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Abstract

To survive in challenging environments, animals need to learn to perform adaptive
behaviors when exposed to sensory information that predicts threats or rewards.
The medial prefrontal cortex (mPFC) has been suggested to link sensory and behav-
ioral aspects of such associations during learning and behavior execution. During
learning, sensory-driven prefrontal responses emerge as stimuli gain behavioral rel-
evance, and it has been shown that manipulations of mPFC activity can drive and
inhibit the execution of learned behaviors. Yet, how prefrontal circuits map rele-
vant sensory signals onto specific behaviors is still unclear. Here we investigate the
involvement of mPFC in mediating such mappings using aversive auditory condi-
tioning paradigms with dynamic stimulus-response associations. We trained mice
in two complementary active avoidance experiments in which we manipulated the
link between stimuli and conditioned behaviors. We achieved this manipulation by
either changing the shock-predictive stimulus or changing the action required for
avoidance, which required animals to learn a new mapping between sensory input
and behavioral output in both cases. During these paradigms, we used miniatur-
ized microscopes for calcium imaging in freely behaving mice to record the activity
of mPFC neurons throughout learning. We employed a decoding approach to quan-
tify how tones and fear-related behaviors are represented in mPFC activity, and how
these representations change with learning. We found that prefrontal tone responses
were tightly coupled to the behavioral relevance of a given stimulus. Moreover,
avoidance actions could be predicted from mPFC activity up to three seconds before
action onset. However, we did not find a clear link between the representations of
tone-evoked activity and avoidance-predictive activity. These findings stand in con-
trast to related work that suggests joint coding of tone and behavior as a mechanism
for linking sensory information to behavior execution. Taken together, our results
motivate theoretical research into how links between sensory responses and action
initiation signals could be achieved without such joint coding.
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Zusammenfassung

Um in komplexen Umgebungen überleben zu können, müssen Tiere lernen ihr Ver-
halten anzupassen, wenn Reize in ihrer Umgebung Gefahren oder Belohnungen
vorhersagen. Eine Vielzahl an Studien suggeriert, dass der mediale präfrontale Kor-
tex (mPFC) eine wichtige Rolle für die Verbindung von sensorischen Informatio-
nen und erlernten Verhaltensweisen spielt. Im Verlauf von Lernprozessen, in denen
ein ursprünglich neutraler Stimulus für ein Tier an Bedeutung gewinnt, beginnen
Neurone im mPFC auf Präsentationen dieses Stimulus zu reagieren. Zudem wurde
gezeigt, dass durch Manipulation der Aktivität im mPFC erlernte Verhalten ausge-
löst oder gehemmt werden können. Dennoch ist es weiterhin unklar wie präfronta-
le Netzwerke relevante sensorische Signale und spezifische Verhalten miteinander
verbinden. In dieser Arbeit untersuchen wir die Rolle des mPFC in solchen Verbin-
dungen mithilfe von aversiven auditorischen Konditionierungs-Verfahren in denen
sich die Assoziation zwischen Stimuli und Verhalten über die Zeit verändert. Wir
trainierten Mäuse in zwei komplementären Active Avoidance Experimenten, in de-
nen die Tiere lernen einen elektrischen Schock zu vermeiden indem sie ein definier-
tes Verhalten als Antwort auf einen Ton Stimulus ausführen. Um das Erlernen von
verschiedenen Assoziationen zwischen Tönen und Verhalten zu untersuchen, ver-
änderten wir im Verlauf der zwei Experimente entweder den Ton, der den Schock
vorhersagt, oder das Verhalten, das zum Vermeiden des Schocks nötig ist. Wäh-
rend dieser Verhaltensexperimente nahmen wir mit einem Miniatur-Mikroskop die
Aktivität von Hunderten von mPFC Neuronen via Calcium Imaging auf. Mithil-
fe einer Dekodierungs-Analyse quantifizierten wir, wie Töne und Verhalten in der
aufgenommenen mPFC Aktivität repräsentiert sind, und wie sich diese Repräsenta-
tionen über den Lernprozess verändern. Unsere Resultate zeigen, dass präfrontale
Ton-Aktivität eng an die Verhaltens-Relevanz eines Stimulus gebunden ist. Weiter-
hin konnten wir Vermeidungs-Verhalten bis zu drei Sekunden vor der Initiierung
des Verhaltens anhand der aufgenommenen neuronalen Aktivität vorhersagen. Den-
noch haben wir keinen klaren Zusammenhang zwischen Ton-basierter Aktivität und
Verhaltens-voraussagender Aktivität gefunden. Diese Ergebnisse stehen im Kon-
trast zu ähnlichen Studien, die suggerieren, dass die Verbindung von sensorischen
Informationen und Verhalten über die gemeinsame Kodierung von Ton-basierter
und Verhaltens-bezogener Aktivität entsteht. Zusammengenommen motivieren un-
sere Resultate theoretische Arbeiten, die untersuchen wie die Transformation von
sensorischer Aktivität zur Verhaltenskontrolle ohne solche gemeinsame Kodierung
erreicht werden kann.
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Chapter 1

Introduction

1.1 Learning in neural systems

For most animals, the ability to learn how to interact with their environment is key
for survival. A sensory stimulus can for example indicate the presence of food or the
proximity of a predator and should thus trigger approach or avoidance responses.
While such stimulus-response mappings can be innate, a learning mechanism sub-
stantially increases flexibility and enables animals to adapt to changing environ-
ments. The complexity of the associations and behaviors that an animal can learn
varies across species, but many aspects of learning and the underlying neural sub-
strates are conserved across evolution [1, 2]. Historically, the field of behaviorism
studied how animals adapt their behavior based on the association of stimuli or
actions to positive or negative consequences [3, 4]. Experimental work on animal
behavior led to important advances in the theoretical understanding of behavioral
learning processes [5], but as the brain was treated as a black box, the neural basis of
these processes remained unclear. However, technological advances have led to the
availability of brain-internal signals and have been continuously increasing the pre-
cision at which neural systems can be investigated, ranging from the level of brain
areas to individual neurons, synapses and molecules. How the processes on these
levels can be experimentally investigated with respect to their relevance to learning
and behavior, is highly dependent on the used model systems and technologies. For
example, to address the neural basis of human behavior, one is usually restricted to
noninvasive technologies due to ethical considerations. In general, there is a trade-
off between the complexity of learning that can be investigated in a model system
and the precision of the technologies that can be used to analyze it. In the following
sections, I will introduce aversive conditioning in mice as the model system used in
this thesis, as well as experimental strategies to study this system. I then cover back-
ground information and related work on the relevant neural circuits and methodolo-
gies to set the stage for the questions addressed in this thesis. As the work contained
in this thesis was conducted by multiple people, I will use ’we’ instead of ’I’ for the
remainder of the thesis. Contributions of different collaborators are clearly indicated
in the corresponding section at the end of the document.

1.1.1 Model systems

While understanding human intelligence is arguably most relevant to society, it is
also the hardest area to study due to its complexity and ethical restrictions on ex-
perimental strategies. Therefore animal models are of tremendous importance to
the field of neuroscience, as they allow studying neural systems in greater detail.
Many mechanisms are well conserved across evolution and various fundamental
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insights come from a diverse set of model organisms, such as the analysis of the
action potential in squids [6], the synaptic basis of memory in aplysia [7] or the
processing principles of the visual system in cats [8]. In modern day neuroscience,
many questions are studied using rodents and especially mice as they fulfill various
desiderata. First, as mammals, mice are evolutionary relatively close to humans and
their nervous system is structured in a similar way, although key differences exist
[9]. Second, the availability of genetic tools enable powerful experimental strate-
gies as further introduced in sections 1.1.3 and 1.1.4. And third, mice are efficient
to breed and maintain in a standardized and reproducible manner. Within the field
of systems neuroscience, mice and rats are widely used to study diverse areas such
as sensory [10], motor [11], navigational [12] and reward systems [13]. In this thesis
we are mainly concerned with the circuits for associative learning in the mouse. In
the following section, we will describe how these circuits are studied in behaving
animals through conditioning tasks.

1.1.2 Conditioning paradigms

In conditioning paradigms animals are trained to form associations between stimuli
(Pavlovian conditioning) or to modify their behavior (instrumental conditioning)
through rewards or punishments. Here, we briefly cover the concepts related to
these two types of conditioning and introduce fear conditioning and active avoid-
ance as examples of aversive paradigms for classical and instrumental conditioning
respectively.

Pavlovian conditioning Classical conditioning was first studied by Pavlov in his
work with dogs in the late 19th century [3]. In a typical setting, animals learn to
associate a neutral conditioned stimulus (CS) with an appetitive or aversive uncon-
ditioned stimulus (US). Before conditioning, animals respond to the US with an un-
conditioned response (US, e.g. salivating in response to food presentation), while
the CS does not induce a behavioral response. By repeatedly pairing CS and US
presentations, animals learn an association between the two stimuli, and develop a
conditioned response (CR) to presentations of the CS alone, despite its initially neu-
tral nature. Repeated presentations of the CS without pairing to the US lead to the
extinction of the conditioned response.

Fear conditioning Auditory fear conditioning, is a widely used version of Pavlo-
vian conditioning [1]. In this paradigm, the CS takes the form of a tone, while the US
is an electrical foot shock. After conditioning, CS presentations lead to a behavioral
response called freezing, which is characterized by an immobile, crouching posture
[14]. Due to its simplicity and robustness, this paradigm has been highly influen-
tial in the study of the neural circuits involved in associative learning, as further
described below.

Instrumental conditioning In instrumental conditioning paradigms, animals are
trained to increase or decrease the frequency of a given behavior through reinforce-
ment or punishment, respectively. Both reinforcement and punishment can be pos-
itive (presentation of an appetitive/aversive stimulus), or negative (removal of an
appetitive/aversive stimulus). In contrast to classical conditioning, the presentation
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of these stimuli is dependent on the animal’s behavior, such that animals learn to ad-
just their behavior to achieve the desired outcome. A classic example is the delivery
of food rewards in response to a lever press in a Skinner box [4].

Active avoidance In the context of aversive conditioning, a commonly used in-
strumental conditioning paradigm is auditory signalled two-way active avoidance
(referred to as active avoidance for the remainder of the thesis). In this paradigm,
mice are placed in a two-compartment box and are presented with tone stimuli
that are followed by aversive foot-shocks, similar to the auditory fear conditioning
paradigm. However, in contrast to fear conditioning, mice can avoid receiving the
shock by shuttling from one compartment to the other. Through this contingency
of stimulus (tone), response (shuttling) and outcome (shock or no-shock), animals
learn to perform the instrumental shuttle behavior in response to the tone. While the
paradigm was already developed in the 1930s, it was largely abandoned for many
years, due to conceptual ambiguities and difficulties to theoretically explain a va-
riety of experimental results [15]. The main conceptual issue is the lack of a clear
reinforcement signal, as a successful trial is characterized by the omission of the US.
In an early attempt to resolve this paradox, two-factor theory proposed that avoid-
ance learning consists of two phases, a Pavlovian one followed by an instrumental
one [16]. The theory postulated that animals acquire a negative association to the
CS in the Pavlovian phase, such that the termination of the CS serves as a (negative)
reinforcement signal in the instrumental phase. However, there were many experi-
mental results that are inconsistent with this idea [17]. Later, Bolles questioned the
instrumental nature of the shuttling action [18]. He viewed shuttling as a species-
specific defense reaction (SSDR), similar to conditioned freezing in fear conditioning,
that is learned through Pavlovian processes and not via reinforcement. However
also this interpretation is challenged by many findings, for example through experi-
ments on active avoidance based on actions that are not SSDRs (e.g. lever pressing)
[17]. Further theories consider learned expectations [19, 20] and safety signals [21]
for the generation of the reinforcement signal that would give rise to the instrumen-
tal learning of the avoidance action. Overall no theory can unify the wide range of
experimental results, and there is a consensus that avoidance learning is based on
of a variety of different learning processes [22]. However, over the last decade, a
better understanding of Pavlovian conditioning and novel experimental approaches
have sparked new research on active avoidance. A finding that speaks for the instru-
mental nature of the avoidance response is that avoidance learning relies on neural
circuits known to be crucial for the learning of goal-directed appetitive behaviors
[22], as further described below.

1.1.3 Experimental strategies

To investigate the relation between neural activity and behavior, two key comple-
mentary strategies exist. We can either record neural activity and relate it to aspects
of an animal’s behavior, or manipulate the neural system and observe the effects that
manipulations have on behavior. Manipulation studies allow to investigate causal
links between neural activity and behavior, while recording strategies only enable
correlative analysis. Historically, lesion studies have been used extensively to deter-
mine the brain areas that are necessary for learning and executing different types of
behaviors. Another manipulation approach is based on the pharmacological inac-
tivation of neural activity (e.g. through Muscimol), which temporarily disrupts the
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function of targeted regions and allows assessing their relevance to a given behav-
ioral process. Over the last two decades, the development of optogenetics [23] and
other approaches based of genetic manipulations (e.g. DREADDs [24]), has dramat-
ically increased the specificity of manipulations of neural activity. Such approaches
are not used in this thesis, but they have been crucial in analyzing the neural circuits
involved in associative learning as further introduced in section 1.2.

Recordings of neural activity during behavior allow investigating the relation of
brain-internal signals to sensory inputs and behavioral outputs and the transforma-
tions in between. In particular, continuous recordings over multiple days enable the
analysis of changes in cellular properties and their relation to learning. In the follow-
ing sections we introduce different methods for recording neural activity and con-
sider the challenges associated with the analysis and interpretation of the recorded
data.

1.1.4 Recording techniques

To record the activity of individual neurons in awake animals, one can either use
electrophysiological or optical recording techniques and both approaches have their
advantages and disadvantages. Common electrophysiological approaches use ex-
tracellular electrodes for single-unit or multi-unit recordings and directly measure
the electrical activity caused by action potentials evoked in the surrounding cells at
high temporal resolution [25]. While this approach has led to countless neuroscien-
tific advances, it has key limitations [26]. First, it is difficult to record from the same
cells over multiple days. Second, the cell type and connectivity of a recorded neuron
is not easily identifiable. And third, the number of neurons that can be recorded from
simultaneously is substantially lower than in imaging approaches. Although the
third point saw recent improvements with the development of novel high-density
electrodes [27], the first two still limit the applications of electrode recordings.

Over the last two decades, calcium imaging has emerged as a powerful alternative
to electrode recordings with complementary strengths [26]. Using fluorescent cal-
cium indicators as an indirect measure of neural action potentials, large populations
of up to thousands of neurons can be recorded simultaneously using fluorescence
or excitation microscopy [28]. Due to their stable position in the microscope field
of view, individual neurons can be identified over multiple recording sessions en-
abling long-term recordings. Additionally the use of calcium indicators enables di-
verse strategies to tag specific cell subsets, e.g. based on their genetic identity or
projection specificity via genetic and viral strategies. However, one key limitation
of calcium imaging approaches is the low temporal resolution originating from the
slow kinetics of the used calcium indicators (see [29] for a review). Imaging neu-
ronal fluorescence signals requires optical access to the investigated tissue. Cranial
windows can be used to make the surface of the brain visually accessible through
a cover glass [30]. Two-photon microscopy allows imaging up to several hundred
micrometers deep from the brain surface [31]. However, many deep brain regions
remain inaccessible using this approach. This issue can be circumvented by the use
of gradient index (GRIN) lenses, that can be implanted directly above the region
of interest, such that deep brain signals are relayed outside of the animal’s skull
[32].



1.1. Learning in neural systems 5

One restriction that results from the use of regular microscopes is that animals have
to be head-fixed below the microscope for the recording of neural signals. This im-
poses severe limitations on the study of neural signals relating to behavioral para-
digms, which often require animals to move freely. One approach to study motion-
based behaviors using two-photon microscopes is the use of virtual reality systems
[33, 34, 35]. In such a setup, animals are head-fixed, but can navigate through a
virtual environment presented on a screen by moving on an air-supported spher-
ical treadmill. An alternative approach that allows for actual motion is based on
miniaturized head-mounted microscopes [36, 37]. A widely used system that is also
employed in this thesis is combining such miniature microscopes with GRIN lenses
implanted above the area under investigation [37, 38, 39].

1.1.5 Population level analysis of neural activity

The possibility to simultaneously record the activity of hundreds of neurons results
in the challenge of analyzing this high-dimensional neural activity [40]. In early
sensory areas, the activity of individual neurons can often be understood in terms
of simple stimulus features [8]. However, activity in higher-order brain areas gets
increasingly difficult to interpret. For example, a cell might be responsive to multiple
different variables relevant to a given task [41].

Encoding approaches, often based on generalized linear models (GLMs), attempt
to reconstruct the activity of individual cells through linear combinations of differ-
ent predictive variables, such as stimuli, behaviors or the activity of other neurons
[42, 43, 44]. Populations of neurons can then further be analyzed in terms of the
parameters of these encoding models.

Conversely to the encoding approach, decoding approaches make use of pattern
recognition methods such as support vector machines (SVMs) for assessing what
kind of information is represented in the recorded neural population activity [41,
45]. In particular, differences in the performance of decoders trained at different time
points can reveal dynamic processes that change the information content contained
in neural recordings. Cross-temporal analysis of the different decoders can further
give an indication of how information is encoded at different time points [46]. In a
similar way, one can compare decoders trained with data from different recording
sessions to assess changes in neural coding over longer time scales, such as changes
associated with learning [39].

A more direct way to investigate dynamic processes unfolding on the population
level is the use of dimensionality reduction techniques [47, 48, 49]. This approach
facilitates the interpretation of high-dimensional neural activity, since single cell ac-
tivity can often only be understood when analyzed in relation to the activity of other
cells in the recorded population [50, 51]. In many cases, the low-dimensional rep-
resentation resulting from dimensionality reduction constitutes a good summary of
population-level dynamics and can be related to the computations involved in a
given task [52]. To further facilitate interpretation, information about task-variables
can be directly integrated into the dimensionality reduction process [51, 53]. Such
techniques can be used to obtain state-space dimensions that contain information
specifically related to aspects of a task that are of particular interest.

Finally, population dynamics can be analyzed by fitting latent factor models in the
form of dynamical systems that capture the processes underlying the variability in
neural population recordings. Over the last years such fitting procedures have been
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introduced for linear [54], switching linear [55] as well as nonlinear dynamical sys-
tems [56].

