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Abstract 
Procedural tasks are common in many professions, such as maintenance, 
assembly, or surgery, and are characterized by an operator performing a 
predefined sequence of steps to achieve a specific goal. Because these 
tasks often involve elaborated machines, devices, or even patients, they 
place the highest requirements on correct task execution.  

Augmented reality (AR) head-mounted displays (HMDs) have been 
shown to provide effective support during procedural tasks. Compared to 
conventional information mediums, where information is often spread 
among multiple documents (e.g., maintenance) or external screens (e.g., 
surgery), AR HMDs display contextual information directly into the field 
of view of the operator without occupying the operators’ hands. While 
with AR, displayed information is only changed based on manual user 
input, context-aware AR promises to further improve the support 
provided by automatically adapting displayed information to best address 
the operator's current needs and by providing feedback. Understanding 
the strengths and weaknesses of these two technologies is key to 
developing support systems that can improve the quality of task 
execution, making procedural tasks safer and improving outcomes. 
Previous studies on context-aware systems have focused primarily on 
manual execution without consideration of an important part of human 
interaction, the perception. Eye tracking allows to measure perception and 
provides deep insights into cognitive processes, and might therefore bring 
benefits to context-aware systems that are important to be investigated.  

This work investigates different concepts of how AR and context-
aware AR support systems can be designed, how they work, and how they 
affect operators’ task performance. It further aims to advance context-
aware AR support by integrating eye tracking and by deriving a suitable 
system model to describe the relationships between human behavior, AR, 
and context-aware AR. Three studies are presented in this work. 

Study I investigates the benefits of contextual information in AR over 
traditional information mediums to provide training instructions. A study 
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was conducted with 21 medical students performing an extracorporeal 
membrane oxygenation (ECMO) cannulation on a physical simulator 
setup. The evaluation comprised of a detailed error protocol with both a 
categorization into knowledge- and handling-related errors and an error 
severity ranking. The results showed clear benefits of AR over 
conventional instructions while pointing out certain limitations that might 
be improved by context-aware AR.  

Study II investigates effective visualization strategies when real-time 
feedback is provided continuously. A study was conducted with 4 expert 
surgeons and 10 surgical residents performing surgical drilling on a 
physical simulator setup. The results show that continuous performance 
feedback generally levels task performance between novice and expert 
operators, reveal clear advantages and preferences of certain AR 
visualizations, and give insights into how AR visualizations guide visual 
attention. In particular, the peripheral field around the area of execution 
proofed to be promising for displaying information as the operator can 
simultaneously perceive feedback and coordinate hand movement.  

Study III investigates the suitability of eye and hand tracking features 
for predicting and preventing an operator’s erroneous actions. A study 
was conducted on a memory card game to explore the potential and 
limitations of this approach. The first experiment, which involved 10 
participants, recorded participants' eye and hand movement to derive a 
method for target prediction. The second experiment with 12 participants 
examined the timeliness and accuracy of the implemented method end-
to-end and showed the method to be highly effective in preventing a 
user’s erroneous hand actions.  

One of the key conclusions of this work is that context-aware AR 
support can significantly improve procedural outcomes and even raise the 
task performance of less experienced operators to the level of experts. In 
addition, analyzing hand-eye coordination patterns in real-time allows for 
predictive AR support and error prevention, which might eventually 
provide a safety net for operators performing their first independent task 
executions. For future work, important research directions include 
integrating and advancing predictive AR support for more complex 
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procedures, investigating effective visualization strategies in 
environments with multiple dynamic visual stimuli, as well as effective 
feedback and support strategies while operators transition from their first 
training to independent execution and eventually become experts.  
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Zusammenfassung 
Prozedurale Aufgaben sind in vielen Berufen, wie z. B. in der Wartung, 
Montage oder Chirurgie, üblich und zeichnen sich dadurch aus, dass ein 
Bediener eine vordefinierte Abfolge von Schritten ausführt, um ein 
bestimmtes Ziel zu erreichen. Da diese Aufgaben oft in Wechselwirkung 
mit komplexen Maschinen, Geräten oder sogar am Patienten durchgeführt 
werden, werden allerhöchste Anforderungen an die korrekte Ausführung 
gestellt.  

Augmented Reality (AR) Head-Mounted Displays (HMDs) können 
eine wirksame Unterstützung bei prozeduralen Aufgaben bieten. Im 
Vergleich zu herkömmlichen Informationsmedien, bei denen die 
Informationen oft auf mehrere Dokumente (z.B. bei der Wartung) oder 
externe Bildschirme (z.B. in der Chirurgie) verteilt sind, zeigen AR 
HMDs kontextbezogene Informationen direkt im Sichtfeld des Bedieners 
an, ohne dabei die Hände zu blockieren. Während bei AR die angezeigten 
Informationen nur auf Grundlage manueller Benutzereingaben geändert 
werden, versprechen kontextbewusste AR-Systeme eine weitere 
Verbesserung der Unterstützung, indem sie die angezeigten 
Informationen automatisch an die aktuellen Bedürfnisse des Bedieners 
anpassen und den Bediener durch Feedback unterstützen. Ein Verständnis 
der Stärken und Schwächen dieser beiden Technologien ist der Schlüssel 
zur Entwicklung von Unterstützungssystemen, die die Qualität der 
Aufgabenausführung verbessern können, um prozedurale Aufgaben 
sicherer zu machen und die Endresultate zu verbessern. Frühere Studien 
über kontextbewusste AR-Systeme haben sich in erster Linie auf die 
manuelle Ausführung konzentriert und dabei einen wichtigen Teil der 
menschlichen Interaktion, nämlich die Wahrnehmung, außer Acht 
gelassen. Eye Tracking ermöglicht die Messung der Wahrnehmung und 
bietet tiefe Einblicke in kognitive Prozesse und könnte daher Vorteile für 
kontextbewusste Systeme bringen, die es zu untersuchen gilt.  

Das Ziel dieser Dissertation ist es, zu untersuchen, wie sich AR und 
kontextbewusste AR Systeme gestalten lassen, wie sie funktionieren, und 
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wie sie die Ausführungsqualität des Bedieners beeinflussen. Dabei soll 
die kontextbewusste AR-Unterstützung insbesondere auch durch die 
Integration von Eye-Tracking und die Herleitung eines geeigneten 
Systemmodells vorangetrieben werden. In dieser Arbeit werden drei 
Studien vorgestellt. 

Studie I untersucht die Vorteile kontextbezogener Informationen in 
AR zum Vermitteln von Ausführungsinstruktionen gegenüber 
herkömmlichen Informationsmedien. Eine Studie wurde mit 21 
Medizinstudenten durchgeführt, die eine extrakorporale 
Membranoxygenierung (ECMO) an einem physikalischen Simulator 
durchführten. Die Auswertung umfasste ein detailliertes Fehlerprotokoll 
mit einer Kategorisierung in wissens- und handhabungsbezogene Fehler 
sowie eine Einstufung des Fehlerschweregrads. Die Ergebnisse zeigen 
deutliche Vorteile von AR gegenüber konventionellen Anleitungen und 
weisen gleichzeitig auf bestimmte Limitationen hin, die durch 
kontextbewusstes AR verbessert werden könnten.  

Studie II untersucht effektive Visualisierungsstrategien für den Fall, 
dass Echtzeit-Feedback kontinuierlich bereitgestellt wird. Es wurde eine 
Studie mit vier erfahrenen Chirurgen und zehn Assistenzärzten 
durchgeführt, wobei Bohrungen an einem physikalischen 
Wirbelsäulenmodell gesetzt werden mussten. Die Ergebnisse zeigen, dass 
kontinuierliches Feedback im Allgemeinen die Aufgabenleistung 
zwischen Anfängern und Experten angleicht, zeigen klare Vorteile und 
Präferenzen bestimmter AR-Visualisierungen und geben Einblicke in die 
Art und Weise, wie AR-Visualisierungen die visuelle Aufmerksamkeit 
lenken. Insbesondere das periphere Feld um den Ausführungsbereich 
erwies sich als vielversprechend für die Anzeige von Informationen, da 
der Bediener gleichzeitig Feedback wahrnehmen und die Handbewegung 
koordinieren kann.  

Studie III untersucht die Eignung von Blick- und 
Handbewegungsmessungen zur Vorhersage und Vermeidung von 
Fehlhandlungen des Bedieners bei prozeduralen Aufgaben. Um das 
Potenzial und die Grenzen dieses Ansatzes zu untersuchen, wurde eine 
Studie mit einem Memory-Kartenspiel durchgeführt. Im ersten 
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Experiment mit 10 Teilnehmern wurden nur die Augen- und 
Handbewegungen der Teilnehmer aufgezeichnet, um eine 
Vorhersagemethode herzuleiten. Das zweite Experiment mit 12 
Teilnehmern untersuchte die Geschwindigkeit und Genauigkeit der 
implementierten Methode mit Nutzern und zeigte, dass die Methode sehr 
effektiv darin ist fehlerhafte Handaktionen des Benutzers rechtzeitig zu 
verhindern.  

Eine der wichtigsten Schlussfolgerungen dieser Arbeit ist, dass eine 
kontextbewusste AR-Unterstützung die Ergebnise erheblich verbessern 
und sogar die Aufgabenleistung von weniger erfahrenen Bedienern auf 
das Niveau von Experten anheben kann. Darüber hinaus ermöglicht die 
Echtzeitanalyse von Hand-Augen-Koordinationsmustern eine 
vorausschauende AR-Unterstützung und Fehlervermeidung, die 
zukünftigen Bedienern ein Sicherheitsnetz bieten könnte, wenn diese zum 
ersten Mal eigenständig eine neue Aufgabe ausführen müssen. Wichtige 
Forschungsrichtungen für zukünftige Arbeiten sind die Integration und 
Weiterentwicklung von präventiver AR-Unterstützung für komplexere 
Prozeduren, die Untersuchung effektiver Visualisierungsstrategien in 
Umgebungen mit mehreren dynamischen visuellen Stimuli, sowie 
effektive Feedback- und Unterstützungsstrategien, die den Bediener vom 
ersten Training bis zur eigenständigen Ausführung bestmöglich 
unterstützen.
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Nomenclature 
Acronyms and abbreviations 

2D 2-Dimensional 
3D 3-Dimensional 
AOI Area of interest 
AR Augmented reality 
cGOM Computational gaze-object mapping 
CNN Convolutional neural network 
DoF Degrees of freedom 
ECMO Extracorporeal membrane oxygenation 
fps Frames per second 
HMD Head-mounted display 
IMU Inertia measurement unit 
IR Infrared 
LSTM Long short-term memory 
MRTK Mixed reality toolkit 
OGD Object-gaze distance 
OR Operation room 
OST Optical see-through 
PCA Perception-cognition-action 
Post-op After operation 
RMS Root mean square 
SD standard deviation 
SLAM Simultaneous location and mapping 
SUS System usability scale 
TNR True negative rate 
TPR True positive rate 
UEQ User experience questionnaire 
USZ University hospital Zurich 
VR Virtual reality 
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1 Introduction 
Augmented reality (AR) is a technology that superimposes a computer-
generated image on the real world to create a composite view [1]. Among 
the various digital devices that can create AR views (e.g., video 
projectors, tablets, screens), semi-transparent head-mounted displays 
(HMD) that are worn in front of the user’s eyes (similar to glasses) have 
seen the biggest technological advancements over the last few years, with 
sophisticated hardware (e.g., Microsoft HoloLens 2) being commercially 
available, and have democratized the use of AR for a broader community. 

Although AR has potential implications for many areas of application 
where digital information needs to be accessed and interacted with in the 
real world, it is particularly promising for procedural tasks and processes 
in professional disciplines such as maintenance and repair [2], assembly 
[3], or surgery [4]. The fundamental cognitive processes of operators in 
these domains, the support they need, and the procedural problems they 
face are quite similar [5]. Procedural tasks and processes can be defined 
as a series of actions conducted in a predefined order to achieve a goal or 
desired result [6]. By definition, procedures are highly similar to 
processes with the main difference that they are the official or accepted 
way of doing something [6]. Fig. 1 illustrates a process model at the 
example of drilling a hole. 
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Fig. 1: Process model at the example of “drilling a hole”. Steps can 
consist of several activities, the smallest semantic entity of a physical 
task, and motions, which are simple trajectories without semantics 
(definitions adapted from [7-9]). (Note that the granularity level of these 
terms can differ between publications and depends on the task at hand.) 
 

Training and execution of procedural tasks often require supplementary 
information that explain important details of the task, show images or 
schematic illustrations that support problem solving, or examples of ideal 
execution. In contrast to conventional information mediums where 
information is often spread among multiple documents (e.g., 
maintenance) or external screens (e.g., surgery), AR HMDs allow to 
display contextual information at the right place at the right time without 
occupying the operators’ hands. Studies have shown AR to potentially 
increase spatial understanding of anatomical structures [10] and spatial 
problem-solving skills [11] while causing fewer procedural errors [12, 13] 
and lower cognitive load [14].  

Despite the potential benefits of AR for user guidance, there are many 
critical applications that still use conventional information mediums. For 
example, extracorporeal membrane oxygenation (ECMO) is a life-saving 
procedure for severe respiratory or cardiac failure, characterized by a high 
mortality rate of over 60% [15]. Regular training on physical simulators 
has been shown to reduce mortality rates [16], but training is time-
consuming, and document-based training instructions, either printed or 
accessible via a desktop computer, require the trainee to periodically 
interrupt simulator training to consult training materials. AR step-by-step 
instructions could improve the effectiveness and efficiency of training by 
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making relevant information directly accessible during task execution (cf. 
Fig. 2), which could facilitate information retrieval and task 
comprehension, and could help clinicians be better prepared for 
emergency situations, even after single training runs. To date, few studies 
have examined how AR affects procedural errors, and these have mostly 
focused on assembly and maintenance procedures. Their results suggest 
that AR provides clearer task instructions that lead to fewer procedural 
errors. However, further work is needed to examine how these 
instructions affect errors in detail, such as the severity of errors or causes. 
A detailed error analysis would provide a better understanding of how and 
why errors occur and where AR can improve procedural outcomes. 

 
Fig. 2:  Example of an ECMO cannulation training with AR step-by-step 
instructions displaying text, images, and videos next to the area of 
execution [17]. 

 
One of the key advantages of AR is that it gives a high degree of design 
freedom to display information in a way they best support the current 
context, often referred to as contextual information. Context can be 
considered to be, for example, the current step or the experience level of 
a user. A more general definition of context is provided by Anind K. Dey: 

Context can be defined as “any information useful for 
characterizing the situation of an entity, where an entity can be a 
person, place, or object relevant to the interaction between user and 
application, including user and application themselves.” [18] 
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In addition to other devices that can provide digital guidance during a 
procedure (e.g., a screen), AR HMDs allow contextual information to be 
freely positioned in 3D space and with a high degree of design freedom, 
ranging from overlay to displaying information next to the area of 
execution, from 2D to 3D, and from abstract to geometric (or anatomical) 
representations.  

Although previous studies have demonstrated that AR can improve 
procedural outcomes [12, 13], it is not possible to completely eliminate 
human error simply by displaying contextual information. As Dekker  
[19] noted, human error is systematically linked to a variety of external 
influences, such as the situation and environment people work in, the task, 
and the tools they use. Since external influences can change during a 
procedure, as can operator performance, it is questionable whether a static 
display of contextual information is sufficient for effective operator 
guidance. In addition, operators still need to manually navigate through 
the AR interface, which causes additional effort and can contribute to the 
stress level, especially for steps or procedures that are already cognitively 
demanding.  

To overcome these limitations, the field of context-aware AR support 
has emerged. By computationally analyzing data from external sensors or 
sensors integrated in the AR device in real time, the current context of the 
operator within the procedural task is inferred. This allows the AR device 
to adjust contextual information to best address immediate user needs [20, 
21], provide feedback on the user's current actions [22] and quality of 
execution [23], or transition to the next step when a step is complete to 
reduce manual user input [24]. Context-awareness can further improve 
collaboration in multi-operator tasks such as surgery, as it facilitates 
human-machine collaboration with robotic systems, tells staff about 
upcoming phases so tool changes can be prepared in time, and can 
estimate the remaining duration of the surgery to plan anesthetizations 
[21]. A general definition for context-awareness in computing systems is 
provided by Gartner:  
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Context-aware computing is a “style of computing in which 
situational and environmental information about people, places and 
things is used to anticipate immediate needs and proactively offer 
enriched, situation-aware and usable content, functions and 
experiences.” [25] 

Fig. 3 shows the schematic relationship between AR and context-aware 
support in procedural tasks. By default, AR guidance, as any digital 
guidance, can be implemented in a way that it provides optimal support 
based on expectable contexts such as the current step or the expertise level 
of the user. Here, context is determined by manual user input into the 
system and otherwise remains static. In contrast, context-aware support 
continuously determines the context and can adapt contextual information 
dynamically without or with only little need for manual user input. In 
addition, by comparing current and expected execution in real time, the 
AR system can provide feedback on task execution. 

 
Fig. 3: System model showing the relationship between AR and context-
aware support. AR can provide contextual information based on manual 
user input such as the current step or expertise level of the user. Context 
can be determined by processing measurement data and interpreting it 
based on domain knowledge (e.g., standard operating procedure, 
expected system parameters). Context-aware support automatically 
determines the current context and enhances AR by making contextual 
information adaptive and by providing feedback. 
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Context can be inferred from a variety of sensors that focus on the target 
system, e.g., condition monitoring of machines states [26] or vital 
parameters of a patient [27], or the operator, e.g., monitoring tool usage 
[28]. The latter one can be inferred by tracking objects and tools relevant 
to the task, the operators’ hands, or other psychological measurements 
(e.g., heart rate, pupil dilation [29]) that indicate the mental or physical 
state of the operator.  

Within the field of AR-guided procedures, previous work has 
primarily inferred context by tracking relative positions and movements 
of two or more relevant objects or the user’s hands in the physical 
environment. For example, Ng et al. [24] applied a 2D convolutional 
neural network (CNN) during AR-guided maintenance to detect the user’s 
hands and particular task-relevant objects in video recordings. Henderson 
and Feiner [22] applied visual markers during AR-guided assembly to 
track the movement of handled objects. Based on the relative position of 
these objects, they provided real-time feedback on the deviation between 
the current and desired final position of the assembly part. In addition, 
their system could automatically transition to the next step of the 
procedure or, if the user was moving the wrong object, display an error 
message. Tracking tool positions relatively to the registered patient 
anatomy is also common in surgical navigation systems. Liebmann et al. 
[23] tracked visual markers attached to a drill sleeve in a surgical 
simulator setup to provide real-time feedback on the current drill 
trajectory in relation to the planned (ideal) trajectory (cf. Fig. 4).   
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Fig. 4: Surgeon wearing an AR HMD that provides context-aware AR 
support while drilling into a lumbar spine model. The drill sleeve is 
enhanced with an ArUco image marker that is tracked by the AR HMDs 
cameras to display the current drill trajectory (𝐴𝐴𝐴𝐴�����⃗ ) next to the planned 
trajectory (𝐴𝐴𝐴𝐴�����⃗ ) as well as the angular deviation in radial degrees [23]. 
 

