I. Miro-Panades, B. Tain, J.-F. Christmann, D. Coriat,
R. Lemaire, C. Jany, B. Martineau, F. Chaix, A. Quelen,
E. Pluchart, J.-P. Noel, R. Boumchedda, A. Makosiej, M. Mon-
toya, S. Bacles-Min, D. Briand, J.-M. Philippe, A. Valentian,

https://arxiv.org/abs/2103.08392
https://arxiv.org/abs/2103.08392
https://arxiv.org/abs/1704.04861

BIBLIOGRAPHY 199

F. Heitzmann, E. Beigne, and F. Clermidy, “Samurai: A
1.7mops-36gops adaptive versatile iot node with 15,000× peak-
to-idle power reduction, 207ns wake-up time and 1.3tops/w ml
efficiency,” in 2020 IEEE Symposium on VLSI Circuits, 2020,
pp. 1–2.

[175] D. E. Bellasi and L. Benini, “Smart energy-efficient clock
synthesizer for duty-cycled sensor socs in 65 nm/28nm cmos,”
IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 64, no. 9, pp. 2322–2333, 2017.

[176] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F.
Guerra, P. Joshi, P. Plank, and S. R. Risbud, “Advancing
neuromorphic computing with loihi: A survey of results and
outlook,” Proceedings of the IEEE, vol. 109, no. 5, pp. 911–934,
2021.

[177] C. Stöckl and W. Maass, “Optimized spiking neurons
can classify images with high accuracy through temporal
coding with two spikes,” Nature Machine Intelligence,
vol. 3, no. 3, pp. 230–238, mar 2021. [Online]. Available:
https://doi.org/10.1038%2Fs42256-021-00311-4

[178] M. Davies, “Benchmarks for progress in neuromorphic
computing,” Nature Machine Intelligence, vol. 1, no. 9, pp.
386–388, sep 2019. [Online]. Available: https://doi.org/10.
1038%2Fs42256-019-0097-1

[179] H. Shouval, S. Wang, and G. Wittenberg, “Spike timing
dependent plasticity: A consequence of more fundamental
learning rules,” Frontiers in Computational Neuroscience,
vol. 4, 2010. [Online]. Available: https://www.frontiersin.org/
article/10.3389/fncom.2010.00019

[180] M. Hartley, N. Taylor, and J. Taylor, “Understanding
spike-time-dependent plasticity: A biologically motivated
computational model,” Neurocomputing, vol. 69, no. 16, pp.
2005–2016, 2006, brain Inspired Cognitive Systems. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0925231206001731

https://doi.org/10.1038%2Fs42256-021-00311-4
https://doi.org/10.1038%2Fs42256-019-0097-1
https://doi.org/10.1038%2Fs42256-019-0097-1
https://www.frontiersin.org/article/10.3389/fncom.2010.00019
https://www.frontiersin.org/article/10.3389/fncom.2010.00019
https://www.sciencedirect.com/science/article/pii/S0925231206001731
https://www.sciencedirect.com/science/article/pii/S0925231206001731

200 BIBLIOGRAPHY

[181] B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass, “Bayesian
computation emerges in generic cortical microcircuits through
spike-timing-dependent plasticity,” PLOS Computational
Biology, vol. 9, no. 4, pp. 1–30, 04 2013. [Online].
Available: https://doi.org/10.1371/journal.pcbi.1003037

[182] S. Guo, Z. Yu, F. Deng, X. Hu, and F. Chen, “Hierarchical
bayesian inference and learning in spiking neural networks,”
IEEE Transactions on Cybernetics, vol. 49, no. 1, pp. 133–145,
2019.

[183] N. Srinivasa and Y. Cho, “Self-organizing spiking neural model
for learning fault-tolerant spatio-motor transformations,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 23,
no. 10, pp. 1526–1538, Oct 2012.

[184] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and
T. Masquelier, “Stdp-based spiking deep convolutional neural
networks for object recognition,” Neural Networks, vol. 99, pp.
56–67, 2018. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0893608017302903

[185] S. B. Shrestha and G. Orchard, “SLAYER: Spike layer error
reassignment in time,” in Advances in Neural Information
Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran
Associates, Inc., 2018, pp. 1419–1428.

