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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Directed Metal Deposition (DMD) is a promising metal additive manufacturing technology, where parts are manufactured by 
fusing injected metal powder particles with a laser beam moving along a predefined trajectory. A toolpath typically includes 
sections as curves or edges, where machine axes need to decelerate and accelerate accordingly. As a result, the locally applied laser 
energy and powder density vary during the deposition process, leading to local over-deposition and over-heating. These deviations 
are additionally influenced by the toolpath geometry and process duration: previous depositions can influence close toolpath 
segments, in terms of time and space, resulting in local heat accumulations and develop profiles and microstructures that are 
different from the ones generated in other segments deposited with the same parameters due to geometry- and temperature 
dependent catchment profiles. To prevent these phenomena, lightweight and scalable models are required to predict the process 
behaviour for variable toolpaths.   
In this work, an artificial intelligence-based approach is presented to handle the process complexity and the multitude of toolpath 
variations for Inconel 718. Artificial neural networks (ANN) are used to predict the height of the deposition considering the 
previously defined toolpath. Training data have been generated by printing a randomized toolpath containing multiple curvatures 
and geometries. Based on the trained models, significant local geometric deviations are successfully predicted for the complete 
toolpath and could be anticipated by adapting process parameters accordingly.  
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1. Introduction 

Additive manufacturing (AM) processes enable the 
production and repairing of components with complex 
geometries, leading to lightweight parts with highly 
customized shapes and properties [1]. Typical applications are 
in the aeronautic, oil&gas or prosthetics industry, where 
specialized components made of high-performance alloys as 
Inconel 718 are needed to meet the requirements of elevated 
operating temperature, mechanical and chemical requirements. 

In particular, Direct Metal Deposition (DMD) is a promising 
manufacturing process to efficiently repair high value parts or 
to build complex work pieces from scratch [2]. Despite its 
multiple benefits, the complexity of the involved phenomena 
(powder-gas dynamics, phase changes, thermo-mechanical 
coupling, parameter uncertainty) make this process hard to 
master, and the definition of optimal process recipes and 
strategies often requires intensive trial-and-error to avoid 
dimensional deviations and meet material integrity 
requirements [3]. To overcome these issues, the approaches 
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adopted by researchers range from multi-physics simulations to 
in-process monitoring and control.  

Recent progress in the field of multi-physics simulation 
achieved meaningful results and revealed important insights 
into the process behavior. Wirth et al. [4] presented a multi-
physics simulation approach, able to predict accurately the 
temperature distribution and height of single tracks. However, 
the high process dynamics and various physical phenomena 
lead to complex models limiting the effectiveness of multi-
physics-based process prediction. The high computational 
complexity of such models makes simulation of a full part 
impractical even for small-sized components and therefore 
unsuitable for control applications [5]. 

On the other side, the harsh process environment and 
dynamics limit the integration and efficiency of monitoring 
systems [6]. For example, Baraldo et al. [7] presented a 
promising closed loop approach to reduce over-depositions by 
modulating the laser power: the mean image intensity of real-
time melt pool images is correlated with the deposition height, 
thus allowing to locally adapt the laser power and to reduce the 
over-deposition rate. Another approach has been proposed by 
Hua et al. [8], who implemented an inline height measurement 
system to control the deposition height in real-time. A further, 
model-based approach to on-line control has been presented by 
Wang et al. [9], using a previously developed lumped model 
[10] for the implementation of a nonlinear inverse-dynamics 
controller to regulate the build height.  

However, basing parameter modulation purely on process 
feedbacks is often insufficient to optimize the deposition 
process. Defects due to very fast dynamics (e.g. laser steps, 
sudden acceleration) cannot be corrected timely by just waiting 
to observe them; therefore, feed-forward process modelling and 
control are essential, but they should rely on lean approaches to 
be exploitable in real applications. In this view, Caiazzo et al. 
[11] performed offline prediction of deposition height via 
machine learning (ML): they trained a neural network (NN) that 
predicts the average deposition height of a single, straight track 
based on the process parameters, to determine the most suitable 
recipe before starting the manufacturing process. However, this 
approach is limited to single and straight tracks. Moving to a 
local scale, Woo et al. [12] investigated experimentally the 
effects of geometric deviations in corners and subsequently 
applied a scanning speed control algorithm to achieve uniform 
height over the corners.  

