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ABSTRACT 61 

Background A low level of cardiorespiratory fitness [CRF; typically defined as peak oxygen uptake 62 

(V̇O2peak) or peak power output (PPO)] is a widely reported consequence of spinal cord injury (SCI). This 63 

systematic review with meta-analysis and meta-regression aimed to assess whether certain SCI 64 

characteristics and specific exercise considerations are moderators of changes in CRF. 65 

Methods Eligible studies included randomised controlled trials (RCTs) and pre-post studies that 66 

conducted an exercise intervention lasting >2 weeks. The outcome measures of interest were absolute 67 

(AV̇O2peak) or relative V̇O2peak (RV̇O2peak), and/or PPO. Four databases were searched up to July 2021. 68 

The Cochrane Risk of Bias 2 tool and the National Institute of Health Quality Assessment Tool were 69 

used to assess bias/quality. The certainty of the evidence was assessed using the Grading of 70 

Recommendations Assessment, Development and Evaluation (GRADE) approach. Random effects 71 

meta-analyses and meta-regressions were conducted. 72 

Results Ninety studies (110 independent exercise interventions) with a total of 1,191 participants were 73 

included in our primary meta-analysis. There were significant improvements in AV̇O2peak [0.22 (0.17, 74 

0.26) L/min, p<0.001)], RV̇O2peak [2.8 (2.2, 3.4) mL/kg/min, p<0.001)], and PPO [11 (8, 13) W, 75 

p<0.001].  There were no subgroup differences in AV̇O2peak or RV̇O2peak. There were subgroup 76 

differences (p≤0.008) for changes in PPO based on time since injury, neurological level of injury, 77 

exercise modality, relative exercise intensity, method of exercise intensity prescription, and frequency. 78 

The meta-regression found that increased age was associated with increases in AV̇O2peak and RV̇O2peak, 79 

and exercise intensity prescription and volume were associated with increases in PPO (p<0.05). GRADE 80 

assessments indicated a low level of certainty in the estimated effects due to study design, risk of bias, 81 

inconsistency, and imprecision.  82 

Conclusion The pooled analysis indicates that performing exercise >2 weeks results in significant 83 

improvements in AV̇O2peak, RV̇O2peak and PPO in individuals with SCI. Subgroup comparisons identify 84 

that upper-body aerobic exercise and resistance training appear the most effective at improving PPO. 85 

Furthermore, acutely-injured, individuals with paraplegia, exercising at a moderate-to-vigorous intensity, 86 

prescribed via a percentage of oxygen consumption or heart rate, for more than 3 sessions/week will 87 

likely experience the greatest change in PPO. 88 

Registration PROSPERO CRD42018104342 89 

 90 
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 93 

Key Points 94 

- Exercise interventions >2 weeks can significantly improve cardiorespiratory fitness in 95 

individuals with a spinal cord injury, by a magnitude greater than one spinal cord injury adjusted 96 

metabolic equivalent (i.e., ≥2.7 mL/kg/min). A one metabolic equivalent improvement has been 97 

associated with a reduction in cardiovascular related mortality risk in non-injured individuals.  98 

- Our findings support the minimum 40 minutes of weekly moderate-to-vigorous intensity 99 

exercise recommended by the spinal cord injury-specific exercise guidelines to significantly 100 

improve fitness. However, a two-fold greater improvement in peak power output may be 101 

achieved with exercising ≥90 min/week in comparison to ≥40 min/week. 102 

- Our secondary meta-analysis comparing cohort studies indicates that prolonged exercise 103 

participation benefits cardiorespiratory fitness in the long term. However, these studies are 104 

prone to confounding and are inherently biased.  105 

- Future research should consider following the recommendations published in the exercise 106 

intervention reporting guidelines, investigate the dose-response relationship between exercise 107 

and cardiorespiratory fitness in this population, and identify whether differences in supraspinal 108 

sympathetic cardiovascular impacts changes in cardiorespiratory fitness.  109 

 110 
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1. INTRODUCTION 121 

Spinal cord injury (SCI) is a complex neurological condition, caused by trauma, disease or degeneration, 122 

which results in sensory-motor deficits (i.e., paralysis or paresis) below the level of lesion and autonomic 123 

dysfunctions. Progressive physical deconditioning following injury results in increased health care 124 

utilisation, reliance on personal assistance services and a greater predisposition towards developing 125 

chronic diseases [1,2]. Individuals with SCI are at an increased risk of stroke, cardiovascular disease 126 

(CVD), and type-2 diabetes mellitus compared to non-injured counterparts [3–5]. The elevated incidence 127 

of these conditions in people with SCI emphasises the need for targeted interventions to address 128 

modifiable risk factors for these chronic diseases, such as cardiorespiratory fitness (CRF). In clinical 129 

populations cardiorespiratory fitness (CRF) is typically defined as an individual’s peak oxygen uptake 130 

(V̇O2peak) or peak power output (PPO). V̇O2peak and PPO are determined during graded cardiopulmonary 131 

exercise testing (CPET) to the point of volitional exhaustion, and represents the integrated functioning 132 

of different bodily systems (pulmonary, cardiovascular and skeletal) to uptake, transport and utilise 133 

oxygen for metabolic processes [6]. A number of prospective studies have indicated that CRF is at least 134 

as important, if not more so, than other traditional CVD risk factors (e.g., obesity, hypertension and 135 

smoking) and is strongly associated with mortality [7–12].  136 

 137 

Low levels of CRF have been widely reported in the SCI-population [13], with the between-person 138 

variability partially explained by the neurological level and severity of injury (i.e., lower CRF reported 139 

in individuals with tetraplegia) [14]. SCI can damage somatic pathways involved in the voluntary control 140 

of skeletal muscles, but also sympatho-excitatory pathways involved in the autonomic control of the 141 

cardiovascular system. In individuals with cervical and upper-thoracic SCI, the diminished supra-spinal 142 

control to the heart and blood vessels in major capacitance beds can limit exercise capacity [15,16]. This 143 

may explain the minimal returns on investment highlighted in a recent systematic review on the effects 144 

of aerobic exercise interventions in individuals with tetraplegia [17]. A large proportion of the variance 145 

in CRF is also explained by physical activity [18], which is reduced in the SCI-population [19,20]. SCI 146 

is characterised by lower-limb impairments and an ensuing reliance on mobility aids that limits the 147 

engagement in sufficient levels of physical activity to achieve meaningful health benefits. 148 

 149 
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Performing regular physical activity and/or structured exercise has long been promoted for improving 150 

CRF in individuals with SCI [21,22]. In 2011, the first evidence-based exercise guidelines, specifically 151 

for individuals with SCI were developed [23], which stated that “for important fitness benefits, adults 152 

with SCI should engage in at least 20 minutes of moderate-to-vigorous-intensity aerobic activity and 153 

strength-training exercises 2 times per week”. This guideline has since been updated, yet remains the 154 

same with regards to CRF benefits [24]. Although this implies adults with SCI can accrue fitness benefits 155 

from volumes of activity well below that promoted in the general population, others have advocated that 156 

adults with a physical disability [25,26] and individuals with SCI [27] should aim to perform at least 150 157 

minutes of aerobic exercise per week. For additional health benefits it has been suggested that adults 158 

should perform closer to 300 minutes per week of moderate-intensity physical activity [28,29]. While 159 

the current SCI-specific guidelines likely represent the “minimum” threshold required to achieve CRF 160 

benefits, it has been suggested that this creates an impression that individuals with SCI do not need to be 161 

as physically active as the general population [30]. The dose-response relationship between exercise and 162 

CRF improvements in individuals with SCI remains to be elucidated.  163 

 164 

It is noteworthy that the aforementioned SCI-specific exercise guidelines utilise the terminology of 165 

“moderate-to-vigorous” to describe the desired exercise intensity. This is in contrast to accepted 166 

guidelines in the general population whereby moderate and vigorous-intensity exercise are distinguished 167 

from one another with specific  thresholds (e.g., ≥150 minutes of moderate-intensity or ≥75 minutes of 168 

vigorous-intensity activity per week) [26]. Exercise intervention intensity has been shown to influence 169 

the magnitude of change in CRF in patients undergoing cardiac rehabilitation [31,32]. The 170 

feasibility/effectiveness of higher intensity exercise is also currently a topical area of research in the SCI-171 

population [33–35]. There is the potential for vigorous-intensity exercise to be more time efficient or 172 

lead to superior health benefits, although its impact on CRF in individuals with SCI compared to 173 

moderate-intensity exercise is yet to be determined. A recent systematic review identified that exercise 174 

interventions of a specific modality yield distinct changes in certain cardiometabolic health outcomes 175 

and not others in individuals with SCI [36]. This provides rationale for wanting to investigate the efficacy 176 

of different exercise modalities on CRF in this population. Consequently, a number of research questions 177 

requiring further attention include:  178 

 179 
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1) Do injury-specific characteristics (e.g., tetraplegia vs. paraplegia, acute vs. chronic injuries, motor-180 

complete vs. incomplete) mediate CRF responses to exercise?  181 

2) What is the best intensity, frequency, and volume of weekly exercise?   182 

3) Is there an optimal conditioning modality [e.g., upper-body aerobic exercise, resistance training, 183 

functional electrical stimulation (FES), hybrid or multimodal exercise interventions etc.]?  184 

 185 

To address these questions, we performed a systematic review with meta-analysis and meta-regression 186 

to investigate the impact of different exercise interventions on changes in CRF in individuals with SCI. 187 

Moreover, we gathered evidence to determine whether key moderators (e.g., participant/injury 188 

characteristics, intervention/study characteristics and risk of bias) influence these intervention effects. 189 

 190 

2. METHODS 191 

This current review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 192 

(PRISMA) guidelines [37] and was prospectively registered (PROSPERO ID CRD42018104342). 193 

Randomised and non-randomised study designs [randomised controlled trials (RCTs) and pre-post 194 

interventions without a comparison control group] were included in the primary meta-analysis of this 195 

review. Our secondary meta-analyses included cohort, cross-sectional and observational studies.   196 

 197 

2.1. Eligibility criteria 198 

Studies met the following inclusion criteria: 1) Adult (≥18 years) participants; 2) any acquired (traumatic, 199 

infection, cancer) SCI (note, studies were included if >80% of the sample met these two aforementioned 200 

inclusion criteria); 3) an exercise or physical activity intervention lasting >2 weeks (RCTs and pre-post 201 

trials included in the primary meta-analysis); 4) report a measurable exposure variable (i.e., secondary 202 

meta-analysis cohort studies: athletes vs. non-athletes or sedentary vs. active participants; and cross-203 

sectional studies: self-reported or objectively measured habitual physical activity level) and; 5) report 204 

CRF-specific outcomes [i.e., absolute or relative V̇O2peak, evaluated via analysis of expired air during a 205 

peak (or symptom-limited) CPET or submaximal prediction, or PPO].  206 

 207 

Studies were excluded if they met the following criteria: 1) non-human; 2) non-original work (i.e., 208 

reviews, guideline documents, editorials, viewpoints, letter-to-editor, protocol paper); 3) case-reports and 209 
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case series with a number (n) of participants <5 (to increase the robustness of our findings given the 210 

inclusion of smaller sample sizes in previous reviews [21,38,39]); 4) non-peer reviewed (i.e., conference 211 

proceeding/abstracts/posters); 5) children or adolescents (<18 years) ; 6) non-SCI (non-injured 212 

participants or other neurological conditions); 7) does not report a CRF-specific outcome; 8) single 213 

exercise sessions or an intervention <2 weeks; 9) no suitable comparison (i.e., control group or baseline 214 

data pre-intervention) or exposure variable measured; 10) no full text; and 11) not written in English. 215 

Studies with concurrent interventions (i.e., diet, lifestyle or respiratory training) were included only if 216 

the effects of exercise could be isolated.  217 

 218 

2.2. Search strategy 219 

A search of the following electronic databases: MEDLINE (via Pubmed), Excerpta Medica Database 220 

(EMBASE; via Ovid), Web of Science and the Cochrane Central Register of Controlled Trials 221 

(CENTRAL) was conducted from their respective inception through to July 18, 2021. Search terms were 222 

developed by the corresponding author (TN) and agreed upon by co-authors (AK, MW). The search 223 

strategy combined key words describing the following: 1) condition (e.g., SCI); 2) ‘intervention or 224 

exposure variable’ (e.g., rehabilitation, exercise and physical activity); and 3) ‘outcome’ (e.g., V̇O2peak or 225 

PPO). Details of the complete search strategy can be found as online supplementary material (S1). Search 226 

results were collated using Endnote software (Thomson Reuters, NY) and duplicates removed. 227 

