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Kilian Ashley, Laurentiu Danciu, Lauro Böni, Leandra Eberle, Luigi Passarelli, Lukas Ni-
bourel, Martina Wundling, Max Klingler, Men-Andrin Meier, Michael Strupler, Michelle
Meier, Nicola Gruber, Nicolas Schmid, Oleg Zlydenko, Pascal Graf, Paulina Janusz, Patrick
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Abstract

The ancient problem of earthquake prediction is simultaneously fascinating and dishearten-
ing. Disheartening, because after millennia of observing and documenting earthquakes, we
are still caught by surprise every time tremendous amounts of energy happen to be released
from the Earth’s crust, destroying buildings, entire cities, and lives in the process. Fasci-
nating, because the seemingly chaotic occurrence of earthquakes does exhibit astonishingly
patterned behavior.

Instead of earthquake prediction, which is commonly viewed to be the specification of
location, time, and magnitude of the next devastating event, the prevalent practice today is
that of earthquake forecasting. That is, for a pre-specified space-time-magnitude domain,
the earthquake probability is calculated, ideally using all knowledge regarding occurrence
patterns of seismic events.

Two main branches of earthquake forecasting can be distinguished: Probabilistic Seismic
Hazard Analysis (PSHA) combines time-independent earthquake probabilities with expected
ground motions to form the basis of long-term protective measures in the form of building
codes. Time-dependent operational earthquake forecasting (OEF) on the other hand aims
to capture temporal fluctuations of earthquake probabilities based on which short-term
protective measures mostly affecting people’s behavior for a narrow period of time can be
taken.

While PSHA is widely used around the world, OEF is by and large still in its infancy.
Perhaps in its adolescence; models for time-dependent earthquake forecasting exist since
decades and have been thoroughly tested ever since they were first described. All the more
surprising is the lack of operational implementations of such models, with few, relatively
recent exceptions.

The most prominent models for time-dependent earthquake forecasting are Epidemic-
Type Aftershock Sequence (ETAS) models. They model seismicity as the sum of background
earthquakes and their cascades of aftershocks. Aftershock triggering is described using few
empirically derived laws regarding the number of triggered events as well as their occurrence
in space and time around their parent event. Earthquake magnitudes follow, like many other
quantities in nature, a power law.

In this thesis, the advancement of the field of earthquake forecasting is approached from
multiple perspectives, with ETAS models taking a key role throughout.

First, we address the topic of declustering, that is, identifying and removing earthquake
clusters from catalogs, in the context of PSHA. We systematically assess the effect of declus-
tering on the size distribution of the remaining mainshocks. By declustering synthetically
generated earthquake catalogs, and afterwards calculating their b-values, we find that declus-
tering introduces a bias to the earthquake size distribution of a catalog. This highlights the
problematic practice of using declustered catalogs for PSHA.

A possible approach to PSHA which does not rely on declustering is to quantitatively
model earthquake clusters instead of removing them. The ETAS model provides a simple
method to characterize the clustering behavior of a region through a set of parameters to be
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calibrated using a complete earthquake catalog of that region. Because the completeness of
earthquake catalogs can vary in short-term and long-term time horizons for distinct reasons,
we propose two extended parameter calibration techniques suited to deal with each of these
cases. Both methods are shown to accurately invert the data-generating parameters from
synthetic catalogs, and one of the methods is further tested in pseudo-prospective forecast-
ing experiments in California. The results thereof reveal that accounting for short-term
aftershock incompleteness when forecasting yields significantly improved forecasts. This im-
provement vanishes as the difference in magnitude between the newly included small events
and the target forecasted events increases, which is possibly explained through a tendency
of earthquakes to trigger similarly sized aftershocks.

After discussing and refining existing methods for earthquake forecasting, we commit to
advancing the operationalization of time-dependent earthquake forecasting in Switzerland.
We develop six variants of ETAS models using the Swiss earthquake catalog, additional
information extracted from the time-independent SUIhaz2015 model, or generic ETAS pa-
rameters calibrated on Californian data. One of the models uses the extended parameter
calibration technique mentioned earlier. In seven-day pseudo-prospective forecasting exper-
iments and 30- and 50-year retrospective consistency tests, we find that the purely ETAS-
based models are best suited for the first Swiss OEF system. The poor performance of the
model using Californian ETAS parameters highlights the importance of locally applicable
parameter inversion methods.

Finally, we propose a novel approach to combine existing forecasting models into new
ones. A question-driven ensemble (QDE) model is constructed by combining parameters
of ingredient models, where the rules to combine parameters are driven by questions about
the number of expected events, the spatio-temporal distribution of forecasted background
earthquakes, and the spatio-temporal distribution of forecasted aftershocks. A QDE model
can be viewed as a model which answers each question with a different ingredient model.
We first describe flexible ETAS (flETAS) models which use nonparametric formulations of
background seismicity and aftershock productivity during parameter inversion. The QDE
approach is then tested by comparing combinations of flETAS models in pseudo-prospective
forecasting experiments in Southern California and Italy. Our results show significant su-
periority of certain QDE models compared to their ingredient models, and we find striking
similarities between the results in the two regions. This emphasizes the usefulness of the
approach not only for the development of future earthquake forecasting models, but also for
understanding strengths and weaknesses of existing ones.



Zusammenfassung

Das uralte Problem der Erdbebenvorhersage ist faszinierend und entmutigend zugleich. Ent-
mutigend, weil wir nach jahrtausendelangem Beobachten und Dokumentieren von Erdbeben
immer noch davon überrascht werden, wenn plötzlich enorme Mengen an Energie von der
Erdkruste freigesetzt werden und dabei Gebäude, ganze Städte und Leben zerstört wer-
den. Faszinierend, weil das scheinbar chaotische Auftreten von Erdbeben doch erstaunliche
Regelmässigkeiten aufweist.

Anstelle der Erdbebenvorhersage, die üblicherweise als die Spezifikation von Ort, Zeit-
punkt und Magnitude des nächsten verheerenden Ereignisses definiert wird, ist die heute
gängige Praxis diejenige der Erdbebenprognose. Für einen vorgängig spezifizierten Raum-
Zeit-Magnituden-Bereich wird also die Wahrscheinlichkeit eines Erdbebens berechnet, be-
stenfalls unter Berücksichtigung des gesamten verfügbaren Wissens über die Auftretensmu-
ster solcher seismischen Ereignisse.

Zwei Hauptzweige der Erdbebenprognose können unterschieden werden: Die probabili-
stische seismische Gefährdungsanalyse (Probabilistic Seismic Hazard Analysis, PSHA) kom-
biniert zeitunabhängige Erdbebenwahrscheinlichkeiten mit zu erwartender Bodenbewegung
und bildet so die Basis für Langzeitschutzmassnahmen in der Form von Baunormen. Die
zeitabhängige operative Erdbebenprognose (operational earthquake forecasting, OEF) hin-
gegen versucht zeitliche Veränderungen der Erdbebenwahrscheinlichkeiten zu erfassen, auf-
grund derer kurzfristige Schutzmassnahmen ergriffen werden können, die vor allem das Ver-
halten von Personen für beschränkte Zeiträume beeinflussen.

Während PSHA weltweit breit eigesetzt wird, steckt OEF noch weitestgehend in Kinder-
schuhen. Vielleicht auch im Jugendalter; Modelle für zeitabhängige Erdbebenprognosen gibt
es seit Jahrzehnten, und diese wurden seit ihrer ersten Beschreibung immer wieder gründlich
getestet. Umso überraschender ist das Fehlen von operationellen Implementierungen solcher
Modelle, von wenigen, relativ jungen Ausnahmen abgesehen.

Die bedeutendsten Modelle für zeitabhängige Erdbebenprognosen sind ETAS (Epidemic-
Type Aftershock Sequence) Modelle. Sie modellieren Seismizität als die Summe von Hin-
tergrunderdbeben und deren Kaskaden von Nachbeben. Das Auslösen von Nachbeben wird
durch wenige, empirisch erlangte Gesetze bezüglich der Anzahl Nachbeben, sowie derer Auf-
treten in Raum und Zeit um ihr Vorgängerbeben beschrieben. Erdbebenmagnituden folgen,
wie viele Grössen in der Natur, einem Potenzgesetz.

In dieser Dissertation wird die Weiterentwicklung des Gebietes der Erdbebenprognose aus
verschiedenen Perspektiven angegangen, wobei ETAS-Modelle eine durchgehend zentrale
Rolle spielen.

Als erstes behandeln wir die Thematik des Entclusterns, also des Erkennens und Ent-
fernens von Erdbebenclustern, im Kontext von PSHA. Wir untersuchen den Effekt des
Entlusterns auf die Stärkenverteilung der übrigbleibenden Hauptbeben systematisch. In-
dem wir synthetisch generierte Erdbebenkataloge entclustern und daraufhin deren b-Werte
berechnen, stellen wir fest, dass das Entclustern einen Verzerrungseffekt auf die Magnitu-
denverteilung eines Erdbebenkatalogs hat. Dies unterstreicht die Problematik der gängigen
Praxis des Verwendens von entclusterten Katalogen für PSHA.
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Ein möglicher Ansatz für PSHA, der nicht auf das Entclustern angewiesen ist, ist das
quantitative Modellieren von Erdbebenclustern anstelle derer Entfernung. Das ETAS-Modell
bietet eine einfache Methode um das Clusteringverhalten einer Region zu charakterisieren,
indem einige Parameter anhand eines vollständigen Erbebenkatalogs dieser Region kali-
briert werden. Da die Vollständigkeit eines Erdbebenkatalogs in kurz- und langfristigen
Zeiträumen variieren kann, schlagen wir zwei erweiterte Kalibrierungsverfahren vor, die die
jeweiligen Fälle behandeln. Es wird aufgezeigt, dass beide Methoden die datenerzeugenden
Parameter von synthetischen Katalogen korrekt invertieren können, und eine der Methoden
wird zusätzlich in pseudoprospektiven Prognoseexperimenten in Kalifornien getestet. Die
Ergebnisse dieser Experimente zeigen, dass das Miteinkalkulieren von kurzfristiger Nachbe-
benunvollständigkeit (Short-Term Aftershock Incompleteness, STAI) signifikant verbesser-
te Prognosen liefert. Diese Verbesserung verschwindet mit steigender Magnitudendifferenz
zwischen den neu miteinbezogenen Kleinbeben und den prognostizierten Zielbeben, was
möglicherweise durch eine Tendenz von Erdbeben, ähnlich grosse Nachbeben auszulösen,
erklärbar ist.

Nach der Diskussion und Verfeinerung existierender Erdbebenprognosemethoden, ver-
pflichten wir uns dem Vorantreiben der Operationalisierung von zeitabhängigen Erdbe-
benprognosen in der Schweiz. Wir entwickeln sechs Varianten von ETAS-Modellen unter
Verwendung des schweizerischen Erdbebenkatalogs, zusätzlicher Informationen des zeitun-
abhängigen SUIhaz2015 Modells, oder generischer ETAS-Parameter, die mit kalifornischen
Daten kalibriert wurden. Eines der Modelle verwendet das vorhin erwähnte erweiterte Ka-
librierungsverfahren. In siebentägigen pseudoprospektiven Prognoseexperimenten sowie 30-
und 50-jährigen retrospektiven Konsistenztests stellen wir fest, dass die rein ETAS-basierten
Modelle am besten geeignet sind für das erste schweizerische OEF-System. Das schwache
Abschneiden des Modells, welches kalifornische Parameter verwendet, hebt die Wichtigkeit
lokal anwendbarer Parameterinversionsmethoden hervor.

Zuletzt schlagen wir einen neuartigen Ansatz vor anhand dessen neue Prognosemodel-
le aus bestehenden kombiniert werden können. Ein fragestellungsgetriebenes Ensemblem-
odell (question-driven ensemble model, QDE model) wird durch das Kombinieren der Pa-
rameter seiner Ursprungsmodelle kreiert, wobei die Regeln bezüglich der Kombination von
Parametern auf Fragen zur Anzahl erwarteter Beben, zur räumlich-zeitlichen Verteilung
von Hintergrundbeben, und zur räumlich-zeitlichen Verteilung von Nachbeben basieren. Ein
QDE-Modell kann als ein Modell angesehen werden, welches jede Frage mit einem anderen
Ursprungsmodell beantwortet. Wir beschreiben zunächst flexible ETAS (flETAS) Model-
le, welche in der Parameterinversion nichtparametrische Formulierungen der Hintergrund-
seismizität und Nachbebenproduktivität verwenden. Der QDE-Ansatz wird anschliessend
getestet, indem verschiedene Kombinationen von flETAS-Modellen in pseudoprospektiven
Prognoseexperimenten in Südkalifornien und Italien verglichen werden. Unsere Ergebnisse
zeigen eine signifikante Überlegenheit gewisser QDE-Modelle im Vergleich mit deren Ur-
sprungsmodellen, und wir stellen bemerkenswerte Ähnlichkeiten zwischen den Resultaten
in den zwei Regionen fest. Dies betont den Nutzen dieses Ansatzes, nicht nur für das Ent-
wickeln künftiger Erdbebenprognosemodelle, sondern auch für ein besseres Verständnis von
Stärken und Schwächen bestehender Modelle.



Chapter 1

Introduction

“Is nature chaotic, or is nature
patterned?”

— Douglas R. Hofstaedter,
Gödel, Escher, Bach: an Eternal Golden Braid

Humans are curious. We want to understand the world around us. When we lay beneath
the clear night sky, we do not just enjoy the view. We wonder what those shiny dots are
and how they were formed. We wonder why the Sun rises every morning. We wonder why
objects fall to the ground when we stop holding on to them. We wonder what the ground
on which they fall is made of. We wonder how life came to existence, how pea plants inherit
traits from their parents. We wonder whether we have free will, or whether our thoughts
are mere consequences of natural laws acting on the current state of the world. We wonder
how many prime numbers there are, what the price of the Bitcoin is tomorrow, and whether
there is an alternative to capitalism. And we wonder how earthquakes occur.

One way to try to understand the world is to find patterns. There are patterns in our
behavior, there are patterns in our thoughts, there are patterns in nature. We use patterns
to make predictions about the future. Though it has been wondered whether observing the
past allows us to make conclusions about the future (Hume, 1739). Or, to come back to the
question at the very beginning of this chapter, whether all observed patterns are purely a
result of chaos and chance. So as not to be halted by philosophical questions already, we
shall for now concern ourselves with finding patterns. With their propensity to destroy and
their intriguing property of occurring in seemingly chaotic yet beautifully patterned ways,
earthquakes are a fascinating topic to study.

The focus of this thesis will lie on finding patterns related to earthquakes.

Already in 1756, Immanuel Kant studied patterns in the occurrence of ground shaking,
correctly noting, for instance, that the earthquake frequency of a region is not determined
by the degree of Christianness of its population (Kant, 1756). He noted that it is, however,
related to the region’s proximity to mountain ranges. He noted that sometimes, the move-
ments of the ground are accompanied by movements of the ocean, and that earthquakes are
somehow related to fire-spitting mountains. While many of his observations were correct,
we know today that his theory of underground caves containing flammable gases, whose ex-
plosion causes the earth to shake, was not. It wasn’t until 1912 though that Alfred Wegener
formulated the hypothesis of moving crust to explain the formation of continents (Wegener,
1912). Due to the lack of a physical explanation for such “continental drift”, his theory
was widely disputed for another few decades. Upon the discovery of magnetic patterns
on the ocean bottom which supported the idea of seafloor spreading (Dietz, 1961; Morley
and Larochelle, 1964; Vine and Matthews, 1963), the modern concept of plate tectonics

1



Chapter 1. Introduction 2

Figure 1.1: Schematic illustration of blocks moving relative to each other, representing
possible earthquake mechanisms.

as the theory of rigid blocks of crust moving relatively to each other over the mantle, was
independently formulated by Morgan (1968) and McKenzie and Parker (1967).

Nowadays, it is undisputed that the main driver of seismic activity is plate tectonics,
and we know much more about how earthquakes nucleate than Kant did. We know that
earthquakes occur when two blocks of rock suddenly move relatively to each other (see Figure
1.1). We know that when an earthquake occurs, P- and S-waves travel through the Earth’s
interior at different speeds. We build instruments to record those waves at the surface,
and we use those recordings to find out where and when an earthquake occurred, what its
direction of movement was, and what size it had. We can even infer knowledge about the
structure of the Earth’s interior from seismic recordings, or the interior of Mars for that
matter. (Aki and Richards, 2002; Stein and Wysession, 2009; Shearer, 2019; Stähler et al.,
2021)

1.1 Basic statistical seismology

As much as we do know about earthquakes, we are still far from being able to predict them,
even though, as noted earlier, predicting the future is one of the key activities us humans
would like to do after finding patterns in nature. In the case of earthquakes in particular,
a successful prediction would be especially desirable as it could save the lives and homes of
thousands of people in a single earthquake. In fact, however, we are so far from predicting
them, that sometimes we unwillingly induce them (Häring et al., 2008; Foulger et al., 2018).

To address the goal of earthquake prediction, what we can do is to specifically look for
patterns in the occurrence of earthquakes. Kant (1756) already noted that in some areas
they occur more frequently than in others. Omori (1894) later more quantitatively described
patterns in the temporal occurrence of earthquakes. Once a relatively big earthquake occurs,
so-called aftershocks tend to follow. Most of them occur very soon after their parent event,
and with time, their frequency decreases. The Omori-Utsu law (Omori, 1894; Utsu, 1961)
expresses the rate r(t) of aftershocks at a time delay t after the parent event as

r(t) =
k

(t+ c)p
, (1.1)

with parameters k, c and p.
Gutenberg and Richter (1944) discovered an additional important pattern in the fre-

quency of earthquakes in relation to their size. The Gutenberg-Richter (GR) law, possibly
the most well-known law of statistical seismology, states that

N(m) = 10a−b·m, (1.2)
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the number N(m) of earthquakes of magnitude M ≥ m decreases exponentially with
m. The values a and b are commonly referred to as the a- and b-value, where the a-value
determines the number of earthquakes of magnitude M ≥ 0 in the region and time horizon
intended to be described with Equation (1.2), and the b-value establishes the exponential
dependency of N(m) on m.

Given enough data, a- and b-value of any region can be estimated, and, as Kant would
likely have suspected, the a-value can vary strongly between different regions. The b-value
on the other hand tends to take values close to 1 (Y. Kagan, 1999), which means that for an
increase of m by one magnitude unit, the number N(m) of earthquakes larger than or equal
to m decreases by a factor of roughly 10. Of course, b is not always exactly equal to 1, and
dependencies of b on time, region, tectonic setting and various physical quantities have been
proposed in the past (Henderson et al., 1992; Main et al., 1992; Frohlich and Davis, 1993;
Wiemer and Wyss, 1997; Wyss et al., 1997; Schorlemmer et al., 2005; Petruccelli et al.,
2019).

1.2 Probabilistic Seismic Hazard Analysis

Earthquake prediction is usually viewed as the specification of the time, location and magni-
tude of the next large event. Using the tools introduced thus far, we are closer to being able
to produce what is generally called an earthquake forecast. Given certain assumptions, we
can calculate the probability of an earthquake of a certain magnitude in a certain space-time
domain.

Cornell (1968) described the basic approach to Probabilistic Seismic Hazard Analysis
(PSHA) that is still applied today. In this approach, it is assumed that the long-term rate of
earthquakes is constant, that their magnitudes follow the GR law, and that their occurrence
times are representable by a stationary Poisson process. Expected ground motions are
calculated based on the resulting earthquake probabilities to understand what forces our
buildings should be able to withstand.

The assumption of Poissonianity is however not compatible with Omori’s pattern re-
garding the temporal clustering behavior of earthquakes. Besides temporal clustering, af-
tershocks tend to also occur close in space to their parent event. We can describe the rate
r(x) of aftershocks at a distance x from the parent event as

r(x) =
k

(x+ d)q
, (1.3)

with parameters k, d and q, where k can differ from the one in Equation (1.1). The pa-
rameter k in both Equations (1.1) and (1.3) reflects the dependency of the aftershock rate
on the overall number of aftershocks of a parent event, its so-called productivity. For this
productivity, there is yet another law describing its dependency on the magnitude of the
parent event,

K(m) = k · eα·m, (1.4)

with K(m) denoting the productivity of an event of magnitude m, and k and α param-
eters. Again, k can differ from k in previous equations.

Equations (1.1-1.4) will be revisited later in this thesis, and slightly more complicated ver-
sions of them may be used. For now, they describe the clustering of earthquakes sufficiently
well for us to recognize that earthquake occurrence times are not Poissonian. Additionally,
regions with recent large sequences may be overrepresented in an earthquake catalog. For
these reasons, the PSHA approach by Cornell (1968) is commonly done using earthquake
catalogs that have been declustered (Pace et al., 2006; Wiemer et al., 2009; Beauval et al.,
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2013; Field et al., 2014; Woessner et al., 2015; Meletti et al., 2017; Akinci et al., 2018;
Petersen et al., 2018; Sesetyan et al., 2018; Waseem et al., 2019; Drouet et al., 2020). In
this process, clusters of earthquakes are identified, and only the largest event of each cluster
is kept in the remaining catalog.

What may sound simple is in reality not simple at all. To partition earthquakes into
discrete clusters is a nontrivial task to which no objectively correct solution exists, which
can lead to difficulties. In Chapter 2, we will focus on the effect of declustering on the size
distribution of mainshocks, and the implications of these effects for PHSA.

1.3 The Epidemic-Type Aftershock Sequence model

Figure 1.2: Schematic illustration of earthquake triggering in the ETAS model.

To avoid the problems posed by declustering, and to not neglect the seismic hazard that
comes from aftershocks (Marzocchi and Taroni, 2014; Iervolino et al., 2018), one alternative
is to understand clusters and quantitatively model their behavior instead of removing them.
The Epidemic-Type Aftershock Sequence (ETAS) model, first introduced by Ogata (1988),
aims to do exactly that. Its foundation are the empirical laws stated in Equations (1.1-
1.4). In ETAS, each earthquake is considered to be either a background earthquake, or
an aftershock of a previous one. Aftershock magnitudes are independent of the size of
their parent event, and both follow the same GR distribution. All aftershocks can trigger
aftershocks of their own, which can lead to cascades of aftershocks as illustrated in Figure
1.2. Background earthquakes are modeled, in the style of PSHA, to occur uniformly in time,
while the distribution of aftershocks in number, space and time is given by the productivity,
temporal, and spatial laws discussed earlier. We will use the formulation of Nandan et al.
(2017), where the total rate of events λ(x, y, t|Ht) at location (x, y) and time t, provided the
history Ht, is given by

λ(x, y, t|Ht) = µ+
∑
i:ti<t

g(x− xi, y − yi, t− ti), (1.5)

where

g(∆x,∆y,∆t) =
k0 · ea·(m−mref ) · e−∆t/τ(

∆x2 +∆y2 + d · eγ·(m−mref )
)1+ρ · (∆t+ c)1+ω

. (1.6)

Here, g(∆x,∆y,∆t) is the overall rate of aftershocks of a parent earthquake with magni-
tude m, at a distance (∆x,∆y), and a time delay ∆t. Marked in blue is the part describing
the productivity of an event of magnitude m. Note the term m −mref which signals that
we are interested in events above a certain reference magnitude mref . Marked in turquoise
is the part describing the spatial distribution of aftershocks. As an additional feature not
captured in Equation (1.3), this part also depends on the size m of the parent event. Marked
in yellow is the part describing the temporal distribution of aftershocks, with an exponential
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taper that was not present in Equation (1.1). It has the aim to avoid heavy tails which
imply large portions of aftershocks at very long time delays. The parameter µ represents
the rate of background earthquakes.

Using Equation (1.5), the expected seismicity rate at any time t in a region can be de-
scribed. This requires knowledge of the parameters µ, k0, a, τ, c, ω, d, γ and ρ, and the com-
plete history Ht of events that occurred prior to time t. The knowledge of ETAS parameters
and the history Ht are both hard to acquire. The latter depends on seismic instruments and
our interpretation of their recordings, which realistically will never be perfect. The former
are usually inferred from exactly these imperfect datasets.

More specifically, to invert the parameters of an ETAS model, and to calculate the
expected rate of events, we need a catalog that is complete. An instrumental catalog can
impossibly be complete in the sense that it can’t contain earthquakes that occurred before
the seismic network was operating. But, as the aftershock rates decrease with time, and
especially thanks to the exponential taper e−∆t/τ , the contribution of events that lie very
far in the past is negligible in the sum in Equation (1.5). A more important reason why
a catalog could be incomplete is that even with a fully operational seismic network, small
events are not always being detected.

The magnitude of completeness, mc, of a catalog is usually defined as the magnitude
above which all earthquakes are registered by the network. As it is impossible to know what
was not observed, the estimation of mc is another problem to which no objectively correct
solution exists. The value of mc is usually jointly estimated with the b-value (Rydelek and
Sacks, 1989; Wiemer and Wyss, 1997), based on the assumption that a catalog is complete
above the magnitude at which it starts exhibiting the GR-law behavior.

The term m−mref in Equation (1.6) may have already given it away: In most formula-
tions of the ETAS model, it is assumed that only earthquakes above a reference magnitude
mref can trigger and be triggered, and the value of mref is generally set to be equal to mc.
As a consequence of this assumption, earthquakes that were triggered by events of smaller
magnitudes will be interpreted as background earthquakes.

While the estimation of mc is already relatively complex, more complexity is added to
the problem due to the variation of mc with time. In the long term, mc can fluctuate
with changes of the seismic network. In the short term, a main driver of mc fluctuation
is Short-Term Aftershock Incompleteness (STAI), which, broadly speaking, results when
seismic waves of large earthquakes cover those of smaller ones (Y. Y. Kagan, 2004).

The completeness of a catalog is not only a requirement to calculate the expected seis-
micity rate of a region according to Equation (1.5), but also when estimating the model
parameters. Thus, assuming a constant value for mc for the catalog used to train an ETAS
model forces a modeler to either temporally over- or underestimate its true value. In Chapter
3, we thoroughly address the topic of ETAS parameter inversion in the context of temporally
varying catalog completeness. We propose extended parameter calibration methods to deal
with short- and long-term fluctuations of mc, and test them using synthetic experiments
and in forecasting experiments with Californian data.

1.4 Earthquake forecasting

Equation (1.5) (together with a complete catalog and a set of ETAS parameters), in principle
already provides an earthquake forecast. Note however that to calculate the seismicity rate
at time t, all events prior to time t need to be known. Hence, λ(x, y, t|Ht) is only valid until
time t∗, the time when the next event (after time t) occurs.
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If one is interested in the expected rate of earthquakes to occur in the week, month,
or in 50 years after time t, the cascades of aftershocks of all events which fall into the
forecasting period are not captured by Equation (1.5). To account for these events in
a forecast, we can simulate many (hundreds of thousands or even millions of) possible
continuations of the current catalog. This includes simulating the aftershocks of events in the
training catalog plus their cascades of aftershocks, and background events that occur during
the forecasting period plus their cascades of aftershocks. With this approach, forecasts for
periods of arbitrary length can be generated.

So, we have found a solution to the problem mentioned at the very end of Section 1.2.
Instead of removing earthquake clusters, we model them, and to avoid a spatial bias in
our long-term forecast, we simulate a large number of possible catalogs, each of which may
contain large sequences in different places.

The core strength of ETAS lies in its ability to model aftershocks, which makes it par-
ticularly suited to model the shorter-term behavior of seismicity. ETAS models have been
tested in various forecasting experiments (Woessner et al., 2011; Ogata et al., 2013; Strader
et al., 2017; Cattania et al., 2018; Taroni et al., 2018; Nandan et al., 2019; Mancini et al.,
2019; Mancini et al., 2020; Savran et al., 2020) and are used or considered for operational
earthquake forecasting (OEF) (Marzocchi et al., 2014; Rhoades et al., 2016; Field et al.,
2017; van der Elst et al., 2022). They represent the undisputed state-of-the-art of modern
earthquake forecasting.

In Chapter 4, we describe the development of a first time-dependent earthquake fore-
casting model for Switzerland. Using 7-day forecasting experiments and 30 to 50-year con-
sistency tests, we compare several ETAS variants, including one developed in Chapter 3, to
the current time-independent state-of-the-art.

Certainly, ETAS models are a major simplification of reality. I have already mentioned
a few model assumptions such as the existence of a minimum triggering magnitude or the
time-independence of mc in general formulations of ETAS. Other model assumptions such
as the spatially isotropic distribution of aftershocks, or a spatially and temporally uniform
background rate, are known to cause biases in the estimated parameters (Hainzl et al., 2008;
Hainzl et al., 2013; Seif et al., 2017; Nandan et al., 2021).

The data used to calibrate ETAS models is by no means perfect; earthquake catalogs
suffer from various kinds of uncertainties and inconsistencies. Researchers continuously en-
hance the methods to locate earthquakes, calculate their magnitudes and generally improve
earthquake catalog quality (e.g. Bagagli et al., 2019; Ross et al., 2019; Mousavi and Beroza,
2020).

But even with a perfectly estimated set of parameters, ETAS models would still provide
the total expected seismicity rate at a given time and location of interest, and rely on
the GR law to describe the distribution of magnitudes. That is, besides the few patterns
incorporated in ETAS, namely those given in Equations (1.1-1.4), we still model the nature
of earthquake occurrence to be chaotic. And it is not clear whether earthquakes will ever
be more predictable than that.

So then, being humans, we are inclined to search for further patterns. We can search for
different kinds of patterns motivated by how we plan to make use of them. The discovery of
a certain type of patterns will satisfy our desire to better understand the world around us.
The discovery of other types of patterns will allow us to forecast future earthquakes more
accurately. Some patterns might be capable of both. In Chapter 5, we look for patterns of
the latter kind by testing model combinations which can reveal strengths and weaknesses of
ingredient models in an interpretable way.
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1.5 Thesis outline

The remainder of this thesis is structured as follows.

In Chapter 2, we systematically assess the effect of declustering on the b-value of main-
shocks. For this, we generate synthetic catalogs with known b-value using ETAS, and declus-
ter them using commonly used methods with a wide range of hyperparameters. We then
calculate the b-values of the declustered catalogs and compare them to the data-generating
b-values.

In Chapter 3, we describe two methods for the estimation of ETAS parameters when mc

varies with time. The first method accepts mc(t) as an input and is especially suited to
account for long-term changes in mc. The second method generalizes the concept of mc to
address STAI. It considers a rate- and magnitude-dependent detection probability function,
and jointly estimates ETAS parameters and a high-frequency detection probability at the
time of each event. Both methods are then tested on synthetic data. Finally, the usefulness
for forecasting of the second method is tested in a pseudo-prospective forecasting experiment
in California.

In Chapter 4, we describe the development of ETAS-based time dependent earthquake
forecasting models for Switzerland. Besides a basic ETAS model, we describe several variants
of it: Some use information from the time-independent SUIhaz2015 model (Edwards et al.,
2016), one uses generic model parameters calibrated for California, and one uses the extended
calibration technique of Chapter 3 to estimate ETAS parameters with long-term changes
of mc. All model variants are finally tested in pseudo-prospective one-week forecasting
experiments and 30- and 50-year retrospective consistency tests.

In Chapter 5, we present the novel approach of question-driven ensemble (QDE) model-
ing. Different variants of ETAS models are combined into new models by combining their
parameters according to certain rules. These rules are driven by questions about the number
of earthquakes expected by a given model, the spatio-temporal distribution of background
events, and the spatio-temporal distribution of aftershocks. QDE models can be interpreted
as models which answer each question with a different ingredient model. A suite of ensemble
models is created through the combination of flexible ETAS models, and their performance
is then compared in pseudo-prospective forecasting experiments for Southern California and
Italy. Besides an optimized forecasting performance, this approach simultaneously provides
insight into which model variants tend to answer which questions well, which hopefully
enhances our understanding of seismogenesis.

I summarize the main conclusions of this thesis in Chapter 6 and give an outlook on
promising future developments in the field of earthquake forecasting.

References

Aki, K., & Richards, P. G. (2002). Quantitative seismology. 2
Akinci, A., Moschetti, M. P., & Taroni, M. (2018). Ensemble smoothed seismicity models

for the new italian probabilistic seismic hazard map. Seismological Research Letters,
89 (4), 1277–1287. 4

Bagagli, M., Molinari, I., Diehl, T., Kissling, E., et al. (2019). Towards a new semi-automated
consistent multiphase picking algorithm for local and regional seismic networks.
Geophysical Research Abstracts, 21. 6



Chapter 1. Introduction 8

Beauval, C., Yepes, H., Palacios, P., Segovia, M., Alvarado, A., Font, Y., Aguilar, J., Tron-
coso, L., & Vaca, S. (2013). An earthquake catalog for seismic hazard assessment in
ecuador. Bulletin of the Seismological Society of America, 103 (2A), 773–786. 3

Cattania, C., Werner, M. J., Marzocchi, W., Hainzl, S., Rhoades, D., Gerstenberger, M.,
Liukis, M., Savran, W., Christophersen, A., Helmstetter, A., et al. (2018). The fore-
casting skill of physics-based seismicity models during the 2010–2012 canterbury,
new zealand, earthquake sequence. Seismological Research Letters, 89 (4), 1238–
1250. 6

Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the seismological society
of America, 58 (5), 1583–1606. 3

Dietz, R. S. (1961). Continent and ocean basin evolution by spreading of the sea floor.
Nature, 190 (4779), 854–857. 1

Drouet, S., Ameri, G., Le Dortz, K., Secanell, R., & Senfaute, G. (2020). A probabilistic
seismic hazard map for the metropolitan france. Bulletin of Earthquake Engineering,
18 (5), 1865–1898. 4

Edwards, B., Cauzzi, C., Danciu, L., & Fäh, D. (2016). Region-specific assessment, adjust-
ment, and weighting of ground-motion prediction models: Application to the 2015
swiss seismic-hazard maps. Bulletin of the Seismological Society of America, 106 (4),
1840–1857. 7

Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson,
D. D., Johnson, K. M., Jordan, T. H., Madden, C., et al. (2014). Uniform califor-
nia earthquake rupture forecast, version 3 (ucerf3)—the time-independent model.
Bulletin of the Seismological Society of America, 104 (3), 1122–1180. 4

Field, E. H., Jordan, T. H., Page, M. T., Milner, K. R., Shaw, B. E., Dawson, T. E., Biasi,
G. P., Parsons, T., Hardebeck, J. L., Michael, A. J., et al. (2017). A synoptic view
of the third uniform california earthquake rupture forecast (ucerf3). Seismological
Research Letters, 88 (5), 1259–1267. 6

Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R., & Davies, R. J. (2018). Global
review of human-induced earthquakes. Earth-Science Reviews, 178, 438–514. 2

Frohlich, C., & Davis, S. D. (1993). Teleseismic b values; or, much ado about 1.0. Journal
of Geophysical Research: Solid Earth, 98 (B1), 631–644. 3

Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in california. Bulletin of
the Seismological Society of America, 34 (4), 185–188. 2

Hainzl, S., Christophersen, A., & Enescu, B. (2008). Impact of earthquake rupture exten-
sions on parameter estimations of point-process models. Bulletin of the Seismological
Society of America, 98 (4), 2066–2072. 6

Hainzl, S., Zakharova, O., & Marsan, D. (2013). Impact of aseismic transients on the esti-
mation of aftershock productivity parameters. Bulletin of the Seismological Society
of America, 103 (3), 1723–1732. 6
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Abstract

Declustering aims to divide earthquake catalogs into independent events (mainshocks), and
dependent (clustered) events, and is an integral component of many seismicity studies,
including seismic hazard assessment. We assess the effect of declustering on the frequency-
magnitude distribution of mainshocks. In particular, we examine the dependence of the
b-value of declustered catalogs on the choice of declustering approach and algorithm-specific
parameters. Using the catalog of earthquakes in California since 1980, we show that the b-
value decreases by up to 30% due to declustering with respect to the undeclustered catalog.
The extent of the reduction is highly dependent on the declustering method and parameters
applied. We then reproduce a similar effect by declustering synthetic earthquake catalogs
with known b-value, which have been generated using an Epidemic-Type Aftershock Se-
quence (ETAS) model. Our analysis suggests that the observed decrease in b-value must,
at least partially, arise from the application of the declustering algorithm on the catalog,
rather than from differences in the nature of mainshocks versus fore- or aftershocks. We
conclude that declustering should be considered as a potential source of bias in seismicity
and hazard studies.