[186] W. Guo, M. E. Fouda, A. M. Eltawil, and K. N.
Salama, “Neural coding in spiking neural networks: A
comparative study for robust neuromorphic systems,” Frontiers
in Neuroscience, vol. 15, 2021. [Online]. Available: https:
//www.frontiersin.org/article/10.3389/fnins.2021.638474

[187] S. Park, S. Kim, B. Na, and S. Yoon, “T2fsnn: Deep spiking
neural networks with time-to-first-spike coding,” 2020. [Online].
Available: https://arxiv.org/abs/2003.11741

[188] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal
backpropagation for training high-performance spiking neural

https://doi.org/10.1371/journal.pcbi.1003037
https://www.sciencedirect.com/science/article/pii/S0893608017302903
https://www.sciencedirect.com/science/article/pii/S0893608017302903
https://www.frontiersin.org/article/10.3389/fnins.2021.638474
https://www.frontiersin.org/article/10.3389/fnins.2021.638474
https://arxiv.org/abs/2003.11741

BIBLIOGRAPHY 201

networks,” Frontiers in Neuroscience, vol. 12, 2018. [Online].
Available: https://www.frontiersin.org/article/10.3389/fnins.
2018.00331

https://www.frontiersin.org/article/10.3389/fnins.2018.00331
https://www.frontiersin.org/article/10.3389/fnins.2018.00331

Curriculum Vitae

Alfio Di Mauro

Integrated system laboratory (IIS), ETZ J65, ETH Zurich, 8092

Mobile: +(41) 762462469 Email: adimauro@ethz.ch

Born: 09 April, 1992, Catania, Italy Nationality: Italian

Current position
Postdoctoral researcher, Integrated system laboratory (IIS), ETH
Zurich

Areas of specialisation
SoC architectures, ASIC design, Event-driven Computing

Education
2014 Bachelor’s degree in electronic engineering Politecnico
di Torino, Italy
2016 Master’s degree in electronic engineering,

203

mailto:adimauro@ethz.ch

204 CURRICULUM VITAE

Electronics systems Politecnico di Torino, Italy
2016 Master’s thesis (exchange), Electrical and
Electronics Engineering, Eidgenössische Technische Hochschule
Zürich, Switzerland.
2022 Dr. sc. ETH Zürich,, Eidgenössische Technische Hochschule
Zürich, Switzerland.

Publications
• A. Di Mauro, M. Scherer, D. Rossi and L. Benini, ”Kraken:

A Direct Event/Frame-Based Multi-sensor Fusion SoC for
Ultra-Efficient Visual Processing in Nano-UAVs,” 2022 IEEE
Hot Chips 34 Symposium (HCS), 2022, pp. 1-19, doi:
10.1109/HCS55958.2022.9895621.

• A. Di Mauro, F. Conti, and L. Benini, “An ultra-low power
address-event sensor interface for energy-proportional time-
to-information extraction,” in 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2017, pp. 1–6.

• A. Di Mauro, F. Conti, P. D. Schiavone, D. Rossi, and L.
Benini, “Always-on 674uw@4gop/s error resilient binary neural
networks with aggressive SRAM voltage scaling on a 22-nm
IoT end-node,” IEEE Transactions on Circuits and Systems
I:Regular Papers, pp. 1–14, 2020.

• A. Di Mauro, F. Conti, P. D. Schiavone, D. Rossi, and L.
Benini, “Pushing on-chip memories beyond reliability bound-
aries in micropower machine learning applications,” in 2019
IEEE International Electron Devices Meeting (IEDM), 2019, pp.
30.4.1–30.4.4.

• A. Di Mauro, M. Scherer, J. F. Mas, B. Bougenot, M.
Magno, and L. Benini, “Flydvs: An event-driven wireless ultra-
low power visual sensor node,” in 2021 Design, Automation
Test in Europe Conference Exhibition (DATE), Feb 2021, pp.
1851–1854.

