
ETH Library

Semi-classical dynamics in
quantum spin systems

Journal Article

Author(s):
Froehlich, Juerg; Knowles, Antti; Lenzmann, Enno

Publication date:
2007-12

Permanent link:
https://doi.org/10.3929/ethz-b-000058650

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Letters in Mathematical Physics 82(2-3), https://doi.org/10.1007/s11005-007-0202-y

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000058650
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s11005-007-0202-y
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


DOI 10.1007/s11005-007-0202-y
Letters in Mathematical Physics (2007) 82:275–296 © Springer 2007

Semi-Classical Dynamics in Quantum Spin Systems
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Abstract. We consider two limiting regimes, the large-spin and the mean-field limit, for the
dynamical evolution of quantum spin systems. We prove that, in these limits, the time
evolution of a class of quantum spin systems is determined by a corresponding Hamil-
tonian dynamics of classical spins. This result can be viewed as a Egorov-type theorem.
We extend our results to the thermodynamic limit of lattice spin systems and continuum
domains of infinite size, and we study the time evolution of coherent spin states in these
limiting regimes.
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1. Introduction

The purpose of this letter is to study classical limits of quantum spin sys-
tems. Work in this direction was undertaken already at the beginning of the
seventies. Many of the mathematical results established so far only concern
time-independent aspects, such as the classical limit of quantum partition func-
tions for spin systems [4,6]. Here we consider the dynamical evolution of quan-
tum spin systems in limiting regimes; see [5] as well as [8,9] for earlier results. In
particular, we discuss (i) the large-spin limit and (ii) the mean-field/continuum limit.
As our main results, we prove that the time evolution of a large class of quantum
spin systems approaches the time evolution of classical spins. Our results can be
regarded as Egorov-type theorems, asserting that quantization commutes with time
evolution in the classical limit; see [1] for a similar result on classical and quantum
Bose gases. Along the way, we discuss thermodynamic limits and the time evolu-
tion of coherent spin states, in the two limits mentioned above.

An example of an evolution equation for classical spins is the Landau-Lifshitz
equation

∂t M = M ∧ Hex(M), (1)
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which is widely used in the study of ferromagnetism. Here M = M(t, x) ∈ S
2

denotes a classical spin field with values on the unit sphere, and ∧ stands for the
vector product in R

3. A standard choice for the exchange field is Hex(M)= J �M ,
where � denotes the Laplacian and J is the exchange coupling constant. Equation
(1) then becomes

∂t M = J M ∧�M. (2)

This form of the Landau-Lifshitz equation has been studied in the mathemati-
cal literature; see for instance [2,3] and references given there. In physical terms,
(2) describes the dynamics of spin waves in a ferromagnet with nearest neighbor
exchange interactions in a classical regime; see [7].

In this paper we consider the Landau-Lifshitz equation with an exchange field
Hex(M) given by an integral operator applied to M , and generalizations thereof.
Equation (1) then takes the form

∂t M(t, x)= M(t, x)∧
∫

J (x, y) M(t, y)dy. (3)

The integral kernel J (x, y) describes the exchange interactions between classical
spins beyond the nearest-neighbor approximation in the continuum limit. A for-
mal argument on how to derive (2) from (3) is given in a remark in Section 3.4.

Our paper is organized as follows. In Section 2, we study the dynamics of finite
lattice systems of quantum spins in the limit where their spin s approaches ∞.
The main result of Section 2 is formulated in Theorem 1 below. In order to pre-
pare the ground for this theorem and its proof, we first introduce a class of Ham-
ilton functions for classical spins and define their quantization by means of a
normal-ordering prescription. At the end of Section 2, we pass to the thermody-
namic limit, and we discuss the time evolution of coherent spin states.

In Section 3, we present a similar analysis for the mean-field limit of quantum
spin systems defined on a lattice with spacing h >0 in the continuum limit, h →0.
The main result of Section 3 is stated in Theorem 4.

2. Large-Spin Limit

2.1. A SYSTEM OF CLASSICAL SPINS

Let � be a finite subset of the lattice Z
d (or any other lattice). A classical spin

system on � is described in terms of the finite-dimensional phase space

�� :=
∏
x∈�

S
2 ,

i. e. we associate an element M(x) of the unit two-sphere S
2 ⊂ R

3 with each site
x ∈ �. The phase space �� is conveniently coordinatized as follows. For each
site x ∈ �, let (M1(x), M2(x), M3(x)) denote the three cartesian components of a
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unit vector M(x)∈S
2, and define the complex coordinate functions (M+(x), Mz(x),

M−(x)) on S
2 by

M±(x) := M1(x)± iM2(x)√
2

, Mz(x) := M3(x).

We define a Poisson structure1 on �� by setting

{Mi (x), M j (y)} = i ε̃i jk δ(x, y) Mk(x) . (4)

Here δ(x, y) stands for the Kronecker delta, and the indices i, j, k run through the
index set I := {+, z,−}, where the symbol ε̃i jk is defined as ε̃±∓z =±1, ε̃±z± =∓1,
ε̃z±± =±1, and ε̃i jk =0 otherwise.

For our purposes it is convenient (but not necessary) to replace S
2 with the

closed unit ball B1(0) ⊂ R
3. To this end, we introduce a larger “phase space”

(a Poisson manifold)

�� :=
∏
x∈�

B1(0),

equipped with the l∞-norm. The algebra

P� :=C
[{Mi (x) : i ∈ I, x ∈�}]

of complex polynomials is a Poisson algebra with Poisson bracket determined by
(4). We equip P� with the norm ‖A‖∞ := supM∈��

|A(M)|, and we denote its
norm closure by A�. Note that, by the Stone-Weierstrass theorem, A� is the alge-
bra of continuous complex-valued functions on ��.