2.1 Introduction

Models for probabilistic seismic hazard analysis (PSHA), e.g. (Petersen et al., 2018; Pace
et al., 2006; Wiemer, Giardini, et al., 2009; Gerstenberger et al., 2020), are commonly based
on the approach described by Cornell (1968), which assumes earthquake occurrence times to
be representable by a stationary Poisson process. The long-term seismicity rate in a region is
considered to be constant in time, reflecting a constant deformation rate and hence constant
energy input at any given location, driven by plate tectonics. In reality, earthquakes trigger
aftershocks, which in turn trigger their aftershocks, and so on, leading to intense clustering
of earthquakes in space and time (Ogata, 1998; Jackson and Kagan, 1999; Helmstetter
and Sornette, 2003). Earthquakes can also occur in swarms (Hainzl and Fischer, 2002;
Hainzl, 2004), lasting days to months, sometimes comprising thousands of earthquakes in
one location, which are followed by long periods of quiescence. Consequently, the recorded
earthquake catalogs, especially modern instrumental ones that are complete down to small
magnitudes, always show conspicuous deviations from Poissonianity. Average seismicity
rates in regions with recent large sequences are therefore not representative of the long-term
seismic hazard, indicating a potentially substantial location-dependent bias of seismicity
rates.

Aims and challenges of declustering

So-called declustering algorithms aim to divide earthquake catalogs into clusters of depen-
dent events and retain only the independent event of each such cluster. Although Luen and
Stark (2012) find that Poissonianity depends on “the declustering method, the catalog, the
magnitude range, and the statistical test”, it is generally assumed that a properly declus-
tered earthquake catalog satisfies the condition of being Poissonian (Gardner and Knopoff,
1974, van Stiphout et al., 2012). Because of the requirement of Poissonianity for the cur-
rent approach to PSHA, rate estimation for hazard assessment is often done on the basis
of declustered catalogs (Field et al., 2014; Petersen et al., 2018; Pace et al., 2006; Wiemer,
Giardini, et al., 2009, Drouet et al., 2020; Meletti et al., 2017; Akinci et al., 2018; Sesetyan
et al., 2018; Beauval et al., 2013; Waseem et al., 2019; Woessner et al., 2015). In this sense,
PSHA approaches estimate mainshock rates rather than total seismicity rates.

While Poissonianity of the declustered catalog is necessary for a declustering method to
serve its purpose, this condition does not ensure a unique solution to the declustering prob-



Chapter 2. The Effect of Declustering 15

lem. To avoid inadvertently rewarding the excessive removal of events from the catalog, an
additional criterion is required. However, as the actual triggering processes are not currently
known and nature does not provide us with labels such as ‘mainshock’, ‘aftershock’, ‘fore-
shock’, or ‘swarm member’, we lack an objective criterion for the performance evaluation of
declustering methods. Several algorithms have been proposed and used in the past (Gardner
and Knopoff, 1974; Gruenthal, 1985; Uhrhammer, 1986; Reasenberg, 1985; Zaliapin et al.,
2008; Zhuang et al., 2002; Marsan and Lengline, 2008; see van Stiphout et al. (2012) for an
overview).

Effects of declustering on PSHA

In a study on the effect of declustering on hazard results for the city of Istanbul, Eroglu Azak
et al. (2018) found that peak ground acceleration values vary by up to 20% depending on
the declustering method. Marzocchi and Taroni (2014) discuss the need for declustering for
PSHA, concluding that it is only necessary to avoid a bias in the spatial distribution of earth-
quake occurrences. Furthermore, considering that aftershocks can also cause considerable
damage, they find that the neglecting of aftershock effects due to declustering may lead to
significant underestimation of seismicity rates and hence of seismic hazard. In this regard,
Iervolino et al. (2018) and Iervolino (2019) have proposed a generalization of the hazard
integral to re-introduce aftershock hazard in PSHA. Moreover, van Stiphout et al. (2011)
found that the choice of declustering method has a major effect on seismicity rate-change
estimations. On the other hand, sensitivity studies to different declustering approaches in
Switzerland have shown that the impact of declustering on the hazard is often negligible
(Wiemer, Garcia-Fernandez, et al., 2009). The need for, potential biases introduced by, and
alternatives to declustering have also been discussed in the context of seismicity forecasting
(Nandan, Ouillon, Sornette, and Wiemer, 2019a; Schorlemmer et al., 2007). In particular,
the issue is raised that a mainshock forecast can only be tested against a mainshock ‘truth’
which is inherently dependent on the somewhat arbitrary choice of declustering method,
yielding full seismicity forecasts the only objectively testable type of forecast.

Effects of declustering on the b-value

A major role in the calculation of seismicity rates is played by the b-value of the empirical
Gutenberg-Richter (GR) law (GGutenberg and Richter, 1944), which describes the frequency
distribution of earthquake magnitudes. Typically, b-values of earthquake catalogs lie close
to 1 (Y. Kagan, 1999; Kamer and Hiemer, 2015), but have been found to vary with time,
region, depth, and stress regime. Several studies have also reported higher b-values during
swarms or in volcanic areas (Main et al., 1992; Henderson et al., 1992; Frohlich and Davis,
1993; Wiemer and Wyss, 1997; Schorlemmer et al., 2005; Petruccelli et al., 2019; Wyss
et al., 1997). Y. Kagan (1999), Kamer and Hiemer (2015), and Marzocchi et al. (2020)
discussed a variety of potential technical causes of b-value variations, such as magnitude
binning, network coverage, catalog incompleteness, or the finiteness of data. Moreover,
imposing a GR law on declustered catalogs, as is commonly done in seismic hazard analysis,
often results in a significantly lower b-value compared to full catalogs (Y. Y. Kagan, 2010;
Christophersen et al., 2011; Field et al., 2014; Petersen et al., 2018). Some argue that this
behavior is a property naturally inherent to mainshocks (Knopoff, 2000). On a similar note,
Gulia et al. (2018) suggested that the b-value of typical aftershock sequences is on average
20% higher than the mainshock b-value, and that this increase in b-value is a long-lasting
effect for several years.

However, it is debatable whether the b-value of a declustered catalog is at all meaningful.
Most declustering methods define a mainshock as the largest event of an independent clus-
ter. If one assumes a GR law-type Pareto distribution of magnitudes on the full catalog,
one should not at the same time assume a GR law-type Pareto distribution of mainshock
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magnitudes. The distribution of the maximum of a set of independent and identically dis-
tributed random variables, i.e., the distribution of mainshock magnitudes, can be derived
from fundamental principles of probability theory (Kolmogoroff, 1934). Lombardi (2003)
gave a mathematical description of how mainshock magnitude distribution follows from the
full-catalog GR law. She showed that the difference in b-value between mainshocks and all
events becomes minimal when a corrected log-likelihood function is used in the maximum
likelihood estimation of the mainshock b-value. The mainshock magnitude distribution she
proposed depends on the empirical distribution of cluster sizes emerging from the decluster-
ing process. Given this result and assuming that different declustering algorithms will lead
to different cluster size distributions, it is expected that different declustering methods will
also lead to different mainshock magnitude distributions. Hence, b-values of mainshocks,
when estimated in the usual way, are expected to be biased as an artifact of declustering.

Similarly, Zhuang and Ogata (2006) found that the magnitude distribution of mainshocks
defined via the Epidemic-Type Aftershock Sequence (ETAS) model (see their article for
the definition or Section A.4 in the Supporting Information for this chapter for details on
the ETAS model) departs from the GR law and that the full catalog b-value is valid for
mainshocks in the asymptotic case where m → ∞. For lower magnitude mainshocks, one
could argue that a GR law with lower a- and b-values than those of the full catalog presents
an acceptable approximation of the true, non-Pareto distribution of mainshock magnitudes.
However, when the logarithms of the numbers N(m) and Nmain(m) of earthquakes and
mainshocks of magnitude M > m are both described by linear terms of the form

log10(N) = a− b ·m, (2.1)

log10(Nmain) = amain − bmain ·m, (2.2)

where bmain ̸= b, the two lines intersect at a point

mx =
a− amain

b− bmain
. (2.3)

If bmain < b, this means that the expected number of mainshocks of magnitude M >
mx is larger than the expected number of total earthquakes of magnitude M > mx, even
though the observed number of mainshocks can never be larger than the observed number
of earthquakes.

Paper outline

Considering the importance of the b-value for seismicity studies and seismic hazard estimates,
we here systematically assess the influence of declustering on mainshock size distribution.
To do so, we first verify that imposing a GR law on mainshocks yields a b-value that does
indeed depend on the choice of the declustering method applied. Then, we show that
a similar effect is observed for synthetic catalogs with known b-value, whose magnitude
distribution by design does not distinguish mainshocks and other events. Furthermore,
we illustrate the consequences of approximating mainshock magnitude distribution with a
Pareto distribution and calculate the tipping point magnitude mx, above which the bias
introduced by declustering cannot be interpreted as mainshock-specific behavior.

The rest of the paper is organized as follows. In Section 2.2, we describe the earthquake
catalog used for this study and discuss the coupled estimation of completeness magnitude and
b-value. In Section 2.3, we describe the declustering methods and corresponding parameter
choices. There, we also describe the ETAS model, which is used for the simulation of
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synthetic catalogs and furthermore serves as the basis for two of the declustering methods.
We then present and discuss our main results in Section 2.4 and state our conclusion in
Section 2.5. The Supporting Information for this chapter (Appendix A) contains a more
detailed description of all methods and algorithms used. Moreover, it contains analyses of
the sensitivity of full catalog b-value and mainshock b-value on the completeness magnitude
mc.

2.2 Data

In this study, we use the ANSS Comprehensive Earthquake Catalog (ComCat) provided
by the U.S. Geological Survey (see Section 2.6) with ‘preferred’ magnitudes as defined in
ComCat, in the collection area around the state of California as in the RELM testing center
(Schorlemmer and Gerstenberger, 2007). The choice of the study region is motivated mainly
by the high seismicity in the area and by completeness at low magnitudes of the catalog
for several decades (Hutton et al., 2006), both ensuring that a large and representative
amount of data can be used in our study. We consider events of magnitude M ≥ 0.0, with
magnitudes rounded into bins of size ∆M = 0.2. Figure A.1 in the Supporting Information
for this chapter shows that the b-value is insensitive to bin size for reasonable choices of
mc. It also shows that b(mc) is more stable for ∆M = 0.2 compared to ∆M = 0.1. The
time frame used is January 1, 1970 until September 30, 2019, of which only the events on
or after January 1, 1980 are used for the estimation of b-values. We subsequently call this
set of events the incomplete primary catalog. The earlier events make up the incomplete
auxiliary catalog. As earthquake clusters may occur close to the start of the primary time
period, ignoring auxiliary events could lead to unwanted deficiencies in cluster detection and
mainshock identification (Wang et al., 2010; Schoenberg et al., 2010; Nandan, Ouillon, and
Sornette, 2019). Our choice of time periods aims to achieve balance between long enough
primary and auxiliary periods, and low completeness magnitude in the primary catalog
thanks to seismic network configuration (see e.g. Hutton et al., 2006).

b-value estimation and completeness magnitude

Estimating the b-value of a catalog requires knowledge of its completeness magnitude mc,
the magnitude threshold above which all events are assumed to be detected. Assuming too
low values for mc can cause severe underestimation of the b-value (see Figure A.1 in the
Supporting Information for this chapter). On the other hand, assuming overly conservative
values for mc leads one to discard a large portion of the data, making b-value estimates
imprecise. In reality, mc is not known and has to be estimated itself. Several methods to do
so have been proposed; see Mignan and Woessner (2012) for an overview. Commonly, mc is
estimated by defining it as the magnitude threshold above which earthquakes follow the GR
law. In this sense, the estimation of b-value and mc becomes a coupled problem; one cannot
be estimated without knowledge of the other. In Sections A.1 and A.2 and Figure A.2 in the
Supporting Information for this chapter, we adapt the method proposed by Clauset et al.
(2009) to jointly estimate mc and b-value, ultimately arriving at a value of 3.6 for mc. A
sensitivity analysis (see Figure A.3 in the Supporting Information for this chapter) shows
that the results presented in the following sections are insensitive to reasonable choices of
mc.

Setting the value of mc to 3.6 implies that we subsequently use the subset of events with
magnitude M ≥ 3.6 of the previously described (binned) catalog. This filter is applied to
both the incomplete primary and the incomplete auxiliary catalog, yielding the (complete)
primary and (complete) auxiliary catalog. Figure 2.1(a) and (c) show the spatial and tem-
poral distribution of events in the catalog with magnitude M ≥ 3.6, where auxiliary events
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Table 2.1: ETAS parameters used for catalog simulation, obtained by expectation maxi-
mization.

Parameter Value
log10(k0) -2.49
a 1.69
log10(c) -2.95
ω -0.03
log10(τ) 3.99
log10(d) -0.35
γ 1.22
ρ 0.51
log10(µ) -7.17

are highlighted in yellow. For our primary catalog we obtain a b-value of 1.01, as illustrated
in Figure 2.1(b).

2.3 Method

To better understand the influence of declustering on the b-value, we first apply five often
used declustering techniques with different parameter and window choices to the same real
catalog. We then apply the same declustering methods, with standard parameters, to a set of
2000 synthetic catalogs. The synthetic catalogs are generated using a basic ETAS model (see
Ogata, 1998; Veen and Schoenberg, 2008; Nandan et al., 2017; Nandan, Ouillon, Sornette,
and Wiemer, 2019b), which is described in Section A.4 in the Supporting Information for this
chapter. Table 2.1 shows the parameters used in the simulation of synthetic catalogs. They
were obtained by applying expectation maximization (Veen and Schoenberg, 2008; Nandan
et al., 2017) to the primary and auxiliary California catalog, to support the comparability
of real and synthetic catalogs. For a detailed description of the ETAS model, as well as the
algorithms used for inversion and simulation, see Section A.4 in the Supporting Information
for this chapter. We use the synthetic catalogs to test whether declustering introduces any
systematic bias to the mainshock size distribution. As in the case of synthetic catalogs, the
distribution from which magnitudes are drawn is known and is assumed to be the same for
mainshocks and aftershocks, any changes in b-value observed after declustering must have
their origin in the application of declustering algorithms.

To further understand the consequences of approximating mainshock magnitude distribu-
tion with a lower-b-value GR law, we compare the ratio

r(m) =
Nmain(m)

N(m)
(2.4)

of mainshocks among earthquakes of magnitude M¿m between observation and approxima-
tion, for the different declustering methods with standard parameter settings applied to the
Californian catalog. We calculate mx (see Equation (2.3)), above which r(m) > 1 implies
that the introduced bias can impossibly be supported by observations.

We examine the declustering methods proposed by Reasenberg (1985), Zaliapin et al.
(2008), and window methods as proposed by Gardner and Knopoff (1974), Gruenthal (1985),
and Uhrhammer (1986). We also consider two versions of declustering based on the ETAS
model (Zhuang et al., 2002). For the detailed description of all declustering algorithms and
parameter ranges applied, see Sections A.3 and A.4 and Tables A.1 to A.3 in the Supporting
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Figure 2.1: Earthquake catalog used in this analysis. (a) Seismicity map. Dots represent
earthquakes in the catalog with M ≥ 3.6, where dot size indicates magnitude. Events
between 1970 and 1980, which serve as auxiliary data, are marked in yellow. Solid black
line marks the California state boundary, dotted line marks the boundary of the considered
region. (b) Absolute frequency distribution of magnitudes above and below mc (black versus
grey diamonds). Solid black line shows the GR law fitted to the catalog of events with
M ≥ 3.6. (c) Temporal distribution of the events shown in (a), with identical size and color
coding.
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Information for this chapter; we give a short description of each method below. Note that the
non-parametric stochastic declustering algorithm proposed by Marsan and Lengline (2008)
is not used here. This is because of its similarity to the already considered parametric
stochastic declustering alternative provided by the ETAS model. The main difference to
ETAS declustering is that the triggering rate, described as g(t, x, y,m) in Section A.4 in the
Supporting Information for this chapter, is there obtained empirically, without presuming
the laws (A.13-A.15). In their analysis of southern California seismicity, they observe that
their empirically derived triggering rate follows laws similar to those described in (A.13-
A.15), which, likewise, were originally discovered empirically.

Short descriptions of the declustering methods applied in this article

1. Reasenberg (1985) introduced an algorithm that has been used in numerous studies
and recent PSHA, e.g. in Ecuador (Beauval et al., 2013) or Afghanistan (Waseem
et al., 2019). It defines earthquake interaction zones in space and time. Here, we
apply the spatial interaction relationships proposed by Reasenberg (1985), and Wells
and Coppersmith (1994), and the parameter ranges for temporal interaction zones
recommended by Schorlemmer and Gerstenberger (2007).

2. Window methods, as first described by Gardner and Knopoff (1974) use space-time
windows around large events to identify their fore- and aftershocks. Different formu-
lations of such window boundaries have been suggested and are applied in this study
(Gardner and Knopoff, 1974; Gruenthal, 1985; Uhrhammer, 1986; see van Stiphout
et al. (2012)). We use the original formulation by Gardner and Knopoff (1974) as
the standard window, which is used in the Uniform California Earthquake Rupture
Forecast (UCERF3, Field et al., 2014). Generally, window methods are widely used
in modern regional and national seismic hazard models, see Drouet et al. (2020) for
France, Meletti et al. (2017) for Italy, Sesetyan et al. (2018) for Turkey, Woessner et al.
(2015) for Europe (ESHM13).

3. The alternative approach of Zaliapin et al. (2008) applies a Gaussian mixture model
on space-time nearest-neighbor distances between events to distinguish independent
from dependent events.

4. The ETAS model is used here in two ways. Firstly, it is used to simulate synthetic
earthquake catalogs upon which declustering methods are applied to study their effects.
Secondly, the ETAS model induces an alternative, parametric approach to declustering,
which was introduced by Zhuang et al. (2002). We consider two versions of declustering
based on the ETAS model, which differ in their definition of mainshocks and are
described in detail in Section A.4 in the Supporting Information for this chapter.
‘ETAS-Main’ defines the largest event of a cluster to be the mainshock, while ‘ETAS-
Background’ defines events to be mainshocks if they are not triggered. The definition
used in ETAS-Background is in the spirit of the ETAS model, where background
earthquakes of any size can trigger cascades of aftershocks. ETAS-Main, on the other
hand, imposes the mainshock definition used in the other methods, in the interest
of comparability. We subsequently call those methods which define mainshock as
the largest events ‘mainshock methods’. Note that because of its different definition
of mainshocks, ETAS-Background is unsuited to be applied in the standard PSHA
approach, which is designed to work with mainshock methods.

2.4 Results and discussion

The Disparity Between Declustering Methods The cumulative number of mainshocks for
different declustering methods with standard parameter and window choices, compared to
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the full California catalog, is shown in Figure 2.2(a). The diversity among the resulting
declustered catalogs is remarkable. Mainshock rates vary by a factor of 6.1 between the
most and least ‘aggressive’ algorithm. Moreover, while the removal of temporal clusters is
the primary goal of the declustering process, some are still clearly visible after declustering
with Reasenberg’s method, and still recognizable, though less pronounced, after applying
Zaliapin’s method. Gardner-Knopoff and ETAS (Main and Background) appear to be more
successful at achieving temporal Poissonianity.

Figure 2.2: Properties of the California catalog of mainshocks larger than or equal to M3.6,
depending on declustering method. Standard parameter settings (and standard window)
of each method are used for declustering. (a) Cumulative number of mainshocks. Dotted
black line represents the full (non-declustered) catalog. The rapid increase in seismicity
highlighted in circles corresponds to the 2010 (Mw 7.2) El Mayor-Cucapah earthquake in
Baja California, Mexico. (b) Empirical Complementary Cumulative Frequency Function
(CCFF, diamonds) of mainshock magnitudes. Empty black diamonds represent the full
California catalog. The two lines are the fitted CCFF for Gardner-Knopoff declustered and
full catalog. (c) Fitted CCFF for declustered catalogs compared to full catalog GR law fit.
Fitted b-values are given. (d) Observed (diamonds) and approximated (line) evolution of

r(m) = Nmain(m)
N(m) for the Gardner-Knopoff declustered catalog. Black dotted line marks

r(m) ≡ 1. mx and r6.6 are given, also for Reasenberg, Zaliapin and ETAS-Main declustered
catalogs. Note the different x-axis for (d) compared to (b) and (c).

The observed and fitted complementary cumulative frequency functions (CCFFs) of main-
shock magnitudes are shown in Figure 2.2(b) and (c). Observed absolute frequencies of large
events (M ≥ 6.4) are somewhat similar for all declustering methods, with the exception of
ETAS-Background. Relative frequencies of large events versus small events vary strongly
between methods, which manifests itself in slope differences between the CCFFs. Note that
for the mainshock methods, the aggressiveness of the method coincides with the extent
of slope decrease. This effect can be explained as a consequence of the methods’ main-
shock definition. Since small events are less likely to be identified as mainshocks, they are
more likely to be removed from the catalog, increasing relative frequencies of large events.
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ETAS-Background, in contrast, does not seem to preferentially remove events from specific
magnitude ranges.

Figure 2.2(d) illustrates the consequences of estimating seismic hazard based on a main-
shock GR law with lower b-value. For the California catalog, observed and approximated

evolutions of r(m) = Nmain(m)
N(m) are shown for mainshocks obtained by Gardner-Knopoff

declustering. The magnitude mx (see Equation (2.3)) above which rate overestimation can-
not be denied, is given also for Reasenberg, Zaliapin and ETAS-Main declustered catalogs.
mx varies between 6.9 and 8.8, where higher values of mx are predominantly observed for
declustering methods which do not succeed at achieving Poissonianity in time. Furthermore,
most declustering methods show considerable deviations of observed r(m) from its approx-
imation already at lower magnitudes. For instance, the approximation of r6.6 = r(6.6) lies
between 0.72 and 0.86, depending on mainshock definition, even though all definitions except
ETAS-Main classified all M > 6.6 events to be mainshocks. Note that ETAS-Background
is excluded from this part of the analysis due to its inapplicability in the standard PSHA
approach.

b-value of declustered catalogs

Observations on real data

The relative frequency increase of large events translates into a lower b-value when a GR law
is imposed on the frequency-magnitude distribution of mainshocks. In Figure 2.3(a), b-value
is plotted against a-value of the declustered California catalog, comparing the effects of
varying declustering methods and parameters. We find that b-values of declustered catalogs
vary strongly with declustering algorithms. Values between 0.73 and 1.00 are attained
without any significant gap. A general trend is recognizable among the mainshock methods:
removal of more events correlates with lower b-values, indicating a penchant of these methods
to relatively remove more smaller events than larger ones. The b-value obtained with ETAS-
Background does not significantly differ from the full catalog b-value. These observations
are in line with the explanation given above, which describes the b-value decrease as a
consequence of the mainshock definition, and are expected knowing the results by Lombardi
(2003), Zhuang and Ogata (2006), Kagan (2010) and van Stiphout et al. (2011). A sensitivity
analysis of the b-value to the completeness magnitude mc (see Figure A.3 in the Supporting
Information for this chapter) shows that the b-value decrease after declustering is an effect
that is observed regardless of the reasonable choice of mc, with the extent of the decrease
being characteristic of each method.

Observations on simulated data

Synthetic catalogs, where all magnitudes are drawn from one single distribution, show lower
b-values after declustering. In Figure 2.3(b), the distribution of mainshock b-values of 2000
ETAS-simulated catalogs is shown for different declustering methods with standard param-
eter settings, aligned according to the median observed a-value of the respective method.
The mainshock b-values of the same methods applied to the California catalog are indicated
with stars; error bars mark the estimated standard error. If no declustering, or ETAS-
Background declustering, is applied, the estimated b-value of synthetic catalogs is consistent
with the b-value used in their simulation. At the same time, b-values of synthetic catalogs
declustered with mainshock methods are always lower than the b-value used in their simu-
lation. Comparing the extent of the effect across different declustering methods, synthetic
and real data have the same qualitative behavior. Similarly, the a-value decrease is observed
to be method-characteristic.
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Figure 2.3: (a) a-value versus b-value of the declustered California catalog depending on
declustering method and parameters. Each dot represents one variation of parameter set-
tings, stars with error bars represent standard parameter settings. Marked with (W) are win-
dow methods. The dotted grey line and grey area indicate the b-value of the non-declustered
catalog and its uncertainty. (b) Distribution of mainshock b-values of 2000 simulated cat-
alogs, depending on declustering method (with standard parameter settings and standard
(Gardner-Knopoff) window), plotted against median a-value per method. Stars with error
bars represent the a- and b-value of the regional earthquake catalog from (a) for the respec-
tive methods. White dot, black box and black line represent median, interquartile range
and adjacent values. The dotted line displays the b-value used for catalog generation, which
corresponds to the full-catalog b-value observed in the Californian primary catalog.
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The effect of declustering on the b-value is more pronounced in synthetic data, for all
methods. A possible explanation for this is that all declustering methods assume isotropic
spatial distribution of aftershocks, which is known to be wrong in reality, but valid for
synthetic catalogs. Hence, cluster detection is facilitated in synthetic catalogs, resulting in
more effective removal of small events compared to the real catalog.

2.4.1 Remarks regarding ETAS declustering

1. Despite ETAS being the generative process of synthetic catalogs, a large difference in
b-value is observed after ETAS-Main declustering. This is not a flaw in the generative
process or the parameter inversion. On the contrary, this behavior is expected. The
low b-value of ETAS-Main-declustered catalogs is due to the imposed definition of
‘mainshock’ as the largest event of a cluster, not to be confused with ETAS’ notion
of background events. This concept of mainshocks is not relevant in the generation of
catalogs. Imposing such a definition leads to selective removal of small events rather
than to the removal of aftershocks in the true ETAS sense. With ETAS, aftershocks
are temporally restricted to occur after their triggering events but may have larger
magnitudes.

2. Declustering with ETAS-Background allows a comparison between the b-value of back-
ground events according to the ETAS definition and the full catalog. No significant
difference is observed, both in the case of synthetic and real catalogs. The difference
only arises when the rule of maximum magnitude is applied.

3. For synthetic data, the underlying branching structure is known by design of the
experiment. In contrast, cluster detection for real data requires the lengthy process
of inversion and probabilistic cluster assignment. Thus, compared to synthetic data,
cluster detection is intrinsically less correct for real data, and declustering is inclined
to be less effective. It is reasonable to assume that this circumstance explains the
particularly pronounced difference in b-value in the case of ETAS-Main declustering.

ETAS simulations do not distinguish the magnitude distribution of mainshocks versus af-
tershocks. A difference in pre- and post-declustering b-value of a declustered catalog that was
generated using ETAS can, therefore, only have its origin in the systematic selection of large
events as mainshocks. The purely declustering-induced and strongly method-dependent de-
crease in b-value suggests that other potential causes, such as a different nature of mainshocks
compared to fore- or aftershocks, have negligible effects on the mainshock b-value. While
the possibility cannot be precluded that a part of the effect is due to the change in stress
state before and after major events (e.g. Gulia et al., 2018), the notably arbitrary effect of
declustering should not be ignored. The mere observation of a lower b-value of mainshocks
is no proof of its meaningfulness; the observation of artifactual effects of declustering on the
mainshock b-value, however, is a reason to doubt its meaningfulness.

2.5 Conclusion

We demonstrate that a decrease in overall b-value of the California catalog after declustering
is observed for a variety of declustering methods and parameter settings. Furthermore, the
extent of the decrease is highly dependent on the algorithm applied. A general trend is
observed, suggesting that more ‘aggressive’ algorithms tend to be accompanied by a more
pronounced b-value decrease, ETAS-Background being the only exception to this rule. With
a medial resulting a-value among the methods considered, it leaves the b-value unchanged.
Finally, we find that all the above-described effects can be reproduced in synthetic data,
which was generated using a constant b-value for all events.
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Our results indicate that declustering substantially affects the earthquake size distribu-
tion. Imposing a GR law on declustered catalogs, therefore, leads to b-values which are
biased to a somewhat arbitrary and not immediately apparent extent. This bias leads to an
overestimation of seismic hazard above a certain magnitude mx. Thus, we can conclude that
the current state of practice of equating seismic hazard with mainshock rates which follow
a GR law can be accused of three deficiencies. One is the non-verifiability of any mainshock
definition. Secondly, fore- or aftershocks can be large and devastating. Neglecting after-
shock effects may give rise to a substantial underestimation of seismic hazard (Marzocchi
and Taroni, 2014). And lastly, the earthquake size distribution resulting from the procedure
causes hazard overestimation for events above a certain size.

One may argue that increasing the relative frequency of large events and decreasing the
absolute frequency of all events have antagonistic effects on the absolute frequency of large
events, justifying any choice of declustering method. Indeed, most hazard studies ignore
previous findings and continue to calculate hazard in the usual way. However, we believe
that two wrongs do not make a right. To be precise, two wrongs make a right only for one
particular magnitude, mx. Our analysis suggests that above mx, classical hazard studies
overestimate the seismic hazard, whereas below mx, they underestimate it. While the accu-
sation of underestimation could partially be rejected by insisting that declustering reveals
the true mainshocks and that aftershock effects are deliberately excluded from the scope of
hazard assessment, we have shown that the overestimation cannot be similarly attributed
to a true b-value that is revealed by declustering, but that this resulting b-value is biased to
a non-negligible extent.

It is crucial to be aware of this issue when estimating seismic hazard. While analysis of
earthquake dependency is inevitable to eliminate spatial bias for the calculation of seismicity
rates (Marzocchi and Taroni, 2014), basing calculations solely on declustered catalogs is
not an appropriate approach. One alternative possibility is to use ETAS models to assess
seismicity rates (see e.g. Field et al. (2015)). In a pseudo-prospective forecasting experiment
on the Californian catalog conducted by Nandan, Ouillon, Sornette, and Wiemer (2019b),
ETAS models generally outperform all competing smoothed seismicity models and models
based on strain rates. Using hundreds of thousands of simulations of possible scenarios
as the basis for a forecast, they intrinsically account for the spatiotemporal clustering of
earthquakes. This approach incorporates the non-Poissonian nature of reality while reducing
the spatial bias encountered in undeclustered catalogs. At the same time, ETAS relies only
on the GR law of the full catalog and therefore avoids making assumptions on the frequency-
magnitude distribution of somewhat arbitrarily selected large events.

Other ways to address this matter may exist. What is essential is to recognize the prob-
lematic aspects of doing hazard assessment based on declustered catalogs and to find a way
to address the issues presented here.

2.6 Data and resources

The ANSS Comprehensive Earthquake Catalog (ComCat) provided by the U.S. Geologi-
cal Survey was searched using https://earthquake.usgs.gov/data/comcat/ (last accessed on
November 30, 2019).

The electronic supplement to this article contains a more detailed description of all meth-
ods and algorithms used. Moreover, it contains analyses of the sensitivity of full catalog
b-value and mainshock b-value on the completeness magnitude mc. Finally, observed and
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approximated ratio of mainshocks among earthquakes of magnitude M¿m is shown using
different declustering methods for mainshock definition.
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Abstract

We propose two methods to calibrate the parameters of the epidemic-type aftershock se-
quence (ETAS) model based on expectation maximization (EM) while accounting for tem-
poral variation of catalog completeness. The first method allows for model calibration on
long-term earthquake catalogs with temporal variation of the completeness magnitude, mc.
This calibration technique is beneficial for long-term probabilistic seismic hazard assessment
(PSHA), which is often based on a mixture of instrumental and historical catalogs. The
second method generalizes the concept of mc, considering rate- and magnitude-dependent
detection probability, and allows for self-consistent estimation of ETAS parameters and
high-frequency detection incompleteness. With this approach, we aim to address the poten-
tial biases in parameter calibration due to short-term aftershock incompleteness, embracing
incompleteness instead of avoiding it. Using synthetic tests, we show that both methods
can accurately invert the parameters of simulated catalogs. We then use them to estimate
ETAS parameters for California using the earthquake catalog since 1932. To explore how
model calibration, inclusion of small events, and accounting for short-term incompleteness
affect earthquakes’ predictability, we systematically compare variants of ETAS models based
on the second approach in pseudo-prospective forecasting experiments for California. Our
proposed model significantly outperforms the ETAS null model, with decreasing information
gain for increasing target magnitude threshold. We find that the ability to include small
earthquakes for simulation of future scenarios is the primary driver of the improvement and
that accounting for incompleteness is necessary. Our results have significant implications
for our understanding of earthquake interaction mechanisms and the future of seismicity
forecasting.

Plain language summary

Our capability to detect earthquakes varies with time, on one hand because more and better
instruments are being deployed over time, leading to long-term changes of detection capabil-
ity. On the other hand, earthquakes are more difficult to be detected when seismic activity
is high, which manifests in short-term changes of detection capability. Incomplete detection
can lead to biases in epidemic-type aftershock sequence (ETAS) models used for earthquake
forecasting. We propose two methods that allow us to calibrate these models while ac-
counting for long-term (first method) and short-term (second method) changes in detection
capability, which allows us to use a larger and more representative fraction of the available
data. We test both methods on synthetic data and then apply them to the Californian earth-
quake catalog. Using the second method, we test how small earthquakes can help us improve
ETAS forecasts. We find that the ability to include small earthquakes in simulations yields
superior ETAS forecasts, and that it is necessary to correct for short-term incompleteness
to achieve this superiority. The positive effect on forecasting is strongest when forecasting
relatively small events, and decreases when forecasting larger events. These results have
important implications for our understanding of earthquake interactions and for the future
of earthquake forecasting.

3.1 Introduction

One of the key challenges in the field of statistical seismology, or seismology in general, is
the development of accurate earthquake forecasting models, with epidemic-type aftershock
sequence (ETAS) models (see Ogata, 1998; Veen and Schoenberg, 2008; Nandan et al., 2017)
currently being widely used for this purpose. ETAS models account for the spatio-temporal
clustering of earthquakes, and they have been shown in retrospective, pseudo-prospective,
and prospective forecasting experiments to be among the best-performing earthquake fore-
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casting models available today (Nandan, Ouillon, Sornette, and Wiemer, 2019b; Taroni et
al., 2018, Woessner et al., 2011; Cattania et al., 2018; Mancini et al., 2019; Mancini et al.,
2020). Furthermore, they are used for operational earthquake forecasts by the USGS (Field
et al., 2017), in Italy (Marzocchi et al., 2014), and New Zealand (D. Rhoades et al., 2016).