Depending on the purpose for which the feedback is provided, it can be 
divided into two categories: procedural and performance feedback (cf. 
Table 1). Procedural feedback is provided to ensure the operator does not 
deviate from the intended workflow. Because procedures can involve 
many steps, the operator may inadvertently execute a wrong step, skip a 
step, or only partially complete a step. Even highly trained and 
experienced surgeons can skip steps during complex procedures if no 
countermeasures are taken, as evidenced by the many recorded cases of 
gossypiboma (surgical sponge or a laparotomy pad left in the patient’s 
body) [30, 31]. Performance feedback focuses on the operator’s motions 
and is provided when a high accuracy of the task execution is required 
such as when drilling into bone surrounded by vital structures [23]. It 
involves continuous tracking of relevant objects and display of the target 
value (e.g., deviation from end position) in real time so that the operator 
can adjust his behavior accordingly.  
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Table 1: Feedback types of context-aware AR support systems 

 
Previous work has primarily determined context by detecting and relating 
two or more objects of interest (object-object context) or the user’s hands 
(hand-object). Neumann and Majoros [32] refer to this as the 
psychomotor phase, which represents manual task execution and stands 
in contrast to the informational or cognitive phase. During the cognitive 
phase, the user perceives information, understands and interprets that 
information, and derives how the task can be executed [32]. Other work 
describes this relationship in a perception, cognition, and action (PCA) 
model [33, 34]. In essence, these models encompass two key aspects of 
observable human interaction: the eyes perceiving task-relevant 
information (input) and the hands manipulating the physical environment 
(output), while cognitive states and processes are hidden and can only be 
estimated.  

Similar to the input-output-interaction of the human operator and AR, 
context-aware support processes sensor measurements (input) and then 
controls the information displayed in AR (output).  It is therefore 
important to derive a system model that can describe the relationships of 
these interacting systems. One way to model these relationships is to 
combine the previously presented system model (see Fig. 3) with the PCA 
model (cf. Fig. 5). The resulting model shows how the human operator 
perceives information from AR, processes this information, and then 
performs manipulations within the AR environment. Perception is 
influenced by visual cues from the virtually presented content, visual cues 
from the physical environment, and by the motor system when hand 
movement requires coordination [35]. Therefore, it is important to also 
integrate measurements into context-aware systems that provide insight 
into this interaction. 
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Recent AR HMDs are equipped with better hardware for computation and 
can therefore provide real-time eye-gaze and hand tracking, both of which 
have been shown to be suitable for behavior analysis outside of AR 
contexts [36-38]. Gaze behavior is highly task-dependent [39] and 
provides deep insights into perception and cognitive processes [40]. Hand 
tracking can be used to infer hand activities [41], providing insights into 
how users perform manual tasks [24, 38]. To date, there is limited work 
integrating eye tracking into context-aware AR systems. For example, 
Lindlbauer et al. proposed a context-aware system that measures pupil 
dilation as an indicator of cognitive load. They combined this input with 
information about task and environment to adapt when, where and how 
virtual content is displayed [29].  

 
Fig. 5: System model extended with the perception-cognition-action 
model (adapted from [33, 34]). The model describes the relationship 
between human behavior, augmented reality, measurements, and 
context-aware support. Augmented reality adds virtual content to the 
physical system that is perceived by the operator’s eyes, processed, and 
then executed in an action, i.e., a manipulation within the augmented 
reality. The measurements form the basis for understanding the 
interaction between operator and AR and well as states of operator and 
system. By comparing measurements with domain knowledge, the 
context can be inferred, which can then be processed by the context-
aware support to adapt virtual content and to provide feedback. 
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Because the information displayed in AR adds visual cues to the real 
environment that affect operators’ visual attention and can even distract 
them, eye tracking gives important insights into when the user perceived 
information from the real and when from the virtual world. It therefore 
helps to better understand how and where information should be 
displayed during context-aware AR support.  

Combining sensing modalities of eye tracking and hand/object 
tracking further allows to analyze hand-eye coordination, which is the 
task-dependent relationship between hands and eyes [42]. Gras et al. [43] 
computed multiple Euclidean distance measurements between tooltips, 
viewpoint, and patient anatomy in a simulated AR-guided robotic 
surgery. They then trained a multi-Gaussian process model to 
automatically determine the desired AR view (overlay on/off) at each 
time point of the surgery.  Such a system using features of the tooltip and 
the gaze point also learns patterns in hand-eye coordination, which are 
often distinct, reoccurring patterns of human interaction. One of these 
distinct patterns occurs during target selection, also referred to as a 
‘directing pattern’ [35], and is usually present when a person moves their 
hand or a hand-held object towards a target position. Several studies have 
shown the eyes fixating on task-relevant objects and target locations 
before hand movement starts [44, 45]. It can therefore be expected that 
the eyes are not only an indicator for the current action, but also for future 
actions, and enable potentially new implications of real-time support. 
Such predictive support could be particularly useful in industrial and 
clinical applications to combat the high risk and cost of user errors. 

In summary, the use of conventional information mediums comes with 
certain challenges that complicate the training and execution of 
procedural tasks in professional disciplines. AR can potentially improve 
procedural outcomes, but more work is needed to understand how 
contextual information in AR affects task performance. As a static display 
of contextual information is limited in providing procedural guidance, 
context-aware AR support promises to overcome these limitations by 
making contextual information adaptive and by providing feedback. AR 
offers a variety of possibilities to visualize and position information 
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during context-aware support and more work is needed to understand the 
effect of visualizations on task performance and user behavior. Here, eye 
tracking might be particularly interesting to also understand how 
displayed information affects visual attention and might be useful for 
optimizing AR support. In addition, a real-time analysis of hand and eye 
tracking features could enable predictive AR support and error 
prevention. 

The next chapter gives a short overview of topics relevant to this work 
that are not covered within the main studies of this thesis (chapter 4-6), 
whereas chapter 3 explains the goals and contributions of this work in 
more detail. 
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2 Background 
1.1 Augmented Reality Head-mounted Displays 

Augmented reality (AR) is a technology that superimposes a computer-
generated image on the real world to create a composite view [1]. One of 
the first prototypes was famously introduced by Ivan Sutherland in 1968 
[46], and AR has been an active area of research ever since. AR is often 
defined by three characteristics: (1) It combines real and virtual world, (2) 
it is interactive in real time, and (3) virtual content is registered in 3D 
space [47]. Registration refers to the accurate alignment of virtual content 
on the physical environment so that virtual objects can, for example, 
remain fixed in 3D space even when the user is moving the device. While 
some work argues that AR is not limited to visual augmentations and 
should also address other human senses [48], the vast majority of AR 
experiences are based on visual augmentations. Visual augmentations can 
be achieved by video projectors, video see-through (VST) systems that 
first record the scene through cameras and then display the augmented 
video on a screen, or optical see-through (OST) systems that use semi-
transparent displays [49]. Common devices include stationary screens, 
hand-held devices (e.g., smartphones), body-worn displays and in 
particular head-mounted displays (HMDs). OST-HMDs have seen the 
biggest technological advancements over the last few years with 
sophisticated hardware (e.g., Microsoft HoloLens 2) being commercially 
available, and have democratized the use of AR for a broader community. 

Being one of the most sophisticated OST-HMDs on the market, a 
Microsoft HoloLens 2 (Microsoft, Redmond, Washington) was chosen 
for the investigations in this thesis. The device uses four head tracking 
cameras, an inertia measurement unit (IMU), a RGB camera and a near 
and far range depth camera for perceiving its environment [50]. These 
sensor inputs are processed by sophisticated SLAM (simultaneous 
location and mapping) algorithms to create a map of the environment and 
position the device within it. As a consequence, the device can place 
virtual objects stationary in 3D space even when the user is moving. The 
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device can further track the user’s hand poses and eye movement. As the 
transformation between device and registered environment is known, as 
is the transformation between eye and hand tracking sensors and the 
device, these measurements can automatically be registered in the 
physical environment, providing a first semantic layer for behavior 
analysis. Fig. 6 shows the sensor inputs relevant to this work at the 
example of a surgical procedure. Besides eye and hand tracking, the 
presented system processes RGB camera input to predict ArUco marker 
positions in 3D space, and to provide continuous performance feedback 
on task execution.  

 
Fig. 6: Surgeon drilling into the spine while wearing a Microsoft HoloLens 
2 with illustrated sensors inputs (left). The AR HMD tracks its position 
relatively to the (a) registered physical environment, tracks (b) the 
operator’s eye-gaze direction, (c) the hand poses with 26 finger joints for 
each hand, and (d) the tool pose with 6 DoF. The two images on the right 
show the (c) hand tracking and (d) ArUco marker-based tool tracking 
with continuous performance feedback as displayed to the operator.  
(© raw images left and bottom right: Balgrist campus, ROCS group) 
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1.2 Preliminary Work on Automating Semantic Eye Tracking 

Analysis 

Eye tracking has been shown to provide deep insights into perception and 
cognitive processes [40]. One of the most established ET methods for 
semantic interpretation of gaze behavior is the Area of Interest (AOI) 
analysis, where the stimuli is divided into areas (semantic entities) that 
are of interest to the evaluator. AOIs can be any visible part of the physical 
or virtual environment, including interface buttons, a part of a screen, or 
hand-held objects. Mapping the eye-gaze onto AOIs gives the eye 
tracking data semantic meaning and allows to calculate important metrics 
for depiction of visual attention, such as AOI dwell times, i.e., the total 
time spent looking on an AOI, AOI transitions, and AOI sequences. [51]  

AR HMDs such as HoloLens 2 can measure the eye-gaze’s direction 
in relation to the registered physical environment and can therefore 
automate the mapping of eye-gaze on the physical environment. By 
positioning invisible virtual objects in 3D space, eye-gaze interaction with 
AOIs in the physical space can be measured on the virtual level. However, 
this automated mapping does not work for tangible objects such as hand-
held tools or assembly parts that are moved during the procedure. As of 
2018, the gold standard for mapping eye-gaze to AOIs required the 
evaluator to iterate fixation by fixation through the whole eye tracking 
video recording and to manually assign the eye-gaze of each fixation to 
the respective AOI. This approach is highly tedious and inefficient, and 
is not applicable when eye tracking is to be processed for real-time 
support in context-aware systems.  

To overcome the limitations of AOI analysis for dynamic tangible 
objects and for real-time purposes, we have proposed an automated gaze 
mapping approach, the computational gaze-object mapping (cGOM) [52] 

1. The algorithm is based on a deep convolutional neural network (CNN) 
and trained to detect objects that are of interest. While active, it iterates 

 
1 J. Wolf, S. Hess, D. Bachmann, Q. Lohmeyer, and M. Meboldt. Automating areas of interest 
analysis in mobile eye tracking experiments based on machine learning. Journal of Eye 
Movement Research. 2018 
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through all video frames and makes inference with Mask R-CNN, a deep 
CNN, to predict (i) the pixel area that is expected to belong to the object, 
and then (ii) compares the pixel area to the pixel coordinate of the gaze 
point (cf. Fig. 7). If the gaze point lies within the pixel area, the fixation 
is assigned to the AOI. If no match is noted, the fixation is assigned to the 
background or whitespace (all remaining space). The algorithm’s 
performance was evaluated in a lab setup on eye tracking recordings of 
10 participants with the two AOIs ‘syringe’ and ‘bottle’. Using only 264 
labelled object representations for the syringe, it achieved a true positive 
rate (TPR) of 80% and a true negative rate (TNR) of 85% compared to 
manual AOI mapping.  

 
Fig. 7: Computational gaze-object mapping [52]. The two AOIs ‘screw’ 
(green) and ‘screwdriver’ (red) are predicted by Mask R-CNN and then 
compared to the coordinate of the eye-gaze point (red circle). While 
conventional AOI analysis only assigns the gaze point of a fixation to one 
AOI at a time, our work proposed an extension that calculates the 2D 
Euclidean distances between each AOI and the gaze point, also referred 
to as object-gaze distance (OGD), creating a timeseries that provides a 
better representation of visual attention [53]. 
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To test the effectiveness of automated AOI analysis for more complex 
real-world applications, a second study was conducted in a real surgical 
environment (cf. Fig. 7). Two tools (a screw and a screwdriver) were 
selected as AOIs. Eye-tracking video recordings showed that the gaze 
point was often in the immediate periphery of the AOIs. Consequently, 
most fixations were assigned to white space, which has the same 
informative value as if the gaze had been far away from the AOIs. 
Moreover, if the gaze was located between the screw and the screwdriver, 
it could only be assigned to one AOI. It is therefore questionable whether 
such a binary assignment of fixations to a single AOI is sufficient to map 
the visual attention of the operator when working with multiple dynamic 
objects. In order to include the peripheral vision into AOI analysis and to 
make AOI analysis applicable to dynamic multi-object environments, we 
proposed an extension of the state-of-the-art AOI analysis, the object-
gaze distance (OGD) [50]2. The extended algorithm computes the 2D 
Euclidean distance between the gaze point and each AOI pixel region in 
the image plane, resulting in a multi-OGD time series in which 0px 
represents an AOI hit.  

The analysis of the surgical data showed a significant increase in 
interpretable gaze data when near-peripheral vision was included, with 
fixation data increasing from 23.8% to 78.3% for the AOI ‘screw’ and 
from 4.5% to 67.2% for the AOI ‘screwdriver’. In addition, it has been 
shown that the combined evaluation of gaze distances to multiple objects 
reveals new gaze patterns and thus could provide a more accurate 
representation of operator gaze behavior. In addition, multi-OGDs are 
expected to be information-rich features for training time series models 
on the current step or activity of a procedural tasks. 

  

 
2 F.S. Wang, J. Wolf, M. Farshad, M. Meboldt, & Q. Lohmeyer. Quantifying near-peripheral 
gaze behavior in real-world applications. Journal of Eye Movement Research. 2018 
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3 Goals and Contributions 
Procedural tasks in professional disciplines such as maintenance or 
surgery place the highest demands on correct execution, as human error 
can have serious consequences for elaborated machines, patients, or the 
operator himself. AR and context-aware AR promise to offer new 
opportunities to improve procedural outcomes. Understanding the 
strengths and weaknesses of these technologies is key to developing 
support systems that can improve the quality of task execution, making 
procedural tasks safer and increasing outcomes. 

The first goal of this thesis is to investigate different concepts of how 
AR and context-aware AR support systems can be designed, how they 
work, and how they affect operators’ task performance. As shown in the 
system model, perception is an important part of human interaction that 
needs to be understood when designing context-aware support. Therefore, 
as a second goal, this thesis focuses on understanding how context-aware 
AR support systems can benefit from eye tracking. The third goal is to 
validate the suitability of the proposed system model for explaining the 
study characteristics and underlying system relationships in this work.  

The thesis is divided into three main studies. The first study aims at 
better understanding the advantages of contextual information displayed 
in AR over traditional information mediums. The second and third study 
investigate task performance of context-aware AR support with two 
different feedback types and eye tracking analysis both to understand 
visual behavior and for real-time support. The research questions and 
their motivation are explained below. 

RQ 1: How do contextual information in AR affect execution errors? 
One of the most common types of AR support is AR step-by-step 
instructions. Compared to conventional information mediums, AR 
instructions offer two chief advantages: operators’ access to (1) 
contextual information, which reduces complexity to manageable 
increments, and (2) the proximity of information, which allows operators 
to continuously check their execution against the instructions in real time 
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and to adjust their behavior accordingly. Previous studies have shown that 
AR instructions can reduce the number of execution errors [12, 13]. A 
question that remains unanswered is whether these errors are caused by 
participants understanding of the task (perception and cognition), or by 
their ability to manually execute the task. To better understand error 
occurrences and causes, we conducted a user study on a complex medical 
procedure and manually evaluated a detailed error protocol with both a 
categorization into knowledge- and handling-related errors as well as an 
error severity ranking.  

RQ 2: What are effective visualization strategies for continuous 
performance feedback? 
When designing AR guidance, there are different visualization strategies 
in how to display information, ranging from overlay to displaying 
information next to the area of execution, from 2D to 3D, and from 
abstract to geometrical or anatomical representations. These strategies are 
expected to be particularly important when designing continuous 
performance feedback, as the operator’s perception is confronted with 
two conflicting goals: checking the displayed target value while 
coordinating hand movement for accurate manual execution. It can 
therefore be assumed that eye tracking provides important insights into 
the visual behavior that is crucial for optimizing AR support. To 
investigate effective visualization strategies during continuous 
performance feedback, we conducted a user study focusing on a single 
step of a medical procedure and evaluated how different configurations 
of abstraction level (abstract or geometrical/anatomical), position 
(overlay or small offset), and dimensionality (2D or 3D) affect task 
performance, visual attention, and user experience. 

RQ 3: How suitable is a joint analysis of hand motions and eye 
movement for predicting and preventing erroneous hand actions? 
Human error in industrial and clinical applications can be associated with 
high risk and cost. Previous work has proposed context-aware systems 
that provided discrete procedural feedback on the current action [22, 
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24] to tell operators when a wrong activity is being executed. One 
question that remains unanswered is whether wrong actions can also be 
predicted in advance to warn the user of potential errors before they occur. 
Eye tracking might be of particular importance as several studies have 
shown the gaze preceding hand movement during hand-object 
interactions, making eye-gaze a suitable indicator for predicting future 
hand actions. In this study, we investigated whether a joint analysis of 
eye and hand tracking features is suitable for predicting hand actions, and 
whether prediction happens early enough to stop the user’s hand 
movement before the erroneous hand action starts. We conducted a study 
in a lab environment on a fast and repetitive two-step procedure to test 
the timeliness and accuracy of this novel AR support. 

Fig. 8 gives an overview of the study characteristics. The studies are 
explained in more detail in the following sections 3.1 – 3.3.  

 
Fig. 8: Overview of the three main studies addressing research question 
(RQ) 1-3 and their system characteristics regarding support strategy, 
primary measurements, and application. All studies evaluate operators’ 
task performance. The first study investigates (non-adaptive) contextual 
information based on manual user input, whereas the second and third 
study investigate context-aware support with two different feedback 
types and eye tracking both to understand visual attention and for real-
time support.  
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3.1 Comparing AR against Conventional Instructions  

To better understand error occurrences and causes, we conducted a user 
study on a complex medical procedure and evaluated a detailed error 
protocol with both a categorization into knowledge- and handling-related 
errors as well as an error severity ranking. We chose the extracorporeal 
membrane oxygenation (ECMO) cannulation as a procedure as it is 
characterized by many steps that require detailed knowledge and fine-
motoric execution. An AR step-by-step guide was developed for the 
Microsoft HoloLens 2 that combines the same text, images, and videos 
from the conventional training program with simple 3D models. Fig. 9 
shows the system model applied to the first study setup.   