1.2 Neural circuits for associative learning and adaptive be-
haviors

1.2.1 The fear circuit

Studies on the neural basis of fear conditioning identified the amygdala as the key
region for learning CS-US associations [1]. The amygdala consists of multiple sub-
nuclei such as the basolateral amygdala (BLA) and the central amygdala (CeA). The
connectivity and physiology of different cell types and microcircuits have been ex-
tensively studied in relation to sensory stimuli and behavioral outputs [57]. In a
simplified picture, CS-US associations are learned in the BLA [39, 58], while CeA
circuits mediate the expression of freezing behavior via projections to the periaque-
ductal grey (PAG) [2, 59, 60]. However, the acquisition of fear memories and the
expression of fear-related behaviors generally depend on a distributed network of
brain areas [61, 62]. In particular, the medial prefrontal cortex (mPFC) is thought
to provide top-down control signals to the BLA [63, 64, 65]. Within the mPFC, the
prelimbic (PL) and infralimbic (IL) subregions, are associated with the expression
of fear, and the regulation of extinction, respectively. Manipulation studies have
demonstrated opposing effects on freezing when stimulating PL (increased freez-
ing) and IL (decreased freezing) [66]. It has further been shown that PL activity is
necessary for the expression of learned fear using pharmacological [67] and optoge-
netic approaches [68]. Using electrode recordings, Burgos-Robles et al. [69] showed
that fear conditioning induces tone responses in PL, and that the time course of these
conditioned responses correlates with freezing behavior. As such correlations had
not been observed in the lateral amygdala, which drives PL responses, the authors
suggested that mPFC transforms transient sensory-evoked signals into sustained be-
havioral outputs which are fed back into the basal amygdala. mPFC and BLA are
bidirectionally connected [61, 70] and coordinated activity between the two areas has
been shown to regulate fear behavior [71] and to mediate between conflicting mo-
tivational drives [72]. Courtin et al. [73] investigated the mechanistic basis of pre-
frontal involvement in fear expression and found that local interneurons organize
mPFC output to the BLA to drive behavior execution. During fear expression, the
coordination of neural activity in mPFC and BLA is based on a 4Hz rhythm [74] and
the manipulation of this rhythm in mPFC can bidirectionally modulate fear expres-
sion [75]. Taken together, these results show that mPFC receives information about
threat related stimuli and is involved in producing freezing behavior. However, it
remains unclear if and how threat related activity is transformed within mPFC to
drive behavior, especially in the context of the observed 4Hz rhythm.

1.2.2 Prefrontal circuits in sensation and behavior

Outside of its role in fear conditioning, the rodent PFC has been studied in the con-
text of various other learning processes linking sensory inputs and behavioral out-
puts (see [76, 77] for reviews). One common motif found in different types of condi-
tioning is that prefrontal cells only display substantial responses to sensory stimuli,
once they have gained a behavioral relevance, e.g. through predicting a reward or
punishment [69, 77, 78]. Le Merre et al. [79] show that the strength of sensory re-
sponses correlates with task performance and that mPFC inactivation significantly
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decreases performance. These results indicate a role for sensory-driven mPFC sig-
nals in behavior execution, but how a transformation from sensory signals to behav-
ioral outputs is implemented is still unclear. mPFC’s role in behavior execution has
been studied through optogenetic manipulation of projection-specific subpopula-
tions that relay prefrontal signals to subcortical areas involved in behavior execution
such as the nucleus accumbens (NAc), the paraventricular thalamus (PVT), the BLA
or the PAG. Using this approach, mPFC has been shown to be involved in the execu-
tion of social [80, 81], defensive [68, 82, 83] and reward-based behaviors [77, 78]. Yet
it remains challenging to relate activity in these subpopulations to sensory driven
activity. Otis et al. [78] show that mPFC neurons projecting to the NAc and PVT
are biased to display positive and negative stimulus-evoked responses respectively.
Further, manipulation of these projection-specific subpopulations has opposing in-
fluences on behavior execution. These findings provide a first link between mPFC
stimulus representations and their relation to driving behaviors. Yet it is difficult to
assess a transformation from stimulus-evoked activity to behavioral outputs due to
task-inherent overlaps of stimulus presentation and behavior execution.

Another line of research investigates mPFC’s role in the learning of rules and cat-
egories. While such functions are well established for primate PFC [84], they have
only recently been described for mPFC in rodents [85, 86]. In the context of links be-
tween stimuli and behavioral output, such rule and category representations are in-
teresting as they are usually investigated in terms of changing mappings from stim-
uli to responses. For example, in the work of Reinert et al. [86], mice were trained
to classify visual stimuli into two categories based on different stimulus features by
licking on one of two reward spouts. Category selectivity was then defined based
on differences in a neuron’s activity in response to stimuli within and between cat-
egories. The presence of such category selectivity again shows that mPFC neurons
represent sensory inputs in a manner that is geared towards their behavioral rele-
vance. However it remains unclear if and how these contextualized sensory repre-
sentations are used to drive specific behaviors. Work on cognitive flexibility shows
that different actions [87] and strategies [88, 89] are correlated to different activity
patterns in mPFC neurons. Yet, how such behavior related activity relates to sen-
sory input is still unclear. Overall these results are consistent with a model in which
mPFC attributes learned meaning to sensory information and guides the selection
of appropriate behaviors in an efficient and flexible manner, but the mechanisms of
such transformations remain to be understood.

1.2.3 Neural circuits involved in active avoidance

The learning and execution of active avoidance behavior is mediated by a network
of brain areas associated with both classical and instrumental conditioning [90]. In
particular NAc, BLA and mPFC have been implicated in orchestrating the balance
between passive and active fear-induced behaviors [91]. Dopamine signalling in the
NAc predicts avoidance [92] and inactivation studies have shown that the NAc is
required for the execution of avoidance actions [90, 93]. Lesions or inactivation of the
BLA resulted in similar effects on avoidance expression [90, 93, 94], establishing the
necessity of this area. During avoidance learning, animals have to suppress freezing
in order to perform avoidance actions. Consistent with this notion of suppression,
lesions of the CeA, which is crucial for the expression of freezing, do not affect or
even promote avoidance [94]. A recent study further added to the understanding of
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this circuit by showing that divergent PVT projections to CeA and NAc control the
balance between the opposing behaviors of freezing and avoidance [95].

As introduced above, the mPFC projects to BLA, NAc and PVT. In the context of
active avoidance, mPFC activity has been shown to be elevated during sustained
avoidance [96] and necessary for the expression of avoidance actions [97, 98]. In a
recent study, Jercog et al. [99] showed that mPFC tone responses are driven by inputs
from the BLA and that mPFC activity predicts avoidance responses. These results
indicate that mPFC might transform threat-related information to drive avoidance
actions. This view is consistent with a recent optogenetic study that studied the ef-
fect of stimulating and silencing mPFC projections to NAc and BLA [100]. The study
found that mPFC could bidirectionally modulate avoidance behavior via these two
projections. These results suggest a model in which mPFC uses sensory information
to orchestrate active and passive defensive behaviors. However, as for fear con-
ditioning and other paradigms, how such a transformation from sensory signal to
action initiation signal is implemented is still unclear.

1.3 Challenges and open questions addressed in this thesis

As described above, it is well established that mPFC is involved in the execution
of various conditioned behaviors and that behaviorally relevant stimuli evoke re-
sponses in mPFC neurons. However, it is still poorly understood how stimulus-
driven mPFC activity specifically relates to the execution of behavior. Many studies
that investigate the link between sensory-driven activity and behavior combine neu-
ral recordings with manipulation approaches to assess the relevance of some form of
neural activity to behavior. However manipulations of neural activity are limited in
terms of their specificity. While stimulus-evoked activity can be precisely identified
in the recordings, it remains challenging to specifically manipulate activity patterns
related to stimulus presentations. This lack of precision restricts the specificity of
statements regarding causal relations between activity and behavior. For example,
when inhibiting or stimulating an entire brain area, it is unclear whether the result-
ing effects on behavior are caused by the manipulation of specific activity patterns
related to sensory stimuli or rather by disrupting a network that is generally impor-
tant for the regulation of behavior.

The specificity of manipulation techniques can be increased using different strate-
gies such as the targeting of genetically or anatomically defined cell types, or the use
of temporally precise manipulations. For example, as previously mentioned, Otis et
al. [78] manipulate projection-specific subsets of prefrontal neurons to demonstrate
opposing effects of behavior. To link these opposing effects to stimulus-related ac-
tivity, the authors perform projection-specific imaging and show that there is a bias
in how cells in the different subpopulations respond to a conditioned tone stimu-
lus. While these results are important, the links between stimulus-related activity
and behavior that can be demonstrated with this approach are limited to effects that
align with the used manipulation and recording strategies.

In this thesis we use a complementary approach to address these limitations. Instead
of manipulating neural activity while observing changes in stimulus-induced behav-
ior, we manipulate the stimulus-response mapping that an animal learns through
conditioning and observe the concurrent changes in neural activity. This approach
allows us to investigate the nature of stimulus-response mappings in mPFC by ob-
serving changes in neural activity upon learned changes in the association between
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sensory inputs and behavioral outputs. We train mice on different conditioning
paradigms with dynamic stimulus-response mappings and record prefrontal neural
activity using miniature fluorescence microscopes for calcium imaging over multiple
days. This technology is well suited, as it enables recording large numbers of cells in
freely moving animals. Crucially, the ability to track the activity of individual cells
over the full course of an experiment allows us to evaluate changes in coding over
the time scales associated with learning.

We start with a classic fear conditioning experiment to investigate how stimulus-
related and behavior-related activity interact in mPFC and change over the course
of learning and extinction. We then design two active avoidance paradigms in which
we change the mapping between stimuli and instrumental behaviors over time. In
the first experiment, we change the behavior induced by a single tone, whereas in
the second experiment, we change the tone which induces a single behavior. By
quantifying the effect that these manipulations have on mPFC activity, we can make
statements about the nature of the link between stimuli and behaviors. To identify
and quantify neural signals related to stimuli and behaviors we employ population-
level decoding approaches. By analyzing and comparing neural coding at different
time points, we gain insights into the temporal evolution of mPFC representations
over learning. Finally, we compare and interpret the results of our different exper-
iments to obtain a clearer picture of how mPFC is involved in linking stimuli and
different types of behaviors.
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Chapter 2

Methods

2.1 Calcium imaging with miniaturized fluorescence micro-
scopes

In this section we will introduce the methodology of calcium imaging with head-
mounted miniature fluorescence microscopes, and describe the experimental proce-
dures we used to acquire the data sets that are considered in this thesis. All active
avoidance data sets were acquired as described in this chapter, while the fear condi-
tioning data set was acquired by Benjamin Grewe in Stanford, using closely related
procedures as described in [39]. Below, we will detail how mice were prepared for
imaging experiments, how these imaging experiments were conducted, and how we
validated the source of the recorded signals by post-mortem analysis of the consid-
ered brain tissue.

2.1.1 Surgical procedures

Calcium imaging experiments require the use of calcium indicators that emit light
in response to neural activity, as well as optical access to the tissue under considera-
tion. Here we briefly describe our imaging approach before detailing all procedures
below. There are various different calcium indicators and approaches for introduc-
ing them into the neurons of interest. Which approach to use depends on multiple
factors such as the considered cell type and brain region, the duration of the imag-
ing experiments or the required temporal resolution (for a review see [29]). Here, we
chose to work with GCaMP6m [101], which we introduce into prefrontal excitatory
neurons using a viral vector that is locally injected through a craniotomy. Recording
the fluorescence signals emitted by the used calcium indicators requires optical ac-
cess the investigated brain region. Since the prelimbic subregion of the mPFC, which
we investigate in this thesis, is located approximately 2 mm below the pia, the light
signals of interest are obscured by the tissue of more superficial brain regions as
well as the mouse’s skull. To obtain access to these deep-brain signals, we implant
a GRIN lens into the mouse’s brain, which relays the optical signals from PL to the
outside of the animal’s skull, where they can be imaged by a microscope. Finally,
as we are working with head-mounted miniaturized fluorescence microscopes, we
attach a base plate to the mouse’s skull, which allows mounting the microscope for
imaging sessions and detaching it again afterwards.

All procedures were approved by the Veterinary office of the Kanton Zurich (Can-
tonal Veterinary Office Zurich; active avoidance experiments) or in accordance with
the regulations of the Stanford Administrative Panel on Laboratory Animal Care
(fear conditioning experiment).
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Subjects. Experiments were performed on male C57BL6/J mice (Jackson Labs US;
fear conditioning experiment) and C57Bl6/Crl1 mice (Charles River Germany; ac-
tive avoidance experiments), between 4 to 7 months old at the time of the behavioral
experiment. Animals were housed in individually ventilated cages (IVC) in a 12h
light/dark cycle room (lights on from 7:00 am to 7:00 pm), and were provided food
and water ad libitum. After import from the breeders, mice were given a 2 weeks
period to acclimatize to the new housing condition prior to the first surgery. Mice
used in active avoidance paradigms were kept in groups of 2 to 5 animals. For fear-
conditioning experiments, mice were individually housed at least 14 days prior to
the start of experiment.

Anesthesia. For all procedures including anesthesia mice received preemptive bu-
prenorphine (Bupaq; Streuli, 0.1 mg/Kg) 20-30 minutes prior to anesthesia. Anesthe-
sia was induced with a Ketamin-Xylazin cocktail (Ketanarcon; Streuli, 90 mg/Kg /
Xylazin; Streuli, 8 mg/Kg), and mice were subsequently mounted onto a stereotactic
frame (Kopf Instruments). During the procedure mice received 95% medical oxygen
(Pangas, Conoxia) through a face mask and body temperature was kept steady at 37
degree Celsius using a temperature controller and a heating pad.

Viral injections. At the time of the virus injection surgery, mice were 8 - 12 weeks
old. To label excitatory neurons in the prelimbic cortex, we intracranially injected
500nl of an adeno-associated virus driving the expression of GCaMP6m via the
CamKII promoter (AAV2/5-CamKIIa-GCaMP6m; Schnitzer-lab) into the prelimbic
cortex (1.8 mm anterior, 0.4 mm medial, 2.1 mm ventral relative to bregma). The
virus was injected either via a micropump (UMP3UltraMicroPump; WPI) or via
a borosilicate glass pipette with a 50 µm diameter tip connected to a picospritzer
(Parker), using short pressure pulses at a speed of approx 100 nl/min. After injec-
tion, the needle was left in place for 5 minutes to avoid back-spill and finally the skin
was closed using suture.

Microendoscope implantation. 7 to 14 days after the viral injection, we implanted
a small stainless steel guide tube (1.2 mm diameter; Ziggy’s tubes and wires) with
a custom glass coverslip (0.125 mm thick BK7 glass, Electron Microscopy Science)
glued to the bottom end, above the injection site (c.f. [38, 37]). In brief, we first made
a round craniotomy (1.3 mm diameter) centered above the prelimbic cortex (1.8 mm
anterior, 0.4 mm medial relative to bregma). To avoid increased intracranial pressure
when inserting the implant, we aspirated tissue down to a depth of 1.9 mm from the
skull surface. Next, we lowered the guide tube to the bottom of the incision (2.2
mm relative to skull surface) and glued the guide tube to the mouse skull using UV
curable glue (4305 LC: Loctite). We then applied dental cement (metabond; Parkell
or Scotchbond ESPE; 3M) over the complete cranium and around the guide tube.
Finally we attached a metal bar and applied dental acrylic cement (Paladur) to build
up and stabilize the implant. Animals received 6-10 weeks recovery time before
testing viral expression levels.

Selection of animals for imaging. To assess the quality of the preparation, we
head-fixed mice on a running wheel and inserted GRIN lens into the guide tube
(GT-IFRL-100-101027-50-NC; GRIN-Tech). We then placed the miniature microscope
(nVista HD 2.0, Inscopix) over the GRIN lens and visually assessed the quality of the
recorded signals. We only used animals if viral expression lead to considerably high
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fluorescence levels that allowed us to clearly resolve the activity of distinct neu-
rons.

Base plate mounting. Approximately one week before starting behavioral experi-
ments we prepared mice for imaging with the miniature microscope. First, we anaes-
thetised animals and mounted them onto a stereotactic frame (Kopf Instruments).
Next, we glued a GRIN lens into the guide tube to allow permanent access to neural
signals. We then precisely positioned the microscope (base plate attached) above the
GRIN lens to find the optimal focus plane. Finally, we attached the microscope base
plate to the skull using blue light curable glue (Pentron; Flow-it) and detached it
from the microscope.

2.1.2 Imaging experiments

Habituation to the microscope. Prior to behavioral experiments, we habituated
all mice to the microscope mounting procedure and the weight of carrying the mi-
croscope for at least three consecutive days. During the mounting procedure, an-
imals were briefly head-fixed on a custom made mounting station with a running
disc using their metal head bar. We then attached the microscope to the base plate
and let the animal freely explore an open arena within the experimental room for
10 minutes. Additionally, subjects were handled for five out of seven days by the
experimenter.

Imaging parameters. During the habituation procedure, we determined the opti-
mal recording parameters for the nVista miniscope. First, we adjusted the micro-
scope focus to optimize image quality. The focus setting of the nVista miniscope is
based on a screwing mechanism that rotates the camera sensor to increase or de-
crease its distance to the specimen. Through this rotation, the focus setting affects
the orientation of the recorded images with respect to the mouse’s orientation. We
only worked with 90 degree rotations and noted the sensor’s orientation to be able to
relate the orientation of the recorded images to the orientation of the mouse brain in
our analyses. Next, we selected a 1000 × 1000 pixel field of view from the available
1440 × 1080 pixel space according to the local quality of the preparation. We then
set the LED intensity to the minimal value that produced sufficiently bright images.
The required intensity depends on the strength of GCaMP6m expression and high
LED power leads to undesirable photobleaching, which has to be accounted for in
the analysis of the resulting movies (cf. section 2.3.1). Over all subjects, we used an
LED intensity between 10% and 25% (0.2-0.5 mW/mm2), while the imaging sensor
gain level was always set to its maximum value of 4.

Data acquisition. Before each recording session we carefully chose the field of
view to match the one determined during the habituation procedure to facilitate
between session alignment. Start, end and synchronization of the recording was
controlled by the behavioral setup as described in section 2.2. We acquired frames of
1000 × 1000 pixels with 16 bit precision at a frame rate of 20 Hz. All recorded data
was directly streamed to the hard disc of the recording computer.

2.1.3 Histological validation of recording location

After recordings were completed, mice underwent terminal anesthesia with Pento-
barbital (Esconarkon; Streuli, 200 mg/Kg). We transcardially perfused all mice with
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FIGURE 2.1: GRIN lens implant location for an example mouse. (A) Coronal brain slice
with Nissl stain (red) and GCaMP6m expression (green) below the hole left by the im-
planted microendoscope. (B) Estimated location (red bar) of the implant in PL (borders
indicated in green), overlaid on the appropriate coronal section of the Paxinos reference
atlas [102].

PBS followed by cooled paraformaldehyde (4% PFA). Next, we removed brains from
the cranium and stored them in PFA for 24-28 hours. We then used a Vibratome
(VT2000s, Leica) to cut 50 µm thick coronal brain slices and stored them in PBS. To
highlight cytoarchitectorial structures in the prepared slices, we performed a Nissl
stain to label cell bodies with Alexa Fluor. Next, we mounted all slices on micro-
scope slides and acquired large field-of-view images with a standard fluorescence
microscope (Z16, Leica) using two channels for GCaMP6m and Alexa. Finally, we
used a reference brain atlas [102] to estimate the position of the endoscope in the
recorded images as shown for an example animal in Fig. 2.1. Most implants were
situated in PL, but due to slight variations we use the term mPFC throughout the
thesis.
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2.2 Behavioral setup for active avoidance experiments

In this section we describe the experimental setup we built for conducting different
types of active avoidance experiments. The experimental setup of our fear condi-
tioning experiments is detailed in [39]. We start by describing the basic components
and control mechanisms used for a standard active avoidance paradigm and later
explain the additional features we added to enable more complex experimental de-
signs (see sections 4.1 and 5.1).