A fundamental requirement for reliable parameter estimation of the ETAS model is the
completeness of the training catalog above the magnitude of completeness, mc. As we can
impossibly know with certainty what we did not observe, mc itself needs to be estimated, and
numerous approaches to this problem have been proposed (Wiemer and Wyss, 2000; Cao
and Gao, 2002; Woessner and Wiemer, 2005; Amorese, 2007; Rydelek and Sacks, 1989; see
Mignan and Woessner (2012) for an overview). mc is known to vary in space and time, due to
gradual improvement of the seismic network, software upgrades, and so on. Several methods
have been proposed to estimate its spatial and temporal variation (Wiemer and Wyss, 2000;
Mignan et al., 2011;Woessner and Wiemer, 2005; Amato and Mele, 2008; Nanjo et al., 2010;
Hutton et al., 2010; Mignan and Chouliaras, 2014; Schorlemmer and Woessner, 2008; Hainzl,
2016b). In particular, Hainzl (2016b) addresses an additional important cause of variation
in time of mc, short-term aftershock incompleteness (STAI). Because earthquakes strongly
cluster in time, seismic networks can only capture a subset of events during periods of high
activity (Kagan, 2004).

As mentioned earlier, a reliable estimation of ETAS parameter depends on a reliable
estimate of mc. Although the biasing effects on ETAS parameter estimates caused by data
incompleteness are known and discussed (Hainzl, 2016b; Seif et al., 2017; Zhuang et al.,
2017), nearly all applications of the ETAS model assume for simplicity a global magnitude
of completeness for the entirety of the training period. This assumption is problematic in
several ways.

First, in order to be complete for the entire training period, the modeller is often forced
to use very conservative estimates of mc, as a result completely ignoring abundant and
high-quality data from more complete periods. Furthermore, mc is often assumed to be
equal to the minimum magnitude of earthquakes that can trigger aftershocks, m0, and this
conservative assumption can introduce a bias to ETAS parameter estimates. This idea
that earthquakes below mc are relevant for our understanding of earthquakes’ clustering
behavior was thoroughly discussed by Sornette and Werner (2005a), who pointed out the
important distinction between m0 and mc, also providing constraints for m0. Although
small earthquakes trigger fewer aftershocks than large ones do, Marsan (2005), as well
as Helmstetter et al. (2005), found that small earthquakes, being more numerous, are as
important as large ones for earthquake triggering. Thus, it is natural to assume that a
larger difference between mc and m0 will lead to a larger bias in the estimated parameters.

Alternatively, one may estimate ETAS parameters from catalogs with restricted space-
time volume which can have low overall mc values. Parameters estimated in this way can
however be dominated by one or two sequences and may not represent long-term behavior,
thus making the use of ETAS models non-ideal for long-term probabilistic seismic hazard
assessment (PSHA). Instead, the modellers rely on smoothed seismicity approaches based on
declustered catalogs (see e.g. Gerstenberger et al., 2020; Petersen et al., 2018; Wiemer et al.,
2009), which is a problematic approach due to the biasing effects of declustering on the size
distribution of mainshocks, and thus on the estimated seismic hazard (Mizrahi et al., 2021).
In this regard, Marzocchi and Taroni (2014) discussed the need for spatial declustering so as
not to distort future seismic hazard, and Llenos and Michael (2020) proposed an approach
to calculate regionally optimized background earthquake rates from ETAS to be used for
the U.S. Geological Survey National Seismic Hazard Model (NSHM), stressing the need for
methods to address catalog heterogeneities such as time-dependent incompleteness.
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Additionally, with the assumption of a constant overall mc, the crucial requirement of
completeness of the training catalog is not fulfilled during large aftershock sequences, which
can bias the estimated parameters. Several studies have highlighted the importance of con-
sidering short-term variation of mc in the context of ETAS models. These include Hainzl
(2016b) and Hainzl (2016a), who modeled STAI based on the short-term rate of earthquakes,
bringing into relation true and apparent triggering laws; Stallone and Falcone (2020), who
proposed a method to stochastically replenish catalogs suffering from STAI, to be used for
better operational earthquake forecasting and hazard assessment, albeit without addressing
the effectiveness of the method in this regard; Zhuang et al. (2017), who showed that esti-
mating ETAS parameters using a replenished catalog is more stable with respect to cutoff
magnitude; Omi et al. (2014), who proposed a method to estimate parameters of the ETAS
model from incompletely observed aftershock sequences, by statistically modelling detection
deficiency.

In this article, we thoroughly address the use of small earthquakes for seismic hazard
forecasting. For this, we develop two complementary methods with which long-term (first
method) and short-term (second method) temporal variations of mc can be accounted for
when calibrating ETAS models and when issuing ETAS-based forecasts. The first method
extends the expectation maximization scheme for ETAS parameter inversion (Veen and
Schoenberg, 2008) for application to training catalogs with time-varying completeness mag-
nitude mc(t). This simultaneously allows the inclusion of historical data in the parameter
inversion, as well as the inclusion of small magnitude events, which make up a large frac-
tion of data and can enable the ability to more clearly illuminate faults. ETAS models can
hence be trained on a more representative and informative set of data, which in some areas
facilitates a more appropriate approach to PSHA. With the second method proposed in this
article, we want to utilize the knowledge about clustering derived using the ETAS model to
quantitatively estimate the level of completeness of a catalog at any given time, and then
use this knowledge to minimize the incompleteness-induced bias in the ETAS model. We
approach this issue by generalizing the notion of mc, moving from a binary completeness
space (complete versus incomplete) to a continuous-valued completeness space by means of a
magnitude-dependent detection probability − embracing incompleteness instead of avoiding
it, as has been proposed previously by Ogata and Katsura (2006) and Omi et al. (2014).
While the first method described in this article allows mc(t) as an input to the ETAS pa-
rameter calibration, which makes it powerful in a long-term context, the second method
addresses the additional challenge of estimating short-term variations of completeness. To
understand their abilities and limitations, we subject both methods to rigorous synthetic
tests. Then, we apply them to Californian earthquake data and interpret the results in
light of the findings of the synthetic tests. Using the second approach, we systematically
assess how the inclusion of small earthquakes, which may be incompletely detected, affects
the performance of earthquake forecasts. We conduct pseudo-prospective 30-day forecast-
ing experiments for California, designed to answer several questions: Does our new model
outperform the current state of the art? If so, what is the role of the newly estimated
ETAS parameters in this improvement? Similarly, what is the role of newly included small
earthquakes in this improvement, and the role of the estimated high-frequency detection
incompleteness? How do the models perform for different target magnitude thresholds?

The remainder of the paper is structured as follows. Section 3.2 describes the earthquake
catalog that was used in this analysis. The modified ETAS parameter inversion methods
are presented in Section 3.3.1 for time-varying mc, and in Section 3.3.2 for time-varying
probabilistic detection incompleteness. Sections 3.3.3 and 3.3.4 describe the formulation
of probabilistic detection incompleteness and the algorithm for joint estimation of ETAS
parameters and detection probability. Section 3.4 presents synthetic tests for both methods,
and Section 3.5 presents applications of both methods to the Californian data. Section 3.6
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describes pseudo-prospective forecasting experiments used to assess the impact of the newly
acquired information on the forecastability of earthquakes in California. Finally, in Section
3.7, we present our conclusions.

3.2 Data

In this article, we use the ANSS Comprehensive Earthquake Catalog (ComCat) provided
by the U.S. Geological Survey. We adopt the preferred magnitudes as defined in ComCat,
and use as study region the collection area around the state of California as proposed in
the RELM testing center (Schorlemmer and Gerstenberger, 2007). We consider events of
magnitude M ≥ 0.0, with magnitudes rounded into bins of size ∆M = 0.1. For the major
part of the study, the time frame used is January 1, 1970 until December 31, 2019. For
the analysis of long-term variations in mc, we extend the time frame to start on January
1, 1932, when instrumentation was introduced to the Californian seismic network (Felzer,
2007).

Whenever ETAS parameters are inverted, we use the first fifteen years of data to serve as
auxiliary data. Thus, the start of the primary catalog is either January 1985, or January
1947. Earthquakes in the auxiliary catalog may act as triggering earthquakes in the ETAS
model, but not as aftershocks.

To estimate a constant magnitude of completeness of the catalog, we use the method
described by Mizrahi et al. (2021) with an acceptance threshold value of p = 0.1, which
yields mc = 3.1 for the time period between 1970 and 2019. This method is adapted from
Clauset et al. (2009) and jointly estimates mc and the b-value of the Gutenberg-Richter
law (Gutenberg and Richter, 1944) describing earthquake size distribution. It compares the
Kolmogorov-Smirnov (KS) distance between the observed cumulative distribution function
(CDF) and the fitted GR law to KS distances obtained for magnitude samples simulated
from said GR law. A value of mc is accepted if at least a fraction of p = 0.1 of KS distances
is larger than the observed one.

3.3 Model

3.3.1 ETAS parameter inversion for time-varying mc

Consider an earthquake catalog

C = {ei = (mi, ti, xi, yi), i ∈ {1, . . . , n}} (3.1)

consisting of events ei of magnitudes mi which occur at times ti and locations (xi, yi).
Furthermore, consider a time-varying magnitude of completeness mc(t) defined for all ti.
We say that the catalog is complete if mi ≥ mc(ti)∀i.

The ETAS model describes earthquake rate as

l(t, x, y) = µ+
∑
i:ti<t

g(mi, t− ti, x− xi, y − yi). (3.2)

That is, the sum of background rate µ and the rate of all aftershocks of previous events ei.
The aftershock triggering rate g(m,∆t,∆x,∆y) describes the rate of aftershocks triggered
by an event of magnitude m, at a time delay of ∆t and a spatial distance (∆x,∆y) from
the triggering event. We here use the definition
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g(m,∆t,∆x,∆y) =
k0 · ea(m−mref )

(∆t+c)1+ω

e
−∆t
τ

·
(
(∆x2 +∆y2) + d · eγ(m−mref )

)1+ρ , (3.3)

as in Nandan et al. (2017).

To calibrate the ETAS model, the nine parameters to be optimized are the background
rate µ and the parameters k0, a, c, ω, τ, d, γ, ρ which parameterize the aftershock triggering
rate g(m, t, x, y) given in Equation (3.3). Implicitly, the model assumes that all earthquakes
with magnitude larger than or equal to mref can trigger aftershocks. We build on the
expectation maximization (EM) algorithm to estimate the ETAS parameters (Veen and
Schoenberg, 2008). In this algorithm, the expected number of background events n̂ and the

expected number of directly triggered aftershocks l̂i of each event ei are estimated in the
expectation step (E step), along with the probabilities pij that event ej was triggered by
event ei, and the probability pindj that event ej is independent. Following the E step, the nine
parameters are optimized to maximize the complete data log likelihood in the maximization
step (M step). E and M step are repeated until convergence of the parameters. The usual
formulation of the EM algorithm defines

pij =
gij

µ+
∑

k:tk<tj
gkj

, (3.4)

pindj =
µ

µ+
∑

k:tk<tj
gkj

, (3.5)

with gkj = g(mk, tj − tk, xj − xk, yj − yk) being the aftershock triggering rate of ek at
location and time of event ej . For a given target event ej , Equations (3.4-3.5) define pij
to be proportional to the aftershock occurrence rate gij , and pindj to be proportional to
the background rate µ. As an event must be either independent or triggered by a previous
event, the normalization factor Λj := µ +

∑
k:tk<tj

gkj in the denominator of Equations

(3.4-3.5) stipulates that pindj +
∑

k:tk<tj
pkj = 1. This relies on the assumption that all

potential triggering earthquakes of ej were observed, that is, all events prior to tj above the
reference magnitude (minimum considered magnitude), mref were observed. To fulfill this
requirement, most applications of the method define mref to be equal to the constant value
of mc.

For the case of time-varying mc(t), we define mref := mini{mc(ti)}, the minimum mc(ti)
for times ti of events in the complete catalog. This implies that for the times when mc(t) >
mref the requirement of complete recording of all potential triggers may be violated. Events
whose magnitudes fall between mref and mc(t) are not part of the complete catalog and are
considered to be unobserved (even though they may have been detected by the network).
Hence, the normalization factor Λj (the denominator of Equations (3.4-3.5)) needs to be
adapted to account for the possibility that ej was triggered by an unobserved event.

Consider

ξ(t) =

∫mc(t)

mref
fGR(m) ·G(m) dm∫∞

mc(t)
fGR(m) ·G(m) dm

, (3.6)

the ratio between the expected number of events triggered by an unobserved event and
the expected number of events triggered by an observed event at time t. Here, fGR =
β · e−β·(m−mref ) is the probability density function of magnitudes according to the GR law,
and G(m) =

∫∞
0

∫∫
R
g(m, t, x, y) dx dy dt is the total number of expected aftershocks larger

than mref of an event of magnitude m. Note that in the calculation of G(m) we make
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the simplifying assumption that the considered region R extends infinitely in all directions,
allowing a facilitated, asymptotically unbiased estimation of ETAS parameters (Schoenberg,
2013). Analogously,

ζ(t) =

∫mc(t)

mref
fGR(m) dm∫∞

mc(t)
fGR(m) dm

(3.7)

is the ratio between the expected fraction of unobserved events and the expected fraction
of observed events at time t. If β > a− ργ, both ξ(t) and ζ(t) are well-defined and we have
that

ξ(t) = e−(a−β−ργ)·∆m(t) − 1, (3.8)

ζ(t) = eβ·∆m(t) − 1, (3.9)

where ∆m(t) = mc(t) − mref . Consider the productivity exponent α := a − ρ · γ, which
describes the exponential relationship between aftershock productivity and magnitude of an
event. The condition that β is larger than the productivity exponent α is generally fulfilled
in naturally observed catalogs (Helmstetter, 2003). If this were not the case, earthquake
triggering would be dominated by large events and one would need to introduce a maximum
possible magnitude for both denominators to be finite (see available equations in Sornette
and Werner (2005b); Sornette and Werner (2005a)). The normalization factor Λj consists
of the sum of background rate and aftershock rates of all events which happened prior to
ej . In the case of time-varying mc, besides the possibilities of being a background event or
being triggered by an observed event, the event ej can also be triggered by an unobserved
event. We thus generalize Λj by adding to the rate of aftershocks gkj of each observed
triggering event ek the expected rate of aftershocks of unobserved triggering events at that
time, gkj · ξ(tk). This yields Λj = µ +

∑
k:tk<tj

gkj · (1 + ξ(tk)) and thus the generalized

definition of pij and pindj is given by

pij =
gij

µ+
∑

k:tk<tj
gkj · (1 + ξ(tk))

, (3.10)

pindj =
µ

µ+
∑

k:tk<tj
gkj · (1 + ξ(tk))

. (3.11)

Note that the probability puj that event ej was triggered by an unobserved event is
given such that pindj + puj +

∑
k:tk<tj

pkj = 1. In the above equations, the special case of

mc(t) ≡ mref is accounted for when ξ(t) ≡ 0. In this special case, n̂ and l̂i are obtained

by summing independence probabilities (n̂ =
∑

j p
ind
j ) and triggering probabilities (l̂i =∑

j pij), respectively. In the generalized case however, n̂ and l̂i are the estimated number of
background events and aftershocks of event ei abovemref , which includes unobserved events.
Similarly to inflating the triggering power, we hence inflate the observed event numbers to
account for unobserved events. Whenever an event is observed at time tj , we expect that
ζ(tj) events occurred under similar circumstances (with same independence and triggering
probabilities), but were not observed. This yields

n̂ =
∑
j

pindj · (1 + ζ(tj)), (3.12)

l̂i =
∑
j

pij · (1 + ζ(tj)). (3.13)
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With these adapted definitions of pij , p
ind
j , n̂ and l̂i (Equations (3.10 - 3.13)), ETAS param-

eters can be inverted using the procedure described by Veen and Schoenberg (2008).

3.3.2 ETAS parameter inversion for time-varying probabilistic de-
tection

To overcome the binary view of completeness which forces us to disregard earthquakes which
were detected but happen to fall between mref and mc(t), we can take the generalization
of the EM algorithm for ETAS parameter inversion one step further by introducing a time
and magnitude-dependent probability of detection,

f : R≥mref
× R −→ [0, 1]

(m, t) 7→ p.

To be able to account for such a probabilistic concept of catalog completeness in the ETAS
inversion algorithm, one needs to generalize ξ(t) and ζ(t) (Equations (3.6) and (3.7)). In
contrast to before, the magnitude of an event does not determine whether or not the event has
been detected. We therefore adapt the bounds of integration in numerator and denominator
such that all events above magnitudemref are considered. To obtain the expected number of
earthquakes triggered by observed and unobserved events, the integrands are multiplied by
the probability of the triggering events to be observed, f(m, t), or unobserved, (1−f(m, t)),
respectively. The generalized formulations of ξ(t) and ζ(t) then read

ξ(t) =

∫∞
mref

(1− f(m, t)) · fGR(m) ·G(m) dm∫∞
mref

f(m, t) · fGR(m) ·G(m) dm
, (3.14)

and

ζ(t) =

∫∞
mref

(1− f(m, t)) · fGR(m) dm∫∞
mref

f(m, t) · fGR(m) dm
. (3.15)

For compatible choices of f(m, t), fGR(m), G(m), we find that ξ(t) and ζ(t) are well-defined.
Consider for instance the special case of binary detection, where f(m, t) is defined via the
Heaviside step function H as fbin(m, t) = H(m −mc(t)), which is equal to 1 if m ≥ mc(t)
and 0 otherwise. This is the case discussed in the previous section, for which we have
well-definedness if β > a− ργ.

The reference magnitude mref is a model constant. Smaller values of mref allow the
modeller to use a larger fraction of the observed catalog, which can be especially useful in
regions with less seismic activity.

Note that both generalizations of the ETAS inversion algorithm (for time-varying com-
pleteness or for time-varying probabilistic detection) can without further modification be
applied when mc or detection probability vary with space. The formulation is based on the
assumption that the behavior of observed events is locally representative (in space and/or
time) of the behavior of unobserved events.

3.3.3 Rate-dependent probabilistic detection incompleteness

In this section we present our approach to define f(m, t), where the temporal component is
purely driven by the current rate of events. Note that this means we only capture changes
in detection due to changes in short-term circumstances, and neglect long-term changes due
to network updates. We make the following simplifying assumptions.
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• Any earthquake will obstruct the entire seismic network from detecting smaller earth-
quakes for a duration of tR (recovery time of the network).

• Magnitudes of events that are simultaneously blocking the network are distributed
according to the time-invariant Gutenberg-Richter law which also describes the mag-
nitude distribution of the full catalog (Gutenberg and Richter, 1944).

De Arcangelis et al. (2018) found that short-term aftershock incompleteness can be well
explained in terms of overlapping seismic records, while instrumental coverage of an area
plays a subsidiary role. Nevertheless, assuming tR to be independent of the magnitude of
the event, and independent of the spatial distance between the event and the locations of
interest, is certainly a major simplification which could be refined in subsequent studies.

Conveniently, the ETAS model provides a simple way of calculating the current rate of
events in the region R as

λ(t) =

∫∫
R

l(t, x, y) dx dy =

∫∫
R

µ+
∑
i:ti<t

g(mi, t− ti, x− xi, y − yi) dx dy. (3.16)

For the remainder of this paper, we will refer to the current rate of events in the region,
λ(t), simply as the current rate of events. The probability f(m, t) of an earthquake to be
detected is then given by the probability of it being the largest of all the earthquakes that
are currently blocking the network. Consider

f(m, t) =
(
1− e−β·(m−mref )

)tR·λ(t)
. (3.17)

Here, tR ·λ(t) is an approximation of the expected number of events blocking the network at
time t, and the term 1−e−β·(m−mref ) is the probability of any given earthquake’s magnitude
falling between mref and m, where β = b · ln 10 is the exponent in the GR law with basis
e. Thus, f(m, t) is the probability that in the set of tR · λ(t) events currently blocking the
network, all of them have a magnitude of less than m, which is the condition for an event
of magnitude m to be detected. Because the time-dependence of f(m, t) is solely controlled
by the time-dependence of λ, we here use the terms f(m, t) and f(m,λ) interchangeably.

Plugging this definition of f(m, t) into Equations (3.14) and (3.15), and setting κ :=
−a−ργ

β , we obtain

ξ(t) =
1

(κ+ 1) · B(κ+ 1, tR · λ(t) + 1)
− 1, (3.18)

ζ(t) = tR · λ(t), (3.19)

so long as β > a − ργ, where B is the Beta function. A positive background rate µ > 0
ensures λ(t) > 0 ∀t. Expressions analogous to (3.18) and (3.19) hold when alternative
exponents are chosen instead of tR · λ in the definition of f(m,λ) (Equation (3.17)).

The network recovery time tR and the current event rate λ(t) at the times ti of all
earthquakes ei need to be estimated from the data.
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3.3.4 Estimating probabilistic epidemic-type aftershock incomplete-
ness (PETAI)

Estimation of (tR, β) when λi are known

The function f(m, t) brings with it two parameters, tR and β, which need to be estimated in
addition to the ETAS parameters. We here describe how tR and β can be jointly estimated
using a maximum likelihood approach for the case when current event rates λi = λ(ti) are
known. In reality, the λi have to be estimated themselves. This is described in Section 3.3.4.

In the case when the true ETAS parameters, as well as the current event rates λ(ti) for
all events ei in the primary catalog {e1, . . . , en}, are known, the GR-law exponent β and the
network recovery time tR can be estimated by optimizing the log-likelihood LL of observing
the catalog at hand.

LL =

n∑
i=1

(ln (νi + 1)− lnN)

+

n∑
i=1

(
νi · ln (1− e−β·(mi−mref ))

)
(3.20)

+

n∑
i=1

(lnβ − β · (mi −mref )) ,

where N =
∑n

i=1(νi +1), and νi = tR · λ(ti) is an approximation of the expected number of
events blocking the network at time ti. The expression for LL given above is valid in general
for alternative exponents νi in the definition of detection probability (Equation (3.17)). LL
is derived from the likelihood Li of an event to have magnitude mi and to be observed
during a current event rate of λi = λ(ti), and the current event rate being λi,

Li = femp(λi) · fGR(mi) · fdet(mi, λi), (3.21)

where fGR(m) is the probability density function of magnitudes given by the GR law,
fdet(m,λ) is the detection probability as defined in Equation (3.17), and

femp(λ) =

{
tR·λ+1∑
i(tR·λi+1) , if λ ∈ {λ1, . . . , λn}

0, otherwise
(3.22)

is the empirical density function of event rates. femp(λ) is defined such that

n∑
i=1

femp(λi) = 1 (3.23)

and

femp(λi) ∝
1∫∞

mref
fGR(m) · fdet(m,λi) dm

= λi · tR + 1, ∀i = 1, . . . , n. (3.24)

Without the latter condition (Equation (3.24)), we would wrongly assume that the values
λ(ti) were uniformly drawn from the true distribution of event rates. However, in our sample
of λi, large values of λ are underrepresented, because during times t when λ(t) is high, events
are less likely to be detected, and those times and their corresponding rates are thus less
likely to be part of our sample. Defining femp(λi) to be inversely proportional to the fraction
of events that are observed when the current rate is λi corrects for this under-representation.
This yields
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Li =
νi + 1∑
j(νj + 1)

· β · e−β·(mi−mref ) ·
(
1− e−β·(mi−mref )

)νi

, (3.25)

which explains the term for LL (Equation (3.20)). Figure B.1 shows the log likelihood of
a synthetic test catalog for different values of tR and β when λi are known. The resulting
estimators match the data-generating parameters.

Estimation of λi when ETAS parameters and (tR, β) are known

On one hand, the λi depend on the ETAS parameters (see Equation (3.16)). On the other
hand, the sum of aftershocks of previous earthquakes in the definition of λ(t) (Equation
(3.16)) does not account for aftershocks of events that were not detected. As in the ETAS
parameter inversion, to account for aftershocks of undetected events in the calculation of
λ(t), we inflate the triggering power of each event ei by a factor of 1 + ξ(ti) and define

λ(t) =

∫∫
R

µdx dy +
∑
i:ti<t

(1 + ξ(ti)) ·
∫∫

R

g(mi, t− ti, x− xi, y − yi) dx dy. (3.26)

Estimation of λi and (tR, β) when ETAS parameters are known

ξ(t) however requires knowledge of (tR, β) (see Equation (3.18)). This implies that even
when ETAS parameters are fixed, an additional, lower-level circular dependency dictates
the relationship between (λi)i=1,...,n and (tR, β).

To fully estimate the high-frequency probabilistic detection incompleteness, given fixed
ETAS parameters, we recursively re-estimate (λi)i=1,...,n (see Section 3.3.4) and (tR, β) (see
Section 3.3.4), until (tR, β) meets a convergence criterion, starting with an informed or
random initial guess for (tR, β).

3.3.5 PETAI inversion algorithm

The overarching joint inversion of ETAS parameters (E) and high-frequency detection in-
completeness (I = (λi, tR, β)) starts with estimating ETAS parameters in the usual way,
i.e. using the algorithm described in Section 3.3.1, with a time-independent completeness
magnitude mc(= mref ) above which all events are detected. It then recursively re-estimates
I (see Section 3.3.4) and E (see Section 3.3.2) until convergence of the ETAS parameters.
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Figure 3.1: Simplified schematic illustration of PETAI inversion.
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A simplified illustration of the inversion algorithm is shown in Figure 3.1. Starting with
the initial ETAS parameters obtained assuming constantmc, event rates can be calculated at
each point in time. Given these event rates, the detection probability function is calibrated,
which then provides insight into the temporal evolution of catalog (in-)completeness. ETAS
parameters can then be re-estimated, now also using data below mc, by accounting for the
estimated incompleteness. With this new set of ETAS parameters, event rates can be re-
calculated, upon which detection probability is re-calibrated, and so on, until all convergence
criteria are satisfied. Figure 3.2 shows the detailed flow diagram of the PETAI inversion
algorithm.

3.4 Synthetic tests

3.4.1 Synthetic Test for ETAS model with long-term variation of
mc (ST1)

To test the ETAS parameter inversion for time-varying mc, we generate 400 complete syn-
thetic catalogs using ETAS and then artificially impose a given mc(t) on the catalogs.
Assuming mc(t) to be known, we use the method described in Section 3.3.1 to infer the
parameters used in the simulation.

We estimate mc(t) based on the Californian catalog described in Section 3.2 with a time
horizon from 1932 to 2019. Fixing the b-value we had estimated for the main catalog (1970 -
2019, M ≥ 3.1, b = 1.01±0.006, see Mizrahi et al. (2021) for the method used), we estimate
mc for successive 10 year periods starting in 1932. The last period then comprises only
8 years of data. Estimation of mc is analogous to the main catalog, using the method of
Mizrahi et al. (2021) with an acceptance threshold of p = 0.1, but keeping b = 1.01 fixed.

This yields

mc(t) =



4.3 for t between 1932 and 1941,

3.9 for t between 1942 and 1951,

4.3 for t between 1952 and 1961,

3.4 for t between 1962 and 1971,

3.1 for t between 1972 and 1981,

3.3 for t between 1982 and 1991,

2.4 for t between 1992 and 2001,

2.8 for t between 2002 and 2011,

3.6 for t between 2012 and 2019.

(3.27)

The large increase in mc for the years 2012 to 2019 is due to the Ridgecrest events in
2019. Although the period affected by aftershock incompleteness only makes up a small
fraction of the 8 year period, our method with an acceptance threshold of p = 0.1 yields a
conservative estimate of mc. To avoid such an effect, one could use shorter than 10 year
periods, or use different methods to estimate time-varying mc.

Note that our method to invert ETAS parameters for time-varying mc (Section 3.3.1)
accepts mc(t) as an input and works independently of how this mc(t) was obtained. We
here want to keep the focus on the parameter inversion and thus choose the described
approach to estimate mc(t) due to its simplicity.

To mimic a realistic scenario, we simulate the synthetic catalogs using parameters obtained
after applying ETAS parameter inversion for time-varying mc on the California data, with
two manual corrections.
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Figure 3.2: Flow diagram of PETAI inversion. Caption on next page.
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Figure 3.2: (Previous page.) Flow diagram of PETAI inversion. Main algorithm starts at
top left and ends at bottom left. The middle column describes the estimation of incom-
pleteness (I = λi, tR, β) when ETAS parameters (E) are given. Note that the estimation of
(λi)i=1,...,n when ETAS parameters and (tR, β) are fixed requires yet another loop to obtain
self-consistency, as updating λi (step Λ) leads to changes in the inflation factor 1 + ξ(ti),
which forces one to update (λi)i=1,...,n. This sub-sub-algorithm is visualized in the right col-
umn of the flow diagram. Process boxes are linked to corresponding methods and equations
described in this article.
*, **, ***: Convergence is reached when the estimated values of the kth iteration, âk, lie
very close to the estimated values of the previous iteration, that is, if

∑
a∈A |âk − âk−1| ≤ θ.

Here, A is the set of values that are tested for convergence, *A = E , **A = {tR, β},
***A = {λi, i = 1, . . . , n}. For convergence threshold θ we use *θ = 10−3, **θ = 10−12,
***θ = 1.

The first correction is done because it has been shown that certain assumptions in the
ETAS model such as a spatially isotropic aftershock distribution or a temporally stationary
background rate, as well as data incompleteness can lead to biased estimations of the pro-
ductivity exponent (Hainzl et al., 2008; Hainzl et al., 2013; Seif et al., 2017). This bias can
lead to a lack of clustering when catalogs are simulated. We thus use an artificially increased
productivity exponent α′ for our simulations as follows.

Consider the branching ratio η, defined as the expected number of direct aftershocks
(larger than mref ) of any earthquake larger than mref ,

η =

∫ ∞

mref

fGR(m) ·G(m) dm. (3.28)

It follows easily that

η =
β · k0 · π · d−ρ · τ−ω · ec/τ · Γ(−ω, c/τ)

ρ · (β − (a− ργ))
, (3.29)

if β > a− ρ · γ, where Γ(s, x) =
∫∞
x

ts−1e−t dt is the upper incomplete gamma function.

We fix α′ = 2.0 (based on Helmstetter (2003); Z. Guo and Ogata (1997)) and from this
derive new values for a and k0, keeping the branching ratio η constant. In particular, we
define

a′ := α′ + ρ · γ, (3.30)

k0
′ := k0 ·

β − (a′ − ρ · γ)
β − (a− ρ · γ)

. (3.31)

It can be easily shown that in this way, the branching ratio η remains the same as long as
β − (a− ρ · γ) > 0.

Secondly, we reduce the background rate µ. In this way, the size of the simulated catalogs
is reduced such that inversion requires a reasonable amount of computational power, even
for large regions and time horizons. The final parameters used for the simulation of the
catalogs can be found in Figure 3.3 (black crosses).

400 catalogs of events of magnitude M ≥ 2.4 = mref are simulated as described in
Section B.1 for the time period of January 1832 to December 2019 in a square of 40° lat
× 40° long. Because of missing long-term aftershocks in the beginning of the simulated
catalogs, we allocate a burn period of 100 years in the beginning of the simulated period
and are left with catalogs from 1932 to 2019. The starting year of our synthetic catalogs
coincides with the introduction of instrumentation in California (Felzer, 2007). This allows
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Figure 3.3: ETAS parameters used and inferred in synthetic test 1 (ST1). Black crosses in-
dicate parameters used in simulation of 400 catalogs, blue crosses indicate median inverted
parameters. Violins show the distribution of obtained parameters for 400 catalogs, with or-
ange lines marking the 2.5% and 97.5% percentiles. Note that the y-axis gives the difference
to parameters used for simulation, the actual values are written next to their marks.

us to impose the mc(t) history observed in California on the synthetic catalogs by discarding
all events ei for which mi < mc(ti).

We apply the ETAS inversion for time-varying mc with the here-obtained mc(t) (see
Equation (3.27)) to the synthetic catalogs.

3.4.2 Synthetic test for PETAI (ST2)

To test the PETAI inversion algorithm, 500 synthetic catalogs are created as follows. We use
the parameters obtained after applying the PETAI inversion algorithm to the California data
(1970 to 2019) with mref = 2.5. The value of mref is chosen to achieve a balance between
the amount of data available for the inversion and the computational power required to
process such an amount of data. For the reasons described in Section 3.4.1, we reduce the
background rate µ and modify the parameters to obtain a corrected productivity exponent
as described in Equations (3.30 - 3.31). The final parameters used for the simulation of the
catalogs can be found in Figure 3.4(d) - (l).

Using these parameters, we simulate as described in Section B.1, 500 synthetic catalogs
that resemble the Californian catalog, for the period between 1850 and 2020 in a square of
40° lat × 40° long. As in the previous case, because of missing long-term aftershocks in the
beginning of the simulated catalogs, we discard the first 100 years of data and are left with
catalogs from 1950 to 2020. For each of these catalogs and given the ETAS parameters used
for simulation, we calculate the current event rate at the time of each event in the catalogs
(Equation (3.16)). As the current event rate is to a large extent driven by aftershock rates of
earlier events, we expect overestimation of detection probabilities, as well as overestimation
of independence probabilities, during the beginning of the time period (Wang et al., 2010;
Schoenberg et al., 2010; Nandan, Ouillon, and Sornette, 2019). For this reason, we allocate
another 20 years of burn period, leaving us with catalogs starting in 1970.
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Figure 3.4: Results of synthetic test 2 (ST2). Caption on next page.
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Figure 3.4: (Previous page.) Results of synthetic test 2 (ST2). (a) Earthquake magnitudes
over time for one example test catalog (blue). Events marked in black were simulated,
but declared as undetected. (b) Cumulative number of unobserved events over time for
the catalog shown in (a). Black line marks the truth, blue line is inferred from the test
catalog using PETAI. (c) Estimated fraction of undetected events versus actually removed
fraction of events, for 3000 test catalogs. Different colors indicate different assumed detection
efficiencies. Stars mark the median actual and estimated fraction of undetected events per
tR. Dashed line indicates where actual and estimated fraction coincide, dotted horizontal
line indicates the estimated fraction for California. (d) - (n) ETAS and PETAI parameters
inferred in synthetic test. Panel title indicates the parameter name and in square brackets
the value used for simulation. Violins show the distribution of the parameter inferred from
test catalogs per value of tR used, with the value of tR given on the x-axis in minutes.
Crosses indicate median obtained value, blue lines indicate 95% confidence interval, dashed
line indicates the value used for simulation.

Each of the 500 catalogs are then artificially made incomplete as follows. Using the detec-
tion probability function given by Equation (3.17), and the b-value of 1.03 estimated from
the Californian catalog using PETAI inversion, we calculate for each event its probability
of being detected. According to this probability we randomly decide for each event whether
it has been detected or not. The subset of all events that were detected is then used as a
test catalog. This is done assuming different values for tR of 1.97 (as estimated from the
Californian catalog), 5, 10, 30, 60, and 180 minutes, yielding six variations of the test cat-
alog per originally simulated catalog, which makes a total of 3000 test catalogs. The value
of tR greatly influences the fraction of undetected events in the resulting catalog, and we
chose to investigate different values of tR to ensure there are sufficiently many test catalogs
with a fraction of undetected events similar to the fraction of estimated undetected events
inferred for California. This estimated number of undetected events is obtained by summing
ζ(ti), the expected number of unobserved events per observed event, which is estimated as
a component of the PETAI inversion, over all occurrence times ti of events in the primary
catalog.