 228 

2.3. Study selection and data extraction 229 

The citations retrieved from the search strategy were screened by title, abstract, and full text by two 230 

independent reviewers (DH, GB). At each stage of the evaluation, studies were excluded if the inclusion 231 

criteria were not satisfied. A conservative approach was taken, whereby if insufficient information was 232 

available to warrant study exclusion during the title and abstract stages of the screening, studies were 233 

retained in the sample for full text screening. TN resolved any disagreement with regards to study 234 

inclusion.  235 

 236 

Two authors (DH, GB) independently extracted data in duplicate using Microsoft Excel. Any 237 

disagreements were resolved via mutual consensus. Where more than one publication was apparent for 238 

the same participants, data were extracted from the study with the largest sample size to avoid 239 
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duplication. Author, year, study design, sample size, participant demographics/injury characteristics, 240 

exercise parameters (including the type, frequency, duration, intensity and weekly volume), or physical 241 

activity exposure details (training history, objective wearable device or validated self-report 242 

questionnaire) and adverse events were extracted. For RCTs, pre-post interventions and observational 243 

studies, mean ± standard deviation (SD) for V̇O2peak and PPO outcomes at baseline and post-244 

intervention/control or observation period were extracted to assess change in CRF. For cross-sectional 245 

studies, mean ± SD outcomes were extracted for the unique cohorts, along with the significance and 246 

magnitude of associations between CRF and habitual physical activity. Where possible, V̇O2peak values 247 

were extracted in relative (mL/kg/min) and absolute (L/min) terms or calculated using pre- and post-248 

intervention body mass values when provided. PPO values were extracted in watts (W) only. If there was 249 

insufficient information, the authors were contacted via email (N=12) and given a two-week window to 250 

provide additional data (responses received, N=8). Detailed notes were recorded outlining the reasons 251 

for study inclusion/exclusion and the number of studies included and excluded at each stage. 252 

 253 

2.4. Data synthesis and analysis 254 

A variety of methods [i.e., indices of heart rate (HR), V̇O2 or ratings of perceived exertion (RPE)] have 255 

been utilised in the literature to establish, prescribe and regulate exercise intensity in the SCI-population, 256 

which creates complexity when classifying the intensity of exercise. Each intervention was classified as 257 

having prescribed either light, moderate, vigorous or supramaximal-intensity aerobic exercise, based on 258 

thresholds proposed by the American College of Sports Medicine (ACSM) [40] (S2). If a study reported 259 

a progression in intensity that spanned the moderate and vigorous-intensity categories (e.g., 60-65% 260 

V̇O2peak), it was classified as ‘moderate-to-vigorous’. If insufficient data were provided, studies were 261 

classified as ‘mixed-intensity/cannot determine’. Furthermore, where a study reported frequency of 262 

sessions or length of interventions as a range (e.g., 6-8 weeks), the midpoint was extracted and if a study 263 

reported duration as a range (e.g., 40-45 min), the greater value was extracted. Descriptions of adverse 264 

events in the included studies were also collated. These were categorised into the following subgroups: 265 

1) bone, joint or muscular pain, 2) autonomic or cardiovascular function, 3) skin irritation or pressure 266 

sores, and 4) other. 267 

 268 
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Means ± SD were estimated from median and interquartile range (IQR) [41] or median and range [42], 269 

where required. Where CRF data was only presented in figures, data were extrapolated using Photoshop 270 

(Adobe Inc). To combine within-study subgroups and to estimate SD of the delta (Δ) change in CRF 271 

using correlation factors, we followed guidance from the Cochrane handbook [41]. Correlation factors 272 

were calculated for AV̇O2peak , RV̇O2peak and PPO using studies that reported pre-post SD and SD of the 273 

Δ change using the following equation:  274 

 275 

Corr = 
("#!"#)$	&	("#!%&')$	'	("#()*+,#)$

(	×	"#!"#	×	"#!%&'
 276 

 277 

The specific correlation factors that were calculated for each study were averaged across each study 278 

design (S3) and applied in the following equation to calculate SD of the change for studies where these 279 

values were not reported: 280 

 281 

SDChange = !(#$*+,)( 	+	(#$*-./)( 	− 	2 × +,-- × #$*+, × #$*-./   282 

 283 

where corr represents the correlation coefficient. 284 

 285 

Since AV̇O2peak, RV̇O2peak, and PPO are continuous variables, expressed using the same units across 286 

studies, we utilised weighted mean differences (WMDs) and 95% confidence intervals (CI) as summary 287 

statistics. A primary meta-analysis was carried out in R (Version 3.5.1, R Foundation for Statistical 288 

Computing, Vienna, Austria) describing Δ in CRF outcomes in response to prospective, well-289 

characterised exercise interventions lasting >2 weeks (e.g., combining exercise intervention-arms from 290 

RCTs and pre-post studies). Nine separate primary meta-analyses were performed to describe Δ in each 291 

CRF outcome with studies categorised into subgroups based on the following: 1) time since injury [(TSI), 292 

e.g., Acute (<1-year), chronic (≥1-year)]; 2) neurological level of injury (e.g., tetraplegia, paraplegia); 3) 293 

injury severity [e.g., grading in accordance with the American Spinal Injury Association Impairment 294 

Scale (AIS): motor-complete (AIS A-B), motor-incomplete (AIS C-D)]; 4) exercise modality [e.g., 295 

aerobic volitional upper-body, resistance training, FES, gait training, behaviour change]; 5) relative 296 

exercise intensity (e.g., light, moderate, moderate-to-vigorous, vigorous, supramaximal); 6) method used 297 

to prescribe exercise intensity (e.g., V̇O2, HR, RPE, workload); 7) frequency of exercise sessions (<3, ≥3 298 
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to <5, ≥5); 8) exercise volume [e.g., SCI-specific exercise guidelines for fitness (40 - 89 min/wk) [24], 299 

SCI-specific exercise guidelines for cardiometabolic health (90 - 149 min/wk) [24], achieving general 300 

population exercise guidelines (≥150 min/wk) [26], and 9) length of intervention (≤6 weeks, >6 to ≤12 301 

weeks, >12 weeks). Studies were also classified as ‘mixed’ or ‘not reported/cannot determine’ subgroups 302 

based on the aforementioned categories. Four secondary meta-analyses were also conducted for different 303 

trial designs: 1. comparing inactive vs active participants (e.g., cross-sectional cohort studies); 2. 304 

describing Δ in CRF outcomes with standard of care inpatient rehabilitation or free-living follow up (e.g., 305 

observational studies); 3. comparing Δ in CRF outcomes relative to control groups (RCTs only), and 4. 306 

head-to-head comparison of different exercise intensities (RCTs with exercise interventions of differing 307 

intensities). Statistical heterogeneity was assessed using the I2 and accompanying p-value from the chi-308 

squared test. A fixed-effect model was used when no significant heterogeneity was detected among 309 

studies (P>0.10, I2<50%), otherwise, a random effect model was used. Evidence for differences in effects 310 

between the subgroups was explored by comparing effects in the subgroups and the corresponding p-311 

values for interaction. To assess the effect of potential outlier studies, we conducted a sensitivity analysis 312 

where studies were removed, and pooled WMD recalculated, when their CIs did not overlap with the CIs 313 

of the pooled effect. Sensitivity analyses were also conducted by comparing the WMDs of low and high 314 

risk of bias studies, as well as studies with and without imputed data (i.e., extracted from figures or where 315 

mean ± SD were calculated from median, IQR or range), to confirm the robustness of our findings. 316 

Potential publication bias in the dataset was assessed using funnel plots and Egger’s tests in R. Data is 317 

visualised in R (see Github for scripts: https://github.com/jutzca/Exercise-and-fitness-in-SCI). A 2.7  318 

mL/kg/min, and thus 1 metabolic equivalent in SCI (1 SCI-MET) [43], change in RV̇O2peak was 319 

considered clinically meaningful. 320 

 321 

To explore potential sources of heterogeneity, a random-effects meta-regression was performed using 322 

preselected moderator variables in Stata (Version 13, StataCorp LLC, College Station, TX, USA), 323 

adjusted for multiple testing. As per Cochrane recommendations [44], for each included covariate in the 324 

model a minimum of 10 studies were required. To achieve this, and to also overcome  the issue of 325 

collinearity between moderators, some moderators were not included in the analysis. Moderators were 326 

selected a priori, based on their potential to influence CRF responses. Exercise intensity prescription was 327 

later added as a moderator in the meta-regression in light of a recent study challenging strategies for 328 
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prescribing exercise intensity in individuals with SCI [45]. Moderators fell into two categories: model 1) 329 

participant/injury characteristics [continuous variables: age, TSI and baseline CRF; categorical variables: 330 

sex (n=male), neurological level of injury (n=PARA), severity (n=motor-complete)]; or model 2) 331 

intervention/study characteristics [continuous variables: exercise session duration, frequency, weekly 332 

exercise volume, intervention length; categorical variables: exercise modality, exercise intensity, method 333 

of exercise intensity prescription, and risk of bias classification]. Any potential covariates of the effect 334 

of AV̇O2peak, RV̇O2peak,  and PPO with p ≤ 0.10 identified via univariate meta-regression were 335 

subsequently included in multivariate meta-regression modelling. The level of significance for 336 

multivariate meta-regression was set at p ≤ 0.10. Because meta-regression can result in inflated false-337 

positive rates when heterogeneity is present, or when there are few studies, a permutation test described 338 

by Higgins and Thompson [46] was used to verify the significance of the predictors in the final model, 339 

whereby 10,000 permutations were generated.  340 

 341 

2.5. Risk of bias 342 

Study quality was appraised by at least two independent reviewers in duplicate (DH, GB, SYC), with 343 

any conflicts resolved by a third reviewer (TN). The Cochrane Risk of Bias 2 (RoB 2) was used to assess 344 

the risk of bias of the RCTs [47]. Reviewers determined the level of bias for each domain using the RoB 345 

2 algorithms and is presented visually using robvis [48]. Non-randomised designs were assessed using 346 

assessment tools generated by the National Institutes of Health (NIH) and National Heart, Lung and 347 

Blood Institute (NHLBI, Bethesda, MD). Pre-post studies were rated using the Quality Assessment Tool 348 

for Before-After (Pre-Post) Studies with No Control Group (12 items) and observational and cross-349 

sectional studies were rated using the Quality Assessment Tool for Observational Cohort and Cross-350 

Sectional Studies (14 items). Studies were subsequently classified as good, fair or poor quality using the 351 

guidance provided within each tool and is presented visually in online supplementary material. 352 

 353 

2.6. Certainty on the body of the evidence assessment using the GRADE approach 354 

The Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach [49] 355 

was used to evaluate the certainty of the evidence for AV̇O2peak, RV̇O2peak and PPO. Two authors (DH, 356 

SYC) independently assessed the certainty of evidence for each outcome, with any conflicts resolved by 357 

the corresponding author (TN). The certainty of the evidence was graded from ‘High’ to ‘Moderate’, 358 
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‘Low’ or ‘Very Low’. GRADE certainty in the evidence was downgraded if one or more of the following 359 

criteria were present: 1) risk of bias, 2) inconsistency in the results for a given outcome, 3) indirectness, 360 

4) imprecision, and 5) publication bias. 361 

 362 

3. RESULTS 363 

The initial database search identified 12,885 articles after removal of duplicates. Further, 11,029 studies 364 

were removed following the screening of titles and abstracts. The remaining 1,856 articles were selected 365 

for full-text review based on inclusion and exclusion criteria (S1). Of these, a total of 110 eligible studies, 366 

across each specific study design (RCT = 27, pre-post = 63, observational = 5, cross-sectional cohort = 367 

9, cross-sectional association = 6), were included in this review. Ninety studies, comprising the RCTs 368 

and pre-post studies, were included in the primary meta-analysis. Summaries of the pooled cohorts and 369 

descriptions of the individual studies included within each secondary meta-analysis are provided as 370 

supplementary material. 371 

 372 

[PLEASE INSERT FIGURE 1 HERE] 373 

 374 

3.1. Primary meta-analysis: Effects of prescribed, prospective exercise intervention studies 375 

CRF responses were pooled across 90 studies, comprising 110 exercise interventions in total, taken from 376 

76 pre-post exercise interventions and 34 independent exercise intervention arms from RCTs. Some 377 

studies included multiple exercise intervention arms/phases, hence the greater total number of exercise 378 

interventions than studies. A summary of the demographic/injury characteristics and intervention 379 

parameters for the pooled cohort included in the primary analyses for AV̇O2peak, RV̇O2peak, and PPO are 380 

presented in Tables 1-2. 381 

 382 

[PLEASE INSERT TABLE 1 HERE] 383 

 384 

3.1.1. Participants 385 

Across the 110 exercise interventions, there were a total of 1,191 participants. Most interventions 386 

included both males and females (64% of studies), where females made up between 6-80% of the mixed 387 

cohorts. There were no female-only cohorts. Mean age ranged between 24 to 58 years and the majority 388 
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of participants had chronic injuries (69% >1-year), with mean TSI ranging between 56 days to 24 years. 389 

Sixty-three interventions included a mixed cohort of paraplegia and tetraplegia, of which individuals 390 

with paraplegia made up between 10-88% of the mixed cohorts. Four interventions recruited individuals 391 

with tetraplegia-only, 34 paraplegia-only, and nine did not specify. Participants across all AIS groups 392 

were included, of which 39 interventions were motor-complete-only, 19 were motor-incomplete-only, 393 

and 17 did not report. Thirty-five interventions recruited both motor-complete and incomplete 394 

individuals, of which 32% were motor-incomplete. Mean AV̇O2peak and RV̇O2peak at baseline was 1.26 395 