 
Fig. 9: System model applied to the first study setup. The study 
compared AR instructions to conventional instructions without context-
aware support in a physical simulator setup and evaluated a detailed 
error protocol by comparing observed execution to the standard 
operating procedure. The study further evaluated ‘completion time’ and 
‘user experience’ as secondary measurements that are not shown in the 
model.  
 

These AR instructions were developed in an iterative process while 
regularly consulting experts from the Heart Center of the University 



 

22 

Hospital Zurich (USZ). A study was conducted with 21 medical students 
performing ECMO cannulation on a physical simulator. Training times, a 
detailed error protocol, and a standardized user experience questionnaire 
(UEQ) were evaluated.  

The study is presented in Chapter 4. The content of this chapter has 
been published in the International Journal of Computer Assisted 
Radiology and Surgery. The AR application was developed as part of the 
ETH focus project ARORA and the study was greatly supported by the 
bachelor thesis of Viviane Wolfer. 
 
[17] J. Wolf, V. Wolfer, M. Halbe, F. Maisano, Q. Lohmeyer, and M. 

Meboldt. Comparing the effectiveness of augmented reality-based 
and conventional instructions during single ECMO cannulation 
training. International Journal of Computer Assisted Radiology 
and Surgery, 2021. doi: 10.1007/s11548-021-02408-y 

3.2 Effective Visualization Strategies  

To better understand how different visualization strategies in AR affect 
task performance, visual attention, and user experience, we conducted a 
user study focusing on a single step of a medical procedure that benefits 
from continuous performance feedback. Real-time performance feedback 
during tool handling is particularly important for surgical applications 
such as spinal fusion surgery. One particularly challenging step requires 
pre-drilling pedicle screw trajectories into the vertebrae with a surgical 
drill. Due to the proximity to vital structures, strong intraoperative 
bleeding and variability in morphology between patients [21,2,17,31,25], 
spinal fusion surgery is a very demanding procedure. Previous work has 
demonstrated the high accuracy of augmented reality (AR) head-mounted 
displays (HMD) for drilling pedicle trajectories. An important question 
that remains unanswered is how pedicle screw trajectories should be 
visualized in AR to best assist the surgeon.   

In this study, we compared five AR visualizations displaying the drill 
trajectory via Microsoft HoloLens 2 with different configurations of 



3 Goals and Contributions  
 

23 

abstraction level (abstract or anatomical), position (overlay or small 
offset), and dimensionality (2D or 3D) against standard navigation on an 
external screen. The visualizations were derived and tested in an iterative 
process in close collaboration with experts from the Balgrist University 
Hospital Zurich. The final visualizations were tested in a study with 4 
expert surgeons and 10 novices (residents in orthopedic surgery) on 
lumbar spine models covered by Plasticine. We assessed trajectory 
deviations (°) from the preoperative plan, dwell times (%) on areas of 
interest (AOIs), and the user experience. Fig. 10 shows the system model 
applied to the second study setup. 

 
Fig. 10: System model applied to the second study setup. The study 
compared different AR visualizations to conventional navigation in a 
physical spine model setup while providing the trajectory deviation as 
continuous performance feedback. The primary measurements are 
‘dwell time’ and ‘trajectory deviation’. The study further evaluated the 
user experience with emphasis on ‘visualization ranking’, ‘cognitive load’, 
and ‘ease of use’, which are not presented in the model.  

 
The study is presented in detail in Chapter 5. It was greatly supported by 
the master thesis of Dietmar Luchmann. The content of chapter 5 has been 
submitted to the International Journal of Computer Assisted Radiology 
and Surgery and is currently under review. This project is part of the 
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SURGENT project and was funded by University Medicine Zurich/ 
Hochschulmedizin Zürich. 
 
 J. Wolf, D. Luchmann, Q. Lohmeyer, M. Farshad, P. Fürnstahl, 

and M. Meboldt. How augmented reality visualizations for drilling 
affect trajectory deviation, visual attention, and user experience. 
International Journal of Computer Assisted Radiology and 
Surgery (under review), 2022. 

3.3 Predicting Future Hand Actions 

To investigate the suitability of eye and hand tracking features for 
predicting and preventing erroneous hand actions, we conducted a user 
study in a simplified lab setup. We chose a memory card game for this 
study because it requires frequent hand-eye coordination during card 
turns with little task-relevant information and is thus representative of 
more general interaction. The memory game is particularly interesting 
because it is a fast, repetitive procedure where decisions are made on-the-
fly and because it is characterized by a high frequency of target selections. 
The study consisted of two experiments. The first experiment, which 
involved 10 participants, was designed to record participants' eye and 
hand movement data in order to derive a method for target prediction. The 
second experiment included 12 participants and examined the timeliness 
and accuracy of the implemented method end-to-end. Fig. 11 shows the 
system model applied to the third study setup. 
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Fig. 11: System model applied to the third study setup. Participants 
played a memory card game without receiving task-relevant information. 
Eye-gaze and hand movements were recorded in relation to the card 
locations to predict the next card turn. Predictions were compared to a 
ground truth game layout to categorize the support type and provide 
participants with discrete procedural feedback, i.e., either green, yellow, 
or red visual alerts. The measurements comprised of ‘accuracy’ of the 
target prediction and the ‘timeliness’ of displayed visual alerts to stop 
the hand action before the card turn starts. 
 

The study is presented in detail in Chapter 6. The content of this chapter 
has been published in IEEE International Symposium on Mixed and 
Augmented Reality (ISMAR). The project is part of the SURGENT project 
and was funded by University Medicine Zurich/ Hochschulmedizin 
Zürich. 
 
[54] J. Wolf, Q. Lohmeyer, C. Holz, and M. Meboldt. Gaze comes in 

handy: predicting and preventing erroneous hand actions in AR-
supported manual tasks. IEEE International Symposium on Mixed 
and Augmented Reality (ISMAR), 2021. 
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4 Study I: Comparing AR against 
Conventional Instructions  

The content of this chapter has been published in the International 
Journal of Computer Assisted Radiology and Surgery [17]. The study was 
greatly supported by the bachelor thesis of Viviane Wolfer. The AR 
application was developed as part of the ETH focus project ARORA. 

 
Abstract 
Effective training of extracorporeal membrane oxygenation (ECMO) 
cannulation is key to fighting the persistently high mortality rate of 
ECMO interventions. Though augmented reality (AR) is a promising 
technology for improving information display, only a small percentage of 
AR projects have addressed training procedures. The present study 
investigates the potential benefits of AR-based, contextual instructions for 
ECMO cannulation training as compared to instructions used during 
conventional training at a university hospital. An AR step-by-step guide 
was developed for the Microsoft HoloLens 2 that combines text, images, 
and videos from the conventional training program with simple 3D 
models. A study was conducted with 21 medical students performing two 
surgical procedures on a simulator. Participants were divided into two 
groups, with one group using the conventional instructions for the first 
procedure and AR instructions for the second and the other group using 
instructions in reverse order. Training times, a detailed error protocol, 
and a standardized user experience questionnaire (UEQ) were evaluated. 
AR-based execution was associated with slightly higher training times 
and with significantly fewer errors for the more complex second 
procedure (p<0.05, Mann–Whitney U). These differences in errors were 
most present for knowledge-related errors, resulting in a 66% reduction 
in the number of errors. AR instructions also led to significantly better 
ratings on 5 out of the 6 scales used in the UEQ, pointing to higher 
perceived clarify of information, information acquisition speed, and 
stimulation. The results extend previous research on AR instructions to 
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ECMO cannulation training, indicating its high potential to improve 
training outcomes as a result of better information acquisition by 
participants during task execution. Future work should investigate how 
better performance in a single training session relates to better 
performance in the long run. 

4.1 Introduction 

Extracorporeal membrane oxygenation (ECMO) is a life-saving 
procedure for severe respiratory or cardiac failure that has evolved from 
a last-resort treatment to a more mainstream therapy over the past few 
years [55]. As ECMO cannulations gain more importance as an 
emergency treatment, the number of cases is increasing rapidly, and more 
and more hospitals are performing ECMO cannulations themselves [56]. 
While the mortality rate has decreased slightly as ECMO usage has 
increased, it remains high at over 60% [15]. Sufficient training for ECMO 
cannulation in general is shown to be linked with decreasing mortality 
rates [16]. Furthermore, simulation-based training shows significant 
improvements for ECMO cannulations [57, 58]. Frequent and realistic 
training therefore seems to be key when it comes to successful ECMO 
procedures. However, training is time-consuming, and there is no 
standardized certification or training process for ECMO cannulations 
[58]. Even though the Extracorporeal Life Support Organization (ELSO) 
has developed specific guidelines for safe ECMO practice, they are only 
used as a basic structure for ECMO centers to build varying institution-
specific guidelines and programs around [58, 59]. Since ECMO 
cannulations are often emergency operations, a physician can go months 
or years without having to perform an ECMO cannulation before 
suddenly being confronted with a time-critical situation [60]. To be able 
to act precisely and quickly, physicians need to be provided with frequent 
and thorough training. 

As a consequence, several approaches have been put forward, aiming 
to simplify and improve ECMO cannulation training options on the one 
hand and to work towards a standardized procedure on the other. 
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Simulation-based medical training in general is swiftly gaining ground, 
and high-fidelity simulators have been developed, with promising results, 
for ECMO cannulations as well [60]. Many of these involve mannequins 
and/or silicon-based tissue pads to make for realistic cannulation training 
[61]. Other simulators even involve the recreation of the ECMO- circuit 
and include applications where the instructor can manipulate ECMO data, 
among other factors, to simulate common problems [62]. Those, however, 
are mainly designed for post-cannulation problems. 

In other areas of medicine, augmented reality (AR) has started to 
emerge as a training tool in recent years, offering fundamentally new 
possibilities for visualization and interaction with digital content. Modern 
devices (e.g., the Microsoft Hololens 2) are affordable and easy to use and 
therefore widely accessible for training purposes. However, only a small 
percentage of AR projects have dealt with training procedures, while most 
of them have been applied to actual treatment scenarios [4]. Existing 
training applications based on AR depict, for example, the internal 
anatomy superimposed on a simulator [63] or overlay a CT scan to train 
methods for ultrasound [64]. Currently, there is no work on how Optical 
head- mounted displays (OST-HMD) can be utilized for ECMO 
cannulation. Furthermore, only limited research on step-by-step 
procedures and on the possible benefits of AR display options in medical 
training has been conducted. Azimi et al. [65] first trained, then assessed 
20 participants in two emergency medical procedures to compare the 
effectiveness of AR-based instructions provided by an OST-HMD to 
conventional training. They found participants using the AR instructions 
spent more time training but were faster in completing the procedure in 
the assessment run. Participants further found the use of OST-HMDs 
more engaging and reported higher levels of confidence. In this article, 
we evaluate AR step-by-step instructions for ECMO cannulation training 
and compare them with the conventional training instructions regularly 
used at a university hospital. In addition to training times and user 
experience, we emphasize the quality of execution, i.e., the number of 
errors, observed in a single training run. Fewer errors during the training 
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are expected to lead to fewer necessary training iterations and less 
supervision needed to learn the procedure.  

We see two chief advantages of AR step-by-step instructions: 
learners’ access to contextual information, which reduces complexity to 
manageable increments, and (2) the proximity of information, which 
allows participants to continuously check their execution against the 
tutorial in real time, and to adjust their behavior accordingly. 
Consequently, we expect AR training instructions to result in shorter 
training times, fewer errors and better user experience, and thus lead to 
higher skill levels after a single training run. 

4.2 Related Works 

Even though AR applications for ECMO cannulation training have not 
yet been evaluated, previous work has investigated the benefits of ECMO 
cannulation training as well as AR for medical training. 

4.2.1 Augmented Reality in Medical Training 
AR is used and has been evaluated in different areas of medicine, 
including surgical environments [66], therapy [67] and training [68]. In 
[69], medical training with mobile AR was compared to textbook-based 
learning. Medical students were asked to study the given material (either 
mobile AR or textbook) for 45 minutes. No significance differences 
between the two groups were reported for either knowledge tests or 
experience questionnaires, but indicated that long-term retention of 
knowledge may be better with mobile AR. In contrast to the present study, 
the study only tested medical knowledge and no manual execution of 
steps. 

Other work with Microsoft HoloLens 1 investigated the differences 
between AR- based and computer-based suture training for medical 
students [70]. Participants could choose to watch videos on either the 
HoloLens or a conventional computer and to execute a suturing pattern. 
The study showed that videos were watched more frequently on the 
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HoloLens, but there was no significant difference regarding the execution 
of or time spent on the manual task. 

4.2.2 ECMO Cannulation Training 
Several studies have shown that adequate cannulation training is crucial 
for minimizing complications and is therefore an important topic for 
further investigation and improvement [16, 71]. High fidelity cannulation 
simulators have been developed and various studies indicate that 
simulation-based training for ECMO implantations is highly effective for 
participants’ knowledge and ability, and hence results in lower 
cannulation time and better execution [57, 58]. 

4.3 Methods 

4.3.1 Study Design 
To compare conventional and AR-based instructions for ECMO 
cannulation training, a study was conducted with 21 medical students. 
Participants had to perform two procedures, each using a different mode 
of instruction. Similar to the study performed by Azimi et al. [65], 
participants were split into two groups. One group performed P1 
(procedure 1) with AR instructions and P2 with conventional instructions, 
while the other group performed the same training, but in reverse. Hence, 
each group was acting as the control group for one procedure. To 
minimize sequence effects of procedures, half of the participants of each 
group started with the second and the other half with the first procedure. 

4.3.2 Task 
Two surgical procedures were performed by each participant (cf. Fig. 12). 
The procedures were adapted to the study framework so that all steps 
could be completed on the simulator. Steps including ultrasound 
verification alone were skipped and steps including ultrasound guidance 
were adapted accordingly. More precisely, prior to the experiment, we 
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drew the bifurcations (venous and arterial) for the distal per- fusion 
cannulation and marked the height of the puncture spot for the venous 
cannulation. 

Distal perfusion cannulation included the identification of the left 
femoral artery branching, the puncture of the left distal common femoral 
artery (directed caudally), insertion of the limb perfusion cannula using 
the “Seldinger Technique”, removal of the guidewire, and an NaCl flush. 
Venous puncture comprised the identification of the right femoral vein, 
the incision of the skin at the puncture spot, puncture of the common 
femoral vein (directed cranially) and the measurement of the required 
cannula and wire length. Finally, venous cannulation included advancing 
the wire to the measured length, serial dilation of the vessel (using 3 
dilators), the insertion of the venous cannula, and the removal of the wire 
and clamping of the cannula. 

4.3.3 Experimental Procedure 
Participants were first asked to fill out a questionnaire regarding their 
previous experiences with HoloLens and ECMO devices as well as a 
consent form. They then went through a ten-minute HoloLens 2 tutorial 
to familiarize themselves with the AR interface and the different 
navigation types (voice command, hand gesture). Participants then 
performed both procedures. Prior to starting a procedure, participants 
watched a video showing all steps to be performed, which aimed at 
imitating a live demonstration in real surgery prior to training. After each 
procedure, they filled out a user experience questionnaire (UEQ). 
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Fig. 12: The two procedures investigated during the study. Each 
procedure is performed on a different side of the simulator. 
 

 

Fig. 13: Experimental setup consisting of a simulator, tools for procedure 
1 and 2 and a desktop computer. Paper instructions are placed on the 
left-hand side of the simulator. 

4.3.4 Experimental Setup 
The setup consisted of a simulator, a table with a green tablecloth on 
which all tools were placed, and a stationary desktop computer (cf. Fig. 
13). The simulator was placed in such a way that the hoses connected to 
it did not disturb the participant. All tools were labelled with the tool 
names used in the paper or AR instructions. They were divided into two 
sets, one for procedure 1 and the other one for procedure 2. A desktop 
computer was placed next to the tools, on which participants filled out the 
questionnaires and watched the initial videos. During the conventional 
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training, they could also use the computer to watch the video sequences 
presented in the AR instructions. 

4.3.5 Participants 
The study was conducted with 21 third- and fourth-year medical students 
(aged 22 - 30, 9 males, 12 females) who had never performed an ECMO 
cannulation before. 

4.3.6 Information Material 
Both conventional and AR instructions are based on a standard operating 
procedure for ECMO cannulation developed at the heart center of a 
university hospital. Some adjustments were made to the instructions to 
better suit the simulation setting. This included the replacement of 
ultrasound guidance with predefined marks on the simulator and some 
additional specifications to make the cannulation possible for participants 
with no previous ECMO experience. 

4.3.7 Conventional Instructions 
Conventional instructions consist of a printed version of the standard 
operating procedure that include text and supplementary images. In 
addition, participants could watch video sequences on a desktop computer 
(cf. Fig. 13). 

4.3.8 Augmented Reality Instructions 
The AR instructions were designed as a step-by-step guide that included 
the same text, pictures, and videos as the conventional instructions. In 
addition, simple 3D models were displayed in two steps (Fig. 14). It was 
developed for the Microsoft HoloLens 2 (Microsoft, Redmond, 
Washington) using the Unity 3D Game Engine (Unity Technologies, San 
Francisco, California). The application can be controlled both by hand 
gestures and voice commands. Using the outstretched index finger, the 
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user can interact with the interface simply by moving the finger "through" 
the projected button in the same way one would press a physical button. 
Audio as well as visual feedback indicate that a button was successfully 
pressed. Voice commands work either by reading out the name of a 
particular button or by focusing the eyes on the button and saying "select". 

4.3.9 Simulator 
A TF200 ECMO-Simulator by Erler Zimmer (AcuMax Med AG, Bad 
Zurzach, Switzerland) was used. It is specifically designed for ECMO 
cannulation training and regularly used during trainings at the university 
hospital. The simulator contains venous and arterial blood circulation 
through a hose system. Integrated pumps allow for individually adjustable 
blood flow and therefore realistic simulation. Common medical tools can 
be used on the simulator. 

 
Fig. 14: Three information representation types complementing the text-
based step-by-step instructions in AR. 
 

4.3.10  Data Analysis 
For the comparison of conventional and AR-based instructions, training 
time, number of errors and user experience were evaluated. 
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Error Analysis 
We derived an error protocol that contains a list of possible errors and 
ranks each of them with a factor between 1 and 3 based according to their 
severity. 

• 1-Point-Errors 
o Small errors 
o Errors without impact on further steps 
o Partially completed sub-steps 

• 2-Point-Errors 
o Larger errors 
o Errors with impact on other steps or further progression 

• 3-Point-Errors 
o Skipped steps 
o Maximum time for a step exceeded (leading to 

incompletion) 
 

Errors were further categorized as either handling errors, knowledge 
errors, or both. Handling errors are more related to participants’ 
individual dexterity than to the clarity of the instructions, while 
knowledge errors are caused by the participants’ lack of attention to the 
relevant, task-related information. The error protocol for procedure 2, 
including all errors and their respective categorization and severity 
ranking, is shown in Fig. 17. 

