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Abstract

The discovery of new molecules and materials with desired properties is pivotal to our
success in combatting global challenges such as the climate crisis or emerging diseases.
However, navigating the discrete and practically infinite chemical search space while hav-
ing to respect a cascade of multiproperty objectives is extremely challenging. In the past
few decades, the chemical industry has faced not only a decline in productivity, but also
ever-rising costs for the research and development of novel materials and molecules.

Recently, molecular generative models coupled with virtual screening methods have
shown promising results in efficient and systematic chemical space exploration. The hopes
are high that such methods can accelerate the molecular discovery process, in particular
when coupled with chemical synthesis planning tools and robotic hardware in automated
laboratories. However, most generative models are optimized toward simplistic, chemo-
centric objectives, disregard system-level information about the target environment of
the molecule and can thus not be applied to generate molecules conditionally for a wide
range of objectives.

This thesis is about developing conditional molecular generative models that can be
queried with a semantic context and flexibly generate molecules for desired conditions
without the need of specific optimization. Moreover, this thesis aims to improve the "en-
tanglement" of de novo design and property prediction by developing molecular gener-
ative models that possess inductive biases about continuous properties and also excel at
predicting such properties. This is achieved by exploiting analogies between natural lan-
guage and organic chemistry.

As a prerequisite for generative modeling, the first part of this thesis is devoted to build-
ing predictive models for molecular properties. The first chapter presents a simple, yet
robust and interpretable chemical language model that heavily relies on data augmenta-
tion and is shown to exhibit strong performance across a wide range of properties such
as toxicity. The next chapter develops proteochemometric language models for protein-
ligand binding affinity prediction and demonstrates that by discarding more than 95%
of the residues from the protein sequence, the performance of binding affinity prediction
for human protein kinases significantly improves.

The second part of this thesis focuses on the main goal of developing generative lan-
guage models for conditional molecular design. Leveraging the property predictors in a
reinforcement-learning optimization scheme yields a generative model that can be condi-
tioned on a biomolecular context vector (e.g., a gene expression signature of a malignant
tumour or a target protein) and generate molecules with high affinity toward this context.
The experiments show that this method generalizes well and can propose molecules with
high selectivity for unseen protein targets even in the absence of experimental data for

iii



such targets. In a case study on accelerated molecular discovery, the proposed generative
model is integrated into a completely autonomous workflow that spans retrosynthesis
models, synthesis protocol generation and the successful wet-lab synthesis on a robotic
hardware.

The last chapter then proposes a multitask language model that abstracts regression as
a conditional sequence modeling problem and thus unifies the previous work on molec-
ular property prediction and conditional generation within the same model. This model
not only excels on regression tasks despite relying on a classification loss, it can also be
conditioned simultaneously on arbitrary molecular substructures and continuous target
properties. As demonstrated, this model outperforms specialized approaches in condi-
tional molecular design and can decorate seed molecules, proteins or chemical reactions
based on a desired property primer without the need of any optimization. This finds par-
ticular application in property-driven local exploration of the chemical space and paves
the road toward foundation models in material design.

Altogether, this thesis may contribute toward accelerated molecular discovery by pro-
viding methods to improve the quality of the average hypothesis that is considered for
downstream chemical synthesis and wet-lab experimentation.
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Zusammenfassung

Die Entdeckung neuer Moleküle und Materialien mit gewünschten Eigenschaften wird
entscheidend sein für unseren Erfolg bei der Bekämpfung globaler Herausforderungen
wie der Klimakrise oder neu auftretender Krankheiten. Den diskreten und praktisch un-
endlich grossen chemischen Suchraum unter einer Kaskade von Mehrzieloptimierung
zu navigieren ist jedoch eine grosse Herausforderung. In den letzten Jahrzehnten sah sich
die chemische Industrie nicht nur mit einem Produktivitätsrückgang, sondern auch mit
ständig steigenden Kosten für die Erforschung und Entwicklung neuer Materialien und
Moleküle konfrontiert.

In den letzten Jahren haben molekulare generative Modelle in Verbindung mit virtuellen
Screening-Methoden vielversprechende Ergebnisse zur effizienteren und systematischeren
Erkundung des chemischen Raums gezeigt. Die Hoffnungen sind gross, dass solche Meth-
oden den molekularen Entdeckungsprozess beschleunigen können, insbesondere wenn
sie mit Tools zur Planung der chemischen Synthese und Roboterhardware in automa-
tisierten Labors gekoppelt werden. Die meisten generativen Modelle optimieren jedeoch
vereinfachte, chemozentrische Ziele, vernachlässigen system-biologische Informationen
über die die Zielumgebung des Moleküls und können daher nicht zur Generierung von
Molekülen für ein breites Spektrum von Zielen verwendet werden.

In dieser Dissertation entwickeln wir konditionale molekulare generative Modelle,
die basierend auf semantischen Kontext flexibel Moleküle generieren, ohne dass eine
spezifische Optimierung erforderlich ist. Wir bedienen uns dafür Analogien zwis-
chen natürlicher Sprache und organischer Chemie und verwenden Methoden der
Sprachverarbeitung, insbesondere um generative Modelle besser mit Modellen zur
Eigenschaftsvorhersage zu verknüpfen.

Um den Grundstein für die später entwickelten generativen Modelle zu legen, widmet
sich der erste Teil der Dissertation zunächst der Erstellung von Vorhersagemodellen
für molekulare Eigenschaften. Wir präsentieren ein einfaches, aber robustes und
interpretierbares chemisches Sprachmodell, das in hohem Maße auf Augmentation
der Daten beruht und, wie wir nachweisen, eine hohe Treffsicherheit in der Vorher-
sage eines breiten Spektrums von molekularen Eigenschaften wie Toxizität aufweist.
Anschließend entwickeln wir mehrere proteochemometrisches Sprachmodelle für die
Vorhersage von Protein-Liganden-Bindungsaffinität. Wir zeigen, dass die Präzision
der Bindungsaffinitätsvorhersage für menschliche Proteinkinasen erheblich verbessert
werden kann, wenn nur weniger als 5% der Proteinresiduen genutzt werden.

Im zweiten Teil dieser Dissertation konzentrieren wir uns auf das Hauptziel: kondi-
tionale generative Sprachmodelle zum Moleküldesign zu entwickeln. Zunächst nutzen
wir die vorher entwickelten Eigenschaftsprädiktoren in einem Optimierungsschema
mit Reinforcement Learning, um einen Molekülgenerator zu entwickeln, der auf einen
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biomolekularen Kontextvektor (z. B. eine Genexpressionssignatur eines Tumors oder
ein Zielprotein) konditioniert werden kann und Moleküle mit hoher Affinität zu diesem
Kontext erzeugt. Wir stellen fest, dass diese Methode gut generalisiert ist und Moleküle
mit hoher Selektivität für unbekannte Proteinziele vorschlagen kann, selbst wenn keine
experimentellen Daten von diesen Proteinen zum Trainieren des Modells vorliegen.
In einer Fallstudie zur beschleunigten molekularen Entdeckung integrieren wir unser
generatives Modell in einen vollständig autonomen Arbeitsablauf. Dieser umfasst Ret-
rosynthesemodelle, die automatische Generierung von Syntheseprotokollen und einen
chemischen Laborrobotor, der unser Zielmolekül ohne menschlische Unterstützung
synthetisiert.

Im letzten Kapitel schlagen wir dann ein Multitasking-Sprachmodell vor. Indem
wir ein Regressionsproblem als bedingtes Sequenzmodellierungsproblem formulieren,
vereinigen wir unsere bisherigen Beiträge zur Vorhersage molekularer Eigenschaften und
zur konditionalen Generierung innerhalb eines Modells. Dieses Modell eignet sich nicht
nur hervorragend für Regressionsaufgaben (obwohl es auf einer klassifikations-basierten
Optimierungsfunktion beruht) sondern es kann auch gleichzeitig auf beliebige moleku-
lare Unterstrukturen und kontinuierliche Zieleigenschaften konditioniert werden. Wie
wir zeigen, übertrifft dieses Modell spezialisierte Ansätze im Bereich des konditionalen
Moleküldesigns und kann Ausgangsmoleküle, Proteine oder chemische Reaktionen auf
der Grundlage einer präzise gewählten, gewünschten Eigenschaft anpassen, ohne dass
eine explizite Optimierung erforderlich ist. Diese Methode findet insbesondere bei der
eigenschaftsgesteuerten lokalen Erkundung des chemischen Raums Anwendung und
ebnet den Weg für foundation models im Materialdesign.
Insgesamt hoffen wir, dass diese Arbeit einen geringen Beitrag zur beschleunigten
molekularen Entdeckung leisten kann, indem sie Methoden vorstellt, die es ermöglichen
die durchschnittliche Qualität eines neuen Moleküls, das für Laborsynthese und
Laborexperimente in Betracht gezogen wird, zu verbessern.
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1 Introduction

1.1 The need to accelerate molecular discovery
Although technological advances and high-throughput screenings are revolutionizing
our understanding of basic biological and chemical processes, the chemical industry
is facing ever-rising costs in research and development to bring new materials and
pharmaceuticals to the market. Traditional approaches are largely driven by human
hypotheses which are inevitably biased, ad-hoc and non-exhaustive. One particularly
affected field is the pharmaceutical industry. Reversed to Moore’s law, the term Eroom’s
law was coined for the observation that the number of FDA-approved drugs per billion
invested US$ is halving every nine years since around 1950 [1]. To date, the estimated
costs per new drug accumulate to up to 3B US$ [2]. The reasons for these ever-rising
costs are numerous but certainly include

• the attrition rate. While throughout the history only ∼1,500 compounds received
FDA-approval [3], the total number of ever synthesized and researched molecules is at
least 60M [4]. Hence, it is not surprising that the success rate from in vitro screening
to release on market has been estimated to be < 0.01% [1].

• the serendipity. More than 5% of all marketed pharmaceuticals profited from coinci-
dental findings [5].

• the wariness. It usually takes 10-15 years from hit identification to market approval,
with almost 10 years spent in the cascade of clinical trials and safety checks [6].

• the search space. The pharmaceutically promising part of the chemical space is practi-
cally infinite – it has been estimated to contain ∼ 1030-1060 molecules [7]. Only a tiny
fraction of that space (< 108) has been explored thus far.

Molecular discovery can be seen as a multiproperty optimization in a discrete search space
that is practically infinitely large. Due to this complexity, the classical and ubiquitous sci-
entific method of empirical knowledge acquisition, that has been proven indispensable
for modern science is reaching its limits. This scientific method is visualized in Figure 1.1A
and includes a cycle of raising a question (i.e., identifying a problem), studying the prob-
lem, developing a hypothesis to answer the question, testing the hypothesis, analyzing the
result and, finally, adapting the question based on the collected evidence.
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Generative 
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Automated
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A                        The scientific method B             The DMTA-cycle in chemistry

C                Accelerated molecular discovery cycle

Figure 1.1: Accelerating molecular discovery. A) The classical scientific method of empirical
knowledge acquisition is often seen as a cycle of raising a question, studying the existing evidence,
formulating a hypothesis, testing it empirically and analyzing the results. B) In chemistry, this
procedure is aptly summarized in the design-make-test-analyse (DMTA) cycle which, critically,
also involves making the molecule in the lab. The bottlenecks of the cycle are highlighted with
red arrows. Inside the circle, we name the needed technologies to automatize the DMTA cycle.
C) The accelerated molecular discovery cycle. Generative models promise to support the hypoth-
esize/design step of the DMTA cycle. Critical aspects are 1) controlling generative models to gen-
erate better, more targeted hypotheses and 2) evaluating the generated hypotheses via simulations
before the costly synthesis and test phases are entered. This validation loop can be seen as an ad-
ditional small cycle, embedded into the canonical DMTA cycle. This cycle is marked with green
arrows and will be the focus of this thesis.
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1.1 The need to accelerate molecular discovery

In the field of chemistry, the scientific method is commonly summarized in the
Design-Make-Test-Analyze (DMTA) cycle which, critically, also involves the make of the
molecule via chemical synthesis (cf. Figure 1.1B). This step is costly and time-consuming
– consequently "closing the loop" to refine the hypothesis becomes substantially harder
which introduces a bottleneck to the discovery cycle. Taken together, the poor quality of
the hypotheses (usually proposed by humans in an ad-hoc manner) in combination with
the time/cost bottleneck to test the hypotheses are responsible for the current molecular
discovery crisis.

To combat global challenges such as climate change or emerging diseases, an accelerated
form of molecular discover could become pivotal. Tabor et al. [8] proclaimed that this
necessitates the integration of four technologies, namely (1) high-throughput virtual
screening, (2) ML algorithms, especially molecular generative models, (3) tools for
automated synthesis planning and (4) automated laboratories. From these four aspects,
we believe that the key challenge in order to reduce the bottleneck in molecular discovery
will be to improve the quality of an average hypothesis that is evaluated in the lab.
Recently, deep generative models have emerged as a promising tool to expedite the
hypothesis/design step in molecular discovery [9, 10]. The hopes are high that these
models allow to explore the chemical space more systematically and on a larger scale [11].
However, even the best molecular generative model necessitates a counterpart – an effi-
cient method for large-scale virtual screening that allows to test the generated hypotheses.
This interplay can best be summarized in a new paradigm shown in Figure 1.1C, the
"accelerated molecular discovery cycle". In this cycle, an additional small validation loop
is embedded into the canonical DMTA cycle. This validation loop entails the advantages
that a large number of generated hypotheses can be evaluated rapidly and at almost no
cost. In addition, this loop can improve the generative model employed for the design
phase and thus ensure that only the best hypotheses proceed to the synthesis and physical
experimentation stage. Clearly, the success of this inner cycle not only depends upon
targeted hypotheses from the generative algorithms but also on the quality of the in silico

screening method.

We will introduce and review seminal works in molecular generative modeling later
in this thesis in Chapter 4. However, a few pioneering works on accelerated molecular
discovery that successfully completed the entire DMTA cycle should be mentioned here.
In 2019, Zhavoronkov et al. [12] demonstrated the swift development of novel DDR1 in-
hibitors through a deep generative model. In only 46 days, they curated specific datasets
to train generative and predictive models, carefully selected six candidates for synthesis
and experimental validation, reported two compounds with nanomolar activity in vitro

and even validated one candidate in vivo against mice. A study on antimicrobial discovery
by Das et al. [13] identified 20potential antimicrobial peptides through a generative model
and molecular dynamics and synthesized and experimentally validated them in only 48
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days (two peptides were found highly potent). While both these works relied on conven-
tional, manual synthesis, Grisoni et al. [14] synthesized 25 AI-generated potential LXR
agonists on a microfluidics platform for on-chip chemical reactions and found twelve to
be potent. Major advances have also been made in material design: MacLeod et al. [15]
created a robotic platform that can be controlled automatically via an algorithm for opti-
mization of electronic and optic properties of thin-film materials. A work by Yao et al. [16]
used supramolecular variational autoencoders to guide the optimization of metal-organic
frameworks according to a targeted functionality such as gas separation.

1.2 Scope of the thesis
This thesis will be devoted to improve the entanglement of molecular generative models
and molecular property prediction models. We believe that this interplay can become
instrumental to accelerated molecular discovery as shown in the inner cycle in Fig-
ure 1.1C. Throughout the thesis, we will strive to build algorithms that can conditionally
generate molecules for a wide range of possibly high-dimensional contextual information.

In the past years, optimizing molecular generation towards single, specific physico-
chemical or biochemical properties has widely been shown effective [11, 17, 18, 19, 20, 21,
22, 23, 24, 25]. However, these models suffer from two problems:

• they are task-specific and usually trained to maximize a specific property or a specific
multiproperty objective. This implies that, if the objective changes only mildly, the
models can not be used anymore.

• they disregard system-level information, e.g. about the cellular environment in which
the drug is intended to act. Such information is notoriously challenging to integrate.

Both items point to the same underlying issue. Instead of having to tune generative mod-
els to maximize specific properties, we wish to build generic models that can generate
molecules more flexibly. The open challenge is to build multimodal conditional genera-
tive models that can be conditioned on a wide range of desired property values (or a wide
range of biological contexts) and leverage disparate sources of knowledge when generat-
ing molecules. Ideally, such models can be queried with a "semantic context" and do not
require finetuning to propose targeted hypotheses. This is a substantially harder prob-
lem that has received significantly less attention. In medicinal chemistry, typical forms
of the "semantic context" include e.g., (1) target proteins, (2) cell expression signatures
or (3) an existing drug. If we strive to build a generative model that can be conditioned
on a wide range of context, we also need to be able to evaluate any generated molecule
on any possible context. In all three aforementioned cases, these evaluations are multi-
modal themselves as they are based on the interaction of the generated molecule, namely
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(1) the binding affinity to a protein target, (2) the induced IC50 for a tumour type, or (3)
a synergistic effect in polypharmacy.

A graphical abstract of the work covered in this thesis is given in Figure 1.2. As shown
on the right, the first part will be devoted to developing algorithms for virtual screening.

Generative Model

Primer

Cell profile

Generated
Compound

Drug 
sensitivity

In-silico predictors

Optimize

Generated Compund

Protein target
C

onditional G
enerator

Target 
affinity

Toxicity
Solubility

...

IC50

50%

C

Properties

“Solubility = 1.03”
“LogP       = 0.28”

...

ahttps://github.com/GT4SD

Figure 1.2: Framework for conditional molecular design with chemical language mod-
els. First, a series of predictive models for drug target binding affinity, toxicity and other molec-
ular properties will be developed (right box). Then, generative models that can be conditioned
on different, biomolecular context (cancer cell profiles, proteins, chemical scaffolds and continu-
ous properties) will be developed (left box). Some of these models can be steered with the previ-
ously developed property predictors to sample molecules adhering to specific conditions. We then
present a case-study on closed-loop molecular discovery that includes automatic retrosynthesis
modeling and wet-lab synthesis. In the last chapter we propose a multitask model, the Regression
Transformer, which demonstrates how predictive and generative tasks can be unified within the
same model. All molecular generative models developed in this thesis are available in the GT4SD,
Generative Toolkit for Scientific Discovery [26]a.
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This will encompass molecular property prediction models for biochemical or physico-
chemical properties (e.g., toxicity or water solubility) but also proteochemometric mod-
els for predicting interaction effects between molecules and protein targets.

As visualized in Figure 1.2 (left), in the second part of this thesis we will formulate and
apply conditional molecular generative models for four types of contexts:

1. Cell profiles: In this task, the objective is to develop a model that can be condi-
tioned on an omic profile (e.g., gene expression data from a malignant tumour)
and generate molecules that are likely to exhibit a high inhibitory effect against the
cell profile. This model will be steered with the drug sensitivity prediction model
from Manica, Oskooei, Born, et al. [27] that was previously developed in our team
and will not be detailed herein.

2. Protein targets: In this task, the objective is to develop a model that can be con-
ditioned on a protein sequence and generate molecules (i.e., ligands) that are likely
to bind to the protein. This method will be steered with the molecular property
prediction models developed in the first part.

3. Molecular substructures (e.g., scaffolds): In this task, the objective is to develop
a model that can be conditioned on a seed molecule (or even an explicit, possibly
discontiguous molecular substructure) and generate molecules that are 1) similar
to the seed and 2) exhibit desired properties. Together with 4. this will be assessed
in the last part of the thesis.

4. Continuous properties (e.g., a desired solubility value): In this task, the objective
is to develop a model that can be conditioned on a desired floating-point property
value and generate molecules adhering to the property constraint. Together with
3. this will be assessed in the last part of the thesis.

The common theme throughout the conditional molecular generative models that are
devised and studied in this thesis, is that they all aim for flexibility at inference time. The
few related works that has been devoted to this substantially harder problems will be re-
viewed in the respective, topical sections. Notably, throughout the entire thesis we will
almost exclusively rely on language models. While originally developed for NLP appli-
cations, these models have recently enjoyed tremendous success in bio- and chemoinfor-
matics [28, 29, 30].

1.3 Organisation of the thesis
This thesis is organised in two parts. In Part I we develop molecular property prediction
models. This part comprises two chapters. First, in Chapter 2 we benchmark various
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molecular representations and then propose and study ToxSmi, an interpretable chem-
ical language model for molecular property prediction. In Chapter 3 we develop novel
proteochemometric language models for protein-ligand binding affinity prediction and
show that their performance can be significantly improved when relying only on active
site residues rather than full protein sequences.

The core part of this thesis, presented in Part II, is devoted to building and evaluat-
ing conditional molecular generative models. In Chapter 4 we first formulate a hybrid
Variational Autoencoder (VAE) that can be conditioned on a biomolecular context vec-
tor (e.g., an omic expression signature or a protein target) and generate molecules with
high affinity toward this context. Critically, this model relies on reinforcement-learning
optimization that is steered with the property predictors developed in Part I of this the-
sis. We apply this model to conditional design of SARS-CoV-2-related protein targets
and present a case study on accelerated molecular discovery that integrates our genera-
tive model into a completely autonomous workflow spanning retrosynthesis modeling,
synthesis protocol generation and the successful wet-lab synthesis on a robotic hardware.

In Chapter 5, the last chapter of this thesis, we propose the Regression Transformer,
a multitask language model that abstracts regression as a conditional sequence modeling
task and unifies our previous efforts on property prediction and conditional molecular
generation within the same model.

1.3.1 Contributions
This dissertation is largely based on the seven publications shown below. Below each
publication, a detailed author contributions statement is given. All co-authors were in-
formed about these statements and no co-author disagreed. The publications are ordered
roughly by chapter and the star * denotes shared first-authorship:

1. J. Born*, G. Markert*, N. Janakarajan, T.B. Kimber, A. Volkamer, M. Rodriguez
Martinez, M. Manica
"Chemical Representation Learning for Toxicity Prediction." Digital Discovery (In
Review)

Presented in Chapter 2. JB and MM conceived the study and the ToxSmi model
which JB implemented. GM and JB conceived and implemented the SMILES
transformations, implemented the remaining models and ran the experiments on
representation comparison. GM, JB and MM conducted the attention analysis. NJ
and JB conducted further model benchmarking. JB conceived and conducted the
uncertainty analysis. JB, TBK and AV conceived the validation study which TBK
conducted with JB’s code. AV, NJ and JB conducted the interpretability comparison.
JB led the manuscript writing to which all authors significantly contributed.
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2. J. Born, T. Huynh, A. Stroobants, W.D. Cornell, M. Manica
"Active Site Sequence Representations of Human Kinases Outperform Full
Sequence Representations for Affinity Prediction and Inhibitor Generation: 3D
Effects in a 1D Model." Journal of Chemical Information and Modeling (2022), 62, 2.

Presented in Chapter 3 (Section 3.1 to Section 3.6) and Chapter 4 (Section 4.6). MM,
JB and WDC conceived the study. JB and MM conceived the model which JB imple-
mented. TH and WDC performed the sequence alignment. AS implemented the ini-
tial code for the Gaussian Process. JB performed and analyzed all experiments. MM
and TH produced the graphical abstract and the 3D protein visualization. JB led the
manuscript writing to which all authors significantly contributed.

3. J. Born, Y. Shoshan, T. Huynh, W.D. Cornell, E.J. Martin, M. Manica
"On the Choice of Active Site Sequences for Kinase-Ligand Affinity Prediction."
Journal of Chemical Information and Modeling (2022), 62, 18.

Presented in Chapter 3 (Section 3.7 to Section 3.8). EJM, JB, WDC and MM con-
ceived the study. EJM proposed the Martin and JB the Combined active site defi-
nition. TH and WDC performed the sequence alignment. YS conceived and imple-
mented the augmentation strategies and performed the experiments. JB implemented
the models, performed all other experiments, analyzed all results and created all visual-
izations. JB led the manuscript writing to which all authors significantly contributed.

4. J. Born*, M. Manica*, A. Oskooei, J. Cadow, G. Markert, M. Rodriguez Martinez
"PaccMannRL: De-novo Generation of Hit-like Anticancer Molecules from Tran-
scriptomic Data via Reinforcement Learning." iScience, (2021), 24, 4.

Presented in Chapter 4 (Section 4.2 to Section 4.3). JB, MM and AO conceived the
study and the PaccMannRL model. JB, MM, AO, JC and GM implemented the dif-
ferent components. MM preprocessed the data. JB conducted all experiments and
analyzed all results. JB and MM created the visualizations. GM performed the case
study on multiproperty optimization. JB led the manuscript writing to which all au-
thors significantly contributed.

5. J. Born*, M. Manica*, J. Cadow*, G. Markert, N.A. Mill, M. Filipavicius, N.
Janakarajan, A. Cardinale, T. Laino and M.R. Martinez
"Data-driven molecular design for discovery and synthesis of novel ligands: a case
study on SARS-CoV-2." Machine Learning: Science & Technology (2021), 2, 2.

Presented in Chapter 4 (Section 4.2 and Section 4.4). JB and MM conceived the
study. MM led the model development by JB, JC and GM. JB developed the con-
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ditional generator. JB and JC analyzed the experimental results. JB, MM, JC and
NAM created the visualizations. MM performed the synthesis planning experiments.
MM, AC and TL selected the molecule for synthesis and oversaw the robot. JB led
the manuscript writing to which all authors significantly contributed.

6. J. Born, M. Manica
"Regression Transformer: Concurrent sequence regression and generation for
molecular language modeling." Nature Machine Intelligence (In Review)

Presented in Chapter 5. MM and JB conceived and designed the study together.
MM conceived the tokenization scheme. JB conceived and implemented the objec-
tive functions, the alternating training regime and the numerical encodings. JB per-
formed all experiments and analyzed all results and created all visualizations with sup-
port from MM. JB wrote the paper with some inputs from MM.

7. J. Born M. Manica
"Trends in Deep Learning for Property-driven Drug Design." Current Medicinal

Chemistry (2021), 28, 38.

Review paper, content used throughout the thesis (mostly Chapter 1 and Section 4.1).
MM and JB conceived this review paper, developed the software for publication key-
word searches and JB performed and analyzed the experiments. JB wrote the paper
with some inputs from MM.

Additional contributions.

In addition to the works listed above, the author also contributed to the following pub-
lications. Note that this lists only publications related to the content of this thesis. The
list is ordered by depth of contribution:

1) J. Cadow*, J. Born*, M. Manica*, A. Oskooei, and M. Rodríguez Martínez
"PaccMann: a web service for interpretable anticancer compound sensitivity predic-
tion." Nucleic acids research (2020), 48(W1), W502-W508.

2) M. Manica, J. Born, J. Cadow, D. Christofidellis, A. Dave, D. Clarke, Y.G. Nana
Teukam, S.C. Hoffman, M.Buchan, V. Chenthamarakshan, T.Donovan, H.H. Hsu,
F. Zipoli, O. Schilter, G. Giannone, A. Kishimoto, L. Hamada, I. Padhi, K. Wehden,
L. McHugh, A. Khrabrov, P. Das, S. Takeda, J.R. Smith
"GT4SD: Generative Toolkit for Scientific Discovery". arXiv preprint arXiv:2207.03928

(2022).
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3) N. Janakarajan, J. Born, M. Manica
"A Fully Differentiable Set Autoencoder". Proceedings of the 28th ACM SIGKDD

Conference on Knowledge Discovery & Data Mining (2022), 3061-3071.

4) A. Weber, J. Born, and M. Rodriguez Martínez.
"TITAN: T-cell receptor specificity prediction with bimodal attention networks"
Bioinformatics (2021), 37, i237-i244.

5) N. Park, M. Manica, J. Born, D. Y. Zubarev, N. A. Mil, J. L. Hedrick, P. L. Arrechea,
T. Erdmann
"An extensible software platform for accelerating polymer discovery through infor-
matics and artificial intelligence development." Nature Communications (In Revi-
sion).

6) G.A. Tadesse, J. Born, C. Cintas, M. Manica and K. Weldemariam.
"MPEGO: A toolkit for multi-level performance evaluation of generative models for
material discovery domains." KDD Workshop on Machine Learning for Materials

Science (2022).

7) V. Chenthamarakshan, P. Das, S. Hoffman, H. Strobelt, I. Padhi, K.W. Lim, B.
Hoover, M. Manica, J. Born, T. Laino and A. Mojsilovic.
"CogMol: target-specific and selective drug design for COVID-19 using deep
generative models." Advances in Neural Information Processing Systems, 33 (2020).
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2 Molecular property
prediction

2.1 Introduction
A first research question we will address is to find an ideal combination of model and
data representation for molecular property prediction tasks. This will later become use-
ful when building generative models that are driven by property predictors.
Among the typically investigated molecular properties, toxicity is particularly important
in the pharmaceutical industry since it accounts for the failure of > 30% of all clinical
trials [31]. A commonly utilized approach in lead compound design is to avoid molecules
with toxicophores, i.e., substructures or chemical motifs that are likely to exert toxic ef-
fects [32]. Empirically, this heuristic has proven to be limited – the success rates are
steadily declining and oncological pharmaceuticals are particularly affected as only 3.4%
of the clinical trials are successful [33].

Deep learning has promised a methodological turnaround toward data-driven
approaches to combat the ever growing need for new therapeutics [10]. Consequently,
a considerable body of literature developed around molecular property prediction [34,
35, 36, 37, 38] with several works focusing on toxicity prediction [39, 40, 41, 42, 43, 44].
It is widely accepted that the ultimate success of QSAR modeling critically depends
on selected molecular representation [45]. Traditional chemoinformatics models relied
on 1D descriptors such as binary fingerprints [46]. While in 2018, the lion’s share
of publications on molecular property prediction utilized fingerprints, the usage of
graph-based techniques soared rapidly in the last years and now surpassed fingerprints as
the most popular representation type according to publication keyword matches [47].

2.1.1 The rise of chemical languages in chemoinformatics
SMILES (Simplified molecular-input line-entry system) is a molecular inline notation
that is obtained by traversing the molecular graph. For example, benzene can be written
as C1=CC=CC=C1. While SMILES was originally devised by Weininger [48] for data storage
purposes, it has rapidly gained popularity for molecular property prediction tasks in the
last years [27, 45, 49]. SMILES allows treating chemistry as a language – molecules can
be seen as words and atoms and bonds as letters. Treating molecules as SMILES strings
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opens the door to leverage tremendous recent progress in NLP such as autoregressive
decoding methods or the Transformer [50].

SMILES will be fundamental throughout this thesis as they constitute the foundation
for any chemical language model. The use of SMILES for molecular activity prediction
was first proposed by Jastrzebski et al. [51] and quickly adopted for predicting drug-target
interactions [52], chemical reaction products [53], drug sensitivity [27], toxicity [54] or
to train molecular generative models [55]. SMILES strings are split (i.e., tokenized) into
atomic units (i.e., tokens) that are passed as one-hot or learned embeddings to a neural
network, similar to words in NLP. Notably, the multiplicity of SMILES enables data
augmentation by traversing the same molecular graph in different ways. This was first
reported beneficial for the performance of property prediction models by Bjerrum [56],
but later confirmed in countless settings [38].

But despite the ubiquitous usage of SMILES, there is no universal, canonical SMILES
representation (e.g. PubChem [57] kekulizes “canonical” SMILES, whereas RDKit [58]
does not), even though several attempts toward unification were proposed [59]. Thanks
to the use of SMILES, significant progress has been achieved in countless disciplines
in chemoinformatics, including but not limited to: forward reaction prediction [28],
retrosynthesis modeling [60], de novo molecular design [11], automated extraction of
experimental procedures [61] and synthesis actions [30], reaction atom-mapping [29] or
yield prediction [62].

In this chapter we systematically investigate the predictive power of different flavors
of SMILES and compare it to established chemical descriptors or more complex repre-
sentations such as graphs. We also propose ToxSmi, a novel, SMILES-based, robust and
interpretable language model that is shown to exhibit excellent prediction performance
across several datasets, focused on but not limited to toxicity. We show how ToxSmi’s
attention maps can be useful to understand the model’s predictive process and find en-
richment for known toxicophores even without explicit supervision. Since model safety
and reliability is a critical aspect of drug modeling, we borrow two simple uncertainty es-
timation methods proposed in related fields, namely Monte Carlo dropout [63] and test-
time-augmentation [64]. We provide quantitative evidence on how they can be used to
identify probable misclassifications. Last, we validate ToxSmi on a large-scale proprietary
toxicity dataset and find that it outperforms previous work while giving similar insights
into revealing cytotoxic substructures.

2.2 Problem formulation
Let M denote the molecular space and Y denote the QSAR property scores. We are
interested to learn a functionΦ : M → Y that maps a molecule to a property score. Φ is
parameterized through our model and learned from a labelled dataset D = {mi, yi}Ni=1

where mi ∈ M and yi ∈ Y .
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2.3 Molecular representations

2.3 Molecular representations
In the following we investigate three types of molecular representations:

1. Molecular fingerprints: Molecular fingerprints are binary vectors where the
value at each position indicates the presence of a certain substructure. Here, we
use extended connectivity fingerprints (ECFP [46]). We use ECFPs with 512 bits
and a radius of 2 (ECFP4). In the DeepTox publication, Mayr et al. [39] used a rich
set of chemical descriptors but found that it can be approximated well solely based
on ECFP4. Therefore, we refrain from examining other types of fingerprints.

2. Molecular graphs: Each molecule is denoted by an undirected graphG = (V,E)
where vertices denote atoms and edges denote bonds. Vertices are labelled by their
atom identity and edges by the bond valence.

3. String-based representations: We examine chemical languages such as
SMILES [48] or SELFIES [65]. Due to their recent success, different types of
string representations, in particular different SMILES flavors, are our main focus.

2.3.1 Chemical languages
Figure 2.1 explains the notation of SMILES and shows an overview of a multitude of
SMILES flavors. All these strings correspond to the same molecule, they simply vary by
their convention. For example, SMILES strings normally do not explicitly list bonds un-
less they are double (=) or triple (#). Hydrogen atoms are also not stated except if they
are important for the stereoinformation of a tetrahedral center (e.g., [C@H]). The starting
point is always the raw SMILES representation as read from the data source. We then
experimented with a cascade of transformation as follows:

Chemical transformations refer to semantic changes in the visibility of certain
properties in the string and include:

1. Canonicalization: Since a molecular graph traversal is ambiguous, SMILES are non-
unique representations of molecules. Canonicalization ensures that every molecule
is represented by exactly one string. Here, we use canonicalization as defined in RD-

Kit [58]. Canonicalization bears the advantage of an increased data uniformity.

2. Kekulization: Aromatic moieties can either be represented explicitly or implicitly.
In the explicit (kekulized) version, the aromatic π-electrons are static between every
second carbon. Instead, in the canonical form, the electrons are delocalized (cf. Fig-
ure 2.1). The kekulized version is slightly longer but uses the same token to denote an
atom, irrespective of its aromaticity.
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2 Molecular property prediction

3. Removal of stereoinformation: To uniquely identify a molecule from a SMILES,
information abound the tetrahedral center or the double bond direction (E or Z) is
sometimes needed. Since stereoinformation is rare, it is often discarded in affected
molecules for reasons of simplicity and uniformity. We experiment separately with
removing chirality and bond direction.

4. Explicitness: We experimented with making hydrogen atoms or single bonds
(or both) explicit in the SMILES. This increased sequence length but also better
distributes the frequency of tokens in the vocabulary.

Randomized transformations add a level of stochasticity that resembles a form
of augmentation. They refer to non-chemical changes in the syntax or grammar.

1. Augmentation: Since SMILES are non-unique, their multiplicity can be used for
data augmentation which provably improves performance of predictive [38, 56] and
generative [67] models. Here, we use online augmentation which samples the graph
traversal at runtime and generates the corresponding string.

2. Shuffling: Liu et al. [68] observed that randomly shuffling the position of the SMILES
tokens does not significantly reduce performance in QSAR prediction tasks. This is
striking because shuffling destroys the molecular identity and the local structure. It is
not commonly applied. Like augmentation, shuffling occurred as a stochastic trans-
formation at runtime.

Language translations are optional. The default language is SMILES and the
only alternative language explored in this work is SELFIES. We note that other languages
such as DeepSMILES [69] or the polymer language BigSMILES [70] exist.

1. SELFIES: SELFIES is a self-referencing chemical language that overcomes the validity
problem of SMILES (i.e., random SMILES strings are not generally valid) and was
devised for generative models by Krenn et al. [65].

Tokenization splits the obtained strings into tokens. Tokens are the smallest unit of
information that is presented to the model. Possible tokenization schemes are:

1. Character-level: Splitting on a character-level is suboptimal since it splits up atoms
like Bromine (Br) into multiple tokens (B and r).

2. Atom-level: Splits strings on an atom-level to ensure that each molecular entity is
represented as one feature vector to the model. By convention, this is achieved with
the regular expression from Schwaller et al. [53].
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2.3 Molecular representations

3. SMILES-PE (SPE): Inspired by byte-pair encodings [71] this method splits SMILES
into substructures of varying length based on their occurrence in ChEMBL [66]. Li

and Fourches [66] showed that SPE has comparable predictive to atom-based tokeniza-
tion in QSAR prediction tasks. It is ideal to handle larger molecules since it drastically
reduces the number of tokens.
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OH

(S,E)-4-phenylbut-3-en-2-ol

Example molecule and its different SMILES representations:
Raw: SMILES as read from data source: c1ccc(/C=C/[C@H](C)O)cc1

Chemical transformations
Canonical (by RDKit): C[C@H](O)/C=C/c1ccccc1

Isomeric (by PubChem): C[C@@H](/C=C/C1=CC=CC=C1)O

Without stereoinformation: c1ccc(C=CC(C)O)cc1

Without chirality: c1ccc(/C=C/C(C)O)cc1

Remove doublebond direction: c1ccc(C=C[C@H](C)O)cc1

Kekulization: C1=CC=C(/C=C/[C@H](C)O)C=C1

Explicit bonds: c1:c:c:c(/C=C/[C@H](-C)-O):c:c1

Explicit hydrogens: [cH]1[cH][cH][c](/[CH]=[CH]/[C@H]([CH3])[OH])[cH]...

Randomized transformations (non-unique!)
Multiplicity (aka augmentation) – e.g.: C[C@H](O)C=Cc1ccccc1

Character shuffling – e.g.: c[C@H]Ccc/C(Cc=Oc)1/)c(

Language translation
SELFIES: [C][C@H1][Branch1][C][O][C][=C][C][=C][C][=C][C][=C][Ring1]...

Tokenization
If SMILES:

Character level: C [ C @ H ] ( O ) C = C c 1 c c c c c 1

Atom-level [53]: C [C@H] ( O ) C = C c 1 c c c c c 1

SMILES Pair Encoding (SPE) [66]: C[C@H](O) /C=C/ c1ccccc1

If SELFIES:

SELFIES tokenizer: [C] [C@H1] [Branch1] [C] [O] [C] [=C] [C] [=C]...

Figure 2.1: Workflow for different chemical language flavors, showcased on (S,E)-4-
phenylbut-3-en-2-ol. Translating a molecule into a string representation. Transformations can
be divided into four groups and are executed sequentially. First, chemical transformations change
the semantics of the language. Randomized transformation add a level of stochasticity. Then,
language transformations optionally convert the SMILES to another language (e.g., SELFIES).
Last, the tokenization scheme determines the feature blocks provided to the model.
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For example, in our experiments, we investigated SELFIES with and without augmen-
tation. All sequences are enclosed by a <START> and <STOP> token and are left-padded to
the longest sequence in the dataset, respectively. The entire SMILES processing pipeline
is implemented in the publicly available package pytoda1 [72].