(0.51-3.50) L/min and 18.0 (7.3-36.9) mL/kg/min, respectively, and PPO was 49 (0-168) W.  396 

 397 

[PLEASE INSERT TABLE 2 HERE] 398 

 399 

3.1.2. Exercise intervention characteristics  400 

Length of interventions ranged from 4 to 52 weeks, and whilst most studies reported a specific, 401 

predetermined intervention length, some reported a range [50–52], a total or targeted number of sessions 402 

[51,53–57], or provided an average [56,58,59]. Exercise sessions were completed between two to seven 403 

times per week. Eleven studies reported a range (e.g., “two to three sessions”) or maximum frequency  404 

(e.g., “up to three sessions/week”) [51,54,57,60–67], and frequency was either not reported or could not 405 

be determined in five studies [68–72]. The remainder reported an exact frequency (e.g., three sessions 406 

per week). The duration of exercise sessions ranged from 5 to 90 minutes, with four studies reporting a 407 

range (e.g., 20-30 min) [51,73–75] and six studies reporting a progression to a target duration [54,76–408 

80]. Duration was not reported or could not be determined in 13 studies. Based on current exercise 409 

guidelines, 22 interventions prescribed exercise within the SCI-specific exercise guidelines for fitness 410 

(40-89 min/week), 44 interventions targeted the SCI-specific exercise guidelines for cardiometabolic 411 

health (90-149 min/week), and 26 were greater than general population exercise guidelines (≥150 412 

min/week).  413 

 414 

Forty-one interventions utilised aerobic upper-body exercise, 5 upper-body resistance training/circuits, 415 

22 FES, 15 gait training, 4 behaviour change, and 23 mixed/multimodal interventions. Following the 416 

ACSM thresholds, one intervention prescribed light-intensity (<1%), 15 prescribed moderate-intensity 417 

(14%), 33 prescribed moderate-to-vigorous-intensity (30%), 25 prescribed vigorous-intensity (23%), and 418 
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2 prescribed supramaximal-intensity exercise (2%). Intensity could not be determined from 34 419 

interventions (31%). With regards to exercise intensity prescription methods, 32 interventions used HR, 420 

regulated either via HRpeak (%HRpeak, i.e., determined via a CPET; N=8), HRmax (%HRmax, i.e., age-421 

predicted; N=11), or HR reserve (%HRR; N=13). Fourteen interventions established intensity using 422 

V̇O2peak (%V̇O2peak; N=13) or V̇O2 reserve (%V̇O2reserve; N=1) calculated from the pre-intervention CPET. 423 

Thirteen interventions utilised RPE, using either the Borg CR10 scale (N=7) or the Borg 6-20 scale 424 

(N=6). Workload was used to prescribe intensity in 10 interventions, via a percentage of PPO (%PPO; 425 

N=5), one repetition maximum (%1RM; N=4), or maximal tolerated power (%MTP; N=1). Forty-one 426 

interventions either used a mixture of prescription methods or intensity could not be classified. Detail for 427 

the specific studies is presented in the forest plots in online supplementary material (S4). 428 

 429 

3.1.3. Adverse events 430 

Adverse events were described in 17 interventions, comprising 49/1,191 (4.1%) participants (S10). These 431 

events were related to: 1) bone, joint or muscular pain (n=10 participants), 2) autonomic or cardiovascular 432 

function (n=8 participants), 3) skin irritation or pressure sores (n=18 participants), and 4) other events 433 

including anxiety, nausea, dizziness and issues with testing equipment (n=3 participants). Adverse events 434 

were reported in three other pre-post studies. Beillot et al. [68] stated that participants experienced 435 

“spontaneous fractures of lower limbs, occurrence of a syringomyelia and pressure sores at the foot and 436 

ankle” (n=10), but did not define the number of participants who sustained each event. Likewise, Janssen 437 

and Pringle [61] reported “lightheadedness in some subjects”, and Gibbons et al. [81] stated that “a 438 

number of participants showed some level of autonomic dysreflexia during the FES response test”, but 439 

both studies did not quantify further.  440 

 441 

3.1.4. Change in CRF outcomes 442 

The summary statistics for the nine primary meta-analyses are presented in Tables 3-4 and their 443 

corresponding forest plots can be found in supplementary material (S4). 444 

 445 

[PLEASE INSERT TABLES 3-4 HERE] 446 

 447 
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Sixty-nine exercise interventions assessed the change in AV̇O2peak, revealing a significant increase of 448 

0.22 [0.17, 0.26] L/min (p<0.001). There were no significant subgroup differences for any of the nine 449 

meta-analyses. Seventy-four exercise interventions assessed the change in RV̇O2peak, revealing a 450 

significant increase of 2.8 [2.2, 3.4] mL/kg/min (p<0.001). There were no significant subgroup 451 

differences for any of the nine meta-analyses. Sixty-one exercise interventions assessed the change in 452 

PPO, revealing a significant increase of 11 [8, 13] W (p<0.001). There were significant subgroup 453 

differences for TSI (p<0.001), neurological level of injury (p<0.001), exercise modality (p=0.003), 454 

relative exercise intensity (p=0.003), method of exercise intensity prescription (p<0.001), and frequency 455 

(p<0.001) (Tables 3-4). 456 

 457 

Sensitivity analyses 458 

The removal of potential outliers resulted in no meaningful changes to the overall pooled effects for any 459 

outcome. A sensitivity analysis for risk of bias revealed no differences in the pooled effects for low and 460 

high risk of bias studies (S11). A sensitivity analysis for imputed data revealed a greater RV̇O2peak in 461 

studies with imputed data (3.9 mL/kg/min) compared to studies without (2.5 mL/kg/min). Yet, there were 462 

no differences in the pooled effects for AV̇O2peak or PPO (S11). An additional analysis grouped 463 

interventions into those that matched the CPET modality to the exercise intervention and those that did 464 

not. Following the adjustment for subgroup comparisons, there was a significantly greater RV̇O2peak in 465 

studies with matched CPET and intervention modalities (p = 0.02). There were no significant differences 466 

in AV̇O2peak or PPO (S12). A sub-analysis on gait training CPETs alone also revealed no subgroup 467 

differences in any outcome (S13). 468 

 469 

3.1.5. Meta-regression 470 

Model 1 - Participant and injury characteristics 471 

Increased age was associated with increases in AV̇O2peak (p = 0.045) and RV̇O2peak (p = 0.025). There 472 

were no associations between other moderator variables included in this model and CRF outcomes. There 473 

were also no associations between PPO and the other moderator variables (Table 5). 474 

 475 

Model 2 - Exercise intervention and study characteristics 476 
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There was no evidence that the exercise intervention and study characteristics included in model 2 were 477 

associated with increases in AV̇O2peak or RV̇O2peak. However, there was evidence for an association 478 

between the method of exercise intensity prescription and increases in PPO (p<0.01). Additionally, there 479 

was evidence for an association between exercise volume and increases in PPO (p = 0.04) (Table 5).  480 

 481 

[PLEASE INSERT TABLE 5 HERE] 482 

 483 

3.1.6. Publication bias 484 

There was no significant publication bias for AV̇O2peak (Z = -1.23, p = 0.22), RV̇O2peak (Z = -0.54, p = 485 

0.59), or PPO (Z = 0.73, p = 0.46). Funnel plots are provided in supplementary material (S4).  486 

 487 

3.2. Secondary Meta-Analyses 488 

3.2.1. Cross-sectional studies  489 

Nine studies included cross-sectional data comparing CRF outcomes in active (n=129 participants) vs. 490 

inactive (n=115 participants) individuals with SCI. Inactive participants were mainly classified as 491 

sedentary, whereas active participants varied from recreationally active wheelchair sport players to 492 

paralympic athletes. A meta-analysis of cross-sectional cohort studies revealed significantly (p<0.001) 493 

higher AV̇O2peak [0.54 (0.44, 0.63) L/min], RV̇O2peak, [9.4 (7.0, 11.8) mL/kg/min] and PPO [37 (29, 44) 494 

W] in active compared to inactive individuals with SCI (S5). Given the significant heterogeneity in 495 

RV̇O2peak, a sensitivity analysis was conducted to compare inactive individuals with either ‘active’ or 496 

‘elite athletes’. There was a significantly higher RV̇O2peak [5.4 (3.0, 7.7) mL/kg/min, p<0.001] in ‘active’ 497 

compared to inactive individuals, but an even higher RV̇O2peak [11.2 (9.6, 12.9) mL/kg/min, p<0.001] in 498 

‘elite athletes’ compared to inactive. 499 

 500 

Six studies (n=380 participants) included cross-sectional data and assessed associations between habitual 501 

physical activity level (as a continuous variable) and CRF outcomes. Five studies assessed physical 502 

activity exposure using self-report methods [82–86], whereas one study used a validated wearable device 503 

[87]. The measurement period used to capture physical activity dimensions ranged from 3 to 7 days. 504 

There was considerable variability across studies with regards to the physical activity dimensions 505 

captured: hours per week of exercise/sport, minutes per day or week of mild, moderate, heavy-intensity 506 
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for the subcategories of leisure time physical activity (LTPA), lifestyle or household activity or 507 

cumulative activity (S6). Collectively, data indicates significant positive correlations of a larger 508 

magnitude between CRF/PPO outcomes and the volume of  sport, exercise or LTPA rather than 509 

household activity. The only study to use a validated wearable device indicated that participants 510 

performing ≥150 min/wk of moderate-to-vigorous physical activity (MVPA) had a significantly higher 511 

CRF relative to a low activity group (performing <40 min/wk). Whereas, there was no significant 512 

difference in CRF between the low activity group and participants achieving the SCI fitness specific 513 

exercise guidelines (40 - 149 min/wk) [87]. Significant, positive correlations were reported for the 514 

amount of moderate-to-vigorous LTPA or cumulative activity with CRF/PPO outcomes, which was not 515 

the case for mild or light-intensity activity.  516 

 517 

3.2.2. Observational inpatient rehabilitation or community free-living studies 518 

Five studies (n=343 participants) included observational longitudinal data and assessed changes in CRF 519 

outcomes following either standard of care inpatient rehabilitation [88–90] or a period of community 520 

free-living [88,91,92]. The duration between assessments for standard of care varied, ranging from 5 to 521 

28 weeks, whereas the follow-up period for community observations ranged from 1 to 2.9 years. 522 

Reporting on the therapies used within standard of care was poor and only one study included a 523 

measurement of physical activity during the community-based free-living follow-up (self-reported mean 524 

sport activity) [91]. There were significant improvements following standard of care, but not following 525 

community-based free-living, in absolute [0.12 (0.07, 0.17) L/min, p<0.001 vs. 0.09 (0.00, 0.19) L/min, 526 

p=0.06] and relative V̇O2peak [2.1 (1.0, 3.2) mL/kg/min, p<0.001 vs -0.1 (-2.9, 2.7) mL/kg/min, p=0.94] 527 

(S7). Significant improvements in PPO were identified following both standard of care [6 (3, 9) W, 528 

p<0.001] and community-based free-living [7 (2, 12) W, p=0.006] (S7). 529 

 530 

3.2.3. RCTs 531 

Twenty RCTs assessed changes in CRF outcomes between exercise intervention (n=255 participants) 532 

and control (n=229 participants) groups. A meta-analysis of RCTs revealed a significantly higher 533 

AV̇O2peak [0.15 (0.06, 0.24) L/min, p=0.001], RV̇O2peak [2.9 (1.7, 4.0) mL/kg/min, p<0.001], and PPO 534 

[10 (5, 14) W, p<0.001] following an exercise intervention relative to SCI controls (S8).  535 

 536 
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Seven RCTs compared changes in CRF outcomes between moderate (n=52 participants) and vigorous 537 

(n=51 participants) exercise intensity groups. These studies utilised upper-body aerobic exercise and gait 538 

training. A meta-analysis revealed no significant differences between moderate and vigorous-intensity 539 

in AV̇O2peak (p=0.67), RV̇O2peak (p=0.88) or PPO (p=0.62) (S9). There were also no significant subgroup 540 

differences between studies that matched exercise volume between intensity groups and those that did 541 

not. 542 

 543 

3.3. Risk of Bias 544 

Full risk of bias assessments for pre-post and RCT interventions can be found in supplementary material 545 

(S4, S8, S9). Twenty-six pre-post studies were rated as having good, 25 as having fair, and 12 as having 546 

poor methodological quality. Six RCTs were rated as having a low risk of bias, 8 as having some 547 

concerns, and 13 as having a high risk of bias. The most common domains in the RCTs with either some 548 

concerns or high risk were ‘bias in the measurement of the outcome’ and ‘bias in selection of the reported 549 

result’. Reporting was inadequate in many of the included studies, which made the assessment of risk of 550 

bias challenging. Notably, reporting of blinding, eligibility or selection criteria, as well as the enrollment 551 

of participants (i.e., a lack of CONSORT flow diagrams) was poor. Individual risk of bias assessments 552 

for each study design are provided in supplementary material (S4-9).  553 

 554 

3.4. Evidence appraisal using GRADE 555 

Overall, the GRADE assessment revealed a ‘Low’ certainty in the body of evidence for improvements 556 

in all CRF outcomes (Table 6). The certainty rating for AV̇O2peak was downgraded due to imprecision 557 

and a lack of high quality study designs, whereas RV̇O2peak was downgraded as a result of imprecision 558 

and a high risk of bias in the RCTs. The confidence rating for PPO was downgraded due to imprecision 559 

and inconsistency, resulting from considerable heterogeneity in the included exercise interventions.  560 