User Experience Questionnaire 
To assess the participant’s personal experience, a User Experience 
Questionnaire (UEQ) [72] was handed out after each procedure. This 
standardized questionnaire consists of 26 questions. For each question, 
two contrasting adjectives were juxtaposed, and the participant was asked 
to decide where on the scale, from 1 (complete agreement with the left 
adjective) to 7 (complete agreement with the right adjective) their 
personal experience lay. 
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− Attractiveness: What is the overall impression? 
− Perspicuity: Is it easy to get familiar with and is it easy to 

learn?  
− Efficiency: Can the tasks be solved quickly and without 

unnecessary effort?  
− Dependability: Is the system reliable and does the user feel 

in control of its handling? 
− Stimulation:

  
Is it exciting and motivating?  

− Novelty: Is the product innovative and catchy? 
 

All points awarded by the participants were rescaled for the evaluation so 
that the possible range of points lies between -3 (extremely bad) and +3 
(extremely good). A neutral evaluation usually lies between -0.8 and 0.8, 
whereas values >0.8 signify a positive evaluation and values <-0.8 a 
negative one [73]. Fig. 15 shows all 26 UEQ questions for the six scales. 

  

 

Fig. 15: User Experience Questionnaire (UEQ) consisting of 26 questions 
for the six scales attractiveness (A), perspicuity (P), efficiency (E), 
dependability (D), stimulation (S) and novelty (N). 
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4.4 Results 

4.4.1 Previous Experience 
Among the 21 participants, 12 reported having completed their third year 
and 9 their fourth year of medical studies. No participant reported having 
any previous experience with ECMO cannulation, though 9 participants 
had previous experience with other cannulation procedures (e.g., venous 
cannulation or venous catheter into hand/arm). There was no significant 
difference in training time or error count for either procedure when 
comparing the group with cannulation experience to the group without. 5 
participants claimed to have used AR glasses once before; 3 of them 
reported having used a Hololens 1. There was no significant difference 
between the group with previous AR experience and the group without 
any AR experience in terms of P1 training time or error counts in either 
P1 or P2. The training time of P2, however, was significantly lower for 
participants with previous AR experience (p<0.01, t-test). Of these 5 
experienced participants, 2 performed P2 with AR instructions and 3 with 
conventional instructions. 

4.4.2 Overall Performance 
Fig. 16 shows the training times and total error counts for procedure 1 and 
procedure 2 for both AR-based and conventional instructions. Training 
times of both procedures are subject to a normal distribution (Shapiro-
Wilk-Test), which is not the case for the error count. For P1, AR 
instructions were associated with slightly higher training times and 
slightly lower error counts. P2 was characterized by significantly higher 
mean training times than P1. For P2, AR instructions were associated with 
slightly higher training times, but with only half the variance. AR 
instructions also resulted in significantly lower error counts than 
conventional instructions (p<0.05, Mann-Whitney-U test). Error counts 
and training times were not significantly correlated (Spearman 
correlation). 
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Fig. 16: Training times and error counts for procedure 1 (P1) and 2 (P2). 

4.4.3 Detailed Error Analysis 
Fig. 17 shows the full error protocol for P2. For the following 
comparisons, we rescaled errors associated with AR instructions to 
account for differences in participant numbers. Differences in errors 
occurred only for 1-point and 2-point errors. AR instructions resulted in 
37% less 1-point errors, with 46 errors compared to 73 for conventional 
training. For 2-point errors, only one error was performed with AR, 
compared to 8 errors with conventional instructions. Both instruction 
types resulted in two 3-point errors.  

Finally, we split the error counts according to their respective 
categories. Error counts for handling errors were similar for AR and 
conventional instructions, with a total of 21 each. The use of AR 
instructions resulted in a 66% decrease in error counts related to a lack of 
knowledge, reducing the error counts from 53 to 18. For those errors that 
could be related to both handling and knowledge, AR resulted in an error 
count of 15, compared to 21 for conventional instructions. 
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Fig. 17: Full error protocol for P2 showing errors of each participant 
during AR-supported training (blue, n=11) and conventional training 
(brown, n=10). The right-most column for each training type shows the 
error total. Total error counts are calculated by multiplying the errors in 
each row with the error severity factor, ranging from 1 to 3. The last 
column shows the error categorization into handling errors (H), 
knowledge errors (K), or a combination of both (K/H). 
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4.4.4 User Experience 
The point ratings for the six scales of the UEQ questionnaire are 
visualized in Fig. 18. It is evident that the AR version was evaluated 
positively on all six scales (points >0.8). The conventional version has a 
positive evaluation for Perspicuity and Dependability, a neutral one for 
Attractiveness, Efficiency and Stimulation (- 0.8> points <0.8) and a 
negative one for Novelty (points < -0.8). The best results for the AR 
version were obtained in the categories Attractiveness, Stimulation and 
Novelty. The AR version performed considerably better in five of the six 
categories and only shows similar results when it comes to the category 
Dependability. 

Differences in scores between the AR and the conventional version 
are significant for the categories Attractiveness, Perspicuity, Efficiency, 
Stimulation and Novelty (p<0.05, Mann-Whitney-U test). Clearly not 
significant is the difference in Dependability. 

 
Fig. 18: Point means per UEQ scale. 
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4.5 Discussion 

Previous experience in cannulation was not shown to have any significant 
effect on participants’ performance. Although there was a significant 
difference in training times in P2 for participants with prior experience in 
AR, these participants were equally distributed between the group 
performing P2 with AR instructions and the one using conventional 
instructions. Therefore, we assume the influence of previous experiences 
to be negligible. 

For the first procedure, no large differences in training times or error 
counts were found, suggesting that complexity was too low for 
differences in information presentation to have an impact on performance. 
Participants stated that they remembered relevant information from the 
initial video watched prior to the experiment and therefore often did not 
need to consult the instructions. For the more complex second procedure, 
instructions were consulted more frequently than in the first procedure 
but with important differences depending on the instruction type. Subjects 
using AR appeared to switch regularly between the displayed information 
and the point of execution, often evidenced by a brief pause in hand 
movement and sometimes by a brief but noticeable shift of the head. In 
contrast, subjects who used conventional instructions consulted the 
instructions less frequently but spent more time during each consultation. 
Differences in errors were mostly associated with knowledge errors, i.e., 
information that was missed during execution, which agrees well with our 
initial assumption about the benefits of having access to contextual 
information in close proximity. 

Although we expected shorter training times for the procedures, this 
result is consistent with a previous study [65], which has attributed the 
differences to more engaging work with HMD. Similar to [70], we 
observed that videos were watched more frequently with the Hololens 
than on a computer. The current state of the application may have also 
had an effect on training times. As videos were rather short, at less than 
15 seconds, we did not implement a functionality for jumping to a specific 
point in the video. To watch a part of the video in AR again, participants 
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had to replay it from the beginning, which was not the case for videos 
watched on the computer. Rather than watching the whole video in the 
AR instructions several times, participants only consulted long videos 
once or twice. As a result, error counts of the AR instructions were the 
highest for steps with the longest video sequences. 

Deriving a detailed error protocol with error ranking and 
categorization has been shown to provide valuable insights on the 
effectiveness of training instructions. Error counts indicate that the 
significantly higher rankings in the UEQ were not only related to the 
novelty and excitement of using an OST-HMD but were also linked to the 
much more convenient presentation of information. The UEQ suggests 
that participants found AR instructions motivating and exciting to use 
(Stimulation) - both desirable characteristics for frequent training and 
long-term retention - and rated them highly in terms of clarity of 
information and ease of learning (Perspicuity) and information 
acquisition speed (Efficiency). Dependability was expected to be slightly 
higher for the conventional instructions, since the likelihood of 
encountering technical difficulties was higher for the novel AR 
technology. Both instructions were rated positively with a score of over 
1, even if voice commands or hand gestures sometimes posed difficulties. 

While the results in this paper indicate a high potential of AR 
instructions for surgical training, they are based on a study with only 21 
medical students. Further experiments would strengthen the validity of 
these findings. As described earlier, participants could only replay the full 
video sequences when using the AR instructions and could not skip to the 
middle of a video when needed. Integrating this feature should further 
enhance the performance of AR instructions. To improve the realism of 
the training, currently missing steps like ultrasound verification or 
guidance should be integrated. Most importantly, this study only 
investigated the outcome of one training iteration and long-term training 
effects and the amount of information retained for future ECMO 
cannulations were not explored. A second iteration without any 
instructions could be of interest for future research, to investigate whether 
higher training times or lower error counts correlate with better 
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performance in the long run. However, with respect to the high 
differences in error counts in P2, we don’t expect major changes in 
participants performances during a following assessment run, without 
feedback on previous performance. Future studies could therefore either 
perform a second training iteration with same instruction material and 
focus on how well performance improves during autodidactic training 
iterations. Alternatively, it could include a supervisor who provides 
feedback on participants’ performance, and then relate performance to the 
time spent with the supervisor. We expect participants to require 
significantly less supervision before achieving error-free execution when 
using AR for training. 

4.6 Conclusion 

So far, there has been little research on how step-by-step instructions 
visualized by OST-HMD can be utilized to improve surgical training. In 
this paper, we demonstrated the potential of AR by taking the example of 
an ECMO cannulation. AR significantly reduced errors in the more 
complex second procedure and was clearly favored by the participants. 
Moreover, when comparing the variances in completion times and errors, 
AR instructions resulted in much more homogeneous performance levels. 
This is promising, as it helps to standardize training performance and 
makes training outcomes more predictable. We believe that these 
advantages of OST-HMD are generalizable to other surgical procedures. 
Further studies are needed to assess how AR training affects physicians’ 
long-term knowledge and skill development. For this purpose, it would 
also be interesting to utilize the integrated eye-tracking capabilities of 
recent OST-HMD, which allow for a more fine-grained analysis of 
participants’ behavior and their ongoing cognitive processes. 
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Abstract 
Previous work has demonstrated the high accuracy of augmented reality 
(AR) head-mounted displays (HMD) for pedicle screw placement in 
spinal fusion surgery. An important question that remains unanswered is 
how pedicle screw trajectories should be visualized in AR to best assist 
the surgeon. We compared five AR visualizations displaying the drill 
trajectory via Microsoft HoloLens 2 with different configurations of 
abstraction level (abstract or anatomical), position (overlay or small 
offset), and dimensionality (2D or 3D) against standard navigation on an 
external screen. We tested these visualizations in a study with 4 expert 
surgeons and 10 novices (residents in orthopedic surgery) on lumbar 
spine models covered by Plasticine. We assessed trajectory deviations (°) 
from the preoperative plan, dwell times (%) on areas of interest (AOIs), 
and the user experience. Two AR visualizations resulted in significantly 
lower trajectory deviations (Mixed-Effects ANOVA, p<0.0001 and 
p<0.05) compared to standard navigation, whereas no significant 
differences were found between participant groups. The best user ratings 
for ease of use and cognitive load were obtained with an abstract 
visualization superimposed in the peripheral field around the entry point 
and a 3D anatomical visualization displayed with small offset from the 
entry point. While visual attention was predominantly guided to the 
visualizations, participants still spent 20% of their time examining the 
entry point area for visualizations displayed with a small offset. Our 
results show that navigation generally levels task performance, reveal 
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clear advantages and preferences of certain AR visualizations, and give 
insights into how AR visualizations guide visual attention. 

5.1 Introduction 

Spinal fusion surgery is indicated by severe spine disorders [74-76] and 
has seen an increase in performed surgeries of up to 200% in the last 30 
years [77-82]. The procedure involves a superficial decortication of the 
entry point on dorsal side of the vertebral arch and insertion of a probe 
into the pedicle to make a channel for the screw. Verification of the 
trajectory and possible breaches are performed by intraoperative imaging 
and palpation. Subsequently the screws are inserted into the pre-drilled 
channels, and finally connected with metal rods and plates so that the 
corresponding vertebrae are firmly connected [83-85]. Due to the 
proximity of vital structures, strong intraoperative bleeding and 
variability in morphology between patients [86-88], spinal fusion surgery 
is a very demanding procedure, resulting in enormous health care costs 
[74, 89, 90]. 

Currently, free-hand surgery aided by 2D fluoroscopy is the most used 
approach in spinal fusion surgery, acting as the standard that more recent 
navigation systems are often compared with [91-93]. With technological 
advances and improved navigational methods being integrated into spinal 
fusion surgery [92], currently, two types (3D fluoroscopy, CT-guided 
navigation) of optical navigation systems are available. Both 3D 
fluoroscopy and CT-guided navigation systems were shown to be 
advantageous in accuracy and radiation exposure compared to free-hand 
execution or in combination with conventional visualizations [16, 86, 91-
96]. 

As Härtl et al. have shown in 2013, only a minor part of surgeons 
utilize these new navigation technologies on a regular basis [97]. Factors 
stated are prolonged operating room (OR) times, a lack in ease of use and 
integration into the surgical workflow, and the high cost [97, 98]. 
Augmented reality (AR) head-mounted displays (HMDs) promise to offer 
a range of benefits compared to conventional navigation systems [23, 99], 
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such as increased anatomical understanding, execution speed and ease of 
use, and have seen growing interest over the last years [4]. By 
superimposing images into the field of view, the operator does not lose 
sight of the patient by gazing off at monitors [100]. Yoon et al. found no 
increase in operative time for AR navigation compared to freehand 
techniques [99]. Multiple studies found the accuracy of AR navigation to 
be comparable or better than conventional methods [101-103]. First 
studies on real patients have confirmed these results [101, 104]. 

While previous work on AR navigation has demonstrated the high 
accuracy of AR HMD for pedicle screw placement, an important question 
that remains unanswered is how pedicle screw trajectories should be 
visualized in AR to best assist the surgeon. Outside of AR, Brendle et al. 
[105] compared a hand-held navigation device with an integrated circular 
display showing different visualizations for pedicle screw trajectories 
against conventional navigation displayed on an external screen. They 
found a significant reduction (p<0.05, Kruskal Wallis test) in cognitive 
load (NASA TLX survey) and a significantly better usability (SUS 
survey) when operating with the hand-held device. Using an AR HMD 
instead of a hand-held device, we are not limited to displaying 
information on the screen space of a display. Instead, we can anchor our 
AR interfaces in 3D space and, for example, display information in the 
peripheral area around the tool entry point. Moreover, augmented reality 
offers a variety of possibilities to display information, ranging from 
overlay to displaying information next to the patient, from 2D to 3D, and 
from abstract to anatomical representations. These configurations are 
expected to not only affect the surgical outcome, but also the user 
experience and the visual behavior, and are, thus, expected to greatly 
impact user acceptance. 

In this paper, we compare five different augmented reality 
visualizations for pre-drilling pedicle screw trajectories with variations in 
abstraction level (abstract or anatomical), dimensionality (2D or 3D), and 
position (overlay or small offset) against conventional navigation on an 
external screen. We test these visualizations on a (L1-L5) lumbar spine 
model setup with 4 expert surgeons and 10 novices (residents in 
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orthopedic surgery). As it is difficult for a simulator setup to reproduce 
the same complexity that a real intervention has, we make two 
adjustments to our setup. First, we cover the spine model with a thin layer 
of red Plasticine to decrease visibility on the bone structure and thereby 
increase the need for navigation. Second, we instruct participants to pre-
drill pedicle screw trajectories with less than 2° deviation from the 
preoperative plan to create a challenging and immersive task. We measure 
and evaluate the trajectory deviation between planned and realized 
trajectory (°) as a metric for task performance, the dwell time (%) on areas 
of interest (AOIs) as a metric of visual attention, and the user experience 
with emphasis on ease of use and cognitive load. While our study is 
concerned with pedicle screw placement, we expect our findings to 
generalize to other AR-guided orthopedic interventions that are 
performed on partly occluded anatomy and that require a highly accurate 
execution. 

Contrary to the outcome of free-hand execution, which has been 
shown to be significantly affected by the surgeons’ experience (p<0.01) 
[106, 107], we expect AR navigation to level the task performance 
between expert and novice groups. AR navigation should also result in 
lower trajectory deviations than standard navigation as the participants do 
not need to gaze off to a distant screen. Although visual attention should 
be primarily focused on the visualizations, we assume that surgeons will 
also need to look at the entry point area to coordinate the movement of 
the tool, which would indicate the benefits of having information close to 
or even superimposed on the entry point. Finally, we expect abstract 
visualizations to result in the lowest trajectory deviations and best user 
experience ratings due to the simplified information presentation. 

5.2 Related Work 

Several studies investigating AR navigation for pedicle screw placement 
have proposed visualizations for intraoperative guidance, such as 
overlaying CT slices [108] or 3D pedicle screw trajectories on the patient 
[109]. In our work, we are particularly interested in comparing different 
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configurations of AR visualizations and their impact on surgeons’ 
behavior and preferences. The studies most related to our work are 
explained below. 

Liebmann et al. [23] developed an AR navigation for pedicle screw 
placement using the stereo cameras of Microsoft Hololens to detect and 
triangulate ArUco marker positions. Their AR interface superimposed the 
planned trajectory and the tool trajectory. The end of both trajectories 
were connected by a line and the numeric trajectory deviation was 
displayed on top of the ArUco marker. They evaluated their system on 
spine models and achieved a performance comparable to state-of-the-art 
navigation. We use the same combination of planned trajectory, tool 
trajectory and numeric trajectory deviation display for all our anatomical 
visualizations. 

In a study similar to ours, Brendle et al. [105] compared a hand-held 
navigation device for pedicle screw placement with conventional 
navigation displayed on an external screen. Their hand-held device 
comprised of a drill sleeve with build-in circular display that showed the 
trajectory deviation in two different abstract visualizations. The first 
visualization, the ’circle display’, shows several rings around the center 
of the display representing discrete trajectory deviations and the current 
tool trajectory as a point moving continuously across the underlying 
background. The target trajectory is achieved by moving the point into 
the central ring element. The ’grid display’ divides the circular interface 
into 12 pie sections and four concentric circles of different radii. 
According to the relative orientation of the tool towards the planned 
trajectory, the respective grid field is highlighted in red, with the center 
field representing the target orientation. Both visualizations change the 
color of the center area if the target trajectory is achieved. 

As part of our study, we also investigate two abstract visualizations, 
one with a continuous angle display like the ’circular display’, and one 
using discrete ring segments like the ’grid display’. Contrary to Brendle 
et al. [105], we calculate and display the trajectory deviation projected 
into the sagittal and transverse plane instead of using tool-relative 
coordinates. Deviations along these planes can be adjusted independently 
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when holding the tool firmly and either leaning sideways (sagittal plane) 
or leaning forward/backward (transverse plane).  