A fairly general class of Hamilton functions H� on �� may be described as
follows: With each multi-index α ∈ N

I×Z
d

satisfying |α| :=∑x∈Zd
∑

i∈I αi (x) < ∞
we associate a complex number V (α). Using the trivial embedding N

I×� ⊂N
I×Z

d

defined by adjoining zeroes, we consider Hamilton functions of the form

H� :=
∑

α∈NI×�

V (α) Mα. (5)

In order to obtain a real-valued H�, we require that V (α)=V (α), where the “con-
jugation” α of a multi-index α is defined as αi (x) := αi (x), with · : (+, z,−) 	→
(−, z,+). Furthermore, we impose the following bound on the interaction poten-
tial:2

‖V ‖ :=
∑
n∈N

sup
x∈Zd

∑
α∈N

I×Z
d

|α|=n

|α(x)| |V (α)| en < ∞. (6)

1Actually �� is symplectic, with symplectic structure determined by the usual one on S
2.

2Note that this condition may be weakened by replacing en with ern , for any r >0. It may be
checked that this does not affect the following results.
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It is then easy to see that the series (5) converges in norm and that the set of
allowed interaction potentials V is a Banach space. The Hamiltonian equation of
motion reads Ȧ ={H�, A}, for any observable A ∈A�. In particular, a straightfor-
ward calculation yields

d
dt

Mi (t, x) =
∑

α∈NI×�

V (α)
∑
j,k

iε̃ j ik α j (x) Mα−δ j (x)+δk (x)(t), (7)

where the multi-index δi (x) is defined by [δi (x)] j (y) := δi jδ(x, y).
We record the following well-posedness result for the dynamics generated by the

class of Hamiltonians introduced above.

LEMMA 1. Let � be a (possibly infinite) subset of Z
d . Let M0 ∈ ��. Then the

Hamiltonian equation (7) has a unique global-in-time solution M ∈ C1(R,��) that
satisfies M(0) = M0. Moreover, the solution M depends continuously on the initial
condition M0, and we have the pointwise conservation law |M(t, x)| = |M(0, x)| for
all t .

Proof. Local-in-time existence and uniqueness follows from a simple contrac-
tion mapping argument for the integral equation associated with (7). We omit
the details. Also, continuous dependence on M0 follows from standard arguments.
Finally, the claim that |M(0, x)|= |M(t, x)| for all t can be easily verified by using
(7), which implies that d

dt
M(t, x) is perpendicular to M(t, x). �

Remarks. 1. In what follows, we denote the flow map M0 	→ M(t) by φt
�. Note

that, under our assumptions, (7) also makes sense for infinite �⊂Z
d , whereas

the Hamiltonian H� does not have a limit when |�|→∞.
2. The last statement implies that the magnitude of each spin remains constant

in time, i. e. the spins precess. In particular, if M0 ∈��, it follows that M(t)∈
�� for all t . Mathematically, this is simply the statement that the symplectic
leaves of the Poisson manifold �� remain invariant under the Hamiltonian
flow.

3. Time-dependent potentials V (t, α) may be treated without additional compli-
cations, provided that the map t 	→ V (t) is continuous (in the above norm)
and supx in (6) is replaced by supx,t . The weaker assumption that t 	→ V (t, α)

is continuous for all α implies Lemma 1 with the slightly weaker statement
that M ∈C(R,��) is a classical solution of (7).

EXAMPLE. Consider the Hamiltonian

H�(t) = −
∑
x∈�

h(t, x) · M(x)− 1
2

∑
x,y∈�

J (x, y) M(x) · M(y), (8)

where M(x) = (M1(x), M2(x), M3(x)). Here h(t, x) ∈ R
3 is an “external magnetic

field” satisfying supt∈R,x∈Zd |h(t, x)| < ∞. We also require the map t 	→ h(t, x) to
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be continuous for all x ∈Z
d . The exchange coupling J :Zd ×Z

d →R is assumed to
be symmetric and to satisfy J (x, x)=0 for all x . Finally we assume, in accordance
with condition (6), that supx∈Zd

∑
y∈Zd |J (x, y)|<∞. The corresponding equation

of motion for M(t, x) is given by

d
dt

M(t, x) = M(t, x)∧
⎡
⎣h(t, x)+

∑
y∈�

J (x, y)M(t, y)

⎤
⎦, (9)

i. e. the Landau-Lifschitz equation for a classical lattice spin system.

2.2. A SYSTEM OF QUANTUM SPINS

In this section we formulate the quantum analogue of the system of classical spins
from the previous section. We associate with each point x ∈ Z

d a finite-dimen-
sional Hilbert space H s

x ≡ Hx := C
2s+1 describing a quantum-mechanical spin of

magnitude s. (Here, and in the following, we refrain from displaying the explicit
s-dependence whenever it is not needed.) Furthermore, we associate with each
finite set �⊂Z

d the product space H� :=⊗x∈� Hx , and we define the algebra Â�

as the algebra of (bounded) operators on H�, equipped with the operator norm
‖ · ‖.

The spins are represented on H� by a family {Ŝi (x) : i =1,2,3, x ∈�} of opera-
tors, where Ŝi (x) is the ith generator of the spin-s-representation of su(2) on Hx ,
rescaled by s−1. In analogy to the complex coordinatization of the classical phase
space �� in the previous section, we replace the operators (Ŝ1(x), Ŝ2(x), Ŝ3(x))

with (Ŝ+(x), Ŝz(x), Ŝ−(x)) as follows:

Ŝ±(x) := Ŝ1(x)± iŜ2(x)√
2

, Ŝz(x) := Ŝ3(x), for all x ∈Z
d .

An easy calculation yields ‖Ŝ±(x)‖≤1 and ‖Ŝz(x)‖=1 if s ≥1, and ‖Ŝ±(x)‖=√
2

and ‖Ŝz(x)‖ = 1 if s = 1/2. Furthermore one finds the fundamental commutation
relations

[
Ŝi (x), Ŝ j (y)

] = 1
s

ε̃i jk δ(x, y) Ŝk(x) (10)

with i, j, k ∈ I .