3.4.3 Results for ST1

Figure 3.3 shows the ETAS parameters used in the simulation of the synthetic catalogs, and
the median, distribution, and 95% confidence intervals of the parameters inverted from the
synthetic catalogs. The parameters estimated from the synthetic catalogs lie reasonably close
to the data-generating parameters. In particular, a, c, ω, τ and γ are accurately inverted,
while µ, k0, d and ρ tend to be overestimated. The reason for the overestimation of ρ stems
from a computational simplification made during inversion. In order to avoid extremely
large triggering probability matrices, we only consider pairs of source and target events with
a spatial distance of less than 50 source lengths, where one source length is defined using the
magnitude to length scaling relations defined in Wells and Coppersmith (1994). This upper
limit for distances between event pairs translates to an exaggeration of the estimated values
of ρ. We confirmed that as we gradually relax the cutoff criterion, the estimated value of ρ
moves closer to the true values used for generating the synthetic catalog. The regularizer
of the spatial kernel, d, is positively correlated with ρ, hence an overestimation of the latter
translates to an overestimation of the former. The overestimation of µ can also be explained,
considering that distant aftershocks have a higher tendency to appear independent due to
the artificially imposed cutoff criterion.
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3.4.4 Results for ST2

Inverted number of undetected events

Figure 3.4 (a) shows the series of events of one example synthetic test catalog over the
primary time period in blue, with the undetected synthetic events marked in black. The
number of undetected events is 1282, which makes up 6.25% of the original synthetic catalog.
Figure 3.4 (b) shows cumulative number of undetected synthetic events over time in black,
compared to the cumulative inferred number of undetected events in blue for the same
example catalog. Overall, it is estimated as a result of applying the PETAI inversion that
1068.88 events were undetected in the example catalog. While this underestimates the true
number of 1282 undetected events, the major part of events can be reconstructed, with
accurate timing.

Figure 3.4 (c) shows inferred versus actual number of undetected events for 3000 test cat-
alogs assuming different detection efficiencies. The estimated fraction of undetected events
is distributed around the actual fraction of undetected events, and the median estimated
fraction matches well the median actual fraction, with a slight tendency towards underesti-
mation.

Accuracy of inverted parameters

Figure 3.4 (d) - (n) shows the ETAS parameters and (tR, β) that were used in the simulation
of the synthetic catalogs, and the parameters inverted from these synthetic catalogs. In
general, the inverted parameters correspond well to the parameters used in the simulation,
although some of the estimates are slightly biased. The parameters c and ω, both describing
the temporal decay of aftershock rate, show a trend of increasing bias with increasing tR,
that is, with increasing incompleteness. For the other parameters, no clear dependency of
the bias on tR is recognizable. The estimate of c matches the true value almost perfectly for
tR = 1.97 minutes, but starts being overestimated for larger values of tR above 30 minutes.
On the other hand, ω shows an increasing tendency of being underestimated with increasing
values of tR. Earlier aftershocks have a larger tendency to be missing due to STAI, which
leads to a seemingly slower decay of aftershock rate in time. As the PETAI algorithm
has a tendency to underestimate STAI (Figure 3.4 (c)), and this tendency increases with
increasing tR, this translates into an increasing negative bias in the inferred values of ω.

Qualitatively, the tendencies to over- or underestimate the remaining parameters are iden-
tical with the tendencies observed in ST1 (Section 3.4.3). It is therefore plausible that these
tendencies are consequences of a finite time horizon and finite spatial window used in the
simulation of the synthetics, rather than being artifacts of the PETAI inversion algorithm.

Finally, we observe a tendency to underestimate tR, which means that detection probabil-
ities tend to be overestimated. This is in line with our previous observation that the fraction
of undetected events tends to be slightly underestimated, suggesting the PETAI inversion
to be slightly conservative.

3.5 Application to California

We calculate ETAS parameters, β and tR (if applicable) using different inversion algorithms
to Californian data. Additionally, we provide the resulting values for productivity exponent
α = a− ργ and branching ratio η (see Equation (3.29)).

First, we apply usual inversion method as described in Section 3.3.1 with a constant
completeness magnitude of mc ≡ 3.1 to the main catalog (1970 to 2019). Then, we invert the
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parameters by accounting for long-term time-variation of completeness (Equation (3.27)).
In this case, the extended catalog from 1932 to 2019 can be used with a reference magnitude
of mref = 2.4. Finally, we apply PETAI inversion to the main catalog (1970 to 2019) with
a reference magnitude of mref = 2.5. Note that the estimation of β is independent of the
ETAS parameter estimates for the first two applications, but not in the case of PETAI
inversion (see Section 3.3.4).

To allow a better comparison between parameters inverted using different methods when
mref varies, we translate the parameters to a reference magnitude of mref = 3.1 as follows.
With the exception of µ, k0 and d, all parameters aremref -agnostic, and the three exceptions
can easily be adjusted. Denote by ∆m the difference between new and original reference
magnitude, ∆m = m′

ref −mref . Then,

d′ := d · e∆m·γ (3.32)

ensures that

d · eγ·(m−mref ) = d′ · eγ·(m−m′
ref ). (3.33)

Stipulating that the branching ratio η (Equation (3.29)) remains unchanged, it follows that

k′0 := k0 · e∆m·γ·ρ. (3.34)

The adaptation of the background rate µ follows trivially from the GR law,

µ′ = µ · e−β·∆m. (3.35)

3.5.1 Interpretation of inverted parameters

Table 3.1: ETAS and PETAI parameters inferred for California. First column shows param-
eters when constant mc of 3.1 is assumed. Second and third column show parameters when
time-varying mc is accounted for, and fourth and fifth column show parameters when PETAI
inversion is applied. Note that the originally derived parameters are given in Columns 1, 2,
and 4. Columns 3 and 5 show the parameters of Columns 2 and 4, transformed (as described
in Equations (3.32 - 3.35)) to a reference magnitude of 3.1 to allow comparison with Column
1. Productivity exponent α = a − ργ and branching ratio η are not directly inverted but
inferred from the inverted parameters.

parameter mc ≡ const. mc(t) f(m, t)
mref 3.1 2.4 3.1 2.5 3.1
log10(µ) -6.86 -5.97 -6.68 -6.35 -6.97
log10(k0) -2.53 -2.63 -2.36 -2.70 -2.49
a 1.74 1.86 1.86 1.92 1.92
log10(c) -2.97 -2.52 -2.52 -2.85 -2.85
ω -0.05 -0.02 -0.02 -0.06 -0.06
log10(τ) 4.03 3.57 3.57 3.92 3.92
log10(d) -0.51 -0.86 -0.45 -0.76 -0.45
γ 1.19 1.35 1.35 1.22 1.22
ρ 0.60 0.67 0.67 0.67 0.67
log10(tR) n/a n/a n/a -2.86 -2.86
β 2.33 2.32 2.32 2.37 2.37
a− ργ 1.03 0.95 0.95 1.09 1.09
η 0.94 0.95 0.95 0.93 0.93
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Table 3.1 shows the estimated values of ETAS parameters, β, and tR (if applicable)
obtained using different inversion algorithms to Californian data. Additionally, the resulting
values for the productivity exponent α = a−ργ and branching ratio η (see Equation (3.29))
are provided. The first, second, and fourth column show the parameters obtained from
applying the method with mc ≡ 3.1, when using long-term-variations of mc, and when
using PETAI, respectively. Columns three and five contain the parameters of columns two
and four after having been transformed to a reference magnitude of mref = 3.1.

Overall, the inverted parameters are roughly consistent among the three algorithms. Al-
though there are slight differences between the estimated parameters, they can plausibly be
attributed to different input datasets, which vary for the three algorithms in either time-
span or magnitude range. In the following, we present some speculative explanations of the
observed differences.

We find that the estimate of τ obtained from the ETAS model calibrated on the extended
catalog (1932 to 2019) with the long-term time variation of mc is smaller than in the other
two cases, to an extent that the uncertainties obtained in the synthetic tests cannot ex-
plain this decrease. This decrease despite the use of a catalog spanning a longer duration
compared to the other two cases, shows that τ may actually better reflect the long-term
behavior of earthquake interaction, rather than being determined by the finite duration of
the catalog. Note that if the temporal finiteness of the catalog was the dominant factor in
the determination of τ , one would expect an increase of τ with increasing time spanned by
the catalog. Furthermore, the less pronounced decrease of τ in case of the PETAI inversion
speaks against the possibility that the decrease is caused by inclusion of lower magnitude
earthquakes revealing previously unseen earthquake interactions.

A somewhat counter-intuitive observation is the increase of c for both new inversion
techniques. For the case of long-term variation of mc, in particular, c shows a significant
increase considering the expected uncertainties. The parameter c has been interpreted to
reflect aftershock incompleteness (Kagan, 2004; Lolli and Gasperini, 2006; Hainzl, 2016a)
and would thus be expected to decrease when this effect is accounted for by the model
(Seif et al., 2017). The observed higher value of c even after accounting for STAI thus
requires a different interpretation of c. Narteau et al. (2009) found a dependency of c
on faulting style, and brought the parameter in relation with differential stress and the
intensity of stress re-distribution. Another possible interpretation provided by Lippiello et
al. (2007) is based on the dynamical scaling hypothesis in which time differences relate to
magnitude differences. Shcherbakov et al. (2004) proposed a generalized Omori law which
incorporates three empirical scaling laws (Gutenberg and Richter, 1944, B̊ath, 1965, Utsu,
1961) with a dependence of c on the cutoff magnitude which can qualitatively explain our
observations: The value inverted for c is highest in the case of mref = 2.4, and lowest for
mref = 3.1. Overall, one should be careful to not over-interpret this estimate of c. After all,
c is overestimated for large values of tR in the PETAI synthetic test and hence an observed
increase in cmight be a consequence of complex interdependencies of all parameters involved.

While the branching ratio η does not substantially vary with the different inversion meth-
ods, we observe a slightly increased productivity exponent for the PETAI inversion. Al-
though the increase lies within expected uncertainty, such an increase is expected given the
results of Seif et al. (2017), with the extent of the observed increase being in line with their
estimated extent of underestimation for the productivity exponent.

The background rate µ shows a significant increase when a longer time horizon is consid-
ered, and decreases significantly when STAI is accounted for. As µ is clearly overestimated
in the synthetic test with long-term variation of mc, and only slightly overestimated in the
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case of PETAI, we may suspect that the increased value for µ in the first case is an artifact of
the inversion method, while the decrease in background rate with PETAI could suggest that
including smaller magnitude events in our model by accounting for incompleteness reveals
previously hidden earthquake interactions, resulting in a lower µ.

The parameter γ, which describes the exponential relationship between earthquake mag-
nitude and the distance to the event at which the aftershock rate starts to decrease faster,
is significantly increased in the case of long-term variation of mc. Slight overestimation is
expected based on the synthetic tests, but not to this extent.

At the same time, ρ increases for both new inversion techniques. Again, overestimation
of ρ is expected given the results of the synthetic tests and the observed values might thus
be artifacts of the algorithms applied. As the problem of the finite spatial region applies in
the same way to standard ETAS as well as the other two methods, this is unlikely to be the
cause of the difference in parameter estimates.

The value of β shows an increase from 2.33 to 2.37, which translates to a b-value increase
from 1.01 to 1.03, when STAI is accounted for in the PETAI inversion. This is expected due
to the underestimated number of small events caused by STAI.

3.5.2 Incompleteness insights through PETAI

In addition to a new set of estimated ETAS parameters, applying the PETAI inversion
to the Californian catalog produces further interesting outputs. Similarly to the case of
the synthetic catalog, Figure 3.5 (a) shows the estimated cumulative number of undetected
events over time. As expected, the increase is predominantly step-wise, caused by short,
incomplete periods during aftershock sequences, and long, complete periods in-between.
While the total expected number of undetected events is at 5041.74, the extrapolated number
obtained from a GR law fitted on M ≥ 3.1 events is only 88.91. This estimate of the number
of unobserved events differs from the PETAI estimate in that it assumes perfect detection
above M3.1. Although the true number of undetected events can never be known, the
synthetic test suggests that the PETAI result is reliable and even slightly conservative, and
thus the GR law extrapolation would be a severe underestimation of the true number of
undetected events.

The magnitude-dependent detection probability evolution is illustrated in Figure 3.5 (b).
In around 84% of event times ti, events of magnitude M ≥ 4 are expected to be detected
with a probability of 99.9% or more. Similarly, in 82% of event times ti, M ≥ 3 events are
expected to be detected with a probability of 99% or more. Spikes of incompleteness during
large sequences lead to detection probabilities of less than 50% for smaller events, in the
most extreme case for events of magnitude M ≤ 3.47.

As expected, periods of elevated incompleteness coincide with the periods of rapid in-
crease in undetected events shown in (a). The last step in (a), which corresponds to the
2019 Ridgecrest sequence, is extraordinarily large compared to all previous steps. This is
most likely explained by the fact that the sequence was better recorded than comparable
sequences in previous years. When the detection capability of the seismic network improves,
the recovery time tR becomes shorter. Because we have assumed tR to be stationary for
simplicity, a larger number of recorded events will lead to a smaller estimated detection
probability, which in turn leads to larger numbers of expected undetected events. In future
versions of the model, to avoid such artifacts, it would be advisable to combine the possi-
bility of including long-term changes in completeness (as in the model described in Section
3.3.1) with rate-dependent aftershock incompleteness by means of a non-stationary tR.
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Figure 3.5: Aftershock Incompleteness in California. (a) Estimated cumulative number of
undetected events over time. (b) Evolution of magnitude-dependent detection probability.
Yellow indicates a detection probability of 50% or less. Black, dark blue, and light blue
indicate detection probabilities of up to 90%, 99%, and 99.9%, respectively. White area
represents detection probabilities higher than 99.9%. (c)-(g) Excerpts of (b) for selected
large events. x-axes are logarithmic and show time since (first) mainshock, and range
from 5 minutes to 30 days after that mainshock. Red lines indicate mc(t) as described
by Helmstetter et al. (2006), including the effect of all M ≥ 5 events. Colored circles in (g)
represent selected times ti and corresponding magnitude of 99.9% detection. (h) Detection
probability function f(m,λ = λ(ti)) snapshots for the times that are highlighted in (g), plus
a time prior to both mainshocks (in red). Time deltas are given with respect to the M7.1
mainshock. λ(ti) are as estimated during PETAI inversion.
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Figure 3.5 (c) - (g) shows excerpts of Figure 3.5 (b) for the 1989 M6.9 Loma Prieta, the
1992 M6.1 Joshua Tree and 7.3 Landers, the 1994 M6.7 Northridge, the 1999 M7.1 Hector
Mine, and the 2019 M6.4 and 7.1 Ridgecrest events, in comparison to the mc(t) estimate
given by the formulation of Helmstetter et al. (2006) which was provided for Southern Cal-
ifornia. While their definition is not probabilistic, we observe that their mc 5 minutes after
the mainshock lies between 90% and 99% detection according to PETAI. The shape of the
recovery from incompleteness does not fully coincide for the two methods, with generally
slower recovery in the case of PETAI for the shown excerpts. Helmstetter et al. (2006) use
a simpler formulation, and do not provide arguments for their specific choice of parameter-
ization of mc(t). On the other hand, the parametric description of the magnitude of 50%
detection by Ogata and Katsura (2006), presented for the example of the 2003 Miyagi-Ken-
Oki earthquake, takes a shape similar to the one obtained through PETAI, although it is
not quantitatively comparable to the case of California.

The range of observed states of detection efficiency during the 2019 Ridgecrest sequence
is visualized in Figure 3.5 (h). Prior to the large events, detection is almost perfect for
all magnitudes. After the M6.4 event, detection is weakened and recovers with time, until
the M7.1 mainshock, when it is again weakened. Around 15 minutes after the earthquake,
events of magnitude below 3.0 still have almost no chance to be detected, with M3.5 events
having roughly a 50% chance to be detected. After three hours, detection has already
clearly improved, although M2.5 events are still almost surely not detected. After six days,
the detection probability function almost corresponds to the prefect detection state, which
was in place prior to the main events.

3.5.3 Comments on computational time

There are two aspects to consider when discussing the computational time of the parameter
inversion techniques presented here. On one hand, the increased complexity of the algorithms
plays an important role. In particular, the PETAI inversion comprises multiple loops of
ETAS and incompleteness estimation. Although convergence was usually reached after 4
iterations, this still implies a minimum factor of 4 in terms of computation time which is
only required for ETAS inversion, on top of which comes the time needed for the estimation
of detection parameters and event rates. The second factor, which contributes even more
to an increase of computation time, is the increased size of the catalog which is available
to be used. For our application to Californian data, the number of events used in the
PETAI inversion increases by a factor of 3.78 because the minimum considered magnitude
is reduced from 3.1 to 2.5. The leads the number of pairs of potentially related events
to increase from 7.3 million to 47.1 million. Note that these numbers are obtained after
imposing the 50 source length cutoff criterion described in 3.4.3. While this increase in the
number of potentially related event pairs causes a substantial increase in run time, educated
initial guesses for ETAS parameter inversions can substantially reduce run time without
affecting the results. Our Python 3.8 implementation of the PETAI inversion, run with a
single core (Intel Xeon E5-2697v2) of the Euler high-performance computing (HPC) cluster
at ETH Zurich, took 23 hours. Roughly 20% of this time was spent on the optimization of
event rates and detection parameters, and 80% on the optimization of ETAS parameters.

In contrast to the PETAI inversion, the run time of the ETAS parameter inversion with
time-varying mc is barely affected by model complexity. During synthetic experiments, we
found the run time to be comparable to the run time of the usual ETAS inversion when the
number pairs of potentially related events was similar.
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3.6 Pseudo-prospective forecasting experiments

To better understand if and how the PETAI model can improve earthquake forecasts, we
conduct pseudo-prospective forecasting experiments. Note that as these experiments are
computationally expensive, we conduct them for the PETAI method only. As most after-
shocks occur soon after their triggering event, accounting for STAI in ETAS simulations
seems promising for forecasting. The parameter inversion for long-term variations of mc is
mainly intended as a tool to obtain ETAS parameters in regions where data is sparse and a
model inversion would not be possible otherwise.

3.6.1 Competing models

We compare five models.

1. The base ETAS model assumes perfect detection above a constant mc = 3.1 and is
used as the null model.

2. PETAI, the alternative model, has two modifications to the null model. First, it uses
improved ETAS parameter estimates that were obtained in the PETAI inversion with a
reference magnitude mref of 2.5. Second, magnitude M ≥ 2.5 earthquakes are allowed
to trigger and be triggered. For this, the events in the training catalog, which act as
triggering earthquakes in the simulation, have their triggering capability inflated by
1 + ξ(t), as estimated in the PETAI inversion.

Two intermediate models are assessed to dissect the effect of the two modifications.

3. par only uses ETAS parameter estimates obtained from PETAI, but only M ≥ 3.1
events are allowed to trigger and be triggered, assuming perfect detection there (i.e.
ξ(t) ≡ 0). In this case, the parameters obtained for the PETAI model have to be
transformed to be compatible with a reference magnitude of mref = 3.1 as described
in Equations (3.32 - 3.35).

4. Vice-versa, trig only allows M ≥ 2.5 events to trigger and be triggered, using the
inverted ξ(t) for inflated triggering, but does not use the improved ETAS parameter
estimates. In this case, the parameters obtained for the null model have to be trans-
formed to be compatible with a reference magnitude of mref = 2.5 as described in
Equations (3.32 - 3.35).

Lastly, we assess an additional benchmark model to test whether deliberately underestimat-
ing mc is an appropriate alternative to the rather complex PETAI model.

5. low mc assumes perfect detection above a constant mc = 2.5. This model uses neither
the parameter estimates obtained from PETAI, nor the inverted ξ(t) for inflated trig-
gering, but it allows M ≥ 2.5 events to trigger and be triggered and thus is based on
the same data as the PETAI-based models.

3.6.2 Experiment setup

For a testing period length of 30 days, we define a family of training and testing periods
such that the testing periods are consecutive and non-overlapping. Each training period
ends with the starting date of its corresponding testing period. The starting date of the first
testing period is January 1st, 2000. The end date of the last of the 244 testing periods is
January 16th, 2020.
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For each testing period, all competing models are trained based on the corresponding
training data. Then, forecasts are issued with each model through simulation of 100,000
possible continuations of the training catalog. Because the testing data is ignored when the
models are calibrated, these forecasts are pseudo-prospective. This is done by simulating
Type I earthquakes (the cascade of aftershocks of earthquakes in the training catalog) and
Type II earthquakes (simulated background earthquakes and their cascade of aftershocks)
similarly to how it is described by Nandan, Ouillon, Sornette, and Wiemer (2019a). The
algorithm for simulation is described in detail in Section B.1.

The performance of each model is evaluated by calculating the log-likelihood of the testing
data given the forecast. See Section B.2 for details on the calculation of the log-likelihood
using the full distribution approach as described by Nandan, Ouillon, Sornette, and Wiemer
(2019a) for a fair evaluation of ETAS-based models. Two competing models can be compared
by calculating the information gain (IG) of the alternative model Malt over the null model
M0, which is simply the difference in log-likelihood of observing the testing data. The mean
information gain (MIG) is calculated as the mean over all testing periods. This evaluation
metric is similar to other metrics that have been used for model comparison, such as the
total information gain or information gain per earthquake (IGPE) used in the CSEP T-test
(Harte and Vere-Jones, 2005; D. A. Rhoades et al., 2011; Zechar et al., 2013; Strader et
al., 2017, see Savran et al., 2020 for recent complementary CSEP testing metrics) or the
residual-based log-likelihood ratio score (Clements et al., 2011; Bray et al., 2014; Gordon
et al., 2015; Gordon et al., 2021).

As an additional benchmark, we calculate the total IGPE of the ETAS null model versus
a spatially and temporally homogeneous Poisson process (STHPP) model. Note that the
STHPP model is not considered a participant of the forecasting experiment and superiority
is always discussed relative to the ETAS null model.

For details on the STHPP model and on the conditions under which one model is con-
sidered superior over another, see Section B.2 and Nandan, Ouillon, Sornette, and Wiemer
(2019a).

3.6.3 Time evolution of the parameters of the competing models

Figure 3.6 shows the parameter evolution with increasing training period obtained with
standard ETAS (mc = 2.5 and mc = 3.1) and PETAI inversion. Two parameters, namely
µ and τ , show a systematic decrease and increase, respectively, with growing time horizon
of the training catalog. When compared to the uncertainties in the synthetic tests, the
extents of the changes of µ are larger than the 95% confidence intervals, while the changes
of τ lie within the expected uncertainties. A possible explanation for this observation is
that an increased time horizon of the training catalog reveals more long-term earthquake
interactions, leading to a higher value of τ , that is a later onset of the exponential taper in
the temporal aftershock density, and simultaneously to a lower background rate µ, as more
events can be interpreted as aftershocks of previous earthquakes.

Nearly all parameter estimates show a jump in 2010, caused by the 2010 El-Mayor Cu-
capah earthquake sequence, and a second jump in 2019, caused by the 2019 Ridgecrest
sequence. There are several reasons why such jumps in parameter estimates could occur.
In the case of the 2010 events, the main earthquake occurred outside of California and thus
network coverage can play a role, as well as the absence of a large fraction of aftershocks due
to the boundaries of the considered region. Furthermore, triggering parameters can differ
between regions, sequences and can also depend on the magnitude of the mainshocks (Nan-
dan, Ouillon, and Sornette, 2019; Nandan, Kamer, et al., 2021; Ouillon and Sornette, 2005;
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Figure 3.6: Evolution of ETAS and PETAI parameter estimates with increasing training
catalog, when using standard inversion with mc = 3.1 (black lines) or mc = 2.5 (orange
lines) and when using PETAI inversion (blue lines). The evolution for tR is only given for
PETAI inversion because it does not exist in standard ETAS. Parameters are with respect
to mref = 2.5, transformed using Equations (3.32 - 3.35) if necessary.
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Sornette and Ouillon, 2005; Nandan, Ouillon, and Sornette, 2021). These dependencies can
increase the representation of the active region and particular sequences in the catalog and
lead to sudden changes in the overall parameters.

3.6.4 Forecasting performance of the competing models

Figure 3.7 shows the results of the pseudo-prospective forecasting experiments. For a target
magnitude threshold of mt = 3.1, PETAI as well as trig only significantly outperform the
ETAS null model with p-values of virtually 0 and a mean information gain of 0.97 and 0.94,
respectively. Note that this improvement is over a very strong null model, which has a total
information gain of 49’246 (i.e. a MIG of 202.66 or an IGPE of 5.62) over the STHPP model.
PETAI has a slightly positive but not statistically significant information gain compared to
trig only. On the other hand, par only and low mc do not significantly outperform the ETAS
null model. This suggests that the main driver of the improvement of the forecast is the
inclusion of small events between M2.5 and M3.1 in the simulations, rather than the newly
obtained parameter estimates. It also indicates that accounting for incompleteness, which
is possible due to the estimated ξ(ti) obtained in the PETAI inversion, is necessary for this
improved forecast. The sole inclusion of events between M2.5 and M3.1 in the simulations
assuming completeness above M2.5 is not sufficient to obtain significant improvements. For
all considered values of mt, PETAI and trig only rank higher than low mc in terms of MIG,
which further supports the idea that accounting for STAI is relevant for improved ETAS-
based earthquake forecasting.

The temporal evolution of the cumulative information gain of the two superior models
shows a decrease during the 2010 El Mayor-Cucapah and the 2019 Ridgecrest sequences.
Those sequences were most active in Southern California, where the seismic network is
much denser than in the rest of the considered region (Hutton et al., 2010; Schorlemmer
and Woessner, 2008). The assumption of spatially homogeneous detection incompleteness
is thus inaccurate and may be the reason for over-inflation of the aftershock productivity
during these sequences, explaining the decrease in information gain. One can therefore
expect that accounting for spatial variation of STAI in subsequent models may lead to even
better forecasts.

With increasing values of mt to 3.5, 4.0, 4.5, and 5.0, the IGPE of the ETAS null model
versus the STHPP model increases to 5.92, 5.92, 6.62, and 7.44, respectively. At the same
time, the mean information gain values between the competing ETAS-based models gener-
ally decrease, and almost no model significantly outperforms any other competing model.
Occasionally, par only is outperformed by the ETAS null model or by trig only. These obser-
vations suggest that taking into account information about smaller earthquakes mainly helps
improving ETAS-based forecasts of smaller earthquakes. More precisely, simulating after-
shocks of small earthquakes is the key ingredient for improved forecasting of similarly-sized
events. Although within the framework of the standard ETAS model, small earthquakes can
trigger large ones, and their relative abundance implies significant contribution to the overall
triggering (Marsan, 2005; Helmstetter et al., 2005; Sornette and Werner, 2005a), we find
that the beneficial effect vanishes when forecasting large events. Additional ways exist in
which small earthquakes can contribute to improving forecasting models. Besides their po-
tential to cumulatively contribute to aftershock triggering, the large number of earthquakes
below mc can help to highlight the underlying fault structure, which, when accounted for,
can significantly improve forecasting performance (Gordon et al., 2021; Bach and Hainzl,
2012; Cattania et al., 2018; Y. Guo et al., 2015). In fact, small earthquakes have been
shown to improve forecasts in the context of other models (Mancini et al., 2019; Mancini
et al., 2020), and somewhat mixed overall results but a clear signal that small earthquakes
do contribute to triggering through the redistribution of static stresses have been reported
(Meier et al., 2014; Segou et al., 2013; Nandan et al., 2016).
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Figure 3.7: From left to right: Cumulative information gain for the alternative models versus
the ETAS null model, mean information gain matrix, and corresponding p-value matrix
comparing all competing models. Matrix entries represent the test of superiority of Malt

(y-axis) versus M0 (x-axis). From top to bottom: target magnitude thresholds mt of 3.1,
3.5, 4.0, 4.5, and 5.0. Indicated as text in the left panels is the cumulative information gain
of the ETAS null model versus the STHPP model, and the number of events in all testing
periods combined. Note the different y-axes for the left panels. Also note that the color
scheme for the middle panels is different between threshold magnitudes mt and normalized
with respect to the maximum absolute mean information gain for that mt. Color coding
for the panels on the right is such that p-values of 0.05 and below are green, and transition
from grey to white between 0.05 and 1.
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Helmstetter et al. (2006) compared the probability gain of their time-dependent model
versus their similar but time-independent model and found that probability gain decreases
with an increasing target magnitude threshold. They speculated that this observation may
be due to a smaller sample size when the target magnitude threshold increases. Helmstetter
and Werner (2014) found the same decrease in the context of a different, non-parametric
kernel space-time smoothing model. Although the study was based on a larger amount of
data than Helmstetter et al. (2006), they likewise speculated that this decrease is due to a
small sample size. In our case, the same effect is observed at considerably large sample sizes
of 3601, 1111, 307, and 85 events for mt = 3.5, 4.0, 4.5, and 5.0.

Another possible explanation for this effect is provided by the findings of multiple pre-
vious studies using both non-parametric (Nichols and Schoenberg, 2014; Spassiani and Se-
bastiani, 2016) and parametric (Nandan, Ouillon, and Sornette, 2019; Nandan, Ouillon,
and Sornette, 2021) approaches, that earthquakes tend to preferentially trigger aftershocks
of similar size. Their results can explain the improved forecast of small events when small
events are used for simulation, as well as the vanishing of this improvement when the magni-
tude difference between newly included events and target events becomes large. This could
furthermore serve as an alternative explanation of the results of Helmstetter et al. (2006)
and Helmstetter and Werner (2014).

Note that the IGPE of the ETAS null model against the STHPP model increases with
increasing mt, while Helmstetter et al. (2006) observe a decrease in probability gain against
a temporally homogeneous and spatially variable Poisson model. This suggests that spatial
inhomogeneity becomes more important with increasing target magnitude, while temporal
inhomogeneity based on small earthquakes becomes less important with increasing target
magnitude. It is important to highlight that the 30-day testing periods of the present study,
in contrast to 1-day periods as in Helmstetter et al. (2006), prevent ETAS models from
being updated after large events. This likely understates the extent of superiority that
could be achieved by models which include M2.5 to M3.1 events, and thus the role of small
earthquakes, in daily forecasts.

3.7 Conclusion

We propose a modified algorithm for the inversion of ETAS parameters when mc varies
with time, and an algorithm for the joint inversion of ETAS parameters and probabilistic,
epidemic-type aftershock incompleteness. We test both methods on synthetic catalogs, con-
cluding that they can accurately invert the parameters used for simulation of the synthetics.
The given formulations are rather general and can equally be applied to spatial or spatio-
temporal variations of mc, as well as to any suitable definition of a detection probability
function.

Two potential use cases are the estimation of ETAS parameters based on the Californian
catalog since 1932 with long-term fluctuations of mc between 4.3 and 2.4, and the estimation
of ETAS parameters and short-term aftershock incompleteness based on the incomplete
Californian catalog of events above M2.5. The latter is further used to test the forecasting
power of small earthquakes. Results of numerous pseudo-prospective forecasting experiments
suggest that

• Information about small earthquakes significantly and substantially improves forecasts
of similar-sized events.

• Main driver of this improvement is the simulation of aftershocks of small events.

• Accounting for incompleteness when simulating aftershocks of small events is necessary
to achieve this improvement.
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• Information about small earthquakes does not significantly affect the performance of
large event forecasts.

A possible explanation for these results is provided by previous findings (Nichols and Schoen-
berg, 2014; Spassiani and Sebastiani, 2016; Nandan, Ouillon, and Sornette, 2019; Nandan,
Ouillon, and Sornette, 2021), that earthquakes preferentially trigger aftershocks of similar
size.

Our results have potentially significant implications for the future of earthquake forecast-
ing. Thanks to the here-presented algorithms, ETAS models may be calibrated for regions
with low seismicity where the usual inversion algorithms would fail due to missing data. To
facilitate the embracing of data incompleteness in such cases, our inversion codes will be
made openly available after publication of the article through github.com/lmizrahi/etas and
github.com/lmizrahi/petai.

The newly gained insights from forecasting experiments guide us in the search of the next
generation earthquake forecasting models. Besides other discussed topics such as anisotropy,
temporally or spatially non-stationary background rate (Hainzl et al., 2008; Hainzl et al.,
2013; Nandan et al., 2020), the importance of accounting for short-term incompleteness
when simulating, as well as a magnitude-dependent distribution of aftershock magnitudes
are emphasized.

Acknowledgments

The data used for this analysis is available through the website
earthquake.usgs.gov/earthquakes/search/ (U.S. Geological Survey, Earthquake Hazards
Program, 2017). The authors wish to thank Sebastian Hainzl, Andrew Michael and An-
drea Llenos for insightful discussions and helpful feedback on earlier versions of this article.
We also want to thank the editor Rachel Abercrombie, the anonymous associate editor,
one anonymous reviewer, and Max Werner for their constructive feedback which greatly
improved this article. This work has received funding from the Eidgenössische Technis-
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Abstract

We present the development and testing of multiple ETAS-based earthquake forecasting
models for Switzerland. The simplest of these only require a sufficiently large catalog of
earthquakes as an input and use Python code which is publicly available on GitHub. Besides
the standard ETAS model, we consider five model variants. Three of these variants use
information from the current state-of-the-art time-independent earthquake rate forecast of
SUIhaz2015. The fourth model uses generic parameters fitted to Californian data, and the
fifth variant is based on an extended calibration technique that allows for temporal variation
of the completeness magnitude. We test all models using pseudo-prospective forecasting
experiments and retrospective consistency tests. The results of 5 years of pseudo-prospective
7-day forecasting experiments suggest that all ETAS-based models outperform the time-
independent SUIhaz2015 forecast. Based on this result and the results of the retrospective
30-year and 50-year consistency tests, we find that the purely ETAS-based models which do
not include additional information and which use parameters calibrated on Swiss data are
the best candidates for the first Swiss operational earthquake forecasting (OEF) system.

4.1 Introduction

Seismic risk is one of the largest threats posed to society by natural hazards in Switzerland
and many other countries in Europe and worldwide. While earthquakes cannot be prevented
nor predicted, an increased understanding of the probability of a devastating event can help
societies prepare and mitigate the risk.

The most widely used approach to address seismic risk is through Probabilistic Seismic
Hazard Analyses (PSHA, Cornell, 1968), in which long-term earthquake rate forecasts (also
called earthquake source models) are the basis upon which seismic hazard maps are estab-
lished and building codes are defined (see Woessner et al., 2015 for Europe; Drouet et al.,
2020 for France; Meletti et al., 2017 for Italy; Sesetyan et al., 2018 and Demircioğlu et al.,
2018 for Turkey; Mosca et al., 2022 for the UK; Wiemer et al., 2009 for Switzerland; Irsyam
et al., 2020 for Indonesia; Stirling et al., 2021 for New Zealand; Petersen et al., 2018 for the
US; Gupta et al., 2021 for India; etc.).

Such long-term studies, which are primarily time-independent, are a key ingredient for
societies’ resilience to seismic hazard. Recently, significant progress has been made towards
the development of time-dependent operational earthquake forecasting (OEF) systems to
supplement the existing time-independent hazard models, for example in Italy (Marzocchi
et al., 2014), in the US (Field et al., 2017), New Zealand (Rhoades et al., 2016) and for
the entire globe (Nandan, Kamer, et al., 2021; Kamer et al., 2021). The main benefit of
OEF systems is that they enable reactions to temporally increased seismic hazard, such as
evacuating buildings or shutting down power plants. Note however, that the development
of appropriate strategies to react to elevated hazard is a highly nontrivial challenge that
comes in addition to the challenge that is the development of the OEF system itself. In this
article, we focus on the latter.

The most commonly used models used for time-dependent earthquake forecasting, and
the basis of the four OEF systems or candidates mentioned above, are Epidemic-Type Af-
tershock Sequence (ETAS, Ogata, 1988) models. They account for the spatio-temporal
clustering of earthquakes based on a few simple empirical principles. Having been around
for several decades, ETAS models have been tested extensively, and remain the most suc-
cessful earthquake forecasting models available today (Cattania et al., 2018; Mancini et al.,
2019; Mancini et al., 2020; Nandan et al., 2019b; Taroni et al., 2018; Woessner et al., 2011),
which makes them ideal candidates for OEF.