2.4 Model definitions

2.4.1 Language models
2.4.1.1 ToxSmi

The ToxSmi model is an attention-based multiscale convolutional neural network. It is
inspired by a bimodal variant of this model, called PaccMann, which was originally devel-
oped for drug sensitivity prediction [27, 73]. The network architecture is shown in Fig-
ure 2.2. In the canonical ToxSmi model, each token is represented as a learned embed-
ding of dimensionality H = 256. The input matrix X ∈ RT×H where T is the se-
quence length (i.e., padding size). The embeddings X are processed by three parallel 1D-
convolutional layers with kernel sizes 3, 5 and 11. A fourth channel has a residual connec-
tion without convolutions (not shown in Figure 2.2). For each of the four channels, we
utilize a stack of c = 6 attention heads. In each head, a self-attention mechanism (similar
to the one proposed by Bahdanau et al. [74]) enables the model to focus on relevant parts
of the molecule. In each head, the attention weight αi of token i is computed by:

αi =
exp (ui)∑T
j exp (uj)

, where u⃗ = (MW1)v⃗ (2.1)

where M ∈ RT×C is the output of the convolutional layer with C = 128 filters, W1 ∈
RC×S and v⃗ ∈ RA are learnable parameters, and S = 256 is the dimensionality of the
attention space.

For notational purposes, consider A = [α⃗, ..., α⃗] ∈ RT×C as the attention matrix
with the attention vector repeated C times 2. Then, the output vector e⃗ ∈ RC of each
attention head is obtained by filtering M with the attention matrix (i.e., "we attend"):

x⃗out = 1T [M ◦A] (2.2)

Basically, we filter the output sequence from a given convolutional kernel with the atten-
tion scores and then we sum over the sequence dimension to obtain a single score for each
filter. This is similar to the so-called Bahdanau attention from language translation [74],
with the difference that 1) we refrain from having an additional tanh non-linearity (it did

1https://pypi.org/project/pytoda
2In practice, we exploit automatic tensor broadcasting.
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MC1 MC2 MC3

Multihead attention

Channels

Dense
Layers

SMILES

K = 11

K = 5
K = 3

m = 6

C = 128

SMILES embedding

CNN

  Single/multi-label 
classification

Figure 2.2: The ToxSmi model, a convolutional, attention-based neural network for
molecular property prediction. The first step of ToxSmi is the sequence embedding. The em-
beddings are then used for three (parallel) 1D convolutional layers to aggregate local information.
Next, the multihead self-attention mechanism calculates the attention weights and filters the in-
puts accordingly. The resulting outputs are concatenated and processed by a set of dense layers,
resulting in one (or multiple) output scores.

not perform well in initial experiments) and 2) there is no need for additive attention be-
cause there is no output tokens to attend to. Since the attention is thus done with a single
sequence we call it self-attention.

With three parallel convolutional layers (plus one residual connection), each withm =
6 attention heads, we obtain 24 output vectors x⃗out which are stacked to a single large
vector. This vector is processed by a stack of dense layers ([1024, 512] units) before a final
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2.4 Model definitions

layer with a sigmoid activation computes the class-wise predictions. The model is trained
with a binary cross-entropy for classification.

2.4.1.2 Recurrent networks

We examined two flavours of recurrent neural networks as alternative chemical language
models; the Gated Recurrent Unit, GRU [75], and the neuromodulated Bistable Recur-
rent Cell, nBRC [76]. The GRU employs a gating mechanism to control information
flow, making it suitable for handling longer sequences. The nBRC is a biologically in-
spired modification of the GRU that is superior in exact memorization and counting [76]
which might be crucial in handling SMILES sequences due to their ring opening and clo-
sure symbols. This cell was never tested before in chemical language models. The cell can
switch between a monostable and a bistable state and hold onto information for an arbi-
trarily long time period. For both models, we use two bidirectional layers with 256 units.
The last hidden states from both directions are processed by a 3-layered dense network
with 1024, 1024 and 512 hidden units respectively (50% dropout). The final scores are
returned by an ensemble of 5 linear networks acting on the 512-dimensional representa-
tion. The models were optimized by Adam [77] at a constant learning rate of 1e−4.

2.4.2 Fingerprint-based models
For fingerprint-based models we used 512-bit ECFP fingerprints [46] with a radius of 2
(ECFP4).

k-nearest-neighbor (k-NN). As a non-parametric baseline we explored the k-NN
algorithm and employed (inverted) Tanimoto similarity [78] as distance function. Note
that the Tanimoto similarity is the same as the Jaccard index. We set k = 23, based on
the performance on the Tox21 test dataset.

Dense neural network (DNN). This was a simple, four-layered, fully-connected
neural network with [512, 1024, 2048, 1024] units and a sigmoid activation function
was used.

2.4.3 Graph-based models
Molecular graph representations were examined with graph neural networks and graph
kernels.

Graph convolutional network

Graph convolutional networks (GCN) are GNNs which use convolutions as neighbor-
hood aggregation function. Following [79], this is a GCN with two graph-convolutional
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2 Molecular property prediction

layers (64 units) and one dense layer (128 units), no dropout, 75 atom features and a
sigmoid activation function.

Graph kernels

Graph kernels rely on a kernelk(x, x′) that measures similarity between molecular graphs
x and x′ [80]. We experimented with four different kernels.

1. Shortest-path (SP): This path kernel [81] first transforms the graphs G1, G2 into
shortest-path graphsS1,S2 using the Floyd algorithm [82]. LetS1 = (V1, E1) and
S2 = (V2, E2), then our shortest-path kernel is:

kshortest−paths(S1, S2) =
∑
e1∈E1

∑
e2∈E2

k
(1)
walk(e1, e2) (2.3)

where k(i) walk is a positive definite kernel on edge walks of length 1.

2. Weisfeiler-Lehman (WL): This subtree kernel relies on the Weisfeiler-Lehman
(WL) relabeling method [83]. Let Gn = (V,E, ln) and G′

n = (V ′, E ′, l′n) be the
n-th iteration rewriting of the graphs G and G′. Then the WL kernel is defined as

kh
WL(G,G′) =

h∑
n=0

kδ(Gn, G
′
n) (2.4)

where kδ((V,E, l), (V ′, E ′, l′)) =
∑
v=V

∑
v′∈V ′

δ(l(v), l′(v′)) (2.5)

where δ is the Dirac kernel.

3. Message Passing (MP): This subtree kernel [84] extends the concept of message-
passing [85] from GNNs to graph kernels. It’s a generalization of the WL kernel
that uses a smoother definition of structural equivalence.

4. Wasserstein-Weisfeiler Lehmen (WWL): This extension of the WL kernel relies
on the Wasserstein distance between node feature vector distributions of the WL
subgraphs. For details see Togninalli et al. [86].

In all cases, the graph kernels were used to measure sample similarity and a SVM [87] was
employed for classification.
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2.5 Studied datasets

2.5.1 Tox21 Dataset
The Tox21 dataset [88] includes 12, 707 compound entries of small molecules tested on
12 targets [89], classified as toxic or non-toxic. Five of the 12 targets are associated with
hormones (such as the estrogen receptor, the androgen receptor and aromatase). The
dataset comes with a fixed split of 11, 764 training, 296 test and 647 score molecules. Test

labels were withheld from participants during the original challenge and used to compute
the leaderboard, but later made available so that participants could refine their models for
the final evaluation on score.

2.5.2 MoleculeNet datasets
The MoleculeNet benchmark [34] distributes a variety of datasets from quantum me-
chanics over physical chemistry and biophysics to physiology.

1. BACE: This is a dataset of 1522 inhibitors against human β-secretase 1 (BACE-
1), represented quantitatively by their IC50 value and qualitatively through binary
labels indicating their inhibition success [90]. The 2-D structures of these com-
pounds and IC50 values are gathered from experimental scientific literature. Scaf-
fold splitting is recommended for this dataset.

2. SIDER: Side Effect Resource (SIDER) is a database of 1427 approved drugs and
their associated adverse drug reactions (ADR), grouped into 27 system organ
classes [91, 92].

3. ClinTox: This dataset comprises 1491 compounds and compares drugs approved
by the FDA with those that have failed clinical trials due to toxicity through 2 clas-
sification tasks - clinical trial toxicity status and FDA drug approval status [93, 94].

4. BBBP: The Blood–brain barrier penetration (BBBP) dataset contains information
on the blood-brain barrier permeability properties of over 2000 compounds [95].
This is a classification task where binary labels are provided and a scaffold split is
recommended.

5. HIV: The HIV dataset contains information about the ability of 40, 000 com-
pounds to inhibit HIV replication [96]. The classification task categorizes com-
pounds as being active or inactive against HIV replication. A scaffold split is rec-
ommended for this dataset.

6. Tox21: This is a redistribution of the original Tox21 dataset [88]. This distribution
is much smaller (8014 molecules), SMILES are largely canonicalized and it does
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not come with a fixed split. A random split is recommended. The ToxSmi model
was trained on this dataset will be used later for generative tasks and will be denoted
by θTox21.

On each dataset we trained ten models on repeated data splits in the recommended strat-
egy. For the comparison to Grover [36], who trained the models on scaffold splits for
all datasets, we trained additionally ten models on scaffold splits for the affected datasets
(SIDER, ClinTox, Tox21).

2.5.3 Cytotoxicity dataset
As an external validation, a cytotoxicity dataset compiled by the Leibniz-
Forschungsinstitut für Molekulare Pharmakologie (FMP) was employed [97]. The data
collected by the FMP measures the cytotoxicity of molecules and was initially used in
the study by [98]. The relative growth of two cell lines, namely HEK292 (kidney) and
HepG2 (liver), is measured. A molecule is considered cytotoxic if it inhibits growth
by at least 50% on one or both of the two cell lines. Before pre-processing, the data set
before consists of 34, 848 measured compounds. Pre-processing of the data is done
in the same manner as in the original study [98]. More specifically, it uses RDKit and
consists of a sanitization, a standardization, and a de-duplication step, resulting in
34, 366 compounds. Out of these molecules, only 4.65% are labeled cytotoxic, leading
to a highly imbalanced, yet consistent, data set. The experiments with this data set
were run using high-performance computer (HPC) services from the Freie Universität
Berlin [99]. To compare to the feed-forward neural network (FNN) by Webel et al. [98],
we used a 10-fold stratified cross validation split with 10% held-out data for testing, like
done in their work. Note that Webel et al. [98] used 2048-bit ECFP4 fingerprints.

2.6 Evaluation procedure
All models were evaluated on performance metrics that are in alignment with previous
work on those datasets [34, 88, 98]. The main metric is area under the ROC curve (ROC-
AUC). For the cytotoxicity dataset we report the true positive rate (TPR, also called sen-
sitivity), the true negative rate (TNR, also called specificity) and the balanced accuracy
(TPR+TNR

2
).

All models were trained for 200 epochs with early stopping, the ADAM optimizer [77]
and a cross-entropy loss. Learning rate varied across models, but unless otherwise speci-
fied was set to 1e−4. Emulating the original Tox21 challenge, the hyperparameters of the
models were tuned using the test dataset using raw SMILES as inputs. After the optimal
configuration was found, 10 models were trained for each investigated dataset. For the
original Tox21 dataset, the 10 models were obtained from identical training data with dif-
ferent weight initialization. For the remaining datasets, the random split was repeated for
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each run. Note that we refrained from further optimizing any hyperparameters on any
of the remaining datasets.

2.7 Performance results

2.7.1 Comparing molecular representations (Tox21)

In Table 2.1, we display the performance of all algorithms as measured by ROC-AUC.
The performances refer to the Tox21 score dataset which was used to determine the
Tox21 challenge winners. Comparing the model classes shows that graph kernels
generally yielded the worst performance. Since the complexity of graph kernels scales
quadratically with the size of the dataset, reports on graph kernels on datasets with
> 10, 000 examples are scarce to absent [100]. They are predominantly useful in small
data regimes.

The SMILES representations used to train the ToxSmi model (cf. Table 2.1a) yielded
performance that statistically significantly surpassed the DNN trained on ECFP as well
as all graph kernel techniques in all cases (p < 0.0.5, one-sided Mann-Whitney-U test,
U ). Comparing the SMILES representations, the best results were not obtained by con-
sistently formatting the SMILES, but rather by SMILES augmentation [56], which re-
sembles a form of data augmentation by exploiting the multiplicity of SMILES for each
molecule. This SMILES augmentation model outperforms all other models (p < 1e−4,
U ) that do not use augmentation. This is in alignment with prior work reporting superi-
ority of SMILES augmentation to canonical SMILES [38, 56]. Generally, the differences
between the different SMILES representations were minor. Stereochemistry information
stemming from chirality tokens (/ and \) or bond direction ([C@H]) tend to confuse the
model as removing them yielded slightly better performance, maybe explainable by their
scarcity in the training data (18% and 7% respectively). Notably, even though SELFIES
were devised for generative tasks [65], they barely rank behind SMILES regarding their
predictive power for toxicity prediction. Moreover, SELFIES benefits from augmenta-
tion just like SMILES does. While, overall, the semantic (i.e., chemical) transformations
of SMILES have minor impact on performance, the language transformations and to-
kenization scheme can be critical. For example, SMILES pair-encoding [66] gave much
worse performance than all other SMILES representations, maybe because the sequences
are shorter and the vocabulary is much larger leading to sparsity. We hypothesize that
more labelled data or pretraining on SMILES-PE could have closed this gap. A stagger-
ing finding is that shuffling the SMILES did not change the performance significantly.
This result is in accordance to Liu et al. [68] on other datasets and suggests that instead
of aggregating local information in the SMILES sequences, the models predominantly
make predictions similar to a bag-of-words model. If structural information is stripped
off, the models can only rely on atom counts. However, the shuffling can be interpreted as
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Representation ROC-AUC
raw SMILES 0.832*±0.005

canonical SMILES 0.830*±0.008

kekulized SMILES 0.830*±0.006

aug. SMILES 0.853±0.003

SMILES w/o chirality 0.834*±0.004

SMILES w/o 0.834*±0.006bond direction
SMILES w/o bond 0.835*±0.006direction & chirality

Kekulized w/o bond 0.831*±0.004direction & chirality
SMILES with 0.834*±0.003explicit bonds
SMILES with 0.829*±0.007explicit hydrogen

SELFIES 0.827*±0.007

aug. SELFIES 0.852±0.004

shuffled SMILES 0.830*±0.003

SMILES Pair 0.776*±0.01Encoding (PE)
aug. SMILES PE 0.825*±0.005

(a) Different molecular string notations used to train
the ToxSmi model.

Model Repr. ROC-AUC
k-NN 512-bit 0.759
DNN ECFP4 0.777±0.004

GRU raw 0.781±0.003

nBRC SMILES 0.756±0.002

SP 0.567±0.108

MP Graph 0.703±0.040

WL kernels 0.754±0.019

WWL 0.758±0.023

GCN Graphs 0.828±0.008

(b) Remaining molecular representations and model
architectures. All models were significantly inferior
to the ToxSmi model with augmented SMILES (p <
0.05, U ).

Table 2.1: ROC-AUC values on the Tox21 dataset for different algorithms and molecular
representations. Each model was trained 10 times, standard deviations are shown. The best
ROC-AUC values were obtained with augmented SMILES and the MCA architecture (marked
in bold). Second-best performance is underlined. Models denoted with a star are significantly
outperformed by the best ToxSmi model (augmented SMILES, p < 0.05, U ). For the k-NN
there were no repeated experiments.
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another way of data augmentation since it is performed stochastically at runtime. In that
sense, it is worth mentioning that the SMILES augmentation performed significantly bet-
ter than shuffling. Last, the two RNN-based models operating on raw SMILES (GRU
and nBRC) performed much worse than the ToxSmi model, suggesting the superiority
of our architecture.

2.7.2 Comparing ToxSmi to prior art
The previous section revealed the superiority of the ToxSmi architecture over several base-
line models. It also showed the benefit of SMILES augmentation. We therefore sought
to validate the ToxSmi model on related tasks beyond toxicity prediction on the Molecu-
leNet benchmark [34].

This benchmark comprises several datasets about biophysics and physiology. To en-
sure a fair comparability, we excluded previous work whenever the data splitting strategy
was not clear or no repeated experiments were conducted. Note that the Tox21 dataset
listed in this section differs from the original one by Huang et al. [88].Since the derivative
distribution by Wu et al. [34] is frequently used for benchmarking we retrained ToxSmi
on this flavor of Tox21.
The results on all six datasets are shown in Table 2.2 and underline the superiority of our
model to previous approaches, including graph convolutional networks [34] and several
variants of message-passing neural networks [85], in particular the directed MPNN [35],
attention-MPNN, edge-MPNN and SELU-MPNN [101]. Even the work by Shen et al.
[102] who build a CNN based on a highly customized featurization pipeline including
thirteen multidimensional descriptor classes and three fingerprint types was significantly
outperformed by ToxSmi, a purely SMILES based model that did not incorporate any
topological or structural features directly.

In the analysis in Table 2.2, we relied for each dataset on the data splitting strategy rec-
ommended by Wu et al. [34]. However, splitting molecules randomly between training
and testing often results in overly optimistic model performance. This can be due to data
collection biases such as, for example, sparse coverage of the chemical space or sequential
decision procedures driven on previous experimental results [103]. Instead, splitting the
scaffolds rather than the molecules poses a more challenging task that might approximate
better the generalization performance. We therefore re-assessed the performance on three
datasets where a random split was recommended (SIDER, ClinTox, Tox21). The scaffold
split on those datasets enabled a fair comparison on an additional benchmark, reported
by Rong et al. [36]. They evaluated a wide range of prediction models on scaffold-splits of
all MoleculeNet datasets and then proposed GROVER, a large-scale graph Transformer
that was pretrained with self-supervision on> 10M molecules. The results are displayed
in Figure 2.3 and include comparisons to fully-connected networks (TF_Robust [104]),
three graph-convolutional networks (GraphConv [105], Weave [106] and SchNet [107]),
four message-passing graph neural networks (a vanilla GNN [108], the MPNN [85] and its
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Dataset BACE SIDER Clintox BBBP Tox21 HIV AverageSplit Scaffold Random Random Scaffold Random Scaffold

ToxSmi
(ours) 0.861±0.04 0.659±0.04 0.878±0.00 0.915±0.02 0.858±(0.05 0.813±0.03 0.831

GraphConv
Wu et al. [34] 0.783±0.01 0.638±0.01 0.807±0.05 0.690±0.01 0.829±0.01 0.763±0.02 0.752

Weave
Wu et al. [34] 0.806±0.00 0.581±0.03 0.832±0.04 0.671±0.01 0.820±0.01 0.703±0.04 0.736

D-MPNN
Yang et al. [35] 0.838±0.06 0.646±0.02 0.894±0.03 0.888±0.03 0.845±0.002 0.794±0.02 0.818

SELU-MPNN
Withnall et al. [101] – 0.632±0.01 – 0.693±0.06 0.820±0.01 0.747±0.01 –

AMPNN
Withnall et al. [101] – 0.639±0.01 – 0.709±0.04 0.812±0.02 0.742±0.02 –

EMPNN
Withnall et al. [101] – 0.651±0.01 – 0.705±0.02 0.829±0.01 0.759±0.01 –

MMNB
Shen et al. [102] 0.849 0.680 0.888 0.739 0.842 0.777 0.796

Table 2.2: ROC-AUC values on the MoleculeNet datasets for different algorithms.
With the exception of ClinTox, ToxSmi obtained always either the best (bold) or second-best
(underlined) performance on each dataset. Across all datasets, ToxSmi outperforms all compet-
ing approaches. For each dataset, ten models were trained and the splitting strategy recommended
by MoleculeNet was utilized.

variants D-MPNN [35] and MGCN [109]), an n-gram model [110], and two graph trans-
former networks (AttentiveFP [37] and GROVER itself [36]). The results demonstrate
that ToxSmi consistently obtained superior performance compared to all flavors of fully-
connected, graph-convolutional or message-passing neural networks. Only the group of
graph-transformer networks (AttentiveFP and GROVER) outperformed ToxSmi; on av-
erage by 0.7% and 3% respectively. GROVER, the only model that consistently beats
ToxSmi, is significantly larger and more complex. ToxSmi contains only 5M parameters
(exact number depend on dataset/vocabulary size), consists of vanilla convolutional layers
coupled with a plain Bahdanau-style attention and was trained from scratch on SMILES
sequences (with augmentation). Instead, GROVER employs an order of magnitude
more parameters (50M ) and relied on large-scale pretraining on > 11M molecules that
utilized 250 GPUs.
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3

1

2

Figure 2.3: Comparison of ToxSmi to previous work exclusively on scaffold splits
several MoleculeNet datasets. Overall, ToxSmi is the third best model, only surpassed by
GROVER [36] and AttentiveFP [37]. For each dataset the average ROC-AUC across all tasks
is reported. Results for ToxSmi were obtained by measuring test performance for 10 repeated
scaffold splits. All other numbers are taken from Rong et al. [36] who trained all models on 3
repeated scaffold splits. The numerical results for this barplot can be found in Table A2.1.

2.8 Interpreting attention weights

Since ML models are often considered black-box by chemists, model interpretability is
a heavily sought-after trait in QSAR modeling. As reviewed by Jiménez-Luna et al. [111],
considerable previous work has been invested to explain molecular property prediction
models.
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2 Molecular property prediction

In this section, we describe how ToxSmi achieves high model explainability via its self-
attention mechanism. While previous methods, e.g., Ding et al. [112] or Jiménez-Luna

et al. [113] rely on post-hoc workflows or (integrated) gradient schemes to become inter-
pretable, the attention mechanism in ToxSmi is an ante-hoc method that produces at-
tention maps as a byproduct of any prediction. We show how the attention maps can
be useful to understand the model’s predictive process and find that the attention maps
align, in many cases, with prior knowledge in chemistry.

This experiment is done on the Tox21 dataset with ToxSmi trained on augmented
SMILES sequences.

2.8.1 Analyzing molecular attention on Tox21
Extraction procedure

As can be seen in Equation 2.1 and Equation 2.2, any forward-pass through ToxSmi pro-
duces attention scores αi, assigning relevance to each token i. We summed the scores
across all heads and layers to obtain a single attention score per token. Next, we assessed
whether the attention scores carry any meaning regarding the toxicity of the respective to-
ken (i.e., atom/bond). Therefore, we relied on so-called toxicophores, molecular substruc-
tures that are known to have toxic effects [114]. We focus on two toxicity endpoints, acute
aquatic toxicity (99 alerts, see [115, 116]) and endocrine disruption (35 alerts, see [117]) that
are most similar to the Tox21 tasks.

Attention on atom- or bond tokens were considered for the analysis whereas attention
on other tokens (e.g., ring tokens) were discarded since it could not always be determined
whether these tokens belong to a toxicophore or not. Next, the SMILES strings of all
test molecules were queried against the desired toxicity alerts (given in SMARTS [118]).
Whenever a match was obtained (by a substructure match in RDKit), the SMILES tokens
affected by the alert were assigned as toxicophore tokens whereas the other tokens kept
their status. For each molecule, this resulted in a grouping of the attention weights to
either belonging to a toxic or non-toxic substructure.

Result

In Figure 2.4, we show the attention weights of the best ToxSmi model for all molecules
from the Tox21 score dataset. It can be seen that, in many cases, the model assigned high
attention to atoms that belong to known toxicophores. To assess whether the model se-
lectively focused on informative substructures, we compared the mean attention weight
on the toxicophoric parts of all molecules to the mean attention weight of the remain-
ing part. Molecules that exclusively consisted of toxicophores were excluded from the
analysis. This revealed a significantly higher mean for toxicophore substructures (p =
0.011 in two-sided Mann-Whitney-U test) showing that the model focused predomi-
nantly on toxic substructures. This is remarkable given that the attention scores were
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Figure 2.4: Visualization of attention maps of Tox21 compounds. Scatterplot of the mean
attention of the toxicophore part of the molecule versus the mean attention of remnant. Tox-
icophoric atoms are colored in green, remaining parts are colored in red, intensity encodes the
attention weight. Toxicophores are assigned significantly higher attention weights. Interactive vi-
sualization available at: https://ibm.biz/tox21_attention.

learned entirely unsupervised. While several related studies on proteochemometric mod-
eling claimed via case studies that similar SMILES attention mechanism could automat-
ically re-discover biochemical concepts such as protein binding sites [119, 120], Li et al.
[121] demonstrated later in a quantitative analysis that performance was not exceeding
chance level. Instead, on the Tox21 dataset, Mayr et al. [39] reported that the activation
of a significant number of hidden neurons could be associated to toxicophore features.
However, their analysis was done on training molecules and involved significant post-hoc
experimentation whereas ToxSmi produces attention scores en passant the forward pass.
Moreover, we emphasize that the attention maps are global, i.e., not specific for an assay
and thus task-specific inference is limited to single-task classifications.

2.9 Assess trustworthiness via uncertainty
estimation

Model reliability and trustworthiness are critical aspects in molecular property prediction
models and have received growing attention in the past years [40, 122, 123, 124]. One realm
with significant progress is the area of uncertainty estimation in neural networks [125]. To
assess prediction uncertainty in toxicity models, nested cross-validation [126], snapshot
ensembling [123] and conformal prediction [40] were used. Later, Monte Carlo Dropout
(MC Dropout) was shown to achieve the same at a lower computational and implemen-
tational cost [124].
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2.9.1 Aleatoric & epistemic uncertainty estimators
In this section, we employ two post-hoc techniques to measure prediction uncertainty.
Specifically, we assess epistemic (model) uncertainty with MC Dropout, a method that
draws Monte Carlo samples from the approximate predictive posterior by performing
repeated forward passes of an input sample while the network’s dropout layers are turned
on [63].

Moreover, we approximate aleatoric (data) uncertainty, an uncertainty measure
independent from epistemic uncertainty, via test-time data augmentation as suggested
by Ayhan and Berens [64]. In our case, we perform repeated forward passes with different
SMILES strings corresponding to the same molecule. From the resulting prediction
ensembles, the confidence estimate ci of sample i was obtained by scaling the sample’s
standard deviation to the range [0, 1] and interpreting it as inverse precision:

ci = −
(

σi − σmin

σmax − σmin

)
+ 1 , (2.6)

whereσi is the sample standard deviation of the prediction ensemble,σmin is the minimal
standard deviation (0, i.e., all predictions are identical) and σmax is the maximal standard
deviation (0.5, i.e., 50% of the predictions are 0 and 50% are 1; we assume a binary classi-
fication setting). We further propose to useµi, the sample mean of the prediction ensem-
ble, as alternative prediction and show that it yields improved performance. In practice,
200 forward passes were performed for both methods. The dropout value in the ToxSmi
model was 0.5.

2.9.2 Uncertainty results on Tox21
These experiments were conducted on the Tox21 dataset (MoleculeNet flavor) and results
are shown in Figure 2.5. Both epistemic and aleatoric model uncertainty were computed
for each sample and each of the 12 toxicity assays and subsequently converted into a con-
fidence estimate (cf. Equation 2.6). Both confidence estimates are strongly negatively cor-
related with the residual of the prediction: the higher the error, the lower the confidence
(Pearson’s r = −0.558 and −0.536 for epistemic and aleatoric confidence respectively).
When averaging both estimates (their correlation is∼ 0.8), we obtain a single confidence
estimate that is even stronger negatively correlated (see Figure 2.5A). While the average
confidence is with a value of 0.94 relatively high, a known phenomenon [127], compar-
ing the mean confidences of correctly and incorrectly classified samples reveals significant
relative differences (0.96 versus 0.85). In a real world scenario of screening large-scale vir-
tual libraries, this difference could be used out-of-the-box to eliminate molecules where
predictions are more likely to be incorrect. A specific example on the benefit of the con-
fidence estimation is shown in Figure 2.5C. While Bisphenol E was correctly predicted
as toxic for the NR-ER assay, Phenoxypropazine was incorrectly predicted toxic. The
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Uncertainty estimation (Tox21 MoleculeNet)
A) B) C)
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Bisphenol E Phenoxypropazine

Prediction:
0.95 (Toxic)

Label:
Toxic

Confidence:
      96.6%

NR-ER

Prediction:
0.95 (Toxic)

Label:
Non-Toxic

Confidence:
62.9%

+
D)

E)

Figure 2.5: Uncertainty estimation analysis on Tox21 MoleculeNet dataset. A) Scatterplot
of prediction residual and confidences reveals a strong negative correlation. B) Confidence esti-
mates are significantly lower for incorrectly classified samples. C) Two exemplary molecules, both
predicted as toxic, with an incorrect prediction identified by a low confidence estimate. D) The
prediction ensembles formed by MC Dropout or TTA can significantly improve the prediction
accuracy of the model. All plots show results across all 10 splits. E) The six fragments that were
found most predominantly in incorrectly-classified high-confidence (ICHC) molecules (see A),
gray box). For each fragment, we display the ECFP4 bit and the percentage of ICHC molecules
and remaining molecules where this fragment was present.

model’s internal class probabilities are 0.95 in both cases (1 means toxic and 0 non-toxic)
and thus do not allow to draw conclusions3. However, investigating the respective predic-
tion confidences can reveal that Bisphenol E was a true positive while Phenoxypropazine
was a false positive.

The scatterplot in Figure 2.5A reveals a small subset of incorrectly-classified
high-confidence (ICHC) molecules (see gray box). These incorrect predictions are
particularly undesired as they cannot be recognized and removed with our method.
We inspected the molecules in the gray box (confidence > 0.9, residual > 0.8) more
closely, aiming to identify fragments that occur commonly in ICHC molecules but
rarely in the remaining molecules. In Figure 2.5E, we show the six ECFP4 bits that
were most indicative for ICHC molecules. In a real-world scenario, such an analysis

3even though class probabilities are generally insufficient confidence estimators [63], they are frequently
misused in practice for this task
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could easily increase robustness since molecules that include these bits could be removed
from the screening library. The three bits shown in Figure 2.5E (left) had the largest
difference in relative occurrence between ICHC and remaining molecules, whereas
the three bits shown on the right had the largest difference in absolute occurrence.
Some of these fragments can be linked to tremendous recent literature, for example
bit 388 corresponds to a 1,2,4-oxadiazole ring. 1,2,4-oxadiazole-derivatives have been
largely neglected by medicinal chemistry until 2005, but in the past 15 years, research
grew exponentially [128] and only in 2022 researchers reported novel cytotoxic [129],
fungicidal [130], anti-inflammatory [129], antiparasitary and antiproliferative [131] effects
of 1,2,4-oxadiazole derivatives.

2.9.3 Uncertainty estimators form ensembles
The benefits of using MC Dropout and TTA are, however, not limited to confidence
estimation. The prediction ensembles formed by both methods can further be used to
improve the predictions. As demonstrated in Figure 2.5D, replacing the baseline predic-
tions (blue), with the mean of the 200 predictions obtained from MC Dropout or TTA,
improves the ROC-AUC on the Tox21 MoleculeNet benchmark from 0.858 ± 0.001
to 0.859± 0.001 (MC Dropout) and 0.864± 0.001 (TTA). Last, a late-fusion average
of both techniques yields the best performance (0.865 ± 0.001) which is significantly
superior to the baseline model across 10 splits (p < 0.01,W+).

2.10 Validation on proprietary cytotoxicity
dataset

In a case study, we validated the performance of the ToxSmi model on an external data
set from the FMP [97].

FMP dataset description
This dataset is comparably large (> 34, 000 molecules) and indicates for each molecule
whether it inhibited relative growth in a kidney or a liver cell line by at least 50% (for
details see Subsection 2.5.3). Since this dataset is not generally available to the public, it
can serve as an ideal tool to validate our method for potential proprietary use.

Performance comparison
An in-depth study on this highly imbalanced cytotoxicity dataset has been performed
by Webel et al. [98]. The comparison of their FNN (a fully-connected network trained on
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ECFP4s) to our ToxSmi model is shown in Table 2.3. Both models achieve good per-

Model Source Bal. Acc. TPR TNR
FNN Webel et al. [98] 68.89±1.46 61.57±7.39 76.22±6.62

ToxSmi Ours 73.85±2.17 69.81±5.82 77.88±5.50

Table 2.3: Performance on cytotoxicity data. Mean and standard deviations of the test data
performance are reported across a 10-fold cross validation. The best performance for each metric
is highlighted in bold. TPR corresponds to sensitivity and TNR to specificity.

formances on this highly imbalanced cytotoxicity data set. The mean balanced accuracy
of the FNN model is 68.89, whereas ToxSmi reaches a significantly better value (73.85).
Three major factors that might have induced the better performance of the ToxSmi model
are: 1) the use of SMILES sequences has been reported to be superior to Morgan fin-
gerprints [27, 38]; 2) the use of SMILES augmentation which independently has been
shown beneficial [56, 132] and 3) the more refined model architecture using an attention-
mechanism combined with convolution to aggregate local information.

Toxicophore analysis
In the study by Webel et al. [98], 17 compounds (7 non-toxic and 10 toxic) from the dataset
were selected and published for toxicophore analysis. The same 17 molecules are inves-

Alert class # alerts # matches
Genotoxic carcino- & mutagenecity 69 5

Acute Aquatic Toxicity 54 0
Hepatotoxicity 36 18

Idiosyncratic toxicity 32 9
Mitochondrial Toxicity (MT) 17 0

Developmental and MT 12 0
Non-genotoxic carcinogenicity 5 4

Kidney Toxicity 4 0

Table 2.4: Overview of toxic alerts: Subset of 229 alerts, originating from Ji et al. [40], used
for the 17 compounds from the FMP data analysis.

tigated in this study regarding their attention weights. We extracted toxicophores using
229 substructures from 8 alert classes (see Table 2.4). This was a subset of the list of 3800
structural alerts from 22 alert classes from the emoltox server; kindly provided by Ji et al.
[40]. The selection was done to better represent toxic effects more related to the cytotoxic
effects measured in liver (HEPG2) and kidney (HEK292) cells. This lead to the exclusion
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of unspecific alerts for e.g. extended functional groups, PAINS, and others (see final list
of alert classes in Table 2.4).

From the set of 17 compounds, three case studies as described here, the first two are
also discussed by Webel et al. [98]. While molecule 1 (Figure 2.6A) represents a false neg-
ative based on the predicted score, high attentions are attributed to the tertiary substi-
tuted ethylendiamine, a similar toxicophore as identified in the study by Webel et al. [98]
and as caught by the known toxicophores from eMolTox [40], pointing to genotoxic
carcinogenicity, mutagenicity and hepatoxicity. The second molecule was correctly pre-

A) Molecule 1 B) Molecule 2 C) Molecule 3

Figure 2.6: Cytotoxicity case studies. Three molecules from the FMP dataset are visualized,
using either their attention scores from ToxSmi (top) or their cytotoxicity maps using deep Taylor
decomposition (bottom) following the original work [98]. For ToxSmi, the color mapping is iden-
tical to Figure 2.4: green for toxicophore atoms and orange for non-toxicophore atoms. Opacity
corresponds to the attention score.

dicted as cytotoxic (ŷ = 0.96) and ToxSmi partly relied on a hepatotoxicity alert from
4-Ethylphenol that was also identified by Webel et al. [98]. The third molecule (Figure 2.6c)
is especially interesting. While it was correctly predicted as toxic by ToxSmi, both mod-
els did not highlight a particularly challenging substructure, namely the Thiophene ring,
which is sometimes associated to idiosyncratic drug reactions [40, 133]. However, ToxSmi
largely based its correct prediction on the Sulfur tail, a hepatotoxicity toxicophore [40]
that was not identified by Webel et al. [98].

Overall, it has to be emphasized that this analysis relied purely on unsupervised learning
of toxicophores; neither our nor the model by Webel et al. [98] is aware of the notion of
toxicophores. While their work mostly focused on the potential identification of new
toxicophores, we validated our method in light of existing toxicophores. However, the
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dark red shaded areas in our attention maps might give a good starting point in the search
for new toxicophores.

2.11 Discussion
In this section, we have conducted an extensive comparison of different molecular rep-
resentations and machine learning models for toxicity prediction. The experiments re-
vealed that competitive performance can be achieved with purely sequence based chem-
ical language models that do not rely on traditional descriptors (such as fingerprints) or
structural or topological features. Moreover, we find that SELFIES [65], a chemical lan-
guage devised for generative modeling, exhibits comparable predictive power for QSAR
tasks to SMILES and similarly benefits from augmentation.

Importantly, we presented ToxSmi, a simple and interpretable model that relies solely
on SMILES sequences. Coupling ToxSmi with SMILES augmentation, we surpassed
a wide range of previous models and obtained SOTA performance on several QSAR
tasks, including but not limited to toxicity. Compared to graph-based models [36, 105]
ToxSmi is a simplistic model that solely relies on chemical languages such as SMILES
and exploits data augmentation to boost model performance and outperforms almost all
previous work. Compared to GROVER [36], a larger model that consistently outper-
formed ToxSmi, an advantage of ToxSmi is that it does not require large-scale pretraining
and is thus particularly suitable for low data/resource settings. A key feature of the pro-
posed model is the self-attention mechanism, an ante-hoc interpretability method that
learns to extract the most important chemical motifs without explicit supervision. On
the Tox21 dataset, we demonstrated that the attention on toxicophores is significantly
enriched compared to remaining chemical motifs. These attention maps can not only be
useful to validate existing toxicophores but also support in the potential identification of
unknown toxicophores. We also evaluated two simple methods for uncertainty estima-
tion that can not only help identifying misclassified samples but only form an implicit
model ensemble that further boosts performance. Last, we validated ToxSmi on a pro-
prietary toxicity dataset from Lisurek et al. [97] where we found that ToxSmi consistently
outperformed a previous model [98] while enabling similar interpretability analyses.
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3.1 Protein-ligand binding affinity prediction
Proteins are the fundamental building blocks of cellular metabolism and involved in all
forms of life. They are vital for our advances in medicinal chemistry since the vast ma-
jority of FDA-approved compounds (over 80%) reach their effect by targeting specific
proteins [134]. Hence it is evident, that better models of compound-protein interaction
(CPI) or protein-ligand binding are instrumental to accelerated molecular discovery.

Background. In the past years, the availability of high-throughput screening (HTS)
data for CPI [135] has led to a myriad of novel models for protein-ligand binding (for
a review see Parks et al. [136]). Traditionally, models were developed on a per-target (or
per-assay) basis [137, 138]. Instead, multi-target models employ multi-label classification
to combine multiple targets into one model. This approach benefits from cross-target
learning [39, 139] which is particularly important in low-data regimes [140] or if tasks
(i.e., targets) are correlated [141]. However, since these models do not consider protein
descriptors they can only predict binding for new ligands, but not for unseen targets [142,
143].

Instead, proteocheomometrics is concerned with developing models combining
features from proteins and ligands [144]. These bimodal models, preferably using deep
learning techniques, have become the de-facto standard in protein-ligand binding
affinity models [145] and can now be trained large-scale [146, 147] These models bear the
advantage that they can, in principle, perform predictions for the entire protein-ligand
space. They can learn, for example, inter-molecular non-covalent interactions [121]. We
emphasize, however, that generalizing to pairs where both target and ligand is unseen is
extremely challenging.

In the first proteochemometric deep learning model, published in 2016, Tian et al.
[148] took interaction pairs from the STITCH database [149] and used ligand and pro-
tein fingerprints to train a simple feedforward network. Today, two major realms can be
identified: sequence-based approaches relying on SMILES and protein primary struc-
ture [52, 119, 121, 150] and structure-based approaches that either apply 3D CNNs to
the binding site [151, 152, 153] or GNNs on molecules and protein secondary or tertiary
structure [120, 154, 155, 156, 157]. While one might conjecture that structure-based meth-
ods model binding dynamics more realistically, their practical superiority still has to be
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demonstrated thoroughly for this task. Very recently, Volkov et al. [158] reported that in-
corporating non-covalent interactions does not improve binding affinity prediction per-
formance compared to simple protein/ligand descriptors

Notably, in the recently conducted IDG-DREAM challenge about Drug-Kinase Bind-
ing Prediction [146], the winning method (out of ∼ 100 submissions) was a multimodal
language model relying on SMILES and amino acid sequences.

3.1.1 Scope of this chapter
In this chapter we propose two novel affinity prediction models. First, a proteochemo-
metric, sequence-based language model called BiMCA which is a bimodal extension of
the previously introduced ToxSmi model. Secondly, we propose a simple, yet novel bi-
modal k-NN model for the same task. Initially conceived as a baseline model we report
competitive performance of this model. We first study these models on general protein-
ligand binding affinity prediction and compare them to various prior art. We then per-
form an in-depth investigation on protein kinases, arguably the most important protein
family in drug discovery. We challenge the common belief that full protein sequence in-
formation is necessary to develop strong affinity predictors and demonstrate that superior
performance can be achieved using a tiny subset of the residues only. Last, we introduce
novel sequence augmentation mechanisms that can be generally applied in protein lan-
guage models that rely on a subset of residues from the full proteins.
Note that we develop these models so that they can later be used to evaluate the perfor-
mance of molecular generative models conditioned on protein sequences.