 561 

[PLEASE INSERT TABLE 6 HERE] 562 

 563 

4. DISCUSSION 564 

This review provides a large evidence-based summary and appraisal on the effects of prescribed and 565 

prospective exercise interventions >2 weeks on CRF in individuals with SCI. The results from the meta-566 
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analysis support the role of exercise in improving CRF in this population by 0.22 L/min and 11W in 567 

AV̇O2peak and PPO, respectively. The meta-analysis also indicates a clinically meaningful change in 568 

RV̇O2peak of 2.8 mL/kg/min. However, the GRADE assessment revealed ‘Low’ certainty in the evidence 569 

for significant improvements in AV̇O2peak, RV̇O2peak, and PPO. Subgroup analyses revealed no effects of 570 

injury characteristics or exercise intervention parameters on AV̇O2peak or RV̇O2peak. However, there were 571 

significant subgroup differences for PPO based on TSI, neurological level of injury, exercise modality, 572 

exercise intensity, method of exercise intensity prescription, and frequency of sessions. 573 

 574 

4.1. Impact of injury characteristics  575 

4.1.1. Time since injury 576 

Following exercise interventions V̇O2peak improves in individuals with both acute and chronic SCI. 577 

However, this review highlights the need for more exercise interventions in the acute phase post-SCI. 578 

Indeed, a recent review by Van der Scheer et al. [38] rated the confidence in the evidence base for 579 

exercise in acute SCI as ‘Very Low’, and called for more RCTs to control for the deteriorations in fitness 580 

and health occurring almost immediately following SCI. With regards to PPO in the current review, 581 

subgroup analysis based on TSI reveals that individuals with acute SCI exhibit a greater change than 582 

individuals with chronic SCI. This could be due to spontaneous motor recovery in the first few months 583 

following SCI [93], or speculatively, a familiarisation effect to novel modalities of exercise or additive 584 

upper-limb physiological adaptations in response to concurrent inpatient rehabilitation. To support this 585 

point, the secondary meta-analysis with longitudinal observational studies indicates a 6W improvement 586 

in PPO with standard of care inpatient rehabilitation during the subacute period. Ultimately, more 587 

rigorous RCTs are required in the subacute phase post-SCI that compare standard of care versus standard 588 

of care plus a specific exercise intervention to truly quantify improvements in CRF outcomes.  589 

 590 

4.1.2. Neurological level of injury  591 

Exercise results in improved V̇O2peak regardless of the neurological level of injury. In particular, this 592 

review reveals a pooled improvement of 5.9 mL/kg/min in studies that included only individuals with 593 

tetraplegia (N=3). For comparison, there is a considerably larger evidence-base for studies including only 594 

individuals with paraplegia (N=28). A recent systematic review suggested that aerobic exercise results 595 

in minimal returns on investment in individuals with tetraplegia, with V̇O2peak improving on average only 596 
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9% following 10-37 weeks of training [17]. However, their review excluded studies with a sample size 597 

<10. Consequently, the Dicarlo study [94], which reported a 94% increase in RV̇O2peak was excluded 598 

from their analysis. Whilst the inclusion of this study in the current analysis may have augmented the 599 

overall effect, our findings indicate that exercise improves CRF in individuals with tetraplegia and that 600 

the magnitude of change is not significantly different to individuals with paraplegia. However, this meta-601 

analysis highlights that individuals with paraplegia (16W) are likely to accrue greater absolute changes 602 

in PPO than those with tetraplegia (9W). Typically, higher neurological levels of injury result in a loss 603 

of trunk control, motor impairments in the upper-limbs and reduced mechanical efficiency, compared to 604 

lower levels of injury [95,96]. Therefore, individuals with tetraplegia may not have the physical or motor 605 

capacity to adapt as effectively as individuals with paraplegia, and thus could experience a ceiling effect 606 

with training. Indeed, a recent study identified lesion level as a significant predictor of PPO in a group 607 

of handcyclists with SCI [97]. To account for baseline motor function differences between individuals 608 

with tetraplegia and paraplegia, we determined relative percentage change for studies that included 609 

upper-body aerobic exercise interventions only. The relative percentage change was similar between 610 

neurological level of injury classifications: 46% tetraplegia (N=1) vs. 53% paraplegia (N=9). While only 611 

one tetraplegia-only intervention was included in this subgroup analysis [98], normalising for baseline 612 

values seems to indicate similar relative magnitudes of change in PPO. 613 

 614 

Williams et al. [99] demonstrated that individuals with a lower level of injury (<T6) significantly 615 

improved PPO compared to individuals with a higher level of injury (≥T6), suggesting a potential role 616 

of disrupted cardiovascular control in mediating changes in PPO. Whilst methods for ameliorating the 617 

reduction in sympathetic cardiovascular control typically associated with injuries ≥T6 have been 618 

investigated (e.g., abdominal binding [100], lower-body positive pressure [101], and midodrine [102]), 619 

the evidence for an improved CRF is still mixed. A recent case-report has indicated that epidural spinal 620 

cord stimulation (SCS) can safely and effectively restore cardiovascular control and improve CRF [103]. 621 

With an explosion in SCS studies over the last few years [104], particularly including transcutaneous 622 

SCS, the pairing of exercise with novel and non-invasive neuromodulatory approaches will likely 623 

continue to receive considerable research attention. Future, adequately powered, research may want to 624 

consider separating participants into paraplegia and tetraplegia groups or dichotomize by injuries above 625 

and below T6 to account for differences in sympathetic cardiovascular control. Currently, there is a 626 
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paucity of studies analysing data in this fashion, which limits our understanding of how neurological 627 

level of injury and the degree of impaired sympathetic cardiovascular control influences the magnitude 628 

of change in CRF following an exercise intervention. Researchers may want to consider conducting a 629 

battery of autonomic nervous system stress tests at baseline (e.g., Valsalva manoeuvre, head-up tilt, 630 

sympathetic skin responses etc. [105]), to determine the degree of supraspinal sympathetic disruption 631 

rather than relying on a neurological level of injury derived from a motor-sensory examination. This is 632 

important as recent research has indicated that cardiovascular instability cannot be predicted by motor-633 

sensory level and completeness of SCI [106]. 634 

 635 

4.1.3. Injury severity 636 

There were no significant subgroup differences in CRF. However, the subgroup analysis suggests that 637 

individuals with a motor-incomplete SCI may not yield PPO improvements of the same magnitude as 638 

individuals with a motor-complete SCI. This is most likely due to the majority of motor-incomplete 639 

studies implementing gait training as its exercise modality, which we reveal is the least effective modality 640 

for improving CRF. The gait training studies that measured PPO (N=2) used arm-crank ergometry (ACE) 641 

as the CPET modality, demonstrating no transfer effect from lower-body to upper-body exercise. During 642 

data extraction, reviewers noted a poor reporting of injury severity in a number of studies. Whilst this 643 

may be due to older studies having used now outdated severity scales (e.g., International Stoke 644 

Mandeville Games Federation or Frankel), researchers should endeavour to perform an International 645 

Standards for Neurological Classification of SCI (ISNCSCI) exam during screening, and subsequently 646 

report an AIS grade, to enable better comparisons to be made between injury severities in the future.  647 

 648 

4.2. Impact of exercise intervention parameters 649 

4.2.1. Exercise modality 650 

Despite a number of recent reviews summarising the effects of specific exercise modalities on the change 651 

in CRF following SCI, including aerobic ACE [107], FES-cycling [39], and aerobic plus muscle strength 652 

training (mixed multimodal) interventions [108], this meta-analysis is the first to directly compare the 653 

effects of a wide range of exercise modalities on the change in CRF in individuals with SCI.  654 

 655 
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This review revealed there were no significant subgroup differences between exercise modalities in 656 

AV̇O2peak or RV̇O2peak, indicating that improvements can be gained from any form of exercise 657 

intervention. The change in RV̇O2peak in the current review (21%) is equivalent to the average 21% 658 

improvement reported in a recent systematic review on the effects of ACE in chronic SCI [107]. Whilst 659 

the current review did not exclusively investigate ACE, it is evident that aerobic, volitional upper-body 660 

exercise training can improve CRF in individuals with SCI. Activating larger amounts of skeletal muscle 661 

mass via FES exercise interventions also appears to improve V̇O2peak, yet it is noteworthy that more 662 

accessible and less expensive training modalities such as aerobic and resistance training may yield similar 663 

or even greater increases in V̇O2peak, despite utilising less muscle mass. Additionally, V̇O2peak improves 664 

following multimodal/hybrid exercise interventions, which challenges a 2015 review reporting 665 

inconclusive findings on the effects of combined upper-body aerobic and muscle strength training on 666 

CRF [108]. Yet, as the current review included a wide range of interventions not restricted to the upper-667 

body (e.g., aquatic treadmill [54], hybrid cycling [55,60,109], multimodal exercises [110,111], etc.), it is 668 

recommended that more research is conducted to delineate whether the improvements in V̇O2peak with 669 

multimodal/hybrid exercise interventions are due to the combination of upper- and lower-body exercise 670 

modalities, or due to concurrent training modalities that predominantly use the upper-body (e.g., aerobic 671 

plus muscle strength training). Finally, both gait training and behaviour change interventions appear less 672 

effective at improving V̇O2peak and PPO.  673 

 674 

Aerobic, upper-body exercise and resistance training modalities demonstrate the greatest improvements 675 

in PPO, by 15W and 20W, respectively. It is perhaps unsurprising that resistance training resulted in the 676 

largest change in PPO given that these interventions included upper-body exercises prescribed to increase 677 

muscular strength, as shown by Jacobs et al. [112]. Ultimately, improvements in PPO have important 678 

ramifications for individuals with SCI that are dependent on performing explosive upper-body 679 

movements during transfers or wheelchair propulsion [88,92], and may lead to increased quality of life 680 

with more functional independence [113]. 681 

 682 

Several studies directly compared the effects of specific exercise modalities on the change in CRF 683 

[54,76,114]. Notably, Gorman et al. [54] demonstrated that there were no transfer effects from a robotic 684 

treadmill exercise intervention to ACE performance in a CPET. This review also demonstrates that 685 
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greater changes in RV̇O2peak are likely achieved when the CPET modality is matched to the intervention 686 

(S12). Therefore, researchers should endeavour to match the CPET modality to their exercise 687 

intervention, or at the very least be careful when interpreting changes in CRF when using different 688 

modalities. 689 

 690 

4.2.2. Exercise intensity 691 

The current SCI-specific exercise guidelines recommend that exercise should be performed at a 692 

moderate-to-vigorous intensity [24]. A recent overview of systematic reviews also advocated the use of 693 

moderate-to-vigorous intensity for improving aerobic fitness [115]. The current meta-analysis 694 

demonstrates robust improvements across all CRF outcomes for interventions prescribing exercise at this 695 

particular intensity. Furthermore, the secondary meta-analysis including cross-sectional studies reveals 696 

significant associations of a greater magnitude between MVPA and CRF, as compared to lower-intensity 697 

activity. Despite this, our classification of moderate-to-vigorous exercise intensity spans two of the 698 

ACSM exercise intensity thresholds (S2). There may be considerable variation in the actual intensity 699 

performed by participants given the noticeable range across thresholds (e.g., 46-90% V̇O2peak, 64-95% 700 

HRpeak, 12-17 RPE etc.). Therefore, individuals with SCI and exercise practitioners should be cautious 701 

when prescribing such a broad exercise intensity. 702 

 703 

The secondary meta-analysis comparing RCT exercise intensities reveals similar changes in CRF 704 

outcomes between moderate- and vigorous-intensity interventions. This is in agreement with a previous 705 

review [33] and supports the viewpoint from a special communication on high-intensity interval training 706 

(HIIT) [34], which suggested that vigorous-intensity exercise is more time efficient and may result in 707 

similar if not superior CRF and skeletal muscle oxidative capacity improvements in comparison to 708 

moderate-intensity exercise. Interestingly, in a response to a Letter-to-the-Editor [30], the SCI-specific 709 

exercise guideline developers acknowledge the need for shorter, effective protocols to be documented in 710 

the literature [116]. In the current review, a number of HIIT-based studies result in an improved CRF 711 

[60,109,117–121]. Furthermore, recent evidence has suggested that HIIT may be more enjoyable than 712 

moderate-intensity exercise for individuals with SCI [122]. Therefore, this form of training may offer a 713 

more time efficient and readily available alternative to moderate-intensity protocols. However, in 714 
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echoing the thoughts of Astorino et al. [35], research must first corroborate its safety and feasibility in 715 

the SCI population before it can be recommended as an exercise strategy to improve CRF. 716 

 717 

4.2.3. Exercise intensity prescription methods 718 

This review reveals that V̇O2peak improves regardless of the method used to prescribe exercise intensity. 719 

With regards to PPO, the subgroup difference indicates that the magnitude of change is greater when 720 

prescribing intensity via indices of HR (i.e., %HRpeak, %HRmax, %HRR) or V̇O2 (i.e., %V̇O2peak, 721 