Most countries to date do not have OEF systems in place. A possible explanation for
this is the seemingly large effort or simply the lack of resources and know-how required for
their development. ETAS models, although having their focus on the short-term aspects
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of seismic hazard, can also produce long-term forecasts which avoid the issue of b-value
biases as artifacts of the common practice of catalog declustering in the standard PSHA
approach (Mizrahi et al., 2021b). This is an additional incentive for seismic hazard analysts
to strive to implement an ETAS model for their region of interest. In this paper, we describe
the necessary steps to develop an ETAS-based OEF model, showcased on the example of
Switzerland. This description will facilitate the implementation of ETAS-based forecasting
models in other regions for which a reasonably sized earthquake catalog is available.

The current state-of-the art earthquake source model in Switzerland is described in SUI-
haz2015 (see Section 4.7 and Edwards et al., 2016). It combines the previous area source
model (Giardini and sismologique suisse, 2004) and an updated version thereof, the relevant
area sources of the 2013 SHARE model (Woessner et al., 2015), and a smoothed-seismicity
model similar to the one presented by Hiemer et al. (2014).

We proceed as follows to develop an ETAS-based earthquake forecasting model for
Switzerland to supplement the time-independent SUIhaz2015 model. We first discuss how
the region, time window and magnitude range of the training catalog are selected in Sec-
tion 4.2. Then we describe how the ETAS model is calibrated and how a forecast is issued
using the ETAS model in Section 4.3. In addition to a general ETAS model, we describe
multiple alternative versions allowing time-varying completeness, using generic parameters
calibrated for California, or using additional information from the SUIhaz2015 model, such
as the spatial distribution of background earthquakes or regionally varying magnitude fre-
quency distribution. In Section 4.4 we describe pseudo-prospective and retrospective tests
to verify the usefulness and suitability for the first Swiss OEF system. Our results are
presented and discussed in Section 4.5, and we give our conclusions in Section 4.6.

4.2 Selection of catalog region, time window, magnitude
range

To select the catalog on which we will calibrate an ETAS model for Switzerland, we start
with the most recent earthquake catalog available (ECOS-09, Fäh et al., 2011). Several
factors need to be considered when specifying the subset of the initial catalog used during
model calibration.

The catalog should be complete above a threshold magnitude of completeness mc (which
may or may not be space- or time-dependent). This is a requirement of the ETAS model
inversion. On top of this, the selection of region and time horizon determine the used catalog
and their choice can largely affect the results of the parameter calibration. As Switzerland
has relatively few large events when comparing to more seismically active regions such as
California or Italy, we aim to chose our catalog such that the number of events is maximized.

The selection of region and time horizon directly influence the number of events in the
catalog. They also influence the completeness magnitude of the catalog, which additionally
indirectly affects the number of events in the remaining catalog.

4.2.1 Choice of region

Most straightforward is the choice of region. We choose the rectangle around the author-
itative borders of Switzerland in which the smoothed seismicity model CH15 described in
SUIhaz2015 is defined, as depicted in Figure 4.1(a). With this choice, our catalog spans the
region of Switzerland and has a buffer zone around it so that earthquake interactions that
cross the Swiss borders can still be accounted for in the calibration.
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Figure 4.1: (a) Map of Switzerland. The dashed line indicates the border of the considered
region; the solid line indicates the authoritative borders of Switzerland. Colored dots repre-
sent events in the Swiss catalog (ECOS-09, Fäh et al., 2011), where orange, blue, and green
symbols represent events in the auxiliary, primary, and testing data set, respectively, and
symbol size represents event magnitude. (b) b-value depending on mc for different choices
of time horizon (between 10 and 50 years) in Switzerland. Stars mark the estimated com-
pleteness magnitude for that time horizon. (c)-(e) Estimated completeness magnitude (c),
corresponding b-value (d), and the number of events (e) contained in the complete catalog
(dotted line) and complete primary catalog (solid line) for time horizons starting between
1972 and 2012, ending in 2022, with 1-year steps. The starting year is indicated on the
x-axis. Dashed grey lines mark the time horizons with the highest number of events in the
complete catalog (2008-2022) and the complete primary catalog (1992-2022). (f) Temporal
distribution of events in the catalog, with identical size and color coding as in (a).

4.2.2 Choice of time horizon and magnitude range

The time horizon and magnitude range selection can be tricky as the two are closely inter-
twined. For a first basic ETAS model calibration, we make the simplifying assumption of
a spatially and temporally constant magnitude of completeness. A more general case will
be discussed in Section 4.2.2. Furthermore, we use use binned magnitudes with bin size
∆m = 0.1.

Seismic networks usually improve over time. Thus, longer periods (i.e. more data) and
increased completeness magnitude (i.e. less data) have antagonistic effects on the number
of events in the final complete catalog. Figure 4.1(b) shows the evolution of the estimated
b-value in Switzerland depending on assumed mc, for different time horizons. Typically, the
b-value is underestimated when mc is underestimated and stabilizes above a certain mc. For
the time periods starting earlier than 2012, the increase in b-values is followed by a decrease
before stabilization is reached, which may be due to mixing of different magnitude scales.
The period of 2012-2022 does not show this behavior and consists mostly of events of the
same magnitude type. The stars in Figure 4.1(b) indicate the overall mc values estimated
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for the respective time horizons using the method of Mizrahi et al. (2021b). The method
selects mc such that the observed sample of magnitudes is plausible to have emerged from
a GR law with the b-value associated with this value of mc.

To select the time horizon, we systematically assess the dependency of the size of the
resulting complete catalog on the time horizon.

Figures 4.1(c)-(e) show how the estimated magnitude of completeness, the corresponding
b-value, and the corresponding number of events in the complete catalog (dotted line) vary
with the choice of time horizon. If one were to maximize this number, the clear best choice
of time horizon would be to use data between 2008 and 2022 with a mc value of 1.6, which
results in a catalog containing 2413 events.

As will be described later in Section 4.3.1, the first few years of the catalog will be used
as auxiliary data so that events at the beginning of the primary time period are not wrongly
interpreted as background events due to the lack of potential parent events in the data set.
Furthermore, as will be described in Section 4.4, a calibrated model should be tested using
data that has not been used in the calibration, which shortens the primary time period
available for model inversion from the other end. If five years of seismicity are allocated
both as auxiliary data and as testing data, the time horizon of 2008-2022 yields a primary
time period that only spans four years, from 2013 to 2017. The solid line in Figure 4.1(e)
shows the number of events in the complete primary catalog that remains after removing the
first and last five years of the complete catalog. For the overall time horizon of 2008-2022,
the corresponding primary time period contains 566 events. The overall time horizon of
1992-2022 maximizes the number of events in the complete primary catalog (780 events)
at a completeness magnitude of mc = 2.3 at a b-value of 1.07. Besides the advantage of a
larger data set, this choice of time horizon has the additional advantage that the primary
time window spans 20 years (1997-2017). Parameters estimated based on this data are
therefore more representative of the longer-term behavior of seismicity.

With this catalog, we proceed to calibrate our ETAS model. Figure 4.1(a) and (f) show
the spatial and temporal distribution of events in our catalog, where dot size represents event
magnitude, and orange, blue, and green dots represent events in the auxiliary, primary, and
testing data set, respectively.

Spatially or temporally varying catalog completeness

An extra layer of complexity may arise when working with a larger region with a more het-
erogeneous seismic network, such as for example the European one. In this case, the com-
pleteness magnitude and time horizon of complete catalogs can vary substantially between
sub-regions. For the case of Switzerland, we assume spatial homogeneity of the completeness
magnitude.

Besides spatial variations, completeness also shows variations in time. The topic of
estimating ETAS parameters while accounting for such temporal variations has recently
been thoroughly addressed by Mizrahi et al. (2021a) and Hainzl (2022). In addition to a
basic ETAS model based on the catalog described above, we here want to consider a simple
case of temporally varying completeness magnitude for Switzerland. With the intention
to include data from a longer time horizon, we proceed as follows. We leave the catalog
described above from 1992 to 2022 unchanged with mc ≡ 2.3 and extend it towards the
past. Estimating the completeness of a catalog is highly nontrivial and becomes more
difficult when fewer data points are available, because statistical tests lose their power. For
this reason, we limit ourselves to using the instrumental catalog of Switzerland, which starts
around 1972 (Fäh et al., 2011). We apply the same technique as before to estimate mc for
the catalog between 1972-1992, arriving at a value of 2.7 with a b-value of 1.15. The true
completeness certainly varies during this period, and the assumption of a constant mc is a
simplification of a much more complex reality. The higher b-value compared to the later
period is possibly explained by the different magnitude types being used in different periods.
However, to develop a simple model, we decide not to introduce further complexity into our
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mc model. Combining the catalogs of 1972-1992 and 1992-2022 and discounting the first
and last five years of data yields a primary catalog of 1186 events, spanning a time window
of 40 years between 1977-2017.

4.3 From catalog to forecast

In this section we describe how an ETAS model is calibrated based on the given catalog,
and how a forecast can be issued given a calibrated ETAS model.

4.3.1 ETAS parameter calibration

In ETAS, each earthquake is either a background event or an aftershock of a previous event,
and each earthquake can trigger aftershocks. Background events are assumed to occur
uniformly in time, and aftershocks follow a certain distribution in time and space around
their parent event. The number of aftershocks of any parent event is dependent on the
magnitude of the parent event. Earthquake magnitudes follow the Gutenberg-Richter law
(Gutenberg and Richter, 1944), independently of whether the event is a background or a
triggered event. To calibrate ETAS parameters, we here use the model described by Nandan
et al. (2017) or Mizrahi et al. (2021b), which defines the rate g of aftershocks triggered by
an event of magnitude m, at a time delay of ∆t and a spatial distance (∆x,∆y) from the
parent event as

g(m,∆t,∆x,∆y) =
k0 · ea(m−mref ) · e∆t/τ(

(∆x2 +∆y2) + d · eγ(m−mref )
)1+ρ · (∆t+ c)1+ω

. (4.1)

Here, mref is the reference magnitude, which is an important quantity and deserves some
discussion. In general ETAS formulations, it is assumed that earthquakes can trigger and
be triggered if and only if their magnitude is greater than or equal to the reference magni-
tude. Moreover, the catalog used to calibrate the model must be complete above mref , as
otherwise, earthquakes will be wrongly interpreted to be background events, even though
they may have been triggered by an event that is missing in the catalog. For simplicity, we
choose mref to be equal to the estimated magnitude of completeness mc = 2.3 (see Sornette
and Werner, 2005 for implications of this assumption). Note that we implicitly assume
that earthquakes of magnitudes below 2.3 do not trigger any aftershocks. In this sense,
earthquakes that are triggered by events smaller than M = 2.3 are considered background
events.

The total rate of events at any time t and location (x, y) is then given by

λ(t, x, y) = µ+
∑
i:ti<t

g(mi, t− ti, x− xi, y − yi). (4.2)

That is, the seismicity rate at a given time and location is the sum of the background rate
µ and the rate of all aftershocks of previous events ei with magnitudes mi, which occurred
at times ti and at locations (xi, yi).

For the calibration of the ETAS parameters µ, k0, a, τ, c, ω, d, and γ, we use the Python
implementation of the expectation maximization algorithm, which is available on the au-
thor’s GitHub repository (algorithm: Veen and Schoenberg, 2008, implementation: Mizrahi
and Schmid, 2022, see Appendix E).

In the case of spatially or temporally varying completeness as discussed in Section 4.2.2,
one can select mref := mini(m

i
c), the minimum value of mc across all sub-regions or time-

intervals, and use the ETAS parameter inversion of Mizrahi et al. (2021a) for spatially
varying completeness when mc(x, y, t) is given as an input to the inversion algorithm (also
available on GitHub, Mizrahi and Schmid, 2022, see Appendix E). This inversion technique

https://github.com/lmizrahi/etas
https://github.com/lmizrahi/etas
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Table 4.1: ETAS parameters, b-value, branching ratio η and log10(Λ) (defined in Equation
(4.3)) estimated from the Swiss catalog using ETAS and complETAS inversion, using data
until 01 Jan, 2017 and until 01 Jan, 2022. The fifth column shows generic parameters
estimated from Californian data, adapted to match the Swiss background rate and a reference
magnitude of 2.3.

ETAS complETAS caliETAS
as of 2017 as of 2022 as of 2017 as of 2022

log10(µ) -6.23 -6.21 -6.16 -6.16 -6.17
log10(k0) -2.56 -2.75 -2.71 -2.85 -2.84
a 0.94 1.13 1.29 1.37 1.69
log10(c) -2.92 -2.85 -2.79 -2.76 -2.95
ω -0.16 -0.13 -0.13 -0.1 -0.03
log10(τ) 3.55 3.57 3.56 3.58 3.99
log10(d) -0.28 -0.51 -0.37 -0.56 -1.04
γ 0.09 0.15 0.37 0.38 1.22
ρ 0.65 0.63 0.64 0.62 0.51
b-value 1.12 1.05 1.13 1.08 from ETAS
η 0.60 0.57 0.48 0.48 0.84
log10(Λ) -5.83 -5.84 -5.88 -5.88 -5.37

assumes that the observed part of the catalog (above time-dependent completeness) is rep-
resentative of the unobserved part at all times. The estimated triggering power of observed
events and the estimated number of potential parent events are then inflated according to
this assumption to account for unobserved data. In the following, we will refer to this version
of the ETAS model as complETAS.

Table 4.1 shows the estimated ETAS parameters, as well as the b-value and branching
ratio η for a primary time horizon starting in 1997 and ending in January 2017 (start of the
first testing period, first column) and January 2022 (second column). Similarly, the third and
fourth columns show the resulting parameters when time-varying completeness is accounted
for and the start of the primary time horizon is in 1977. These are the parameters as they
would have been estimated on the indicated as-of-date, not knowing the events after that
day. For the evolution of parameters for increasing primary time horizons ending between
2017 and 2022, see Figure D.1. As a reference, the fifth column of Table 4.1 shows generic
parameters estimated from Californian data by Mizrahi et al. (2021b), adjusted for a lower
reference magnitude of mref = 2.3 using the transformation method described by Mizrahi
et al. (2021a). The background seismicity rate is inferred from the SUIhaz2015 model.

4.3.2 Discussion of inverted parameters

Except for c, the values of all calibrated complETAS parameters (i.e. µ, k0, a, τ, ω, d, and
γ) lie between regular ETAS and caliETAS parameters. A possible interpretation of this
observation is that the longer term seismicity behaviour in Switzerland may be more similar
to California than what has been observed in the more recent past. Alternatively, increasing
the fraction of larger magnitude events in the training catalog used in complETAS could
explain more similar parameters to the parameters obtained in California, which were esti-
mated from a catalog with a higher completeness magnitude of mc = 3.6.

Despite most complETAS parameters being closer to caliETAS parameters than ETAS
parameters are to caliETAS parameters, the branching ratio η, which is calculated theo-
retically from the individual parameters as described in Mizrahi et al. (2021a), is lower for
complETAS and much higher in California. This indicates that the shorter-term ETAS
seismicity after all may be more similar to Californian seismicity than complETAS seis-
micity is to Californian seismicity. Complex interdependencies between parameters could
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cause similarities of individual parameters discussed above, and we shall be reminded not
to over-interpret them.

Comparing ETAS with complETAS, a salient difference lies between the values of the
background rate µ. On average between 2017 and 2022, complETAS shows a background
rate that is 15% higher than ETAS, where the difference is decreasing with increasing time
horizon. The higher background rate is accompanied by a smaller value for k0 (indicating
fewer aftershocks) and a larger value for a (indicating a stronger magnitude dependency
of the aftershock productivity). The overall branching ratio is lower for complETAS than
ETAS, which can be viewed as a compensation for the higher background rate. Hypothet-
ically, if every earthquake triggered exactly η aftershocks, the total rate of events could be
calculated as

Λ = µ · lim
n→∞

n∑
i=0

ηi = µ · 1

1− η
, (4.3)

provided that η < 1. In this scenario, log10(Λ) values for ETAS range between -5.83 and -
5.85, and between -5.88 and -5.89 for complETAS. Thus, despite the much higher background
seismicity rate of complETAS, the hypothetical overall seismicity rate Λ is 10% lower for
complETAS than ETAS. caliETAS in contrast has a much higher log10(Λ) than ETAS or
complETAS, which amounts to almost three times the expected seismicity than that of
ETAS. This is due to the combination of a high branching ratio and a background rate
obtained from SUIhaz2015 which is not designed to have aftershock sequences added to it.

4.3.3 Issuing a forecast through catalog simulation

A seismicity forecast is given as a probability density function (PDF) of the number of
earthquakes to occur in a predefined space-time-magnitude range. To issue a forecast using
ETAS, one needs to stochastically simulate possible continuations of the given catalog for
the duration of the forecast time range. This is done by simulating cascades of aftershocks
of events that occurred before the start of the forecasting time range and background events
that occur during the forecasting time range plus their cascades of aftershocks. A detailed
description of the catalog simulation algorithm used here can be found in Section B.1 in
the Supporting Information for Chapter 3 (Mizrahi et al., 2021a), and a Python code to
stochastically simulate catalog continuations can be found on GitHub (Mizrahi and Schmid,
2022, Appendix E).

Note that the locations of background events are simulated by sampling from the loca-
tions of the events in the training catalog. The likelihood of an event location being selected
is proportional to the probability of this event to be a background event. The sampled
locations are then slightly dislocated by a vector drawn from a Gaussian distribution such
that the mean dislocation is 0.

A common number of simulations done is 100,000 (Savran et al., 2020; Nandan, Kamer,
et al., 2021), although more simulations may be necessary in certain cases. If one is interested
in a forecast with a high spatial resolution, the chance of an event to occur in a spatial cell
of interest may be lower than 1 in 100,000. Thus, 100,000 simulations are not enough to
estimate the probability of such an event. Similarly, if one is interested in forecasting large
magnitude events, those may have low chances of occurrence, and more simulations are
needed to estimate their probability of occurrence.

The PDF p(k) of the number of events to occur in a space-time-magnitude range can
be derived through the simulated catalogs as follows. We define p(k) as the empirical
distribution resulting from nsim simulations. Consider n(k), the number of simulations
among nsim for which k events are observed. To avoid zero probabilities for values of k that
do not appear in the simulations, i.e. n(k) = 0, we define a large number k∗ until which the
probability should be nonzero. We define the PDF of the number of earthquakes k as

https://github.com/lmizrahi/etas
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p(k) =


n(k)

nsim+1 if n(k) > 0
1

m·(nsim+1) if n(k) = 0 and k ≤ k∗

0 otherwise,

(4.4)

where m is the number of values k between zero and k∗ for which n(k) = 0.

4.4 Testing of model variants

In this section, we describe six ETAS variants to be considered for the first Swiss OEF sys-
tem. We then describe pseudo-prospective 7-day forecasting experiments and retrospective
consistency tests spanning several decades. In this way, we thoroughly test all candidate
models before selecting the best suited one(s).

4.4.1 Competing models

Null Model: SUIhaz2015

Before we start describing the six ETAS model variants, we define a null model to which
the six candidates will be compared in the pseudo-prospective tests. For this purpose we
consider the time-independent earthquake rate forecast from the SUIhaz2015 hazard maps,
defined on 0.05 × 0.05 degrees latitude and longitude. The PDF pnull(k) of the number of
earthquakes k can be derived analytically as a Poisson distribution with the mean being the
expected number of events to occur in the space-time-magnitude range under consideration.

In the SUIhaz2015 model, earthquake rates are defined for events of magnitude 4.0 or
above. We will be interested in forecasting the number of M ≥ 2.5 events (see Section 4.4.2).
Thus, we extrapolate from the M ≥ 4.0 rates using the Gutenberg-Richter distribution,
where the b-value is estimated separately for each zone of the seismogenic zonation model
SEIS-15.

We calculate the zone-wise b-value estimator which accounts for binned magnitudes with
bin size ∆m (Tinti and Mulargia, 1987) as

b̂ =
log10(p̂)

∆m
, (4.5)

where

p̂ = 1 +
∆m

m̄−m0
, (4.6)

and m̄ is the mean of the binned magnitudes mi, weighted by the rate λi associated to each
magnitude bin,

m̄ =

∑
i mi · λi∑

i λi
. (4.7)

In our case, we have magnitude bins of size ∆m = 0.1, starting at m0 = 4.0. Figure C.2
shows the resulting b-values for the relevant SEIS-15 zones.

Not all cells within one seismogenic zone have the same earthquake rates. The extrapo-
lation is therefore done for each cell individually, using the b-value of its zone.

ETAS

The first alternative model is the most basic ETAS model, which uses the training catalog
shown in Figure 4.1 (a) and (f) of earthquakes of magnitude M ≥ 2.3 since 1992, where the
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primary time period starts in 1997. The end of the training catalog is the start date of the
forecasting period. Thus, parameters may vary from one forecasting period to the next.

The simulation of background events is done as described in Section 4.3.3 using the
inferred background probabilities of events which occurred in the primary time period of
the training catalog.

For this model, and analogously for all ETAS-based models described below, we define
pETAS(k) as in Equation 4.4.

complETAS

The complETAS model is analogous to the ETAS model, with the difference that it uses a
larger training catalog with time-varying completeness as described in Section 4.2.2 with the
start of the primary time period in 1977. The parameters are estimated using the generalized
inversion algorithm of Mizrahi et al. (2021a).

hazETAS-BG

As a modification of the standard ETAS model, we also consider hazETAS-BG, where the
locations of background events are simulated based on the rates provided by SUIhaz2015, all
else staying identical. In particular, the total rate of background events is still determined
by the parameter µ given by the ETAS model. Only the relative spatial differences in
SUIhaz2015 rates are relevant for the simulation of background event locations. Note that
we use the rates extrapolated to M ≥ 2.5 as described in Section 4.4.1.

The Swiss Seismic Hazard Maps 2015 (SUIhaz2015) are based on expert knowledge
and data from a much longer time scale. Considering this ETAS variant will allow us
to quantitatively assess potential improvements in forecasting due to the inclusion of this
additional information.

hazETAS-mag

With the hazETAS-mag model, a second way to combine ETAS with SUIhaz2015 is tested.
It uses the magnitude distribution provided by SUIhaz2015 when simulating earthquake
magnitudes, all else staying identical. In particular, background event locations are simu-
lated as in the ETAS model.

The magnitude simulation for hazETAS-mag is done as follows. After simulating the
location of an event, its magnitude is drawn from the distribution valid in the SEIS-15 zone
into which the event falls.

The magnitude frequency distribution of a zone is obtained by taking the sum over all
cells within that zone of the SUIhaz2015 rates per magnitude bin. This distribution is then
extrapolated to magnitudes below 4.0 using the zone-wise b-values calculated in Section
4.4.1.

Note that magnitudes for which rates are zero according to the SUIhaz2015 model (i.e.
magnitudes above 7.3) will not be drawn during ETAS simulation. This is in contrast to the
previously described ETAS models which use a pure GR law, in which very large magnitudes
have a low chance of being simulated but are technically possible.

hazETAS-full

The last model of the hazETAS group is hazETAS-full, which uses both aspects of SUI-
haz2015 of the previous two models. It simulates background event locations according to
SUIhaz2015, and it simulates magnitudes according to SUIhaz2015.
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caliETAS

The final ETAS-based model considered in our experiment is caliETAS. This model is in-
cluded to challenge and/or confirm the necessity of calibrating ETAS parameters using
regional data.

Instead of using ETAS parameters which are obtained from the most recent Swiss cat-
alog, is uses generic ETAS parameters that were estimated for California by Mizrahi et al.
(2021b), adjusted to the reference magnitude ofmref = 2.3 using the transformation method
described by Mizrahi et al. (2021a).

As California is much more seismically active than Switzerland, and for this model,
we do not use information that results from the ETAS parameter inversion applied to the
Swiss catalog, we use the background seismicity rate provided by SUIhaz2015. For this,
we calculate the background rate µ in the entire region based on the SUIhaz2015 rates
extrapolated down to M ≥ 2.3 as described in Section 4.4.1. The simulation of background
event location is then done in the same manner as for the hazETAS-BG model.

The parameters used for simulation can be found in Table 4.1.

4.4.2 Pseudo-prospective tests

The first test is to compare ETAS variants to the SUIhaz2015 null model in pseudo-
prospective one-week forecasting experiments. For this, we issue a forecast using data until
a certain time t, and then compare the actual catalog between time t and t +∆t with the
forecast. This is done for all considered models and for several consecutive testing periods
to obtain a representative sample of the quality of the forecast. This concept is illustrated
Figure 4.2 (top).

?
?

??

[t, t+∆t)

52

5

Model 2

Model 1

3

Figure 4.2: Schematic illustration of the concept of pseudo-prospective forecasting experi-
ments (top) and model comparison (bottom).

The beginning of our first testing period is January 1st, 2017, and we consider consecutive
non-overlapping testing periods of length ∆t = 7 days, with the start of the last testing
period on December 26th, 2021.

The metric used to evaluate a forecast is the information gain over a null model as
described by Nandan et al. (2019a). Its concept is schematically illustrated in Figure 4.2
(bottom). The goal is to correctly forecast the number of earthquakes above a magnitude
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threshold mthr which occur in the time interval [t, t+∆t), in each grid cell of a pre-specified
spatial grid covering the region of interest. In each grid cell, the probability density function
p(k) of the number of earthquakes k is calculated for both the alternative and the null model.
The information gain of the alternative versus the null model is defined as

IG =
∑
i

ln
(
pialt(k

i
true)

)
− ln

(
pinull(k

i
true

)
), (4.8)

where summation is over all grid cells.

We are interested in correctly forecasting the number of earthquakes of magnitude
mthr = 2.5 or above, which is the threshold magnitude for which media alerts are released in
Switzerland. Because of the limited amount of data in the five year testing period, a higher
threshold would make the test less powerful. We will address the adequacy of the tested
models at a higher magnitude threshold using retrospective 30- and 50-year tests described
in Section 4.4.3.

As a spatial grid, we choose a grid of 0.05 × 0.05 degrees latitude and longitude, which
is the resolution of the SUIhaz2015 hazard maps. We set the number of simulations to be
performed for each testing period to be nsim = 100, 000. We consider the grid cells in which
our newly calibrated ETAS model and the SUIhaz2015 model are defined. Finally, in each
grid cell, we choose k∗ = 500 to be the maximum value for which p(k) (see Equation (4.4))
shall return a nonzero value.

In summary, we consider 216 testing periods and 4075 grid cells, in which 164 earthquakes
withM ≥ 2.5 occurred. We call the area consisting of these 4075 grid cells the testing region.

The alternative model is considered superior to the null model if the mean information
gain averaged over all testing periods is positive, where significance is calculated through a
paired one-sided t-test with a significance threshold of 0.1.

4.4.3 Retrospective tests

In addition to the pseudo-prospective tests, we perform retrospective tests at a larger mag-
nitude threshold of mthr = 4.5. In particular, we use the catalog-based forecast evaluation
tests provided by the pyCSEP toolbox (Savran et al., 2022) and described by Savran et al.
(2020). They allow us to test whether an observed catalog is an outlier when compared
with the simulated catalogs which constitute a forecast. If this is not the case, the observa-
tion shall be considered consistent with the forecast. Different tests address the consistency
of the magnitude distribution, the spatial distribution, the number distribution, and the
overall pseudolikelihood of observed events. We use the same spatial grid cells as in the
pseudo-prospective test, and magnitude bins of size 0.1.

The different model variants are tested as follows. Starting at the end of the pseudo-
prospective testing period (end of 2021), we issue a 50 · 365 days ≃ 50 years long forecast
by generating 100,000 simulated catalogs, for each of the ETAS variants. We then compare
these catalogs to the observed catalog which ends in 1992 and goes back 50 · 365 days. The
observed catalog thus starts in 1942. According to the method described by Mizrahi et al.
(2021b), this catalog is complete at the magnitude threshold of 4.5. Besides the 50 year test,
we analogously perform a 30 year test with the observed catalog starting in 1962.

Although these tests are retrospective, they can be considered partially out-of-sample,
as the observed catalog used to evaluate the forecasts was not used in the calibration of
the ETAS parameters. Note however that the data was used to construct the SUIhaz2015
model, and that part of the data was used in the calibration of complETAS parameters.
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Figure 4.3: (a-e, g, h) Examples of 7-day seismicity forecasts produced by the considered
models for the week starting on 03 Nov, 2019. The color of each pixel of 0.05°lat× 0.05°lon
(≃ 5km×5km) corresponds to the probability of one or more M ≥ 2.5 earthquakes to occur
in the pixel during 7 days. White circles represent 15 M ≥ 2.5 earthquakes which actually
occurred during the period for which the forecast was issued. (f) Cumulative information
gain (CIG) over time of the ETAS-based models versus the time-independent SUIhaz2015
model represented by the black horizontal line. Vertical line marks the date of the forecasts
shown in (a-e, g, h). Information gain per earthquake (IGPE) over SUIhaz2015 is given in
the legend.

4.5 Results and discussion

4.5.1 Results of the pseudo-prospective tests

Figure 4.3 shows example forecasts produced by the considered models in the testing region
(colored region) for the week starting on 03 Nov 2019, in which a large number of 15
M ≥ 2.5 events occurred, with the locations of those 15 events indicated by white circles on
the maps. As most events have occurred very close to each other, it is difficult to distinguish
the individual circles.

The time-dependent forecasts show similar features of increased probability compared
to the time-independent forecast. They must be caused by seismic activity prior to the
forecasting period. Meanwhile, certain differences can be visually identified in-between the
time-dependent forecasts. For instance, the different spatial distributions of background
seismicity of the models can be recognized (see also Figure C.3 for the forecasted background
seismicity only). caliETAS shows large areas of increased earthquake probabilities compared
to other forecasts. Such features will however be analyzed more quantitatively and based
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Table 4.2: Summary of forecasting results for the considered models. The first four columns
show the probability of one or more earthquake of magnitude M ≥ 2.5 to occur in the next
seven days, starting on 03 Nov 2019 for the first and third columns, and starting on 10
Nov for the second and fourth columns. The first two columns show the probability for the
entire testing region, the third and fourth columns for the single pixel of 0.05°lat× 0.05°lon
(≃ 5km × 5km) centered at 46.325°lat, 7.375°long. The fifth, sixth, and seventh columns
show the total information gain (IG) of ETAS-based models vs SUIhaz2015 for the entire
testing period, the information gain per earthquake (IGPE), and the mean information gain
(MIG) averaged over the testing periods. The last column indicates the p-value of a paired
one-sided t-test, testing the null hypothesis of whether the alternative model’s MIG is less
than or equal to zero.

P (n ≥ 1) in CH P (n ≥ 1) in pixel
Nov 03 Nov 10 Nov 03 Nov 10 total IG IGPE MIG p-value

SUIhaz2015 24% 24% 0.03% 0.03% 0 0 0 -
ETAS 29% 55% 0.06% 28% 251.98 1.54 0.97 0.063
complETAS 34% 56% 0.05% 25% 276.06 1.68 1.06 0.053
hazETAS-BG 35% 61% 0.07% 29% 266.53 1.63 1.02 0.063
hazETAS-mag 38% 63% 0.08% 31% 221.24 1.35 0.85 0.097
hazETAS-full 37% 64% 0.07% 31% 281.28 1.72 1.08 0.055
caliETAS 63% 74% 0.17% 42% 282.02 1.72 1.08 0.055

on more than one week of data using the consistency tests.

Figure 4.3(f) shows the cumulative information gained over time by the ETAS-based
models compared to the time-independent SUIhaz2015 model. The mean information gain
per earthquake (IGPE) of the ETAS-based models against the null model is given in the
legend. All ETAS-based models have a positive IGPE compared to SUIhaz2015. Among
them, IGPE values range between 1.35 and 1.72.

Table 4.2 provides a summary of the forecasting results of the considered models. The
first four columns show the 7-day forecasted probabilities of one or more magnitude M ≥ 2.5
events for two different forecasting periods and two different regions. The first two columns
give probabilities for the entire testing region, while the third and fourth columns give
probabilities for the single pixel centered at 46.325°lat, 7.375°long. In this pixel, 13 out of
15 earthquakes occurred during the first shown testing week starting on 03 Nov 2019. It
was the week with the highest number of events among the tested forecasting periods of
this experiment. Two out of two earthquakes in the following week starting on 10 Nov also
occurred it the same pixel.

All ETAS-based models forecast a higher probability of occurrence than the null model
for both weeks and regions, and all of them show an increase from the first to the secnon
week. The highest increase is observed with the ETAS model. For the entire testing region,
it gives a 91% increase of the occurrence probability in the second week compared to the
first week, and in the active pixel the probability is more than five times as high as for the
first week.

All ETAS-based models outperform the null model with a high IGPE as well as mean
information gain (MIG) averaged over the testing periods (see Table 4.2, columns six and
seven). The significance levels indicated by the p-values in the last column of Table 4.2 show
that all alternative models achieve a significance level of < 0.1.

Figure 4.4 shows the pairwise comparison of all competing models. The clearest signal
is the superiority of all time-dependent models over the time-independent null model. This
main result of our 7-day forecasting experiment was expected and is likely to be explained by
the fact that the main strength of ETAS lies in capturing short-term earthquake triggering
behavior accurately.

In-between the ETAS-based models, the only significant performance difference with a
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Figure 4.4: Pairwise comparison of all competing models. Left: Mean information gain
(MIG) of the alternative model (Malt, rows) versus the null model (M0, columns). Right:
Same as left, but showing p-value of the paired one-sided t-test.

p-value of less than 0.1 is observed when comparing to hazETAS-mag. It is significantly
outperformed by four out of five ETAS-based models. We conclude that hazETAS-mag is
not the ideal candidate for an OEF model in Switzerland.

4.5.2 Results of the consistency tests

Figure 4.5 shows the results of the pyCSEP consistency tests for a 30 year and a 50 year
testing period. In these tests, a test statistic is calculated for each simulated catalog and
for the observed catalog. The quantile score of the observed statistic among the simulated
test statistics is then used to decide whether a model passes the test. If the quantile score,
which is given in the cells in Figure 4.5, lies between 0.05 and 0.95, we consider the test to
be passed, indicated by a green cell color.

For the 30 year test, ETAS, complETAS and hazETAS-BG pass all tests. The remaining
models hazETAS-mag, hazETAS-full and caliETAS all fail the number test. Their low
quantile scores indicate that the failure is caused by a severe overestimation of the expected
event number with these three models.

hazETAS-mag and hazETAS-full fail the magnitude test. They use b-values obtained
from the SUIhaz2015 model which are much lower than what is estimated from a pure GR
law used by the other models. b-values are known to be biased when they are calculated
based on declustered catalogs (Mizrahi et al., 2021b). That hazETAS-mag and hazETAS-
full fail the magnitude test is therefore not unforeseen. Lower b-values lead to a higher
expected number of large events. In the ETAS-based models, this leads to a higher number
of aftershock sequences and thus to an overall higher number of events, which explains why
the two models overestimate the event number.

In the case of caliETAS, the overestimation of the event rate most likely stems from
its high branching ratio of 0.84 (see Table 4.1), combined with a background rate that
was inferred from SUIhaz2015 and which is not meant to be complemented with aftershock
sequences.