2.3. QUANTIZATION

In order to quantize polynomials in P� we need a concept of normal ordering.
We say that a monomial Ŝi1(x1) · · · Ŝi p (x p) is normal-ordered if ik < il ⇒ k < l,
where < is defined on I through +< z <−. We then define normal-ordering by

: Ŝi1(x1) · · · Ŝi p (x p) : = Ŝiσ(1)
(xσ(1)) · · · Ŝiσ(p)

(xσ(p)),
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where σ ∈ Sp is a permutation such that the monomial on the right side is normal-
ordered. Next, we define quantization ·̂ :P� → Â� by setting

(Mi1(x1) · · · Mi p (x p))
̂ = : Ŝi1(x1) · · · Ŝi p (x p) :

and by linearity of ·̂ . We set 1̂ = 11. Note that, by definition, ·̂ is a linear map
(but, of course, not an algebra homomorphism) and satisfies ( Â)∗ = Â. It is also
easy to see that, for A, B ∈P�, we have

[ Â, B̂] = − i

s
{̂A, B}+ O(s−2) ,

so that s−1 is the deformation parameter of ·̂ .

2.4. DYNAMICS IN THE LARGE- SPIN LIMIT

For each finite �⊂Z
d we define the Hamiltonian Ĥ� as the quantization of H�.

More precisely, we quantize (5) term by term and note that the resulting series
converges in operator norm. Because H� is real, the operator Ĥ� is self-adjoint
on the finite-dimensional Hilbert space H� and generates a one-parameter group
of unitary propagators Us(t; Ĥ�) (equal to e−is Ĥ�t if Ĥ� is time-independent).

We introduce the short-hand notation

αt
� A := A ◦φt

�, A ∈A�,

α̂t
�A := Us(t; Ĥ�)∗ A Us(t; Ĥ�), A ∈ Â�,

where φt
� is the Hamiltonian flow on ��. Note that both αt

� and α̂t
� are norm-

preserving.
We are now able to state and prove our main result for the case of a finite

lattice �. Roughly it states that time evolution and quantization commute in the
s →∞ limit. This is a Egorov-type result.

THEOREM 1. Let A ∈P� and ε > 0. Then there exists a function A(t)∈P� such
that

sup
t∈R

‖αt
� A − A(t)‖∞ ≤ ε, (11)

and, for any t ∈R,

∥∥α̂t
� Â − Â(t)

∥∥ ≤ ε + C(ε, t, A)

s
, (12)

where C(ε, t, A) is independent of �.

Proof. Without loss of generality we assume that A = Mβ for some β ∈ N
I×�.

For simplicity of notation we also assume, here and in the following proofs, that
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H� is time-independent. Consider the Lie-Schwinger series for the time evolution
of the classical spin system,

∞∑
l=0

t l

l! {H�, A}(l) , (13)

where {H�, A}(l) ={H�, {H�, A}(l−1)
}

and {H�, A}(0) = A. In order to compute the
nested Poisson brackets we observe that

{Mα, Mβ} =
∑
x∈�

∑
i, j,k∈I

iε̃i jk αi (x) β j (x) Mα+β−δi (x)−δ j (x)+δk(x), (14)

as can be seen after a short calculation. Iterating this identity yields

{H�, A}(l) = il
∑

α1,...,αl

∑
x1,...,xl

∑
i1,...,il

∑
j1,..., jl

∑
k1,...,kl

×

×
⎡
⎢⎣

l∏
q=1

ε̃iq jq kq V (αq) α
q
iq

(xq)

⎡
⎣β +

q−1∑
r=1

(
αr − δir (xr )− δ jr (xr )+ δkr (xr )

)
⎤
⎦

jq

(xq)

⎤
⎥⎦×

×Mβ+∑l
r=1(α

r −δir (xr )−δ jr (xr )+δkr (xr )). (15)

In order to estimate this series, we recall that ‖Mγ ‖∞ ≤1 and rewrite it by using
that

∑
α1,...,αl

=
∞∑

n1,...nl=1

∑
|α1|=n1

· · ·
∑

|αl |=nl

.

We then proceed recursively, starting with the sum over αl , xl , il , jl , kl and, at each
step, using that

∑
|α|=n

∑
x

∑
i, j,k

|ε̃i jk |αi (x) γ j (x) |V (α)| ≤ |γ | ‖V ‖(n),

where

‖V ‖(n) := sup
x∈Zd

∑
|α|=n

|V (α)| |α(x)|.

In this manner we find that∥∥∥{H�, A}(l)
∥∥∥∞

≤
∞∑

n1,...,nl=1

|β|(|β|+n1) · · · (|β|+n1 +· · ·+nl−1)‖V ‖(n1) · · · ‖V ‖(nl )

≤
∞∑

n1,...,nl=1

(|β|+n1 +· · ·+nl)
l ‖V ‖(n1) · · · ‖V ‖(nl )
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≤ l!
∞∑

n1,...,nl=1

e|β|+n1+···+nl ‖V ‖(n1) · · · ‖V ‖(nl )

= l! e|β| ‖V ‖l .

Thus, for |t | < ‖V ‖−1, the series (13) converges in norm, and an analogous esti-
mate of the remainder of the Lie-Schwinger expansion of αt

� A shows that (13)
equals αt

� A. As all estimates are independent of �, the convergence is uniform
in �.

The quantum-mechanical case is similar. Consider the Lie-Schwinger series for
the time evolution of the quantum spin system:

∞∑
l=0

t l

l! (is)l [Ĥ�, Â
](l)

, (16)

where
[
Ĥ�, Â

](l) =[Ĥ�,
[
Ĥ�, Â

](l−1)
]

and
[
Ĥ�, Â

](0) = Â. In order to estimate the
multiple commutators, we remark that, from (4) and (10) and since both { · , · }
and is[ · , · ] are derivations in both arguments, we see that (is)l

[
Ĥ�, Â

](l) is equal
to the expression obtained from {H�, A}(l) by reordering the terms appropriately
and by replacing Mi (x) with Ŝi (x). In particular (assuming s ≥1)

∥∥∥(is)l [Ĥ�, Â
](l)∥∥∥ ≤ l! eβ ‖V ‖l ,

and we deduce exactly as above that (16) equals α̂t
� Â for t <‖V ‖−1.