%V̇O2reserve), compared to RPE and workload. Previous research has revealed that RPE results in inter-722 

individual responses to exercise, with the potential for two individuals to perform the same bout of 723 

exercise above or below lactate threshold despite being prescribed the same intensity, which prevents the 724 

development of SCI-specific RPE recommendations [123]. The difference in PPO may also be due to 725 

individuals with SCI being unaccustomed to subjective measures of exertion. Accordingly, recent 726 

systematic reviews have called for better reporting of the standardisation and familiarisation procedures 727 

used for RPE [124] and have only tentatively recommended its use before the evidence base is expanded 728 

[125]. Therefore, it seems plausible to suggest that the blunted improvements in PPO with intensity 729 

prescribed via RPE, as compared to other prescription methods, may have resulted from insufficient 730 

familiarisation before an exercise intervention.  731 

 732 

Although HR and V̇O2 have long been used to prescribe exercise intensity, these approaches can result 733 

in large training ranges and ignore individual metabolic responses. Particularly, issues may arise with 734 

using HR for individuals with a neurological level of injury ≥T6, given that these individuals typically 735 

exhibit a lower HRpeak [126]. The use of fixed percentages (i.e, %HRpeak, %V̇O2peak) in the non-injured 736 

population has been questioned [127] and has recently been investigated in individuals with SCI, 737 

whereby Hutchinson et al. [45] showed that fixed %HRpeak and %V̇O2peak could not guarantee a 738 

homogenous domain-specific exercise intensity prescription. Notably, individuals were spread across 739 

moderate, heavy and severe domains at the “moderate” and “vigorous” intensity classifications; thereby 740 

questioning whether the “moderate-to-vigorous” terminology used in the SCI-specific exercise 741 

guidelines is suitable for adults with SCI.  742 

 743 
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Given that prescribing exercise intensity via HR and V̇O2 can typically be resource and cost-intensive, 744 

there is some scope for using RPE as a cheaper and more practical method for community-based exercise 745 

prescription. However, this may not be as effective as other objective methods. Future research should 746 

aim to identify the optimal methods of exercise intensity prescription, as well as consider revisiting the 747 

current “moderate-to-vigorous intensity” recommendations. 748 

 749 

4.2.4. Frequency and exercise volume 750 

Subgroup analyses based on frequency of sessions and exercise volume reveal no differences in V̇O2peak, 751 

thereby supporting the minimal volume of exercise required to attain CRF benefits in individuals with 752 

SCI. Furthermore, although there are no subgroup differences in PPO, the meta-regression identifies that 753 

a greater volume of exercise is associated with greater changes in PPO. Indeed, there is a greater 754 

magnitude of change observed for individuals exercising 90-149 min/wk in comparison to 40-89 min/wk 755 

(12W vs 6W change, respectively). A greater weekly exercise volume may therefore accrue greater 756 

changes in PPO and, as already described, may be important in improving the capacity to perform daily 757 

tasks such as bed or wheelchair transfers [88,92]. 758 

 759 

Although changes in CRF are similar between each exercise volume subgroup, and thus exercise 760 

guideline, the secondary meta-analysis on cross-sectional cohorts indicates a significant cumulative 761 

impact of prolonged participation in physical activity and exercise. To support this point, a sensitivity 762 

analysis revealed a larger difference in RV̇O2peak between inactive individuals and elite athletes, 763 

compared to between inactive and active individuals, suggesting that those who exercise more exhibit a 764 

greater CRF. Indeed, a cross-sectional association study [87], using a wearable device to objectively 765 

monitor habitual physical activity, reported a significantly higher CRF in those performing the general 766 

population exercise guidelines (≥150 min/wk) compared to the SCI-specific fitness guidelines (40-89 767 

min/wk). In fact, a recent study by Hoevenaars et al. [128] explored whether meeting the guidelines 768 

proposed by Tweedy et al. [27] (“≥150 min/wk of moderate or ≥60 min/wk of vigorous exercise”), which 769 

are nearly consistent with the general population exercise guidelines, is associated with greater health 770 

and fitness benefits than the current SCI-specific guidelines by Martin-Ginis et al. [24]. Individuals 771 

meeting the Tweedy guidelines had a significantly greater AV̇O2peak and PPO than those meeting the 772 

guidelines developed by Martin-Ginis et al. [24]. Looking forward, longitudinal RCTs with multiple 773 
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intervention arms would be the best way to explore dose-response changes with regards to differing 774 

volumes of exercise, as has been done in the non-injured population [129–132]. 775 

 776 

4.3. Adverse events 777 

Adverse events were reported for 4.1% of the total included participants, with the majority of events 778 

related to skin sores, pressure sores or ulcers. Qualitatively, there was no particular exercise modality 779 

that suggested an increased risk for an adverse event, but higher-intensity exercise appeared to reveal 780 

more adverse events, albeit being swayed by one study in particular [111]. Reporting was poor in a 781 

number of studies with reviewers at times unable to determine the exact number of events per participant. 782 

Furthermore, there is generally a lack of follow-up assessments following exercise interventions, so it is 783 

currently unknown whether there are any detrimental long-term effects of exercise in SCI. 784 

 785 

4.4. Strengths and limitations of the review and future directions 786 

4.4.1. Limitations of the included studies 787 

Poor reporting of injury characteristics and exercise parameters prevented a perfect comparison of 788 

exercise interventions. Overall, studies could have provided more precise descriptions of training 789 

parameters to aid with any future refinements to the SCI-specific exercise guidelines. Reporting of 790 

adherence to interventions was also poor and should be encouraged to provide an indication of the 791 

feasibility or applicability of specific exercise interventions for individuals with SCI. Moreover, adverse 792 

events should be transparently reported, even if none occur so that practitioners are able to identify forms 793 

of exercise that are most likely to be safe for this population. Additionally, studies typically failed to 794 

utilise the training principle of progression, which during prolonged exercise interventions is essential 795 

for preventing a plateau in training adaptations and perhaps particularly important in this population for 796 

supporting the transition from an inactive lifestyle to higher levels of activity, and ultimately achieving 797 

greater CRF benefits [27]. On the whole, the reporting of V̇O2peak attainment criteria was poor, with only 798 

16% of the included exercise interventions using at least three criterion methods for identifying when an 799 

individual had reached peak capacity. Thus, the magnitude of change in these studies could be inflated 800 

or underestimated. Furthermore, to the best of our knowledge, only 30% of interventions had a 801 

prospectively registered clinical trial entry and only 6.4% had a protocol manuscript published. To 802 
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sustain the integrity and transparency of reporting in this field, researchers are encouraged to 803 

prospectively register any planned clinical trials using publicly available repositories. 804 

 805 

The risk of bias assessments on pre-post studies revealed that no study conducted multiple baseline or 806 

follow-up assessments. Whilst often time-consuming and impractical with larger sample sizes, multiple 807 

assessments ensure reproducibility by accounting for any technical or biological variation, as shown 808 

previously in non-injured individuals at risk for type-2 diabetes [133]. In the SCI population, individuals 809 

are typically deconditioned and often exhibit variable responses to a CPET. This variance may be 810 

explained by profound blood pressure instability [134], including unintentional ‘boosting’ via episodes 811 

of autonomic dysreflexia [135]. Researchers should therefore consider performing multiple CPETs at 812 

baseline and follow-up to attain reliable assessments of CRF.  813 

 814 

There are also several limitations with regards to the studies included in the secondary meta-analyses for 815 

this review. First, there is only one cross-sectional study using a wearable device to investigate the 816 

association between physical activity and CRF [87]. Whilst self-report questionnaires are valid tools for 817 

estimating levels of physical activity [86,136–138], there are important drawbacks including the 818 

difficulty of accurately capturing intensity, lack of questionnaires measuring activities of daily living, 819 

and recall bias. Secondly, there is a lack of RCTs comparing near-maximal, maximal or supramaximal 820 

exercise intensities to moderate-intensity exercise. The only supramaximal intervention included in this 821 

review demonstrated a 17W improvement in PPO [120]. The inclusion of more RCTs comparing 822 

vigorous-intensity to lower intensity exercise could identify whether there are, in fact, benefits to 823 

performing shorter but more vigorous-intensity exercise bouts, in comparison to longer continuous forms 824 

of exercise.  825 

 826 

4.4.2. Strengths and limitations of the review 827 

A major strength of the current study is that we pre-planned and prospectively registered (PROSPERO 828 

ID CRD42018104342) our systematic review. We used GRADE to assess the certainty in the body of 829 

evidence and used quality appraisal tools for the specific study designs included in this review. Our 830 

GRADE assessment demonstrates generalisability within the SCI population, through the inclusion of 831 

participants across the lifespan and with a wide range of injury characteristics. Yet, the ‘Low’ confidence 832 
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in the evidence across all CRF outcomes emphasises the need for more rigorous exercise interventions 833 

to address current gaps in the literature [38].  834 

 835 

As there were not enough RCTs to perform a meta-regression on this study design specifically, we pooled 836 

pre-post and RCT exercise interventions. The changes in RV̇O2peak and PPO in the primary meta-analysis 837 

(2.8 mL/kg/min and 11W, respectively) are somewhat similar to those reported with RCT interventions 838 

relative to controls (2.9 mL/kg/min and 10W, respectively), and thus confirms the robustness of our 839 

overall findings. Furthermore, our rigorous approach of adjusting for multiple comparisons minimises 840 

any erroneous interpretations of subgroup differences and therefore strengthens our conclusions on the 841 

available evidence. 842 

 843 

Despite this, the categorisation of interventions within each subgroup could be considered a limitation of 844 

the current review. Whilst this was done to directly compare the effects of different subgroups (i.e., acute 845 

vs chronic, tetraplegia vs paraplegia, aerobic vs resistance vs FES etc.), it resulted in an unequal number 846 

of interventions within each classification and likely underpowered the subgroup comparisons. For 847 

example, the subgroup analysis based on exercise intensity reveals an effect of exercise intensity on PPO, 848 

yet this may be influenced by the small number of interventions for light- and supramaximal-intensity. 849 

Despite reporting some significant subgroup differences across dichotomised studies, these variables 850 

were not identified as significant moderator variables in the random-effects meta-regression, meaning 851 

these findings should be viewed with caution. It is perhaps more of a limitation of the evidence-base per 852 

se, rather than our meta-analysis, in that more studies should be conducted to increase the power of these 853 

subgroups and to ascertain whether there would be any significant improvements with a greater study 854 

sample size. 855 

 856 

Another limitation is that despite our comprehensive search strategy we may have missed relevant studies 857 

as we did not search the grey literature and abstracts were not included. Finally, this review excluded 858 

studies that were not published in English, introducing a source of language bias. However, of the full 859 

texts screened for eligibility only 0.6% were excluded for being unavailable in English and is therefore 860 

highly unlikely to have influenced the overall findings.  861 

 862 
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4.4.3. Implications and future directions 863 

Our results support the current guidelines regarding the minimal weekly volume of exercise necessary to 864 

improve CRF in the SCI population. However, our pooled analysis indicates subgroup differences for 865 

PPO based on certain exercise intervention parameters. To the best of our knowledge, there are no large 866 

scale epidemiological studies investigating the dose-response relationship between physical activity and 867 

CRF in this population using sensitive and validated methods to quantify the exposure variable (e.g. free-868 

living physical activity). Such studies have been performed in non-injured individuals [139,140]. To 869 

identify the optimal stimulus for beneficial CRF responses in this population, dose-ranging studies, akin 870 

to those that are used in the pharmaceutical industry, should be conducted. A recent overview of 871 

systematic reviews [141] highlighted the poor reporting in exercise interventions in health and disease 872 

and called upon the inclusion of checklists [e.g., the Consensus on Exercise Reporting Template (CERT) 873 

[142] or the Template for Intervention Description and Replication (TIDieR) [143]] to improve study 874 

quality. This would ultimately lead to a better understanding of the ‘dose’ of exercise as medicine 875 

required to optimise CRF outcomes in this population. 876 

 877 

Exercise interventions >2 weeks result in an overall pooled increase in RV̇O2peak of 2.8 mL/kg/min, which 878 

is roughly equivalent to 1 MET-SCI [metabolic equivalent in SCI (2.7 mL/kg/min)] [43]. An increase in 879 

maximal aerobic capacity (an estimate of CRF) by 1 MET (3.5 mL/kg/min) in non-injured individuals is 880 

associated with a 13% and 15% reduction in all-cause and cardiovascular mortality, respectively [144]. 881 

The current review shows that individuals meeting the SCI-specific guidelines for cardiometabolic health 882 

[24] can improve RV̇O2peak to a similar magnitude to the overall pooled effect (~1 MET-SCI), 883 

highlighting that these guidelines may offer a reduction in CVD risk, and therefore mortality. 884 

Nonetheless, an association between an improvement in CRF and a reduction in mortality is yet to be 885 

established specifically in the SCI population, and remains an important avenue of research for the future. 886 