3.2 Problem formulation
Let P denote the space of proteins, M the molecular space and A the affinity scores. We
are interested in learning a function ΦA : P × M → A. The function ΦA maps a
protein-ligand tuple to an affinity score and is learned from the training data set D =
{pi,mi, ai}Ni=1 where pi ∈ P ,mi ∈ M and ai ∈ A is the scalar binding strength,
denoted by the pIC50; the negative log of the the half-maximal inhibitory concentration
(IC50).

3.3 Proposed models

3.3.1 BiMCA – A proteochemometric language model
To address the presented multimodal regression problem, we propose the BiMCA, a Bi-
modal Multiscale Convolutional Attention model. The BiMCA is similar to the one we
conceived earlier in Manica, Oskooei, Born, et al. [27] for drug-sensitivity prediction. For an
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overview see Figure 3.1. This model ingests a molecule m ∈ M represented as SMILES
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Figure 3.1: The bimodal multiscale convolutional attention model (BiMCA). Proteins and
ligands are represented as text sequences of amino acids and SMILES respectively. The BiMCA
uses learned embeddings and then applies 1D-convolutions with varying kernel sizes on the em-
bedding matrices. Afterwards, the context attention layers fuse information from both modalities
and generate the attention scores over one input modality, using the other modality as context.
Black arrows show the information flow through the network, white arrows the direction of the
convolution sliding.

string and a protein p ∈ P represented by its primary structure. SMILES sequences are
tokenized and padded to a length ofTM = 696 and each token is represented as a learned
embedding of dimensionality HM = 32, s.t. the input matrix XM ∈ RTM×HM . Pro-
teins are left-padded to a length of TP = 2536 and each token is represented as a learned
embedding of dimensionality HP = 8, s.t. the input matrix XP ∈ RTP×HP . Three par-
allel channels with convolutions of kernel sizes 3, 5 and 11 and 3, 11 and 25 are employed
on the SMILES and protein sequences, respectively. In both cases, a fourth channel has
a skip connection without convolutions.

For each of the four channels in both modalities, we have one attention layer, account-
ing for a total of 8 layers. In these layers, broadly speaking, one modality is used as a con-
text to compute the attention scores for the reference modality. The output of the largest
convolution kernels of the kinase stream (size 25) is coupled with the output of the largest
kernels of the ligand stream (size 11) and so on. This mechanism is the bimodal extension
of the self-attention mechanism in ToxSmi (cf. Equation 2.1). It allows the model to use
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information from the binding partner (context) in learning the importance of each token
in the input sequence (reference). The attention weights αi are computed as:

αi =
exp (ui)∑T
j exp (uj)

, where u⃗ = tanh (X1W1 +W3(X2W2))v⃗ (3.1)

We call X1 ∈ RT1×C the reference input, where T1 ∈ {TM , TP} is the sequence length
and C is the number of convolutional filters. Further, X2 ∈ RT2×C is the context in-
put, where T2 ∈ {TM , TP}, T1 ̸= T2 is the sequence length in the other modality.
W1 ∈ RC×A, W2 ∈ RC×A, W3 ∈ RT1×T2 and v⃗ ∈ RA are learnable parameters.
It is identical to Bahdanau attention apart from W3 which we need since TM ̸= TP . In-
tuitively, both inputs are projected into a common attention spaceRA and then summed
up, which enables the layer to take the context into account for determining feature rele-
vance. v⃗ combines the information through a dot product, the output of which is fed to a
softmax layer to obtain the attention weightsαi, which are used to filter the inputs, like in
ToxSmi’s self-attention (cf. Equation 2.2). We call this mechanism context-attention,
a visualization can be found in Figure 3.2. The filtered protein/ligand information gets

Reference Context

+

T1 x C T2 x C

T1 x A

1 x A V

… …

Output

tanh

softmax
α0 αi αT

T1 x 1

T1 x A

T2 x A

Figure 3.2: The context attention layer in the BiMCA model. This layer receives two inputs, the
context and the reference. Both inputs are projected into a joint attention space RA and summed
up in that space. The final softmax produces the attention weights αi ∈ [0, 1] :

∑
i αi = 1.

passed to a stack of dense layers which outputs the predicted pIC50.
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Hyperparameters and training procedure

The hyperparameters can be found in Table 3.1. All models were implemented in Py-

Torch [159]. We optimized a MSE loss with Adam [77] and trained for 50 epochs with a
learning rate of 5e−3, a batch size of 128 on a cluster equipped with POWER8 processors
and a single NVIDIA Tesla P100.

Parameter Value
Protein sequence length TP 2536

SMILES sequence length TM 696
Protein embedding size HP 8

SMILES embedding size HM 32
Protein 1D conv. kernel sizes [3, 11, 25]

SMILES 1D conv. kernel sizes [3, 5, 11]
Number of protein kernels [32, 32, 32]

Number of SMILES kernels [32, 32, 32]
Protein attention size A 16

SMILES attention size A 16
Dense layer sizes [64]

Activation function ReLU
Dropout 30%

Learning rate 3e−4

Table 3.1: Hyperparameters of the BiMCA.

3.3.2 k-Nearest-Neighbor
We seek to compare the BiMCA to an alternative model relying on more traditional ma-
chine learning methods. Due to its simplicity and ease of interpretation, we propose a
k-NN that computes distances in a joint space spanned by proteins and ligands. To the
best of our knowledge, the only previous report of a bimodal k-NN for affinity predic-
tion is from Nazarshodeh et al. [160] who used numerical descriptors. In contrast, here we
represent kinases by their primary structure (either full sequence or only active site) and
molecules by their ECFP4 fingerprint [46] with 512 bits. As a distance metric between
samples we utilize a combination of the length-normalized Levenshtein distance [161] for
the primary structure and the Tanimoto similarity [162] of molecules. More formally, let
{pj,mj, aj} denote an unseen sample from the test dataset DTest. With the goal of pre-
dicting âj to approximate the unknown aj , we first retrieve the subset of training data
Dk containing the k nearest neighbors using the distance measure

D(pi,mi, pj,mj) =
Lev(pi, pj)

max(|pi|, |pj|)
+ (1− T (mi,mj)) (3.2)
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where | · | denotes sequence length, T is the Tanimoto similarity [162] andLev(·, ·) is the
Levenshtein distance [161]. The Levenshtein distance is a string-based distance measure
that, in this context, counts the number of single-residue transformations (insertions,
deletions or substitutions) required to transform one sequence into the other. Note that:

Lev(pi, pj) ∈ [0,max(|pi|, |pj|)] (3.3)

and
T (mi,mj) ∈ [0, 1] (3.4)

hence both addends of Equation 3.2 are scaled to the same range, i.e., they have equal
importance1. Hence, D(·, ·, ·, ·) ∈ [0, 2]. Then, the prediction âj is trivially computed
by âj =

∑k
i ai
k

with ai ∈ Dk. As k-NN is a lazy learning method, the inference runtime
scales with the dataset size and one query can thus easily require to compute hundred
thousand distances. Therefore, in practice we compute D not for all training samples
but only for those samples {pi,mi} where either 1) pi = pj , 2) mi = mj or 3) pi is one
of the 10 most similar sequences to pj in the training dataset.

3.4 Datasets and preprocessing

3.4.1 Data splitting strategies
The bimodal nature of the problem formulation of proteochemometric models gives rise
to four complementary paradigms in evaluating model generalization. These paradigms
are essentially determined by the splitting procedure that is used to separate training and
testing data (cf. Figure 3.3). In a naïve splitting strategy, paired samples consisting of two
modalities (here: a protein and a drug) are build and thereafter randomly split into train
and test samples. This is not only the most lenient, but also the most commonly adopted
strategy and it imposes a high risk that the model can perform ostensibly well by merely
memorizing training samples (as only the pair is unseen, whereas both the molecule and
the protein might be known). We call this the lenient split.

Instead, in the classical drug discovery setting, it is desirable to generalize to new
molecules (cf. Figure 3.3 top right). We call this the strict drug split or just drug split or
ligand split. A more challenging variant of this split is the scaffold split, where ligands
are grouped together by their scaffold (usually the Murcko scaffold). The scaffolds are
randomly split between train and test, thus ligands with the same scaffold always end in
the same data partition, ensuring a higher dissimilarity between train and test ligands.

Instead, in a drug repurposing setting the objective is to find a target which is strongly
inhibited by a compound. Hence, it is desirable to generalize to new proteins. We call
this the strict protein split or just protein split. A more challenging variant of this split

1We refrain from extending this with a simple weighting scheme for the two distances.
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Figure 3.3: Data splitting strategies for binding affinity prediction. The four possible
strategies to split samples between training and testing data are shown.

is the protein family split where, similar to the scaffold split, the proteins are not split
directly, but rather the protein families are split before all samples associated to a protein
of a family are assigned to the respective data partition.

While these regimes are certainly more challenging, a strict splitting strategy (i.e., strat-
ifying by both modalities simultaneously, cf Figure 3.3 lower right) represents the most
challenging task. Such a split is better suited to assess whether a model actually learned
generic features of protein-ligand binding. The long-term objective is to build interac-
tion prediction models that can extrapolate to the entire protein-ligand space – meaning
they can accurately predict binding for unseen drugs screened against unseen protein. We
call this the strict split.
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Splitting the data meaningfully is especially relevant in light of the hidden ligand
bias [163], i.e., the observation that binding affinity predictions are mostly based on
ligand rather than interaction features [150].

3.4.2 DeepAffinity dataset
BindingDB [164] is the largest publicly available resource of protein-ligand binding data.
To facilitate direct comparison with previous work, we did not retrieve the raw data from
BindingDB but rather relied on the data processed and split by the authors of Deep-
Affinity [119]. This dataset comes with 263, 583 training and 113, 168 test samples in
a lenient split. Additionally it contains four held-out sets to test the generalization to
entirely unseen protein families, namely: Nuclear estrogen receptors (ER; 34, 318 sam-
ples), ion channels (14, 599 samples), receptor tyrosine kinases (RTK; 34, 318 samples)
and G-protein coupled receptors (GPCR; 60, 238 samples).

Models are evaluated with root-mean-squared error (RMSE) and Pearson correlation
coefficient (PCC) between the predicted and true pIC50 which is roughly in the range 3
to 10 (1mM to 0.1nM).

3.5 Quantitative comparison to prior art
Our first objective is to compare the performance of the BiMCA and k-NN model with
previous proteochemometric approaches for protein-ligand affinity prediction.

3.5.1 Lenient split
The results of our BiMCA and k-NN models on the lenient BindingDB split as provided
by Karimi et al. [119] are shown in Table 3.2.

Model RMSE PCC
DeepDTA [52] 0.782 0.848

DeepAffinity [119] 0.780 0.840
DeepCDA [165] 0.808 0.844

MONN [121] 0.764 0.858
NN (k=1) 0.862 0.83
k-NN (k=4) 0.728 0.871
k-NN (k=13) 0.783 0.848

BiMCA (full seq.) 0.892 0.786

Table 3.2: Performance comparison for different models on fixed-split BindingDB dataset
from Karimi et al. [119]. All models were trained and evaluated on the same samples. Models
below the dashed line are ours.
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3.5 Quantitative comparison to prior art

Surprisingly, the simplistic k-NN model achieved the best results on this split and
outperformed all SOTA methods such as MONN [121], DeepAffinity [119] or Deep-
DTA [52]. This emphasizes the necessity to compare any new, complex architecture to
a baseline, especially in bimodal tasks like affinity prediction where one modality alone
might carry most of the predictive power (e.g., the hidden ligand bias [163]). However, it
also questions the usability of a lenient splitting strategy. The k-NN solely predicts based
on distances to training samples, computed separately in a protein and a ligand space.
Given that it perfectly memorizes the training data, it is less surprising to see it perform-
ing well in a lenient split.

Moreover, we emphasize that the authors of DeepDTA, DeepAffinity and MONN all
build model ensembles consisting of up to 30 individual models. These models achieved
better results than the individual models shown in Table 3.2 (up to RMSE of 0.658 and
PCC of 0.895 [121]), but to ensure a fair comparison with our single models (it is widely
known that model ensembles improve performance [166, 167]), we omitted all ensembles
from the results in Table 3.2.

Notably, the performance of the BiMCA model on the lenient split falls behind the
listed SOTA models on the lenient split (cf. Table 3.2). This is unsatisfying but will be
examined further in the next experiment.

3.5.2 Protein family split
In this split, we used the same models to test the generalization ability to unseen protein
families, namely Ion Channels, GPCRs, RTKs and Estrogen Receptors. The results can
be found in Table 3.3 and show that the BiMCA model excels at the generalization to
novel protein families and outperforms all previous models we found in the literature on
three out of four protein families. Interestingly, only in the generalization task to Re-
ceptor Tyrosine Kinases (RTK) the BiMCA is outperformed by previous work. This is
remarakble given that we also included the ensemble models from Karim et al. [44] and
Truong Jr [168] in the comparison.
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Model ER Ion Channel RTK GPCR Mean
RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC

DeepAffinity SMILES [119] 1.53 0.16 1.34 0.17 1.24 0.39 1.40 0.24 1.38 0.24
DeepAffinity Graph [119] 1.68 0.05 1.43 0.10 1.74 0.01 1.63 0.04 1.62 0.05

DeepCDA [165] - 0.10 - 0.31 - 0.42 - 0.28 - 0.28
ECFP/Pfam-based [168] 1.74 0.19 1.32 0.27 1.27 0.43 1.49 0.22 1.46 0.28

DeepAffinity Ensemble [119] 1.46 0.30 1.30 0.18 1.23 0.42 1.36 0.30 1.34 0.30
MLP ensemble [168] 1.51 0.24 1.36 0.19 1.26 0.42 1.36 0.33 1.37 0.29

Transformer ensemble [168] 1.61 0.39 1.34 0.38 1.14 0.47 1.29 0.33 1.35 0.39
NN (k=1) 1.53 0.30 1.80 0.07 1.51 0.32 1.81 0.17 1.66 0.22
k-NN (k=4) 1.36 0.30 1.52 0.11 1.31 0.37 1.50 0.20 1.42 0.25
k-NN (k=13) 1.28 0.40 1.43 0.13 1.26 0.36 1.43 0.17 1.35 0.27
k-NN (k=25) 1.27 0.43 1.41 0.13 1.25 0.34 1.42 0.15 1.33 0.26

BiMCA (full seq.) 1.35 0.32 1.19 0.41 1.38 0.40 1.25 0.42 1.27 0.39

Table 3.3: Generalization to new protein families based on fixed-split BindingDB dataset
from Karimi et al. [119]. DeepAffinity models refer to unified RNN-CNN and RNN/GCNN-
CNN models. All models below the single line are ours. Models below the dashed line and above
the regular line are ensembles which can hardly be directly compared to our models. Numbers
from other works taken from their manuscripts since the split is fixed. DeepCDA did not report
RMSE. The last two columns report the mean across the four datasets.

3.6 Human kinases - finding compact protein
representations

3.6.1 Motivation

In the previous section, we have seen that the BiMCA, a proteochemometric language
model can reach SOTA performance in binding affinity prediction for unseen protein
families. One critical aspect in our own as well as all previously proposed sequence-based
models (e.g. [44, 52, 120]) is that they rely on the full protein primary structure, i.e., the
entire amino acid sequence of a protein.

From a computational perspective this is disadvantageous since large proteins or pro-
tein complexes can easily consist of > 2000 residues. In practice, this implies that many
sequence-based models use a tremendous amount of zero-padding or simply remove large
proteins from the training corpus.

Much more importantly, using the entire primary structure deeply conflicts with our
knowledge about protein-ligand binding. It is well understood that binding behaviour
is not governed by the entire protein but rather by their binding pockets [169]; the first
account for that dates back to 1894 [170]. Therefore, in theory, it should be sufficient to
provide a subset of residues for accurately predicting binding. But in practice, for a gen-
eral protein it is largely unclear which residues correspond to potential binding pockets,
especially if protein tertiary structure has not been determined experimentally.
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3.6 Human kinases - finding compact protein representations

In this section, we will attempt to find a more compact protein sequence representa-
tion for binding affinity prediction. We hypothesize that we can replace the full sequence
with a much shorter sequence (comprising only a tiny set of residues that govern the bind-
ing behavior) without reducing predictive accuracy. This hypothesis will be assessed on
a specific protein family, protein kinases, which constitute a key protein family for cell
metabolism. As an alternative representation to the full protein, we will rely on the ki-
nase ATP-binding site, the binding pocket addressed by most kinase inhibitors [171]. In
the following, we will refer to this as active site. Since the active site sequence is composed
of discontiguous subsequences of the full primary structure (cf. Figure 3.4), the use of
such a condensed representation offers an implicit way of incorporating 3D information
into a 1D model.

Full Sequence

Human Kinase

ITMKHKLGGGQYGEVYEGVWKKYSLTVAVKTLKEDTMEVEE
FLKEAAVMKEIKHPNLVQLLGVCTREPPFYIITEFMTYHNLLD
YLRECNRQEVNAVVLLYMATQISSAMEYLEKKNFIHRDLAAR
NCLVGENHLVKVADFGLSRLMTGDTYTAHAGAKFPIKWTAP
ESLAYNKFSIKSDVWAFGVLLWEIATYGMSPYPGIDLSQVYE
LLEKDYRMERPEGCPEKVYELMRACWQWNPSDRPSFAEIH
QAFET

LGGGQYGEVAKEMVITEFMTYGDRNLADL
Active site only

Figure 3.4: Full kinase versus active site sequence representation. While the active site forms
a localized binding pocket in the tertiary structure (left), the residues comprising the active site lie
discontiguously in the full primary structure (right).

We believe that, so far, no other work has systematically assessed the impact of using
active site rather than full protein sequences in proteochemometric binding affinity pre-
diction models. Here, we aim to fill this gap. The comparison will be performed using
the two models defined in Section 3.3, the BiMCA and the k-NN. The BiMCA was se-
lected because we wanted to examine a SOTA language model. Due to the competitive
performance of thek-NN in Section 3.5, we decided to also examine thek-NN, especially
because it is an ante-hoc interpretable model which, unlike the BiMCA, is not prone to
diluting simple trends in the data behind countless non-linearities.
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3.6.2 Protein kinases

Since the FDA-approval of imatinib (2001), the first marketed kinase inhibitor, kinases
have arguably become the most potent source of targets for drug discovery [172, 173, 174].
By 2021, about 60 kinase inhibitors are marketed and expand treatment options for can-
cer and, more recently, also neurodegenerative or viral diseases [175]. The characteristics
of the target family that led drug discovery researchers to avoid kinases for many years
(e.g., binding site similarity and sheer size [172]) make the family an ideal candidate for
proteochemometric approaches – since they exploit this similarity systematically. In the
past years, computational approaches have advanced our understanding of kinases on
e.g., identification of binding subpockets [176] or promiscuity maps [177], inhibitor se-
lectivity [178], defining the kinome conformational space [179] or virtual screening such
as drug response [180, 181] or CPI prediction [137, 138, 182, 183].

3.6.3 Data preprocessing and training setup

3.6.3.1 BindingDB dataset

To assess the posed research question, we curated protein-ligand binding data from Bind-
ingDB [164], a large but heterogeneous data source that comprises data scraped from
publications as well as other databases such PubChem [4] and thus does not follow a
standardized experimental procedure.

From the 2, 222, 074 entries of the database as on 22.04.2021, ∼800,000 were re-
tained after removing missing values and duplicates. Afterwards, samples with molecules
whose SMILES strings were invalid or longer than 696 tokens, i.e. atoms and/or bonds,
were removed. In alignment with previous work [52, 119, 121] and our results shown
above, we chose IC50 as binding affinity metric, convert all values to pIC50. The val-
ues were clipped to the interval [2, 11] (1mM to 0.01nM). Last, we filtered out all sam-
ples where the target proteins are not human kinases. This resulted in 206, 989 samples
distributed across 113, 475 ligands (mean pIC50 per ligand: 7.1± 1.2) and 349 human
kinases (mean pIC50 per kinase: 6.2±0.9). See Figure 3.5 for an overview of the dataset’s
statistics. A significant bias in BindingDB is that more deeply studied kinases (i.e., kinases
that were screened against more ligands) tend to have a higher average binding affinity
(r = 0.39).

Non-kinase data. The rest of the above data (i.e., all non-kinome samples) make up
485, 461 samples which are distributed across 2856 proteins and 331, 169 ligands. This
data is used in one configuration for pretraining the BiMCA.
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C D

BindingDB kinase inhibitor data

BindingDB
206k samples

113k drugs 349 kinases

E
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Figure 3.5: Visualization of kinase inhibitor data in BindingDB [164]. A) pIC50 distri-
bution for kinase samples (N = 206, 989). B) Kinases with more affinity samples tend to have
higher average binding affinity (i.e., are more promiscuous). C) Histogram of number of data
points for each kinase. D) Most ligands are screened on less than a dozen of kinases but some
are screened against almost all 349 kinases. E) Division of 206k BindingDB samples into unique
kinases and inhibitors. F) Distribution of sequence length of full sequences and active sites (log-
scale).

3.6.3.2 Human kinase sequence alignment

To extract the active sites for the human kinases, we relied on the binding site definition
of protein kinase A (PKA) proposed by Sheridan et al. [183]. Their work identified 29
residues which constitute the ATP binding site.

Definition 3.6.1 (Sheridan active site [183]). The 29 residues comprising the Sheridan
active site are defined as follows. RSheridan = { A70, D184, 121, E170, E91, F187, F54,
G125, G126, G50, G52, G55, K72, L173, L49, L95, M118, M120, N171, P124, R56,
S130, S53, T183, T51, V104, V123, V57, Y122. }

In brief, their alignment consisted of three steps:
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1. Taking existing, reliable multiple-sequence alignment (MSA) of kinases within
eight human kinase groups [184],

2. Finding correspondences between active site residues of different groups from 3D
superpositions of kinases,

3. Pooling this with the MSAs of 1.

These resulting residues include contributions from the Gly-rich-loop, gatekeeper, hinge,
and DFG-in-out. We then applied these 29 residues to the structurally-validated MSA of
497 human kinases from Modi and Dunbrack [185]. The obtained active site sequences are
more than an order of magnitude shorter than the full sequences (cf. Figure 3.5F).

3.6.3.3 Data splitting

We explored two data splitting strategies (cf. Figure 3.3):

1. Ligand split: For this split, we put aside the samples associated to 10% of the lig-
ands. Then, we conducted a 10-fold cross-validation (CV) on the rest. All splits were
stratified by the number of samples as well as the mean pIC50 per ligand.

2. Kinase split: This split assessed the generalization power toward unseen kinases.
Again, we put aside 10% of the kinases and then conducted a 10-fold CV on the re-
mainder of the data. Again, all splits were stratified by the number of samples as well
as the mean pIC50 per ligand.

Pretraining. The 485, 461 remaining, non-kinase samples were split with a 90/10
ratio into train and test data. This data was used in an additional configuration where the
BiMCA was pretrained on non-kinase data. Notably, ligands in the pretraining dataset
were not excluded from the cross-validation in the ligand split in order to keep the kinase
dataset sufficiently large and guarantee perfect comparability between kinase and ligand
split. This implies that 3.5% of the ligands (accounting for 5.6% of the samples) in the
kinase dataset were already seen during pretraining. Notably however, as kinases were
held out from the pretraining data, these ligands were only presented together with non-
kinases. We validated that this did not positively impacted performance of the pretrained
BiMCA.

3.6.3.4 Hyperparameters and model training

k-NN. This model was defined in Subsection 3.3.2. The k-NN was evaluated on all
k ≤ 25. For all results, we choose a value of k = 13 as this led to the lowest RMSE on
the validation dataset on the ligand split.
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BiMCA. This model was defined in Subsection 3.3.1. The hyperparamters are given
in Table 3.4. The differences in the number of convolution kernels and attention sizes
are done to partly compensate for the fact that the full sequence model had substantially
more parameters than the active site model. This stemmed from the context attention
layer which requires O(nm) parameters where n and m are the sequence length of pro-
teins and ligands respectively. In total, the active site model only consisted of 651k pa-
rameters, less than 5% of the full sequence model (14M). All models were implemented
in PyTorch [159]. The BiMCA model optimized a MSE loss with Adam [77] and was
trained for 50 epochs with a batch size of 128 on a cluster equipped with POWER8 proces-
sors and a single NVIDIA Tesla P100.

Parameter Full sequence Active site
Protein sequence length TP 2536 32

SMILES sequence length TM 696 696
Protein embedding size HP 8 8

SMILES embedding size HM 32 32
Protein 1D conv. kernel sizes [3, 11, 25] [3, 11, 25]

SMILES 1D conv. kernel sizes [3, 5, 11] [3, 11, 25]
Number of protein kernels [32, 32, 32] [128, 128, 128]

Number of SMILES kernels [32, 32, 32] [128, 128, 128]
Protein attention size A 16 64

SMILES attention size A 16 64
Dense layer sizes [64] [200]

Activation function ReLU ReLU
Dropout 30% 30%

Learning rate 5e−4 5e−4

Table 3.4: Hyperparameters of the BiMCA for both models.
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3.6.4 Learning binding from full proteins vs. active sites

3.6.4.1 Kinase data split

Aggregated performance results. This split is best suited to test the influence
of the two protein representation types. Since the shape of the ATP-binding pocket
largely determines the binding behavior [186], this split is significantly more challenging
than a ligand split. As mentioned above, the so-called hidden ligand bias [163] refers to
the observation that binding affinity predictions are mostly based on ligand rather than
protein features or interaction features [150]. Therefore, a kinase split can test the gener-
alization abilities of our affinity models better than a ligand split. As can be seen in Fig-
ure 3.6, the results of the 10-fold CV show a consistent and strong superiority of the
active site configuration for all three model types (k-NN, BiMCA, BiMCA pretrained).
On the validation data, the RMSE is reduced by 1.2%, 7.5% and 6.9% for the k-NN, the
BiMCA and the pretrained BiMCA respectively. This is remarkable because the full se-

Validation (10-fold CV) Test
A B

C D

Figure 3.6: Binding affinity prediction results on kinase split. The left and right column
show respectively the performance of all three models on the validation and test data. In terms
of RMSE as well as PCC, the active site configurations significantly outperform the full sequence
configuration. This occurs irrespective of the utilized model. The numerical results can be found
in Table A3.1 and Table A3.2.
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quence contains an order of magnitude more features (mean sequence length: 742 vs. 29
residues). Moreover, the active site BiMCA models only have ∼ 5% of the parameters
of the full sequence model. The validation results are less consistent than the test results
because of the heterogeneity across the ten folds. Again, high standard error in the per-
formance are expected in this setting [186]. The test results in Figure 3.6B and D) show
that the full sequence configurations achieve an average improvement in RMSE of 2.6%,
7.6% and 4.6%. In all three cases, the full sequence models are outperformed by the ac-
tive site models (p < 0.01, Wilcoxon signed-rank test, W+). We also observe that the
BiMCA models outperforms the k-NN by a large margin. For the pretrained BiMCA
setting we used all non-kinase data from BindingDB to warm up the model before fine-
tuning on the kinase data. After 20 epochs of pretraining, this model achieved a RMSE
of 0.86 and a PCC of 0.82 on the non-kinase data (lenient split). Notably, the pretrain-
ing significantly improved performance, demonstrating that learning general patterns of
protein-ligand interactions can massively boost the performance of proteochemometric
models for kinase affinity prediction. Interestingly, the active site even outperformed the
full sequence model although both models were pretrained on full protein sequences.

Grouping kinases. To understand better the performance for the kinome
landscape, we assembled eight different groups of conventional protein kinases (ePK)
based on the classification by Hanks and Hunter [184]. With the catalogue from Manning

et al. [187] that contains ∼ 600 kinases, all kinases were mapped to their respective
group. For all kinase groups, the PCC is shown in Figure 3.7 for the k-NN and

 Pearson correlation per kinase group
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Figure 3.7: Performance in binding affinity prediction for unseen kinases grouped by
kinase family. For the k-NN (left) and the pretrained BiMCA (right) the Pearson correlation of
all samples of the respective kinase group is shown. Kinases that could not be classified with the
catalogue from Manning et al. [187] are grouped into Other.
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pretrained BiMCA model. The plot largely confirms the superiority of the active site
configuration consistently across the kinase groups. Most screened kinase-ligand pairs
belong to Tyrosine kinases (TK), accounting for 54% of all kinase-related samples in
BindingDB. TKs phosphorylate tyrosine residues and are thoroughly researched due to
their significant role in cancer and the successful development of highly selective TK
inhibitors such as imatinib, gefitinib or erlotinib.

The only exceptions for the superiority of the active sites are the TKL group in the k-
NN and the STE and CMGC group in the BiMCA. Let us have a closer look at the TKL
(Tyrosine Kinase-Like) group and try to explain why the results do not resonate with the
remaining findings indicating superiority of the active site.

The first observation is that for models based on sequence similarity (like the k-NN),
full protein structure is superior to active site alone. This could be explained by the fact
that many TKL kinases (e.g., all RAF kinases [188]) have multiple binding sites. These
are not reflected in the active site sequence which only captures the ATP-binding site.
Secondly, the k-NN performs poorly on TKL – there is no other group where the per-
formance gain for the BiMCA compared to the k-NN is higher.

We suspect that this is because TKLs constitute the most heterogeneous group of ki-
nases [187]. Note that the k-NN predicts solely based on sequence similarity. Instead,
the BiMCA can capture non-linear relations which might explain the high the perfor-
mance gain for the BiMCA. Moreover, only the BiMCA can leverage information from
distant samples that have more complex relations to the kinase of interest and thus the
active site BiMCA configuration achieves the best performance in predicting affinity for
unseen TKL kinases.

Remarkable is also the good result for kinases from the CK1 (cell kinase 1) group. We
hypothesize that this might be due to the high intra-group and low-inter group similarity
of CK1 kinases: CK1s are highly conserved sequences, very similar to each other but very
distinct from other kinase groups [189]. In the kinome tree proclaimed by Manning et al.
[187], CK1s form a distinct branch.

Similarity analysis. A reasonable concern in the kinase split is that the model per-
formance hinges on the availability of similar kinases in the training data. Therefore, we
are showing in Figure 3.8 the per-kinase performance as a function of the similarity to the
nearest neighbor in the training data. Overall, the plots suggest that our models do not
require data from similar kinases to reach their performance. While all PCCs are positive,
none of them exceed values of 0.11. Also on this experiment, we observe that the active
site configuration gives better results. Note that the best model (BiMCA, active site) has
the lowest correlation of all models. Unsurprisingly, thek-NN has a stronger dependence
on similar samples than the BiMCA.
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Per kinase performance 

Figure 3.8: Does the predictive accuracy depend on the availability of similar kinases in
the training data? No strong correlation between the performance on a specific kinase and the
distance to the nearest neighbor in training data was found in any of the four configurations. Plots
obtained from validation results.

3.6.4.2 Ligand data split

Aggregated performance results. This split corresponds to the classical drug
discovery setting – based on some affinity data for a kinase of interest, the model should
predict the potential of a molecule to inhibit this kinase. This task is easier than the kinase-
split but still more challenging than a lenient split. The results of the validation and the
test data are shown in Table 3.5 (RMSE) and Table 3.6 (Pearson correlation). Like in
the kinase split, all BiMCA models using active site information are superior to the ones
using full primary structure (8.2% and 4.7% RMSE improvement for the BiMCA and
pretrained BiMCA respectively). For both models, these differences are statistically sig-
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Data Configuration k-NN BiMCA BiMCA (pretrained)

Val. Full seq. 0.78± 0.01 0.91± 0.01 0.85± 0.01
Active site 0.77 ± 0.01 0.83 ± 0.01 0.82 ± 0.01

Test Full seq. 0.76 ± 0.00 0.91± 0.01 0.86± 0.01
Active site 0.77± 0.00 0.83 ± 0.01 0.82 ± 0.01

Table 3.5: RMSE (on pIC50) on validation and test data (ligand split). For each model and data
partition we mark the better representation in bold.

Data Configuration k-NN BiMCA BiMCA (pretrained)

Val. Full seq. 0.83 ± 0.01 0.75± 0.00 0.78± 0.01
Active site 0.83 ± 0.01 0.79 ± 0.00 0.80 ± 0.01

Test. Full seq. 0.83 ± 0.01 0.74± 0.00 0.77± 0.01
Active site 0.83 ± 0.01 0.79 ± 0.00 0.80 ± 0.01

Table 3.6: Pearson correlation coefficient on validation and test data. Same legend like Table 3.5.

nificant across the ten folds for both validation and test data as well as RMSE and pearson
correlation as metrics (p < 0.001, W+).

However, the table also suggests that the k-NN model performs similarly on both ac-
tive sites and full sequences. This observation is explained by the fact that the protein
information is of negligible performance for our k-NN model in a ligand split. When
retrieving the k = 13 nearest neighbors according to Equation 3.2, the first part (which
measures protein similarity) will collapse to 0 for all samples of the same kinase. Note
that this collapse occurs irrespective of the utilized kinase sequence and thus dilutes dif-
ferences between the representations. As the average number of samples per protein in
the dataset is 593 (see histogram in Figure 3.5C), it is not surprising that for the active
site and full sequence indeed in 98.9% and 99.3% of the predicted samples, the nearest
neighbor is a sample with the same kinase. To remedy the described confound and com-
pare the impact of the two representations for the k-NN on the ligand split, we evaluated
the performance exclusively on the remaining samples. For this small subset, the active
site model is, in alignment with the overall findings, clearly superior to the full sequence
model (RMSE 1.35 vs. 1.59, Pearson’s r 0.56 vs. 0.33 on the test data). A remarkable
side observation is that on those samples the active site BiMCA model surpasses its k-NN
equivalent by a large margin (RMSE = 1.18, Pearson’s r = 0.64). This indicates that
the k-NN model strikes at interpolation, but falls behind the BiMCA in extrapolation;
a hypothesis that is corroborated by an increased correlation of the prediction error with
the distance to the nearest neighbor (k-NN: r = 0.23, BiMCA: r = 0.18; active site
models, validation data).
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Kinase inhibitor classes. We then sought to investigate the performance of the
models for different groups of kinase inhibitors. To that end, we retrieved the primary
target for each kinase inhibitor from BindingDB and grouped the ligands into thirteen
groups, based on their alleged mechanism of action (MOA). To assign the primary targets
to a potential MOA we used the classification scheme by Roskoski Jr [190]. From a total of
around 372k validation samples, only about a third could be automatically assigned to a
kinase inhibitor class. The PCC for each inhibitor class is shown in Figure 3.9 for both
models and configurations. The plot shows that, with the exception of MEK inhibitors,
the active site configuration yielded better results for all thirteen kinase inhibitor groups.
While this is generally reassuring with respect to the overall hypothesis, let us assess why
the performance for MEK (i.e., MAPK/ERK) inhibitors is consistently higher in full se-
quence models. Remember that the sequence alignment only relied on ATP binding site
residues [185].

However, the class of MEK inhibitors includes several allosteric binders, i.e., ATP-
noncompetitive inhibitors which bind to a unique site near but outside the ATP binding
pocket [191]. In support of that, 94% of the 2909MEK-inhibitor related samples making
up this effect are indeed accounted for by eight kinases of the MAPK family (MKNK2,
MKNK1, MAPKAP2, MAPK3, MAP2K1, MAPK1, MAPK14, MAP3K5).
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c-Met
(4%)

VEGFR
(12%)

Src
(3%)

RET
(6%)PDGFR

(3%)
MEK
(5%)

JAK
(25%)

EGFR
(9%)

CDK
(8%)

BTK
(17%) BCR-Abl

(2%)

B-Raf
(3%)

ALK
(2%)

0.5

0.6

0.7

0.8

0.9

KNN

Sequence
Active site

c-Met
(4%)

VEGFR
(12%)

Src
(3%)

RET
(6%)PDGFR

(3%)
MEK
(5%)

JAK
(25%)

EGFR
(9%)

CDK
(8%)

BTK
(17%) BCR-Abl

(2%)

B-Raf
(3%)

ALK
(2%)

0.5

0.6

0.7

0.8

0.9

BiMCA (pretrained)

Figure 3.9: Performance in predicting affinity for novel kinase inhibitors, grouped by
their alleged MOA. For the k-NN (left) and the pretrained BiMCA (right) the PCC of all sam-
ples of respective kinase inhibitor class is shown. Note that the differences in the k-NN are negli-
gible due to the mechanism described above.
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Similarity analysis. Binding affinity prediction models which generalize to distant
manifolds of the chemical space are critical to successfully screening large virtual libraries.
Similar to the kinase split, one might suspect that the performance on the ligand split de-
pends on the availability of similar ligands during training. To rebut this hypothesis, Fig-
ure 3.10 shows that both models only exhibited a weak negative correlation between the
per-ligand RMSE and the Tanimoto similarity to the nearest neighbor in training data
(cf. Figure 3.10). Similar to the kinase split, the active site model does not only outperform
the sequence model but is also less dependent on the availability of similar samples during
training. The k-NN showed a slightly stronger negative correlation (PCC = −0.23, not
shown).

Per ligand performance 

Figure 3.10: Dependency of prediction performance on availability of similar ligands. For
each ligand, the (RMSE) is shown as a function of the Tanimoto similarity to the nearest training
ligand. The colour gradient shows the density of the molecules and the line shows the correlation
between both axes. Measures computed on validation data.

3.6.4.3 Ablation study on embedding types

To verify that the observed superiority of the active models could not be attributed to the
amino acid embedding type, we compared the effect of our learned embeddings with one-
hot encodings and the (standardized) BLOSUM62 matrix [192]. BLOSUM62 encodes
amino acids based on the evolutionary similarity to all other amino acids.

From the results in Figure 3.11 we can see that, irrespective of the embedding type, the
general trend regarding active site superiority manifests in both kinase and ligand split.
While slight differences between the embedding types can be observed, e.g., the learned
embeddings overall performed best, not even the best full sequence model reached the
performance of the worst active site model (even disregarding the embedding type).
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3.6 Human kinases - finding compact protein representations

Figure 3.11: Ablation study on protein embeddings. Results for kinase and ligand split are
shown in the top and bottom row respectively. The two left and two right columns show perfor-
mance in terms of RMSE and PCC respectively; each compared across three protein embedding
types. Exact numerical results can be found in Table A3.3.

3.6.4.4 Validation on external test dataset

To asses the robustness of our results, we verified the hypothesis on an independent test
dataset. In particular we utilized the data from the IDG-DREAM challenge [146], re-
leased in 2021. The challenge focused on under-studied parts of the human kinome to
catalogue the unexplored target space of kinase inhibitors. Thus, it resembles a particu-
larly challenging dataset, encompassed by 825 samples (cf. Supplementary Data 1 by Ci-

chońska et al. [146]). We shrank down the dataset to only include kinases for which full
sequence and active site information [185] was available. This led to 720 samples, dis-
tributed across 276 kinases (32 unseen) and 93 ligands (all unseen). This dataset is much
more than challenging both previously studied splits because:

1. for many samples both ligands and kinases are unseen.

2. experimental differences in the dose-response assays (multi-dose assays with maxi-
mal concentration of 10µM that cause an incorrect lower limit for activity)

3. the dose response metric, given in logarithmic dissociation constant (pKd) that
substantially differs from the pIC50 in BindingDB.