To show the claim of the theorem for |t |<‖V ‖−1 we first remark that α̂t
�(A) is

well-defined through its convergent power series expansion. Now as shown above,
each term of (is)l

[
Ĥ�, Â

](l), as a polynomial in Â�, is equal to a reordering of
the corresponding term of {H�, A}(l). If P is a monomial (with coefficient 1) of
degree p in the generating variables {Ŝi (x)} and P̃ a monomial obtained from P
by any reordering of terms, the commutation relations (10) imply that

‖P − P̃‖ ≤ p2

s
.

Thus
(
{H�, A}(l)

)̂ = (is)l [Ĥ�, Â
](l) + Rl ,

where, recalling the expression (15) and the estimates following it, we see that the
“loop terms” Rl are bounded by

‖Rl‖ ≤ 1
s

∞∑
n1,...,nl=1

(|β|+n1 +· · ·+nl)
l+2 ‖V ‖(n1) · · · ‖V ‖(nl )

≤ (l +2)!
s

e|β| ‖V ‖l .
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Therefore, if |t |<‖V ‖−1,

‖α̂t
� Â − α̂t

� A‖ ≤ e|β|

s

∞∑
l=0

(l +2)(l +1)(t‖V ‖)l ≤ C(t, A)

s
,

where C(t, A) is independent of �.
In order to extend the result to arbitrary times we proceed by iteration. The cru-

cial observations that enable this process are that the convergence radius ‖V ‖−1

is independent of |β| and αt
�, α̂t

� are norm-preserving. Let t ∈R and choose ν ∈N

such that τ := t/ν satisfies |τ | < ‖V ‖−1. In order to iterate we need to introduce
a cutoff in the series (13) and (15). The series (13) consists of an infinite sum of
terms in P� which are be indexed by (l, α1, . . . , αl , x1, . . . , xl). Now let ε > 0 be
given. Since the series converges in norm there is a finite subset

B1 = B1(ε) ⊂ {(l, α1, . . . , αl , x1, . . . , xl)} =
∞⋃

l=0

(
N

I×�
)l ×�l

such that the norm of the series restricted to the complement of B1 is smaller than
ε/ν. This induces a splitting ατ

� A = αB1 A + αBc
1

A (in self-explanatory notation),
such that αB1 A ∈P� and ‖αBc

1
A‖∞ ≤ε/ν. Similarly, one splits α̂τ

� Â = α̂B1 Â + α̂Bc
1

Â
where, after an eventual increase of B1, ‖α̂Bc

1
Â ‖≤ ε/ν.

Now we use the above result for |τ |<‖V ‖−1:

α̂τ
� Â = α̂B1 A + R1

s
+ α̂Bc

1
Â

where R1 is some bounded operator. Since αB1 A ∈P� we may repeat the process
on the time interval [τ,2τ ]:

α̂τ
� α̂τ

� Â = α̂τ
� α̂B1 A + α̂τ

� R1

s
+ α̂τ

� α̂Bc
1

Â

= (αB2 αB1 A
)̂+ α̂Bc

2
α̂B1 A + α̂τ

� α̂Bc
1

Â + R2 + α̂τ
� R1

s

Continuing in this manner one sees that, since αt
� and α̂t

� are norm-preserving,
A(t) := αBν · · ·αB1 A ∈ P� satisfies

‖αt
� A − A(t)‖∞ ≤ ε,

as well as

‖α̂t
� Â − Â(t)‖ ≤ ε + C(ε, t, A)

s
.

�
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2.5. THE THERMODYNAMIC LIMIT

The above analysis was done for a finite subset �, but the observed uniformity
in � allows for a statement of the result directly in limit � = Z

d . We pause to
describe how this works.

Concentrate first on the quantum case. If �1 ⊂ �2, an operator A1 ∈ Â�1 may
be identified in the usual fashion with an operator A2 ∈ Â�2 by setting A2 =A1 ⊗
11�2\�1 . We shall tacitly make use of this identification in the following. It induces
the norm-preserving mapping Â�1 → Â�2 of the abstract C∗-algebras and the iso-
tony relation Â�1 ⊂ Â�2 . Observables of the quantum spin system in the thermo-
dynamic limit are then elements of the quasi-local algebra

Â :=
∨

�⊂Zd finite

Â�,

which is the C∗-algebra defined as the closure of the normed algebra generated by
the union of all Â�’s, where � is finite. The spins are represented on Â by a fam-
ily {Ŝi (x) : i ∈ I, x ∈Z

ν} of operators.
The dynamics of the system is determined by a one-parameter group (̂αt )t∈R of

automorphisms of Â. Its existence is a corollary of the proof of Theorem 1.

LEMMA 2. Let A∈ Â�0 for some finite �0 ⊂Z
d and t ∈R. Then the following limit

exists in the norm sense:

lim
�→∞ α̂t

�A =: α̂t A,

where �→∞ means that � eventually contains every finite subset. By continuity this
extends to a strongly continuous one-parameter group (̂αt )t∈R of automorphisms of Â.

Proof. For |t | < ‖V ‖−1 the series (16) is bounded in norm, uniformly in �, so
to show convergence of the series it suffices to show the convergence of

[
Ĥ�, Â

](l)
for each l ∈N, which is an easy exercise.

Thus α̂t A is well-defined for any polynomial A. By continuity, α̂t extends to
an automorphism of Â. Since α̂t A ∈ Â and α̂t is a one-parameter group, we may
extend it to all times by iteration. Strong continuity follows since α̂t A, for small t
and polynomial A, is defined through a convergent power series:

lim
t→0

‖α̂t A −A‖ = 0.

By continuity, this remains true for all A ∈ Â. �

For classical spin systems and finite � we recall that A� =C
(∏

x∈� B1(0);C

)
, a

C∗-algebra under ‖ · ‖∞. As above, for �1 ⊂�2, we identify A1 ∈A�1 with a func-
tion A2 ∈ A�2 by setting A2 = A1 ⊗ 1�2\�1 . We thus get a norm-preserving map-
ping A�1 → A�2 of the abstract C∗-algebras and the relation A�1 ⊂ A�2 . Define
the classical quasi-local algebra as
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A :=
∨

�⊂Zd finite

A�.