 887 

5. CONCLUSION 888 

This systematic review with meta-analysis provides an updated, evidence-based summary of the effects 889 

of exercise interventions on CRF in individuals with SCI. It reveals that exercise interventions >2 weeks 890 

are associated with significant improvements to CRF, and in particular, a clinically meaningful change 891 

in RV̇O2peak. Subgroup comparisons identified that upper-body aerobic exercise and resistance training 892 
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appear the most effective at improving PPO. Furthermore, acutely-injured, paraplegic individuals, 893 

exercising at a moderate-to-vigorous intensity, prescribed via V̇O2 or HR, for more than 3 sessions/week 894 

will likely experience the greatest change in PPO. Importantly, there is an ever-growing need for studies 895 

to establish a dose-response relationship between exercise and CRF in the SCI population to determine 896 

the most optimal form of exercise prescription to reduce the wide-ranging consequences typically 897 

associated with SCI. 898 

 899 
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Not applicable. 951 
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8. LIST OF ABBREVIATIONS 979 

1RM One repetition maximum 

ACE Arm-crank ergometry 

ACSM American College of Sports Medicine 

AIS American Spinal Injury Association Impairment Scale 

AV̇O2peak Absolute peak oxygen uptake 

CENTRAL Cochrane Central Register of Controlled Trials 

CERT Consensus on Exercise Reporting Template 

CI Confidence interval 

CPET Cardiopulmonary exercise test 

CRF Cardiorespiratory fitness 

CVD Cardiovascular disease 

EMBASE Excerpta Medica Database 

FES Functional electrical stimulation 

GRADE Grading of Recommendations, Assessment, Development and Evaluation 

HIIT High-intensity interval training 

HR Heart rate 

HRmax Maximum heart rate (age-predicted) 

HRpeak Peak heart rate 

HRR Heart rate reserve 

IQR Interquartile range 

ISNCSCI International Standards for Neurological Classification of Spinal Cord Injury 

LTPA Leisure time physical activity  

MET Metabolic equivalent 

MTP Maximal tolerated power 

MVPA Moderate-to-vigorous physical activity 

PPO Peak power output 

PRISMA Preferred Reporting Items for Systematic Reviews 
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RCT Randomised-controlled trial 

RoB 2 The Cochrane Risk of Bias 2 tool 

RPE Rating of perceived exertion 

RV̇O2peak Relative peak oxygen uptake 

SCI Spinal cord injury 

SCS Spinal cord stimulation 

SD Standard deviation 

TIDieR Template for Intervention Description and Replication 

TSI Time since injury 

V̇O2 Oxygen uptake 

V̇O2peak Peak oxygen uptake 

V̇O2reserve Reserve oxygen uptake 

W Watts 

WMD Weighted mean difference 
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Table 1. Participant demographics and injury characteristics reported within the included studies of the primary 

meta-analysis. 

 AV̇O2peak  
(L/min) 

RV̇O2peak 
(mL/kg/min) 

PPO  
(W) 

Baseline CRF 
Total number of interventions [sum 

of participants] 

Mean (range) 

69 [766] 

1.26 (0.51 – 3.50) 

74 [768] 

18.0 (7.3 – 36.9) 

61 [662] 

49 (0 – 168) 

Participant demographics  
Age (years) 38 (24 - 54) 39 (24 - 58) 39 (25 - 57) 

Sex 
Male 22 [181] 21 [150] 20 [157] 

Female - - - 

Mixed (% F) 43 [559] (22%) 44 [535] (24%) 39 [492] (28%) 

Not reported/cannot determine 4 [26] 9 [83] 2 [13] 

Injury characteristics  
Time since injury (years) 8 (0 - 21) 6 (0 - 24) 7 (0 - 21) 

Acute (<1-year) 7 [111] 8 [95] 9 [117] 

Chronic (>1-year) 47 [472] 48 [443] 38 [367] 

Mixed (% acute) 7 [89] (13.5%) 6 [64] (17%) 7 [84] (24%) 

Not reported/cannot determine 8 [94] 12 [166] 7 [94] 

Neurological level of injury (TETRA/PARA) 

TETRA 2 [18] 3 [23] 3 [23] 

PARA 19 [176] 27 [264] 22 [220] 

Mixed (% PARA) 41 [488] (59%) 36 [398] (51%) 32 [382] (62%) 

Not reported/cannot determine 7 [84] 8 [83] 4 [37] 

Severity    

Motor-complete (AIS A-B) 27 [248] 29 [253] 24 [219] 

Motor-incomplete (AIS C-D) 8 [102] 13 [142] 2 [14] 

Mixed (% motor-incomplete) 22 [303] (32%) 21 [270] (34%) 25 [344] (35%) 

Not reported/cannot determine 12 [113] 11 [103] 10 [85] 

Total number of studies (N) and participants (Σ), along with descriptive characteristics for the primary meta-analysis 

included in this systematic review that describes Δ in CRF outcomes in response to prospective, well-characterised 
exercise interventions lasting >2 weeks (e.g., combining exercise intervention-arms from RCTs and pre-post studies). 

Continuous variables are displayed as weighted means (range: lowest – highest mean values reported from studies). 

Categorical variables are displayed as n (%). Weighted means were calculated to account for differences in sample 
size between studies using the following formula: Σn*x̅ /Σn, where Σ = the sum of, n = number of participants in 

each study, and x̅ = mean CRF outcome of each study. AIS, American Spinal Injury Association Impairment Scale; 

F, females; M, males; NR, not reported; PARA, paraplegia; PPO, peak power output; TETRA, tetraplegia; V̇O2peak, 
peak oxygen consumption; W, watts. 
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Table 2. Exercise intervention parameters reported within the included studies of the primary meta-analysis. 

 AV̇O2peak  
(L/min) 

RV̇O2peak 
(mL/kg/min) 

PPO  
(W) 

Baseline CRF 
Total number of interventions [sum 

of participants] 

Mean (range) 

69 [766] 

1.26 (0.51 – 3.50) 

74 [768] 

18.0 (7.3 – 36.9) 

61 [662] 

49 (0 – 168) 

Exercise intervention parameters  
Modality 

Upper-body aerobic exercise 25 [272] 33 [299] 26 [259] 

Upper-body resistance 
training/circuits 

4 [33] 3 [29] 3 [25] 

Functional electrical stimulation 17 [170] 8 [66] 14 [140] 

Gait/locomotor training 10 [130] 10 [126] 2 [28] 

Mixed/multimodal  10 [94] 18 [227] 12 [136] 

Behaviour change 3 [67] 2 [21] 4 [74] 

Relative intensity  
Light 1 [14] - 1 [14] 

Moderate 8 [58] 12 [94] 10 [73] 

Moderate-to-vigorous 21 [270] 24 [305] 16 [183] 

Vigorous 14 [119] 20 [194] 11 [104] 

Supramaximal  - 1 [4] 1 [10] 

Mixed/cannot determine 25 [305] 17 [171] 22 [278] 

Relative intensity prescription method 
   VO2 (%peak, %reserve) 8 [61] 12 [112] 9 [93] 

Heart rate (%HRR, %HRpeak,     _-
%HRmax) 

16 [156] 26 [285] 14 [113] 

RPE 9 [144] 8 [111] 6 [90] 

Workload (%PPO, %MTP, __  _ 
-_%1RM) 

9 [71] 6 [49] 7 [53] 

Mixed/cannot determine 27 [334] 22 [211] 25 [313] 

Session duration (min) 41 (20 - 90) 41 (15 - 90) 39 (5 - 90) 

Frequency (sessions/week) 3 (2 - 7) 3 (2 - 7) 3 (2 - 7) 

   < 3 19 [230] 13 [168] 13 [156] 

   ≥ 3 and < 5 35 [339] 49 [500] 38 [387] 

   ≥ 5 11 [116] 9 [65] 5 [31] 

   Not reported 4 [81] 3 [35] 5 [88] 

Volume (min/week) 113 (40 - 450) 116 (40 - 330) 107 (15 - 330) 

SCI-specific exercise guidelines 
[fitness (40 – 89 min/wk)] 

13 [140] 
45 (40 - 84) 

14 [156] 
47 (40 - 88) 

15 [146] 
48 (15 - 88) 

SCI-specific exercise guidelines 

[cardiometabolic (90 – 149 
min/wk)] 

30 [309] 

99 (90 - 135) 

31 [336] 

102 (90 - 135) 

26 [290] 

113 (90 - 135) 

Achieving general population 

exercise guidelines (≥150 min/wk) 

13 [135] 

229 (150 - 450) 

21 [197] 

206 (150 - 330) 

13 [117] 

212 (171 - 330) 

Cannot classify  13 [182] 8 [79] 7 [109] 

Length (weeks) 17 (6 - 52) 12 (4 - 52) 16 (4 - 52) 

≤ 6 weeks 10 [85] 23 [215] 18 [175] 

> 6 and ≤ 12 weeks 33 [368] 36 [371] 21 [223] 

> 12 weeks 26 [313] 15 [182] 22 [264] 

Adverse events reported  
   Bone, joint or muscular pain 5 [5] a  6 [9] a 4 [4] a 
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   Autonomic or cardiovascular  
...function 

3 [5] 2 [1] 4 [3] 

   Skin irritation or pressure sores 2 [2] a 5 [18] a 2 [2] a 

   Other d 2 [NR] a,c 4 [3] a 3 [1] a,c 

Total number of studies (N) and participants, (Σ) along with descriptive characteristics for the primary meta-analysis 

included in this systematic review that describes Δ in CRF outcomes in response to prospective, well-characterised 
exercise interventions lasting >2 weeks (e.g., combining exercise intervention-arms from RCTs and pre-post studies). 

Continuous variables are displayed as weighted means (range: lowest – highest mean values reported from studies). 

Categorical variables are displayed as n (%). Weighted means were calculated to account for differences in sample 
size between studies using the following formula: Σn*x̅ /Σn, where Σ = the sum of, n = number of participants in 

each study, and x̅ = mean CRF outcome of each study. F, females; HR max, maximal heart rate; HR peak, peak heart 

rate; HRR, heart rate reserve; 1RM, one repetition maximum; M, males; MTP, maximal tolerated power; NR, not 
reported; PPO, peak power output; V̇O2 peak, peak oxygen consumption; W, watts. a Beillot et al. [68] (pre-post 

intervention study) reported n=10 suffered major complications including spontaneous fractures of lower limbs, 

occurrence of syringomyelia and pressure sores but did not specify the sum of participants for each adverse event. b 

Gibbons et al. [81] reported that some individuals experienced autonomic dysreflexia during the FES response test 
but did not quantify further. c Sum of participants experiencing adverse events were not reported by Janssen and 

Pringle [61]. d Other adverse events included: anxiety, nausea, dizziness and issues with testing equipment. 
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Table 3. Summary statistics of the three subgroup analyses on injury characteristics describing Δ in CRF 
outcomes. 

 

 

 

AV̇O2peak  
(L/min) 

RV̇O2peak  
(mL/kg/min) 

PPO  
(W) 

N [Σ] 
(%) 

WMD (95% 
CIs) 

p-values 

N [Σ] 
(%) 

WMD (95% 
CIs) 

p-values 

N [Σ] 
(%) 

WMD (95% 
CIs) 

p-values 
Main effect  69 [696] 0.22 [0.17, 0.26] 

p < 0.001 
74 [716] 2.8 [2.2, 3.4] 

p < 0.001 
61 [602] 11 [8, 13] 

p < 0.001 
Heterogeneity (I2) 74% (p < 0.001) 52% (p < 0.001) 78% (p < 0.001) 

Time since injury  
Acute (<1-year) 7 [86] 

(10.4%) 

0.23 [0.11, 0.35] 

p < 0.001 
8 [70] 

(10.9%) 

3.4 [1.5, 6.1] 

p = 0.002 
9 [95] 

(13.6%) 

16 [11, 22] 

p < 0.001 
Chronic (≥1-year) 47 [461] 

(62.6%) 
0.20 [0.14, 0.27) 

p < 0.001 
48 [431] 
(61.8%) 

2.7 [1.9, 3.5] 
p < 0.003 

38 [343] 
(61.8%) 

9 [6, 12] 
p < 0.001 

Mixed 7 [79] 

(14%) 

0.25 [0.10, 0.39] 

p < 0.001 
6 [54] 

(5.9%) 

1.9 [0.1, 3.7] 

p = 0.03 
7 [75] 

(12.8%) 

6 [5, 7] 

p < 0.001 
Not reported/cannot 
determine 

8 [70] 
(13%) 

0.25 [0.11, 0.38] 
p < 0.001 

12 [161] 
(21.4%) 

2.6 [2.0, 3.3] 
p < 0.003 

7 [89] 
(11.8%) 

16 [9, 23] 
p < 0.001 

Subgroup 

differences 

- p = 0.87 - p = 0.64 - p < 0.001 

Neurological level of injury 
Tetraplegia 2 [18] 

(5.1%) 

0.45 [-0.28, 

1.19] 

p = 0.23 

3 [23] 

(8.5%) 

5.9 [0.2, 11.7] 

p = 0.04 
3 [23] 

(6.8%) 

9 [6, 13] 

p < 0.002 

Paraplegia 20 [174] 
(28.4%) 

0.24 [0.17, 0.32] 
p < 0.002 

28 [262] 
(45.2%) 