For the k-NN model we used all data available in BindingDB as training data whereas
for the BiMCA we built an ensemble of the 10 models from the ligand split. The re-
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Model Config All Known kin. Unknown kin. Round 1 Round 2

k-NN Full seq. 0.224 0.242 0.032 0.132 0.32
Active site 0.244 0.282 -0.141 0.145 0.344

BiMCA Full seq. 0.16 0.169 0.064 0.102 0.185
Active site 0.32 0.327 0.238 0.179 0.412

Table 3.7: Evaluation on external dataset by Cichońska et al. [146]. We report Pearson correlation
(PCC).

sults can be found in Table 3.7 and are confirming our overall findings. Again, in both
models the active site residue representation outperforms the full sequence model. Also,
the BiMCA again yields better results than the k-NN model. Notably, the active site
BiMCA is the only model that achieves a satisfying performance in predicting activity in
the under-studied kinases from Cichońska et al. [146] that were not included in BindingDB.
We emphasize that a direct comparison to the results reported in the IDG-DREAM chal-
lenge is not possible due to the described differences.

3.6.4.5 Dissecting attention – why less is more

Model attention analysis. Theoretically, the full sequence BiMCA is strictly
more expressive than their active-site BiMCA since they use a superset of residues and
can exploit information from the entire protein. We propose two potential explanations
for why they perform worse in practice.

1. First, the signal-to-noise ratio (SNR). Unlike the active site models, the full sequence
models have to learn recognizing and disregarding residues that are largely irrelevant
for binding.

2. Secondly, remember that the residues comprising the active site are contiguous in the
folded protein but discontiguous in the full sequence (cf. Figure 3.4). The active site
sequences thus carry implicit information about the 3D structure.

To investigate both hypotheses we examined whether the model learned to capture 3D
information from the full sequence alone. This can be assessed from the attention weights
of the BiMCA’s context attention mechanism (cf. Equation 3.1).

If the full sequence model would have learned to focus on the active site residues, we
would expect it to perform as well as the active site models.

Many previous publications [119, 120, 157] provided visualizations of amino-acid-level
attention and argued with case studies that the attention mechanism can capture pro-
tein interaction sites. However, these analyses were of qualitative nature and it was later
demonstrated in a rigorous quantitative evaluation that none of those models systemat-
ically highlights interaction sites [121]. Instead, Li et al. [121] showed that explicit super-

62
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vision is required to excel at predicting pairwise non-covalent interactions. For two ex-
emplary kinases, MAPK11 and ABL1 we performed an interpretability analysis to assess
whether the sequence model paid significantly higher attention to the active site residues
(see Figure 3.12). Each protein-ligand pair (N = 39 for MAPK11 and N = 749 for
ABL1) is shown as one point in Figure 3.12. Following the methodology by Li et al. [121]
for interaction site prediction, we measured the model’s ability to highlight the active site
by two metrics. First, the AUC between the binary labels and the per-residue attention
scores. Secondly, the enrichment score; a precision-based metric derived from the binarized
attention values. The enrichment score accounts for sequence length and randomly ex-
pected hits. Both metrics were computed per sample and averaged across all samples of a
protein Thirdly, we evaluated statistical significance with a one-sided Mann-Whitney-U
test.

0.000 0.001 0.002
Rest of protein

0.000

0.001

0.002

Ac
tiv

e 
Si

te

Mean attention scores
MAPK11
(p=2.03E-02)
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Figure 3.12: Residue-level attention scores. Left: For each kinase-ligand pair of MAPK11 and
ABL1, the mean attention scores on active site residues versus the remaining residues is shown.
If the model would assign equal attention to all residues, all points would be on the dashed line.
Right: Attention heatmap on the MAPK11 3D structure highlighting atoms with high attention
scores (blue means low, green medium and red high attention). Residues depicted as spheres be-
long to the active site.

The AUC scores for MAPK11 and ABL1 are 0.518 and 0.516 respectively (AUC of
random classifier: 0.5). The average enrichment scores are 1.16 and 3.48 (random clas-
sifier: 1). In the comparison by Li et al. [121], all investigated unsupervised attention-
based methods [119, 120, 157] achieved AUCs around 0.5 and enrichment scores around
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1 whereas explicit supervision on the interaction site yielded an AUC of 0.76 and an en-
richment score of 10.7. Exact comparison, however, is not possible because the analysis
was performed on different samples and our notion of an active sites differs from their
definition of an interaction site. We also find that for both kinases, the mean attention
scores on the active site residues are significantly higher than on the remaining residues
(α < 0.05, MWU ).

Interpretation. These results are insightful to understand why the active site mod-
els performed better. Confirming the results of Li et al. [121], the BiMCA (just like all
previous attention-based methods in binding affinity prediction) does not convincingly
predict the active/interaction site when supervision only occurs on binding affinity labels.
However, the BiMCA shows a mild but significant ability to focus on relevant residues.
While this trend is not consistent across all samples (cf. Figure 3.12), all three quantitative
scores (AUC, enrichment and MWU test) suggest that the BiMCA performs significantly
above chance level in extracting active sites.

Conclusively, we believe that these subtle 3D effects in the full sequence model are
falling much behind the 3D information conveyed in the active site models. Together
with the higher SNR this could contribute to their improved generalizability compared
to full sequence models.

3.7 On the choice of active site sequences

3.7.1 Extending the active site definition
In the previous section, we found that the superiority of active site representations man-
ifests consistently for all but one ligand type – namely: MEK/MAPK inhibitors (cf. Fig-
ure 3.9). This outlier is not surprising given that this class contains numerous allosteric
binders, in particular ATP-noncompetitive MAPK inhibitors [191]. In this section, we
tackle this limitation in modeling allosteric binders and refine the definition of an "ac-
tive site" for binding affinity prediction. To achieve that, we utilize an alternative active
site definition comprising 16 residues from Martin and Mukherjee [138] which includes 6
residues farther away from the immediate binding site (see Figure 3.13A). Those Mar-

tin residues were identified with a variable selection algorithm from a starting set of 46
residues based on how frequently they were picked for a large set of kinase-kernel models.
Since only 10 of these 16 residues are overlapping with the Sheridan definition, we also
examine a Combined active site definition with 35 residues (cf. Figure 3.13B).

Definition 3.7.1 (Martin active site [138]). The 16 residues comprising the Martin ac-
tive site are defined as follows: RMartin = { D127, E121, F187, F54, G126, I163, L103,
L106, L162, L173, L95, M120, T183, T51, V119, V123 }.
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Figure 3.13: Overview of sequences obtained with different active site site definitions.
A) Visualization of cAMP-dependent protein kinase catalytic subunit alpha (P17612). Residues
unique to the active site definitions of Sheridan et al. [183] and Martin and Mukherjee [138] are
shown in orange and green. Residues contained in both definitions are colored in red. B) Partial
amino acid sequence (residues 48-62) of the same kinase. Below we show the three different active
site representations.

The 10 underlined residues are shared between definition the Sheridan and the Martin

definition.

Definition 3.7.2 (Combined active site). The 35 residues comprising the Combined ac-
tive site are: RSheridan

⋃
RMartin.

3.7.2 Extended performance comparison
Ligand split. The results in Table 3.8 confirm the superiority of using active sites
rather than full sequences, irrespective of the exact definition of active site. Importantly,
the results also clearly demonstrate that the Combined representation yields consistently
the best results for both models, both metrics and validation and test data. These im-
provements are statistically significant (W+) compared to at least one active site defini-
tion for all settings (see Figure 3.14 and Figure A3.1). Several observations can be made:

1. Importantly, the inferiority of the Sheridan active site definition for MEK inhibitors
prediction can be resolved using the Martin or the Combined active site definition
which includes 6 more distant residues (cf. Figure 3.14C). Definition 3.7.1 includes
residues around the “hydrophobic spine”, which presumably affect the stability of
binding site features or the active and inactive forms [193].

2. The Martin definition also includes T51, a residue that builds an important salt
bridge with residues in the same loop in many CDK kinases, another class where
Martin and Combined are better than Sheridan.
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Data Config. RMSE (↓) Pearson (↑)
BiMCA BiMCA-pre BiMCA BiMCA-pre

Val.

Full sequence 0.908±0.01 0.848±0.01 0.748±0.00 0.782±0.01

AS (Sheridan) 0.829±0.01 0.821±0.01 0.794±0.00 0.797±0.01

AS (Martin) 0.839±0.01 0.813±0.01 0.791±0.00 0.804±0.01

AS (Combined) 0.828±0.01 0.811±0.01 0.797±0.01 0.804±0.01

Test

Full sequence 0.912±0.01 0.863±0.01 0.744±0.00 0.774±0.01

AS (Sheridan) 0.832±0.01 0.826±0.01 0.792±0.01 0.795±0.01

AS (Martin) 0.842±0.01 0.818±0.01 0.789±0.01 0.801±0.01

AS (Combined) 0.832±0.01 0.816±0.01 0.795±0.01 0.802±0.01

Table 3.8: Results on validation and test data (ligand split). 10-fold cross validation results
on kinase data from BindingDB. For each model and data partition we show mean and standard
deviation across 10 folds and mark the best representation in bold.

A B

 *

 ***

 *

 ** **

C

Figure 3.14: Ligand split performance. The RMSE in pIC50 prediction for four kinase repre-
sentations and two models on validation and test data is shown respectively in A) and B). Statisti-
cally significant differences between the three different active-site configurations are marked with
stars dependent on their significance level. C) Performance comparison across representations as
grouped by kinase inhibitor class. For details see text.

3. Thirdly, the Sheridan definition is surprisingly inferior to the other two despite most
BCR-Abl binders being ATP-competitive [194]. Note however, that performance is
generally poor, most likely caused by much less training data per sample, compared to
other classes.

Kinase split. The results for the k-NN and the BiMCA on the validation and test
data are shown in Figure 3.15A and B respectively. No clear trend can be seen on the
validation data when comparing the three active site configurations across models, data
splits and metrics. While the Sheridan representation is significantly superior to the Mar-

tin representation for the k-NN (p < 0.05, W+) and to the Combined representation
for the BiMCA, this trend does not persist in the test data. During testing, the Martin
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A B

* **

** **

Figure 3.15: RMSE in affinity prediction for kinase split on validation and test data. 10-
fold cross validation results on kinase data from BindingDB. Performance on validation (A) and
test data (B) are shown. Statistically significant differences between the three different active-site
configurations are marked with a star.

representation consistently obtained the highest Pearson correlation, irrespective of the
model (cf. Table A3.4). Notably, our best model (the pretrained BiMCA) obtained the
best performance with the Combined representation in all but one cases.

3.8 Active site sequence augmentation

3.8.1 Introducing novel augmentation strategies
To conclude the experiments of this chapter, we explore additional mechanisms to lever-
age the knowledge about the location of the active site, in particular how it can inspire
data augmentation. We propose two new protein sequence augmentation techniques
and find that they have complementary, positive effects.

Given that the MSA-extracted sequence does not provide explicit 3D information,
proximity in the sequence is likely but not certainly corresponding to proximity in 3D
space. We thus conjectured that sequence augmentation strategies could assist to learn
general binding patterns for two reasons:

1. There may be 1D representations that align better with the 3D relation of residues
than the original sequence. Representing a kinase as a distribution of sequences re-
flects this lack of knowledge, might regularize the model and thus improve generaliza-
tion, especially to unseen target families.

2. Static roles of specific residue positions may induce overfitting in practice as the model
might memorize too specific patterns.

As shown in Figure 3.16, we therefore devise three novel sequence augmentation schemes,
two of which exploited the discontiguity of the active site residues in the full protein:
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Figure 3.16: Protein sequence augmentation. Three possible kinase sequence augmentation
strategies, exemplified on the Combined active site definition: 1) flipping (i.e., reversing) the entire
sequence; 2) randomly flipping contiguous subsequences and; 3) randomly swapping neighbor-
ing subsequences. Residues affected of the augmentation are encircled in black.

• Flipping (F): A natural augmentation technique for protein sequences is flipping the
entire reduced residue set (applied with a probability of 50%).

• Flip contiguous subsequences (FS): Contiguous subsequences of the active site are
closely together in space. Similar to Flipping, this strategy relies on the fact that reading
such sequences from either direction should not affect model predictions (applied with
50% probability).

• Swap neighboring contiguous subsequences (SS): This strategy relies on the as-
sumption that neighboring contiguous sequences have a higher probability to be closer
in space than distant active site subsequences (20%).

While the second and the third strategy revoke the residue ordering from the MSA, we
hope that this biologically constrained rearrangement eases learning patterns of binding.

3.8.2 Performance comparison
All experiments rely on the Combined representation because it previously yielded the
best results. The results in Table 3.9 demonstrate that all augmentation techniques im-
proved model performance. Note that the structure-motivated augmentation methods
like swapping (SS) and flipping subsequences (FS) showed a similar performance boost
to plain flipping (F). But while the benefit of flipping is statistically insignificant, the FS
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RMSE (↓) Pearson (↑)
Data Augmentation BiMCA BiMCA-pre BiMCA BiMCA-pre

Val.

None 1.32±0.16 1.20±0.12 0.438±0.08 0.489±0.09

Flip (F) 1.25±0.13 1.19±0.13 0.463±0.08 0.502±0.08

Flip sub-seq. (FS) 1.28±0.12 1.18±0.12 0.431±0.11 0.521±0.08

Swap sub-seq. (SS) 1.28±0.17 1.18±0.12 0.443±0.11 0.511±0.09

FS + SS 1.27±0.11 1.18±0.12 0.444±0.09 0.508±0.09

F + FS + SS 1.22±0.10 1.18±0.11 0.468±0.11 0.505±0.09

Test

None 1.33±0.08 1.23±0.08 0.431±0.06 0.505±0.07

Flip (F) 1.28±0.05 1.23±0.07 0.478±0.04 0.515±0.06

Flip sub-seq. (FS) 1.32±0.09 1.22±0.04 0.444±0.08 0.516±0.04

Swap sub-seq. (SS) 1.28±0.04 1.23±0.03 0.479±0.01 0.506±0.06

FS + SS 1.29±0.06 1.22±0.07 0.469±0.04 0.526±0.05

F + FS + SS 1.27±0.06 1.21±0.05 0.479±0.06 0.531±0.05

Table 3.9: Results of sequence augmentation (kinase split).

and SS configuration yield significant benefits (p < 0.01, W+) in several cases. Interest-
ingly, their performance increase is roughly additive. Upon combining all augmentation
strategies we obtain the best results in seven out of eight cases (p < 0.01, W+, RMSE
on validation data). Another interesting aspect is that the pretrained model is harder
to improve; presumably because it may have learned to be invariant against the applied
transformations.

3.9 Discussion

The experiments on proteochemometric language modeling of human kinases in this
section suggest a superiority of active site to full protein sequences for binding affin-
ity prediction. This finding is robust across two investigated models (a k-NN regressor
and a proteochemometric language model), different data splits (kinase and ligand split)
and performance metrics (RMSE and PCC) and were confirmed on the largest existing
dataset (BindingDB) as well as a new, external test dataset [146].

This is an important, and maybe surprising finding because the active site definitions
contain only a tiny subset of the residues in the full primary sequence. We believe that
providing exclusively the active site residues increases the SNR and implicitly conveys
information about the 3D structure which consequently yields better performance.

This hypothesis is partly corroborated by our attention analysis. Without explicit su-
pervision on residue importance the sequence model learns only to a small extent to focus
on the relevant, active site residues. In contrast to this scarce signal of tertiary structure in
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the full sequence models, the active site models are equipped with an inductive bias about
3D structure provided by the discontiguity of the active site residues in the full sequence.

Moreover, we find that the active site models even surpass the full sequence models
if both models were pretrained on full protein sequences. This result suggests that it is
beneficial to pretrain proteochemometric models on pan-protein data even if the ultimate
user-application is limited to a specific protein family.

Since our initially utilized Sheridan active site did not yield satisfying results on pre-
dicting binding affinity for ATP-noncompetitive inhibitors, we conducted additional ex-
periments using an active site definition proposed by Martin and Mukherjee [138]. Taking
the union of both definitions, we find that our novel Combined kinase representation is
superior to the Sheridan as well as the Martin active site definition for binding affinity
prediction for unseen ligands. Notably, this Martin definition included residues distant
from the ATP-binding site which improved performance for allosteric binders. Some
residues in the “hydrophobic spine” might take dynamical roles [195]. Other residues
such as G126, I16, T51, L103 and V119 are relevant for activation-deactivation mecha-
nism and loop dynamics, but do not directly interact with the ligand [138].

Finally, we exploited the knowledge about active site residue location to devise sev-
eral novel sequence augmentation techniques. In our experiments, they exhibited further
and complementary performance improvement. In sum, our results improve the efficient
modeling of kinase-ligand binding.

Future research could validate our findings on other protein families or explore hybrid
approaches to leverage 3D information. For example, one could constrain the attention
mask to reflect pairwise non-covalent compound-protein residue interactions with semi-
supervised learning. While active site information might not be available for some pro-
tein families, existing methods could be applied to extract specific protein-ligand binding
residues [196].
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Conditional molecular design
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4 Conditional molecular
generative models

4.1 Molecular generative modeling landscape

In the past few years, deep molecular generative models are steadily growing their
influence in computational chemistry and start to impact industrial molecular
discovery. In the last years, we have witnessed a paradigm shift away from discrete,
local optimization toward a systematic chemical space exploration [10]. In a seminal
work, Gomez-Bombarelli et al. [11] introduced a SMILES-based VAE that was able to
embed molecules into a smooth latent space which facilitated not only sampling
of novel molecules but also a meaningful chemical space interpolation. Almost
concurrently, Segler et al. [55] demonstrated that the molecules generated through a
RNN mimicked the distributions of physicochemical properties from the training data
and could even be tuned toward specific properties of interest. A popular optimization
technique to generate molecules with desired properties is reinforcement learning (RL);
often coupled with RNNs by treating the SMILES generation as action sequence and
the molecular property as reward. Such approaches can utilize model-free [197] and
model-based RL techniques [198]. A seminal work by Popova et al. [18] provided evidence
that RL methods like policy gradients can steer RNN-based SMILES generators toward
desirable properties like synthesizability, JAK-inhibition or solubility [18]. RL can also
be readily coupled with adversarial techniques to obtain stochastic policies for molecular
property optimization, as shown in ORGAN [199].

Graph-based molecular generative models are also getting more popular. These meth-
ods either generate graphs in one-shot or auto-regressively. One-shot generation have the
disadvantage that the validity of the molecular graphs is difficult to guarantee [200, 201].
Auto-regressive molecular graph generative models either generate one node [25, 202],
sets of nodes [203] or edges [204] at a time. In the Junction-Tree VAE proposed by Jin et
al. [19], functional groups are generated in a tree-structured manner and then combined
via message passing to guarantee valid molecular graphs. Shi et al. [24] developed an auto-
regressive graph generative model that relies on normalizing flows [205] and achieved su-
perior performance on property optimization benchmarks. Recently, Bengio et al. [206]
proposed GFlowNets, an active learning method that was, among others, demonstrated
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to improve on diverse candidate generation [207]. Diffusion models have also recently
been proposed for molecular conformer generation [208, 209].

As discussed in the Introduction (Section 1.2) most of these models suffer from two
problems. First, they are task-specific and can thus only be applied to exactly one objective
and secondly they disregard system-level information about the environment in which
the molecule has to exert its function.

Throughout this chapter, we will strive to build more flexible generative models that
can be queried with a "semantic context" and can generate molecules for a wide range of
desired conditions without the need of specific optimization. As visualized in Figure 1.2,
we will formulate and apply conditional molecular generative models for four types of
contexts:

1. Cell profiles: In this task, the objective is to develop a model that can be condi-
tioned on an omic profile (e.g., gene expression data from a malignant tumour)
and generate molecules that are likely to exhibit a high inhibitory effect against the
cell profile. This will be described in Section 4.3.

2. Protein targets: In this task, the objective is to develop a model that can be con-
ditioned on a protein sequence and generate molecules (i.e., ligands) that are likely
to bind to the protein. This will be described in Section 4.4.

3. Molecular substructures (e.g., scaffolds): In this task, the objective is to develop
a model that can be conditioned on a seed molecule (or even an explicit, possibly
discontiguous molecular substructure) and generate molecules that are 1) similar
to the seed and 2) exhibit desired properties. Together with 4. this will be assessed
in Chapter 5.

4. Continuous properties (e.g., a desired solubility value): In this task, the objective
is to develop a model that can be conditioned on a desired floating-point property
value and generate molecules adhering to the property constraint. Together with
3. this will be assessed in Chapter 5.

For each task, the related work will be discussed in the respective section/chapter.

4.2 PaccMannRL: Coupling a hybrid VAE to
property predictors via RL

In this section we introduce PaccMannRL, a hybrid Variational Autoencoder (VAE) for con-
ditional molecular generation that is trained with RL through a multimodal property
prediction model. The PaccMannRL framework can be applied to different settings in
molecular discovery. As visualized in Figure 4.1, three key ingredients are necessary to
form a PaccMannRL model:
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• Molecular VAE: This is an unsupervised model that is able to encode and generate
molecules. It will be denoted by ΘM .

• Context VAE: This is an unsupervised model that is able to encode and generate
context instances. The choice of the context determines the application usecase of
the specific PaccMannRL instance. It will be denoted by ΘC . Together with ΘM

this will form the "agent" GΘ.

• Multimodal property prediction model: This model receives a molecule and a
sample from the context VAE and predicts an interaction effect between the two
entities. It will be denoted by RI and be the main part that composes the "critic".
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Figure 4.1: The PaccMannRL framework for conditional molecular design. Exemplified on
the task of cancer-profile driven molecular generation. A) Conceptual depiction of model train-
ing process. Starting from an unbiased molecular generation, we learn to navigate through the
chemical space toward a manifold that is more densely populated with molecules that give a higher
reward (here: predicted inhibition of desired cancer profiles). B) PaccMannRL model. The condi-
tional molecular generator is embodied through a pretrained hybrid-VAE. The generative process
starts with encoding a transcriptomics profile through a pretrained omics VAE. The obtained la-
tent code of the profile is then passed to a separately pretrained molecular decoder (see C). Next,
the generated molecule is evaluated by a "critic" (here: a multimodal drug sensitivity prediction
model which consumes the molecule as well as the profile (see D). We close the loop by interpret-
ing the predicted efficacy as reward and optimize the agent with RL to generate molecules that
produce a higher reward.

All three models have to be pretrained independently. Two applications of the
PaccMannRL model are explored in this thesis; namely using transcriptomics profiles
of cancer cells and protein sequences as context. Further possible applications include
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4 Conditional molecular generative models

generation of molecules that inhibit cell profiles represented by other types of bulk or
single-cell omics data, have high synergistic effect with a target drug or even induce
a desired inhibition profiles. We believe that VAEs are the ideal model for this task
since they learn a structured latent space which facilitates the combination of different
modalities.

4.2.1 Problem formulation
Let m ∈ M denote a molecule from the molecular space and c ∈ C be an (abstract)
context1.

Objective 4.2.1. Our goal is to learn a mapping GΘ : C → M subject to maximization
of the function Φ(c,m).

4.2.1.1 Critic

Φ(·, ·) is a multimodal reward, typically an interaction effect between c and m (e.g., the
binding strength between a protein and a molecule). Since the exact computation of Φ is
intractable (it requires an in vitro experiment), it is approximated withR : C×M → R.
Typically, R := f ◦ RI where we callRI the "critic" and f : R → R is an optional trans-
formation converting the predicted interaction into a reward which will later be subject
to maximization. RI denotes the actual property predictor, e.g., a proteochemometric
binding affinity prediction model. While RI has to be pretrained independently, it will
be fixed throughout this part of the thesis and thus considered an oracle. Different types
of models that could constitute RI were developed in the first part of this thesis.

4.2.1.2 Agent

Note that since GΘ will be optimized using a RL scheme that relies on the critic above,
we callGΘ the "agent". Before definingGΘ, let us first introduce two separate VAEs [210].

Definition 4.2.1. Let ΘM = [ΘDec
M

◦ ΘEnc
M

] : M → ZM → M be a molecular VAE
that is trained on TM = {mi}

NM
i=1 .

Definition 4.2.2. Let ΘC = [ΘDec
C

◦ ΘEnc
C

] : C → ZC → C be a context VAE that is
trained on TC = {ci}

NC
i=1.

ΘM and ΘC are trained with unsupervised learning on molecular and context samples
respectively. The objective of both VAEs is to optimize their ELBO:

LVAE := E[log p(x|z)]−DKL[q(z|x), p(z)] (4.1)
1this could e.g., be a protein from the protein space but we keep the formulation generic.
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where q(z|x) = N (⃗0, I), i.e., the latent code is modelled using a multivariate unit Gaus-
sian following standard VAE convention. For detailed formulation of VAEs see Kingma

and Welling [210] and Sohn et al. [211]. The only additional constraint is that |ZM | = |ZC |,
i.e., both VAEs have the same latent code dimensionality.

Baseline. After training ΘM , we can sample from p(zM) and apply
ΘDec

M
: ZM → M. This process constitutes our baseline for molecular generation.

Conditional generation. After ΘM and ΘC are trained, our "agent", the condi-
tional generative model GΘ is defined as:

GΘ = [ΘDec
M

◦ΘEnc
C

] : C → Z → M (4.2)

In explanation, our conditional generator is obtained by encoding a context sample cwith
the context VAE into its latent space before decoding this latent code with the molecular
decoder. This mixture can be performed due to the variational constraint in both the con-
text and the molecular VAE. Critically, this constraint in Equation 4.1 drives both models
to encode their respective samples (i.e. context and molecules) into a multivariate Gaus-
sian distribution with the same number of dimensions. Thus, the combination of the
two models enables to learn a latent space that links the context space with the molecular
space thus providing a mechanism to sample novel compounds given a context. During
the optimization, this fusion will warp the latent space from encoding structural simi-
larity into functional similarity that clusters molecules with a similar predicted reward,
given a context c2. The final training objective function of the hybrid VAE GΘ is to learn
a policy Π(Θ):

Π(Θ) =
∑
m∈M

PΘ(m|c)R(m, c) (4.3)

where PΘ(m|c) indicates the conditional probability approximated by GΘ. In layman’s
terms we are trying to maximize the conditional probability of sampling a molecule m
from a context c that gives a maximal reward R(m, c). Since Equation 4.3 is intractable
to compute, it is approximated using policy gradient and subject to maximization using
REINFORCE [212], as proposed in ReLeaSE [18]. Critically, the performance of GΘ is
limited by the quality of the reward functionR. Therefore, we have devoted the first part
of this thesis to developing robust molecular property prediction models.

2A similar procedure was shown by Gomez-Bombarelli et al. [11] where a property predictor was trained
on the latent space.
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4.2.2 Molecular decoder
In our implementation the molecular decoder ΘDec

M is an auto-regressive (recurrent) net-
work that builds a SMILES (or SELFIES) sequence token by token. In the following we
describe the concept of context-driven molecular generation more closely. Let us assume
that the first step ofGΘ is complete (i.e., the context cwas embedded into a latent code zc
using ΘEnc

C . At every time t of auto-regressive molecular generation, the state st is given
by a tuple (mt, zc), i.e., a partial molecular stringmt and the embedded context vector zc.
The agent then has to chose an action at from the action spaceAwhich is the vocabulary
of all tokens of the chemical language. Formally:

p(at|st−1) where st−1 = (mt−1, zc) (4.4)

m0 is simply the <START> token.
Note that Equation 4.3 assumed that the conditional probability PΘ(m|c) approxi-

mated by GΘ always results in valid molecules m ∈ M. In practice, our implementation
relies on chemical languages such as SMILES which can produce invalid molecules (i.e.,
strings mT ̸∈ M). Hence it is more appropriate to reformulate Equation 4.3 to:

Π(Θ) =
∑

mT∈M∗

PΘ(mT )R(mT , c) (4.5)

where

PΘ(mT ) :=
T∏
t=0

p(at|st−1) (4.6)

A terminal state mT ∈ M∗ ⊃ M is reached when either t = T or when the terminal
action at = <END> has been sampled (in which case we set T := t). The generative
process is visualized in Figure 4.2C. To decode a SMILES string, we apply, at any time
t, a multinomial sampling over the predicted (softmax) distribution over the SMILES
vocabulary token. Unless stated otherwise we use a temperature parameter of 1. Note,
that in our framework, the reward rt is calculated only for the terminal states, M∗, as
previously defined. For all intermediate steps t < T , we set rt = 0 (intermediate SMILES
strings mt are usually not valid anyways). Similarly, R(c,m) = 0 if m ̸∈ M (i.e., final
but invalid SMILES strings also receive no reward).

These choices imply that our formulation of the hybrid VAE is generic and thus, in
principle the molecular decoder does not have to be sequence-based and/or autoregres-
sive but could be adapted to produce graphs or fingerprints dependent on the desired
molecular representation.

Learning to count. The SMILES language is a context-free language according
to the Chomsky hierarchy [213]. Unlike natural languages, it requires a balanced set of
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Figure 4.2: Construction of PaccMannRL components. A) A context VAE, in this case trained
on biomolecular profiles (RNA-Seq data). B) A molecular VAE with an autoregressive decoder
pretrained on SMILES or SELFIES strings. C) The generative process in ΘDec

M during RL op-
timization. Molecules are generated auto-regressively as SMILES sequences. A full cycle of this
process includes a state (st, where s0 = zc, i.e., the latent code of the context vector), an inter-
mediate reward (rt) and a generated partial candidate molecule (mt).

parentheses which poses an additional syntactical challenge. Hence, models that gener-
ate SMILES sequences auto-regressively benefit from an ability to count the branching
tokens (the parentheses “(“ and “)“) as well as ring symbols (1, 2 etc.) in a molecule be-
cause a single mistake in the generative process renders the entire SMILES string invalid.

Since standard RNN cells lack the ability to count, ΘDec
M relies on a differentiable ver-

sion of a stack memory [214], a stack-augmented RNN cell as proposed by Joulin and
Mikolov [215]. In their work, it was demonstrated that standard RNN cells like the LSTM
lack the ability to count which becomes increasingly disruptive for longer sequences [215].

In our implementation of ΘM both the encoder and decoder consist of bidirectional,
stack-augmented GRU cells (cf. Figure 4.3). Stack-RNNs complement any RNN cell
with a differentiable push-down stack that operates through learnable controllers, opt at
step t with three operations {PUSH, POP, NO-OP}.

opt = Softmax(Wopht) (4.7)

where ht is the hidden state, Wop is a 3 × H matrix (H being the dimension of hidden
state). At each time step the controller probabilities are determined from Equation 4.7
and the stack memory is updated using the learned controller via a multiplicative gating
mechanism:

{
St[0] = opt[PUSH] Softmax(Wsoht) + opt[POP]St−1[1] + opt[NO-OP]St−1[0]

ht = Softmax(WiXt +WRht−1 +WsiSt−1)
(4.8)
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Figure 4.3: Stack-GRU architecture employed in the molecular VAE. A) The StackGRU
architecture complements a regular GRU with a differentiable stack that allows one out of three
possible operations: PUSH, POP and NO-OP. The operation vector is computed with a softmax from
the time point’s hidden state. B) and C) visualize the encoder ΘEnc

M and decoder ΘDec
M of the

molecular VAE respectively. B) encodes the SMILES sequences into multivariate Gaussians with
parameters µ and σ. C) The decoder StackGRU units reconstruct the SMILES sequence from a
latent representation (zc) sampled from the multivariate Gaussian.

whereSt is the stack,Wso is a 1×H matrix andWsi is aH×N matrix (N being the stack
height). Wi is the input matrix applied to the sequence and WR is the recurrent matrix.
For brevity this only shows the update equation for the topmost element of the stack.
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4.3 De novo molecular generation against
cancer cell lines

In this section we will describe an application of PaccMannRL to anticancer drug discovery.
The goal is to develop a conditional molecular generative model that can be conditioned
on a gene expression profile from a malignant tumour and produce a molecule that ex-
hibits high predicted efficacy against that tumour cell profile.

4.3.1 Anticancer drug discovery

Human cancers are subject to intratumoral heterogeneity. They are composed of a col-
lection of single cells with distinct molecular and phenotypic characteristics, leading to
highly heterogeneous drug responses in clinical studies [216]. This intricacy is a main
factor for the limited number of marketed, targeted anticancer drugs which are usually
approved for specific cancer types only. In the past few decades, de novo drug design in
cancer medicine has struggled to deliver significant advances, partly due to the lack of a
holistic approach. Problematically, anticancer drugs are the most challenging therapeu-
tic group – the success rate in clinical trials is at staggering 3.4% [33]. This questions the
current methodology for protein target identification. In a seminal study Lin et al. [217]
investigated ten drug-indication-pairs from ongoing clinical trials and reported that none

of the ten candidates operated in their proposed MOA. Upon knocking out the ostensi-
ble target genes with CRISPR, the anticancer fitness of none of the drugs was impaired,
suggesting that they retained their anticancer effect through target-independent mecha-
nisms. Lin et al. [217] conclude that off-target toxicity is a frequent MOA of anticancer
drugs in clinical drugs which implies that we understand less about the mechanisms of
drugs than we think we understand.

Therefore, in this section we propose to use the previously defined PaccMannRL model
to generate anticancer candidates solely based on a tumor’s metabolic signature (as op-
posed to attempting to target a specific protein or incorporating information about po-
tential targets directly into the design process). For that study, we will rely on transcrip-
tome data, in particular bulk RNA-Seq gene expression profiles. Transcriptome data has
been proven essential to guide lead optimization [218] and has been advocated a pivotal
role for de novo design [219]. Besides lack of efficacy, off-target cytotoxicity is the main
reasons for the high attrition rate in drug discovery [220], suggesting that systems biology
might be bridged more closely with drug discovery. Moreover, transcriptome data bears
the advantage that it is straightforward to collected whereas identifying protein targets is
challenging and time-consuming.
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4.3.1.1 Related work

Previous work on using omic profiles to drive molecular generative models is scarce to
absent. In a related work, Méndez-Lucio et al. [221] proposed a GAN which can be condi-
tioned with a gene expression signature and generate molecules that are likely to induce

that signature. Their model was demonstrated to generate molecules more similar to ex-
isting, active compounds than molecules identified by naive similarity comparison of the
expression signatures. Later, Shayakhmetov et al. [222] developed a bidirectional adversar-
ial autoencoder that learned a multimodal distribution of molecules and their induced
changes in a gene expression signatures. In another related work, Joo et al. [223] used a
VAE that can be conditioned on a binary IC50 vector defining desired efficacy against
cell lines from the NCI-60 database [224] and showed that they could generate finger-
prints close to existing anticancer drugs.

4.3.2 Contribution
In contrast to the above work, we here present a RL method for de novo molecular de-
sign directly from gene expression profiles. Our model can be conditioned on a gene
expression signature and generate molecules that exhibit high cytotoxic efficacy (mea-
sured as IC50) against that cell profile. Our method incorporates the disease context,
a transcriptomic profile, directly into the generative process, and then optimizes the gen-
eration toward molecules with high efficacy against a gene expression signature charac-
teristic for a cancer site, a patient subgroup or even an individual, thus constituting a
precision medicine methodology. During RL optimization, we employ, PaccMann, a
previously published multimodal anticancer drug sensitivity prediction model as reward
function [27]. The reward depends on the predicted IC50 between the generated can-
didate compound and the desired gene expression signature. Without incorporating any
specific information about anticancer drugs, the reward function is shown to bias the
molecule generation towards molecules with high predicted efficacy against desired gene
expression profiles. PaccMannRL is more generic than the aforementioned related work
because the model directly generates new molecules and the generative process can be con-
ditioned on any desired gene expression signature. We find that the generated molecules
exhibit similarity to known cancer drugs in pharmacological and physicochemical prop-
erties (drug-likeness, synthesizability, solubility) and sometimes even show highest struc-
tural similarity to existing drugs with known efficacy against these cancer types. While
the focus of our experiments is on generating molecules with high drug sensitivity, we
note that the reward function is flexible and be refined with subsidiary constraints such
as undesired toxicity.

4.3.3 Implementation
We follow the model definition in Section 4.2. For a conceptual overview see Figure 4.1.
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4.3.3.1 Gene expression profile VAE

Data. Starting from the TCGA database [225], we build a training dataset of 11, 592
(standardized) RNA-Seq gene expression signatures from healthy and malignant human
tissue. The validation data contained 1, 289 samples from the same database. Since the
dataset contains > 20, 000 genes, we used the network propagation scheme described
in Oskooei et al. [226], originally applied to GDSC [227] by Manica, Oskooei, Born, et al. [27]
to select a subset of 2, 128 less-correlated but cancer-relevant genes.

Model. This model corresponds toΘC in Subsection 4.2.1. In this case, our "context"
samples are gene expression signatures s drawn from the space of gene expression signa-
tures S . To learn a latent representation for gene expression signatures, we used a denois-
ing VAE with four dense layers of [1024, 512, 256, 200] units, ReLU activation function
and dropout of p = 0.2 in both, the encoder and the decoder. The dimensionality of the
latent space wasZC = 128. The model minimized Equation 4.1 (a combination of the re-
construction loss and the KL divergence) with Adam optimizer (β1 = 0.9, β2 = 0.999,
ε = 1e−8) and a decreasing learning rate starting at 0.001 [77]. For regularization, we
employed denoising by 1) applying a dropout of 0.1 on the input genes and 2) adding
noise to gene expression values (ε ∼ N (0, 0.1)). The model was trained with a batch
size of 64 for a maximum of 2000 epochs.

4.3.3.2 Molecular VAE

Data. The pretraining data was compiled from the ChEMBL database [228] and con-
sisted of 1, 576, 904 molecules represented as SMILES that were split in 90%/10% ratio
between training and validation. Molecules that could not be parsed by RDKit were re-
moved, the longest molecule had 1, 423 tokens and no padding was needed since our
model supported dynamic sequence lengths via PyTorch’s packed sequences.

Model. This model corresponds to ΘM in Subsection 4.2.1. The goal of pretraining
this VAE is to learn the syntax of the SMILES language and learn to generate bioactive
drug-like molecules. Encoder as well as decoder of this model consisted of two layers of
bidirectional GRU (hidden size of 128, dropout of 0.1). Each layer was complemented
with 50 parallel, differentiable stacks each with a maximum depth of 50. The dimension-
ality of the latent space was ZM = ZC = 128. We relied on teacher forcing [229], i.e.,
during training the generation of token t is conditioned on the previous ground truth
sample as opposed to the token generated at t − 1. Whilst this significantly simplifies
learning, it may result in posterior collapse [230] which is combatted by a token dropout
rate of 0.1 during teacher forcing. The model was trained for 10 epochs with a batch
size of 128. To compromise reconstruction loss and KL divergence, we used KL cost-
annealing as described in Bowman et al. [230].
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4.3.3.3 Reward function

The reward function was denoted by R := f ◦ RI in Subsection 4.2.1. The critic RI :
M × P → R is a multimodal drug sensitivity prediction model ingesting a molecule
m ∈ M and a gene expression signature s ∈ S from a cancer cell line. The model was
trained using the procedure we reported in Manica et al. [231]. The total reward function
R is given by:

R(m, s) = f(RI(m, s)) = exp

(
−RI(m, s)

α

)
(4.9)

where RI(m, s) returns a log micromolar IC50 value denoting the predicted drug effi-
cacy. Moreover, α is a hyperparameter determining how much the generator is rewarded
for proposing molecules with high versus average efficacy, smaller values of α leads to a
greedier generator.

Multiproperty optimization. In the case study on multiproperty optimization,
we utilized two additional molecular property predictors to compute the reward for the
generative model. For this experiment, the reward function was computed as:

Rmulti(m, s) = w1 ·R(m, s) + w2 ·RTox21(m) + w3 ·RSIDER(m) (4.10)

The first part is identical to the reward function above. Let ΘTox21 be the neural network
that predicts the toxicity of the 12 Tox21 assays [88] as described in Chapter 2. Then
RTox21(m) = 1 if and only if the output of ΘTox21 is < 0.5 for all 12 Tox21 assays. Oth-
erwise the reward is 0 (as ΘTox21 predicted that m is toxic in at least one assay). Similarly,
if ΘSIDER is the network that predicts 27 types of adverse drug reactions [91], then the
rewardRSIDER(m) = 1− ȳ, i.e., the inverted mean of the adverse reaction types. Finally,
w⃗ holds the weights to compute the reward as the weighted sum of the three individual
components. We set w1 = 1, w2 = 0.2 and w3 = 0.1. ΘTox21 and ΘSIDER are parameter-
ized using the ToxSmi model described in Chapter 2.