The present work extends the state of the art of ML-based 
DMD process prediction by additionally predicting the local 
deposition height over the whole trajectory. The prediction 
process could be performed off-line before starting the 
manufacturing process to anticipate over-depositions, thus 
enabling an effective feed-forward control solution. Combining 
this approach with existing inline process controls could even 
further improve the system performance.  

The presented approach is developed with a focus on 
complex toolpaths characterized by multiple changes of 
direction. The methodology and experimental set-up for the 
data generation are described in Section 2. Based on the training 
data neural networks are optimized and the obtained results are 
presented and discussed in Section 3, while Section 4 outlines 

the key findings and next steps to further improve the approach 
and its application.  

2. Methodology 

The high-level approach consists in the following steps 
described in Fig. 1. First of all, the experimental campaign is 
designed, by generating the tool paths and the corresponding 
part program. To obtain process outcomes, i.e. deposition 
height, the deposition is performed, and the resulting 
geometries are acquired off-line with a laser scanning confocal 
microscope; the obtained 3D mesh is then processed to extract 
the height of the deposited track along the tool path. On the 
other side, trajectory and process input parameters are 
translated into features that are potentially relevant to predict 
the deposition height (see Section 2.1 and 2.2). Finally, the 
designed NN model is trained, using the previously defined 
features as inputs, to predict the height profile of the generated 
tool path. Key steps of the pipeline are detailed in the 
following.  

2.1. Experimental set-up 

Experimental data are generated by building test samples 
composed by tracks with random corners (random tracks), as 
shown in Fig. 2. The substrate and the powder consist of 
Inconel 718 nickel alloy. The tracks are produced with a Prima 
Power Laserdyne 430 3-axis CNC machine with a four-nozzle 

Fig. 2. Deposited random track with a total length of 65 mm. 

Fig. 1. Process flow of the DMD height prediction. 
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Optomec DMD head. In all the experiments, the laser power is 
set to 300 W with a scanning speed of 600 mm/min. Table 1 
summarizes the applied process parameters.  

Table 1. Process parameters 

Parameter Value 
Laser power 300 W 
Scan speed 600 mm/min 
Powder feed 0.099 g/s 
Nozzles  4 
Material Inconel 718 
Powder size 45 – 106 μm 
Argon carrier gas  4 l/min 
Argon shielding gas  15 l/min 

 
Four consecutive tracks are deposited on each substrate. 

Each track is generated randomly by concatenating random 
consecutive sections of variable length and angles, with the 
scope of covering various angles and local curvatures, leading 
to enhanced geometrical deviations due to the local over-
deposition. During the process, the actual toolpath including its 
X and Y coordinates is logged at 1 kHz, to allow an accurate 
reconstruction of process dynamics. 

An integrated dataset, where the laser spot position and 
resulting track height are synchronized, is required to train the 
proposed NN model. To achieve this, the tracks are scanned 
off-line with a Keyence VK-X1000, a 3D laser scanning 
confocal microscope, to generate a triangulated mesh of the 
sample. Afterwards, the mesh is processed with a custom 
MATLAB script to extract the track height at each tool path 
sampling point, as described in [13]. 

2.2. Feature generation 

Based on the toolpath of the random track, various features, 
i.e. derived process variables, are determined, with the scope to 
cover important characteristics that establish relevant 
relationships between the trajectory and the actual deposition 
height. The most intuitive features are for example velocity and 
acceleration for each time step of the trajectory. Thereby the 
velocity is determined by the machine logged coordinates 
during the process and the according timestep. In particular, 
local velocity reaching zero indicates the presence of a corner 
and correlates strongly with the local energy density; for 
example, with faster scanning speed and constant laser power, 
the local energy density and the resulting deposition height 
decrease significantly.  

Two additional features account for increases of energy 
density due to the deposition geometry: angle and curvatures. 
The angle feature corresponds to the angle width of the corner 
that is nearest to the considered point. The curvature features 
instead are determined by the following procedure: sliding time 
windows of 1 ms, 5 ms, 10 ms, 50 ms, 100 ms and 200 ms are 
moved along the toolpath; two vectors are defined at each time 
instant, connecting the trajectory point at the center of the time 
window with the points defined by the starting/ending times of 
the window itself. Finally, the angle between the two vectors is 
determined. An example of the resulting curvatures is shown in 
Fig. 3. Introducing simultaneously curvatures computed on 

multiple scales allows to capture in advance the approach to a 
corner (large time windows), without losing the detail of the 
sudden change of direction (small time windows)  

A further potentially influencing factor is the proximity of 
depositions to previously deposited track segments. During a 
deposition, local heating occurs in the substrate region that 
surrounds the laser spot. Therefore, substrate pre-heating 
potentially increases the deposition height of successive 
depositions in that area, leading to local height deviations [14]. 
To account for this effect, a proximity feature has been defined 
by counting the amount of tool path points in a predefined 
neighborhood of the considered position. The proximity index 
considers only trajectory elements visited previously to the 
current position. In case of elements close to previous 
depositions, the index will be higher and thus relevant in the 
prediction. 