Note that A is equal to the space of continuous complex functions on
∏

x∈Zd B1(0),
equipped with the product topology (this is an immediate consequence of the
Tychonoff and Stone–Weierstrass theorems).

The spins are represented on A by a family {Mi (x) : i ∈ I, x ∈Z
ν} of functions.

Existence of the dynamics follows exactly as above.

LEMMA 3. Let A∈A�0 for some finite �0 ⊂Z
d and t ∈R. Then the following limit

exists in ‖ · ‖∞:

lim
�→∞αt

� A =: αt A.

By continuity this extends to a strongly continuous one-parameter group (αt )t∈R of
automorphisms of A. Furthermore, αt A = A ◦ φt , where φt = φt

Zd is the Landau–
Lifschitz flow defined in the remark after Lemma 1.

Now set P :=C[{Mi (x) : i ∈ I, x ∈Z
d}]. Then the proof of Theorem 1 yields the

following

THEOREM 2. Let A∈P and ε>0. Then there exists a function A(t)∈P such that

sup
t∈R

‖αt A − A(t)‖∞ ≤ ε, (17)

and, for any t ∈R,

∥∥α̂t Â − Â(t)
∥∥ ≤ ε + C(ε, t, A)

s
. (18)

Remark. In particular, the result applies to classical equations of motion of the
form (9) where the sum over y ranges over Z

d .

2.6. EVOLUTION OF COHERENT STATES

Denote by Si := s Ŝi the unscaled spin operator in the spin-s-representation of
su(2). For the polar angles (θ, ϕ)∈[0, π ]×[0,2π) corresponding to the unit vector
M ∈S

2 we define the coherent state in C
2s+1 as

|M〉 := exp
θ√
2

[
eiϕ S− − e−iϕ S+

] |s〉,

where |s〉 is the highest-weight state, i. e. Sz |s〉 = s |s〉. Note that |M〉 = eiα·S |s〉,
where α = θ n and n is the unit vector (sinϕ,− cosϕ,0).
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Set A := θ√
2

[
eiϕ S− − e−iϕ S+

]
and U := eA so that |M〉=U |s〉. Then using

U∗ Si U =
∞∑

k=0

1
k! [. . . [Si , A], . . . , A] ,

we find

U∗ S1 U = sin θ cosϕ Sz+ 1√
2

cos2 θ

2
(S+ + S−)− 1√

2
sin2 θ

2

(
e−iϕ S++e2iϕ S−

)
,

U∗ S2 U = sin θ sinϕ Sz+ 1√
2i

cos2 θ

2
(S+−S−)− 1√

2i
sin2 θ

2

(
e2iϕ S+−e−2iϕ S−

)
,

U∗ S3 U = cos θ Sz− 1√
2

sin θ
(
e−i ϕ S++eiϕ S−

)
. (19)

As a consequence note that

〈M , Ŝ M〉 =
⎛
⎝sin θ cosϕ

sin θ sinϕ

cos θ

⎞
⎠ = M. (20)

In order to derive our main result for coherent spins states we need the follow-
ing lemma, which follows from direct calculations.

LEMMA 4. For any unit vector M ∈S
2, we have that

∣∣〈M , Ŝi1 · · · Ŝi p M〉− Mi1 · · · Mi p

∣∣ ≤ p

√
2
s
.

Now let M :Zd →S
2 be a configuration of classical spins on the lattice. Then M

defines a state ρM on Â as follows. For finite �, consider the product state

|M�〉 :=
⊗
x∈�

|M(x)〉∈H�.

Then, for A ∈ Â�, we set

ρM (A) := 〈M� ,A M�〉,
and extend the definition of ρM to arbitrary A ∈ Â by continuity.

Let M : R × Z
d → S

2 be the solution of the Hamiltonian equation of motion
(7) with initial conditions M(0, x)= M(x). The following result links the quantum
time evolution for coherent spin states with the corresponding classical configura-
tion in the large-spin limit.

THEOREM 3. Let t ∈R, A ∈P and M :Zd →S
2. Then

lim
s→∞ρM (̂αt Â) = A(M(t)),

uniformly in t on compact time intervals.
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Proof. The proof is essentially a corollary of Lemma 4 and the proof of Theo-
rem 1. First, let |t |<‖V ‖−1. We know from (13) and (16) that

A(M(t)) =
∞∑

l=0

t l

l! lim
�→∞ {H�, A}(l) (M),

as well as

ρM (̂αt
� Â) =

∞∑
l=0

t l

l! (is)l ρM

(
lim

�→∞
[
Ĥ�, Â

](l))
.

Now Lemma 4 implies that

∣∣ρM
(
M̂α
)− Mα

∣∣≤|α|
√

2
s
.

Arguing exactly as in the proof of Theorem 1, we get the bound

∣∣ρM (̂αt Â)− A(M(t))
∣∣ ≤ C(t, A)√

s
. (21)

Arbitrary times are reached by iteration as in the proof of Theorem 1. �

3. Mean-Field Limit

This section is devoted to the dynamics of a quantum spin system in the mean-
field/continuum limit. More precisely, we consider a system of quantum spins on
a lattice with spacing h >0. The limit h →0 yields again a Egorov-type result: The
quantum dynamics approaches the dynamics of a classical spin system defined on
a continuum set. As in the previous section, we also discuss the thermodynamic
limit and the time evolution of coherent states.

3.1. A SYSTEM OF QUANTUM SPINS ON A LATTICE

Let �⊂R
d be bounded and open. We associate with each spacing h >0 the finite

lattice

�(h) :=hZ
d ∩�.

At each lattice site x ∈ �(h) there is a spin of (fixed) magnitude s. The Hilbert
space of this quantum system is

H (h)
�

:=
⊗

x∈�(h)

C
2s+1.