Figure 4.6 shows that the model pairs ETAS and hazETAS-BG, and hazETAS-mag
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Figure 4.5: Results of the pyCSEP consistency tests for the considered models. For a 30 year
(left) and 50 year (right) testing period, the quantile score of the observed catalog statistic
among the catalog statistics of simulated catalogs is given for the number (N), spatial (S),
magnitude (M), and pseudolikelihood (P) test. Cell color indicates whether a model passed
(green) or failed (red) the test.

and hazETAS-full exhibit the same behavior in the magnitude test. This is expected as
they only differ from each other in the spatial distribution of background seismicity, which
does not affect the magnitude distribution. Interestingly, caliETAS, which uses the same
magnitude distribution as ETAS and hazETAS-BG, behaves differently in the test. This is
an artifact of the test and can be explained by the much larger number of events forecasted
by caliETAS compared to ETAS or hazETAS-BG, which forecast the same number of events.
In the magnitude test, the test statistic quantifies how different the magnitude distribution
of an individual catalog is from the overall magnitude distribution of the 100,000 simulated
catalogs. Less deviation from the underlying GR law is expected when simulating many
events instead of few. At the same time, the test statistic of the observed catalog remains
the same, as it is comparing the observed magnitude distribution to the same underlying
distribution.

The analogous figures to Figure 4.6 for the remaining tests can be found in the Supporting
Information for this chapter (Figures C.4 - C.10).

For the 50 year test, all models except for caliETAS fail the number test. The quantile
scores in Figure 4.5 show that ETAS, complETAS and hazETAS-BG fail the test for opposite
reasons than hazETAS-mag and hazETAS-full. The former three underestimate the number
of events, while the latter two overestimate it. While caliETAS passes the test, the observed
number of events is also considered to be at the lower end of expected event numbers. The
50 year observed catalog which spans the years 1942-1992 contains the Sierre 1946 M5.8
event. The entire ECOS-09 catalog contains only 8 events of this size or larger in our region
of consideration, where the first one is a M6 event in the year 250. Although we cannot claim
the catalog to be complete at this threshold since the year 250, the small number observed
of events of this size in Switzerland indicates that the presence of the Sierre 1946 event in
our 50 year testing catalog is relatively exceptional. In this sense, it is more plausible that
the observed number of events is among the highest expected rather than being at the lower
end of expectations.
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Figure 4.6: Results of the 30 year magnitude test. Histograms show distribution of the test
statistic in 100,000 simulated catalogs, vertical dashed line indicates the observed statistic.
Red areas of the histograms mark values below the 5th or above the 95th percentile for which
the test is failed.

Based on these results, we decide to reject hazETAS-mag, hazETAS-full, and caliETAS.
Among the remaining models, ETAS and complETAS are the two models with the highest
number of six out of eight passed tests. They fail the number test in the 50 year case
because they consider the observed catalog an exceptionally eventful catalog, which may
actually be the truth. As a consequence of this, they also fail the pseudolikelihood test.
While ETAS and complETAS pass the spatial test in the 50 year case, hazETAS-BG fails
it with a quantile score of 1.00. This means that the observed catalog is more localized
than the simulated catalogs. As the only difference between ETAS and hazETAS-BG is
the spatial distribution of background seismicity, this suggests that the additional feature of
using SUIhaz2015 background seismicity locations does not improve the spatial distribution
of the model. Compared to the hazETAS-BG model, which ranks third according to its
number of five passed consistency tests, ETAS and complETAS have the additional benefit
of simplicity; they are both pure ETAS models and do not require the additional information
of SUIhaz2015. For this reason, we propose these two models as suitable candidate OEF
models for Switzerland.

4.5.3 Scenarios

Table 4.3 shows earthquake probabilities in Switzerland following hypothetical events, cal-
culated with the two recommended models ETAS and complETAS. Four different scenarios
are investigated: How would earthquake probabilities evolve after an event of magnitude
M∗ = 4.5, 5.0, 5.5, or 6.0 occurred at the location of the 1946 Sierre earthquake? The prob-
abilities are given for the candidate models ETAS and complETAS for the first day, week,
and month after the event occurred. From left to right, Table 4.3 shows the probability that
an event of M ≥ M∗ − 1.0, M ≥ M∗, or an even larger event of magnitude M ≥ M∗ + 1.0
occurs anywhere in the testing region.
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Table 4.3: Earthquake probabilities following hypothetical events at the location of the 1946
Sierre earthquake.

M ≥ M∗ -1.0 M ≥ M∗ M ≥ M∗ + 1.0
M∗ days 1 7 30 1 7 30 1 7 30

4.5
ETAS 6.78% 15.12% 31.46% 0.69% 1.56% 3.54% 0.06% 0.15% 0.34%
complETAS 6.58% 14.04% 28.45% 0.55% 1.30% 2.95% 0.05% 0.11% 0.23%

5.0
ETAS 3.11% 6.39% 12.93% 0.27% 0.60% 1.31% 0.03% 0.06% 0.14%
complETAS 3.13% 6.06% 11.52% 0.29% 0.55% 1.05% 0.02% 0.04% 0.08%

5.5
ETAS 1.47% 2.83% 5.30% 0.12% 0.23% 0.47% 0.01% 0.02% 0.05%
complETAS 1.48% 2.72% 4.74% 0.13% 0.25% 0.43% 0.01% 0.03% 0.03%

6.0
ETAS 0.71% 1.31% 2.22% 0.07% 0.14% 0.23% 0.00% 0.01% 0.02%
complETAS 0.74% 1.26% 2.04% 0.05% 0.08% 0.14% 0.00% 0.00% 0.01%

Generally, ETAS gives slightly higher probabilities than complETAS. As the magnitude
M∗ of the scenario earthquake increases, the chance of a subsequent event of similar size
decreases. This is because β = ln 10 · b is larger than the productivity exponent a − ρ · γ
which describes the growth of the aftershock number with the magnitude of the triggering
event (see Mizrahi et al., 2021a for details). To maintain similar probabilities of M ≥ M∗

events as M∗ increases, the number of aftershocks generated by an M∗ event should increase
by the same factor as the fraction of M ≥ M∗ decreases according to the GR law. This
would be the case for a− ρ · γ = β.

4.5.4 Learnings for future model development

The result that the simplest models perform best in our tests raises the question of how
to proceed with the development of future forecasting models. Which route to take to go
beyond simple ETAS models?

All ETAS-based models perform similarly well in the pseudo-prospective tests, while no
significant differences between the time-dependent models are observed. Only through a
process of elimination using consistency tests the most suitable models can be identified. At
the moment we are lacking criteria for selecting the ‘best’ model among the data-consistent
ones. One possible reason for the similar performance of ETAS and complETAS in the
pseudo-prospective tests is the relatively limited size of the testing dataset. In a few more
years, we might be able to identify a clearer signal as to which model is to be preferred.

We may as well spend those years developing and testing further models. The results of
the consistency tests clearly show that incorporating external data sources into ETAS models
does not guarantee success. The lack of success of such models in our case may be due to
the way in which the external data was incorporated. If additional information could be
included in the model already during the parameter inversion process, the resulting model
parameters could be more consistent with the newly included data. This would possibly
produce models which can pass the consistency tests and simultaneously perform better in
forecasting experiments.

The parameters of ETAS and complETAS differ substantially. This manifests in a 10%
lower overall expected seismicity for complETAS compared to ETAS as quantified by Λ (see
Equation (4.3) and Table 4.1). And while the main benefit of ETAS-based models over
the SUIhaz2015 is their time dependency, the precision of the parameters describing the
time-dependent behavior, namely aftershock triggering, does not seem to play a sufficiently
crucial role to significantly determine the extent of their success. Another way of improving
the time-dependent aspect the ETAS model besides parameter optimization is to address
one of its current shortcomings: the time dependency of background seismicity.

In an ETAS sense, background seismicity is the remaining seismicity that could not be
explained by triggering. Future background seismicity is modelled as the average unex-
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plained seismicity of the training period. However, background seismicity can have strong
long-term fluctuations or be influenced in the short term by human interference in the form of
induced seismicity (Király-Proag et al., 2016), by Earth tides (Cochran et al., 2004; Métivier
et al., 2009), or earthquake swarms (Hainzl and Fischer, 2002; Hainzl, 2004), which lack the
burst-like behavior of typical aftershock sequences (see Zaliapin and Ben-Zion, 2013) and
may be mixed into ETAS’s background seismicity. Recent advances in earthquake detection
through deep learning have greatly improved the level of detail with which seismicity and
in particular earthquake swarms or tidal earthquake triggering can be studied (Ross et al.,
2019; Ross et al., 2020; Ross and Cochran, 2021; Wang et al., 2022). A continued increase
in our understanding of the geophysical processes that influence seismicity, together with
the results of Nandan, Ram, et al. (2021) that more accurate background seismicity models
bear great potential for improved ETAS forecasts, suggests that next-generation earthquake
forecasting models will no longer view background seismicity as the bulk of seismicity which
was not triggered by previous events, and will capture more (space- and) time-dependency
than “just” aftershock forecasting.

4.6 Conclusions

In this article, we describe the development and testing of six ETAS-based OEF candidate
models for Switzerland and give our recommendation for two models to be used in the first
Swiss OEF system.

We propose a systematic approach to choose the region, time horizon and magnitude
range of the catalog used to calibrate an ETAS model. The approach is designed to require
a minimum of choices influenced by personal preferences or subconscious biases, so that it
can be applied to other regions without major modification.

Given the selected training catalog, we describe how an ETAS model can be calibrated,
and possible catalog continuations which form the basis of a forecast can be simulated.

In pseudo-prospective forecasting experiments with five years of consecutive 7-day testing
periods, we find that all ETAS-based models outperform the time-independent null model
with large IGPE values between 1.35 and 1.72.

Retrospective 30 year and 50 year consistency tests reveal that three of the six model
variants drastically overestimate the number of earthquakes. One of them uses ETAS pa-
rameters calibrated on Californian data. This result highlights the importance of using
regionally calibrated parameters when using the ETAS model. The other two models which
overestimate earthquake rate are using b-values inferred from the SUIhaz2015 model. These
b-values are lower than the ones used in the other model variants which are estimated di-
rectly from the undeclustered training catalog. This implies that using model-consistent
b-values is crucial to avoid biased forecasts.

Among the remaining models, the two purely ETAS-based models (ETAS and complE-
TAS, which is calibrated using the method of Mizrahi et al. (2021a) that allows a time-
dependent magnitude of completeness) pass the highest number of consistency tests. No
significant difference can be detected between the performance of the two models neither
in the pseudo-prospective nor in the retrospective tests. For this reason, we propose both
of them as the ideal candidates for the first operational earthquake forecasting system in
Switzerland. A slight preference may be given to the most basic ETAS model for its sim-
plicity.

A script which calibrates the Swiss ETAS model and runs the simulations is publicly
available on GitHub (Mizrahi and Schmid, 2022, Appendix E).

Despite, or especially because the hybrid models which use ETAS and SUIhaz2015 infor-
mation, were not able to outperform the more simple ETAS models in this experiment, we

https://github.com/lmizrahi/etas
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believe that there lies great potential in ETAS-based forecasting models in which more effort
goes into modeling what currently falls under the broad umbrella of background seismicity.

4.7 Data and resources

A summary of the Swiss National Seismic Hazard Maps 2015 can be viewed online on http://
www.seismo.ethz.ch/export/sites/sedsite/knowledge/.galleries/pdf knowledge/SUIhaz2015
final-report 16072016 2.pdf 2063069299.pdf (last accessed March 2022).
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Abstract

The development of new earthquake forecasting models is often motivated by one of the
following complementary goals: to gain new insights into the governing physics and to pro-
duce improved forecasts quantified by objective metrics. Often, one comes at the cost of
the other. Here, we propose a question-driven ensemble (QDE) modeling approach to ad-
dress both goals. We first describe flexible ETAS models in which we relax the assumptions
of parametrically defined aftershock productivity and background earthquake rates during
model calibration. Instead, both productivity and background rates are calibrated with data
such that their variability is optimally represented by the model. Then we consider 64 QDE
models in pseudo-prospective forecasting experiments for Southern California and Italy.
QDE models are constructed by combining model parameters of different ingredient models,
where the rules for how to combine parameters are defined by questions about the future
seismicity. The QDE models can be interpreted as models which address different questions
with different ingredient models. We find that certain models best address the same issues
in both regions, and that QDE models can substantially outperform the standard ETAS and
all ingredient models. The best performing QDE model is obtained through the combina-
tion of models allowing flexible background seismicity and flexible aftershock productivity,
respectively, where the former parameterizes the spatial distribution of background earth-
quakes and the partitioning of seismicity into background events and aftershocks, and the
latter is used to parameterize the spatio-temporal occurrence of aftershocks.

5.1 Introduction

Earthquake forecasting is one of the defining problems of seismology. To provide useful so-
lutions, forecasting models use a wide range of approaches: Coulomb rate-and-state (CRS)
models (Cocco et al., 2010; Parsons et al., 2012; Mancini et al., 2019) calculate Coulomb
stress changes and couple them with a lab-based constitutive friction law (Dieterich, 1994).
On the other end of the spectrum are statistical models, with the Epidemic-Type Aftershock
Sequence (ETAS) model being the best performing current statistical approach (Cattania
et al., 2018; Taroni et al., 2018). First introduced by Ogata (1988), it models seismicity rate
as the sum of background and aftershock events, where aftershocks are triggered accord-
ing to regional empirical laws. In-between the purely physics-based and purely statistics-
based approaches are models such as the short-term earthquake probability (STEP) model
(M. C. Gerstenberger et al., 2005), the Inlabru model (Bayliss et al., 2020) and hybrid
Coulomb/statistical models (Steacy et al., 2014). The STEP model combines clustering
principles with fault information in a statistical model to produce time-dependent forecasts.
The Inlabru model more generally allows the inclusion of diverse data sets as covariates to is-
sue time-independent seismicity forecasts. A hybrid Coulomb/statistical model redistributes
seismicity forecasted by STEP according to Coulomb stress changes.

While physics-based models aim to describe the processes and mechanisms underlying
seismogenesis, statistical models are generally more empirical and data-driven. Ultimately,
“all models are wrong, but some are useful”, to cite the famous statistician George Box
(1979). Usefulness can be viewed from different perspectives. Different forecasting models
can be useful for gaining new scientific insight, for producing the most accurate forecasts, or
for producing forecasts that are most suited for operational earthquake forecasting (OEF),
given the trade-off between accuracy and computational cost. Cattania et al. (2018) found
in a pseudo-prospective forecasting experiment for the 2010-2012 Canterbury, New Zealand
earthquake sequence that hybrid Coulomb/statistical models have a similar forecasting skill
as CRS models, at a lower computational effort. Mancini et al. (2019) and Mancini et
al. (2020) conducted pseudo-prospective experiments for the 2016 central Italy and the
2019 Ridgecrest, California sequences, comparing CRS models of different complexity with
ETAS forecasts. In both studies, the forecasting skill of CRS models increases with their
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complexity, with the most complex CRS model performing similarly to ETAS. Hardebeck
(2021) investigated possible reasons for the general underperformance of the physics-based
models relative to statistical models and suggested that understanding and incorporating
heterogeneities in background conditions into physical forecasting models may be key to
improving their skill.

Having been tested thoroughly and systematically (Woessner et al., 2011; Ogata et al.,
2013; Strader et al., 2017; Taroni et al., 2018; Nandan, Ouillon, Sornette, and Wiemer,
2019b; Savran et al., 2020), ETAS models meanwhile remain the state-of-the art of earth-
quake forecasting and are being used or considered for OEF at various locations (Marzocchi
et al., 2014; D. Rhoades et al., 2016; Field et al., 2017; Nandan, Kamer, et al., 2021;
Kamer et al., 2021; van der Elst et al., 2022;). Besides using the most basic formulation of
ETAS, modelers also commonly refine the model. For instance, Bach and Hainzl (2012) en-
hanced ETAS with fault information, ShakeMaps, ground motion models, or Coulomb stress
changes. Seif et al. (2017) assessed the biasing effects of data incompleteness and model as-
sumptions on the estimated ETAS parameters. Several techniques have been proposed to
address the effects of short-term aftershock incompleteness (Mizrahi et al., 2021b; Hainzl,
2022; Grimm et al., 2022) or the assumption of isotropic aftershock triggering (Grimm et al.,
2022; Page and van der Elst, 2022). Other studies focus on deriving spatial variations of
ETAS parameters or background seismicity (Nandan et al., 2017; Nandan, Ram, et al., 2021;
Enescu et al., 2009), also relating parameter variations with physical quantities such as heat
flow. Others have refined the standard ETAS model with a relationship between magnitudes
of triggered and triggering earthquakes and a magnitude-dependent Omori kernel and found
the resulting models to possess improved forecasting performance (Nandan, Kamer, et al.,
2021; Nandan, Ouillon, and Sornette, 2019). A recent framework for modeling seismicity
with an invariant Galton–Watson stochastic branching process provides a generalization of
ETAS that is invariant with respect to various common deficiencies of earthquake catalogs
(Kovchegov et al., 2022). However, this framework has not yet been used for forecasting
seismicity.

A related forecasting topic which has recently received attention is ensemble modeling
(D. A. Rhoades and Gerstenberger, 2009; Marzocchi et al., 2012; Taroni et al., 2014; Bird
et al., 2015; Akinci et al., 2018; Llenos and Michael, 2019; Bayona et al., 2021). The idea,
widely used for decades in the meteorological and climate forecasting community (Tracton
and Kalnay, 1993; Leutbecher and Palmer, 2008; Eyring et al., 2016), is to combine different
models in an overarching ensemble model to obtain more robust forecasts. Commonly,
an ensemble is a linear or multiplicative combination of ingredient models (e.g. Bird et
al., 2015), and the challenge is to optimize the weights given to each model. In a recent
study, Bayona et al. (2021) found that the time-independent ensemble models WHEEL and
GREAR1 (Bird et al., 2015) outperform the ingredient models of which they consist. Akinci
et al. (2018) found that their time-independent ensemble model outperforms its ingredients
and performs similarly to the best-performing time-independent model tested in the 2009
CSEP experiment (Zechar et al., 2010; Schorlemmer, Zechar, et al., 2010) for Italy. In the
context of time-dependent models, Taroni et al. (2014) and M. Gerstenberger et al. (2014)
used ensemble approaches, and Llenos and Michael (2019) found that ensembles of ETAS
models perform best for the 2015 San Ramon, California Swarm. Shebalin et al. (2014)
proposed an iterative method to combine forecasting models and found the resulting models
to have advantageous properties compared to the ingredient models or traditional linear
combinations thereof. The emerging consensus across the mentioned studies is that ensemble
modeling is a promising path to use for earthquake forecasting; this is also demonstrated by
the fact that they are currently implemented in Italy’s OEF system (Marzocchi et al., 2014).
Yet, a breakthrough of ensemble models as established in the meteorological forecasting
community is still pending.
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For practical operational forecasting, especially in regions that are less studied due to a
lack of data or resources, a balance must be achieved between model accuracy and simplicity.
With this in mind, we relax some of the assumptions behind ETAS. We allow aftershock
productivity and background seismicity to be described non-parametrically, providing event-
specific productivity and background rates. This aims to better capture the real behavior of
seismicity without making any choices on resolution, parametric form, etc. Using pseudo-
prospective forecasting experiments in Southern California and Italy, we evaluate whether
these flexible ETAS (flETAS) models provide superior forecasts.

We also propose a novel approach for question-driven ensemble (QDE) modeling, funda-
mentally different from traditional ensemble modeling approaches. In the QDE approach,
models are combined in the parameter space as opposed to the solution space. Several
ETAS-like models are fit to the observed data, yielding an individual set of parameters for
each model. A QDE model is then created by defining a new set of parameters based on
a combination of the ingredient model parameters. The rules to combine parameters are
defined by dividing the forecasting problem into several sub-problems. Each sub-problem
addresses a question regarding the number of forecasted events or the spatio-temporal dis-
tribution of either background earthquakes or aftershocks. A QDE model can be viewed as
a model which addresses different questions with different ingredient models. This approach
allows the combination of ETAS variants but can be extended to combining more general
types of seismicity models.

By including such QDE models in the forecasting experiments, we assess their forecasting
capability in comparison with their ingredient models, standard ETAS and flETAS. At the
same time, the QDE approach helps to understand which ingredient models are best suited
to solve different forecasting sub-problems, thus, making it useful from the perspective of
gaining new scientific insight.

The remainder of this paper is structured as follows. We describe flETAS models and the
QDE approach in Section 5.2. The setup for the forecasting experiments, the data analyzed
and the metrics used to evaluate forecasting performance are described in Section 5.3. We
present and discuss our results in Section 5.4 and finally provide our conclusions in Section
5.5.

5.2 Flexible ETAS models

The following sub-sections describe flexible ETAS models and explain the question-driven
ensemble modeling. We begin by explaining the algorithm used to estimate the parameters
of the ETAS model. Then, we describe how to relax some parametric assumptions of the
ETAS model. Finally, we introduce a framework for question-driven ensemble modeling of
flexible ETAS models.

5.2.1 Expectation Maximization algorithm

Consider an earthquake catalog

C = {ei = (mi, ti, xi, yi), i ∈ {1, . . . , n}} (5.1)

consisting of events ei of magnitudes mi which occur at times ti and locations (xi, yi).
The ETAS model describes earthquake rate as

λ(t, x, y|Ht) = µ+
∑
i:ti<t

g(mi, t− ti, x− xi, y − yi). (5.2)

That is, the sum of background rate µ and the rate of all aftershocks of previous events ei.
The aftershock triggering rate g(m,∆t,∆x,∆y) describes the rate of aftershocks triggered
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by an event of magnitude m, at a time delay of ∆t and a spatial distance (∆x,∆y) from
the triggering event. We use here the definition

g(m,∆t,∆x,∆y) =
k0 · ea(m−mref ) · e−∆t/τ(

(∆x2 +∆y2) + d · eγ(m−mref )
)1+ρ · (∆t+ c)1+ω

, (5.3)

as in Nandan, Kamer, et al. (2021) and Mizrahi et al. (2021a).
To calibrate the ETAS model, the nine parameters to be optimized are the background

rate µ and k0, a, c, ω, τ, d, γ, ρ, which parameterize the aftershock triggering rate g(m, t, x, y)
given in Equation (5.3). Implicitly, the model assumes that only earthquakes with magni-
tudes larger than or equal to mref can trigger aftershocks. Most applications of the method
define mref as equal to the constant value of mc.

We build on the expectation maximization (EM) algorithm to estimate the ETAS param-
eters (Veen and Schoenberg, 2008). In this algorithm, the expected number of background

events n̂ and the expected number of directly triggered aftershocks l̂i of each event ei are
estimated in the expectation step (E step), along with the probabilities pij that event ej
was triggered by event ei, and the probability pindj that event ej is independent. Following
the E step, the nine parameters are optimized to maximize the complete data log-likelihood
in the maximization step (M step). E and M steps are repeated until convergence of the
parameters. The usual formulation of the EM algorithm defines

n̂ =
∑
j

pindj , (5.4)

l̂i =
∑
j

pij , (5.5)

and

pij =
gij

µ+
∑

k:tk<tj
gkj

, (5.6)

pindj =
µ

µ+
∑

k:tk<tj
gkj

, (5.7)

with gkj = g(mk, tj − tk, xj − xk, yj − yk) being the aftershock triggering rate of ek at
location and time of event ej . For a given target event ej , Equations (5.6-5.7) define pij
to be proportional to the aftershock occurrence rate gij , and pindj to be proportional to the
background rate µ. As an event must be either independent or triggered by a previous event,
the normalization factor Λj := µ +

∑
k:tk<tj

gkj in the denominator of Equations (5.6-5.7)

stipulates that pindj +
∑

k:tk<tj
pkj = 1.

5.2.2 Introducing flexibility

In the above formulation of the ETAS model, the the rate of background earthquakes is
described by the parameter µ, which does not vary with space nor time. During the max-
imization step of the EM algorithm, µ can be estimated independently from the other
parameters as

µ =
n̂

AR · T
, (5.8)

where AR and T denote the area of the study region and the length of the considered
time window, respectively. In some approaches, the region of interest is divided into several
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sub-regions which can have their own values for µ (Veen and Schoenberg, 2008). An iterative
algorithm to estimate spatial variations of background rate based on maximum likelihood
estimation used a Gaussian kernel smoothing (Zhuang, 2012) to the catalog event locations,
weighted by their estimated independence probability, to obtain an estimate of µ(x, y).
Here, we present a similar approach using expectation maximization, which has been shown
to be more stable with respect to the initial conditions compared to maximum likelihood
approaches (Veen and Schoenberg, 2008). Our approach is similar yet not identical to the
one described by Nandan, Ram, et al. (2021) which uses a regularized inverse power law for
smoothing the locations. We define the background rate at a location (x, y) as

µ(x, y) =
1

T
·
∑
j

pindj · k(∆xj ,∆yj), (5.9)

where k(∆xj ,∆yj) is the Gaussian kernel with bandwidth σ applied to the distance
(∆xj ,∆yj) of event ej to the location (x, y),

k(∆x,∆y) =
1

2πσ2
· exp(− 1

2 · ∆x2+∆y2

σ2 ). (5.10)

The bandwidth σ determines the smoothness of the background event density. In prin-
ciple, σ could be calibrated itself, but we choose to fix it to 5km for simplicity. Our next
modification to the standard ETAS model is to allow flexibility of the aftershock proba-
bility. The number of directly triggered aftershocks l̂j is estimated during the expectation
step of the EM algorithm as described in Equation (5.5). We can thus replace the term

k0 · ea(m−mref ) in Equation (5.3) with κj , where κj is stipulated to be proportional to l̂j .
Instead of parameterizing aftershock productivity to be exponentially increasing with the
magnitude of the triggering event, we allow each event to have its own productivity. This
yields

gjθ,κj
(m,∆t,∆x,∆y) =

κj · e∆t/τ(
(∆x2 +∆y2) + d · eγ(m−mref )

)1+ρ · (∆t+ c)1+ω
(5.11)

for given parameters θ = (c, ω, τ, d, γ, ρ) and κj . The EM algorithm is adapted as follows:

1. Define initial estimates of κj as κj = ea(mj−mref ) with a random guess for a.

2. Define initial estimates of independence probability pindj ≡ 0.1. The inversion result is
not sensitive to this choice.

3. Define random initial guesses for the parameters θ = (c, ω, τ, d, γ, ρ).

4. Expectation Step: Calculate n̂, l̂j , pij , p
ind
j using the current estimates of κj , θ, and

pindj . pij , p
ind
j are calculated using Equations (5.6-5.7), but using the flexible definitions

of gij and µ(x, y) of Equations (5.9) and (5.11).

5. Maximization Step: Optimize the parameters θ to minimize the complete data log
likelihood (see Mizrahi et al. (2021a) for details), given the current estimates of

n̂, l̂j , pij , p
ind
j .

6. Update κnew
j to be κold

j · l̂j
Gj

θ,κold
j

, where Gj
θ,κold

j

is the expected total number of after-

shocks of ej , given θ and κold
j . This ensures that l̂j = Gjθ,κnew

j
. We calculate Gjθ,κj

as
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Gjθ,κj
=

∫∫
R

∫ tend−tj

0

gjθ,κj
(mj , t, x, y) dt dx dy, (5.12)

where tend is the end time of the considered time window, and we assume the spatial
region R to extend infinitely in space, allowing a facilitated, asymptotically unbiased
estimation of ETAS parameters (Schoenberg, 2013).

7. Repeat from 4 until convergence of θ, i.e. until
∑

ai∈θ |anewi − aoldi | < 10−3.

After the inversion, we calibrate an overall productivity law for the flETAS models with
free productivity to avoid over-fitting with event-wise productivity. From the individually
estimated productivities κj of magnitude mj events, we calibrate a law of the form

κ(m) = k0 · ea(m−mref ) (5.13)

by minimizing the sum of absolute residuals between the observed κ̄(m) = 1
n(m)

∑
i:mi=m κi

and the theoretical κ(m) = k0 · ea(m−mref ), where n(m) is the number of events with mag-
nitude m.

Then, productivity is treated the same way as in the case of standard ETAS. In this way,
the variability of productivity is only accounted for during the parameter inversion process
and may lead to more accurate estimators of the productivity as well as the remaining ETAS
parameters.

5.2.3 Question-driven ensemble (QDE) modeling

We propose a novel approach for question-driven ensemble (QDE) modelling, where a fore-
cast is created by combining model parameters of different ingredient models. The rules
for how parameters can be combined are defined by questions which divide the forecasting
problem into several sub-problems: How many background events are expected? Where are
they expected ? When are they expected? How many aftershocks are expected? Where are
they expected? When are they expected?

By answering each of these questions with different ingredient models, we create a suite
of ensembles. The remainder of this section establishes rules to combine parameters based
on the questions.

Consider a collection of ETAS or flETAS ingredient models, (Mi)i=0,...,nM
. As they are

sufficiently defined through their parameters, we can write

Mi = (µi, κi, ci, ωi, τi, di, γi, ρi). (5.14)

In case Mi is a flETAS model, µi = µi(x, y) can vary with space. For simplicity, we
denote with κi the function which assigns to each event its appropriate value to replace the
term κj in Equation (5.11). In our case, this means that we define κi(m) = k0i ·eai(m−mref ),
where k0i and ai are either obtained during parameter inversion directly, or afterwards in
case Mi is a flETAS model with free productivity. We chose the notation of κi instead of
(k0i , ai) to emphasize this possible distinction. We can then generally describe the aftershock
triggering kernel g as

gi(m,∆t,∆x,∆y) =
κi · e∆t/τi(

(∆x2 +∆y2) + di · eγi(m−mref )
)1+ρi · (∆t+ ci)1+ωi

. (5.15)
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Let us now revisit the questions above.

1. How many background events are expected?
More precisely, what we want to ask here is how many background events do we expect
in total in the region R and forecasting horizon [T0, T1] we are issuing a forecast for.
The answer to this question, given out of the perspective of model Mi, is

NBi =

∫∫
R

∫ T1

T0

µi(x, y) dt dx dy. (5.16)

2. Where and when are they expected?
We address for now these two questions jointly. The spatio-temporal density of

background events is given by

fBi
(x, y, t) =

µi(x, y)∫∫
R

∫ T1

T0
µi(x, y) dt dx dy

=
µi(x, y)

NBi

, (5.17)

which is effectively time-independent due to our choice of a time-independent µ(x, y).

3. How many aftershocks are expected?
Again, what we want to ask here is how many aftershocks do we expect in total

in the region R and forecasting horizon [T0, T1] we are issuing a forecast for. For an
individual event ej , we expect it to have nA aftershocks, where

nAi
(ej) =

∫∫
R

∫ T1

T0

gi(mj , t− tj , x− xj , y − yj) dt dx dy. (5.18)

The total number of aftershocks NAi is then given as the sum of aftershocks of all
events

NAi
=

∑
j:tj<T1

nAi
(ej). (5.19)

4. Where and when are they expected?
We again answer these two questions jointly. If we define

Gi(x, y, t) :=
∑

j:tj<T1

gi(mj , t− tj , x− xj , y − yj) (5.20)

as the total rate of aftershocks at time t and location (x, y), consisting of the sum
of aftershock rates of all events that occurred prior to the end T1 of the forecasting
horizon, the spatio-temporal density of aftershocks is given by

fAi
(x, y, t) =

Gi(x, y, t)∫∫
R

∫ T1

T0
Gi(x, y, t) dt dx dy

=
Gi(x, y, t)

NAi

. (5.21)

We now construct a question-driven ensemble (QDE) model Eklm as follows. The num-
ber questions (1) and (3) are answered with model Mk, the background density question
(2) is answered with model Ml, and the aftershock density question (4) is answered with
model Mm. Note that questions (1) and (3) are addressed with the same model. This is
a choice made to avoid unrealistic event numbers. If one model interprets the majority of
events as background, and another model interprets the majority of events to be aftershocks,
answering the two questions with two different models would lead to exceptionally high or
low total event numbers, which is not intended by the two ingredient models.

In the notation above, which identifies a model with its parameters, this would give us
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Eklm = (µl ·
NBk

NBl

, κm · NAk

NAm

, cm, ωm, τm, dm, γm, ρm). (5.22)

5.3 Forecasting experiments

To test whether flETAS models and QDE models which consist of ETAS and flETAS models
provide better forecasts, we conduct pseudo-prospective forecasting experiments for South-
ern California and Italy.

5.3.1 Competing models

In these experiments, we consider the following four competing ingredient models.

• M0: standard ETAS

• M1: flETAS with free productivity and standard background

• M2: flETAS with standard productivity and free background

• M3: flETAS with free productivity and free background

Out of these, 43 = 64 QDE models can be constructed.
Note that M2 is conceptually close to the models described by Zhuang (2012) and Nan-

dan, Ram, et al. (2021).

5.3.2 Evaluation metric

We use interevent time horizons: Whenever an event occurs, a forecast is issued, which is
valid until the occurrence of the next event. A pseudo-prospective model evaluation then
aims to capture how well a forecast issued using data until event ej−1 can describe the
occurrence of the next event ej .

An ETAS forecast always consists of the forecasted background seismicity rate plus the
forecasted aftershock seismicity rate. With this flexible definition of forecasting horizon, our
ETAS forecast can be calculated and evaluated analytically.

Consider λi(t, x, y|Htj−1
), the event rate under model Mi as of time tj−1 of the (j− 1)th

earthquake. This formulation of λi is valid for times t ∈ (tj−1, tj ] between the occurrence of
event ej−1 and event ej , and hence this is the forecasting horizon we consider.

For the traditional experiment settings where one is interested in the seismicity forecast of
the next days, months, or years, such an analytical description of the forecasted seismicity is
not possible. As soon as an event occurs during the forecasting period, its aftershocks are not
part of the background seismicity, nor of the aftershock seismicity that was calculated at the
start of the forecasting period. For this reason, ETAS forecasts for fixed forecasting horizons
are usually produced through the simulation of a large number of possible continuations of
the catalog.

In our case of flexible forecasting horizons, the log likelihood of observing ej under model
Mi is analytically defined (see Ogata et al., 2013; Daley, Vere-Jones, et al., 2003) as

lnLi(ej) = lnλi(tj , xj , tj |Htj−1
)−

∫∫
R

∫ tj

tj−1

λi(tj , xj , tj |Htj−1
) dt dx dy. (5.23)

We then define the information gain IGi1,i2
j of model i1 over model i2 during the jth

forecasting period (tj−1, tj ] as
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IGi1,i2
j = ln

Li1(ej)

Li2(ej)
= lnLi1(ej)− lnLi2(ej). (5.24)

The information gain per event (IGPE) over forecasting periods j1, . . . , jK is defined as

1

K

∑
k=1,...,K

IGi1,i2
jk

, (5.25)

the average of IGs over those testing periods.
Compared to evaluation techniques based on the simulation of large numbers of possible

catalog continuations such as in Nandan, Ouillon, Sornette, andWiemer (2019a) and Mizrahi
et al. (2021a), which are encouraged by CSEP (see Savran et al., 2022), this approach allows
us to compare models much faster, accelerating the development and testing process. To
apply these models operationally, where forecasts are required for a fixed time horizon,
simulations would still be required. This evaluation approach allows us to save time when
developing and selecting the model to be used operationally, and is especially useful for
evaluating a large suite of QDE models.