5.3 Materials and Methods 

5.3.1 Apparatus 
The AR navigation app was implemented for Microsoft HoloLens 2 using 
Unity 3D (2019.4.14f1) and the Mixed Reality Toolkit (MRTK 2.4.0). 
The standard navigation app was implemented as a desktop app using the 
same Unity 3D backend. The simulator setup (cf. Fig. 19) was based on a 
spine bed for a L1-L5 lumbar spine model (Synbone AG, Zizers, 
Switzerland) and had both a Vuforia image marker attached for initial 
registration with HoloLens 2 and a fixed infrared (IR) marker as a 
reference for tool tracking. The spine bed was reinforced with wooden 
pads so that no relative movement between spine and spine bed was 
possible. The spine was covered with red Plasticine to increase difficulty 
and thus the need for navigation. The tracking camera (Atracsys LLC, 
Puidoux, Switzerland; not visible in Fig. 19) was connected via cable to 
a desktop computer, running a server application that streamed incoming 
data points (i.e., transformation matrices of detected IR markers) to the 
client application (either to a Unity desktop app or to HoloLens 2). Three 
different tools were tracked by the external camera: a drill sleeve for 
navigation, a marker metal pin that can be inserted into the drilled pedicle 
channels to perform a post-op trajectory measurement, and a pointer 
marker for landmark registration of the spine model. 
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Fig. 19: Physical setup (left) with L1-L5 lumbar spine model in spine bed 
and virtual duplicate setup (right). The physical setup uses a fixed IR 
marker as a reference for tool tracking and a Vuforia image marker for 
initial registration with Microsoft HoloLens 2. The spine bed was 
reinforced with wooden pads to fully constrain relative movement 
between spine and spine bed. The setup uses a drill sleeve for navigation 
and a marker pin for post-op trajectory measurement. 

5.3.2 System Calibration 
The transformation between spine bed, fixed IR marker, and Vuforia 
image marker is known by design and remains constant. Prior to starting 
an experiment, we performed an 8-point landmark registration using the 
most distant points of the processus costalis to register the spine position 
to the spine bed. As the physical setup is attached to the underlying 
surface and remains static in 3D space, the Vuforia image marker only 
needs to be registered once before pre-drilling a side (5 pedicle screw 
trajectories) with HoloLens 2 to align the coordinate system of the virtual 
setup with the physical setup. 
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5.3.3 Outcome Parameters 
We measured the absolute trajectory deviation (equation 1) between 
planned (A��⃗ ) and executed trajectory (B��⃗ ) and preoperative plan in radial 
degrees, dwell times on areas of interest in percent (cf. Section 3.7), and 
the user experience with emphasis on visualization ranking, ease of use, 
perceived accuracy, and cognitive load. Trajectory deviation 
measurements were conducted by inserting the marker metal pin into the 
drilled pedicle channels (cf. Fig. 19). This study was only concerned with 
trajectory alignment and did not investigate the accuracy of entry point 
placement. 

𝑇𝑇𝑇𝑇 = cos−1 �
A��⃗ ∙ B��⃗

�𝐴𝐴� �𝐵𝐵�⃗ �
� (1) 

5.3.4 Measurement System 
Tracking System - An Atracsys fusionTrack250 (Atracsys LLC, 
Puidoux, Switzerland) with an accuracy of 0.09 mm (RMS) within 1.4 m 
distance and a measurement rate of 120 Hz was used. To determine the 
trajectory error between drill sleeve and marker pin, we fixated the drill 
sleeve in a vice, drilled ideal trajectories at low drilling speed, and 
subsequently measured the trajectory with the marker pin. We found a 
trajectory error between drill sleeve trajectory and marker pin trajectory 
of up to ± 0.17°. 

 
Eye tracking - HoloLens 2 reports the wearer’s eye-gaze with an angular 
accuracy of 1.5° around the actual target and a recording rate of 30 fps. 

 
Questionnaire - The questionnaire consisted of an AR visualization 
ranking from 1 to 5, with the best visualization receiving 5 points and the 
worst 1 point, and point ratings for ease of use, perceived accuracy, and 
cognitive load ranging from 0 (not at all) to 10 (very much). 
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5.3.5 Visualizations 
From the eight possible configurations of abstraction level, position, and 
dimensionality, five were considered most useful and implemented (cf. 
Table 2). Intuitively, we excluded a 2D anatomical overlay as we did not 
see benefits compared to a 3D overlay. We further excluded 3D abstract 
visualizations as trajectory deviations are only calculated along sagittal 
and transverse planes, which can be well displayed using two dimensions.  
Fig. 21 shows the implemented AR visualizations. 

 
Table 2: Configurations of abstraction level (abstract or anatomical), position 
(overlay or small offset), and dimensionality (2D or 3D) used to derive the AR 
visualizations and the standard navigation. 

 
 

The planned entry point position is highlighted by a green cross, while 
the current position of the drill sleeve tip, referred to as tool tip, is 
displayed as a purple cross. Participants can first position the tool tip on 
the entry point and then use the respective AR visualization to align the 
tool trajectory. All (AR and non-AR) visualizations are explained in the 
following. 

 
Standard navigation - This non-AR navigation (cf. Fig. 20) displays 
sagittal and transverse slices of a segmented CT-model with planned 
(green) and current tool trajectories (purple) on an external screen and is 
used as the gold standard. It further displays a top view of the entire 
segmented 3D model and a cross-hair pointer for fine-positioning the tool 
tip at the entry point position. 
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Fig. 20: Standard navigation with user interface to connect to the external 
tracking camera, start recordings and select a vertebrae (left), a top view 
on the segmented spine model (bottom right), a magnifying view for fine-
positioning of the tool tip on the entry point (red area in the middle), and 
2D slices in sagittal and transversal direction (top right). 
 

 
Fig. 21: All five AR visualizations shown from the participants’ point of 
view. 
 

3D overlay - This AR interface superimposes the whole virtual vertebrae 
on top of the real one. A green line represents the ideal trajectory from 
planning and a purple line represents the current tool trajectory. The 
absolute numeric deviation is displayed above the tool marker position. 

 
Virtual twin - This AR interface displays the same information as the 3D 
overlay, yet next to the spine, and does, thus, not occlude the entry point 
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and the tool tip. As a consequence, the surgeon is not disturbed while 
operating but can countercheck the execution against the virtual model. 

 
Sectional views - This AR interface aims to provide a more familiar 
navigational display that shows the same two sectional views used in the 
standard navigation, but closer to the entry point. By splitting the absolute 
angle along two axis, participants can optimize trajectory deviations 
independently for both directions. 

 
Target cross - This AR interface aims at displaying directional trajectory 
deviations in a simpler way than the two sectional views by visualizing 
the trajectory as a red target cross moving continuously on a blue plane. 
The horizontal axis represents the deviations along the sagittal plane and 
the vertical axis represents the deviations along the transverse plane. The 
center area of the blue plane and the red target cross turn green while 
navigating within 2° deviation. 

 
Peripheral rings - This AR interface aims at displaying the same abstract 
information as the target cross in the peripheral field of the entry point, 
thus allowing the participant to focus on the entry point without occluding 
it. Each ring segment represents an angular deviation of 1.41° in the 
respective direction with a maximum of four segments. If no ring 
segments are visible, the trajectory lies within the limits of < 2° deviation. 

5.3.6 Study Design 
The study was divided into an initial testing phase and a main study. 
During the initial testing, participants were introduced to the Microsoft 
HoloLens 2 and could test all visualizations without drilling. Within the 
main study, participants pre-drilled 35 pedicle screw trajectories (equals 
3.5 L1-L5 lumbar spine models), of which 10 trajectories were drilled 
using standard navigation and 5 with each of the five AR visualizations. 
We derived a study protocol with configurations of visualization types 
and operation side so that all visualizations were performed an equal 



 

58 

number of times on the right and left side by each group. Participants were 
randomly assigned to these configurations. This study did not require the 
approval of the ethics committee. 

5.3.7 Participants 
14 participants were recruited and divided into an expert and a novice 
group. The expert group consisted of four expert surgeons (aged 35-42 
years) specialized in spinal surgery with several years of work experience. 
The novice group was composed of ten residents in orthopedic surgery 
(aged 25-36 years). All experts and half of the novices stated previous 
experience with AR/VR, mainly with HoloLens 1. 

5.3.8 Experimental Procedure 
Fig. 22 shows the experimental setup used during the main study. The 
first spine model (both left and right side) was always navigated using 
standard navigation.  

 
Fig. 22: Experimental setup showing the participant navigating with 
HoloLens 2, the spine bed, tracking camera and external screen. 
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Prior to starting with the second spine model, participants received a 
reintroduction to HoloLens 2 and were guided through the calibration 
procedure of the eye tracking system, which is an automated routine 
provided by HoloLens 2. Participants then calibrated HoloLens 2 to the 
experimental setup by confirming the position of the Vuforia image 
marker. After pre-drilling trajectories with each visualization, participants 
filled out a user experience questionnaire for the respective visualization. 
We used this time window to perform the post-op trajectory deviation 
measurement for each pedicle screw channel. Depending on the operating 
side specified in the study protocol, we then turned the setup by 180° 
and/or replaced the spine model, and performed a landmark registration 
to register the spine position to the spine bed. After the completion of the 
experiment, a general questionnaire was handed to the participants and 
complemented by an interview. 

5.3.9 Eye Tracking Analysis 
For quantification of visual attention, we divided the stimuli into five 
Areas of Interest (AOIs) (cf. Fig. 23). These AOIs comprise of the ’entry 
point’ area, all visualizations displayed with offset to the entry point, and 
the ’background’, which represents the remaining space. No separate 
AOIs were defined for the 3D overlay and the peripheral rings as these 
visualizations are displayed directly on top of the entry point. The time 
spent examining each AOI was summed up and divided by the total time 
spent on the task. This resulted in the relative dwell time for each AOI for 
the respective visualization, expressed in percent. 

 
 
 



 

60 

 
Fig. 23: Areas of interest used for eye tracking analysis, consisting of 
’target cross’ (a), ’entry point’ (b), ’virtual twin’ (c), ’sectional views’ (d), 
and ’background’ (all remaining space). The AOI ’entry point’ is always 
placed above the currently operated vertebrae. The AOI boxes for (b) and 
(c) are not visible during navigation. 

5.3.10 Statistical Analysis 
Preliminary analysis revealed that trajectory deviations and dwell times 
were normally distributed, while questionnaire responses were 
undistributed. All statistical tests were conducted using the R 
environment. We modeled trajectory deviations in a mixed-effects 
ANOVA that included visualization, skill level, and operator side as fixed 
effects, and an operator random effect. A post-hoc analysis was 
performed with Benjamini-Hochberg adjusted pairwise t-tests. Each 
pedicle screw trajectory was considered as one measurement. 
Questionnaire responses were analyzed with a Friedman test and a post-
hoc analysis with pairwise comparisons using the Wilcoxon signed rank 
test. Participant groups were pooled for statistical analysis of 
questionnaire responses to account for the small sample sizes. In a last 
step, we tested for correlation of trajectory deviation with either ease of 
use, perceived accuracy, or cognitive load using Spearman rank 
correlation. 
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5.4 Results 

5.4.1 Trajectory Deviation 
From the 490 pedicle screw trajectories drilled, 10 measurements (2%) 
were excluded due to problems in data recording with Hololens 2 and 20 
measurements (4%) were excluded as the marker pin could not be fully 
inserted into the opened pedicle channel. Fig. 24 shows the post-op 
trajectory measurements for standard navigation and all AR visualizations 
separately for expert and novice groups. Mean trajectory deviations for 
both groups span from approximately 1° to 2° deviation. 73% of all 
measurements lied within the target deviation of 2° and 93% lied within 
3° trajectory deviation. The mixed-effects ANOVA with Benjamini-
Hochberg adjusted pairwise contrasts showed significant differences 
when comparing ’target cross’ with ’standard navigation’ and ’peripheral 
rings’ (both p<0.0001), ’overlay’ (p<0.001), ’virtual twin’ and ’sectional 
views’ (both p<0.05). We also found significant differences when 
comparing ’virtual twin’ against ’standard navigation’ and ’peripheral 
rings’ (both p<0.05). We did not observe a significant effect of skill level 
or operating side on the trajectory deviation (p>0.05). 

 
Fig. 24: Trajectory deviation measurements over all visualizations for 
expert (blue) and novice (brown) groups. 
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5.4.2 Visual Attention 
Table 3 shows the relative dwell times on the AOI ’entry point’ and all 
AR visualizations displayed with small offset while trajectory deviations 
were below 3°. Participants spent approximately 20% of their time 
examining the entry point area and the rest of their time on the respective 
visualization. Up to 10% of visual attention was usually registered on the 
AOI ’background’.  

 
Table 3 Relative dwell times (means and stds) on AOI ’entry point’ and the 
respective visualization for all time steps with trajectory deviation below 3°. 

 

5.4.3 User Experience 
Table 4 shows the summary statistics of the questionnaire results. While 
experts’ preferences of visualizations varied greatly, resulting in overall 
similar point ratings between 2.8 and 3.3, novices’ ratings were more 
determined, ranging from 3.8 for target cross to 2.2 for the sectional 
views. The Friedman test using joined participant groups showed 
significant differences between visualizations for ease of use and 
cognitive load (p<0.01). Post-hoc analysis using pairwise Wilcoxon rank 
tests without p-value adjustment method showed significant differences 
in ease of use when comparing ‘peripheral rings’ against ‘standard 
navigation’, ‘sectional views’, and ‘overlay’ (all p<0.01), and smaller 
differences when comparing ‘target cross’ and ‘virtual twin’ against 
’overlay’ (p<0.05). For cognitive load, we found statistical differences 
when comparing ‘peripheral rings’ and ‘virtual twin’ against ‘overlay’ 
(both p<0.01) and against ‘standard navigation’ (both p<0.05). No 
significant differences were found when using the Benjamini-Hochberg 
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procedure for p-value adjustment. Finally, we found significant Spearman 
rank correlations between trajectory deviation and both perceived 
accuracy (p<0.05, rho = −0.26) and cognitive load (p<0.05, rho = 0.23). 

 
Table 4: Questionnaire summary results: visualization point ranking [5=favorite 
visualization, 1=least liked] averaged over participants, means and stds for ease 
of use ([0,10] higher is better) and cognitive load (NASA-TLX, [0, 100] lower is 
better). The maximum values of each column are printed in bold. 

 

5.5 Discussion 

The goal of this study was to better understand the effects of different AR 
visualizations for pedicle screw pre-drilling on task performance, visual 
attention and user experience both for expert surgeons and novice 
operators. Despite the fact that participants were not trained on the 
visualizations before the experiment and had previously only explored 
them, the majority of pedicle screw trajectories was successfully placed 
within the specified 2° trajectory deviation. The high similarity of 
outcomes for expert and novice groups indicates that navigation generally 
levels task performance. 

Although we expected that abstract visualizations would receive the 
overall best ratings in terms of ease of use and cognitive load, only the 
peripheral rings were rated significantly better than standard navigation, 
whereas no such differences were found for the target cross. Participants 
appreciated that using the peripheral rings they could stay focused on the 
area of execution. As expected for abstract visualizations, the target cross 
achieved the best performance in terms of trajectory deviation. An 
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unexpected outcome was the significant difference in trajectory deviation 
between the target cross and the peripheral rings. Although both of these 
abstract visualizations show the same target angle of 2°, the target cross 
displays the angle continuously, whereas for the peripheral rings there is 
a blind spot within 2° range in which the participants do not receive 
feedback. We believe that by increasing the resolution of the peripheral 
rings to represent smaller angle increments (e.g., 0.5° increments instead 
of 1.41°), similarly low trajectory deviations are possible. 

For anatomical visualizations, we expected the two sectional views to 
result in the lowest trajectory deviations as deviations can be optimized 
separately for both directions. Interestingly, participants executed the task 
more accurately using the virtual twin while both ease of use and 
cognitive load were much better rated. It seems that multiple anatomical 
views also increase the difficulty to incorporate this information during 
task execution. 

The anatomical overlay was perceived as overall most distracting and 
resulted in higher trajectory deviations and worse user experience than 
the virtual twin. Participants found it irritating that they could not see the 
tool tip and entry point very well. This reduced visibility extends beyond 
the boundaries of the virtual object (likely due to the high brightness of 
the superimposed object) and only gradually decreases with lateral 
distance. In contrast, participants found the virtual twin particularly 
helpful in gaining an understanding of the anatomy and to locate the entry 
point. Participants further stated that it felt very intuitive that whenever 
the tool was in contact with the bone, they would also see this contact 
visually on the virtual twin. 

In summary, our results support previous studies that have shown AR 
navigation to be comparable or better than standard navigation [101-103]. 
Our findings further support two key findings of a study conducted by 
Brendle et al. [105] comparing a hand-held navigation device with an 
external screen. First, we also found abstract visualizations to result in 
significantly lower cognitive load and higher usability ratings compared 
to standard navigation. Second, when comparing the same visualization 
either displayed in close proximity (sectional views) or on an external 
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screen (standard navigation) no significant differences were found in 
cognitive load and ease of use. We therefore conclude that cognitive load 
and ease of use are mostly affected by the design of a visualization and 
not its distance. 

The trajectory deviations, however, were shown to be affected by the 
distance of the visualization. While navigating the tool, the eyes must 
provide the necessary information from the visualization to steer the hand 
movement. At the same time, the approximately 20% dwell time on the 
entry point area for visualizations displayed with offset indicate that it is 
not sufficient to only examine the visualization. Instead, participants also 
examine the entry point area to coordinate the hand movement, which, in 
the case of the external screen, requires the eye-gaze to travel much longer 
distances between screen and tool position. The dwell times further 
suggest that visualizations generally guide visual attention to where they 
are displayed. For visualizations displayed at a distance, this results in 
visual attention being pulled away from the patient, whereas with the 
peripheral rings the visual attention is actively guided to the area of 
execution. 

For future studies, it would be interesting to investigate how a 
combination of the most promising anatomical and abstract 
visualizations, i.e., the virtual twin and the peripheral rings, affect the user 
experience and preferences. This was also suggested by several 
participants during the interviews. In addition, our study only examined 
AR visualizations for accurate alignment of the tool with the intended 
trajectory. Determining the position of the entry point is an important and 
challenging step that is also likely to benefit from different AR 
visualizations. The virtual twin could be particularly interesting, as 
participants already reported it as useful for understanding the anatomy 
and for locating the entry point. 

Our study setup has several limitations. First, our results were 
generated in a simulator setup, so further studies are needed to verify these 
findings in real interventions. While the 490 pre-drilled pedicle screw 
trajectories were sufficient for statistical analysis of trajectory deviations, 
a higher number of participants would increase statistical power of 
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questionnaire results, especially as questionnaires are a subjective 
assessment metric. Furthermore, there may have been a learning curve in 
working with the physical setup that negatively affected standard 
navigation results. Allowing participants to operate two sides for standard 
navigation was aimed at compensating this effect. Despite the fact that 
the drill sleeve was jagged at the tip, participants sometimes slipped and 
had to reposition the tool at the entry point. While we do not expect an 
effect on the trajectory deviations, roughening the model around the entry 
point area would improve the tool handling for participants. Providing an 
additional tool for entry point preparation was expected to be unfeasible 
when used on 35 entry points, given the already complex study setup. 