205

• A. Di Mauro, A. Suravi Prasad, Z. Huang, M. Spallanzani,
F. Conti, and L. Benini, “Sne: an energy-proportional digital
accelerator for sparse event-based convolutions,” 2022, design,
Automation and Test in Europe Conference (DATE 2022);
Conference Location: Online; Conference Date: March 14-23,
2022; Conference lecture held on 22 March 2022

• A. Di Mauro, D. Rossi, A. Pullini, P. Flatresse, and L. Benini,
“Temperature and process-aware performance monitoring and
compensation for an ulp multi-core cluster in 28nm utbb fd-
soi technology,” in 2017 27th International Symposium on
Power and Timing Modeling, Optimization and Simulation
(PATMOS), 2017, pp. 1–8.

• A. Di Mauro, F. Zaruba, F. Schuiki, S. Mach, and L. Benini,
“Live demonstration: Exploiting body-biasing for static corner
trimming and maximum energy efficiency operation in 22nm fdx
technology,” in 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), 2020, pp. 1–1.

• A. Di Mauro, D. Rossi, A. Pullini, P. Flatresse, and L. Benini,
“Live demonstration: Body-bias based performance monitoring
and compensation for a near-threshold multi-core cluster in
28nm fd-soi technology,” in 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), 2018.

• A. Di Mauro, D. Rossi, A. Pullini, P. Flatresse, and L. Benini,
“Performance-aware predictive-model-based on-chip body-bias
regulation strategy for an ulp multi-core cluster in 28 nm utbb
fd-soi,” Integration, vol. 72, pp. 194–207, 2020.

• A. Di Mauro, H. Fatemi, J. P. de Gyvez, and L. Benini,
“Idleness-aware dynamic power mode selection on the i.mx
7ulp iot edge processor,” Journal of Low Power Electronics and
Applications, vol. 10, no. 2, 2020.

• A. Pullini, D. Rossi, I. Loi, A. D. Mauro, and L. Benini, “Mr.
Wolf: A 1 GFLOP/s Energy-Proportional Parallel Ultra Low
Power SoC for IOT Edge Processing,” in ESSCIRC 2018 - IEEE

206 CURRICULUM VITAE

44th European Solid State Circuits Conference (ESSCIRC), Sep.
2018, pp. 274–277.

• P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti,
and L. Benini, “Quentin: an ultra-low-power pulpissimo soc in
22nm fdx,” in 2018 IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S3S), 2018, pp. 1–3.

• D. Rossi, F. Conti, M. Eggimann, A. D. Mauro, G. Tagliavini, S.
Mach, M. Guermandi, A. Pullini, I. Loi, J. Chen, E. Flamand,
and L. Benini, “Vega: A ten-core soc for iot endnodes with dnn
acceleration and cognitive wake-up from mram-based statere-
tentive sleep mode,” IEEE Journal of Solid-State Circuits, pp.
1–1, 2021.

• D. Rossi, F. Conti, M. Eggiman, S. Mach, A. D. Mauro,
M. Guermandi, G. Tagliavini, A. Pullini, I. Loi, J. Chen,
E. Flamand, and L. Benini, “4.4 a 1.3tops/w @ 32gops fully
integrated 10-core soc for iot end-nodes with 1.7µ w cognitive
wake-up from mram-based state-retentive sleep mode,” in 2021
IEEE International Solid- State Circuits Conference (ISSCC),
vol. 64, 2021, pp. 60–62.

• P. D. Schiavone, D. Rossi, A. Di Mauro, F. K. G¨urkaynak,
T. Saxe, M. Wang, K. C. Yap, and L. Benini, “Arnold: An
efpga-augmented risc-v soc for flexible and low-power iot end
nodes,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 29, no. 4, pp. 677–690, 2021.

• H. Okuhara, A. Elnaqib, D. Rossi, A. Di Mauro, P. Mayer,
P. Palestri, and L. Benini, “An energy-efficient low-voltage
swing transceiver for mw-range iot end-nodes,” in 2020 IEEE
International Symposium on Circuits and Systems (ISCAS),
2020, pp. 1–5.

• M. Hersche, E. M. Rella, A. Di Mauro, L. Benini, and A. Rahimi,
“Integrating event-based dynamic vision sensors with sparse
hyperdimensional computing: A low-power accelerator with
online learning capability,” in Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design,

207

ser. ISLPED ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 169–174.

