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seonyeong.heo@pbl.ee.ethz.ch, mayerph@iis.ee.ethz.ch, michele.magno@pbl.ee.ethz.ch

Abstract—Energy harvesting can enable wireless smart sensors
to be self-sustainable by allowing them to gather energy from
the environment. However, since the energy availability changes
dynamically depending on the environment, it is difficult to find
an optimal energy management strategy at design time. One
existing approach to reflecting dynamic energy availability is
energy-aware adaptive sampling, which changes the sampling
rate of a sensor according to the energy state. This work
proposes deep reinforcement learning-based predictive adaptive
sampling for a wireless sensor node. The proposed approach
applies deep reinforcement learning to find an effective adaptive
sampling strategy based on the harvesting power and energy
level. In addition, the proposed approach enables predictive
adaptive sampling by designing adaptive sampling models that
consider the trend of energy state. The evaluation results show
that the predictive models can successfully manage the energy
budget reflecting dynamic energy availability, maintaining a
stable energy state for a up to 11.5% longer time.

Index Terms—Adaptive sampling, energy harvesting, energy
management, wireless smart sensors, reinforcement learning

I. INTRODUCTION

Energy harvesting enables wireless smart sensors to operate
with a low maintenance cost by removing the necessity of
frequent battery replacement [1]. Harvesting energy from
ambient energy sources such as solar light and wind, wireless
sensor nodes can charge their batteries and keep them from
draining. With the energy, wireless sensor nodes can acquire
and transfer sensor data for an intelligent service. While
global attention to environmental issues is growing, energy
harvesting is becoming a more popular option for wireless
sensor networks [2].

Although energy harvesting wireless sensor nodes should
manage energy consumption well to prevent service disruption,
finding an optimal energy management strategy at design
time is difficult because the amount of energy available for
harvesting changes over time [3]. For example, in the case
of solar energy, the solar irradiance may change dramatically
depending on the weather [4]. Since the weather is barely
predictable far in advance, precise solar energy prediction
is hardly possible at design time. Therefore, wireless sensor
nodes should reflect dynamic energy availability to enhance
energy utilization [5].

One existing approach to dynamic energy management
is energy-aware adaptive sampling, which changes the sam-
pling rate of a wireless sensor node according to the energy
state [6]–[10]. In wireless sensor nodes, each sampling task

includes sensor reading, data processing, and wireless commu-
nication. Too frequent sensor sampling may drain the battery
very quickly, especially in the presence of power-hungry
sensors [6], [11]. Therefore, energy-aware adaptive sampling
can help increase the lifetime of wireless sensor nodes by
reducing the sampling rate when the energy availability is
low [12].

Previous work proposes various approaches to energy-aware
adaptive sampling, either manually designing an adaptive
sampling algorithm [6]–[8] or using machine learning to find
an effective adaptive sampling strategy [9], [10]. Especially,
Fraternali et al. [10] and Aoudia et al. [9] apply reinforcement
learning to find an optimal sensing rate, showing the potential
of reinforcement learning for energy-aware adaptive sampling.
However, the existing approaches consider the current energy
state only, unaware of the trend of the energy state. For this
reason, their adaptive sampling models are likely to be reactive
to the current energy state.

This paper proposes a predictive energy-aware adaptive
sampling method for wireless sensor networks. More in detail,
this work applies deep actor-critic reinforcement learning to
find an effective adaptive sampling strategy based on the
history of harvesting power and battery level. The proposed
method formulates a reinforcement learning problem and
designs a simulation environment for an energy harvesting
wireless sensor node. In addition, this work presents adaptive
sampling models that consider the trend of energy states to
determine the sampling rate.

To be effective, this work implements the reinforcement
learning environment for predictive energy-aware adaptive
sampling on top of existing reinforcement learning frame-
works [13], [14]. To evaluate the performance of the adaptive
sampling models, we train the adaptive sampling models with
existing energy harvesting datasets and evaluate the models
in terms of energy management. The evaluation results show
that the predictive models can successfully manage the energy
budget reflecting dynamic energy availability, maintaining a
stable energy state for a up to 11.5% longer time.

This paper is organized as follows. Section II discusses
related work on energy-aware adaptive sampling. Section III
describes the proposed predictive adaptive sampling method,
presenting the problem formulation for reinforcement learning
and the adaptive sampling algorithm. Section IV presents
the evaluation results of the proposed method. Section V
concludes this work.



II. RELATED WORK

Previous work has proposed various approaches to energy-
aware adaptive sampling for optimizing the energy manage-
ment of wireless sensor nodes [6]–[10].