5.6 Conclusion 

Using accurate and easy-to-use visualizations for navigation is important to 
effectively assist surgeons during a procedure. With our work, we contribute 
a study that investigates the advantages and disadvantages of different AR 
visualizations by jointly analyzing task performance, visual attention, and 
user experience. Taking the example of pedicle drilling, the design of AR 
visualizations has been shown to have a big impact on trajectory deviations, 
ease of use, and cognitive load. It is therefore important for future AR systems 
to consider different designs in the development process. When designing 
anatomical visualizations, it is not necessary to overlay anatomical 
information on the real anatomy to get a good spatial understanding during 
navigation. Our results suggest that it is actually easier to combine haptic and 
visual feedback when anatomical information is displayed with some offset, 
as the visibility on tool and entry point area are of high importance. In contrast 
to anatomical visualizations, the main advantage of abstract visualizations 
lies in the design freedom, such as the possibility to freely adjust the 
resolution or to fade in the information in the peripheral area of the tool entry 
point. The latter is particularly promising because visual attention is guided 
in such a way that information acquisition and coordination of hand 
movement can take place simultaneously, allowing surgeons to navigate 
without the need to take their eyes off the patient. 
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6 Study III: Predicting Future Hand 
Actions  

The content of this chapter has been published in IEEE International 
Symposium on Mixed and Augmented Reality (ISMAR) [54]. (© 2021 
IEEE) 
 
Abstract 
Emerging Augmented Reality headsets incorporate gaze and hand 
tracking and can, thus, observe the user’s behavior without interfering 
with ongoing activities. In this paper, we analyze hand-eye coordination 
in real-time to predict hand actions during target selection and warn 
users of potential errors before they occur. In our first user study, we 
recorded 10 participants playing a memory card game, which involves 
frequent hand-eye coordination with little task-relevant information. We 
found that participants’ gaze locked onto target cards 350 ms before the 
hands touched them in 73.3% of all cases, which coincided with the peak 
velocity of the hand moving to the target. Based on our findings, we then 
introduce a closed-loop support system that monitors the user’s fingertip 
position to detect the first card turn and analyzes gaze, hand velocity and 
trajectory to predict the second card before it is turned by the user. In a 
second study with 12 participants, our support system correctly displayed 
color-coded visual alerts in a timely manner with an accuracy of 85.9%. 
The results indicate the high value of eye and hand tracking features for 
behavior prediction and provide a first step towards predictive real-time 
user support. 

6.1 Introduction 

Augmented reality head-mounted displays (AR HMDs) [110] are 
promising for industrial and clinical applications, providing operators 
with the information needed to perform manual tasks such as 
assembly[3], maintenance [2], or surgery [4]. Studies have shown that 
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displaying contextual information can improve spatial understanding [10, 
11] and reduce both time expenditures and the probability of errors [12, 
13]. The same studies have also shown that users still perform errors while 
wearing AR glasses. In order to provide effective support during expert 
activities, recent work has used AR HMDs to capture and analyze user 
behavior by tracking visual markers on manipulated objects or by 
detecting certain steps of a procedure [23, 24]. Results showed that the 
relevant information can be adapted to provide the right instructions at 
the right time and place [111] or that real-time feedback on user actions 
can be provided [20]. So far, efforts have required processing footage 
from the integrated cameras while wearing AR glasses, limiting the depth 
of their processing stack for real-time purposes. Recent AR HMDs 
incorporate better hardware for computation and can thus provide eye 
gaze and hand tracking in real time, both of which have shown to be 
suitable for analyzing behavioral patterns outside AR contexts [36-38]. 
As gaze behavior is highly task-dependent [39], it provides deep insights 
into ongoing cognitive processes [40]. Hand tracking can be used to infer 
hand actions [41], which provide insights into the user’s performance of 
manual tasks [24, 38]. 

Combining sensing modalities in recent HMDs creates a novel 
opportunity for capturing hand-eye coordination, which is the task- 
dependent relationship between hands and eyes [42]. Hand-eye 
coordination has been successfully tracked to automatically detect 
usability problems in eye tracking video recordings [112] or to predict 
user’s target selection while reaching to a virtual object in a Virtual 
Reality (VR) space [113]. During hand-eye coordination, the eyes provide 
the necessary information to plan the motor system’s movements [114, 
115], making gaze a suitable indicator for predicting hand actions. This 
could be particularly useful in industrial and clinical applications, where 
real-time feedback to anticipated actions could combat the high cost of 
user errors. 

In human-computer interaction, previous work on hand-eye 
coordination has investigated predicting target selection of virtual objects 
in VR [113], but no work has predicted target selection in real-world 
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handling tasks that include physical object manipulation. Reaching for 
and picking up a physical object needs precise coordination that affects 
the time the gaze must arrive on the target for a seamless interaction [114]. 

In this paper, we investigate to what extent the real-time analysis of 
eye gaze and hand tracking lends itself to predicting hand actions in a 
real-world task. In a second step, we examine how effectively ongoing 
hand actions can be intercepted through visual alerts before they are 
executed and how participants perceive this support. We introduce a 
method to analyze gaze patterns in real-time to predict target locations 
that users will reach next. Our method simultaneously tracks and analyzes 
hand movement to confirm the current gaze prediction and narrow the set 
of possible target locations. We illustrate our method on the example of a 
memory card game, which requires frequent hand-eye coordination 
during card turns with little task-relevant information and is thus 
representative of more general interaction. The memory game is 
particularly interesting because it is a fast, repetitive procedure where 
decisions are made on-the-fly and because it is characterized by a high 
frequency of target selections. It therefore supports the recording of high 
sample sizes in a well-structured and controlled environment that is fully 
visible and accessible to the user (no obstacles or occlusions). A 
characteristic of memory games is that the correct choice of the second 
card depends on the first card choice. We therefore also investigate hand 
tracking features, i.e., tracked finger joints, that allow for the detection of 
the first card turn. Based on hand and gaze data recordings from a first 
user study, we derive a logic for closed-loop support that we then 
implement on an AR HMD to display color-coded visual alerts to the user. 
Our system monitors the user’s fingertip position in proximity to card 
locations to detect the first card turn and then predicts the second card. 
Predictions are compared to a ground truth game layout stored on the 
device to display green, yellow or red visual alerts, depending on whether 
the predicted target is correct, incorrect but adjacent to the correct card, 
or neither correct nor adjacent. Our second user study investigated our 
method in real time with 12 more participants, showing that it predicted 



6 Study III: Predicting Future Hand Actions  
 

71 

target locations online with 85.9% accuracy while being rated as 
supportive, well working and stimulating during qualitative interviews. 

 
In summary, we make the following contributions in this paper: 

1) a first study with 10 participants on the accuracy of hand motion 
prediction, showing that the gaze locked onto target cards 350 ms 
before touch in 73.3% of cases (averaged over both card turns), which 
coincided with the moment of hand movement deceleration. We 
further show that the set of possible targets can be significantly 
reduced based on the hand trajectory and that fingertip proximity to a 
card is a promising indicator for monitoring first card turns 

2) a novel method for AR-supported manual real-world tasks that 
analyzes hand-eye coordination in real-time to predict hand actions 
during target selection. Our method extends previous work on 
predicting target selection in VR [113], i.e., using a velocity threshold 
and the gaze target, by combining gaze prediction with a hand 
trajectory and with a temporal coupling of gaze and hand features 
optimized for physical object manipulation 

3) a second user study with 12 participants to evaluate the real-time 
effectiveness of our method to stop participants’ motions in time (i.e., 
before they reach and start manipulating a target), showing correctly 
timed and placed visual alerts with an accuracy of 85.9% over 384 
card pairs played. 

6.2 Related Work 

Our work is related to hand-eye coordination, both in (1) real-world 
settings and in (2) human-computer interaction, to (3) predicting target 
selection and to (4) context-aware augmented reality. 



 

72 

6.2.1 Hand-Eye Coordination in Real-World Settings 
Several studies have shown a task-dependent relationship between hands 
and eyes, namely, hand-eye coordination. Land et al. [44] investigated 
participants during “tea making” and found that each action is typically 
associated with four to six preceding fixations on task-relevant objects. 
Johansson et al. [45] extended the investigations to object manipulations 
and found similar behaviors on landmarks (e.g. objects and obstacles) 
relevant to the task. In a study conducted by Helsen et al. [116], 
participants had to move their hand as fast as possible from one physical 
button to another. They found that the gaze initiated 70 ms earlier than 
the hand movement, taking approximately two saccades to arrive on the 
target. The gaze stabilized on the target at about 50% of the total hand 
response time, which was also approximately the moment the hand started 
decelerating. 

Similar to Garcia-Hernando et al. [41], we consider a hand action as 
an interaction between the hands and a physical 3D object (e.g., turning a 
screwdriver, pouring milk). The kinematics of hand actions can be 
divided into several phases, starting with the hands ‘reaching towards an 
object’ (target selection), ‘grasping the object’ to ‘manipulating the 
object’ [45, 117]. As we ultimately aim at supporting users in procedural 
tasks where gaze-behavior is highly task-dependent [39], we assume that 
‘target selection’ can often be associated with the user’s intent to perform 
a hand action with the respective object. 

6.2.2 Hand-Eye Coordination in Human-Computer 
Interaction 

Early work has dealt with analyzing mouse cursor trajectories and gaze 
behavior during interaction with graphical user interfaces [118, 119] or 
web search [120]. While the gaze often led the mouse, researchers found 
several behavioral patterns compared to the more invariant patterns 
observed in real-world settings. Mutasim et al. [121] studied gaze 
movements in a VR hand-eye coordination training system that displayed 
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a grid of virtual targets in front of a wall. They found the gaze arriving on 
target on average 250 ms before touch. 

In a study setup similar to our work, Weill-Tessier and Gellersen [122] 
combined remote eye tracking with a Leap Motion hand tracking sensor 
to record the relation between gaze and hand movements while 
participants played a memory game on a tablet screen. They applied a 
velocity-based algorithm on the hand motion data to detect hovering 
states, i.e., when the hand was in a standby position, contrary to hand 
movement in our method. Their goal was to investigate whether the gaze 
behavior during hovering provided insights about the users’ cognitive 
states in decision making (decisive, indecisive). Results showed that the 
number and duration of fixations during hover could not reveal indecision 
and that target selection was closely dependent on the target’s location. 

6.2.3 Predicting Target Selection 
In user interfaces, target selection has a rich history in desktop 
environments. For example, Baudisch et al. [123] predicted possible 
targets during a drag-and-drop task on a large screen by analyzing cursor 
trajectories. Koochaki et al. [124] predicted user intent while participants 
were shown an image of a kitchen environment on a computer screen. 
Using a CNN to detect relevant objects and an LSTM to learn temporal 
features of the gaze transitioning between these objects, four different 
tasks were distinguished. 

Target prediction also finds increasing use in VR. Marwecki et al. 
[125] analyzed eye gaze patterns to detect regions of interest in a virtual 
environment and covertly adapted the virtual scene, including the 
relocation of virtual elements to allow users to reach out and grasp 
physical props. Cheng et al. [113] predicted users’ touch locations in VR 
by analyzing their gaze and hand motions to redirect the hand to a haptic 
prop. Using the gaze target and a velocity threshold of 3cm/s, their 
method achieved 97% accuracy. Contrary to our setup, hand movements 
were slow, and participants were told which target to aim for. Our method 
is intended to work with very fast hand movements during real-world 
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interaction and allows participants to make their own choice on-the-fly 
without restrictions. 

6.2.4 Context-Aware Support in Augmented Reality 
Context-aware augmented reality aims at automatically changing the 
content displayed in AR based on the current context (e.g., interpretation 
of the surrounding scene) to provide better support, mainly focusing on 
procedural applications such as surgery, assembly or maintenance. 

Within surgical applications, research has primarily focused on 
robotic surgery or laparoscopy. Katic´ et al. [21] used different parameters 
during minimally invasive surgery (e.g., ‘current instrument’, ‘distance to 
anatomical structures’) to detect the current procedural step and to assess 
the current risk. They then combined this information to highlight specific 
anatomical structures. Gras et al. [43] calculated several Euclidean 
distance measurements between the tooltips, the gaze point, and the 
patient anatomy in simulated robotic surgery. Using these features, they 
trained a multi-Gaussian process model to automatically infer the desired 
AR display view at any point of the procedure. 

In industrial applications such as maintenance, machine operation or 
assembly, much work on context-aware augmented reality has been done 
with AR Glasses. Henderson and Feiner [22] applied visual markers 
during AR-guided assembly to track the movement of handled objects 
and assess the user’s current activity. Based on the relative position of 
these objects, they could automatically transition to the next step of the 
procedure or, if the user moved a wrong object, display an error message. 
Peterson and Stricker [20] proposed a system that compares video 
recording with a reference workflow to track the currently executed action 
at runtime. They used this awareness to adjust the displayed information 
for the user’s needs. Ng et al. [24] detected the user’s hands and particular 
task-relevant objects in video recordings. A real-time analysis of the 
spatial-temporal relation of the detected objects and hands then inferred 
the current step to provide contextual instructions in AR. 
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Taken together, previous work has explored means to automatically 
adapt AR support to the current context, but no work has investigated how 
hand and gaze features can be combined online to provide predictive AR 
support for potential errors before they occur. 

6.3 Study Part 1: Patterns in Hand-Eye Coordination 

In this study, two players played a memory game. The study’s purpose 
was to record and analyze gaze and hand tracking data with a high level 
of task immersion to find a pattern that could be used to predict the next 
hand movement. 

6.3.1 Apparatus 
We implemented a Microsoft HoloLens 2 app using Unity’s 3D game 
engine (2019.4.14f1) and the Mixed Reality Toolkit (MRTK 2.4.0). Our 
app positions a virtual playing field on the top of the real field, such that 
hand and eye gaze interactions with the real game cards resulted in 
measurable virtual interactions, as shown in Fig. 26. HoloLens 2 reports 
the wearer’s gaze with an angular accuracy of 1.5° around the actual 
target and a recording rate of 30 fps [50]. Participants were standing in 
front of a table with an approximate distance between the head and 
memory card game of 60–130 cm, resulting in a measurement error of 
1.50–3.25 cm. Through hand tracking, the 3D positions of 26 hand joints 
and the overall 3D velocity of the hand can be measured. We recorded the 
index fingertip, thumb tip, and hand velocity for our investigations. The 
recording rate varies from a low frame rate when the hand enters the field 
of view up to a maximum frame rate of 60 fps. Our app writes both gaze 
and hand tracking data into a buffer saved to a text file with a recording 
rate of 50 fps to synchronize all measurements. In this study, the AR 
HMDs did not display content and merely recorded hand tracking and 
gaze data next to a first-person video. 
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Fig. 25: Paper sheet with imprinted 6 x 6 grid for memory cards and two 
Vuforia markers for 3D registration. 

 

Fig. 26: Front view of a two-layer virtual playing field with 36 fields of the same 
dimensions in the horizontal plane as the real playing field. The flat green cuboids 
register the user’s eye gaze while the green transparent cuboids register when the 
fingertips are within proximity for a potential card turn. A touch of the large cuboid 
on the right-hand side is used during the second user study to reset the support 
system. The virtual playing field is only visible during calibration and is faded out 
before the game starts. 
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6.3.2 Task and Procedure 
In each experiment, two players competed in a memory card game, where 
one player, i.e., the study participant, was wearing a Microsoft HoloLens 
2. The players stood in front of a table with an imprinted 6 x 6 grid. Each 
field in the grid measured 10 cm x 10 cm and contained one memory card. 
The cards constituted a memory card game with 18 pairs of cards, i.e., 36 
cards in total (Fig. 25). Players wearing the Hololens 2 were instructed to 
only play with one hand. 

6.3.3 App Calibration 
Before each game, participants calibrated the system. First, they were 
guided through the eye tracking system’s calibration procedure, an 
automated routine available on Microsoft HoloLens 2. Second, 
participants were instructed to place a virtual grid over the physical grid 
by confirming the position of two Vuforia markers printed at two 
diagonally opposing corners of the physical grid (cf. Fig. 25). After 
confirmation of both marker positions via touch gestures, the virtual grid 
(cf. Fig. 26) was placed between both marker positions, inheriting the 
spatial orientation of the first marker. Participants could then either 
confirm correct placement and hide the virtual field or repeat the 
calibration process. 

6.3.4 Game Structure 
At the beginning of the game, all 36 cards were shuffled by the study 
moderator and placed on the table with their colored sides facing up (Fig. 
25). Players then had one minute to memorize the location of as many 
pairs of cards as possible. After the minute, the cards were flipped and the 
first player chose two cards to be turned over. If the cards belonged 
together, they were removed from the game and placed on the field on the 
right-hand side of the grid, the player scored a point and could turn over 
another pair of cards. If the cards did not match, the cards were turned 
face down again and the other player’s turn started. The game finished 
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when no more cards were left. The player with the most correctly 
identified pairs of cards won. 

6.3.5 Participants 
We recruited eleven participants (5 male, 6 female, mean age = 29.2 
years, SD = 2.8 years) with normal or corrected-to-normal vision. All 
participants stated to be right-handed. One participant’s records had to be 
excluded for insufficient tracking quality, resulting in a total number of 
ten participants. 

6.3.6 Data Analysis 
During the experiments, we recorded the gaze target, i.e., the card the 
participant was currently looking at, the 3D position of the index fingertip, 
the thumb tip, and the 3D velocity of the hand, with a fixed frame rate of 
50 fps and saved all data to a text file. Simultaneously, we recorded a first-
person video that displayed the current frame number in the bottom left 
corner. We observed and corrected a delay between video recording and 
displayed frame number of approximately 12 frames. All measurements 
were expressed in the coordinate system of the virtual playing field. 

As a first postprocessing step, we defined the two events ‘First Card 
Turn’ (FCT) and ‘Second Card Turn’ (SCT) as the time the participant 
started turning the respective card. These events represent the start of a 
hand action we intend to predict with our method. Using the first-person 
video recordings for comparison, we manually labeled each of these 
events with the identification number (ID) of the turned cards, ranging 
from 1 to 36, in the output file recorded with HoloLens 2. Secondly, gaze 
behavior was then analyzed to find a predictor for target selection of 
future hand actions. Using a sliding window, we categorized 4 or more 
gaze measurements (80ms) on the same target as a ‘fixation’ and 
categorized remaining measurements as ‘background’. This resulted in a 
time series with either ‘fixation’ or ‘background’ labels, where each data 
point of a fixation was associated with a card ID of the examined card. 
We then performed a retrospective analysis for each card event ‘FCT’ and 
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‘SCT’ and split the last 3 seconds of gaze behavior prior to the card events 
into windows of length 100 ms. For each FCT or SCT, we iterated through 
all windows and checked if the card ID of a fixation in a window matched 
with the card ID of the target card. If yes, this resulted in a value of ‘1’ 
for the respective window. If not, it resulted in a value of ‘0’. For each 
window position, we summed up these results (‘0’/‘1’) over all 
FCTs/SCTs and divided them by the total number of FCTs/SCTs. This 
resulted in the relative number of fixations on target cards for each 
window position, expressed in percent. 