5.3.3 Data

For Southern California, we consider the ANSS comprehensive earthquake catalog (Com-
Cat), in the polygon given by the vertices in Table D.1. We consider earthquakes of mag-
nitude M ≥ 2.0 from January 1, 2010 until January 1, 2022. The first two years serve as
auxiliary period in the ETAS and flETAS parameter inversion, and thus the start of the
primary catalog is January 1, 2012. This means that the events between January 2010 and
January 2012 can act as triggering events during the inversion, but not as triggered events.
Using the method described by Mizrahi et al. (2021b), we find that the overall catalog is
complete at this threshold, although there are likely periods during which the catalog is
incomplete due to short-term aftershock incompleteness (STAI). Although Mizrahi et al.
(2021a) have proposed a method to account for STAI in the ETAS model, we do not address
this issue here.

For Italy, we consider the Italian Seismological Instrumental and Parametric Data-Base
catalog (ISIDe, Group, 2007), in the area defined for the first CSEP experiment (Schorlem-
mer, Christophersen, et al., 2010, vertices given in Table D.2). We consider earthquakes
of magnitude M ≥ 2.5 from April 16, 2005 until July 1, 2021. This is the time horizon
available to modelers in the upcoming prospective CSEP forecasting experiment in Italy,
and the estimated magnitude of completeness provided in the experiment description. The
start of the primary catalog is January 1, 2010.

5.3.4 Experiment setting

For Southern California, we consider 5 years of testing, with the start of the first forecasting
period at the occurrence of event e0, the first event at or after January 1, 2017. In Italy,
we consider 3 years of testing, starting at the occurrence of the first event at or after
July 1, 2018. The idea of the pseudo-prospective experiments is to only use data that
would have been available at the time the forecast is issued to calibrate the models. One
could thus re-calibrate the model at the start of each forecasting period, whenever one
more event becomes part of the catalog. To limit the number of computationally expensive
parameter inversions for these experiments, we re-estimate the model parameters every 7
days in Southern California, and every day in Italy, and use the latest available set of
parameters at the start time of each forecasting interval. Note that this does not mean that
events between the calibration time and forecasting start are ignored. Their aftershocks are
still considered in the calculated aftershock rate. We chose a shorter parameter updating
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interval for Italy to mimic the conditions of the CSEP experiment, and a longer one for
Southern California to limit computational cost.

We then calculate IGi1,i2
j for all j, and for all pairs of models Mi1 ,Mi2 . If the IGPE

over all forecasting periods of one model to another is positive, we consider the model to
produce superior forecasts.

As one could argue that generating a large number of models and then selecting the best
performing ones somewhat invalidates the pseudo-prospective nature of our experiments,
we consider the following additional model. At the start of the jth forecasting period, the
total information gain of all QDE models during the last n forecasting periods, i.e. periods
j − (n+ 1) to j − 1, is compared. The model with the highest IG is selected to produce the
forecast for the jth forecasting period. We call this model QDE-Sn.

This type of model, if capable of producing a powerful forecast, would be well suited to
be used in an OEF context.

5.4 Results and discussion

The parameters that were obtained using the flETAS inversion algorithm are described in
Section D.2 in the Appendix. Here, we present the results of the forecasting experiments.

5.4.1 Experiment results

Figure 5.1 compares the information gain per earthquake (IGPE) over the standard ETAS
null model (M0 = E000) of all 64 QDE models in Italy and Southern California. The IGPE
varies between -0.64 and 0.45 in Italy, and between -0.13 and 0.12 in Southern California.
The best and worst performing QDE models are E221 and E112, respectively, for both
regions. The best performing model E221 uses the free background model M2 to answer the
number and background density questions, and the free productivity model M1 to answer
the aftershock density question. Vice versa, the worst performing model E112 uses M1

to answer the number and background density questions, and model M2 to answer the
aftershock density question. Generally, the models which perform well or poorly in Italy are
also performing similarly in Southern California.

The symbol shape, fill color, and edge color in the scatter plot of Figure 5.1 represent
the ingredient model used to answer the background density (BG), number (N), and after-
shock density (AS) questions, respectively. Models which perform well tend to answer the
BG question with the free background ingredient model, and the AS question with the free
productivity model. Conversely, models which address the BG question with the free pro-
ductivity model, and those which address the AS question with the free background model,
tend to perform poorly.

This is highlighted in the box plots of Figure 5.1. There, for each question, the distri-
bution of IGPE of the 64 QDE models is given per possible answer. While for the number
questions, no clear trend can be inferred, it is evident that the free background model serves
well at answering the BG question and the free productivity model serves well at answering
the AS question. These trends are qualitatively very similar in Southern California and
Italy.

These results emphasize the added value generated by the flETAS approach, although
most flETAS models individually do not outperform standard ETAS. Apparently, a model
which gives full flexibility to the background rate during parameter inversion is more infor-
mative than others when addressing the background density question. And a model which
is flexible at identifying aftershocks is more informative than others when answering the
aftershock density question. These observations are made for both considered regions.
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Figure 5.1: Scatter plot of IGPE over standard ETAS of the 64 QDE models in Italy and
Southern California. Symbol shape, fill color and edge color describe the composition of the
QDE. Shape, fill color, and edge color represent the ingredient model used to answer the
background density (BG), number (N), and aftershock density (AS) questions, respectively.
Box plots on top (for Southern California) and to the right (for Italy) of the scatter plot: For
N, BG, and AS questions, the four boxes represent the IGPE of four groups of QDE models.
Each group contains the 16 QDE models which use a specific ingredient model (indicated
by box color) to answer the indicated question.

While conceptually it makes sense that a model which can more flexibly capture one
particular aspect of seismicity is particularly successful at answering questions about this
very aspect of seismicity, this is simultaneously a somewhat counter-intuitive result. If
flETAS with free background is more successful than other models at identifying background
events, one would expect it, due to the self-consistent nature of parameter inversion, to also
be more successful at identifying aftershocks, and thus at describing their occurrence times
and locations.

A possible interpretation of the observation that E221, E220, and even E223 can so clearly
outperform E222, is the following. Compared to the null model M0, model M2 = E222 al-
lows the background seismicity to be free and therefore interprets a higher fraction of events
in the training catalog to be background earthquakes, which manifests in a much higher
background rate. M2 can thus explain the spatial distribution of background events well,
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as well as the partitioning of seismicity into background events and aftershocks. Possi-
bly, M2 overestimates the background portion of the training catalog due to “too much
freedom”. The level of overestimation may be small enough so that M2 still captures the
fraction and locations of background earthquakes better than the other ingredient models
do. Overestimation of the background seismicity comes with underestimation of the fraction
of aftershocks in the training catalog. While this underestimation may have a minor biasing
effect on the number of background earthquakes and aftershocks, the spatio-temporal distri-
bution of aftershocks can be affected in a more harmful way. Aftershocks which occur in the
tails of the spatial or temporal distributions have higher chances to be falsely identified as
background events compared to aftershocks which are close to their parent event. This leads
to a distorted characterization of the aftershock triggering behavior of model M2, which can
be fixed by using the triggering parameters from models M0 or M1, as indicated by the good
performance of models E221 and E220.

Another noteworthy observation is that model M3, which in principle has all the flexibility
necessary to encompass the parameterization of model E221, is clearly outperformed by E221.
We interpret this to be a consequence of the fact that the information which is optimized
during model calibration and the information used for forecasting are not the same. This
does not indicate a flaw in the method presented, but rather illustrates a complexity of the
forecasting problem to which the QDE approach offers an apparently useful solution.

Figure 5.2: Top panels show results for Southern California, bottom panels for Italy. (a) and
(d): Cumulative Information Gain (CIG) over time of the ingredient models and the three
QDE models best performing in Southern California, compared to the standard ETAS model
indicated by the black horizontal line. (b-c) and (e-f): Information gain per earthquake
(IGPE) per spatial grid cell of the best performing QDE model (E221, (b) and (e)) and the
worst performing QDE model (E112, (c) and (f)), compared to standard ETAS (M0 = E000).
Grid cell resolution is 0.05 × 0.05 degrees in SoCal, and 0.2 × 0.2 degrees in Italy, chosen for
best visibility. The white rectangle in (b-c) highlights the region of the Ridgecrest sequence
in 2019.

Figure 5.2(a) shows the cumulative information gain (CIG) over the standard ETAS
model over time of the three flETAS ingredient models, and the three best performing QDE
models. The CIG of model i1 over model i2 at time t is given as the sum of IGs of all
forecasting periods ending prior to time t,
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∑
j:tj<t

IGi1,i2
j . (5.26)

In Southern California, the flETAS ingredient models have a negative information gain
following the Ridgecrest events in July 2019, meaning that during this time, the standard
ETAS model (M0) is better performing. The free background model M2 outperforms M0

immediately after the onset of the sequence, and suffers from information loss later during
the sequence. The other two ingredient models do not exhibit the initial information gain.
Among the flETAS models, only M2 can compensate for the information loss during the
course of the 5 years of testing and ends up with a positive overall information gain.

Among the QDE models presented, models E221 and E220 show an initial information
gain after the onset of the Ridgecrest sequence, followed by a period of information loss. In
contrast to the ingredient models, the information loss during the sequence is smaller than
the gain at the beginning of the sequence, such that these models show positive information
gain during the Ridgecrest sequence. The three QDE models in Figure 5.2(a) also show a
rapidly accumulating information gain throughout the testing period, arriving at an overall
IGPE of 0.12, 0.10 and 0.09.

From Figure 5.2(b), it is clear that the IGPE is relatively close to zero in the Ridgecrest
area, and the positive IG during the sequence must come from a few specific locations. In the
rest of Southern California, higher IGPE values are achieved, with a median grid-cell-wise
IGPE of 0.66 for model E221 shown in 5.2(b). Conversely, the median grid-cell-wise IGPE
for the worst performing model E112 shown in 5.2(c) is -0.54. Generally, it performs poorly
where E221 performs well.

In Italy, all flETAS models have negative total information gain over M0. Nevertheless,
two of the top three QDE models which perform best in Southern California are also among
the top three in Italy, with overall IGPE values of 0.45 and 0.44 for E221 and E321. The
second best model of SoCal, E220, ranks sixth in Italy with an IGPE of 0.32. Similar to what
can be observed in Southern California, the regions in Italy in which the best performing
model E221 performs well coincide with the areas in which model E112 shown in Figure
5.2(f) performs poorly. The median grid-cell-wise IGPE of the two models are 0.76 and
-0.82, respectively. Although these grid-cell-wise IGPE values cannot directly be compared
between Italy and Southern California due to the different size of the grid cells, the results
suggest a qualitatively more similar model performance between the two regions than what
is shown by the overall IGPE shown in Figure 5.1. The lower IGPE in SoCal is likely caused
by a relatively small IG during the Ridgecrest sequence when a large fraction of events
occurred.

5.4.2 Pseudo-prospective model selection

Figure 5.3 illustrates the composition and performance of QDE-Sn models. The number
n of past forecasting periods considered when selecting the forecasting model for the next
period is in {1 = 20, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 = 210} for SoCal, and n ∈ {1 =
20, . . . , 512 = 29} for Italy. We do not consider n = 1024 for Italy, as this would reduce
the number of testing periods in which QDE-Sn is defined by more than half compared to
the QDE models. The top, middle, and bottom parts of Figure 5.3(a) and (b) show the
ingredient model used by QDE-Sn to answer the N, BG, and AS questions over time. Within
each part, n increases from top to bottom. As expected, the composition of QDE-Sn is more
stable as n increases, and is almost always defined via E221 for large n, in both regions.

In Southern California, a change in composition can be observed after the onset of the
Ridgecrest sequence in July 2019. Specifically, the number questions are best answered by
standard ETAS, free productivity flETAS, and free productivity and background flETAS, in
this order, before moving back to answering with free background flETAS. The aftershock
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Figure 5.3: Composition and performance of QDE-Sn models. (a) and (b) for Southern
California and Italy: Composition of QDE-Sn, where n takes values of powers of 2. Top,
middle, and bottom part represent the ingredient model used to answer the number (N),
background density (BG), and aftershock density (AS) questions. Within each part, n
increases from top to bottom. Dotted white lines highlight the best performing QDE-Sn.
Solid white and orange line show the cumulative information gain (CIG) of the best QDE-Sn
and best QDE (E221), respectively, for the period in which both are defined. White line
is barely visible for Italy because it coincides with the orange line. Vertical dashed line
indicates the occurrence time of the M6.4 Ridgecrest event on July 04, 2019. (c): IGPE
of different QDE-Sn (black lines), for different values of n. Horizontal orange lines indicate
IGPE of E221 for the period in which the best QDE-Sn is defined. Solid lines represent
Southern California, dashed lines represent Italy.

question intermittently best answered by standard ETAS during the sequence. It is interest-
ing to note here that the performance of E221 and QDE-S64 are almost identical throughout
the 5 years of testing, with the difference that QDE-S64 does not show the information loss
after the initial information gain after the onset of the sequence. This results in an overall
IGPE of 0.13 and 0.12 for QDE-S64 and E221, during the period in which both are defined, as
is shown in Figure 5.3(c). Thus, the QDE-Sn model, which was originally designed to avoid
a biased selection of the winning model after knowing the experiment outcome, is capable
of outperforming the winning QDE model for good choices of n, and clearly outperforms all
ingredient flETAS models for any tested choice of n.

In Italy, the best performing QDE-Sn model is QDE-S128. It is almost always using E221

to issue a forecast for the next period, and thus unsurprisingly achieves the same IGPE.
As in SoCal, all tested choices of n yield a model which clearly outperforms all ingredient
flETAS models. The most simple QDE-Sn model, QDE-S1, which always selects the best
QDE model of the previous forecasting period to issue the next forecast, already achieves a
very high IGPE of 0.28.
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5.5 Conclusions

We describe an adapted ETAS expectation maximization (EM) algorithm which allows a
non-parametric inversion of aftershock productivity and/or background rate. Further, we
introduce a novel approach of question-driven ensemble (QDE) modeling, which combines
ingredient models by using them to answer different forecasting sub-problems. In pseudo-
prospective forecasting experiments for Southern California and Italy, we compare the fore-
casting skill of three flexible ETAS (flETAS) models and a total of 60 nontrivial QDEs of
flETAS and ETAS models, to that of the standard ETAS null model.

We find that the best models tend to use flETAS with free background to model the
number of events and locations of background earthquakes, and flETAS with free produc-
tivity to model the time and location of aftershocks. The best model is the same in both
regions and achieves an information gain per earthquake (IGPE) over standard ETAS of
0.12 in Southern California, and 0.45 in Italy.

To address the possible concern of a biased selection of the winning model after know-
ing the experiment outcome, we also test the forecasting skill of a model which pseudo-
prospectively selects the currently best performing QDE model to issue the forecast for the
next testing period. Depending on the criteria to identify the best QDE model, we find that
the forecasting skill can be greater than that of the overall best QDE model. This approach
thus provides a promising candidate for an operational earthquake forecast.

During the 2019 Ridgecrest sequence in Southern California, different ingredient models
are best suited to model the number of events during different stages of the sequence. The
idea of operationally selecting different QDE models (i.e. selecting different ETAS model
parameters) based on their recent performance is in this case related to the idea of Page et
al. (2016). They considered sequence-specific parameters to be sampled from an underlying
distribution and described a Bayesian approach to update this distribution as aftershock
data becomes available.

Our results can also be viewed as a first step toward developing a potentially fruitful
branch of earthquake forecasting research. Several key questions remain open and are to
be addressed in future studies: Why do QDE models outperform ingredient models which
were inverted in a self-consistent way? What drives the success of different QDE models
during different phases of the Ridgecrest sequence? How does QDE performance increase
when further ingredient models are considered? And what does all of this teach us about the
dynamics of seismicity?

5.6 Data and resources

The Advanced National Seismic System (ANSS) Comprehensive Earthquake Catalog (Com-
Cat) provided by the U.S. Geological Survey (USGS) was searched using https://earthquake.
usgs.gov/data/comcat/ (last accessed January 2022). The Italian Seismological Instrumen-
tal and Parametric Data-Base (ISIDe) was used as provided by the organizers of the upcom-
ing CSEP experiment in Italy, and can be accessed via http://terremoti.ingv.it/en/search.
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Chapter 6

Conclusions and Outlook

Human beings are frightened yet fascinated by earthquakes, and likely have been so ever
since the first person experienced the immense forces which cause the usually immobile
ground to shake. Pliny the Younger (∼ 100 AD) in his letters to Tacitus described the
tragic events of the eruption of Mount Vesuvius in the year 79 AD, famously known for
causing the burial of the ancient city of Pompeii beneath several meters of volcanic ash.
Almost 2000 years ago, Pliniy and his mother left their house to protect themselves from
collapsing buildings as they were woken up by strong earthquakes which accompanied the
eruption. Today, they would still be advised to do exactly that.

One might wonder how thousands of years of human curiosity have hardly been able to
produce any progress regarding the protective measures taken in case of earthquakes. One
might wonder why the progress made towards accurate earthquake forecasting is so limited,
and whether it is worth the effort to continue studying this topic.

This is not to say that the study of earthquakes in general is only justified through its
potential to contribute to the advancement of earthquake prediction. We can use information
from recorded earthquakes to better understand the structures beneath us (e.g. Lanza et
al., 2022), which in itself is valuable for its ability to satisfy our curious minds. Seismic
imaging techniques are used to identify attractive sites to be used for geothermal energy
production (Sánchez-Pastor et al., 2021). In light of the urgent need to move to renewable
energy sources in the hope to limit the effects of climate change, such developments are of
undeniable importance for our society. With the increasing amounts of available high-quality
data, individual faults and earthquake sequences can nowadays be studied in staggering
detail (Ross et al., 2019), possibly revealing previously unknown physical mechanisms which
lead up to or follow major events. In comparison, the development of forecasting models
which inform us whether the probability of a magnitude 5.0 earthquake in Switzerland in
the next 7 days is 1.31% or 0.06% (see Table 4.3) may seem unimportant.

However, the past has shown that experts’ assessment of the seismic hazard during an
ongoing sequence does influence people’s behavior, which can subsequently cause or prevent
casualties (Cartlidge, 2016). It is for this reason that I believe that every quantitatively
demonstrated improvement of a forecasting model, as minor as it may be, is valuable in the
grand scheme of things.

In this thesis, I contributed to the advancement of the field of earthquake forecasting
from several different perspectives. Chapter 2 focuses on analyzing existing methods for
time-independent forecasting and identifies weaknesses therein. Chapter 3 addresses data
incompleteness issues in short- and long-term time horizons and proposes improved meth-
ods for time-dependent earthquake forecasting. Chapter 4 takes earthquake forecasting in
Switzerland to the next level through the development, testing, and finally the recommen-
dation of the ideal candidate model for a first Swiss OEF system. Chapter 5 describes a
novel approach to combine existing models into new ones, facilitating the search for better
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Figure 6.1: Schematic overview of forecasting horizons and regions covered in this thesis.
Icons with numbers indicate the associated chapter.

earthquake forecasting models in the future.
The different modes of investigation in Chapters 2 - 5 are on one hand a testimony of

my personal development from an outside observer to an active contributor to earthquake
forecasting tools. They are on the other hand a reminder of the variety of directions in
which this field can be advanced.

In this final chapter, I will revisit and summarize the results and conclusions of all pre-
ceding chapters, and finally give an outlook on the future of earthquake forecasting based
on the findings in this thesis.

Biased b-values of declustered catalogs

In Chapter 2, it is found that declustering introduces a systematic bias to the size distribution
of mainshocks. Depending on the declustering method and hyperparameters used, the b-
value can be reduced by up to 30%. The findings of this chapter show that this reduction
is, at least partially, an artifact of declustering, rather than an underlying property of
mainshocks which is revealed by declustering.

It is common practice in PSHA to estimate seismic hazard based on declustered catalogs.
The results of Chapter 2 suggest this to be a problematic approach for several reasons.

• There is a lack of an objective criterion based on which the declustering method is
selected, but the selection has a significant influence on the resulting hazard.

• Neglecting aftershocks leads to significant underestimation of the seismic hazard, as
brought up by Marzocchi and Taroni (2014).

• Imposing a Gutenberg-Richter distribution on the magnitudes of a declustered catalog
leads to overestimation of the seismic hazard above a certain magnitude.

Conclusion 1. A re-thinking of the way in which PSHA is done needs to take place. While
it is inevitable and crucial to analyze earthquake-earthquake interactions to understand the
nature of long-term and short-term seismicity in a region, ignoring aftershocks that were
identified with an arbitrarily selected method is not recommended.

ETAS models: a versatile approach to earthquake foreccasting

One of the final considerations of Chapter 2 is that using ETAS models in the time-
independent context may be the solution to the demonstrated issues of the current approach
to PSHA. ETAS models are well suited to distinguish background and triggered seismicity,
and to model long-term seismicity which includes the highly hazardous aftershock sequences.
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However, there are more advantages to ETAS models than their independence of the
process of declustering for time-independent hazard studies. At the core of ETAS models
lies their ability to model the time-dependent behavior of seismicity at any short- or medium-
term time scale of interest. Throughout this thesis, they play a fundamental role in modeling
seismicity, and Figure 6.1 illustrates the diversity of forecasting horizons and regions that
are addressed using ETAS models in the different chapters of the thesis.

While Chapter 2 discusses time-independent earthquake forecasting, in Chapters 3 - 5,
ETAS models are used with time-dependent forecasting horizons ranging from inter-event
time-scale to long-term horizons of 30-50 years. This highlights the universal applicability
of these models for a broad spectrum of forecasting horizons.

Chapter 4 in particular showcases the applicability of ETAS models for both OEF and
PSHA on the example of Switzerland. Several variants of a basic ETAS model are tested in
pseudo-prospective one-week forecasting experiments and in 30- and 50-year retrospective
consistency tests, whereupon the purely ETAS-based models are recommended as ideal
candidates for the first Swiss OEF system.

Conclusion 2. The same simple ETAS models are shown to be useful in one-week and 50-
year forecasting horizons. This emphasizes their applicability at both ends of the spectrum
of forecasting horizons, bringing the realms of PSHA and OEF closer together through a
consistent approach.

The importance of using locally calibrated ETAS parameters

In this thesis, models and ideas are tested for (Southern) California, Switzerland, and Italy.
The versatility of ETAS models extends not only to the temporal, but also the spatial do-
main; methods developed and tested using data of one region are often also useful elsewhere.
In Chapter 5, we demonstrate this by applying the same models to Southern California and
Italy and finding striking similarities between the results in the two regions. In Chapter 4,
a method developed in Chapter 3 for California is applied in Switzerland without modifi-
cation, and the resulting forecasting model ends up being recommended for the first Swiss
OEF system.

On the other hand, the ETAS variant which uses generic parameters inverted for Cali-
fornia performs poorly in Switzerland.

Conclusion 3. While ETAS models are generally not bound to a particular region, using
locally calibrated parameters is essential when issuing forecasts. This highlights the value
of parameter inversion techniques which can be applied in the case of limited available data.

The role of small events in triggering large ones

One of the methods developed in Chapter 3 allows the estimation of ETAS parameters when
the completeness of the catalog varies with space and/or time. This can be particularly
useful in regions where data is relatively sparse and the amount of data usable for inversion
greatly increases when such mc-variations are accounted for. This approach was, as a result
of the study in Chapter 4, suggested to be one of the candidates for the first time-dependent
earthquake forecast of Switzerland.

The second approach introduced in Chapter 3 jointly estimates ETAS parameters and
high-frequency detection incompleteness at each point in time. Both methods are shown to
be able to accurately invert the data-generating parameters in synthetic tests. The second
approach is then further used to test the forecasting power of small earthquakes in a pseudo-
prospective forecasting experiment for California. The results thereof suggest that:

• Information about small earthquakes clearly improves forecasts of similarly-sized events.
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• This improvement is mainly achieved through the simulation of aftershocks of small
events.

• To observe the improvement, it is necessary to account for incompleteness when sim-
ulating.

• Information about small earthquakes does not significantly affect the performance of
forecasts targeting larger magnitude events.

Previous results of Nichols and Schoenberg (2014), Spassiani and Sebastiani (2016),
Nandan et al. (2019) and Nandan et al. (2021) offer a possible interpretation of these findings;
a tendency of earthquakes to trigger similarly sized aftershocks.

The results of this chapter provide useful new insights that can point in the right direction,
or one of the potentially many right directions, on the way to better earthquake forecasting.
If earthquakes tend to trigger similarly sized aftershocks, forecasts are expected to improve
when this property is captured by the models. On the other hand, it implies that ETAS-
like modeling of small events’ aftershocks will not make large events substantially more
predictable, and other patterns in the occurrence of earthquakes need to be found.

Conclusion 4. Further research is required to investigate if and how the dependency of af-
tershock magnitudes on the magnitude of their parent event can be beneficially incorporated
into existing models.

QDE modeling as a tool for the future

In Chapter 5, a novel approach to construct question-driven ensembles of ETAS models
is described, along with flexible ETAS models which, during parameter inversion, use a
nonparametric definition of background seismicity and aftershock productivity. While these
flETAS models individually do not show significantly improved forecasting performance
compared to the standard ETAS variant, the study shows that QDEs of flETAS models can
clearly outperform their ingredient models.

A QDE model can be viewed as a model which answers questions about the number of
expected earthquakes, the spatio-temporal distribution of background events, and the spatio-
temporal distribution of aftershocks with different ingredient models. Testing all possible
QDE combinations of the ingredients provides information about which ingredient models
are suited to answer which questions well. This can help to shed light on the strengths and
limitations of the ingredient models. The result that the same QDEs are best performing
in Italy and Southern California implies the ability of this approach to reveal previously
unknown but universally valid properties of seismicity.

Conclusion 5. Using the best available ETAS model as a benchmark, the QDE approach
can help modelers to find seismicity patterns that go beyond what is currently incorporated
in ETAS.

Outlook

While this thesis is a contribution to the advancement of earthquake forecasting, we are as
a community still far from deterministically predicting the exact time and location of the
next devastating earthquake. It is unknown today whether that will ever be possible and
how predictable earthquakes will ever be. But what is clear is that probabilistic earthquake
forecasting capabilities can still be improved. And based on them, relatively low-cost risk
mitigation measures can be taken.
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Figure 6.2: Screenshot of the preliminary Earthquake Dashboard by the Winton Centre for
Risk & Evidence Communication, University of Cambridge, UK (last accessed on 27 July,
2022).

operationalize The most straightforward next steps to take based on the results of this
thesis are to operationalize the forecasting model for Switzerland which is proposed in Chap-
ter 4. Due to the general nature in which the models in Chapter 4 are described and
developed, an analogous model can be developed and tested for Europe with few minor
adaptations. Its operationalization and the establishment of rule-based response measures
will positively influence the resilience of an even wider and partially more vulnerable society.

communicate Additionally, a cost-benefit analysis of possible measures taken as a re-
sponse to a temporally elevated earthquake probability, as it is envisioned by Böse et al.
(2022) in the context of earthquake early warning, enables a direct impact of our research
on society. One possible measure is the communication of time-dependent earthquake prob-
abilities to the public. For this measure to achieve the highest benefit, it is crucial to study
how information is best communicated. Dallo et al. (2020) investigated how earthquake
information is best integrated into multi-hazard platforms. Besides behavioral recommen-
dations for the public, such platforms could in the future contain information about the
time-dependent earthquake probability, provided that it is presented adequately. Figure
6.2 shows a screenshot of the preliminary Earthquake Dashboard which is being developed
at the Winton Centre for Risk & Evidence Communication, University of Cambridge, UK.
Currently fed with dummy data, it shows earthquake probabilities for the next seven days
in the city of Zurich, compared to the probability in the same area during an average week.
The user can also view the local earthquake history and compare local probabilities with
the rest of the world.

refine The models presented in Chapter 4 are relatively basic versions of the ETAS model.
Chapters 3 and 5 provide recipes for improved time-dependent earthquake forecasting mod-
els. The natural next steps after making a first earthquake forecast operational in Switzer-
land and Europe would thus be to address short-term aftershock incompleteness by cali-
brating and testing the PETAI model of Chapter 3, which is expected to produce superior
forecasts. Furthermore, flETAS models and question-driven ensemble (QDE) models pro-
posed in Chapter 5 shall be considered to be applied operationally.

advance Besides putting the models and findings of this thesis into action in Switzerland,
Europe, and possibly elsewhere, the field of earthquake forecasting needs to develop further.
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The QDE modeling approach provides a powerful tool to use in this regard. The more
ingredient models that are being tested, the higher are the chances of obtaining better
forecasts, while simultaneously the strengths and weaknesses of the individual models can
be better understood.

To be able to combine models using the QDE approach, or any other approach, a crucial
requirement is the development of new ingredient models. The more heterogeneous the pool
of forecasting models becomes, and the more these models are tested and compared, the
more will be learned from those tests and comparisons. The results of this thesis can offer
guidance in the search of the best possible earthquake forecasting model.

Two key goals should be aimed for:

• Improve the forecasted earthquake magnitude. As societies’ main interest lies in cor-
rectly forecasting large earthquakes, constraining the magnitudes of forecasted events
beyond a simple Gutenberg-Richter law is strongly recommended. The results of Chap-
ter 3 are in line with results of previous studies which found that earthquakes tend to
preferentially trigger similarly sized aftershocks (Nichols and Schoenberg, 2014; Spas-
siani and Sebastiani, 2016; Nandan et al., 2019; Nandan et al., 2022). Shcherbakov
et al. (2019) proposed a Bayesian method to forecast the magnitude of the largest
expected earthquake. Gulia and Wiemer (2019) used temporal b-value variations to
determine whether a subsequent larger event is to be expected. In a next step, such
ideas should be tested (pseudo-)prospectively and their value for forecasting should
be evaluated compared to current state-of-the-art models. Additionally, other ways to
address the question of magnitude forecasting can and should be examined. In this
way, robust and reliable methodologies which improve current forecasting models can
be established.

• Improve the modeled background seismicity. At this point, the main focus of ETAS
models lies on accurately modeling aftershock triggering behavior, while background
seismicity can roughly be described as the part of seismicity which can’t be explained
otherwise. In reality, all earthquakes are triggered by underlying physical processes.
Ideally, forecasting models should minimize the ‘unexplained’ part of seismicity. Phys-
ical covariates such as strain rates or fault proximity have been found to be useful in
time-independent forecasting (Bayliss et al., 2020). A self-consistent ETAS parameter
inversion which includes such additional data for modeling background seismicity is
thus a natural next step to take to increase the explained portion of seismicity. Tem-
poral trends in the background rate, for example caused by earthquake swarms, should
also be examined and incorporated into current models. Ideas for such models exist
and have been proposed (Llenos and Michael, 2019). A key step is to systematically
test and evaluate them to establish the next generation of forecasting models.

In summary, the recommendation is to focus on the aspects that are not yet explicitly
modeled by ETAS, but are of great importance for society: To forecast earthquake magni-
tudes more precisely, and to model the first event of potentially intense aftershock cascades
more precisely.

share This thesis does not solve the ancient problem of earthquake prediction. Instead, it
contributes a few bricks to a wall that protects our society from earthquake hazard. Maybe
earthquakes will never be substantially more predictable than they are today. Maybe we
are just one brick away from a breakthrough.

Whichever is the case: A forecasting model can only be improved or used as a benchmark
by those who can access it. I therefore believe that it is our duty as earthquake forecasting
modelers to make our codes freely available to everyone (see Appendix E) and foster inter-
disciplinary, inter-institutional and inter-national collaboration.
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Appendix A

Supporting Information for
Chapter 2

Description of the Supporting Information

This document contains a detailed description of the methodology, including the formula
used for b-value estimation and the algorithm for joint estimation of b-value and completeness
magnitude, the description of all declustering methods and parameter ranges applied, as well
as a description of the ETAS model, parameter inversion, and catalog simulation algorithm
applied. Finally, we analyze the sensitivity on the completeness magnitude mc of the full
catalog and mainshock b-value, and sensitivity on magnitude binning of the full catalog
b-value.

A.1 b-value estimation

According to the Gutenberg-Richter law (Gutenberg and Richter, 1944), frequency-magnitude
distribution can be described as

N(m) = N0 · e−β·m = 10a · 10−b·m, (A.1)

where N(m) is the number of earthquakes of magnitude M ≥ m, N0 is the total number
of earthquakes above magnitude M = 0. a and b will subsequently be called ‘a-value’ and
‘b-value’, respectively. Note that β = ln(10) · b.

β is estimated using the formula proposed in Tinti and Mulargia (1987) for binned
magnitude values (in contrast to continuous values). It reads

β̂ =
1

∆M
· ln(p), (A.2)

where

p = 1 +
∆M

µ̂−mc
. (A.3)

mc is the completeness magnitude, µ̂ is the mean observed magnitude and ∆M is the bin
size in which earthquake magnitudes are given, in our case 0.2.
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A.2 Completeness magnitude

Estimating the b-value of a catalog requires knowledge of its completeness magnitude mc,
the magnitude threshold above which all events are assumed to be detected. Assuming too
low values for mc can cause severe underestimation of the b-value (see Figure A.2). On the
other hand, assuming overly conservative values for mc leads one to discard a large portion
of the data, making b-value estimates imprecise. In reality, mc is not known and has to
be estimated itself. Commonly, mc is estimated by defining it as the magnitude threshold
above which earthquakes follow the GR law (Mignan and Woessner, 2012). In this sense, the
estimation of b-value and mc becomes a coupled problem; one cannot be estimated without
knowledge of the other. In the following section, we adapt the method proposed by Clauset
et al. (2009) to jointly estimate mc and b-value.

For the estimation of completeness magnitude, we use all events above magnitude 0.0 in
the primary time period, in the same collection area and using the same binning as described
in Section 2.2 of the paper. For simplicity, mc is chosen to be constant in time and space,
with the knowledge that this assumption does not generally hold. Short-term aftershock
incompleteness after large events and modifications to the seismic network or analysis pro-
cedures will increase (and decrease) the completeness magnitude (Woessner and Wiemer,
2005; Schorlemmer et al., 2010). We test a range of possible completeness magnitudes mi

c

between 2.0 and 6.0. For each choice of mi
c, the b-value bi is calculated for the events above

mi
c, using the formula proposed by Tinti and Mulargia, 1987, (see Section A.1). This yields

a discretized GR law and its corresponding cumulative distribution function (CDF). Simul-
taneously, the observed cumulative distribution function of events above mi

c is computed.
Observed and theoretical CDF are then compared to each other using the Kolmogorov-
Smirnov (KS) distance. We then estimate p-values pi: the probability of observing a KS
distance of Dmi

c
or higher, under the assumption that the observed magnitudes were drawn

from a discretized GR law with a b-value of bi. This is done by generating 10,000 random
samples of the size of the original sample. For each such sample, we compute the KS dis-
tance of observed CDF to the theoretical CDF they were drawn from. The p-value pi is
then calculated as the fraction of KS distances that are larger than Dmi

c
. Finally, we accept

the completeness magnitude mi
c if pi ≥ 0.05, and set the according b-value estimator to bi.

Note that this selection of mi
c based on pi is unlike Clauset’s method, where mi

c is chosen
such that the KS distance Dmi

c
is minimized.