2.8 [2.2, 3.4] 
p < 0.003 

22 [216] 
(42.2%) 

16 [12, 19] 
p < 0.002 

Mixed 44 [470] 

(58.9%) 

0.20 [0.15, 0.25] 

p < 0.002 
41 [418] 

(42.5%) 

2.2 [1.5, 2.8] 

p < 0.003 
34 [350] 

(48.6%) 

6 [4, 8] 

p < 0.002 
Not reported/cannot 
determine 

3 [34] 
(7.6%) 

0.19 [0.11, 0.27] 
p < 0.002 

2 [13] 
(3.8%) 

2.8 [0.7, 4.8] 
p = 0.02 

2 [13] 
(2.4%) 

17 [7, 27] 
p = 0.001 

Subgroup 

differences 

- p = 0.65 - p = 0.34 -  p < 0.001 

Injury severity 
Motor-complete  

(AIS A-B) 

27 [235] 

(40%) 

0.21 [0.14, 0.27] 

p < 0.002 
29 [241] 

(47.4%) 

2.7 [2.0, 3.4] 

p < 0.002 
24 [210] 

(49.2%) 

11 [8, 15] 

p < 0.002 
Motor-incomplete 

(AIS C-D) 

8 [103] 

(9%) 

0.10 [-0.01, 

0.21] 
p = 0.08 

13 [139] 

(12.5%) 

1.6 [0.2, 2.9] 

p = 0.02 
2 [14] 

(3.1%) 

4 [-3, 12] 

p = 0.25 

Mixed (AIS A-D) 22 [247] 

(26.2%) 

0.18 [0.13, 0.24] 

p < 0.002 
21 [244] 

(23.3%) 

2.7 [1.7, 3.6] 

p < 0.002 
25 [296] 

(31.1%) 

10 [6, 14] 

p < 0.002 
Not reported/cannot 
determine 

12 [111] 
(24.8%) 

0.32 [0.20, 0.44] 
p < 0.002 

11 [92] 
(16.8%) 

3.9 [1.7, 6.1] 
p < 0.002 

10 [82] 
(16.6%) 

11 [5, 17] 
p < 0.002 

Subgroup 

differences 

- p = 0.06 - p = 0.28 - p = 0.43 

Total number of interventions (N), sum of participants analysed at post-intervention (Σ), weighting of subgroups 

(%). Thresholds for statistically significant subgroup differences were adjusted for the number of subgroup 

comparisons and are highlighted in bold: time since injury (p<0.0125), neurological level of injury (p<0.0125) and 

injury severity (p<0.0125). Individual subgroup p-values were adjusted for multiple comparisons via the Bonferroni 
correction method. AIS, Americal Spinal Injury Association Impairment Scale; AV̇O2peak, absolute peak oxygen 

consumption; CIs, confidence intervals; PPO, peak power output; RV̇O2peak, relative peak oxygen consumption; 

WMD, weighted mean difference. 
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 1498 
Table 4. Summary statistics of the six subgroup analyses on exercise parameters describing Δ in CRF outcomes. 

 

 

 

AV̇O2peak  
(L/min) 

RV̇O2peak  
(mL/kg/min) 

PPO  
(W) 

N [Σ] 
(%) 

WMD (95% CIs) 
p-values 

N [Σ] 
(%) 

WMD (95% 
CIs) 

p-values 

N [Σ] 
(%) 

WMD (95% 
CIs) 

p-values 
Main effect  69 [696] 0.22 [0.17, 0.26] 

p < 0.001 

74 [716] 2.8 [2.2, 3.4] 

p < 0.001 

61 [602] 11 [8, 13] 

p < 0.001 
Heterogeneity (I2) 74% (p < 0.001) 52% (p < 0.001) 78% (p < 0.001) 

Exercise modality 
Aerobic, volitional 

upper-body 

25 [235] 

(33.5%) 

0.25 [0.16, 0.34] 

p < 0.004 
33 [264] 

(43.1%) 

3.4 [2.4, 4.4] 

p < 0.004 
26 [223] 

(32.5%) 

15 [11, 19] 

p < 0.003 
Resistance training 4 [31] 

(3.5%) 

0.33 [0.13, 0.52] 

p = 0.003 
3 [27] 

(3.9%) 

5.0 [2.9, 7.0] 

p < 0.004 
3 [25] 

(4.6%) 

20 [12, 28] 

p < 0.003 
Functional electrical 

stimulation 

17 [168] 

(33.9%) 

0.22 [0.15, 0.29] 

p < 0.004 
8 [66] 

(14.4%) 

2.4 [0.9, 3.9] 

p = 0.006 
14 [138] 

(37.1%) 

6 [3, 10] 

p < 0.003 
Gait training 10 [127] 

(12%) 

0.07 [-0.02, 0.17] 

p = 0.14 

10 [120] 

(9.7%) 

1.0 [-0.5, 2.6] 

p = 0.40 

2 [24] 

(2.2%) 

4 [-9, 18] 

p = 0.54 

Behaviour change 3 [49] 

(2.5%) 

0.22 [0.00, 0.44] 

p = 0.10 

2 [21] 

(3.3%) 

1.1 [-1.2, 3.5] 

p = 0.35 

4 [56] 

(4.6%) 

12 [-1, 24] 

p = 0.12 

Mixed 10 [86] 

(14.6%) 

0.21 [0.14, 0.27] 

p < 0.004 
18 [218] 

(25.6%) 

2.4 [1.7, 3.2] 

p < 0.004 
12 [136] 

(19%) 

10 [5, 16] 

p < 0.003 
Subgroup 

differences 

- p = 0.07 - p = 0.02 - p = 0.003 

Length of intervention  
≤6 weeks 10 [79] 

(14.5%) 

0.26 [0.19, 0.39] 

p < 0.001 
23 [206] 

(23.1%) 

2.9 [1.9, 3.9] 

p < 0.001 
17 [159] 

(26.7%) 

10 [6, 14] 

p < 0.001 
>6 – ≤12 weeks 32 [327] 

(46.6%) 
0.21 [0.14, 0.29] 

p < 0.001 
36 [337] 
(54.6%) 

3.2 [2.3, 4.1] 
p < 0.001 

22 [202] 
(34.5%) 

13 [8, 17] 
p < 0.001 

>12 weeks 27 [290] 

(38.9%) 

0.22 [0.15, 0.28] 

p < 0.001 
15 [173] 

(22.3%) 

1.8 [1.0, 2.6] 

p < 0.001 
22 [241] 

(38.8%) 

9 [5, 13] 

p < 0.001 
Subgroup 
differences 

- p = 0.59 - p = 0.05 - p = 0.49 

Relative exercise intensity 
Light 1 [10] 

(0.6%) 

-0.05 [-0.57, 0.47] 

p = 0.85 

- - 1 [10] 

(1%) 

-1 [-22, 20] 

p = 0.92 

Moderate 8 [58] 

(9.5%) 

0.32 [0.09, 0.54] 

p = 0.01 
12 [92] 

(18.1%) 

3.2 [1.1, 5.3] 

p = 0.006 
10 [71] 

(15.9%) 

13 [4, 21] 

p = 0.009 
Moderate-to- 

vigorous 

21 [247] 

(33.7%) 

0.21 [0.14, 0.27] 

p < 0.003 
24 [279] 

(32.5%) 

2.7 [2.0, 3.5] 

p < 0.003 
16 [161] 

(24.1%) 

17 [13, 21] 

p < 0.004 
Vigorous 14 [109] 

(15.2%) 

0.19 [0.14, 0.25] 

p < 0.003 
20 [183] 

(21.6%) 

2.2 [1.4, 3.0] 

p < 0.003 
11 [96] 

(12%) 

10 [7, 16] 

p < 0.004 
Supramaximal - - 1 [4] 

(0.4%) 

1.1 [-8.2, 10.4] 

p = 0.82 

1 [10] 

(0.6%) 

17 [-12, 46] 

p = 0.50 

Mixed/cannot 

determine 

25 [272] 

(41%) 

0.21 [0.14, 0.29] 

p < 0.003 
17 [158] 

(27.4%) 

2.6 [1.5, 3.8] 

p < 0.003 
22 [254] 

(46.4%) 

8 [5, 10] 

p < 0.004 
Subgroup 
differences 

- p = 0.71 - p = 0.67 - p = 0.003 
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Exercise intensity prescription 
Oxygen 
consumption 

8 [57] 
(13.1%) 

0.19 [0.07, 0.32] 
p = 0.003 

12 [107] 
(17.9%) 

2.3 [1.5, 3.2] 
p < 0.003 

9 [89] 
(12.6%) 

20 [15, 25] 
p < 0.003 

Heart rate 16 [156] 

(20.2%) 

0.28 [0.15, 0.40] 

p < 0.002 
26 [284] 

(37.7%) 

3.1 [2.0, 4.3] 

p < 0.003 
14 [113] 

(21.8%) 

14 [8, 19] 

p < 0.003 
Rating of perceived 
exertion 

9 [121] 
(12.1%) 

0.18 [0.09, 0.26] 
p < 0.002 

8 [84] 
(8.3%) 

3.5 [1.2, 5.07] 
p = 0.002 

6 [66] 
(5.7%) 

9 [1, 17] 
p = 0.03 

Workload 9 [65] 

(9.9%) 

0.23 [0.13, 0.33] 

p < 0.002 
6 [43] 

(6.5%) 

3.0 [1.2, 4.8] 

p = 0.002 
7 [49] 

(11.9%) 

11 [4, 19] 

p = 0.01 
Mixed/cannot 
determine 

27 [297] 
(44.7%) 

0.21 [0.14, 0.27] 
p < 0.002 

22 [198] 
(29.6%) 

2.4 [1.4, 3.3] 
p < 0.003 

25 [285] 
(48%) 

7 [5, 10] 
p < 0.003 

Subgroup 

differences 

- p = 0.72 - p = 0.71 - p < 0.001 

Frequency of exercise sessions 
<3 sessions/wk 19 [213] 

(24%) 

0.18 [0.12, 0.25] 

p < 0.002 
13 [155] 

(15.2%) 

2.8 [1.5, 4.0] 

p < 0.002 
13 [148] 

(21.4%) 

4 [1, 6] 

p = 0.003 
≥3 – <5 sessions/wk 35 [306] 

(57.6%) 
0.26 [0.19, 0.33] 

p < 0.002 
49 [465] 
(65.9%) 

2.8 [2.1, 3.6] 
p < 0.002 

38 [357] 
(61.8%) 

13 [10, 15] 
p < 0.004 

≥5 sessions/wk 11 [118] 

(14.4%) 

0.15 [0.07, 0.23] 

p < 0.002 
9 [65] 

(14.2%) 

3.6 [1.7, 5.4] 

p < 0.002 
5 [31] 

(10.9%) 

10 [-2, 23] 

p = 0.10 

Not reported/cannot 
determine 

4 [59] 
(4%) 

0.13 [-0.05, 0.31] 
p = 0.15 

3 [31] 
(4.7%) 

0.8 [-1.2, 2.8] 
p = 0.42 

5 [66] 
(5.9%) 

9 [0, 18] 
p = 0.10 

Subgroup 

differences 

- p = 0.14 - p = 0.24 - p < 0.001 

Exercise volume 
SCI-specific 

exercise guidelines 

for fitness (40 - 89 

min/wk) 

13 [132] 

(13.1%) 

0.23 [0.13, 0.33] 

p < 0.001 
14 [151] 

(13.9%) 

3.2 [2.0, 4.5] 

p < 0.002 
15 [138] 

(19.1%) 

6 [2, 10] 

p = 0.002 

SCI-specific 

exercise guidelines 

for cardiometabolic 
health (90 - 149 

min/wk) 

30 [269] 

(52.3%) 

0.23 [0.16, 0.30] 

p < 0.001 
31 [295] 

(48.3%) 

2.8 [1.9, 3.8] 

p < 0.002 
26 [260] 

(48.7%) 

12 [9, 16] 

p < 0.002 

Achieving general 

population exercise 
guidelines (≥150 

min/wk) 

13 [133]  

(18%) 

0.18 [0.11, 0.25] 

p < 0.001 
21 [195] 

(28.1%) 

2.8 [1.8, 3.9] 

p < 0.002 
13 [117] 

(23.9%) 

11 [5, 17] 

p < 0.002 

Not reported/cannot 

determine 

13 [162] 

(16.6%) 

0.24 [0.12, 0.36] 

p < 0.001 
8 [75] 

(9.7%) 

2.1 [0.7, 3.5] 

p = 0.003 
7 [87] 

(8.3%) 

10 [4, 17] 

p = 0.002 
Subgroup 

differences 

- p = 0.67 - p = 0.70 - p = 0.17 

Total number of interventions (N), sum of participants analysed at post-intervention (Σ), weighting of subgroups 

(%). Thresholds for statistically significant subgroup differences were adjusted for the number of subgroup 
comparisons and are highlighted in bold: exercise modality (p<0.008), length of intervention (p<0.017), relative 

exercise intensity [AV̇O2peak and RV̇O2peak (p<0.01), PPO (p<0.008)], exercise intensity prescription (p<0.01), 

frequency of exercise sessions (p<0.025), and exercise volume (p<0.025). Individual subgroup p-values were 
adjusted for multiple comparisons via the Bonferroni correction method. AV̇O2peak, absolute peak oxygen 

consumption; CIs, confidence intervals; PPO, peak power output; RV̇O2peak, relative peak oxygen consumption; 

WMD, weighted mean difference. 
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Table 5: Meta-regression models with adjusted values for each cardiorespiratory fitness outcome. 