2.2.1 Basic components

In a standard active avoidance paradigm, a mouse is placed in a two-compartment
box and learns to shuttle between the two compartments in response to a tone, in
order to avoid receiving an aversive foot shock (for a detailed explanation see sec-
tion 4.1). We used a combination of commercially available hardware and custom
build extensions and control software to create a flexible active avoidance setup that
we used in various settings. To minimize the influence of external stimuli, we built
the setup in a ventilated and illuminated isolation box (Campden Instruments, 4120-
6, displayed in Fig. 2.2). We used a shuttle box with two shock grids (Coulbourn,
H10-11M-SC), that were individually controlled by two precision shockers (Coul-
bourn, H13-16). The two compartments of the box were originally separated by a
wall with a small opening. We replaced this wall with a small hurdle in order to
allow mice to shuttle between the two compartments with a head-mounted micro-
scope, while maintaining the compartmentalization. Tones were supplied at 75 dB
by a pair of stereo speakers (Logitech, Z2000) and the inside of the shuttle box was
recorded by two behavior cameras with overlapping fields of view (ImagingSource,
DMK 23FV024). We controlled all experiments via a Windows 10 PC running con-
trol software written in MATLAB (The MathWorks, 2017a). The PC was connected
to actuators and sensors via a National Instruments PCI card (PCIe-6323) and a data
acquisition device (BNC-2090A). To dynamically control stimuli during an experi-
ment, we used an Arduino microcontroller (Nano 3.0) and a custom designed PCB
(printed through Eurocircuits) as described in the following section.

2.2.2 Control software and dynamic gating of stimuli

To automatically control stimulus presentations and data acquisition, we wrote a
custom MATLAB software package (code available at https://gitlab.ethz.ch/
henningc/fear_conditioning_setup, access upon request). In this package, the
structure of an experiment is determined by a design file, which specifies the timing
of tone and shock presentations. During an experiment, these predefined signals
are sent out via the National Instruments Data Acquisition board (NIDAQ). In order
to ensure temporal precision of all signals, outputs are buffered onto the NIDAQ.
However, in the active avoidance paradigm, we need to adjust stimulus presenta-
tions based on the subject’s behavior. In particular, we need to determine in which
compartment to supply the shock based on the subjects position at the beginning
of a trial, and we need to be able to dynamically suppress tones and shocks when
the subject performs the shuttle behavior. To achieve this, we developed an addi-
tional hardware component that acts as a gate between the scheduled output signals
of the NIDAQ and the speakers and shockers that receive these signals. Using this
gating system, we route shocks to the appropriate compartment for each trial, and
block tones and shocks whenever the subject shuttles from one compartment to the

https://gitlab.ethz.ch/henningc/fear_conditioning_setup
https://gitlab.ethz.ch/henningc/fear_conditioning_setup
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FIGURE 2.2: Photograph of active avoidance setup displaying isolation box, shuttle cage
with two top-view cameras, speakers and precision shockers placed on top of the isolation
box.

other during a trial (i.e. when the animal performs avoidance or escape actions).
We built this system based on an Arduino microcontroller that receives information
about the subject’s position via a USB connection and gates tone and shock signals
via an attached PCB. The position of the subject is inferred by our MATLAB code,
via a callback function that is triggered for every pair of frames recorded by the two
behavior cameras. Importantly, this information is communicated to the Arduino
via USB, and is thus not dependent on the buffered NIDAQ output scheduling. Fur-
thermore, the Arduino is flexibly programmable and extendable, which allowed us
to differently treat the two tones in our two tone experiment (section 5.1) and to
automatically control motorized platforms in our two-dimensional active avoidance
experiment (sections 2.3 and 4.1).

2.2.3 Data acquisition and synchronization

During an experiment, we record data from multiple sources through different chan-
nels. To record miniscope calcium imaging movies, we use the dedicated Inscopix
recording software, while we use MATLAB’s image acquisition package to record
frames from the two behavior cameras. Additionally, we use the NIDAQ board to
record the output of the Arduino, which determines the target compartment of the
shock signal and controls the blocking of stimulus presentations. For data analysis,
it is crucial, to properly synchronize these recordings. In order to synchronize the
frames recorded from the miniscope and behavior cameras, we used the SYNC out-
put of the miniscope’s DAQ box as a hardware trigger for recording frames with the
behavior cameras. The SYNC output emits a TTL signal for every frame recorded
by the miniscope. Thus, we acquire synchronized frames from the two sources at 20
Hz (our default recording frame rate for the miniscope). The NIDAQ board records
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the Arduino outputs at 1000 Hz and recordings are precisely aligned to the start
and end of an experiment. This high recording rate and precise alignment allowed
us to downsample NIDAQ recordings to match the 20 Hz frequency of the movie
recordings.

2.2.4 Automated platforms as flexible safe zones

In conventional active avoidance experiments mice are trained to shuttle between
the two compartments of the shuttle box. The shock grids in these compartments
can be controlled individually, to make sure that animals that escape the shock in
one compartment immediately notice the absence of the shock in the other compart-
ment (i.e. there is no delay through a shuttle detection system that shuts off the
shock). This hardware implementation limits the possibilities to compartmentalize
the shuttle box to the compartments defined by the shock grids. To enable more
complex experimental designs based on changing the compartmentalization of the
shuttle box, we developed an automated platform system, that allowed us to flexi-
bly define safe zones during active avoidance trials (Fig. 2.3). This system comprises
four 3D-printed platforms, that tile the cage and can be lifted up between the bars
of the shock grid, such that animals can stand on the platform without touching the
shock grid (Fig. 2.3A,C). We build a lifting mechanism located below the shock grid
using LEGO technic (Fig. 2.3B). The lifting mechanisms of the four platforms were
automatically and individually controlled by four motors that operate pulling cables
which lift or lower the platforms (Fig. 2.3D). Motors were located outside of the iso-
lation box and controlled by the Arduino. The exact use of these platforms for the
two-dimensional active avoidance paradigm is detailed in section 4.1.

2.2.5 Analysis of behavior recordings

We recorded animal behavior within the shuttle box using two top-view cameras
with slightly overlapping fields of view (Fig. 2.4A,B). To analyze these recordings,
we first stitched the two videos together. We first cut out the overlapping regions
in the two videos and stretched each row of pixels using interpolation to recover
the original frame sizes (Fig. 2.4C). To track the location of the mouse in the stitched
video, we used DeepLabCut [103]. We used the tool to track the positions of 5 marker
points throughout all behavior videos: miniscope top, miniscope base, left ear, right
ear and tail base (Fig. 2.4D). For analyses which required the use of a single tracking
point, we calculated the mouse centroid as the mean of the positions of all markers
excluding the miniscope top. An example motion trace of this centroid is displayed
in Fig. 2.4E.
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FIGURE 2.3: Photographs displaying automated platform system. (A) 3D-printed platform
that fits between the bars of the shock grid. (B) Platform raising mechanism based on Lego
technic. Platforms can be individually raised by pulling on the red cables. In the displayed
picture we only mounted one of the four platforms to illustrate the lifting mechanism. The
top left stage is in the raised state, all other stages are in the default state. (C) Platform
system attached below shock grid. Upper right platform is in the raised state, such that an
animal can stand on it without touching the shock grid. (D) Motors attached to the outside
of the isolation cage, which operate the pulling mechanism via the red cabled.

FIGURE 2.4: Analysis of behavior camera recordings. (A,B) Simultaneously recorded ex-
ample frames of the two behavior cameras which have overlapping fields of view. (C)
Result of the stitching procedure (D) DeepLabCut tracking points: miniscope top (red),
miniscope base (orange), left ear (green), right ear (blue) and tail base (purple). (E) Motion
trace of a 5 minute window displaying exploratory behavior.
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rease has sparked research on ways to automatically extract neural signals from cal-
cium imagin

2.3 Signal extraction from calcium imaging movies

Recent advances in calcium imaging technologies have drastically increased the
amount of data that can be recorded in a typical experiment. This incg movies in
order to deal with large data sets (for reviews see [104, 105]). The challenge of sig-
nal extraction is to correctly assign light intensity changes in the recorded movies
to individual cells and to distinguish a given cell’s activity from other sources of
light (in the following referred to as noise). The nature of this noise depends on
the features of a given experiment, such as the cytoarchitecture of the investigated
brain region or the used calcium indicator and imaging technology. For example, the
analysis of 2-photon microscopy data [106, 107] differs from the analysis of 1-photon
microscopy data [108, 109], as 1-photon measurements include more out-of-focus
fluorescence signals due to the bigger integration volume as compared to 2-photon
measurements. Existing analysis approaches differ in the way they deal with these
sources of noise. While one approach is to remove all undesired signals in a prepro-
cessing step [110], other approaches explicitly model different sources of variability
with appropriately constrained models [106, 108]. However, this modelling comes
at the expense of additional computational costs.
Here, we chose to use the former approach in order to keep signal extraction com-
putationally efficient to allow the processing of large data sets. This efficiency offers
an elegant solution to a challenge occurring in experiments that consist of multiple
recording sessions: tracking individual cells over multiple days. Movies that are
acquired over different sessions can differ in the captured field of view (through
e.g. translations or rotations), and the identified cells need to be matched between
recordings. The classical way to achieve this is to identify cells per day, and to then
attempt to match as many cells as possible between sessions based on their loca-
tion (c.f. [39]). Here, we follow a different approach: we first align and concatenate
movies from different recording sessions, and then perform signal extraction once
for the joint movie. This approach has two key advantages: First, data annotation
requirements are reduced from once per session to once per subject, which amounts
to a factor of up to 11 in our data sets and second, for every identified cell, we ob-
tain an activity trace over the full duration of an experiment. This is usually not the
case when matching cells identified in individual sessions. For example, a given cell
might be identified in some sessions, but not in others, e.g. due to low activity levels
or variability in the signal extraction algorithm or the annotation process. In con-
trast, this issue does not occur with the joint analysis of multiple aligned sessions.
In the following sections, we will describe the steps from raw imaging data to vali-
dated neural activity of cells that we can follow over all recording sessions. We start
with the preprocessing process, where we detail how different sources of noise are
addressed. We then introduce the PCA/ICA algorithm, explain how to align record-
ings from different sessions and show how to jointly process them in a memory-
efficient way. Finally, we cover data annotation procedures to validate the automat-
ically extracted neurons. An implementation of this processing pipeline is available
at https://gitlab.ethz.ch/behret/movieanalysis (access upon request).

https://gitlab.ethz.ch/behret/movieanalysis
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FIGURE 2.5: Illustration of filtering steps used in preprocessing. (A) Raw output of the
nVista microscope. (B) Band-pass filtered version of (A). Structural features such as blood
vessels are highlighted to facilitate pairwise registration of frames for motion correction
(cutoff frequencies: 30-80 pixels). (C) Frame from (A) divided by its low-pass filtered
version. Low-pass filtering isolates signals with a large spatial extent, which are then
removed from the original frame through division (cutoff frequency: 7 pixels). Scale bar:
100 µm.

2.3.1 Preprocessing

In all experiments we started the analysis with the raw output files of the nVista 2.0
HD microscope, which contained 1000 × 1000 pixel images recorded at 20 Hz. In
a first step, we concatenated all recording files belonging to one session and down-
sampled each frame by a factor of two, resulting in movie stacks of size 500 pixel ×
500 pixel × n, where n is the number of frames recorded in a given session. Subse-
quently we applied the following preprocessing steps to prepare the recorded data
for signal extraction.

Motion correction and temporal downsampling To account for small translations
of the field of view originating from motion of the head-mounted microscope, we
used an established image registration method (Turboreg [111]). To align all frames,
we randomly selected a reference frame and performed pairwise registration with
all remaining frames. To facilitate registration, we applied a spatial band-pass filter
to every frame, which enhances constant structural features such as blood vessels
(see Figure 2.5). We used cutoff frequencies of 30 and 80 Hz for the band-pass filter
for all experiments. After obtaining registration coordinates using the band-pass
filtered frames, we used these coordinates to align the frames of the original movie.
Next, we cropped all pixels on the edges of the field of view, for which information
was lost in frames that had to be corrected. Finally, we downsampled the corrected
movie in time by a factor of 4 for computational efficiency, resulting in a 5 Hz frame
rate.

Debleaching Photobleaching leads to a decrease in signal intensity, in particular
for long imaging sessions and high LED power values. This signal decrease needs
to be accounted for in order to avoid the contamination of neural activity signals.
One way to address spatially uniform changes in signal intensity is to normalize
each frame using filtering techniques. However, we observed that bleaching differ-
ently affects individual pixels in the recorded movies, especially in relation to blood
vessel patterns (see appendix for details and illustration in Fig. 7.1). To address this
issue, we built a low-rank model of the slowly changing pixel patterns associated
with bleaching and subtracted it from the movie. To build this bleaching model,
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we first represented the movie in matrix form by collapsing the two pixel dimen-
sions. We then temporally smoothed the movie with a window size of 400 seconds
to highlight the slow changes associated with bleaching and discard variability with
high temporal frequency (e.g. neural activity). Next, we used principle component
analysis (PCA) to determine the pixel dimensions which are most affected by slow
changes in pixel intensity (see Fig. 7.2). We then built a rank-2 bleaching model
by reconstructing the movie in the space spanned by the first two principle compo-
nents. Finally, we subtract the bleaching model from the original movie, to discard
the slowly changing variance captured by the rank-2 reconstruction.

Filtering Out of focus fluorescence causes changes in luminosity that have a larger
spatial extent than the signals of individual neurons. These luminosity fluctuations
can be isolated in individual frames using a spatial low-pass filter. Thus, to remove
wide-field luminosity fluctuations, we divided each individual frame by its low-
pass-filtered version (see figure 2.5). We used a cutoff frequency of 7 Hz for all
experiments.

DF/F In a final preprocessing step before cell extraction, we re-expressed all frames
in units of relative changes in fluorescence, given by ∆F(t)/F̄ = (F(t)− F̄)/F̄, where
F̄ is the mean frame obtained by averaging over the entire movie.

2.3.2 Signal extraction using PCA/ICA

Here we will give a brief introduction to the PCA/ICA algorithm from Mukamel et
al. [110] to explain how we used it for the joint analysis of long term recordings from
multiple sessions in the following sections. The goal of the algorithm is to assign
the variance in the preprocessed calcium imaging movies to independent sources
(i.e. neurons). These sources are represented as pairs of a spatial map and a tem-
poral trace, where the map indicates how individual pixels contribute to a given
source, and the trace indicates when the source was active (see Fig. 2.6). Indepen-
dent component analysis (ICA) is a source separation algorithm that can provide
such a decomposition, but it is too computationally intensive to be applied to cal-
cium imaging movies directly. However, principal component analysis (PCA) can
be used as a preparatory step to compress and denoise the movie data, allowing
further processing with ICA.

As PCA and ICA operate on matrices, we first represent the movie in matrix form
by collapsing the two pixel dimensions and obtain

M ∈ Rn×t (2.1)

where n is the number of pixels and t is the number of frames. We perform PCA to re-
duce dimensionality in the time dimension, i.e. we have n observations given by the
pixels and t variables given by the frames. Principle components can be computed
via the singular value decomposition (SVD) of M, or via the Eigendecomposition of
the covariance matrix of M. Here we choose the latter version, as it is more efficient
when the number of observations exceeds the number of variables, which is the case
for our data (usually on the order of 250000 pixels vs. 10000 frames).
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FIGURE 2.6: Illustration of PCA/ICA outputs. Top: Pixel maps of 4 example cells indicat-
ing cell location in the field of view. Scale bar: 100 µm. Bottom: 10 minute sample of the
activity traces of the 4 example cells.

Principle component analysis To perform PCA, we first mean-subtract each frame
of M to obtain the matrix M′ and calculate the covariance matrix CM

CM = M′T M′ (2.2)

where we omit the normalization by the number of samples, which is handled be-
low. We then calculate the Eigendecomposition of CM

CM = QΛQ−1 (2.3)

where Q is a t× t matrix that contains the Eigenvectors of CM and Λ is a diagonal
matrix containing the corresponding Eigenvalues. To reduce dimensionality, we can
consider the matrix

T ∈ Rt×k (2.4)

which consists of the first k ≤ t columns of Q, representing the Eigenvectors that
span the k-dimensional space in which in M has maximal variance. We then obtain
the first k principle components of M, by projecting M′ onto the space spanned by
T.

S = M′TΛ−
1
2 (2.5)

where S is a n× k matrix, whose columns contain the ordered PCs, and the normal-
ization with the singular values Λ

1
2 ensures that all PCs have a uniform variance of

1
n−1 .

Independent component analysis The matrices T and S already have the desired
output format displayed in figure 2.6, as the columns of S correspond to pixel maps
that describe the spatial structure of the k components, whereas the columns of T
correspond to the intensity of these components over the t frames. However, the
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components computed by PCA still mix signals from different neurons. To demix
these signals, ICA computes a linear transformation matrix

W ∈ Rk×l (2.6)

where l ≤ k is the predefined number of independent components. As the k princi-
ple components are defined through their spatial and temporal features reflected by
S and T, Mukamel et al. [110] use a spatiotemporal mixing matrix

X =

[
(1− µ)S

µT

]
(2.7)

with dimensions (n + t)× k as input to ICA, where the parameter µ determines the
relative importance of spatial and temporal information. In usual applications of
ICA, whitening of the input matrix is an important preprocessing step that ensures
that all dimensions are treated equally by ensuring the input dimensions are uncor-
related and have a variance of 1. Importantly, the former is already the case for S and
T. Furthermore, for both matrices all dimensions have uniform variance and differ-
ences between the two variances are absorbed by µ when combining spatial and
temporal information. To calculate W from X, we use the fastICA algorithm [112].
We then obtain the final spatial components S′ by demixing the spatial components
S with W.

S′ = SW ∈ Rn×l (2.8)

Finally, we obtain the demixed temporal traces T′ through the projection

T′ = MTS′ ∈ Rt×l (2.9)

For further processing, we restructure the spatial components in S′ such that S′ be-
comes a tensor with dimensions x× y× l, where x and y are the number of pixels of
the two dimensions of the recorded frames.

Parameter settings In accordance with Mukamel et al. [110] and based on explo-
ration with our data, we used a value of µ = 0.1 for all experiments. Based on
the quality of the individual calcium imaging movies, we set the number of inde-
pendent components l between 400 and 600, roughly corresponding to 1.5 times the
expected number of neurons. We then set the number of principle components k to
1.2× l.