Fig. 3. The upper plot illustrates a section of the toolpath, where the red dot 
indicates the location of the curvature features at timestep 300 in the lower 
plot. 

Fig. 4. The upper plot illustrates a section of the toolpath, where the red dot 
indicates the location of the distance and proximity features in the lower plot. 
The corresponding location in the lower plot is indicated by the red rot. 
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Another feature is introduced to describe the distance of the 
current position from the nearest corner. Depending on the 
distance, the heat accumulation due to curvature varies and 
impacts differently the deposition height. Based on such 
distance, a further feature is generated by weighting the 
distance with the angle of the nearest corner. Fig. 4. shows an 
exemplary section of the random track and the distance feature. 
Furthermore, the proximity and velocity are displayed in the 
graph. The minima of the velocity indicate the location of the 
corners. The final dataset contains the features summarized in 
Table 2.  

Table 2. Features of the dataset 

Parameter Value ranges 
Velocity [0, 0.011] mm/s 
Acceleration [0, 0.00024] mm/s2 
Angle [2.9, 178] ° 
Curvatures for 1 ms, 5 ms, 50 
ms, 100 ms, 150 ms, 200 ms,  

e.g. for 200 ms [ 0, 3.139] 

Proximity [1, 959] 
Distance [0, 20.89] mm 
Distance weighted by the 
angle 

[0, 4.29] mm/° 

 
Before training the NN, the dataset composed by the 

aforementioned features is normalized to a range between 0 and 
1, to stabilize and accelerate the training process. 

2.3. Neural network  

Neural networks (NN) are exploited to predict the 
deposition height based on the previously defined features. The 
architecture used for the NN is a fully connected network, 
consisting of multiple sequential layers. An exemplary 
architecture is shown in Fig. 5. In general, the relation between 
the vector of inputs 𝒛𝒛i−1 and the output 𝐳𝐳i of the ith layer is 
defined as 

𝒛𝒛𝒊𝒊 = 𝜎𝜎𝑖𝑖(𝑾𝑾𝑖𝑖
𝑇𝑇𝒛𝒛𝒊𝒊−𝟏𝟏 + 𝒃𝒃𝑖𝑖), (1) 

where σi is the activation function, 𝐖𝐖i
T is the weight matrix 

of the layer and 𝒃𝒃i  the bias vector. The activation function 
introduces the non-linearity of the system. Typical activation 
functions are tanh, sigmoid and the within this work used 

rectified linear unit (ReLU). The training of the neural network 
optimizes the weights to reduce the loss function. Common 
optimizers are based on stochastic gradient descent, such as the 
Adam optimizer also used in this work [15]. 

A crucial element in the estimation procedure is the loss 
function, which defines the criterion upon which the NN should 
try to optimize. A common loss function is the mean squared 
error: 

𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻, �̂�𝐻) =  1
𝑛𝑛  ∑(𝐻𝐻𝑖𝑖 − �̂�𝐻𝑖𝑖)2

𝑛𝑛

𝑛𝑛=1
, (2) 

which penalizes the difference between the prediction Ĥi and 
the known value  Hi;  the optimizer will therefore try to 
iteratively modify the NN weights so that this difference is kept 
as small as possible across all data until the training terminates 
with achieving the number of epochs.  

3. Results & Discussion 

The previously defined features are computed for each point on 
the toolpath and combined with the corresponding height. The 
dataset is divided into a training and test set, to avoid an 
overfitting of the trained model. In this case, tracks 1 to 3 are 
used for the training of the neural network and track 4 for 
testing purposes (see Fig. 1.). The relatively small amount of 
training data requires less than 1GB of memory, thus enabling 
the usage of a maximal batch size equal to the amount of 
training data. The model is set-up in Python with PyTorch and 
the computations are executed on a graphical processor unit 
(GPU) Nvidia Quadro M4000 to accelerate the training 
process. 