Traditional Adaptive Sampling Algorithms: Extending
an existing adaptive sampling algorithm [15], [16], Srbinovski
et al. [6] propose the energy-aware energy adaptive sampling
algorithm (EASA), which monitors the battery level and ad-
justs the sampling frequency when the battery level is too low.
Similarly, Lee and Lee [7] introduce two different adaptive
sampling algorithms called RASA and CASA. Similar to
EASA, RASA adjusts the sampling frequency when the battery
level is too low. CASA reduces the sampling frequency to
save extra energy when the quality of energy harvesting is
good enough. Unlike the previous algorithms [7], [15], Lee
and Kim [8] propose an adaptive sampling algorithm that uses
a trend estimation model to predict changes in energy sources
based on the previous data.

Although the energy-aware adaptive sampling algorithms
can enhance the lifetime of a wireless sensor node at a
low cost [6]–[8], the traditional algorithms require manual
adjustment of parameters for the target environment.

Machine Learning-based Adaptive Sampling: Fraternali
et al. [10] and Aoudia et al. [9] use reinforcement learning
to find an optimal sensing rate for wireless sensor networks.
Fraternali et al. apply Q-learning [17] to automatically choose
one of the four performance states with different sampling
rates. Fraternali et al. define the energy state as a tuple of
light intensity level, energy level, and a boolean indicating
whether it is a weekday or the weekend. On the other hand,
Aoudia et al. apply actor-critic reinforcement learning [18] to
predict the target sampling (packet) rate directly. Aoudia et al.
simply define the energy state as an energy level.

Although the existing approaches [9], [10] show the poten-
tial of reinforcement learning for energy-aware adaptive sam-
pling, they only consider the current energy state to determine
the sampling rate. Then, an adaptive sampling strategy is likely
to be reactive to the current energy state.

III. PREDICTIVE ENERGY-AWARE ADAPTIVE SAMPLING

This section explains the system model and formulates a
reinforcement learning problem to train energy-aware adaptive
sampling models.

A. System Model

This work assumes a system model where a wireless sensor
node connects to the base station, similar to previous work [6],
[7]. As illustrated in Fig. 1, the wireless sensor node consists of
a smart sensor, an energy harvester, and a battery. At the time
t, the sensor node sends a sensor value st, the harvesting power
Ph
t , and the battery level Eb

t to the base station. After getting
the data from the sensor node, the base station determines
the sampling frequency f for the sensor node and transfers it
to the sensor node. After the period of f−1, the sensor node
sends the set of values again to the base station.

Sensor
Node
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Sensor

BatteryHarvester

Fig. 1: System model of this work

B. Reinforcement Learning

The main goal of this work is to find an effective adap-
tive sampling strategy using deep reinforcement learning.
In general, a reinforcement learning problem consists of an
environment and an agent. At every step, an agent observes a
state from the environment and takes an action based on the
observation. After the action is taken, the environment gives a
reward for the action to the agent. In reinforcement learning,
an episode is a sequence of steps in which an agent takes
actions in sequence and terminates in a certain condition.

Environment Agent

State 
Reward 

Action 

Fig. 2: General concept of reinforcement learning

1) Formulation: This work first defines the state, action,
and reward for energy-aware adaptive sampling as follows.

• The state Si is defined as a tuple of the current time ti,
the last sampling frequency fi−1, the harvesting power
Ph
ti , and the battery level Eb

ti at step i. Note that in the
system model, the sensor node transfers the state to the
base station which determines the sampling rate.

Si := (ti, fi−1, P
h
ti , E

b
ti)

• The action Ai can be one of the three actions: Up, Stay,
and Down. Based on the recent history of the states, the
agent may increase the sampling frequency (Up), keep
the same sampling frequency (Stay), or decrease the
sampling frequency (Down).

Ai := Up | Stay | Down

• The reward Ri is defined as the amount of time spent
for the step plus one. Here, the additional reward of 1 is
given for a single sensor acquisition.

Ri := 1 + (ti − ti−1)

In our setting, an episode terminates when the average
battery level becomes lower than the threshold. Therefore,
if an agent maintains a stable energy state for a longer
time, it will obtain a larger total reward.