2.3.3 Session alignment

Since the position of the miniature microscope is slightly different in every recording
session, the position of a given cell in the recorded field of view will not be the same
for different recordings. However, the relative position of all recorded cells stays
constant over multiple imaging sessions. Thus, to align two recordings, we can use
the positional information of the extracted cells contained in S′. To obtain a compact
representation of the cells’ locations, we create a cell map of size x× y by performing
a maximum projection over the third dimension of the tensor S′. Figure 2.7 shows
the cell maps of two example sessions and visualizes the transformation between
them.
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(A) (B)

FIGURE 2.7: Illustration of cell maps used for session alignment. (A) Cell map of reference
session. The white frame illustrates the transformation applied to this cell map (none for
reference session). (B) Cell map of example session that needed to be rotated to align with
the reference session. The necessary rotation is illustrated by the white frame. Scale bar:
100 µm

To align all recording sessions of a subject, we collect the corresponding cell maps
and align all of them to a reference session. We usually choose session b( s

2 )c as the
reference session, where s denotes the total number of sessions. If the alignment
based on this reference session is not satisfactory, we explore other reference ses-
sions until we find a good alignment. To align pairs of cell maps, we use MATLAB’s
imregister function. Note that the feasibility of such an alignment highly depends on
the quality of the recorded data. In a final step we visually validate all alignments
and exclude sessions for which proper alignment was not possible from further anal-
ysis.

Using the session alignments, we can concatenate the recordings of all sessions for
joint processing. However, the movies of different recording sessions might have
different signal to noise ratios. To account for these differences, we calculate the
overall standard deviation of all pixels for every session and then scale every session
to match the minimal standard deviation for a given subject. The resulting concate-
nated movie then contains DFOF values with a stable mean and standard deviation
over all sessions.

2.3.4 Joint processing of multiple sessions

Using the concatenated movie of all sessions of a subject, we can rerun signal extrac-
tion with PCA/ICA to obtain a common cell map over the full experiment. This has
the benefit, that we track cells over all sessions by design. This is not the case when
performing signal extraction per session on then matching cells between sessions.
If, for example, a cell is rarely active in some sessions but highly active in others,
it might only be identified in some sessions and can not be analyzed over the full
experiment. With our approach on the other hand, we follow the activity levels of
all cells throughout all recorded frames. However, this process creates challenges
due to the time and space complexity of the computations involved in PCA/ICA.
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The first problematic step is the calculation of the covariance matrix CM in equation
2.2. For individual sessions, we can simply load a movie into working memory and
calculate CM. When concatenating the movies of multiple sessions, already loading
all data becomes problematic. The size of a movie is given by

sm =
x× y× t× 4

10243 GB (2.10)

where x and y are the sizes of the two pixel dimensions, t is the total number of
frames and where every pixel is represented as a 4 byte floating point number (MAT-
LAB’s data type single). In our longest experiment (11× 12000 frames in total), sm
equals approximately 123 GB. Additionally, the size of the covariance matrix is given
by

sc =
t2 × 4
10243 GB (2.11)

and thus increases quadratically with the number of frames, totalling approximately
64 GB for our longest experiment. As our computing hardware is constrained to 128
GB RAM, we circumvent loading the full concatenated movie by splitting the com-
putation of the covariance matrix into batches of 12000 frames. Instead of computing
C directly, we compute all possible

Ci,j = M′i
T M′j (2.12)

where i, j ∈ {1, ..., b} are the batch indices and b is the total number of batches of the
mean-subtracted movie M′. C can then be simply assembled by concatenating all
Ci,j matrices. In our example, this procedure reduces the memory requirements for
movie data to approximately 22 GB, as only two batches have to be kept in working
memory at a time.

The second problematic step is the Eigendecomposition of C in equation 2.3. This
computation requires increased precision (from 4-byte single to 8-byte double), in-
creasing the original memory requirements sc by a factor of two. Additionally, the
computation of the Eigendecomposition of sc requires the same amount of RAM as
holding sc in memory. Thus sc is limited to one forth of the available working mem-
ory, i.e. 32 GB in our case. As the size of the full covariance matrix exceeds this limit,
we have to perform the calculation of the spatial components S′ with a subset of all
available frames. However, we can recover the activity traces over the full duration
of the concatenated movie, by projecting the full movie onto these spatial compo-
nents (see equation 2.9). To combine data from all sessions, we use a subset of 6000
consecutive frames from each session for the calculation of S′, yielding a manageable
covariance matrix.

Postprocessing A know issue with PCA/ICA is that individual cells are occasion-
ally split into multiple components if the number of independent components is not
set perfectly. To make sure we do not include split cells in our analyses, we remove
cells that have highly correlated activity (Pearson correlation > 0.7 and are spatially
close (centroid distance < 20 pixels).

2.3.5 Annotation

As a final step, we manually annotate the components resulting from joint extraction
for every subject. To judge whether a component accurately reflects the activity of
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FIGURE 2.8: Screenshot of the annotation software we use for validating all cells. The
panels display the key characteristics that we use to judge if a candidate cell is valid (see
text). Top left: Pixel map. Bottom left: Activity trace with detected events marked by red
crosses. Top middle: 10s cutouts around detected events (black) and averaging over all
aligned events (red). Right: Event snapshots given by cutouts around the cell location at
the time of detected events.

a cell over the full experiment, we make use of the following information (see Fig.
2.8):

• Component shape: The shape of the extracted spatial component needs to be
consistent with the typical size of a neuron in the recorded movie.

• Stability of overall trace: The extracted activity traces needs to have a stable
base line over all sessions and should ideally display clear events.

• Temporal evolution of identified events: We detect calcium events as peaks
in the activity trace and construct a mean event by aligning windows around
these peaks and averaging over events. The temporal evolution of the resulting
mean event should be consistent with the kinetics of the used calcium indicator
(fast rise, exponential decay).

• Consistency of event-snapshots: We collect cutouts around the cell centroid
for the frames corresponding to detected events. These cutouts visualize the
cause of peaks in the activity trace and should consistently resemble the spatial
component representing the cell’s shape.

We provide examples for violations of the listed characteristics in the appendix. All
potential neurons that are not validated through this procedure are excluded from
further analysis.
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2.4 Analysis of behavioral and neural recordings

2.4.1 Behavior quantification

We analyzed speed and freezing in the same way for all three experiments.

Analysis of motion. We used the markers of the DeepLabCut tracking algorithm
to calculate the speed of mice during an experiment. To obtain one general speed
value, we first calculated a centroid based on all markers except the one for the top
of the miniscope. Next we used the x,y position of the mouse centroid to calculate
the instantaneous speed of the animal for every frame as

st =
√

grad(xt)2 + grad(yt)2 (2.13)

where grad(·) is the numerical gradient and t is the frame index. For some analyses
we evaluated the motion of individual markers and the speed of each marker was
calculated in the same way as for the centroid. We measured speed in pixels per
second.

Freezing classification. We classified time periods as freezing based on sustained
immobility. We first smoothed the centroid using a Gaussian window with a stan-
dard deviation of 10 frames and then we applied a threshold of 5 pixels/s. Time
periods were classified as freezing if the speed was below the threshold value for at
least 2 seconds.

Freezing scores. To quantify tone-induced freezing in the fear conditioning paradigm
for individual animals, we calculated a tone specificity score and a tone discrimina-
tion score. The tone specificity score (SS) was defined as

SS =
f reezingCS+

f reezingCS+ + f reezingoutside−CS+
(2.14)

such that a value of 1 indicates that a mouse only displayed freezing during the CS+,
and a value of 0 indicates that there was no freezing during the CS+.

Similarly, we defined the tone discrimination score (DS) to compare freezing induced
by the two tones as

DS =
f reezingCS+

f reezingCS+ + f reezingCS−
. (2.15)

Avoidance action onsets. For every avoidance trial, we defined the onset of the
avoidance action using the speed of the animal. We calculate the speed increase for
every time step in the 2s window preceding the recorded shuttle time and define the
action start as the time step before the maximal increase in speed.

2.4.2 Analysis of single cell responses

Tone-responsive cells. In all three experiments we defined cells as tone-responsive
using the following procedure: We first averaged tone-presentations over trials ob-
taining the trial averaged tone responses a(t) (grouping trials over sessions, tasks or
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overall). To account for the variability of trial length in the active avoidance experi-
ments, we only used trials that were sufficiently long for the t individual time steps.
Next, we defined a pre-tone period with the same length as the tone presentations
as baseline window (25s for fear conditioning, 10s for avoidance experiments). We
then calculated z-scores as

ztone(t) =
a(t)− µBL

σBL
. (2.16)

where µBL and σBL are the mean and standard deviation over the trial averaged base-
line window. We then calculated the average z-score over the full tone presentations
and classified neurons as tone-responsive if the absolute value of their average z-
score exceeded a threshold value of 2. To calculate tone-onset z-scores and define
tone-onset-responsive cells, we used the same procedure, but only averaged tone
z-scores over the first 2 seconds of the tone presentation.

Freezing score. In the fear conditioning experiment we calculated a freezing score
for each cell. We concatenated data from the 3 post-conditioning days and calculated
the freezing score as the Pearson correlation coefficient between the binary freezing
trace and a given cell’s activity trace.

Speed score. To compare freezing-related activity to speed-related activity in the
fear conditioning experiment, we calculated a speed score for each cell. To avoid
confounding speed scores with freezing related information, we only used non-
freezing time points to assess how a cell’s activity related to speed. Since we ob-
served that the relationship between neural activity and speed was not linear, we
used a log transform of speed values and then calculated Pearson correlation coeffi-
cients between neural activity traces and log-transformed speed traces.

Avoidance score. To isolate avoidance related activity from tone-related activity,
we defined the avoidance score in terms of a difference between avoidance and er-
ror trials. First, we aligned avoidance trials according to the detected action start
(see above). Next, we used the average length of avoidance trials (from tone start
to action start) as the alignment point for error trials, such that the trials in both
groups had the same average length. For every time step in the 3s window before
the alignment points, we then calculated the time-dependent discrimination index
as

d′(t) =
µa(t)− µe(t)

σa(t)+σe(t)
2

(2.17)

where µa(t) and µe(t) are the time-dependent averages over the aligned avoid and
error trials, and σa(t) and σe(t) are the corresponding standard deviations. Finally,
we calculated the overall avoidance score per cell, as the average d′ over the 3s win-
dow preceding the alignment point.

2.4.3 SVM decoding

To quantify if and how information regarding tones and actions was represented in
mPFC activity at different time points, we used a decoding approach based on sup-
port vector machines (SVMs) [99]. We trained SVM decoders to discriminate neural
activity vectors between two different classes (e.g. tone vs. baseline) and used the
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decoding accuracies as a measure of how well information was represented. Before
giving details on the different decoding settings, we first explain basic procedures
that are common between all settings.

Basic setting. We used SVMs with linear kernels and trained them to classify neu-
ral activity vectors of 200ms time steps. We constructed balanced data sets contain-
ing time steps from two classes, e.g. 50 time steps during the tone and 50 time steps
outside of the tone (baseline). To estimate test accuracies, we used 5-fold stratified
cross-validation. If not stated otherwise, we pooled neurons from different subjects
to increase decoding performance and to allow for compact analysis of all cells at
once. The use of balanced classes and pooling over subjects puts constraints on the
number of data points used in the construction of the classification data set. In par-
ticular, the maximum number of data points per classes is limited by the minimum
number of data points over classes and subjects. In other words, the used number of
data points needs to be small enough, such that we have enough examples available
for all classes and subjects. To equalize the number of data points between subjects
and classes, we subsample data points in cases where more data is available. To deal
with the variability induced by subsampling and to estimate the variability of the
accuracy measure resulting from decoding, we repeat all decoding analyses using
different random samples for each iteration (bootstrapping). For each of the decod-
ing settings below, we specify the number of sample points as well as the number of
bootstrap iterations used.

Tone vs. baseline decoding. To analyze tone-related information on individual
days, we trained decoders to distinguish time points during tone presentations from
time points from the inter-trial interval (baseline). We first built a decoding data set,
which is given by a matrix of size n × t, where n is the number of cells (features)
used for the decoding, and t is the number of time steps (observations) that should
be classified as either tone or baseline. The number of time points in the tone class
is limited by the number of tone presentations. Additionally, one issue with the
decoding of time series data, is that temporal correlations between time points can
introduce confounding information. To avoid this effect, we only used one time step
per trial. Thus, t was determined by the number of tone presentations on a given
day for each of the experiments (e.g. 50 for the 2DAA experiment), multiplied by
2 (same amount of tone and baseline time steps). For each bootstrap iteration, we
randomly sampled one time step from the tone presentations of each trial, and ran-
domly sampled an equal number of time points from the inter-trial interval. We
estimated within day accuracy using 5-fold stratified cross-validation. When per-
forming across day testing, we trained models for individual days using all available
data, since no cross-validation is needed when testing on data from another day. For
all settings, we performed 20 bootstrap iterations.

Trial-wise tone vs. baseline decoding. In the fear conditioning experiment, we
tested the presence of tone-related information on individual trials. Since we were
interested in the link between tone information and freezing behavior, and freezing
behavior differs between different animals, we performed this analysis on individ-
ual subjects, rather than using pooled data over subjects. To assess tone information
on individual trials we used the following procedure: we pooled all 36 CS+ trials
from the 3 post-conditioning sessions and trained 36 different models, always train-
ing on 35 trials and testing on the remaining trial, to obtain trial-specific accuracy
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values. We randomly sampled 10 time points per trial for computational efficiency
and performed 50 bootstrap iterations.

Time-resolved tone vs. baseline decoding. To investigate the time-dependence of
tone-related information, we trained decoders for individual time steps. The proce-
dures were the same as for regular tone vs. baseline decoding, but instead of train-
ing one decoder on data from randomly sampled time points, we trained individual
decoders for every time step. In active avoidance, the number of available trials
is different for every time step, as trials can be terminated by avoidance actions.
Additionally, avoidance actions provide a confounding factor that can be used to
discriminate between tone and baseline settings. To address these issues, we limited
the time resolved tone vs. baseline decoding analysis to the first 4 seconds of tone
presentations, and excluded trials with an action start within the first 4 seconds. We
used 20 trials in the 2DAA and 2TAA per-task models, and 13 trials in the 2TAA per
session models. In all per-task models, we performed 20 bootstrap iterations, in per
session models we performed 50 bootstrap iterations due to the increased variability
resulting from the smaller number of training examples.

Tone ID decoding. In the 2TAA experiment, we asked how well we could distin-
guish the two different tones at different time points in the same way as for the tone
vs. baseline comparison, by replacing the baseline class with data from the second
tone. We performed this analysis per session (25 samples, 50 bootstrap iterations),
per time step for each task (20 samples, 50 bootstrap iterations) and per time step for
individual days (9 samples, 50 bootstrap iterations).

Avoid vs. error decoding. To evaluate if mPFC activity contained predictive infor-
mation on upcoming avoidance actions, we trained time-resolved decoders to dis-
tinguish avoidance and error trials for time steps preceding avoidance action start.
As we were interested in differences between the two tasks in both active avoidance
experiments, we performed this analysis by pooling data within task sessions, ex-
cluding the first learning sessions for both tasks. We aligned avoidance trials using
the detected action start time points. For error trials such an alignment condition
does not exist. To reduce any bias that might be introduced by avoidance and error
trials having different duration, we matched the distribution of tone lengths over
trials between error and avoidance trials. This was achieved by sampling alignment
points for error trials from the distribution of avoidance alignment points. This sam-
pling was different for every bootstrap run. Using these alignment strategies for the
two trial groups, we trained decoders for all time steps from 3s before to 1s after the
alignment points. We excluded trials for which avoidance actions started before 3s
after tone start. For both the 2DAA and the 2TAA experiments, the number of time
steps for the two classes was 10 (minimum number of error trials for one subject)
and we performed 100 bootstrap iterations. Next to the described analysis based
on the action start alignment, we performed the same procedures to data aligned at
tone start (1s before to 3s after tone start) as a control.

To evaluate whether the observed accuracy values differed from values expected
by chance we performed a permutation test for the decoding results obtain on ev-
ery individual time point [113] . We first created a null distribution of chance-level
accuracy values by repeating the following procedure for 200 permutations: we ran-
domly permuted the labels of the avoidance and error classes and trained SVMs
on the shuffled data for 10 bootstrap iterations and calculated the mean accuracy
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over bootstrap runs. We then compared the observed mean accuracy value from the
real data to the distribution of mean accuracy values from the 200 permutations and
computed p-values as the fraction of permutations whose mean accuracy exceeded
the observed value.

Since differences in the neural correlates of motion between avoid and error trials
might contribute to decoding performance, we asked how well avoidance actions
could be predicted from motion information alone. To do so, we repeated the same
analysis as above, but instead of using neural activity as predictive features, we used
the speed values computed for the 5 DeepLabCut tracking points.

As we were particularly interested in differences of action-related activity between
the two tasks, we evaluated the performance of task-specific decoders across tasks
to compare across-task and within-task performance. For across task testing, we
trained decoders using all data from one task (no cross-validation), and tested them
on all data points from the other task. To further analyze potential task-specificity
of action predictive information, we trained a set of decoders (referred to as mix
decoders) using an equal amount of data from both tasks. In order to keep results
comparable, we used the same number of data points for the mix decoders and the
task-specific decoders. In particular, we used half of the data from tasks 1 and 2 for
training mix decoders, and used the other half for evaluating their performance on
unseen data.
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Chapter 3

Fear Conditioning

To investigate mPFCs involvement in linking sensory information and conditioned
behavioral responses, we recorded the activity of mPFC excitatory neurons over a
six day fear conditioning paradigm. We start this chapter by presenting the behav-
ioral paradigm and quantifying the recorded behavioral data. In the subsequent
sections, we first cover basic response properties of single neurons and later analyze
how information is represented at the population level throughout the course of the
experiment. Finally we analyze how behavioral responses on individual trials are
related to sensory-evoked activity.

3.1 Behavioral paradigm

Fear-conditioning experiments were performed in the same manner as described in
a previous study from our lab [39]. The paradigm consisted of six imaging sessions
over six consecutive days, comprising two habituation sessions, one fear condition-
ing session and three fear testing sessions (Fig. 3.1A). In each session, mice were
presented with multiple repetitions of CS+ and CS- tone pip sequences (25 200 ms
pips played at 1 Hz). The tones had a frequency of either 4 kHz presented at 85 dB
or 10 kHz presented at 80 dB, and were randomly assigned as CS+ and CS- for each
subject in a counterbalanced manner. In habituation and fear conditioning sessions,
mice were presented with five CS+ and five CS- tones in an interleaved order start-
ing with CS-. Fear testing sessions started with two CS- presentations, continued
with twelve CS+ presentations, and ended with two further CS- presentations. In all
sessions the inter-trial intervals had a pseudo-random duration between 20 and 180
seconds. To minimize the level of contextual fear, the fear conditioning session took
place in a different chamber (chamber B) as compared to habituation and fear testing

FIGURE 3.1: Fear conditioning paradigm. (A) Schedule of the 6-day fear conditioning
paradigm. Session-types take place in different boxes and have different tone presentation
schedules. (B) Schematic of the two behavioral boxes used to minimize contextual fear.
Box B was used in the conditioning session and included a shock grid for US presentations.
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FIGURE 3.2: Fear conditioning behavior. (A) Freezing levels during tone presentations
over days (Mean ± SEM, n=13 mice). Bars represent groups of 5 (days 1-3) or 4 (days
4-6) tone presentations. (B) Freezing probability per time step around CS+ presentations
(Mean ± SEM, n=13 mice). (C) Distribution of freezing bout lengths over all subjects for
bouts starting during, and bouts starting outside of CS+ presentations. (D) Freezing speci-
ficity and discrimination score per subject. Subject with either score smaller than 0.5 were
excluded from further analyses.

sessions (chamber A, Fig. 3.1B). The two chambers had different shape, texture and
lighting, and were cleaned with either 1% acetic acid (chamber A) or 70 % ethanol
(chamber B) to produce different odors. During the conditioning session on day 3,
mice received a US foot-shock (2s, 0.6mA) 800 ms after the termination of the last
tone pip for each of the five CS+ presentations. Over all sessions, mouse behavior
was recorded with a top-view camera.