3.1. Model training and optimization  

At first, the feasibility of the height prediction is 
demonstrated by using 70 % of the previously computed 
features to train a neural network with 10 layers and 200 
neurons, while the remaining 30 % of the dataset are used as a 
validation set.  

The training set consist of 43’921 data points and is trained 
over 5’000 epochs with an initial learning rate of 0.0001. The 
learning rate is reduced every 500 epochs by a factor of 0.8. 
The training takes about 100 minutes with a maximum batch 
size equal to the amount of training data.  

In a second step, the model is optimized by tuning main 
hyperparameters as the number of hidden layers, width of each 
layer, amount of training data and optimization parameters. In  

particular, a scheduler is implemented to decrease the 
learning rate by a pre-defined factor (gamma) after a certain 
number of epochs (scheduler step). This enables an improved 
optimization process by minimizing the loss with bigger steps 
during the first epochs and performing smaller weight 
adjustments with ongoing training progress. Table 3 
summarizes the performed hyperparameter variations.  

 
Fig. 5: Exemplary fully connected neural network with two hidden layers 
and a mean squared error loss function. F1, …, Fn correspond to the 
feature inputs, �̂�𝐻 is the predicted height and 𝐻𝐻 is the ground truth. 
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3.2. Model performance 

The prediction for the validation dataset of the first 
feasibility results in a root mean squared error (RMSE) of 0.068 
mm. Fig. 6 visualizes the prediction and the actual height for 
the test set.  

After optimizing the hyperparameters listed in Table 3, the 
best model performance is obtained with 5’000 epochs, a 
training data ratio of 70 %, 3 hidden layers, 25 neurons/layer, a 
learning rate 0.0001 with a scheduler step of 500 and gamma 
equal to 0.8. The resulting RMSE improves through the model 
optimization from 0.068 mm to 0.0526 mm. 

As shown in Fig. 6, the prediction matches the actual height 
quite well. The most relevant deviations are found in areas with 
multiple, concentrated sharp corners, as shown in Fig. 7, where 

the pattern that yields a locally extreme over-deposition equal 
to a height of about 770 μm is shown. As a result, in similar 
cases the predicted height is significantly higher. 

Furthermore, the process suffers from high local variances 
during the deposition. This can be seen in particular on straight 
deposition lines as shown in Fig 6. Due to this noisy behavior, 
many small prediction errors occur even if the prediction 
follows the actual height quite well. The histogram in Fig. 8 
illustrates the error distribution of the RMSE. Thereby it can be 
clearly seen that, although few local, large errors are present, 
most of the model residuals are concentrated below 0.1 mm, 
the order of magnitude of the used powder particle size.  

4. Conclusion and outlook 

The presented work demonstrates the feasibility of height 
prediction for a complete DMD process trajectory. The results 
highlight the possibility to effectively predict local over-
deposition through NNs. The prediction follows the behavior 
of the actual height in a coherent way, except in isolated regions 
where small deviations are due to the noisy process behavior. 
Furthermore, the printed random tracks contain some very 
sharp and consecutive corners, leading to excessive 
geometrical deviations. Based on the trained model, it would 
be possible to anticipate and minimize the over-depositions by 
locally adapting the laser power, thus enabling feed-forward 
process control. The compensation of over- and under-
deposition will be part of future work. Future work will include 
the validation of the model for multiple parameter 
combinations. Thereby the process parameters will be included 
as additional features for the neural network. Furthermore, the 
influence of the substrate surface structure and material will be 
analyzed. Once a reliable model is established, predictive 
controllers could modulate the laser power to reduce over-
depositions.  
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Parameter Variations 

Learning rate 0.0001 

Training data ratio 0.5, 0.6, 0.7, 0.8, 0,9  

Epochs 500, 1’000, 2’000, 3’000, 4’000, 
5’000 

Layers 1, 2, 3, 5, 7, 10 

Neurons/layer 10, 25, 50, 100, 150, 200, 250, 
300, 350 

Table 3. Hyperparameter variations 

Fig. 6. Extract of the test set comparing the height prediction and actual 
height. 

Fig. 7. The upper plot displays the toolpath and highlights the considered 
region zoomed in the plot below. The toolpath below shows the consecutive 
sharp corners leading to local “extreme” over-depositions. 

Fig. 8. Error distribution for the test set. The prediction is computed with a 
neural network of 5 layers, width of 200, gamma of 0.8, train ratio of 0.7 and 
a scheduler step of 500. 
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