The algebra of bounded operators on H (h)
� is denoted by Â

(h)
� .

The spins are represented on H (h)
� by a family {Ŝi (x) : i = 1,2,3, x ∈ �(h)} of

operators, where Ŝi (x) is the ith generator of the spin-s-representation of su(2),
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rescaled by hd/s. As usual, we replace the operators (Ŝ1, Ŝ2, Ŝ3) with (Ŝ+, Ŝz, Ŝ−).
They satisfy the bounds ‖Ŝ±‖≤hd and ‖Ŝz‖ = hd if s ≥1, as well as ‖Ŝ±‖=√

2hd

and ‖Ŝz‖ = hd if s =1/2. The commutation relations now read

[
Ŝi (x), Ŝ j (y)

] = hd

s
ε̃i jk δ(x, y) Ŝk(x), (22)

with i, j, k ∈ I .

3.2. A CONTINUUM THEORY OF SPINS

Let �⊂R
d be a bounded, open set. A system of classical spins on � is represented

in terms of the Poisson “phase space”3

�� :=
{

M ∈ L∞(�;R
3) : ‖M‖∞ ≤1

}
,

which we equip with the L∞-norm. In analogy to Section 2, we use the complex
coordinates (M+, Mz, M−) instead of (M1, M2, M3), so that the Poisson bracket on
�� satisfies

{
Mi (x), M j (y)

} = i ε̃i jk δ(x − y) Mk(x), (23)

for i, j, k ∈ I .
In order to describe a useful class of observables on ��, we introduce the space

B(p), p ∈N, which consists of all functions f in C(Rpd ;C
3p

) that are symmetric
in their arguments, in the sense that P f = f , where

(P f )i1...i p (x1, . . . , x p) := 1
p!
∑
σ∈Sp

fiσ(1)...iσ(p)
(xσ(1), . . . , xσ(p)).

On the space B(p) we introduce the norms

‖ f ‖(h)
1 := h pd

∑
i1,...,i p∈I

∑
x1,...,x p∈hZd

| fi1...i p (x1, . . . , x p)|,

‖ f ‖(h)
∞,1 := sup

x

∑
i1,...,i p∈I

h(p−1)d
∑

x2,...,x p∈hZd

| fi1...i p (x, x2, . . . , x p)|.

We shall be interested in observables arising from f ∈B(p) satisfying

lim sup
h→0

‖ f ‖(h)
1 < ∞. (24)

Note that Fatou’s lemma implies that ‖ f ‖1 ≤ lim suph→0 ‖ f ‖(h)
1 .

3As in the previous section, one may introduce a symplectic phase space �� consisting of all
M ∈�� such that |M(x)|=1 a.e.
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We define P� as the “polynomial” algebra of functions on �� generated by
functions of the form

M�( f ) :=
∑

i1,...,i p

∫

�p

dx1 · · ·dx p fi1...i p (x1, . . . , x p) Mi1(x1) · · · Mi p (x p),

where f ∈B(p) satisfies (24). P� is clearly a Poisson algebra. We equip it with the
norm ‖A‖∞ := supM∈��

|A(M)| so that

‖M�( f )‖∞ ≤ ‖ f ‖1. (25)

3.3. QUANTIZATION

For f ∈B(p) let us define

Ŝ�( f ) :=
∑

i1,...,i p

∑
x1,...,x p∈�(h)

fi1...i p (x1, . . . , x p) Ŝi1(x1) · · · Ŝi p (x p). (26)

If f satisfies (24), we find that

‖Ŝ�( f )‖ ≤ ‖ f ‖(h)
1 . (27)

As above, quantization ·̂ :P� → Â
(h)
� is defined by M̂�( f )= : Ŝ�( f ) : and linear-

ity. Here : · : denotes the normal-ordering of the spin operators introduced above.
Also, we set 1̂= 11. Again, ( Â)∗ = Â. Furthermore one sees, as in the previous sec-
tion, that hd/s is the deformation parameter of ·̂ .

3.4. DYNAMICS IN THE MEAN- FIELD LIMIT

We consider a family V = (V (n)
)∞

n=1 of functions, where V (n) ∈B(p) satisfies

V (n)
i1...in

(x1, . . . , xn) = V (n)

i1...in
(x1, . . . , xn),

where, we recall, · on I maps (+, z,−) to (−, z,+). We define the Hamilton func-
tion on �� through

H� :=
∞∑

n=1

M�(V (n)). (28)

Set

‖V ‖(h) :=
∞∑

n=1

nen ‖V (n)‖(h)
∞,1. (29)

We impose the condition ‖V ‖ := lim suph→0 ‖V ‖(h) < ∞. In the continuum limit,
we observe that

∞∑
n=1

nen sup
x

∑
i1,...,in

∫
dx2 · · ·dxn

∣∣∣V (n)
i1...in

(x, x2, . . . , xn)

∣∣∣ ≤ ‖V ‖, (30)
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as can be seen using Fatou’s lemma. It now follows easily that, for each bounded
set �, the sum (28) converges in ‖ · ‖∞ on �� and yields a well-defined real Ham-
ilton function H�.

The Hamiltonian equation of motion reads

d
dt

Mi (t, x) = i
∞∑

n=1

n
∑

i1,...,in , j

∫
dx2 · · ·dxn V (n)

i1...in
(x, x2, . . . , xn)×

×ε̃i1i j M j (t, x) Mi2(t, x2) · · · Min (t, xn). (31)

By standard methods, we find the following global well-posedness result for (31).

LEMMA 5. Let �⊂ R
d by any open subset of R

d and M0 ∈��. Then (31) has a
unique solution M ∈ C1(R,��) that satisfies M(0) = M0. Moreover, the solution M
depends continuously on the initial condition M0. Finally, we have the pointwise con-
servation law |M(t, x)|= |M(0, x)| for all t .

Remarks. 1. As in Section 2, we denote the norm-preserving Hamiltonian flow by
φt

�.