Since the KS distance highly depends on sample size and can hence fluctuates strongly with
mi

c, this approach is more robust than simply minimizing the KS distance. After applying
the described algorithm to our incomplete primary catalog, we choosemc = 3.6 with b ≡ 1.01
and p ≡ 0.09. Figure A.2 illustrates the test for five cases ofmi

c. In Figure A.2(a), theoretical
and observed CDFs are depicted as dotted black and red lines, respectively. Light grey and
dark grey areas (barely visible for small mi

c) mark the 5th to 95th, and 25th to 75th percentile
of 10,000 randomly sampled CDFs. In Figure A.2(c), the histograms of KS distances of
10,000 randomly sampled CDFs are shown for the same five mi

c. Red vertical lines mark
Dmi

c
values. In Figure A.2(b), the evolution of the p-value is shown for all mi

c participating

in the test, while Figure A.2(d) shows the corresponding b-values bi. Note that mi
c = 3.0

is the lowest value to pass the test. However, because completeness is strictly required for
b-value calculation, we choose the more conservative value of 3.6, as it is the smallest mi

c

whose p-value is not deceeded by p-values of later mi
c.
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A.3 Detailed description of declustering methods

For Reasenberg and Zaliapin’s declustering methods as well as window methods, we use
the python codes developed for the 2020 update of the European Seismic Hazard Model
(ESHM20, Danciu et al., 2021) available as an open-source contribution to the seismic
hazard modeler’s toolkit of OpenQuake (Weatherill et al., 2014; Pagani et al., 2014). The
implementation of the ETAS declustering algorithm is described separately.

Cluster detection is applied to the full time period including 10 years of auxiliary data,
but only those mainshocks that fall into the primary time period are considered for further
analysis such as b-value estimation. This ensures that aftershocks of events happening before
the start of the primary time period are not mistakenly identified as mainshocks. With the
exception of ETAS-Background, all methods define a mainshock to be the largest event of
a cluster detected by the method. The set of all mainshocks, including events that form a
cluster of size 1, make up the declustered catalog.

Reasenberg

Reasenberg (1985) introduced an algorithm that has been used in numerous studies, e.g. in
Ecuador (Beauval et al., 2013) or Afghanistan (Waseem et al., 2019). It defines earthquake
interaction zones in space and time. Clusters are built by linking dependent events as follows.
If an event lies in the interaction zone of another, the two events are linked. Linked events
build a cluster. If an event is linked to an event belonging to a cluster, it is added to the
cluster. If two events belonging to different clusters are linked, the two clusters are merged
to form one cluster.

Spatial interaction zones are defined around the current as well as the largest event of an
ongoing sequence. Their boundaries depend on magnitude, and on the interaction formula
that is being used. The two interaction formulae applied here are

fR1985
(m) = 0.011 · 100.4m, (A.4)

fW&C1994
(m) = 0.01 · 100.5m, (A.5)

where fR1985
and fW&C1994

are relationships proposed by Reasenberg (1985), and an updated
version using the scaling relationships by Wells and Coppersmith, 1994, respectively.

Temporal interaction zones are defined based on a probabilistic Omori law approach.
The look-ahead time, within which events are being linked, is calculated such that the
probability of detecting the next event in the cluster is equal to the parameter p, assuming
a lower cut-off magnitude, xmeff , an increase of the lower cut-off magnitude during clusters
to xmeff + xk ·M , where M is the magnitude of the largest event of the current sequence.
rfact represents the number of crack radii around each earthquake within which new events
of the cluster are considered (van Stiphout et al., 2012). τmin and τmax are the minimum
and maximum allowed look-ahead time.

Table A.1 shows the parameter ranges applied in this study, with standard parameters
in bold characters. The ranges and standard settings are adopted from Schorlemmer and
Gerstenberger (2007). xmeff is set to be the completeness magnitude mc.
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Window methods

Window methods, as first described by Gardner and Knopoff (1974), are widely used in
regional and national seismic hazard models, see Drouet et al. (2020) for France, Akinci
et al. (2018) for Italy, Sesetyan et al. (2018) for Turkey, Field et al. (2014) for California
(UCERF3), Woessner et al. (2015) for Europe (ESHM13). They define space time windows
depending on mainshock magnitude and denote events within the window of a large event
as fore- or aftershocks of said mainshock. In contrast to Reasenberg’s method, higher level
aftershocks are not considered. Furthermore, large events become mainshocks by definition.

Spatial windows are circular around epicenters and vary with magnitude. Temporal win-
dows for foreshocks are per default identical to their corresponding aftershock time window
but can be proportionally shortened or extended by multiplication with a factor pτforeshock

.
Furthermore, there is the possibility to cap time window length at a maximum number of
days τmax. A variety of formulae for the definition of space time window boundaries has
been proposed. In our analysis, we use the following three variants.

1. Gardner-Knopoff Window (Gardner and Knopoff, 1974)

∆s(m) = 100.1238m+0.983 [km] (A.6)

∆t(m) =

{
100.5409m−0.547, if m < 6.5

100.032m+0.983, if m ≥ 6.5
[days] (A.7)

2. Gruenthal window (Gruenthal, 1985; see van Stiphout et al., 2012)

∆s(m) = e1.77+
√
0.037+1.02m [km] (A.8)

∆t(m) =

{∣∣∣e−3.95+
√
0.62+17.32m

∣∣∣ , if m < 6.5

102.8+0.024m, if m ≥ 6.5
[days] (A.9)

3. Uhrhammer window (Uhrhammer, 1986)

∆s(m) = e−1.024+0.804m [km] (A.10)

∆t(m) = e−2.87+1.235m [days] (A.11)

Table A.2 shows the parameter ranges applied in this study, with standard window and
parameters in bold characters.

Zaliapin

An alternative approach to declustering was proposed in Zaliapin et al. (2008). Space time
distances between pairs of events are calculated as

ηij =

{
(tij)

θ · (rij)d · 10−bmi , if tij > 0

∞, if tij ≤ 0
, (A.12)

where tij = ti − tj is the time difference between event i and event j, rij is the spatial
distance between their epicenters, and mi is the magnitude of the earlier event. d is the
fractal dimension of epicenters, θ is an exponent used to weight temporal distance relative
to spatial distance, and b is the b-value of the Gutenberg Richter law.



Appendix A. Supporting Information for
Chapter 2 125

For each event, its nearest neighbor with respect to this distance measure can be identified.
Using a Gaussian mixture model, nearest-neighbor space time distances between events are
then classified into two categories. Smaller distances are interpreted as distances between
dependent events, and larger distances represent distances between independent events. The
Gaussian mixture model yields two pairs of mean and standard deviation of distances; one for
dependent events, and one for independent events. Nearest neighbor distances are classified
as dependent event distances, if their likelihood under the dependent normal distribution
is larger than under the independent normal distribution. Earthquake clusters are then
defined as tree-like structures of dependent nearest-neighbors.

Table A.3 shows the parameter ranges applied in this study, with standard parameters in
bold characters. These ranges were chosen based on recommendations given in the paper
introducing the algorithm.

The other two declustering methods are quasi a side product of the ETAS inversion and
are therefore described separately.

A.4 ETAS model

A basic epidemic-type aftershock sequence (ETAS, Ogata, 1998) model is used here in two
ways. Firstly, it is used to simulate synthetic earthquake catalogs upon which decluster-
ing methods are applied to study their effects. Secondly, ETAS provides an alternative,
parametric approach to declustering, which was introduced by Zhuang et al. (2002).

Remark: Note here the important distinction between independent events in the ETAS
sense, and mainshocks in the declustering sense.

In ETAS, one distinguishes triggered events and events that are not triggered, so-called
independent events. Strictly speaking, all earthquakes are triggered by some underlying
physical processes. What we mean by “not triggered” in this context is that the event is
unlikely to be triggered by another earthquake that was observed in the catalog. This can
be because the triggering earthquake was too weak to be detected, or that other physical
processes that are not captured in the model were its cause.

Independent events and their aftershocks are modelled as a marked self-exciting point-
process as follows. While independent events are assumed to be uniformly distributed in
time and space, the aftershock triggering process is modelled to follow three fundamental
principles derived from empirical laws.

1. The Utsu aftershock productivity law (Utsu, 1970) describes the number of aftershocks
of an event given its magnitude. It describes the aftershock productivity pAS of an
event to be exponentially increasing with the magnitude m of the triggering event.

pAS(m) = K · ea(m−mc). (A.13)

2. Aftershock occurrence time is modelled by an exponentially tapered Omori kernel, i.e.
aftershock occurrence rate after waiting time t is proportional to

qAS(t) =
e−t/τ

(t+ c)1+ω
. (A.14)
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The non-tapered Omori law only allows for exponents larger than 1 in the above
denominator, which seems to be an unreasonably strict mathematical condition. This
can be bypassed by using the tapered Omori law.

3. Aftershock location is assumed to be distributed isotropically around the epicenter
of the triggering event and aftershock occurrence rate rAS decreases with distance as
follows.

rAS(x, y) =
1(

(x2 + y2) + d · eγ(m−mc)
)1+ρ , (A.15)

where x and y are spatial distances in x- and y-direction between two events. The
assumption of isotropy is a simplification which is known to be wrong in reality, as
aftershocks tend to occur along fault systems rather than in circles around their trig-
gering events.

In summary, the aftershock triggering rate g(m) is defined as

g(t, x, y,m) =
k0 · ea(m−mc)

(t+c)1+ω

e−t/τ ·
(
(x2 + y2) + d · eγ(m−mc)

)1+ρ , (A.16)

where m is the magnitude of the triggering event, and
√
x2 + y2 and t are the spatial and

temporal distance between triggering and triggered event, respectively. k0, a, c, ω, τ, d, γ and
ρ are constants. Nandan et al. (2019b) show that models allowing these parameters to vary
in space, as proposed in Nandan et al. (2017), significantly outperform the forecasting ability
of models where they are spatially homogeneous. However, they also show that spatially ho-
mogeneous ETAS outperforms three declustering based smoothed seismicity models (SSMs),
a simple SSM based on undeclustered data and a model based on strain rate data. For our
purpose, spatially homogeneous ETAS is an adequate choice, as our main focus lies on the
overall distribution of magnitudes, and not on spatial variations in seismicity. For analogous
reasons, possible temporal variability of ETAS parameters is neglected in this analysis.

Furthermore, the constant µ represents the (spatially and temporally) uniform background
intensity. The occurrence rate of earthquakes at a given time t and place (x, y) is then
described as

λ(x, y, t) = µ+
∑
i:ti<t

g(t− ti, x− xi, y − yi,mi), (A.17)

where ti,mi, (xi, yi) are time, magnitude, and location of the ith event. Essentially, the
occurrence rate λ at a location (x, y) at time t is the sum of the independent earthquake
rate and aftershock rates of all events preceding time t.

A.4.1 ETAS inversion

In order to obtain reasonable estimates for the above-mentioned ETAS parameters, one
needs to solve an inversion problem: which set of parameters best describes the observed
catalog? In this analysis, we use a so-called Expectation Maximization (EM) algorithm,
as proposed by Veen and Schoenberg (2008). They find that, compared to commonly used
maximum likelihood estimation, using EM for the inversion of ETAS parameters has sub-
stantial advantages in terms of convergence, bias, and robustness to the choice of starting
values.
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Starting with a set of randomly chosen initial parameters, we repeatedly undergo the
expectation step E and the maximization step M, until a convergence criterion is met.

In the expectation step, probabilities pij of each event ej to be triggered by each other
event ei are calculated, given the current parameter estimates. Earthquakes in the auxiliary
catalog can only serve as triggering events, not as triggered events, while events of the
primary catalog can assume both roles. For any given target event, triggering probabilities
are proportional to aftershock occurrence rates gij . The probability of each event ej to be an
independent event (independence probability, pindj ) is proportional to the background rate.
The normalization factor is chosen such that all triggering probabilities and the independence
probability sum up to 1.

pij =
gij

µ+
∑

k:tk<tj
gkj

, (A.18)

pindj =
µ

µ+
∑

k:tk<tj
gkj

. (A.19)

This choice of normalization factor relies on the implicit assumption that all potential trigger-
ing events are captured in the catalog. For this reason, it is essential to ensure completeness
of the primary catalog. Events in the auxiliary catalog serve as potential triggering events,
in particular of earthquakes at the beginning of the primary time period. They may not take
the role of triggered events, and hence independence probabilities can only be defined for
primary events. Completeness of the auxiliary catalog is beneficial, but not strictly required.

The sum of independence probabilities of events in the primary catalog yields the expected
number of independent events, nind. Similarly, summing up the triggering probabilities of
each triggering event, one obtains its expected number of aftershocks.

In the maximization step, the parameters are optimized to maximize the log likelihood of
the observed data, assuming the expected number of independent events and the expected
number of aftershocks of each event resulting from the preceding expectation step.

We stop the algorithm as soon as the cumulative absolute difference between parameters
of two consecutive maximization steps falls below a threshold of 10−3. Table 2.1 shows the
set of parameters obtained.

A.4.2 ETAS simulation

For the simulation of synthetic catalogs, we start by generating independent events. The
number of independent events is drawn from a Poisson distribution. Its mean is calculated
as the expected number of independent events for the region and time period in question.
(Here, the parameter µ is used.) Time and location of each independent event are then drawn
from uniform distributions. Especially for event location this is a massive generalization of
reality. For the purpose of this analysis however, such a generalization will likely have a
minor effect on the results. Clusters are detected depending on distances in-between events.
If event locations are more evenly distributed, clusters might more easily be detected. The
effect of declustering could therefore be more pronounced in synthetic catalogs compared to
real catalogs. Since the purpose of using synthetic catalogs is to reproduce similar effects to
those that are observed in real data, an amplification of the effects does not invalidate the
argument.
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Denoting independent events as events of generation 0, we recursively simulate events of
subsequent generations until no more aftershocks are produced, or all aftershocks lie outside
the relevant time window. For each event of generation i that lies in the relevant time
window, we

• calculate its expected number of aftershocks as

nAS(m,∆t0,∆t1) = k0 · ea·(m−mc) · π
ρ
· (d · eγ·(m−mc))−ρ · ec/τ · τ−ω

·
(
Γ

(
−ω,

∆t0 + c

τ

)
− Γ

(
−ω,

∆t1 + c

τ

))
,

(A.20)

where Γ(s, x) is the upper incomplete gamma function, and ∆t0,∆t1 are the positive
time difference between the event and the start and end of the primary time period,
respectively.

• draw its actual number of aftershocks from a Poisson distribution with mean rate
nAS(m,∆t0,∆t1).

• simulate aftershock occurrence times by simulating inter-event time differences fol-
lowing the Omori law. For this, we simulate uniformly distributed random numbers
between 0 and 1 and apply the inverse of the Omori law CDF with parameters c, ω, τ .

• simulate aftershock locations isotropically around its epicenter by simulating inter-
event distance and angle. Again, we simulate uniformly distributed random numbers
between 0 and 1 and apply the inverse of the CDF induced by the spatial kernel with
parameters d, γ, ρ, yielding the distance. The inter-event angle is sampled from a
uniform distribution on the interval [0, 2π).

• simulate aftershock magnitudes by simulating uniformly distributed random numbers
and applying the inverse of the CDF induced by the GR-law with fixed b-value.

Because the time window is limited, more and more aftershocks will be simulated to lie
outside the relevant period and hence the algorithm stops after having generated a finite
number of earthquakes. Note that the time period is not required to be limited for the
ETAS simulation to stop after a finite number of generations. One can calculate the so-
called branching ratio

η =

∫ ∞

mc

p(m) · nAS(m, 0,∞) dm (A.21)

where p(m) = β·e−β·(m−mc) is the probability that an earthquake of magnitude abovemc has
magnitude m, and Γ(−ω,∞) := 0 in the calculation of nAS(m, 0,∞). This branching ratio
represents the average number of expected direct aftershocks of any earthquake. If η < 1,
the sum of the geometric series of higher order aftershock numbers converges, and hence is
finite. In other words, the ETAS process is in a subcritical regime. Therefore, the expected
number of generations to be simulated before all events stop producing aftershocks, is also
finite. Based on the ETAS parameters obtained in the inversion, we find that η ≡ 0.89 < 1,
implying that simulations of aftershock chains will stop after finitely many generations.

Because the time delay between a triggering event and its aftershock can be in the order
of months or even years, aftershock chains starting with independent events prior to the
relevant time window are missing in such simulations. The characteristic waiting time τ is
around 26.7 years in our case. Since aftershock chains can go on for many generations, we



Appendix A. Supporting Information for
Chapter 2 129

choose the start of our simulation period generously early on January 1, 1850, 120 years
before the start of the auxiliary time period used for further analysis.

A.4.3 ETAS declustering

It has been proposed by Zhuang et al. (2002) that ETAS can also be used for declustering.
We consider two versions of ETAS-based declustering, which differ in their definition of
mainshocks. As was mentioned above, one component of ETAS inversion is to calculate
probabilities pij of each event ej to be triggered by each other event ei, and the probability
pindi of each event to be an independent event.

Regarding independent events to be mainshocks, one straightforward way to decluster is
to weight each event in the catalog by its independence probability. The b-value can then
be calculated using weighted magnitudes. We call this first version of ETAS declustering
‘ETAS-Background’.

However, declustering methods normally distinguish between mainshocks and fore- or af-
tershocks, rather than independent events and triggered events in the ETAS sense. Going
from independent and triggered events to mainshocks, fore- and aftershocks requires the
extra step of identifying earthquake clusters and then imposing the rule of maximum mag-
nitude to identify mainshocks. The probabilities pij and pindi can be utilized to identify
clusters, yielding an additional ETAS-based method of declustering.

We split our primary catalog into independent and triggered events as follows. Those
events with the highest independence probabilities are defined to form the set Eind of inde-
pendent events. The number of independent events is chosen to be [nind], the closest integer
to nind.

Eind = {ei | pindi ≥ pthresh}, (A.22)

where pthresh is the maximum threshold such that Eind contains [nind] events. Each inde-
pendent event forms its own cluster. All remaining events are then chronologically added
to one of the existing clusters. More precisely, each triggered event is added to the cluster
with the highest responsibility for having triggered it. The responsibility rCi

for cluster Ci

for having caused event ej is given as the cumulative triggering probability of Ci,

rCi
=

∑
k:ek∈Ci

pkj . (A.23)

Events of the auxiliary catalog are allowed to have responsibility for a primary event. As
there is no information on triggering probabilities pij between auxiliary events, they are not
seen as part of any cluster, which is why each auxiliary event is interpreted as a separate
cluster. In this way, primary events may be allocated to a cluster originating in the auxiliary
time period. These events are excluded from further analysis, since they are assumed to be
incomplete.

The ETAS method for declustering does not depend on any input parameters. Unlike
with other methods, the optimal parameters for declustering can be naturally obtained by
calibrating the model on the data. ‘ETAS-Main’, in agreement with the other three methods,
defines the largest event of each cluster to be the mainshock of the cluster.

Note that the non-parametric stochastic declustering algorithm proposed by Marsan and
Lengline (2008) is not used here. This is because of its similarity to the already considered
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parametric stochastic declustering alternative provided by the ETAS model. The main dif-
ference to ETAS declustering is that the triggering rate, here denoted by g(t, x, y,m), is there
obtained empirically, without presuming the laws (A.13-A.15). In their analysis of south-
ern California seismicity, they observe that their empirically derived triggering rate follows
laws similar to those described in (A.13-A.15), which, likewise, were originally discovered
empirically.

A.5 Sensitivity of b-value to mc

A sensitivity analysis of the b-value to the completeness magnitudemc, represented in Figure
A.3, shows that the b-value decrease after declustering is an effect that is observed regardless
of the choice of mc. For the low value of mc = 3.2, Reasenberg and Zaliapin declustered
catalogs’ b-values do not significantly differ from the full catalog b-value. However, com-
pleteness at this value is not certain, especially not after large events. As we increase the
completeness threshold and therewith the certainty of dealing with a complete catalog, b-
values quickly start to differ substantially from the full-catalog b-value. Note that the extent
of the decrease is characteristic of each method.

A.6 Supplemental figures

Figure A.1: Sensitivity of b-value on completeness magnitude and magnitude bin size ∆M .
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Figure A.2: Testing mi
c between 2.0 and 6.0. (a): For integer values of mi

c, theoretical and
observed CDFs are represented as dotted black and red lines, respectively. Light grey and
dark grey areas mark 5th to 95th, and 25th to 75th percentile of 10,000 randomly sampled
CDFs. Grey areas are barely visible for small mi

c, because they are in agreement with the
theoretical CDF. (b): Evolution of p-value with mi

c. (c): Derivation of p-value for integer
values ofmi

c. Histogram shows the frequency distribution of KS distances of 10,000 randomly
sampled CDFs to theoretical CDF. Red vertical line indicates KS distance of observed to
theoretical CDF. (d) Evolution of b-value with mi

c, with uncertainties.

Figure A.3: Sensitivity of mainshock b-value on completeness magnitude for different declus-
tering methods.
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A.7 Supplemental tables

Table A.1: Parameter ranges applied in the Reasenberg declustering algorithm. Standard
parameter settings are given in bold characters.

Parameter Name Value Range
Interaction Formula Reasenberg1985, WellsCoppersmith1994
τmin 0.5, 1.0, 1.5, 2.0, 2.5
τmax 3.0, 6.0, 8.0, 10.0, 11.0, 13.0, 15.0
xk 0.0, 0.167, 0.333, 0.5, 0.667, 0.833, 1.0
p 0.75, 0.8, 0.85, 0.9, 0.95
rfact 5.0, 10.0, 15.0, 20.0

Table A.2: Parameter ranges and window types applied in the window declustering methods.
Standard window and parameter settings are given in bold characters.

Parameter Name Value Range
Window Method GardnerKnopoff, Gruenthal, Uhrhammer
τmax None, 15.0, 30.0
pτforeshock

0.0, 0.1, 0.2, . . . , 1.0, 1.1, 1.2, . . . , 1.9, 2.0

Table A.3: Parameter ranges applied in the Zaliapin declustering algorithm. Standard
parameter settings are given in bold characters.

Parameter Name Value Range
d 1.0, 1.1, 1.2, 1.3, 1.4, . . . , 2.4, 2.5
b 0.0, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, . . . , 1.45, 1.5
θ 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2
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B.1 Catalog simulation

The following algorithm is used to simulate the continuation of a training catalog.

Note that the synthetic catalogs referred to in Sections 3.4.1 and 3.4.2 in Chapter 3 are not
continuations of a training catalog, hence generation 0 (defined in the following) consists only
of background events. The locations of these background events are uniformly distributed
in the study region. Also in the case of synthetic catalog simulation, the “testing period”,
which is referred to below, is the period for which one wishes to simulate a catalog. Where
different models are mentioned, the base model is used for synthetic catalog simulation.

1. Background events are simulated for the testing period.

• Number of background events is drawn from a Poisson distribution with mean as
given by the ETAS background rate.

• Occurrence times are drawn from a uniform distribution within the testing period.

• Locations are drawn from the locations of events in the training catalog, weighted
by their probability of being background events. The locations are then randomly
displaced by a distance drawn from a normal distribution with mean 0 and stan-
dard deviation of 0.1°.

• Magnitudes are drawn from a GR law with exponent β as estimated in the PETAI
inversion (for PETAI and trig only). For the base model and par only, we use
the β estimate obtained when using the formula proposed by Tinti and Mulargia
(1987) for binned magnitude values, using magnitudes M ≥ 3.1 in the training
catalog.

2. The training catalog together with the simulated background events make up genera-
tion 0. igen := 0.

3. Expected number of aftershocks is calculated for all events of generation 0. In the case
of the PETAI and the trig only model, the average number of aftershocks triggered by
any event ei in the training catalog is inflated by 1 + ξ(ti).

4. Actual number of aftershocks of each event is randomly drawn from a Poisson distri-
bution with mean as calculated in the previous step.

5. Aftershocks of the current generation igen are simulated.

• Aftershock time distance to its parent event is randomly generated according to
the estimated ETAS time kernel. If aftershock time falls out of the testing period,
this aftershock is discarded.

133
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• Aftershock spatial distance to its parent event is randomly generated according
to the estimated isotropic ETAS spatial kernel. If aftershock location falls out of
the considered polygon, this aftershock is discarded.

• Aftershock magnitude is generated according to the GR law with exponent β
(same as for the background events).

6. The newly generated aftershocks now make up the next generation igen + 1.

7. We move on to the next generation. igen := igen + 1

8. Expected number of aftershocks is calculated for all events of generation igen. Continue
with step 4.

The algorithm terminates when no aftershocks fall into the testing period anymore, which
is expected to happen in a finite amount of time if the branching ratio η < 1.

B.2 Forecast evaluation

The performance of each model is evaluated by calculating the log-likelihood of the testing
data given the forecast. Specifically, we calculate the log-likelihood of Ni earthquakes to
occur in each bin bi of a spatial grid of 0.1° latitude × 0.1° longitude. Here, Ni is the number
of earthquakes that actually occurred during the testing period in spatial bin bi.

The log-likelihood for bi is calculated based on the smoothed estimate of the probability
of Ni earthquakes to occur in bi, where the probability estimate is based on the 100,000
simulations of the model in question. For smoothing we use Gaussian kernels with adaptive
bandwidth as described by Nandan et al. (2019a), with a fixed value of Ω = 3.0. To
avoid arbitrary likelihood values due to extrapolation, we define a water-level likelihood for
event counts larger than the maximum simulated event count in the respective bin. This
waterlevel probability is defined as a uniform value of 100, 001−1/nextr, where nextr is the
number of event counts larger than the maximum observed and smaller than a generously
high maximum possible event count. Symbolically, this suggests that all other possible event
counts could have been simulated in the 100, 001st simulation. Inevitably, the probabilities
for non-extrapolated event counts are proportionally reduced such that the probabilities of
all possible event counts add up to 1.

The total log-likelihood of the testing data is then given by the sum of log-likelihoods
over all bins bi.

Two competing models can be compared by calculating the information gain (IG) of
the alternative model Malt over the null model M0, which is simply the difference in log-
likelihood of observing the testing data. The mean information gain (MIG) is calculated
as the mean over all testing periods. We accept the superiority of Malt over M0 when we
reject the null hypothesis that Malt does not outperform M0. To decide whether to reject
the null hypothesis, we perform a one-sided t-test on the set of IGs for all testing periods.
This assumes that the IG values follow a normal distribution, and we test whether or not
the MIG of Malt versus M0 is significantly positive. We reject the null hypothesis when a
p-value of less than 0.05 is observed.

The spatially and temporally homogeneous Poisson process (STHPP) model forecasts the
same number of events in all spatial bins. This number of events forecasted, Nfc, is given
by

Nfc =
Ntrain · Ttest

Ttrain ·Nbins
, (B.1)
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where ntrain is the number of events observed in the training period, Ttrain is the length of
the training period in days, Ttest = 30 is the testing period length, and Nbins is the total
number of spatial bins. The log-likelihood for the STHPP model is calculated assuming a
Poisson distribution of event numbers with mean Nfc in each spatial bin.

Figure B.1: Log likelihood of observing the test data for different values of tR and b-value,
when current rate is known. Black cross indicates true values used in simulation, blue cross
indicates maximum likelihood estimators obtained.
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Figure C.1: Evolution of b-value, branching ratio η, and ETAS parameters when an in-
creasing time horizon is used for calibration. For standard ETAS, start of the primary time
horizon is January 1, 1997, for complETAS, it is January 1, 1977. End of time horizon is
indicated on x-axis.
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in which the ETAS model is defined.
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Figure C.3: 7-day background seismicity forecasts produced by the different models. The
color of each pixel of 0.05°lat × 0.05°lon (≃ 5km × 5km) corresponds to the probability of
one or more M ≥ 2.5 earthquakes to occur in the pixel during 7 days.
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Figure C.4: Results of the 30 year number test. Histograms show the number of M≥ 4.5
events in 100,000 simulated catalogs, vertical dashed line indicates the observed number of
7 events. Red areas of the histograms mark event numbers below the 5th or above the 95th

percentile for which the test is failed.
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Figure C.5: Results of the 30 year spatial test. Histograms show distribution of the test
statistic in 100,000 simulated catalogs, vertical dashed line indicates the observed statistic.
Red areas of the histograms mark values below the 5th or above the 95th percentile for which
the test is failed.
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Figure C.6: Results of the 30 year pseudolikelihood test. Histograms show distribution of
the test statistic in 100,000 simulated catalogs, vertical dashed line indicates the observed
statistic. Red areas of the histograms mark values below the 5th or above the 95th percentile
for which the test is failed.
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Figure C.7: Results of the 50 year number test. Histograms show the number of M≥ 4.5
events in 100,000 simulated catalogs, vertical dashed line indicates the observed number of
22 events. Red areas of the histograms mark event numbers below the 5th or above the 95th

percentile for which the test is failed.
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Figure C.8: Results of the 50 year spatial test. Histograms show distribution of the test
statistic in 100,000 simulated catalogs, vertical dashed line indicates the observed statistic.
Red areas of the histograms mark values below the 5th or above the 95th percentile for which
the test is failed.
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Figure C.9: Results of the 50 year magnitude test. Histograms show distribution of the test
statistic in 100,000 simulated catalogs, vertical dashed line indicates the observed statistic.
Red areas of the histograms mark values below the 5th or above the 95th percentile for which
the test is failed.
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Figure C.10: Results of the 50 year pseudolikelihood test. Histograms show distribution of
the test statistic in 100,000 simulated catalogs, vertical dashed line indicates the observed
statistic. Red areas of the histograms mark values below the 5th or above the 95th percentile
for which the test is failed.
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D.1 Polygons

The polygons used in this study are defined via the following lists of vertices.

Table D.1: Southern California polygon boundary vertices.

latitude longitude
32.7219 -116.3004
33.7424 -117.6512
33.7958 -117.966
33.9322 -118.0775
34.0984 -118.2611
34.1755 -118.9365
34.6027 -118.8775
34.8281 -119.343
36.525 -119.1988
36.4835 -115.6381
34.128 -115.5463
32.7219 -115.2578
32.6922 -115.448
32.7753 -115.7234
32.8109 -115.8545
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Table D.2: Italy polygon boundary vertices.

latitude longitude
45.1 4.9
44.5 5.1
43.3 5.9
42.8 6.5
41.6 9.1
38.0 10.5
36.7 11.5
35.8 13.4
35.3 15.1
35.7 16.1
38.8 19.4
40.1 20.1
41.3 19.5
42.9 17.2
44.0 15.6
45.6 15.6
46.5 15.4
47.5 14.7
47.9 13.7
48.1 13.2
48.4 12.2
48.2 10.7
47.9 9.4
47.8 8.4
46.8 5.8
45.8 5.1
45.1 4.9
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D.2 Inverted parameters
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Figure D.1: Evolution of inverted parameters with increasing length of the training catalog,
for the four ingredient models. The branching ratio η is not individually inverted, but is
calculated from the other parameters. Dashed lines reflect Southern California parameters,
solid lines reflect Italian parameters.

Figure D.1 shows the inverted parameters for the four ingredient models, with an increasing
time horizon used for the calibration, for Southern California and Italy. Note that for the
standard ETAS model and flETAS where only the background rate is free, the parameters
a and k0 are inverted directly during expectation maximization (EM), while for the flETAS
models with free productivity, they are inferred afterwards based on the κj values that result
from the EM inversion.

Most parameters show remarkable changes in time in Southern California, and gener-
ally, the parameters differ between Italy and Southern California. The differences between
parameters obtained for different ingredient models show similar trends in both regions.

For instance, the background rate µ is highest for the model which only allows the back-
ground rate to be free, followed by the model where background and productivity are free,
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and is lowest when only the productivity is free. This is expected, since allowing the back-
ground to be free will allow the model to classify more events to be background events, while
allowing the productivity to be free will allow it to classify more events to be aftershocks.

The exponent of the productivity law, a, is larger in the flETAS models which allow
the background to be free, indicating a stronger magnitude dependency of the number of
aftershocks en earthquake is expected to generate. Those models also have larger γ and
much larger ρ values, which translates to a stronger magnitude dependency of the spatial
region in which aftershocks occur, and a stronger spatial decay of the aftershock rate.

Interestingly, the flETAS model in which only productivity is free shows smaller k0 values
than standard ETAS in both regions, accompanied by values of a that are similar to standard
ETAS. Both these effects would suggest lower overall productivity. However, the value of
τ is larger in this model, indicating a slower long-term tapering off of aftershock rate in
time, and ω is smaller in Southern California (similar in Italy), further indicating a slower
(similar) temporal decay of aftershock rate. Together with the observation that µ is smaller
for this model, these results suggest that allowing productivity to free leads to an overall
slower decay of aftershock rate, and thus a large fraction of aftershocks is expected to occur
later in an ongoing sequence.

The branching ratio η, which captures the average expected number of aftershocks of any
event, is highest for the standard ETAS model, followed by flETAS with free productivity,
flETAS with free background, and flETAS with free productity and background with the
lowest branching ratio. Thus, the degree of flexibility of a model is qualitatively opposite to
the degree of criticality of the system that is inferred with that model.
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E.1 lmizrahi/etas

The GitHub repository lmizrahi/etas contains Python implementations of the most central
algorithms used in this thesis. Figure E.1 shows a screenshot of the repository, which among
other information displays its README.md file. The repository contains scripts which allow
the user to run the following procedures.

• Jointly estimate a constant completeness magnitude mc and corresponding b-value
given a set of earthquake magnitudes, using the method described in Section A.2.
Running runnable_code/estimate_mc.py will apply the method to the example mag-
nitudes stored in input_data/magnitudes.npy.

• Invert ETAS parameters of an earthquake catalog, given certain input parameters such
as the primary and auxiliary time period, completeness magnitude, regional polygon,
etc., using the method described in Section A.4.1. Input parameters are specified in
config/invert_etas_config.json. Running runnable_code/invert_etas.py will
invert the parameters of the catalog stored in input_data/example_catalog.csv,
and store the results in output_data/.

• Invert ETAS parameters of an earthquake catalog, given certain input parameters and
a spatially and/or temporally varying magnitude of completeness, using the method
described in Section 3.3.1. Input parameters are specified in config/invert_etas_

mc_var_config.json. After uncommenting lines 31-32, running runnable_code/

invert_etas.py will invert the parameters of the catalog stored in input_data/

example_catalog_mc_var.csv, and store the results in output_data/. The vary-
ing completeness magnitude is given as an extra column named mc_current in the
input catalog, where each row takes the value of mc which is valid at the time and
location of the event represented by that row.

• Simulate a synthetic catalog as described in Section A.4.2. The region, time horizon
and minimum simulated magnitude, as well as ETAS parameters used for the simula-
tion are specified in config/simulate_catalog_config.json. Running runnable_

code/simulate_catalog.py will store a synthetic catalog in output_data/.

• Simulate a continuation of a catalog using the algorithm described in Section B.1,
after its ETAS parameters have been inverted using one of the previously described
scripts. The information for the duration of the catalog continuation, and the paths
to the inversion output, are specified in config/simulate_catalog_continuation_

config.json. Running runnable_code/simulate_catalog_continuation.py will
store a simulated catalog in output_data/.

• Issue a pseudo-prospective forecast consisting of 100 simulated catalogs for Switzer-
land. Running runnable_code/ch_forecast.py will first invert the ETAS parameters
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based on the catalog stored in input_data/ch_catalog.csv, and then simulate 100
continuations thereof which will be stored in output_data/. This is the basic ETAS
model used in Section 4.4.1. Relevant input is specified in config/ch_forecast_

config.json. Note that more than 100 simulations are recommended for a reliable
forecast; this is just to limit the run time of the script when first trying it out.

E.2 lmizrahi/petai

The repository lmizrahi/petai contains scripts which allow the user run the PETAI inversion
described in Section 3.3.4 and simulate a catalog continuation. Running invert_petai.py

will run the inversion on a synthetic example catalog stored in data/synthetic_catalog.

csv, and store the inverted ETAS and detection incompleteness in data/. Thereafter run-
ning simulate_catalog_continuation.py will store a catalog continuation as data/my_

catalog_continuation.csv.

https://github.com/lmizrahi/petai
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Figure E.1: Screenshot of the lmizrahi/etas repository on GitHub (last accessed on 15
September 2022).
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