3.2 Behavior quantification

Overall we recorded data from 14 mice. We had to exclude data from one mouse
due to the low quality of its calcium imaging data, which made it impossible to
align recordings from different sessions. Another animal was excluded as it did not
learn the CS-US association sufficiently well as further explained below. To assess
learning-induced changes in animal behavior, we quantified freezing levels on all
days of the fear conditioning paradigm (see section 2.4.1). Before the conditioning
session on day 3, mice showed very limited levels of freezing during presentations
of the CS+ and CS- tones (Fig. 3.2A). In the fear testing sessions on days 4 to 6, an-
imals showed strongly elevated freezing levels during CS+ presentations. Freezing
during the CS- was also increased with respect to pre-conditioning sessions, but did
not reach the levels of CS+ induced freezing. In all three testing sessions, we ob-
served pronounced within-session extinction. While the first four CS+ presentations
lead to an average freezing level of 80.4%, the average dropped to 45.3% for the last
four CS+ presentations. Across-session extinction was less pronounced (averages of
66.9%, 69.9% and 61.7% for the 3 post-conditioning days).
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To investigate whether freezing was tone-induced, or rather a reflection of a gen-
eral fearful state, we quantified the freezing probability per time step around CS+
presentations (Fig. 3.2B). While freezing levels were high in general, freezing prob-
ability jumped from 45.1% in the 25s before the tone to 66.2% during CS+ presen-
tations, indicating that freezing behavior was driven by auditory input. Freezing
probability remained high through the tone presentation and only slowly decayed
after tone end. We further compared the length of freezing bouts starting during
and outside of CS+ presentations. Freezing bouts that started outside of tone pre-
sentations were predominantly short, and long-lasting freezing was rare (Fig. 3.2C).
In contrast, freezing bouts that started during CS+ presentations had a markedly
increased probability of being of long duration, further suggesting that tone presen-
tations induced elevated freezing levels in post-conditioning sessions.

We next analyzed the individual variability of freezing behavior over all subjects.
For all mice, we quantified the CS+ specificity of freezing, both with respect to gen-
eral freezing, and with respect to CS- induced freezing. We calculated a specificity
score, which compared freezing during CS+ presentation versus outside CS+ pre-
sentations (see section 2.4.1). A score greater than 0.5 indicated that mice showed
higher freezing levels during than outside of tone presentations. As intended by
the conditioning paradigm, all mice had a score greater than 0.5 (Fig. 3.2D). Yet
none of the subjects came close to the maximum score of 1 (max. score of 0.73),
which can be explained by high baseline freezing levels and pronounced post-tone
freezing (Fig. 3.2D). Analogously to the specificity score, we calculated a discrim-
ination score, which compared CS+ and CS- induced freezing. All but one animal
showed higher CS+ than CS- freezing levels. The animal that had a discrimina-
tion score smaller that 0.5 was also the animal with the lowest specificity score, and
we excluded this animal from further analysis, as it had not learned the intended
stimulus-response association.

3.3 Single cell correlates of tones and freezing

Over all 12 considered animals, we recorded the activity of 2444 neurons (204 ± 69
per subject). We first asked how individual cells responded to tone presentations
throughout the six days of the paradigm. Cells were classified as tone-responsive
based on the average z-score of their trial-averaged tone response (example cells in
Fig. 3.3A, see section 2.4.2 for classification procedure). Before conditioning only
a small faction (below 5%) of cells were classified as having a tone response (Fig.
3.3B). After conditioning, the fraction of CS+ responding cells, but not CS- respond-
ing cells, showed a marked increase, consistent with the behavioral discrimination
between the two tones. The magnitude of post-conditioning tone responses peaked
shortly after tone onset, but responses were sustained until the end of the tone (Fig.
3.3A,D). The population tone response that emerged with conditioning was based
on cells gaining a positive or negative response to CS+ presentations rather than
on previously tone-responsive cells strengthening their response (Fig. 3.3C,D shuf-
fled cell IDs; Pearson correlation of 0.14 ± 0.08 between pre-conditioning and post-
conditioning z-scores, mean ± STD over 12 mice). Moreover, the distribution over
all average z-scores became wider from pre- to post-conditioning (3.3E), indicating
that the emerging tone representation was formed on the level of the population
rather than by a small subset of cells. These results suggest that fear conditioning
induces novel and distinct tone representations in mPFC population activity.
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FIGURE 3.3: Single cell tone responses. (A) CS+ responses per day for two example cells.
Tone-aligned activity was trial-averaged and scored. (B) Fraction of tone-responsive cells
over days for CS+ and CS- (Mean ± SEM, n=12 mice). To treat both tones equally, we only
used the first four trials for trial averaging and z-score calculation. (C) Pre-conditioning
CS+ responses of all cells of an example subject. Cells are sorted according to their mean
z-score, cells IDs were assigned based on this sorting. Triangles indicate example cells
from (A). (D) Post-conditioning analogue to (C). Cells were resorted according to post-
conditioning mean z-score. (E) Distribution of mean z-scores over all animals for pre- and
post-conditioning.

We next asked how the activity of individual cells related to freezing behavior. One
issue with assessing freezing-related activity is that many cells in mPFC are modu-
lated by general motion [77]. Since freezing is characterized by an absence of motion,
motion-related activity is a clear confounding factor when analyzing the neural cor-
relates of freezing. We found that many cells are clearly modulated by speed both
in a excitatory and inhibitory way (example cells in Fig. 3.4A). To quantify how the
activity of individual cells related to freezing and motion, we calculated freezing
and speed scores per cell. The freezing score was defined as the correlation coeffi-
cient between the binary freezing trace and the activity of a given cell. Similarly, we
defined a speed score as the correlation coefficient between neural activity and log-
transformed speed (see 2.4.2). Importantly, the speed score was computed solely
with data from outside freezing episodes in order to remove any correlation that
might originate from a relation to freezing. We found that freezing and speed scores
were highly correlated in all subjects and that there was no clear subpopulation of
cells that was modulated by freezing, but not by general motion (Fig. 3.4B,D). While
this analysis does not exclude the presence of freezing-specific activity, it shows the
difficulty of analyzing behavioral signals in the presence of general motion corre-
lates. Although we found clear correlates of freezing behavior, we did not find ac-
tivity patterns that were clearly freezing-specific.

Nevertheless, we used the freezing score to ask if we could identify a connection
between tone responses and freezing-related activity in single cells. Tone responses
and freezing have a systematic temporal overlap (Fig. 3.2B), which contaminates
tone z-scores with freezing related activity. To test whether there was joint coding
between tone and freezing that goes beyond this temporal overlap we compared
freezing scores to tone-onset z-scores, as the overlap with freezing is minimal at
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FIGURE 3.4: Single cell correlates of freezing. (A) Example cells showing increased and
decreased activity during freezing periods and opposing modulation during periods of
motion. (B) Relation of freezing and speed scores for individual cells. (C) Relation of
freezing and tone-onset z-scores for individual cells. (D) Quantification of score correla-
tions over 12 subjects.

tone onset. Based on this comparison we did not find any joint coding of tone and
freezing information (Fig. 3.4C,D).

3.4 Population-level analysis of tone-evoked activity

To analyze tone responses and their evolution throughout the paradigm in more
detail, we employed an approach based on decoding the presence of the tone stim-
ulus from vectors of neural activity recorded at different time points. This approach
enabled the flexible comparison of tone representations over different sessions, tri-
als and time points during a trial. We used linear support vector machines (SVMs)
to classify neural activity vectors for individual 200 ms time steps into either tone
or baseline classes, indicating whether or not the CS+ was present at a given time
step. As these classes are the same for all animals, we pooled cells from individ-
ual subjects to enable joint analysis and improve decoding performance (see sec-
tion 2.4.3 for details on data structuring, training and testing procedures). Using
this approach, we found that the presence of the CS+ could be reliably decoded af-
ter, but not before conditioning (Fig. 3.5A,B). CS- decoding accuracy also increased
with conditioning, but remained substantially worse than CS+ decoding. Interest-
ingly, decoding performance for the two tones closely resembled the evolution of the
fraction of tone-responsive cells over days (Fig. 3.3B). To test how stable CS repre-
sentations were over days, we evaluated how decoders trained on individual days
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FIGURE 3.5: Tone coding over sessions. (A) Tone vs. baseline decoding over days. Mean
± SD (n = 50 bootstrap runs). (B) Comparison of mean decoding accuracy for CS+ and
CS- in pre- and post-conditioning sessions. Wilcoxon signed-rank test, P<0.001. (C) CS+
vs. baseline decoding across days. Decoders were trained on one day and tested on all
days. Color-code represents mean decoding accuracy over 50 bootstrap runs. (D) Same
as (C) for CS-. (E) CS+ vs. baseline decoding per time step. For each time step, an indi-
vidual decoder was trained on all post conditioning trials. Mean ± SD (n = 50 bootstrap
runs). (F) Similarity of decoders trained for different time steps, quantified by the pairwise
correlation coefficient between decoder weight vectors.

performed when tested on data from the remaining days. We found that CS+ de-
coders trained on one of the post-conditioning days also showed good performance
on other post-conditioning days, indicating that the tone responses emerging with
fear conditioning stayed stable over days (Fig. 3.5C).

Next, we asked how CS+ responses evolved during the 25s time interval during
which tones were presented. Instead of training one decoder for all time steps, we
trained individual decoders with data from specific time points. Given the stability
of tone responses over post-conditioning days, we pooled trials from these 3 days
and trained one set of time-dependent decoders. We found that decoding accuracy
was at a stably high level throughout the duration of the tone (Fig. 3.5E). After tone
offset, accuracy did not immediately drop to chance levels, but slowly decayed. A
possible explanation of this effect is that the freezing level remains elevated com-
pared to baseline after CS+ presentations end (Fig. 3.2E), such that decoders could
base the distinction on neural correlates of freezing behavior.

To assess whether the basis of the decoders’ classifications changed over time, we
compared the learned weights of SVMs trained on data from different time points.
Decoders assign a weight to every cell, and weights can be used as a measure of
how informative a cell’s activity is to distinguish the two classes (tone and base-
line). To quantify similarity between two decoders, we calculated the correlation
coefficient between the decoders’ weight vectors. Correlation coefficients between
different time points stayed stably high, indicating that tone information was not
represented by a dynamic code, but rather through the sustained responses of tone-
responsive cells (Fig. 3.2F). The drop in correlation coefficient values after tone offset
also supports the hypothesis that post-tone decoding performance is not based on
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FIGURE 3.6: Tone responses correlate with freezing behavior. (A) Mean tone decoding
accuracy and freezing strength over all post-conditioning trials. Mean ± SEM (n = 12
subjects). (B) Same as (A) for an example subject. Mean ± SEM (n = 50 bootstrap runs).
(C) Relation of freezing strength and tone decoding accuracy over all trials. Lines repre-
sent correlation coefficients calculated per subject. (D) Permutation test comparing the ob-
served mean correlation coefficient (red line) to hypothetical mean correlation coefficients
obtained from 1000 repetitions with randomly shuffled data. (E) Correlation of decoder
weights to tone z-scores and freezing scores. Decoder weights were obtained per subject
by training on all 36 trials and calculating the average weights over 50 bootstrap iterations.

ongoing tone representations, but rather on other differences to the baseline state
such as sustained freezing. Taken together these results show that fear conditioning
induces tone-specific sensory responses that stay stable over days and are sustained
throughout tone presentations.

3.5 Single-trial tone representations and their relation to freez-
ing behavior

Since behavioral extinction had a clear temporal evolution over the trials of a session,
we next asked if we could find similar dynamics in the evolution of tone represen-
tations over trials. To be able to relate tone information on individual trials to the
behavior of individual subjects, we trained CS+ vs. baseline decoders per subject
for all post-conditioning trials. For every given trial, we used all remaining trials as
training data and quantified the accuracy of predicting the tone for the time steps
of this trial. This approach revealed that tone decoding accuracy decayed towards
the end of each session, mirroring the temporal dynamics of extinction as reflected
by decreased freezing strength (Fig. 3.6A). The correlation between tone decoding
accuracy and freezing strength was not only present when considering a mean over
subjects, but also captured the variability for individual subjects (Fig. 3.6B,C). To
assess the statistical significance of the observed correlation we performed a permu-
tation test, which showed that the observed correlation coefficients were strongly
increased as compared to shuffled data (Fig. 3.6D).
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These results suggest that the presence of prefrontal tone responses is linked to the
execution of freezing behavior. However, an alternative explanation could be that
decoders base their classification not purely on tone-related activity. In particular,
due to the increased freezing levels during the tone, freezing-related information
could be used for the distinction between tone and baseline time steps in this de-
coding analysis, which could explain the reduced decoding accuracy for trials with
low freezing. To investigate the basis of the decoders’ classifications, we analyzed
how the trained decoder weights related to tone and freezing scores. We found that
decoding weights were strongly correlated to tone scores, but not freezing scores.
These results indicate that the correlation between tone decoding accuracy and freez-
ing behavior is indeed based on a lack of tone-related information in trials with low
freezing.

In summary, we found that fear conditioning induces prefrontal responses to CS+
presentations whose presence correlates with the execution of freezing behavior.
The identification of freezing-related activity was difficult because of confounding
motion-related activity and we could not find a link between tone responses and
neural correlates of freezing. Yet, the correlation between tone decoding accuracies
and freezing behavior in single trials implies that there is some link between sensory-
driven mPFC responses and behavioral execution. To better understand this link, we
next designed aversive conditioning paradigms with changing stimulus-response
mappings in order to be able to look for corresponding changes in the neural activ-
ity that might link stimuli and behavioral responses.
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Chapter 4

Two-dimensional Active
Avoidance

To further investigate the link between prefrontal tone representations and behavior
execution, we developed a paradigm with a changing stimulus-response mapping.
We designed a novel active avoidance experiment, in which we trained animals to
adapt the instrumental action that was induced by presentations of an auditory cue
in two consecutive learning tasks. This approach allowed us to investigate the link
between the sensory stimulus and the behaviors it induced by analyzing changes in
neural representations associated with the switch between the two instrumental be-
haviors learned in the two tasks of the paradigm. We start this chapter, by presenting
the paradigm and characterizing animal behavior and learning performance. Sub-
sequently, we analyze the relation of prefrontal neural activity to stimulus presen-
tations and behavior execution and investigate learning-induces changes in these
relations. Finally, we investigate how these sensory and behavioral representations
are related.

4.1 Behavioral paradigm

The two-dimensional active avoidance paradigm had a duration of 11 days, com-
prising habituation (day 1), active avoidance task 1 (days 2-4), active avoidance task
2 (days 5-9) and extinction sessions (days 10 and 11). All sessions had a duration of

FIGURE 4.1: The 2-dimensional active avoidance paradigm (2DAA). (A) Schedule of the
2DAA paradigm. In task 1 (left) animals are trained to shuttle between the left and right
compartments of the shuttle box in response to the tone. Which compartment receives
the shock is determined by the position of the animal at trial start. In task 2 (right) the
compartmentalization of the shuttle box is changed, and animals are trained to shuttle
between the front and back half of the shuttle box. (B) Logic of active avoidance trials. If
a subject performs the shuttle behavior before the end of the tone (10s), tone and shock
presentations are blocked. If the subject does not shuttle, it receives a shock.
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40 minutes and contained 50 trials with pseudorandom inter-trial intervals of 30±10
s. Each trial started with the presentation of a 10 kHz tone at 75 dB for 10 seconds.
In all active avoidance sessions (days 2 to 9) the tone was followed by a foot-shock
(0.2 mA) with a maximum duration of 5 s. For each trial, we used automatically
controlled, movable platforms (cf. section 2.2.4) to define half of the shuttle box as
a safe zone. The position of the safe zone was determined by the task (1 or 2) and
the position of the mouse at the start of a given trial. For task 1 trials, mice had to
cross the vertical mid-line of the cage to reach the safe zone, whereas for task 2 tri-
als, mice had to cross the horizontal mid-line (Fig. 4.1A). For the remainder of this
thesis, these two actions will be referred as dimension 1 shuttling (D1-shuttling) and
dimension 2 shuttling (D2-shuttling). If mice entered the safe zone by performing
the appropriate shuttle behavior during tone or shock presentation, both tone and
shock channels were blocked and the trial was terminated (Fig. 4.1B). If the behavior
of mice did not lead to trial termination before shock onset, the two platforms in the
safe zone were elevated for a duration of 15s, time-locked to the onset of the shock,
providing mice with the possibility to escape. We recorded animal behavior over the
full duration of the experiment using two top-view cameras.

4.2 Behavior quantification

We recorded data from 13 subjects, but had to exclude data from one animal due to
low imaging quality which precluded the alignment of neural recordings between
days. All subjects learned both tasks and avoided 84.3 ± 2.1% and 81.2 ± 4.3% of
shocks in the final learning sessions of the tasks respectively (Fig. 4.2A). In general,
performance increased within sessions, and the shuttle rate already substantially in-
creased in the first learning session for both tasks. The task switch lead to a clear
drop in performance, but throughout task 2 sessions the shuttle rate continually in-
creased and recovered to a level above 80% by day 9. As avoidance was based on
two different actions in the two tasks, the task switch was reflected in the frequency
of the two shuttle types during tone presentations on different days. While D1-
shuttles were substantially more frequent than D2-shuttles in task 1, their frequency
dropped in task 2 and D2-shuttle frequency increased (Fig. 4.2B). As intended by
the experimental design, the two shuttle types were associated with different mo-
tion profiles (Fig. 4.2C,D). However there was considerable variability regarding
the way animals adapted their behavior upon the task switch (Fig. 4.2E,F). In task 1,
D1-shuttles were stereotyped and similar between subjects. In contrast, D2-shuttles
in task 2 were more variable within each subject and different subjects crossed the
mid-line in different ways. While some subjects used the shortest path to the other
side (e.g. S1 in Fig. 4.2E), others shuttled diagonally. Yet, the consistent difference
between shuttle angles for tasks 1 and 2 and the drop in performance induced by
the task switch clearly indicate that mice had to change their behavior by learning
to perform a different action in task 2.