2. Time-dependent potentials V (t) may be treated exactly as in the previous sec-
tion.

EXAMPLE. Consider

H� = −
∫

�

dx h(t, x) · M(x)− 1
2

∫

�×�

dx dy J (x, y) M(x) · M(y),

which yields the Landau-Lifshitz equation of motion

d
dt

M(t, x) = M(t, x)∧
⎡
⎣h(t, x)+

∫

�

dy J (x, y)M(t, y)

⎤
⎦.

Remark. In a formal way, the Landau-Lifshitz equation (2) mentioned in the
introduction can be obtained from (3) with J = J (|x − y|) by Taylor expanding
M(t, y) up to second order in y − x . This leads to (2) after rescaling time by t 	→αt
where α = 1

2d

∫
J (|x |)|x |2 dx .

The quantum dynamics is generated by the Hamiltonian Ĥ� ∈ Â
(h)
� defined as

the quantization of H�. More precisely, each term of H� is quantized and it may
be easily verified that the resulting series converges in operator norm. The fact
that H� is real immediately implies that Ĥ� is self-adjoint. As above we introduce
the short-hand notation

αt
� A := A ◦φt

�, A ∈A�,

α̂t
�A := Uh(t; Ĥ�)∗ A Uh(t; Ĥ�), A ∈ Â

(h)
� .
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Here, Uh(t; Ĥ�) is the quantum mechanical propagator, equal to eish−d Ĥ�t if Ĥ�

is time-independent.
We are now in a position to state our main result on the mean-field dynamics

of the quantum system on the finite lattice �(h) in the continuum limit, as h →0.

THEOREM 4. Let � ⊂ R
d be open and bounded, A ∈ P� and ε > 0. Then there

exists a function A(t)∈P� such that

sup
t∈R

‖αt
� A − A(t)‖∞ ≤ ε, (32)

and, for any t ∈R,
∥∥α̂t

� Â − Â(t)
∥∥ ≤ ε +C(ε, t, A) hd , (33)

where C(ε, t, A) is independent of �.

Proof. One finds, for f ∈B(p) and g ∈B(q),

{M�( f ), M�(g)}= pq M�( f ⇀ g) (34)

where f ⇀ g ∈B(p+q−1) is defined by

( f ⇀ g)i1...i p+q−1(x1, . . . , x p+q−1)

:= i P
∑
i, j

ε̃i j i1 fii2...i p (x1, . . . , x p) g ji p+1...i p+q−1(x1, x p+1, . . . , x p+q−1). (35)

We have the estimate

‖ f ⇀ g‖1 ≤ ‖ f ‖∞,1 ‖g‖1, (36)

where

‖ f ‖∞,1 := sup
x

∑
i1,...,i p

∫
dx2 . . .dx p | fi1...i p (x, x2, . . . , x p)|.

Without loss of generality, we assume that A= M�( f ) for some f ∈B(p) satisfying
the bound (24). Iterating

{H�, M�( f )} =
∞∑

n=1

np M�(V (n) ⇀ f )

we obtain that

{H�, M�( f )}(l) =
∞∑

n1,...,nl=1

[pn1] [(p +n1 −1)n2]· · ·[(p +n1+· · ·+nl−1−l +1)nl ]×

×M�

(
V (nl ) ⇀

(
V (nl−1) ⇀ . . . (V (n1) ⇀ f )

))
,
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with norm∥∥∥{H�, M�( f )}(l)
∥∥∥∞

≤
∑

n1,...,nl

[pn1] [(p +n1 −1)n2] · · · [(p +n1 +· · ·+nl−1 − l +1)nl ]×

×‖V (nl )‖∞,1 · · · ‖V (n1)‖∞,1 ‖ f ‖1

≤ l!
∑

n1,...,nl

(p +n1 +· · ·+nl)
l

l! n1 · · ·nl ‖V (nl )‖∞,1 · · · ‖V (n1)‖∞,1 ‖ f ‖1

≤ ep ‖ f ‖1 l!
[∑

n

nen ‖V (n)‖∞,1

]l

≤ ep ‖ f ‖1 l! ‖V ‖l , (37)

by (30). Therefore, for |t |<‖V ‖−1, the series

∞∑
l=0

t l

l! {H�, A}(l) (38)

converges in ‖ · ‖∞ to αt
� A.

The quantum case is dealt with in a similar fashion, with the additional compli-
cation caused by the ordering of the generators {Ŝi (x)}. This does not trouble us,
however, as an exact knowledge of the ordering is not required. It is easy to see
that, for f and g as above,

ish−d [Ŝ�( f ), Ŝ�(g)
]

is equal, up to a reordering of the spin operators, to pq Ŝ�( f ⇀ g). Iterating this
shows that

(ish−d)l [Ĥ�, Â
](l)

is equal, up to a reordering of the spin operators, to

∞∑
n1,...,nl=1

[pn1] [(p +n1 −1)n2] · · · [(p +n1 +· · ·+nl−1 − l +1)nl ]×

×Ŝ�

(
V (nl ) ⇀

(
V (nl−1) ⇀ · · · (V (n1) ⇀ f )

))
,

Consequently an estimate analogous to (37) yields, for s ≥1,∥∥∥(ish−d)l [Ĥ�, Â
](l)∥∥∥ ≤ ep ‖ f ‖(h)

1 l! (‖V ‖(h))l ,

which readily implies the bound∥∥∥∥∥
∞∑

l=0

t l

l! (ish−d)l [Ĥ�, Â
](l)
∥∥∥∥∥≤ ep ‖ f ‖(h)

1

∞∑
l=0

(|t | ‖V ‖(h))l . (39)
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If s =1/2, the first line of (37) gets the additional factor
√

2
n1+···+nl+p

. This may
be dealt with by replacing the factor (p + n1 + · · · + nl)

l in the second line of
(37) with (r p + rn1 +· · ·+ rnl)

l/rl . The desired bound then follows for 0< r ≤1−
1
2 log 2. Note that in this case the convergence radius for t is reduced to r‖V ‖−1.
For ease of notation, we restrict the following analysis to the case s ≥ 1, while
bearing in mind that the extension to s = 1/2 follows by using the above rescal-
ing trick.