Hand movements were evaluated with a threefold objective. In a first 
step, we explored the hand velocity curve to investigate whether the hand 
movements ‘card reach’ and ‘card turn’ could be clearly distinguished. In 
this context, we investigated characteristic features in the hand velocity 
that occurred when the correct gaze prediction was made. Such a feature 
represents a trigger condition to confirm the current gaze prediction. As 
differences in hand tracking rate may occur, we interpolated missing data 
points with intermediate values. Second, we investigated how the 
direction of the hand movement can be utilized as a boundary condition 
to limit possible targets. Based on the hand velocity vector in the 
horizontal plane, we calculated the shortest distances between all card 
locations and the current hand trajectory, i.e., the perpendicular distances 
dperp, for each time step (cf. Equation 1). We tested different 
perpendicular and longitudinal distance thresholds to ensure the target 
card was located within the trajectories bounds soon after the started card 
reach while excluding as many other cards as possible. 

 
Last, we evaluated the positions of index fingertip and thumb tip for each 
card turn to investigate whether they could be used as an indicator for the 
first card turn. We defined cuboids above each card location that had the 
same horizontal dimensions as the fields and varied the height of these 
cuboids (similar to transparent cuboids in Fig. 26). We calculated the 
tracking rate, i.e., the amount of available hand tracking data points at a 
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recording rate of 50fps, as well as the relative number of measured hits 
on the target card’s cuboid for the index fingertip, thumb tip, and their 
center. 

6.4 Results 

On average, the ten recorded games took 5.2 min (SD=1.0 min) with a 
total of 141 card pairs played by the participants. 

6.4.1 Analysis of Gaze Behavior 
Eye gaze on the target card was generally low except for the last 1.5 
seconds, where the fixations on the target card slowly started rising, and 
in particular for the last second, where this increase started climbing at a 
faster pace. Fig. 27 shows how often participants were already examining 
the target card in the last second before the respective card turn divided 
into time windows with a duration of 100 ms. 

Between 50 and 45 frames before FCT, participants were examining 
the target card on average in 35.4% of cases. This value rises steadily and 
starts stagnating approximately 20 frames before FCT with a mean of 
81.1%, reaching its highest value just before the card turn with a mean 
value of 85.2%. We observe similar SCT behavior, though with an overall 
reduced percentage of fixations on the target card. Between 50 and 45 
frames before SCT only 19.0% of fixations were registered on target 
cards. This value rises to 65.5% for the fourth-to-last window and reaches 
its maximum mean value of 83.3% just before SCT. Averaged over FCT 
and SCT, the gaze prediction reaches a value of 73.3% for the fourth-to-
last time window, which corresponds to a prediction time of 350 ms. 
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Fig. 27: Last-second gaze behavior (50 fps) on the selected card before 
the first card turn (left) and second card turn (right) across all 
participants, divided into 100 ms time windows. Each value of a box plot 
represents the number of fixations on target cards for one participant, 
divided by all FCTs or SCTs played by the participant. 

6.4.2 Analysis of Hand Movements 

Hand Velocity 

Fig. 28 shows the hand velocity components and the resulting velocity 
magnitude for an example hand sequence. Each FCT and SCT consisted 
of two phases: (i) hand movement to a card (card reach) and the 
subsequent (ii) turning over of a card (card turn). Occasionally there were 
short periods during a move, in which the participant briefly interrupted 
their hand movement. These waiting periods occurred infrequently. We 
randomly selected and analyzed 30 (approximately 10% of all FCTs and 
SCTs) card reaches and card turns to differentiate the ‘card reach’ and 
‘card turn.’ The average velocity during a card turn was 0.10 m/s 
(SD=0.02 m/s) with a duration of 0.38 s (SD=0.10 s). The average 
velocity during a card reach was 0.39 m/s (SD=0.11 m/s) with a duration 



 

82 

of 0.92 s (SD=0.24 s). Both mean velocity and mean duration during card 
reach were significantly higher (p<0.01, Wilcoxon Signed-Rank Test) 
than when it was turned over. The two actions can thus be clearly 
distinguished from one another using these criteria. 

 

Fig. 28: The top diagram shows the velocity components of an example 
hand sequence of one move (two card turns) and three hand velocity 
features that represent the start (A), peak velocity (B) and end (C) of a 
card reach. VX represents the velocity in the lateral direction, VZ 
represents the longitudinal direction, and VY represents the vertical 
direction. The bottom diagram shows the time interval between each 
hand velocity feature (A-C) and the gaze arriving on the target card 
before a card turn. A positive value indicates that the feature occurred 
after the gaze arrived on the target. 
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Temporal Coupling of Eye Gaze and Hand Movement 

Three features of each hand reach, i.e., the start, the peak, and the end of 
the movement, were extracted across all participants and related to the 
arrival of gaze on the target card (Fig. 28, Feature A-C) to derive a trigger 
condition for the current gaze prediction. For both FCT and SCT, the 
occurrence time of the peak velocity is, on average, very close to the time 
the gaze arrives on the target card. The start of a hand movement 
represents an earlier but riskier prediction, while the end of a hand 
movement allows for a more conservative prediction. 

Hand Trajectory Planning 

Taking into account only cards located within a lateral distance of 6 cm 
(approx. half the size of a card field) around the current hand trajectory 
and 30 cm in the longitudinal hand direction, the 36 possible cards could 
be reduced to an average of 2.9 cards (SD=1.1). Approximately 470 ms 
(SD=220 ms) before SCT, the target card laid within the trajectories’ 
tolerance field. 

6.4.3 Fingertip Proximity 
Fig. 29 shows three relevant hand features during a card turn (top) and the 
cuboid hit rates on target card’s cuboids for each feature (bottom). The 
hit rates for the thumb tip are overall the lowest, indicating that the thumb 
was less often located over a field during card turn than the other two 
features. The hit rates of the index fingertip and the center point are very 
similar up to a height of 6 cm and then increase slightly more for the index 
fingertip. 

The tracking rate, more precisely the number of available data points 
at a recording speed of 50 fps, reached a mean value of 29.4% 
(SD=26.6%) and a maximum of 60%. While running on-device video 
recordings, the recording rate is automatically reduced from 60 fps to 30 
fps. Despite fluctuations in the tracking rate, the cuboid hit rates for the 
index fingertip, and the center point were high during a card turn. Outliers 
occurred when the tracking rate was very low, and thus, registered hits on 
other cuboids had a more significant effect on the hit rate. 
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Fig. 29: At the top, three characteristic scenes of a card turn are shown 
(a-c), with the two involved hand joints index fingertip and thumb tip as 
well as their center. At the bottom, over all first card turns the hit rate on 
the target card’s cuboid is shown for different cuboid heights for the 
index fingertip, thumb tip and center. Error bars show the hit rates’ 
standard deviation over all card turns. 

6.5 Intermediate Discussion 

Gaze behavior on cards seemed to be random up to the last second before 
the card turn. In 73.3% of cases, the gaze arrived on target card 
approximately 350 ms before card turn. The lower number of fixations on 
the target card during SCT than FCT is most likely related to the two-
player setup. Participants who see a card whose counterpart they know 
during their opponent’s move seemed to keep the position of that card in 
mind during their move. After revealing the expected matching card 
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during their first card turn, they choose the second card without looking 
at it. 

The peak velocity fits on average very well as a trigger condition for 
gaze prediction and errors due to the variance of peak velocity and gaze 
on target should be greatly reduced by only allowing targets on the hand 
trajectory. While the start of a hand movement can be well detected by a 
velocity threshold, the peak velocity can only be evaluated 
retrospectively. A possible alternative solution would be first to detect the 
start of a hand movement and then check for a negative acceleration of 
the hand. 

The measurement of hit interaction of the index fingertip in the 
respective cuboids provides an excellent signal to detect the first card turn 
but is strongly affected by the hand tracking rate. For the best performance 
of our support system, it is advisable to test the system without first-
person video recording and, thus, make full use of the device’s 
capabilities to track hands with 60 fps. While we aimed for a high degree 
of task immersion during the behavioral analysis in the first study, we 
changed the setup to a single-player memory game to assess the support 
system’s performance within the second user study. 

6.6 Implementation 

Based on the results of the first study, we implemented our processing and 
analysis pipeline of gaze prediction, hand trigger, and hand trajectory on 
HoloLens 2 to display visual alerts to the user in real-time. In this section, 
we explain the functionality of the implemented closed-loop support 
system. As we aim to provide alerts for the second card turn based on 
selecting the first card, we first detect the first card turn by monitoring the 
fingertip position when near a respective card. Fig. 30 shows the pseudo 
code of the closed-loop user support. We initialized the algorithm’s 
thresholds based on the findings in our first study and refined them during 
a pilot study with three participants. 
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Fig. 30: Pseudo code for the implemented closed-loop user support. 
 

While the next card is set to the first card, all registered cuboid hits of the 
index fingertip are continuously written into a list of window size 20. We 
found that a cuboid height of 5.5 cm (Fig. 29) works well to detect card 
turns while avoiding false detections due to the hand moving across the 
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field. Once the window size is reached, the tracking rate and cuboid hit 
rate are calculated. If at least 30% of data points are available and at least 
60% of these data points register a hit on the same cuboid, the first card 
is selected. As a result, the respective field is outlined with green dashed 
lines (Fig. 31 (a)) and the next card is set to the second card. 

Once the velocity of four consecutive frames is greater than 0.25 m/s, 
we detect the start of a new hand reach to a target. This Boolean allows 
us to filter out the majority of card turns and random hand movements (cf. 
Fig. 28). As missing data points can affect system performance, we 
interpolate single missing data points with an immediate value. Once the 
hand movement has started, the current gaze target is compared with the 
card located close to the current hand trajectory. Only cards within a 
maximum distance of 6 cm in the transverse direction and 30 cm in the 
longitudinal direction are considered. A color-coded visual alert is 
displayed above the examined card position when a match occurs between 
the gaze target and hand trajectory targets. If the predicted target matches 
the correct second card stored in the ground truth game layout, a green 
bounding box outlining the field is displayed (Fig. 31 (b)). A yellow alert 
is displayed in the event of a predicted incorrect target adjacent to the 
correct card. If neither the predicted target nor any adjacent fields are the 
correct card, a red warning sign is displayed (Fig. 31 (c-d)). At the 
beginning of our tests, we used a second Boolean condition after the 
detected start of a hand movement set true by three consecutive frames 
with negative acceleration (represents a feature slightly behind ‘B’, cf. 
Fig. 28). This implementation, however, proved to be generally too slow 
to issue visual alerts in time and was dropped. The single velocity 
threshold used in our final implementation represents a feature between 
‘A’ and ‘B’ (cf. Fig. 28). Further, we initialized the threshold for a card 
to be considered a gaze target with 4 consecutive frames on the same card. 
Increasing this value to 6 frames significantly reduced false positives 
during slower gaze transitions to the target. 

The system was designed in a way that it would only provide one 
visual alert for each move. Issuing multiple warnings for wrong second 
card choices was expected to only result in a trial-and-error strategy 
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instead of participants actually thinking about the card choice. Hence, 
after a visual alert was displayed, the system switched to standby until the 
cards were turned back and the next move started. To ensure that false 
detections were not propagated into future moves, participants had to 
reset the system once after each move. This was done by briefly moving 
their right hand over the single field on the right side of the grid (cf. Fig. 
25), which was covered by an invisible cuboid (cf. Fig. 26). A touch with 
the cuboid resulted in the cuboid lighting up to confirm the reset.  

 

Fig. 31: Confirmation of detected first card turn (a) and visual alerts for 
the second card prediction in case of correct target selection (b), a wrong 
target that is located directly next to the correct card (c), and a wrong 
target that is not located next to the correct card (d). 
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Study Part 2: Validating Closed-loop User Support 

In our second study, 12 new participants were recruited to play a single-
player memory game while our app now provided closed-loop user 
support (cf. Section 5, Algorithm 1). As observed in the first study, the 
use of first-person video recordings greatly reduces sensor performance. 
In particular, hand tracking is reduced from a possible 60 fps to 
approximately 30 fps. To test the support system at its best performance, 
we recorded participants’ actions with an external camera while 
participants commented on their observations using the think aloud 
method. 

6.6.1 Participants 
We recruited 12 new participants from our institution (9 male, 3 female, 
mean ages = 27.3 years, SD = 2.9 years) with normal or corrected to 
normal vision. No participants were excluded. 

6.6.2 Task 
The goal of the game was to find all pairs of cards with as few card moves 
as possible during a single-player game. Participants were asked to select 
a different second card if a yellow or red alert was displayed in-time at 
the location of their initial card choice. Before each new move, 
participants once moved their right hand over the square to the right of 
the grid to reset the closed-loop support system. 

6.6.3 Procedure 
Participants were introduced to how the system worked and learned about 
the four visual aids (cf. Fig. 31) without addressing the underlying 
behavioral patterns. Participants then performed the app calibration and 
were able to test the system on three card pairs before starting the 
experiment. Participants were asked to think aloud and share their 
observations during the experiment. In the case of leaving out 
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information, the experimenter asked questions. After the experiments, an 
interview was conducted. 

6.6.4 Data Analysis 
We analyzed the support system’s performance and statements from 
interviews. In a first step, we examined the third-person video recordings 
and classified all warnings depending on time and place of occurrence as 
described by the participants during think aloud. A visual alert was 
considered timely when the participant recognized it before the card turn, 
resulting in an observable change in the target card after yellow and red 
warnings. The place of occurrence was categorized as either ‘far away 
from target’, if at least one field was separating the predicted and the 
actual target, as ‘next to target’ or as ‘correct target’. We calculate the 
system accuracy by dividing the number of correctly timed and placed 
visual alerts by all second card turns. We did not quantify how often 
warnings subsequently led to a correct card choice, as this metric is highly 
affected by chance. Finally, during the interviews, we asked participants 
how they perceived the system’s functionality, how they experienced the 
visual alerts, and whether they felt patronized, monitored or annoyed by 
the system at any point during the game. 

6.7 Results 

In total 384 card pairs were played by the participants. Only allowing one 
visual alert every move (turn of two cards), 330 (85.9%) hand actions in 
total correctly triggered a visual alert in time, while 54 hand actions 
resulted in wrong, late or missing visual alerts. Fig. 32 shows the mean 
performance across all participants and the breakdown of correct and 
incorrect warnings into subcategories. 
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Fig. 32: Warning system performance averaged over all participants (a) 
with categorization of incorrectly displayed warnings (b) and correctly 
displayed warnings (c). 
 

Of the 54 card turns not resulting in a correct visual alert, only 5.6% were 
issued too late. A total of 31.5% of visual alerts were placed just next to 
the target, which, in the case of red and yellow alerts, still provided 
information about the actual target. A total of 18.5% of warnings placed 
far from the target usually occurred when the participants moved their 
hand unconsciously over the field or when the hand movement and gaze 
overlapped while moving to a target. This was often an issue when 
moving the hand from the top left corner to the bottom right corner. In 
these cases, the gaze movement was slower, and the hand blocked sight 
on the cards while moving backward. Finally, 44.4% of second card turns 
were stated by the participants to have not issued any visual alert. 
Analysis of the event logs in the output file showed that for most of these 
cases, a visual alert was issued but was either not recognized by the 
participants or was placed outside of the field of view in AR. In 
approximately 7% of all first card turns recognition did not work properly. 
Either the green dashed lines appeared on the neighboring field or during 
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the second card turn. In these cases, we recommended that participants 
simply reset and repeat the move.  

We observed two fundamental strategies in dealing with the support 
system. Two-thirds of the participants found a natural pace from the 
beginning, where detection of the first card turn and prediction of the 
second card worked very well, reaching accuracies of the target prediction 
up to 97.0%. The other third of the participants initially performed 
random hand movements to test the system. After provoking false alerts, 
they quickly learned how the system worked. This group of participants 
then actively used hand-eye coordination to control the warning system, 
which became noticeable by the fixation on the target card and a short yet 
fast pointing gesture towards the target. Participants found it particularly 
helpful that visual feedback was shown for all card actions, including the 
first card, which allowed them to understand how the system worked and 
to collaborate better. 

During the interview, all participants stated that the system worked 
very well and that it was helpful and supportive and stimulating to use. 
None of the participants felt patronized or monitored by the system. Two 
participants stated that the interpretation of visual aids and the effort for 
memorizing card pairs required an increased level of concentration. In 
contrast, two other participants stated that they had to think less during 
the task, using the support system as a tool, which they appreciated. While 
all visual warnings were perceived as helpful, preferences varied between 
participants. Perceptions of green warnings varied from participants 
experiencing them as positive and motivating feedback to participants 
having a rather neutral perspective. Yellow alerts were perceived as most 
useful, as they prevented incorrect hand action and gave hints about the 
correct target. This effect increased especially towards the end of the 
game when there were only a few cards left. Finally, red alerts were not 
perceived as negative by the participants. However, participants criticized 
that red alerts only pointed out a mistake without providing the user with 
additional task-relevant information. Two participants suggested 
displaying an arrow above the red warning that points in the approximate 
direction of the correct card to provide better support. Participants further 
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stated that the reset cube was fast and easy to use but that they sometimes 
forgot about the reset, especially during their first moves, and thus needed 
to be reminded by the experimenter. 

6.8 Discussion 

Our goal was to investigate whether real-time analysis of hand-eye 
coordination is suitable for predicting hand actions during target 
selection. 

Our investigations showed that the support of our implemented 
method was effective with a mean accuracy of 85.9%. While target 
prediction was lower for SCT than for FCT in the first user study, these 
differences were not present in the second user study. This could be a 
consequence of the change from a two-player to a single-player setup. 
Statements from the interviews suggest that the very robust predictions 
are also related, in part, to the fact that participants sometimes adjusted 
their behavior to interact with the support system in an optimal way. 
Despite the measured average prediction times of only 350 ms, most 
visual alerts were issued in time. This seems plausible, considering that 
simple reaction times range from 180 ms to 220 ms [126]. During hand-
eye coordination, the eye continuously supplies information to control 
hand movement. If a warning sign obscures the target, the eyes cannot 
further guide the hand movement. In contrast, displaying green outlines 
did not interrupt the hand action in most of the cases. 

Based on our results and previous research on hand-eye coordination 
in target selection, there is strong evidence that our method is transferable 
to other cases. Several studies have shown the gaze preceding the hand 
during target selection [44, 45, 116], also referred to as a ‘directing’ 
pattern [35]. Our studies support these findings while demonstrating how 
hand and gaze features can be combined for target prediction. According 
to Crawford et al. [114], the object to be manipulated directly affects the 
time the gaze must arrive on the target. We therefore expect that some 
refinements of the thresholds used in our method will be necessary for 
optimal performance in other scenarios with other objects. We suggest 
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that researchers record hand and gaze data for their specific scenario, 
following our implementation, and then fine-tune the parameters on their 
data to find a good compromise of prediction time and accuracy. 