We further analyzed avoidance actions by comparing the shuttle transitions that lead
to avoidance to transitions during the inter trial interval (ITI). In the habituation ses-
sion on day 1, the frequency of transitions was similar between time points during
and outside the trial for both transition types (Fig. 4.3A,B). With the start of active
avoidance conditioning on day 2, the frequency of ITI transitions decreased, while
the frequency of transitions during tone presentations increased in a task-specific
manner. In the extinction sessions on days 10 and 11 the frequency of transitions
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FIGURE 4.2: Evaluation of shuttle behaviors. (A) Fraction of avoid trials over task 1
(blue) and task 2 (green) sessions. Individual data points are an average over 10 trials,
the displayed curve represents the mean ± SEM over the 10-trial averages of 12 mice. (B)
Frequency of the two different shuttle behaviors (D1-shuttling, solid line; D2-shuttling,
dashed line) during tone presentation over days. Mean ± SEM, n=12 mice. (C) Motion
traces of task 1 avoidance shuttles of an example mouse overlaid on an image of the shut-
tle box. Motion traces were extracted for the windows ± 2s around the detected shuttle
time points. (D) Analogue of (C) for task 2 trials. (E) Mean motion traces for task 1 and 2
shuttle actions for four example mice. To compute the mean, all trials were adjusted such
that the starting position of the mouse was in the lower left quadrant by mirroring along
the appropriate axes. (F) Distribution of shuttle angles for tasks 1 and 2 over all animals.

during trials decreased, while ITI transitions frequencies increased, such that fre-
quencies again had similar levels. These results further demonstrate that avoidance
actions are a learned and tone-induced behavior.

Next, we compared tone and ITI transitions in terms of the average speed with
which animals shuttled from one compartment to the other. The distributions of av-
erage speed values were overlapping, but showed a clear separation between avoid-
ance and ITI transitions, where avoidance transitions were associated with higher
speeds (Fig. 4.3C,D). This difference suggests a distinction between goal-directed
avoidance actions and regular exploratory motion within the shuttle box. When
comparing D1 with D2 transitions, both avoidance and ITI transitions had lower av-
erage speed for the latter. This difference can be explained by the available space
for the shuttle motions. As the shuttle box is rectangular and animals spend most
time in the corners, D1 transitions require them to cover greater distances, which
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FIGURE 4.3: Comparison of shuttle behaviors and outside-trial transitions. (A) Frequency
of left-right transitions during (blue) and outside (black) tone presentations. Mean ± SEM
over transitions. (B) Analogue to (A) for task 2 transitions. (C) Distributions of mean
speed value during shuttling action for avoidance actions (blue) and outside-trial transi-
tions (black). (D) Analogue to (C) for task 2. (E) Average speed during avoidance and
outside-trial transitions. Mean ± STD over transitions. (F) Analogue to (E) for task 2.

allows for higher acceleration (Fig. 4.2C,D). For all transitions, speed values were
maximal around the time of the transition (Fig. 4.3E,F), but peak values were higher
for avoidance actions, demonstrating that the difference in mean speed is based of
a difference in maximal intensity. Taken together, these data show that avoidance
actions differ from general motion, and that avoidance actions differed between the
two tasks.

An additional way of characterizing learning-induced changes to animal behavior
is the quantification of the latency of avoidance actions with respect to tone onset.
We found that within tasks, latency values vary only slightly (Fig. 4.4A). Yet, there
was a clear increase in latency of approximately 1s between task 1 and task 2. While
task 1 latencies were approximately normally distributed around 5s, the distribution
of task 2 latencies was skewed towards the end of the trial (Fig. 4.4B). Interestingly
this increase in latency can be linked to the animals’ freezing behavior. We observed

FIGURE 4.4: Latency of shuttle actions. (A) Mean shuttle latency over task 1 and task 2
sessions. Mean ± SEM, n=12 mice. (B) Distribution of shuttle latency for task 1 (blue) and
task 2 (green) avoidance shuttles. (C) Freezing probability over trial duration for task 1
and task 2 avoidance trials. Mean ± SEM, n=12 mice.
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that freezing levels were briefly elevated after tone onset for task 2, but not task 1,
and that the freezing probability profile was shifted by one second. This observation
could indicate a conflict between the execution of the two actions learned in tasks 1
and 2 that results in a brief startle reaction.

For the analysis of the neural processes leading up to avoidance it is crucial to ac-
curately detect the start of avoidance actions. Typically, avoidance actions occur as
a sudden onset of motion after a longer period of immobility. The identification
of this action onset is particularly important for isolating avoidance-related activity
that occurs before action onset from motion-related activity that occurs after action
onset. For every avoidance trial, we use the speed of the animal to define the action
start as the time point preceding the maximal increase in speed in a window of 2s
before the transition was recorded (see Fig. 4.5A for example trials). For a majority
of trials, the action start was determined to be approximately 1s before the transi-
tion was recorded and the tone was turned off (Fig. 4.5B). When using the tone end
as an alignment point for averaging speed over avoidance trials, the mean speed
peaks slightly before the alignment point (Fig. 4.5C). In contrast, using the action
start alignment, speed values strongly increase and peak shortly after the alignment
point. However, a slight motion increase before the action start alignment point
remains, as avoidance actions do not always occur as a sharp transition from non-
motion to motion. Nevertheless, this action onset alignment greatly facilitates the
analysis of neural processes that precede the execution of avoidance actions.

4.3 Imaging data set

Throughout the 2DAA paradigm, we recorded the activity of 3326 cells from 12 mice
(277 ± 51 cells per subject). For 3 subjects we had to exclude data from the last one
or two days (extinction sessions) due to alignment issues. For all other subjects,
however, we could follow the activity of all cells over all sessions. Fig. 4.6A shows
the spontaneous activity of 10 example cells recorded on different days. Relating
the recorded neural activity to experimental variables is generally challenging, and
our setting combines several issues that make it difficult to directly interpret the
recorded activity with respect to our experiment. First, there is an inherent overlap
between several experimental variables, in particular between action related activity
and tone-related activity and between action-related and motion-related activity, as
illustrated in Fig. 4.6B. Second, both stimulus presentations and behavior are vari-
able over trials, precluding straight-forward trial averaging approaches. Third, the

FIGURE 4.5: Distinction of shuttle time and action start time. (A) Speed traces of five
example cells with shuttle time (tone end) and action start time indicated. (B) Distribution
of temporal distance between action start and tone end. (C) Mean speed over all avoidance
trials aligned to action start (black) or tone end (gray).
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FIGURE 4.6: Example cell activity. (A) Spontaneous activity for 10 example cells across the
11-day paradigm. (B) Illustration of the variability and overlap of experimental variables
over trials for an example subject. Trials are sorted according to tone length. (C) Example
cell whose activity correlates with tone presentations and avoidance actions. (D) Example
cell whose activity correlates with tone and shock presentations. (E) Example cell whose
activity correlates with motion.

activity of the recorded cells is often correlated with multiple experimental variables
as displayed in the example cells in Fig. 4.6C-E. Fourth, we want to understand the
dynamics unfolding over the course of tone presentations rather than static stimu-
lus representations. And finally, we want to assess changes in coding and dynamics
over time, and in particular in relation to the switch between the two tasks of the
2DAA experiment. However, for all of these challenges, there exist approaches that
allow addressing them. In the following sections we use these approaches to inves-
tigate the neural correlates of tones and avoidance actions. We start by investigating
how stimuli and behaviors are represented at the level of single cells and neural
populations, and analyze how these representations change over time and upon the
task switch. Based on these representations we then address the question of whether
we can find a systematic link between tone-evoked responses and the execution of
avoidance actions in the recorded neural activity.

4.4 Tone-evoked activity

We found that many cells show temporally precise responses to tone onset and offset
(Fig. 4.7A,C). To quantify tone responses, we calculated a trial average, where for
every time step we only averaged over trials in which tone presentations were still
ongoing, in order to address the variability in tone length over trials (Fig. 4.7B,D).
Based on these trial averages, we calculated a z-score using pre-tone activity as a
baseline, and classified cells as tone-responsive, if the absolute value of the average
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FIGURE 4.7: Single cell tone responses. (A,B) Example cells with positive and negative
tone responses. Trials are aligned at tone start and sorted according to tone end. (C)
Fraction of tone-responsive cells over sessions. Mean ± SEM, n=12 mice. (D,E) Trial-
averaged tone responses of cells from (A) and (B). Time points after tone end are excluded
from averaging for avoidance trials. (F) Overlap of tone-responsive cells for pairwise day
comparisons. (G) Trial-averaged tone responses of all cells of an example subject on day
3. Cells are sorted according to their mean z-score during the tone. (H) Trial-averaged
tone responses of all cells of the example subject from (G) on day 3. Cells are sorted
as in (G), highlighting the similarity in tone responses over days. (I) Quantification of
task-specificity of tone responses comparing within-task and across-task similarity at two
different time shifts. Wilcoxon signed rank test (p>0.05), n= 12 subjects.

z-score over the full tone presentation exceeded a cutoff value of 2. Using this quan-
tification, we found that the fraction of tone-responsive cells substantially increased
during and after the first active avoidance session (Fig. 4.7C, increases of 20.1%
and 27.2% respectively). For the rest of avoidance sessions, the fraction of tone-
responsive cells remained relatively constant at a value of 66.8% ± 1.5%. In extinc-
tion sessions we observed a substantial drop in the number of tone-responsive cells,
highlighting the tight connection between prefrontal sensory-evoked responses and
behavioral relevance.
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FIGURE 4.8: Decoding of tone information. (A) Tone vs. baseline decoding with individual
decoders trained per day. Mean ± SEM, n=50 bootstrap runs. (B) Across day testing for
decoders from (A). (C) Time-resolved decoding of tone information vs. baseline. Mean ±
SEM, n=20 bootstrap runs. (D) Pairwise comparison of SVM weight vectors between all
time steps from (C), indicating changes in tone representations over time.

As in our fear conditioning data, tone responses were both positive and negative and
many cells maintained their response profile over multiple days (Fig. 4.7G,H). To
quantify the stability of tone representations over days, we calculated the pairwise
overlap between the subsets of tone-responsive cells over all days (Fig. 4.7F). The
overlap was elevated for comparisons between days 3 to 9, reflecting increased sim-
ilarity of tone responses from the day after the first conditioning session to the last
conditioning session. To assess whether the task switch had an effect on tone cod-
ing, we compared the similarity of tone representations within and between tasks
at multiple time lags (Fig. 4.7F). Using this approach, we did not find that the task
switch induced a reorganization of tone responses. This suggests that mPFC tone
responses signal behavioral relevance without capturing aspects of the associated
behavior, rather than representing tones in a context-specific manner.

To analyze tone responses in more detail, we used SVM classifiers to investigate how
tone information was represented on the population level on different days and at
different time points in a trial. As in the analysis of our fear conditioning data, we
pooled cells over subjects and trained decoders to classify activity vectors of indi-
vidual 5 Hz time steps as tone or baseline. First, we trained individual decoders for
all 11 recording days. Consistent with our single cell results, tone decoding worked
very well in active avoidance sessions, but performance was worse in habituation
and extinction sessions (Fig. 4.8A). When testing individual per-day decoders on
other days, we found that across-day decoding worked well within, but not outside
active avoidance sessions, indicating consistency of the tone representation during
conditioning sessions (Fig. 4.8B). The first learning session on day 2 displays an in-
teresting exception: the decoder trained on day 2 works well on the following days,
however, data from data 2 is not correctly classified by decoders from days 3 to 9.
This discrepancy indicates that the tone representations present on later days are
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formed on day 2, but are only weakly present such that decoders from days 3 to 9
do not recognize them in day 2 data. Notably, the consistent performance over all
active avoidance sessions again does not indicate any task specificity of tone repre-
sentations.

We next asked if we could find changes in tone representations over the duration of
the trial window. As behavior execution towards the end of the trial window pro-
vides a confounding distinction between tone and baseline time steps, we limited
this analysis to the first 4 seconds of the trial and excluded trials where avoidance
actions were performed before this cutoff. Since previous analysis indicated that
there is no clear difference in tone coding between tasks, we trained per time step
decoders using all trials from days 3 to 9. As expected from the performance of per
day decoders, tone vs. baseline classes were perfectly after tone onset (Fig. 4.8C).
However, the predictive information might be present in different cells at different
time steps and we can use the weights of the individually trained decoders to ana-
lyze whether there was a change in how cells contribute to the classification decision.
Across-time step weight comparisons revealed that tone coding was dynamic within
the first 2s of tone presentations, indicated by decreased similarity of weight vectors
when moving away from the diagonal (Fig. 4.8D). After approximately 2s, decoders
became more similar, suggesting that tone responses settled into a steady represen-
tation after the initial dynamic phase. These results demonstrate that prefrontal tone
responses are stable across both trial time and days. This stability is consistent with
the interpretation of mPFC tone responses as a threat signal that stays constant over
the experiment.

4.5 Avoidance-related activity

The identification of neural correlates of avoidance actions is challenging, as they
overlap with other drivers of neural activity. First, avoidance-related activity has
to be distinguished from general motion-related activity. Second, by design, avoid-
ance actions can only occur during tone presentations, such that activity related to
avoidance needs to be isolated from general tone-evoked activity. However, both
of these issues can be addressed with appropriate comparisons. We approach these
issues by analyzing activity before motion onset and by isolating avoidance-related
activity from tone-related activity through a comparison of avoidance and error tri-
als.

Any cognitive processes that precede the execution of goal-directed avoidance ac-
tions need to occur during the period shortly before action start. We used the action
start time points as displayed in Fig. 4.5 to align all avoidance trials in order to facil-
itate the identification of pre-avoidance activity. However, as mentioned above, we
need to take into account concurrent tone-related activity. We can isolate avoidance-
related activity from tone-related activity using a comparison to error trials, as the
two trial types have the presence of the tone in common, but only avoidance trials
contain activity related to upcoming avoidance actions. Since tone presentations are
shorter in avoidance trials, we aligned error trials such that their duration matches
the average alignment time of avoidance trials to account for variability in tone-
evoked activity over the trial duration. These two alignment strategies for avoid
and error trials are displayed for 4 example cells in Fig. 4.9A. Based on the aligned
trials, we calculated trial averages for the two trial groups and defined a discrimina-
tion score that reflects how well a cell’s activity can be used to distinguish between
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FIGURE 4.9: Single cell correlates of avoidance actions. (A) Four example cells show-
ing different relations to avoidance actions. (Top row) Neural activity during avoidance
and error trials. Avoidance trials are aligned according to action starts. Error trials are
aligned to match the mean tone duration of avoidance trials. (Bottom row) Trial averages
for aligned avoidance and error trials and avoidance score calculated for the individual
cells. (B) Difference between avoidance and error trial averages for an example subject.
Avoidance scores are computed based on this difference (see methods) and cells are sorted
by avoidance score. (C) Distribution of avoidance scores over all cells for tasks 1 and 2.
(D) Correlation of avoidance scores between tasks.

avoidance and error trials before action start (see section 2.4.2). Positive scores indi-
cate that activity in avoidance trials is elevated in comparison to error trials, while
negative scores indicate decreased activity. Cells 1 and 2 in Fig. 4.9A are examples of
cells that distinguish between avoidance and error trials before action start. In con-
trast, cell 3 only shows a clear separation between the trial types after action onset,
which can be attributed to motion. Cell 4 has a clear tone response, which however
does not show substantial differences between avoid and error trials, highlighting
the importance of the comparison.

We found that cells which distinguished trial types before action onset usually also
did so after action onset (Fig. 4.9B). In contrast, many cells that showed clear dif-
ferences after action onset, did not differ between trial types before action onset
(Fig. 4.9B). This contrast indicates a distinction between general motion coding
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and preparatory activity related to goal-directed avoidance actions. To assess task-
related changes in avoidance activity, we calculated two avoidance scores for every
cell based on trials from the two tasks. For both tasks the avoidance score was ap-
proximately normally distributed and the distribution did not substantially differ
between tasks (Fig. 4.9C). We next investigated the correlation between task 1 and
task 2 avoidance scores and found a slight positive correlation for all subjects 4.9D).
However, since avoidance scores for individual cells depended on trial averaging
and were generally noisy, we chose to base further investigations of avoidance-
predictive activity on analyses based on SVM decoders.

FIGURE 4.10: Prediction of avoidance actions. (A) Time-resolved decoding of trial-type
(avoid or error) for time steps aligned to tone start (left) or shuttle action start (right).
Decoding performance (blue) is displayed as mean ± SD over 100 bootstrap runs. Black
line and gray area represent mean and 0.5th and 99.5th percentiles of the distribution of
mean accuracies of 200 shuffle repetitions of a permutation test (see methods). Black line
at the bottom indicates significance (p<0.01). (B) Same as (A) for task 2. (C) Trial type
decoding based on motion information (same as right plot in (A) otherwise). (D) Same as
(C) for task 2. (E) Quantification of decoding performance over 100 bootstrap runs. Area
under the curve (AUC) is calculated over the whole period from 3s before to 1s after action
start. (F) Same as (E) for task 2.

The decoding-based analysis of avoidance-predictive activity has the advantages
that we can integrate information over many noisy cells and that we can assess
predictive information in a time-resolved manner. We pooled cell activities over
subjects and trials and trained SVMs to distinguish avoidance from error trials at
different time points during the trial (200ms bins). Given the temporal variability
over trials, we used two different alignment conditions: alignment to tone start and
alignment to action start. In order to assess potential differences between avoid-
ance actions in tasks 1 and 2, we trained separate groups of task-specific decoders.
Detailed data structuring procedures are described in section 2.4.3. At tone start,
decoding accuracy did not exceed chance level (Fig. 4.10A,B left). However, 2-3
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FIGURE 4.11: Action prediction performance evaluated across tasks. (A) Prediction of trial
types for task 1 trials, using decoders trained on task 1 (within task testing) or trained on
task 2 (across task testing). (B) Same as (A) for task 2 trials. (C) Comparison of within-task
performance with decoders trained using data from both tasks (mix decoders). (D) Same
as (C) for task 2 trials, mix decoders are the same for (C) and (D). (E,F) Quantification of
decoder performance for the 3 decoder sets (n = 100 bootstrap runs).

seconds after tone onset, we observed an increase of decoding accuracy for both
tasks. The action start alignment condition revealed that upcoming avoidance ac-
tions could be predicted with above-chance accuracy levels already 3 seconds before
action onset (Fig. 4.10A,B right). Decoding accuracy increased up to action onset and
actions were perfectly decoded after action onset, as expected due to the presence of
motion related activity in avoidance, but not error trials. Since action start alignment
can not entirely exclude pre-action motion, we next asked whether the observed de-
coding performance could be reproduced by a control decoder using tracking-based
motion information to predict upcoming avoidance actions. We found that motion
decoders could also successfully decode actions already before action onset, how-
ever at a markedly delayed time as compared to neural decoders (Fig. 4.10C-F). This
difference suggests that there indeed exists neural activity predicting future avoid-
ance actions and indicates that the activity of prefrontal neurons reflects a cognitive
process preceding the execution of avoidance actions.