4.3.3.4 RL optimization

Data. To optimizeGΘ, we used gene expression signatures available from GDSC [227]
and CCLE [232] databases. Since these are cell line databases whereas the PVAE was pre-
trained on human samples from TCGA [225], we validated the standardized gene ex-
pression distributions across the databases and found good agreement, confirming the
reported consensus between transcriptomic data in CCLE and TCGA [233].

Model. During RL optimization, Equation 4.5 was maximized with Adam (β1 =
0.9, β2 = 0.999, ε = 1e−4, weight decay 1e−4) and a decreasing learning rate starting
at 1e−5. The gradients were clipped to 2 to prevent GΘ from "forgetting" its chemical
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knowledge about SMILES syntax obtained through pretraining on ChEMBL. The re-
ward function hyperparameter α was set to 5. All models were implemented in PyTorch
1.0 [159] and trained on a cluster equipped with POWER8 processors and a NVIDIA Tesla

P100.

4.3.4 Results on omic-specific molecular generation
Here, we exemplarily show results for molecular generation optimized against four differ-
ent types of cancer: lung cancer, prostate cancer, breast cancer and neuroblastoma. For
each cancer type, we used 80% of the cell lines (breast: 50, lung: 169, prostate: 7, auto-
nomic ganglia: 56) as training cell lines for the RL optimization. Our baseline molecular
generator was the "unbiased" molecular VAE which gives molecules from the chemical
space learned from ChEMBL during pretraining. For the evaluation, molecules with a
predicted IC50 < 1µM (i.e. pIC50 > 6) were considered effective.

Over the course of RL optimization the generator produced more molecules with high
reward, i.e., high predicted anticancer efficacy. To evaluate the generalization capabilities
we used 20% of cell lines (per site) for conditioning. The results are presented in Fig-
ure 4.4 (left column) and show that our model learned to produce molecules with lower
average IC50 values, also for unseen cell lines from a given cancer type. The density plots
show that the RL optimization leads the model to generate molecules with a higher mean
pIC50 for the target cancer. In each case, a significant portion (between 16% and 57%)
of molecules generated from the optimized model had a predicted IC50< 1µM, whereas
the baseline model only generated 2-5% effective molecules. In the second column of Fig-
ure 4.4 we display generated molecules that are predicted to be effective against an unseen
cell line from the cancer type of interest. Instead, in the third column we show a preci-
sion medicine regime where molecules are shown that were designed a single, character-
istic gene expression signature (the mean of all signatures of that side). These molecules
were predicted to be effective against the majority of all cell lines from that site as well as
against the average profile. Since, according to our knowledge, the formulated problem of
conditional molecular generation based on gene expression profiles, has not been tackled
before, comparison to previous work is not possible.

4.3.4.1 Investigation of nearest neighbors

In the last column of Figure 4.4 we show one of the top-3 neighbors of the molecules
generated in the third column. Similarity was computed using the Tanimoto similar-
ity τ of ECFP4s from several hundreds of existing anticancer compounds [227]. Note
that Tanimoto similarity is correlated with induced sensitivity patterns on cancer cell
lines [234]. The example breast cancer candidate resembles a collection of fused sugar-
like moieties and has doxorubicin, a commonly used chemotherapeutical against breast
cancer [235], as one of the top-3 nearest neighbors. Moreover, the lung cancer candidate
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pIC50 = 6.26 (553nM) QED: 0.54, ESOL: -7.29, SCScore: 1.67

 = 0.34
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Figure 4.4: Molecular generation results based on unseen gene expression signatures.
Each row shows the results of PaccMannRL on a different cancer site. In the first column, the
pIC50 distributions of 500 molecules generated with the optimized model are compared to 500
molecules from the unbiased generator. In the second column, we show a generated molecule
with low predicted IC50 against a particular cell line, unseen during training. In the third and
fourth column we compare molecules that were predicted to be effective against all unseen cell
lines of a given cancer site with a similar, existing anticancer compound.
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shows similarities to embelin, an existing anticancer compound from GDSC. Comparing
the two structures, it is evident that the generated compound and embelin share a long
carbon chain and a single six-membered fully carbonic ring. Embelin was tested against
965 cell lines from GDSC/CCLE from which the highest reported efficacy is against a
lung cell line (NT2-D1). Embelin is also known to be the only known non-peptide in-
hibitor of XIAP [236], a protein that plays an important role in lung cancer develop-
ment [237]. The closest neighbor of the prostate-cancer molecule in the fourth row is vo-
rapaxar. According to GDSC/CCLE, its efficacy is highest against a prostate cancer cell
line (DU_145). Vorapaxar is an antagonist of a protease-activated receptor (PAR-1) that is
known to be over-expressed in various types of cancer, including prostate [238]. Lastly,
the third most similar compound to the generated neuroblastoma molecule is fulvestrant,
an antagonist/modulator of ERα. Fulvestrant has recently been proposed as a novel an-
ticancer agent for neuroblastoma [239]. The predicted pIC50 profiles of our molecule
and fulvestrant are highly correlated across all cell lines (ρ = 0.88), suggesting that they
may exhibit similar pharmacological properties. Similarly, the lung and prostate cancer
molecules have also highly correlated activity profiles to their neighbors embelin and vo-
rapaxar (ρ = 0.55 and ρ = 0.69). In all four cases, the proposed molecules showed
the highest structural similarity to existing anticancer compounds that are, either 1) al-
ready FDA approved (breast), 2) known inhibitors of relevant targets (lung, prostate) or
3) have been advocated for (neuroblastoma). This positive result is surprising given that
the generator was never trained on any anticancer compounds. Only the multimodal
drug sensitivity reward function was trained on anticancer compounds.

Broader comparison. In the above analysis the nearest neighbor analysis was re-
stricted to compounds from GDSC/CCLE with known anticancer effects and our anal-
ysis focused on verifying that our generated molecules had highest similarity to com-
pounds related to that cancer type. In this section, we expand the nearest analysis to
a broader chemical space (ChEMBL), aiming to assess whether the most similar com-
pounds are generally related to cancer.

With a Tanimoto similarity of τ = 0.54 the nearest neighbor of the breast cancer
molecule is CHEMBL1093122, a conjugate of phenyl-2-amino-1-thioglucoside and
plumbagin which is known to inhibit the synthesis of mycothiol [240]. Plumbagin as
well as many of its derivatives are heavily studied anti breast cancer compounds [241,
242, 243].

For the lung cancer molecule, the nearest neighbor with τ = 0.48 is polyoxyethylene
dioleate, a surfactant that has, according to Girsh [244] for the treatment of eight cancer
types including three lung cancer types (lung adenocarcinoma, metastatic lung cancer
and SCLC). Moreover, targeted drug delivery systems use polyoxyethylene dioleat against
drug-resistant lung cancer [245].

87

https://www.ebi.ac.uk/chembl/compound_report_card/CHEMBL1093122/
https://pubchem.ncbi.nlm.nih.gov/compound/5378708
https://pubchem.ncbi.nlm.nih.gov/compound/5378708


4 Conditional molecular generative models

For our prostate cancer molecule, the nearest neighbour (τ = 0.31) is Clinolamide.
This compound is patented as a diagnostic compound for several cancer types, including
prostate [246]. For the neuroblastoma compound, the nearest neighbor (τ = 0.35) is
NSC-715466 which is included in a NCI-60 release [224]. As we found in that database,
it inhibits cell growth by 65%±15%, however with a below-average inhibition for cancer
types related to neuroblastoma (57% ± 9%). Overall, its performance is roughly on av-
erage compared to all 53, 217 compounds, which might have prevented further research.
The compounds discussed in this paragraph can be found in Figure 4.5.

O

HN
OH

OH

OH

O

O
OH

HO

HO
OH

OH

NSC-715466

O
OO

O

Screening results of nearest neighbor of our neuroblastoma compound (NSC-715466) in the NCI-60 database

Nearest neighbors of our 4 candidate compounds in ChEMBL  

NN of lung compound

N

HO

NN of prostate compoundNN of neuroblastoma compound NN of breast compound

QED: 0.22   SCScore: 2.97    ESOL:  2.09 
QED: 0.45   SCScore: 3.43    ESOL:  -4.15 

QED: 0.24   SCScore: 3.3    ESOL: -7.45 

QED: 0.04  SCScore: 3.54    ESOL:  -12.54

A

B C

CHEMBL1093122

polyoxyethylene dioleate

Clinolamide

NSC-715466

O O

N

Figure 4.5: Nearest neighbors of our generated molecules (Figure 4.4) in ChEMBL. A)
Nearest neighbors and relevant physicochemical properties. B) NSC-715466 is part of the NCI-
60 [224]. It exhibits, in relative terms, the strongest anticancer effect against leukemia cell lines.
GIPRCNT is a cytotoxicity metric (100%means unchanged cell proliferation, 0% complete pro-
liferation inhibition and −100% a full inhibition of all cells. C) NSC-715466 showed only mod-
erate anticancer effects.

While the overall evidence in this paragraph is positive (the molecules with the highest
Tanimoto similarity to our generated molecules can be linked to cancer, sometimes even
to the right subtypes), it has to be emphasized that a high similarity to known cancer drugs
does not mean anything per se. Oftentimes, even cancer drugs approved for the same
cancer subtype or drugs sharing the same MOA exhibit low Tanimoto similarity. For
example, across GDSC/CCLE databases, the average Tanimoto similarity (τ = 0.149±
0.05) is not much below the average similarity of two compounds that share the cancer
subtype (τ = 0.154± 0.06).
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Figure 4.6: Visualization of generated and real molecules. Point size denotes QED score,
coloring the SCSCore. Overall, both generated and existing molecules are heterogeneously dis-
tributed in the 2D projection and do not form clear clusters.

Aiming to understand whether the generated molecules mimic anticancer drugs, Fig-
ure 4.6 shows a kernel PCA [247] of real and generated molecules with Tanimoto sim-
ilarity as distance metric. We compare both sets of molecules regarding their Tanimoto
structural similarity between RDKit fingerprints and three relevant chemical properties,
namely druglikeness (QED, 0 worst, 1 best), synthetic complexity (SCScore, 1 best, 5
worst) and solubility (ESOL, given in M/L). It can be seen that no clear clusters form,
the real and generated molecules are more or less randomly scattered, suggesting that at
least some properties of anticancer drugs can be mimicked by our model.

4.3.4.2 Chemical properties of generated molecules

To assess further relevant chemical properties of the generated molecules we compare
in Figure 4.7 the distributions of QED [248], ESOL [249] and SCScore [250] between
1) known anticancer compounds (blue), 2) ChEMBL molecules (orange), 3) molecules
from the unbiased generator (red) and 4) molecules proposed by the optimized
generator (green). Even though these properties were not optimized, comparing the
distributions reveals decent agreement overall. Interestingly, compared to the ChEMBL
molecules anticancer drugs show lower synthetic complexity scores which might be
due to the high attrition rate and resulting policies for cost reduction. Moreover, the
unbiased generator generates molecules with more desired properties compared to the
training data (ChEMBL). Moreover, the cancer drugs exhibit a significantly lower QED
than the other three sets, questioning the usability of this metric. Regarding SCScore,
both generators produce molecules with higher complexity than the anticancer drugs
(MWU, p < 0.01), even though they at least produce molecules with lower complexity
than the ChEMBL molecules (MWU, p < 0.01). In general, the molecules from the
optimized generator have less desired properties compared to the unbiased generator.
This is not surprising given that the unbiased generator was optimized to mimic
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Figure 4.7: Comparison of chemical properties across sets of molecules. We compared three
chemical scores for druglikeness as assessed by QED score (0 worst, 1 best), for solubility as assessed
via ESOL, given in log(M/L) (most drugs have a solubility between -8 and -2) and for synthetic
accessibility as assessed by SAS (1 best, 10 worst). These three scores are computed for the panel
of known anticancer drugs, bioactive molecules from ChEMBL and molecules generated before
(red) and after (green) RL optimization.

ChEMBL molecules whereas no explicit optimization was performed during the
optimization. A critical property in drug discovery is water solubility; Savjani et al. [251]
found that 40% of drug candidate have problems with insolubility. While it remains
challenging to compute [252] we find an overall high agreement in the ESOL scores of
our molecules to generated ones.

4.3.4.3 Validation

Since the model employed as a reward function was trained on anticancer drugs, we
sought to verify its generalization capabilities of through a comparison of the predicted
IC50 of cancer drugs (most of them were seen during training) and a "negative" set of
molecules from ChEMBL across all 965 GDSC cell lines from GDSC. While 15.2% of
the anticancer drug "screenings" were promising (IC50< 1µmol), only 7.7% of the
ChEMBL screenings revealed such high efficacy. Furthermore, the generated molecules
had a higher Tanimoto similarity to existing anticancer drugs than to the ChEMBL
molecules (p < 0.01, one-sided MWU) or the baseline molecules (p < 0.01, one-sided
MWU). These encouraging results suggest that the drug sensitivity prediction model
can drive the molecular generator in a meaningful direction.

4.3.5 Toxicity: Case study on multi-objective optimization
Besides binding to the protein target or showing high inhibitory effect, novel pharma-
ceuticals have to fulfill a multitude of other properties. Since the molecular generation in
the previous section was solely optimized using a drug sensitivity prediction model, we
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4.3 De novo molecular generation against cancer cell lines

assess in this section the quality of molecules generated in a multi-objective optimization
setting. Relying on the reward function in Equation 4.10, that additionally includes low
toxicity and low adverse drug reaction scores (predicted with ToxSmi, presented in Chap-
ter 2; the results of these models can be found in Subsection 2.7.2), we repeated the RL
optimization process.

Figure 4.8 displays a group of molecules generated against the unseen lung cancer
cell line NCI-H520 during an RL optimization that was focused on lung cancer.
All shown molecules fulfilled the multi-objective, i.e., they had high inhibitory effect
against NCI-H520 (IC50< 1µM) and were not predicted toxic in the Tox21 assays.
Moreover, molecules 1 and 2 in Figure 4.8 have a Tanimoto similarity > 0.45 to several
FDA-approved lung cancer drugs (e.g., irinotecan, alectinib, vinorelbine, vinblastine,
vincristine and topotecan [253]). We also found that molecule 1 showed the highest
Tanimoto similarity with vinorelbine, a targeted drug for NSCLC, a type of lung cancer
.
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Figure 4.8: Molecules generated in a multi-objective optimization setting. The multi-
objective reward was a combination of low IC50, low environmental toxicity and low adverse
drug effects. For all shown molecules depicted, all twelve Tox21 predictions are negative.

4.3.6 Discussion
In this section we presented a conditional molecular generative model that can be con-
ditioned on transcriptomic profiles of cancer cell lines. The proposed generative model,
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PaccMannRL, was able to produce molecules with high predicted inhibitory effect, even
against gene expression signatures unseen during training. Since the molecular generator
is driven by a drug sensitivity prediction model, the generator is limited by the predictive
power of that model and depends on its generalization capabilities in the chemical space.
Note that the molecular generator lacked any cancer-specific domain knowledge as it was
only pretrained on bioactive compounds from ChEMBL. We analysed the molecules gen-
erated for four different cancer types and found that they shared many structural and
functional similarities with known anticancer compounds for the same cancer types that
the generation was optimized for. Moreover, we also examined a multiproperty optimiza-
tion task that included low toxicity as objective and found many candidates with desired
predicted properties.

4.3.6.1 Future work

While our methodology constitutes a modest step toward disease-specific molecular gen-
eration, future work should include subsidiary properties of drugs into the optimiza-
tion process. Such multimodal objectives are notoriously challenging to optimize which
could be addressed with gradient surgery [254] or maybe even gradient-free global ob-
jectives [255]. Future work could also attempt to improve the predictive accuracy of the
critic, especially by reducing the distribution shift between the cell lines used for training
and the target domain (human samples); a potential solution could be to employ transfer
learning as in Sharifi-Noghabi et al. [256]. Moreover, for more specific applications than the
one presented in this section, a better chemical space could be obtained by finetuning the
unbiased molecular generator on more targeted datasets such bioactive molecules with a
shared MOA – SMILES augmentation could be used to further improve the latent space
quality, in particular if data is limited [67].
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4.4 De novo molecular generation against
SARS-CoV-2 protein targets

4.4.1 Scope
In this section, we will present a case study on accelerated molecular discovery. As visual-
ized in Figure 4.9, we will apply the previously developed method, PaccMannRL, to protein
target-driven de novo molecular generation. We will focus on41proteins related to SARS-

O Cl

OCl

1) ADD ClP(Cl)(Cl)(Cl)Cl
2) ADD O=C(O)c1ccc(C(=O)O)cc1
3) STIR at 60 oC for 70 minutes
4) QUENCH
5) EXTRACT with Et2O
6) EVAPORATE
7) PURIFY

C D
Predicted synthesis plan

Retrosynthesis prediction model

Conditional generative model

Candidate compound synthesis

Figure 4.9: A framework for protein target-driven molecular generation and automatic
synthesis plan generation. A) A molecular generative model that can be conditioned on a target
protein of interest. B) The generated molecules are evaluated, together with the protein of inter-
est, by a "critic" – a multimodal protein-ligand binding affinity prediction model, additionally
coupled with a toxicity penalization (not shown). The molecular generator is trained through re-
inforcement learning to maximize the the multimodal reward. C) Molecular retrosynthesis mod-
els are used to find possible synthesis routes for the most promising, generated molecules. D)
Finally, the predicted synthesis route is converted to a stepwise synthesis protocol that can be ex-
ecuted on an autonomous robotic platform.

CoV-2 and demonstrate with a leave-one-out-cross validation (LooCV) that our method
does not require finetuning for specific targets but that it can generalize to proposing lig-
ands with high predicted binding affinity values against unseen targets. The training of
the generative model will be guided with a multimodal ligand–protein affinity predic-
tion model (the BiMCA as proposed in Chapter 3) and a toxicity predictor (the ToxSmi
model as proposed in Chapter 2). Next, the most promising generated molecules will be
evaluated for chemical synthesizability using existing retrosynthesis models. Last, we will
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use an automatically generated stepwise synthesis protocol to synthesize a novel, potential
inhibitor of the ACE2 protein on a robotic synthesis platform (IBM RoboRXN).

In sum, this captures all aspects from "design" to "make" and shows the feasibility of
swift chemical synthesis relying on a completely autonomous workflow.

4.4.2 The search for SARS-CoV-2 antivirals
The emergence of SARS-CoV-2 and the induced COVID-19 pandemic have resulted
in long-lasting global health emergencies. Despite the well-understood potential
of coronaviruses to cause pandemics [257] as well as previous, related endemics
(SARS and MERS), no antiviral drugs against coronaviruses were FDA-approved
before the outbreak of the COVID-19. Initial hopes on repurposing drugs such
as hydroxychloroquine did not turn out to be effective [258], while others like
remdesivir were granted emergency approval [259] and later proved effective at least for
oxygen-supplemented patients [260]. However, since the overall success of repurposing
strategies has not been satisfying, de novo design approaches can be worth an exploration.
The common practice in de novo drug discovery is to identify a protein target, conceive a
potential MOA and then design a ligand to target the identified protein (e.g. an enzyme or
receptor). The binding of the ligand to the target can have various effects, e.g., initiating
a signaling cascade that ends in apoptosis or docking to a virus’ receptor protein that
mediates fusion and entry with the host cell such as the spike glycoprotein in SARS-CoV-
2.

4.4.3 Related work
Some recent studies compiled virtual libraries of ligands potentially targeting the 3C-like
protease, the main protease in SARS-CoV-2 [261, 262, 263]. However, in these works,
optimization was performed solely to address the 3C-like protease.

Broadly speaking, the problem of protein-target driven molecular generation was first
tackled by Aumentado-Armstrong [264], but has received growing attention in the last
years [265, 266, 267, 268, 269]. The goal of these works is to generate molecules that can
bind to a given protein target (site). From those works, three generated ligands from 3D
protein shape [266, 269, 270]. Skalic et al. [266] relied on a voxelization of the protein
pocket and then employs adversarial training to propose the best-fitting ligand shapes.
Instead, Ragoza et al. [270] embedded protein and ligand into a joint space, however both
works relied on the availability of positive protein-ligand interaction pairs for training.
Our approach is related to the sequence-based method proposed by CogMol [265]. Both
methods train an independent protein-ligand affinity predictor first, then conditionally
sample from a pretrained SMILES generator and can thus, unlike many others, also
be applied to unseen protein targets. However, Chenthamarakshan et al. [265] rely on a
conditional rejection sampling method (CLaSS) whereas we use a hybrid-VAE that fuses
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protein and chemical latent spaces. The molecules generated by CogMol against three
SARS-CoV-2 targets were found to be selective and target-specific in docking studies.

4.4.4 Implementation
To build our conditional generative model, we follow the PaccMannRL model definition
in Section 4.2.

4.4.4.1 Protein VAE

Data. To learn the space of proteins P , we retrieved 404, 552 proteins from
UniProt [271], discarded large sequences (> 8190 residues) and then embedded all
sequences into a 768-dimensional vectorial representation using a 110M parameter
BERT-based protein language model that was trained large-scale (on 32.6M Pfam
sequences [272] via self-supervised masked-language modeling). This was done in order
to not have to train a large-scale protein sequence model.

Model. This model corresponds toΘC in Subsection 4.2.1. To learn a latent represen-
tation for proteins, we used a VAE with 3 fully-connected layers ([768, 512, 256] units)
in both encoder and decoder. Hence the latent space dimensionality ZC = 256. We
used ReLU activation function, batch normalization, KL annealing, a dropout of 20%,
a learning rate of 3e−3 and optimized Equation 4.1 with a MSE loss as reconstruction.

4.4.4.2 Molecular VAE

Data. To learn the molecular space M we use 1, 576, 904 molecules from
ChEMBL [228], represented molecules as SELFIES [65] that were split in 90% to 10%
ratio between training and validation.

Model. This model corresponds to ΘM in Subsection 4.2.1. The model and train-
ing procedure was, unless mentioned here, identical to the one described in Subsubsec-
tion 4.3.3.2. Instead of learned embeddings on SMILES sequences, we used used one-hot
encodings of SELFIES sequences. The latent space dimensionality was ZM = 256. We
used a learning rate of 5e−4 and 20% token dropout.

4.4.4.3 Reward function

Remember that the reward function was denoted by R : f ◦RI in Subsection 4.2.1. We
set f to the identity function. Let, p ∈ P denote a protein from the protein space while,
as usual,m ∈ M is a molecule from the molecular space. The criticRI : M×P → R is
composed by a protein-ligand binding affinity prediction model as proposed in Chapter 3
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and a toxicity prediction model as proposed in Chapter 2. Its reward function is given
by:

RI(m, p) = RAff (m, p) + γ ·RTox(m) (4.11)

where RAff (m, p) is simply the binding affinity value predicted by ΘAff : M×P →
[0, 1]. ΘAff is detailed in the next section. Moreover, let ΘTox21 be the neural network
that predicts the toxicity of the 12 Tox21 assays [88] as described in Chapter 2. Then
RTox21(m) = 1 iff the output of ΘTox21 is < 0.5 for all 12 Tox21 assays. Otherwise the
reward is 0 (asΘTox21 predicted thatm is toxic in at least one assay). ΘTox is parameterized
using ToxSmi and trained with SMILES augmentation as described in Chapter 2. Last,
let γ ∈ R+ be a hyperparameter to control the importance of toxicity (we used γ = 0.5).

4.4.4.4 Binding affinity prediction

Data. The data processing differed from the experiments described in Chapter 3,
therefore it is detailed here. We retrieved 1, 813, 527 protein-ligand pairs from
BindingDB [164], each associated to one out of four metrics (IC50, EC50, Kd and
Ki), as visualized in Figure 4.10. Samples with proteins larger than 8190 amino acids
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Figure 4.10: Molar affinity values in BindingDB. Molar affinity values as measured by differ-
ent metrics. 76% of entries report values in the low micromolar range (below 10−5).

were discarded. The remaining 1, 361, 076 entries (7, 302 proteins, 772, 634 ligands)
were treated as positive samples. We artificially generated negative samples by randomly
assigning 187 compounds to each target which yielded a perfectly balanced dataset of
2, 723, 726 samples that was split leniently into chunks of train (72%), validation (18%)
and test (10%) data.
We opted for a binary affinity classification (rather than a regression task for three
reasons):

1. The hetereogeneity across the four affinity metrics which made it practically impossi-
ble to use all samples for training a single regression model,
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2. The variety in experimental protocols and conditions used to produce the data gath-
ered in BindingDB that even hampers comparisons of binding affinity values in the

same metric (see Kalliokoski et al. [273] for a detailed report on how this can deteriorate
model quality),

3. The large body of previous work framing protein-ligand binding as a classification
(e.g., [153, 274]).

As a verification, Figure 4.10 shows the affinity values for all four metrics on a log-molar
scale. Since > 75% of the samples are in the low micromolar range (< 10−5) and
molecules in the millimolar range are considered uninteresting whereas low micromolar
indicates a range that is worth further optimization [275], we decided to treat all samples
in BindingDB as positive, especially also given the noise-level in the data [276].

Model. We model ΘAff : P ×M → [0, 1] with the BiMCA as detailed in Chapter 3.
The hyperparameters are given in Table 4.1. We used online SMILES augmentation as
well as protein sequence flipping to improve robustness.

Parameter Value
Protein sequence length TP 8192

SMILES sequence length TM 1024
Protein embedding size HP 32

SMILES embedding size HM 32
Protein 1D conv. kernel sizes [3, 11, 25]

SMILES 1D conv. kernel sizes [3, 5, 11]
Number of protein kernels [32, 32, 32]

Number of SMILES kernels [32, 32, 32]
Protein attention size A 16

SMILES attention size A 16
Dense layer sizes [64]

Activation function ReLU
Dropout 30%

Table 4.1: Hyperparameters of the BiMCA.

4.4.4.5 RL optimization

Data. We collected 41 protein targets related to SARS-CoV-2 from UniProt. The full
list can be found in the results (Table 4.3). Note that only 9out of the 41 proteins are
available in the training data of the affinity predictor ΘAff , and 27 are available in the
training data of the protein VAE ΘC .

97



4 Conditional molecular generative models

Model. Following Subsection 4.2.1, the conditional generator GΘ = [ΘDec
M

◦ΘEnc
C

] :
C → Z → M. The hyperparameter γ in Equation 4.11 is set to 0.5 (optimizing toxicity
is a secondary objective). On the 41 proteins we perform a LooCV for conditional gen-
eration, i.e., we train on 40 samples and evaluate on the remaining target. The gradients
were clipped to 2 to prevent catastrophic forgetting. Multinomial sampling was applied
with a temperature value of 0.8.

4.4.5 Results on targeted molecular generation
4.4.5.1 Validation of binding affinity prediction model

The results of the BiMCA model for protein-ligand affinity prediction on validation as
well as test data are displayed in Table 4.2. The BiMCA learned to classify with high
accuracy the binding of given protein-ligand pairs. Given that our application is on de-
signing antiviral molecules, we verified that the BiMCA generalizes well to viral proteins.
The performance on 10k held-out samples of viral proteins is shown in Table 4.2 (last
column) and confirms the good generalization which makes it suitable to be used by the
conditional generator during RL optimization.

Validation Test Viral

ROC-AUC 0.968 0.969 0.96
Average precision 0.963 0.965 0.92

Table 4.2: Result of BiMCA on binary classification of BindingDB affinity samples.

4.4.5.2 Conditional generation

Leave-one-out cross-validation. The main goal of the experiments in this sec-
tion of the thesis is to verify whether our conditional generative model can go beyond
current approaches for protein target-driven molecular design [12, 261, 265]. Specifically,
we aim to obtain a model that does not require optimization for a specific target and that,
ideally does not even rely on the availability of binding affinity data for the protein of
interest. We investigated the generalization abilities with a leave-one-out-cross-validation
(LooCV) on the 41 targets. The baseline model is constituted by unconditional sampling
of 3, 000 molecules from the pretrained molecular VAE and predicting binding affinities
and toxicity scores. For each run, the generative model was optimized for 5 epochs and
500 molecules were sampled per epoch. As can be see in Table 4.3, the RL optimization
led to the generation of more compounds with higher predicted binding affinities.
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Target protein Affinity0 Affmed±SEM Affbest Toxmed±SED Toxbest

VME1-CVHSA 20% 18% ± 3% 29% 6% ± 3% 19%
IMA1-HUMAN 88% 97% ± 1% 100% 5% ± 3% 18%
VEMP-SARS2 29% 16% ± 2% 20% 9% ± 2% 12%
NS7B-SARS2 25% 30% ± 5% 33% 7% ± 5% 25%
ITAL-HUMAN 24% 16% ± 6% 43% 9% ± 1% 12%
NCAP-CVHSA 17% 11% ± 1% 15% 12% ± 2% 14%
R1AB-CVHSA 58% 90% ± 2% 91% 9% ± 1% 11%
NS8B-CVHSA 9% 12% ± 2% 20% 7% ± 4% 25%
A0A663DJA2-SARS2 26% 35% ± 3% 41% 14% ± 3% 18%
NS8A-CVHSA 21% 47% ± 4% 55% 10% ± 1% 10%
NS7A-SARS2 4% 3% ± 1% 7% 10% ± 3% 19%
Y14-SARS2 17% 29% ± 4% 43% 8% ± 2% 14%
NS6-SARS2 20% 12% ± 3% 22% 4% ± 3% 14%
SMAD3-HUMAN 50% 74% ± 3% 86% 6% ± 1% 10%
SPIKE-CVHSA 3% 0% ± 1% 5% 7% ± 1% 11%
DDX1-HUMAN 9% 14% ± 2% 20% 9% ± 1% 10%
AP3A-SARS2 4% 0% ± 1% 3% 9% ± 3% 19%
R1A-CVHSA 14% 45% ± 3% 50% 9% ± 1% 11%
NS8-SARS2 7% 10% ± 3% 18% 10% ± 1% 15%
PHB2-HUMAN 4% 3% ± 0% 4% 11% ± 3% 23%
SGTA-HUMAN 11% 12% ± 1% 13% 8% ± 1% 12%
NS7A-CVHSA 18% 35% ± 5% 59% 11% ± 2% 15%
ORF9B-CVHSA 9% 11% ± 2% 17% 6% ± 1% 11%
R1A-SARS2 62% 82% ± 3% 89% 8% ± 2% 14%
Y14-CVHSA 14% 15% ± 2% 23% 11% ± 2% 15%
ORF9B-SARS2 18% 12% ± 1% 15% 12% ± 2% 16%
TMPS2-HUMAN 6% 5% ± 1% 6% 6% ± 1% 10%
BST2-HUMAN 10% 5% ± 3% 16% 10% ± 2% 14%
NS3B-CVHSA 25% 23% ± 2% 29% 12% ± 1% 15%
SPIKE-SARS2 7% 6% ± 2% 12% 10% ± 1% 12%
FURIN-HUMAN 28% 27% ± 4% 36% 9% ± 3% 20%
AP3A-CVHSA 9% 0% ± 1% 6% 8% ± 1% 12%
VME1-SARS2 15% 16% ± 3% 27% 6% ± 2% 14%
NS7B-CVHSA 21% 26% ± 1% 27% 7% ± 1% 11%
MPP5-HUMAN 5% 9% ± 2% 11% 15% ± 2% 16%
ACE2-HUMAN 51% 77% ± 4% 85% 5% ± 2% 12%
VEMP-CVHSA 21% 25% ± 3% 30% 12% ± 2% 20%
NS6-CVHSA 10% 13% ± 1% 15% 3% ± 3% 14%
PHB-HUMAN 3% 0% ± 1% 3% 6% ± 1% 7%
R1AB-SARS2 83% 100% ± 0% 100% 5% ± 1% 7%
NCAP-SARS2 25% 5% ± 2% 9% 9% ± 4% 24%
Average 18% 26% ± 4% 33% 9% ± 0.5% 15%

Table 4.3: Results of leave-one-out cross validation on conditional generation against 41
SARS-CoV-2 targets. Affinity0 displays the baseline (percentage of binding molecules sampled
before training), Affbest displays the results at the best epoch of RL training and Affmedian the me-
dian across all 5 training epochs. Same legend for the ToxX columns, but note that Tox0 was 8.7%
in all cases. Per row, it is bolded which model performed best. SEM stands for standard error of
the mean.
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In detail, in 35 out of 41 cases, the optimized generative model proposed more
molecules predicted to bind against an unseen target than the baseline VAE. On
average, the ratio of binding molecules soared from 18% to 26%. Exemplary density
distributions for 2 out of the 41 models are displayed in Figure 4.11. While our reward

Figure 4.11: Distributions of predicted affinity values during RL optimization. The base-
line distributions are shown in gray (affinities ofn=3,000 molecules sampled before RL optimiza-
tion). In red we show the distributions obtained by sampling from the optimized conditional gen-
erative model. Clearly, the optimization biased the generative process toward ligands with higher
predicted binding affinities.

function (Equation 4.11) also included a toxicity constraint, we note that we did not
succeed at reducing toxicity significantly. We hypothesize this was partly because it was a
secondary objective and partly because this property is independent of the model input
(the protein). To evaluate the molecules qualitatively, Figure 4.12 displays a collection of
the generated molecules alongside their QED score [248].
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Figure 4.12: Molecules sampled against specific protein targets. For a selection of tar-
gets, the generated compound with the highest reward is depicted. a stands for binding affin-
ity. The molecule against VEMP_SARS2 is further discussed in a case study and the molecule against
ACE2_HUMAN was synthesized (for details see text)
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Learned chemical space. Previous work demonstrated that molecular generative
models can reproduce large fractions of the chemical space [277], and thus we aimed to
investigate the learned chemical space more systematically. Therefore, we compared four
sets of molecules.

1. 10, 000 random molecules from ChEMBL

2. 3, 000 molecules from our baseline (molecular VAE before optimization)

3. 3, 000 molecules generated during the optimization

4. 82 SARS-CoV-2 candidate drugs (69 identified by Gordon et al. [278] and13 additional
from PubChem [279])

We predicted the binding affinities as well as other physicochemical and pharmacologi-
cal properties (QED, SCScore, logP and more) and then performed a UMAP [280] on the
ECFP4 fingerprints. The Faerun [281] visualization can be found in Figure 4.13. Interest-

Figure 4.13: UMAP dimensionality reduction of the ECFP4s of different molecule sets.
Interactive visualization available at: https://paccmann.github.io/assets/umap_fingerprints.

html.

ingly, the optimization steers the compound sampling toward a manifold of the chemical
space which is more densely populated with binding compounds. While the literature
molecules (red) are structurally fairly dissimilar (no clustering), this plot reveals that the
generator succeeded in the objective to generate more molecules with high affinities.
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4.4 De novo molecular generation against SARS-CoV-2 protein targets

Target selectivity. Selectivity to the desired protein target is a critical aspect in
drug discovery because ligands can, on average, be expected to bind to around a dozen dif-
ferent targets [282]. Hence, increasing target selectivity has been identified as a key com-
ponent to lower the attrition rate [283]. To assess the selectivity, we computed a promis-
cuity score Pm,T for each molecule m and a number of protein targets T by measuring
the percentage of targets to which the molecule is predicted to bind. Thus the promis-
cuity score is an inverted selectivity score. The same set of molecules as described above
were used and the results are shown in Figure 4.14. Interestingly, in Figure 4.14 (left),

Figure 4.14: Promiscuity of molecules. Left: Predicted promiscuity of different molecule sets
against 500 random proteins from BindingDB. Right: Promiscuity of the same molecules against
the 41 SARS-CoV-2 related targets.

where the promiscuity against a random set of BindingDB proteins is shown, the opti-
mized molecules were significantly less promiscuous (i.e., more selective) than both the
ChEMBL and the baseline ("unbiased") molecules (Tukey’s HSD test, p < 0.001 in
all pairwise differences, mean for Optimized: 0.11, mean for ChEMBL: 0.19). Keep in
mind that no explicit penalty for promiscuity was in place.

Moreover, upon comparing the promiscuity on the 41 examined SARS-CoV-2 pro-
teins, we find that promiscuity is significantly higher for the optimized molecules than
for the other two sets (Tukey’s HSD test, p < 0.001 in all pairwise differences, mean for
Optimized: 0.27, mean for ChEMBL: 0.12). This finding suggests that our optimized
molecules are not only less prone to off-target binding effects but also more likely to bind
to related SARS-CoV-2 targets than the other sets of molecules.

Case study. To assess whether our optimized molecules bear some similarity to com-
pounds considered for COVID-19 treatment in the literature, we ranked all 3, 000 op-
timized molecules by their Tanimoto similarity to the closest neighbour of the 82 lit-
erature compounds. The top 5 contained the molecule encircled in Figure 4.12. This
molecule was generated against VEMPSARS2 which is the envelope small membrane protein
(E-Protein), a key protein for virus assembly and morphogenesis. From all 82 literature
candidates, our generated molecule exhibits the highest Tanimoto similarity to the com-
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pounds MZ1 and dBET6 (τ = 0.64). Surprisingly, both these compounds were iden-
tified by Gordon et al. [278] as targeting the E-protein – the protein which was used to
condition the generation of our compound.

4.4.6 From hypothesis to synthesis via automation
As aptly summarized by Chan et al. [284], two fundamental questions in molecular dis-
covery are: "What compound to make next? And – how?

While the focus on this thesis is certainly on the first question, we acknowledge that the
second question is similarly critical. Synthesizability has been identified as a key problem
in the field, e.g., Gao and Coley [285] concluded that the utility of deep generative models
is "stymied by ignorance of synthesizability".

Therefore, in this subsection we will tackle the critical step of turning a hypothesis,
i.e., a molecule produced by a generative model with promising predicted properties,
into a chemical produced in the lab. Notably, to achieve that, we will rely on a com-
pletely autonomous workflow that includes retrosynthesis models (to find a synthesis
route), synthesis protocol models (to find stepwise instructions for the synthesis execu-
tion) and robotic hardware (to execute the synthesis protocol). The four steps that en-
abled a completely autonomous workflow that led to the successful synthesis of one can-
didate molecule are:

1) Protein-targeted molecular design with conditional generative models

2) Assessing synthesizability of molecules from 1) via retrosynthesis route prediction

3) Extracting stepwise synthesis protocols from retrosynthesis routes in 2)

4) Chemical synthesis using robotic hardware that executes the protocol from 3)

While we have detailed 1) already above, we will cover 2), 3) and 4) below.

Note that the tools for 2)–4) are publicly available via the IBM RXN for Chemistry3 plat-
form and can even be used directly via the Python package rxn4chemistry4. Please also
note that none these tools are part of this thesis, here we simply use them to demonstrate
an application on accelerated molecular discovery.

4.4.6.1 Retrosynthesis prediction

The top-5 generated molecules for each protein target were considered for chemical syn-
thesis.

3https://rxn.res.ibm.com
4https://github.com/rxn4chemistry/rxn4chemistry
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4.4 De novo molecular generation against SARS-CoV-2 protein targets

Procedure. Relying on a language-based molecular retrosynthesis model proposed
by Schwaller et al. [60], we predicted potential synthesis routes for all 205 candidates. This
retrosynthesis model builds upon two Molecular Transformers [28], one for forward reac-
tion prediction (precursors to product) and one for backward reaction prediction (prod-
uct to precursors). Both models are combined with a hypergraph exploration strategy
that ranks the sets of predicted reaction (produced via beam search) based on a scoring
scheme that uses the confidence score of the forward model (round-trip accuracy). For
our experiment, we limited the number of synthesis steps to 6, used a forward confidence
threshold of 0.6 and set the beam width to 10.

Altogether, the model predicts a synthesis tree composed of commercially available
starting materials (the leaves) and intermediate products (the nodes) that are connected
with hyperedges (the reactions).