Now, by definition of ‖V ‖, for any |t | < ‖V ‖−1 there is an h0 such that (39)
converges in norm to α̂t

� Â for all h ≤h0, uniformly in h and �.
In order to establish the statement of the theorem for short times |t |< ‖V ‖−1,

we remark that the commutation relations (22) imply the bound

‖A −B‖ ≤ hd

s
p2 ‖ f ‖(h)

1 ,

for arbitrary reorderings, A and B, of the same operator Ŝ�( f ), with f ∈B(p) for
some p <∞.

If we define α̂t
� A through its norm-convergent power series, we therefore get

∥∥∥α̂t
� Â − α̂t

� A
∥∥∥

≤ hd

s

∞∑
l=0

|t |l
l!

∑
n1,...,nl

[pn1] [(p +n1 −1)n2] · · · [(p +n1 +· · ·+nl−1 − l +1)nl ]×

×(n1 +· · ·+nl − l +1)2 ‖V (nl )‖(h)
∞,1 · · · ‖V (n1)‖(h)

∞,1 ‖ f ‖(h)
1

≤ hd

s

∞∑
l=0

|t |l
∑

n1,...,nl

(p +n1+· · ·+nl)
l+2

l! n1 · · ·nl ‖V (nl )‖(h)
∞,1 · · · ‖V (n1)‖(h)

∞,1 ‖ f ‖(h)
1

≤ hd

s

∞∑
l=0

|t |lep ‖ f ‖(h)
1 (l +2)(l +1)

[∑
n

nen ‖V (n1)‖(h)
∞,1

]l

≤ hd

s
ep ‖ f ‖(h)

1

∞∑
l=0

(l +2)(l +1) (|t | ‖V ‖(h))l

= O(hd),

where in the last step we have used the fact that the sum convergences uniformly
in h, for h small enough, as seen above.

Arbitrary times are reached by iteration of the above result. �

3.5. THE THERMODYNAMIC LIMIT

The above result may again be formulated in the thermodynamic limit as � →
hZ

d . We only sketch the arguments, which are almost identical to those of Sec-
tion 2.5.
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The quantum quasi-local algebra is

Â(h) :=
∨

�⊂⊂Rd

Â
(h)
� ,

The existence of dynamics is guaranteed by the following statement.

LEMMA 6. Let h > 0 and suppose A ∈ Â
(h)
�0

for some bounded and open �0 ⊂ R
d .

Then, for any t ∈R, the following limit exists in the norm sense:

lim
�→∞ α̂t

�A =: α̂t A,

By continuity this extends to a strongly continuous one-parameter group (̂αt )t∈R of
automorphisms of Â(h).

The classical quasi-local algebra is

A :=
∨

�⊂⊂Rd

P�.

LEMMA 7. Let A∈P�0 for some open and bounded �0 ⊂⊂R
d . Then, for any t∈R,

the following limit exists in ‖ · ‖∞:

lim
�→∞αt

� A =: αt A,

By continuity this extends to a strongly continuous one-parameter group (αt )t∈R of
automorphisms of A. Furthermore, αt A = A ◦ φt , where φt = φt

Rd is the Landau-
Lifschitz flow defined in Lemma 5.

Now, for f ∈B(p), M( f ) and Ŝ( f ) are well-defined in the obvious way. Define
P as the algebra generated by functions of the form M( f ), where f satisfies (24).

THEOREM 5. Let A∈P and ε>0. Then there exists a function A(t)∈P such that

sup
t∈R

‖αt A − A(t)‖∞ ≤ ε, (40)

and, for any t ∈R,
∥∥α̂t Â − Â(t)

∥∥ ≤ ε +C(ε, t, A) hd . (41)

3.6. EVOLUTION OF COHERENT STATES

In this section, our “smearing functions” f are assumed to have compact support,
i. e. to belong to the space

B
(p)
c := B(p) ∩Cc(R

pd ;C
3p

).
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In addition, we require the interaction potential V to be of finite range in the
sense that there exists a sequence Rn > 0 such that if |xi − x j |> Rn for some pair
(i, j) then V (n)

i1...in
(x1, . . . , xn)=0.

Next, we take some initial classical spin configuration M ∈ C(Rd ;S
2), or, more

generally, a function M : R
d → S

2 whose points of discontinuity form a null set.
We shall study the time evolution of product states ρM on Â(h) that reproduce the
given classical state M . For open and bounded �⊂R

d , we define the product state

|M�〉 :=
⊗

x∈�(h)

|M(x)〉,

where |M(x)〉 is the coherent spin state corresponding to the unit vector M(x). For
A ∈ Â

(h)
� , define

ρM (A) := 〈M� ,A M�〉,
which we extend to arbitrary A ∈ Â(h) by continuity.

For our main result on the time evolution of coherent states, we first record the
following auxiliary result whose elementary proof we omit.

LEMMA 8. Let f ∈B
(p)
c satisfy (24). Then

lim
h→0

ρM
(
Ŝ( f )

) = M( f ). (42)

The last result in this paper links the quantum time evolution of coherent spin
states with the classical evolution in the mean-field/continuum limit when the lat-
tice spacing h tends to 0.

THEOREM 6. Let t ∈R, A∈P and M be as described above. Let M(t) be the solu-
tion of (31) on R

d with initial configuration M . Then

lim
h→0

ρM
(̂
αt Â

) = A(M(t)),

uniformly in t on compact time intervals.

Proof. The proof is a corollary of the proof of Theorem 4. First, let |t |<‖V ‖−1

and pick an ε >0. Choose a cutoff such that the tails of the thermodynamic lim-
its of the series (38) and (39) are bounded by ε. We therefore have to estimate a
finite sum of terms of the form

∣∣ρM
(
Ŝ(g)

)− M(g)
∣∣ ,

where g ∈ B
(p(g))
c because of our assumptions on V . By Lemma 8, for h small

enough, these are all bounded by ε, and the claim for small times follows. Finally,
by iteration, we extend the result to arbitrary times. �
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