The comparison of task 1 and task 2 decoders in Fig. 4.10 shows that in task 2, up-
coming actions can be predicted slightly earlier, but overall the results were similar.
To analyze if the neural activity predicting avoidance actions changed between tasks
we further compared the two sets of decoders trained on data from the two differ-
ent tasks. In particular, we asked how decoders trained on one task performed on
data from the other task. Across-task testing showed drops in performance for both
tasks (Fig. 4.11A,B). However, this drop does not necessarily indicate a change in
action predicting activity, but might rather be a reflection of more general changes in
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FIGURE 4.12: Relation of tone-evoked and avoidance-related activity. (A) Example cell
displaying a tone-onset response and containing action-predictive information (activity
increase around avoidance actions). (B) Correlation of tone-onset z-score and avoidance
score. Example cell from (A) is marked in green. (C) Comparison of the observed mean
correlation coefficient over subjects to correlation coefficients calculated from shuffled
data. (D) Dependence of avoidance prediction performance on different cell groups. Cells
are removed either according to avoidance score sorting (black), tone-onset z-score sort-
ing (blue), or randomly (gray). (E) Decoding performance curves for different cell subsets;
removal based on avoidance score sorting. (F) Same as (E) for tone-onset z-score sorting.

neural activity between tasks. To address this alternative explanation, we trained de-
coders mixing data from both tasks and compared their performance to within-task
decoders (Fig. 4.11C,D). The set of mix decoders closely matched the performance
of both task-specific decoders. As one set of mix decoders was able to reproduce
the performance of two sets of task-specific decoders, these results indicate that pre-
dictive information had similar structure in the two tasks (Fig. 4.11E,F). Thus, the
differences observed in across task decoding do not seem to originate from task-
specificity of action-predictive activity. Taken together, these decoding results show
that mPFC activity does contain action predictive information, however upcoming
actions are not represented in an action-specific manner.

4.6 Relating tone and avoidance coding

Having analyzed the neural correlates of tone and avoidance actions, we next asked
how these correlates are related. We first considered the avoidance and tone scores
that we defined for individual cells and asked how they were related. As the tone-
z score might also capture avoidance-related activity due to the systematic over-
lap of tone and avoidance, we calculated a tone-onset z-score based on the first 2s
of the tone response. Using the tone and avoidance scores, we could identify in-
dividual cells that both responded to the tone and contained avoidance predictive
information (Fig. 4.12A). On the level of the population however, there was no co-
ordinated relation between the two types of information as captured by the scores
(Fig. 4.12B,C). Yet, as the avoidance score relied on trial averaging and as pre-action



52 Chapter 4. Two-dimensional Active Avoidance

differences between avoid and error trials were generally small, it could be that the
score did not accurately reflect avoidance-related information.

Since population-based decoding provided a better handle on avoidance-related in-
formation, we next devised an approach to analyze the importance of different sub-
sets of cells with respect to decoding accuracy. To measure the importance of a subset
of cells, we reran the avoid vs. error trial decoding, but removed the cell subset from
the feature set normally consisting of all cells. We then quantified the change in de-
coding performance using the area under the curve as a summary statistic for the
decoders trained on different time steps. We first analyzed how decoding perfor-
mance evolved when removing cells according to their avoidance score. For this we
sorted cells based on the absolute value of their avoidance score in descending order
and then removed cell subsets of increasing sizes and quantified the resulting de-
coding performance (Fig. 4.12D). We observed that performance rapidly decreased
upon the removal of even small subsets of cells, indicating that the avoidance score
indeed captured the predictive information used by SVM classifiers. Removal of
increasingly bigger subsets progressively delayed the decoding performance before
action start, while decoding after action start was less affected (Fig. 4.12E). In con-
trast, removal of cells according to their tone-onset z-score had little effect on decod-
ing performance and closely resembled the removal of random cells (Fig. 4.12D,F).
These results are consistent with the analysis of single cell avoidance and tone scores
and further indicate that there was no coordinated coding of tone and avoidance
related information. We could thus not identify a transformation of tone-related in-
formation into action-related signals based on these analyses.

In summary, we established a novel active avoidance paradigm with a changing
stimulus-response mapping that allowed us to investigate how mPFC activity relates
to tones, actions and the association of sensory signals with behavioral responses.
We found pronounced tone responses that depended on behavioral relevance, re-
mained stable over conditioning sessions and did not show clear changes upon the
switch of the tone-induced action with the relearning between tasks 1 and 2. Neural
correlates of avoidance actions were more subtle, but we found that mPFC popu-
lation activity contained predictive information about upcoming avoidance actions
up to 3s before action start. However these predictive signals were not specific to
the executed action and we could not identify a clear relation between the neural
correlates of tone and avoidance.
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Chapter 5

Two-tone Active Avoidance

The 2DAA experiment allowed us to investigate changes in stimulus-response map-
pings on the behavioral side. In a complementary experiment we trained mice to
perform a single avoidance behavior in response to two different tones in two con-
secutive tasks. This setting allowed us to ask how prefrontal tone responses evolve
as their relation to behavior changes. As the behavioral paradigm is closely related
to the 2DAA setting, we use similar quantification methods and highlight similari-
ties and differences between the two paradigms. We again start by introducing and
quantifying the learning behavior and then quantify neural activity in terms of its
relation to tones and avoidance actions.

5.1 Behavioral paradigm

The two-tone active avoidance (2TAA) paradigm consisted of 9 sessions compris-
ing habituation (day 1), active avoidance task 1 (days 2-4), active avoidance task 2
(days 5-7) and extinction sessions (days 8 and 9). Sessions and trials had the same
structure as for the 2DAA experiment (see section 4.1), with the exception that the
50 trials were randomly split into CS1 and CS2 trials. We used 4 and 10 kHz tones
played at 75 dB and counterbalanced their assignment to CS1 and CS2 across an-
imals. The pairing of tone and shock was dependent on tone type and task type.
In task 1, CS1 was followed by a shock, while CS2 presentations did not have any
consequence. In task 2, these contingencies were reversed. We activated shocks only
in the compartment in which a subject was located at the beginning of a trial, leav-
ing the other compartment as a safe zone. If mice shuttled between compartments
during shock-paired trials, we blocked both tone and shock channels until the end
of the trial (Fig. 5.1). As for the 2DAA experiment we recorded all behavior using
two top-view video cameras.
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FIGURE 5.1: 2TAA paradigm. (A) Schedule of the 2-tone active avoidance paradigm. In
task 1 (left) animals are trained to shuttle in response to tone 1 through the association to
the shock, while tone 2 does not have any consequences. In task 2 (right) this mapping
is reversed. (B) Schematic of shuttle box. (C) Logic of active avoidance trials. For shock
paired trials, shuttling immediately blocks both tone and shock presentations. For tone
presentations that are not paired with shock presentations, shuttling does not have any
effect and the tone is always played for the full 10s.
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5.2 Behavior quantification

FIGURE 5.2: Analysis of shuttling behavior. (A) Fraction of avoidance trials of task 1 (blue)
and task 2 (green) sessions. Individual data points represent and average over 5 trials and
data is displayed as mean± SEM over 10 mice. (B) Frequency of shuttle action during CS1
(solid line) and CS2 (dashed line) presentations. Mean ± SEM, n=10 mice.

We trained 16 animals on the 2TAA task, however 6 animals did not learn task 2
(data not shown) and were excluded from further analysis. The remaining 10 ani-
mals learned both tasks and on average reached performance levels of over 70% by
the end of the last learning session (Fig. 5.2A). The task switch lead to a clear drop
in performance and animals relearned to avoid shocks at a similar speed as for the
learning of the first avoidance action. In comparison to the 2DAA experiment, learn-
ing was slower, which can however be explained by the lower number of trials per
session (25 shocked tones vs. 50 shocked tones). In both tasks of the 2TAA experi-
ment, animals showed behavioral discrimination between the two tones (Fig. 5.2B).
In task 1, CS2, which did not have a consequence, caused only low shuttling rates.
After the task switch, the frequency of CS2-induced shuttling continually increased,
while CS1-induced shuttling continually decreased, due to the loss of CS1’s connec-
tion to the shock. These results show that animals learned the mapping between the
different tones and the shuttling behavior in a task-specific manner.

We next compared avoidance actions to transitions during the inter-trial interval.
As in the 2DAA experiment, the frequency of ITI transition dropped with the onset
of conditioning on day 2, while shuttling during tone presentations was increased
in a tone-specific and task-specific manner (Fig. 5.3A). When analyzing the mean
speed of the recorded transitions, we found that not only the frequency, but also
the intensity of shuttle behaviors during the two tones changed between tasks (Fig.
5.3B), further demonstrating the adaptation of tone-induced behaviors. In general,
shuttling during the tone was associated with higher speeds than shuttles during
the ITI (Fig. 5.3C,D) and speeds peaked at the time of the shuttle (Fig. 5.3E,F).

Shuttle latency had comparable levels to the 2DAA experiment, and the mean shut-
tle latency also increased upon the task switch (Fig. 5.3G,H). However, as opposed
to the 2DAA experiment, this increase was not connected to an increase in freezing
probability at tone onset (Fig. 5.3I).
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FIGURE 5.3: Comparison of avoidance actions and inter-trial interval (ITI) shuttles and
shuttle latency. (A) Frequency of shuttling during tones and during the inter-trial interval.
Same data as Fig. 5.2, but normalized by tone time. Mean ± SEM, n=10 mice. (B) Mean
speed of CS1, CS2 and ITI shuttles. Mean ± SEM, n=10 mice. (C) Distribution of mean
speed of task 1 avoidance and task 1 ITI shuttles. (D) Analogue of (B) for task 2 (E) Speed
during task 1 avoidance action and task 1 ITI shuttles. Mean ± STD over transitions. (F)
Analogue of (E) for task 2. (G) Mean shuttle latency over task 1 and task 2 sessions. Mean
± SEM, n=10 mice. (H) Distribution of shuttle latency for tasks 1 and 2. (I) Freezing
probability during task 1 and task 2 avoidance trials. Mean ± SEM, n=10
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FIGURE 5.4: Quantification of tone-responsive cells. (A) Responses to the two tones in the
two tasks for an example cell. For CS1 in task 1 and CS2 in task 2, tones could be ended by
avoidance shuttles and trials are sorted by tone length. (B) Fraction of cells that respond
to CS1 (solid line) and CS2 (dashed line) over days. Mean ± SEM, n=10 mice. (C) Fraction
of tone-responsive cells, that show responses to both tones. Mean ± SEM, n=10 mice.

5.3 Single cell tone responses and decoding of tone-related
information

Over the 10 animals that successfully completed the two tasks, we recorded the ac-
tivity of 2442 neurons (244± 62 per subject). While for the 2DAA paradigm the focus
was on behavior, here we analyze the responses to the two tones in more detail. We
start by considering single cell responses and then use population-level decoding to
ask how tones were represented at the time scales of days and milliseconds. Finally,
we again consider behavior related signals in the form of predictive information on
upcoming avoidance actions.

To investigate how the two tones were represented in mPFC activity over the course
of the 2TAA experiment, we first analyzed the activity of individual cells. Fig. 5.4A
displays an example cell that responded to CS1, but not CS2 in task 1, but shows re-
sponses to both tones in task 2. A quantification of tone selectivities over all neurons
showed that mPFC tone responses matched the behavioral discrimination of the two
tones: CS1-evoked responses appeared in task 1 and faded away again in task 2, and
CS2 responses only became substantial in task 2, where CS2 was first paired with the
shock and mice started displaying avoidance responses (Fig. 5.4B). Interestingly, a
substantial fraction of cells showed responses to both tones in task 2 (Fig. 5.4C) and
we further investigate representational similarity between the two tones in more de-
tail below. As in our other experiments, we next asked how well we could decode

FIGURE 5.5: Tone vs. baseline decoding. (A) Accuracy of tone vs. baseline decoders
trained per day for CS1 and CS2 presentations. Mean ± SEM over 20 bootstrap runs.
(B) Time-resolved tone vs. baseline decoding per task for the two tones. Mean over 20
bootstrap runs. (C) Time-resolved tone vs. baseline decoding for CS2 trained on data from
days 4 to 6. Mean over 50 bootstrap runs.
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tone vs. baseline time steps and found that decoding accuracy closely reflected the
fraction of tone-responsive cells over sessions (Fig. 5.5A). This time course again
demonstrates the dependence of mPFC tone responses on behavioral relevance and
additionally shows that this relevance is evaluated in a tone specific manner.

The analysis of time-resolved tone decoding revealed that CS2-related information
had interesting dynamics during task 1 and task 2 tone presentations. In task 1,
CS2 decoding accuracy peaked shortly after tone onset and then decayed over the
first two seconds (Fig. 5.5B). In task 2, CS2 decoding generally worked better than
in task 1, but in contrast to CS1 decoding performance did not reach 100% right
after tone start, but was slightly worse and performance increased over the course
of the tone presentation. We analyzed this result in more detail by performing CS2
per-time step decoding for individual sessions around the task switch (Fig. 5.5C).
Due to the lower number of trials available for training, performance was generally
worse, but we found that over task 2 sessions CS2 decoding accuracy was similar
at tone onset, but quickly diverged, either decreasing or increasing over the course
of the tone presentation. The progressive increase of CS2-related information over
days suggests that this effect is based on learning-related changes in the processing
of CS2 stimuli.

5.4 Tone identity decoding

Given the overlap of tone responses in task 2 (Fig. 5.4C) we further investigated
representational similarity by asking whether responses to the two tones were suf-
ficiently different to allow the decoding of tone identity from neural activity. We
first trained tone ID decoders for individual days and observed that tone identity
could only be reliably decoded on days 3 and 4, where the discrepancy between
CS1-responsive and CS2-responsive cells is maximal (Fig. 5.6A). On days 6 and 7,
where tone vs. baseline decoding accuracy was greater than 90% for both tones
individually (Fig. 5.5A), tone identity decoding accuracy dropped to below 75 %.
This discrepancy suggests, that while some tone-specific information exists, the two
tones were represented in a similar way. To further investigate this similarity and its
temporal evolution, we trained tone ID decoders per time step. We found that the
presence of tone-specific information was maximal right after tone onset, and de-
cayed with the duration of the tone (Fig. 5.6B). Interestingly, the time course of this

FIGURE 5.6: Tone ID decoding. (A) Decoding accuracy of tone identity decoders trained
on data from different days. Mean ± SEM over 50 bootstrap runs. (B) Time-resolved
decoding of tone identity for SVMs trained on data from tasks 1 and 2. Mean over 50
bootstrap runs. (C) Time-resolved decoding of tone identity for days 4 to 6. Mean over 50
bootstrap runs.
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decay followed the decay of CS2-related information in task 1 (Fig. 5.5B), suggesting
there might be similar information processing dynamics. When repeating the same
analysis for individual days, we found that tone identity decoding continually gets
worse over task 2 sessions and that the decay of tone identity information becomes
faster over days (Fig. 5.6C). Surprisingly, these results show that the representational
similarity of the two tones does not follow behavioral discrimination. While animals
have similar shuttle levels in response to CS1 and CS2 on day 6, on day 7 there is a
clear difference between tone-induced shuttling for the two tones (Fig. 5.2B). This
indicates that tone representation is not directly linked to behavior execution, which
is consistent with our findings in the 2DAA experiment, where we do not find clear
differences in tone-related activity between avoidance and error trials.

5.5 Avoidance action prediction

We next asked if neural activity from the 2TAA experiment contained similar levels
of action predictive information as for the 2DAA experiment. Importantly, we can
use the comparison between the two experiments as a way to estimate the existence
of action-specific signals in the 2DAA experiment. As avoidance actions stay the

FIGURE 5.7: Prediction of avoidance actions in the 2TAA experiment. (A) Time-resolved
decoding of trial-type (avoid or error) for time steps aligned to tone start (left) or shuttle
action start (right). Decoding performance (blue) is displayed as mean ± SD over 100
bootstrap runs. Black line and gray area represent mean and 0.5th and 99.5th percentiles
of the distribution of mean accuracies of 200 shuffle repetitions of a permutation test (see
methods). Black line at the bottom indicates significance (p<0.01). (B) Same as (A) for
task 2. (C) Trial type decoding based on motion information (same as right plot in (A)
otherwise). (D) Same as (C) for task 2. (E) Quantification of decoding performance over
100 bootstrap runs. Area under the curve (AUC) is calculated over the whole period from
3s before to 1s after action start. (F) Same as (E) for task 2.
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FIGURE 5.8: Action prediction performance evaluated across tasks in the 2TAA experi-
ment. (A) Prediction of trial types for task 1 trials, using decoders trained on task 1 (within
task testing) or trained on task 2 (across task testing). (B) Same as (A) for task 2 trials. (C)
Comparison of within-task performance with decoders trained using data from both tasks
(mix decoders). (D) Same as (C) for task 2 trials, mix decoders are the same for (C) and
(D). (E,F) Quantification of decoder performance for the 3 decoder sets (n = 100 bootstrap
runs).

same in the 2TAA experiment, any task-related differences that are present in 2DAA,
but not 2TAA, are likely to be related to the change of action.

We applied the previously introduced decoding analysis for discriminating avoid-
ance and error trials and found that the results were highly similar between the
two experiments. As in the 2DAA experiment, avoidance actions could be decoded
above chance levels already 3s before action onset in both tasks (Fig. 5.7A,B). The
comparison to speed-based decoding also showed similar accuracies levels that stayed
clearly below the performance of neural decoders (Fig. 5.7C-F). This similarity be-
tween the results from the two experiments highlights the robustness of the used
analysis.

Across-task decoding and mixed decoding using data from both tasks also produced
highly similar results to the 2DAA experiment (Fig. 5.8). These results again show
that performance differences in across-task decoding (Fig. 5.8A,B) do not originate
from conceptual differences between the executed actions in the two tasks. This
analysis further strengthens the interpretation that the two actions in 2DAA are as-
sociated with similar activity patterns in mPFC.
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Chapter 6

Discussion

In this thesis we investigated the role of mPFC in linking sensory stimuli to con-
ditioned behaviors. We approached this question by recording mPFC activity over
the course of different conditioning paradigms with changing relationships between
stimuli and behavior. In particular, we asked how sensory responses evolve with
learning and how they are related to behavior execution.

In all experiments we found clear tone responses that changed over the course of
learning. Tone responses emerged with conditioning, were selective to behaviorally
relevant tones and rapidly disappeared as soon as stimuli ceased to induce fear-
related behaviors. The identification of behavior-related activity was more challeng-
ing, as general motion-related activity made it difficult to isolate signals that are
related to specific behaviors. However, using a decoding approach, we found that
mPFC activity carries predictive information regarding upcoming avoidance actions
already several seconds before action-onset. This predictive activity was not specific
to different learned avoidance actions, but rather remained similar irrespective of
the identity of the executed action. In general, we did not find any evidence of a
clear link between tone-related activity and activity related to behavior execution in
either of the experimental paradigms.

In the following sections we discuss the results of our three experiments in detail
and highlight common themes and findings as well as differences. Finally we dis-
cuss limitations of our experimental approach, give an outlook on future work and
present conclusions of the work conducted in the scope of this thesis.

6.1 Evolution of prefrontal tone responses over fear condi-
tioning and extinction

We recorded and analyzed the activity of thousands of prefrontal excitatory cells
over the full duration of a 6-day fear conditioning paradigm. Our recording and
analysis procedures allowed us to track all recorded cells over the course of the six
recording sessions. We found that previously unresponsive cells developed a tone
response during and after the conditioning session on day 3 (Fig. 3.3), which often
remained stable over all post-conditioning days (Figs. 3.3, 3.5). We analyzed the
relation of tone responses to freezing behavior and found that there was no correla-
tion between the level of activity of tone-responsive cells and freezing behavior on
the second to second basis (Fig. 3.4).