While the playing field used for our studies is two-dimensional, the 
invisible virtual objects for measuring user behavior, i.e., a thin layer for 
gaze interaction and a thicker layer for finger proximity (cf. Fig. 26), 
could be placed over any non-planar surface in 3D space. Both the 
velocity threshold and gaze target of our proposed method should be 
transferable to 3D settings. Only the trajectory is currently computed in 
the 2D plane and would have to also exclude targets along the vertical 
axis. Contrary to our setup, which was well structured and observable 
from different angles, more complex 3D setups might be characterized by 
occlusions and greater variations in target objects’ distances and sizes, 
which might require case-specific extensions to our method. 

We see our method in various procedural tasks where an operator 
follows a predefined sequence of actions such as, for example, during 
interaction with medical devices or machine interfaces, or while reaching 
for assembly parts. To integrate predictive support into more complex 
real-world tasks, however, the system needs a profound understanding of 
what the user is currently doing and how this is in alignment with a 
reference workflow. Such process monitoring has been studied in 
previous work [22, 24] and could be used as a basis for our system in the 
future. Hand tracking capabilities now also allow for direct monitoring of 
hand actions. In this work, we only monitored one hand joint, i.e., the 
index fingertip, in proximity to the cards to detect the first card turn, which 
was simple but very effective. Recent work has utilized all hand joints of 
a hand pose for training time series models (e.g., LSTM) on activity 
recognition of manual tasks, resulting in high accuracies [41, 127]. 
Training algorithms to recognize hand actions would allow future work 
to label them during data postprocessing automatically. Using the 
detected hand actions as output and the preceding hand and gaze behavior 
as input, supervised training pipelines can be implemented to learn more 
complex relations involving hand-eye coordination. 



6 Study III: Predicting Future Hand Actions  
 

95 

6.9 Limitations 

The results are based on experiments with only 22 participants from a 
rather homogeneous sample population. Despite the small number of 
participants, the data set included 525 manually labelled first and second 
card selections (summed up over both studies), which we believe to be a 
solid basis to assess the performance of our method. Further studies would 
strengthen the validity of our findings and would be particularly 
interesting when conducted in other real-world settings. 

While the heuristics derived in this paper work well on average, there 
is a distribution of temporal coupling between gaze and hand feature 
occurrence (cf. Fig. 28), which can result in warnings sometimes being 
triggered at the wrong time, and thus at the wrong place. Such differences 
in temporal coupling cannot be fully accounted for by a system based on 
thresholds, but rather by jointly learning hand and gaze features from 
data. Combining the gaze prediction with a hand trajectory proved to be 
key to handling the variety in participants hand movements. During our 
initial investigations on target prediction, we found that simply using a 
velocity threshold and the gaze target (i.e., as proposed by Cheng et al. 
[113] for predefined targets) was not sufficiently robust when participants 
could make their own card choice on-the-fly. We suggest future work to 
also consider optimizing thresholds for hand movement direction, as hand 
movements from top left to bottom right corner were associated with a 
higher percentage of misplaced warnings. Finally, the thresholds were 
only optimized for the average target population. Customizing thresholds 
to individual participants is expected to bring participants performances 
closer to those of participants who collaborated with the system and 
achieved accuracies of up to 97%. 

The manual reset of the support system after each move might have 
had an effect on participants natural behavior. Playing the memory game 
without a reset cube would improve authenticity and could be achieved 
by integrating more pronounced process monitoring into the support 
system. There might have also been an effect of differences in participants 
spatial abilities. These differences, however, are expected to be rather 
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small for the homogeneous group of young and healthy participants 
(mean age = 28 years) recruited for our studies. 

In addition, as with any sensor, hand and gaze measurements are 
subject to certain measurement errors. The playing field dimensions were 
chosen to minimize error, particularly in measuring gaze behavior on 
cards. With state-of-the-art eye tracking glasses measuring gaze with 100 
fps and angular accuracies between 0.5–1° (e.g., Tobii Pro Glasses 2), 
compared to HoloLens 2 with 30 fps and an accuracy of 1.5°, it is possible 
to analyze gaze behavior on more compact stimuli in the future, such as 
machine interfaces or surgical scenes, and with fine-grained analysis of 
eye movements. For hand tracking, data points were occasionally missing 
due to low tracking quality, which we also believe gradually improves 
with technological advancements. There may also be some errors due to 
the manual processing of the ground truth. 

6.10 Conclusion 

With the high cost that human error in industrial and clinical applications 
is associated with, error prevention is an important topic. In this paper, 
we presented a method that utilizes hand-eye coordination to predict hand 
actions during target selection. End-to-end testing of our method showed 
it to be highly effective in placing visual alerts over target locations and 
stop hand actions in a timely manner. Moreover, it showed that hand-eye 
coordination can be used as an intuitive way of interacting with a 
technical system and that transparent communication from the system to 
the user is key for effective collaboration. 

To date, the field of context-aware augmented reality in manual tasks 
has primarily focused on providing feedback on current user behavior. 
With our work, we contribute a method that allows AR headsets to 
provide feedback at an earlier stage of a task. While the memory game 
proved to be an expedient case for this first investigation, future studies 
should investigate hand-eye coordination in industrial and clinical setups. 
It will be interesting to explore in the future what patterns exist during 
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other real-world tasks, how they change in the course of a procedure and 
how they can be used for intelligent wearable support systems. 
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7 Conclusion and Outlook 
AR and context-aware AR support show great potential in improving 
procedural outcomes. This work aims at providing a better understanding 
of how these technologies affect task performance, and to investigate the 
benefits that eye tracking can bring to context-aware AR support. A 
system model was proposed to explain the study characteristics and 
underlying system relationships in this work, which will also be discussed 
in regard to its suitability to model context-aware systems. This chapter 
first concludes the findings of the main studies and the specified goals 
and then outlines potential research directions for future work. 

7.1 Conclusion 

Three studies were conducted to address the research questions in this 
thesis. The first study was aimed at better understanding the advantages 
of contextual information displayed in AR over traditional information 
mediums. The second and third study investigated task performance of 
context-aware support with two different feedback types and eye tracking 
analysis both to understand visual behavior and for real-time support. The 
following paragraphs conclude the study results presented in chapter 4-6 
and then lead to a final conclusion. 

RQ 1: How do contextual information in AR affect execution errors? 

The first study examined the benefits of contextual information in AR 
over traditional information mediums taking the example of ECMO 
cannulation. The evaluation of the detailed error protocol showed a 66% 
reduction in knowledge-related errors in the more complex second 
procedure. This is consistent with our expectation that contextual 
information in AR can be better incorporated during task execution, 
reducing procedural errors such as missed steps and partially completed 
steps. Despite the improved outcomes, a considerable amount of 
information was still missed or misinterpreted during execution, and 
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handling errors were not impacted, being even slightly higher with AR 
than with the conventional instructions. These results suggest that for 
complex procedures, a one-directed feed of information from AR to the 
operator is not sufficient for an error-free execution. Instead, the operator 
must be made aware of how his execution differs from the intended 
workflow, which requires a feedback loop. This feedback can either be 
provided by a supervisor or by integrating context-awareness, which was 
the scope of the following studies. 

RQ 2: What are effective visualization strategies for continuous performance 
feedback? 

The second study investigated visualizations for continuous performance 
feedback with different configurations of abstraction level, 
dimensionality, and position, taking the example of pedicle screw 
placement in spinal fusion surgery. It showed that the design of a 
visualization has a significant effect on ease of use, cognitive load, and 
task performance. It further showed that continuous performance 
feedback levels task performance, independently of the visualization. 
Both abstract and geometric visualizations resulted in very high execution 
accuracy and user experience ratings, although significant differences 
were found between designs. Abstract visualizations are particularly 
interesting as they allow to freely adjust resolution of the displayed target 
value, whereas geometrical visualizations are bound to the dimensions of 
the physical 3D space.  

As displaying continuous performance feedback causes virtual 
information to change continuously, the eyes must perceive this 
information while coordinating hand movement. Eye tracking showed the 
distribution of visual attention between these conflicting goals, 
suggesting that virtual information should be displayed as close as 
possible to the area of execution to reduce the distance the eye-gaze must 
travel between information intake and hand coordination. While 
information proximity is beneficial, it is of great importance to not 
overlay virtual information on the area of execution or other visual stimuli 
that the operator must perceive during task execution. Here, the peripheral 
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field of vision has been shown to be particularly interesting as visual 
attention is guided in a way that information acquisition and coordination 
of hand movement can take place simultaneously without occluding 
relevant parts of the stimuli. 

RQ 3: How suitable is a joint analysis of hand motions and eye 
movement for predicting and preventing erroneous hand actions? 
The third study investigated the suitability of a real-time analysis of eye 
tracking and hand tracking data for predicting future hand actions, taking 
the example of a memory game. A novel method was presented that 
utilizes hand-eye coordination to predict hand actions during target 
selection. End-to-end testing of the method showed it to be highly 
effective in placing visual alerts over target locations and stop hand 
actions in a timely manner. The results suggest that the combination of 
eye-gaze target, hand velocity, and direction of hand motion are suitable 
indicators for future hand actions during target selection. More work is 
needed to test the transferability of the findings to other, more complex 
real-world applications. 

While previous work had primarily focused on providing feedback on 
past or current execution, this work contributes a method that provides 
feedback at an earlier stage of a task, offering fundamentally new 
opportunities for user support.  

Benefits of eye tracking for context-aware AR support systems 
The second and third study investigated eye tracking both to understand 
visual attention and for predictive AR support. Eye tracking provided 
deep insights into how visual behavior is guided when continuous 
performance feedback is provided and helped to explain why information 
proximity to the area of execution is important. In contrast to our study 
setup where only two conflicting goals for operators’ perception were 
observed, other setups might be characterized by multiple dynamic visual 
cues in the virtual and physical world that conflict with each other and the 
coordination of hand movement. Eye tracking holds promise for 
understanding these conflicting goals and optimizing where and when 
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information is displayed. In addition, the combination of eye tracking and 
hand tracking has been shown to be highly effective in providing 
predictive AR support, a novel type of support and an area of research 
that is currently largely unexplored, which offers great potential for 
improving procedural outcomes and enhancing safety. As mentioned in 
the introduction, previous work on context-aware systems has primarily 
focused on manual execution. Our work demonstrates why perception is 
an important aspect of human interaction and strongly argues for 
integrating eye tracking into future context-aware systems. 

Suitability of the proposed system model 
This work has proposed a system model to describe the relationships 
between human behavior, augmented reality, and context-aware support. 
The model proved effective in explaining the three studies presented in 
this thesis and their unique specifications. It also helped explain the 
conflicting goals during the perceptual tasks and why eye tracking is a 
crucial component for understanding the interaction between human 
behavior and contextual AR support. As seen in chapter 3.1 – 3.3, context-
aware systems vary primarily in what they measure, what domain 
knowledge they use to determine the context, and what kind of contextual 
support they provide. The model can serve future work as a foundation 
for designing and explaining scientific studies at the interface of human 
behavior and context-aware support. A current shortcoming of the model 
is the ability to describe temporal relationships in the course of a 
procedure (e.g., temporal relation of eye and hand features). Here, it will 
be interesting to either add a third dimension to the proposed model or 
derive a procedural/temporal model optimized for this specific goal. 

Final conclusion 
Assistance systems are already part of our everyday lives, whether it is 
navigation using Google Maps or the lane departure warning system in 
cars. These systems also measure human behavior in a context-aware 
manner and provide real-time assistance tailored to the user's current task. 
This work has demonstrated the great potential of context-aware support 
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in AR-guided procedural tasks and the benefits of integrating eye tracking 
into context-aware systems. Although research is still at an early stage, 
the results suggest that context-aware AR support will make task 
execution safer in the future, reducing risks and potential harm to both 
humans and machines.  

In the last decades, a great amount of time and effort has been invested 
in the development of robotic systems that can take over tasks of human 
operators. Context-aware AR support systems promise to improve 
operators’ performance and strengthen their position in future work 
environments, and will enable better collaboration between humans and 
technical systems. 

7.2 Outlook 

This work has demonstrated the potential of AR and context-aware AR 
support to improve task performance in procedural tasks. From initial 
training to independent execution, procedural tasks differ only in how 
much support and knowledge is required by the operator. For future 
context-aware AR systems, we envision a fully integrated system that 
guides the operator from initial training to independent execution, 
gradually adjusting contextual information and feedback as the 
participant's skill level increases. This requires (1-2) gradually integrating 
predictive AR support into real-world applications to provide a safety net 
for operators performing their first independent task executions, (3) 
understanding effective visualization strategies in task environments with 
multiple dynamic visual stimuli (e.g., with robotic systems), and (4) 
investigating feedback and support strategies that are tailored to the 
operator’s skill level.  

Apply predictive AR support to real-world applications. 
With our work on predicting target selection, we have demonstrated the 
suitability of gaze and hand tracking for predicting and preventing 
erroneous hand actions in a memory game. Further investigations are 
needed to refine the method to be applicable in real-world applications. 
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While both the velocity threshold and the gaze target should be applicable 
to 3D settings, the trajectory is currently only computed within the 2D 
plane and would also need to include the vertical axis. As our game setup 
was well observable from different viewpoints, interaction in real-world 
applications might encounter more occlusions and larger variations in 
object sizes and distances, which might require case-specific extensions 
to the method. With these adjustments, the prediction method is expected 
to already work for spacious systems such as industrial machines, where 
the operator reaches over several centimeters distance.  

Surgical applications are more complex and characterized by smaller 
dimensions of the area of execution, which might require an AR HMD 
with more accurate eye tracking sensors. In addition, the method currently 
predicts discrete target locations of AOIs. Although AOI’s for target 
prediction can also be defined in the virtual model superimposed on the 
patient (e.g., entry point area, vertebrae), predicting the tool position 
continuously and integrating this information into a statistical process and 
risk model [21] is expected to be more relevant for surgical applications. 
Future work should investigate whether regression-based machine 
learning models can also learn a mapping function from eye-gaze and tool 
movement to future tool positions. 

Learn more advanced patterns in hand-eye coordination. 
This work has only investigated a single hand-eye coordination pattern 
that occurs while the operator reaches for a target location, also referred 
to as a ‘directing’ pattern. According to Land and Hayhoe [35], other 
patterns in hand-eye coordination exist that might be used for predicting 
future hand actions. Moreover, this work derived a prediction method 
based on simple heuristics of hand motions and eye movement while 
treating the hand as a rigid object. To investigate more complex patterns 
in hand-eye coordination, it is crucial to have a precise computational 
understanding of the hand while interacting with physical objects 
including the finger movement. State-of-the-art hand tracking sensors 
(e.g., HoloLens 2) predict 3D hand poses with all hand and finger joints, 
but they are not robust during hand-object interactions, and finger 



 

105 

movements are often arbitrary when fingers are occluded. Predicting 3D 
hand poses and hand-object poses from ego-centric cameras is an active 
field of research in computer vision, and several models have been 
proposed over the last years [41, 127] that are now finding their way into 
procedural tasks.  For example, Doughty and Ghugre [128] proposed a 
system that efficiently streams camera footage from HoloLens 2 to a 
workstation, where images are passed through an EgoPose network that 
jointly predicts 6-degree-of-freedom (6DoF) hand and object poses and 
sends this information back to the HMD. They used this system to provide 
surgical guidance during pre-drilling of pedicle screw trajectories. This 
approach already works well for interactions that are characterized by 
static hand-object poses, i.e., when the relative position of hand and object 
does not change during interaction. For dynamic hand-object interactions 
where fingers move in relation to the object, as it is the case during ECMO 
cannulation, and fingers can be occluded during interaction, it might be 
beneficial to integrate other modalities that support the inference of hand-
object interactions. For example, Meier et al. [129] used the IMU from a 
wrist-worn smartwatch to detect finger taps on a physical surface. Such a 
measurement also works when fingers are occluded and can therefore 
complement and refine vision-based models for hand-object pose 
prediction and activity recognition. 

Visual strategies in AR environments with multiple dynamic visual 
stimuli 
In our second study, participants’ perception was confronted with two 
conflicting objectives: a dynamic virtual cue (continuous performance 
feedback) and the coordination of hand movement. As shown in the 
system model, perception can additionally be confronted with visual cues 
from the real world that require regular checking. Such dynamic visual 
cues could be coming from the target system (e.g., check patient bleeding) 
or from a robotic arm that moves dynamically in the scene. These areas 
should also not be occluded, and the gaze path should be kept as short as 
possible when information is displayed. It will be interesting to 
understand how information must be visualized during such scenarios 
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with multiple dynamic visual stimuli. For example, information could be 
displayed in between two areas of interest, move with the operators’ head 
or eye movement, or even be duplicated at several AOI locations to reduce 
the number of conflicting objectives. Eye tracking will be crucial for 
understanding where information is needed and the effect of different 
visualization strategies. Moreover, in this work, we only investigated the 
spatial distribution of visual attention based on dwell times. Future work 
should also investigate temporal gaze behavior, such as AOI sequences, 
to clarify where and when information should be displayed. 

Feedback and support strategies while transitioning from training to 
independent execution. 
The results of the second study have shown that context-aware AR 
support based on continuous performance feedback can raise novice 
operators’ performance to expert level, indicating that the systems takes 
over responsibilities that are otherwise represented by expert knowledge. 
While such support greatly boosts operators’ performance, it is 
questionable whether a novice will ever learn executing the task 
independently and with the same accuracy as an expert when always 
being guided with real-time feedback.  Therefore, future work should 
investigate feedback strategies from the first training to executing the task 
independently with little or no guidance (depending on the gold standard). 
For example, instead of always providing operators with direct feedback, 
their performance can be recorded during the training and only shown as 
a summary statistic after completing the task, allowing them to reflect on 
their results after completion. Investigating the right way to provide and 
visualize feedback is important to efficiently develop operators’ skills.  

In addition to feedback, it will also be important to adapt virtual 
content between training cycles based on the current operator skill level. 
Too much information can result in low cognitive load and thus low 
knowledge retention. With too little information, the trainee can lose 
interest or shift to a trial-and-error strategy. Ideally, the operator is 
confronted with information that is sufficiently complex to keep his 
interest but not so complex as to discourage the operator. This state of 
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neither being under nor overchallenged is referred to as the ‘flow’ state, 
where learners’ efficiency is high [130]. A key requirement for changing 
virtual content over training cycles is finding behavior metrics that allow 
to infer the operators’ skill level based on recorded measurement data. 
Eye-gaze patterns have been shown to provide insights into participants 
learning curve [131]. An analysis of manual execution by tracking object-
object or hand-object contexts as well as hand-eye coordination patterns 
are also promising measurements of expertise and skill development that 
should be explored in future work. 
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