Result. Although the generated molecules are not optimized for synthetic accessibil-
ity, for∼ 30% of the top-5molecules a successful synthesis route with at most 6 steps was
predicted (cf. Figure 4.15A). Notably, almost 50% of the feasible molecules require only
one or two steps for synthesis, suggesting that many of our molecules can be produced
within a few steps from commercially available materials. As shown in Figure 4.15B, over-
all, more than 60% of the > 2000 predicted synthesis routes are feasible (note that for
each molecule, multiple routes were generated). The correlation analysis in Figure 4.15C
between chemical and pharmacological properties further indicates that some properties
like QED and synthetic feasibility are very correlated among our molecules.
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A B

C

Figure 4.15: Results of retrosynthesis prediction of top-5 molecules per target. A ret-
rosynthetic pathway is considered feasible if, within 6 reaction steps, all precursors are commer-
cially available A: For 30% of all generated molecules, feasible routes were found. B: Feasibility
over all predicted sequences which includes intermediate reactions. C: Correlation of synthesis-
related properties (e.g., the (binary) feasibility of the synthesis or the number of steps) with several
physicochemical properties, e.g., (estimated) water solubility, QED, SCScore etc.

4.4.6.2 Selection of synthesis candidate

Selection of ACE2 target. We decided to synthesize a molecule that was generated
against ACE2, a host protein that is widely regarded a promising target for SARS-CoV-2
antivirals [286, 287, 288]. Even though ACE2 was even argued a pivotal role for COVID-
19 antiviral design [289], generative models against SARS-CoV-2-related host targets are
remarkably absent with the exception of Ray et al. [290]. Therefore, we herein aim to fill
this gap and exemplify the process of synthesizing a ligand predicted to bind to a host
target.

ACE2 is a type 1 membrane protein that is mostly expressed in lung alveolar epithelial
and endothelial cells [291, 292, 293]. It is a major player for the regulation of cardiovascular
homeostasis [294, 295], the protection from epithelial cell injury [296, 297, 298]. Most
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importantly, it has been identified as a functional receptor for SARS-CoV [299, 300] as
well as SARS-CoV-2 [301, 302] which mediates cell entry through ACE2 via its spike
(S) protein [301]. Due to the importance of the spike protein for viral cell entry, ACE2
inhibitors seem a logical approach and has been highlighted by Tai et al. [303] and Chen

et al. [304].

Selection of molecule. We decided to synthesize 3-Bromobenzylamine to
demonstrate an autonomous workflow for discovery and synthesis of potential
inhibitors for SARS-CoV-2-related protein targets. We selected 3-Bromobenzylamine
due for two main reasons:

1) We performed a maximum common subgraph similarity search [305] of our ACE2-
generated molecules to the 82 COVID-19 literature candidates. This analysis identi-
fied 3-Bromobenzylamine as a full substructure of Arbidol (Umifenovir) which is a
broad-spectrum antiviral drug that has been used in Asia against influenza and hep-
atitis [306, 307]. Strikingly, Arbidol has been proposed as a COVID-19 antiviral due
to its interaction with the ACE2 receptor [308], exactly the target against which 3-
Bromobenzylamine was generated by our model. The MOA of Arbidol is that it in-
hibits the fusion of SARS-CoV-2 with the host cell and thus prevents the virus from
entering the cell. This MOA was first conceived [308], and then confirmed in docking
studies[309, 310] and in vitro experiments [311]. Furthermore, the efficacy of Arbidol
in viral diseases is well known [312]. Regarding COVID-19, Wang et al. [313] reported
that Arbidol decreased the mortality rate and Wei et al. [314] found that it reduced the
duration of moderate and severe courses of COVID-19 by > 6 days. We therefore
believe that 3-Bromobenzylamine, a smaller and more broadly available compound,
might operate in a similar MOA against ACE2, especially given that the presence of
the bromine in Arbidol was reported as important for the efficacy by Di Mola et al.
[315].

2) Apart from this relation to Arbidol, the pharmacological properties of
3-Bromobenzylamine are also desirable. The predicted ACE2 affinity was 0.77, the
drug-likeness (QED) was high (0.71), like > 99% of all approved drugs it contains
an aromatic ring, the solubility is with −2.66 well in the range of approved drugs
(cf. Figure 4.7). The promiscuity (i.e., the probability of off-target binding) to the
remaining protein targets is relatively low (0.13) whereas it is relatively high (0.27)
for the 40 SARS-CoV-2 related targets (cf. Figure 4.14). 3-Bromobenzylamine
passes the Lipinski rule of five [316], has a molecular weight of 186 Dalton and was
predicted to be non-toxic in all but one of the twelve Tox21 tasks (NR-AR-LBD, the
androgen receptor ligand-binding domain).
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Note that 3-Bromobenzylamine is not a de novo compound since it has been synthe-
sized before. Obviously, in some occasions, any molecular generative model proposed
molecules that already reported in chemical databases.

The predicted retrosynthesis route for 3-Bromobenzlamine is shown in Figure 4.16.
Since the predicted synthesis route was quite simple (one-step route) and assigned a high

Information about the retrosynthesis

Exclude smiles: BrC1C=CC=C(CN)C=1
Exclude substructures:
Availability pricing threshold: 0

Created On: 2020-07-13T11:11:18.554000 
Model: 
Product: BrC1C=CC=C(CN)C=1
MSSR: 15
FAP: 0.65
MRP: 50
SbP: 3
Available smiles:

Sequence 0, Confidence: 0.985
Step 1

Type: Nitrile reduction, Confidence: 0.985

C1CCOC1.N#Cc1cccc(Br)c1.[Al+3].[H-].[H-].[H-].[H-].[Li+]>>BrC1C=CC=C(CN)C=1

3-Bromobenzylamine THF 3-Bromobenzonitrile LiAlH4

Figure 4.16: Synthetis route for 3-Bromobenzylamine. A predicted one-step synthesis
route for 3-Bromobenzylamine. The Nitrile reduction was predicted with very high confidence
(98.5%). It reduces 3-bromobenzonitrile using lithium aluminium hydride.

confidence (98.5%), we ultimately decided to synthesize 3-Bromobenzylamine. Even
though the nitrile reduction that reduces 3-bromobenzonitrile with lithium aluminium
hydride is challenging, it is a known reaction that minimized our risk of complication
during synthesis.

4.4.6.3 Synthesis protocol generation

Procedure. Upon selection of the best molecules and their respective routes, we used
the method proposed by Vaucher et al. [61] to generate a synthesis protocol in natural text.
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Their synthesis action generation model was trained on chemical recipes and predicts a
sequence of actions from a reaction encoded as SMILES.

Result. The predicted procedure is shown in Figure 4.17. Note that the brine was not

Predicted stepwise synthesis execution protocol

1. ADD: At 25 degree Celsius, add 9 ml of anhydrous THF into a glass

reactor of 100 ml.

2. MAKE SOLUTION: Use 9 ml of a solution of 3-bromo-benzonitrile

in THF (0.11 M, 1 mmol).

3. ADD: Add under gentle stirring (100 rpm).

4. ADD: While maintaining a temperature of 25 degree Celsius, add 1

ml of LiAlH4 in THF dropwise across 180 seconds.

5. STIR: Stir for 5 minutes at 25 degrees Celsius.

6. QUENCH: Quench the excess of LiAlH4 with 2 mL saturated NaCl

aqueous solution.

7. STIR: Stir for 60 seconds.

Figure 4.17: Predicted synthesis protocol for the synthesis of 3-Bromobenzylamine. For
each step in the predicted protocol, we display the action type in bold, followed by the instruction.
The protocol was generated using the model from Vaucher et al. [61] via the RXN for Chemistry

platform.

provided directly in the predicted synthetic route, but we favored it over water or an alco-
hol for quenching since it prevents the formation of a colloidal dispersion of aluminum
hydroxide.

4.4.6.4 Chemical synthesis

The reaction was executed on the IBM RoboRXN hardware, a platform for completely au-
tonomous synthesis execution. The stepwise synthesis execution protocol in Figure 4.17,
generated in the previous section, can be automatically translated to a series of mechan-
ical instructions that can be executed on the robotic hardware. The synthesis was thus
executed without the involvement of human labor and after the reaction finished, the or-
ganic layer was collected and further analysed. We diluted 0.3 mL of the organic layer 50
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times and then analyzed with a liquid-chromatography-mass spectrometry (LC-MS), in
particular the Agilent TOF6230. The LC/MS result shows a clear peak indicating the
presence of 3-Bromobenzylamine with a score of more than 99%. The screening analysis
could not identify signals related to the precursors. The result from the mass spectrome-
try analysis is reported in Appendix Section A4. Even though this qualitative analysis can-
not be used to corroborate quantitative arguments, we believe that the lacking evidence
about presence of precursors is an indication that the synthesis of 3-Bromobenzylamine
was successful.

4.4.7 Discussion and limitations
In this section we examined our proposed methodology for conditional molecular gen-
eration on SARS-CoV-2-related protein targets. As reported in a leave-one-out CV, we
demonstrated that it generalize to proposing ligands that are likely to bind against unseen

protein targets – to the best of our knowledge a feature previously not reported in the lit-
erature. Even though we did not optimize selectivity explicitly, the generated molecules
showed high selectivity across an unrelated set of proteins. Notably, the same molecules
showed the lowest selectivity across the remaining SARS-CoV-2-related targets, suggest-
ing that our model learned some general binding patterns of those targets. An apparent
bottleneck in our methodology is the performance of the critic (i.e., the binding affin-
ity predictor) which steers the generative model. Improvements on this model could be
made with recently released data (e.g., the 1, 670 compounds screened against SARS-
CoV-2 proteins [317]).

Besides a novel, protein-target-driven molecular generative model the main contribu-
tion of this section was a demonstration of the feasibility of a completely autonomous
workflow – from the hypothesis to the synthesis all steps were executed without the in-
jection of domain knowledge or manual labor. This was achieved through the integra-
tion of molecular generative models with retrosynthesis and synthesis protocol predic-
tion models as well as robotic hardware for automatic synthesis execution. We selected
3-Bromobenzylamine, a substructure of the antiviral drug Arbidol (which has proven ef-
fective in treating hospitalized COVID-19 patients [313, 314]) for synthesis on a robotic
platform. While this was an interesting proof-of-concept, we emphasize that the true
bioactivity of 3-Bromobenzylamine can only be assessed via in vitro and in vivo experi-
mentation. Moreover, 3-Bromobenzylamine is a commercially available compound and
thus not a de novo compound per se. To validate the potential of the generated molecules,
it could have been helpful to perform docking studies with the chosen protein targets
prior to synthesis. However, Di Mola et al. [315] investigated docking of Arbidol to ACE2
and found that some structures of Arbidol, which are preserved in 3-Bromobenzylamine,
are key for binding to ACE2. Moreover, generative models similar to ours have shown
that primary structure of SARS-CoV-2-related targets can suffice to obtain molecules
with favorable binding free energies [265].
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After all, however, the main goal of this section, however, was the demonstration of
an autonomous workflow for rapid generation and synthesis of compounds with desired
properties in silico. One advantage on this aspect is that our method neither hinges upon
the availability of screening data for the target of interest, nor on the availability of protein
3D structure. This is especially relevant in the context of emerging diseases [318].

4.5 A short note on multimodal context
In this chapter, we have applied the proposed PaccMannRL framework to generate
molecules that inhibit specific cancer cell lines (represented by their gene expression
signature) or bind to specific protein targets (represented by their amino acid sequence).

We emphasize that our model formulation (Subsection 4.2.1) is generic and the con-

text used to drive the generation could possibly be multimodal. One may conceive a
generic framework where the molecule generation is conditioned on any combination of
an omics profiles, a target protein or a molecular scaffold. In the recent work by Janakara-

jan, Born, and Manica [319] we proposed a first step in that direction by jointly condition-
ing on a gene expression signature and a target protein. In that case, the reward function
was composed of the predicted binding affinity between the target protein cp and the pro-
posed molecule m as well as the molecule’s predicted pIC50 efficacy against a cancer cell
line characterized by the expression signature cs:

R(m, c) = Affinity(m, cp)− pIC50(m, cs) (4.12)

In that work we proposed a fully differentiable set autoencoder that can embed an arbi-
trary number of modalities (i.e., items of a set) in a permutation-invariant fashion into
a fixed-length vectorial representation that can be used to condition the molecular gen-
erator. The permutation invariance in the decoder of the set autoencoder is achieved
through a set matching module that approximates the solution to the linear sum assign-
ment problem (i.e., matching the decoded items to the input items). This work is men-
tioned here for completeness but further detailed in Janakarajan, Born, and Manica [319].

4.6 Exploring learned chemical spaces via
Gaussian Processes

So far, in this chapter, we have seen two applications of PaccMannRL, a molecular gener-
ative model that can be controlled with a complex biomolecular context such as target
proteins or omics expression signatures. This model relied on a pretrained molecular
VAE and then finetuned the decoder to generate molecules. This finetuning begs the
risk of catastrophic interference, i.e., the decoder might "unlearn" to produce a versatile
set of molecules because the reconstruction objective is taken out of the equation. When
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searching for molecules with desired properties, an alternative to finetuning a generative
model is exploring its learned chemical space. In this section, this will be assessed with
Bayesian optimization (BO) techniques, in particular Gaussian Processes (GP).
Since the chemical space is fixed in this setting, the GP optimization can be seen as a global
search in the (learned) chemical space. GPs are interesting for molecular discovery tasks
because they facilitate the efficient maximization of functions that are costly to evaluate.
Previous work already coupled VAEs with Bayesian optimization for molecular genera-
tion [11, 320]. However, while their work focused on the optimization of chemocentric
properties like drug-likeness or logP (partition coefficient), we believe that no prior work
has optimized a multimodal property like protein-ligand binding affinity.

4.6.1 Methodology
Similar to Section 4.4, the goal in this section is to generate molecules with high predicted
protein-ligand binding affinity to a protein of interest. However, unlike in Section 4.4, we
will not focus on SARS-CoV-2-related targets but instead, like in Section 3.6, on human
kinases. We will rely on the molecular VAE as proposed in Subsubsection 4.3.3.2, i.e.,
a VAE with a an auto-regressive encoder and decoder trained on > 1M molecules from
ChEMBL [321] on the ELBO objective (Equation 4.1). Note that we trained two versions
of this model, one on SMILES strings (as detailed in Section 4.3) and one on SELFIES
(as detailed in Section 4.4). We will now formulate a GP to approximate the predicted
binding affinity of the protein kinase of interest and the generated ligand.

Bayesian Optimization with GPs. Given a protein p of interest as well as our
molecular VAE the goal is to find the latent code ẑ that maximizes our affinity prediction
ΘAff : P × M → A. Remember that, during training, the molecular VAE optimizes
the ELBO (Equation 4.1). This means that each sample defines an encoding distribution
q(z|x) which is, thanks to the KL divergence, constrained to be similar to a predefined
prior distribution p(z), in our case q(z|x) = N (⃗0, I), i.e., a multivariate unit Gaus-
sian. Considering the sheer size of the latent space and especially the cost to evaluate the
function ΦAff we reformulate the problem as a Bayesian optimization task:

ẑ = argmax
z∈Z

[ΘAff (p, p(x|z))] (4.13)

where p(x|z) is approximated by the decoder. Essentially, the Bayesian optimization per-
forms an iterative search with the objective to minimize the number of calls toΘAff such
that the stopping criterion is met, i.e., we reached a point ẑ′ in the latent space that yields
an affinity a such tha |a− amax| < ε. The optimized function is modelled with a prior
that specifies a probability distribution over functions, in our case a GP prior:

ΘAff ∼ GP [m̂(x), k(x,x′)] (4.14)
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4.6 Exploring learned chemical spaces via Gaussian Processes

where m̂ is the mean function and k is a kernel denoting a similarity between two
points. During optimization it is thus assumed that the affinity prediction function
follows a multivariate Gaussian, with negative expected improvement (EI) as acquisition
function [322]. This trades off exploration and exploitation to determine the next
evaluation point.

Optimization procedure. We selected six kinases for the analysis, namely the four
JAK family members (JAK1, JAK2, JAK3, TYK) as well as ABL1 (the target of imatinib,
the first FDA approved kinase nhibitor [172]) and MAPK11 (a thoroughly studied tar-
get from the MAPK family and isoform of MAPK14/P38α [323]). We performed four
experiments per kinase, respectively two on the SMILES and two SELFIES VAE, respec-
tively on using the full protein sequences or only the active site sequences in ΘAff –
which was was implemented through the k-NN model as detailed in Section 3.6. For
each kinase, the optimization was initiated from 40 random points in the latent space
and performed for 30 epochs with 50 calls per epoch using scikit-optimize. After each
epoch, we generated 300 molecules from the latent points.

4.6.2 Optimizing binding affinities
The results for the latent space optimization are shown in Figure 4.18. The results on

Predicted pIC50 Predicted pIC50

Predicted pIC50Predicted pIC50

Figure 4.18: GP-based exploration of the latent space to find kinase inhibitors. For the two
selected targets, ABL1 and MAPK11, we show the (predicted) pIC50 (higher=better) distribution
of generated molecules. The dashed line denotes the mean pIC50 before the optimization. In the
top row, the SELFIES generator was used, in the bottom row the SMILES generator was used.
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4 Conditional molecular generative models

the optimization of the molecular SMILES/SELFIES VAE toward high affinity to ABL1
and MAPK11 suggest that when comparing all molecules generated throughout the op-
timization process, the average pIC50 of the sampled molecules increased in all cases.
Even though the improvement is mild in some cases, it can clearly be seen that the mean
pIC50 of the distributions improved. Interestingly, for these two protein targets it more-
over seems that relying on active site rather than full sequences slightly accelerated the
generation of molecules with high affinity However, the results for the four JAK targets
reveal conflicting evidence on a comparison between full sequences and active sites (cf. Ta-
ble 4.4).

Ligand repr. Kinase repr. Baseline Optimized

SELFIES Full seq. 6.55± 0.6 6.60± 0.5
Active site 6.51± 0.6 6.59± 0.5

SMILES Full seq. 6.51± 0.6 6.57± 0.6
Active site 6.57± 0.6 6.60± 0.5

Table 4.4: Results of GP optimization. We show the average binding affinity (pIC50) across
the six kinases and all the molecules generated through the optimization process.

This is not a surprising finding given that the kinase representation is only used in the
affinity evaluation and thus does not directly impact the molecular generation.

However, a tangible difference between the active site and full sequence model could
still be found: the active site model saves computational resources because the models
require less parameters and the average sequence length is smaller and so, training and,
especially, inference speed are higher (cf. Table 4.5). Taken together with the better per-

Model Config # AAs Model size Inference time

k-NN Full seq. 742± 369 – 59± 19ms
Active site 29± 0 – 29± 8ms

BiMCA Full seq. 742± 369 14.2M 18± 1ms
Active site 29± 0 0.6M 6± 1ms

Table 4.5: Comparison of active site and full sequence models. Inference time was measured on
2.7GHz Quad-Core Intel Core i7. The BiMCA affinity predictor was trained on a single NVIDIA
Tesla P100.

formance of the active site models this suggests that it will, in almost all cases, be beneficial
to rely on active site rather than full sequences (the sequence length is only 4% of the full
protein and the model size is reduced by 25% Due to the fact that the BiMCA operates
on batches of size 128, the inference time is still below the k-NN even when used on
CPU. This is because the k-NN has to exhaustively compute distances for each sample
and thus inference speed scales linearly with training data size. While the k-NN inference
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4.6 Exploring learned chemical spaces via Gaussian Processes

speed linearly depends on the kinase sequence length and thus increases from ∼30ms to
∼ 100ms for the shortest (29) to the longest (2527) sequences in the dataset.

A positive side effect of the 25% speedup in inference runtime is that the convergence
can be reached faster and the number of ligands sampled per time period can be increased,
as shown in Table 4.6.

Evaluation Active site Sequence
Time until 5% pIC50 improvement (min.) 14± 8 21± 8

Number of effective ligands in 25mins 35± 19 30± 16

Table 4.6: Runtime comparison in sampling effective ligands. All ligands with a predicted
IC50 < 100nM (i.e., pIC50 > 7) are considered effective.

4.6.2.1 Qualitative evaluation of molecules

In the top row of Figure 4.19 we display the ligands with the highest predicted affinity
scores for each of the six targets and both kinase representations.
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Figure 4.19: Best generated molecules per kinase. For each of the six kinases, the generated
molecule with the lowest predicted IC50 value is shown. Instead, in the bottom row we display
the distribution of measured pIC50 values of the most similar kinase inhibitors reported in Bind-
ingDB. Vertical dotted lines denote the medians.

This qualitative evaluation of the de novo kinase inhibitors reveals that the molecules
are versatile in their structure and reach predicted affinities in the low nanomolar range
(2− 50nM). For each kinase, we selected the 5 most effective aromatic generated ligand
and then retrieved the 10most similar kinase inhibitors that were reported in BindingDB
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4 Conditional molecular generative models

(similarity measured with Tanimoto similarity on ECFP6 fingerprints). As can be seen
in the bottom row of Figure 4.19, the distribution of measured pIC50 does not indicate
any difference between full sequence and active site models.

4.6.3 Discussion
In this section we showed how Bayesian optimization techniques such as Gaussian Pro-
cesses can be used to explore the latent space of molecular generative models in the search
of novel kinase inhibitors. Using two generative models based on SMILES and SELF-
IES respectively, we find that the GP optimization successfully navigates the latent space
towards regions of molecules that are predicted to bind better to kinase inhibitors. More-
over, we report that the (condensed) active site sequences can speed up the generation of
binding ligands without sacrificing performance.

This section focused on single-property optimization but our GP approach is easily
extendable to multi-objective optimization. While most previous work on GPs, however,
focused on single-property optimizations [11, 320], multiobjective optimization has been
tackled comprehensively with particle swarm optimization [324].

116



5 Bridging property prediction
and conditional generation

In Part I of this thesis we have developed language models for molecular property and
molecular interaction prediction. In Chapter 4 of Part II we then demonstrated how
such models can steer conditional generative models to transform a biochemical context
(e.g., a protein target sequence) into novel molecules with a high affinity to that context.

In this chapter, the last one of this thesis, we aim to bridge molecular property pre-
diction and conditional molecular generative models through a multitask model, the Re-
gression Transformer. This is motivated by three observations:

1. the controllability of molecular generative models has remained challenging thus far,
2. current molecular generative models lack an inductive bias that reflects continuous

properties of interest, and
3. our previously developed methods are global search methods in the chemical space

and can hardly be constrained on substructures to perform local search.

We will first reformulate regression as a conditional sequence modeling problem and then
derive novel training objectives that are alternated during training to yield a multitask
model that concurrently excels at regression and property-driven conditional generation
tasks. We demonstrate that, despite using a nominal-scale training objective, the Re-
gression Transformer matches or surpasses the performance of conventional regression
models in property prediction tasks of small molecules, proteins and chemical reactions.
Critically, priming the same model with continuous properties yields a highly competi-
tive conditional generative model that can even outperform specialized approaches in a
substructure-constrained, property-driven molecule generation benchmark.

The Regression Transformer thus forms a novel type of molecular generative model
that can be simultaneously conditioned on arbitrary molecular substructures and con-
tinuous target properties of interest. This finds particular application in property-driven,
local exploration of the chemical or protein space and could pave the road toward foun-
dation models in material design.
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5 Bridging property prediction and conditional generation

5.1 On the need of unification

5.1.1 A next step in relaxing inductive biases
Transformers [50] are now ubiquitous in natural language processing (NLP) and have
also enjoyed large success in molecular [28, 29, 325] and protein language modeling [326,
327]. The invention of Transformers was in alignment with the steady decline of induc-
tive biases in ML, a trend that started with the rise of deep learning: CNNs outperformed
traditional feature descriptors in object recognition [328], self-attention generalized dense
layers to learn sample-dependent instead of static affine transformations [329] and Trans-
formers exploited self-attention to supersede RNNs as the de-facto standard in NLP. The
success of vision transformers has questioned the need for translation equivariance in im-
age processing [330] and now, even frozen Transformers pretrained on text achieve state-
of-the-art results in object detection and protein classification [331]. Given that Trans-
formers are today’s most generic deep learning model1, it is not surprising that attempts
have been made to abstract entire domains like RL to sequence modeling in order to
leverage Transformers [332].

In classical regression tasks, however, the impact of Transformers has been restricted
to large-scale unsupervised pretraining followed by finetuning a task-specific regression
head [333, 334, 335]. This procedure still relies on the conventional approach of modeling
target variables (i.e., properties) as functions of input variables (i.e., tokenized sequences,
most typically natural text). A provocative next step toward reducing inductive biases
might be to refrain from following this classic, discriminative modelling approach and
rather learn the joint distribution over input and target variables. This could effectively
further blur the lines between predictive and conditional generative models. The feasi-
bility of such approach can be assessed via permutation language modeling (PLM), an
extension of masked-language-modeling to autoregressive models [336].

5.1.2 Implications for molecular modeling
Such dichotomous models (that concurrently excel at regression and conditional
sequence generation) are beyond applications in NLP of special interest for chemical
and material design. Molecules are often labelled with continuous properties (e.g.,
drug efficacy or protein solubility) and design tasks are intertwined with bio- or
physicochemical properties. But despite the rise of deep generative models in
molecular [337, 338] and protein design [339, 340], current approaches still develop
property predictors and generative models independently. Transformer-based
architectures have been used widely on chemical tasks but either focused on property
prediction [341, 342] or on conditional molecular design [343, 344], never on both. This
semantic gap persists across architectural flavors (e.g., GANs [221], RL [345], VAEs [11],

1graph neural networks with multihead attention as neighborhood aggregation on complete graphs.
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GNNs [344, 346], flow [24, 207] and diffusion models [208]). To our knowledge, all
existing approaches either tune task-specific heads [335] or limit the communication
between both modules to a reward and thus fail to "entangle" constrained structure
generation with property prediction. This critically violates the intuitive expectation
that a property-driven generative model should, in the first place, excel at recognizing
this property.

5.1.3 Scope of the chapter
In this chapter, we aim to close this gap by reformulating regression as a sequence mod-
eling task. We propose the Regression Transformer (RT), a novel multitask model that
can be trained on combinations of numerical and textual tokens (see Figure 5.1).

This circumvents the canonical way of addressing regression in Transformers, i.e., tun-
ing a designated regression head [334]. Despite solely relying on tokenization of num-
bers and cross-entropy loss, the RT can successfully solve regression tasks. Notably, the
same model can conditionally generate text sequences given continuous properties. This
is achieved simply by moving the [MASK] location and does not require finetuning spe-
cific heads; thus constituting a true multitask model. To equip the RT with an inductive
bias for handling floating-point properties, numbers are first tokenized into a sequence
of tokens preserving the decimal order. We then devise numerical encodings to inform
the model about the semantic proximity of these tokens. To allow for concurrent opti-
mization of regression and conditional generation, we derive a PLM-inspired, alternating
training scheme that includes a novel self-consistency loss for improved text generation
based on continuous primers.

We will describe and assess the capabilities of the RT on a diverse set of predictive and
generative tasks in chemical and protein language modeling. We commence with small-
molecule modeling, validate the RT on a synthetic dataset of drug-likeness [248] and then
test it on three property prediction datasets from the MoleculeNet benchmark [34]. The
property predictions results are compared with previous approaches relying on a regres-
sion loss and demonstrate that regression can be cast as conditional sequence generation
task without losing accuracy. Although we aim to concurrently excel at predicting prop-
erties and generating sequences conditioned on properties, we start training with the
PLM objective [336] which does not explicitly model those tasks. We then refine this ob-
jective and devise a training scheme that alternates between optimizing property predic-
tion and text generation. For the latter, we derive a novel self-consistency loss that exploits
the dichotomy of the RT by querying itself with the generated candidate sequence. To
assess performance in conditional sequence generation, we systematically vary the con-
tinuous properties of interest and investigate the model’s ability to adapt a seed sequence
according to the primed property value. We show applications on property-driven local
chemical space exploration by decorating scaffolds with a continuum of properties and
evaluate the novel molecules using the RT itself as well as an independent property pre-
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Figure 5.1: Overview of Regression Transformer (RT). The RT is a multitask language model
designed to handle combinations of text and numbers. a) Traditional approach in generative
chemistry: property predictors and generative models are trained independently from another.
b) Our approach: Training the RT yields a dichotomous model that seamlessly switches between
property prediction and conditional text generation. The model’s task is to fill the content behind
the [MASK] tokens. Depending on the mask location, the same model either predicts numerical to-
kens given textual tokens, thus performing a regression task (blue stream, top); or predicts textual
tokens given both numerical and textual tokens, thus performing a property-driven conditional
generation (yellow stream, bottom). c) - f ): This novel formulation finds application across a wide
range of domains. We demonstrate the flexibility of the RT in predictive and generative tasks in
modeling small molecules, proteins, chemical reactions. It can even be applied to natural text.

dictor [36]. The RT is then challenged against specialized molecular generative models
on a property-driven molecular generation benchmark [19], where it significantly out-
performs prior art.
Next, the RT is investigated on protein sequence modeling where it matches the perfor-
mance of conventional Transformers on two regression datasets from TAPE [333]. In
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experiments on chemical reactions, we notice that the RT constitutes a generalization
of forward reaction and retrosynthesis models. We then demonstrate on two reaction
datasets that the RT can not only predict reaction yields with similar accuracy to con-
ventional Transformers [62], but that it can also substitute specific precursors and thus
generate novel reactions with higher predicted yield than a seed reaction. Last, we apply
our proposed methodology to an NLP task where we find that it can benefit sequence
prediction tasks.

5.1.4 Structure-constrained molecular generation

Most molecular generative models mentioned throughout this thesis as well as those
methods developed above search globally in the chemical space. In molecular discovery
applications, however, the design process oftentimes does not start from scratch but
from an existing molecule, e.g., a hit compound identified in a HTS. For such cases,
methods that locally search the chemical space to optimize desired properties are needed.
In an early study, Arús-Pous et al. [347] proposed the deep scaffold decorator which
exhaustively slices molecules into scaffolds and decorations and then samples decoys to
decorate the scaffold, thus locally explore the chemical space around a molecule. Others
used graph-based generative models [346, 348, 349, 350, 351, 352, 353] which can also be
tuned to optimize physicochemical properties. However, apart from the work by Li

et al. [349], none of the methods can be conditioned on a desired property at inference
time. Even Li et al. [349] could not jointly condition on a desired property and a scaffold.
Among others, this task will be addressed in depth in this chapter with the Regression
Transformer.

5.2 The Regression Transformer

5.2.1 XLNet backbone – Unifying language modeling
paradigms

The Regression Transformer (RT) is built upon an XLNet backbone [336] to retain the
benefits of auto-regressive modeling in combination with a bidirectional context. Essen-
tially, XLNet unifies the two main paradigms for pretraining language models: Auto-
encoding and auto-regressive. In conventional language models we maximize the likeli-
hood with an auto-regressive (AR) factorization

max
θ

T∑
t=1

log pθ(xt|x<t) (5.1)
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where x = [x1, ..., xt] is our text sequence and pθ is learned by the language model. The
disadvantage of AR modeling is the unidirectional information flow that conflicts with
many downstream tasks. For example, for the RT a bidirectional context will be criti-
cal because SMILES (or SELFIES) strings are non-local sequences. Masking functional
groups usually implies masking disconnected tokens, hence we wish to have a model that
can fill multiple tokens at arbitrary positions in a sequence while attending the full re-
maining sequence. This can naturally be achieved within the second paradigm – auto-
encoding based pretraining of language models. This is a self-supervised setting, origi-
nally introduced by Devlin et al. [334] to train BERT. It aims to reconstruct the original
sequence from a corrupted sequence. Let x̂ be a corrupted version of x where a fraction
of the tokens is masked, then the objective of BERT-based auto-encoding pretraining be-
comes:

max
θ

T∑
t=1

mt log pθ(xt|x̂) (5.2)

where m is the masking indicator vector. This is a powerful pretraining objective, how-
ever the critical disadvantage is the independence assumption which assumes that all cor-
rupted tokens can be reconstructed independently. This becomes increasingly disruptive
as more masked tokens are filled, hence BERT-based models do not perform well at gener-
ating longer sequences. This limits BERT’s applicability for generative tasks in biochem-
istry like scaffold decoration where large portions of a molecule might be masked and
generation of individual atoms can critically alter the molecule’s functional properties.
The contribution of Yang et al. [336] in XLNet is to unify both paradigms and propose
an auto-regressive language model that yields, in expectation, full bidirectional attention.

In the next subsection, we will first recapitulate the original XLNet objective and then
extend it to reformulate regression as a conditional sequence modeling task. In general,
it is important to notice that our proposed framework can be applied to all Transformer
flavors, but it certainly benefits from an autoregressive generation with full sequence at-
tention even for discontiguous mask locations, like XLNet or MPNet [354].

5.2.2 Reformulating regression as conditional sequence
modeling task

This section describes the training objectives for the RT. The input x for a RT is defined
by a concatenation of k property tokens [xp]k and l textual tokens [xt]l, such that: x =
[xp,xt]T = [xp

1, ..., x
p
k, x

t
1, ..., x

t
l ]T . The full sequence length is T=k+l and xp and xt

are property and textual tokens respectively.

Permutation language modeling (PLM) objective. The idea of PLM [336] is
to fill multiple masked tokens auto-regressively by sampling a factorization order z for a
sequencex at runtime. Decomposing the likelihood pθ(x) according to the factorization
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order yields, in expectation, a bidirectional auto-regressive model. Let z ∈ ZT denote
one of the T ! permutations of our sequence x. If zi and z<i are the i-th and first i − 1
elements of z, the PLM objective is:

max
θ

Ez∼ZT

[
T∑
i=1

log pθ(xzi |xz<i
)

]
(5.3)

In practice, partial prediction is performed, i.e., only the last c tokens of the factorization
order z are predicted. Following XLNet, z is split into a (masked) target subsequence z>c

and an unmasked input sequence z≤c s.t. the objective becomes

JPLM = max
θ

Ez∼ZT

[
log pθ(xz>c|xz≤c

)
]

= max
θ

Ez∼ZT

[
T∑

i=c+1

log pθ(xzi |xz<i
)

]
(5.4)

where c is a hyperparameter, usually sampled per batch such that the fraction of masked
tokens is roughly 1/c. We notice that Equation 5.4 does not make any specific choices on
xp and xt. It thus constitutes our baseline objective. While Equation 5.4 is a generic ob-
jective, it is computationally exhaustive to optimize due to the permutations. Moreover
it is not ideal for our needs because it does not distinguish between textual and property
tokens. Instead, we are aiming to develop a single model that can either predict numerical
tokens (when given text sequences) or text tokens (when given a combination of numer-
ical and text tokens). To that end, we propose to train on two alternating objectives, one
designed for property prediction and one for text generation.

Property prediction objective. Instead of randomizing which tokens are
masked, this objective exclusively masks all the property tokens. Specifically, we
constrain the factorization order z by setting the first l elements to xt and fixing c = l.
This guarantees that only property tokens are masked. Let Zp

T denote the set of possible
permutations. Under this constraint, then the objective becomes

JP = max
θ

Ez∼Zp
T

[
log pθ(x

p|xt)
]

= Ez∼Zp
T

[
T∑

i=c+1

log pθ(x
p
zi
|xt

z≤c
,xp

z>c<i
)

]
(5.5)

wherexp
z>c<i

denotes the c-th to the i−1-th element of the factorization order z. We em-
phasize that this "tailored" property objective Jp is still optimized with a cross-entropy
loss in practice. Note that this loss cannot convey any notion on the qualitative proximity
of the prediction to the labels because the level of measurement of tokens in a language
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model are on a nominal level. Thus, predicting a sequence of numerical tokens corre-
sponding to a property score of 0.91 for a sample with a true property of 0.11 will not
generally result in a higher loss than predicting 0.21. Instead, a traditional regression loss
operates on a ratio scale.

Conditional text generation objective. This objective facilitates the genera-
tion of textual tokens given a property primer and textual tokens. We constrain the fac-
torization order z by setting the first k elements to xp to and sampling the cutoff c, s.t.
c ≤ k. This ensures that masking only occurs on textual tokens. With this constraint, we
denote the set of permutations by Z t

T and the objective becomes

JG = max
θ

Ez∼Zt
T

[
log pθ(x

t
z>c

|xp
z≤k

,xt
z>k<c

)
]

= Ez∼Zt
T

[
T∑

i=c+1

log pθ(x
t
zi
|xp

z≤k
,xt

z>k<i
)

] (5.6)

Intuitively, this objective applies regular PLM while sparing the numerical tokens. It then
aims to reconstruct the full text sequence (i.e., molecule) given the uncorrupted property
tokens and partially corrupted textual tokens.

Self-consistency objective. Standalone, the above conditional text generation
objective (Equation 5.6) does not reward if the generated sequences adhere to the
primed property. It only rewards the accuracy of sequence reconstruction. However, in
chemical as well as natural languages, changes in single tokens (i.e., atoms, amino acids
or (sub)words) can drastically change the property (meaning) of a molecule (sentence).
To reward the model for generating molecules that differ from the seed sequence but
whose property value follows the primed property, we extended the text generation
objective JG by a self-consistency term that exploits the dichotomy of the Regression
Transformer. The full objective is given by:

JSC = JG(x) + α · JP (x̂) (5.7)

where the second addend is the self-consistency term, weighted by a factor α. Intuitively,
it is given by the difference between the property of the sample and the predicted property
of the generated sample x̂. Here, x̂ is obtained by greedy decoding of the masked tokens
and combining it with the non-corrupted tokens of x. To be precise, x̂ = [xp, x̂t] where
x̂t = [m1x̄1+(1−mi)x1, ...,mlx̄l+(1−ml)xl]. Here,m is an indicator vector whether
masking occurred at a given position and x̄ = [x̄1, ..., x̄l] is the result of greedy decoding.
In such a formulation, the RT acts as an oracle during its own optimization, resembling
an additional layer of self-supervision. This provides a notion of self-consistency to the
model in that it rewards the generation of any molecule that adheres to the primed prop-
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erty. Without such a loss, the model would be perform a pure reconstruction that does
not emulate the flexibility and versatility of a property-driven generative models that is
desired at inference time. The disadvantage of this loss is that it may induce side effects
in situations where the model struggles to learn the property prediction.

5.2.3 Tokenization

This section describes the processing of alphanumeric sequences, i.e., strings consisting
of a mixture of numerical and textual symbols. This process is visualized in Figure 5.2
(top). Unlike previous approaches that modelled 8-bit integers such as pixels with a clas-

<QED>0.428|…|<ESOL>-2.92|N#[N+][N-]c1ccc(C)cc1

<QED>

Tokenization

_0_0_ _._ _4_-1_ _2_-2_ _8_-3_ <ESOL> _-_ _2_0_ _._ _9_-1_ _8_-2 || N # [N+] 1

Regular word embeddings ( + relative positional encodings)
+

Numerical embeddings

XLNet (LMHeadModel)

PLM objective Property objective Self-consistency objective∧

|

Trained with PLM objective or with combined property prediction and self-consistency objective

Figure 5.2: Workflow of the Regression Transformer (RT) model. Based on the XLNet
backbone, the RT is a dichotomous model designed to handle combinations of text and num-
bers. Top: An input sequence consisting of a molecular string (red) and two property tags (blue),
each associated to a floating value (green). Numbers are tokenized into a sequence of tokens that
preserve the decimal order of each character. The pipe (|) is a separator token distinguishing nu-
merical and text tokens. Middle: We propose numerical encodings that inform the model about
the semantic proximity of these tokens and naturally integrate with relative positional encodings
and classical learned embeddings. Bottom: The RT is trained with an alternating training scheme,
derived from the PLM objective [336] and designed to concurrently optimize property prediction
and conditional generation (bottom). The dots indicate that the RT naturally scales to multiple
property tags.

sifier [355], we strive to represent real numbers with arbitrary floating point precision.
Since representing every number as a single token is suboptimal due to a lack of general-
ization to new numbers and sparsity of the provided tokens, we formulate regression as
sequential categorical task. In turn, this necessitates a scheme for converting text repre-
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5 Bridging property prediction and conditional generation

senting numbers into a sequences of tokens. First, the following regular expression splits
a string denoting a numerical:

\s*\s*?(\+|-)?(\d+)(\.)?(\d+)?\s* (5.8)

Each of the resulting matches containing a number is converted to a token tv,p where
v ∈ N ∩ [0..9] is the value/digit and p ∈ Z is the decimal place (e.g., 12.3 is split into
[1_1, 2_0, ., 3_-1]). We call these numerical tokens. This representation has the advan-
tage that it allows easy decoding of the digit sequence but also distinguishes their decimal
order by adhering to classic positional notation. Negative numbers are preceded with
a special token. Regarding alphabetic tokens, we represent molecules as SELFIES [65]
strings and tokenized them with their internal tokenizer. In one ablation study, we in-
stead use SMILES [48] and tokenize with the regular expression from Schwaller et al. [53].
Protein sequences are tokenized per amino acid.