62 Chapter 6. Discussion

This finding is at odds with interpretations presented in previous work. Burgos-
Robles et al. [69] proposed that PL drives freezing via the sustained activity of tone-
responsive cells. The authors base this interpretation on a temporal correlation of
tone responses and freezing behavior. However, their observation that mPFC tone
responses correlate with freezing is not surprising, as tone presentations and freez-
ing behaviors have a systematic temporal overlap inherent to task design (see Fig.
3.2B). This temporal overlap generates a high baseline correlation between tone re-
sponses and freezing and a link between tone-evoked activity and freezing would
only be implied by a further correlation outside of tone presentations, which seems
limited in their data. We quantified potential joint coding of tone information and
freezing by testing for correlations between tone z-scores (limited to tone onset to
address the overlap issue) and freezing scores, and found that there was no substan-
tial correlation between how cells responded to the tone and related to freezing (Fig.
3.4).

Yet, consistent with Burgos-Robles et al. [69], we found that tone responses disap-
peared as animals stopped freezing during extinction sessions (Fig. 3.6). Our decod-
ing analysis showed that individual trials in which animals did not freeze contained
less tone-related information than freezing trials. This trial-to-trial correlation sug-
gests that there is some link between prefrontal tone responses and behavior execu-
tion, but we did not find a specific neural representation of this link. Thus it remains
unclear whether this link is causal and what mechanisms underlie the transforma-
tion of tone-related activity into signals driving freezing behavior.

In a series of papers, Courtin et al. investigated this mechanistic basis using elec-
trode recordings and optogenetic manipulations [73, 74, 75]. They found that a
4Hz rhythm in mPFC was causally related to the expression of freezing behavior.
Although the authors could demonstrate the importance of the 4Hz rhythm using
temporally precise manipulations of neural activity, it remained unclear what the
origin of this rhythm is and how it relates to CS presentations. More recently, a
study found that the 4Hz rhythm originates from regular breathing during freezing
and is transmitted to mPFC via the olfactory bulb [114]. Based on this finding, Bagur
et al. [115] showed that prefrontal activity is predominantly important for freezing
maintenance rather than freezing initiation. The initiation of freezing is crucially
dependent on amygdala circuits, but it remains unclear what the relevance of CS+
evoked activity in mPFC is for the initiation of freezing. Unfortunately, due to the
low temporal resolution of calcium imaging,such rhythms were not visible in our
data.

Overall, although our findings are consistent with prefrontal CS+ responses driv-
ing the execution of freezing behavior, we did not find any signatures of mecha-
nisms linking tone-related activity to freezing. However, another possible expla-
nation would be that prefrontal tone responses are tightly coupled to behavioral
relevance but do not directly cause behavior. This would also explain the lack of
tone responses in trials without freezing, as the absence of freezing indicates a loss
of behavioral relevance.
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6.2 Neural correlates of tones and actions in active avoid-
ance

We designed two complementary active avoidance paradigms in which we adapted
the conditioned response and the conditioned tone respectively. We used these
adapted mappings from tone to behavior to assess concurrent changes in mPFC
activity. Here we first discuss general properties of the neural activity related to
active avoidance paradigms and then consider the effects of the task switches in the
2-dimensional active avoidance (2DAA) and 2-tone active avoidance (2TAA) exper-
iments.

Similar to the fear conditioning paradigm, tone responses were easy to identify due
to their clear temporal alignment to tone on- and offset (Fig. 4.7). Compared to
fear conditioning, a larger fraction of cells was classified as tone-responsive. This
can however be explained by the higher number of trials and the resulting increase
in statistical power of tone cell classification procedure. Moreover, tone responses
stayed stable over multiple sessions, but disappeared in extinction sessions.

Identifying activity patterns related to active avoidance is complicated by neural
correlates of general motion [116]. Consistent with recent studies demonstrating
widespread activity related to movements [117, 118, 119], we found that the activ-
ity of many prefrontal cells was modulated by motion (Fig. 3.4). We approached
this challenge by focusing on pre-action activity in order to investigate the cognitive
process leading to the execution of avoidance actions. We aligned trials to the onset
of avoidance actions (Fig. 4.5) and found that there were only subtle differences be-
tween avoidance trials and error trials in individual cells (Fig. 4.9). This contrasts
our results in the fear conditioning paradigm, where we found that differences in
freezing behavior between trials were reflected by responses to the tone. However,
as stated above, we interpret this correlation between tone responses and freezing
behavior as a reflection of the temporal evolution of the tone’s behavioral relevance.
Within active avoidance sessions, however, the behavioral relevance of the tone re-
mains constantly high, and failures to avoid are not based on the failure to recognize
the behavioral relevance of the tone. Especially after initial learning, error trials are
rather a reflection of the conflict between freezing and avoidance actions.

Despite the subtlety of avoidance-predictive activity in single cells, we found that
population activity contained predictive information about avoidance actions up to
3s before action onset by following the decoding approach from Jercog et al. [99] (Fig.
4.10). Importantly, this predictive information cannot be explained by motion corre-
lates, as decoders trained on motion information from video tracking only achieve
above-chance decoding accuracies 2s after neural decoders. While the results in the
study of Jercog et al. [99] are qualitatively similar, our data show substantially higher
effect sizes in the comparison between neural and speed decoders (3s vs. 1s instead
of 750ms vs. 500ms). This increased performance of neural decoders is probably
based on two factors. First, we recorded from a substantially higher number of cells
(ca. 3000 vs. ca. 600). Second, since we recorded from the same neurons over differ-
ent sessions, we could pool trials from different sessions, increasing the number of
data points that can be used for training SVM decoders.

Using this decoding approach, Jercog et al. [99] showed that cells which have an
excitatory response to tone presentations are better predictors of avoidance actions
than other cells. The authors argue that this result provides a link between tone
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responses and the execution of avoidance actions. However, the relevance of this
difference between tone-excited and other cells found in their study is questionable,
as the predictive power of tone-excited cells did not exceed the predictive power
of motion-related information. Indeed, we did not find an effect that links tone re-
sponses to avoidance-predictive activity in our data. Our removal analysis shows
that even when removing 90% of the most tone-responsive cells, good avoidance
action prediction can still be achieved (Fig. 4.12). By contrast, when removing cells
with a high avoidance score, a large drop in accuracy can be observed, indicating
that avoidance-related information is not jointly coded with tone information.

Based on our results, it does not seem appropriate to attribute the transformation
from sensory information to action initiation to local processing in mPFC, which is
often the narrative in current literature. However, it is clear that mPFC plays an
important role in the distributed network that is involved in this transformation. In
particular, mPFC projections to the BLA and ventral striatum have been shown to
differentially modulate avoidance behavior [100]. Nevertheless, projection-specific
imaging of mPFC cells projecting to BLA and striatum did not find differences in
tone responses in these subpopulations [120], further highlighting the difficulty of
linking sensory-evoked responses to action initiation. Ultimately, further work is
required to investigate how the coordination between different brain areas leads
to action initiation, e.g. through the study of cortico-striatal loops [121]. Such a
distributed transformation of sensory-driven activity to drive avoidance behavior
would be consistent with the slow rise of avoidance-predictive information we ob-
served in our decoding analysis (Fig. 4.10A).

6.3 Lack of action-specificity in the 2DAA paradigm

The 2DAA paradigm was based on the idea that if the action induced by the tone
changes, we might see a change in prefrontal activity that gives insights into how
tone and action are linked. However, our analyses did not show a change in activity
that could be clearly traced back to the switch between the two avoidance actions.
While there were some differences between tasks, it was generally difficult to assign
these differences to the task switch.

One challenge we faced was that the two conditioned responses were present in dif-
ferent phases of the experiment. Thus, when analyzing action specificity, one has to
control that the observed changes did not simply occur due to temporal drifts. One
strategy to do that is to see how task-wise changes relate to session-wise changes.
If the change at the task switch is bigger than the change between sessions, one
could conclude that there are task-specific changes. We followed this strategy when
comparing tone responses between the two tasks (Figs. 4.7, 7.8) and found a small
effect when comparing tone z-scores of different sessions. However, the effect might
still be explained by a general stabilization of tone responses over time. Further-
more, the potential of this approach is limited by the fact that any present effect
is probably diluted, because changes that are associated with learning in task 2 do
not occur abruptly but rather develop slowly and at different speeds for different
animals.

Another approach we followed was to use the two avoidance experiments (2DAA
and 2TAA) as mutual comparisons, as the manipulations between tasks were differ-
ent. One question that we addressed this way was whether the differences between
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within-task and across-task decoding of avoidance actions were related to the dif-
ference between actions in the 2DAA experiment (Fig. 4.11). When performing the
same analysis for the 2TAA experiment, we found that the results were almost iden-
tical (Fig. 5.8). Since the action taken in the two tasks is the same for the 2TAA
experiment, we concluded that the differences we found in the 2DAA experiment
were not based on action-specificity.

It is important to note that the fact that we did not find action specificity in our
experiments does not mean that such specificity does not exist in mPFC. Next to
the methodological difficulties of identifying such specificity described above, one
possible explanation for the absence of action-specific neural activity could be that
the two avoidance actions were too similar. While animals did adapt their actions
(Fig. 4.2), they might not have learned that changing the direction of their shuttle
motion corresponds to a conceptually different action. It would be interesting to see
if we could find differences in action-predictive activity if avoidance was based on
two very different actions (e.g. shuttling vs. lever pressing). However, based on
our experience in training animals on avoidance tasks, it might be difficult to find a
setting in which animals can learn such a task.

In general, investigating cognitive flexibility in the context of aversive learning seems
especially challenging as flexibility is systematically reduced when animals are in
threatening situations [122]. When running behavioral pilot studies during the de-
velopment of the 2DAA experiment, we experimented with various versions of tasks
combining multiple tones and multiple actions. However, we experienced difficul-
ties in training mice in such paradigms. Additionally, as discussed above, it would
have been advantageous to switch back and forth between different tasks, as revis-
iting tasks allows to control for temporal effects [88]. Yet the conceptually relatively
simple 2DAA and 2TAA experiments already pushed the limits of what mice could
learn and the long duration of the experiments introduced challenges for the steady
recording of neural activity, which precluded prolonging tasks even further.

6.4 Representational similarity of avoidance-inducing tones

In the 2TAA experiment we trained mice to shuttle in response to two different tones
in two consecutive tasks. We were particularly interested in the evolution of tone re-
sponses upon the task-switch. Consistent with previous experiments, CS2, which
was first paired with the shock in the second task, did not evoke strong responses
in task 1 (Fig. 5.4). In task 2 both tones elicited clear responses, although CS1 re-
sponses declined, while CS2 responses increased throughout the task. We investi-
gated the similarity of these tone responses and found that it increased over days,
as reflected by the decreasing accuracy values in the tone identity decoding analysis
(Fig. 5.6).

We further wanted to understand whether this representational similarity was based
on the two tones being linked to the same conditioned behavior. One conceptual
issue with this question was that we could not evaluate this similarity in compari-
son to a baseline setting. In other words, it is not clear what level of similarity one
should expect from two tones that are linked to different behaviors. However, our
time-resolved decoding analysis of tone identity offered a solution to this problem,
as it allowed us to compare similarities of tone responses at different time steps.
Using this analysis, we found that, over the course of tone presentations, similarity
increased (Fig. 5.6).
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This finding suggests that the activity evoked by the two tones converges to a joint
threat representation. Consistent with this idea, CS1 continued to induce shuttling
throughout task 2, after it had lost its connection to the shock. In contrast, CS2-
induced shuttling decays much more rapidly upon the transition to extinction ses-
sion (Fig. 5.2). This suggests that the threat association to CS1 is maintained in task 2
because of the ongoing danger of receiving a shock in CS2 trials. A further interest-
ing finding is that CS1 and CS2 responses became more similar even as behavioral
discrimination between the tones increased at the end of task 2 (Fig. 5.6C). This is
similar to the finding that tone responses did not clearly differ between avoidance
and error trials and further suggests that there is no direct link between tone-evoked
activity and behavior execution.

An interesting difference between the 2DAA and 2TAA experiments was that for
2TAA tone responses were generally weaker in task 2 (Fig. 5.4), whereas they in-
creased in intensity for 2DAA (Fig. 4.7). This observation could be related to dif-
ferences between the type of learning required in the two experiments. While the
2DAA experiment requires the adaptation of a previously learned action, 2TAA re-
quires transferring a learned action to another sensory stimulus, which might re-
quire different learning mechanisms.

Finally, another difference between the two experimental paradigms was the rate
of animals successfully learning both tasks. In the 2TAA experiment all animals
learned the first task, but 6 out of the 16 animals did not manage to learn the second
task. In contrast, all 2DAA animals learned both tasks successfully. However, within
the 2TAA experiment, the success rate varied between different recording groups.
We usually worked with groups of animals that were co-housed in one cage for
every group of animals that entered the paradigm (maximally 5 at a time). Most
of the unsuccessful animals came from two groups that were born at the same time
and recorded from in close succession. It is thus likely that some factors that were
specific to these two cages caused the lower success rate. Potential sources of lower
performance could be stressors in the housing conditions such as noise, changes in
temperature or humidity, or issues with breeding.

6.5 Limitations and outlook

In this thesis, we investigated the neural basis of stimulus-response mapping by
manipulating the mappings that animals learn through conditioning, while record-
ing neural activity. The usefulness of this approach requires that the manipulations
of the link between stimuli and behavior are reflected in the recorded neural activ-
ity. This was the case for the 2TAA experiment and the change between avoidance-
inducing tones allowed us to assess how the two tone representations were related.
In the 2DAA experiment however, the lack of action-specific activity precluded in-
vestigations of the link between the tone and different actions. Thus, the approach
of manipulation stimulus-response mappings was only partially successful.

The use of calcium imaging allowed us to record the activity of a substantially
higher number of neurons compared to previous work using electrophysiological
approaches. However, this advantage comes at the cost of a lower temporal resolu-
tion. Especially in the fear conditioning experiments, it would have been interesting
to further investigate oscillations during freezing behavior and their relation to tone-
evoked activity.
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As introduced in section 1.1.5, there are many ways to analyze neural data and, over
the course of this thesis, we have explored various approaches. The presented de-
coding approach was particularly useful because it allowed us to ask clear questions
regarding the representation of experimental variables and how they change over
time. However, there are also clear limitations to analyses based on decoding. For
example, while one can ask if a decoder can find differences between two data sets, it
is not always straightforward to understand what these differences are based on. An
example of this issue is the distinction of tone and baseline time steps for avoidance
trials. Towards the end of avoidance trials, there are two factors that discriminate
trials from baseline (tone and behavior) and these factors are difficult to disentangle
using decoding. In such settings, model-based approaches that isolate the relation
of neural activity to individual signals of interest can be helpful. However, when
many signals overlap, it can be difficult to properly fit models such that they ap-
propriately disentangle different contributions to changes in neural activity. In our
case, model fitting was difficult as there were many systematic overlaps including
tone presentations, avoidance actions, escape actions, shocks presentations and gen-
eral motion (Fig. 4.6). Due to these factors, it was difficult to leverage the power of
model-based approaches and we did not include such analyses in this thesis, as they
did not provide clear answers to the questions addressed here.

Finally, another limitation of the presented study, but also of the field in general,
is a lack of theoretical understanding of what links between sensory stimuli and
action-related signals could look like. The narrative of various studies is that there
is some form of joint coding of sensory information and action-inducing activity in
individual cells [69, 78, 99]. However, such joint coding is only one simple model
of how sensory and behavioral signals can interact in the studied networks of neu-
rons. Since we did not find evidence for joint coding, we believe that further theo-
retical investigations are necessary to generate predictions that can be tested using
experimental data. Importantly, such predictions can motivate and guide the use
of manipulation techniques such as optogenetics and increase the relevance of the
displayed effects on behavior.

6.6 Conclusion

Throughout our three experimental paradigms, we observed that prefrontal tone re-
sponses are tightly coupled to behavioral relevance. However, we did not find a
link between tone-evoked responses and the neural correlates of fear-related behav-
iors. Nevertheless, we found that mPFC contained information that could be used
to predict avoidance actions up to three seconds before action initiation. Yet, it re-
mained unclear how this predictive information is linked to tone-responsive cells.
Taken together, our results suggest that stimuli and conditioned responses are not
linked through a simple joint coding mechanism in mPFC and motivate theoretical
investigations of how sensory stimuli are transformed into action initiation signals
over networks of interconnected brain regions.
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Chapter 7

Appendix

Bleaching model for preprocessing of calcium imaging movies

As described in section 2.3.1, we observed issues with bleaching in our calcium
imaging movies, mainly reflected by a general decrease in signal intensity (Fig. 7.1,
top row). However, not all pixels were equally affected and particularly pixels re-
lated to blood vessel patterns showed different changes than other pixels (Fig. 7.1,
bottom right). This non-uniformity precluded dealing with bleaching using sim-
ple filtering techniques. Instead, we constructed a rank-2 bleaching model using
PCA as illustrated in Fig. 7.2. The two first principle components in pixel space
corresponded to the two differently behaving pixel patterns described above: PC1
reflected changes with a low spatial frequency, whereas PC2 reflected blood vessel
patterns. These two patterns had opposing temporal dynamics where PC1 inten-
sity decreased while PC2 intensity increased (Fig. 7.2, bottom right). Importantly,
bleaching models were stable over sessions of different days and thus did not intro-
duce variability between recording sessions.

FIGURE 7.1: Illustration of non-uniform bleaching. Top row: (left) Raw example frame
from the beginning of an example session. (middle) Example frame from late in the same
session. (right) Difference between early and late frame. Bottom row: (left, middle)
Normalized frames. (right) Difference of normalized frames highlighting non-uniform
changes related to blood vessel patterns.
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FIGURE 7.2: Illustration of bleaching models on different days. Top row: PC1 in pixel
space corresponding to a pixel pattern with low spatial frequency which decreases inten-
sity over recording sessions. Middle row: PC in pixel space corresponding to a blood
vessel pattern that increases in intensity relative to PC1. Bottom row: Temporal weights of
the two PCs highlighting the opposing temporal evolution.
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Example cells from signal extraction annotation

Here we display further example cells from the annotation process that we use to
validate the automatically extracted cells as described in section 2.3.5. The first two
cells represent two further positive examples, while the remaining cells display char-
acteristics that led to their exclusion as described in the captions.

FIGURE 7.3: Example cell that was accepted in the annotation process.

FIGURE 7.4: Example cell that was accepted in the annotation process.
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FIGURE 7.5: Example cell that was rejected in the annotation process because of cross talk
between two overlapping cells. This cross talk can be seen by the difference between event
snapshots.

FIGURE 7.6: Example cell that was rejected in the annotation process because of untypical
shape, untypical temporal dynamics and differences between event snapshots.
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FIGURE 7.7: Example cell that was rejected in the annotation process because of lacking
stability over sessions. The noisy period towards the end corresponds to the final recording
session.
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Further quantification of task specificity of 2DAA tone responses

FIGURE 7.8: Quantification of task-specificity of tone responses using z-score correlations.
(A) Pairwise Pearson correlation coefficients of tone z-scores per day. Mean over 12 sub-
jects. (B) Quantification of task-specificity of tone responses comparing within-task and
across-task similarity at two different time shifts. Wilcoxon signed rank test (p<0.05), n=
12 subjects.
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