• A. Garofalo, G. Ottavi, A. Di Mauro, F. Conti, G. Tagliavini,
L. Benini, and D. Rossi, “A 1.15 tops/w, 16-cores parallel ultra-
low power cluster with 2b-to-32b fully flexible bit-precision and
vector lockstep execution mode,” in ESSCIRC 2021 - IEEE 47th
European Solid State Circuits Conference (ESSCIRC), 2021, pp.
267–270.

	Abstract
	Riassunto
	1 Introduction
	1.1 Motivation
	1.2 Energy efficient edge-computing devices
	1.3 Next generation applications requirements
	1.4 Brain-inspired edge-computing
	1.5 Outline
	1.6 Contributions
	1.7 List of publications

	2 Energy-proportional data acquisition
	2.1 Introduction
	2.2 Related work
	2.3 Architecture
	2.3.1 Silicon Cochlea Interface
	2.3.2 Silicon Cochlea Sensor node
	2.3.3 Dynamic Vision Sensor Interface
	2.3.4 Dynamic Vision Sensor Node
	2.3.5 System-on-chip integration

	2.4 Experimental Results
	2.4.1 DASI FPGA standalone sensor node results
	2.4.2 DVSI FPGA standalone sensor node results
	2.4.3 Silicon implementation results

	2.5 Conclusion

	3 Overcoming Reliability Boundaries
	3.1 Introduction
	3.2 Related work
	3.2.1 IoT End-Node Architectures
	3.2.2 Heterogeneous and Error Resilient Memory Architectures
	3.2.3 Dedicated Hardware Accelerators for DNNs and BNNs

	3.3 Architecture
	3.3.1 Quentin chip
	3.3.2 BNN accelerator
	3.3.3 Memory partitioning
	3.3.4 BNN error resilience

	3.4 Results
	3.4.1 Experimental setup
	3.4.2 Bit Error Rate analysis
	3.4.3 Power and energy consumption
	3.4.4 Power accuracy trade-off

	3.5 Conclusion

	4 Energy-proportional data processing
	4.1 Introduction
	4.2 Related work
	4.2.1 Analog and mixed-signal neuromorphic platforms
	4.2.2 Digital neuromorphic platforms

	4.3 Architecture
	4.3.1 Spatial and temporal data representation
	4.3.2 Execution model and mapping
	4.3.3 Data transfer
	4.3.4 Interconnect
	4.3.5 Computing engines
	4.3.6 SNE neuron model

	4.4 Experimental results
	4.4.1 Physical implementation
	4.4.2 Area breakdown
	4.4.3 Experimental setup
	4.4.4 Power consumption and performance
	4.4.5 Energy consumption
	4.4.6 Comparison with the state of the art

	4.5 Conclusion

	5 Kraken: An event-driven Brain-Inspired edge computing device
	5.1 Introduction
	5.2 Related work
	5.3 Architecture
	5.3.1 Power and clock domains
	5.3.2 Fabric controller
	5.3.3 IO subsystem
	5.3.4 Compute cluster
	5.3.5 Accelerator domain

	5.4 Physical implementation
	5.5 Results
	5.5.1 General purpose computing engines
	5.5.2 Frequency and Power consumption
	5.5.3 Performance and Energy consumption
	5.5.4 Event-driven application scenario

	5.6 Conclusion

	6 Event-driven SNN deployment
	6.1 Introduction
	6.2 Related work
	6.2.1 applications for SNNs
	6.2.2 Unsupervised SNN training
	6.2.3 Supervised SNN training
	6.2.4 Fake quantization
	6.2.5 True-quantization and integerization

	6.3 Vertical software stack
	6.3.1 Neural network quantization-aware training
	6.3.2 PULP RISC-V toolchain
	6.3.3 SNE software primitives
	6.3.4 Automatic code generation

	6.4 End-to-end application deployment to Kraken
	6.4.1 results

	6.5 Conclusion

	7 Summary and Conclusion
	7.1 Main results
	7.2 Future Work and Outlook
	7.2.1 Future Work
	7.2.2 Outlook

	A Chip gallery
	A.1 Kraken
	A.2 Marsellus
	A.3 Vega

	B Notation and Acronyms
	Acronyms

	Bibliography
	Curriculum Vitae