5.2.4 Numerical encodings
5.2.4.1 Float encodings

The inherent structure of numbers conflicts with the notion of learned embeddings in
language models. In other words, having to learn the embeddings of tokens correspond-
ing to numbers might be tremendously ineffective. Remember that the RT is trained with
a normal cross-entropy objective which implies that a notion of similarity between nu-
merical tokens can not be conveyed. As a remedy, we devised what we call "numerical
encodings" (NE); a simple inductive bias that informs the model about semantic proxim-
ity of numerical tokens, similar to the positional encodings proposed by Vaswani et al. [50].
The objective of these encodings is to circumvent the necessity of having to learn from
scratch the semantic similarities between the different numerical tokens. In practice, we
sum the NEs with regular word embeddings and relative positional encodings from XL-
Net (see Figure 5.2 for the workflow). The NEs are zero vectors for all but numerical
tokens. We follow positional notation as above. Given a token tv,p (with digit value v and
decimal place p), the numerical encoding at embedding dimension j is defined as:

NEFloat(v, p, j) = (−1)j · v · 10
p

j+1
(5.9)

Thus, the amplitude of the NE scales with the numerical value of the token. The NEs
are perfectly correlated among the embedding dimensions. For even and odd dimensions,
they alternate between positive and negative values. In addition, they vanish for higher
dimensions (see example in Figure 5.3a). Importantly, the NEs were devised in such a
way that their pairwise distances are symmetric and decay monotonically with the float
value (see Figure 5.3b).

126
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a) b)

Figure 5.3: Float-based numerical encodings. a) Numerical encodings for an molecule with
a QED of 0.179. b) Pairwise distances of numerical encodings for floats between 0 and 100 (the
NEs of all tokens associated to a float are summed up).

5.2.4.2 Integer encodings.

As an alternative to the float-based numerical encodings (NE), we experimented with an
encoding scheme relying solely on positive integers. Note that any regression problem
can trivially be casted to a regression problem where all labels are positive integers. Under
this consideration, we need to define NEs only for positive integers2; similar to positional
encodings. We therefore propose to directly utilize the definition from Vaswani et al. [50]
as NEs:

NEInt(v, p, 2j) = sin
[
(v · 10p)/100002j/de

]
NEInt(v, p, 2j+1) = cos

[
(v · 10p)/100002j/de

] (5.10)

wherede is the embedding size. The advantage of this integer-based encoding is that every
embedding dimension captures fluctuations of different frequencies; using trigonomet-
ric functions as continuous analogs to alternating bits. Practically, to use the Integer-NEs,
the property values were casted to the range [0, 1000] and rounded.

5.2.5 Training & evaluation procedure.
Due to the amount of experiments and investigated datasets in this chapter, we describe
data processing and training procedures in detail within each section. Here we only list
the generic things that applied to all experiments equally.

All experiments build upon the XLNet [336] backbone from the HuggingFace

library [356]. As visualized in Figure 5.2, we expanded the XLNet backbone with
2Strictly speaking only integers with a single, non-zero digit (i.e., covered by the base-10 exponentiation

of the decimal system)

127



5 Bridging property prediction and conditional generation

our proposed tokenization scheme (Subsection 5.2.3), an additional encoding layer
for the numerical embeddings with Ndim = 16 (Subsection 5.2.4 and the custom
training objectives (Subsection 5.2.2). Regarding architectural hyperparameters, we
used 32 hidden layers in the Transformer encoder, with a dimensionality of 256 and
1024 in the feed-forward layer and 16 attention heads (20% dropout). Altogether, this
model has ∼ 27M trainable parameters (exact numbers vary dependent on vocabulary
size). During evaluation, greedy decoding was used for property prediction and beam
search decoding for conditional sequence generation. We used PyTorch 1.3.1 [159] and
Transformers 3.1.0 [356]. All models were trained on single GPUs (NVIDIA Tesla A100

or V100).

Regression.

To solve regression (or property prediction) tasks, we convert the sequence of predicted
(numerical) tokens into a floating-point prediction. Note that the model never failed to
predict a token sequence corresponding to a valid numerical. We then report the root-
mean-squared error (RMSE), Pearson’s correlation coefficient (PCC) or the coefficient
of determination (R2), dependent on the dataset and previous methods.

Conditional sequence generation.

Dependent on the application domain, different metrics are utilized. Details will follow
in the respective sections.

k-NN baseline model

Besides comparing our results to previously published work, we also compared the molec-
ular property prediction results to a simple k-NN baseline model. The distance measure
was (inverted) Tanimoto similarity [162] of ECFP4 fingerprints [46]. For the protein lan-
guage models, the Levenshtein distance between the protein sequences was used [161].
For the k-nn baseline models, k was determined based on the best performance on the
validation data. This led to k = 25 for the drug-likeness/QED task, k = 21 for the
protein interaction (Boman index) task, k = 50 for the fluorescence and k = 15 for the
stability task.
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5.3 Benchmarking a classifier against regression
models

5.3.1 Data preparation and evaluation procedure

Drug-likeness (QED)

Dataset. Starting from ∼ 1.6M bioactive molecules from ChEMBL [357], we cre-
ated a synthetic dataset by computing the QED [248] score (q ∈ [0, 1]) for all molecules
with RDKit and rounded to 3 decimal places. We used ∼ 1.4M molecules for training, 1k
for validation and 10k for testing.

Training procedure. We started training the models with the PLM objective
(Equation 5.4) on the QED dataset until validation perplexity saturated (∼ 4 days,
single-GPU). Thereafter, the models were further refined on the same dataset by
alternating every 50 steps between the property prediction objective (Equation 5.5)
and the text generation objective (Equation 5.7). We perform ablation studies on the
self-consistency loss, setting α in (Equation 5.7) to 0 and 1 respectively. During the
latter, we gave the model more flexibility by setting c = 2.5, s.t., ∼ 40% of the tokens
were masked (maximum span: 7 tokens). The SELFIES/SMILES vocabulary had 509
and 724 tokens respectively.

MoleculeNet datasets.

Data. We focused on 3 regression datasets from the MoleculeNet benchmark [34]:
ESOL, FreeSolv and Lipophilicity, where the task is to predict water solubility, hydration
free energy and lipophilicity of a molecule, respectively. For each dataset, we performed
3 random splits (as recommended by [34]) with 15% validation data. Because the datasets
are small (< 5000 samples), we used SMILES augmentation [56] to augment the dataset
by a factor of 16.

Training procedure. For the MoleculeNet datasets, the models were warm-started
using the QED initialization and trained only for 50k steps (batch size 4) with early stop-
ping. Since the QED pretraining utilized numerical values in [0, 1], we normalized the
regression values of the MoleculeNet datasets to the same range and rounded them also
to three decimal places. For all objectives, unless otherwise constrained, we set the mask-
ing hyperparameter c = 5 and restrict the span of consecutively masked tokens to a max-
imum of 5 tokens.
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Evaluating molecular generation

For all these small molecule datasets, we strive to assess the model’s ability to decorate
an arbitrary, possibly discontiguous fractional input sequence (e.g., a molecular scaffold)
according to a property of interest. Therefore, we randomly mask a fraction of tokens
of the text sequence and then query the model with ten equidistant property primers
spanning the full range of property values. We decode ten molecules and the reported
metric is the average Spearman’s ρ between the primers and the actual property values
(after removing duplicate molecules). Spearman is favorable over Pearson because it is
only rank-sensitive. Note that due to constraints induced by the fragmented sequence,
covering the entire property spectrum is usually impossible such that e.g., RMSE is inap-
propriate for this task (e.g., priming a highly toxic scaffold with low toxicity cannot yield
a non-toxic molecule). As a sanity check, we also report "Zero-Variance" (0-Var), i.e., the
percentage of samples for which the generation was unaffected by the primer (the lower
the better).

5.3.2 Initial validations – learning drug-likeness
5.3.2.1 Permutation language modeling training

To test the feasibility of concurrent property prediction and conditional generation, we
start with optimizing the vanilla permutation language objective (Equation 5.3) on a syn-
thetic QED dataset (see Figure 5.2 for an illustration of how the mixed alphanumeric se-
quences are tokenized and embedded). Since this objective masks tokens randomly in the
sequence, evaluating such models on property prediction (i.e., masking only numerical
tokens; cf. Figure 5.1b top) does not closely mimic their training dynamics.

As can be seen Table 5.1, despite this mismatch between training and evaluation (as well
as the unconventional formulation of a regression task as sequence modeling), all models
generated sequences of numerical tokens that allowed decoding floats, and even achieved
a RMSE < 0.06. In this setting, from the two types of proposed numerical encodings,
the float-based encodings yielded slightly superior result to integer-based encodings.

Instead, for the generative task, the same models were queried 10 times for every valida-
tion molecule with property primers3 equidistantly spaced in [0, 1] and 40% of masked
textual tokens. The high rank correlation ρ (between primers and QED of unique, gen-
erated molecules) values show that the model learned successfully to complete the cor-
rupted sequences to produce full molecules with a desired QED. Here, the SELFIES
models exceeded the SMILES models by far, because SMILES, unlike SELFIES, can be
syntactically invalid. Due to the comparable results for property prediction, the remain-
ing experiments focus exclusively on SELFIES. Notably, the novelty score (i.e., percent-

3Throughout this chapter by "primers" we mean that we replace the true property of a sequence with a
desired property value.
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Configuration Regression task Generation task

Data NE Perplexity (↓) RMSE (↓) PCC (↑) 0-Var (↓) SCC (↑)
SMILES – 1.55±0.02 0.0549±0.01 0.972±0.01 1.6%±0.2 0.096±0.02

SELFIES – 1.61±0.03 0.0591±0.00 0.968±0.00 0.9%±0.2 0.427±0.01

SELFIES FE 1.59±0.03 0.0547±0.01 0.971±0.00 0.3%±0.1 0.467±0.01

SELFIES Int 1.63±0.02 0.0564±0.00 0.968±0.00 0.8%±0.3 0.440±0.01

Table 5.1: Performance after PLM training. RMSE (↓) and PCC (Pearson correlation coeffi-
cient) refer to predicting QED, perplexity (↓) to the PLM objective (Equation 5.4) and Spearman
ρ (↑) and 0-Var (↓) to the conditional generation task. All values are means across multiple mod-
els. All numbers computed on 10k test samples. NE refers to the use of numerical encodings. FE
refers our Float-based numerical encodings whereas "Int" refers to the Integer-based numerical
encodings.

age of conditionally generated molecules not present in training data) was > 99% for all
models. This demonstrates that the RT can generate novel chemical matter that adheres
to a continuous property of interest. Moreover, the numerical encodings (NE) slightly
improved performance in all tasks.

5.3.2.2 Ablation study on numerical encodings

In this subsection, we will examine different types of numerical encodings more closely
and justify our choices for further experiments. Table 5.1 showed that the effect of the
type of numerical encoding (float-based or integer-based) seems to be minor. For that
experiment, we followed the common approach of summing these encodings to the nor-
mal, learned embeddings. This is the most common approach in the literature [50, 336]
even though we note that disentangling content and position embeddings can improve
language models [358]. To test this effect, we conducted an ablation study where we, in-
stead of summing the numerical encodings to the regular embeddings, we concatenated
them (dimensionality of 32 for the NEs.). The results in Table 5.2 reveal slightly inferior
but nearly identical results.

NE Type RMSE (↓) PCC (↑)
– – 0.0591±0.00 0.968±0.00

Float Concat. 0.0581±0.00 0.966±0.01

Float Sum 0.0547±0.01 0.971±0.00

Int Concat. 0.0666±0.01 0.963±0.01

Int Sum 0.0564±0.00 0.968±0.00

Table 5.2: Ablation study on NEs. Results on PLM training.

For the rest of our work, we decided to use a summation for three reasons:
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1. It avoids any additional hyperparameters and model weights.
2. Using a summation probably still yields approximately orthogonal subspaces of to-

ken embedding and numerical encodings (due to the high dimensionality). Hence,
the curse of dimensionality might obviate the need to enforce orthogonality with a
concatenation.

3. Only the float-based rather than the integer-based encodings can be applied to float-
ing numbers (i.e., for experiments with integer-based encodings we always casted the
property values to the range [0, 1000] which is undesired in practice since it requires
postprocessing).

While we conjectured that using NEs improves the performance in both tasks
(property prediction and conditional generation), we emphasize that providing this
prior might not be necessary given enough data. We hypothesize that refining our
NEs might yield better results and in particular a faster convergence, but leave further
refinement to future work, especially given the plethora of research about positional
encodings [359, 360, 361].

5.3.2.3 Alternating training with refined objectives

Next, based on our proposed training scheme with alternating objectives, the models
were refined: For every model in Table 5.1, two models were trained, without (α = 0) and
with (α = 1) the self-consistency term in the text loss (cf. Equation 5.7), respectively. As
shown in Table 5.3, the performance in regression as well as conditional generation im-
proved significantly, demonstrating the effectiveness of the refined objectives. Moreover,

Configuration Regression task Generation task

NE α RMSE PCC 0-Var Spearman ρ
✗ 0 0.0341 0.988 0.2% 0.47
✗ 1 0.0483 0.978 0.3% 0.49
✓ 0 0.0498 0.982 0.3% 0.47
✓ 1 0.0367 0.987 0.2% 0.52

Table 5.3: Performance evaluation on refined objectives. Legend like in Table 5.1. NE means
numerical encodings andα refers to the self-consistency loss function in Equation 5.7. All models
here used SELFIES.

all configurations of the Regression Transformer (RT) outperformed a baseline k-NN-
regressor on Tanimoto similarity and our best configuration even surpassed the SMILES-
BERT model [341] which achieved a MAE of 0.02 after pretraining on ∼9M SMILES
with a regular regression loss (see Table 5.4). The self-consistency term further improved
the model’s ability to generate tailored ensembles of molecules and led to consistently
higher correlation scores. Generally, the better performance of the self-consistency mod-
els (α = 1) in the generative tasks comes at the cost of slightly inferior regression per-
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Model MAE (↓)
k-NN (baseline) 0.054

SMILES-BERT [342] 0.020
RT - PLM objective (Equation 5.3) 0.035

RT - Alternating objective (Equation 5.6) 0.017

Table 5.4: Performance comparison in predicting QED. MAE stands for mean absolute error.
The RT with alternating objectives used α = 0 in Equation 5.7.

formance (cf. Table 5.3). Presumably, this is because the model weights in charge of the
regression are confounded with the gradients from the self-evaluation (cf. Equation 5.7).
The novelty scores for the molecules generated in this setting were even slightly higher
than for the PLM training (> 99.3% for all models).

5.3.2.4 Examples on molecule decoration

An example decoration is shown in Figure 5.4 (top) where a single seed molecule is dec-
orated according to the property primers to cover the full range of QED scores. It can
be seen that the model adapted the seed molecule based on the property primers in such
a way that the generated molecules were largely consistent with the provided property
primer.
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Figure 5.4: Property-driven, local chemical space exploration. For each row, the seed
molecule is shown in the middle. Based on 10 property primers, 10 molecules were decoded (du-
plicates were discarded). Top: QED dataset. Bottom: ESOL dataset of aquatic solubility. The
solubility was predicted by the RT itself but is also externally validated with predictions from
Grover [36].
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A particularly challenging application for property-driven, local exploration of the
chemical space is scaffold decoration. This is a technique in medicinal chemistry with
the goal to discover novel compounds by modifying the central core structure (i.e., re-
moving substituents while retaining rings and their linker fragments) of known com-
pounds [362]. We simulated this task on the QED dataset by determining the scaffold
with RDKit and masking only the non-scaffold tokens (in contrast to the regular evalu-
ation where randomly 40% of the tokens were masked). In general, this task is more
challenging because the molecule is more constrained. On average, less tokens are being
masked and in most cases the full range of drug-likeness cannot be captured, given the
scaffold. This explains the higher percentage of molecules where the primer did not in-
fluence the generations (cf. Table 5.5). Moreover, note that this includes cases where the

α Task 0-Var (↓) Spearman’s ρ (↑)
0 Masking non-scaffold 8.55% 0.136
1 Masking non-scaffold 9.76% 0.105
0 Masking randomly 0.80%±0.19 0.108±0.01

1 Masking randomly 1.14%±0.19 0.085±0.02

Table 5.5: Scaffold hopping performance for SMILES model. No numerical encodings were
used. No standard deviations are available for the scaffold results since the masking is determinis-
tic.

molecule is itself a scaffold and thus no tokens are masked (we do not control for that
explicitly). The generations for one exemplary molecule are shown in Figure 5.5. In this
example, it is interesting to see that the model decorated the scaffold with specific atoms
on the rightmost six-ring. These atoms, iodine, chlorine and bromine which were right-
fully provided from low to high QED primers seem to be indicative of different levels of
drug-likeness. One drawback, however, is that the RT cannot fill no or multiple tokens in
the position of one [MASK] location. For example, in the case of the last primer (0.86), the
provided scaffold already had a QED of 0.87 and thus not adding any new atoms would
have been the best choice here.
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Figure 5.5: Molecules sampled in a scaffold hopping task. Only non-scaffold tokens (encircled
in red) were masked.
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5.3.3 Learning embeddings of numbers.
We sought to understand why the ablation studies on the numerical encodings (NE) on
the QED dataset (Table 5.1 and Table 5.3) reveal only mild but not enormous superiority
of models with NEs. Interestingly, we observed that in the absence of static NEs, the
model learns the natural ordering of digits from the data, as shown in Figure 5.6.
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Figure 5.6: Learned embeddings of numerical tokens. Left: For an exemplary dimension,
embeddings for 20 tokens, corresponding to 10 digits and 2 decimal places are shown. Right:

Embeddings for 20 exemplary dimensions across 10. The stars indicate the significance level of
the Pearson correlation. The analysis is based on a SELFIES model without static NEs (PLM
objective).

A large number of embedding dimensions (47% and 36% for the decimal places
−1 and −2 respectively) directly and significantly encoded the ordering of digits
(i.e., p < 0.05 and |PCC| > 0.62 between the 10 embedding values and a strictly
monotonic vector). For example, in Figure 5.6 (left) the digit value is monotonically
related to its embedding value. Notably, this ordering trend was much less present in the
models using NEs (∼ 16%). For reference, with random weights, 5%would be expected.

5.3.3.1 Attention analysis

In general it is widely known that attention weights in Transformers can capture com-
plex semantics such as protein folding structure [363] or atom-mapping in chemical re-
actions [29].

We therefore visualized the attention scores of the Regression Transformer using
BertViz [364]. Here, we aimed to compare the inference patterns across the two tasks,
property prediction and conditional generation. The results for the first 4 (out of 32)
layers are shown in Figure 5.7. In general, many attention patterns commonly described
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in natural language models are also present in the Regression Transformer. For example
the bag-of-words pattern (i.e., evenly distributed attention, e.g., all heads of first layer)
or the next-token (e.g., layer 4, head 4 and 5) or previous-token patterns (e.g., layer
2, head 2) are clearly visible. While the named patterns are consistently present in
both tasks, probably because they are useful irrespective of the particular task, some
distinctive patterns for either of the tasks can be found. For example, in the conditional
generation task (Figure 5.7, right) many triangles with their right angle in the upper
right are present. In these positions the property tokens are present and thus these
patterns indicate that the representation of all other tokens, especially also the masked
ones, are heavily influenced by the property value. Instead, in the property prediction
task (Figure 5.7, left), many triangles with their right angle in the lower right are present.
This implies a heavy attention on the [END] token which marks the end of the sequence
and is a useful indicator for the QED score because it is critically influenced by the
size/weight of the molecule. One particularly interesting attention head is head 3 in
layer 2. In the property prediction task its role is to make the masked property tokens
aware of the sequence length. In the conditional generation task, its role is to make all
tokens aware of the property values.
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5.3 Benchmarking a classifier against regression models

Figure 5.7: Comparing attention scores across both tasks with BertViz [364]. Atten-
tion scores for all heads of the first four layers. Rows depict layers, column depict attention heads.
Within each cell, the tokens are ordered from top to bottom. Top: Property prediction task. Bot-

tom: Conditional generation task. Plot performed with SELFIES model with float encodings,
trained on the self-consistency loss.
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5 Bridging property prediction and conditional generation

5.3.4 Regression benchmark (MoleculeNet)
After these successful initial experiments on synthetic data, we evaluated the RT on three
molecular property datasets from the MoleculeNet benchmark [34]. The regression per-
formance on ESOL, FreeSolv and Lipophilicity is shown in Table 5.6 and compared to
prior work. The strongest baseline model from MoleculeNet, XGBoost, is outperformed

Model LReg ESOL FreeSolv Lipo.
RF [34] ✓ 1.16±0.15 2.12±0.68 0.78±0.02

XGBoost [34] ✓ 1.05±0.10 1.76±0.21 0.84±0.03

MPNN [34] ✓ 0.55±0.02 1.20±0.02 0.76±0.03

SMILES-BERT [342] ✓ 0.47±0.05 0.81±0.09 –
Mol-BERT [365] ✓ 0.53±0.04 0.95±0.33 0.56±0.03

XLNet (ours) ✓ 0.69±0.01 1.03±0.25 0.74±0.02

RT (α = 0, NE: ✗) ✗ 0.76±0.05 1.19±0.29 0.76±0.03

RT (α = 1, NE: ✗) ✗ 0.75±0.04 1.32±0.39 0.76±0.03

RT (α = 0, NE: ✓) ✗ 0.71±0.04 1.40±0.47 0.74±0.05

RT (α = 1, NE: ✓) ✗ 0.73±0.04 1.34±0.29 0.74±0.03

Table 5.6: RMSE (↓) in predicting MoleculeNet dataset properties. Performance on three
different datasets across predictive models. By LReg we denote whether a given model used an
objective function that relied on regression. All models used repeated random splits. The BERT-
based models are not directly comparable to the RT, hence they are not bolded even though they
performed the best. For details see text. NE means numerical encodings and α refers to the loss
function in Equation 5.7.

by all our models on all tasks. Even the MPNN [85], a message-passing GNN, is slightly
surpassed on FreeSolv and Lipophicility by some of our models. However, all our models
are outperformed by BERT-based approaches [341, 342]. Notably, these models leveraged
large-scale self-supervised pretraining before finetuning a regression head. Since these re-
sults might not be directly comparable to the RT with its XLNet backbone, we also fine-
tuned a XLNet model with a conventional regression head. Notably, despite the absence
of a regression los, the RT is on par (Lipophilicty) or only mildly inferior (i.e., within
standard deviation range; ESOL, FreeSolv) to XLNet. But in stark contrast to all those
approaches, only the RT can also be used to conditionally generate molecules similar to
the training samples (cf. Table 5.7). Since the properties of the generated molecules are
intractable to evaluate in-silico, we could predict them, handily, using the RT. However,
as this might be a biased estimator, we evaluated them using Grover [36], a self-supervised
Graph Transformer. Hence, the Spearman correlations reported in Table 5.7 are based
on Grover’s predictions. Overall, the generative results underline the benefit of the self-
consistency loss (α = 1) and demonstrate that the RT can adapt unseen seed molecules
even according to complex molecular properties like water solubility. While we obtained
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Model ESOL FreeSolv Lipophilicity
NE α 0-Var ρ 0-Var ρ 0-Var ρ

RT ✗ 0 4.4% 0.44 7.9% 0.53 3.6% 0.29
RT ✗ 1 5.9% 0.46 7.5% 0.56 2.7% 0.35
RT ✓ 0 6.1% 0.46 8.9% 0.57 4.2% 0.29
RT ✓ 1 6.1% 0.47 6.5% 0.57 2.7% 0.34

Table 5.7: Conditional generation for MoleculeNet datasets. Average performances across
three splits for training with alternating objectives. ρ refers to Spearman rank correlation and was
evaluated with Grover [36]. Same legend like Table 5.6. Full table with standard deviations and
self-evaluation with RT are in appendix Table A5.1.

the numerically best results on FreeSolv, we noticed that those molecules were smaller on
average (15 tokens, compared to 20/47 for ESOL/Lipo). Hence, the better performance
might be due to the fact that smaller molecules are easier to adapt for certain proper-
ties because changes in individual positions are more relevant. For a qualitative evalua-
tion, we depict the generations for one exemplary seed molecule of the solubility dataset
in Figure 5.4 (bottom). Last, corroborative for our work was the high correlation of our
property predictions (RT) with Grover’s for molecules generated by the ESOL, FreeSolv
and Lipo models (0.86, 0.84 and 0.75 respectively). Thus, the Spearman correlations
obtained with RT predictions are consistent to Grover (cf. Table A5.1).

5.4 Benchmarking against conditional
generative models

To assess whether the RT can compete with conditional generative models, we bench-
marked it on a property-driven molecular generation task, namely pLogP constrained
optimization [19].

5.4.1 Data preparation and evaluation procedure

Data

This is a benchmark for property-driven, conditional molecular generation. The goal is
to adapt a seed molecule such that a property is maximized while adhering to a fixed sim-
ilarity constraint. We obtained the data from Jin et al. [19] which ships with a fixed split
of 215,381 training and 799 test molecules and their penalized LogP (pLogP) value [366].
pLogP is the octanol-water partition coefficient (logP) penalized by the synthetic acces-
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5 Bridging property prediction and conditional generation

sibility score (SAS, as proposed by Ertl and Schuffenhauer [367]) and the number of cycles
with > 6 atoms:

plogp(m) = logP(m)− SA(m)− largecycles(m) (5.11)

Hence, pLogP just like QED can be computed directly from the molecule.

Procedure

For this task, the models were also warm-started using the QED initialization and trained
for 50k steps with early stopping on perplexity. To assemble the candidates for the op-
timization of one seed molecule, we tried to follow the process of Jin et al. [19] as closely
as possible. They applied 80 gradient steps, then decoded 80 molecules and reported the
molecule with the highest pLogP score that satisfies the similarity constraint δ. Instead
of explicit optimization, we form a pool of molecules by simply prompting 80 times with
the same seed molecule but varying the fraction and the maximum span of masked to-
kens. From the pool of decodings we report the molecule with the highest pLogP, just
like Jin et al. [19] and You et al. [25]. After this process, we report the same metrics as in
their work:

1. The success rate in generating molecules with higher plogP (while adhering to the
similarity constraint δ),

2. The Tanimoto similarity δ to the seed molecule,
3. The average improvement in plogP compared to the seed molecule.

5.4.2 Results
Given a seed molecule and a similarity constraint to the seed molecule (δ, given in Tani-
moto similarity), the goal in this task is to generate molecules with higher pLogP values.
The results in Table 5.8 demonstrate that, for both similarity thresholds δ, the RT ob-
tained the best results. Across both similarities, it outperforms a Junction-Tree-VAE [19]
and a GCPN by 614% and 103% in average improvement, respectively. While the success
rate of GCPN is higher than ours, we emphasize that both JT-VAE and GCPN applied
gradient optimization schemes at inference time. Instead, the RT does not only not re-
quire any optimization at this stage, but it was also never trained explicitly to produce
molecules with high pLogP. This finding demonstrates that the RT is able to compete
with specialized conditional generative models in goal-directed molecular generation. At
the same time, the RT also predicted the pLogP value with a Pearson’s correlation of0.92,
a task that cannot be addressed with normal conditional generative models. The results
in Table 5.8 were obtained with the RT including a self-consistency loss.

In addition, we conducted experiments on lower similarity thresholds, namely δ =
0.2 (cf. Table 5.10) and δ = 0 (cf. Table 5.9). In these tables, we also performed an
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Generation task Regression

Model Improvem. Similarity δ Success PCC
JT-VAE [19] 0.84±1.5 0.51±0.1 83.6% Unfeasible

GCPN [25] 2.49±1.3 0.47±0.1 100% Unfeasible

RT (Ours) 3.16±1.5 0.54±0.1 97.1% 0.92±0.0

(a) Similarity threshold δ = 0.4

Generation task Regression

Model Improvem. Similarity δ Success PCC
JT-VAE [19] 0.21±0.7 0.69±0.0 46.4% Unfeasible

GCPN [25] 0.79±0.6 0.68±0.1 100% Unfeasible

RT (Ours) 2.21±1.3 0.69±0.1 81.8% 0.92±0.0

(b) Similarity threshold δ = 0.6

Table 5.8: Constrained property optimization benchmark. GCPN stands for graph-
convolutional policy network [25]. JT-VAE stands for Junction-Tree Variational Autoen-
coder [19].

ablation study on the impact of the self-consistency loss function and the use of numerical
embeddings. The results in both tables indicate that the RT consistently outperformed
the JT-VAE and GCPN in the main metric (improvement) by a wide margin.

Configuration Generation task Regression

Model NE α Improvement Similarity δ Success rate Pearson’s r (PCC)
JT-VAE – – 1.91±2.0 0.28±0.2 97.5% Unfeasible

GCPN – – 4.20±1.3 0.32±0.1 100% Unfeasible

RT ✓ 1 8.67±2.5 0.10±0.1 100% 0.92
RT ✓ 0 7.96±2.6 0.11±0.1 100% 0.90
RT ✗ 1 8.52±2.5 0.10±0.1 100% 0.91
RT ✗ 0 8.35±2.6 0.10±0.1 100% 0.94

Table 5.9: No similarity threshold (δ = 0.0).
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Configuration Generation task Regression

Model NE α Improvement Similarity δ Success rate Pearson’s r (PCC)
JT-VAE – – 1.68±1.9 0.33±0.1 97.1% Unfeasible

GCPN – – 4.12±1.2 0.34±0.1 100% Unfeasible

RT ✓ 1 4.45±1.7 0.35±0.1 99.6% 0.92
RT ✓ 0 4.12±1.7 0.36±0.1 99.6% 0.90
RT ✗ 1 4.34±1.6 0.35±0.1 99.9% 0.91
RT ✗ 0 4.40±1.7 0.35±0.1 99.7% 0.94

Table 5.10: Similarity threshold δ = 0.2.

5.5 Protein language modeling application

5.5.1 Data preparation and evaluation procedure
Synthetic Boman dataset

Data. As a large-scale, labelled dataset we focused on the Boman index, a measure of
potential protein interaction for peptides. It is the average of the solubility values of the
residues [368]. We collected all 2,648,205 peptides with 15 to 45 AAs from UniProt [369],
computed their Boman index, and used 10k and 1k samples respectively for testing and
validation.

Procedure. To model protein sequences, we started with training on the Boman
dataset. We trained three groups of models, one for the vanilla PLM objective (Equa-
tion 5.3) and two for the alternating objectives. We again alternated every 50 steps be-
tween optimizing Equation 5.5 and Equation 5.7 and trained one set of models with
and one set without the self-consistency loss, such that α = 1 and α = 0 respectively
in Equation 5.7. Models were trained until validation perplexity saturated (∼ 4days, sin-
gle GPU). The numerical values of the Boman index, originally in the range [−3.1, 6.1]
were normalized to [0, 1] and rounded to three decimal places.

TAPE benchmark

Data. We focused on two datasets from the TAPE benchmark [333]: Fluorescence [370]
and Stability [371]. The goal is to predict, respectively, the fluorescence and intrinsic fold-
ing stability of a protein that is one to four mutations away from a training protein. Both
datasets ship with fixed splits. The fluorescence (stability) dataset has 21, 446 (53, 416)
training, 5, 362 (2, 512) validation and 27, 217 (12, 851) test samples.

Procedure. For both datasets, three models were warm-started using the Boman
initialization and trained until validation performance saturated (∼ 100k steps). We
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5.5 Protein language modeling application

used the self-consistency objective for all experiments. The numerical values were
again scaled to [0, 1]. On the Fluorescence data, a small value of Gaussian noise was
added to some training samples due to an interesting failure mode (discussed later
in Subsubsection 5.5.3.1). For the evaluation of the conditional generation task, the
models were given more flexibility: 60% of the tokens were masked (i.e., c = 1.7
in Equation 5.3) and the maximum span was 7 amino acid residues. We did not evaluate
the RT on conditional generation for the Fluorescence dataset because of a massive
pretraining-finetuning mismatch: While the Boman dataset used for pretraining
consisted of 15 to 45 residues (mean/std: 36 ± 7), the fluorescence proteins were
significantly larger (246 ± 0.2 residues). Instead, the proteins in the stability dataset
were similar in size to the pretraining data (45± 3 residues).

5.5.2 Synthetic pretraining: Boman index
To assess the generality of the RT beyond chemical languages, we benchmarked the
RT in protein language modeling. On the synthetic pretraining data, the RT obtained
nearly perfect results in predicting Boman’s index (Spearman ρ > 0.994; Table 5.11) and

Regression task Generation task

Model Loss RMSE (↓) Pearson’s r (↑) 0-Var (↓) Spearman ρ (↑)
k-NN – 0.53 0.932 Task unfeasible

RT PLM 0.69±0.03 0.944±0.0 0.3±0.4 0.76±0.03

RT α = 0 0.17±0.04 0.994±0.0 0.2±0.1 0.82±0.01

RT α = 1 0.20±0.04 0.991±0.0 0.2±0.1 0.84±0.00

Table 5.11: Ablation study on training schemes for Boman dataset. Again, α refers to the
self-consistency objective in Equation 5.7.

outperformed a baseline k-NN using Levenshtein distance [161]. This is a meaningful
baseline model because the Boman index solely depends on the frequencies of amino
acids. These results confirmed that the superiority of the self-consistency objective also
extends beyond the domain of small molecule modeling. Like on the QED dataset, the
self-consistency loss led to better results in conditional generation, but at the expense
of slightly reduced accuracy in regression. We believe that this might be caused by the
self-evaluations of the decoded sequences. These sequences might differ significantly
from the training sequences but are still used with the property value of the original
sequences.

Moreover, the RT also successfully generated peptides with a desired Boman index
given a partially corrupted amino-acid sequence (cf. Spearman ρ of 0.84, see Table 5.11).
Apart from that, Figure 5.8 reveals a general trend in the conditional generation with the
Regression Transformer: More freedom in the generative process (i.e., a higher fraction of
masked amino acid residues) leads to better results in terms of Spearmanρ to the property

143



5 Bridging property prediction and conditional generation

0.2 0.4 0.6
Fraction of masked tokens

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Sp
ea

rm
an

 

Conditional generation - Protein interaction 

PLM loss
Text loss (JG)
Self-consistency (JSC)

Model 
PLM loss
Text loss (JG)
Self-consistency (JSC)

Figure 5.8: Correlation between property primer and property of generated protein se-
quences The model’s ability to generate protein sequences with a desired protein interaction in-
dex. The self-consistency loss yielded the best results and, generally, a higher fraction of masked
tokens led to generated peptides that adhere better to the primed property value.

primers (cf. Figure 5.8). This comes, however, at the cost of reduced similarity to the seed
sequence.

5.5.3 Protein fluorescence and stability
Next, we evaluated the RT on protein property prediction benchmarks from TAPE [333].
As can be seen in Table 5.12, the RT performed competitively on these two realistic pro-
tein regression datasets. This is remarkable given that the TAPE models were pretrained

Model Source Fluoresc. Stability
k-NN Baseline 0.59 0.21

One-Hot TAPE 0.14 0.19
LSTM TAPE 0.67 0.69

Transformer TAPE 0.68 0.73
UniRep [372] 0.67 0.73

RT Ours 0.72±0.04 0.71±0.02

Table 5.12: Protein regression tasks. All values in Spearman’s ρ (↑) on the test set. TAPE
datasets/performances taken from Rao et al. [333].

large-scale on unlabelled protein sequences and finetuned with a regression loss. For ex-
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ample, the RT outperforms all reported methods in Spearman correlation on the Fluores-
cence task. The competitive predictive performance of the RT demonstrates that the ben-
efits of self-supervised pretraining can extend to numerically labelled datasets. Instead of
self-supervised pretraining on an unlabelled dataset of protein sequences, like commonly
done in prior art [333, 372, 373], the RT can perform self-supervised pretraining on a nu-
merically labelled dataset. This large-scale pretraining on the Boman dataset yields, en pas-

sant, a conditional generative model for property-driven local exploration of the protein
sequence space. Evidence on the peptide generation results based on the stability dataset
can be found in Table 5.13. Whereas all TAPE models as well as the UniRep method

Model Stability dataset
0-Var (↓) Spearm. ρ

All TAPE
Task unfeasibleUniRep

RT 19%±4.5 0.44±0.01

Table 5.13: Protein generation performance. Standard deviations measured across three runs.

are incapable of addressing this generation task, the RT was able to modify the test pep-
tides such that their (predicted) stability correlated strongly with the primed property
(ρ = 0.44).

5.5.3.1 Can we truly "regress"?

Arguably the most interesting aspect about the RT model is the unconventional way of
solving a regression task by predicting a sequence of tokens (i.e., characters) that (hope-
fully) translate to a valid floating-point number. Given that the RT is trained on a con-
ventional cross-entropy loss which cannot convey similarity between tokens, it is clear
that the RT will always suffer from a training-evaluation-mismatch. The RT is trained as
a classification model but during evaluation, it is assessed with regression metrics such as
RMSE or Spearman’s ρ. We therefore sought to understand to what extent the RT can
truly "regress".

To examine that, the protein fluorescence dataset from Sarkisyan et al. [370] is particu-
larly interesting because it has a bimodal mode: one mode corresponding to bright pro-
teins, the other to dark proteins. During initial training, we observed an interesting failure
mode. Figure 5.9 shows that the dark mode has one sharp spike, exactly at a log fluores-
cence value of 1.301. Almost 10% of all training samples and almost 50% of the proteins
in the dark mode have this exact value. The Regression Transformer is trained on a clas-
sification loss and so, the loss during training for such samples will be distributed across
the five tokens 1_0, _., 3_0, 0_-1 and 1_-2. In many cases, the model collapsed to always
predicting 3.301where the first token (3_1) was correct for all samples in the bright mode
and the remaining tokens (3_0, 0_-1 and 1_-2 were correct for most samples in the dark
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model. As a non-algorithmic remedy, we added Gaussian noise to those training samples
as described above. Note that we do not apply any weighting of the individual numerical
tokens.

Upon this perturbation, the training performance converged more smoothly. When
inspecting the predictions of the well-behaving models in more depth, we found that the
RT excels at recognizing the mode of a protein but struggles with intra-mode precision.
This can be seen in Figure 5.9 which reveals the improved performance of the RT com-
pared to the finetuned TAPE Transformer: Less samples were predicted in the wrong
mode. However, the RT had difficulties with a fine grained regression, in particular in

TAPE - Pretrained Transformer

Regression Transformer

Figure 5.9: Bimodal mode of fluorescence data. The upper part of the plot has been copied
from Rao et al. [333] (Figure 3). It shows the bimodal mode of the training data and the test
predictions from the TAPE Transformer. At the bottom, we show our remake of the above plot
by replacing the predictions from the pretrained TAPE Transformer with the predictions from
the Regression Transformer.

the bright mode. This becomes particularly apparent when inspecting the detailed re-
sults, grouped by bright and dark test proteins respectively in Table 5.14. While the RT
achieved the best results in the overall Spearman ρ, the recommended metric by Rao et al.
[333], it does not dominate any of the mode-specific metrics. This is a noteworthy find-
ing because it reflects the tendency of the RT to strive for a multi-class classification rather
than performing a full regression. It is also interesting to see that the baseline models (k-
NN and TAPE One-Hot) achieved the best results in MSE of bright proteins.
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Full test set Bright proteins Dark proteins
Model Source MSE ρ MSE ρ MSE ρ

One-Hot TAPE 2.69 0.14 0.08 0.03 3.95 0.00
k-NN Ours 2.31 0.59 0.05 0.30 3.37 0.04

Pretr. LSTM TAPE 0.19 0.67 0.12 0.62 0.22 0.04
Pretr. Transf. TAPE 0.22 0.68 0.09 0.60 0.29 0.05

UniRep UniRep 0.20 0.67 0.13 0.63 0.24 0.04
RT Ours 0.34 0.72 0.19 0.45 0.40 0.04

Table 5.14: Detailed fluorescence prediction results. MSE abbreviates mean squared error.
TAPE and UniRep performances taken from Rao et al. [333]. For the RT all standard deviations
on ρ and MSE were < 0.05 and < 0.1 respectively.