Algorithm 1 Energy Harvesting Environment Simulation

1: Initialize k0 to kmax

2: Initialize the first w states S0, ..., Sw−1

3: while not done do
4: Ai ← Agent({Si−w+1, ..., Si})
5: if Ai = Up then
6: ki ← max(kmin, ki−1 − 1)

7: else if Ai = Down then
8: ki ← min(ki−1 + 1, kmax)

9: end if
10: fi ← fbase/ki
11: while t < ti−1 + 1/fi do
12: t← t+ 1

13: Ph
t ← Get a value from the dataset

14: Eb
t ← Eb

t−1 + Ph
t−1 − Ec

t−1

15: if t = tmax or Eb < Eh then
16: done← true

17: break
18: end if
19: end while
20: ti ← t

21: Ri ← 1 + (ti − ti−1)

22: i← i+ 1

23: end while

2) Environment: For reinforcement learning, an energy
harvesting environment is designed and simulated based on
the system model. Algorithm 1 summarizes the simulation
process of a single episode. First, it initializes the states and
the divisor for the sampling frequency. After the initialization,
it starts iterating through the main loop. At each iteration (or
step), the agent chooses an action based on the recent history
of states. Here, w indicates the length of window. According
to the action, it adjusts the divisor and updates the sampling
frequency. After adjusting the sampling frequency, it simulates
the interval updating the energy state. If the simulation time is
over or the average battery level falls below the threshold Eh

during the interval, it terminates the episode. In this paper, we
set the threshold to the initial energy level Eb

0.

For simplicity, the energy consumption of a sensor node
is estimated assuming that the average power consumption of
sensor sampling is constant. Then, the energy consumption at
the time t, Ec

t is calculated as

Ec
t := P a · T a

t + P s · (1− T a
t )

where P a is the average power when the node acquires and
transfers the sensor value, P s is the average power when the
node is in a sleep mode, and T a

t is the amount of time taken to
acquire and transfer the sensor value within [t, t+1). This work
chooses the parameters based on the energy characterization
of a wireless sensor node.
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Fig. 3: Two different agent designs

3) Agent: This work designs two types of agents that de-
termine the proper action for energy-aware adaptive sampling
based on the recent history of states: (i) a feed-forward agent
and (ii) a recurrent agent. Each reinforcement learning agent
consists of small actor and critic models as illustrated in Fig. 3.
The actor models take the normalized states as input and return
the probabilities of the actions as output. Note that the output
dimension of the actor models is three because the number
of possible actions is three. The critic models take the same
input and return the value of the state as output.

IV. EVALUATION

A. Experimental Setup

To evaluate the reinforcement learning-based models, this
work implements the reinforcement learning environment on
top of OpenAI Gym [13]. In addition, this work imple-
ments the feed-forward and recurrent agents with Tensor-
flow [14]. For training, this work uses indoor solar harvesting
datasets [19] and splits each dataset for training and testing.
This work randomly chooses a two-week period from a dataset
and simulates the period as one episode. This work trains each
agent with 150 episodes on a desktop computer.

To estimate the energy consumption based on a real deploy-
ment of wireless sensor nodes with power hungry sensors,
the energy characterization of previous work [6] has been
used. Note that this work reduces the sampling time to 1
second instead of 10 seconds considering the amount of energy
obtainable from indoor solar harvesting. Table I summarizes
the parameter values used in evaluation.

TABLE I: Simulation Parameters

Param. Value Description
kmin 1 Minimum divisor value
kmax 12 Maximum divisor value
fbase 1/300 Hz Base sampling frequency
P a 36.858 mW Power for sensor sampling
P s 0.0055 mW Power in a sleep mode

B. Results

This work first evaluates the performance of the adaptive
sampling models with the average total reward obtained in the
test episodes. To show the effectiveness of predictive adaptive
sampling, this work compares the adaptive sampling models
with different window lengths (w = 10 or 1).
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Fig. 4: Comparison of feed-forward agents with different window lengths

Table II summarizes the average total reward of each agent
for two datasets that have a similar range of daily energy. In the
table, each percentage in parenthesis indicates the percentage
of the simulation time (i.e., two weeks in total) for which the
agent maintains a stable energy state. The result shows that the
feed-forward agent with w = 10 obtained the highest average
reward, maintaining a stable energy state for a up to 11.5%
longer time than the feed-forward agent with w = 1.

TABLE II: Average Total Reward

Agent w #06 #13
Feed-Forward 10 791,134 (65.6%) 626,823 (52.0%)
Feed-Forward 1 656,668 (54.4%) 488,638 (40.5%)
Recurrent 10 615,161 (51.0%) 406,914 (33.7%)
Recurrent 1 608,019 (50.4%) 399,013 (33.1%)

Overall, using a longer window results in a higher average
reward than using the current energy state only like previous
work [9], [10]. Fig. 4 shows sample simulation results of feed-
forward agents with different window lengths. The agent with
the shorter window tends to be reactive to the current energy
state. Therefore, it is more likely to become unstable if the
energy availability changes dynamically.

V. CONCLUSION

This paper proposes deep reinforcement learning-based pre-
dictive adaptive sampling for a wireless sensor node. The main
goal of this work is to enable predictive adaptive sampling by
designing adaptive sampling models that consider the trend of
energy state. The evaluation results show that the models with
the larger window can more safely manage the energy budget
reflecting dynamic energy availability.
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