Covariate Coef.  Std.Err. t Unadjusted 
P>t 

95% CI Adjusted 
P>t 

AV̇O2peak Model 1 (N = 69)1 (# covariates = 5) 
Male      0.006     0.004     1.610 0.084    -0.001 to 0.013 0.322 

Mean age     -0.003     0.001    -2.580 0.010    -0.006 to -0.001 0.045 

TSI      0.000     0.001     0.260 0.714    -0.002 to 0.003 0.999 

Neurological level of 

injury 

   -0.002     0.004    -0.470 0.584    -0.010 to 0.006 0.984 

Severity     -0.005     0.003    -1.340 0.153    -0.012 to 0.002 0.534 

AV̇O2peak Model 2 (N = 69)2 (# covariates = 6) 
Exercise modality     -0.015     0.016    -0.940 0.281    -0.048 to 0.017 0.865 

Exercise intensity     -0.006     0.016    -0.390 0.666    -0.038 to 0.026 0.999 

Length of 

intervention 

    0.000     0.002     0.050 0.828    -0.004 to 0.004 1.000 

Duration (mins)    -0.005     0.006    -0.790 0.327    -0.018 to 0.008 0.917 

Frequency     0.002     0.011     0.180 0.902    -0.019 to 0.023 1.000 

Volume    -0.000     0.003    -0.040 0.929    -0.006 to 0.006 1.000 

RV̇O2peak Model 1 (N = 74)3 (# covariates = 5) 
Male      0.084     0.047     1.790 0.84    -0.010 to 0.177 0.395 

Mean age     -0.041     0.013    -3.010 0.004    -0.068 to -0.014 0.025 

TSI     -0.012     0.013    -0.940 0.386    -0.039 to 0.014 0.932 

Neurological level of 

injury  

   -0.043     0.042    -1.020 0.356    -0.128 to 0.042 0.907 

Severity     -0.030     0.047    -0.650 0.521    -0.124 to 0.063 0.983 

RV̇O2peak Model 2 (N = 74) 4 (# covariates = 6) 
Exercise modality    -0.276     0.164    -1.680 0.110    -0.603 to 0.051 0.511 

Exercise intensity     -0.076     0.200    -0.380 0.718    -0.474 to 0.323 1.00 

Length of 

intervention 

   -0.024     0.033    -0.740 0.437    -0.089 to 0.041 0.982 

Risk of bias    -0.057     0.350    -0.160 0.866    -0.756 to 0.642 1.000 

Duration (mins)     -0.043     0.063    -0.690 0.494    -0.169 to 0.082 0.986 

Frequency     0.143     0.139     1.030 0.308    -0.133 to 0.420 0.908 

PPO Model 1 (N = 61) 5 (# covariates = 6) 
Male     -0.090     0.236    -0.380 0.712    -0.562 to 0.383 0.997 

Mean age     -0.035     0.082    -0.420 0.694    -0.199 to 0.130 0.995 

TSI     -0.149     0.077    -1.940 0.075    -0.303 to 0.005 0.296 

Neurological level of 
injury  

   -0.122     0.193    -0.630 0.556    -0.509 to 0.265 0.972 

Severity     -0.051     0.182    -0.280 0.796    -0.416 to 0.314 1.000 

PPO Model 2 (N = 61) 6 (# covariates = 5) 
Exercise modality    -0.685     0.733    -0.930 0.068    -2.156 to 0.786 0.266 

Exercise intensity 

prescription 

   -1.465     0.749    -1.960 0.001    -2.967 to 0.036 0.002 

Duration (mins)     -0.170     0.361    -0.470 0.476    -0.893 to 0.554 0.945 

Frequency     0.254     0.643     0.390 0.997    -1.036 to 1.543 1.00 

Volume    -0.217     0.178    -1.220 0.009    -0.574 to 0.140 0.041 

* Permutations = 10,000 
1 tau2 = 0.02339; I2 res = 98.61%; Adj R2 = 13.00%; Model F (5,63) = 2.77; Prob > F = 0.0252 
2 tau2 = 0.2932; I2 res = 98.52%; Adj R2 = -9.04%; Model F (7,61) = 0.31; Prob > F = 0.9446 
3 tau2 = 3.639; I2 res = 97.98%; Adj R2 = 11.98%; Model F (5,68) = 2.89; Prob > F = 0.0201 
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4 tau2 = 4.108; I2 res = 98.13%; Adj R2 = 0.63%; Model F (7,66) = 1.04; Prob > F = 0.4124 
5 tau2 = 65.65; I2 res = 99.56%; Adj R2 = 1.07%; Model F (5,55) = 1.16; Prob > F = 0.3399  
6 tau2 = 64.86; I2 res = 99.34%; Adj R2 = 2.26%; Model F (7,53) = 1.17; Prob > F = 0.3333 

Adj R2, proportion of between-study variance explained; AV̇O2peak, absolute peak oxygen consumption; Coef, 

coefficient of variation; I2 res, I2 residual variation due to heterogeneity; Model F, joint test for all covariates; PP 
Prob > F, with Knapp-Hartung modification; RV̇O2peak, relative peak oxygen consumption; Std.Err, standard 

error; TSI, time since injury. 
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Table 6. Grading of recommendations assessment, development and evaluation analysis for each cardiorespiratory fitness outcome. 

 

 AV̇O2peak  
(L/min) 

RV̇O2peak  
(mL/kg/min) 

PPO 
(W) 

Summary of findings according to GRADE analysis 
GRADE LOW  LOW   LOW  
Comments Our confidence in the effect estimate is limited: 

The true effect may be substantially different 
from the estimate of the effect. 

 
 Study design, imprecision, an unclear dose 

response and residual confounding reduced the 
Grade to Low. 

 
The evidence supporting improvements in 

AV̇O2peak is predominantly in young and middle-
aged males that had been injured for >1-year 

(chronic TSI). Participants were mostly 
paraplegic (70%) but there were a mixture of 

injury severities (AIS A-D).  
 

There were no subgroup differences in exercise 
intervention characteristics to suggest the optimal 

training parameters. 

Our confidence in the effect estimate is limited: 
The true effect may be substantially different 

from the estimate of the effect. 
 

High risk of bias, imprecision, an unclear dose 
response and residual confounding reduced the 

Grade to Low. 
 

The evidence supporting improvements in 
RV̇O2peak is predominantly in young and middle-

aged males that had been injured for >1-year 
(chronic TSI). Participants were mostly 

paraplegic (70.5%) but there were a mixture of 
injury severities (AIS A-D).  

 
There were no subgroup differences in exercise 

intervention characteristics to suggest the optimal 
training parameters. 

Our confidence in the effect estimate is limited: 
The true effect may be substantially different 

from the estimate of the effect. 
 

Inconsistency, imprecision, an unclear dose 
response and residual confounding reduced the 

Grade to Moderate. 
 

The evidence supporting improvements in PPO is 
predominantly in young and middle-aged males 
that had been injured for >1-year (chronic TSI). 
Participants were mostly paraplegic (76%) but 

there were a mixture of injury severities (AIS A-
D).  

 
Subgroup differences suggest that upper-body 
aerobic exercise and resistance training appear 

the most effective at improving PPO. 
Furthermore, acutely-injured, individuals with 

paraplegia, exercising for >3 sessions/week at a 
moderate-to-vigorous-intensity, prescribed via 

V̇O2 or heart rate, will likely experience the 
greatest change in PPO. 

Lower quality criteria 
Study design Mixture of RCTs and pre-post studies with no 

control groups. 
 

Mixture of RCTs and pre-post studies with no 
control groups. 

 

Mixture of RCTs and pre-post studies with no 
control groups. 
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Overall WMDs for RCT interventions relative to 
controls and pre-post interventions only: RCTs 
(0.15 L/min) and pre-post studies (0.23 L/min). 

DOWNGRADE 

Overall WMDs for RCT interventions relative to 
controls and pre-post interventions only: RCTs 

(2.9 mL/kg/min) and pre-post studies (2.9 
mL/kg/min). 

NO DOWNGRADE 

Overall WMDs for RCT interventions relative to 
controls and pre-post interventions only: RCTs 

(10 W) and pre-post studies (11 W). 
NO DOWNGRADE 

Risk of bias 
(RoB) 

28% of pre-post studies were rated as good, 56% 
as fair, and 16% as poor. 31% of RCTs had low 

RoB, 23% had some concerns, and 46% had high 
RoB. 

NO DOWNGRADE 

38% of pre-post studies were rated as good, 48% 
as fair, and 14% as poor. 15% of RCTs had low 

RoB, 25% had some concerns, and 60% had high 
RoB. 

DOWNGRADE 

26% of pre-post studies were rated as good, 59% 
as fair, and 15% as poor. 23% of RCTs had low 
RoB, 38.5% had some concerns, and 38.5% had 

high RoB.  
NO DOWNGRADE 

Inconsistency of 
results 

Effect estimates were consistent, with 91% of the 
included exercise interventions favouring an 

increase in AV̇O2peak, but most had a low effect 
estimate. 
I2 = 74% 

NO DOWNGRADE 

Effect estimates were consistent, with 91% of the 
included exercise interventions favouring an 

increase in RV̇O2peak, and most had a large effect 
estimate. 
I2 = 52% 

NO DOWNGRADE 

Effect estimates were consistent, with 93% of the 
included exercise interventions favouring an 
increase in PPO, and most had a large effect 

estimate. 
I2 = 78% 

DOWNGRADE 
Indirectness Most studies (83%) included AV̇O2peak in their 

main outcome measures, across a range of 
participant characteristics.  

NO DOWNGRADE 

Most studies (72%) included RV̇O2peak in their 
main outcome measures, across a range of 

participant characteristics.  
NO DOWNGRADE 

Most studies (82%) included PPO in their main 
outcome measures, across a range of participant 

characteristics.  
NO DOWNGRADE 

Imprecision Large sample size (N=696), however, 62% of the 
included exercise interventions had 95% CI 

overlap 0. 
DOWNGRADE 

Large sample size (N=716), however, 76% of the 
included exercise interventions had 95% CI 

overlap 0. 
DOWNGRADE 

Large sample size (N=601), however, 67% of the 
included exercise interventions had 95% CI 

overlap 0. 
DOWNGRADE 

Publication bias An exhaustive approach was used during the 
search strategy (i.e., scientific databases and grey 

literature search). Egger’s test: Z = -1.23 (p = 
0.22). Visual inspection of the funnel plots, data 

extraction sheets and Tables 3-4 revealed no 
noticeable publication bias.  

NO DOWNGRADE 

An exhaustive approach was used during the 
search strategy (i.e., scientific databases and grey 

literature search). Egger’s test: Z = -0.54 (p = 
0.59). Visual inspection of the funnel plots, data 

extraction sheets and Tables 3-4 revealed no 
noticeable publication bias.  

NO DOWNGRADE 

An exhaustive approach was used during the 
search strategy (i.e., scientific databases and grey 

literature search). Egger’s test: Z = 0.73 (p = 
0.46). Visual inspection of the funnel plots, data 

extraction sheets and Tables 3-4 revealed no 
noticeable publication bias.  

NO DOWNGRADE 
Higher quality criteria 
Large effect Yes 

Z  = 9.5 (p < 0.001)  
NO UPGRADE 

Yes 
Z = 9.4 (p < 0.001) 
NO UPGRADE 

Yes 
Z = 8.7 (p < 0.001) 
NO UPGRADE 
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Dose response No clear dose response. 
NO UPGRADE 

No clear dose response. 
NO UPGRADE 

No clear dose response. 
NO UPGRADE 

Residual 
confounding 

Mixture of exercise modalities, levels of injury, 
etc. 

NO UPGRADE 

Mixture of exercise modalities, levels of injury, 
etc. 

NO UPGRADE 

Mixture of exercise modalities, levels of injury,  
etc. 

NO UPGRADE 
GRADE certainty in the evidence can be ‘High’, ‘Moderate’, ‘Low’ or ‘Very Low’ according to published guidelines [34]. Risk of bias was downgraded where >50% of RCTs 
had a high risk of bias. Heterogeneity was also included as a measure of inconsistency, whereby an outcome with I2 >75% was classed as considerable and resulted in a downgrade. 
Imprecision was downgraded where >50% of studies had confidence intervals overlap the no effect line. Indirectness would have been downgraded where <50% of studies did 
not include the appropriate main outcome measure or assess a range of participant characteristics. Overall effect sizes are presented as Z-scores. Statistical significance accepted 
as p < 0.05. AIS, American Spinal Injury Association Impairment Scale; AV̇O2peak, absolute peak oxygen consumption; CI, confidence intervals; CRF, cardiorespiratory fitness; 
PPO, peak power output; RCTs, randomised-controlled trials; RoB, risk of bias; RV̇O2peak, relative peak oxygen consumption; V̇O2, peak oxygen consumption.  
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