5.6 Chemical reaction modeling applications
The two tasks that we performed with the RT on chemical reactions are visualized in Fig-
ure 5.1f. The vanilla task to predict the yield of a reaction from its reaction SMILES.
The alternative, generative task was to generate a novel precursor, based on the rest of the
reaction (i.e., the remaining precursors, the product and the yield).

5.6.1 Data preparation and evaluation procedure
Pretraining on USPTO reactions

Before training on the narrow yield datasets, we warmed up the model to learn generic re-
action chemistry. This was done because the two reaction yield datasets only cover narrow
regions of the chemical space (one template applied to many precursor combinations).

Data. We used reactions from the US Patent Office (USPTO), the largest open-source
dataset about chemical reactions [374]. Since no yield information was available, the uti-
lized numerical property was the total molecular weight of all precursors. The dataset
contained n = 2, 830, 616 reactions and was obtained from Schwaller et al. [29].

Procedure. 5000 reactions were held out for validation and the model was trained
until validation performance on the two alternating objectives (with self-consistency loss)
saturated. The masking hyperparameter c was set to 2.5 and the model were trained for
∼ 2 days (single GPU). The vocabulary for reaction SELFIES contained 861 tokens.

Reacion yield datasets

We investigated two high-throughput experimentation (HTE) yield datasets that exam-
ine specific reaction types: Buchwald-Hartig aminations [375] and Suzuki-Miyaura cross-
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coupling reactions [376]. Both datasets were investigated in the same 10 random splits as
examined in Schwaller et al. [62] with a 70/30% train/validation ratio.

Buchwald-Hartwig data. This dataset, produced by Ahneman et al. [375], inves-
tigates HTE of Palladium-catalysed Buchwald-Hartwig C-N cross coupling reactions.
The reaction space comprises 3955 reactions, spanned by 15 unique aryl and heteroaryl
halides, 4 Buchwald ligands, 3 bases and 22 isoxazole additives. A Palladium-catalyst and
a Methylaniline are the fifth and sixth precursor respectively, however they are identical
for all reactions. Each reaction is associated to a yield y ∈ [0, 100] and the 10 random
split were identical to the ones released by Sandfort et al. [377] that are also used by all
competing methods in Table 5.15.

Suzuki cross-coupling data. This dataset was provided by Perera et al. [376] and
investigates HTE of Suzuki-Miyaura reactions across 15 pairs of electrophiles and nu-
cleophiles, leading to different products respectively. For each pair, a combination of 4
solvents, 12 ligands and 8 bases (reagents) was measured, resulting in a total of 5760 re-
action yields that we scale to the range [0, 100]. The catalyst is identical for all reactions,
some reactions omitted the ligand or the base while others contained electrophiles, nucle-
ophiles, ligands, bases or solvents that were composed of different fragments (e.g., salts).

Procedure. For both the Buchwald-Hartwig reactions [375] and the Suzuki-
couplings [376], ten models were finetuned respectively on repeated random splits. The
training objectives again alternated every 50 steps between property prediction and
conditional generation with α = 1 for a maximum of 50k steps (∼ 1 day). Notably,
during the conditional generation task we sampled one precursor per batch and then
entirely but exclusively masked this precursor. Thus the objective for the model became
to reconstruct a missing precursor from the remaining precursors and the reaction
yield (or to produce an alternative precursor with a similar predicted yield). We used
SELFIES.

Evaluation reaction generation. In this section, we challenge the model with
two sequence generation tasks.
1. Fully reconstructing a precursor solely based on the remaining precursors and the reac-

tion yield. The top-3 predicted sequences (decoded via beam search) are considered,
s.t. Top-3 accuracy is reported. Additionally we report the average Tanimoto sim-
ilarity of the most similar of the top-3 molecules to the seed molecule (fingerprint:
ECFP4).

2. Secondly, we measure the capability of decorating existing reactions to obtain a (po-
tentially) higher yield. To that end, the model is prompted with incomplete reactions
consisting of an increased yield, an entirely masked precursor and complete remaining
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precursors. We consider the top-3 predicted sequences (decoded via beam search) and
report the fraction of samples where one of the reactions had a higher (predicted) yield
(success rate). The second response metric is the mean improvement in (predicted)
reaction yield (yield y ∈ [0, 100], the distributions are right-skewed). Note that we
exclude trivial solutions by removing all predicted precursors that exist in the training
dataset.

5.6.2 Results
5.6.2.1 Reaction yield prediction

Language models have significantly advanced reaction chemistry [29, 53] and also showed
superior performance on yield prediction [62], yet models incorporating yield into (par-
tial) reaction generation are lacking entirely. We therefore optimized the RT for concur-
rent yield prediction and precursor generation on two reaction-yield datasets: Buchwald-
Hartig aminations [375] and Suzuki-Miyaura cross-couplings [376]. On yield predic-
tion, the RT outperforms fingerprint-based or quantum-mechanics methods as can be
seen in Table 5.15. Moreover, it matches (Suzuki dataset) or almost matches (Buchwald
dataset) the performance of language models like Yield-BERT, trained with regression
loss on SMILES.

Model Buchwald-Hartwig Suzuki-Coupling
One-Hot [377] 0.89 –

DFT [375] 0.92 –
MFF [377] 0.927±0.01 –

Yield-BERT [62] 0.951±0.01 0.79±0.02

Yield-BERT finetuned 0.951±0.01 0.81±0.01

RT (ours) 0.939±0.01 0.81±0.02

Table 5.15: Reaction yield prediction performance. Evaluated on ten 70/30 splits, measured
in coefficient of determination (R

2).

5.6.2.2 Reconstructing precursors

The same model that was trained to predict yield in Buchwald-Hartwig animations is also
able to reconstruct missing precursors, as shown in Table 5.16. This can be useful to infer
missing solvents or reagents in automatically extracted reactions. We measure reconstruc-
tion performance by showing the percentage of cases where the exact right precursor was
among the top-3 predicted sequences and the Tanimoto similarity of the most similar of
those molecules. The reconstruction is partly achieved with great accuracy (e.g., 98.2%
for aryl-halides). Interestingly, inferring additives proved challenging, the top-3 accuracy
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Precursor Top-3 accuracy Tanimoto similarity
Halide 98.23%±0.5 0.991±0.00

Ligand 50.38%±1.6 0.677±0.01

Base 100%±0.0 1.000±0.00

Additive 1.36%±0.5 0.158±0.02

Table 5.16: Reconstructing precursors for Buchwald-Hartwig aminations [375]. Each re-
action in the dataset also contained 4-Methylaniline and the same Palladium-catalyst, thus they
are excluded from the analysis. Full precursors were generated.

in the reconstruction performance was< 1%. We hypothesize that this might be because
additives are the dominant precursor type for the reaction yield [375]. Furthermore, we
observed that when we masked the additive only partially (rather than completely), the
reconstruction performance increases significantly. This can be seen in the ablation study
in Table 5.17.

pmask Top-3 accuracy Tanimoto similarity
1.0 1.36%±0.5 0.158±0.002

0.5 11.47%±1.0 0.316±0.002

0.25 46.74%±3.5 0.645±0.003

Table 5.17: Ablation study on model flexibility for generation of additives. Performance in
generating additives for Buchwald-Hartwig reactions [375] as a function of pmask, i.e., the frac-
tion of tokens in the additive that are masked. Generation was primed with remaining precursors
and yield.

On the Suzuki-couplings, the reconstruction results are more balanced among the five
precursor types; the average Tanimoto similarity to the true precursor was > 0.65 in all
cases (cf. Table 5.18).

Precursor Top-3 accuracy Tanimoto similarity
Electrophile 44.2%±17.6 0.732±0.02

Nucleophile 100.0%±0.0 1.000±0.00

Ligand 67.4%±20.0 0.689±0.15

Base 90.5%±1.2 0.811±0.01

Solvent 56.4%±1.1 0.661±0.01

Table 5.18: Reconstructing precursors for Suzuki couplings [376]. Each reaction in the
dataset also contained the same Palladium-catalyst which is thus excluded from this analysis.
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5.6 Chemical reaction modeling applications

5.6.2.3 Improving reactions by generating new precursors

In addition to yield prediction and precursor reconstruction, the RT can also decorate ex-
isting reactions by adapting specific precursors toward a higher yield. The performance
on this in the Buchwald-Hartwig dataset can be found in Table 5.19. We measured decora-

Precursor Success rate Mean improvement
Halide 42.3%±2.4 6.1±1.3

Ligand 74.4%±4.2 14.4±1.7

Base 82.2%±2.3 8.1±0.6

Additive 71.2%±1.8 11.7±1.3

Table 5.19: Generating precursors for Buchwald-Hartwig aminations [375]. Each reaction
in the dataset also contained 4-Methylaniline and the same Palladium-catalyst, thus they are ex-
cluded from the analysis. Full precursors were generated (pmask = 1).

tion performance by reporting the percentage of cases where the top-5 predicted reactions
contained a reactions with higher (predicted) yield than the seed reaction (success rate).
The second reported metric is the associated average yield improvement, again given on
a scale [0, 100]. Consistently across all precursor types, 40-80% of the top-5 predicted
sequences contained reactions with entirely novel precursors and higher predicted yield.
Figure 5.10 visualizes exemplary adaptations of base and arly-halide of a BH amination
with very low yield (< 5%). This reaction was unseen during training and had a very
low yield (5%). The RT found novel adaptations of each of the four precursor types
that resulted in an increase of predicted yield to 11-85% yield. With the forward reaction
prediction model in IBM RXN [28] we confirmed that all reactions indeed result in the de-
sired product. Notably, the confidence from the forward model rank-correlated almost
perfectly with the yield predicted by the RT (ρ = 0.90, p < 0.05).

The results on the precursor generation for the Suzuki couplings are shown in Ta-
ble 5.20. Similarly to the BH aminations, 50-60% of the top-5 predicted sequences con-
tained reactions with entirely novel precursors and higher predicted yield.

Precursor Success rate Mean improvement
Electrophile 63.5%±7.1 12.5±3.4

Nucleophile 54.0%±6.2 5.4±0.8

Ligand 56.7%±3.5 5.5±0.6

Base 47.8%±2.7 4.6±0.3

Solvent 57.8%±1.8 7.5±0.3

Table 5.20: Generating precursors for Suzuki couplings [376]. Each reaction in the dataset
also contained the same Palladium-catalyst which is thus excluded from this analysis.
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5 Bridging property prediction and conditional generation

Pd-Catalyst

Yield = 4.95

4-MethylanilineHalide LigandBase Additive

Yield = 26.00

Yield = 11.45

Yield = 84.90

Yield = 14.44

2-Bromo-
pyridine

Seed reaction
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isoxazole

Phosphazene 
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2-(Di-1-adaMantylphosphino)-3,6-diMethoxy
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Figure 5.10: Adapting an unseen Buchwald-Hartwig amination toward higher yield. To-
gether with a BH amination from the validation dataset (top), we show four RT-generated reac-
tions with adaptations of the base, the halide, the additive and the ligand respectively. In this case,
the predicted yield of all new reactions was higher. The RXN confidence stems from the forward
model by Schwaller et al. [28] which confirmed that the reaction would result in the shown prod-
uct in all cases. Note that no adaptations of 4-Methylaniline and the Palladium-catalyst can be
generated since they are constant cross the dataset.
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5.7 Discussion

5.6.2.4 Benefit of co-encoding numerical properties

A key advantage of the RT over conventional language models is the ability to co-encode
text with numerical properties. Conventional SMILES translation models like the
Molecular Transformer [28] could also be used to reconstruct missing precursors but
they would be unable to condition this reconstruction meaningfully on the yield.

Therefore, we conducted a last ablation study to assess the benefit of co-encoding nu-
merical properties. The results are shown in Table 5.21 and Table 5.22 for the BH amina-
tions and the Suzuki couplings respectively. The results consistently show mild benefits

Precursor Top-3 accuracy Tanimoto similarity Unique ntype Prec. + Yield Precursors Prec. + Yield Precursors
Aryl halide 98.23%±0.5 98.21%±0.4 0.991±0.003 0.991±0.002 15

Ligand 50.38%±1.6 50.43%±1.7 0.677±0.010 0.678±0.010 4
Base 100.0%±0.0 100.0%±0.6 1.000±0.000 1.000±0.000 3

Additive 1.36%±0.5 1.25%±0.8 0.158±0.018 0.158±0.019 22

Table 5.21: Generating precursors for Buchwald-Hartwig reactions [375] based on re-
maining precursors or remaining precursors and yield. Full precursors were generated
(pmask = 1). Unique n denotes the number of unique samples per entity in the training dataset.

Precursor Top-3 accuracy Tanimoto similarity Unique ntype Prec. + Yield Precursors Prec. + Yield Precursors
Electrophile 44.19%±17.6 31.39%±15.3 0.732±0.160 0.591±0.141 7
Nucleophile 100.0%±0.0 100.0%±0.0 1.000±0.000 1.000±0.000 4

Ligand 67.43%±20.0 67.59%±19.8 0.689±0.152 0.690±0.152 5
Base 90.53%±1.2 90.50%±1.4 0.811±0.006 0.811±0.001 8

Solvent 56.74%±1.1 56.52%±1.0 0.661±0.009 0.660±0.007 4

Table 5.22: Generating precursors for Suzuki-cross-couplings reactions [376] based on
remaining precursors or remaining precursors and yield. Legend like Table 5.21.

in reconstruction performance when providing the true yield rather than masking it. This
highlights the benefit of jointly encoding input and target variables.

5.7 Discussion
In the last chapter of this thesis we presented the Regression Transformer (RT). We
demonstrated that regression can be casted as conditional sequence learning task and
introduced a flexible multitask-language-model with wide application in scientific
discovery. We hope to have shown that the RT can act as a "swiss army knife" transformer
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5 Bridging property prediction and conditional generation

that bridges previously considered disjoint tasks such as property prediction and
conditional sequence generation. The RT was shown to excel at both tasks and could
thus pave the road toward foundation models in material design.

Regarding molecular property prediction, we find that the RT learns continuous
properties even from small datasets, surpasses conventional regression models on several
benchmarks and sometimes competes with Transformers trained on regression loss.
Remarkably, this is achieved without providing ratio-scale information about the
property, potentially even challenging the necessity of using regression rather than
classification objectives.

The experiments on conditional text generation underline the versatility of the RT:
Across a wide range of tasks, we conditionally generated novel sequences (molecules,
proteins, reactions) that seemingly adhere to primed, continuous properties. Our
experiments on constrained molecular generation benchmark further demonstrate
that the RT can surpass specialized conditional generative models. We foresee this to
be useful for property-driven, sub-structure constrained molecular or protein design.
Moreover, the RT presents a viable solution to extend self-supervised pretraining from
unlabelled datasets to numerically labelled datasets. We have further demonstrated that
co-encoding task-related continuous properties (such as reaction yield) can be beneficial
to boost model performance in sequence generation tasks (e.g., reconstruct missing
precursors). We also emphasize that even though all experiments reported herein
examined singular properties, the RT naturally scales to multiproperty prediction.

Future work could, for example, intensify the work on reaction modeling (the RT ef-
fectively generalizes forward reaction and retrosynthesis models) or improve the ability
of the RT to perform fine-grained regression. Finally, our work resonates with the re-
cent trend towards multitask Transformers [331, 378, 379] and we envision it as a mean to
accelerate the development of foundation models for scientific discovery applications.
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6 Concluding remarks

Reflection on contributions
In this thesis, we have developed and studied generative language models for de novo

molecular design. We strived to develop generative models that can be conditioned on a
wide range of complex starting conditions (e.g., protein targets, molecular substructures
or a property value with floating-point precision) and generate molecules that adhere to
the starting criterion.

Before focusing on these tasks we have devoted the first part of this thesis to the devel-
opment of language models to predict molecular properties such as toxicity, solubility or
binding affinity to a protein. This was done in order to have more interesting and mean-
ingful evaluation metrics than commonly employed for molecular generative models.

Interlude on evaluation metrics of generative models
Notably, an appropriate evaluation of molecular generative models still remains
difficult and has been identified as a key challenge for the field [337]. The current
state of the field has aptly been summarized as:

"The current evaluations for generative models do not reflect the complexity of real

discovery problems." Coley et al. [380]

A physical validation is entirely impractical, an analytical evaluation is impossible
since the learned distributions cannot be formulated analytically. Critically, not
even a (trained) human eye can act as a reliable oracle (unlike for text or image gen-
eration methods). Therefore, common evaluation metrics are extremely simplistic
and include novelty, uniqueness, validity, diversity [381] or the Frechet Chemnet
distance [382], basically a Wasserstein-2 distance on the activations on the penul-
timate layer of a neural network. Renz et al. [383] convincingly demonstrated that
all those metrics are practically useless as a simple algorithm that randomly inserts
carbon atoms to molecules from the training data outperforms models previously
considered as SOTA. Throughout this thesis we have thus refrained from assess-
ing our models by such metrics and rather attempted to build complex molecular
property predictors that can serve as evaluation functions. In the field, established
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6 Concluding remarks

metrics for biochemical metrics are still largely absent. Performance on optimiza-
tion of simple chemo-centric properties like QED or logP are frequently reported
even though their practical use is marginal. For some subdomains of molecular
discovery somewhat accepted evaluation metrics exist, e.g., molecular docking for
protein-targeted drug discovery. However, such evaluations are computationally
extremely demanding and thus not applicable large-scale. Recently, Cieplinski et al.
[384] found that most SOTA methods did not succeed in generating molecules
with high docking scores and proposed a benchmark for faster docking score eval-
uation. In our recent work by Tadesse, Born, et al. [385], we therefore proposed
MPEGO, a first step toward a hierarchical and flexible evaluation of generative
models. The main advantage regarding the flexibility is that users can select and
weight properties to be considered for evaluation. Upon a selection of one or mul-
tiple properties (they can be everything from molecular weight to the user-provided
outcome of a real experiment, all we require is to have the property available for a
set of training molecules as well as generated molecules), MPEGO compares the
property distributions in a hierarchical manner. This hierarchical evaluation can
be done either based on a feature discretization scheme or by directly comparing
the distributions with the Wasserstein distance.

The first part of this thesis has shown that competitive performance in molecular prop-
erty prediction can be achieved with language models that solely rely on SMILES and pro-
tein sequences. We benchmarked various molecular representations (e.g., fingerprints,
different flavors of SMILES and SELFIES, as well as graph and graph kernel methods) and
revealed that SMILES coupled with augmentation overall obtained the best performance.
Moreover, the attention weights of our model, ToxSmi, allowed for easy interpretation
and showed enrichment of known toxicophores even without explicit supervision. We
introduced a notion of model reliability by proposing and combining two simple meth-
ods for uncertainty estimation (Monte-Carlo dropout and test-time-augmentation) and
found that those methods not only identify samples with high prediction uncertainty,
but also allow forming implicit model ensembles that improve accuracy. We validated
ToxSmi on a large-scale proprietary toxicity dataset and find that it outperforms previous
work while giving similar insights into revealing cytotoxic substructures.

The next objective was to investigate the task of protein-ligand binding affinity
prediction and develop a multimodal proteochemometric language model. We
challenged a common practice in sequence-based CPI prediction models, i.e., relying on
full protein sequences. By representing kinases only through 29 residues comprising
the ATP binding site, we disregarded > 95% of the commonly considered protein
features and found that this significantly and robustly improves model performance.
This is probably due to an increased SNR as well as an implict incorporation of 3D
information into the 1D model stemming from the discontiguity of the active site in the
original sequence. We proposed several new sequence augmentation strategies that yield

156



complementary performance benefits.

In the second part of this thesis, we first developed a hybrid VAE that bridges systems
biology and molecular design. By fusing the latent spaces of two separately pretrained
VAEs this model can effectively incorporate system-level information about the target
environment of the a molecule into the generative process. This method was first
exemplified for the discovery of anticancer hit molecules and steered the molecular
generation by exploiting the previously proposed toxicity and drug sensitivity prediction
models as reward functions. In our experiments, the molecule generation could be
biased to molecules with high predicted drug sensitivity for specific cell line profiles or
cancer types. The molecules that were generated in a cancer-type-specific-manner were
further analyzed and often showed the highest structural similarity to existing drugs
with known relations for exactly those cancer types. Even though those results were
promising, we emphasize that without a successful wet-lab validation the true value of
any molecular generative model remains unclear. Within our proposed framework, the
quality of the generative model is inherently constrained by the predictive power of the
reward function and thus satisfying extrapolation capabilities of the reward functions
are instrumental for this hybrid VAE.

We then extended this framework to protein target-driven molecular design and apply
it on 41 SARS-CoV-2 related proteins. The results demonstrated high generalization
capabilities and showed that our method does not require finetuning for specific
targets. In a leave-one-out cross validation we found that molecules with high predicted
binding affinity were proposed even against unseen protein targets. The proposed
molecules showed a comparably high selectivity while being more promiscuous to other
SARS-CoV-2 targets than other molecules. For the first time we reported the coupling
of 1) a molecular generative model, 2) tools for automated synthesis planning and 3) the
successful synthesis on a robotic hardware. Even though we lacked the experimental
validation, this was a modest step toward accelerated molecular discovery through a
completely autonomous workflow that did not require human intervention from
hypothesis to the make.

In the last chapter of this thesis we proposed the Regression Transformer, a multitask
language model that seamlessly bridges sequence regression (i.e., property prediction)
and conditional sequence generation. We thoroughly demonstrated that, despited us-
ing a nominal-scale training objective, the Regression Transformer matched or surpassed
the performance of conventional regression models in property prediction trasks of small
molecules, proteins and chemical reactions.

Our main motivation for this method, however, was to incorporate an inductive bias
about continuous properties of interests into a generative language model. Upon prim-
ing our model with floating-point property constraints, we obtained a competitive con-
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ditional generative model that outperformed specialized approaches in a substructure-
constrained property-driven optimization benchmark. This dichotomy was facilitated
by a novel training scheme that optimizes sequence regression and generation in an al-
ternating fashion. Across the domains of small molecules, proteins and chemical reac-
tions we found that the RT can decorate arbitrarily corrupted seed sequences by desired
properties. The RT thus constitutes a highly flexible model that will hopefully find wide
application for exploring the local chemical space around a seed molecule in a property-
constraint manner.

Closing the loop
While the methods proposed in this thesis can intertwine molecular discovery tasks better
with virtual screening methods, the molecular discovery loop (cf. Figure 1.1C) yet has to
be closed. This can be achieved with traditional techniques such as manual planning and
execution of synthesis and in vitro experimentation. However, synergies will certainly be
higher if the remaining parts in the DMTA cycle were also autonomous. This might be
cheaper and faster and would certainly yield more reproducible and standardized experi-
mental results. Gromski et al. [386] envisioned a tight integration of generative algorithms
into laboratory workflows that allowed refinements based on synthesis and experimental
results in closed-loop, autonomous manner.

Traditionally, computer-aided synthesis planning (CASP) largely relied on
expert-crafted reaction rules [387]. Recently however, significant progress has been
achieved in automated synthesis planning [28, 30, 60, 388]. Lots of this progress was due
to the transfer of methods from NLP to the field of chemistry. By treating chemistry as a
natural language, the Molecular Transformer [28] enabled a fully autonomous planning
of multistep synthesis routes without any injection of expert knowledge [60]. However,
even upon the identification of a synthesis route, the exact action steps for conducting
the synthesis have to be extracted in a tedious manner, typically manually by humans
from patents. This problem was largely solved in a seminal work by Vaucher et al. [30]
who presented a method to convert unstructured experimental procedures from patents
into a stepwise execution protocol of actions needed to conduct the synthesis physically.

To avoid the slow and costly manual synthesis, robotic hardware for automated syn-
thesis is rapidly emerging. Burger et al. [389] developed a mobile robot for the search of
photocatalysts, and Coley et al. [390] reported a preliminary integration of a platform for
automated organic synthesis guided by algorithmically predicted synthesis routes. Later,
the IBM RoboRXN platform integrated a wide range of synthesis planning tools [28, 30, 60,
61, 391] with a programmable robotic hardware that covers a huge organic reaction space
and allows to plan and execute synthesis from the browser1. The Matterlab has devel-
oped a rich array of laboratory automation hardware for material design tasks that has

1https://rxn.res.ibm.com
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frequently been demonstrated to accelerate material discovery, e.g., on applications like
thin-film materials [15], metal-organic frameworks [16], nanoparticle synthesis [392], pro-
cess optimization [393] or organic photovoltaics [394].

Outlook
Altogether, within this thesis we hope to have proposed a stack of methods that can flex-
ibly generate molecules for a wide range of complex starting conditions without the need
of finetuning.
From the ML viewpoint we believe that our work is in line with the current trends in
NLP toward multitask models and prompt design [378, 379, 395]. The next frontier
will be to develop foundation models in chemistry that can excel across the full stack of
chemoinformatics tasks with little to no necessary adaption. By bridging chemical and
natural languages, we envision a model that can be prompted by a chemist with a natural
text query describing the design problem and that generates a molecule addressing the
design task. Attempts in this direction have been made with the MolT5 model by Edwards

et al. [396] on converting natural text describing molecules to SMILES2. By flipping the
translation task, such a model can be used for tasks like molecule captioning (i.e., natural
language descriptions of molecules) which could be particularly interesting to obtain
further information about a de novo molecule prior to the first ever synthesis (for such
molecules this information will likely not be manually retrievable from PubChem). A
unified chemical language model called T5Chem has been proposed by Lu and Zhang [335].
T5Chem achieves competitive performance on forward reaction prediction, single-step
retrosynthesis, reaction classification and reaction yield prediction. However, that
model is only a mulitask but not a multidomain model and still relies on task-specific
heads. A multidomain model for chemistry-related question-answering, named entity
recognition or relation extraction has been explored by Zeng et al. [397]. In sum this
indicates the beginning of a trend toward multitask/multidomain chemical language
models that might culminate in a chemistry foundation model similar to T5 [398],
GPT3 [379] or PaLM [399] in NLP.

From a chemist’s viewpoint, the next frontier would be the successful deployment
of our developed methodology into a fully autonomous DMTA cycle. While we have
demonstrated the integration of our algorithms with synthesis planning tools and robotic
hardware for autonomous synthesis in Section 4.4, we have not obtained any experimen-
tal validation. Ideally, this could be achieved with automatized high-throughput screen-
ing like in Arctoris’ Ulysses platform for kinase inhibitor characterization [400]. If such
a platform could be coupled with the models developed in this thesis and the synthesis

2Example input: "The molecule is a sulfonated xanthene dye of absorption wavelength 573 nm and emission

wavelength 591 nm. It has a role as a fluorochrome." [396]
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6 Concluding remarks

planning and execution tools in IBM RXN for Chemistry, one could envision a DMTA
cycle where all critical decisions (what compound to make next – and how?) are being
made by machines and all main operations (synthesis and screening assay) are performed
without human labor.
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Appendix

A1 Introduction

A2 Molecular Property Prediction

Dataset BACE BBBP Tox21 Clintox SIDER Average# of tasks 1 1 12 2 27

ToxSmi 0.861±0.039 0.915±0.023 0.795±0.050 0.896±0.006 0.619±0.037 0.817±0.031

TF_Robust [104] 0.824±0.022 0.860±0.087 0.698±0.012 0.765±0.085 0.607±0.033 0.751±0.048

GraphConv [105] 0.854±0.011 0.877±0.036 0.772±0.041 0.845±0.051 0.593±0.035 0.788±0.03

Weave [106] 0.791±0.008 0.837±0.065 0.741±0.044 0.823±0.023 0.543±0.034 0.747±0.035

SchNet [107] 0.750±0.033 0.847±0.024 0.767±0.025 0.717±0.042 0.545±0.038 0.725±0.032

MPNN [85] 0.815±0.044 0.913±0.041 0.808±0.024 0.879±0.054 0.595±0.030 0.802±0.04

MGCN [109] 0.734±0.030 0.850±0.064 0.707±0.016 0.634±0.042 0.552±0.018 0.695±0.034

AttentiveFP [37] 0.863±0.015 0.908±0.050 0.807±0.020 0.933±0.020 0.605±0.060 0.823±0.033

N-GRAM [110] 0.876±0.035 0.912±0.013 0.769±0.027 0.855±0.037 0.632±0.005 0.808±0.023

Hu et al. [108] 0.851±0.027 0.915±0.040 0.811±0.015 0.762±0.058 0.614±0.006 0.791±0.029

GROVER [36] 0.878±0.016 0.936±0.008 0.819±0.020 0.925±0.013 0.656±0.006 0.843±0.013

Table A2.1: ROC-AUC values for different algorithms evaluated on MoleculeNet datasets
split using a scaffold splitting strategy. For each dataset the average ROC-AUC across the
tasks is reported. Results for ToxSmi were obtained by measuring test performance for10 repeated
scaffold splits. All other numbers are taken from Rong et al. [36] who trained all models on 3
repeated scaffold splits.
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A3 Proteochemometrics

Data Config k-NN BiMCA BiMCA (pretrained)

Val. Full seq. 1.34± 0.16 1.38± 0.08 1.30± 0.13
Active site 1.32±0.17 1.28 ± 0.13 1.21 ± 0.13

Test Full seq. 1.56± 0.09 1.44± 0.04 1.32± 0.04
Active site 1.52 ± 0.10 1.33 ± 0.04 1.25 ± 0.05

Table A3.1: RMSE (on pIC50) on validation and test data (kinase split).

Data Config k-NN BiMCA BiMCA (pretrained)

Val. Full seq. 0.41± 0.09 0.32± 0.05 0.39± 0.08
Active site 0.42 ± 0.11 0.46 ± 0.08 0.49 ± 0.07

Test. Full seq. 0.23± 0.05 0.32± 0.03 0.43± 0.03
Active site 0.28 ± 0.06 0.44 ± 0.04 0.49 ± 0.05

Table A3.2: Pearson correlation coefficient on validation and test data (kinase split).

A B *
 *

 *  ** *
 *

 **
 **

Figure A3.1: Pearson correlation in affinity prediction on the ligand split. Results on
validation (A) and test data (B) are shown. Statistically significant differences between the three
different active-site configurations are marked with a star.

162



A3 Proteochemometrics

Split Config Encoding Validation Test
RMSE PCC RMSE PCC

Kinase Full seq. One-hot 1.41±0.08 0.29±0.08 1.43±0.05 0.32±0.05

Kinase Full seq. BLOSUM62 1.39±0.14 0.33±0.06 1.45±0.04 0.28±0.04

Kinase Full seq. Learned 1.38±0.08 0.32±0.05 1.44±0.04 0.32±0.03

Kinase Active site One-hot 1.33±0.14 0.44±0.08 1.36±0.08 0.44±0.05

Kinase Active site BLOSUM62 1.31±0.13 0.44±0.08 1.34±0.05 0.44±0.03

Kinase Active site Learned 1.28±0.13 0.46±0.08 1.33±0.04 0.44±0.04

Ligand Full seq. One-hot 0.91±0.01 0.75±0.00 0.91±0.01 0.75±0.00

Ligand Full seq. BLOSUM62 0.90±0.01 0.75±0.01 0.91±0.01 0.75±0.00

Ligand Full seq. Learned 0.91±0.01 0.75±0.00 0.91±0.01 0.74±0.00

Ligand Active site One-hot 0.83±0.01 0.80±0.00 0.84±0.01 0.79±0.00

Ligand Active site BLOSUM62 0.83±0.01 0.79±0.01 0.84±0.01 0.79±0.01

Ligand Active site Learned 0.83±0.01 0.79±0.00 0.83±0.01 0.79±0.00

Table A3.3: Validation data performance of ablation study on different AA encodings for
BiMCA model. Within each split, data partition and metric, the best encoding type is marked in
bold.

RMSE Pearson
Data Config BiMCA BiMCA-p. k-NN BiMCA BiMCA-pre k-NN

Val.
Sheridan 1.28±0.13 1.21±0.13 1.32±0.17 0.456±0.07 0.487±0.07 0.422±0.11

Martin 1.30±0.16 1.22±0.13 1.36±0.18 0.461±0.07 0.481±0.09 0.397±0.11

Combined 1.32±0.16 1.20±0.12 1.33±0.18 0.438±0.08 0.489±0.09 0.419±0.11

Test
Sheridan 1.33±0.04 1.25±0.05 1.52±0.10 0.437±0.04 0.488±0.05 0.276±0.06

Martin 1.34±0.08 1.24±0.07 1.48±0.11 0.450±0.05 0.509±0.05 0.296±0.06

Combined 1.33±0.08 1.23±0.08 1.51±0.10 0.431±0.06 0.505±0.07 0.262±0.06

Table A3.4: Results on validation and test data (kinase split). For each model and data
partition we mark the better representation in bold.
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A4 Conditional Molecular Generative Models

164



Target Screening Report
Sample Information
Name 466d68e3e1b3472986059885f24e5

e48
Data File Path D:\MassHunter\ChemspeedData\466d68e3e1b3472986059885f24e5e48.d

Sample ID 466d68e3e1b3472986059885f24e5
e48

Acq. Time (Local) 25/08/2020 22:55:15 (UTC+02:00)

Instrument RoboRXN Method Path (Acq) D:\MassHunter\Methods\agilent_ChemspeedValve+QualAnaly.m
MS Type TOF Version (Acq SW) 6200 series TOF/6500 series Q-TOF 10.1 (48.0)
Inj. Vol. (ul) 0.005 IRM Status Some ions missed
Position Vial 1 Method Path (DA) D:\MassHunter\ChemspeedData\466d68e3e1b3472986059885f24e5e48.d\AcqData\MethodDA\

agilent_Chemspeed_QualAnaly.m
Plate Pos. Target Source Path X:\analytes.csv
Operator Result Summary 4 qualified (5 targets)

Sample Chromatograms
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Compound Summary
Cpd Name Formula CAS RT Mass Mass (Tgt) Diff (Tgt, ppm) Score Algorithm

1 C7 H8 Br N 2.882 184.9858 184.9840 9.55 90.36 FBF
2 C7 H8 Br N 1.970 184.9837 184.9840 -1.64 99.44 FBF
3 C4 H8 O 3.515 72.0580 72.0575 6.74 83.13 FBF
4 C4 H8 O 3.439 72.0571 72.0575 -6.36 80.60 FBF

Compound Details
Cpd. 1: C7 H8 Br N
Name Formula RT RI Mass Diff (Tgt, ppm) CAS ID Source Score Algorithm

C7 H8 Br N 2.882 184.9858 9.55 FBF 90.36 FBF

Species m/z Score (Tgt) Score (Lib) Score (DB) Score (MFG) Score (RT)
(M+H)+ (2M+Na)+ 185.9902 392.9582 90.36
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Target Screening Report
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Compound ID Table
Name Formula Species RT RT Diff Mass CAS ID Source Score Score (Lib) Score (Tgt)

C7 H8 Br N (M+H)+
(2M+Na)+

2.882 184.9858 FBF 90.36 90.36

Cpd. 2: C7 H8 Br N
Name Formula RT RI Mass Diff (Tgt, ppm) CAS ID Source Score Algorithm

C7 H8 Br N 1.970 184.9837 -1.64 FBF 99.44 FBF

Species m/z Score (Tgt) Score (Lib) Score (DB) Score (MFG) Score (RT)
(M+H)+ 185.9910 99.44

Compound Chromatograms (overlaid) Structure
2x10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.970

Counts (%) vs. Acquisition Time (min)

1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4

MassHunter Qualitative Analysis Page 2 of  4 Generated at 23:01 on 25/08/2020



Target Screening Report
Compound Spectra (overlaid)
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Compound ID Table
Name Formula Species RT RT Diff Mass CAS ID Source Score Score (Lib) Score (Tgt)

C7 H8 Br N (M+H)+ 1.970 184.9837 FBF 99.44 99.44

Cpd. 3: C4 H8 O
Name Formula RT RI Mass Diff (Tgt, ppm) CAS ID Source Score Algorithm

C4 H8 O 3.515 72.0580 6.74 FBF 83.13 FBF

Species m/z Score (Tgt) Score (Lib) Score (DB) Score (MFG) Score (RT)
(M+H)+ (M+Na)+

(2M+H)+ (3M+Na)+
73.0629 95.0487

145.1196 239.1617
83.13
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Compound ID Table
Name Formula Species RT RT Diff Mass CAS ID Source Score Score (Lib) Score (Tgt)

C4 H8 O (M+H)+
(M+Na)+
(2M+H)+
(3M+Na)+

3.515 72.0580 FBF 83.13 83.13

Cpd. 4: C4 H8 O
Name Formula RT RI Mass Diff (Tgt, ppm) CAS ID Source Score Algorithm

C4 H8 O 3.439 72.0571 -6.36 FBF 80.60 FBF

Species m/z Score (Tgt) Score (Lib) Score (DB) Score (MFG) Score (RT)
(2M+Na)+ (3M+Na)+ 167.1063 239.1611 80.60
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Appendix

A5 Bridging Property Prediction and
Conditional Generation

Metric α = 0, no FE α = 1, no FE α = 0, with FE α = 1, with FE
0-Variance (↓) 4.4±0.8 5.9±1.3 6.1±3.7 6.1±1.5

Spearman ρ (RT) 0.38±0.1 0.38±0.0 0.41±0.1 0.44±0.0

Spearman ρ (Grover) 0.44±0.0 0.46±0.0 0.46±0.1 0.47±0.0

(a) ESOL

Table A5.1: Conditional generation for MoleculeNet datasets. Average performances across
all splits for training with alternating objectives are given. "Spearman ρ with RT" refers to the
self-evaluation whereas "ρ with Grover" refers to to predictions obtained with the Grover model
from Rong et al. [36].
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Acronyms

ATP Adenosine triphosphate
AUC Area under the curve
CASP Computer-aided synthesis planning
CNN Convolutional neural network
CV Cross validation
DL Deep learning
DMTA Design-make-test-analyze
DTI Drug-target interaction
ECFP Extended-connectivity fingerprint
ELBO Evidence lower bound
FDA Food and drug administration
GAN Generative adversarial network
GCN Graph convolutional neural network
GEP Gene expression profile
GNN Graph neural network
GP Gaussian process
GRU Gated Recurrent Unit
HTS High-throughput screening
LOOCV Leave-one-out cross-validation
MLM Masked language modeling
MOA Mechanism of action
MSA Multiple sequence alignment
MSE Mean-squared error
NLP Natural language processing
PCC Pearson correlation coefficient
PKA Protein kinase A
PLM Permutation language modeling
QED Quantitative estimate of drug-likeness
QSAR Quantitative structure-activity relationship
RL Reinforcement learning
RMSE Root-mean-square error
RNN Recurrent neural network
ROC Receiver operating characteristic
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Acronyms

ROC-AUC Area under the ROC curve
SAS Synthetic accessibility score
SCScore Synthetic complexity score
SELFIES Self-referencing embedded strings
SEM Standard error of the mean
SMARTS SMILES arbitrary target specification
SMILES Simplified molecular-input line-entry system
SNR Signal-to-noise ratio
SOTA State-of-the-art
TAPE Tasks assessing protein embeddings
U Mann-Whitney U test
VAE Variational autoencoder
W+ Wilcoxon signed-rank test
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